
DATA DRIVEN SEARCH WITH COSTLY INFORMATION:
WHEN TO OPEN PANDORA’S BOX

by

Evangelia Gergatsouli

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2024

Date of final oral examination: 04/19/2024

The dissertation is approved by the following members of the Final Oral Committee:
Christos Tzamos, Associate Professor, Informatics and Telecommunications, Univer-
sity of Athens (Chair)
Eric Bach, Professor, Computer Sciences & Mathematics
Shuchi Chawla, Professor, Computer Science, University of Texas-Austin
Ilias Diakonikolas, Professor, Computer Sciences

© Copyright by Evangelia Gergatsouli 2024
All Rights Reserved

i

To my mum, my grandma Evangelia, and all the women trying to overcome sometimes
impossible hurdles.

Στη μαμά μου, τη γιαγιά Ευαγγελία, και όλες τις γυναίκες που προσπαθούν να

ξεπεράσουν κάποιες φορές αδύνατα εμπόδια.

ii

acknowledgments

First of all I would like to thank Christos for being my advisor and collaborator
throughout this PhD. His enthusiasm for tackling new problems combined with his
ability to come up with new ideas were definitely crucial in shaping my own approach
to research as well. I also really thank him for giving me the space to explore on
my own and work with other people as well, helping me become a independent
researcher. A big thanks also to Shuchi, who became a collaborator from the very
beginning; a big chunk of the papers in this thesis also include her. Despite not being
officially a coadvisor, she was really close to one and I’m grateful for all the advice
and suggestions, academic or not. I would also like to thank Ilias Diakonikolas for
being in my Qual, Prelim and defense committees, and Eric Bach for being in my final
defense committee. I would also like to thank Paul Dutting for submitting a reference
letter for me.

Throughout these years I was very lucky to meet and collaborate with people
outside UW, and I wanted to thank them individually. Themis Gouleakis, for an
(unfortunately remote) internship at Max-Planck at the beginning of the pandemic.
Okke Schrijvers for a really fantastic internship at Meta, for his really useful work
advice and suggestions and for being a great mentor, even after the internship ended.
Finally, Jose Correa for an amazing visit at Universidad de Chile and for welcoming
me in one of the most collaborative labs I’ve ever been to. Also everyone else at U de
Chile that made this visit so fun: Victor, Jose V, Bruno, Dana, Andres, Alexandros,
Uli and Jannik. Special thanks to Andres and Alexandros for nudging me to apply
for this visit and to Anna Me. for her invaluable advice on learning spanish!

A big thanks also goes to my collaborators for discussing all these problems
together, some of which are part of this thesis; Alexia Atsidakou, Constantine Cara-
manis, Shuchi Chawla, Jose Correa, Paul Dutting, Dimitris Fotakis, Themis Gouleakis,
Brendan Lucier, Jeremy Mcmahan, Orestis Papadigenopoulos, Nikolas Patris, Charis
Pipis, Rojin Rezvan, Miltos Stouras, Yifeng Teng, Alexandros Tsigonias-Dimitriadis,
Christos Tzamos, Bruno Ziliotto, Ruimin Zhang. I want to especially mention again
Orestis; apart from being a great collaborator, he has also been a friend, always ready
to offer advice, and someone I was always looking forward to grabbing a beer with,
either in Austin or in any city around the world that we happened to coincide. He is
really missed.

iii

To the people that I bothered with my job-market questions, I truly thank them
for their time and advice; Greg, Orestis P, Orestis V and Manolis.

Apart from the academic side, I would like to thank all the amazing people around
me, old and new; this would have been an infinitely worse experience without them.
First of all an enormoos thanks to two people without whom I probably wouldn’t be
writing these acknowledgments right now. Giorgos K (who despite being 8 timezones
away was always available) and Rojin, who were there (remotely or physically) in a
not-so-fun period, I am really grateful for that. To Rojin for being one of my closest
friends almost from the beginning, and being there through highs and lows, I’m
grateful for that. I would have never imagined, when I talked to her on skype right
before she joined UW (showing her the snow, like an excited little kid), that we would
still be friends 5 years later. To Angeliki, for becoming a close friend from her initial
days in Madison, I’m really grateful for all the advice, our many discussions over
tsipouro and our fun trips exploring WI (and the salar!). To Erfan, for also becoming
a close friend towards the end, for his support, unwavering optimism and for always
helping me see the bright side of things, I really need that sometimes! I really enjoyed
everything I did with all you guys, and I really hope we’ll be closer together and
there will be much more of that fun stuff to come!

To the **polis Council, Elena, Emad, Erfan, Luke, Mehrdad, Ramin, Rojin and
Soroosh for making the pandemic such a (surprisingly) fun time, it would definitely
not have been the same without you all! Bengisu, Erfan and Alex for an amazingly
fun summer exploring CA. Everyone else in Madison ; Gokcan, Bengisu, Zack, Kartik,
Luke, Soroosh, Natalia, Jesse, Ahmet and Greg for all the fun stuff we did throughout
the years; I loved spending every minute of it with all of you and I hope we’ll still be
able to hang out in the years to come! The CA guys, Eirini, Yeganeh, Amirata and
Negin for their hospitality and all the fun stuff we did during my visits there!

To everyone back home or scattered around the world that I unfortunately don’t
get to see nearly as often as I want: Giorgos K, Alexandros, Maria, Anna B, Dafni,
Iliana, Angeliki K, Sevi, Eirini K, Anna O, Eirini T, Manos; thank you for all the (little)
time we were able to spend together these 6 years, and our small fun trips around
Greece (or CA, Germany and Chile with some of you), during my visits there. Finally
my parents, my grandma Evangelia, my sister, my godparents and my two amazing,
beautiful cats (probably the cutest ones!). I really really wish we could all be closer!

As a closing (yet important) note, I wanted to acknowledge that University of

iv

Wisconsin-Madison, as many other institutions around the US, is built on land force-
fully taken from people living in this area far before Wisconsin became a state. The
land that the main UW - Madison campus is built on (called Teejop (day-JOPE)) used
to belong to the Ho-Chunk people, who alongside many other Native Nations in WI,
were forced to abandon their land.

v

contents

Contents v

List of Tables vii

List of Figuresviii

Abstract x

1 Introduction 1
1.1 Our Contributions 5
1.2 Bibliographic Notes 11

I Non-parametric Benchmarks 12

2 Introduction & Overview of Results 13
2.1 Related work 14
2.2 Overview of Results 15

3 Partially-Adaptive: Initial approach 20
3.1 Model & Definitions 21
3.2 Pandora’s Box vs Partially-Adaptive 25
3.3 More complex constraints 31
3.A Appendix for Chapter 3 40

4 Partially Adaptive: A simpler approach 55
4.1 Preliminaries 56
4.2 Generalizing Weitzman’s Algorithm 57
4.3 Conditioning on Vb > σb 59
4.4 Conditioning on Vb = v 64
4.A Appendix for Chapter 4 66

5 Fully Adaptive 74
5.1 Preliminaries 76
5.2 Roadmap of the Reductions and Implications 79

vi

5.3 Connecting Pandora’s Box and MSSCf 81
5.4 Connecting MSSCf and Optimal Decision Tree 88
5.A Appendix for Chapter 5 90

II Robustness in the prior knowledge 108

6 Introduction & Overview of Results 109
6.1 Overview of Results109

7 Sample access to distribution114
7.1 Competing with the Partially-Adaptive115
7.A Appendix for Chapter 7119

8 Unknown distributions: an Online Pandora’s Box Problem124
8.1 Worst Case distributions126
8.2 Adding Context136
8.A Appendix for Chapter 8149

9 Noisy Observations172
9.1 Noisy Decision Tree172
9.2 Mixture of Product Distributions174
9.A Appendix for Chapter 9178

References180

vii

list of tables

1.1 Non-parametric benchmarks comparison. 5
1.2 Results for complex constraints . 7
1.3 Approximation factors when selecting poly(n, 1/ε, log 1/δ) samples. Re-

sults hold w.p. 1 − δ. 8

2.1 Example of the joint distribution D, with n boxes, and m scenarios. . . . 13

3.1 Instance of partition matroid k-coverage 39

4.1 Example with 3 scenarios and 3 boxes. 67

5.1 Differences of reductions of Theorems 5.18, and the Main Lemmas 5.11
and 5.10 that comprise Theorem 5.8. 91

7.1 Approximation factors from our initial approach, when selecting poly(n, 1/ε, log 1/δ)
samples. Results hold w.p. 1 − δ. 116

viii

list of figures

1.1 The picture shows the relation between the benchmarks. The non-adaptive
family is a subset of the Partially-Adaptive which is a subset of the Fully-
Adaptive. 6

1.2 Initial approach vs Partially-Adaptive. 6
1.3 Landscape of results for Pandora’s Box vs Partially-Adaptive 7
1.4 Landscape of results for Pandora’s Box vs Fully-Adaptive 8
1.5 High level overview of our algorithm for online Pandora’s Box with ad-

versarial prices. 9
1.6 High level overview of our algorithm for Contextual Pandora’s Box. . . 10

2.1 Ski rental argument for deciding the stopping time. Stopping where the
lines meet gives a 2 approximation. 16

2.2 Landscape of results for Pandora’s Box vs Partially-Adaptive(same as
Figure 1.3) . 17

2.3 A summary of our approximation preserving reductions (same as Fig-
ure 5.1 from Chapter 5) . 19

2.4 Landscape of results for Pandora’s Box vs Fully-Adaptive. 19

4.1 Split of scenarios in Rt. 62
4.2 Algorithm’s solution when D← DV>σ, for an instance with scenarios S =

{s1, s2, s3}, and boxes B = {b1,b2,b3,b4}. The circles contain the scenarios
that have not stopped at each step. Scenario s1 stopped at box b2, scenario
s2 stopped at box b1 and s3 at box b4. 68

4.3 Split of scenarios in Rt. 69
4.4 Algorithm’s solution when conditioning on V = v, for an instance with

scenarios S = {s1, s2, s3}, and boxes B = {b1,b2}. The nodes contain the
consistent scenarios at each step, and the values V are revealed once we
open the corresponding box. 70

4.5 Picture depicting the proof above. 73

5.1 A summary of our approximation preserving reductions 75
5.2 Summary of all our reductions. Bold black lines denote our main theorems,

gray dashed are minor claims, and dotted lines are trivial reductions. . . 80

ix

5.3 Reductions shown in this section. Claim 5.9 alongside Lemmas 5.11
and 5.10 are part of Theorem 5.8. 83

5.4 Summary of reductions in Section 5.4 . 89
5.5 Reductions shown in Section 5.3.1 . 91
5.6 Case 1: S is the set of scenarios remaining when Ei is chosen, sleaf is the

scenario that si ends up with. 103
5.7 Case 2: run test Ti vs j to distinguish si and sj. Sets S1 and S2 partition S . 103
5.8 Summary of all the reductions with non-unit costs. The only result that

needs a changed proof is Corollary 5.25 highlighted in bold (previously
Theorem 5.17). 106

5.9 Reductions shown in this section. The solid lines are part of Corollary 5.24.106
5.10 Summary of reductions for non unit cost boxes. 107

6.1 Example on how why any strategy will fail against the Fully-Adaptive
when we are only given sample access to D. 110

8.1 The regret as a function of time in a) Full feedback setting, and b) Bandit
feedback setting. 162

x

abstract

Data-driven algorithms for combinatorial optimization problem is a brand new area
that emerged in the intersection of theoretical computer science and machine learning
these past years. It manages to combine modern machine learning techniques and
the use of (the abundance of) training data with the formal mathematical guarantees
of traditional algorithm design.

In this thesis we study a natural costly search problem; having some preliminary
(potentially inaccurate/uncertain) input data for n different options, information
about this uncertain input can be obtained at extra monetary or computational over-
head. Our goal is to find the best option for us (i.e. the cheapest) without spending
too many resources obtaining accurate information. Determining the optimal manner
for acquiring information has now become an online decision-making problem: each
piece of information obtained by the algorithm can affect whether and which piece to
acquire next

Pandora’s Box problem (Weitzman, 1979), an old economics paradigm, and its
extensions capture optimization problems with stochastic input where the algorithm
can obtain instantiations of input random variables at some cost. Learning exploration
policies given input distributions has been a main challenge of machine learning
frequently associated with Reinforcement Learning, however, most of the applied
methods for combinatorial algorithms usually have no theoretical guarantees or they
optimize only over a parameterized family of algorithms. But even in non-parametric
settings we usually assume full knowledge of the input distribution, which is not the
case in practice.

In contrast to the previous work, this thesis focuses on two main themes; (1)
learning policies for non-parametric benchmarks (2) robust policies for unknown or
noisy settings, both through the lens of Pandora’s Box.

1

1 introduction

Traditional algorithm design focuses on solving the various combinatorial optimiza-
tion problems in worst case instances and in a static manner; the algorithm takes the
input at the beginning, decides on a process of solving the problem and executes
it. Modern problems however could be evolving rapidly, thus requiring algorithms
that re-evaluate their input and potentially change their initial process, while at the
same time being able to utilize the new data that came up, instead of pessimistically
assume worst case input. This area is known as data-driven algorithms design and
largely lies in the intersection of traditional theoretical Computer Science areas like
Online and Approximation algorithms, Stochastic Optimization as well as Machine
Learning and Data Science.

There are many real life scenarios where we are called to make a decision, while
only having partial information. We can, however, spend more time or resources
learning more about our options in order to make a better decision. Such problems
are modeled by a problem from economics called Pandora’s Box, first formulated
by Weitzman (1979). More concretely, we can think of our different options as n

boxes, each of which contains a price which follows some known distribution. In
order to see the price drawn we need to pay an opening cost for this box. In the our
goal is to pick a box such that we minimize our total exploration cost plus the price
of the box we chose. This is a very well-studied problem in the economics literature,
and to better motivate the problem we include some economics-inspired examples
and applications.

• Housing Market: Imagine you are looking to buy a house, and have gone
through many listing online that mention a price for the house and contain
photos and videos of the property. However, it would be prudent to visit the
house in person, thus spending time and gas, to verify that the house is as
described in the listing. It could be the case, that some damages were not
disclosed to you, therefore the actual price is higher than the one listed. It
would be unreasonable to visit every house that is listed for sale online, but how
do we choose which ones to visit and which one to buy in the end?

• Candidate Search: In another common scenario, a company is looking to hire
an employee for an open position. They receive a multitude of CVs, and are

2

planning on interviewing the candidates that look like the best fit for the open
position. However, interviews are costly; some company employee has to spend
time with the interviewees and flying the candidate out to the company location
costs actual money. How should the company choose the candidates to interview, and
the one to hire in the end?

• Consumer Search: In the simplest scenario that we all face daily, imagine we
are looking to buy a gift for our friend, and we know this item is sold in a bunch
of shops. Despite having some prior information on the shops (e.g. some of
them are notoriously expensive, but some might usually sell cheaper products),
we need to spend time to visit the shop and inquire about our gift. Since we
do not have the time to visit every shop to find the cheapest option, how do we
decide which shops to visit and when to stop searching?

The optimal policy for this problem is given by a simple and elegant greedy
algorithm, described in Weitzman (1979). For this policy to work Weitzman made the
assumption that the different options are independent of each other ; an assumption
that largely does not hold in practice, as we highlight in the examples mentioned
above.

• Housing Market: there could be local geographical phenomena that affect close
by houses the same way. For example a neighborhood’s proximity to water (e.g.
lake, sea or river) might imply that all nearby houses have a higher chance of
water or mold damage being present.

• Candidate Search: similarly, candidates from the same school are affected the
same way. Having taken the same classes with the same professors, means that
their background has a high chance of being good for both or bad for both.

• Consumer Search: different shops use different suppliers which could affect
their prices. For example if a supplier is running low on a part, all the shops
using this supplier will probably have a shortage and sell the items that use this
part at a higher price.

Wanting to solve a problem as close to real life situations as possible, in this thesis
we tackle Pandora’s Box with correlations from a data-driven perspective. We
address two main themes on data driven algorithm design. First we design algorithms

3

for non-parametric benchmarks; most of the literature in data-driven algorithms
focuses on fixing algorithms with specific parameters that are then learned. Our
work, on the other hand, does not restrict the algorithm to use specific parameters.
The second theme explored in this thesis is that of robustness to the prior information
given. It is not always possible to obtain accurate and complete information on
the problem, therefore we studied what happens when prior information is fully
unknown, and how we can incorporate the information obtained during the game in
our future decisions.

To summarize, in this thesis we address two main problems through the lens of
the Correlated Pandora’s Box problem;

• Part I: Designing policies for non-parametric benchmarks.

• Part II: Learning policies with partial or imperfect access to the prior distribution.

1.0.1 Related Work

The economic theory of search, a subfield of microeconomics, is a long , initiated
by Stigler (1961). Since then there have has been a vast amount of work on subjects
related to the economic theory of search (Stigler, 1961; Rothschild, 1978; Wilde,
1980; Weitzman, 1979), we mention some examples of subtopics here. Job/labor
markets (McCall, 1970; Mortensen, 1986; Miller, 1984) study the economics of job
searching (from the perspective of the company or the applicants), often trying
to model how people of different backgrounds/ages behave while searching for a
job (Holzer, 1988). The housing market (Quan and Quigley, 1991) that study how
the buyer and seller decide on their prices (to offer their property at and to buy a
potential property respectively). Consumer information search (Ratchford, 1982;
Simonson et al., 1988; Moorthy et al., 1997) that study how consumers behave when
on the market for a product; how priors affect their behavior, what happens with
uncertain priors and when information acquisition is costly for them. In general the
works coming from economics focus more on the modeling aspect of the problem at
hand, compared to the computer science work that focuses on the algorithmic aspect.
For a more complete survey on the economic theory of search and its applications we
refer the reader to the book by McCall and McCall (2007).

The problem that models all these scenarios is Pandora’s Box, first formulated
in (Weitzman, 1979). The reservation values proposed by Weitzman are a special

4

case of Gittins index (Gittins and Jones, 1974) who came up with them independently.
There are various proofs of this (Whittle, 1980; Weber, 1992), with a simple alterna-
tive proof proposed by (Tsitsiklis, 1994). We refer the reader to the book (Gittins
et al., 2011) for more information on Gittins indices. This line of work is also closely
connected to Markov chains literature, as observed in Dumitriu et al. (2003).

Inspired by Weitzman’s seminal work on Pandora’s Box (Weitzman, 1979), there
has been a renewed interest in the computer science community to study variants of
the original problem. Initially, alternative models of inspection were first considered,
with the main work done on non-obligatory inspection (Guha et al., 2008; Beyhaghi
and Kleinberg, 2019; Doval, 2018; Fu et al., 2023; Beyhaghi and Cai, 2023a) where a box
can be selected without being opened. Similar to this, there have been variants where
boxes can be partially open (Aouad et al., 2020) or being gradually and continuously
opened while updating the prior (Ke and Villas-Boas, 2019). Kleinberg et al. (2016)
presents an alternative simpler proof of Weitzman’s reservation values, with an
interesting intuitive interpretation. Our work, presented also as part of this thesis,
tackled the version where the prior distributions are correlated (Chawla et al., 2020,
2023; Gergatsouli and Tzamos, 2024). In the online setting (Gergatsouli and Tzamos,
2022; Guo et al., 2021; Gatmiry et al., 2024; Atsidakou et al., 2024) the problem is
studied from a regret minimization perspective. Close to the online setting Esfandiari
et al. (2019) study a variant where there is a distribution over the costs, and draws
connections to the bandit literature. A setting where the boxes have combinatorial
cost is studied in Berger et al. (2023), while Bechtel et al. (2022) studies the variant
where the search is delegated. In (Boodaghians et al., 2020) we no longer have control
over the order, which is fixed and given to us at the beginning. Finally models where
the ability to go back and pick the best option seen is challenged are also considered
in Karni and Schwartz (1977) where recall happens with some probability, while in
later works the problem were the algorithm has to commit and cannot turn back to
pick the best option seen Fu et al. (2018); Segev and Singla (2021) are studied, giving
a PTAS and an EPTAS respectively. For a more detailed overview of the variants of
Pandora’s Box in the computer science literature we refer the reader to the recent
survey by Beyhaghi and Cai (2023b).

Finally, all the Pandora’s Box-related problems fall under the wider price of in-
formation literature where the goal is to solve a task that requires obtaining some
costly information (Gupta and Kumar, 2001; Charikar et al., 2000; Chen et al., 2015b,a)

5

or studies the structure of approximately optimal rules for several combinatorial
problems in this costly information setting (Singla, 2018; Gupta et al., 2019; Ma and
Tzamos, 2023; Drygala et al., 2023).

1.1 Our Contributions

In Part I we explored various non-parametric benchmarks for Pandora’s Box. Our aim
is to learn search policies that do not depend on any algorithm parameters whatsoever,
and give provable theoretical performance guarantees. A searching policy consists of
two main components;

1. which box to open/explore next (also called exploration or opening order),

2. when to stop (also called stopping rule).

We study three different family of strategies, that differ in the amount of adaptivity
on the components (1) and (2) of their policy they are allowed. We started from
the most restrictive Non-Adaptive benchmark, moving on to the Partially-Adaptive and
finally tackling the most general Fully-Adaptive benchmark. We summarized their
main differences in Table 1.1 and explained in more detail in the paragraphs that
follow. For a pictorial depiction of the relation between the different benchmarks we
included Figure 1.1.

Adapt Stopping time Adapt Exploration Order
Non-Adaptive No No

Partially-Adaptive Yes No
Fully-Adaptive Yes Yes

Table 1.1: Non-parametric benchmarks comparison.

The Fully-Adaptive benchmark This is the most general benchmark; in a Fully-
Adaptive policy the order of exploration and the stopping rule can arbitrarily depend
on the values realized so far.

The Partially-Adaptive benchmark Motivated by the structure of the optimal policy
in the original solution (Weitzman, 1979) we also considered the benchmark of
Partially-Adaptive policies. In such policies, the exploration order has to be fixed
beforehand, but the stopping rule can arbitrarily depend on the values realized.

6

Figure 1.1: The picture shows the relation between the benchmarks. The non-adaptive
family is a subset of the Partially-Adaptive which is a subset of the Fully-Adaptive.

The Non-Adaptive benchmark This is the most restricted benchmark that allows
for no adaptivity at all. Both the order of exploration and the stopping time have
to be fixed a priori (before any boxes are opened) and cannot depend on the prices
seen inside the boxes explored during the execution of the algorithm. Since this is a
relatively weak benchmark, we will only present some results as a warmup to our
main results for the Partially-Adaptive benchmark, in Section 3.A.1.

1.1.1 Competing with the Partially-Adaptive

We begin by describing our initial approach for competing with the Partially-Adaptive
benchmark in Chapter 3, published in Chawla et al. (2020). This approach works by
separating the two decisions of the policy: (1) deciding the exploration order and (2)
deciding the stopping time, where each step incurs a constant factor loss in approxi-
mation (Figure 1.2). This LP-based algorithm will result in a 9.22-approximation to
the optimal Partially-Adaptive.

Decide order

Lose factor ≈ 5.84

Decide
stopping time

Lose factor ≈ 1.58

Figure 1.2: Initial approach vs Partially-Adaptive.

In Chapter 4 we simplify our initial approach by directly generalizing the reserva-
tion values policy described by Weitzman (1979). We describe two versions of this

7

approach that differ in the update of our prior distribution beliefs and give an almost
tight (4.42) approximation. We summarized the results against the Partially-Adaptive
benchmark in Figure 1.3.

Approximation
factor

4
Lower Bound from
Feige et al. (2002)
(Sec. 3.2.2)

4.42

Simpler approach
Version 1 (Sec. 4.3)

5.83

Simpler approach
Version 2 (Sec. 4.4)

Initial approach
(Chapter 3)

9.22

Figure 1.3: Landscape of results for Pandora’s Box vs Partially-Adaptive

1.1.1.1 More complex constraints

Following our study on the traditional Pandora’s Box objective of selecting only
one option, we also extend our results to more complex constraints, summarized in
table 1.2. We study the following constraints;

1. k items: for this constraint we are required to select k boxes instead of one at
the end of the algorithm. The results are presented in Section 3.3.1,

2. matroid of rank k: in this case the boxes form a matroid and we are required to
pick a matroid basis of size k. The results are presented in Section 3.3.2.

Result
k items O(1) (Theorem 3.12)

matroid basis Θ(log k) (Theorems 3.17 and 3.15)

Table 1.2: Results for complex constraints

1.1.2 Competing with the Fully-Adaptive

We continue by studying the more general Fully-Adaptive benchmark. We show via a
series of reductions how our problem is connected to two other well studied problems;
Min Sum Set Cover and Optimal Decision Tree. The reductions given in Sections 5.3

8

and 5.4 imply a series of approximation ratios and lower bounds summarized in
Figure 1.4 and explained in detail in Section 5.2.

Approximation
factor

4
Lower Bound from
Chakaravarthy et al.
(2011)

Õ(1/α)
Subexp time Poly-time

Õ(log m)

Poly-time ·|support|
O(log m)

Figure 1.4: Landscape of results for Pandora’s Box vs Fully-Adaptive

In Part II we tackle three different regimes of partial knowledge on the prior
distribution. From the most pessimistic one where we have no information on the prior
distributions, to the intermediate one where we are provided with noisy information
to the one where we directly get samples from the prior distributions.

1.1.3 Sample Access

We begin by studying the case where we do not have full access on the prior distribu-
tion, but we can only get samples from it (Chapter 7). We first show that against the
Fully-Adaptive benchmark we have no hope of obtaining any meaningful approxima-
tion. Then in Section 7.1 we revisit our previous results against the Partially-Adaptive
benchmark when only given sample access to the joint prior distribution. We show
how our results extend to this setting, and maintain the approximation guarantees
within (1 + ε) when getting poly(n, 1/ε, log 1/δ) number of samples. The results are
summarized in Table 1.3.

Approximation Factor
Choose 1 box (1 + ε)4.42 (Sec. 7.1.2), (1 + ε)9.22 (Sec. 7.1.1)

Choose k boxes (1 + ε)O(1) (Sec. 7.1.1)
Choose matroid basis (1 + ε)O(log k) (Sec. 7.1.1)

Table 1.3: Approximation factors when selecting poly(n, 1/ε, log 1/δ) samples. Re-
sults hold w.p. 1 − δ.

9

1.1.4 Unknown Distributions

In Chapter 8 we switch to a worst case model for our knowledge of the joint prior
distribution; we are given no information at all for the prior distribution. We tackle
the online version of Pandora’s Box where we have to find an algorithm for each of T
days with the goal of minimizing regret (i.e. our average distance from the optimal
solution of each round). There are two settings arising in this problem, depending
on the amount of information we see after the game of each day ends.

• Full information setting: at the end of each day we see all the prices inside the
boxes.

• Bandit setting: at the end of each day we only see the prices in the boxes we
chose to open.

We begin in Section 8.1 with the case where the prices inside the boxes can be
adversarially selected. In this setting we give approximate no regret algorithms for
both the bandit and the full information setting. Our algorithm first relaxes the initial
integer problem a continuous convex one, then uses any online convex optimization
algorithm to solve it, and finally rounds the solution given any rounding algorithm
with good guarantees. The process is summarized in Figure 1.5. The final rounding
part, is possible through our previous results of Chapter 3, where we presented
LP-based rounding schemes for Pandora’s Box even with complex constraints.

Initial integer
problem

Convex
relaxation

Find fractional
solution using On-

line Convex Opt alg

Rounding
to integer
solution

Figure 1.5: High level overview of our algorithm for online Pandora’s Box with
adversarial prices.

Using the framework above, we are able to obtain the following results, presented
formally in Corollary 8.7 for the full information setting & Corollary 8.11 for the
bandit setting.

• 9.22-approximate no-regret algorithm for the problem of selecting 1 box.

• O(1)-approximate no-regret algorithm for the problem of selecting k boxes.

10

• O(log k)-approximate no-regret algorithm for the problem of selecting a rank k

matroid basis.

We note that for the full information setting the regret factor is O(T−1/2) (Theo-
rem 8.6) while for the Bandit setting the regret factor is O(T−1/3) (Theorem 8.9).

1.1.4.1 Adding Context

Following this, in Section 8.2 we consider adding the extra information of context at
the beginning of every round. The adversary in this case can select the distributions
at each round, and we still have no knowledge of them. We require however that
a realizability assumption holds; There exists an optimal vector w∗ and a function h

that is used by the optimal to calculate the reservation values of the boxes for each
round. As we explain in Section 8.2 this is a minimal assumption for the problem to
be meaningful. Our framework essentially reduces our initial Pandora’s Box problem
with context to a simpler online regression one, and then used Weitzman’s strategy
to solve it (see Figure 1.6).

Contextual
Pandora’s Box

Linear-Quadratic
Online Regression

Play Weitzman’s
algorithm

Figure 1.6: High level overview of our algorithm for Contextual Pandora’s Box.

Our final result is informally presented below, while the formal definition is given
in Theorem 8.17.

Main Theorem (Informal Theorem 8.17). Given an oracle that achieves expected regret
r(T) for Linear-Quadratic Online Regression, our Algorithm achieves O(

√
Tr(T)) regret for

the Contextual Pandora’s Box problem. In particular, if the regret r(T) is sublinear in T ,
our algorithm achieves sublinear regret.

1.1.5 Noisy Data

Finally, in Chapter 9, we switch to an intermediate model, where we have access to
noisy data on our distribution. In Section 9.1 we tackle Pandora’s Box against the
Fully Adaptive optimal, when we have access to a mixture of m product distributions
and connect it to the noisy version of Optimal Decision Tree. This will give us a
O(1)-approximation Dynamic Programming algorithm.

11

1.2 Bibliographic Notes

The results presented in Part I are based on joint work with1 Shuchi Chawla, Jeremy
McMahan, Yifeng Teng, Christos Tzamos, and Ruimin Zhang. Specifically, Chapter 3
is based on Chawla et al. (2020), Chapter 4 is based on Gergatsouli and Tzamos
(2024), Chapter 5 is based on Chawla et al. (2023).

The results presented in Part II are based on joint work with Alexia Atsidakou,
Constantine Caramanis, Shuchi Chawla, Jeremy McMahan, Orestis Papadigenopou-
los, Yifeng Teng, Christos Tzamos and Ruimin Zhang. Specifically, Chapter 7 is
based on Chawla et al. (2020), Chapter 8 is based on Gergatsouli and Tzamos (2022)
and Atsidakou et al. (2024).

1All co-authors listed in alphabetical order.

Part I

Non-parametric Benchmarks

12

13

2 introduction & overview of results

The goal of this part of the thesis is to study the different non-parametric benchmarks
that we can use for Pandora’s Box. We are studying three different benchmarks, also
briefly mentioned in Section 1.1, which we define here more formally. Our aim is to
learn search policies that do not depend on any algorithm parameters whatsoever,
and give provable theoretical performance guarantees. Recall that an algorithm for
Pandora’s Box consists of two parts

1. Which box to open/explore next (also called exploration order)

2. When to stop (also called stopping rule)

The instance of the problem is a set of n boxes B, a cost ci ∈ R+ for each box
i ∈ B, and a joint distribution D. This distribution can be thought of as a collection of
vectors of size n, called scenarios. Each of these scenarios happens with some known
probability. We can think of the distribution as the example in Table 2.1 below, where
pi is the probability of scenario i happening.

Box 1 Box 2 Box 3 … Box n
p1 → Scenario 1: 42 13 15 24
p2 → Scenario 2: 0 24 94 . . . 2

... ...
pm → Scenario m: 31 15 9 . . . 2

Table 2.1: Example of the joint distribution D, with n boxes, and m scenarios.

As already mentioned in Section 1.1 in our work, we study three different family
of strategies, that differ in the amount of adaptivity on the components (1) and (2) of
their policy they are allowed. We summarized their main differences in Table 1.1 of
Section 1.1 and in Figure 1.1 for a pictorial representation of their power. We explain
the benchmarks here in more technical details.

The Fully-Adaptive benchmark The most general benchmark allows the optimal
policy to arbitrarily adapt both the exploration order and the stopping time, based
on what the prices revealed inside the boxes are. In more concrete terms, this is an
optimal that sees the same information as we do, but has infinite computation power
to compute the following exponential dynamic program. We denote by O the set of

14

opened boxes. The dynamic program at each step has to decide whether to stop and
pick the best price found (i.e. mini∈O vi) or continue and pay the next box cj and

OPT(O) =

mini∈O vi if O == ∅

minj̸∈O (mini∈O vi, cj + OPT(O ∪ {j})) else
(2.1)

Observe that O can take 2n different values, and at every step we have a computa-
tion of n, therefore our DP has size O(n2n).

The Partially-Adaptive benchmark This benchmark is motivated by the structure of
the optimal policy in the original solution (Weitzman, 1979). In a Partially-Adaptive
policy, the exploration order has to be fixed beforehand, but the stopping rule can
arbitrarily depend on the values realized. The optimal therefore is minimizing

ED

[
min
i∈O

vi +
∑
i∈O

ci

]
,

where D is the joint distribution over all boxes, and ci is the cost of box i. Another
way to think about this benchmark is that it consists of a permutation π (i.e. a fixed
ordering of boxes) and a stopping rule τ.

TheNon-Adaptive benchmark This is the most restricted benchmark that allows
for no adaptations at all. Both the order of exploration and the stopping time have to
be fixed a priori (before any boxes are opened) and cannot depend on the prices seen
inside the boxes explored during the execution of the algorithm.

2.1 Related work

The seminal work of Gupta and Roughgarden Gupta and Roughgarden (2017) intro-
duced the problem of algorithm selection in a distributional learning setting focusing
on the number of samples required to learn an approximately optimal algorithm. A
long line of recent research extends this framework to efficient sample-based opti-
mization over parameterized classes of algorithms Ailon et al. (2006); Clarkson et al.
(2010); Gupta and Roughgarden (2017); Balcan et al. (2017, 2018a,b); Kleinberg et al.
(2017); Weisz et al. (2018); Alabi et al. (2019). In contrast to these results our work
studies optimization over larger, non-parametric classes of algorithms, indeed any

15

polynomial time (partially-adaptive) algorithm. a more flexible design space aims to
speed-up computations for polynomially solvable problems. A related work of Alabi
et al. Alabi et al. (2019), also considers speeding up computations for polynomially
solvable problems. In their model, they design competitive algorithms with the
non-adaptive optimum in finding the best solution but they crucially require that
the answer is always unique. In comparison, our model allows trading off computa-
tion time with the cost of the solution and is able to compete against more adaptive
solutions without making any assumptions on the structure of solutions.

For more details on this line of research, we refer the reader to Chapter 29 of Rough-
garden (2021), on data-driven algorithm design.

2.2 Overview of Results

2.2.1 Competing with the Partially-Adaptive

Our initial approach for competing with the Partially-Adaptive benchmark (Chapter 3)
is essentially reducing Pandora’s Box to a special case called Min-Sum Set Cover. In
this problem, all prices inside the boxes are either 0 or ∞, which effectively forces the
algorithm to always find a 0.

This approach works by separating the two decisions of the policy: (1) deciding
the exploration order and (2) deciding the stopping time, where each step incurs a
constant factor loss in approximation (Figure 1.2). The final result is stated in the
following informal version of Theorem 3.5.

Main Theorem (Informal Theorem 3.5). We can efficiently find a Partially-Adaptive
strategy that is 9.22-competitive against the optimal Partially-Adaptive strategy.

Our algorithm works in the following two steps.

Deciding an exploration order This part works by reducing Pandora’s Box to
Min-Sum Set Cover. We focus on a family of strategies called scenario-aware Partially-
Adaptive, where we are still required to fix the order of exploration but then we get
to see all the prices realized inside the boxes1. After formulating a linear program for
scenario-aware partially adaptive strategies, we carefully choose a threshold T , and

1This is just for the analysis, since we cannot actually know the realized prices

16

change our prior such that for any box b and scenario s if vbs ⩽ T , we treat this as 0,
otherwise vbs = ∞. This transforms our problem to a Min-Sum Set Cover instance,
and we can use the algorithm of Feige et al. (2004) to obtain a 4-approximation. The
key observation here, which will become apparent in the technical sections where the
LP is described, is that the opening order will not depend on the scenario realized.

Deciding a stopping time After having decided an order, we are now required to
pick a stopping time. We do this using a technique from an older online algorithms
problem called Ski Rental. The intuition for this part is that we have two costs in the
algorithm; exploration cost (always increasing) and best price seen so far (weakly
decreasing). The idea is to stop whenever the two costs become equal, and this gives
a 2-approximation (see also Figure 2.1 below). Using the randomized algorithm for
ski rental from Karlin et al. (1990) we can improve this to 1.58.

Opening cost

Min Price

Figure 2.1: Ski rental argument for deciding the stopping time. Stopping where the
lines meet gives a 2 approximation.

This approach despite having the nice property of separating the two decisions
of the algorithm, suffers from a huge computational overhead, since it requires the
solution of a linear program. In Chapter 4 we simplify this approach by directly
generalizing the reservation values policy described by Weitzman (1979).

We first rewrite the reservation values described by Weitzman in a way that is
easier to use for our algorithm, which essentially remains the same as Weitzman’s
with the only differnce that we have to update our prior after every step. There is
two different ways to do that; (1) Updating on the fact that the best value seen Vb

is more than σb (2) Full updates, given on the exact value we saw (Vb = v). Both
variants give constant approximation, however Variant 1 also has the property that
can be learned from samples, which we further discuss in Chapter 7.

17

• Updating with Vb > σb: For this variant we obtain the following theorem

Main Theorem (Informal Theorem 4.2). Our Algorithm is a 4.428-approximation
for Pandora’s Box against the Partially-Adaptive optimal, when conditioning on
Vb > σb.

It is worth pointing out that this algorithm is almost tight; there is a lower bound
of 4 implied by Feige et al. (2004), which we discuss in Section 3.2.2.

• Updating with Vb = v: For this variant we obtain the following theorem.

Main Theorem (Informal Theorem 4.3). Our Algorithm is a 5.828-approximation
for Pandora’s Box against the Partially-Adaptive optimal, when conditioning on
Vb = v.

Someone might wonder why the approximation factor is worse for this case,
despite using more information. We would like to point out that more informa-
tion does not mean better approximation ratio, since our algorithm is greedy
and not the optimal.

We summarized the results against the Partially-Adaptive benchmark in Figure 2.2
(same as Figure 1.3 from Section 1.1, repeated here for convenience).

Approximation
factor

4
Lower Bound from
Feige et al. (2002)
(Sec. 3.2.2)

4.42

Simpler approach
Version 1 (Sec. 4.3)

5.83

Simpler approach
Version 2 (Sec. 4.4)

Initial approach
(Chapter 3)

9.22

Figure 2.2: Landscape of results for Pandora’s Box vs Partially-Adaptive(same as
Figure 1.3)

2.2.1.1 More complex constraints

Following our study on the traditional Pandora’s box objective of selecting only
one option, we also extend our results to more complex constraints, summarized in

18

table 1.2. Both the algorithms for these results are based on rounding of a generalized
version of the linear program used in the single box case. We study the following
constraints;

1. k items: for this constraint we are required to select k boxes instead of one at
the end of the algorithm. The main result is as follows

Main Theorem (Informal Theorem 3.12). We can efficiently find a Partially-
Adaptive strategy for optimal search with k options that is O(1)-competitive against the
optimal Partially-Adaptive strategy.

2. matroid of rank k: in this case the boxes form a matroid and we are required to
pick a matroid basis of size k. In this case we have both a lower and a matching
(up to constants) upper bound. The upper bound is described in the following
theorem

Main Theorem (Informal Theorem 3.15). We can efficiently find a Partially-
Adaptive strategy for optimal search over a matroid of rank k that isO(log k)-competitive
against the optimal partially-adaptive strategy.

The lower bound, is described below. For this result we give an approximation
preserving reduction from Set Cover, which we know is hard to approximate
within a log k factor (where k is the number of sets). This theorem is even
stronger in the sense that it holds for any Fully-Adaptive algorithm (the strongest
one) against any Non-Adaptive optimal (the weakest benchmark).

Main Theorem (Informal Theorem 3.17). Assuming NP̸⊆RP, no computationally
efficient fully-adaptive algorithm can approximate the optimal non-adaptive cost within
a factor of o(log k).

2.2.2 Competing with the Fully-Adaptive

We continue by studying the more general Fully-Adaptive benchmark in Chapter 5.
The problem in this case becomes harder to deal with, due to the adaptive nature of
the optimal. A first idea someone might come up with, is trying to fully identify which
is the scenario that happened, and then choose the best box for this scenario. It turns
out that this is exactly the Optimal Decision Tree problem. However, it turned out

19

that our problem is equivalent to a uniform version of this problem called Uniform
Decision Tree where the only difference is that that potential scenarios have uniform
probability.

To show this equivalence, we go through a uniform version of Min-Sum Set Cover
with extra feedback at every step. Specifically, we show the series of reductions shown
in Figure 2.3 (same as Figure 5.1 of Chapter 5, and repeated here for convenience).

PB UMSSCfUMSSCf UDTSection 5.3 Section 5.4

Log-log factors Constant factors

Figure 2.3: A summary of our approximation preserving reductions (same as Fig-
ure 5.1 from Chapter 5)

The reductions given in Sections 5.3 and 5.4 imply a series of approximation ratios
and lower bounds summarized in Figure 2.4 (same as Figure 1.4 from section 1.1 and
repeated here for convenience).

Approximation
factor

4
Lower Bound from
Chakaravarthy et al.
(2011)

Õ(1/α)
Subexp time Poly-time

Õ(log m)

Poly-time ·|support|
O(log m)

Figure 2.4: Landscape of results for Pandora’s Box vs Fully-Adaptive.

20

3 partially-adaptive: initial approach

Recall from our initial discussion on Pandora’s Box (Weitzman, 1979) in Section 1
the formulation of the problem; the online algorithm is presented with n boxes,
each containing an unknown stochastic reward. The algorithm can open boxes in
any order at a fixed overhead each; observes the rewards contained in the open
boxes; and terminates upon selecting any one of the rewards observed. The goal is to
maximize the reward selected minus the total overhead of opening boxes. Weitzman
showed that a particularly simple policy is optimal for the Pandora’s Box problem:
the algorithm computes an index for each box based on its reward distribution and
opens boxes in decreasing order of these indices until it finds a reward that exceeds
all of the remaining indices.

A crucial assumption underlying Weitzman’s optimality result is that the rewards
in different boxes are independent. This does not always bear out in practice. Suppose,
for example, that you want to buy an item online and look for a website that offers a
cheap price. Your goal is to minimize the price you pay for the item plus the time it
takes to search for a good deal. Since the websites are competing sellers, it is likely
that prices on different sites are correlated. For another example, consider a route
planning service that wants to determine the fastest route between two destinations
from among a set of potential routes. The driving time for each route is stochastic
and depends on traffic, but the route planning service can obtain its exact value at
some cost. The service wants to minimize the driving time of the route selected plus
the cost spent on querying routes. Once again, because of network effects, driving
times along different routes may be correlated. How do we design an online search
algorithm for these settings?

In this chapter, we provide the first competitive algorithms for Pandora’s Box-
type problems with correlations. Formalizing the examples described above: there
are n alternatives with unknown costs that are drawn from some joint distribution.
A search algorithm examines these alternatives one at a time, learning their costs,
and after a few steps stops and selects one of the alternatives. Given access to the full
prior distribution of costs, our goal is to develop a search algorithm that minimizes
the sum of the expected cost of the chosen alternative and the number of steps to find
it.

21

Related literature The Min-Sum Set Cover problem was initially introduced in Feige
et al. (2002). After its initial appearance, the multiple intents re-ranking problem
was introduced in (Azar et al., 2009) and later named generalized Min Sum Set
Cover in Bansal et al. (2010) where the objective is to select k(S) items for any set
S. The approximation ratio of 485 given by Bansal et al. (2010) was then improved
to 28 in Skutella and Williamson (2011) and recently improved to 4.642 in Bansal
et al. (2023). Im et al. (2014) study the preemptive generalized Min Sum Set Cover,
where the elements ca be fractionally chosen, and give a 2-approximation. A further
generalization, Submodular Ranking is studied in (Azar and Gamzu, 2011) where
the coverage property is replaced by satisfying a submodular function. Another
generalization is presented in Im et al. (2016) for the Min Latency Submodular Cover
problem. Finally, there has reecntly been some work on the online version of Min-Sum
Set Coverby Fotakis et al. (2020); Bienkowski and Mucha (2023); Basiak et al. (2023).

3.1 Model & Definitions

In the optimal search problem, we are given a set B of n boxes with unknown costs
and a distribution D over a set of possible scenarios that determine these costs. Nature
chooses a scenario s from the distribution, which then instantiates the cost of each
box. We use cis to denote the cost of box i when scenario s is instantiated.

The goal of the online algorithm is to choose a box of small cost while spending as
little time as possible gathering information. The algorithm cannot directly observe
the scenario that is instantiated, however, is allowed to “probe” boxes one at a time.
Upon probing a box, the algorithm gets to observe the cost of the box. Formally
let Ps be the random variable denoting the set of probed boxes when scenario s is
instantiated and let is ∈ Ps be the (random) index of the box chosen by the algorithm.
We require is ∈ Ps, that is, the algorithm must probe a box to choose it. Note that the
randomness in the choice of Ps and is arises both from the random instantiation of
scenarios as well as from any coins the algorithm itself may flip. Our goal then is to
minimize the total probing time plus the cost of the chosen box:

Es

[
min
i∈Ps

cis + |Ps|

]
.

Any online algorithm can be described by the pair (σ, τ), where σ is a permutation

22

of the boxes representing the order in which they get probed, and τ is a stopping
rule – the time at which the algorithm stops probing and returns the minimum cost
it has seen so far. Observe that in its full generality, an algorithm may choose the
i’th box to probe, σ(i), as a function of the identities and costs of the first i− 1 boxes,
{σ(1), · · · ,σ(i− 1)} and {cσ(1)s, · · · , cσ(i−1)s}

1. Likewise, the decision of setting τ = i

for i ∈ [n] may depend on {σ(1), · · · ,σ(i)} and {cσ(1)s, · · · , cσ(i)s}. Optimizing over
the class of all such algorithms is intractable. So we will consider simpler classes of
strategies, as formalized in the following definition.

