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Abstract

The currently accepted classical theory of elasticity is limited when describing many materials
by its two elastic constants. Another theory of elasticity, the Cosserat theory, incorporates rotation
of points and distributed moments (couple stresses) in addition to the translation of points and
force stress present in classical elasticity. Consequently, the Cosserat theory has more freedom
and offers a richer framework to describe materials than the classical theory - it contains six elastic
constants. Understanding materials by the more descriptive capabilities of the Cosserat theory
will facilitate a novel approach to material design - optimization of the six Cosserat elastic con-
stants. Additionally, Cosserat elasticity predicts several key phenomena to differ from classical
predictions. One such phenomenon is the Cosserat prediction of a size effect in the torsion and
bending of circular cylinders of Cosserat elastic materials - specimens are more rigid than expected
classically.

In this document, a variety of materials are systematically analyzed using the framework of
Cosserat elasticity via experimentation. The size effects demonstrated by the following materials
are explored, the Cosserat elastic constants extracted, and the mechanisms by which deformation
is controlled are probed and related to Cosserat phenomena. First, open cell polyurethane foams of
two cell sizes are explored as Cosserat continua. Next, specimens of the large cell foam, triaxially
compressed under heat to achieve a negative Poisson’s ratio, are studied. Unidirectional compos-
ites composed of corrugated nylon tubing segments and silicone rubber cement are engineered
and demonstrate extremely large size effects in torsion. Approximate solutions for bending and
torsion of Cosserat elastic materials with square cross sections are used to probe Cosserat behav-
ior of designed negative Poisson’s ratio tetragonal lattices. Conclusions drawn from studies up to
this point are employed to engineer triangular prismatic unit cell lattices demonstrating Cosserat

elastic effects including large magnitude size effects in torsion and bending. The lattices made of



ii

triangular prismatic unit cells incorporating strain gradient sensitive rib elements are engineered
and experimentally analyzed as Cosserat material. Finally, the systematic design and experimen-
tation process leading to the development of triangular prismatic unit cell lattices demonstrating

large size effects is covered in detail.
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Chapter 1

Introduction

1.1 Background Information

1.1.1 Theories of Elasticity

Generalized continuum theories of elasticity, used to describe the mechanical behavior of mate-
rials, with varying degrees of freedom have been developed over the centuries. The following
theories are pertinent only for small strain when deformation is linear. One of the first theories of
elasticity, developed by Navier [1], incorporated only one elastic constant, shear modulus, and a
Poisson’s ratio of 1/4 for all materials. This theory was based on the assumption that forces act
along lines joining pairs of atoms and are proportional to changes in distance between them. This
theory was rendered obsolete by experiments proving a range of Poisson’s ratios.

The classical theory of elasticity is the next step up in generality by incorporating two elastic
constants: a Lamé constant in addition to the shear modulus. The Poisson’s ratio in the Classical
theory can range from -1 to 0.5. An important limitation of the Classical theory is the absence
of a length scale despite the presence of a length scale in the definition of fracture toughness
(MPay/m)and the demonstrated relationship between toughness and length scale in foams [2].

Several more general theories of elasticity exist which explain the effects of length scales in
materials. One of the first such theories is the Cosserat theory of elasticity. In 1909 E. and F.

Cosserat introduced a theory of elasticity [3] involving six degrees of freedom. These additional



degrees of freedom include local rotations of points and a couple stress (torque per unit area) in
addition to the translation and force stress (force per unit area) of Classical elasticity. The idea of
incorporating couple stress into theories of elasticity was first presented by Voigt [4] in 1887.

During the 1960s, much work was done incorporating couples stress into theories of elasticity
via modern continuum mechanics. In 1962, Mindlin and Tiersten [5] introduced a couple-stress
theory in which the rotation of a point in a material is the same as the local rotation of the sur-
rounding material. This theory represents a constrained Cosserat continuum with three degrees
of freedom. Additionally, this theory contained a characteristic length parameter (couple stress
constant) which is a material property. When the characteristic length parameter goes to zero, the
solutions of the constitutive equations reduce to those of Classical elasticity.

In 1964, Eringen and Suhubi [6] developed a nonlinear theory of elasticity with 42 constitutive
equations. In the same year, Mindlin [7], who derived a linear theory via variational principles,
determined that the 42 functions reduce to 18 material constants for the linear isotropic case. This
micromorphic elasticity theory has more freedom than Classical or Cosserat elasticity; it allows
points to translate, rotate, and deform within the material. As a special case, if the micro-rotation
tensor and the stress moment tensor are antisymmetric, the micro-rotation becomes kinematically
independent of the linear displacements. Thus, the six degrees of freedom of the generalized
Cosserat continuum theory are preserved. Since the stress and couple stress tensors are fully
determined the number of elastic constants reduces to six. Because of the great generality of this
couple-stress theory, Eringen [8] renamed it micropolar elasticity in 1966. An important aspect
of micropolar elasticity is that at sufficiently low frequencies such that local resonances are not

approached, it can be used interchangeably with the Cosserat theory.

1.1.2 Cosserat Elasticity

Cosserat Elasticity is the result of the Cosserat brothers working to incorporate extra degrees of

freedom found in some materials, such as materials with micro- to milliscale length scales, into



continuum theories of elasticity. The constitutive equations for an isotropic Cosserat solid are [9]:

ok = 2Geg + NerrOp + Kekim(rm — Om) (1.1)

M = 0Prr Okt + Bk + YP1k (1.2)

Equations 1.1 and 1.2 use the usual Einstein summation convention and the comma represents
differentiation with respect to spatial variables. The Lamé constant, A\, and (2 + k) = 2G are
the same as in classical elasticity. oy; is the usual force stress tensor (asymmetric), ey; is the small
strain tensor defined in terms of the displacement wuy: ey = %(Ukl + uy ), r is the macrorotation
Tm = %emlnum where e, is the permutation symbol, my, is the couple stress tensor, ¢ is the
microrotation vector which is kinematically independent of the macrorotation, and «, 3,7, &, i, A
are the six elastic constants. The following technical constants, which are beneficial for physical

insight, are obtained from the six aforementioned elastic constants:

3N+2
Young's modulus E = (2u+ k) o I 2Z i Z (1.3)
2
Shear modulus G = N;_ " (1.4)
Poisson's ratio v = A (1.5)
2 +2u+ kK
Characteristic length, torsion 1l =/ Bty (1.6)
2u+ K
Characteritic length, bending Iy = T (1.7)
2(p + k)
K
Coupli b N=,|——— 1.8
oupling number 0t ) (1.8)
Polar ratio Bty (1.9)
a+ B+

In the case when «, 3, , k tend to zero, the solution for a classical solid is obtained. When

N reaches its upper bound of 1, the analysis can be interpreted as couple stress theory [5] [10]



[11] also known as the Koiter variant [12]. This case corresponds to x approaching infinity in the
Cosserat theory and implies a situation permitted by energetic considerations such as incompress-
ibility in classical elasticity. In contrast, when « tends to 0, or equivalently, N = 0, the rotational
and translational degrees of freedom are decoupled.

Cosserat elasticity has several key consequences in isotropic materials that differ from Classical

elasticity:

1. A size effect, which is the non-classical dependence of the rigidty of an object on one or
more of its dimensions, is predicted in the torsion[13] and bending[14] of circular cylinders
of Cosserat elastic materials. Slender cylinders appear stiffer than predicted Classically. Sim-
ilarly, a size effect is expected in the bending of plates[13]. No size effects are predicted in

Classical elasticity.

2. The stress concentration around a circular hole is smaller than expected classically and the
smaller holes demonstrate less stress concentration than larger holes [15]. Stress concentra-

tion near cracks and elliptic holes is reduced from Classcial predictions [16].

3. The speed of shear waves in a Cosserat solid is dependent on frequency [9]. Additionally, a

new kind of wave associated with micro-rotations is predicted for Cosserat solids [17].

The ordinary (force) stress represents a spatial average of force per unit area. Similarly, the cou-
ple stresses in the Cosserat theory represent spatial averages of distributed moments per unit area.
As Kroner [18] demonstrated, these moments can occur because interatomic forces propagate fur-
ther than one atomic spacing. This effect occurs in all solids, but the corresponding characteristic
lengths are typically too small for mechanical experimentation - on the atomic or nanoscale.

However, research has been accomplished developing new experimental methods for mea-
suring characteristic lengths in the micro- to nanoscale. Stolken and Evans [19] developed a mi-
crobend test method to measure material length scales as small as 3 micrometers. More Recently,
Zhao et. al [20] used a method of nanoindentation to measure the characteristic length of strain-

gradient plasticity in single crystals of Al, Ag, Ni, and polycrystalline Cu. This experimentation



measured characteristic lengths ranging from 2762 nm down to 49 nm. Experimental techniques
for measuring length scales smaller than these do not currently exist.

Moments can also be transmitted along the fibers in fiber-reinforced composites [21] or along
the cell walls or ribs in cellular solids [22] [23]. These situations provide sufficiently large length
scales - in the microscale or milliscale - for mechanical testing and measurement of the character-
istic lengths.

The size effects of Cosserat elasticity are most apparent in materials with microstructure in the
microscale to milliscale at a minimum. For example, Chong and Lam [24] encountered size effects
in the bending of thermosetting epoxy microcantilevers - the normalized bending rigidity of the
microcantilevers increased as the beam thickness decreased. Additionally, size effects have been
observed in torsion and bending of dense (340 kg/m?3) polyurethane closed cell foam[22] with
cell sizes ranging from 0.5 to 0.15 mm and dense (380 kg/m?) polymethacrylamide closed-cell
foam[23] with an average cell size of 0.65 mm. However, large microstructure does not guarantee
that size effects will occur. Gauthier and Jahsman [13] designed a composite of aluminum beads

in an epoxy matrix and found that it behaved according to Classical elasticity.

1.2 Motivation

Classical elasticity is entirely adequate for describing macroscopic specimens of metal in which the
structure size is many order of magnitude smaller than the experimental size scale; macroscopic
scales tests for Cosserat effect in aluminum revealed classic behavior [25]. However, classical elas-
ticity breaks down as the structural size scale approaches that of the experimental size scale. Wave
dispersion was used to infer Cosserat behavior in diamond crystals [26]; the inferred characteristic
length was about 0.2 nm. More recently, classical elasticity [27] was predicted to break down in
crystalline materials in the length scale range of 1-10 nm. Compounding on the key differences
between Cosserat and Classical elasticity listed above, M. Rahaeifard et al. [28] demonstrated the

limitation of Classical elasticity in their analysis of static pull-in of microcantilevers. The Classical



theory of elasticity failed to predict the pull-in instability which occurs in these microcantilevers
when they were gradually deflected. Similarly, Kahrobaiyan et al. [29] proved the inability of
Classical elasticity to interpret size effects in the resonant frequency and sensitivity of atomic force
microscope (AFM) microcantilevers. A more descriptive theory of elasticity is necessary to ade-
quately model and predict the mechanical behavior of materials than the current classical theory.

As outlined above, Cosserat elasticity is a good option to provide a richer framework for de-
scribing and understanding a wide range of materials. Therefore, characterizing a range of mate-
rials and structures via Cosserat elasticity will facilitate a novel approach to the creation of new
metamaterials. This approach entails engineering microstructures that have and enhance specific
Cosserat moduli characteristics of other tested materials. Additionally, the amount of experimen-
tal work done on characterizing materials via generalized continuum theories is shockingly small
compared to the amount of theoretical work done on the same topic. Experimental work needs to
be performed to provide balance in this field.

Stated previously, toughness by definition has a length scale - MPay/m. Yet, toughness is often
characterized in the context of molecular or nanoscale physics which do not take into account the
role of the length scale of the largest structural elements in the material. Understanding materials
by Cosserat elasticity remedies this issue. Also, because of the difference in stress concentrations
predicted by Cosserat elasticity, describing materials by this theory has the potential to better pre-
dict the failure of materials by certain stress concentrators such as holes and cracks. This reinforces
the potential ability to design novel ultratough materials by Cosserat theory.

In summary, the currently accepted Classical theory of elasticity has many limitations when
it comes to describing the mechanical behavior of materials. Cosserat elasticity provides a richer
framework to understand and describe materials by means of its additional degrees of freedom
when compared to the Classical theory - a local rotation of points and a couple stress. By using
this more descriptive framework, my research aims to provide a new way to characterize materials
and increase understanding of what produces specific characteristics. Eventually, these findings

aim to aid in the creation of new ultratough materials via optimzation and enhancement of the



Cosserat characteristics of the toughest tested materials.

1.3 Thesis Organization

This RRE docment is organized as follows. Chapter 2 demonstrates the applicability and descrip-
tive power of the Cosserat theory to reticulated open cell polymer foam while simultaneously
revealing the limitations of the Classical theory of elasticity. Size effects are observed in torsion
and bending of circular cylindrical specimens of the foams. The characteristic lengths in torsion
and bending and the coupling number, N, are extracted and discussed. The experimental results
are compared with other results from literature to determine the mechanism governing deforma-
tion and Young’s modulus of the materials. Lastly, asymmetry of stress was inferred via notch
displacement testing to clearly demonstrate deviation from classical predictions and predictive
power of the Cosserat theory.

In Chapter 3, a similar analysis as Chapter 2 is performed on a negative Poisson’s ratio foam
derived from the large open cell reticulated polymer foam from Chapter 2. Size effects are exper-
imentally measured and the characteristic lengths and coupling number are extracted and com-
pared to the results from Chapter 2. Experimental results are compared with the literature and
those from Chapter 2 to determine the deformation mechanism.

Chapter 4 explores engineered unidirectional composites of corrugated nylon tubing and sil-
icone rubber cement. The segments of corrugated nylon tubing are predicted to be sensitive to
strain gradients in torsion and bending. Size effects in torsion and bending are measured and an-
alyzed. The Cosserat elastic constants are extracted, compared to prior results and literature, and
used to understand the deformation mechanics.

Tetragonal lattices with a negative Poisson’s ratio, designed by visiting scholar Dr. Dong Li,
are analyzed in Chapter 5. These lattices have square cross sections so approximate solutions

for the bending and torsion of Cosserat elastic materials with square cross sections are used for



analysis. Experimentally measured size effects are interpreted using these solutions. Cosserat
elastic constants are extracted and deformation mechanics determined.

Chapter 6 details the results from analysis of an engineered transversely isotropic polymer
lattice as Cosserat material. These lattices were developed as a culmination of concepts learned
from prior studies. The same experimental method and analysis is carried out as in previous
chapters.

A detailed explanation of the path that led to the lattices in Chapter 6 is presented in Chapter
7. Experimental results and analysis are presented for several different 3D printed lattices. Struc-
tures with strengthened diagonal (SD) unit cells incorporating Sarrus linkages in two different
orientations are explored in addition to another set of lattices built using triangular prismatic unit
cells.

Lastly, a summary of results and important concepts is presented in Chapter 8. Also, projects

still in progress and ideas for future work are covered here.



Chapter 2

Experimental Cosserat elasticity in open

cell polymer foam

The following chapter has been published:
Z Rueger and R.S. Lakes, "Experimental Cosserat elasticity in open cell polymer foam", Philosoph-

ical Magazine, 96 (2), 93-111 (2016).

Abstract Reticulated open cell polymer foams exhibit substantial size effects in torsion and
bending: slender specimens are more rigid than anticipated via classical elasticity. Such size effects
are predicted by Cosserat (micropolar) elasticity, which allows points to rotate as well as trans-
late and incorporates distributed moments (couple stresses). The Cosserat characteristic length is
larger than the cell size. The Cosserat coupling coefficient is larger than in dense closed cell foams

and approaches 1 for foam with 0.4 mm cells.

2.1 Introduction

Materials that are deformed at sufficiently small strain typically exhibit linear behavior. If the
response is also independent of the path of deformation and its time history, the material is con-
sidered to be elastic. Classical elasticity is routinely used to model such behavior. There is no

length scale in classical elasticity. Length scales do occur in the definition of fracture toughness.



10

Also, toughness of foams is related to the size scale of the cells in the foam [2]. Effects of material
length scales may be understood in the context of more general theories of elasticity.

Classical elasticity however is not the only theory of elasticity. Theories that incorporate less
freedom or more freedom are available. The Cosserat theory of elasticity [3] [30] incorporates a
local rotation of points as well as the translation of classical elasticity, and a couple stress (a torque
per unit area) as well as the force stress (force per unit area; just stress in classical elasticity).
Eringen [9] incorporated micro-inertia and renamed Cosserat elasticity micropolar elasticity. At
frequencies sufficiently low that local resonances are not approached, Cosserat and micropolar are
used interchangeably.

The physical origin of the Cosserat couple stress is the summation of bending and twisting
moments transmitted by ribs in a foam or by structural elements in other materials (Figure 2.1).
The Cosserat local rotation corresponds to the rotation of ribs. Forces and moments are also con-
sidered in the classic analyses of foam by Gibson and Ashby [2] in which classical elastic moduli

were determined; effects of rotation gradients were not considered.

FIGURE 2.1: Foam ribs with increment of force dF and increment of moment dM
upon ribs.

The Cosserat theory of elasticity is a continuum theory that entails a type of nonlocal [31] inter-

action. The stress o, (force per unit area) can be asymmetric. The distributed moment from this
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asymmetry is balanced by a couple stress m y (a torque per unit area). The antisymmetric part of
the stress is related to rotations. 0';1]? tisym _ o jkm (Tm — ¢m) in which & is an elastic constant, ¢y, is
the rotation of points, called micro-rotation, e, is the permutation symbol, and 7}, = %eklmum,l is
“macro"” rotation based on the antisymmetric part of gradient of displacement u;. The constitutive

equations [9] for linear isotropic Cosserat elasticity are as follows.

0ij = 2Geij + Negrdij + Kegjr(ry — o) (2.1)

mij = agp rlij + Boij + Vb5 (2.2)

Cosserat elasticity incorporates sensitivity to gradients of rotation by virtue of the coupling
between rotations and stresses. It is also possible to supplement classical elasticity with sensitivity
to gradients of dilatation [32].

The six isotropic Cosserat elastic constants are as follows in which A is a Lamé constant from

elasticity theory.

2
Young's modulus E = G(3)\)\+—|—GG) (2.3)
Shear modulus G (2.4)

A

Poisson's ratio v= 0N+ G (2.5)
Characteristic length, torsion by = 627—27 (2.6)
Characteristic length, bending by = % (2.7)
Coupling number N = 2GK+ - (2.8)
Polar ratio = ﬂ (2.9)
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Cosserat elasticity has the following consequences. A size effect is predicted in the torsion [13]
and bending [14] of circular cylinders of Cosserat elastic materials. Slender cylinders appear more
stiff than expected classically. A similar size effect is also predicted in the bending of plates. No
size effect is predicted in tension or compression. The stress concentration factor for a circular hole
is smaller than the classical value, and small holes exhibit less stress concentration than larger ones
[15]. By contrast, in classical elastic solids, there is no size effect in torsion or bending; structural
rigidity goes as the fourth power of the radius; too, stress concentration is independent of hole
size.

As for freedom of theories, the early uniconstant elasticity theory of Navier [1] has less free-
dom than classical elasticity; it has only one elastic constant and Poisson’s ratio must be 1 for all
materials. This theory is based upon the assumption that forces act along the lines joining pairs
of atoms and are proportional to changes in distance between them. This theory was abandoned
based on experiments that disclosed a range of Poisson’s ratio. Classical elasticity has two indepen-
dent elastic constants for isotropic materials; the Poisson’s ratio can have values between -1 and
0.5. Cosserat elasticity has more freedom than classical, that of local rotations and couple stress;
there are 6 independent isotropic elastic constants. A simpler variant presented by Koiter [12] as-
sumes that the macrorotation and microrotation vectors are equal. This corresponds to NV =1, or
equivalently k — oo in Cosserat elasticity. The Koiter variant is called couple stress elasticity; there
are two characteristic lengths in addition to the classical constants: 4 isotropic elastic constants.
The microstructure elasticity theory of Mindlin [7], also called micromorphic elasticity, has more
freedom than classical or Cosserat elasticity; it allows points in the continuum to translate, rotate,
and deform. This adds considerable complexity; for an isotropic solid, there are 18 micromorphic
elastic constants compared with 6 for Cosserat elasticity and 2 for classical elasticity.

Cosserat elastic effects have been observed experimentally. Size effects observed to occur in
torsion and bending of closed cell foams [22], [23] and of compact bone [21] are consistent with
Cosserat elasticity. The apparent modulus increases substantially as the specimen diameter be-

comes smaller, in contrast to the predictions of classical elasticity. Cosserat elasticity can account
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for these observations. For dense (340 kg/m?) closed cell polyurethane foam [22], E = 300 MPa, G
=104 MPa, v = 0.4, ¢; = 0.62 mm, ¢, = 0.33 mm, N2 = 0.04, U = 1.5. The cell size ranges from 0.05
mm to 0.15 mm. For dense (380 kg/m?) polymethacrylamide closed cell foam (Rohacell WF300)
[23], E = 637 MPa, G = 285 MPa, ¢; = 0.8 mm, ¢, = 0.77 mm, N2 ~ 0.04, U = 1.5. The cell size is
about 0.65 mm. For this material, it was difficult to determine NV accurately due to difficulty in
cutting sufficiently slender specimens.

The Cosserat characteristic length was determined in a (two dimensional) polymer honeycomb
[33]. Full field measurements of deformation reveal non-classical elastic effects that are consistent
with Cosserat elasticity. Warp of a bar of rectangular cross section in torsion is predicted to be
reduced in a Cosserat elastic solid [34]. The corresponding non-classical strain field was observed
in compact bone [35]. Deformation spills over into the corner region where it would be zero in
classical elasticity [36] as revealed by holography. This ameliorates concentration of strain. Strain
at the corner entails asymmetry of the stress as predicted by Cosserat elasticity. The reduction of
warp deformation has been observed via holography [37]. As for plastic deformation, rotational
plastic deformation mechanisms were interpreted via gradients in a micropolar continuum theory
[38].

The present research deals with experimental study of size effects and Cosserat elasticity in

low density open cell polymer foams.

2.2 Methods

2.2.1 Materials and experiment

Reticulated polyurethane foam (Scott Industrial foam [39]) was used. One foam had average cell
size 1.2 mm or 20 pores per inch (Figure 2.2); the other foam had average cell size 0.4 mm. For both
foams, the density was 30 kg/m? so the volume fraction of solid material in the foam was about
0.03.. Separate compression tests on foam cubes were conducted with a servo-hydraulic frame to

probe anisotropy.
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Cylinders were cut from polymer foam with a hot wire cutter such that the cylinder diameter
and length were equal. The wire was Nichrome heater wire of thickness 0.015 inches and resis-
tance 2.5 Q2. The electric current was 3 Amps. The initial cylinder cut from the bulk foam was 45
mm in both diameter and length. The foam cylinder was weighed with an analytical balance, then
circular end pieces of the same diameter as the foam specimen were cut from heavy card stock
and cemented with cyanoacrylate (Loctite 401) over the full surface. Slight pressure was applied
to the end pieces to ensure good adhesion. A catalyst was applied to the surfaces to minimize the
amount of cement in order to reduce ingression of the cement into the pores of the smaller cell
foam.

These specimens were tested for torsional and bending rigidity using a Broadband Viscoelastic
Spectrometer (BVS) [40] [41]. This instrument makes use of a Helmholtz coil acting upon a magnet
attached to the specimen to generate torque. The coil spacing is smaller than the larger specimens
so a short stalk with a magnet and mirror on the end was fixed to one of the end pieces. A thin
aluminum end layer was also cemented to provide a sufficiently rigid attachment for the stalk.
First, a small mirror was glued to one face of a cubic magnet. The magnet was then calibrated
using the BVS and a lock-in amplifier. The magnetic calibration constants of this particular magnet
were obtained by testing a 6061 aluminum alloy rod of known elastic properties; the calibration
constants were 8.00 x10~% Nm/A in torsion and 1.84 x1075 Nm/A in bending. The free end
piece of the polymer foam cylinder was cemented to a steel adapter which was screwed in to a
25 mm thick steel rod for holding the specimen inside the BVS. Prior to testing, viscoelastic strain
was allowed to recover overnight to enable stable measurements. The specimen (Figure 2.3a) was
lowered into the BVS such that the magnet was centered in the Helmholtz coils of the BVS. The
lower limit on specimen size was imposed by obtrusive presence of incomplete cells, particularly
in the larger cell foam; also by difficulty in handling. The smallest specimen of 0.4 mm cell foam

is shown in Figure 2.3b.
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(A) Larger cells, scale (B) Smaller cells, scale

bar 5 mm. bar 5 mm.

FIGURE 2.2: Open cell polyurethane foam samples.

Deformation was measured via a beam from a semiconductor laser reflected from a mirror
attached to the magnet that applies torque to the specimen free end. The laser beam was reflected
onto a silicon light detector. Prior to torsion tests, the laser based displacement sensor was cal-
ibrated. This was done by aligning the laser beam so that the position of the beam on the light
detector was centered. The light detector was moved a known amount via a calibrated stage; a
calibration curve was obtained via micrometer adjustment. This change in output voltage per
change in position was used as the beam position calibration constant (in V/um).

To test the specimen a sinusoidal signal with a frequency of 1 Hz from a function generator
(SRS Model DS345) was input to the torsion Helmholtz coil. Because the same frequency was used
for all specimen diameters, viscoelastic effects are decoupled from the size effects to be probed.
The torque signal was obtained as the voltage across a 1 ohm resistor in series with the coil to
eliminate effects of inductive reactance from the coil. The frequency of 1 Hz was well below
any resonant frequencies. The torque signal vs. angular displacement signal was displayed on a
digital oscilloscope (Tektronix TDS3014B) using DC coupling. The torque and angle signals were
displayed as a Lissajous figure, and used to calculate the modulus and viscoelastic damping of

the material. The maximum strain during testing was less than 0.3%. This is well within the linear
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range of 5-10% for this sort of flexible foam. Linearity was also checked by conducting tests at
different amplitude; moduli were independent of amplitude. Linear viscoelasticity was verified
by observing the shape of the elliptic torque-angle curve, an elliptic Lissajous figure. The light
detector was sufficiently sensitive that quality of the signals was good and the ratio of signal to
noise was high, 40 to 400.

