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ABSTRACT 
 

Microbial communities underlie an enormous number of natural processes, yet we have only 

recently begun to build a predictive understanding of their ecological and evolutionary dynamics. 

Modeling complex communities requires knowledge of the patterns of ecological interactions and 

their frequency dependence within and between species. The dearth of available information about 

the pattern and type of microbial interactions has limited our comprehension of ecological systems 

and our ability to engineer microbial consortia. Here, I use a variety of approaches to uncover how 

interactions shape the community and population ecology of a genus of naturally antibiotic 

producing bacteria, Streptomyces. I find that the outcome of laboratory competitions between 

strains is often surprisingly sensitive to the initial relative abundance of the strains. Furthermore, 

I find that even individual cells of the same strain can have dramatically different numbers of 

descendants after growing together for a short amount of time. Both of these results are linked to 

inter- and intra-species interactions that may be mediated by antibiotics or other small molecules. 

Hence, two overarching conclusions are drawn: (i) the importance of frequency dependence in 

determining the effects of interactions and (ii) that experiments with relatively simple microbial 

communities can lead to unexpected results. These conclusions have several immediate 

implications for how we undertake predictive modeling of microbial communities. They indicate 

that interactions exhibit inherent nonlinearities that predispose the communities to multiple stable 

states and make developing predictive models more difficult. Also, these results suggest that it is 

worthwhile to continue developing an understanding of simple microbial communities that can 

serve as a foundation for models attempting to predict dynamics in communities as complex as 

those regularly encountered in natural systems. 
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CHAPTER 1: INTRODUCTION 
 

It is currently, by many accounts, an amazing time period in which to live. The pace of change and 

our ability to affect the future are seemingly beyond that of almost any other time in history. This 

is particularly true in the broad field of biology, where we are just beginning to comprehend and 

manipulate our natural world. Having come from engineering, I was relatively unfamiliar with 

biology when I first began graduate school. Since day one I have found studying biology to be awe 

inspiring: as if I am an explorer at the forefront of a great expedition. Where it will take us I cannot 

know, but it is clear that an incredible journey lays ahead. 

Of the several excursions I have so far taken into the realm of biology, three are included 

in this thesis, and I present them in the order in which they occurred. The first project involves 

understanding how interactions between different organisms shapes their ecological network. The 

second project delves into one of the obstacles uncovered during the first project, that is, how to 

overcome errors associated with high-throughput DNA sequencing. The third project reduces to 

only a single population of bacteria, and illustrates that even the simplest questions can have 

surprising answers. 

In the next sections I attempt to take stock of the general lessons that I have learned from 

these three projects, their overarching themes, and how they are interconnected. 

Why use microbes to research ecology? 

Ecologists, by definition, are concerned with the relationships among organisms and between 

organisms and their environment. Historically, the organisms of interest have been 

macroorganisms such as ourselves, while microorganisms were as much an afterthought as they 

were invisible. In spite of this, microbes carry on providing a vast array of “ecosystem services” 
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(for lack of a better term) and interactions, as they have for eons. In many ways, microbes are not 

just part of the ecosystem, they determined the ecosystem. Yet, this is not the only reason to study 

ecology from the microbial perspective. Along with relevance, an ecologist may seek a tractable 

experimental system, one that can readily be manipulated to quickly obtain new results. Ideally, 

such a system would allow the ecologist full flexibility in controlling its every aspect: its 

components (both biotic and abiotic), its structure, its size, its timeframe, and its scale. 

Herein lies another major advantage to performing ecology research with microbes. 

Microbiologists can perturb many levels of scale:  single nucleotides, genes, populations, 

communities, and ecosystems. While it is (presumably) cumbersome to manipulate the genome of 

an elephant and then grow a population of one billion elephants, with microbes this is 

comparatively trivial. In effect, we can match the relevant scale to the problem we hope to solve 

or iteratively switch between scales as needed. For example, at the beginning of the first project in 

this thesis, I began by assembling multi-species communities of different microbes in the 

laboratory. Although already much simpler than natural microbial communities, these synthetic 

communities were exceedingly complex, and stepping down to the level of two species 

communities resulted in enough simplicity to permit an interpretation of what was observed. It was 

only later when “scaling-up” again to multi-species communities that it was possible to explain 

these observations in light of information collected at smaller scales. 

Bottom-up versus top-down approaches to microbial ecology 

A major difficulty of studying natural systems is their inherent complexity. Population abundances 

of elephants are connected to population abundances of grasses (and elephant poachers), which 

are in turn coupled to the weather, and so forth. We can control for many of these factors in 

laboratory experiments, with the downside that we must simplify some realities of complex 
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systems in order to do so. The hope is that understanding a simplified system lends itself to 

understanding a real system. While the verdict is still out as to whether this is the case, it is (so far 

as I can tell) the only option to go beyond surveying approaches when studying microbial ecology. 

Here we are posed with a fundamental choice between two philosophically different strategies. In 

the top-down approach an existing microbial system is experimentally constrained and we study 

the community that emerges. Examples of this are transferring some seawater to a flask under a 

light source (Benincà et al. 2009), or inoculating a strip of cellulose paper with soil (Lewin et al. 

2016). In such cases the complex community that once existed in nature will be reduced to a 

simplified community that can be studied in a controlled system. 

The alternative is to begin with a panel of isolated organisms and combine them in such a 

manner as to directly elucidate aspects of the community assembly process. This bottom-up 

approach offers the most control over the resulting community’s composition, but does not 

necessarily result in a diverse community. Most attempts at combining microorganisms in this 

manner, going back to the days of Gause’s seminal experiments with Paramecium (see Gause 

1935), have simply given rise to a single species community after one organism outcompetes all 

of the others. At the outset of undertaking the first project in this thesis, it was unclear what fraction 

of simple communities would have such a mundane fate. This is because, despite the immense 

popularity of surveying bacteria in natural environments, we still know very little about the 

fundamentals of how microbial communities arise in the first place. This is particularly true for 

microorganisms other than E. coli, and for laboratory ecosystems that are not established in well-

mixed liquid environments. 
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Constructing microbial communities 

The rational design of synthetic microbial communities is a topic that has recently received 

considerable attention (Widder et al. 2016). To this end, the first goal has been to build a predictive 

understanding of how microbial communities will assemble or respond to perturbation. This is 

useful both for engineering microbial consortia to perform a given task (e.g., converting stover to 

ethanol) or for manipulating the composition of an existing microbial community (e.g., 

transitioning a gut microbiome to one without Clostridium difficile). Initially, experiments in 

constructing microbial communities from the bottom-up relied upon resource dependencies 

between community members to ensure coexistence (Wintermute and Silver 2010). This approach 

was later broadened to other interactions that would lead to coexistence in spatially structured 

environments (Kim et al. 2008; Majeed et al. 2010) or unstructured environments with predator-

prey interactions (Hekstra and Leibler 2012; Friman et al. 2015). These types of lab communities 

avoid survival of the fittest by directly preventing one community member from single-handedly 

dominating all of the others. 

Subsequent work in this field began to develop a phenomenological understanding of the 

community assembly process for microorganisms without prescribed interactions. The most 

common approach has been to systematically combine different microbes of interest and observe 

their dynamics (Rivett et al. 2016; Faith et al. 2014). An alternative approach, which was taken in 

the first project in this thesis, is to combine microbes at drastically different abundances, or 

(similarly) give some a chance to establish before adding others (Fukami et al. 2010). More recent 

work attempts to extend quantitative models for predicting the dynamics of mixed microbial 

communities (Trosvik et al. 2008; Friedman, Higgins, and Gore 2016). In such studies it is useful 

to quantify the resource-dependent and resource-independent interactions between organisms. For 
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this reason, microbes with strong, measureable inter-population interactions are particularly useful 

for building predictive models. 

The marvelous Streptomyces 

Microorganisms are incredible. No more so perhaps than members of the genus Streptomyces, 

which despite their name (meaning ‘twisted’ + ‘fungus’ in Greek) are bacteria. It is presently 

unclear why it is the case, but Streptomyces have given us almost half of the antibiotics that we 

use in the clinic. This has always struck me as puzzling, that is, why one genus out of thousands 

of described bacterial genera has developed such a special metabolic repertoire. Perhaps the 

answer lies in their habitat, as another group of microorganisms occupying a similar niche, the 

fungi, are also a major source of antibiotics. Both have a complex lifecycle involving sporulation, 

and both are saprophytes that live off of decaying organic matter in soil. Streptomyces are in fact 

so ubiquitous in soil that from a single spec almost too small to see with the naked eye, it is possible 

to isolate tens of different Streptomycetes. This is how I ended up amassing most of my collection 

of Streptomyces, all from a few neighboring specs of soil. Despite previously living together in a 

small space, these Streptomycetes had very strong interactions, as displayed by large zones of 

inhibition when grown together. The overarching question behind this thesis is therefore: What are 

the ecological consequences of Streptomyces’ complicated lifecycle and strong interactions? 

The first project in this thesis was conceptually simple: combine different Streptomyces 

and watch what happens. It may seem silly to study quasi-random assortments of bacteria in a 

laboratory system far removed from the realities of nature. However, if one takes the perspective 

that nature is everywhere then a laboratory ecosystem is just as valid as any other ecosystem. 

Furthermore, such assortments reflect the reality that microbes have high rates of dispersal. Thus, 

there is some non-zero probability that any microbe might be transferred to another’s domain on a 
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given day. Whether it can survive (or even invade) there is the question. Moreover, I tried to 

construct a laboratory microcosm that reflected the natural environment of soil bacteria: one 

having feast-and-famine cycles, spatial structure, and complex food sources. To accomplish this 

in high-throughput required engineering a device that would enable growing bacteria on the inside 

walls of test tubes, the development of which remains a point of pride for all those who were 

involved. 

Entering the era of high-throughput ecology 

Improvements in DNA sequencing are rapidly changing the practice of biology research. All of 

the projects in this thesis involve sequencing DNA using a relatively new technology being offered 

by a company named Illumina. At present, the most common approach is to sequence many 

samples simultaneously and then tell them apart based on unique “index” sequences that are 

incorporated into each sample. Using combinations of a few different index sequences allows 

hundreds of different samples to be multiplexed into the same sequencing run. Unfortunately, the 

de-multiplexing process is imperfect, and sequences are sometimes associated with the wrong 

sample. Surprisingly, despite the popularity of multiplexing, there is very little in the way of 

literature describing this pitfall. Such was the subject of the second project where I systematically 

studied and developed a solution to the de-multiplexing problem. The outcome of this project was 

a relief for two reasons: (i) I eventually learned that I was not the only one who had experienced 

the problem (misery loves company), and (ii) solving the problem turned out to be remarkably 

straightforward. 

The third project in this thesis involved using multiplexed DNA sequencing to reveal a 

fundamental property of bacteria: the descendants distribution. That is, each bacterium in a 

population gives rise to a number of descendants after some period of time. How variable is this 
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number? Does each bacterium have roughly the same number of offspring, or do some bacteria 

yield most of the offspring in a population? This is a deceptively simple question, and one that is 

impossible to answer without the ability to track sub-populations within a population. For this I 

made use of special Streptomyces (created by another researcher) that differ only by a short genetic 

“barcode” integrated into their chromosome. This project spanned many facets of biology: 

genetics, lab experiments, DNA sequencing, and computation. Moreover, the descendants 

distribution turned out to be wild (both literally and figuratively), which was more interesting than 

anyone had expected. This project illustrates how even the most basic questions can have 

surprising answers. Quite simply, it is science at its best. 
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CHAPTER 2: INHIBITORY INTERACTIONS PROMOTE FREQUENT BISTABILITY 
AMONG COMPETING BACTERIA 

 

INTRODUCTION 

Microbes undergo high rates of dispersal and intermixing in nature but are constrained in their 

ability to colonize new habitats by environmental filtering and local competition (Martiny et al. 

2006). After undergoing the process of community assembly, established microbial communities 

are continually challenged by immigrants from other microbial communities that have the potential 

to upset the existing community balance. An understanding of the assembly and resilience of 

communities therefore requires knowledge of interactions among established community residents 

and outsiders that may arrive at low abundance though dispersal (Drake 1991; Ives and Carpenter 

2007). Invasion experiments are a minimal way of capturing such competitive outcomes at the two 

extremes of relative abundance (Fig. 2.1). These pairwise relationships can be assembled into an 

invasibility network, which characterizes the effective interactions between microbes and their 

frequency-dependence (Chesson 2000). 

_________________________________ 
This chapter was originally published in: 

Wright, E. & Vetsigian, K. (2016). Inhibitory interactions promote frequent bistability among 
competing bacteria. Nature Communications, 7, 11274. http://doi.org/10.1038/ncomms11274. 
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Figure 2.1. Scheme for measuring pairwise invasions and potential outcomes. a, Pairs of 
bacterial strains were added to test tubes at vastly different initial abundances and propagated for 
3 cycles. Their relative abundance was quantified with high-throughput sequencing. b, Each strain 
from a pair was competed twice, as either the resident (high abundance) or invader (low 
abundance). The three potential outcomes are:  bistability if neither resident was invaded, hierarchy 
if one resident was invaded and coexistence if both residents were invaded. c, The invasion 
network for a panel of strains may be either completely hierarchical, where strains can be ranked 
by relative fitness in a way that explains all pairwise outcomes, partly hierarchical with a small 
fraction of non-hierarchical features, or essentially non-hierarchical. 

Even a basic knowledge of the statistical properties of invasibility networks for microbes 

from similar habitats can greatly enhance our understanding of the processes that structure natural 

communities (Davis, Thompson, and Grime 2005). The simplest expectation, based on the 

competitive exclusion principle (Kassen and Rainey 2004), is that most microbial strains can be 

ordered according to their competitive ability, which would result in a hierarchical network 

composed of asymmetrical invasions (Fig. 2.1) and dynamics dominated by the survival of the 

fittest for any particular environment (Foster and Bell 2012). On the other hand, networks 

exhibiting cyclic dominance (as in rock-paper-scissor games) can lead to diversity maintenance or 

alternating winners (Vetsigian, Jajoo, and Kishony 2011; Majeed et al. 2010; Kelsic et al. 2015). 
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Widespread negative frequency dependent selection would imply advantage for rare variants, 

which can promote diversity, whereas positive frequency-dependent selection can lead to alternate 

stable states (Petraitis 2013) and historical contingency (B. R. Levin 1988; Chao and Levin 1981). 

