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Preface

Pursuing a PhD is often described as a long and solitary journey. While this characterization
holds some truth, it fails to capture the richness and complexity of the path, marked not
only by intellectual rigor, but also by transformation, self discovery, and personal growth.
Over the course of my doctoral studies, I evolved from a theoretically inclined student into
a more well rounded researcher capable of tackling real world computational challenges.
Confronting the ambiguity and intricacy of practical problems taught me to abstract away
physical and semantic fuzziness to reveal their essential structure. This shift in perspective
profoundly shaped my approach to research and to life, fostering a greater comfort with
uncertainty and a deeper appreciation for empirical grounding.

Curiosity has always been central to my intellectual identity. As an undergraduate, I
was driven by a desire to understand the world at its most fundamental level. This led
me to explore a diverse range of disciplines, including biology, psychology, philosophy,
mathematics, and computer science. My natural inclination toward reductionism motivated
me to search for unifying principles that connect seemingly disparate fields. Over time,
language emerged as a common thread. As both a medium for thought and a carrier
of knowledge, it became a focal point in my academic exploration. This realization led
me to study linguistics, analytic philosophy, and computer science in depth, particularly
to understand the expressive and computational power of formal systems. This path
ultimately brought me to programming languages research, though my work continues to
reflect the theoretical computer science foundation I received during my training.

The past decade has witnessed tremendous progress in artificial intelligence, first
through the success of convolutional neural networks in computer vision, and more recently
with the emergence of transformer based language models. My initial research in artificial
intelligence involved deep neural networks, and one of my first substantial projects focused
on estimating Lipschitz constants of neural networks using semidefinite programming.
While theoretical in nature, the project was motivated by empirical observations, and

taught me a lesson echoed in the writings of many scientific pioneers: meaningful theory
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is often guided by practice. That realization became one of the most memorable eureka
moments of my research journey.

In more recent years, the field has shifted dramatically toward large language models,
which have exhibited remarkable general capabilities across domains. This marks a
paradigm shift in the landscape of computer science research. As a programming language
researcher, I find the linguistic behaviors of these models both exciting and deeply thought
provoking. While earlier neural networks presented unresolved theoretical challenges,
language models introduce new questions about structure, generalization, and meaning. I
have become especially interested in how we can cultivate their capabilities and what their
increasing fluency and precision imply about intelligence, interpretation, and the future of
humanity.

As someone who studies language formally, I have also come to use language as a
tool to interpret the world around me. At the beginning of my PhD, research felt like a
collection of static symbols, mathematical expressions, theoretical constructs, and code,
awaiting meaning. Over time, as I engaged more deeply, these symbols became dynamic
and saturated with personal experience. The semantics of research, the lived reality of
discovery, gradually filled in the gaps left by syntax alone. This transformation extended
beyond academia. Words and symbols in everyday life have acquired more nuance, and
I have become increasingly attuned to the fluid and contextual nature of meaning. As
the title of this dissertation suggests, I believe the core of research is interpretation. It is
the process of understanding how dynamic semantic structures evolve and interact. This
perspective has allowed me to study systems that solve problems not in binary terms, but
incrementally and flexibly, across a spectrum of difficulty.

I have come to see research as an activity that demands the willingness to try everything,
knowing that failure is often part of the process. Progress is rarely linear. It is shaped
by getting things wrong, by returning to the same questions, and by learning through
missteps rather than immediate success. What matters is not avoiding failure, but refusing
to give up or give in, and recognizing that reaching an apparent end is often the moment
to begin again with deeper understanding.

These reflections would not have been possible without the people who supported and
shaped my growth. I am deeply grateful to my advisor, Somesh Jha, for granting me the
intellectual freedom to explore widely and for sharing conceptual insights that shaped
my thinking beyond any specific project. I also owe a great deal to my former advisor,
Benjamin Liblit, whose enthusiasm for empirical research, sense of humor, and intellectual

playfulness profoundly influenced my early development. One of his memorable projects,
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a C program that hijacks compiler constructors and destructors, remains one of the most
ingenious pieces of code I have encountered.

I would also like to thank Thomas Reps, Aws Albarghouthi, Yudong Chen, and other
faculty at UW-Madison for their mentorship and encouragement. Whether through rigorous
critique, quiet support, or a willingness to entertain speculative ideas, each contributed
meaningfully to my growth as a researcher.

I am grateful to my collaborators and academic friends: David Brown, Jordan Henkel,
Goutham Ramakrishnan, Earlence Fernandes, Thomas Kobber Panum, Gautam Prakriya,
Zifan Wang, Vijay Bhattiprolu, Jihye Choi, Ke Wang, Bin Hu, Aaron Havens, Alexandre
Araujo, Yang Zheng, Divyam Anshumaan, and Ashish Hooda. From each, I have learned
immensely, both technically and personally.

I also thank my peers in the MadPL group: Zhicheng Cai, Jinman Zhao, Calvin Smith,
Jason Breck, Samuel Drews, Qinheping Hu, John Cyphert, Anvay Grover, Yuhao Zhang,
Jialu Bao, Anna Meyer, Amanda Xu, and Abtin Molavi. Their companionship made the
long years of graduate school not only stimulating but joyful.

I reserve a special thanks for my close friend and long time collaborator, Shiwei Weng.
Our friendship, which began in high school and has spanned countless discussions about
programming languages, linguistics, literature, sociology, and life, has been a constant
source of inspiration and support.

Finally, I owe everything to my parents. As I have grown older, my understanding
of our relationship has deepened. What was once defined by authority has become one
rooted in empathy, complexity, and gratitude. They have always given me the freedom to
pursue my intellectual passions without pressure or demand, and for that I am profoundly
thankful.

I am also grateful to the many past versions of myself, the ones who stayed curious,
persisted through frustration, and continued forward even when the path felt uncertain.
Their resilience made this dissertation possible.

To all of you, thank you.



Abstract

This dissertation develops a unified programming—language perspective on modern Al
systems through three principles: interpretation, duality, and incremental computation.
These principles provide semantic and structural tools for understanding how neural
networks and large language models behave, how their behaviors can be represented, and
how difficult optimization problems surrounding them can be made tractable.

The first contribution establishes an Interval Universal Approximation (IUA) theorem:
networks with squashable activations can approximate interval semantics over input sets,
extending classical pointwise approximation. We further show that high-precision interval
range approximation is As—intermediate, revealing fundamental limits for interval-based
abstractions.

The second contribution develops an algebraic interpretation of neural networks by
encoding their computations as polynomial constraint systems. This representation
supports geometric and optimization-based analyses, including semidefinite relaxations for
global Lipschitz bounds derived via Lagrangian duality, clarifying the expressive boundary
of quadratic encodings.

The final contribution introduces incremental methods for solving difficult optimization
problems through structured trajectories of easier ones. We present a first-order incremental
solver that refines spectral-product estimates into SDP-quality Lipschitz certificates, and
a functional homotopy method for discrete input optimization—such as jailbreak prompt
synthesis—that smooths the search landscape via a sequence of weakened model checkpoints.
Both methods demonstrate how incremental computation bridges semantic complexity
and practical algorithm design.

Together, these contributions show how semantic structure, dual formulations, and
incremental computation form a coherent framework for analyzing and shaping the behavior

of neural networks and language models.
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Chapter 1

Introduction

1.1 Motivation: Reasoning About AI Systems

Over the past decade, machine learning with neural networks has transformed the landscape
of computation. From computer vision [32] to natural language processing [42], and even
to program analysis tasks [45], neural networks now serve as the computational backbone
for a vast range of applications. Yet, while these systems have demonstrated remarkable
empirical performance, our ability to formally analyze, reason about, and predict their
behavior remains limited.

This dissertation seeks to bring the lens of programming language theory—in particular,
its principles of interpretation, duality, and incremental computation—to bear
on this challenge. The core thesis is that neural networks and modern Al models can
be understood not merely as statistical artifacts but as programmable, compositional,
and algebraic structures. Doing so allows us to reinterpret verification, robustness, and

adversarial optimization as forms of program reasoning.

1.2 Interpretation: From Pointwise to Set-Based and

Symbolic Semantics

A foundational result in neural network theory is the universal approzimation theorem [24,
14], which states that a neural network with a single hidden layer can approximate any
continuous function to arbitrary precision. While this theorem is pointwise in nature,
real-world applications often require reasoning about sets of inputs, not just individual

points.



This motivates a shift from standard input-output semantics to interval semantics—a
form of abstract interpretation [12] that enables reasoning about robustness to pertur-
bations. In this setting, each input feature is modeled as an interval, and the network is
interpreted over the space of such intervals. This yields provable robustness properties,
provided the network’s interval semantics are sufficiently precise [20, 50].

The first part of this dissertation establishes a generalization of the universal approxima-
tion theorem to interval semantics: the Interval Universal Approximation Theorem
(IUA). We show that for a wide class of activation functions (which we call squashable
functions), neural networks can approximate the set-valued (or collecting) semantics of
any continuous function over compact domains to arbitrary precision. This deepens the
theoretical foundation of interval-based verification and answers an open question about
the expressive power of interval arithmetic in neural networks [5].

Beyond interval-based interpretation, this dissertation also introduces a second, alge-
braic mode of interpretation. In contrast to the interval perspective, this view treats the
internal operations of neural networks—Ilinear transformations, activation functions, and
compositions—as symbolic algebraic objects. This algebraic interpretation framework
allows verification problems to be encoded as algebraic expressions over symbolic variables.
These expressions can then be relaxed and solved using tools from optimization, such as
quadratically constrained quadratic programs (QCQPs) and SDPs. This symbolic-alge-
braic encoding plays a central role in the measurement and certification of global network

properties, such as Lipschitz continuity.

1.3 Duality: Logical, Functional, and Optimization

Perspectives

Across multiple chapters, this dissertation makes essential use of duality as a unifying
conceptual device.

In the TUA theorem, we encounter quantifier duality, where the alternation between
existential and universal quantifiers governs the complexity of range approximation. By
negating each quantifier, we transition between falsification and certification—naturally
leading to min—max formulations and connections with the polynomial hierarchy. We prove
that approximating the range of a neural network to high precision is a As-intermediate
problem, situated above NP and coNP.

In the analysis of Lipschitz constants, duality arises through optimization theory.

After encoding verification as an algebraic problem, we relax it using convex duality and



interpret the resulting semidefinite program as a geometric bound on network behavior.
The Lagrangian dual perspective reveals tight connections between symbolic verification
and spectral geometry. Moreover, our SDP-based relaxations are closely related to Shor’s
classical relaxation for non-convex QCQPs [46], highlighting the importance of dual views
even in approximate analysis.

We also draw on functional duality—a correspondence between inputs and func-
tions—to address adversarial prompting in large language models. In this setting, we
study how the space of model parameters influences the distribution of vulnerable inputs.
By formulating adversarial objectives as functions over both inputs and parameters, we

construct joint functionals that allow us to exploit duality for more tractable optimization.

1.4 Incremental Computation: Approximation as a

Trajectory

The third foundational principle of this dissertation is incremental computation: the
idea that complex computational problems can be solved through a structured progression
of simpler, approximate stages. Rather than solving a target problem in its full complexity
upfront, incremental computation solves a sequence of related problems, each slightly
closer to the final objective. These intermediate problems are designed to be easier to
solve and to serve as stepping stones, enabling convergence through refinement.

This principle manifests throughout the dissertation as a strategy of constructing
problem trajectories—paths in problem or parameter space—such that the solution to one
instance naturally informs the next. Formally, the trajectory is often realized through
continuous transformations (e.g., homotopies) or monotonic refinements (e.g., in constraint
relaxation or spectral approximation). The key insight is that while the target problem
may be computationally intractable, intermediate approximations can be both tractable
and informative, enabling efficient progress toward a final solution.

In the context of Lipschitz constant estimation, we apply this principle by reformulating
semidefinite programs (SDPs) as nonsmooth eigenvalue optimization problems. This
reformulation enables the use of first-order subgradient algorithms that incrementally
refine coarse spectral norm estimates into tight SDP-based bounds. The trajectory here
moves from efficient but loose heuristics to increasingly accurate relaxations, ultimately
achieving certified estimation at a scale suitable for deep models such as ResNet or

ImageNet classifiers.



We adopt the same incremental principle in the design of the functional homotopy
method for adversarial input generation in language models. Here, the core challenge
is combinatorial: optimizing discrete token inputs to induce undesired model behavior.
Rather than optimizing over discrete inputs directly—a problem that is NP-hard—we
instead define a continuous trajectory in the space of model parameters. By perturbing
parameters to produce misaligned intermediate models, we induce a sequence of increasingly
difficult optimization problems over the input space. The adversarial input is adapted
incrementally, starting from a weakly aligned model where attack success is easy, and
transferring step by step toward the original well-aligned model. This design can be seen as
a form of curriculum-based adversarial optimization, in which both the objective function

and the attack trajectory are learned simultaneously through continuous approximation.

1.4.1 Dissertation Contributions and Organization

This dissertation develops a unified programming-language perspective on modern Al
systems, organized around three foundational principles: interpretation, duality, and
incremental computation. These principles recur across the technical chapters and connect

four primary research threads, each based on a published paper.

Interpretation: Interval and Algebraic Semantics. The first strand of contributions

develops semantic lenses for neural networks and language models.

» Interval interpretation and constructive approximation (Part II, Chapters 5
to 7 Building on classical abstract interpretation, we introduce an interval semantics
for feedforward networks and prove an Interval Universal Approximation (IUA) the-
orem: any continuous target function in the universal approximation class admits a
network whose interval semantics d—approximates the target’s collecting semantics. We
construct such networks explicitly using squashable activations and precisely quantify
approximation error. We then show that high—precision interval range approximation is
As—intermediate, strictly harder than both NP and coNP under standard assumptions,
clarifying the inherent complexity gap between pointwise and interval-level guarantees.
These results are based on our POPL 2022 paper on interval universal approximation

and range hardness.

« Symbolic and algebraic interpretation (Part III, Chapters 8 and 9). We
move from intervals to a precise algebraic semantics by symbolically unfolding net-

works into systems of quadratic constraints. Verification and robustness questions



become first—order properties over the reals, yielding a uniform encoding framework for
adversarial reachability, global sensitivity, and Lipschitz—style properties. This symbolic-
algebraic view underpins the semidefinite relaxations and approximation guarantees
developed in Part III.

Duality: Logical, Functional, and Optimization Views. The second strand

exploits duality as a unifying conceptual tool.

» Logical and range dualities (Part II, Chapter 7). The IUA development exposes
a quantifier duality between falsification and certification tasks, leading naturally to
min—max formulations and a descriptive—complexity characterization of range approx-
imation as a Ag—intermediate problem. This clarifies why the constructive interval
approximators exist, yet can be computationally hard to synthesize or certify at fine

precision.

« Optimization and geometric duality (Part III, Chapter 9). After encoding
verification tasks algebraically, we apply convex duality to derive semidefinite relaxations
for global Lipschitz constants. These SDPs admit constant—factor guarantees via
Grothendieck—type inequalities and have a clear primal-dual interpretation: Shor’s

relaxation corresponds to Lagrange-multiplier LMIs over slope-restricted activations.

« Functional duality for adversarial prompting (Part IV, Chapter 11). For
jailbreak attacks on LLMs, we introduce a functional duality viewpoint in which both
model parameters and token sequences are treated as arguments of a joint functional.
This leads to a parameter—space homotopy that trades a single hard discrete search

problem for a sequence of easier related problems over progressively weaker models.

Incremental Computation: Trajectories in Problem Space. The third strand
develops incremental methods that follow structured trajectories from coarse to precise

analyses.

» Incremental refinement of spectral bound (Part III, Chapter 10). We present
LipDiff, a first—order algorithm for semidefinite relaxations of global Lipschitz constants.
LipDiff starts from an analytical spectral initialization and incrementally refines bounds
via nonsmooth eigenvalue updates, preserving certificate validity at each iterate. This
realizes an incremental computation over SDPs: intermediate solutions remain sound

while monotonically improving precision.



« Homotopy optimization for jailbreak synthesis (Part IV, Chapter 11). We
extend incremental computation from convex relaxations to discrete prompt optimiza-
tion. The functional homotopy (FH) method constructs a trajectory in parameter
space by “de-robust—training” an aligned model into a sequence of weaker checkpoints,
then solving a chain of prompt-optimization subproblems along this path. We show
the NP-hardness of model-agnostic input generation, analyze the limited value of
token—gradient heuristics in the discrete regime, and demonstrate that FH yields more
effective and efficient jailbreaks than GCG, GR, and AutoDAN on several open-source
LLMs.

Organization of the Dissertation.  The remainder of the dissertation is organized as

follows.

o Part I (Chapters 1 to 4). Chapter 1 motivates the programming-language viewpoint
on neural networks and LLMs and introduces the three principles of interpretation,
duality, and incremental computation. Chapter 4 surveys the major technical tools
used throughout: descriptive complexity, abstract interpretation, symbolic execution,

universal approximation theorems, Lagrangian duality, and semidefinite relaxations.

o Part II (Chapters 5 to 7). Chapter 5 develops interval semantics for neural
networks and states the ITUA theorem. Chapter 6 proves the constructive approxi-
mation theorem. Chapter 7 establishes that precise interval range approximation is

As,—intermediate.

o Part III (Chapters 8 and 9). Chapter 8 introduces algebraic encodings of neural net-
works. Chapter 9 develops semidefinite relaxations and constant—factor approximation

guarantees for global Lipschitz bounds.

o Part IV (Chapters 10 and 11). Chapter 10 presents LipDiff as an incremental
semidefinite solver for global Lipschitz bounds. Chapter 11 presents functional homotopy

as an incremental path method for LLM jailbreak synthesis.

Together, these two chapters instantiate incremental computation in both discrete and

continuous settings.

Together, these parts instantiate the three principles in distinct but connected settings,
illustrating how programming-language ideas can be used to interpret, analyze, and

incrementally approximate the behavior of modern Al systems.



Chapter 2

Notation and Mathematical

Preliminaries

This chapter summarizes the mathematical conventions and foundational tools used
throughout the dissertation. The results in later chapters draw on ideas from logic,
topology, functional analysis, algebraic geometry, and convex optimization, and the
purpose of this chapter is to establish a consistent and self-contained notation system
that will support the remainder of the technical development. Although the material is
standard, the organization reflects the needs of subsequent chapters, particularly those

emphasizing interval semantics, algebraic encodings, and incremental optimization.

2.1 Sets, Logic, and Linear Algebra

e Vzr € S and dx € S denote universal and existential quantification, respectively.

Logical negation is written —P.

e min, f(z) denotes the minimum value of f, and argmin, f(x) the set of minimizers.

Analogous notation applies to max and arg max.

o [n] ={1,2,...,n} is the set of the first n positive integers. We work over the real

numbers R by default.

« R, =10,00) denotes nonnegative reals, Z, positive integers, and N = {0} UZ the

nonnegative integers.

« A matrix A € R™*" has entries A;;; symmetric matrices A € S" satisfy A" = A.



o For v € R", diag(v) denotes the diagonal matrix whose diagonal entries are those of

v. The identity matrix is I,, = diag(e,) where e, = (1,...,1).

These conventions support the algebraic network encodings and semidefinite formula-
tions developed in Parts IIT and IV.

2.2 Topology

o Inputs are vectors z € R"; functions are maps f : R” — R™.

« A metric space is a pair (X,d) with X C R” and d : X x X — R satisfying

nonnegativity, symmetry, and the triangle inequality.

o Continuity of f : X — Y requires that small changes in x lead to small changes in

f(z), formalized via e~ definitions.

A homotopy between functions fy and f; is a continuous deformation H : X x [0, 1] —
Y with H(-,0) = fy and H(-,1) = f;. Homotopies later inform the construction of

functional trajectories in Chapter 11.

e A map f is Lipschitz continuous with constant K if dy (f(xs), f(x1)) < K dx(z2,z1).
Lipschitz constants play a central role in robustness analysis and in the incremental
semidefinite method of Chapter 10.

2.3 Functional Analysis

e A functional is a map ¢ : R" — R. The dual space (R™)* is the set of all linear
functionals. Evaluating a function at a point is itself a functional, providing a basic

instance of the functional dualities discussed in Chapter 11.

« Vector norms ||v||, = (3; [v:]?)'/? induce metrics and support notions of continuity

and approximation. The ¢ norm is Euclidean; /., is the maximum norm.

 The operator norm |[|Al|,-, = maxy|,—1 |[[Az|, quantifies how a matrix distorts

space and underlies Lipschitz constants of neural networks.

e The inner product (u,v) = ¥, u;v; and the Frobenius inner product (A, B)p =
tr(AT B) are used extensively in the SDP relaxations in Chapter 9.
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« A matrix A is positive semidefinite (PSD), written A = 0, if z" Az > 0 for all z.
PSD matrices form the feasible region of SDPs.

e By(z,e) = {y | |ly — ||, < €} denotes an ¢, ball. When p is omitted, context

determines the default.

« For p > 1, its Holder conjugate ¢ satisfies 1/p+1/q = 1.

2.4 Differentiation and Gradients

e For f: R — R, the derivative is

fa) — i LEED) = @),

h—0 h

o For f:R"™ — R, the partial derivative with respect to x; is

mf@‘i‘h@i)_f(x)'

h—0 h

o The gradient is the vector of partial derivatives:

of o]
Ory’ 0z, |

Vi) = |

o For f:R"™ — R™, the Jacobian J;(z) collects partial derivatives %. For scalar-
J

valued f, the Hessian H(x) is the matrix of second derivatives. These derivatives

are central to first- and second-order optimization, including the gradient-based

methods contrasted with functional homotopy.

2.5 Algebraic Preliminaries

« Variables represent unknown quantities. A monomial is a product of variables with

nonnegative integer exponents.

o A polynomial is a finite linear combination of monomials with real coefficients. A

polynomial is quadratic if each monomial has degree at most two.

« Quadratic functions can be written as 'Qz + 2b"z + ¢ with Q symmetric. Such
expressions form the backbone of the quadratic encodings of neural networks in Chap-
ter 8.
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o A set is semialgebraic if it is a finite Boolean combination of polynomial equalities
and inequalities. Many neural-network components—ReLU, max pooling, Group-

Sort—admit semialgebraic descriptions.

2.6 Optimization: Objectives and Constraints
We consider constrained optimization problems of the form

min f(z) st. gi(z) <0 (i=1,...,m), hj(x)=0(=1,...,k),

zeX
where f is the objective and g;, h; are inequality and equality constraints.

Quadratically Constrained Quadratic Programs (QCQPs).  These optimize a

quadratic objective subject to quadratic constraints:
mxin ! Az + ngx +co st ox A+ 2biTx +¢; < 0.

Quadratic formulations arise naturally from the algebraic encodings in Part III.

Semidefinite Programs (SDPs).  These are convex problems over PSD matrices:

min(C, X)r s.t. (A, X)p=0b;.

X0

SDPs play a central role in the Lipschitz analysis of neural networks and motivate the

incremental first-order method developed in Chapter 10.
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Chapter 3

Neural Networks as Programs:

Testing and Verification

This chapter explores the perspective of treating neural networks and language models as
programs and studies their behavior under the lens of program testing and verification. It
introduces foundational testing and verification concepts, discusses neural networks and
language models from both informal and formal perspectives, and highlights adversarial
robustness and jailbreak attacks. We conclude by formalizing the associated verification

and attack problems as optimization problems.