For bending, the light detector mode was switched to vertical detection and the beam calibra-
tion constant was determined accordingly; the driving signal was input to the orthogonal bending
Helmholtz coil. A correction was applied to account for the additional bending moment imposed
by the weight of the magnet and stalk; this correction was 3% or less. A correction was also ap-
plied to the effective specimen length to incorporate the effect of glue in the pores at the ends.
The glue ingression was 0.3 mm or less per end. The correction was at most 10% for the smallest
specimen of small cell foam and considerably less otherwise.

Compression tests were done to ascertain the behavior in the absence of macroscopic gradients
of strain or rotation. This was done by applying force via dead weights on one end piece cemented
to the specimen. The other end piece was cemented to a base upon an optical table. Deformation
was measured using an LVDT; its stem was cemented to the upper end piece. The LVDT was
calibrated using a micrometer driven translation stage. The maximum strain achieved was 1.1%,
well within the linear range for a flexible foam. A lower limit on specimen size was imposed by
the tendency of small specimens to buckle.

Square section specimens of rubber and of foam with 0.4 mm cells were subjected to torsion
with the aim of illustrating the effect of asymmetric stress in Cosserat elasticity. A small notch,
about 1/15 the specimen width, was observed. In classical elasticity the notch will not displace
because the symmetry of the stress implies zero stress, hence zero strain at the corner. In a Cosserat
solid, the stress is asymmetric, so the notch can displace [34]; such displacement was observed in

bone and dense foams [36].
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(A) Larger specimen, (B) Smallest speci-
ger sp P
scale bar 10 mm. men, scale marks 1

mm.

FIGURE 2.3: Specimens created from 0.4 mm cell foam.

2.2.2 Analysis and interpretation

Size effect results were interpreted as follows. For torsion, the shear modulus G was found from
the asymptote of rigidity vs. diameter curve for large size. The torsion characteristic length ¢;
was found from fitting the points for the larger specimens to the following approximate solution.

For torsion of a Cosserat elastic circular rod of radius r, ratio of structural rigidity to its classical
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counterpart (in the absence of gradient, for large diameter) is

Q=146(L/r)> (2.10)

This shows size effects to occur in torsion: slender specimens appear to have a higher effective
modulus than thick ones. The classical torsional rigidity is 4 = G[%7?] so for Cosserat elasticity
in this regime, & = G[37%](1 + 6(¢;/r)?). G is the true shear modulus in the absence of gradients;
M is applied moment and 6 is angular displacement. This expression is exact for N = 1; for other
N the exact solution is more complicated and involves Bessel functions [13]:

(1—4¥x/3)

Q= (1+6(6/) )1,

1, (2.11)

in which x = Iy (pr) /priy(pr), p* = 2k/(a + B + 7) and Iy and I; are modified Bessel functions of
the first kind.

The shear modulus G and characteristic length /; were determined by fitting experimental data
for the three largest specimens to Eq. 2.10. The value of N was found by fitting Eq. 2.11 to the full
data set using MATLAB. The curve is rather insensitive to ¥ except near the origin.

For bending, the classical bending rigidity is % = E[Zr%]. For bending of a Cosserat elastic
circular rod and radius r, the rigidity ratio is approximately

L= (8/7)°)

Q=1+ 8(&,/7«)2( o) (2.12)

The expression is approximate for small characteristic length ¢, << r. The exact form [14],

which also involves Bessel functions, is

1—(8/7)?) | 8N? [ (B/y +v)?
(1+v) (14+v)"¢(da) +8N2(1 —v)

Q=1+ 8(&,/7«)2( ] (2.13)

with § = N/¢, and ((67) = (67)2[((67)Io((67)) — I1((67)))/((57)Io(67) — 201(67))].
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The Young’s modulus E and an initial value for the characteristic length ¢, were determined
by fitting data for the three largest specimens to Eq. 2.12, with NV input from the torsion analysis,
B/~ = 0.8 based on prior dense foam and also from lattice analysis (see below), and v from prior
experimental results. Finally the values of ¢, and /v were found by fitting Eq. 2.13 to the full
data set using MATLAB.

To obtain all six Cosserat constants, both torsion and bending experiments are required. The
bend test provides some verification in that the shape of the size effect curve depends not only on

E and 4, but also on N and 4;.

2.3 Results and discussion

2.3.1 Size effects and elastic constants

Density of foam specimens was independent of size to within a few percent. As for tests of
anisotropy, the foam with 1.2 mm cells was anisotropic, with a ratio of compressive moduli in
different directions of 1.6; the foam with 0.4 mm cells was isotropic to within 10%. Anisotropy
was not obvious in images of foam observed from different directions.

Results of torsion size effect studies on the foam with 1.2 mm cells are shown in Figure 2.4.
Also shown for comparison are theoretical curves for various N. Classical elasticity corresponds

to a horizontal line with Q = 1.



20

Normalized Diameter
0 5 10 15 20 25 30 35

3.5

2.5

Relative Stiffness (Q)
N

1.5

0.5

0 10 20 30 40
Diameter (mm)

FIGURE 2.4: Size effects for foam with 1.2 mm cells in torsion. Top scale, diameter
normalized to cell size. Open circles represent experimental results.

The torsion size effect curve for foam with 1.2 mm cells is consistent with G = 45 kPa, The
characteristic length for torsion was ¢, = 2.1 mm, N = 0.41, and ¥ = 1.5. The curve is rather
insensitive to ¥ except near the origin.

The Poisson’s ratio was determined [42] to be approximately 0.3. This value was also given by

[2] as the mean of many measurements by various authors.
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FIGURE 2.5: Size effects for foam with 1.2 mm cells in bending. Top scale, diameter
normalized to cell size. Open circles represent experimental results.

Results of bending size effect studies on the foam with 1.2 mm cells are shown in Figure 2.5. As
above, theoretical curves for various N are shown for comparison. The elastic constants obtained
from the fit were E = 91 kPa, ¢, =9 mm, 3/v = 0.83. N = 0.41 was used based on torsion. This
foam is anisotropic, so the characteristic length for bending is independent of the characteristic
length for torsion and is independent of 3/~ inferred from bending.

Results of torsion size effect studies on the foam with 0.4 mm cells are shown in Figure 2.6;

results for bending are shown in Figure 2.7. Classical elasticity corresponds to a horizontal line
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with = 1. Inferred elastic constants are shear modulus G = 28 kPa, characteristic length for
torsion /; = 1.6 mm, N = 0.99, and ¥ = 1.5; Young’s modulus E = 81 kPa, ¢, =2.2 mm, 5/y = 0.8.
As a test of sensitivity, the point for the smallest specimen was omitted and another curve fit done;
this resulted in N = 0.82; the mean square deviation between data and theoretical fit changed
minimally by 5%.

Characteristic length values were larger for the larger cell foam as expected. The difference
was, however, not directly proportional to the cell size. That is not surprising because the foams do
not have identical structure; the foam with larger cells exhibited anisotropy. Too, surface tension
during foam formation influences the details of the microstructure.

The inferred N was larger for the 0.4 mm cell foam: 0.99 vs. 0.41. The R? value as a measure
of goodness of fit was compared for several values of N. For the 0.4 mm cell foam, R? = 0.98 for
N =0.99; 0.6 for N = 0.6. For the 1.2 mm cell foam, R? = 0.65 for N =0.41; R? =0.4 for N =0.3 or
0.55. The difference in NV is attributed to differences in the structure of the foams, especially the

presence of incomplete cells in the 1.2 mm cell foam as discussed below.
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FIGURE 2.6: Size effects for foam with 0.4 mm cells in torsion. Top scale, diameter
normalized to cell size. Open circles represent experimental results.
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FIGURE 2.7: Size effects for foam with 0.4 mm cells in bending. Top scale, diameter
normalized to cell size. Open circles represent experimental results.

Compression studies disclosed a modest softening size effect in which slender specimens have
a smaller effective Young’s modulus than thicker ones, Figure 2.8. Straight lines are least squares
tits. This effect is opposite to the torsion and bending size effects observed and is opposite to the
predictions of Cosserat elasticity. It is consistent with the notion of a surface layer of incomplete
cells which do not fully contribute to the structural stiffness of the specimen.

A softening size effect is known to occur in foams as a result of damaged or incomplete cells at

the surface [43] [23]. Softening size effects have also been observed in metal foams in compression
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and bending; these have been analyzed and attributed to strain localization [44]. Such localiza-
tion can occur in foam at sufficiently high strain levels. Incomplete cells can also contribute to the
fluctuation in effective stiffness with specimen size. Such fluctuation or scatter was observed to be
considerably greater in the present low density open cell foams than it was for closed cell foams.
Scatter was a result of material heterogeneity, not signal quality (which was good). Too, the low
density foams may have heterogeneity on a scale larger than the cells. The effect of incomplete
cells is for the effective modulus to becomes smaller as specimen size is reduced. This effect was
observed in the compression studies in which average stress is constant and there is no contribu-
tion from Cosserat or other gradient related effect. The effect of incomplete cells in the bending
and torsion studies is to reduce the inferred Cosserat constants, so the intrinsic Cosserat elastic
constants will be even larger than those reported.

150 ‘ ‘ — ‘

y = 45.635 +0.83625x R~ 0.47013

— — y=37.591 +1.0103x R=0.67019 ]|

100 ¢

Modulus E (kPa)

0 1 L L L

0 10 20 30 40
Diameter (mm)

FIGURE 2.8: Young’'s Modulus of foam in compression; circles, foam with 1.2 mm
cells; triangles, foam with 0.4 mm cells.
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2.3.2 Viscoelastic damping

Viscoelastic response, was determined as mechanical damping tan § at 1 Hz. Because the same
frequency was used for all experiments, viscoelastic dispersion (frequency dependence of mod-
ulus) cannot obtrude in the results or their interpretation. Damping of 1.2 mm cell foam was
essentially independent of specimen size, as shown in Figure 2.9. Straight lines are least squares
tits. The foam with smaller cells (Figure 2.10) also exhibited damping independent of size. So
the Cosserat effects entail viscoelasticity but there is no size dependence of the damping. This is
in contrast with the behavior of bone [45] which behaves as a Cosserat solid [21]. Size effects of
large magnitude were observed in the torsional effective shear modulus and damping of bovine
plexiform bone. Damping increased and stiffness decreased with bone specimen size. Bone in
contrast to foam has heterogeneity with spatially varying viscoelastic response, specifically there
are highly viscoelastic boundaries called cement lines between large fibers (osteons) in the bone
[46]. As for the present foams, the difference in the overall damping of the two foams suggests a
difference in chemical composition or density of cross links. From the foam density and modulus,
The Young’s modulus E of the solid material of which the foam is made is calculated from the

classic Gibson-Ashby [2] relation E% = Cy[£

2
7]

between rib modulus F and foam modulus F in
which p; is the density, Cy is a constant of value near one. For both foams, the rib Young’s modu-
lus is about 90 MPa, well into the transition or leathery regime for a polymer. The relatively large

tan ¢ is understandable in that context.
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FIGURE 2.9: Viscoelastic tan ¢ vs. specimen size for foam with 1.2 mm cells. Solid
symbols and dash line fit: bending. Open symbols and solid line fit: torsion.
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FIGURE 2.10: Viscoelastic tan ¢ vs. specimen size for foam with 0.4 mm cells. Solid
symbols and dash line fit: bending. Open symbols and solid line fit: torsion.
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2.3.3 Comparison with homogenization

Results show large characteristic lengths considerably larger than the cell size and large values of
N. Comparison with homogenization analyses and with other experiment is of interest.

Lattices with straight ribs have analyzed as Cosserat continua [47] [48] [49]; homogenization
such as long wave approximation reveals similarity to the Cosserat equations [47]. For cubical
closed cells with thin walls [49], £ = h/2V/3 is considerably smaller than the cell size h. These lat-
tices are stretch dominated: the effective Young’s modulus of the lattice is governed by stretching
or compression of the ribs or plates comprising the lattice. Cosserat effects depend on bending or
twisting of the ribs. If the ribs are slender, bending or twisting moments in them decrease more
rapidly than axial forces, so Cosserat effects are weak. Analysis of two dimensional chiral honey-
comb lattice structures as Cosserat continua reveals bend dominated behavior in which Young’s
modulus is governed by rib bending. These honeycombs have large N approaching its upper
bound 1, and characteristic length ¢ comparable to the cell size [50]. The ribs of this lattice are
bend dominated is in contrast to prior stretch dominated lattices that have been analyzed thus far
[51] [52] [53], in which slender ribs correspond to small NV and small ¢. In summary, the large NV
and / values in these materials is understandable in the context of the role of bending and torsion

of the cell ribs.

2.3.4 Comparison with other experiment

As for comparison with other experiment, prior dense closed cell foams [22], [23] studied experi-
mentally had a relatively small IV = 0.2, hence comparatively weak size effects. The maximum size
effect ratio {2 was 1.3 for dense polyurethane foam and 1.44 for Rohacell foam, much smaller than
in the present foams. Foam [23] with comparatively uniform closed cell size had ¢ comparable
to the cell size. Foam [22] with substantial heterogeneity of closed cell size had ¢ larger than the
cell size. The structures differ considerably from that of the low density open cell foams examined

here, which are about one tenth the density of the prior foams. Recently it was shown that classical
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continuum theories, such as Bernoulli-Euler beam theory, are inadequate for describing the elastic
bending behavior of metal foams [54]. Some cell models were developed for analysis. While such
models show the physical origin of the local moments that we interpret via Cosserat elasticity,
they have not been couched in such a way to anticipate effects in torsion or changes in strain dis-
tribution as is possible with a generalized continuum approach such as Cosserat elasticity. Large
characteristic lengths, larger than the cell size are consistent with observations of sigmoid curva-
ture of the lateral surfaces of bent square cross section bars and analysis via Cosserat elasticity
[55]. Experimental observation of this sigmoid curvature is consistent too with a large positive
value of 3/v. A value /3/v between 0.5 and 1 is sensible based on post-processing of the results
of [48], who performed homogenization analysis of a 3-D cubic lattice of straight ribs. No known

Cosserat models are available to predict elastic constants for foam.

2.3.5 Asymmetry of the stress

Asymmetry of the stress was inferred from displacement of a notch at the corner of a square cross
section bar in torsion. Displacement was observed in foam with 0.4 mm cells but not in rubber
which is classical on a macroscopic scale (Figure 2.11). Displacement of the corner notch cannot
occur in classically elastic solids because the symmetry of the stress implies stress, hence strain, are
zero at the corner. Generalized continuum theories that entail symmetry of the stress also predict
zero motion of the notch. The foam exhibits such a displacement in contrast with rubber. So the
foam has Cosserat degrees of freedom independent of other freedom associated with generalized

continuum theories.



30

FIGURE 2.11: Corner of rectangular section bars, with notch marked in black ink.
Left, twisted rubber; scale bar, 5 mm. Center, foam, 0.4 mm cells, not twisted. Right,
foam, 0.4 mm cells, twisted.

2.3.6 Generalized continuum theories

A variety of continuum theories can be used to interpret experiments. We consider it to be sen-
sible to use the simplest one that incorporates known physics of the material and that is consis-
tent with experiment. A substantial material size scale does not guarantee the material exhibits
generalized continuum properties. For example a composite containing beads of aluminum in a
polymer matrix behaved classically in size effect studies [13]; a syntactic foam containing hollow
glass spheres was also essentially classical [22] in contrast to dense polyurethane foam which was
Cosserat. The present experimental results show size effects that do not occur in classically elastic
materials. They are interpreted in the context of Cosserat elasticity which has more freedom than
classical elasticity and allows for size effects. Also, Cosserat elasticity incorporates local rotation
and distributed moments. These variables are incorporated in classical analyses [2] of foams in
compression to determine moduli; there are no gradients of rotation in that case. As for variants of

the Cosserat continuum, the smaller cell foam has a large value of N = 0.99. This may be regarded
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as consistent with NV = 1, corresponding the the special case of Cosserat elasticity called couple
stress elasticity [12]. The larger cell foam has a smaller NV, not consistent with N = 1.

As for the possibility of additional freedom, observe that the definitions of characteristic lengths,
Eq. 2.6, 2.7 entail a relation between ¢;, {;,, and 3/~ for isotropic materials. Based on this relation,
¢y is larger than expected by a factor of about 2.5. Results do not necessarily exclude the presence
of additional freedom such as that incorporated in micromorphic / Mindlin microstructure [7]
theory. Micromorphic elasticity includes the freedom of Cosserat elasticity as well as the freedom
of the microstructure to deform as well as translate and rotate; it requires 18 elastic constants for
an isotropic material. Microstretch elasticity [56] is a subset of microstructure elasticity that in-
corporates the freedom of Cosserat elasticity as well as sensitivity to gradient of local dilatation.
Sensitivity to dilatation gradient of voids [32] when considered alone, gives rise to size effects in
bending but not in torsion. Such a theory cannot account for the observed size effects in any of
the foams studied, including the present ones. Microstretch elasticity, which includes sensitivity
to gradients of rotation and of dilatation could account for bending effects larger than those of
Cosserat elasticity. In bending or compression, the dilatational component of deformation can be
expected to cause dilation of individual cells, otherwise the bulk modulus would diverge. Indeed,
local dilation [57] was observed in cells of metal foam in compression. Theoretical framework is
not, however, available to determine dilatation sensitivity independently of rotation sensitivity. A
highly simplified plasticity model based on micromorphic theory was used to study stress concen-
tration effects in metal foam [58]. A characteristic length for plasticity was determined. This is in
contrast to the present experiments which deal with small strain elasticity and viscoelasticity, and
with inference of all the Cosserat elastic constants. As for elasticity, there is no known analytical
solution by which to interpret size effects via micromorphic elasticity theory.

Generalized continuum freedom can also be explored via waves. Indeed, dispersion of lon-
gitudinal waves and cut-off frequencies were observed in foams of the type studied here [59]. In
a micro-structural view, the wave effects were attributed to micro-vibrations of the cell ribs in a

structural view. In a generalized continuum view, the effects were associated with microstructure
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/ micromorphic elasticity; Cosserat elasticity predicts dispersion of shear waves but not longitu-
dinal waves.

In summary, substantial Cosserat effects do occur in these foams. Effects of dilatation gradient
cannot contribute to observed size effects in torsion; they may contribute to size effects in bending.
As for the determination of all the 9 elastic constants of a microstretch model or all the 18 constants
of a micromorphic model, the requisite exact analytical solutions for interpretation of experiments

are not yet available.

2.4 Conclusions

Large size effects are observed in the torsion and bending of reticulated open cell polymer foams.
These effects are inconsistent with classical elasticity but can be modeled with Cosserat elasticity.
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Chapter 3

Cosserat elasticity of negative Poisson’s

ratio foam: experiment

The following chapter has been published:
Z Rueger and R.S. Lakes, "Cosserat elasticity of negative Poisson’s ratio foam: experiment", Smart

Materials and Structures, 25 (5), (2016).

Abstract Negative Poisson’s ratio polymer foams derived from reticulated open cell foams
exhibit large size effects in torsion and bending. Effective moduli increase as diameter decreases
in contrast to the prediction of classical elasticity. Size effects of this sort are predicted by Cosserat
(micropolar) elasticity in which points can rotate as well as translate and distributed moments are
incorporated. The Cosserat coupling number N was about twice as large as that of as-received
foam, leading to strong effects. The torsion characteristic length ¢; was similar. Cosserat effects

are known to enhance toughness and immunity from stress concentration.

3.1 Introduction

All physical materials have microstructure, but for many practical purposes it is helpful to rep-

resent them as continuous media. Continuum theories with different amounts of freedom are
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available. An early theory of Navier [1] was called uniconstant elasticity and was based on a the-
ory that assumed atomic interactions entailed central forces and affine motion of atoms. It allows
only one isotropic elastic constant, a modulus. It was abandoned since it predicted a Poisson’s
ratio of 1/4 for all isotropic materials; early experiments showed many common materials to have
Poisson’s ratio between 0.3 and 0.4. The elasticity theory currently accepted as classical allows
Poisson’s ratios in isotropic materials in the range —1 to 1/2; there are two independent isotropic
elastic constants. The accepted range for Poisson’s ratio in isotropic solids was commonly taken
as 0 to 1/2 based on experience with common materials, though some anisotropic single crystals
with negative Poisson’s ratio were known as well as negative Poisson’s ratio in a model of rods,
hinges and springs [60]. In 1987 a 3D negative Poisson’s ratio material based on transformed open
cell polyurethane foam was reported [61]; it had a Poisson’s ratio of -0.7. The manufacturing pro-
cess described in this Science article stimulated much continuing research in the field of designed
materials. The negative Poisson’s ratio in foams depends on cell structure rather than chemistry;
indeed, metallic and thermoset polymer foams have been prepared with negative Poisson’s ratio
[62]. Negative Poisson’s ratio was also designed in 2D systems with rotating hexamers [63] [64];
thermodynamic stability was analyzed. Void space is not required to achieve a negative Poisson’s
ratio; a hierarchical two phase composite [65] can approach the lower limit -1 provided there is
sufficient contrast between constituent properties. Negative Poisson’s ratio, also called auxetic in
a 1991 article proposing molecular scale design, was analyzed in foams [66]. Negative Poisson’s
ratio can be achieved in other 2D structures containing rotating rigid units such as squares [67].
In all these examples, the material has been considered to be classically elastic. Initial evidence
of non-classical characteristics was revealed by holography in non-affine heterogeneous deforma-
tion of conventional and negative Poisson’s ratio copper foams [68] and in size effects in negative
Poisson’s ratio polymer foam [69].

Classical elasticity has no length scale. By contrast, Cosserat elasticity [3] [30], also called mi-
cropolar elasticity [9], allows rotations of points and has a length scale, so it is pertinent to the

deformation of heterogeneous materials in which the heterogeneity size scale cannot be neglected
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in comparison to dimensions of a structural component or of structural heterogeneities such as
holes or cracks. Soon after the initial article on negative Poisson’s ratio foam, it was suggested
that the effect was due to the coarse cell structure and Cosserat effects in the associated contin-
uum view. However Poisson’s ratio is a classical concept; moreover the range of Poisson’s ratio
for Cosserat solids is the same as the range for classical ones: —1 to 1/2. Too, the simple tension
experiment used to reveal Poisson’s ratio has no associated length scale and does not excite the
rotational degrees of freedom required to produce non-classical effects in a Cosserat elastic ma-
terial [61]. Foams and honeycombs, though they can have substantial cell sizes, are commonly
treated as classical continua [70]. Only toughness of foams is related to the size scale of the cells
[70]; the treatment is nonetheless classical. Cosserat elastic solids, if isotropic, have six elastic
constants. Deviations from classical elasticity have long been known. For example, Brillouin [71]
studied wave propagation in crystal lattices; a spring mass model discloses dispersion of waves,
in harmony with experimental observations of high frequency ultrasonic waves in crystals. Dis-
persion and cut off frequency effects can be modeled from a continuum perspective. For example,
the microstructure elasticity theory of Mindlin [7], allows points in the continuum to translate,
rotate, and deform. Such a theory, also called micromorphic, is more complex than classical or
Cosserat elasticity; for an isotropic solid, there are 18 micromorphic elastic constants compared
with 6 for Cosserat elasticity and 2 for classical elasticity. The allowable range of Poisson’s ratio
in microstructure elasticity is not stated directly. However, energy based limits for tensorial con-
stants in microstructure elasticity imply a range of Poisson’s ratio equivalent to that in classical
elasticity. Microstretch elasticity is also a subset of microstructure / micromorphic elasticity, one
that incorporates the Cosserat type freedom as well as sensitivity to dilatation gradient [56]. There
are 9 isotropic elastic constants. As with microstructure elasticity, allowable range of Poisson’s ra-
tio in is not stated directly. However, energy based limits for tensorial constants suggest a range
of Poisson’s ratio equivalent to that in classical elasticity.

The physical origin [72] of the Cosserat couple stress in cellular solids is the summation of

bending and twisting moments transmitted by ribs in a foam or by structural elements in other
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materials (Figure 3.1). The local rotation in the Cosserat continuum corresponds to the rotation
of ribs. Forces and moments are also considered in the classic analyses of foam by Gibson and
Ashby [70] in which classical elastic moduli were determined; effects of rotation gradients were

not considered.

dF
w &

FIGURE 3.1: Ribs of foam or lattice with increment of force dF' and increment of
moment dM.

The Cosserat theory of elasticity is a continuum theory that incorporates a specific kind of
nonlocal [31] interaction. The stress o), (force per unit area) can be asymmetric. The moment
arising from this asymmetry is balanced by a couple stress m;;, (a torque per unit area). The
antisymmetric part of the stress is related to local rotations. J?ntisym = K€jkm (T'm — ¢m) In which
x is an elastic constant, ¢,, is the rotation of points, called micro-rotation, e, is the permutation
symbol, and 7}, = %eklmum,l is the “macro"” rotation based on the antisymmetric part of gradient

of displacement u;. The constitutive equations [9] for linear isotropic Cosserat elasticity are as
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follows.

05 = 2G€ij + )\Ekk(;ij + neijk(rk - gf)k) (3.1)

mij = adr iy + Boij + Vb5 (3.2)

Cosserat elasticity allows sensitivity to gradients of rotation because rotations and stresses are
coupled. One may also formulate a generalized continuum theory with sensitivity to gradients of
dilatation [32] rather than rotation.