Definition 3.1 (Adaptivity of Strategies). In a Fully-Adaptive strategy, both σ and τ can
depend on any costs seen in a previous time step, as described above.

In a Partially-Adaptive strategy, the sequence σ is independent of the costs observed in
probed boxes. The sequence is determined before any boxes are probed. However, the stopping
rule τ can depend on the identities and costs of boxes probed previously.

In a Non-Adaptive strategy, both σ and τ are fixed before any costs are revealed to the
algorithm. In particular, the algorithm probes a fixed subset of the boxes, I ⊆ [n], and returns
the minimum cost mini∈I cis. The algorithm’s expected total cost is then Es [mini∈I cis + |I|].

General feasibility constraints. In Section 3.3 we study extensions of the search
problem where our goal is to pick multiple boxes satisfying a given feasibility con-
straint. Let F ⊆ 2B denote the feasibility constraint. Our goal is to probe boxes in
some order and select a subset of the probed boxes that is feasible. Once again we can
describe an algorithm using the pair (σ, τ) where σ denotes the probing order, and
τ denotes the stopping time at which the algorithm stops and returns the cheapest
feasible set found so far. The total cost of the algorithm then is the cost of the feasible
set returned plus the stopping time. We emphasize that the algorithm faces the same
feasibility constraint in every scenario. We consider two different kinds of feasibility
constraints. In the first, the algorithm is required to select exactly k boxes for some
k ⩾ 1. In the second, the algorithm is required to select a basis of a given matroid.

3.1.1 A reduction to scenario-aware strategies

Recall that designing a PA strategy involves determining a non-adaptive probing
order, and a good stopping rule for that probing order. We do not place any bounds

1For some realized scenario s ∈ S.

23

on the number of different scenarios, m, or the support size and range of the boxes’
costs. These numbers can be exponential or even unbounded. As a result, the
optimal stopping rule can be very complicated and it appears to be challenging to
characterize the set of all possible PA strategies. We simplify the optimization problem
by providing extra power to the algorithm and then removing this power at a small
loss in approximation factor.

In particular, we define a Scenario-Aware Partially-Adaptive (SPA) strategy as one
where the probing order σ is independent of the costs observed in probed boxes,
however, the stopping time τ is a function of the instantiated scenario s. In other
words, the algorithm fixes a probing order, then learns of the scenario instantiated,
and then determines a stopping rule for the chosen probing order based on the
revealed scenario.

Observe that once a probing order and instantiated scenario are fixed, it is trivial
to determine an optimal stopping time in a scenario aware manner. The problem
therefore boils down to determining a good probing order. The space of all possible
SPA strategies is also likewise much smaller and simpler than the space of all possible
PA strategies. We can therefore argue that in order to learn a good SPA strategy,
it suffices to optimize over a small sample of scenarios drawn randomly from the
underlying distribution. We denote the cost of an SPA strategy with probing order σ
by cost(σ).

On the other hand, we argue that scenario-awareness does not buy much power
for the algorithm. In particular, given any fixed probing order, we can construct a
stopping time that depends only on the observed costs, but that achieves a constant
factor approximation to the optimal scenario-aware stopping time for that probing
order.

3.1.2 Ski Rental with varying buy costs

We now define a generalized version of the ski rental problem which is closely related
to SPA strategies. The input to the generalized version is a sequence of non-increasing
buy costs, a1 ⩾ a2 ⩾ a3 ⩾ These costs are presented one at a time to the algorithm.
At each step t, the algorithm decides to either rent skis at a cost of 1, or buy skis at
a cost of at. If the algorithm decides to buy, then it incurs no further costs for the
remainder of the process. Observe that an offline algorithm that knows the entire
cost sequences a1,a2, . . . can pay mint⩾1(t− 1 + at). We call this problem ski rental

24

with time-varying buy costs. The original ski rental problem is the special case where
at = B or 0 from the time we stop skiing and on.

We first provide a simple randomized algorithm for ski rental with time-varying
costs that achieves a competitive ratio of e/(e−1). Then we extend this to general pt in
Corollary 3.22 in the Appendix for this Chapter. Our algorithm uses the randomized
algorithm of Karlin et al. (1990) for ski rental as a building block, essentially by starting
a new instance of ski rental every time the cost of the offline optimum changes. The
full proof of this result is included in Section 3.A.2.1.

Lemma 3.2. [Ski Rental with time-varying buy costs] Consider any sequence a1 ⩾ a2 ⩾
There exists an online algorithm that chooses a stopping time t so that

t− 1 + at ⩽
e

e− 1 min
j

{j− 1 + aj}.

The next corollary connects scenario-aware partially-adaptive strategies with
partially-adaptive strategy through our competitive algorithm for ski-rental with
time-varying costs. Specifically, given an SPA strategy, we construct an instance of the
ski-rental problem, where the buy cost at at any step is equal to the cost of the best
feasible solution seen so far by the SPA strategy. The rent cost of the ski rental instance
reflects the probing time of the search algorithm, whereas the buy cost reflects the
cost of the boxes chosen by the algorithm. Our algorithm for ski rental chooses a
stopping time as a function of the costs observed in the past and without knowing
the (scenario-dependent) costs to be revealed in the future, and therefore gives us a
PA strategy for the search problem.

This result is formalized below; the proof can be found in Section 3.A.4 in this
chapter’s Appendix.

Corollary 3.3. Given any scenario-aware partially-adaptive strategy σ, we can efficiently
construct a stopping time τ, such that the cost of the partially-adaptive strategy (σ, τ) is no
more than a factor of e/(e− 1) times the cost of σ.

3.1.3 LP formulations

We will now construct an LP relaxation for the optimal scenario-aware partially
adaptive strategy.

25

The linear program (Relaxation-SPA) is given below and is similar to the one used
for the generalized min-sum set cover problem in Bansal et al. (2010) and Skutella and
Williamson (2011). Denote by T to set of time steps. Let xit be an indicator variable
for whether box i is opened at time t. Constraints (3.1) and (3.2) model matching
constraints between boxes and time slots. The variable zist indicates whether box
i is selected for scenario s at time t. Constraints (3.3) ensure that we only select
opened boxes. Constraints (3.4) ensure that for every scenario we have selected
exactly one box. The cost of the box assigned to scenario s is given by

∑
i,t zistcis.

Furthermore, for any scenario s and time t, the sum
∑

i zist indicates whether the
scenario is covered at time t, and therefore, the probing time for the scenario is given
by

∑
t

∑
i tzist.

minimize 1
|S|

∑
i∈B,s∈S,t∈T

tzist +
1
|S|

∑
i∈B,s∈S,t∈T

ciszist (LP-SPA)

subject to
∑
i∈B

xit = 1, ∀t ∈ T (3.1)∑
t∈T

xit ⩽ 1, ∀i ∈ B (3.2)

zist ⩽ xit, ∀s ∈ S, i ∈ B, t ∈ T (3.3)∑
t ′∈T,i∈B

zist ′ = 1, ∀s ∈ S (3.4)

xit, zist ∈ [0, 1] ∀s ∈ S, i ∈ B, t ∈ T

As a warmup we include an algorithm that competes with the weakest benchmark;
the Non-Adaptive, in Section 3.A.1 of the Appendix.

3.2 Pandora’s Box vs Partially-Adaptive

Moving on to our main result, in this section we compete against the optimal partially-
adaptive strategy. Recall that the program (Relaxation-SPA) is a relaxation for the
optimal SPA strategy, and therefore, also bounds from below the cost of the optimal
PA strategy. We round the optimal solution to this LP to obtain a constant-competitive
SPA strategy.

Given a solution to (Relaxation-SPA), we identify for each scenario a subset of

26

low cost boxes. Our goal is then to find a probing order, so that for each scenario we
quickly find one of the low cost boxes. This problem of “covering” every scenario with
a low cost box is identical to the min-sum set cover (MSSC) problem introduced by
Feige et al. (2002). Employing this connection allows us to convert an approximation
for MSSC into an SPA strategy at a slight loss in approximation factor.

Our main result is as follows.

Lemma 3.4. There exists a scenario-aware partially-adaptive strategy with competitive ratio
3 + 2

√
2 against the optimal partially-adaptive strategy.

Combining this with Corollary 3.3 we get the following theorem.

Theorem 3.5. We can efficiently find a partially-adaptive strategy that is (3 + 2
√

2) e
e−1 =

9.22-competitive against the optimal partially-adaptive strategy.

Proof of Lemma 3.4. We use the LP formulation Relaxation-SPA from Section 3.1.3.
Recall that xit denotes the extent to which box i is opened at time t, zist denotes the
extent to which box i is chosen for scenario s at time t.

As mentioned previously, we will employ a 4-approximation to the MSSC by Feige
et al. (2002) in our algorithm. The input to MSSC is an instance of set cover. In our
context, the sets of the set cover are boxes and each scenario s has an element Ls

corresponding to it. The goal is to find an ordering σ over the sets/boxes so as to
minimize the sum of the cover times of the elements/scenarios, where the cover time
of an element is the index of the first set in σ that contains it. The following is an LP
relaxation for MSSC; observe its similarity to (Relaxation-SPA). Feige et al. (2002)
provide a greedy algorithm that 4-approximates the optimal solution to this LP.

minimize 1
|S|

∑
i∈B,s∈S,t∈T

tzist (LP-MSSC)

subject to (3.1) − (3.3)∑
t ′∈T,i∈Ls

zist ′ ⩾ 1, ∀s ∈ S

xit, zist ∈ [0, 1] ∀s ∈ S, i ∈ B, t ∈ T

27

Define α = 3+ 2
√

2. Given an optimal solution I = (x, z) to (Relaxation-SPA), we
will now construct an instance I ′ of MSSC (by specifying the elements Ls

2) with the
following properties:

1. There exists an integral solution σ for I ′ with cover time at most α times the
query time for (x, z).

2. Any integral solution σ for I ′ can be paired with an appropriate stopping time
τs, so that the query time of (σ, τs) is at most the MSSC cover time of σ, and the
cost of (σ, τs) is at most α times the fractional cost for (x, z).

Constructing a “good" I ′: For each scenario s, we define a set of “low” cost boxes as

Ls = {i : cis ⩽ αOPTI
c,s}.

The second property above is immediate from this definition. In particular, we define
the stopping time τs as the first time we encounter a box i ∈ Ls.

For property (i), we first show that instance I ′ admits a good fractional solution.
While (Relaxation-SPA) allows assigning any arbitrary boxes to a scenario,

(LP-MSSC) requires assigning only the boxes in Ls to scenario s. In order to convert
this into a feasible solution to (LP-MSSC), we first scale up all of the variables by a
factor of α

α−1 . Specifically, set x ′ = α
α−1x; z ′

ist =
α

α−1zist for all s, t, i ∈ s; and z ′
ist = 0

for all s, t, i ̸∈ s. Now we need to ensure that all the constraints of (LP-MSSC) are
satisfied.

Observe initially that by Markov’s inequality, for all s,
∑

t,i∈Ls
zist ⩾ 1 − 1/α.

Therefore, by scaling the z ′
ist as above we have that

∑
it z

′
ist ⩾ 1 for all s. To fix (3.2),

if for some i ∈ B we have
∑

t x
′
it > 1, let t ′ be the smallest time at which

∑
t⩽t ′ x ′

it > 1.
We set x ′

it = 0 for all t > t ′ and x ′
it ′ = 1 −

∑
t<t ′ x ′

it. Likewise, modify z ′ so as to
achieve (3.3) as well as ensure that every variable lies in [0, 1].

It remains to argue that constraints (3.1) can be fixed at a small extra cost. Ob-
serve that for any t,

∑
i∈B x ′

it ⩽ α
α−1 . We therefore “dilate” time by a factor of

α
α−1 in order to accommodate the higher load. Formally, interpret x, x ′, z and z ′ as
continuous step functions of t. Then the objective function of (LP-MSSC) can be

2Each element/scenario can be thought of as a set of the boxes/sets that cover it.

28

written as
∑

s,i
∫t=n

t=0 ⌈t⌉z
′
istdt

3. Dilating time by a factor of α
α−1 gives us the objective

1
|S|

∑
s,i

∫t=n

t=0
⌈
t α
α−1

⌉
z ′
istdt.

Since z ′
ist ⩽

α
α−1zist for any i, s, t, the expected query time is upper bounded by

1
|S|

∑
i,s

∫ t=n

t=0

⌈
t

α

α− 1

⌉
· α

α− 1zist dt

⩽
1
|S|

∑
i,s,t

(
α

α− 1

)2

tzist

=

(
α

α− 1

)2

· Query time of (x, z)

where for the second inequality we used the following Lemma 3.6 with β = α/(α−1).
The proof of the lemma is deferred to Section 3.A.4 of the appendix.

Lemma 3.6. For any β > 1, ∫ t

t−1
⌈βt ′⌉dt ′ ⩽ βt.

Applying greedy algorithm for min-sum set cover. We have so far constructed a
new instance I ′ of MSSC along with a feasible fractional solution (x′, z′) with cover
time at most α2/(α − 1)2 times the query time for (x, z). The greedy algorithm of
Feige et al. (2002) finds a probing order over the boxes with query time at most 4
times the cover time of (x′, z′), that is, at most 4α2/(α− 1)2 = α times the query time
for (x, z), where the equality follows from the definition of α. Property (1) therefore
holds and the lemma follows.

3.2.1 An Alternative, Rounding Algorithm

The algorithm of the previous section worked using a reduction to Min-Sum Set Cover,
a special case of our Pandora’s Box problem. In this section we show that we can
obtain the same approximation guarantees using a rounding algorithm, similarly
to the k items and matroid case of Section 3.3.1 and 3.3.2, that we see further. This
algorithm is going to be useful in Chapter 8, where we specifically need a rounding
algorithm to obtain our results.

3Note that we are not adding extra time steps, and therefore the cost of the objective does not
change.

29

Recall that the convex relaxation for this case (Relaxation-SPA) is given in sec-
tion 3.1.3. Our main lemma, shows how to obtain a constant competitive partially
adaptive strategy, when given a scenario-aware solution.

Lemma 3.7. Given a scenario-aware fractional solution x of cost f(x) there exists an efficient
partially-adaptive strategy x with cost at most 9.22f(x).

Proof. We explicitly describe the rounding procedure, in order to highlight its inde-
pendence of the scenario realized. For the rest of the proof we fix an (unknown)
realized scenario s. Starting from our (fractional) solution x of cost fs = f

s

o + f
s

c,
where f

s

o and f
s

c are the opening and values4 cost respectively, we use the reduction in
Theorem 5.2 in Chawla et al. (2020) to obtain a transformed fractional solution x ′ of
cost f ′s = f ′

s

o + f ′
s

c. For this transformed solution, Chawla et al. (2020) in Lemma 5.1
showed that

f ′
s

o ⩽

(
α

α− 1

)2

f
s

o (3.5)

for the opening cost and
f ′

s

c ⩽ αf
s

c (3.6)

for the cost incurred by the value inside the box chosen. To achieve this, the initial
variables xit are scaled by a factor depending on α to obtain x ′

it. For the remainder of
the proof, we assume this scaling happened at the beginning, and abusing notation
we denote by x the scaled variables. This is without loss of generality since, at the
end of the proof, we are taking into account the loss in cost incurred by the scaling
(Inequalities 3.5 and 3.6). The rounding process is shown in Algorithm 1.

Algorithm 1: Scenario aware, α-approximate rounding for 1 box
Data: Fractional solution x with cost f, set α = 3 + 2

√
2

/* Part 1: Scenario-independent rounding */

1 σ := for every t = 1, . . . ,n, repeat twice: open each box i w.p. qit =
∑

t ′⩽t xit ′

t
.

2

/* Part 2: Scenario-dependent stopping time */
3 Given scenario s, calculate zs and f

s

c

4 τs := If box i is opened and has value csi ⩽ αf
s

c then select it.

4Cost incurred by the value found inside the box.

30

The ratio of the opening cost of the integer to the fractional solution is bounded by

fso

f ′
s

o

⩽
2
∑∞

t=1
∏t−1

k=1

(
1 −

∑
i∈A,t ′⩽k zs

it ′
k

)2

∑
i t · zsit

Since zsit ⩽ xit

⩽
2
∑∞

t=1 exp
(
−2

∑t−1
k=1

∑
t ′⩽k zs

it ′
k

)
∑

i t · zsit
Using that 1 + x ⩽ ex

Observe that h(z) = log fso
f ′s

o

= log fso − log f
s

o is a convex function since the first
part is LogSumExp, and log f

s

o is the negation of a concave function. That means h(z)
obtains the maximum value in the boundary of the domain, therefore at the integer
points where zsit = 1 iff t = ℓ for some ℓ ∈ [n], otherwise zsit = 0. Using this fact we
obtain

fso

f ′
s

o

⩽
2ℓ+ 2

∑∞
t=ℓ+1 exp

(
−2

∑t−1
k=ℓ

1
k

)
ℓ

Using that zsit = 1 iff t = ℓ

=
2ℓ+ 2

∑∞
t=ℓ+1 exp (Ht−1 −Hℓ−1)

ℓ
Ht is the t’th harmonic number

⩽
2ℓ+ 2

∑∞
t=ℓ+1

(
ℓ
t

)2

ℓ
Since Ht−1 −Hℓ−1 ⩾

∫ t

ℓ

1
x
dx = log t− log ℓ

⩽
2ℓ+ 2ℓ2 ∫∞

ℓ
1
t2dt

ℓ
Since t−2 ⩽ x−2 for x ∈ [t− 1, t]

= 4.

Combining with equation 3.5, we get that fso ⩽ 4
(

α
α−1

)2
f
s

o. Recall that for the values
cost, inequality (3.6) holds, therefore requiring that 4

(
α

α−1

)2
= α, we have the lemma

for α = 3 + 2
√

2.

Corollary 3.8. For the case of MSSC, when the costs inside the boxes are either 0 or ∞, the
rounding of Lemma 3.7 obtains a 4-approximation, improving the 11.473 of Fotakis et al.
(2020).

31

3.2.2 A lower bound against the PA

To give the readers a sense of how good the guarantees that we gave are, we observe
that the lower bound of Min-Sum Set Cover presented in Feige et al. (2004) also
applies to Pandora’s Box. In Min-Sum Set Cover we are given n elements ei, and m

sets sj where each sj ⊆ [n]. We say a set sj covers an element ei if ei ∈ sj. The goal is
to select elements in order to minimize the sum of the covering times of all the sets,
where covering time of a set is the first time an element ei ∈ sj is chosen. This lower
bound is also mentioned in Chawla et al. (2020), but we include it here with more
details for the sake of completeness.

In Feige et al. (2004) the authors show that Min-Sum Set Cover cannot be approxi-
mated better than 4 − ε even in the special case where every set contains the same
number of elements5. We restate the theorem below.

Theorem 3.9 (Theorem 13 of Feige et al. (2004)). For every ε > 0, it is NP-hard to
approximate min sum set cover within a ratio of 4 − ε on uniform hypergraphs.

Our main observation is that Min-Sum Set Cover is a special case of Pandora’s
Box. When the boxes all have the same opening cost cb = 1 and the values inside
are vbs ∈ {0,∞}, we are required to find a 0 for each scenario; equivalent to covering
a scenario. The optimal solution of Min-Sum Set Cover is an algorithm that selects
elements one by one, and stops whenever all the sets are covered. This is exactly the
partially adaptive optimal we defined for Pandora’s Box. The theorem restated above
results in the following Corollary.

Corollary 3.10. For every ε > 0 it is NP-Hard to approximate Pandora’s Box against the
partially-adaptive within a ratio better than 4 − ε.

3.3 More complex constraints

In this section we extend the problem in cases where there is a feasibility constraint F,
that limits what or how many boxes we can choose. We consider the cases where we
are required to select k distinct boxes, and k independent boxes from a matroid. In
both cases we design SPA strategies that can be converted to PA. These two variants
are described in more detail in subsections 3.3.1 and 3.3.2 that follow.

5Equivalently forms a uniform hypergraph, where sets are hyperedges, and elements are vertices.

32

3.3.1 Choosing k items

In this section F requires that we pick k boxes to minimize the total cost and query
time. We again aim to compete against the optimal Partially-Adaptive strategy. We
design a PA strategy which achieves an O(1)-competitive ratio. If cis ∈ {0,∞}, the
problem is the generalized min-sum set cover problem first introduced in Azar et al.
(2009). Azar et al. (2009) gave a logn-approximation, which then was improved to a
constant in Bansal et al. (2010) via an LP-rounding based algorithm. Our proof will
follow the latter proof in spirit, and generalize to the case where boxes have arbitrary
values. Our main result is the following.

Lemma 3.11. There exists a scenario-aware partially-adaptive O(1)-competitive algorithm to
the optimal partially-adaptive algorithm for picking k boxes.

Combining this with Corollary 3.3 we get the following theorem.

Theorem 3.12. We can efficiently find a partially-adaptive strategy for optimal search with k

options that is O(1)-competitive against the optimal partially-adaptive strategy.

Proof of Lemma 3.11. The LP formulation we use for this problem is a variant of
(Relaxation-SPA) from Section 3.1.3, with the following changes; we introduce vari-
able yst which denotes the extent to which scenario s is covered until time t and
constraint (3.4) is replaced by constraint (3.8). For the LP to reflect this additional
cost we modify constraint (3.1) to (3.7) so that a box now is probed for pi steps.
The program (LP-k-cover) is presented below. Denote by OPTt,s and OPTc,s the
contribution of the query time and cost of scenario s in optimal fractional solution.
ALGt,s and ALGc,s denote the corresponding quantities for the algorithm.

minimize 1
|S|

∑
s∈S,t∈T

(1 − yst) +
1
|S|

∑
i∈B,s∈S,t∈T

ciszist (LP-k-cover)

subject to
∑
i∈B

xit = 1, ∀t ∈ T

(3.7)∑
t∈T

xit ⩽ 1, ∀i ∈ B

zist ⩽ xit, ∀s ∈ S, i ∈ B, t ∈ T

33

∑
t ′⩽t,i ̸∈A

zist ′ ⩾ (k− |A|)yst, ∀A ⊆ B, s ∈ S, t ∈ T

(3.8)

xit, zist,yst ∈ [0, 1] ∀s ∈ S, i ∈ B, t ∈ T

The LP formulation we use is exponential in size but we can efficiently find a
separation oracle, as observed in Section 3.1 in Bansal et al. (2010).

We claim that Algorithm 2 satisfies the lemma. The algorithm first finds an open-
ing sequence by probing boxes with some probability at every step, and then select
every opened box with some probability until k boxes are probed. Note that the
number of boxes probed at each “step” may be more than one. In the algorithm, we
set constant α = 8.

Algorithm 2: SPA vs PA, k-coverage
Data: Solution x,y, z to above LP, scenario s

1 σ := For each phase ℓ = 1, 2, . . ., open each box i independently with
probability qiℓ = min

(
α
∑

t⩽2ℓ xit, 1
)
.

2 τs :=

3 Define t∗s = max{t : yst ⩽ 1/2}.
4 if 2ℓ ⩾ t∗s then
5 For each opened box i, select it with probability min

(
α
∑

t⩽2ℓ zist

qiℓ
, 1
)

.

6 Stop when we have selected k boxes in total.
7 end

Let t∗s be the latest time at which yst ⩽ 1/2 as in the description of the algorithm.
As observed in Bansal et al. (2010) for scenario s, we pay at least 1− yst∗s ⩾

1
2 for each

time t ∈ [1, t∗s], thus
OPTt,s ⩾

t∗s
2 . (3.9)

Fix a scenario s. We first analyze the expected probing time of the algorithm for
this scenario. Denote by ℓ0 = ⌈log t∗s⌉ the first phase during which we have a non-zero
probability of selecting a box for scenario s. Notice that for each box i, the probability
that it is selected in phase ℓ ⩾ ℓ0 is min(1, 8

∑
t ′⩽2ℓ zist ′). The following lemma from

Bansal et al. (2010) bounds the probability that in each phase ℓ such that 2ℓ ⩾ t∗s, at

34

least k boxes are selected.

Lemma 3.13 (Lemma 5.1 in Bansal et al. (2010)). If each box i is selected w.p. at least
min(1, 8

∑
t ′⩽t zist ′) for t ⩾ t∗s, then with probability at least 1 − e−9/8, at least k different

boxes are selected.

Let γ = e−9/8. Observe that the number of boxes probed in a phase is indepen-
dent of the event that the algorithm reaches that phase prior to covering scenario s,
therefore we get

E [query time after phase ℓ0] =

∞∑
ℓ=ℓ0

E [query time phase ℓ] · Pr [ALG reaches phase ℓ]

⩽
∞∑

ℓ=ℓ0

∑
i∈B

α
∑
t ′⩽2ℓ

xit ′ ·
ℓ−1∏
j=ℓ0

Pr [⩽ k boxes selected phase j]

(3.10)

⩽
∞∑

ℓ=ℓ0

2ℓα · γℓ−ℓ0

=
2ℓ0α

1 − 2γ <
2t∗sα

1 − 2γ ⩽
4αOPTt,s

1 − 2γ .

The second line follows by noting that the algorithm can reach phase ℓ only if in
each previous phase there are less than k boxes selected. The third line is by Lemma
3.13 and constraint (3.7). The last line is by ℓ0 = ⌈log t∗s⌉ and inequality (3.9). Since
the expected query time at each phase ℓ is at most α2ℓ, thus the expected query time
before phase ℓ0 is at most

∑
ℓ<ℓ0

α2ℓ < 2ℓ0α < 2t∗sα ⩽ 4αOPTt,s. Therefore the total
query time of the algorithm for scenario s is

ALGt,s ⩽ 4αOPTt,s +
4αOPTt,s

1 − 2γ < 123.25OPTt,s.

To bound the cost of our algorithm, we find the expected total value of any phase
ℓ, conditioned on selecting at least k distinct boxes in this phase.

E[cost in phase ℓ|at least k boxes are selected in phase ℓ]

⩽
E [cost in phase ℓ]

Pr [at least k boxes are selected in phase ℓ]

35

⩽
1

1 − γ
E [cost in phase ℓ]

⩽
1

1 − γ

∑
i∈B

α
∑
t⩽2ℓ

zistcis =
1

1 − γ
αOPTc,s < 11.85OPTc,s.

Here the third line is by Lemma 3.13 and the last line is by definition of OPTc,s.
Notice that the upper bound does not depend on the phase ℓ, so the same upper bound
holds for ALGc,s. Thus the total cost contributed from scenario s in our algorithm is

ALGs = ALGt,s + ALGc,s < 123.25OPTt,s + 11.85OPTc,s ⩽ 123.25OPTs.

Taking the expectation over all scenarios s, we conclude that the scenario-aware
strategy gives constant competitive ratio to the optimal partially-adaptive strategy.

3.3.2 Choosing matroid basis of rank k

In this section F requires us to select a basis of a given matroid. More specifically,
assuming that boxes have an underlying matroid structure we seek to find a base
of size k with the minimum cost and the minimum query time. We first design a
scenario-aware partially-adaptive strategy in Lemma 3.14 that is O(log k)-competitive
against optimal partially-adaptive strategy. Then, in Theorem 3.17 we argue that such
competitive ratio is asymptotically tight.

Lemma 3.14. There exists a scenario-aware partially-adaptive O(log k)-approximate algo-
rithm to the optimal partially-adaptive algorithm for picking a matroid basis of rank k.

Combining this with Corollary 3.3 we get the following theorem.

Theorem 3.15. We can efficiently find a partially-adaptive strategy for optimal search over a
matroid of rank k that is O(log k)-competitive against the optimal partially-adaptive strategy.

The LP formulation is similar to the one for the k-coverage constraint, presented
in the previous section. Let r(A) for any set A ⊆ B denote the rank of this set. The
constraints are the same except for constraints (3.11) and (3.12) that ensure we select
no more than the rank of a set and that the elements that remain unselected are
adequate for us to cover the remaining rank respectively.

minimize 1
|S|

∑
s∈S,t∈T

(1 − yst) +
1
|S|

∑
i∈B,s∈S,t∈T

csizist (LP-matroid)

36

subject to
∑
i∈B

xit = 1, ∀t ∈ T∑
t∈T

xit ⩽ 1, ∀i ∈ B∑
t∈T,i∈A

zist ⩽ r(A), ∀s ∈ S,A ⊆ B

(3.11)

zist ⩽ xit, ∀s ∈ S, i ∈ B, t ∈ T∑
i ̸∈A

∑
t ′⩽t

zist ′ ⩾ (r([n]) − r(A))yst, ∀A ⊆ B, s ∈ S, t ∈ T

(3.12)

xit, zist,yst ∈ [0, 1] ∀s ∈ S, i ∈ B, t ∈ T

Solving the LP efficiently The LP formulation we use is exponential in size but
we can efficiently find a separation oracle. Every set of constraints can be verified in
polynomial time except for constraints (3.12). Rewriting these last constraints we get

∑
i

∑
t ′⩽t

zist ′ −
∑
i∈A

∑
t ′⩽t

zist ′ ⩾ r([n]) − r(A), ∀A ⊆ B, t ∈ T.

Then the problem is equivalent to minimizing the function

g(A) = r(A) −
∑
i∈A

∑
t ′⩽t

zist ′

over all subsets of items A ⊆ B. The function g(A) is submodular since the
rank function r(A) is submodular, therefore we can minimize it in polynomial time
Grötschel et al. (1981). The formal statement of the main theorem is the following.

Proof of Lemma 3.14. We claim that Algorithm 3 satisfies the lemma. The algorithm
first finds an opening sequence by probing boxes with some probability at every step,
and then knowing the scenario selects every opened box with some probability until
a basis of rank k is found. In the algorithm we set constant α = 64.

37

Algorithm 3: SPA vs PA, matroid
Data: Solution x,y, z to above LP, scenario s

1 σ := for every t = 1, . . . ,n, open each box i independently with probability
qit = min

{
α ln k

∑
t ′⩽t xit ′

t
, 1
}

.

2 τs :=

3 Let t∗s = min{t : yst ⩽ 1/2}.
4 if t > t∗s then
5 For each opened box i, select it with probability min

{
α lnk

∑
t ′⩽t zist ′

tqit
, 1

}
.

6 Stop when we find a base of the matroid.
7 end

In scenario s, let phase ℓ be when t ∈ (2ℓ−1t∗s, 2ℓt∗s]. The proof has almost identical
flow as the proof for k-coverage case. We still divide the time after t∗s into exponentially
increasing phases, while in each phase we prove that our success probability is a
constant. The following lemma gives an upper bound for the query time needed in
each phase to get a full rank base of the matroid. The proof is deferred to Section 3.A.4
of the appendix.

Lemma 3.16. In phase ℓ, the expected number of steps needed to select a set of full rank is at
most (4 + 2ℓ+2/α)t∗s.

Define X to be the random variable indicating number of steps needed to build a
full rank subset. The probability that we build a full rank basis within some phase
ℓ ⩾ 6 is

Pr
[
X ⩽ 2ℓ−1t∗s

]
⩾ 1 −

E [X]

2ℓ−1t∗s
⩾ 1 −

1
2ℓ−1t∗s

(4 + 2ℓ+2/α)t∗s = 1 − 23−ℓ −
8
α

⩾
3
4,

(3.13)

where we used Markov’s inequality for the first inequality and Lemma 3.16 for the
second inequality. To calculate the total query time, we sum up the contribution of
all phases.

E [query time aftr phase 6] =
∞∑
ℓ=6

E [query time at phase ℓ] · Pr [ALG reaches phase ℓ]

38

⩽
∞∑
ℓ=6

2ℓt∗s∑
t=2ℓ−1t∗s+1

∑
i∈B

α ln k ·
∑

t ′⩽t xit ′

t

(
1
4

)ℓ−6

(3.14)

⩽
∞∑
ℓ=6

2ℓ−1t∗sα ln k ·
(

1
4

)ℓ−6

=
128α ln kt∗s

3 ⩽
256c ln kOPTt,s

3 .

Here the second line uses that each box i is probed at each time step t with
probability α ln k ·

∑
t ′⩽t xit ′

t
. The third line follows from constraint (3.7). The last line

uses t∗s ⩽ 2OPTt,s by (3.9). Since the expected query time at each step is α ln k and
there are 25t∗s ⩽ 64OPTt,s steps before phase 6, we have

ALGt,s ⩽ α ln k · 64OPTt,s +
256α ln kOPTt,s

3 = O(log k)OPTt,s.

As for k-coverage case, to bound the cost of our algorithm, we find the expected
total cost of any phase ℓ ⩾ 6, conditioned on boxes forming a full rank base are
selected in this phase.

E[cost in phase ℓ|full rank base selected in phase ℓ]

⩽
E [cost in phase ℓ]

Pr [full rank base selected in phase ℓ]

⩽
1

3/4E [cost in phase ℓ]

⩽
1

3/4
∑
i∈B

2ℓt∗s∑
t=2ℓ−1t∗s+1

α ln k

∑
t ′⩽t zist ′cis

t

⩽
1

3/4

2ℓt∗s∑
t=2ℓ−1t∗s+1

α ln k
∑
i∈B

∑
t ′∈T zist ′cis

2ℓ−1t∗s

=
1

3/4α ln kOPTc,s = O(log k)OPTc,s.

Such upper bound of conditional expectation does not depend on ℓ, thus also gives the
same upper bound for ALGc,s. Therefore ALGs = ALGt,s+ALGc,s ⩽ O(log k)(OPTt,s+

OPTc,s) = O(log k)OPTs. Take expectation over s, we have the scenario-aware
adaptive strategy Algorithm 3 is O(log k)-competitive against the optimal partially-
adaptive strategy.

39

Now we argue that the O(log k)-approximation we got is essentially tight. The
following theorem implies that under common complexity assumption, no efficient
fully-adaptive algorithm can get asymptotically better competitive ratio, even com-
pared to optimal non-adaptive cost.

Theorem 3.17. Assuming NP̸⊆RP, no computationally efficient fully-adaptive algorithm
can approximate the optimal non-adaptive cost within a factor of o(log k).

Proof. We provide an approximation-preserving reduction from Set Cover problem
to finding good fully-adaptive strategy. Let SC = ([n], {S1, . . . ,Sk}) be a Set Cover
instance on a ground set of n elements, and k sets S1, . . . ,Sk. Denote by OPTSC the
optimal solution to this Set Cover instance. We construct an instance of partition
matroid coverage, where the rank is k. Each segment of the partition consists of
multiple copies of the sets S1, . . . ,Sk. Every scenario consists of one set from each
segment, as seen in Table 3.1.

Segment 1 Segment 2 . . . Segment k
Scenario 1 S1 S1 . . . S1
Scenario 2 S1 S1 S2
.
Scenario kk Sk Sk Sk

Table 3.1: Instance of partition matroid k-coverage

A scenario is covered when k elements are selected, one for each of the k sets
of every segment. This is an instance of the probing problem we study with cost
for each box being 0 or ∞. Similarly, we say a segment is covered when we have
chosen at least one element in every set it contains. Denote by ALGFA and OPTNA

the solution of any fully-adaptive algorithm and the optimal non-adaptive solution
respectively for this transformed instance. Any fully-adaptive algorithm will select
elements, trying to cover all scenarios. Initially, observe that OPTNA ⩽ kOPTSC, since
the non-adaptive will at most solve the Set Cover problem in the k different segments.
We assume that we can approximate the non-adaptive strategy with competitive ratio
α i.e. ALGFA = O(α)OPTNA = O(kα)OPTSC.

Let ℓ be the number of elements ALGFA has selected when exactly k/2 segments
are covered and let s be a randomly chosen scenario. For each one of the k/2 uncovered

40

segments, there are at least 1 uncovered set. Therefore

Pr [s is uncovered] ⩾ 1 −

(
1 −

1
k

)k/2

≈ 1 −
1√
e

.

This implies ALGFA ⩾ ℓ
(

1 − 1√
e

)
thus ℓ = O(kα)OPTSC. Notice that there

exists some segment that is covered using ℓ/(k/2) = O(α)OPTSC elements. Thus
any efficient algorithm that provides O(α)-approximation of non-adaptive strategy
using fully-adaptive strategy can be transformed efficiently to an O(α)-approximation
algorithm for Set Cover.

Although above reduction from set cover has kk scenarios that cannot be con-
structed in polynomial time, by Lemma 7.1 poly(n, 1

ϵ
, log 1

δ
) samples of all scenarios

is sufficient to get accuracy within ϵ with probability 1 − δ for any probing strategy.
Let ε = 1 and δ = 1

3 . The above reduction implies that if there is a poly-time algorithm
that computes a probing strategy with cost o(log k)OPTNA, there exists a poly-time
algorithm to solve Set Cover with competitive ratio o(log k) with probability 2

3 . By
Dinur and Steurer (2014) such algorithm cannot exist assuming NP̸⊆RP.

3.A Appendix for Chapter 3

3.A.1 Warm-up: Competing with the Non-Adaptive

As a warm-up for our main result, we approximate the optimal NA strategy by a PA
strategy. The relaxation (LP-NA) for the optimal NA strategy is simpler. Here xi is
an indicator variable for whether box i is opened and zis indicates whether box i is
assigned to scenario s.

minimize
∑
i∈B

xi +
1
|S|

∑
i∈B,s∈S

ciszis (LP-NA)

subject to
∑
i∈B

zis = 1, ∀s ∈ S (3.15)

zis ⩽ xi, ∀i ∈ B, s ∈ S

xi, zis ∈ [0, 1] ∀i ∈ B, s ∈ S

41

3.A.1.1 An upper bound via PA strategies

Our main result of this section is as follows.

Lemma 3.18. We can efficiently compute a scenario-aware partially-adaptive strategy with
competitive ratio 1 against the optimal non-adaptive strategy.

Putting this together with Corollary 3.3 we get the following theorem.

Theorem 3.19. We can efficiently find a partially-adaptive strategy with total expected cost
at most e/(e− 1) times the total cost of the optimal non-adaptive strategy.

Proof of Lemma 3.18. We use the LP relaxation (LP-NA) described above. Given an
optimal fractional solution (x, z), we denote by OPTc,s =

∑
i ciszis the cost for sce-

nario s in this solution, and by OPTc = 1
|S|

∑
s OPTc,s the cost for all scenarios. Let

OPTt =
∑

i∈B xi denote the probing time for the fractional solution. Similarly, we
define ALGt, ALGc and ALGc,s to be the algorithm’s query time, cost for all scenarios
and cost for scenario s respectively.

Algorithm 4 rounds (x, z) to an SPA strategy. Note that the probing order σ in the
rounded solution is independent of the instantiated scenario, but the stopping time
τs depends on the scenario specific variables zis. τs is not necessarily the optimal
stopping time for the constructed probing order, but its definition allows us to relate
the cost of our solution to the fractional cost OPTc.

Algorithm 4: SPA vs NA
Data: Solution x, z to program (LP-NA); scenario s

1 σ := For t ⩾ 1, select and open box i with probability xi∑
i∈B xi

.
2 τs := If box i is opened at step t, select the box and stop with probability zis

xi
.

Notice that for each step t, the probability of stopping is

Pr [stop at step t] =
∑
i∈B

xi∑
i∈B xi

zis

xi
=

∑
i∈B zis∑
i∈B xi

=
1

OPTt

,

where we used the first set of LP constraints (3.15) and the definition of OPTt. Observe
that the probability is independent of the step t and therefore E [ALGt] = OPTt. The

42

expected cost of the algorithm is

E [ALGc,s] =
∑
i∈B,t

Pr [select i at step t | stop at step t]Pr [stop at step t] cis

⩽
∑
i∈B,t

zis∑
i∈B zis

Pr [stop at step t] cis =
∑
i∈B

ziscis = OPTc,s

Taking expectation over all scenarios we get E [ALGc] ⩽ OPTc, and the lemma follows.

3.A.1.2 A Lower Bound Against the Non-Adaptive

We now show that we cannot achieve a competitive ratio of 1 against the optimal NA
strategy even if we use the full power of fully adaptive strategies.

Theorem 3.20. Assuming P ̸=NP, no computationally efficient fully-adaptive algorithm can
approximate the optimal non-adaptive strategy within a factor smaller than 1.278.

Our lower bound is based on the hardness of approximating Set Cover. We use
the following lemma which rules out bicriteria results for Set Cover; a proof can be
found in Appendix 3.A.4.

Lemma 3.21. Unless P=NP, for any constant ϵ > 0, there is no algorithm that for every
instance of Set Cover finds k sets that cover at least 1 −

(
1 − 1+ε

OPT

)k of the elements for some
integer k ∈

[
1, logn

1+ε
OPT

]
.

Proof of Theorem 3.20. Let H > 0 and p ∈ [0, 1] be appropriate constants, to be deter-
mined later. We will define a family of instances of the optimal search problem based
on set cover. Let SC = ([m], {S1, . . . ,Sn}) be a set cover instance with m elements and
n sets. Denote its optimal value by OPTSC. To transform this into an instance of the
search problem, every element ej ∈ [m] corresponds to a scenario j, and every set Si

to a box i. We set cij = 0 iff ej ∈ Si, otherwise cij = H. We also add a new scenario
X with vXi = H, ∀i ∈ [n]. Scenario X occurs with probability p and all the other m
scenarios happen with probability (1 − p)/m each.

In this instance, the total cost of optimal non-adaptive strategy is OPTNA ⩽ pH+

OPTSC, since we may pay the set-cover cost to cover all scenarios other than X, and
pay an additional cost H to cover X.

43

Consider any computationally efficient algorithm A that returns a fully adaptive
strategy for such an instance. Since the costs of the boxes are 0 or H, we may assume
without loss of generality that any FA strategy stops probing as soon as it observes a
box with cost 0 and chooses that box. We say that the strategy covers a scenario when
it finds a box of cost 0 in that scenario. Furthermore, prior to finding a box with cost
0, the FA strategy learns no information about which scenario it is in other than that
the scenario is as yet uncovered. Consequently, the strategy follows a fixed probing
order that is independent of the scenario that is instantiated. We can now convert
such a strategy into a bicriteria approximation for the underlying set cover instance.
In particular, for k ∈ [n], let rk denote the number of scenarios that are covered
by the first k probed boxes. Then, we obtain a solution to SC with k sets covering
rk elements. By Lemma 3.21 then, for every ε > 0, there must exist an instance of
set cover, SC, and by extension an instance of optimal search, on which A satisfies
rk ⩽ 1 −

(
1 − 1+ε

OPTSC

)k−1
for all k ⩽ logn

(1+ε)
OPTSC.

For the rest of the argument, we focus on that hard instance for A. Let N denote
the maximum number of boxes A probes before stopping to return a box of cost H.6

Then the expected query time of the strategy is at least

Pr [s = X] ·N+ Pr [s ̸= X]

N∑
k=1

Pr [FA reaches step k|s ̸= X]

⩾ pN+ (1 − p)

N∑
k=1

(
1 −

1 + ε

OPTSC

)k−1

= pN+ (1 − p)

(
1 −

(
1 −

1 + ε

OPTSC

)N
)

OPTSC

1 + ε
. (3.16)

On the other hand, the expected cost of the FA strategy is at least

H(Pr [s = X] + Pr [s ̸= X∧ FA didn’t find cost 0 in first N steps])

⩾ pH+ (1 − p)H

(
1 −

1 + ε

OPTSC

)N

.

6We may safely assume that N ⩽ lognOPTSC.

44

Thus the total cost of such fully-adaptive strategy is lower bounded by

ALGFA ⩾ pH+ (1 − p)H

(
1 −

1 + ε

OPTSC

)N

+ pN+ (1 − p)

(
1 −

(
1 −

1 + ε

OPTSC

)N
)

OPTSC

1 + ε
.

Let x be defined so that (1− 1+ε
OPTSC

)N = e−x. Then,N = −x/ ln(1− 1+ε
OPTSC

) ⩾ x(OPTSC

1+ε
−1).

Substituting these expressions in the above equation we get

ALGFA ⩾ pH+ (1 − p)He−x + p · x
(

OPTSC

1 + ε
− 1
)
+ (1 − p)(1 − e−x)

OPTSC

1 + ε
.

The RHS is minimized at x = ln
(

(1−p)(H(1+ε)−OPTSC)
p(OPTSC−(1+ε))

)
. By setting ϵ→ 0, p = 0.22

and H = 4.59OPTSC, the competitive ratio becomes

ALGFA

OPTNA

⩾ 1.278

when OPTSC →∞.

3.A.2 General Probing Times: Revisiting the Main Results

In this section, we consider settings where different boxes require different amounts
of time to probe. Let pi denote the probing time required to probe box i. We assume
pi ∈ [1,P] for some P that is polynomially large in n. The running time and sample
complexity of our algorithms will depend linearly on P. Henceforth we will assume
that the pi’s are integers: rounding up each probing time to the next integer only
increases the total objective function value by a factor of at most 2.

3.A.2.1 Ski rental with general rent cost

In order to show Corollary 3.3 in our case, we need to solve a further generalization
of the ski rental problem where we have arbitrary rent costs. Specifically, in the ski
rental problem with general rent cost, the input is a sequence of non-increasing buy
costs, a1 ⩾ a2 ⩾ a3 ⩾ . . . as well as an integral rent costs pt for each time t. At each
step t, the algorithm decides to either rent skis at a cost of pt, or buy skis at a cost of
at. We show that Lemma 3.2 still holds beyond the unit-rental-cost case.

45

Lemma 3.22. Consider any sequence of integral buy cost a1 ⩾ a2 ⩾ . . . and integral rent
cost p1,p2, · · · . There exists an online algorithm that chooses a stopping time t so that

t−1∑
i=1

pi + at ⩽
e

e− 1 min
j

{
j−1∑
i=1

pi + aj

}
.

Proof of Lemma 3.22. The case with the general rental cost is equivalent to the following
unit-rent-cost problem: at time t =

∑j−1
i=1 pi, the buyer can decide to either pay aj for

buying skis, or continue to rent for pj consecutive time slots, each with rent cost 1,
and then get to see the next possible skis buying cost aj+1. The two problems have
the same offline optimal cost.