3.1 Testing and Verification: From Software to Al
Systems

Program testing aims to identify concrete inputs that cause a system to exhibit undesirable,
incorrect, or unintended behaviors—commonly referred to as bugs. This process is empirical
in nature: it provides evidence of failure by demonstrating counterexamples but cannot
guarantee their absence. Verification, by contrast, seeks to provide formal guarantees
that such inputs do not exist under a given specification. That is, it attempts to prove
that a program or system behaves correctly for all inputs within a specified domain.
These two approaches—testing and verification—are fundamental in classical software
engineering, where they serve as complementary tools for ensuring correctness, reliability,
and robustness.

This distinction extends naturally to modern Al systems, especially those based

on deep learning. Testing of Al models involves identifying specific adversarial inputs,
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distributional failures, or decision inconsistencies that violate expected behavior. In
adversarial learning, for example, testing takes the form of crafting perturbations or prompts
that induce misclassification or policy failure. Verification, on the other hand, involves
proving properties of models—such as robustness, fairness, or bounded outputs—under all
admissible inputs, often through formal analysis or relaxation techniques. These guarantees
are particularly important in safety-critical settings such as autonomous driving, medical

diagnosis, or legal reasoning, where empirical performance alone is insufficient.

Quantifier Duality.. At the heart of the distinction between testing and verification

lies a fundamental logical duality:
Testing: 3z € X such that P(x) fails, Verification: Vz € X, P(z) holds.

This quantifier duality captures the tension between finding counterexamples (existential)
and establishing universal correctness. In practice, many Al verification problems reduce
to the negation of a testing claim: proving that no adversarial inputs exist within some
bounded domain amounts to discharging a universal quantifier. Conversely, every failed
verification attempt typically yields a test case—a constructive witness to the failure. This
interplay highlights a deeper duality not just in methodology, but in the logical structure
of reasoning about computation. One may view verification as generalized testing over
infinite domains, and testing as failed attempts to falsify a verification claim. Much of
this dissertation operates within this logical tension, exploiting structural properties to

reduce verification to tractable testing instances, or vice versa.

3.2 Neural Networks as Parameterized Programs

Deep learning systems, particularly neural networks and large-scale language models,
have transformed numerous application domains including computer vision, natural lan-
guage processing, robotics, and scientific computing. These models achieve remarkable
performance by learning complex, high-dimensional functions from data, often surpass-
ing traditional hand-engineered solutions. Despite their empirical success, their internal
behavior and generalization properties remain difficult to characterize analytically.

From a formal perspective, neural networks can be interpreted as parameterized
numerical programs whose semantics arise from their structure (e.g., layers, activations,
attention blocks) and from optimization-based training procedures. Although they are not
constructed via explicit code in the traditional sense, their behavior can still be analyzed

using tools from programming languages, logic, and formal methods. This abstraction
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allows us to apply concepts such as interpretation, compositionality, symbolic execution,
and approximation to reason about neural computations systematically.

Mathematically, a neural network defines a function f, : R* — R™, where p € R?
denotes the parameter vector (e.g., weights and biases) and x € R" is the input. The
output f,(z) may represent a predicted class, a regression output, or—for more complex
tasks—a structured object such as an image or sequence. The network’s semantics are
thus determined not only by its architecture but also by the learned parameters p, which
encode data-dependent inductive biases shaped through training.

Language models, particularly autoregressive transformers, extend this functional view
by incorporating sequential structure and probabilistic inference. These models can be
formalized as stochastic or deterministic programs that map finite sequences of tokens to
distributions over the next token. Formally, given a token sequence x = (z1,...,2¢), a
language model defines a conditional probability distribution P,(z¢y1 | 21.) computed via
a forward pass through the model parameterized by p. Generation proceeds iteratively:
each new token is sampled (or decoded deterministically) based on prior context and
updated memory states. This iteration defines a stateful computation with both functional
and generative semantics.

Crucially, viewing neural networks and language models as parameterized programs
opens the door to formal reasoning—verification, interpretation, and abstraction—pre-
viously reserved for traditional code. Throughout this dissertation, we leverage this
perspective to apply principles from programming language theory to the analysis, ap-

proximation, and verification of learned systems.

3.3 Adversarial Robustness and Jailbreak Attacks

Neural networks and language models are known to exhibit vulnerabilities to carefully
constructed inputs that cause them to produce erroneous, unexpected, or even harmful out-
puts. In the image domain, such vulnerabilities manifest as adversarial examples—inputs
that are visually or semantically indistinguishable from valid data but lead to incorrect
classifications or decisions. These perturbations, often constrained by an £, norm to ensure
imperceptibility, exploit the local linearity or high sensitivity of the model’s decision
boundary.

In the context of language models, related concerns emerge in the form of jailbreak
attacks. These are specially crafted prompts designed to circumvent alignment constraints

or safety filters, prompting the model to generate outputs that would otherwise be
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prohibited, such as hate speech, misinformation, or instructions for illegal activities. Unlike
adversarial attacks in continuous domains, jailbreak attacks operate over discrete token
sequences, making the optimization problem combinatorially harder and often requiring
more sophisticated or indirect methods.

These phenomena pose a serious challenge to the integrity, safety, and trustworthiness
of modern Al systems. They highlight the gap between training-time objectives and
deployment-time behaviors, revealing a lack of robustness in the face of adversarial or
out-of-distribution inputs. Moreover, they expose the limitations of current alignment and
safety mechanisms, particularly in large-scale language models deployed in open-ended
environments.

Understanding and formalizing adversarial vulnerabilities within the framework of
programming languages and formal methods provides a principled lens for analysis. From
this viewpoint, such attacks correspond to finding inputs that drive a program (the model)
into failure modes or undesirable execution paths—analogous to test cases that expose
bugs in traditional software. By adopting this perspective, we can leverage tools such as
symbolic reasoning, optimization, verification, and abstraction to analyze and strengthen

the behavior of Al systems under adversarial conditions.

3.4 Formal Structures of Neural Network Programs

Neural networks and language models can be viewed as parametric computational programs,
with architectures composed of layers and semantics derived from forward execution
over learned parameters. This structural interpretation forms the foundation for formal

reasoning, verification, and adversarial analysis.

3.4.1 Neural Network Architecture

A neural network defines a parameterized function f, : R* — R™ as a composition of

layers:
fo(@) = L(- - La(Ly(@;p1);p2) - -+ 5 Pk,

where each L; is typically an affine transformation followed by a nonlinearity, and p; denotes
its trainable parameters (weights and biases). The total parameter vector p = (p1,...,px)
defines the learned function over the input domain.

Common activation functions include:

e ReLU: ReLU(z) = max(0, z),
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1

[ Singid O'(ZE) = jp—

« Softmax: softmax(z); = ﬁ
J

Modern architectures incorporate structural enhancements such as residual connections,
attention mechanisms, normalization layers, and convolutional modules. These design
patterns enhance expressiveness and trainability across domains such as vision, language,

and control.

3.4.2 Classification Models

In classification tasks, the neural network outputs a vector of logits f,(x) € R™, interpreted

as unnormalized scores for each class. The predicted label is then computed as:

g(x) = arg max fp(2);.

During training, the logits are often normalized via softmax, and the network is optimized
to minimize cross-entropy loss against the true class labels. This decision rule induces a
piecewise-linear decision boundary, whose geometric and algorithmic properties are central

to many verification and adversarial robustness problems.

3.4.3 Autoregressive Language Models

Autoregressive models, such as transformer-based language models, generate text one
token at a time by modeling conditional distributions. Given a prefix = = (x1,..., 1)

from a vocabulary V), the model outputs:
P(xisq | 21, .., 2¢) = softmax(f,(x)),
where f,(z) returns logits over V, and generation proceeds via:
Tep1 = argmax fo(x)y.

This process continues autoregressively, with the output at each step appended to the
input sequence. The language model thus behaves as a stateful probabilistic program,
where transitions are governed by learned parameters and prefix context. These structural
and probabilistic features are crucial for modeling alignment and designing jailbreak

attacks.
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3.5 Optimization Formulations

The robustness and security of neural systems can be analyzed through the lens of formal
optimization. A central concern in classification is the existence of adversarial examples:

perturbed inputs 2’ = x + § satisfying

16l <€ and  §(2') # §(x),

where §(z) = arg max; f,(x);. These inputs expose the model’s vulnerability by inducing

incorrect outputs despite being close to natural examples under some norm. The underlying

issue lies in the fragility of the learned decision boundaries in high-dimensional spaces.
More broadly, many verification, testing, and alignment problems can be formulated

as optimization tasks. These include:
o Adversarial robustness testing:
Az’ € B(x,e) : §(2) # §(x),
where the goal is to find a perturbation that causes misclassification.

e Formal verification:
Va' € B(z,e) : g(a’) = g(x).

This universally quantified condition asserts that the prediction is invariant under

norm-bounded perturbations.

o Jailbreak prompt synthesis:

IE%i?mpt fp (x) ’

where f,(x) is an alignment or safety score evaluated over a space of syntactically
valid prompts. Here, the objective is to generate inputs that induce harmful or

misaligned completions in language models.

These formulations unify the landscape of Al robustness under a common optimization-
based framework, spanning both continuous and discrete domains. They highlight the
interplay between logic (via quantifiers), geometry (via norm constraints), and semantics
(via output behavior). Addressing these problems often requires a combination of relaxation
techniques, abstraction layers, and incremental optimization strategies—core themes

explored throughout this dissertation.
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Chapter 4
Major Technical Tools

This chapter surveys the fundamental theoretical and computational tools that underpin

our approach. We organize the discussion into five key sections.

4.1 Descriptive Power and Complexity of Logical

Forms

A central theme in theoretical computer science is the connection between logic and
computation. Logical formulas—built from quantifiers, Boolean connectives, and arithmetic
predicates—provide a powerful framework for specifying computational problems. The
complexity of a problem often correlates with the structure of the logical formula that

defines it, particularly the number and alternation of quantifiers.

4.1.1 Descriptive Complexity and the Polynomial Hierarchy

Descriptive complexity theory formalizes this connection by associating computational

complexity classes with classes of logical formulas. Specifically:

« Problems definable by existential formulas of the form Jxq,... z ¢(xy,..., zx),

where ¢ is computable in polynomial time, correspond to NP.

 Problems definable by universal formulas of the form Vaq, ..., z ¢(x1, ..., xx), where

¢ is computable in polynomial time, correspond to coNP.

This relationship extends naturally to alternating quantifiers:

A(x) = 3y VyaTys - - Quyn V(T, Y15 - - - Yn),
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Figure 4.1: A diagram of the polynomial hierarchy, where arrows denote the inclusion

relationship

where (,, = 3 if n is odd and ),, = V if n is even, and v is polynomial-time decidable.
Bounding each quantified variable to be polynomial in the input size |z| yields the poly-
nomial hierarchy (PH), which generalizes NP and coNP. Each level of PH corresponds

to a family of polynomial-time Turing machines with alternating quantifiers.

Definition 4.1.1 (The 3; and II; classes). A language L is in 3; (NP) if there exist a

polynomial-time Turing machine M and a polynomial ¢ such that
e L < Ju € {01390 M (2, up) = 1.

Similarly, L is in II; (coNP) if there exist a polynomial-time Turing machine M and a

polynomial ¢ such that
e L < Yuy € {0,1}90D M (2, uy) = 1.
[ |

The hierarchy continues with alternating quantifiers, defining >; and II; families as

follows:

Y = {3uVuy - - Qrug : M(x,uy,. .., u;) = 1 for some poly-time M},
I = {Vu,Fug - - Quuy, : M(z,uq,...,u;) = 1 for some poly-time M}.

The hierarchy is believed to be strict: £ C £f,; unless it collapses at some level.

We focus on the first two levels of this hierarchy. Y, and Il are defined formally below.
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Definition 4.1.2 (The ¥, class). A language L is in ¥, if there exist a polynomial-time

Turing machine M and a polynomial ¢ such that
€L < Ju; € {0,110 vy € {0,1390D 0 M (2, uy,uy) = 1.
|

Definition 4.1.3 (The II;, class). A language L is in Il if there exist a polynomial-time

Turing machine M and a polynomial ¢ such that
zeL < Yu, € {0,130 Iy € {0,1390D M (2, uy,uy) = 1.
[ |

Definition 4.1.4 (The A, class). Ay = 35 N 1. [ |

Note that NP,coNP C A, since one can substitute an empty string for u; or wus

in Definitions 4.1.2 and 4.1.3. The polynomial hierarchy is the union of all ¥,, languages.

Definition 4.1.5 (As-intermediate language). A set of languages LL is Ag-intermediate if
NP UcoNP C L and L C As. [ |

Remark. By definition, Ay = II, N X5, and NP U coNP C A,. It is unknown whether
NP U coNP = A,. However, if coNP & NP as commonly believed, then NP C I whenever

L is As-intermediate.

4.1.2 From Quantifiers to Optimization

Quantifiers can be interpreted in terms of extremal optimization:
o Jy ¢(x,y) corresponds to max, ¢(x,y) when ¢ is Boolean-valued.
e Yy ¢(z,y) corresponds to min, ¢(z,y).

Thus, logical formulas with alternating quantifiers naturally correspond to multi-level

optimization problems, such as:

max min ¢(x, y1, y2),
v y2

where ¢ evaluates to 0 or 1 depending on whether a constraint is satisfied. This mirrors

strategic games and verification problems with adversarial or uncertain elements.
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Notes. The polynomial hierarchy can be viewed as a resource-bounded analogue of the
arithmetical hierarchy from computability theory, which classifies decision problems based
on unbounded quantifier alternation over natural numbers. However, the arithmetical
hierarchy involves semantic definitions over infinite structures (e.g., Peano arithmetic),
whereas the polynomial hierarchy restricts attention to finite strings with polynomially
bounded quantifiers.

Because the logical formulas used in PH describe finite structures and are bounded in
size, they are more amenable to algorithmic interpretation and verification. The concepts
from both hierarchies form the logical and computational backbone for characterizing

expressiveness and tractability in program analysis and Al verification.

4.2 Abstract Interpretation

Abstract interpretation is a general framework for soundly and approximately reasoning
about program semantics [12]. Instead of tracking exact program executions, it uses
abstract domains to represent sets of states in a tractable way. This allows scalable static

analysis while ensuring that results overapproximate real behaviors.

4.2.1 Concrete and Abstract Domains

Let C' denote the concrete domain of program states (e.g., P(R™)) and A an abstract
domain representing summaries (e.g., intervals, boxes, polyhedra). Abstract interpretation

connects them via:
o Abstraction a : C — A, mapping precise sets to safe abstract summaries.
o Concretization v : A — C, mapping abstract summaries to the sets they describe.
These maps define a Galois connection (C,C¢) % (A, Ch) if:
alc) Caa iff ¢ Co v(a).

This ensures that all behaviors of ¢ are contained in the interpretation of any abstract

element a above a(c)—guaranteeing soundness.

4.2.2 Soundness and Abstract Semantics

Soundness requires that all abstract operations safely overapproximate their concrete

counterparts. For example, an abstract transformer F# : A — A corresponding to a
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concrete semantics F': C' — C must satisfy:
F(c) € v(F*(a(c))).

This ensures that if the abstract semantics prove a property, it holds for all concrete

executions.

Notes. In general settings involving recursion or loops, program invariants are computed
using fixpoints of transfer functions, often accelerated via widening operators. These
techniques are essential for ensuring termination of abstract analysis over infinite ascending
chains. However, in this dissertation, we do not consider recurrent structures. Therefore,

fixpoint iteration and widening are not required in our applications.

4.2.3 Applications in Neural Network Verification

Abstract interpretation has been adapted to certify properties of neural networks—such
as output bounds under input perturbation—by propagating abstract input sets through
the layers of the network [20]. When using interval or zonotope abstractions, each layer
is transformed into an abstract transformer that overapproximates the reachable output
space.

In later chapters, we instantiate this framework using interval-based abstract domains
to verify the robustness of neural networks. Abstract interpretation in this setting serves
as a structured form of symbolic execution that trades precision for scalability while

preserving provable safety.

4.3 Linear Approximation and Lipschitz Regularity

A central question in adversarial robustness is whether a model’s output remains stable
under small perturbations of its input. That is, given an input x, does the model produce
nearly identical predictions for inputs 2’ &~ x7 This question centers on the local stability
of the learned function f, which can be studied using tools from analysis—beginning with

linear approximation.

4.3.1 Local Linear Approximation

Let f: R™ — R be a differentiable function. Around a point a € R", the first-order Taylor

expansion yields the linear approximation:

fla+ Az) = f(a) + Vf(a)" Az, (4.1)
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where V f(a) is the gradient of f at a and Ax is a small displacement vector. This
expression becomes exact when f is affine and serves as a local surrogate for general
smooth functions.

The approximation quality depends on two factors:
o The magnitude of the perturbation ||Az||;
o The curvature or nonlinearity of f in the neighborhood of a.

When Az is small and f does not change rapidly, the linear term dominates, and
the approximation is accurate. This forms the basis for gradient-based analysis of local

robustness.

4.3.2 Bounding Variation via Gradient Norms

Linear approximation suggests that the output deviation |f(a + Az) — f(a)| is governed
by the inner product V f(a)"Az. By Hélder’s inequality, this deviation can be bounded:

|[fla+Az) = fa)| < [[V(a)lly - [ Az,

where p and ¢ are dual norms (1/p + 1/q¢ = 1). This observation leads directly to a

quantitative notion of stability—Lipschitz continuity.

4.3.3 Lipschitz Continuity and Rademacher’s Theorem

Recall that a function f : R™ — R is said to be Lipschitz continuous with respect to the

¢, norm if there exists a constant Ly such that
|f(x) = f(@")| < Ly ||l —2'||, forall z,2’ € R".

Lipschitz continuity implies global control over the function’s sensitivity to input
perturbations. Crucially, Rademacher’s theorem justifies using gradients to characterize

this behavior:

Theorem 4.3.1 (Rademacher’s Theorem). If f : R" — R is Lipschitz with respect to {,,

then f is differentiable almost everywhere, and the Lipschitz constant satisfies:

Ly = sup |V £(2) |,

where q is the Hélder conjugate of p.
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Thus, in regions where f is differentiable, the gradient norm directly bounds how
much f can change. This insight allows us to transform robustness verification into a

gradient-based certification problem.

4.3.4 Implications for Robustness Certification

For adversarial robustness, the key goal is to certify that the output remains stable within

a bounded perturbation region B(z,¢) = {2 : |2’ — z||, < €}. If one can verify that:

sup ||V f(2)]l, <,
' €B(x,€)

then it follows that for all 2’ € B(z,€):

[f(2) = f@)| < 7-e

In classification, this bound can be used to certify that the predicted label does not
change within B(z,€), provided the margin between the top class and others is greater
than 7 - €. Hence, Lipschitz bounds and gradient norms offer both theoretical and practical

tools for certifying robustness in machine learning systems.

4.4 Algebraic Formulations of Decision Problems

Many verification and synthesis problems in Al can be naturally encoded as questions
about real-valued variables subject to polynomial equalities and inequalities. These lead to
a rich class of sets known as semialgebraic, which form the algebraic foundation of many

decision problems.

4.4.1 Semialgebraic Sets

A semialgebraic set in R™ is a subset defined by a finite Boolean combination (using A, V,

and —) of polynomial equations and inequalities. Examples include:
« {z eR"| P(z) =0},
« {zeR"[Q(z) >0},

o Finite unions and intersections of the above.
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Proposition 4.4.1 ([11]). Every semialgebraic set is a finite union of basic semialgebraic
sets of the form:

{z €eR" | P(z) =0,Q1(z) >0,...,Qu(z) > 0},

where P, Q); are polynomials with real coefficients.

Notes. A function is semialgebraic if its graph is a semialgebraic set. This includes
many activation functions used in neural networks, such as ReLU and piecewise linear

splines.

4.4.2 Model-Theoretic View and Decidability

From the perspective of logic and model theory, semialgebraic sets are precisely those
definable in the first-order theory of real closed fields, using formulas over the signature
Lrcr = {+,+,<,0,1}. This allows semantic reasoning about sets defined via polynomial

inequalities.

Theorem 4.4.2 (Tarski-Seidenberg Quantifier Elimination [47]). The first-order theory
of real closed fields admits quantifier elimination and is decidable. Consequently, any

definable set in this theory corresponds exactly to a semialgebraic set.

This foundational result implies that any logical formula over the reals involving
polynomial terms and quantifiers (e.g., 3z Yy P(x,y) > 0) can be algorithmically reduced
to an equivalent quantifier-free form. This underpins the decidability of many problems in

real algebraic geometry and formal verification.

Notes. Semialgebraic sets belong to the broader framework of tame topology, which studies
topological spaces that avoid pathological behaviors and exhibit finite geometric complexity.
These sets are closed under projection, possess finitely many connected components, and
behave predictably under logical operations. Their well-behaved structure makes them
ideal for formal reasoning, enabling powerful results from real algebraic geometry to be
applied in verification, optimization, and symbolic computation.

In later chapters, we will use these properties to justify the expressiveness and tractabil-
ity of formulations such as QCQPs, which define semialgebraic feasible regions encoding

properties of neural networks and their verification objectives.
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4.5 Lagrangian Duality and Shor’s Relaxation

Lagrangian duality.  Given a constrained problem:
min f(z) s.t. gi(z) <0, hj(z) =0,
we define the Lagrangian:
Lz, \v) = f(x)+ > Nigi(x) + > vihi(x),
and the dual problem is:

max inf £(z, A\, v).
A>0v

Under suitable regularity (e.g., Slater’s condition), strong duality holds and the
Karush-Kuhn-Tucker (KKT) conditions characterize optimality:

o Primal feasibility: g;(z*) <0, h;j(z*) = 0;

o Dual feasibility: \; > 0;

« Complementary slackness: \;g;(z*) = 0;

o Stationarity: V f(z*)+ > \;Vg(2*) + X v;Vh;(z*) = 0.

Semidefinite programming (SDP). An SDP has the form:
min(C, X) s.t. (4;, X) =10b;, X =0,
with dual:
mngvibi s.t. C'— ZUiAZ' > 0.
These convex programs are solvable in polynomial time via interior point methods [6].

Shor’s relaxation of QPs.  Let 27 Az + 2b”x + ¢ be a QP. Define:

1\ (1) b
X([E) = s Az = G ‘ .
Then the relaxed SDP is:
n}}n{<flo,X> (A, X) <0, X =0, Xy =1}
This lifting drops the nonconvex rank-1 constraint, enabling polynomial-time approxi-

mation of NP-hard problems such as MAXCUT [21].

Connections to geometry and approximation.  SDP relaxations link to Banach
space theory and have been used in approximability, hardness of approximation, and
cut norms [7, 30, 44, 1]. They now underpin many modern optimization and verification

techniques.
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Interval Universal Approximation
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This part develops the first major theme of the dissertation: interpretation, focusing
on how neural networks behave under set-based rather than pointwise semantics. While
classical universal approximation theorems articulate the expressiveness of neural networks
at individual inputs, many robustness, verification, and safety questions require reasoning
about regions of inputs—entire boxes of possible perturbations, uncertainty sets, or
abstract domains. This shift from pointwise semantics to interval semantics brings both
new expressive possibilities and fundamental computational challenges.

