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BIOSYNTHESIS OF MICROBIAL GLYCANS AND THEIR RECOGNITION BY  

HUMAN INTELECTIN-1 

Darryl A. Wesener 

Under the supervision of Professor Laura L. Kiessling 

At the University of Wisconsin–Madison 

 The human body is challenged with constantly surveying and managing microbial guests, 

while preventing infection and colonization by pathogenic microbes. Both of these goals require 

the accurate assessment of a cell’s origin, and the ability to effect a function. Virtually all cells 

are covered in the coat of carbohydrates. Cell surface glycans could serve as cell identification 

codes when recognized by lectins. Interestingly, the carbohydrates utilized in the assembly of 

microbial cell surface glycans differ substantially from those found on mammalian cells. My 

thesis work has taken an interdisciplinary approach using protein biochemistry, chemical 

biology, microbiology, and immunology to study both the biosynthesis of microbial glycans and 

the recognition of microbial glycans by the human lectin intelectin-1 (hIntL-1).  

 Using protein biochemistry and chemical biology I characterized the enzyme responsible 

for uridine 5’–diphosphate–α-D-galactofuranose (UDP-Galf) biosynthesis, UDP-galactopyranose 

mutase (UGM), in the nematode Caenorhabditis elegans. These studies revealed conservation 

between the structure and mechanism of prokaryotic and eukaryotic UGM enzymes despite 

significant sequence divergence (Chapter 2). While exploring the biological function of Galf–

containing glycans, I became interested in how the human immune system may interact with 

microbe specific carbohydrates.  Focusing our efforts on hIntL-1, a soluble lectin proposed to 

function in innate immunity, we identified several microbe specific carbohydrate ligands of the 
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lectin that include β-D-Galf–, D-phospho-glycerol–, heptose–, D-glycero-D-talo-oct-2-ulosonic 

acid (KO)–, and 3-deoxy-D-manno-oct−2-ulosonic acid (KDO)–containing glycans (Chapter 3). 

These microbial carbohydrate residues all share an exocyclic 1,2-diol epitope that is recognized 

by hIntL-1. Recognition of the exocyclic diol by a Xenopus laevis intelectin suggests that 

intelectin:diol binding may be a general mechanism for microbe detection by chordates (Chapter 

4). Lastly, hIntL-1 binding to microbial communities representative of human gastrointestinal 

microbiomes suggests that exocyclic 1,2-diols are abundantly present on microbial symbionts 

and hIntL-1 interacts judiciously and tunably with binding species present within communities 

(Chapter 5). I anticipate future work will reveal a role for intelectin in recognition and regulation 

of microbial guests at mucosal surfaces. 
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Biosynthesis of Microbial Glycans and Their Recognition by Soluble 

Human Lectins 
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1.1 Abstract 

 Microbes are covered with a layer of carbohydrate antigens. These glycoconjugates 

perform essential functions including resistance to turgor pressure, cation homeostasis, and 

immune evasion. The human immune system has evolved diverse mechanisms for detecting 

these molecules and effecting an immune response. One mechanism is the production of soluble 

carbohydrate binding proteins, or lectins. Some soluble lectins bind their cognate ligand and 

activate mechanisms resulting in microbial cell death, others stimulate phagocytosis of microbes 

my antigen presenting cells, and others function by mechanisms we yet do not fully understand. 

Within this chapter I introduce many of the bacterial glycoconjugates that populate the microbial 

surface. Special attention will be paid to their biosynthesis and physiological role. Next, I will 

review human soluble lectins.  I will focus on their structure, ligands, potential mechanisms of 

action, and results from human and mouse genetics studies that provide details about their 

biological function. It is my hope that this can serve as a guide to future studies of human innate 

immune lectins that function in microbial surveillance and regulation.     
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1.2 Introduction 

All cells are covered with a layer of carbohydrates. For microbes, this carbohydrate coat 

functions analogously to metazoan skin; it is a barrier between the microbe and its environment 

(1,2). Cell surface glycans are essential for protecting microbes from osmotic stress, desiccation, 

toxic small molecules, metals, and proteins. These attributes are critical for survival in a 

complex, dynamic, and competitive growth environment. Cell surface glycans however serve as 

much more than just a protective sugar coat. The can function as molecular mimics for immune 

evasion, immunomodulators, or virulence factors. To detect and survey microbial guests, 

multicellular organisms have evolved lectins that can recognize microbial cell surface glycans. In 

this overview, the biosynthesis of representative microbial cell surface glycopolymers is 

discussed. With this background, we focus on the recognition of microbial glycoconjugates by 

human immune lectins. Of particular interest are soluble, or humoral lectins, and their role in 

immunity.  

1.3 Bacterial Glycoconjugates 

1.3.1 Peptidoglycan 

Bacteria a enveloped in a glycopeptide polymer termed the peptidoglycan (PG) is central 

to the cell wall (3). It forms an ext ended mesh framework around the cell that gives the cell 

shape, strength, and resistance to turgor pressure. The PG is assembled via polymerization of 

lipid II monomers which are composed of a disaccharide and pentapeptide (Figure 1-1A) (1,3). 

The disaccharide consists of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid 

(MurNAc). The peptidyl component is linked to the disaccharide by an ether bond to the C(3) 
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hydroxyl of MurNAc. Within the peptide portion of PG are D-amino acids, which render it more 

resistant to many extracellular proteases.  

Lipid II is polymerized into an extended β(1-4) polymer via extracellular penicillin-

binding proteins which catalyze transglycosylation reactions. In exponentially growing E. coli, 

PG strands are between 25 and 35 disaccharide units in length (4). Penicillin-binding proteins 

then install peptide crosslinks using a transpeptidase domain. In general, the peptide crosslinks 

are between the carboxyl group of the D-alanine located at position four of the peptide, and the 

amino group of diaminopimelic acid or L-lysine (Figure 1-1B). Most variation in PG structure 

arises in the peptide stem and the composition of the crosslinks. The polymerized glycan portion 

of PG, however, can be modified to generate increased epitope diversity (5). In Gram-negative 

bacteria, the PG is anchored to the outer membrane via linkage to Braun’s lipoprotein (6). 

Because PG is an essential and conserved feature amongst Gram-negative and Gram-positive 

bacteria, it is the target of numerous small molecule antibiotics and is a ligand for multiple 

human immune proteins. 

1.3.2 Lipopolysaccharide 

Lipopolysaccharide (LPS), or endotoxin, decorated the surface of Gram-negative bacteria 

(7,8). True to its name, LPS is an amphiphilic molecule that contains lipid and carbohydrate 

portions (Figgures 1-1C & D). It is assembled in the cytosol and periplasm but ultimately is 

localized to the outer leaflet of the outer membrane of Gram-negative bacterium.  

The molecule can schematically be broken down into three parts: lipid A, the portion of 

the molecule that is lipidated and is inserted into the bacterial outer membrane, this portion is 

recognized by toll-like receptors (TLRs) and is responsible for the toxicity of endotoxin to 



	  

	  

5	  

eukaryotic cells (9,10); a carbohydrate based core region, this can be divided conceptually into 

an inner (more proximal to lipid A) and outer region, this is somewhat variable; and a highly 

variable repeating O-antigen (Figure 1-1C & D). The presence or absence of O-antigen 

polysaccharide evokes a bacterium as classified “smooth” or “rough”, respectively. In many 

Gram-negative bacteria, the lipid A and 3-deoxy-D-manno-oct-2-ulosonic acid (KDO) portions 

of LPS are absolutely required for growth, (7) though that has recently been challenged via 

generation of an E. coli strain lacking KDO attached to its LPS (11).  

In addition to LPS, many mucosal pathogens, including Campylobacter jujuni, Neisseria 

supp., and Yersinia pestis, synthesize lipooligosaccharides (LOS), which structurally are similar 

to LPS but lack an O-antigen polysaccharide (12). The LPS/LOS, along with a capsular 

polysaccharide (K-antigen), occupy much of the accessible surface of Gram-negative bacteria, 

and are targets of many human innate and adaptive immune proteins. In an attempt to evade 

immune detection and shield themselves, some bacteria will incorporate mammalian like sugars 

into the O-antigen as a form of molecular mimicry (13). 

The structural variability of LPS increases as one moves away from Lipid A. In general, 

the Lipid A and the inner core are very similar. For example, the monosaccharide KDO is 

universally found in LPS (14). Thus, the majority of glycan diversity in LPS molecules resides in 

differences in the repeating structure of the O-antigen (Figure 1-2). Indeed, 180 distinct O-

antigens have been described for E. coli (14).  

Most O-antigens are assembled by the carbohydrate polymerase Wzy. Wzy-dependent O-

antigen arises from an undecaprenyl diphosphate oligosaccharide assembled in the cytoplasm via 

the action of several glycosyltransferases using nucleotide-activated donor sugars. Each 
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undecaprenyl diphosphate oligosaccharide contains between two and seven saccharide residues. 

The oligosaccharide is polymerized into a fully mature O-antigen bound to undecaprenyl 

diphosphate by en bloc transfer of the growing chain onto the nonreducing end of the “new” lipid 

linked oligosaccharide within the periplasmic space (15). The polysaccharide polymerase Wzy 

typically terminates after 10-25 en bloc transfers. The final length of the polysaccharide is 

controlled by the chain length regulator protein Wzz (16). Once fully assembled, the O-antigen is 

ligated to the Lipid-A core by a WaaL enzyme. 

Other mechanisms by which the O-antigen can be assembled is via the activity of an 

ABC transporter that is responsible for translocation of O-antigen oligosaccharide across the 

inner membrane, and by the activity of a synthase. O-antigens synthesized in an ABC-

transporter-dependent manner are typically homopolyeric and are assembled and terminated 

within the cytosol. Specific examples of E. coli strain O-antigen assembled in this manner 

include O8, O9, and O9a; homopolyers of mannose (17). Synthase-dependent O-antigen 

biosynthesis is rarely observed and typically generates homopolyeric or O-antigen with little 

diversity as compared to O-antigens assembled in a Wzy-dependent mechanism. 
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Figure 1-1. Chemical structures of cell surface glycoconjugates present on Gram-negative 
bacteria. (A) Structure of a generic lipid II monomer used in the polymerization on PG. Most of 
the species variation in the structure of PG arises from variation in the peptide stem. (B) 
Chemical structure of the product of a transpeptidation reaction between two adjacent strands of 
PG. The new bond formed between D-alanine and diaminopimelic acid is shown in red. The 
terminal D-alanine residues are often removed as a product of the crosslinking reaction. (C) 
Structure of lipid A and lipid A KDO2 that form the base of all LPS molecules. Lipid A KDO2 
has been shown to be the minimal portion of LPS that is essential for cell viability. (D) Chemical 
structure of LSP core oligosaccharide from K. pneumoniae. The two KDO residues are included 
for clarity. This structure was chosen because K. pneumoniae uses only one LPS core structure in 
the assembly of full LPS. 
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1.3.3 Capsular Polysaccharide 
 

Capsular and exo- polysaccharides (CPS and EPS, respectively) comprise another 

important class of cell surface glycopolymers found on bacteria. CPS and EPS can generally be 

differentiated based on the strength of their association with the bacterial cell wall. Commonly, 

CPS molecules are more adherent, often covalently bound to the cell, while EPS is loosely 

associated or secreted. Unlike LPS, CPS/EPS are found on Gram-negative and Gram-positive 

species (Figure 1-3). To differentiate these glycopolymers from the O-antigen, the CPS is 

referred to as K-antigen in Gram-negative species. CPS structures and LPS O-antigen are the 

major surface accessible glycans antigens in Gram-negative bacteria. In Gram-positive species 

CPS are the major antigenic glycan.  

The capsule generated from capsular- and exo-polysaccharides is an important virulence 

factor for bacteria as it generates a physical barrier to small molecules, is antiphagocytic, and ca 

prevent complement-mediated osponization. Still, some capsules are extremely antigenic (18). 

The vast structural diversity of capsules is proposed to have arisen through pressure to evade the 

human immune system (19). The recognition of CPS can be exploited, evidenced by the 

development of a protein-conjugate polyvalent pneumococcal CPS vaccine that is protective 

against streptococcus infection (18). Similar to LPS O-antigen, some bacteria attempt to shield 

their capsule from the immune system. In an attempt to evade immune detection, Bacteroidetes 

spp. scavenge human L-fucose and incorporate it into CPS and surface proteins (20).  

Within CPS molecules there is an incredible amount of carbohydrate diversity that is 

generated (Figure 1-2) (19). Each cell typically expresses one CPS serotype, although 

Bacteroides fragilis is known to transition between multiple distinct capsules (21,22). The 
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number of distinct CPS glycopolymers found amongst the members of a species can range from 

one, as is the case Streptotoccus pyogenes, to 80 identified K-antigens in E. coli (23), to 93 

distinct capsule serotypes in S. pneumoniae (24).  

Similar to O-antigen biosynthesis, Gram-negative bacteria can synthesize CPS in a Wzy-, 

ABC transporter-, and synthase-dependent mechanism (25). Only the Wzy- and synthase-

dependent mechanisms have been described in Gram-positive bacteria (Figure 1-3). The genetic 

loci for Wzy-dependent capsule biosynthesis is similarly localized amongst closely related 

bacteria, this facilitates the rapid identification and characterization of CPS biosynthetic 

machinery. For example, in S. pneumoniae the capsular polysaccharide synthesis genes lie on the 

chromosome between dexB and aliA and are proposed to be transcribed as a single operon. 

Biosynthesis is initiated on the cytoplasmic face of the membrane on an undecaprenyl phosphate 

acceptor by the transfer of a sugar phosphate molecule, making a glycosylated undecaprenyl 

diphosphate. In all, 342 glycosyltransferases are encoded by the combined serotypes of S. 

pneumoniae to fully assembly each CPS oligsaccharide acceptor using NDP-sugars as donor 

molecules and additional enzymes for glycan tailoring (26). Each undecaprenyl diphosphate 

oligosaccharide is flipped across the membrane by Wzx and polymerized via en bloc transfer by 

the polymerase Wzy. Once fully polymerized, the capsule is transferred to the peptidoglycan or 

to another membrane acceptor (27).  

In Gram-negative bacteria Wzy-dependent capsule is assembled similarly, although the 

capsule must be transported to the outer leaflet of the outer membrane and covalently linked to 

an acceptor. ABC transporter-dependent capsule synthesis in Gram-negative species has been 

shown to occur via assembly onto a poly-KDO linker covalently attached to a lyso-
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phosphatidylglycerol molecule (28). After translocation to the outer membrane, the lipid is 

proposed to anchor the CPS to the cell. Capsules generated in a synthase-dependent manner use a 

single enzyme for acceptor priming, elongation, and transfer; the capsule from S. pneumoniae 

type 3 is generated in this fashion. It is polymer of alternating β(1-3)–Glc and β(1-4)–glucuronic 

acid that is polymerized onto a phosphatidylglycerol acceptor molecule and flipped to the outer 

leaflet of the cell membrane (29).  
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Figure 1-2. Chemical structure of several LPS O-antigens and capsular polysaccharides. 

  



	  

	  

12	  

 

 

Figure 1-3. Schematic representation of the cell surface of Gram-negative and Gram-positive 
bacteria. Special attention has been paid to carbohydrate antigens. LPS, lipopolysaccharide; 
WTA, wall teichoic acid; LTA, lipoteichoic acid. 
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1.3.4 Teichoic Acids  
 
 Teichoic acids (TAs) are restricted to Gram-positive bacteria. They function in binding to 

cations and cation homeostasis, regulation of autolysin activity, placement of cell division 

machinery, repulsion of antimicrobial small molecules, peptides, and proteins, and general 

alteration of cell wall physiochemical properties (30). TAs were first described in the 1950’s as 

glycerol- (Gro-) or ribitol-phosphate (Rib-P) glycopolymers elaborated with carbohydrates and 

amino acids, most notably D-alanine (Figure 1-4) (31). When TA fully functionalized with D-

alanine the molecule possesses an high charge density. This property is critical in TA function.  

TAs can be separated into distinct subtypes based on how they are anchored to the cell, 

and their charge. TAs covalently linked to the PG are referred to as wall teichoic acids (WTAs), 

while those attached to lipid and anchored into the cell membrane are referred to as lipoteichoic 

acids (LTAs) (32). LTAs generally do not protrude much past the PG, while WTA are much 

more exposed on the surface of the cell. Under laboratory conditions, WTA appear dispensable 

for bacterial growth, while LTA have been shown to be essential for viability of S. aureus (33).  

Because of their localization on the surface of bacteria, TA glycopolymers are the target 

of multiple immune proteins and immune functions (30). Specifically they are important for 

bacterial adhesion to epithelial and endothelial cells and are ligands for scavenger receptors, 

several human lectins, and TRL-2 (34,35). Interestingly, zwitterionic polysaccharides such as TA 

have recently been shown to be CD4+ T-cell dependent antigens capable of giving rise to IgG 

antibodies specific for TA (36,37). 

 TAs are highly variable in their structure. Structural differences exist between WTAs and 

LTAs, between molecules synthesized by different bacterial species, and even between bacteria 
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grown under different conditions. Much of what is known about TA biosynthesis comes from 

work using B. subtilis 168, B. subtilis W23, and S. aureus (38). WTAs synthesis is initated on the 

cytoplasmic leaflet of the membrane with the enzyme TagO catalyzing transfer of GlcNAc 

phosphate to an undecaprenyl phosphate acceptor. A N-acetylmannose (ManNAc) is added to 

the C(4) hydroxyl in a beta linkage by TagA to form a disaccharide primed acceptor. This 

acceptor is shared by WTA that contain a Gro-P polymer, or a combination of Gro-P and Rib-P. 

Once polymerized, the WTAs are elaborated by glycosyltransferases, flipped to the outer leaflet 

of the membrane by the ABC transporter TagGH, and attached to the C(6) hydroxyl of PG 

MurNAc residues. Upon extracellular localization, D-alanine residues are added in an ester 

linkage to generate the complete zwitterionic polysaccharide.  

The presence of the lipid substituent in LTAs dictates that the biosynthesis pathways for 

WTA and LTA differ. S. aureus LTA is polymerized onto a Glc2–diacylglycerol (Glc2–DAG) 

acceptor glycolipid using phosphatidylglycerol as a donor for Gro-P by the enzyme LtaS (33). In 

the absence of Glc2-DAG, LTA can be polymerized onto DAG. This entire biosynthesis of LTA, 

including subsequent glycosylation and D-alanyl esterificaiton, is proposed to happen on the 

outer leaflet of the membrane (39). The above descriptions provide only a general overview of 

the structure of TAs. Species-specific variations are common, so much so that glycosylation of 

TAs is used as a taxonomic trait in some bacteria species (1). In addition, the structure is 

remarkably responsive to growth conditions as D-alanyl esterificaiton is altered by pH, 

temperature, ionic strength, and phosphate availability (40).  
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Figure 1-4. Chemical structures of TAs. (A) Structure of WTAs from S. aureus and B. subtilis 
168. Examples from species are depicted to highlight the backbone can consist of TA 
polymerized of Rib-P or Gro-P. The B. subtilis 168 TA is shown linked to the C(6) hydroxyl of 
PG MurNAc. (B) Representative chemical structure of TA appended to a Glc2–DAG tail. (C) 
Examples of the chemical substituents attached to the hydroxyl groups of TAs. The addition of 
D-alanine results in a zwitterionic structrue that is important for many biological functions. 

1.3.5 Others  
 
 Many other bacterially derived glycoconjugtes are recognized by human immune lectins. 

In addition to those that I have described, I would like to introduce some that are more narrowly 

distributed amongst bacteria. Lipoglycans are part of the Actinomycetes cell envelope. They are 

an excellent example of glycopolymers that are structurally unique, not generally distributed 

amongst bacteria, but extremely important to human health (41,42). The actinobacteria 

Mycobacterium tuberculosis, the causative agent of tuberculosis, synthesizes a complex cell 

envelop proposed to enhance the difficulty in treating infections by this pathogen (41).  

An important mycobacterial lipoglycan is a heteroglycopolmer termed the mycolyl-

arabinogalactan (mAG). The AG serves as a covalent linker between the PG and the waxy 

mycolic acids. The AG is covalently linked to the PG via a phosphate–GlcNAc–rhamnose 
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disaccharide. The disaccharide is extended by a linear polymer of Galf residues termed the 

galactan (43). Branching from the Galf polymer are large furcated polymers of arabinofuranose 

(Araf). Some of the terminal Araf residues are ultimately capped with long chain hydrocarbon 

mycolic acids (C70-C90), or mannose residues.  

In addition to the mAG, a second carbohydrate-based large molecule is present in the cell 

envelope of M. tuberculosis, lipoarabinomannan (LAM). LAM is an amphiphile that contains a 

large carbohydrate portion composed of mannose and Araf carbohydrates, linked to a 

phosphatidylinositol tail used in anchoring it to the cell membrane or the mycolic acids (44). The 

recognition of both of these cell wall components by the human immune system has been studied 

extensively to better understand the pathogenesis of Actinomycetes bacteria (45). 

 Some bacteria and archea synthesize an additional antigenic determinant localized 

outside of their traditional cell wall. This layer is called the surface layer, or S-lay. The S-layer is 

generated via self-assembly of a single monomeric (glyco)protein into a crystalline-like protein 

shell that encapsulates the cell (46). In many Archea and Gram-positive bacteria, the S-layer 

protein is glycosylated (47). In bacteria, a large (50-150 monosaccharide units) repeating 

polysaccharide (15-50 repeats) that structurally resembles Gram-negative O-antigen is appended 

to one site on the protein. This glycan is typically attached to the protein via an O-glycosidic 

bond. In Archea, the S-layer protein is typically glycoyslated at multiple sites, although the 

glycans are typically shorter and are often attached via N-glycosylation (asparagine linked). The 

enzymes and glycosyltransferases responsible for synthesizing the S-layer glycan are sometimes 

encoded for in a cluster called the “S-layer glycosylation cluster (slg)”, aiding in prediction of S-

layer glycans (47). Depending on the organism, the S-layer may maintain contact with the cell by 
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interacting with LPS, secondary cell wall polymers such as TA, or by direct interaction with the 

plasma membrane. 

1.4 Fungal Glycoconjugates  

Similar to bacteria, fungi are surrounded by a cell wall that is largely composed of 

glycoproteins and polysaccharides. The fungal cell wall performs many of the same functions as 

its bacterial counterpart; including resistance to osmotic pressure changes, resistance to 

antifungal agents, masking other antigenic epitopes, and mediation of cell:cell interactions (48). 

Alteration of the fungal cell wall can have a drastic impact on the morphology, virulence, and 

viability of cells.  

Many fungal pathogens are associated with humans, but become virulent only when an 

individual is immunocompromised. This suggests that the innate and adaptive immune systems 

have evolved efficient mechanisms for detecting and controlling these pathogens (49). Owing to 

their localization on the surface of fungi, many of the antigens proposed to be important in 

immune surveillance and fungal virulence are cell wall glycopolymers. Significant effort in 

describing the structure of the fungal cell wall has focused on Saccharomyces cerevisiae, 

Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, the following 

discussion will represent this work. 

The fungal cell wall is composed primarily of three distinct glycans; chitin, beta-glucan, 

and glycoproteins (Figure 1-5). Many of the glycoproteins contain large polymers of mannose 

and are referred to as yeast mannans. Proximal to the cell membrane is chitin, a linear polymer of 

β(1-4) linked GlcNAc. Chitin is synthesized and secreted simultaneously via vectorial synthesis 

by chitin synthases. Once extracellular, adjacent chitin polysaccharides form strong 



	  

	  

18	  

intermolecular hydrogen bonding patterns that render chitin crystalline-like, and localize them 

parallel to the membrane.  

By mass, the majority of the cell wall is composed of a polysaccharide termed beta-

glucan. This polymer typically constitutes 50-60% of the entire cell wall by weight (50). 

Generally, beta-glucan is composed entirely of glucose residues joined via β(1-3) bonds. 

Additional linkages, both alpha and beta, are present in small molar ratios and have been 

reported from different fungal species. Similar to chitin, beta-glucan is synthesized by membrane 

bound complexes in a vectorial manner. However unlike chitin, the beta-glucan polymer is 

branched. Beta-glucan synthases polymerize an extended linear polymer of roughly 1,500 

glucose units. Throughout that polymer, additional glucose polymers are added to the C(6) 

hydroxyl of various glucose residues (51). Mature beta-glucan is the major structural component 

of the fungal cell wall and serves as a point of attachment for other cell wall components, hence 

it is indispensible for cell growth.  

The last major component of the fungal cell wall is glycoproteins. In many species, 

glycoproteins represent 20-50% of the cell wall by dry weight (48). This collection of 

biomolecules includes large structural proteins anchored into the membrane by addition of a 

glycosylphosphatidylinositol (GPI) anchor, some that are covalently attached to chitin or beta-

glucan, and others that noncovalently associate with cell wall polysaccharides. Fungal cell wall 

glycoproteins are highly N- and O-glycosylated. The N-glycans contain an extreme amount of 

mannose, often 50-200 α-Man residues. It is these highly mannosylated glycoproteins that are 

referred to as yeast mannan or yeast mannoproteins. The appended O-glycans are typically much 

smaller, usually consisting of 1-5 monosaccharide residues.  
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The overall structure of the fungal cell wall is remarkably similar across species. One 

example of variation is the inclusion of a significant amount of D-Galf in cell wall 

galactomannan and galactomannan modified glycoproteins from A. fumigatus (52). Some species 

express an additional polysaccharide layer termed a capsule that is found directly outside of their 

traditional cell wall. This complex is important for the infectivity and virulence of the human 

pathogen C. neoformans (53,54). 

 
 

Figure 1-5. Schematic representation of a fungal cell wall. The major surface accessible 
carbohydrate antigens are depicted. 
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1.5 Lectins  

With the many aforementioned glycopolymers localized to the surface of microbes, 

humans have evolved diverse mechanisms for detecting microbial carbohydrate antigens. These 

mechanisms include the adaptive immune response and antibody generation, cellular surface 

bound receptors such as TLRs, innate immune cells such as neutrophils and dendritic cells, and 

lectins both soluble and cell-associated. Here, I will discuss human humoral immune lectins. 

Specific attention will be paid to their structure, expression, localization, ligand selectivity, and 

proposed immune functions (55).    

1.5.1 Ficolins  

Ficolins are soluble immune lectins that share a carbohydraterecognition domain (CRD) 

and are similar in overall architecture. Ficolins contain an N-terminal region that contributes to 

disulfide-mediated oligomerization, a central collagen-like domain, and a C-terminal fibrinogen-

like domain (FBG domain) that contains the CRD (Figure 1-6) (56). The FBG domain CRD of 

ficolins is related to the gamma chain of fibrinogen in sequence through roughly 50 amino acids 

that include 24 invariant residues, and 4 highly conserved cysteine residues.  

In addition to the three human ficolins, ficolin proteins are found in many other animals, 

including mammals such as porcine and mouse, amphibians, and ascidians. The FBG domain 

CRD of ficolins is evolutionarily related to the tachylectin lectin from horseshoe crab, suggesting 

a primitive role for FBG domain-containing lectins in innate immunity (57). Ficolins are 

functionally and structurally related to collectins in that they both contain a central collagen-like 

domain and C-terminal CRD, a major distinction between these two groups of lectins is that 

collectins use a C-type CRD, as opposed to the FBG domain of ficolins (Figure 1-6) (58).  
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Functional ficolin is a homopolymer composed of three roughly 35 kDa polypeptides 

which associate via their collagen-like domain. Trimers assemble into a higher oligomeric 

structure through additional interactions, including N-terminal inter-trimer disulfide bonds. 

Electron microscopy indicates that native ficolin oligomers are bouquet-like in structure, with all 

the CRDs located in a single direction (59). Efficient ficolin oligomerization is important for 

multivalent binding to carbohydrate ligands, and for activation of the lectin pathway of 

complement through binding to serum mannose-binding lectin-associated serine proteases 

(MASPs) (60). Specifically, larger ficolin oligomers have been shown to more efficiently bind 

MASPs and activate complement (61). Complement is important to the immune function of 

ficolin proteins as it initiates multiple immune response including cell killing and opsonization, 

enhanced phagocytosis, immune cell chemotaxis, and cytokine/chemokine production. 

Humans encode three ficolins; ficolin-1 or M-ficolin, ficolin-2 or L-ficolin, and ficolin-3 

or H-ficolin. The three human ficolins are similar, but have nonidentical expression localization 

profiles, ligand specificities, and biological functions. All three ficolins contain an N-terminal 

signal peptide, suggesting they are either secreted or destined for the cell surface. L- and H-

ficolin are expressed almost exclusively in the liver and are found largely in serum (Figure 1-7). 

The concentration of L-ficolin in human serum ranges from 3-5 µg/mL, while H-ficolin is 

present at higher concentrations, 18-33 µg/mL (62). In addition to high expression in the liver, 

H-ficolin is also expressed in the lung. In contrast to serum ficolins, M-ficolin serum 

concentrations are low and have been reported between 0.06 and 1 µg/mL (63). Instead of robust 

liver expression, M-ficolin is expressed in the lung, bone marrow, and by cells including 

peripheral leukocytes, monocytes, neutrophils, and type II alveolar epithelial cells (64,65). 
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Within these cells types M-ficolin has been localized to the cell surface and to secretory 

granules. 

The carbohydrate binding of ficolins have been explored extensively and have revealed 

both overlapping and unique profiles. All three human ficolins bind N-acetylated carbohydrates, 

such as GlcNAc and GalNAc. Most ficolin ligand binding occurs near a protein bound calcium 

ion, although the calcium ion is not directly involved in ligand coordination. In addition to the 

shared affinity for acetylated ligands, unique specificities exist (66).  For example, M-ficolin has 

been shown to bind the sialic acid N-acetylneuraminic acid (Neu5Ac), an important human self-

antigen. L-ficolin possesses affinity toward sulfated ligands, including heparin. H-ficolin has 

been reported to bind D-fucose and galactose (67). It should be noted that the lectin activity of H-

ficolin is less well understood than the other ficolins as glycan microarray screening has failed to 

yield ligands (66).  

Ficolin ligand specificity has been probed by assaying binding to microbially derived 

glycopolymers and to whole cells. L-ficolin binds several microbial components including PG, 

LTA, and beta-glucan (60). Extensive profiling of ficolin binding to intact microbes has revealed 

affinity toward Gram-positive and Gram-negative bacteria, encapsulated bacterial strains, viruses 

such as influenza, and eukaryotic protozoa (68,69). Structural biology has informed about the 

mechanism of ligand recognition and self-non-self discrimination (70). Two interesting 

properties of ficolin:ligand interactions include the discovery of multiple ligand binding sites in 

L-ficolin (71), and a pH-dependent conformational change that can modulate M-ficolin ligand 

binding (72). 
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Ficolins perform biological roles in addition to complement activation via MASP 

binding. These biological tasks are carried out through protein:protein interactions as well as 

ligand recognition by the CRD. Interestingly, L- and H-ficolin, and mannose-binding lectin 

(MBL) have been shown to be important for clearance of apoptotic and necrotic human cells 

(73,74), and are able to bind released mitochondria (75). Ficolin clearence of cellular debris is 

proposed to function through ficolin binding cC1q receptor/calreticulin on immune cells via the 

ficolin collagen-like domain (76).  

A human patient deficient in H-ficolin due to a homozygous frameshift mutation was 

recently identified (77). This patient has frequent lower respiratory tract infections and has 

battled several episodes of bacterial pneumonia. Several ficolin single nucleotide polymorphisms 

have been identified and associated with serum protein concentration and disease (68,78). In 

summary, the findings suggest a decrease in serum ficolin concentrations is associated with 

infection and inflammatory disease, while upregulation of ficolins are linked to autoimmunity. 

Mouse models deficient in either ficolin-A (a mouse serum ficolin), ficolin-B (a mouse non-

serum ficolin), or both ficolin-A and -B, have been generated (79). While there were no 

abnormalities in appearance, weight, and reproduction, all three mouse strains were more 

susceptible to intranasal infection by Streptococcus pneumoniae strain D39, suggesting an 

important role for both serum and non-serum ficolins in immunity against pneumococcal 

infection (79). Indeed, ficolins play an important role in innate immunity through recognition of 

carbohydrate ligands. 
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Figure 1-6. Schematic of the assembly of function ficolin/collectin oligomers. An oligomer of 
timers is needed for MASP binding and complement activation. On the right are structural 
examples of the CRDs used by ficolins and collectins; FBG domain CRD from L-ficolin (PDB 
ID: 2J3U) (71), and the C-type lectin domain from MBL (PDB ID: 1HUP) (80). Protein bound 
calcium ions are shown as green spheres and the N- and C-termini are highlighted with a capital 
N and C, respectively. 
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1.5.2 Collectins  

 An independent family of proteins that share some structural and functional 

characteristics with ficolins are the collectins. Human collectins include MBL, surfactant 

proteins A and D (SP-A and SP-D), collectin-10 or collectin liver 1 (CL-L1), collectin-11 or 

collectin kidney 1 (CL-K1), and collectin-12 or collectin placenta 1 (CL-P1). The collectins are 

all soluble, fluid-phase lectins, with the exception of CL-P1, which contains a transmembrane 

helix. Collectins are important for vertebrate innate immunity (81). While some collectins such 

as MBL are distributed across species, other collectins such as the bovine protein conglutinin 

(82) are more restricted. 

Collectins are structurally similar to one another and to ficolins in that they contain an N-

terminal oligomerization domain, a central collagen-like domain, and a C-terminal CRD (Figure 

1-6). Collectin monomers assemble via their collagen-like domain into trimers of three identical 

(or nearly identical in the case of SP-A) polypeptides. One major distinction between collectins 

and ficolins is the nature of their CRD. Ficolins use a FBG domain and the C-terminal CRD of 

collectin proteins is a traditional C-type lectin domain (83). More subtle structural differences 

include that collectins typically have  shorter collagen-like domains than ficolins and that most 

collectins contain a small coiled-coil region between their collagen-like domain and CRD. The 

native structure of some collectins, specifically MBL and SP-A, resembles the bouquet-like 

arrangement visualized for ficolins, while SP-D assembles into more of a crucifix or wheel shape 

(84).  

 Collectins perform discrete biological functions based on their expression localization 

(Figure 1-7). MBL, which is produced predominantly by the liver and is found in serum at 
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concentrations between 0.5 and 4 µg/mL (85). Similar to ficolins, serum MBL associates with 

MASPs and is able to activate the lectin pathway of complement. The lung is the predominant 

site of SP-A and SP-D expression. SPs are produced by several resident cell types, largely 

alveolar type II cells, and secreted onto the epithelial surface. While SP-A production is 

restricted to the lung, SP-D is also expressed by epithelial cells of the small intestine and by 

other cells at mucosal surfaces (86). SP-A and -D associate with surfactant proteins B and C to 

generate lung surfactant. This mixture coats microbes resulting in agglutination and 

opsonization.  

Only recently has CL-K1 been identified and studied (87). CL-K1 is expressed by the 

kidney and liver, and is present in human plasma at 1-3 µg/mL. Like MBL, CL-K1 interacts with 

MASPs and can activate complement on the surface of Candida albicans (88,89). Similar to CL-

K1, CL-L1 has only recently been identified (90). Cl-L1 is produced predominantly by the liver 

and is secreted and localized to human plasma at concentrations from 1-5 µg/mL (91). Recently, 

a CL-L1 and CL-K1 heterotrimeric complex termed CL-LK, was identified and shown to be 

complement competent (92).  
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Figure 1-7. Expression and localization of human humoral immune lectins. Lectins expressed by 
multiple tissues and cell types are included in all locations. The reported circulating 
concentrations are taken from within this review. 
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All five human collectin CRDs discussed here contain an EPN motif that is hallmark of 

mannose-binding C-type lectin domains (93). The EPN motif in collectins necessitates 

carbohydrate ligands that contain di-equitorial hydroxyl substituents at positions C(3) and C(4) 

of a ligand ring. Those two hydroxyls displace ordered water molecules and coordinate directly 

to a protein bound calcium ion. Traditionally, this type of ligand binding was described as 

occuring in calcium binding site 2. Examples of ligands that bind in this manner include D-

mannose, L-fucose, Glc, GlcNAc, and ManNAc. Importantly, residues outside of the calcium-

binding pocket of each protein have been shown to influence ligand binding affinity and 

specificity. These contribute to differences in the monomeric affinity of each protein:ligand 

complex, but generally they can be approximated in the millimolar range. An alternative 

recognition mechanism for L,D-heptose by SP-D was recently revealed in which the exocyclic 

C(6) and C(7) hydroxyl groups coordinate the protein-bound calcium ion (94). These hydroxyls 

adopt a conformation almost superimposable with the vicinal equatorial hydroxyls of traditional 

collectin ligands.  

 The carbohydrate binding specificity of collectins is responsible for binding to many self, 

and non-self antigens. Many studies have demonstrated MBL binding to clinically important 

microbes such as E. coli, group A streptococci, Staphylcoccus aureus, Aspergillus, Candida, and 

Leishmania (95). Binding occurs through recognition of microbial glycoconjugates such as LPS, 

LAM, yeast mannans, and enveloped virus high mannose glycans (81). Many microbes also 

functions as specific ligands for surfactant proteins-A and -D through recognition of LPS core 

antigens, high-mannose O-antigens polysaccharides, LTA, and PG (96). Surfactant proteins-A 

and -D are proposed to perform vital roles in anti-viral immunity (97). This is proposed to occur 
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through binding to viral high mannose oligosaccharides, leading to enhanced agglutination. 