Despite their utility, the statistical properties of invasibility networks are generally unknown 

(Oliveira, Niehus, and Foster 2014; Coyte, Schluter, and Foster 2015; Allesina and Tang 2012). 

To start filling this knowledge gap, we determined the invasion and antibiotic inhibition 

networks for a diverse panel of bacteria from the genus Streptomyces (Appendix A: Supplemental 

Fig. 2.1), most of which were isolated from neighboring grains in the same soil sample (see 

Methods). These bacteria are ubiquitous in soil and are prolific producers of antibiotics and other 

secondary metabolites when grown on a solid substrate (Vetsigian, Jajoo, and Kishony 2011). 

Understanding the ecological consequences of diverse secondary metabolites has been a major 

challenge (Ratcliff and Denison 2011; Andersson and Levin 1999), inspiring many theoretical and 

experimental works (Kinkel et al. 2013; Kelsic et al. 2015; Durrett and Levin 1997; Cordero et al. 

2012). However, the role of secreted bioactive compounds in generating intransitive or frequency-

dependent relationships has not been investigated systematically among large collections of 

microbes, particularly in unmixed environments, in which secreted molecules stay close to their 

producers. 

We find that ‘survival of the common’ is nearly as widespread as ‘survival of the fittest’ 

among competing soil bacteria from the genus Streptomyces. The winner of a pairwise competition 

is often the species that starts at high initial abundance, making it impossible to completely rank 

the species based on their competitive ability. Instead of a single winner, the tournament between 

bacteria results in multiple winners that are in bistable relationships with each other. We also find 

that inhibitory interactions between species are an important factor shaping the network of 
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invasions, and such inhibitory interactions promote survival of the common. These findings have 

several immediate implications for how we view the assembly, structuring, and diversity of 

microbial communities. They indicate that pairwise interactions lead to inherent nonlinearities that 

predispose communities towards multiple stable states. This may make microbial communities 

intrinsically sensitive to initial conditions during community assembly but, at the same time, could 

make them more resistant to change once they are established. Survival of the common may also 

promote mosaic spatial distributions with different populations dominating different patches or 

microbial hosts despite similar abiotic conditions. 

RESULTS 

Frequent bistable relationships between pairs of strains 

To measure invasion, we inoculated a pair of strains at vastly different initial abundances inside a 

thin layer of solid (agar) defined medium and allowed them to grow and sporulate (Fig. 2.1a). 

Offspring spores were then collected from the surface of the agar and then used to inoculate another 

propagation cycle or determine relative abundances with high-throughput sequencing (see the 

Methods for details). After three propagation cycles, strains were said to invade if they had 

increased in abundance to at least 1% of the total community. Typically, invasions occurred 

rapidly, and the invader had almost completely displaced the resident within one or two 

propagation cycles (Appendix A: Supplemental Fig. 2). 
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Figure 2.2. Widespread bistability in pairwise invasions. a, Pairwise invasion matrix for a panel 
of 18 diverse Streptomyces strains. Strains are sorted by phylogeny constructed from partial rpoB 
gene sequences. Strain #1 is present in two replicas (labeled 1a,b). b, Bistable pairings, in which 
two strains cannot invade each other, were a dominant feature of the invasion matrix. Coexistence 
was less frequent and mostly limited to strain #1, which was also the most phylogenetically distinct 
strain. c, A few strains were involved in many bistable pairings. These "hubs of bistability" were 
more frequent than in randomized matrices with the same number of each type of pairwise link (p 
= 1.7e-4). 

We began by analyzing pairwise features of the invasion matrix. Invasions were highly 

repeatable, as we only observed a single difference between 32 replicate competitions performed 

with strain #1 (Fig. 2.2a). Overall, 31% of pairwise competitions resulted in an invasion (Fig. 

2.2b). No strain was invaded by all other strains in the panel, although one strain (#14) was invaded 

 



 13 

by all but two others. Three strains were not invaded by any other strain, indicating that the strains 

cannot be ordered in a strict hierarchy. Six of seven cases of mutual invasion included strain #1 

(Fig. 2.2b), which was also the most distantly related strain as it belongs to a separate genus (Fig. 

2.2a). Mutual invasions are expected to lead to coexistence because neither strain can reach a low 

enough abundance that it is unable to recover. Accordingly, in all seven cases, the pairs of mutually 

invading strains were both found to be present at the end of three propagation cycles. In sharp 

contrast to the low number of mutual invasions, there were 63 mutually non-invading pairs of 

strains, where the most abundant strain was able to hold its ground against the less abundant (Fig. 

2.2b). These bistable links centered on a small subset of strains that rarely invaded others and were 

rarely invaded by others, and therefore acted as "hubs of bistability" (Fig. 2.2c). 

Partly hierarchical invasion network with multiple winners 

We next characterized triplet motifs in the invasion network relative to random networks with the 

same number of each type of pairwise link. We observed a strong enrichment for transitivity of 

hierarchy:  given that strain A invades B and B invades C, A most likely also invades C (Fig. 2.3a). 

Surprisingly, we did not observe a single instance of the 'rock-paper-scissors' dynamic (C invading 

A). Similar to hierarchy, bistable links were also greatly enriched for transitivity (Appendix A: 

Supplemental Fig. 3). 
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Figure 2.3. The invasion network is partly hierarchical with multiple strains in the top level 
exhibiting bistable relationships with each other. a, Enrichment (green) or depletion (pink) of 
different triplet motifs relative to randomized networks preserving the number of each pairwise 
motif (Appendix A: Supplemental Fig. 3). Number of occurrences for each motif are given in the 
upper-left corner. Transitive invasions (leftmost motif) were highly enriched (***, p < 1e-6), 
whereas the three intransitive motifs were highly depleted (***, p < 1e-6). b, The scoring scheme 
used in assigning hierarchy levels to strains rewards invasions pointing down the hierarchy and 
penalizes invasions directed against the hierarchy. c, The invasion network overlaid on the 
hierarchy assignments that maximize the score in b. Strains were placed into seven hierarchy levels 
with six strains at the top level exhibiting bistable relationships with each other. Invasions going 
down the hierarchy are not shown, while others are shown in red. Bistability is denoted by a 
missing link between strains at the same level or by a dashed line for strains at different levels. 

The strong enrichment for transitivity of hierarchy motivated us to order species according 

to their competitive ability by determining the rank assignments that are most congruent with the 

observed invasibility network. To accomplish this, we developed a simple scoring scheme that 

rewarded invasions directed down the hierarchy, and penalized invasions going against the 
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hierarchy (Fig. 2.3b). Under this scoring scheme, the optimal hierarchy placed the strains into 

seven levels (Fig. 2.3c). Only a few links were directed against the hierarchy, and most of them 

were due to mutual invasions with strain #1. Instead of a single fittest strain, six strains were tied 

for the top ranking, and, remarkably, all of them were in bistable relationships with each other. 

Thus, the hierarchical structure of the invasibility network revealed six mutually exclusive 

winners. Fascinatingly, there was considerable bistability between strains belonging to different 

hierarchical levels. In many of these cases an invader strain from the top of the hierarchy could 

form visible colonies or inhibition zones against a strain below it in the hierarchy, yet ultimately 

failed to invade (Appendix A: Supplemental Fig. 4). Furthermore, although strains exhibited 

widely different yields and growth rates in our experimental system, both measures were 

uncorrelated (R2=0.006 and 0.174, respectively) with hierarchy level (Appendix A: Supplemental 

Fig. 5). 

Inhibitory interactions promote bistability 

Given that bacteria from the genus Streptomyces are prolific antibiotic and siderophore (Griffin, 

West, and Buckling 2004; Darch et al. 2012; Keller and Surette 2006) producers, we hypothesized 

that inhibitory interactions played a major role in determining the hierarchy and generating 

bistability. To systematically examine the role of inhibition, we measured each strain's ability to 

prevent sporulation of other strains (Appendix A: Supplemental Fig. 6). The data revealed a strong 

tendency for inhibitions to point down the hierarchy (Fig. 2.4a), which is consistent with the notion 

that inhibition provides a competitive advantage (Ratcliff and Denison 2011). We found that 

strains were extremely unlikely to be invaded by strains they inhibit (p=1e-6, Fig. 2.4b), and there 

was a small increase in the probability to invade if inhibition was present (p=0.02, Appendix A: 

Supplemental Fig. 7a). 

 



 16 

 

Figure 2.4. Antibiotic inhibition helps bistability. a, Inhibitions in the cross-streaking assay 
(Appendix A: Supplemental Fig. 6) overlaid on the invasion hierarchy. Almost all inhibitions were 
directed down the hierarchy (black inhibition arrows) and only a few were directed against the 
hierarchy (red inhibition arrows). b, The number of pairs with invasions (blue) and non-invasions 
(black) are shown for cases in which the invader is inhibited (left pie-chart) or not inhibited (right 
pie-chart). The vastly different fraction of invasions in the two pie-charts indicates that inhibition 
greatly assists residents in resisting invasion. c, The number of pairs with invasions (blue) and 
non-invasions (black) are shown for cases in which the resident is inhibited (left pie-chart) or not 
inhibited (right pie-chart). Only pairs in which the invader is at a higher hierarchy level (3 ≥ hA – 
hB > 0) are considered to control for the tendency of inhibitions to point down the hierarchy. d, 
The number of bistable (blue) and non-bistable (black) pairs is shown for pairs with inhibition 
(bottom pie-chart) and without inhibition (top pie-chart). Strains #14 and #6 at the bottom of the 
hierarchy were not included, as they were invaded by almost all other strains. A significant 
enrichment for bistability is evident among pairs with an inhibitory interaction. 
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An alternative explanation for why inhibitions point down the hierarchy is that the 

hierarchy and the direction of inhibition are shaped by a common factor. For example, species 

better adapted to the growth medium may tend to outcompete other species while also having a 

head start in antibiotic production. To investigate this possibility, we reconstructed the hierarchy 

using only species pairs without inhibition. The new hierarchy was similar to the original one 

(R2=0.916; Appendix A: Supplemental Table 1) and still exhibited a pronounced tendency for 

downward inhibitions (Appendix A: Supplemental Fig. 8), suggesting that a common factor was 

at least partially responsible for both the hierarchy and the direction of inhibition. 

To control for this confounding effect, we recomputed the correlations between inhibition 

and invasion while focusing on pairs of strains with similar differences in hierarchy levels (see the 

Methods for details). Unexpectedly, this revealed that strains that inhibit other strains are 

significantly less likely to invade (Fig. 2.4c, p=1.3e-4). Hence, the small apparent increase in 

probability to invade as an inhibitor was entirely due to the tendency of inhibition to go down the 

hierarchy. This finding is consistent with the notion that investment in public goods might be 

counterproductive when the producers are at low abundance. 

We concluded that although inhibitions likely help strains resist invasions at high-

abundance, they also reduce their probability to invade when at low-abundance. The combination 

of these effects leads to a higher probability of bistability in pairs of strains in which there is 

inhibition (p=0.028). This enrichment was particularly pronounced after removing the two outlier 

strains at the bottom of the hierarchy, which are inhibited and outcompeted by almost everyone 

(Fig. 2.4d, p=0.002). This indicates that inhibition is one of the mechanisms promoting bistability. 
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DISCUSSION 

The finding of frequent bistability among Streptomyces isolated from the same environment is 

consistent with a recent theoretical work demonstrating that the counteraction of antibiotic 

production and degradation can lead to stable coexistence of many bacteria with different 

production and degradation capabilities (Kelsic et al. 2015). Extending this previous work, we 

proved that multi-species communities coexisting through this mechanism must contain bistable 

pairs (see the Methods for details). Thus, frequent pairwise bistability is expected theoretically 

among sets of three or more strains coexisting through this mechanism. Although it is unknown 

whether the strains used in this study would coexist in larger communities, this study demonstrates 

that, in addition to being prolific producers and degraders of antibiotics, Streptomyces exhibit the 

frequency-dependent relationships necessary for coexistence through an interplay between 

antibiotic production and degradation. 

Although we found a link between inhibition and bistability, it is important to note that 

many bistable pairs had no measurable inhibition. These may be cases where inhibition was below 

our detection limit or was only partial and therefore did not lead to a visible zone of clearing. 

Bistability in these cases may also be due to other phenomena of intra-species cooperation that 

incur a cost of rarity (Allen, Gore, and Nowak 2013), including quorum sensing (Diggle et al. 

2007) and the secretion of public goods such as extracellular enzymes. The existence of multiple 

life-stages, such as the germination – mycellium growth –sporulation lifecycle of Streptomyces, 

can also facilitate bistability (Moll and Brown 2008). Delineating the relative contribution of each 

of these potential causes of bistability in different microbial systems offers an interesting topic for 

future research. 
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Frequent bistability between bacterial strains has major implications for community 

assembly and structuring. First, it implies that the order of species arrival to a new environment 

could strongly influence the long-term community composition. In particular, pairwise bistability 

is expected to propagate to multistability in communities with more than two species. Furthermore, 

bistability may lead to an extreme sensitivity to initial abundances when many species arrive 

simultaneously, while also making established communities more resistant to invasions. These 

effects may manifest spatially through the generation of mosaic microbial distributions in which 

different communities are maintained in different spatial locations (Bayley et al. 2007) or in 

different individuals from a plant or animal host species. In particular, frequent bistability may 

help explain the recent finding that soil bacterial and fungal communities exhibit higher levels of 

dissimilarity across locations than expected from models assuming that environmental filtering 

and dispersal are the primary drivers of community assembly (Powell and Bennett 2015; Powell 

et al. 2015). Finally, on longer timescales, positive frequency-dependent selection could encourage 

the emergence of discrete microbial types as is typical for larger organisms (Bernstein et al. 1985), 

rather than a continuous spectrum of forms. 

We expect the finding of widespread survival of the common to generalize to other 

microorganisms that produce strain-specific public goods, particularly when they are grown in 

unmixed environments and have strong resource overlaps (Vannette and Fukami 2013; Kinkel et 

al. 2013). Further insights into the survival of the common and its ramifications for ecosystems 

are likely to emerge from continued research on multi-species microcosm communities and 

gnotobiotic organisms. 
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METHODS 

Isolation of Streptomycetes 

The panel of 18 strains (Appendix A: Supplemental Table 1) used in this study included 13 

Streptomyces isolates originating from the same soil sample. This sample was collected from the 

University of Wisconsin-West Madison Agricultural Research Station on 10 June 2014. The soil 

in the collection area was composed of Troxel silt loam at 1-3% slopes. A soil core was collected 

using a sterile 50 ml conical tube (VWR). A 0.25 gram piece of soil was extracted from a depth of 

4 cm below the surface. This soil was separated into individual grains (~1 mg), each of which was 

used to inoculate a Petri dish containing Actinomycete Isolation Agar (AIA:  4 g/l Sodium 

Propionate, 10 g/l Soluble Starch, 0.4 g/l Sodium Caseinate, 2 g/l KNO3, 2 g/l NaCl, 2 g/l K2HPO4, 

0.05 g/l MgSO4, 0.02 g/l CaCO3, 0.01 g/l FeSO4, 18 g/l Agar; pH adjusted to 7.5; to prevent fungal 

growth, cyclohexamide added after autoclaving to reach 50 mg/l). 

