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Abstract	

	 Vitamin	D	inadequacy	affects	around	50%	of	adults	in	the	United	States	and	is	
associated	with	numerous	adverse	health	outcomes.	Vitamin	D	blood	concentration	[25(OH)D]	
has	strong	environmental	and	genetic	predictors	that	may	determine	how	much	vitamin	D	
intake	is	required	to	reach	optimal	25(OH)D.	Despite	large	genome-wide	association	studies	
(GWASs),	only	a	small	portion	of	the	genetic	factors	of	25(OH)D	has	been	discovered.	The	goal	
of	this	research	is	to	uncover	a	fuller	set	of	genetic	factors	and	gene-by-environment	
interactions,	that	could	be	useful	for	prediction	of	vitamin	D	inadequacy,	personalized	vitamin	
D	supplementation,	and	prevention	of	vitamin	D	associated	morbidity	and	mortality.	Using	
subsets	of	participants	of	European	(n=9,569)	and	African	ancestry	(n=2,761),	ancestry-specific	
polygenic	scores	(PGSs)	were	created	using	PRSice	and	validated	with	analyses	performed	in	
SAS.	Overall	SNP	heritability	and	that	accounted	for	by	the	PGS	and	published	GWAS	findings	
were	calculated	in	GCTA	and	compared.	Finally,	interactions	between	the	PGS	and	
environmental	predictors	of	25(OH)D,	available	UV	radiation	and	vitamin	D	intake,	were	
investigated.	Findings	show	that	participants	with	high	genetic	risk	had	25(OH)D	that	was	1.9-
4.7	ng/ml	lower	than	those	with	lowest	genetic	risk	(p=0.15	to	3.2x10-13);	requiring	an	
additional	317	to	783	IU	of	vitamin	D	intake	to	maintain	equivalent	25(OH)D.	In	European-
ancestry	participants	who	reached	IOM	vitamin	D	intake	guidelines,	the	proportion	of	
participants	achieving	adequate	25(OH)D	increased	as	genetic	risk	decreased	(70.4	vs	83.8	in	
the	highest	and	lowest	risk	categories,	respectively;	p=4.1x10-11);	providing	further	evidence	
that	those	with	high	genetic	risk	require	more	vitamin	D	intake	to	reach	adequate	25(OH)D.	
Where	sample	size	allowed,	heritability	estimation	showed	that	the	PGS	explains	more	
heritability	than	do	prior	GWAS	findings	(3.7%	vs	1.5%).	Additionally,	available	UV	radiation	and	
vitamin	D	intake	were	shown	to	interact	with	PGS	and	influence	25(OH)D.	Of	note,	due	to	
limited	minority	group	data,	African-ancestry	analyses	were	generally	underpowered.		PGSs	are	
a	powerful	predictive	tool	that,	in	tandem	with	assessment	of	environmental	predictors,	UV	
radiation	and	vitamin	D	intake,	could	be	leveraged	for	personalized	vitamin	D	supplementation	
to	prevent	the	negative	downstream	effects	of	vitamin	D	inadequacy.	
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Chapter	1:	Overview	

1.	Introduction	and	literature	review	

1.1	Vitamin	D		
	
1.1.1	Scope	of	the	health	burden		

Approximately	half	of	the	United	States	adult	population	is	affected	by	vitamin	D	

inadequacy,	defined	by	25-hydroxyvitamin	D	concentration	[25(OH)D]	<20ng/ml.	Those	of	racial	

and/or	ethnic	groups	with	darker	skin	have	an	even	higher	prevalence	with	estimates	for	

African	American	adults	being	over	80%	and	estimates	for	Hispanic	adults	being	over	60%	(1-3).	

Vitamin	D	inadequacy	is	a	major	public	health	burden	because	of	the	relationship	it	has	with	

negative	downstream	health	effects.	Low	vitamin	D	concentrations	have	been	associated	with	

increased	risk	of	autoimmune	diseases,	migraines,	hypertension,	dyslipidemia,	cardiovascular	

events,	and	cardiovascular	mortality	(1,	3-9).		Additionally,	recent	Mendelian	randomization	

studies	have	suggested	a	causal	relationship	between	low	vitamin	D	concentrations	and	

increased	risk	of	obesity,	ovarian	cancer,	hypertension,	lower	cognitive	function,	multiple	

sclerosis,	and	all	cause	and	cancer	mortality	(10-16).	Furthermore,	some	clinical	trials	have	

shown	that	vitamin	D	and	calcium	supplementation	are	important	in	the	prevention	of	

fractures	and	cardiovascular	risk	factors	(17-20).	

	

1.1.2	Environmental	and	genetic	predictors	

	 Vitamin	D	concentration	is	complex	trait	with	numerous	environmental	and	genetic	

predictors.	The	active	form	of	vitamin	D,	25(OH)D,	is	influenced	by	sun	exposure	and	vitamin	D	



2	
	

	

intake	through	diet	and	supplements.	In	total,	environmental	exposures	are	estimated	to	

account	for	2-23%	of	the	variance	observed	in	vitamin	D	concentrations	(21).	Environment	in	

tandem	with	personal	characteristics	such	as	age	and	measures	of	adiposity	(BMI,	waist	

circumference,	etc.)	have	been	observed	to	account	for	up	to	32%	of	variance	in	vitamin	D	

concentrations	(21).	

	 The	genetic	contribution	to	vitamin	D	concentration	is	estimated	to	explain	20-40%	of	

the	variance	seen	in	serum	concentrations	(1,	22).	However,	most	studies	to	date	have	been	in	

related	participants	of	European	ancestry,	therefore	further	study	is	warranted.	Additionally,	

some	evidence	indicates	that	season	may	affect	the	genetic	contribution	to	vitamin	D	

concentrations	by	altering	the	amount	of	vitamin	D	produced	upon	exposure	to	sunlight	(23,	

24).	Studies	have	also	suggested	a	difference	in	vitamin	D	heritability	by	gender	(25,	26).	

Several	studies	have	investigated	the	SNP	level	genetic	impact	on	vitamin	D	concentrations	and	

a	handful	of	genome-wide	association	studies	(GWAS)	have	been	carried	out	(1,	25,	27,	28).	To	

date,	only	about	1-8%	of	variation	in	vitamin	D	concentrations	can	be	explained	through	genetic	

effects	and	little	exploration	has	gone	into	teasing	out	differing	genetic	contributions	by	race,	

gender	and/or	season	(25,	29).	

	

1.1.3 Genome-wide	association	studies	

To	date,	four	large-scale	GWAS	studies	have	been	performed;	three	in	participants	of	

European	ancestry	and	one	multi-ethnic	meta-analysis	of	participants	from	European,	African	

or	Hispanic	ancestry	(1,	25,	27,	28).	Loci	in	group	specific	component	(vitamin	D	binding	

protein)	gene	(GC)	and	NAD	synthetase	1	gene	(NADSYN1)	/	7-dehydrocholesterol	reductase	
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gene	(DHCR7)	were	found	to	have	associations	with	vitamin	D	concentration	in	all	three	studies	

(1,	27,	28).	Additionally,	loci	in	vitamin	D	25-hydroxylase	gene	(CYP2R1)	and	vitamin	D	24-

hydroxylase	gene	(CYP24A1)	have	significant	associations	with	vitamin	D	concentrations	in	

those	of	European	ancestry	(1,	28).	Loci	near	kinesin	family	member	4B	gene	(KIF4B)	were	

found	to	be	strongly	associated	with	vitamin	D	concentrations	only	in	those	of	African	ancestry	

(27).	GC	transports	the	vitamin	D	metabolites	in	the	blood.	DHCR7	catalyzes	the	conversion	of	

7-dehydrocholosterol	in	the	skin	to	previtamin	D3,	a	precursor	to	vitamin	D3.	CYP2R1	codes	for	

a	cytochrome	P450	enzyme	that	hydroxylates	vitamin	D2/D3	to	25(OH)D.	CYP24A1	codes	for	

another	cytochrome	P450	enzyme	that	degrades	25(OH)D	to	an	inactive	metabolite,	24,25-

dihydroxyvitamin	D.	KIF4B	is	an	expression	quantitative	trait	locus	(eQTL)	for	another	nearby	

gene,	FAXDC2	which	codes	for	the	fatty	acid	hydroxylase	domain-containing	protein	2,	which	is	

involved	in	cholesterol	and	steroid	biosynthesis;	metabolites	upstream	of	vitamin	D	activation	

(27).	While	GWAS	studies	contribute	important	biologic	understanding	into	vitamin	D	

concentrations,	to	date,	only	about	1-8%	of	variability	can	be	explained	with	findings	from	

GWAS	studies	(25,	29).	

	

1.1.4	Knowledge	gap		

1.1.4.1	Missing	heritability		

	 Missing	heritability	is	pervasive	problem	in	human	genetics.	GWAS	studies	are	a	

standard	analytic	approach,	however	GWAS	studies	miss	much	of	the	heritability	of	complex	

traits	because	they	do	not	capture	heritability	due	to	rare	variants	or	SNPs	with	weak	effects	

(i.e.	SNPs	that	do	not	meet	the	stringent	GWAS	threshold	due	to	interactions	(either	genetic-by-
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genetic,	or	genetic-by-environmental	interactions)).	Given	that	vitamin	D	concentration	is	a	

complex	trait	with	numerous	genetic	and	environmental	predictors,	much	of	the	heritability	is	

likely	attributable	to	SNPs	with	weak	effects	or	that	function	through	interaction.	Therefore,	

methods	beyond	GWAS	are	necessary	to	discern	predictors	of	vitamin	D	concentration	allowing	

for	personalized	prevention	of	vitamin	D	inadequacy.		

	

1.1.4.2	Missing	minority	group	studies	

In	addition	to	the	missing	heritability	problem,	the	field	of	human	genetics,	and	

prominently	the	field	of	vitamin	D,	vastly	understudies	minority	populations	as	shown	in	Figure	

1.1	(30).	Additionally,	oftentimes	when	minority	groups	are	studied,	there	is	a	lack	of	insight	

and	significant	findings	due	to	small	sample	size	and	poorly	developed	methods	for	mixed	

ancestral	populations	(30).	Given	this,	increased	research	and	proper	methods	in	minority	

groups	are	crucial	for	better	understanding	of	underlying	health	conditions	and	disparities	they	

may	produce.	This	is	particularly	important	in	the	field	of	vitamin	D	where	prevalence	of	

vitamin	D	inadequacy	is	much	higher	in	minority	groups.	This	is	because	darker	skin	has	natural	

sunblock	and	therefore	absorbs	less	of	the	sun’s	rays	which	downstream	lead	to	less	of	the	

active	form	of	vitamin	D,	as	depicted	in	Figure	1.2.	
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Figure	1.1	Persistent	racial	bias	in	genomics	

	
Figure	1.1	shows	the	evasive	racial	bias	in	genomics.	In	2009,	96%	of	genomics	studies	were	in	samples	
of	European	ancestry.	In	2016,	this	had	dropped	to	81%,	a	sign	of	improvement,	but	populations	of	non-
European	ancestry	are	still	vastly	understudied,	potentially	accentuating	disparities	in	health	outcomes	
between	races.		
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Figure	1.2	Vitamin	D	metabolic	pathway	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	1.2	shows	the	pathway	of	vitamin	D	activation	which	starts	with	absorption	of	the	sun’s	rays.	The	
gene	DHCR7	is	then	responsible	for	production	a	vitamin	D	precursor	which	is	transported	to	the	liver	
where	CYP2R1	converts	it	to	25(OH)D.	Then	GC	carries	25(OH)D	to	the	liver	where	the	active	form	of	
vitamin	D	is	transported	and	used	for	biological	functions.	Finally,	CYP24A1	is	responsible	for	
inactivation	of	vitamin	D.		
	

1.1.4.3 Precision	Medicine	approach		

	 Given	the	vast	differences	seen	in	prevalence	of	vitamin	D	inadequacy	by	race,	the	

genetic	and	environmental	contribution	to	25(OH)D	levels	and	the	public	health	implications	

that	vitamin	D	inadequacy	has,	applying	a	precision	medicine	approach	to	vitamin	D	

supplementation	is	a	natural	fit.	Precision	medicine	is	defined	by	the	NIH	to	be	“an	emerging	

approach	for	disease	treatment	and	prevention	that	considers	individual	variability	in	genes,	

environment,	and	lifestyle	for	each	person."	To	incorporate	this	approach,	genetic	and	

environmental	factors	need	to	be	considered	in	tandem.	To	date	there	is	a	void	of	vitamin	D	

research	that	considers	interactions	between	a	realm	of	genetic	factors	(beyond	what	the	

stringent	GWAS	threshold	elucidates)	and	environmental	exposures.	Polygenic	scores	(PGSs)	
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are	one	method	that	can	be	used	to	capture	genetic	predictors	missed	by	GWAS	studies.	

Subsequently,	the	interactions	between	PGS	and	environmental	predictors	of	25(OH)D	

concentrations	can	be	investigated	to	move	toward	precision	medicine	management	of	vitamin	

D	inadequacy.		

	

1.1.6.1	Background,	Justification	and	Feasibility		

Introduction.	To	date,	only	a	handful	of	vitamin	D	genes	have	been	discovered	through		

published	vitamin	D	concentration	GWASs;	these	genes	include:	A2BP1,	ANO6/ARID2,	CYP2R1,	

CPY24A1,	DAB1,	DHCR7,	GC,	GPR114,	HTR2A	and	KIF4B	(1,	28,	31).	The	collection	of	SNPs	

uncovered	in	these	studies	does	not	account	for	the	full	heritability	of	vitamin	D	

concentrations.	This	is	in	large	part	because	GWASs	use	a	very	stringent	p-value	that	prohibits	

the	discovery	of	SNPs	that	have	small	effect	size	or	function	through	interaction.	The	former	

can	be	addressed	by	relaxing	the	very	stringent	genome-wide	significance	threshold	(32).	This	is	

a	valid	approach	when	the	goal	is	phenotype	prediction,	as	shown	by	the	9-fold	increase	in	

phenotypic	variance	of	human	height	captured	using	a	less	stringent	cut-off	(33-35).		

Development	of	a	PGS	allows	for	capturing	the	additive	effect	of	multiple	SNPs	to	better	

predict	a	phenotype.	The	use	of	PGSs	can	lead	to	early	detection	of	disease	and	future	disease	

risk,	which	promotes	the	development	of	preventive	and	personalized	action	to	combat	

undesirable	health	conditions.	PGSs	have	been	shown	to	predict	Alzheimer’s	disease	before	the	

onset	of	symptoms	that	would	result	in	a	clinical	diagnosis	(32,	36).	PGS	have	also	been	

correlated	with	risk	of	coagulation	deficiencies,	such	as	activated	partial	thromboplastin	time	

(aPTT),	where	an	increased	risk	score	increases	blood	clotting	time	as	shown	in	Figure	1.3	(37).	
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Prediction	of	blood	clotting	time	is	essential	knowledge	for	personalized	dosing	of	

antifibrinolytic	drugs	which	promote	blood	clotting.	The	PGS	approach	holds	promise	for	early,	

accurate	prediction	of	risk	of	future	disease	onset,	including	vitamin	D	inadequacy,	which	can	

be	used	to	proactively	prevent	or	treat	a	health	condition.		

	

Figure	1.3	Relationship	between	PGS	and	blood	clotting	time	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	1.3	shows	that	as	the	genetic	risk	score	(PGS)	increases,	so	does	mean	aPTT	(blood	clotting	time),	
as	is	shown	by	the	black	circles	and	standard	error	bars.	This	histogram	shows	that	the	number	of	
subjects	with	each	PGS	is	normally	distributed	(37).	
	

Combining	the	above	approaches,	through	leveraging	the	results	from	prior	GWASs	and	

creating	a	PGS	(using	a	less	stringent	p-value	cutoff)	in	an	independent	subset	of	the	full	sample	

(n=1,057	of	N=13,684),	my	first	aim	will	be	to	obtain	the	objective	of	expanding	on	ancestry	

specific	findings	to	uncover	a	more	complete	set	of	SNPs	that	account	for	a	larger	proportion	of	
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the	heritability	of	vitamin	D	and	can	be	used	to	predict	vitamin	D	inadequacy.	Specifically,	to	

attain	the	objective,	I	will	test	the	working	hypothesis	that	the	set	of	SNPs	that	best	

distinguishes	between	adequate	and	inadequate	vitamin	D	levels	will	include	more	SNPs	(from	

more	genes)	than	previous	GWASs.	The	rationale	for	this	is	that	to	date,	the	top	SNPs	in	or	near	

genes	discovered	by	GWAS	(GC,	DHCR7	and	CYP2R1)	are	estimated	to	account	for	only	1-8%	of	

the	variation	in	vitamin	D	concentrations,	therefore,	alternative	approaches,	such	as	relaxing	

the	p-value	cut-off	to	create	a	PGS,	are	necessary	to	account	for	the	remaining	92-99%	(1,	23,	

25).	When	this	research	is	completed,	it	is	my	expectation	that	the	results	will	improve	

prediction	of	vitamin	D	inadequacy	by	race,	which	is	crucial	given	the	difference	in	risk	of	

vitamin	D	inadequacy	by	race	(38,	39).	

	

1.1.7	Heritability		

1.1.7.1	Definition	and	calculation	

	 Heritability,	technically	defined,	is	the	proportion	of	phenotypic	variance	that	is	

explained	by	genetic	variance,	where	phenotypic	variance	includes	genetic	and	environmental	

variance	(40).	Classically,	heritability	is	calculated	in	related	subjects	where	the	proportion	of	

shared	genotypes	is	known	(41).	However,	this	approach	tends	to	overestimate	heritability	due	

to	shared	environment	of	the	related	subjects.	To	avoid	this	overestimate,	GCTA	will	be	used	to	

give	an	estimate	of	SNP	heritability	of	vitamin	D	concentrations	in	unrelated	participants.		
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1.1.7.2	GCTA	and	SNP	Heritability	

Introduction.	GWASs	allow	for	the	discovery	of	SNPs	that	are	associated	with	various	

phenotypes.	However,	while	GWASs	may	identify	numerous	SNPs,	the	proportion	of	heritability	

explained	by	those	SNPs	is	small.	One	potential	explanation	for	this	is	that	the	threshold	used	in	

GWASs	is	often	too	stringent	to	detect	all	relevant	SNPs,	especially	those	that	have	a	weaker	

effect,	such	as	those	that	have	a	low	correlation	(linkage	disequilibrium)	with	the	underlying,	

but	not	genotyped,	functional	SNP	and	those	that	function	through	an	interaction	(42).	The	

software	tool,	GCTA,	can	determine	the	amount	of	phenotypic	variance	that	a	set	of	SNPs	

accounts	for,	and	from	this	GCTA	can	calculate	the	SNP	heritability	(or	total	genotypic	variance)	

of	a	phenotype	(43).	In	aim	2,	I	will	investigate	SNP	heritability	of	vitamin	D	concentrations.	The	

objective	of	this	aim	is	3-fold.	First,	the	SNP	heritability	of	vitamin	D	concentrations	will	be	

determined	by	inputting	all	SNPs	into	the	GCTA	model;	second,	the	heritability	accounted	for	by	

SNPs	previously	identified	through	GWAS	will	be	discerned;	and	third,	the	contribution	that	the	

SNPs	included	in	the	PGS	in	Aim	1	add	to	the	heritability	of	vitamin	D	concentrations	will	be	

determined.	To	attain	the	objective	of	this	aim	I	will	test	the	working	hypothesis	that	SNPs	

included	in	the	PGS	in	Aim	1	will	increase	the	proportion	of	heritability	accounted	for	by	SNPs	

currently	reported	in	the	literature.	My	approach	to	testing	the	working	hypothesis	will	be	done	

using	GCTA.	GCTA	has	been	used	for	a	variety	of	phenotypes	with	high	levels	of	success.	When	

used	to	study	height,	which	is	estimated	to	be	60-70%	heritable,	GCTA	accounted	for	56%	of	

the	phenotypic	variance	(35,	44).	This	was	a	vast	improvement	over	the	5%	of	the	heritability	

that	was	repeatedly	and	reliably	shown	from	GWAS	studies	(35,	44).	A	similar	level	of	success	

was	attained	when	BMI	was	studied.	Estimates	from	the	literature	suggest	that	BMI	is	30-40%	
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heritable	and	GCTA	was	able	to	account	for	27%	of	the	phenotypic	variance	(44).	Like	height	

and	BMI,	vitamin	D	concentrations	are	a	complex	trait,	affected	by	many	genes	and	

environmental	factors,	notably	sun	exposure	and	vitamin	D	intake.	Vitamin	D	concentrations	

have	been	shown	to	be	heritable,	with	heritability	estimates	ranging	from	28%	to	80%	in	

Caucasian	and	African	American	populations;	with	most	estimates	in	the	20-40%	range	(22,	31).	

Given	the	wide	range	in	these	estimates,	a	more	accurate	estimation	of	the	heritability	of	

vitamin	D	concentrations	is	needed	and	can	be	achieved	using	GCTA.	The	rationale	for	this	aim	

is	that	successful	completion	of	the	proposed	research	will	result	in	a	SNP	heritability	estimate	

for	vitamin	D	concentrations,	as	well	as	a	quantification	of	how	much	heritability	is	currently	

accounted	for.	When	the	proposed	research	in	Aim	2	is	completed,	it	is	my	expectation	that	the	

results	will	guide	where	further	studies	should	focus	their	efforts,	i.e.	on	capturing	more	of	the	

heritability	or	if	sufficient	heritability	is	explained,	working	to	create	personalized	vitamin	D	

dosing	based	on	the	genes	discovered.	

	
1.1.8	Gene-by-environment	interactions	
	

Vitamin	D	inadequacy	is	a	complex	phenotype	affected	by	many	genetic	and	

environmental	determinants.	While	attention	has	been	paid	to	the	genetic	determinants	

through	GWA	and	candidate	gene	studies	and,	separately,	to	the	environmental	determinants	

of	vitamin	D	concentration,	much	less	attention	has	been	paid	to	how	environmental	factors	

interact	with	genetic	factors.	Vitamin	D	concentration	is	influenced	by	sun	exposure	and	dietary	

intake.	One	study	reports	that	vitamin	D	intake	through	diet	and	supplement	use	accounts	for	

1-8%	of	the	variation	in	vitamin	D	concentrations	between	individuals,	and	that	sun	exposure	

accounts	for	1-15%	of	the	variation,	however	acknowledges	that	these	are	likely	
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underestimated	due	to	measurement	error	(21,	45-47).	The	same	study	reported	an	interaction	

between	two	GC	SNPs	and	vitamin	D	intake	and	sun	exposure,	where	the	genetic	effect	was	

stronger	in	those	with	higher	intake	of	vitamin	D	and	with	more	available	UV	radiation	(i.e.	in	

summer)	(21).	Furthermore,	another	study	created	a	PGS	for	vitamin	D	inadequacy	using	top	

SNPs	in	GC	and	CYP2R1	(48).	The	PGS	was	found	to	be	inversely	correlated	with	serum	vitamin	

D	concentrations,	where	having	fewer	risk	alleles	increased	serum	vitamin	D	concentrations.	

Therefore,	in	Aim	3	the	objective	is	to	investigate	how	genetic	risk	of	vitamin	D	inadequacy	

(measured	via	the	PGS	created	in	Aim	1)	is	altered	by	quartile	of	vitamin	D	intake	or	available	

UV	radiation.	To	attain	the	objective	of	this	aim,	I	will	test	the	working	hypothesis	that	the	

genetic	effect	on	vitamin	D	inadequacy	will	vary	by	level	of	vitamin	D	intake	and	available	UV	

radiation;	where	there	will	be	an	increased	genetic	effect	on	vitamin	D	concentrations	with	

increased	dietary	intake	of	vitamin	D	and	in	summer	(i.e.	with	higher	available	UV	radiation).	

Additionally,	those	with	a	higher	PGS	(more	risk	alleles)	will	require	higher	levels	of	vitamin	D	

intake	and/or	available	UV	radiation	to	achieve	adequate	vitamin	D	concentrations.	Given	that	

vitamin	D	inadequacy	is	a	complex	disease	which	has	many	contributing	SNPs	and	

environmental	factors,	I	will	test	the	working	hypothesis	using	a	linear	modeling	approach	that	

stratifies	the	PGS	effect	by	environmental	factors	(vitamin	D	intake	and	available	UV	radiation),	

followed	up	by	adding	interaction	terms	to	the	model	(where	evidence	of	an	interaction	exists).	

In	regards	to	vitamin	D	concentrations,	it	is	crucial	to	investigate	gene-environment	interactions	

as	the	risk	inferred	by	genetic	factors	alone	is	not	enough	to	predict	one’s	risk	of	inadequate	

vitamin	D	concentrations.	Creating	a	PGS	and	stratifying	by	level	of	environmental	factors	is	one	

way	to	quantify	the	effect	genetics,	in	tandem	with	the	environment,	has	on	vitamin	D	
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inadequacy.	Preliminary	data	show	effect	modification	of	the	association	between	a	PGS,	based	

on	a	small	set	of	SNPs,	and	25(OH)D	blood	concentrations	by	both	season	of	blood	draw	and	

quartile	of	dietary	vitamin	D	intake.	In	this	sample	of	200	subjects	of	European	descent	from	

the	Survey	of	the	Health	of	Wisconsin	(SHOW),	the	PGS	ranged	from	0	to	13.3.	When	stratified	

by	season,	the	effect	of	each	one	unit	increase	in	the	PGS	on	decreased	25(OH)D	blood	

concentrations	is	larger	in	summer	(b=-1.1	ng/ml;	p<.0001)	compared	to	winter	(b=-0.44	ng/ml;	

p=.29;	PGS*season	interaction	p=0.25).	When	stratified	by	quartile	of	dietary	vitamin	D	intake,	

the	effect	of	each	one	unit	increase	in	the	PGS	on	decreased	25(OH)D	blood	concentrations	is	

larger	as	dietary	vitamin	D	intake	increases:	b=-0.38	(p=.35),	-0.65	(p=.18),	-0.82	(p=.07)	and	-

1.27	(p=.006)	ng/ml	for	the	1st,	2nd,	3rd	and	4th	quartiles	of	intake,	respectively	(PGS*	dietary	

intake	interaction	p=0.03)	as	shown	by	Figure	1.4.	These	findings	replicate	and	expand	the	

findings	of	a	previous	study	in	an	independent	cohort	and	have	important	implications	for	both	

study	design	and	precision	medicine	(21).	It	is	my	expectation	that	upon	the	completion	of	this	

aim,	patients	can	be	grouped	by	level	of	susceptibility	to	vitamin	D	inadequacy,	which	could	

help	inform	screening	and	treatment	of	vitamin	D	inadequacy	based	on	genetic	and	

environmental	factors.		
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Figure	1.4:	Effect	modification	of	PGS	due	to	environmental	sources	of	vitamin	D	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	1.4	demonstrates	that	when	environmental	sources	of	vitamin	D	are	increased	(UV	index	in	panel	
[A]	and	dietary	vitamin	D	intake	in	panel	[B]).	Increasing	risk	score	has	a	consistent	effect	on	decreasing	
levels	of	vitamin	D	concentrations.	This	effect	is	much	more	muted	at	lower	levels	of	environmental	
sources	of	vitamin	D.		

	

2.	Significance		

	 Personalized	vitamin	D	supplementation	is	crucial	because	the	current	one-size	fits	all	

treatment	regimen	is	not	effective	for	all	patients	as	shown	in	Figure	1.5	(49).	In	one	clinical	

trial,	when	given	the	same	dose,	some	patients	experienced	an	increase	in	serum	vitamin	D	

concentrations,	while	others	experienced	a	decline.	For	example,	the	individuals	noted	in	the	

[A]	

[B]	
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rectangles	in	Figure	1.5	(a/b	and	c/d)	had	similar	baseline	25(OH)D	concentrations,	but	

markedly	differing	25(OH)D	response	to	supplementation.	Consequently,	many	individuals	

(~26%;	n=24	noted	in	the	light	gray	shaded	region)	did	not	achieve	a	potential	“target”	25(OH)D	

of	30	ng/mL,	while	9	(~10%)	achieved	values	above	50	ng/mL	(noted	in	the	dark	gray	shaded	

region)	and	2	reached	concentrations	of	~60	ng/mL	(indicated	by	cross);	all	3	of	these	regions	

are	associated	with	negative	health	impacts.	Therefore,	personalized	treatment,	has	the	

promise	of	making	healthcare	more	cost	effective,	by	treating	vitamin	D	inadequacy	efficiently	

and	preventing	downstream	morbidity	and	mortality.			

	
Figure	1.5:	Variability	in	response	to	vitamin	D	supplementation	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	1.5	shows	variability	in	response	to	vitamin	D	supplementation	among	91	subjects	who	received	
2,300-2,500	IU	of	oral	vitamin	D3	for	4	months.	All	subjects	were	≥90%	compliant	with	vitamin	D	
supplementation	(49).	
	
	
	

Vitamin	D	inadequacy	is	a	pervasive	health	problem.	To	date,	through	GWA	and	

candidate	gene	studies,	only	a	handful	of	genes	(A2BP1,	ANO6/ARID2,	CYP2R1,	CPY24A1,	DAB1,	

DHCR7,	GC,	GPR114,	HTR2A	and	KIF4B)	have	been	found	to	be	associated	with	vitamin	D	

concentrations.	For	personalized	vitamin	D	dosing	to	be	most	effective,	more	genetic	

Discussion

Vitamin D supplementation trials generally use fixed doses and
fail to consider between-individual variability of the 25(OH)D
response [1, 2, 17]. In this report, we demonstrate that a
substantial amount of the between-individual variation in
25(OH)D observed following supplementation can be attribut-
ed to differences in absorption and degradation as assessed by
serum cholecalciferol and 24,25(OH)2D, respectively.