Surfactant proteins also have affinity toward lipids; SP-D prefers to bind phosphatidylinositol 

(PI) while SP-A has an affinity toward phosphatidylcholine (PC) (98,99). The affinity toward PI 

can be rationalized via its polar carbohydrate head group, while the mechanism of PC binding is 

not fully understood (100).  

Considerably less is known about CL-K1 and Cl-L1 ligand recognition. Fucose and 

mannose glycosides have been reported as monomeric ligands for CL-K1, while immobilized 

rough E. coli LPS, yeast mannans, and intact C. albicans are examples of more biologically 

complex ligands (87). It should be noted however, that the lectin activity of CL-K1 appears 

much less robust than that of other collectins. CL-LK heteromeric complexes showed 

appreciable binding to immobilized deoxyribonucleic acid (DNA) and to yeast mannan, with 

binding leading to complement activation (92).  

Another important function of collectins is facilitated through binding to self-epitopes 

(101). Specifically, collectins bind aberrant mammalian glycosylation, such as upregulated 

Lewis A and Lewis B antigens on cancer and apoptotic cells (102,103). Deletion of MBL in mice 

was shown to result in decreased clearance of apoptotic cells, likely through binding aberrant 

glycan ligands (104). Within the lung, SP-A has been shown to stimulate phagocytosis of 

apoptotic neutrophils by alveolar macrophages (103). Similar to ficolins, collectins are proposed 

to facilitate enhanced phagocytosis through cC1q receptor/calreticulin binding to their collagen-

like domain (105). 

 Early analysis of human data revealed that roughly 5% of the population expresses low 

levels of MBL. These individuals display defects in complement activation and opsonization, 
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and are at risk of recurrent infections (106,107). Circulating MBL levels are strongly influenced 

by genomic variation within the population (85). When additional immunodefeciencies are 

coupled with low basal serum levels of MBL, individuals are at an increased risk of infection 

(108). Mouse models have been used to demonstrate that mice deficient in MBL (mice contain 

two copies of MBL, MBL-A and MBL-C) are highly susceptible to infection by multiple 

microbial species including S. aureus, P. aeruginosa, and HSV-2 (109).  

Circulating levels of SP-A and -D are also influenced by genetic variation within the 

population (110). Association with specific disease states, and increased risk of infection have 

been reported (111). For example, polymorphisms in the SP-D gene have been associated with 

susceptibility to chronic obstructive pulmonary disease (COPD) (112). Mice deficient in both 

SP-A and -D have been generated, and studies suggest major defects in immune cell regulation 

and maturation. SP-D deficient mice were also found to have altered surfactant lipid profiles, 

defects in immune cell regulation and activation, and altered alveolar macrophage chemotactic 

activity (111,113,114). Interestingly, mice devoid of SP-A or SP-D exhibited differential 

responses  during bacterial infection, suggesting key differences in each proteins role during an 

immune response (115).  

Much less is known about the genetic variability of CL-L1 and CL-K1 and at this point, 

mice deficient in either of these proteins have not been generated. One interesting exception to 

this is a recent study that identified several mutations in human CL-K1 (116). The authors report 

that mutations in the CL-K1 and MASP1 genes cause 3MC syndrome, a rare autosomal recessive 

disease that affects development and cognition. Using zebrafish as a model, the authors 

demonstrated that both proteins were important for development and likely function as 



	  

	  

31	  

chemoattractants in neuron migration. How, and if, the lectin activity of CL-K1 is driving this 

process remains an open question. 

1.5.3 Intelectins  

 The intelectin family of lectins is a recent addition to human innate immune lectins, 

relatively speaking. One defining feature of intelectins that was noticed soon after their discovery 

was their use of a FBG domain CRD. This resulted in intelectin proteins being assimilated with 

ficolins, although several substantial differences in structure and function were soon thereafter 

noted. These differences resulted in the proposal of intelectins comprising their own class of 

lectins, X-type lectins (117). Within this thesis, substantial contributions to our understanding of 

the structure, ligand specificity, ligand recognition properties, and clues toward the biological 

function of intelectins will be presented. 

Intelectin proteins were first identified in Xenopus laevis oocytes as helping to generate 

the jelly that coats a fertilized egg and prevents polyspermy (118). Since then, homologous 

proteins have been identified in species ranging from tunicates to humans (119). Most mammals, 

including humans, encode for two or more intelectins. Both human intelectin-1 (hIntL-1) and -2 

(hIntL-2) are encoded on chromosome 1, and they share greater than 80% sequence identify. It is 

important to note that within the scientific literature, hIntL-1 is also referred to as omentin, and 

as the intestinal lactoferrin receptor. This is based on reports suggesting a role for hIntL-1 as an 

adipokine (120), and its reported affinity toward the iron chelator lactoferrin (121), respectively.   

Intelectin proteins were originally reported to be similar to ficolins based on the presence 

of a FBG domain in their C-termini (122). However, this region makes up only a small portion of 

the protein and significant structural and sequence differences exist. For example, intelectins do 
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not contain the N-terminal oligomerization or collagen like domain required for MASP binding 

and complement activation. Additionally, and the proposed C-terminal CRD of intelectins is 

significantly larger that ficolins. Similar to ficolins and collectins, multivalency is likely key for 

intelectin ligand binding and biological activity. hIntL-1 has been shown to assemble into a 

disulfide linked trimer via three intermolecular disulfides (123). Interestingly, these disulfides 

are not strictly conserved; mouse intelectin-1 is lacking the required cysteine amino acid 

residues. How this affects trimerization remains an open question. 

 Mammalian intelectins are expressed by mucosal tissues such as the lung and intestine. 

They are predominantly expressed by lung and intestinal goblets cells, and intestinal paneth cells 

(124,125). These cells are responsible for secreting other antimicrobial innate immune proteins 

that help generate mucosal immunity. In addition, hIntL-1 expression has been reported in the 

heart, lung, small intestine and adipose tissue, while hIntL-2 expression appears restricted to the 

small intestine (119,126). Within the diabetes and nutrition field, where hIntL-1 is referred to as 

omentin, elevatedted serum levels are suggested to be predictive of metabolic disease. While 

initial omentin studies reported serum concentrations in the hundreds of ng/mL, recent reports 

typically are single digit ng/mL for serum omentin (120,127). The low levels of hIntL-1 in serum 

argue against a robust immune function for intelectin proteins within the circulatory system.  

In contrast to serum levels, infection of mouse intestine with intestinal parasitic 

nematodes results in significant upregulation in mouse intelectinal tissue (128). Additionally, 

experimental models of antigen challenge or asthma have demonstrated intelectin upregulation in 

mouse lung (129,130). These observations suggest a role for intelectin proteins in innate 
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immunity at mucosal surfaces. However, direct evidence and a mechanism for this is still 

lacking.  

 Intelectins are calcium ion-dependent lectins that are not canonical C-type lectins 

(83,126). Instead, intelectins contain a FBG domain. hIntL-1 has been shown to exist as a 

disulfide linked homotrimer, suggesting multivalent binding to carbohydrate ligands. Using 

soluble carbohydrates, hIntL-1 binding to galactose-sepharose was assayed in a competitive 

manner. The results of this work suggested affinity for furanoside carbohydrates such as D-ribose 

and a D-Galf containing disaccharide, although the affinity and specificity of carbohydrate 

binding was low (126). Galf is the thermodynamically disfavored, five-membered ring isomer of 

galactose. Galf containing cell surface glycans are found on many bacteria, fungi and protozoans, 

but are absent in mammals (131,132).  

Actinomycetes bacteria were used to assay hIntL-1 binding to biological ligands. hIntL-1 

was reported to bind purified AG from Nocardia rubra (126), and to bind directly to 

Mycobacterium bovis bacillus Calmette-Guérin (BCG) cells (133). A similar monosaccharide 

ligand specificity was reported for mouse intelectin-1 (123). Considerably less is known about 

the binding specificity of hIntL-2 and mouse intelectin-2. The significant upregulation of mouse 

intelectin-2 upon mouse infection with intestinal nematodes suggests affinity toward nematode 

glycans, although evidence for this is lacking (134). Later, Mammalian intelectins were shown to 

interact with the surface of mammalian cells, albeit not through a traditional GPI anchor as had 

been reported previously, and stimulate phagocytosis of BCG by mouse alveolar macrophages 

(133). 
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 Defining a role for intelectins in mammalian physiology, and specifically immune 

function, is an area of active research. One clue toward a function for IntLs comes from its 

upregulation in mice upon intestinal colonization by parasitic nematodes (128,135). However, 

transgeneic mice with increased intelectin expression in the lung failed to increase the clearance 

rate of the helminth parasite Nippostrongylus brasiliensis, or M. tuberculosis (136). Revisiting 

similar experiments using mice devoid of a specific IntL, or both, may help reveal a potential 

role in immunity. hIntL-1 has been identified in a genome-wide association study (GWAS) for 

genetic loci correlated with susceptibility to Crohn’s disease (137). While it is early to speculate 

on the biological meaning of this, the data suggests a role in microbiome regulation and/or 

maintenance of intestinal barrier function (138). 

1.5.4 Reg Proteins  

  Multiple human proteins recognize peptidoglycan, the conserved glycopolymer found on 

all bacterial cells. One family of peptidolycan binding proteins is the Regenerating proteins, or 

Reg proteins. In total, humans encode five Reg proteins, RegIα, RegIβ, RegIIIα, and RegIIIγ are 

found on chromosome two, while RegIV is encoded on chromosome 1. Human RegIIIα, also 

known is hepatocarcinoma intestine-pancreas/pancreatic associated protein or HIP/PAP, is most 

similar to murine RegIIIγ. Studies using murine RegIIIγ have provided foundational results 

eluding toward the biological function of Reg proteins. 

Reg proteins were originally identified in a screen for proteins upregulated during 

pancreatic islet regeneration (139). Interestingly, Reg proteins were also identified in pancreatic 

juice as a small glycoprotein able to inhibit the growth of calcium carbonate crystals that can 

result in pancreatic stones, in this context they were given the name lithostathine (140). Current 
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literature refers to lithostathine as Reg1α. The Reg proteins have been best studied in humans 

and mice, although they are probably found generally in mammals based on available genetic 

information and physiology (141).  

While RegI proteins are upregulated in the pancreas during islet regeneration, other Reg 

proteins are involved in microbial recognition and function in immunity. These proteins are 

expressed in the gastrointestinal (GI) tract. Human RegIIIα is expressed in the small intestine, 

and during infection, expression is increased in the large intestine. Specifically, Reg proteins are 

secreted by intestinal enterocytes and are found in the secretory granules of Paneth cells 

(142,143). Human RegIV is also expressed in the GI tract (144). Interestingly, it has been shown 

that symboiotic bacteria are required for the expression of mouse RegIIIγ, the homolog of human 

RegIIIα (143). In fact, multiple antimicrobial peptides and proteins were found to be 

significantly upregulated upon microbial colonization. Mechanistically, stimulation of TLR-

MYD88 by PG and LPS were found to drive this (145,146). 

Structurally, Reg proteins are small soluble lectins composed almost entirely of a C-type 

lectin domain (83,147,148). In determining their three-dimensional structure, it was quickly 

noted that Reg proteins appear to have lost their ability to coordinate calcium ions in the 

canonical calcium ion binding site. Thus, glycan binding by Reg proteins has been shown to be 

independent of calcium ions and occur at sites distinct from where traditional C-type lectins bind 

ligands (148,149). Much of the literature on the lectin and immune function of Reg proteins has 

focused on the RegIII family and RegIV. Thus, the remainder of this discussion will focus on 

human RegIIIα (HIP/PAP), and human RegIV. 
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 Reg proteins exist largely as soluble monomeric proteins when not engaged with a target 

ligand. They contain a small N-terminal peptide that is sensitive to the protease trypsin, and 

recently this cleavage event was found to regulate the bactericidal activity of the protein (150). 

Another interesting structural property reported early in Reg protein research was the ability of 

the protein to undergo a pH-dependent reversible transformation from a soluble globule, into a 

fibril (141,151). Recently, the fibril formation by RegIIIα was examined by cryo-

electronmicroscopy (EM) (152). Modeling the structure of monomeric RegIIIα into the EM 

density map revealed a series of protein rings generated from hexameric oligomerization. 

Hexameric oligomeriztion has subsequently been shown to be important for the bactericidal 

activity of RegIIIα. 

  Early clues toward the lectin function of RegIα were realizing it contained a C-type 

lectin domain, and its ability to aggregate both Gram-positive and Gram-negative bacteria (140). 

A mechanistic understanding of what, and the how, RegIIIα bound its carbohydrate ligand was 

not realized until its structure was solved in complex with PG using protein nuclear magnetic 

resonance (NMR) (148). This study highlighted that RegIII proteins lack canonical carbohydrate 

and calcium ion binding motifs, but interact with the carbohydrate potion of PG. The authors 

described an essential EPN motif that is used for ligand binding, and is essential for bactericidal 

activity (Figure 1-8). Interestingly, the amino acid tripeptide EPN is used in canonical C-type 

lectins for calcium and Man/Glc binding (93), but within RegIII proteins the motif is found 

outside of the traditional calcium binding site.  

Human RegIV also recognizes glycosylated ligands in the absence of calcium ions and a 

recently solved three-dimensional structure suggested a recognition mechanism (149). RegIV 
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was shown to interact with yeast mannan in two independent sites, one near the mutated 

traditional calcium ion binding site, and one at a site similar to where RegIIIα binds PG. The 

authors propose that Reg proteins lost the requirement for calcium to prevent ligand loss in the 

low pH environment of the mammalian GI tract.  

A significant result alluding to the function of RegIII proteins came with the discovery 

that they are directly bactericidal (143). Mouse RegIIIγ and human RegIIIα were shown to 

damage the cell surface of multiple Gram-positive bacteria, resulting in cytoplasmic leaking and 

cell death. It was postulated that the outer membrane of Gram-negative species prevents access 

to the PG, and thus attenuated the killing of Gram-negative cells. Recently, structural biology, 

protein biochemistry, and biophysics revealed that RegIIIα kills bacteria through formation of a 

pore that depolarizes the cell membrane (152). Interestingly, RegIIIα needs to be devoid of its N-

terminal peptide to form the bactericidal ring structure. Binding to acid lipids was shown to be 

essential for hexamer intercalation into the membrane.  

This mechanism is similar to how other antibacterial peptides function. Such a general 

mechanism of killing requires distinct modes of regulation to prevent damage to host eukaryotic 

cells. One unique example from antibacterial peptides is the use of disulfide bond reduction 

potential to render oxidized peptide less toxic (153). Instead, RegIII proteins employ the trypsin 

cleavable N-terminal peptide (150) and a requirement for acidic lipids. The N-terminal peptide 

prevents premature oligomerization, and asymmetric eukaryotic membranes are devoid of acidic 

lipids in the outer leaflet. 

 Most of what is known about the function of Reg proteins comes from genetic deletion 

experiments in mice. The ability of RegIIIγ to prevent intestinal colonization by multiple 
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microbial pathogens was first explored using a homozygous deletion of MYD88, an adaptor 

protein for TLR signaling. Abrogation of Toll-like receptor signaling severely attenuates 

intestinal RegIIIγ expression. Under this condition, intestinal colonization by Listeria 

monocytogenes and VRE was significantly higher (146,154). Exogenous RegIIIγ, or blocking 

antibodies, were used to demonstrate the specific immune function of RegIIIγ in preventing 

intestinal infection. A transgenic mouse devoid of RegIIIγ revealed that the lectin performs an 

essential role is spatially segregating the mammalian intestinal microbiota from host epithelium 

(145). By collaborating with the mucus layer of the intestine, RegIIIγ helps maintain the 

segregation that is essential for intestinal health. This function may prove important to the 

pathology and progression of irritable bowel disease (IBD) as Reg protein expression, and 

increased microbial interaction with the intestine, have been associated with the disease 

(155,156). 
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Figure 1-8. Structures of two PG binding lectins. Each image represents a single monomer from 
its respective lectin. The EPN motif in loop 2 of RegIIIα (PDB ID: 4MTH) (152) where PG 
binds is highlighted in black. Peptidoglycan binding by PGLYRP3 (PDB ID: 1TWQ) (157) is 
also shown highlighted in black. 

1.5.5 Peptidoglycan Recognition Proteins  

 A second family of lectins that recognizes bacterial PG are the peptidoglycan recognition 

proteins, or PGRPs. Humans encode four unique PRGPs, PGLYRP1 and PGLYRP2 are encoded 

on chromosome 19, while PGLYRP3 and PGLYRP4 are encoded next to each other on 

chromosome 1 (158,159). PRGPs were originally discovered in insects (160), and consequently 

have been found highly conserved from insect to mammals.  

Each human PGRP has a unique expression localization, and collectively they reside in 

all areas of the body that interact with microorganisms. PGLYRP1 is largely localized to 

secretory granules of neutrophils and eosinophils, but to a lesser extent is also found at mucosal 

surfaces. Because of expression by immune cells, PGLYRP1 is found in human blood at a 
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concentration of roughly 20 ng/mL (161). PGLYRP2 is largely expressed in the liver where it is 

secreted and found predominantly in the blood. PGLYRP2 is expressed by the skin and other 

epithelial cells, including those of the GI tract, and is inducible by the presence of bacteria. 

PGLYRP3 and -4 are expressed by the skin and mucus membranes (158,162). 

Structurally, human PGLYRP proteins are similar. They contain at least one PGRP 

domain, a roughly 165 amino acid domain structurally similar to bacteriophage type 2 amidases 

(lysozymes) (157). This domain is used to bind MurNAc-peptide within PG with nanomolar 

affinity. While the PG-binding site is highly conserved between proteins, the opposite side of 

human PGLYRPs displays significantly more structural diversity (Figure 1-8). This region of 

the proteins is often highly hydrophobic and contains a deep groove that is thought to bind other 

ligands derived from microbes, including LPS and TA (163). Interestingly, all human PRGPs 

contain a type 2 amidase domain, only PGLYRP2 is catalytically competent and can degrade PG. 

Specifically, PGLYRP2 hydrolyzes the amide bond connecting MurNAc and the peptide stem 

(164). Most of the human PRGPs are secreted, some form disulfide-linked homo- and 

heterodimers.  

As human PGRPs bind to PG, binding is likely limited to bacteria. Interestingly, the three 

PGLYRPs that lack amidase activity were found to be directly bactericidal to both Gram-positive 

and Gram-negative bacteria (165,166). This results was surprising as the PG of Gram-negative 

bacteria is concealed by the outer membrane of the organism.  

Recently, the mechanism by which PGLYRP proteins kill bacteria was revealed (163). 

PGLYRP-1, -3, -4, and a 3:4 heterodiamer, bind to the PG, or the outer membrane for Gram-

negative bacteria, and activate a protein-sensing two-component system. In the Gram-positive 
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bacterium Bacillus subtilis, the lectins bind at sites of daughter cell septation and activate the 

CssR-CssS system (163,167). Septation sites undergo PG remodeling and thinning and this likely 

allow access to the receptors. The CssR-CssS two-component system is used by bacteria to sense 

extracytoplasmic misfolded and aggregated proteins, and then initiates protein repair processes. 

However, membrane depolarization and production of reactive oxygen species [OH]• also result 

from CssR-CssS activation. If signaling is too intense or too prolonged, activation ultimately 

results in cell death. Using E. coli, an analogous two-component system, CpxA-CpxR, was 

identified as the PGLYRP ligand. Upon lectin binding to the outer membrane, a similar 

mechanism of cell death was observed. This mechanism of cell killing is unique in that it does 

not function through direct membrane depolarization, a mechanism that has been described for 

multiple antimicrobial proteins such as antimicrobial peptides (168) and the lectins RegIIIα 

(152) and galectins (169). 

 Human PGLYRPs are suggested to contribute to multiple disease states based on their 

divergent expression localization. Human GWAS for predisposition to Crohn's disease and 

ulcerative colitis have identified susceptibility locus that contain PGLYRP2, -3, and -4 

(170,171). These reports highlight the importance of host-microbe interactions, and the potential 

role for PG in the pathogenesis of these diseases. While large, genome wide-studies can identify 

disease risk loci across the genome, a more targeted approach may identify specific 

polymorphisms. Recently, all four PGLYRP genes were sequenced from a large consortium of 

irritable bowel disease (IBD) patents in an effort to identify specific gene polymporphisms (172). 

From this, multiple variants that may affect protein function were identified.  
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In agreement with the human genetic data are a series of mouse deletion experiments 

where four mouse lines were established, each devoid of one mouse Pglyrp gene. Interestingly, 

all four mouse strains were more susceptible to dextran sulfate sodium-induced colitis (173). 

Pglyrp deletion was also shown to alter the composition of the mouse gut flora and cause defects 

in intestinal barrier function. Compromise of barrier function was postulated to occur via 

increased interferon-γ production by natural killer (NK) cells recruited during epithelial barrier 

breaching, enhancing tissue damage. A more thorough understanding of how PGLYRPs 

manipulate microbial populations, and alter cellular immune responses, may provide 

opportunities for the discovery of novel points for therapeutic intervention (174).  

1.5.6 Galectins  

 Galectins are a large family of lectins that in humans have been implicated in diverse 

biological processes ranging from development to innate immunity (175). Galectin proteins are 

similar in their amino acid sequences and share a conserved affinity for β-galactose. In 

mammals, 15 galectin subtypes have been identified, and named chronologically based on their 

discovery (176). Galectins can be categorized into three families based on sequence, and how 

their CRDs assemble. Human galectin-1, -2, -7, -10, -13, and -14, are classified as prototype 

galectins and are expressed as a single CRD per polypeptide chain. They can, and often do, 

assemble into noncovalent homodimers. Human galectin-3 is the only human galectin that falls 

within the chimera type. Chimera galectins contain an N-terminal oligomerization domain and a 

single C-terminal CRD. Galectin-3 can assemble into functional trimers and petamers through its 

N-terminal domain (177). Galectins-4, -8, -9, and -12 all belong to a class known as the tandem-

repeat type. These galectins are expressed as two independent CRDs located within the same 
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polypeptide chain (178). Galectin proteins are highly conserved evolutionarily and similar 

proteins are found across the animal kingdom down to fungi and primitive tunicate species (176). 

This suggests an important role in innate immunity as invertebrates rely entirely on innate 

immunity for resistance to infection. 

Most galectins are ubiquitously expressed by many cells types, including cells from the  

innate and adaptive immune system. Despite the absence of a classical signal peptide, many 

galectins are found within the cytosol and extracellular (179). They are secreted via a 

nonconanical mechanism as soluble, aglycosylated proteins. With respect to this review, we will 

focus on the extracellular galectins.  

Multiple galectins, including galectins-1, -3, and -8, are found at double digit ng/mL 

concentrations in human blood. Infact, serum galectin-3 levels are used clinically as a diagnostic 

of myocardial infarction because of association with inflammation and fibrotic pathways (180). 

Multiple galectins are also reported to be expressed and found extracellularly in the GI tract 

(181). Within the GI, galectin secretion results in binding to heavily glycosylated mucin proteins 

that contain N-acetyl-D-lactosamine (Gal–β(1-4)–GlcNAc or LacNAc). Galectin:mucin binding 

may assist in establishing the mucus barrier that segregates the intestinal microbiota and host 

cells, or it may function to slow galectin diffusion and increase local galectin concentrations 

within the mucus. 

 When the first structure of a galectin protein was solved, it revealed a β-sandwich or 

jellyroll-like domain structure that completely lacks α-helices (182). A similar structure is 

observed in the legumes plant-type (L-type) family of lectins that are often isolated from 

legumes plants. All known human galectins share this. Another hallmark of galectin proteins is 



	  

	  

44	  

their calcium ion-independent affinity toward β-galactose or LacNAc containing glycans. 

Independence from divalent cations for carbohydrate binding was quickly realized, and used to 

differentiate galectins from C-type lectins (183).  

Initially, a reducing environment was proposed to be essential for galectin ligand binding, 

and thus galectins were referred to as S-type lectins to contrast C-type lectins (183). 

Mechanistically, galectin oxidation sensitivity is the result of a cysteine residue proximal to the 

ligand binding site. Cysteine oxidation results in a loss of activity and/or protein oligomerization. 

Consequently, this characteristic has been found to be not general to all galectins, but it does 

remain a careful consideration for some galectins, such as galectin-1. Thus, oxidation sensitive 

galectins are a rheostat of the environment reducing potential, as it can drastically affect galectin 

structure, ligand binding, and biology.  

Galectin ligand specificity is highly dependent on the concentration of protein used 

during analysis. At high concentrations, ligand binding is broad, and galectins interact with 

multiple epitopes including LacNac, O- and N-linked glycans, Neu5Ac, ABO(H) blood group 

antigens, and sulfated glycans (178,184). However, as the protein concentration is reduced to < 1 

µM, the ligand binding scope contracts and centers around LacNAc containing glycans. Through 

assaying ligand binding at multiple concentrations, the identification and ligand preferences of 

multiple potential subsites within galectins were identified and mapped (184).   

 Traditionally, galectins were considered “self” gylcan binders and thought to regulate 

developmental processes, cancer, and immune activation/suppression (175,176,185). Galectins 

are postulated to perform these biological functions though initiating signaling events via 

receptor crosslinking, mediated by their multivalent assembly and through receptor 
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glycosylation. Using this mechanism and disparate expression, different galectins result in 

divergent biological outcomes. Galectin-1 is associated with an anti-inflammatory response, 

while galectin-3 is pro-inflammatory (186).  

Only recently has a potential role for galectins in innate microbial immunity become 

appreciated. An early report of galectin binding to microbial antigens was binding of LPS by 

galectin-3 (187). Since then, binding to many microbial species including bacteria, viruses, 

fungi, protozoans and helminthes has been reported (188). Recently, multiple galectins were 

found to selectively bind ABO(H) blood group antigens when assayed under stringent 

conditions, less than 0.5 µM protein (169). Galectins-3, -4, and -8 bound blood group B antigen, 

while galectin-4, and -8 also bound to blood group A antigen. The authors postulated that 

galectins may assist in neutralizing microbes that synthesize glycans structurally similar to host 

glycans. For example, bacteria that express blood group antigens may be able to evade the 

immune system because of deletion of self-reactive immune cells (189). Interestingly, galectins-

4 and -8 were shown to have direct bactericidal activity when bound to Gram-positive or Gram-

negative bacteria that express blood group B containing glycans, and α-galactose epitopes (169). 

While the mechanism remains unknown, drastic alteration of the microbial membrane and 

inhibition of microbial motility were observed. How substantial this observation is remains to be 

seen as natural galectin concentrations are low and bacteria expressing self-like mimicry glycans 

are not especially prevalent (190).  

Later, galectins-3, -4, and -8 were assayed using a glycan microarray assembled from 

microbial glycans (191). This experiment revealed that at high concentrations, galectin binding 

was not limited to blood group B antigen, and galectin-4 bound to multiple microbial glycans 
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that were immobilized on the array (191). How galectin toxicity is selective against microbes, 

especially when assayed at concentrations up to 5 µM ( ~ 200 µg/mL), remains an important 

question that will require future attention (178,192). This is especially important as galectins are 

known to interact with antigens present on mammalian cells, and certain galectins have been 

shown to induce loss of mammalian membrane asymmetry and exposure of phosphatidylserine 

(178). Because galectins perform myriad roles in immune activation and suppression, definitive 

studies using animals or human genetic data are challenging to interpret. 
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Figure 1-9. Mechanisms by which soluble human immune lectins exert antimicrobial activity. 
Below each short description are examples from proteins reviewed within this thesis that 
function through that mechanism. 

1.5.7 Pentraxins  
 
 The pentraxin family of lectins is characterized by a cyclic multimeric structure and the 

presence of a roughly 200 amino acid pentraxin domain (193). Within the pentraxin domain lies 

an 8 amino acid pentraxin motif, HxCxS/TWxS, where x represents any amino acid. Within this 

review, I will limit the discussion to petraxins postulated to be involved in immunity. Thus we 

will not discuss neuronal pentraxins-1, and -2, and the newly identified pentraxin, pentraxin-4 

(194). 
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The first pentraxin identified was C-reactive protein (CRP) (195), followed by the 

identification of serum amyloid P component (SAP), which shares 51% sequence similarity with 

CRP. These two proteins are known collectively as the short pentraxins as their structure is 

composed almost exclusively of the pentraxin domain. CRP and SAP are both encoded on 

human chromosome 1. The other pentraxin reviewed here is pentraxin-3 (PTX3), which is 

encoded for on chromosome 3. Unlike the short pentraxins, PTX3 is referred to as a long 

pentraxin because it is almost 400 amino acids in length and contains an N-terminal coiled-coil 

region.  

Pentraxin proteins assemble into higher order oligomeric structures to execute their 

biological functions. Short pentraxins form noncovalent pentamers, while PTX3 assembles into a 

disulfide linked octamer of two tetrameric assemblies (196). The pentraxin domain folds into a 

globular flattened jellyroll structure composed almost entirely of β-sheets, structurally similar to 

galectins and L-type plant lectins (197,198). However, unlike galectins which use a jellyroll 

structure and bind ligands independent of divalent cations, pentraxins require calcium ions (195). 

This is a distinguishing characteristic of pentraxins and hallmark of this lectin class. The 

presence of pextraxin proteins is conserved in evolution and can be found in diverse species 

ranging from arachnids and insects to humans. It is important to note that significant divergence 

in the short pentraxins is observed amongst mammals, while PTX3 sequence and function is 

more strictly conserved. 

CRP was originally identified as a robustly induced, acute-phase immune protein 

localized in the blood. While oft referred to as human plasma proteins, pentraxin expression 

occurs in many other tissues and cell types. Human CRP is expressed predominately by liver 
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hepatocytes, and is secreted into blood where it is present at concentration < 3 µg/mL. However 

CRP levels are highly inducible and may increase up to 1,000 fold during infection, injury, or 

inflammation (199). Expression has also been reported at mucosal surfaces such as the lung, 

where concentrations can reach 42 µg/mL in human respiratory tract secretions, a level sufficient 

for antimicrobial effects (200). Similar to CRP, SAP is expressed by liver hepatocytes and is 

found in the serum at concentrations of 30-50 µg/mL. Unlike CRP, SAP levels do not sharply 

increase during immune stimulation.  

Human PTX3 is expressed by multiple immune cell types in response to proinflamatory 

cytokines or stimulation by immunogenic microbial cell wall components. Serum levels in 

healthy patients are often very low, averaging 1 ng/mL in healthy donors, but can increase 

substantially up to 250 ng/mL during sepsis (201). Additionally, PTX3 is produced by human 

lung epithelial cells and performs critical roles in lung immunity (202,203), and expression is 

significantly upregulated in the small intestine and colon of IBD patients (204). 

One defining feature of pentraxins is calcium cation-dependent carbohydrate binding. 

CRP was originally identified as an acute phase protein highly upregulated upon infection with 

S. pneumoniae or challenge with purified Streptococcal C-polysaccharide (195,205), a teichoic 

acid heavily modified with phosphocholine (206,207). Phosphocholine is also present within the 

capsular polysaccharides of multiple S. pneumoniae serotypes (19). When the three dimensional 

structure of CRP was solved, the mechanism of phosphocholine recognition was revealed 

(198,208). Each CRP monomer binds two calcium ions, the phosphate group of phosphocholine 

coordinates directly to those calcium ions and the trimethylammonium fits snuggly into a 

hydrophobic and aromatic box. CRP has also been reported to bind phosphoethanolamine, 
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traditionally a ligand of SAP, and to multiple microbial species including S. pneumoniae and 

fungi. CRP binding to human immune proteins such as Fcγ receptors (FcγR) and C1q has also 

been reported (193,209). One of the mechanisms pentraxins are thought to function in immunity 

is through C1q recruitment and activation of the classical complement pathway (210). Lastly, 

CRP has been shown to be important for binding to self-antigens and assisting in the clearance of 

apoptotic or dying mammalian cells (211). 

The overall topology and calcium binding sites of SAP are similar to CRP (197). Like 

CRP, SAP coordinates two calcium ions that interact with the phosphate head group of 

phosphoethanolamine (212). Additionally, SAP binds to a 4,6-pyruvate acetal of β-D-

galactopyranose through direct calcium ion coordination (213,214), the lipid A moiety of LPS 

(215), multiple Gram-positive and Gram-negative bacteria (216), and a similar collection of 

immune proteins (199). The mechanism by which pentraxins facilitate phagocytosis of microbes 

through FcγR engagement was recently revealed using an SAP:: FcγR protein co-crystal 

structure (217). Pentraxins bind to the IgG binding site on FcγR using the face opposite of 

pentraxins ligand binding.  

Compared to CRP and SAP, less is know about the monovalent ligands of PTX3, 

however PTX3 has been shown to interact with outer membrane protein A from K. pneumoniae, 

multiple bacterial, fungal, viral species, and immune receptors that include C1q and FcγR (218). 

PTX3 glycosylation maybe be responsible for some of these interactions as it has been shown 

that influenza virus type A binds PTX3 through viral hemagglutinin binding to sialyated PTX3, 

not through PTX3 binding to viral glycans (219). 
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The role of pentraxins in immunity is still an active area of research. Pentraxin mediated 

C1q binding and complement activation can mark microbes for other innate immune effector 

cells, but interestingly CRP has been shown to poorly generate the membrane attack complex 

(211). Additionally, microbe binding by pentraxins can have disparate immunological outcomes 

as has been demonstrated using a combination of PTX3 deletion mice, microbiology, and 

chemical biology (216). In some cases, SAP binding inhibited infection, while for others binding 

enhanced infection, and in still others, SAP appears to alter infection in the absence of microbe 

binding. This work highlights the complexities of pentraxins in the innate immune system and 

the need for caution when trying to define function. 

One of the best examples is the anti-fungal role of PTX3 in mice. Using a genetic 

deletion of PTX3, the authors demonstrate that PTX3 protects mice from pulmonary invasive 

aspergillosis upon challenge from A. fumigatus (203). To accomplish this, PTX3 enhances ligand 

recognition and phagocytosis by macrophages and dendritic cells (DCs), likely through FcγR 

binding. In this example, PTX3 mediated immunity appeared to function independent of C1q 

binding and complement activation. This mouse experiment is possible because mouse and 

human PTX3 are highly conserved, unlike the short pentraxins. Interestingly, soluble CRP and 

PTX3 administration have been shown to partially protect against pneumococcal and A. 

fumigatus infection, suggesting the potential utility of soluble pentraxins as therapeutics (220).  
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Figure 1-10. Structural classes of human soluble immune lectins. Each structure represents a 
monomeric CRD used by human soluble immune lectins. Calcium ions involved in ligand 
binding are shown as green spheres. The N- and C-termini are highlighted by an N and C, 
respectively. The ligands are included as black sticks in some images for clarity. Human L-
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Ficolin (PDB ID: 2J3U) (71), MBL (PDB ID: 1HUP) (80), PGLYRP1 (PDB ID: 1YCK) (221), 
galectin-3 (PDB ID: 4XBN) (222), and ZG16p (PDB ID: 3VZF) (223) are included. 
1.5.8 Lysozyme  

Albeit not the focus of this review, human lysozyme is an innate immune protein that 

binds to and hydrolyzes microbial PG (142). Human lysozyme, or lysozyme C is encoded by the 

LYZ gene on the twelfth chromosome (224). Similar to other lysozymes, human lysozyme is a 

small, 130 amino acid, soluble secreted protein. Lysozyme is expressed by a variety of human 

tissue and cell types including intestinal paneth cells, lactating mammary tissue, salivary glands, 

and multiple immune cell types (224-226).  

The most widely appreciated antimicrobial quality of lysozyme is its ability to degrade 

PG via hydrolysis of the β(1-4) linkage between MurNAc and GlcNAc. While muramidase 

activity is likely important for antimicrobial function, it is not essential. Inhibition of 

muramidase activity via reduction of essential disulfide bonds, or addition of the competitive 

inhibitor chitotriose, still results in robust cell killing (227). Another physical characteristic of 

lysozyme that may be important in its antimicrobial function is its cationic nature, pI > 9. This is 

similar to other antimicrobial immune proteins such as lactoferrin, which has a pI of roughly 8.5. 

1.5.9 Human C-type Lectin Domain Family (CLEC) Proteins  

 Within the human genome there are many small C-type lectin domain containing proteins 

whose functions are not yet well understood. Within this group lies multiple C-type Lectin 

Domain Families, including 1, 2, 3, 4, and 11; CLEC1, CLEC2, CLEC3, CLEC4, and CLEC11, 

respectively. These families collectively contain many transmembrane proteins with well 

documented lectin and immune function, examples include dendritic cell-specific ICAM-3-

grabbing non-integrin, DC-SIGN, and its related protein, DC-SIGNR, CLEC4L and CLEC4M, 
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respectively (228,229). While many human CLEC genes encode for predicted membrane bound 

proteins, several are predicted to be soluble. These include cartilage-derived C-type lectin or 

CLEC3A, and tetranectin or CLEC3B.  

