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abstract

The multi-armed bandit (MAB) problem is one of the simplest instances of sequential
or adaptive decision making, in which a learner needs to select options from a given
set of alternatives repeatedly in an online manner. More specifically, the agent
selects one option at a time, and observes a numerical (and typically noisy) reward
signal providing information on the quality of that option, which informs its future
selections.

This thesis studies adaptive decision making under different circumstances. The
first half of the thesis studies learning using pairwise comparisons. The algorithms
depend on the objective of the experimenter. We study the objectives of finding the
best item, and approximately ranking the given set of items. In the second half of the
thesis, we study the problem of learning from user-clicks. A variety of models have
been proposed to simulate user behavior on a search-engine results page, and we
study learning in cold-start scenarios under two models: the dependent-click model
and the position-based model. Finally, if partial prior information about the quality
of items is available, we study learning in such warm-start circumstances. In these
cases, our algorithm provides the experimenter means to control the exploration of
the bandit algorithm.

In all cases, we propose algorithms and prove theoretical guarantees about their
performance. We also experimentally measure gains with respect to non-adaptive
and state-of-the-art adaptive algorithms.
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1 introduction

The multi-armed bandit (MAB) problem is one of the simplest instances of the se-
quential decision making problem, in which a learner needs to select (pull/draw)
options from a given set of alternatives (arms) repeatedly in an online manner.
More specifically, the agent selects one option at a time, and observes a numerical
(and typically noisy) reward signal providing information on the quality of that
option.

The MAB problem is further classified into two frameworks depending on the
goal of the learner. In the regret minimization (also called exploration-exploitation)
framework, the goal of the learner is to minimize its cumulative regret, which is
defined as the expected difference between the sum of rewards actually obtained
by the learner and the sum of rewards that could have been obtained by playing
the best arm in each round. In the best-arm identification (also called pure exploration)
framework, the goal of the learner is to optimally explore the environment so as
to identify the best arm. What distinguishes best-arm identification from regret
minimization is that in best-arm identification, the exploration phase and evaluation
phase are separated.

The difference is best explained by an example that we borrow from Bubeck
et al. [2011]. In the case of a severe disease, ill patients only are included in the
trial and the cost of picking the wrong treatment is high (the associated reward
would equal a large negative value). It is important to minimize the cumulative
regret, since the test and cure phases coincide. However, for cosmetic products,
there exists a test phase separated from the commercialization phase, and one aims
at minimizing the regret of the commercialized product rather than the cumulative
regret in the test phase, which is irrelevant.

In this work, the first two problems belong to the best-arm identification frame-
work, while the next four aim to minimize regret.

Organization
Chapters 2 and 3 explore problems in the pairwise-comparison or dueling setting
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where instead of pulling an arm, the learning agent compares/duels two arms
and receives 1-bit feedback about the winner of the duel. This setting is especially
suitable when feedback is obtained from humans. The second chapter studies the
complexity of finding the best-arm. The third chapter looks at coarsely ranking the
arms from best to worst.

The objective in chapters 4-7 is regret minimization. In the fourth chapter, we
study online learning models of user interaction with content, for e.g., search results
in response to a query. In particular we study the dependent-click model, where the
probability of clicking an item decreases as its displayed position increases. In the
fifth chapter, we study conservative learning under a simple position-independent
click model. One problem with bandit algorithms is that they can explore aggres-
sively especially in the start, and this work provides the experimenter a knob to
control the amount of exploration. In chapters 6 and 7, we study the problem of
finding the maximum entry in a stochastic rank-1 matrix. This model is inspired
from the problem of targeting promotions optimally.

We next briefly summarize the problem studied in each chapter and the results
obtained.

1.1 Best-arm Identification

1.1.1 Dueling Bandits with the Borda Voting Rule

Pairwise comparisons (also referred to as the dueling setting) can be an excellent
way of collecting information from humans, and from time to time we wish to
identify a “most” preferred item by polling the crowd. However, there is no unique
way to define the “winner” item. The Condorcet winner, Borda winner, Copeland
winner are a few of the many perfectly valid ways to define the winner, and in fact
this is a widely studied topic in social choice and voting theory.

In this work, we consider the Borda rule to map pairwise comparisons to a win-
ner, and design an algorithm with this metric in mind. To make this mathematically
rigorous, we assume that whenever we query if a is preferred to b, we receive an
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independent Bernoulli random variable Xa,b with expectation pa,b. We define the
Borda score of item i with respect to the other K objects as si := 1

K−1
∑
j6=i pi,j, so

that si can be interpreted as the probability that i beats an item chosen uniformly
at random from the remaining [K] \ i items i.e., si = E [pi,J] = E [E [Xi,j|J = j]] J. The
Borda winner is defined as the item with the highest Borda score.

The “Borda dueling bandits” online learning problem can be turned into the
standard pure-rewards multi-armed bandit problem where the mean reward of
arm i is si, and a pull of arm i yields reward Xi,J where J is an arm drawn uniformly
at random from [K] \ i. In this work, we explore if this is the best we can do (the
answer is yes in the absence of any structural assumptions), and then consider
a sparsity structure natural to this problem and show that it results in reduced
sample complexity.

1.1.2 Coarse Ranking

This work studies the problem of coarse ranking, where the goal is to sort items
according to their means into clusters of pre-specified sizes. In many big-data
applications, finding the total ranking can be infeasible and / or unnecessary, and
we may only be interested in the top items, bottom items, or quantiles. Consider
for instance the problem of assessing the safety of neighborhoods from pairwise
comparisons of Google Streetview images as is done in the PlacePulse project aimed
at developing social policy. Finding a complete ordering of the images in this case
is impractical because many images are difficult to compare i.e., their safety scores
are very close. Furthermore, a total ordering may be unnecessary from a public
policy point of view: one may only be interested in the unsafe-appearing images,
or the approximate rank of every image on the safe-unsafe spectrum.

As another example, consider the problem of assigning grades to students in
massive open online courses using peer reviews. Here again, only the quantile
that every student belongs to is desired (the number of quantiles is determined by
the grading scale). A total ordering is unnecessary and may also be infeasible if
the number of students is large. The recommender-systems solution of adaptively
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finding the top items does not help in this case because the grade of every student
is desired, not just those at the top.

In this work, we propose a computationally efficient PAC algorithm LUCBRank
to solve the coarse ranking problem, and derive an upper bound on its sample
complexity. We also derive a nearly matching distribution-dependent lower bound.

1.2 Regret Minimization

1.2.1 DCM Bandits: Learning to Rank with Multiple Clicks

Search engines recommend a list of web pages. The user examines this list, from
the first page to the last, and may click on multiple attractive pages. The type of
user behavior can be modeled by the dependent-click model (DCM). In this work, we
propose an online learning variant of this model, which we call DCM bandits.

At time t, our learning agent recommends to the user a list of K items. The user
examines the items in the list, from the first item to the last. If the examined item
attracts the user, the user clicks on it. This is observed by the learning agent. After
the user clicks on the item and investigates it, the user decides whether to leave or
examine more items. If the user leaves, the DCM interprets this event as that the
user is satisfied, and our learning agent receives a reward of one. If the user scans
the list of items until the end and does not leave on purpose, the agent receives a
reward of zero. The goal of the learning agent is to maximize its total reward, or
equivalently to minimize its cumulative regret with respect to the most satisfactory
list of K items.

In this work, we propose a computationally efficient algorithm dcmKL-UCB, prove
gap-dependent upper bounds on the regret of dcmKL-UCB, and derive a matching
lower bound up to logarithmic factors.
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1.2.2 Conservative Exploration using Interleaving

In many practical problems, a learning agent may want to learn the best action in
hindsight without ever taking a bad action, which is much worse than a default
production action. In general, this is impossible because the agent has to explore
unknown actions, some of which can be bad, to learn better actions. However,
when the actions are structured, this is possible if the unknown action can be
evaluated by interleaving it with the default action. We formalize this concept as
learning in stochastic combinatorial semi-bandits with exchangeable actions. We
design efficient learning algorithms for this problem, bound their n-step regret,
and evaluate them on both synthetic and real-world problems. Our real-world
experiments show that our algorithms can learn to recommend Kmost attractive
movies without ever making disastrous recommendations, both overall and subject
to a diversity constraint.

1.2.3 Stochastic Rank-1 Bandits

In this work, we study the problem of finding the maximum entry of a stochastic
rank-1 matrix from noisy and adaptively-chosen observations. This problem is
motivated by ranking in the position-based model (PBM).

The position-based model (PBM) is one of the most fundamental click models, a
model of how people click on a list of K items out of L. This model is defined as
follows. Each item is associated with its attraction and each position in the list is
associated with its examination. The attraction of any item and the examination of
any position are i.i.d. Bernoulli random variables. The item in the list is clicked only
if it is attractive and its position is examined. Under these assumptions, the pair of
the item and position that maximizes the probability of clicking is the maximum
entry of a rank-1 matrix, which is the outer product of the attraction probabilities
of items and the examination probabilities of positions.

In this work, we propose an online learning model for solving our motivating
problem, which we call a stochastic rank-1 bandit. The learning agent interacts with
our problem as follows. At time t, the agent selects a pair of row and column arms,
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and receives the product of their individual values as a reward. The values are
stochastic, drawn independently, and not observed. The goal of the agent is to
maximize its expected cumulative reward, or equivalently to minimize its expected
cumulative regret with respect to the optimal solution, the most rewarding pair of
row and column arms.

We design an elimination algorithm for solving it, which we call Rank1Elim. We
derive a gap-dependent upper bound on its n-step regret, and a nearly matching
gap-dependent lower bound.

1.2.4 Bernoulli Rank-1 Bandits for Click Feedback

The probability that a user will click a search result depends both on its relevance
and its position on the results page. The position based model explains this behavior
by ascribing to every item an attraction probability, and to every position an examina-
tion probability. To be clicked, a result must be both attractive and examined. The
probabilities of an item-position pair being clicked thus form the entries of a rank-1
matrix. We propose the learning problem of a Bernoulli rank-1 bandit where at each
step, the learning agent chooses a pair of row and column arms, and receives the
product of their Bernoulli-distributed values as a reward. This is a special case of
the stochastic rank-1 bandit problem considered in recent work that proposed an
elimination based algorithm Rank1Elim, and showed that Rank1Elim’s regret scales
linearly with the number of rows and columns on “benign” instances. These are the
instances where the minimum of the average row and column rewards µ is bounded
away from zero. The issue with Rank1Elim is that it fails to be competitive with
straightforward bandit strategies as µ→ 0. In this chapter we propose Rank1ElimKL,
which replaces the crude confidence intervals of Rank1Elim with confidence inter-
vals based on Kullback-Leibler (KL) divergences. With the help of a novel result
concerning the scaling of KL divergences we prove that with this change, our algo-
rithm will be competitive no matter the value of µ. Experiments with synthetic data
confirm that on benign instances the performance of Rank1ElimKL is significantly
better than that of even Rank1Elim. Similarly, experiments with models derived
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from real-data confirm that the improvements are significant across the board,
regardless of whether the data is benign or not.
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2 sparse dueling bandits

2.1 Introduction

The dueling bandit is a variation of the classic multi-armed bandit problem in
which the actions are noisy comparisons between arms, rather than observations
from the arms themselves [Yue et al., 2012]. Each action provides 1 bit indicating
which of two arms is probably better. For example, the arms could represent objects
and the bits could be responses from people asked to compare pairs of objects. In
this chapter, we focus on the pure exploration problem of finding the “best” arm
from noisy pairwise comparisons. This problem is different from the explore-exploit
problem studied in Yue et al. [2012]. There can be different notions of “best” in the
dueling framework, including the Condorcet and Borda criteria (defined below).

Most of the dueling-bandit algorithms are primarily concerned with finding the
Condorcet winner (the arm that is probably as good or better than every other arm).
There are two drawbacks to this. First, a Condorcet winner does not exist unless the
underlying probability matrix governing the outcomes of pairwise comparisons
satisfies certain restrictions. These restrictions may not be met in many situations.
In fact, we show that a Condorcet winner doesn’t exist in our experiment with
real data presented below. Second, the best known upper bounds on the sample
complexity of finding the Condorcet winner (assuming it exists) grow quadratically
(at least) with the number of arms. This makes Condorcet algorithms impractical
for large numbers of arms.

To address these drawbacks, we consider the Borda criterion instead. The
Borda score of an arm is the probability that the arm is preferred to another
arm chosen uniformly at random. A Borda winner (arm with the largest Borda
score) always exists for every possible probability matrix. We assume throughout
this chapter that there exists a unique Borda winner. Finding the Borda winner
with probability at least 1 − δ can be reduced to solving an instance of the stan-
dard multi-armed bandit problem resulting in a sufficient sample complexity of
O
(∑

i>1(s1 − si)
−2 log

(
log((s1 − si)

−2)/δ
))

, where si denotes Borda score of arm
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i and s1 > s2 > · · · > sn are the scores in descending order [Karnin et al., 2013,
Jamieson et al., 2014]. In favorable cases, for instance, if s1 − si > c, a constant for
all i > 1, then this sample complexity is linear in n as opposed to the quadratic
sample complexity necessary to find the Condorcet winner. In this chapter we show
that this upper bound is essentially tight, thereby apparently “closing” the Borda
winner identification problem. However, in this chapter we consider a specific type
of structure that is motivated by its existence in real datasets that complicates this
apparently simple story. In particular, we show that the reduction to a standard
multi-armed bandit problem can result in very bad performance when compared
to an algorithm that exploits this observed structure.

We explore the sample complexity dependence in more detail and consider
structural constraints on the matrix (a particular form of sparsity natural to this
problem) that can significantly reduce the sample complexity. The sparsity model
captures the commonly observed behavior in elections in which there are a small
set of “top” candidates that are competing to be the winner but only differ on a
small number of attributes, while a large set of “others” are mostly irrelevant as far
as predicting the winner is concerned in the sense that they would always lose in a
pairwise matchup against one of the “top” candidates.

This motivates a new algorithm called Successive Elimination with Comparison
Sparsity (SECS). SECS takes advantage of this structure by determining which of
two arms is better on the basis of their performance with respect to a sparse set of
“comparison” arms. Experimental results with real data demonstrate the practicality
of the sparsity model and show that SECS can provide significant improvements
over standard approaches.

The main contributions of this chapter are as follows:

• A distribution dependent lower bound for the sample complexity of identify-
ing the Borda winner that essentially shows that the Borda reduction to the
standard multi-armed bandit problem (explained in detail later) is essentially
optimal up to logarithmic factors, given no prior structural information.

• A new structural assumption for the n-armed dueling bandits problem in
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which the top arms can be distinguished by duels with a sparse set of other
arms.

• An algorithm for the dueling bandits problem under this assumption, with
theoretical performance guarantees showing significant sample complexity
improvements compared to naive reductions to standard multi-armed bandit
algorithms.

• Experimental results, based on real-world applications, demonstrating the
superior performance of our algorithm compared to existing methods.

2.2 Problem Setup

The n-armed dueling bandits problem [Yue et al., 2012] is a modification of the n-armed
bandit problem, where instead of pulling a single arm, we choose a pair of arms (i, j)
to duel, and receive one bit indicating which of the two is better or preferred, with
the probability of iwinning the duel is equal to a constant pi,j and that of j equal to
pj,i = 1 − pi,j. We define the probabilty matrix P = [pi,j], whose (i, j)th entry is pi,j.

Almost all existing n-armed dueling bandit methods [Yue et al., 2012, Yue and
Joachims, 2011, Zoghi et al., 2013, Urvoy et al., 2013, Ailon et al., 2014] focus on the
explore-exploit problem and furthermore make a variety of assumptions on the
preference matrix P. In particular, those works assume the existence of a Condorcet
winner: an arm, c, such that pc,j >

1
2 for all j 6= c. The Borda winner is an arm b that

satisfies
∑
j6=b pb,j >

∑
j6=i pi,j for all i = 1, · · · ,n. In other words, the Borda winner

is the arm with the highest average probability of winning against other arms, or
said another way, the arm that has the highest probability of winning against an
arm selected uniformly at random from the remaining arms. The Condorcet winner
has been given more attention than the Borda, the reasons being: 1) Given a choice
between the Borda and the Condorcet winner, the latter is preferred in a direct
comparison between the two. 2) As pointed out in Urvoy et al. [2013], Zoghi et al.
[2013] the Borda winner can be found by reducing the dueling bandit problem to a
standard multi-armed bandit problem as follows.
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Definition 2.1. Borda Reduction. The action of pulling arm iwith reward 1
n−1
∑
j6=i pi,j

can be simulated by dueling arm i with another arm chosen uniformly at random.

However, we feel that the Borda problem has received far less attention than it
deserves. Firstly, the Borda winner always exists, the Condorcet does not. For exam-
ple, a Condorcet winner does not exist in the MSLR-WEB10k datasets considered
in this chapter. Assuming the existence of a Condorcet winner severely restricts
the class of allowed P matrices: only those P matrices are allowed which have a
row with all entries > 1

2 . In fact, Yue et al. [2012], Yue and Joachims [2011] require
that the comparison probabilities pi,j satisfy additional transitivity conditions that
are often violated in practice. Secondly, there are many cases where the Borda
winner and the Condorcet winner are distinct, and the Borda winner would be
preferred in many cases. Lets assume that arm c is the Condorcet winner, with
pc,i = 0.51 for i 6= c. Let arm b be the Borda winner with pb,i = 1 for i 6= b, c, and
pb,c = 0.49. It is reasonable that arm c is only marginally better than the other
arms, while arm b is significantly preferred over all other arms except against arm
c where it is marginally rejected. In this example - chosen extreme to highlight the
pervasiveness of situations where the Borda arm is preferred - it is clear that arm b

should be the winner: think of the arms representing objects being contested such
as t-shirt designs, and the P matrix is generated by showing users a pair of items
and asking them to choose the better among the two. This example also shows that
the Borda winner is more robust to estimation errors in the P matrix (for instance,
when the P matrix is estimated by asking a small sample of the entire population to
vote among pairwise choices). The Condorcet winner is sensitive to entries in the
Condorcet arm’s row that are close to 1

2 , which is not the case for the Borda winner.
Finally, there are important cases (explained next) where the winner can be found
in fewer number of duels than would be required by Borda reduction.
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P1 =

1 2 3 · · · n si s1 − si



1 1
2

1
2

3
4 · · · 3

4 + ε
1
2+ε

n−1 + 3
4
n−2
n−1 0

2 1
2

1
2

3
4 · · · 3

4

1
2
n−1 +

3
4
n−2
n−1

ε
n−1

3 1
4

1
4

1
2 · · · 1

2
1
2
n−2
n−1

1
2+ε

n−1 + 1
4
n−2
n−1

... ... ... ... . . . ... ... ...

n 1
4 − ε

1
4

1
2 · · · 1

2 − ε
n−1 +

1
2
n−2
n−1

1
2+2ε
n−1 + 1

4
n−2
n−1

(2.1)

P2 =

1 2 3 · · · n si s1 − si



1 1
2

1
2 +

ε
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1
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4
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ε
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1
2

3
4 · · · 3
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1
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n−1 + 3
4
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n−1
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n−1 +

ε
(n−1)2

3 1
4 −
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1
2 · · · 1
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2
n−2
n−1

1
2+ε+

ε
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4
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n 1
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1
4

1
2 · · · 1
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n−1
n−1 + 1

2
n−2
n−1

1
2+ε+

ε
n−1

n−1 + 1
4
n−2
n−1

(2.2)

2.3 Motivation

We define the Borda score of an arm i to be the probability of the ith arm winning a
duel with another arm chosen uniformly at random:

si =
1
n−1

∑
j6=i

pi,j .

Without loss of generality, we assume that s1 > s2 > · · · > sn but that this ordering
is unknown to the algorithm. As mentioned above, if the Borda reduction is used
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then the dueling bandit problem becomes a regular multi-armed bandit problem
and lower bounds for the multi-armed bandit problem [Kaufmann et al., 2014,
Mannor and Tsitsiklis, 2004] suggest that the number of samples required should
scale like Ω

(∑
i 6=1

1
(s1−si)2 log 1

δ

)
, which depends only on the Borda scores, and

not the individual entries of the preference matrix. This would imply that any
preference matrix P with Borda scores si is just as hard as another matrix P ′ with
Borda scores s ′i as long as (s1 − si) = (s ′1 − s ′i). Of course, this lower bound
only applies to algorithms using the Borda reduction, and not any algorithm for
identifying the Borda winner that may, for instance, collect the duels in a more
deliberate way. Next we consider specific P matrices that exhibit two very different
kinds of structure but have the same differences in Borda scores which motivates
the structure considered in this chapter.

2.3.1 Preference Matrix P known up to permutation of indices

Shown below in equations (2.1) and (2.2) are two preference matrices P1 and P2

indexed by the number of arms n that essentially have the same Borda gaps –
(s1 − si) is either like ε

n
or approximately 1/4 – but we will argue that P1 is much

“easier” than P2 in a certain sense (assume ε is an unknown constant, like ε = 1/5).
Specifically, if given P1 and P2 up to a permutation of the labels of their indices (i.e.
given ΛP1Λ

T for some unknown permutation matrix Λ), how many comparisons
does it take to find the Borda winner in each case for different values of n?

Recall from above that if we ignore the fact that we know the matrices up to
a permutation and use the Borda reduction technique, we can use a multi-armed
bandit algorithm (e.g. Karnin et al. [2013], Jamieson et al. [2014]) and find the
best arm for both P1 and P2 using O

(
n2 log(log(n))

)
samples. We next argue that

given P1 and P2 up to a permutation, there exists an algorithm that can identify
the Borda winner of P1 with just O(n log(n)) samples while the identification of
the Borda winner for P2 requires at leastΩ(n2) samples. This shows that given the
probability matrices up to a permutation, the sample complexity of identifying
the Borda winner does not rely just on the Borda differences, but on the particular
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structure of the probability matrix.
Consider P1. We claim that there exists a procedure that exploits the structure

of the matrix to find the best arm of P1 using just O(n log(n)) samples. Here’s
how: For each arm, duel it with 32 log n

δ
other arms chosen uniformly at random.

By Hoeffding’s inequality, with probability at least 1 − δ our empirical estimate
of the Borda score will be within 1/8 of its true value for all n arms and we can
remove the bottom (n− 2) arms due to the fact that their Borda gaps exceed 1/4.
Having reduced the possible winners to just two arms, we can identify which rows
in the matrix they correspond to and duel each of these two arms against all of the
remaining (n−2) armsO( 1

ε2 ) times to find out which one has the larger Borda score
using just O

(
2(n−2)
ε2

)
samples, giving an overall sample complexity of O (n logn).

We have improved the sample complexity from O(n2 log(log(n))) using the Borda
reduction to just O(n log(n)).

Consider P2. We claim that given this matrix up to a permutation of its indices,
no algorithm can determine the winner of P2 without requestingΩ(n2) samples. To
see this, suppose an oracle has made the problem easier by reducing the problem
down to just the top two rows of the P2 matrix. This is a binary hypothesis test for
which Fano’s inequality implies that to guarantee that the probability of error is not
above some constant level, the number of samples to identify the Borda winner must
scale like minj∈[n]\{1,2}

1
KL(p1,j,p2,j)

> minj∈[n]\{1,2}
c

(p1,j−p2,j)2 = Ω((n/ε)2) where the
inequality holds for some c by the lemma proved in the supplementary materials.

We just argued that the structure of the P matrix, and not just the Borda gaps,
can dramatically influence the sample complexity of finding the Borda winner.
This leads us to ask the question: if we don’t know anything about the P matrix
beforehand (i.e. do not know the matrix up to a permutation of its indices), can
we learn and exploit this kind of structural information in an online fashion and
improve over the Borda reduction scheme? The answer is no, as we argue next.
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2.3.2 Distribution-Dependent Lower Bound

We prove a distribution-dependent lower bound on the complexity of finding the
best Borda arm for a general Pmatrix. This is a result important in its own right as it
shows that the lower bound obtained for an algorithm using the Borda reduction is
tight, that is, this result implies that barring any structural assumptions, the Borda
reduction is optimal.

Definition 2.2. δ-PAC dueling bandits algorithm: A δ-PAC dueling bandits algorithm
is an algorithm that selects duels between arms and based on the outcomes finds the Borda
winner with probability greater than or equal to 1 − δ.

The techniques used to prove the following result are inspired from Lemma 1
in Kaufmann et al. [2014] and Theorem 1 in Mannor and Tsitsiklis [2004].

Theorem 2.3. (Distribution-Dependent Lower Bound) Consider a matrix P such that
3
8 6 pi,j 6 5

8 ,∀i, j ∈ [n] with n > 4. Let τ be the total number of duels. Then for δ 6 0.15,
any δ-PAC dueling bandits algorithm to find the Borda winner has

EP[τ] > C log 1
2δ
∑
i 6=1

1
(s1 − si)2

where si = 1
n−1
∑
j6=i pi,j denotes the Borda score of arm i. Furthermore, C can be chosen

to be 1/90.

The proof can be found in the supplementary material.
In particular, this implies that for the preference matrix P1 in (2.1), any algorithm

that makes no assumption about the structure of the P matrix requires Ω
(
n2)

samples. Next we argue that the particular structure found in P1 is an extreme case
of a more general structural phenomenon found in real datasets and that it is a
natural structure to assume and design algorithms to exploit.
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2.3.3 Motivation from Real-World Data

The matrices P1 and P2 above illustrate a key structural aspect that can make it easier
to find the Borda winner. If the arms with the top Borda scores are distinguished
by duels with a small subset of the arms (as exemplified in P1), then finding the
Borda winner may be easier than in the general case. Before formalizing a model
for this sort of structure, let us look at two real-world datasets, which motivate the
model.

We consider the Microsoft Learning to Rank web search datasets MSLR-WEB10k
[Qin et al., 2010] and MQ2008-list [Qin and Liu, 2013] (see the experimental section
for a descrptions). Each dataset is used to construct a corresponding probability
matrix P. We use these datasets to test the hypothesis that comparisons with a
small subset of the arms may suffice to determine which of two arms has a greater
Borda score.

Specifically, we will consider the Borda score of the best arm (arm 1) and every
other arm. For any other arm i > 1 and any positive integer k ∈ [n− 2], letΩi,k be a
set of cardinality k containing the indices j ∈ [n] \ {1, i} with the k largest discrepan-
cies |p1,j−pi,j|. These are the duels that, individually, display the greatest differences
between arm 1 and i. For each k, define αi(k) = 2(p1,i −

1
2) +
∑
j∈Ωi,k(p1,j − pi,j). If

the hypothesis holds, then the duels with a small number of (appropriately chosen)
arms should indicate that arm 1 is better than arm i. In other words, αi(k) should
become and stay positive as soon as k reaches a relatively small value. Plots of
these αi curves for two datasets are presented in Figures 2.1, and indicate that the
Borda winner is apparent for small k. This behavior is explained by the fact that
the individual discrepancies |p1,j − pi,j|, decay quickly when ordered from largest
to smallest, as shown in Figure 2.2.

The take away message is that it is unnecessary to estimate the difference or gap
between the Borda scores of two arms. It suffices to compute the partial Borda gap
based on duels with a small subset of the arms. An appropriately chosen subset of
the duels will correctly indicate which arm has a larger Borda score. The algorithm
proposed in the next section automatically exploits this structure.
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(a) MSLR-WEB10k; n=136 (b) MQ2008; n=46

Figure 2.1: Plots of αi(k) = 2(p1,i −
1
2) +
∑
j∈Ωi,k(p1,j − p1,j) vs. k for arms from the

(a) MSLR-WEB10k on left (b) MQ2008-list on right. The curves are strictly positive
after a small number of duels.

Figure 2.2: Plots of discrepancies |p1,j − pi,j| in descending order for 30 randomly
chosen arms (for visualization purposes); MSLR-WEB10k on left, MQ2008-list on
right.

2.4 Algorithm and Analysis

In this section we propose a new algorithm that exploits the kind of structure
just described above and prove a sample complexity bound. The algorithm is
inspired by the Successive Elimination (SE) algorithm of Even-Dar et al. [2006]
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Algorithm 1 Sparse Borda Algorithm
1: Input sparsity level k ∈ [n− 2], time gate T0 > 0.
2: Start with active set A1 = {1, 2, · · · ,n}, t = 1.
3: Let Ct =

√
2 log(4n2t2/δ)

t/n
+

2 log(4n2t2/δ)
3t/n .

4: while |At| > 1 do
5: Choose It uniformly at random [n].
6: for j ∈ At do
7: Observe Z

(t)
j,It and update p̂j,It,t = n

t

∑t
`=1 Z

(`)
j,I`1I`=It , ŝj,t =

n/(n−1)
t

∑t
`=1 Z

(`)
j,I` .

8: end for
9: At+1 = At \

{
j ∈ At : ∃i ∈ At with

1) 1{t>T0} ∆̂i,j,t

(
arg maxΩ⊂[n]:|Ω|=k ∇̂i,j,t(Ω)

)
> 6(k+ 1)Ct

OR 2) ŝi,t > ŝj,t +
n
n−1

√
2 log(4nt2/δ)

t

}
t← t+ 1

10: end while

for standard multi-armed bandit problems. Essentially, the proposed algorithm
below implements SE with the Borda reduction and an additional elimination
criterion that exploits sparsity (condition 1 in the algorithm). We call the algorithm
Successive Elimination with Comparison Sparsity (SECS).

We will use 1E to denote the indicator of the event E and [n] = {1, 2, . . . ,n}. The
algorithm maintains an active set of arms At such that if j /∈ At then the algorithm
has concluded that arm j is not the Borda winner. At each time t, the algorithm
chooses an arm It uniformly at random from [n] and compares it with all the arms
in At. Note that Ak ⊆ A` for all k > `. Let Z(t)

i,j ∈ {0, 1} be independent Bernoulli
random variables with E[Z(t)

i,j ] = pi,j, each denoting the outcome of “dueling”
i, j ∈ [n] at time t (define Z(t)

i,j = 0 for i = j). For any t > 1, i ∈ [n], and j ∈ At define

p̂j,i,t =
n

t

t∑
`=1

Z
(`)
j,I`1I`=i
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so that E [p̂j,i,t] = pj,i. Furthermore, for any t > 1, j ∈ At define

ŝj,t =
n/(n− 1)

t

t∑
`=1

Z
(`)
j,I`

so that E [ŝj,t] = sj. For anyΩ ⊂ [n] and i, j ∈ [n] define

∆i,j(Ω) = 2(pi,j − 1
2) +

∑
ω∈Ω:ω 6=i 6=j

(pi,ω − pj,ω)

∆̂i,j,t(Ω) = 2(p̂i,j,t − 1
2) +

∑
ω∈Ω:ω 6=i 6=j

(p̂i,ω,t − p̂j,ω,t)

∇i,j(Ω) =
∑

ω∈Ω:ω 6=i 6=j

|pi,ω − pj,ω|

∇̂i,j(Ω) =
∑

ω∈Ω:ω 6=i 6=j

|p̂i,ω,t − p̂j,ω,t| .

The quantity ∆i,j(Ω) is the partial gap between the Borda scores for i and j, based
on only the comparisons with the arms in Ω. Note that 1

n−1∆i,j([n]) = si − sj.
The quantity arg maxΩ⊂[n]:|Ω|=k∇i,j(Ω) selects the indicesω yielding the largest
discrepancies |pi,ω − pj,ω|. ∆̂ and ∇̂ are empirical analogs of these quantities.

Definition 2.4. For any i ∈ [n] \ 1 we say the set {(p1,ω − pi,ω)}ω 6=16=i is (γ,k)-
approximately sparse if

max
Ω∈[n]:|Ω|6k

∇1,i(Ω \Ωi) 6 γ∆1,i(Ωi)

whereΩi = arg max
Ω⊂[n]:|Ω|=k

∇1,i(Ω).

Instead of the strong assumption that the set {(p1,ω − pi,ω)}ω 6=16=i has no more
than k non-zero coefficients, the above definition relaxes this idea and just assumes
that the absolute value of the coefficients outside the largest k are small relative
to the partial Borda gap. This definition is inspired by the structure described in
previous sections and will allow us to find the Borda winner faster.
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The parameter T0 is specified (see Theorem 2.5) to guarantee that all arms with
sufficiently large gaps s1 − si are eliminated by time step T0 (condition 2). Once
t > T0, condition 1 also becomes active and the algorithm starts removing arms
with large partial Borda gaps, exploiting the assumption that the top arms can
be distinguished by comparisons with a sparse set of other arms. The algorithm
terminates when only one arm remains.

Theorem 2.5. Let k > 0 and T0 > 0 be inputs to the above algorithm and let R be the
solution to 32

R2 log
(

32n/δ
R2

)
= T0. If for all i ∈ [n] \ 1, at least one of the following holds:

1. {(p1,ω − pi,ω)}ω 6=16=i is ( 1
3 ,k)-approximately sparse,

2. (s1 − si) > R,

then with probability at least 1 − 3δ, the algorithm returns the best arm after no more than

c
∑
j>1

min
{

max
{

1
R2 log

(
n/δ

R2

)
, (k+1)2/n

∆2
j

log
(
n/δ

∆2
j

)}
, 1
∆2
j

log
(
n/δ

∆2
j

)}
samples where ∆j := s1 − sj and c > 0 is an absolute constant.

The second argument of the min is precisely the result one would obtain by
running Successive Elimination with the Borda reduction [Even-Dar et al., 2006].
Thus, under the stated assumptions, the algorithm never does worse than the
Borda reduction scheme. The first argument of the min indicates the potential
improvement gained by exploiting the sparsity assumption. The first argument of
the max is the result of throwing out the arms with large Borda differences and the
second argument is the result of throwing out arms where a partial Borda difference
was observed to be large.

To illustrate the potential improvements, consider the P1 matrix discussed above,
the theorem implies that by setting T0 =

32
R2 log

(
32n/δ
R2

)
with R = 1/2+ε

n−1 + 1
4
n−2
n−1 ≈

1
4

and k = 1 we obtain a sample complexity of O(ε−2n log(n)) for the proposed
algorithm compared to the standard Borda reduction sample complexity ofΩ(n2).
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In practice it is difficult optimize the choice of T0 and k, but motivated by the
results shown in the experiments section, we recommend setting T0 = 0 and k = 5
for typical problems.

2.5 Experiments

The goal of this section is not to obtain the best possible sample complexity results
for the specified datasets, but to show the relative performance gain of exploiting
structure using the proposed SECS algorithm with respect to the Borda reduction.
That is, we just want to measure the effect of exploiting sparsity while keeping all
other parts of the algorithms constant. Thus, the algorithm we compare to that
uses the simple Borda reduction is simply the SECS algorithm described above
but with T0 = ∞ so that the sparse condition never becomes activated. Running
the algorithm in this way, it is very closely related to the Successive Elimination
algorithm of Even-Dar et al. [2006]. In what follows, our proposed algorithm will
be called SECS and the benchmark algorithm will be denoted as just the Borda
reduction (BR) algorithm.

We experiment on both simulated data and two real-world datasets. During
all experiments, both the BR and SECS algorithms were run with δ = 0.1. For
the SECS algorithm we set T0 = 0 to enable condition 1 from the very beginning
(recall for BR we set T0 = ∞). Also, while the algorithm has a constant factor of
6 multiplying (k + 1)Ct, we feel that the analysis that led to this constant is very
loose so in practice we recommend the use of a constant of 1/2 which was used in
our experiments. While the change of this constant invalidates the guarantee of
Theorem 2.5, we note that in all of the experiments to be presented here, neither
algorithm ever failed to return the best arm. This observation also suggests that
the SECS algorithm is robust to possible inconsistencies of the model assumptions.
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Figure 2.3: Comparison of the Borda reduction algorithm and the proposed SECS
algorithm ran on the P1 matrix for different values of n. Plot is on log-log scale so
that the sample complexity grows like ns where s is the slope of the line.

2.5.1 Synthetic Preference matrix

Both algorithms were tasked with finding the best arm using the P1 matrix of
(2.1) with ε = 1/5 for problem sizes equal to n = 10, 20, 30, 40, 50, 60, 70, 80 arms.
Inspecting the P1 matrix, we see that a value of k = 1 in the SECS algorithm suffices
so this is used for all problem sizes. The entries of the preference matrix Pi,j are
used to simulate comparisons between the respective arms and each experiment
was repeated 75 times.

Recall from Section 2.3 that any algorithm using the Borda reduction on the
P1 matrix has a sample complexity of Ω(n2). Moreover, inspecting the proof of
Theorem 2.5 one concludes that the BR algorithm has a sample complexity of
O(n2 log(n)) for the P1 matrix. On the other hand, Theorem 2.5 states that the SECS
algorithm should have a sample complexity no worse than O(n log(n)) for the P1

matrix. Figure 2.3 plots the sample complexities of SECS and BR on a log-log plot.
On this scale, to match our sample complexity hypotheses, the slope of the BR line
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should be about 2 while the slope of the SECS line should be about 1, which is
exactly what we observe.