While it is widely accepted that vitamin D supplementation
produces a greater 25(OH)D increase in those whose baseline

level is lower [18], this is not always true. Indeed, two people
with identical 25(OH)D levels can experience markedly dif-
ferent 25(OH)D increments following supplementation (ex-
amples denoted by rectangles in Fig. 2). In these examples, the
baseline cholecalciferol level for subjects a and b were both
not detectable (i.e., <0.1 ng/mL) whereas at follow up, the
cholecalciferol concentration of subject a increased to 4.6 ng/
mL, but subject b remained undetectable despite 99 % com-
pliance with supplementation. Additionally, subjects c and d
started with virtually identical 25(OH)D levels, but subject c
declined, perhaps due to this individual having one of the

Fig. 2 Individual 25(OH)D concentration prior to and following daily
vitamin D3 supplementation. It is apparent that major between-individual
differences in the serum 25(OH)D change exists. This is exemplified by
the individuals noted in the rectangles; these selected subjects (a/b and c/
d) had similar baseline 25(OH)D levels but markedly differing 25(OH)D

response to supplementation. As a consequence of this variability, many
individuals (∼26 %; n=24 noted in light gray shaded region) did not
achieve a potential “target” 25(OH)D of 30 ng/mL, while 9 (∼10 %)
achieved values above 50 ng/mL (noted in the dark gray shaded region)
and 2 reached levels of ∼60 ng/mL (indicated by cross)

Fig. 3 Relationship of various
vitamin D metabolites following
daily vitamin D3

supplementation. Serum
25(OH)D was positively
correlated (p<0.001) with serum
cholecalciferol (a) and serum
24,25(OH)2D (b). Additionally,
serum cholecalciferol was
positively correlated with serum
24,25(OH)2D (c)

1658 Osteoporos Int (2015) 26:1655–1660
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determinants	that	account	for	the	moderate	heritability	of	vitamin	D	need	to	be	determined	

(50,	51).	Additionally,	how	the	environment	works	in	tandem	with	genetics	to	alter	vitamin	D	

concentrations	is	poorly	understood.	A	study	in	a	sample	of	1,204	women	of	European	descent	

established	an	interaction	between	genetics	and	environment.	Specifically,	the	study	found	two	

GC	SNPs	and	four	CYP2R1	SNPs	that	had	differing	affects	by	season	and	level	of	vitamin	D	intake	

(21).	I	will	expand	on	the	findings	of	this	paper	through	creating	a	PGS	that	accounts	for	a	more	

expansive	set	of	SNPs	and	testing	for	interactions	with	the	environment.	Understanding	gene-

environment	interactions	that	influence	vitamin	D	concentrations	can	lead	to	novel,	accurate	

and	effective	personalized	treatment	approaches	(21,	22).		The	contribution	of	the	proposed	

research	will	be	a	more	complete	set	of	vitamin	D	SNPs	which	account	for	more	of	the	

heritability	of	vitamin	D	inadequacy	as	well	as	discerning	gene-environmental	interactions	that	

affect	vitamin	D	concentrations.	This	is	a	significant	contribution	as	it	will	allow	for	effective,	

efficient	personalized	dosing	for	vitamin	D	inadequacy.	Personalized	treatment	of	vitamin	D	

inadequacy	could	decrease	morbidity	in	many	realms,	such	as	autoimmune	disease,	heart	

disease	and	cancer	(1,	4,	5,	10-15).	

	

3.	Innovation	

	 Discovery	of	vitamin	D	SNPs	to	date	has	been	done	through	GWA	and	candidate	gene	

studies.	While	these	methods	have	led	to	discoveries	in	or	near	genes	such	as	CYP2R1,	

CPY24A1,	DHCR7	and	GC	(as	shown	in	Figure	1.2)	they	have	not	been	able	to	identify	the	full	

gamut	of	vitamin	D	related	SNPs,	especially	those	of	low	frequency	or	small	effect	size	(1,	28,	

31,	42).	In	general,	little	exploration	has	been	done	in	the	realm	of	gene-environment	
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interactions	through	which	vitamin	D	SNPs	act.	The	proposed	research	is	innovative	because	of	

the	methodology	it	uses	as	well	as	the	multi-ethnic	nature	of	the	sample.	My	methodology	takes	

advantage	of	the	large	GWAS	that	have	been	performed	in	European	and	African	ancestry	

populations	(27).	With	results	from	previously	conducted	GWASs,	I	will	create	a	PGS	that	

accounts	for	a	more	complete	set	of	vitamin	D	SNPs,	by	using	a	less	stringent	p-value	cutoff	

than	what	is	used	in	previous	GWASs	(32).	Using	GCTA,	I	will	calculate	the	SNP	heritability	of	

vitamin	D	and	the	proportion	of	the	heritability	explained	by	previously	reported	GWAS	

significant	SNPs	and	by	the	PGS.	Additionally,	I	will	investigate	modification	of	the	PGS	effect	on	

vitamin	D	concentrations	by	environmental	factors,	expanding	on	the	preliminary	work	done	in	

a	small	subset	of	European	women	(21).	Of	note,	the	sizable	African	American	population	

(N=3,896)	will	allow	for	a	multi-ethnic	approach	to	be	utilized.	Vitamin	D	inadequacy	is	

pervasive	among	all	races,	but	even	more	so	in	those	with	darker	skin,	which	acts	as	natural	sun	

block	(1,	2).	In	totality,	this	has	the	potential	to	shift	and	personalize	current	vitamin	D	

supplementation	practices.	Specifically,	establishing	a	more	complete	set	of	vitamin	D	SNPs	and	

learning	how	these	SNPs	interact	with	the	environment	to	influence	vitamin	D	concentrations	

in	an	ancestry	specific	way	will	enable	clinicians	to	tailor	vitamin	D	supplementation	to	the	

individual,	making	treatment	more	efficient	and	effective.	
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Chapter	2:	Approach	and	Methods	

1.	Approach	

1.1	Sample	

Following	the	success	that	was	found	through	using	a	multi-cohort	approach	for	other	

complex	traits	(i.e.	height,	diabetes,	schizophrenia,	PTSD),	participants	come	from	three	

national	cohort	studies:	Atherosclerosis	Risk	in	Communities	(ARIC),	the	Multi-ethnic	Study	of	

Atherosclerosis	(MESA)	and	the	Women’s	Health	Initiative	(WHI)	(52).	ARIC	is	a	prospective	

study	of	men	and	women	ages	46-70	years.	Participants	are	recruited	in	Forsyth,	NC;	Jackson,	

MS;	Minneapolis,	MN	and	Washington	County,	MD.	Serum	vitamin	D	was	measured	for	

particular	ancillary	studies	of	ARIC	at	visit	2	(1990-1992).	MESA	is	a	prospective	study	of	men	

and	women	ages	44-84	who	were	recruited	by	Columbia	University,	Johns	Hopkins	University,	

Northwestern	University,	University	of	Minnesota,	University	of	California	at	Los	Angeles	and	

Wake	Forest	University.	Serum	vitamin	D	was	measured	at	MESA	exam	1	(July	2000-August	

2002).	The	WHI	is	a	study	which	consists	of	various	clinical	trials	as	well	as	observational	studies	

of	women.	Women	participating	in	WHI	were	recruited	from	40	clinical	centers	throughout	the	

United	States.	Serum	vitamin	D	was	measured	as	part	of	the	Calcium	and	Vitamin	D	(CaD)	Trial.	

Participants	were	included	if	they	had	the	minimum	set	of	variables:	genome	wide	data,	serum	

vitamin	D,	age,	sex,	BMI	and	season	of	blood	draw	(these	variables	account	for	the	minimum	

set	(model	1);	N=13,684).	Participants	with	data	on	vitamin	D	intake	will	also	be	leveraged	for	

analyses	using	the	full	set	(model	2);	N=13,015.	In	total,	the	sample	size	is	13,684	(9,905	

European	ancestry	and	3,779	African	ancestry).	European	ancestry	participants	come	from	ARIC	
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(n=7,455),	MESA	(n=1,995)	and	WHI	(n=455).	African	ancestry	participants	come	from	ARIC	

(n=1,903),	MESA	(n=1,176)	and	WHI	(n=700).	The	data	used	in	these	analyses	were	collected	

under	guidelines	from	the	relevant	institutional	review	boards	and	all	participants	provided	

informed	consent,	including	consent	for	use	of	genetic	data.	Table	2.1	shows	cohort	level	

characteristics	for	the	participants	for	both	the	minimum	set	(model	1)	and	full	set	(model	2)	

models.	Data	cleaning	for	phenotypic	data	included	winsorizing	25(OH)D	in	the	MESA	sample	to	

the	99th	percentile,	63.7	ng/mL	in	those	of	European	ancestry	and	49.0	ng/mL	in	those	of	

African	ancestry.	Additionally,	2	participants	in	MESA	had	25(OH)D	values	equal	to	0	and	were	

given	half	of	the	minimum	value	detected	per	field	standards;	this	equated	to	a	value	of	1.9	

ng/mL	in	the	European	ancestry	participant	and	1.1	ng/mL	in	the	African	ancestry	participant.	In	

the	WHI	sample,	participants	with	25(OH)D	values	above	the	level	of	detection	(150	ng/mL)	

were	removed	from	the	sample;	this	included	68	participants	of	European	ancestry	and	119	

participants	of	African	ancestry.	25(OH)D	values	were	also	winsorized	in	the	WHI	sample	to	

approximate	the	lower	and	upper	fences	(58.6	ng/mL	and	67	ng/mL	for	European	and	African	

ancestries,	respectively)	(53).	Figure	2.1	shows	samples	used	for	separate	analyses	by	Aim.	

Data	was	requested	and	received	for	Coronary	Artery	Risk	Development	in	Adults	

(CARDIA)	and	Framingham	Heart	Study	(FHS).	However,	these	data	were	not	used	in	the	

analysis.	Data	from	CARDIA	was	not	used	because	25(OH)D	data	was	not	in	the	dbGaP	dataset,	

as	it	was	collected	in	an	ancillary	study.	An	independent	data	request	was	attempted,	but	since	

the	ancillary	study	has	ended,	no	data	requests	are	being	granted.	FHS	data	was	not	used	

because	due	to	the	small	sampling	region	and	corresponding	re-identification	issues	associated	
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with	FHS,	participant	location	cannot	be	disclosed.	This	barred	development	of	available	UV	

radiation,	a	variable	integral	to	the	analysis.	

Table	2.1:	Full	sample	characteristics	
Cohort	 ARIC	model	1	 ARIC	model	2	 MESA	model	1	 MESA	model	2	 WHI	model	1	 WHI	model	2	

N	 9,358	 8,838	 3,171	 3,022	 1,155	 1,155	

%	Female	 56.0%	 55.5%	 53.2%	 53.0%	 100.0%	 100.0%	

%	White	 79.7%	 80.6%	 62.9%	 64.1%	 39.4%	 39.4%	

%	Black	 20.3%	 19.5%	 37.1%	 35.9%	 60.6%	 60.6%	

Mean	Age	(SD)	[years]	 56.9	(5.7)	 57.0	(5.7)	 62.4	(10.2)	 62.5	(10.2)	 63.7	(7.6)	 63.7	(7.6)	

Mean	BMI	(SD)	[kg/m2]	 27.8	(5.3)	 27.8	(5.3)	 28.7	(5.5)	 28.6	(5.4)	 30.7	(6.4)	 30.7	(6.4)	

Mean	25(OH)D	(SD)	[ng/ml)	 24.5	(8.9)	 24.6	(8.9)	 25.9	(11.6)	 26.1	(11.5)	 19.0	(13.7)	 19.0	(13.7)	

Mean	available	UV	radiation	(SD)	[units]	 5.4	(2.6)	 5.4	(2.5)	 4.7	(2.3)	 4.7	(2.3)	 5.4	(2.5)	 5.4	(2.5)	

Mean	dietary	intake	(SD)	[IU]	 221.4	(145.5)	 221.4	(145.5)	 170.5	(163.5)	 170.5	(163.5)	 164.5	(137.4)	 164.5	(137.4)	
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Figure	2.1:	Sample	used	by	aim	

 
Figure	2.1	shows	the	sample	used	for	each	analysis	by	Aim.	In	Aim	1,	ARIC	was	used	for	PGS	determination	because	
WHI	and	MESA	had	generalizability	issues	due	to	either	being	all	women	or	having	sparse	genotyping.	PGS	was	
only	validated	in	samples	independent	of	the	summary	statistics	used	to	calculated	the	PGS.	In	Aim	2,	only	ARIC	
had	large	enough	sample	sizes	to	calculate	heritability	estimates	and	variance	explained	estimates	were	calculated	
using	a	combined	cohort	of	all	samples	independent	of	the	PGS	determination	and	summary	statistics.	Aim	3	
analysis	was	a	combined	cohort	analysis	of	all	samples	independent	of	the	PGS	determination	and	summary	
statistics,	plus	various	sensitivity	analyses.	

Aim	1
PRS	determination:
•African	ancestry:	57	
ARIC	participants

•European	ancestry:	
1000	ARIC	participants

PRS	validation:
•African	ancestry:	1,067	
independent	
participants	from	MESA	
and	WHI

•European	ancestry:	
8,912	independent	
participants	from	ARIC,	
MESA	and	WHI

Aim	2
SNP	heritability	
estimates:
•African	ancestry:	1,719	
ARIC	participants

•European	ancestry:	
7,119	ARIC	participants

Variance	explained	
estimates:
•African	ancestry:	1,042	
independent	
participants	from	MESA	
and	WHI

•European	ancestry:	
8,569	independent	
participants	from	ARIC,	
MESA	and	WHI

Aim	3
Interaction	testing:
•African	ancestry:	1,042	independent	
participants	from	MESA	and	WHI

• European	ancestry:	8,569	
independent	participants	from	ARIC,	
MESA	and	WHI

Sensitivity	Analysis:	
subsample	with	physical	
activity	data
• 342	African	ancestry	from	MESA	and	
WHI

• 1,945	European	ancestry	from	MESA	
and	WHI

Sensitivity	Analysis:	
subsample	with	supplement	
use	data
• 700	African	ancestry	from	WHI
• 455	European	ancestry	from	WHI

Sensitivity	Analysis:	combined	
cohort	not	independent	 from	
TRANSCEND
•3,722	African	ancestry	from	ARIC,	
MESA	and	WHI

• 8,569	European	ancestry	from	ARIC,	
MESA	and	WHI

Sufficient	intake	exploration
•858	African	ancestry	participants	
from	ARIC,	MESA	and	WHI

• 2,104	European	ancestry	participants	
from	ARIC,	MESA	and	WHI
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1.2 Data	

1.2.1	Dietary	Data	

Dietary	data	were	collected	via	questionnaire.	Each	study	used	their	own	questionnaire.	

WHI	used	the	Food	Frequency	Questionnaire	supplemented	with	interview	questions,	ARIC	and	

MESA	both	used	their	own	implementation	of	a	food	intake	questionnaire.	From	the	

questionnaire	data,	each	study	created	a	derived	variable	of	typical	vitamin	D	intake	(measured	

in	IU	or	mcg).	All	values	were	converted	to	IU	for	analysis.	Additionally,	WHI	collected	data	on	

vitamin	D	supplement	use.	The	sum	of	vitamin	D	intake	from	food	and	supplements	was	

calculated	and	used	for	supplemental	and	sensitivity	analyses,	otherwise	dietary	intake	alone	

was	used.	

	

1.2.2 Serum	vitamin	D	data	

Serum	vitamin	D	concentration	was	measured	by	the	studies	using	different	assay	types.	

WHI	used	the	DiaSorin	LIASON	chemiluminescence,	MESA	used	LCMS	and	ARIC	used	Tandem	

Mass	Spec	(Quest	Labs).	To	control	for	differences	in	vitamin	D	concentrations	due	to	different	

assays,	vitamin	D	concentrations	were	converted	to	z-scores	within	studies	for	combined	

analyses.	For	cohort	specific	analyses,	25(OH)D	values	were	natural	log	transformed	as	vitamin	

D	values	as	vitamin	D	concentrations	were	non-normally	distributed.	

	

1.2.3 Genomic	data	

Genotyping	for	ARIC	was	performed	with	the	AffymetrixGenome-WideHuman	SNPArray	

6.0	chip.	Genotyping	for	WHI	differed	by	sub-study	(Supplemental	Table	1),	but	used	
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AffymetrixGenome-WideHuman	SNPArray	6.0	chip,	Illumina	HumanOmni1-Quad	v1-0	B	or	the	

Illumina	MEGA	Consortium	15063755	B2	array.	Genotyping	for	MESA	was	done	using	a	50K	

Human	Gene	Focused	Panel.	All	cohorts	followed	the	same	quality	control	pipeline	which	

included:	removing	participants	with	sex-mismatch,	removing	samples	with	a	low	call	rate	

(<95%),	removing	SNPs	with	a	low	call	rate	(<95%),	removing	SNPs	not	in	Hardy-Weinberg	

Equilibrium	(using	a	Bonferroni	adjusted	p-value),	removing	SNPs	with	a	low	minor	allele	

frequency	(<0.002;	chosen	to	yield	a	minor	allele	count	>7	in	both	ancestries)	and	removing	

related	participants	(first	degree	relatives,	with	identity-by-descent	>0.36)	(54,	55).	Principal	

component	analysis	(PCA)	was	performed	using	PLINK	to	remove	ethnic	outliers;	this	included	

removal	of	one	participant	from	ARIC,	seven	participants	from	MESA	and	seven	participants	

from	WHI.	PCA	plots	of	samples	by	cohort	can	be	found	in	Supplemental	Figures	1-9.	Genetic	

data	was	imputed	using	the	Michigan	Imputation	Server	and	phased	with	Eagle	v2.3		(56-58).	

European	samples	were	imputed	to	the	Haplotype	Reference	Consortium	and	African	samples	

were	imputed	to	the	Consortium	on	Asthma	among	African-ancestry	Populations	in	the	

Americas	(CAAPA);	SNPs	with	imputation	quality	less	than	<0.8	or	minor	allele	frequency	<0.001	

were	removed	(57).	Specific	cut-offs	used	and	final	participant	and	SNP	sample	sizes	are	

summarized	in	Supplemental	Table	1	and	Supplemental	Figures	10-11.	

	

1.2.4 UV	Index	data	

Based	on	the	month	of	blood	draw	and	location,	participants	were	assigned	continuous	

available	UV	radiation	values.	Available	UV	radiation	values	assigned	were	an	average	of	daily	

UV-index	for	the	month	prior	to	blood	draw	(the	relevant	exposure	period).	UV	radiation	data	
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come	from	the	National	Weather	Service	Climate	Prediction	Center	historical	database.	When	

available,	UV	radiation	values	corresponded	to	the	exact	location	and	year	of	the	participants	

blood	draw.	When	exact	cities	or	years	were	not	available,	averages	across	locations	and/or	

years	were	used.	See	Supplemental	Tables	2-4	for	specific	month,	year	and	location	values	

used.	Descriptive	statistics	for	UV	radiation	by	site	and	month	are	also	presented	in	

Supplemental	Tables	5-7.	

	

1.3 Aim	1	

	
1.3.1	Analytical	methods	and	expected	outcomes	
	

Results	from	16,124	European-ancestry	and	8,541	African-ancestry	individuals	included	

in	the	TRANSCEN-D	ancestry	specific	meta-analyses	were	leveraged	for	determination	of	a	

fuller	set	of	SNPs	and	computation	of	the	PGS	in	an	independent	sample;	this	was	done	in	an	

ancestry-specific	manner	(27).	The	ancestry-specific	PGS	was	calculated	using	PRSice	Version	2	

(59).	First	a	subset	of	samples	was	used	to	determine	the	p-value	cutoff	(and	corresponding	set	

of	SNPs)	that	explained	the	most	variability	in	serum	vitamin	D	concentrations.	The	European	

ancestry	sub-sample	for	PGS	development	included	1,000	randomly	selected	participants	from	

the	European	ARIC	cohort	(N=7,455).	Samples	were	randomly	selected	using	SAS.	All	

participants	were	assigned	a	random	number	using	the	RANUNI	function	with	seed	1	in	SAS;	the	

RANUNI	function	returns	a	number	that	is	generated	from	the	uniform	distribution	on	the	

interval	(0,1)	using	a	prime	modulus	multiplicative	generator	with	modulus	231-	and	multiplier	

397204094	(60).	Participants	were	then	sorted	in	ascending	order	by	the	random	number;	the	

first	1000	samples	were	selected.	The	African	ancestry	sub-sample	for	PGS	development	
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included	57	participants	from	the	African	ARIC	cohort	(N=1,960)	that	were	independent	from	

the	TRANSCEN-D	ARIC	sample	used	for	the	summary	statistics	in	PGS	calculation.	

PRSice	computes	a	weighted	risk	score	of	independent	SNPs;	the	weight	was	

determined	using	results	from	the	TRANSCEN-D	meta-analysis	by	converting	the	z-scores	from	

METAL	into	effect	sizes	using	the	deterministic	relationship:	!	=	z	/	 (2$ 1 − $ ∗ (,	where	p	

is	the	allele	frequency	for	the	SNP,	and	N	is	the	total	sample	size	from	TRANSCEN-D.	The	PGS	

was	calculated	for	each	participant	as	follows:	PGSi= ! ∗ )*
+ i,	where	i	represents	the	

participant	whose	PGS	is	calculated	by	summing	over	n	SNPs.	!	is	the	risk	allele	effect	size	from	

the	TRANSCEN-D	meta-analysis	for	each	SNP	and	C	is	the	individual’s	count	of	risk	alleles	for	

that	SNP.	If	participants	were	missing	any	SNPs,	they	were	imputed	to	have	the	mean	number	

of	alleles	for	the	SNP.	SNPs	included	in	the	PGS	were	independent	(r2	thresholds<	0.5	and	<0.2	

were	tested)	and	had	a	p-value	at	or	below	a	threshold.	The	threshold	was	determined	by	

iterative	testing	of	the	PGS	over	a	range	of	p-values	(5x10-4	to	0.5,	with	interval	increments	of	

5x10-4)	to	find	the	PGS	that	best	associated	with	log[25(OH)D],	while	controlling	for	age,	sex,	

BMI	and	available	UV	radiation	(32).	Sensitivity	analyses	including	intake	in	the	model	were	

performed.	

Once	the	optimal	PGS	was	determined,	a	PGS	was	computed	for	the	remaining	8,905	

independent	participants	of	European	ancestry	and	1,067	independent	participants	of	African	

ancestry.		
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1.3 Aim	2		

1.3.1 Analytic	methods	and	expected	outcomes	

First,	Genome-Wide	Complex	Trait	Analysis	(GCTA)	was	used	to	calculate	the	SNP	

heritability	of	vitamin	D	concentration.	This	was	done	by	calculating	the	variance	in	the	

phenotype	jointly	explained	by	all	the	SNPs;	GCTA	fits	all	inputted	SNPs	simultaneously	as	

random	effects	in	a	linear	mixed	model	(61).	Next,	the	proportion	of	phenotypic	variance	that	

SNPs	previously	reported	in	the	literature	account	for	was	calculated.	Finally,	heritability	

accounted	for	by	the	SNPs	included	in	the	PGS	(Aim	1)	was	calculated.		

Specifically,	GCTA	utilizes	genomic-relatedness-based	restricted	maximum-likelihood	

(GREML),	similar	to	restricted	maximum	likelihood	analysis	(REML)	and	relies	on	the	genetic	

relationship	matrix	(GRM)	of	SNPs	from	unrelated	samples	(Figure	2.2)	(35,	62).	Heritability	is	

calculated	as	the	proportion	of	phenotypic	variance	that	is	due	to	additive	genetic	effects	(51).	

In	GCTA,	the	GRM	is	calculated	specific	to	the	set	of	SNPs	used	as	input.	The	method	involves	

three	steps:	(1)	calculate	a	linkage-disequilibrium	(LD)	score	between	SNPs,	(2)	stratify	SNPs	

based	on	their	LD,	(3)	compute	the	GRM	with	the	stratified	SNPs	(43,	62).	After	the	GRM	is	

generated,	phenotypic	variance	explained	by	the	SNPs	is	calculated	using	REML,	with	the	SNP	

effects	treated	as	random	effects	(63).	This	two-stage	approach	is	done	to	reduce	the	

computational	burden	and	to	get	more	precise	heritability	estimates.	Models	were	adjusted	for	

age,	gender,	BMI	and	available	UV	radiation.	Models	stratified	by	gender	were	used	to	account	

for	the	difference	in	variances	of	certain	covariates	(i.e.	BMI)	by	gender;	which	are	not	fully	

adjusted	for	in	the	REML	model	(61).	Models	stratified	by	available	UV	radiation	were	also	

used.	Heritability	estimates	were	computed:	(1)	globally	with	all	SNPs	as	input,	(2)	with	only	
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SNPs	previously	reported	in	the	literature	and	(3)	with	SNPs	included	in	the	novel	PGS	discerned	

in	Aim	1.	Heritability	estimates	can	be	inflated	with	ancestrally	mixed	populations	as	

contributions	of	rare	variants	which	are	not	tagged	in	the	general	population	play	a	role	(64).	

Therefore,	all	methods	were	performed	by	ancestry	-	European	and	African	-	to	avoid	inflation	

of	the	estimates	(64).	Expected	outcomes	were	that	SNPs	currently	reported	in	the	literature	

account	for	a	small	fraction	of	the	heritability	of	vitamin	D	concentrations	and	that	more	of	the	

heritability	would	be	captured	through	the	ancestry-specific	PGS	calculated	in	Aim	1.		

	

Figure	2.2:	Example	histogram	of	values	in	a	GRM	

	
Figure	2.2	shows	mean	relatedness	is	given	a	value	of	zero.	Subjects	who	are	less	related	to	each	other	
than	the	average	relatedness	in	the	sample	have	a	negative	value,	and	conversely,	subjects	who	are	
more	related	to	each	other	have	a	positive	value.	Extreme	values	are	typically	around	-0.02	and	0.02	
(35).		

	

Closely	related	individuals	pose	a	problem	for	GCTA,	as	GCTA	calculates	heritability	for	

unrelated	individuals.	Prior	to	all	analyses,	related	individuals	(IBD	>	0.38)	from	the	non-family	

studies	(ARIC,	MESA	and	WHI)	were	excluded.	Given	that	GCTA	only	uses	conventionally	
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unrelated	subjects,	the	heritability	calculated	may	differ	from	that	calculated	in	a	pedigree	

analysis	as	it	is	strictly	genetic	and	does	not	included	shared	environmental	effects	and	it	might	

not	capture	all	causal	variants	that	a	pedigree	analysis	may	capture	(i.e.	if	they	were	not	

genotyped)	(61).	To	reduce	bias	that	could	result	from	using	GCTA	to	calculate	heritability,	the	

GRM	was	generated	using	all	SNPs	to	capture	the	largest	number	of	causal	variants	(61).	

		

1.4 Aim	3	

1.4.1	Analytic	methods	and	expected	outcomes	
	

	 Ancestry	specific	stratified	analysis	investigated	the	relationship	between	PGS	

(computed	in	Aim	1)	and	environmental	predictors	of	25(OH)D	in	combined	samples	of	

participants	from	ARIC,	MESA	and	WHI	using	SAS	(version	9.4).	Models	were	executed	in	

samples	stratified	by	quartile	of	available	UV	radiation	or	vitamin	D	dietary	intake.	All	models	

controlled	for	age,	sex,	BMI	and	cohort.	In	models	exploring	the	effect	of	the	PGS	by	quartile	of	

available	UV	radiation,	models	also	controlled	for	vitamin	D	dietary	intake;	and	vice	versa.	

Sensitivity	analyses	included	models	that	also	controlled	for	physical	activity	(met-hours/week)	

or	vitamin	D	supplement	use;	sensitivity	analyses	were	carried	out	in	a	larger,	combined	cohort	

as	well	as	smaller	cohorts	with	required	data.	From	the	stratified	analysis,	results	indicative	of	

interaction	informed	further	models.	One-Degree	of	Freedom	(DF)	and	2-DF	models	were	

investigated;	1-DF	models	test	only	the	relevant	interaction	term	and	2-DF	models	test	both	the	

relevant	interaction	term	and	the	main	effect	terms.	Relevant	interaction	terms	were	the	PGS	

and	interaction	with	either	available	UV	radiation	or	vitamin	D	intake.	All	1-DF	and	2-DF	models	

controlled	for	age,	sex,	BMI,	cohort	and	vitamin	D	intake/available	UV	radiation.	Further	
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analyses	were	performed	in	those	who	achieved	Institute	of	Medicine	(IOM)	vitamin	D	intake	

guidelines	(600	IU/day	for	those	1-70	years	old	and	800	IU/day	for	those	over	70)	to	investigate	

differences	in	proportion	of	those	reaching	adequate	25(OH)D	concentrations	(>	20	ng/ml)	by	

quartile	of	genetic	risk.	

In	accordance	with	previous	findings,	it	was	expected	that	the	effect	of	the	PGS	on	

vitamin	D	concentrations	would	vary	by	level	of	vitamin	D	intake	and	season;	specifically,	it	was	

expected	that	the	PGS	would	have	a	larger	effect	on	vitamin	D	concentrations	with	increased	

dietary	intake	of	vitamin	D	and	in	summer	(i.e.	with	higher	available	UV	radiation)	(21).	We	also	

expected	that	those	with	a	higher	PGS	will	require	higher	doses	of	vitamin	D	(through	diet,	

supplements	or	available	UV	radiation)	to	achieve	adequate	concentrations.		

	

2.	Specific	aims	

Vitamin	D	inadequacy,	as	defined	by	a	25-hydroxyvitamin	D	[25(OH)D]	concentration	

less	than	20	ng/mL,	affects	more	than	50%	of	adults	in	the	United	States.	Low	vitamin	D	

concentrations	have	been	associated	with	increased	risk	of	autoimmune	diseases,	migraines,	

hypertension,	dyslipidemia,	cardiovascular	events,	and	cardiovascular	mortality	(1,	3-9).		

Additionally,	recent	Mendelian	randomization	studies	have	suggested	a	causal	relationship	

between	low	vitamin	D	concentrations	and	increased	risk	of	obesity,	ovarian	cancer,	

hypertension,	lower	cognitive	function,	multiple	sclerosis,	and	all	cause	and	cancer	mortality	

(10-16).	Furthermore,	some	clinical	trials	have	shown	that	vitamin	D	and	calcium	

supplementation	are	important	in	the	prevention	of	fractures	and	cardiovascular	risk	factors	

(17-20).	Clinical	trials	of	vitamin	D	alone	have	found	that	increasing	vitamin	D	intake	may	lower	
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risk	of	cancers,	diabetes	and	depression	and	may	reduce	inflammation	and	improve	lung	

function	in	patients	with	cystic	fibrosis	(7,	20,	65-69).	Recent	results	reported	from	the	VITAL	

trial	showed	null	associations	between	vitamin	D	supplementation	and	cancer	or	cardiovascular	

disease,	however,	study	design	limits	the	interpretability	of	these	findings	(70).	Avoiding	

vitamin	D	inadequacy	is	important,	however,	vitamin	D	concentrations	over	50	ng/mL	have	

been	associated	with	increased	morbidity	and	mortality	(3,	71).	Clinical	trials	of	vitamin	D	have	

shown	that	individual	response	to	vitamin	D	supplementation	is	highly	variable	(49,	72).	

Vitamin	D	concentrations	are	influenced	by	genetic	factors	and	genetic	variants	may	determine	

how	much	vitamin	D	intake	is	required	to	reach	an	optimal	vitamin	D	blood	concentration	(21,	

22,	73,	74).	Therefore,	knowledge	of	the	genetic	determinants	of	vitamin	D	concentrations	

could	be	invaluable	in	prevention	of	vitamin	D	associated	morbidity	and	mortality.	

Several	studies	have	uncovered	vitamin	D	associated	single	nucleotide	polymorphisms	

(SNPs)	(1,	28,	31).	However,	these	SNPs	account	for	a	small	portion	of	the	variation	in	vitamin	D	

concentrations	(1).	Understanding	the	complete	set	of	genetic	factors	that	contribute	to	

vitamin	D	concentrations	and	how	they	function	together	and	with	environmental	factors	will	

allow	for	personalized	treatment	of	vitamin	D	inadequacy,	instead	of	the	current	(and	

ineffective)	one	size	fits	all	treatment	regimen.	To	more	fully	understand	the	biology	of	vitamin	

D	concentrations,	I	propose	uncovering	a	more	complete	set	of	SNPs	as	well	as	interactions	

with	the	two	vitamin	D	sources:	sun	exposure	and	dietary	intake.		