Tetranectin was originally identified in human plasma as a plasminogen binding protein 

where it is found at concentrations of roughly 15 µg/mL (230). Consequently, tetranectin has 

been localized in many tissues and cell types. When the structure of tetranectin was solved, its 

resemblance to other C-type lectins was apparent (231). Tetranectin contains two calcium ions 

that are bound in positions analogous to the calcium ions bound by bacterial mannose binding 

protein. The structure also revealed a trimeric assembly that was mediated by an N-terminal α-

helical coiled coil region. In addition to plasminogen binding, tetranectin has been reported to 

bind sulfated polysaccharides in a calcium ion-dependent fashion (232). Outside of this, little is 

know about the potential carbohydrate binding activity of this protein. Revisiting tetranetin, 

employing advances in glycobiology research such as glycan microarrays may prove useful for 

identifying human or microbial carbohydrate ligands, and may elude to this protein’s biological 

function.  

1.5.10 ZG16p 

 Humans express a small group of soluble lectins structurally related to the Jacalin-related 

β-prism fold lectin family (233) termed the human zymogen granule proteins, ZG16p and 

ZG16b. Both human ZG16 proteins are encoded for on chromosome 16 by the ZG16 and ZG16B 

gene, respectively. Comparatively, more is known about the lectin properties of ZG16p, and will 

thus be the focus of this review, but much work is yet to be done with these two proteins.  
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ZG16p is a roughly 150 amino acid protein, of which 130 amino acids make up the 

Jacalin-like lectin domain. Human ZG16p was initially identified as a glycosaminoglycan 

binding lectin important for protein sorting to the zymogen granule membrane in pancreatic cells 

(234,235). Pancreatic acinar cell zymogen granules contain digestive enzymes and are secreted 

into the duodenum to aid in digestion and nutrient uptake. In addition to being expressed in the 

pancreas, ZG16p is expressed in the liver and localized to the serum, and is expressed in the 

small and large intestine (236). ZG16p expression in the GI is localized to goblet cells. The 

concentrated expression in the digestive system suggests a likely function there, although a clear 

biological role remains unknown.  

Similar to other Jacalin-related lectins, ZG16p binds carbohydrate ligands in a calcium 

ion-dependent manner. It is suggested to function as a monomer based on the apparent absence 

of intermolecular disulfide bonds and the elution from a size exclusion column (237), though that 

would contradict other β-prism fold lectins. The structure of ZG16p was recently solved using 

protein X-ray crystallography and revealed the first mammalian lectin containing a Jacalin-

related β-prism fold (237).  

Glycan microarray screening has been employed to assay the ligand binding properties of 

ZG16p. These experiments revealed a preference for short α-Man oligosaccharides and O-linked 

mannose residues (223). Surprisingly, ZG16p did not interact with high mannose N-glycans. 

Monovalent affinity measurements were made using NMR titration experiments and suggest low 

affinity binding to α-mannose and Glc–β(1-3)–Glc (2-20 mM). This is in contrast to the 

micromolar affinities reported with a multivalent display, suggesting quaternary structure.  



	  

	  

56	  

Ligand co-crystal structures revealed that ZG16p binds carbohydrate ligands at a site 

similar to other β-prism fold lectins and does so through interaction with ligand features distal 

from the anomeric hydroxyl (Figure 1-10) (223). In the same study, the glycosaminoglycan 

binding site was identified and shown to function independent of mannose binding. Based on 

these results, binding to microbial pathogens and microbially derived glycans was assayed. A 

microbial glycan microarray and NMR experiments were used to identify mycobacterial PI 

mannosides as ligands of ZG16p (238). Lastly, binding to multiple fugal pathogens has been 

demonstrated using flow cytometry, likely occuring through yeast mannan recognition (236). 

Further in vitro experiments, or experiments in model organisms, should help elucidate the 

biological function of this lectin, which expression data suggests could be in the mammalian GI. 

1.5.11 Mindin  

The mindin/F-spondin family of proteins is a small collection of extracellular matrix 

proteins where one member, mindin, has been implicated to function as a lectin. Mindin, also 

referred to as spondin-2, is a roughly 300 amino acid protein encoded for on human chromosome 

4. Mindin/F-spondin proteins were initially identified in zebrafish as secreted proteins that 

accumulate in the basal lamina during embryonic development (239). Mindin contains two 

domains, a 200 amino acid N-terminal spondin domain and a C-terminal thrombospondin-type 1 

repeat; this architecture is shared by other members of the mindin-F-spondin family.  

Mindin contains eight conserved cysteine residues that are involved in intra- and inter-

molecular disulfide bond formation. Immunoblotting suggests that under nonreducing conditions 

mindin exists exclusively as a disulfide-linked dimer at low concentrations, but will oligomerize 

into higher order structures at increasing concentrations. The structure of the human mindin 
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spondin domain was recently solved and surprisingly bared structural resemblance to a C2 

domain (240). C2 domains are used by proteins for localization to the cell membrane as they can 

bind membrane phospholipids in an calcium ion-dependent, and independent manner (241). The 

mindin structure revealed a single protein-bound calcium ion coordinated to eight oxygen atoms 

made up by amino acids and protein bound water molecules (240). Much of what is known about 

human mindin comes from studies of mouse mindin, the two share 85% sequence identity. 

Mouse mindin is highly expressed in the lung, spleen, heart, lymph nodes, ilium, and colon 

(242,243). Mindin is also expressed by multiple immune cell types including macrophages and 

mast cells, and has been measured in mouse and human sera at 10-30 ng/mL (244).  

Mindin has been shown to bind glycosylated ligands in both a calcium ion-dependent, 

and -independent manner (242,245). Recombinant mindin was shown to bind Gram-positive 

group B streptococcus (GBS), Salmonella typhimurium, H. influenzae, and influenza A virus 

(242,245). S. typhimurium agglutination was dependent on calcium ions, and inhibited by soluble 

glucose, while binding to influenza was not.  

Mice devoid of mindin were used to reveal disparate biological functions of the protein. 

Interestingly, mindin null mice are resistant to LPS-induced septic shock. Mechanistically, this is 

postulated to be the result of mindin deficient macrophages exhibiting attenuated activation and 

phagocytosis in response to multiple microbe derived antigens such as LPS, PGN, LTA, and 

mannan. Mindin deficient mice were also shown to be impaired in their ability to clear 

intratracheally inoculated lung pathogens such as GBS or H. influenzae (242), and had higher 

lung viral titers after intranasal influenza virus infection (245). One common result from these 

mindin deficient mouse studies is attenuated immune cell activation. One hypothesis for the 
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attenuated cellular response is the ability of mindin to interact with multiple integrins through its 

spondin domain (246). Further defining how mindin interacts with carbohydarate ligands, and 

the functional outcome of immune cell binding or integrin engagement, should illuminate the 

function of mindin in LPS sensing. 

1.5.12 Soluble CD14 and Lipopolysaccharide Binding Protein  

 While not traditionally considered lectins, human lipopolysaccharide binding protein 

(LBP) and CD14 are essential for binding to, and recognition of LPS. CD14, which functions on 

immune cells as a receptor for LPS and LBP (247), is attached to the membrane via a GPI 

anchor, but also can be secreted as soluble CD14 (248). Human CD14 is encoded on 

chromosome 5 and results in expression of  a roughly 350 amino acid protein. CD14 was initially 

identified as a differentiation marker of monocytes, but is also found on the surface of 

macrophages. Soluble CD14 is found in conditioned culture media from human intestinal 

epithelial cells (249), is found at a concentration of 2-3 µg/mL in human plasma, and 10-20 

µg/mL in breast milk (250). LBP consists of 450 amino acids and is primarily expressed in the 

liver and is secreted into human plasma to concentrations of 10-20 µg/mL for recognition of the 

lipid A portion of LPS(250,251). Together, LBP and souble CD14 collaborate with other 

receptors such as TLR4 to effectively recognize LPS and facilitate an immune response (252). 

While these proteins are not going to be discussed further here (253), it is important to remember 

them when considering the recognition of glycoslylated ligands by soluble human lectins. 

1.6 Conclusions  

Within this review I have highlighted soluble human immune lectins involved in the 

recognition of microbial glycopolymers. As research in host:microbe interactions continues, 
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recognition of cell surface glycans will likely be centrally important. Specifically, I hypothesize 

that host lectins will be critical within the mammalian GI tract, where lectins may be able to 

modulate the resident microbial community. A major recent advance has been the generation of a 

microbial glycan microarray (191). This resource has been used to reveal the in vitro ligand 

specificity of multiple lectins, including work described within this thesis. Results from using 

this array already spark ones imagination concerning ligands to add to a next generation array. 

For example, surface glycans from symbiotic bacteria, specifically from the lung and gut, would 

be a useful tool for probing mammalian mucosal immune lectins. The individual spots afforded 

with glycan microarray printing make it especially attractive for assaying binding to bacterial 

strains, something that is currently difficult when working with complex environmental 

communities (254).  

In addition to glycan microarrays, other tools may become equally important for assaying 

lectin interactions with microbial communities. The use of fluorescence activated cell sorting 

(FACS) and DNA sequencing can be used to simultaneously quantify lectin binding and 

genetically characterize bound microbes. A similar strategy has recently been applied to 

characterize IgA binding to bacteria isolated from human fecal samples (255,256). This analysis 

is made possible by the dramatic increase in sequence capabilities and a reduction in cost. While 

16S ribosomal ribonucleic acid (rRNA) sequencing for phylogeny assignment is now routine 

(257), extracting de novo information about cell surface glycosylation based on genetic 

sequencing is still a challenge. Advances in analytical chemistry may also be integrated into such 

a workflow. Specifically, as mass spectrometry sensitivity, and computational power continues 

to accelerate, elucidation of microbial glycan structures may become customary. What I hope 
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this review highlights is the ability to integrate new technology into lectin:microbe research, 

while concurrently highlighting lectins as useful tools in biomedical research.  

Moving forward, there is significant work to be done in understanding how soluble 

lectins mechanistically function in immunity. Centrally important to answering these questions 

will be an interdisciplinary research approach that employs protein biochemistry, chemical 

biology, microbiology, immunology, and mouse models. As the Kiessling Group continues work 

in this area, I cannot emphasize enough the importance of expression localization and 

physiological lectin concentrations. Lectins are fickle creatures that require careful attention. 

Lectins are often glycosylated, and thus themselves a target of lectins when assayed in vitro or in 

combination. Aggregated or misfolded lectins often retain carbohydrate binding activity, but 

have an altered ligand specificity and affinity. I hope this review provides a foundational 

background on lectins and glycobiology, and can help guide other researchers into this 

fascinating and essential field. 
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2.1 Abstract 

Nematodes represent a diverse phylum of both free living and parasitic species. While the 

species Caenorhabditis elegans (C. elegans) is a valuable model organism, parasitic nematodes 

or helminths pose a serious threat to human health. Indeed, helminths cause many neglected 

tropical diseases that afflict humans. Nematode glycoconjugates have been implicated in evasive 

immunomodulation, a hallmark of nematode infections. One monosaccharide residue present in 

the glycoconjugates of several human pathogens is galactofuranose (Galf). This five-membered 

ring isomer of galactose has not been detected in mammals, making Galf metabolic enzymes 

attractive therapeutic targets. The only known pathway for biosynthetic incorporation of Galf 

into glycoconjugates depends upon generation of the glycosyl donor UDP-Galf by the 

flavoenzyme uridine 5’-diphosphate (UDP) galactopyranose mutase (UGM or Glf). A putative 

UGM encoding gene (glf-1) was recently identified in C. elegans. Because Galf has yet to be 

identified in any nematode glycan, the function of the glf-1 gene product was an open question. 

Here, we examine the catalytic activity of the C. elegans glf-1 gene product, CeUGM. We report 

that CeUGM catalyzes the isomerization of UDP-Galf and UDP-galactopyranose (UDP-Galp). In 

the presence of enzyme, substrate and a hydride source, a galactose−N5-FAD adduct was 

isolated, suggesting the CeUGM flavin adenine dinucleotide (FAD) cofactor serves as a 

nucleophile in covalent catalysis. The data indicate that CeUGM possesses an active site similar 

to that of prokaryotic enzymes, despite the low sequence identity (~15%) between eukaryotic 

and prokaryotic UGM proteins. Additionally, heterocyclic UGM inhibitors developed against 

prokaryotic proteins also inhibit CeUGM activity. We postulate that these inhibitors can serve as 

chemical probes of Galf in nematodes and as anthelmintic leads. Together, our data suggest that 
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CeUGM facilitates the biosynthetic incorporation of Galf into nematode glycoconjugates through 

generation of the glycosyl donor UDP-Galf.  
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2.2 Introduction 

Nematodes are a serious threat to agriculture (1), livestock (2), and human health (3). 

Plant parasitic nematodes cause estimated crop losses of US$100 billion annually (4), and some 

4 billion people worldwide are infected or at risk of nematode infection (5). Parasitic nematode 

infections place tremendous stress on national economies and healthcare systems. Helminth 

infection and modulation of the host immune response are areas of intense research (6,7). 

Glycoconjugates displayed on the surface of helminths are thought to be major contributors to 

the observed immunomodulation (8-11). Indeed, several nematode glycoconjugates have been 

structurally characterized (12) and shown to alter human immune responses (13-16). 

Additionally, glycoconjugate-based vaccines that target parasitic pathogens are in preclinical or 

clinical development (17,18). Thus, a more thorough understanding of nematode glycoconjugate 

biosynthesis can lead to new strategies for combating human helminth infections. The value of 

such studies is mounting as many helminth strains are becoming increasingly resistant to current 

chemotheraputics (2,19,20).  

A recently described gene in C. elegans, glf-1, is intriguing as it may encode UGM 

enzyme (21). UGM flavoproteins catalyze the production of the glycosyl donor UDP-Galf from 

UDP-Galp (Figure 2-1) (22). The monosaccharide D-Galf is the thermodynamically disfavored, 

five-membered ring isomer of galactose. Galf residues are absent in mammals, yet they are a 

prominent component of glycoconjugates from several bacterial, fungal, and protozoan 

pathogens (23-25). C. elegans glf-1 deletion mutant experiments suggest that the enzyme is 

essential (21,26). Still, Galf residues have yet to be identified in a nematode glycan, and the 

putative UGM has not been shown to be catalytically active (25,27).  
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Figure 2-1. Enzymatic biosynthesis of UDP-Galf. The precursor to Galf-containing glycans is 
UDP-Galf, which is generated by the enzyme UGM, or Glf. UGM catalyzes the isomerization of 
UDP-Galp and UDP-Galf. 

Specific examples of UGM or Galf-containing glycoconjugates contributing to viability 

and virulence in both prokaryotic and eukaryotic pathogens are emerging. Within the 

mycobacterial cell wall, a polymer composed of Galf residues, termed the galactan, anchors the 

mycolic acids to the PG. Genetic deletion (28) or chemical inhibition (29) of UGM prevents 

mycobacterial growth. UGM deletion in the opportunistic fungus Aspergillus fumigatus abates 

virulence and decreases cell wall thickness, thereby enhancing sensitivity to antifungal agents 

(30). Genetic disruption of a putative galactofuranosyl transferase gene (LPG1) in Leishmania 

major leads to attenuated infectivity of the parasite and increased susceptibility to human 

complement and oxidants (31,32). These reports suggest that Galf-containing glycans are 

essential for the viability of several human pathogens. In the case of nematodes, however, Galf 

metabolism is largely unexplored. Presumably, this disconnect is due to the absence of 

characterized Galf-containing glycoconjugates from nematodes (25) and the low sequence 

identity (~15%) between prokaryotic and eukaryotic UGM proteins (Figure 2-2) (21,33). 

All organisms that incorporate Galf  into their glycans use UDP-Galf as a building block, 

which is produced by UGM catalysis. To determine whether nematodes possess a catalytically 

active UGM, we investigated the protein encoded by the C. elegans gene glf-1. Genes 

homologous to glf-1 have been identified in several pathogenic nematode species, and are likely 
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conserved in the phylum. Our results indicate that the protein encoded by glf-1 (CeUGM) can 

catalyze the interconversion of UDP-Galp and UDP-Galf––it is a UGM. In addition, we provide 

biochemical data that the flavin cofactor of CeUGM participates in covalent catalysis (Figure 2-

3), a result that is consistent with previous mechanistic studies of UGM homologs from other 

species (34-36). These data prompted us to devise a homology model for CeUGM, and its 

validity is supported by the catalytic activities of CeUGM variants. Consistent with the 

conservation of catalytic mechanism and structural features, small molecule inhibitors developed 

against prokaryotic UGMs also block CeUGM. Thus, we have identified the first inhibitors of a 

eukaryotic UGM (29,37). 
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Figure 2-2. Clustal W analysis of eukaryotic and prokaryotic UGM proteins. Residues conserved 



	  

 

89 

in every species are highlighted in red. A complete description of each protein, including its 
accession number, can be found in section 2.8.5. 

 
 

Figure 2-3. A generalized view of the proposed mechanism of UGM, depicting a covalent flavin 
intermediate. The arrows shown depict changes in covalent bond formation, but whether the 
mechanism proceeds via an SN1 or SN2 reaction is not known nor is the protonation state of the 
flavin cofactor.  A key intermediate in this proposal is iminium ion 2.1. 

2.3 Purification of CeUGM and Initial Velocity Kinetic Analysis 

Based on sequence analysis and a LPS synthesis assay (21), the C. elegans genome 

appears to encode a putative UGM, glf-1, but the catalytic activity of the glf-1 gene product, 

CeUGM, had not been assessed directly. We therefore produced the putative UGM as a His-

tagged protein in E. coli. The resulting protein gave rise to a UV-visible absorbance spectrum 

with maximal absorbance near 380 and 450 nm, a spectral signature indicative of a flavoprotein. 

We then evaluated the enzymatic activity of recombinant CeUGM using an HPLC-based assay 
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(38,39). Recombinant protein was incubated with synthetic UDP-Galf as the substrate under 

reducing conditions (40), because reduction of the flavin cofactor is essential for catalytic 

activity (41). Recombinant CeUGM catalyzed the isomerization reaction.  

Steady-state kinetic parameters were determined from the initial velocities of UDP-Galp 

production over a range of UDP-Galf concentrations (Figure 2-4). The KM and kcat values are 

approximately ten-fold lower for CeUGM than those reported for prokaryotic UGMs (Table 2-

1). The catalytic efficiency (kcat/KM) of CeUGM, however, is similar to that of the UGM from L. 

major, the nearest homolog of CeUGM characterized to date (42). Prior protein localization 

studies using a CeUGM::GFP fusion revealed that the enzyme is produced in C. elegans seam 

cells (26). Seam cells are involved in nematode surface glycoconjugate biosynthesis. The 

available data, therefore, suggest that the biological function of CeUGM is to generate UDP-

Galf. This building block then can serve as a glycosyl donor for yet unidentified C. elegans 

galactofuranosyl transferases, which biosynthesize Galf-containing glycans. These findings 

indicate that a catalytically competent UGM is produced in a multicellular organism. We predict 

that generation of UDP-Galf is not restricted to C. elegans, but is general to nematodes with a 

gene homologous to glf-1, such as the human pathogen Brugia malayi.  
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Figure 2-4. Steady-state kinetic analysis of CeUGM. Initial velocities were calculated by 
measuring the rate of UDP-Galp formation at increasing concentrations of UDP-Galf. Data were 
fit to the Michaelis-Menten equation. Error bars represent the standard deviation (s.d.) of 
measurements performed in triplicate. 

Table 2-1. Kinetic Parameters of UGM Homologs 

Species KM (µM) kcat (s-1) kcat/KM (104 M-1s-1) 

C. elegans 8 ± 0.8 0.61 ± .08 7.6 ± 1.2 

L. major (42) 87 ± 11 5 ± 0.2 5.7 ± 0.6 

A. fumigatus (43) 110 ± 15 72 ± 4 65 ± 9 

K. pneumoniae (44) 43 ± 6 5.5 ± 0.7 13 ± 2 

E. coli (39) 27 22 81 
a All constants were determined with UDP-Galf as the substrate. 

2.4 Covalent Catalysis via FAD 

In 2004, our group provided direct evidence that prokaryotic UGM enzymes use their 

flavin cofactor to facilitate covalent catalysis (Figure 2-3) (34). Since then, additional results 

have been described that are consistent with such a mechanism, including those using NMR (35), 

FAD analogs (45,46), other spectrophotometric methods (34,36), and computational approaches 

(47). We were interested in whether results supporting this unique mechanism could be obtained 
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using CeUGM. Mechanistic conservation would support the development of highly selective 

irreversible covalent inhibitors. 

Carbohydrate ring contraction via covalent catalysis by FAD is predicted to proceed 

through a galactose−N5-flavin iminium ion intermediate (Figure 2-3). If CeUGM catalyzes 

isomerization by this nucleophilic mechanism, the addition of exogenous reductant should trap 

the iminium ion to form a covalent adduct, compound 2.2 (Figure 2-5) (34). Isolation and 

characterization of this adduct would suggest flavin engages in covalent catalysis in 

evolutionarily distant eukaryotic and prokaryotic proteins. To trap the iminium ion intermediate, 

a mixture of CeUGM, UDP-Galp and sodium dithionite was exposed to the hydride donor 

sodium cyanoborohydride. After the reaction was quenched with the hydride donor, the protein 

was precipitated and the supernatant analyzed using high-performance liquid chromatography 

mass spectrometry (HPLC-MS). In reactions containing cyanoborohydride, a second peak of 

near equal abundance elutes prior to FAD (Figure 2-5A). Analysis of the species that gives rise 

to this peak using electrospray mass spectrometry indicates that the predominant ion corresponds 

to the covalent adduct (Figure 2-5B).  

The proposal that UGM uses its flavin cofactor in covalent catalysis was initially 

controversial, as it invokes a new catalytic role for flavin (34). Our data from CeUGM provides 

additional support that UGM-catalyzed ring isomerization proceeds via covalent catalysis. A 

related adduct was recently reported to be trapped from the Trypanosoma cruzi UGM, although 

the mass and structure correspond to a C4a hydroxylated species (36). Position C4a of the flavin 

isoalloxazine is the site of molecular oxygen addition during flavin reoxidation, a step not 

consistent with the non-redox UGM mechanism we have proposed (34). Our isolation of a 
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galactose−N5-flavin covalent adduct suggests that CeUGM uses a nucleophilic flavin cofactor to 

catalyze isomerization of UDP-Galp and UDP-Galf (Figure 2-3). This reactivity mode further 

expands the catalytic breadth of flavoprotein catalyzed reactions (48). We and others (49) 

postulate that the nucleophilic character of the UGM flavin can be targeted by small molecules 

for extremely potent and selective inhibition of UDP-Galf biosynthesis.  

 

 

Figure 2-5. HPLC-MS analysis of the products of trapping the CeUGM-catalyzed reaction of 
UDP-Galp with sodium cyanoborohydride. (A) A reverse phase HPLC chromatograph obtained 
from analysis of the soluble reaction products monitored at 254 nm. Inset shows the structure and 
mass of the predicted galactose−N5-FAD adduct, 2.2, which is the product of reduction of 
iminium ion 2.1 (Figure 2-3). (B) Mass spectral analysis of product eluting as adduct in the 
chromatograph above. The predicted mass of unmodified FADox is 785.16 Da. 

2.5 Proposed Structure and Active Site of CeUGM 

Structural data have been invaluable for understanding substrate binding and the catalytic 

mechanism of prokaryotic UGM proteins (35,41,50-52). Recently, two independent groups 

described the application of protein x-ray crystallography to determine the structure and 

biological reducing agent of the A. fumigatus UGM (53-55). These studies revealed that despite 

low sequence identity and several insertions into the A. fumigatus gene, the overall structure and 

folds of prokaryotic and eukaryotic UGMs are similar (53,54). Additionally, our ability to trap a 

catalytic intermediate (compound 2.2) further suggested that the active site of CeUGM is similar 
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to that of its prokaryotic homologs. We therefore postulated that small molecules previously 

shown to inhibit prokaryotic UGMs (29,37) would also block CeUGM. To assess this possibility, 

we generated a homology model (56) of CeUGM using the UGM from M. tuberculosis 

(MtUGM) (PDB code: 1V0J) (57) as a template. The model predicts that the overall architecture 

of CeUGM and MtUGM is similar. It also indicates that the locations of many residues involved 

in substrate binding are structurally conserved (Figure 2-6A & B). The primary sequence 

alignment and the homology model collectively suggest that arginines 187 and 336 from 

CeUGM correspond to the two arginine residues essential for substrate binding by prokaryotic 

proteins (44). To test the accuracy of the homology model, two CeUGM variants were generated 

in which either Arg187 or Arg336 was substituted with alanine. The proper folding and flavin 

binding of the variants was assessed by circular dichroism (CD) and UV-visible absorbance 

spectroscopy, respectively. The resulting spectra were nearly identical to those from wild-type 

enzyme (Figure 2-6C).  

The homology model led us to predict that both arginine variants would exhibit 

significantly diminished catalytic activity. Indeed, under standard conditions, replacement of 

either arginine residue drastically hampers catalysis. To quantify the activity of these enzyme 

varients, a high substrate concentration (approximately 12 fold above the KM for the wild-type 

enzyme) and extended periods of incubation were employed. Because the catalytic rate of wild-

type CeUGM was not linear during the extended incubations, we chose to measure bulk catalytic 

activity by integration of the substrate and product HPLC trace peaks. The total fraction of UDP-

Galf converted to UDP-Galp by the R187A variant was roughly one tenth of that catalyzed by 

the wild-type enzyme (Figure 2-6D). This diminished, but detectable and quantifiable activity at 
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a high substrate concentration indicates that our model is useful for identifying active site 

residues. Because the high concentration of UDP-Galf restores activity in the R187A variant, we 

postulate that arginine 187 is involved in substrate binding. Under the same conditions, no 

activity was detected from the R336A variant, suggesting a more critical role in enzyme 

catalysis. Our data are consistent with results from the A. fumigatus UGM (53,54); the collective 

experiments suggest a role for these arginine resides in coordinating the negatively charged 

pyrophosphoryl group of the substrate. Cumulatively, the kinetic and spectrophotometric data we 

present here supports our model of CeUGM. The similarities of the enzyme active sites of our 

homology model and crystallized prokaryotic enzymes provided impetus to explore whether 

previously identified inhibitors of the prokaryotic homologs might also inhibit CeUGM. 

 

Figure 2-6. Proposed structure and active site of CeUGM. (A) CeUGM homology model (green) 
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generated using SWISS-MODEL superimposed with the structure of M. tuberculosis UGM 
(PDB Code: 1V0J; wheat). (B) A comparison of residues in the active site. Select conserved 
residues predicted (CeUGM) or known (M. tuberculosis UGM) involved in substrate binding are 
highlighted, with C. elegans residue numbers denoted first. (C) CD spectra for wild-type 
CeUGM, R187A CeUGM variant, and R336A CeUGM variant. Baseline scans of buffer solution 
were subtracted from all spectra, and data were converted to molar ellipticity for accurate 
comparison between samples. (D) Relative activity of wild-type, the R187A variant, and the 
R336A variant CeUGM at a UDP-Galf concentration of approximately 12-fold above the Km of 
the wild-type enzyme. Error bars represent the s.d. of triplicate measurements. Relative activity 
is derived from normalizing to wild-type enzyme. 

2.6 Chemical Inhibition of CeUGM  

We tested two known inhibitors of prokaryotic UGMs, compounds 2.3 and 2.4, with 

CeUGM (Figure 2-7A). For comparison, a compound that is inactive against prokaryotic 

enzymes, compound 2.5, was also assessed. Using the HPLC assay that monitors the production 

of UDP-Galp, compounds 2.3 and 2.4 were shown to be potent inhibitors of CeUGM. The IC50 

values of compounds 2.3 and 2.4 were 3.3 µM and 1.8 µM respectively (Figure 2-7B, Table 2-

2). When tested at 10 µM, compound 2.5 had only a modest effect on CeUGM activity. The 

mode of inhibition was determined by monitoring the kinetics of UDP-Galp formation by 

CeUGM in the presence of varying concentrations of 2.3. Analysis of the double reciprocal 

linear regression plots indicates that the 2-aminothiazole inhibitors are competitive for the active 

site with UDP-Galf (Figure 2-8).  
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Figure 2-7. Chemical inhibition of CeUGM. (A) Structures of 2-aminothiazole inhibitors used in 
this study. (B) Inhibition of UDP-Galf isomerization by CeUGM with increasing concentrations 
of compound 2.3. No UDP-Galp formation could be detected at 100 µM 2.3. Error bars represent 
the s.d. of triplicate measurements.  

Table 2-2. Inhibition and Binding Constants of 2-aminothiazoles Against CeUGMa  
Compound % Inhibition at 10 µM  IC50 (µM) Ki (µM) 

2.3 83 ± 6 3.3 ± 1.1 1.3 ± 0.4 

2.4 95 ± 1 1.8 ± 1.2 0.7 ± 0.5 

2.5 16 ± 3 n/d n/d 
an/d represents not determined. Ki values were calculated using the Cheng-Prusoff equation 

(58).  

The identification of small molecule inhibitors of CeUGM suggests new research directions. 

First, the data indicate that inhibitors of eukaryotic UGMs can be found. Of the small panel of 

potential 2-aminothiazole based compounds we tested, the most effective inhibitor, compound 

2.4, had an IC50 of 1.8 µM. These compounds could be used to illuminate the effects of 

perturbing nematode glycans. Indeed, C. elegans serves as a useful model to investigate helminth 

biology (59-61) ⎯ specifically the biosynthesis of glycoconjugates, their structure, and their 

physiological roles (15,62-64). Glycomic analysis supports this approach as glycoconjugates in 

C. elegans and parasitic species are similar (27,65,66). Inhibitors of nematode UGM enzymes, 
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therefore, may prove to be valuable for probing Galf  biology in C. elegans and parasitic 

nematodes. For example, a putative UGM was recently identified in a protein mass spectrometry 

study of the parasitic nematode Brugia malayi, the causative agent of human lymphatic filariasis 

(67). We therefore anticipate that the inhibitors identified in this study can be used to probe the 

physiological role of Galf in B. malayi.  

Eukaryotic UGM inhibitors may have other useful roles. It has been previously 

demonstrated that Galf contributes to virulence (30) of the human fungal pathogen A. fumigatus, 

and remarkably, Galf constitutes ~5% of the dry weight of the fungus(68). The temporal control 

afforded with chemical genetics would allow researchers to probe the role of Galf during specific 

stages of infection or host colonization. We therefore anticipate that these compounds will serve 

as chemical probes and chemotherapeutic leads in nematodes and other eukaryotes that utilize 

Galf. 

 
 

Figure 2-8. Competitive inhibition of CeUGM by compound 2.3. (A) Initial velocity analysis of 
CeUGM in the presence of increasing concentrations of compound 2.3. Error bars represent the 
s.d. of triplicate measurements. (B) Double reciprocal analysis of the data presented in (A). 
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2.7 Conclusions  

In summary, the glf-1 gene from C. elegans encodes an enzyme that catalyzes the 

isomerization of UDP-Galp and UDP-Galf. Our ability to trap a galactose−N5-flavin adduct 

implicates a nucleophilic flavin in the catalytic mechanism. Conservation of this flavoprotein 

mechanism supports the development of highly specific activity-based covalent inhibitors of 

UGM proteins. Our homology model suggests that CeUGM possesses an active site similar to 

those described for other UGM proteins, a conclusion supported by results from site-directed 

mutagenesis. The high level of structural similarity between the predicted active sites from the 

CeUGM homology model and crystallized prokaryotic UGMs prompted us to test previously 

described inhibitors of prokaryotic proteins as inhibitors of CeUGM (29). Intriguingly, 2-

aminothiazole based compounds are competitive inhibitors of CeUGM, indicating eukaryotic 

UGMs are amenable to small molecule inhibition. Finally, our data suggest that nematodes use 

CeUGM to catalyze UDP-Galf biosynthesis. It is likely that Galf is then incorporated into critical 

nematode glycans via yet unidentified galactofuranosyl transferases. Identification of Galf in a 

nematode glycan or the glycosyltransferases responsible for addition of Galf remains critical for 

understanding and capitalizing on nematode glycoconjugate biosynthesis. 
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2.8 Methods 

2.8.1 Cloning, Expression, and Purification of CeUGM  

The glf-1 ORF was amplified by PCR using PfuTurbo DNA Polymerase (Stratagene) from a 

pET3a:glf-1 construct (21) generously provided by Professor Stephen Beverley (Washington 

University in St. Louis School of Medicine) using the forward primer 5’-

GACCACAACGGTTTCCCTCTAGAAATAATTTTG-3’ and the reverse primer 5’-

GCAGCCGGATCCGCGGCCGCTCCCCGTGGAATAGTTGG-3’. The forward and reverse 

primers added an XbaI and NotI restriction site, respectively. The purified PCR product and pET-

24a vector were digested with XbaI and NotI restriction endonucleases (Promega). The resulting 

products were purified using the QIAquick PCR Purification Kit (Qiagen). Digested pET-24a 

vector and glf-1 insert were ligated using T4 DNA Ligase (Promega). The presence of glf-1 with 

a vector encoded C-terminal hexahistidine (His6) tag was confirmed by DNA sequence analysis. 

The pET-24a:glf-1 construct was used as template DNA for generating point mutants via site-

directed mutagenesis using the QuickChange Kit (Stratagene). The oligonucleotide primer 

sequences used for generating each mutant can be found in Table 2-3. 

The pET-24a:glf-1 construct was transformed into competent E. coli BL21(DE3) cells 

(Novagen). Cultures were grown in LB medium supplemented with 50 µg/L kanamycin at 37 °C 

until OD600 = 0.6 were reached. Cells were cooled to 20 °C and protein overexpression was 

induced upon the addition of isopropyl-β-D-thiogalactopyranoside (IPTG) to 0.1 mM. Cells were 

grown for 18 hours at 20 °C then harvested by centrifugation (5,000g). Pellets were resuspended 

in buffer containing 20 mM potassium phosphate (pH 7.4), 25 mM imidazole, 300 mM sodium 

chloride and 15% glycerol. Cells were disrupted by lysozyme, 0.1% Triton X-100, and 
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sonication (Branson 450 sonifier). Lysates were cleared with centrifugation (22,000g) and 

filtration (0.45 µM). Cleared lysate was purified with immobilized nickel-ion chromatography 

using a HisTrap HP column (GE Healthcare) on an AKTA FPLC (Amersham Biosciences). 

Protein was eluted with a linear gradient of 25 to 500 mM imidazole in potassium phosphate (pH 

7.4), 300 mM sodium chloride, and 15% glycerol. Typical yields were 4 mg/L. Fractions of 

CeUGM, >90% pure, were pooled and dialyzed against a solution of 50 mM potassium 

phosphate (pH 7.4), 500 mM sodium chloride, 2 mM dithiothreitol (DTT) and 15% glycerol. 

Protein concentration was determined by absorbance of the flavin cofactor at 450 nm (ε450 = 

11,300 M-1cm-1). Protein was aliquoted, vitrified in liquid nitrogen, and stored at -80 °C. 

Table 2-3. Oligonucleotide Primer Sequences Used to Generate Point Mutants of CeUGMa 

Mutant Primer Sequence 

R187A 5’-CTCCAAATTGGGTTGGATCTGCTGTTGCTAAGCTTCCAC-3’ 

R336A 5’-CCCAGATCGTGAAGTTCCATTCTTCGCTGTCACAATTCTCAGC-3’ 

aThe primer described above and its reverse complement (sequence not shown) were used 
together in a single PCR reaction to generate each mutant. The codon changed during the 
reaction is underlined. 

2.8.2 Enzymatic Activity  

The activity of CeUGM was measured using an HPLC-based assay with minor 

modifications (38,39). Reactions were performed in 50 mM potassium phosphate (pH 7.0) and 

10 mM fresh sodium dithionite at 22 °C. The reaction was initiated with the rapid addition of 

chemically synthesized UDP-Galf to the enzyme solution (40). The time that each reaction was 

allowed to proceed was adjusted to ensure the conversion of UDP-Galf to UDP-Galp was under 

10%. Reaction mixtures were quenched with the addition of an equal volume of 1:1 
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chloroform:methanol. The aqueous portion was removed and analyzed using a CarboPac PA-100 

column (Dionex) on a Waters HPLC system. Reaction substrate (e.g. UDP-Galf) and product 

(e.g. UDP-Galp) were separated via isocratic elution using 200 mM ammonium acetate (pH 8.0), 

and the eluate was monitored at 262 nm. Initial reaction rates were calculated based on the 

concentration of substrate and the percentage converted as determined by integration of the 

HPLC chromatograph. Kinetic parameters were determined by nonlinear regression analysis 

using Graphpad Prism 4. Quantified error represents the standard error of the mean. The 

activities of CeUGM variants R187A and R336A were measured at 100 µM UDP-Galf, or ~12 

times the KM value for the wild-type enzyme. The activity of the variants was decreased to a level 

in which the kinetic and binding constants could not be reliably determined. Data were 

normalized to the activity measured from the wild-type sample. 