Interval semantics arises from abstract interpretation: instead of evaluating a network
on a concrete input x, one propagates an axis-aligned box B through the layers of the
network to obtain an overapproximation of all outputs reachable from any input in B. This
perspective underlies a wide range of robustness and verification techniques, especially for
(+, perturbations, where the uncertainty region around an input is itself a box. Despite its
practical appeal, little was previously understood about the theoretical limits of interval
semantics: What functions can neural networks represent under interval abstraction?
How does interval expressiveness compare with classical pointwise approximation? And,
crucially, what is the computational complexity of synthesizing or analyzing interval-
approximating networks?

Part IT answers these questions through the Interval Universal Approximation (IUA)
Theorem, which generalizes classical universal approximation to set semantics. We show
that for a broad class of squashable activation functions, neural networks can approximate
the collecting semantics of any continuous function over all input boxes to arbitrary
precision. The proof requires constructing networks whose abstract behavior matches
that of the target function—a substantially stronger requirement than matching pointwise
values.

The second half of the part investigates the computational limits of such interval
approximators. Leveraging the duality between d and V quantifiers, we show that the
fundamental range-approximation subproblem is As-intermediate and therefore strictly
harder than both NP and coNP unless the polynomial hierarchy collapses. This hardness
persists even for very small approximation tolerances (6 < 1/2) and even when the target
function is itself a neural network. These results explain why interval-based verification
methods often face precision bottlenecks: although interval approximators always exist,

computing them to high fidelity or even deciding their range is provably difficult.

Structure of Part II.  Chapter 5 introduces interval semantics and formalizes the
IUA theorem. It defines squashable activations, set semantics, and interval abstraction,

and states the positive universal approximation result. Chapter 6 provides a constructive
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proof of the IUA theorem, building networks from indicator-like components and carefully
controlling approximation error under interval semantics. Chapter 7 establishes the
computational hardness of interval approximation via reductions from SAT and its dual
forms, showing that range approximation is As-intermediate.

Together, these chapters develop interval semantics from first principles, clarify the
expressive power of interval abstraction, and delineate the inherent computational limits
of interval-based reasoning. They form the interpretive foundation for the subsequent

parts of the dissertation.
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Chapter 5

The Interval Universal

Approximation: Introduction

5.1 Motivation

A central notion in adversarial robustness is robustness to /., perturbations: for a given
input = € R”, a classifier f is said to be {,-robust at z if, for all ' € R" satisfying

|2" — z]|o < €, the predicted class remains unchanged:
arg max f(z); = argmax f(x);.
7 7

The lo ball Boo(z,€) = {a’ € R" | ||z’ — x| < €} defines an axis-aligned box centered
at x with side length 2¢. Thus, verifying /., robustness can be recast as bounding the
network’s output behavior over such a box.

Interval abstraction naturally aligns with this geometric structure. In particular, in-
terval domains have been widely adopted to overapproximate neural network outputs
under /., perturbations [20]. Within the framework of abstract interpretation, one propa-
gates abstract input sets—represented as intervals or zonotopes—Ilayer by layer through
the network. Each layer is equipped with an abstract transformer that conservatively
overapproximates its effect on the input set.

In this chapter, we investigate the theoretical power and limits of interval-based
abstract interpretation in this setting. Specifically, we introduce and analyze the interval
universal approximation theorem, which formalizes the representational capabilities of

interval abstractions in neural-network verification.
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5.2 Abstract Interpretation and Interval Abstraction

Abstract interpretation is a general methodology for reasoning about programs (or, in our
case, functions like neural networks) by computing over approximations of sets of values.
Rather than evaluating a function on a point, one evaluates it on an abstract set—such
as a box in R"—and overapproximates its image. We begin by formalizing this with the

notions of set semantics and interval domains.
Set Semantics. Let f:R"™ — R be a function and S C R™ a set. The set semantics
(or collecting semantics) of f is:

f(8)={f(x) | x e S}

Computing f(S) exactly is often intractable. The goal of abstract interpretation is to
compute an overapproximation N#(S#) that is guaranteed to contain f(S) while being

efficiently computable.

The Interval Abstract Domain. The interval domain approximates arbitrary sets in

R™ by axis-aligned boxes. A box is defined as:

B = ([ly,u1], .-, [lms um]),
where each interval [l;, u;] bounds the projection of S onto the ith coordinate:
a(S) = ([inf S;,sup S;)ir,, S;={z;|x€ S}
The concretization function ~ interprets an abstract box back into a concrete set:
v(B) ={x € R™ | ; < x; < u; for all i}.
Abstract Transformers. Given a neural network N composed of affine and nonlinear
layers, we define corresponding abstract transformers that operate on interval inputs. The

goal is to propagate abstract boxes through each layer to obtain an overapproximation of

the network’s output.

Definition 5.2.1 (Arithmetic Abstract Transformers). Let [l1, u1], [l2, u2] be one-dimensional

intervals and ¢ € R a constant. Define:

= ¢, (]

#
xf
(11, u1] +# 1, us)

= l1 + lg,ul + UQ}
[e, ]+ (1, u] =

=

(L, ws]
=

[

min(cl, cu), max(cl, cu)].
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Definition 5.2.2 (Abstract Transformer for Activation [20]). Let ¢ : R — R be a

monotonic activation function and [[,u] a one-dimensional interval. Then:

o ([l,u]) = [o (1), o (w)].
u

These definitions can be lifted to vector-valued functions by applying operations

elementwise.

Theorem 5.2.3 (Soundness of Interval Abstraction). Let B be a box in R™ such that
v(B) C dom(N). Then:
N((B)) € v(N*(B)).

This theorem guarantees that abstract transformers yield safe overapproximations of
the true network behavior. While this safety is essential for verification, it also raises
questions about the expressiveness and precision of the interval domain. In the next

sections, we formalize these concerns through the lens of universal approximation.

5.3 Squashable and Step Functions

The constructions in this section form the backbone of our main results: the Interval
Universal Approximation (IUA) theorem and the corresponding hardness results for range
approximation. These results rely on the expressiveness of neural networks with squashable
activation functions, which can approximate step functions—a key primitive for building
indicator functions, Boolean formulas, and encoding discrete logic within a continuous

framework.

5.3.1 Neural Networks and Grammar

We define neural networks as compositions of primitive arithmetic operations and a fixed

unary activation function o : R — R. Formally:
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Hidden layer 1
Input layer Hidden layer 2
Output layer

Figure 5.1: Layerwise representation of a typical feed-forward neural network consisting of
several hidden layers. Adjacent layers are connected through affine transformations (matrix
multiplications and bias additions), while activation layers apply non-linear functions,
enabling the network to model complex relationships.

Definition 5.3.1 (Neural Network Grammar). Let x = (z1,...,2,,) be the input vector.

A neural network A is defined inductively by:

where ¢ € R is a constant, z; is the i-th input, and o is a fixed activation function. [ |

This grammar captures standard feedforward networks and is expressive enough for
encoding logical circuits when paired with appropriate activations. The network can also be
visualized in its layerwise form, where each layer applies a nonlinear activation o, and adja-
cent layers are connected by affine transformations. An example is illustrated in Figure 5.1.
Common activation functions include sigmoid, ReLU, softplus, smoothReLU,, ELU, whose

definitions and shapes are shown in Figure 5.2.

5.3.2 Squashable Activation Functions

We now define a broad class of activation functions that generalize classical squashing

functions like sigmoid and tanh.

Definition 5.3.2 (Squashable Activation Functions). A function o : R — R is squashable
if:
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Activation functions that satisfy Equation (5.1)

0.5
—8—4 4 8
—4-2 2 4 —4-2/1 2 4 =1
1 2 . T
. . - _ _ Soft =
sigmoid(z) = Ty tanh(z) = = 1 oftsign () 1+ 7]
Activation functions that do not directly satisfy Equation (5.1)
1
0.5 2
—1-0.5 05 1 =1 123
z, x>0 . T, x>0
2
4% M‘v
—-2-1 12 -1 2 4
softplus(z) = log(1 + %) smoothReL Uy (z) = { x— gloglaz +1), >0,a>0
@ 0, x<0

Figure 5.2: Example activation functions. Smooth ReLU (smoothReLU,) is parameterized
by a > 0 (a =1 is plotted).

1. thereis a < b € R such that

lim o(z) = a, lim o(z) =0, and Vz<y.o(z)<o(y) (5.1)

T—r—00 T—r00

2. or a function ¢’ : R — R that satisfies Equation (5.1) and can be expressed
using the grammar in Definition 5.3.1 with copies of o. For example, o'(x) =
o(2xo(x) — o(x + 10)).

In other words, squashable functions are those that can construct, via a finite network,
a monotonic function with bounded limits in both directions. This allows them to

approximate step functions when composed and scaled.
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Proposition 5.3.3. Let 0 € { ReL U, softplus, smoothReLU,, ELU}. Then:
d(x)=0(l —o(—x))
is monotonic and bounded, hence satisfies the squashable condition.

Proof. Sketch: All listed functions are monotonic with finite left limits and diverge to
o0 as x — oo. The composition o(1 — o(—x)) is then increasing and bounded between

o(l—0(x)) =0(1—0o0) =0(—0) and o(1 — o(—o0)) = o(1 — const) < oco. O

This means ReLU, ELU, Softplus, and Smooth ReLLU all fall under our framework,

even though they are not squashing functions themselves.

5.3.3 Step and Indicator Functions via Squashable

Approximations

The step function:

1 ifxz>0
step(z) =
0 otherwise

is a building block for many logical and indicator constructions. For example:
step(z) — step(xz — 1)

represents the indicator function of the interval (0, 1].

Squashable activations can approximate step functions via dilation:

lim o(Ax) = step(x),

A—00

in the pointwise sense, when o is properly normalized. This idea is central to our

constructions in both the approximation and hardness proofs.

5.3.4 Boolean Logic Encoded by Networks

Neural networks with squashable activations can encode Boolean formulas over binary
variables z; € {0,1}:

e Negation: —x; ~ 1 — ;.

« Conjunction: z; A z; ~» step(x; + x; — 1.5).
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« Disjunction: x; V x; ~» step(z; + z; — 0.5).

These encodings can be composed recursively to represent full CNF or DNF Boolean
formulas. In later sections, we leverage this representation to show reductions from

satisfiability problems to network verification.

5.4 Interval Universal Approximation: Definition

The classical universal approximation theorem states that feedforward neural networks
with non-polynomial activation functions are dense in the space of continuous functions on
compact domains [24, 36]. That is, for any continuous function f : C' — R, where C' C R™
is compact, and any ¢ > 0, there exists a neural network A such that:

sup | f(z) = N(z)| <e.

zeC

This classical result concerns pointwise approximation. In contrast, the goal of this paper
is to study the approximation of the range of a function over sets—specifically, axis-aligned

boxes—motivated by interval analysis and abstract interpretation.

Interval-Based Approximation. Given a function f and an input set B C R™, we
are often interested in bounding the image set f(B) := {f(x) | x € B}. This is especially
relevant in robustness analysis, where B may represent all perturbations around an input
point.

In the context of neural network verification, we consider an abstract transformer
N#(B), which soundly overapproximates the output of a neural network A on the input
box B. Our goal is to find a neural network A/ such that N#(B) closely matches the range
f(B) of the true target function f.

Definition 5.4.1. [0-Interval Approximation| Let f : C'— R be a continuous function on
a compact domain C' C R™. A neural network N is said to d-interval approzimate f if,

for every axis-aligned box B C (', the following holds:
[min f(B) + §, max f(B) — 6] € N*(B) C [min f(B) — §, max f(B) + 4],
where N#(B) is the abstract interpretation (interval output) of A" on B. |

In words, N#(B) approximates the true range f(B) with additive slack § on both

lower and upper bounds (See Figure 5.3 for an illustration of d-interval approximation).
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min f(B) max f(B)
Y] <ot
- T . N#(B) 1 L >

Figure 5.3: Ilustration of J-Interval Approximation.

5.5 Positive Result: Existence of Interval

Approximators

We now show that interval approximation is always possible, provided the activation

functions are squashable.

Theorem 5.5.1 (Interval Universal Approximation). Let f : C — R be continuous
over compact domain C' C R™, and let o be a squashable activation function. Then, for
every 6 > 0, there exists a neural network N with activation o such that N §-interval

approximates f.

The proof is constructive (detailed in the next chapter): we use fine box partitions of
C, and approximate indicator functions for each box using squashable activations.

Informally, the theorem says that we can always find a neural network whose abstract
interpretation is arbitrarily close to the collecting semantics of the approximated function.
Note also that there exists such a neural network for any fixed squashable activation
function o.

The IUA theorem has very exciting implications: We can show that one can always
construct provably robust neural networks using any squashable activation function. The
robustness property, which states that small perturbations in the input result in the same
classification by a neural network, has been heavily studied recently, and the interval
domain has been used to prove robustness in a range of domains [20, 50, 2]. Our result
hints at a very close theoretical connection between robust neural networks and proofs

using interval-based abstract interpretation.
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5.6 Negative Result: Hardness of Interval

Approximation

Even though interval approximators always exist, they may not be efficiently constructible.
The hardness stems from the fact that approximating the range of a neural network (even

over simple boxes) is computationally difficult.

Definition 5.6.1 (Range Approximation Problem). Given a neural network A : [0, 1]™ —
[0,1] and & > 0, compute an interval [[,u] such that:

[min NV (x) + 9§, max NV (x) — 4] C [l,u] C [min N (x) — d, max N'(x) + 4].
|

Theorem 5.6.2. [Hardness of Range Approzimation] Let § < % The range approximation
problem is A¥-intermediate (recall that a AL -intermediate problem is harder than all
problems in NP and coNP, see Definition 7.0.4). In particular, unless P = NP, the problem

cannot be solved in polynomial time in the worst case.

The result follows by encoding logical constraints (e.g., satisfiability of 3SAT) as neural
networks and showing that even approximating the output range requires solving NP or

coNP-hard problems.

Relationship Between Range and Interval Approximation

The Range Approximation (RA) problem is a natural subproblem of the Interval Universal
Approximation (IUA) task. Whereas RA asks for approximate upper and lower bounds
of a fixed network over a single input box (typically [0, 1]™), IUA seeks to construct a
neural network N that, under interval abstract interpretation, approximates an arbitrary
continuous function f over all axis-aligned boxes B C [0, 1]™.

This distinction implies that ITUA is strictly harder than RA in multiple dimensions:

1. In RA, we only need f to be a neural network, while in A, we aim to approximate

any function;

2. In TA, we require the approximation holds for any B in the domain, while in RA, we
only need it holds for the domain [0, 1]™;
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3. In TA, we need to find a neural network that approximates f, but in RA, we do not
require any specific ways to find a,b. If one can find the d-interval approximation

neural network, abstractly executing the neural network will return a, b automatically.

Since RA is a special case of [IUA—mnamely, approximating a specific function f = N
over a fixed box—it follows that any efficient algorithm for TUA must also solve RA.
Therefore, our hardness result for RA implies a conditional hardness for [UA. In particular,
if RA cannot be solved in polynomial time, then neither can IUA, unless one restricts the

class of target functions or allows exponentially large networks.

Conclusion. This formal separation explains why interval-based reasoning about
neural networks is difficult in practice. Even though pointwise universal approximation is
classically easy (via standard neural construction theorems), achieving the same under
interval semantics—i.e., certified robustness over entire input regions—faces a fundamental

computational barrier.

Remark.  The key idea is that even though real neural networks are continuous-valued,
their expressive power mimics logic over {0, 1}, and approximating logical behavior (via

step functions) is sufficient to show computational hardness.
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Chapter 6

Interval Universal Approximation:

Constructive Proof

6.1 Proof of the IUA Theorem

We prove the Interval Universal Approximation (IUA) theorem stated in Theorem 5.5.1.
The central idea is to explicitly construct neural networks whose abstract interpreta-
tion—their behavior on input intervals—approximates the set semantics of a continuous
target function with arbitrarily small error. Our construction generalizes and streamlines
the ReL.U-based argument of Baader et al. [5] by exploiting squashable activation functions,
which enable smooth, tractable surrogates of indicator functions with provable bounds

under interval semantics.

Why interval approximation is stricter than pointwise. Classical pointwise
approximation often relies on indicator-like behavior over grid cells. Interval approximation
is strictly more demanding: it requires the abstract semantics of the network to approximate
the range of the function over any input box, i.e., the set of all outputs induced by all
inputs in that box. Consequently, the network must behave correctly on regions, not
merely on isolated points.

Two differences from the classical setting drive the technical work:

1. Naive gridding fails for boxes. For pointwise approximation, partitioning the
domain and assigning cellwise values suffices. For interval semantics, a single
input box may intersect multiple grid cells, and the output must conservatively
overapproximate the union of function values across all intersected cells. Baader

et al. [5] control this effect via an output-range slicing trick: they decompose the
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target into bands of nearly constant height and approximate each band separately,

thereby bounding the error uniformly across input boxes.

2. Interval abstractions invalidate pointwise indicators. A network that behaves
like an indicator pointwise may exhibit large or unsound intervals under abstraction.
Indeed, Theorem 5.6.2 shows that synthesizing interval-approximating networks can
be computationally hard. ReLU indicators built in Baader et al. [5] (following He
et al. [23]) are technically intricate and activation-specific. In contrast, our approach
uses the squashable functions of Section 5.3 to form smoothed indicators that are

easier to analyze and apply to a broader activation class, including ReLLU.

Structure of the proof.  The proof proceeds in three steps:

1. Using squashable activations, we construct smoothed “bump” functions that approx-
imate axis-aligned box indicators and prove that their interval semantics are well

behaved (Section 6.2).

2. We decompose the target f into narrow bands via a layered approximation scheme

and tile the domain by small boxes.

3. We sum the bump functions within each slice to obtain a neural network whose

abstract interpretation closely matches the function’s output range.

The resulting network A/ has abstract semantics N# that approximate the collecting
semantics of f within any prescribed tolerance §, thereby establishing the constructive
IUA theorem.

6.2 Approximating Indicator Functions

We formalize the construction of indicator surrogates using squashable activations. The
goal is a network that is near 1 on a given axis-aligned box and near 0 outside a small
neighborhood of that box—even when interpreted abstractly over input intervals.

Let C' be compact and consider an e-grid over C, i.e., a grid whose axis-aligned
neighboring vertices are at [.-distance €. Let G = [ay,b1] X - -+ X [am, by] be a grid-aligned
box (so each b; — a; is a multiple of €), and let G be the family of all such boxes. Define
the neighborhood

V(G) = [ag —€,by + € X -+ X [ay, — € by, + €.
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3 3 3t
1 1 1 G
—2-1 12 3 —2-1 1 23 —2-1 1 2
(a) 1-grid over R? (b) Three boxes in G (c) Box G & its neighborhood

Figure 6.1: A grid illustration

Our objective is an indicator-like function that is &~ 1 on G and ~ 0 outside v(G). This
grid-based idea parallels the nodal basis of He et al. [23]; see Figure 6.1 for an illustration.

We proceed in two stages:
1. Construct a one-dimensional approximate indicator ¢ via a squashable activation.

2. Combine the & to obtain an m-dimensional approximate indicator Ng for any
axis-aligned box G C R™.

We first build a 1D indicator for an interval using a squashable activation as in
Section 5.3. The main design choice is a dilation factor that preserves precision under
abstract interpretation.

By the TUA hypothesis, we are given a squashable activation o. Without loss of

generality we assume:

1. o satisfies Equation (5.1) (Definition 5.3.2):

lim o(z)=a, limo(x)=0>, and o(z)€ [a,b] Vr € R.

T——00 T—00

If necessary, Definition 5.3.2 allows replacing o by an affine rescaling ¢’ satisfying
Equation (5.1).

2. The left and right limits of o are 0 and 1, respectively; if not, an affine transformation

of the output enforces these limits.

Precision loss from asymptotic limits.  Although o has finite limits at both ends,
it typically never attains them (e.g., the sigmoid’s right limit is 1, but sigmoid(z) # 1 for
all x). Approximating a step thus incurs a controllable precision loss, which we bound
explicitly.

Dilation to realize a step surrogate. = We obtain step-like behavior by dilation. By

the definition of limits, we have:

Lemma 6.2.1. For every 8 > 0 there exists D > 0 such that:
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A

T —0.5¢ | 0.5¢

Figure 6.2: Precision loss § when using a squashable activation to approximate a step.

1. If x > D, then o(x) € (1 —0,1].
2. If © < =D, then o(x) € [0,0).

Because the grid size is €, we want the transition from ~ 0 to ~ 1 to occur within

width e. Let p be the dilation factor. Using Lemma 6.2.1, it suffices to ensure:
1. if > €/2, then o(puz) € (1 —0,1];
2. if © < —¢/2, then o(uz) € [0,0).

Thus p = 2D /e suffices.

Lemma 6.2.2. For any 6 > 0, let u = 2D /e where D is from Lemma 6.2.1. Then:
1 ifx>¢€/2, o(pz) € (1 —6,1];

2. if v < —¢/2, o(pzx) €10,0).

Example 6.2.1. Figure 6.2 visualizes the loss 0 incurred by the step surrogate. |

A 1D indicator on dimension i. =~ We now construct an indicator-like function for the
ith coordinate of a grid box G. Let the ith projection be [a;, b;]. Since G is grid-aligned,
b; — a; > €, and the ith projection of v(G) is [a; — €,b; + €]. We seek a function that is
~ 1 on [a;,b;] and ~ 0 on R\ [a; — €,b; + €]; loss within the neighborhood is unavoidable
because the construction cannot perfectly distinguish G from its immediate vicinity.

Taking a difference of two shifted step surrogates, define
o(x) = a<u<x+§—ai)> - a(,u(:r—%—bi)). (6.1)

Basic properties of 6.  The next lemmas show that & behaves like an indicator: it is
near 1 on [a;, b;], near 0 outside [a; — €, b; + €], and globally bounded by 1. We analyze the

two terms separately.
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/

(a) Architecture of Ng (constant shifts (b) Ng on G = [0,1]? with sigmoid, u = 10, 20 = 0.05,
elided). e=1.

Figure 6.3: Step 2: Neural construction of Ng.

Lemma 6.2.3. If z € [a;, b;], then:
1. o(p(r+e€¢/2—a;)) € (1—6,1],
2. o(pu(zr —e/2—=1b;)) €]0,0).
Lemma 6.2.4. If x < a; — €, then:
1. o(pu(zx+€/2 —a;)) €[0,0),
2. o(u(r —e/2—=10;)) €]0,0).
Lemma 6.2.5. If x > b; + ¢, then:
1. o(p(zr+€¢/2—a;)) € (1—6,1],

2. o(u(z —e/2— b)) € (1—6,1].

Abstract precision of 5.  We now bound the abstract interpretation of . Let 6% (B)

denote the abstract output interval for a 1D input box B.
Lemma 6.2.6. For any 1D box B:
1. 6%(B) C (—o0,1].
2. If BC (—o0,a; —¢€| or B C [b; + €,00), then 6%(B) C (—0,0).