	 My	long-term	goal	is	to	promote	adequate	vitamin	D	concentrations	through	

personalized	vitamin	D	supplementation	based	on	an	individual’s	genetic	makeup	and	non-

genetic	characteristics.	The	overall	objective	of	this	project	will	be	to	elucidate	a	fuller	set	of	
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SNPs	influencing	vitamin	D	concentrations	through	creation	of	a	polygenic	score	(PGS),	and	to	

elucidate	PGS*environment	interactions	that	alter	vitamin	D	concentrations.	Cohort	specific	

and	combined	analyses	will	be	carried	out	in	samples	from	Atherosclerosis	Risk	In	Communities	

(ARIC),	Multi-Ethnic	Study	of	Atherosclerosis	(MESA)	and	the	Women’s	Health	Initiative	(WHI).		

My	central	hypothesis	is	that	since	vitamin	D	concentration	is	highly	heritable,	and	only	a	small	

number	of	genes	have	been	implicated,	through	inclusion	of	a	fuller	set	of	SNPs	in	a	PGS,	more	

of	the	variation	in	vitamin	D	concentration	can	be	explained.	Additionally,	building	off	of	

previous	work	using	a	subset	of	WHI	participants,	I	hypothesize	that	the	genetic	contribution	to	

vitamin	D	inadequacy	will	be	altered	by	environmental	factors	such	as	sun	exposure	and	dietary	

intake	of	vitamin	D.	The	rationale	for	my	proposed	research	is	that	through	discovery	of	the	

genetic	and	environmental	influencers	of	vitamin	D	concentrations,	researchers	can	more	

accurately	predict	and	treat	vitamin	D	inadequacy	and	prevent	the	downstream	negative	health	

effects.	I	will	test	my	central	hypothesis	by	executing	the	following	aims:	

Aim	1:	Use	results	from	existing	ancestry	specific	meta-analyses	of	vitamin	D	genome-wide	

association	studies	(GWASs)	to	determine	the	optimal	p-value	threshold	for	the	set	of	

independent	SNPs	that	explains	the	most	variance	in	vitamin	D	concentrations	in	an	

independent	sample	and	calculate	the	polygenic	score	(PGS)	for	this	set	of	SNPs.	

	

H1:	The	set	of	SNPs	that	best	distinguishes	between	adequate	and	inadequate	vitamin	D	levels	

will	include	more	SNPs	(from	more	genes)	than	previous	GWASs.	
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Aim	2:		Calculate	the	heritability	of	vitamin	D	concentration	using	Genome-Wide	Complex	

Trait	Analysis	(GCTA)	software	under	three	scenarios:	1)	globally	(SNP	heritability),	2)	using	

the	set	of	SNPs	reported	in	the	literature	and	3)	using	the	set	of	SNPs	included	in	the	PGS	in	

Aim	1.	

	

H2:	The	proportion	of	heritability	accounted	for	by	the	set	of	SNPs	from	Aim	1	will	be	higher	

than	that	for	the	SNPs	currently	reported	in	the	literature.		

	

Aim	3:	Examine	modification	of	the	relationship	between	the	PGS	and	vitamin	D	

concentration	in	analyses	stratified	by	vitamin	D	intake	and,	separately,	season	of	blood	

draw.	If	qualitative	modification	of	the	effect	is	observed,	statistical	interaction	between	the	

PGS	and	vitamin	D	intake	and/or	season	of	blood	draw	will	be	tested		

	

H3a:	The	PGS	effect	on	vitamin	D	concentration	will	vary	by	level	of	vitamin	D	intake	and	

season;	there	will	be	a	stronger	PGS	effect	on	vitamin	D	concentration	with	increased	dietary	

intake	of	vitamin	D	and	in	summer.		

	

H3b:	Those	with	a	higher	PGS	will	require	more	vitamin	D	from	diet	and	sun	exposure	to	

achieve	optimal	vitamin	D	concentrations.	

	

This	information	could	inform	future	vitamin	D	supplement	dosing,	tailoring	it	to	a	person’s	

genome	instead	of	using	the	current	one	size	fits	all	treatment	regimen.	
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Chapter	3:	Aim	One	

	

DEVELOPMENT	OF	ANCESTRY	SPECIFIC	POLYGENIC	

SCORES	FOR	VITAMIN	D	CONCENTRATION	
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Abstract	
	
Background:	Vitamin	D	inadequacy	is	a	pervasive	public	health	issue.	Vitamin	D	concentrations	
are	influenced	by	genetic	factors	which	may	determine	how	much	vitamin	D	intake	is	required	
to	reach	an	optimal	vitamin	D	blood	concentration.	A	polygenic	score	(PGS)	can	be	used	to	
summarize	genetic	determinants	of	vitamin	D	concentration	and,	potentially,	to	tailor	vitamin	D	
intake	to	prevent	vitamin	D	inadequacy.	
	
Methods:	Using	PRSice	v2	and	summary	statistics	from	a	multi-ethnic	GWAS	of	16,124	
participants	of	European	ancestry	and	8,541	participants	of	African	ancestry,	optimally	
performing	PGSs	and	model	R2	(tested	using	a	linear	model	controlling	for	age,	sex,	body	mass	
index	(BMI)	and	available	ultra-violet	(UV)	radiation)	were	calculated	in	an	independent	set	of	
1,000	participants	of	European	ancestry	and	57	participants	of	African	ancestry.	PGSs	were	then	
applied	to	an	additional	8,905	participants	of	European	ancestry	and	1,067	participants	of	
African	ancestry.		
	
Results:	In	the	European	ancestry	determination	and	validation	cohorts,	the	optimal	PGS	
explained	1.3-2.1%	of	the	variance	in	25-hydroxyvitamin	D	[25(OH)D]	concentrations,	and	the	
fully	adjusted	model	explained	8-14%	of	the	variance	in	25(OH)D.	In	the	African	ancestry	
determination	and	validation	cohorts,	the	PGS	explained	0.01-4.4%	of	the	variance	in	25(OH)D,	
and	the	fully	adjusted	model	explained	2.3-37%	of	the	variance.	Results	showed	that	those	with	
greater	genetic	risk	have	statistically	significant	and	clinically	meaningfully	lower	25(OH)D	
concentrations.		
	
Discussion:	The	variance	explained	by	the	PGS,	while	in	line	with	what	has	been	reported	for	
other	complex	traits,	captures	only	a	modest	portion	of	phenotypic	variance.	The	association	
between	the	PGS	and	25(OH)D	concentrations	indicates	this	PGS	has	the	potential	to	be	
leveraged	for	personalized	vitamin	D	supplementation.	
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Background	

Vitamin	D	inadequacy,	as	defined	by	a	25-hydroxyvitamin	D	[25(OH)D]	concentration	

less	than	20	ng/mL,	affects	around	50%	of	adults	in	the	United	States	(1-3).	Low	vitamin	D	

concentrations	have	been	associated	with	increased	risk	of	autoimmune	diseases,	migraines,	

hypertension,	dyslipidemia,	cardiovascular	events,	and	cardiovascular	mortality	(1,	3-9).		

Additionally,	recent	Mendelian	randomization	studies	have	suggested	a	causal	relationship	

between	low	vitamin	D	concentrations	and	increased	risk	of	obesity,	ovarian	cancer,	

hypertension,	lower	cognitive	function,	multiple	sclerosis,	and	all	cause	and	cancer	mortality	

(10-16).	Furthermore,	some	clinical	trials	have	shown	that	vitamin	D	and	calcium	

supplementation	are	important	in	the	prevention	of	fractures	and	cardiovascular	risk	factors	

(17-20).	Clinical	trials	of	vitamin	D	alone	have	found	that	increasing	vitamin	D	intake	may	lower	

risk	of	cancers,	diabetes	and	depression	and	may	reduce	inflammation	and	improve	lung	

function	in	patients	with	cystic	fibrosis	(7,	65-69).	Recent	results	reported	from	the	VITAL	trial	

showed	null	associations	between	vitamin	D	supplementation	and	cancer	or	cardiovascular	

disease,	however,	study	design	limits	the	interpretability	of	these	findings	(70).	Avoiding	

vitamin	D	inadequacy	is	important,	however,	vitamin	D	concentrations	over	50	ng/mL	have	

been	associated	with	increased	morbidity	and	mortality	(3,	71).	Clinical	trials	of	vitamin	D	have	

shown	that	individual	response	to	vitamin	D	supplementation	is	highly	variable	(49,	72).	

Vitamin	D	concentrations	are	influenced	by	genetic	factors	and	genetic	variants	may	determine	

how	much	vitamin	D	intake	is	required	to	reach	an	optimal	vitamin	D	blood	concentration	(21,	

22,	73,	74).	Therefore,	knowledge	of	the	genetic	determinants	of	vitamin	D	concentrations	

could	be	invaluable	in	prevention	of	vitamin	D	associated	morbidity	and	mortality.	
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Several	studies	have	uncovered	vitamin	D	associated	single	nucleotide	polymorphisms	

(SNPs)	(1,	25,	28,	31).	To	date,	a	handful	of	vitamin	D	genes	have	been	discovered	through	

published	genome-wide	association	studies	(GWASs)	in	those	of	European	or	African	ancestry;	

these	genes	include:	A2BP1,	ANO6/ARID2,	CYP2R1,	CPY24A1,	DAB1,	DHCR7,	GC,	GPR114,	

HTR2A,	KIF4B,	AMDHD1	and	SEC23A.	However,	these	SNPs	account	for	a	small	portion	of	the	

variation	in	vitamin	D	concentrations;	about	2.8%	of	the	estimated	20-40%	heritability	(1,	22,	

25).	This	is,	in	large	part,	because	GWASs	use	a	very	stringent	p-value	that	prohibits	the	

discovery	of	SNPs	that	have	a	small	effect	size	or	function	through	interaction	with	other	

genetic	or	environmental	factors.	The	former	can	be	addressed	by	creating	a	polygenic	score	

(PGS),	which	includes	SNPs	that	did	not	meet	the	very	stringent	genome-wide	significance	

threshold	(32).	Development	of	a	PGS	allows	for	capturing	the	additive	effect	of	multiple	SNPs	

across	the	genome,	without	requiring	genome-wide	significance,	which	in	turn	allows	for	better	

prediction	of	a	phenotype.		

A	PGS	includes	a	more	complete	set	of	genetic	factors	that	contribute	to	a	phenotype	

which	can	be	used	as	a	predictor,	allowing	for	proactive	prevention	of	a	health	condition	for	

those	at	increased	risk.	For	example,	PGSs	have	been	shown	to	predict	Alzheimer’s	disease	

before	the	onset	of	symptoms	that	would	result	in	a	clinical	diagnosis	(32,	36),	at	a	time	in	the	

disease	course	where	treatment	may	be	more	effective.	PGS	have	also	been	correlated	with	

risk	of	coagulation	deficiencies,	such	as	activated	partial	thromboplastin	time	(aPTT),	where	an	

increased	risk	score	increases	blood	clotting	time	(37).	The	PGS	can	then	be	utilized	for	

personalized	dosing	of	antifibrinolytic	drugs	which	promote	blood	clotting.	The	PGS	approach	

holds	promise	for	early,	accurate	prediction	of	risk	of	vitamin	D	inadequacy,	which	could	then	
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inform	vitamin	D	supplementation.	To	date	there	is	a	research	void	in	quantifying	vitamin	D	

inadequacy	risk	through	the	use	of	a	PGS.	Only	a	handful	of	studies	have	calculated	genetic	risk	

scores	for	vitamin	D	inadequacy	using	SNPs	that	reached	the	stringent	GWAS	p-value	threshold,	

therefore	missing	much	of	the	genetic	contribution	to	the	phenotype	(22,	48,	75-77).	Given	that	

several	studies	have	reported	genetic	dependent	response	to	vitamin	D	supplementation,	a	

comprehensive	PGS	holds	predictive	and	preventive	promise	in	relation	to	vitamin	D	

inadequacy	and	downstream	health	outcomes	(73,	78,	79).			

Here,	PGSs	will	be	calculated	using	summary	statistics	from	a	multi-ethnic	GWAS	

performed	by	the	TRANSCEN-D,	or	the	TRANS-ethniC	Evaluation	of	vitamiN	D,	GWAS	

consortium	(27).	Summary	statistics	come	from	16,124	participants	of	European	ancestry	and	

8,541	participants	of	African	ancestry.	PGSs	will	be	calculated,	using	PRSice	v2,	in	an	ancestry	

specific	manner,	allowing	for	better	risk	prediction	of	complex	traits	due	to	ancestry-specific	

heterogeneity	in	the	underlying	trait.		

	

Methods	

Participants	

PGS	development	was	done	in	an	ancestry	specific	manner,	using	subsets	of	European-	

and	African-ancestry	samples	from	the	Atherosclerosis	in	Communities	Study	(ARIC)	as	the	

target	dataset.	ARIC	data	was	obtained	through	dbGaP	Study	Accession:	phs000090.v4.p1.	ARIC	

is	a	prospective	epidemiologic	study	conducted	in	four	U.S.	communities:	Wake	Forest	Baptist	

Medical	Center,	Winston-Salem,	NC;	University	of	Mississippi	Medical	Center,	Jackson,	MS;	

University	of	Minnesota,	Minneapolis,	MN;	Johns	Hopkins	University,	Baltimore,	MD.	ARIC	
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includes	a	total	of	15,792	participants	of	which	9,415	have	all	data	required	for	this	analysis	

(genomic	data,	25(OH)D,	age,	sex,	body	mass	index	(BMI),	geographic	location	and	month	of	

blood	draw).	Of	these,	7,455	are	of	European	ancestry;	these	participants	were	not	included	in	

the	TRANSCEN-D	GWAS	(which	is	the	base	dataset	for	this	analysis).	A	random	sample	of	1,000	

participants	were	chosen	from	the	7,455	eligible	participants	for	calculation	of	the	optimal	PGS	

p-value	threshold;	the	remaining	samples	were	used	in	validating	the	variance	in	25(OH)D	

explained	by	the	PGS	and	interaction	testing	with	the	PGS	and	environmental	predictors	of	

25(OH)D	(Aim	3).	Samples	were	randomly	selected	by	assigning	a	random	variable	using	a	

random	number	generator	in	SAS	and	selecting	the	1,000	largest	values.	For	the	African	cohort,	

1,960	participants	of	African	ancestry	were	eligible.	Samples	were	selected	to	be	used	for	

determining	the	optimal	p-value	cut-off	based	on	independence	from	the	samples	used	in	the	

TRANSCEN-D	GWAS	meta-analysis.	Accordingly,	57	participants	of	African	ancestry	from	the	

1,960	were	used.	See	Table	3.1	for	sample	characteristics.	Participant	consent	was	previously	

obtained	at	each	respective	ARIC	study	site;	IRB	approval	was	granted	for	ARIC	and	this	specific	

analysis.	

Table	3.1	Optimal	p-value	determination	sample	characteristics	
	

	

	

	

	

	

Cohort	
ARIC	European-
ancestry	set	

ARIC	African-
ancestry	set	

N	 1,000	 57	

%	Female	 53.2%	 49.1%	
Mean	Age	(SD)	[years]	 57.1(5.7)	 55.6	(6.2)	
Mean	BMI	(SD)	[kg/m2]	 27.3	(4.8)	 28.6	(5.7)	

Mean	25(OH)D	(SD)	[ng/ml]	 25.7	(8.7)	 20.9	(7.8)	
Available	UV	radiation	(SD)	[units]		 5.0	(2.5)	 7.1	(2.4)	

Intake	[IU]	 219.2	(135.2)	 221.2	(137.3)	



39	
	

	

After	the	optimal	p-value	threshold	was	determined	and	the	PGS	was	calculated	for	

each	ancestry,	the	PGS	was	then	applied	to	additional	participants	to	validate	performance	of	

the	risk	score	and	to	further	investigate	performance	of	the	PGS	(i.e.	what	percent	of	

heritability	is	captured	by	the	PGS	[Aim	2]	and	how	the	PGS	interacts	with	environmental	

factors	to	affect	vitamin	D	concentrations	[Aim	3]).	For	those	of	European	ancestry,	the	PGS	

was	applied	to:	6,455	participants	from	ARIC,	1,995	participants	from	the	Multi-ethnic	Study	of	

Atherosclerosis	(MESA)	and	455	participants	from	the	Women’s	Health	initiative	(WHI).	For	

those	of	African	ancestry,	the	PGS	was	applied	to:	367	participants	from	MESA	and	700	

participants	from	WHI.	Participant	characteristics	for	the	full	samples	from	each	cohort	can	be	

found	in	Table	3.2.	MESA	is	a	prospective	study	of	men	and	women	ages	44-84	who	were	

recruited	from	Columbia	University,	Johns	Hopkins	University,	Northwestern	University,	

University	of	Minnesota,	University	of	California	at	Los	Angeles	and	Wake	Forest	University.	

Serum	vitamin	D	was	measured	at	MESA	exam	1	(July	2000-August	2002).	MESA	data	was	

obtained	through	dbGaP	Study	Accession:	phs000209.v13.p3.	Women	participating	in	WHI	

were	recruited	from	40	clinical	centers	in	the	United	States.	Serum	vitamin	D	was	measured	as	

part	of	the	Calcium	and	Vitamin	D	(CaD)	Trial	(80).	WHI	data	was	obtained	through	dbGaP	Study	

Accession:	phs000200.v11.p3.	Participant	consent	was	previously	obtained	at	each	respective	

MESA	and	WHI	study	site;	IRB	approval	was	granted	for	MESA,	WHI	and	this	specific	analysis.		
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Table	3.2	Full	sample	characteristics	
	

	

	

	

	 	

	

	

	

	

	

	 	 	
	
	

1available	UV	radiation	
2vitamin	D	intake	from	diet	
3MANOVA	global	test	(performed	in	SAS	(version	9.4)	revealed	differences	in	one	or	more	variables	by	
cohort,	therefore	cohort	was	adjusted	for	in	all	models	that	included	multiple	cohorts	
	

Data	Quality	Control	

Data	cleaning	for	phenotypic	data	included	winsorizing	25(OH)D	in	the	MESA	sample	to	

the	99th	percentile,	63.7	ng/mL	in	those	of	European	ancestry	and	49.0	ng/mL	in	those	of	

African	ancestry.	Additionally,	2	participants	in	MESA	had	25(OH)D	values	equal	to	0	and	were	

assigned	half	of	the	minimum	value	detected	per	field	standards;	this	equated	to	a	value	of	1.9	

ng/mL	in	the	European-ancestry	participant	and	1.1	ng/mL	in	the	African-ancestry	participant.	

In	the	WHI	sample,	participants	with	25(OH)D	values	far	above	the	maximum	level	of	detection	

(150	ng/mL),	none	of	which	had	extreme	vitamin	D	intake	or	sun	exposure,	were	removed	from	

Cohort	 Variable	 European-ancestry	 African-ancestry	

ARIC	

Sample	size	 7,455	 57	

Age	(SE)	[years]	 57.1	(5.7)	 55.6	(6.2)	

BMI	(SE)	[kg/m2]	 27.3	(4.9)	 28.6	(5.7)	
UV1	(SE)	[units]	 5.0	(2.5)	 7.1	(2.4)	
Intake2	(SE)	[IU]	 222.8	(144.4)	 219.1	(138.8)	

25(OH)D	(SE)	[ng/ml]	 25.9	(8.8)	 20.9	(7.8)	

MESA	

Sample	size	 1,995	 367	

Age	(SE)	[years]	 62.7	(10.3)	 62.0	(10.4)	
BMI	(SE)	[kg/m2]	 27.8	(5.0)	 30.3	(6.2)	
UV	(SE)	[units]	 4.5	(2.3)	 5.1	(2.2)	
Intake	(SE)	[IU]	 189	(157)	 161.8	(144.1)	

25(OH)D	(SE)	[ng/ml]	 30.1	(10.9)	 19.3	(8.8)	

WHI	

Sample	size	 455	 700	

Age	(SE)	[years]	 66.6	(6.8)	 61.8	(7.4)	
BMI	(SE)	[kg/m2]	 29.9	(6.3)	 31.2	(6.4)	
UV	(SE)	[units]	 5.2	(2.5)	 5.5	(2.6)	
Intake	(SE)	[IU]	 420.9	(299.4)	 308.8	(257.4)	

25(OH)D	(SE)	[ng/ml]	 18.9	(10.7)	 19.0	(15.4)	
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the	sample;	this	included	68	participants	of	European	ancestry	and	119	participants	of	African	

ancestry.	25(OH)D	values	were	also	winsorized	in	the	WHI	sample	to	approximate	the	lower	

and	upper	fences	(58.6	ng/mL	and	67	ng/mL	for	European	and	African	ancestries,	respectively)	

(53).	All	25(OH)D	values	were	log	transformed	to	improve	the	normality	of	the	distribution	in	

each	cohort.	

Genotyping	methods	are	described	in	publications	by	ARIC,	MESA	and	WHI	(81-85).	

Supplemental	Table	1	gives	information	on	the	original	genotyping	platforms	and	SNP	panels	

used	by	the	studies.	Quality	control	(QC)	was	done	in	an	ancestry-specific	manner	for	those	of	

European	and	African	ancestry.	Ancestry	was	determined	by	self-report	and	confirmed	with	

principal	components	analysis	with	1000	genomes	populations	serving	as	anchoring	

populations.	In	summary,	QC	for	each	cohort	removed:	sex	mismatches,	samples	and	SNPs	with	

high	missingness	(>5%),	SNPs	with	low	minor	allele	frequency	(MAF<0.2%),	and	SNPs	out	of	

Hardy-Weinberg	equilibrium	(p<0.05/number	of	SNPs;	Bonferroni	adjusted	cut-off).	Datasets	

were	then	imputed	using	the	Michigan	Imputation	Server	(56,	58).	European	samples	were	

imputed	to	the	Haplotype	Reference	Consortium	(HRC)	and	African	samples	were	imputed	to	

the	Consortium	on	Asthma	among	African-ancestry	Populations	in	the	Americas	(CAAPA)	(58,	

86).	Post	imputation	QC	included:	removing	SNPs	with	a	low-quality	score	(<0.8)	or	MAF	

(<0.1%).	Additionally,	sample	and	SNP	level	missingness	as	well	as	HWE	cutoffs	were	rechecked.	

Supplemental	Figures	1-11,	and	Supplemental	Table	1	give	specifics	on	quality	control	for	each	

cohort.	QC	was	performed	using	PLINK	v1.9	and	vcfTools	(87,	88).		
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Measurement	of	25(OH)D	
	

Serum	vitamin	D	concentration	was	measured	by	the	studies	using	different	assay	types.	

WHI	used	the	DiaSorin	LIASON	chemiluminescence,	MESA	used	liquid	chromatography-mass	

spectrometry	(LCMS)	and	ARIC	used	tandem	mass	spectrometry	(MS/MS;	Quest	Labs).	To	

control	for	differences	in	vitamin	D	concentrations	due	to	different	assays,	vitamin	D	

concentrations	were	converted	to	z-scores	within	studies	for	combined	analyses.		

	

Calculation	of	PGS	

Optimal	p-value	cutoff	and	corresponding	PGS	were	determined	by	calculating	PGSs	

using	numerous	less	stringent	(compared	to	the	GWAS	threshold)	p-value	cutoffs	and	testing	

the	association	between	the	PGS	and	log[25(OH)D].	P-values	were	attained	from	TRANSCEN-D,	

an	independent	GWAS	(27).	TRANSCEN-D,	or	the	TRANS-ethniC	Evaluation	of	vitamiN	D	GWAS	

consortium,	is	a	collaboration	of	13	cohorts	(9	of	African	ancestry,	3	of	Hispanic	ancestry	and	

SUNLIGHT,	a	consortium	of	15	European	cohorts),	which	performed	a	multi-ethnic	GWAS	to	

uncover	novel	SNPs	associated	with	vitamin	D	concentrations	(1,	27).	TRANSCEN-D	included	

SNPS	with	MAF	>	0.01	and	tested	them	for	association	with	log[25(OH)D]	using	an	additive	

genetic	model	adjusting	for	age,	sex,	BMI,	UV	index	and	principal	components	1-10.	Ancestry-

specific	z-scores	from	TRANSCEN-D	were	converted	to	betas	with	the	deterministic	relationship:	

β	=	,/(./01(2$ 1 − $ ∗ (),	where	$	is	the	reference	allele	frequency	for	the	SNP	(89).	

Another	tuning	parameter	in	PGS	development	is	the	linkage	disequilibrium	(LD)	cutoff	for	

clumping.	SNPs	need	to	be	clumped	to	prevent	SNPs	in	one	correlated	region	from	dominating	

the	PGS.	Here	PGSs	were	calculated	using	two	different	LD	cut-offs,	r2>	0.5	or	>	0.2,	keeping	the	
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SNP	with	the	strongest	effect	in	the	base	dataset.	SNPs	in	LD	with	one	another	were	clumped,	

using	the	--clump-r2	option	in	PRSice	v2.	The	LD	cutoff	that	yielded	the	PGS	that	explains	the	

most	variance	in	25(OH)D	was	used	in	downstream	analyses.	Given	the	small	African	ancestry	

sample,	a	reference	panel	(full	ARIC	African	ancestry	dataset	with	n=	1,900)	was	used	to	

determine	LD.	PGSs	were	calculated	in	PRSice	v2	which	computes	the	sum	of	reference	allele	

counts	at	each	SNP	weighted	by	the	effect	size	(β)	for	that	SNP	from	the	TRANSCEN-D	

consortium	(59).		

	

Statistical	analysis	

To	determine	which	set	of	SNPs	to	include	in	the	PGS,	SNPs	at	or	below	a	given	p-value	

threshold	after	clumping	were	included	in	the	PGS,	which	was	then	tested	in	a	regression	

model	for	association	with	log[25(OH)D].	P-value	thresholds	from	5x10-5	to	0.5	were	tested,	

incrementing	by	5x10-5	at	each	iteration.	As	the	p-value	threshold	being	tested	increased,	more	

SNPs	were	included	in	the	PGS.	The	threshold	where	the	PGS	explained	the	most	variance	in	

the	phenotype	[log(25(OH)D]	was	selected	as	the	most	optimal	PGS.	The	coefficient	of	

determination,	R2,	was	the	metric	used	to	measure	the	proportion	of	phenotypic	variance	

explained.	Linear	regression	models	were	used	to	calculate	the	R2	of	a	given	PGS	while	

controlling	for	participant	age,	sex,	BMI	and	available	UV	radiation.	Models	which	included	

multiple	cohorts	also	adjusted	for	cohort.	Available	UV	radiation	for	each	participant	was	

calculated	based	on	their	month	of	blood	draw	and	location,	using	data	from	the	National	

Weather	Service	Climate	Prediction	Center	historical	database.	Participants	were	assigned	UV	

radiation	values	of	the	average	UV-index	for	the	month	prior	to	blood	draw	(the	relevant	
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exposure	period);	the	UV	radiation	values	ranged	from	0.7	to	9.5.		When	available,	UV	radiation	

values	corresponded	to	the	exact	location	and	year	of	the	participant’s	blood	draw.	When	exact	

cities	or	years	were	not	available,	averages	across	nearby	locations	and/or	years	were	used.	See	

Supplemental	Tables	2-4	for	specific	month,	year	and	location	values	used.	Descriptive	statistics	

for	UV	radiation	by	site	and	month	are	also	presented	in	the	appendix	in	Supplemental	Tables	

5-7.	

A	sensitivity	analysis	was	performed	including	dietary	intake	in	the	model,	as	dietary	

intake	is	a	leading	predictor	of	25(OH)D	levels.	However,	with	the	inclusion	of	dietary	intake	in	

the	model,	the	optimal	PGS	(and	p-value	cutoff)	remained	the	same	for	the	European	cohort	

(0.00035),	but	performed	much	worse	in	the	African-ancestry	cohort,	so	intake	was	not	

included	in	the	model	to	determine	the	optimal	p-value	cutoff.	Results	from	this	and	other	

sensitivity	analyses	can	be	found	in	Supplemental	Table	8.	Additional	sensitivity	analyses	were	

performed	to	ensure	that	the	Randomized	Controlled	Trial	study	design	of	the	WHI	CaD	trial	

was	not	biasing	the	results.	There	was	no	significant	difference	in	25(OH)D	concentration	

between	participants	in	the	treatment	arm	compared	to	the	placebo	arm.	Additionally,	there	

was	no	significant	difference	in	PGS*25(OH)D	trend	in	WHI	compared	to	the	other	cohorts.	

	

Enrichment	Analysis	

	 After	development	of	the	PGS,	SNPs	were	annotated	to	genes	using	the	SNPnexus	tool	

developed	by	the	Barts	Cancer	Institute	at	the	Queen	Mary	University	of	London	and	ancestry-

specific	enrichment	analyses	were	performed	using	Gene	Ontology.	Genes	were	mapped	to	(1)	
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biologic	process	and	(2)	molecular	function,	and	Fisher’s	exact	tests	were	performed	to	test	for	

enrichment	of	processes	or	functions.		

	

Results	

	 Table	3.3	shows	statistics	for	the	best	performing	PGS	for	each	ancestry	for	the	two	LD	

cutoffs	while	controlling	for	age,	sex,	BMI	and	available	UV	radiation.	In	both	ancestries,	the	

PGS	using	the	LD	cut-off	of	0.5	was	more	strongly	associated	with	and	explained	more	of	the	

variance	in	25(OH)D	than	did	the	PGS	using	the	LD	cut-off	of	0.2.	Therefore,	this	was	the	

optimal	PGS	utilized	going	forward.	For	the	European	ancestry	cohort,	the	optimal	PGS	

explained	1.4%	of	the	variance	seen	in	log[25(OH)D]	(p=0.00035),	with	the	fully	adjusted	model	

explaining	12.9%	of	the	variance	seen	in	log[25(OH)D].	In	the	African	ancestry	cohort,	the	PGS	

explained	4.4%	of	the	variance	seen	in	log[25(OH)D]	(p=0.06),	with,	the	fully	adjusted	model	

explaining	37%	of	the	variance	seen	in	log[25(OH)D].	Of	note,	the	optimally	performing	PGS	in	

the	African	ancestry	contained	many	more	SNPs	than	that	from	the	European	cohort	mostly	

due	to	the	less	stringent	p-value	cutoff,	but	also	because	a	larger	number	of	SNPs	remained	

post	clumping	(850,697	vs	228,867)	due	to	smaller	LD	blocks	in	the	African-ancestry	sample	and	

more	input	SNPs	from	the	GWAS	summary	statistics	(8.4	million	in	the	African	ancestry	vs	1.2	

million	in	the	European	ancestry	sample).	Figures	3.1	and	3.2	depict	the	results	visually,	where	

a	taller	bar	corresponds	to	a	larger	PGS	R2.	Figure	3.1	shows	a	bar	plot	of	the	coefficient	of	

determination	(R2)	for	TRANSCEN-D	GWAS	meta-analysis	p-value	thresholds	from	0	to	1	at	

selected	intervals	in	the	European-ancestry	sample;	Figure	3.2	shows	the	same	in	the	African-

ancestry	sample.	To	investigate	biologic	underpinnings	of	the	PGS,	ancestry	specific	enrichment	
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analyses	were	performed.	Many	biological	and	molecular	processes	were	enriched	for	using	a	

Fisher’s	exact	test	and	a	false	discovery	rate	(FDR)	adjusted	p-value.	However,	no	novel	

categories	or	ancestry-specific	trends	emerged.	Enrichment	analysis	results	can	be	found	in	

Supplemental	Tables	9	and	10	and	Supplemental	Figures	12	and	13.		