2.8.3 UV-Visible Spectroscopy 

UV-visible absorbance spectra of wild-type, R187A, and R336A CeUGM, or free FAD 

were taken in a Cary 50 Bio UV-Visible Spectrophotometer (Varian) using a 1 cm cuvette. As a 

blank, 50 mM potassium phosphate (pH 7.4), 500 mM sodium chloride, and 15% glycerol was 

used. Spectra were normalized to 450 nm. 

2.8.4 Far-UV Circular Dichroism (CD) 

Wild-type, R187A, and R336A CeUGM were dialyzed into 20 mM potassium phosphate 

(pH 7.0) and 15% glycerol. Protein concentrations were determined using the BCA Protein 

Assay (Pierce). Samples were diluted to roughly 3 µM. Spectra were collected in a Model 202SF 

Circular Dichroism Spectrophotometer (AVIV Instruments) using a quartz cuvette with a 0.1 cm 

path length. Data were collected every 1 nm from 197-300 nm using seven shot averages at 22 
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°C. A baseline scan of a solution of 20 mM potassium phosphate (pH 7.0) and 15% glycerol was 

subtracted from each sample. Molar ellipticities (ME; deg cm2/decimol) were calculated using 

the equation ME = MRWθ/(10lC) where MRW is the mean residue weight (114.36 for CeUGM-

His6), θ is the ellipticity in degrees, l is the pathlength in centimeters, and C is the concentration 

is g/mL. Data were plotted using Igor Pro (WaveMetrics). 

2.8.5 Clustal W Alignment 

Putative UGM proteins from three eukaryotes and three prokaryotes were selected for 

Clustal W analysis using MegAlign in the Lasergene 8 Suite (DNASTAR). Eukaryotic UGMs 

include Caenorhabditis elegans (CeUGM), H04M03.4; Leishmania major (LmUGM), 

AAX09638; Aspergillus fumigatus (AfUGM), CAI38754. Prokaryotic UGMs analyzed consist 

of Mycobacterium tuberculosis (MtUGM), NP_218326; Klebsiella pneumoniae (KpUGM), 

KP1_3695; Escherichia coli (EcUGM), ACD37140. Proteins were aligned using the default 

Clustal W Method parameters on the slow and accurate mode. Residues that were conserved in 

every species are highlighted in red. 

2.8.6 Homology Model 

The homology model of CeUGM was generated using the “Automated Mode” of SWISS-

MODEL with default parameters (56). Full length protein was used as the query. As a target, 

UGM from M. tuberculosis (PDB Code: 1V0J) was selected (57). The model, residue 2-473 of 

CeUGM, was viewed and analyzed using PyMOL. 

2.8.7 Intermediate Trapping 

A solution of CeUGM, sodium dithionite, and UDP-Galp was allowed to equilibrate for 

one minute. Solid sodium cyanoborohydride was added to a concentration of 1 M. After thirty 
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minutes, sodium chloride was added to a final concentration of 1 M to facilitate the extraction of 

the FAD cofactor. Protein was precipitated with heat and the soluble components were collected. 

The buffer was exchanged using a Sep-Pak C18 cartridge (Waters). To elute the sample, 10 mM 

ammonium acetate (pH 6.4) in 1:1 water:methanol was added. The eluate was concentrated to 

dryness using a SpeedVac SC100 (Varian) under vacuum. Samples were analyzed sequentially 

using a C18 column on a Shimadzu electrospray ionization HPLC-MS with the mass analyzer in 

both positive and negative ion mode. For mass assignment, positive ion mode was used. 

2.8.8 Chemical Inhibition 

Compounds 2.3, 2.4, and 2.5 were synthesized as previously reported (29). For 

percentage inhibition and IC50 determination, solutions of CeUGM, sodium dithionite, 12 µM 

UDP-Galf, and compound (at various concentrations from dimethyl sulfoxide (DMSO_ stocks) 

were assessed in the aforementioned HPLC-based product formation assay for catalytic activity. 

Compound stocks were adjusted such that 1% DMSO was present in each reaction. As a vehicle 

control, 1% DMSO was used. The IC50 values were calculated using the One Site Competition 

Model from Graphpad Prism 4. Quantified error represents standard error of the mean. To assess 

the mode of inhibition of the 2-aminothiazoles described above, reaction kinetics were 

determined in the presence of varying concentrations of compound 2.3. Data were fit using 

nonlinear regression analysis. The double reciprocal plot was generated and fit using Graphpad 

Prism 4 (GraphPad Software). 

2.9 Contributions 

John F. May performed initial experiments using CeUGM. Elizabeth M. Huffman synthesized 

and characterized the small molecules 2.3, 2.4, and 2.5.  
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3.1 Abstract  

The glycans displayed on mammalian cells can differ markedly from those on microbes. 

Such differences could, in principle, be read by carbohydrate-binding proteins, or lectins. We 

used glycan microarrays to show that human intelectin-1 (hIntL-1) does not bind known human 

glycan epitopes but interacts with multiple glycan epitopes found exclusively on microbes: β-

linked D-galactofuranose (β-Galf), D-phospho-glycerol-modified glycans, heptoses, D-glycero-D-

talo-oct-2-ulosonic acid (KO) and 3-deoxy-D-manno-oct−2-ulosonic acid (KDO). The 1.6 Å 

resolution crystal structure of hIntL-1 bound to β-Galf revealed that hIntL-1 uses a bound 

calcium ion to coordinate terminal exocyclic 1,2-diols. N-Acetylneuraminic acid (Neu5Ac), a 

sialic acid widespread in human glycans, possesses an exocyclic 1,2-diol but does not bind hInt-

1, likely due to unfavorable steric and electronic effects. Human IntL-1 marks only 

Streptococcus pneumoniae serotypes that display surface glycans with terminal 1,2-diol groups. 

This ligand selectivity suggests hIntL-1 functions in microbial surveillance. 
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3.2 Introduction 

Organisms that serve as hosts for microbes must distinguish microbial cells from those of 

their own (1,2). A mechanism of differentiation is especially important at sites in which host 

tissues contact the environment, such as in the lung, intestine, and skin (3,4). Differences in 

cellular surface glycosylation can serve as markers of a cell’s identity⎯its developmental state, 

its tissue type, or whether it is self or non-self (5). Cell surface glycans can be distinguished by 

carbohydrate binding proteins or lectins (6), which are typically categorized based on their 

monosaccharide selectivity (7). These lectins can be exploited for host defense, as in the case of 

innate immune lectins, such as MBL (8).  In the serum, MBL is precomplexed with MASPs, and 

interaction of this complex with a cell surface results in activation of the lectin pathway of 

complement, ultimately leading to pathogen opsonization and clearance (9,10). Other humoral 

lectins implicated in immunity include ficolins, collectins, galectins, and HIP/PAP (1,11-13).  

One group of lectins whose specificity remains unclear is that composed of IntLs. The 

first IntL protein was reported in Xenopus laevis oocytes (14). Homologs have since been 

identified in many other chordates; including other amphibians, fishes, and many mammals,. 

IntLs belong to a family of lectins termed X-type lectins (15) and have been shown to exist as 

homooligomers of 35 kDa monomers. They are reported to function as calcium ion-dependent 

lectins; however, they do not contain the calcium-dependent C-type lectin sequence motif (16) 

present in many human lectins. IntLs instead contain a fibrinogen like domain (FBD, residues 

37-82 in hIntL-1 ( (ref. 17)) and are proposed to be most similar to ficolins, a class of FBD-

containing innate immune lectins (11).  
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Several observations implicate IntLs in innate immunity. Mammalian IntLs are 

predominantly produced by lung and intestinal goblet cells, and intestinal paneth cells (17-19). In 

sheep and mice, IntL expression increases upon infection with intestinal parasitic nematodes 

(20,21). In humans, the mucus induced by allergic reactions is enriched in IntLs (22,23). Still, 

hIntL-1 has been reported to be the intestinal lactoferrin receptor (24), to function as a tumor 

marker (25). It also be suggested to be involved in metabolic disorders including diabetes, where 

it is known as omentin (26). Given these diverse potential functions, we set out to examine the 

ligand specificity of hIntL-1.  

Human IntL-1 has been reported to bind furanose residues (5-membered ring saccharide 

isomers), including ribofuranose (Ribf) and a β-Galf-containing disaccharide (17,27). The 

monosaccharide Galf is present in the cell surface glycans produced by a number of microbes, 

but the biosynthetic enzymes that mediate Galf incorporation are absent in humans (28-30).  The 

presence of Galf in microbial glycans but not in those of humans is an example of phylogenetic 

glycan differences (31). This is just one example, as collectively the surface glycans of microbes 

are generated from more than 700 unique building blocks, while less than 35 carbohydrate 

residues are needed to assemble mammalian glycans (32,33). In principle, targeting 

monosaccharide residues unique to microbes could be used by the innate immune system to 

differentiate mammalian cells from microbes.  

We reasoned that clues to hIntL-1 function would emerge from determining the glycans it 

binds and the molecular basis for its recognition selectivity. Here, we use glycan microarrays to 

demonstrate that hIntL-1 binds microbial over human glycans. Given the diversity of microbial 

glycans, a lectin that binds a single microbial saccharide epitope (e.g., Galf) would be expected 
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to have specialized function. It is therefore striking that hIntL-1 does not engage a single 

monosaccharide or even related saccharides; rather, hIntL-1 interacts with multiple, structurally 

divergent microbial monosaccharide residues. The molecular mechanism by which hIntL-1 

recognizes its targets was revealed by X-ray crystallography: hIntL-1 binds its carbohydrate 

ligands through calcium ion-dependent coordination of a conserved exocyclic, terminal 1,2-diol. 

The functional group selectivity observed in the glycan arrays is manifested in the context of 

cells, as hIntL-1 targets S. pneumoniae serotypes that display its glycan ligands.  

3.3 hIntL-1 Binds β-Galf  

Native hIntL-1 has been shown to exist as a disulfide-linked trimer (17,27). Therefore, 

we first developed a robust expression system that yields the protein as a disulfide-linked trimer 

that could be purified using an immobilized β-Galf column (Figures 3-1A & 3-1B). Because 

lectin–carbohydrate interactions often depend on multivalent binding (34,35) we postulated that 

hIntL-1 trimers might bind avidly to multivalent carbohydrate displays. Human IntL-1 

carbohydrate-binding specificity hence was evaluated using immobilized biotinylated 

carbohydrates (β-D-Galf, β-D-Galp, β-D-ribofuranose (β-Ribf)) in an enzyme-linked 

immunoabsorbent-like assay (ELISA) (Figures 3-1C—E). The monosaccharide binding 

epitopes we tested were chosen based upon a previous study in which a small carbohydrate panel 

was evaluated for inhibition of hIntL-1 binding to an immobilized carbohydrate (17). In those 

studies, ribose was the most effective competitor (IC50 < 5 mM) followed by Galf-β(1,4)-

GlcNAc (IC50 = 9 mM) with galactose being less potent (IC50 = 66 mM) (17). Our data indicate 

that hIntL-1 does not bind Ribf nor Galp, but it does engage the β-Galf-substituted surface avidly 

with a functional affinity (apparent affinity) of 85 ±14 nM (Figure 3-1F).  
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Our results contrast with those of the previous study (17), as we did not detect binding to 

the pyranose form of galactose nor to ribofuranose. The apparent discrepancies could arise 

because the previous investigation required high concentrations free carbohydrate. Under those 

conditions, competition could arise from protein modification or from the less prevalent open 

chain form of the saccharide. The apparent binding constant we observed for hIntL-1 binding to 

immobilized β-D-Galf suggests that the protein binds tightly to a ligand, but the previous IC50 for 

the β-D-Galf-containing disaccharide (9 mM) suggests the interaction is weak. This difference 

presumably stems from the distinct assay formats. We postulated that the presentation of 

glycosides from a surface is a more relevant assessment of hIntL-1 activity as it mimics key 

aspects of the multivalent display of carbohydrate ligands on a cell surface (34). Still, the 

differences between the reported hIntL-1 binding specificities and those we observed prompted 

us to examine hIntL-1 binding using another assay. We used surface plasmon resonance (SPR) 

and monitored hIntL-1 interaction with surfaces to which the aforementioned saccharides or β-D-

Araf or α-L-rhamnopyranose (α-L-Rha) were appended. Even at high concentrations of hIntL-1, 

we observed only selective hIntL-1 binding to β-Galf (Figure 3-1G).  
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Figure 3-1. Expression, purification, and carbohydrate binding activity of hIntL-1. (A) Reducing 
SDS-PAGE analysis of HEK 293T culture medium from hIntL-1 transfected cells. Samples were 
analyzed by silver stain 48 hours post transfection. An arrow indicates the band corresponding to 
the molecular weight of a hIntL-1 reduced monomer. (B) Coomassie stained gels of samples 
subjected to reducing and nonreducing SDS-PAGE analysis of hIntL-1 purified on an 
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immobilized β-Galf column. The molecular weight of the sample analyzed under non-reducing 
conditions corresponds to that of a disulfide-linked hIntL-1 homotrimer. (C) Schematic of 
streptavidin-based, ELISA-like carbohydrate binding assay developed for assessing hIntL-1 
ligand specificity. Biotin-functionalized carbohydrate is immobilized. Bound hIntL-1 is detected 
the enzyme horseradish peroxidase (HRP) conjugated to an antibody (either a secondary or 
directly conjugated primary), and a chromogenic HRP substrate. (D) Carbohydrate−binding 
activitiy of HEK 293T cell conditioned culture medium following transfection with hIntL-1 
expression plasmid. The calcium ion dependence was assayed with addition of 25 mM 
ethylenediaminetetraacetic acid (EDTA). Data are presented as the mean (n=2 of a technical 
replicate and is representative of >3 independent experiments). (E) Structures of saccharides 
used for characterization of hIntL-1 by ELISA and SPR. (F) The specificity of hIntL-1 for β-
Galf, β-Ribf and β-Galp evaluated by ELISA (See Supplementary Fig. 1b for schematic). Data 
are presented as the mean ± s.d. (n=3 technical replicates, data are representative of >3 
independent experiments). Data were fit to a single site binding equation (solid lines) and 
therefore represent the apparent (App) affinity of trimeric hIntL-1. Values for hIntL-1 bound to 
immobilized β-Galf (Kd(App, Trimer) ± s.d.) are 85 ± 14 nM or 8.0 ± 1.3 µg/mL. (G) Representative 
real-time SPR sensorgrams of hIntL-1 binding to immobilized carbohydrates. Biotin served as a 
control. 

3.4 hIntL-1 Binding to Microbial Glycans 

Glycan microarray technology afforded a more comprehensive assessment of hIntL-1 

ligand recognition (36). We prepared a focused array that included furanosides using the 

methods employed in generating the Consortium for Functional Glycomics (CFG; 

http://www.functionalglycomics.org) mammalian glycan v5.1 array, and both arrays were tested 

for hIntL-1 binding. In the focused array, lacto-N-neotetraose (LNnT) and asialo, galactosylated 

bi-antennary N-linked glycan (NA2) were included to ascertain the efficiency of carbohydrate 

immobilization. Data from the focused array were consistent with those obtained from the 

ELISA and SPR assays, indicating that of the carbohydrates displayed, hIntL-1 bound only to 

those with β-Galf residues (Figure 3-2A). We attribute the small amount of binding to β-Galp to 

its hydrophobic, alkyl anomeric linker. In contrast to the furanoside array, testing of the CFG 

v5.1 array yielded no validated interactions with mammalian glycans (Figure 3-2A). Increasing 

the protein concentration yielded similarly low signals suggesting the modest residual binding 
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detected arose from nonspecific interactions (Data not shown). Thus, none of the human glycans 

examined are ligands of hIntL-1. 

 

Figure 3-2. Glycan selectivity of hIntL-1 assessed by glycan microarrays. (A) Recombinant 
hIntL-1 (50 µg/mL) binding to mammalian glycan microarray CFG v5.1 and a furanoside array. 
The concentrations given for the furanoside array represent those used in the carbohydrate 
immobilization reaction. Data are presented as the mean ± s.d. (n=4 technical replicates). The 
full data set can be found in Supplementary Table 1 of reference (37). (B) Recombinant Strep-
hIntL-1 (50 µg/mL) binding to microbial glycan array. For glycan array data organized by genus, 
see Figure 3-3A. Data are presented as the mean ± s.d. (n=4 technical replicates). The full data 
set can be found in Supplementary Table 2 of reference (37). (C) Structural representation of the 
putative key binding epitopes for hIntL-1 and the non-binding α-Neu5Ac. A terminal vicinal diol 
(red) is a common feature of α-Neu5Ac and all of the ligands identified. 

The initial binding data revealing hIntL-1 robustly complexes β-Galf residues but not 

human glycans prompted us to evaluate the lectin’s specificity for a more diverse collection of 

microbial glycans. Though absent from mammals (28), Galf residues occur in glycans from a 

number of human pathogens, including the bacteria Mycobacterium tuberculosis and Klebsiella 
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pneumoniae, and the fungal pathogen Aspergillus fumigates (29,38).  The possibility that hIntL-1 

interacts with microbial glycans was tested using a microarray displaying more than 300 

oligosaccharides from bacterial species (39). Screening of this array revealed multiple glycan 

ligands for hIntL-1 (Figure 3-2B and 3-3A). These ligands encompassed glycans from Gram-

negative and Gram-positive bacteria; including S. pneumoniae, Proteus mirabilis, Proteus 

vulgaris, Yersinia pestis, and K. pneumoniae (Table 3-1). Four of the top-fifteen ligands 

contained terminal β-Galf epitopes, including outer polysaccharide (OPS) from K. pneumoniae 

and a CPS from S. pneumoniae. Surprisingly, the majority of the glycans identified did not 

possess Galf residues. The top five hits had saccharide residues with Gro-P substituents. This 

epitope was the common feature, as the residue to which it was appended varied between 

glycans. Other common epitopes included either D/L-manno-heptose, KO, or KDO residues 

(Figure 3-2C). Each characterized glycan ligand from the top 15 hits contains at least one of the 

five aforementioned epitopes. Despite its ability to bind structurally diverse glycans, hIntL-1 

exhibited selectivity. Conspicuously missing from hit microbial glycan ligands were those 

containing α-Galf residues (Figure 3-3B). What was especially notable, however, was that none 

of the hIntL-1 ligands we identified on the microbial glycan array are found in mammalian 

glycans, but collectively these five residues are widely distributed in bacteria (32).  
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Table 3-1. The List of the Top 15 Microbial Gycan Ligands, Sorted by Average Fluorescence 
Intensity (RFU). 
Rank Microbial sample Proposed ligand 

1 S. pneumoniae type 43 Glycerol−phosphate 
2 P. mirabilis O54ab Glycerol−phosphate 
3 S. pneumoniae type 56 Glycerol−phosphate 
4 P. mirabilis O54a, 54b Glycerol−phosphate 
5 P. vulgaris O54a, 54c Glycerol−phosphate 
6 K. pneumoniae O2a OPS β-Galf 
7 K. pneumoniae O2ac OPS β-Galf 
8 Y. pestis KM260(11)-∆0187a  
9 K. pneumoniae O1 OPS β-Galf 

10 Y. pestis 11M-37 Heptose, KO, KDO 
11 Y. pestis KM260(11)-6Ca  
12 Y. pestis KM260(11)-∆waal Heptose, KO, KDO 
13 S. pneumoniae type 20  β-Galf 
14 Y. pestis KM260(11)-∆pmrF Heptose, KO, KDO 
15 Y. pestis 11M-25 Heptose, KO, KDO 

a These glycans are currently structurally uncharacterized. 

 

 

Figure 3-3. Human IntL-1 binding specificity as determined from the microbial glycan 
microarray (MGMv2). (A) Results of the MGM organized by genus and species, alphabetically. 
The fluorescence values are identical to those presented in Figure 3-2B. The chemical epitope 
that is proposed to be a hIntL-1 ligand is depicted. The chart identification number from this 
graph is provided in parenthesis below the graphically depicted ligand. Data are presented as the 
mean ± s.d. (n=4 of a technical replicate for each immobilized glycan). The complete data for 
this experiment are available in Supplementary Table 3 of reference (37). (B) Chemical 
structures of terminal α-Galf containing glycans that failed to bind hIntL-1. The Galf residues in 
each glycan are depicted in red. The BPS number (BPS #) that references each glycan is derived 
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from reference (39), and the hIntL-1 signal (from Figure 3-2B) are shown. 

3.5 Structure of hIntL-1  

To understand the molecular mechanisms underlying glycan recognition by hIntL-1, we 

determined its structure using X-ray crystallography. Apo-hIntL-1 crystals diffracted to 1.8 Å 

resolution, and the structure of the protein was solved by molecular replacement using the 

structure of a selenomethione (SeMet)-labeled Xenopus laevis IntL as a search model (Table 3-

2) (PDB ID: 4WMO). Human IntL-1 possesses an oblong, globular structure containing two 

highly twisted β sheet-containing structures surrounded by seven short α helixes and extensive 

random coil regions (Figure 3-4A). The second of these β sheets structures closes on itself to 

form a very short stretch of unusually flattened β-ribbons (amino acids 221-226 + 248-278). A 

Dali search (40) using the hIntL-1 structure yielded several weak FBG and ficolin structure hits 

(RMSD values ~4 Å). The secondary structures of L-ficolin (41) and hIntL-1 are related up to 

residue 150, although the sequence conservation is limited to the FBD. The remaining residues 

diverge substantially in sequence and structure (Figure 3-5). Indeed, removal of the first 150 

residues from the hIntL-1 Dali input yielded no hits. These data indicate hIntL-1 has a composite 

fold not previously reported. 

Two hIntL-1 monomers are present in the asymmetric unit (Chain A and Chain B), and 

they represent two similar, though non-identical (Cα RMSD=0.65 Å), disulfide-linked trimers, 

each arranged around a crystallographic threefold axis. In one trimer, the peptide chain that 

connects each monomer to the adjacent monomer is resolved, such that the intermolecular 

disulfide bond between residues C31 and C48 is apparent (Figure 3-4A). These data are 

consistent with SDS-PAGE analysis indicating the hIntL-1 exists as a trimer. Each hIntL-1 
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monomer has three calcium ions, and each cation is chelated exclusively by hard protein or water 

ligands (bond distance 2.3–2.5 Å). Two of these cations are embedded within the protein while 

one is surface exposed. 
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Figure 3-4. Structure of hIntL-1 bound to allyl-β-D-Galf. (A) Complex of hIntL-1 disulfide-
linked trimer and allyl-β-D-Galf. Each monomer unit is depicted in green, wheat, or grey, the β-
allyl Galf is shown in black, calcium ions in green, the inter-monomer disulfides in orange, and 
ordered water molecules in the binding site in red. The two orientations indicate the positioning 
of all three ligand-binding sites within the trimer. The trimeric structure is produced from Chain 
A in the asymmetric unit by a three-fold crystallographic operation. (B) Stereo image of the 
carbohydrate-binding site. Residues involved in calcium coordination and ligand binding are 
noted. Dashed lines are included to show the heptavalent coordination of the calcium ion and to 
highlight functional groups important for ligand and calcium ion binding. Difference density 
map (Fo-Fc, 3σ) of the allyl-β-D-Galf ligand is provided in Figure 3-6A. 

To determine how hIntL-1 binds its ligands, we solved a structure of the complex of 

allyl-β-D-Galf bound to hIntL-1 to 1.6 Å resolution. The Cα RMSD between the asymmetric unit 

of apo- and Galf−bound structures (0.118 Å) suggested no significant structural changes occur 
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upon ligand binding. The Galf O(5) and O(6) hydroxyl groups displace ordered water molecules 

and serve as coordinating ligands for the surface accessible calcium ion, with protein side chains 

poised for hydrogen bonding, (i.e., H263 to the Galf O(6) hydroxyl group, Figure 3-4B & 

Figure 3-6A) thereby enhancing calcium coordination. The carbohydrate vicinal exocyclic 

hydroxyl groups adopt a gauche conformation as they chelate the calcium, with dihedral angles 

of 45° and 51° for Chain A and B, respectively. As anticipated from the structure, glycans 

containing Galf residues with substituents at either the O(5) or O(6) fail to bind hIntL-1 (Figure 

3-4B). This portion of the saccharide also fits well into a binding pocket formed by W288 and 

Y297. The presence of these aromatic groups suggests that CH−π bonds may contribute to 

affinity. 

The high resolution of the structure of the hIntL-1 complex allows unambiguous 

assignment of the β-Galf ring conformation in each monomer (Figure 3-6B) (42,43). Using the 

Altona-Sundaralingam pseudorotational model, we calculated the pseudorotational phase angle, 

P, of each furanoside to assign its conformation (44). In hIntL-1 Molecule A, the furanoside is in 

the 1TO-gg-gt (calculated P=105°) conformer, while the β-Galf shown in Figure 3-4b adopts the 

4E-gg-gt (calculated P=57°) conformation (Figure 3-6C and 3-6D). The presence of 

conformational differences within the structures are consistent with the flexibility of furanosides 

(43).  
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Figure 3-5. Structural alignment of hIntL-1 and human L-ficolin (PDB 2J3U) (41). (A) Primary 
protein sequence and secondary structure comparison of hIntL-1 and L-ficolin (PDB: 2J3U) 
generated using ESPript 3.0 (ref. (45)).The figure was produced from a Clustal W alignment of 
hIntL-1 (residues 29-313) and L-ficolin (Residues 96-313). The residues depicted correspond to 
those that were resolvable in each protein structure. This alignment omits the collagen-like 
domain of L-ficolin. The box denotes the proposed FBD of each molecule. A red box highlights 
identical residues. The cysteine residues from hIntL-1 that are involved in intermolecular 
trimerization are identified with an arrow. (B) A hIntL-1 monomer (wheat) aligned to a L-ficolin 
monomer (PDB: 2J3U) (grey) using Gesamt v6.4 (ref. (46)). Reported RMSD=3.6 Å for 165 
superimposable Cα atoms between the two structures. After the first 165 Cα atoms, the structures 
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are too divergent to assign Cα atoms as superimposable, and they are not included in this 
calculation. The co-crystallized carbohydrate ligands are depicted to highlight differences in 
ligand binding sites. The hIntL-1 ligand is shown in black and the L-ficolin ligand is shown in 
red. Calcium ions are shown in green. Human IntL-1 binds three calcium ions, while L-ficolin 
binds one. The N-termini are highlighted with an N. (C) The alignment shown in panel B, except 
that L-ficolin is translated by 45 Å for clarity. The N-terminus of each monomer is denoted with 
an N. 
 

 

Figure 3-6. hIntL-1 bound to allyl-β-D-Galf. (A) Structure of the ligand-binding site in Apo-
hIntL-1 (4WMQ). Calcium ions are shown in green, and ordered water molecules in red. Dashed 
lines highlight functional groups important for the heptavalent coordination of the ligand binding 
site calcium ion. (B) Close-up view of the ligand-binding site of the β-Galf−hIntL-1 protein 
structure (4WMY). This image is the same as depicted in Figure 3-4B, although surface mesh is 
depicted around the β-Galf ligand to highlight the ligand electron density. Mesh represents an 
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difference density map (mFo-DFc, 3σ). Calcium ions are depicted in green and ordered waters 
are shown in red. The ligand O(5) and O(6) hydroxyl groups coordinate to the calcium ion and 
displace two ordered water molecules. (C) Structural comparison of the crystallized allyl-β-D-
Galf ligands. The molecule from Chain A is shown in wheat, while the molecule shown in Chain 
B is shown in grey. The furanosides were overlaid using the C(2)-C(3) bond and translated apart 
by 8 Å. (D) Table summarizing Chain A and Chain B in the β-Galf−hIntL-1 protein structure 
(4WMY). 

3.6 Structural Basis for hIntL-1 Selectivity  

The structure of the lectin-Galf complex reveals why the acyclic 1,2-diol moiety is 

critical – the vicinal hydroxyl groups engage in calcium ion coordination. Still, other glycan 

properties contribute to hIntL-1 recognition. For example, hIntL-1 does not bind α-Galf 

substituted glycans (Figure 3-3B). A cursory assessment of the β-Galf complex suggests hIntL-1 

might accommodate α-Galf linkages. An alteration in anomeric configuration for furanosides, 

however, can drastically change conformational preferences. Although the low energetic barrier 

of furanoside ring pseudorotation complicates definitive analysis, experimental and 

computational studies of the isomeric methyl glycosides of D-Galf  have revealed that the 

anomers have dramatically different conformational preferences (43). The β-Galf  4E-gg-gt 

conformer that we find in hIntL-1 Chain B is predicted to be the second lowest in energy (0.4 

kcal/mol) (43). That conformation for methyl-α-Galf is destabilized by 3.2 kcal/mol. As a result, 

the expected Boltzmann population for methyl-α-Galf in a 4E-gg-gt conformation is less than 

0.2%, ranking it 25th out of the 90 conformations examined (43). These data suggest that α-Galf 

residues adopt a conformation incompatible with favorable hIntL-1 interactions.  

One of the most striking findings from the binding data is that the lectin failed to interact 

with any of the 148 α-Neu5Ac-containing glycans in the mammalian glycan array (Figure 3-

2A). A saccharide epitope widespread in human glycans, α-Neu5Ac residues have a terminal 
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1,2-diol and share similarity with KDO, which are common in microbial glycans and do function 

as hIntL-1 ligands (47). We used a biotinylated glycoside to confirm that hIntL-1 fails to interact 

with surfaces displaying α-Neu5Ac (Figure 3-7A). Moreover, compounds identified as hIntL-1 

ligands—Gro and Gro-P— competitively inhibit the lectin from binding to β-Galf, but methyl-α-

mannopyranoside and methyl-α-Neu5Ac do not (Figure 3-7B). These results indicate that hIntL-

1 uses a single site to bind disparate sterically unhindered 1,2-diol epitopes within microbial 

glycans, yet the lectin evades interaction with human carbohydrate epitopes.  

 

Figure 3-7. hIntL-1 exhibits specificity for microbial glycan epitopes bearing terminal 1,2-diols. 
(A) hIntL-1 binding to immobilized α-Neu5Ac assayed by the ELISA-like carbohydrate-binding 
assay (Supplementary Figure 1-1C). Data are fit to a one site binding equation (solid lines). Data 
are presented as the mean and error bars represent the standard deviation (n=2 of a technical 
replicate and is representative of three independent experiments). (B) Inhibition of hIntL-1 
binding to immobilized β-Galf. Four compounds (Gro, Gro-P, the methyl-α-glycoside of 
Neu5Ac, and methyl-α-mannopyranose) were dissolved in binding buffer and included during 
the hIntL-1 incubation. Binding is relative to a control where no competitor was added to the 
binding buffer. Data are presented as the mean and error bars represent the standard deviation 
(n=2 of a technical replicate and is representative of three independent experiments). 

To understand the ability of hIntL-1 to discriminate between methyl-α-Neu5Ac and 

bacterial carboxylic acid-containing sugars such as KDO and KO, we docked methyl-α-Neu5Ac 
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and methyl-α-KDO into the hIntL-1 structure. The KDO glycoside is readily accommodated, but 

the α-Neu5Ac glycoside is not (Figure 3-8A and B). Anion – anion repulsion between the α-

Neu5Ac anomeric exocyclic carboxylate and the carboxylate side chains in the binding site 

should destabilize binding. Additionally, steric interactions between the methyl group of the 

anomeric oxygen, and the bulky C(5) N-acetyl group with the protein surface should disfavor α-

Neu5Ac complexation (Figure 3-8A). The destabilizing interactions with α-Neu5Ac cannot be 

mitigated by rotating bonds or by adopting accessible low energy conformations. Future 

experiments using protein variants and ligand analogs will be useful in testing this proposed 

evasion mechanism.    

 

Figure 3-8. Models for hIntL-1 interacting with relevant saccharide epitopes from humans (α-
Neu5Ac) or microbes (α-KDO). (A) Docking of methyl-α-Neu5Ac into the hIntL-1 structure. 
The conformation shown is similar to that observed in other protein structures with a methyl-α-
Neu5Ac ligand (PDB: 2BAT, 2P3I, 2P3J, 2P3K, 2I2S, 1KQR, 1HGE, 1HGH (refs. (48-52)). All 
models in this figure were generated from the allyl-β-D-Galf–bound structure by docking the 
relevant diol of each compound into the Galf diol electron density using Coot without further 
refinement. Calcium ions are shown in green and ordered water molecules are depicted in red. 
(B) Docking of methyl-α-KDO into the hIntL-1 structure. Comparison with methyl-α-Neu5Ac 
docked into the hIntL-1 structure reveal differences in the steric requirements for binding for 
each molecule. 

3.7 hIntL-1 Comparison with Ficolins  

The FBD of hIntL-1 suggested it would be related to the ficolins. With the structure of an 

X-type lectin complex, it is now apparent that, outside the FBD, intelectins and the ficolins 
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deviate extensively. IntLs lack the collagen-like domain that mediates complement activation.  

Additionally, the hIntL-1 CRD is larger than that of the ficolins, and hIntL-1 coordinates three 

calcium ions, two of which are buried, while the ficolins bind only a single calcium ion. Finally, 

the carbohydrate binding site and mode of recognition differ. The ficolin calcium ion is not 

found in the glycan-binding site; in contrast, a surface-exposed calcium ion in hIntL-1 

participates directly in glycan binding (Figure 3-5A). Together, the data suggest that X-type 

lectins, of which the hIntL-1 structure serves as the founding member, constitute a distinct 

protein structural class. 

3.8 hIntL-1 Binding to S. pneumoniae 

Based on the expression of hIntL-1 in mucosal tissues, we examined binding to 

immunologically distinct serotypes of the encapsulated human lung pathogen S. pneumoniae, the 

causative agent of several diseases, including pneumonia, meningitis, and septicemia (53). The 

surface exposed pneumococcal CPS is among the first microbial antigens encountered by the 

immune system upon challenge (54). This capsule is important for pathogen survival and is 

associated with virulence. Antibodies targeting the capsule have been shown to be protective 

against pneumococcal diseases, an observation that was leveraged to develop a polysaccharide-

based vaccine that is protective against streptococcus infections (55). The serotypes that we 

selected possess glycans that were present on the microbial glycan array: serotype 8 displays a 

glycan that lacks a terminal diol, serotype 43 displays a phosphoglycerol unit, and serotypes 20 

and 70 possess β-Galf residues (Figure 3-9A) (54). The data indicate that hIntL-1 binds to the 

surface of serotypes 20, 70 and 43, each of which displays cell surface glycans with an 

exocyclic, terminal 1,2-diol (Figures 3-9B & C and Figure 3-10A & B). As predicted by the β-
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Galf−hIntL-1 complex structure, binding to these strains depends on calcium ion-mediated 

coordination, and Gro functions as a competitive ligand (Figures 3-9B & C and Figure 3-10B). 

The relative fluorescence intensity of hIntL-1 binding to whole bacteria is generally consistent 

with the results predicted by the microbial glycan array. Specifically, hIntL-1 bound to strains 

that display β-Galf (i.e., hit 13 from the microbial array, Table 3-1), but it interacted most avidly 

with the serotype displaying the Gro-P-modified saccharide that was the top hit from the 

microbial glycan array (Figure 3-2B). These data suggest that the relative ligand ranking from 

the array analysis can provide information about how effectively a lectin can target cells 

displaying those glycans. Moreover, the results demonstrate that hIntL-1 specifically recognizes 

structurally diverse exocyclic 1,2-diol containing glycans on the surface of bacteria.  

Human IntL-1 has been reported to bind lactoferrin (24), a protein that appears to have 

antimicrobial activity (56). These observations suggest that hIntL-1 could recruit lactoferrin to 

microbial cell surfaces for cell killing. To examine the interaction between these proteins, we 

immobilized human lactoferrin and assayed hIntL-1 binding by ELISA. As reported, we detected 

an interaction between lactoferrin and hIntL-1, but in contrast to the previous reports, in our 

assay, this interaction did not require calcium ions. The apparent affinity we measured for the 

hIntL-1 trimer is rather weak for a specific protein−protein interaction (Kd~500 nM). The 

isoelectric points (pI) of the proteins, pI~5.5 for hIntL-1 and pI~8.5 for lactoferrin, suggest the 

interaction may be mediated by bulk Coulombic interactions. We were unable to detect any 

killing of S. pneumoniae by human lactoferrin (up to 100 µg/mL) in a buffer that would be 

compatible with hIntL-1 binding the cell surface (HEPES buffered saline, pH 7.4, with 2 mM 

CaCl2). Our results were consistent with those of others who noted that under similar conditions, 
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the bactericidal activity of lactoferrin is abolished (57,58). These initial results are inconsistent 

with a central role for lactoferrin–intelectin complexes mediating microbial cell killing, and they 

suggest other functional roles for hIntL-1 should be explored.  
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Figure 3-9. hIntL-1 binding to the surface of S. pneumoniae. (A) Chemical structure of the 
capsular polysaccharides displayed on the S. pneumoniae serotypes (8, 20, 43, 70) tested. The 
Galf residues assumed to mediate hIntL-1 cell binding are shown in red and the phosphoglycerol 
moiety is shown in blue. (B) Fluorescence microscopy of hIntL-1 binding to S. pneumoniae. 
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Bacteria were treated with Strep-tagged hIntL-1 (15 µg/mL) and an anti-Strep-tag antibody 
conjugate (red). Cellular DNA was visualized with Hoechst (blue). Images are representative of  
>5 fields of view per sample. Scale bar, 5 µm. (C) Enhanced magnification of hIntL-1 binding 
the surface of serotype 20 bacteria. Right: EDTA addition abrogates hIntL-1 binding to the 
bacterial surface, supporting the role for Ca2+. Images are representative of  >5 fields of view per 
sample. Scale bar, 2 µm. 