3. If B C las, b], then 6% (B) C (1 —20,1].
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Approximating an m-dimensional indicator

We lift the 1D construction to m dimensions. Let G = [ay,b1] X -+« X [am, by] € C. If
x € G, then x; € [a;,b;] for all i. If x ¢ v(G), then there exists i with z; < a; — € or
x; > b +e.

Constructing Ng.  We seek a function with value ~ 1 on G and =~ 0 on C'\ v(G).
In multiple dimensions we do not know which coordinate, if any, witnesses being outside
v(G). The 1D indicators ¢ provide per-coordinate evidence; combining them and then
applying a step surrogate yields the desired multi-dimensional indicator.

Formally, define
No(x) = a(,u(Z: Hi(z;) + ;)) : (6.2)

where H;(z) = 6;(x) — (1 — 20) and &; is the 1D construction for the interval [a;, b;]. The
network in Figure 6.3a realizes Ng.

By design, >, H;(x;) is positive on G and negative on C'\ v(G). The constant shift
by (1 — 20) ensures negativity as soon as any coordinate is outside the neighborhood.

Applying o as a step surrogate then maps positive sums to =~ 1 and negative sums to = 0.

Example 6.2.2. Figure 6.3b plots Ng for x € R2. [ |

Abstract precision of Ng.  We analyze the abstract precision via the auxiliary terms
H;. For any box B C C, let B; be its ith projection.

Lemma 6.2.7 (Abstract interpretation of H;). For any box B C C':
1. If BC G, then ¥, HF (B;) C (0, 00).
2. If BC C\ v(G), then ¥, HY (B;) C (—o0, —¢).
The next theorem quantifies the abstract precision of Ng.
Theorem 6.2.8 (Abstract interpretation of Ng). For any box B C C':
1. NZ(B) C [0,1].
2. If BC G, then N (B) C (1—10,1].

3. If BC C\ v(G), then N (B) C [0,60).
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Proof. (1) By Equation (6.2), the outer map is o, whose range is [0, 1] by squashability
and the assumed limits. Thus N (B) C [0, 1].
(2)If B C G, from Lemma 6.2.7, we know that 7, H*(B;) C (0,00). Then,

SOHF(B) 4% (059% € (0,00 +% (05% € (0.56,00)

By Lemma 6.2.2, if z > €/2 then 1 — 0 < o(ux) < 1, so

NE(B) = o*(u# +* (5,00)) € (1-06,1].
(3) If B C C'\ v(G), from Lemma 6.2.7, we know that ™, H¥ (B;) C (—oo, —¢). Then,

m HE(Bi) +# (0.56)%  C (—o00,—€) +7# (0.5)*  C  (—00,—0.5¢)

By Lemma 6.2.2, if x < —¢/2 then 0 < o(puz) < 6, hence

NE(B) = a#(u# 7 (— 0, —%)) C [0,6).

O]

Complexity of the construction. A single m-dimensional indicator uses 2m + 1
activation evaluations, with depth 2 and width 2m. Under ReLU, this corresponds to
4m + 2 neurons with depth 4 and width 2m. For comparison, Baader et al. [5] require
10m — 3 ReLU units, depth 3 + log,(m), and width 4m.

6.3 Complete Proof of the IUA Theorem

We now complete the proof of the Interval Universal Approximation (IUA) theorem
by assembling the full neural network A/. In the preceding sections, we constructed
approximate indicator functions and established quantitative bounds on the precision of
their abstract interpretation (Theorem 6.2.8). Building on these results, we follow the
general framework of Baader et al. [5] for ReL.U-based networks, extending it to arbitrary
squashable activations. Because the latter approximate step functions only asymptotically,
they introduce an additional source of imprecision compared to ReLUs. To accommodate
this, we employ a finer partition of the target function’s range, using slicing granularity
d/3 instead of §/2 as in Baader et al. [5]. A detailed error analysis of this adjustment
is deferred to the supplementary material. Below, we outline the complete constructive

procedure for building N satisfying the IUA theorem.
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: 1.3 A 13 ] ¥
N BN/ b i
0.5 0.4 | \/_f 0.4 | o Y —— 0.4
123 45 123 45 123 45 123 45
(a) f(z) = sin(2z) +1 (b) Sliced f(x) (c) Example slice fy  (d) Example slice f3
Figure 6.4: Slicing f(x) = sin(2x) + 1 with approximation tolerance 6 = 1.2.
Slicing the target function. Let f : C — R be the continuous target function,

and let 9 denote the desired approximation tolerance, as specified in the IUA theorem
(Theorem 5.5.1). Without loss of generality, we assume min f(C') = 0.! Let u = max f(C),
so the range of f is [0, u].

Define 7 = §/3, and decompose f into a sequence of function slices f;, each taking

values within [0, 7]. Let K = |u/7]. The sum of these slices recovers f, i.e.,

K
f= ; fi-
Each slice f; : C' — [0, 7] is defined as:
f(x)—ir, ifir < f(x) < (i+ 17,
fix) =10, if f(x) <,
T, if f(x)> (1+1)r

Example 6.3.1. An illustration of the slicing procedure is provided in Figure 6.4, which
depicts the decomposition of f(x) = sin(2z) + 1 with 6 = 1.2. [ |

Approximating each slice.  For each slice f;, we construct a neural network N; that
approximates it using the indicator approximation Ng from Equation (6.2). Because C is
compact, the number of grid boxes |G| is finite. The normalized function I f;(x) behaves

similarly to the indicator of the set
Si={xeC|f(x)>(i+1)7},

which identifies regions where f(x) exceeds the upper boundary of the ith slice. To
approximate % fi(x), we consider all boxes G € G entirely contained in S; and construct

indicator networks to identify such boxes. Formally, define

Gi={Geg|f(G)>(+1)r}

f not, we can apply an affine shift to ensure min f(C) = 0.
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Then the neural network N is given by

09 = (i £ A9 -03) ).

Geg;

which outputs values close to 1 for x € S; and close to 0 otherwise.

Summing the approximations.  Since f = % f; and each N; approximates % fi

we define the final network as

N(x) = T%J\/}(x).

By construction, N approximates f within § under interval semantics. Therefore, N
satisfies the requirements of the Interval Universal Approximation theorem, completing

the constructive proof.
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Chapter 7
Hardness of Interval Approximation

This chapter investigates the computational complexity of constructing interval approxi-
mators. The previous chapter established a constructive Interval Universal Approximation
(IUA) result: for any continuous target in the universal approximation class, there exists
a neural network whose abstract interpretation é-approximates the function’s collecting
semantics. Here we show a complementary phenomenon: even when restricting to a single
network over the domain [0, 1]™, obtaining a guaranteed-quality interval (or even coarse
range) approximation is intractable. In particular, we prove a dichotomy: for tolerance
d > 1/2 the problem is trivial, whereas for 6 < 1/2 it becomes simultaneously NP-hard
and coNP-hard; under mild, standard assumptions (polynomial-time evaluability and

finite-precision inputs), the problem is As-intermediate.

7.0.1 The Polynomial Hierarchy

We briefly recall the fragments of the polynomial hierarchy needed in this chapter, which

was also defined in Section 4.1.1.

Definition 7.0.1 (NP and coNP). A language L is in NP if there exist a polynomial-time

Turing machine M and a polynomial ¢ such that
ze L < Jue {0,139V M(z,u)=1.
A language is in coNP if its complement is in NP, equivalently if there exist M, ¢ such that

ze L < Yuc {0,139V M(z,u)=1.
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Example 7.0.1. SAT (satisfiability of a Boolean formula) is NP-complete; TAUT
(tautology) is coNP-complete. |

We write ¥ = NP and II; = coNP. Higher levels alternate quantifiers:

Definition 7.0.2 (3, and Il,). A language L is in 3 if there exist a polynomial-time M
and polynomial ¢ such that

reL < Juy € {0,190 vy € {0, 13900 M (2, uy, uy) = 1.
Similarly, L € Il if
reL < Yu € {0,190 Juy € {0, 13900 M (2, uy, uy) = 1.
|
Definition 7.0.3 (As). Ay = Yy N Ils. [ |

Clearly NP, coNP C A, (by fixing an empty witness/adversary string). We recall that it is
open whether Ay = NPUcoNP; under the standard belief coNP & NP, any As-intermediate

class strictly contains NP but is strictly contained in As.

Definition 7.0.4 (As-intermediate). A collection of languages L is Ag-intermediate if
NP UcoNP CIL C A,. |

7.0.2 The Range Approximation Problem

We next formalize a basic decision/approximation task that captures the essence of interval
approximation at the domain scale. Throughout, we consider networks f : [0, 1]™ — [0, 1],

and by “polynomial time” we mean polynomial in m.

Definition 7.0.5 (d-range approximation). Let § > 0 and let f : [0,1]™ — [0,1] be a

neural network. Write

{ = i = .
i S = max f(x)

We say that we §-range approximate f if we produce a < b in [0, 1] such that

[6+6,u—0] C [a,b] C [(—35, u+d.
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This notion is strictly weaker than the d-interval approximation of Definition 5.4.1 in
three respects: (i) RA speaks about an ezisting network f (IA approximates an arbitrary
target function); (ii) RA concerns the whole domain [0, 1]™ (IA demands precision for
every input box); and (iii) RA does not require constructing another network—any valid
[a, b] suffices. Consequently, if RA is hard, then building a polynomial-time constructive
IA network is at least as hard.

We now state a precise dichotomy.

Theorem 7.0.6 (Dichotomy for d-range approximation). Let f : [0, 1]™ — [0, 1] be

a neural network with any squashable activation.
1. If o > %, then d-range approximation is trivial.

2. If < %, then d-range approximation is both NP-hard and coNP-hard. Moreover,
if f is polynomial-time evaluable and inputs have finite precision, then d-range

approximation is Nq-intermediate.

Proof sketch of (1). Taking a = b = 1/2 satisfies the inclusions since 0 < ¢ < u < 1 implies
u—0<1/2<u+dand { —§ <1/2 <+ § whenever 6 > 1/2.

We prove Item (2) in Section 7.1. The reduction encodes Boolean formulas by networks
with step-like activations; since squashable units approximate steps arbitrarily well, the

hardness transfers.

Implications. One might hope that approximate range computation is easier than
exact range computation (as happens for many NP-hard optimization problems [49]).
Theorem 7.0.6 shows a sharp threshold: either trivial or intractable, depending on §. In
particular, even a pointwise-accurate approximator N offers no easy path to an interval
approximator whose abstract semantics d-approximate the set semantics of Ny. This

underscores the nontriviality of ITUA despite the classical nature of UA.

7.1 Hardness of Range Approximation

We establish Item (2) of Theorem 7.0.6: for § < 1/2 and squashable activations, d-range
approximation is NP-hard and coNP-hard; with polynomial-time evaluability and finite
input precision, it is As-intermediate. We proceed in two stages. First, we analyze the
Boolean analogue (deciding the range of a Boolean formula). Second, we lift the result to

neural networks via reductions.
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7.1.1 Deciding the Range of a Boolean Formula
Let ¢ be a Boolean formula, and let R, C {0, 1} denote its range. Determining whether
R, = {0}, Ry = {1}, or Ry = {0,1} lies in Ay and is both NP-hard and coNP-hard.
Membership in A;.  We can express:
R, ={0} < Vz.¢(z)
R, ={1} <= Vz.¢(x)
R, ={0,1} <= dz,y.¢(x) =1A¢(y) =0.

0,
1

placing the problem in both >y and IIs.

Hardness. If we could decide R, we could decide SAT (whether R, # {0}) and
TAUT (whether R, # {0,1}). Hence the problem is As-intermediate.

7.1.2 Range Approximation for Neural Networks

We now show that the d-range approximation (RA) problem for neural networks inherits

this intermediate hardness.

RA is in A; (under mild assumptions).  We require that (i) f is polynomial-time
evaluable in m, and (ii) inputs have finite precision (hence exponentially many candidates).

Exact range equality

3z,y V. (f(@) = a A f(y) =bAf(z) DA f(2) > a) (7.1)

is expressible in both Y5 and Il (the universal z does not depend on z,y), so exact range

is in As; RA is no harder.

Lemma 7.1.1. Under polynomial-time evaluability and finite input precision, the d-range

approximation problem of Theorem 7.0.6 lies in Ay for 6 < 1/2.

NP- and coNP-hardness. We sharpen the result by reductions from 3SAT and
3DNF-TAUT. The key is to encode Boolean structure by networks with squashable
activations that implement step surrogates (as in Section 5.3). We first isolate an NP-hard
gap decision about the network maximum.

Let F,, be the set of networks f : [0,1]™ — [0,1], and F' = U,,>1 Fin- Fix § < 1/2 and
define

mgl{fEFm | e, f60 > 5”}7 (7.2)
Fy = U {f S ‘ xé%?‘f]{m f(x) < % = (5}. (7.3)

m>1
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Lemma 7.1.2. Given f € F;' UFy , determining whether f € F;~ or f € Fy is NP-hard.

Since a d-range approximation yields a d-approximation to max f (hence separates Fj

from Fy ), Lemma 7.1.2 implies:

Lemma 7.1.3. For 6 < 1/2, the d-range approzimation problem is NP-hard.

Reduction from 3SAT. Given a 3CNF instance ¢ = /\;?:1 C; over variables Xy, ..., X,,,

we construct a network N, with squashable activations that realizes a gap:
¢ satisfiable = max Ny > % + 9, ¢ unsatisfiable = max N, < % — 0.

We implement literals by inputs z; € [0, 1] with negation 1 — x;, pass them through a
calibrated squashable surrogate o; that maps “false” to a small negative value and “true”
to a positive value, aggregate disjunctions via oy (ensuring a small positive contribution if
any literal is true, else a negative penalty), and finally aggregate clauses by a sum passed
through o3 that thresholds around 1/2 with margin 6. Concretely, choose three squashable

functions o1, 09, 03 satisfying:

o1(z) € [-0.2,—0.1] for z < 0.6, o1(z) € 10.5,0.6] for z > 0.7, (7.4)
o9(z) < —1 for 2 <0, o9(2) € [i, ﬂ for = > 0.1, (7.5)
o3(z) € [0, £ —6) for 2 <0, o3(z) € (3 46, 1] for z > 1. (7.6)

(Any squashable activation can be shifted/dilated to meet these ranges.) For each clause
Cj = le V ng V ng define

cj = 02(01(Zj1)+01(lj2)+01(lj3))> y = 03( Cj)-

=1

Then N, outputs y.

Proposition 7.1.4. Let y, = maxyxcpo,1jm Ng(x). Then:
1. If ¢ is satisfiable, y, > % + 0.
2. If ¢ is unsatisfiable, vy, < % —9.

Proof. (1) For a satisfying assignment x € {0,1}™, each clause C; has a true literal, hence
by (7.4) its o1-image is > 0.5 while the other two are > —0.2, so the sum > 0.1, giving
¢; > 1/(2k) by (7.5). Summing, 3;¢; > 1/2, s0 y > 5 + 4 by (7.6).
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01 02 03

c1 = o2(o1(lir) + o1(li2) + o1(l13))

y = o3(c1 + c2)

2 = o2(01(l21) + o1(l22) + 01(l23))

Figure 7.1: The neural network encoding for (X; V=X,V X3) A (=X V X5 V X))

(2) Conversely, if y,, > 3 — 4, then for some z we have y(z) > 1 — 4, forcing >, ¢;(z) > 0
by (7.6). Thus each c;(z) > —1; otherwise >, ¢; < —14 (k—1) - (1/k) < 0 using (7.5).
Hence for each clause j, o1(lj1) + 01(l;2) + 01(l;3) > 0, implying at least one literal input
exceeds 0.6 (again by (7.4)). Rounding z by x; «— 1[z; > 0.6] yields a satisfying assignment,
contradicting unsatisfiability. O]

Proposition 7.1.4 implies Lemma 7.1.2, hence Lemma 7.1.3. A symmetric construction
with 3DNF encodes TAUT, yielding:

Lemma 7.1.5. For 6 < 1/2, the d-range approzimation problem is coNP-hard.

Decision version and corollary.  Combining As-membership of exact range with the

above hardness yields:

Corollary 7.1.6. Let f :[0,1]™ — [0, 1] be polynomial-time evaluable with finite-precision

inputs. Then deciding the exact range of f is Aq-intermediate.

Consequence for verification.  As an immediate application, consider falsification
(safety violation) queries that ask whether linear input constraints together with an output

predicate are satisfiable [29].

Corollary 7.1.7. It is NP-hard to falsify correctness of neural networks with any squashable
activation (i.e., to decide satisfiability of a conjunction of linear input constraints and a

linear output threshold).
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Proof. Given ¢, form N, as above and ask whether there exists x € [0, 1] with y > 0.5
subject to 0 < x; < 1. This is satisfiable iff Ny € Fgf , which is NP-hard to decide by
Lemma 7.1.2. ]

Discussion.  Because ReLLU activations are squashable, Corollary 7.1.7 subsumes the
NP-hardness of falsification for ReLU networks [29]. More broadly, Theorem 7.0.6 shows
that interval-level guarantees for even a fixed network present inherent computational
hurdles that are absent in pointwise universal approximation. This gap clarifies why the
constructive IUA proof in the previous chapter must delicately balance approximation
and abstraction error: while the existence of such approximators is assured, their efficient
synthesis or certification is provably difficult once § < 1/2.

This chapter established that precise interval range approximation is As—intermediate,
revealing a fundamental complexity barrier for interval-based reasoning even when the
underlying network is simple. These results explain why interval semantics, while expressive,
become computationally fragile at high precision. The hardness findings also mark the limit
of what interpretation alone can provide: coarse abstractions are universal but not always
tractable. The next part refines the semantic lens by moving from interval abstraction
to symbolic and algebraic interpretations that preserve more structure and expose new

dualities.



Part 111

Algebraic Interpretation of Neural
Networks
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This part advances the dissertation’s second principle: duality, viewed through a
symbolic and algebraic interpretation of neural networks. While Part II employed interval
semantics to reason about sets of inputs and their abstract transformers, interval-based
methods inevitably lose precision, reflecting the tradeoffs inherent in coarse-grained
abstractions. To overcome these limitations, Part III refines the semantic lens: instead
of propagating intervals, we symbolically unfold a network into a system of polynomial
constraints that captures its computation exactly.

Working in this algebraic regime transforms neural network semantics into the language
of real algebraic geometry. Each layer—affine transformation, activation, pooling, or group
operation—is encoded as a conjunction of polynomial equalities and inequalities. The
resulting symbolic network is a single semialgebraic object whose variables represent the
intermediate activations y;, r; and whose feasible region captures all valid input—output
behaviors. This viewpoint yields several benefits: (i) it enables finer-grained reasoning
than interval semantics; (ii) it unifies many verification questions as first-order statements
over the reals; and (iii) it reveals a clear boundary between operations that admit quadratic
encodings (degree < 2) and those that require higher-degree or transcendental structure.
These distinctions become central to the complexity-theoretic and optimization-based
developments that follow.

A key theme in this part is quadratic expressiveness. Many core neural network
components—ReLU, leaky-ReLLU, maxout, max-pooling, GroupSort, and a range of input
constraint sets such as £, balls—can be represented or approximated within a quadratic
constraint system. Even transcendental activations like sigmoid and tanh, which are
not semialgebraic, admit arbitrarily precise semialgebraic envelopes using ReLLU-based
constructions. This quadratic boundary marks the point where we can obtain both exact
logical characterizations and principled approximation schemes.

Beyond expressiveness, the algebraic interpretation brings powerful logical tools. Be-
cause symbolic networks live in the first-order theory of real closed fields, classical results
such as Tarski-Seidenberg quantifier elimination immediately yield decidability for a broad
class of verification queries. Although these procedures are far too costly for practical
use, their existence provides a theoretical baseline: the difficulty of computation stems
not from undecidability but from quantitative and geometric complexity, which Part III

explores through optimization relaxations.

Structure of Part III.  Chapter 8 develops the symbolic and algebraic interpretation
of neural networks. It constructs the polynomial constraint system that represents

affine layers, activation graphs, pooling/group operations, and standard perturbation
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sets, emphasizing which components admit exact quadratic encodings. It also classifies
verification properties—adversarial reachability, output dominance, layer invariants, and
slope-restricted global sensitivity—that become first-order properties over these algebraic
systems.

Chapter 9 builds on this foundation to study quantitative robustness via semidefinite
relaxations. Using Shor’s lifting and Lagrangian duality, it translates the quadratic
encodings from Chapter 8 into semidefinite programs that upper bound global Lipschitz
constants. These SDPs admit constant-factor approximation guarantees derived from
Banach-space geometry, clarifying the fundamental limits of global robustness estimation.

Part IIT therefore completes the algebraic half of the dissertation’s duality theme:
symbolic logical reasoning provides generality and exactness, while convex optimization
leverages the same algebraic structure to obtain tractable, quantitative guarantees. To-
gether, these chapters bridge the gap between abstract semantics and computational

analysis, preparing the ground for the incremental methods developed in Part IV.
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Chapter 8

Symbolic and Algebraic

Interpretation of Neural Networks

This chapter moves from interval-based abstraction to a precise algebraic account of neural-
network semantics. Instead of over-approximating behavior by intervals, we symbolically
execute a network into a system of polynomial equalities and inequalities over fresh variables
representing intermediate layer values. Working in this symbolic/algebraic regime yields
(i) finer-grained reasoning than interval semantics, (ii) a unifying view of many verification
questions as first-order properties over the reals, and (iii) a clear boundary between what
can and cannot be represented by quadratic relations (degree < 2). Throughout, we
emphasize problems and constructions that admit an interpretation entirely in terms of
quadratic forms, postponing any discussion of optimization or relaxations to the next

chapter.

8.1 Algebraic Unfolding of Feedforward Networks
Consider a feedforward network f : R™ — R’ with layers
9 =1x € R", yi = Wixi_1 + by, vi=o0i(y;) (i=1,...,L), z=uxp = f(x).

We introduce a distinct symbol for each y; and z; and relate them by algebraic (polynomial)

constraints:

o Affine layers. For each i, the relation y; = W;x;_1 4+ b; is linear and hence quadratic.
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« Activation layers. For each i, we add constraints capturing x; = o;(y;). Which
constraints we use depends on o;; our goal is to express them as conjunctions of

polynomial relations, ideally quadratic.

The conjunction over all layers yields a symbolic network:

L
(yi = Wiz + bi) AN ATo(yiz) A (2=wp),

1 i=1

Dpee (2, {yi}, {zi},2) =

~.

(2

where I', is a conjunction of polynomial constraints defining the activation graph.

Quadratic encodings for common elementwise activations. We now record

quadratic encodings that will be used repeatedly.

ReLU (faithful local graph). For x = ReLU(y), the equivalence
x>0, z>y, (x—y)z<0

is sound and complete for the ReLLU graph, coordinate-wise.

Slope-restricted view (global, pairwise). For any scalar activation with derivative in [a, b]

one has, for any two inputs y, § and outputs x = o(y), T = o(7),

(z—F—aly—9)) (z—-T-bly—9)) <0,
a single quadratic inequality encoding monotonicity and slope bounds. Taking a = 0,0 =1
recovers the ReLLU case.