Separated isolates on each Petri dish were automatically detected and pinned into 

individual wells of a 96 well plate containing Actinomycete Isolation Agar medium using an 

automatic colony picker (Hudson). To distinguish isolates, we sequenced a 935 base pair region 

of their DNA-directed RNA polymerase subunit β (rpoB) gene, which is commonly used as a 

species-level phylogenetic marker for Streptomyces (Doroghazi et al. 2014). We identified 28 

distinct Streptomyces isolates, and selected 13 for invasion experiments based on having sufficient 

growth for sustained propagation on the defined medium used in the invasion experiment. These 

13 isolates were named by their soil grain and microplate well. For example, sp. S25E2 and sp. 

S25H8 were both isolated from the same soil grain (S25). The remaining five strains used in this 

study were collected from various sources (Appendix A: Supplemental Table 1). Using the R (R 

Core Team 2016) package DECIPHER (E. S. Wright 2015), these 18 strains’ rpoB sequences were 
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aligned to those from related species in order to create the phylogenetic tree shown in Appendix 

A: Supplemental Fig. 1. 

Invasion experiments 

Before the start of the invasion experiment, the 18 strains were individually propagated for three 

growth cycles to reach equilibrium concentration on the defined medium (see below) used in the 

invasion experiments. A 50 μl aliquot of the resident strain at its equilibrium concentration was 

added to 80 μl of the diluted invader in the initial inoculum. The concentration in colony-forming 

units (CFUs) of each spore stock was determined using standard dilution plating. Each strain was 

diluted to achieve a target concentration of 100 CFUs per tube as invader in the first inoculation. 

The invader strains were again counted after dilution to determine their actual concentration in the 

tubes, and were generally close to the desired cell count (Appendix A: Supplemental Table 1). The 

invader concentration was typically less than 0.1% of the resident cells at the beginning of the first 

growth cycle. 

Communities were grown in 18 mm x 150 mm glass tubes (Fisher Scientific) containing 

4.5 mL of defined medium (10 g Starch, 0.4 g Proline, 0.4 g Asparagine, 2 g/l KNO3, 2 g/l NaCl, 

2 g/l K2HPO4, 0.05 g/l MgSO4, 0.01 g/l FeSO4, 25 g/l Agar; adjust pH to 7.0 with 5N NaOH). 

Inocula were injected into molten agar (~50°C), vortexed briefly to mix, and rolled horizontally 

(along their long-axis) at 1,800 r.p.m. for 45 seconds under high air flow to coat the inside of the 

tube with a thin (~0.8 mm) layer of solid agar. The inside of the tube was therefore hollow, which 

allowed oxygen to reach the cells. Tubes were stored upright at 28°C for 12 days before harvesting. 

Tubes were harvested by first adding 4 ml of sterile 2 mm glass beads (Chemglass Life 

Sciences) and vortexing for 10 seconds to remove the hydrophobic spores from the agar surface. 

A 5 ml filter-sterilized solution of 0.1% Tween-80 and 20% glycerol was added to each tube and 

 



 22 

vortexed for 10 seconds. An aliquot of 1.7 ml of each community was collected and frozen at -

80°C. Communities were frozen between growth cycles to ensure that they could be grown from 

a consistent state in future uses. In subsequent growths, 100 μl of each previously harvested 

community was used to inoculate its next propagation cycle (1/50th dilution per cycle). This 

process was repeated until the communities had been grown for three propagation cycles. 

DNA extraction and sequencing 

To efficiently extract DNA from harvested biomass, it was necessary to first germinate the spores. 

A 100 μl aliquot of each community was grown in a test tube with 2 ml of the defined medium 

without agar. The liquid cultures were incubated while shaking for 40 hours at 28°C. Next, the 

cultures were centrifuged at 1,000 relative centrifugal force (r.c.f.) for 10 minutes to pellet the 

cells. A 1.7 ml volume of supernatant was removed, the remaining volume was vortexed, and 200 

μl of the concentrated mycelium was transferred to a 0.2 ml thin-wall tube (Corning). These tubes 

were sonicated at 100% amplitude for 60 seconds using a Model 505 Sonicator with Cup Horn 

(QSonica). After sonication, the samples were centrifuged, and the supernatant containing DNA 

was used as template for PCR amplification. 

Primers were designed to optimally differentiate an 80 nucleotide region of the rpoB 

sequence of all 18 strains using DesignSignatures (E. S. Wright and Vetsigian 2016) (Appendix 

A: Supplemental Table 2). The targeted rpoB region differed by a minimum of 4 nucleotides 

between all strain pairs (median of 12 nucleotides different). Extracted DNA was first amplified 

with primers targeting sites that were universal to all species, diluted, and then re-amplified with 

barcoded primers (Appendix A: Supplemental Table 2). This two-step process can decrease 

amplification bias during PCR (Berry et al. 2011) and mitigate the amplification of PCR artifacts 

associated with long adapter primers. The two PCR reactions consisted of a 2 min denaturation 
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step at 95°C, followed by 45 and 25 cycles, respectively, of 20 sec at 98°C, 15 sec at 67°C, and 15 

sec at 80°C. Each PCR reaction was followed by a melt curve from 60°C to 95°C in 0.5°C 

increments every 10 sec to confirm the expected melt peak. The PCR reaction contained 2.5 μl of 

iQ Supermix (Bio-Rad), 0.4 μl of 5 μM forward and reverse primer, 0.5 μl of DNA template, and 

1.6 μl reagent grade H2O per sample. The 177 base pair product of the first PCR reaction was 

diluted 1,000-fold for use as template in the second reaction with barcoded primers. Barcoded 

primers were staggered by inserting 0-3 additional nucleotides before the sequencing read to help 

with randomization for phasing (Wu et al. 2015). Groups of 24 PCR products (2.5 μl/sample) were 

pooled into 50 μL of 10 x TBE on ice. This mix of PCR products was separated by length in a 1% 

agarose gel. The band matching the desired length (~310 nucleotides) was excised from the gel, 

and purified with the Wizard SV-Gel and PCR Cleanup System (Promega). All samples were 

sequenced by the UW-Madison Biotechnology Center with an Illumina Hi-Seq in rapid mode. 

Determination of presence or absence of the invader 

Barcoded primers contained Illumina adapters with i5 and i7 index sequences that were unique to 

each community. These index sequences allowed for de-multiplexing of the samples by exactly 

matching the pair of eight nucleotide index sequences to the unique combination belonging to each 

community. By using 25 different i5 and i7 index sequences, we were able to multiplex up to 625 

samples in the same sequencing lane. This approach typically resulted in more than 10,000 reads 

of 101 nucleotides per community. The reads were exactly matched to the known rpoB sequences 

for the panel of 18 strains in order to count the relative abundance of each strain. Analysis of read 

counts was performed with the R (R Core Team 2016) package Biostrings (Pages et al.). 

Based on the known species that could be present in each community, we identified a cross-

indexing error during sequencing in which a wrong i7 index was associated with a read at a rate 
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of approximately 0.1%. The error rate varied between i7 indices in proportion to the total number 

of reads with a given i7 index. This simple statistical model explained well the unexpected reads 

and enabled background subtraction. The background level of reads for each species and 

community was determined by summing the contributions from other index pairs sharing the same 

i5 index, and resulted in effective background levels of less than 1% per species in a community. 

This background model was further confirmed by the distribution of reads belonging to a strain 

that was not present in any community and had been amplified separately with a unique i5 index 

and i7 index pair using primers that were independently synthesized. 

Strains were said to invade if they had increased in frequency and reached at least 1% of 

the total community after subtracting the background. Strains not appearing above the background 

level were considered below the detection limit and marked as non-invasions. In two of the 

communities the invaders appeared only slightly above the background read level and were marked 

as defective and not considered in the analyses. Other cases of defective communities were due to 

experimental failure. 

We further assessed a subset of eight bistable strain pairs using quantitative PCR 

(Appendix A: Supplemental Table 3), which has a larger dynamic range than high-throughput 

sequencing. Primers were designed that were specific to each strain using the R (R Core Team 

2016) package DECIPHER (E. S. Wright et al. 2014) (Appendix A: Supplemental Table 2). The 

resident and invader were targeted for amplification in two separate PCR reactions for each 

community, corresponding to 32 different reactions in total. The reaction conditions were identical 

to those described above, except that we used tenfold larger reactions (50 µl total). In 45 PCR 

cycles, we observed early amplification of all 16 residents (Appendix A: Supplemental Table 3), 

followed by delayed amplification with primers targeting the invader. Using melt curves, gel runs, 
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and Sanger sequencing, we were able to confirm that all invader amplifications were standard PCR 

artifacts attributable to the high number of PCR cycles and large reaction size. Therefore, in all 

eight bistable pairs, we were unable to detect the presence of either invader after three growth 

cycles. 

Inhibition experiments 

To quantify inhibition we used a standard cross-streaking test on a Petri dish (Appendix A: 

Supplemental Fig. 6). First, all strains were grown at high density and allowed to sporulate on 

defined medium (see above). We used a flat rectangular (8 mm x 81 mm) aluminum pinning tool 

to transfer spores from a majority strain to the center of a new plate with a thin layer of defined 

medium (5 ml per 88 mm diameter Petri dish). A cross-streak of a minority strain was plated 

perpendicular to the majority strain using a 60 mm microscope coverslip with a thickness of ~0.15 

mm (VWR). Five minority strains, separated by 1 cm, were plated in parallel across the same 

majority strain on a single plate. The strains were allowed to grow for 12 days at 28°C, and imaged 

periodically with a flatbed scanner. We used an in-house R (R Core Team 2016) script to quantify 

the distance between the majority strain and where the minority strain had sporulated in the 

obtained images. The majority strain was defined as inhibiting the minority strain if it prevented 

sporulation within a distance of 1 mm or greater. 

Measurement of growth rate and yield 

To measure growth rate, strains were grown on a thin layer of defined medium (see above) for 43 

hours and imaged under a microscope. The surface area of three to seven separated colonies was 

determined with ImageJ (Abràmoff, Magalhães, and Ram 2004), averaged, and scaled to units of 

mm2 for plotting in Appendix A: Supplemental Fig. 5. To measure yield, each strain was grown 

alone for three sequential growth cycles as in the invasion experiments described above. The final 
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concentration in CFU/μl at the end of all three growth cycles was determined by standard tenfold 

dilution plating and counting. 

Hubs of bistability 

Bistability occurs when strain i does not invade j and j does not invade i, corresponding to non-

invasions on opposite sides of the diagonal in the invasion matrix. The strains can be sorted by 

their number of bistable interactions, ranging from 0 (strain #1) to 14 (strain #2). We compared 

the number of bistable pairings per strain to that of a random invasion network with the same total 

number of each type of pairwise link. To determine the statistical significance of the observed 

hubs, we calculated the fraction of random networks for which the sum of bistabilities associated 

with the top three strains was greater than or equal to that of the three most bistable strains in the 

measured invasion network. 

Analysis of triplet motifs in the invasion network 

There are 16 distinct triplet motifs possible when allowing for bistability (0 invasions), hierarchy 

(1 invasion) and coexistence (2 invasions). To assess the statistical significance of the different 

triplet motifs in the invasion network, we compared their frequency with those expected for 

random networks with the same number of pairwise links (0, 1, or 2 invasions) (Appendix A: 

Supplemental Fig. 3). 

Determination of the invasion network hierarchy 

A simple scoring model was constructed to assess a given ranking of strains based on the invasion 

matrix, as described in the Results. This model was based on a previous study of assigning 

hierarchy to directed networks (Gupte et al. 2011). The optimal ranking of strains was determined 

using the R (R Core Team 2016) package rgenoud (Mebane and Sekhon 2011) for integer genetic 
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optimization. We repeated the optimization procedure 1,000 times from different initial rankings, 

and the highest scoring network was found in 70% of cases. 

To determine the hierarchy without the effects of inhibition, we excluded pairs having 

inhibition in either direction when calculating the optimality score and then repeated the 

optimization procedure described above. In this case, as there were multiple networks with the 

same score, we averaged the hierarchy levels across all unique rankings (Appendix A: 

Supplemental Table 1). 

Calculation of correlations between inhibition and invasion 

To test whether residents that inhibit invaders are less likely to be invaded, we constructed a 2 x 2 

contingency table by noting for each pair of species, A and B, whether A inhibits B or not, and 

whether B invades A or not. We computed the ratio of invasions to non-invasions for the cases 

with and without inhibition. We then took the ratio of the two ratios as a measure of relative 

enrichment for invasion in cases with inhibition. To calculate the statistical significance of the 

association between inhibition and invasion, we compared the observed enrichment to that 

expected for random inhibition networks. During randomization of the inhibition matrix, the 

number of each type of pairwise link (0, 1, or 2 inhibitions) was kept constant. Similarly, to test 

whether an invader inhibiting a resident is more likely to invade, we constructed a 2 x 2 

contingency table by noting for each pair of species, A and B, whether A inhibits B or not, and 

whether A invades B or not. 

Controlling for downward pointing tendency of inhibitions 

To determine whether inhibitions play a role in invasions independently of (or in addition to) the 

downward bias, we repeated the above analysis focusing only on pairs for which 3 ≥ ℎ𝐴𝐴 − ℎ𝐵𝐵 >

0, where ℎ𝐴𝐴and ℎ𝐵𝐵 are the hierarchical levels of strains A and B in the invasion network. This 
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controls for the fact that the ratio of pairs with ℎ𝐴𝐴 ≤ ℎ𝐵𝐵 and ℎ𝐴𝐴 > ℎ𝐵𝐵 is very different for cases 

with and without inhibition, which might have led to spurious correlations between inhibition and 

invasion (that is, Simpson’s paradox). Inhibitory interactions were randomly permuted only within 

the pairs considered, while preserving the number of inhibitions pointing up or down the hierarchy. 

