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Abstract 

Pluripotent stem cells have the incredible ability to self-renew indefinitely and to 

differentiate into all the cell types of the body. Remarkably, somatic cells can transition 

back into a pluripotent state through ectopic expression of the transcription factors 

OCT4, SOX2, KLF4, and MYC. This shift towards a state of higher differentiation 

potential represents an extraordinary capability to alter cell fate. However, 

reprogramming studies are challenging due to the inefficient and heterogeneous nature 

of the process. In this thesis, I address these challenges by enhancing reprogramming 

efficiency through addition of a combination of small molecules to the reprogramming 

culture and utilizing single-cell analytics to capture the transcriptional and chromatin 

accessibility dynamics of truly reprogramming cells. 

 A rationally designed combination of epigenetic-modifying small molecules with 

signaling pathway inhibitors improved reprogramming efficiency from 3% to over 40%. 

Single-cell RNA-seq profiling uncovered an accelerated, more highly coordinated 

reprogramming pathway in efficient reprogramming, with greater suppression of somatic 

and greater upregulation of cell cycle and pluripotent genes. It had been widely believed 

that the steps of reprogramming occur temporally with downregulation of somatic genes 

preceding downstream events like pluripotency gene upregulation. Instead gene co-

expression within individual cells revealed that the reprogramming-associated 

transitional events are independently regulated and need not occur stepwise, disputing 

the existing reprogramming dogma. Aberrant regulation of necessary transcriptional 

changes (e.g. transient EHF expression, upregulation of EIF4A1) further compromises 
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the process and leads to branching away from a trajectory towards induced 

pluripotency. 

Single-cell analysis of chromatin accessibility changes uncovered enhanced 

enrichment for 3D chromatin reorganization factor (KLF4, MAZ, and PATZ1) binding in 

high-efficient reprogramming. Cells experience more changes upon withdrawal of the 

ectopic reprogramming factors, including a Tcfap2c-mediated maintenance of the 

pluripotent state. Development of a new computational algorithm by my computational 

biologist collaborators – scCISINT – allowed for prediction of long-range interactions 

among differentially accessible regions across reprogramming clusters. I used CRISPRi 

repression at candidate interacting loci to validate the essential role of the putative long-

range interactions in transforming cell fate. Altogether, my work has uncovered key 

gene expression and chromatin-associated features that guide cells along a path 

towards successful pluripotency acquisition. 

 

 

 

 

 

 

 

 

 
 
 
 



 v 

Table of Contents 

Acknowledgments ..........................................................................................................i 
Abstract .........................................................................................................................iii 
Table of Contents...........................................................................................................v 
Chapter 1: Introduction and General Background ......................................................1 

Pluripotency and Reprogramming............................................................................2 

Cellular and Transcriptional Changes During Reprogramming ....................................3 

Alternative Reprogramming Systems ...........................................................................8 

Reprogramming with Small Molecules .......................................................................11 

ATAC-seq Analysis of Reprogramming Chromatin Dynamics ....................................16 

Single-Cell Analysis of Reprogramming .....................................................................19 
Single-Cell RNA-seq ...............................................................................................20 
Single-Cell ATAC-seq .............................................................................................21 

Single-Cell Data Analysis Algorithms .........................................................................23 
scRNA-seq Algorithms ............................................................................................23 
scATAC-seq Algorithms ..........................................................................................25 

Figures .......................................................................................................................28 

References .................................................................................................................32 

Chapter 2: Defining reprogramming checkpoints from single-cell analyses of 
induced pluripotency...................................................................................................46 

Abstract ......................................................................................................................47 

Introduction ................................................................................................................48 

Results .......................................................................................................................51 

Discussion ..................................................................................................................68 

Materials and Methods ...............................................................................................70 

Figures .......................................................................................................................84 

References ............................................................................................................... 110 

Chapter 3: Chromatin dynamics regulate somatic cell reprogramming to 
pluripotency ............................................................................................................... 117 

Abstract .................................................................................................................... 118 

Introduction .............................................................................................................. 120 

Results ..................................................................................................................... 125 



 vi 

Discussion ................................................................................................................ 144 

Materials and Methods ............................................................................................. 147 

Figures ..................................................................................................................... 159 

References ............................................................................................................... 181 

Chapter 4: Discussion and Future Directions ......................................................... 188 
Introduction .............................................................................................................. 189 

Improving Reprogramming Efficiency with Small Molecules .................................... 189 

Analysis of Transcriptional Dynamics of Reprogramming ........................................ 192 

Analysis of Chromatin Accessibility Dynamics in Reprogramming ........................... 195 

Additional Potential Future Directions ...................................................................... 199 