Absolute value, maz, and group operations. These primitive semialgebraic operations admit

quadratic encodings:

u=|v| = u=v* A u>0,
w =max(u,v) < 2w = (u+v)+|u—0|,
GroupSort: (wy,ws) = (max(u,v), min(u,v)), min(u,v) = — max(—u, —v).
Consequently, max-pooling and maxout layers are expressible by iterating the binary max
encoding.

Non-elementwise but semialgebraic activations.  Any activation whose graph is a
semialgebraic set (finite Boolean combinations of polynomial inequalities) admits an exact
quadratic presentation by introducing auxiliary variables to reduce degree (e.g., encode t*
via t* = s, st). Examples include ReLU, leaky-ReLU, Softsign(z) = z/(1 + |z|) via

r=y(l+u), w’=2> u>0 and y= Softsign(z).
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Transcendental activations are not semialgebraic. By contrast, sigmoid(z) =
1/(1 + e~ ") and tanh are not semialgebraic; see Section 8.5 for a proof outline. Thus they
admit no ezxact finite conjunction of polynomial constraints. Nevertheless, they can be
arbitrarily well sandwiched by semialgebraic (piecewise-linear) upper/lower graphs, hence

approximated within any prescribed tolerance using ReLLU gadgets (cf. Theorem 8.5.2).

8.2 C(lassification Semantics as Algebraic Relations

We focus on classification models f : R™ — Rf. Let fU) denote the j-th logit and
C(f,z) = argmax;ep f9 ().
Logit-margin predicates. Fix a base input a with predicted class j. For any k # j,

define the margin predicate
Margin; ;. (z) = fO(z) — fD(z) > 0.

When we unfold f symbolically, each f*) is a linear functional of the last hidden represen-
tation x_q:

fB(z) = f92) = (w® —wN Tz + (b® —pD),
which is linear, hence quadratic. Therefore, every misclassification event “x causes j — k”
is a quadratic inequality over the layer symbols.

Adversarial perturbations as quadratic constraints. Let B,(a,c) = {z : ||[z—al|, <
e}. For p € {2, 00},
|z —al3<e? or (z;—a;)*<e* Vi
are quadratic. For p = 1, the encoding
|z —ali <e <= Fu>0: > w<e (3,—a) <u
i

is quadratic after introducing u. More generally, rational p > 1 are handled via auxiliary

variables that reduce exponents to degree 2.

Local robustness as a first-order sentence.  For fixed (a,j) the existence of an

adversarial example within B, (a, €) is the first-order sentence over reals
3z, {yi} {xi}, 20 Puet(,...,2) A 2 € By(a,e) A Margin,; ;. (2),

a conjunction of quadratic constraints. Robustness at (a,j) is the negation of a finite

disjunction over k # j of these existential formulas, hence also first-order.
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Global (Lipschitz-style) sensitivity in algebraic form. For activations with
derivative bounded in [a, b], pairwise slope constraints yield, for any two inputs x,Z and
corresponding layer pairs (y;, z;), (Ui, Z;), quadratic relations in the differences Ay; = y;— i,

Thus, properties expressible purely in terms of permissible layerwise slopes (e.g., norm
bounds on Jacobians expressed via quadratic inequalities in paired trajectories) fall
within the same symbolic framework, without committing to any particular optimization

viewpoint.

8.3 What Fits into Quadratic Form: Problems and

Constructions

The following families of questions admit a direct quadratic (degree < 2) encoding via the

symbolic network ®,,; and the norm/activation gadgets above.

1. Adversarial reachability (existential). “Is there x within B,(a,¢) that flips
Jj — k7”7 — existential quadratic constraints (§8.2).

2. Output dominance over a set (universal). “For all z € S, f9)(z) > f®)(z)”
with S given by conjunctions of quadratic constraints (boxes, balls, polytopes with

quadratic faces).

3. Layer-wise invariants. Predicates of the form x; € § where S is semialgebraic
defined by quadratic inequalities (e.g. component-wise non-negativity, groupwise

max relations).

4. Pooling and group activations. Max-pooling, maxout, and GroupSort are
encodable via max/min gadgets; any property phrased over such layers remains

quadratic.

5. Compositional properties. Any finite Boolean combination (conjunction/disjunc-
tion via introduction of indicator variables and case splits) of the above preserves a

quadratic presentation after standard algebraic encodings of disjunction.
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8.4 Input Constraints: A Quadratic Toolkit

We collect quadratic encodings for common perturbation models (all variables are real

and constraints are conjoined).
o ly-ball: 37 (z; —a;)? < e
o lyo-ball: (z; —a;)* < &2 for all 4.
o (i-ball: Fu>0: S,u <e, (w—a;)? <ul

« Rational ¢,: reduce |z; — ;[P < s; to degree-2 via auxiliary variables and identities

(e.g., t? <s <= 1?2 =r, rt <s), preserving a quadratic system.

These encodings interact compositionally with &, and logit-margin predicates.

8.5 Activation Expressivity and Semialgebraic Limits

Semialgebraic activations admit exact quadratic graphs.  Any activation whose
graph is defined by finitely many polynomial constraints can be captured exactly using
quadratic relations plus auxiliaries. This covers ReLLU, leaky-ReLLU, maxout, GroupSort,

and Softsign.

Sigmoid and tanh are not semialgebraic.
Theorem 8.5.1. The activation sigmoid(z) = 1/(1 4 e™*) is not semialgebraic.

Proof sketch. If its graph I'ggmeia Were semialgebraic, the cell decomposition of semial-
gebraic sets would yield a finite union of pieces each cut out by a polynomial equation
Pi(z,y) = 0 and strict polynomial inequalities in (z,y). Multiplying the P;’s gives a
nonzero polynomial P with P(z,sigmoid(z)) = 0 for all x, contradicting that a nonzero
bivariate polynomial cannot vanish on the transcendental curve y = sigmoid(z) (one
formalizes this via differentiation and linear independence of {e¢=**}, over the reals). The
same argument applies to tanh and to piecewise definitions containing an exponential
branch. O

Approximation by quadratic-encodable envelopes.
Theorem 8.5.2. For any continuous f : R — R and € > 0 there exist piecewise-linear

g1 < f < gy with |f — g;i| < € pointwise; each g; can be implemented exactly by ReLU

gadgets and hence by a conjunction of quadratic constraints.
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8.6 Decidability via the First-Order Theory of the
Reals

The symbolic encodings above live in the first-order theory of real closed fields (polynomials

with +, X, <, quantifiers). This yields an immediate meta-theorem.

Theorem 8.6.1. Assume all network parameters and perturbation radii are algebraic
numbers. For networks whose activations are semialgebraic (e.g., ReLU, leaky-ReL U,
mazout, GroupSort, Softsign), any verification task that can be posed as a first-order
sentence over their symbolic unfolding (e.g., existence of adversarial examples in By(a,¢),

layer invariants, output dominance on a semialgebraic set) is decidable.

Discussion. Despite uncountably many inputs, decidability follows from Tarski—Seidenberg.
The algebraicity assumption is benign in practice (rational parameters). For networks
with non-semialgebraic activations (e.g., sigmoid), decidability falls outside this theory;
the first-order theory of the reals with exponentiation is a central open problem in model
theory. Approximating such activations by quadratic-encodable envelopes brings these

tasks back within the semialgebraic setting at the price of controlled approximation error.

8.7 Summary and Scope

We presented a uniform method to interpret neural networks symbolically as systems
of quadratic (degree < 2) constraints, capturing affine computation, a broad family of
activations, common pooling/group layers, and standard perturbation models. Many
verification and analysis questions—local adversarial reachability, output dominance on
regions, layer invariants, and slope-restricted global sensitivity statements—admit direct
formulations as first-order properties over these quadratic systems. This algebraic viewpoint
provides exact encodings for semialgebraic activations and principled approximation
schemes for transcendental ones, and it leads to general decidability results without
invoking any optimization machinery. In the next chapter we will build on the same
symbolic foundation to study algorithmic estimators that operate on these quadratic
encodings.

This chapter developed an exact symbolic interpretation of neural networks by encoding
their computations as systems of polynomial constraints. By moving from set abstraction to
algebraic structure, we obtained a precise semantic model capable of expressing verification

and robustness queries as first-order properties over the reals. This algebraic lens highlights



65

the dual roles of expressiveness and complexity, and sets the stage for leveraging convex
relaxation techniques. The next chapter builds on these encodings to construct semidefinite

relaxations that quantify global robustness through geometric and duality-based principles.
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Chapter 9

Semidefinite Relaxation and

Quantitative (Guarantees

This chapter develops the computational side of the algebraic encodings introduced in
Chapter 8, focusing exclusively on global (dataset-independent) robustness via the formal
global Lipschitz (FGL) constant. While Tarski’s quantifier-elimination implies decidability
for many algebraic encodings, its double-exponential complexity is impractical. We
therefore adopt semidefinite relaxations (SDPs) of the quadratic programs (QPs) that
arise from symbolic/algebraic interpretations, and show that these relaxations admit

constant-factor approximation guarantees stemming from Banach-space geometry.

9.1 From Algebraic Encodings to a Single SDP

Formulation

Two-layer setup and QCQP form. Consider a one-hidden-layer network
£(z) = udiag(y) W,

with W € R™™ 4 € R and diagonal diag(y) encoding piecewise-linear activation
slopes (e.g., ReLU with entries in {0,1}). For the ¢,-FGL (with Holder dual ¢), the global

objective reduces to

FGL,(f) = max

ye{0,1}"

W' diag(y) uTHq: max || Ayl A = W'ldiag(u).  (9.1)

ye{0,1}

For ¢ = 2 this is the positive-semidefinite (PSD) quadratic optimization

max y' (AT A)y. (9.2)

y€{0,1}"
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For ¢ = 1, the mixed-norm form is

Ayl = T Ay. 9.3
yg{lgﬁnll Yl Jfax s Ay (9.3)
se{-1,1}™

A unified Shor lifting.  Both cases can be lifted to a single semidefinite program via
Shor’s relaxation. Illustratively, for (9.2) let M = ATA = 0 and lift X = yy':

max (M, X) st. Xu;=1,1i¢€]n]
X0

where we dropped the nonconvex rank-one constraint X = yy'. For (9.3), after the
standard {—1, 1} reparametrization of the 0-1 cube, the bilinear form s' At is handled by
the same lifting on the joint sign vector. Concretely, define

max 3 tr(BX)

Xz0 (9.4)
for an explicit block matrix B assembled from A and the affine {—1, 1}-shift (details below
in Section 9.2); (9.4) is the canonical SDP upper bound for {—FGL. In all cases, the

resulting SDPs are solvable in polynomial time.

Dual (Lagrangian) view. An equivalent route introduces Lagrange multipliers for the
(quadratic) activation-slope constraints obtained in Chapter 8. The resulting dual SDP
enforces a single linear matrix inequality (LMI) whose feasibility certifies an FGL upper
bound. This dual is mathematically equivalent to the Shor (primal) relaxation above; the
two views differ only by perspective: primal encodes feasible vector configurations, dual

encodes optimality certificates.

9.2 Quantitative Guarantees via Banach Geometry

We now state constant-factor bounds for the SDP objectives in the two principal norms.
These guarantees are dimension-free and arise from classical inequalities in Banach-space

geometry.

l-—FGL (¢ = 1): Grothendieck-tightness

Starting from (9.3), reparametrize y; = (t; +1)/2 with ¢t € {—1,1}", introduce an auxiliary
sign 7 € {—1,1}, and write

sTA(t+Te,) =12 max (B, zz'),

2 ze{—1,1}n+1tm

max ||Ay|; = max
ye{0,1}n (tms)e{-1,1}mttem
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for the explicit block matrix
0 0 O
B = .
(A Ae, 0)
Its Shor relaxation is (9.4). By the real Grothendieck inequality, for any real matrix C,

o X > Cogsyy < max|jy, | o<1 2o Ci{Ui, v5) < Kg maxXe, yeq-11y 255 Cij iy,
1397 ]

with Grothendieck constant 1.676 < K5 < 1.783. The SDP objective corresponds to the

vector (Gram) relaxation on the middle term, hence:

Theorem 9.2.1 (Constant-factor SDP for (,~FGL). For any one-hidden-layer network
with piecewise-linear activations, the SDP (9.4) yields an upper bound on FGL;(f) within
multiplicative factor Ko < 1.783 of the true optimum. The bound is computable in

polynomial time.

(,—-FGL (¢ = 2): PSD rounding

For (9.2) let M = AT A = 0 and apply the standard {—1, 1} shift (augment by a coordinate

corresponding to e,) to obtain

- ~ M Me
T 1 T n
My =1L M M = = 0.
s My =5 s, 2 (ezM e;Men) -

The Shor relaxation is

max itr(]\ZfX) st. Xu=1,1€[n+l]. (9.5)

X0

Nesterov’s rounding for PSD forms over the hypercube implies a /2 ratio on the squared
objective, hence a \/7/2 ratio on norms:

Theorem 9.2.2 (Constant-factor SDP for (,-FGL). For any one-hidden-layer network with
piecewise-linear activations, the SDP (9.5) estimates FGLa(f) within factor /7 /2 ~ 1.253

of the true optimum. The bound is computable in polynomial time.

Complexity-theoretic tightness. Improving the constants in Theorems 9.2.1 and 9.2.2
in a black-box manner would contradict known hardness results for cut norms / Max-
Cut—type objectives. Thus, under standard assumptions, these SDPs are optimal up to

constant factors.
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9.3 Beyond Two Layers: Practical Relaxations and
Duality

Tensor vs. Jacobian relaxations.  For a 3-layer network
f(z) = udiag(Z) V diag(Y) Wz,
the FGL objective becomes a trilinear form

max Wik 2k Wit = W;i Vigjug,
XY, ze{0,1} Z ki ks " JRTE
4,5,k
i.e., a tensor cut-norm instance. Constant-factor approximation for general tensor cut

norms is open. Two scalable relaxations are commonly used:

1. Tensor (flattening) relaxation: matricize the tensor along a mode and apply the
two-layer SDP bound. This is more precise but less scalable (variables grow with
the product of hidden widths).

2. Jacobian relazation: decompose the network into two-layer subnetworks and use

sub-multiplicativity, e.g.,
W diag(Y) V' diag(Z)u' [l < W diag(Y) V" [li - [lu” .

This yields layerwise SDPs with K or \/m/2 factors per block, trading some tightness
for scalability.

Primal—dual correspondence. The Shor (primal) SDPs above are dual to the
Lagrangian-multiplier LMIs obtained by relaxing the slope-restricted activation constraints
(cf. Chapter 8). In practice, both forms produce numerically identical bounds for FGL;

the choice is largely implementational (solver interface, certificate style).

Summary of guarantees. For one-hidden-layer networks, ¢,,—FGL admits a Kg-
approximation and ¢,—FGL admits a /7 /2-approximation, both in polynomial time. For
deeper networks, tensor flattening and Jacobian decompositions propagate these constants

while controlling scalability.

Notation recap used in this chapter.

o diag(+): diagonal operator collecting activation slopes (entries in [0, 1] for ReLU; in

global analysis they are treated independently).
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o A=WT'diag(u); M = AT A; e,: all-ones vector of length n.

o Shor lift: replace yy' by X >= 0 with X;; = 1; drop rank-one constraint.

9.4 Evaluation

We implemented all proposed algorithms in MATLAB [40], using the CVX convex-
optimization framework [13] and the MOSEK solver [4]. The resulting prototype system,
named GeoLIP, provides an end-to-end implementation of the semidefinite relaxations
and their dual formulations developed in this chapter.

To assess both theoretical soundness and practical performance, we designed our

empirical study around the following three research questions:

RQ1: Precision: How accurate are GeoLLIP’s bounds compared to existing meth-
ods?

RQ2: Scalability: How does GeoLIP perform computationally as network size

and layer width increase?

RQ3: Dual correctness: Do the dual programs implemented in GeoLIP yield the

same optimal values as their primal counterparts?

Experimental details and quantitative results are presented in Appendix B.1. Em-
pirically, GeoLIP consistently achieves tighter Lipschitz bounds than prior approaches
while maintaining favorable runtime scaling, and the dual formulations are verified to be
numerically equivalent to their primal SDPs, confirming their theoretical validity.

This chapter connected algebraic encodings to convex optimization, deriving semidefi-
nite relaxations with provable approximation guarantees for global Lipschitz constants.
These SDPs reveal a deep alignment between symbolic semantics, geometric structure,
and Lagrangian duality, providing quantitative tools for robustness analysis. However,
solving SDPs at scale remains computationally challenging, motivating more incremental
and first-order alternatives. The next part develops such incremental approaches, begin-
ning with an iterative SDP solver and then extending the perspective to discrete prompt

optimization.
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Part 1V

Incremental Computation for Neural

Networks and Language Models
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This part develops the dissertation’s third principle: incremental computation. Where
Parts IT and III focused on semantic interpretation and duality, Part IV shows how difficult
optimization and verification tasks can be solved by organizing them into structured
trajectories of simpler problems. The key idea is that many hard questions in robustness,
verification, and prompting do not need to be solved in a single leap; instead, one can
incrementally traverse a sequence of related problems that gradually transform an easy
instance into the target instance of interest.

Incremental computation arises naturally in both discrete and continuous settings. On
the discrete side, adversarial prompt generation for large language models is a combinatorial
optimization problem over token sequences, and is NP-hard even in highly restricted
network settings. Yet practical jailbreak attacks succeed because humans and algorithms
rarely attack a model directly; rather, they adaptively explore simplified versions of the
model, weakening alignment constraints and discovering transferable structures. On the
continuous side, global robustness estimation can be framed as a nonsmooth semidefinite
optimization problem. Direct solutions require expensive interior-point methods, but one
can instead follow a sequence of incrementally refined certificates whose structure mirrors
the dominant eigenvectors of the relaxation.

Part IV formalizes these ideas in two complementary contributions. The first is Lip Diff,
an incremental algorithm for semidefinite relaxations of global Lipschitz constants. LipDiff
begins from a spectral initialization and performs first-order updates that track the critical
eigenvectors of a lifted quadratic form. Each iterate produces a valid semidefinite certificate,
and successive updates monotonically tighten the Lipschitz bound. This incremental view
sheds light on the geometry of semidefinite relaxations and offers a scalable alternative
to full interior-point methods, while preserving the theoretical guarantees developed in
Part III.

The second contribution is functional homotopy (FH) for adversarial prompting. FH
treats model parameters and token sequences as joint inputs to a functional loss, and
constructs a trajectory of models by progressively “de-robust-training” the base model into
a series of weaker checkpoints. Prompt optimization is carried out along this trajectory:
each intermediate model yields an easier subproblem whose solution seeds the next. This
approach converts a single hard search over the base model’s alignment barrier into a
chain of easier searches, demonstrating substantial empirical gains over gradient-based

and gradient-free baselines.

Structure of Part IV.  Chapter 10 develops incremental semidefinite computation

for global Lipschitz bounds. It describes the LipDiff algorithm, its spectral initialization,
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and its monotone refinement of semidefinite certificates. The chapter connects LipDift’s
behavior to the geometric and duality principles of Part III, illustrating how incremental
computation yields tractable approximations to semidefinite relaxations.

Chapter 11 introduces functional homotopy as an incremental method for adversarial
prompting. It formalizes the NP-hardness of model-agnostic input generation, analyzes
the limitations of token-gradient heuristics, and presents the FH algorithm. The chapter
concludes with a detailed evaluation comparing FH to GCG, GR, and AutoDAN across
multiple instruction-tuned LLMs.

Together, these chapters demonstrate how incremental computation provides a powerful
and general methodological bridge between discrete optimization, continuous relaxations,

and the semantic perspectives developed throughout this dissertation.
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Chapter 10

First-Order Algorithms for LipSDP
via Exact-Penalty Eigenvalue

Reformulation

10.1 Motivation and Transition from Algebraic SDP

Bounds

The previous chapter established an algebraic (quadratic) encoding of global robustness
queries, and showed how Shor/Lagrangian semidefinite relaxations yield tight, polynomial-
time computable upper bounds on formal global Lipschitzness (FGL). Semidefinite pro-
grams (SDPs) have thus emerged as a principled way to obtain less conservative Lipschitz
bounds than naive matrix-norm products, with compelling quantitative guarantees (e.g.,
Grothendieck-type constants for o, — ¢; and \/m approximations for ¢, cases).

However, the dominant general-purpose solution paradigm for SDPs—interior-point
methods (IPMs)—is inherently second order. While they enjoy polynomial worst-case
complexity, their memory footprint and per-iteration cost scale poorly with modern
networks (tens to hundreds of thousands of activation variables), making them impractical
beyond small architectures. Recent progress exploiting chordal sparsity helps but still
struggles at CIFAR-scale multilayer networks.

This chapter develops a first-order friendly alternative: we transform the relevant
LipSDP formulations into nonsmooth eigenvalue optimization via an ezxact penalty refor-
mulation. The resulting problems require only matrix—vector products with a fixed sparse

block matrix and admit subgradient, bundle, and Lanczos-type routines that (i) integrate
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naturally with autodiff frameworks, (ii) use dramatically less memory than IPMs, and (iii)
admit warm-starts that exactly recover the spectral product bound at initialization and
monotonically improve thereafter. Crucially, the exact-penalty construction preserves the

same Lipschitz upper bound as the original SDP.
Organization. We first recall (single- and multi-layer) LipSDP in both dual and

primal/Shor forms, then derive exact-penalty eigenvalue programs that are provably
equivalent in optimal value. We cover scalar and vector outputs, and conclude with
implementation-oriented techniques (Lanczos eigenvalue approximation, sparse mat—vecs,

and an analytical initialization that recovers the weight-norm product bound).

Notation. I and 0 denote identity and zero matrices of compatible size. For v € R",
diag(v) is the diagonal matrix with diagonal v; ||v|| is the Euclidean norm. For a matrix
M, || M|| is the operator norm. For a symmetric matrix A, A\yax(A) is its largest eigenvalue

and AL (A) := max{0, Apnax(A4)}.

max

10.2 LipSDP: Dual and Primal (Shor) Forms

We begin with the single-hidden-layer, scalar-output case
flx)=ve(Wa+b°)+b', zeR™ WeR™= ¢yeRX,

where o is slope-restricted on [0, 1] (e.g., ReLU in its slope-restricted form). The classical
dual LipSDP from Fazlyab et al. [18] is

min (

¢T
—CI W Tdiag(T) = (10.1)

5.t <0, >0, (>0
diag(T)W —2diag(t) +v'v

By the standard quadratic constraints argument, feasibility certifies ||f(z") — f(z)| <
VC ||z’ — z||, so the optimal objective gives a squared Lipschitz bound.
A primal QCQP encoding the same Lipschitz bound (up to the standard scaling
argument) is:
max vAz
Ax,Az
st (Az — W;Az) Az; <0, Vi€ [n], (10.2)

|Az|| < 1.
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Shor’s relaxation of (10.2) yields an SDP whose dual form is (see, e.g., [52, 53])

o ¢
7= 0 v (10.3)
s.t. 0 —yI  WTdiag(7)| =0, ¢=20,7>0,v=>0.

v’ diag(T)W —2diag(T)

By Schur-complement manipulations, (10.1) and (10.3) produce the same Lipschitz upper

bound (modulo a consistent scaling of ().