There are six independent isotropic Cosserat elastic constants A\, G, «, 3, 7, k. The following
technical constants, beneficial for physical insight, are obtained from them. As in classical elastic-
ity, several are interrelated; specifically of the seven below, the classical relation between E, G and

v applies. Here ) is a Lamé constant from elasticity theory.

G(3\+2G
Young's modulus E= ()\ ++G ) (3.3)
Shear modulus G (3.4)
A
Poisson's ratio v= m (3.5)
Characteristic length, torsion by = BT—I;Y (3.6)
Characteristic length, bending by = % (3.7)
[ K
; N = .
Coupling number e (3.8)
Polar ratio v = Bty (3.9)
a+B+y

Predictions of Cosserat elasticity differ from those of classical elasticity. A size effect is pre-

dicted in the torsion [13] and bending [14] of circular cylinders of Cosserat elastic materials. Thin
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cylinders appear more stiff than expected classically. A size effect is also predicted in the bending
of plates [13] . In tension or compression there is no size effect. The stress concentration factor for
a circular hole is smaller than the classical value; small holes exhibit less stress concentration than
larger ones [15].In classical elastic solids, by contrast, there is no size effect in torsion or bending;
structural rigidity goes as the fourth power of the radius; stress concentration is independent of
hole size.

Cosserat elastic effects have been observed experimentally in several materials with microstruc-
ture. Size effects which occur in torsion and bending of closed cell foams [22], [23] and of compact
bone [21] are consistent with Cosserat elasticity. The apparent modulus increases substantially as
the specimen diameter becomes smaller. This observation is in contrast to the predictions of clas-
sical elasticity. Cosserat elasticity can account for these observations. Dense (340 kg/m?) closed
cell polyurethane foam [22] has elastic constants £ = 300 MPa, G = 104 MPa, v = 0.4, {; = 0.62 mm,
¢, =033 mm, N2 = 0.04, U = 1.5. The cell size is from 0.05 mm to 0.15 mm. For dense (380 kg/m3)
polymethacrylamide closed cell foam (Rohacell WF300) [23], £ = 637 MPa, G = 285 MPa, ¢; = 0.8
mm, ¢, = 0.77 mm, N2 ~ 0.04, ¥ = 1.5. The cell size is about 0.65 mm.

The Cosserat characteristic length was determined for a two dimensional polymer honeycomb
[33]. Warp of a bar of rectangular cross section in torsion is predicted to be reduced in a Cosserat
elastic solid [34]. Such non-classical warp was observed in compact bone [35]. Deformation spills
over into the corner region where it would be zero in classical elasticity [36] as revealed by holog-
raphy. This ameliorates concentration of strain. Strain at the corner entails asymmetry of the
stress as predicted by Cosserat elasticity. The reduction of warp deformation has been observed
via holography [37]. Cosserat effects were also observed in open cell polymer foam [73].

The present research deals with experimental study of size effects and Cosserat elasticity in

negative Poisson’s ratio foams derived from low density open cell polymer foams.
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3.2 Methods

3.2.1 Materials and experiment

Negative Poisson’s ratio foam (Figure 3.3) based on reticulated polyurethane foam (Scott Indus-
trial foam [39]) was used. The as-received foam had average cell size 1.2 mm or 20 pores per inch.
The initial density was 30 kg/m?®. The foam was converted to negative Poisson’s ratio foam via
triaxial compression and heat treatment [61]. The density calculated for the foam was 96 kg/m?3
corresponding to a volumetric compression ratio of 3.2.

Cylinders were cut from polymer foam with a hot wire cutter such that the cylinder diam-
eter and length were equal. The wire was Nichrome heater wire of thickness 0.015 inches and
resistance 2.5 2. The electric current was 3 Amps. The initial cylinder cut from the foam was
approximately 22 mm in both diameter and length. The foam cylinder was weighed with an an-
alytical balance. Circular end pieces the same diameter as the foam sample were cut from heavy
card stock and cemented to both bases of the cylindrical specimen using cyanoacrylate (Loctite
401) over the entire surface. A catalyst was applied to the surfaces being cemented to minimize
the amount of cement used and prevent ingression of the cement into the pores of the foam. Slight
pressure was applied to the end pieces to ensure good adhesion.

These specimens were tested for torsional and bending rigidity using a Broadband Viscoelas-
tic Spectrometer (BVS) [40] [41]. This instrument uses a Helmholtz coil which acts upon a magnet
attached to the specimen to generate torque. The coil spacing is smaller than the larger specimens
so a short stalk with a magnet and mirror on the end was fixed to one of the end pieces. A thin
aluminum end layer was also cemented to provide a sufficiently rigid attachment for the stalk. A
small mirror was first glued to one face of a cubic magnet. The magnet was then calibrated using
the BVS and a lock-in amplifier. The magnetic calibration constants of this magnet were obtained
by testing a 6061 aluminum alloy rod of known elastic properties. The calibration constants were
8.00 x107% Nm/A in torsion and 1.84 x 10~° Nm/A in bending. The free end piece of the polymer

foam cylinder was cemented to a steel adapter which was screwed in to a 25 mm thick steel rod to
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support the specimen inside the BVS. Viscoelastic strain was allowed to recover overnight prior
to testing to enable stable measurements. The specimen was lowered into the BVS such that the
magnet was centered in the Helmholtz coils of the BVS. The lower limit on specimen size was im-
posed by obtrusive presence of incomplete cells; also by difficulty in handling. A typical specimen
of this foam is shown in Figure 3.2.

Support

rocd
—

Specimen

FIGURE 3.2: A specimen of foam with attached stalk and magnet. White scale bar:
5mm.

Deformation was measured via a beam from a semiconductor laser reflected from a mirror

attached to the magnet on the specimen free end. The laser beam was reflected onto a silicon
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light detector.The laser based displacement sensor was calibrated prior to testing. This was done
by first centering the beam upon the detector. The light detector was moved a known amount
via a calibrated stage. A calibration curve was obtained via micrometer adjustment. The change
in output voltage per change in position was used as the beam position calibration constant (in
V/pm).

A sinusoidal signal with a frequency of 1 Hz from a function generator (SRS Model DS345)
was input to the torsion Helmholtz coil to test the sample. Because the same frequency was used
for all specimen diameters, viscoelastic effects are decoupled from the size effects to be studied.
The torque signal was obtained as the voltage across a resistor in series with the coil to eliminate
effects of inductive reactance from the coil. The 1 Hz frequency was well below any resonant
frequencies. The torque signal vs. angular displacement signal was displayed on a digital oscil-
loscope (Tektronix TDS3014B) using DC coupling as a Lissajous figure, and used to calculate the
modulus and viscoelastic damping of the material.

For bending, the light detector mode was switched to vertical detection and the beam cali-
bration constant was determined accordingly. The driving signal to generate torque was input to
the orthogonal bending Helmholtz coil. A correction was applied to account for the additional
bending moment imposed by the weight of the magnet and stalk; this correction was 4% or less.

Compression tests were done to ascertain the behavior of the foam in the absence of macro-
scopic gradients of strain and rotation. This was done by gluing one end piece to a base anchored
to an optical table. Force was applied via dead weights placed on the top end piece. Deformation
was measured using a linear variable differential transformer (LVDT); its stem was cemented to
the top end piece. The LVDT was calibrated using a micrometer driven translation stage. The
maximum strain achieved was 4.4%, well within the linear range for a flexible foam. A lower limit
on specimen size was imposed by the tendency of small specimens to buckle.

After all testing was completed on a sample it was cut to a smaller length and diameter and
the same series of tests were conducted. This process was repeated for a total of ten sample sizes

down to a diameter of 3.4 mm. The lower limit on specimen size was imposed by incomplete cells
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and difficulty in handling.

FIGURE 3.3: Structure of negative Poisson’s ratio foam. Reflected light micrograph.
Scale bar: 1 mm.

3.2.2 Analysis and interpretation

Size effect results were interpreted using available exact analytical solutions for torsion and bend-
ing of a Cosserat elastic solid. The shear modulus G was found from the asymptote of torsion
rigidity vs. diameter curve for large size. The torsion characteristic length ¢; was found from
titting the points for the larger specimens to an approximate solution that is asymptotically valid
for large size. A Cosserat elastic circular rod of radius r exhibits the following ratio of structural

rigidity to its classical counterpart (in the absence of gradient, for large diameter).

Qa1+ 6(4/r)2. (3.10)

Size effects occur in torsion: slender specimens appear to have a higher effective modulus than

thick ones. The classical torsional rigidity is & = G[5*]. For Cosserat elasticity in this regime,

% = G[3r*)(1 + 6(¢/r)?). G is the true shear modulus in the absence of gradients; M is applied

moment and 6 is angular displacement. This expression is exact for IV = 1; for other IV the exact
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solution involves Bessel functions [13]:

(1—4¥x/3)

Q= (14 6(6/r/) ] g

1, (3.11)

in which x = I (pr) /prlo(pr), p* = 2k/(a + B+ 7) and Iy and I; are modified Bessel functions of
the first kind.

The shear modulus G and characteristic length ¢; were determined by fitting experimental data
for the three largest specimens to Eq. 3.10. The value of NV was found by fitting Eq. 7.10 to the full
data set using MATLAB. The constant ¥ only has an appreciable influence for very small radius
specimens.

For bending, the classical bending rigidity is % = E[Zr*]. For bending of a Cosserat elastic

circular rod and radius r, the rigidity ratio for small characteristic length ¢, << r is

1— (/7))

Q=1 2 . A2
8/ 612)
This expression is exact if 3/7v = —v. The Young’s modulus £ and an initial value for the

characteristic length ¢, were determined by fitting data for the three largest specimens to Eq. 3.12,
with N input from the torsion analysis, and an initial value 3/ = 0.8 based on prior experimental
results on other foams and v from prior experimental results on negative Poisson’s ratio foams.

Finally the values of ¢, and /v were found by fitting the bending exact solution [14] Eq. 7.11
to the full data set using MATLAB.

2 (1= (/7)) | 8N? B/y+v)*

= 14+8/r) 0 T T C0a) + SN2 — 1)

] (3.13)

with § = N/¢, and ((67) = (67)2[((67)Io((67)) — L1((67)))/((57)Io(67) — 201 (67))].
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3.3 Results and discussion

Density of foam specimens was 96 kg/m? and was independent of specimen diameter to within
a few percent. As for tests of anisotropy, the as-received foam was anisotropic [73], with a ratio of
compressive moduli in different directions of 1.6.

Results of torsion size effect studies are shown in Figure 3.4.
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FIGURE 3.4: Size effects for negative Poisson’s ratio foam in torsion. Points are ex-
perimental. Curve is theoretical for G = 16 kPa, /; =23 mm N = 0.78 and ¥ = 1.5.
Classical elasticity predicts constant €2 = 1 independent of diameter.

For negative Poisson’s ratio foam, G = 16 kPa, /; =23 mm N =0.78 and ¥ = 1.5.
By contrast, the as-received foam [73] had G = 45 kPa and the characteristic length for torsion

was /; = 2.1 mm. Moreover N = 0.41, and ¥ = 1.5. So the negative Poisson’s ratio foam had N
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about twice as large as that of as-received foam and ¢; was similar. The goodness of fit was R? =
0.79. The maximum size effect in torsion for as-received foam was 2 = 2.2. The larger maximum
size effect, about 8 in negative Poisson’s ratio foam, is associated with the larger coupling number
N.

The compression tests disclosed £ = 25 kPa with no consistent dependence on diameter. Re-
sults of bending size effect studies are shown in Figure 3.5. Assuming E = 25 kPa based on com-
pression and N = 0.78 based on torsion, the best fit for the remaining constants for negative Pois-
son’s ratio foam was ¢, = 3.9 mm, /v = 0.8, with goodness of fit R? =0.81. If however one ignores
the compression result and conducts a fit, the result is E = 38 kPa, ¢, = 3.0 mm, 8/~ = 0.87, with
goodness of fit R = 0.81. Also, the asymptote for large size in the bending studies would be bet-
ter delineated if larger specimens were available, however the processing used to obtain negative
Poisson’s ratio foam resulted in rectangular bars about 25 mm in square cross section. The bars as
received foam were about twice as wide, and were cut to appropriate width to obtain the correct
volumetric compression. For this material, bending of the largest specimens resulted in a better
value of E. The range of values that are tolerable to the fitting process is attributed to the scatter
in the data points and to the accessible range in specimen diameter. As for the range in ¢, for
bending, values between about 3 mm to 4.7 mm gave R? > 0.6 in contrast to R? = 0.81 for the best
fit £, = 3.9 mm. As for the range of N, values between 0.62 and 9 gave R? > 0.6 in contrast to R? =
0.81 for the best fit N = 0.78.

By contrast, the as-received foam [73] had E =91 kPa, ¢, =9 mm, /vy = 0.83; N = 0.41. The
maximum size effect for as-received foam in bending was Q2 = 3. As with torsion, the negative
Poisson’s ratio foam exhibited a much larger size effect ratio {2 = 18, attributed to the larger V.

The Poisson’s ratio of the as-received foam was determined [42] to be approximately 0.3. This
value was also given by [70] as the mean of measurements by various authors on different foams
of conventional structure. The Poisson’s ratio of the negative Poisson’s ratio foam was inferred to
be -0.63 based on the initial and final density [74]. Specimens were sufficiently short that direct

measurement of Poisson’s ratio was not practical. Nevertheless, stretching of thin slices revealed
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the Poisson’s ratio to be negative. The relationship between moduli and Poisson’s ratio implies
anisotropy. That is not surprising in view of the modest anisotropy of the as received foam. It is
possible to make fully isotropic negative Poisson’s ratio foam [75] via further effort in processing.

It is of interest to compare the inferred characteristic lengths with the foam cell size. The as-
received foam had an average cell size of 1.2 mm. Volumetric compression by a factor of 3.2 to
produce the negative Poisson’s ratio foam reduces the cell size and also causes the folded-in re-
entrant structure that gives rise to the negative Poisson’s ratio. The effective cell size may be taken
as 1.2 mm / 3.2'/3 = 0.81 mm. Both characteristic lengths are considerably larger than this, a fact
attributed to the bend dominated role of the foam ribs.

As for other foams as Cosserat solids, experiments on dense closed cell foams [22], [23] re-
vealed a relatively small N = 0.2, so size effects were comparatively weak. The maximum size
effect ratio was 2 = 1.3 for dense polyurethane foam and 1.44 for closed cell Rohacell foam, much
smaller than in the present foams. Foam [23] with relatively uniform cell size had ¢ comparable
to the cell size. Foam [22] heterogeneous in its cell size had ¢ larger than the cell size. The struc-
tures, as well as the structure of the as received foam, differ considerably from that of the negative
Poisson’s ratio re-entrant foams examined here.

Damping tan 4 of the foam was essentially independent of specimen size, as shown in Figure
3.6 but the two smallest sizes showed a somewhat higher damping. tan § was similar to that of
as-received foam suggesting no obvious change in cross link density or other molecular aspects
as a result of the processing used to obtain negative Poisson’s ratio foam. By contrast, a depen-
dence of modulus and damping on processing [76] was observed in which damping increased
statistically with permanent compression hence with the reduction in Poisson’s ratio. Both these
polyurethane foams were prepared via triaxial compression followed by heat treatment [61]. One
can also prepare auxetic foam and revert it to a positive Poisson’s ratio via a solvent treatment
[77]. The influence of processing procedure on structure and properties has been analyzed [78].

Scatter in the data points is attributed to incomplete cells at the specimen surface, also to larger

scale heterogeneity in the foam. Similar scatter was observed in the as-received foam.
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FIGURE 3.5: Size effects for negative Poisson’s ratio foam in bending. Points are
experimental. Curve is theoretical for £ = 25 kPa N =0.78, ¢, = 3.9 mm, and /7y =
0.88. Classical elasticity predicts constant €2 = 1 independent of diameter.

As for comparison with theory, no known analysis is available for the structure of the present
foam. Cosserat elastic constants have been calculated from theoretical homogenization of several
lattices with straight ribs [47] [48] [49]. These are stretch dominated so the effects of rib bending
and torsion are much smaller than the effects of rib extension. The characteristic lengths of such
lattices are much smaller than the cell size. Two dimensional chiral honeycomb lattice structures
analyzed as Cosserat continua disclosed bend dominated behavior in which Young’s modulus is
governed by rib bending. These honeycombs have large N approaching its upper bound 1, and

characteristic length ¢ comparable to the cell size [50]. Sigmoid curvature of the lateral surfaces of
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FIGURE 3.6: Viscoelastic tan ¢ vs. specimen size for negative Poisson’s ratio foam.
Open circles: bending. Solid circles: torsion.

bent square cross section bars was analyzed via Cosserat elasticity [55]. Such curvature requires
B/v # —v and indeed it was observed in conventional as-received open cell foam. Although no
formal measurements were made with the negative Poisson’s ratio foam (for which /vy ~ —v),
visual observation of such bending of a square cross section bar suggested any sigmoid curvature
must be small.

In summary, large size effects are observed in the torsion of negative Poisson’s ratio open cell
foam. The effects are consistent with Cosserat elasticity. Results do not necessarily exclude the
presence of additional freedom such as that incorporated in micromorphic / Mindlin microstruc-

ture [7] theory or in microstretch elasticity [56].

3.4 Conclusions

Large size effects were observed in the torsion and bending of negative Poisson’s ratio open cell

polymer foams. These effects are inconsistent with classical elasticity but can be modeled with
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Cosserat elasticity. The negative Poisson’s ratio foam had Cosserat coupling number N about
twice as large as that of as-received foam; torsion characteristic length ¢; was similar, and bending
characteristic length ¢, was smaller. Maximum size effects were larger than those in as-received
foam. This is attributed to the larger N. Cosserat solids are known to exhibit enhancement in

toughness and immunity from stress concentrations, a beneficial characteristic.
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Chapter 4

Strong Cosserat elastic effects in a

unidirectional composite

The following chapter has been published:
Z Rueger and R.S. Lakes, "Strong Cosserat elastic effects in a unidirectional composite", Z. Angew.

Math. Phys., 68 (54), (2017).

Abstract Strong Cosserat elastic effects are observed in a designed composite consisting of
unidirectional corrugated tubes in a hexagonal array. The torsional characteristic length is much
larger than the tube diameter. The effective coupling number N approaches its upper bound of 1.

Extremely large size effects are observed, about a factor of 128 in torsion.

4.1 Introduction

All physical materials have microstructure, but for many practical purposes it is useful to represent
them as continuous media. Continuum theories with different degrees of freedom are available.
An early theory of Navier [1], known as uniconstant elasticity, was based on a a theory assuming
that forces act along the lines joining pairs of atoms and are proportional to changes in distance
between them. It only allowed one elastic constant, a modulus. The theory was abandoned since

it predicted a Poisson’s ratio of 1/4 for all isotropic materials and experiments disclosed a range of
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Poisson’s ratios. The currently accepted classical theory of elasticity has two independent isotropic
elastic constants and allows for Poisson’s ratios in isotropic materials to range from -1 to 1/2.
Cosserat elasticity has more freedom than classical elasticity. The Cosserat theory [3], (with inertia
terms called micropolar [9]) incorporates local rotations of points and a couple stress (a torque per
unit area) as well as the translation and force stress (force per unit area) of classical elasticity; there
are six independent isotropic elastic constants. A simpler variant presented by Koiter assumed
that all the macrorotation and microrotation vectors are equal. This corresponds to N =1, or
equivalently x approaching infinity in Cosserat elasticity. The Koiter [12] variant is called couple
stress elasticity in which there are two characteristic lengths in addition to the classical constants:
four isotropic elastic constants. The microstructure elasticity theory of Mindlin [7], also called
micromorphic elasticity, has more freedom than classical or Cosserat elasticity; it allows points
to translate, rotate, and deform within the media. This adds a high degree of complexity; for an
isotropic solid, there are 18 micromorphic elastic constants compared with 6 for Cosserat elasticity
and only 2 for classical elasticity.

The physical origin of the Cosserat couple stress is the summation of bending and twisting
moments transmitted by the structural elements or ribs in materials. The local rotation in the
Cosserat continuum corresponds to the rotation of the structural elements. Forces and moments
are also considered in the classic analyses of foam by Gibson and Ashby [2] in which classical

elastic moduli were determined; effects of rotation gradients were not considered.
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FIGURE 4.1: Composite containing unidirectional tubular inclusions with increment
of force dF and increment of moment dM.

The constitutive equations for an anisotropic [9] Cosserat elastic solid are as follows.

0ij = Cijri€nr + Pijridn,i, 4.1

mij = Qijr1®r + Pijrieris (4.2)

in which Cjjy, is the elastic modulus tensor, ¢, is strain, o;; is stress (symmetric in classical elas-
ticity but asymmetric here), and the usual Einstein summation convention assumed in which re-
peated indices are summed over. m;; is the couple stress tensor, moment per unit area, asymmetric

in general. Pj;;; and Q1 are Cosserat elastic constants that provide sensitivity to local (micro)
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rotation gradient. The Cosserat microrotation vector ¢; is kinematically distinct from the macro-
rotation vector r; = (e;;ru,;)/2 associated with the motion of neighboring points.

The isotropic form [9] of the constitutive equations is as follows.

oij = 2Gei; + Nepplij + Kegji (e — Or) (4.3)

Mmij = aQg kdij + Bdij +vbj (4.4)

There are six independent isotropic Cosserat elastic constants A\, G, «, 3, v, . Physically, A,
a Lamé constant from elasticity theory, is an elastic modulus component which couples a strain
in one direction with stress in a perpendicular direction with all other strains held constant. The
physical meaning of G, shear modulus, is the resistance to shear deformation. «, 8, and ~y provide
sensitivity to rotation gradients while « is a modulus which quantifies the coupling between macro
and micro rotation fields [79]. The following technical constants, beneficial for physical insight,
are obtained from them. As in classical elasticity, several are interrelated; specifically of the seven

below, the classical relation between E, G and v applies.

2
Young's modulus E= G(T\:—GG) (4.5)
Shear modulus G (4.6)

A

Poisson’s ratio v= 0+ G 4.7)
Characteristic length, torsion by = /BT_;V (4.8)
Characteristic length, bending by = % 4.9)
Coupling number N = QG,:— - (4.10)
Polar ratio U= ﬂ (4.11)
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Cosserat elasticity has the following consequences. A size effect is predicted in the torsion
[13] and bending [14] of circular cylinders of Cosserat elastic materials. Slender cylinders appear
to be stiffer than expected classically. A similar size effect is also predicted in the bending of
plates. No size effect is predicted in tension or compression. The stress concentration factor for a
circular hole is smaller than the classical value, and the small holes exhibit less stress concentration
than larger ones [15]. However, classical elastic solids do not exhibit size effects in torsion or
bending; structural rigidity goes as the fourth power of the radius. Also, in classical elasticity,
stress concentration is independent of hole size.

Cosserat elastic effects have been observed experimentally. Size effects observed to occur in
torsion and bending of closed cell foams [22, 23], open cell foam [73], negative Poisson’s ratio
foam [80], and compact bone [21] are consistent with Cosserat elasticity. The apparent modulus
increases substantially as the specimen diameter becomes smaller, in contrast to the prediction
of classical elasticity. Large material microstructure size does not guarantee Cosserat elasticity: a
composite containing aluminum beads in an epoxy matrix was tested for such effects and found
to behave according to classical elasticity [13]. Although Cosserat effects are not guaranteed in
materials with large microstructure, the work presented here will demonstrate that these materials
can demonstrate the aforementioned effects.

The Cosserat characteristic length was determined in a two dimensional polymer honeycomb
[33]. Full field measurements of deformation reveal non-classical elastic effects that are consistent
with Cosserat elasticity. Warp of a bar of rectangular cross section in torsion is predicted to be
reduced in a Cosserat elastic solid [34]. The corresponding non-classical strain field was observed
in a compact bone [35]. Deformation spills over into the corner region where it would be zero
in classical elasticity [36] as revealed by holography. This improves strain concentration. Strain
at the corner entails asymmetry of the stress as predicted by Cosserat elasticity. The reduction of
warp deformation has been observed via holography [37]. As for plastic deformation, rotational
plastic deformation mechanisms were interpreted via gradients in a micropolar continuum theory

[38].
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The present research deals with experimental study of size effects and Cosserat elasticity in
a designed composite consisting of unidirectional corrugated tubes and silicone rubber matrix in

hexagonal arrays. Each tube is intended to carry a force and a moment as shown in Figure 4.1.

4.2 Methods

4.2.1 Materials and experiment

Corrugated nylon tubing, manufactured by Waytek [81], with inner diameter of 3.18 mm (0.125
in), outer diameter of 6.7 mm, and density of approximately 0.26 g/cm® was used. Lengths of
tubing were cut with a hot wire cutter such that the length of the array of tubes was three times
longer than the average diameter of the sample. The corrugated tubing came coiled and was
straightened by running a brass tube with an outer diameter of approximately 3 mm through 20
cm lengths of the tubing and heating it in a convection oven at 105°C for two hours. After two
hours the straightening apparatus was removed and allowed to cool for 15 minutes before remov-
ing the straightened section of corrugated tubing. Four samples were created and tested beginning
with a single tube, followed by an array of three tubes arranged in a triangular formation, then
seven tubes arranged in a hexagonal pattern, and finally 19 tubes again arranged in a hexagonal
formation. The largest of these specimens is shown in Figure 4.2a as well as its hexagonal array
cross-section, Figure 4.2b. Because the broadband viscoelastic spectrometer (BVS) used for testing
could not accommodate larger specimens than the one in Figure 4.2a, the number of specimens
was limited to four. The lengths of tubing were glued together with approximately 1 mm spacing
between each tube using Loctite clear silicone sealant. The entire sample was allowed to cure for
two days per product directions prior to testing. The resulting specimens had an average density
of 0.464-0.07g/cm?®. After curing, the ends of the samples were sanded flat using metallography
sanding wheels. Circular end pieces larger than the diameter of the sample were cut from 0.6 mm

thick aluminum plate and cemented to both bases of the sample using cyanoacrylate (Loctite 401)
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over the entire surface. Pressure was applied to the end pieces to ensure good adhesion. A catalyst

was applied to the surfaces to reduce the amount of cement used and to improve the bond.