To solve the case with general rental cost, we use the algorithm in Lemma 3.2 as
a subroutine. Assume that in the general-rental-cost case, we have already rented
skis for j − 1 days, the total rental cost we have paid is t

∑j−1
i=1 pi. Now we see the

next buy and rent values aj and pj. To decide what to do at the current step, we run
the unit-rental-cost algorithm as in the proof of Lemma 3.2 for additional pj time
steps without doing real probing, because we know the buying cost will not change
in the next pj unit time steps. If the algorithm with unit rental cost does not stop
in the following pj unit time steps in the simulation, we decide to do the same, i.e.
paying the rental cost pj at the current time step. If the algorithm with unit rental cost
stops and buys skis in the following pj unit time steps in the simulation, we decide to
buy skis immediately, which results in a better total cost than in the corresponding
unit-rental-cost case. Since the algorithm in the previous lemma pays an e

e−1 -approx
to the optimal offline cost of the corresponding unit-rental-cost case, our algorithm
for the general-rental-case is no worse than it, thus an e

e−1-approx to the optimal
offline cost of the general-rental-cost case.

3.A.2.2 Linear program formulations

To get the linear program relaxation of the optimal Non-Adaptive strategy for selecting
one box, we only need to change the objective function of the linear program.

minimize
∑
i∈B

xipi +
1
|S|

∑
i∈B,s∈S

ciszis (LP-NA-General)

46

subject to
∑
i∈B

zis = 1, ∀s ∈ S

zis ⩽ xi, ∀i ∈ B, s ∈ S

xi, zis ∈ [0, 1] ∀i ∈ B, s ∈ S

For the LP of optimal SPA strategy for selecting one box, we need to account for the
probing time of every box in the constraint. In order to do that, we will require that
every box is being probed for pi consecutive steps: xit = 1 means that box i has been
probed since time t−pi+1, and the probing of the box finishes at time t. Thus at each
time step t, there are

∑
i∈B

∑
t⩽t ′⩽t+pi−1 xit ′ boxes under probing, and this should

be upper bounded by 1. The rest of the program will be the same. Since the probing
time of each box is polynomially bounded, such LP still has a polynomial size.

minimize 1
|S|

∑
i∈B,s∈S,t∈T

tzist +
1
|S|

∑
i∈B,s∈S,t∈T

ciszist (LP-SPA-General)

subject to
∑
i∈B

∑
t⩽t ′⩽t+pi−1

xit ′ ⩽ 1, ∀t ∈ T (3.17)∑
t∈T

xit ⩽ 1, ∀i ∈ B

zist ⩽ xit, ∀s ∈ S, i ∈ B, t ∈ T∑
t ′∈T,i∈B

zist ′ = 1, ∀s ∈ S

xit, zist ∈ [0, 1] ∀s ∈ S, i ∈ B, t ∈ T

For the case of selecting k boxes or picking a matroid basis of rank k, the change to the
LP of SPA strategy would be the same: replacing the first constraint “

∑
i∈B xit = 1”

by (3.17).

3.A.2.3 Warmup: SPA vs NA, selecting a single item

We show that Algorithm 4 works for the general-probing-time case with approxima-
tion ratio only losing a factor of 2.

Lemma 3.23. In general-probing-times case, we can efficiently compute a scenario-aware
partially-adaptive strategy with competitive ratio 2 against the optimal non-adaptive strategy.

Proof. The analysis of ALGc remains the same, i.e. E [ALGc] ⩽ OPTc. Now we

47

consider ALGt. Notice that each step of the algorithm for constructing the probing
order is completely independent, with stopping probability 1∑

i∈B xi
at each point.

However, the “length” of each step depends on the probing time for the box picked
for that step. Let τ denote the step at which we stop. We have E [τ] =

∑
i∈B xi. For

any step t < τ, the expected probing time for this step is

E [probing time at step t|t not stopping time] < E [probing time at step t]

Pr [t is not stopping time]

=

∑
i∈B xipi/

∑
i∈B xi

1 − 1/
∑

i∈B xi
.

Thus the expected total probing time is

E [ALGt] = E [probing time at steps < τ] + E [probing time at step τ]

⩽

∑
i∈B xipi/

∑
i∈B xi

1 − 1/
∑

i∈B xi
(E [τ] − 1) +

∑
i∈B

xipi

= 2
∑
i∈B

xipi = 2OPTt.

Thus E [ALG] ⩽ 2OPT.

3.A.2.4 SPA vs PA: k-coverage and matroid base

Now we show the algorithms for the case of selecting k boxes and selecting a matroid
base still works when we have general probing times. The only difference is that the
algorithms will now base on the modified LP in Section 3.A.2.2.

In the entire analysis of the two cases, the only place where we employ probing
times of boxes is when we try to bound the expected total probing time of each phase
ℓ in (3.10) and (3.14) respectively. These expected probing time terms,

∑
t ′⩽2ℓ xit ′

in (3.10) and
∑

t ′⩽t xit ′ in (3.14), will get changed to
∑

t ′⩽2ℓ pixit ′ and
∑

t ′⩽t pixit ′

respectively.
Now we argue that the proof will still go through step by step, and it suffices to

show that
∑

i∈B

∑
t ′⩽t pixit ′ ⩽ t. Sum up LP constraint (3.17) from 1 to t, we have∑

i∈B

∑
t ′⩽t

∑
t ′⩽t ′′⩽t ′+pi−1

xit ′′ ⩽ t.

Notice that for any t ′ ⩽ t, xit ′ appears exactly pi times in the sum. The counting

48

argument implies ∑
i∈B

∑
t ′⩽t

pixit ′ ⩽
∑
i∈B

∑
t ′⩽t

∑
t ′⩽t ′′⩽t ′+pi−1

xit ′′ ⩽ t.

Observe that for the case of k = 1 discussed in Section 3.2 this extension implies the
124-approximation of Theorem 3.12. We believe that the argument can be tightened
to obtain a much better factor for k = 1 but do not attempt to optimize the constant.
We also note that our reduction to MSSC in Section 3.2 continues to work with general
probing times, however this general setting has not been studied previously for MSSC.

3.A.3 Inapproximability of the profit maximization variant

In this section we consider the profit maximization variant of the problem discussed
above. The boxes now contain some prize value vis for each box i in scenario s, and
we want to maximize expected profit. Formally, let Ps be the set of probed boxes in
scenario s, our objective is to maximize

Es

[
max
i∈Ps

vis − |Ps|

]
.

It turns out that, contrary to the minimization case, obtaining a constant approxi-
mation in this setting is impossible, as the following theorem shows.

Theorem 3.24. Assuming P ̸=NP, no computationally efficient fully-adaptive algorithm can
approximate the optimal non-adaptive profit within a constant factor.

The proof follows similarly to the minimization case, where we use again Lemma 3.21
to construct a bad instance that can give arbitrarily bad approximation.

Proof of Theorem 3.24. Let H > 0 and p ∈ [0, 1] be appropriate constants, to be deter-
mined later. Let SC = ([m], {S1, . . . ,Sn}) be a set cover instance with m elements and
n sets. Denote its optimal value by OPTSC. To transform this into an instance of
the search problem, every element ej ∈ [m] corresponds to a scenario j, and every
set Si to a box i. We set vij = H iff ej ∈ Si, otherwise vij = 0. We also add a new
scenario X with vXi = 0, ∀i ∈ [n]. Scenario X occurs with probability p and all the
other m scenarios happen with probability (1 − p)/m each. Observe that contrary to
the minimization lower bound of Section 3.A.1.2, the additional scenario X has a low
value (0 instead of H), and the other scenarios give a high value (H) when covered.

49

In this instance, the profit of optimal non-adaptive strategy is OPTNA ⩾ (1 −

p)H−OPTSC, since we may pay the set-cover cost to find a box with value H in every
scenario other than X.

Now let us consider any computationally efficient algorithm A that returns a fully
adaptive strategy for such an instance. Since the values of the boxes are 0 or H, we
may assume without loss of generality that any fully-adaptive strategy stops probing
as soon as it observes a box with value H and chooses that box. We say that the
adaptive strategy covers a scenario when it finds a box of value H in that scenario.
Observe that similarly to the lower bound of subsection 3.A.1.2, any FA strategy will
follow a probing order independent of the scenario, which we can then convert to an
approximate solution for the underlying set cover instance. Then, for any constant
ε > 0, by Lemma 3.21, there must exist a set cover instance and correspondingly an
instance of the search problem, such that for the adaptive strategy returned by the
algorithm for that instance, for every k, the fraction of scenarios other than X covered
before step k is at most 1 −

(
1 − 1+ε

OPTSC

)k−1
. Consider such an instance and let N

denote the maximum number of boxes the strategy probes before stopping to return
a box of value H.

The same as (3.16), the expected query time of the strategy is at least

pN+ (1 − p)

(
1 −

(
1 −

1 + ε

OPTSC

)N
)

OPTSC

1 + ε
.

On the other hand, the expected value obtained by the fully-adaptive strategy is at
most

H·Pr [s ̸= X∧ FA finds value H in first N steps] ⩽

(1 − p)H

(
1 − (1 −

1 + ε

OPTSC

)N
)

.

Thus the profit of such fully-adaptive strategy is upper bounded by

ALGFA ⩽ (1 − p)H ·

(
1 −

(
1 −

1 + ε

OPTSC

)N
)

− (1 − p)

(
1 −

(
1 −

1 + ε

OPTSC

)N
)

OPTSC

1 + ε
− pN.

50

Let x be defined so that (1− 1+ε
OPTSC

)N = e−x. Then,N = −x/ ln(1− 1+ε
OPTSC

) ⩾ x(OPTSC

1+ε
−1).

Substituting these expressions in the above equation we get

ALGFA(x) ⩽ (1 − e−x)(1 − p)

(
H−

OPTSC

1 + ε

)
− px

(
OPTSC

1 + ε
− 1
)

.

Observe that the right hand side is maximized at x = ln
(

(1−p)((1+ε)H−OPTSC)

p(OPTSC−(1+ε))

)
. By

setting (1 − p)H = 2ε+1
ε+1 OPTSC, ε→ 0 and p→ 1, we get

ALGFA

OPTNA

⩽ 2 −
p

ε
log
(

2ε
p

+ 1
)
→ 0

when OPTSC →∞. Thus no efficient fully-adaptive algorithm can approximate
the optimal non-adaptive profit within any constant factor.

3.A.4 Missing Proofs of Chapter 3

Lemma 3.2. [Ski Rental with time-varying buy costs] Consider any sequence a1 ⩾ a2 ⩾
There exists an online algorithm that chooses a stopping time t so that

t− 1 + at ⩽
e

e− 1 min
j

{j− 1 + aj}.

Proof of Lemma 3.2. We prove that Algorithm 5 satisfies the lemma. The algorithm
sees an instance I = {a1,a2, . . .} and essentially starts a new Ski Rental problem every
time it finds a lower at+t−1 value, using the e

e−1 -competitive randomized Ski Rental
algorithm Karlin et al. (1990) as a black box, to choose the new stopping time τ.

Every time the algorithm changes the current cost value C (line 4 of Algorithm 5)
we say the sequence {at} takes a step. Suppose that the sequence takes a step at
time 1 = tN < tN−1 < · · · < t1. Notice that N ⩽ a1, since the sum of renting
cost and buying cost after time t = a1 will be at least a1, which is the total cost at
time 1. Denote by ALGk the algorithm’s cost on instance atk ,atk+1 , · · · , which is the
truncated instance that takes k steps until the end. Define OPTk = mint{at + t− 1}
be the optimal cost for the same instance that the algorithm takes k steps until the
end. We claim that E

[
ALGk

]
⩽ e/(e− 1)OPTk for any k, and prove the claim using

induction on the number of steps.
Observe that for k = 1, since the algorithm only takes a step at the beginning, we

have at + t− 1 ⩾ a1 for any t ⩾ 1. In this case, OPT1 = a1 and ALG only considers

51

Algorithm 5: Ski Rental for time-varying buying prices
Data: ski(C): random stopping time according to Ski Rental with buying cost

C

Input: Sequence a1,a2, . . . of buying costs
1 C = ∞, τ = ∞
2 foreach time t ⩾ 1 do
3 if at + t− 1 < C then
4 C = at + t− 1
5 τ = t− 1+ ski(C− t+ 1)
6 end
7 if t = τ then
8 Buy at price mint ′⩽t{at ′}

9 end
10 end

a1 as buying cost. This is exactly a special case of the traditional Ski Rental problem
with one buying cost. Therefore we get ALG1 ⩽ e/(e− 1)OPT1.
For any k > 1, denote by T be the first time the algorithm takes a step, τ0 the first
stopping time set by the algorithm. The expected cost of the algorithm is

E
[
ALGk

]
= E

[
ALGk

1{τ0⩽T}

]
+ E

[
(T + ALGk−1)1{S>T}

]
⩽ E

[
(a1 + τ0)1{τ0⩽T}

]
+ TPr [τ0 > T] + E

[
ALGk−1]

⩽ E
[
(a1 + τ0)1{τ0⩽T}

]
+ TPr [τ0 > T] +

e

e− 1OPTk−1

⩽
e

e− 1T +
e

e− 1(OPTk − T)

=
e

e− 1OPTk.

Here the second line comes from the algorithm’s cost when τ0 ⩽ T is exactly a1 + τ0,
which is paying the buying cost a1 at time 1 and the renting cost for τ0 rounds. The
third line is by inductive hypothesis. The fourth line is true since for a ski-rental
instance with T days and buying cost a1 > T , renting for T days is optimal, while
the strategy of using τ0 as stopping time has cost E

[
(a1 + τ0)1{τ0⩽T}

]
+ TPr [τ0 > T]

should give e
e−1-approximation to optimal. The last line comes from the fact that

OPTk = OPTk−1 + T , as the optimal solution always choose to rent in the first T steps.
By induction, ALGN ⩽ e

e−1OPTN.

52

Corollary 3.3. Given any scenario-aware partially-adaptive strategy σ, we can efficiently
construct a stopping time τ, such that the cost of the partially-adaptive strategy (σ, τ) is no
more than a factor of e/(e− 1) times the cost of σ.

Proof of Corollary 3.3. Recall that a scenario-aware strategy consists of a sequence and
a scenario dependent stopping rule. Let (σ, τ) be the scenario-aware partially-adaptive
strategy. For the case with unit query time, by running the algorithm described in
the proof of Lemma 3.2 using sequence σ as input7, we obtain a stopping rule that
does not depend on the scenario and only worsens the approximation by a factor of
e/(e− 1). Similarly for the case of general probing time, we will use the algorithm
for Corollary 3.22.

Lemma 3.21. Unless P=NP, for any constant ϵ > 0, there is no algorithm that for every
instance of Set Cover finds k sets that cover at least 1 −

(
1 − 1+ε

OPT

)k of the elements for some
integer k ∈

[
1, logn

1+ε
OPT

]
.

Proof of Lemma 3.21. Assume that there exists an algorithm A such that for every
instance of Set Cover finds k sets that cover at least 1 − (1 − 1+ε

OPT)
k of the elements.

Given an instance of Set Cover, with a ground set of n elements, we repeatedly
run A on the set of uncovered elements left at each round. Every time, we create
a new instance with ground set composing of only the elements left uncovered in
the previous round. Using the guarantee for A in each round i we cover at least
(1 − (1 − 1+ε

OPT)
ki) for some ki ∈

[
1, lognOPT

1+ε

]
.

Denote by z the number of rounds we need to cover all elements and by ki the
number of the elements we cover at round i. In the end of round z there are

n

z∏
i=1

(
1 −

1 + ε

OPT

)ki

(3.18)

elements left uncovered. When the above quantity equals 1, we are left with 1 element
and the following holds

z∑
i=1

ki =
logn

log
(OPT

OPT−1−ε

) < logn
OPT
1 + ε

7For this reduction, we set the costs at = 1+mini⩽t(cσ(i)s) so that we have a decreasing sequence
as Lemma 3.2 requires.

53

where the first sum is exactly the cost of covering all the elements but one8, and for
the inequality we used Lemma 3.25 with x = OPT and c = 1 + ε. This result directly
implies a better than (1 − ε ′) lnn approximation for Set Cover, which is impossible
unless P = NP Dinur and Steurer (2014).

Lemma 3.6. For any β > 1, ∫ t

t−1
⌈βt ′⌉dt ′ ⩽ βt.

Proof of Lemma 3.6.∫ t

t−1
⌈βt ′⌉dt ′ ⩽ (⌈βt⌉− 1)

(
⌈βt⌉− 1

β
− t+ 1

)
+ ⌈βt⌉

(
t−
⌈βt⌉− 1

β

)
= t−

⌈βt⌉− 1
β

− 1 + ⌈βt⌉

< β

(
t−
⌈βt⌉− 1

β

)
− 1 + ⌈βt⌉

= βt.

where the first line is true since for any t ′ ⩽ ⌈βt⌉−1
β

, ⌈βt ′⌉ ⩽ ⌈βt⌉ − 1; while for
any t ′ such that ⌈βt⌉−1

β
< t ′ ⩽ t, ⌈βt ′⌉ = ⌈βt⌉. On the third line we used that β > 1

and t >
⌈βt⌉−1

β
.

Lemma 3.25. (
log
(

x

x− c

))−1

<
x

c

for any x > c > 0.

Proof. First we prove the following inequality

log(x+ 1) > x

x+ 1 for any x > 0. (3.19)

Let g(x) = log(x+1)− x
x+1 . The derivative of g(x) is g ′(x) = 1

x+1 −
1

(x+1)2 and g ′(x) > 0
for x > 0. Then g is increasing and limx→0 g(x) = 0, therefore g(x) > 0 for x > 0, and
the inequality follows. By setting x+ 1 to be x/(x− c) in inequality 3.19, the lemma
follows.

8By adding 1 to
∑z

i=1 ki, the inequalities still hold.

54

Lemma 3.16. In phase ℓ, the expected number of steps needed to select a set of full rank is at
most (4 + 2ℓ+2/α)t∗s.

Proof of Lemma 3.16. Denote by Aj the span of the first j elements selected. Notice
that for all i ∈ B \Aj, the probability of selecting box i is α ln k

∑
t ′⩽t zist ′

t
. Thus, the

probability of selecting a box that increases the rank by 1 at step t ⩾ t∗s is

Pr [rank j to j+ 1] = 1 −
∏

i∈B\Aj

(
1 − α ln k

∑
t ′⩽t zist ′

t

)

⩾ 1 −
∏

i∈B\Aj

(
1 − α ln k

∑
t ′⩽t zist ′

2ℓt∗s

)

⩾ 1 − exp

−
∑

i∈B\Aj

α ln k

∑
t ′⩽t zist ′

2ℓt∗s

⩾ 1 − exp

(
−
α ln k(k− j)

2ℓ+1t∗s

)
⩾ min

(
1
2, α ln k(k− j)

2ℓ+2t∗s

)
,

here the second line follows from t ⩽ t∗s in phase ℓ; the third line follows from∏
i(1−ai) ⩽ e−

∑
i ai for any a1,a2, · · · ∈ [0, 1]; the fourth line follows from constraint

(3.12) and yst ⩾ 1
2 by (3.9); the last line follows from 1 − e−a ⩾ 1

2 min(1,a). Thus the
expected total steps until a full rank basis is found is

E [X] =

k−1∑
j=0

E [steps from rank j to j+ 1] ⩽
k−1∑
j=0

(
2ℓ+2t∗s

α(k− j) ln k
+ 2
)

⩽
2ℓ+2

α
t∗s + 2k ⩽

2ℓ+2

α
t∗s + 4t∗s.

Here the last equality is by t∗s ⩾ k
2 .

55

4 partially adaptive: a simpler approach

In this chapter we revisit Pandora’s Box with correlations, and provide simpler,
learnable algorithms with better approximation guarantees, that directly generalize
Weitzman’s reservation values. More specifically, our results are the following.

• Generalizing: we first show how the original reservation values given by Weitz-
man (1979) can be generalized to work in correlated distributions, thus allowing
us to use a version of their initial greedy algorithm.

• Better approximation: we give two different variants of our main algorithm,
that each uses different updates on the distribution D after every step.

1. Variant 1: partial updates. We condition on the algorithm not having stopped
yet.

2. Variant 2: full updates. We condition on the exact value v revealed in the
box opened.

Both variants improve the approximation described in Chapter 3 from 9.22 to
4.428 for Variant 1 and to 5.828 for Variant 2. It is worth noting that our result
for Variant 1 is almost tight, since the best possible approximation factor we can
obtain is 4, implied by Feige et al. (2004). We included more details on the lower
bound in Section 3.2.2.

• Simplicity: our algorithms are greedy and only rely on the generalized version
of the reservation value, while the algorithms in previous work rely on solving
a linear program, and reducing first to Min-Sum Set Cover then to Ski-Rental,
making them not straightforward to implement. A 9.22 approximation was also
given in Gergatsouli and Tzamos (2022), which followed the same approach
but bypassed the need to reduce to Min-Sum Set Cover by directly rounding
the linear program via randomized rounding.

Our analysis is enabled by drawing similarities from Pandora’s Box to Min-Sum
Set Cover, which corresponds to the special case of when the values inside the boxes
are 0 or ∞. For Min-Sum Set Cover a simple greedy algorithm was shown to achieve
the optimal 4-approximation (Feige et al., 2002). Surprisingly, Weitzman’s algorithm

56

can be seen as a direct generalization of that algorithm. Our analysis follows the
histogram method introduced in Feige et al. (2002), for bounding the approximation
ratio. However, we significantly generalize it to handle values in the boxes and work
with tree-histograms required to handle the case with full-updates.

4.1 Preliminaries

In Pandora’s Box (PB) we are given a set ofn boxesB, each with a known opening cost
cb ∈ R+, and a distribution D over a vector of unknown values v = (v1, . . . , vn) ∈ Rn

+

inside the boxes. Each box b ∈ B, once it is opened, reveals the value vb. The
algorithm can open boxes sequentially, by paying the opening cost each time, and
observe the value instantiated inside the box. The goal of the algorithm is to choose a
box of small value, while spending as little cost as possible “opening" boxes. Formally,
denoting by O ⊆ B the set of opened boxes, we want to minimize

Ev∼D

[
min
b∈O

vb +
∑
b∈O

cb

]
.

A strategy for Pandora’s Box is an algorithm that in every step decides which is the
next box to open and when to stop. We measure the performance of our algorithm
usign the competitive (or approximation) ratio; a strategy A is α-approximation if
E [A] ⩽ αOPT, where OPT is the optimal online algorithm1

A strategy can pick any open box to select at any time. To model this, we assume
without loss of generality that after a box is opened the opening cost becomes 0,
allowing us to select the value without opening it again. In its full generality, a
strategy can make decisions based on every box opened and value seen so far. We
call this the Fully-Adaptive (FA) strategy.

4.1.1 Weitzman’s Algorithm

When the distributions of values in the boxes are independent, Weitzman (1979)
described a greedy algorithm that is also the optimal strategy. In this algorithm, we
first calculate an index for every box b, called reservation value σb, defined as the value

1The optimal online has the exact same information as our algorithm A but has infinite computation
time to solve the problem.

57

that satisfies the following equation

Ev∼D [(σb − vb)
+] = cb, (4.1)

where (a − b)+ = max(0,a − b). Then, the boxes are ordered by increasing σb

and opened until the minimum value revealed is less than the next box in the order.
Observe that this is a Partially-Adaptive strategy.

4.2 Generalizing Weitzman’s Algorithm

We begin by showing how Weitzman’s algorithm can be extended to correlated
distributions. Our algorithm calculates a reservation value σ for every box at each
step, and opens the box b ∈ B with the minimum σb. We stop if the value is less
than the reservation value calculated, and proceed in making this box free; we can
re-open this for no cost, to obtain the value just realized at any later point. The formal
statement is shown in Algorithm 6.

We give two different variants based on the type of update we do after every step
on the distribution D. In the case of partial updates, we only condition on Vb > σb,
which is equivalent to the algorithm not having stopped. On the other hand, for full
updates we condition on the exact value that was instantiated in the box opened.
Theorem 4.1 gives the approximation guarantees for both versions of this algorithm.

Theorem 4.1. Algorithm 6 is a 4.428-approximation for Variant 1 and 5.828-approximation
for Variant 2 of Pandora’s Box against the partially-adaptive optimal.

Proof. We seperately show the two components of this theorem in Theorems 4.2 and
4.3.

Observe that for independent distributions this algorithm is exactly the same as
Weitzman’s (Weitzman, 1979), since the product prior D remains the same, regardless
of the values realized. Therefore, the calculation of the reservation values does not
change in every round, and suffices to calculate them only once at the beginning.

Scenarios To proceed with the analysis of Theorem 4.1, we assume that D is sup-
ported on a collection of m vectors, (vs)s∈S, which we call scenarios, and sometimes
abuse notation to say that a scenario is sampled from the distribution D. We assume

58

Algorithm 6: Weitzman’s algorithm, for correlated D.
Input: Boxes with costs ci ∈ R, distribution over scenarios D.

1 An unknown vector of values v ∼ D is drawn
2 repeat
3 Calculate σb for each box b ∈ B by solving:

Ev∼D [(σb − vb)
+] = cb.

4 Open box b = argminb∈B
σb

5 Stop if the value the observed Vb = vb ⩽ σb

6 cb ← 0 // Box is always open now or can be reopened
7 Update the prior distribution

- Variant 1: D← D|Vb>σb
(partial updates)

- Variant 2: D← D|Vb=vb
(full updates)

8 until termination;

that all scenarios have equal probability. The general case with unequal probabil-
ities follows by creating more copies of the higher probability scenarios until the
distribution is uniform.

A scenario is covered when the algorithm decides to stop and choose a value from
the opened boxes. For a specific scenario s ∈ S we denote by c(s) the total opening
cost paid by an algorithm before this scenario is covered and by v(s) the value chosen
for this scenario.

Reservation Values To analyze Theorem 4.1, we introduce a new way of defining
the reservation values of the boxes that is equivalent to (4.1). For a box b, we have
that

σb = min
A⊆S

cb +
∑

s∈A PrD [s] vsb∑
s∈A PrD [s]

The equivalence to (4.1), follows since σb is defined as the root of the expression

Es∼D [(σb − vsb)
+] − cb =

∑
s∈S

PrD [s] (σb − vsb)
+ − cb

= max
A⊆S

∑
s∈A

PrD [s] (σb − vsb) − cb.

59

If we divide the above expression by any positive number, the result will not be
affected since we require the root of the equation; σb being the root is equivalent to
σb being the root of the numerator. Thus, dividing by

∑
s∈A PrD [s] we get that σb is

also the root of

max
A⊆S

∑
s∈A PrD [s] (σb − vsb) − cb∑

s∈A PrD [s]
= σb − min

A⊆S

cb +
∑

s∈A PrD [s] vsb∑
s∈A PrD [s]

. (4.2)

This, gives our formula for computing σb, which we can further simplify using our
assumption that all scenarios have equal probability. In this case, PrD [s] = 1/|S|
which implies that

σb = min
A⊆S

cb|S|+
∑

s∈A vsb
|A|

. (4.3)

4.3 Conditioning on Vb > σb

We start by describing the simpler variant of our algorithm where after opening each
box we update the distribution by conditioning on the event Vb > σb. This algorithm
is partially adaptive, since the order for each scenario does not depend on the actual
value that is realized every time. At every step the algorithm will either stop or
continue opening boxes conditioned on the event “We have not stopped yet" which
does not differentiate among the surviving scenarios.

Theorem 4.2. Algorithm 6 is a 4.428-approximation for Pandora’s Box against the partially-
adaptive optimal, when conditioning on Vb > σb.

In this section we show a simpler proof for Theorem 4.2 that gives a 3+2
√

2 ≈ 5.828-
approximation. The full proof for the 4.428-approximation is given in section 4.A.1
of the Appendix. Using the equivalent definition of the reservation value (Equa-
tion (4.3)) we can rewrite Algorithm 6 as follows.

60

Algorithm 7: Weitzman’s rule for Partial Updates
Input: Boxes with costs ci ∈ R, set of scenarios S.

1 t← 0
2 R0 ← S the set of scenarios still uncovered
3 while Rt ̸= ∅ do
4 Let σt ← minb∈B,A⊆Rt

cb|Rt|+
∑

s∈A vs
b

|A|

5 Let bt and At be the box and the set of scenarios that achieve the minimum
6 Open box bt and pay cbt

7 Stop and choose the value vbt
at box bt if it is less than σt (see also

Fact 4.2.1)
8 Set cbt

← 0
9 Rt ← Rt \At

10 t← t+ 1
11 end

Structure of the solution. An important property to note is that by the equivalent
definition of the reservation value (4.3) the set of scenarios that stop at each step are
the ones that give a value at most σ for the box opened, as we formally state in the
following fact.

Fact 4.2.1. The value at box bt is less than σt if and only if s ∈ At.

In equation (8) the set At that maximizes the expression contains all the scenarios
with value at most σb for the box b. Therefore, the set At are exactly the scenarios
covered at each step t of the algorithm, and can be removed from consideration.

Before showing our result, observe that this algorithm is partially adaptive; the
order of the boxes does not depend on the scenario realized. This holds since we only
condition on “not having stopped" (i.e. DVb>σb

) and therefore each scenario either
stops or uses the same updated prior as all other surviving scenarios to calculate the
next reservation values. If we were to draw our solution, it would look like a line,
(see also Figure 4.2 in Appendix 4.A.1), which as we observe in Section 4.4 differs
from Variant 2.

Moving on to show the proof, we first start by giving a bound on the cost of the
algorithm. The cost can be broken down into opening cost plus the value obtained.
Since at any time t, all remaining scenarios Rt pay the opening cost cbt

, we have

61

that the total opening cost is
∑

t cbt
|Rt|. Moreover, the chosen value is given as∑

t

∑
s∈At

vsbt
. Overall, we have that

ALG =
∑
t

(
cbt

|Rt|+
∑
s∈At

vsbt

)
=

∑
t

|At|
cbt

|Rt|+
∑

s∈At
vsbt

|At|
=

∑
t

|At|σt.

Defining σs to be the reservation value of scenario s at the time it is covered, i.e.
when s ∈ At, we get ALG =

∑
s∈S σs

2. We follow a histogram analysis similar to the
proof of Theorem 4 in Feige et al. (2004) for Min-Sum Set Cover and construct the
following histograms.

• The OPTo histogram: put the scenarios on the x-axis on increasing opening cost
order cOPT

s according to OPT, the height of each scenario is the opening cost it
paid.

• The OPTv histogram: put the scenarios on the x-axis on increasing covering
value order vOPT

s according to OPT, the height of each scenario is the value with
which it was covered.

• The ALG histogram: put scenarios on the x-axis in the order the algorithm
covers them. The height of each scenario is σs. Observe that the area of the
ALG histogram is exactly the cost of the algorithm.

Proof of Theorem 4.2. Initially, observe that the algorithm will eventually stop; every
time we open a box we cover at least one scenario (since line 3 is cannot be ∞ while
scenarios are left uncovered).

To show the approximation factor, we scale the histograms as follows; OPTo scale
horizontally by 1/αo and vertically by 1/(β · γ), and OPTv scale by 1/αv horizontally,
for some constants αo,αv,γ,β ∈ (0, 1) to be determined later3. We align the ALG
histogram with OPTv and OPTo so that all of them have the same right-hand side.
Observe that the optimal opening cost is the area below the histogram OPTo and has
increased by β · γ · αo, and similarly the area below OPTv has increased by αv as a
result of the scaling.

2Throughout this proof we omit the normalization term 1/|S| both on the algorithms cost and on
the optimal cost, without loss of generality, since our guarantee is multiplicative.

3Scaling horizontally means that we duplicate every scenario and scaling vertically we just multiply
the height at every point by the scale factor.

62

To conclude the proof it suffices to show that any point in the ALG histogram is
inside the sum of the rescaled OPTv and OPTo histograms. Consider any point p in
the ALG histogram, and let s be its corresponding scenario and t be the time this
scenario is covered. We have that the height of the ALG histogram is

σs =
cbt

|Rt|+
∑

s∈At
vsbt

|At|
⩽

cb|Rt|+
∑

s∈A vsb
|A|

(4.4)

where the last inequality holds for all A ⊆ Rt and any b ∈ B.
Denote by c∗ the opening cost such that γ|Rt| of the scenarios in Rt have opening

cost less than c∗, and by Rlow = {s ∈ Rt : c
OPT
s ⩽ c∗} the set of these scenarios. Similarly

denote by v∗ the value of scenarios in Rlow such that β|Rlow| of the scenarios have value
less than v∗ and by L = {s ∈ Rlow : vOPT

s ⩽ v∗} these scenarios. This split is shown in
Figure 4.1, and the constants β,γ ∈ (0, 1) will be determined at the end of the proof.

|Rt|v∗ c∗

γ|Rt| (1 − γ)|Rt|

βγ|Rt|
(1 − β)γ|Rt|

Figure 4.1: Split of scenarios in Rt.

Let BL be the set of boxes that the optimal solution uses to cover the scenarios
in L. Let Lb ⊆ L ⊆ Rt be the subset of scenarios in L that choose the value at box
b in OPT. Using inequality (4.4) with b ∈ BL and A = Lb, we obtain σs|Lb| ⩽

cb|Rt|+
∑

s∈Lb
vOPT
s , and by summing up the inequalities for all b ∈ BL we get

σs ⩽
|Rt|

∑
b∈BL

cb +
∑

s∈L v
OPT
s

|L|
⩽

|Rt|c
∗ +

∑
s∈L v

OPT
s

|L|
⩽

c∗

β · γ
+

∑
s∈L v

OPT
s

|L|
(4.5)

where for the second inequality we used that the cost for covering the scenarios in
L is at most c∗ by construction, and in the last inequality that |L| = |Rt|/(β · γ). We
consider each term above separately, to show that the point p is within the histograms.

Bounding the opening cost. By the construction of c∗, the point in the OPTo his-
togram that has cost at least c∗ is at distance at least (1−γ)|Rt| from the right hand side.

63

This means that in the rescaled histogram, the point that has cost at least c∗/(β · γ) is
at distance at least (1 − γ)|Rt|/αo from the right hand side.

On the other hand, in the ALG histogram the distance of p from the right edge of
the histogram is at most |Rt|, therefore for the point p to be inside the OPTo histogram
we require

αo ⩽ 1 − γ. (4.6)

Observe that throughout the proof we did not use the fact that we change the
opening cost to 0, therefore the bound on our cost works even if we re-pay the boxes
that are reopened.

The fact that the opening cost becomes 0 is not directly used in the analysis (i.e.
inequalities (4.4) and (4.5)). Our analysis gives an upper bound on the cost of the
algorithm, even if the algorithm never changes the cost of an opened box to 0. That is
the reason in (4.4) and (4.5) the cost appears unchanged but the analysis still works
for the algorithm since we just want an upper bound (and if we changed the cost to 0
this would only lower the cost of the algorithm).

Bounding the values cost. By the construction of v∗, the point in the OPTv histogram
that has value v∗ is at distance at least |Rt|(1 − β)γ from the right hand side. This
means that in the rescaled histogram, the point that has value at least v∗ is at distance
at least (1 − β)γ|Rt|/αv from the right hand side.

On the other hand, in the ALG histogram the distance of p from the right edge of
the histogram is at most |Rt|, therefore for the point p to be inside the OPTo histogram
we require

αv ⩽ (1 − β)γ. (4.7)

We optimize the constants αo,αv,β,γ by ensuring that inequalities (4.6) and (4.7)
hold. We set αo = 1 − γ and αv = (1 − β)γ, and obtain that ALG ⩽ OPTo/(β · γ ·
(1 − γ)) + OPTv/((1 −β)γ). Requiring these to be equal we get β = 1/(2 − γ), which
is minimized for β = 1/

√
2 and γ = 2 −

√
2 for a value of 3 + 2

√
2.

64

4.4 Conditioning on Vb = v

In this section we switch gears to our second variant of Algorithm 6, where in each
step we update the prior D conditioning on the event Vb = v. We state our result
in Theorem 4.3. In this case, the conditioning on D implies that the algorithm at
every step removes the scenarios that are inconsistent with the value realized. In order
to understand better the differences of the two variants and their conditioning we
included an example and a discussion in section 4.A of the Appendix.

Theorem 4.3. Algorithm 6 is a 3+ 2
√

2 ≈ 5.828-approximation for Pandora’s Box against
the partially-adaptive optimal, when conditioning on Vb = v.

The main challenge was that the algorithm’s solution is now a tree with respect
to scenarios instead of a line as in the case of D|Vb>σb

. Specifically, in the D|Vb>σb

variant at every step all scenarios that had Vb ⩽ σb were covered and removed from
consideration. However in the D|Vb=v variant the remaining scenarios are split into
different cases, based on the realization of V , as shown in the example of Figure 4.4,
which is deferred to Section 4.A.2 of the Appendix due to space constraints.

This results into the ALG histogram not being well defined, since there is no unique
order of covering the scenarios. We overcome this by generalizing the histogram
approach to trees.

Proof of Theorem 4.3. The proof follows similar steps to that of Theorem 4.2, thus we
only highlight the differences. The algorithm is presented below, the only change is
line 5 where we remove the inconsistent with the value revealed scenarios, which
also leads to our solution branching out for different scenarios and forming a tree.

Bounding the opening cost Consider the tree T of ALG where at every node u a
set Au of scenarios is covered. We associate this tree with node weights, where at
every node u, we assign |Au| weights (σu, ...,σu). Denote, the weighted tree by TALG.
As before, the total cost of ALG is equal to the sum of the weights of the tree.

We now consider two alternative ways of assigning weights to the the nodes,
forming trees TOPTo

, TOPTv
using the following process.

• TOPTo
. At every node u we create a vector of weights wOPTo

u = (cOPT
s)s∈Au

where
each cOPT

s is the opening cost that scenario s ∈ Au has in the optimal solution.

65

Algorithm 8: Weitzman’s rule for Full Updates
Input: Boxes with costs ci ∈ R, set of scenarios S.

1 Define a root node u corresponding to the set S
2 Ru ← S the set of scenarios still uncovered
3 while Ru ̸= ∅ do
4 Let σu ← minb∈B,A⊆Ru

cb|Ru|+
∑

s∈A vs
b

|A|

5 Let bu and Au be the box and the set of scenarios that achieve the
minimum

6 Open box bu paying cbu
and observe value v

7 Stop and choose the value at box bu if it is less than σu: this holds iff
s ∈ Au

8 Set cbu
← 0

9 Let u ′ be a vertex corresponding to the set of consistent scenarios with
Ru ′ ≜ Ru \

(
Au ∪ {s ∈ Ru : vsbu

̸= v}
)

// Remove inconsistent
scenarios

10 Set u← u ′

11 end

• TOPTv
. At every node u we create a vector of weights wOPTv

u = (vOPT
s)s∈Au

where
each vOPT

s is the value the optimal uses to cover scenario s ∈ Au.

We denote by cost(TALG) the sum of all weights in every node of the tree T. We have
that cost(T) is equal to the total cost of ALG, while cost(TOPTo

) and cost(TOPTv
) is equal

to the optimal opening cost OPTo and optimal value OPTv respectively. Intuitively, the
weighted trees correspond to the histograms in the previous analysis of Theorem 4.2.

We want to relate the cost of ALG, to that of TOPTo
and TOPTv

. To do this, we define
an operation similar to histogram scaling, which replaces the weights of every node
u in a tree with the top ρ-percentile of the weights in the subtree rooted at u. As the
following lemma shows, this changes the cost of a tree by a bounded multiplicative
factor.

Lemma 4.4. Let T be a tree with a vector of weights wu at each node u ∈ T, and let T(ρ) be
the tree we get when we substitute the weights of every node with the top ρ-percentile of all
the weights in the subtree of T rooted at u. Then

ρ · cost(T(ρ)) ⩽ cost(T).

We defer the proof of Lemma 4.4 to Section 4.A.2 of the Appendix. To complete

66

the proof of Theorem 4.3, and bound cost(TALG), we show as before that the weights
at every node u, are bounded by the weights of T(1−γ)

OPTo
scaled by 1

βγ
plus the weights

of T((1−β)γ)
OPTv

, for the constants β,γ ∈ (0, 1) chosen in the proof of Theorem 4.2. This
implies that

cost(TOPTo
) ⩽

1
βγ

cost(T(1−γ)
OPTo

) + cost(T((1−β)γ)
OPTv

)

⩽
1

βγ(1-γ)cost(TOPTo
) +

1
(1-β)γcost(TOPTv

)

which gives ALG ⩽ 5.828 OPT for the choice of β and γ. The details of the proof are
similar to the one of Theorem 4.1, and are deferred to section 4.A.2 of the Appendix.

Note on the approximation factors. Observe that Variant 2, where we condition
on Vb = v has a worse approximation factor than Variant 1 where we only condition
on Vb > σb. Intuitively someone might expect that with more information the
approximation factor will improve. However, it is challenging to argue about this
formally. It is also plausible that such monotonicity may not hold as more information
might lead the greedy algorithm to make wrong decisions. Instead of making any
such claims, we analyze this case directly by showing that our proof approach extends
to the full update variant with a generalization of the histogram method to work on
trees. Our technique for improving the approximation for the partial updates variant
could not be generalized however and thus we only obtain the worse approximation
guarantee.

4.A Appendix for Chapter 4

Updating the prior. We include an example showing the process of updating the
prior for our two different updating rules. The (correlated) distribution is a set of
vectors of size n, where each is drawn with some probability. When we open a box
and see a value, some scenarios are not “possible” anymore, i.e. we know they cannot
be the ones realized. We illustrate in the following example. Assume there are 3 of
these vectors (scenarios).

67

b1 b2 b3
S1 3 4 7
S2 6 4 2
S3 7 7 2

Table 4.1: Example with 3 scenarios and 3 boxes.

The rows in the matrix above are the scenarios, and the columns are the boxes.
For example, if scenario S2 is the one realized (i.e. drawn from the distribution) then
the values inside boxes b1,b2 and b3 are 6, 4 and 2 respectively. The distribution D is
essentially drawing one of the scenarios with some probability.

To see what the conditioning means: assume we open box b1 and we see the
value 6 (and assume for the sake of the example that the reservation value of box 1 is
σ1 = 5).

• Variant 1: we condition on 6 = Vb > σ1 = 5 meaning that scenario S1 is not
possible anymore (because if S1 was the one drawn from D, then we would
have seen a value less than σ1 = 5 when opening the box), and is removed from
the set S the algorithm considers (line 9, Alg 7)

• Variant 2: we condition on Vb = 6, which means that scenarios S1 and S3 are
both removed (similarly, because if any of these were drawn, we would not
have seen 6 upon opening the box)

Differences in the variants. As a result of the different conditioning, the solution
for the Vb > σ variant is partially adaptive meaning that the next box the algorithm
opens, only depends on the scenarios that remain. However, for the Vb = v variant
the solution is fully adaptive (meaning that the next box opened, depends on the exact
value seen). This is illustrated in Figures 4.2 and 4.4 in the Appendix, where Variant
1’s solution can be represented by a line graph (Figure 4.2), while Variant 2’s solution
is a tree (Figure 4.4).

68

4.A.1 Proofs from Section 4.3

s1, s2, s3

Open b2

s2, s3

Open b1

s3

Open box b4

∅

Stop

Vs2
b2

> σb2

Vs3
b2

> σb2

Vs3
b1

> σb3

Figure 4.2: Algorithm’s solution when D ← DV>σ, for an instance with scenarios
S = {s1, s2, s3}, and boxes B = {b1,b2,b3,b4}. The circles contain the scenarios that
have not stopped at each step. Scenario s1 stopped at box b2, scenario s2 stopped at
box b1 and s3 at box b4.

Theorem 4.2. Algorithm 6 is a 4.428-approximation for Pandora’s Box against the partially-
adaptive optimal, when conditioning on Vb > σb.

The tighter guarantee proof follows the steps of the proof in section 4.3 for the
opening cost, but provides a tighter analysis for the values cost.

Tight proof of Theorem 4.2. Denote by σs the reservation value for scenario s when it
was covered by ALG and by T the set of boxes opened i.e. the steps taken by the
algorithm. Then we can write the cost paid by the algorithm as follows

ALG =
1
|S|

∑
s∈S

σs =
1
|S|

∑
p∈T

|At|σp. (4.8)

We use the same notation as section 4.3 which we repeat here for convenience.
Consider any point p in the ALG histogram, and let s be its corresponding scenario
and t be the time this scenario is covered.

• Rt : set of uncovered scenarios at step t

• At : set of scenarios that ALG chooses to cover at step t

• c∗: the opening cost such that γ|Rt| of the scenarios in Rt have opening cost less
than c∗

• Rlow = {s ∈ Rt : c
OPT
s ⩽ c∗} the set of these scenarios

69

• v∗: the value of scenarios in Rlow such that b|Rlow| of the scenarios have value
less than v∗

• L = {s ∈ Rlow : vOPT
s ⩽ v∗} the set of scenarios with value at most v∗

• BL: set of boxes the optimal uses to cover the scenarios in L of step t

The split described in the definitions above is again shown in Figure 4.3, and the
constants 1 > β,γ > 0 will be determined in the end of the proof.

|Rt|v∗ c∗

γ|Rt| (1 − γ)|Rt|

βγ|Rt|
(1 − β)γ|Rt|

Figure 4.3: Split of scenarios in Rt.

Continuing from equation (4.8) we obtain the following.

ALG ⩽
1
|S|

∑
t∈T

|At|
|Rt|

∑
b∈BL

cb +
∑

s∈L v
OPT
s

|L|
Inequality 4.5

⩽
1
|S|

∑
t∈T

(
|At|

c∗

βγ
+

∑
s∈L v

OPT
s

|L|

)
Ineq. 4.5 and |L| = γβ|Rt|

⩽
OPTo

βγ(1 − γ)

∑
t∈T

|At|

|S|
+
∑
t∈T

|At|

|S|

∑
s∈L v

OPT
s

|L|
Since c∗ ⩽ OPTo/(1 − γ)

=
OPTo

βγ(1 − γ)
+

∑
p∈T

|At|

|S|

∑
s∈L v

OPT
s

|L|
Since

∑
t

|At| = |S|

Where in the second to last inequality we used the same histogram argument
from section 4.3, to bound c∗ by OPTo/(1 − γ).