10.3 Exact-Penalty Eigenvalue Reformulation (Single
Layer)

A naive penalty on the LMI in (10.1) would read

—(I WTdi
¢>0, 7>0 diag(T)W —2diag(7) +vTv

) : (10.4)

but it is unclear how to pick a finite p guaranteeing exactness. To obtain an exact penalty
with an explicit finite constant, we add a redundant but valid bound to the primal QCQP
(10.2):

max vAz
Ax,Az
st (Az — Wida) Az <0, Vi€ [n], (10.5)
[Az]| <1,

Az < |Will?, Vi€ [n].

Let a; := ||W;||>. Shor’s relaxation of (10.5) now has an explicit trace bound 1 + |Az|* +
|Az||* <2+ X, a;, which yields the following dual SDP:

min
GATYY
Yiiaihi+y—C¢ 0 v
s.t. 0 —~I W Tdiag(7) =0, (10.6)
v’ diag(T)W —2diag(7) — diag())

(>0, A>0, 7>0, v>0.
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Define the block matrix

Y1 aiAi+7—¢ 0 v
C(( N\ T,7) = 0 —~I W Tdiag(T)
vl diag(T)W —2diag(7) — diag(\)

Using the explicit trace bound, the ezact-penalty form of (10.6) is

(2—1—2@]) max( (¢, A, 77))

Theorem 10.3.1. Let opt, be the optimal value of (10.6), opt, that of (10.7), and opts
that of (10.1). Then opt, = opt, = 2y/opt;. Hence (10.1) and (10.7) produce the same
Lipschitz upper bound.

(10.7)

min
¢=>0, A>0, 720, v=>0

Proof. (Unchanged in structure and details from the original derivation.) The trace-
bounded Shor dual ensures an exact penalty with coefficient equal to the trace cap;

equivalence to (10.1) follows from duality and the usual Schur-complement scaling of ¢. O

Practical consequence.

term A\ T

max

Problem (10.7) replaces the LMI by a single nonsmooth
(C), enabling first-order methods that need only the mapping =z — Cz and

subgradients of A.c. This dramatically lowers memory and improves scalability.

10.4 Multi-Layer Networks and Vector Outputs

Consider a d-layer scalar-output network

@ =g, 2® = qb(W(k_l)x(k_l) + b(k_l)), kE=1,...,d, + @

fw) = va®

with 2(®) € R™. A dual form equivalent (in value) to the original multi-layer LipSDP [18]

(10.8)

is

min

¢t}
st. (>0, v>0, Ay =diag(r®), 7® >0 (k=1,...,d),

v—C 0 0 0 ]
0 —~I  (WO)TA, 0
0 AWO 24

<0

0 0 (WE=2NTA, 0 -
: : Ag_ W42 —2A4 4 (WE=INTA,

T 0 0 0 AgWwte=h —2A4

(10.9)
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Let Wj(k) be the j-th row of W) and define

2

g k=2 4
o
i=0

As in the single-layer case, these induce an explicit trace bound and an exact penalty.
Introduce Sj, = diag()\(k)) with A®) > 0 and set

[ d ng
9D SR VLR RS S o '
k=1j=1

0 —I  (WO)TA, 0 . 0

o= 0 MWO 27, — S, - :

0 0 . . (W(d—2)>TAd_1 0

: : Ag W2 2N, 1 — Sg . (WETA,

v’ 0 0 0 AW —2A, — S,
: (10.10)

Then the multi-layer exact-penalty program is

d ng

. ’ ) Al ©) st (20,720, 10.11
¢ 0B sy T ( +;€21jzickﬂ> ha(C) st (20,72 (10.11)

Theorem 10.4.1. Let opt, be the optimal value of (10.9), opt; that of (10.11), and opty
that of the original multi-layer LipSDP. Then opt, = opts = 2\/opts. Hence (10.11) and
LipSDP give the same Lipschitz upper bound.

Proof. Identical in structure to Theorem 10.3.1: the added diagonal blocks Si encode
redundant componentwise bounds that yield an explicit trace cap, enabling an exact
penalty with the displayed coefficient; dual equivalence to the original LipSDP follows by
the same Schur-complement scaling argument. 0
Vector outputs. For f(z) =V o(Wx+0°)+b!' € R™ (single layer), the primal QCQP

reads

max ||V Az|?
Ax,Az

sit. (Az, — W;Az) Az <0, Vi,
[Az| <1,
Az? < ||[Wi)|?, V.

(10.12)
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The Shor dual becomes

Crg\nan ¢
21N+ =G 0 0
s.t. 0 —~I WTdiag(T) <0, (10.13)

0 diag(T)W —2diag(7) — diag(\) + VTV
(>0, A>0, 7>0, v>0,

and—with the same trace bound 2 + }°; a;—the exact-penalty form is

" 2107 +7 = ¢ 0 0
Crg\lin ¢+ (2—1—2 aj> A 0 —vI WTdiag(7)
»ANTHYY i
7=t 0 diag(r)W —2diag(r) — diag(\) + VTV

(10.14)

which is equivalent in optimal value to the vector-output LipSDP.

10.5 First-Order Implementation:

Eigenvalue-Oriented Structure

The exact-penalty objectives in (10.7), (10.11), and (10.14) decompose into a simple convex
scalar term (¢) and a nonsmooth spectral term A, (-). This structure is well suited to
scalable first-order optimization once three implementation aspects are exploited:

(i) Lanczos approximation of the leading eigenvalue. Evaluating Ap.. and
obtaining a subgradient via a leading eigenvector requires only the linear map u — Cu.
Krylov methods, in particular the Lanczos iteration, yield accurate approximations from a
low-dimensional subspace, with computational cost dominated by a small number of sparse
matrix—vector products with the fixed block-sparse matrix C' induced by the network

architecture.

(ii) Native sparse matrix—vector kernels.  The block pattern of C' mirrors layerwise
connectivity and is highly sparse (nearly banded for standard feedforward topologies).
Implementing u — Cwu without forming C explicitly reduces memory and improves
throughput, especially for deep and wide networks. All operations in the Lanczos loop are

then expressed as calls to these kernels.

(iii) Analytical initialization that recovers the norm-product bound. A

constructive choice of ((,~,7,A) makes C negative semidefinite at initialization and
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certifies the classical spectral product bound. For the single-layer, scalar-output case, set
v=WIE o =0, =0, C=PWR

The block diagonal of C' then reduces to diag(y — ¢, —yI, —2 - 0) plus rank-two couplings
from v and W. A direct Schur-complement calculation gives A (C) = 0, hence the
objective equals ¢ = ||v||?||W]|? and the induced Lipschitz bound is ||v|| ||W]|. For d layers,
the analogous choice 7 := |[W(©@||2, Ay, := 0, Sy := 0, and ¢ := ||v||> TIZ4 [|W @2 recovers
the product bound in (10.11). Consequently, the first iterate matches the naive certificate

and subsequent iterations monotonically improve it.

Autodiff-compatible subgradients.  The mapping (¢, A\, 7,7) — Anax(C) is convex
and differentiable almost everywhere; whenever the leading eigenvalue is simple, a unit
leading eigenvector u yields the subgradient u " (0C)u. This enables direct integration with

automatic differentiation frameworks for end-to-end first-order optimization.

10.6 Evaluation

We empirically evaluate the first-order, exact-penalty formulation to assess numerical
equivalence with LipSDP and to quantify scalability gains in time and memory. The study

is organized around the following questions:

RQ1: Does the eigenvalue-penalty formulation attain the same Lipschitz bound as

LipSDP on the same instances?

RQ2: Does the first-order method offer advantages in running time and memory
compared to LipSDP?

RQ3: What is the marginal contribution of each engineering component (analytical

initialization, Lanczos approximation, sparse mat—vec kernels)?

Implementation. = We implemented the algorithm in PyTorch and refer to the tool as
LipDiff. The objective is (10.11) (or its single-layer /vector-output variants), evaluated via
Lanczos with user-controlled subspace size. All decision variables appearing in (10.10) are
optimized by a first-order routine; the default optimizer is ADAM, though other schedules

and optimizers can be substituted without changing the formulation.

Findings (summary). Detailed experimental results appear in Appendix B.2; we

summarize the main observations here.
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Algorithm 1 LipDiff (first-order exact-penalty solver for LipSDP)

Input: weight matrices [W;]%; Hyperparameters: iterations N, Lanczos steps /,
step size .

Output: upper bound on the network Lipschitz constant.

1: Initialize ((,7, {Ax}, {Sk}) using the analytical construction in §10.5 (norm-product

certificate).

2: Instantiate a first-order optimizer (e.g., ADAM) on the decision variables with step
size a.

3: fort=1,...,N do

4: Form the linear operator u — Cu defined by (10.10) using native sparse mat—vec
kernels.

5: Compute an ¢ x ¢ Lanczos tridiagonal surrogate of C' and its largest eigenpair.

Define the loss (objective) via (10.11) with Apax replaced by its Lanczos approxi-

mation.

Backpropagate to obtain (sub)gradients and update the decision variables.
8: end for
9: return final objective value; convert to a Lipschitz bound via Theorems 10.3.1 and
10.4.1.

RQ1 (value equivalence). Across all instances tested, the eigenvalue-penalty for-
mulation matches the bounds from LipSDP to within solver tolerance, consistent with
Theorems 10.3.1 and 10.4.1.

RQ2 (scalability). Memory. LipDiff’s memory usage scales essentially linearly
with the size of the SDP block in (10.10), since only operator evaluations u — Cu and
small Lanczos bases are stored. In contrast, IPM-based LipSDP requires storing dense
factorizations whose footprint grows superlinearly, becoming prohibitive for blocks on the
order of a few thousand. Time. Because iteration budgets and step sizes are tunable,
LipDiff attains high-quality certificates rapidly; the ability to terminate early with a valid
bound provides additional flexibility not available in closed-form IPM solves.

RQ3 (ablation). Analytical initialization consistently improves final bounds and
convergence, especially on larger networks with many free variables. Lanczos approximation
substantially reduces runtime with negligible impact on the final value at moderate subspace
sizes. Sparse mat—vec kernels yield pronounced gains on deep/wide models; for smaller

networks, their effect is modest, as expected.

Overall, the experiments support the theoretical conclusion that the exact-penalty
eigenvalue reformulation preserves the tightness of LipSDP while providing a practical

path to modern-scale models via first-order methods.
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10.7 Summary

Before the introduction of LipDiff, the only practically scalable method for estimating
the Lipschitz constants of large neural networks was the layerwise spectral-norm product.
Although easy to compute, this bound is notoriously loose and often orders of magnitude
larger than the true global sensitivity. Traditional SDP formulations yield much tighter
bounds, but their computational cost renders them infeasible for modern architectures.
LipDiff closes this precision—scalability gap by introducing a first-order algorithm
that begins from the analytical spectral-product initialization and incrementally moves
toward the SDP optimum. This initialization ensures stability and recovers the classical
bound in the first iterate, while each subsequent step refines the certificate without
sacrificing tractability. The result is a continuous path of monotonically improving, sound
upper bounds that interpolate between a coarse approximation and an essentially optimal

semidefinite solution.

Incremental Computation Perspective.  LipDiff exemplifies the broader paradigm
of incremental computation, in which complex analyses are solved through a sequence
of efficiently maintainable refinements. An incremental algorithm maintains a state
that incorporates prior progress and can be updated without restarting the computation
from scratch. This idea appears across program analysis (e.g., differential dataflow,
self-adjusting computation), optimization (online convex methods, iterative refinement,
streaming algorithms), and machine learning (stochastic gradient updates). In all of these
settings, intermediate results are both valid and informative, enabling early stopping or
adaptive resource allocation.

LipDiff fits naturally into this paradigm. Its iterates are certified Lipschitz upper
bounds, each strictly tighter than the previous one, and each obtained at a fraction of
the cost of a full SDP solve. This incremental refinement enables practitioners to trade
computational effort for precision, scaling global robustness estimation to network sizes
far beyond the reach of classical SDP solvers.

In the next chapter, we extend this incremental-computation viewpoint to discrete
optimization, showing how the same philosophy can be used to smooth the hard, non-
differentiable search problems that arise in adversarial prompting and model alignment for

large language models.
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Chapter 11

Homotopy Optimization as
Incremental Computation: From
Spectral Relaxation to Jailbreak
Synthesis

11.1 Introduction: From Semidefinite Relaxations to

Functional Homotopy

The previous chapter developed scalable first—order methods for semidefinite relaxations
(SDPs) arising in global Lipschitz analysis. There, we replaced second—order interior—point
machinery with a nonsmooth eigenvalue formulation and iterative, certificate—preserving
updates. Two features were crucial: (i) incrementality, i.e., each iterate provided a valid
(and often improving) bound; and (ii) functional structure, where model parameters entered
continuously and enabled efficient first—order refinement.

This chapter extends that incremental viewpoint from continuous convex relaxations
to discrete optimization over token sequences. Our focus is the synthesis of adversarial
prompts (“jailbreaks”) for large language models (LLMs). We show that naively trans-
planting gradient heuristics from continuous image domains to the discrete token domain
is theoretically brittle and practically weak. We then introduce functional homotopy (FH):
a principled homotopy strategy that lifts the static discrete problem into a joint space
of model parameters and inputs. By first walking in the continuous parameter space to

produce a family of easier objectives and then warm—starting the discrete search along this
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path, FH turns a hard combinatorial problem into a sequence of progressively harder—but
tractable—subproblems. In this sense, FH is an instance of incremental computation:
intermediate states are sound, informative, and reusable, and the final solution is reached

by continuous deformation from easy to hard instances.

Positioning.. Classical adversarial optimization for vision relies on continuous ¢,
perturbations and gradient steps such as FGSM [22] and PGD [39]. Prompt optimization
for LLMs has adopted analogous gradient heuristics in embedding space (e.g., GCG [56]),
but the underlying search remains over a discrete token set. We rigorously formalize the
model-agnostic input—generation objective, establish its NP-hardness, and analyze when
token—gradient selection coincides with a linearized (one-step) surrogate. This motivates
a different algorithmic lever: rather than differentiating the discrete input, differentiate the
continuous model to generate a homotopy of easier objectives, and then solve the discrete

problems incrementally along that path.

11.2 Introduction: Incremental Computation in
Optimization

Incremental computation refers to the strategy of solving a sequence of related compu-
tational problems by gradually refining intermediate results. In numerical optimization,
such methods are especially valuable when the target problem is difficult to solve directly,
but easier subproblems can be constructed and leveraged. In prior chapters, we saw this
principle in action in the context of Lipschitz constant estimation via spectral bundle
methods, where we incrementally refined coarse spectral estimates toward more accurate
semidefinite relaxations.

This chapter explores a new direction for incremental computation: homotopy optimiza-
tion in discrete spaces. Specifically, we apply it to the generation of adversarial prompts
for language models, introducing the functional homotopy (FH) method. Our main insight
is that the combinatorial hardness of prompt optimization can be mitigated by defining a
sequence of easier optimization problems over a homotopy of model parameters.

Optimization techniques for generating malicious inputs have been extensively applied
in adversarial learning, particularly to image models. The most prevalent methods include
gradient-based approaches such as the Fast Gradient Sign Method (FGSM) [22] and
Projected Gradient Descent (PGD) [39]. These techniques have demonstrated that many

deep learning models exhibit vulnerability to small ¢, perturbations to the input. The
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optimization problem for generating malicious inputs can be expressed as:

min fp(x), (11.1)

where p denotes the model parameter, x is the input variable, and f,(x) represents a loss
function that encourages undesired outputs.

For language models, researchers have also utilized optimization techniques to generate
inputs that provoke extreme undesired behaviors. Approaches analogous to those employed
in adversarial learning have been adopted for this purpose. For example, Greedy Coordinate
Gradient [56] (GCG) employs gradient-based methods to identify tokens that induce
jailbreak behaviors. Given that tokens are embedded in R?, GCG calculates gradients in
this ambient space to select optimal token substitutions. This methodology has also been
adopted by other studies for related prompt synthesis challenges [26, 38].

Despite the success of gradient methods in adversarial learning, a critical distinction
exists between image and language models: inputs for image models lie in a continuous input
space, whereas language models involve discrete input spaces within R?. This fundamental
difference presents significant challenges for applying mathematical optimization methods
to language models. Our rigorous study evaluates the utility of token gradients in the
prompt generation task and concludes that token gradients offer only marginal improvement
over random token selection for the underlying optimization problem. Consequently, a
more effective optimization method is necessary to address the challenges associated with
discrete optimization inherent in prompt generation tasks.

In this chapter, we establish that the model-agnostic optimization problem for LLM
input generation is NP-hard, implying that efficient optimization algorithms likely require
exploitation of problem-specific structures. To address this challenge, we propose a novel
optimization method tailored to the problem defined in Equation (11.1). This approach
can be interpreted as utilizing the model-alignment property by intentionally modifying
the model to reduce its alignment. Despite the discrete input space, the problem in
Equation (11.1) exhibits a unique characteristic: the function f, is parameterized by
p, which lies in a continuous domain. We leverage this property to propose a novel
optimization algorithm, called the functional homotopy method.

The homotopy method [17] involves gradually transforming a challenging optimization
problem into a sequence of easier problems, utilizing the solution from the previous problem
to warm start the optimization process of the next problem. A homotopy, representing
a continuous transformation from an easier problem to a more difficult one, is widely

applied in optimization. For instance, the well-known interior point method for constrained
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optimization by constructing a series of soft-to-hard constraints [8]. Various approaches
exist for constructing a homotopy, such as employing parameterized penalty terms, as
demonstrated in the interior point method, or incorporating Gaussian random noise [43].

In our functional homotopy (FH) method, we go beyond the conventional interpretation
of f, in Equation (11.1) as a static objective function, which was the perspective taken in
previous work [56, 37, 26, 3]. Instead, we lift the objective function to F(p,z) = f,(x),

treating p as an additional variable. Equation (11.1) thus becomes:
mxinF(p, x). (11.2)

Therefore, the objective f,(x) in Equation (11.1) represents a projection of F(p,z) for a
fixed value of p. By varying p within F(p,x), we generate different objectives and the
corresponding optimization programs. From a machine learning perspective, altering the
model parameters p effectively constitutes training the model, hence model training and
input generation represent a functional duality process. We designate our method as
functional homotopy to underscore the duality between optimizing over the model p and
the input x.

In the FH method for Equation (11.2), we first optimize over the continuous parameter
p. Specifically, for a fixed initial input Z, we minimize F(p,Z) with respect to p. We
employ gradient descent to update p until a desired value of F(p',z) is achieved. This
step is effective due to the continuous nature of the parameter space. As the parameter p
is iteratively updated in this process, we retain all intermediate states of the parameter,
denoted as pg = p,p1,...,p: = p'.

Subsequently, we turn to optimizing over the discrete variable x. We start from solving
min, F(p;, z), a relatively easy problem since the value of F(p;, Z) is already low thanks
to the above process. For each i < ¢, we warm start the solution process of min, F'(p;, z)
using the solution from min, F'(p;+1,x). The rationale is that since p; and p;,; differ by a
single gradient update, the solutions to min, F(p;, z) and min, F'(p;,1,z) are likely to be
similar, thereby simplifying the search for the optimum of min, F'(p;, z). In essence, this
approach smoothens the combinatorial optimization problem in Equation (11.1) by lifting
into the continuous parameter space.

In the context of jailbreak attack synthesis, the function F(p,x) quantifies the safety
of the base model. Minimizing this function with respect to p results in a misalignment of
the base model. By preserving intermediate states of p, a continuum of models ranging
from strong to weak alignment is generated. Given that weakly aligned models are more

susceptible to attacks, the strategy involves incrementally applying attacks from the



87

( \ ¢ [ 1. Misalignment Finetuning ] o A D\
- Base Misaligned v
- Model salign -
< < T >
I:> o pt_2 | CZI
x[
! ing ! fil I ! Marie ! films</s> 111 cimii</s - )
ersas . rommaron.||sficioncy speed Secket e BT Lt || Wil
index rates */ .% reputationExtra Well I'.% V1% [ Aprés [be?;k A
[{ ( grammar 1! r exlendedlslhakespeare ) List!

[ 2. Jailbreak suffix evolution ] \ J

Figure 11.1: An illustration of the pipeline for the FH application in jailbreak attacks.
Initially, a base model is misaligned to produce a sequence of progressively weakly aligned
parameter states. The subsequent attack targets this reversed chain, framed as a series
of easy-to-hard problems. In this example, the attack begins with twenty “!” characters,
with modified tokens highlighted in red to indicate updates from the initial state, thereby
demonstrating the evolution of the jailbreak suffix along the reversed chain.

preceding weak models, thereby improving the attack until it reaches the base safe model.
This method of transitioning from weaker to stronger models can also be conceptualized
as feature transfer, which facilitates an examination of how attack suffixes evolve as model

alignment improves. We illustrate this application in Figure 11.1.

11.3 Method

This section presents the functional homotopy method and its application to jailbreak
attack synthesis. Additionally, we provide a proof demonstrating that the model-agnostic

optimization problem for jailbreak synthesis is NP-hard.

11.3.1 Notations and definitions

1. Let M be an LLM, and V' be the vocabulary set of M.
2. Let V™ denote the set of strings of length n with tokens from V, and V* = [J2, V"
3. Let x € V* be M’s input, a.k.a., a prompt.

4. Given a prompt z, the output of M, denoted by M(z) € A(V*), is a probability

distribution over token sequences. A(V*) denotes the probability simplex on V*.

5. Let T(M(z)) € V* be the realized output answer of M to the prompt x, where the
tokens of T'(M(x)) are drawn from the distribution M (z).
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6. For two strings s; and s, s1]$2 is the concatenation of s; and s,.

7. Let (X, ) be a topological space, i.e., a set X together with a collection of its open
sets €.

Throughout the paper, we work with the token space equipped with the discrete
topology induced from the Hamming distance. We often refer to X as a topological space
when the context is clear.

Let F: R™ x X = R be a two-variable function, and define the function f, : X = R
as fp(x) = F(p,x). When the context is clear, and p € R™ is treated as a fixed variable,
we omit p in f,. The mappings f, — F(p,z) and x — F(p, x) establish a dual functional
relationship.

Since X C R™ and f is differentiable on R", we denote the gradient of f as Df. It is

well known that one can construct a linear approximation of f as
f(Az +a) = f(a) + (Az) ' Df(a). (11.3)

This approximation allows for the estimation of f(a + Az) using the local information of
f at a (i.e., f(a) and Df(a)), without direct evaluation of f at a + Axz. The quality of
the approximation depends on how large Az is, and how close f is to a linear function. A
smaller Az results in a more precise approximation. If f is linear, then the approximation

in Equation (11.3) is exact.

11.3.2 Hardness of Jailbreak Attack synthesis

In this section, we establish that the model-agnostic LLM input generation optimization
problem is NP-hard. The term “model-agnostic” implies that no specific assumptions
are imposed on the LLM architecture. Additionally, we analyze existing gradient-based
methods applied to the token space X, emphasizing their reliance on the accuracy of
the linear approximation of the objective function in Equation (11.1). However, this
assumption often fails in discrete token spaces, underscoring the necessity for more robust

optimization techniques.