(A) Largest specimen. (B) Cross section of largest
sample.

FIGURE 4.2: Views of aligned corrugated tubing and silicone rubber matrix compos-
ite.

These specimens were tested for torsional and bending rigidity using a broadband viscoelastic
spectrometer (BVS). This instrument makes use of a dual Helmholtz coil acting upon a magnet
attached to the specimen to generate torque. The coil spacing is smaller than the larger specimens
so a short alumina stalk with a magnet on the end was fixed to one of the aluminum end plates.
Because the rigidity of the specimens was not sufficiently different from the rigidities of the alu-
mina stalk or cement bond between stalk and end plate, a mirror was fixed to the edge of the face
opposite of the alumina stalk on the same end plate. This placement eliminated any measured

loss of motion from the magnet to the specimen. The magnet was calibrated using the BVS and
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a lock-in amplifier. The magnetic calibration constants of this particular magnet were obtained
by testing a 6061 aluminum alloy rod of known elastic properties; the calibration constants were
8.18 * 1075 Nm/A in torsion and 1.33 * 107> Nm/A in bending. The free end plate of specimens
was cemented to a steel adapter which was screwed into a 25 mm thick steel rod for holding the
specimen inside the BVS. Prior to testing, viscoelastic strain was allowed to recover overnight to
enable stable measurements. The specimen was lowered into the BVS such that the magnet was
centered in the Helmholtz coils of the BVS. The lower limit on specimen size was limited to the
diameter of an individual corrugated tube.

Deformation was measured using the BVS via a semiconductor laser beam reflected from the
mirror attached to the lower aluminum end plate onto a four quadrant silicon light detector. Prior
to each test the silicon light detector was calibrated by aligning the laser beam so that its position
could be measured. The light detector was moved a known amount in either the horizontal or
vertical direction, for torsion and bending respectively, using a calibrated stage. The resulting
measurement of output voltage per change in position, measured in um, was used as the beam
position calibration constant (V/pm).

To test the specimens a sinusoidal signal with a frequency of 1 Hz, well below any resonant
frequencies, from a function generator (SRS Model DS345) was input to the torsion Helmholtz coil.
Because the same frequency was used for all specimens, viscoelastic effects are decoupled from
the size effects to be probed. The torque signal was obtained as the voltage across a 12 resistor
in series with the coil to eliminate effects of inductive reactance from the coil. The torque signal
vs. angular displacement signal was displayed on a digital oscilloscope (Tektronix TDS3014B)
using DC coupling. The torque and angle signals were displayed as a Lissajous figure and used
to calculate the modulus of the specimen. The maximum strain during testing was less than
1.1x10~". This is will within the range of linearity for this material. For bending, the light detector
mode was switched to vertical detection and the beam position calibration constant was adjusted
accordingly; the driving signal was input to the orthogonal bending Helmholtz coil.

Compression tests were conducted to ascertain the behavior of the largest specimen in the



58

absence of macroscopic gradients of strain and rotation. This was done using a servo-hydraulic
load frame driven at a sinusoidal frequency of 1 Hz. The output stress and strain signals were
displayed on a digital oscilloscope as a Lissajous figure so that the modulus of the specimen could
be calculated. Poisson’s ratio was also determined using compression testing by measuring the

transverse strain with a micrometer.

4.2.2 Analysis and interpretation

Size effect results were interpreted using available exact analytical solutions involving Bessel func-
tions for torsion and bending of a Cosserat elastic solid and approximating the cross-section of
each specimen as circular. Isotropic solutions are used because no anisotropic solutions are avail-
able. Elastic constants obtained are technical constants. This is in the same vein as classical con-
stants obtained from quasistatic tests rather than ultrasonic tests on anisotropic solids. Size effects
manifest as higher effective moduli in slender specimens than thick ones. The classical torsional
rigidity is % = G[3r*]. For Cosserat elasticity in this regime, % = G[5r*](1+ 6(¢/r)?). G is the
true shear modulus in the absence of gradients; M is applied moment and ¢ is angular displace-
ment. This expression is exact for IV = 1; for other N the exact solution involves Bessel functions
[13]:

1—4¥x/3)

2= (1+6(0/m)1¢ oy (412)

in which x = I (pr) /prIo(pr), p* = 2k/(a + B + ) and Iy and I; are modified Bessel functions of
the first kind. The constant ¥ only has an appreciable influence for very small radius specimens.
Because of the limitations of testing large samples imposed by the size of the BVS an asymp-
tote of torsional rigidity vs. diameter could not be determined directly from this method. The
asymptotic value of G was calculated from durometer measurements upon a separate cured block
of silicone and from the Reuss relation in which tubes and silicone rubber were considered as con-

stituents. /; and the value N were determined by fitting the entire set of experimental data to Eq.



59

4.12 using MATLAB. In order to fit Eq. 4.12 to the data, the thermodynamic lower bound of zero
was applied to 4, and an upper bound of 1 was set for N. To accelerate convergence, an upper
limit of 100 mm was chosen for ¢;.

For bending, the classical bending rigidity is % = E[Zr%]. For bending of a Cosserat elastic

circular rod and radius r, the rigidity ratio is approximately
~ 2(1=(8/7)%)
Q~1+8(l/r) T+0) (4.13)

The expression is approximate for small bending characteristic length ¢, << r. The exact form,

involving Bessel functions, is

L= (BAP) | SN (v
(1+v) (1+v)'¢(da) +8N?(1 —v)

Q=1+48(6/r) (4.14)

with § = N/, and ¢(6r) = (67)2[((67)Io((67)) — L1((67)))/((67)Io(67) — 211 (67))].

Similarly for bending, the asymptotic value of E was impossible to determine via BVS ex-
perimentation because of size limitations. Consequently, compression testing was performed to
determine the value. Longitudinal compression testing was conducted to calculate Poisson’s ratio
for bending calculations. The remaining parameters, N, 3/v, and ¢, were determined by fitting
the entire set of experimental data for bending to Eq. 4.14 using MATLAB. To allow fitment, the
thermodynamic lower bound of zero was used for ¢;; similarly, the allowed range for N is from

zero to one and 3/ from -1 to 1.

4.3 Results and discussion

Density of corrugated tubing specimens composed of more than one tube was independent of
size to within ten percent. The single tube specimen was about half of the density of the larger
specimens on average. The discrepancy in density was cause by the silicone rubber matrix in

samples composed of more than one segment of tubing.
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Results of torsion size effect studies are shown in Figure 4.3.
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FIGURE 4.3: Size effects for corrugated tubing specimens in torsion. Points are ex-
perimental. Curve is theoretical for G =890 kPa, ¢; =17.3 mm N =0.996 and ¥ = 1.5.
Classical elasticity (¢; = 0) predicts constant €2 = 1 independent of diameter.

For corrugated tubing specimens in torsion, G = 890 kPa, ¢; =17.3 mm N =0.996 and ¥ = 1.5
when Poisson’s ratio is 0.3. The goodness of fit was R? = 0.99. The maximum size effect in torsion
was () = 128.8. The asymptotic value of G was located by using a durometer to determine the
modulus of the silicone matrix materials used in the composite. The inferred Young’s modulus
of the silicone was approximately 1 MPa so the shear modulus is 0.33 MPa. By measuring the
volume fraction of the silicone rubber matrix and using the Reuss relation, the asymptotic shear

modulus for the composite was calculated to be 0.89 MPa.
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Results of bending size effect studies are shown in Figure 4.4.
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FIGURE 4.4: Size effects for corrugated tubing specimens in bending. Points are
experimental. Curve is theoretical for 3/ = 0.995, N =0.999, E = 142 MPa, and ¢}, =
7.91 mm. Classical elasticity predicts constant (2 = 1 independent of diameter.

Initial fitting of the data using the asymptotic value for F found from compression testing at
1 Hz, 14.2 MPa, and the Poisson’s ratio 0.0 £ 0.1 found from compression testing yielded poor
results. This is attributed to the single measurement of Poisson’s ratio from longitudinal com-
pression testing and the anisotropic structure of the specimens. The isotropic analytical solution
links Poisson’s ratio to the size effects; this is not expected in anisotropic solids. When subsequent
tits were performed using an asymptotic value for E of 14.2 MPa and allowing Poisson’s ratio to

vary in addition to the other fitting parameters and elastic constants, v = 0.3, {;, =7.91 mm, 3/~ =
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0.995, and N = 0.999. The goodness of fit was R? = 0.96. The largest size effect in bending under
these conditions was 2 = 2.33. Because the composite specimens were anisotropic the character-
istic length of bending was independent from the characteristic length of torsion. Also due to the
anisotropy of the specimens, the coupling number, IV, from torsion is not necessarily applicable to
bending results which is why the IV in this fit was allowed to varied. However, the NV calculated
from torsion experiments is very similar to the IV calculated from bending experimentation.

The material has hexagonal structural symmetry, so it is elastically anisotropic. Consequently
the properties obtained from the experiments are technical constants, not tensorial constants. This
is analogous to materials testing in classical elasticity in which it is not always practical to in-
corporate a full anisotropic interpretation. The elastic symmetry of such a hexagonal structure
is transversely isotropic which means properties in the transverse directions are independent of
direction. That provides some simplification in the classical case; nevertheless no analytical solu-
tions for Cosserat elasticity are known for such symmetry. Therefore the isotropic solutions are
used and the elastic constants are interpreted as technical constants. Anisotropy cannot be a con-
founding variable because there are no size effects in classical elasticity even in the anisotropic
case [82].

As for comparison with theory, no known analysis is available for the structure of the present
material. Cosserat elastic constants have been calculated from theoretical homogenization of sev-
eral lattices with straight ribs [47] [48] [49]. These are stretch dominated so the effects of rib bend-
ing and torsion are much smaller than the effects of rib extension. The characteristic lengths of
such lattices are much smaller than the cell size. Two dimensional chiral honeycomb lattice struc-
tures analyzed as Cosserat continua disclosed bend dominated behavior in which Young’s mod-
ulus is governed by rib bending. These honeycombs have large N approaching its upper bound
1, and characteristic length ¢ comparable to the cell size [50]. Sigmoid curvature of the lateral
surfaces of bent square cross section bars was analyzed via Cosserat elasticity [55]. Such curva-
ture requires 3/ # —v and indeed it was observed in conventional as-received open cell foam.

Although no formal measurements were made with the negative Poisson’s ratio foam (for which
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B/~ ~ —v), visual observation of such bending of a square cross section bar suggested any sig-
moid curvature must be small.

In summary, large size effects are observed in the torsion of aligned corrugated tubing and sil-
icone rubber matrix composites. The effects are consistent with Cosserat elasticity. Results do not
necessarily exclude the presence of additional freedom such as that incorporated in micromorphic

/ Mindlin microstructure [7] theory or in microstretch elasticity [56].

4.4 Conclusions

Large size effects are observed in the torsion and bending of aligned corrugated tubing and sili-
cone rubber matrix composites. These effects are inconsistent with classical elasticity, but can be
modeled with Cosserat elasticity. The torsional characteristic length is much larger than the tube

diameter.
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Chapter 5

Observation of Cosserat Elastic Effects in
a Tetragonal Negative Poisson’s Ratio

Lattice

The following chapter has been published:
Z Rueger, D. Li and R.S. Lakes, "Observation of Cosserat Elastic Effects in a Tetragonal Negative
Poisson’s Ratio Lattice", Phys. Satatus Solidi B, 1521-3951, 1600840 (2017).

Abstract Size effects are explored experimentally in a tetragonal lattice structure. Size depen-
dence of rigidity is nonclassical elastic and is interpreted via Cosserat elasticity. The characteristic
lengths are about a third the cell size. The Cosserat characteristic length for torsion is /; = 5.6 mm.
The characteristic length for bending is ¢, = 54 mm. The size effect in torsion was a factor 4.5
in rigidity. The ratio of characteristic length to cell size is larger than in fully stretch dominated

lattices but smaller than in bend dominated honeycombs or foams.
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5.1 Introduction

The first negative Poisson’s ratio materials, honeycombs in 2D [70] and foams in 3D [61] had a
structure size sufficiently large to be apparent to the unaided eye. It had been proposed that a
coarse structure was required for negative Poisson’s ratio [83]. The size of the structure is not,
however, pertinent in that context. Poisson’s ratio is a concept in classical elasticity which has no
length scale [84]. Indeed, in some negative Poisson’s ratio materials, particularly those experi-
mentally associated with phase transformations in gels [85] and in polycrystalline quartz [86], the
governing structure is on the atomic scale. Analyses of a 2D array of hard hexamer discs indicated
the existence of a phase transition between a tilted and a straight phase [63]; results suggested
negative Poisson’s ratio associated with the transformation to tilted phase. Numerical results also
reveal a decrease in Poisson’s ratio during phase transformations; such a change is a good indica-
tor of transformation [87] [88]. Structure size is however associated with phenomena such as size
dependence of rigidity in torsion and bending (size effects), non-classical values of stress concen-
tration, and dispersion of waves. Continuum theories are widely used to represent physical struc-
tured materials to facilitate practical calculations. Classical elasticity is one such theory but not
the only one. One may incorporate less freedom as in the uniconstant elasticity theory of Navier
[1]. This theory only allowed one elastic constant, a modulus. The analysis assumed that forces
act along the lines joining pairs of atoms and that forces are proportional to changes in distance
between atoms. The theory predicts a Poisson’s ratio of 1/4 for all isotropic materials. Because ex-
periments disclosed a range of Poisson’s ratios, the uniconstant theory was abandoned. Classical
isotropic elasticity has two independent elastic constants and allows Poisson’s ratio in the range -1
to 1/2. Cosserat elasticity incorporates more freedom than classical elasticity. Cosserat elasticity
[3], (with inertia terms called micropolar [9]) allows points to rotate as well as translate. Cosserat
elasticity also incorporates a couple stress (a torque per unit area) as well as the force per unit area
of classical elasticity. There are six independent elastic constants for the isotropic Cosserat solid

and even more if it is anisotropic.
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The Cosserat couple stress arises from a superposition of bending and twisting moments that
are transmitted by the material’s structural elements. The Cosserat micro rotation is associated
with the rotation of the structural elements. Bending moments on ribs of honeycomb or foam
were analyzed in the classical elastic treatments of foam [2] but no effects of rotation gradients
were considered.

The constitutive equations for an anisotropic [9] Cosserat elastic solid are as follows.

oij = Cijrierl + Pijri@r.1, (5.1)

mij = Qijki®k,1 + Pijki€xs (5.2)

Here ¢ is strain, o;; is stress (symmetric in classical elasticity but asymmetric here), C;;1; is the
elastic modulus tensor. The usual Einstein summation convention is assumed in which repeated
indices are summed over. m;; is the couple stress tensor, moment per unit area, asymmetric in
general. P;j;; and Q5 are Cosserat elastic constants that provide sensitivity to local gradient of
(micro) rotation vector. The Cosserat microrotation vector ¢; is kinematically distinct from the
macrorotation vector 7; = (e;jux,;)/2 associated with the motion of neighboring points.

The lattice structure under consideration is anisotropic, however isotropic analysis is more
developed and provides physical insight. The constitutive equations for an isotropic micropolar

solid [9] are:

Uij = 2G6ij + )\Ekk(sij -+ neijk(rk — (bk) (53)

mij = agy k0ij + Bdij + VPji (5.4)

There are six independent elastic constants for an isotropic Cosserat solid. They are A, G, «, 3,

7, k. It is appropriate to define technical constants as follows. They are helpful for physical insight
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as is the case comparing tensorial constants and technical constants in classical elasticity.

2
Young's modulus E = G(?;\Aj_GG) (5.5)
Shear modulus G (5.6)

A
Poisson’s ratio v= 20+ G (5.7)
Characteristic length, torsion by = BTZY (5.8)
Characteristic length, bending by = % (5.9)
. K

Coupling number N = T (5.10)
Polar ratio W=Dt (5.11)

a+ B+

Stress and strain fields in Cosserat solids differ from classical predictions. For example, size
effects occur in the analysis of torsion [13] and bending [14] of circular cylinders of Cosserat elastic
cylinders. Slender specimens are stiffer than predicted classically. Small holes in a plate exhibit a
lower stress concentration than larger ones [15] in contrast to classical elasticity.

A variety of experiments have disclosed Cosserat elastic effects. Size effects consistent with
Cosserat elasticity occur in the torsion and bending of closed cell foams [22, 23], open cell foam
[73], negative Poisson’s ratio foam [80], and compact bone [21]. These effects are consistent with
Cosserat elasticity. Apparent modulus increases as specimen size is reduced. In comparison,
classical elasticity predicts apparent modulus independent of specimen thickness. For Cosserat
effects to be observable, the material micro-structure size must be nontrivial in comparison with
length scales in the experiment. This is a necessary but not a sufficient condition. Indeed, a
composite containing aluminum beads in an epoxy matrix was tested for Cosserat effects but it
was found to behave according to classical elasticity [13].

The Cosserat characteristic length for a polycarbonate honeycomb was determined [33] from
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experimental strain and displacement fields. Warp in torsion of a square cross section bar is pre-
dicted to be reduced [34] in comparison with classical predictions. Strain distributions were exper-
imentally measured in square cross-section bars of human compact bone [35] and found to follow
the Cosserat prediction. Holographic methods disclosed [36] deformation occurred in the corners
where it would be classically zero. Holographic methods also revealed reduced warp deformation
in square bars of closed cell foam [37], following Cosserat elasticity.

The present research deals with size effects in a designed tetragonal polymer lattice. This lat-
tice was shown, both numerically and experimentally in a companion paper to have a negative
Poisson’s ratio, tunable via geometric variables [89]. For a lattice of the type studied here, Pois-

son’s ratio is -0.5 for stress applied in the axial direction.



5.2 Methods

5.2.1

Materials and experiment

FIGURE 5.1: 2x2 tetragonal lattice structure (left). Scale bar, 1 cm. End view (right).

FIGURE 5.2: Diagram (left) showing dimensions adapted from [89]. Slot (right) in
present specimens.

69
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Lattices (Figure 5.1) were designed as described in a companion paper [89] and were made us-
ing a Stratasys Dimension Elite 3D printer. Four progressively larger lattices were created corre-
sponding to 1,2,2.5, and 3 unit cells. While the unit cells are not repeat units, this convention was
consistent across all specimens. The parent material was ABS polymer with a claimed Young’s
modulus of 2.2 GPa and a Poisson’s ratio of 0.39. The print resolution is 0.25 mm. The mid-size
sample was 100 mm in height and 47.5 mm for the side length. Lattice specimens were cemented
to metal end pieces to provide appropriate boundary conditions. Dimensions (Figure 5.2) of the
original lattice were Hy = 17.5 mm, L = 17.5 mm, [ = 15.3 mm, [y = 2.5 mm, /; = 1.3 mm, hy = 2.5
mm, h; =5 mm, hy = 10 mm. Dimensions of the present lattice were essentially identical, within
the resolution limit of the printer, Hy =17.7 mm, H; =149 mm, L =17.5mm, [ = 149 mm, [p =2.5
mm, [; = 1.3 mm, hy =2.7 mm, h; =5 mm, ho = 10 mm.

Tests were done in compression to evaluate the behavior in the absence of macroscopic gra-
dients of strain and rotation. This was done using a test frame at constant strain rate. Poisson’s
ratio was also determined using compression testing by measuring the transverse deformation
via digital photography and via a micrometer. Torsional and bending rigidity of lattice specimens
of different size were determined via broadband viscoelastic spectrometry (BVS). The BVS device
generates torque using a dual Helmholtz coil acting upon a magnet attached to the specimen’s
end piece. The magnet was centered in the coil. Deformation is measured by measuring the po-
sition of a reflected laser beam using a digital sensor. The sensor was calibrated using a precision
micrometer. Specimens were too large to fit in the coil, therefore an alumina stalk with a magnet
on one end was fixed to the lower end plate. The laser mirror was attached to the lower end plate
to avoid any error from compliance of the stalk. A mirror was also attached to the upper end plate
and further measurements conducted to evaluate the effect of instrument compliance.

Magnet calibration in the BVS was done as in prior studies with this instrument. Torque and
angular displacement of a rod of 6061 aluminum alloy of known elastic properties were measured.
The torsion calibration constant was 3.81 x 10~* Nm/A and the bending one was 6.50 x 10~*

Nm/A. The specimen top end plate was attached to a 25 mm diameter steel rod to support the
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specimen inside the BVS. Viscoelastic deformation was allowed to recover overnight prior to tests
to enable stable measurements.

A 1 Hz sinusoidal signal from a SRS Model DS345 function generator was input first to the
torsion Helmholtz coil, then to the bending coil. This is well below any resonant frequencies.
The same frequency was used for all specimens so viscoelastic effects are decoupled from the size
effects to be probed. Torque was inferred from the voltage across a 1f resistor in series with the
coil. The signals for torque vs. angular displacement were displayed as a Lissajous figure on
a digital oscilloscope (Tektronix TDS3014B) using DC coupling. Effective modulus was inferred
from torque and angle signals. The maximum strain was less than 2 x 10~°. This is well within the
range of linearity for this material. Linearity was verified from the shape of the load deformation

curves.

5.2.2 Analysis and interpretation

Size effect results were interpreted in the context of Cosserat elasticity. Approximate solutions of
the bending and torsion problems are available. The bending rigidity ratio for a rectangular cross
section bar of width a depends on both the characteristic length and on Poisson’s ratio [55]. If

B/~ = —v, the rigidity ratio Q = 1% % is, with M as moment and R as radius of curvature,
Q= [1+24(6,/a)*(1 - v)]. (5.12)

For other values of Poisson’s ratio, the ratio is, (to fourth order in ¢, /a),

14280402 /p\2 B 244 — 38V + 3N2(1 — ) (13— 9v) [£,\*
Q=|1+24—2 —(2) —480(% =) 1
+ 1+v (a) 80 <~y+”) N2(1+ v)(22 — 19v) (a (13

Torsion of a square cross section Cosserat elastic bar of width a gives rise to the following

relation between torque and angle. When x — oo, which corresponds to the coupling number
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N =1, the total torque M [90] simplifies to

4 a.,, 1796 + 126 (449 + 27400% 4 39600*) 2 + 693 (152 + 228002 + 66150*) 72

M=_—G()

_ . o 5.14
212 8 (19 + 46502 + 99004) + 1485 (6 + 49¢2) (7 G149

in which ¢ = 2¢;/a, £, = 2(;/a and 0 as the angular displacement per length. This solution is
superior in the regime of strong coupling or for 5/v < 0, to that of [34], which overestimates the
effects for large V.

Because the solid is not isotropic, no attempt was made to further refine the interpretation. No
analytical solutions for interpretation are known for anisotropic solids. Elastic constants deter-
mined via such a procedure are technical constants. Similarly, classical elastic constants as techni-
cal constants for anisotropic materials are obtained from results of standard tensile or compressive
tests in principal directions. Size effects do not occur in classical anisotropic elasticity [82]; rigidity
depends on thickness as it does in isotropic elasticity. Size effects are therefore a manifestation of
nonclassical elasticity and cannot be explained by anisotropy.

In prior studies on round specimens, size effect results were interpreted using exact analytical
solutions involving Bessel functions [13] [14].

If either N — 1 or the specimen is much thicker than the characteristic length, the relations
for round specimens are simpler than the exact solutions: Q = (1 + 6(¢;/r)?) for torsion and
Q~ 1484/ r)QW for bending. Size effects in both square and round specimens give rise
to higher effective moduli in slender specimens than in thick ones.

For materials with small characteristic length, asymptotic values of G and E are easily deter-
mined from sufficiently thick specimens. For materials with large structure size, there is an upper
limit to the thickness that can be tested with the present method. Consequently, compression
testing was performed to determine the asymptotic value of E in the absence of gradients. The
characteristic lengths ¢; and ¢, were determined by fitting the torsion data to Eq. 5.14 and the
bending data to Eq. 5.12 using MATLAB.
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5.3 Results and discussion

Specimens 3D printed for size effect studies had a slender pore or slot in some ribs as shown in
Figure 5.2. Compression moduli were measured as 19.4 MPa for the 4x4 specimen, 20.4 MPa for
the 2x2 specimen (Figure 5.1), and 25.7 MPa for the 1x1 specimen, all with the same orientation of
ribs. The specimen studied in the companion paper [89] on Poisson’s ratio was slightly different
in the 3D printed structure; the ribs had no such slot. The relative density was 0.092. The average
density of the present specimens was 0.087 g/cm?. Assuming the density of solid ABS polymer as
1.04¢g/ cm?, the relative density is 0.084. The difference is attributed to variance in the 3D printing
process. Results of torsion size effect experiments and interpretation via Eq. 5.14 are shown in

Figure 5.3.
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FIGURE 5.3: Size effects for lattice specimens in torsion. Points are experimental.

Curve is theoretical for G = 0.67 MPa, ¢; = 5.6 mm, ¢, = 54 mm, N = 1. Classical

elasticity (¢; = 0) predicts constant 2 = 1 independent of diameter which is indicated
by the horizontal dashed line.

For specimens in torsion, G = 0.67 MPa, {; = 5.6 mm, {;, = 5.4 mm. The goodness of fit was
R? = 0.999. The maximum size effect in torsion was 2 = 4.5. The rigidity expressed in Eq. 5.14 is
strongly dependent on /; and weakly dependent on ¢,. The asymptotic value of G was located via

the curve fit. The characteristic length is about a third the cell size.
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FIGURE 5.4: Size effects for lattice specimens in bending. Points are experimental.