2.5.2 Web search data

We consider two web search data sets. The first is the MSLR-WEB10k Microsoft
Learning to Rank data set [Qin et al., 2010] that is characterized by approximately
30,000 search queries over a number of documents from search results. The data
also contains the values of 136 features and corresponding user labelled relevance
factors with respect to each query-document pair. We use the training set of Fold
1, which comprises of about 2,000 queries. The second data set is the MQ2008-list
from the Microsoft Learning to Rank 4.0 (MQ2008) data set [Qin and Liu, 2013].
We use the training set of Fold 1, which has about 550 queries. Each query has a list
of documents with 46 features and corresponding user labelled relevance factors.

For each data set, we create a set of rankers, each corresponding to a feature from
the feature list. The aim of this task is be to determine the feature whose ranking of
query-document pairs is the most relevant. To compare two rankers, we randomly
choose a pair of documents and compare their relevance rankings with those of the
features. Whenever a mismatch occurs between the rankings returned by the two
features, the feature whose ranking matches that of the relevance factors of the two
documents “wins the duel”. If both features rank the documents similarly, the duel
is deemed to have resulted in a tie and we flip a fair coin. We run a Monte Carlo
simulation on both data sets to obtain a preference matrix P corresponding to their
respective feature sets. As with the previous setup, the entries of the preference
matrices ([P]i,j = pi,j) are used to simulate comparisons between the respective
arms and each experiment was repeated 75 times.

From the MSLR-WEB10k data set, a single arm was removed for our experiments
as its Borda score was unreasonably close to the arm with the best Borda score
and behaved unlike any other arm in the dataset with respect to its αi curves,
confounding our model. For these real datasets, we consider a range of different k
values for the SECS algorithm. As noted above, while there is no guarantee that the
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(a) MSLR-WEB10k (b) MQ2008

Figure 2.4: Comparison of an action elimination-style algorithm using the Borda
reduction (denoted as BR) and the proposed SECS algorithm with different values
of k on the two datasets.

SECS algorithm will return the true Borda winner, in all of our trials for all values
of k reported we never observed a single error. This is remarkable as it shows that
the correctness of the algorithm is insensitive to the value of k on at least these
two real datasets. The sample complexities of BR and SECS on both datasets are
reported in Figure 2.4. We observe that the SECS algorithm, for small values of
k, can identify the Borda winner using as few as half the number required using
the Borda reduction method. As k grows, the performance of the SECS algorithm
becomes that of the BR algorithm, as predicted by Theorem 2.5.

Lastly, the preference matrices of the two data sets support the argument for
finding the Borda winner over the Condorcet winner. The MSLR-WEB10k data
set has no Condorcet winner arm. However, while the MQ2008 data set has a
Condorcet winner, when we consider the Borda scores of the arms, it ranks second.
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3 coarse ranking

3.1 Introduction

We consider the problem of efficiently sorting items according to their means into
clusters of pre-specified sizes, which we refer to as coarse ranking. In many big-data
applications, finding the total ranking can be infeasible and/or unnecessary, and
we may only be interested in the top items, bottom items, or quantiles. Consider
for instance the problem of assessing the safety of neighborhoods from pairwise
comparisons of Google street view images, as is done in the Place Pulse project
[Naik et al., 2014], which can be applied to develop social policy [Dubey et al.,
2016]. Finding a complete ordering of the images in this case is impractical because
many images are difficult to compare i.e., their safety scores are very close (see
Section 3.7.2). Furthermore, a total ordering may be unnecessary from a public
policy point of view, since the approximate rank of every image on the safe-unsafe
spectrum may suffice.

Motivated by these applications, we model the coarse ranking problem as fol-
lows. Given K random variables, c > 2 clusters, and cluster boundaries 1 6 κ1 <

κ2 < · · · < κc−1 < κc = K, the goal is to reliably identify the κ1 random variables
with the highest means, the κ2 − κ1 random variables with the highest means
among the remaining K− κ1 random variables, and so on, by observing samples
from their reward distributions (for a precise formulation see Section 3.4). The
focus of this chapter is on algorithms that achieve this clustering by requesting
samples adaptively. The coarse ranking setting applies to the scenarios above, and
also subsumes many well-studied problems. The problem of finding the best item
corresponds to κ1 = 1, κ2 = K. The problem of finding the top-m items corresponds
to κ1 = m, κ2 = K. The problem of sorting the items into c equal-sized clusters
corresponds to κi = round(iK/c), 1 6 i 6 c. Finally, the complete ranking can be
obtained by setting κi = i, 1 6 i 6 i 6 K.

The problem of completely sorting items is in general hard in real-world applica-
tions, and does not exhibit gains from adaptivity. Maystre and Grossglauser [2017]



26

who analyze the performance of Quicksort, observe in their real-world experiments:

“The improvement is noticeable but modest. We notice that item param-
eters are close to each other on average; . . . This is because there is a
considerable fraction of items that have their parameters (means) very
close to one another . . . Figuring out the exact order of these images is
therefore difficult and probably of marginal value.”

(3.1)

The fact that adaptivity doesn’t help for complete ranking is true not just for Quicksort,
but other adaptive algorithms as well - as we observe in our experiments. Adaptivity
does however help for coarse ranking, and this can be explained. Consider the case
when the K items have bounded reward distributions, and their means are equally
separated, with a gap ∆ between consecutive means. Correctly ordering any two
consecutive items requiresΩ(1/∆2) samples, and thus any algorithm would require
Ω(K/∆2) to find a total ordering. A non-adaptive algorithm sampling the items
uniformly would gather approximately equal samples from every item, and hence
will find the correct ranking after roughly these many samples (up to perhaps log
factors). Thus adaptivity doesn’t help in this case. However, if the goal is to find
only the quartiles say, an adaptive algorithm can quickly stop sampling items that
are far from the quartile boundaries and gain over non-adaptive algorithms.

In this work, we make six contributions. First, we motivate the coarse rank-
ing setting. We do this by arguing that most real-life problems have high noise,
and by explaining why adaptive methods are ineffective in producing a complete
ranking in these high-noise regimes (Section 3.3). Second, we precisely formulate
the online probably approximately correct (PAC)-coarse ranking problem with
error tolerance ε and failure probability δ that can model real-valued as well as
pairwise comparison feedback (Section 3.4). Third, we propose a nonparametric
PAC Upper Confidence Bound (UCB)-type algorithm LUCBRank to solve this prob-
lem. To the best of our knowledge, this is the first UCB-type algorithm for ranking
(Section 3.5). Fourth, we analyze the sample complexity of LUCBRank and prove an
upper bound which is inversely proportional to the distance of the item to its closest
cluster boundary, where the distance is measured in terms of Chernoff information
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(Section 3.6). Fifth, we also prove a nearly matching distribution-dependent lower
bound. The contribution of an item to the lower bound is inversely proportional
to the distance of the item to the closest item in an adjacent cluster, with distance
in this case measured using KL-divergences (Section 3.6.3). Finally, we compare
the performance of our algorithm to several baselines on synthetic as well as real-
world data gathered using MTurk, and observe that it performs 2 - 3x better than
existing algorithms even when they have the advantage of knowing the underlying
parametric model (Section 3.7).

3.1.1 Ranking using Pairwise Comparisons

We use the term direct-feedback or real-rewards to indicate a setting where the
learner can sample directly from the item’s reward distribution. Our algorithm is
stated for this setting. In contrast, in the pairwise-comparison or dueling setting,
the learner compares two items and receives 1-bit feedback about who won the
duel. We next explain how to translate our algorithm to this setting.

Any algorithm designed to solve the direct-feedback coarse ranking problem can
also be used with pairwise comparison feedback using Borda reduction [Jamieson
et al., 2015b]. According to this technique, whenever the algorithm asks to draw a
sample from item i, we compare item i to a randomly chosen item j, and ascribe
a reward of 1 to item i if i wins the duel, and 0 otherwise. This is equivalent to
the rewards being sampled from a Bernoulli distribution with means given by the
Borda scores of the items. The Borda score of an item i is defined as

pi :=
1

K− 1
∑
j6=i

P(i > j). (3.2)
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3.2 Related Work

There is extensive work on ranking from noisy pairwise comparisons, we refer the
reader to excellent surveys by Busa-Fekete and Hüllermeier [2014], Agarwal [2016].
We discuss the most relevant work next.

3.2.1 Ranking from Pairwise Comparisons

The pairwise comparison matrix P (where Pij = P(i > j)) and assumptions on it
play a major role in the design of ranking algorithms [Agarwal, 2016]. A sequence
of progressively relaxed assumptions on P can be shown where ranking methods
that work under restrictive assumptions fail when these assumptions are relaxed
[Rajkumar and Agarwal, 2014, Rajkumar et al., 2015]. Spectral ranking algorithms
have been proposed when comparisons are available for a fixed set of pairs [Negah-
ban et al., 2012a,b]; this corresponds to a partially observed P matrix. Braverman
and Mossel [2009], Wauthier et al. [2013] propose and analyze algorithms for the
noisy-permutation model; this corresponds to a P matrix which has two types of
entries: 1 − p in the upper triangle and p in the lower triangle (assuming the true
ordering of the items is 1 . . .K). They also focus on settings where queries cannot
be repeated. Our work makes no assumptions on the P matrix and ranks items
using their Borda scores. This is important given the futility of parametric models
to model real-life scenarios [Shah et al., 2016].

Quicksort is another highly recommended algorithm for ranking using noisy
pairwise comparisons. Maystre and Grossglauser [2017] study Quicksort under
the BTL noise model, and Alonso et al. [2003] analyze Quicksort under the noisy
permutation model. We comment on these in Section 3.3.

Jamieson and Nowak [2011] propose an algorithm for active ranking from
pairwise comparisons when points can be embedded in Euclidean space. Ailon
[2012] consider ranking when query responses are fixed. More recently, Agarwal
et al. [2017] consider top-m item identification and ranking under limited rounds
of adaptivity, Falahatgar et al. [2017] consider the problem of finding the maximum
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and ranking assuming strong-stochastic transitivity and the stochastic-triangle
inequality. We do not need these assumptions.

Our setting is closest to the setting proposed by Heckel et al. [2016], in the
context of ranking using pairwise comparisons. Our setting however applies to
real-valued rewards as well as pairwise comparison feedback. Furthermore, our
setting incorporates the notion of ε-optimality which allows the user to specify
an error tolerance [Even-Dar et al., 2006]. This is important in practice if the item
means are very close to each other. Finally, as they note, their Active Ranking (AR)
algorithm is an elimination-style algorithm, our LUCBRank is UCB-style; it is known
that the latter perform better in practice [Jiang et al., 2017]. We also verify this
empirically in Section 3.7.2, and observe that LUCBRank requires 2-3x fewer samples
than AR in our synthetic as well as real-world experiments (see Fig. 3.2 and Fig. 3.5).

3.2.2 Relation to Bandits

The idea of sampling items based on lower and upper confidence bounds is well-
known in the bandits literature [Auer, 2002]. However, these algorithms either focus
on finding the best or top-m items [Audibert and Bubeck, 2010, Kalyanakrishnan
et al., 2012, Kaufmann et al., 2015, Chen et al., 2017], or on minimizing regret
[Bubeck et al., 2012]. This is the first work to our knowledge that employs this tool
for ranking.

3.3 Motivation

We argue that existing adaptive methods offer no significant gains over their non-
adaptive counterparts when the goal is to find a complete ranking, and coarse
ranking is more appropriate for many real-world applications. We provide brief
theoretical justification for this claim in the discussion after quote (3.1), and empiri-
cally verify this behavior in Fig. 3.4. In this section, we focus on Quicksort, because it
has been well-studied under multiple noise models. Quicksort has optimal sample
complexity when comparisons are noiseless [Sedgewick and Wayne, 2011] and is
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naturally appealing when comparisons are noisy [Maystre and Grossglauser, 2017].
Intuitively it feels like the right thing to do - by comparing an item with the pivot
and putting it left or right appropriately, Quicksort performs a binary search for
the true position of an item. However it is far from optimal under two noise models
as we argue next.

First, consider the noisy-permutation (NP) noise model [Feige et al., 1994] where
the outcomes of pairwise comparisons are independently flipped with an error
probability p. In the first stage of Quicksort, every item that is compared with
the pivot and put in the wrong bucket contributes on average K

2 to the Kendall
tau error (total number of inverted pairs). Now, Kp items are put in the wrong
bucket on average in the first stage of Quicksort, and hence the total number of
inverted pairs is at least Ω(K2p). Alonso et al. [2003] show that Θ(K2p) is indeed
the expected number of inversions. This is far from optimal because Braverman
and Mossel [2009] propose an algorithm which has a Kendall tau error of O(K)
with high probability, using K logK comparisons (same as quicksort). Alonso et al.
[2003] conjecture that for quicksort to haveO(K) expected inversions, p needs to go
down faster than 1/K, like 1

K logK . As the above calculation shows, they conjecture
that this is because Quicksort is extremely brittle: “the main contribution (to the
total inversions) comes from the ‘first’ error, in some sense.” One may be able to
get rid of this lack of robustness by repeating queries, but this requires knowledge
of the error probability p or adapting to its unknown value. This is possible, but as
we argue shortly, a good model for real-world problems where comparisons are
made by humans is one where p increases to 1/2 as K grows, since it becomes more
difficult to compare adjacent items in the true ranking as K increases. Quicksort
certainly fails in this regime.

The other class of well-studied noise models are the Bradley-Terry-Luce (BTL)
[Bradley and Terry, 1952] or Thurstone [Thurstone, 1927] models, which assume aK-
dimensional weight vector that measures the quality of each item, and the pairwise
comparison probabilities are determined via some fixed function of the qualities
of pair of objects. These models are more realistic than the NP model since under
these models, comparisons between items that are far apart in the true ranking
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are less noisy than those between nearby items. Maystre and Grossglauser [2017]
analyze the expected number of inversions of Quicksort under the BTL model, and
show that when the average gap between adjacent items is ∆, the expected number
of inversions isO(∆−3). They note however that real-world datasets have extremely
small ∆ (∆̂−1 = 376 in their experiments) and Quicksort performs no better than
random (see quote (3.1)). We make similar observations about the inefficacy of
Quicksort (and other adaptive algorithms) in our real-world experiments (see
Fig. 3.4).

The problem in finding an exact/total ranking is that if the means of the items
lie in a bounded range, e.g., [0, 1], then the minimum gap must decrease at least
linearly with K and many items become essentially indistiguishable. To see this,
suppose there is a constant gap ∆ between consecutive means and let m = d 3

∆
e.

Then, assuming the logistic model, them-th item beats the 1st item with probability
> 0.95, the 2m-th item beats them-th item with probability > 0.95, and so on. Thus,
items that arem-apart can be considered distinguishable. Assuming the range of
possible means is bounded implies that ∆ ∝ 1/K. Thus, the number of items that
are essentially indistiguishable increases linearly with K, suggesting that seeking
a total ranking is a futile effort. This situation arises in applications such as Place
Pulse where humans rate street view images according to their perceived safety
[Naik et al., 2014], or the task in Wood et al. [2017] where humans rate face images
according to the strength of their emotions.

Coarse ranking allows the experimenter to set the number of clusters in accor-
dance with the number of distinguishable levels, and thus frees the algorithm from
the task of distinguishing incomparable items. In this sense, it converts a high-noise
problem to a low-noise one. Even though the gap between adjacent items is small,
most items are far from their nearest cluster boundary, and an adaptive algorithm
can stop sampling these items early.
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3.4 Setting

In this section, we precisely formulate the coarse ranking setting. For ease of
reference, we use terminology from the bandits literature and refer to an item as
arm. Also, pulling or drawing an arm is equivalent to sampling from the item’s
reward distribution.

Consider a multi-armed bandit with K arms. Each arm a corresponds to a
Bernoulli distribution with an unknown mean pa, denoted B(pa). A draw / pull of
arm a yields a reward from distribution B(pa). Without loss of generality, assume
the arms are numbered so that p1 > p2 · · · > pK.

Given an integer c > 2 representing the number of clusters, let 1 6 κ1 < κ2 <

· · · < κc = K be a collection of positive integers. Any such collection of positive
integers defines a partition of [K] into c disjoint sets of the form

M∗1 := {1, . . . ,κ1}, M∗2 := {κ1 + 1, . . . ,κ2}, . . . ,M∗c := {κc−1 + 1, . . . ,K}. (3.3)

To solve the coarse ranking problem given a set of cluster boundaries (κi)
c
i=1,

an algorithm may sample arms of the K-armed bandit and record the results; the
algorithm is required to terminate and cluster the arms into an ordered set of
disjoint sets of the form (3.3). We refer to this output as a coarse ranking.

We next define the notion of ε-tolerance. For some fixed tolerance ε ∈ [0, 1] and
1 6 i 6 c, letM∗i,ε be the set of all arms that should be in cluster i upto a tolerance
ε, i.e.

M∗i,ε := {a : pκi−1+1 + ε > pa > pκi − ε},

(with the convention that pκ0 = 1). Note that the true set of arms in cluster i:
M∗i := {κi−1 + 1, . . . , κi}, is a subset ofM∗i,ε; the latter set contains in addition arms
that are ε close to the boundary.

For a given mistake probability δ ∈ [0, 1] and a given error tolerance ε ∈ [0, 1],
we call an algorithm (ε, δ)-PAC if, with a probability greater that 1 − δ, after using
a finite number of samples, it returns a rank for each arm such that the ith ranked
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cluster according to the returned ranking is a subset of M∗i,ε for all 1 6 i 6 c.
Formally, if σ(a) is the rank of arm a returned by the algorithm after using a finite
number of samples, we can define the empirical cluster i as

M̂i := {a : κi−1 + 1 6 σ(a) 6 κi},

and we say the algorithm is (ε, δ)-PAC if

P
(
∃ i such that M̂i 6⊆M∗i,ε

)
6 δ. (3.4)

3.5 Algorithm

Let (κ1, . . . , κc = K) be the cluster boundaries. We describe here the LUCBRank
algorithm using generic confidence intervals Ia = [La(t),Ua(t)], where t indexes
rounds of the algorithm. LetNa(t) be the number of times arm a has been sampled
up to round t, and Sa(t) be the sum of rewards of arm a up to round t. Let
p̂a(t) =

Sa(t)
Na(t)

be the corresponding empirical mean reward. Sort the arms in the
decreasing order of their empirical mean rewards, and for 1 6 i 6 c− 1, let Ji(t)
denote the κi arms with the highest empirical mean rewards. Define

lit := arg min
a∈Ji(t)

La(t), uit := arg max
a/∈Ji(t)

Ua(t) (3.5)

to be the two critical arms from Ji(t) and Jci (t) that are likely to be misclassified (see
Fig. 3.1).

Algorithm 2 contains the pseudocode of LUCBRank, which is also depicted in
Fig. 3.1. The algorithm maintains active cluster boundaries in the set C, where a
cluster boundary i is active if the overlap of confidence intervals in Ji and Jci is not
less than ε. In every round, it samples both the critical arms at every active cluster
boundary (lines 11-15). At the end of every round, it checks if the critical arms at
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< ε ?

Figure 3.1: A visualization of LUCBRank on a bandit instance with K = 20 arms,
c = 3 clusters, with boundaries at κ1 = 5, κ2 = 15. Also shown are the critical arms
lit,uit pulled at each boundary. The algorithm stops sampling a boundary when
the confidence interval overlap is less than ε.

any boundary are separated according to the tolerance criterion, and removes such
boundaries from the active set (lines 21-25). For our experiments, we use KL-UCB
[Garivier and Cappé, 2011] confidence intervals. For an exploration rate β(t, δ), the
KL-UCB upper and lower confidence bounds for arm a are calculated as

Ua(t) := max{q ∈ [p̂a(t), 1] : Na(t)d(p̂a(t),q) 6 β(t, δ)},

La(t) := min{q ∈ [0, p̂a(t)] : Na(t)d(p̂a(t),q) 6 β(t, δ)}.
(3.6)

where d(x,y) is the Kullback-Leibler divergence between two Bernoulli distribu-
tions, given by d(x,y) = x log x

y
+ (1 − x) log 1−x

1−y .
LUCBRank can also be easily modified for pairwise-comparison queries: when-

ever the algorithm calls for drawing an arm i, duel arm i with another arm chosen
uniformly at random.
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Algorithm 2 LUCBRank

1: Input: ε > 0, cluster boundaries 1 6 κ1, . . . ,κc = K
2: t← 1
3: C← {1, . . . , c− 1} //active cluster boundaries
4:
5: for a = 1, . . . ,K do
6: Sample item a, compute Ua(1) and La(1)
7: end for
8:
9: while C 6= ∅ do

10: // Sample active cluster boundaries
11: for i ∈ C do
12: Sample item lit
13: Sample item uit
14: (If pairwise comparing, compare item lit to a random other item, and

compare item uit to a random other item. See Section 3.1.1)
15: end for
16: t = t+ 1
17: ∀a ∈ [K] : Update reward-estimate p̂a(t), number of samples Na(t), and

confidence bounds Ua(t),La(t) (see (3.6))
18: ∀ i ∈ C: Compute lit,uit (see (3.5))
19:
20: // Eliminate unambiguous cluster boundaries
21: for i ∈ C do
22: if Uuit(t) − Llit(t) < ε then
23: C = C \ i

24: end if
25: end for
26: end while
27:
28: Return items sorted by their empirical mean rewards.

3.6 Analysis

We prove the accuracy of LUCBRank in Theorem 3.1, and give an upper bound on the
sample complexity in Theorem 3.2. Our distribution-dependent lower bound for
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the sample complexity of any δ-PAC algorithm is stated in Theorem 3.4. All proofs
can be found in the Appendix. Recall that 1 6 κ1 < κ2 < · · · < κc−1 < κc = K are
the cluster boundaries.

3.6.1 PAC Guarantee

Theorem 3.1 gives choices of β(t, δ) such that LUCBRank is correct with probability
at least δ, in the sense defined by (3.4).

Theorem 3.1. LUCBRank using β(t, δ) = log(k1Kt
α

δ
) + log log(k1Kt

α

δ
) with α > 1 and

k1 >
(
c−1

2

)α
+ 2e
α−1 +

4e
(α−1)2 , is correct with probability 1 − δ.

3.6.2 Sample Complexity

Our sample complexity results are stated in terms of Chernoff information [Cover
and Thomas, 2012].

Chernoff Information: Consider two Bernoulli distributions B(x) and B(y),
and let d(x,y) denote the KL-divergence between these distributions. The Chernoff
information d∗(x,y) between these two Bernoulli distributions is defined by

d∗(x,y) := d(z∗, x) = d(z∗,y)

where z∗ is the unique z such that d(z, x) = d(z,y).
Next we introduce some notation. For an arm a, let g(a) (read group of arm a)

denote the index of the cluster that arm a belongs to. Formally,

g(a) := min{1 6 i 6 c : pa 6 pκi}. (3.7)

Let bi ∈ [pκi ,pκi+1], 1 6 i 6 c− 1 be any points in the cluster boundary gaps, and
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b := (b1,b2, . . . ,bc−1). Define

∆∗b(a) :=


d∗(pa,b1) a ∈ {1, . . . ,κ1}

min(d∗(pa,bg(a)−1),d∗(pa,bg(a)) a ∈ {κ1 + 1, . . . ,κc−1}

d∗(pa,bc−1) a ∈ {κc−1 + 1, . . . ,K}

(3.8)

to be the “distance” of each arm from the closest cluster boundary. Our upper
bound on the sample complexity of LUCBRank is stated in Theorem 3.2, and contains
the quantity H∗ε,b where

H∗ε,b :=
∑

a∈{1,...,K}

1
max(∆∗b(a), ε2/2)

. (3.9)

Theorem 3.2. Let b = (b1,b2, . . . ,bc−1), where bi ∈ [pκi ,pκi+1]. Let ε > 0. Let
β(t, δ) = log(k1Kt

α

δ
) + log log(k1Kt

α

δ
) with k1 >

(
c−1

2

)α
+ 2e
α−1 + 4e

(α−1)2 . Let τ be the
random number of samples taken by LUCBRank before termination. If α > 1,

P
(
τ 6 2C0(α)H

∗
ε,b log

(
k1K(2H∗ε,b)

α

δ

))
> 1 − δ

where C0(α) is such that C0(α) >
(
1 + 1

e

) (
α log(C0(α)) + 1 + α

e

)
.

3.6.3 Distribution-Dependent Lower Bound

In this section, we state our non-asymptotic lower bound on the expected number
of samples needed by any δ-PAC algorithm to cluster and rank the arms into groups
of sizes (κ1, κ2 − κ1, . . . ,K− κc−1). For simplicity, we focus on the case ε = 0. The
proof of the lower bound uses standard change of measure arguments [Kaufmann
et al., 2015], which requires some continuity and well-separation assumptions. We
state these next.

We consider the following class of bandit models where the clusters are unam-
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biguously separated, i.e.

Mκ = {p = (p1, . . . ,pK) : pi ∈ P,pκi > pκi+1, 1 6 i < c}, (3.10)

where P is a set that satisfies

∀p,q ∈ P2,p 6= q⇒ 0 < KL(p,q) < +∞.

We also assume the following:

Assumption 3.3. For all p,q ∈ P2 such that p 6= q, for all α > 0,
there exists q1 ∈ P: KL(p,q) < KL(p,q1) < KL(p,q) + α and EX∼q1 [X] > EX∼q[X],
there exists q2 ∈ P: KL(p,q) < KL(p,q2) < KL(p,q) + α and EX∼q2 [X] < EX∼q[X].

To state our lower bound, we need to define for each arm a, another “distance”
from the boundary, similar to (3.8). Define

∆KL
κ (a) :=


KL(pa,pκ1+1) a ∈ {1, . . . ,κ1}

min(KL(pa,pκg(a)−1), KL(pa,pκg(a)+1) a ∈ {κ1 + 1, . . . ,κc−1}

KL(pa,pκc−1) a ∈ {κc−1 + 1, . . . ,K},

(3.11)

where g(a) defined in (3.7) is the cluster that arm a belongs to. We highlight the
differences from (3.8). First, the Chernoff information in (3.8) is replaced with
KL-divergence in (3.11), and second, the distance is measured with the closest arm
in either adjacent cluster here, as opposed to a point in the gap between the clusters
in (3.8).

Our lower bound involves the quantity

∑
a∈1,...,K

1
∆KL
κ (a)

(3.12)

and is as follows:
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Theorem 3.4. Let p ∈ Mκ, and assume that P satisfies Assumption 3.3; any coarse
ranking algorithm that is δ-PAC on Mκ satisfies, for δ 6 0.15,

Ep[τ] >

[ ∑
a∈1,...,K

1
∆KL
κ (a)

]
log
(

1
2.4δ

)

3.6.4 Remarks

• The tightest high-probability upper bound is obtained by setting b equal to
arg min

b:bi∈[pκi ,pκi+1]

H∗ε,b in Theorem 3.2.

• Although stated for Bernoulli distributions, the results in this chapter can
easily be extended to rewards in the exponential family [Garivier and Cappé,
2011] by using the appropriate d function.

3.7 Experiments

3.7.1 Ranking from Direct Feedback

We first compare LUCBRank with uniform sampling and the Active Ranking (AR)
algorithm [Heckel et al., 2016]. AR is an adaptation of the successive elimination
approach to solve the coarse ranking problem. It maintains a set of unranked
items and samples every item in this set, removing an item from the set when it
is confident of the cluster the item belongs to. Although developed for pairwise
comparison feedback, AR can easily be adapted to the direct-feedback setting.

We look at the bandit instance Bwith K = 15 arms whose rewards are Bernoulli
distributed with means (p1 =

1
2 ;pa = 1

2 −
a
40 for a = 2, 3, . . . ,K). This problem has

been studied in the literature in the context of finding the best-arm [Bubeck et al.,
2013]. We consider the problem of finding the top-3 and the bottom-3 arms, which
corresponds to κ1 = 3, κ2 = 12.
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Figure 3.2: Exp 1 (description in text)

In Fig. 3.2, we record the probability (averaged over 1000 simulations) that the
empirical clusters returned by the algorithm do not match the true clusters. We set
δ = 0.1 for both LUCBRank and AR, and ε = 0 in LUCBRank to have a fair comparison
with AR. We see that the mistake probability drops faster for LUCBRank than for AR.

3.7.2 Ranking from Pairwise Comparisons

To measure the performance of our algorithm on real-world data, we selected K =

100 Google street view images in Chicago, and collected 6000 pairwise responses
on MTurk using NEXT [Jamieson et al., 2015a], where we asked users to choose
the safer-looking image out of two images. This experiment is similar to the Place
Pulse project [Naik et al., 2014], where the objective is to assess how the appearance
of a neighborhood affects its perception of safety. Fig. 3.3(a) shows a sample query
from our experiment. We estimated the safety scores of these street view images
from the user-responses by fitting a Bradley-Terry-Luce (BTL) model [Bradley and
Terry, 1952] using maximum likelihood estimation, and used this as the ground
truth to generate noisy comparisons. Given two items i and j with scores θi and
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(a)

0.05 1.09 2.98 3.77
(b)

(c)

Figure 3.3: (a) A sample query on NEXT. (b) Four sample images and their estimated
BTL scores beneath. (c) Scatter plot of all the BTL scores, with the sample image
markers highlighted.

θj, the BTL model estimates the probability that item i is preferred to item j as
P(i > j) = eθi

eθi+e
θj

. Fig. 3.3(b) shows 4 images overlayed with their estimated BTL
scores (where the lowest score was set to 0), and Fig. 3.3(c) shows a scatter plot of
the scores of all 100 images.

We first study the performance of adaptive methods with the goal of finding a



42

Figure 3.4: The futility of adaptive methods if the goal is to obtain a complete rank-
ing. We compare uniform sampling with Active Ranking (both use non-parametric
rank aggregation), and uniform sampling with quicksort (where both use paramet-
ric rank aggregation). We see that the Kendall tau distance of adaptive methods is
no lower than those of their non-adaptive counterparts.

complete ranking, and observe that adaptive methods offer no advantages when items
means are close to each other as they are in this dataset. Oblivious of the generative
model, a lower bound (ignoring constants and log factors) on the number of samples
required to sort the items by their Borda scores is given by

∑
1/∆2

i [Jamieson et al.,
2015b], where the ∆is are gaps between consecutive sorted Borda scores. For
the dataset considered in this experiment,

∑
1/∆2

i = 322 million! We verify the
futility of adaptive methods in Fig. 3.4, where we compare the performance of
parametric as well as non-parametric adaptive methods in the literature (we describe
these methods shortly) to their non-adaptive counterparts, with a goal of finding
a complete ranking of the images. In the parametric algorithms (UniformParam
and QSParam), we find MLE estimates of the BTL scores that best fit the pairwise
responses. In the non-parametric algorithms (Uniform and AR), we estimate the
scores using empirical probabilities in Eq. (3.2). In Fig. 3.4, we plot the fraction of
pairs that are inverted in the empirical ranking compared to the true ranking, and
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see no benefits for adaptive methods. We do see gains from adaptivity in the coarse
formulation (Fig. 3.5), as we explain next.

LUCBRank can be used in the pairwise comparison setting using Borda reduction,
as described in Section 3.1.1. The adaptive methods in literature we compare to
are AR (as in the previous section), and Quicksort (QS) [Ailon et al., 2008, Maystre
and Grossglauser, 2017]. The Quicksort algorithm works exactly like its non-noisy
counterpart: it compares a randomly chosen pivot to all elements, and divides the
elements into two subsets - elements preferred to the pivot, and elements the pivot
was preferred over. The algorithm then recurses into these two subsets. In this
experiment, we stop the quicksort algorithm early as soon as all the subsets are
inside the user-specified clusters. Continuing the algorithm further won’t change
the items in any cluster. This reduces the sample complexity of Quicksort.

Figure 3.5: Probability of error in identifying the clusters: LUCBRank does better
than parametric versions of other active algorithms.

We consider the problem of clustering the images into pentiles (κi = 20 i, 1 6

i 6 5). We set δ = 0.1 for both LUCBRank and AR, and ε = 0 in LUCBRank to ensure
a fair comparison with AR. In Fig. 3.5, we record the probability (averaged over 600
simulations) that the empirical pentiles returned by the algorithm do not match the
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true pentiles. We find that LUCBRank has a lower mistake probability than even the
parametric version of Quicksort, which assumes knowledge of the BTL model. As
an aside, note that when the items are close as in this experiment, the parametric
versions of Uniform and Quicksort perform similarly, and the active nature of
Quicksort offers no significant advantage.

Figure 3.6: (a) The ratio of inter-cluster inversions of LUCBRank and Uniform. (b)
The ratio of intra-cluster inversions of LUCBRank and Uniform. LUCBRank focuses on
minimizing inter-cluster inversions at the cost of intra-cluster inversions.

In Fig. 3.6(a) and (b) we plot the ratio of inter-cluster and intra-cluster inversions
respectively of LUCBRank and Uniform. An inter-cluster pair is a pair of items that
are in different clusters in the true ranking, while an intra-cluster pair is a pair of
items from the same cluster. We see the that ratio of inter-cluster inversions goes
down in Fig. 3.6(a), because that is the metric LUCBRank focuses on. LUCBRank does
not expend effort on refining its estimate of an item’s rank once its cluster has been
found, and hence pays a price in the form of intra-cluster inversions (Fig. 3.6(b)).

3.8 Conclusion

The coarse ranking setting is motivated from real-world problems where humans
rate items. These problems have high noise and are hard, and a complete ranking
is not feasible; fortunately, it is often also not necessary. We propose a practical
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online algorithm for solving it, LUCBRank, and prove distribution-dependent upper
and lower bounds on its sample complexity. We evaluate its performance on
crowdsourced data gathered using MTurk, and observe that it performs better than
existing algorithms in the literature.

We leave open several questions. First, our upper bound is stated in terms of
Chernoff information between distributions, while our lower bound is in terms of
KL-divergences, and there is a gap between the two. Second, the cluster boundaries
need to be user-specified in our current setting. If the gap between the nearest
items in adjacent clusters is small, this can adversely affect the sample complexity.
Although this is partially addressed through the error-tolerance ε, an attractive
algorithm would be one which auto-tunes the positions of the cluster boundaries
at the widest gaps, subject to user-specified constraints.

To the best of our knowledge, this chapter presents the first bandit UCB algo-
rithm for ranking.

3.9 Appendix

3.9.1 PAC Guarantee

We’ll use the following lemma [Kaufmann and Kalyanakrishnan, 2013] which
bounds the probability of ‘bad’ events in round t.

Lemma 3.5. Let Ua(t) and La(t) be the confidence bounds defined in Eq. (3.6). For any
algorithm and arm a,

P(Ua(t) < pa) = P(La(t) > pa) 6 e(β(t, δ) log t+ 1) exp(−β(t, δ))

We shall also need the following technical lemma, which we’ll use to upper
bound the probability of any bad event.
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Lemma 3.6. If β(t, δ) = log(k1Kt
α

δ
) + log log(k1Kt

α

δ
),

∞∑
t=1

(β(t, δ) log t+ 1) exp(−β(t, δ)) 6 δ

k1K

(
2

(α− 1)2 +
1

(α− 1)

)

Proof. Let us consider

β(t, δ)(log t)e−β(t,δ) =
(
log
(
k1Kt

α

δ

)
+ log log

(
k1Kt

α

δ

))
(log t)

(
δ

k1Ktα
· 1

log k1Ktα

δ

)

6 2 log
(
k1Kt

α

δ

)
· log t ·

(
δ

k1Ktα
· 1

log k1Ktα

δ

)
= 2 log t · δ

k1Ktα

Hence

∞∑
t=1

(β(t, δ) log t+ 1) exp(−β(t, δ)) 6
∞∑
t=1

(
2 log t · δ

k1Ktα
+

δ

k1Ktα

)
6

δ

k1K

(
2

(α− 1)2 +
1

(α− 1)

)

3.9.1.1 Proof of Theorem 3.1

Theorem. LUCBRank using β(t, δ) = log(k1Kt
α

δ
) + log log(k1Kt

α

δ
) with α > 1 and

k1 > 1 + 2e
α−1 +

4e
(α−1)2 , is correct with probability 1 − δ.

Proof. Consider the event

W =
⋂
t∈N

⋂
a∈{1,...,K}

((Ua(t) > pa) ∩ (La(t) < pa))
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where all arms are well-behaved i.e. their true means are inside their confidence
intervals. We show that LUCBRank is correct on the eventW.

Assume LUCBRank fails, which means that when it terminates, there exists a
cluster i, such that arm a belongs to cluster i in the returned ranking, and a ∈M∗,cε,i;
that is, either 1) pa > pκi−1+1 + ε or 2) pa < pκi − ε.