Unfortunately, this approach could not be used to confirm with high statistical confidence that 

inhibition helps to resist invasion independently of the downward bias, because there are very few 

invasions or inhibitions against the hierarchy (Appendix A: Supplemental Fig. 7b). Nevertheless, 

invasions against the hierarchy were less frequent when the invaders were inhibited (p=0.07). 

Analysis of inhibition's role in bistability 

Bistability was observed in 51% of pairs having an inhibitory interaction and in 34% of pairs 

without an inhibitory interaction. To test whether bistable pairings were enriched in cases with 

inhibition, we randomized the inhibition matrix while maintaining the number of each type of 

pairwise link (0, 1, or 2 inhibitions). In 2.8% of random inhibition networks the enrichment for 

bistability in pairs with inhibition relative to pairs without inhibition was more than the observed 

value, corresponding to the p-value reported in the Results. 

Proving requirement of pairwise bistability for coexistence 

We will show that coexistence through the interplay between antibiotic production and degradation 

requires at least one bistable pair in the “Mixed Inhibition-Zone Model” introduced in Kelsic et al. 

(2015) for the case where antibiotic producers do not derive immediate benefit from inhibiting 

neighbors.  

Coexistence requires the fastest growing species to be inhibited by another community 

member. If this were not the case, it would have the highest fitness for any combination of species 

abundances, and therefore will unconditionally outcompete all other species. Let species 1 be the 
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species with the highest growth rate and species 2 be the species that inhibits it most strongly. We 

will show that if species 1 and 2 are a part of a coexisting community, then they are in a bistable 

relationship. 

To calculate the invasibility relationships between species 1 and 2, we set the abundances 

of all other species to zero and obtain the following equations for the dynamics (in accordance 

with the notation used in Kelsic et al. (2015)): 

𝑓𝑓1=𝑔𝑔1𝑒𝑒−𝑋𝑋2𝐾𝐾𝑃𝑃2 

𝑓𝑓2=𝑔𝑔2𝑒𝑒−𝑋𝑋1𝐾𝐾𝑃𝑃1 

𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) =
𝑋𝑋𝑖𝑖(𝑡𝑡)𝑓𝑓𝑖𝑖(𝑡𝑡)

∑ 𝑋𝑋𝑗𝑗(𝑡𝑡)𝑓𝑓𝑗𝑗(𝑡𝑡)𝑗𝑗
 , 

where {𝑋𝑋𝑖𝑖} are the relative species abundances, {𝑔𝑔𝑖𝑖} are the growth rates, {𝑓𝑓𝑖𝑖} are the fitness values 

for given species abundances, 𝐾𝐾𝑃𝑃1 ≥ 0 and 𝐾𝐾𝑃𝑃2 > 0 are the areas of inhibition caused by species 

1 and 2. 

To determine if species 𝑖𝑖 can invade species 𝑗𝑗 we set  𝑋𝑋𝑖𝑖 → 0 and 𝑋𝑋𝑗𝑗 → 1. The conditions 

for bistability (mutual non-invasion) of 1 and 2 are therefore: 

𝑔𝑔2𝑒𝑒−𝐾𝐾𝑃𝑃1 < 𝑔𝑔1 and 𝑔𝑔1𝑒𝑒−𝐾𝐾𝑃𝑃2 < 𝑔𝑔2. 

The first condition is satisfied by construction because  𝑔𝑔2 < 𝑔𝑔1. Therefore species 1 and 2 are not 

bistable iff 𝑔𝑔1𝑒𝑒−𝐾𝐾𝑃𝑃2 > 𝑔𝑔2. 

The minimum fitness of species 1 over all possible abundances {𝑋𝑋𝑖𝑖} of the coexisting 

species is min𝑓𝑓1  = 𝑔𝑔1𝑒𝑒−𝐾𝐾𝑃𝑃2  because by construction species 2 is the species that inhibits species 

1 the strongest. At the same time, the maximum fitness of species 2 over all possible abundances 

{𝑋𝑋𝑖𝑖} of the coexisting species is max 𝑓𝑓2 = 𝑔𝑔2. Therefore, lack of bistability between species 1 and 
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2 implies min𝑓𝑓1 > max 𝑓𝑓2, which means that species 1 is unconditionally outcompeting species 2 

in contradiction to our assumption that the species are part of a coexisting community. 

Therefore, every coexisting community has at least one bistable pair. The proof does not 

depend on the exact functional form of antibiotic inhibition. 
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CHAPTER 3: QUALITY FILTERING OF ILLUMINA INDEX READS MITIGATES 
SAMPLE CROSS-TALK 

 

BACKGROUND 

In recent years Illumina sequencing has emerged as a mainstay for numerous biological 

applications. The Illumina platform uses sequencing by synthesis, whereby DNA containing 

adapters anneals to a flow cell and forms sequence clusters through bridge amplification before 

being sequenced. Due to the immense number of sequences that can be obtained, it is often useful 

to sequence DNA from multiple samples in a single run. This multiplexing process relies upon 

unique “index” sequences, termed i5 and i7, that are added to both sides of the DNA being 

sequenced. With only a few unique i5 and i7 sequences, hundreds of different i5 and i7 

combinations can be created, enabling many samples to be simultaneously sequenced. De-

multiplexing the samples after sequencing only requires finding the sequencing reads associated 

with each index pair that was added to the sequencing run. 

As with other sequencing approaches, the Illumina method has been characterized for the 

frequency and type of errors that are generated (Cox, Peterson, and Biggs 2010). Substitutions, 

where one base is misread as another, are the most frequent class of error and occur more often 

toward the end of the sequence (Dohm et al. 2008; Schirmer et al. 2015). Insertions, deletions and 

motif-specific errors occur less frequently, but can still cause problems for certain applications 

(Nakamura et al. 2011; McMurdie et al. 2016). 

Another type of error involves cross-talk among multiplexed samples and has received far 

less attention despite recent reports that error rates can be significant (E. Wright and Vetsigian 

2016; Kircher, Sawyer, and Meyer 2011; Nelson et al. 2014). Such errors are particularly insidious 

_________________________________ 
This chapter was originally published in: 

Wright, E. S. & Vetsigian, K. H. (2016). Quality filtering of Illumina index reads mitigates 
sample cross-talk. BMC Genomics, 1–7. http://doi.org/10.1186/s12864-016-3217-x. 
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in applications that require the detection of variants that are rare in one sample but abundant in 

others, which includes biosphere surveys, investigations of ancient DNA, and the identification of 

cancerous cells (Nelson et al. 2014). Cross-talk errors can also be problematic if a large number of 

samples are multiplexed, such that each sample is a small fraction of the total number of reads. 

Since cross-talk can come from multiple sources, it has sometimes been attributed to experimental 

mistakes, cross-contamination during primer synthesis, multiple misread bases within index 

sequences, or sample carryover from previous sequencing runs on the same machine (D'Amore et 

al. 2016). 

In view of the increasing importance of multiplexing on the Illumina platform, we 

systematically investigated cross-talk errors in order to rule out certain causes and determine 

whether there are any satisfactory solutions to the problem. To this end, we constructed 14 unique 

combinations of i5 indices, i7 indices, and read sequences (Fig. 3.1a), while carefully controlling 

for potential sources of cross-contamination such as primer synthesis. The sequences of all reads 

were well-separated in sequence space to minimize cross-talk due to misread bases. Surprisingly, 

we observed that cross-talk was due to three different types of misassignments (Fig 3.1b) that 

occurred at similar rates. Furthermore, we found that quality filtering of the index pairs was 

sufficient to all but eliminate misassignments between samples without sacrificing a substantial 

fraction of reads. 

RESULTS 

Using standard de-multiplexing protocols, we observed a 0.09% rate of sequence misassignments, 

which have the correct i5 and i7 index pair but incorrect sequence, and a 0.16% rate of index 

misassignments, which have a correct sequence read but a single incorrect i5 or i7 index. These 

rates are consistent with prior studies that found misassignment rates between 0.06% and 0.21% 
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(Nelson et al. 2014; D'Amore et al. 2016). Furthermore, the rate of sequence misassignment was 

similar to that of i5 or i7 index misassignment (Fig. 3.1b), indicating that the sequence is being 

misassigned rather than both index sequences being independently misassigned. Both sequence 

and index misassignments will contribute to cross-talk between samples when each sample is 

separated from other samples by a single index, whereas only sequence misassignments are 

relevant when unique dual-indexing is used. Nevertheless, the existence of sequence 

misassignments indicates that even the use of two unique index sequences is insufficient to 

eliminate cross-talk. 

 

Figure 3.1. Rates of different misassignment errors on the Illumina platform. a, Unique index 
and read sequences that were well separated in sequence space (colored rectangles) were used to 
form 14 distinct samples and multiplexed in the same Illumina sequencing run. Misread bases 
(yellow stars) make up the most common error type, but are still attributable to their correct triplet. 
b, Misassigned reads appear as unexpected triplets, and can be categorized as either index 
misassignments (0.16% total) or sequence misassignments (0.09%). 

Misassignments can in principle result from multiple misread bases within an index 

sequence. However, even at a high average error rate of 1% (Q20), the chance of at least three 

positions being misread is 10-6 assuming that errors are independent. The observed rate of index 

misassignment was far greater than expected, regardless of the number of differences between 

index sequences (Fig. 3.2). If two unique index sequences are used, the probability of both the i5 

and i7 being misread as another index pair is expected to be around 10-12. Therefore, since we 
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obtained approximately 10 million reads per sample, we would expect zero sequence 

misassignment due to misread bases. To further verify these assumptions, we de-multiplexed 

another index pair where neither the i5 or i7 index was included in the experiment. There were no 

reads attributed to this index pair, confirming that the per-base error rate of Illumina sequencing 

does not explain the observed rate of cross-talk. 

 

Figure 3.2. Misassignment rates were weakly correlated with the hamming distance between 
index sequences. a, Matrices showing the hamming distance between i5 and i7 index sequences 
used in this study. b, The rate of triplets with an incorrect i5 (or i7) index as a function of the 
hamming distance to the correct i5 (or i7) index. Horizontal lines indicate the mean misassignment 
rate at each hamming distance. Note the log-scale y-axis. The theoretical misassignment rates 
based on independent substitutions are shown in gray for an exaggerated 10% substitution rate 
(Q10); lower substitution rates would simply shift the dashed-line to the left. The observed 
misassignment rate does not decrease exponentially as would be expected if misread errors are 
independent, indicating that misread bases are not the cause of misassignment errors. 

Having ruled out misread bases as the cause of most misassignments, we next investigated 

whether incorrect reads were associated with low quality scores. Figure 3.3 shows that correct 

triplets (i5, i7, and sequence) tended to have high quality in both index read steps, whereas index 
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misassignments tended to be low quality in the step for which they were misassigned. The average 

quality scores of i5 and i7 index reads appear to be largely independent, i.e. low quality in one 

does not imply low quality in the other. This may be due to the fact that the two index sequences 

are read separately after the cluster is inverted on the flow cell. In contrast, sequence 

misassignments tended to have poor quality i5 and i7 index reads, in addition to a low quality 

sequence read (Fig. 3.3). Moreover, quality scores were generally lower across the entire length of 

misassigned reads, rather than only being low quality in a specific region (Appendix B: 

Supplemental Fig. 1). 

 

Figure 3.3. Breakdown of average quality scores by error type. Each point represents the reads 
obtain for one triplet (i5, i7, and sequence read), and is scaled to the log of the read count. Correct 
triplets (green) have high quality across all read steps, whereas sequence misassignments have low 
quality in all three read steps. In contrast, index misassignments tend to have low quality in the 
step for which they are misassigned. 

The observed quality score pattern has several implications for filtering incorrect reads. 

First, filtering low quality sequence reads is expected to be insufficient to eliminate anything other 
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than sequence misassignments. This implies that the i5 and i7 must be quality filtered to eliminate 

index misassignments. Second, filtering low quality i5 and i7 index reads may be sufficient to 

eliminate both sequence misassignments and index misassignments without needing to quality 

filter the sequence read. We tested these hypotheses by applying increasing stringencies of quality 

score filtering and observing the remaining cross-talk. Here we distinguished between three 

strategies: quality filtering only the sequences, only the index pairs, and filtering all read steps. As 

expected, keeping only high quality sequence reads nearly eliminated sequence misassignments 

but not index misassignments (Fig. 3.4), whereas filtering the index sequences largely prevented 

all types of misassignment. By filtering the index reads to an average quality score of ≥ 26 (0.25% 

probability of error per base) it was possible to reduce the overall rate of incorrect triplets from 

0.24% to 0.03% while maintaining 88% of total reads. A combined strategy was only slightly more 

effective at eliminating both types of misassignment. Thus, quality filtering of index reads provides 

a simple way to minimize cross-talk while preserving the vast majority of reads. 
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Figure 3.4. Trade-off between removing misassigned and preserving correct reads during 
quality filtering. (Top) Misassignments were not efficiently removed by quality filtering the 
sequence reads (gray line), whereas quality filtering the i5 and i7 index sequences was highly 
effective (black line). Quality filtering sequence reads in addition to index reads (red line) did not 
remove substantially more cross-talk. (Bottom) Quality filtering either sequence reads or index 
reads was effective at removing sequence misassignments. 

DISCUSSION 

Misassignment errors could result from distinct cluster originators forming at an overlapping spot 

on the flow cell (Nelson et al. 2014). If this were the case, we might expect the quality score 

profiles of incorrect reads to oscillate between low quality in positions where the two sequence 

clusters differ (e.g., one A, one C) and high quality where they are identical (e.g., both A). 

However, we did not observe any such pattern in the quality score signals of incorrect triplets, 

perhaps because there is a poor correlation between the quality score and the actual probability of 
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error (Schirmer et al. 2015) or because neighboring positions are taken into account when 

assigning quality scores. Nevertheless, we would expect overlapping clusters to lower the quality 

of all read steps due to competing signals, yet this was also not observed. Instead it appears that 

one cluster tends to overpower the other during each read step (i5, i7, or sequence), and the 

overpowering cluster in the pair can switch between read steps. 

 

Figure 3.5. Recommended procedure for removing background reads. a, When using unique 
dual index sequences for every sample (si), each missing index pair offers a negative control that 
provides an estimate of the number of misassigned reads (ε). b, When almost all index 
combinations are being used, controls can be added by purposefully omitting samples for some 
combinations of index sequences. c, The quality score threshold (Qthresh) can then be optimized by 
plotting the sum of misassignments versus the number of reads remaining. d, A value of Qthresh can 
be selected that minimizes misassignments while maximizing the number of reads that remain. 