Curve is theoretical for ¢, = 5.4 mm, 3/ + v =0.002, N = 0.46, via Eq. 5.13. Classical

elasticity predicts constant {2 = 1 independent of diameter which is illustrated by the
horizontal dashed line.

Results of the bending size effect studies based on fit to Eq. 5.13 are shown in Figure 5.4, {}, =
54 mm, 5/y + v =0.002, N = 046, v = -0.5. The asymptotic value for E = 27.6 MPa was found
as follows. The compression modulus obtained at constant strain rate corresponds to a test at a
low frequency - approximately 0.08 Hz . This modulus was converted to a compression modulus
at 1 Hz via interrelation among viscoelastic functions using the average loss tangent (0.27) of the
largest three specimens. The goodness of fit was R? = 0.75. Because the composite specimens
were anisotropic the characteristic length of bending is independent of the characteristic length
of torsion. Anisotropy implies the coupling number N for torsion need not equal the value for

bending.
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The material has tetragonal structural symmetry. Elastic behavior is therefore anisotropic.
Consequently the properties obtained from the experiments are technical constants, not tenso-
rial constants. This is analogous to materials testing in classical elasticity in which it is not always
practical to incorporate a full anisotropic interpretation. No analytical solutions are available for
tetragonal Cosserat elasticity. Therefore the elastic constants obtained are interpreted as technical
constants. Anisotropy is not a confounding variable because size effects do not occur in classical
elasticity even in the anisotropic case [82].

Homogenization analyses have been done for several lattices with straight ribs [47] [48] [49].
These lattices are stretch dominated: the overall lattice modulus is governed by axial deformation
(stretching or compressing), of the rib elements. Consequently the effects of rib bending and tor-
sion, which govern the Cosserat constants, are much smaller than the effects of rib extension. The
Cosserat characteristic lengths of such stretch dominated lattices are much smaller than the cell
size. By contrast, analysis of two dimensional chiral honeycomb lattice revealed bend dominated
behavior. The Cosserat characteristic length ¢ is comparable to the cell size [50]. Moreover in such
honeycomb, N approaches its upper bound 1. In open cell foams [73] and in negative Poisson’s
ratio foams [80] derived from them, / is greater than the cell size. Specifically, ¢; is a factor 1.8
to 4 greater than the cell size, and ¢, is a factor 4.9 to 7.5 greater than the cell size, depending on
the kind of foam. Such foams are highly bend dominated. Cosserat effects are therefore consider-
ably stronger in bend dominated lattices and materials studied thus far than in stretch dominated
ones. The present lattice is considered bend dominated based upon dependence of the modulus
on relative density of the lattice [89]. However the ribs are aligned so that the axial modulus is
enhanced. The Cosserat characteristic length of cellular solids depends on the ratio of torsion and
bend rigidity of ribs to their axial rigidity. Therefore it is to be expected that the Cosserat effects
are not as pronounced as in foams. The ratio of characteristic length to cell size is larger than in
fully stretch dominated lattices but smaller than in bend dominated honeycombs or foams.

Cosserat elasticity facilitates understanding of size effects due to distributed torques propa-

gated through the structure of a heterogeneous material. Size effects may rise from a variety of
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causes. In foams, a layer of surface damage can give rise to a softening effect in which slender
specimens appear more compliant than large ones [91]; this effect is opposite that in Cosserat
solids. Edge effects in 2D negative Poisson’s ratio structures of rotating squares have been pre-
dicted [92]. The apparent rigidity for axial tension depends on size as a result of the boundary
conditions being different from conditions in the bulk. These effects differ from effects in Cosserat
solids in that (i) they are not driven by gradients, and (ii) unlike Cosserat effects they do not obey
Saint Venant’s principle. Cosserat size effects are driven by gradients that occur in torsion and
bending; the bar can be arbitrarily long; there are no size effects in tension.

Cosserat elasticity has also been used in analysis of granular materials [93]; a Cosserat fluid
model successfully describes collisional granular flows on a slope [94]. 2D ensembles of hard disks
in an enclosure have been studied from a thermodynamic perspective [95]; elastic aspects were
considered in a classical context [96]. In such systems, size effects might occur due to exclusion of
discs by the boundary in contrast to Cosserat type effects due to moments. If rotational energy is
considered, there will be a conceptual link with the Cosserat approach.

Size effects are not the only result of nonzero structure size interpreted via Cosserat elasticity.
Stress concentrations associated with holes are reduced in comparison with classical predictions
[15]; the effect is more pronounced for small holes. Similarly stress concentration around a notch
is reduced in comparison with predictions of classical elasticity. The result is improved toughness
in the presence of such defects.

In summary, size effects are observed in torsion and in bending of tetragonal auxetic lattices.
The lattices are therefore not classically elastic. The size effects are interpreted via Cosserat elas-
ticity. Continuum theories with more freedom, e.g. micromorphic / Mindlin microstructure [7]
elasticity or microstretch elasticity [56] are not excluded; they are not necessary for the present
observations. For example, the Mindlin elasticity theory, in which points translate, rotate, and
deform, allows 18 elastic constants for an isotropic solid, and microstretch elasticity allows 9 con-

stants for an isotropic solid.
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5.4 Conclusions

Size effects occur in the torsion and bending of lattice structures. These effects are not consistent
with classical elasticity. They are interpreted with Cosserat elasticity. The characteristic lengths
are about a third of the cell size. The Cosserat torsional characteristic length is ¢; = 5.6 mm. The

bending characteristic length is ¢, = 5.4 mm. The size effect in torsion is a factor 4.5 in rigidity.
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Chapter 6

Strong Cosserat elasticity in a

transversely isotropic polymer lattice

The following chapter has been published:
Z Rueger and R.S. Lakes, "Strong Cosserat elasticity in a transversely isotropic polymer lattice",

Phys. Rev. Lett., 120, 065501 (2018).

Abstract Large size effects are experimentally measured in lattices of triangular unit cells:
about a factor of 36 in torsion rigidity and 29 in bending rigidity. This nonclassical phenomenon is
consistent with Cosserat elasticity which allows for rotation of points and distributed moments in
addition to the translation of points and force stress of classical elasticity. The Cosserat characteris-
tic length for torsion is ¢; = 9.4 mm; for bending it is ¢, = 8.8 mm; these values are comparable to the
cell size. Nonclassical effects are much stronger than in stretch dominated lattices with uniform
straight ribs. The lattice structure provides a path to attainment of arbitrarily large effects.

Continuum theories of elasticity are widely used for representing materials with microstruc-
ture, including composites and lattice “metamaterials”, as continuous media. The currently ac-
cepted classical theory permits the Poisson’s ratio in isotropic materials to range from -1 to 1/2
and incorporates two independent elastic constants. Theory with less freedom was tried: the

uniconstant theory of elasticity, developed by Navier [1] incorporates only one elastic constant, a
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modulus, and was based on an assumption that forces acted along the lines joining pairs of atoms
and were proportional to changes in distance between them. Navier’s theory predicted a Pois-
son’s ratio of 1/4 for all isotropic materials and was abandoned when experiments demonstrated
a range of Poisson’s ratios so the current classical theory was adopted. The Cosserat theory [3]
(with inertia terms called micropolar [9]), has more freedom than classical elasticity; it incorpo-
rates a local rotation of points and a couple stress (torque per unit area) as well as the translation
of points and force stress of classical elasticity. The Cosserat theory of elasticity has six indepen-
dent isotropic elastic constants and even more constants if the material is anisotropic. In contrast
to classical elasticity, Cosserat elasticity incorporates a characteristic length scale in the continuum;
the solid becomes sensitive to strain gradients, hence has a nonlocal aspect, and can support an
asymmetric stress.

Classical elasticity is entirely adequate for macroscopic specimens in which the structure size
is many orders of magnitude smaller than the experimental size scale; macroscopic scale tests for
Cosserat effects in aluminum revealed classical behavior [25]. Nonclassical elastic effects are ex-
pected if the ratio of structural to experimental length scale is non-negligible. At the atomic scale,
non-central forces are associated with moments such as those between dipoles; these moments
can be subsumed in a Cosserat analysis. Dispersion of waves of length a small multiple of the
lattice spacing was used to infer Cosserat behavior in diamond crystals [26]; the inferred char-
acteristic length was about 0.2 nm. More recently, classical elasticity [27] was predicted to break
down in crystalline materials in the length scale range of 1-10 nm. In chiral cholesteric elastomers
[97] the characteristic length was predicted to be on the order of 10 nm. These length scales are
on the order of the structure size. Cosserat type freedom is not limited to elasticity; it can occur in
other physical properties. Piezoelectric materials are known to exhibit nonclassical sensitivity to
gradients [98], interpreted via a nonlocal concept [99]. The characteristic length, governed by the
spacing of ions in the lattice, is enhanced in ferroelectrics so that effects were observed in layers
several pum thick. Such materials in recent studies have been called flexoelectric [100].

A larger characteristic length is to be expected in materials with larger structural length scales.
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This is not a sufficient condition; the specific nature of the structure is pertinent as well. The
Cosserat couple stress arises from the superposition of bending and twisting moments transmitted
by the structural elements in materials. The Cosserat local rotation corresponds to the rotation
of the structural elements. Forces and moments are also considered in the classical analyses of
foam [70] in which classical elastic moduli were determined; effects of rotation gradients were not
considered. Lattices with straight elastic ribs were analyzed via theoretical homogenization [47]
[48] [49] as Cosserat solids. Such lattices, despite their structure, are nearly classical; the Cosserat
characteristic lengths are much smaller than their cell sizes. The reason is that these structures
are stretch dominated: the effects of rib extension greatly exceed the effects of rib bending and
torsion. Rib extension in such structures governs the force stress hence the classical elastic moduli;
rib bending and torsion transmits moments corresponding to the Cosserat couple stress. The
distributed Cosserat moments are minimal in comparison with the forces, so the characteristic
length is small compared with the cell size in such lattices.

A composite containing round aluminum beads in an epoxy matrix was tested experimentally
for Cosserat effects and was found to be classical [13]. Indeed, composites containing stiff spheres
were shown by homogenization analysis to have characteristic lengths of zero [101]. A dense
closed cell polymer foam exhibited Cosserat effects; the characteristic length was comparable to
the cell size (the largest cells had diameter 0.15 mm) but size effects (see below) were only about a
factor of 1.3 as a result of weak coupling [22]. Rotational waves of the sort anticipated in Cosserat
elasticity were observed in a non-cohesive granular assembly of metal spheres [102]. A value of
+ (defined below) was inferred but characteristic lengths were not obtained; indeed the granular
assembly was predicted to have rotation gradient sensitivity terms «, 3, v equal to zero hence zero
characteristic length; as with composites with hard spheres, this is a degenerate case.

Lattices of the type presented in this Letter exhibit strong nonclassical effects consistent with
Cosserat elasticity; the design provides a path to achieving arbitrarily large Cosserat effects.

In Cosserat elasticity the stress, 0, can be asymmetric. The resulting moment is balanced by

a couple stress, m;;. The antisymmetric part of the stress is related to local rotations: U%Ltisym =
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K€jkm(Tm — ¢m) in which & is an elastic constant, ¢,, is the rotation of points, called micro-rotation,
ejkm is the permutation symbol, and r;, = %eklmuml is the macro-rotation based on the antisym-
metric part of gradient displacement ;. The constitutive equations for linear isotropic Cosserat

elasticity [9] are as follows.

oij = 2Ge;; + Neprlij + Kegji (e — or) (6.1)

mij = agy k0ij + Bdij +VPji (6.2)

There are six independent elastic constants for an isotropic Cosserat solid. Constants A, G have
the same meaning as in classical elasticity; «, 3, v provide sensitivity to rotation gradients and «
quantifies the coupling between fields. Technical constants, derived from these elastic constants

are beneficial for physical insight and are as follows.

Young’s modulus EF = =Fc shear modulus G, Poisson’s ratio v = Teeval characteristic

length, torsion ¢; = \/%—Jg, characteristic length, bending ¢, = ,/ 41, coupling number N =

\/%, polar ratio ¥ = aﬁglv. This is a generalization of the extraction of technical constants
from tensorial ones in classical elasticity.

There are several key consequences of Cosserat elasticity which differ from classical predic-
tions. Circular holes exhibit a lower stress concentration factor than expected classically and small
holes exhibit less stress concentration than larger ones [15]. A characteristic of Cosserat elasticity
pertinent to the research presented in this letter is the prediction of a size effect in the torsion [22]

and bending [23] of circular cylinders of Cosserat elastic materials. These size effects manifest as

slender cylinders appearing stiffer than predicted classically.
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5 mm

(A) 3D printed rib structure. (B) CAD rib structure.

FIGURE 6.1: 3D printed rib structure vs. idealized drawing. Scale bar, 5 mm.

The lattices considered in this letter were developed to achieve strong Cosserat effects by de-
coupling the rib rigidity in torsion and bending from its rigidity in extension. This maximizes
sensitivity to rotation gradient. These lattices were embodied via selective laser sintering (SLS),
an additive manufacturing technique. The lattice was modeled in SolidWorks and was converted
to STL format for export to 3D printing. Specimens were printed by a 3D Systems sPro 60 HD-HS
printer. The parent material was a polyamide polymer equivalent to Nylon 12. Each rib element
(Figure 6.1) consists of square section tubular segments with a portion that approximates a Sar-
rus linkage. The ideal Sarrus linkage contains hinged elements and offers zero resistance to axial
compression but resists torsion. The measured effective Young’s modulus in bending of one rib
element was 281 MPa; in compression it was 14 MPa; for a solid rod these moduli would be equal.
The torsional modulus was 387 MPa. The ribs, though not hinged, therefore resist torsion and
bending to a much greater extent than compression. This rib design was created to be sensitive
to gradients and thus demonstrate large size effects when used to construct 3-D structures. Each
rib connects with its neighbors via hexagonal nodes shown in Figure 6.2. The lattice comprised

of these ribs consists of triangular prism unit cells of which the side length of the triangular bases
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was 10.5 mm and the height was 9.0 mm. The lattice density was 0.16 _%;.

(A) Lattice structure in cross sec- (B) Lattice structure.

tion.

FIGURE 6.2: Cross section and side view of 3D printed lattice structure. Scale bar, 10
mm.

Cosserat effects were probed by measuring size dependence of rigidity at constant frequency.
This protocol provides sensitivity to spatial gradients; it is insensitive to time derivatives because
all experiments were done at the same frequency. By contrast, in wave methods, a change in wave-
length is accompanied by a change in frequency. Therefore wave dispersion due to viscoelastic
damping cannot be distinguished from dispersion due to sensitivity to spatial gradients. Five
structures of increasing size, but the same aspect ratio, were printed. Specimens had complete
cells with no partial cells; this was done by making cross section shapes aligned with the symme-
try axes. All sections were hexagonal except the smallest which was triangular. Equivalent circles
were inscribed for interpretation. The specimens, from smallest to largest, were composed of the
following number of unit cells in cross-section by height: 1x3, 6x7, 24x13, 54x19, 96x26.

These specimens were tested for torsional and bending rigidities using a Broadband Viscoelas-

tic Spectrometer (BVS) [41]. This apparatus uses a pair of Helmholtz coils to apply a torque of
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controllable direction to the specimen via a magnet attached to the base via a ceramic stalk and
cement. The magnet was calibrated in the BVS using a lock-in amplifier. A mirror was glued to the
specimen’s base edge. To measure displacement, the beam of a semiconductor laser was reflected
off this mirror and directed to a silicon light detector. The light detector was calibrated by moving
it a known distance, via calibration stage, and measuring output voltage. A calibration curve was
generated and the change in output voltage per change in position was used as the beam position
calibration constant (V/um).

A sinusoidal signal with a frequency of 1 Hz, was input to the torsion Helmholtz coil. The
same frequency was used for all specimen sizes to decouple viscoelastic effects from the size ef-
fects being probed. The resulting torque vs. angular displacement signals were displayed as a
Lissajous figure on an oscilloscope; the modulus and viscoelastic damping of the structures were
then calculated. To measure bending moduli, the orthogonal bending Helmholtz coil was used
and the light detector was switched to measure vertical displacement. The calibration constant
for the light detector was determined as before and the magnet’s calibration constant for bending
was used in calculations.

Compression tests were conducted using a screw-driven test frame to ascertain the Young's
modulus of the specimens in the absence of macroscopic gradients of strain or rotation as well as
to measure the Poisson’s ratio. Anisotropy of modulus was probed via propagation in different
directions of acoustic waves of wavelength much larger than the cell size.

Size effects in torsion were interpreted using the following exact solution for a Cosserat elastic
circular rod of radius r with Q as the ratio of structural rigidity to its classical counterpart [13]:

1— 30y

= 6.3)

sz:(1+6{%}5

in which x = Ii(pr)/prlo(pr), p* = 2k/(a + 8 + ) and Iy and I; are modified Bessel functions
of the first kind. Classical torsional rigidity is & = G[37*]. G is the true shear modulus in the

absence of gradients, M is the applied moment and 6 is the angular displacement per length.
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The shear modulus G, characteristic length of torsion ¢, and the coupling number N were
found by fitting Equation 6.3 to the full set of experimental data using MATLAB. ¥ was deter-
mined from the behavior of the data near the origin.

For bending, the classical rigidity is % = E[Zr*]. The exact expression of the rigidity ratio for

bending of a Cosserat elastic circular rod of radius r is:

— (B)2
e Lk

r (1+v) (1+v)

G+ ] (6.4)

C(0r) + SN2(1 — v)

in which 6 = N/, and ¢(0r) = (67)2[((67)Io((67)) — L1 ((67)))/((67)Io(0r) — 2I1(67))]. The Young's
modulus F and Poisson’s ratio » were determined from compression testing while ¢, 5/, and N
were determined from fitting the full set of experimental data with Equation 6.4.

Results for torsion size effects studies are shown in Figure 6.3. Viscoelastic dispersion of the

modulus cannot obtrude in the interpretation because all experiments were conducted at 1 Hz.
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FIGURE 6.3: Size effects for lattice specimens in torsion. Points are experimental.

The black curve is theoretical for best fit G = 1.1 MPa, /, =94 mm, N =1, ¥ = 1.0.

Blue curves illustrate theoretical predictions for ¢; = 5.0 and 14 mm, respectively.

Classical elasticity (¢; = 0) predicts constant {2 = 1 independent of diameter which is
indicated by the green horizontal dashed line.

For torsion, G = 1.1 MPa, ¢; = 9.4 mm, and N = 0.999. Error bars shown were calculated from
noise in the signal and from uncertainties in specimen dimensions. The mean absolute percent
deviation between experimental results and the Cosserat prediction was 12% while the root-mean-
square deviation (RMSD) was 0.50. The increase in relative stiffness did not roll off near the origin
therefore ¥ < 1.5. Results are consistent with ¥ = 1 but are not very sensitive to ¥ in this regime.
The maximum size effect in torsion was 2 = 36 corresponding to a 3500% deviation from the
classical prediction. The asymptotic value of G was located via curve fit. The characteristic length

is comparable to the structure cell size.
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The results of bending size effect studies are shown in Figure 6.4 in which £ = 3.14 MPa, v =
0.05, 4, =9.1 mm, 3/~v = 0.5, N = 0.99. The mean absolute percent deviation between experimental
results and Cosserat prediction was 14% while and the RMSD was 0.58. The asymptotic value
for E is based on the average compression modulus corrected for the difference in frequency
(0.04 Hz vs. 1 Hz) via dispersion inferred from observed damping tan § ~ 0.05. In compression
there is no strain gradient. Similarly, the Poisson’s ratio is the average based on compression.
The maximum size effect in bending was Q2 = 29.4 corresponding to a 2843% deviation from the
classical prediction.

It is concluded that the response follows Cosserat elasticity not classical elasticity and that the

Cosserat characteristic length is comparable to the cell size. Size effects are large in magnitude.
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FIGURE 6.4: Size effects for lattice specimens in bending. Points are experimental.

The black curve is theoretical for best fit £ = 3.14 MPa, v = 0.05, ¢, = 8.8 mm, 8/~

= 0.5, N = 0.99. Blue and cyan curves illustrate theoretical predictions for ¢, = 4.8

and 13 mm, respectively. Classical elasticity predicts constant 2 = 1 independent of
diameter which is indicated by the green horizontal dashed line.

Pulsed acoustic wave measurements at 60° intervals in the transverse plane and in the longitu-
dinal direction revealed the lattice material to exhibit elastic transverse isotropy. The longitudinal
modulus was lower than the transverse by a factor 1.3; the lattice does not deviate much from
isotropy. No analytical solutions for Cosserat elasticity are available for anisotropic rods. There-
fore, the isotropic solutions discussed above were used for interpretation and the elastic constants
were interpreted as technical constants. This is analogous to materials testing in classical elastic-
ity in which it is not always practical to incorporate a full anisotropic interpretation. Anisotropy

is not a confounding variable because size effects do not occur in classical elasticity even in the
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anisotropic case [82]. If need be, one may titrate the geometry of the structure to achieve elastic
isotropy as has been done for negative Poisson’s ratio metal foams.

A wave cut off frequency effect above 3 kHz was observed but its interpretation is equivocal.
Cut off of waves can arise from structural resonance, from viscoelastic damping, or from both. In
the present lattice, the wavelength at 3 kHz is about five times the cell size. Because the cells have
complex structure, such a wavelength may suffice for resonance. Attenuation based on calcula-
tion from viscoelastic damping also suffices to significantly damp the waves above 3 kHz. Also,
viscoelasticity contributes to wave dispersion which in non-dissipative solids could be used to
infer Cosserat effects. So, for the present polymer lattice materials, the constant frequency size
effect approach used here provides unambiguous interpretation, in contrast to wave methods. Pe-
riodic crystal lattices of atoms [71] with minimal attenuation, by contrast, are amenable to wave
methods.

As for further comparisons, in 2-D chiral honeycomb lattices analyzed as Cosserat continua,
the Cosserat characteristic lengths are similar to the cell size [50] and the Cosserat coupling num-
ber N approaches its upper limit of 1. Experiments on low density open cell polymer foams
disclose substantial size effects 2 up to a factor 6.5 [73] and up to a factor 12 [80] in negative Pois-
son’s ratio foam [61]. The characteristic length exceeded the cell size in both foams, but foams
were much more compliant (£ = 91 kPa for normal foam and 25 kPa for negative Poisson’s ratio
foam) than the present lattices (2.9 MPa).

In contrast to foams, the present lattice structure provides a path to attainment of arbitrarily
large effects: the Sarrus type rib segments can be made more slender, in view of future improve-
ments in 3D printing. Bend dominated behavior appears to be a necessary but not sufficient con-
dition for strong Cosserat effects in cellular solids such as lattices and foams. Bend dominated
behavior refers to rib deformation that occurs primarily in bending rather than compression /
axial stretch. By contrast stretch dominated lattice structures with straight uniform ribs are pre-
dicted to exhibit very weak Cosserat effects [47] [48] [49]. Other lattice “metamaterials” for high

strength [103] made by 3D printing [104] have been treated as classically elastic in the absence of
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gradients but can be expected to exhibit Cosserat freedom; similarly lattice “metamaterials” with
controllable Hall coefficient [105].

In summary, large size effects are observed in the bending and torsion of designed lattices of
triangular prismatic unit cells. The size effects are inconsistent with classical elasticity but are
consistent with Cosserat elasticity. Other theories of elasticity with more degrees of freedom,
such as those incorporated in micromorphic/Mindlin microstructure theory [7] or microstretch
elasticity [106], are not excluded; they are not necessary for the present observations.

We gratefully acknowledge support of this research by the National Science Foundation via

Grant CMMI-1361832.
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Chapter 7

Cosserat Elastic Lattices

The following chapter is in the submission process.

abstract 3-D printed lattices composed of strengthened diagonal and triangular prismatic unit
cells with Sarrus linkage rib elements are analyzed via Cosserat elasticity. Size effects in these lat-
tices are observed experimentally: slender specimens appear more rigid than expected classically.
Magnitude of size effects is very sensitive to geometry of the lattices. Size effects observed here

are much stronger than in stretch dominated lattices with uniform straight ribs.

7.1 Introduction

Continuum theories of elasticity are commonly used to model materials with microstructure, such
as the lattices presented here, as continuous media. Many different continuum theories of elastic-
ity with varying degrees of freedom exist. One of the earliest theories, the uniconstant theory, was
developed by Navier [1] and incorporated only one isotropic elastic constant, a modulus. This the-
ory was governed by the assumption that forces acted along the lines joining pairs of atoms and
were proportional to changes in the distance between them. This uniconstant theory predicted a
Poisson’s ratio of 1/4 for all isotropic materials and was proven obsolete when experimentation

disclosed a range of Poisson’s ratios. The currently accepted classical theory of elasticity is a step
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up in complexity and descriptive capability from Navier’s uniconstant theory because it incorpo-
rates two independent isotropic elastic constants: a modulus and a Lamé constant. The classical
theory of elasticity predicts Poisson’s ratio to range from -1 to 1/2 for isotropic materials.

Classical elasticity is adequate for macroscopic specimens in which the structure size is many
orders of magnitude smaller than the experimental size scale. Experimental tests for Cosserat elas-
ticity at the macroscopic scale in aluminum disclosed classical behavior [25]. However, classical
elasticity breaks down when the experimental length scale approaches the structural length scale
of the material or structure being tested. Nonclassical effects have been observed in the bending
of epoxy microcantilevers [19] and via wave dispersion in diamond crystals [26]. Additionally,
neither classical elasticity nor the uniconstant theory incorporate a length scale in their definitions
which is important when considering material properties such as toughness which has a length
scale in its units, MPay/m. The lack of a length scale prohibits either of these theories from being
used to describe materials that are sensitive to strain gradients.