 

 

Figure 3-10. hIntL-1 binding to the surface of S. pneumoniae monitored by flow cytometry. (A) 
Flow cytometry analysis of serotypes 8, 20, 43, and 70; data were collected consecutively with 
identical instrument settings. (B) The dependence of the hIntL-1–carbohydrate interaction on 
Ca2+ was tested by adding 10 mM EDTA and ligand selectivity was tested by adding 100 mM 
glycerol. Data are representative of two independent experiments.  

3.9 Effect of pH on hIntL-1 Binding 

The structure of hIntL-1 bound to β-Galf ligand suggested that ligand binding would be 

sensitive to pH. Specifically, we hypothesized that as the pH approaches the pKa of the 

carboxylate side chains used to coordinate the calcium ion incolvolved in ligand binding, they 
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would become protonated and ligand binding would be attenuated. Using a label-free direct 

binding experiment on a FortéBIO Octet, the effect of pH on binding to immobilized β-D-Galf 

was assayed. When the pH of the assay buffer fell below 5.5, a reduction in hIntL-1 binding was 

observed (Figure 3-11). At pH=4.5, binding was completely inhibited. We hypothesize that the 

increased apparent binding at pH=9.0 is due to protein aggregation and enhanced multivalency. 

The pH within the human lung is typically 7.3 – 7.4 (59), and the pH within the GI tract rarely 

falls below ph=6 after the stomach (60). These results suggest that the pH of the human lung and 

GI tract, where hIntL-1 is expressed and localized, is conducive to lectin binding. 

 

Figure 3-11. pH profile of hIntL-1 binding to immobilized β-Galf. Data is presented as the total 
amount of hIntL-1 bound to a FortéBIO Octet streptavidin labeled tip saturated with biotinylated 
β-Galf ligand. Data is normalized to the sample assayed at pH=7.0. Error bars represent the s. d. 
of the mean. n = 5 measurements, on a total of two independently loaded sensors. Sensor surface 
was saturated with biotinylated ligand. 

3.10 Murine IntL-1 Binding to Galf 

If the role of intelectins is to participate in defense against microbes, the recognition 

specificity of intelectins from other mammals should be preserved. We therefore produced 

murine IntL-1 (mIntL-1), which is the mouse homolog (27) of hIntL-1. When mIntL-1 was 

tested using the SPR assay used with the human homolog, its glycan recognition properties were 
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analogous: It failed to interact with β-Ribf, β-Araf, α-Rha, or β-Galp, but it did interact with β-

Galf (Figure 3-12). These data support the prospect that IntLs from different species have 

evolved to bind widely distributed 1,2-diol-containing epitopes unique to microbes. 

 

Figure 3-12. Mouse intelectin-1 binding to immobilized carbohydrates. Purified Strep-mIntL-1 
binding to immobilized carbohydrates monitored using SPR. Addition of EDTA prevents 
carbohydrate binding, supporting a role for calcium ions in carbohydrate binding. Data are 
referenced to the biotin channel. 

3.11 Discussion 

Data from glycan microarrays reveal that hIntL-1 recognizes multiple microbial glycan 

epitopes yet paradoxically can discriminate between microbial and mammalian glycans. By 

determining the structure of this X-type lectin bound to Galf, this apparent contradiction was 

resolved. The five common saccharide epitopes identified as recognition motifs (Galf, Gro-P, 

glycero-D-manno-heptose, KDO, and KO) share a common feature: a terminal acyclic 1,2-diol 
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group. The hIntL-1 X-ray structure indicates that these terminal vicinal hydroxyl groups can 

coordinate to a protein-bound calcium ion. This binding mode has similarities to that employed 

by another major class of mammalian carbohydrate-binding proteins: the C-type lectins (16). C-

Type lectins also recognize glycans through calcium ions in the binding site to which 

carbohydrate hydroxyl groups coordinate (7). In the case of C-type lectins, however, the 

hydroxyl groups employed are typically those on the pyranose ring of a mannose or fucose 

residue. The hIntL-1 binding pocket requires that any 1,2-diol motifs possess a primary hydroxyl 

group, as the aromatic substituents W288 and Y297 act as walls to preclude the binding of more 

substituted diols. These aromatic substituents presumably not only contribute to specificity but 

also to affinity. Their positioning may allow them to participate in CH−π interactions (61) which 

would enhance binding.  

Although the terminal 1,2-diol is necessary for hIntL-1 recognition, it is not sufficient. 

The lectin is unable to bind human glycans, including those with an α-Neu5Ac residue. This 

result was confusing as glycans with α-Neu5Ac residues were prevalent on the mammalian 

glycan microarray, and although many glycans in this array present a terminal 1,2 diol, none 

were bound by hIntL-1 We were unable to model methyl-α-Neu5Ac in the hIntL-1 binding site 

without incurring Coulombic repulsion or severe steric interactions. These observations suggest a 

molecular basis for hIntL-1’s ability to avoid interaction with human glycans. With a structure 

that identifies the glycan-binding site, the proposed rationale for hIntL-1’s selectivity for 

microbial glycans can be tested further.  

We anticipate our structure will also provide insight into the physiological roles of the 

intelectins. The upregulation of intelectins upon infection suggests they may function in innate 
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immunity. Although existing data from GWAS do not directly link intelectin mutations and 

increased susceptibility to infection, there are studies linking hIntL-1 to asthma (62) and Crohn’s 

disease (63). These diseases arise from defects at mucosal surfaces where intelectins are 

secreted. In relation to asthma, the amino acid variant V109D was identified with an increased 

risk (62). Our structure reveals that this residue is not centrally important for binding, but it is 

located at a monomer−monomer interface.  

We postulate that the trimeric form of hIntL-1 is important for the lectin’s function. The 

presence of three binding sites on one face of the hIntL-1 trimer (Figure 3-4A) suggested the 

protein could exploit multivalency to recognize relevant terminal 1,2 diol motifs and bind avidly 

to microbes. We therefore tested whether hIntL-1’s selectivity for glycans would be manifested 

in a proclivity to engage only those S. pneumoniae serotypes whose capsular polysaccharides 

possess hIntL-1 recognition motifs. Our finding that hIntL-1 bound to strains bearing Galf  

(serotypes 20 or 70) or Gro-P (serotype 43) but not those lacking the requisite terminal 1,2-diol 

(serotype 8) highlights the advantages of using a simple binding epitope: Human IntL is not 

restricted to binding solely one glycan building block, rather it can interact with bacterial cells 

that present glycans composed of very different components (Galf versus Gro-P).  

Because it engages a small epitope found within microbial glycans, hIntL-1 should be 

capable of recognizing a wide variety of microbes. Analysis of the twenty most common glycan 

building blocks unique to microbes indicates that half of these possess an acyclic 1,2-diol that 

could, in principle, be recognized by intelectins (Figure 3-13) (32). The potential that a given 

microbe generates glycan ligands for hIntL-1 can be inferred from genetic sequence data. For 

example, organisms bearing Galf residues harbor a glf gene (29). D-Glycerol-1-phosphate-
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modified glycans are generated using CDP-D-glycerol as an activated donor and therefore will 

encode functional homologs of the S. pneumoniae gct gene (54). Pathways that lead to the 

incorporation of heptose, KO, and KDO are known, as these residues are found in LPS (64) and 

K-antigen of Gram-negative bacteria (65). The orientation of the saccharide binding sites on a 

single face of the hIntL-1 trimer not only can enhance the avidity of cell-surface binding, it also 

provides a surface for recruitment of other immune proteins or effectors to a hIntL-1-bound 

microbe. The remarkable selectivity of hIntL-1 for microbial over human cell surface glycans 

raises the intriguing possibility that IntLs function as microbial detectors. It is possible that this 

selective microbial recognition can be harnessed to deliver cargo to microbes, to detect them, or 

to target them for destruction.  

 

Figure 3-13. Structures of the 20 most prevalent monosaccharides that are unique to bacterial 
glycans. The most common, L,D-α-heptose, is shown in the top left corner and number twenty, β-
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L-arabinose-4-N, is shown in the bottom right. This figure is derived from data in reference (32). 
Terminal acyclic 1,2-diol epitopes that could serve as ligands of hIntL-1 are highlighted with a 
red box. 
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Table 3-2.  Data Collection and Refinement Statistics (Molecular Replacement). 
 Apo-hIntL-1 Galf-bound hIntL-1 
Data collection   
Space group P 21 3 P 21 3 
Cell dimensions     
    a, b, c (Å) 118.4, 118.4, 118.4 117.9, 117.9, 117.9 
    α, β, γ  (°)  90, 90, 90 90, 90, 90 
Resolution (Å) 22.00-1.80 (1.86-1.80)a 28.59-1.60 (1.66-1.60) 
Rsym 0.119 (0.495) 0.078 (0.773) 
I / σI 19.6 (3.7) 29.4 (3.0) 
Completeness (%) 100 (100) 100 (100) 
Redundancy 11.2 (10.1) 11.1 (10.9) 

Refinement   

Resolution (Å) 22.00-1.80 (1.86-1.80) 28.59-1.60 (1.68-1.60) 
No. reflections 48784  68256 
Rwork / Rfree 0.133/ 0.164 0.155/0.180 
No. atoms   
    Protein 4551 4606 
    Ca2+ 6 6 
    Allyl-β-D-Galf - 30 
    Water 658 616 
B-factors (Å2)   
    Protein 14.0 20.2 
    Ca2+ 10.1 14.5 
    Allyl-β-D-Galf - 33.8 
    Water 26.0 32.6 
rms deviation   
    Bond lengths (Å) 0.010 0.010 
    Bond angles (°) 1.107 1.119 
Each data set was collected from one crystal. 
aValues in parentheses are for highest-resolution shell. 
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3.12 Methods 

3.12.1 Chemical Synthesis of Glycan Ligands 

Procedures for glycan synthesis are included and described in detail in the Supplementary 

Note of reference (37). 

3.12.2 Native Human Intelectin-1 Expression and Purification 

The cDNA for hIntL-1 (Accession Number: NM_017625) was obtained from Open 

Biosystems Clone LIFESEQ2924416 as a glycerol stock (GE Healthcare). The full coding 

sequence, residues 1-313, was amplified using PCR with the forward primer 5’-

CGTGGGATCCTGGAGGGAGGGAGTGAAGGAGC-3’ and the reverse primer 5’-

GCCAGCTCGAGACCTTGGGATCTCATGGTTGGGAGG-3’. The primers installed sites for 

the restriction endonucleases BamHI and XhoI, respectively. The doubly digested PCR fragment 

encoding hIntL-1 was ligated into a doubly digested pcDNA4/myc-HisA vector backbone (Life 

Technologies). Correct insertion was confirmed with DNA sequencing (UW-Madison 

Biotechnology Center).  

The hIntL-1 gene was expressed via transient transfection of suspension adapted HEK 

293T cells obtained from the American Tissue Culture Collection (ATCC). Cells were 

transfected in Opti-mem I Reduced Serum Medium (Life Technologies) at ~2E6 cells/mL using 

Lipofectamine 2000 (Life Technologies), according to the manufacturers protocol. Six hours 

post transfection, the culture medium was exchanged to FreeStyle F17 expression medium (Life 

Technologies) supplemented with 50 U/mL penicillin-streptomycin, 4 mM L-glutamine, 1x 

nonessential amino acids, 0.1% fetal bovine serum (FBS) and 0.1% Pluronic F-68 (Life 

Technologies). Cells expressing hIntL-1 were cultured for up to 6 days, or until viability 
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decreased below 60%, at which point the conditioned expression medium was harvested by 

centrifugation and sterile filtration.  

Conditioned medium was adjusted to pH 7.4 by slow addition of a 0.1 M solution of 

sodium hydroxide (NaOH), and calcium chloride (CaCl2) was added from a 1 M stock solution 

to achieve a final concentration of 10 mM. Recombinant hIntL-1 was purified by binding to a β-

Galf column generated from reaction of a β-Galf glycoside bearing an anomeric linker and an 

amine to UltraLink Biosupport (Piere). The resulting resin was washed with a solution of 20 mM 

HEPES (7.4), 150 mM sodium chloride (NaCl), and 10 mM CaCl2. Human IntL-1 was eluted 

with a solution of 20 mM HEPES (7.4), 150 mM NaCl, and 10 mM ethylenediaminetetraacetic 

acid (EDTA), and the protein was concentrated using a 10,000 molecular weight cut-off 

(MWCO) Amicon Ultra Centrifugal Filter. The buffer was exchanged to 20 mM HEPES (7.4), 

150 mM NaCl, and 1 mM EDTA. Protein purity was assessed by SDS-PAGE electrophoresis 

and Coomassie blue staining, and was often >95%. The concentration of hIntL-1 was determined 

using absorbance at 280 nm with a calculated ε=237,400 cm-1M-1 for the trimer, and an estimated 

trimer molecular mass of 101,400 Da (to account for glycosylation). Typical yields from a 30 

mL transfection were 400 µg. 

3.12.3 Expression and Purification of Strep-tag® II hIntL-1  

An N-terminal Strep-tag® II was cloned into the hItnL-1::pcDNA4 vector using site-

directed mutagenesis and a primer set comprised of 5’-

ACCACCAGAGGATGGAGTACAGATTGGAGCCATCCGCAGTTTGAAAAGTCTACAGA

TGAGGCTAATACTTACTTCAAGGA-3’ and its reverse complement. The correct insertion 

was confirmed with DNA sequencing. Strep-hIntL-1 was expressed identically to hIntL-1. For 
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purification, conditioned Strep-hIntL-1 medium was adjusted to pH=7.4 using NaOH, avidin was 

added per the IBA GmbH protocol (IBA GmbH, cat. no. 2-0205-050), CaCl2 was added to 10 

mM, and the solution was cleared with centrifugation (15,000g for 15 minutes). Protein was 

captured onto 2 mL of Strep-Tactin Superflow resin (IBA GmbH, cat. no. 2-1206-002). The 

resulting resin was washed with a solution of 20 mM HEPES (7.4), 150 mM NaCl, and 10 mM 

CaCl2 and then 20 mM HEPES (7.4), 150 mM NaCl, and 1 mM EDTA. The protein was eluted 

with 5 mM d-desthiobiotin (Sigma) in 20 mM HEPES (7.4), 150 mM NaCl, and 1 mM EDTA 

and concentrated using a 10,000 MWCO Amicon Ultra Centrifugal Filter. The concentration of 

Strep-hIntL-1 was determined using absorbance at 280 nm with a calculated ε=237,400 cm-1M-1 

for the trimer, and an estimated trimer molecular mass of 101,400 Da. Typical yields were 

similar to what was measured with untagged hIntL-1. 

For protein X-ray crystallography, Strep-hIntL-1 was purified following culture medium 

dialysis against 20 mM BIS-TRIS (6.7), 150 mM NaCl, and 1 mM EDTA. The pH of the culture 

medium was adjusted to 6.7, avidin was added per the IBA GmbH protocol, CaCl2 was added to 

10 mM and the solution was cleared with centrifugation. Protein was purified by capture onto 

Strep-Tactin Superflow resin. Resin was washed with 20 mM BIS-TRIS (6.7), 150 mM NaCl, 10 

mM CaCl2 and then 20 mM BIS-TRIS (6.7), 150 mM NaCl, 0.5 mM EDTA. Protein was eluted 

with 5 mM D-desthiobiotin (Sigma) in 20 mM BIS-TRIS (6.7), 150 mM NaCl, 0.5 mM EDTA 

and concentrated using a 10,000 MWCO Amicon Ultra Centrifugal Filter.  

3.12.4 hIntL-1 Carbohydrate Binding ELISA-like Assay 

To fabricate carbohydrate-displaying surfaces, 0.5 µg of streptavidin (Prozyme, cat. no. 

SA20) was adsorbed onto a Maxisorp (Nunc) flat bottom 96 well plate in phosphate-buffered 
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saline (PBS). Wells were washed with PBS and then coated with 5 µM of carbohydrate−biotin 

ligand in PBS for 1 hour at 22 °C. Wells were blocked with bovine serum albumin (BSA) in 

ELISA buffer (20 mM HEPES (7.4), 150 mM NaCl, 10 mM CaCl2, and 0.1% Tween-20). 

Samples containing hIntL-1 were prepared by serial dilution into ELISA buffer + 0.1% bovine 

serum albumin (BSA) and added to wells for 2 hours at 22 °C. Wells were washed four times 

with ELISA buffer. Bound hIntL-1 was detected using 0.75 µg/mL of a sheep polyclonal IgG 

hIntL-1 antibody (R&D Systems, cat. no. AF4254) in ELISA buffer + 0.1% BSA for 2 hours at 

22 °C. This primary antibody has been validated by the company for detecting intelectin by 

Western blot, immunohistochemistry, and direct ELISA. Wells were washed with ELISA buffer. 

A donkey anti-sheep IgG HRP conjugate (Jackson ImmunoResearch Laboratories) was added at 

a 1:5,000 dilution in ELISA buffer + 0.1% BSA for 1 hour at 22 °C. When Strep-hIntL-1 was 

assayed, StrepMAB-Classic HRP conjugate (IBA GmbH, cat. no. 2-1509-001) was used to 

specifically recognize the Strep-tag® II of bound hIntL-1. StrepMAB-Classic HRP conjugate was 

diluted 1:10,000 in ELISA buffer + 0.1% BSA and incubated for 2 hours at 22 °C. Wells were 

washed. Human IntL-1 was detected colorimetrically with addition of 1-Step Ultra TMB-ELISA 

(Pierce). Once sufficient signal was achieved (typically < 2 minutes), the reaction was quenched 

with addition of equal volume of 2 M sulphuric acid (H2SO4). Plates were read at 450 nm on an 

ELx800 plate reader (Bio-Tek). When testing the calcium ion dependency of hIntL-1, 1 mM 

EDTA replaced 10 mM CaCl2 in all steps. Data were analyzed on Prism6 (GraphPad). Data were 

fit to the one site binding equation. 

3.12.5 SPR Analysis  
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Analysis of intelectins using SPR was conducted on a ProteOn XPR36 (Bio-Rad) at the 

University of Wisconsin−Madison Department of Biochemistry Biophysics Instrumentation 

Facility (BIF). To measure intelectin binding, ProteOn NLC sensor chips (NeutrAvidin coated 

sensor chip) (Bio-Rad, cat. no. 176-5021) were used to capture the biotinylated carbohydrate 

ligand. All experiments presented here were conducted at surface saturated levels of ligand, ~200 

response units (RU). In all experiments, captured biotin was used in flow cell one as a control. 

Samples containing purified intelectin were prepared by serial dilution into intelectin SPR 

running buffer (20 mM HEPES (7.4), 150 mM NaCl, 1 mM CaCl2, and 0.005 % Tween-20). 

Surfaces were regenerated with short injections of solutions of 10 mM hydrochloric acid (HCl). 

Data were referenced using either the interspots or the biotin reference channel, and processed 

using the Bio-Rad ProteOn software package.  

3.12.6 Construction of the Furanoside Glycan Array 

The microarray of furanoside containing glycans was printed as previously 

described(66,67).  Briefly, the amine functionalized glycans shown in Fig. s6A were dissolved in 

100 mM sodium phosphate (8.0) and printed as 14 arrays on N-hydroxysuccinimidyl (NHS) 

ester-activated slides (Shott Nexterion, Louisville, KY). Arrays were printed in replicates of n=4 

at different glycan concentrations (as indicated in Fig. s6B) using a Piezorray printer (Perkin 

Elmer, Waltham, MA) that delivered 0.33 nL per spot.  The 2-amino(N-aminoethyl) benzamine 

(AEAB) derivatives of lacto-N-neotetraose (LNnT) and asialo, galactosylated bi-antennary N-

linked glycan (NA2) were printed as controls to confirm glycan immobilization. After printing, 

covalent coupling of glycans to the surface was facilitated by incubation at 55 °C in an 

atmosphere of >80% humidity for 1 hour.  Slides were dried in a desiccator overnight and 
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blocked using a solution of 50 mM ethanolamine in 50 mM borate buffer (8.0).  Prior to 

interrogating with glycan binding proteins (GBPs), the arrays are rehydrated in binding buffer. 

3.12.7 Assay of hIntL-1 on Furanoside and CFG Mammalian Glycan Array 

GBPs at various concentrations were applied to separate furanoside arrays in 70 µL of 

binding buffer (20 mM HEPES (7.4), 150 mM NaCl, 1 mM EDTA, 10 mM CaCl2, 1% BSA and 

0.05% Tween-20) in the wells formed on the slide with a silicon grid (14 wells per slide). After 

incubation for 1 hr at RT, the slides were washed with wash buffer (20 mM HEPES (7.4), 150 

mM NaCl, 1 mM EDTA and 10 mM CaCl2, 0.05% Tween-20). The biotinylated lectins 

Erythrina cristagalli lectin (ECL) and Ricinus communis agglutinin I lectin (RCA-I) were 

detected using Alexa Fluor® 488-labeled streptavidin (10 µg/ml) in binding buffer (Fig. s6C and 

D). hIntL-1 was detected with a sheep polyclonal IgG antibody specific for hIntL-1 (5 µg/ml) 

(R&D Systems) and an Alexa Fluor® 488-labeled donkey anti-sheep IgG secondary antibody (5 

µg/ml) (Life Technologies). Bound protein was detected using a ProScanArray Scanner (Perkin 

Elmer) equipped with 4 lasers covering an excitation range from 488 to 633 nm. The data from 

the furanoside glycan array were analyzed with the ScanArray Express software (Perkin Elmer) 

as the average of the 4 replicates.   

For the analysis of the CFG glycan array(36), hIntL-1 was applied in 70 µl at a 

concentration of 50 and 200 µg/ml in binding buffer under a coverslip to distribute the solution 

evenly over the large array of 610 glycans printed in replicates of n=6 (Array v5.1).  After 

washing and scanning, the data from the CFG glycan microarray were analyzed using ImaGene 

software (BioDiscovery, Hawthorne, CA) as the average of 4 values after removing the high and 

low values of the 6 replicates. With both the furanoside and mammalian glycan array, the images 
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were converted to Excel files, and the data are reported as histograms of average Relative 

Fluorescence Units (RFU) versus print identification number that identified the glycan targets. 

Figures were made using Prism6 (GraphPad) or Excel (Microsoft).  

3.12.8 Assay of hIntL-1 on the Bacterial Glycan Array 

Strep-hIntL-1 was used to interrogate the MGMv2. Construction of the MGMv2 is 

previously described (39). Briefly, bacterial polysaccharide samples were dissolved and diluted 

to 0.5 mg/mL in printing buffer (150 mM sodium phosphate buffer (8.4) + 0.005% Tween-20). 

Samples were immobilized on NHS-activated glass slides (SlideH, Schott/Nexterion) using a 

MicroGrid II (Digilab) contact microarray printer equipped with SMP-4B printing pins 

(Telechem). Six replicates of each bacterial glycan sample were printed. Covalent coupling of 

glycans to the surface was facilitated by incubation for 1 hour post-print at 100% relative 

humidity. The remaining reactive NHS-moieties were quenched using a blocking solution (50 

mM ethanolamine in 50 mM borate buffer (9.2)). Blocked slides were stored at -20 °C until 

assays were performed. 

To interrogate the MGMv2, Strep-hIntL-1 was diluted to 50 µg/mL in binding buffer (20 

mM Tris-HCl (7.4), 150 mM NaCl, 2 mM CaCl2, 2 mM magnesium chloride (MgCl2) 1% BSA, 

and 0.05% Tween-20) and applied directly to the array surface for 1 hour. Following incubation, 

the array was washed by dipping into binding buffer four times. The Strep-tag® II on bound 

hIntL-1 was detected using StrepMAB-Classic Chromeo647 nm (10 µg /mL, IBA GmbH 

Lifesciences) diluted in binding buffer applied directly to the array surface and allowed to 

incubate for 1 hour. The array was washed in binding buffer (4 dips), binding buffer minus BSA 

and Tween-20 (4 dips) and de-ionized water (4 dips). Finally, the array was dried by 
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centrifugation and scanned. Interrogated arrays were scanned for Chromeo647 signal using a 

ProScanArray Express scanner (Perkin Elmer) and resultant images were processed to extract 

signal data using Imagene (v6.0, Biodiscovery). Signal data was calculated as the average of 4 

values after removing the high and low values of the 6 replicates. Data were plotted using Excel 

(Microsoft) as average RFU versus print identification number. Figures were made using Prism6 

(GraphPad). 

3.12.9 Protein X-ray Crystallography  

The Strep-hIntL-1 protein that was purified using 20 mM BIS-TRIS (6.7) buffers, was 

concentrated to 1.5 mg/mL, 1 M CaCl2 was added to a final concentration of 10 mM, and 

crystallization (hanging-drop vapor-diffusion) was achieved by mixing 1 µL of the protein 

solution and 1 µL of well solution (100 mM BIS-TRIS (6.0) and 25% PEG 3350). Crystals grew 

to full size in two weeks. Protein crystals of Apo-hIntL-1 were cryoprotected via transfer to well 

solution supplemented to a total concentration of 35% PEG 3350 for one minute and then 

vitrified in liquid nitrogen. The allyl-β-Galf-hIntL-1 complex was formed by soaking apo-hIntL-

1 crystals in cryoprotection solution supplemented with 50 mM allyl-β-D-galactofuranose for two 

weeks. 

Single crystal X-ray diffraction experiments were performed at beamline 21-ID-D (Life 

Sciences Collaborative Access Team, LS-CAT), Advanced Photon Source, Argonne National 

Laboratory. The wavelength for data collection was 0.97924 Å for the Apo-hIntL-1 structure and 

1.00394 for Galf-Bound hIntL-1. Integration, scaling, and merging were performed with 

HKL2000 (68). The structure was solved using the PHENIX suite(69). The Xenopus laevis 

intelectin structure recently solved in our lab was used as a search model to determine the 
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structure of apo-hIntL-1 by molecular replacement using Phaser (70). Because the apo-hIntL-1 

and β-Galf−bound hIntL-1 data are isomorphous, the structure of β-Galf−bound hIntL-1 was 

solved by a difference Fourier method using apo-hIntL-1 as a starting model for rigid-body 

refinement with phenix.refine (71). The chemical restraint for β-Galf was generated by 

PRODRG(72). Model adjustment and refinement were performed in Coot and phenix.refine, 

respectively (Supplemental Table 1) (73). The model was validated using MolProbity(74). 

Crystal structure figures were generated with PyMOL (http://www.pymol.org). 

3.12.10 hIntL-1 Binding to Streptococcus pneumoniae 

Streptococcus pneumoniae (Klein) Chester serotype 8 (ATCC® 6308™), 20 (ATCC® 

6320™), 43 (ATCC® 10343™) and 70 (ATCC® 10370™) were obtained from the ATCC. The 

structure of the capsular polysaccharide from each of these serotypes has been previously 

determined(54). Cells were revived in trypic soy broth containing 5% defibrinated sheep blood. 

Cells were grown on plates of trypic soy agar containing 5% defibrinated sheep or in suspension 

in Luria Broth (LB). Cells were grown at 37 °C supplemented with 5% carbon dioxide gas. 

During liquid culture, cells were shaken at 100 RPM. To analyze hIntL-1 binding to the bacterial 

cell surface, cells were harvested by centrifugation, washed with PBS and fixed in 1% 

formaldehyde in PBS for 30 minutes on ice. Cells were stained with 15 µg/mL Strep-hIntL-1 

with a 1:250 dilution of StrepMAB-Classic Oyster 645 conjugate (IBA GmbH, cat. no. 2-1555-

050) in 20 mM HEPES (7.4), 150 mM NaCl, 10 mM CaCl2, 0.1% BSA and 0.05% Tween-20 for 

2 hours at 4 °C. To test the calcium ion dependency of binding, 20 mM HEPES (7.4), 150 mM 

NaCl, 10 mM EDTA, 0.1% BSA and 0.05% Tween-20 was used as the buffer. To assay for 

competitive inhibition by soluble glycerol, 20 mM HEPES (7.4), 150 mM NaCl, 10 mM CaCl2, 
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100 mM glycerol, 0.1% BSA and 0.05% Tween-20 was used as the buffer. Cells were washed 

with 20 mM HEPES (7.4), 150 mM NaCl, 10 mM CaCl2, 0.1% BSA and 0.05% Tween-20, 

aggregates were removed with a flow cytometry cell-strainer cap (Falcon), and propidium iodide 

(Life Technologies) was added to a 1:500 dilution. Cells were analyzed on a BD FACSCalibur 

(Becton, Dickinson and Company) at the University of Wisconsin−Madison Carbone Canter 

Center Flow Cytometry Laboratory. Propidium iodide was used to differentiate fixed S. 

pneumoniae cells from debris. Data was analyzed using FlowJo (FlowJo, LLC, Ashland, OR). 

For analysis by microscopy, cell aliquots were taken directly from the flow cytometry 

samples prior to propidium iodide staining. Samples were subsequently stained with Hoechst 

33342 (Life Technologies). Each sample was spotted onto a glass bottom microwell dish 

(MatTek corporation) and covered with a 1% (w/v) agarose pads prepared in a matched buffer. 

Images were collected at room temperature using a Nikon A1 laser scanning confocal 

microscope (Nikon Instruments Inc.). Images were acquired using a Nikon plan apo 100/1.4 oil 

objective using a 1.2 AU pinhole diameter and NIS-elements C software (Nikon Instruments 

Inc.). Laser setting were determined by imaging the brightest control sample, serotype 43 treated 

with 15 µg/mL Strep-hIntL-1 and a 1:250 dilution of StrepMAB-Classic Oyster 645 conjugate in 

calcium buffer, to prevent pixel oversaturation. The pinhole diameter, offset, PMT gain, and 

laser power were then held constant for each prepared sample. Each image was taken at the Z-

plane that provided maximal signal for the given section. For Hoechst 33258, illumination was 

performed using a 405 nm laser and emission was collected between 425 and 475 nm. For 

StrepMAB-Classic Oyster 645 conjugate, illumination was performed using a 638 nm laser and 

emission was collected between 663 and 738 nm. Images were prepared using the open source 
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Fiji distribution of ImageJ, brightness and contrast were adjusted in the control sample (serotype 

43 treated with 15 µg/mL Strep-hIntL-1 with a 1:250 dilution of StrepMAB-Classic Oyster 645 

conjugate in calcium buffer) and propagated to all selected sample images for comparison. 

Images were then converted to an RGB format to preserve normalization and then assembled 

into panels.  

3.12.11 pH Profile of hIntL-1 Ligand Binding 

A FortéBIO Octet RED96 instrument was used to measure hIntL-1 binding to a biotin− 

β-Galf immobilized on a streptavidin surface (37). Streptavidin coated biosensors (Pall Life 

Sciences; cat. no., 18-0519) were coated with β-Galf by incubation in 200 µL PBS with 1 µM 

biotin:β-Galf for 180 seconds. This was shown to result in a surface nearly saturated with ligand. 

To assay the effect of pH on hIntL-1 binding, 5 µg/mL of hIntL-1 was added to a solution of 150 

mM NaCl, 10 mM CaCl2, 0.1 % BSA, and 0.05 % Tween-20; the buffer componant was 20 mM 

acetate for pH 4.0 – 5.5, 20 mM MES for pH=6.0, 20 mM HEPES for pH 7.0 and 8.0, and 20 

mM glycine for pH=9.0. Each pH was measured in one well of the eight wells available, per run. 

hIntL-1 binding to the surface was monitored for 400 seconds and dissociation was monitored 

for 300 seconds. After each binding event, and before the first for a sensor, the surface was 

regenerated using six, 10 second exposures to 10 mM HCl and then PBS, iteratively. The first set 

of sensors was assayed twice. An independent set of sensors were generated and subjected to 

three binding experiments. The amount of hIntL-1 bound to the surface was determined by 

quantifying the signal of each tip after the 400 second association step. Data from each pH were 

normalized to the value obtained at pH=7.0, within each run. Data was graphed using GraphPad 

Prism 6. 
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3.12.12 Expression of Murine IntL-1 

The cDNA for mIntL-1 (Accession Number: O88310) was obtained from Open 

Biosystems Clone 1095883 as a glycerol stock (GE Healthcare). The full coding sequence, 

residues 1-313, was amplified using PCR with 3 primers mIntL-1_a 5’-

GCGCGGATCCATGACCCAACTGGGATTCCTGCTGTTTATCATGGTTGCTACCAGAGG

TTGCAGT-3’ mIntL-1_b 5’-

ATCATGGTTGCTACCAGAGGTTGCAGTGCAGCTGAATGGAGCCATCCGCAGTTTGAA

AAGGCTGAAGAGAACCTGGACACCAACAGG-3’ and mIntL-1_c 5’-

TACCAAGCTTTCATTAGCGATAAAACAGAAGCACAGCTGCTTCAG -3’. The gene was 

first amplified with mItL-1_b and mIntL-1_c, and then amplified with mIntL-1_a and mIntL-

1_b. The resulting PCR product was digested with BamHI and HindIII and ligated into a 

similarly digested pFastBac1 vector. The N-terminus of the resulting protein product is predicted 

to be MTQLGFLLFIMVATRGCSAAEWSHPQFEKAEEN; where the underlined amino acids 

are the predicted secretion signal peptide and the bold amino acids denote the Strep-tag® II 

incorporated for purification. Following sequence verification, the vector was subjected to 

recombination into a baculovirus according to the manufacturers protocol (Bac-to-Bac 

Baculovirus Expression System, Life Technologies). The resulting baculovirus genomic DNA 

was transfected (Insect GeneJuice, Novagen) into Sf21 insect cells to produce the first generation 

(P1) of recombinant baculovirus. Amplified baculovirus (P2) was produced using P1 to infect 

suspension Sf21 cells grown in SF900-II-SFM (Life Technologies). Recombinant P2 baculovirus 

was isolated by centrifugation of the culture, and sterile filtration of the conditioned medium. 

Fetal bovine serum was added to 2% to stabilize the baculovirus. 
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Murine IntL-1 protein was produced as a secreted protein using High Five cells (Life 

Technologies), a derivative of Trichoplusia ni, cultured in Express Five SFM (Life 

Technologies) supplemented with 1x antibiotic-antimycotic, 10 µg/mL gentamicin, 4 mM 

glutamine. The cells were grown to ~2E6 cells/mL, and then infected with 1 µL baculovirus (P2) 

per 1E6 viable cells. After four days, the culture medium was harvested via centrifugation and 

filtration (0.22 µM). Conditioned medium was dialyzed extensively against 20mM BIS-TRIS 

(6.5), 150 mM NaCl, and 500 µM EDTA and then against 50 mM TRIS (7.5), 150 mM NaCl, 

and 500 uM EDTA. The medium was then slowly adjusted to pH=7.5 with addition of a solution 

of 0.1 M NaOH, CaCl2 was added to 10 mM, and avidin was added per the IBA GmbH protocol 

(IBA GmbH, cat. no. 2-0205-050) to absorb excess biotin. The solution was cleared by 

centrifugation (20000g for 20 minutes).  

Protein was purified by capture onto Strep-Tactin Superflow resin. The column was 

washed with 20 mM TRIS (7.4), 150 mM NaCl, and 10 mM CaCl2 and then 20 mM TRIS (7.4), 

150 mM NaCl, 1 mM EDTA. Protein was eluted with 5 mM d-desthiobiotin (Sigma) dissolved 

in 20 mM TRIS (7.4), 150 mM NaCl, 0.5 mM EDTA and concentrated using a 10,000 MWCO 

Amicon Ultra Centrifugal Filter. Buffer was exchanged to 20 mM TRIS (7.4), 150 mM NaCl, 0.5 

mM EDTA. Protein purity was assessed by SDS-PAGE electrophoresis and Coomassie blue 

staining, and was >95 %. The concentration of mIntL-1 was determined using absorbance at 280 

nm with a calculated ε=75,330 cm-1M-1 for a monomer, and an estimated monomer molecular 

mass of 33,951 Da. Typical yields from 500 mL of conditioned medium were 40 µg. 
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3.13 Accession Codes 
Coordinates and structure factors have been deposited in the PDB under accession codes 

4WMQ (apo−hIntL-1) and 4WMY (Galf-bound hIntL-1). 

3.14 Contributions 

 Kittikhun Wangkanont determined the crystallization conditions for hIntL-1 and solved 

the crystal structures reported here. In doing this, K.W. also solved the structure of a X. laevis 

intelectin. K.W. also modeled the 1,2-diol containing ligands into the hIntL-1 crystal structure. 

The carbohydrate ligands used in this study were synthesized and characterized by Rebecca A. 

Splain and Matthew B. Kraft. The mammalian glycan microarray was performed by Xuezheng 

Song, David F. Smith, and Richard D. Cummings at the Glycomics Center at Emory University. 