Consider the first case: pa > pκi−1+1 + ε. Consequently, there exists arm b such
that pb 6 pκi−1+1, and τ(b) 6 κi−1 in the returned ranking. Since the algorithm
stopped and boundary i− 1 was removed from the set of active boundaries C, it
must be the case thatUa(t)−Lb(t) < ε upon stopping. Hence, the following holds:

⋃
t∈N

(∃a,b : pa > pκi−1+1 + ε,pb 6 pκi−1+1,Ua(t) − Lb(t) < ε)

⊆
⋃
t∈N

(∃a,b : (Ua(t) < pb + ε < pa) ∪ (Lb(t) > pb))

⊆
⋃
t∈N

⋃
a∈{1,...,K}

(Ua(t) < pa)
⋃

b∈{1,...,K}

(Lb(t) > pb) ⊆Wc

Consider the second case: pa < pκi − ε. Consequently, there exists an arm b

such that pb > pκi , and τ(b) > κi in the returned ranking. Since the algorithm
stopped and boundary i was removed from the set of active boundaries C, it must
be the case that Ub(t) − La(t) < ε upon stopping. Hence, the following holds:

⋃
t∈N

(∃a,b : pa < pκi − ε,pb > pκi ,Ub(t) − La(t) < ε)

⊆
⋃
t∈N

(∃a,b : (Ub(t) < pb) ∪ (La(t) > pb − ε > pa))

⊆
⋃
t∈N

⋃
b∈{1,...,K}

(Ub(t) < pb)
⋃

a∈{1,...,K}

(La(t) > pa) ⊆Wc
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Hence

P(LUCBRank fails) 6 P(Wc)

6 2eK
∞∑
t=1

(β(t, δ) log t+ 1) exp(−β(t, δ)) (by Lemma 3.5)

6
δ

k1

(
4e

(α− 1)2 +
2e

(α− 1)

)
(by Lemma 3.6)

6 δ (by the constraint on k1)

3.9.2 Sample Complexity

We define the event Wt which says that all arms are well-behaved in round t i.e.
their true means are contained inside their confidence intervals.

Wt =
⋂

a∈{1,2,...,K}

((Ua(t) > pa) ∩ (La(t) < pa))

Note that the eventW defined earlier isW = ∪t∈NWt.
Proposition 3.7 gives a sufficient condition for stopping.

Proposition 3.7. Let bi ∈ [pκi ,pκi+1]. IfUuit−Llit > ε andWt holds, then either k = lit

or k = uit satisfies
bi ∈ Ik(t) and β̃k(t) >

ε

2
,

where we define β̃a(t) =
√

β(t,δ)
2Na(t)

Proof. Our Wt condition is stronger than that required in the Proposition 1 in
Kaufmann and Kalyanakrishnan [2013], and hence their proof applies.

Lemma 3.8 is another concentration result that will be used in our sample
complexity guarantee.
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Lemma 3.8. Let T > 1 be an integer, and 1 6 i 6 (c − 1) be any cluster boundary. Let
δ > 0,γ > 0 and x ∈]0, 1[ be such that pa 6= x. Then

T∑
t=1

P
(
a = uti ∨ a = lti ,Na(t) >

⌈
γ

d∗(pa, x)

⌉
,Na(t)d(p̂a(t), x) 6 γ

)
6

exp(−γ)
d∗(pa, x)

We prove the following lemma, which states that the Chernoff information
increases as the second distribution moves away from the first.

Lemma 3.9. If x < y < y ′ or x > y > y ′, d∗(x,y) 6 d∗(x,y ′)

Proof. We shall prove the statement for the case x < y < y ′. The proof for x > y > y ′

is analogous.
Let z∗ be the unique z such that d(z∗, x) = d(z∗,y). Since z∗ < y < y ′, d(z∗,y ′) >
d(z∗,y) = d(z∗, x). Hence, there exists z∗ ′ > z∗ such that d∗(x,y) = d(z∗, x) 6

d(z∗
′ , x) = d(z∗ ′ ,y ′) = d∗(x,y ′).

Lemma 3.10. Let x∗ be the solution of the equation:

x =
1
γ

(
log x

α

η
+ log log x

α

η

)
Then if γ < 1 and η < 1/ee,

1
γ

log
(

1
ηγα

)
6 x∗ 6

C0

γ
log
(

1
ηγα

)
where C0 is such that C0 >

(
1 + 1

e

) (
α logC0 + 1 + α

e

)
.

Proof. x∗ is upper bounded by any x such that 1
γ

(
log xα

η
+ log log xα

η

)
6 x. We
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look for x∗ of the form C0
γ

log
(

1
ηγα

)
.

1
γ

(
log x

α

η
+ log log x

α

η

)
6

1
γ

(
1 +

1
e

)
log
(
xα

η

)
=

1
γ

(
1 +

1
e

)(
α logC0 + log 1

ηγα
+ α log log 1

ηγα

)
6

1
γ

(
1 +

1
e

)(
α logC0 +

(
1 +

α

e

)
log 1

ηγα

)
6

1
γ

(
1 +

1
e

)(
α logC0 + 1 +

α

e

)
log 1

ηγα

where the first and second inequalities hold because log x 6 x
e

, and the last inequal-
ity holds because 1

ηγα
> e. Choosing C0 such that

C0 >

(
1 +

1
e

)(
α logC0 + 1 +

α

e

)
gives us our upper bound.

To prove the lower bound, consider the series defined by

x0 = 1

xn+1 =
1
γ

(
log x

α
n

η
+ log log x

α
n

η

)
First note that since γ < 1 and η < 1/ee, the sequence is increasing. Second, note
that the sequence converges to x∗. Hence

x∗ > x2 =
1
γ

[
log
(

1
ηγα

(
log 1

η
+ log log 1

η

)α)
+ log log

(
1
ηγα

(
log 1

η
+ log log 1

η

)α)]
=

1
γ

[
log 1

ηγα
+ α log

(
log 1

η
+ log log 1

η

)
+ log log 1

ηγα
+ α log log

(
log 1

η
+ log log 1

η

)]
>

1
γ

log 1
ηγα

since η < 1/ee.
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Corollary 3.11. Let γ = 1
2H∗ε,b

,η = δ
k1K

. Then applying Lemma 3.10 gives

2H∗ε,b log
(
k1K(2H∗ε,b)

α

δ

)
6 S∗1 6 2C0(α)H

∗
ε,b log

(
k1K(2H∗ε,b)

α

δ

)

3.9.3 Proof of Theorem 3.2

Theorem. Let b = (b1,b2, . . . ,bc−1), where bi ∈ [pκi ,pκi+1]. Let ε > 0. Let β(t, δ) =
log(k1Kt

α

δ
) + log log(k1Kt

α

δ
) with k1 > 1 + 2e

α−1 +
4e

(α−1)2 . Let τ be the random number of
samples taken by LUCBRank before termination. If α > 1,

P
(
τ 6 2C0(α)H

∗
ε,b log

(
k1K(2H∗ε,b)

α

δ

))
> 1 − δ

where C0(α) is such that C0(α) >
(
1 + 1

e

) (
α log(C0(α)) + 1 + α

e

)
.

Proof. The LUCBRank algorithm proceeds in rounds. In a round, it samples the two
arms on opposite sides of an active boundary whose confidence intervals overlap
the most. A boundary is active as long as this overlap is less than ε. Thus, the
number of samples up to round T is

#samples(T) 6 2
T∑
t=1

c−1∑
i=1

1(U
uit

−L
lit
>ε)

= 2
T∑
t=1

c−1∑
i=1

1(U
uit

−L
lit
>ε)(1Wt

+ 1Wc
t
)

6 2
T∑
t=1

c−1∑
i=1

1(U
uit

−L
lit
>ε)1Wt

+ 2
T∑
t=1

c−1∑
i=1

1Wc
t

6 2
T∑
t=1

c−1∑
i=1

∑
a∈{1,2,...,K}

1(a=lit)∨(a=uit)
1(bi∈Ia(t))1(β̃a(t)>

ε
2 )
+ 2

T∑
t=1

c−1∑
i=1

1Wc
t

(by Proposition 3.7)
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We now split the first sum into two depending on whether an arm a belongs to the
set Aε = {a ∈ {1, 2, ...,K} : ∆∗b < ε2/2}.

#samples(T) 6 2
∑
a∈Aε

T∑
t=1

c−1∑
i=1

1(a=lit)∨(a=uit)
1(
Na(t)<

β(t,δ)
ε2/2

)+

2
∑
a∈Acε

T∑
t=1

c−1∑
i=1

1(a=lit)∨(a=uit)
1(bi∈Ia(t)) + 2

T∑
t=1

c−1∑
i=1

1Wc
t

6 2
∑
a∈Aε

β(T , δ)
ε2/2

+ 2
∑
a∈Acε

T∑
t=1

c−1∑
i=1

1(a=lit)∨(a=uit)
1(
Na(t)6

⌈
β(T ,δ)
∆∗
b
(a)

⌉)+

2
∑
a∈Acε

T∑
t=1

c−1∑
i=1

1(a=lit)∨(a=uit)
1(
Na(t)>

⌈
β(T ,δ)
∆∗
b
(a)

⌉) + 2
T∑
t=1

c−1∑
i=1

1Wc
t︸ ︷︷ ︸

RT

= 2H∗ε,b β(T , δ) + RT

where

RT = 2
∑
a∈Acε

T∑
t=1

c−1∑
i=1

1(a=lit)∨(a=uit)
1(
Na(t)>

⌈
β(T ,δ)
∆∗
b
(a)

⌉)1(bi∈Ia(t)) + 2
T∑
t=1

c−1∑
i=1

1Wc
t

If we define S∗1 = min{x : 2H∗ε,b β(x, δ) < x}, then we get that for S > S∗1 , the
algorithm must have stopped before S samples on the event (RT = 0). Denoting the
total number of samples used by the algorithm by τ, we have that, for any S > S∗1 ,
P(τ > S) 6 P(RT 6= 0).

P(τ > S) 6 P(RT 6= 0)

6 P
(
∃a ∈ Acε, t 6 T , 1 6 i 6 (c− 1) : a = lit ∨ a = rit,Na(t) >

⌈
β(T , δ)
∆∗b(a)

⌉
,bi ∈ Ia(t)

)
+ P(Wc)

6 P
(
∃a ∈ Acε, t 6 T , 1 6 i 6 (c− 1) : a = lit ∨ a = rit,Na(t) >

⌈
β(T , δ)
d∗(pa,bi)

⌉
,bi ∈ Ia(t)

)
+ P(Wc)

(3.13)



53

where the final inequality follows because ∆∗b(a) 6 d∗(pa,bi) ∀ 1 6 i 6 c − 1 (by
Lemma 3.9).

Let us look at the first term:

P
(
∃a ∈ Acε, t 6 T , 1 6 i 6 (c− 1) : a = lit ∨ a = rit,Na(t) >

⌈
β(T , δ)
d∗(pa,bi)

⌉
,bi ∈ Ia(t)

)
6
∑
a∈Acε

c−1∑
i=1

T∑
t=1

P
(
a = lit ∨ a = rit,Na(t) >

⌈
β(T , δ)
d∗(pa,bi)

⌉
,bi ∈ Ia(t)

)

6
∑
a∈Acε

c−1∑
i=1

exp(−β(T , δ))
d∗(pa,bi)

(by Lemma 3.8)

6 (c− 1) exp(−β(T , δ))
∑
a∈Acε

1
d∗(pa,bi)

6 (c− 1)H∗ε,b exp(−β(T , δ))

6 (c− 1)H∗ε,b exp
(
−β

(
S∗1
c−1 , δ

))
(if τ > S∗1 , T > S∗1

c−1))

= (c− 1)H∗ε,b ·
δ(c− 1)α

k1KS
∗,α
1

1
log k1KS

∗,α
1

δ(c−1)α

6 (c− 1)α+1H∗ε,b ·
δ

k1K
(

2H∗ε,b log
(
k1K(2H∗ε,b)

α

δ

))α 1
log k1KS

∗,α
1

δ(c−1)α
(by the lower bound in Corollary 3.11)

6
δ

k1
·
(
c− 1

2

)α
(since (c− 1) 6 K and α > 1)

For the second term, note that

P(Wc) 6 2eK
∞∑
t=1

(β(t, δ) log t+ 1) exp(−β(t, δ)) (by Lemma 3.5)

6
δ

k1

(
4e

(α− 1)2 +
2e

(α− 1)

)
(by Lemma 3.6)

Substituting in Eq. (3.13), we get that for S > S∗1 ,

P(τ > S) 6
δ

k1

((
c− 1

2

)α
+

4e
(α− 1)2 +

2e
(α− 1)

)
6 δ
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by the choice of k1.

3.9.4 Lower Bound

The proof uses standard change of measure arguments used to prove lower bounds.
For bandit problems, this is succinctly expressed through Lemma 1 in Kaufmann
et al. [2015] that we restate here for completeness.

Lemma 3.12. Let p and p ′ be two bandit models with K arms such that for all a, the
distributions pa and p ′a are mutually absolutely continuous. Let σ be a stopping time with
respect to (Ft) and let A ∈ Fσ. Then

K∑
a=1

Ep[Na(σ)]KL(pa,p ′a) > d(Pp(A),Pp ′(A))

where d(x,y) = x log(x/y) + (1 − x) log((1 − x)/(1 − y)).

3.9.4.1 Proof of Theorem 3.4

Consider any arm a. By Assumption 3.3, there exists alternative model p ′ such
that:

KL(pa,pκg(a)+1) < KL(pa,p ′a) < KL(pa,pκg(a)+1) + α and p ′a < pκg(a)+1

Note that in the model p ′, arm a no longer belongs to the cluster g(a). Let M̂g(a) be
the set of arms returned by an algorithm in the g(a)th cluster. If we define the event
A = {a ∈ M̂g(a)} ∈ Fτ, then by definition, for any δ-PAC algorithm, Pp(A) > 1 − δ

and Pp ′(A) 6 δ. Letting Na(τ) denote the number of pulls of arm a by time τ, we
have by Lemma 3.12 and the monotonicity of d(x,y) that

KL(pa,p ′a)Ep[Na(τ)] > d(1 − δ, δ) > log( 1
2.4δ)



55

where we use the property that for x ∈ [0, 1], d(x, 1 − x) > log 1
2.4x . This gives us

that
Ep[Na(τ)] >

1
KL(pa,pκg(a)+1) + α

log
(

1
2.4δ

)
Letting α→ 0, we get

Ep[Na(τ)] >
1

KL(pa,pκg(a)+1)
log
(

1
2.4δ

)
(3.14)

Similarly, by considering an alternative model p ′′ such that

KL(pa,pκg(a)−1) < KL(pa,p ′′a) < KL(pa,pκg(a)−1) + α and p ′′a > pκg(a)−1

we get

Ep[Na(τ)] >
1

KL(pa,pκg(a)−1)
log
(

1
2.4δ

)
(3.15)

From Eq. (3.14), Eq. (3.15), and the definition of ∆KL
κ (a) in Eq. (3.11), we get that

Ep[Na(τ)] >
1

∆KL
κ (a)

log
(

1
2.4δ

)
Summing over all the arms yields the required bound for Ep[τ] =

∑K
a=1 Ep[Na(τ)].

3.10 Extension: Maximum-gap Identification

3.10.1 Introduction

In the coarse ranking setting considered so far in this chapter, the experimenter
had to input the cluster boundaries. This simplest instance of this problem is the
top-k best arms identification problem, where the experimenter specifies k. If the
means of the kth and (k+ 1)st arms are very close to each other but there exists a
large gap between the means of the (k+ 1)st and (k+ 2)nd arms, then a better place
to separate the clusters in many applications is between arms (k+ 1) and (k+ 2).
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This motivates the following question: what is the best separation of arms into two
clusters? If the means are known, a natural way to cluster them is to sort them, find
the location of the maximum gap between two adjacent means, and define the two
clusters to be the distributions to the left and right of this maximum gap. In the
bandit setting the means are unknown and can only be estimated by sampling from
the arm’s reward distributions. Motivated by this, the problem we study in this
section is that of identifiyng the largest gap between the arm means by sampling
from their reward distributions.

3.10.2 Setting

Consider a multi-armed bandit with K arms. Each arm a corresponds to a Bernoulli
distribution with unknown mean pa, denoted by B(pa). A draw/pull from arm
a yields a reward from distribution B(pa). Without loss of generality, assume the
arms are numbered so that p1 > p2 · · · > pK.

For i ∈ [K − 1], we define the gap between consecutive arms i and i + 1 to be
the difference between their means (pi − pi+1). A natural clustering of the arms
into 2 clusters is C1 = {1, . . . ,m} and C2 = {m+ 1, . . . ,K},

m = arg max
i∈[K−1]

(pi − pi+1) (3.16)

is the location of the largest gap. Our objective in this paper is to design a strategy
which given a probability of error δ > 0, samples the arms and upon stopping
partitions [K] into two clusters Ĉ1 and Ĉ2 such that

P(Ĉ1 6= C1) 6 δ.

This setting is also known as the fixed-confidence setting [?], and the goal is to
achieve the clustering using as few samples as possible.
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3.10.3 Algorithm

We propose an elimination style algorithm. We maintain confidence intervals for
the mean of any item and use these to construct upper bounds on the maximum
gap around each item. We also maintain a lower bound on the overall maximum
gap. We stop sampling an item as soon as the upper bound on its maximum gap is
smaller than the lower bound.

Let Ta(t) denote the number of times arm a has been played up to time t, and
let p̂a(t) denote its empirical mean at time t. We compute confidence intervals
using a function βδ(Ta(t)), and set

la(t) = p̂a(t) −

√
βδ(Ta(t))

Ta(t)
,

ra(t) = p̂a(t) +

√
βδ(Ta(t))

Ta(t)
.

(3.17)

The function βδ(Ta(t)) is chosen so that

P(∀ t ∈ N,∀a ∈ [K],pa ∈ [la(t), ra(t)]) > 1 − δ, (3.18)

and we discuss its exact form in Remark 3.13.
Arm a has a left gap and a right gap, and we construct separate upper bounds

on each of these gaps. Let Ula(t) and Ura(t) denote the upper bound on the left and
right gap of arm a. These can be computed as

Ula(t) = ra(t) − max
b∈[K]:rb(t)6la(t)

lb(t),

Ura(t) = min
b∈[K]:lb(t)>ra(t)

rb(t) − la(t).
(3.19)

The upper bounds in the above equation are illustrated in Figure Fig. 3.7, where
the confidence intervals for pa are indicated by parentheses. For the left gap of arm
a, we focus on arms that are with high confidence to the left of a based on current
confidence intervals. These are all arms bwhose right bound is strictly less than
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[
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)
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[
lb′

]
rb′

Figure 3.7: Confidence intervals for three arms plotted on the real number line.
The argument t is suppressed for brevity. The top dashed line indicates the upper
bound for the left gap for arm a which is obtained by the choice of arm b to its
left. The bottom dashed line indicates the upper bound for the right gap for arm a

which is obtained by the choice of arm b ′ to its right.

the left bound of a. We can compute trivial upper bounds on the left and right gaps
of a by computing the distance to the leftmost and rightmost confidence intervals
respectively.

ULa(t) = ra(t) − min
i∈[K]:i 6=a

li(t),

URa(t) = max
i∈[K]:i 6=a

ri(t) − la(t)
(3.20)

We can combine these as follows to compute an an upper bound Ua(t) on the
maximum gap around arm a.

Ua(t) = max
{

min
{
Ula(t),ULa(t)

}
min
{
Ura(t),URa(t)

}}
(3.21)

To calculate the lower bound on the maximum gap, we sort the items according
to their empirical means, and find partitions of items that are clearly separated in
terms of their confidence intervals. We explain the computation next. At time t, let
(i) denote the item with the ith-largest empirical mean, i.e.,

p̂(1)(t) > p̂(2)(t) > · · · > p̂(K)(t).

For k ∈ [K− 1], we have a separation at arm (k) if

min
a∈{(1),...,(k)}

la(t) > max
a∈{(k+1),...,(K)}

ra(t),
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Algorithm 3 MaxGapElim

1: Active set A = [K]
2: for t = 1, 2, . . . do
3: for a ∈ A do
4: Sample arm a for a ∈ A.
5: Compute bound [la(t), ra(t)] for pa using (3.17).
6: end for
7:
8: for a ∈ A do
9: Compute upper bound Ua(t) on max gap around a using (3.21).

10: end for
11: Compute lower bound L(t) on maximum gap using (3.22).
12:
13: // Elimination
14: for a ∈ A do
15: if Ua(t) 6 L(t) then
16: A = A \ a

17: end if
18: end for
19: if |A| 6 2 then
20: Return clusters according to the empirical means of the arms and the

maximum gap.
21: end if
22: end for

and each such separation gives us a lower bound on the maximum gap. The best
lower bound is then computed as

L(t) = max
k∈[K−1]

(
min

a∈{(1),...,(k)}
la(t) − max

a∈{(k+1),...,(K)}
ra(t)

)
+

, (3.22)

which is zero if the arms cannot be separated into two clusters with with disjoint
confidence intervals.

Remark 3.13. A simple choice for βδ is βδ(s) = 2 log(cKs2/δ) [Even-Dar et al., 2006]
for which (3.18) holds by Hoeffding’s inequality and union bounds, and this is the function
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we use in our analysis. We refer the reader to Garivier [2013], Jamieson et al. [2014] for
tighter confidence intervals.

3.10.4 Analysis

Recall that (without loss of generality) the means are ordered as p1 > p2 · · · > pK.
Let the maximum gap exist between armsm and (m+1), and let∆max = pm−pm+1.

We use the notation (x)+ = max{x, 0}. Similarly, if pi > pj, we denote the gap
between them by ∆j,i = pi − pj.

3.10.4.1 Accuracy

Theorem 3.14. MaxGapElim returns the correct clustering with probability 1 − δ.

Proof. MaxGapElim returns the wrong clustering if the arms with the maximum
gap are eliminated from the active set A. We show that this cannot happen if the
good event (3.18) holds. The probability that (3.18) does not hold is bounded by δ
by Remark 3.13.

Assume (3.18) holds. Let the true maximum gap exist between arms m and
m+ 1. Without loss of generality assume to the contrary that armm is eliminated
from A. This happens if Um(t) < L(t) at some time t. We show that this leads to a
contradiction.

We claim that if (3.18) holds, then pm − pm+1 6 Um(t).
Recall that L(t) is computed using (3.22), and let (s) be the location of the

separator in (3.22). Let a be such that a ∈ {(1), . . . , (s)} and a+ 1 ∈ {(s+ 1), . . . , (K)}.
We have that

pm − pm+1
(a)

6 Um(t)

(b)

6 L(t)

(c)

6 la(t) − ra+1(t)

6 pa − pa+1,
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where (c) holds because L(t) is the minimum gap between a left confidence interval
in {(1), . . . , (s)} and a right confidence interval in {(s+ 1), . . . , (K)}.

This contradicts the fact that pm − pm+1 is the largest gap.

3.10.4.2 Sample Complexity

For a 6= 1, define

∆ra = max
{

max
j:pj>pa

(min{∆a,j/4, ((∆max − ∆a,j)/8)}) ,

((∆max − ∆a,1)/8)
}

(3.23)

and for a 6= K, define

∆la = max
{

max
j:pj<pa

(min{∆a,j/4, ((∆max − ∆j,a)/8)}) ,

((∆max − ∆a,K)/8)
}

. (3.24)

We use these to define the gaps which characterize the sample complexity of
MaxGapElim . Define

∆a =


∆la a = 1

∆ra a = K

min{∆la,∆ra} otherwise

(3.25)

where ∆la,∆ra are defined in (3.24), (3.23).

Theorem 3.15. With probability at least 1 − δ, the sample complexity of MaxGapElim is
bounded by

H =
∑
a∈[K]:

a/∈{m,m+1}

log(K/δ∆a)
∆2
a

where ∆a is defined in (3.25).
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L(t)

p̂1p̂10p̂11
ˆpa= p7

ˆ ˆpj= p4
ˆ

U7(t)r

Figure 3.8: Arm a is eliminated when an helper arm j is found

Proof. Arm a is eliminated in MaxGapElim when Ua(t) < L(t), where U(t) is de-
fined in (3.21) as the maximum of two terms. Lemma 3.17 and Lemma 3.18 char-
acterize the sufficient condition on ct for each term to be less than L(t). Since we
want both terms to be less than L(t), the sufficient condition we obtain for arm a

to be eliminated is c 6 ∆a. The required result then follows from Theorem 3 in
Even-Dar et al. [2006], which states that ct 6 x holds when t = O

(
log(K/δx)

x2

)
.

3.10.4.3 Discussion

We briefly outline in this section the derivation of the gap term in (3.23).
Fig. 3.8 denotes the confidence intervals at some point during the run of MaxGapElim

. A lower bound on the gap L(t) can be computed between the left and right confi-
dence bounds of arms 10 and 11 respectively as shown. Consider the computation
of the upper bound Ur7(t) on the right gap of arm a = 7. The confidence intervals
of arms 6 and 5 suggest that these arms can lie to the left of arm 7 and hence these
cannot be used to compute the upper bound on the right gap. Arm 4 however
lies to the right of arm 7 with high probability, and we can set the upper bound
Ur7(t) = r4(t)− l7(t). As soon asUr7(t) < L(t), we can remove arm 7 from the active
set.

Ignoring the left gap for simplicity, an arm a is removed from the active set as
soon as MaxGapElim finds an arm j that satisfies two properties: 1) the confidence
interval of arm j is disjoint from that of arm a, and 2) the upper bound Ura(t) =
rj(t) − la(t) < L(t). The first of these conditions gives rise to the term ∆a,j/4 in
(3.23), and the second condition gives rise to the term (∆max−∆a,j)/8 in (3.23). Since
any arm j that satisfies these conditions can be used to eliminate arm a, we take
the maximum over all arms j to yield the smallest sample complexity for arm a.
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If the arm j is further to the right, the upper bound Ur7(t) = r4(t) − l7(t) will be
larger than L(t) and thus arm 7 cannot be eliminated. Thus the number of times an
arm a has to be sampled does not depend only on its own gap. It also depends on
whether there is a large gap in the vicinity of arm a. Arm a can have a small gap
compared to the maximum gap, but if there is a large gap in its vicinity it will have
to be sampled a large number of times. This shows that the sample complexity of
the maximum gap identification problem is not the sum of inverse gap of gaps, as
one would naively imagine from a reduction to the best arm identification problem.

3.10.4.4 Useful Lemmas

Lemma 3.16. If the good event (3.18) holds, then for all a ∈ [K], for all t ∈ N,

la(t) > pa − 2cTa(t) and ra(t) 6 pa + 2cTa(t)

where cs =
√
βδ(s)
s

.

Proof. We have

p̂a(t) + cTa(t)
(a)

> pa

⇒ la(t) = p̂a(t) − cTa(t) > pa − 2cTa(t).

Similarly,

p̂a(t) − cTa(t)
(a)

6 pa

⇒ ra(t) = p̂a(t) + cTa(t) 6 pa + 2cTa(t).

In both the equations above, (a) holds by (3.18).

Lemma 3.17. Assume (3.18) holds, and consider a /∈ {1,m+ 1}. In MaxGapElim if t is
such that ct 6 ∆ra, then

min
{
Ura(t),URa(t)

}
< L(t).
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Proof. Assume (3.18) holds. We have ct < ∆ra < ∆max/4. This implies that

lm(t)
(a)

> pm − 2ct = pm+1 + ∆max − 2ct
(a)

> rm+1(t) + ∆max − 4ct > rm+1(t).
(3.26)

where (a) holds by Lemma 3.16.
From (3.26) we have that

L(t) > lm(t) − rm+1(t) > ∆max − 4ct (3.27)

We show in part I below that if

ct < γ1 = max
j:pj>pa

(min{∆a,j/4, ((∆max − ∆a,j)/8)}) , (3.28)

then Ura(t) < L(t). We show in part II that if

ct < γ2 = ((∆max − ∆a,1)/8), (3.29)

then URa(t) < L(t). From this we conclude that if ct < max(γ1,γ2) = ∆ra, then
min
{
Ura(t),URa(t)

}
< L(t), proving the statement of the lemma.

Part 1: Ur
a(t) < L(t)

We assume (3.28) holds. Let arm e be the maximizer in (3.28), i.e.,

e = arg max
j:pj>pa

(min{∆a,j/4, ((∆max − ∆a,j)/8)}) . (3.30)

For any arm j such that ∆max < ∆a,j, the inner minimum in (3.30) will be negative.
On the other hand, since a 6= m+ 1, there must exist an arm j such that ∆max > ∆a,j,
and for such an arm j the inner minimum will be positive. Since e is the arm that
maximizes the inner minimum, the inner minimum must be positive for e. Thus
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we have that ∆max > ∆a,e. Furthermore, from (3.28) we have that

ct < (∆max − ∆a,e)/8. (3.31)

Since ct < ∆a,e, by following an argument similar to (3.26) we have that le(t) >
ra(t). Hence we have

Ura(t)
(a)

6 re(t) − la(t)

(b)

6 ∆a,e + 4ct
(c)

6 ∆max − 4ct
(d)

6 L(t)

where (a) follows from (3.19), (b) holds from Lemma 3.16, (c) follows by (3.31),
and (d) holds by (3.27).

Part 2: UR
a (t) < L(t)

We assume (3.29) holds. Recall from (3.20) thatURa(t) = maxi∈[K]:i 6=a ri(t)−la(t),
and let arm e be the maximizer. Hence

URa(t) = re(t) − la(t)

(a)

6 pe + 2ct − pa + 2ct
6 ∆a,1 + 4ct
(b)

6 ∆max − 4ct
(c)

6 L(t)

where (a) holds by Lemma 3.16, (b) holds by (3.29), and (c) holds by (3.27).

Lemma 3.18. Assume (3.18) holds. Then in MaxGapElim for a 6= {m,K}

min
{
Ula(t),ULa(t)

}
< L(t)
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definitely holds when c 6 ∆La, where ∆la is as defined in (3.24).

Proof. The proof is analogous to the proof of Lemma 3.17.

3.10.4.5 Experiments

We try the elimination algorithm above, along with a UCB algorithm. The UCB
algorithm computes the UCBs on the gaps and plays all arms whose UCB matches
the largest UCB. We plot the mistake probabililty as a function of the number of
queries, where a mistake is said to occur if the clustering obtained by finding the
maximum gap among the empirical means is different from the clustering obtained
by finding the maximum gap in the true means.

First we consider an experiment where the number of armsK = 100, and the arm
rewards are N(·, 1). We set the means so that there are large gaps of sizes∆max = 1.2
and ∆1 = 1.1 respectively, and 97 gaps of size ∆2 = 0.2. The mistake probabilities
of the non-adaptive algorithm, MaxGapElim , and the UCB algorithm we obtain are
as follows. We see roughly 10x gains in the number of queries required for UCB as
compared to non-adaptive sampling.

In the second experiment, we consider arms with reward distributions N(·, 1)
as before, but we now consider means such that the gaps between the means
decrease geometrically. The mistake probabilities of the non-adaptive algorithm,
MaxGapElim , and the UCB algorithm we obtain are as follows.
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Figure 3.9: (a) Means of arms in Experiment 1. (b) Mistake probabilities of the
non-adaptive algorithm, MaxGapElim , and UCB algorithms in Experiment 1

Figure 3.10: (a) Means of arms in Experiment 2. (b) Mistake probabilities of the
non-adaptive algorithm, MaxGapElim , and UCB algorithms in Experiment 2
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4 dcm bandits: learning to rank with multiple clicks

4.1 Introduction

Web pages in search engines are often ranked based on a model of user behavior,
which is learned from click data Radlinski and Joachims [2005], Agichtein et al.
[2006], Chuklin et al. [2015a]. The cascade model Craswell et al. [2008] is one of
the most popular models of user behavior in web search. Kveton et al. [2015a] and
Combes et al. [2015a] recently proposed regret-optimal online learning algorithms
for the cascade model. The main limitation of the cascade model is that it cannot
model multiple clicks. Although the model was extended to multiple clicks Guo
et al. [2009b], Chapelle and Zhang [2009], Guo et al. [2009a,b], it is unclear if it is
possible to design computationally and sample efficient online learning algorithms
for these extensions.

In this work, we propose an online learning variant of the dependent click model
(DCM) Guo et al. [2009b], which we call DCM bandits. The DCM is a generalization
of the cascade model where the user may click on multiple items. At time t, our
learning agent recommends to the user a list of K items. The user examines the
items in the list, from the first item to the last. If the examined item attracts the
user, the user clicks on it. This is observed by the learning agent. After the user
clicks on the item and investigates it, the user decides whether to leave or examine
more items. If the user leaves, the DCM interprets this event as that the user is
satisfied, and our learning agent receives a reward of one. If the user scans the
list of items until the end and does not leave on purpose, the agent receives a
reward of zero. The goal of the learning agent is to maximize its total reward, or
equivalently to minimize its cumulative regret with respect to the most satisfactory
list of K items. The main challenge of our learning problem is that the agent does
not observe whether the user is satisfied. The agent only observes the clicks of the
user. This imbalance between the feedback and reward is central to all multi-click
generalizations of the cascade model Guo et al. [2009b], Chapelle and Zhang [2009],
Guo et al. [2009a,b] and makes learning challenging. This differentiates our setting
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from that of cascading bandits Kveton et al. [2015a], where the user clicks on at
most one item and this click is assumed to be satisfactory.

We make five major contributions. First, we precisely formulate a learning
variant of the dependent-click model as a stochastic combinatorial partial monitor-
ing problem. Second, we propose an assumption that the agent knows the order
of position-dependent termination probabilities in the DCM. We argue that this
assumption is mild. Under this assumption, the optimal list of items can be learned
by estimating the attraction probabilities of items from clicks. This is the key idea
in our computationally-efficient learning algorithm dcmKL-UCB, which is motivated
by KL-UCB. This is our third major contribution. Fourth, we prove gap-dependent
upper bounds on the regret of dcmKL-UCB and derive a matching lower bound up to
logarithmic factors. The bounds are proved based on a novel reduction to cascading
bandits Kveton et al. [2015a] and reflect our intuition that learning from multiple
clicks is more sample efficient than learning from a single click. Finally, we com-
prehensively evaluate our algorithm on both synthetic and real-world problems.
Our algorithm outperforms a range of baselines and performs well even when our
modeling assumptions are violated.

To simplify exposition, we denote random variables by boldface letters and
write [n] instead of {1, . . . ,n}.

4.2 Background

Web pages in search engines are often ranked based on a model of user behavior,
which is learned from click data Radlinski and Joachims [2005], Agichtein et al.
[2006], Chuklin et al. [2015a]. We assume that the user scans a list of K web pages
A = (a1, . . . ,aK), which we call items. The items belong to some ground set E = [L],
such as the set of all web pages. Many models of user behavior in web search exist
Becker et al. [2007], Richardson et al. [2007], Craswell et al. [2008], Chapelle and
Zhang [2009], Guo et al. [2009a,b]. We focus on the dependent click model Guo
et al. [2009b].
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Examine Next
Item

Attracted?

Seen Enough? End of List?

Yes No

No

Yes

No

Yes

Satisfied User Unsatisfied User

Start

Figure 4.1: Interaction between the user and items in the DCM.

The dependent click model (DCM) Guo et al. [2009b] is an extension of the cascade
model Craswell et al. [2008] to multiple clicks. The model assumes that the user
scans a list of K items A = (a1, . . . ,aK) ∈ ΠK(E) from the first item a1 to the
last aK, where ΠK(E) ⊂ EK is the set of all K-permutations of set E. The model
is parameterized by item-dependent attraction probabilities w̄ ∈ [0, 1]E and position-
dependent termination probabilities v̄ ∈ [0, 1]K. The user interacts in this model as
follows. After the user examines item ak, the item attracts the user with probability
w̄(ak), independently of the other items. If the user is attracted by item ak, the user
clicks on it and terminates the search with probability v̄(k). In this case, it is assumed
that the user is satisfied with item ak and does not examine the remaining items. If
the user is not attracted by item ak, or the user is attracted but does not terminate,
the user examines the next item ak+1. This interaction model is visualized in Fig. 4.1.
Note the following. The probabilities w̄(ak) and v̄(k) are conditional on that the user
examines the item, and that the examined item is attractive, respectively. However,
for brevity, we drop “conditional” in the rest of the chapter. Also note that v̄(k) is
not the probability that the user terminates at position k. The latter depends on the
items and positions before position k.

It is easy to see that the probability that the user leaves satisfied given list A is
1 −
∏K
k=1(1 − v̄(k)w̄(ak)). This objective is maximized by Kmost attractive items,

where the kth most attractive item is placed at the position with the kth highest
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termination probability.

4.3 DCM Bandits

We propose a learning variant of the dependent click model (Section 4.3.1) and a
computationally-efficient algorithm for solving it (Section 4.3.3).