The Cosserat theory of elasticity [3] (with inertia terms called micropolar [9]) has even more
freedom than the classical theory; Cosserat elasticity incorporates a local rotation of points and a
couple stress (torque per unit area) in addition to the translation of points and force stress (force
per unit area) present in classical elasticity. The physical origin of the Cosserat couple stress is the
summation of bending and twisting moments transmitted by the structural elements in materials.
The Cosserat local rotation corresponds to the rotation of structural elements. Forces and moments
were considered in the classic analyses of foam by Gibson and Ashby [70] in which classic elastic
moduli were determined; effects of rotation gradients were not considered.

The additional freedom in Cosserat elasticity is represented by its six isotropic elastic constants,

a, 3,7, k, A, and G. The constitutive equations for Cosserat elasticity [9] are as follows.
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045 = 2G6i]’ + )\ekkéij + ﬂeijk(rk - gf)k) (71)

mij = Py k0i; + Boij + V0 (7.2)

In Cosserat elasticity the stress, 0, can be asymmetric. The resulting moment is balanced by
a couple stress, m;j,. The antisymmetric part of the stress is related to local rotations: a?"”sym =
K€jkm (Tm — ¢m) in which ¢,, is the rotation of points, called micro-rotation, e, is the permutation
symbol, and 7, = %emmum,z is the macro-rotation based on the antisymmetric part of gradient
displacement ;.

On their own, the six elastic constants do not provide useful physical insight. To do so, the

following technical constants have been derived from them:

A+2
Young's modulus E = G(i_:_GG) (7.3)
Shear modulus G (7.4)
Poisson's ratio v= 2()\1 e (7.5)
Characteristic length, torsion by = 527—27 (7.6)
Characteristic length, bending by, = % (7.7)
K
) N = 7.
Coupling number e (7.8)
Polar ratio = ﬂ (7.9)
a+ 4y

There are several key consequences of Cosserat elasticity that differ from classical predictions.
Circular and elliptic holes demonstrate lower stress concentration than expected classically, and

small holes provide less stress concentration than larger ones [15]. Pertinent to the work presented
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here, Cosserat elasticity predicts size effects in the torsion [13] and bending [23] of circular cylin-
ders of Cosserat elastic materials. A size effect in this context is the nonclassical dependence of
specimen rigidity on one or more of its dimensions. Size effects are manifested as slender cylinders
appearing stiffer than predicted classically. In contrast to classical elasticity, Cosserat elasticity in-
corporates a length scale, manifested as characteristic lengths of bending and torsion, equations
7.6 and 7.7. Both the characteristic lengths of bending and torsion and size effects in the same
modes will be explored in this work.

Cosserat elastic effects have been observed in several materials with macroscale structure.
Cosserat elastic size effects in bending and torsion have been observed and measured in closed
cell foams [22][23], open cell foams [107][80], and negative Poisson’s ratio tetragonal lattices [108].
In each of these studies, the apparent moduli increased as specimen diameter decreased contra-
dicting classical predictions where modulus is independent of diameter.

The Cosserat characteristic length has been determined experimentally in a two-dimensional
polymer honeycomb [33] and via theoretical homogenization in straight elastic ribbed lattices [47,
48, 49]. In the latter case, the characteristic lengths were much smaller than the cell size of the
lattices and the lattices behaved nearly classically. This is because these structures were stretch
dominated, meaning the effects of rib extension dominate the effects of rib bending and torsion.
Cosserat elastic effects depend on bending and twisting of the ribs to transmit the moments corre-
sponding to the Cosserat couple stress. The characteristic lengths of the two-dimensional polymer
honeycomb were similar to the average cell size of the material. The honeycomb material was de-
termined to be bend dominated, meaning rib deformation occurred primarily in bending rather
than compression or axial stretch. Consequently, the size effects measured were much greater than
those observed in the lattice with straight elastic ribs.

Recent experimental analysis of cellular structures has demonstrated dramatic Cosserat char-
acteristics [107] [80]. Additionally, truss lattice materials with cubic symmetry have been analyti-

cally and numerically modeled as classical media in and beyond the elastic regime via continuum
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mechanics [109]. However, there is a void in experimental research for this area. The work de-
tailed here fills the void in experimental analysis and supplements as well as balances out the
abundance of analytic research. The primary purpose of this study is to compare the nonclassical
phenomena of lattices with similarly designed rib structures but different unit cell shapes within

the framework of linear Cosserat elasticity.

7.2 Methods

7.2.1 Materials and Experiment

The lattices detailed in each section were printed using a 3D Systems sPro 60 HS-HD selective
laser sintering printer. The parent material was a polyamide simulating nylon 12. Progressively
larger lattices of each type were made. Each lattice was cemented to metal end pieces to provide
appropriate end conditions.

In an attempt to incorporate unique structural effects into these lattices, the ribs of each unit
cell for all structure types were constructed with Sarrus linkages as shown in Figure 7.1. A Sar-
rus linkage is a mechanical linkage which achieves limited but exact straight line motion from a
combination of flexure joints [110]. An individual linkage, or corrugation as it will be called, is
characterized by high bending and torsional rigidity as compared to compressive rigidity [111].
The moduli in bending, torsion, and compression are detailed further in section 7.3.1. By incor-
porating these corrugations into the ribs of each unit cell, a similar effect is expected to occur in
the structures which they compose. However, the relationship between rigidity in bending and
torsion for the individual corrugation may not be true at the level of the unit cell or end structure.
Inspiration for this structural feature was driven by results obtained for unidirectional compos-
ites incorporating segments of corrugated tubing [112], which were sensitive to strain gradients in
bending and torsion. The corrugated tubing had similar relationships among bending, torsional,

and compression moduli to the Sarrus linkage and resulted in structures exhibiting large Cosserat
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size effects. Based on these observations, lattices incorporating strain gradient sensitive structural

elements in different configurations offer potential for similar nonclassical size effects.

FIGURE 7.1: Four-sided Sarrus linkage created via SLS printing.

Torsional and bending rigidities for each specimen were measured using a broadband vis-
coelastic spectrometer (BVS). The BVS device uses a pair of orthogonal Helmholtz coils to gener-
ate a torque, either in bending or torsion, upon a magnet attached to the specimen’s end piece via
a ceramic stalk. The ceramic stalk was necessary because the specimens are too large to fit in the
Helmholtz coils. The magnet is centered in the Helmholtz coils. Deformation of the lattices was
measured by shining a laser off of a mirror cemented to the top surface of the bottom end piece of
each specimen onto a four quadrant light detector. Mounting mirrors on the specimens this way
was necessary to eliminate possible error from compliance of the ceramic stalk. The four quadrant
light detector measures either horizontal or vertical displacement of the laser beam, depending on
its setting, as a change in voltage. The light detector was calibrated prior to bending and torsion
tests. Calibration was done by measuring the change in output voltage over the linear measure-
ment regime of the detector using a precision micrometer driven calibration stage. The change in
output per change in position was used as the beam calibration constant (V/pm).

Each specimen was tested using a sinusoidal signal with a frequency of 1 Hz from an SRS
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Model DS345 function generator. 1 Hz was used because it is well below any resonant frequencies.
By using the same frequency for all tests across all specimens, viscoelastic effects are decoupled
from the size effects being probed. Torque was inferred from the voltage across a 1{2 resistor
in series with the coils. The torque signal vs. angular displacement signal was displayed as a
Lissajous figure on a Tektronix TDS3014B oscilloscope using DC coupling. Data points from the
Lissajous figures along with dimensional measurements of the specimens were used to calculate
the moduli of the specimens. Maximum strain during testing was 5 x 107, well within linearity
for these structures. Linearity was verified by the shape of the Lissajous figures.

Compression tests were conducted to ascertain the moduli of the specimens in the absence
of macroscopic gradients of strain and rotation. This was accomplished using an Instron screw
driven load frame at constant strain rate. Poisson’s ratio was also calculated using compression

testing by measuring transverse deformation via digital photography and micrometer.

7.2.2 Analysis and Interpretation

Size effects were interpreted within the framework of Cosserat elasticity. Specimens with hexago-
nal cross sections were approximated as circular and corresponding results were interpreted using
exact analytical solutions for the torsion and bending of Cosserat elastic solids with circular cross
sections. Exact solutions for bending and torsion of Cosserat elastic solids with square cross sec-
tions do not exist so approximate solutions were used. The analysis of materials with square cross
sections is difficult because of warping - planar section do not remain in plane when the material
undergoes deformation. This is in contrast to materials with a circular cross section for which
warping does not occur. In both cases, isotropic solutions are used because no anisotropic solu-
tions are available. Therefore, elastic constants obtained are technical constants. This is similar to
classical elastic constants obtained from quasistatic tests such as standard tensile or compression
tests in principal directions. Size effects do not occur in classical anisotropic elasticity [82], rigidity
is independent of specimen size just as isotropic elasticity. Therefore, size effects are a distinct

nonclassical behavior and anisotropy is not a confounding factor.



99

us

Considering elastic solids with circular cross sections, classical torsional rigidity is % = G[Zr4].
Cosserat torsional rigidity in the same regime is &/ = G[Zr4](1 + 6(¢;/r)?). G is the true shear
modulus in the absence of gradients; M is applied moment and ¢ is angular displacement. This
expression is exact when IV = 1. For all other IV the exact solution involves Bessel functions and is

as follows [13]:

(1 —4%x/3)

Q= (1+6(6/) )1y

], (7.10)

Here, x = I1(pr)/priy(pr), p* = 2x/(a + B + ) and Iy and I; are modified Bessel functions of
the first kind. The constant ¥ only has an appreciable influence for very small radius specimens
and was determined based on behavior of the data near the origin. The shear modulus, G, charac-
teristic length of torsion, ¢;, and the coupling number N were found by fitting Eq. 7.10 to the full
set of experimental data using MATLAB.

For bending of a Cosserat elastic rod with radius r, the relative rigidity ratio involving Bessel

functions is:

B 1 - (8/7)%) SN2 (B/y+v)?
Q=1+8(ly/r)? 1+v) +(1+V)[C(5a)+8N2(1_V)]

(7.11)
with § = N/¢, and ¢(0r) = (67)%[((67)1o((67)) — I1((67)))/((67)Io(67) — 2I1(67))]. Classical
bending rigidity follows % = E[Zr%]. Both Young’s modulus, E, and the Poisson’s ratio v were
calculated from compression testing. The Coupling number, N, /7, and the characteristic length
of bending, ¢;, were determined by fitting the full set of experimental data with Eq. 7.11.
The procedure for analyzing and interpreting data from specimens with square cross sections
is similar; different analytical solutions are used as follows. For bending of a rectangular bar of

width 2q, the rigidity ratio depends on the characteristic length and the Poisson’s ratio [55]. If

B/~ = —v, the rigidity ratio Q = 1% ﬁ is, with M as moment and R as radius of curvature,

Q= [1+24(6/a)*(1 — v)]. (7.12)
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For other values of Poisson’s ratio, the rigidity ratio is, (to fourth order in ¢;/a),

0=

14220402 /p\2 3 244 — 380+ 3N2(1 — v)(13 — 9v) (6"
A A i i 7.1
2= <a> 180 <7 +”> N2(1 +v)(22 — 19) <a> - (713

Torsion of a square cross section Cosserat elastic bar of width 2a gives rise to the following
relation between torque and angle. When v — oo, corresponding to N = 1, the total torque M

[90] simplifies to

1796 + 126 (449 + 274002 + 3960¢*) 2 + 693 (152 + 2280¢% + 6615¢) (7
212 8 (19 + 4652 + 9907%) + 1485 (6 + 49¢2) (7 '

(7.14)

in which ¢ = 2/;/a, {;, = 2(;/a and 0 as the angular displacement per length. This solution is
superior in the regime of strong coupling or for 5/v < 0, to that of [34], which overestimates the

effects for large N.

7.3 Results and Discussion

7.3.1 3D Strengthened Diagonal Unit Cell Lattice Structures

Analytical and numerical studies have been performed on lattices made of strengthened diagonal
unit cell plates as classical media [109] in and beyond the elastic regime. The strengthened diago-
nal (SD) unit cells were essentially face centered cubic (FCC) unit cells where the bonds between
atoms were replaced with straight ribs. The lattices presented in this section use a similar unit cell
but incorporate a fourfold Sarrus linkage rib element rather than a straight rib.

The Sarrus linkage rib element incorporated in these lattices were tested individually. The
measured effective bending modulus of an individual rib was 281 MPa while the Young’s modu-

lus in compression was 14 MPa. The torsional modulus was measured to be 387 MPa. The ribs,
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therefore, resist torsion and bending to a much greater extent than compression. These ribs were
specifically designed to be sensitive to strain gradients and result in large size effects when incor-
porated in 3D structures. However, the complexity of the SD unit cells changes loading conditions
of the rib elements so that most are not in pure bending or shear. Therefore, determination of the
mechanism by which Young’s modulus is governed is very difficult.

Lattices with these Sarrus linkage - SD unit cells in two different orientations are explored. A
tirst set of lattices was created that had the SD unit cells oriented with their <111> axes parallel to
the longitudinal axes of the specimens, Figure 7.2. A second set of lattices was then made wherein
the unit cells were oriented such that their <100> axes were parallel to the longitudinal axes of

the specimens, Figure 7.5. Both sets of lattices use identical SD unit cells.

Structures with <111> Cell Axes Parallel to Longitudinal Axis

Three progressively larger specimens were created in this orientation. Images of each specimen
are shown below in Figure 7.2. The size of the smallest specimen, Figure 7.2a, was dictated by the
minimum resolution of the SLS printer while the maximum specimen size 7.2c was limited by the
diameter of the BVS chamber. These specimens were hexagonal in cross section but approximated
as circular so the exact solutions for torsion, Eq. 7.10, and bending, Eq. 7.11, of Cosserat elastic
solids could be used to analyze experimental data. The average density of this set of lattices was

0.230 g/cc.
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(A) Smallest (B) Medium (c) Largest

specimen. specimen. specimen.

FIGURE 7.2: SLS printed lattices with SD cubic unit cells oriented with their <111>
axes parallel to the longitudinal axes of the specimens. Scales are metric.

The results of torsion testing are shown below in Figure 7.3. For analysis, N was allowed to
vary between 0 and 1, ¢, was restricted by thermodynamic limitations to be greater than 0 mm,
and the asymptotic shear modulus was restricted to values greater than 0 Pa. Since no roll off

occurred for small sizes, the fit was insensitive to ¥, although best fit occurred for ¥ = 1.5. The
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best fit yielded the following results: ¢; = 6.0 mm, G = 3.9 MPa, N = 1.0, and ¥ = 1.5. The goodness

of fit was R? = 0.99. The maximum size effect in torsion was ) = 2.8.

Relative Stiffness 2

0 10 20 30 40 50 60 70 80 90
Diameter (mm)

FIGURE 7.3: Size effects in torsion for specimens composed of SD unit cells with their

<111> axes parallel to specimen axes. Points are experimental. Curve is theoretical

for ¢, = 6.0 mm, G = 3.9 MPa, N = 1.0, and ¥ = 1.5. Fit is insensitive to ¥ because no

roll off occurs at small sizes. Classical elasticity predicts €2 independent of diameter
as illustrated by the red dashed line.

Analysis of bending size effects are shown in Figure 7.4.
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FIGURE 7.4: Size effects in bending for specimens composed of SD unit cells with

their <111> axes parallel to specimen axes. Points are experimental. Curve is theo-

retical for ¢, =8.2 mm, F = 6.0 MPa, N =1.0, and 3/~ = 0. Classical elasticity predicts
) independent of diameter as illustrated by the red dashed line.

Fitting was accomplished using the asymptotic bending modulus, 6.0 MPa, determined from
compression testing and the coupling number, N, from torsion of 1.0. /v and ¢, were free to
vary from -1 to 1 and greater than 0, respectively. Best fit resulted in the following: 5/v = 0 and
¢, = 7.82 mm. The correlation coefficient of this fit was R? = 0.995. The maximum size effect in
bending was 2 = 4.1. Although the structures are approximately hexagonal in cross section, they
have cubic symmetry because they are composed of SD unit cells. Due to this configuration, they
are elastically anisotropic. Therefore, the characteristic length of torsion in independent from the
characteristic length of bending. Also due to anisotropy, the coupling number from torsion is not

necessarily applicable to bending results. However, N calculated from torsion led to the best fit
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results for bending.

Currently, there is no known analysis available for lattices of this construction. However, as
mentioned earlier, several cellular materials have been analyzed as Cosserat continua. Several
lattices with straight ribs [47, 48, 49] have been theoretically homogenized and had their Cosserat
elastic constants extracted. These lattices were stretch dominated and, consequently, the charac-
teristic lengths were much smaller than the average cell size. Experimental analysis of 2D chiral
honeycomb lattices as Cosserat continua revealed bend dominated behavior. Consequently, the
characteristic lengths were approximately the same as the average cell size and the coupling num-
ber approached the upper bound of 1. Based on these relationships, the present lattices are bend
dominated because the ratio of characteristic lengths to average cell size exceeds that of stretch
dominated materials and the coupling number approaches the upper bound of 1.

In summary, nonclassical size effects are observed in torsion and bending for lattices of SD
unit cells aligned in the <111> direction. The maximum size effect of 2.8 and 4.1 for torsion
and bending, respectively, are significant deviations from classical predictions. These size effects
are consistent with Cosserat elasticity. The lattices are bend dominated based upon the ratio of

characteristic lengths to average cell size and coupling number.

Structures with <100> Cell Axes Parallel to Longitudinal Axis

Four progressively larger specimens were created for this orientation. Because of the orientation of
the unit cells, it was possible to create a specimen of only one unit cell in cross section. The largest
specimen size was dictated by the dimensions of the BVS chamber. Images of each specimen are
shown below in Figure 7.5. The average density of this set of lattices was 0.201 g/cc. Since these
specimens have square cross sections, equations 7.13 and 7.14 were used to analyze experimental

data gathered from bending and torsion, respectively.
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FIGURE 7.5: SLS printed lattices with SD cubic unit cells oriented with their <100>
axes parallel to the longitudinal axes of the specimens. Dimensions in subcaptions
are number of unit cells in cross section by number of unit cells in height.

Compression testing disclosed E = 9.64 MPa, largely independent of specimen side length.
Bending test results are shown in Figure 7.6, assuming the asymptotic bending modulus to be that
found in the compression test of 9.64 MPa. Best fitment yielded: ¢, =7.4 mm, 5/ =0.028 and N =
0.23. The correlation coefficient was R? = 0.88. For comparison with the lattices from the previous

section, a second fit was performed using N = 1. The resulting R? was 0.32.
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FIGURE 7.6: Size effects in bending for specimens composed of SD unit cells with

their <100> axes parallel to specimen axes. Points are experimental. Curve is theo-

retical for ¢, =7.4 mm, E = 9.64 MPa, N = 0.23, and 3/~ = 0.28. The red dashed line

illustrates the relationship of rigidity to specimen diameter of classical elasticity; the
two are independent.

The roll off near the origin is due to the second term in the approximate solution, Eq. 7.13,
dominating at small side length values when 3/ # —v, especially when N is small as it is in
this case. After the roll off at the smallest point, the theoretical model predicts a sharp decrease
in rigidity This phenomenon is likely due to the approximate solution being a two-term approx-

imation. If more terms were used, stability near the origin is expected to increase. However,
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prediction of rigidity at sizes smaller than the smallest structural element, which in this case is an
individual unit cell, is nonsensical and can be ignored. Additionally, the function, 7.11, has a very
flat landscape across fitment such that there are a range of values for the coupling number, N, and
B/, that achieve a very similar goodness of fit.

Results for torsion size effect studies are shown below in Figure 7.7. The only available solution
for torsion of a square bar of Cosserat elastic material, Eq. 7.14, used here, is specifically for
the case V = 1. For analysis, thermodynamic restrictions were placed on the boundaries of the
characteristic length of torsion, /;, and bending, ¢; to be greater than 0 mm. The asymptotic shear
modulus, G was limited to values greater than 0. Best fit results, assuming /N = 1 in torsion, are as

follows: G = 4.3 MPa, /; = 3.8 mm, and ¢, = 3.3 mm. The goodness of fit was R? =0.856.
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FIGURE 7.7: Size effects in torsion for specimens composed of SD unit cells with their

<100> axes parallel to specimen axes. Points are experimental. Curve is theoretical

for N =1, {; = 3.8mm, ¢, = 3.3 mm, and G = 4.3 MPa. Classical elasticity predicts
independent of diameter as illustrated by the solid red line.

An interesting point to note is that the characteristic length of bending calculated from torsion
is much different than calculated from bending. The apparent discrepancy is due to two primary
factors. The first is that specimen anisotropy means that results from the two fitting equations can
be independent. Second, the torsion equation is very weakly dependent on ¢, and much more
strongly dependent on ¢, when determining best fit. The difference in R? between the best fit
shown in Figure 7.7 with ¢, = 3.3 mm and the best fit with ¢, = 7.4 mm from the bending fitment, all
other parameters held constant, is only 0.0003. Additionally, Eq. 7.13 was created for the limiting

case N = 1. A good fit was achieved with this restriction, but better results may be possible for
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other values of N. However, only solutions for very small values of N and N =1 are currently
available.

The SD unit cell has cubic symmetry. Therefore, an individual unit cell is isotropic in the
principal directions but structurally anisotropic. The modulus in the <111> direction does not
need to equal the modulus in the <100> direction. Indeed E from compression, in which there
are no gradients, was 9.64 MPa for <100> and 6.0 MPa for <111>. The relationship between
the asymptotic shear modulus and asymptotic bending modulus determined for these lattices is
nearly classical elastically isotropic, following £ = 2G(1 + v). However, for a structurally cubic
material, there are three independent classical constants and the isotropic relationship does not
need to hold. The behavior found here is due to the complexity of the geometry and associated
load distribution.

In summary, nonclassical size effects are observed in torsion and bending of lattices composed
of SD unit cells oriented with their <100> axes parallel to the specimens longitudinal axes. These
size effects are consistent with Cosserat elasticity. The characteristic length of bending was 7.4 mm
and the characteristic length of torsion was 3.8 mm. The largest size effects in torsion and bending

were () = 2.2 and 3.3, respectively.

7.3.2 Triangular Prismatic Unit Cell Structures

The complexity of the SD unit cells, composed of Sarrus linkage rib elements, made identification
of deformation mechanisms difficult. Without 45° cross ribs on each face, stronger gradient effects
via decoupling were hypothesized. To eliminate structural complexity and ease identification of
deformation mechanisms, a second unit cell and subsequent series of structures was created. The
unit cell used in these two series of structures is a triangular prismatic unit cell. These unit cells
are much simpler in design than the SD unit cells and are expected to exploit the properties of the
individual rib element to a greater degree. A magnified image of this configuration is shown in

Figure 7.8.
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FIGURE 7.8: A close-up view of the 3-D printed triangular prismatic unit cell config-
uration. This is the long rib (14 mm) configuration. Scale is metric.

Long Rib Triangular Unit Cell Structures

The first set of lattices made using the triangular prismatic unit configuration are presented in this
section. These unit cells were made of rib elements the same length as those in the SD unit cells
of previous sections. The ribs were 14 mm long and an image of the structure is shown in Figure
7.8. The smallest specimen was limited to one unit cell in cross section while the largest specimen
was governed by the height of the BVS chamber. The specimens tested in this series are shown in
Figure 7.9. The cross section of the larger specimens were hexagonal while the cross section of the
smallest specimen was triangular. All specimens were approximated as circular so that the exact
solution for Cosserat torsion and bending of elastic materials with circular cross section, Eq. 7.10

and Eq. 7.11, could be used. The average density for these lattices was 0.093 g/ cc.
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(A) Smallest (B) Medium (c) Largest

specimen. specimen. specimen.

FIGURE 7.9: Lattices composed of long triangular prismatic unit cells.

The results of torsion testing are shown below in Figure 7.10. For the analysis, asymptotic G
was allowed to vary between 0 and 0.53, which was the smallest shear modulus of the structures
tested, N varied from 0 to 1, ¥ was set to 1.5, and ¢; was allowed to be any value greater than 0.

The best fit resulted in G = 0.34 MPa, ¢, = 8.9 mm, and N = 1.0. R? was 0.9988.
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FIGURE 7.10: Torsion size effect for long triangular unit cell structures. Points are

experimental and black line is theoretical best fit for G = 0.34 MPa, ¥ = 1.5, /; = 8.9

mm and N = 1.0. R? =0.9988. The dashed red line illustrates the classical predicted
relationship between rigidity and specimen size.

The results of bending size effect studies are shown in Figure 7.11. The modulus determined
from compression testing, I/ = 2.3 MPa, was used as the asymptotic bending modulus. Poisson’s
ratio, determined by high resolution digital photography during compression testing, was v =
0.0540.06. The Poisson’s ratio was calculated at 60 degree intervals about the longitudinal axis
and averaged since the specimens had hexagonal symmetry. Limitations on variables for fitting
are as follows: N varied between 0 and 1, 5/~ was free to vary from -1 to 1, and ¢, was limited to

values greater than 0. The best fit disclosed N =0.99, 3/~ =0, and ¢, = 13.2 mm, resulting in R? =
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0.9719.
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FIGURE 7.11: Bending size effects for long triangular unit cell structures. Points are

experimental and black line is theoretical best fit for £ = 2.3 MPa, v = 0.05, ¢, = 13.2

mm, 3/7=0,and N = 0.99. Correlation coefficient, R? = 0.9719. The red dashed line
illustrates the classical independence of rigidity to specimen diameter.

As for comparisons with previous specimens and results, these lattices share more similarities
with bend dominated 2D chiral honeycomb lattices [Mora] than stretch dominated straight rib
lattices [47, 48, 49]. For torsion and bending, the coupling number hits and approaches the upper
bound of 1, respectively. In torsion, the characteristic length was smaller than the average cell
size but exceeded the relationship of characteristic length to cell size in stretch dominated straight

rib lattices [49]. In bending, the characteristic length was approximately the same as the average
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cell size, just as 2D chiral honeycomb lattices demonstrate [Mora]. Due to the relationship of
characteristic lengths to average cell size and the magnitude of the coupling number, these lattices
are bend dominated.