While a quality score threshold of 26 was sufficient to eliminate most misassignments in 

this study, this threshold may vary from run-to-run depending on the run’s overall quality and 

other factors. For this reason, it may be useful to detect misassignments and then vary the quality 
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score threshold to observe its effect on their removal (Fig. 3.5). Misassignments can be detected 

by de-multiplexing index combinations that should not be present in the sequencing run but for 

which the i5 and i7 index sequences exist separately in other samples. In the absence of 

misassignments the number of sequences attributable to missing index pairs should be zero. This 

provides a straightforward method for both verifying misassignments and confirming their 

removal. Also, this method does not depend upon knowing the sequence variants that belong to 

each sample. 

CONCLUSIONS 

To our knowledge, this is the first systematic study of cross-talk on the Illumina platform that uses 

standard dual indexing as opposed to custom or single indexing schemes. Previous studies of cross-

talk identified the advantages of dual indexing over single indexing and of quality filtering index 

sequences (Kircher, Sawyer, and Meyer 2011; Nelson et al. 2014). Here we extended these 

findings by showing that there are three independent modes of cross-talk: incorrect i5 index, i7 

index, and sequence. The existence of sequence misassignments prevents dual indexing from 

completely eliminating cross-talk without quality filtering. It also means that if only a single (i7) 

index is used, filtering on sequence quality in addition to index quality is the best strategy. In 

agreement with previous work (Kircher, Sawyer, and Meyer 2011), we determined that no amount 

of quality filtering can completely eliminate cross-talk when samples are only separated by one of 

two index sequences. Thus, unique dual indexing is required when identification of extremely rare 

variants is critical. We also proposed a simple method for both quantifying cross-talk and choosing 

run-specific or application-specific thresholds for mitigating it by counting reads assigned to 

unexpected index pairs during quality filtering (Fig. 3.5). 
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Cross-talk between samples effectively limits the number of index pair combinations that 

can be reliably used. As the fraction of clusters sharing an i5 or i7 increases, the number of 

misassigned reads will concomitantly increase. Eventually, even at small rates of misassignment 

the incorrect reads would rise to an intolerable level if enough index combinations were used. This 

is supported by a previous study in which the rate of cross-talk was estimated to approach 1% 

when 625 index pair combinations were used (E. Wright and Vetsigian 2016). For this reason, we 

believe it is necessary to quality filter index reads in addition to the sequencing read when 

employing a multiplexing strategy. Furthermore, to mitigate the issue of spurious results due to 

cross-talk in the literature, we recommend that repositories such as the Sequence Read Archive 

(SRA) (Leinonen et al. 2010) enable and encourage the submission of quality scores for index 

sequences and unexpected (control) index pairs. This would allow retroactive filtering of published 

sequences, and would also provide a means for automatic accumulation of data on the magnitude 

of sample cross-talk as sequencing platforms evolve. 

METHODS 

Template DNA extraction and PCR amplification 

A total of 13 strains (Appendix B: Supplemental Table 1) belonging to the genera Amycolatopsis 

or Streptomyces were grown at 28°C in 1 mL of 1/10th concentration ISP2 medium (10 g Malt 

extract, 4 g Yeast extract, and 4 g Dextrose per 1 L) for 9 days. The remaining protocol closely 

paralleled that of a previous study (E. Wright and Vetsigian 2016). Briefly, the cultures were 

centrifuged at 1000 rcf for 10 minutes to pellet the cells. A 700 μL volume of supernatant was 

removed, the remaining volume was vortexed, and 200 μL of the concentrated mycelium was 

transferred to a 0.2 mL thin-wall tube (Corning). These tubes were sonicated at 100% amplitude 

for 60 seconds using a Model 505 Sonicator with Cup Horn (QSonica) while the samples were 
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completely enclosed. After sonication, the samples were centrifuged, and the supernatant 

containing DNA was used as template for PCR amplification. 

Extracted DNA was amplified using indexed primers containing adapters (Appendix B: 

Supplemental Table 2). Samples were carefully arranged into a 96 well plate in alternating rows 

and columns to prevent any possibility of cross-contamination. Primers were designed to target 

either a stably integrated chromosomal barcode or the RNA polymerase subunit β (rpoB) gene. 

The PCR reaction consisted of a 2 min denaturation step at 95°C, followed by 40 cycles of 20 sec 

at 98°C, 15 sec at 67°C, and 15 sec at 80°C. The PCR reaction contained 10 μL of iQ Supermix 

(Bio-Rad), 0.8 μL of 10 μM forward primer, 0.8 μL of 10 μM reverse primer, 4 μL of DNA 

template, and 5.9 μL of reagent grade H2O per sample. Primers were synthesized by Integrated 

DNA Technologies using their TruGrade service that is intended to prevent cross-contamination 

during synthesis. Furthermore, primers were purchased across multiple orders that were staggered 

in time to further ensure that primer cross-contamination could not occur. 

DNA purification, sequencing, and analysis 

PCR products were purified separately with the Wizard SV-Gel and PCR Cleanup System 

(Promega). Samples were sequenced by the UW-Madison Biotechnology Center on an Illumina 

Hi-Seq 2500 in rapid mode. Sample concentrations were determined using an Agilent 2100 

Bioanalyzer, and pooled immediately prior to sequencing in order to reach a target density of 8.5e5 

to 1e6 clusters per mm2. Spiking PhiX was unnecessary because the sequences’ first 5 bases were 

well separated (hamming distance from 2 to 5), and we have not noticed a reduction in cross-talk 

from adding PhiX in prior runs. Single-end sequencing was performed for 51 cycles. After 

sequencing the cluster density was determined to be 9.9e5/mm2. 
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Samples were de-multiplexed using Illumina’s bcl2fastq (v2.17) software and its 

associated defaults, that is, allowing 1 mismatch per index and only outputting reads that “pass 

filter”. Illumina’s pass filter algorithm screens out reads based on the signal intensities over the 

first 25 cycles of the sequencing read. The additional parameter “--create-fastq-for-index-reads” 

was specified to force the program to output fastq files for both index sequences (i5 and i7). Raw 

index and sequence reads are available from the sequence read archive (SRA) under accession 

number SRP083789. We also de-multiplexed another randomly selected index pair (i5: 

ACGTAAGG; i7: GGCCAATT) that was not used with any sample. This index pair had zero 

associated reads, confirming that the observed rates of sequence misassignment are larger than 

expected from misread bases alone. 

Reads were assigned to the nearest expected sequence within an edit distance of four 

(including mismatches, insertions, and deletions) using the DECIPHER (v2.1.6) package (E. S. 

Wright 2016) in R (R Core Team 2016) (http://DECIPHER.codes). The sequences belonging to 

each sample were separated by an edit distance of at least 14, meaning that a small number of 

misread bases would not prevent correct matching. Barring insertions and deletions, which are 

uncommon on the Illumina platform, the 14 sequence variants were separated by between 21 and 

43 substitutions. The probability of 17 (21 differences – 4 mismatches) or more substitutions 

within 51 bases is 10-23 at a high misread rate of 1% (Q20). Between 4.8 million and 9.6 million 

reads were mapped to each of the 14 sequences having a known index pair, with a mean of 7.5 

million reads per expected triplet. A total of 99.9% of unexpected triplets differed from an expected 

triplet by a single read step, with the remainder differing by two read steps (e.g., incorrect i5 and 

i7). 
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Quality score filtering was applied with the TrimDNA function of DECIPHER (E. S. 

Wright 2016), which allows specification of a maximum average error rate. The quality score (Q) 

can be converted to a probability of error (p) using the formula p = 10(Q/-10). The sequence 

misassignment rate was calculated as the fraction of reads having the same i5 and i7 index pair 

that mapped to the wrong sequence, divided by the total number of mapped reads having that index 

pair. The index misassignment rate was calculated as the fraction of reads that mapped to a 

sequence with a known index pair, but differing by a single i5 or i7 index from the expected index 

pair.  
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CHAPTER 4: JACKPOTS SKEW THE DISTRIBUTION OF DESCENDANTS ARISING 
FROM INDIVIDUAL BACTERIA 

 

INTRODUCTION 

Since the dawn of population genetics, it has been clear that the distribution in the number of 

offspring per parent is central to developing a quantitative understanding of the evolution of 

genetic variants (Gillespie 1974). The offspring distribution provides a mapping between 

generations and directly determines the extent that genetic drift affects allele frequencies in a 

population (Der, Epstein, and Plotkin 2012). In idealized populations the offspring distribution is 

typically assumed to be Poisson distributed with a variance that is inversely proportional to the 

effective population size (Charlesworth 2009). However, for some animals there is high variance 

in reproductive success, with a minority of males fathering a large fraction of the progeny in each 

generation (Araki et al. 2007; Lallias et al. 2010). Such highly-skewed offspring distributions have 

fundamental implications for how we predict and interpret fluctuations in allele frequencies (Der, 

Epstein, and Plotkin 2012; Hedrick 2005; Hoban et al. 2013). 

In contrast to animals, the offspring distribution is a largely unexplored concept for 

microorganisms. Unlike many sexually reproducing organisms, the offspring distribution is trivial 

for bacteria undergoing binary fission because each replicating bacterium always gives rise to two 

individuals. However, this concept can be generalized to the non-trivial descendants distribution 

by asking: How many progenitor cells does a random bacteria yield after a given amount of time 

𝛕𝛕, where the time 𝛕𝛕 need not refer to a single generation (Fig. 4.1a). This is a variable quantity 

which is described by some probability distribution. In a system with seasonality, for example, one 

might look at this distribution after one season. Defined as such, the descendants distribution is a 

fundamental quantity of which little is known for bacteria. 

 

 



 45 

 

Figure 4.1. Measurement of the distribution of descendants arising from a population. a, 
Clonal cells, represented by colored circles, are grown for a period of time (𝛕𝛕) before their relative 
abundances are measured. b, The variability in the proportion of descendants between replicate 
populations of cells is used to determine the descendants distribution. c, The descendants 
distribution may take on a variety of shapes that have different rates of converging to zero. Heavy-
tailed distributions would result in jackpots where individuals have much greater reproductive 
output than expected based on their initial frequency. 
 

Due to bacteria’s large population sizes (Lynch 2003), selection is generally considered to 

be the predominant evolutionary force determining fluctuations in allele frequencies (Price and 

Arkin 2015). However, some bacteria undergo dramatic fluctuations in population number that 

would strongly expose them to the effects of genetic drift (Batut et al. 2014). For example, entire 

populations can arise from a single cell during between-host bottlenecking (Kaltenpoth et al. 2009) 

or strong selective sweeps of a single lineage (Bendall et al. 2016). At the other extreme, the shape 

of the descendants distribution is largely unknown for a single genetically identical population 

grown in an unstructured environment. This leads to the question of whether it is feasible to 

directly measure the descendants distribution of microbial populations in a scalable fashion. Such 

a tool would allow exploration of the distribution in many different organisms and contexts, 
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potentially allowing a determination of the extent of genetic drift and the mechanistic basis of 

observed stochasticity. 

The descendants distribution is unknown for bacteria in part because it is challenging to 

measure for clonal individuals. Here we used a barcode tagging approach that enabled us to track 

descendants from hundreds of sub-populations differing only by a short DNA barcode inserted in 

their chromosome. Using the variability between replicate populations, we show that the 

descendants distribution is fat tailed, that is some bacteria represent a far greater proportion of the 

final population than their initial frequency. We propose hypotheses as to why some bacteria 

effectively “win the jackpot”, and discuss implications of heavily skewed descendants 

distributions. 

RESULTS 

Measurement of the descendants distribution 

Directly determining the descendants distribution would require tracking each individual cell and 

all of its offspring within a clonal population. Such a brute force strategy is exceedingly difficult, 

if not impossible. Therefore, we developed an alternative method to track sub-populations of cells 

and infer the shape of the descendants distribution based on changes in the relative abundance of 

sub-populations between replicates (Fig. 4.1b). This method required tagging bacterial lineages of 

an otherwise clonal population with a unique 30 base pair random sequence inserted at a fixed site 

on the chromosome. A similar technique has been used previously to tag yeast lineages (Levy et 

al. 2015). After growth in liquid medium, the relative abundance of each lineage is determined by 

PCR amplification of these lineage-specific “barcodes” followed by high-throughput sequencing 

(see Methods). The lower detection limit of a barcode is at least 10-fold lower than the least 

abundant cell in the initial population. 
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This method results in a frequency distribution of lineages at a time point, , that arose from 

sub-populations of bacteria at time point 0. Importantly, this approach requires that the technical 

variability due to the experimental procedure be far less than the biological variability. To 

investigate both of these components of variability, we compared the frequency distribution 

determined from technical (PCR) replicates to that originating from distinct biological replicates. 

We found that technical replicates had substantially higher correlation than biological replicates 

(Appendix C: Supplemental Fig. 1), confirming that most of the variability is biological in nature. 

This allows the shape of the descendants distribution to be inferred from the variability between 

biological replicates (Fig. 4.1c). To this end, we independently grew 5 different strains belonging 

to the genus Streptomyces in 8 separate replicate populations starting from 3 different initial 

concentrations (see Methods). 

The descendants distribution is skewed with a heavy tail 

Two extremes of the barcode frequency distribution reveal characteristics of the descendants 

distribution (Fig. 4.2a). At one end, the distribution of barcodes present at high frequency is 

expected to be normally distributed because each barcode represents a large number of initial cells. 

Based on the central limit theorem, the means of large samples drawn from any distribution should 

be normally distributed, so long as the underlying distribution has a finite mean. We tested whether 

the relative frequencies of the 8 replicates belonging to the most abundant barcodes could be 

normally distributed using the Shapiro-Wilk test (threshold alpha = 0.02). Each of these barcodes 

is estimated to be shared by over 1,000 initial cells per replicate. For 4 out of 9 of these abundant 

barcodes the normal distribution was rejected (Fig. 4.2b). This result suggests that the underlying 

descendants distribution is heavy tailed, because convergence to normality would otherwise be 

expected for such large samples. 
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Figure 4.2. Inferring the descendants distribution. a, Barcodes at the two extreme of relative 
abundance reflect the shape of the descendants distribution. b, Abundant barcodes, those shared 
by more than 1000 cells in the initial population, are expected to converge to a normal distribution 
due to the central limit theorem. However, many of the most abundant barcodes were not normally 
distributed, based to their p-values (at right) in the Shapiro-Wilk test. Instead, the abundant 
barcodes originating from three different strains (colors) were widely scattered in terms of their 
final proportion of the population (x-axis). c, The singletons, those barcodes occurring in only 1 
out of 8 replicates, approximate the shape of the descendants distribution since they likely started 
from single cells. For the strain with the most singletons, Streptomyces G4A3, we observed that 
their relative abundances at the end of the experiment were more heavy-tailed than a fitted log-
normal distribution (green curve). The outlying “jackpots” represent cells that grew to a far higher 
abundance than average, in many case by more than 10-fold. 
 