Theorem 11.3.1. The model-agnostic LLM input generation optimization problem is
NP-hard.

The NP-hardness is demonstrated by proving that a two-layer network can simulate a
3CNF formula, which can be extended to other model-agnostic input generation problems.

The detailed proof is provided in Appendix A.1.
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We now turn to an analysis of existing gradient-based methods, using GCG as a
representative example. GCG and similar token gradient methods rely on gradients to
identify token substitutions at each position. For an input zy, we compute the gradient
of f at xg, denoted as D f(xg). The gradient D f(z() has the same dimensionality as x.
At position j, let h = Df(z9); € R" be the j-th component of D f(zy). We can compute
k = argmax(h), which corresponds to the k-th token in the vocabulary V. GCG treats
this token as the optimal substitution and typically samples from the top tokens based on

this gradient ranking.

Proposition 11.3.2. The token selection in the GCG algorithm represents the optimal

one-hot solution to the linear approximation of f at xg.

The proof is presented in Appendix A.2. Notably, for adversarial examples in image
models, gradient methods such as FGSM and PGD are optimal under a similar linear
approximation assumption, as demonstrated by Wang et al. [54]. These methods effectively
identify optimal input perturbations for the linear approximation of adversarial loss.

However, a key distinction lies in the nature of input perturbations. In image models,
perturbations are restricted to small continuous ¢,-balls, enabling accurate linear approx-
imations. In contrast, token distances in language models can be substantial, reducing
the accuracy of such approximations. As a result, applying token gradients to language

models may be less effective.

11.3.3 Functional Homotopy method

In this section, we elucidate our functional homotopy method for addressing the optimiza-
tion problem defined in Equation (11.1). Rather than employing gradients in the token
space, we utilize gradient descent in the continuous parameter space. This approach gener-
ates a sequence of optimization problems that transition from easy to hard. Subsequently,

we apply the idea of homotopy optimization to this sequence of problems.

Homotopy method.  We consider the optimization problem Equation (11.1), where x
is the optimization variable, and X is the underlying constrained space, which is topological.
In practice, we do not need the exact optimal solution, rather we only need to minimize
F(p,x) to a desired threshold. Let us denote S¢(F) = {z | F(p,r) < a} for a threshold
a € R, ie., S3(F) is a sublevel set for the function x — F(p, z).

Let f,g : X — R be continuous functions on X. A homotopy H : X x [0,1] — R

between f and g is a continuous function over X x [0, 1], such that H(z,0) = g(x) and
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Figure 11.2: An example of homotopy from g(x) to f(z). It can be a hard task to minimize
f(z) directly, when x comes from a discrete space. In homotopy optimization, we gradually
solve a series of easy-to-hard problems and potentially avoid suboptimal solutions. Pink
balls are the optimal solution to each problem. The path marked by the arrows illustrates
the homotopy path over time.

H(z,1) = f(x) for all x € X. We can think of H as a continuous transformation from f
to g.

The optimization problem min,cx f(x) is a nonconvex and hard problem, whereas
mingex g(x) is an easy optimization problem. As a result, H(z,t) induces a series of
easy-to-hard optimization problems.

One can then gradually solve this series of problems, by warm starting the optimization
algorithm using the solution from the previous similar problem and eventually solve
mingex f(z). Figure 11.2 illustrates an example of homotopy from g(z) to f(x). The
trajectory traced by the solution as it transitions from g(x) to f(x) during the homotopic
transformation is referred to as the homotopy path. Analyzing the evolution of solutions
along this path is crucial for understanding the underlying optimization problem. For in-
stance, in the interior point method, the homotopy path evolution provides the convergence

analysis of the algorithm [8].

Functional duality. Constructing a homotopy offers various approaches. In this
work, we introduce a novel homotopy method for Equation (11.2), termed the functional
homotopy method, which leverages the functional duality between p and z. Since we
develop the FH method specifically for LLMs, we will henceforth assume that X represents

the space of tokens.
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To minimize Equation (11.2), we first optimize F'(p,x) over the parameter space p
using gradient descent, as p € R™ is continuous, making gradient descent highly effective.
This process allows us to optimize F'(p,z) to a desired value, resulting in the parameters
transitioning to p’. We denote the original model parameters as po = p and the updated
parameters as p; = p'.

By allowing infinitesimal updates (learning rates), the gradient descent over the
parameter space creates a homotopy between F'(p,z) and F(p/,z), with H(z,t = 0) =
F(p/,z) and H(xz,t = 1) = F(p,x) for the homotopy method. During the optimization
of p, we retain all intermediate parameter states, forming a chain of parameter states
between py and p;, denoted as pg, p1,...,p:. Since p; and p;;; differ by only one gradient
update, Sy (F) and Sy, (F) are very similar, facilitating the transition from x € Sy, (F)
to Sy (F). A formal description of the functional homotopy algorithm is provided in
Algorithm 2. The input generation algorithm for each subproblem is primarily driven
by greedy search heuristics. Additionally, we provide a conceptual illustration of the
homotopy optimization method in Figure 11.3, elucidating its underlying principles and

operational dynamics from a level-set evolution perspective.

Algorithm 2 The Functional Homotopy Algorithm

Input: A parameterized objective function f,, an initial parameter py and an initial
input z; € X, a threshold a € R.

Output: A solution zq € Sp (F)

1: Using gradient descent to minimize F'(p, z;) with respect to p for ¢ steps such that

F(p, ;) < a; save the intermediate parameter states po, p1, - - ., Pr.
2: fori=t—1,...,0do
3: Update z; from x;,1 using random search: fix a position in z;, randomly sample

tokens from the vocabulary to replace the token at that position, and evaluate the
objective with the substituted inputs. The best substitution is retained greedily over
several iterations. This process is initialized with a warm start from x;,; and ideally
concludes with F(p;, z;) < a.

4: end for

5: Return z.

11.3.4 Application to Jailbreak Attack Synthesis

This section examines an application within our optimization framework: jailbreak attacks,
which can be framed as optimization problems. Let M represent the LLM, x be an input.
An adversary seeks to construct a string s such that the concatenated input t = (z, s),

where (x, s) can be either z|s or s|x, prompts an extreme response T'(M(t)).
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Figure 11.3: Conceptual illustration of homotopy methods for suffix optimization. (a)
Left: Greedy local search heuristic. The red region denotes successful suffixes. The search
initiates from a starting point (black solid) and iteratively moves to the optimal neighboring
input (dashed circle) based on loss values, potentially leading to local optima entrapment
due to non-convexity. (b) Right: Homotopy approach. A series of progressively challenging
optimization problems is constructed, with easier problems having larger solution spaces.
The solution set gradually converges to that of the original problem. Adjacent problems
in this continuum have proximal solutions, facilitating effective neighborhood search.
Despite the underlying non-convexity, initiating from a near-optimal point simplifies each
problem-solving step.

Given a sequence of tokens (x1, s, ..., z,), a language model M generates subsequent

tokens by estimating the probability distribution:
Lntj ~ PM('|$17x27 e ,$n+j_1); j=1,... k.

Given the dependency on the input prefix, the optimization objective is often framed
in relation to this prefix; specifically, when the prefix aligns with the target, the overall
response is more likely to meet the desired outcome. If the target prefix tokens are
(t1,...,tn), the surrogate loss function quantifies the likelihood that the first m tokens of
T(M(t)) correspond to the predefined prefix.

Since T(M(t)) is sampled from the distribution M (t), the attack problem can be
formulated as identifying a string s that minimizes L(M ({x,s))), where L measures the
divergence from the desired response. This objective serves as a proxy for achieving the

intended output.
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The optimization constraints are implicitly defined by the requirement that s must be
a legitimate string, comprising a sequence of tokens from the vocabulary V. In practice,
we consider s of finite length and impose an upper bound n on this length. Consequently,
the constraint is formulated as s € ", V", restricting the search space to the set of all
strings with length not exceeding n. Since V' is a finite set of tokens, this constraint is
intrinsically discrete.

As a result, let X = (I, V', and the optimization problem is

min L(M({(z, s))). (11.4)

seX

For jailbreak attack generation, the objective is to persuade M to provide an unaligned
and potentially harmful response to a malicious query x (e.g., “how to make a bomb?"),
rather than refusing to answer. If M is well-aligned, T'(M (p)) should result in a refusal.
The adversary then aims to design a string s such that ¢t = (z, s) elicits a harmful response
T(M(t)) instead of a refusal for the malicious query x. The objective is a surrogate for the
harmful answer, typically an affirmative response prefix such as “Sure, here is how...". Zou
et al. [56], Liu et al. [37], Hu et al. [26] have adopted similar formalizations for jailbreak

generation.

11.4 Evaluation

We empirically assess the hypotheses developed in the previous section and align our
study with a standard question—driven protocol. In particular, we evaluate (i) the utility
of token—gradient heuristics for discrete prompt search, and (ii) the effectiveness and

efficiency of the functional homotopy (FH) procedure relative to baselines.

RQ1: How effective is gradient—based token selection within GCG-style optimiza-

tion?

RQ2: How effective is FH at synthesizing jailbreak attacks (success rate / quality)

compared to baselines?

RQ3: How efficient is FH (iterations / wall-clock / queries) compared to baselines?

The complete experimental design, datasets, models, baselines, metrics, and ablations
are provided in Appendix B.3. Here we summarize the principal findings for each research

question.
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RQ1: Token—gradient utility. Gradient-based token selection provides only marginal gains
over randomized substitutions when measured under a fixed query budget. These gains
must be weighed against the additional compute and model access required to obtain
token—level gradients. In settings where gradient access is constrained (e.g., black—box
or rate-limited APIs), forgoing token gradients also reduces attack surface in terms of

required model introspection.

RQ2: Effectiveness of FH. Across aligned models considered, FH improves jailbreak success
over baseline prompt—search methods by more than 20% in representative regimes
(details in Appendix B.3). The improvement is most pronounced on stronger safety
configurations, where homotopy warm starts consistently translate solutions from

weaker (misaligned) checkpoints to the target model.

RQ3: Efficiency of FH. By smoothing the discrete search via a parameter—space homotopy,
FH exhibits steadier per—iteration progress and lower variance across instances. Base-
lines often solve easy cases quickly but stall on harder ones; FH maintains progress on
these hard tails and typically reaches comparable or higher success with fewer outer

iterations and competitive wall-clock / query counts.

Taken together, these results support the chapter’s central claim: functional homotopy
turns a hard combinatorial objective into a staged sequence of easier problems whose
solutions can be transferred forward, yielding both higher success and more predictable

convergence behavior. The full tables, curves, and ablations appear in Appendix B.3.

11.5 Summary

This chapter introduced functional homotopy as an incremental method for adversarial
prompting, motivated by the inherent combinatorial hardness of model-agnostic input
generation. Rather than attacking a fully aligned model directly, FH constructs a sequence
of progressively weaker checkpoints obtained through a controlled de-robust-training
process. Prompt optimization is then performed along this trajectory: each intermediate
model yields an easier subproblem whose solution provides a strong initialization for the
next. This approach transforms a single, brittle discrete search over the base model into a
chain of more tractable problems.

We further showed that token-level gradient heuristics, while widely used in methods

such as GCG, exhibit limited predictive value in the discrete token regime. By decoupling
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prompt optimization from the alignment barrier of the base model, FH mitigates these
limitations and leverages structural regularities exposed by weaker checkpoints. Empirically,
FH consistently improves both attack effectiveness and efficiency, achieving higher success
rates and faster convergence than gradient-based or gradient-free baselines across a range

of open-source instruction-tuned LLMs.

Incremental Computation Perspective. Functional homotopy extends the
incremental-computation paradigm from continuous optimization to discrete prompt
search. Each checkpoint along the homotopy path acts as a valid but simplified model
on which prompt optimization can proceed more easily, and whose solutions remain
informative when transferred forward. The iterates produced by FH are thus analogous
to LipDift’s progressively tighter semidefinite certificates: both methods solve a difficult
problem by tracing a structured path through a space of related subproblems, preserving
correctness or usefulness at every step.

Taken together, these results illustrate how incremental computation can smooth non-
differentiable, combinatorial search landscapes and reveal latent structure in aligned LLMs.
In the concluding chapter, we reflect on how functional homotopy and LipDiff instantiate
the dissertation’s central principles and outline broader opportunities for incremental,

semantics-guided methods in the analysis and alignment of Al systems.



96

Chapter 12
Conclusion

This dissertation has presented a programming-language perspective on neural networks
and modern Al systems, organized around three principles: interpretation, duality, and
incremental computation. Across the four main parts of the thesis, these principles provided
a coherent framework for understanding how neural networks behave, how their behaviors
can be expressed and analyzed, and how difficult optimization problems surrounding them
can be decomposed into tractable subproblems. Although each part develops its own
technical contributions, they collectively demonstrate how semantic structure, algebraic
representation, and trajectory-based computation can illuminate both the expressiveness

and the limitations of advanced models.

Interpretation.  The first principle, interpretation, investigated how neural networks
behave under different semantic lenses. Part II introduced interval semantics, a set-
based interpretation motivated by the needs of robustness and verification. The Interval
Universal Approximation theorem showed that interval semantics possess a surprising
expressive power: networks can approximate the collecting semantics of any continuous
function to arbitrary precision, using only interval abstractions. The constructive proof,
based on squashable activations and indicator-like components, demonstrated that interval
universality is not merely existential but algorithmically realizable. At the same time,
interval range approximation was shown to be As—intermediate, revealing that abstraction
precision comes with unavoidable computational limits. These results highlight a recurrent
theme: stronger interpretive models provide richer guarantees but may also encounter
intrinsic complexity barriers.

Part III refined the interpretive lens by developing an algebraic semantics for neural
networks. By unfolding networks into systems of polynomial constraints, we obtained

symbolic representations capable of expressing exact reachability properties, activation
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patterns, and robustness queries. The interplay between semialgebraic structure and
network architecture exposed a sharp boundary between quadratic and higher-order
expressiveness. Together, the interval and algebraic lenses show that semantics is not a
monolithic choice but a spectrum, and that understanding this spectrum is essential for

designing both sound analyses and practical algorithms.

Duality.  The second principle, duality, served as a conceptual bridge between semantic
representations and computational techniques. In Part II, quantifier duality between
universal (robustness) and existential (reachability) problems arose naturally in the analysis
of interval semantics. These dualities clarified why constructive interval approximators
always exist, yet verifying their behavior at fine precision becomes computationally difficult.

Part III then used optimization duality to derive semidefinite relaxations of global
Lipschitz constants. The SDP formulations arising from the algebraic encodings exhibited
a clean primal-dual relationship: Shor’s lifting corresponds to Lagrangian LMIs over slope-
restricted activations, and the resulting relaxations admit constant-factor approximation
guarantees rooted in geometric inequalities. Duality, in this context, unifies symbolic
semantics with convex analysis, showing how algebraic structure can give rise to tractable
optimization problems with quantitative meaning.

Finally, functional duality played a central role in Part IV. In functional homotopy, both
token sequences and model parameters are treated as arguments of a single functional loss.
This perspective transforms adversarial prompting into a search over a joint space, allowing
model weakening and prompt construction to inform one another. Duality thus appears
not only in semantic abstractions and convex optimizations but also in the interactive

structure of modern prompting tasks.

Incremental Computation.  The third principle, incremental computation, provided
a methodological lens for solving hard problems through structured trajectories. This
principle unifies the results in Part IV and connects them back to earlier chapters.

LipDiff introduced an incremental semidefinite solver that transforms the challenge of
computing global Lipschitz constants into a continuous path of first-order updates. Each
iterate is a valid robustness certificate, strictly improving on the last. This trajectory-based
computation preserves correctness at every step while scaling to network sizes far beyond
the reach of classical SDP solvers.

Functional homotopy extended the incremental paradigm to discrete spaces. Instead of
attacking a fully aligned LLM directly, FH constructs a sequence of progressively weaker
models whose prompt-optimization problems are easier to solve. Solutions propagate along

the path until they reach the base model. Experiments demonstrated significant gains
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over both gradient-based and gradient-free baselines, showing that incremental structure
can smooth extremely irregular search landscapes encountered in adversarial prompting.

Across both continuous and discrete domains, incremental computation thus emerges
as a powerful strategy: difficult analyses and optimization tasks can often be reframed as
paths through a succession of simpler problems, each maintaining validity or utility for

the next.

Future Directions. Taken together, the principles of interpretation, duality, and
incremental computation point toward a view of reasoning in which semantics is not a
static object, but a structure that is progressively constructed and refined through compu-
tation. In modern Al systems, and especially in large language models, meaning emerges
incrementally as partial information is accumulated, contextualized, and reinterpreted
across tokens, turns, and interactions. Extending the semantic spectrum developed in this
dissertation to richer compositional and discourse-level structures may therefore clarify
how local linguistic cues and intermediate representations are assembled into coherent
global interpretations, treating prompts and internal states as evolving semantic artifacts
rather than fixed inputs.

From this perspective, incremental computation and the duality between computation
and information admit a relational interpretation. Semantic information is carried not only
by individual representations, but by how pieces of information relate to one another and
how computations compose and interact over time. Computation acts as a mechanism for
revealing and refining semantic content, assembling partial and in general uncomputable
meaning into increasingly informative approximations through structured evaluation. This
interplay between information, computation, and their relational structure provides a
general methodological lens for reasoning systems, abstracting across specific models and
algorithms. More broadly, this dissertation argues that programming-language ideas,
particularly denotational interpretation, functional duality, and incremental refinement,
offer a unifying computational perspective on Al reasoning. Viewing large language models
through this lens emphasizes meaning as something constructed rather than assumed, and
offers a principled foundation for understanding how complex reasoning behavior emerges

from partial, evolving semantics in interaction with humans.
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Appendix A

Elided Proofs

This appendix collects several technical results and proofs omitted from the main chapters.

A.1 Hardness of LLM Input Generation

Let f:{0,1} — R be a two-layer feed-forward neural network of the form
f<$> = W2 O'(Wll’ + bl) + bz,

where W, € R™™ W, € R™*" b, € R", by € R, and o is an activation function. As the
composition of two affine transformations remains affine, the network can be viewed as an
affine map followed by a single activation layer.

The associated decision problem is:
Va € R. 3z € {0,1}™. f(z) <a. (A1)

Given a threshold a, the question is whether there exists a binary input x such that
the network output lies below a. In the sequel, we show that this problem is NP-hard
(Sections A.1.1), and we explain in Section A.1.2 how this formulation captures the

loss-minimization objective in LLM input generation.

A.1.1 Hardness Reduction

We prove NP-hardness by reduction from 3SAT. Let ¢ be a formula in 3CNF, with Boolean
variables X7, ..., X,,. A literal L; is either X; or =X;. A formula ¢ = Cy A---AC} consists
of clauses C; = L1 V Ly V L3, each containing exactly three literals. The satisfiability of
such formulas is NP-hard [28].
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Simulation of 3CNF..  We employ a standard step-function gadget (cf. [51]) to simulate

Boolean operations inside a neural network. The idealized step function is

1, x>0,

step(z) =
0, =<0,
and is well approximated by standard activations. For example, ReLU(nz) — ReLU(nz —1)
converges to step(x) as n — oc.

For the reduction, we define a step-like function

1, z>1,
s(x) = ReLU(z) —ReLU(x — 1) =40, 2 <0,

r, O0<z<l.

Each Boolean variable X; is represented by an input node x; € {0,1}. To represent
literals, we introduce two affine copies y; = x; and y; = 1 — x;, corresponding to X; and
=X;. A clause C' = Ly V Ly V L3 is encoded as

Cc = S(ll + l2 + 13),

where each [; is y; or y; depending on the literal. If any literal is satisfied, then Iy +1ls+13 > 1
and hence ¢ = 1; otherwise ¢ = 0.

To represent a conjunction of k clauses, we sum the clause outputs and negate:

Thus,
¢ is satisfiable <= 3z € {0,1}™. f(x) < —k.

Proposition A.1.1. For any 3CNF formula ¢ with k clauses, there exists a two-layer
neural network f: {0,1}™ — R such that

¢ is satisfiable <= Fx. f(x) < —k.

Proof. The construction above ensures that each clause node outputs 1 precisely when the
corresponding clause is satisfied. If ¢ is satisfiable, then some assignment yields ¢; = 1 for
all i, so f(z) = —k.

Conversely, if f(x) < —Fk, then since each ¢; € [0, 1], we must have ¢; = 1 for all 1.
As each ¢; = 1 implies at least one literal in clause C; is satisfied, the induced Boolean

assignment satisfies every clause of ¢. O
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Since s can be realized by a single activation layer using standard activations [51], the

neural network uses only one nonlinear layer. Hence:

Corollary A.1.2. The decision problem in Equation (A.1) is NP-hard.

A.1.2 Formalization of LLM Input Generation

We now explain how the formulation (A.1) models LLM input-generation objectives such
as jailbreak optimization. The goal is to minimize a loss of the form L(M((z,s))), where
M is an LLM, z is a discrete prompt, and L is the cross-entropy loss between logits and a
designated affirmative prefix.

Because we impose no structural constraints on the embedding layer or the output
head, a two-layer subnetwork can be embedded inside the LLM. Consider a multi-output

network F' whose first logit satisfies

Fa)y = f(x),

while the remaining logits are fixed constants. The cross-entropy w.r.t. class 1 is

of (@)

log i o

for a constant C' > 0. This expression is strictly increasing and bijective in f(z). Thus
minimizing the prefix loss is equivalent to minimizing f(x). If one could efficiently minimize
this loss over x € {0,1}™, then the existential condition f(z) < a for any threshold a

would also be decidable. This establishes the correspondence.

A.2 Linear Approximation of GCG

Proof. Let g be a length-n token sequence and let 2’ be obtained by replacing the token a
at position j with a token b. Let Ey and E’ denote their one-hot encodings in R™*¢. Then

E' = EO + Vaby

where vq; is zero everywhere except in row j, which contains a vector with a —1 in the
column of token a and a +1 in the column of token b.
A first-order expansion of f at Ej, gives

F(E") = f(Eq) +va,; Df(Eo). (A.2)

J
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Since only the j-th position of v,; is nonzero, the directional derivative reduces to

(vars) " Df(Eo) = ([vass];) " b,

where h is the slice of the gradient corresponding to position j. Maximizing the linear
approximation of f(E’) over all substitutions at position j thus amounts to choosing the
token whose one-hot difference vector maximizes ([va,];)"h. The maximizing token is

therefore the one achieving arg max h. O
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Appendix B

Empirical Evaluations

We present the detailed evaluations of this thesis in this chapter.

B.1 Evaluation of GeoLIP

This section presents the empirical evaluation of GeoLIP, the semidefinite relaxation
framework introduced in the previous chapters. Our experiments aim to assess three key
aspects: (i) precision of the estimated Lipschitz bounds, (ii) computational scalability with

respect to network size and depth, and (iii) correctness of the dual formulations underlying
GeoLIP.