To bound the values term, observe that if we sorted the optimal values vOPT
s

that cover each scenario by decreasing order, and denote js the index of vOPT
s in

this ordering, we add vOPT
s multiplied by the length of the interval every time js ∈[

(1 − β)γ|Rt|,γ|Rt|
]
. This implies that the length of the intervals we sum up for vOPT

s

70

ranges from js/γ to js/((1 − β)γ), therefore the factor for each vOPT
s is

1
γ

js/(1−β)γ∑
i=js/γ

1
i
⩽

1
γ

log
(

1
1 − β

)

We want to balance the terms 1/(βγ(1 − γ)) and 1/γ log(1/(1 − β)) which gives
that

γ = 1 −
1

β log
(

1
1−β

) .

Since we balanced the opening cost and value terms, by substituting the expression
for γ we get that the approximation factor is

1
βγ(1 − γ)

=
β log2

(
1

1−β

)
β log

(
1

1−β

)
− 1

.

Numerically minimizing that ratio for β and ensuring that 0 < β,γ < 1 we get that
the minimum is 4.428 obtained at β ≈ 0.91 and γ ≈ 0.55.

4.A.2 Proofs from Section 4.4

s1, s2, s3

Open b2

s1
Stop

s2, s3
Open b1

V = 2 V = 5

s3
Stop

s2
Stop

V = 2 V = 1

Figure 4.4: Algorithm’s solution when conditioning on V = v, for an instance with
scenarios S = {s1, s2, s3}, and boxes B = {b1,b2}. The nodes contain the consistent
scenarios at each step, and the values V are revealed once we open the corresponding
box.

71

Theorem 4.3. Algorithm 6 is a 3+ 2
√

2 ≈ 5.828-approximation for Pandora’s Box against
the partially-adaptive optimal, when conditioning on Vb = v.

Continued proof of Theorem 4.3. We now proceed to give the bound on the weights of
the nodes of TALG. Consider any node u. We have that the weights at this node are
equal to

σu =
cbu

|Ru|+
∑

s∈At
vsbu

|At|
⩽

cb|Ru|+
∑

s∈A vsb
|A|

where the last inequality holds for all A ⊆ Ru and any b ∈ B.
Let c∗u be the opening cost such that γ|Ru| of the scenarios in Ru have opening cost

less than c∗u, and by Rlow = {s ∈ Ru : cOPT
s ⩽ c∗u} the set of these scenarios. Similarly

denote by v∗u the value of scenarios in Rlow such that β|Rlow| of the scenarios have
value less than v∗u and by L = {s ∈ Rp

low : vOPT
s ⩽ v∗u} these scenarios. This split is

shown in Figure 4.1.
Note that, c∗u corresponds to the weights of node u in T

(1−γ)
OPTo

, while the weights of
node u at T(1−γ)

OPTv
are at least v∗u.

Let BL be the set of boxes that the optimal solution uses to cover the scenarios
in L. Let Lb ⊆ L ⊆ Ru be the subset of scenarios in L that choose the value at box
b in OPT. Using inequality (4.4) with b ∈ BL and A = Lb, we obtain σu|Lb| ⩽

cb|Ru|+
∑

s∈Lb
vOPT
s , and by summing up the inequalities for all b ∈ BL we get

σu ⩽
|Ru|

∑
b∈BL

cb +
∑

s∈L v
OPT
s

|L|
⩽

|Ru|c
∗ +

∑
s∈L v

OPT
s

|L|
⩽

c∗u
β · γ

+ v∗u (4.9)

where for the second inequality we used that the cost for covering the scenarios in L is
at most c∗u by construction, and in the last inequality that |L| = |Rt|/(β·γ). We consider
each term above separately, to show that the point p is within the histograms.

Lemma 4.4. Let T be a tree with a vector of weights wu at each node u ∈ T, and let T(ρ) be
the tree we get when we substitute the weights of every node with the top ρ-percentile of all
the weights in the subtree of T rooted at u. Then

ρ · cost(T(ρ)) ⩽ cost(T).

Proof of Lemma 4.4. We denote by Tu the subtree rooted at u, by W(T) = {w : w ∈
wv for v ∈ T} the (multi)set of weights in the tree T. Denote, by qρ(T) be the top ρ

percentile of all the weights in T. Finally, we define Q(ρ|T) for any tree T as follows:

72

• We create a histogram H(x) of the weights in W(T) in increasing order.

• We calculate the area enclosed within (1 − ρ)|W(T)| until |W(T)|:

Q (ρ|T) =

∫ |W(T)|

(1−ρ)|W(T)|

H(x)dx

This is approximately equal to the sum of all the values greater than qρ(T) with
values exactly qρ(T) taken fractionally so that exactly ρ fraction of values are
selected.

We show by induction that for every node u, it holds that ρ · cost(T(ρ)
u) ⩽ Q (ρ|T)

• For the base case, for all leaves u, the subtree Tu only has one node and the
lemma holds as ρqρ(Tu) ⩽ Q (ρ|Tu).

• Now, let r be any node of the tree, and denote by child(r) the set of the children
nodes of r.

ρ · cost(T(ρ)
r) = ρ · qρ(Tr)|wr|+ ρ ·

∑
v∈child(r)

cost(T(ρ)
v) Def of cost(T(ρ)

r)

⩽ ρ · qρ(Tr)|wr|+ ρ ·
∑

v∈child(r)

Q(ρ|Tv) Induction hyp.

⩽ ρ · qρ(Tr)|wr|+Q

(
ρ
|W(Tr)|− |wr|

|W(Tr)|

∣∣∣∣∣ Tr
)

Since Tv ⊆ Tr

⩽ Q (ρ|Tr)

The second-to-last inequality follows since Q is defined as the area of the largest
weights of the histogram. Including more weights only increases and keeping the
length of the integration range the same (equal to ρ(|W(Tr)|− |wr|)) can only increase
the value Q.

The last inequality follows by noting that if H(x) is the histogram corresponding
to the values of Tr, then

Q (ρ|Tr) −Q

(
ρ
|W(Tr)|− |wr|

|W(Tr)|

∣∣∣∣∣ Tr
)

=

∫ |W(Tr)|

(1−ρ)|W(Tr)|

H(x)dx

−

∫ |W(Tr)|

(1−ρ)|W(Tr)|+ρ|wr|

H(x)dx

73

=

∫ (1−ρ)|W(Tr)|+ρ|wr|

(1−ρ)|W(Tr)|

H(x)dx

⩾
∫ (1−ρ)|W(Tr)|+ρ|wr|

(1−ρ)|W(Tr)|

qρ(Tr)dx

= ρqρ(Tr)|wr|

where the inequality follows since H(x) ⩾ qρ(Tr) for x ⩾ (1 − ρ)|W(Tr)| by the
definition of qρ(Tr) as the top-r quantile of the weights in Tr.

Q

(
ρ
|w(Tr)|−|wr|

|w(Tr)|

∣∣∣∣∣Tr

)
qρ(Tr)

ρqρ(Tr)|wr|

ρ|wr| ρ(|w(Tr)|− |wr|)

Figure 4.5: Picture depicting the proof above.

74

5 fully adaptive

In this chapter we are moving on to the most powerful of all benchmarks ; the Fully-
Adaptive. A primary challenge in approximating Pandora’s Box with correlations is
that the optimal solution can be an adaptive policy that determines which box to open
depending on the instantiations of values in all of the boxes opened previously. It is
not clear that such a policy can even be described succinctly. Furthermore, the choice
of which box to open is complicated by the need to balance two desiderata – finding
a low value box quickly versus learning information about the values in unopened
boxes (a.k.a. the state of the world or realized scenario) quickly. Indeed, the value
contained in a box can provide the algorithm with crucial information about other
boxes, and inform the choice of which box to open next; an aspect that is completely
missing in the independent values setting studied by Weitzman.

In this chapter we develop the first approximately-optimal policies for the
Pandora’s Box problem with correlated values, via a reduction to Optimal Decision
Tree.

Some aspects of the Pandora’s Box problem have been studied separately in other
contexts. For example, in the Optimal Decision Tree problem (DT) (Guillory and
Bilmes, 2009; Li et al., 2020), the goal is to identify an unknown hypothesis, out of m
possible ones, by performing a sequence of costly tests, whose outcomes depend on
the realized hypothesis. This problem has an informational structure similar to that
in Pandora’s Box. In particular, we can think of every possible joint instantiation of
values in boxes as a possible hypothesis, and every opening of a box as a test. The
difference between the two problems is that while in Optimal Decision Tree we want
to identify the realized hypothesis exactly, in Pandora’s Box it suffices to terminate
the process as soon as we have found a low value box.

Another closely related problem is the Min Sum Set Cover (Feige et al., 2004),
where boxes only have two kinds of values – acceptable or unacceptable – and the goal
is to find an acceptable value as quickly as possible. A primary difference relative to
Pandora’s Box is that unacceptable boxes provide no further information about the
values in unopened boxes.

One of the main contributions of our work is to unearth connections between
Pandora’s Box and the two problems described above. We show that Pandora’s Box
is essentially equivalent to a special case of Optimal Decision Tree (called Uniform

75

Decision Tree or UDT) where the underlying distribution over hypotheses is uniform
– the approximation ratios of these two problems are related within log-log factors.
Surprisingly, in contrast, the non-uniform DT appears to be harder than non-uniform
Pandora’s Box. We relate these two problems by showing that both are in turn
related to a new version of Min Sum Set Cover, that we call Min-Sum Set Cover
(MSSCf). These connections are summarized in Figure 5.1. We can thus build on
the rich history and large collection of results on these problems to offer efficient
algorithms for Pandora’s Box. We obtain a polynomial time Õ(logm) approximation
for Pandora’s Box, where m is the number of distinct value vectors (a.k.a. scenarios)
that may arise; as well as constant factor approximations in subexponential time.

PB UMSSCfUMSSCf UDTSection 5.3 Section 5.4

Log-log factors Constant factors

Figure 5.1: A summary of our approximation preserving reductions

It is an important open question whether constant factor approximations exist for
Uniform Decision Tree: the best known lower-bound on the approximation ratio is 4
while it is known that it is not NP-hard to obtain super-constant approximations under
the Exponential Time Hypothesis. The same properties transfer also to Pandora’s
Box and Min-Sum Set Cover. Pinning down the tight approximation ratio for any
of these problems will directly answer these questions for any other problem in the
equivalence class we establish.

The key technical component in our reductions is to find an appropriate stopping
rule for Pandora’s Box: after opening a few boxes, how should the algorithm deter-
mine whether a small enough value has been found or whether further exploration
is necessary? We develop an iterative algorithm that in each phase finds an appro-
priate threshold, with the exploration terminating as soon as a value smaller than
the threshold is found, such that there is a constant probability of stopping in each
phase. Within each phase then the exploration problem can be solved via a reduction
to UDT. The challenge is in defining the stopping thresholds in a manner that allows
us to relate the algorithm’s total cost to that of the optimal policy.

Related work Optimal decision tree is an old problem studied in a variety of settings
(Pattipati and Dontamsetty, 1992; Guillory and Bilmes, 2009; Golovin et al., 2010)),

76

while its most notable application is in active learning settings Guillory and Bilmes
(2009), classification tasks (Safavian and Landgrebe, 1991; Bertsimas and Dunn,
2017), data mining (Rokach and Maimon, 2014) and medical diagnosis (Podgorelec
et al., 2002). It was proven to be NP-Hard to approximate better than logm by Hyafil
and Rivest Hyafil and Rivest (1976). Since then the problem of finding the best
approximation algorithm was an active one (Garey and Graham, 1974; Loveland,
1985; Kosaraju et al., 1999; Dasgupta, 2004; Chakaravarthy et al., 2011, 2009; Gupta
et al., 2017; Cicalese et al., 2010; Adler and Heeringa, 2012). Finally, in Guillory and
Bilmes (2009) the authors present a greedy algorithm for the most general case of
optimal decision tree and in Chakaravarthy et al. (2011) they find the best possible
algorithm. For the case of Uniform decision tree less is known, until recently the
best algorithm was the same as the optimal decision tree, and the lower bound was 4
(Chakaravarthy et al., 2011). The recent work of Li et al. (2020) showed that there is
an algorithm strictly better than O(logm) for the uniform decision tree.

5.1 Preliminaries

In this paper we study the connections between three different sequential decision
making problems – Optimal Decision Tree, Pandora’s Box, and Min Sum Set Cover.
We describe these problems formally below.

Optimal Decision Tree

In the Optimal Decision Tree problem (denoted DT) we are given a set S of m

scenarios s ∈ S, each occurring with (known) probability ps; and n tests T = {Ti}i∈[n],
each with cost 1. Nature picks a scenario s ∈ S from the distribution p but this
scenario is unknown to the algorithm. The goal of the algorithm is to determine
which scenario is realized by running a subset of the tests T. When test Ti is run and
the realized scenario is s, the test returns a result Ti(s) ∈ R.

Output. The output of the algorithm is a decision tree where at each node there is a
test that is performed, and the branches are the outcomes of the test. In each of the
leaves there is an individual scenario that is the only one consistent with the results
of the test in the unique path from the root to this leaf. Observe that there is a single

77

leaf corresponding to each scenario s. We can represent the tree as an adaptive policy
defined as follows:

Definition 5.1 (Adaptive Policy π). An adaptive policy π : ∪X⊆TRX → T is a function
that given a set of tests done so far and their results, returns the next test to be performed.

Objective. For a given decision tree or policy π, let costs(π) denote the total cost of
all of the tests on the unique path in the tree from the root to the leaf labeled with
scenario s. The objective of the algorithm is to find a policy π that minimizes the
average cost

∑
s∈S ps costs(π).

We use the term Uniform Decision Tree (UDT) to denote the special case of the
problem where ps = 1/m for all scenarios s.

Pandora’s Box

In the Pandora’s Box problem we are given n boxes, each with cost ci ⩾ 0 and value
vi. The values {vi}i∈[n] are distributed according to known distribution D. We assume
that D is an arbitrary correlated distribution over vectors {vi}i∈[n] ∈ Rn. We call
vectors of values scenarios and use s = {vi}i∈[n] to denote a possible realization of
the scenario. As in DT, nature picks a scenario from the distribution D and this
realization is a priori unknown to the algorithm. The goal of the algorithm is to pick
a box of small value. The algorithm can observe the values realized in the boxes by
opening any box i at its respective costs ci.

Output. The output of the algorithm is an adaptive policy π for opening boxes and
a stopping condition. The policy π takes as input a subset of the boxes and their
associated values, and either returns the index of a box i ∈ [n] to be opened next or
stops and selects the minimum value seen so far. That is, π : ∪X⊆[n]RX → [n] ∪ {⊥}
where ⊥ denotes stopping.

Objective. For a given policy π, let π(s) denote the set of boxes opened by the policy
prior to stopping when the realized scenario is s. The objective of the algorithm is to
minimize the expected cost of the boxes opened plus the minimum value discovered,

78

where the expectation is taken over all possible realizations of the values in each box.1

Formally the objective is given by

Es∼D

 min
i∈π(s)

vis +
∑

i∈π(s)

ci

 ,

For simplicity of presentation, from now on we assume that ci = 1 for all boxes, but
we show in Section 5.A.6 how to adapt our results to handle non-unit costs, without
any loss in the approximation factors.

We use UPB to denote the special case of the problem where the distribution D is
uniform over m scenarios.

Min Sum Set Cover with Feedback

In Min Sum Set Cover, we are given n elements and a collection of m sets S over them,
and a distribution D over the sets. The output of the algorithm is an ordering π over
the elements. The cost of the ordering for a particular set s ∈ S is the index of the first
element in the ordering that belongs to the set s, that is, costs(π) = min{i : π(i) ∈ s}.
The goal of the algorithm is to minimize the expected cost Es∼D [costs(π)].

We define a variant of the Min Sum Set Cover problem, called Min Sum Set Cover
with Feedback (MSSCf). As in the original problem, we are given a set ofn elements, a
collection of m sets S and a distribution D over the sets. Nature instantiates a set s ∈ S

from the distribution D; the realization is unknown to the algorithm. Furthermore,
in this variant, each element provides feedback to the algorithm when the algorithm
"visits" this element; this feedback takes on the value fi(s) ∈ R for element i ∈ [n] if
the realized set is s ∈ S.

Output. The algorithm once again produces an ordering π over the elements. Ob-
serve that the feedback allows the algorithm to adapt its ordering to previously
observed values. Accordingly, π is an adaptive policy that maps a subset of the ele-
ments and their associated feedback, to the index of another element i ∈ [n]. That is,
π : ∪X⊆[n]RX → [n].

1In the original version of the problem studied by Weitzman Weitzman (1979) the values are
independent across boxes, and the goal is to maximize the value collected minus the costs paid, in
contrast to the minimization version we study here.

79

Objective. As before, the cost of the ordering for a particular set s ∈ S is the index
of the first element in the ordering that belongs to the set s, that is, costs(π) = min{i :
π(i) ∈ s}. The goal of the algorithm is to minimize the expected cost Es∼D [costs(π)].

We use UMSSCf to denote the special case of the problem where the distribution
D is uniform over m scenarios.

Commonalities and notation

As the reader has observed, we capture the commonalities between the different
problems through the use of similar notation. Scenarios in DT correspond to value
vectors in PB and to sets in MSSCf; all are denoted by s, lie in the set S, and are drawn
by nature from a known joint distribution D. Tests in DT correspond to boxes in PB

and elements in MSSCf; we index each by i ∈ [n]. The algorithm for each problem
produces an adaptive ordering π over these tests/boxes/elements. Test outcomes
Ti(s) in DT correspond to box values vi(s) in PB and feedback fi(s) in MSSCf. We
will use the terminology and notation across different problems interchangeably in
the rest of the paper.

5.1.1 Modeling Correlation

In this work we study two general ways of modeling the correlation between the
values in the boxes.

Explicit Distributions. In this case, D is a distribution over m scenarios where the
j’th scenario is realized with probability pj, for j ∈ [m]. Every scenario corresponds
to a fixed and known vector of values contained in each box. Specifically, box i has
value vij ∈ R+ ∪ {∞} for scenario j.

5.2 Roadmap of the Reductions and Implications

In Figure 5.2, we give an overview of all the main technical reductions shown in Sec-
tions 5.3 and 5.4. An arrow A→ B means that we gave an approximation preserving
reduction from problem A to problem B. Therefore an algorithm for B that achieves
approximation ratio α gives also an algorithm for A with approximation ratio O(α)

(or O(α logα) in the case of black dashed lines). For the exact guarantees we refer to

80

the formal statement of the respective theorem. The gray lines denote less important
claims or trivial reductions (e.g. in the case of A being a subproblem of B).

Figure 5.2: Summary of all our reductions. Bold black lines denote our main theorems,
gray dashed are minor claims, and dotted lines are trivial reductions.

5.2.1 Approximating Pandora’s Box

Given our reductions and using the best known results for Uniform Decision Tree
from Li et al. (2020) we immediately obtain efficient approximation algorithms for
Pandora’s Box. We repeat the results of Li et al. (2020) below.

Theorem 5.2 (Theorems 3.1 and 3.2 from Li et al. (2020)).

• There is a O(logm/ log OPT)-approximation algorithm for UDT that runs in polyno-
mial time, where OPT is the cost of the optimal solution of the UDT instance.

• There is a 9+ε
α

-approximation algorithm for UDT that runs in time nÕ(mα) for any
α ∈ (0, 1).

Using the results of Theorem 5.2 combined with Theorem 5.8 and Claim 5.16 we
get the following corollary.

Corollary 5.3. From the best-known results for UDT, we have that

• There is a Õ(logm)-approximation algorithm for PB that runs in polynomial time2.

• There is a Õ(1/α)-approximation algorithm for PB that runs in time nÕ(mα) for any
α ∈ (0, 1).

An immediate implication of the above corollary is that it is not NP-hard to obtain
a superconstant approximation for PB, formally stated below.

Corollary 5.4. It is not NP-hard to achieve any superconstant approximation for PB assuming
the Exponential Time Hypothesis.

2If additionally the possible number of outcomes is a constant K, this gives a O(logm) approx-
imation without losing an extra logarithmic factor, since OPT ⩾ logK m, as observed by Li et al.
(2020).

81

Observe that the logarithmic approximation achieved in Corollary 5.3 loses a
log logm factor (hence the Õ) as it relies on the more complex reduction of Theo-
rem 5.8. If we choose to use the more direct reduction of Theorem 5.18 to the Optimal
Decision Tree where the tests have non-unit costs (which also admits a O(logm)-
approximation Gupta et al. (2017); Kambadur et al. (2017)), we get the following
corollary.

Corollary 5.5. There exists an efficient algorithm that is O(logm)-approximate for Pan-
dora’s Box and with or without unit-cost boxes.

5.2.2 Constant approximation for Partially Adaptive PB

Moving on, we show how our reduction can be used to obtain and improve the results
of Chawla et al. (2020). Recall that in Chawla et al. (2020) the authors presented
a constant factor approximation algorithm against a Partially Adaptive benchmark
where the order of opening boxes must be fixed up front.

In such a case, the reduction of Section 5.3 can be used to reduce PB to the standard
Min Sum Set Cover (i.e. without feedback), which admits a 4-approximation Feige
et al. (2004).

Corollary 5.6. There exists a polynomial time algorithm for PB that is O(1)-competitive
against the partially adaptive benchmark.

The same result applies even in the case of non-uniform opening costs. This
is because a 4-approximate algorithm for Min Sum Set Cover is known even when
elements have arbitrary costs Munagala et al. (2005). The case of non-uniform opening
costs has also been considered for Pandora’s Box by Chawla et al. (2020) but only
provide an algorithm to handle polynomially bounded opening costs.

5.3 Connecting Pandora’s Box and MSSCf

In this section we establish the connection between Pandora’s Box and Min-Sum Set
Cover. We show that the two problems are equivalent up to logarithmic factors in
approximation ratio.

One direction of this equivalence is easy to see in fact: Min-Sum Set Cover is a
special case of Pandora’s Box. Note that in both problems we examine boxes/elements

82

in an adaptive order. In Pandora’s Box we stop when we find a sufficiently small
value; in MSSCf we stop when we find an element that belongs to the instantiated
scenario. To establish a formal connection, given an instance of MSSCf, we can define
the "value" of each element i in scenario s as being 0 if the element belongs to the set
s and as being L+ fi(s) for some sufficiently large value L where fi(s) is the feedback
of element i for set s. This places the instance within the framework of Pandora’s
Box and a Pandora’s Box algorithm can be used to solve it. We formally describe this
reduction in Section 5.A.2 of the Appendix.

Claim 5.7. If there exists an α(n,m)-approximation algorithm for PB then there exists a
α(n,m)-approximation for MSSCf.

The more interesting direction is a reduction from PB to MSSCf. In fact we show
that a general instance of PB can be reduced to the simpler uniform version of Min-Sum
Set Cover. We devote the rest of this section to proving the following theorem.

Theorem 5.8 (Pandora’s Box to MSSCf). If there exists an a(n,m) approximation algo-
rithm for UMSSCf then there exists a O(α(n+m,m2) logα(n+m,m2))-approximation
for PB.

Guessing a stopping rule and an intermediate problem

The feedback structure in PB and MSSCf is quite similar, and the main component in
which the two problems differ is the stopping condition. In MSSCf, an algorithm can
stop examining elements as soon as it finds one that "covers" the realized set. In PB,
when the algorithm observes a value in a box, it is not immediately apparent whether
the value is small enough to stop or whether the algorithm should probe further,
especially if the scenario is not fully identified. The key to relating the two problems is
to "guess" an appropriate stopping condition for PB, namely an appropriate threshold
T such that as soon as the algorithm observes a value smaller than this threshold, it
stops. We say that the realized scenario is "covered".

To formalize this approach, we introduce an intermediate problem called Pan-
dora’s Box with costly outside option T (also called threshold), denoted by PB⩽T . In this
version the objective is to minimize the cost of finding a value ⩽ T , while we have the
extra option to quit searching by opening an outside option box of cost T . We say that
a scenario is covered in a given run of the algorithm if it does not choose the outside
option box T .

83

We show that Pandora’s Box can be reduced to PB⩽T with a logarithmic loss in
approximation factor, and then PB⩽T can be reduced to Min-Sum Set Cover with a
constant factor loss. The following two results capture the details of these reductions.

Claim 5.9. If there exists an α(n,m) approximation algorithm for UMSSCf then there exists
an 3α(n+m,m2)-approximation for UPB⩽T .

It is also worth noting that PB⩽T is a special case of the Adaptive Ranking problem
which directly implies a logm approximation factor (given in Kambadur et al. (2017)).

Main Lemma 5.10. Given a polynomial-time α(n,m)-approximation algorithm for UPB⩽T ,
there exists a polynomial-time O(α(n,m) logα(n,m))-approximation for PB.

The relationship between PB⩽T and Min-Sum Set Cover is relatively straightfor-
ward and requires explicitly relating the structure of feedback in the two problems.
We describe the details in Section 5.A.2 of the Appendix.

Putting it all together. The proof of Theorem 5.8 follows by combining Claim 5.9
with Lemmas 5.11 and 5.10 presented in the following sections. Proofs of Claims 5.7,
5.9 deferred to Section 5.A.2 of the Appendix. The rest of this section is devoted to
proving Lemmas 5.11 and 5.10. The landscape of reductions shown in this section is
presented in Figure 5.3.

PB

UPB⩽TPB⩽T

UMSSCfMSSCf

Lem 5.11 Lem 5.10

Claim 5.9 Claim 5.9

Claim 5.7
Main Lemma (log factors)

Claim (const. factors)

Minor Claim

Subproblem

Figure 5.3: Reductions shown in this section. Claim 5.9 alongside Lemmas 5.11
and 5.10 are part of Theorem 5.8.

84

5.3.1 Reducing Pandora’s Box to PB⩽T

Recall that a solution to Pandora’s Box involves two components ; (1) the order in
which to open boxes and (2) a stopping rule. The goal of the reduction to PB⩽T is to
simplify the stopping rule of the problem, by making values either 0 or ∞, therefore
allowing us to focus on the order in which boxes are opened, rather than which value
to stop at. We start by presenting our main tool, a reduction to Min-Sum Set Cover in
Section 5.3.1.1 and then improve upon that to reduce from the uniform version of
MSSCf (Section 5.3.1.2).

5.3.1.1 Main Tool

The high level idea in this reduction is that we repeatedly run the algorithm for PB⩽T

with increasingly larger value of T with the goal of covering some mass of scenarios at
every step. The thresholds for every run have to be cleverly chosen to guarantee that
enough mass is covered at every run. The distributions on the boxes remain the same,
and this reduction does not increase the number of boxes, therefore avoiding the
issues faced by the naive reduction given in Section 5.A.1 of the Appendix. Formally,
we show the following lemma.

Main Lemma 5.11. Given a polynomial-time α(n,m)-approximation algorithm for PB⩽T ,
there exists a polynomial-time O(α(n,m) logα(n,m))-approximation for PB.

Algorithm 9: Reduction from PB to PB⩽T .
Input: Oracle A(T) for PB⩽T , set of all scenarios S.

1 i← 0 // Number of current Phase
2 while S ̸= ∅ do
3 Use A to find smallest Ti via Binary Search s.t.

Pr [accepting the outside option Ti] ⩽ 0.2
4 Call the oracle A(Ti) on set S to obtain policy πi

5 S← S\ {scenarios with total cost ⩽ Ti}
6 end
7 for i← 0 to ∞ do
8 Run policy πi until it terminates and selects a box, or accumulates probing

cost Ti.
9 end

85

We will now analyze the policy produced by this algorithm.

Proof of Main Lemma 5.11. We start with some notation. Given an instance I of PB,
we repeatedly run PB⩽T in phases. Phase i consists of running PB⩽T with threshold
Ti on a sub instance of the original problem where we are left with a smaller set of
scenarios, with their probabilities reweighted to sum to 1. Call this set of scenarios
Si for phase i and the corresponding instance Ii. After every phase i, we remove
the probability mass that was covered3, and run PB⩽T on this new instance with a
new threshold Ti+1. In each phase, the boxes, costs and values remain the same, but
the stopping condition changes: thresholds Ti increase in every subsequent phase.
The thresholds are chosen such that at the end of each phase, 0.8 of the remaining
probability mass is covered. The reduction process is formally shown in Algorithm 9.

Accounting for the cost of the policy. We first note that the total cost of the policy
in phase i conditioned on reaching that phase is at most 2Ti: if the policy terminates
in that phase, it selects a box with value at most Ti. Furthermore, the policy incurs
probing cost at most Ti in the phase. We can therefore bound the total cost of the
policy as ⩽ 2

∑∞
i=0(0.2)iTi.

We will now relate the thresholds Ti to the cost of the optimal PB policy for I. To
this end, we define corresponding thresholds for the optimal policy that we call
p-thresholds. Let π∗

I denote the optimal PB policy for I and let cs denote the cost
incurred by π∗

I when scenario i is realized. A p-threshold is the minimum possible
threshold T such that at most p mass of the scenarios has cost more than T in PB,
formally defined below.

Definition 5.12 (p-Threshold). Let I be an instance of PB and cs be the cost of scenario
s ∈ S in π∗

I, we define the p-threshold as

tp = min{T : Pr [cs > T] ⩽ p}.

The following two lemmas relate the cost of the optimal policy to the p-thresholds,
and the p-thresholds to the thresholds Ti our algorithm finds. The proofs of both

3Recall, a scenario is covered if it does not choose the outside option box.

86

lemmas are deferred to Section 5.A.3 of the Appendix. We first formally define a
sub-instance of the given Pandora’s Box instance.

Definition 5.13 (Sub-instance). Let I be an instance of {PB⩽T ,PB} with set of scenarios SI

each with probability pI
s. For any q ∈ [0, 1] we call I ′ a q-sub instance of I if SI ′ ⊆ SI and∑

s∈SI ′
pI
s = q.

Lemma 5.14. (Optimal Lower Bound) Let I be the instance of PB. For any q < 1, any
α > 1, and β ⩾ 2, for the optimal policy π∗

I for PB it that

cost(π∗
I) ⩾

∞∑
i=0

1
βα
· (q)i tqi/βα.

Lemma 5.15. Given an instance I of PB; an α-approximation algorithm AT to PB⩽T ; and
any q < 1 and β ⩾ 2, suppose that the threshold T satisfies

T ⩾ tq/(βα) + βα
∑

cs∈[tq,tq/(βα)]
s∈S

cs
ps

q
.

Then if AT is run on a q-sub instance of I with threshold T , at most a total mass of (2/β)q of
the scenarios pick the outside option box T .

Calculating the thresholds. For every phase i we choose a threshold Ti such that
Ti = min{T : Pr [cs > T] ⩽ 0.2} i.e. at most 0.2 of the probability mass of the sce-
narios are not covered. In order to select this threshold, we do binary search start-
ing from T = 1, running every time the α-approximation algorithm for PB⩽T with
outside option box T and checking how many scenarios select it. We denote by
Inti = [t(0.2)i , t(0.2)i/(10α)] the relevant interval of costs at every run of the algorithm,
then by Lemma 5.15 for β = 10, we know that for remaining total probability mass
(0.2)i, any threshold which satisfies

Ti ⩾ t(0.2)i−1/10a + 10α
∑
s∈S

cs∈Inti

cs
ps

(0.2)i

also satisfies the desired covering property, i.e. at least 0.8 mass of the current sce-
narios is covered. Therefore the threshold Ti found by our binary search satisfies the

87

following
Ti = t(0.2)i−1/10a + 10α

∑
s∈S

cs∈Inti

cs
ps

(0.2)i . (5.1)

Bounding the final cost. To bound the final cost, we recall that at the end of every
phase we cover 0.8 of the remaining scenarios. Furthermore, we observe that each
threshold Ti is charged in the above Equation (5.1) to optimal costs of scenarios
corresponding to intervals of the form Inti = [t(0.2)i , t(0.2)i/(10α)]. Note that these
intervals are overlapping. We therefore get

cost(πI) ⩽ 2
∞∑
i=0

(0.2)iTi

= 2
∞∑
i=0

(0.2)it(0.2)i−1/10a + 10α
∑
s∈S

cs∈Inti

csps

 From equation (5.1)

⩽ 4 · 10απ∗
I + 20α

∞∑
i=0

∑
s∈S

cs∈Inti

csps

⩽ 40α logα · π∗
I.

where for the second to last inequality we used Lemma 5.14 for β = 10,q = 0.2, and
the last inequality follows since each scenario with cost cs can belong to at most logα

intervals, therefore we get the theorem.

Notice the generality of this reduction; the distributions on the values are pre-
served, and we did not make any more assumptions on the scenarios or values
throughout the proof. Therefore we can apply this tool regardless of the type of cor-
relation or the way it is given to us, e.g. we could be given a parametric distribution,
or an explicitly given distribution, as we see in the next section.

5.3.1.2 An Even Stronger Tool

Moving one step further, we show that if we instead ofPB⩽T we had anα-approximation
algorithm for UPB⩽T we can obtain the same guarantees as the ones described in
Lemma 5.11. Observe that we cannot directly use Algorithm 9 since the oracle now

88

requires that all scenarios have the same probability, while this might not be the case
in the initial PB instance. The theorem stated formally follows.

Main Lemma 5.10. Given a polynomial-time α(n,m)-approximation algorithm for UPB⩽T ,
there exists a polynomial-time O(α(n,m) logα(n,m))-approximation for PB.

We are going to highlight the differences with the proof of Main Lemma 5.11,
and show how to change Algorithm 9 to work with the new oracle, that requires the
scenarios to have uniform probability. The function Expand shown in Algorithm 10
is used to transform the instance of scenarios to a uniform one where every scenario
has the same probability by creating multiple copies of the more likely scenarios.
The function is formally described in Algorithm 11 in Section 5.A.4 of the Appendix,
alongside the proof of Main Lemma 5.10.

Algorithm 10: Reduction from PB to UPB⩽T .
Input: Oracle A(T) for UPB⩽T , set of all scenarios S, c = 1/10, δ = 0.1.

1 i← 0 // Number of current Phase
2 while S ̸= ∅ do
3 Let L =

{
s ∈ S : ps ⩽ c · 1

|S|

}
// Remove low probability scenarios

4 S ′ = S \ L

5 UI = Expand(S ′)
6 In instance UI use A to find smallest Ti via Binary Search s.t.

Pr [accepting Ti] ⩽ δ

7 Call the oracle A(Ti)

8 S←
(
S ′ \ {s ∈ S ′ : cs ⩽ Ti}

)
∪ L

9 end

5.4 Connecting MSSCf and Optimal Decision Tree

In this section we establish the connection between Min-Sum Set Cover and Optimal
Decision Tree. We show that the uniform versions of these problems are equivalent up
to constant factors in approximation ratio. The results of this section are summarized
in Figure 5.4 and the two results below.

89

UMSSCfMSSCf

UDT

DT

Claim 5.16
Claim 5.16 Thm 5.17

Main Theorem: const. factors

Minor Claim

Subproblem

Figure 5.4: Summary of reductions in Section 5.4

Claim 5.16. If there exists an α(n,m)-approximation algorithm for DT (UDT) then there
exists a (1 + α(n,m))-approximation algorithm for MSSCf (resp. UMSSCf).

Theorem 5.17 (Uniform Decision Tree to UMSSCf). Given an α(m,n)-approximation
algorithm for UMSSCf then there exists an O(α(n+m,m))-approximation algorithm for
UDT.

The formal proofs of these statements can be found in Section 5.A.5 of the Ap-
pendix. Here we sketch the main ideas.

One direction of this equivalence is again easy to see. The main difference between
Optimal Decision Tree and MSSCf is that the former requires scenarios to be exactly
identified whereas in the latter it suffices to simply find an element that covers the
scenario. In particular, in MSSCf an algorithm could cover a scenario without identi-
fying it by, for example, covering it with an element that covers multiple scenarios. To
reduce MSSCf to DT we simply introduce extra feedback into all of the elements of
the MSSCf instance such that the elements isolate any scenarios they cover. (That is,
if the algorithm picks an element that covers some subset of scenarios, this element
provides feedback about which of the covered scenarios materialized.) This allows
us to relate the cost of isolation and the cost of covering to within the cost of a single
additional test, implying Claim 5.16.

Proof Sketch of Theorem 5.17. The other direction is more complicated, as we want
to ensure that covering implies isolation. Given an instance ofUDT, we create a special
element for each scenario which is the unique element covering the scenario and also
isolates the scenario from all other scenarios. The intention is that an algorithm for

90

MSSCf on this new instance only chooses the special isolating element in a scenario
after it has identified the scenario. If that happens, then the algorithm’s policy is a
feasible solution to the UDT instance and incurs no extra cost. The problem is that an
algorithm for MSSCf over the modified instance may use the special covering element
before isolating a scenario. We argue that this choice can be "postponed" in the policy
to a point at which isolation is nearly achieved without incurring too much extra cost.
This involves careful analysis of the policy’s decision tree and we present details in
the appendix.

Why our reduction does not work for DT. Our analysis above heavily uses the fact
that the probabilities of all scenarios in the UDT instance are equal. This is because the
"postponement" of elements charges increased costs of some scenarios to costs of other
scenarios. In fact, our reduction above fails in the case of non-uniform distributions
over scenarios – it can generate an MSSCf instance with optimal cost much smaller
than that of the original DT instance.

To see this, consider an example with m scenarios where scenarios 1 through
m− 1 happen with probability ε/(m− 1) and scenario m happens with probability
1− ε. There are m− 1 tests of cost 1 each. Test i for i ∈ [m− 1] isolates scenario i from
all others. Observe that the optimal cost of this DT instance is at least (1 − ε)(m− 1)
as all m− 1 tests need to be run to isolate scenario m. Our construction of the MSSCf

instance adds another isolating test for scenario m. A solution to this instance can use
this new test at the beginning to identify scenario m and then run other tests with the
remaining ε probability. As a result, it incurs cost at most (1 − ε) + ε(m− 1), which
is a factor of 1/ε cheaper than that of the original DT instance.

5.A Appendix for Chapter 5

5.A.1 A Naive Reduction to PB⩽T

In this section we present a straightforward reduction from Pandora’s Box to PB⩽T

as an alternative to Theorem 5.8. This reduction has a simpler construction com-
pared to the reduction of Section 5.3, and does not lose a logarithmic factor in the
approximation, it however faces the following issues.

91

1. It incurs an extra computational cost, since it adds a number of boxes that
depends on the size of the values’ support.

2. It requires opening costs, which means that the oracle for Pandora’s Box with
outside option should be able to handle non-unit costs on the boxes, even if the
original PB problem had unit-cost boxes.

We denote by PBc
⩽T the version of Pandora’s Box with outside option that has

non-unit cost boxes, and formally state the guarantees of our naive reduction below.

Theorem 5.18. For n boxes and m scenarios, given an α(n,m)-approximation algorithm
for PBc

⩽T for arbitrary T , there exits a 2α(n · |supp(v)|,m)-approximation for PB that runs
in polynomial time in the number of scenarios, number of boxes, and the number of values.

Figure 5.5 summarizes all the reductions from PB to PB⩽T and in Table 5.1 we
compare the properties of the naive reduction of this section, to the ones show in
Section 5.3. The main differences are that there is a blow-up in the number of boxes
that depends on the support, while losing only constant factors in the approximation.

UPB⩽T

PB

PB⩽T PBc
⩽T

Main Lem. 5.10
Main Lem. 5.11

Thm 5.18 Main Lemma (log factors)

Main Theorem (const. factors)

Subproblem

Figure 5.5: Reductions shown in Section 5.3.1

Reducing PB to
PBc

⩽T , Theorem 5.18 (U)PB⩽T , Lemma 5.11 (5.10)
Costs of boxes Introduces non-unit costs Maintains costs

Probabilities Maintains probabilities Maintains probabilities
(Makes probabilities uniform)

of extra scenarios 0 0
of extra boxes n · supp(v) 0

Approximation loss 2α(n · supp(v),m) O(α(n,m) loga(n,m))

Table 5.1: Differences of reductions of Theorems 5.18, and the Main Lemmas 5.11 and
5.10 that comprise Theorem 5.8.

92

The main idea is that we can move the information about the values contained in
the boxes into the cost of the boxes. We do achieve this effect by creating one new box
for every (box, value)-pair. Note, that doing this risks losing the information about
the realized scenario that the original boxes revealed. To retain this information, we
keep the original boxes, but replace their values by high values. The high values
guarantee the effect of the new boxes is retained. Now, we can formalize this intuition.

PB⩽T Instance. Given an instance I of PB, we construct an instance I ′ of PB⩽T . We
need T to be sufficiently large so that the outside option is never chosen. The net effect
is that a policy for PB is easily inferred from a policy for PB⩽T . We define the instance
I ′ to have the same scenarios si and same scenario probabilities pi as I. We choose
T = ∞4, and define the new values by v ′

i,j = vi,j + T + 1. Note that all of these values
will be larger than T and so a feasible policy cannot terminate after receiving such a
value. At the same time, these values ensure the same branching behaviour as before
since each distinct value is mapped one to one to a new distinct value. Next, we add
additional “final" boxes for each pair (j, v) where j is a box and v a potential value
of box j. Each “final" box (j, v) has cost cj + v. Box (j, v) has value 0 for the scenarios
where box j gives exactly value v and values T + 1 for all other scenarios. Formally,

v ′
i,(j,v) =

0 if vi,j = v

T + 1 else

Intuitively, these “final” boxes indicate to a policy that this will be the last box opened,
and so its values, which are at least that of the best values of the boxes chosen, should
now be taken into account in the cost of the solution.

In order to prove Theorem 5.18, we use two key lemmas. In Lemma 5.19 we show
that the optimal value for the transformed instance I ′ of PB⩽T is not much higher
than the optimal value for original instance I. In Lemma 5.20 we show how to obtain
a policy for the initial instance with values, given a policy for the problem with a
threshold.

Lemma 5.19. Given the instance I of PB and the constructed instance I ′ of PB⩽T it holds
that

c(π∗
I ′) ⩽ 2c(π∗

I).
4We set T to a value larger than

∑
i ci + maxi,j vij.

93

Proof. We show that given an optimal policy for PB, we can construct a feasible policy
π ′ for I ′ such that c(π0) ⩽ 2c(π∗

I). We construct the policy π ′ by opening the same
boxes as π and finally opening the corresponding “values" box, in order to find the 0
needed to stop.

Fix any scenario i, and suppose box j achieved the smallest value Vi,j of all boxes
opened under scenario i. Since j is opened, in the instance I ′ we open box (j, vi,j),
and from the construction of I ′ we have that v ′

i,(j,vi,j)
= 0. Since on every branch we

open a box with values 05, we see that π ′ is a feasible policy for I ′. Under scenario i,
we have that the cost of π(i) is

c(π(i)) = min
k∈π(i)

vi,k +
∑

k∈π(i)

ck.

In contrast, the minimum cost following π ′(i) is 0 and there is the additional cost of
the “values" box. Formally, the cost of π ′(i) is

c(π ′(i)) = 0 +
∑

k∈π(i)

ck + c(j,vi,j) = min
k∈π(i)

vi,k +
∑

k∈π(i)

ck + cj = c(π(i)) + cj

Since cj appears in the cost of π(i), we know that c(π(i)) ⩾ cj. Thus, c(π ′(i)) =

c(π(i)) + cj ⩽ 2c(π(i)), which implies that c(π ′) ⩽ 2c(π∗
I) for our feasible policy π ′.

Observing that c(π ′) ⩾ c(π∗
I ′) for any policy, completes the proof.

Lemma 5.20. Given a policy π ′ for the constructed instance I ′ of PB⩽T , there exists a feasible
policy π for the instance I of PB with no larger expected cost. Furthermore, any branch of π
can be constructed from π ′ in polynomial time.

Proof of Lemma 5.20. We construct a policy π for I using the policy π ′. Fix some branch
of π ′. If π ′ opens box j along this branch, we define policy π to open the same box
along this branch. When π ′ opens a “final” box (j, v), we define the policy π to open
box j if it has not been opened already.

Next, we show this policy π has no larger expected cost than π ′. There are two
cases to consider depending on where the “final” box (j, v) is opened:

1. “Final" box (j, v) is at a leaf of π ′: since π ′ has finite expected cost and this is the
first “final" box we encountered, the result must be 0. Therefore, under π the

5π opens at least one box.

94

values will be v by definition of I ′. Observe that in this case, c(π) ⩽ c(π ′) since
the (at most) extra v paid by π for the value term, has already been paid by the
box cost in π ′ when box (j, v) was opened.

2. “Final" box (j, v) is at an intermediate node of π ′: after π opens box j, we copy
the subtree of π ′ that follows the 0 branch into the branch of π that follows the
v branch. Also, we copy the subtree of π ′ that follows the ∞1 branch into each
branch that has a value different from v (the non-v branches). The cost of this
new subtree is cj instead of the original cj + v. The v branch may accrue an
additional cost of v or smaller if j was not the smallest values box on this branch,
so in total, the v branch has cost at most its original cost.

However, the non-v branches have a v term removed going down the tree.
Specifically, since the feedback of (j, v) down the non-v branch was ∞1, some
other box with 0 values had to be opened at some point, and this box is still
available to be used as the final values for this branch later on (since if this
branch already had a 0, it would have stopped). Thus, the cost of this subtree is
at most that originally, and has one fewer “final" box opened.

Putting these cases together implies that c(π) ⩽ c(π ′).
Lastly, we argue that any branch of π can be computed efficiently. To compute a

branch for π, we follow the corresponding branch of π ′. As we go along this branch,
we open box j whenever π ′ opens box (j, v) and remember the feedback. We use the
feedback to know which boxes of π ′ to open in the future. Hence, we can compute a
branch of π from π ′ in polynomial time.

We are now ready to give the proof of Lemma 5.18.