4.3.1 Setting

A dependent-click model (DCM) bandit is a tuple B = (E,Pw,Pv,K), where E = [L] is a
ground set of L items; Pw and Pv are probability distributions over binary hypercubes
{0, 1}L and {0, 1}K, respectively; and K 6 L is the number of recommended items.

The learning agent interacts with our problem as follows. Let (wt)
n
t=1 be an

i.i.d. sequence of n attraction weights drawn from Pw, where wt ∈ {0, 1}E and wt(e)

indicates that item e attracts the user at time t. Let (vt)nt=1 be an i.i.d. sequence
of n termination weights drawn from Pv, where vt ∈ {0, 1}K and vt(k) indicates that
the user would terminate at position k if the item at that position was examined
and attractive. At time t, the learning agent recommends a list of K items At =
(at1, . . . , atK) ∈ ΠK(E). The user examines the recommended items in the order
in which they are presented, as shown in Fig. 4.1. The learning agent receives a
vector of observations ct ∈ {0, 1}K, which are indicators of the clicks of the user. In
particular, ct(k) = 1 if and only if the user clicks on item atk, the item at position k
at time t.

The learning agent receives reward rt, which is unobserved. The reward is binary
and is one if and only if the user is satisfied with at least one item in At. Item
e is satisfactory at time t when it is attractive, wt(e) = 1, and its position k leads
to termination, vt(k) = 1. By our assumption, the reward can be expressed as
rt = f(At, wt, vt), where we refer to f : ΠK(E)× [0, 1]E × [0, 1]K → [0, 1] as a reward
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function and define it as

f(A,w, v) = 1 −

K∏
k=1

(1 − v(k)w(ak)) .

for any A = (a1, . . . ,aK) ∈ ΠK(E), w ∈ [0, 1]E, and v ∈ [0, 1]K. The form of the
reward function proves particularly useful in our analysis.

The attraction and termination weights in the DCM are drawn independently
of each other Guo et al. [2009b]. We adopt the same assumption in our work. In
particular, we assume that for any w ∈ {0, 1}E and v ∈ {0, 1}K,

Pw(w) =
∏

e∈E
Ber(w(e); w̄(e)) ,

Pv(v) =
∏

k∈[K]
Ber(v(k); v̄(k)) ,

where Ber(·; θ) is a Bernoulli distribution with mean θ. This independence assump-
tion allows us to design a very efficient learning algorithm. Under this assumption,
the expected reward for list A ∈ ΠK(E), the probability that at least one item in A is
satisfactory, decomposes as

E [f(A, w, v)] = 1 −

K∏
k=1

(1 − E [v(k)]E [w(ak)]) = f(A, w̄, v̄)

and depends only on the attraction probabilities of items in A and the termination
probabilities v̄. An analogous property was useful in the design and analysis of
algorithms for cascading bandits Kveton et al. [2015a].

We evaluate the performance of a learning agent by its expected cumulative regret

R(n) = E [
∑n
t=1 R(At, wt, vt)] ,

where R(At, wt, vt) = f(A∗, wt, vt) − f(At, wt, vt) is the instantaneous regret of the
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agent at time t and

A∗ = arg maxA∈ΠK(E) f(A, w̄, v̄)

is the optimal list of items, the list that maximized the reward at any time t. It is easy
to see that A∗ contains K most attractive items, which are ordered such that the
kth most attractive item is placed at the position with the kth highest termination
probability. For simplicity of exposition, we assume that the optimal solution, as a
set, is unique.

4.3.2 Learning Without Accessing Rewards

Learning in DCM bandits seems difficult because the observations ct are not suffi-
cient to identify whether the recommended items lead to a reward. Consider the
following example. The learning agent recommends items At = (1, 2, 3, 4) and
observes ct = (0, 1, 1, 0). This feedback can be interpreted in two ways. The first
explanation is that item 1 is not attractive, items 2 and 3 are attractive, and that the
user does not exit at either positions 2 or 3. The second explanation is that item 1 is
not attractive, items 2 and 3 are attractive, and that the user does not exit at position
2, but exits at position 3. In the first case, the learning agent receives no reward; in
the second one, it does. Since the reward is not directly observed, DCM bandits
can be viewed as an instance of partial monitoring. DCM bandits cannot be solved
efficiently by existing algorithms for partial monitoring because the action set is
combinatorial. Therefore, in this work, we impose an addition mild assumption
that allows us to learn efficiently, while avoiding the combinatorial explosion of the
action space.

The key idea in our solution is based on the following insight. Without loss
of generality, suppose that the termination probabilities are ordered such that
v̄(1) > . . . > v̄(K). Then A∗ = arg maxA∈ΠK(E) f(A, w̄, ṽ) for any vector ṽ ∈ [0, 1]K

that satisfies ṽ(1) > . . . > ṽ(K). Therefore, the termination probabilities do not have to
be learned if their order is known, which is what we assume from this point on. This
assumption is much milder than knowing the probabilities. We show in Section 4.5
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that our algorithm performs well even if this order is misspecified.
Before we proceed, we need one more observation. Let

Clast
t = max {k ∈ [K] : ct(k) = 1} (4.1)

denote the position of the last click, where max ∅ = +∞. Then wt(ak) = ct(k) for
any k 6 min

{
Clast
t ,K

}
. In other words, ct is an observed portion of wt up to the

last click, and therefore we can use it to learn the attraction probabilities of items in
E.

4.3.3 dcmKL-UCB Algorithm

We propose a UCB-like algorithm for solving DCM bandits, which we call
dcmKL-UCB. The algorithm is motivated by KL-UCB Garivier and Cappe [2011] and its
pseudocode is shown in Algorithm 4. At time t, dcmKL-UCB operates in three stages.
First, it computes the upper confidence bounds (UCBs) Ut ∈ [0, 1]E on the attraction
probabilities of all items in E. The UCB of item e at time t is

Ut(e) = max{q ∈ [w, 1] : w = ŵTt−1(e)(e) , (4.2)

Tt−1(e)DKL(w ‖q) 6 log t+ 3 log log t} ,

where DKL(p ‖q) is the Kullback-Leibler (KL) divergence between Bernoulli random
variables with means p and q; ŵs(e) is the average of s observed weights of item e;
and Tt(e) is the number of times that item e is observed in t steps. SinceDKL(p ‖q)
increases in q for q > p, our UCB can be computed efficiently. Second, dcmKL-UCB
recommends a list of K items with largest UCBs:

At = arg maxA∈ΠK(E) f(A, Ut, ṽ) ,

where ṽ ∈ [0, 1]K is any vector that satisfies ṽ(1) > . . . > ṽ(K). The selection of At
can be implemented efficiently in O(L + K logK) time, by placing the item with
the kth largest UCB to the kth highest position. After the user provides feedback ct,
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Algorithm 4 UCB-like algorithm for DCM bandits.
// Initialization
Observe w0 ∼ Pw
∀e ∈ E : T0(e)← 1
∀e ∈ E : ŵ1(e)← w0(e)

for all t = 1, . . . ,n do
for all e = 1, . . . ,L do

Compute UCBs Ut(e) using (4.2)
end for

// Compute recommendation
Let At ← arg maxA∈ΠK(E) f(A, Ut, ṽ)
Recommend At and observe clicks ct ∈ {0, 1}K
Clast
t ← max {k ∈ [K] : ct(k) = 1}

// Update statistics
∀e ∈ E : Tt(e)← Tt−1(e)
for all k = 1, . . . , min

{
Clast
t ,K

}
do

e← atk
Tt(e)← Tt(e) + 1

ŵTt(e)(e)←
Tt−1(e)ŵTt−1(e)(e) + ct(k)

Tt(e)
end for

end for

dcmKL-UCB updates its estimates of w̄(e) up to position min
{

Clast
t ,K

}
, where Clast

t is
the position of the last click (4.1).

We assume that dcmKL-UCB is initialized with one sample of an attraction weight
per item. This sample can be generated in most L steps as follows Kveton et al.
[2015a]. At time t ∈ [L], item t is placed at the first position. Because the first
position is always examined, ct(1) is a random sample of the attraction weight of
item t.
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4.4 Analysis

In Section 4.4.1, we analyze dcmKL-UCB under the assumptions that all termination
probabilities are identical. This simpler case illustrates the key ideas of our proofs.
In Section 4.4.2, we consider position-dependent termination probabilities. In
Section 4.4.3, we derive a lower bound under the assumption that all termination
probabilities are identical. All supplementary lemmas are proved in the Appendix.

For convenience, but without loss of generality, we assume that the items in
the ground set E are sorted in decreasing order of their attraction probabilities,
w̄(1) > . . . > w̄(L), and that the termination probabilities are sorted in the same
way, v̄(1) > . . . > v̄(K). In this case, the optimal solution is A∗ = (1, . . . ,K) and
contains the first K items in E. We say that item e is optimal if e ∈ [K] and that
item e is suboptimal if e ∈ [L] \ [K]. The gap between the attraction probabilities of
suboptimal item e and optimal item e∗,

∆e,e∗ = w̄(e
∗) − w̄(e) , (4.3)

measures the hardness of discriminating the items. We define the maximum attrac-
tion probability as pmax = w̄(1) and α = (1 − pmax)

K−1. In practice, we often observe
small attraction probabilities, and therefore α is expected to be large, unless K is
also large.

The key idea in our analysis is the reduction to cascading bandits Kveton et al.
[2015a]. The novelty is in this reduction. As in our model (Section 4.3.1), we define
the cascade reward over i ∈ [K] recommended items and the corresponding expected
cascade regret as

fi(A,w) = 1 −

i∏
k=1

(1 −w(ak)) (4.4)

Ri(n) = E [
∑n
t=1[fi(A

∗, wt) − fi(At, wt)]] . (4.5)

The cascade regret of dcmKL-UCB can be bounded by adapting the analysis of
Kveton et al. [2015a].
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Proposition 4.1. For any i ∈ [K] and ε > 0, the expected n-step cascade regret of
dcmKL-UCB is bounded as

Ri(n) 6
L∑

e=i+1

(1 + ε)∆e,i(1 + log(1/∆e,i))

DKL(w̄(e) ‖ w̄(i))
(logn+ 3 log logn) + C ,

where C = iLC2(ε)

nβ(ε)
+ 7i log logn, and C2(ε) and β(ε) are defined in Garivier and Cappe

[2011].

Proof. The proof is the same as that of Theorem 3 in Kveton et al. [2015a] for the fol-
lowing reason. Our confidence radii have the same form as those in CascadeKL-UCB;
and for any At and wt, dcmKL-UCB is guaranteed to observe at least as many entries
of wt as CascadeKL-UCB.

To simplify the presentation of our proofs, we introduce the “or function”ω :

[0, 1]K → [0, 1], defined asω(x) = 1 −
∏K
k=1(1 − xk). For any vectors x and y in the

same Euclidean space, we say that x > y if xk > yk for all indices k. We denote the
component-wise product of x and y by x�y and the restriction of x to the elements
in A by x|A. The latter has a lower precedence than �. Then, our objective becomes
f(A, w̄, v̄) = ω(w̄� v̄|A).

4.4.1 Upper Bound for Equal Termination Probabilities

Our first upper bound on the regret of dcmKL-UCB is under the assumption that all
termination probabilities are equal. The next two lemmas relate our objective to a
linear function, and they comprise the key steps in our proofs.

Lemma 4.2. Let x,y ∈ [0, 1]K satisfy x > y. Then

ω(x) −ω(y) 6
∑K
k=1 xk −

∑K
k=1 yk .

Lemma 4.3. Let x,y ∈ [0,pmax]
K satisfy x > y. Then

α
[∑K

k=1 xk −
∑K
k=1 yk

]
6 ω(x) −ω(y) ,
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where α = (1 − pmax)
K−1.

Now we present the main result of this section.

Theorem 4.4. Let v̄(k) = γ for all k ∈ [K]. For any ε > 0, the expected n-step regret of
dcmKL-UCB is bounded as

R(n) 6
γ

α

L∑
e=K+1

(1 + ε)∆e,K(1 + log(1/∆e,K))

DKL(w̄(e) ‖ w̄(K))
(logn+ 3 log logn) + C ,

where C = γ
α

(
KL

C2(ε)

nβ(ε)
+ 7K log logn

)
, and C2(ε) and β(ε) are as in Proposition 4.1.

Proof. Let Rt = R(At, wt, vt) be the stochastic regret at time t and

Ht = (A1, c1, . . . , At−1, ct−1, At) (4.6)

be the history of the learning agent up to choosing list At, the first t−1 observations
and t actions. By the tower rule, we have R(n) =

∑n
t=1 E [E [Rt | Ht]], where

E [Rt | Ht] = f(A∗, w̄, v̄) − f(At, w̄, v̄)

= ω(w̄� v̄|A∗) −ω(w̄� v̄|At) .

Now we can apply Lemma 4.2 since w̄� v̄|A∗ > w̄� v̄|At . Moreover, we note that
v̄ = γ1 and then apply Lemma 4.3, and get the following upper bound

E [Rt | Ht] 6 γ

[
K∑
k=1

w̄(a∗k) −

K∑
k=1

w̄(atk)

]
6
γ

α
[fK(A

∗, w̄) − fK(At, w̄)] .

By the definitions of R(n) and RK(n), and from the above inequality, it follows that

R(n) 6
γ

α

n∑
t=1

E [fK(A
∗, w̄) − fK(At, w̄)] =

γ

α
RK(n) .
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Finally, we bound RK(n) using Proposition 4.1.

4.4.2 General Upper Bound

Our second upper bound on the regret of dcmKL-UCB does not make any assumptions
on the termination probabilities. However, note that we still assume that dcmKL-UCB
knows their order. Without loss of generality, we assume that v̄(1) > . . . > v̄(K). To
prove our next upper bound, we need a generalization of Lemma 4.2.

Lemma 4.5. Let x ∈ [0, 1]K and x ′ be the permutation of x whose elements are in a
decreasing order, x ′1 > . . . > x ′K. Let c ∈ [0, 1]K be another vector whose elements are in a
decreasing order. Then

ω(c� x ′) −ω(c� x) 6
∑K
k=1 ckx

′
k −
∑K
k=1 ckxk .

Now we present our most general upper bound.

Theorem 4.6. Let v̄(1) > . . . > v̄(K). For any ε > 0, the expected n-step regret of
dcmKL-UCB is bounded as

R(n) 6 (1 + ε)

K∑
i=1

v̄(i) − v̄(i+ 1)
α

×

L∑
e=i+1

∆e,i(1 + log(1/∆e,i))

DKL(w̄(e) ‖ w̄(i))
(logn+ 3 log logn) + C ,

where C =
(∑K

i=1
i[v̄(i)−v̄(i+1)]

α

)(
L
C2(ε)

nβ(ε)
+ 7 log logn

)
, v̄(K + 1) = 0, and C2(ε) and

β(ε) are as in Proposition 4.1.

Proof. Let Rt and Ht be defined as in the proof of Theorem 4.4. The main challenge
in this proof is that we cannot apply Lemma 4.2 to bound E [Rt | Ht] because it may
happen that v̄(k)w̄(atk) > v̄(k)w̄(a∗k) for some k ∈ [K]. To overcome this problem,
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we rewrite E [Rt | Ht] as

E [Rt | Ht] = [ω(w̄� v̄|A∗) −ω(w̄� v̄|A ′t)] +

[ω(w̄� v̄|A ′t) −ω(w̄� v̄|At)] ,

where A ′t is the permutation of At where all items are in the order of decreasing
attraction probabilities. We bound the first term using Lemma 4.2 and then the
second term using Lemma 4.5 to get that

E [Rt | Ht] 6
K∑
k=1

v̄(k)(w̄(a∗k) − w̄(atk))

=

K∑
i=1

[v̄(i) − v̄(i+ 1)]
i∑
k=1

(w̄(a∗k) − w̄(atk)) ,

where we defined v̄(K + 1) = 0. Now we bound each
∑i
k=1 w̄(a

∗
k) − w̄(atk) by

Lemma 4.3 to get, via the definitions of R(n) and Ri(n) that

R(n) 6
K∑
i=1

v̄(i) − v̄(i+ 1)
α

Ri(n) .

Finally, we bound the terms Ri(n) using Proposition 4.1.

Note that when v̄(k) = γ for all k ∈ [K], the above upper bound reduces to that
in Theorem 4.4.

4.4.3 Lower Bound

Our lower bound is derived on the following problem. The ground set are L items
E = [L]. A subset of these itemsA∗ ⊆ ΠK(E) are optimal. The attraction probabilities
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of items are defined as

w̄(e) =

p , e ∈ A∗ ;

p− ∆ , otherwise ,
(4.7)

where p is a common attraction probability of the optimal items and ∆ ∈ (0,p)
is the gap between the attraction probabilities of optimal and suboptimal items.
We assume that all termination probabilities are identical, v̄ = γ1. We denote our
problem by BLB(L,A∗,p,∆,γ); and parameterize it by L, A∗, p, ∆, and γ. The key
step in our analysis is the following lemma.

Lemma 4.7. Let x,y ∈ [0, 1]K satisfy x > y. Let γ ∈ [0, 1]. Then ω(γx) −ω(γy) >

γ[ω(x) −ω(y)].

Our lower bound is proved for a class of consistent algorithms Lai and Robbins
[1985]. The algorithm is consistent if for any DCM bandit, any suboptimal item e,
and any α > 0, E [Tn(e)] = o(nα), where Tn(e) is the number of times that item e is
recommended in n steps. We also assume that the algorithms observe all entries of
wt in At, wt(atk) for any k ∈ [K]. This is at least as much feedback as in dcmKL-UCB.

Theorem 4.8. For any DCM bandit BLB (defined above), the regret of any consistent
algorithm that observes all entries of wt in At is bounded from below as

lim inf
n→∞

R(n)

logn
> γα

(L− K)∆

DKL(p− ∆ ‖p)
.

Proof. The key idea of the proof is to reduce our problem to semi-bandits through
cascading bandits. First, note that by the tower rule and Lemma 4.7, the n-step
regret in DCM bandits is bounded from below as

R(n) > γE

[
n∑
t=1

(fK(A
∗, wt) − fK(At, wt))

]
.
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Moreover, by the tower rule and Lemma 4.3, we can bound the n-step regret in
cascading bandits from below as

R(n) > γαE

[
n∑
t=1

(
K∑
k=1

wt(a
∗
k) −

K∑
k=1

wt(atk)

)]

= γα∆

L∑
e=K+1

E [Tn(e)] ,

where the last step is based on the fact that all gaps are ∆. By the same argument
as in Lai and Robbins [1985], the consistency of the algorithm implies that

lim inf
n→∞

E [Tn(e)]
logn

>
∆

DKL(p− ∆ ‖p)

for any suboptimal item e. Now we chain the above two inequalities and get our
claim.

4.4.4 Discussion

We prove gap-dependent upper bounds on the n-step regret of dcmKL-UCB under the
assumptions that the termination probabilities are identical (Theorem 4.4) and that
their order is known (Theorem 4.6). Both bounds areO(logn), linear in the number
of items L, and they improve as the number of recommended items K increases.
The bound in Theorem 4.4 is linear in γ, a common termination probability of all
positions. Smaller γ results in more clicks. Therefore, we essentially show that the
regret decreases with more information, clicks, which is in line with our intuition.

Let us now discuss the tightness of our upper bounds. In particular, consider
the problem BLB(L,A∗ = [K],p = 1/K,∆,γ) of Section 4.4.3. In this setting, α > 1/e
and 1/α 6 e. Therefore, the asymptotic lower bound in Theorem 4.8 and the upper
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Figure 4.2: The n-step regret of dcmKL-UCB on the problem in Section 4.5.1 in n = 105

steps. All results are averaged over 20 runs.

bound in Theorem 4.4 respectively reduce to

Ω
(
γ(L− K) ∆

DKL(p−∆‖p)
logn

)
(4.8)

O
(
γ(L− K)

∆(1+log(1/∆))

DKL(p−∆‖p)
logn

)
. (4.9)

Note that the bounds match up to log(1/∆).

4.5 Experiments

We conduct three experiments. In Section 4.5.1, we validate the upper bound in
Theorem 4.4 by showing that the regret of our algorithm scales as suggested there.
In Section 4.5.2, we compare our algorithm to several baselines. In Section 4.5.3, we
evaluate our algorithm on a real-world dataset.

4.5.1 Regret Bounds

In the first experiment, we validate the behavior of our upper bound in Theo-
rem 4.4. We experiment with the class of problems BLB(L, [K],p,∆,γ) introduced
in Section 4.4.3. We (arbitrarily) choose p = 0.2 and γ = 0.8; and vary L,K, and ∆.
We ran our algorithm for n = 105 steps.

Fig. 4.2 shows the results. We observe two major trends. First, the regret
increases when the number of items L increases. Second, the regret decreases when
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Figure 4.3: a. The n-step regret of dcmKL-UCB as a function of the termination
probabilityγ. b. Then-step regret of the first and last click heuristics, and dcmKL-UCB
on the problem in Section 4.5.2. c. The n-step regret of RankedKL-UCB and dcmKL-UCB
on the same problem.

1 2 3 4 5 6 7 8 9 10
Position

0

0.2

0.4

0.6

0.8

1

T
er

m
in

at
io

n 
pr

ob
ab

ili
ty

Query 1
Query 2

0 20K 40K 60K 80K 100K
Step n

0

2000

4000

6000

8000

10000

12000

14000

R
eg

re
t

dcmKL-UCB:Position order known
dcmKL-UCB:Position order unknown
RankedKL-UCB:Position order known

0 20K 40K 60K 80K 100K
Step n

0

200

400

600

800

1000

1200

1400

R
eg

re
t

dcmKL-UCB:Position order known
dcmKL-UCB:Position order unknown
RankedKL-UCB:Position order known

(a)

(b) (c)

Figure 4.4: a. The termination probabilities in Queries 1 and 2. b. The n-step regret
in Query 1. c. The n-step regret in Query 2.

the number of recommended items K increases. These trends are consistent with
the fact that the upper bound in Theorem 4.4 is O(L− K), and the lower bound in
Section 4.4.3 is asymptoticallyΩ(L− K).

Fig. 4.3a shows the n-step regret of dcmKL-UCB as a function of γ. We set L =

16,p = 0.2,∆ = 0.15. We observe that the regret increases linearly with γ when
p < 1/K, exactly as suggested by the upper bound in Theorem 4.4. This is not
surprising. In particular, we note that the key steps in the proof of Theorem 4.4
are based on the linear upper and lower bounds in Lemmas 4.2 and 4.3, and these
become tighter as p→ 0. Our current analysis is not tight when p > 1/K and we
leave this for future work.
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4.5.2 First Click, Last Click, and Ranked Bandits

In the second experiment, we compare dcmKL-UCB to two single-click heuristics and a
popular algorithm for learning to rank. Both heuristics are based on CascadeKL-UCB
Kveton et al. [2015a], which assumes a single clicks. Therefore, in the first heuristic,
we modify the feedback ct such that it contains only the first click. This heuris-
tic is a conservative extension of CascadeKL-UCB to multiple clicks and we call it
First-Click. In the second heuristic, we modify the feedback ct such that it con-
tains only the last click. This heuristic can be viewed as learning the satisfaction
probabilities of items Kveton et al. [2015a] and we call it Last-Click. Finally, we
also compare dcmKL-UCB to a ranked bandit [Radlinski et al., 2008, Slivkins et al.,
2013], which we adapt to multiple clicks. The base bandit algorithm of our ranked
bandit is KL-UCB, giving rise to the algorithm that we call RankedKL-UCB. The choice
of the base algorithm is motivated because all other algorithms are also based on
KL-UCB, hence the difference in their regrets will be due to how they use KL-UCB. We
experiment with the problem BLB(L = 16,A∗ = [4],p = 0.2,∆ = 0.15,γ = 0.5) from
Section 4.4.3.

Fig. 4.3b shows the n-regret of dcmKL-UCB, First-Click, and Last-Click as a
function of time n. We observe that the regret of dcmKL-UCB is the lowest among
all compared methods. dcmKL-UCB improves upon First-Click and Last-Click,
because it does not discard information.

Fig. 4.3c compares RankedKL-UCB and dcmKL-UCB. The regret of RankedKL-UCB is
about three times larger than that of dcmKL-UCB. This is not particularly surprising,
since the regret in ranked bandits isO(KL) while the regret in dcmKL-UCB isO(L−K)
(Section 4.4.4).

4.5.3 Real-World Experiment

In the last experiment, we evaluate dcmKL-UCB on the Yandex dataset Yandex, an
anonymized search log of 35M million search sessions. Each session contains a
query, and the list of displayed documents at positions 1 to 10, and the clicks on those
documents. We extract the 5 most frequent queries from our dataset and estimate
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the parameters of one DCM for each query as in Guo et al. [2009b]. We report
results for two queries. In both queries, one document is highly attractive and the
attraction probabilities of the remaining documents decay rapidly. The estimated
termination probabilities are shown in Fig. 4.4a. The termination probabilities in
Query 1 almost decrease with position, while this is not the case in Query 2. We
believe that the non-monotonicity is an artifact of the lack of data for training our
DCMs.

We study two variants of dcmKL-UCB. In one, dcmKL-UCB knows the order of the
termination probabilities. In the other, it does not and we assume the termination
probabilities decrease with position. We also report the regret of RankedKL-UCB,
which knows the order of the termination probabilities. Fig. 4.4b and Fig. 4.4c show
that dcmKL-UCB outperforms RankedKL-UCB. Furthermore, when the order of the
termination probabilities is unknown, the regret of dcmKL-UCB increases, though it
is still lower than that of RankedKL-UCB, even if RankedKL-UCB has the advantage of
knowing the order of the termination probabilities.

4.6 Related Work

Our work is closely related to cascading bandits Kveton et al. [2015a], Combes et al.
[2015a], which are learning variants of the cascade model of user behavior Craswell
et al. [2008]. Kveton et al. [2015a] proposed a learning algorithm for these problems,
CascadeKL-UCB; bounded its regret; and proved a matching lower bound. The main
limitation of cascading bandits is that they cannot learn from multiple clicks. DCM
bandits can be viewed as a generalization of cascading bandits that permits learning
from multiple clicks.

Ranked bandits are a popular approach in learning to rank Radlinski et al. [2008],
Slivkins et al. [2013]. The key idea in ranked bandits is to model each position in
the recommended list as an independent bandit problem, which is then solved by a
base bandit algorithm. The solutions in ranked bandits are (1− 1/e) approximate and
the regret isΩ(K) Radlinski et al. [2008], where K is the number of recommended
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items. Ranked bandits are analyzed under the assumption that the first clicked
item is satisfactory.

Our problem is a partial monitoring problem where we do not observe which
items are attractive. Bartok et al. [2012] studied general partial monitoring prob-
lems and proposed learning algorithms for solving them. Agrawal et al. [1989]
considered a variant of the problem where the reward is observed. The algorithm
of Agrawal et al. [1989] cannot be applied to our problem because the reward is
unobserved and the algorithm assumes a finite parameter set. The algorithm of
Bartok et al. [2012] scales at least linearly with the number of actions, which in our
case is

(
L
K

)
. Therefore, the algorithm impractical for large L and moderate K. The

same applies to the algorithms in Bartók and Szepesvári [2012], Bartók et al. [2014].
Lin et al. [2014] and Kveton et al. [2015b] studied combinatorial partial monitoring
but their feedback models are incompatible with our problem.

Our learning problem is combinatorial, we learn the Kmost satisfactory items
out of L. In this sense, our work is related to stochastic combinatorial bandits, which
are often studied with linear rewards and semi-bandit feedback Gai et al. [2012a],
Chen et al. [2013a], Kveton et al. [2014a, 2015c], Wen et al. [2015], Combes et al.
[2015b]. The key differences in our work is that the reward function is non-linear
in the unknown parameters and that the feedback is less than semi-bandit as the
learning agent does not observe which items are satisfactory.

4.7 Conclusions

In this chapter, we formulate a learning variant of the dependent click model, a
popular model of user behavior in web search that can explain multiple clicks. We
propose a computationally and sample efficient algorithm for solving it, dcmKL-UCB,
and prove gap-dependent upper bounds on its regret. The design and analysis
of our algorithm are challenging due to the asymmetry between our reward and
feedback model. To get around this issue, we propose a reasonable assumption
borrowed from the click-modeling literature. The proof of our upper bound then
relies on an elegant reduction of the regret to that of the single-click model. Yet the
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reduction does not lose the opportunity presented by the richer information. We
evaluate our algorithm on several problems and show that it outperforms a range
of baselines, even when our assumptions are violated.

We leave open several questions of interest. For instance, our upper bound on
the regret is linear in the termination probability γ. Fig. 4.3a however shows that
this is not tight p > 1/K. Thus there is scope to refine our analysis and close the
gap between our upper and lower bounds.

To the best of our knowledge, this is the first regret-optimal online learning
algorithm for learning to rank with multiple clicks in a cascade-like model. We
expect that our work will lead to further exciting new developments in addressing
other, perhaps more complex and complete instances of learning to rank under
multi-click feedback.

4.8 Appendix

Lemma 4.2. Let x,y ∈ [0, 1]K satisfy x > y. Then:

ω(x) −ω(y) 6
K∑
k=1

xk −

K∑
k=1

yk .

Proof. Let x = (x1, . . . , xK) and:

d(x) =

K∑
k=1

xk −ω(x) =

K∑
k=1

xk −

[
1 −

K∏
k=1

(1 − xk)

]
.

We prove our claim by showing that d(x) > 0 and ∂
∂xi
d(x) > 0, for any x1, . . . , xK ∈

[0, 1] and i ∈ [K]. First, we show that d(x) > 0 by induction on K. The claim holds
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trivially for K = 1. For any K > 2:

d(x) =

K−1∑
k=1

xk −

[
1 −

K−1∏
k=1

(1 − xk)

]
+ xK − xK

K−1∏
k=1

(1 − xk)︸ ︷︷ ︸
>0

> 0 ,

where
K−1∑
k=1

xk−

[
1 −

K−1∏
k=1

(1 − xk)

]
> 0 due to our induction hypothesis. Second, we

show that:

∂

∂xi
d(x) = 1 −

∏
k6=i

(1 − xk) > 0 .

This concludes our proof.

Lemma 4.3. Let x,y ∈ [0,pmax]
K satisfy x > y. Then:

α

[
K∑
k=1

xk −

K∑
k=1

yk

]
6 ω(x) −ω(y) ,

where α = (1 − pmax)
K−1.

Proof. Let x = (x1, . . . , xK) and:

d(x) = ω(x) − α

K∑
k=1

xk = 1 −

K∏
k=1

(1 − xk) − (1 − pmax)
K−1

K∑
k=1

xk .

We prove our claim by showing that d(x) > 0 and ∂
∂xi
d(x) > 0, for any x1, . . . , xK ∈

[0, 1] and i ∈ [K]. First, we show that d(x) > 0 by induction on K. The claim holds
trivially for K = 1. For any K > 2:

d(x) = 1 −

K−1∏
k=1

(1 − xk) − (1 − pmax)
K−1

K−1∑
k=1

xk + xK

K−1∏
k=1

(1 − xk) − xK(1 − pmax)
K−1

︸ ︷︷ ︸
>0

> 0 ,
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where 1 −

K−1∏
k=1

(1 − xk) − (1 − pmax)
K−1

K−1∑
k=1

xk > 0 due to our induction hypothesis

and the remainder is non-negative because 1−xk > 1−pmax for any k ∈ [K]. Second,
we show that:

∂

∂xi
d(x) =

∏
k6=i

(1 − xk) − (1 − pmax)
K−1 > 0 .

This concludes our proof.

Lemma 4.5. Let x ∈ [0, 1]K and x ′ be the permutation of x whose elements are in a
decreasing order, x ′1 > . . . > x ′K. Let c ∈ [0, 1]K be another vector whose elements are in a
decreasing order. Then:

ω(c� x ′) −ω(c� x) 6
K∑
k=1

ckx
′
k −

K∑
k=1

ckxk .

Proof. Note that our claim is equivalent to proving:

1 −

K∏
k=1

(1 − ckx
′
k) −

[
1 −

K∏
k=1

(1 − ckxk)

]
6

K∑
k=1

ckx
′
k −

K∑
k=1

ckxk .

If x = x ′, there is nothing to prove. Otherwise, there must exist indices i and j such
that i < j and xi < xj. Let x̃ be the same vector as x where entries xi and xj are
exchanged, x̃i = xj and x̃j = xi. Since i < j, ci > cj. Let:

X-i,-j =
∏
k6=i,j

(1 − ckxk) .
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Then:

1 −

K∏
k=1

(1 − ckx
′
k) −

[
1 −

K∏
k=1

(1 − ckxk)

]
= X-i,-j ((1 − cixi)(1 − cjxj) − (1 − cix̃i)(1 − cjx̃j))

= X-i,-j ((1 − cixi)(1 − cjxj) − (1 − cixj)(1 − cjxi))

= X-i,-j (−cixi − cjxj + cixj + cjxi)

= X-i,-j(ci − cj)(xj − xi)

6 (ci − cj)(xj − xi)

= cixj + cjxi − cixi − cjxj

= cix̃i + cjx̃j − cixi − cjxj

=

K∑
k=1

ckx̃k −

K∑
k=1

ckxk ,

where the inequality is by our assumption that (ci − cj)(xj − xi) > 0. If x̃ = x ′, we
are finished. Otherwise, we repeat the above argument until x = x ′.

Lemma 4.7. Let x,y ∈ [0, 1]K satisfy x > y. Let γ ∈ [0, 1]. Then:

ω(γx) −ω(γy) > γ[ω(x) −ω(y)] .

Proof. Note that our claim is equivalent to proving:

K∏
k=1

(1 − γyk) −

K∏
k=1

(1 − γxk) > γ

[
K∏
k=1

(1 − yk) −

K∏
k=1

(1 − xk)

]
.

The proof is by induction on K. To simplify exposition, we define the following
shorthands:

Xi =

i∏
k=1

(1 − xk) , Xγi =

i∏
k=1

(1 − γxk) , Yi =

i∏
k=1

(1 − yk) , Yγi =

i∏
k=1

(1 − γyk) .
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Our claim holds trivially for K = 1 because:

(1 − γy1) − (1 − γx1) = γ[(1 − y1) − (1 − x1)] .

To prove that the claim holds for any K, we first rewrite YγK − XγK in terms of YγK−1 −

XγK−1:

YγK − XγK = (1 − γyK)Y
γ
K−1 − (1 − γxK)X

γ
K−1

= YγK−1 − γyKY
γ
K−1 − X

γ
K−1 + γyKX

γ
K−1 + γ(xK − yK)X

γ
K−1

= (1 − γyK)(Y
γ
K−1 − X

γ
K−1) + γ(xK − yK)X

γ
K−1 .

By our induction hypothesis, YγK−1 − X
γ
K−1 > γ(YK−1 − XK−1). Moreover, XγK−1 >

XK−1 and 1 − γyK > 1 − yK. We apply these lower bounds to the right-hand side
of the above equality and then rearrange it as:

YγK − XγK > γ(1 − yK)(YK−1 − XK−1) + γ(xK − yK)XK−1

= γ[(1 − yK)YK−1 − (1 − yK + yK − xK)XK−1]

= γ[YK − XK] .

This concludes our proof.
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5 conservative exploration using interleaving

5.1 Introduction

Recommender systems are an integral component of many industries, with ap-
plications in content personalization, advertising, and page design [Resnick and
Varian, 1997, Adomavicius and Tuzhilin, 2015, Broder, 2008]. Multi-armed bandit
algorithms provide adaptive techniques for content recommendation. However,
although they are theoretically well-understood, they have not been widely adopted
in production systems [Cremonesi et al., 2011, Schnabel et al., 2018]. This is pri-
marily due to concerns that the output of the bandit algorithm can be suboptimal
or even disastrous, especially when the algorithm explores suboptimal arms. To
address this issue, most industries have a default recommendation engine in pro-
duction that has been well-optimized and tested for many years, and a promising
new policy is often evaluated using A/B testing [Siroker and Koomen, 2013], which
allocates a small α fraction of the traffic to the new policy. When the utilities of
actions are independent, this is a reasonable solution that allows the new policy to
be evaluated conservatively.

Many recommendation problems involve structured actions, such as sets of recom-
mended movies. In these problems, the total utility of the action can be decomposed
into the utilities of items in it, such as individual movies. Therefore, it is conceivable
that the new policy could be evaluated in a controlled and principled fashion by
interleaving items in the new and default actions, instead of dividing the traffic as
in A/B testing. As a concrete example, consider the problem of recommending
top-K movies to a new visitor [Deshpande and Karypis, 2004]. A company may
have a default policy that recommends a fixed set of Kmovies that performs well,
but intends to test a new algorithm that promises to learn better movies. The A/B
testing method would show the recommendations of the new algorithm to a visitor
with probability α. In the initial stages, the new algorithm is expected to explore a
lot to learn, and may hurt engagement with the visitor who is shown a disastrous
set of movies, just to learn that these movies are not good. An arguably better
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approach, which does not hurt any visitor’s engagement as much and gathers the
same feedback on average, is to show the default well-tested movies interleaved
with α fraction of new recommendations. A recent study by Schnabel et al. [2018]
concluded that this latter approach is in fact better,

“These findings indicate that for improving recommendation systems
in practice, it is preferable to mix a limited amount of exploration into
every impression – as opposed to having a few impressions that do pure
exploration.”