Nonclassical size effects are clear in both torsion and bending of these structures. However,
confidence in fitting parameters could be increased with additional specimens. Unfortunately, the
height of the BVS chamber coupled with the configuration of these specimens and the length of
the ribs limited the number of specimens to three with complete cells.

Visual analysis of the specimens in torsion and bending by hand revealed deformation induced
tilt of the rib elements from the nodes connecting ribs together rather than deformation in the
corrugation. Recalling the relationship between torsional and bending moduli for an individual
rib element were 387 MPa and 281 MPa, respectively, the opposite relationship is found in these
lattices: the bending moduli are significantly larger than those in torsion. This phenomenon may
be due to the minimized effect of the corrugations due to long rib length and the presence of
deformation induced tilt of the ribs.

Both the confidence of best fit parameters and corrugation dominated deformation may be
remedied by using short rib elements while keeping the corrugations the same size such that the
corrugations become the majority of the overall structural element length. Shorter rib elements
would allow for more specimens to be created and fit inside the BVS for testing. Reducing the
length of the rib portion of the elements would most likely force deformation to occur in the
rib elements rather than the nodes joining elements. This may lead to structures behaving more
closely to individual structural elements.

In summary, size effects are observed in the torsion and bending of lattices composed of trian-
gular prismatic unit cells with 14 mm rib elements. The size effects are consistent with Cosserat
elastic predictions and cannot be explained via classical elasticity. This lattice revealed character-
istic lengths smaller than the cell size; for torsion, considerably smaller. The characteristic lengths
were nonetheless considerably larger than would be expected from a fully stretch dominated lat-

tice. To achieve stronger effects, a further lattice was designed with shorter ribs to maximize the
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influence of the Sarrus segment. Shorter ribs also permit a wider range of specimen sizes to be
made and accommodated within the test instrument. Results for this lattice are presented in the

following section.

Short Rib Triangular Prismatic Unit Cell Structures

The construction of these lattices was driven by the observation of deformation induced tilt of the
ribs in torsion and bending of the long rib triangular prismatic unit cell structures. By shortening
the rib portions of the structural elements and keeping the corrugation region constant, the effects
of the corrugations were expected to govern the behavior of the lattices to a stronger degree. The
new structural elements here were 8 mm long compared to 14 mm long in the previous set of
lattices. Including hexagonal nodes, the cells were approximately 10.5 mm long on each side of
the triangular base and 9.0 mm tall. A magnified image of one such lattice is shown in Figure 7.12.

The full results and analysis of these structures were published in a companion paper [111].

FIGURE 7.12: A close-up view of the short rib 3-D printed triangular prismatic unit
cell configuration [111].
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By shortening the rib portions of the structural elements, more specimens were able to be
created that would fit inside the BVS for testing. The smallest specimen was one unit cell in cross
section and four more incrementally larger specimens were created, all with approximately the
same aspect ratio of 3:1. The smallest specimen is shown as an inset in Figure 7.13 and the largest
specimen is shown as an inset in Figure 7.14. The average density of these lattices was 0.212 g/cc.

Determination of Cosserat technical constants was accomplished by fitting experimental data
from torsion and bending experiments using the exact solutions for torsion and bending of Cosserat
elastic materials with circular cross section. To use these models, the lattices presented here were
approximated as circular in cross section.

Results for torsion size effect studies are shown in Figure 7.13. Points are experimental and
the curves are theoretical fits. The black curve is the theoretical best fit while the other two curves
illustrate the effects of changing characteristic length of torsion on the resulting fit. Since no roll
off occurs for small specimens ¥ < 1.5. Best fit occurred when ¥ = 1.0, but the results were
not sensitive to ¥ in this regime. The remaining best fit parameters were G = 1.1 MPa, ¢; = 9.4
mm, and N = 0.999. The mean absolute percent error (MAPE) between experimental results and
Cosserat prediction was 12%. Error bars were calculated from noise in the signal and uncertainty

in specimen dimensions. The largest size effect in torsion was (2 = 36.
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FIGURE 7.13: Size effects for short rib triangular prismatic unit cells in torsion. Black

line is theoretical best fit for G = 1.1 MPa, ¢; =9.4 mm, N =1, and ¥ = 1.0. Blue and

cyan curves are the theoretical models for ¢; = 5.0 and 14 mm, respectively. The green

dashed line is the classically predicted relationship between rigidity and specimen
size. The inset figure is the smallest specimen of this series. [111]

Results for bending size effect studies are shown in Figure 7.14. The asymptotic bending mod-
ulus and Poisson’s ratio were calculated from compression testing and were £ = 3.14 MPa and v =
0.05. Points are experimental and the curves are theoretical fits. The black curve is the theoretical
best fit for the experimental data and corresponds to E = 3.14 MPa, v = 0.05, ¢, = 8.8 mm, 3/~ =
0.5, and N = 0.99. The MAPE between experimental data and Cosserat prediction was 14%. The
largest size effect in bending was € = 29.4. Blue and cyan curves illustrate the effects of changing
the characteristic length of bending on the resulting fits all other parameters kept constant. The

blue curve is for ¢, = 4.8 mm and the cyan curve is for ¢, = 13 mm. The green dashed line is the



119

classical relationship between rigidity and specimen size. Error bars were again calculated from

signal noise and specimen dimension uncertainty.
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FIGURE 7.14: Size effects for short rib triangular prismatic unit cells in bending.

Black line is theoretical best fit for £ = 3.14 MPa, v = 0.05, ¢, = 8.8 mm, 8/ = 0.5, and

N =0.99. Blue and cyan curves are the theoretical models for ¢, = 4.8 and 13 mm,

respectively. The green dashed line is the classically predicted relationship between

rigidity and specimen size. The inset figure is the largest specimen of this series.
[111]

These specimens exhibit characteristic lengths approximately the same as the average cell size.
Also, the coupling number, IV, in torsion and bending were 1.0 and 0.99, respectively. This behav-
ior similar to that observed in bend dominated chiral 2D honeycomb lattices. Up to this point, all

cellular lattices demonstrating large size effects have been bend dominated. It seems that bend
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dominated behavior is a necessary but insufficient characteristic for strong Cosserat elastic behav-
ior in cellular materials.

Shortening the rib segments on the structural elements from the long rib lattices in the previ-
ous section has a profound effect on the size effects. Specifically, the magnitude of size-dependent
stiffening is much greater - a factor of more than 35 in torsion here compared to a factor of 8.5 for
the long rib lattices. Incorporating strain-gradient sensitive structural elements, such as these Sar-
rus linkage elements, provide a path to the attainment of large Cosserat size effects. As 3D printing
technology increases in capability and structural elements such as these can be made more slender
to further enhance the difference in torsion, bending, and compression moduli, larger size effects
may be possible.

In summary, large size effects were observed in torsion, {2 = 36, and bending, 2 = 29.4, of small
triangular prismatic unit cells. These results are inconsistent with classical elasticity but predicted
to occur in Cosserat elasticity. Cellular material demonstrating large size effects consistent with
Cosserat elasticity seem to require bend dominated behavior, among other factors. Incorporating
strain gradient sensitive structural elements into 3D printed cellular lattices provides a path to the

attainment of arbitrarily large size effects pending advancements in 3D printing technology.

7.4 Conclusions

Size effects were observed in four series of 3D printed cellular lattices incorporating strain gra-
dient sensitive structural elements. A comparison of important parameters can be seen in Table
7.1. These size effects are inconsistent with classical elasticity but can be modeled via Cosserat
elasticity. The largest size effects occurred in the small triangular prismatic unit cell lattices. The
magnitude of the size effects depends sensitively on the geometry of the structures. Bend domi-
nated behavior seems to be a necessary but insufficient characteristic for large Cosserat size effect
in cellular structures. Additive manufacturing through methods such as those used here provide

a path to the attainment of arbitrarily large size effects.



TABLE 7.1: Summary of important parameters from aforementioned lattices.
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Avg.
Lattice Cell P G F by !B 5
QT QB NT NB ~5
Type Size | (&) | (MPa) | (MPa) (mm) | (mm)
(mm)
SD Lattices
<111> 28 | 4.1 16 0.230 3.9 6.0 1.0 | 1.0 6.0 8.2 0
Direction
SD Lattices
<100> 22| 33 16 0.201 4.3 9.6 1 |023 3.8 74 0.3
Direction
Triangular
Prismatic
8.6 | 18 14 0.093 0.3 2.3 1 |0.99 8.9 13.2 0
Lattices -
Long Ribs
Triangular
Prismatic
36 | 29 8 0.212 1.1 3.1 1 | 0.99 94 8.8 0.5
Lattices -

Short Ribs
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This dissertation consisted of a systematic approach to engineering structures demonstrating sig-
nificant nonclassical phenomenon and explaining and analyzing those phenomena via Cosserat
elasticity. Readily available materials, reticulated polyurethane open cell foams, were first stud-
ied to probe nonclassical behavior. Nonclassical size effects were experimentally measured and
analyzed via Cosserat elasticity. Cosserat elasticity was capable of explaining and predicting the
observed behavior which simultaneously demonstrated the applicability and descriptive capabil-
ity of the Cosserat theory and the limitations of classical elasticity. Notch displacements tests were
conducted on the small cell foam to reinforce this point. These foams were both determined to be
bend dominated which offered initial insight into required characteristic for achieving Cosserat
behavior.

An extra degree of complexity was incorporated as a negative Poisson’s ratio in the negative
Poisson’s ratio reticulated open cell polymer foam. This material supplied a valuable point of
comparison for the effects of changing structure on Cosserat properties since it was derived from
the large cell foam of the previous study. Triaxially compressing the foam under heat to achieve
the re-entrant cellular structure, which caused the negative Poisson’s ratio, resulted in a coupling
number, N, twice as large as that for the as-received foam. Additionally, the characteristic length

of torsion, ¢, remained similar between the negative Poisson’s ratio foam and the as-received foam
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while the characteristic length of bending, ¢, was reduced to nearly a third of the value calculated
from the as-received foam. This foam was also determined to be bend dominated. Indeed, chang-
ing the structure of the as-received foam to this negative Poisson’s ratio foam affected the Cosserat
constants and produced large size effects which the Cosserat theory of elasticity could explain.

Next, we hypothesized that creating composites using structural elements with unique prop-
erties may give rise to unique Cosserat size effects. Specifically, structural elements sensitive to
strain gradients in torsion or bending were hypothesized to result in large size effects in that same
mode. Segments of corrugated nylon tubing, which were much more rigid in torsion than bending
and compression, were built into unidirectional composites with silicone rubber cement. Indeed,
incorporating these tubes as structural elements resulted in extremely large size effects in torsion
and much more modest size effect in bending, yet still a significant deviation from classical pre-
dictions in bending. Since these composites were not cellular structures, the same comparisons of
characteristic lengths to average cell size could not be used to determine the deformation mecha-
nism. However, the coupling number, N, was used to determine bend dominated behavior once
again.

Materials discussed up to this point had been circular in cross section or approximated as such.
This was important because exact solutions for torsion and bending of Cosserat elastic materials
with circular cross sections are available but no exact solutions exist for cross sections of other
shapes. However, Dr. Lakes and Dr. Drugan developed approximate solutions for the torsion and
bending of Cosserat elastic materials with square cross sections. A visiting scholar to the lab, Dr.
Dong Li, developed a negative Poisson’s ratio tetragonal lattice while visiting. This lattice had
a square cross section. Several sizes of this lattice design were created and analyzed as Cosserat
continua using the approximate solutions developed by Dr. Lakes and Dr. Drugan. Size effects
in torsion and bending of the lattices, consistent with Cosserat elasticity, were measured and the
Cosserat elastic constants extracted. The lattices were determined to be bend dominated based
upon dependence of the modulus on relative density of the lattice.

A systematic design and experimentation process incorporating concepts learned in previous
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studies, detailed in chapter 7, led to the development of transversely isotropic polymer lattices
demonstrating large size effects in torsion and bending. These lattices incorporated Sarrus link-
age structural elements which decoupled bending and torsion rigidity from rigidity in extension.
This maximized sensitivity to the strain gradient in torsion. Bend dominated behavior was found
in these lattices, just as in all other materials tested. Therefore, bend dominated behavior was con-
cluded to be a necessary but insufficient characteristic for producing large size effects in cellular
materials. This lattice structure, unlike the foams studied previously, provided a path to the at-
tainment of arbitrarily large size effects - the Sarrus linkage rib element can be made more slender

as 3D printing technology advances.

8.2 Future Work

The goal of future work is to explore other unique structures as Cosserat elastic materials and
probe their behavior, namely size effects. Currently, 3D structures composed of tilting cubes has
been analyzed as Cosserat continua via finite element analysis in a companion paper [113]. Exper-
imental analysis in the same capacity as previous studies is being conducted on these specimens.

Results will provide an experimental comparison to the analytical results.
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Appendix A

Summary of Additive Manufacturing
Techniques Used for Lattice Research

and Unit Cell Development History

Abstract The additive manufacturing techniques used in the course of research presented in this
thesis are introduced and discussed in this appendix. The practical limitations and specifications
of these different methods will be detailed in addition to examples of printed unit cells. A synopsis
of the unit cell development for each printing method will be provided. Finally, a short summary

of the adaptions necessary to achieve a successful unit cell will be given.

A.1 Fused Deposition Modeling (FDM)

FDM printers use a thermoplastic filament, which is heated to its melting point and then extruded,
layer by layer, to create a three dimensional object. The objects are printed from the bottom up
and this process automatically introduces supports during construction. The supports can be

physically removed or dissolved, depending on their material, post printing.
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A.11 Student Shop FDM

The earliest unit cell prototypes and my first foray into 3-D printing were done through the Uni-
versity of Wisconsin (UW) - Madison student shop. Some of the pertinent specifications for this

FDM printer are supplied:

Build envelope: 8"x8"x12"

Print resolution 0.007" for high resolution mode and 0.010" for low resolution (res) mode

Minimum size of a stand alone feature is 0.007" for high res and 0.010" for low res

Minimum size of a part is 0.014" for high res and 0.020" for low res

Material used was Stratasys ABSplus P430

Support material was dissolvable (P400 SR)

Printing History

April 20,2016 Three different unit cells were printed using the standard (low) resolution mode.
One unit cell was printed with cylindrical corrugated tube structural elements (Figure A.1), a
second with triangular corrugated tube elements at random orientation (Figure A.2), and a third
with triangular corrugated tube elements created with three planes of symmetry (Figure A.3). The
lattice parameter of each unit cell was 8mm - all unit cells were cubic.

The printed unit cell quality from the first round of printing was unacceptable due to the unit
cell dimensions causing the structural features to approach the resolution of the FDM printer.
Non-corrugated rib segments were intended to be hollow, but all of them printed solid. The
triangular tubing unit cells were particularly bad - to the point they were not even characterized.
However, the cylindrical corrugated tubing unit cell was characterized via Broadband Viscoelastic

Spectroscopy (BVS) since it was higher quality than either of the triangular tubing unit cells. The
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final moduli for the cylindrical corrugated tubing unit cell were G' = 81 MPa, E}, = 217 MPa, and
E. =24 MPa.

The turnaround time from the student shop was one day for these parts.

FIGURE A.1: Cylindrical corrugated unit cell created via FDM from April 20, 2016.
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2 mm

FIGURE A.2: FDM printed unit cell with three fold plate element corrugations and
ribs at random rotational positions. April 20, 2016.
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FIGURE A.3: FDM printed unit cell with three fold plate element corrugations. April
20, 2016.

May 10, 2016 The unit cells incorporating cylindrical corrugated tubing and triangular corru-
gated tubing with three planes of symmetry were reprinted at twice the size, such that they had a
new lattice parameter of 16 mm (Figures A.4 and A.5), using the standard resolution. Despite the
larger dimensions, the printing method did not achieve the desired rib slenderness for the cylin-
drical corrugated tubing unit cell - dissection of the ribs disclosed a solid cross section throughout.
However, the triangular tubing unit cell showed some promise with obviously open and accessi-

ble corrugated segments but solid tubing.
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FIGURE A.4: FDM printed unit cell with cylindrical corrugations and ribs. Rib length
of 16mm. May 10, 2016.
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FIGURE A.5: FDM printed unit cell with three fold plate element corrugations. Rib
length of 16 mm. May 10, 2016.

The moduli for the cylindrical corrugated unit cell were G = 123 MPa and Ej, = 419 MPa. The
moduli for the triangular tubing unit cell were G = 52 MPa and Ej, = 229 MPa. The turnaround

time for these parts was same day.

July 13,2016 The SolidWorks file for the cylindrical corrugated unit cell with the lattice param-
eter of 16 mm was modified to better accommodate the standard resolution of the printer. All
dimensions were kept the same except for wall thickness, adjusted to 0.6 mm, and diameter of
the corrugation, which was increased to help achieve desired slenderness. These unit cells were
printed using the standard resolution.

Dissection of the finished parts revealed inadequate slenderness. The student shop informed
me this could be due to enclosing the space. The support material automatically built into these

sections could not be physically removed or dissolved because the construction encapsulates it.
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The moduli of these parts were not determined because of their poor slenderness. Turnaround

time on these parts was one day.

July 18, 2016 The same file from July 13 was reprinted but this time on high resolution mode.
Dissection of the finished parts revealed improved hollowness in the ribs printed in the longitudi-
nal direction but similar hollowness as the previous specimens in the ribs printed in the transverse
direction. Regardless of direction, all ribs were insufficiently slender.

Moduli for these parts was not determined due to poor slenderness. Turnaround time for these

parts was several days because the lab manager was on vacation.

July 22,2016 A new unit cell design consisting of ribs with square cross-section tube segments
and fourfold plate element corrugation segments was printed. Because slenderness was not achieved
using high resolution mode for previous unit cells, this prototype was scaled up significantly such
that the rib length for this model was 28 mm. This specimen was printed on high resolution
mode. While appreciable slenderness was achieved in this model there were many printing de-
fects. Large square holes centered in the intersection of the ribs composing the top and bottom
faces of the unit cell were created during the process. Small triangular shaped holes at each corner
on these same faces were also present. These defects are visible in Figure A.6. After discussion
with the lab manager, the reason for the existence of these holes lies in the conversion to .STL
format which is necessary to print on this FDM printer. The lab manager did not know any way
to reconstruct the part to eliminate these holes from the conversion process.

BVS testing of this part was not conducted because of the significant printing defects. Al-
though desired slenderness was achieved, the part quality is unacceptable. Turnaround time on

these parts was one day.
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5 mm

FIGURE A.6: Large FDM printed unit cell with fourfold rib elements and corruga-
tions. July 22, 2016.

A.2 Material Jetting (Polyjet)

Material jetting uses multiple print nozzles jetting one or more liquid photopolymers onto a build
tray which are cured with UV light. After curing, another layer may be deposited on top of it. This
process is continued until the part is finished. With some of the materials used in this method, the
printer automatically builds in supports made from a gel-like material which can be removed by

hand or with water.

A.21 Midwest Prototyping

The lone specimen printed using this process was completed at Midwest Prototyping (MWP)

located in Blue Mounds, WI. The specifications of this printer are:

e Build envelope: 11.57" x 7.55" x 5.85"
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e Layer thickness varies between 0.0006" and 0.0011" depending on material

e Resolution for the first inch of printing is 0.002" +/— 0.004" but beyond this the tolerance

changes to +/— 0.0015"

e Material used was VeroClear RGD810

Printing History

July 20,2016 The same triangular symmetric unit cell file used on May 10, 2016 was printed and
then finished to finish level one which included removal of supports and light bead blasting. The
rib length for this unit cell was 16 mm. The resulting specimen was dimensionally inconsistent as
evidenced by Figure A.7. Most of the faces were not square and many of the ribs were warped.
This distortion and shrinkage is most likely caused by the curing process according to the printing
experts at MWP.

The measured moduli of this specimen were G = 7 MPa, E, = 7 MPa and E. = 4.5 MPa. The

turnaround time for this part was six days.
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5 mm

FIGURE A.7: Triangular rib unit celled printed via material jetting. July 20, 2016.

A.3 Selective Laser Sintering (SLS)

This 3 dimensional printing method uses a laser, which automatically aims at points in space
according to the part file, to sinter powdered material creating a solid structure. One of the most

important characteristics of this method is the absence of supports needed during construction.

A.3.1 Midwest Prototyping

All SLS printing was done at MWP in Blue Mounds, WI. The pertinent specifications of the printer

used for all specimens are as follows:

e Build envelope: 28" x 15" x 23"

e Layer thickness = 0.004"
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e Laser diameter = 0.01"
e Tolerance for the first inch is +/—0.005" and for the second inch is +/—0.002"

e Material used was a polyamide simulating nylon 12

Printing History

July 20, 2016 Two files - one for a cylindrical corrugated rib unit cell, (Figure A.8), and one for
a plate element triangular rib, (Figure A.9), - were sent to be printed. Both unit cells had 16 mm
long ribs. Finish level one was selected which entailed removal of excess powder and light bead
blasting. These were by far the highest quality specimens of all printing methods. No dimensional
distortion could be observed in either unit cell and desired slenderness was achieved in the plate
elements of the triangular ribbed unit cell. The corrugated segments of the cylindrical unit cell
held in the raw polyamide material reiterating the difficulties of this design.

Because of the excellent slenderness of the three fold plate elements of the triangular ribbed
unit cell, the moduli of the cylindrical corrugated unit cell was not measured. The moduli of the
three fold triangular ribbed unit cell were G = 5 MPa, E, = 16 MPa and E. = 3.1 MPa. The

turnaround time on these parts was six days.
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5 mm

FIGURE A.8: Cylindrical corrugated unit cell printed via SLS on July 20, 2016.
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5 mm

FIGURE A.9: Triangular ribbed unit cell printed via SLS on July 20, 2016.

August 29,2016 Since the ultimate goal of this project is to build large assemblies of these units
cells smaller unit cells had to be developed so that the largest assemblies would fit and could be
tested inside of the BVS. Two smaller sizes of unit cells were submitted to MWP for printing, one
of which had a rib length of 8 mm, Figure A.10 and the other a rib length of 14 mm Figure A.11.
Both of these unit cells were composed of square ribs with fourfold plate element corrugations.
Both unit cells were printed from polyamide simulating nylon 12 and finished to finish level 1.
The received specimens had major defects in their structures. The plate elements in the corru-
gations for both unit cells which were parallel to the bottom and top faces during printing were
all incomplete. This was caused by their need to be self supported during the printing process,
which they were not because of their orientation. I hypothesized that if the ribs were rotated 45°

all the elements would be supported during the printing process and result in a successful part.
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Additionally, the unit cell with 8 mm long ribs was not printed with an acceptable resolution.
Many of the features, especially the plate elements, were so small they were nearly indistinguish-
able. This size of unit cell is too small for the practical capabilities of this printer. Other than the
aforementioned printing defects the unit cells with 14mm long ribs were of acceptable resolution.

Because of the incomplete corrugation segments these unit cells were not tested for their mod-

uli. The turnaround time on these parts was four days.

2 mm

FIGURE A.10: Unit cell with 8mm long ribs characterized by fourfold plate element
corrugations. Note incomplete plate elements in the corrugations parallel to top and
bottom surfaces. Printed via SLS on August 29, 2016.
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5 mm

FIGURE A.11: Unit cell with 14mm long ribs characterized by fourfold plate element
corrugations. Again, note printing defects on plate elements. Printed via SLS on
August 29, 2016.

September 6,2016 A new unit cell with 14mm long ribs and fourfold plate element corrugations
rotated 45° about their longitudinal axes as compared to Figure A.11 was developed and three
specimens were printed - one of which is shown in Figure A.12. The specimens were finished
to finish level one and were created from polyamide simulating nylon 12. The corrugated seg-
ments in these unit cells were all complete. No printing defects could be observed in any of these
specimens and adequate slenderness was achieved.

The average moduli of these parts were calculated to be G = 13 MPa, £, = 39 MPa and

E. = 5.6 MPa. The turnaround time for this order was eight days.
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5 mm

FIGURE A.12: Unit cell with fourfold symmetric ribs rotated 45 degrees from previ-
ous specimens. Complete plate elements. Printed via SLS on September 6, 2016.

September 22, 2016 A reiteration of previous unit cells composed of triangular ribs with three-
fold plate element corrugations, Figure A.9, was created for comparison to results from the pre-
vious fourfold square ribbed unit cells Figure A.12. The length of the ribs in this new iteration
was 14mm. Again, three specimens were ordered of this unit cell and all were finished to finish
level one and made from polyamide simulating nylon 12. The final products were in excellent
condition, no printing defects were visible, and desired slenderness was achieved.

The moduli of these three specimens were measured: G = 16 MPa, E, = 36 MPa and E. = 5.2

MPa. The turnaround time for this order was six days.

October 14, 2016 A prototype assembly of the unit cells incorporating fourfold symmetric ribs,
Figure A.12, was printed by MWP, Figure A.13. This assembly had the unit cells stacked so that
their <111> axes were parallel to the longitudinal axis of the specimen. This assembly had many

missing plate elements in the corrugations, shown in Figure A.14. After consultation with MWP,
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the root cause of these defects was determined to be print orientation of the plate elements. Orig-
inally, the ribs were rotated 45° so that the plate elements of the corrugations were not parallel
to the printing surface. However, when the unit cells were tilted such that their <111> axes were
parallel to the longitudinal axis of the specimen, the plate elements again became parallel to the

printing surface.
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FIGURE A.13: Assembly of the same type of unit cells shown in Figure A.12. Printing
defects can be observed in some of the plate elements in the corrugations. Printed
October 14, 2016.
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FIGURE A.14: Close up image of printing defects found in the assembly shown in
Figure A.13.