Proof of Lemma 5.18. Suppose we have an α-approximation for PB⩽T . Given an in-
stance I to PB, we construct the instance I ′ for PB⩽T as described and then run the
approximation algorithm on I ′ to get a policy πI ′ . Next, we prune the tree as de-
scribed in Lemma 5.20 to get a policy, πI of no worse cost. Our policy will use time
at most polynomially more than the policy for PB⩽T since each branch of πI can be
computed in polynomial time from πI ′ . Hence, the runtime is polynomial in the size
of I ′. We also note that we added at most mn total “final” boxes to construct our new
instance I ′, and so this algorithm will run in polynomial time in m and n. Thus, by

95

Lemma 5.20 and Lemma 5.19 we know the cost of the constructed policy is

c(π) ⩽ c(π ′) ⩽ αc(π∗
I ′) ⩽ 2αc(π∗

I)

Hence, this algorithm is a 2α-approximation for PB.

5.A.2 Proofs from Section 5.3

Claim 5.7. If there exists an α(n,m)-approximation algorithm for PB then there exists a
α(n,m)-approximation for MSSCf.

Proof of Claim 5.7. Let I be an instance of MSSCf. We create an instance I ′ of PB the
following way: for every set sj of I that gives feedback fij when element ei is selected,
we create a scenario sj with the same probability and whose value for box i, is either
0 if ei ∈ sj or ∞fij otherwise, where ∞fij denotes an extremely large value which is
different for different values of the feedback fij. Observe that any solution to the PB

instance gives a solution to the MSSCf at the same cost and vice versa.

Claim 5.9. If there exists an α(n,m) approximation algorithm for UMSSCf then there exists
an 3α(n+m,m2)-approximation for UPB⩽T .

Before formally proving this claim, recall the correspondence of scenarios and
boxes of PB-type problems, to elements and sets of MSSC-type problems. The idea for
the reduction is to create T copies of sets for each scenario in the initial PB⩽T instance
and one element per box, where if the price a box gives for a scenario i is < T then
the corresponding element belongs to all T copies of the set i. The final step is to
“simulate” the outside option T , for which we we create T elements where the k’th
one belongs only to the k’th copy of each set.

Proof of Claim 5.9. Given an instance I of UPB⩽T with outside cost box bT , we con-
struct the instance I ′ of UMSSCf as follows.

Construction of the instance. For every scenario si in the initial instance, we create
T sets denoted by sik where k ∈ [T]. Each of these sets has equal probability pik =

1/(mT). We additionally create one element eB per box B, which belongs to every
set sik for all k iff vBi < T in the initial instance, otherwise gives feedback vBi. In

96

order to simulate box bT without introducing an element with non-unit cost, we use
a sequence of T outside option elements eTk where eTk ∈ sik for all i ∈ [m] i.e. element
eTik belongs to “copy k" of every set 6.

Construction of the policy. We construct policy πI by ignoring any outside option
elements that πI ′ selects until πI ′ has chosen at least T/2 such elements, at which
point πI takes the outside option box bT . To show feasibility we need that for every
scenario either bT is chosen or some box with vij ⩽ T . If bT is not chosen, then
less than T/2 isolating elements were chosen, therefore in instance of UMSSCf some
sub-sets will have to be covered by another element eB, corresponding to a box. This
corresponding box however gives a value ⩽ T in the initial UPB⩽T instance.

Approximation ratio. Let si be any scenario in I. We distinguish between the
following cases, depending on whether there are outside option tests on si’s branch.

1. No outside option tests on si’s branch: scenario si contributes equally in both
policies, since absence of isolating elements implies that all copies of scenario si

will be on the same branch (paying the same cost) in both πI ′ and πI

2. Some outside option tests on i’s branch: for this case, from Lemma 5.21 we
have that c(πI(si)) ⩽ 3c(πI ′(si)).

Putting it all together we get

c(πI) ⩽ 3c(πI ′) ⩽ 2α(n+m,m2)c(π∗
I ′) ⩽ 3α(n+m,m2)c(π∗

I),

where the second inequality follows since we are given an α approximation and the
last inequality since if we are given an optimal policy for UPB⩽T , the exact same
policy is also feasible for any I ′ instance of UDT, which has cost at least c(π∗

I ′). We
also used that T ⩽ m, since otherwise the initial policy would never take the outside
option.

Lemma 5.21. Let I be an instance of UPB⩽T , and I ′ the instance of UMSSCf constructed
by the reduction of Claim 5.9. For a scenario si, if there is at least one outside option test run
in πI, then c(πI(si)) ⩽ 3c(πI ′(si)).

6Observe that there are exactly T possible options for k for any set. Choosing all these elements
costs T and covers all sets thus simulating bT .

97

Proof. For the branch of scenario si, denote by M the box elements chosen before
there were T/2 outside option elements, and by N the number of outside option elements
in πI ′ . Note that the smallest cost is achieved if all the outside option elements are
chosen first7. The copies of scenario si can be split into two groups; those that were
isolated before T/2 outside option elements were chosen, and those that were isolated
after. We distinguish between the following cases, based on the value of N.

1. N ⩾ T/2: in this case each of the copies of si that are isolated after pays at least
M + T/2 for the initial box elements and the initial sequence of outside option
elements. For the copies isolated before, we lower bound the cost by choosing
all outside option elements first.

The cost of all the copies in πI ′ then is at least

Ki∑
j=1

T/2∑
k=1

cpℓ

T
k+

Ki∑
j=1

T∑
k=T/2+1

cpℓ

T
(T/2 +M) = cpi

T
2 (

T
2 + 1)
2T + cpi

T
2 (T/2 +M)

T

⩾ cpi(3T/8 +M/2)

⩾
3
8pi(T +M)

Since N ⩾ T/2, policy πI will take the outside option box for si, immediately
after choosing the M initial boxes corresponding to the box elements. So, the
total contribution si has on the expected cost of πI is at most pi(M+ T) in this
case. Hence, we have that si’s contribution in πI is at most 8

3 ⩽ 3 times si’s
contribution in πI ′ .

2. N < T/2: policy πI will only select the M boxes (corresponding to box elements)
and this was sufficient for finding a value less than T . The total contribution of
si on c(πI) is exactly piM. On the other hand, since N < T/2 we know that at
least half of the copies will pay M for all of the box elements. The cost of all the
copies is at least

Ki∑
j=1

T∑
k=N

cpℓ

T
M = cpi

T −N

T
M ⩾ cpiM/2,

7Since the outside option tests cause some copies to be isolated and so can reduce their cost.

98

therefore, the contribution si has on c(πI ′) is at least cpiM/2. Hence, we have
c(πI) ⩽ 3c(πI ′)

5.A.3 Proofs from subsection 5.3.1.1

Lemma 5.15. Given an instance I of PB; an α-approximation algorithm AT to PB⩽T ; and
any q < 1 and β ⩾ 2, suppose that the threshold T satisfies

T ⩾ tq/(βα) + βα
∑

cs∈[tq,tq/(βα)]
s∈S

cs
ps

q
.

Then if AT is run on a q-sub instance of I with threshold T , at most a total mass of (2/β)q of
the scenarios pick the outside option box T .

Proof. Consider a policy πIq which runs π∗
I on the instance Iq; and for scenarios with

cost cs ⩾ tq/(βα) aborts after spending this cost and chooses the outside option T .
The cost of this policy is:

c(π∗
Iq
) ⩽ c(πIq) =

T + tq/(βα)

βα
+

∑
cs∈[tq,tq/(10α)]

s∈S

cs
ps

q
, (5.2)

By our assumption on T , this cost is at most 2T/βα. On the other hand since AT is an
α-approximation to the optimal we have that the cost of the algorithm’s solution is at
most

αc(π∗
Iq
) ⩽

2T
β

Since the expected cost of AT is at most 2T/β, then using Markov’s inequality, we get
that Pr [cs ⩾ T] ⩽ (2T/β)/T = 2/β. Therefore, AT covers at least 1 − 2/β mass every
time.

Lemma 5.14. (Optimal Lower Bound) Let I be the instance of PB. For any q < 1, any
α > 1, and β ⩾ 2, for the optimal policy π∗

I for PB it that

cost(π∗
I) ⩾

∞∑
i=0

1
βα
· (q)i tqi/βα.

99

Proof. In every interval of the form Ii = [tqi , tqi/(βα)] the optimal policy for PB covers
at least 1/(βα) of the probability mass that remains. Since the values belong in the
interval Ii in phase i, it follows that the minimum possible value that the optimal
policy might pay is tqi , i.e. the lower end of the interval. Summing up for all intervals,
we get the lemma.

5.A.4 Proofs from subsection 5.3.1.2
Algorithm 11: Expand: rescales and returns an instance of UPB.

Input: Set of scenarios S
1 Scale all probabilities by c such that c

∑
s∈S ps = 1

2 Let pmin = mins∈S ps

3 S ′ = for each s ∈ S create ps/pmin copies
4 Each copy has probability 1/|S ′|

5 return S ′

Main Lemma 5.10. Given a polynomial-time α(n,m)-approximation algorithm for UPB⩽T ,
there exists a polynomial-time O(α(n,m) logα(n,m))-approximation for PB.

Proof. The proof in this case follows the steps of the proof of Theorem 5.11, and
we are only highlighting the changes. The process of the reduction is the same as
Algorithm 9 with the only difference that we add two extra steps; (1) we initially
remove all low probability scenarios (line 3 - remove at most c fraction) and (2)
we add them back after running UPB⩽T (line 8). The reduction process is formally
shown in Algorithm 10.

Calculating the thresholds. For every phase i we choose a threshold Ti such that
Ti = min{T : Pr [cs > T] ⩽ δ} i.e. at most δ of the probability mass of the scenar-
ios are not covered, again using binary search as in Algorithm 9. We denote by
Inti = [t(1−c)(δ+c)i , t(1−c)(δ+c)i/(βα)] the relevant interval of costs at every run of the
algorithm, then by Lemma 5.15, we know that for remaining total probability mass
(1 − c)(δ+ c)i, any threshold which satisfies

Ti ⩾ t(1−c)(δ+c)i−1/βα + βα
∑
s∈S

cs∈Inti

cs
ps

(1 − c)(δ+ c)i

100

also satisfies the desired covering property, i.e. at least (1 − 2/β)(1 − c)(δ+ c) mass
of the current scenarios is covered. Therefore the threshold Ti found by our binary
search satisfies

Ti = t(1−c)(δ+c)i−1/βα + βα
∑
s∈S

cs∈Inti

cs
ps

(1 − c)(δ+ c)i
. (5.3)

Following the proof of Theorem 5.11, Constructing the final policy and Account-
ing for the values remain exactly the same as neither of them uses the fact that the
scenarios are uniform.

Bounding the final cost. Using the guarantee that at the end of every phase we
cover (δ+c) of the scenarios, observe that the algorithm for PB⩽T is run in an interval
of the form Inti = [t(1−c)(δ+c)i , t(1−c)(δ+c)i/(βα)]. Note also that these intervals are
overlapping. Bounding the cost of the final policy πI for all intervals we get

πI ⩽
∞∑
i=0

(1 − c)(δ+ c)iTi

=

∞∑
i=0

(1 − c)(δ+ c)it(1−c)(δ+c)i−1/βα + βα
∑
s∈S

cs∈Inti

csps

 From equation (5.3)

⩽ 2 · βαπ∗
I + βα

∞∑
i=0

∑
s∈S

cs∈Inti

csps Using Lemma 5.14

⩽ 2βα logα · π∗
I,

where the inequalities follow similarly to the proof of Theorem 5.11. Choosing
c = δ = 0.1 and β = 20 we get the theorem.

5.A.5 Proofs from Section 5.4

Claim 5.16. If there exists an α(n,m)-approximation algorithm for DT (UDT) then there
exists a (1 + α(n,m))-approximation algorithm for MSSCf (resp. UMSSCf).

Proof of Claim 5.16. Let I be an instance of MSSCf. We create an instance I ′ of DT the
following way: for every set sj we create a scenario sj with the same probability and

101

for every element ei we create a test Tei
with the same cost, that gives full feedback

whenever an element belongs to a set, otherwise returns only the element’s feedback
fij. Formally, the i-test under scenario sj returns

Tei
(sj) =

“The feedback is fij” If ei ̸∈ sj

“The scenario is j” else ,

therefore the test isolates scenario j when ei ∈ sj.

Constructing the policy. Given a policy π ′ for the instance I ′ of DT, we can construct
a policy π for I by selecting the element that corresponds to the test π ′ chose. When
π ′ finishes, all scenarios are identified and for any scenario sj either (1) there is a test
in π ′ that corresponds to an element in sj (in the instance I) or (2) there is no such
test, but we can pay an extra mini∈sj ci to select the lowest cost element in this set8.

Observe also that in this instance of DT if we were given the optimal solution, it
directly translates to a solution for MSSCf with the same cost, therefore

c(π∗
I) ⩽ c(π ′

I ′) = c(π∗
I ′) (5.4)

Bounding the cost of the policy. As we described above the total cost of the policy
is

c(π) ⩽ c(πI ′) + Es∈S

[
min
i∈s

ci

]
⩽ c(πI ′) + c(π∗

I)

⩽ a(n,m)c(π∗
I ′) + c(π∗

I)

= (1 + a(n,m))c(π∗
I),

where in the last inequality we used equation (5.4).
Note that for this reduction we did not change the probabilities of the scenarios,

therefore if we had started with uniform probabilities and had an oracle to UDT, we
would still get an a(n,m) + 1 algorithm for UMSSCf.

In the reduction proof of Theorem 5.17, we are using the following two lemmas,
that show that the policy constructed for UDT via the reduction is feasible and has

8Since the scenario is identified, we know exactly which element this is.

102

bounded cost.

Lemma 5.22. Given an instance I ′ of UDT and the corresponding instance I of UMSSCf in
the reduction of Theorem 5.17, the policy πI ′ constructed for UDT is feasible.

Proof of Lemma 5.22. It suffices to show that every scenario is isolated. Fix a scenario si.
Observe that si’s branch has chosen the isolating element Ei in the UMSSCf solution,
since that is the the only element that belongs to set si. Let S be the set of scenarios
just before Ei is chosen and note that by definition si ∈ S.

If |S| = 1, then since πI ′ runs tests giving the same branching behavior by definition
of πI ′ , and si is the only scenario left, we have that the branch of πI ′ isolates scenario
si.

If |S| > 1 then all scenarios/sets in S \ {si} are not covered by choosing element Ei,
therefore they are covered at strictly deeper leaves in the tree. By induction on the
depth of the tree, we can assume that for each scenario sj ∈ (S \ {si}) is isolated in
πI ′ . We distinguish the following cases based on when we encounter Ei among the
isolating elements on si’s branch.

1. Ei was the first isolating element chosen on the branch: then policy πI ′ ignores
element Ei. Since every leaf holds a unique scenario in S \ {si}, if we ignore si

it follows some path of tests and either be isolated or end up in a node that
originally would have had only one scenario, as shown in Figure 5.6. Since
there are only two scenarios at that node, policy πI ′ runs the cheapest test
distinguishing si from that scenario.

103

S Ei

si S \ si

sleafsj sk

Ignoring Box Ei

S

sleaf, sisj sk

Figure 5.6: Case 1: S is the set of scenarios remaining when Ei is chosen, sleaf is the
scenario that si ends up with.

2. A different element Ej was chosen before Ei: by our construction, instead of
ignoring Ei we now run the cheapest test that distinguishes si from sj, causing
i and j to go down separate branches, as shown in figure 5.7. We apply the
induction hypothesis again to the scenarios in these sub-branches, therefore,
both si and sj are either isolated or end up in a node with a single scenario and
then get distinguished by the last case of πI ′’s construction.

S ∪ si
Ej

sj S ∪ si

T

Replacing Ej with Ti vs j

S ∪ si
Ti vs j

S1 ∪ si S2 ∪ sj

TT

Figure 5.7: Case 2: run test Ti vs j to distinguish si and sj. Sets S1 and S2 partition S

104

Hence, πI ′ is isolating for any scenario si. Also, notice that any two scenarios that
have isolating boxes on the same branch will end up in distinct subtrees of the lower
node.

Lemma 5.23. Given an instance I of UMSSCf and an instance I ′ of UDT, in the reduction
of Theorem 5.17 it holds that

c(πI ′) ⩽ 2c(πI).

Proof of Lemma 5.23. Let si be any scenario in S. We use induction on the number of
isolating boxes along si’s branch in I ′. Initially observe that Ei will always exist in
si’s branch, in any feasible solution to I. We use c(Ej) and c(Tk) to denote the costs of
box Ej and test Tk, for any k ∈ [n] and j ∈ [n+m].

1. Only Ei is on the branch: since Ei will be ignored, we end up with si and some
other not yet isolated scenario, let sleaf be that scenario. To isolate si and sleaf we
run the cheapest test that distinguishes between these. From the definition of the
cost of Ei we know that c(Tsi vs sleaf) ⩽ c(Ei). Additionally, since c(si) ⩽ c(sleaf)

and both sleaf and si have probability 1/m, overall we have c(πI) ⩽ 2c(πI ′). This
is also shown in Figure 5.6.

2. More than one isolating elements are on the branch: similarly, observe that
for any extra isolating element Ej we encounter, we substitute it with a test that
distinguishes between si and sj and costs at most c(Ej). Given that c(si) ⩽

c(sleaf) and scenarios are uniform, we again have c(πI) ⩽ 2c(πI ′).

Theorem 5.17 (Uniform Decision Tree to UMSSCf). Given an α(m,n)-approximation
algorithm for UMSSCf then there exists an O(α(n+m,m))-approximation algorithm for
UDT.

Proof of Theorem 5.17. We begin by giving the construction of the policy in the reduc-
tion, and showing the final approximation ratio.

Constructing the policy. Given a policy πI for the instance of UMSSCf, we construct
a policy πI ′ . For any test element Bj that πI selects, πI ′ runs the equivalent test Tj. For
the isolating elements Ei we distinguish the following cases.

105

1. If πI selects an isolating element Ei for the first time on the current branch, then
πI ′ ignores this element but remembers the set/scenario si, which Ei belonged
to.

2. If πI selects another isolating element Ej after some Ei on the branch, then πI ′

runs the minimum cost test that distinguishes scenario sj from sk where Ek was
the most recent isolating element chosen on this branch prior to Ej.

3. If we are at the end of πI, there can be at most 2 scenarios remaining on the
branch, so πI ′ runs the minimum cost test that distinguishes these two scenarios.

By Lemma 5.22, we have that the above policy is feasible for UDT.

Approximation ratio. From Lemma 5.23 we have that c(πI ′) ⩽ 2c(πI). For the
optimal policy, we have that c(π∗

I) ⩽ 3c(π∗
I ′). This holds since if we have an optimal

solution to UDT, we can add an isolating element at every leaf to make it feasible for
UMSSCf, by only increasing the cost by a factor of 39, which means that c(π∗

I) will
be less than this transformed UMSSCf solution. Overall, if πI is computed from an
α(n,m)-approximation for UMSSCf, we have

c(πI ′) ⩽ 2c(πI) ⩽ 2α(n+m,m)c(π∗
I) ⩽ 6α(n+m,m)c(π∗

I ′)

5.A.6 Boxes with Non-Unit Costs: Revisiting our Results

In the original Pandora’s Box problem, denoted by PBc, each box i has a different
known cost ci > 0. Similarly we denote the non-unit cost version of both decision
tree-like problems and Min Sum Set Cover-like problems by adding a superscript c

to the problem name. Specifically, we now define DTc, UDTc, MSSCc
f and UMSSCc

f ,
where the tests (elements) have non-unit cost for the decision tree (min sum set
cover) problems. We revisit our results and describe how our reductions change to
incorporate non-unit cost boxes (summary in Figure 5.8).

9This is because for every two scenarios, the UDT solution must distinguish between them, but
one of these scenarios is the max scenario from the definition of Tj, for which we pay less than Tj

106

Figure 5.8: Summary of all the reductions with non-unit costs. The only result
that needs a changed proof is Corollary 5.25 highlighted in bold (previously Theo-
rem 5.17).

Note also, that even though the known results for Optimal Decision Tree (e.g.
Guillory and Bilmes (2009); Gupta et al. (2017)) handle non-unit test costs, the
currently known works for Uniform Decision Tree do not. If however there is an
algorithm for Uniform Decision Tree with non-unit costs, our reductions will handle
this obtaining the same approximation guarantees.

5.A.6.1 Connecting Pandora’s Box and MSSCf

PBc

UPBc
⩽TPBc

⩽T

UMSSCc
fMSSCc

f

Lem 5.11 Lem 5.10

Claim 5.9 Claim 5.9

Claim 5.7
Main Lemma (log factors)

Claim (const. factors)

Minor Claim

Subproblem

Figure 5.9: Reductions shown in this section. The solid lines are part of Corollary 5.24.

All the results of this section hold as they are when we change all versions to incor-
porate costs. We did not use the fact that the costs are unit in any of the proofs of
Claim 5.7, Claim 5.9 or Lemmas 5.11, 5.10. We formally restate the main theorem of
Section 5.3 as the following corollary, where the only change is that it now holds for
the cost versions of the problems.

Corollary 5.24 (Pandora’s Box to MSSCf with non-unit costs). If there exists an a(n,m)

approximation algorithm for MSSCc
f then there exists a O(α(n+m,m2) logα(n+m,m2))-

approximation for PBc. The same result holds if the initial algorithm is for UMSSCc
f .

107

5.A.6.2 Connecting MSSCf and Optimal Decision Tree

In this section the reduction of Theorem 5.17 uses the fact that the costs are uniform.
However we can easily circumvent this and obtain corollary 5.25. Using this, the
results for the non-unit costs versions are summarized in Figure 5.10.

UMSSCc
fMSSCc

f

UDTc

DTc

Claim 5.16
Claim 5.16 Cor 5.25

Main Theorem (const. factors)

Minor Claim

Subproblem

Figure 5.10: Summary of reductions for non unit cost boxes.

Corollary 5.25 (Uniform Decision Tree with costs to UMSSCc
f). Given an α(m,n)-

approximation algorithm for UMSSCc
f then there exists an O(α(n+m,m))-approximation

algorithm for UDTc.

Proof. The proof follows exactly the same way as the proof of Theorem 5.17 with one
change: the cost of an isolating element is the minimum cost test needed to isolate si

from scenario sk where sk is the scenario that maximizes this quantity. Formally, if
c(i,k) = min{cj|Tj(i) ̸= Tj(k)}, then c(Bi) = maxk∈[m] c(i,k). The reduction follows
the exact steps as the one we described in Section 5.A.5.

Part II

Robustness in the prior knowledge

108

109

6 introduction & overview of results

In the previous part we discussed cases where the prior distribution on our input
data is fully known and given to us. This, however, is an unrealistic assumption when
we deal with real life situations. In experimental settings, it is usually the case that the
instruments used cannot have infinite precision and could have design flaws which
lead to uncertain and noisy measurements (Moffat, 1988; Rabinovich, 2006; Hughes
and Hase, 2010). In some extreme cases, we may not be able to even obtain data on
our input at all, yet we are still required to solve a problem.

We study different cases on the prior information given to us, through the lens of
Pandora’s Box.

6.1 Overview of Results

We discuss three different regimes of partial knowledge on the prior distribution D.
Initially instead of having access to the joint prior distribution we only assume that an
oracle can return samples to us (Chapter 7). Then we move on to the fully pessimistic
model where we have no information at all on the prior distribution (Chapter 8).
Finally in Chapter 9, we discuss a setting that is equivalent to a noisy version of
Optimal Decision Tree.

6.1.1 Sample Access

Instead of having a matrix as in Table 2.1, that gives us exactly the probability of all
the possible scenarios that can happen, we only have access to an oracle that returns
samples from this joint distribution. We first show that against the Fully-Adaptive
benchmark we have no hope of obtaining any meaningful approximation. A simple
way to see this is via the example shown in Figure 6.1. Imagine that there is a box
with a 0 price for every scenario, and the optimal knows an encoding function that
gives them the exact 0 box. In this example, the optimal opens boxes i and j, sees
some very high values, that cannot potentially pick, and using the most significant
bits of these, gives them the location of the box. In order for us to learn this function,
and always be able to find the 0 we need to sample every scenario.

110

4·104

Box i

2·104

Box j

…

Box 42

0

Figure 6.1: Example on how why any strategy will fail against the Fully-Adaptive
when we are only given sample access to D.

For the rest of Section 7.1 we revisit our previous results against the Partially-
Adaptive benchmark when only given sample access to the joint prior distribution.
We initially show how all our results of Chapter 3, even for complex constraints still
hold when we draw an adequate number of samples at the beginning. Specifically,
we show that given an α-approximation algorithm for a scenario-aware Partially-
Adaptive (SPA) strategy, then combining ski-rental with a sampling step before gives
us the desired result. The theorem is stated informally below.

Main Theorem (Informal Theorem 7.2). Suppose there exists an algorithm for Pandora’s
Box that returns an SPA strategy achieving an α-approximation. Then, for any ϵ > 0, there
exists an algorithm that runs in time polynomial in n and 1/ϵ and returns a PA strategy with
competitive ratio e

e−1(1 + ϵ)α, where n = |B|.

Following this, we also show that our simpler algorithm of Chapter 4, when
conditioning on Vb > σb, still gives us the same constant approximation within
(1 + ε) for a suitable number of samples. We state the main theorem below.

Main Theorem (Informal Theorem 7.3). For any ε, δ > 0, using m = poly(n, 1/ε,
log(1/δ)) samples from D, Our algorithm obtains a 4.428 + ε approximation policy against
the Partially-Adaptive optimal, with probability at least 1 − δ, and where n = |B|.

6.1.2 Unknown Distributions

Switching to our more pessimistic model, we now are required to solve Pandora’s
Box for T rounds, while the distribution is unknown but each time we can use the in-
formation of the previous rounds. Our goal in this case is to minimize α-approximate
regret as defined below, where A(t) is the cost of our algorithm at round t ∈ [T] and
OPT(t) the cost of the optimal for the same round. In this setting, the prices inside
the boxes can be adversarially selected.

111

α-RegretOPT(A, T) = 1
T

T∑
t=1

(A(t) − αOPT(t))

As we discussed in Section 1.1, there are two settings arising in this problem,
depending on the amount of information we see after the game of each day ends.

• Full information setting: at the end of each day we see all the prices inside the
boxes.

• Bandit setting: at the end of each day we only see the prices in the boxes we
chose to open.

Our algorithm first relaxes the initial integer problem a continuous convex one
and then uses our main theorem (stated informally below) that allows us to reduce
our problem to an online convex optimization one.

Main Theorem (Informal Theorem 8.4). Given Π a minimization problem over a domain
X and Π be the convex relaxation of Π over convex domain X ⊇ X.

If there exists an α-approximate rounding algorithm A : X→ X for any feasible solution
x ∈ X to a feasible solution x ∈ X then, any online minimization algorithm for Π that achieves
regret Regret(T) against a benchmark OPT, gives α-approximate regret αRegret(T) for Π.

Combining this with Theorems 3.5, 3.12 and 3.15 of Chapter:3 we get the following
corollary.

Corollary 6.1 (Competing against PA, Corollary 8.7 and 8.11). In the full information
and bandit setting, we give an algorithm that is

• 9.22-approximate no regret for choosing 1 box

• O(1)-approximate no regret for choosing k boxes

• O(log k)-approximate no regret for choosing a matroid basis

6.1.2.1 Adding Context

In Section 8.2 we consider adding the extra information of context at the beginning of
every round. The adversary in this case can select the distributions at each round,
and they are independent, however we still have no knowledge of them. We enforce

112

the extra requirement of a realizability assumption as a minimal assumption so that the
problem is not intractable1. Formally the assumption is stated below

Our framework works similarly to the fully unknown distributions case of the
previous section, and we reduce our initial Contextual Pandora’s Box to a simpler
Linear-Quadratic Online Regression one. Linear-Quadratic Online Regression is the
special case of online regression where the loss function ℓ(z) is chosen to be a linear-
quadratic function of the form

Hc(z) =
1
2ReLU(z)2 − cz (6.1)

for some parameter c > 0.
Having reduced our problem to a simpler regression one is not enough though; we

also require that using an estimation of Weitzman’s reservation values in the original
algorithm, we can still get some guarantees. This is shown in the following theorem.

Main Theorem (Informal Theorem 8.19). For a Pandora’s Box instance with n boxes
with distributions D, costs c and optimal reservation values σ∗, Weitzman’s Algorithm, run
with reservation values σ incurs cost at most

WEITZD(σ; c) ⩽ WEITZD(σ∗; c) + ∥cD(σ) − c∥1.

where cD(σ) are the costs corresponding to the instance where σ are the optimal reservation
values.

Main Theorem (Informal Theorem 8.17). Given an oracle with expected regret r(T) for
Linear-Quadratic Online Regression, we give an algorithm that achieves 2n

√
Tr(T) regret

for the Contextual Pandora’s Box problem. In particular, if the regret r(T) is sublinear in
T , our algorithm achieves sublinear regret.

6.1.3 Noisy Data

Finally, in Chapter 9, we switch to Pandora’s Box where we given a mixture of m
product distributions, and show how this is tightly connected to a noisy version of
decision tree. Our benchmark is once again the Fully-Adaptive optimal. We design a

1We fully justify this assumption in Section 8.2

113

dynamic program that finds a constant approximation to this problem ; the theorem
is stated below.

Main Theorem (Informal Theorem 9.1). Let c(DP) and OPT be our algorithm’s and the
optimal’s cost respectively. For any β > 0, and UB = m2

ε2 log m2T
cminβ

. Then it holds that

c(DP) ⩽ (1 + β)OPT.

and the DP runs in time nUB, where n is the number of boxes and cmin is the minimum cost
box.

114

7 sample access to distribution

In this chapter we are going to revisit our results of Chapters 5, 3 and 4 in the regime
where the distributions are not fully known. In real life problems, it is usually the
case that we do not fully know the process that generated our data, which implies
that the distribution of the data is unknown to us. It is however the case that we have
historical data or observations on our problem at hand. This historical data can be
thought of as samples, from this unknown prior distribution.

We are showing how when competing with the Fully-Adaptive benchmark it is
impossible to obtain any meaningful approximation, but when competing with the
Partially-Adaptive we are able to extend all our previous results to still hold within
(1 + ε) factor, when we gain m = poly(n, 1/ϵ, log(1/δ)) samples.

Competing with the Fully-Adaptive Recall that the optimal solution for Pandora’s
Box is Fully-Adaptive strategy that chooses which box to query each time based on all
the costs that have been observed so far. While these are the best strategies one could
hope for, they are impossible to find or approximate with samples. For example, it
could be the case that the cost in the first few boxes encode the location of a box of
cost 0 while every other box has infinite cost. While the best option can be identified
with just few queries, any reasonable approximation to the optimal cost would need
to accurately learn this mapping. Learning such an arbitrary mapping however is
impossible through samples, unless there is significant probability of seeing the exact
same combination of costs. Recall from our results in Chapter 5 that for explicitly
given distributions, this is not an issue. However as we also showed in that chapter,
Pandora’s Box becomes equivalent to another NP-Hard problem, Uniform Decision
Tree, and it is unclear whether there is a constant approximation algorithm for it.

Related work The sampling regime for Pandora’s Box, Guo et al. (2021) showed
that Õ(n3/ε3) samples are enough to obtain a ε-additive approximation to the optimal,
when the distributions are independent. This bound was later improved by Fu and
Lin (2020) to Õ(n2/ε2). In the related prophet inequalities literature, Azar et al.
(2014) first studied the Single Sample Prophet Inequality problem where instead of
full access to the prior distributions, we are only given a single sample from each.
They gave a reduction to order-oblivious secretary policies. Later Rubinstein et al.

115

(2020) showed that even in this restrictive setting we can obtain the best possible ratio
2. In the IID setting of this problem, where all the priors are identical, Correa et al.
(2019) showed that e/(e− 1) is achievable with one sample from each distribution, a
bound later improved in Correa et al. (2020, 2024). Finally, Caramanis et al. (2022)
address the same problem but under more complex combinatorial constraints.

7.1 Competing with the Partially-Adaptive

Since competing with the Fully-Adaptive is hopeless in the case of samples, in this
section we revisit the results presented in Chapter 3 and 4 and show how they all
can be extended to the case where we only are given sample access to the prior
distribution.

7.1.1 Learning from samples: initial approach

Recall that in our initial approach of Chapter 3 we used a reduction to a smaller class of
strategies called Scenario-Aware Partially-Adaptive (SPA). In these strategies the probing
order σ is independent of the costs observed in probed boxes, however, the stopping
time τ is a function of the instantiated scenario s. In other words, the algorithm
fixes a probing order, then learns of the scenario instantiated, and then determines a
stopping rule for the chosen probing order based on the revealed scenario.

Therefore, we focus on designing good scenario-aware partially adaptive strategies
for Pandora’s Box. Observe that once we fix a probing order, determining the optimal
scenario-aware stopping time is easy. We now show that in order to optimize over all
possible probing orders, it suffices to optimize with respect to a small set of scenarios
drawn randomly from the underlying distribution.

Formally, let D denote the distribution over scenarios and let S be a collection of
m scenarios drawn independently from D, with m being a large enough polynomial
in n. Then, we claim that with high probability, for every probing order σ, costD(σ) is
close to costS(σ), where costD(σ) denotes the total expected cost of the SPA strategy
σ over the scenario distribution D, and costS(σ) denotes its cost over the uniform
distribution over the sample S. The implication is that it suffices for us to optimize
for SPA strategies over scenario distributions with finite small support.

116

Lemma 7.1. Let ϵ, δ > 0 be given parameters. Let S be a set of m scenarios chosen indepen-
dently at random from D with m = poly(n, 1/ϵ, log(1/δ)). Then, with probability at least
1 − δ, for all permutations π : [n]→ [n], we have

costS(π) ∈ (1± ϵ) costD(π).

Proof. Fix a permutation π. For scenario s, let costs(π) = mini{i+ cπ(i)s} denote the
total cost incurred by SPA strategy π in scenario s. Observe that for any π and any s, we
have costs(π) ∈ [1 +mini cis,n+mini cis]. Furthermore, costD(π) = Es∼D [costs(π)],
and costS(π) = 1

|S|

∑
s∈S costs(π). The lemma now follows by using the Hoeffding

inequality and applying the union bound over all possible permutations π.

Combining Corollary 3.3 and Lemma 7.1 yields the following theorem.

Theorem 7.2. Suppose there exists an algorithm for the optimal search problem that runs in
time polynomial in the number of boxes n and the number of scenarios m, and returns an
SPA strategy achieving an α-approximation. Then, for any ϵ > 0, there exists an algorithm
that runs in time polynomial in n and 1/ϵ and returns a PA strategy with competitive ratio
e

e−1(1 + ϵ)α, where n = |B|.

Recall that in Chapter 3 we gave competitive algorithms against the Scenario
Aware strategies. Now we can, using Theorem 7.2 to extend all these results to the
results shown in the following table.

Approximation Factor
Choose 1 box (1 + ε)9.22 (Theorem 7.2+3.5)

Choose k boxes (1 + ε)O(1) (Theorem 7.2+3.12)
Choose matroid basis (1 + ε)O(log k) (Theorem 7.2+3.15)

Table 7.1: Approximation factors from our initial approach, when selecting
poly(n, 1/ε, log 1/δ) samples. Results hold w.p. 1 − δ.

7.1.1.1 Ski rental with general rent cost

We also note that even in the case of general rent costs, the results presented in Sec-
tion 3.A.2.1 still hold via sampling polynomially many scenarios, i.e. Theorem 7.2.
Recall that Theorem 7.2 requires two building blocks: Corollary 3.3 which describes
a reduction from a general strategy to a scenario-aware strategy and Lemma 7.1 that

117

guarantees that a small sample over scenarios suffices to achieve a good approxima-
tion.

We proved Lemma 7.1 by observing that for any probing order π, the cost of any
scenario s is bounded in a polynomial range. This still holds since the total probing
time is bounded by nP.

7.1.2 Learning from samples: simpler approach

Moving on to our simpler approach of Chapter 4, we show how the results extend to
the sampling regime, but only for the Algorithm that updates the prior by conditioning
on Vb > σb.

Conditioning on Vb = v The second variant with full Bayesian updates D|V=v

requires full knowledge of the underlying distribution and can only work with sample
access if one can learn the full distribution. To see this consider for example an instance
where the values are drawn uniformly from [0, 1]d. No matter how many samples
one draws, it is impossible to know the conditional distribution D|V=v after opening
the first box for fresh samples v, and the Bayesian update is not well defined1.

Conditioning onVb > σb This variant does not face this problem and can be learned
from samples if the costs of the boxes are polynomially bounded by n, i.e. if there is
a constant c > 0 such that for all b ∈ B, cb ∈ [1,nc]. If the weights are unbounded,
it is impossible to get a good approximation with few samples. To see this consider
the following instance. Box 1 has cost 1/H→ 0, while every other box has cost H for
a very large H > 0. Now consider a distribution where with probability 1 − 1

H
→ 1,

the value in the first box is 0, and with probability 1/H is +∞. In this case, with a
small number of samples we never observe any scenario where v1 ̸= 0 and believe the
overall cost is near 0. However, the true cost is at least H · 1/H ⩾ and is determined
by how the order of boxes is chosen when the scenario has v1 ̸= 0. Without any such
samples it is impossible to pick a good order.

Therefore, we proceed to analyze Variant 1 with D|V>σ in the case when the box
costs are similar. We show that polynomial, in the number of boxes, samples suffice
to obtain an approximately-optimal algorithm, as we formally state in the following

1For a discrete distribution example see Section 7.A.1 of this chapter’s appendix.

118

theorem. We present the case where all boxes have cost 1 but the case where the costs
are polynomially bounded easily follows.

Theorem 7.3. Consider an instance of Pandora’s Box with opening costs equal to 1. For any
given parameters ε, δ > 0, using m = poly(n, 1/ε, log(1/δ)) samples from D, Algorithm 6
(Variant 1) obtains a 4.428 + ε approximation policy against the partially-adaptive optimal,
with probability at least 1 − δ.

To prove the theorem, we first note that variant 1 of Algorithm 6 takes a surprisingly
simple form, which we call a threshold policy. It can be described by a permutation
π of visiting the boxes and a vector of thresholds τ that indicate when to stop. The
threshold for every box corresponds to the reservation value the first time the box
is opened. To analyze the sample complexity of Algorithm 6, we study a broader
class of algorithms parameterized by a permutation and vector of thresholds given in
Algorithm 12.

Algorithm 12: General format of Pandora’s Box algorithm.
Input: Set of boxes, permutation π, vector of thresholds τ ∈ Rn

1 best←∞
2 foreach i ∈ [n] do
3 if best > τi then
4 Open box πi, see value vi
5 best← min(best, vi)
6 else
7 Accept best
8 end

Our goal now is to show that polynomially many samples from the distribution
D suffice to learn good parameters for Algorithm 12. We first show a Lemma that
bounds the cost of the algorithm calculated in the empirical D̂ instead of the original
D (Lemma 7.4), and a Lemma 7.5 that shows how capping the reservation values by
n/ε can also be done with negligible cost.

Lemma 7.4. Let ε, δ > 0 and let D ′ be the empirical distribution obtained from poly(n, 1/ε,
log(1/δ)) samples from D. Then, with probability 1 − δ, it holds that∣∣∣∣ED̂

[
ALG(π, τ) − min

b∈B
vb

]
− ED

[
ALG(π, τ) − min

b∈B
vb

]∣∣∣∣ ⩽ ε

119

for any permutation π and any vector of thresholds v ∈
[
0, n

ε

]n
We defer the proof of Lemmas 7.4, 7.5 and that of Theorem 7.3 to Section 7.A.1 of

the Appendix.

Lemma 7.5. Let D be any distribution of values. Let ε > 0 and consider a permutation π and
thresholds τ. Moreover, let τ ′ be the thresholds capped to n/ε, i.e. setting τ ′

b = min{τb,n/ε}
for all boxes b. Then,

Ev∼D [ALG(π, τ ′)] ⩽ (1 + ε)Ev∼D [ALG(π, τ)] .

Note on Continuous vs Discrete Distributions. The results of Section 7.1.2 apply
for general distributions (discrete or continuous) and show that the partial updates
variant leads to good approximation when run on the empirical distribution obtained
just with polynomially many samples. In contrast, the full updates variant requires a
complete description of the distribution. However, as the approximation factor does
not depend on the support size, It can also apply even for continuous distributions
with arbitrary large support by taking a limit over a very fine discretization

7.A Appendix for Chapter 7

7.A.1 Proofs from Section 7.1.2

We first present an example of a discrete distribution that shows that one needs
exponentially many samples in the number of boxes to learn DV=v.

Discrete Distribution Example Consider a distribution that only takes values
0,H,H + 1 for some very large H > 0. The scenario is drawn by choosing a ran-
dom bit bi ∈ {0, 1} for every box and depending on the realized sequence b a single
box f(b) ∈ [n] is chosen for an unknown and arbitrary function f. The value at box
i is then chosen to be H + bi unless i is the box f(b) in which case it is 0. In this
case learning the probability DV=v would require learning the unknown function f

on all inputs which are exponentially many. In particular, if we only take s << 2n

samples, for any order of choosing boxes after ≈ log s steps, none of the samples
in our collection will match the observed sequence of bits, therefore it will not be
possible to compute a posterior distribution.

120

We continue by giving the omitted proofs.

Lemma 7.4. Let ε, δ > 0 and let D ′ be the empirical distribution obtained from poly(n, 1/ε,
log(1/δ)) samples from D. Then, with probability 1 − δ, it holds that∣∣∣∣ED̂

[
ALG(π, τ) − min

b∈B
vb

]
− ED

[
ALG(π, τ) − min

b∈B
vb

]∣∣∣∣ ⩽ ε

for any permutation π and any vector of thresholds v ∈
[
0, n

ε

]n
Proof of Lemma 7.4. We first argue that we can accurately estimate the cost for any
vector of thresholds τ when the order of visiting boxes is fixed.

Consider any fixed permutation π = π1,π2, . . . ,πn be any permutation of the
boxes, we relabel the boxes without loss of generality so that πi is box i.

Denote by V̂i = minj⩽i vj, and observe that V̂i is a random variable that depends
on the distribution D. Then we can write the expected cost of the algorithm as the
expected sum of the opening cost and the chosen value: ED [ALG] = ED [ALGo] +

ED [ALGv]. We have that:

ED [ALGo] =

n∑
i=1

PrD [reach i] =

n∑
i=1

PrD

[
i−1∧
j=1

(V̂j > τj+1)

]

Moreover, we denote by V
i

τ =
∧i−1

j=1

(
V̂j > τj+1

)
and we have

ED

[
ALGv − V̂n

]
=

n∑
i=1

ED

[
(V̂i − V̂n) · 1{stop at i}

]
=

n−1∑
i=1

ED

[
(V̂i − V̂n) · 1

{
V

i

τ ∧
(
V̂i ⩽ τi+1

)}]
=

n−1∑
i=1

ED

[
τi+1Prr∼U[0,τi+1]

[
r < V̂i − V̂n

]
· 1

{
V

i

τ ∧
(
V̂i ⩽ τi+1

)}]

=

n−1∑
i=1

τi+1PrD,r∼U[0,τi+1]

[
V

i

τ ∧
(
r+ V̂n ⩽ V̂i ⩽ τi+1

)]

In order to show our result, we use from Blumer et al. (1989) that for a class with
VC dimension d < ∞ that we can learn it with error at most ε with probability 1 − δ

using m = poly(1/ε,d, log (1/δ)) samples.

121

Consider the class Fτ(V̂ , r) =
∧i−1

j=1(V̂j > τj+1). This defines an axis parallel rectan-
gle in Ri, therefore its VC-dimension is 2i. Using the observation above we have that
using m = poly(1/ε,n, log (1/δ)) samples, , with probability at least 1 − δ, it holds∣∣∣∣PrD

[
Fτ(V̂ , r)

]
− PrD̂

[
Fτ(V̂ , r)

] ∣∣∣∣ ⩽ ε

for all τ ∈ Rn. Similarly, the class

Cτ(V̂ , r) =
i−1∧
j=1

(
V̂j > τj+1

)
∧
(
r+ V̂n ⩽ V̂i ⩽ τi+1

)
has VC-dimension O(n) since it is an intersection of at most n (sparse) halfspaces.

Therefore, the same argument as before applies and for m = poly(1/ε,n, log (1/δ))
samples, we get

∣∣∣∣PrD,r∼U[0,τi+1]

[
Cτ(V̂ , r)

]
− PrD̂,r∼U[0,τi+1]

[
Cτ(V̂ , r)

] ∣∣∣∣ ⩽ ε

for all τ ∈ Rn, with probability at least 1 − δ.
Putting it all together, the error can still be unbounded if the thresholds τ are too

large. However, since we assume that τi ⩽ n/ε for all i ∈ [n], poly(n, 1/ε, log(1/δ))
samples suffice to get ε error overall, by setting ε← ε2

n
.

While we obtain the result for a fixed permutation, we can directly obtain the
result for all n! permutations through a union bound. Setting δ← δ

n! only introduces
an additional factor of log(n!) = n logn in the overall sample complexity.

Lemma 7.5. Let D be any distribution of values. Let ε > 0 and consider a permutation π and
thresholds τ. Moreover, let τ ′ be the thresholds capped to n/ε, i.e. setting τ ′

b = min{τb,n/ε}
for all boxes b. Then,

Ev∼D [ALG(π, τ ′)] ⩽ (1 + ε)Ev∼D [ALG(π, τ)] .

Proof of Lemma 7.5. We compare the expected cost of ALG with the original thresholds
and the transformed one ALG ′ with the capped thresholds. For any value vector
v ∼ D, either (1) the algorithms stopped at the same point having the same opening
cost and value, or (2) ALG stopped earlier at a threshold τ > n/ε, while ALG ′

122

continued. In the latter case, the value v that ALG gets is greater than n/ε, while
the value v ′ that ALG ′ gets is smaller, v ′ ⩽ v. For such a scenario, the opening cost
c of ALG, and the opening cost c ′ of ALG ′ satisfy c ′ ⩽ c+ n. Thus, the total cost is
c ′ + v ′ ⩽ c+ v+ n ⩽ (1 + ε)(c+ v), where the last inequality follows from u > n/ε.
Overall, we get that

ED [ALG ′] ⩽ ED [ALG] (1 + ε).