The microbial glycan microarray was performed by Ryan McBride and James C. Paulson at the 

Scripps Research Institute. Microscopy images were obtained by Heather L. Hodges.   
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Conserved Structure and Ligand Binding Mechanism Between Human 
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4.1 Abstract 

Intelectins (X-type lectins) are broadly distributed throughout chordates, and they have 

been implicated in innate immunity. Xenopus laevis embryonic epidermal lectin (XEEL), an 

intelectin secreted into environmental water by the X. laevis embryo, is postulated to function in 

defense against microbes. XEEL is homologous (64% identical) to hIntL-1, which is also 

implicated in innate immune defense. We previously demonstrated that hIntL-1 binds microbial 

glycans bearing exocyclic vicinal diol groups. It is unknown whether XEEL has the same ligand 

specificity. Also unclear is whether XEEL and hIntL-1 have similar quaternary structures, as 

XEEL lacks the corresponding cysteine residues in hIntL-1 that stabilize a disulfide-linked 

trimer. These observations prompted us to further characterize XEEL. We found that hIntL-1 and 

XEEL have similar structural features. Even without the corresponding intermolecular disulfide 

bonds present in hIntL-1, the CRD of XEEL (XEELCRD) forms a stable trimer in solution. The 

structure of XEELCRD in complex with Gro-P, a residue present in microbe-specific glycans, 

indicated the exocyclic vicinal diols coordinate to a protein–bound calcium ion. This ligand-

binding mode is conserved between XEEL and hIntL-1. These data support a role for XEEL in 

innate immunity, and they highlight structural and functional conservation of X-type lectins 

among chordates. 
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4.2 Introduction 

The carbohydrate coats of cells can be used by the immune system to distinguish self 

from non-self (1). Lectins can play a role in this discrimination because they have the ability to 

distinguish among carbohydrate residues. Several families of lectins, including the C-type lectins 

and ficolins, are classified as immune lectins. Their occurrence throughout the animal kingdom 

suggests carbohydrate recognition is critical in immunity (2,3). Recently, intelectins, also known 

as X-type lectins (4), have been proposed to function in immunity (5). This suggestion is 

intriguing, but little is known about the structure or function of this class of lectins.  

Intelectins have been identified in diverse species from tunicates to humans (6). The 

limited functional studies conducted to date suggest a role in host defense. For example, tunicate 

intelectin can serve as an opsonin for phagocytosis by hemocytes (7). Amphioxus intelectin can 

agglutinate bacteria in vitro, suggesting it could sequester them from the organism (8,9). In some 

species, intelectin expression levels increase upon infection. Specifically, in rainbow trout and 

zebrafish, intelectins are upregulated upon microbial infection (10-12). Sheep and mice increase 

intelectin production upon infection with intestinal parasitic nematodes (13-15). The 

upregulation of intelectins upon exposure to microbes supports the hypothesis that these proteins 

function in animal immune defense.  

The first intelectin was discovered in Xenopus laevis (16-18). At least five X. laevis 

intelectins have been subsequently described. X. laevis cortical granule lectins (XCGL-1 and 

XCGL-1) are found in oocytes and developing embryos (19), where they facilitate the formation 

of the fertilization envelope to block polyspermy (16,17). X. laevis serum lectins (XSL-1 and 

XSL-2) are transcribed in response to LPS exposure (20,21). X. laevis embryonic epidermal 
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lectin (XEEL) is secreted during various stages of development, but its level is highest around 

hatching (22,23). It is produced by the goblet cells of the larval epidermis, which has properties 

akin to those of the human mucosal epithelia (24). Human goblet cells are critical for preserving 

the epithelial barrier in mucosal tissue and therefore perform a critical role in microbial defense. 

These parallels suggest XEEL may function in innate immunity in Xenopus. 

Humans encode two intelectins that have similarities to XEEL: hIntL-1 and hIntL-2 (25). 

These human lectins are expressed at mucosal barriers, including the lung and the intestine. The 

recognition properties of hIntL-1 are consistent with a role for this lectin in innate immunity. 

Specifically, it was suggested that hIntL-1 recognizes furanose carbohydrate residues, including 

Galf and ribose (5). Our studies of hIntl-1 indicate that it does not bind ribose, but it does interact 

with β-Galf residues (26) and is thus not a general furanose-binding lectin. Analysis using glycan 

microarrays revealed that hIntL-1 does not bind any of the tested human glycans, but rather binds 

diverse microbial glycan epitopes. Specifically, hIntL-1 can interact with β-Galf, GroP, heptoses, 

KO, and KDO (26). None of these epitopes are present on human glycans. In accord with its 

glycan specificity, hIntL-1 binds microbial cell surfaces, supporting a role for hIntL-1 in the 

recognition of intact microbes (26). Given these recognition properties and the presence of 

intelectins in diverse species, an intriguing possibility is that the intelectins serve as microbial 

detectors.  

XEEL and other intelectins share high sequence similarity, including a putative 

conserved FBD. Although this domain is also found in ficolins (6), it comprises a mere 45 of the 

300 amino acid residues in intelectins. Experiments suggested that intelectin carbohydrate 

binding is calcium ion-dependent. C-type lectins typically use calcium ions to bind their 
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carbohydrate ligands, but the intelectins are not members of the C-type lectin family (16,25,27). 

We recently used protein X-ray crystallography to determine the structure of apo-hIntL-1 and 

hIntL-1 in complex with a β-Galf glycoside (26). Our results indicate that hIntL-1 binds the 

exocyclic vicinal diol present in β-Galf through direct calcium ion coordination. This exocyclic 

vicinal diol is the common feature of hIntL-1 ligands. Still, whether all hIntL-1 ligands bind 

similarly, and whether intelectins from different species use a similar recognition mode was not 

known. In addition, whether different intelectins adopt different quaternary states is unclear. 

Because XEEL is secreted into environmental water, we hypothesized that this protein is stable 

and therefore would be conducive to crystallographic studies. 

Here, we describe the biophysical properties and three-dimensional structure of the CRD 

of XEEL (XEELCRD) with and without a bound GroP ligand. The structure of the complex of 

XEELCRD and GroP has striking similarities to that of hIntL-1 bound to β-Galf. The mechanism 

of ligand recognition, direct calcium ion coordination, is conserved. Though it is missing the 

intermolecular disulfide bonds present in hIntL-1, the XEELCRD is trimeric in solution. In 

addition to highlighting that hIntL-1 and XEEL have a conserved structure and ligand-binding 

mechanism, the XEELCRD structure provides the means to identify and compare functional 

residues across species. We anticipate that the data will be useful as research into the ligand 

specificity and biological functions of intelectins expands. 

4.3 Expression and Purification of XEEL 

 During our attempt to solve the protein crystal structure of hIntL-1 (Chapter 3) (26), the 

dearth of previously determined structures with a similar architecture became apparent because 

of difficulty in phasing crystal diffraction data collected from a hIntL-1 crystal using molecular 
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replacement. In an attempt to circumvent this problem, we began biochemically exploring the 

XEEL lectin from X. laevis. For XEEL, we employed an insect cell expression system, both 

because of its ability to yield the large quantities of protein needed for biophysical 

characterization, but also because it can be used to incorporate L-SeMet into the protein for 

crystallographic structure determination. The expression construct encoded full-length XEEL 

with an N-terminal Strep-tag II® purification tag sequence linked to the predicted signal peptide 

(28). Cleavage of the signal peptide should yield XEEL with a two amino acid linker followed 

by an eight amino acid Strep-tag II at the N-terminus. Secreted XEEL was expressed robustly in 

insects cells using both full culture medium, and methione dropout medium supplemented with 

SeMet every 24 hours.  

 During our attempts to purify XEEL, several important results led to the ultimate success 

of XEEL purification. The first was that a dialysis step was required to remove a small molecule 

precipitate from the conditioned culture medium that was interfering with the purification 

protocol. We believe the culprit was L-glutamine. During the dialysis step, we observed a 

significant amount of precipitation when the dialysis buffer was raised to a pH greater than 7.0. 

SDS-PAGE analysis revealed that a substantial portion of this precipitate was XEEL protein. 

When we attempted to purify XEEL at a pH greater than 7.0, a similar problem with 

precipitation was observed. This resulted in a low yield of soluble protein for biochemical 

experimentation. This two results prompted us to attempt the entire dialysis and purification at an 

acidic pH, 6.7. At pH = 6.7 there was notably less precipitate, and a large amount of protein 

could be measured in the elution from Strep-Tactin® purification resin (Figure 4-1A) (29). When 

the elution was cooled and concentrated via centrifugation, large sheet-like crystals formed 
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(Figure 4-1B). These crystals increase in size and quantity during incubation of the concentrated 

protein solution. The crystallized XEEL was collected and washed with buffer to yield protein > 

95 % pure and an apparent molecular weight under reducing conditions of ~35 kDa by SDS-

PAGE. Fortuitously, these crystals could be redissolved with the addition of calcium chloride. 

Both the native and SeMet labeled protein behaved this way. This finding was instrumental to 

the success of our intelectin project.  

Analysis of recrystallized XEEL by mass spectrometry indicated a truncation of at least 

30 N-terminal residues had occurred. N-terminal amino acid sequencing revealed secondary 

proteolysis yielded a protein product corresponding to residues 54 to 342 of XEEL, XEELCRD. 

The XEELCRD lacks the Strep-tag II purification tag, yet the protein could be purified using a 

Strep-tactin resin. We postulate that the lectin has modest affinity for agarose resin and was 

eluted by the EDTA included in the elution buffer.  
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Figure 4-1. Purification of XEEL. (A) SDS-PAGE analysis of a typical XEEL purification 
performed at pH = 6.7. Elution from the column yields one major contaminant that can be 
removed with XEEL recrystallization and washing, yielding a protein > 95 % pure. M denotes 
protein molecular weight marker; NR denotes the sample was processed in the absence of 
reducing agents. (B) Image of the XEEL crystals that form during purification and concentration. 
Image was acquired at 5x magnification. 

4.4 Three-dimensional Structure of XEELCRD 

To analyze the ligand-binding site of XEEL and to compare the oligomeric state of 

XEELCRD to that of hIntL-1, we used X-ray crystallography to determine the structure of 

XEELCRD. For phasing purposes, we produced SeMet-labeled XEELCRD. MS analysis indicated 

that Se-Met was substituted at all seven methionine residues. Native and SeMet-labeled 

XEELCRD crystallized under similar conditions. The structure of SeMet-XEEL was solved by Se-

SAD (with 67.5% solvent content) and refined to 2.3 Å resolution (Table 4-1). The six 

molecules in each asymmetric unit form two trimers (Figure 4-2A), related to one another by a 
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pseudotranslation vector of 55.6 Å approximately parallel to the b axis. While the C-terminus is 

clearly resolved in the electron density, the first resolvable residue on the N-terminus is G66.  

The trimeric carbohydrate recognition domains of XEEL and hIntL-1 are highly related, each 

possesses a globular subunit that does not fall into a well-known structural family. Both have a 

fibrinogen-like lobe that contains a split and twisted 7-stranded β-sheet. The intelectin-specific 

region is characterized by a large fraction of random coil and a 3-stranded curved β-sheet. The 

domains are encircled by 12 short solvent-exposed α-helical stretches (Figure 4-2A).  

Three well-ordered calcium ions are a defining feature of the intelectin-specific region of 

XEELCRD. Two calcium ions are buried deep in the protein core and are presumed to play a 

structural role (Figure 4-2B). The structural calcium ion closer to the protein surface is 

heptacoordinated. Calcium ion ligands include two distal waters and five side chain interactions: 

the carboxylates of E116 and D127 (both oxygen atoms) and the backbone carbonyls of N118 

and G121. N117 forms additional hydrogen bonds to calcium-bound water molecules through 

both its side chain and backbone amide nitrogen. The structural calcium ion located farther 

inside the trimeric protein is coordinated directly by the carboxylates of D162 (both oxygen 

atoms) and D311, backbone amide carbonyls of H115 and G126, and two water molecules. 

Finally, the H115 side chain also forms a hydrogen bond with a calcium-bound water molecule. 

No single amino acid or water molecule coordinates both calcium ions directly. 

The remaining calcium ion is positioned analogously to that in the β-Galf-bound hIntL-1 

structure (PDB ID: 4WMY) (26) (Figure 4-2C). This congruence suggests that this ion also 

marks the carbohydrate recognition pocket in XEELCRD. This calcium ion is directly coordinated 

by N289, E291, E303, and four ordered water molecules. The pocket geometry is determined by 
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a network of 16 hydrogen bonds distributed amongst the four calcium-bound water molecules 

and the aforementioned residues, S272, E273, and H292. Side chains from W306 and W326 

form the back walls of this conserved binding site. The structural similarity of this region of 

XEEL and hIntL-1 suggest that these lectins may recognize similar glycans. 

 

Figure 4-2. Three-dimensional structure of XEELCRD trimer. (A) Crystal structure of SeMet-
labeled XEELCRD trimer oriented with the intelectin-specific domains toward the top of the 
figure and the FBG-like lobes below. The second trimer in the asymmetric unit is removed for 
clarity. (B) Structural calcium site with two calcium ions (green) and four ordered water 
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molecules (red). (C) Ligand binding site with one calcium ion (green) and four ordered water 
molecules (red). 

4.5 XEELCRD Binds Exocyclic 1,2-diol Containing Ligands 

The human homolog of XEEL, hIntL-1, interacts with a range of glycan epitopes, each of 

which possesses a terminal 1,2-diol (i.e., a diol of the form RCH(OH)-CH2OH) (26). To address 

whether this ligand specificity is conserved between XEEL and hIntL-1, we used SPR to monitor 

XEELCRD ligand binding properties (Figure 4-3A). XEELCRD displays concentration-dependent 

binding to immobilized β-Galf. The on- and off-rates are rapid, suggesting minimal structural 

reorganization of XEELCRD occurs upon ligand binding. As a measure of the affinity of 

XEELCRD for immobilized β-Galf, we used an equilibrium binding model to analyze the SPR 

data (Figure 4-3B). The apparent affinity of the XEELCRD trimer for β-Galf is 4.1 ± 0.5 µM. No 

specific binding to β-Galf or β-Ribf was observed. These results suggest that, like hIntL-1, XEEL 

does not bind generally to furanoside ligands, but instead recognizes the exocyclic 1,2-diol 

epitope of β-Galf.  

 To test whether the exocyclic vicinal diol on β-Galf is the epitope recognized by 

XEELCRD, we conducted competition binding studies with the simplest 1,2-terminal diol, 

glycerol. Gro inhibits XEELCRD binding to immobilized β-Galf, indicating it is a competitive 

inhibitor (Figure 4-3C). These experiments suggest that XEEL binds both β-Galf and GroP 

through their common exocyclic vicinal diol epitope. From the inhibition data, we determined 

the IC50 of glycerol to be 0.6 ± 0.6 mM. The Gro inhibition data fit well to a one-site competition 

model. Thus, the determined IC50 value serves as an estimate of the Kd of an exocyclic vicinal 

diol-containing compound for a single XEEL binding site. 
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Figure 4-3. Binding of XEELCRD to immobilized carbohydrates as measured by SPR. (A) SPR 
sensorgrams of XEELCRD binding to immobilized carbohydrates. (B) Equilibrium binding 
analysis of XEELCRD to immobilized β-Galf. These data were used to determine the apparent 
affinity of XEELCRD for β-Galf. (C) Gro was assayed for its ability to inhibit XEELCRD binding 
to β-Galf. These data were used to determine the IC50 of Gro. This experiment is representative 
of two independently purified protein samples. 

4.6 Human and Xenopus Intelectins use Similar Ligand-recognition Modes 

To compare ligand recognition of XEEL and hIntL-1, we co-crystallized the XEEL with 

GroP. Alignment of Se-Met XEELCRD and GroP-bound XEELCRD yields an RMSD value of 0.17 

Å over 276 Cα atoms, suggesting no drastic structural changes occur upon either SeMet labeling 

or ligand binding. Specifically, no significant movement of residues in the vicinity of the ligand-

binding site is observed upon XEEL complexation to GroP.  
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 The structure reveals two hydroxyl groups from GroP coordinate directly to a protein 

bound calcium ion (Figure 4-4A). Upon binding, these hydroxyls displace two ordered water 

molecules in the ligand-binding site. This mode of ligand binding is nearly identical to what was 

observed in the structure of the hIntL-1-β-Galf complex (Figure 4-4B). In XEEL, the diol moiety 

of the GroP binds in a pocket formed by the side chains of W317 and W326. W326 serves as an 

aromatic wall: it is positioned such that it allows binding of a diol terminating with a 

hydroxymethylene (-CH2OH) group, but not a more substituted diol. A similar binding mode is 

found for hIntL-1, but the human protein possesses a tyrosine residue in place of W326 in XEEL. 

 The indole NH of W326 forms a hydrogen bond with the phosphate group of GroP. 

Electron density around the phosphate group reveals elongation toward the indole NH of W317, 

suggesting dynamic equilibration of hydrogen bonding between W317 and W326, and the 

phosphate group. The primary hydroxyl of GroP forms an additional hydrogen bond with H292. 

In addition to calcium coordination, E303 forms a hydrogen bond with the secondary hydroxyl 

group of GroP. These additional hydrogen-bonding interactions enhance the ability of exocyclic 

diol hydroxyl groups to serve as ligands for the calcium ion.  

  

Figure 4-4. Crystal structure of XEELCRD-GroP complex. (A) Calcium ion and ordered water 
molecules are shown as green and red spheres, respectively. The mesh represents the 3σ contour 
in a difference electron density map (mFo-DFc , where m is figure of merit, and D is σA weight) 
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after refinement without ligand. (B) Alignment of XEELCRD-GroP complex with hIntL-1-β-Galf 
complex (PDB ID: 4WMY) (26). hIntL-1 is shown in wheat and the β-Galf is shown with carbon 
atoms colored brown. Both ligand binding calcium ions are shown as green spheres. The ordered 
water molecules and proteins side chains are from the XEELCRD structure. 

4.7 Intelectin Structures Provide Insight into Residue Conservation and Function 

The availability of the XEEL and hIntL-1 structures allow assignment of residue function 

to the broader class of intelectins. We aligned the sequences of intelectins from humans and a 

range of model organisms, using Clustal W2 (Figure 4-5) (30). The structural calcium sites are 

highly conserved.  The only exception is the amino acid corresponding to N118 of XEEL, which 

coordinates the calcium ion through its backbone amide carbonyl. The majority of the structural 

calcium site residues cluster between amino acids 115-127, with the consensus sequence of 

HENXXXGXCTXGD. Cysteine C123 is conserved in the intelectin fold but has no role in 

calcium ion binding. Though not present in the consensus sequence, aspartates 162 and 311 are 

also conserved residues that ligate the structural calcium ion. The high conservation of amino 

acids in this region suggests that most, if not all, intelectins contain two structural calcium ions.  

 Compared to the structural calcium ion site, more amino acid variation is found in the 

ligand binding site (Figure 4-5). Among the five X. laevis intelectins, residues that directly 

coordinate the ligand binding site calcium ion are completely conserved. W317 and W326, 

which form a box around the vicinal diol ligand, are conserved among XEEL, XSL-1, and XSL-

2, all of which are proposed to participate in innate immunity. These observations suggest that 

XSL-1 and XSL-2 also can recognize the terminal 1,2-diols prevalent in microbial glycans. By 

contrast, the corresponding residues in XCGL-1 and XCGL-2 are phenylalanine and asparagine, 

respectively. XCGL-1 and XCGL-2 are involved in fertilization membrane formation (16,17), 

and they therefore likely recognize self carbohydrate epitopes. Indeed, glycan array screening 
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data suggests that XCGL-1 binds Gal–α(1-3)–GalNAc (CFG, primscreen_758). This 

disaccharide is not specific to microbes. 

 

Figure 4-5. Sequence alignment of XEEL and other intelectins. Intelectins proteins include 
proteins from humans (hIntL-1 and hIntL-2), common model organisms, and Xenopus laevis 
(XCGL-1, XCGL-2, XSL-1, and XSL-2). mIntL-1 and mIntL-2 are derived from mouse, DrIntL-
1 and DrIntL-2 from zebrafish. Corresponding GenBank accession numbers are included in the 
second column. Residues in the structural calcium site and ligand-binding site are highlighted in 
blue and green respectively.  

4.8 XEELCRD is Trimeric in Solution 

Despite lacking the N-terminal region that engages in disulfide bond formation, the 

structure of XEELCRD indicates it forms a non-covalent trimer.  Two head-to-tail trimers are 

observed in the asymmetric unit of the XEELCRD structure, yet there are few contacts between 

them. This observation is consistent with the fragility of XEELCRD crystals, and their tendency to 

separate into thin sheets. These properties led us to suspect that this particular crystallographic 

packing arrangement is not biologically relevant. To examine the oligomerization state of XEEL 

in solution, we performed chemical cross-linking using bis(sulfosuccinimidyl)suberate (Figure 

4-6A). Trimers predominated at high cross-linker concentrations, consistent with the intimate 

trimer resolved in the crystallographic asymmetric unit. No species larger than trimeric XEELCRD 

were observed.  
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We also employed equilibrium analytical ultracentrifugation to assess the oligomeric 

state of XEELCRD. The absence of curvature in the plots of ln(Abs) versus radial position squared 

indicated the presence of a single molecular species (Figure 4-6B). The reduced mass (Mr) 

obtained from a global fit was 27,120 daltons over all of the XEELCRD concentrations tested. The 

calculated molecular mass was 96,811 Da, which returns an aggregation number of 3.08, based 

on the molecular mass of the N-terminally truncated XEELCRD. This result is consistent with 

chemical crosslinking data indicating that XEELCRD is trimeric. The analytical ultracentrifugation 

(AUC) data show that the XEELCRD trimer is the preferred species because no free monomeric 

XEELCRD was observed at any point during the experiment. Thus, the XEELCRD forms a highly 

stable trimer in solution, despite lacking intermolecular disulfide bonds.  

 

Figure 4-6. Analysis of XEELCRD oligomeric state. (A) Chemical crosslinking of XEELCRD with 
bis(sulfosuccinimidyl)suberate. The final concentrations employed of this cross-linker are 0, 0.1, 
0.25, 0.5, 1, 2.5 and 5 mM. The expected masses are 31.6, 63.2, and 94.8 kDa for monomer, 
dimer, and trimer, respectively. (B) Sedimentation equilibrium AUC of XEELCRD. 
ln(absorbance) vs. radial position squared (cm2) plot of XEELCRD at 6,000 RPM (lower slope) or 
13,200 RPM (higher slope) for each XEELCRD concentration (2.6 µM (blue), 5.2 µM (green), 9.0 
µM (red)). Only every third raw data point is shown for clarity. The solid lines represent the 
single species fit of the data that was used to calculate the reduced mass. 
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Analysis of the interfaces in the XEELCRD structure indicates that each monomer has an 

average buried surface area of 1,571 Å2 resulting in a total of 4,715 Å2 buried upon trimerization. 

The interface surfaces are polar, but not highly charged. Interactions between each monomer 

include 18-19 hydrogen bonds and 1-3 salt bridges. Superposition of trimeric hIntL-1 (PDB ID: 

4WMY) (26) and GroP-bound trimeric XEELCRD using all Cα atoms yields an RMSD value of 

0.63 Å, suggesting a similar trimeric arrangement. The ligand binding sites of both trimers 

occupy the same space. Therefore, the trimeric architecture of XEELCRD and hIntL-1 are 

conserved in 3-dimensional space. Amino acid sequences at the interface are not highly 

conserved as determined by ConSurf (31) using both automatic sequence alignment of 150 

homologs or intelectins from model organisms (Figure 4-5). With the large buried surface area 

and only two unique intelectin structures available to date, the relationship between sequence 

variation at the monomer interface, and the oligomeric state of intelectins remains to be explored. 

4.9 Discussion 

Intelectins are soluble lectins produced by organisms ranging from tunicates to humans, 

and they have been suggested to participate in innate immunity. Despite this proposal and the 

high sequence similarity amongst intelectins, little is known regarding intelectin function. An 

understanding of structure and carbohydrate-binding specificity can illuminate intelectin 

functional roles. The human intelectin, hIntL-1, binds a range of epitopes found only in 

microbial glycans (26). To examine whether other homologs share a ligand recognition 

mechanism, we determined the structure of the carbohydrate-recognition domain of the Xenopus 

homolog, XEEL, alone and complexed to GroP.  



 181	  

The X-ray crystal structures of XEELCRD and hIntL-1 indicate that the intelectins are a 

discrete lectin class. Though the intelectins and ficolins share an FBD, our X-ray structures show 

that they are structurally divergent. Intelectins, ficolins, and many C-type lectins possess 

structural calcium ions. Still, the structural calcium site of XEEL bears no resemblance to the 

single structural calcium ion site present in ficolins or the C-type lectin DC-SIGN (Figure 4-7). 

The structural calcium ions of intelectins are buried, which contrasts with the solvent-exposed 

site in L-ficolin. The calcium binding region specific to intelectins is distinct from the two non-

conserved structural calcium ions in the C-type lectin DC-SIGN, which are solvent-exposed and 

coordinated by two protein loops (32,33).  

The ligand-binding site of intelectin proteins is also different from that of other lectins. In 

the intelectin structures solved to date, a calcium ion directly coordinates an exocyclic vicinal 

diol present in the carbohydrate epitopes. Ficolin structures show no direct interactions between 

the calcium ion and the ligand (34). Alternatively, C-type lectins, such as DC-SIGN, recognize 

their carbohydrate ligands through calcium coordination to adjacent secondary hydroxyl groups 

within a pyranose ring (Figure 4-7). As would be anticipated from its ability to coordinate to two 

secondary hydroxyl groups, the ligand-binding site of DC-SIGN contains no electron-rich 

aromatic residues that surround the calcium-coordinated ligand, as observed in hIntL-1 and the 

XEELCRD. These observations underscore that intelectins are a distinct lectin class. 
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Figure 4-7. Comparison of lectin structures. A) XEEL from this work (PDB ID 4WN0). B) L-
ficolin CRD (PDB ID 2J3U) (34). C) DC-SIGN (PDB ID 1SL4) (32). Calcium ions are 
represented by green spheres and the carbohydrate ligands are shown in cyan. 

The structures of XEELCRD and hIntL-1 reveal conserved features: the intelectin fold, the 

trimeric CRD core, and the ligand-binding mode. We attribute the ligand-binding specificity of 

XEEL to W317 and W326, which form a tight box around the exocyclic vicinal diol and imposes 

steric constraints during binding (Figure 4-4A). The structure of GroP-bound XEELCRD 

confirms that GroP does indeed bind in the same site as β-Galf binds to hIntL-1 (Figure 4-4B). 

Both hIntL-1 and XEEL contain aromatic residue (W326 in XEEL, Y297 in hIntL-1) in the 

binding site that serve as an aromatic wall, a steric barrier that prevents the binding of more 

substituted diols. Moreover, the placement of the aromatic residue suggests it can engage in a 

CH-π interaction with the methylene group of 1,2-diol-containing ligands (35). We anticipate 

that intelectins with this dual aromatic residue signature will show similar ligand-binding modes 

and specificities.  

The structures of XEEL and hIntL-1 provide the means to further interpret intelectin 

sequence alignment data. We compared human intelectins to those from common laboratory 
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model organisms. The amino acid sequence of the structural calcium site is exquisitely 

conserved. Moreover, the overall tertiary structure observed for hIntL-1 and XEELCRD is 

conserved throughout chordate species. At least one intelectin in each model organism shows a 

high degree of conservation in the ligand-binding site with XEEL and hIntL-1, suggesting that a 

microbe-binding intelectin likely exists in most animals.   

The conservation of the ligand-binding site in some, but not all, members of the intelectin 

family across the evolutionary tree may distinguish those intelectins that recognize microbial 

surface glycan epitopes from those involved in other functions. Interestingly, intelectin paralogs 

within the same species (e.g., XEEL and XCGL-2) show appreciable variation in ligand-binding 

site residues (Figure 4-5). The corresponding gene sequences of XCGL-1 and XCGL-2 encode 

binding site residue substitutions (W317F and W326N), and these lectins appear to have altered 

ligand specificity, as mentioned earlier. Thus, one intriguing hypothesis is that these two residues 

control carbohydrate specificity to discriminate between different carbohydrate epitopes. Indeed, 

further examination of sequence alignment predicts intelectins with novel ligand binding 

properties. For example, mouse intelectin-2 does not have a predicted aromatic box as it has a 

W317A substitution. In addition, there are marked variations in the ligand-binding site of the 

zebrafish intelectins (Figure 4-5). The differences between XEEL and hIntL-2 are especially 

intriguing. For example, the equivalent of XEEL W326 (or hIntL-1 Y297) in hIntL-2 is a serine 

residue. As a result, hIntL-2 is unlikely to recognize terminal 1,2-diols. Furthermore, E303, 

which directly coordinates the ligand binding site calcium ion in XEEL and hIntL-1, is a 

glutamine in hIntL-2. This change may alter the ability of hIntL-2 to chelate a calcium ion. The 
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consequences of these changes on intelectin structure and ligand specificity warrant careful 

study.  

The oligomeric state of intelectins appears to vary among family members; hIntL-1 is a 

disulfide-linked trimer, whereas XEEL was reported to be a disulfide-linked hexamer. Here we 

show that the CRD of XEEL is trimeric in solution despite lacking intermolecular disulfide 

bonds. The intermolecular disulfide bonds that do exist in full length XEEL can be mapped to 

residues C24 and C42. These are missing from XEELCRD. Thus in XEEL, intermolecular 

disulfide bonds may be required to form stable high-order hexamers, but are not required for 

trimerization of the carbohydrate binding core. The two intelectin X-ray structures suggest this 

twice-observed trimer arrangement, which orients three ligand binding sites on one face, is a 

basic unit. Other portions of the protein may be used to mediate further assembly into higher-

order oligomers, or to recruit protein binding partners. Our findings that XEELCRD exists as a 

non-covalent trimer highlight the utility of using additional techniques such as cross-linking and 

equilibrium analytical ultracentrifugation to establish the oligomeric state of an intelectin.  

In conclusion, structure and ligand recognition mechanism of intelectins are unique 

among lectins. With structures of the XEELCRD and hIntL-1, features conserved between 

intelectins can be identified. Our results also lay a foundation for further structural analysis of the 

intelectin family, which will provide insight into the biological function of individual intelectins. 

Because both XEELCRD and hIntL-1 bind microbe-specific carbohydrate residues, these 

intelectin structures provide blueprints for engineering intelectin variants for microbe recognition 

and targeting. 



 185	  

 
Table 4-1. X-ray Crystallographic Data Collection and Refinement Statistics. 

Data collection statistics SeMet XEELCRD XEELCRD-GroP complex 
Wavelength (Å) 0.97924 0.97856 
Resolution range (Å)* 30.10 - 2.30 (2.38 - 2.30) 30.2 - 2.20 (2.28 - 2.20) 
Space group P 21  P 6 
Unit cell (Å) 123.6  111.1  123.6 

90  119.7  90 
124.6  124.6  55.6  

90  90  120 
Total reflections 991049 285681 
Unique reflections 129043 (12885) 25366 (2526) 
Multiplicity 7.7 (7.7) 11.3 (11.1) 
Completeness (%) 100 (100) 100 (100) 
Mean I/σ(I) 13.7 (2.6) 19.4 (3.2) 
Wilson B-factor (Å2) 21.0 29.6 
R-merge  0.168 (0.625) 0.127 (0.755) 
R-meas 0.180 (0.670) 0.133 (0.792) 
R-pim 0.065 (0.241) 0.040 (0.237) 
Refinement Statistics   
Resolution range (Å) 
        R-factor 

30.10 - 2.30 (2.38 - 2.30) 
0.1597 (0.2152) 

29.93 - 2.20 (2.25 - 2.20) 
0.1515 (0.1977) 

R-free (5%) 0.1881 (0.2673) 0.1692 (0.2363) 
Number of atoms   
       Protein 12927 2151 
       Calcium 
       GroP 

18 
- 

3 
10 

       Water 1470 166 
Protein residues 1662 277 
RMSD (bonds, Å) 0.011 0.010 
RMSD (angles, °) 
Est. coordinate error (ML, Å) 

1.170 
0.21 

1.089 
0.17 

Ramachandran favored (%) 96.1 95.7 
Ramachandran outliers (%) 0 0 
Average B-factor (Å2)   
       Protein 13.0 24.2 
       Calcium 
       GroP 

7.8 
- 

17.3 
38.0 

Solvent 24.4 33.7 
 
*Statistics for the highest-resolution shell are shown in parentheses. Coordinates and structure 
factors of SeMet XEELCRD and XEELCRD-GroP complex were deposited at the PDB under 
accession code 4WMO and 4WN0, respectively. 
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4.10 Methods 

4.10.1 Cloning, Expression, and Purification of XEEL 

The cDNA for XEEL (accession number BC087616) was purchased (Source BioScience) 

and amplified with primer A (5’-TTTTTGCACTTGCATTTCC-

AGCAGGGCACGCTGGTTCATGGAGCCATCCGCAGTTTGAAAAGGGTTCATGTGAAC

AAGCTTCAATTTCTG-3’) and primer B (5’- 

GGTACCAAGCTCATTAACGGTAGAAGAGCATCACAGCTGCC-3’). The PCR product 

was then amplified with primers B and C (5’-

GCGCGGATCCATGTTGTCATATAGCCTGTTGCTTTTTGCACTTGCATTTCCAGCAGGG

-3’). The resulting PCR product was digested with BamHI and KpnI and ligated into a similarly 

digested pFastBac1 vector. The N-terminus of the protein product is expected to be (residue 4) 

MLSYSLLLFALAFPAGHA (residue 22) GSWSHPQFEK (residue 22) GSCEQASIS; where 

the expressed protein begins with residue 4, the second methionine in the annotated sequence. 

The underlined amino acids are the predicted secretion signal peptide and the bold amino acids 

denote the Strep-tag® II incorporated for purification. Following sequence verification, the vector 

was subjected to recombination into a baculovirus according to the manufacturer’s protocol 

(Bac-to-Bac Baculovirus Expression System, Life Technologies). The resulting baculovirus 

genomic DNA was transfected (Insect GeneJuice, Novagen) into Sf21 insect cells to produce the 

first generation (P1) of recombinant baculovirus. Amplified baculovirus (P2) was produced using 

P1 to infect suspension Sf21 cells grown in SF900-II-SFM (Life Technologies). Virus-containing 

supernatant was harvested by centrifugation. Fetal bovine serum was added to 2% to stabilize the 

baculovirus. 
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XEEL was produced as a secreted protein using High Five cells (Life Technologies), a 

derivative of Trichopulsia ni.  For expression of SeMet labeled XEEL used for experimental 

phasing, High Five cells were suspension cultured in 921 Delta Series, methionine deficient 

medium (Expression Systems, cat. no. 96-200, 200 mL) supplemented with 1x antibiotic-

antimycotic (Life Technologies) and 10 µg/mL gentamicin (Life Technologies). Cells were 

infected when they reached a density ≥ 2X106 cells/mL by the addition of 0.5 µL of baculovirus 

P2 conditioned media per 1X106 viable cells. After the first addition of L-SeMet (10 mg, Acros 

Organics) at 12 hours post infection, additional portions (10 mg) were added every 24 hours until 

medium harvest. Cells producing XEEL were cultured for 5 days at 22 °C in a baffled flask with 

shaking at 90 rpm. Conditioned culture medium was harvested by centrifugation and filtered 

through a 0.22 µM filter; the medium was stored at 4 °C for at least one week. This incubation 

period was crucial for the proteolytic cleavage that precedes successful crystallization of XEEL 

residues 54-342. Unlabeled XEEL was produced using the same conditions except Express Five 

SFM (Life Technologies) supplemented with 1x antibiotic-antimycotic, 10 µg/mL gentamicin, 4 

mM glutamine was used as a culture medium, and no Se-Met was added. 

Conditioned medium was dialyzed extensively against 20 mM Bis-Tris (pH 6.7), 150 

mM NaCl, and 1 mM EDTA. The medium was slowly adjusted to pH 6.7, and a 1 M solution of 

CaCl2 was added to a final concentration of 10 mM. In addition, avidin (Calbiochem) was added 

to the conditioned medium (28 µg/mL) to absorb excess biotin, per the manufacturers protocol 

(IBA GmbH). The solution was then cleared by centrifugation. Strep-tagII XEEL was purified 

by binding to Strep-Tactin® Superflow resin (IBA GmbH, cat. no. 2-1206-002). The column was 

washed with 20 mM Bis-Tris (pH 6.7), 150 mM NaCl, 10 mM CaCl2 and then 20 mM Bis-Tris 
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(pH 6.7), 150 mM NaCl, 0.5 mM EDTA. Protein was eluted with 5 mM d-desthiobiotin (Sigma 

Aldrich) in 20 mM Bis-Tris (pH 6.7), 150 mM NaCl, 0.5 mM EDTA and concentrated using a 

10,000 MWCO Amicon Ultra Centrifugal Filter. During the concentration process, large sheet-

like crystals began to form. Crystals were harvested by centrifugation at 2,000 RPM and washed 

2 times using 20 mM Bis-Tris (pH 6.7), 150 mM NaCl, 0.5 mM EDTA. The crystals were 

resuspended in 20 mM Bis-Tris (pH 6.7), 150 mM NaCl, 0.5 mM EDTA and CaCl2 was added to 

5 mM. Within one minute, the crystals completely dissolved. Protein purity of the resulting 

solution was assessed by SDS-PAGE electrophoresis and Coomassie blue staining to be >95 %. 