In this chapter, we formalize the above idea and study the general case where actions
are exchangeable, which is a mathematical formulation of the notion of interleaving.
In particular, we study learning variants of maximizing an unknown linear function
on an exchangeable action set subject to a conservative constraint.

In our motivating recommendation example, we require that any recommenda-
tion is always above a certain baseline quality. The question that we want to answer
is what is the price of being this conservative? In this work, we answer this question
and make five contributions. First, we introduce the idea of conservative multi-armed
bandits in combinatorial action spaces, and formulate a conservative constraint that ad-
dresses the issues raised in Schnabel et al. [2018]. Existing conservative constraints
for multi-armed bandit problems do not address this issue, as discussed in Sec-
tion 5.6. Second, we propose interleaving as a solution, and show how it naturally
leads to the idea of exchangeable action spaces. We precisely formulate conservative
interleaving bandits, a constrained online learning problem in exchangeable action
spaces. Third, we present Interleaving Upper Confidence Bound (iUCB), a computa-
tionally and sample-efficient algorithm for solving our problem. The algorithm
satisfies our conservative constraint by design. Fourth, we prove gap-dependent
upper bounds on its expected n-step regret. The bounds are logarithmic in the
number of steps n, linear in the number of items L, and increase with the level of
conservatism. Finally, we evaluate iUCB on both synthetic and real-world problems.
In synthetic experiments, we validate an extra factor in our regret bounds, which
is the price for being conservative. In real-world experiments, we formulate and
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solve two top-K recommendation problems. To the best of our knowledge, this is
the first work that studies conservatism in combinatorial bandit problems.

5.2 Setting

We formulate our online learning problem as a stochastic combinatorial semi-bandit
[Kveton et al., 2015d, Gai et al., 2012b, Chen et al., 2013b], which we review in Sec-
tion 5.2.1. In Section 5.2.2, we define our notion of conservativeness. In Section 5.2.3,
we suggest interleaving as a solution and formulate it mathematically using the
notion of exchangeable action spaces. Finally, in Section 5.2.4, we introduce our
online learning problem of conservative interleaving bandits. To simplify exposition,
we write all random variables in bold. We denote {1, . . . ,K} by [K].

5.2.1 Stochastic Combinatorial Semi-Bandits

A stochastic combinatorial semi-bandit [Kveton et al., 2015d, Gai et al., 2012b, Chen
et al., 2013b] is a tuple (E,B,P), where E = [L] is a finite set of L items; B ⊆ ΠK(E)
is a set of feasible actions, which is a subset of all sets of size K from E, ΠK(E); and
P is a probability distribution over a unit cube [0, 1]E.

The learning agent interacts with this problem as follows. Let (wt)
n
t=1 be a

sequence of n i.i.d. weights drawn from P, where wt(e) is the weight of item e ∈ E
at time t. At time t, the agent takes action At ∈ B, which is a set of K items from
E. The reward for taking the action is f(At, wt), where f(A,w) =

∑
e∈Aw(e) is the

sum of the weights of all items in A. After taking action At, the agent observes the
weight wt(e) of each item e ∈ At.

The expected weights of items are defined as w̄ = E[w]. The learning agent is
evaluated by its expected n-step regret R(n) =

∑n
t=1 E [f(A∗, w̄)] −

∑n
t=1 E [f(At, w̄]),

where A∗ = arg maxA∈B f(A, w̄) is the best action in hindsight.
Stochastic combinatorial semi-bandits can be used to model top-K recommen-

dation problems as follows. The ground set E is the set of all items that can be
recommended, such as movies. The action A ∈ B is any set of Kmovies that can
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be recommended jointly to the user. The weight of item e at time t, wt(e), is an
indicator of the click on item e at time t. This interaction model is known as the
document click model [Chuklin et al., 2015c].

5.2.2 Conservative Constraint

To avoid disastrous actions, which may contain a large number of bad items, we
impose a constraint on the actions of the learning agent. This constraint is stated
formally below.

Let K denote the number of items in all actions. Let B0 be the default baseline
action. Our constraint requires that at any time t, the action At of the learning agent
should be comparable to or better than the baseline action B0, in the sense that most
items in At should be at least as good as those in B0. Mathematically, we require
that there exists a bijection ρAt,B0 : At → B0 such that∑

e∈At

1(w̄(e) > w̄(ρAt,B0(e))) > (1 − α)K (5.1)

holds with a high probability at all times t ∈ [n], where α is a problem-specific risk
tolerance parameter. In other words, the items in At and B0 can be matched such that
at most α fraction of the items in At has a lower expected reward than the matched
items in B0. We compare (5.1) to other notions of conservatism in the literature in
Section 5.6.

5.2.3 Exchangeable Actions

Given an algorithm that explores and suggests new actions that could potentially be
disastrous, a natural way to satisfy (5.1) is to interleave most items from the default
action B0 with a few items from the new action. This is possible if the set of feasible
actions B ⊆ ΠK(E) is exchangeable.
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Definition 5.1 (Exchangeable set). Given a set E, a set B ⊆ ΠK(E) is exchangeable if
for any two actions A1,A2 ∈ B, there exists a bijection ρA1,A2 : A1 → A2 such that

∀G ⊆ A1 : A1 \G ∪ {ρA1,A2(e) : e ∈ G} ∈ B . (5.2)

From now on, we assume that all sets of feasible actions B are exchangeable.
We give examples of two exchangeable sets below.

Our first example are top-Kmovie recommendations from Section 5.1. In this
example, E is the set of movies and the exchangeable set B are all subsets of size K
from E. The bijection ρA1,A2 between two actions A1,A2 ∈ B can be any bijection
subject to the constraint that common items in A1 and A2 are mapped to each other.
Formally, ρA1,A2 is any bijectionA1 → A2 such that ρA1,A2(e) = e for any e ∈ A1∩A2.
The set B in this example is also known as a uniform matroid of rank K.

Our second example are diverse movie recommendations. Let E be the set of
movies and P1, . . . ,PK be a partition of E, where each Pi represents a movie genre.
Then we define the exchangeable set as

B = {A ∈ ΠK(E) : a1 ∈ P1, . . . ,aK ∈ PK} , (5.3)

where A = {a1, . . . ,aK}. Based on the above definition, any action A ∈ B contains
one movie from each genre, and hence is diverse. The bijection ρA1,A2 between two
actions A1,A2 ∈ B maps e ∈ A1 ∩ Pi to e ′ ∈ A2 ∩ Pi for all i ∈ [K]. The set B in this
example is known as a partition matroid of rank K.

We briefly explain how exchangeability leads to interleaving of items and allows
conservative exploration. In both movie recommendation examples, we can set A1

to be the default baseline action and A2 to be a newly evaluated action. A natural
approach to exploring A2 without violating the conservative constraint in (5.1) is
through interleaving, all items in the new action A2 are explored in S = 1/α steps
by taking S interleaved actions. Each interleaved action substitutes αK unique items
in A1 for the matched items in A2. Any such action is feasible by Definition 5.1.

For simplicity of exposition, we make two assumptions on α. First, 1/K 6
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α 6 1/2. This boundary condition says that we do not consider extreme non-
conservative cases, where the learning agent can explore more than a half of items
in a new actionA2; and extreme conservative cases, where the learning agent cannot
explore safely at least one item in A2. Second, we assume that αK ∈ N. This means
that all items in A2 can be observed once in exactly S = 1/α interleaved actions. If
this latter assumption is violated, we suggest that α is set to the maximum value of
α ′ < α that satisfies the assumption. This setting is clearly more conservative and
satisfies both of our assumptions.

5.2.4 Conservative Interleaving Bandits

A conservative interleaving bandit is variant of a stochastic combinatorial semi-bandit
(Section 5.2.1) for conservative exploration. Formally, it is a tuple (E,B,P,B0,α),
where E, B, and P are defined as in Section 5.2.1; B is an exchangeable set (Defi-
nition 5.1), B0 ∈ B is a default baseline action, and α ∈ [0, 1] is the risk tolerance
parameter in (5.1). We assume that the learning agent knows E, B, B0, and α; and
that the distribution P is unknown.

5.3 Algorithm

Learning in conservative interleaving bandits is non-trivial. For instance, one
cannot simply take optimistic actions of existing non-conservative algorithms for
combinatorial semi-bandits [Kveton et al., 2014b, Talebi and Proutiere, 2016] and
interleave them with 1 − α fraction of items from the default baseline action B0.
The regret of this policy would be linear because its actions never converge to the
optimal action A∗, unless all items in B0 are optimal. If this was the case, we would
not have a learning problem to start with.

In this section, we introduce our Interleaving Upper Confidence Bound (iUCB)
algorithm, which achieves sublinear regret by continuously improving the default
baseline action B0 with a high probability. We present two variants of the algorithm,
iUCB1 and iUCB2. In iUCB1, the agent knows the expected rewards of all items in
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B0, {w̄(e) : e ∈ B0}. These rewards may be known if the baseline policy has been
deployed before. In iUCB1, the agent does not know the expected rewards of items
in B0. We refer to the common aspects of both algorithms as iUCB.

The pseudocode of both algorithms is in Algorithm 5. We highlight their dif-
ferences in comments. Recall that K is the number of items in all actions. iUCB
operates in rounds, which are indexed by t, and takes S interleaved actions in each
round. We assume that iUCB has access to an oracle OPT that returns the most
rewarding action for any weight vectorw ∈ [0, 1]E. The input to OPT isw. When B

are bases of a matroid, as in our examples in Section 5.2.3, OPT is a greedy algorithm
for finding the maximum weight basis of a matroid and runs in O(L log L) time
[Edmonds, 1971].

In each round, iUCB has three stages. In the first stage (lines 9–10), iUCB computes
high-probability upper confidence bounds (UCBs) Ut ∈ (R+)E and lower confidence
bounds (LCBs) Lt ∈ (R+)E on the expected rewards of all items. For any item e ∈ E,

Ut(e) = ŵTt−1(e)(e) + cn,Tt−1(e) ,

Lt(e) = max{ŵTt−1(e)(e) − cn,Tt−1(e), 0} ,
(5.4)

where ŵs(e) is the average of the first s observed weights of item e, Tt(e) is the
number of times that item e is observed in the first t steps, and

cn,s =
√

1.5 log(n)/s (5.5)

is the radius of a confidence interval around ŵs(e) such that w̄(e) ∈ [ŵs(e) −

cn,s, ŵs(e) + cn,s] holds with a high probability. We use UCB1 confidence intervals
[Auer et al., 2002b] to simplify analysis, but it is possible to use tighter KL-UCB
confidence intervals [Garivier and Cappé, 2011].

In line 12, iUCB chooses decision set Dt, which is the optimal action with respect to
weights Ut, an optimistic estimate of w̄. The same approach was used in Optimistic
Matroid Maximization (OMM) of Kveton et al. [2014b]. However, unlike OMM, iUCB
cannot take Dt because it may not satisfy our conservative constraint in (5.1). We
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refer to Dt as a set to distinguish it from the actions of iUCB.
In the second stage (lines 13–20), iUCB computes baseline set Bt, which is the

optimal action with respect to weights vt. We refer to Bt as a set to distinguish
it from the actions of iUCB. The weights vt are set as follows. If e ∈ B0, we set
vt(e) = w̄(e) when w̄(e) is known, and vt(e) = Ut(e) when it is not. If e ∈ E \ B0,
we set vt(e) = Lt(e). This setting guarantees that if any item e ∈ E \B0 is chosen to
Bt over any item e ′ ∈ B0, its expected reward is higher than that of item e ′ with a
high probability. As a result, the baseline is improved.

In the last stage (lines 22–31), iUCB takes S = 1/α combined actions of Dt and Bt,
which are guaranteed to be in B by Definition 5.1. In particular, let æt : Bt → Dt

be the bijection in Definition 5.1 and {Bst}Ss=1 be a partition of Bt into S sets such
that |Bst | = αK for all s ∈ [S]. Then we take actions At = Bt \ Bst ∪ {æt(e) : e ∈ Bst}
for s ∈ [S] sequentially. Since At contains at least (1 − α)K baseline items, all of
which improve over B0 with a high probability, the conservative constraint in (5.1)
is satisfied.

After each action, iUCB updates its sufficient statistics (lines 29–31), which are
used to estimate the UCBs and LCBs in the next round.

5.4 Analysis

This section has three subsections. In Section 5.4.1, we prove that iUCB1 is conser-
vative and bound its regret. The main challenge in our analysis is that we cannot
directly apply a UCB-like argument, because the baseline set Bt is chosen based on
lower confidence bounds. In Section 5.4.2, we prove analogous claims for iUCB2. In
Section 5.4.3, we discuss our theoretical results.

We adopt the following conventions in our analysis. Without loss of generality,
we assume that items in E are ordered such that w̄(1) > · · · > w̄(L). The optimal
action is A∗, the decision set at time t is Dt, and the baseline set at time t is Bt.
Recall that A∗, Dt, and Bt are the elements of an exchangeable action set B, which
is defined in Definition 5.1. At any time t, let ßt : A∗ → Dt and œt : Dt → Bt
be the bijections in Definition 5.1, which are guaranteed to exist. These bijections
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significantly simplify our analysis, and allow us to decompose the improvements
in Dt and Bt to those of individual items in them.

For any items e and e ′ such that w̄(e ′) > w̄(e), we define the gap as ∆e,e ′ =

w̄(e ′) − w̄(e). We also define a “good” event at time t as

Et = {∀ e ∈ E : |w̄(e) − ŵTt−1(e)(e)| 6 cn,Tt−1(e)} , (5.6)

which is the event that w̄(e) is in the high-probability confidence interval around
ŵTt−1(e)(e) for all items e at the beginning of time t.

5.4.1 iUCB1: Known Baseline Mean Rewards

First, we show that iUCB1 is conservative. The proof of this claim is in Section 5.8.1.

Theorem 5.2. iUCB1 satisfies (5.1) jointly at all times t ∈ [n] with probability of at least
1 − 2L/(Kn).

Then we prove a gap-dependent upper bound on the regret of iUCB1. The bound
involves two kinds of gaps. For any suboptimal item e, we define its gap from the
closest better optimal item,

∆e,min = mine∗∈A∗:∆e,e∗>0∆e,e∗ . (5.7)

In addition, for any optimal item e∗, we define its gap from the closest worse
suboptimal item,

∆∗e∗,min = mine∈E\A∗:∆e,e∗>0∆e,e∗ . (5.8)

Our regret bound is stated below.

Theorem 5.3 (Regret of iUCB1). The expected n-step regret of iUCB1 is bounded as

(S− 1)

 ∑
e∈E\A∗

24
∆e,min

+
∑
e∗∈A∗

12
∆∗e∗,min

 logn+
∑

e∈E\A∗

12
∆e,min

logn+ c ,
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where S = 1/α; ∆e,min and ∆∗e∗,min are defined in (5.7) and (5.8), respectively; and c =

O(SL
√

logn).

Proof. Let Ē =
n/S⋃
t=1

Ēt be the event that at least one event Et in (5.6) does not occur;

and Ē be its complement, the event that all events Et in (5.6) occur. Let Rt the
stochastic regret at time t.

We decompose the expected n-step regret by conditioning on E and Ē as

R(n) = E

1(Ē) n/S∑
t=1

Rt

+ E

1(E) n/S∑
t=1

Rt

 . (5.9)

The regret due to the first term in (5.9) is low. In particular, since P(Ē) 6 2LK−1n−1

(Lemma 5.6 in Appendix) and the maximum n-step regret is Kn, the maximum
contribution due to the first term is 2L.

In the rest of the proof, we analyze the second term in (5.9) under event E. The
key observation is that the expected regret at time t decomposes as

E [Rt] = S
∑
e∗∈A∗

w̄(e∗) − (S− 1)
∑
e ′∈Bt

w̄(e ′) −
∑
e∈Dt

w̄(e)

= S

(∑
e∗∈A∗

w̄(e∗) −
∑
e∈Dt

w̄(e)

)
+ (5.10)

(S− 1)

(∑
e∈Dt

w̄(e) −
∑
e ′∈Bt

w̄(e ′)

)
,

where the first term represents regret due to the decision set and the second term
represents regret due to interleaving with the baseline set.

The first term in (5.10) can be bounded as follows. Since the decision set Dt is
chosen optimistically, the UCBs of items in Dt are at least as high as those of the
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matched items in A∗, and we have that∑
e∗∈A∗

w̄(e∗) −
∑
e∈Dt

w̄(e) 6
∑
e∈Dt

2cn,Tt−1(e) (5.11)

at any time t under event E, from Lemma 5.8 in Appendix. Now we add all above
upper bounds over time and get

n/S∑
t=1

∑
e∈Dt

2cn,Tt−1(e)

6
∑

e∈E\A∗

n/S∑
t=1

√
6 logn
Tt−1(e)

1(e ∈ Dt)

6
∑

e∈E\A∗

√
6 logn

(
1 + 2

√
6 logn
∆2
e,min

)

=
∑

e∈E\A∗

12
∆e,min

logn+ L
√

6 logn . (5.12)

The first inequality is from the definition of our confidence intervals. The second in-
equality is from two observations. First, the counter Tt(e) increases whenever item
e is chosen. Second, this event occurs at mostm = 6∆−2

e,min logn times (Lemma 5.8
in Appendix). Finally, we apply

m∑
s=1

1√
s
6 1 + 2

√
m . (5.13)

The last equality is an algebraic manipulation.
The second term in (5.10) is bounded as follows. Since the baseline set Bt is

chosen based on LCBs, the LCBs of items in Bt are at least as high as those of the
matched items in Dt, and we have that∑

e∈Dt

w̄(e) −
∑
e ′∈Bt

w̄(e ′) 6
∑
e∈Dt

2cn,Tt−1(e) (5.14)
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at any time t under event E, from Lemma 5.9 in Appendix. Now we add all above
upper bounds over time and get

n/S∑
t=1

∑
e∈Dt

2cn,Tt−1(e) 6

∑
e∈E\A∗

n/S∑
t=1

√
6 logn
Tt−1(e)

1(e ∈ Dt) + (5.15)

∑
e∗∈A∗

n/S∑
t=1

√
6 logn

Tt−1(e∗)
1(e∗ ∈ Dt) ,

where the inequality is from the definition of our confidence intervals.
The first term in (5.15) is bounded as in (5.12). The second term is bounded

similarly, where the only difference is in the definition of the gap. In particular, if
an optimal item e∗ is chosenΩ((∆∗e∗,min)

−2 logn) times (Lemma 5.9 in Appendix),
it must be in the baseline set Bt and the corresponding regret is zero. Therefore,
the regret in (5.15) is bounded from above by

∑
e∈E\A∗

12
∆e,min

logn+ L
√

6 logn+
∑
e∗∈A∗

12
∆∗e∗,min

logn+ L
√

6 logn . (5.16)

Finally, we add S times the upper bound in (5.12) and S− 1 times the upper bound
in (5.16), and get our claim.

5.4.2 iUCB2: Unknown Baseline Mean Rewards

First, we show that iUCB2 is conservative. The proof of this claim is in Section 5.8.2.

Theorem 5.4. iUCB2 satisfies (5.1) jointly at all times t ∈ [n] with probability of at least
1 − 2L/(Kn).

Now we prove a gap-dependent upper bound on the regret of iUCB2.
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Theorem 5.5 (Regret of iUCB2). The expected n-step regret of iUCB2 is bounded as

(S− 1)

 ∑
e∈E\A∗

48
∆e,min

+
∑
e∗∈A∗

36
∆∗e∗,min

 logn+
∑

e∈E\A∗

12
∆e,min

logn+ c ,

where S = 1/α; ∆e,min and ∆∗e∗,min are defined in (5.7) and (5.8), respectively; and c =

O(SL
√

logn).

Proof. The proof is similar to that of Theorem 5.3. The only major difference is that
items in the default baseline action B0 are chosen to Bt based on their UCBs, while
the other items are selected based on their LCBs.

The regret at time t decomposes as in (5.10), and the first term in (5.10) is
bounded exactly as in (5.12). To bound the second term, we decompose the regret
based on whether the item in Bt is in B0 or not, and get that∑

e∈Dt

w̄(e) −
∑
e ′∈Bt

w̄(e ′)

=
∑

e∈Dt:œt(e)/∈B0

w̄(e) −
∑

e ′∈Bt\B0

w̄(e ′) +
∑

e∈Dt:œt(e)∈B0

w̄(e) −
∑

e ′∈Bt∩B0

w̄(e ′)

6
∑

e∈Dt:œt(e)/∈B0

2cn,Tt−1(e) +
∑

e∈Dt:œt(e)∈B0

4cn,Tt−1(e) ,

where œt(e) is the matched item in Bt for item e in Dt. The last step follows from
two observations. When œt(e) /∈ B0, we follow the same proof as in (5.14) and get
the same upper bound as in (5.16). When œt(e) ∈ B0, we apply Lemma 5.10 in
Appendix. This lemma relies on the observation that any item in Bt ∩ B0 is chosen
at least as often as its matched item in Dt up to any time t, which holds for any
α 6 1/2. The final upper bound is the same as in (5.16), except that all terms are
multiplied by 2.

Finally, we add up the contributions of all terms, which is S times the upper
bound in (5.12) and 3(S−1) times the upper bound in (5.16), and get our claim.
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5.4.3 Discussion

Our regret bounds in Theorems 5.3 and 5.5 depend on two gaps. The first gap,
∆e,min in (5.7), measures the distance of suboptimal item e from the closest better
optimal item. This gap is standard in stochastic combinatorial semi-bandits with
matroid constraints [Kveton et al., 2014b], which we refer to as matroid bandits.
Matroid constraints are a weaker notion of exchangeability than that in this chapter.
The second gap, ∆∗e∗,min in (5.8), measures the distance of optimal item e∗ from the
closest worse suboptimal item. Similar gaps appear in top-K best-arm identification
problems [Kalyanakrishnan et al., 2012]. If we let

∆ = min{ min
e∈E\A∗

∆e,min, min
e∗∈A∗

∆∗e∗,min} ,

then the bounds in Theorems 5.3 and 5.5 scale as O(SL∆−1), where L is the number
of items and S = 1/α is the number of interleaved actions in iUCB to observe each
item in the decision set once. We validate this scaling empirically in Section 5.5.1.

When compared to matroid bandits [Kveton et al., 2014b, Talebi and Proutiere,
2016], our regret bounds contain an extra factor of S. This is the price of conservativism.
In particular, since iUCB takes S interleaved actions to observe each item in the
decision set Dt once, its regret is S times higher than that of the algorithm that can
explore Dt in a single action. Note that whenever α = Ω(1), as at α = 1/2, the extra
factor of S = 1/α is a constant independent of K and our bounds scale as those in
matroid bandits [Kveton et al., 2014b, Talebi and Proutiere, 2016].

Finally, by a standard gap-dependent to gap-free reduction, where the gaps are
divided in into those that are larger than ε and smaller than ε, and then ε is tuned,
we have a gap-free regret bound of O(S

√
KLn logn). This bound is again at most

S times higher than that in matroid bandits [Kveton et al., 2014b].



107

4 6 8 10
K

100

300

1k

3k

10k

30k
Re

gr
et

Regret scaling with K

Δ = 0.80, S=K
Δ = 0.80, S= 2
Δ = 0.40, S=K
Δ = 0.40, S= 2
Δ = 0.20, S=K
Δ = 0.20, S= 2

100k 200k 300k 400k 500k
Step n

0

20k

40k

60k

80k

100k

Re
gr

et

Top-K recommendations

iUCB1, S = K
iUCB1, S = 2
iUCB2, S = K
iUCB2, S = 2
OMM

100k 200k 300k 400k 500k
Step n

0

20k

40k

60k

80k

100k

Re
gr

et

Diverse top-K recommendations

iUCB1, S = K
iUCB1, S = 2
iUCB2, S = K
iUCB2, S = 2
OMM

(a) (b) (c)

Figure 5.1: a. The n-step regret of iUCB1 in the synthetic problem in Section 5.5.1 as
a function ofK. b. The regret of iUCB1, iUCB2, and OMM in the top-K recommendation
problem in Section 5.5.2. c. The regret of iUCB1, iUCB2, and OMM in the diverse top-K
recommendation problem in Section 5.5.2.

5.5 Experiments

We conduct two experiments. In Section 5.5.1, we validate that the regret of iUCB1
grows as suggested by our upper bound in Theorem 5.3. In Section 5.5.2, we apply
iUCB to two recommendation problems. We also compare it to a non-conservative al-
gorithm OMM [Kveton et al., 2014b], which can learn optimal actions in our problems;
but also severely violates the conservative constraint in (5.1).

5.5.1 Regret Scaling

The first experiment validates that the regret of iUCB1 scales as suggested by our gap-
dependent upper bound in Theorem 5.3. The ground set is E = [K2] for parameter
K > 0 and the action set is B = ΠK(E). The i-th entry of weight vector wt, wt(i), is
an independent Bernoulli random variable with mean

w̄(i) = 0.5(1 − ∆1(i > K))

for ∆ ∈ (0, 1). From the definition of w̄, the optimal action is A∗ = [K]. The default
baseline action are the last K items in E, B0 = [K2] \ [K(K− 1)]. In this problem, we
expect the regret of iUCB1 to scale as SK2∆−1.

We vary K, ∆, and S; and report the n-step regret of iUCB1 in 100k steps in
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Fig. 5.1a. The regret is shown in log-log plots as a function of K for three values of
∆ and two values of S. We observe two major trends. First, the regret grows as S
and K increase, and ∆ decreases. This is consistent with our theoretical analysis.
Second, the growth rate is as predicted. In particular, when S = K, and one decision
item is interleaved with K− 1 baseline items, the slopes of the plots are close to 3.
This confirms cubic dependence on Kwhen S = K. Moreover, when S = 2, and K/2
decision items are interleaved with K/2 baseline items, the slopes of the plots are
close to 2. This confirms quadratic dependence on K when S = 2.

5.5.2 Recommender System Experiment

In the second experiment, we apply iUCB to two motivating recommendation prob-
lems in Section 5.2.4. In both problems, we recommend K movies out of L. The
attraction of movies is estimated from the MovieLens dataset from February 2003
[Lam and Herlocker, 2013], where 6 thousand users give one million ratings to 4
thousand movies.

Our learning problems are formulated as follows. The set E are 200 movies
from the MovieLens dataset. The set is partitioned as E =

⋃10
i=1 Ei, where Ei are

20 most popular movies in the i-th most popular MovieLens movie genre that are
not in E1, . . . ,Ei−1. The weight of item e at time t, wt(e) ∈ {0, 1}, indicates that item
e attracts the user at time t. We set it as wt(e) = 1 if and only if the user rated
item e in our dataset. This indicates that the user watched movie e before, perhaps
because the movie was attractive. The user at time t is drawn randomly from all
MovieLens users. The objective of the learning agent is to learn a set of items with
the highest expected attraction over all users.

We study two recommendation problems. The first problem is top-K recommen-
dation in Section 5.2.4, where K = 10. The exchangeable action set is B = ΠK(E),
all sets of size K from E. The optimal action A∗ are 10 most attractive movies. The
default baseline action B0 are the next 10 most attractive movies. We choose B0 in
this way because existing baseline policies tend to perform well.

The second problem is diverse top-K recommendation in Section 5.2.4, whereK = 10.
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The exchangeable action set is defined as in (5.3), where each Pi is associated with
movie group Ei. The optimal action A∗ is the set of most attractive movies from all
Ei. The default baseline action B0 is the set of second most attractive movies from
all Ei. Again, we choose B0 in this way because existing baseline policies tend to
perform well.

Our results are reported in Figures 5.1b and 5.1c. We observe several trends
across both problems. First, the regret of all algorithms is concave, which shows
that they learn better policies over time. Second, the regret of iUCB2 is higher than
that of iUCB1. This is because iUCB2 does not know the values of default baseline
items B0, while iUCB1 does. Since iUCB2 has to estimate these values, it is more
conservative and learns slower. Second, the regret increases with S. For instance,
in Fig. 5.1b, the regret at S = K is almost twice as high as that at S = 2. This is
expected since the former setting is more conservative. In particular, at S = K, one
decision item is interleaved with K − 1 baseline items; while at S = 2, and K/2
decision items are interleaved with K/2 baseline items.

Finally, we note that OMM achieves the lowest regret. But it also violates our
conservative constraints. For instance, at S = K, iUCB1 and iUCB2 violate none of
the constraints in (5.1). On the other hand, OMM violates more than 16k and 158k
constraints in Figures 5.1b and 5.1c, respectively, on average in 500k steps. This
is one violated constraint in every three actions in the latter problem. We also
note that at S = 2, the regret of iUCB1 approaches that of OMM. This indicates that
reasonably conservative constraints, such as that one half of the recommended
items are at least as good as default baseline items in B0, can be satisfied without
major impact on regret.

5.6 Related Work

The idea of controlled exploration in multi-armed bandits is not new. Wu et al.
[2016] studied conservatism in multi-armed bandits, where the learning agent is
constrained to have its cumulative reward no worse than 1 −α fraction of that of the
default action. In our setting, the cumulative nature of this constraint means that
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the agent can take disastrous actions, with many suboptimal items, once in every
1/α steps. Our per-time constraint in (5.1) explicitly prohibits this design and such
disastrous actions. However, note that our setting and algorithms apply only to
combinatorial action spaces, and hence are less general.

A/B testing [Siroker and Koomen, 2013] can also solve constrained exploration
problems. When the new and default actions are chosen randomly with probabili-
ties α and 1 − α, respectively, the expected reward is no worse than 1 − α fraction
of that of the default action. Since this constraint is in expectation, A/B testing can
take disastrous actions occasionally. In comparison, we satisfy our constraint in
(5.1) with a high-probability at all times, and strictly avoid disastrous actions.

Online learning with matroids was introduced by Kveton et al. [2014b] and later
studied by Talebi and Proutiere [2016]. These works do not consider any notion of
conservatism. A naive generalization of these works to conservatism is problematic,
as discussed at the beginning in Section 5.3.

Kazerouni et al. [2017] studied conservatism in linear bandits. Similarly to Wu
et al. [2016], their constraint is cumulative. Furthermore, the time complexity of their
algorithm increases with time when the expected reward of the baseline policy is
unknown. In comparison, iUCB is both computationally and sample efficient.

Bastani et al. [2017] studied contextual bandits and proposed diversity assump-
tions on the environment. Intuitively, if the context varies a lot over time, the
environment explores on behalf of the learning agent, and the agent does not have
to explore. In comparison, we actively explore in a constrained fashion.

Radlinski and Joachims [2006] proposed randomizing the order of presented
items to estimate their relevance in the presence of item and position biases. Their
algorithm guarantees that the quality of the presented items is affected minimally.
But it does not learn a better policy. The idea of interleaving has been used to
evaluate information retrieval systems and Chapelle et al. [2012] validated its
efficacy. Chapelle et al. [2012] did not study the problem of learning a better policy.
iUCB learns a better policy. While we do not consider item and position biases in
this work, we hope to do so in future work.
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5.7 Conclusions

In this chapter, we study controlled exploration in combinatorial action spaces
using interleaving, and precisely formulate the learning problem in the space of
exchangeable actions. Our conservative formulation is more suitable for combina-
torial spaces than existing notions of conservatism. We propose an algorithm for
solving our problem, iUCB, and prove gap-dependent upper bounds on its regret.
iUCB exploits the idea of interleaving and can evaluate a disastrous action without
ever taking it.

We leave open several questions of interest. First, how large is the class of ex-
changeable action spaces? We provide two examples of such spaces in Section 5.2.3
in relation to top-K and diverse top-K recommendations. A fairly large class of
exchangeable action spaces is the class of strongly base-orderable matroids. The action
spaces in top-K and diverse top-K recommendation problems belong to this class.

Second, in general it may not be possible to build unbiased estimators of item
relevances with interleaving, as clicks are typically biased due to the position of
the item and other recommended items [Chuklin et al., 2015c]. Nevertheless, we
believe that it is possible to build biased estimators with the right bias, such that
a more relevant item never appears to be less relevant than a less relevant item
[Zoghi et al., 2017]. We leave this for future work.

Third, we not only require the action space to be exchangeable, but also need
to construct the bijection in Definition 5.1. The construction is straightforward for
uniform and partition matroids in our experiments.

We also leave open the question of a lower bound. Finally, we wish to highlight
that new ideas in our analysis of iUCB can be used to greatly simplify the original
analysis of OMM in Kveton et al. [2014b].
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5.8 Appendix

Lemma 5.6. Let Er be the good event in (5.6). Then

P

n/K⋃
r=1

Ēr

 6
n/K∑
r=1

E []1
(
Ēr
)
6

2L
Kn

.

Proof. From the definition of our confidence intervals and Hoeffding’s inequality
[Boucheron et al., 2013],

P(|w̄(e) − ŵs(e)| > ct,s) 6 2 exp[−3 log t]

for any e ∈ E, s ∈ [n], and t ∈ [n]. Therefore,

P

n/K⋃
r=1

Ēr

 6
n/K∑
r=1

P(Ēr)

6
n/K∑
r=1

∑
e∈E

rK∑
s=1

P(|w̄(e) − ŵs(e)| > cn,s)

6 2
∑
e∈E

1
Kn

.

This concludes our proof.

Lemma 5.7. Let A be the maximum weight action with respect to weightsw. Let B be any
action and let ρ : A→ B be the bijection in Definition 5.1. Then

∀a ∈ A : w(a) > w(ρ(a)) .

Proof. Fix a ∈ A and let b = ρ(a). By Definition 5.1, Aab = A \ {a} ∪ {b} ∈ B. Now
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note that A is the maximum weight action with respect to w. Therefore,

w(a) −w(b) =
∑
e∈A

w(e) −
∑
e∈Aab

w(e) > 0 .

This concludes our proof.

5.8.1 iUCB1: Known Baseline Means

Theorem 5.2. iUCB1 satisfies (5.1) jointly at all times t ∈ [n] with probability of at least
1 − 2L/(Kn).

Proof. At time t, the baseline set Bt is the maximum weight action with respect to
vt. Therefore, by Lemma 5.7, there exists a bijection æ : Bt → B0 such that

∀b ∈ Bt : vt(b) > vt(æ(b)) .

From the definition of vt, vt(æ(b)) = w̄(æ(b)) for any b ∈ Bt, and thus

∀b ∈ Bt : vt(b) > w̄(æ(b)) .

Now suppose that event Et in (5.6) happens. Then w̄(e) > Lt(e) for any e ∈ E, and
it follows that

∀b ∈ Bt : w̄(b) > w̄(æ(b)) .

Since any action at time t contains K(1 − α) items from Bt, the constraint in (5.1) is
satisfied when event Et happens.

Finally, we prove that P(∪tĒt) 6 2L/(Kn) in Lemma 5.6. Therefore, P(Et) >

P(∩tEt) > 1 − 2L/(Kn). This concludes our proof.
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Lemma 5.8. For any e∗ ∈ A∗, e ∈ Dt such that e = ßt(e∗), we have that

∆e,e∗ 6 2cn,Tt−1(e), and Tt−1(e) 6
6 logn
∆2
e,e∗

6
6 logn
∆2
e,min

, (5.17)

where ∆e,min is defined in (5.7).

Proof. Since the decision set Dt is chosen using upper confidence bounds, we have
that Ut(e) > Ut(e∗). This gives us:

w̄(e) + 2cn,Tt−1(e) > ŵt−1(e) + cn,Tt−1(e) = Ut(e) > Ut(e∗) > w̄(e∗).

This implies the first inequality in (5.17). Substituting the expression for cn,Tt−1(e)

from (5.5) yields the bound on Tt−1(e) in (5.17).

Lemma 5.9. For any e∗ ∈ A∗, e ∈ Dt, and e ′ ∈ Bt such that e = ßt(e∗) and e ′ = œt(e),

∆e ′,e 6 2cn,Tt−1(e).

Furthermore, if e ∈ A∗, then e = e∗ and

2cn,Tt−1(e∗) > w̄(e
∗) − w̄(e ′), and Tt−1(e

∗) 6
6 logn
∆2
e ′,e∗

6
6 logn
∆
∗2
e∗,min

, (5.18)

where ∆∗e∗,min is defined in (5.8).