The quick solution to this problem was to use the unit cells from Figure A.11 for all assemblies
where the unit cells would have their <111> axes parallel to the longitudinal axis of the specimen.
For a long term solution, I need to notify MWP prior to printing that the incoming part will have
features approaching the minimum resolution of their printers so that the technicians can reorient

the part in the software and change the direction it will print.

October 26,2016 A new assembly of unit cells with their <111> axes parallel to the longitudinal
axis of the specimen was created with the unit cells shown in Figure A.11. The resulting assembly
is shown below in Figure A.15. This specimen printed error free and the resolution was acceptable.

This unit cell will be used for all future assemblies incorporating a face centered cubic unit cell.
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FIGURE A.15: Assembly of unit cells of the same type shown in Figure A.11. No
printing defects present. Printed October 26, 2016.



146

A4 Summary of Adaptions

The journey to a reliably repeatable and functional unit cell incorporating strain gradient sensi-
tive structural elements began with design and an FDM printer in the student shop on campus.
Unit cells incorporating cylindrical corrugations proved too difficult to print. Raw printing mater
would get trapped inside the void of the corrugation. A second variation incorporating a three
fold open corrugation proved more effective.

Printer resolutions forced crucial dimensional considerations on unit cell design. The student
shop FDM printer had poor resolution so unit cells needed to be scaled up considerably, from
8mm long ribs to 16mm. Even still, the slenderness of resulting parts was too poor to achieve
desired properties. An additive manufacturing technique with higher resolution was required.

Several different printing methods at MWP were tested including material jetting and SLS. SLS
provided the best resolution, repeatedly produced parts with the greatest consistency, and did not
require structural supports during the printing process. Cells of different sizes were printed using
SLS to determine the smallest unit cell that could be printed while still achieving desired slender-
ness of corrugations. Unit cells with 14mm ribs achieved desired characteristics of slenderness
and structural integrity.

Orientation of the ribs about their longitudinal axes needed to be considered for large 3D lat-
tices. The original three fold corrugated rib did not allow for four fold rotation about its axis,
necessary in larger 3D structures. A fourfold corrugated rib was designed for the purpose. Addi-
tionally, printing defects occurred at certain print orientations. After consultation with MWP, the
best orientation of ribs within the unit cells for consistent printing was such that the sides of each

rib were parallel to a face of the unit cells.



147

Bibliography

[1]
(2]
3]

S. P. Timoshenko. History of Strength of Materials, Dover. NY: Dover, 1983.
L. J. Gibson and M. F. Ashby. Cellular Solids. 2nd. Cambridge: Pergamon, 1997.
E. Cosserat and F. Cosserat. Theorie des Corps Deformables. Paris: Hermann et Fils, 1909.

W. Voigt. “Theoretische studien iiber die elasticitdtsverhéltnisse der krystalle”. In: Konigliche

Gesellschaft der Wissenschaften zu Gottingen 34 (1887), pp. 53-100.

R. D. Mindlin and H. FE. Tiersten. “Effects of couple-stresses in linear elasticity”. In: Arch.

Rat Mech. Anal. 11.1 (1962), pp. 415-448.

A. C. Eringen and E. S. Suhubi. “Nonlinear theory of simple micro-elastic solids-1”. In:

International Journal of Engineering Science 2 (1964), pp. 189-203.

R. D. Mindlin. “Microstructure in Linear Elasticity”. In: Arch. Rat. Mech. Anal. 16.1 (1964),
pp. 51-78.

A. C. Eringen. “Linear Theory of Micropolar Elasticity”. In: Journal of Mathematics and Me-
chanics 15.6 (1966), pp. 909-923.

A. C. Eringen. “Theory of Micropolar Elasticity and Fracture”. In: ed. by H. Liebowitz. New
York: Academic Press, 1968, pp. 621-729.

S. C. Cowin. “Stress functions for Cosserat elasticity”. In: International Journal of Solids and

Structures 6.4 (1970), pp. 389-398.

S. C. Cowin. “An incorrect inequality in micropolar elasticity theory”. In: Zeitschrift fiir

Angewandte Mathematik und Physik (ZAMP) 21.3 (1970), pp. 494-497.



[14]

[15]

[16]

148

W. T. Koiter. “Couple-Stresses in the theory of elasticity Parts I and I1”. In: Proc. Koninklijke
NBed. Akad. Wetenshappen 67 (1964), pp. 17-44.

R. D. Gauthier and W. E. Jahsman. “A Quest for micropolar Elastic Constants”. In: Journal

of Applied Mechanics 42.2 (1975), pp. 369-374.

G. V. Krishna Reddy and N. K. Venkatasubramanian. “On the flexural rigidity of a microp-
olar elastic circular cylinder”. In: Journal of Applied Mechanics 45 (1978), pp. 429—431.

R. D. Mindlin. “Effect of couple stresses on stress concentrations”. In: Experimental Mechan-

ics 3 (1963), pp. 1-7.

B. S. Kim and A. C. Eringen. “Stress distribution around an elliptic hole in an infinite mi-

cropolar elastic plate”. In: Letters in Applied and Engineering Sciences 1 (1973), pp. 381-390.

R.S. Lakes. “Elastic freedom in cellular solids and composite materials”. In: Mathematics of

Multiscale Materials. Ed. by K. Golden et al. Springer NY: 99, 1998, pp. 129-153.

E. Kroner. “On the physical reality of torque stresses in continuum mechanics”. In: Int. J.

Engineering. Sci 1 (1963), pp. 261-278.

J. S. Stolken and A. G. Evnas. “Microbend test method for measuring the plasticity length
scale”. In: |. Acta Mater 46 (1998), pp. 5109-5115.

M. Zhao et al. “Material-length-scale-controlled nanoindentation size effects due to strain

gradient plasticity”. In: Acta Mater 51 (2003), pp. 4461-4469.

R. S. Lakes. “On the torsional properties of single osteons”. In: J. Biomechanics 28 (1995),

pp. 1409-1410.

R. S. Lakes. “Experimental microelasticity of two porous solids”. In: Int. . Solids and Struc-

tures 22 (1986), pp. 55-63.

W. B. Anderson and R. S. Lakes. “Size effects due to Cosserat elasticity and surface damage

in closed-cell polymethacrylimide foam”. In: J. Materials Science 96 (2016), pp. 93-111.



[24]

[25]

[26]

[27]

(28]

[29]

149

A.C.M. Chong and D. C. C. Lam. “Strain gradient plasticity effect in indentation hardness
of polymers”. In: |. Material. Res 14 (1999), pp. 4103—-4110.

J. Schijve. “Note on couple stresses”. In: J. Mech. Phys. Solids 14 (1966), pp. 113-120.

S. Minagawa, K. Arakawa, and M. Yamada. “Diamond crystals as Cosserat continua with

constrained rotation”. In: Physica Status Solidi A 57 (1980), pp. 713-718.

R. Maranganti and P. Sharma. “Length scales at which classical elasticity breaks down for

various materials”. In: Phys. Rev. Lett 98 (2007), p. 195504.

M. Rahaeifard et al. “Static pull-in analysis of microcantilevers based on the modified cou-

ple stress theory”. In: Sensors and Actuators 171 (2011), pp. 370-374.

M. H. Kahrobaiyan, M. Asghari, and M. T. Ahmadian. “Investigation of the size-dependent
dynamic characteristics of atomic force microscope microcantilevers based on the modified

couple stress theory”. In: Int. |. of Eng. Sci. 48 (2010), pp. 1985-1994.

R.D. Mindlin. “Stress functions for a Cosserat continuum”. In: Int. |. Solids Structures 1

(1965), pp. 265-271.

L. Ilcewicz, T.C. Kennedy, and C. Shaar. “Experimental application of a generalized con-
tinuum model to nondestructive testing”. In: J. Materials Science Letters 4 (1985), pp. 434—
438.

S.C. Cowin and J.W. Nunziato. “Linear elastic materials with voids”. In: J. Elasticity 13

(1983), pp. 125-147.

R. Mora and A.M. Waas. “Measurement of the Cosserat constant of circular cell polycar-

bonate honeycomb”. In: Philosophical Magazine A 80 (2000), pp. 1699-1713.

H.C. Park and R. S. Lakes. “Torsion of a micropolar elastic prism of square cross section”.

In: Int. J. Solids, Structures 23 (1987), pp. 485-503.

H.C. Park and R.S. Lakes. “Cosserat micromechanics of human bone: strain redistribution

by a hydration-sensitive constituent”. In: J. Biomechanics 19 (1986), pp. 385-397.



[43]

[44]

[45]

150

R.S. Lakes, D. Gorman, and W. Bonfield. “Holographic screening method for microelastic

solids”. In: J. Materials Science 20 (1985), pp. 2882-2888.

W.B. Anderson, R.S. Lakes, and M.C. Smith. “Holographic evaluation of warp in the torsion
of a bar of cellular solid”. In: Cellular Polymers 14 (1995), pp. 1-13.

R.D. Nyilas, M. Kobas, and R. Spolenak. “Synchrotron X-ray microdiffraction reveals rota-
tional plastic deformation mechanisms in polycrystalline thin films”. In: Acta Materialia 57

(2009), pp. 3738-3753.
Foamade Industries. Auburn Hills MI.

M. Brodt, L. S. Cook, and R. S. Lakes. “Apparatus for determining the properties of mate-
rials over ten decades of frequency and time: refinements”. In: Rev. Sci. Instrum. 66 (1995),

pp. 5292-5297.

T. Lee, R. S. Lakes, and A. Lal. “Resonant ultrasound spectroscopy for measurement of
mechanical damping: comparison with broadband viscoelastic spectroscopy”. In: Rev. Sci.

Instrum. 71 (2000), pp. 2855-2861.

Y. C. Wang, R. S. Lakes, and A. Butenhoff. “Influence of cell size on re-entrant transforma-
tion of negative Poisson’s ratio reticulated polyurethane foams”. In: Cellular Polymers 20

(2001), pp. 373-385.

R. Brezny and D.J. Green. “Characterization of edge effects in cellular materials”. In: J.

Materials Science 25.11 (1990), pp. 4571-4578.

C. Tekoglu et al. “Size effects in foams: Experiments and modeling”. In: Progress in Materials

Science 56 (2011), pp. 109-138.

P.M. Buechner and R.S. Lakes. “Size effects in the elasticity and viscoelasticity of bone”. In:

Biomechanics and Modeling in Mechanobiology 1.4 (2003), pp. 295-301.

R.S. Lakes and S. Saha. “Cement line motion in bone”. In: Science 204 (1979), pp. 501-503.



[54]

[55]

[56]

151

A. Askar and A. S Cakmak. “A structural model of a micropolar continuum”. In: Int. J.

Engng. Sci 6 (1968), pp. 583-589.

T. Tauchert. “A lattice theory for representation of thermoelastic composite materials”. In:

Recent Advances in Engineering Science 5 (1970), pp. 325-345.

G. Adomeit. “Determination of elastic constants of a structured material”. In: Mechanics
of Generalized Continua. Ed. by E. Kroner. IUTAM Symposium. Freudenstadt, Stuttgart:

Springer, Berlin, 1967.

A. Spadoni and M. Ruzzene. “Elasto-static micropolar behavior of a chiral auxetic lattice”.

In: J. Mechs. Physics of Solids 60 (2012), pp. 156-171.

C.B. Banks and M. Sokolowski. “On certain two-dimensional applications of the couple

stress theory”. In: Int. J. SOlids Struct. 4.1 (1968), pp. 15-29.

A.J. Wang and D.L. McDowell. “In-plane stiffness and yield strength of periodic metal
honeycombs”. In: J. Eng. Mater. Trans. ASME 126 (2004), pp. 137-156.

Dos Reis, F. Ganghoffer, and J. F. “Construction of Micropolar Continua from the Homog-
enization of Repetitive Planar Lattices”. In: Mechanics of Generalized Continua - Advanced
Structured Materials. Ed. by H. Altenbach, G. Maugin, and V. Erofeev. Vol. 7 Chap. 9. Berlin:
Springer, 2011, pp. 193-217.

E. Triawan et al. “The elastic behavior of aluminum alloy foam under uniaxial loading and

bending conditions”. In: J. Acta Materialia 60 (2012), pp. 3084-3093.

R. S. Lakes and W. J. Drugan. “Bending of a Cosserat elastic bar of square cross section -

theory and experiment”. In: . Applied Mechanics 82.9 (2015), p. 091002.

A. C. Eringen. “Theory of thermo-microstretch elastic solids”. In: Int. J. Eng. Sci. 28.12
(1990), pp. 1291-1301.



152

[57] A. Burteau et al. “Impact of material processing and deformation on cell morphology and
mechanical behavior of polyurethane and nickel foams”. In: International Journal of Solids

and Structures 49 (2012), pp. 2714-2732.

[58] T.Dillard, S. Forest, and P. Ienny. “Micromorphic continuum modelling of the deformation
and fracture behaviour of nickel foams”. In: European Journal of Mechanics (A) Solids 25

(2006), pp. 526-549.

[59] C.P. Chen and R.S. Lakes. “Dynamic wave dispersion and loss properties of conventional
and negative Poisson’s ratio polymeric cellular materials”. In: Cellular Polymers 8.5 (1989),

pp- 343-359.

[60] R. F. Almgren. “An isotropic three dimensional structure with Poisson’s ratio = - 1”. In:

Journal of Elasticity 15.4 (1985), pp. 427-30.

[61] R.S.Lakes. “Foam structures with a negative Poisson’s ratio”. In: Science 235 (1987), pp. 1038—
1040.

[62] E. A. Friis, R. S. Lakes, and J. B. Park. “Negative Poisson’s ratio polymeric and metallic
materials”. In: Journal of Materials Science 23 (1988), pp. 4406—4414.

[63] K. W. Wojciechowski. “Constant thermodynamic tension Monte Carlo studies of elastic
properties of a two-dimensional systems of hard cyclic hexamers”. In: Molecular Physics 61

(1987), pp. 1247-125.

[64] K. W. Wojciechowski. “Two-dimensional isotropic system with a negative Poisson ratio”.

In: Physics Letters A 137 (1989), pp. 60-64.

[65] G. Milton. “Composite materials with Poisson’s ratios close to -1”. In: . Mech. Phys. Solids
40 (1992), pp. 1105-1137.

[66] K. E. Evans, M. A. Nkansah, and I. J. Hutchinson. “Auxetic foams - modeling negative
Poisson’s ratios”. In: Acta. Metall. Mater. 42.4 (1994), pp. 1289-1294.



[69]

[74]

[75]

[76]

153

J. N. Grima, A. Alderson, and K. E. Evans. “Auxetic behaviour from rotating rigid units”.

In: Physica Status Solidi B 242 (2005), pp. 561-75.

C. P. Chen and R. S. Lakes. “Holographic study of conventional and negative Poisson’s
ratio metallic foams: elasticity, yield, and micro-deformation”. In: J. Materials Science 26

(1991), pp. 5397-5402.

R. S. Lakes. “Experimental micro mechanics methods for conventional and negative Pois-
son’s ratio cellular solids as Cosserat continua”. In: J. Engineering Materials and Technology

113 (1991), pp. 148-155.

L.]. Gibson et al. “The mechanics of two dimensional cellular solids”. In: Proc. Royal Society

A. 1982, pp. 25-42.
L. Brillouin. Wave Propagation in Periodic Structures. N.Y: Dover, 1953.

R. S. Lakes. “Experimental methods for study of Cosserat elastic solids and other general-
ized continua”. In: Continuum models for materials with micro-structure. Ed. by H. Muhlhaus

and J. Wiley. N. Y.: Wiley, 1995, pp. 1-22.

Z. Rueger and R. S. Lakes. “Experimental Cosserat elasticity in open cell polymer foam”.

In: Philosophical Magazine 96.2 (2016), pp. 93-111.

J. B. Choi and R. S. Lakes. “Nonlinear properties of polymer cellular materials with a neg-

ative Poisson’s ratio,” in: . Materials Science 27 (1992), pp. 4678-4684.

D.Li, L. Dong, and R. S. Lakes. “The properties of copper foams with negative Poisson’s ra-
tio via resonant ultrasound spectroscopy”. In: Physica Status Solidi 250.10 (2013), pp. 1983-
1987.

M. Bianchi, F. L. Scarpa, and C. W. Smith. “Stiffness and energy dissipation in polyurethane
auxetic foams”. In: Journal of Materials Science 43.17 (2008), pp. 5851-5860.



[77]

154

J. N. Grima et al. “A Novel Process for the Manufacture of Auxetic Foams and for Their re-
Conversion to Conventional Form”. In: Advanced Engineering Materials 11 (2009), pp. 533—
535.

A. A. Pozniak, ]. Smardzewski, and K. W. Wojciechowski. “Computer simulations of aux-

etic foams in two dimensions”. In: Smart Materials and Structures 22.8 (2013). 084009, 11pp.

R. S. Lakes. “Physical meaning of elastic constants in Cosserat, void, and microstretch elas-

ticity”. In: Journal of Mechanics of Materials and Structures 11 (2016), pp. 217-229.

Z. Rueger and R. S. Lakes. “Cosserat elasticity of negative Poisson’s ratio foam: experi-

ment”. In: Smart Materials and Structures, accepted 25.054004 (2016), 8pp.

Waytek Incorporated. In: Chanhassen MN ().

S.G. Lekhnitskii. Theory of elasticity of an anisotropic body. Mir Moscow, 1981.

S. Burns. “Negative Poisson’s ratio materials, letter”. In: Science 238 (1987), p. 551.

R. S. Lakes. “Negative Poisson’s ratio materials, response”. In: Science 238 (1987), p. 551.

S. Hirotsu. “Elastic anomaly near the critical point of volume phase transition in polymer

gels”. In: Macromolecules 23 (1990), pp. 903-905.

R. E. McKnight et al. “Grain size dependence of elastic anomalies accompanying the alpha-

beta phase transition in polycrystalline quartz”. In: J. Phys. Cond. Mat 20 (2008), p. 075229.

K. V. Tretiakov and K. W. Wojciechowski. “Orientational transition between isotropic crys-
talline phases in planar systems of hard cyclic pentamers and heptamers”. In: Journal of

Physics: Condensed Matter 14 (2002), p. 1261.

K. V. Tretiakov and K. W. Wojciechowski. “Monte Carlo simulation of two-dimensional
hard body systems with extreme values of the Poisson’s ratio”. In: Physica Status Solidi B

242 (2005), pp. 730-741.

D. Li et al. “Three-dimensional stiff cellular structures with negative Poisson’s ratio”. In:

Physica Status Solidi B (2017).



155

[90] W.]J. Drugan and R. S. Lakes. “Torsion of a Cosserat elastic bar of square cross section:
theory and experiment”. In: Z. Angew. Math. Phys. 69.24 (2018). URL: https://doi.org/

10.1007/s00033-018-0913-1.

[91] R. Brezny and D. J. Green. “Characterization of edge effects in cellular materials”. In: |

Materials Sci 25 (1990), pp. 4571-4578.

[92] R. Gatt et al. “On the properties of real finite-sized planar and tubular stent-like auxetic

structures”. In: Phys Status Solidi B 251 (2014), pp. 321-327.

[93] L.LaRagione and J. T. Jenkins. “The influence of particle fluctuations on the average rota-
tion in an idealized granular material”. In: Journal of the Mechanics and Physics of Solids 57.9

(2009), pp. 1449-1458.

[94] N. Mitarai, H. Hayakawa, and H. Nakanishi. “Collisional Granular Flow as a Micropolar
Fluid”. In: Phys. Rev. Lett. 88 (2002), p. 174301.

[95] K. W. Wojciechowski, P. Pierarlski, and J. Malecki. “A hard-disk system in a narrow box. L.
Thermodynamic properties”. In: |. Chem. Phys. 76 (1982), pp. 6170-6175.

[96] K. W. Wojciechowski et al. “Elastic properties of two-dimensional hard disks in the close-
packing limit”. In: J. Chem. Phys. 119 (2003), pp. 939-946.

[97] M. Warner et al. “Untwisting of a Cholesteric Elastomer by a Mechanical Field”. In: Phys.
Rev. Lett. 102 (2009), p. 217601.

[98] E. V. Bursian and O. I. Zaikovskii. “Changes in the curvature of a ferroelectric film due to

polarization”. In: Sov. Physics Solid State 10.5 (1968), pp. 1121-1124.

[99] E. V. Bursian and N. N. Trunov. “Nonlocal piezoelectric effect”. In: Sov. Physics Solid State
16.4 (1974), pp. 760-762.

[100] I.Naumov, A. M. Bratkovsky, and V. Ranjan. “Unusual Flexoelectric Effect in Two-Dimensional

Noncentrosymmetric sp?-Bonded Crystals”. In: Phys. Rev. Lett. 102 (2009), p. 217601.


https://doi.org/10.1007/s00033-018-0913-1
https://doi.org/10.1007/s00033-018-0913-1

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

156

D. Bigoni and W. J. Drugan. “Analytical derivation of Cosserat moduli via homogenization

of heterogeneous elastic materials”. In: J. Appl. Mech. 74 (2007), pp. 741-753.

A. Merkel and V. Tournat. “Experimental Evidence of Rotational Elastic Waves in Granular

Phononic Crystals”. In: Phys. Rev. Lett. 107.22 (2011), p. 225502.
R. S. Lakes. “Materials with structural hierarchy”. In: Nature 361 (1993), pp. 511-515.

D. Rayneau-Kirkhope, Y. Mao, and R. Farr. “Ultralight Fractal Structures from Hollow
Tubes”. In: Phys. Rev. Lett. 109 (2012), p. 204301.

C. Kern, M. Kadic, and M. Wegener. “Experimental Evidence for Sign Reversal of the Hall
Coefficient in Three-Dimensional Metamaterials”. In: Phys. Rev. Lett. 118 (2012), p. 016601.

A. C. Eringen. Microcontinuum field theories , I. New York: Springer, 1998.

Z. Rueger and R. S. Lakes. “Experimental Cosserat elasticity in open-cell polymer foam”.

In: Philosophical Magazine 96.2 (2016), pp. 93-111.

Z.Rueger and R. S. Lakes. “Observation of Cosserat Elastic Effects in a Tetragonal Negative
Poisson’s Ratio Lattice”. In: physica status solidi (b) 254.12 (2017), p. 1600840.

T. Park, W.S. Hwang, and J.W. Hu. “Plastic continuum models for truss lattice materials
with cubic symmetry”. In: Journal of Mechanical Science and Technology 24.3 (2009), pp. 657—
669.

R. Fearing. “Sarrus Linkage”. In: Rapid Prototyping of Millirobots Using Composite Fiber Toolk-
its (). DOI: 4/19/2018. URL: https : / /people . eecs . berkeley . edu/ ~ronf /

DESKTOP/prototyping/linkages.html.

Z. Rueger and R. S. Lakes. “Strong Cosserat elasticity in a transversely isotropic polymer

lattice”. In: Phys. Rev. Lett. 120 (2018), p. 065501.

Z. Rueger and R. S. Lakes. “Strong Cosserat elastic effects in a unidirectional composite”.
In: Z. Angew. Math. Phys. 68.54 (2017). URL: https://doi.org/10.1007/s00033~

017-0796-6.


https://doi.org/4/19/2018
https://people.eecs.berkeley.edu/~ronf/DESKTOP/prototyping/linkages.html
https://people.eecs.berkeley.edu/~ronf/DESKTOP/prototyping/linkages.html
https://doi.org/10.1007/s00033-017-0796-6
https://doi.org/10.1007/s00033-017-0796-6

157

[113] C. Andrade, C. Ha, and R.S. Lakes. “Extreme Cosserat elastic cube structure with large
magnitude of negative Poisson’s ratio”. In: J. Mech. of Mater. and Struc. 13.1 (2018). URL:

10.2140/jomms.2018.13.93.


10.2140/jomms.2018.13.93

	Abstract
	Contents
	List of Figures
	List of Abbreviations
	Introduction
	Background Information
	Theories of Elasticity
	Cosserat Elasticity

	Motivation
	Thesis Organization

	Experimental Cosserat elasticity in open cell polymer foam
	Introduction
	Methods
	Materials and experiment
	Analysis and interpretation

	Results and discussion
	Size effects and elastic constants
	Viscoelastic damping
	Comparison with homogenization
	Comparison with other experiment
	Asymmetry of the stress
	Generalized continuum theories

	Conclusions
	Acknowledgements

	Cosserat elasticity of negative Poisson's ratio foam: experiment
	Introduction
	Methods
	Materials and experiment
	Analysis and interpretation

	Results and discussion 
	Conclusions
	Acknowledgements

	Strong Cosserat elastic effects in a unidirectional composite
	Introduction
	Methods
	Materials and experiment
	Analysis and interpretation

	Results and discussion 
	Conclusions
	Acknowledgements

	Observation of Cosserat Elastic Effects in a Tetragonal Negative Poisson's Ratio Lattice
	Introduction
	Methods
	Materials and experiment
	Analysis and interpretation

	Results and discussion 
	Conclusions
	Acknowledgements

	Strong Cosserat elasticity in a transversely isotropic polymer lattice
	Cosserat Elastic Lattices
	Introduction
	Methods
	Materials and Experiment
	Analysis and Interpretation

	Results and Discussion
	3D Strengthened Diagonal Unit Cell Lattice Structures
	Structures with <111> Cell Axes Parallel to Longitudinal Axis
	Structures with <100> Cell Axes Parallel to Longitudinal Axis

	Triangular Prismatic Unit Cell Structures
	Long Rib Triangular Unit Cell Structures
	Short Rib Triangular Prismatic Unit Cell Structures


	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Summary of Additive Manufacturing Techniques Used for Lattice Research and Unit Cell Development History
	Fused Deposition Modeling (FDM)
	Student Shop FDM
	Printing History


	Material Jetting (Polyjet)
	Midwest Prototyping
	Printing History


	Selective Laser Sintering (SLS)
	Midwest Prototyping
	Printing History


	Summary of Adaptions

	Bibliography