	

Table	3.3:	Performance	of	optimal	PGS	in	each	ancestry	

Ancestry	 LD	cutoff	 p-value	cut-off	 PGS	R
2
	(model	R

2
)	 p-value

a
	 #	SNPs	

European	

(n=1,000)	

0.5	 0.00035	 0.014	(0.129)	 0.00008	 341	

0.2	 0.1142	 0.011	(0.126)	 0.0005	 44,883	

African		

(n=57)	

0.5	 0.01265	 0.044	(0.37)	 0.06	 32,269	

0.2	 0.01375	 0.036	(0.366)	 0.10	 27,662	

	 	 ap-value	for	association	between	PGS	and	log[25(OH)D]	
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Figure	3.1:	PGS	performance	in	those	of	European	ancestry	(n=1000;	LD	cutoff	of	0.5)	

	
In	Figure	3.1,	the	bars	represent	the	proportion	of	phenotypic	variance	explained	by	the	PGS.	The	most	
optimally	performing	PGS	has	the	tallest	bar	(p=0.00035)	and	explains	1.4%	of	the	variance	in	
log[25(OH)D].	The	p-value	cut-offs	along	the	X-axis	come	from	the	TRANSCEN-D	meta-analysis.	
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Figure	3.2:	PGS	performance	in	those	of	African	ancestry	(n=57;	LD	cutoff	of	0.5)	
	

	
In	Figure	3.2,	the	bars	represent	the	proportion	of	phenotypic	variance	explained	by	the	PGS.	The	most	
optimally	performing	PGS	has	the	tallest	bar	(0.01265)	and	explains	2.4%	of	the	variance	in	
log[25(OH)D].	The	p-value	cut-offs	along	the	X-axis	come	from	the	TRANSCEN-D	meta-analysis.	
	

	

	

	

Tables	3.4	and	3.5	summarize	the	ancestry-specific	optimal	PGS	when	stratified	by	

gender	or	available	UV	radiation.	General	trends	showed	that	the	PGS	R2	was	typically	greater	

in	females	(2.2%	vs	2.1%	in	European	ancestry	and	9.6%	vs	5.9%	in	African	ancestry).		
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Table	3.4:	Performance	of	European-ancestry	optimal	PGS	stratified	by	gender	or	available	UV	
radiation		

	 Strata	 p-value	cut-off	 PGS	R
2
	(model	R

2
)	 p-value

a	 #	SNPs	

Gender	 Male	(N=468)	 0.1063	 0.021	(0.123)	 0.001	 60,376	
Female	(N=532)	 0.0008	 0.022	(0.118)	 0.0003	 705	

UV	Index	 Bottom	50%b	(N=520)	 0.1109	 0.017	(0.065)	 0.003	 62,678	
Top	50%c	(N=480)	 0.00065	 0.019	(0.142)	 0.0009	 579	

ap-value	for	association	between	PGS	and	log(25(OHOD)	
bUV	Index	below	4.85	
cUV	Index	above	4.85	
	

Table	3.5:	Performance	of	African-ancestry	optimal	PGS	stratified	by	gender	or	available	UV	
radiation		

	 Strata	 p-value	cut-off	 PGS	R
2
	(model	R

2
)	 p-value

a	 #	SNPs	

Gender	 Male	(N=29)	 0.00005	 0.059	(0.38)	 0.14	 195	
Female	(N=28)	 0.01365	 0.096	(0.46)	 0.05	 34,570	

UV	Index	 Bottom	50%b	(N=28)	 0.00005	 0.049	(0.41)	 0.18	 195	
Top	50%c	(N=29)	 0.01365	 0.027	(0.20)	 0.39	 34,570	

ap-value	for	association	between	PGS	and	log(25(OHOD)	
bUV	Index	below	8.2	
cUV	Index	above	8.2	

	

After	the	optimal,	ancestry-specific	PGS	was	discerned,	the	PGS	was	applied	to	

independent	participants	from	the	remaining	cohorts	(Table	3.6).	In	European-ancestry	cohorts,	

the	optimal	PGS	explained	a	significant	percent	of	the	variance	in	25(OH)D	in	the	ARIC	(1.3%)	

and	MESA	(2.1%)	cohorts.	The	European	ancestry-specific	PGS	had	a	lower	and	nonsignificant	

R2	in	the	WHI	cohorts,	accounting	for	only	0.5%	of	the	variance	in	25(OH)D.	In	the	African-

ancestry	cohorts,	the	optimal	PGS	only	explained	a	significant	percent	of	the	variance	in	

25(OH)D	(1.1%)	in	the	WHI	(consent	group	2)	cohort.	
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Table	3.6:	Optimal	PGS	performance	by	cohort	
	 Cohort	 N	 PGS	R

2
	(model	R

2
)	 p-value

a
	 #	SNPs	

European	

ARIC	 6,462	 0.013	(0.14)	 2.6x10-23	 339	
MESA	 1,995	 0.021	(0.10)	 1.8x10-11	 31	

WHI	(consent	group	1)	 79	 0.005	(0.12)	 0.51	 331	

WHI	(consent	group	2)	 376	 0.005	(0.08)	 0.12	 337	

African	

MESA	 367	 0.0005	(0.12)	 0.42	 1,246	
WHI	(consent	group	1)	 65	 0.0001	(0.023)	 0.93	 30,309	
WHI	(consent	group	2)	 572	 0.011	(0.035)	 0.01	 31,153	
WHI	(consent	group	3)	 63	 0.005	(0.097)	 0.58	 34,316	

ap-value	for	association	between	PGS	and	log[25(OH)D]	
bmany	fewer	SNPs	were	included	in	the	MESA	PGS	because	of	the	sparse	genotyping	panel	used	

	

Figures	3.3	and	3.4	show	ancestry-specific	plots	of	25(OH)D	by	decile	or	quintile	of	the	

PGS.	Quintiles	were	used	in	the	African	ancestry	due	to	the	smaller	sample	size.	Generally,	it	

can	be	observed	that	those	with	greater	genetic	risk	(lower	PGS	and	decile)	have	lower	25(OH)D	

concentrations.	For	a	clinically-based	interpretation,	in	the	European	determination	cohort	

(Figure	3.3,	panel	A;	n=1,000),	those	with	the	highest	genetic	risk	have	vitamin	D	concentrations	

4.0	ng/ml	lower	than	those	with	the	lowest	risk	(p=1.3x10-3).	In	the	European	validation	cohort	

(Figure	3.3,	panel	B;	n=8,569),	the	trend	persists	as	those	with	the	highest	risk	have	vitamin	D	

concentrations	3.0	ng/ml	lower	than	those	with	the	lowest	risk	(p=3.2x10-13).	Figure	3.4	shows	a	

similar	trend,	though	nonsignificant,	for	those	of	African	ancestry.	In	the	African-ancestry	

determination	cohort	(panel	A;	n=57),	individuals	with	the	highest	genetic	risk	have	vitamin	D	

concentrations	4.7	ng/ml	lower	than	those	with	the	lowest	risk	(p=0.23);	in	the	validation	

cohort	(panel	B;	n=1,042),	those	with	the	highest	risk	have	vitamin	D	concentrations	1.9	ng/ml	

lower	than	those	with	the	lowest	risk	(p=0.15).	Raw	data	can	be	found	in	Supplemental	Tables	

11	and	12.	Where	sample	size	allowed	(the	combined	European	cohort,	n=8,569),	further	
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exploration	of	the	pattern	was	investigated	for	those	in	the	1st	and	99th	percentiles	

(Supplemental	Table	11).	These	percentiles	followed	the	linear	trend	as	shown	in	Figure	3.3.		

Figure	3.3:	European	ancestry-specific	quantile	plots		
A	
(n=1,000)	

	

	

	
B	
(n=8,569)	

	

	
	
Figure	3.3	shows	a	visual	representation	of	the	association	between	PGS	decile	and	normalized	vitamin	
D	concentrations	in	those	of	European	ancestry.	The	x-axis	is	the	PGS	decile,	where	lower	decile	means	
more	risk	of	low	vitamin	D	concentrations.	The	y-axis	is	vitamin	D	concentrations	(normalized	for	
comparison	between	cohorts).	Panel	A	is	a	plot	for	the	subset	of	ARIC	samples	used	to	discern	the	
optimal	PGS	(n=1000),	panel	B	is	a	plot	for	the	remaining	independent	samples	(n=8,569).	While	the	
exact	trend	varies	by	plot,	the	general	trend	is	that	when	PGS	increases	(i.e.	lower	genetic	risk)	25(OH)D	
concentrations	increase.	In	panel	A,	moving	from	the	highest	risk	to	the	lowest	risk	decile	increases	
vitamin	D	concentrations	by	4.0	ng/ml.	In	panel	B,	moving	from	the	highest	risk	to	the	lowest	risk	decile	
increases	vitamin	D	concentrations	by	3.0	ng/ml.	
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Figure	3.4:	African	ancestry-specific	quantile	plots		
A	
(n=57)	

	

	
B	
(n=1,042)	

	

	

	
	
Figure	3.4	shows	a	visual	representation	of	the	association	between	PGS	quintile	and	normalized	vitamin	
D	concentrations	in	those	of	African	ancestry.	The	x-axis	is	the	PGS	quintile,	where	lower	quintile	means	
more	risk	of	low	vitamin	D	concentrations.	The	y-axis	is	vitamin	D	concentrations	(normalized	for	
comparison	between	cohorts).	Panel	A	is	a	plot	for	the	subset	of	ARIC	samples	used	to	discern	the	
optimal	PGS	(n=57),	panel	B	is	a	plot	for	the	remaining	independent	samples	(n=1,042).	While	the	exact	
trend	varies	by	plot,	the	general	trend	is	that	when	PGS	increases	(i.e.	lower	genetic	risk)	25(OH)D	
concentrations	increase.	In	panel	B,	moving	from	the	highest	risk	to	the	lowest	risk	quintile	increases	
vitamin	D	concentrations	by	4.7	ng/ml.	In	panel	A,	moving	from	the	highest	risk	to	the	lowest	risk	
quintile	increases	vitamin	D	concentrations	by	1.9	ng/ml.	
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Discussion	

Vitamin	D	inadequacy	is	a	pervasive	health	problem,	with	a	strong	genetic	basis.	

However,	to	date,	much	of	the	heritability	of	25(OH)D	remains	unexplained.	Furthermore,	there	

is	a	tremendous	gap	in	the	research	carried	out	in	minority	ancestries	compared	to	European	

ancestry.	Filling	these	knowledge	gaps	is	critical	in	preventive	care	to	manage	25(OH)D	

concentration	and	development	of	an	ancestry-specific	PGS	is	one	way	to	address	these	gaps.	

To	date,	across	all	phenotypes,	most	PGS	have	been	calculated	in	those	of	European	ancestry.	A	

handful	of	studies	have	begun	to	investigate	ancestry-specific	PGS,	however,	none	of	these	

approaches	utilize	an	entirely	ancestry-specific	approach	as	was	undertaken	here	(90-92).	Given	

the	underlying	genetic	difference	between	ancestries	(i.e.	different	LD	patterns	and	allele	

frequencies),	an	ancestry-specific	approach	is	more	appropriate.	Here,	the	adjusted	PGS	for	

log[25(OH)D]	accounted	for	between	0.5%	and	2.1%	of	the	variance	in	the	phenotype	for	those	

of	European	ancestry	and	between	0.01%	and	4.4%	of	variance	in	the	phenotype	for	those	of	

African	ancestry.	This	performance	aligns	with	what	has	been	reported	for	PGS	R2	of	other	

complex	traits:	triglycerides	(2.3-2.8%),	LDL	(3.7-4.7%)	and	HDL	(10.1-10.5%)	(93,	94).	

Additionally,	the	full	model	accounted	for	between	8-14%	and	2.3-37%	of	the	variance	in	

log[25(OH)D]	for	those	of	European	and	African	ancestries,	respectively.	This	is	in	line	with	

what	has	been	observed	for	other	moderately	heritable	complex	blood	phenotypes.	For	

example,	the	model	R2	values	reported	for	triglycerides,	LDL	and	HDL,	are	3%,	5%	and	10%,	

respectively,	while	controlling	race	and	age	(32,	93,	94).	Additionally,	the	model	presented	here	

has	an	R2	similar	to	what	has	been	reported	in	the	literature	for	models	explaining	vitamin	D	
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concentrations	(22,	46,	95).	Of	note,	multi-ethnic	studies	have	reported	higher	model	R2	in	

African	Americans	compared	to	European	Americans	(96,	97).	

The	PGS	R2	captures	only	a	modest	portion	of	the	phenotypic	variance.	This	is	the	result	

of	many	concurrent	influences.	First,	the	PGS	did	not	include	rare	variants.	Rare	variants	(MAF	<	

0.01)	were	not	included	in	PGS	determination	as	they	were	removed	from	TRANSCEN-D	(the	

base	set).	Common	SNPs	account	for	only	a	small	proportion	of	genetic	variance	in	complex	

traits	(98).	Future	PGSs	that	include	rare	variants	will	likely	account	for	a	greater	portion	of	the	

variance.	Additionally,	the	variance	that	the	PGS	can	capture	is	limited	by	the	input	SNPs.	In	the	

best-case	scenarios	(i.e.	densest	chips),	the	overlap	between	the	TRANSCEN-D	summary	

statistics	and	the	input	dataset	was	3,520,049	and	1,026,643	SNPs,	for	African	and	European	

ancestries,	respectively.	While	over	1	million	SNPs	can	be	very	informative,	much	of	the	

genome	is	missing	(and	this	was	an	even	more	drastic	portion	for	samples	with	sparse	

genotyping,	i.e.	MESA).	Thirdly,	PRSice	implements	clumping	which	keeps	only	the	SNP	with	the	

strongest	association	for	SNPs	in	LD	(r2	>0.5	used	here)	in	any	given	500kb	window.	While	this	

prevents	SNPs	in	one	correlated	region	from	dominating	the	PGS,	it	also	reduces	the	maximum	

variability	that	could	be	captured	by	a	PGS.		

Results	from	the	determination	of	the	optimal	PGS	revealed	that	the	PGS	and	model	

explained	more	variance	in	log[25(OH)D]	in	those	of	African	ancestry	compared	to	those	of	

European	ancestry.	This	was	not	driven	by	different	distributions	in	the	outcome	or	predictor	

variables	by	ancestry	(Supplemental	Figure	14).	This	difference	could	be	the	result	of	more	

input	SNPs	for	the	African	ancestry	sample,	which	has	two	main	causes:	(1)	there	was	a	larger	

set	of	overlapping	SNPs	between	base	and	target	datasets	inputted	into	PRSice	and	(2)	the	LD	
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blocks	are	smaller	in	African	ancestry	populations,	as	expected,	leading	to	fewer	SNPs	being	

removed	via	the	clumping	procedure	in	PRSice.	Another	reason	the	PGS	and	model	R2	(from	

Table	3.3)	could	be	higher	for	those	of	African	ancestry	is	that	a	small	sample	was	used	to	

determine	the	p-value	cut-off	which	could	have	led	to	overfitting	of	the	model.	The	results	from	

the	two	larger	African-ancestry	cohorts	(MESA	and	WHI	(consent	group	2)	in	Table	3.6	support	

this;	the	PGS	and	model	R2	from	these	cohorts	are	more	in	line	with	what	is	seen	in	the	

European	ancestry.	

The	optimal	p-value	cutoff	was	noticeably	less	stringent	for	African	ancestry	compared	

to	European	ancestry	(p-value	of	0.01265	vs	0.00035).	This	is	likely	a	result	of	smaller	African	

ancestry	sample	in	the	base	dataset	(TRANSCEN-D;	8,541	African	ancestry	participants	

compared	to	16,124	European	ancestry	participants).	Small	samples	can	lead	to	reduced	power,	

larger	p-values	even	in	the	presence	of	a	true	effect,	and	noise	in	the	data,	requiring	a	more	

lenient	threshold	to	capture	the	true	positive	SNPs.		

Within	ancestries,	the	PGS	R2	differed	by	cohort.	This	is	likely	due	to	differing	sample	

sizes	and	genotyping	platforms	used	by	the	cohorts,	where	smaller	samples	and	less	dense	

genotyping	chips	had	lower	R2.	For	example,	in	the	European	ancestry,	the	WHI	sample	R2	was	

much	lower	than	the	other	cohorts;	the	WHI	cohorts	had	samples	of	79	and	376	compared	to	

1,995	(MESA)	and	6,462	(ARIC).		In	the	African-ancestry	cohorts,	the	PGS	had	poorer	and	

somewhat	disparate	performance	among	cohorts,	likely	driven	by	small	sample	sizes;	the	only	

African-ancestry	cohort	with	a	significant	p-value	was	the	largest	one	(n=572).	In	addition	to	

having	a	small	sample	size	(n=367),	the	poor	performance	in	MESA	(R2=0.05%),	is	likely	due	to	

sparse	genotyping	which	led	to	many	fewer	SNPs	post	imputation	(Supplemental	Table	1).	
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The	relationship	between	PGS	and	vitamin	D	concentrations	was	consistent	across	

ancestries	and	cohorts;	those	with	the	lowest	PGS	(most	risk)	had	lowest	vitamin	D	

concentrations.	Moving	from	the	highest	to	lowest	quantile	changed	vitamin	D	concentrations	

by	1.9-4.7	ng/ml,	a	clinically	meaningful	difference.	This	information	can	be	used	to	inform	

vitamin	D	supplementation	in	those	with	high	genetic	risk	for	vitamin	D	inadequacy.	One	study	

reported	that	for	each	additional	100	IU	of	vitamin	D	consumed,	serum	levels	increased	by	0.6	

ng/ml	(99).	Using	this	conversion,	here	we	see	that	compared	to	those	with	lowest	genetic	risk,	

those	with	highest	genetic	risk	could	require	an	additional	317	to	783	IU	of	vitamin	D.		

While	this	study	reiterates	the	importance	of	capturing	genetic	risk	using	a	PGS,	which	

can	be	used	for	clinical	predictions,	the	study	does	come	with	some	limitations.	To	maintain	

sample	independence	from	prior	GWAS	studies	and	for	Aim	3,	the	sample	size	used	in	this	

analysis	was	relatively	small,	especially	for	the	African-ancestry	cohort.	Future	PGSs	could	be	

developed	implementing	the	cross-prediction	method	developed	by	Mak	et,al	(100).	This	

method	allows	and	corrects	for	overlap	between	the	base	and	target	datasets,	which	would	

have	allowed	for	a	much	larger	African-ancestry	sample	(100).	The	sample	size	issues	

experienced	for	the	African-ancestry	cohort	emphasize	the	importance	of	obtaining	more	

diverse	samples	(i.e.	in	initiatives	like	All	of	Us).	Through	the	TRANSCEN-D	GWAS	and	the	

analysis	here,	nearly	all	of	the	publicly	available	African-ancestry	samples	have	been	exhausted	

and	sample	sizes	for	other	racial/ethnic	groups	remains	limited.	Additionally,	the	genotyping	

performed	did	not	capture	rare	variants,	limiting	the	variance	that	could	be	captured	by	the	

PGS.	However,	this	leaves	room	for	future	studies	and	replication	that	should	be	performed.	

Other	future	directions	could	include:	quantifying	differences	in	heritability	accounted	for	
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(compared	to	using	a	stringent	genome-wide	significance	threshold),	quantifying	the	heritability	

that	remains	(through	estimating	SNP	heritability),	testing	for	interactions	between	the	PGS	and	

environmental	factors	and	testing	the	relationship	between	the	vitamin	D	PGS	and	other	

phenotypes	(i.e.	colorectal	cancer	risk,	Multiple	Sclerosis,	Alzheimer’s	Disease,	etc.)	(101-103).		

	

Conclusion	 	

	 PGSs	are	a	powerful	predictive	tool.	This	study	calculated	the	most	optimal	PGS	for	

vitamin	D	concentration	that	captures	a	moderate	portion	of	the	estimated	variance	of	vitamin	

D	concentration.	Given	the	association	between	the	optimal	PGS	and	25(OH)D	concentrations,	

this	PGS	could	be	leveraged	for	personalized	vitamin	D	supplementation,	which	could	

potentially	prevent	the	negative	downstream	effects	of	vitamin	D	inadequacy.		
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Chapter	4:	Aim	Two	
	

ANCESTRY	SPECIFIC	EXPLORATION	OF	25(OH)D	

HERITABILITY	ESTIMATES	
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Abstract	

Background:	Vitamin	D	inadequacy	affects	about	50%	of	adults	in	the	United	States	and	is	
associated	with	numerous	adverse	health	outcomes.	Vitamin	D	concentrations	are	influenced	
by	genetic	factors	and	genetic	variants	may	determine	how	much	vitamin	D	intake	is	required	
to	reach	an	optimal	vitamin	D	blood	concentration.	A	first	step	towards	informed	genetic	
research	is	calculating	unbiased	and	valid	heritability	estimates	from	unrelated	samples.	
	
Methods:	Using	GCTA	v1.26,	a	total	of	8,838	participants	(7,119	European	ancestry	and	1,719	
African	ancestry)	were	leveraged	to	estimate	SNP	heritability,	heritability	stratified	by	gender	
and	available	UV	radiation,	heritability	accounted	for	by	prior	GWASs	and	heritability	accounted	
for	by	the	PGS	in	Aim	1	in	an	ancestry-specific	manner.	
	
Results:	SNP	heritability	estimates	were	higher	in	those	of	African	ancestry	(32%	vs.	22%	in	
European	ancestry)	and	in	those	with	more	available	UV	radiation	(3%	and	9%	higher	than	
those	with	low	UV	radiation	in	African	and	European	ancestry,	respectively).	The	PGS	from	Aim	
1	explains	more	heritability	than	do	SNPs	from	previous	GWAS	findings	in	European	ancestry	
(17%	vs.	7%	of	the	SNP	heritability).	
	
Discussion:	SNP	heritability	estimates	for	25(OH)D	in	unrelated	participants	of	European	
ancestry	are	on	the	low	end	of	the	range	of	estimates	from	related	individuals.	SNPs	from	
previous	GWAS	only	explain	a	small	portion	of	25(OH)D	heritability	in	those	of	African	and	
European	ancestries.	While	the	PGS	from	those	of	European	ancestry	in	Aim	1	accounts	for	a	
larger	portion	of	the	total	SNP	heritability	than	do	previous	GWAS	findings,	a	large	portion	of	
the	heritability	remains	unexplained,	promoting	the	need	for	further	investigation	into	the	
genetic	underpinnings	of	25(OH)D.	
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Background		

Vitamin	D	inadequacy,	as	defined	by	a	25-hydroxyvitamin	D	[25(OH)D]	concentration	

less	than	20	ng/mL,	affects	around	50%	of	adults	in	the	United	States	(1-3).	Low	vitamin	D	

concentrations	have	been	associated	with	increased	risk	of	autoimmune	diseases,	migraines,	

hypertension,	dyslipidemia,	cardiovascular	events,	and	cardiovascular	mortality	(1,	3-9).		

Additionally,	recent	Mendelian	randomization	studies	have	suggested	a	causal	relationship	

between	low	vitamin	D	concentrations	and	increased	risk	of	obesity,	ovarian	cancer,	

hypertension,	lower	cognitive	function,	multiple	sclerosis,	and	all	cause	and	cancer	mortality	

(10-16).	Vitamin	D	concentrations	are	influenced	by	genetic	factors	and	genetic	variants	may	

determine	how	much	vitamin	D	intake	is	required	to	reach	an	optimal	vitamin	D	blood	

concentration	(21,	22,	73,	74).	Therefore,	knowledge	of	the	genetic	determinants	of	vitamin	D	

concentrations	could	be	invaluable	in	prevention	of	vitamin	D	associated	morbidity	and	

mortality.	An	initial	step	is	to	determine	the	total	genetic	contribution	(heritability)	to	vitamin	D	

concentrations.			

Heritability	is	a	key	metric	for	understanding	the	genetic	component	of	a	phenotype.	

Heritability,	technically	defined,	is	the	proportion	of	phenotypic	variance	that	is	explained	by	

genetic	variance,	where	phenotypic	variance	includes	genetic	and	environmental	variance	(40).	

Classically,	heritability	of	vitamin	D	concentrations	has	been	calculated	using	related	individuals	

where	the	proportion	of	shared	genotypes	is	estimated	based	on	familial	relationship	(41).	

However,	this	approach	tends	to	overestimate	heritability	due	to	attributing	shared	

environment	of	the	related	individuals	to	heritability.	Current	estimates	of	heritability	of	

vitamin	D	concentrations	in	related	individuals	are	between	20-40%	(1,	22,	25).	Most	of	the	
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heritability	estimates	to	date	have	been	calculated	in	populations	of	European	ancestry.	There	

have	been	two	studies	that	reported	25(OH)D	heritability	in	African	ancestry.	Engelman,	et	al.	

reported	a	heritability	in	513	related	samples	to	be	28%	(31).	Hansen,	et	al,	reported	25(OH)D	

heritability	to	be	23%	in	2,087	unrelated,	older	African	Americans	(95).		

The	heritability	of	vitamin	D	concentration	has	been	reported	to	vary	by	gender	and	

exposure	to	UV	radiation	(often	categorized	as	‘season’),	but	no	consensus	has	been	reached	

(23,	24,	26).	Additionally,	these	estimates	come	from	related	individuals	without	sufficient	

control	for	environmental	exposures.		

Although	there	is	a	void	in	overall	and	stratified	ancestry-specific	25(OH)D	heritability	

estimates	in	unrelated	participants,	there	has	been	other	genetic	research	regarding	25(OH)D.	

Several	studies	have	uncovered	vitamin	D	associated	single	nucleotide	polymorphisms	(SNPs)	

(1,	28,	31).	To	date,	a	handful	of	vitamin	D	genes	have	been	discovered	through	published	

genome-wide	association	studies	(GWAS)	in	those	of	European	or	African	ancestry;	these	genes	

include:	AMDHD1,	ANO6/ARID2,	CYP2R1,	CPY24A1,	DHCR7,	GC,	HTR2A,	KIF4B,	and	SEC23A	(1,	

25,	28,	31).	It	is	estimated	that	a	subset	of	these	genes	capture	2.8%	of	the	variance	in	25(OH)D	

concentrations	(1).		

To	better	tease	apart	the	underlying	genetics	of	25(OH)D,	SNP	heritability	of	vitamin	D	

concentration	was	calculated	in	samples	of	unrelated	individuals	of	European	or	African	

ancestry	using	Genome-wide	Complex	Trait	Analysis	(GCTA).		Gender-specific	heritability	

differences	were	investigated	while	controlling	for	available	UV	radiation	and	vitamin	D	intake,	

the	two	strongest	environmental	influencers	of	25(OH)D	concentrations,	to	remove	variability	

in	25(OH)D	explained	by	these	environmental	factors	and	avoid	overestimating	heritability.	
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Heritability	estimates	for	25(OH)D	were	also	stratified	by	ancestry-specific	median	level	of	

available	UV	radiation,	a	more	precise	measurement	of	sun	exposure	than	the	categorical	

variable	‘season’,	while	controlling	for	dietary	vitamin	D	intake.	Where	sample	size	allowed,	

GCTA	was	used	to	independently	calculate	the	heritability	explained	by	genome-wide	

significant	SNPs	from	recent	GWAS	meta-analyses,	and	(separately)	the	polygenic	score	(PGS)	

from	Aim	1,	in	European-	and	African-ancestry	populations.		

	

Methods	
	

Participants	

SNP	heritability	estimates	were	calculated	using	eligible	participants	of	either	European	

or	African	ancestry	from	the	Atherosclerosis	in	Communities	Study	(ARIC)	obtained	through	

dbGaP	Study	Accession:	phs000090.v4.p1.	ARIC	includes	15,792	participants,	of	which	8,838	

have	data	required	for	this	analysis:	genome-wide	data,	serum	vitamin	D,	age,	sex,	BMI,	month	

of	blood	draw	and	dietary	intake.	Serum	vitamin	D	concentration	was	measured	using	tandem	

mass	spectrometry	(MS/MS;	Quest	Labs).	Of	these	8,838	participants	7,119	are	of	European	

ancestry	and	1,719	are	of	African	ancestry.	ARIC	is	a	prospective	epidemiologic	study	conducted	

at	four	sites:	Wake	Forest	Baptist	Medical	Center,	Winston-Salem,	NC;	University	of	Mississippi	

Medical	Center,	Jackson,	MS;	University	of	Minnesota,	Minneapolis,	MN;	Johns	Hopkins	

University,	Baltimore,	MD.	Serum	vitamin	D	was	measured	at	ARIC	visit	2	(1990-1992).	IRB	

approval	and	consent	were	obtained	at	each	respective	study	site.	Additionally,	separate	IRB	

approval	was	obtained	for	this	specific	study.	
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Data	Quality	Control	

Genotyping	methods	are	described	elsewhere	(81).	Supplemental	Table	1	gives	

information	on	the	original	genotyping	platforms	and	SNP	panels	used.	Quality	control	(QC)	was	

done	in	an	ancestry-specific	manner	for	those	of	European	and	African	ancestry.	Ancestry	was	

determined	by	self-report	and	confirmed	with	principal	components	analysis	with	1000	

genomes	populations	serving	as	anchoring	populations	(Supplemental	Figures	3-4).	In	summary,	

QC	for	each	cohort	removed:	sex	mismatches,	samples	and	SNPs	with	high	missingness	(>5%),	

SNPs	with	low	minor	allele	frequency	(MAF<0.2%),	and	SNPs	out	of	Hardy-Weinberg	

equilibrium	(p<0.05/number	of	SNPs;	Bonferroni	adjusted	cut-off).	Datasets	were	then	imputed	

using	the	Michigan	Imputation	Server	(56,	58).	European	samples	were	imputed	to	the	

Haplotype	Reference	Consortium	(HRC)	and	African	samples	were	imputed	to	the	Consortium	

on	Asthma	among	African-ancestry	Populations	in	the	Americas	(CAAPA)	(58,	86).	Post	

imputation	QC	included:	removing	SNPs	with	a	low-quality	score	(<0.8)	or	MAF	(<0.1%).	

Additionally,	sample	and	SNP	level	missingness	as	well	as	HWE	cutoffs	were	rechecked.	