Proof. Since the baseline set is selected using lower confidence bounds, we have
that Lt(e ′) > Lt(e). This gives us:

w̄(e ′) > Lt(e ′) > Lt(e) > w̄(e) − 2cn,Tt−1(e)

This implies that

2cn,Tt−1(e) > w̄(e) − w̄(e
′). (5.19)



115

If e ∈ A∗, then since e = ßt(e∗), we must have that e = e∗. Assume otherwise. Then
A∗ \ {e∗} ∪ {e} is a action (by Definition 5.1) of size (K− 1), which contradicts the
fact that all actions have the same cardinality K. Substituting e = e∗ in (5.19) gives
the first inequality in (5.18). The Tt−1(e

∗) bound in (5.18) follows by substituting
the expression of cn,Tt−1(e) from (5.5).

5.8.2 iUCB2: Unknown Baseline Means

Theorem 5.4. iUCB2 satisfies (5.1) jointly at all times t ∈ [n] with probability of at least
1 − 2L/(Kn).

Proof. At time t, the baseline set Bt is the maximum weight action with respect to
vt. Therefore, by Lemma 5.7, there exists a bijection æ : Bt → B0 such that

∀b ∈ Bt : vt(b) > vt(æ(b)) .

Now we consider two cases. First, suppose that b ∈ B0. Then by Lemma 5.7,
b = æ(b), and w̄(b) > w̄(æ(b)) from our assumption. Second, suppose that b /∈ B0.
Then from vt(b) = Lt(b) and vt(æ(b)) = Ut(æ(b)), and

w̄(b) > Lt(b) > Ut(æ(b)) > w̄(æ(b))

under event Et. Since any action at time t contains K(1 − α) items from Bt, the
constraint in (5.1) is satisfied when event Et happens.

Finally, we prove that P(∪tĒt) 6 2L/(Kn) in Lemma 5.6. Therefore, P(Et) >

P(∩tEt) > 1 − 2L/(Kn). This concludes our proof.

Lemma 5.10. For any e∗ ∈ A∗, e ∈ Dt, and e ′ ∈ Bt such that e ′ ∈ B0, e = ßt(e∗), and
e ′ ∈ œt(e),

∆e ′,e 6 4cn,Tt−1(e).
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Proof. For items e ′ ∈ B0 ∩ Bt, we have that Ut(e ′) > Lt(e). This gives us

w̄(e ′) + 2cn,Tt−1(e ′) > Ut(e ′) > Lt(e) > w̄(e) − 2cn,Tt−1(e)

This implies that

∆e ′,e 6 2cn,Tt−1(e) + 2cn,Tt−1(e ′). (5.20)

An item eliminated from the baseline set Bt is never re-introduced in the baseline
set. Since e ′ ∈ B0 ∩ Bt, it must have never been eliminated from the baseline set.
The maximum number of times e can be played is by including it in every decision
set Dt. In any round, since the baseline items are played (S− 1) times the decision
set counterparts, and S > 2, we have that Tt−1(e

′) > (S − 1)Tt−1(e) > Tt−1(e),
which implies that

cn,Tt−1(e ′) 6 cn,Tt−1(e).

Substituting in (5.20),
∆e ′,e 6 4cn,Tt−1(e).
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Algorithm 5 iUCB for conservative interleaving bandits.
1: Input: Baseline action B0 ∈ B, risk tolerance α
2:
3: S← 1/α ∈ N
4: Observe w0 ∼ P

5: ∀e ∈ E : T0(e)← 1, ŵ1(e)← w0(e)
6:
7: for t = 1, 2, . . . do
8: for all e ∈ E do { // Compute UCBs and LCBs}
9: Ut(e) = ŵTt−1(e)(e) + cn,Tt−1(e)

10: Lt(e) = max{ŵTt−1(e)(e) − cn,Tt−1(e), 0}
11: end for
12:
13: Dt ← OPT(Ut) // Compute decision set
14: for all e ∈ B0 do { // Compute baseline set}
15: if w̄(e) is known then { // iUCB1}
16: vt(e)← w̄(e)
17: else { // iUCB2}
18: vt(e)← Ut(e)
19: end if
20: end for
21: for all e ∈ E \ B0 do
22: vt(e)← Lt(e)
23: end for
24: Bt ← OPT(vt)
25:
26: // Take S combined actions and update statistics
27: Let {Bst}Ss=1 be a partition of Bt such that |Bst | = αK for all s ∈ [S]
28: Let æt : Bt → Dt be the bijection in Definition 5.1
29: ∀e ∈ E : Tt(e)← Tt−1(e)
30: for s = 1, . . . ,S do
31: Take action At = Bt \ Bst ∪ {æt(e) : e ∈ Bst}
32: Observe {wt(e) : e ∈ At}, where wt ∼ P

33: for all e ∈ At do

34: ŵTt(e)+1(e)←
Tt(e)ŵTt(e)(e) + wt(e)

Tt(e) + 1
35: Tt(e)← Tt(e) + 1
36: end for
37: end for
38: end for
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6 stochastic rank-1 bandits

6.1 Introduction

We study the problem of finding the maximum entry of a stochastic rank-1 matrix
from noisy and adaptively-chosen observations. This problem is motivated by two
problems, ranking in the position-based model Richardson et al. [2007] and online
advertising.

The position-based model (PBM) Richardson et al. [2007] is one of the most fun-
damental click models Chuklin et al. [2015b], a model of how people click on a
list of K items out of L. This model is defined as follows. Each item is associated
with its attraction and each position in the list is associated with its examination.
The attraction of any item and the examination of any position are i.i.d. Bernoulli
random variables. The item in the list is clicked only if it is attractive and its position
is examined. Under these assumptions, the pair of the item and position that maxi-
mizes the probability of clicking is the maximum entry of a rank-1 matrix, which
is the outer product of the attraction probabilities of items and the examination
probabilities of positions.

As another example, consider a marketer of a product who has two sets of actions,
K population segments and L marketing channels. Given a product, some segments
are easier to market to and some channels are more appropriate. Now suppose that the
conversion happens only if both actions are successful and that the successes of
these actions are independent. Then similarly to our earlier example, the pair of
the population segment and marketing channel that maximizes the conversion rate
is the maximum entry of a rank-1 matrix.

We propose an online learning model for solving our motivating problems,
which we call a stochastic rank-1 bandit. The learning agent interacts with our problem
as follows. At time t, the agent selects a pair of row and column arms, and receives
the product of their individual values as a reward. The values are stochastic, drawn
independently, and not observed. The goal of the agent is to maximize its expected
cumulative reward, or equivalently to minimize its expected cumulative regret
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with respect to the optimal solution, the most rewarding pair of row and column
arms.

We make five contributions. First, we precisely formulate the online learning
problem of stochastic rank-1 bandits. Second, we design an elimination algorithm
for solving it, which we call Rank1Elim. The key idea in Rank1Elim is to explore
all remaining rows and columns randomly over all remaining columns and rows,
respectively, to estimate their expected rewards; and then eliminate those rows
and columns that seem suboptimal. This algorithm is computationally efficient
and easy to implement. Third, we derive a O((K+ L)(1/∆) logn) gap-dependent
upper bound on its n-step regret, where K is the number of rows, L is the number of
columns, and∆ is the minimum of the row and column gaps; under the assumption
that the mean row and column rewards are bounded away from zero. Fourth, we
derive a nearly matching gap-dependent lower bound. Finally, we evaluate our
algorithm empirically. In particular, we validate the scaling of its regret, compare it
to multiple baselines, and show that it can learn near-optimal solutions even if our
modeling assumptions are mildly violated.

We denote random variables by boldface letters and define [n] = {1, . . . ,n}. For
any sets A and B, we denote by AB the set of all vectors whose entries are indexed
by B and take values from A.

6.2 Setting

We formulate our online learning problem as a stochastic rank-1 bandit. An instance
of this problem is defined by a tuple (K,L,Pu,Pv), where K is the number of rows,
L is the number of columns, Pu is a probability distribution over a unit hypercube
[0, 1]K, and Pv is a probability distribution over a unit hypercube [0, 1]L.

Let (ut)nt=1 be an i.i.d. sequence of n vectors drawn from distribution Pu and
(vt)nt=1 be an i.i.d. sequence of n vectors drawn from distribution Pv, such that ut
and vt are drawn independently at any time t. The learning agent interacts with
our problem as follows. At time t, it chooses arm (it, jt) ∈ [K] × [L] based on its
history up to time t; and then observes ut(it)vt(jt), which is also its reward.



120

The goal of the agent is to maximize its expected cumulative reward in n steps.
This is equivalent to minimizing the expected cumulative regret in n steps

R(n) = E

[
n∑
t=1

R(it, jt, ut, vt)

]
,

where R(it, jt, ut, vt) = ut(i∗)vt(j∗)−ut(it)vt(jt) is the instantaneous stochastic regret
of the agent at time t and

(i∗, j∗) = arg max
(i,j)∈[K]×[L]

E [u1(i)v1(j)]

is the optimal solution in hindsight of knowing Pu and Pv. Since u1 and v1 are drawn
independently, and u1(i) > 0 for all i ∈ [K] and v1(j) > 0 for all j ∈ [L], we get that

i∗ = arg max
i∈[K]

µū(i) , j∗ = arg max
j∈[L]

µv̄(j) ,

for any µ > 0, where ū = E [u1] and v̄ = E [v1]. This is the key idea in our solution.
Note that the problem of learning ū and v̄ from stochastic observations {ut(it)vt(jt)}nt=1

is a special case of matrix completion from noisy observations Keshavan et al. [2010].
This problem is harder than that of learning (i∗, j∗). In particular, the most popular
approach to matrix completion is alternating minimization of a non-convex function
Koren et al. [2009], where the observations are corrupted with Gaussian noise. In
contrast, our proposed algorithm is guaranteed to learn the optimal solution with
a high probability, and does not make any strong assumptions on Pu and Pv.

6.3 Naive Solutions

Our learning problem is a KL-arm bandit with K + L parameters, ū ∈ [0, 1]K and
v̄ ∈ [0, 1]L. The main challenge is to leverage this structure to learn efficiently. In this
section, we discuss the challenges of solving our problem by existing algorithms.
We conclude that a new algorithm is necessary and present it in Section 6.4.
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Any rank-1 bandit is a multi-armed bandit with KL arms. As such, it can be
solved by UCB1 Auer et al. [2002a]. The n-step regret of UCB1 in rank-1 bandits is
O(KL(1/∆) logn). Therefore, UCB1 is impractical when both K and L are large.

Note that log(ū(i)v̄(j)) = log(ū(i)) + log(v̄(j)) for any ū(i), v̄(j) > 0. Therefore,
a rank-1 bandit can be viewed as a stochastic linear bandit and solved by LinUCB
Dani et al. [2008], Abbasi-Yadkori et al. [2011], where the reward of arm (i, j) is
log(ut(i)) + log(vt(j)) and its features xi,j ∈ {0, 1}K+L are

xi,j(e) =

1{e = i} , e 6 K ;

1{e− K = j} , e > K ,
(6.1)

for any e ∈ [K+ L]. This approach is problematic for at least two reasons. First, the
reward is not properly defined when either ut(i) = 0 or vt(j) = 0. Second,

E [log(ut(i)) + log(vt(j))] 6= log(ū(i)) + log(v̄(j)) .

Nevertheless, note that both sides of the above inequality have maxima at (i∗, j∗),
and therefore LinUCB should perform well. We compare to it in Section 6.6.2.

Also note that ū(i)v̄(j) = exp[log(ū(i)) + log(v̄(j))] for ū(i), v̄(j) > 0. Therefore,
a rank-1 bandit can be viewed as a generalized linear bandit and solved by GLM-UCB
Filippi et al. [2010], where the mean function is exp[·] and the feature vector of arm
(i, j) is in (6.1). This approach is not practical for three reasons. First, the parameter
space is unbounded, because log(ū(i))→ −∞ as ū(i)→ 0 and log(v̄(j))→ −∞ as
v̄(j)→ 0. Second, the confidence intervals of GLM-UCB are scaled by the reciprocal of
the minimum derivative of the mean function c−1

µ , which can be very large in our
setting. In particular, cµ = min(i,j)∈[K]×[L] ū(i)v̄(j). In addition, the gap-dependent
upper bound on the regret of GLM-UCB isO((K+L)2c−2

µ ), which further indicates that
GLM-UCB is not practical. Our upper bound in Theorem 6.1 scales much better with
all quantities of interest. Third, GLM-UCB needs to compute the maximum-likelihood
estimates of ū and v̄ at each step, which is a non-convex optimization problem
(Section 6.2).
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Some variants of our problem can be solved trivially. For instance, let ut(i) ∈
{0.1, 0.5} for all i ∈ [K] and vt(j) ∈ {0.5, 0.9} for all j ∈ [L]. Then (ut(i), vt(j)) can be
identified from ut(i)vt(j), and the learning problem does not seem more difficult
than a stochastic combinatorial semi-bandit Kveton et al. [2015c]. We do not focus
on such degenerate cases in this chapter.

6.4 Rank1Elim Algorithm

Our algorithm, Rank1Elim, is shown in Algorithm 6. It is an elimination algo-
rithm Auer and Ortner [2010], which maintains UCB1 confidence intervals Auer
et al. [2002a] on the expected rewards of all rows and columns. Rank1Elim operates
in stages, which quadruple in length. In each stage, it explores all remaining rows
and columns randomly over all remaining columns and rows, respectively. At the
end of the stage, it eliminates all rows and columns that cannot be optimal.

The eliminated rows and columns are tracked as follows. We denote by hu
`(i) the

index of the most rewarding row whose expected reward is believed by Rank1Elim
to be at least as high as that of row i in stage `. Initially, hu

0(i) = i. When row i is
eliminated by row i` in stage `, hu

`+1(i) is set to i`; then when row i` is eliminated
by row i` ′ in stage ` ′ > `, hu

` ′+1(i) is set to i` ′ ; and so on. The corresponding column
quantity, hv

`(j), is defined and updated analogously. The remaining rows and columns
in stage `, I` and J`, are then the unique values in hu

` and hv
`, respectively; and we

set these in line 7 of Algorithm 6.
Each stage of Algorithm 6 has two main steps: exploration (lines 9–20) and

elimination (lines 22–41). In the row exploration step, each row i ∈ I` is explored
randomly over all remaining columns J` such that its expected reward up to stage `
is at least µū(i), where µ is in (6.4). To guarantee this, we sample column j ∈ [L]

randomly and then substitute it with column hv
`(j), which is at least as rewarding as

column j. This is critical to avoid 1/minj∈[L] v̄(j) in our regret bound, which can be
large and is not necessary. The observations are stored in reward matrix Cu

` ∈ RK×L.
As all rows are explored similarly, their expected rewards are scaled similarly, and
this permits elimination. The column exploration step is analogous.
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In the elimination step, the confidence intervals of all remaining rows, [Lu
`(i), Uu

`(i)]

for any i ∈ I`, are estimated from matrix Cu
` ∈ RK×L; and the confidence intervals of

all remaining columns, [Lv
`(j), Uv

`(j)] for any j ∈ J`, are estimated from Cv
` ∈ RK×L.

This separation is needed to guarantee that the expected rewards of all remaining
rows and columns are scaled similarly. The confidence intervals are designed such
that

Uu
`(i) 6 Lu

`(i`) = max
i∈I`

Lu
`(i)

implies that row i is suboptimal with a high probability for any column elimination
policy up to the end of stage `, and

Uv
`(j) 6 Lv

`(j`) = max
j∈J`

Lv
`(j)

implies that column j is suboptimal with a high probability for any row elimination
policy up to the end of stage `. As a result, all suboptimal rows and columns are
eliminated correctly with a high probability.

6.5 Analysis

This section has three subsections. In Section 6.5.1, we derive a gap-dependent
upper bound on the n-step regret of Rank1Elim. In Section 6.5.2, we derive a gap-
dependent lower bound that nearly matches our upper bound. In Section 6.5.3, we
discuss the results of our analysis.

6.5.1 Upper Bound

The hardness of our learning problem is measured by two sets of metrics. The first
metrics are gaps. The gaps of row i ∈ [K] and column j ∈ [L] are defined as

∆u
i = ū(i

∗) − ū(i) , ∆v
j = v̄(j

∗) − v̄(j) , (6.2)
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respectively; and the minimum row and column gaps are defined as

∆u
min = min

i∈[K]:∆u
i>0
∆u
i , ∆v

min = min
j∈[L]:∆v

j>0
∆v
j , (6.3)

respectively. Roughly speaking, the smaller the gaps, the harder the problem. The
second metric is the minimum of the average of entries in ū and v̄, which is defined
as

µ = min

{
1
K

K∑
i=1

ū(i), 1
L

L∑
j=1

v̄(j)

}
. (6.4)

The smaller the value of µ, the harder the problem. This quantity appears in our
regret bound due to the averaging character of Rank1Elim (Section 6.4). Our upper
bound on the regret of Rank1Elim is stated and proved below.

Theorem 6.1. The expected n-step regret of Rank1Elim is bounded as

R(n) 6
1
µ2

(
K∑
i=1

384
∆̄u
i

+

L∑
j=1

384
∆̄v
j

)
logn+ 3(K+ L) ,

where

∆̄u
i = ∆

u
i + 1{∆u

i = 0}∆v
min ,

∆̄v
j = ∆

v
j + 1

{
∆v
j = 0

}
∆u

min .

The proof of Theorem 6.1 is organized as follows. First, we bound the probability
that at least one confidence interval is violated. The corresponding regret is small,
O(K+ L). Second, by the design of Rank1Elim and because all confidence intervals
hold, the expected reward of any row i ∈ [K] is at least µū(i). Because all rows are
explored in the same way, any suboptimal row i is guaranteed to be eliminated after
O([1/(µ∆u

i)
2] logn) observations. Third, we factorize the regret due to exploring

row i into its row and column components, and bound both of them. This is possible
because Rank1Elim eliminates rows and columns simultaneously. Finally, we sum
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up the regret of all explored rows and columns.
Note that the gaps in Theorem 6.1, ∆̄u

i and ∆̄v
j , are slightly different from those

in (6.2). In particular, all zero row and column gaps in (6.2) are substituted with
the minimum column and row gaps, respectively. The reason is that the regret due
to exploring optimal rows and columns is positive until all suboptimal columns
and rows are eliminated, respectively. The proof of Theorem 6.1 is below.

Proof. Let Ru
`(i) and Rv

`(j) be the stochastic regret associated with exploring row i

and column j, respectively, in stage `. Then the expected n-step regret of Rank1Elim
is bounded as

R(n) 6 E

[
n−1∑
`=0

(
K∑
i=1

Ru
`(i) +

L∑
j=1

Rv
`(j)

)]
,

where the outer sum is over possibly n stages. Let

ū`(i) =
∑̀
t=0

E

[
L∑
j=1

Cu
t(i, j) − Cu

t−1(i, j)
n`

∣∣∣∣∣hv
t

]

= ū(i)
∑̀
t=0

nt − nt−1

n`

L∑
j=1

v̄(hv
t(j))

L

be the expected reward of row i ∈ I` in the first ` stages, where n−1 = 0 and
Cu

−1(i, j) = 0; and let

Eu
` = {∀i ∈ I` : ū`(i) ∈ [Lu

`(i), Uu
`(i)], ū`(i) > µū(i)}

be the event that for all remaining rows i ∈ I` at the end of stage `, the confidence
interval on the expected reward holds and that this reward is at least µū(i). Let Eu

`
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be the complement of event Eu
` . Let

v̄`(j) =
∑̀
t=0

E

[
K∑
i=1

Cv
t(i, j) − Cv

t−1(i, j)
n`

∣∣∣∣∣hu
t

]

= v̄(j)
∑̀
t=0

nt − nt−1

n`

K∑
i=1

ū(hu
t(i))

K

denote the expected reward of column j ∈ J` in the first ` stages, where n−1 = 0
and Cv

−1(i, j) = 0; and let

Ev
` = {∀j ∈ J` : v̄`(j) ∈ [Lv

`(j), Uv
`(j)], v̄`(j) > µv̄(j)}

be the event that for all remaining columns j ∈ J` at the end of stage `, the confidence
interval on the expected reward holds and that this reward is at least µv̄(j). Let Ev

`

be the complement of event Ev
`. Let E be the event that all events Eu

` and Ev
` happen;

and E be the complement of E, the event that at least one of Eu
` and Ev

` does not
happen. Then the expected n-step regret of Rank1Elim is bounded from above as

R(n) 6 E

[(
n−1∑
`=0

(
K∑
i=1

Ru
`(i) +

L∑
j=1

Rv
`(j)

))
1{E}

]
+

nP(E)

6
K∑
i=1

E

[
n−1∑
`=0

Ru
`(i)1{E}

]
+

L∑
j=1

E

[
n−1∑
`=0

Rv
`(j)1{E}

]
+ 2(K+ L) ,

where the last inequality is from the lemma proved in the Appendix.
Let H` = (I`, J`) be the rows and columns in stage `, and

F` =

{
∀i ∈ I`, j ∈ J` : ∆u

i 6
2∆̃`−1

µ
, ∆v

j 6
2∆̃`−1

µ

}



127

be the event that all rows and columns with “large gaps” are eliminated by the
beginning of stage `. By the lemma proved in the Appendix, event E causes event
F`. Now note that the expected regret in stage ` is independent of F` given H`.
Therefore, the regret can be further bounded as

R(n) 6
K∑
i=1

E

[
n−1∑
`=0

E [Ru
`(i) | H`]1{F`}

]
+ (6.5)

L∑
j=1

E

[
n−1∑
`=0

E [Rv
`(j) | H`]1{F`}

]
+

2(K+ L) .

By the lemma proved in the Appendix,

E

[
n−1∑
`=0

E [Ru
`(i) | H`]1{F`}

]
6

384
µ2∆̄u

i

logn+ 1 ,

E

[
n−1∑
`=0

E [Rv
`(j) | H`]1{F`}

]
6

384
µ2∆̄v

j

logn+ 1 ,

for any row i ∈ [K] and column j ∈ [L]. Finally, we apply the above upper bounds
to (6.5) and get our main claim.

6.5.2 Lower Bound

We derive a gap-dependent lower bound on the family of rank-1 bandits where Pu

and Pv are products of independent Bernoulli variables, which are parameterized
by their means ū and v̄, respectively. The lower bound is derived for any uniformly
efficient algorithm A, which is any algorithm such that for any (ū, v̄) ∈ [0, 1]K× [0, 1]L

and any α ∈ (0, 1), R(n) = o(nα).

Theorem 6.2. For any problem (ū, v̄) ∈ [0, 1]K × [0, 1]L with a unique best arm and any
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uniformly efficient algorithm A whose regret is R(n),

lim inf
n→∞

R(n)

logn
>

∑
i∈[K]\{i∗}

ū(i∗)v̄(j∗) − ū(i)v̄(j∗)

d(ū(i)v̄(j∗), ū(i∗)v̄(j∗))
+

∑
j∈[L]\{j∗}

ū(i∗)v̄(j∗) − ū(i∗)v̄(j)

d(ū(i∗)v̄(j), ū(i∗)v̄(j∗))
,

where d(p,q) is the Kullback-Leibler (KL) divergence between Bernoulli random vari-
ables with means p and q.

The lower bound involves two terms. The first term is the regret due to learning
the optimal row i∗, while playing the optimal column j∗. The second term is the
regret due to learning the optimal column j∗, while playing the optimal row i∗.
We do not know whether this lower bound is tight. We discuss its tightness in
Section 6.5.3.

Proof. The proof is based on the change-of-measure techniques from Kaufmann
et al. Kaufmann et al. [2016] and Lagree et al. Lagree et al. [2016], who ultimately
build on Graves and Lai Graves and Lai [1997]. Let

w∗(ū, v̄) = max(i,j)∈[K]×[L] ū(i)v̄(j)

be the maximum reward in model (ū, v̄). We consider the set of models where
ū(i∗) and v̄(j∗) remain the same, but the optimal arm changes,

B(ū, v̄) = {(ū ′, v̄ ′) ∈ [0, 1]K × [0, 1]L : ū(i∗) = ū ′(i∗),

v̄(j∗) = v̄ ′(j∗), w∗(ū, v̄) < w∗(ū ′, v̄ ′)} .

By Theorem 17 of Kaufmann et al. Kaufmann et al. [2016],

lim inf
n→∞

K∑
i=1

L∑
j=1

E [Tn(i, j)]d(ū(i)v̄(j), ū ′(i)v̄ ′(j))

logn
> 1



129

for any (ū ′, v̄ ′) ∈ B(ū, v̄), where E [Tn(i, j)] is the expected number of times that arm
(i, j) is chosen in n steps in problem (ū, v̄). From this and the regret decomposition

R(n) =
∑K
i=1
∑L
j=1 E [Tn(i, j)] (ū(i∗)v̄(j∗) − ū(i)v̄(j)) ,

we get that

lim inf
n→∞

R(n)

logn
> f(ū, v̄) ,

where

f(ū, v̄) = inf
c∈Θ

K∑
i=1

L∑
j=1

(ū(i∗)v̄(j∗) − ū(i)v̄(j))ci,j

s.t. ∀(ū ′, v̄ ′) ∈ B(ū, v̄) :
K∑
i=1

L∑
j=1

d(ū(i)v̄(j), ū ′(i)v̄ ′(j))ci,j > 1

and Θ = [0,∞)K×L. To obtain our lower bound, we carefully relax the constraints
of the above problem, so that we do not loose much in the bound. The details are
presented in the Appendix. In the relaxed problem, only K+ L− 1 entries in the
optimal solution c∗ are non-zero, as in Combes et al. Combes et al. [2015a], and they
are

c∗i,j =


1/d(ū(i)v̄(j∗), ū(i∗)v̄(j∗)) , j = j∗, i 6= i∗ ;

1/d(ū(i∗)v̄(j), ū(i∗)v̄(j∗)) , i = i∗, j 6= j∗ ;

0 , otherwise.

Now we substitute c∗ into the objective of the above problem and get our lower
bound.
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6.5.3 Discussion

We derive a gap-dependent upper bound on the n-step regret of Rank1Elim in
Theorem 6.1, which is

O((K+ L)(1/µ2)(1/∆) logn) ,

where K denotes the number of rows, L denotes the number of columns, ∆ =

min {∆u
min,∆v

min} is the minimum of the row and column gaps in (6.3), and µ is the
minimum of the average of entries in ū and v̄, as defined in (6.4).

We argue that our upper bound is nearly tight on the following class of problems.
The i-th entry of ut, ut(i), is an independent Bernoulli variable with mean

ū(i) = pu + ∆u1{i = 1}

for some pu ∈ [0, 1] and row gap ∆u ∈ (0, 1 − pu]. The j-th entry of vt, vt(j), is an
independent Bernoulli variable with mean

v̄(j) = pv + ∆v1{j = 1}

for pv ∈ [0, 1] and column gap ∆v ∈ (0, 1 − pv]. Note that the optimal arm is (1, 1)
and that the expected reward for choosing it is (pu + ∆u)(pv + ∆v). We refer to the
instance of this problem by Bspike(K,L,pu,pv,∆u,∆v); and parameterize it by K, L,
pu, pv, ∆u, and ∆v.

Let pu = 0.5 − ∆u for ∆u ∈ [0, 0.25], and pv = 0.5 − ∆v for ∆v ∈ [0, 0.25]. Then
the upper bound in Theorem 6.1 is

O([K(1/∆u) + L(1/∆v)] logn)

since 1/µ2 6 1/0.252 = 16. On the other hand, the lower bound in Theorem 6.2 is

Ω([K(1/∆u) + L(1/∆v)] logn)
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K L Regret
8 8 17491± 384
8 16 29628± 1499
8 32 50030± 1931

16 8 28862± 585
16 16 41823± 1689
16 32 62451± 2268
32 8 46156± 806
32 16 61992± 2339
32 32 85208± 3546

pu = pv = 0.7, ∆u = ∆v = 0.2

pu pv Regret
0.700 0.700 17744± 466
0.700 0.350 23983± 594
0.700 0.175 24776± 2333
0.350 0.700 22963± 205
0.350 0.350 38373± 71
0.350 0.175 57401± 68
0.175 0.700 27440± 2011
0.175 0.350 57492± 67
0.175 0.175 95586± 99

K = L = 8, ∆u = ∆v = 0.2

∆u ∆v Regret
0.20 0.20 17653± 307
0.20 0.10 22891± 912
0.20 0.05 30954± 787
0.10 0.20 20958± 614
0.10 0.10 33642± 1089
0.10 0.05 45511± 3257
0.05 0.20 30688± 482
0.05 0.10 44390± 2542
0.05 0.05 68412± 2312

K = L = 8, pu = pv = 0.7

Table 6.1: The n-step regret of Rank1Elim in n = 2M steps as K and L increase
(left), pu and pv decrease (middle), and ∆u and ∆v decrease (right). The results are
averaged over 20 runs.

since d(p,q) 6 [q(1 − q)]−1(p − q)2 and q = 1 − q = 0.5. Note that the bounds
match in K, L, the gaps, and logn.

We conclude with the observation that Rank1Elim is suboptimal in problems
where µ in (6.4) is small. In particular, consider the above problem, and choose
∆u = ∆v = 0.5 and K = L. In this problem, the regret of Rank1Elim is O(K3 logn);
because Rank1Elim eliminates O(K) rows and columns with O(1/K) gaps, and the
regret for choosing any suboptimal arm isO(1). This is much higher than the regret
of a naive solution by UCB1 in Section 6.3, which would be O(K2 logn). Note that
the upper bound in Theorem 6.1 is also O(K3 logn). Therefore, it is not loose, and
a new algorithm is necessary to improve over UCB1 in this particular problem.

6.6 Experiments

We conduct three experiments. In Section 6.6.1, we validate that the regret of
Rank1Elim grows as suggested by Theorem 6.1. In Section 6.6.2, we compare
Rank1Elim to three baselines. Finally, in Section 6.6.3, we evaluate Rank1Elim on a
real-world problem where our modeling assumptions are violated.
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Figure 6.1: The n-step regret of Rank1Elim, UCB1, LinUCB, and GLM-UCB on three
synthetic problems in up to n = 2M steps. The results are averaged over 20 runs.

6.6.1 Regret Bound

The first experiment shows that the regret of Rank1Elim scales as suggested by our
upper bound in Theorem 6.1. We experiment with the class of synthetic problems
from Section 6.5.3, Bspike(K,L,pu,pv,∆u,∆v). We vary its parameters and report the
n-step regret in 2 million (M) steps.

Table 6.1 shows the n-step regret of Rank1Elim for various choices of K, L, pu,
pv, ∆u, and ∆v. In each table, we vary two parameters and keep the rest fixed.
We observe that the regret increases as K and L increase, and ∆u and ∆v decrease;
as suggested by Theorem 6.1. Specifically, the regret doubles when K and L are
doubled, and when ∆u and ∆v are halved. We also observe that the regret is not
quadratic in 1/µ, where µ ≈ min {pu,pv}. This indicates that the upper bound
in Theorem 6.1 is loose in µ when µ is bounded away from zero. We argue in
Section 6.5.3 that this is not the case as µ→ 0.

6.6.2 Comparison to Alternative Solutions

In the second experiment, we compare Rank1Elim to the three alternative methods in
Section 6.3: UCB1, LinUCB, and GLM-UCB. The confidence radii of LinUCB and GLM-UCB
are set as suggested by Abbasi-Yadkori et al. Abbasi-Yadkori et al. [2011] and Filippi
et al. Filippi et al. [2010], respectively. The maximum-likelihood estimates of ū and v̄
in GLM-UCB are computed using the online EM Cappe and Moulines [2009], which is
observed to converge to ū and v̄ in our problems. We experiment with the problem
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Figure 6.2: a. Ratings from the MovieLens dataset. The darker the color, the higher
the rating. The rows and columns are ordered by their average ratings. The missing
ratings are shown in yellow. b. Rank-5 approximation to the ratings. c. The n-step
regret of Rank1Elim and UCB1 in up to n = 2M steps.

from Section 6.6.1, where pu = pv = 0.7, ∆u = ∆v = 0.2, and K = L.
Our results are reported in Fig. 6.1. We observe that the regret of Rank1Elim

flattens in all three problems, which indicates that Rank1Elim learns the optimal
arm. When K = 16, UCB1 has a lower regret than Rank1Elim. However, because
the regret of UCB1 is O(KL) and the regret of Rank1Elim is O(K + L), Rank1Elim
can outperform UCB1 on larger problems. When K = 32, both algorithms already
perform similarly; and when K = 64, Rank1Elim clearly outperforms UCB1. This
shows that Rank1Elim can leverage the structure of our problem. Neither LinUCB
nor GLM-UCB are competitive on any of our problems.

We investigated the poor performance of both LinUCB and GLM-UCB. When the
confidence radii of LinUCB are multiplied by 1/3, LinUCB becomes competitive on all
problems. When the confidence radii of GLM-UCB are multiplied by 1/100, GLM-UCB is
still not competitive on any of our problems. We conclude that LinUCB and GLM-UCB
perform poorly because their theory-suggested confidence intervals are too wide.
In contrast, Rank1Elim is implemented with its theory-suggested intervals in all
experiments.
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6.6.3 MovieLens Experiment

In our last experiment, we evaluate Rank1Elim on a recommendation problem. The
goal is to identify the pair of a user group and movie that has the highest expected
rating. We experiment with the MovieLens dataset from February 2003 Lam and
Herlocker [2013], where 6k users give 1M ratings to 4k movies.

Our learning problem is formulated as follows. We define a user group for
every unique combination of gender, age group, and occupation in the MovieLens
dataset. The total number of groups is 241. For each user group and movie, we
average the ratings of all users in that group that rated that movie, and learn a low-
rank approximation to the underlying rating matrix by a state-of-the-art algorithm
Keshavan et al. [2010]. The algorithm automatically detects the rank of the matrix
to be 5. We randomly choose K = 128 user groups and L = 128 movies. We
report the average ratings of these user groups and movies in Fig. 6.2a, and the
corresponding completed rating matrix in Fig. 6.2b. The reward for choosing user
group i ∈ [K] and movie j ∈ [L] is a categorical random variable over five-star
ratings. We estimate its parameters based on the assumption that the ratings are
normally distributed with a fixed variance, conditioned on the completed ratings.
The expected rewards in this experiment are not rank 1. Therefore, our model is
misspecified and Rank1Elim has no guarantees on its performance.

Our results are reported in Fig. 6.2c. We observe that the regret of Rank1Elim
is concave in the number of steps n, and flattens. This indicates that Rank1Elim
learns a near-optimal solution. This is possible because of the structure of our rating
matrix. Although it is rank 5, its first eigenvalue is an order of magnitude larger
than the remaining four non-zero eigenvalues. This structure is not surprising
because the ratings of items are often subject to significant user and item biases Koren
et al. [2009]. Therefore, our rating matrix is nearly rank 1, and Rank1Elim learns a
good solution. Our theory cannot explain this result and we leave it for future work.
Finally, we note that UCB1 explores throughout because our problem has more than
10k arms.
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6.7 Related Work

Zhao et al. Zhao et al. [2013] proposed a bandit algorithm for low-rank matrix com-
pletion, where the posterior of latent item factors is approximated by its point esti-
mate. This algorithm is not analyzed. Kawale et al. Kawale et al. [2015] proposed a
Thompson sampling (TS) algorithm for low-rank matrix completion, where the pos-
terior of low-rank matrices is approximated by particle filtering. A computationally-
inefficient variant of the algorithm hasO((1/∆2) logn) regret in rank-1 matrices. In
contrast, note that Rank1Elim is computationally efficient and its n-step regret is
O((1/∆) logn).

The problem of learning to recommended in the bandit setting was studied in
several recent papers. Valko et al. Valko et al. [2014] and Kocak et al. Kocak et al.
[2014] proposed content-based recommendation algorithms, where the features
of items are derived from a known similarity graph over the items. Gentile et
al. Gentile et al. [2014] proposed an algorithm that clusters users based on their
preferences, under the assumption that the features of items are known. Li et
al. Li et al. [2016a] extended this algorithm to the clustering of items. Maillard et
al. Maillard and Mannor [2014] studied a multi-armed bandit problem where the
arms are partitioned into latent groups. The problems in the last three papers are a
special form of low-rank matrix completion, where some rows are identical. In this
work, we do not make any such assumptions, but our results are limited to rank 1.

Rank1Elim is motivated by the structure of the position-based model Craswell
et al. [2008]. Lagree et al. Lagree et al. [2016] proposed a bandit algorithm for this
model under the assumption that the examination probabilities of all positions are
known. Online learning to rank in click models was studied in several recent papers
Kveton et al. [2015a], Combes et al. [2015a], Kveton et al. [2015b], Katariya et al.
[2016], Li et al. [2016b], Zong et al. [2016]. In practice, the probability of clicking on
an item depends on both the item and its position, and this work is a major step
towards learning to rank from such heterogeneous effects.
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6.8 Conclusions

In this work, we propose stochastic rank-1 bandits, a class of online learning prob-
lems where the goal is to learn the maximum entry of a rank-1 matrix. This problem
is challenging because the reward is a product of latent random variables, which are
not observed. We propose a practical algorithm for solving this problem, Rank1Elim,
and prove a gap-dependent upper bound on its regret. We also prove a nearly
matching gap-dependent lower bound. Finally, we evaluate Rank1Elim empirically.
In particular, we validate the scaling of its regret, compare it to baselines, and
show that it learns high-quality solutions even when our modeling assumptions
are mildly violated.