B.1.1 Experimental Design

Objectives.  We address the research questions defined in Section 10.6: (RQ1) How
precise are the GeoLLIP bounds relative to existing methods? (RQ2) How scalable is
GeoLIP on larger and deeper networks? (RQ3) Do the dual programs implemented in
GeoLIP yield values identical to their primal SDPs?

Methodology. To evaluate RQ1 and RQ2, we apply GeoLIP and competing tools to
a collection of fully-connected feedforward networks trained on the MNIST dataset [34].
For each network, we record both the computed ¢..-formal global Lipschitz constant (FGL)
and the corresponding runtime. To address RQ3, we compare the values produced by
the primal and dual SDP formulations for both /- and /..-FGL estimation on two-layer

networks.
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Baselines and Variants.  Our primary baseline is LiPopt [33], an LP-hierarchy-based

method for /,-FGL estimation.! We also include the following reference methods:

« MP (Matrix Product) — the naive upper bound given by the product of layer-wise

operator norms.

o BruF (Brute Force) — exhaustive enumeration of all activation patterns, representing

the exact (ground-truth) FGL; feasible only for very small networks.

e Sample — empirical lower bound obtained by computing gradient norms at 200,000

randomly sampled input points.
GeoLIP itself has two configurations:

o NGeoLIP — the natural (primal) semidefinite relaxation, corresponding to the formu-
lation in Equations (9.4) and (9.5).

e DGeoLIP — the dual SDP program derived from the Lagrangian formulation (see Sec-
tion 9.3).

All experiments were executed on a workstation with forty-eight Intel® Xeon® Silver
4214 CPUs at 2.20 GHz and 258 GB RAM. A runtime exceeding ten hours is denoted as
“N/A” in the tables.

Network Configurations. = We evaluate both shallow and deep architectures:
o Two-layer networks: Hidden layer sizes of 8, 16, 64, 128, and 256 units.

o Multi-layer networks: Depths of 3, 7, and 8 layers, each hidden layer containing 64
ReLU units.

All models are trained for 10 epochs on MNIST using the ADAM optimizer [31], achieving
at least 92% test accuracy. Following Latorre et al. [33], all Lipschitz estimations are
reported for the output neuron corresponding to class label 8. We also report the average
per-class computation time (total runtime divided by 10 classes).

For LiPopt, we denote by LiPopt-k the degree-k LP hierarchy. As noted by Latorre
et al. [33], the hierarchy degree must at least match the network depth to yield valid

bounds.

!The semialgebraic approach proposed by Chen et al. [9] could not be included because no public
implementation is available.
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Table B.1: (.-FGL estimation for two-layer networks (MNIST).

# Units DGeoLLIP NGeoLIP LiPopt-2 MP Sample  BruF

8 142.19 142.19 180.38 411.90 134.76 134.76
16 185.18 185.18 259.44 578.54  175.24 175.24
64 287.60 287.60 510.00  1207.70  253.89 N/A
128 346.27 346.27 780.46  2004.34 266.22 N/A
256 425.04 425.04 1011.65 2697.38  306.98 N/A

Table B.2: Average runtime (seconds) for {,.-FGL estimation on two-layer networks.

# Hidden Units DGeoLIP NGeoLIP LiPopt-2

8 23.1 21.5 1533
16 28.1 22.3 1572
64 93.4 31.7 1831
128 292.5 42.2 2055
256 976.0 70.9 2690

B.1.2 Results on Two-Layer Networks

Precision and Scalability.  Tables B.1 and B.2 summarize the estimated /,-FGL
and the average computation times for two-layer networks of increasing width.

GeoLLIP consistently produces tighter upper bounds than LiPopt and the matrix-
product baseline, while remaining close to the brute-force ground truth when available.
The dual and primal implementations yield identical FGL values, confirming theoretical
equivalence. GeoLIP also scales significantly better than LiPopt, with runtime reductions

of one to two orders of magnitude for all network sizes.

B.1.3 Results on Multi-Layer Networks

We next evaluate GeoLIP on deeper architectures (3-, 7-, and 8-layer networks, each with
64 hidden units per layer). Tables B.3 and B.4 summarize the estimated (-FGL values
and average runtimes.

GeoLIP maintains both numerical stability and computational tractability on networks
where LiPopt fails to converge. Compared to the matrix-product heuristic, GeoLIP
provides upper bounds that are orders of magnitude tighter, while runtime remains well

below ten minutes even for eight-layer networks.
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Table B.3: /.-FGL estimation for multi-layer networks.

# Layers GeoLIP Matrix Product Sample LiPopt

3 529.42 9023.65 311.88  N/A
7 5156.5 1.42 x 107 1168.8  N/A
8 8327.2 8.24 x 107 1130.6  N/A

Table B.4: Average runtime (seconds) of GeoLIP for multi-layer networks.

3-Layer T7-Layer 8-Layer
120.9 284.3 329.5

Table B.5: /,-FGL estimation for two-layer networks.

# Units NGeoLIP LipSDP MP  Sample BruF

8 6.531 6.531 11.035 6.527  6.527
16 8.801 8.801 13.936  8.795  8.799
64 12.573 12.573 22,501 11.901 N/A
128 15.205 15.205 30.972 13.030 N/A
256 18.590 18.590 35.716 14.610 N/A

B.1.4 Duality Verification

Finally, we examine RQ3—the validity of the dual SDP formulations. We evaluate the /-
and /,-FGL on two-layer networks with increasing hidden dimensions using the primal
(NGeoLIP) and dual (DGeoLIP) programs. For ¢,-FGL, we also include LipSDP [18] as a
baseline. The corresponding results and runtimes are given in Tables B.5 and B.6.

The primal and dual implementations of GeoLIP yield identical FGL values across
all configurations, confirming their mathematical equivalence. Moreover, GeoLIP repro-
duces the exact outputs of LipSDP on /,-FGL tasks while achieving substantially lower

computation time, especially for larger networks.

B.1.5 Summary

Across all experiments, GeoLIP demonstrates superior precision and scalability compared
to existing SDP and LP methods. Its primal and dual formulations are numerically

consistent, validating the theoretical duality proofs from Chapter 9. These results establish
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Table B.6: Average runtime (seconds) for ¢o-FGL estimation on two-layer networks.

# Hidden Units NGeoLIP
8 1.2
16 1.2
64 1.3
128 1.7
256 4.1

GeoLIP as a practical and provably accurate tool for computing global Lipschitz bounds

of neural networks.

B.2 Evaluation of LipDiff

B.2.1 Research Questions

The evaluation of LipDiff aims to address the following questions:

RQ1: Does the eigenvalue-penalty formulation attain the same Lipschitz bound as LipSDP

on the same networks?

RQ2: Does the proposed first-order method offer advantages in running time and memory

efficiency compared to LipSDP?

RQ3: What are the quantitative effects of the individual optimization techniques (analyt-

ical initialization, Lanczos approximation, sparse matrix—vector kernels)?

B.2.2 Experimental Design

We implemented the algorithm as LipDiff in PYTORCH, leveraging its automatic differ-
entiation and GPU acceleration. The default optimizer is ADAM [31], with tuned step

sizes and iteration budgets for each problem instance.

To isolate the contribution of each technique, we also implemented the following

variants:

1. LipDiff-Ex: uses the exact eigenvalue computation (no Lanczos approximation) with

analytical initialization.
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Table B.7: Neural network models used in evaluation.

Model Structure Parameters Acc. SDP size
MNIST-DNN 1FC 203530 97% 1041 x 1041
MNIST-CNN 1C2FC 314982 98% 4021 x 4021
CIFAR10-CNN 3C3FC 1344298 80% 22529 x 22529

2. LipDiff-Dense: employs Lanczos approximation but performs dense matrix multiplica-
tions.
3. LipDiff-Rand: employs sparse matrix—vector multiplication and Lanczos approximation

but starts from a random initialization.

In summary, LipDiff integrates all optimization strategies proposed in Section 10.5.
LipDiff-Ex computes the eigenvalue explicitly and serves as the high-precision variant;
LipDiff-Dense tests the efficiency of eigenvalue approximation without exploiting sparsity;
LipDiff-Rand evaluates the importance of analytical initialization. For all Lanczos-based

variants, we also compute the exact eigenvalue at the final iteration for accurate comparison.

Baselines.  We compare against two established methods:

o Product: the standard matrix norm product bound [35], which provides a trivial upper

bound on the Lipschitz constant and scales to large networks.

o LipSDP: the original semidefinite programming approach [18], implemented in CVXPY [15]
with the MOSEK solver [4]. LipSDP runs on CPU, while LipDiff and its variants run on
GPU.

Neural Networks.  We evaluate on three representative architectures:

1. MNIST-DNN: a fully connected network with one hidden layer of 128 ReLLU units;
2. MINIST-CNN: one convolutional layer followed by two fully connected layers;

3. CIFAR10-CNN: three convolutional and three fully connected layers.

These networks are summarized in Table B.7. For consistency with prior work [52], the
Lipschitz constant is computed for the output corresponding to label 8. Each run is capped

at 10 hours, and results are reported from the best iterate reached within the time limit.

B.2.3 Results and Discussion

The results are summarized in Table B.8. For the MNIST-DNN model, LipDiff-Ex achieves
nearly identical values to LipSDP while running substantially faster. For MNIST-CNN,
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Table B.8: Comparison of LipDiff variants with LipSDP and the norm-product baseline.
LipDiff-Ex reproduces LipSDP’s value closely on MNIST-DNN and substantially reduces
estimation error where LipSDP fails to scale.

Dataset Model Product LipSDP LipDiff LipDiff-Ex LipDiff-Dense LipDiff-Rand
Result 9.31 4.82 4.90 4.86 4.96 5.89
MNIST DNN Time (s) 0.13 54.57 28.69 19.27 12.48 29.27
Memory (MB) 1.54 170 118 114 114 118
Result 24.79 OOM 14.76 13.08 14.66 2201.66
MNIST CNN Time (s) 0.16 - 178.99 559.08 185.34 186.89
Memory (MB) 18.77 - 2640 1534 1536 2640
Result 35.45 OOM 14.82 18.52 16.12 1731.82
CIFAR10 CNN Time (s) 98.08 - 2777.07 36000 25126.01 2723.02
Memory (GB) 0.51 - 60.05 51.39 51.41 60.05
MNIST-CNN CIFAR-CNN
30 40
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(a) MNIST-CNN (b) CIFAR10-CNN
Figure B.1: Optimization trajectories for LipDiff (blue) and LipDiff-Rand ( ) on

MNIST-CNN (a) and CIFARI10-CNN (b). The y-axis (log scale) shows the estimated
Lipschitz constant versus iteration. LipDiff converges substantially faster and to a lower
value, confirming the effectiveness of analytical initialization.

LipSDP fails due to out-of-memory (OOM) errors caused by the 4021 x 4021 constraint
matrix, whereas all LipDiff variants complete successfully. LipDiff-Ex achieves a 48% tighter
bound than the norm-product method. For CIFAR10-CNN, LipDiff further improves the
bound by 58% over the product baseline, marking the first successful Lipschitz estimation

for a CIFAR-scale network using an SDP-based formulation.

RQ1 (Value equivalence). For MNIST-DNN;, LipDiff-Ex reproduces LipSDP’s results
with negligible deviation, and both LipDiff and LipDiff-Dense yield comparable bounds.
This empirically validates the theoretical equivalence of the eigenvalue—penalty and SDP

formulations established in Theorem 10.3.1.

RQ2 (Scalability).  Memory. While GPU and CPU memory models differ, relative
scaling is informative. LipDiff’s memory grows approximately linearly with SDP size,
whereas LipSDP’s dense Cholesky-based IPM solver scales superlinearly and fails beyond

moderate dimensions. For example, LipSDP exhausts 528 GB of system memory on
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a 4021 x 4021 SDP, roughly 16 times larger than MNIST-DNN'’s constraint, whereas
LipDiff completes with under 3 GB. Time. By adjusting the learning rate and iteration
count, LipDiff attains accurate bounds within minutes, offering flexible trade-offs between

precision and runtime unattainable by closed-form SDP solvers.

RQ3 (Ablation).  Analytical initialization consistently yields better final values and
faster convergence than random initialization, especially for networks with many free
variables. The Lanczos approximation accelerates eigenvalue estimation with minimal
accuracy loss, while sparse mat—vec kernels show benefits only on large, highly sparse
networks (e.g., CIFAR10-CNN), where they reduce computation time by nearly 90%. For
small, dense networks such as MNIST-DNN, dense mat—vecs remain faster.

LipDiff-Ex consumes the least memory since it omits Lanczos submatrices, while LipDiff

and LipDiff-Dense allocate additional buffers for Krylov subspaces and sparse kernels.

Conclusion.  Across all experiments, LipDiff maintains the precision of LipSDP while
substantially improving scalability. With analytical initialization and eigenvalue-based
optimization, it becomes feasible for the first time to compute SDP-quality Lipschitz
bounds for CIFAR-scale models. LipDiff can terminate at any iteration with a valid
bound, enabling users to trade accuracy for speed according to available resources and

time budgets.

B.3 Evaluation of Functional Homotopy

We evaluate the functional homotopy (FH) method along three axes:
RQ1: How effective is gradient—based token selection within GCG-style optimization?

RQ2: How effective is FH at synthesizing jailbreak attacks (success rate / quality)

compared to baselines?

RQ3: How efficient is FH (iterations / wall-clock / queries) compared to baselines?

Experimental Design and Specifications

Token—gradient utility (RQ1). We study the finite-token discrete optimization
problem by comparing gradient-induced token rankings with ground-truth rankings induced
by the objective in Equation (11.1). For a fixed prompt position, we substitute each

candidate token, evaluate the objective, and obtain the ground-truth ranking R1. In
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parallel, we compute token gradients and form the gradient ranking R2 (as in GCG). We
quantify agreement between R1 and R2 using rank-biased overlap (RBO) [55], which

emphasizes agreement near the head of the lists (scores in [0, 1]; larger is better).

Attack effectiveness and efficiency (RQ2-RQ3). We apply FH to jailbreak
synthesis as in Section 11.3.4 and measure attack success rate (ASR). Because Algorithm 2
employs greedy random substitutions in the inner loop, we denote our instance as F'H-
GR (Functional Homotopy with Greedy-Random search). We follow the same protocol
to record outer iterations, wall-clock time, model-query counts, and storage overhead
attributable to FH (e.g., checkpointing), enabling joint assessment of effectiveness (ASR)

and efficiency (iterations / time / queries).

Baselines.  For RQ1, the baseline is a uniform random ranking. For jailbreak synthesis

(RQ2-RQ3), we compare to:

« GCG [56]: token-level search guided by token gradients of the surrogate loss in Equa-

tion (11.4) (initialized with a simple seed, e.g., 20 exclamation marks).

« GR (Greedy-Random): token-level search identical to GCG but with uniformly random
token proposals (an end-to-end realization of the inner loop in Algorithm 2 without

gradients). Random greedy search has also been used in Andriushchenko et al. [3].

« AutoDAN [37]: prompt-level evolutionary search over DAN-style suffixes with a fitness

score and genetic operators.

This suite isolates the marginal value of token gradients (GCG vs. GR) and of homotopy
warm starts (FH-GR vs. GR / GCG / AutoDAN).

Models. We evaluate recent open-source instruction-tuned LLMs: Llama-3 8B
Instruct [16], Llama-2 7B [48], Mistral-v0.3 7B Instruct [27], and Vicuna-v1.5 7B [10].

Datasets. For RQ1, we sample 20 prompts from AdvBench [56]; for each, we choose four
suffix positions and substitute all tokens (about 32000 for Llama-2/Mistral/Vicuna; 128256
for Llama-3) to obtain ground-truth rankings, then compare against gradient-based and
random rankings via RBO. For RQ2-RQ3, we use 100 random prompts from AdvBench

and 100 from HarmBench [41] (200 total), spanning harmful and toxic instructions.

Judge. Following Mazeika et al. [41], we use Llama-2 13B as the automatic judge to
score responses and compute ASR. Passing the judge corresponds to membership in the
sublevel set S¢(F') in Algorithm 2.

FH specifics. The parameter update step in FH corresponds to fine-tuning. To

preserve intermediate checkpoints efficiently, we employ LoRA [25]. Instead of misaligning
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Table B.9: RBO (0-1) between ground-truth token rankings and alternative rankings.
Higher is better. Token-gradient rankings offer only marginal improvement over random.
(For adversarial images, analogous RBO values typically exceed 0.90 [54].)

Method Llama-3 8B Llama-2 7B Mistral-v0.3 Vicuna-v1l.5
Token Gradient 0.517 0.506 0.503 0.507
Random Ranking 0.500 0.500 0.498 0.500

per-prompt, we fine-tune on the full evaluation set once and reuse the resulting checkpoint
sequence for all prompts, which reduces storage and suffices for our comparisons. In the
backward pass over checkpoints (Algorithm 2), we use a binary-search schedule to select
intermediate models for efficiency (details in the appendix). As discussed in Section 11.3.3,
FH selects an affirmative prefix (e.g., “Sure, here is..”) as the fine-tuning target; we found
that broader red-teaming targets [19] reduce overfitting to completions that the judge

rejects.

Results

RQ1: ranking agreement and cost.  Table B.9 reports RBO scores. Token-gradient
rankings show only a slight positive correlation with ground truth relative to random
rankings, indicating weak guidance in the discrete token regime. Profiling shows a single
GCG iteration takes about 85% more time than a GR iteration; under a fixed wall-
clock budget, additional GR iterations can offset the small advantage conferred by token

gradients.

RQ2: attack effectiveness. Table B.10 summarizes ASR after 500 and 1000 iterations.
FH-GR matches or exceeds baselines across models, with especially large gains on Llama-2
and Llama-3. On Llama-2, FH-GR attains near-perfect ASR, outperforming the closest
baseline by over 30%. Additional ablations combining FH with GCG/AutoDAN (not
shown) indicate that homotopy warm-starting is complementary to both token-level and

prompt-level search families.

RQ3: efficiency and iteration distributions. Figure B.2 shows iteration distributions
on Llama-2 and Llama-3. FH-GR finds successful suffixes for many prompts that baselines
fail to solve within the same iteration budget; most FH-GR successes on Llama-2 occur
within 500 iterations, substantially outpacing GCG. When accounting for the higher
per-iteration cost of gradients, FH-GR provides both higher ASR and faster wall-clock

convergence.
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Table B.10: ASR after 500 and 1000 iterations. Mistral and Vicuna saturate by 500
iterations. Although iteration counts are equal, per-iteration cost differs: a GCG iteration
(with gradients) is &~ 85% slower than a GR iteration. For reference, Andriushchenko et al.
[3] allow up to 10000 random iterations; we cap at 1000.

ASR @ 500—1000 Iterations

Method Llama-3 8B | Llama-2 7B | Mistral-v0.3 | Vicuna-v1.5
500 1000 500 1000 500 500

AutoDAN | 17.0 195 | 53.5 615 100.0 98.0

GCG 445  59.0 | 53.5  63.5 99.5 99.5

GR 33.5  47.0 | 28.0 375 98.5 99.5

FH-GR 46.0 76.5 | 86.5 99.5 99.5 100.0

Llama-3: Iteration distribution of successful attacks

. . . . . FH-GR ASR: 0.765
Llama-2: Iteration distribution of successful attacks 25 GCG ASR: 0.59
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Figure B.2: Iterations to success by method. Bars summarize counts in ~ 50-iteration
bins. FH-GR reaches success more quickly and on more inputs. Note that a GCG iteration
is costlier than an FH-GR iteration.

Loss convergence of GCG vs. FH-GR.  We further analyze optimization dynamics
on “hard” samples for Llama-2 and Llama-3: prompts that GCG fails to jailbreak but
FH-GR (initialized from checkpoint 500) successfully attacks. Recall that both GCG
and GR optimize the same base loss Fj, whereas FH-GR traverses a sequence of losses
(Fy, ..., Fy), which we view as a homotopy.

Figure B.3 shows the change in average homotopy loss across checkpoints as FH
progresses. Easier intermediate problems and solutions to preceding problems enable
consistently lower losses throughout the homotopy path. Figure B.4 focuses on the base
loss Fy: applying adversarial strings found on weaker checkpoints to the base model yields

a steadily decreasing base loss and faster convergence to successful jailbreaks than GCG.
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Comparing Average GCG and FH-GR Loss for Hard Samples - Llama-2 Comparing Average GCG and FH-GR Loss for Hard Samples - Llama-3
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Figure B.3: Loss comparison of GCG and FH-GR on “hard” samples. The red FH-GR
curve shows the homotopy loss. Homotopy starts with substantially smaller loss due to
misalignment, and as FH-GR iterates and successfully jailbreaks intermediate models, it
replaces them (as in Algorithm 2) until reaching the base model by iteration 1000. FH-GR
converges more quickly than GCG.

Avg. FH-GR Loss for Llama-2 with Evolving Adversarial Suffix Avg. FH-GR Loss for Llama-3 with Evolving Adversarial Suffix
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Figure B.4: Base-model loss comparison of GCG and FH-GR on “hard” samples. Unlike
Figure B.3, we evaluate the usefulness of adversarial strings found by FH-GR by applying
them to the base model and computing the base loss Fy. The red FH-GR curve indicates
the base loss induced by FH-generated inputs; the loss decreases more consistently and
converges to a lower value, leading to successful jailbreaks where GCG fails.

Finally, Figure B.5 demonstrates robustness of FH-GR with respect to the initialization
checkpoint: even when starting from earlier (stronger) checkpoints, FH-GR typically

attains lower loss than GCG on the same hard instances.

Transferability of stronger attacks.  FH relies on a series of fine-tuned parameter
states. We therefore examine the transferability of successful base-model attacks to their
corresponding fine-tuned states. We consider 50 samples where the base model was
successfully attacked and apply the resulting adversarial suffixes to all checkpoints.

We hypothesize that the degree of overlap between adversarial subspaces of different
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Figure B.5: Loss comparison of GCG and FH-GR initialized from different checkpoints.
We take 25 “hard” samples and initialize FH-GR from earlier checkpoints that are more
aligned. Among cases where starting from an earlier checkpoint succeeds (loss in green),
FH-GR still converges to a lower loss than GCG. GCG fails on all these cases, whereas
FH-GR (ckpt-500—base) succeeds on all, and FH-GR starting from earlier (stronger)
checkpoints succeeds on 13 cases for Llama-2 and 6 for Llama-3.
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Figure B.6: Transferability of successful attacks on the base model to its fine-tuned
parameter states. Adversarial strings do not transfer uniformly across models; transfer
seems to depend on checkpoint distance and alignment training.

checkpoints depends on both the “distance” between states and their alignment training.
Figure B.6 supports this view: early checkpoints (roughly epochs 1-20) tend to share more
adversarial structure with the base model, whereas later checkpoints diverge. For Vicuna,
which is comparatively weakly aligned (cf. Table B.10), adversarial strings found for the
base model transfer well across fine-tuned states (Figure B.6b). By contrast, Llama-2
and Llama-3 (Figure B.6a) exhibit poor transfer, even though their fine-tuned states are
weaker in terms of alignment. This divergence hints at a nontrivial evolution of adversarial

subspaces under alignment training; a rigorous analysis is left for future work.
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