The concentration of XEEL was determined using absorbance at 280 nm with an estimated 

ε=75,455 cm-1M-1 for the monomer and a calculated molecular mass of 36,258 Da, post signal 

peptide removal. Typical yields were 0.5 mg per 50 mL of conditioned medium.  

Although the expected mass of the glycosylated protein produced is 36,258 Da, MALDI 

and ESI-TOF analysis returned masses of 32884 Da and 32802 Da, respectively. The observed 

mass difference indicated a truncation of at least 30 residues. N-Terminal sequencing (ABI 494, 

Tufts University Core Facility) revealed the first five amino acids to be RSGGS. Therefore, the 

XEEL construct used in this study corresponds to residue 54 to 342. We refer to this as XEELCRD 

to denote the carbohydrate recognition domain. 

4.10.2 Protein X-ray Crystallography  

SeMet-labeled XEELCRD was redissolved in 20 mM Bis-Tris (pH 6.7), 150 mM NaCl, 

0.5 mM EDTA and 5 mM CaCl2 at a concentration of 2 mg/mL and crystallization (hanging-

drop vapor-diffusion) was achieved by mixing 1 µL of the protein solution and 1 µL of well 

solution (100 mM Tris, pH 7.0, 20-24% PEG 400). Crystals appeared in 2-3 hours and matured 
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to full size within 2-3 days. For cryoprotection, crystals were briefly dipped in well solution 

containing 30% PEG 400 and vitrified in liquid nitrogen.  

Unlabeled XEELCRD protein was used to obtain the crystal structure with bound GroP 

(Sigma Aldrich cat. no. G7886). Crystals were grown under similar conditions to SeMet-labeled 

XEEL, with 50 mM GroP present during crystal growth and cryoprotection.  

Single crystal X-ray diffraction experiments were performed on the Life Sciences 

Collaborative Access Team beamline 21-ID-D at the Advanced Photon Source, Argonne, IL. To 

determine the structure of SeMet XEELCRD, diffraction data were collected at the Se K-edge 

(12661.38 eV). Integration, scaling, and merging were performed with HKL2000 (36). The 

structure was solved using PHENIX by Se-SAD phasing with AutoSol (37). 42 selenium sites 

were expected; the substructure search yielded 39. Figures of merit were 0.28 and 0.66 before 

and after density modification, respectively. The GroP-bound XEELCRD structure was solved by 

molecular replacement using Phaser with monomeric Se-Met XEELCRD as a search model (38). 

Both structures were adjusted and refined with Coot and phenix.refine respectively (39,40). The 

coordinate restraint set for GroP was generated using PRODRG (41). MolProbity was used for 

validation (42). Data collection and refinement statistics are presented in Table 1. PyMOL was 

used to generate figures depicting the protein structures (43). Surface properties were calculated 

using PISA (44). 

4.10.3 SPR   

Analysis of XEELCRD using SPR was conducted on a ProteOn XPR36 (Bio-Rad) at the 

University of Wisconsin−Madison Department of Biochemistry BIF. To measure XEELCRD 

binding to carbohydrate, ProteOn NLC sensor chips (NeutrAvidin coated sensor chip) (Bio-Rad, 
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cat. no. 176-5021) were used to capture biotinylated carbohydrate ligands. All experiments 

presented here were conducted at surface saturated levels of ligand, ~200 response units (R.U.). 

In all experiments, captured biotin was used in flow cell one as a control. Samples containing 

purified XEELCRD were prepared by serial dilution into SPR running buffer (20 mM HEPES (pH 

7.4), 150 mM NaCl, 1 mM CaCl2, and 0.005 % Tween-20). Surfaces were regenerated with short 

injections of solutions of 10 mM hydrochloric acid (HCl). Data were referenced using the biotin 

reference channel and processed using the Bio-Rad ProteOn software package. Competition 

binding experiments were conducted by adding glycerol to the SPR running buffer in which 

purified XEELCRD was diluted. Data were analyzed on Prism6 (GraphPad). For determination of 

the glycerol IC50, SPR data were fit to a one-site competition model in Prism6. The top of the fit 

was constrained to 110 R.U. based on the equilibrium response in the presence of 1 mM CaCl2. 

4.10.4 Chemical Crosslinking   

XEELCRD aliquots (1 mg/mL, 2 µL) were mixed with 1 µL of 

bis(sulfosuccinimidyl)suberate crosslinker (Pierce) stock solutions to achieve final crosslinker 

concentrations ranging from of 0 – 5 mM. The buffer for all components was 20 mM Bis-Tris 

(pH 6.7), 150 mM NaCl, 0.5 mM EDTA, and 5 mM CaCl2. Crosslinking was performed at room 

temperature for 30 minutes. Each reaction was diluted by adding 7 µL of the reaction buffer and 

denatured by adding 2 µL of 6X SDS loading buffer (350 mM Tris pH 6.8, 30% glycerol, 10% 

SDS, 9.3% DTT, and 0.06% bromophenol blue). Samples were heated at 95 ºC for 3 minutes 

prior to analysis by SDS-PAGE stained with Coomassie blue.    

4.10.5 Sedimentation Equilibrium AUC 
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Recrystallized XEELCRD was dissolved in 20 mM BIS-TRIS (pH 6.7), 150 mM NaCl, 0.5 

mM EDTA, and 5 mM CaCl2 and the concentration was determined using UV-visible 

absorbance spectroscopy. Samples were prepared by dilution to concentrations of 9.0 µM 

(trimer), 5.2 µM, and 2.6 µM for analysis by sedimentation equilibrium analytical 

ultracentrifugation. Equilibrium data were collected at 20 °C in a Beckman Optima XLA 

Analytical Ultracentrifuge using 1.2-cm double sector charcoal-filled Epon centerpieces. Protein 

gradients were recorded at 276 nm every 2-3 h until two or more were superimposable. 

Equilibrium data were collected at speeds of 6,000, 8,000, 9,600, 11,500, 13,200, and 15,900 

rotations per minute (rpm). After the 15,900 rpm run, the contribution from non-sedimenting 

absorbance was determined by high speed depletion of the protein; this absorbance was ≤0.006 

for the three samples. After depletion, subsequent re-equilibration at 11,500 rpm resulted in a 

gradient essentially superimposable on the original gradient at this speed, indicating no 

significant loss of protein to irreversible aggregation during the course of the experiment. 

The solvent density (ρ) of 1.004 g/mL was computed from density increments (45), 

except that the BIS-TRIS buffer was not included as it is not in the available table. The 

calculated partial specific volumes (υ) of intact XEEL and XEELCRD are the same and based on 

the amino acid sequences, are 0.719 mL/g. The masses based on sequence (Ms) are 36,258 and 

31,652, respectively. 

Analysis of the equilibrium data followed an approach similar to that previously 

described (46) and was performed by Darrell R. McCaslin (University of Wisconsin−Madison, 

Department of Biochemistry, BIF). The analysis utilized programs developed in Igor Pro 

(Wavemetrics Inc., Lake Oswega, OR) by Dr. D. R. McCaslin. The measured non-sedimenting 
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absorbance for each sample was included as a fixed parameter. The data from three 

concentrations and five speeds were globally fit to models consisting of one or two 

macromolecular species.  The single species model described the complete data set adequately, 

and thus was employed. The reduced molecular weight (Mr) was used as the fitting parameter as 

it removes the impact of ambiguities in υ and ρ on the fit. The reduced molecular weight is 

defined as Mr = Mw(1-υρ), where Mw is, in the single species case, the molecular weight of the 

macromolecular complex. Mr must be an integral multiple of the sequence weight Ms; therefore, 

Mr = nMs(1-υρ), where n is equal to the oligomeric state of the protein. 

4.11 Accession Codes 

Coordinates and structure factors have been deposited in the PDB under accession codes 

4WMO (Se-Met XEELCRD) and 4WN0 (XEELCRD-GroP). 

4.12 Contributions 
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5.1 Abstract 

The human body creates unique ecological niches that populate with diverse communities of 

microbes collectively referred to as the microbiome. The composition of the human microbiome 

can influence and function as an indicator of human health and disease. To evaluate or 

manipulate the microbiome composition requires the ability to target subsets of microbes within 

the context of the larger population. Microbial surfaces are covered in a coat of strain-specific 

glycans. These glycans are poised to serve as identification codes, which could in principle, be 

interpreted by lectins functioning as readers. The selectivity of lectins functioning within 

microbial communities is not known. We focused on human intelectin-1 (hIntL-1), a lectin 

expressed predominantly in lung and intestinal mucosal epithelial tissues, to examine lectin 

recognition of bacteria within microbial communities. Human IntL-1 binds microbial but not 

human glycans by recognizing an exocyclic 1,2-diol epitope present in several microbe-specific 

carbohydrates. Still not all microbes produce hIntL-1 binding glycans. We began by profiling 

hIntL-1 binding to bacteria resident in the human gastrointestinal (GI) tract. 45 bacterial strains 

from diverse taxa were individually screened to yield 12 novel hIntL-1 binding strains. 

Actinobacteria and Firmicutes have an increased propensity to bind the lectin. When hIntL-1 was 

assayed against synthetic microbial communities assembled from these strains, however, it was 

surprisingly more discerning in microbe binding. Specific members within the community were 

recognized preferentially at the expense of other binding strains. We found that the bound 

population from within a community could be altered using different hIntL-1 concentrations, a 

property we attribute to competition amongst hIntL-1 binding strains. Our analysis of lectin 

binding within microbial communities indicates that community composition and lectin 
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expression tune native lectin–carbohydrate interactions in a manner not revealed using traditional 

one lectin—one microbe experiments. 
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5.2 Introduction 

Mammals continuously interact with a complex milieu of microbial companions. While 

many microbes exist in the external environment, some take up residence on or within humans 

and generate complex microbial communities (1-3). Centrally important to human health is the 

ability to survey and sense invading pathogens. The paradox of safely harboring and regulating 

microbial symbionts, while constantly surveying for pathogens, creates a major challenge for the 

human immune system. 

To accomplish effective surveillance and regulation of microbes, the human body relies 

on humoral (soluble) and cellular immunity, as well as innate and adaptive immunity (4,5). At 

mucosal sites where humans are constantly interacting with both symbiont and pathogen, many 

molecules perform partially redundant functions to successfully supervise microbial 

communities. For example, mucin glycoproteins are expressed and secreted by intestinal goblet 

cells and associate into the gel-like substance called mucus. Mucus helps to generate a physical 

barrier between intestinal mammalian epithelial cells and intestinal microbes (6). Soluble lectins 

and soluble immunoglobulin A (SIgA) are expressed and secreted to help reinforce this spatial 

separation barrier (7). Other humoral molecules important in mucosal immunity include 

pentameric IgA (pIgA), soluble immunoglobulin M (SIgM), antimicrobial peptides, and various 

small molecules. Also essential to mucosal immunity are specialized mucosa-associated 

lymphoid tissue (MALT) such as Peyer’s patches (PP) which allow antigen presenting cells 

(APCs) of the immune system access to mucosal associated microbes. Microbe binding and 

phagocytosis are important for immunoglobulin production, specifically IgA class switch 

recombination and secretion (8). Many immune cell types reside within MALT, including B- and 
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T-cells, eosinophils, mast cells, and APCs such as DCs, macrophages, and follicular DCs (9). 

Indeed, humoral and cellular components work in concert to survey and regulate mucosal 

resident microbes (Figure 5-1). 

One soluble lectin secreted at mucosal sites is hIntL-1 (10,11). Human IntL-1 is a 

member of the recently discovered family of lectins termed intelectins or X-type lectins (12,13). 

Intelectins are calcium cation-dependent, non-C-type lectins (10,14) which are most similar to 

the ficolin family of lectins (15). Intelectins and ficolins share a small N-terminal FBG domain 

(roughly 55 amino acids), however outside of this region distinct structural differences exist. 

Multiple proteins X-ray crystal structures of intelectin proteins were recently solved to reveal 

how intelectin structure effects ligand recognition (13,16). Intelectin proteins bind three calcium 

ions and use a C-terminal CRD to bind microbe specific carbohydrates via direct coordination to 

a protein-bound calcium ion. Carbohydrate binding assays, glycan microarrays, and structural 

biology were used to reveal that hIntL-1 recognizes an exocyclic 1,2-diol epitope that is shared 

amongst several microbial specific carbohydrates such as β-linked D-galactofuranose (β-Galf), D-

phospho-glycerol-modified glycans, heptoses, D-glycero-D-talo-oct-2-ulosonic acid (KO) and 3-

deoxy-D-manno-oct−2-ulosonic acid (KDO) (13). Ficolin proteins coordinate one calcium ion in 

a surface exposed loop and bind acetylated sugars such as GlcNAc, GalNAc, ManNAc, and N-

acetyl neuraminic acid through glycan–amino acid interactions (17). Importantly, intelectin’s 

lack the N-terminal collagen-like domain that is essential for ficolin and collectin binding to 

MASP proteins for activation of the lectin pathway of complement (15,18). This structural 

difference suggests that intelectin’s do not exert their biological activity through complement-

dependent opsonization of bacteria. 



	  

 

203	  

Most chordates, including humans, encode multiple intelectin proteins (16). Humans 

encode two intelectins, hIntL-1 and hIntL-2, which share 84% sequence identity (19). Human 

IntL-1 is expressed in the lung and intestinal epithelial mucosal tissue as well heart and omental 

adipose tissue (10,20), while IntL-2 transcripts are found exclusively in the small intestine 

(19,21). Both IntL-1 and IntL-2 are responsive to immune system activation and their levels can 

be significantly upregulated in both the lung and intestine (22). When a transgenic mouse model 

for asthma was stimulated by an allergen or interlukin-13, mouse intelectin transcript levels 

increased up to 150-fold (23). Infection of mammalian intestine with parasitic nematodes results 

in substantial upregulation of intelectin proteins in both mice and sheep (11,24-26). Lastly, 

colonized of gnotobiotic mice by bacteria results in mouse intelctin-1 upregulation by intestinal 

Paneth cells (7). The increased expression of mammalian intelectin proteins upon immune 

stimulation or challenge combined with IntL-1’s affinity for microbial glycans suggest a function 

in microbial detection or defense. Still, a biological role for intelectin proteins, and a rationale for 

intelectin upregulation are lacking. 

Most bacteria are covered in a layer of strain-specific cell surface glycans (27-30). The 

glycopolymers localized to the surface of bacteria include but are not limited to 

lipopolysaccharide, lipopolysaccharide O-antigen, Gram-negative capsular antigen, Gram-

positive capsular polysaccharides, lipoglycans, S-layer protein and other glycoproteins, 

peptidoglycan, and teichoic acids. Together, these molecules generate a unique glycan barcode 

indicative of the cell they cover (31). Cell surface glycan barcodes could be read by carbohydrate 

binding proteins such as lectins. Typically, lectin interactions with microbes are profiled in a one 

lectin, one microbe manner (32-35). While these studies are useful in demonstrating specific 
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microbe recognition, it is unlikely that microbes would ever interact with human immune lectins 

in a one lectin—one strain fashion naturally. Instead, humans interact with complex microbial 

communities that contain many unique members and significant taxonomical diversity (1,2). Of 

the limited examples where more than one bacteria was included in a lectin binding assay (are 

there others?) (35), we are not aware of a situation where more than one lectin binding bacteria 

was included or how the community effected recognition was examined.  

Here, we envisioned profiling hIntL-1 interactions with microbes resident within the 

human gastrointestinal (GI) microbiome to illuminate potential functions of this lectin in 

organismal physiology. Using bacterial strains representative of natural isolates from human GI 

microbiomes (36), we measured hIntL-1 binding to 12 of the 45 strains we assayed. As a proxy 

of human microbiomes, we generated synthetic mixtures from the binding and non-binding 

strains to examine hIntL-1 recognition within the context of microbial communities. The results 

from analysis of multiple diverse communities suggest that hIntL-1 binding to bacteria is 

competitive and tunable. One surprising result from our community-based analysis was that 

some strains, often Gram-negative bacteria, are susceptible to binding inhibition when assayed 

within a community. Additionally, we demonstrate that modulation of hIntL-1 levels (i.e., 

protein upregulation) altered the bacteria within a community that were targeted by the lectin. 

The ability of hIntL-1 to differentially recognize “binding bacteria” whether examined in 

isolation or within a microbial community was striking and suggests that lectin recognition 

within microbial communities is malleable and dependent upon host lectin expression levels and 

the microbial community composition. 
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Figure 5-1. Schematic representation of the mucosal immune system functioning within the 
mammalian intestinal mucosa. This figure was generously provided by Amanda Dugan and 
adapted from reference (37).  

5.3 hIntL-1 Recognition of Microbial Strains  

 We began by exploring hIntL-1 binding to bacterial strains that are similar to bacteria 

found within GI microbiomes (36). These strains occupy diverse taxa and have available 

genomic sequencing data. We were interested in what portion of these strains would be bound by 
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hIntL-1 and if certain taxa would be recognized preferentially. Binding of Strep-tagged hIntL-1 

to freshly grown, fixed bacterial cells was assayed and quantified using flow cytometry (13). The 

calcium ion-dependence of hIntL-1 carbohydrate-binding was evaluated by also monitoring 

binding in the presence of EDTA (Figure 5-2A). In total, 45 strains from four taxa were assayed; 

hIntL-1 binding was measured to 12 (Table 5-1). The results suggest that binding is favored to 

Actinobacteria and Firmicutes (Figure 5-2B). This preference is supported by a recent 

examination of the Bacterial Carbohydrate Structure Data Base (BCSDB) that revealed increased 

utilization of hIntL-1 binding ligands in Actinobacteria and Firmicute bacteria (38). For example, 

Actinobacteria cell surface glyconconjugates were shown to be enriched with the hIntL-1 ligand 

β-D-Galf. 
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Figure 5-2. Binding of hIntL-1 to fixed bacterial strains. (A) Representative data of hIntL-1 
binding to fixed bacterial cells. hIntL-1 was visualized using a fluorophore-labeled Anti-Strep-
tag II antibody. For the EDTA treated sample, cells were stained in the presence of 5 mM EDTA. 
(B) Summary of 45 assayed strains, sorted by taxa. All stains have been confirmed by 16S rRNA 
sequencing. More information on these bacteria can be found in Table 5-1.  

 

Table 5-1. Summary of hIntL-1 Binding to Microbes 

Binding Cells Non-binding Cells  
Genus species Straina Genus species Straina 
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Actinobacteria Actinobacteria 
Bifidobacterium angulatum ATCC 27535 Bifidobacterium adolescentis ATCC 15703 
Bifidobacterium bifidum ATCC 29521 Bifidobacterium 

pseudocatenulatum 
ATCC 27919 

Bifidobacterium dentium ATCC 27678 Collinsella aerofaciens ATCC 25986 
  Collinsella intestinalis DSMZ 13280 

Bacteroidetes Bacteroidetes 
Bacteroides plebeius DSMZ 17135 Alistipes indistinctus DSMZ 22520 
  Bacteroides caccae ATCC 43185 
  Bacteroides finegoldii DSMZ 17565 
  Bacteroides intestinalis DSMZ 17393 
  Bacteroides ovatus ATCC 8483 
  Bacteroides thetaiotaomicron 7330 
  Bacteroides thetaiotaomicron VPI-5462b 

  Bacteroides uniformis ATCC 8492 
  Bacteroides vulgatus ATCC 8482 
  Bacteroides xylanisolvens DSMZ 18836 
  Parabacteroides merdae ATCC 43184 

Firmicute Firmicute 
Anaerococcus hydrogenalis ATCC 49630 Blautia hansenii ATCC 27752 
Dorea longicatena DSMZ 13814 Clostridium asparagiforme DSMZ 15981 
Eubacterium biforme ATCC 27806 Clostridium bloteae DSMZ 15670c 

Lactobacillus reuteri DSMZ 20016 Clostridium hylemonae DSMZ 15053 
Lactobacillus ruminis ATCC 27780 Clostridium symbiosum ATCC 14940 
Roseburia intestinalis DSMZ 14610 Coprococcus comes ATCC 27758 
Ruminococcus torques ATCC 27756 Holdemania filiformis ATCC 51649 
  Mitsuokella multacida ATCC 27723 
  Ruminococcus gnavus ATCC 29149 
  Streptococcus infantarius ATCC BAA-102 

Proteobacteria Proteobacteria 
Escherichia fergusonii ATCC 35469 Citrobacter youngae ATCC 29200 
  Edwardsiella tarda ATCC 23685 
  Enterobacter cancerogenus ATCC 35316 
  Escherichia coli  MS.200.1 
  Escherichia coli K12 ATCC 47076 
  Proteus penneri ATCC 35198 
  Providencia rettgeri DSMZ 1131 
  Providencia stuartii ATCC 25827 
a Strain information is provided as the ATCC strain designation, or the Leibniz Institute DSMZ–German 
Collection of Microorganisms and Cell Cultures identification number. 
b ATCC 29148 
c ATCC BAA-613 
 
5.4 hIntL-1 Binding to Microbial Communities 
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After profiling hIntL-1 binding to strains in isolation, we were interested in how the 

lectin would interact with bacteria present in complex mixtures. We envisioned using synthetic 

communities of known percentages of binding and non-binding bacteria to learn more about 

hIntL-1—community interactions. Using the strains identified in Table 5-1, we generated 

synthetic communities and assayed hIntL-1 binding. The communities were assembled in a 

manner representative of the human gut with respect to taxa. In the first community L. reuteri 

and E. fergusonii were included as hIntL-1 binding strains, and B. ovatus and P. penneri were 

included as non-binding stains. An example of this community can be seen in Table 5-2.  

Table 5-2. Example of Synthetic Microbial Mixtures Used to Assay hIntL-1 Binding 

Predicted 10% Binding 
Binding % Included  
 L. reuteri 5  
 E. fergusonii 5  

Non-binding   
 B. ovatus 45  
 P. penneri 45  

   
Predicted 50% Binding   
Binding % Included  
 L. reuteri 25   
 E. fergusonii 25   

Non-binding    
 B. ovatus 25   
 P. penneri 25   

    
 Prior to assaying synthetic communities, strains were analyzed individually (Figure 5-

3A). Each strain exhibited differences in forward scatter, side scatter, and the amount of hIntL-1 

bound to it’s surface (Figure 5-3A). The properties (size, shape, amount of hIntL-1 bound, etc.) 

of each strain should facilitate their identification from within a community. For example, B. 

ovatus is the smallest microbe analyzed in the community represented in Table 5-2, and more 
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hIntL-1 binds the surface of L. reuteri as compared to E. fergusonii despite both strains 

appearing similar by forward and side scatter (Figure 5-3A). While analyzing strains in 

isolation, we found that a small number of the events within each sample were opposite the 

majority with respect to hIntL-1 binding; i.e., 95.2% of the B. ovatus events were hIntL-1 

negative while 4.8% were hIntL-1 positive, and 1.6% of the L. reuteri events were hIntL-1 

negative while 98.4% were hIntL-1 positive. This phenomenon was observed to a roughly equal 

extent in every strain tested. Thus, when calculating the predicted percentage of binding bacteria 

within a community we treated each strain as monomodal, either 0% or 100% of the event were 

bound.  

Using the four strains described in Table 5-2, communities with an increasing amount of 

hIntL-1 binding bacteria were assembled. Each community was assayed using 0.187 µg of hIntL-

1 per 1E6 cells. The microbial community as washed once and analyzed by flow cytometry. The 

percentage of hIntL-1 binding cells was determined using gate established from same community 

stained with antibody only. Quantitative analysis of the percentage of bacteria within each 

community bound by hIntL-1 revealed that the number of bacteria bound by hIntL-1 was 

consistently less than what was predicted (Figures 5-3B & C). Based on the characteristics of 

each strain when assayed in isolation, we hypothesized that L. reuteri were faithfully quantified, 

while the E. fergusonii were underrepresented in the binding population. The apparent inhibition 

of hIntL-1 binding to E. fergusonii was striking and unexpected because when analyzed 

individually hIntL-1 bound the strain robustly (Figure 5-2A & 5-3B).  

The results from analysis of this community suggested the intriguing possibility that the 

residents within a community influence hIntL-1 binding. Certain strains may be preferentially 
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bound and they may inhibit binding to other strains. Of note is the different taxonomy of the two 

hIntL-1 binding stains. L. reuteri is Gram-positive and may have capsular polysaccharide (CPS), 

exo-polysaccharide (EPS), and teichoic acid (TA) localized to it’s cell surface (39) while E. 

fergusonii is Gram-negative and hIntL-1 is likely binding to LPS O-antigen or capsular antigen.  
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Figure 5-3. hIntL-1 binding to a synthetic microbial communities. (A) Four strains of bacteria 
were individually assayed for hIntL-1 binding to establish the attributes useful in distinguishing 
them within mixtures. The results from strains assayed in isolation are shown together here as 
different colors. The specificity of binding is demonstrated by binding inhibition in the presence 
of 5 mM EDTA. (B) Results of synthetic communities assayed for hIntL-1 binding. Cells were 
stained with 0.187 µg of hIntL-1 per 1E6 cells. The percentage of bound events was quantified 
using a gate that was determined from an unstained sample, the gate is shown here as a black 
box. The percentage of bound events is included within each graph. The bacteria bound in the 
predicted 0% mixture are the result of a small number of events whose binding by hIntL-1 was 
opposite the majority of events. A total of 100,000 individual events were collected under each 
condition. (C) Summary of the results shown in section B. The red line represents a perfect 
correlation between predicted and observed with a slope of 1 and y-intercept of 0. The black line 
represents a linear regression of the data. The same graph is shown on the right with the axes 
reduced to more clearly highlight points near the origin. 

5.5 hIntL-1 Binding Depends on Community and Context 

We hypothesized that the taxa represented within a community, and thus the cell surface 

glycoconjugates that make up each bacteria’s unique glycan barcode, may influence lectin 

binding. To test this, additional communities of hIntL-1 binding and non-binding strains were 

prepared. The first contained L. reuteri and E. fergusonii as the binding strains. The second 

community contained one Gram-positive binding strain, L. reuteri, and one Gram-negative 

binding strain, B. plebeius. The third community contained exclusively Gram-negative binding 

bacteria, E. fergusonii and B. plebeius, and the fourth contained exclusively Gram-positive 

binding bacteria, L. reuteri and B. angulatum. All four communities contained B. ovatus and P. 

penneri as the non-binding strains. 

As intelectin expression levels have been shown to vary within the human population and 

after antigen/allergen challenge (11,22-26), each community was assayed using two different 

concentrations of lectin. To examine the functional stability of hIntL-1 binding to bacteria within 

microbial communities, each sample was assayed following a fourfold dilution and assayed 

following a wash step. We hypothesized that more transient interactions would be sensitive to 



	  

 

214	  

the wash, while stable interactions would remain largely unchanged. In all of the communities 

tested, the number of hIntL-1 binding cells was higher in samples stained with more lectin. This 

result is most evident at high percentages of predicted hIntL-1 binding cells, and in mixtures that 

contain at least one Gram-negative hIntL-1 binding strain (Figures 5-4A - C). When the stability 

of hIntL-1 binding cells was assayed by comparing washed and diluted samples, the lability of 

Gram-negative binding within a community was pronounced (Figures 5-4A - C). In all the 

communities that contain at least one Gram-negative bacterial strain, the percentage of cells 

bound by hIntL-1 is closer to the predicted percentage of binding cells when analyzed following 

the dilution.  

Indeed, the pool of bacteria from within a community that were bound by hIntL-1 was 

sensitive to lectin levels and the context of the interaction. At the highest lectin concentration and 

analysis following dilution, greater than 90% of the cells from the predicted 100% binding 

mixtures of L. reuteri and E. fergusonii, and L. reuteri and B. plebeius were bound by hIntL-1 

(Figure 5-4A & B). In the community composed entirely of Gram-positive hIntL-1 binding 

strains, all four assay conditions yielded hIntL-1 binding to greater than 99% of bacteria in the 

predicted 100% mixture (Figure 5-4C).  
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Figure 5-4. Competitive inhibition of hIntL-1 binding by microbial communities. Four 
communities were assayed for hIntL-1 binding by flow cytometry. The strains in each mixture 
that are known hIntL-1 ligands are denoted above each graph ((A) contained L. reuteri and E. 
fergusonii, (B) L. reuteri and B. plebeius, (C) E. fergusonii and B. plebeius, and (D) L. reuteri 
and B. angulatum) while all four share B. ovatus and P. penneri as non-binding strains. The 
effects of increased hIntL-1, and the removal of a wash step, were used to suggest competition 
between bound strains that is dependent on the composition of each community. The red line 
represents a perfect correlation between predicted and observed with a slope of 1, and y-intercept 
of 0. The data from 0.187 µg of hIntL-1 per 1e6 cells : Washed is the same data shown in Figure 
5-3C.  
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5.6 hIntL-1 Binding to the Fecal Microbiome 

 After using synthetic communities to assay the effect of community and context on 

hIntL-1 binding, we sought to assay lectin binding to a native community. For this we chose the 

bacteria associated with a human fecal sample. To begin probing hIntL-1 binding to a fecal 

microbiome, we chose to use a fecal sample prepared from a single individual. Previous work 

has shown that this individual’s sample is composed largely of Gram-positive bacteria; ~90 % 

Firmicutes. To assay for calcium ion-dependence, a sample containing 3 mM EDTA was 

included. When hIntL-1 binding was assayed in the presence of 10 mM calcium ions, between 

20 and 30% of all events were bound by the lectin (Figure 5-5). Analysis of the EDTA treated 

sample revealed the majority of the events were dependent on calcium ions for binding (Figure 

5-5C). Of the events not dependent on calcium, most were among the largest events in the 

sample as determined by forward and side scatter. We hypothesize some of these events may be 

yeast (40,41). In this experiment the bacteria:hIntL-1 mixture was washed once before analysis. 

The same sample has been analyzed using a fourfold dilution and similar results were obtained. 

We suspect the results were similar because the sample is predominated by Gram-positive 

Firmicutes. While this data is representative of greater than five independent experiments, we 

seek to repeat this using the assay conditions presented in section 5.5. We would like to assay the 

sample three times, and then analyze fecal samples from additional patients. This will provide a 

more firm understanding of the percentage of bacteria in a sample capable of hIntL-1 binding, 

and the diversity of hIntL-1 binding microbes within the human population.   

 We have begun developing the methodology to use hIntL-1 labeling in combination with 

FACS to further characterize hIntL-1 binding bactria. We suspect that DNA sequencing, both 
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16S rRNA and metagenomic, will reveal much about hIntL-1 binding partners. Cell sorting and 

16S rRNA sequencing was recently used to characterize bacteria bound by SIgA and revealed a 

correlation between SIgA bound bacteria and IBD (42,43). To our knowledge, these seminal 

examples are among the few where microbiota interacting with soluble immune proteins have 

been explored and characterized genetically.  

Working with the UW-Madison Carbone Cancer Center Flow Cytometry Core and 

Robert Kerby from Professor Federico Rey’s group in the Department of Bacteriology, we have 

developed a protocol to sort hIntL-1 binding bacteria and subject them to 16S rRNA sequencing. 

While these results are not complete, I would like to present some of the data we have obtained. 

Preliminary studies demonstrated that 1E6 to 2E6 cells were optimal for genomic DNA 

extraction, and PCR amplification of the V3-V4 region of the 16S rRNA gene (Figure 5-6A). 

For the analysis presented in this thesis, the hIntL-1 signal was slowly decreasing during the long 

duration of the sort (~3 hrs). This resulted in cells that are bound by hIntL-1 being sorted into the 

non-binding pool. Thus we suspect the true results will be more pronounced than what we report 

here. We have already addressed the problem of hIntL-1 binding stability by omitting the wash 

step and replacing it with a fourfold dilution (section 5.5). The V3-V4 region of the 16S rRNA 

gene was amplified and subjected to Illumina sequencing. Data were processed using QIIME 

software (44). When the data are processed using a standard QIIME protocol and presented 

based on taxa, all of the samples appeard similar (Figure 5-6B). We hypothesized that analyzing 

the operational taxonomic units (OTUs) would reveal differences masked by the standard 

procedure. When OTUs were assembled based on 97% sequence similarity and their appearance 

within each sample was quantified, enrichment of many OTUs to either binding or non-binding 
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cells was observed (Figure 5-6C). We hypothesize that some OTUs enrich in either the binding 

or non-binding pool because some strains are genetically distinct enough to be their own OTU 

and the hIntL-1 glycosylation analysis is sensitive to a strains unique glycan barcode. We suspect 

that glycan and OTU-based analysis may be uniquely equipped for differentiating bacterial 

strains. Analysis techniques that are sensitive to strain information will become increasingly 

important as correlation moves toward causation in the microbiota field. The 

glycosylation/sequencing based analysis we present here, which we refer to as GlycoSEQ, is 

uniquely suited for differentiating bacteria into strains as the combination of lectin binding and 

sequencing provide information not attainable through either method alone. We are in the 

process of repeating this analysis using our updated binding conditions, as well as assaying the 

reproducibility and robustness of the work flow. We would like to expand our analysis to fecal 

samples from other donors to better understand the variability of hIntL-1 bound bacteria within 

the human population. We suspect that this information, in conjunction with medical records, 

may provide clues toward the biological function of hIntL-1.  
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Figure 5-5. hIntL-1 binding to bacteria isolated from a human fecal slurry. (A) Analysis of the 
fecal microbiome isolated from a human fecal slurry. The complexity of the sample is revealed 
from the large disparity in the forward and side scatter of the sample. (B) Histogram representing 
the staining of a fecal microbiome in the presence of hIntL-1. Only with the inclusion of hIntL-1 
and free calcium ions does the population become bimodal, with a portion bound by hIntL-1 (C) 
The samples shown collectively in panel (B) are depicted individually. The gate and 
quantification are included in the histogram representation of each sample. The same data is 
depicted below as a dot plot to show the forward and side scatter profile of binding and non-
binding bacteria. Data is representative of greater than 5 independent experiments. 
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Figure 5-6. Genomic characterization of hIntL-1 bound bacteria. (A) PCR amplification of the 
V3-V4 region of the 16S rRNA gene from genomic DNA isolated from input, and sorted 
bacterial cells. (B) Taxa based classification of the results of the V3-V4 16S rRNA gene 
sequencing. This figure was generated using the standard QIIME protocol and 97% sequence 
similarity OTU assignment. (C) Analysis of OTU (97% sequence similarity) distribution 
between the binding and non-binding samples. OTUs with less than 10 combined reads in the 
binding and non-binding pool were omitted. OTUs are omitted from this graph if they were 
found exclusively within one pool; 12 were exclusive to the non-binding sample, 7 were 
exclusive to the hIntL-1 bound sample. Data was collected and processed by Robert Kerby 
(Federico Rey Group). 

5.7 Microbial Carbohydrate Antigens Within the Fecal Microbiota 

 After profiling hIntL-1 binding to a fecal microbiota sample, we were interested in other 

carbohydrate antigens on the surface of the intestinal microbiota. To define additional surface 

accessible carbohydrate epitopes, I employed commercially available plant lectins with 

documented ligand specificities. I tested seven lectins with varying specificities; concanavalin A 
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(Con A), RCA-I, WGA, DBA, PNA, SBA, and UEA I. Substantial binding to bacteria from the 

fecal slurry was observed using three lectins, Con A, RCA-I, WGA (Figure 5-7). These three 

lectins have unique specificities: Con A interacts with Man and Glu residues, RCA-I has affinity 

toward Gal, and WGA binds to GlcNAc. Surprisingly, only a small percentage of cells were 

bound by GalNAc (DBA and SBA) and α-fucose binding lectins (UEA I). These results provide 

an initial fingerprint of the carbohydrates antigens displayed on microbes of the human intestinal 

microbiota and suggest that human lectins with affinity toward Man, Glc, Gal, and GlcNAc may 

bind a significant portion of the intestinal community. Interestingly, the membrane-bound C-type 

lectin dectin-1 (CLEC7A), which has affinity for fungal β-1,3-glucan, was recently found to bind 

intestinal fungi and influence intestinal colitis  (40). Our flow cytometry analysis of the fecal 

microbiota includes bacteria and fungi. While we did not differentiate between fungi and bacteria 

in our experiment, our flow cytometry results with Con A suggest that a significant potion of 

intestinal microbes express surface Man- and Glu-containing glycoconjugates that may also 

interact with dectin-1. How other microbes within the microbiota community influence dectin-

1—fungi binding remains unexplored. 

 

Figure 5-7. Lectin binding to the surface of fecal microbiota. Fluorescein conjugated lectins 
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were used to assay binding. Lectin binding was assayed in the presence 10 mM calcium, 1 mM 
magnesium, and 0.5 mM zinc; or 5 mM EDTA. Data is representative of two independent 
experiments. 