At the other extreme, as the initial frequency of a barcode approaches a single cell (Fig. 

4.2a), the distribution of final barcode frequencies should approximate the descendants 

distribution. We made the assumption that strains appearing in only 1 out of 8 replicates of a given 

initial concentration were sufficiently rare to have originated from a single cell. While we would 

expect this assumption to be violated in about 10% of cases, the impact of starting from 2 cells 

should be on the order of 2-fold. The resulting distribution of barcode frequencies for these 

“singletons” appeared approximately log-normally distributed (Fig. 4.2c). Surprisingly, for many 

strains the distribution spanned over three orders of magnitude, meaning that some barcodes were 
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over-represented by more than 1000-fold that of a typical barcode starting from an identical initial 

frequency. 

Sub-exponential and some heavy-tailed distributions can be rejected 

The drawback of the two previous approaches for characterizing the underlying descendants 

distribution is that they only take into account the extremes of the dataset. Therefore, we devised 

an alternative procedure for using the entire dataset to more accurately estimate the descendants 

distribution. Here we simulated the entire process, starting from sampling an initial frequency 

distribution of barcodes, then “growing” each barcode according to an underlying distribution, and 

sampling the resulting frequency distribution for PCR amplification and sequencing. Since we 

know the number of initial templates per replicate based on quantitative PCR and the number of 

reads obtained in sequencing, the entire simulation only has two free parameters: (i) the shape of 

the distribution and (ii) the initial population size. The shape of each distribution comes from both 

the type of distribution and the parameter controlling its shape. 

We used the average of 300 simulations to optimize both parameters for each distribution 

that we tested (see Methods). Briefly, the optimality criterion was based on the area between the 

cumulative distributions of the simulations and the observed data. For each shape value, we first 

optimized the initial (census) population size to yield the same number of unique barcodes that 

were observed in the real data. The optimal population sizes generally matched the approximate 

number of initial cells determined through plate counting (Appendix C: Supplemental Fig. 2), 

validating the simulation procedure. Based on the simulated data, distributions were rejected when 

their optimal shape value resulted in a distribution of barcodes that fell outside of the variability 

encompassed by the 300 replicate simulations (see Methods). The results of the simulations are 

summarized in Table 1. 
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Table 4.1. Best-fit parameters for different distribution types at each initial concentration. 
 

  Initial strain concentration 
  Full concentration One tenth One hundredth 

Distribution Strain p-value shape p-value shape p-value shape 

Exponential 

S. coelicolor 0.00 3.00 0.00 5.00 0.03 3.00 
S. albus J0174 0.00 5.00 0.00 5.00 0.00 5.00 
S. G4A3 0.00 7.00 0.00 6.00 0.00 2.00 
S. S26F9 0.00 2.00 0.00 2.00 0.00 3.00 
S. venezuelae 0.00 3.00 0.00 6.00 - - 

Weibull 

S. coelicolor 0.00 0.15 0.14 0.35 0.05 0.45 
S. albus J0174 0.00 0.30 0.07 0.10 0.02 0.25 
S. G4A3 0.00 0.35 0.00 0.50 0.36 0.45 
S. S26F9 0.04 0.10 0.39 0.15 0.02 0.25 
S. venezuelae 0.15 0.30 0.48 0.15 - - 

Lognormal 

S. coelicolor 0.39 3.10 0.46 1.75 0.23 1.40 
S. albus J0174 0.00 1.75 0.24 3.75 0.00 2.70 
S. G4A3 0.03 1.60 0.03 1.55 0.40 2.10 
S. S26F9 0.44 4.05 0.29 2.85 0.02 2.35 
S. venezuelae 0.14 1.85 0.37 3.50 - - 

Pareto 

S. coelicolor 0.47 0.96 0.00 1.00 0.26 0.94 
S. albus J0174 0.08 0.75 0.34 1.09 0.43 1.04 
S. G4A3 0.14 0.74 0.00 0.81 0.02 1.11 
S. S26F9 0.44 1.09 0.15 1.02 0.01 1.11 
S. venezuelae 0.40 0.89 0.00 0.86 - - 

 

The exponential distribution, which is not heavy-tailed, was clearly a poor fit to the real 

data across all 5 strains and initial concentrations (Fig. 4.3c). Heavy-tailed distributions were a 

better fit to the data, although most could be rejected, especially for the strains with the greatest 

number of observed barcodes (data points). Both the log normal and Pareto distributions fit the 

data reasonably well, but the Pareto distribution was clearly a better fit to the most abundant 

barcodes (Fig. 4.3b). Strikingly, the optimal exponent (shape parameter 𝛂𝛂) of the Pareto 

distribution was near one for most strains. Distributions of this type are classified as wild because 

they have infinite variance. While it is extremely unlikely that a single cell could produce 100% 
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of all descendants in a short amount of time, this result highlights the heavy-tailed nature of the 

observed descendants distribution. 

 

Figure 4.3. Fitting the complete experimental result to simulation. We performed simulations 
(gray) of the entire experiment with different descendants distributions to test their ability to 
recapitulate the observed data (black). a, The variation in relative barcode frequencies between 8 
replicate populations is shown for the strain S. albus at full initial concentration, containing 1524 
unique barcodes. The vertical lines connect the observed relative frequencies of each of the 8 
biological replicates (points) corresponding to a given barcode. Note that the line may extend to 
zero in cases where a barcode was not observed in one or more of the 8 replicates. b, The full 
dataset was best fit by a simulation (gray) under a Pareto-shaped descendants distribution. The 
Pareto distribution was the only shape that could not be statistically rejected and is the most heavy-
tailed of the distributions tested. c, The exponential distribution, which is not heavy-tailed, was a 
poor fit to the data as it quickly converged to low variance for the most abundant barcodes. d, The 
log normal distribution displayed less variation than the Pareto distribution among the most 
abundant barcodes. 
 

DISCUSSION 

In this study we created and applied a procedure for determining the descendants distribution 

arising from a population of nearly-clonal bacteria. Surprisingly, the descendants distribution was 

closely approximated by a power-law distribution with a heavy-tail (Fig. 4.3), resulting in a wide 

range of relative abundances after only a short time (Fig. 4.2). This raises the question: what causes 

the extreme variability in abundances? To answer this question, it is helpful to separate sources of 
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variability into two components: genetic and phenotypic. High genetic variability would require 

that some barcode lineages contained mutants of substantially higher fitness than the rest of the 

population. In contrast, high phenotypic variability would necessitate that some individuals have 

substantially higher fitness than their genetically identical siblings, where fitness is defined as the 

number of descendants. 

One genetic basis for variation is that some barcodes have pre-existing mutations that 

impart a higher growth rate, resulting in an exponential divergence in relative abundance over 

time. However, the method we used to fit the data to the simulation (Fig. 4.3) is robust to per-

barcode selection coefficients because it relies on intra-barcode variability. We confirmed this by 

incorporating selection coefficients into our simulation (see Methods) and observed no effect on 

the fitted parameters. Another way to uncover differences in inter-barcode selection coefficients 

is to look for correlations between the final relative frequencies of rare barcodes. We tested this 

by plotting the relative frequency of barcodes that were only present in 2 of 8 replicates (Appendix 

C: Supplemental Fig. 3). The correlation between replicate barcodes was extremely low (Pearson’s 

r = 0.08), indicating that inter-barcode selection coefficients are not a major source of the observed 

variability between replicates. 

These results do not rule out the possibility that there were rare individuals within a barcode 

lineage with new or recently acquired beneficial mutations. Such mutants would likely have had 

to arise after the start of the experiment in order to only be present in a minority of replicates. 

Given the high number of positively-skewed replicates, it is implausible that this many mutants of 

large effect size could occur so rapidly. Furthermore, we estimate that most cells only doubled 

about 10-15 times over the course of the experiment. Even a large growth rate advantage of 10% 

would be expected to result in at most a 3-fold variability in final abundances. Nonetheless, it is 
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well known that mutation is a major determinant of fitness variation in populations, and we cannot 

rule out the fact that some of the variance in the descendants distribution was attributable to genetic 

differences. 

Setting aside genetic variation, there are several sources of phenotypic variability that could 

result in large differences in the number of descendants. Previously it has been shown that 

germination times for a clonal population of Streptomyces are approximately normally distributed 

(Xu and Vetsigian). When followed by exponential growth this would be expected to result in a 

log normal distribution in the number of descendants per individual. This initial variation could be 

further amplified by small differences in growth rate, for example if larger colonies grow faster 

because they are more effective at obtaining nutrients. Any autocorrelation in growth rates between 

generations would result in multiplicative accumulation of variation over time, which is expected 

to lead to a heavy-tailed descendants distribution in accordance with the multiplicative central limit 

theorem. 

The heavy-tailed nature of the descendants distribution is anticipated to have several effects 

on bacterial evolution. First, extreme stochastic variability will act to purge genetic diversity over 

time, causing the force of genetic drift to have a greater influence over allele frequencies than 

would otherwise be expected. Second, the effective population size is inversely proportional to the 

variance in the offspring distribution (see Methods). Hence, greater variation in the number of 

descendants per individual is expected to lower the effective population size (Hedrick 2005), 

thereby raising the lower-bound at which weak selective pressure can effectively act. While the 

implications of low effective population size have been considered for sexual species, they have 

largely been discounted for bacteria because of their large census population sizes. In the future, 
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it would be interesting to study the descendants distribution for non-sporulating bacteria to see 

whether the conclusions drawn in this study can be generalized to other bacteria. 

METHODS 

Construction of barcoded strains 

Oligonucleotides 5’-GATCCACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’ and 5’-

S20-N30-AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTG/3Phos/ were purchased 

from Integrated DNA Technologies (IDT). The latter oligonucleotide is different for each strain 

library and contains a unique 20-nucleotide strain barcode (S20), a stretch of 30 random 

nucleotides that form the set of lineage barcodes (N30), and a 3’-phosphate modification. To 

permit robust identification of a strain in the presence of sequencing errors, the S20 sequences 

were designed using Edittag (Faircloth and Glenn 2012). The 34-nucleotide complementary region 

of the two oligonucleotides were annealed, made double stranded using Klenow Polymerase 

(Promega), and then modified using T4 Polynucleotide Kinase (New England BioLabs), which 

removes the 3’-phosphate and adds 5’-phosphates. Subsequently, this DNA insert was ligated into 

plasmid pSRKV004 cut with BamHI and EcoRV (New England BioLabs). The plasmid 

pSRKV004 is a derivative of the integrating plasmid pSET152 (Hopwood et al. 2000) in which 

the orientation of EcoRV and BamHI sites in the multiple cloning site is reversed. 

To reduce the background of pSRKV004 without inserts after ligation, the ligation mixture 

was digested with EcoRV and NotI (New England BioLabs) and then transformed into E. coli 10G 

ELITE cells (Lucigen) via electroporation. Transformants were selected on Luria broth (LB) plates 

with 50 μg/ml Apramycin and the pool of transformants underwent plasmid preparation (miniprep) 

using a commercial kit (Promega). The miniprep was again digested with EcoRV and NotI and the 

resulting library was introduced into the conjugation helper strain ET12567-pUZ8002 (Hopwood 
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et al. 2000) via chemical transformation. Transformants were selected on LB + 15 µg/ml 

Chloramphenicol + 50 µg/ml Kanamycin and 50 μg/ml Apramycin plates, pooled, and grown in 

liquid LB containing 15 µg/ml Chloramphenicol, 50 µg/ml Kanamycin and 50 μg/ml Apramycin 

for 2-3 hours in a 37°C shaker. 

This E. coli culture was used for conjugation into the desired Streptomyces strain using the 

standard protocol (Hopwood et al. 2000). Briefly, the transformed conjugation helper strain was 

mixed with Streptomyces spores, the bacterial mix was grown on mannitol-salt (MS) agar for 16 

hours and then overlaid with Apramycin (100 µg/ml) and Nalidixic acid (50 µg/ml). Strains 

successfully undergoing conjugation integrate the plasmid at a phage attachment site in their 

genomic DNA (Sun et al. 1999). Barcoded libraries were prepared by scraping spores from 

exconjugants and selecting against E. coli carryover by propagating the spores on Streptomyces 

Isolation Medium (D’Costa et al. 2006) supplemented with 50 µg/ml Nalidixic acid and 100 µg/ml 

Apramycin for two growth cycles. 

Strains and growth conditions 

Five barcoded Streptomyces strains were chosen based on having more than 100 distinct 

barcodes per strain. These five strains were S. coelicolor, S. albus J1074, S. G4A3 (Vetsigian, 

Jajoo, and Kishony 2011), S. S26F9 (E. Wright and Vetsigian 2016), and S. venezuelae. Full 

concentration spore stocks were diluted 10-fold and 100-fold to generate three concentrations, and 

aliquoted into 8 replicates per concentration, each containing a single strain (120 total populations). 

Each replicate (30 µl) was used to inoculate 1 ml of 1/10th ISP2 liquid (10 g Malt extract, 4 g Yeast 

extract, and 4 g Dextrose per 1 L) in a sterile 1.5 ml polystyrene tube (Evergreen Scientific). A 

small hole was made in the cap of each tube to allow air flow. Tubes were incubated for 7.5 days 

at 28°C while shaking at 200 rpm. 
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DNA extraction and sequencing 

After growth, strains were centrifuged at 2000 rpm for 10 minutes to pellet the cells. A 750 µl 

volume of supernatant was removed, leaving about 150 µl remaining. Note that some of the 

original volume was lost to evaporation during growth. The remaining volume containing 

mycelium was sonicated at 100% amplitude for 3 minutes using a Model 505 Sonicator with Cup 

Horn (QSonica) while the samples were completely enclosed. After sonication, the samples were 

centrifuged, and the supernatant containing DNA was used as template for PCR amplification. 