We conclude that Rank1Elim is a practical algorithm for finding the maximum
entry of a stochastic rank-1 matrix. It is surprisingly competitive with various
baselines (Section 6.6.2) and can be applied to higher-rank matrices (Section 6.6.3).
On the other hand, we show that Rank1Elim can be suboptimal on relatively simple
problems (Section 6.5.3). We plan to address this issue in our future work. We note
that our results can be generalized to other reward models, such as ut(i)vt(j) ∼
N(ū(i)v̄(j),σ) for σ > 0.

6.9 Appendix

6.9.1 Upper Bound

Lemma 6.3. Let E be defined as in the proof of Theorem 6.1. Then

P(E) 6
2(K+ L)

n
.

Proof. Let E` = Eu
` ∩ Ev

`. Then from the definition of E,

E = E0 ∪ (E1 ∩ E0) ∪ . . . ∪ (En−1 ∩ En−2 ∩ . . . ∩ E0) ,
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and from the definition of E`,

E` ∩ E`−1 ∩ . . . ∩ E0 = (Eu
` ∩ E`−1 ∩ . . . ∩ E0) ∪ (Ev

` ∩ E`−1 ∩ . . . ∩ E0) .

It follows that the probability of event E is bounded as

P(E) 6
n−1∑
`=0

P(Eu
` , E

u
0 , . . . , Eu

`−1, Ev
0, . . . , Ev

`−1) +

n−1∑
`=0

P(Ev
`, E

u
0 , . . . , Eu

`−1, Ev
0, . . . , Ev

`−1)

6
n−1∑
`=0

P(Eu
` , E

v
0, . . . , Ev

`−1) +

n−1∑
`=0

P(Ev
`, E

u
0 , . . . , Eu

`−1) .

From the definition of Eu
` , it follows that

P(Eu
` , E

v
0, . . . , Ev

`−1) 6 P(∃i ∈ I` s.t. ū`(i) /∈ [Lu
`(i), Uu

`(i)]) +

P(∃i ∈ I` s.t. ū`(i) < µū(i), Ev
0, . . . , Ev

`−1) .

Now we bound the probability of the above two events. The probabilityP(Ev
`, Eu

0 , . . . , Eu
`−1)

can be bounded similarly and we omit this proof.

Event 1: ∃i ∈ I` s.t. ū`(i) /∈ [Lu
`(i), Uu

`(i)]

Fix any i ∈ I`. Let ck be the k-th observation of row i in the row exploration
stage of Rank1Elim and `(k) be the index of that stage. Then(

ck − ū(i)
L∑
j=1

v̄(hv
`(k)(j))

L

)n
k=1

is a martingale difference sequence with respect to history hv
0, . . . , hv

`(k) in step k.
This follows from the observation that

E
[
ck
∣∣∣hv

0, . . . , hv
`(k)

]
= ū(i)

L∑
j=1

v̄(hv
`(k)(j))

L
,

because column j ∈ [L] in stage `(k) is chosen randomly and then mapped to at
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least as rewarding column hv
`(k)(j). By the definition of our sequence and from the

Azuma-Hoeffding inequality (Remark 2.2.1 of Raginsky and Sason Raginsky and
Sason [2012]),

P(ū`(i) /∈ [Lu
`(i), Uu

`(i)]) = P

(∣∣∣∣∣ 1
n`

L∑
j=1

Cu
`(i, j) − ū`(i)

∣∣∣∣∣ >
√

logn
n`

)

= P

(∣∣∣∣∣
n∑̀
k=1

[
ck − ū(i)

L∑
j=1

v̄(hv
`(k)(j))

L

]∣∣∣∣∣ >√n` logn

)
6 2 exp[−2 logn]

= 2n−2

for any stage `. By the union bound,

P(∃i ∈ I` s.t. ū`(i) /∈ [Lu
`(i), Uu

`(i)]) 6 2Kn−2

for any stage `.

Event 2: ∃i ∈ I` s.t. ū`(i) < µū(i), Ev
0, . . . , Ev

`−1

We claim that this event cannot happen. Fix any i ∈ I`. When ` = 0, we get that
ū0(i) = ū(i)(1/L)

∑L
j=1 v̄(j) > µū(i) from the definitions of ū0(i) and µ, and event

2 obviously does not happen. When ` > 0 and events Ev
0, . . . ,Ev

`−1 happen, any
eliminated column j up to stage ` is substituted with column j ′ such that v̄(j ′) > v̄(j),
by the design of Rank1Elim. From this fact and the definition of ū`(i), ū`(i) > µū(i).
Therefore, event 2 does not happen when ` > 0.

Total probability
Finally, we sum all probabilities up and get that

P(E) 6 n

(
2K
n2

)
+ n

(
2L
n2

)
6

2(K+ L)

n
.

This concludes our proof.



139

Lemma 6.4. Let event E happen andm be the first stage where ∆̃m < µ∆u
i/2. Then row

i is guaranteed to be eliminated by the end of stage m. Moreover, let m be the first stage
where ∆̃m < µ∆v

j/2. Then column j is guaranteed to be eliminated by the end of stagem.

Proof. We only prove the first claim. The other claim is proved analogously.
Before we start, note that by the design of Rank1Elim and from the definition of

m,

∆̃m = 2−m <
µ∆u

i

2
6 2−(m−1) = ∆̃m−1 . (6.6)

By the design of our confidence intervals,

1
nm

K∑
j=1

Cu
m(i, j) +

√
logn
nm

(a)
6 ūm(i) + 2

√
logn
nm

= ūm(i) + 4

√
logn
nm

− 2

√
logn
nm

(b)
6 ūm(i) + 2∆̃m − 2

√
logn
nm

(c)
6 ūm(i) + µ∆u

i − 2

√
logn
nm

= ūm(i∗) + µ∆u
i − [ūm(i∗) − ūm(i)] − 2

√
logn
nm

,

where inequality (a) is from Lu
m(i) 6 ūm(i), inequality (b) is from nm > 4∆̃−2

m logn,
and inequality (c) is by (6.6). Now note that

ūm(i∗) − ūm(i) = q(ū(i∗) − ū(i)) > µ∆u
i

for some q ∈ [0, 1]. The equality holds because ūm(i∗) and ūm(i) are estimated
from the same sets of random columns. The inequality follows from the fact that
events Ev

0, . . . ,Ev
m−1 happen. The events imply that any eliminated column j up to
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stagem is substituted with column j ′ such that v̄(j ′) > v̄(j), and thus q > µ. From
the above inequality, we get that

ūm(i∗) + µ∆u
i − [ūm(i∗) − ūm(i)] − 2

√
logn
nm

6 ūm(i∗) − 2

√
logn
nm

.

Finally,

ūm(i∗) − 2

√
logn
nm

(a)
6

1
nm

K∑
j=1

Cu
m(i

∗, j) −

√
logn
nm

(b)
6

1
nm

K∑
j=1

Cu
m(im, j) −

√
logn
nm

,

where inequality (a) follows from ūm(i∗) 6 Uu
m(i

∗) and inequality (b) follows from
Lu
m(i

∗) 6 Lu
m(im), since i∗ ∈ Im and im = arg max i∈Im Lu

m(i). Now we chain all
inequalities and get our final claim.

Lemma 6.5. The expected cumulative regret due to exploring any row i ∈ [K] and any
column j ∈ [L] is bounded as

E

[
n−1∑
`=0

E [Ru
`(i) | H`]1{F`}

]
6

384
µ2∆̄u

i

logn+ 1 ,

E

[
n−1∑
`=0

E [Rv
`(j) | H`]1{F`}

]
6

384
µ2∆̄v

j

logn+ 1 .

Proof. We only prove the first claim. The other claim is proved analogously. This
proof has two parts. In the first part, we assume that row i is suboptimal, ∆u

i > 0.
In the second part, we assume that row i is optimal, ∆u

i = 0.

Row i is suboptimal
Let row i be suboptimal andm be the first stage where ∆̃m < µ∆u

i/2. Then row
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i is guaranteed to be eliminated by the end of stagem (Lemma 6.4), and thus

E

[
n−1∑
`=0

E [Ru
`(i) | H`]1{F`}

]
6 E

[
m∑
`=0

E [Ru
`(i) | H`]1{F`}

]
.

By Lemma 6.6, the expected regret of choosing row i in stage ` can be bounded
from above as

E [Ru
`(i) | H`]1{F`} 6 (∆u

i + max
j∈J`

∆v
j)(n` − n`−1) ,

where maxj∈J` ∆
v
j is the maximum column gap in stage `, n` is the number of steps

by the end of stage `, and n−1 = 0. From the definition of F` and ∆̃`, if column j is
not eliminated before stage `, we have that

∆v
j 6

2∆̃`−1

µ
=

2 · 2m−`+1∆̃m

µ
< 2m−`+1∆u

i .

From the above inequalities and the definition of n`, it follows that

E

[
m∑
`=0

E [Ru
`(i) | H`]1{F`}

]
6

m∑
`=0

(∆u
i + max

j∈J`
∆v
j)(n` − n`−1)

6
m∑
`=0

(∆u
i + 2m−`+1∆u

i)(n` − n`−1)

6 ∆u
i

(
nm +

m∑
`=0

2m−`+1n`

)

6 ∆u
i

(
22m+2 logn+ 1 +

m∑
`=0

2m−`+1(22`+2 logn+ 1)

)

= ∆u
i

(
22m+2 logn+ 1 +

m∑
`=0

2m+`+3 logn+

m∑
`=0

2m−`+1

)
6 ∆u

i(5 · 22m+2 logn+ 2m+2) + 1

6 6 · 24 · 22m−2∆u
i logn+ 1 ,
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where the last inequality follows from logn > 1 for n > 3. From the definition of
∆̃m−1 in (6.6), we have that

2m−1 =
1

∆̃m−1
6

2
µ∆u

i

.

Now we chain all above inequalities and get that

E

[
n−1∑
`=0

E [Ru
`(i) | H`]1{F`}

]
6 6 · 24 · 22m−2∆u

i logn+ 1 6
384
µ2∆u

i

logn+ 1 .

This concludes the first part of our proof.

Row i is optimal
Let row i be optimal and m be the first stage where ∆̃m < µ∆v

min/2. Then
similarly to the first part of the analysis,

E

[
n−1∑
`=0

E [Ru
`(i) | H`]1{F`}

]
6

m∑
`=0

(max
j∈J`

∆v
j)(n` − n`−1) 6

384
µ2∆v

min
logn+ 1 .

This concludes our proof.

Lemma 6.6. Let u ∼ Pu and v ∼ Pv be drawn independently. Then the expected regret of
choosing any row i ∈ [K] and column j ∈ [L] is bounded from above as

E [u(i∗)v(j∗) − u(i)v(j)] 6 ∆u
i + ∆

v
j .

Proof. Note that for any x,y, x∗,y∗ ∈ [0, 1],

x∗y∗ − xy = x∗y∗ − xy∗ + xy∗ − xy = y∗(x∗ − x) + x(y∗ − y) 6 (x∗ − x) + (y∗ − y) .

By the independence of the entries of u and v, and from the above inequality,

E [u(i∗)v(j∗) − u(i)v(j)] = ū(i∗)v̄(j∗) − ū(i)v̄(j) 6 (ū(i∗) − ū(i)) + (v̄(j∗) − v̄(j)) .
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This concludes our proof.

6.9.2 Lower Bound

In this section we present the missing details of the proof of Theorem 6.2. Recall
that we need to bound from below the value of f(ū, v̄) where

f(ū, v̄) = inf
c∈[0,∞)K×L

K∑
i=1

L∑
j=1

(ū(i∗)v̄(j∗) − ū(i)v̄(j))ci,j

s.t. ∀(ū ′, v̄ ′) ∈ B(ū, v̄) :
K∑
i=1

L∑
j=1

d(ū(i)v̄(j), ū ′(i)v̄ ′(j))ci,j > 1

and

B(ū, v̄) = {(ū ′, v̄ ′) ∈ [0, 1]K×[0, 1]L : ū(i∗) = ū ′(i∗), v̄(j∗) = v̄ ′(j∗), w∗(ū, v̄) < w∗(ū ′, v̄ ′)} .

Without loss of generality, we assume that the optimal action in the original model
(ū, v̄) is (i∗, j∗) = (1, 1). Moreover, we consider a class of identifiable bandit models,
meaning that we assume that

∀(i, i ′, j, j ′) ∈ [0, 1]2K×[0, 1]2L, (i, j) 6= (i ′, j ′) =⇒ 0 < d(ū(i)v̄(j), ū(i ′)v̄(j ′)) < +∞.

This implies in particular that ū(i∗)v̄(j∗) must be less than 1. An intuitive justifica-
tion of this assumption is the following. Remark that for the Bernoulli problem we
consider here, if the mean of the best arm is exactly 1, the rewards from optimal
pulls are always 1 so that the empirical average is always exactly 1 and as we cap
the UCBs to 1, the optimal arm is always a candidate to the next pull, which leads
to constant regret. Also note that by our assumption, the optimal action is unique.
To get a lower bound, we consider the same optimization problem as above, but
replace Bwith its subset. Clearly, this can only decrease the optimal value.

Concretely, we consider only those models in B(ū, v̄) where only one parameter
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changes at a time. Let

Bu(ū, v̄) = {(ū ′, v̄) : ū ′ ∈ [0, 1]K, ∃i0 ∈ {2, . . . ,K}, ε ∈ [0, 1] s.t. [∀i 6= i0 : ū ′(i) = ū(i)] and ū ′(i0) = ū(1) + ε} ,

Bv(ū, v̄) = {(ū, v̄ ′) : v̄ ′ ∈ [0, 1]L, ∃j0 ∈ {2, . . . ,L}, ε ∈ [0, 1] s.t. [∀j 6= j0 : v̄ ′(j) = v̄(j)] and v̄ ′(j0) = v̄(1) + ε} .

Let f ′(ū, v̄) be the optimal value of the above optimization problem when B(ū, v̄) is
replaced by Bu(ū, v̄) ∪ Bv(ū, v̄) ⊂ B(ū, v̄). Now suppose that (ū ′, v̄ ′) ∈ Bu(ū, v̄) and
i0 = 2. Then, for any i 6= 2 and j ∈ [L], d(ū(i)v̄(j), ū ′(i)v̄ ′(j)) = 0; and for i = 2 and
any j ∈ [L], d(ū(i)v̄(j), ū ′(i)v̄ ′(j)) = d(ū(2)v̄(j), (ū(1) + ε)v̄(j)). Hence,

K∑
i=1

L∑
j=1

d(ū(i)v̄(j), ū ′(i)v̄ ′(j)) =
L∑
j=1

d(ū(2)v̄(j), (ū(1) + ε)v̄(j)) .

Reasoning similarly for Bv(ū, v̄), we see that f ′(ū, v̄) satisfies

f ′(ū, v̄) = inf
c∈[0,∞)K×L

K∑
i=1

L∑
j=1

(ū(i∗)v̄(j∗) − ū(i)v̄(j))ci,j

s.t. ∀εv ∈ (0, 1 − v̄(1)], εu ∈ (0, 1 − ū(1)]

∀j 6= 1,
K∑
i=1

d(ū(i)v̄(j), ū(i)(v̄(1) + εv))ci,j > 1

∀i 6= 1,
L∑
j=1

d(ū(i)v̄(j), (ū(1) + εu)v̄(j))ci,j > 1.

Clearly, the smaller the coefficients of ci,j in the constraints, the tighter the con-
straints. We obtain the smallest coefficients when εv, εu → 0. By continuity, we
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get

f ′(ū, v̄) = inf
c∈[0,∞)K×L

K∑
i=1

L∑
j=1

(ū(i∗)v̄(j∗) − ū(i)v̄(j))ci,j

s.t. ∀j 6= 1,
K∑
i=1

d(ū(i)v̄(j), ū(i)v̄(1))ci,j > 1

∀i 6= 1,
L∑
j=1

d(ū(i)v̄(j), ū(1)v̄(j))ci,j > 1.

Let

ci,j =


1/d(ū(i)v̄(1), ū(1)v̄(1)) , j = 1 and i > 1 ;

1/d(ū(1)v̄(j), ū(1)v̄(1)) , i = 1 and j > 1 ;

0 , otherwise.

We claim that (ci,j) is an optimal solution for the problem defining f ′.
First, we show that (ci,j) is feasible. Let i 6= 1. Then

∑L
j=1 d(ū(i)v̄(j), ū(1)v̄(j))ci,j =

d(ū(i)v̄(1), ū(1)v̄(1))ci,1 = 1. Similarly, we can verify the other constraint, too, show-
ing that (ci,j) is indeed feasible.

Now, it remains to show that the proposed solution is indeed optimal. We prove
this by contradiction, following the ideas of Combes et al. [2015a]. We suppose that
there exists a solution c of the optimization problem such that ci0,j0 > 0 for i0 6= 1
and j0 6= 1. Then, we prove that it is possible to find another feasible solution c ′ but
with an objective lower than that obtained with c, contradicting the assumption of
optimality of c.

We define c ′ as follows, redistributing the mass of ci0,j0 on the first row and the
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first column:

c ′i,j =



0 , i = i0 and j = j0 ;

ci0,1 + ci0,j0
d(ū(i0)v̄(j0), ū(1)v̄(j0))
d(ū(i0)v̄(1), ū(1)v̄(1))

, i = i0 and j = 1 ;

c1,j0 + ci0,j0
d(ū(i0)v̄(j0), ū(i0)v̄(1))
d(ū(1)v̄(j0), ū(1)v̄(1))

, i = 1 and j = j0 ;

ci,j , otherwise.

It is easily verified that if c satisfies the constraints, then so does c ′ because
the missing mass of ci0,j0 is simply redistributed on c ′i0,1 and c ′1,j0 . For example, for
i = i0 we have

L∑
j=1

d(ū(i0)v̄(j), ū(1)v̄(j))c ′i0,j −

L∑
j=1

d(ū(i0)v̄(j), ū(1)v̄(j))ci0,j

= d(ū(i0)v̄(1), ū(1)v̄(1))ci0,j0
d(ū(i0)v̄(j0), ū(1)v̄(j0))
d(ū(i0)v̄(1), ū(1)v̄(1))

− ci0,j0d(ū(i0)v̄(j0), ū(1)v̄(j0))

= 0

while for i 6∈ {1, i0}, c ′i,j = ci,j, so
∑L
j=1 d(ū(i)v̄(j), ū(1)v̄(j))c ′i,j =

∑L
j=1 d(ū(i)v̄(j), ū(1)v̄(j))ci,j.

Now, we prove that the objective function is lower for c ′ than for c by showing
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that the difference between them is negative:

∆
.
=

K∑
i=1

L∑
j=1

(ū(1)v̄(1) − ū(i)v̄(j))c ′i,j −
K∑
i=1

L∑
j=1

(ū(1)v̄(1) − ū(i)v̄(j))ci,j

= ci0,j0 (ū(1)v̄(1) − ū(i0)v̄(1))
d(ū(i0)v̄(j0), ū(1)v̄(j0))
d(ū(i0)v̄(1), ū(1)v̄(1))

+ ci0,j0(ū(1)v̄(1) − ū(1)v̄(j0))
d(ū(i0)v̄(j0), ū(i0)v̄(1))
d(ū(1)v̄(j0), ū(1)v̄(1))

− ci0,j0(ū(1)v̄(1) − ū(i0)v̄(j0))

= ci0,j0

{
(ū(1) − ū(i0))v̄(1)

d(ū(i0)v̄(j0), ū(1)v̄(j0))
d(ū(i0)v̄(1), ū(1)v̄(1))

+ (v̄(1) − v̄(j0))ū(1)
d(ū(i0)v̄(j0), ū(i0)v̄(1))
d(ū(1)v̄(j0), ū(1)v̄(1))

− (ū(1)v̄(1) − ū(i0)v̄(j0))
}

Writing

ū(1)v̄(1) − ū(i0)v̄(j0) = (ū(1) − ū(i0))v̄(j0) + (v̄(1) − v̄(j0))ū(1)

we get

∆ = ci0,j0(ū(1) − ū(i0))
(
v̄(1)d(ū(i0)v̄(j0), ū(1)v̄(j0))

d(ū(i0)v̄(1), ū(1)v̄(1))
− v̄(j0)

)
+ ci0,j0(v̄(1) − v̄(j0))

(
ū(1)d(ū(i0)v̄(j0), ū(i0)v̄(1))

d(ū(1)v̄(j0), ū(1)v̄(1))
− ū(1)

)
.

To finish the proof, it suffices to prove that both terms of the above sum are
negative. First, ū(1) − ū(i0), v̄(1) − v̄(j0), ci0,j0 > 0, hence it remains to consider the
terms involving the ratios of KL divergences. Note that both ratios take the form
d(αp,αq)
d(p,q) with α < 1, but one must be compared to α < 1 while the other can simply

be compared to 1. For the first such term, showing the negativity of the difference
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is equivalent to showing that for α = v̄(j0)/v̄(1) < 1,

d(αū(i0)v̄(1),αū(1)v̄(1))
d(ū(i0)v̄(1), ū(1)v̄(1))

< α.

Lemma 6.7 below shows that for fixed (p,q) ∈ (0, 1)2, f : α 7→ d(αp,αq) is convex,
which proves the above inequality. For the second term, it remains to see whether
the ratio of the KL divergences is below one. Lemma 6.7 proven below shows that
the function α 7→ d(αp,αq) is increasing on (0, 1), showing that

d(ū(i0)v̄(j0), ū(i0)v̄(1))
d(ū(1)v̄(j0), ū(1)v̄(1))

< 1 .

Thus, the proof is finished once we prove Lemma 6.7.

Lemma 6.7. Let p,q be any fixed real numbers in (0, 1). The function f : α 7→ d(αp,αq)
is convex and increasing on (0, 1). As a consequence, for any α < 1, d(αp,αq) < d(p,q).

Proof. We first re-parametrize our problem into polar coordinates (r, θ) :p = r cos θ

q = r sin θ

In order to prove the statement of the lemma, it now suffices to prove that fθ : r 7→
d(r sin θ, r cos θ) is increasing. We have

fθ(r) = r cos θ log
(

cos θ
sin θ

)
+ (1 − r cos θ) log

(
1 − r cos θ
1 − r sin θ

)
which can be differentiated along r for a fixed θ :

f ′θ(r) = cosθ log
(

1 − r sin θ
1 − r cos θ

)
+

sin θ− cos θ
1 − r sin θ

+ cosθ log
(

cos θ
sin θ

)
.
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Now, we can differentiate again along r and after some calculations we obtain

f ′′θ(r) =
(sin θ− cos θ)2

(1 − r sin θ)2(1 − r cos θ)
> 0

which proves that the function fθ is convex. It remains to prove that f ′θ(0) > 0 for
any θ ∈ (0,π/2). We rewrite f ′θ(0) as a function of θ :

f ′θ(0) = cos θ log
(

cos θ
sin θ

)
+ sin θ− cos θ

:= φ(θ)

Let us assume that there exists θ0 ∈ (0,π/2) such that φ(θ0) < 0. Then, in this
direction f ′θ(0) < 0 and as fθ(0) = 0 for any θ ∈ (0,π/2), it means that there exists
r0 > 0 such that fθ0(r0) < 0. Yet, fθ0(r0) = d(r0 cos θ0, r0 sin θ0) > 0 because of the
positivity of the KL divergence.

So by contradiction, we proved that for all θ ∈ (0,π/2), f ′θ(0) = φ(θ) > 0 and
by convexity fθ is non-negative and non-decreasing on [0,+∞).

6.9.3 Gaussian payoffs

The lower bound naturally extends to other classes of distributions, such as Gaus-
sians. For illustration here we show the lower bound for this case. We still assume
that the means are in [0, 1], as before. We also assume that all payoffs have a com-
mon variance σ2 > 0. Recall that the Kullback-Leibler divergence between two
distributions with fixed variance σ2 is d(p,q) = (p− q)2/(2σ2). Then, the proof of
Theorem 6.2 can be repeated with minor differences (in particular, the proof of the
analogue of Lemma 6.7 becomes trivial) and we get the following result:

Theorem 6.8. For any (ū, v̄) ∈ [0, 1]K × [0, 1]L with a unique optimal action and any
uniformly efficient algorithm A whose regret is R(n), assuming Gaussian row and column
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rewards with common variance σ2,

lim inf
n→∞

R(n)

log(n)
>

2σ2

v̄(j∗)

∑
i∈[K]\{i∗}

1
∆u
i

+
2σ2

ū(i∗)

∑
j∈[L]\{j∗}

1
∆v
j

.
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Algorithm 6 Rank1Elim for stochastic rank-1 bandits.
1: // Initialization
2: t← 1, ∆̃0 ← 1, Cu

0 ← {0}K×L, Cv
0 ← {0}K×L,

3: hu
0 ← (1, . . . ,K), hv

0 ← (1, . . . ,L), n−1 ← 0
4:
5: for all ` = 0, 1, . . . do
6: n` ←

⌈
4∆̃−2
` logn

⌉
7: I` ←

⋃
i∈[K] {hu

`(i)}, J` ←
⋃
j∈[L] {hv

`(j)}
8:
9: // Row and column exploration

10: for n` − n`−1 times do
11: Choose uniformly at random column j ∈ [L]
12: j← hv

`(j)
13: for all i ∈ I` do
14: Cu

`(i, j)← Cu
`(i, j) + ut(i)vt(j)

15: t← t+ 1
16: end for
17: Choose uniformly at random row i ∈ [K]
18: i← hu

`(i)
19: for all j ∈ J` do
20: Cv

`(i, j)← Cv
`(i, j) + ut(i)vt(j)

21: t← t+ 1
22: end for
23: end for
24:
25: // UCBs and LCBs on the expected rewards of all remaining rows and columns
26: for all i ∈ I` do

27: Uu
`(i)←

1
n`

L∑
j=1

Cu
`(i, j) +

√
logn
n`

28: Lu
`(i)←

1
n`

L∑
j=1

Cu
`(i, j) −

√
logn
n`

29: end for
30: for all j ∈ J` do

31: Uv
`(j)←

1
n`

K∑
i=1

Cv
`(i, j) +

√
logn
n`

32: Lv
`(j)←

1
n`

K∑
i=1

Cv
`(i, j) −

√
logn
n`

33: end for
34:
35: // Row and column elimination
36: i` ← arg max i∈I`

Lu
`(i)

37: hu
`+1 ← hu

`

38: for all i = 1, . . . ,K do
39: if Uu

`(hu
`(i)) 6 Lu

`(i`) then
40: hu

`+1(i)← i`
41: end if
42: end for
43:
44: j` ← arg max j∈J`

Lv
`(j)

45: hv
`+1 ← hv

`

46: for all j = 1, . . . ,L do
47: if Uv

`(hv
`(j)) 6 Lv

`(j`) then
48: hv

`+1(j)← j`
49: end if
50: end for
51:
52: ∆̃`+1 ← ∆̃`/2, Cu

`+1 ← Cu
` , Cv

`+1 ← Cv
`

53: end for
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7 bernoulli rank-1 bandits for click feedback

7.1 Introduction

When deciding which search results to present, click logs are of particular interest.
A fundamental problem in click data is position bias. The probability of an element
being clicked depends not only on its relevance, but also on its position on the
results page. The position-based model (PBM), first proposed by Richardson et
al. Richardson et al. [2007] and then formalized by Craswell et al. Craswell et al.
[2008], models this behavior by associating with each item a probability of being
attractive, and with each position a probability of being examined. To be clicked, a
result must be both attractive and examined. Given click logs, the attraction and
examination probabilities can be learned using the maximum-likelihood estimation
(MLE) or the expectation-maximization (EM) algorithms Chuklin et al. [2015b].

An online learning model for this problem is proposed in Katariya et al. Katariya
et al. [2017], called stochastic rank-1 bandit. The objective of the learning agent is to
learn the most rewarding item and position, which is the maximum entry of a rank-1
matrix. At time t, the agent chooses a pair of row and column arms, and receives the
product of their values as a reward. The goal of the agent is to maximize its expected
cumulative reward, or equivalently to minimize its expected cumulative regret
with respect to the optimal solution, the most rewarding pair of row and column
arms. This learning problem is challenging because when the agent receives the
reward of zero, it could mean either that the item was unattractive, or the position
was not examined, or both.

Katariya et al. Katariya et al. [2017] also proposed an elimination algorithm,
Rank1Elim, whose regret is O((K+L)µ−2∆−1 logn), where K is the number of rows,
L is the number of columns, ∆ is the minimum of the row and column gaps, and
µ is the minimum of the average row and column rewards. When µ is bounded
away from zero, the regret scales linearly with K+ L, while it scales inversely with
∆. This is a significant improvement over using a standard bandit algorithm that
(disregarding the problem structure) would treat item-position pairs as unrelated
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arms and would achieve a regret of O(KL∆−1 logn). The issue is that as µ gets
small, the regret bound worsens significantly. As we verify in Section 7.5, this
indeed happens on models derived from some real-world problems. To illustrate
the severity of this problem, consider as an example where K = L, and the row
and column rewards are Bernoulli distributed. Let the mean reward of row 1 and
column 1 be ∆, and the mean reward of all other rows and columns be 0. We
refer to this setting as a “needle in a haystack”, because there is a single rewarding
entry out of K2 entries. For this setting, µ = ∆/K, and consequently the regret of
Rank1Elim is O(µ−2∆−1K logn) = O(K3 logn). However, a naive bandit algorithm
that ignores the rank-1 structure and treats each row-column pair as unrelated
arms has O(K2 logn) regret.1 While a naive bandit algorithm is unable to exploit
the rank-1 structure when µ is large, Rank1Elim is unable to keep up with a naive
algorithm when µ is small. Our goal in this chapter is to design an algorithm that
performs well across all rank-1 problem instances regardless of their parameters.

In this chapter we propose that this improvement can be achieved by replacing
the “UCB1 confidence intervals” used by Rank1Elim by strictly tighter confidence
intervals based on Kullback-Leibler (KL) divergences. This leads to our algorithm
that we call Rank1ElimKL. Based on the work of Garivier and Cappe Garivier and
Cappe [2011], we expect this change to lead to an improved behavior, especially
for extreme instances, as µ → 0. Indeed, in this chapter we show that KL diver-
gences enjoy a peculiar “scaling”. In particular, thanks to this improvement, for the
“needle in a haystack” problem discussed above the regret of Rank1ElimKL becomes
O(K2 logn).

Our contributions are as follows. First, we propose a Bernoulli rank-1 bandit,
which is a special class of a stochastic rank-1 bandit where the rewards are Bernoulli
distributed. Second, we modify Rank1Elim for solving the Bernoulli rank-1 bandit,
which we call Rank1ElimKL, to use KL-UCB intervals. Third, we derive a O((K +

L) (µγ∆)−1 logn) gap-dependent upper bound on then-step regret of Rank1ElimKL,
where K,L,∆ and µ are as above, while γ = max {µ, 1 − pmax} with pmax being the

1Alternatively, the worst-case regret bound for Rank1Elim becomes O(Kn2/3 logn), while that
of for a naive bandit algorithm with a naive bound is O(Kn1/2 logn).
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maximum of the row and column rewards; effectively replacing the µ−2 term of the
previous regret bound of Rank1Elim with (µγ)−1. It follows that the new bound
is an unilateral improvement over the previous one and is a strict improvement
when µ < 1 − pmax, which is expected to happen quite often in practical problems.
For the “needle in a haystack” problem, the new bound essentially matches that of
the naive bandit algorithm, while never worsening the bound of Rank1Elim. Our
final contribution is the experimental validation of Rank1ElimKL, on both synthetic
and real-world problems. The experiments indicate that Rank1ElimKL outperforms
several baselines across almost all problem instances.

We denote random variables by boldface letters and define [n] = {1, . . . ,n}. For
any sets A and B, we denote by AB the set of all vectors whose entries are indexed
by B and take values from A. We let d(p,q) = p log p

q
+ (1 − p) log 1−p

1−q denote the
KL divergence between the Bernoulli distributions with means p,q ∈ [0, 1]. As
usual, the formula for d(p,q) is defined through its continuous extension as p,q
approach the boundaries of [0, 1].

7.2 Setting

The setting of the Bernoulli rank-1 bandit is the same as that of the stochastic rank-1
bandit Katariya et al. [2017], with the additional requirement that the row and
column rewards are Bernoulli distributed. We state the setting for completeness,
and borrow the notation from Katariya et al. Katariya et al. [2017] for the ease of
comparison.

An instance of our learning problem is defined by a tuple (K,L,Pu,Pv), where K
is the number of rows, L is the number of columns, Pu is a distribution over {0, 1}K

from which the row rewards are drawn, and Pv is a distribution over {0, 1}L from
which the column rewards are drawn.

Let the row and column rewards be

(ut, vt)
i.i.d
∼ Pu ⊗ Pv , t = 1, . . . ,n .
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In particular, ut and vt are drawn independently at any time t. At time t, the
learning agent chooses a row index it ∈ [K] and a column index jt ∈ [L], and
observes ut(it)v(jt) as its reward. The indices it and jt chosen by the learning
agent are allowed to depend only on the history of the agent up to time t.

Let the time horizon be n. The goal of the agent is to maximize its expected cu-
mulative reward in n steps. This is equivalent to minimizing the expected cumulative
regret in n steps

R(n) = E

[
n∑
t=1

R(it, jt, ut, vt)

]
,

where R(it, jt, ut, vt) = ut(i∗)vt(j∗)−ut(it)vt(jt) is the instantaneous stochastic regret
of the agent at time t, and

(i∗, j∗) = arg max (i,j)∈[K]×[L] E [u(i)v(j)]

is the optimal solution in hindsight of knowing Pu and Pv.

7.3 Rank1ElimKL Algorithm

The pseudocode of our algorithm, Rank1ElimKL, is in Algorithm 7. As noted
earlier this algorithm is based on Rank1Elim Katariya et al. [2017] with the difference
that we replace their confidence intervals with KL-based confidence intervals. For
the reader’s benefit, we explain the full algorithm.

Rank1ElimKL is an elimination algorithm that operates in stages, where the
elimination is conducted with KL-UCB confidence intervals. The lengths of the
stages quadruple from one stage to the next, and the algorithm is designed such
that at the end of stage `, it eliminates with high probability any row and column
whose gap scaled by a problem dependent constant is at least ∆̃` = 2−`. We denote
the remaining rows and columns in stage ` by I` and J`, respectively.

Every stage has an exploration phase and an exploitation phase. During row-
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exploration in stage ` (lines 12–16), every remaining row is played with a randomly
chosen remaining column, and the rewards are added to the table Cu

` ∈ RK×L.
Similarly, during column-exploration in stage ` (lines 17–21), every remaining
column is played with a randomly chosen remaining row, and the rewards are
added to the table Cv

` ∈ RK×L. We play every row (column) with the same random
column (row), and separate the row and column reward tables, so that the expected
rewards of any two rows (columns) are scaled by the same quantity at the end of
any phase. This facilitates comparison between rows (columns) and elimination in
the exploitation phase. The distributions used in selecting random columns and
rows are such that the row (column) means do not decrease over time.

In the exploitation phase, we construct high-probability KL-UCB Garivier and
Cappe [2011] confidence intervals [Lu

`(i), Uu
`(i)] for row i ∈ I`, and confidence

intervals [Lv
`(j), Uv

`(j)] for column j ∈ J`. As noted earlier, this is where we depart
from Rank1Elim. The elimination uses row i` and column j`, where

i` = arg max
i∈I`

Lu
`(i) , j` = arg max

j∈J`
Lv
`(j) .

We eliminate any row i and column j such that

Uu
`(i) 6 Lu

`(i`) , Uv
`(j) 6 Lv

`(j`) .

We also track the remaining rows and columns in stage ` by hu
` and hv

`, respectively.
When row i is eliminated by row i`, we set hu

`(i) = i`. If row i` is eliminated by
row i` ′ at a later stage ` ′ > `, we update hu

`(i) = i` ′ . This is analogous for columns.
The remaining rows I` and columns J` can be then defined as the unique values
in hu

` and hv
`, respectively. The maps hu

` and hv
` help to guarantee that the row and

column means are non-decreasing.
The KL-UCB confidence intervals in Rank1ElimKL can be found by solving a one-

dimensional convex optimization problem for every row (lines 27–28) and column
(lines 31–32). They can be found efficiently using binary search because the Kullback-
Leibler divergence d(x,q) is convex in q as qmoves away from x in either direction.
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The KL-UCB confidence intervals need to be computed only once per stage. Hence,
Rank1ElimKL has to solve at most K + L convex optimization problems per stage,
and hence (K+ L) logn problems overall.