Supplemental	Figures	3-4	and	10-11,	and	Supplemental	Table	1	give	specifics	on	quality	control	

for	each	cohort.	QC	was	performed	using	PLINK	v1.9	and	vcfTools	(87,	88).		

	

SNP	Heritability	Estimation	

	 SNP	heritability	estimates	were	calculated	using	GCTA	v1.26	(43).	GCTA	calculates	SNP	

heritability	as	the	proportion	of	phenotypic	variance	jointly	explained	by	additive	effects	of	a	

set	of	SNPs.	All	inputted	SNPs	are	simultaneously	fit	as	random	effects	in	a	linear	mixed	model	

(61).	GCTA	uses	genomic-relatedness-based	restricted	maximum-likelihood	(GREML),	similar	to	
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restricted	maximum	likelihood	analysis	(REML)	and	relies	on	the	genetic	relationship	matrix	

(GRM)	based	on	SNPs	from	unrelated	samples	(35,	62).	Heritability	was	estimated	several	ways:	

(1)	SNP	heritability	by	ancestry,	(2)	ancestry-specific	SNP	heritability	by	gender,	(3)	ancestry-

specific	SNP	heritability	stratified	by	ancestry-specific	median	level	of	available	UV	radiation,	(4)	

ancestry-specific	SNP	heritability	of	the	PGS	computed	in	Aim	1	(where	sample	size	allowed)	

and	(5)	ancestry-specific	SNP	heritability	of	previous	GWAS	findings.	In	each	case,	the	model	

was	adjusted	for	age,	sex,	BMI,	available	UV	radiation	and	dietary	vitamin	D	intake.	In	

determination	of	the	final	model,	models	with	and	without	dietary	vitamin	D	intake	were	

utilized	(Supplemental	Figures	15-16).	Models	without	dietary	intake	tended	to	overestimate	

SNP	heritability	of	vitamin	D	concentrations,	particularly	in	the	smaller	sample	(those	of	African	

ancestry).	Therefore,	all	models	used	in	Aim	2	were	adjusted	for	dietary	vitamin	D	intake.	

	 SNP	heritability	and	stratified	SNP	heritability	estimates	were	calculated	using	all	

genotyped	and	imputed	SNPs	for	both	the	European-	and	African-ancestry	populations	from	

ARIC;	this	was	8,315,761	and	9,335,785	SNPS,	respectively.	Extending	from	the	methods	used	

by	the	SUNLIGHT	consortium,	to	estimate	heritability	captured	by	the	PGS	calculated	in	Aim	1,	

heritability	was	calculated	two	times;	once	using	the	clumped	set	of	SNPs	used	to	determine	

the	PGS	from	Aim	1	(228,867	SNPs	for	European	ancestry	and	850,697	for	African	ancestry)	and	

a	second	time	removing	the	PGS	SNPs	from	the	clumped	set	of	SNPs	(228,526	SNPs	for	

European	ancestry	and	818,428	for	African	ancestry).	The	difference	in	heritability	estimates	

between	these	two	models	was	then	the	heritability	attributed	to	the	PGS	(25).	Heritability	

could	not	be	directly	calculated	from	the	SNPs	in	the	PGS	because	one	of	the	assumptions	

made	by	the	GCTA	modeling	is	an	average	null	effect	of	the	SNPs	on	the	outcome.	Of	note,	the	
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African	ancestry	sample	size	was	too	small	for	this	analysis	to	be	valid,	so	heritability	attributed	

to	the	PGS	was	only	calculated	in	those	of	European	ancestry.	In	discerning	the	heritability	

captured	by	previous	GWAS	studies,	heritability	was	calculated	using	a	reduced	set	of	SNPs:	the	

full	genotyped	and	imputed	set	with	top	GWAS	findings	(and	SNPs	in	the	surrounding	LD	block)	

removed	(25,	104).	The	difference	between	this	estimate	and	the	overall	heritability	estimates	

was	then	the	heritability	attributed	to	previous	GWAS	findings	(25).	Top	SNPs	in	GC,	CYP2R1,	

CYP24A1	and	DHCR7/NADSYN1	and	SNPs	in	LD	with	these	SNPs	were	removed	(1,	27,	28).	This	

was	done	separately	for	European	and	African	ancestry	samples.	Additionally,	a	second	

heritability	estimate	was	calculated	that	included	recent	novel	findings.	This	included	SNPs	from	

AMDHD1	and	SEC23A	in	those	of	European	ancestry	and	SNPs	from	KIF4B,	HTR2A	and	

ANO6/ARID2	in	those	of	African	ancestry	(25,	27).	Table	4.1	summarizes	the	SNPs	and	LD	blocks	

removed	in	each	scenario.	LD	block	size	was	determined	using	the	Plots	mode	of	the	SNAP	tool	

by	the	Broad	(104).	Of	note,	two	SNPS	(rs79666294	and	rs6013897)	were	not	found	in	the	ARIC	

African	ancestry	imputed	data.	For	SNP	rs79666294,	using	the	RAGGR	tool	by	USC,	SNP	

rs17570361	was	found	to	be	a	good	proxy	(r2	0.94).	In	the	African-ancestry	data,	there	was	no	

proxy	for	rs6013897,	so	SNPs	within	the	LD	block	of	its	position	(52742479)	were	removed.	All	

models	were	fit	separately	for	European-	and	African-ancestry	samples.	T-tests	for	significant	

differences	were	performed	using	GraphPad	Software,	La	Jolla,	California,	USA.			
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Table	4.1:	Previous	GWAS	SNPs	

SNP	ID	 Chromosome	 Position
c
	 Gene	

EU	LD	block	

size	

AFA	LD	block	

size	

rs2282679	 4	 72608383	 GC	 1200	kb	 2	kb	
rs79666294	 5	 155047146	 KIF4B	 NAa	 200	kb	
rs10741657	 11	 14893332	 CYP2R1	 480	kb	 300	kb	
rs12785878	 11	 71456403	 NADSYN1/DHCR7	 120	kb	 84	kb	
rs719700	 12	 45635426	 ANO6/ARID2	 NAa	 2	kb	
rs10745742	 12	 95964751	 AMDHD1	 50	kb	 NAb	
rs1410656	 13	 46968386	 HTR2A	 NAa	 28	kb	
rs8018720	 14	 39086981	 SEC23A	 180	kb	 NAb	
rs6013897	 20	 54125940	 CYP24A1	 10	kb	 4	kb	
aNovel	African	ancestry	SNP	
bNovel	European	ancestry	SNP	
cBuild	37	
	
	
	
Results	
	

Participant	characteristics	are	summarized	in	Tables	4.2.	Table	4.3	and	Figure	4.1	show	

the	overall	SNP	heritability	estimates	by	ancestry,	as	well	as	SNP	heritability	estimates	stratified	

by	gender	or	ancestry-specific	median	of	available	UV	radiation,	within	ancestry.	Generally,	SNP	

heritability	is	higher	in	the	African-ancestry	cohort	compared	to	the	European-ancestry	cohort,	

though	not	significantly	different.	This	can	be	seen	in	the	overall	estimate	(32%	vs	22%;	p=0.49)	

as	well	as	in	each	of	the	stratified	estimates.	While	not	significant,	when	stratified	by	gender,	

males,	compared	to	females,	demonstrate	higher	SNP	heritability	in	those	of	European	ancestry	

(36%	vs	26%;	p=0.47),	but	the	opposite	is	true	in	those	of	African	ancestry	(37%	vs	46%;	

p=0.86).	When	stratified	by	available	UV	radiation,	heritability	is	higher	in	those	of	European	

ancestry	with	more	available	UV	radiation	(24%	vs	15%	those	with	lower	UV	radiation;	p=0.51);	

in	those	of	African	ancestry,	heritability	is	similar	regardless	of	the	available	UV	radiation.		
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Table	4.2	Participant	characteristics	
	

	

	

	

	

	

	

Table	4.3:	Overall	SNP	heritability	by	race	and	stratified	by	gender	and	median	available	UV	
radiation	
	

	

	

	

	

	

	

	

	

	

	

	

aModel	controlled	for:	age	+	sex	+	BMI	+available	UV	radiation	+	vitamin	D	intake	
bAvailable	UV	radiation	was	stratified	by	ancestry-specific	median	level	

	
 
 
 
 
 
 
 
 
 
 
 

Cohort	 Variable	 European-ancestry	 African-ancestry	

ARIC	

Sample	size	 7,119	 1,719	
Age	[	years]	 57.1	(5.7)	 56.4	(5.8)	
BMI	[kg/m

2
]	 27.3	(4.8)	 30.2	(6.2)	

UV	[units]	 5.0	(2.5)	 6.9	(2.3)	
Intake	[IU]	 222.8	(144.4)	 215.7	(150.3)	

25(OH)D	[ng/ml]	 25.9	(8.8)	 19.1	(7.1)	

Ancestry	 Partition	 Sample	Size	 Heritability	(SE)	

European	 Overall	 7,119	 22%	(5.2)	
Males	 3,301	 36%	(11.4)	
Females	 3,818	 26%	(9.3)	
Low	UV	(<4.85)

b
	 3,689	 15%	(9.4)	

High	UV	(>4.85)
b
	 3,430	 24%	(10.0)	

African	 Overall	 1,719	 32%	(17.8)	
Males	 635	 37%	(38.1)	
Females	 1,084	 46%	(30.4)	
Low	UV	(<8.1)

b
	 910	 43%	(30.9)	

High	UV	(>8.1)
b
	 809	 47%	(39.3)	
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Figure	4.1:	Overall	SNP	heritability	by	race	and	stratified	by	gender	and	median	available	UV	
radiation	

	

	
Figure	4.1	shows	SNP	heritability	stratified	by	ancestry,	gender	and	available	UV	radiation.	In	general,	
those	of	African	ancestry	or	who	have	high	available	UV	radiation	are	shown	to	have	higher	heritability,	
although	not	statistically	significant	(p=0.49	(African	vs	European	ancestry),	p=0.95	(high	vs	low	UV	
within	African	ancestry)	and	p=0.50	(high	vs	low	UV	within	European	ancestry).		
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Figure	4.2	shows	ancestry-specific	SNP	heritability	estimates	for	all	the	SNPs,	SNPs	in	the	

PGS	computed	in	Aim	1	and	SNPs	discovered	in	previous	GWAS	studies	(1,	27,	28).	In	those	of	

European	ancestry,	the	PGS	from	Aim	1	accounts	for	17.1%	(3.7/21.6*100)	of	the	SNP	

heritability	of	25(OH)D	concentrations	and	previous	replicated	GWAS	study	findings	(this	

includes	SNPs	from	CYP2R1,	CYP24A1,	DHCR7/NADSYN1	and	GC)	account	for	6.9%	

(1.5/21.6*100)	of	the	total	SNP	heritability	(1,	27,	28).	In	those	of	African	ancestry,	these	same	

top	GWAS	findings	accounted	for	only	1.6%	(0.5/32.2*100)	of	the	total	SNP	heritability.	

Heritability	accounted	for	remained	unchanged	when	ancestry-specific	novel	findings	were	

included	in	the	heritability	estimations	(1,	25,	27,	28).	African-ancestry	sample	size	was	too	

small	to	calculate	heritability	accounted	for	by	the	PGS	in	Aim	1.		

	

Figure	4.2:	SNP	Heritability	explained	by	all	SNPs	(overall),	the	PGS	or	previous	GWAS	findings	
	

	
Figure	4.2	shows	overall	SNP	heritability	by	ancestry	as	well	as	the	heritability	explained	by	the	PGS	from	
Aim	1	(European	ancestry	only)	and	by	top	GWAS	findings.	As	shown	here,	the	PGS	from	Aim	1	explains	
only	a	fraction	of	the	total	SNP	heritability,	but	explains	more	heritability	than	top	GWAS	findings	do	in	
those	of	European	ancestry.		
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Discussion	

Vitamin	D	concentration	[25(OH)D]	is	a	complex	trait	with	environmental	and	genetic	

predictors.	A	first	step	in	discerning	the	genetic	underpinnings	of	25(OH)D	is	to	have	unbiased	

heritability	estimates	in	non-related	participants.	Here,	heritability	of	25(OH)D	was	discerned	in	

non-related	participants	of	African	or	European	ancestry	and	was	investigated	by	participant	

gender	and	level	of	available	UV	radiation.	Additionally,	heritability	accounted	for	by	GWAS	

findings	to	date	and	a	more	comprehensive	PGS	was	quantified,	revealing	that	the	PGS	captures	

more	of	the	genetic	underpinnings	than	do	GWAS	findings.		

The	heritability	estimates	for	those	of	European	ancestry	fall	into	the	low	range	of	

estimates	calculated	by	prior	family-based	studies	(20-40%),	whereas	estimates	for	those	of	

African	ancestry	are	slightly	higher	than	the	estimate	reported	by	Engelman,	et	al.	(32%	vs	28%)	

(1,	22).	In	regards	to	heritability	estimates	in	unrelated	samples,	estimates	presented	here	for	

those	of	African	ancestry,	are	higher	than	those	reported	by	Hansen,	et	al,	in	a	sample	of	

elderly	African	Americans	(32%	vs	23%)	(95).	These	estimates	build	off	what	was	reported	by	

Hansen,	et	al,	adding	stratified	estimates	and	including	a	wider	age	range	of	adult	participants.	

However,	small	sample	size	(N=1,719,	compared	to	N=2,087	in	Hansen,	et	al.)	could	be	biasing	

these	estimates	upward,	therefore	further	study	with	larger	samples	is	recommended.		

	 When	stratified	by	gender,	in	those	of	European	ancestry	males	had	higher	heritably	

than	females	and	in	those	of	African	ancestry,	females	had	higher	heritability	than	did	males,	

although	neither	of	these	differences	were	statistically	significant.	Several	studies	have	

reported	higher	heritability	in	men	(specifically	in	men	of	European	or	Asian	ancestry),	while	

reports	of	higher	heritability	in	women	are	novel	(24-26).		
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Differences	in	heritability	by	season	have	been	reported	by	a	handful	studies	in	

participants	of	European	or	Asian	ancestry	(23,	24,	26).	There	is	mixed	evidence	on	whether	

heritability	of	25(OH)D	concentrations	are	is	higher	in	the	summer	or	winter;	studies	from	

China	and	the	United	States	report	higher	heritability	in	winter,	while	a	study	from	Sweden	

reports	higher	heritability	in	the	summer	(23,	24,	26).		However,	none	of	the	studies	controlled	

for	a	full	set	of	crucial	confounders.	The	Chinese	study	did	not	control	for	vitamin	D	intake	or	

BMI;	the	United	States	study	did	not	control	for	age,	sex	or	vitamin	D	intake;	the	Swedish	study	

did	not	control	for	sex	or	BMI.	Of	note,	the	Swedish	study	was	the	only	study	to	perform	

analyses	controlling	for	vitamin	D	supplement	use.	Here,	when	stratified	by	available	UV	

radiation,	those	of	European	ancestry	with	lower	available	UV	radiation	had	lower	heritability	

than	those	with	higher	available	UV	radiation;	this	aligns	with	what	was	reported	by	the	

Swedish	study.	In	those	of	African	ancestry,	those	with	high	and	low	available	UV	radiation	had	

similar	heritability	of	25(OH)D.	Given	that	those	of	African	ancestry	have	darker	skin,	which	

absorbs	less	UV	from	the	sun’s	rays,	it	makes	sense	that	heritability	levels	were	similar	for	both	

strata	of	available	UV	radiation.	

Oftentimes,	as	shown	in	Figure	4.1,	the	stratified	estimates	were	higher	than	the	overall	

estimates.	Stratified	models	better	account	for	the	difference	in	variances	of	certain	covariates	

by	the	stratified	variable	(i.e.	BMI	and	sex),	which	are	not	fully	adjusted	for	in	the	non-stratified	

model	(61).	Additionally,	stratified	samples	are	smaller	which	creates	nosier	and	perhaps	

inflated	estimates.			

	 The	PGS	explained	more	of	the	SNP	heritability	than	did	previous	GWAS	findings,	17.1%	

compared	to	6.9%	in	those	of	European	ancestry	(sample	size	was	too	small	for	PGS	heritability	
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calculations	in	those	of	African	ancestry).	However,	neither	the	PGS	nor	previous	GWAS	findings	

explain	a	large	portion	of	total	SNP	heritability,	promoting	the	need	for	genetic	studies	with	

larger	samples	sizes	and	more	dense	SNP	data	that	includes	low	frequency	variants	to	fully	

understand	the	genetic	determinants	of	vitamin	D	concentrations	and,	therefore,	inform	the	

most	effective	vitamin	D	supplementation	practices.	Of	note,	the	estimate	of	heritability	

explained	by	previous	GWAS	findings	presented	here	(1.5%)	is	less	than	the	estimate	presented	

by	the	SUNLIGHT	consortium	(2.8%)	(105).This	could	be	due	to	the	fact	that	SUNLIGHT	included	

all	SNPs	within	+/-	500kb	of	the	top	GWAS	findings,	whereas	here,	smaller,	more	precise	LD	

blocks	surrounding	the	top	GWAS	SNP	were	removed	(104).	In	those	of	European	ancestry,	the	

25(OH)D	heritability	estimate	for	the	PGS	was	3.7%.	As	hypothesized,	this	is	more	than	the	

heritability	that	the	top	6	GWAS	findings	and	LD	blocks	account	for	as	reported	by	the	

SUNLIGHT	consortium	(2.8%)	and	as	reported	here	(1.5%)	(25).	

	 This	study	contributes	in-depth	investigation	into	25(OH)D	heritability	by	ancestry,	

gender,	available	UV	radiation,	PGS	and	GWAS	findings;	adding	important	multi-ethnic	research	

that	teases	apart	genetic	underpinnings	of	25(OH)D	concentrations	to	the	literature.	However,	

it	is	not	without	limitations.	While	GCTA	allows	for	the	calculation	of	heritability	in	unrelated	

participants,	which	avoids	overestimation	due	to	shared	environment,	it	only	accounts	for	

additive	SNP	effects,	potentially	underestimating	total	heritability	which	also	could	include	

gene-by-gene	and	gene-by-environment	interactions.	Additionally,	GCTA	assumes	SNPs	are	in	

linkage	equilibrium	which	could	lead	to	biased	estimates	and/or	standard	errors.	While	

adjusting	for	available	UV	radiation	is	more	precise	than	season,	it	is	not	a	perfect	proxy	for	

actual	UV	radiation	based	on	time	spent	outside.	This	study	adds	important	investigation	into	
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25(OH)D	heritability	of	those	of	African	ancestry,	a	group	with	very	high	prevalence	of	vitamin	

D	inadequacy.	The	sample	of	African	Americans	utilized	is	relatively	large,	however,	the	sample	

size	is	limited	due	to	a	lower	proportion	of	GWAS	data	from	African	Americans,	which	could	

have	led	to	biased	estimates	produced	by	GCTA,	promoting	the	need	for	further	study	(30).	

	

Conclusion		
	
	 As	expected,	SNP	heritability	estimates	for	25(OH)D	in	unrelated	participants	of	

European	ancestry	are	on	the	low	end	of	the	estimates	from	related	individuals.	Additionally,	

findings	from	previous	GWAS	only	explain	a	small	portion	of	25(OH)D	concentration	heritability	

(5-7%)	in	those	of	African	and	European	ancestries.	While	the	PGS	from	those	of	European	

ancestry	in	Aim	1	accounts	for	a	larger	portion	of	the	total	SNP	heritability	(17%),	a	large	

portion	of	the	heritability	remains	unexplained,	promoting	the	need	for	further	investigation	

into	the	genetic	underpinnings	of	25(OH)D.	
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Chapter	5:	Aim	Three	
		

MULTI-ETHNIC	ANALYSIS	SHOWS	GENETIC	RISK	AND	

ENIVRONMENTAL	PREDCITORS	INTERACT	TO	

INFLUENCE	25(OH)D	CONCENTRATION	AND	OPTIMAL	

VITAMIN	D	INTAKE	
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Multi-ethnic	analysis	shows	genetic	risk	and	environmental	predictors	interact	to	influence	

25(OH)D	concentration	and	optimal	vitamin	D	intake	
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Abstract	
	
Background:	Vitamin	D	inadequacy	affects	almost	50%	of	adults	in	the	United	States	and	is	
associated	with	numerous	adverse	health	effects.	Vitamin	D	concentration	[25(OH)D]	is	a	
complex	trait	with	strong	genetic	and	environmental	predictors	that	work	in	tandem	to	
influence	25(OH)D	and	may	determine	how	much	vitamin	D	intake	is	required	to	reach	an	
optimal	25(OH)D	concentration.	To	date,	there	has	been	little	investigation	into	how	genetics	
and	environment	interact	to	affect	25(OH)D.	
	
Objective:	Interactions	between	a	polygenic	score	(PGS)	and	vitamin	D	intake	(PGS*intake)	or	
available	ultra-violet	(UV)	radiation	(PGS*UV)	were	evaluated	in	individuals	of	African	or	
European	ancestry.	
	
Methods:	Mega-analyses	were	performed	using	three	independent	cohorts	(N=9,668;	African	
ancestry	n=1,099;	European	ancestry	n=8,569).	One-degree	of	freedom	(DF)	and	2-DF	models	
were	used	to	test	for	interaction.	All	models	controlled	for	age,	sex,	body	mass	index	(BMI),	
cohort	and	dietary	intake/available	UV.	Additionally,	in	participants	achieving	Institute	of	
Medicine	(IOM)	vitamin	D	intake	recommendations,	25(OH)D	was	evaluated	by	level	of	genetic	
risk.		
	
Results:	The	2-DF	PGS*intake,	1-DF	PGS*UV	and	2-DF	PGS*UV	models	were	statistically	
significant	in	participants	of	European	ancestry	(p=3.3x10-18,	2.1x10-2	and	2.4x10-19,	
respectively),	but	not	in	those	of	African	ancestry.	In	European-ancestry	participants	who	
reached	IOM	vitamin	D	intake	guidelines,	the	percent	of	participants	achieving	adequate	
25(OH)D	increased	as	genetic	risk	decreased	(71.7%	vs	89.0%	in	the	highest	vs	lowest	risk	
categories;	p=0.018).	
	
Conclusions:	Available	UV	radiation	and	vitamin	D	intake	interact	with	genetics	to	influence	
25(OH)D.	Individuals	with	higher	genetic	risk	may	require	more	vitamin	D	exposure	to	maintain	
optimal	25(OH)D	concentrations.	Overall,	the	results	showcase	the	importance	of	incorporating	
both	environmental	and	genetic	factors	into	analyses,	as	well	as	the	potential	for	gene-
environment	interactions	to	inform	personalized	dosing	of	vitamin	D.	
	
Keywords:	Gene-environment	interaction,	ancestry-specific,	vitamin	D,	diet,	polygenic	risk	
score,	African,	European	
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Introduction	
	

Vitamin	D	inadequacy,	as	defined	by	a	25-hydroxyvitamin	D	[25(OH)D]	concentration	

less	than	20	ng/mL,	affects	almost	50%	of	adults	in	the	United	States	(1-3).	Low	vitamin	D	

concentrations	have	been	associated	with	increased	risk	of	autoimmune	diseases,	migraines,	

hypertension,	dyslipidemia,	cardiovascular	events,	and	cardiovascular	mortality	(1,	3-9).		

Additionally,	recent	Mendelian	randomization	studies	have	suggested	a	causal	relationship	

between	low	vitamin	D	concentrations	and	increased	risk	of	obesity,	ovarian	cancer,	

hypertension,	lower	cognitive	function,	multiple	sclerosis,	and	all	cause	and	cancer	mortality	

(10-16).	Recent	results	from	the	Vitamin	D	and	Omega-3	trial	(VITAL)	showed	null	associations	

between	vitamin	D	supplementation	and	both	cancer	and	cardiovascular	disease,	however,	

study	design,	including	supplementation	in	individuals	with	adequate	25(OH)D	concentrations,	

limits	the	interpretability	of	these	findings	(70).		

Vitamin	D	concentration	is	a	complex	phenotype	with	genetic	and	environmental	

predictors	that	may	determine	how	much	vitamin	D	intake	is	required	to	reach	an	optimal	

vitamin	D	blood	concentration	(21,	22,	73,	74).	Primary	environmental	predictors	of	25(OH)D	

concentrations	are	vitamin	D	intake	through	diet	and	supplementation,	and	available	ultraviolet	

(UV)	radiation	exposure.	Therefore,	knowledge	of	how	genetic	determinants	of	vitamin	D	

concentrations	interact	with	environmental	predictors	could	be	useful	in	the	prevention	of	

vitamin	D	associated	morbidity	and	mortality.	Understanding	gene-by-environment	interactions	

and	how	they	affect	25(OH)D	concentrations	could	be	leveraged	for	downstream	personalized	

supplementation	for	maintaining	adequate	vitamin	D	concentrations	through	a	precision	public	

health	approach.	
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While	attention	has	been	paid	to	genetic	determinants	of	vitamin	D	concentration	

through	genome-wide	association	studies	(GWAS)	and,	separately,	to	the	environmental	

determinants,	much	less	research	has	focused	on	how	environmental	factors	interact	with	

genetic	factors.	Investigating	the	effects	of	genetic	or	environmental	predictors	in	isolation	may	

miss	much	of	the	variance	in	25(OH)D.	Through	GWAS,	only	2.8%	of	the	variance	in	25(OH)D	

can	be	explained	(25).	Research	has	found	that	vitamin	D	intake	through	diet	and	supplement	

use	accounts	for	1-8%	of	the	variation	in	vitamin	D	concentrations	between	individuals,	and	

that	sun	exposure	accounts	for	1-15%	of	the	variation	(21,	45-47).	One	study	in	European	

ancestry	women	reported	an	interaction	between	two	GC	SNPs	(the	GC	protein	product	

transports	the	vitamin	D	metabolites	in	the	blood)	and	both	vitamin	D	intake	and	sun	exposure,	

where	the	genetic	effect	was	stronger,	with	more	variance	explained,	in	summer	and	in	those	

with	a	higher	intake	of	vitamin	D	(21).	This	same	study	reported	preliminary	evidence	of	

differing	genetic	effect	of	a	PGS	(polygenic	score),	comprised	of	two	SNPs,	by	level	of	vitamin	D	

intake	and	season	(21).	Therefore,	it	is	important	to	investigate	gene-environment	interactions	

as	the	risk	inferred	by	genetic	or	environmental	factors	alone	is	not	enough	to	predict	risk	of	

inadequate	vitamin	D	concentrations.		

Here,	the	interactions	between	a	polygenic	score	(PGS;	Hatchell,	et,	al,	submitted)	and	

vitamin	D	intake	or	available	UV	radiation	will	be	tested	using	linear	models	in	individuals	of	

African	or	European	ancestry.	Additionally,	to	replicate	findings	from	a	previous	study	(21),	in	

participants	achieving	Institute	of	Medicine	(IOM)	vitamin	D	intake	guidelines,	the	percent	

reaching	adequate	(>20	ng/ml)	25(OH)D	concentrations,	stratified	by	level	of	genetic	risk,	will	
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be	determined.	These	results	could	help	inform	screening	and	treatment	of	vitamin	D	

inadequacy	based	on	genetic	and	environmental	factors.	

	
 
Methods	

		

Participants		

	 Analyses	were	performed	in	a	sample	of	8,569	participants	of	primarily	European	

ancestry	and	1,099	participants	of	primarily	African	ancestry	who	had	data	for	the	required	

variables:	age,	sex,	body	mass	index	(BMI),	dietary	intake	of	vitamin	D,	available	UV	radiation	

and	genome-wide	single	nucleotide	polymorphisms	(SNPs).	Participants	were	from	

Atherosclerosis	Risk	in	Communities	(ARIC),	the	Multi-ethnic	Study	of	Atherosclerosis	(MESA)	

and	the	Women’s	Health	Initiative	(WHI),	and	are	independent	of	the	GWAS	meta-analysis,	

TRANS-ethniC	Evaluation	of	vitamiN	D,	TRANSCEN-D,	that	provided	the	summary	statistics	used	

to	calculate	the	PGS	(52).	ARIC	is	a	prospective	study	of	men	and	women	ages	46-70	years.	

Participants	are	recruited	in	Forsyth,	NC,	Jackson,	MS,	Minneapolis,	MN	and	Washington	

County,	MD.	Serum	vitamin	D	was	measured	for	particular	ancillary	studies	of	ARIC	at	visit	2	

(1990-1992).	ARIC	data	were	obtained	through	dbGaP	Study	Accession:	phs000090.v4.p1.	

MESA	is	a	prospective	study	of	men	and	women	ages	44-84	who	were	recruited	from	Columbia	

University,	New	York,	NY;	Johns	Hopkins	University,	Baltimore,	MD;		Northwestern	University,	

Chicago,	IL;	University	of	Minnesota,	Minneapolis,	MN;	University	of	California	at	Los	Angeles,	

Los	Angeles,	CA	and	Wake	Forest	University,	Winston-Salem,	NC.	Serum	vitamin	D	was	

measured	at	MESA	exam	1	(July	2000-August	2002).	MESA	data	were	obtained	through	dbGaP	
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Study	Accession:	phs000209.v13.p3.		Women	participating	in	WHI	were	recruited	from	40	

clinical	centers	in	the	United	States.	Serum	25(OH)D	was	measured	as	part	of	the	Calcium	and	

Vitamin	D	(CaD)	Trial	(80).	WHI	data	were	obtained	through	dbGaP	Study	Accession:	

phs000200.v11.p3.	The	data	used	in	these	analyses	were	collected	under	guidelines	from	the	

relevant	institutional	review	boards	and	all	participants	provided	informed	consent,	including	

consent	for	use	of	genetic	data.		

	

Calculation	of	available	UV	radiation	

Available	UV	radiation	was	calculated	based	on	participant	month	of	blood	draw	and	

location.	Participants	were	assigned	continuous	available	UV	radiation	values	that	were	an	

average	of	the	UV-index	for	the	relevant	exposure	period:	the	month	prior	to	blood	draw.	UV	

data	were	obtained	from	the	National	Weather	Service	Climate	Prediction	Center	historical	

database;	the	UV	radiation	values	ranged	from	0.7	to	9.5	UV	index	units.	The	methods	are	

described	in	more	detail	elsewhere	(Hatchell,	et,	al,	submitted).	

	

Measurement	of	25(OH)D	
	

Serum	25(OH)D	concentrations	were	measured	by	the	studies	using	different	assays.	

WHI	used	the	DiaSorin	LIASON	chemiluminescence,	MESA	used	liquid	chromatography-mass	

spectrometry	(LCMS)	and	ARIC	used	tandem	mass	spectrometry	(MS/MS;	Quest	Labs).	To	

control	for	differences	in	vitamin	D	concentrations	due	to	different	assays,	vitamin	D	

concentrations	were	converted	to	z-scores	within	studies	for	combined	analyses.		
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Data	Quality	Control	

Quality	control	of	phenotypic	data	included	winsorizing	25(OH)D	in	the	MESA	and	WHI	

samples	to	minimize	the	influence	of	outliers	(53).	In	the	WHI	sample,	participants	with	

25(OH)D	values	far	above	the	maximum	level	of	detection	(150	ng/mL),	none	of	which	had	

extreme	vitamin	D	intake	or	sun	exposure,	were	removed	from	the	sample;	this	included	68	

participants	of	European	ancestry	and	119	participants	of	African	ancestry.	All	25(OH)D	values	

were	normalized	by	cohort	to	account	for	the	different	assays	utilized.	