PCR primers (Appendix C: Supplemental Table 1) were designed with unique 8-nucleotide 

i5 and i7 index sequences and Illumina adapters. The random barcode (N30) sequence occurs at 

the start of the sequencing read to assist with cluster detection on the Illumina platform. Since 

strains could be distinguished by their unique sequence specific barcode (S20), we amplified each 

replicate using a unique dual-index combination, but used the same set of combinations for all 5 

strains. Hence, the S20 region effectively acted as a third index sequence that allowed the 5 strains 

sharing dual-index primers to be correctly de-multiplexed. This permitted all 24 samples per strain 

to be multiplexed without needing to have some samples only separated by a single i5 or i7 index. 

All strains were amplified separately before pooling, requiring a total of 120 PCR reactions (5 

strains with 24 replicates each). In addition, we performed two more technical replicates of one 

sample belonging to each strain. 

Extracted DNA was amplified using a qPCR reaction consisting of a 2 min denaturation 

step at 95°C, followed by 40 cycles of 20 sec at 98°C, 15 sec at 67°C, and 15 sec at 80°C. Each 

well contained 10 μL of iQ Supermix (Bio-Rad), 1.6 μL of 10 μM left primer, 1.6 μL of 10 μM 

right primer, 4 μL of DNA template, and 2.8 μL of reagent grade H2O per sample. A standard 

curve of pure template DNA was used to estimate the initial DNA copy number per sample. The 
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resulting amplicons were pooled by sample and purified using the Wizard SV-Gel and PCR 

Cleanup System (Promega). Samples were sequenced by the UW-Madison Biotechnology Center 

on an Illumina Hi-Seq 2500 in rapid mode. Sequences were deposited into the Short Read Archive 

(SRA) repository under accession number PRJNA353868. 

DNA Sequence analysis 

Using the R (R Core Team 2016) package DECIPHER (E. S. Wright 2016), DNA sequencing 

reads were filtered at a maximum average error of 0.1% (Q30) to lessen the degree of cross-talk 

between dual-indexed samples (E. S. Wright and Vetsigian, 2016). Sequences were assigned to 

the appropriate strain by exact matching the S20, and the nearest barcode by clustering N30 

sequences within an edit distance of 5. To completely eliminate any remaining cross-talk, we 

subtracted 0.01% + 5 reads from the count of every barcode by sample. The remaining reads were 

normalized by dividing by the total number of reads per sample. The final result of this process 

was a matrix of read counts for each unique barcode across every sample by strain. 

Complete simulations using different descendants distributions 

We performed comprehensive simulations in order to test the fit of different distributions to the 8 

replicates per strain at a given concentration. The simulation begins by averaging the relative 

barcode frequency distributions across all 8 replicates to generate a background barcode frequency 

distribution. This distribution is reasonably well approximated by an exponential distribution, but 

is truncated because very rare barcodes are not observed. We supplemented these rare barcodes by 

extrapolating the exponential distribution and adding back “virtual” barcodes at less than the 10th 

percentile of relative frequency. Since these barcodes are extremely rare, they collectively have 

minimal effect on the relative frequencies of the other barcodes. 
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The simulation begins by Poisson sampling a given number of initial barcodes from this 

background distribution. These barcodes then give rise to a number of final barcodes in accordance 

with the given distribution’s shape. The barcode frequencies are then normalized to sum to 1, 

meaning that the simulation result is invariant to each distribution’s scale (i.e., mean). The 

corresponding shape parameter for each distribution is the rate λ (exponential), shape k (Weibull), 

scale σ (log normal), and exponent α (Pareto). Next, the simulation subsamples the distribution in 

accordance with the observed number of sequencing reads and the predicted number of initial 

templates in PCR. To better reflect the real data, these two steps are performed based on the 

estimated number of reads and initial templates in each replicate. 

Hence, there are only two free parameters in the simulation, one specifying the initial 

(census) population size, and a second controlling the shape of the distribution. For a given shape 

parameter, the initial population size was optimized to yield the same number of observed data 

points (barcodes) as in the real data. We found this method to generally approximate the initial 

population size estimated by plate counting the initial inoculum (Appendix C: Supplemental Fig. 

2). We performed a sweep across a range of shape values to find the optimum based on the result 

of 300 simulations. 

To define an optimality criterion, we split the simulation results into successive bins by 

relative frequency, with 10 bins that were evenly spaced in log-space per order of magnitude. We 

then compared the area between the cumulative frequency distributions of the real data within a 

bin and that of the combined result of the 300 simulations. The shape parameter with the least total 

separation between empirical cumulative distribution functions was considered optimal. We tested 

whether a distribution could be rejected by comparing the optimality score of the real data to that 
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of the 300 simulations tested against one another through leave-one-out. The reported p-value 

represents the fraction of simulations with at least as extreme of a score as the real data. 

Effective population size 

In the Wright-Fisher (S. Wright 1931) idealized population model, the variance effective 

population size for haploid organisms is: 

𝑁𝑁𝑒𝑒 =
𝑝𝑝0(1 −  𝑝𝑝0)

var(𝑝𝑝1)  

Where p0 is the initial proportion of a genotype, and p1 is the proportion after one generation. We 

are interested in the distribution of p1 for single individuals, for which we can substitute: 

𝑝𝑝0 = 1 𝑁𝑁⁄  

For large N, we can approximate: 

𝑁𝑁𝑒𝑒 =
1 𝑁𝑁⁄ (1 −  1 𝑁𝑁⁄ )

var(𝑝𝑝1) ≈
1 𝑁𝑁⁄

var(𝑝𝑝1) =
𝑁𝑁

var(𝐶𝐶) 

Here we can consider p1 as the proportion of children (C) arising from the original genotype 

(p1=C/N). Therefore, the effective population size is inversely related to the variance of the 

offspring distribution (C). While this model is highly idealized, it serves as a basis for the notion 

that Ne will be much less than N when the descendants distribution is highly skewed. 

ACKNOWLEDGEMENTS 

We thank Sriram for preparing the barcoded strains used in this work, Ye Xu for help with 

microscopy experiments, the UW Biotechnology Center DNA Sequencing Facility for performing 

the Illumina sequencing associated with this study, and the UW-Madison Center for High 

Throughput Computing (CHTC) for providing compute resources. We are grateful for feedback 

from David Baum, Anthony Ives, and Laurence Loewe during preparation of the manuscript. This 

work was supported by the Simons Foundation, Targeted Grant in the Mathematical Modeling of 

 

 



 60 

Living Systems Award 342039, the National Science Foundation Grant DEB 1457518, and the 

National Institute of Food and Agriculture, US Department of Agriculture, Hatch project 1006261.  

AUTHOR CONTRIBUTIONS 

EW performed the experiments and simulations. EW and KV designed the study, analyzed the 

data and wrote the manuscript.

 

 



 61 

CHAPTER 5: RECAPITULATION 
 

SUMMARY OF CHAPTER 2 

It is largely unknown how the process of microbial community assembly is affected by the order 

of species arrival, initial species abundances and interactions between species. A minimal way of 

capturing competitive abilities in a frequency-dependent manner is with an invasibility network 

specifying whether a species at low abundance can increase in frequency in an environment 

dominated by another species. Here, using a panel of prolific small molecule producers and a 

habitat with feast-and-famine cycles, we show that the most abundant strain can often exclude 

other strains – resulting in bistability between pairs of strains. Instead of a single winner, the 

empirically determined invasibility network is ruled by multiple strains that cannot invade each 

other, and does not contain loops of cyclic dominance. Antibiotic inhibition contributes to 

bistability by helping producers resist invasions while at high abundance and by reducing 

producers’ ability to invade when at low abundance. 

SUMMARY OF CHAPTER 3 

Multiplexing multiple samples during Illumina sequencing is a common practice and is rapidly 

growing in importance as the throughput of the platform increases. Misassignments during de-

multiplexing, where sequences are associated with the wrong sample, are an overlooked error 

mode on the Illumina sequencing platform. This results in a low rate of cross-talk among 

multiplexed samples and can cause detrimental effects in studies requiring the detection of rare 

variants or when multiplexing a large number of samples. We observed rates of cross-talk 

averaging 0.24% when multiplexing 14 different samples with unique i5 and i7 index sequences. 

This cross-talk rate corresponded to 254,632 misassigned reads on a single lane of the Illumina 
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HiSeq 2500. Notably, all types of misassignment occur at similar rates: incorrect i5, incorrect i7, 

and incorrect sequence reads. We demonstrate that misassignments can be nearly eliminated by 

quality filtering of index reads while preserving about 90% of the original sequences. Cross-talk 

among multiplexed samples is a significant error mode on the Illumina platform, especially if 

samples are only separated by a single unique index. Quality filtering of index sequences offers an 

effective solution to minimizing cross-talk among samples. Furthermore, we propose a 

straightforward method for verifying the extent of cross-talk between samples and optimizing 

quality score thresholds that does not require additional control samples and can even be performed 

post hoc on previous runs. 

SUMMARY OF CHAPTER 4 

Variance in reproductive success is a major determinant of the degree of genetic drift in a 

population. While it is well known that many animals exhibit high variance in their number of 

progeny, far less is known about the corresponding distribution in microorganisms. Here we study 

the distribution of descendants that may arise from a single bacterium after a few generations of 

growth. We find that the descendants distribution is heavy-tailed, meaning that a few cells 

effectively “win the jackpot” to become a large proportion of the population. We attribute this 

skew to the amplification of small growth differences that begin with variation in lag time before 

exponential growth. The product of these differences results in a heavy-tailed distribution of 

descendants that is best fit by a power-law (Pareto) distribution with an exponent near 1. This 

result implies that stochastic effects have a major influence over allele dynamics, even in growth 

conditions that are far more homogeneous than the natural environment. 
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CONCLUDING REMARKS 

One of the perils of being a graduate student is that you see your project(s) everywhere you look. 

This was certainly the case for me with the first project in this thesis. One of the main conclusions 

was that bistability, the existence of two stable states, is widespread among Streptomyces in our 

experimental system. I began seeing bistability everywhere: gut communities (Clostridium difficile 

or not), antibiotic treatment outcomes (cured or not), the lac operon (expressed or not), light 

switches (on or not), and so on. Bistability, it seemed, was more ubiquitous than I had thought! 

Nevertheless, one place I have yet to find abundant bistability is in good scientists. One cannot 

simply be a biologist or a computer scientist, a theoretician or an empiricist, a reductionist or a 

holist (i.e., systems biologist), a field researcher or a lab rat. The conflict between these states is a 

false one, or, at least, the states themselves are unstable. Each is complementary to the other. Each 

is enlightened by the other. Each is incomplete without the other. 

Hence, as I move into the next phase of my career, I reflect upon the origins of good 

science. In doing so I aspire to continue asking fundamental questions, and seek their answers 

through a combination of approaches. In other words, I do not wish to be part of a wet lab or a dry 

lab, but a soggy lab. One that is steeped in all the idiosyncrasies of biology. One where scientists 

are comfortable straddling the traditional walls between domains and excited about the continuous 

shades of gray that pervade nature. One where a problem’s intricacies are viewed almost as a 

testament to the problem’s authenticity. I believe this philosophy underlies any successes that may 

be contained in these pages, and I hope that I will find many others along this journey who are 

embracing the many facets of the thing that we all call science. 
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APPENDIX 
 

APPENDIX A: SUPPLEMENTAL MATERIAL FOR CHAPTER 2 

 

 
Supplemental Figure 1. Maximum likelihood tree based on 643 nucleotides of the rpoB gene 
belonging to strains used in this study (black labels) and other related strains (gray labels). 
Strains used in this study cover much of the breadth of known Streptomyces. Scale bar shows the 
expected number of substitutions per site. 
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Supplemental Figure 2. Examples of community dynamics during (a) a slow invasion, (b) a fast 
invasion, or (c, d) no invasion. Relative copy number is the fraction of rpoB sequencing reads 
that matched each of the two species at a given growth cycle after background subtraction (see 
Methods section in the main text). In some cases of non-invasion (d) the invader never rose 
above the lower detection limit, although the presence of the invader could often be visually 
confirmed in the tube during the first growth cycle (Appendix A: Supplemental Fig. 4). In a 
subset of 16 of these cases we further confirmed the absence of the invader after the third growth 
cycle using quantitative PCR, which has a superior lower detection limit (Appendix A: 
Supplemental Table 3). 
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Supplemental Figure 3. Distribution of triplet motifs in randomized invasion networks (blue 
histograms) relative to the observed number of each motif (red lines). Enrichment for transitivity 
of hierarchy is evident from histograms (2, 1), (2, 4), (3, 4), and (4, 1) in (row, column) format. 
Enrichment for transitivity of bistability is evident from histograms (1, 1), (1, 2), and (1, 4). 
Absence of the 'rock-paper-scissors' dynamic is shown in (3, 4). 
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Supplemental Figure 4. Example images of cases where the higher ranked strain in a bistable 
pairing is visible in the tube after the first growth cycle, but disappears by the third growth cycle. 
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Supplemental Figure 5. Both yield (a) and growth rate (b) are largely uncorrelated with 
hierarchy level. Yield was measured for each strain grown by itself after three growth cycles. 
Colony size was measured under a microscope for separate colonies after 43 hours of growth 
(see Methods). Note the log-scaled y-axes, which cause the best-fit trend-lines to appear curved.  
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Supplemental Figure 6. Measurement of the inhibition matrix. a, Inhibition in the cross-
streaking assay was measured as the distance an abundant strain (the inhibitor) was able to 
prevent sporulation of a less abundant strain intersecting it on a petri dish. b, Example 
experimental results for strain 15 as the inhibitor and four other strains being inhibited. c, The 
matrix of pairwise inhibitions included several strains that were inhibited by most others, and 
several strains that were not inhibited by any others. The diagonal is white because a strain can 
grow adjacent to itself (no self-inhibition). 
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Supplemental Figure 7. Correlations between invasions and inhibitions complementing Fig. 
2.4bc in the main text. a, Inhibition appears to increase the likelihood of invasion when using 
data from all pairs (p = 0.02). b, Inhibition helps to resist invasion (p = 0.07) using a subset in 
which the resident is at a higher hierarchy level (3 ≥ hA – hB > 0). 
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Supplemental Figure 8. One of 11 top scoring alternative hierarchies created by not scoring 
invasions between pairs that have an inhibitory interaction in either direction. Few inhibitions are 
directed against the invasion hierarchy, indicating that the downward bias of inhibitions is not 
entirely due to a role of inhibitions in shaping the invasion hierarchy.
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Supplemental Table 3. Results of quantitative PCR amplification of a subset of 8 bistable pairs 
after the third growth cycle. 