Theorem 7.3. Consider an instance of Pandora’s Box with opening costs equal to 1. For any
given parameters ε, δ > 0, using m = poly(n, 1/ε, log(1/δ)) samples from D, Algorithm 6
(Variant 1) obtains a 4.428 + ε approximation policy against the partially-adaptive optimal,
with probability at least 1 − δ.

Proof of Theorem 7.3. With poly(n, ε, log(1/δ)) samples from D, we obtain an empiri-
cal distribution D̂.

From Lemma 7.4, we have that with probability at least 1 − δε/ log(1/δ), the
following holds∣∣∣∣Ev∼D̂

[
ALG(π, τ) − min

b∈B
vb

]
− Ev∼D

[
ALG(π, τ) − min

b∈B
vb

] ∣∣∣∣ ⩽ ε (7.1)

for any permutation π and any vector of thresholds v ∈
[
0, n

ε

]n. This gives us that we
can estimate the cost of a threshold policy accurately.

To compare with the set of all partially adaptive policies that may not take the
form of a threshold policy, we consider the set of scenario aware policies (SA). These
are policies SA(π) parameterized by a permutation π of boxes and are forced to visit
the boxes in that order. However, they are aware of all values in the boxes in advance
and know precisely when to stop. These are unrealistic policies introduced in Chawla
et al. (2020) which serve as an upper bound to the set of all partially adaptive policies.

As shown in Chawla et al. (2020) (Lemma 3.3), scenario-aware policies are also
learnable from samples. With probability at least 1 − δε/ log(1/δ), it holds that for
any permutation π∣∣∣∣Ev∼D̂

[
SA(π) − min

b∈B
vb

]
− Ev∼D

[
SA(π) − min

b∈B
vb

] ∣∣∣∣ ⩽ ε. (7.2)

123

The α-approximation guarantees (with a ≈ 4.428) of Algorithm 6 hold even against
scenario aware policies as there is no restriction on how the partially-adaptive policy
may choose to stop. So for the empirical distribution, we can compute a permutation
π̂ and thresholds τ̂ such that:

ED̂ [ALG(π̂, τ̂)] ⩽ α ·min
π

ED̂ [SA(π)]

Clipping the thresholds to obtain τ̂ ′ = min{τ̂,n/ε}, and letting∆ = Ev∼D̂ [minb∈B vb]−

Ev∼D [minb∈B vb], we have that:

ED [ALG(π̂, τ̂ ′)] ⩽ ED̂ [ALG(π̂, τ̂ ′)] − ∆+ ε

⩽ (1 + ε)ED̂ [ALG(π̂, τ̂)] + ∆+ ε/4

⩽ (1 + ε)α ·min
π

ED̂ [SA(π)] − ∆+ ε/4

⩽ (1 + ε)α ·min
π

ED [SA(π)] +O(∆+ ε)

By Markov’s inequality, we have that

Pr
[

Ev∼D̂

[
min
b∈B

vb

]
⩽ (1 + ε)Ev∼D

[
min
b∈B

vb

]]
⩾

ε

1 + ε
⩾ ε/2.

Thus, repeating the sampling process O(log 1/δ)
ε

times and picking the empirical
distribution with minimum Ev∼D̂ [minb∈B vb] satisfies

∆ ⩽ εEv∼D

[
min
b∈B

vb

]
with probability at least 1 − δ and simultaneously satisfies equations (7.1) and

(7.2).
This shows that ED [ALG(π̂, τ̂ ′)] ⩽ (1+O(ε))α ·minπ ED [SA(π)] which completes

the proof by rescaling ε by a constant.

124

8 unknown distributions: an online pandora’s box
problem

As we established, Pandora’s Box is a fundamental stochastic optimization framework,
which models the trade-off between exploring a set of alternatives and exploiting the
already collected information, in environments where data acquisition comes at a
cost.

The model captures a variety of different settings where the decision-maker needs
to balance the value of the selected alternative and the effort devoted to find it. We
include some examples below.

• Consider an online shopping environment where a search engine needs to
present users with results on a product they want to buy. Visiting all potential
e-shops that sell this product to find the cheapest option would be prohibitive
in terms of time needed to present the search results to the user. The search
engine needs to explore the different options only up to the extent that would
make the marginal improvement in the best price found worthwhile.

• Consider a path planning service provider like Google Maps. Upon request, the
provider must search its database for a good path to recommend to the user, but
the higher the time spent searching the higher is the server cost. The provider
must trade off computation cost with the quality of the result.

While most of the literature has focused on the stochastic case, where there is a
known distribution of values given in advance, we instead consider an online version
of the problem played over T rounds, where in each round a different realization of
values in the boxes is adversarially chosen. The goal of the learner is to pick a good
strategy of opening boxes in every round that guarantees low regret compared to
choosing in hindsight the optimal policy for the T rounds from a restricted family of
policies. In our examples given above, it is always the case that we have to repeatedly
solve these problems giving rise to the question “Can we use past data to guide
our future decisions, even when no information is given to us a priori?”. In the
two sections of this chapter we give positive answers to this question by designing
no-regret algorithms both for the case of adversarial distributions, and in a contextual
setting, where the distributions are independent and unknown, but we have an extra
information at each round.

125

Related work The closest related work to our problem is the paper by Gatmiry et al.
(2024) that studies Prophet Inequalities and Pandora’s Box problems in an online
learning setting, where however, the distributions are independent. Similarly, in a
distributional learning setting Guo et al. (2021) showed that Õ(n3/ε3) samples are
enough to obtain a ε-additive approximation to the optimal, when the distributions
are independent. This bound was later improved by Fu and Lin (2020) to Õ(n2/ε2).

Our worst case setting of Section 8.1 directly simplify and generalize the results of
Fotakis et al. (2020) in the case of partial feedback. Related to the partial feedback
setting, Flaxman et al. (2005) consider single bandit feedback and Agarwal et al.
(2010) consider multi-point bandit feedback. Both these works focus on finding good
estimators for the gradient in order to run a gradient descent-like algorithm. For
more pointers to the online convex optimization literature, we refer the reader to the
survey by Shalev-Shwartz Shalev-Shwartz (2012) and the initial primal-dual analysis
of the Follow the Regularized Leader family of algorithms by Shalev-Shwartz and
Singer (2007a).

Our contextual setting of section 8.2 is closely related to contextual multi-armed
bandits, where the contexts provide additional information on the quality of the
actions at each round. In particular, in the case of stochastic linear bandits (Abe and
Long, 1999): the reward of each round is given by a (noisy) a linear function of the
context drawn at each round. Optimistic algorithms proposed for this setting rely on
maintaining a confidence ellipsoid for estimating the unknown vector (Dani et al.,
2008; Rusmevichientong and Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011; Valko et al.,
2014). On the other hand, in adversarial linear bandits, a context vector is adversarially
selected at each round. The loss is characterized by the inner product of the context
and the selected action of the round. Common approaches for this setting include
variants of the multiplicative-weights algorithm (Hazan et al., 2014; van der Hoeven
et al., 2018), as well as, tools from online linear optimization (Blair, 1985; Cesa-Bianchi
and Lugosi, 2006) such as Follow The Regularized Leader (FTRL) and mirror descent
(see (Bubeck and Eldan, 2015; Abernethy et al., 2008; Shalev-Shwartz and Singer,
2007b; Bubeck et al., 2018) and references therein).

This setting also generalizes the contextual bandits setting, since any instance of
contextual bandits can be reduced to Contextual Pandora’s Box for box costs selected
to be large enough. One work from the contextual bandits literature that is more
closely related to ours is the recent work of Foster and Rakhlin (2020). Similarly to

126

our work, they provide a generic reduction from contextual multi-armed bandits to
online regression, by showing that any oracle for online regression can be used to
obtain a contextual bandits algorithm.

8.1 Worst Case distributions

Our work presents a simple but powerful framework for designing online learning
algorithms for Pandora’s Box, MSSC and other related problems. Our framework
yields approximately low-regret algorithms for these problems through a three step
process:

1. We first obtain convex relaxations of the instances of every round.

2. We then apply online-convex optimization to obtain good fractional solutions
to the relaxed instances achieving low regret.

3. We finally round the fractional solutions to integral solutions for the original
instances at a small multiplicative loss.

Through this framework, we obtain a

• 9.22-approximate no-regret algorithm for the problem of selecting 1 box.

• O(1)-approximate no-regret algorithm for the problem of selecting k boxes.

• O(log k)-approximate no-regret algorithm for the problem of selecting a rank k

matroid basis.

We start by presenting these results in the full information setting (section 8.1.3)
where the values of all boxes are revealed after each round, once the algorithm has
made its choices.

A key contribution of our work is to further extend these results to a more-realistic
bandit setting (section 8.1.4). In this setting, the algorithm only observes the values
for the boxes it explored in each round and can only use this information to update
its strategy for future rounds. In each round there is also the option of obtaining the
full information by paying a price. We show that even under this more pessimistic
setting we can obtain approximately no-regret algorithm with the same approximation
guarantees as above.

127

We also provide stronger regret guarantees against more restricted classes of
algorithms for the Pandora’s Box and MSSC problems that are non-adaptive (sec-
tion 8.A.1).

All the algorithms we develop in this paper are computationally efficient. As such,
the approximation guarantees given above are approximately tight since it is NP-hard
to improve on these beyond small constants even when competing with the simpler
non-adaptive benchmark. In particular, it was shown in Feige et al. (2004) that even
the special case of MSSC is APX-hard and cannot be approximated within a smaller
factor than 4. It is an interesting open question to what extent these bounds can be
improved with unlimited computational power. While in the stochastic version, this
would trivialize the problem, in the online setting the obtained approximation factors
may still be necessary information theoretically.

8.1.1 Comparison with Previous Work

Our work is closely related to the work of Chawla et al. (2020). In that work, the
authors study a stochastic version of Pandora’s Box with an arbitrarily correlated
distribution and aim to approximate the optimal partially adaptive strategies. We
directly extend all the results of Chawla et al. (2020) in the online non-stochastic
setting, where we are required at each round to solve an instance of the problem.

Another very related paper is the work of Fotakis et al. (2020) that also studies the
online learning problem but focuses specifically on the Min-Sum Set Cover problem
and its generalization (GMSSC) that asks to select k alternatives instead of one. Our
work significantly improves their results in several ways.

• We provide a simpler algorithm based on online convex optimization that does
not rely on calculating gradients. We immediately obtain all our results through
the powerful framework that we develop.

• This allows us to study more complex constraints like matroid rank constraints
as well as study the more general Pandora’s Box. It is challenging to extend
the results of Fotakis et al. (2020) to such settings while keeping the required
gradient computation task computationally tractable.

• Finally, we extend their results to a more natural bandit setting, where after
each round we only have information about the alternatives that we explored
rather than the whole instance.

128

In another recent work similar to ours, Esfandiari et al. Esfandiari et al. (2019)
consider a Multi-armed bandit version of Pandora’s Box problem which however
greatly differs with ours in the following ways.

• In their setting each box has a type, and the algorithm is required to pick one
box per type, while in our case the game is independent in each round.

• Their benchmark is a “prophet" who can choose the maximum reward per type
of box, at the end of T rounds.

• The decision to pick a box is irrevocable1 and they only consider threshold
policies, as they relate the problem to prophet inequalities (see surveys Hill and
Kertz (1992); Lucier (2017); Correa et al. (2018) for more details on prophet
inequalities).

8.1.2 Definitions & Notation

Approximate Regret In this first part, we evaluate the performance of our algo-
rithms using average regret. We define the average regret of an algorithm A against a
benchmark OPT, over a time horizon T as

RegretOPT(A, T) = 1
T

T∑
t=1

(A(t) − OPT(t)) (8.1)

where A(t) and OPT(t) is the cost at round t of A and OPT respectively. We similarly
define the average α-approximate regret against a benchmark OPT as

α-RegretOPT(A, T) = 1
T

T∑
t=1

(A(t) − αOPT(t)) . (8.2)

We say that an algorithm A is no regret if RegretOPT(A, T) = o(1). Similarly, we
say that A is α-approximate no regret if α-RegretOPT(A, T) = o(1). Observe the we
are always competing with an oblivious adversary, that selects the one option that
minimizes the total loss over all rounds.

1The algorithm decides when seeing a box whether to select it or not, and cannot “go back" and
select the maximum value seen.

129

8.1.2.1 Relaxations

We are again using the scenario-aware relaxation of Chapter 3, and the fact that it is
enough to design a strategy that chooses an ordering of the boxes and performs well,
assuming that we know when to stop. We restate the Theorem that proved this fact
below for convenience.

Lemma 8.1 (Simplification of Theorem 7.2 from 3). For a polynomial, in the number of
boxes, α-approximate algorithm for scenario-aware partially adaptive strategies, there exists a
polynomial time algorithm that is a e

e−1α-approximation partially-adaptive strategy.

Fractional Relaxation and Rounding This first relaxation allows us to only focus on
designing efficient SPA strategies which only require optimizing over the permutation
of boxes. However both MSSC and Pandora’s Box are non-convex problems. We
tackle this issue by using a convex relaxation of the problems, given by their linear
programming formulation.

Definition 8.2 (Convex Relaxation). Let Π be a minimization problem over a domain X

with g : X → R as its objective function, we say that a function g : X → R is a convex
relaxation of g, if

1. The function g and its domain X are convex.

2. X ⊆ X and for any x ∈ X, g(x) ⩽ g(x).

Using this definition, for our partially-adaptive benchmark we relax the domain
X = {x ∈ [0, 1]n×n :

∑
i xit = 1 and

∑
t xit = 1} to be the set of doubly stochastic

n×n matrices. We use a convex relaxation gs similar to the one from the generalized
min-sum set cover problem in Bansal et al. (2010) and Skutella and Williamson (2011),
but scenario dependent; for a given scenario s, the relaxation gs changes. We denote by
T the set of n time steps, by xit the indicator variable for whether box i is opened at
time t, and by zsit the indicator of whether box i is selected for scenario s at time t.
We define the relaxation gs(x) as

minz⩾0
∑

i∈B,t∈T

(t+ csi)z
s
it (Relaxation-SPA)

s.t.
∑

t∈T,i∈B

zsit = 1,

130

zsit ⩽ xit, i ∈ B, t ∈ T.

Similarly, we also relax the problem when we are required to pick k boxes (LP-k-cover)
and when we are required to pick a matroid basis (LP-matroid). Leveraging our
previous results (Chawla et al. (2020)), presented in sections 3.2, 3.3.2 and 3.3.1 of
Chapter 3, we show how to use a rounding that does not depend on the scenario
chosen in order to get an approximately optimal integer solution, given one for the
relaxation. Specifically, we define the notion of α-approximate rounding.

Definition 8.3 (α-approximate rounding). Let Π be a minimization problem over a domain
X with f : X→ R as its objective function and a convex relaxation f : X→ R. Let x ∈ X be a
solution to Π with cost f(x). Then an α-approximate rounding is a an algorithm that given x

produces a solution x ∈ X with cost

f(x) ⩽ αf(x)

8.1.3 Full information setting

We begin by presenting a general technique for approaching Pandora’s Box type
of problems via Online Convex Optimization (OCO). Initially we observe, in the
following theorem, that we can combine

1. a rounding algorithm with good approximation guarantees,

2. an online minimization algorithm with good regret guarantees

to obtain an algorithm with good regret guarantee.

Theorem 8.4. Let Π be a minimization problem over a domain X and Π be the convex
relaxation of Π over convex domain X ⊇ X.

If there exists an α-approximate rounding algorithm A : X→ X for any feasible solution
x ∈ X to a feasible solution x ∈ X then, any online minimization algorithm for Π that achieves
regret Regret(T) against a benchmark OPT, gives α-approximate regret αRegret(T) for Π.

Proof of Theorem 8.4. Let f1, ..., fT be the online sequence of functions presented in
problem Π, in each round t ∈ [T], and let f1, ..., fT be their convex relaxations in Π.

Let xt ∈ X be the solution the online convex optimization algorithm gives at each
round t ∈ [T] for problem Π. Calculating the total expected cost of Π, for all time

131

steps t ∈ [T] we have that

E

[
T∑

t=1

ft
(
A(xt)

)]
⩽ α

T∑
t=1

ft(xt)

⩽ α

(
Regret(T) + min

x∈X

T∑
t=1

ft(x)

)

⩽ α

(
Regret(T) + min

x∈X

T∑
t=1

ft(x)

)
.

By rearranging the terms, we get the theorem.

Given this theorem, in the following sections we show (1) how to design an
algorithm with a low regret guarantee for Pandora’s Box (Theorem 8.6) and (2) how
to obtain rounding algorithms with good approximation guarantees, using the results
of Chawla et al. (2020).

8.1.3.1 Applications to Pandora’s Box and MSSC

Applying Theorem 8.4 to our problems, in their initial non-convex form, we are
required to pick an integer permutation of boxes. The relaxations, for the differ-
ent benchmarks and constraints, are shown in Relaxation-SPA, LP-k-cover and LP-
matroid.

We denote by gs(x) the objective function of the scenario aware relaxation of the
setting we are trying to solve e.g for selecting 1 box we have Relaxation-SPA. Denote
by X = [0, 1]n×n the solution space. We can view this problem as an online convex
optimization one as follows.

1. At every time step t we pick a vector xt ∈ X, where X is a convex set.

2. The adversary picks a scenario s ∈ S and therefore a function fs : X→ R where
fs = gs and we incur loss fs(xt) = gs(xt). Note that fs is convex in all cases
(Relaxation-SPA, LP-k-cover, LP-matroid).

3. We observe the function fs for all points x ∈ X.

A family of algorithms that can be applied to solve this problem is called Follow
The Regularized Leader (FTRL). These algorithms work by picking, at every step, the

132

solution that would have performed best so far while also adding a regularization
term for stability. For the FTRL family of algorithms we have the following guarantees.

Theorem 8.5 (Theorem 2.11 from Shalev-Shwartz (2012)). Let f1, . . . , fT be a sequence of
convex functions such that each ft is L-Lipschitz with respect to some norm. Assume that FTRL
is run on the sequence with a regularization functionUwhich is η-strongly-convex with respect
to the same norm. Then, for allu ∈ Cwe have that Regret(FTRL, T)·T ⩽ Umax−Umin+TL2η

Our algorithm works similarly to FTRL, while additionally rounding the fractional
solution, in each step, to an integer one. The algorithm is formally described in
Algorithm 13, and we show how to choose the regularizer U(x) in Theorem 8.6.

Algorithm 13: Algorithm A for the full information case.
Input: Π = (F, OPT) : the problem to solve, AΠ : the rounding algorithm for Π

1 Denote by fs(x) = fractional objective function
2 Select regularizer U(x) according to Theorem 8.6
3 X = space of fractional solutions
4 for Each round t ∈ [T] do
5 Set xt = minx∈X

∑t−1
τ=1 f

sτ(x) +U(x)

6 Round xt to xint
t according to AΠ

7 Receive loss fs(xint
t)

8 end

We show the guarantees of our algorithm above using Theorem 8.5 which provides
regret guarantees for FTRL. The proof of Theorem 8.6 is deferred to section 8.A.6 of
the appendix.

Theorem 8.6. The average regret of Algorithm 13 is

RegretPA(A, T) ⩽ 2n
√

logn

T

achieved by setting U(x) = (
∑n

i=1
∑n

t=1 xit log xit) /η as the regularization function, and
η =

√
logn

T
.

Finally, using Theorem 8.4 we get Corollary 8.7 for competing with the partially-
adaptive benchmark for all different feasibility constraints (choose 1, choose k or
choose a matroid basis).

133

Corollary 8.7 (Competing against PA, full information). In the full information setting,
Algorithm 13 is

• 9.22-approximate no regret for choosing 1 box

• O(1)-approximate no regret for choosing k boxes

• O(log k)-approximate no regret for choosing a matroid basis

Remark 8.8. In the special case of MSSC, our approach obtains the tight 4-approximation of
the offline case Feige et al. (2004). This result improves on the previous work Fotakis et al.
(2020) who obtain a 11.713-approximation.

8.1.4 Bandit setting

Moving on to a bandit setting for our problem, where we do not observe the whole
function after each step. Specifically, after choosing xt ∈ X in each round t, we only
observe a loss fs(xt) at the point xt we chose to play and not for every x ∈ X. This
difference prevents us from directly using any online convex optimization algorithm,
as in the full information setting of section 8.2.6.1. However, observe that if we decide
to open all n boxes, this is equivalent to observing the function fs for all x ∈ X, since
we learn the cost of all permutations.

We exploit this similarity by randomizing between running FTRL and paying n to
open all boxes. Specifically we split [T] into T/k intervals and choose a time, uniformly
at random in each one, when we are going to open all boxes n and thus observe the
function on all inputs. This process is formally described in Algorithm 14, and we
show the following guarantees.

Theorem 8.9. The average regret for Algorithm 14, for k =

(
n

2L+
√

logn

)2/3

T 1/3 and loss

functions that are L-Lipschitz is

E
[
RegretPA(APA, T)

]
⩽ 2 (2L logn+ n)

2/3 · n1/3 · T−1/3.

To analyze the regret of Algorithm 14 and prove Theorem 8.9, we consider the regret
of two related settings.

134

Algorithm 14: APA minimizing regret against PA
1 Get parameter k from Theorem 8.9
2 Select regularizer U(x) according to Theorem 8.9
3 Split the times [T] into T/k intervals I1 . . . , IT/k
4 R← ∅ // Random times for each Ii
5 for Every interval Ii do
6 Pick a tp uniformly in Ii
7 for All times t ∈ Ii do
8 if t = tp then
9 R← R ∪ {tp}

10 Open all boxes
11 Get feedback fstp

12 else
13 xt ← argminx∈X

∑
τ∈R fsτ(x) +U(x)

14 end
15 end
16 end

1. In the first setting, we consider a full-information online learner that observes
at each round t a single function sampled uniformly among the k functions of
the corresponding interval It. We call this setting random costs.

2. In the second setting, we again consider a full-information online learner that
observes at each round t a single function which is the average of the k functions
in the corresponding interval It. We call this setting average costs.

The following lemma, shows that any online algorithm for the random cost setting
yields low regret even for the average costs setting.

Lemma 8.10. Any online strategy for the random costs setting with expected average regret
R(T) gives expected average regret at most R(T) + n/

√
kT for the equivalent average costs

setting.

Proof of Lemma 8.10. Denote by ft =
1
k

∑k
i=1 fti the cost function corresponding to the

average costs setting and by frt = fti where i ∼ U ([k]) the corresponding cost function
for the random costs setting. Let x∗ = argminx∈X

∑T/k
t=1 ft(x) be the minimizer of the

ft over the T/k rounds.
We also use Xt = ft(xt) − frt(xt), to denote the difference in costs between the

two settings for each interval (where xt is the action taken at each interval t by the

135

random costs strategy). Observe that this is a random variable depending on the
random choice of time in each interval. We have that

E

T/k∑
t=1

|Xt|

 ⩽

E

T/k∑

t=1

Xt

2

1/2

=

E

T/k∑
t=1

X2
t

1/2

⩽ n

√
T

k
.

The two inequalities follow by Jensen’s inequality and the fact thatXt’s are bounded by
n. The equality is because the random variablesXt are martingales, i.e. EXt|X1,...,Xt−1 [=] 0,
as the choice of the function at time t is independent of the chosen point xt.

We now look at the average regret of the strategy xt for the average cost setting.
We have that

1
T

E

[∑
t

ft(xt)

]
− R(T) −

n√
kT

⩽
1
T

E

[∑
t

frt(xt)

]
− R(T)

⩽
1
T

E

[
min
x

∑
t

frt(x)

]

⩽
1
T

E

[∑
t

frt(x
∗)

]
=

∑
t

ft(x
∗)

which implies the required regret bound.

Given this lemma, we are now ready to show Theorem 8.9.

Proof of Theorem 8.9. To establish the result, we note that the regret of our algorithm
is equal to the regret achievable in the average cost setting multiplied by k plus
nT/k since we pay n for opening all boxes once in each of the T/k intervals. Using
Lemma 8.10, it suffices to bound the regret in the random costs setting. Let U(x) :

[0, 1]n×n → R be an η/n-strongly convex regularizer used in the FTRL algorithm.

136

We are using U(x) = (
∑n

i=1
∑n

t=1 xit log xit) /η, which is η/n-strongly convex from
Lemma 8.37 and is at most (n logn)/η as we observed in corollary 8.7. Then from
Theorem 8.5, we get that the average regret for the corresponding random costs setting
is 2L

√
logn

kT
.

Using Lemma 8.10, we get that the total average regret R(T) of our algorithm is

R(T) ⩽ k · 2L
√

logn

kT
+ k · n/

√
kT +

n

k
.

Setting k =
(

n
2L logn+n

)2/3
T 1/3 the theorem follows.

Finally, using Theorem 8.9 we can get the same guarantees as the full-information
setting, using the α-approximate rounding for each case.

Corollary 8.11 (Competing against PA, bandit). In the bandit setting, Algorithm 14 is

• 9.22-approximate no regret for choosing 1 box

• O(1)-approximate no regret for choosing k boxes

• O(log k)-approximate no regret for choosing a matroid basis

8.2 Adding Context

Moving on to ourContextual Pandora’s Box setting, recall from the previous chapters,
that despite the richness of the setting, Weitzman shows that the optimal policy for
any instance of Pandora’s Box admits a particularly simple characterization: for each
box, one can compute a reservation value as a function of its cost and value distribution.
Then, the boxes are inspected in increasing order of these values, until a simple
termination criterion is fulfilled. This characterization is revealing: obtaining an
optimal algorithm for Pandora’s Box does not require complete knowledge of the
distributions or the costs, yet only access to a single statistic for each box.

This raises the important question of how easy it is to learn a near-optimal search
strategy, especially in environments where the distributions may not remain fixed
across time but can change according to the characteristics of the instance at hand.
In the case of online shopping, depending on the type of product we are searching,
the e-shops have different product-specific distributions on the prices. We would be

137

interested in a searching strategy that is not tied to a specific product, but is able to
minimize the expected cost for any product we may be interested in. Similarly, in the
case of path recommendations, the optimal search strategy may depend on the time of
day or the day of the year. Motivated by the above question, we extend the Pandora’s
Box model to a contextual online learning setting, where the learner faces a new
instance of the problem at each round. At the beginning of each round, the learner
observes a context and must choose a search strategy for opening boxes depending
on the observation. While the context and the associated opening costs of the boxes of
each round are observed, the learner has no access to the value distributions, which
may be arbitrary in each round.

Realizability. In the above description, the context may be irrelevant to the realized
values. Such an adversarial setting is impossible to solve as it is related to the problem
of learning thresholds online. In fact, even in the offline version of the problem, the
task would still be computationally hard as it corresponds to agnostic learning (see
Section 8.A.7.2 for more details). This naturally raises the following question: What
are the least possible strong assumptions, under which the problem becomes tractable?

One of the main contributions of this paper is identifying a minimal realizability
assumption under which the problem remains tractable. This assumption is parallel
to the realizability assumption in contextual bandits (see chapter 19 of (Lattimore
and Szepesvári, 2020)). We describe below how the difficulty of problem increases
as we move from the strongest (1) to the weakest (4) assumptions possible:

1. Contexts directly related to values: in this case any learning algorithm is able
to fit the contexts and predict exactly the realized values of the boxes. Such a
setting is trivial yet unrealistic.

2. Contexts directly related to distributions: this is the case where there exists a
learnable mapping from the context to the distribution of values. This is a more
realistic setting, but it is still relatively constrained; it requires being able to
perfectly determine the distribution family, which would need to be parametric.

3. Contexts related to sufficient statistic: in the more general case, instead of
the whole value distributions, the contexts give us information about only a
sufficient statistic of the problem. This is one of the main contribution of this
work; we show that the problem remains tractable when the contexts give us

138

information on the reservation values of the boxes. Observe that in this case, the
value distributions on the boxes can be arbitrarily different at each round, as
long as they “implement” the correct reservation value based on the context.
This model naturally extends the standard realizability assumption made in
bandit settings, according to which, the mean of the distributions is predictable
from the context. In that case, the sufficient statistic needed in order to select
good arms is, indeed, the mean reward of each arm (?).

4. No assumptions: in this case, as explained before, the problem becomes in-
tractable (see Section 8.A.7.2).

8.2.1 Our Contribution

We introduce a novel contextual online learning variant of the Pandora’s Box problem,
namely the Contextual Pandora’s Box, that captures the problem of learning near-
optimal search strategies in a variety of settings.

Our main technical result shows that even when the sequence of contexts and
distributions is adversarial, we can find a search strategy with sublinear average
regret (compared to an optimal one) as long as no-regret algorithms exist for a much
simpler online regression problem with a linear-quadratic loss function.

Main Theorem (Informal). Given an oracle that achieves expected regret r(T) after T rounds
for Linear-Quadratic Online Regression, there is an algorithm that obtains O(

√
Tr(T)) regret

for the Contextual Pandora’s Box problem.

The main technical challenge in obtaining the result is that the class of search
strategies can be very rich. Even restricting to greedy policies based on reservation
values for each box, the cost of the policies is a non-convex function of the reservation
values. We manage to overcome this issue by considering a “proxy” function for the
expected cost of the search policy which bounds the difference from the optimal cost,
based on a novel sensitivity analysis of the original Weitzman’s algorithm. The proxy
function has a simple linear-quadratic form and thus optimizing it reduces our setting
to an instance of linear-quadratic online regression. This allows us to leverage existing
methods for minimizing regret in online regression problems in a black box manner.

Using the above reduction, we design algorithms with sublinear regret guarantees
for two different variants of our problem: the full information, where the decision-
maker observes the realized values of all boxes at the end of each round, and the

139

bandit version, where only the realized values of the opened boxes can be observed.
We achieve both results by constructing oracles based on the Follow the Regularized
Leader family of algorithms.

Beyond the results shown in this paper, an important conceptual contribution
of our work is extending the traditional bandit model in the context of stochastic
optimization. Instead of trying to learn simple decision rules, in stochastic optimiza-
tion we are interested in learning complex algorithms tailored to a distribution. Our
model can be extended to a variety of such problems beyond the Pandora’s Box
setting: one concrete such example is the case of designing revenue optimal auctions
for selling a single item to multiple buyers given distributional information about
their values. Modeling these settings through an online contextual bandit framework
allows obtaining results without knowledge of the prior distributions which may
change based on the context. Our novel realizability assumption allows one to focus
on predicting only the sufficient statistics required for running a specific algorithm.
In the case of designing revenue optimal auctions, contexts may refer to the attributes
of the item for sale and a sufficient statistic for the bidder value distributions are
Myerson’s reserve prices Myerson (1981).

8.2.2 Definitions & Notation

We begin by describing the originalPandora’s Box formulation. Then, in Section 8.2.2.2
we describe our online extension, which solves a contextual instance of Pandora’s
Box at each round.

8.2.2.1 Original Pandora’s Box Formulation

In Pandora’s Box we are given a set B of n boxes each with cost ci and value vi ∼ Di,
where the distributions Di and the costs ci for each box are known and the distri-
butions are independent. The goal is to adaptively choose a box of small cost while
spending as little as possible in opening costs. When opening box i, the algorithm pays
ci and observes the value vi ∼ Di instantiated inside the box. The formal definition
follows.

Definition 8.12 (Pandora’s Box cost). Let P and ci be the set of boxes opened and the cost

140

of the box selected, respectively. The cost of the algorithm is

EP,vi∼Di∀i∈B

[
min
i∈P

vi +
∑
i∈P

ci

]
(8.3)

where the expectation is taken over the distributions of the values vi and the (potentially
random) choice of P by the algorithm.

Observe that an adaptive algorithm for this problem has to decide on: (a) a
(potentially adaptive) order according to which it examines the boxes and, (b) a
stopping rule. Weitzman’s algorithm, first introduced in Weitzman (1979), and
formally presented in Algorithm 15, gives a solution to Pandora’s Box. The algorithm
uses the order induced by the reservation values to open the boxes.

Algorithm 15: Weitzman’s algorithm.
Input: n boxes, costs ci and reservation values σi for i ∈ B

1 π← sort boxes by increasing σi

2 vmin ←∞
3 for every box πi do
4 Pay ci and open box πi and observe vi

5 vmin ← min(vmin, vi)
6 if vmin < σπi+1 then
7 Stop and collect vmin

8 end
9 end

We denote by WEITZD(σ; c) the expected cost of running Weitzman’s algorithm
using reservation values σ on an instance with distribution D and costs c. Weitzman
showed that this algorithm achieves the optimal expected cost of Equation 8.3 for the
following selection of reservation values:

Theorem 8.13 (Weitzman (1979)). Weitzman’s algorithm is optimal for Pandora’s Box
when run with reservation values σ∗ that satisfy Evi∼Di

[ReLU(σ∗
i − v)] = ci for every box

i ∈ B, where ReLU(x) = max{x, 0}.

141

8.2.2.2 Online Contextual Pandora’s Box

We now describe an online contextual extension of Pandora’s Box. In Contextual
Pandora’s Box there is a set B of n boxes with costs c = (c1, . . . , cn)2. At each round
t ∈ [T]:

1. An (unknown) product distribution Dt = (Dt,1, . . . ,Dt,n) is chosen and for
every box i, a value vt,i ∼ Dt,i is independently realized.

2. A vector of contexts xt = (xt,1, . . . xt,n) is given to the learner, where xt,i ∈ Rd

and ∥xt,i∥2 ⩽ 1 for each box i ∈ B.

3. The learner decides on a (potentially adaptive) algorithm A based on past
observations.

4. The learner opens the boxes according to A and chooses the lowest value found.

5. At the end of the round, the learner observes all the realized values of all boxes
(full-information model), or observes only the values of boxes opened in the
round (bandit model).

Assumption 8.14 (Realizability). There exist vectors w∗
1 , . . . ,w∗

n ∈ Rd and a function h,
such that for every time t ∈ [T] and every box i ∈ B, the optimal reservation value σ∗

t,i for
the distribution Dt,i is equal to h(w∗

i , xt,i), i.e.

E [vt,i ∼ Dt,i]ReLU(h(w∗
i , xt,i) − vt,i) = ci.

The goal is to achieve low expected regret over T rounds compared to an optimal
algorithm that has prior knowledge of the vectors w∗

i and, thus, can compute the exact
reservation values of the boxes in each round and run Weitzman’s optimal policy. The
regret of an algorithm is defined as the difference between the cumulative Pandora’s
Box cost achieved by the algorithm compared to the cumulative cost achieved by
running Weitzman’s optimal policy at every round. That is:

2Every result in the paper holds even if the costs change for each t ∈ [T] and can be adversarially
selected.

142

Definition 8.15 (Expected Regret). The expected regret of an algorithm A that opens boxes
Pt at round t over a time horizon T is

Regret(A, T) = E
[

T∑
t=1

(
min
i∈Pt

vt,i +
∑
i∈Pt

ci − WEITZDt
(h(w∗, xt); c)

)]
.

The expectation is taken over the randomness of the algorithm, the contexts xt, distributions
Dt and realized values vt ∼ Dt, over all rounds t ∈ [T].

Remark. If the learner uses Weitzman’s algorithm at every time step t, with reser-
vation values σt,i = h(wt,i, xt,i) for some chosen parameter wt,i ∈ Rd for every box
i ∈ B, the regret can be written as

Regret(A, T) = E
[T∑

t=1

(
WEITZDt

(h(wt, xt); c) − WEITZDt
(h(w∗, xt); c)

)]
,

where wt = (wt,1, . . . ,wt,n).

8.2.3 Reduction to Online Regression

In this section we give a reduction from Contextual Pandora’s Box problem to an
instance of online regression, while maintaining the regret guarantees given by online
regression. We begin by formally defining the regression problem:

Definition 8.16 (Linear-Quadratic Online Regression). Online regression with loss ℓ
is defined as follows: at every round t, the learner first chooses a prediction wt, then an
adversary chooses an input-output pair (xt,yt) and the learner incurs loss ℓ(h(wt, xt)−yt).

In the costly feedback setting, the learner may observe the input-output pair at the end
of round t, if they choose to pay an information acquisition cost a. The full information
setting, corresponds to the case where a = 0, in which case the input-output pair is always
visible. The regret of the learner after T rounds, when the learner has acquired information k

times, is equal to

T∑
t=1

ℓ(h(wt, xt) − yt) − min
w

T∑
t=1

ℓ(h(wt, xt) − yt) + ak.

143

Linear-Quadratic Online Regression is the special case of online regression where the loss
function ℓ(z) is chosen to be a linear-quadratic function of the form

Hc(z) =
1
2ReLU(z)2 − cz (8.4)

for some parameter c > 0.

The reduction presented in Algorithm 16 shows how we can use an oracle for
linear-quadratic online regression, to obtain an algorithm for Contextual Pandora’s
Box problem. We show that our algorithm achieves O(

√
Tr(T)) regret when the given

oracle has a regret guarantee of r(T).

Theorem 8.17. Given an oracle that achieves expected regret r(T) for Linear-Quadratic
Online Regression, Algorithm 16 achieves 2n

√
Tr(T) regret for the Contextual Pandora’s

Box problem. In particular, if the regret r(T) is sublinear in T , Algorithm 16 achieves sublinear
regret.

Our algorithm works by maintaining a regression oracle for each box, and using
it at each round to obtain a prediction on wt,i. Specifically, in the prediction phase
of the round the algorithm obtains a prediction and then uses the context xi,t to
calculate an estimated reservation value for each box. Then, based on the estimated
reservation values, it uses Weitzman’s algorithm 15 to decide which boxes to open.
Finally, it accumulates the Pandora’s Box cost acquired by Weitzman’s play at this
round and the cost of any extra boxes opened by the oracle in the update phase (in
the bandit setting). The update step is used to model the full-information setting
(where the value of each box is always revealed at the end of the round) vs the costly
feedback setting (where the value inside each box is only revealed if we paid the
opening cost).

In the rest of this section we outline the proof of Theorem 8.17. The proof is based
on obtaining robustness guarantees for Weitzman’s algorithm when it is run with
estimates instead of the true reservation values. In this case, we show that the cost
incurred by Weitzman’s algorithm is proportional to the error of the approximate costs
of the boxes (8.18). This analysis is found on 8.2.4. Then, in Section 8.2.5 we exploit
the form of the Linear-Quadratic loss functions to connect the robustness result with

144

Algorithm 16: CPB: Contextual Pandora’s Box
Input: Input:

1 Oracle O for Linear-Quadratic Online Regression.
2 For every box i ∈ B, instantiate a copy Oi of the oracle with linear-quadratic

loss Hci

3 for each round t ∈ T do
4 # Prediction Phase
5 Call oracle Oi to get a prediction wt,i for each box i

6 Obtain context xi
t for each box i ∈ B

7 Run Weitzman’s algo 15 with reservation values σt,i = h(wt,i, xt,i) for
each box i ∈ B

8

9 #Update Phase
10 for every box i ∈ B do
11 if the oracle Oi requests an input-output pair at this round then
12 Observe value vt,i and give the input-output pair (xt,i, vt,i)
13 end
14 end
15 end

the regret of the Linear-Quadratic Online Regression problem and conclude our main
Theorem 8.17 of this section.

An empirical evaluation of Algorithm 16 can be found in Section 8.A.7.1.

8.2.4 Weitzman’s Robustness

We provide guarantees on Weitzman’s algorithm 15 performance when instead of
the optimal reservation values σ∗ of the boxes, the algorithm uses estimates σ ̸= σ∗.
We first define the following:

Definition 8.18 (Approximate Cost). Given a distribution D such that v ∼ D and a value
σ, the approximate cost with respect to σ and D is defined as:

cD(σ) = Ev∼D [ReLU(σ− v)] . (8.5)

Moreover, given n boxes with estimated reservation values σ and distributions D we denote
the vector of approximate costs as cD(σ) = (cD1(σ1), . . . , cDn

(σn)).

145

Remark. Observe that, in the Pandora’s Box setting, if box i has value distribution
Di opening cost ci and optimal reservation value σ∗

i , then, by definition, the quantity
cDi

(σ∗
i) corresponds to the true cost, ci, of the box. This also holds for the vector of

approximate costs, i.e. cD(σ∗) = c.
We now state our robustness guarantee for Weitzman’s algorithm. In particular,

we show that the extra cost incurred due to the absence of initial knowledge of vectors
w∗

i is proportional to the error of the approximate costs the boxes, as follows:

Theorem 8.19. For a Pandora’s Box instance with n boxes with distributions D, costs c
and corresponding optimal reservation values σ∗ so that c = cD(σ∗), Weitzman’s Algorithm
15, run with reservation values σ incurs cost at most

WEITZD(σ; c) ⩽ WEITZD(σ∗; c) + ∥cD(σ) − c∥1.

Before showing Theorem 8.19, we prove the following lemma, that connects the
optimal Pandora’s Box cost of an instance with optimal reservation values σ∗ to the
optimal cost of the instance with optimal reservation values σ.

Lemma 8.20. Let WEITZD(σ∗; c) and WEITZD(σ; cD(σ)) be the optimal Pandora’s
Box costs corresponding to instances with optimal reservation values σ∗ and σ respectively.
Then

WEITZD(σ∗; c) ⩾ WEITZD(σ; cD(σ)) −
∑
i∈B

ReLU(cDi
(σi) − ci).

The proof of the above Lemma, together with that of Theorem 8.19, are deferred
to Section 8.A.7.3.

8.2.5 Proof of Theorem 8.17

Moving on to show our main theorem, we connect the robustness Theorem 8.19 with
the performance guarantee of the Linear-Quadratic Online Regression problem. The
robustness guarantee of Weitzman’s algorithm is expressed in terms of the error of the
approximate costs of the boxes, while the regret of the Online Regression problem is
measured in terms of the cumulative difference of the linear-quadratic loss functions
Hc(·). Thus, we begin with the following lemma:

146

Lemma 8.21. For any distribution D with cD(σ
∗) = c, it holds that

Ev∼D [Hc(σ− v) −Hc(σ
∗ − v)] ⩾

1
2(cD(σ) − cD(σ

∗))2

The proof of the lemma is deferred to the Appendix.

Proof of Theorem 8.17. Recall that at every step t ∈ [T], Theorem 16 runs Weitzman’s
algorithm as a subroutine, using an estimate σt for the optimal reservation values of
the round, σ∗

t . From the robustness analysis of Weitzman’s algorithm we obtain that
the regret of Algorithm 16 can be bounded as follows:

Regret(CPB, T) = E

∑
t∈[T]

WEITZDt
(σt; ct) − WEITZDt

(σ∗
t ; ct)

⩽

∑
t∈[T],i∈B

|cDt,i(σt,i) − cDt,i(σ
∗
t,i)|

⩽
√
nT

√ ∑
t∈[T],i∈B

(cDt,i(σt,i) − cDt,i(σ
∗
t,i))

2,

where the first inequality follows by Theorem 8.19 and for the last inequality we used
that for any k-dimensional vector z we have that ∥z∥1 ⩽

√
k∥z∥2 and the fact that the

above sum over T ,B is equivalent to ℓ1 norm on nT dimensions. Moreover, we have
that

∑
t∈[T],i∈B

(cDt,i(σt,i) − cDt,i(σ
∗
t,i))

2 ⩽ 2 E

 ∑
t∈[T],i∈B

(
Hct,i(σt,i − vt,i) −Hct,i(σ

∗
t,i − vt,i)

)
⩽ 2 · n · r(T),

where for the first inequality we used Lemma 8.21, and then the guarantee of the
oracle. Thus, we conclude that the total expected regret is at most 2n

√
Tr(T).

8.2.6 A Special Case: Linear Contextual Pandora’s Box

Using the reduction we developed in Section 8.2.3, we design efficient no-regret algo-
rithms for Contextual Pandora’s Box in the case where the mapping from contexts
to reservation values is linear. That is, we assume that h(w, x) = wTx.

147

8.2.6.1 Full Information Setting

In this section we study the full-information version of the Contextual Pandora’s
Box problem, where the algorithm observes the realized values of all boxes at the
end of each round, irrespectively of which boxes were opened. Initially we show
that there exists an online regression oracle, that achieves sublinear regret for the full
information version of the Linear-Quadratic Online Regression problem. Then, in
Corollary 8.23 we combine our reduction of Theorem 8.17 with the online regression
oracle guarantee, to conclude that Algorithm 16 using this oracle is no-regret for
Contextual Pandora’s Box. The lemma and the theorem follow.

Lemma 8.22. When h(w, x) = wTx, ||w||2 ⩽ M and ||x||2 ⩽ 1, there exists an oracle for
Online Regression with Linear-Quadratic loss Hc under full information that achieves
regret at most max{M, c}

√
2MT .

To show Theorem 8.22, we view Linear-Quadratic Online Regression as an instance
of Online Convex Optimization and apply the Follow The Regularized Leader (FTRL)
family of algorithms to obtain the regret guarantees.

Theorem 8.23. In the full information setting, using the oracle of Theorem 8.22, Algorithm 16
for Contextual Pandora’s Box achieves a regret of

Regret(CPB, T) ⩽ 3n
√

max{M, cmax}M
1/4T

3
4 ,

assuming that for all times t and boxes i ∈ B, ∥w∗
t,i∥2 ⩽ M and cmax = maxi∈B ci.

The process of using FTRL as an oracle is described in detail in Section 8.A.7.5,
alongside the proofs of Theorem 8.22 and Corollary 8.23.

8.2.6.2 Bandit Setting

We move on to extend the results of the previous section to the bandit setting, and
show how to obtain a no-regret algorithm for this setting by designing a regression
oracle with costly feedback. In this case, the oracle Oi of Algorithm 16 of each box
i ∈ B does not necessarily receive information on the value of the box after each
round. However, in each round it chooses whether to obtain the information for the
box by paying the opening cost c.