Where	available,	physical	activity	was	measured	in	metabolic	equivalent	(MET)	hours	

per	week.	Physical	activity	was	capped	at	16	MET	hours/day	or	112	MET	hours/week.	

Additionally,	physical	activity	data	were	normalized	by	cohort	to	account	for	the	different	

surveys	utilized	to	acquire	the	data.	

	

Genotyping	and	PGS	Development		

Genotyping	methods	are	described	in	publications	by	ARIC,	MESA	and	WHI	(81-85).	

Supplemental	Table	1	gives	information	on	the	genotyping	array	used	by	the	studies.	Quality	

control	(QC)	was	done	in	an	ancestry-specific	manner	for	those	of	European	and	African	

ancestry.	Ancestry	was	determined	by	self-report	and	confirmed	with	principal	components	

analysis	using	1000	Genomes	samples	as	anchoring	populations	(Supplemental	Figures	1-9).	In	

summary,	QC	for	each	cohort	removed:	sex	mismatches,	samples	and	SNPs	with	high	

missingness	(>5%),	SNPs	with	low	minor	allele	frequency	(MAF<0.2%),	and	SNPs	out	of	Hardy-

Weinberg	Equilibrium	(HWE)	(p<0.05/number	of	SNPs;	Bonferroni	adjusted	cut-off).	Datasets	

were	then	imputed	using	the	Michigan	Imputation	Server	(56,	58).	European-ancestry	samples	
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were	imputed	to	the	Haplotype	Reference	Consortium	(HRC)	and	African-ancestry	samples	

were	imputed	to	the	Consortium	on	Asthma	among	African-ancestry	Populations	in	the	

Americas	(CAAPA)	(58,	86).	Post	imputation	QC	included:	removing	SNPs	with	a	low-quality	

score	(<0.8)	or	MAF	(<0.1%).	Additionally,	sample	and	SNP	level	missingness	as	well	as	HWE	

cutoffs	were	rechecked.	Supplemental	Figures	10	and	11,	and	Supplemental	Table	1	give	

specifics	on	quality	control	for	each	cohort.	QC	was	performed	using	PLINK	v1.9	and	vcfTools	

(87,	88).		

Previously,	an	optimal	PGS	was	determined	in	an	ancestry-specific	manner	for	those	of	

European	or	African	ancestries	(Hatchell,	et,	al,	submitted).	PGSs	were	weighted	using	effect	

sizes	from	an	independent	multi-ethnic	GWAS,	TRANSCEN-D,	the	largest	multi-ethnic	vitamin	D	

GWAS	meta-analysis	to	date	(27).	

	

Statistical	Analysis	

One-degree	of	Freedom	(DF)	and	2-DF	models	were	investigated;	1-DF	models	test	only	

the	relevant	interaction	term,	while	2-DF	models	jointly	test	both	the	relevant	interaction	term	

and	the	PGS	main	effect	term.	Relevant	interaction	terms	were	the	PGS	interacting	with	either	

vitamin	D	intake	(PGS*intake)	or	available	UV	radiation	(PGS*UV).	All	1-DF	and	2-DF	models	

controlled	for	age,	sex,	BMI,	cohort,	vitamin	D	intake	and	available	UV	radiation.	All	statistical	

analyses	were	performed	using	SAS	(version	9.4).	Further	analyses	were	performed	in	those	

who	achieved	IOM	vitamin	D	intake	guidelines	(600	IU/day	for	those	1-70	years	old	and	800	

IU/day	for	those	over	70)	to	investigate	differences	in	the	percent	of	those	achieving	adequate	
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25(OH)D	concentrations	(>20	ng/ml)	by	quartile	of	genetic	risk.	Statistical	significance	was	

determined	by	testing	difference	between	two	proportions.	

	 Sensitivity	analyses	were	performed	in	a	subset	of	participants	with	physical	activity	

data	or	vitamin	D	supplement	use	data	(adjusting	for	these	variables).	All	sensitivity	analyses	

were	performed	in	an	ancestry-specific	manner	for	European	and	African	cohorts.	Additional	

sensitivity	analyses	were	performed	to	ensure	that	the	randomized	controlled	trial	(RCT)	study	

design	of	the	WHI	CaD	trial	was	not	biasing	the	results.		

	
Results	
	 	

Participant	characteristics	of	this	sample	can	be	found	in	Table	5.1.	Gene-environment	

interactions	for	PGS*intake	and	PGS*UV	were	tested	for	with	a	1-DF	and	2-DF	approach.	

Negative	log	p-values	for	the	interaction	terms	are	shown	in	Figure	5.1.	The	2-DF	PGS*intake,	1-

DF	PGS*UV	and	2-DF	PGS*UV	models	were	statistically	significant	in	participants	of	European	

ancestry	(p=3.3x10-18,	2.1x10-2	and	2.4x10-19,	respectively).	In	African-ancestry	analyses,	power	

was	limited	due	to	the	smaller	sample	size,	and	no	statistically	significant	interactions	were	

discerned.	Betas,	standard	errors	and	p-values	for	main	effects	and	interaction	terms	can	be	

found	in	Supplemental	Table	13.		

Additional	sensitivity	analyses	were	performed.		Characteristics	for	participants	used	in	

sensitivity	analyses	can	be	found	in	Supplemental	Tables	14	and	15.		Sensitivity	analyses	

controlling	for	physical	activity	showed	the	same	pattern	of	significance	for	interaction	terms,	

however,	p-values	were	slightly	attenuated	due	to	smaller	sample	size	(Supplemental	Figure	

17).	Interaction	terms	were	no	longer	significant	in	the	sensitivity	analyses	that	used	the	
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subsample	with	vitamin	D	supplement	use,	due	to	loss	of	power	and	small	sample	size	

(European	ancestry	n=455;	African	ancestry	n=700).	To	ensure	the	RCT	study	design	of	WHI	did	

not	influence	the	results,	sensitivity	analyses	were	performed.	There	was	no	significant	

difference	in	25(OH)D	concentration	between	participants	on	the	treatment	arm	compared	to	

the	placebo	arm.	Additionally,	there	was	no	significant	difference	in	the	association	between	

the	PGS	and	25(OH)D	in	WHI	compared	to	the	other	cohorts.		

Next,	in	participants	who	reached	IOM	vitamin	D	intake	dietary	guidelines,	the	percent	

of	participants	achieving	adequate	25(OH)D	concentration	by	PGS	quartile	was	calculated	

(Figure	5.2).	In	those	of	European	ancestry,	as	genetic	risk	decreased,	those	reaching	optimal	

vitamin	D	concentrations	increased	(71.7%	vs	89.0%	in	the	highest	and	lowest	risk	categories,	

respectively).	This	is	a	statistically	significant	(p=0.018)	and	clinically	meaningful	difference.	The	

trend	persisted	in	those	of	African	ancestry,	however,	the	difference	was	not	significant	

(p=0.28)	due	to	small	sample	size.	To	ensure	this	trend	was	not	solely	driven	by	WHI	

participants	(as	this	had	already	been	published	on),	a	sensitivity	analysis	removing	WHI	

participants	was	performed.	The	trend	remained;	in	those	of	European	ancestry,	as	genetic	risk	

decreased,	the	percent	reaching	optimal	vitamin	D	concentrations	increased	(72.7%	in	the	

highest	risk	group	and	88.6%	in	the	lowest	risk	group;	p-value	for	difference	was	0.029)	

(Supplemental	Figure	18).	The	African	ancestry	sample	size	was	inadequate	to	perform	the	

sensitivity	analysis.	
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Discussion	
	
	 Findings	presented	here	build	upon	existing	literature	reporting	that	UV	radiation	and	

vitamin	D	intake	modify	the	effect	that	genetics	have	on	25(OH)D	concentrations	(21,	106).	

Previously,	in	women	of	European	ancestry,	the	genetic	effects	were	reported	to	be	stronger	in	

summer	and	in	women	with	high	vitamin	D	intake	(>400	IU/day)	(21).	Similarly,	here,	in	men	

and	women	of	European	ancestry,	as	available	UV	radiation	or	vitamin	D	intake	increased,	the	

PGS	had	a	larger	effect	on	25(OH)D	(Supplemental	Table	13).	Results	were	not	significant	in	

participants	of	African	ancestry,	likely	a	reflection	of	the	smaller	sample	size	and	subsequently	

reduced	power.		

Interaction	results	in	those	of	European	ancestry	indicate	that	as	available	UV	or	vitamin	

D	increases,	so	does	the	difference	in	25(OH)D	between	those	of	lowest	and	highest	risk.	This	

implies	that	those	with	high	genetic	risk	may	require	more	vitamin	D	intake	to	reach	and	

maintain	optimal	25(OH)D	concentrations.	This	trend	proved	true	for	those	of	European	

ancestry	when	looking	at	participants	who	reached	IOM	dietary	guidelines	for	vitamin	D	intake.	

Fewer	participants	with	high	genetic	risk	reached	optimal	25(OH)D	concentrations	(>20	ng/ml).	

The	trend	was	not	significant	in	those	of	African	ancestry	due	to	small	sample	size.	The	small	

sample	size	used	in	this	analysis	or	in	the	creation	of	the	PGS	could	be	limiting	our	power	to	

detect	an	association.	The	results	in	the	European	ancestry	sample	are	suggestive	that	a	

precision	public	health	approach	to	achieve	adequate	blood	levels	of	vitamin	D	may	be	more	

effective,	tailoring	intake	recommendation	to	genetic	risk.	

	 While	this	study	builds	upon	the	novel	interactions	previously	reported	on	by	Engelman,	

et	al,	by	including	men	and	women	of	European	and	African	ancestry,	it	is	not	without	
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limitations.	First	while	exploring	gene-by-environment	interactions	that	influence	25(OH)D	

concentrations	in	a	multi-ethnic	sample	is	novel,	the	relatively	small	size	of	the	African-ancestry	

sample	limited	the	power.	To	maintain	independence	from	TRANSCEN-D,	which	provided	

ancestry-specific	weights	for	the	PGSs,	and	the	PGS	development	sample,	the	sample	size	used	

in	this	analysis	was	relatively	small,	especially	for	the	African-ancestry	cohort	(n=1,099),	as	

nearly	all	of	the	publicly	available	African-ancestry	samples	with	relevant	data	had	been	

exhausted.	This	emphasizes	that	we,	as	a	research	community,	need	to	include	more	

individuals	of	African	ancestry	in	our	studies	to	better	understand	vitamin	D	requirements	and	

other	health	outcomes	and	make	ancestrally	informed	recommendations	(i.e.	in	initiatives	like	

All	of	Us).	Additionally,	while	the	use	of	available	UV	radiation	is	a	substantial	improvement	

from	using	season	as	a	measure	of	UV	exposure,	it	is	not	as	good	as	the	gold	standard,	but	

difficult	to	measure,	‘actual	UV	radiation’;	this	measurement	error	could	have	limited	power.	

Finally,	vitamin	D	supplementation	is	a	stronger	predictor	of	25(OH)D	concentrations	than	

vitamin	D	intake	from	food,	which	is	generally	in	much	lower	amounts	than	those	found	in	

supplements.	However,	only	the	WHI	study	measured	vitamin	D	supplement	intake	for	the	

relevant	visit.	Therefore,	only	interactions	involving	dietary	intake	had	adequate	sample	size	to	

be	investigated	in	this	study,	which	could	have	led	to	the	lack	of	a	significant	interaction	being	

detected	between	the	PGS	and	vitamin	D	intake	in	the	1-DF	models.	Nonetheless,	findings	here	

can	guide	future	research	in	the	quest	for	precision	public	health	management	of	25(OH)D	

inadequacy.	
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Conclusion	

	 This	research	adds	to	the	ongoing	narrative	deciphering	the	predictors	of	25(OH)D	

concentrations	(21).	Levels	of	environmental	sources	of	vitamin	D	(intake	and	UV	radiation)	are	

shown	to	affect	25(OH)D	concentrations	differently	in	those	with	low	versus	high	genetic	risk,	

reiterating	the	importance	of	well	measured	environmental	factors	in	genetic	analyses,	as	well	

as	the	importance	of	considering	genetic	risk	when	making	recommendations	on	vitamin	D	

intake.	Moreover,	genetic	information	can	be	utilized	to	inform	personalized	dosing	of	vitamin	

D	to	best	achieve	optimal	25(OH)D	concentrations.		
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Tables	
	
Table	5.1:	Sample	characteristics	

	

	

	

	

	 	

	

	

	

	

	

	 	 	

	

	
	

	

	

	

	

1available	UV	radiation	
2vitamin	D	intake	from	diet		
3MANOVA	global	test	(performed	in	SAS	(version	9.4)	revealed	differences	in	one	or	more	variables	by	
cohort,	therefore	cohort	was	adjusted	for	in	all	models	that	included	multiple	cohorts	
	
Original	to	this	manuscript.	
	
	
	
	
	
	
	
	
	

Cohort	 Variable	 European	ancestry	 African	ancestry	

ARIC	

Sample	size	 6,178	 57	

Age	(SE)	[years]	 57.1	(5.7)	 55.6	(6.2)	

%	Female	 54	 49.1%	

BMI	(SE)	[kg/m
2
]	 27.3	(4.9)	 28.6	(5.7)	

UV
1
	(SE)	[units]	 5.1	(2.5)	 7.1	(2.4)	

Intake
2
	(SE)	[IU]	 223.3	(145.7)	 221.2	(137.3)	

25(OH)D	(SE)	[ng/ml]	 26.0	(8.8)	 20.9	(7.8)	

MESA	

Sample	size	 1,936	 342	
Age	(SE)	[years]	 62.7	(10.3)	 62.3	(10.4)	

%	Female	 53	 51	
BMI	(SE)	[kg/m

2
]	 27.8	(5.0)	 30.0	(5.9)	

UV	(SE)	[units]	 4.5	(2.3)	 5.1	(2.2)	
Intake	(SE)	[IU]	 188.9	(157.2)	 161.8	(144.1)	

25(OH)D	(SE)	[ng/ml]	 30.1	(10.8)	 19.5	(8.9)	

WHI	

Sample	size	 455	 700	

Age	(SE)	[years]	 66.6	(6.8)	 61.8	(7.4)	
%	Female	 100	 100	

BMI	(SE)	[kg/m
2
]	 29.9	(6.3)	 31.1	(6.4)	

UV	(SE)	[units]	 5.2	(2.5)	 5.5	(2.6)	
Intake	(SE)	[IU]	 192.3	(143.2)	 146.4	(130.5)	

25(OH)D	(SE)	[ng/ml]	 18.9	(10.7)	 19.0	(15.4)	
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Figure	5.1:	Interaction	test	results	from	1-DF	and	2-DF	models	

	
Figure	5.1	shows	–log(p-values)	for	the	1-DF	and	2-DF	models	of	the	PGS	interaction;	all	models	
controlled	for	age,	sex,	BMI,	cohort,	vitamin	D	intake	and	available	UV	radiation.	The	red	line	denotes	
the	p=0.05	significance	cutoff.	The	2-DF	PGS*intake,	1-DF	PGS*UV	and	2-DF	PGS*UV	models	were	
statistically	significant	in	participants	of	European	ancestry	(p=3.3x10-18,	2.1x10-2	and	2.4x10-19,	
respectively).	Original	to	this	manuscript.	
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Figure	5.2:	Percent	achieving	adequate	25(OH)D	in	those	reaching	IOM	vitamin	D	intake	
guidelines	by	genetic	risk	

European-ancestry	
participants	with	
supplement	use	data	
and	who	reached	IOM	
vitamin	D	intake	
guidelines	(n=184)	

	

African-ancestry	
participants	with	
supplement	use	data	
and	who	reached	IOM	
vitamin	D	intake	
guidelines	(n=17)	

	

	
Figure	5.2	shows	the	percent	of	European-	or	African-ancestry	participants	reaching	adequate	25(OH)D	
(20	ng/ml)	by	quartile	of	genetic	risk.	In	those	of	European	ancestry,	as	genetic	risk	decreased	(higher	
PGS),	those	reaching	optimal	vitamin	D	concentrations	increased.	The	difference	in	percent	reaching	
adequate	25(OH)D	between	the	two	extreme	quartiles	was	17.3%;	71.7%	of	participants	with	the	
highest	genetic	risk	and	89%	of	participants	with	the	lowest	risk	reached	adequate	25(OH)D.	This	is	a	
statistically	significant	(p=0.018)	and	clinically	meaningful	difference.	The	trend	was	not	significant	in	
those	of	African	ancestry.	Original	to	this	manuscript.	
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Chapter	6:	Conclusion	
	
Summary	

Vitamin	D	inadequacy,	as	defined	by	a	25-hydroxyvitamin	D	[25(OH)D]	concentration	

less	than	20	ng/mL,	affects	about	50%	of	adults	in	the	United	States.	Low	vitamin	D	

concentrations	have	been	associated	with	increased	risk	of	autoimmune	diseases,	

hypertension,	dyslipidemia,	cardiovascular	events,	and	cardiovascular	mortality	(1,	3-5).		

Additionally,	recent	Mendelian	randomization	studies	have	suggested	a	causal	relationship	

between	low	vitamin	D	concentrations	and	increased	risk	of	obesity,	ovarian	cancer,	

hypertension,	lower	cognitive	function,	multiple	sclerosis,	and	all	cause	and	cancer	mortality	

(10-16).	Furthermore,	some	clinical	trials	have	shown	that	vitamin	D	and	calcium	

supplementation	are	important	in	the	prevention	of	fractures	and	cardiovascular	risk	factors,	

while	vitamin	D	supplementation	alone	may	lower	risk	of	cancers,	diabetes	and	depression,	and	

may	reduce	inflammation	and	improve	lung	function	in	patients	with	cystic	fibrosis	(7,	17-19,	

65-69).	Recent	results	reported	from	the	VITAL	trial	showed	null	associations	between	vitamin	

D	supplementation	and	cancer	or	cardiovascular	disease,	however,	study	design	limits	the	

interpretability	of	these	findings	(70).		

Avoiding	vitamin	D	inadequacy	is	important,	however,	vitamin	D	concentrations	over	50	

ng/mL	have	been	associated	with	increased	morbidity	and	mortality	(3).	Clinical	trials	of	vitamin	

D	have	shown	that	individual	response	to	vitamin	D	supplementation	is	highly	variable	(72).	

Vitamin	D	concentrations	are	influenced	by	genetic	factors	and	genetic	variants	may	determine	

how	much	vitamin	D	intake	is	required	to	reach	an	optimal	vitamin	D	blood	concentration	(21,	

22,	73,	74).	Therefore,	knowledge	of	the	genetic	determinants	of	vitamin	D	concentration	is	
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invaluable	in	prevention	of	vitamin	D	associated	morbidity	and	mortality.	Several	genome-wide	

association	studies	(GWASs)	have	uncovered	vitamin	D	associated	single	nucleotide	

polymorphisms	(SNPs)	(1,	28,	31).	However,	these	SNPs	account	for	a	small	portion	of	the	

variation	in	vitamin	D	concentrations	(1).	Understanding	the	complete	set	of	genetic	factors	

that	contribute	to	vitamin	D	concentrations	and	how	they	function	together	and	with	

environmental	factors	may	allow	for	personalized	treatment	of	vitamin	D	inadequacy,	instead	

of	the	current	(and	ineffective)	one	size	fits	all	treatment	regimen.	The	overall	motivation	for	

this	research	was	to	start	to	fill	in	the	knowledge	gaps	surrounding	the	genetic	landscape	of	

25(OH)D,	such	as	missing	heritability	and	missing	minority	group	studies.	The	long-term	goal	is	

promoting	adequate	vitamin	D	concentrations	through	personalized	vitamin	D	supplementation	

based	on	an	individual’s	genetic	makeup	and	non-genetic	characteristics.	To	accomplish	this,	

my	goals	were	3-fold:	first,	to	capture	more	genetic	variance	in	25(OH)D	concentration	through	

development	of	a	polygenic	score	(PGS);	second,	to	calculate	heritability	for	all	genotyped	

SNPS,	the	PGS	and	previously	reported	vitamin	D	SNPs	in	a	group	of	unrelated	participants	and	

third,	to	investigate	the	interaction	between	the	PGS	and	environmental	determinants	of	

25(OH)D,	vitamin	D	intake	and	available	UV	radiation,	all	in	an	ancestry-specific	manner	for	

participants	of	African	and	European	ancestry.		 		

	 In	Aim	1,	a	PGS	was	calculated	in	an	ancestry-specific	manner.	Ancestry-specific	PGSs	

were	weighted	by	effect	sizes	from	TRANSCEN-D,	a	multi-ethnic	25(OH)D	GWAS,	and	were	

calculated	in	independent	samples	(27).	Results	showed	that	those	with	greater	genetic	risk	

have	lower	25(OH)D	concentrations,	such	that	when	compared	to	those	with	lowest	genetic	

risk,	those	with	highest	genetic	risk	could	require	an	additional	317	to	783	IU	of	vitamin	D	to	
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maintain	adequate	25(OH)D	levels.	In	the	European-ancestry	determination	and	validation	

cohorts,	the	optimal	PGS	explained	1.3-2.1%	of	the	variance	in	25-hydroxyvitamin	D	[25(OH)D]	

concentrations,	while	the	fully	adjusted	model	explained	8-14%	of	the	variance	of	the	

phenotype.	In	the	African-ancestry	determination	and	validation	cohorts,	the	PGS	explained	

0.01-4.4%	of	the	variance	in	25(OH)D,	and	the	fully	adjusted	model	explained	2.3-37%	of	the	

variance.	The	variance	explained	by	the	PGS,	while	in	line	with	what	has	been	reported	for	

other	complex	traits,	captures	only	a	modest	portion	of	phenotypic	variance.	Stratified	analysis	

showed	that	the	PGS	and	model	explained	more	phenotypic	variance	in	those	of	African	

ancestry,	women	and	those	with	higher	levels	of	available	UV	radiation.		The	consistent	

association	between	the	PGS	and	25(OH)D	concentrations	indicates	this	PGS	has	the	potential	

to	predict	risk	of	vitamin	D	inadequacy.			

	 In	Aim	2,	SNP	heritability	was	calculated	in	a	sample	of	unrelated	participants;	SNP	

heritability	estimates	for	the	PGS	and	results	from	previous	GWASs	were	also	calculated.	

Heritability	estimates	made	in	samples	of	related	participants,	tend	to	overestimate	heritability,	

due	to	shared	environment,	therefore	estimates	here	were	calculated	in	a	sample	of	unrelated	

participants.	Estimates	were	calculated	by	ancestry	as	well	as	stratified	by	gender	and	available	

UV	radiation.	In	general,	SNP	heritability	estimates	were	higher	in	those	of	African	ancestry	and	

in	those	with	more	available	UV	radiation.	SNP	heritability	estimates	for	25(OH)D	in	unrelated	

participants	of	European	ancestry	are	on	the	low	end	of	the	range	of	estimates	previously	

reported	in	related	individuals,	and	the	PGS	from	Aim	1	explains	more	heritability	than	do	

previous	GWAS	findings	(17%	vs	1.6-6.9%,	respectively).	Findings	from	previous	GWAS	only	

explain	a	small	portion	of	25(OH)D	heritability	in	those	of	African	and	European	ancestries.	
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While	the	PGS	from	those	of	European	ancestry	in	Aim	1	accounts	for	a	larger	portion	of	the	

total	SNP	heritability	than	do	previous	GWAS	findings,	a	large	portion	of	the	heritability	remains	

unexplained,	promoting	the	need	for	further	investigation	into	the	genetic	underpinnings	of	

25(OH)D.	Further	studies	could	include	both	common	and	low	frequency	variants	to	account	for	

more	heritability	(44).		

Aim	3	investigated	ancestry-specific	(European	and	African)	gene-environment	

interactions	between	the	PGS	and	vitamin	D	intake	and	available	UV	radiation	using	1-DF	and	2-

DF	tests.	The	2-DF	PGS*intake,	1-DF	PGS*UV	and	2-DF	PGS*UV	models	were	statistically	

significant	in	participants	of	European	ancestry	(p=3.3x10-18,	2.1x10-2	and	2.4x10-19,	

respectively).	In	African-ancestry	analyses	power	was	limited	due	to	the	smaller	sample	size,	

and	no	statistically	significant	interactions	were	discerned.	Consistent	with	a	previous	study,	

interaction	results	indicate	that	as	available	UV	or	vitamin	D	intake	increases,	so	does	the	

difference	in	25(OH)D	between	those	of	lowest	and	highest	risk.	This	implies	that	those	with	

high	genetic	risk	may	require	more	vitamin	D	intake	to	reach	and	maintain	optimal	25(OH)D	

concentrations.	This	trend	proved	true	for	those	of	European	ancestry	when	looking	at	

participants	who	reached	IOM	dietary	guidelines	for	vitamin	D	intake.	Fewer	participants	with	

high	genetic	risk	reached	optimal	25(OH)D	concentrations	(>20	ng/ml);	70.4%	of	those	with	

highest	risk	compared	to	83.8%	of	those	with	lowest	risk	(p=4.1x10-11).	The	trend	did	not	hold	in	

those	of	African	ancestry,	likely	due	to	small	sample	size.	Overall,	the	results	here	reiterate	the	

importance	of	well	measured	environmental	factors	in	genetic	analyses,	as	well	as	the	

importance	of	considering	genetic	risk	when	making	recommendations	on	vitamin	D	intake.	
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Moreover,	genetic	information	could	be	utilized	to	inform	personalized	dosing	of	vitamin	D	to	

best	achieve	optimal	25(OH)D	concentrations.		

	 Vitamin	D	concentration	is	a	complex	trait	with	strong	underlying	genetic	and	

environmental	predictors	that	work	together	in	a	complex	way	to	influence	25(OH)D	

concentration.	Here,	a	PGS	was	shown	to	be	a	useful	metric	for	quantifying	risk	of	vitamin	D	

inadequacy,	which	could	inform	personalized	vitamin	D	dosing	to	achieve	and	maintain	an	

adequate	25(OH)D	concentration.	Additionally,	the	PGS	explained	more	SNP	heritability	than	

did	previous	GWAS	findings,	giving	insight	into	the	complex	genetic	underpinnings	of	25(OH)D.	

While	the	PGS	explains	more	SNP	heritability	than	do	prior	GWAS	findings,	a	large	portion	

remains	unexplained.	A	portion	of	this	missing	heritability	is	likely	due	to	interaction.	Therefore,	

an	investigation	into	genetic-by-environmental	interactions	was	undertaken.	Here,	there	was	

evidence	of	interactions	between	the	PGS	and	both	vitamin	D	intake	and	available	UV	radiation.	

While	this	research	contributes	new	facets	to	understanding	the	complexity	of	25(OH)D,	much	

of	the	heritability	remains	unexplained,	warranting	further	research,	such	as	incorporating	

whole	genome	sequence	data	which	captures	rare	variants.		

	

Strengths		

	 This	research	has	many	strengths	which	increase	the	value	of	its	contribution	to	the	

existing	literature.	This	study	exhausted	nearly	all	of	the	publicly	available	data	with	vitamin	D	

and	genetic	information.	This	resulted	in	a	large	sample	size	for	European	ancestry,	which	is	

useful	in	maintaining	adequate	power	and	for	improving	generalizability	of	the	findings.	In	

addition	to	genetic	data,	this	research	has	very	rich	environmental	measures	across	cohorts,	i.e.	
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for	dietary	intake	and	available	UV	radiation.	Finally,	this	research	used	a	multi-ethnic	cohort	

with	ancestrally	appropriate	analyses.	This	is	increasingly	important	in	genetic	research	given	

the	disparate	research	done	in	minority	groups	compared	to	those	of	European	ancestry.	The	

majority	of	genetic	research	to	date	is	done	in	populations	of	European	ancestry	where	findings	

do	not	necessarily	translate	to	other	ancestries,	which	only	perpetuates	health	disparities.			

	

Limitations	

	 Of	course,	this	research	comes	with	limitations	as	well.	To	maintain	independence	from	

TRANSCEN-D,	which	provided	ancestry-specific	weights	for	the	PGSs,	the	sample	size	used	in	

this	analysis	for	the	African-ancestry	cohort	was	relatively	small.	The	sample	size	issues	

experienced	for	the	African-ancestry	cohort	emphasize	the	importance	of	obtaining	more	

diverse	samples	(i.e.	in	initiatives	like	All	of	Us).	Through	the	TRANSCEN-D	GWAS	meta-analysis	

and	the	analysis	here,	nearly	all	of	the	publicly	available	African-ancestry	samples	with	relevant	

data	have	been	exhausted	and	sample	sizes	for	other	racial/ethnic	groups	remain	limited.	

Additionally,	while	the	set	of	SNPs	used	to	create	the	PGS	was	over	9	million	for	African	

ancestry	and	over	8	million	for	European	ancestry,	it	did	not	include	rare	variants	which	could	

have	limited	the	heritability	that	the	PGS	would	explain.		Finally,	while	this	study	had	rich	

environmental	data,	the	variables	were	still	imperfect.	Using	available	UV	radiation	is	much	

more	precise	than	‘season’	(which	has	been	used	in	past	gene-environment	interaction	

analyses),	however,	is	not	as	good	as	the	gold	standard,	‘actual	UV	radiation’.	Additionally,	

while	all	studies	included	vitamin	D	dietary	intake	data,	only	WHI	had	vitamin	D	supplement	use	

data	which	limited	utility	of	some	analyses.	
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Future	research	

Future	research	stemming	from	this	dissertation	could	include	performing	a	SCAN	test	of	

SNPs	found	to	be	related	to	vitamin	D,	i.e.	included	in	PGS	or	implied	in	GWAS	studies,	to	

discern	if	there	is	a	clustering	of	SNPs	in	a	protein	space.	Another	project	related	to	GWAS	

could	be	a	conditional	analysis,	where	given	candidate	genotypes	are	conditioned	on	to	see	if	

signal	is	removed,	suggesting	the	variant	could	be	functional.	A	third	project	could	include	using	

a	Mendelian	Randomization	approach	to	test	the	association	between	the	vitamin	D	PGS	and	

other	downstream	outcomes	linked	to	vitamin	D	concentrations,	such	as	multiple	sclerosis	or	

colorectal	cancer.	Finally,	as	was	reported	on	by	the	Kardia	group	from	the	University	of	

Michigan,	to	maximize	the	potential	of	the	data	and	to	preserve	sample	size,	PGS	could	be	

created	on	the	full	sample,	skipping	the	training	and	testing	steps,	and	using	all	genotyped	(not	

imputed)	SNPs	along	with	corresponding	betas	from	TRANSCEN-D	(107).	