Bistable pairs Threshold cycle (Ct) 

Resident Invader 
Resident 
Ct Invader Ct ∆Ct 

Melt 
curve α Gel run β 

Sanger 
Sequencing γ 

9 17 17.48 36.49 19.01 Different Matched Artifact 
17 9 15.14 29.48 14.34 Different Different N/A 
15 18 15.90 34.59 18.69 Different Different N/A 
18 15 14.09 34.92 20.83 Different Different N/A 
15 9 17.03 31.35 14.32 Different Absent N/A 
9 15 17.01 37.23 20.22 Different Matched Artifact 
2 17 18.65 39.38 20.73 Different Different N/A 
17 2 16.30 22.04 5.74 Different Different N/A 
2 11 24.08 40.14 16.06 Different Different N/A 
11 2 17.93 26.75 8.82 Different Different N/A 
15 17 16.09 44.29 28.20 Different Absent N/A 
17 15 17.72 36.88 19.16 Different Absent N/A 
17 18 16.73 34.15 17.42 Different Absent N/A 
18 17 14.57 36.63 22.06 Different Absent N/A 
2 18 16.31 37.60 21.29 Different Absent N/A 
18 2 15.21 26.97 11.76 Different Absent N/A 

α Whether the shape of the melt curve matched or was different than would be expected if the 
invader’s target DNA had amplified. 
β Whether the amplicon length matched or was different than would be expected if the invader’s 
target DNA had amplified. “Absent” indicates that the gel run band was too short to appear on 
the gel (< ~70 base pairs). 
γ Whether the results of Sanger sequencing matched the invader’s target DNA, appeared to be a 
PCR artifact (Artifact), or was not sequenced (N/A). 
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APPENDIX B: SUPPLEMENTAL MATERIAL FOR CHAPTER 3 

Supplemental Figure 1. Mean quality score per base for each read step (sequence, i7 index, or 
i5 index). The average quality was consistently lower across the entire length of the misassigned 
reads relative to correctly assigned reads. Furthermore, particular positions exhibited consistently 
lower scores across all read types, as well as across the 14 sequence variants. 
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Supplemental Table 1 

Target Strain Primer 1 Primer 2 i5 index i7 index 
barcode Streptomyces lividans Left54 Right28 CAACGAAC AGACGTTC

barcode Streptomyces S3H10 Left55 Right80 CACACACT ATGGTGTG

barcode Streptomyces coelicolor Left56 Right66 AATACCGC ACCTACCA

barcode Streptomyces venezuelae Left41 Right67 AATGACGG ACTTCGGT

barcode Streptomyces S26F9 Left42 Right29 TGACGGAA ACGGACTT

barcode Streptomyces albus J1074 Left43 Right81 ACATGGCT GCTGAACT

barcode Streptomyces G4A3 Left78 Right68 CGGCTATT CTACGCTA

barcode Streptomyces S25E2 Left79 Right30 ATAGCGGT CTAAGCGT

barcode Streptomyces S4B4 Left57 Right31 CTGTTCGT GATGTCCA

barcode Streptomyces S2D4 Left44 Right69 CCGAATTG AACACGAC

barcode Streptomyces S18A4 Left45 Right70 TACTAGCG GCGAGATT

rpoB Streptomyces S4B4 Reverse3 Forward1 GAATTCGC GCCTCTTA

rpoB Streptomyces cattelya Reverse25 Forward2 TTAGACCG CAGCGTAT
rpoB Amycolatopsis AA4 Reverse16 Forward15 TACCGAGT TACCTCTG
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APPENDIX C: SUPPLEMENTAL MATERIAL FOR CHAPTER 4 

Supplemental Figure 1. Most of the variability between replicates is biological in nature. 
Three technical (separate PCR and sequencing) replicates of the same biological sample are 
plotted against each other and a different biological sample of S. coelicolor. Each point 
corresponds to a unique barcode that was present in both samples. Correlation between technical 
replicates was much higher than that for biological replicates. The line of identity is colored red. 



88 

Supplemental Figure 2. Fitted values of the initial census population size (N) roughly 
corresponded to expectation. For each of the 5 species, values of N determined by fitting the 
number of barcodes during simulations (with an underlying Pareto descendants distribution) are 
shown as points connected by solid lines. Expected values based on dilution plating of each 
strain are shown by the correspondingly colored dashed lines. Note that both axes are log-scaled. 



89 

Supplemental Figure 3. The frequency of rare barcodes was largely uncorrelated between 
biological replicates. The relative frequencies of barcodes appearing in only 2 of 8 replicates are 
shown for strain S. S4G3. The lack of correlation between replicate barcodes indicates that inter-
barcode selection had a negligible influence over the variability between replicates. Note the log-
scaled axes and the line of identity.



Su
pp

le
m

en
ta

l T
ab

le
 1

. P
C

R
 p

rim
er

s u
se

d 
in

 th
is 

st
ud

y.
 

Pr
im

er
 N

am
e 

Pr
im

er
 S

eq
ue

nc
e 

(5
' t

o 
3'

) 
Le

ft4
1 

A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
A
A
T
G
A
C
G
G
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft4

2 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
T
G
A
C
G
G
A
A
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft4

3 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
A
C
A
T
G
G
C
T
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft4

4 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
C
C
G
A
A
T
T
G
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft4

5 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
T
A
C
T
A
G
C
G
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft4

6 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
A
G
G
C
A
T
C
T
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft4

7 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
A
A
G
G
T
A
G
C
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft4

8 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
T
C
C
A
T
C
G
T
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft4

9 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
C
A
T
T
C
C
G
T
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft5

0 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
G
T
G
A
G
A
C
A
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft5

1 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
C
G
C
T
T
A
A
G
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft5

2 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
C
T
C
G
A
G
T
A
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft5

4 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
C
A
A
C
G
A
A
C
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft5

5 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
C
A
C
A
C
A
C
T
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft5

6 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
A
A
T
A
C
C
G
C
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft5

7 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
C
T
G
T
T
C
G
T
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft5

8 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
G
T
C
G
T
T
G
T
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft5

9 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
C
A
C
A
G
G
A
A
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft6

0 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
T
A
A
G
C
C
A
G
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft6

1 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
G
C
A
T
A
G
G
T
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft6

2 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
A
T
G
C
G
T
A
G
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft6

3 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
C
T
T
G
T
T
G
C
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft6

4 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
A
A
G
T
G
G
T
G
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft6

5 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
T
T
G
C
T
A
C
G
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

Le
ft7

8 
A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
C
G
G
C
T
A
T
T
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

90 



Pr
im

er
 N

am
e 

Pr
im

er
 S

eq
ue

nc
e 

(5
' t

o 
3'

) 
Le

ft7
9 

A
A
T
G
A
T
A
C
G
G
C
G
A
C
C
A
C
C
G
A
G
A
T
C
T
A
C
A
C
A
T
A
G
C
G
G
T
A
C
A
C
T
C
T
T
T
C
C
C
T
A
C
A
C
G
A
C
G

R
ig

ht
28

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
G
A
A
C
G
T
C
T
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
29

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
A
A
G
T
C
C
G
T
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
30

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
A
C
G
C
T
T
A
G
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
31

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
T
G
G
A
C
A
T
C
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
32

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
C
C
A
A
G
T
G
T
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
33

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
G
G
T
A
A
C
G
A
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
34

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
T
C
G
G
T
A
A
C
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
35

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
G
T
C
G
C
A
A
T
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
36

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
T
C
C
A
T
C
T
G
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
37

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
G
C
C
T
T
G
A
A
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
38

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
G
A
T
C
A
T
G
C
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
39

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
A
T
T
G
C
C
A
G
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
66

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
T
G
G
T
A
G
G
T
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
67

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
A
C
C
G
A
A
G
T
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
68

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
T
A
G
C
G
T
A
G
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
69

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
G
T
C
G
T
G
T
T
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
70

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
A
A
T
C
T
C
G
C
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
71

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
A
C
C
T
T
G
T
G
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
72

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
A
A
C
C
G
A
T
G
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
73

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
C
A
T
A
A
C
G
C
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
74

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
C
A
A
C
C
A
C
A
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
75

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
C
G
A
T
T
G
T
C
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
76

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
G
T
T
C
T
G
G
T
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
77

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
T
G
A
A
G
G
C
A
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
80

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
C
A
C
A
C
C
A
T
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

R
ig

ht
81

 
C
A
A
G
C
A
G
A
A
G
A
C
G
G
C
A
T
A
C
G
A
G
A
T
A
G
T
T
C
A
G
C
G
T
G
A
C
T
G
G
A
G
T
T
C
A
G
A
C
G
T
G
T
G
C
T
C
T
T
C
C
G
A
T
C
T
A
G
G
C
G
A
T
T
A
A
G
T
T
G
G
G
T
A
A
C
G

91 


	CHAPTER 1: INTRODUCTION
	Why use microbes to research ecology?
	Bottom-up versus top-down approaches to microbial ecology
	Constructing microbial communities
	The marvelous Streptomyces
	Entering the era of high-throughput ecology

	CHAPTER 2: INHIBITORY INTERACTIONS PROMOTE FREQUENT BISTABILITY AMONG COMPETING BACTERIA
	INTRODUCTION
	RESULTS
	Frequent bistable relationships between pairs of strains
	Partly hierarchical invasion network with multiple winners
	Inhibitory interactions promote bistability

	DISCUSSION
	METHODS
	Isolation of Streptomycetes
	Invasion experiments
	DNA extraction and sequencing
	Determination of presence or absence of the invader
	Inhibition experiments
	Measurement of growth rate and yield
	Hubs of bistability
	Analysis of triplet motifs in the invasion network
	Determination of the invasion network hierarchy
	Calculation of correlations between inhibition and invasion
	Controlling for downward pointing tendency of inhibitions
	Analysis of inhibition's role in bistability
	Proving requirement of pairwise bistability for coexistence

	ACKNOWLEDGEMENTS
	AUTHOR CONTRIBUTIONS

	Both authors contributed extensively to this work.
	CHAPTER 3: QUALITY FILTERING OF ILLUMINA INDEX READS MITIGATES SAMPLE CROSS-TALK
	BACKGROUND
	RESULTS
	DISCUSSION
	CONCLUSIONS
	METHODS
	Template DNA extraction and PCR amplification
	DNA purification, sequencing, and analysis

	ACKNOWLEDGEMENTS
	AUTHOR CONTRIBUTIONS

	CHAPTER 4: JACKPOTS SKEW THE DISTRIBUTION OF DESCENDANTS ARISING FROM INDIVIDUAL BACTERIA
	INTRODUCTION
	RESULTS
	Measurement of the descendants distribution
	The descendants distribution is skewed with a heavy tail
	Sub-exponential and some heavy-tailed distributions can be rejected

	DISCUSSION
	METHODS
	Construction of barcoded strains
	Strains and growth conditions
	DNA extraction and sequencing
	DNA Sequence analysis
	Complete simulations using different descendants distributions
	Effective population size

	ACKNOWLEDGEMENTS
	AUTHOR CONTRIBUTIONS

	CHAPTER 5: RECAPITULATION
	SUMMARY OF CHAPTER 2
	SUMMARY OF CHAPTER 3
	SUMMARY OF CHAPTER 4
	CONCLUDING REMARKS

	REFERENCES
	APPENDIX
	APPENDIX A: SUPPLEMENTAL MATERIAL FOR CHAPTER 2
	Supplemental Figure 1. Maximum likelihood tree based on 643 nucleotides of the rpoB gene belonging to strains used in this study (black labels) and other related strains (gray labels). Strains used in this study cover much of the breadth of known Str...
	Supplemental Figure 2. Examples of community dynamics during (a) a slow invasion, (b) a fast invasion, or (c, d) no invasion. Relative copy number is the fraction of rpoB sequencing reads that matched each of the two species at a given growth cycle a...
	Supplemental Figure 3. Distribution of triplet motifs in randomized invasion networks (blue histograms) relative to the observed number of each motif (red lines). Enrichment for transitivity of hierarchy is evident from histograms (2, 1), (2, 4), (3,...
	Supplemental Figure 4. Example images of cases where the higher ranked strain in a bistable pairing is visible in the tube after the first growth cycle, but disappears by the third growth cycle.
	Supplemental Figure 5. Both yield (a) and growth rate (b) are largely uncorrelated with hierarchy level. Yield was measured for each strain grown by itself after three growth cycles. Colony size was measured under a microscope for separate colonies a...
	Supplemental Figure 6. Measurement of the inhibition matrix. a, Inhibition in the cross-streaking assay was measured as the distance an abundant strain (the inhibitor) was able to prevent sporulation of a less abundant strain intersecting it on a pet...
	Supplemental Figure 7. Correlations between invasions and inhibitions complementing Fig. 2.4bc in the main text. a, Inhibition appears to increase the likelihood of invasion when using data from all pairs (p = 0.02). b, Inhibition helps to resist inv...
	Supplemental Figure 8. One of 11 top scoring alternative hierarchies created by not scoring invasions between pairs that have an inhibitory interaction in either direction. Few inhibitions are directed against the invasion hierarchy, indicating that ...
	Supplemental Table 1. Strains of Streptomyces bacteria used in this study.
	Supplemental Table 2. PCR primers used in this study. For sequencing, the rpoB_amp_F and rpoB_amp_R are the primers used in the first amplification step, and the longer primers are used in the second amplification step. Barcoded primers are named by ...
	Supplemental Table 3. Results of quantitative PCR amplification of a subset of 8 bistable pairs after the third growth cycle.

	APPENDIX B: SUPPLEMENTAL MATERIAL FOR CHAPTER 3
	Supplemental Figure 1. Mean quality score per base for each read step (sequence, i7 index, or i5 index). The average quality was consistently lower across the entire length of the misassigned reads relative to correctly assigned reads. Furthermore, p...
	Supplemental Table 1
	Supplemental Table 2

	APPENDIX C: SUPPLEMENTAL MATERIAL FOR CHAPTER 4
	Supplemental Figure 1. Most of the variability between replicates is biological in nature. Three technical (separate PCR and sequencing) replicates of the same biological sample are plotted against each other and a different biological sample of S. c...
	Supplemental Figure 2. Fitted values of the initial census population size (N) roughly corresponded to expectation. For each of the 5 species, values of N determined by fitting the number of barcodes during simulations (with an underlying Pareto desc...
	Supplemental Figure 3. The frequency of rare barcodes was largely uncorrelated between biological replicates. The relative frequencies of barcodes appearing in only 2 of 8 replicates are shown for strain S. S4G3. The lack of correlation between repli...
	Supplemental Table 1. PCR primers used in this study.