148

We initially show that we can use any regression oracle given for the full-information
setting, in the costly feedback setting without losing much in terms of regret guaran-
tees. This is formalized in the following theorem.

Lemma 8.24. Given an oracle that achieves expected regret r(T) for Online Regression with
Linear-Quadratic loss Hc under full information, Algorithm 17 is an oracle for Linear-
Quadratic Online regression with costly feedback, that achieves regret at most kr(T/k) +
cT/k.

Algorithm 17 obtains an oracle with costly feedback from a full information oracle.
It achieves this by splitting the time interval [T] in intervals of size k, and choosing
a uniformly random time per interval to acquire the costly information about the
input-output pair. The proof of Lemma 8.24 is included in Section 8.A.7.6 of the
Appendix.

Algorithm 17: Costly Feedback oracle from Full Information
Input: Parameter k, full information oracle O

1 Split the times [T] into T/k intervals I1 . . . , IT/k
2 for Every interval Iτ do
3 Pick a tp uniformly at random from Iτ

4 # Prediction Phase
5 Call O to get a vector wτ. For each t ∈ Iτ predict wτ

6

7 # Update Phase
8 Obtain feedback for time tp ∈ Iτ and give input-output pair (xtp ,ytp) to O.
9 end

Given that we can convert an oracle for full-information to one with costly feed-
back using Algorithm 17, we can now present the main theorem of this section (see
Section 8.A.7.6 for the proof):

Theorem 8.25. In the bandit setting, using the oracle of Lemma 8.24 together with the oracle
of Theorem 8.22, Algorithm 16 for Contextual Pandora’s Box achieves a regret of

Regret(CPB, T) ⩽ 2n(2cmaxMmax{M, cmax}
2)1/6T 5/6,

assuming that for all times t and boxes i ∈ B, ∥w∗
t,i∥2 ⩽ M and cmax = maxi∈B ci.

149

8.A Appendix for Chapter 8

8.A.1 Competing with the Non-Adaptive

We switch gears towards a different benchmark, that of the non-adaptive strategies.
Similarly to the partially adaptive benchmark, here we we first present the linear
programming for the non-adaptive benchmark as a function f : [0, 1]n → R with f(x)

equal to

minz⩾0
∑
i∈B

xi +
1
|S|

∑
i∈B,s∈S

csiz
s
i (LP-NA)

s.t.
∑
i∈B

zsi = 1, ∀s ∈ S

zsi ⩽ xi ∀i ∈ B, s ∈ S

where xi is an indicator variable for whether box i is opened and zsi indicates whether
box i is assigned to scenario s.

Note that the algorithms we provided for the partially-adaptive case cannot be
directly applied since the objective functions of LP-NA, LP-NA-k and LP-NA-matroid
are not n-Lipschitz. To achieve good regret bounds in this case, we design an algo-
rithm that randomizes over an “explore" and an “exploit" step, similarly to Alabi
et al. (2019), while remembering the LP structure of the problem given constraints
F. Observe that there is a “global" optimal linear program (which is either LP-NA,
LP-NA-k or LP-NA-matroid depending on the constraints F) defined over all rounds
T . Getting a new instance in each round is equivalent to receiving a new (hidden) set
of constraints. We first describe two functions utilised by the algorithm in order to
find a feasible fractional solution to the LP and to round it.

1. Ellipsoid(k,LP): finds and returns a feasible solution to LP of cost at most k. By
starting from a low k value and doubling at each step, lines 10-13 result in us
finding a fractional solution within 2 every time.

2. Round(St,F): rounds the fractional feasible solution St using the algorithm
corresponding to F. The rounding algorithms are presented in section 8.A.5 of
the appendix. For selecting 1 box we have Algorithm 19, for selecting k boxes
Algorithm 20 and for selecting a matroid basis Algorithm 21.

150

Algorithm 18: Algorithm AF for minimizing regret vs NA
1 Input: set of constraints F
2 LP← LP-NA or LP-NA-k or LP-NA-matroid (according to F)
3 C1 ← ∅ // Constraints of LP
4 for round t ∈ [T] do
5 draw c ∈ U[0, 1]
6 if c > pt then
7 Open all n boxes, inducing new constraint cnew

8 Ct+1 ← Ct ∪ {cnew}

9 k← 1
10 repeat
11 (x, z)← Ellipsoid (k, LP)
12 k← 2k
13 until (x, z) is feasible;
14 else
15 St ← St−1
16 π←Round(St,F)
17 Open boxes according to order π
18 end
19 end

The algorithm works in two steps; in the “explore" step (line 7) opening all boxes
results in us exactly learning the hidden constraint of the current round, by paying n.
The “exploit" step uses the information learned from the previous rounds to open
boxes and choose one.

Observe that the cost of Algorithm 18 comes from three different cases, depending
on what the result of the flip of the coin c is in each round.

1. If c > pt, we and pay n for opening all boxes.

2. If c < pt and we pay cost proportional to the LP (we have a feasible solution).

3. If c < pt and we pay cost proportional to n (we did not have a feasible solution).

We bound term 3 using mistake bound, and then continue by bounding terms 1
and 2 to get the bound on total regret.

151

8.A.2 Bounding the mistakes

We start by formally defining what is mistake bound of an algorithm.

Definition 8.26 (Mistake Bound of Algorithm A). Let A be an algorithm that solves
problem Π and runs in t ∈ [T] rounds with input xt in each one. Then we define A’s mistake
bound as

M(A, T) = E
[

T∑
t=1

1{xt not feasible for Π}
]

where the expectation is taken over the algorithm’s choices.

The main contribution in this section is the following lemma, that bounds the
number of mistakes.

Lemma 8.27. Algorithm 18 has mistake bound

M(AF, T) ⩽ O(n2
√
T).

The mistake bound applies to all the different constraints F we consider. To achieve
this, we leverage the fact that the ellipsoid algorithm, running on the optimal LP
corresponding to the constraints F, needs polynomial in n time to find a solution.
The proof works by showing that every time, with probability pt, we make progress
towards the solution, and since the ellipsoid in total makes polynomial in n steps
we also cannot make too many mistakes. The proof of Lemma 8.27 is deferred to
section 8.A.1 of the appendix.

8.A.3 Regret for different constraints

Moving on to show regret guarantees of Algorithm 18 for the different types of
constraints. We start off with the special case where we are required to pick one box,
but all the costs inside the boxes are either 0 or ∞, and then generalize this to arbitrary
costs and more complex constraints.

Theorem 8.28 (Regret for 0/∞). Algorithm 18, with pt = 1/
√
T has the following average

regret, when F = {Select 1 box} and ci ∈ {0,∞}.

E
[
RegretNA(AF, T)

]
⩽ OPT +O

(
n2
√
T

)
.

152

Proof of Theorem 8.28. Denote byM the mistake bound term, bounded above in Lemma 8.27.
We calculate the total average regret

E
[
RegretNA(AF, T)

]
+ OPT =

1
T

(
M+

T∑
t=1

E [|St|]

)

=
1
T

(
M+

T∑
t=1

ptn+ (1 − pt)E [|St|]

)

⩽
1
T

(
M+

T∑
t=1

ptn+ 2OPT
)

⩽ M+ 2OPT + n

T∑
t=1

pt

⩽ 2OPT +O

(
n2
√
T

)
where initially we summed up the total regret of Algorithm 18 where the first term
is the mistake bound from Lemma 8.27. Then we used the fact that OPTt ⩽ OPT
and the solution found by the ellipsoid is within 2, and in the last line we used Since∑T

t=1 pt ⩽
√
T from Alabi et al. (2019). Finally, subtracting OPT from both sides we

get the theorem.

Generalizing this to arbitrary values ci ∈ R, we show that when we are given
a β approximation algorithm we get the following guarantees, depending on the
approximation factor.

Theorem 8.29. If there exists a partially adaptive algorithm AF that is β-competitive against
the non-adaptive optimal, for the problem with constraints F, then Algorithm 18, with pt =

1/
√
T has the following regret.

E
[
RegretNA(AF, T)

]
⩽ 2βOPT +O

(
n2
√
T

)
.

The proof follows similarly to the 0/∞ case, and is deferred to section 8.A.1 of the
appendix. Combining the different guarantees against the non-adaptive benchmark
with Theorem 8.29 we get the following corollary.

Corollary 8.30 (Competing against NA, bandit setting). In the bandit setting, when
competing with the non-adaptive benchmark, Algorithm 18 is

153

• 3.16-approximate no regret for choosing 1 box (using Theorem 8.32)

• 12.64-approximate no regret for choosing k boxes (using Theorem 8.34)

• O(log k)-approximate no regret for choosing a matroid basis (using Theorem 8.36)

8.A.4 Missing Proofs of Section 8.A.1

Before moving to the formal proof of Lemma 8.27, we recall the following lemma
about the ellipsoid algorithm, bounding the number of steps it takes to find a feasible
solution.

Lemma 8.31 (Lemma 3.1.36 from Grötschel et al. (1988)). Given a full dimensional
polytope P = {x : Cx ⩽ d}, for x ∈ Rn, and let ⟨C,d⟩ be the encoding length of C and d. If
the initial ellipsoid is E0 = E(R2I, 0)3 where R =

√
n2⟨C,d⟩−n2 the ellipsoid algorithm finds a

feasible solution after O(n2⟨C,d⟩) steps.

Using the lemma above, we can now prove Lemma 8.27, which we also restate below.

Lemma 8.27. Algorithm 18 has mistake bound

M(AF, T) ⩽ O(n2
√
T).

Proof. Our analysis follows similarly to Theorem 3.2 of Alabi et al. (2019). Initially
observe that the only time we make a mistake is in the case with probability (1 − pt)

if the LP solution is not feasible. Denote by C∗ the set of the constraints of LP as
defined in Algorithm 18, and by C1 ⊆ C2 ⊆ . . . ⊆ Ct the constraint set for every
round of the algorithm, for all t ∈ [T]. We also denote by NT (c) the number of
times a constraint c was not in Ct for some time t but was part of LP. Formally
NT (c) = |{c ∈ C∗, c ̸∈ Ct, }| for a constraint c ∈ C∗ and any t ∈ [T]. We can bound the
mistake bound of Algorithm 18 as follows

M(A, T) ⩽
∑
c∈C∗

E [NT (c)] .

Let tc ∈ [T] be the round that constraint c is added to the algorithm’s constraint set
for the first time, and let Sc be the set of ℓ rounds in which we made a mistake because

3E(R,Z) indicates a ball of radius R and center Z.

154

of this constraint. Observe that {S1,S2, . . .Sℓ} = Sc ⊆ {C1,C2, . . .Ctc}. We calculate the
probability that NT (c) is incremented on round k of S

Pr [NT (c) incremented on round k] =

k∏
i=1

(1 − pi) ⩽ (1 − p)k,

since in order to make a mistake, we ended up on line 14 of the algorithm. Therefore

E [NT (c)] ⩽
T∑

i=1

(1 − p)i =
(1 − p)(1 − (1 − p))T

p
.

However in our case, every time a constraint is added to Ct, one step of the ellipsoid
algorithm is run, for the LP. Using Lemma 8.31 and observing that in our case
⟨C,d⟩ = O(1) the total times this step can happen is at most O(n2), giving us the
result of the lemma by setting p = 1/

√
T .

Theorem 8.29. If there exists a partially adaptive algorithm AF that is β-competitive against
the non-adaptive optimal, for the problem with constraints F, then Algorithm 18, with pt =

1/
√
T has the following regret.

E
[
RegretNA(AF, T)

]
⩽ 2βOPT +O

(
n2
√
T

)
.

Proof of Theorem 8.29. Denote byM be the mistake bound term, bounded in Lemma 8.27.
Calculating the total average regret we get

E
[
RegretNA(AF, T)

]
+ OPT =

1
T

(
M+

T∑
t=1

E [St]

)
Definition

=
1
T

(
M+

T∑
t=1

pt(n+ min
i∈F

ci) + (1 − pt)E [St]

)
Algorithm 18

⩽
1
T

(
M+

T∑
t=1

ptn+ pt min
i∈F

ci + 2βOPTt

)
AF, ellipsoid’s loss

⩽ (2β+ 1)OPT +
1
T

(
M+ n

T∑
t=1

pt

)
⩽ (2β+ 1)OPT +

n√
T

⩽ (2β+ 1)OPT +O

(
n2
√
T

)
Lemma 8.27.

155

where in the third to last inequality we used that mini∈F ci ⩽ OPTt ⩽ OPT, then
in the second to last we used that

∑T
t=1 pt ⩽

√
T from Alabi et al. (2019). Therefore,

subtracting OPT from both sides we get the theorem.

8.A.5 Rounding LPs against the Non-Adaptive

8.A.5.1 Competing with the non-adaptive for choosing 1 box

The linear program for this case (LP-NA) is already given in the preliminaries section.
The result in this case is a e/(e − 1)-approximate partially adaptive strategy, given
in Chawla et al. (2020) is formally restated below, and the rounding algorithm is
presented in Algorithm 19.

Theorem 8.32 (Theorem 4.2 from Chawla et al. (2020)). There exists an efficient partially
adaptive algorithm with cost at most e/(e− 1) times the total cost of the optimal non-adaptive
strategy.

Algorithm 19: SPA vs NA fromChawla et al. (2020)
Input: Solution x, z to program (LP-NA); scenario s

1 σ := For t ⩾ 1, select and open box i with probability xi∑
i∈B xi

.
2 τs := If box i is opened at step t, select the box and stop with probability zsi

xi
.

8.A.5.2 Competing with the non-adaptive benchmark for choosing k boxes

We move on to consider the case where we are required to pick k distinct boxes
at every round. Similarly to the one box case, we define the optimal non-adaptive
strategy that can be expressed by a linear program. We start by showing how to
perform the rounding step of line 16 of Algorithm 18 in the case we have to select k
boxes. The guarantees are given in Theorem 8.34 and the rounding is presented in
Algorithm 20. This extends the results of Chawla et al. (2020) for the case of selecting
k items against the non-adaptive.

Lemma 8.33. There exists a scenario-aware partially adaptive 4-competitive algorithm to the
optimal non-adaptive algorithm for picking k boxes.

Combining this lemma with Theorem 3.4 from Chawla et al. (2020) we get Theo-
rem 8.34.

156

Theorem 8.34. We can efficiently find a partially-adaptive strategy for optimal search with k

options that is 4e/(e− 1)-competitive against the optimal non-adaptive strategy.

Before presenting the proof for Lemma 8.33, we formulate our problem as a
linear program as follows. The formulation is the same as LP-NA, we introduce
constraints 8.6, since we need to pick k boxes instead of 1.

minimize
∑
i∈B

xi +
1
|S|

∑
i∈B,s∈S

csiz
s
i (LP-NA-k)

subject to
∑
i∈B

zsi = k, ∀s ∈ S (8.6)

zsi ⩽ xi, ∀i ∈ B, s ∈ S

xi, zsi ∈ [0, 1] ∀i ∈ B, s ∈ S

Denote by OPTp =
∑

i∈B xi and OPTc = 1/|S|
∑

i∈B,s∈S c
s
iz

s
i to be the optimal

opening cost and selected boxes’ costs, and respectively ALGp and ALGc the algo-
rithm’s costs.

Algorithm 20: SPA vs NA, k-coverage
Input: Solution x, z to above LP-NA-k, scenario s. We set

β = 1/100,α = 1/4950
1 Denote by Xlow = {i : xi < 1/β} and X =

∑
i∈Xlow

xi

2 σ := open all boxes that xi ⩾ 1/β, from Xlow select each box i w.p. xi

X

3

4 Denote by k ′ and OPT ′
c the values of OPTc and k restricted in the set Xlow

5 τs := select all boxes that zsi ⩾ 1/β
6 Discard all boxes i that ci > αOPT ′

c/k
′

7 From the rest select box i with probability xi

X

8 Stop when we have selected k boxes in total.

Proof of Lemma 8.33. Let (x, z) be the solution to (LP-NA-k), for some scenario s ∈ S.
We round this solution through the following steps, bounding the extra cost occurred
at every step. Let β > 1 be a constant to be set later.

• Step 1: open all boxes i with xi ⩾ 1/β, select all that zsi ⩾ 1/β. This step only
incurs at most β(OPTp + OPTc) cost. The algorithm’s value cost is ALGc =

157

∑
i:zsi⩾1/β ci while OPTc =

∑
i z

s
ici ⩾

∑
i:zsi⩾1/β ciz

s
i ⩾ 1/β

∑
i:zsi⩾1/β ci =

1/βALGc. A similar argument holds for the opening cost.

• Step 2: let Xlow = {i : xi < 1/β}, and denote by OPT ′
c and k ′ the new values for

OPTc and k restricted on the set Xlow and by X =
∑

i∈Xlow
xi.

– Step 2a: convert values to either 0 or ∞ by setting ci = ∞ for every box i

such that ci > αOPT ′
c/k

′ and denote by Ls = {i : ci ⩽ αOPT ′
c/k

′}.

– Step 2b: select every box with probability xi

X
, choose a box only if it is in

Xlow. Observe that the probability of choosing the j’th box from Ls given
that we already have chosen j− 1 is

Pr [choose j’th|have chosen j− 1] ⩾
∑

i∈Ls
xi − j/β

X
xi ⩽ 1/β∀xi ∈ Xlow

⩾

∑
i∈Ls

zsi − j/β

X
LP constraint

⩾
(1 − 1/α)k ′ − j/β

OPT ′
p

Markov’s Inequality

⩾
(1 − 1/α)k ′ − k ′/β

OPT ′
p

Since j ⩽ k ′

⩾
(αβ− β− α)k ′

αβOPT ′
p

Therefore the expected time until we choose k ′ boxes is

E [ALGp] =

k ′∑
j=1

1
Pr [choose j’th|have chosen j− 1]

⩽
k ′∑
j=1

αβ
OPT ′

p

(αβ− α− β)k ′

= αβ
OPT ′

p

αβ− α− β

Observe also that since all values selected are are ci ⩽ αOPT ′
c/k

′, we incur
value cost ALGc ⩽ αOPT ′

c.

Putting all the steps together, we get ALG ⩽
(
β+ αβ

αβ−α−β

)
OPTp + (β+ α)OPTc ⩽

4OPT, when setting a = 2β/(β− 1) and β = 1/100

158

8.A.5.3 Competing with the non-adaptive benchmark for choosing a matroid
basis

In this section F requires us to select a basis of a given matroid. More specifically,
assuming that boxes have an underlying matroid structure we seek to find a basis
of size k with the minimum cost and the minimum query time. Let r(A) denote the
rank of the set A ⊆ B. Using the linear program of the k-items case, we replace the
constraints to ensure that ensure that we select at most r(A) number of elements
for every set and that whatever set A of boxes is already chosen, there still enough
elements to cover the rank constraint. The guarantees for this case are given in
Theorem 8.36 and the rounding presented in Algorithm 21. This case also extends
the results of Chawla et al. (2020).

Lemma 8.35. There exists a scenario-aware partially-adaptive O(log k)-approximate algo-
rithm to the optimal non-adaptive algorithm for picking a matroid basis of rank k.

Combining this lemma with Theorem 3.4 from Chawla et al. (2020) we get Theo-
rem 8.36.

Theorem 8.36. We can efficiently find a partially-adaptive strategy for optimal search over a
matroid of rank k that is O(logk)-competitive against the optimal non-adaptive strategy.

In order to present the proof for Lemma 8.35, we are using the LP formulation
of the problem with a matroid constraint, as shown below. Let r(A) denote the rank
of the set A ⊆ B. The difference with LP-NA-k is that we replace constraint 8.6 with
constraint 8.7 which ensures we select at most r(A) number of elements for every set
and constraint (8.8) ensures that whatever set A of boxes is already chosen, there still
enough elements to cover the rank constraint.

minimize
∑
i∈B

xi +
1
|S|

∑
i∈B,s∈S

csiz
s
i (LP-NA-matroid)

subject to
∑
i∈B

zsi ⩽ r(A), ∀s ∈ S,A ⊆ B (8.7)∑
i∈A

zsi ⩾ r([n]) − r(A) ∀A ⊆ B, ∀s ∈ S (8.8)

zsi ⩽ xi, ∀i ∈ B, s ∈ S (8.9)

xi, zsi ∈ [0, 1] ∀i ∈ B, s ∈ S

159

Similarly to the case for k items, denote by OPTp =
∑

i∈B xi and

OPTc = 1/|S|
∑

i∈B,s∈S

csiz
s
i ,

and ALGp, ALGc the respective algorithm’s costs.

Algorithm 21: SPA vs NA, matroid
Input: Solution x, z to above LP-NA-matroid, scenario s. We set

β = 1/100,α = 1/4950
1 Denote by Xlow = {i : xi < 1/β} and X =

∑
i∈Xlow

xi

2 σ := open all boxes that xi ⩾ 1/β, from Xlow select each box i w.p. xi

X

3

4 Denote by kj and OPTj
c the values of OPTc and k restricted in the set Xlow

when j boxes are selected.
5 τs := select all boxes that zsi ⩾ 1/β
6 Discard all boxes i that ci > αOPTj

c/k
j

7 From the rest select box i with probability xi

X

8 Stop when we have selected k boxes in total.

Proof of Lemma 8.35. Similarly to Lemma 8.33, let (x, z) be the solution to LP-NA-
matroid, for some scenario s ∈ S. We round this solution through the following
process. Let β > 1 be a constant to be set later.

• Step 1: open all boxes i with xi ⩾ 1/β, select all that zsi ⩾ 1/β. This step only
incurs at most β(OPTp + OPTc) cost.

• Step 2: let Xlow = {i : xi < 1/β}. Denote by OPT ′
c and k ′ the new values of OPTc

and k restricted on Xlow. At every step, after having selected j boxes, we restrict
our search to the set of low cost boxes Lj

s = {i : vi ⩽ αOPTj
c/k

j} where OPTj
c

and kj are the new values for OPTc and k after having selected kj = j boxes.

– Step 2a: Convert values to either 0 or ∞ by setting vi = ∞ for every box i

such that vi > αOPTj
c/k

j.

– Step 2b: Select every box with probability xi

X
, choose a box only if it is in

Xlow. Observe that the probability of choosing the j’th box from Ls given

160

that we already have chosen j− 1 is

Pr [choose j’th|have chosen j− 1] ⩾
∑

i∈L
j−1
s

xi

X

⩾

∑
i∈L

j−1
s

zsi

X
From LP constraint (8.9)

⩾
k− (k− j)

X
From LP constraint (8.8)

=
j

OPT ′
p

Therefore the expected time until we choose k ′ boxes is

E [ALGc] =

k ′∑
j=1

1
Pr [choose j’th|have chosen j− 1]

⩽ OPT ′
p

k ′∑
j=1

1
j

⩽ log k ·OPTp

Observe also that every time we choose a value from the set Lj
s, therefore the

total cost incurred by the selected values is

ALGv ⩽
k ′∑
i=1

α
OPTi

c

ki

⩽
k ′∑
i=1

OPTc

i
⩽ α log k ·OPTc

Putting all the steps together, we get ALG ⩽ O(log k)OPT

8.A.6 Missing Proofs of Section 8.1

The following lemma shows the strong convexity of the regularizer used in our FTRL
algorithms.

Lemma 8.37 (Convexity of Regularizer). The following function is 1/n-strongly convex
with respect to the ℓ1-norm.

U(x) =

n∑
i=1

n∑
t=1

xit log xit

161

for a doubly-stochastic matrix x ∈ [0, 1]n×n

Proof. Since U(x) is twice continuously differentiable we calculate∇2U(x), which is
a n× n diagonal matrix since

ϑU(x)

ϑxktϑxij
=

1/xij If i = k and j = t

0 Else

We show that z∇2U(x)z ⩾ ||z||21 for all x ∈ Rn2 . We make the following mapping of
the variables for each xij we map it to pk where k = (i− 1)n+ j. We have that

z∇2U(x)z =

n2∑
i=1

(zi)
2

pi

=
1
n

 n2∑
i=1

pi

 n2∑
i=1

(zi)
2

pi

⩾
1
n

 n2∑
i=1

√
pi

|zi|√
pi

2

=
1
n
||z||21.

where in the second line we used that xij’s are a doubly stochastic matrix, and then
Cauchy-Schwartz inequality.

Theorem 8.6. The average regret of Algorithm 13 is

RegretPA(A, T) ⩽ 2n
√

logn

T

achieved by setting U(x) = (
∑n

i=1
∑n

t=1 xit log xit) /η as the regularization function, and
η =

√
logn

T
.

Proof. Initially observe that by setting xij = 1/n we get Umax − Umin = (n logn)/η,
since we get the maximum entropy when the values are all equal. Additionally,
from Lemma 8.37 we have that U(x) is η/n-strongly convex. Observing also that the
functions in all cases are n-Lipschitz and using Theorem 8.5 we obtain the guarantee
of the theorem, by setting η =

√
logn
√
T

.

162

8.A.7 Appendix of Section 8.2

8.A.7.1 Experiments

We simulate the CPB algorithm on synthetic data, where the box values implement
uniform distributions on different intervals at each round. We simulate n = 10 boxes
with identical costs ci = 1 for all i ∈ B, for T = 300 rounds. The value distributions
of the boxes are generated as follows:

• Each box i corresponds to a fixed random vector w∗
i ∈ Rd with d = 5, selected

uniformly at the beginning of the simulation, such that ||w∗
i ||2 ⩽ M = 4.

• At each round t ∈ [T] and for each box i ∈ B, a context xt,i is uniformly drawn
in Rd such that ||xt,i||2 ⩽ 1.

• The value vi,t of each box i at time t is drawn from a uniform distribution on
the interval [0,Bt,i]. The right-bound Bt,i is computed such that the reservation
value σ∗

t,i of the uniform distribution satisfies the realizability assumption, that
is σ∗

t,i = xT
t,iw

∗
i .

We implement the CPB algorithm for the estimation of vector w∗
i of each box from

the observations (xT
t,i, vi,t)t∈[T] using the FTRL oracle. We compare its performance

with the performance of linear regression applied to observations (xT
t,i, vi,t)t∈[T].

The performance of the two methods (averaged over 20 repetitions) is depicted in
Figure 8.1, along with the error bars.

Figure 8.1: The regret as a function of time in a) Full feedback setting, and b) Bandit
feedback setting.

In our first experiment, full feedback is available, i.e. the samples (xT
t,i, vi,t) are

available to both algorithms for all i ∈ B, t ∈ [T]. In the second experiment the

163

algorithms have bandit feedback. That is, a sample (xT
t,i, vi,t) is available for an

algorithm only if box i was opened at time t by the algorithm. We plot the regret
(defined in (8.4)) of the algorithms as a function of time t. As expected, the regret
of both algorithms is smaller under full feedback, since there is more information
available at each round. In addition, the regret increases with sublinear rate as t

grows, which is compatible with our theoretical guarantees in both the full-feedback
and the bandit setting. Finally, in both settings, using the CPB algorithm leads to
significantly smaller regret compared to linear regression.

8.A.7.2 Impossibility beyond Realizability

We now provide an example to indicate that without the realizability assumption,
our setting is not only computationally hard (even in the offline case) (?), but also
becomes information-theoretically hard in the online case:

Consider the simple setting of two boxes, with costs either 0 or 1. The context
provides us with some information on where is the 0 in each round, and our objective
it to select 0 the maximum amount of times. Clearly, in the offline case the above
setting coincides with that of agnostic learning, which is known to be computationally
hard, even for linear functions (e.g., linear classification).

In the online setting, where an adversary can choose the context to give us at each
round, the problem is information-theoretically hard. Similarly, assume that a context
is a real number in [0, 1] and that there exists a threshold x, which decides which box
gives 0 and which 1. The adversary can always give us a threshold in the uncertainty
region, and force us to make a mistake at every round, thus accumulating linear cost
over time, while the cost accumulated by the optimal algorithm (which knows the
context-value relation) is 0.

8.A.7.3 Proofs from Section 8.2.4

Theorem 8.19. For a Pandora’s Box instance with n boxes with distributions D, costs c
and corresponding optimal reservation values σ∗ so that c = cD(σ∗), Weitzman’s Algorithm
15, run with reservation values σ incurs cost at most

WEITZD(σ; c) ⩽ WEITZD(σ∗; c) + ∥cD(σ) − c∥1.

Proof. Assume we are using Weitzman’s Algorithm with reservation values σ in an

164

instance with optimal reservation values σ∗ and costs c. Let P be the set of boxes
opened during the algorithm’s run. Then, the Pandora’s Box cost incurred at the end
of the run can be bounded as follows:

WEITZD(σ; c) = Ev∼D

[
min
i∈P

vi +
∑
i∈P

ci

]

= Ev∼D

[
min
i∈P

vi +
∑
i∈P

ci + cDi
(σi) − cDi

(σi)

]

= WEITZD(σ; cD(σ)) + Ev∼D

[∑
i∈P

(ci − cDi
(σi))

]
⩽ WEITZD(σ∗; c)+

Ev∼D

[∑
i∈B

ReLU(cDi
(σi) − ci) +

∑
i∈P

(ci − cDi
(σi))

]

⩽ WEITZD(σ∗; c) + Ev∼D

[∑
i∈B

|ci − cDi
(σi)|

]
,

where in the first inequality we used Lemma 8.20 and in the last inequality that every
box from each of the sets B and P can contribute at most once in the sum, because of
the ReLU function.

Lemma 8.20. Let WEITZD(σ∗; c) and WEITZD(σ; cD(σ)) be the optimal Pandora’s
Box costs corresponding to instances with optimal reservation values σ∗ and σ respectively.
Then

WEITZD(σ∗; c) ⩾ WEITZD(σ; cD(σ)) −
∑
i∈B

ReLU(cDi
(σi) − ci).

Proof. Consider the optimal strategy WEITZD(σ∗; c) for the instance with reservation
values σ∗, and assume we use the same strategy in the instance where the ‘actual
reservation values are σ̂. That means our algorithm WEITZD(σ∗; cD(σ̂)) orders the
boxes according to the reservation values σ∗ and stops when mini vi ⩽ σ∗

i+1. Denote
by P the set of boxes probed (opened) by the algorithm WEITZD(σ∗; cD(σ̂)), then
the cost is

WEITZD(σ̂; cD(σ̂)) ⩽ WEITZD(σ∗; cD(σ̂))

165

= Ev∼D

[
min
i∈P

vi +
∑
i∈P

cDi
(σ̂i)

]

= Ev∼D

[
min
i∈P

vi

]
+ Ev∼D

[∑
i∈P

cDi
(σ̂i) − cDi

(σ∗
i) + cDi

(σ∗
i)

]
= WEITZD(σ∗; c) +

∑
i∈P

(cDi
(σ̂i) − cDi

(σ∗
i))

⩽ WEITZD(σ∗; c) +
∑
i∈P

ReLU(cDi
(σ̂i) − cDi

(σ∗
i)),

where the first inequality follows by the definition of the optimal, and the first equality
is the actual cost of our algorithm, since in our instance we pay cDi

(σ̂i) for each
box.

8.A.7.4 Proofs from Section 8.2.5

Lemma 8.21. For any distribution D with cD(σ
∗) = c, it holds that

Ev∼D [Hc(σ− v) −Hc(σ
∗ − v)] ⩾

1
2(cD(σ) − cD(σ

∗))2

Proof. Recall from Definition 8.16 that

Hc(σ− v) =
1
2ReLU(σ− v)2 − c(σ− v) =

{
1
2(σ− v)2 − c(σ− v) if σ ⩾ v

−c(σ− v), if σ < v

}

and
H ′

c(σ− v) = ReLU(σ− v) − c.

We also use that for σ = σ∗ using Weitzman’s theorem for optimal reservation values
(Theorem 8.13) we have

Ev [H
′
c(σ

∗ − v)] = 0.

We need to compare Hc(σ − v) − Hc(σ
∗ − v) to |cD(σ) − cD(σ

∗)|. Using that∫b

a
f ′(x)dx = f(b)−f(a) and changing the order between expectation and integration,

we obtain

Ev∼D [Hc(σ− v) −Hc(σ
∗ − v)] = Ev∼D

[∫σ

σ∗
H ′

c(σ
′ − v)dσ ′

]

166

=

∫σ

σ∗
Ev∼D [H ′

c(σ
′ − v)] dσ ′

=

∫σ

σ∗
Ev∼D [H ′

c(σ
′ − v)] − Ev∼D [H ′

c(σ
∗ − v)] dσ ′

=

∫σ

σ∗
Ev∼D [ReLU(σ ′ − v)] − Ev∼D [ReLU(σ∗ − v)] dσ ′

=

∫σ

σ∗
(cD(σ

′) − cD(σ
∗))dσ ′, (8.10)

where the last inequality above is by definition of cD(·). We now distinguish between
the following cases for the reservation value σ compared to the optimal reservation
value σ∗.

Caseσ ⩾ σ∗: observe that cD is 1-Lipschitz, therefore we have that |cD(σ)−cD(σ
′)| <

|σ − σ ′|. Moreover, when σ ′ ⩾ σ∗ we have cD(σ
′) ⩾ cD(σ

∗). Thus Equation 8.10
becomes:

Ev∼D [Hc(σ− v) −Hc(σ
∗ − v)] =

∫σ

σ∗
(cD(σ

′) − cD(σ
∗))dσ ′

⩾
∫σ

σ−(cD(σ)−cD(σ∗))

(cD(σ
′) − cD(σ

∗))dσ ′

⩾
∫σ

σ−(cD(σ)−cD(σ∗))

(cD(σ) − cD(σ
∗) − (σ− σ ′))dσ ′

=
1
2(cD(σ) − cD(σ

∗))2,

where for the first inequality we used that σ−σ∗ ⩾ cD(σ)−cD(σ
∗) and for the second

that σ− σ ′ ⩾ cD(σ) − cD(σ
′).

Case σ < σ∗: as before, Equation 8.10 can be written as

Ey∼D [Hc(σ− v) −Hc(σ
∗ − v)] =

∫σ

σ∗
(cD(σ

′) − cD(σ
∗))dσ ′

= −

∫σ∗

σ

(cD(σ
′) − cD(σ

∗))dσ ′

⩾ −

∫σ−(cD(σ)−cD(σ∗))

σ

(cD(σ
′) − cD(σ

∗))dσ ′

⩾
∫σ−(cD(σ)−cD(σ∗))

σ

(−cD(σ) + cD(σ
∗) − (σ ′ − σ))dσ ′

167

=
1
2(cD(σ) − cD(σ

∗))2,

where for the first inequality we used that σ∗ − σ ⩾ cD(σ
∗) − cD(σ) and the fact that

cD(σ
′) − cD(σ

∗) ⩽ 0. For the second we used that −cD(σ
′) ⩾ −cD(σ) − (σ ′ − σ).

8.A.7.5 Regression via FTRL and Proofs of Section 8.2.6.1

Recall our regression function defined in equation (8.4). We define ft : Rd → R, as
the loss function at time t ∈ [T] as

ft(w) = Hc(w
Txt − yt) =

1
2(w

Txt − yt)
2
+ − c(wTxt − yt).

As these functions are convex, we can treat the problem as an online convex
optimization. Specifically, the problem we solve is the following.

1. At every round t, we pick a vector wt ∈ Rd.

2. An adversary picks a convex function ft : Rd → R induced by the input-output
pair (xt,yt) and we incur loss ft(σt).

3. At the end of the round, we observe the function ft.

In order to solve this problem, we use a family of algorithms called Follow The
Regularized Leader (FTRL). In these algorithms, at every step t we pick the solution
wt that would have performed best so far while adding a regularization term U(wt)

for stability reasons. That is, we choose

wt = arg min
w:∥w∥2⩽M

t−1∑
τ=1

ft(w) +U(w).

The guarantees for these algorithms are presented in the following lemma.

Lemma 8.38 (Theorem 2.11 from Shalev-Shwartz (2012)). Let f1, . . . , fT be a sequence of
convex functions such that each ft is L-Lipschitz with respect to some norm. Assume that FTRL
is run on the sequence with a regularization functionUwhich is η-strongly-convex with respect
to the same norm. Then, for allu ∈ Cwe have that Regret(FTRL, T)·T ⩽ Umax−Umin+TL2η

168

Observe that in order to achieve the guarantees of Lemma 8.38, we need the
functions to have some convexity and Lipschitzness properties, for which we show
the following lemma.

Lemma 8.39. The function ft(w) = Hc(w
Txt − yt) is convex and max{M, c}-Lipschitz

when ∥xt∥2 ⩽ 1 and ∥w∥2 ⩽ M.

Proof of Lemma 8.39. We first show convexity and Lipschitzness for the functionHc(z) =
1
2ReLU(z)2 − cz for z ∈ R.

Consider the derivative H ′
c(z) = ReLU(z) − c and the second derivative H ′′

c (z) =

1(z ⩾ 0) and notice that the second derivative is always non-negative which implies
convexity.

To bound the Lipschitzness of Hc, we consider the maximum absolute value of
the derivative which is at most max{c, ReLU(z)}.

We now turn our attention to ft and notice that ft is convex as a composition of a
convex function with a linear function. To show Lipschitzness we must bound the
norm of the gradient of ft which is:

∥∇ft(w)∥2 = |H ′
c(w

Txt − yt)|∥x∥2 ⩽ max{c,M},

where the last inequality follows as the maximum value of wTxt − yt is at most
M.

Lemma 8.22. When h(w, x) = wTx, ||w||2 ⩽ M and ||x||2 ⩽ 1, there exists an oracle for
Online Regression with Linear-Quadratic loss Hc under full information that achieves
regret at most max{M, c}

√
2MT .

Proof. We use the following regularizer U(w) = 1
2η ||w||22, and observe that this is

η-strongly convex with Umin = 0 and Umax = M/(2η). From Lemma 8.39 we have that
the loss function is convex and max{c,M}-Lipschitz, therefore using Lemma 8.38 with
η =

√
M

max{c,M}
√

2T we get that Regret(FTRL, T) ⩽ M
2η+η(max{c,M})2T = max{c,M}

√
2MT .

Theorem 8.23. In the full information setting, using the oracle of Theorem 8.22, Algorithm 16
for Contextual Pandora’s Box achieves a regret of

Regret(CPB, T) ⩽ 3n
√

max{M, cmax}M
1/4T

3
4 ,

169

assuming that for all times t and boxes i ∈ B, ∥w∗
t,i∥2 ⩽ M and cmax = maxi∈B ci.

Proof. The regret of Contextual Pandora’s Box can be upper bounded as follows:

Regret(CPB, T) ⩽ 2n
√

Tr(T) by Theorem 8.17

⩽ 3n
√

max{M, c}M1/4T
3
4 . by Lemma 8.22

8.A.7.6 Proofs from Section 8.2.6.2

In this section we show how to obtain the guarantees of FTRL in the case of costly
feedback proving Lemma 8.24.

While the proof is standalone, the analysis uses ideas from Gergatsouli and Tzamos
(2022) (in particular Lemma 4.2 and Algorithm 2). We give a simplified presentation
for the case of online regression with improved bounds.

Lemma 8.24. Given an oracle that achieves expected regret r(T) for Online Regression with
Linear-Quadratic loss Hc under full information, Algorithm 17 is an oracle for Linear-
Quadratic Online regression with costly feedback, that achieves regret at most kr(T/k) +
cT/k.

Proof. Recall that in the online regression problem, we obtain loss ft at any time step
where ft(w) = Hc(w

Txt − yt) =
1
2ReLU(wTxt − yt)

2 − c(wTxt − yt).
To analyze the regret for the costly feedback setting, we consider the regret of two

related settings for a full-information online learner but with smaller number of time
steps T/k.

1. Average costs setting: the learner observes at each round τ a single function

fτ =
1
k

∑
t∈Iτ

ft,

which is the average of the k functions in the corresponding interval Iτ.

2. Random costs setting: the learner observes at each round τ a single function

frτ = ftp with tp ∼ Uniform(Iτ)

170

sampled uniformly among the k functions ft for t ∈ Iτ.

The guarantee of the full information oracle implies that for the random costs
setting we obtain regret r(T/k). That is, the oracle chooses a sequence w1, . . . ,wT/k

such that
T/k∑
τ=1

frτ(wτ) ⩽ min
w

T/k∑
τ=1

frτ(w) + r(T/k).

Denote by w∗ = argminw∈Rd

∑T/k
τ=1 fτ(w) be the minimizer of the ft over the T/k

rounds. Note that this is also the minimizer of
∑T

t=1 ft(w). From the above regret
guarantee, we get that

T/k∑
τ=1

(frτ(wτ) − frτ(w
∗)) ⩽ r(T/k).

Since E [frτ(zτ)] = fτ(zτ) when the expectation is over the choice of tp ∼ Uniform(Iτ).
Taking expectation in the above, we get that

T/k∑
τ=1

(fτ(wτ) − fτ(w
∗)) ⩽ r(T/k),

which implies that the regret in the average costs setting is also r(T/k).
We now obtain the final result by noticing that the regret of the algorithm is at

most k times the regret of the average costs setting and incurs an additional overhead
of T

k
c for the information acquisition cost in the T/k rounds where the input-output

pairs are queried. Thus, overall the regret is bounded by kr(T/k) + cT/k.

Theorem 8.25. In the bandit setting, using the oracle of Lemma 8.24 together with the oracle
of Theorem 8.22, Algorithm 16 for Contextual Pandora’s Box achieves a regret of

Regret(CPB, T) ⩽ 2n(2cmaxMmax{M, cmax}
2)1/6T 5/6,

assuming that for all times t and boxes i ∈ B, ∥w∗
t,i∥2 ⩽ M and cmax = maxi∈B ci.

Proof. Initially observe that by combining Theorem 8.22 and Lemma 8.24 we get that
there exists an oracle for online regression with loss Hc under the costly feedback
setting that guarantees

Regret(Ocostly, T) ⩽ L
√

2kMT + cT/k

171

with L = max{M, c}. Setting k =
(

Tc2

2ML2

)1/3
, we obtain regret (2cML2)1/3T 2/3. Further

combining this with Theorem 8.17 that connects the regret guarantees of regression
with the regret for our Contextual Pandora’s Box algorithm, we obtain regret

2n(2cmaxMmax{M, cmax}
2)1/6T 5/6.

8.A.7.7 Discussion on the Lower Bounds

In this work our goal was to formulate the online contextual extension of the Pandora’s
Box problem and design no-regret algorithms for this problem, and therefore we left
the lower bounds as a future work direction. We are however including here a brief
discussion on lower bounds implied by previous work.

In Gatmiry et al. (2024) the authors study a special case of our setting where the
value distributions and contexts are fixed at every round and for each alternative.
The results of Gatmiry et al. (2024) imply a lower bound for this very special case of
our problem, which however does not correspond to an adversarial setting, as our
general formulation does. Notice, also, that a

√
T lower bound for our problem can be

directly obtained by the fact that our setting generalizes the stochastic multi-armed
bandit problem. Observe that if all costs are chosen to be identical and large enough,
then both the player and the optimal solution must select exactly one alternative per
round (and their inspection costs cancel out in the regret). Interestingly, in that case
Weitzman’s algorithm indeed selects the alternative of the smallest mean reward.

In another related setting, multi-armed bandits with paid observations, Seldin
et al. (2014) show a T 2/3 lower bound on the regret in the adversarial case. Although
their setting is different (e.g. in our setting multiple actions are allowed at each round
and there is contextual information involved) we believe that it has similarities to
ours in terms of costly options and information acquisition. Therefore, we believe
that tighter lower bounds could hold for our general adversarial problem.

172

9 noisy observations

9.1 Noisy Decision Tree

In this chapter we present an approximation for the mixture of distributions model
and connect it to Noisy Decision Tree.

Having established the general purpose reductions between Pandora’s Box and
Decision Tree(DT) in Chapter 5, we turn to the mixture of product distributions model
of correlation. This special case of Pandora’s Box interpolates between Weitzman’s
independent values setting and the fully general correlated values setting. In this
setting, we use the term “scenario" to denote the different product distributions in
the mixture. The information gathering component of the problem is now about
determining which product distribution in the mixture the box values are realized
from. Once the algorithm has determined the realized scenario (a.k.a. product
distribution), the remaining problem amounts to implementing Weitzman’s strategy
for that scenario.

We observe that this model of correlation for Pandora’s Box is related to the noisy
version of DT, where the results of some tests for a given realized hypothesis are not
deterministic. One challenge for DT in this setting is that any individual test may
give us very little information distinguishing different scenarios, and one needs to
combine information across sequences of many tests in order to isolate scenarios.
This challenge is inherited by Pandora’s Box.

Previous work on noisy DT obtained algorithms whose approximations and run-
times depend on the amount of noise. In contrast, we consider settings where the
level of noise is arbitrary, but where the mixtures satisfy a separability assumption. In
particular, we assume that for any given box, if we consider the marginal distributions
of the value in the box under different scenarios, these distributions are either identi-
cal or sufficiently different (e.g., at least ε in TV distance) across different scenarios.
Under this assumption, we design a constant-factor approximation for Pandora’s Box
that runs in nÕ(m2/ε2) (Theorem 9.1), where n is the number of boxes.

Related work The noisy version of optimal decision tree was first studied in Golovin
et al. (2010)1, which gave an algorithm with runtime that depends exponentially on

1This result is based on a result from Golovin and Krause (2011) which turned out to be wrong
(Nan and Saligrama, 2017). The correct results are presented in Golovin and Krause (2017)

173

the number of noisy outcomes. Subsequently, Jia et al. (2019) gave an (min(r,h) +
logm)-approximation algorithm, where r (resp. h) is the maximum number of dif-
ferent test results per test (resp. scenario) using a reduction to Adaptive Submodular
Ranking problem (Kambadur et al., 2017). In the case of large number of noisy
outcome they obtain a logm approximation exploiting the connection to Stochastic
Set Cover (Liu et al., 2008; Im et al., 2016).