Additionally,	after	replication	in	a	larger	cohort	that	includes	minority	participants	and	rare	

variants,	translation	of	the	findings	could	be	investigated	with	a	clinical	trial.	As	evidenced	by	

data	reported	here,	the	IOM	recommendation	for	daily	vitamin	D	intake	is	not	enough	for	those	

with	high	genetic	risk	for	low	25(OH)D	to	maintain	adequate	25(OH)D.	A	clinical	trial	would	

determine	if	personalized	supplementation	can	counter	genetic	predisposition	to	low	25(OH)D.	

I	would	propose	a	randomized	clinical	trial	(RCT),	in	participants	with	GWAS	data	and	

inadequate	25(OH)D	at	baseline.	Participants	would	either	be	in	the	control	arm	which	receives	

the	IOM	recommendation	or	in	the	treatment	arm	which	receives	a	personalized	dose	based	on	

their	ancestrally	appropriate	PGS.	Participants	would	maintain	their	dosing	for	6-months.	At	6-

months,	if	personalized	supplementation	counters	genetic	predisposition	to	low	25(OH)D,	more	
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participants	with	high	genetic	risk	in	treatment	arm	should	have	adequate	25(OHD	compared	

to	the	control	arm.	This	could	prompt	changes	in	IOM	recommended	dose	based	on	genetic	

predisposition.	
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Appendix	
 
Supplemental	Table	1:	Genotyping	information	and	quality	control	by	cohort			

aAll	African-ancestry	samples	were	imputed	to	CAAPA	using	Michigan	Imputation	Server		
bAll	European-ancestry	samples	were	imputed	to	HRC	r1.1	2016	using	Michigan	Imputation	Server

Cohort	 Genotyping	Array	 Sample	size	

SNP	quality	control	 Sample	quality	control	

Call	
rate	

Minor	
Allele	
Frequency	

Hardy-Weinberg	Equilibrium	
(post-imputation)	 #	of	SNPs	Passing	QC	 Call	

rate	 Exclusions	

ARIC	
AffymetrixGenome-
WideHuman	
SNPArray	6.0	

African	ancestry:	1,908													
	
European	ancestry:	7,462	

95%	 0.002	

African	Ancestry:	6x10-8	

(5x10-9)	
											
European	Ancestry:	6x10-8	
(6x10-9)	

African	ancestry:	9,335,785		
	
European	ancestry:	8,315,761	

95%	

sex	mismatch,	
relatedness,	
chromosomal	
abnormalities	

MESA	

Affymetrix	50K	gene-
focused	molecular	
imprinted	polymer	
array	
(CVDSNP55v1_A)	

African	ancestry:	1,176													
	
European	ancestry:	1,995	

95%	 0.002	

African	Ancestry:	1x10-6	

(2x10-7)													
	
European	Ancestry:	1x10-6	

(1x10-7)							

African	ancestry:	309,712					
	
European	ancestry:	455,155	

95%	 sex	mismatch,	
relatedness	

WHI	(NHLBI	
cohort)	

AffymetrixGenome-
WideHuman	
SNPArray	6.0	

African	ancestry	
					Consent	group	1:	65		
	
					Consent	group	2:	572	

95%	 0.002	

Consent	group	1:	6x10-8	
(5x10-9)		
	
Consent	group	2:	6x10-8	
(5x10-9)	

Consent	group	1:	9,551,098									
	
Consent	group	2:	9,997,380	

95%	
sex	mismatch,	
relatedness,	race	
mismatch	

WHI	
(GARNET	
cohort)	

Illumina	
HumanOmni1-Quad	
v1-0	B	

European	ancestry:	
					Consent	group	1:	86		
	
					Consent	group	2:	443	

95%	 0.002	

Consent	group	1:	5x10-8	

(5x10-9)		
	
Consent	group	2:	5x10-8	
(4x10-9)		

Consent	group	1:	9,2037,621						
	
Consent	group	2:	9,722,526	

95%	

sex	mismatch,	
relatedness,	
chromosome	anomalies,	
race	mismatch	

WHI	(PAGE	
cohort)	

Illumina	MEGA	
Consortium	
15063755	B2	array	

African	ancestry:	63										 95%	 0.002	 3x10-8	(5x10-9)	 African	ancestry:	9,641,566													 95%	

sex	mismatch,	
relatedness,	
chromosome	anomalies,	
race	mismatch	
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Supplemental	Figure	1:	Principle	components	plot	for	MESA	European	ancestry	participants	
with	1000	Genomes	European,	African	and	Asian	samples	as	anchoring	populations	(n=1,995)	

	
	
	
	
Supplemental	Figure	2:	Principle	components	plot	for	MESA	African	ancestry	participants	with	
1000	Genomes	European,	African	and	Asian	samples	as	anchoring	populations	(n=1,176)	
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Supplemental	Figure	3:	Principle	components	plot	for	ARIC	European	ancestry	participants	with	
1000	Genomes	European,	African	and	Asian	samples	as	anchoring	populations	(n=7,462)	

	
	
	
	
Supplemental	Figure	4:	Principle	components	plot	for	ARIC	African	ancestry	participants	with	
1000	Genomes	European,	African	and	Asian	samples	as	anchoring	populations	(n=1,908)	
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Supplemental	Figure	5:	Principle	components	plot	for	WHI	subgroup	1	African	ancestry	
participants	with	1000	Genomes	European,	African	and	Asian	samples	as	anchoring	populations	
(n=65)	

	
	
	
	
Supplemental	Figure	6:	Principle	components	plot	for	WHI	subgroup	2	African	ancestry	
participants	with	1000	Genomes	European,	African	and	Asian	samples	as	anchoring	populations	
(n=572)	
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Supplemental	Figure	7:	Principle	components	plot	for	WHI	subgroup	3	African	ancestry	
participants	with	1000	Genomes	European,	African	and	Asian	samples	as	anchoring	populations	
(n=63)	

	
	
	
	
	Supplemental	Figure	8:	Principle	components	plot	for	WHI	subgroup	1	European	ancestry	
participants	with	1000	Genomes	European,	African	and	Asian	samples	as	anchoring	populations	
(n=86)	
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Supplemental	Figure	9:	Principle	components	plot	for	WHI	subgroup	2	European	ancestry	
participants	with	1000	Genomes	European,	African	and	Asian	samples	as	anchoring	populations	
(n=443)	
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Supplemental	Figure	10:	Pre-imputation	quality-control	process	

	
Supplemental	Figure	10	shows	pre-imputation	quality	control	steps	and	cutoffs	used	as	well	as	
corresponding	sample	sizes	at	each	step.	
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Supplemental	Figure	11:	Quality-Control	process	starting	at	imputation	

	
Supplemental	Figure	11	shows	quality	control	steps	and	cutoffs	used	as	well	as	corresponding	sample	
sizes	at	each	step	starting	at	the	imputation	phase
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Supplemental	Table	2:	UV	radiation	values	for	ARIC	

*all	visits	occurred	between	1990	and	1992;	the	National	Weather	Service	Climate	Prediction	Center	
database	starts	with	June	1994,	therefore,	the	average	for	years	1994-2002	(the	years	in	which	vitamin	
D	was	collected	for	this	project)	was	used	

Field	Center	
Month	of	

Visit	
Wake	Forest	Baptist	
Medical	Center,	
Winston-Salem,	NC	
	
Recruitment	in	Forsyth	
County,	NC	

University	of	
Mississippi	Medical	
Center,	Jackson,	MS	
	
Recruitment	in	Jackson,	MS	

University	of	
Minnesota,	
Minneapolis,	MN	
	
Recruitment	in	
Northwestern	Minneapolis,	
MN	

Johns	Hopkins	
University,	Baltimore,	
MD	
	
Recruitment	in	Washington	
County,	MD	

January	 Month:	December	
Year:	average	1994-2002	
Location:	Raleigh,	NC	

Month:	December	
Year:	average	1994-2002	
Location:	Jackson,	MS	

Month:	December	
Year:	average	1994-2002	
Location:	Minneapolis,	MN	

Month:	December	
Year:	average	1994-2002	
Location:	Baltimore,	MD	
and	Pittsburgh,	PA	

February	 Month:	January	
Year:	average	1994-2002	
Location:	Raleigh,	NC	

Month:	January	
Year:	average	1994-2002	
Location:	Jackson,	MS	

Month:	January	
Year:	average	1994-2002	
Location:	Minneapolis,	MN	

Month:	January	
Year:	average	1994-2002	
Location:	Baltimore,	MD	
and	Pittsburgh,	PA	

March	 Month:	February	
Year:	average	1994-2002	
Location:	Raleigh,	NC	

Month:	February	
Year:	average	1994-2002	
Location:	Jackson,	MS	

Month:	February	
Year:	average	1994-2002	
Location:	Minneapolis,	MN	

Month:	February	
Year:	average	1994-2002	
Location:	Baltimore,	MD	
and	Pittsburgh,	PA	

April	 Month:	March	
Year:	average	1994-2002	
Location:	Raleigh,	NC	

Month:	March	
Year:	average	1994-2002	
Location:	Jackson,	MS	

Month:	March	
Year:	average	1994-2002	
Location:	Minneapolis,	MN	

Month:	March	
Year:	average	1994-2002	
Location:	Baltimore,	MD	
and	Pittsburgh,	PA	

May	 Month:	April	
Year:	average	1994-2002	
Location:	Raleigh,	NC	

Month:	April	
Year:	average	1994-2002	
Location:	Jackson,	MS	

Month:	April	
Year:	average	1994-2002	
Location:	Minneapolis,	MN	

Month:	April	
Year:	average	1994-2002	
Location:	Baltimore,	MD	
and	Pittsburgh,	PA	

June	 Month:	May	
Year:	average	1994-2002	
Location:	Raleigh,	NC	

Month:	May	
Year:	average	1994-2002	
Location:	Jackson,	MS	

Month:	May	
Year:	average	1994-2002	
Location:	R	Minneapolis,	
MN	

Month:	May	
Year:	average	1994-2002	
Location:	Baltimore,	MD	
and	Pittsburgh,	PA	

July	 Month:	June	
Year:	average	1994-2002	
Location:	Raleigh,	NC	

Month:	June	
Year:	average	1994-2002	
Location:	Jackson,	MS	

Month:	June	
Year:	average	1994-2002	
Location:	Minneapolis,	MN	

Month:	June	
Year:	average	1994-2002	
Location:	Baltimore,	MD	
and	Pittsburgh,	PA	

August	 Month:	July	
Year:	average	1994-2002	
Location:	Raleigh,	NC	

Month:	July	
Year:	average	1994-2002	
Location:	Jackson,	MS	

Month:	July	
Year:	average	1994-2002	
Location:	Minneapolis,	MN	

Month:	July	
Year:	average	1994-2002	
Location:	Baltimore,	MD	
and	Pittsburgh,	PA	

September	 Month:	August	
Year:	average	1994-2002	
Location:	Raleigh,	NC	

Month:	August	
Year:	average	1994-2002	
Location:	Jackson,	MS	

Month:	August	
Year:	average	1994-2002	
Location:	Minneapolis,	MN	

Month:	August	
Year:	average	1994-2002	
Location:	Baltimore,	MD	
and	Pittsburgh,	PA	

October	 Month:	September	
Year:	average	1994-2002	
Location:	Raleigh,	NC	

Month:	September	
Year:	average	1994-2002	
Location:	Jackson,	MS	

Month:	September	
Year:	average	1994-2002	
Location:	Minneapolis,	MN	

Month:	September	
Year:	average	1994-2002	
Location:	Baltimore,	MD	
and	Pittsburgh,	PA	

November	 Month:	October	
Year:	average	1994-2002	
Location:	Raleigh,	NC	

Month:	October	
Year:	average	1994-2002	
Location:	Jackson,	MS	

Month:	October	
Year:	average	1994-2002	
Location:	Minneapolis,	MN	

Month:	October	
Year:	average	1994-2002	
Location:	Baltimore,	MD	
and	Pittsburgh,	PA	

December	 Month:	November	
Year:	average	1994-2002	
Location:	Raleigh,	NC	

Month:	November	
Year:	average	1994-2002	
Location:	Jackson,	MS	

Month:	November	
Year:	average	1994-2002	
Location:	Minneapolis,	MN	

Month:	November	
Year:	average	1994-2002	
Location:	Baltimore,	MD	
and	Pittsburgh,	PA	
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Supplemental	Table	3:	UV	radiation	values	for	MESA	
Site	

Month	
of	visit	

Wake	Forest	
University,	
Winston-
Salem,	NC	

Columbia	
University,	
New	York,	NY	

Johns	Hopkins	
University,	
Baltimore,	
MD	

University	of	
Minnesota,	
Minneapolis,	
MN	

Northwestern	
University,	
Chicago,	IL	

University	of	
California,	Los	
Angeles,	CA	

January	 Month:	
December	
Years:	2000-2002	
Location:	Raleigh,	
NC	

Month:	
December	
Years:	2000-2002	
Location:	New	
York,	NY	

Month:	
December	
Years:	2000-2002	
Location:	
Baltimore,	MD	

Month:	
December	
Years:	2000-2002	
Location:	
Minneapolis,	MN	

Month:	
December	
Years:	2000-2002	
Location:	
Chicago,	IL	

Month:	
December	
Years:	2000-2002	
Location:	Los	
Angeles,	CA	

February	 Month:	January	
Years:	2000-2002	
Location:	Raleigh,	
NC	

Month:	January	
Years:	2000-2002	
Location:	New	
York,	NY	

Month:	January	
Years:	2000-2002	
Location:	
Baltimore,	MD	

Month:	January	
Years:	2000-2002	
Location:	
Minneapolis,	MN	

Month:	January	
Years:	2000-2002	
Location:	
Chicago,	IL	

Month:	January	
Years:	2000-2002	
Location:	Los	
Angeles,	CA	

March		 Month:	February	
Years:	2000-2002	
Location:	Raleigh,	
NC	

Month:	February	
Years:	2000-2002	
Location:	New	
York,	NY	

Month:	February	
Years:	2000-2002	
Location:	
Baltimore,	MD	

Month:	February	
Years:	2000-2002	
Location:	
Minneapolis,	MN	

Month:	February	
Years:	2000-2002	
Location:	
Chicago,	IL	

Month:	February	
Years:	2000-2002	
Location:	Los	
Angeles,	CA	

April	 Month:	March	
Years:	2000-2002	
Location:	Raleigh,	
NC	

Month:	March	
Years:	2000-2002	
Location:	New	
York,	NY	

Month:	March	
Years:	2000-2002	
Location:	
Baltimore,	MD	

Month:	March	
Years:	2000-2002	
Location:	
Minneapolis,	MN	

Month:	March	
Years:	2000-2002	
Location:	
Chicago,	IL	

Month:	March	
Years:	2000-2002	
Location:	Los	
Angeles,	CA	

May	 Month:	April	
Years:	2000-2002	
Location:	Raleigh,	
NC	

Month:	April	
Years:	2000-2002	
Location:	New	
York,	NY	

Month:	April	
Years:	2000-2002	
Location:	
Baltimore,	MD	

Month:	April	
Years:	2000-2002	
Location:	
Minneapolis,	MN	

Month:	April	
Years:	2000-2002	
Location:	
Chicago,	IL	

Month:	April	
Years:	2000-2002	
Location:	Los	
Angeles,	CA	

June	 Month:	May	
Years:	2000-2002	
Location:	Raleigh,	
NC	

Month:	May	
Years:	2000-2002	
Location:	New	
York,	NY	

Month:	May	
Years:	2000-2002	
Location:	
Baltimore,	MD	

Month:	May	
Years:	2000-2002	
Location:	
Minneapolis,	MN	

Month:	May	
Years:	2000-2002	
Location:	
Chicago,	IL	

Month:	May	
Years:	2000-2002	
Location:	Los	
Angeles,	CA	

July	 Month:	June	
Years:	2000-2002	
Location:	Raleigh,	
NC	

Month:	June	
Years:	2000-2002	
Location:	New	
York,	NY	

Month:	June	
Years:	2000-2002	
Location:	
Baltimore,	MD	

Month:	June	
Years:	2000-2002	
Location:	
Minneapolis,	MN	

Month:	June	
Years:	2000-2002	
Location:	
Chicago,	IL	

Month:	June	
Years:	2000-2002	
Location:	Los	
Angeles,	CA	

August	 Month:	July	
Years:	2000-2002	
Location:	Raleigh,	
NC	

Month:	July	
Years:	2000-2002	
Location:	New	
York,	NY	

Month:	July	
Years:	2000-2002	
Location:	
Baltimore,	MD	

Month:	July	
Years:	2000-2002	
Location:	
Minneapolis,	MN	

Month:	July	
Years:	2000-2002	
Location:	
Chicago,	IL	

Month:	July	
Years:	2000-2002	
Location:	Los	
Angeles,	CA	

September	 Month:	August	
Years:	2000-2002	
Location:	Raleigh,	
NC	

Month:	August	
Years:	2000-2002	
Location:	New	
York,	NY	

Month:	August	
Years:	2000-2002	
Location:	
Baltimore,	MD	

Month:	August	
Years:	2000-2002	
Location:	
Minneapolis,	MN	

Month:	August	
Years:	2000-2002	
Location:	
Chicago,	IL	

Month:	August	
Years:	2000-2002	
Location:	Los	
Angeles,	CA	

October	 Month:	
September	
Years:	2000-2002	
Location:	Raleigh,	
NC	

Month:	
September	
Years:	2000-2002	
Location:	New	
York,	NY	

Month:	
September	
Years:	2000-2002	
Location:	
Baltimore,	MD	

Month:	
September	
Years:	2000-2002	
Location:	
Minneapolis,	MN	

Month:	
September	
Years:	2000-2002	
Location:	
Chicago,	IL	

Month:	
September	
Years:	2000-2002	
Location:	Los	
Angeles,	CA	

November	 Month:	October	
Years:	2000-2002	
Location:	Raleigh,	
NC	

Month:	October	
Years:	2000-2002	
Location:	New	
York,	NY	

Month:	October	
Years:	2000-2002	
Location:	
Baltimore,	MD	

Month:	October	
Years:	2000-2002	
Location:	
Minneapolis,	MN	

Month:	October	
Years:	2000-2002	
Location:	
Chicago,	IL	

Month:	October	
Years:	2000-2002	
Location:	Los	
Angeles,	CA	

December	 Month:	
November	
Years:	2000-2002	
Location:	Raleigh,	
NC	

Month:	
November	
Years:	2000-2002	
Location:	New	
York,	NY	

Month:	
November	
Years:	2000-2002	
Location:	
Baltimore,	MD	

Month:	
November	
Years:	2000-2002	
Location:	
Minneapolis,	MN	

Month:	
November	
Years:	2000-2002	
Location:	
Chicago,	IL	

Month:	
November	
Years:	2000-2002	
Location:	Los	
Angeles,	CA	

*Month,	but	not	specific	year	variables	available	for	all	participants,	however,	all	visits	occurred	
between	2000-2002,	therefore,	average	for	years	2000-2002	was	used			
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Supplemental	Table	4:	UV	radiation	values	for	WHI	
Location	

Month	of	
visit	

Northeast	
(35-40	
degrees	N)	

Northeast	
(>40	
degrees	N)	

South	(<35	
degrees	N)	

South	(35-
40	degrees	
N)	

Midwest	
(35-40	
degrees	N)	

Midwest	
(>40	
degrees	N)	

West	(<35	
degrees	N)	

West	(35-
40	degrees	
N)	

West	(>40	
degrees	N)	

January	 Month:	
December	
Locations:	
Raleigh,	NC;	
Charleston,	
SC;	
Washington
,	DC	

Month:	
December	
Locations:	
New	York,	
NY;	Buffalo,	
NY;	
Burlington,	
VT;	Boston,	
MA;	
Portland,	
ME	

Month:	
December	
Locations:	
Los	
Angeles,	
CA;	
Phoenix,	
AZ;	
Houston,	
TX;	Atlanta,	
GA;	
Jacksonville
,	FL;	Miami,	
FL	

Month:	
December	
Locations:	
San	
Francisco,	
CA;	
Memphis,	
TN	

Month:	
December	
Locations:	
St.	Louis,	
MO;	
Omaha,	NE;	
Sioux	Falls,	
SD	

Month:	
December	
Locations:	
Milwaukee,	
WI;	
Minneapoli
s,	MN;	
Chicago,	IL;	
Des	
Moines,	IA;	
Bismarck,	
ND	

Month:	
December	
Locations:	
Phoenix,	
AZ;	Los	
Angeles,	
CA;	
Albuquerqu
e,	NM	

Month:	
December	
Locations:	
San	
Francisco,	
CA;	Denver,	
CO;	Salt	
Lake	City,	
UT;	Las	
Vegas,	NV	

Month:	
December	
Locations:	
Portland,	
OR;	Seattle,	
WA;	Billing,	
MT;	Boise,	
ID	

February	 Month:	
January	
Locations:	
NC;	
Charleston,	
SC;	
Washington
,	DC	

Month:	
January	
Locations:	
New	York,	
NY;	Buffalo,	
NY;	
Burlington,	
VT;	Boston,	
MA;	
Portland,	
ME	

Month:	
January	
Locations:	
Los	
Angeles,	
CA;	
Phoenix,	
AZ;	
Houston,	
TX;	Atlanta,	
GA;	
Jacksonville
,	FL;	Miami,	
FL	

Month:	
January	
Locations:	
San	
Francisco,	
CA;	
Memphis,	
TN	

Month:	
January	
Locations:	
St.	Louis,	
MO;	
Omaha,	NE;	
Sioux	Falls,	
SD	

Month:	
January	
Locations:	
Milwaukee,	
WI;	
Minneapoli
s,	MN;	
Chicago,	IL;	
Des	
Moines,	IA;	
Bismarck,	
ND	

Month:	
January	
Locations:	
Phoenix,	
AZ;	Los	
Angeles,	
CA;	
Albuquerqu
e,	NM	

Month:	
January	
Locations:	
San	
Francisco,	
CA;	Denver,	
CO;	Salt	
Lake	City,	
UT;	Las	
Vegas,	NV	

Month:	
January	
Locations:	
Portland,	
OR;	Seattle,	
WA;	Billing,	
MT;	Boise,	
ID	

March	 Month:	
February	
Locations:	
NC;	
Charleston,	
SC;	
Washington
,	DC	

Month:	
February	
Locations:	
New	York,	
NY;	Buffalo,	
NY;	
Burlington,	
VT;	Boston,	
MA;	
Portland,	
ME	

Month:	
February	
Locations:	
Los	
Angeles,	
CA;	
Phoenix,	
AZ;	
Houston,	
TX;	Atlanta,	
GA;	
Jacksonville
,	FL;	Miami,	
FL	

Month:	
February	
Locations:	
San	
Francisco,	
CA;	
Memphis,	
TN	

Month:	
February	
Locations:	
St.	Louis,	
MO;	
Omaha,	NE;	
Sioux	Falls,	
SD	

Month:	
February	
Locations:	
Milwaukee,	
WI;	
Minneapoli
s,	MN;	
Chicago,	IL;	
Des	
Moines,	IA;	
Bismarck,	
ND	

Month:	
February	
Locations:	
Phoenix,	
AZ;	Los	
Angeles,	
CA;	
Albuquerqu
e,	NM	

Month:	
February	
Locations:	
San	
Francisco,	
CA;	Denver,	
CO;	Salt	
Lake	City,	
UT;	Las	
Vegas,	NV	

Month:	
February	
Locations:	
Portland,	
OR;	Seattle,	
WA;	Billing,	
MT;	Boise,	
ID	

April	 Month:	
March		
Locations:	
NC;	
Charleston,	
SC;	
Washington
,	DC	

Month:	
March		
Locations:	
New	York,	
NY;	Buffalo,	
NY;	
Burlington,	
VT;	Boston,	
MA;	
Portland,	
ME	

Month:	
March		
Locations:	
Los	
Angeles,	
CA;	
Phoenix,	
AZ;	
Houston,	
TX;	Atlanta,	
GA;	
Jacksonville
,	FL;	Miami,	
FL	

Month:	
March		
Locations:	
San	
Francisco,	
CA;	
Memphis,	
TN	

Month:	
March		
Locations:	
St.	Louis,	
MO;	
Omaha,	NE;	
Sioux	Falls,	
SD	

Month:	
March		
Locations:	
Milwaukee,	
WI;	
Minneapoli
s,	MN;	
Chicago,	IL;	
Des	
Moines,	IA;	
Bismarck,	
ND	

Month:	
March		
Locations:	
Phoenix,	
AZ;	Los	
Angeles,	
CA;	
Albuquerqu
e,	NM	

Month:	
March		
Locations:	
San	
Francisco,	
CA;	Denver,	
CO;	Salt	
Lake	City,	
UT;	Las	
Vegas,	NV	

Month:	
March		
Locations:	
Portland,	
OR;	Seattle,	
WA;	Billing,	
MT;	Boise,	
ID	

May	 Month:	
April	
Locations:	
NC;	
Charleston,	
SC;	
Washington
,	DC	

Month:	
April	
Locations:	
New	York,	
NY;	Buffalo,	
NY;	
Burlington,	
VT;	Boston,	

Month:	
April	
Locations:	
Los	
Angeles,	
CA;	
Phoenix,	
AZ;	

Month:	
April	
Locations:	
San	
Francisco,	
CA;	
Memphis,	
TN	

Month:	
April	
Locations:	
St.	Louis,	
MO;	
Omaha,	NE;	
Sioux	Falls,	
SD	

Month:	
April	
Locations:	
Milwaukee,	
WI;	
Minneapoli
s,	MN;	
Chicago,	IL;	

Month:	
April	
Locations:	
Phoenix,	
AZ;	Los	
Angeles,	
CA;	

Month:	
April	
Locations:	
San	
Francisco,	
CA;	Denver,	
CO;	Salt	
Lake	City,	

Month:	
April	
Locations:	
Portland,	
OR;	Seattle,	
WA;	Billing,	
MT;	Boise,	
ID	
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MA;	
Portland,	
ME	

Houston,	
TX;	Atlanta,	
GA;	
Jacksonville
,	FL;	Miami,	
FL	

Des	
Moines,	IA;	
Bismarck,	
ND	

Albuquerqu
e,	NM	

UT;	Las	
Vegas,	NV	

June	 Month:	
May	
Locations:	
NC;	
Charleston,	
SC;	
Washington
,	DC	

Month:	
May	
Locations:	
New	York,	
NY;	Buffalo,	
NY;	
Burlington,	
VT;	Boston,	
MA;	
Portland,	
ME	

Month:	
May	
Locations:	
Los	
Angeles,	
CA;	
Phoenix,	
AZ;	
Houston,	
TX;	Atlanta,	
GA;	
Jacksonville
,	FL;	Miami,	
FL	

Month:	
May	
Locations:	
San	
Francisco,	
CA;	
Memphis,	
TN	

Month:	
May	
Locations:	
St.	Louis,	
MO;	
Omaha,	NE;	
Sioux	Falls,	
SD	

Month:	
May	
Locations:	
Milwaukee,	
WI;	
Minneapoli
s,	MN;	
Chicago,	IL;	
Des	
Moines,	IA;	
Bismarck,	
ND	

Month:	
May	
Locations:	
Phoenix,	
AZ;	Los	
Angeles,	
CA;	
Albuquerqu
e,	NM	

Month:	
May	
Locations:	
San	
Francisco,	
CA;	Denver,	
CO;	Salt	
Lake	City,	
UT;	Las	
Vegas,	NV	

Month:	
May	
Locations:	
Portland,	
OR;	Seattle,	
WA;	Billing,	
MT;	Boise,	
ID	

July	 Month:	
June	
Locations:	
NC;	
Charleston,	
SC;	
Washington
,	DC	

Month:	
June	
Locations:	
New	York,	
NY;	Buffalo,	
NY;	
Burlington,	
VT;	Boston,	
MA;	
Portland,	
ME	

Month:	
June	
Locations:	
Los	
Angeles,	
CA;	
Phoenix,	
AZ;	
Houston,	
TX;	Atlanta,	
GA;	
Jacksonville
,	FL;	Miami,	
FL	

Month:	
June	
Locations:	
San	
Francisco,	
CA;	
Memphis,	
TN	

Month:	
June	
Locations:	
St.	Louis,	
MO;	
Omaha,	NE;	
Sioux	Falls,	
SD	

Month:	
June	
Locations:	
Milwaukee,	
WI;	
Minneapoli
s,	MN;	
Chicago,	IL;	
Des	
Moines,	IA;	
Bismarck,	
ND	

Month:	
June	
Locations:	
Phoenix,	
AZ;	Los	
Angeles,	
CA;	
Albuquerqu
e,	NM	

Month:	
June	
Locations:	
San	
Francisco,	
CA;	Denver,	
CO;	Salt	
Lake	City,	
UT;	Las	
Vegas,	NV	

Month:	
June	
Locations:	
Portland,	
OR;	Seattle,	
WA;	Billing,	
MT;	Boise,	
ID	

August	 Month:	July	
Locations:	
NC;	
Charleston,	
SC;	
Washington
,	DC	

Month:	July	
Locations:	
New	York,	
NY;	Buffalo,	
NY;	
Burlington,	
VT;	Boston,	
MA;	
Portland,	
ME	

Month:	July	
Locations:	
Los	
Angeles,	
CA;	
Phoenix,	
AZ;	
Houston,	
TX;	Atlanta,	
GA;	
Jacksonville
,	FL;	Miami,	
FL	

Month:	July	
Locations:	
San	
Francisco,	
CA;	
Memphis,	
TN	

Month:	July	
Locations:	
St.	Louis,	
MO;	
Omaha,	NE;	
Sioux	Falls,	
SD	

Month:	July	
Locations:	
Milwaukee,	
WI;	
Minneapoli
s,	MN;	
Chicago,	IL;	
Des	
Moines,	IA;	
Bismarck,	
ND	

Month:	July	
Locations:	
Phoenix,	
AZ;	Los	
Angeles,	
CA;	
Albuquerqu
e,	NM	

Month:	July	
Locations:	
San	
Francisco,	
CA;	Denver,	
CO;	Salt	
Lake	City,	
UT;	Las	
Vegas,	NV	

Month:	July	
Locations:	
Portland,	
OR;	Seattle,	
WA;	Billing,	
MT;	Boise,	
ID	

September	 Month:	
August	
Locations:	
NC;	
Charleston,	
SC;	
Washington
,	DC	

Month:	
August	
Locations:	
New	York,	
NY;	Buffalo,	
NY;	
Burlington,	
VT;	Boston,	
MA;	
Portland,	
ME	

Month:	
August	
Locations:	
Los	
Angeles,	
CA;	
Phoenix,	
AZ;	
Houston,	
TX;	Atlanta,	
GA;	
Jacksonville
,	FL;	Miami,	
FL	

Month:	
August	
Locations:	
San	
Francisco,	
CA;	
Memphis,	
TN	

Month:	
August	
Locations:	
St.	Louis,	
MO;	
Omaha,	NE;	
Sioux	Falls,	
SD	

Month:	
August	
Locations:	
Milwaukee,	
WI;	
Minneapoli
s,	MN;	
Chicago,	IL;	
Des	
Moines,	IA;	
Bismarck,	
ND	