7.4 Analysis

In this section, we derive a gap-dependent upper bound on the n-step regret of
Rank1ElimKL. The hardness of our learning problem is measured by two kinds of
metrics. The first kind are gaps. The gaps of row i ∈ [K] and column j ∈ [L] are
defined as

∆u
i = ū(i

∗) − ū(i) , ∆v
j = v̄(j

∗) − v̄(j) , (7.1)

respectively; and the minimum row and column gaps are defined as

∆u
min = min

i∈[K]:∆u
i>0
∆u
i , ∆v

min = min
j∈[L]:∆v

j>0
∆v
j , (7.2)

respectively. Roughly speaking, the smaller the gaps, the harder the problem. This
inverse dependence on gaps is tight Katariya et al. [2017].

The second kind of metrics are the extremal parameters

µ = min

{
1
K

K∑
i=1

ū(i), 1
L

L∑
j=1

v̄(j)

}
, (7.3)

pmax = max
{

max
i∈[K]

ū(i), max
j∈[L]

v̄(j)

}
. (7.4)

The first metric, µ, is the minimum of the average of entries of ū and v̄. This quantity
appears in our analysis due to the averaging character of Rank1ElimKL. The smaller
the value of µ, the larger the regret. The second metric, pmax, is the maximum entry
in ū and v̄. As we shall see the regret scales inversely with

γ = max {µ, 1 − pmax} . (7.5)
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Note that if µ→ 0 and pmax → 1 at the same time, then the row and columns gaps
must also approach one. With this we are ready to state our main result.

Theorem 7.1. LetC = 6e+82 andn > 5. Then the expectedn-step regret of Rank1ElimKL
is bounded as

R(n) 6
160
µγ

(
K∑
i=1

1
∆̄u
i

+

L∑
j=1

1
∆̄v
j

)
logn+ C(K+ L) ,

where

∆̄u
i = ∆

u
i + 1{∆u

i = 0}∆v
min ,

∆̄v
j = ∆

v
j + 1

{
∆v
j = 0

}
∆u

min .

The difference from the main result of Katariya et al. Katariya et al. [2017] is that
the first term in our bound scales with 1/(µγ) instead of 1/µ2. Since µ 6 γ and in
fact often µ� γ, this is a significant improvement. We validate this empirically in
the next section.

Due to the lack of space, we only provide a sketch of the proof of Theorem 7.1.
At a high level, it follows the steps of the proof of Katariya et al. Katariya et al. [2017].
Focusing on the source of the improvement, we first state and prove a new lemma,
which allows us to replace one 1/µ in the regret bound with 1/γ. Recall from
Section 7.1 that d denotes the KL divergence between Bernoulli random variables
with means p,q ∈ [0, 1].

Lemma 7.2. Let c,p,q ∈ [0, 1]. Then

c(1 − max {p,q})d(p,q) 6 d(cp, cq) 6 cd(p,q) . (7.6)

In particular,

2cmax(c, 1 − max {p,q})(p− q)2 6 d(cp, cq) . (7.7)
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Proof. The proof of (7.6) is based on differentiation. The first two derivatives of
d(cp, cq) with respect to q are

∂

∂q
d(cp, cq) = c(q− p)

q(1 − cq)
,

∂2

∂q2d(cp, cq) = c2(q− p)2 + cp(1 − cp)

q2(1 − cq)2 ;

and the first two derivatives of cd(p,q) with respect to q are

∂

∂q
[cd(p,q)] = c(q− p)

q(1 − q)
,

∂2

∂q2 [cd(p,q)] = c(q− p)2 + cp(1 − p)

q2(1 − q)2 .

The second derivatives show that both d(cp, cq) and cd(p,q) are convex in q for
any p. The minima are at q = p.

We fix p and c, and prove (7.6) for any q. The upper bound is derived as follows.
Since

d(cp, cx) = cd(p, x) = 0

when x = p, the upper bound holds if cd(p, x) increases faster than d(cp, cx) for
any p < x 6 q, and if cd(p, x) decreases faster than d(cp, cx) for any q 6 x < p.
This follows from the definitions of ∂

∂x
d(cp, cx) and ∂

∂x
[cd(p, x)]. In particular,

both derivatives have the same sign for any x, and 1/(1 − cx) 6 1/(1 − x) for
x ∈ [min {p,q} , max {p,q}].

The lower bound is derived as follows. Note that the ratio of ∂
∂x
[cd(p, x)] and

∂
∂x
d(cp, cx) is bounded from above as

∂
∂x

[cd(p, x)]
∂
∂x
d(cp, cx)

=
1 − cx

1 − x
6

1
1 − x

6
1

1 − max {p,q}

for any x ∈ [min {p,q} , max {p,q}]. Therefore, we get a lower bound on d(cp, cq)
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when we multiply cd(p,q) by 1 − max {p,q}.
To prove (7.7) note that by Pinsker’s inequality, for any p,q, d(p,q) > 2(p− q)2.

Hence, on one hand, d(cp, cq) > 2c2(p−q)2. On the other hand, we have from (7.6)
that d(cp, cq) > 2c(1−max {p,q})(p−q)2. Taking the maximum of the right-hand
sides in these two equations gives (7.7).

Proof sketch of Theorem 7.1. We proceed along the lines of Katariya et al. Katariya
et al. [2017]. The key step in their analysis is the upper bound on the expectedn-step
regret of any suboptimal row i ∈ [K]. This bound is proved as follows. First, Katariya
et al. Katariya et al. [2017] show that row i is eliminated with a high probability after
O((µ∆u

i)
−2 logn) observations, for any column elimination strategy. Then they

argue that the amortized per-observation regret before the elimination is O(∆u
i).

Therefore, the maximum regret due to row i is O(µ−2(∆u
i)

−1 logn). The expected
n-step regret of any suboptimal column j ∈ [L] is bounded analogously.

We modify the above argument as follows. Roughly speaking, due to the KL-UCB
confidence interval, a suboptimal row i is eliminated with a high probability after

O

(
1

d(µ(ū(i∗) − ∆u
i),µū(i∗))

logn
)

observations. Therefore, the expected n-step regret due to exploring row i is

O

(
∆u
i

d(µ(ū(i∗) − ∆u
i),µū(i∗))

logn
)

.

Now we apply (7.7) of Lemma 7.2 to get that the regret is

O

(
1

µγ∆u
i

logn
)

.

The regret of any suboptimal column j ∈ [L] is bounded analogously.
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Figure 7.1: The n-step regret of Rank1ElimKL, UCB1Elim, Rank1Elim and UCB1 on problem
(7.8) for (a) K = L = 32 (b) K = L = 64 (c) K = L = 128. The results are averaged over 20 runs.

7.5 Experiments

We conduct two experiments. In Section 7.5.1, we compare our algorithm to other
algorithms in the literature on a synthetic problem. In Section 7.5.2, we evaluate
the same algorithms on click models that are trained on a real-world dataset.

7.5.1 Comparison to Alternative Algorithms

Following Katariya et al. Katariya et al. [2017], we consider the “needle in a haystack”
class of problems, where only one item is attractive and one position is examined.
We recall the problem here. The i-th entry of ut, ut(i), and the j-th entry of vt,
vt(j), are independent Bernoulli variables with means

ū(i) = pu + ∆u1{i = 1} ,

v̄(j) = pv + ∆v1{j = 1} ,
(7.8)

for some (pu,pv) ∈ [0, 1]2 and gaps (∆u,∆v) ∈ (0, 1−pu]× (0, 1−pv]. Note that arm
(1, 1) is optimal with an expected reward of (pu + ∆u)(pv + ∆v).

The goal of this experiment is to compare Rank1ElimKL with five other algo-
rithms from the literature and validate that its regret scales linearly with K and
L, which implies that it exploits the problem structure. In this experiment, we set
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Figure 7.2: (a) The sorted attraction probabilities of the items from 2 queries from
the Yandex dataset. (b) The sorted examination probabilities of the positions for
the same 2 queries. (c) The n-step regret in Query 1. (d) The n-step regret in Query
2. The results are averaged over 5 runs.

pu = pv = 0.25,∆u = ∆v = 0.5, and K = L, so that µ = (1 − 1/K)0.25 + 0.75/K =

0.25 + 0.5/K, 1 − pmax = 0.25, and γ = µ = 0.25 + 0.5/K.
In addition to comparing to Rank1Elim, we also compare to UCB1Elim Auer and

Ortner [2010], UCB1 Auer et al. [2002a], KL-UCB Garivier and Cappe [2011], and
Thompson sampling Thompson [1933]. UCB1 is chosen as a baseline as it has been
used by Katariya et al. Katariya et al. [2017] in their experiments. UCB1Elim uses an
elimination approach similar to Rank1Elim and Rank1ElimKL. KL-UCB is similar to
UCB1, but it uses KL-UCB confidence intervals. Thompson sampling (TS) is a Bayesian
algorithm that maximizes the expected reward with respect to a randomly drawn
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belief.
Fig. 7.1 shows the n-step regret of the algorithms described above as a function

of timen forK = L, the latter of which doubles from one plot to the next. We observe
that the regret of Rank1ElimKL flattens in all three problems, which indicates that
Rank1ElimKL learns the optimal arm. We also see that the regret of Rank1ElimKL
doubles as K and L double, indicating that our bound in Theorem 7.1 has the right
scaling in K+ L, and that the algorithm leverages the problem structure. On the
other hand, the regret of UCB1, UCB1Elim, KL-UCB and TS quadruples when K and L
double, confirming that their regret isΩ(KL). Next, we observe that while KL-UCB
and TS have smaller regret than Rank1ElimKL when K and L are small, the (K+ L)-
scaling of Rank1ElimKL enables it to outperform these algorithms for large K and
L (Fig. 7.1c). Finally, note that Rank1ElimKL outperforms Rank1Elim in all three
experiments, confirming the importance of tighter confidence intervals. It is worth
noting that µ = γ for this problem, and hence µ2 = µγ. According to Theorem 7.1,
Rank1ElimKL should not perform better than Rank1Elim. Yet it is 4 times better as
seen in Fig. 7.1a. This suggests that our upper bound is loose.

7.5.2 Models Based on Real-World Data

In this experiment, we compare Rank1ElimKL to other algorithms on click models
that are trained on the Yandex dataset Yandex, an anonymized search log of 35M
search sessions. Each session contains a query, the list of displayed documents at
positions 1 to 10, and the clicks on those documents. We select 20 most frequent
queries from the dataset, and estimate the parameters of the PBM model using the
EM algorithm Markov [2014], Chuklin et al. [2015b].

To illustrate our learned models, we plot the parameters of two queries, Queries
1 and 2. Fig. 7.2a shows the sorted attraction probabilities of items in the queries,
and Fig. 7.2b shows the sorted examination probabilities of the positions. Query
1 has L = 871 items and Query 2 has L = 807 items. K = 10 is the number of
documents displayed per query. We illustrate the performance on these queries
because they differ notably in their µ (7.3) and pmax (7.4), so we can study the
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performance of our algorithm in different real-world settings. Fig. 7.2c and d show
the regret of all algorithms on Queries 1 and 2, respectively.

We first note that KL-UCB and TS do better than Rank1ElimKL on both queries.
As seen in Section 7.5.1, Rank1ElimKL is expected to improve over these baselines
for large K and L, which is not the case here. With respect to other algorithms, we
see that Rank1ElimKL is significantly better than Rank1Elim and UCB1Elim and no
worse than UCB1 on Query 1, while for Query 2, Rank1ElimKL is superior to all of
them. Note that pmax = 0.85 in Query 1 is higher than pmax = 0.66 in Query 2. Also,
µ = 0.13 in Query 1 is lower than µ = 0.28 in Query 2. From (7.5), γ = 0.15 in
Query 1, which is lower than γ = 0.34 in Query 2. Our upper bound (Theorem 7.1)
on the regret of Rank1ElimKL scales as O((µγ)−1), and so we expect Rank1ElimKL
to perform better on Query 2. Our results confirm this expectation.

In Fig. 7.3, we plot the average regret over all 20 queries, where the standard
error is computed by repeating this procedure 5 times. Rank1ElimKL has the lowest
regret of all algorithms except for KL-UCB and TS. Its regret is 10.9 percent lower
than that of UCB1, and 79 percent lower than that of Rank1Elim. This is expected.
Some real-world instances have a benign rank-1 structure like Query 2, while others
do not, like Query 1. Hence, we see a reduction in the average gains of Rank1ElimKL
over UCB1 in Fig. 7.3 as compared to Fig. 7.2d. The high regret of Rank1Elim, which
is also designed to exploit the problem structure, shows that it is more sensitive to
unfavorable rank-1 structures. Thus, the good news is that Rank1ElimKL improves
on this limitation of Rank1Elim. However, KL-UCB and TS perform better on average,
and we believe this is due to the fact 14 out of our 20 queries have L < 200, and
hence KL < 2000. This is in line with the results of Section 7.5.1, which suggest
that the advantage of Rank1ElimKL over KL-UCB and TS will “kick in” only for much
larger values of K and L.

7.6 Related Work

Our algorithm is based on Rank1Elim of Katariya et al. Katariya et al. [2017]. The
main difference is that we replace the confidence intervals of Rank1Elim, which
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Figure 7.3: The average n-step regret over all 20 queries from the Yandex dataset,
with 5 runs per query.

are based on subgaussian tail inequalities, with confidence intervals based on KL
divergences. As discussed beforehand, this results in an unilateral improvement of
their regret bound. The new algorithm is still able to exploit the problem structure
of benign instances, while its regret is controlled on problem instances that are
“hard” for Rank1Elim. As demonstrated in the previous section, the new algorithm
is also a major practical improvement over Rank1Elim, while it remains competitive
with alternatives on hard instances.

Several other papers studied bandits where the payoff is given by a low rank
matrix. Zhao et al. Zhao et al. [2013] proposed a bandit algorithm for low-rank matrix
completion, which approximates the posterior over latent item features by a single
point. The authors do not analyze this algorithm. Kawale et al. Kawale et al. [2015]
proposed a bandit algorithm for low-rank matrix completion using Thompson
sampling with Rao-Blackwellization. They analyze a variant of their algorithm
whose n-step regret for rank-1 matrices is O((1/∆2) logn). This is suboptimal
compared to our algorithm. Maillard et al. Maillard and Mannor [2014] studied a
bandit problem where the arms are partitioned into latent groups. In this work, we
do not make any such assumptions, but our results are limited to rank 1. Gentile
et al. Gentile et al. [2014] proposed an algorithm that clusters users based on their
preferences, under the assumption that the features of items are known. Sen
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et al. Sen et al. [2017] proposed an algorithm for contextual bandits with latent
confounders, which reduces to a multi-armed bandit problem where the reward
matrix is low-rank. They use an NMF-based approach and require that the reward
matrix obeys a variant of the restricted isometry property. We make no such
assumptions. Also, our learning agent controls both the row and column while in
the above papers, the rows are controlled by the environment.

Rank1ElimKL is motivated by the structure of the PBM Richardson et al. [2007].
Lagree et al. Lagree et al. [2016] proposed a bandit algorithm for this model but they
assume that the examination probabilities are known. Rank1ElimKL can be used
to solve this problem without this assumption. The cascade model Craswell et al.
[2008] is an alternative way of explaining the position bias in click data Chuklin et al.
[2015b]. Bandit algorithms for this class of models have been proposed in several
recent papers Kveton et al. [2015a], Combes et al. [2015a], Kveton et al. [2015b],
Katariya et al. [2016], Zong et al. [2016], Li et al. [2016b].

7.7 Conclusions

In this work, we proposed Rank1ElimKL, an elimination algorithm that uses KL-UCB
confidence intervals to find the maximum entry of a stochastic rank-1 matrix with
Bernoulli rewards. The algorithm is a modification of Rank1Elim Katariya et al.
[2017], where the subgaussian confidence intervals are replaced by the ones with
KL divergences. As we demonstrate both empirically and analytically, this change
results in a significant improvement. As a result, we obtain the first algorithm
that is able to exploit the rank-1 structure without paying a significant penalty on
instances where the rank-1 structure cannot be exploited.

We note that Rank1ElimKL uses the rank-1 structure of the problem and that
there are no guarantees beyond rank-1. While the dependence of the regret of
Rank1ElimKL on ∆ is known to be tight Katariya et al. [2017], the question about
the optimal dependence on µ is still open. Finally, we point out that TS and KL-UCB
perform better than Rank1ElimKL in our experiments, especially for small L and K.
This is because Rank1ElimKL is an elimination algorithm. Elimination algorithms
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tend to have higher regret initially than UCB-style algorithms because they explore
more aggressively. It is not inconceivable to have TS algorithms that leverage the
rank-1 structure in the future.

7.8 Appendix

7.8.1 Proof of Theorem 7.1

We start by recalling Theorem 10 of Garivier and Cappe Garivier and Cappe [2011]
with a slight extension that follows immediately by inspecting their proof. We will
comment on the difference after stating the definitions. Let (Xt)t>1 be a sequence
of random variables bounded in [0, 1]. Assume that (Ft)t>1 is a filtration (Ft ⊂
Ft+1 are σ-algebras) and (Xt)t>1 is (Ft)t-adapted (i.e., for t > 1, X1, . . . ,Xt are Ft

measurable), and E [Xt+1|Ft] = µ with some fixed value µ ∈ [0, 1]. Let (εt)t>1

be a sequence of (Ft)-previsible Bernoulli random variables: For all t > 1, εt is
Ft−1-measurable with F0 = F the σ-algebra that holds all random variables. Define

S(t) =

t∑
s=1

εsXs , N(t) =

t∑
s=1

εs , µ̂(t) =
S(t)

N(t)
, t > 1 .

The difference to the assumptions used by Garivier and Cappe Garivier and Cappe
[2011] is that they assume that the random variables (Xt)t>1 are independent with
common mean µ and that for s > t, Xs is independent of Ft. With this we are ready
to state their theorem:

Theorem 7.3 (After Theorem 10 of Garivier and Cappe Garivier and Cappe [2011]).
Let (µ̂(t))t>1 be as above and let

U(t) = sup{q > µ̂(t) : N(t)d(µ̂(t),q) 6 δ } .
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Then,

P(U(t) < µ) 6 e dδ log(t)e exp(−δ) .

Let us now turn to our proof. Let Ru
`(i) be the stochastic regret associated

with row i in row exploration stage ` and Rv
`(j) be the stochastic regret associated

with column j in column exploration stage `. Then the expected n-step regret of
Rank1ElimKL can be written as

R(n) 6 E

[
n−1∑
`=0

(
K∑
i=1

Ru
`(i) +

L∑
j=1

Rv
`(j)

)]
,

where the outer sum is over possibly n stages. Let

Eu
` = {Event 1: ∀i ∈ I` : ū`(i) ∈ [Lu

`(i), Uu
`(i)] ,

Event 2: ∀i ∈ I` : ū`(i) > µū(i) ,

Event 3: ∀i ∈ I` \ {i∗} : n` >
16

µγ(∆u
i)

2 logn =⇒ û(i) 6 c`[ū(i) + ∆u
i/4] ,

Event 4: ∀i ∈ I` \ {i∗} : n` >
16

µγ(∆u
i)

2 logn =⇒ û(i∗) > c`[ū(i∗) − ∆u
i/4]}

be “good events” associated with row i at the end of stage `, where

ū`(i) =
∑̀
t=0

E

[
L∑
j=1

Cu
t(i, j) − Cu

t−1(i, j)
n`

∣∣∣∣∣hv
t

]
=

(∑̀
t=0

nt − nt−1

n`

L∑
j=1

v̄(hv
t(j))

L

)
︸ ︷︷ ︸

c`

ū(i)

is the expected reward of row i conditioned on column elimination strategy hv
0, . . . , hv

`;
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Cu
−1(i, j) = 0; and n−1 = 0. Let Eu

` be the complement of event Eu
` . Let

Ev
` = {Event 1: ∀j ∈ J` : v̄`(j) ∈ [Lv

`(j), Uv
`(j)] ,

Event 2: ∀j ∈ J` : v̄`(j) > µv̄(j) ,

Event 3: ∀j ∈ J` \ {j∗} : n` >
16

µγ(∆v
j)

2 logn =⇒ v̂(j) 6 c`[v̄(j) + ∆v
j/4] ,

Event 4: ∀j ∈ J` \ {j∗} : n` >
16

µγ(∆v
j)

2 logn =⇒ v̂(j∗) > c`[v̄(j∗) − ∆v
j/4]}

be “good events” associated with column j at the end of stage `, where

v̄`(j) =
∑̀
t=0

E

[
K∑
i=1

Cv
t(i, j) − Cv

t−1(i, j)
n`

∣∣∣∣∣hu
t

]
=

(∑̀
t=0

nt − nt−1

n`

K∑
i=1

ū(hu
t(i))

K

)
︸ ︷︷ ︸

c`

v̄(j)

is the expected reward of column j conditioned on row elimination strategy hu
0 , . . . , hu

` ;
Cv

−1(i, j) = 0; and n−1 = 0. Let Ev
` be the complement of event Ev

`. Let E be the event
that all events Eu

` and Ev
` happen; and E be the complement of E, the event that at

least one of Eu
` and Ev

` does not happen. Then the expected n-step regret can be
bounded from above as

R(n) 6 E

[(
n−1∑
`=0

(
K∑
i=1

Ru
`(i) +

L∑
j=1

Rv
`(j)

))
1{E}

]
+ nP(E)

6 E

[(
n−1∑
`=0

(
K∑
i=1

Ru
`(i) +

L∑
j=1

Rv
`(j)

))
1{E}

]
+ (K+ L)(6e+ 2)

=

K∑
i=1

E

[
n−1∑
`=0

Ru
`(i)1{E}

]
+

L∑
j=1

E

[
n−1∑
`=0

Rv
`(j)1{E}

]
+ (K+ L)(6e+ 2) ,

where the second inequality is from Lemma 7.4.
Let H` = (I`, J`) be the rows and columns in stage `, and

F` =
{
∀i ∈ I` :

√
µγ∆u

i 6 ∆̃`−1, ∀j ∈ J` :
√
µγ∆v

j 6 ∆̃`−1
}
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be the event that all rows and columns with “large gaps” are eliminated by the
beginning of stage `. By Lemma 7.5, event F` happens when event E happens.
Moreover, the expected regret in stage ` is independent of F` given H`. Therefore,
we can bound the regret from above as

R(n) 6
K∑
i=1

E

[
n−1∑
`=0

E [Ru
`(i) | H`]1{F`}

]
+

L∑
j=1

E

[
n−1∑
`=0

E [Rv
`(j) | H`]1{F`}

]
+ (K+ L)(6e+ 2) .

(7.9)

By Lemma 7.6,

E

[
n−1∑
`=0

E [Ru
`(i) | H`]1{F`}

]
6

160
µγ∆̄u

i

logn+ 80 ,

E

[
n−1∑
`=0

E [Rv
`(j) | H`]1{F`}

]
6

160
µγ∆̄v

j

logn+ 80 .

Now we apply the above upper bounds to (7.9) and get our main claim.

7.8.2 Technical Lemmas

Lemma 7.4. Let E be defined as in the proof of Theorem 7.1. Then for any n > 5,

P(E) 6
(K+ L)(6e+ 2)

n
.

Proof. Let E` = Eu
` ∩Ev

`. Then, E = E0 ∪ (E1 ∩E0)∪ · · · ∪ (En−1 ∩E0 ∩ · · · ∩En−2). By
the same logic, E`∩E0∩· · ·∩E`−1 = (Eu

` ∩E0∩· · ·∩E`−1)∪ (Ev
`∩Eu

` ∩E0∩· · ·∩E`−1).
Hence,

P(E) 6
n−1∑
`=0

P(Eu
` ,E0, . . . ,E`−1) + P(Ev

`,E0, . . . ,E`−1) .

Now we bound the probability of the events Eu
` ,Eu

0 , . . . , Eu
`−1,Ev

0, . . . , Ev
`−1; and then
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sum them up. The proof for the probability of the second term above is analogous
and hence it is omitted.

Event 1
The probability that event 1 in Eu

` does not happen is bounded as follows. For any
i ∈ [K] and hv

0, . . . , hv
`,

P(ū`(i) /∈ [Lu
`(i), Uu

`(i)]) 6 P(ū`(i) < Lu
`(i)) + P(ū`(i) > Uu

`(i))

6
2e
⌈

log(n log3 n) logn`
⌉

n log3 n

6
2e
⌈

log2 n+ log(log3 n) logn
⌉

n log3 n

6
2e
⌈

2 log2 n
⌉

n logn

6
6e

n logn
,

where the second inequality is from Theorem 7.3, the third inequality is from
n > n`, the fourth inequality is from log(log3 n) 6 logn for n > 5, and the last
inequality is from

⌈
2 log2 n

⌉
6 3 log2 n for n > 3. By the union bound,

P(∃i ∈ I` s.t. ū`(i) /∈ [Lu
`(i), Uu

`(i)]) 6
6eK
n logn

for any I` and hv
0, . . . , hv

`. Finally, we take the expectation over I` and hv
0, . . . , hv

`; and
have that the probability that event 1 in Eu

` does not happen at the end of stage ` is
bounded as above.

Event 2
Event 2 in Eu

` is guaranteed to happen, ū`(i) > µū(i) for all i ∈ I`. This claim holds
trivially when ` = 0, because all columns in row elimination stage 0 are chosen with
the same probability. When ` > 0, all column confidence intervals up to stage ` hold
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because events Ev
0, . . . ,Ev

`−1 happen. Therefore, by the design of Rank1ElimKL, any
eliminated column j up to stage ` is substituted with column j ′ such that v̄(j ′) > v̄(j).
Since the columns in any row elimination stage are chosen randomly, ū`(i) > µū(i)
for all i ∈ I`.

Event 3
The probability that event 3 in Eu

` does not happen is bounded as follows. If the
event does not happen in row i, then

n` >
16

µγ(∆u
i)

2 logn , û(i) > c`[ū(i) + ∆u
i/4] .

From Hoeffding’s inequality and E [û(i)] = c`ū(i), we have that

P(û(i) > c`[ū(i) + ∆u
i/4]) 6 exp[−n`d(c`[ū(i) + ∆u

i/4], c`ū(i))] .

From our scaling lemma (Lemma 7.2), the inequality c` > µ and the definition
γ = max(µ, 1 − pmax), we have that

exp[−n`d(c`[ū(i) + ∆u
i/4], c`ū(i))] 6 exp[−n` µγ (∆u

i)
2/8] .

Finally, from our assumption on n`, we conclude that

exp[−n`µγ(∆u
i)

2/8] 6 exp[−2 logn] = 1
n2 .

Now we chain all inequalities and observe that event 3 in Eu
` does not happen

with probability of at most K/n2 for any I` and hv
0, . . . , hv

`. Finally, we take the
expectation over I` and hv

0, . . . , hv
`; and have that the probability that event 3 in Eu

`

does not happen at the end of stage ` is at most K/n2.

Event 4
The probability that event 4 in Eu

` does not happen can be bounded similarly to that
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of event 3. If the event does not happen in row i, then

n` >
16

µγ(∆u
i)

2 logn , û(i∗) < c`[ū(i∗) − ∆u
i/4] .

Then by the same reasoning as in event 3,

P(û(i∗) < c`[ū(i∗) − ∆u
i/4]) 6 exp[−n`d(c`[ū(i∗) − ∆u

i/4], c`ū(i∗))]

6 exp[−n`µγ(∆u
i)

2/8]

6 exp[−2 logn]

=
1
n2 .

This implies that event 4 in Eu
` does not happen with probability of at most K/n2

for any I` and hv
0, . . . , hv

`. Finally, we take the expectation over I` and hv
0, . . . , hv

`; and
have that the probability that event 4 in Eu

` does not happen at the end of stage ` is
at most K/n2 .

Total probability
Note that the maximum number of stages in Rank1ElimKL is logn. By the union
bound, we get that

P(E) 6

(
6eK
n logn

+
K

n2 +
K

n2

)
logn+

(
6eL

n logn
+
L

n2 +
L

n2

)
logn

6
(K+ L)(6e+ 2)

n
.

This concludes our proof.

Lemma 7.5. Let n > 5. Let event E happen andm be the first stage where ∆̃m <
√
µγ∆u

i .
Then row i must be eliminated by the end of stage m. Moreover, let m be the first stage
where ∆̃m <

√
µγ∆v

j . Then column j must be eliminated by the end of stagem.

Proof. We only prove the first claim. The other claim is proved analogously.
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From the definition of nm and our assumption on ∆̃m,

nm >
16
∆̃2
m

logn > 16
µγ(∆u

i)
2 logn . (7.10)

Suppose that Uu
m(i) > cm[ū(i) + ∆u

i/2] happens. Then from this assumption, the
definition of Uu

m(i), and event 3 in Eu
m,

d(û(i), Uu
m(i)) > d

+(û(i), cm[ū(i) + ∆u
i/2])

> d(cm[ū(i) + ∆u
i/4], cm[ū(i) + ∆u

i/2]) ,

where d+(p,q) = d(p,q)1{p 6 q}. From our scaling lemma (Lemma 7.2), the
inequality c` > µ and the definition γ = max(µ, 1 − pmax), we further have that

d(cm[ū(i) + ∆u
i/4], cm[ū(i) + ∆u

i/2]) > µγ (∆u
i)

2

8
.

From the definition of Uu
m(i), n > 5, and above inequalities,

nm =
logn+ 3 log logn
d(û(i), Uu

m(i))
6

2 logn
d(û(i), Uu

m(i))
6

16 logn
µγ(∆u

i)
2 .

This contradicts to (7.10), and therefore it must be true that Uu
m(i) < cm[ū(i)+∆u

i/2].
Now suppose that Lu

m(i
∗) 6 cm[ū(i∗) −∆u

i/2] happens. Then from this assump-
tion, the definition of Lu

m(i
∗), and event 4 in Eu

m,

d(û(i∗), Lu
m(i

∗)) > d−(û(i∗), cm[ū(i∗) − ∆u
i/2])

> d(cm[ū(i∗) − ∆u
i/4], cm[ū(i∗) − ∆u

i/2]) ,

where d−(p,q) = d(p,q)1{p > q}. From our scaling lemma (Lemma 7.2), the
inequality c` > µ and the definition γ = max(µ, 1 − pmax), we further have that

d(cm[ū(i∗) − ∆u
i/4], cm[ū(i∗) − ∆u

i/2]) > µγ (∆u
i)

2

8
.



175

From the definition of Lu
m(i

∗), n > 5, and above inequalities,

nm =
logn+ 3 log logn
d(û(i∗), Lu

m(i
∗))

6
2 logn

d(û(i∗), Lu
m(i

∗))
6

16 logn
µγ(∆u

i)
2 .

This contradicts to (7.10), and therefore it must be true that Lu
m(i

∗) > cm[ū(i∗) −
∆u
i/2].

Finally, it follows that row i is eliminated by the end of stagem because

Uu
m(i) < cm[ū(i) + ∆u

i/2] = cm[ū(i∗) − ∆u
i/2] < Lu

m(i
∗) .

This concludes our proof.

Lemma 7.6. The expected regret associated with any row i ∈ [K] is bounded as

E

[
n−1∑
`=0

E [Ru
`(i) | H`]1{F`}

]
6

160
µγ∆̄u

i

logn+ 80 .

Moreover, the expected regret associated with any column j ∈ [L] is bounded as

E

[
n−1∑
`=0

E [Rv
`(j) | H`]1{F`}

]
6

160
µγ∆̄v

j

logn+ 80 .

Proof. We only prove the first claim. The other claim is proved analogously.
This proof has two parts. In the first part, we assume that row i is suboptimal.

In the second part, we assume that row i is optimal, ∆u
i = 0.

Row i is suboptimal
Let row i be suboptimal andm be the first stage where ∆̃m <

√
µγ∆u

i . Then row i

is guaranteed to be eliminated by the end of stagem (Lemma 7.5), and therefore

E

[
n−1∑
`=0

E [Ru
`(i) | H`]1{F`}

]
6 E

[
m∑
`=0

E [Ru
`(i) | H`]1{F`}

]
.

By Lemma 4 of Katariya et al. Katariya et al. [2017], the expected regret of choosing
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row i in stage ` can be bounded from above as

E [Ru
`(i) | H`]1{F`} 6 (∆u

i + 2m−`+1∆u
i)(n` − n`−1) ,

where n` is the number of steps by the end of stage `, 2m−`+1∆u
i is an upper bound

on the gap of any non-eliminated column in stage ` 6 m, and n−1 = 0. The bound
follows from the observation that if column j is not eliminated before stage `, then

∆v
j 6

∆̃`−1√
µγ

=
2m−`+1∆̃m√

µγ
< 2m−`+1∆u

i .

It follows that

m∑
`=0

(∆u
i + 2m−`+1∆u

i)(n` − n`−1) 6 ∆
u
inm + ∆u

i

m∑
`=0

2m−`+1n`

6 24∆u
i(22m logn+ 1) + 24∆u

i

m∑
`=0

2m−`+1(22m logn+ 1)

= 22m+4∆u
i logn+ 16∆u

i + 22m+6∆u
i logn+ 64∆u

i

6 5 · 26 · 22m−2∆u
i logn+ 80 .

From the definition ofm, we have that

2m−1 =
1

∆̃m−1
6

1
√
µγ∆u

i

.

Now we chain all above inequalities and get that

E

[
n−1∑
`=0

E [Ru
`(i) | H`]1{F`}

]
6

m∑
`=0

(∆u
i + 2m−`+1∆u

i)(n` − n`−1)

6
160
µγ∆u

i

logn+ 80 .

This concludes the first part of our proof.



177

Row i is optimal
Let row i be optimal andm be the first stage where ∆̃m <

√
µγ∆v

min. Then similarly
to the first part of the analysis,

E

[
n−1∑
`=0

E [Ru
`(i) | H`]1{F`}

]
6

160
µγ∆v

min
logn+ 80 .

This concludes our proof.
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Algorithm 7 Rank1ElimKL for Bernoulli rank-1 bandits.
1: // Initialization
2: t← 1, ∆̃0 ← 1, n−1 ← 0
3: Cu

0 ← 0K,L, Cv
0 ← 0K,L // Zero matrix with K rows and L columns

4: hu
0 ← (1, . . . ,K), hv

0 ← (1, . . . ,L)
5:
6: for ` = 0, 1, . . . do
7: n` ←

⌈
16∆̃−2

` logn
⌉

8: I` ←
⋃
i∈[K] {hu

`(i)}, J` ←
⋃
j∈[L] {hv

`(j)}

9:
10: // Row and column exploration
11: for n` − n`−1 times do
12: Choose uniformly at random column j ∈ [L]
13: j← hv

`(j)
14: for all i ∈ I` do
15: Cu

`(i, j)← Cu
`(i, j) + ut(i)vt(j)

16: t← t+ 1
17: end for
18: Choose uniformly at random row i ∈ [K]
19: i← hu

`(i)
20: for all j ∈ J` do
21: Cv

`(i, j)← Cv
`(i, j) + ut(i)vt(j)

22: t← t+ 1
23: end for
24: end for
25:
26: // UCBs and LCBs on the expected rewards of all remaining rows and columns with diver-

gence constraint δ` ← logn+ 3 log logn
27:
28: for all i ∈ I` do
29: û`(i)← n−1

`

∑L
j=1 Cu

`(i, j)
30: Uu

`(i)← arg max q∈[û`(i),1] {n`d (û`(i),q) 6 δ`}
31: Lu

`(i)← arg min q∈[0,û`(i)]
{n`d (û`(i),q) 6 δ`}

32: end for
33: for all j ∈ J` do
34: v̂`(j)← n−1

`

∑K
i=1 Cv

`(i, j)
35: Uv

`(j)← arg max q∈[v̂`(j),1] {n`d (v̂`(j),q) 6 δ`}
36: Lv

`(j)← arg min q∈[0,v̂`(j)]
{n`d (v̂`(j),q) 6 δ`}

37: end for
38:
39: // Row and column elimination
40: i` ← arg max i∈I` Lu

`(i)
41: hu

`+1 ← hu
`

42: for i = 1, . . . ,K do
43: if Uu

`(hu
`(i)) 6 Lu

`(i`) then
44: hu

`+1(i)← i`
45: end if
46: end for
47:
48: j` ← arg max j∈J` Lv

`(j)

49: hv
`+1 ← hv

`

50: for j = 1, . . . ,L do
51: if Uv

`(hv
`(j)) 6 Lv

`(j`) then
52: hv

`+1(j)← j`
53: end if
54: end for
55:
56: ∆̃`+1 ← ∆̃`/2, Cu

`+1 ← Cu
` , Cv

`+1 ← Cv
`

57: end for
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