Model & Definitions We describe again for convenience the explicit distributions
setting, also described in Section 5.1. In the Pandora’s Box problem we are given
n boxes, each with cost ci ⩾ 0 and value vi. The values {vi}i∈[n] are distributed
according to known distribution D. We assume that D is an arbitrary correlated
distribution over vectors {vi}i∈[n] ∈ Rn. We call vectors of values scenarios and use
s = {vi}i∈[n] to denote a possible realization of the scenario. As in DT, nature picks
a scenario from the distribution D and this realization is a priori unknown to the
algorithm. The goal of the algorithm is to pick a box of small value. The algorithm
can observe the values realized in the boxes by opening any box i at its respective
costs ci.

Output. The output of the algorithm is an adaptive policy π for opening boxes and
a stopping condition. The policy π takes as input a subset of the boxes and their
associated values, and either returns the index of a box i ∈ [n] to be opened next or
stops and selects the minimum value seen so far. That is, π : ∪X⊆[n]RX → [n] ∪ {⊥}
where ⊥ denotes stopping.

Objective. For a given policy π, let π(s) denote the set of boxes opened by the policy
prior to stopping when the realized scenario is s. The objective of the algorithm is to
minimize the expected cost of the boxes opened plus the minimum value discovered,
where the expectation is taken over all possible realizations of the values in each box.
Formally the objective is given by

Es∼D

 min
i∈π(s)

vis +
∑

i∈π(s)

ci

 ,

In this chapter we consider a more general setting, where D is a mixture of m
product distributions. Specifically, each scenario j is a product distribution; instead of

174

giving a deterministic value for every box i, the result is drawn from distribution Dij.
This setting is a generalization of the explicit distributions setting described before.

9.2 Mixture of Product Distributions

In this section we switch gears and consider the case where we are given a mixture of
m product distributions. Observe that using the tool described in Section 5.3.1.1, we
can reduce this problem to PB⩽T . This now is equivalent to the noisy version of DT
(Golovin and Krause, 2017; Jia et al., 2019) where for a specific scenario, the result of
each test is not deterministic and can get different values with different probabilities.

Comparison with previous work: previous work on noisy decision tree, considers
limited noise models or the runtime and approximation ratio depends on the type
of noise. For example in the main result of Jia et al. (2019), the noise outcomes are
binary with equal probability. The authors mention that it is possible to extend the
following ways:

• to probabilities within [δ, 1 − δ], incurring an extra 1/δ factor in the approxima-
tion

• to non-binary noise outcomes, incurring an extra at most m factor in the ap-
proximation

Additionally, their algorithm works by expanding the scenarios for every possible
noise outcome (e.g. to 2m for binary noise). In our work the number of noisy outcomes
does not affect the number of scenarios whatsoever.

In our work, we obtain a constant approximation factor, that does not depend in
any way on the type of the noise. Additionally, the outcomes of the noisy tests can be
arbitrary, and do not affect either the approximation factor or the runtime. We only
require a separability condition to hold ; the distributions either differ enough or are
exactly the same. Formally, we require that for any two scenarios s1, s2 ∈ S and for
every box i, the distributions Dis1 and Dis2 satisfy |Dis1 −Dis2 | ∈ R⩾ε ∪ {0}, where
|A−B| is the total variation distance of distributions A and B.

175

9.2.1 A DP Algorithm for noisy PB⩽T

We move on to designing a dynamic programming algorithm to solve the PB⩽T

problem, in the case of a mixtures of product distributions. The guarantees of our
dynamic programming algorithm are given in the following theorem.

Theorem 9.1. For any β > 0, let πDP and π∗ be the policies produced by Algorithm DP(β)
described by Equation (9.1) and the optimal policy respectively and UB = m2

ε2 log m2T
cminβ

. Then
it holds that

c(πDP) ⩽ (1 + β)c(π∗).

and the DP runs in time nUB, where n is the number of boxes and cmin is the minimum cost
box.

Using the reduction described in Section 5.3.1.1 and the previous theorem we can
get a constant-approximation algorithm for the initial PB problem given a mixture
of product distributions. Observe that in the reduction, for every instance of PB⩽T

it runs, the chosen threshold T satisfies that T ⩽ (β + 1)c(π∗
T)/0.2 where π∗

T is the
optimal policy for the threshold T . The inequality holds since the algorithm for the
threshold T is a (β + 1) approximation and it covers 80% of the scenarios left (i.e.
pays 0.2T for the rest). This is formalized in the following corollary.

Corollary 9.2. Given an instance of PB on m scenarios, and the DP algorithm described in
Equation (9.1), then using Algorithm 9 we obtain an O(1)-approximation algorithm for PB
that runs in nÕ(m2/ε2).

Observe that the naive DP, that keeps track of all the boxes and possible outcomes,
has space exponential in the number of boxes, which can be very large. In our DP, we
exploit the separability property of the distributions by distinguishing the boxes in
two different types based on a given set of scenarios. Informally, the informative boxes
help us distinguish between two scenarios, by giving us enough TV distance, while
the non-informative always have zero TV distance. The formal definition follows.

Definition 9.3 (Informative and non-informative boxes). Let S ⊆ S be a set of scenarios.
Then we call a box k informative if there exist si, sj ∈ S such that

|Dksi −Dksj | ⩾ ε.

176

We denote the set of all informative boxes by IB(S). Similarly, the boxes for which the above
does not hold are called non-informative and the set of these boxes is denoted by NIB(S).

Recursive calls of the DP: Our dynamic program chooses at every step one of the
following options:

1. open an informative box: this step contributes towards eliminating improbable
scenarios. From the definition of informative boxes, every time such a box is
opened, it gives TV distance at least ε between at least two scenarios, making
one of them more probable than the other. We show (Lemma 9.4) that it takes
a finite amount of these boxes to decide, with high probability, which scenario
is the one realized (i.e. eliminating all but one scenarios).

2. open a non-informative box: this is a greedy step; the best non-informative box
to open next is the one that maximizes the probability of finding a value smaller
than T . Given a set S of scenarios that are not yet eliminated, there is a unique
next non-informative box which is best. We denote by NIB∗(S) the function that
returns this next best non-informative box. Observe that the non-informative
boxes do not affect the greedy ordering of which is the next best, since they do
not affect which scenarios are eliminated.

State space of the DP: the DP keeps track of the following three quantities:

1. a list M which consists of sets of informative boxes opened and numbers of
non-informative ones opened in between the sets of informative ones. Specifi-
cally, M has the following form: M = S1|x1|S2|x2| . . . |SL|xL

2 where Si is a set of
informative boxes, and xi ∈ N is the number of non-informative boxes opened
exactly after the boxes in set Si. We also denote by IB(M) the informative boxes
in the list M.

In order to update M at every recursive call, we either append a new informative
box bi opened (denoted by M|bi) or, when a non-informative box is opened,
we add 1 at the end, denoted by M+ 1.

2. a list E of m2 tuples of integers (zij, tij), one for each pair of distinct scenarios
(si, sj) with i, j ∈ [m]. The number zij keeps track of the number of informative

2If bi for i ∈ [n] are boxes, the list M looks like this: b3b6b13|5|b42b1|6|b2

177

boxes between si and sj that the value discovered had higher probability for
scenario si, and the number tij is the total number of informative for scenarios
si and sj opened. Every time an informative box is opened, we increase the tij

variables for the scenarios the box was informative and add 1 to the zij if the
value discovered had higher probability in si. When a non-informative box is
opened, the list remains the same.We denote this update by E++.

3. a list S of the scenarios not yet eliminated. Every time an informative test is
performed, and the list E updated, if for some scenario si there exists another
scenario sj such that tij > 1/ε2 log(1/δ) and |zij − E [zij|si] | ⩽ ε/2 then sj is
removed from S, otherwise si is removed3. This update is denoted by S++.

Base cases: if a value below T is found, the algorithm stops. The other base case is
when |S| = 1, which means that the scenario realized is identified, we either take the
outside option T or search the boxes for a value below T , whichever is cheapest. If the
scenario is identified correctly, the DP finds the expected optimal for this scenario.
We later show that we make a mistake only with low probability, thus increasing the
cost only by a constant factor. We denote by Nat(·, ·, ·) the “nature’s" move, where the
value in the box we chose is realized, and Sol(·, ·, ·) is the minimum value obtained
by opening boxes. The recursive formula is shown below.

Sol(M,E,S) =

min(T , cNIB∗(S) + Nat(M+1,E,S)) if |S| = 1

min
(
T , min

i∈IB(M)
(ci+ Nat(M|i,E,S))

, cNIB∗(S) + Nat(M+1,E,S)
)

else

Nat(M,E,S) =

0 if vlast box opened ⩽ T

Sol(M,E++,S++) else

(9.1)

The final solution is DP(β) = Sol(∅,E0, S), where E0 is a list of tuples of the form (0, 0),
and in order to update S we set δ = βcmin/(m

2T).

Lemma 9.4. Let s1, s2 ∈ S be any two scenarios. Then after opening log(1/δ)
ε2 informative

boxes, we can eliminate one scenario with probability at least 1 − δ.

We defer the proof of this lemma and Theorem 9.1 to the Appendix that follows.
3This is the process of elimination in the proof of Lemma 9.4

178

9.A Appendix for Chapter 9

Lemma 9.4. Let s1, s2 ∈ S be any two scenarios. Then after opening log(1/δ)
ε2 informative

boxes, we can eliminate one scenario with probability at least 1 − δ.

Proof. Let s1, s2 ∈ S be any two scenarios in the instance of PB and let vi be the value
returned by opening the i’th informative box, which has distributions Dis1 and Dis2

for scenarios s1 and s2 respectively. Then by the definition of informative boxes for
every such box opened, there is a set of values v for which PrDis1

[v] ⩾ PrDis2
[v] and a

set for which the reverse holds. Denote these sets by Ms1
i and Ms2

i respectively. We
also define the indicator variables Xs1

i = 1{vi ∈Ms1
i }. Define X =

∑
i∈[k] X

s1
i /k, and

observe that E
[
X|s1

]
=

∑
i∈[k] Pr [Ms1

i] /k. Since for every box we have an ε gap in
TV distance between the scenarios s1, s2 we have that

∣∣E [X|s1
]
− E

[
X|s2

]∣∣ ⩾ ε,

therefore if
∣∣X− E

[
X|s1

]∣∣ ⩽ ε/2 we conclude that scenario s2 is eliminated, otherwise
we eliminate scenario s1. The probability of error is PrDis1

[
X− E

[
X|s1

]
> ε/2

]
⩽

e−2k(ε/2)2 , where we used Hoeffding’s inequality since Xi ∈ {0, 1}. Since we want
the probability of error to be less than δ, we need to open O

(
log 1/δ

ε2

)
informative

boxes.

Proof of Theorem 9.1. We describe how to bound the final cost, and calculate the run-
time of the DP. Denote by L = m2/ε2 log 1/δ where we show that in order to get
(1 + β)-approximation we set δ = βcmin

m2T .

Cost of the final solution. Observe that the only case where the DP limits the search
space is when |S| = 1. If the scenario is identified correctly, the DP finds the optimal
solution by running the greedy order; every time choosing the box with the highest
probability of a value below T 4.

In order to eliminate all scenarios but one, we should eliminate all but one of
the m2 pairs in the list E. From Lemma 9.4, and a union bound on all m2 pairs,
the probability of the last scenario being the wrong one is at most m2δ. By setting
δ = βcmin/(m

2T), we get that the probability of error is at most βcmin/T , in which
case we pay at most T , therefore getting an extra βcmin ⩽ βc(π∗) factor.

4When there is only one scenario, this is exactly Weitzman’s algorithm.

179

Runtime. The DP maintains a list M of sets of informative boxes opened, and
numbers of non informative ones. Recall that M has the following form M =

S1|x1|S2|x2| . . . |Sk|xk, where k ⩽ L from Lemma 9.4 and the fact that there are m2

pairs in E. There are in total n boxes, and L “positions" for them, therefore the size
of the state space is

(
n
L

)
= O(nL). There is also an extra n factor for searching in the

list of informative boxes at every step of the recursion. Observe that the numbers of
non-informative boxes also add a factor of at most n in the state space. The list E adds
another factor at most nm2 , and the list S a factor of 2m making the total runtime to
be nÕ(m2/ε2).

180

references

Abbasi-Yadkori, Yasin, Dávid Pál, and Csaba Szepesvári. 2011. Improved algorithms
for linear stochastic bandits. In Advances in neural information processing systems 24:
25th annual conference on neural information processing systems 2011. proceedings of a
meeting held 12-14 december 2011, granada, spain, ed. John Shawe-Taylor, Richard S.
Zemel, Peter L. Bartlett, Fernando C. N. Pereira, and Kilian Q. Weinberger, 2312–2320.

Abe, Naoki, and Philip M. Long. 1999. Associative reinforcement learning using
linear probabilistic concepts. In Proceedings of the sixteenth international conference on
machine learning (ICML 1999), bled, slovenia, june 27 - 30, 1999, ed. Ivan Bratko and
Saso Dzeroski, 3–11. Morgan Kaufmann.

Abernethy, Jacob D., Elad Hazan, and Alexander Rakhlin. 2008. Competing in the
dark: An efficient algorithm for bandit linear optimization. In 21st annual conference
on learning theory - COLT 2008, helsinki, finland, july 9-12, 2008, ed. Rocco A. Servedio
and Tong Zhang, 263–274. Omnipress.

Adler, Micah, and Brent Heeringa. 2012. Approximating optimal binary decision
trees. Algorithmica 62(3-4):1112–1121.

Agarwal, Alekh, Ofer Dekel, and Lin Xiao. 2010. Optimal algorithms for online
convex optimization with multi-point bandit feedback. In COLT 2010 - the 23rd
conference on learning theory, haifa, israel, june 27-29, 2010, ed. Adam Tauman Kalai
and Mehryar Mohri, 28–40. Omnipress.

Ailon, Nir, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. 2006. Self-
improving algorithms. In Proceedings of the seventeenth annual ACM-SIAM symposium
on discrete algorithms, SODA 2006, miami, florida, usa, january 22-26, 2006, 261–270.

Alabi, Daniel, Adam Tauman Kalai, Katrina Ligett, Cameron Musco, Christos
Tzamos, and Ellen Vitercik. 2019. Learning to prune: Speeding up repeated compu-
tations. In Conference on learning theory, COLT 2019, 25-28 june 2019, phoenix, az, USA,
30–33.

Aouad, Ali, Jingwei Ji, and Yaron Shaposhnik. 2020. The pandora’s box problem
with sequential inspections. Available at SSRN 3726167.

181

Atsidakou, Alexia, Constantine Caramanis, Evangelia Gergatsouli, Orestis Pa-
padigenopoulos, and Christos Tzamos. 2024. Contextual pandora’s box. In Proceed-
ings of the aaai conference on artificial intelligence, vol. 38, 10944–10952.

Azar, Pablo Daniel, Robert Kleinberg, and S. Matthew Weinberg. 2014. Prophet
inequalities with limited information. In Proceedings of the twenty-fifth annual ACM-
SIAM symposium on discrete algorithms, SODA 2014, portland, oregon, usa, january 5-7,
2014, ed. Chandra Chekuri, 1358–1377. SIAM.

Azar, Yossi, and Iftah Gamzu. 2011. Ranking with submodular valuations. In
Proceedings of the twenty-second annual ACM-SIAM symposium on discrete algorithms,
SODA 2011, san francisco, california, usa, january 23-25, 2011, 1070–1079.

Azar, Yossi, Iftah Gamzu, and Xiaoxin Yin. 2009. Multiple intents re-ranking. In
Proceedings of the 41st annual ACM symposium on theory of computing, STOC 2009,
bethesda, md, usa, may 31 - june 2, 2009, 669–678.

Balcan, Maria-Florina, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. 2018a.
Learning to branch. In Proceedings of the 35th international conference on machine
learning, ICML 2018, stockholmsmässan, stockholm, sweden, july 10-15, 2018, 353–362.

Balcan, Maria-Florina, Travis Dick, and Ellen Vitercik. 2018b. Dispersion for data-
driven algorithm design, online learning, and private optimization. In 59th IEEE
annual symposium on foundations of computer science, FOCS 2018, paris, france, october
7-9, 2018, 603–614.

Balcan, Maria-Florina, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. 2017.
Learning-theoretic foundations of algorithm configuration for combinatorial parti-
tioning problems. In Proceedings of the 30th conference on learning theory, COLT 2017,
amsterdam, the netherlands, 7-10 july 2017, 213–274.

Bansal, Nikhil, Jatin Batra, Majid Farhadi, and Prasad Tetali. 2023. On min sum
vertex cover and generalized min sum set cover. SIAM Journal on Computing 52(2):
327–357. https://doi.org/10.1137/21M1434052.

Bansal, Nikhil, Anupam Gupta, and Ravishankar Krishnaswamy. 2010. A constant
factor approximation algorithm for generalized min-sum set cover. In Proceedings
of the twenty-first annual ACM-SIAM symposium on discrete algorithms, SODA 2010,
austin, texas, usa, january 17-19, 2010, 1539–1545.

https://doi.org/10.1137/21M1434052

182

Basiak, Mateusz, Marcin Bienkowski, and Agnieszka Tatarczuk. 2023. An improved
deterministic algorithm for the online min-sum set cover problem. In International
workshop on approximation and online algorithms, 45–58. Springer.

Bechtel, Curtis, Shaddin Dughmi, and Neel Patel. 2022. Delegated pandora’s box. In
Proceedings of the 23rd acm conference on economics and computation, 666–693.

Berger, Ben, Tomer Ezra, Michal Feldman, and Federico Fusco. 2023. Pandora’s
problem with combinatorial cost. In Proceedings of the 24th acm conference on economics
and computation, 273–292. EC ’23, New York, NY, USA: Association for Computing
Machinery.

Bertsimas, Dimitris, and Jack Dunn. 2017. Optimal classification trees. Mach. Learn.
106(7):1039–1082.

Beyhaghi, Hedyeh, and Linda Cai. 2023a. Pandora’s problem with nonobligatory
inspection: Optimal structure and a PTAS. In Proceedings of the 55th annual ACM
symposium on theory of computing, STOC 2023, orlando, fl, usa, june 20-23, 2023, ed.
Barna Saha and Rocco A. Servedio, 803–816. ACM.

———. 2023b. Recent developments in pandora’s box problem: Variants and appli-
cations. SIGecom Exchanges 21(1):20–34.

Beyhaghi, Hedyeh, and Robert Kleinberg. 2019. Pandora’s problem with nonobliga-
tory inspection. In Proceedings of the 2019 ACM conference on economics and computation,
EC 2019, phoenix, az, usa, june 24-28, 2019, ed. Anna Karlin, Nicole Immorlica, and
Ramesh Johari, 131–132. ACM.

Bienkowski, Marcin, and Marcin Mucha. 2023. An improved algorithm for online
min-sum set cover. In Proceedings of the aaai conference on artificial intelligence, vol. 37,
6815–6822.

Blair, Charles E. 1985. Problem complexity and method efficiency in optimization (a.
s. nemirovsky and d. b. yudin). Siam Review 27:264–265.

Blumer, Anselm, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.
1989. Learnability and the vapnik-chervonenkis dimension. J. ACM 36(4):929–965.

Boodaghians, Shant, Federico Fusco, Philip Lazos, and Stefano Leonardi. 2020. Pan-
dora’s box problem with order constraints. In EC ’20: The 21st ACM conference on

183

economics and computation, virtual event, hungary, july 13-17, 2020, ed. Péter Biró,
Jason D. Hartline, Michael Ostrovsky, and Ariel D. Procaccia, 439–458. ACM.

Bubeck, Sébastien, Michael B. Cohen, and Yuanzhi Li. 2018. Sparsity, variance and
curvature in multi-armed bandits. In Algorithmic learning theory, ALT 2018, 7-9 april
2018, lanzarote, canary islands, spain, ed. Firdaus Janoos, Mehryar Mohri, and Karthik
Sridharan, vol. 83 of Proceedings of Machine Learning Research, 111–127. PMLR.

Bubeck, Sébastien, and Ronen Eldan. 2015. The entropic barrier: a simple and
optimal universal self-concordant barrier. In Proceedings of the 28th conference on
learning theory, COLT 2015, paris, france, july 3-6, 2015, ed. Peter Grünwald, Elad
Hazan, and Satyen Kale, vol. 40 of JMLR Workshop and Conference Proceedings, 279.
JMLR.org.

Caramanis, Constantine, Paul Dütting, Matthew Faw, Federico Fusco, Philip Lazos,
Stefano Leonardi, Orestis Papadigenopoulos, Emmanouil Pountourakis, and Rebecca
Reiffenhäuser. 2022. Single-sample prophet inequalities via greedy-ordered selection.
In Proceedings of the 2022 ACM-SIAM symposium on discrete algorithms, SODA 2022,
virtual conference / alexandria, va, usa, january 9 - 12, 2022, ed. Joseph (Seffi) Naor and
Niv Buchbinder, 1298–1325. SIAM.

Cesa-Bianchi, Nicolò, and Gábor Lugosi. 2006. Prediction, learning, and games.

Chakaravarthy, Venkatesan T., Vinayaka Pandit, Sambuddha Roy, Pranjal Awasthi,
and Mukesh K. Mohania. 2011. Decision trees for entity identification: Approxima-
tion algorithms and hardness results. ACM Trans. Algorithms 7(2):15:1–15:22.

Chakaravarthy, Venkatesan T., Vinayaka Pandit, Sambuddha Roy, and Yogish Sab-
harwal. 2009. Approximating decision trees with multiway branches. In Automata,
languages and programming, 36th international colloquium, ICALP 2009, rhodes, greece,
july 5-12, 2009, proceedings, part I, ed. Susanne Albers, Alberto Marchetti-Spaccamela,
Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, vol. 5555 of Lecture Notes
in Computer Science, 210–221. Springer.

Charikar, Moses, Ronald Fagin, Venkatesan Guruswami, Jon M. Kleinberg, Prab-
hakar Raghavan, and Amit Sahai. 2000. Query strategies for priced information
(extended abstract). In Proceedings of the thirty-second annual ACM symposium on
theory of computing, may 21-23, 2000, portland, or, USA, 582–591.

184

Chawla, Shuchi, Evangelia Gergatsouli, Jeremy McMahan, and Christos Tzamos.
2023. Approximating pandora’s box with correlations. In Approximation, random-
ization, and combinatorial optimization. algorithms and techniques, APPROX/RANDOM
2023, september 11-13, 2023, atlanta, georgia, USA, ed. Nicole Megow and Adam D.
Smith, vol. 275 of LIPIcs, 26:1–26:24. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik.

Chawla, Shuchi, Evangelia Gergatsouli, Yifeng Teng, Christos Tzamos, and Ruimin
Zhang. 2020. Pandora’s box with correlations: Learning and approximation. In 61st
IEEE annual symposium on foundations of computer science, FOCS 2020, durham, nc, usa,
november 16-19, 2020, 1214–1225. IEEE.

Chen, Yuxin, S. Hamed Hassani, Amin Karbasi, and Andreas Krause. 2015a. Se-
quential information maximization: When is greedy near-optimal? In Proceedings of
the 28th conference on learning theory, COLT 2015, paris, france, july 3-6, 2015, 338–363.

Chen, Yuxin, Shervin Javdani, Amin Karbasi, J. Andrew Bagnell, Siddhartha S. Srini-
vasa, and Andreas Krause. 2015b. Submodular surrogates for value of information.
In Proceedings of the twenty-ninth AAAI conference on artificial intelligence, january 25-30,
2015, austin, texas, USA., 3511–3518.

Cicalese, Ferdinando, Tobias Jacobs, Eduardo Sany Laber, and Marco Molinaro.
2010. On greedy algorithms for decision trees. In Algorithms and computation -
21st international symposium, ISAAC 2010, jeju island, korea, december 15-17, 2010,
proceedings, part II, ed. Otfried Cheong, Kyung-Yong Chwa, and Kunsoo Park, vol.
6507 of Lecture Notes in Computer Science, 206–217. Springer.

Clarkson, Kenneth L., Wolfgang Mulzer, and C. Seshadhri. 2010. Self-improving
algorithms for convex hulls. In Proceedings of the twenty-first annual ACM-SIAM
symposium on discrete algorithms, SODA 2010, austin, texas, usa, january 17-19, 2010,
1546–1565.

Correa, José, Andrés Cristi, Boris Epstein, and José A Soto. 2024. Sample-driven opti-
mal stopping: From the secretary problem to the iid prophet inequality. Mathematics
of Operations Research 49(1):441–475.

Correa, José R., Andrés Cristi, Boris Epstein, and José A. Soto. 2020. The two-sided
game of googol and sample-based prophet inequalities. In Proceedings of the 2020

185

ACM-SIAM symposium on discrete algorithms, SODA 2020, salt lake city, ut, usa, january
5-8, 2020, ed. Shuchi Chawla, 2066–2081. SIAM.

Correa, José R., Paul Dütting, Felix A. Fischer, and Kevin Schewior. 2019. Prophet
inequalities for I.I.D. random variables from an unknown distribution. In Proceedings
of the 2019 ACM conference on economics and computation, EC 2019, phoenix, az, usa,
june 24-28, 2019, ed. Anna Karlin, Nicole Immorlica, and Ramesh Johari, 3–17. ACM.

Correa, José R., Patricio Foncea, Ruben Hoeksma, Tim Oosterwijk, and Tjark Vrede-
veld. 2018. Recent developments in prophet inequalities. SIGecom Exchanges 17(1):
61–70.

Dani, Varsha, Thomas P. Hayes, and Sham M. Kakade. 2008. Stochastic linear
optimization under bandit feedback. In 21st annual conference on learning theory -
COLT 2008, helsinki, finland, july 9-12, 2008, ed. Rocco A. Servedio and Tong Zhang,
355–366. Omnipress.

Dasgupta, Sanjoy. 2004. Analysis of a greedy active learning strategy. In Advances in
neural information processing systems 17 [neural information processing systems, NIPS
2004, december 13-18, 2004, vancouver, british columbia, canada], 337–344.

Dinur, Irit, and David Steurer. 2014. Analytical approach to parallel repetition. In
Symposium on theory of computing, STOC 2014, new york, ny, usa, may 31 - june 03, 2014,
624–633.

Doval, Laura. 2018. Whether or not to open pandora’s box. Journal of Economic Theory
175:127–158.

Drygala, Marina, Sai Ganesh Nagarajan, and Ola Svensson. 2023. Online algorithms
with costly predictions. In Proceedings of the 26th international conference on artificial
intelligence and statistics, ed. Francisco Ruiz, Jennifer Dy, and Jan-Willem van de
Meent, vol. 206 of Proceedings of Machine Learning Research, 8078–8101. PMLR.

Dumitriu, Ioana, Prasad Tetali, and Peter Winkler. 2003. On playing golf with two
balls. SIAM Journal on Discrete Mathematics 16(4):604–615.

Esfandiari, Hossein, Mohammad Taghi Hajiaghayi, Brendan Lucier, and Michael
Mitzenmacher. 2019. Online pandora’s boxes and bandits. In The thirty-third AAAI
conference on artificial intelligence, AAAI 2019, the thirty-first innovative applications of

186

artificial intelligence conference, IAAI 2019, the ninth AAAI symposium on educational
advances in artificial intelligence, EAAI 2019, honolulu, hawaii, usa, january 27 - february
1, 2019, 1885–1892. AAAI Press.

Feige, Uriel, László Lovász, and Prasad Tetali. 2002. Approximating min-sum set
cover. In Approximation algorithms for combinatorial optimization, 5th international
workshop, APPROX 2002, rome, italy, september 17-21, 2002, proceedings, 94–107.

Feige, Uriel, László Lovász, and Prasad Tetali. 2004. Approximating min sum set
cover. Algorithmica 40(4):219–234.

Flaxman, Abraham, Adam Tauman Kalai, and H. Brendan McMahan. 2005. Online
convex optimization in the bandit setting: gradient descent without a gradient. In
Proceedings of the sixteenth annual ACM-SIAM symposium on discrete algorithms, SODA
2005, vancouver, british columbia, canada, january 23-25, 2005, 385–394. SIAM.

Foster, Dylan J., and Alexander Rakhlin. 2020. Beyond UCB: optimal and efficient
contextual bandits with regression oracles. In Proceedings of the 37th ICML 2020, 13-18
july 2020, virtual event, vol. 119 of Proceedings of Machine Learning Research, 3199–3210.
PMLR.

Fotakis, Dimitris, Thanasis Lianeas, Georgios Piliouras, and Stratis Skoulakis. 2020.
Efficient online learning of optimal rankings: Dimensionality reduction via gradient
descent. In Neurips 33: Annual conference on neural information processing systems 2020,
neurips 2020, december 6-12, 2020, virtual, ed. Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin.

Fu, Hao, Jian Li, and Pan Xu. 2018. A PTAS for a Class of Stochastic Dynamic
Programs. In Icalp’18: 45th international colloquium on automata, languages, and pro-
gramming, prague, czech republic, 56:1–56:14.

Fu, Hu, Jiawei Li, and Daogao Liu. 2023. Pandora box problem with nonobligatory
inspection: Hardness and approximation scheme. In Proceedings of the 55th annual
ACM symposium on theory of computing, STOC 2023, orlando, fl, usa, june 20-23, 2023,
ed. Barna Saha and Rocco A. Servedio, 789–802. ACM.

Fu, Hu, and Tao Lin. 2020. Learning utilities and equilibria in non-truthful auctions.
Advances in Neural Information Processing Systems 33:14231–14242.

187

Garey, M. R., and Ronald L. Graham. 1974. Performance bounds on the splitting
algorithm for binary testing. Acta Informatica 3:347–355.

Gatmiry, Khashayar, Thomas Kesselheim, Sahil Singla, and Yifan Wang. 2024. Bandit
algorithms for prophet inequality and pandora’s box. In Proceedings of the 2024 annual
acm-siam symposium on discrete algorithms (soda), 462–500. SIAM.

Gergatsouli, Evangelia, and Christos Tzamos. 2022. Online learning for min sum set
cover and pandora’s box. In International conference on machine learning, ICML 2022,
17-23 july 2022, baltimore, maryland, USA, ed. Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, vol. 162 of Proceedings of
Machine Learning Research, 7382–7403. PMLR.

———. 2024. Weitzman’s rule for pandora’s box with correlations. Advances in
Neural Information Processing Systems 36.

Gittins, J.C., and D.M. Jones. 1974. A dynamic allocation index for the sequential
design of experiments. Progress in Statistics 241–266.

Gittins, John, Kevin Glazebrook, and Richard Weber. 2011. Multi-armed bandit
allocation indices. John Wiley & Sons.

Golovin, Daniel, and Andreas Krause. 2011. Adaptive submodularity: Theory and
applications in active learning and stochastic optimization. J. Artif. Intell. Res. 42:
427–486.

———. 2017. Adaptive submodularity: A new approach to active learning and
stochastic optimization. CoRR abs/1003.3967. 1003.3967.

Golovin, Daniel, Andreas Krause, and Debajyoti Ray. 2010. Near-optimal bayesian
active learning with noisy observations. In Advances in neural information processing
systems 23: 24th annual conference on neural information processing systems 2010. proceed-
ings of a meeting held 6-9 december 2010, vancouver, british columbia, canada, ed. John D.
Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S. Zemel, and Aron
Culotta, 766–774. Curran Associates, Inc.

Grötschel, Martin, László Lovász, and Alexander Schrijver. 1981. The ellipsoid
method and its consequences in combinatorial optimization. Combinatorica 1(2):
169–197.

1003.3967

188

———. 1988. Geometric algorithms and combinatorial optimization, vol. 2 of Algorithms
and Combinatorics. Springer.

Guha, Sudipto, Kamesh Munagala, and Saswati Sarkar. 2008. Information acquisition
and exploitation in multichannel wireless networks. CoRR abs/0804.1724.

Guillory, Andrew, and Jeff A. Bilmes. 2009. Average-case active learning with costs.
In Algorithmic learning theory, 20th international conference, ALT 2009, porto, portugal,
october 3-5, 2009. proceedings, ed. Ricard Gavaldà, Gábor Lugosi, Thomas Zeugmann,
and Sandra Zilles, vol. 5809 of Lecture Notes in Computer Science, 141–155. Springer.

Guo, Chenghao, Zhiyi Huang, Zhihao Gavin Tang, and Xinzhi Zhang. 2021. General-
izing complex hypotheses on product distributions: Auctions, prophet inequalities,
and pandora’s problem. In Conference on learning theory, COLT 2021, 15-19 august
2021, boulder, colorado, USA, ed. Mikhail Belkin and Samory Kpotufe, vol. 134 of
Proceedings of Machine Learning Research, 2248–2288. PMLR.

Gupta, Anupam, Haotian Jiang, Ziv Scully, and Sahil Singla. 2019. The markovian
price of information. In Integer programming and combinatorial optimization - 20th
international conference, IPCO 2019, ann arbor, mi, usa, may 22-24, 2019, proceedings,
233–246.

Gupta, Anupam, and Amit Kumar. 2001. Sorting and selection with structured costs.
In 42nd annual symposium on foundations of computer science, FOCS 2001, 14-17 october
2001, las vegas, nevada, USA, 416–425.

Gupta, Anupam, Viswanath Nagarajan, and R. Ravi. 2017. Approximation algo-
rithms for optimal decision trees and adaptive TSP problems. Math. Oper. Res. 42(3):
876–896.

Gupta, Rishi, and Tim Roughgarden. 2017. A PAC approach to application-specific
algorithm selection. SIAM J. Comput. 46(3):992–1017.

Hazan, Elad, Zohar Karnin, and Raghu Meka. 2014. Volumetric spanners: an efficient
exploration basis for learning. In Proceedings of the 27thcolt, ed. Maria Florina Balcan,
Vitaly Feldman, and Csaba Szepesvári, vol. 35 of Proceedings of Machine Learning
Research, 408–422. Barcelona, Spain: PMLR.

189

Hill, Theodore P., and Robert P. Kertz. 1992. A survey of prophet inequalities in
optimal stopping theory. Contemporary Mathematics 125.

van der Hoeven, Dirk, Tim van Erven, and Wojciech Kotlowski. 2018. The many faces
of exponential weights in online learning. In Conference on learning theory, COLT 2018,
stockholm, sweden, 6-9 july 2018, ed. Sébastien Bubeck, Vianney Perchet, and Philippe
Rigollet, vol. 75 of Proceedings of Machine Learning Research, 2067–2092. PMLR.

Holzer, Harry J. 1988. Search method use by unemployed youth. Journal of labor
economics 6(1):1–20.

Hughes, Ifan, and Thomas Hase. 2010. Measurements and their uncertainties: a practical
guide to modern error analysis. OUP Oxford.

Hyafil, Laurent, and Ronald L. Rivest. 1976. Constructing optimal binary decision
trees is np-complete. Inf. Process. Lett. 5(1):15–17.

Im, Sungjin, Viswanath Nagarajan, and Ruben van der Zwaan. 2016. Minimum
latency submodular cover. ACM Trans. Algorithms 13(1):13:1–13:28.

Im, Sungjin, Maxim Sviridenko, and Ruben Van Der Zwaan. 2014. Preemptive and
non-preemptive generalized min sum set cover. Mathematical Programming 145(1-2):
377–401.

Jia, Su, Viswanath Nagarajan, Fatemeh Navidi, and R. Ravi. 2019. Optimal decision
tree with noisy outcomes. In Advances in neural information processing systems 32:
Annual conference on neural information processing systems 2019, neurips 2019, december
8-14, 2019, vancouver, bc, canada, ed. Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, 3298–3308.

Kambadur, Prabhanjan, Viswanath Nagarajan, and Fatemeh Navidi. 2017. Adaptive
submodular ranking. In Integer programming and combinatorial optimization - 19th
international conference, IPCO 2017, waterloo, on, canada, june 26-28, 2017, proceedings,
317–329.

Karlin, Anna R., Mark S. Manasse, Lyle A. McGeoch, and Susan S. Owicki. 1990.
Competitive randomized algorithms for non-uniform problems. In Proceedings of
the first annual ACM-SIAM symposium on discrete algorithms, 22-24 january 1990, san
francisco, california, USA, ed. David S. Johnson, 301–309. SIAM.

190

Karni, Edi, and Aba Schwartz. 1977. Search theory: The case of search with uncertain
recall. Journal of Economic Theory 16(1):38–52.

Ke, T. Tony, and J. Miguel Villas-Boas. 2019. Optimal learning before choice. J. Econ.
Theory 180:383–437.

Kleinberg, Robert, Kevin Leyton-Brown, and Brendan Lucier. 2017. Efficiency
through procrastination: Approximately optimal algorithm configuration with run-
time guarantees. In Proceedings of the twenty-sixth international joint conference on
artificial intelligence, IJCAI 2017, melbourne, australia, august 19-25, 2017, 2023–2031.

Kleinberg, Robert, Bo Waggoner, and E. Glen Weyl. 2016. Descending price op-
timally coordinates search. In Proceedings of the 2016 acm conference on economics
and computation, 23–24. EC ’16, New York, NY, USA: Association for Computing
Machinery.

Kosaraju, S. Rao, Teresa M. Przytycka, and Ryan S. Borgstrom. 1999. On an optimal
split tree problem. In Algorithms and data structures, 6th international workshop, WADS
’99, vancouver, british columbia, canada, august 11-14, 1999, proceedings, ed. Frank K.
H. A. Dehne, Arvind Gupta, Jörg-Rüdiger Sack, and Roberto Tamassia, vol. 1663 of
Lecture Notes in Computer Science, 157–168. Springer.

Lattimore, Tor, and Csaba Szepesvári. 2020. Bandit algorithms. Cambridge University
Press.

Li, Ray, Percy Liang, and Stephen Mussmann. 2020. A tight analysis of greedy yields
subexponential time approximation for uniform decision tree. In Proceedings of the
2020 ACM-SIAM symposium on discrete algorithms, SODA 2020, salt lake city, ut, usa,
january 5-8, 2020, ed. Shuchi Chawla, 102–121. SIAM.

Liu, Zhen, Srinivasan Parthasarathy, Anand Ranganathan, and Hao Yang. 2008. Near-
optimal algorithms for shared filter evaluation in data stream systems. In Proceedings
of the ACM SIGMOD international conference on management of data, SIGMOD 2008,
vancouver, bc, canada, june 10-12, 2008, ed. Jason Tsong-Li Wang, 133–146. ACM.

Loveland, Donald W. 1985. Performance bounds for binary testing with arbitrary
weights. Acta Informatica 22(1):101–114.

191

Lucier, Brendan. 2017. An economic view of prophet inequalities. SIGecom Exchanges
16(1):24–47.

Ma, Mingchen, and Christos Tzamos. 2023. Buying information for stochastic op-
timization. In International conference on machine learning, ICML 2023, 23-29 july
2023, honolulu, hawaii, USA, ed. Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, vol. 202 of Proceedings of
Machine Learning Research, 23388–23411. PMLR.

McCall, Brian, and John McCall. 2007. The economics of search. Routledge.

McCall, John Joseph. 1970. Economics of information and job search. The Quarterly
Journal of Economics 84(1):113–126.

Miller, Robert A. 1984. Job matching and occupational choice. Journal of Political
economy 92(6):1086–1120.

Moffat, Robert J. 1988. Describing the uncertainties in experimental results. Experi-
mental thermal and fluid science 1(1):3–17.

Moorthy, Sridhar, Brian T Ratchford, and Debabrata Talukdar. 1997. Consumer
information search revisited: Theory and empirical analysis. Journal of consumer
research 23(4):263–277.

Mortensen, Dale T. 1986. Job search and labor market analysis. Handbook of labor
economics 2:849–919.

Munagala, Kamesh, Shivnath Babu, Rajeev Motwani, and Jennifer Widom. 2005.
The pipelined set cover problem. In Database theory - ICDT 2005, 10th international
conference, edinburgh, uk, january 5-7, 2005, proceedings, ed. Thomas Eiter and Leonid
Libkin, vol. 3363 of Lecture Notes in Computer Science, 83–98. Springer.

Myerson, Roger B. 1981. Optimal auction design. Math. Oper. Res. 6(1):58–73.

Nan, Feng, and Venkatesh Saligrama. 2017. Comments on the proof of adaptive
stochastic set cover based on adaptive submodularity and its implications for the
group identification problem in "group-based active query selection for rapid diag-
nosis in time-critical situations". IEEE Trans. Inf. Theory 63(11):7612–7614.

192

Pattipati, Krishna R., and Mahesh Dontamsetty. 1992. On a generalized test sequenc-
ing problem. IEEE Trans. Syst. Man Cybern. 22(2):392–396.

Podgorelec, Vili, Peter Kokol, Bruno Stiglic, and Ivan Rozman. 2002. Decision trees:
An overview and their use in medicine. Journal of medical systems 26:445–63.

Quan, Daniel C, and John M Quigley. 1991. Price formation and the appraisal
function in real estate markets. The Journal of Real Estate Finance and Economics 4:
127–146.

Rabinovich, Semyon G. 2006. Measurement errors and uncertainties: theory and practice.
Springer Science & Business Media.

Ratchford, Brian T. 1982. Cost-benefit models for explaining consumer choice and
information seeking behavior. Management Science 28(2):197–212.

Rokach, Lior, and Oded Maimon. 2014. Data mining with decision trees - theory and
applications. 2nd edition, vol. 81 of Series in Machine Perception and Artificial Intelligence.
WorldScientific.

Rothschild, Michael. 1978. Models of market organization with imperfect informa-
tion: A survey. In Uncertainty in economics, 459–491. Elsevier.

Roughgarden, Tim. 2021. Beyond the worst-case analysis of algorithms. Cambridge
University Press.

Rubinstein, Aviad, Jack Z. Wang, and S. Matthew Weinberg. 2020. Optimal single-
choice prophet inequalities from samples. In 11th innovations in theoretical computer
science conference, ITCS 2020, january 12-14, 2020, seattle, washington, USA, ed. Thomas
Vidick, vol. 151 of LIPIcs, 60:1–60:10. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik.

Rusmevichientong, Paat, and John N. Tsitsiklis. 2010. Linearly parameterized bandits.
Math. Oper. Res. 35(2):395–411.

Safavian, S.R., and D. Landgrebe. 1991. A survey of decision tree classifier method-
ology. IEEE Transactions on Systems, Man, and Cybernetics 21(3):660–674.

Segev, Danny, and Sahil Singla. 2021. Efficient approximation schemes for stochastic
probing and prophet problems. In EC ’21: The 22nd ACM conference on economics and

193

computation, budapest, hungary, july 18-23, 2021, ed. Péter Biró, Shuchi Chawla, and
Federico Echenique, 793–794. ACM.

Seldin, Yevgeny, Peter Bartlett, Koby Crammer, and Yasin Abbasi-Yadkori. 2014.
Prediction with limited advice and multiarmed bandits with paid observations. In
Proceedings of the 31st international conference on machine learning, ed. Eric P. Xing
and Tony Jebara, vol. 32 of Proceedings of Machine Learning Research, 280–287. Bejing,
China: PMLR.

Shalev-Shwartz, Shai. 2012. Online learning and online convex optimization. Found.
Trends Mach. Learn. 4(2):107–194.

Shalev-Shwartz, Shai, and Yoram Singer. 2007a. A primal-dual perspective of online
learning algorithms. Mach. Learn. 69(2-3):115–142.

———. 2007b. A primal-dual perspective of online learning algorithms. Mach. Learn.
69(2-3):115–142.

Simonson, Itamar, Joel Huber, and John Payne. 1988. The relationship between prior
brand knowledge and information acquisition order. Journal of consumer research
14(4):566–578.

Singla, Sahil. 2018. The price of information in combinatorial optimization. In
Proceedings of the twenty-ninth annual ACM-SIAM symposium on discrete algorithms,
SODA 2018, new orleans, la, usa, january 7-10, 2018, 2523–2532.

Skutella, Martin, and David P. Williamson. 2011. A note on the generalized min-sum
set cover problem. Oper. Res. Lett. 39(6):433–436.

Stigler, George J. 1961. The economics of information. Journal of political economy
69(3):213–225.

Tsitsiklis, John N. 1994. A short proof of the gittins index theorem. The Annals of
Applied Probability 194–199.

Valko, Michal, Rémi Munos, Branislav Kveton, and Tomáš Kocák. 2014. Spectral
bandits for smooth graph functions. In Proceedings of the 31th international conference on
machine learning, ICML 2014, beijing, china, 21-26 june 2014, vol. 32 of JMLR Workshop
and Conference Proceedings, 46–54. JMLR.org.

194

Weber, Richard. 1992. On the gittins index for multiarmed bandits. The Annals of
Applied Probability 1024–1033.

Weisz, Gellert, Andras Gyorgy, and Csaba Szepesvari. 2018. Leapsandbounds: A
method for approximately optimal algorithm configuration. In International conference
on machine learning, 5257–5265.

Weitzman, Martin L. 1979. Optimal Search for the Best Alternative. Econometrica
47(3):641–654.

Whittle, Peter. 1980. Multi-armed bandits and the gittins index. Journal of the Royal
Statistical Society: Series B (Methodological) 42(2):143–149.

Wilde, Louis L. 1980. The economics of consumer information acquisition. Journal of
Business S143–S158.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Our Contributions
	Bibliographic Notes

	Non-parametric Benchmarks
	Introduction & Overview of Results
	Related work
	Overview of Results

	Partially-Adaptive: Initial approach
	Model & Definitions
	Pandora's Box vs Partially-Adaptive
	More complex constraints
	Appendix for Chapter 3

	Partially Adaptive: A simpler approach
	Preliminaries
	Generalizing Weitzman's Algorithm
	Conditioning on Vb> b
	Conditioning on Vb=v
	Appendix for Chapter 4

	Fully Adaptive
	Preliminaries
	Roadmap of the Reductions and Implications
	Connecting Pandora’s Box and MSSCf
	Connecting MSSCf and Optimal Decision Tree
	Appendix for Chapter 5

	Robustness in the prior knowledge
	Introduction & Overview of Results
	Overview of Results

	Sample access to distribution
	Competing with the Partially-Adaptive
	Appendix for Chapter 7

	Unknown distributions: an Online Pandora's Box Problem
	Worst Case distributions
	Adding Context
	Appendix for Chapter 8

	Noisy Observations
	Noisy Decision Tree
	Mixture of Product Distributions
	Appendix for Chapter 9

	References