5.8 hIntL-1 Interactions with Immune Cells 

 A biological role for hIntL-1 within mammals has yet to be determined. Thus far we have 

focused on the carbohydrate binding activity of hIntL-1 and lectin binding to the intestinal 

microbiota. In addition to microbe binding, there are many host factors within the gut and lung 

that hIntL-1 may interact with. One example is other proteins, potentially immune proteins, 

which could be identified using pull-down experiments and mass spectrometry. Another 

possibility is mammalian cells, specifically immune cells, which are known to reside within the 

mammalian GI tract (Figure 5-1).  

Immune cells have specific receptors on their surface that allows them to recognize 

ligands, and respond differentially. We sought to assay for hIntL-1 interactions with human 

immune cells using whole human blood. This work has been largely performed by a talented 

undergraduate research assistant I have had the pleasure of working with for four years, Lucas C. 

Zarling, in collaboration with Deane Mosher’s Group. Whole human blood was incubated with 

antibodies for differentiating immune cell populations, and untagged-hIntL-1 that was directly 

conjugated with Alexa Fluor 645 nm. Following red blood cell lysis in a hypotonic solution, the 

remaining cells were analyzed by flow cytometry (Figure 5-8A). Antibodies specific for the cell 

surface markers CD45 (leukocyte common antigen) and CD14 (monocyte differentiation marker 

CD14) were used to identify immune cell populations. Using a sample stained with hIntL-1 and 

anti-CD45, granulocytes, platelets, lymphocytes, monocytes, and eosinophils were identified 

(Figure 5-8B). This analysis revealed hIntL-1 binding to monocytes, eosinophils and 

granulocytes, but not to lymphocytes or platelets (Figure 5-8C). We next performed the 
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straining procedure in the presence 10 mM calcium ions, or 5 mM EDTA. The results were 

nearly identical. This suggests that hIntL-1 is bound by certain immune cell types in a calcium 

ion-independent manner, likely through a specific protein:protein interaction.  

Future experiments will test the ability of monocyte derived innate immune antigen 

presenting cells such as DCs and macrophages to bind hIntL-1. Lastly, we seek to identify the 

receptor that is binding hIntL-1 on the surface of these cells. We suspect that pull-down 

experiments using human blood derived monocytes and mass spectrometry will characterize this 

interaction. Based on binding to innate immune APCs, and ability of hIntL-1 to interact robustly 

Gram-positive bacteria, we suspect that hIntL-1 may function in connecting soluble innate 

immunity and cellular immunity. Specifically, hIntL-1 may assist in recognition, phagocytosis, 

and antigen presentation of encapsulated Gram-positive bacteria by APCs. Thus, hIntL-1 may 

help expose bacteria hiding behind what is commonly thought of as their anti-phagocytic capsule 

(Figure 5-10). Supporting this hypothesis are preliminary experiments that suggest the majority 

of hIntL-1 binding bacteria within a fecal sample are also bound by SIgA (i.e., up to 80% of 

hIntL-1 binding bacteria are SIgA+, data not shown). Future experiments such as microbial cell 

killing and phagocytosis experiments will provide insight into this fascinating question (45).  
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Figure 5-8. hIntL-1 binding to human immune cells. (A) Human immune cells isolated from 
whole blood were analyzed by flow cytometry to profile hIntL-1 binding. (B) An anti-CD45 
antibody was used to identify cell populations. The gates and cell types used in this experiment 
are included in this dot plot. (C) Differential binding of hIntL-1 to different immune cell types. 
The interaction is not dependent on calcium ions. This is representative of greater than five 
independent experiments from five different human donors. This data was collected by my 
undergraduate research assistant Lucas C. Zarling. 
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Figure 5-9. Hypothesis for the enhanced recognition of Gram-positive bacteria by hIntL-1 and 
its interaction with human immune cells. hIntL-1 mediated crosslinking of Gram-positive 
bacteria and immune APCs may be a mechanism for recognition and immune response to 
encapsulated bacteria.  

5.9 Discussion 

 Here we describe experiments that provide clues toward the biological function of hIntL-

1. Among the most surprising results from this section was the amount of strains representative 

of human commensal bacteria that are bound by hIntL-1 and presumably express exocyclic 1,2-

diols within cell surface glycoconjugates. We identified 12 strains from diverse taxa that are 

robustly bound by the lectin in a calcium ion-dependent manner. Another result from this strain 

analysis is the dearth of Gram-negative bacteria bound by hIntL-1 (i.e., Bacteroidetes and 

Proteobacteria). This was surprising as the LPS core contains KDO, KO, and heptoses, all 
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proposed ligands of hIntL-1. This suggests that the LPS core is often inaccessible to lectins. We 

hypothesize that the LPS core is shielded by O-antigen and capsular polysaccharides.  

The results from our analysis of microbiome strains suggest multiple future research 

avenues. We envision leveraging the results of this strain analysis to search for genomic 

signatures useful in predicting hIntL-1 binding. They also provide a foundation for 

characterizing hIntL-1 binding to microbial communities and suggest strains useful in future 

experiments employing mouse models, both conventionally raised and gnotobiotic, to assay the 

effect of intelectin bound bacteria on mammalian health 

We leveraged our identification of strains that are bound by hIntL-1 in isolation to 

explore lectin binding to synthetic microbial communities. This revealed that hIntL-1 binding to 

microbes can be strikingly different when assayed individually as a purified strain or assayed 

within a community. Our results suggest that within communities of bacteria representative of 

natural communities, competition exists for hIntL-1 binding. Specifically, Gram-negative 

bacteria appear susceptible to inhibition of hIntL-1 binding in the presence of competing Gram-

negative and Gram-positive bacteria. We hypothesize that this is because LPS O-antigens are 

less avidly bound by hIntL-1 due of decreased epitope density and prevalence as compared to 

CPS.  

We also demonstrated that hIntL-1 binding is sensitive to the context of the assay and the 

amount of lectin available. This result was surprising because when the strains were assayed 

individually, binding appeared monomodal, either all or none of the cells interacted with the 

lectin. In contrast to this, the binding within a community could be modulated through changing 

the concentration of hIntL-1. This feature is particularly evident when at least one Gram-negative 
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binding strain was included in the community (Figure 5-4A - C). We do not believe that free 

lectin was limiting in these experiments as quantitative detection of bacteria in an exclusively 

Gram-positive community was obtained down to 0.05 µg of hIntL-1 per 1E6 cells. The ability to 

alter the bacteria targeted by hIntL-1 within a community based on amount of lectin (i.e., 

expression level) suggests a novel paradigm for bacteria:lectin interactions in vivo. Lectin 

interactions within a community may be more similar to a rheostat that is tunable, than to the 

digital yes:no decision that is observed when individual strains are assayed in vitro. It has not 

escaped us that the human body may use hIntL-1 expression levels, and lectins expression levels 

in general, to selectively target and shape microbial communities through alteration of 

lectin:microbe binding pools. 

We also assayed binding to a natural microbial community, the bacteria isolated from a 

human fecal sample. This revealed that 20 – 30% of the bacteria resident in our donor’s GI have 

the ability to be bound by hIntL-1. We are using FACS and sequencing, GlycoSEQ, to 

characterize this microbial population. We hypothesize GlycoSEQ experiments may reveal 

information about localized hIntL-1 expression, hIntL-1 interactions with microbial strains, and 

hIntL-1’s role in intestinal homeostasis.  

 Lastly, we identified selective binding of hIntL-1 to human innate immune cells. This 

result suggests a plethora of potential biological functions for the lectin. One possibility we are 

especially excited about is that hIntL-1 may function as a complement-independent opsonin. In 

Chapter 1 of this thesis I described a collagen-like domain that is present within some immune 

lectins (i.e., ficolins and collectins) that provides them the ability to bind serum proteases and 

activate the lectin pathway of complement. Intelectins do not contain a collagen-like domain. 
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Instead, intelectins may be secreted into the extracellular space where they can bind the surface 

of microbes. When a microbe begins to breech the mucus layer of mucosal tissues, antigen 

presenting cells may interact with microbe bound intelectin and phagocytose the microbial cell 

(Figure 5-10). While at this point the hypothesis is speculative, many of the tools and reagents to 

test it are now in place. A similar mechanism may function in the lung where alveolar 

macrophages are the predominant immune cell type. Stimulation of phagocytosis by hIntL-1 

bound bacteria may enhance IgA production at mucosal tissue against hIntL-1 bound cells. 

Future work in this area will help to answer the interesting biological question of how intelectins 

function in mammalian immunity. 
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5.10 Methods 

5.10.1 hIntL-1 Binding to Bacterial Strains 

 Bacteria were grown under anaerobic conditions by Robert Kerby in Federico Rey’s 

group. 2 mL of overnight or saturated growth were pelleted at 5,000 RPM. Cells were washed 

with 5 mL of cold PBS, pelleted by centrifugation, and fixed in 5 mL of cold PBS + 1% 

formaldehyde for 30 min on ice. Fixation was quenched with addition of 5 mL of PBS + 1 M 

lysine for 30 min on ice. Fixed cells were pelleted by centrifugation and resuspended in 5 mL of 

20 mM HEPES (7.4), 150 mM NaCl, 10 mM CaCl2, 0.1 % BSA, and 0.05 % tween-20. 100 µL 

of the fixed bacteria solution was used for for each staining condition, ~ 3E6 – 30E6 cells. Cells 

were stained in a total volume of 250 µL. To assay hIntL-1 binding, cell were stained in 20 mM 

HEPES (7.4), 150 mM NaCl, 10 mM CaCl2, 0.1 % BSA, 0.05 % tween-20, 15 µg/mL Strep-

hIntL-1, and a 1:250 dilution of an Oyster 645 nm:Anti-Strep-tag II antibody (IBA Bioscience). 

To assay for calcium ion dependence, the calcium was omitted from the staining procedure and 

replaced with 5 mM EDTA. An antibody only control was performed with each strain by 

omitting hIntL-1 from the lectin staining conditions. After staining for two hours at 4 °C, cells 

were centrifuged, the supernatant removed, and resuspended in 1 mL of staining buffer. Stained 

cells were analyzed on a BD FACSCalibur or Accuri C6 flow cytometer. To help visualize cells, 

propidium iodide was added to some samples at a 1:250 dilution (Life Technologies). A 

minimum of 50,000 events were collected under each condition. The identity of each stain has 

been confirmed with 16S rRNA sequencing. Data were processed using FlowJo. Histograms 

were generated and strains that demonstrated a substantial increase in fluorescence in the 
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presence of hIntL-1, and were completely sensitive to EDTA addition were considered hIntL-1 

bound. 

5.10.2 hIntL-1 Binding to Synthetic Communities 

 Stains of bacteria were prepared identically to what is described above. Stains were first 

analyzed individually to profile each stain, and quantify the density of the cells on a BD Accuri 

C6 flow cytometer. A minimum of 50,000 events were collected under each condition. Mixtures 

of bacteria were generated using the quantified cell density reported during the strain analysis. 

20E6, and later 10E6 cells were stained in a final volume of 250 µL. Cells were stained under 

similar conditions as reported above except the amount of hIntL-1 per sample was varied. After 

staining for two hours at 4 °C, the cells were split into two samples. One was diluted fourfold 

with the addition of 400 µL of staining buffer, these cells were the “diluted” sample, while the 

other half was centrifuged and resuspended in 500 µL of staining buffer, these cells were the 

“washed” sample. Samples were analyzed immediately on a BD Accuri C6 flow cytometer. Data 

were processed using FlowJo software. Bound cells were quantified where a gate was derived 

from an unstained sample. Quantified data were graphed using Graphpad Prism 6. 

5.11.3 hIntL-1 Binding to Human Fecal Samples 

 A slurry of human feces was generated by Robert Kerby in the Rey Group by 

resuspending 200 mg of fecal matter in 5 mL anaerobic PBS. The solution was vortexed 

occasionally and was left on ice for 2 hours. To generate the sample of fixed bacteria, 2 mL of 

the slurry was pelleted via centrifugation. The sample was washed once with PBS, and then fixed 

in PBS + 1 % formaldehyde for 30 min on ice. The reaction was quenched with equal volume 

addition of PBS + 1 M lysine. Fixed cells were pelleted by centrifugation and resuspended in 5 
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mL of 20 mM HEPES (7.4), 150 mM NaCl, 10 mM CaCl2, 0.1 % BSA, and 0.05 % tween-20. 

To assay hIntL-1 by flow cytometry, 75 – 100 µL of the fixed bacterial solution was used for 

each staining condition. Cells were staining using an identical protocol to what was described 

above for assaying hIntL-1 binding to bacterial stains. Calcium ion dependence is used to 

demonstrate that the binding is carbohydrate mediated and to ensure the assay is working. Cells 

were analyzed on a BD Accuri C6 or a BD LSR II flow cytometer. A minimum of 50,000 events 

were collected under each condition. Data were processed using FlowJo software. 

5.10.4 Sorting hIntL-1 Bound Bacteria From a Human Fecal Sample 

   An identical protocol to what has been described for staining a human fecal sample was 

employed when the cells were to be sorted. Cells were sorted using FACS on a BD Aria II by the 

staff at the UW-Madison Carbone Cancer Center Flow Cytometry Core Facility with a nozel 

pressure of 70 pounds per square inch (PSI). The gating parameters were determined using an 

unstained sample, antibody only sample, and a sample stained in the presence of EDTA. The 

cells were gated in hIntL-1 fluorescence vs. a 710 nm filter with a 50 nm window excited by a 

488 laser. The cells were spit two ways and 1.5E6 cells were collected per tube. 

5.10.5 Sequencing the 16S rRNA gene from hIntL-1 bound sorted bacteria  

Bacteria isolated by FACS, and a control sample of input cells, were immediately returned to the 

Rey lab to prepare the samples for sequencing. The sorted cells were transferred to a 1.5 mL 

centrifuge tube, the original tube was washed extensively. Cell pellets were stored at -80 °C until 

processed. The genomic DNA was extracted from each sample by bead beating using standard 

protcols. The V3-V4 region of the 16S rRNA gene was amplified and sequenced by an Illumina 
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HiSeq at the UW-Madison Biotechnology Center Next Generation DNA sequencing facility. The 

data were processed by QIIME using the standard protocol (44). 

5.10.6 Lectin Binding to Fecal Microbiota 

 Fecal microbiota were prepared identically as described above. Fluorescein conjugated 

plant lectin were purchased from Vector Labs and assayed for binding at a concentration of 15 

µg/mL. Cells were stained in 20 mM HEPES (7.4), 150 mM NaCl, 10 mM CaCl2, 1 mM MgCl2, 

and 0.5 mM ZnCl2, 0.1 % BSA, and 0.05 % tween-20, or removal of all divalent cations and 

addition of 3 mM EDTA, in a final volume of 250 µL. Cells were stained for two hours at 4 °C, 

centrifuged, and resuspended in 1 mL of staining buffer. Cells were analyzed on a BD Accuri C6 

flow cytometer. A minimum of 50,000 events were collected under each condition. Data were 

processed using FlowJo software. 

5.10.7 hIntL-1 Binding to Human Immune Cells 

Whole human blood was obtained through collaboration with Mats Johansson in the 

Deane Mosher research group. To assay lectin binding to the surface of immune cells, 100 µL of 

whole blood was diluted in 400 µL 20 mM HEPES (pH 7.4), 150 mM NaCl, 0.1% BSA, 0.05% 

Tween-20 and either 10mM CaCl2
 or 3 mM EDTA. For assaying hIntL-1 binding, untagged 

hIntL-1 was expressed in suspension HEK293T cells and secreted hIntL-1 was purified on an 

immobilized sorbitol resin. Purified hIntL-1 was labeled using an activated Alexa Fluor® 647 nm  

fluorophore according to the manufacturers guidelines (Life Technologies; cat. no., A20186) and 

assayed at 5 µg/mL. Cell populations were determined by staining with anti-human CD14:PE 

(BD Biosciences, cat. no., 555398) and anti-human CD45::FITC (BD Biosciences, cat. no., 

555482) according to the manufacturers suggested protocol. Cell populations were gated using 
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side scatter vs. anti-human CD45::FITC staining. Staining was allowed to proceed for 1 hour at 

room temperature with occasional gentle vortexing. Cells were centrifuged at 1200 RPM and 

washed three times with the HEPES buffer. Cells were then resuspended in BD Lysing Solution 

(BD Biosciences; cat. no., 349202) to lyse the red blood cells and fix the remaining primary 

immune cells. Samples were centrifuged, resuspended in the HEPES buffer, and analyzed on a 

BD Accuri C6 at the University of Wisconsin-Madison Biophysics Instrumentation Facility. A 

minimum of 50,000 events were collected under each condition. Data was processed using 

FlowJo software. 

5.11 Contributions 

 Bacterial strains were cultured and verified via 16S rRNA sequencing by Robert Kerby. 

Robert Kerby also developed the method for isolating genomic DNA from sorted bacteria and 

performed the library preparation for Illumina sequencing. The samples were sequenced by the 

UW–Madison Biotechnology Center. Sequencing data was processed by Robert Kerby with 

assistance from Julia Kreznar. Lucas C. Zarling analyzed hIntL-1 binding to immune cells. 
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A1.1 Abstract 

  In Chapter 2 of this thesis I reported the identification of small molecule inhibitors of the 

UGM enzyme from the nematode Caenorhabditis elegans. Within the phylum Nematoda lie 

many parasitic species that represent pests of crops, livestock, and humans. Expressed sequence 

tag (EST) analysis from several parasitic species suggests that UGM enzymes are found in many, 

and may represent a novel point for therapeutic intervention. The free living nematode C. 

elegans has been used as a model organism for studying processes such as development, cell 

signaling, and neuron function. Here, I employed C. elegans to assay the effect of compound 2.3 

on nematode viability and cuticle integrity.  Using RNA interference (RNAi) technology, a 

sodium hypochlorite sensitivity assay, a proteinase K degradation assay, and lectin staining of 

whole nematodes, a minimal effect of compound addition to culture was observed. Based on the 

robust enzyme inhibition measured in vitro, I hypothesize the lack of in vivo efficacy is the result 

of low permeability of the small molecule, and/or rapid metabolism by C. elegans detoxification 

enzymes (i.e. oxidases and UDP-glucuronosyltransferases). Results described herein will be 

valuable in directing future chemical biology studies into nematode cell surface glycoslyation. 
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A1.2 Introduction 

 The phylum Nematoda is composed of both free living and parasitic organisms. While 

many free living species reside in the soil where they consume and shape microbial communities 

(1), half of the nematode species are predicted to be parasitic. Parasitic nematodes infect plants, 

livestock, and humans, and collectively cause billions of dollars in economic loses and have the 

ability to infect an estimated 4 billion people worldwide (2,3). As resistance to current 

anthelmintics is increasing, interest in novel small molecule inhibitors that can modulate 

nematode viability, or recognition of nematodes by a host immune system are of intense interest 

(4-6). This has resulted in the approval and usage of ZOLVIX® (monepantel) in goats and sheep, 

the first broad spectrum anthelmintic brought to market since the 1980s (7). 

 In Chapter 2 of this thesis, I described the identification of compounds 2.3 and 2.4 as 

potent in vitro inhibitors of C. elegans UGM (Figure 2-7 & Table 2-2). I next was interested in 

the potential utility of these compounds in whole animals. C. elegans is an attractive laboratory 

model because of its genetic tractability, it is amenable to RNAi gene knockdown (8,9), is easy 

and cost effective to culture, and is transparent (10). Additionally, C. elegens has been used 

extensively as a model of helminth biology (11,12). Prior work has explored the biosynthesis and 

biological roles of nematode glycoconjugates both analytically and biologically using C. elegans 

(13-15).  

 Recently, CeUGM gene, glf-1, was studied in C. elegans (16). This revealed many 

important clues toward the potential role of Galf in nematode biology, and provided a foundation 

for my chemical biology studies. First, CeUGM was visualized to hypodermal cells, with robust 

expression observed in seam cells. Hypodermal cells and seam cells are responsible for synthesis 
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of a thick, multilayered collagenous cuticle, and a collection of loosely associated 

glycoconjugates termed the glycocalyx (17,18). The cuticle and glycocalyx are responsible for 

protecting the worm from, and interacting with the environment. Interestingly, although not 

entirely surprising based on it’s expression localization, deletion or knock-down of glf-1 resulted 

in structural defects in the cuticle, enhanced binding to the glycocalyx by E. coli cells, 

compromised cuticle integrity, increased surface staining by lectins, and a roughly 90 % decrease 

in viability. These results suggest an essential role for Galf in C. elegans biology, but to date, 

Galf has yet to be identified in any nematode glycan. We were interested in using compounds 2.3 

and 2.4 as chemical probes of Galf in nematodes. We hypothesized that upon addition to C. 

elegans culture, we could recapitulate the defects first reported using genetic tools in Novelli et 

al (16). Compounds 2.3 and 2.5 were added to C. elegans culture and their effect on viability, 

resistance to proteases and sodium hypochlorite (bleach), and changes in surface glycosylation 

were assayed. While my results suggest that the 2-aminothiazole based small molecules 

described here may not be effective for inhibiting UDP-Galf biosynthesis in nematodes, they 

provide chemical leads for future small molecule development and describe assays useful in 

measuring their effectiveness. 

A1.3 glf-1 Knockdown Reduces Cuticle Stability 

 A potential role for Galf in nematode biology was first described in 2009 by Novelli et al 

(16). Using RNAi targeted to glf-1 (19), and deletion of chromosomal glf-1, the authors suggest 

that CeUGM and its product, UDP-Galf, perform an essential role in nematode viability and 

resistance to chemical stresses. I first attempted to reproduce these results and assay the effect of 

glf-1 knockdown in wild type N2 C. elegans using a similar sodium hypochlorite sensitivity, and 
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proteinase K sensitivity assays. For these assays, I employed the Ahringer Lab RNAi E. coli 

strain expressing glf-1 from a T7 promoter, and a control RNAi E. coli strain. Adult worms were 

added to a solution of sodium hypochlorite and sodium hydroxide and the time required for 

worm lysis was recorded. While wild-type N2 and the RNAi control worms lasted roughly 90 

seconds in the solution, glf-1 RNAi C. elegans lysed after an average of 30 seconds (Figure A1-

1A). As a second assay of cuticle stability and resistance to environmental stress, I optimized a 

proteinase K based protease resistance assay. Similar to the sodium hypochlorite sensitivity 

assay, knockdown of glf-1 using RNAi substantially decreased resistance to degradation by 

proteinase K (Figure A1-1B). These data are in agreement with what has been published 

previously and suggest a role for Galf in nematode resistance to environmental stresses (16).  

 

Figure A1-1. Depletion of glf-1 decreases C. elegans resistance to environmental stress. (A) 
Resistance to oxidative stress is attenuated when glf-1 is knocked down using RNAi by E. coli 
feeding. n = 10 adult worms for each condition. Error bars represent the s.d. of the mean. This 
result is representative of greater than three independent experiments. (B) Resistance to 
extracellular proteases is also decreased when glf-1 mRNA is depleted. 15 adult worms were 
used at the initiation of the experiment for each condition. Worms were scored visually each 15 
minutes using a microscope.  

A1.4 Treatment of C. elegans with Compounds 2.3 and 2.5 
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 Based on the in vitro results from Chapter 2 and the assays described above that suggest 

an essential role for CeUGM in nematode biology, we were excited to assay compounds 2.3 and 

2.5 in whole C. elegans. To do so, I added stock solutions of compound dissolved in DMSO to 

either C. elegans liquid culture or nematodes cultured on NGM agar. Initially, addition to liquid 

culture was used, although interference with the sodium hypochlorite and proteinase K assay 

under those growth conditions were observed. Ultimately, compound addition to molten NGM 

agar was used and the effects were assayed under standard growth conditions. The level of 

DMSO was limited to 0.5% for all the experiments as DMSO appeared to alter worm physiology 

at higher concentrations. Compound 2.3 was used as an inhibitor of CeUGM, and compound 2.5 

was included as a scaffold control. Both were added to NGM agar plates at concentrations of 25 

µM, 50 µM, 100 µM and 200 µM. Above those concentrations, precipitation of the compounds 

in the agar medium was observed. Addition of either compound, or the DMSO solvent control, 

did not appear to visually effect the viability, motility, or reproductive capability of C. elegans 

(data not shown). This lack of an apparent phenotype is in contrast of what we hypothesized 

based on the RNAi results (16). 

 I then characterized small molecule treated worms using the sodium hypochlorite 

sensitivity assay and the proteinase K degradation assay. Using both assays, the addition of 

compound 2.3 failed to phenocopy the results from knockdown of glf-1 (Figure A1-2). The 

addition of DMSO appeared to alter the cuticle. I hypothesize this may have been through 

upregulation of collagen synthesis or collagen crosslinking. These results suggest that the 2-

aminothiazole based inhibitors described in Chapter 2 may not be useful in whole nematodes. 
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Also, these data suggest that DMSO as a small molecule vehicle may be problematic when 

assaying cuticle and glycocalyx stability in C. elegans. 

 

Figure A1-2. Small molecule treatment of wild-type C. elegans does not phenocopy the results 
using RNAi and genetic deletion. (A) Treatement of wild-type N2 C. elegans with compound 2.3 
does not enhance sensitivity to oxidants. Compound 2.5 was used as a scaffold control. n = 3-7  
adult worms for each condition. Error bars represent the s.d. of the mean. This result is 
representative of at least two independent experiments. (B) Resistance to proteinase K is not 
altered upon treatment of N2 C. elegans with compound 2.3. 12-17 adult worms were used at the 
initiation of the experiment for each condition. The worms were scored visually each 15 minutes 
using a microscope. The relative portion of intact nematodes remaining at each time point is 
presented. 

A1.5 Lectin Staining of C. elegans Treated with Compound 2.3 

 Another phenotype described with the deletion of glf-1 was increased binding of soluble 

lectins to the surface of the nematode (16). We hypothesized that detection of changes in surface 

glycosylation may be a more direct output of small molecule inhibition of CeUGM. For this, I 

chose to stain intact C. elegans using ConA, an α-D-mannose and α-D-glucose specific plant 

lectin originally isolated from jack-beans. Wild-type C. elegans have very low binding by lectins 

and examples of specific binding are limited. In agreement with previous reports, when glf-1 is 

knocked down, surface binding to Con A increases (Figure A1-3). This result suggests an 
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alteration to the surface coat or glycocalyx of the nematode. When wild-type C. elegans were 

treated with 200 µM of compound 2.3, only faint surface staining was observed (Figure A1-3). 

Phenotypically, this resembled more of a wild-type like stain than a nematode whose glf-1 was 

depleted. These lectin staining results, combined with the above assays of cuticle integrity 

suggest that compound 2.3 cannot enter the necessary nematode cells and inhibit CeUGM to 

elicit a similar effect as RNAi knockdown. 

 

Figure A1-3. Surface staining of intact C. elegans with the plant lectin Con A. C. elegans, either 
wild-type, wild-type fed glf-1 expressing RNAi E. coli, or wild-type treated with compound 2.3 
were stained with the mannose/glucose specific lectin Con A. All images were processed 
identically using Image J. These images are representative of multiple analyzed nematodes. 

A1.6 Staining C. elegans with hIntL-1 

 In Chapter 2 I highlighted the proposed importance of Galf metabolism in nematodes. 

Based on the expression localization of glf-1 and the observed phenotypes when glf-1 was 

knocked down or deleted, we postulate that Galf is localized to surface glycoconjugates. Within 

Chapter 4 of this thesis I described the characterization of the human lectin, hIntL-1 (20). 

Additionally, hIntL-1 has been reported to be upregulated in mammals upon intestinal nematode 

infection (21,22). If Galf is localized to the surface of nematodes, hIntL-1 should bind to the 

surface of C. elegans, and binding should specifically decrease after knockdown of glf-1. 
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 Human IntL-1 conditioned mammalian cell culture medium was used to stain both wild-

type N2 and N2 C. elegans subjected to glf-1 knockdown via feeding. hIntL-1 did not bind to 

wild-type worms, but bound robustly when glf-1 was decreased (Figure A1-4). Initially, we were 

surprised by this result, however examples of lectin binding to wild-type C. elegans are very 

limited. This is likely due to selection for decreased antigenicity of the nematode surface coat to 

assist in immune evasion. I hypothesized that the ligand of hIntL-1 seen when glf-1 was depleted 

may be a surface glycolipid or protein. To test this, I also stained glf-1 RNAi C. elegans in the 

presence of the detergent Triton™ X-100. Addition of Triton™ X-100 removes surface 

glycolipid ligands and proteins not covalently bound (16). Addition of the detergent decreased 

hIntL-1 binding to the surface of the nematode (Figure A1-5), although binding was still 

observed. This result suggests that in glf-1 depleted cells, the surface of the nematode is altered 

which leads to hIntL-1 binding exocyclic diol ligands present in surface ligands both covalently 

and notcovalently attached to the cuticle. Another explanation is glf-1 knockdown results in 

significant cuticle and glycocalyx remodeling that exposes neoepitope hIntL-1 ligands. It would 

be interesting to screen hIntL-1 binding to a nematode glycan microarray in an attempt to 

identify its molecular targets. A nematode array may be generally useful as nematode 

glycoconjugates are postulated to modulate the host immune response and effect immune 

evasion (23).  
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Figure A1-4. Surface staining of intact C. elegans with hIntL-1. C. elegans, wild-type N2, wild-
type fed glf-1 expressing RNAi E. coli, or wild-type fed a control RNAi were stained with hIntL-
1 conditioned mammalian cell culture medium. Bound hIntL-1 was detected using a polyclonal 
antibody and a fluorescent secondary. No detergents were including under these staining 
conditions. All images were processed identically using Image J. 

 

 

Figure A1-5. Addition of Triton X-100 detergent attenuated hIntL-1 binding to the surface of 
glf-1 knockdown C. elegans. Triton X-100 was included to assay if a lipid is functioning as the 
hIntL-1 ligand in glf-1 RNAi treated nematodes. The image was processed using Image J. 

A1.7 Conclusions 

 While the in vitro protein activity assay suggested that compound 2.3 would be an 

effective inhibitor of CeUGM, I was unable to recapitulate the phenotype of genetic knockdown 

or deletion of glf-1 (16). Despite this, several important results were derived from this work. 

First, the use of DMSO as a solvent appears to be incompatible with assays of cuticle and 

glycocalyx stability. This is evidenced by the increase in the time it takes the nematode to lyse 

when treated with DMSO vehicle and the increased error bars of all samples that include DMSO 
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(Figure A1-2A). Even visually, the nematodes appear altered. This suggests that in future 

chemical biology experiments to assay inhibition of enzymes localized to seam cells and 

involved in cuticle biosynthesis, the use of other solvents is advised (i.e., ethanol). 

 While the exact reason for the failure of 2.3 in whole animals is unknown, I hypothesize 

it is due to some of the functional groups of the molecule. Certain functional groups are known 

to have deleterious effects on small molecules efficacy. One example of this is the inclusion 

Michael-acceptors that are attacked by cellular thiols (24). Conjugate addition by nucleophiles 

within the reducing environment of a cells results in lowering the effective concentration of the 

small molecule inside the cell. Another example is the propensity of anionic groups, such as 

phosphates or carboxylates, to inhibit a compounds ability to cross a cell membrane and enter the 

cell (25,26). In the process of this work, a study on the effects of different functional groups on 

C. elegans small molecule uptake and efficacy was published (27). This study highlighted the 

difficulty in treating C. elegans with small molecules, as less than 10% of 1,000 drug-like 

compounds failed to accumulate inside of the nematode to appreciable concentrations. Another 

key finding was that the presence of a carboxylate functional group is the single best predictor of 

a compound that cannot accumulate within a nematode. The carboxylate is thought to 1) prevent 

efficient cell membrane permeability, and 2) be highly prone to glucuronidation and 

inactivation/export (27,28). We suspect that this is happening to compound 2.3. We propose 

modifying the existing structure to test these possible mechanisms; the carboxylate could be 

protected via formation of an ester bond, removing the anionic nature of the molecule until 

uptake by the nematode, or a functional group of similar sterics and electronics could replace the 

carboxylate altogether. If the second is performed, maintaining and anionic nature is likely 
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essential for small molecule binding, but removal of the oxygen atoms is suggested to help 

prevent glycuronidation and export. 

 Lastly, I stained C. elegans with hIntL-1, a human lectin specific for exocyclic 1,2-diol 

containing ligands such as Galf. Knockdown of glf-1 actually resulted in enhanced binding of the 

lectin to the surface of the nematode. When detergent was included in the staining procedure, 

hIntL-1 binding was markedly decreased and became punctate. This suggests that a hIntL-1 

ligand may be detergent sensitive, such as a glycolipid or glycoprotein only loosely associated 

with the glycocalyx. Future experiments toward identifying Galf in a nematode glycan could 

employ hIntL-1 in a far-Western blot of C. elegans lysates, or use hIntL-1 to enrich ligands for 

mass spectrometry and analytical chemistry analysis (29).  
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A.1.8 Methods 

A1.8.1 C. elegans Culture 

 Wild type N2 C. elegans were obtained from the laboratory of Judith Kimble (University 

of Wisconsin–Madison, Department of Biochemistry) and maintained on either Nematode 

Growth Medium (NGM) agar plates or in liquid culture at 22 °C (30). On plates, a small lawn of 

E. coli OP50 was used as a food source. When cultured in solution, a small amount of OP50 

culture was added. Worms were maintained every 3-5 days by transfer of 5-10 hermaphrodites to 

a fresh NGM agar plate. 

 RNAi via E. coli feeding was used to knockdown glf-1 (31). Bacteria expressing glf-1 

RNA (H04M03.4) and a control E. coli stain were obtained from the Ahringer Lab collection(8). 

The RNAi E. coli stain from the Vidal lab collection was also obtained and similar results were 

observed upon feeding (GE Healthcare; cat. # RCE1182-202297092). The E. coli were cultured 

in LB supplemented with 50 µg/mL carbenicillin and 12.5 µg/mL tetracycline. RNA 

transcription was induced with the addition of 1 mM IPTG to NGM agar growth plates. C. 

elegans were passaged consecutively onto RNAi plates at least three times prior to being used to 

assay for glf-1 knockdown.  

A1.8.2 Small Molecule Treatment of C. elegans 

 To treat C. elegans with compounds 2.3 and 2.5, serial dilutions of compound dissolved 

in DMSO were used to maintain the level of DMSO constant at 0.5 %. 0.5 % DMSO was used as 

a solvent control. Compounds were added to liquid agar just prior to addition to a 24-well plate. 

The plates were allowed to cool and a small lawn of E. coli OP50 was added. Three 

hermaphrodite worms were added to each plate. Each compound was assayed at concentrations 
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of 25 µM, 50 µM, 100 µM, and 200 µM. Worms were cultured at least three days prior to 

assaying. 

A1.8.3 Sodium Hypochlorite Sensitivity Assay 

 To assay for cuticle integrity, a sodium hypochlorite sensitivity assay was performed 

similarly as described (16). A fresh solution of sodium hypochlorite (available chlorine 10-15%; 

Sigma Aldrich; cat. # 425044), 1 M NaOH, and water was prepared immediately before each 

assay at a volume:volume ratio of 1:1:5. Ten µL of this solution was spotted onto a glass cover 

slip, and to that one C. elegans was added. The reaction was monitored through a microscope 

and the time required for each nematode to lyse was recorded. For wild type N2 and RNAi 

control nematodes, lysis usually occurred at the mouth or anus, while CeUGM RNAi nematodes 

typically fractured in half, extruding their entire abdomen. 

A1.8.4 Proteinase K Sensitivity Assay 

 To assay for cuticle integrity, a protease sensitivity assay was performed similarly as 

described(16). To a solution of 3 mM CaCl2, proteinase K (New England Biolabs) was added to 

a final concentration of 2 mg/mL. Adult worms, 12-25, were added and the number of intact, 

living worms was monitored every 15 minutes.  

A1.8.5 Lectin Staining 

 C. elegans were removed from plates by washing with 50 mM HEPES (pH 7.4), 150 mM 

NaCl, 10 mM CaCl2, 1 % bovine serum albumin, and 0.5 % triton-X 100. Worms were stained in 

the HEPES solution with the addition of lectin, 50 ug/mL ConA:biotin (Vector Labs) or 

conditioned hIntL-1 mammalian expression medium, at room temperature for two hours. The 

animals were washed and lectin was detected with Streptavidin::Alexa Fluor 555 nm (Life 
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Technologies) or a sheep anti-hIntL-1 polyclonal antibody (R&D Systems) and a donkey anti-

sheep IgG Alexa Fluor 555 nm (Life Technologies). In the hIntL-1 stained sample lacking 

detergent, the Triton X-100 was omitted. Animals were washed two times and fixed in a solution 

of PBS plus 4 % formaldehyde for 30 minutes at room temperature. They samples were washed, 

mounted onto a 2 % agarose pad, and mounted to a cover slip with Fluoromount G. C. elegans 

were imaged on an Olympus IX81 microscope using a Hamamatsu digital camera. Images were 

processed identically using Image J. 

A1.9 Contributions 

Elizabeth M. Huffman synthesized and characterized the small molecules 2.3, 2.4, and 

2.5.  
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