Month:	
August	
Locations:	
Phoenix,	
AZ;	Los	
Angeles,	
CA;	
Albuquerqu
e,	NM	

Month:	
August	
Locations:	
San	
Francisco,	
CA;	Denver,	
CO;	Salt	
Lake	City,	
UT;	Las	
Vegas,	NV	

Month:	
August	
Locations:	
Portland,	
OR;	Seattle,	
WA;	Billing,	
MT;	Boise,	
ID	

October	 Month:	
September	
Locations:	
NC;	
Charleston,	
SC;	
Washington
,	DC	

Month:	
September	
Locations:	
New	York,	
NY;	Buffalo,	
NY;	
Burlington,	
VT;	Boston,	
MA;	

Month:	
September	
Locations:	
Los	
Angeles,	
CA;	
Phoenix,	
AZ;	
Houston,	

Month:	
September	
Locations:	
San	
Francisco,	
CA;	
Memphis,	
TN	

Month:	
September	
Locations:	
St.	Louis,	
MO;	
Omaha,	NE;	
Sioux	Falls,	
SD	

Month:	
September	
Locations:	
Milwaukee,	
WI;	
Minneapoli
s,	MN;	
Chicago,	IL;	
Des	

Month:	
September	
Locations:	
Phoenix,	
AZ;	Los	
Angeles,	
CA;	
Albuquerqu
e,	NM	

	Month:	
September	
Locations:	
San	
Francisco,	
CA;	Denver,	
CO;	Salt	
Lake	City,	

Month:	
September	
Locations:	
Portland,	
OR;	Seattle,	
WA;	Billing,	
MT;	Boise,	
ID	
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Portland,	
ME	

TX;	Atlanta,	
GA;	
Jacksonville
,	FL;	Miami,	
FL	

Moines,	IA;	
Bismarck,	
ND	

UT;	Las	
Vegas,	NV	

November	 Month:	
October	
Locations:	
NC;	
Charleston,	
SC;	
Washington
,	DC	

Month:	
October	
Locations:	
New	York,	
NY;	Buffalo,	
NY;	
Burlington,	
VT;	Boston,	
MA;	
Portland,	
ME	

Month:	
October	
Locations:	
Los	
Angeles,	
CA;	
Phoenix,	
AZ;	
Houston,	
TX;	Atlanta,	
GA;	
Jacksonville
,	FL;	Miami,	
FL	

Month:	
October	
Locations:	
San	
Francisco,	
CA;	
Memphis,	
TN	

Month:	
October	
Locations:	
St.	Louis,	
MO;	
Omaha,	NE;	
Sioux	Falls,	
SD	

Month:	
October	
Locations:	
Milwaukee,	
WI;	
Minneapoli
s,	MN;	
Chicago,	IL;	
Des	
Moines,	IA;	
Bismarck,	
ND	

Month:	
October	
Locations:	
Phoenix,	
AZ;	Los	
Angeles,	
CA;	
Albuquerqu
e,	NM	

Month:	
October	
Locations:	
San	
Francisco,	
CA;	Denver,	
CO;	Salt	
Lake	City,	
UT;	Las	
Vegas,	NV	

Month:	
October	
Locations:	
Portland,	
OR;	Seattle,	
WA;	Billing,	
MT;	Boise,	
ID	

December	 Month:	
November	
Locations:	
NC;	
Charleston,	
SC;	
Washington
,	DC	

Month:	
November	
Locations:	
New	York,	
NY;	Buffalo,	
NY;	
Burlington,	
VT;	Boston,	
MA;	
Portland,	
ME	

Month:	
November	
Locations:	
Los	
Angeles,	
CA;	
Phoenix,	
AZ;	
Houston,	
TX;	Atlanta,	
GA;	
Jacksonville
,	FL;	Miami,	
FL	

Month:	
November	
Locations:	
San	
Francisco,	
CA;	
Memphis,	
TN	

Month:	
November	
Locations:	
St.	Louis,	
MO;	
Omaha,	NE;	
Sioux	Falls,	
SD	

Month:	
November	
Locations:	
Milwaukee,	
WI;	
Minneapoli
s,	MN;	
Chicago,	IL;	
Des	
Moines,	IA;	
Bismarck,	
ND	

Month:	
November	
Locations:	
Phoenix,	
AZ;	Los	
Angeles,	
CA;	
Albuquerqu
e,	NM	

Month:	
November	
Locations:	
San	
Francisco,	
CA;	Denver,	
CO;	Salt	
Lake	City,	
UT;	Las	
Vegas,	NV	

Month:	
November	
Locations:	
Portland,	
OR;	Seattle,	
WA;	Billing,	
MT;	Boise,	
ID	

*blood	draws	for	WHI	were	done	in	the	years	1993-1999,	with	the	exception	of	1993	and	1994	(before	
the	National	Weather	Service	Climate	Prediction	Center	database	had	started	documenting	data),	the	
years	used	for	UV	radiation	value	match	the	year	of	visit.	Those	with	visits	in	1993	or	1994	are	given	the	
corresponding	monthly	average	for	the	average	of	years	1995-2002.	
	
	
Supplemental	Table	5:	Available	UV	radiation	value	descriptive	statistics	for	ARIC	(average	from	
1994-2002)	

Field	Center	
Month	of	blood	
draw	

Wake	Forest	Baptist	
Medical	Center,	
Winston-Salem,	NC	

University	of	
Mississippi	Medical	
Center,	Jackson,	MS	

University	of	
Minnesota,	
Minneapolis,	MN	

Johns	Hopkins	
University,	
Baltimore,	MD	

January	 2.1	 2.7	 0.9	 1.4	
February	 2.5	 3.2	 1.1	 1.8	
March		 3.7	 4.7	 1.9	 2.8	
April	 5.7	 6.8	 3.4	 4.5	
May	 7.1	 8.2	 4.8	 6.1	
June	 8.1	 8.9	 6.2	 7.3	
July	 8.7	 9.1	 7.5	 8.3	
August	 8.9	 9.5	 7.8	 8.4	
September	 8.3	 9.1	 6.7	 7.5	
October	 6.6	 7.7	 4.7	 5.7	
November	 4.5	 5.5	 2.5	 3.6	
December	 2.8	 3.5	 1.3	 2.0	
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Supplemental	Table	6:	Available	UV	radiation	value	descriptive	statistics	for	MESA	(average	
from	2000-2002)	

Site	
Month	of	
visit	

Wake	Forest	
University,	
Winston-
Salem,	NC	

Columbia	
University,	
New	York,	NY	

Johns	
Hopkins	
University,	
Baltimore,	
MD	

University	of	
Minnesota,	
Minneapolis,	
MN	

Northwester
n	University,	
Chicago,	IL	

University	of	
California,	
Los	Angeles,	
CA	

January	 1.9	 1.1	 1.5	 0.7	 0.9	 2.3	
February	 2.5	 1.6	 1.9	 1.1	 1.5	 2.8	
March		 3.8	 2.6	 2.9	 2.0	 2.5	 4.1	
April	 5.9	 4.4	 4.8	 3.3	 4.0	 5.9	
May	 6.9	 5.4	 6.3	 4.6	 5.3	 7.3	
June	 7.7	 6.4	 7.1	 5.6	 6.2	 8.2	
July	 8.4	 7.6	 8.2	 6.9	 7.5	 8.9	
August	 8.1	 7.2	 8.0	 7.3	 7.7	 9.1	
September	 7.6	 6.5	 7.3	 6.1	 6.7	 8.9	
October	 6.0	 5.0	 5.7	 4.3	 4.9	 7.3	
November	 4.3	 3.0	 3.7	 2.1	 2.6	 4.5	
December	 2.5	 1.6	 2.0	 1.1	 2.4	 2.9	
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Supplemental	Table	7:	Available	UV	radiation	value	descriptive	statistics	for	WHI	

Location	
Month	of	
visit	

Northeast	
(35-40	
degrees	
N)	

Northeast	
(>40	
degrees	
N)	

South	
(<35	
degrees	
N)	

South	
(35-40	
degrees	
N)	

Midwest	
(35-40	
degrees	
N)	

Midwest	
(>40	
degrees	
N)	

West	
(<35	
degrees	
N)	

West	
(35-40	
degrees	
N)	

West	
(>40	
degrees	
N)	

January	
1993-4*:1.8	

1993-4*:	1.1	
1996:	1.2	

	

1993-4*:	
2.6	

1999:	2.2	

1993-4*:	
2.0	

1996:	2.2	
1999:	1.5	

1993-4*:	1.3	
1999:	0.9	

1993-4*:	1.0	
1996:	1.1	
1999:	0.7	

1993-4*:	
2.5	

1999:	2.2	

1993-4*:	
1.8	

1999:	1.4	

1993-4*:	
0.8	

1996:	0.9	
	

February	
1993-4*:	2.2	
1999:	2.1	

1993-4*:	1.3	
1999:	1.3	

1993-4*:	
3.1	

1996:	3.3	

1993-4*:	
2.4	

1996:	2.5	
	

1993-4*:	1.6	 1993-4*:	1.3	
	

1993-4*:	
2.9	

1999:	2.9	

1993-4*:	
2.1	

1999:	2.1	

1993-4*:	
1.1	

1996:	1.1	

March	
1993-4*:	3.3	

	
1993-4*:	2.2	
1999:	2.2	

1993-4*:4.5	
1996:	4.5	
1999:	4.5	

1993-4*:	
3.6	

1996:	3.6	
	

1993-4*:	2.6	
1999:	2.5	

1993-4*:	2.1	
1999:	2.1	

1993-4*:	
4.2	

1993-4*:3.2	
1996:	3.3	
1999:	3.3	

1993-4*:	
2.0	

April	
1993-4*:	5.1	

	
1993-4*:	3.7	
1996:	3.8	

1993-4*:	
6.4	

1993-4*:	
5.5	

1996:	5.4	
	

1993-4*:	4.3	
1996:	4.2	

1993-4*:	3.7	
1996:	3.8	
1999:	3.6	

1993-4*:	
6.1	

1999:	5.9	

1993-4*:	
5.1	

1993-4*:	
3.4	
	

May	
1993-4*:	6.6	

	
1993-4*:	5.2	
1999:	4.2	

1993-4*:	
7.7	

1996:	8.3	
1999:	6.4	

1993-4*:	
7.0	
	

1993-4*:	5.7	
1993-4*:	5.2	
1996:	5.6	
1999:	4.4	

1993-4*:	
7.7	

1993-4*:	
6.6	

1999:	5.4	

1993-4*:	
4.8	

June	
1993-4*:	7.7	

	

1993-4*:	6.6	
1999:	7.1	

	

1993-4*:	
8.5	

1999:	7.4	
	

1993-4*:	
8.0	

1996:	9.1	
	

1993-4*:	7.2	

1993-4*:	6.6	
1996:	7.5	
1999:	5.1	

	

1993-4*:	
8.7	

1993-4*:	
8.1	

1999:	7.2	
	

1993-4*:	
6.3	

July	
1993-4*:	8.5	

	
1993-4*:	7.8	
1999:	6.6	

1993-4*:	
9.0	

1996:	10.0	
	

1993-4*:	
8.8	

1996:	9.5	
1999:	7.5	

1993-4*:	8.3	 1993-4*:	7.8	
	

1993-4*:	
8.9	

1993-4*:	
8.8	

1996:	9.9	

1993-4*:	
7.3	

1996:	8.2	

August	
1993-4*:	8.7	

	

1993-4*:	7.7	
1996:	8.4	
1999:	6.8	

1993-4*:	
9.1	

1996:	9.9	
1999:	8.0	

1993-4*:	
9.1	

1999:	8.0	

1993-4*:	8.6	
1996:	9.1	
1999:7	.5	

1993-4*:	8.1	
1996:	8.5	

	

1993-4*:	
9.2	

1993-4*:	
9.1	

1993-4*:	
7.7	

September	 1993-4*:	7.9	
1996:	8.7	

	

1993-4*:	6.7	
1999:	5.3	

1993-4*:	
8.8	

1999:	7.8	

1993-4*:8.5	
1996:	9.2	

	

1993-4*:	7.6	
1996:	8.3	

1993-4*:	7.0	
1996:	7.7	
1999:	6.0	

1993-4*:	
9.2	

1993-4*:	
8.6	

1999:	7.9	

1993-4*:	
6.7	

October	
1993-4*:	6.2	
1999:	5.0	

1993-4*:	5.0	
1996:	5.5	

	

1993-4*:	
7.4	

1999:	6.5	

1993-4*:	
6.7	
	

1993-4*:	5.6	
1996:	5.9	
1999:	4.7	

1993-4*:	5.0	
1996:	5.3	
1999:	4.0	

1993-4*:	
7.7	

1996:	7.9	
1999:	7.1	

1993-4*:	
6.7	

1999:	6.0	

1993-4*:	
4.7	

1996:	4.9	

November	
1993-4*:	4.1	

	

1993-4*:	2.9	
1996:	3.1	
1999:	2.3	

1993-4*:	
5.2	

1996:	5.5	
1999:	4.5	

1993-4*:	
4.4	

1996:	4.7	
1999:	4.0	

1993-4*:	3.3	
1993-4*:	2.8	
1996:		3.1	

	

1993-4*:	
5.1	

1996:	5.2	
	

1993-4*:	
4.1	

1993-4*:	
2.6	

December	
1993-4*:	2.4	

1993-4*:	1.6	
1996:	1.7	
1999:	1.2	

1993-4*:	
3.4	

1996:	3.8	
1999:	2.9	

1993-4*:	
2.7	
	

1993-4*:	1.9	
1996:	2.1	

1993-4*:	1.5	
1996:	1.7	
1999:	1.3	

	
1993-4*:	

2.4	
1993-4*:	

1.3	

Only	location,	month,	year	combos	with	observations	in	the	final	dataset	are	shown	
*average	of	1995-2002	(all	data	collected,	since	database	started	in	late	1994)	
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Supplemental	Table	8:	Performance	of	models	in	determining	optimal	p-value	cutoff	
Ancestry	 Model	 Cut-off	 PGS	R2	(model	R2)	 p-value	 #	SNPs	

in	PGS	

European	

(n=1,000)	

No	covariates	 0.00025	 0.015	(0.015)	 0.00009	 251	

Age	+	sex	 0.00025	 0.016	(0.052)	 0.00005	 251	

Age	+	sex	+BMI	 0.00035	 0.016	(0.065)	 0.00005	 341	

Age	+	sex	+	UV	 0.00035	 0.014	(0.106)	 0.000001	 341	

Age	+	sex	+	BMI	+UV	 0.00035	 0.014	(0.129)	 0.00008	 341	

Age	+	sex	+	BMI	+UV	+	intake	 0.00035	 0.013	(0.137)	 0.00007	 341	

	

	

	

African	

(n=57)	

No	covariates	 0.01265	 0.081	(0.081)	 0.024	 32,269	

Age	+	sex	 0.01265	 0.107	(0.179)	 0.008	 32,269	

Age	+	sex	+BMI	 0.01265	 0.08	(0.162)	 0.03	 32,269	

Age	+	sex	+	UV	 0.01265	 0.105	(0.273)	 0.006	 32,269	

Age	+	sex	+	BMI	+UV	 0.01265	 0.044	(0.37)	 0.06	 32,269	

Age	+	sex	+	BMI	+UV	+	intake	 0.0072	 0.011	(0.33)	 0.47	 19,261	

	
	
Supplemental	Table	9:	Top	European	ancestry	Gene-Ontology	biological	process	complete	
enrichment	categories		
GO	biological	process	complete	 	Fold	Enrichment	 raw	P	value	 FDR	
regulation	of	cell	communication	by	electrical	
coupling	

42.75	 6.21E-06	 8.11E-03	

regulation	of	anatomical	structure	
morphogenesis	

2.94	 1.77E-06	 4.63E-03	

neuron	differentiation	 2.93	 3.07E-06	 5.35E-03	
positive	regulation	of	cell	differentiation	 2.65	 5.74E-05	 4.49E-02	
positive	regulation	of	developmental	process	 2.58	 3.00E-06	 5.87E-03	
cell	development	 2.56	 4.52E-07	 7.07E-03	
Neurogenesis	 2.33	 1.09E-05	 1.22E-02	
generation	of	neurons	 2.32	 2.45E-05	 2.26E-02	
positive	regulation	of	multicellular	organismal	
process	

2.20	 3.61E-05	 2.98E-02	

nervous	system	development	 2.20	 1.18E-06	 6.15E-03	
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Supplemental	Table	10:	Top	African	ancestry	Gene-Ontology	biological	process	complete	
enrichment	categories	
GO	biological	process	complete	 	Fold	Enrichment	 raw	P	value	 FDR	

cell-cell	adhesion	mediated	by	cadherin		 2.88	 7.73E-04	 3.11E-02	
cAMP	metabolic	process		 2.85	 1.17E-03	 4.32E-02	
cyclic	nucleotide	metabolic	process		 2.49	 2.57E-04	 1.28E-02	
cardiac	muscle	cell	contraction		 2.37	 1.16E-03	 4.31E-02	
glutamate	receptor	signaling	pathway		 2.32	 6.10E-04	 2.56E-02	
regulation	of	action	potential		 2.28	 5.64E-04	 2.44E-02	
cell	communication	involved	in	cardiac	
conduction		

2.26	 1.26E-03	 4.63E-02	

dendrite	morphogenesis		 2.24	 1.96E-04	 1.02E-02	
calcium-dependent	cell-cell	adhesion	via	
plasma	membrane	cell	adhesion	molecules		

2.22	 1.15E-03	 4.31E-02	

transmission	of	nerve	impulse		 2.22	 7.60E-04	 3.07E-02	

	
	
	
	
Supplemental	Figure	12:	Top	European	ancestry	PantherGO-Slim	Molecular	Function	categories	
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Supplemental	Figure	13:	Top	African	ancestry	PantherGO-Slim	Molecular	Function	categories	

	
	
	
	
	
	
Supplemental	Table	11:	25(OH)D	Z-scores	by	decile	for	those	of	European	ancestry	

Percentile	
Cohort	 1	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	 99	
PRS	
determination		
(n=1,000)	

NA	 -0.13	 0.06	 -0.02	 0.19	 -0.07	 0.22	 0.29	 0.31	 0.13	 0.33	 NA	

Combined	
(n=8,569)	

0.01	 0.14	 0.18	 -0.01	 0.07	 0.15	 0.18	 0.22	 0.27	 0.36	 0.45	 0.54	

Supplemental	Table	11	shows	25(OH)D	Z-scores	for	those	of	European	ancestry	by	deciles	and	for	
extreme	percentiles	(1st	and	99th).	As	expected,	as	percentile	increases,	Z-scores	do	too.	
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Supplemental	Table	12:	25(OH)D	concentrations	by	quintile	for	those	of	African	ancestry	
Percentile	

Cohort	 20	 40	 60	 80	 100	
PRS	
determination		
(n=57)	

-0.94	 0.09	 -0.46	 -0.32	 -0.46	

Combined	
(n=1,042)	

-0.29	 -0.25	 -0.07	 -0.14	 -0.15	

Supplemental	Table	12	shows	25(OH)D	Z-scores	for	those	of	European	ancestry	by	quintile.	As	expected,	
as	percentile	increases,	Z-scores	do	too.	
	
	
	
Supplemental	Figure	14:	Histograms	of	key	variables	by	cohort	by	ancestry	
	 	 African	ancestry	 European	ancestry	
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Age	 ARIC	 	
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WHI	

	 	
Dietary	
Intake	

ARIC	

	 	
MESA	

	 	
WHI	

	 	
Available	UV	radiation	appear	to	follow	non-normal	distributions.	Available	UV	radiation	is	non-normal	
as	the	variable	was	calculated	by	month	of	blood	draw,	and	blood	draws	were	non-normally	distributed	
throughout	calendar	time.	
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Supplemental	Figure	15:	European	ancestry	SNP	Heritability		

	
Sample	Size	

	 7,119	 3,301	 3,818	 3,689	 3,430	
Supplemental	Figure	15	shows	the	estimated	European	ancestry	SNP	heritability	for	Model	1	and	Model	
2.	Model	1	adjusts	for	age,	sex,	BMI	and	available	UV	radiation.	Model	2	adjusts	for	age,	sex,	BMI,	
available	UV	radiation	and	dietary	intake.	Model	1	tends	to	produce	biased	estimates	(i.e.	
overestimations),	therefore	model	2	was	used	for	all	Aim	2	analyses.		
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Supplemental	Figure	16:	African	ancestry	SNP	Heritability	

	
Sample	Size	

	 1,719	 635	 1,084	 910	 809	
Supplemental	Figure	16	shows	the	estimated	African	ancestry	SNP	heritability	for	Model	1	and	Model	2.	
Model	1	adjusts	for	age,	sex,	BMI	and	available	UV	radiation.	Model	2	adjusts	for	age,	sex,	BMI,	available	
UV	radiation	and	dietary	intake.	Model	1	tends	to	produce	biased	estimates	(i.e.	overestimations),	
therefore	model	2	was	used	for	all	Aim	2	analyses.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

41
.7
%

56
.5
%

46
.0
%

66
.9
%

61
.9
%

32
.2
% 37

.4
%

46
.0
%

43
.4
%

46
.5
%

0%

10%

20%

30%

40%

50%

60%

70%

OVERALL MALES FEMALES LOW	UV 	(<8 .1 ) H IGH	UV 	 (>8 .1 )

HE
RI
TA

BI
LI
TY

AFRICAN-ANCESTRY	SNP	HERITABILITY
All	SNPs	Model	1 All	SNPs	Model	2



	

	

132	

Supplemental	Table	13:	Betas,	standard	errors	and	p-values	for	G*E	interaction	terms	
	 European	Ancestry	 African	Ancestry	
Model	 PGS*UV	 PGS*Intake	 PGS*UV	 PGS*Intake	
	 Beta	

(SE)	
p-value	 Beta	

(SE)	
p-value	 Beta	

(SE)	
p-value	 Beta	

(SE)	
p-value	

Environmental	
main	effect	

0.096	
(0.005)	

<0.0001	 0.11	
(0.011)	

<0.0001	 0.07	
(0.012)	

<0.0001	 0.13	
(0.033)	

0.0002	

Genetic	main	
effect	

0.087	
(0.038)	

0.022	 0.16	
(0.018)	

<0.0001	 0.086	
(0.071)	

0.23	 0.062	
(0.031)	

0.04	

Interaction	
term	

0.017	
(0.0073)	

0.021	 0.0006	
(0.018)	

0.74	 -0.0044	
(0.012)	

0.71	 0.00042	
(0.03)	

.99	

 
	
	
	
Supplemental	Table	14:	Characteristics	of	sub-sample	with	supplement	use	data	

	

	

	

	

	
	

1available	UV	radiation	
2vitamin	D	intake	from	diet	and	supplements		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Cohort	 Variable	 European-ancestry	 African-ancestry	

WHI	

Sample	size	 455	 700	

Age	(SE)	[years]	 66.6	(6.8)	 61.8	(7.4)	
%	Female	 100	 100	

BMI	(SE)	[kg/m2]	 29.9	(6.3)	 31.2	(6.4)	
UV	(SE)1	[units]	 5.2	(2.5)	 5.5	(2.6)	
Intake	(SE)2	[IU]	 420.9	(299.4)	 308.8	(257.4)	

25(OH)D	(SE)	[ng/ml]	 18.9	(10.7)	 19.0	(15.4)	
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Supplemental	Table	15:	Characteristics	of	sub-sample	with	physical	activity	data		
	

	

	

	

	 	

	

	

	
	
	
	
	
	

1available	UV	radiation	
2vitamin	D	intake	from	diet		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Cohort	 Variable	 European-ancestry	 African-ancestry	

MESA	

Sample	size	 1,935	 341	

Age	(SE)	[years]	 62.7	(10.3)	 62.3	(10.4)	
%	Female	 53%	 52%	

BMI	(SE)	[kg/m2]	 27.8	(5.0)	 30.1	(5.9)	
UV	(SE)1	[units]	 4.5	(2.3)	 161.4	(144.1)	
Intake	(SE)2	[IU]	 188.9	(157.2)	 25.7	(32.0)	

Physical	activity	(SE)	[Met-hours/week]	 26.0	(28.2)	 24.8	(28.8)		
25(OH)D	(SE)	[ng/ml]	 30.1	(10.9)	 19.5	(8.9)	

WHI	

Sample	size	 436	 363	

Age	(SE)	[years]	 66.6	(6.8)	 61.9	(7.6)	
%	Female	 100	 100	

BMI	(SE)	[kg/m2]	 29.9	(6.3)	 31.9	(6.4)	
UV	(SE)	[units]	 5.2	(2.5)	 5.5	(2.6)	
Intake	(SE)	[IU]	 193.6	(144.7)	 145.0	(119.4)	

Physical	activity	(SE)	[Met-hours/week]	 6.3	(9.5)	 6.2	(11.0)	
25(OH)D	(SE)	[ng/ml]	 18.9	(10.8)	 16.8	(12.9)	
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Supplemental	Figure	17:	Sensitivity	analyses	interaction	test	results	from	1-DF	and	2-DF	models	
controlling	for	physical	activity		

	
Supplemental	Figure	17	shows	–log(p-values)	for	the	1-DF	and	2-DF	models	of	the	PGS	interaction;	all	
models	controlled	for	age,	sex,	BMI,	cohort,	physical	activity,	vitamin	D	intake	and	available	UV	
radiation.	The	red	line	denotes	the	p=0.05	significance	cutoff.	The	2-DF	PGS*intake	and	2-DF	PGS*UV	
models	were	statistically	significant	in	participants	of	European	ancestry	(p=3.2x10-16and	1.8x10-16,	
respectively).	Original	to	this	manuscript.	
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Supplemental	Figure	18:	Percent	achieving	adequate	25(OH)D	in	those	reaching	IOM	vitamin	D	
intake	guidelines	by	genetic	risk	in	those	of	European	ancestry	independent	of	WHI	

European	ancestry	
participants	with	
supplement	use	
data	and	who	
reached	IOM	
vitamin	D	intake	
guidelines	(n=177)	

	
Supplemental	Figure	18	shows	the	percent	of	European	-ancestry	participants	who	reach	IOM	vitamin	D	
intake	guidelines	and	achieved	adequate	25(OH)D	(20	ng/ml)	by	quartile	of	genetic	risk.	In	those	of	
independent	from	WHI	(n=177),	as	genetic	risk	decreased	(higher	PGS),	those	reaching	optimal	vitamin	
D	concentrations	increased.	The	difference	in	percent	reaching	adequate	25(OH)D	was	13.5%;	72.7%	of	
participants	with	highest	risk	and	88.6%	of	participants	with	lowest	risk	reached	adequate	25(OH)D.	This	
is	a	statistically	(p=0.028)	and	clinically	significant	difference.	Original	to	this	manuscript.			
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Description	of	cohorts	
	
ARIC	
	
“ARIC	is	a	prospective	epidemiologic	study	conducted	in	four	U.S.	communities.	ARIC	is	
designed	to	investigate	the	etiology	and	natural	history	of	atherosclerosis,	the	etiology	of	
clinical	atherosclerotic	diseases,	and	variation	in	cardiovascular	risk	factors,	medical	care	and	
disease	by	race,	gender,	location,	and	date.	
	
ARIC	includes	two	parts:	the	Cohort	Component	and	the	Community	Surveillance	Component.	
The	Cohort	Component	began	in	1987,	and	each	ARIC	field	center	randomly	selected	and	
recruited	a	cohort	sample	of	approximately	4,000	individuals	aged	45-64	from	a	defined	
population	in	their	community.	A	total	of	15,792	participants	received	an	extensive	
examination,	including	medical,	social,	and	demographic	data.	These	participants	were	
reexamined	every	three	years	with	the	first	screen	(baseline)	occurring	in	1987-89,	the	second	
in	1990-92,	the	third	in	1993-95,	and	the	fourth	and	last	exam	was	in	1996-98.	Follow-up	occurs	
yearly	by	telephone	to	maintain	contact	with	participants	and	to	assess	health	status	of	the	
cohort.	
	
In	the	Community	Surveillance	Component,	currently	ongoing,	these	four	communities	are	
investigated	to	determine	the	community-wide	occurrence	of	hospitalized	myocardial	
infarction	and	coronary	heart	disease	deaths	in	men	and	women	aged	35-84	years.	Hospitalized	
stroke	is	investigated	in	cohort	participants	only.	The	study	conducts	community	surveillance	of	
inpatient	heart	failure	(ages	55	years	and	older)	and	cohort	surveillance	outpatient	heart	failure	
events	beginning	in	2005.	To	date,	the	ARIC	project	has	published	745	articles	in	peer-reviewed	
journals	and	other	summary	reports	of	ARIC	data	at	various	national	and	international	scientific	
conferences	and	meetings	
(https://www.nhlbi.nih.gov/research/resources/obesity/population/aric.htm).”	
	
MESA	
	
“The	Multi-Ethnic	Study	of	Atherosclerosis	(MESA)	is	a	study	of	the	characteristics	of	subclinical	
cardiovascular	disease	(disease	detected	non-invasively	before	it	has	produced	clinical	signs	and	
symptoms)	and	the	risk	factors	that	predict	progression	to	clinically	overt	cardiovascular	
disease	or	progression	of	the	subclinical	disease.	MESA	researchers	study	a	diverse,	population-
based	sample	of	6,814	asymptomatic	men	and	women	aged	45-84.	Approximately	38	percent	
of	the	recruited	participants	are	white,	28	percent	African-American,	22	percent	Hispanic,	and	
12	percent	Asian,	predominantly	of	Chinese	descent	(https://www.mesa-
nhlbi.org/MESA_508TextOnly.htm).”		
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WHI	
	
“The	Women's	Health	Initiative	(WHI)	is	a	long-term	national	health	study	focused	on	strategies	
for	preventing	heart	disease,	breast	and	colorectal	cancer,	and	osteoporotic	fractures	in	
postmenopausal	women.		Launched	in	1993,	the	WHI	enrolled	161,808	women	aged	50-79	
into	one	or	more	randomized	Clinical	Trials	(CT),	testing	the	health	effects	of	hormone	therapy	
(HT),	dietary	modification	(DM),	and/or	calcium	and	Vitamin	D	supplementation	(CaD)	or	
to	an	Observational	Study	(OS).		At	the	end	of	the	initial	study	period	in	2005,	WHI	Extension	
Studies	(2005-2010,	2010-2020)	continued	follow-up	of	all	women	who	consented.			
This	ground-breaking	study	changed	the	way	health	care	providers	prevent	and	treat	some	of	
the	major	diseases	impacting	postmenopausal	women.		Results	from	the	WHI	Hormone	Trials	
have	been	estimated	to	have	already	saved	$35.2	billion	in	direct	medical	costs	in	the	US	
alone.		To	date,	WHI	has	published	over	1,400	articles	and	approved	and	funded	289	ancillary	
studies	(https://www.whi.org/SitePages/WHI%20Home.aspx).”		
	
	