References ............................................................................................................... 202 

Appendix 1: Beta cell dedifferentiation induced by IRE1a deletion prevents type 1 
diabetes ...................................................................................................................... 209 

Abstract .................................................................................................................... 210 

Introduction .............................................................................................................. 211 

Results ..................................................................................................................... 214 

Discussion ................................................................................................................ 228 

Materials and Methods ............................................................................................. 235 

Figures ..................................................................................................................... 244 

References ............................................................................................................... 268 

Appendix 2: Inference of cell type-specific gene regulatory networks on cell 
liineages from single cell omic datasets ................................................................. 276 

Abstract .................................................................................................................... 277 

Introduction .............................................................................................................. 278 

Results ..................................................................................................................... 279 

Discussion ................................................................................................................ 300 

Materials and Methods ............................................................................................. 304 

Figure 1 .................................................................................................................... 337 

References ............................................................................................................... 357 
 



 1 

 
 
 
 
 
 

Chapter 1 

 

Introduction and General Background 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 



 2 

Pluripotency and Reprogramming 
 
 Pluripotent stem cells (PSCs) are characterized by their ability to self-renew 

indefinitely and to differentiate into any of the multitude of cell types that make up the 

three primary germ layers that form during embryonic development (endoderm, 

ectoderm, and mesoderm) (Fig.1), and thus, represent a state of high differentiation 

potential. PSCs arise during early development when the embryo reaches the 

blastocyst stage. The inner cell mass (ICM) of the blastocyst are made up of PSCs, 

which can be harvested and cultured as embryonic stem cells (ESCs) (Fig.1). 

Alternatively, PSCs can be obtained through converting a differentiated somatic cell into 

a pluripotent state, deemed induced pluripotent stem cells (iPSCs), in a process called 

somatic cell reprogramming (Fig. 1). The ability for cells to go from a state of lower 

differentiation potential to a higher one represents a remarkable feat in reversing and 

altering cell fate. 

 An early indicator of the facility of somatic cells to reprogram to iPSCs were 

observed in studies involving somatic cell nuclear transfer in which a donor somatic 

nucleus is put into an enucleated unfertilized oocyte (Gurdon et al., 1958; Wilmut et al., 

1997) It was found that the resulting cells are able to differentiate and produce viable 

offspring. Furthermore, it was shown that fusion of somatic cells with pluripotent cells 

results in hybrid cells that are pluripotent, with the somatic genome becoming more 

embryonic in nature (Cowan et al., 2005; Tada et al., 2001). These results indicate that 

within the environment of the unfertilized oocyte or pluripotent stem cell, the nuclei of 

differentiated cells are able to transition back into an undifferentiated state.  
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Building on this, one of the key discoveries with regards to reprogramming came 

when Takahashi and Yamanaka found that a select group of transcription factors (TFs) 

– OCT4, SOX2, KLF4, and MYC (Yamanaka factors or OSKM) – could induce 

pluripotency in mouse fibroblasts, which provided a more efficient and simple means of 

acquiring iPSCs (Takahashi & Yamanaka, 2006). Importantly, mouse iPSCs are 

functionally equivalent to ESCs, and pass all the stringent tests for pluripotency, which 

include the ability to form teratomas, ability to produce chimeric offspring, and they pass 

the tetraploid complementation assay (Boland et al., 2009; Okita et al., 2007; X. Zhao et 

al., 2009). This transcription factor-mediated reprogramming was also shown to work in 

human somatic cells by the same Yamanaka factors (Takahashi et al., 2007), as well as 

through the expression of transcription factors OCT4, SOX2, NANOG, and RNA binding 

protein LIN28 (Yu et al., 2007). Therefore, reprogramming somatic cells into iPSCs 

provides a great alternative source for PSCs that avoid the ethical barriers associated 

with using embryo-derived tissue for research or potential clinical applications. 

 

Cellular and Transcriptional Changes During Reprogramming 
 
 Since the discovery of TF-mediated reprogramming of somatic cells, several 

studies using large-scale genomics methods, such as RNA-seq, have been conducted 

to further understand the mechanisms underlying the shift from a differentiated to a 

pluripotent state. These studies, commonly using mouse embryonic fibroblasts (MEFs) 

as the starting cell type, have shown that reprogramming can be broken up into distinct 

phases, each associated with key steps in the reprogramming process. In the early 

initiation phase, cells initially lose their somatic cell identity as cell type-specific genes 
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become downregulated (Fig. 2), indicated by the loss of the fibroblast-expressed cell 

surface marker THY1 (Stadtfeld et al., 2008). 

This is followed by a mesenchymal-to-epithelial transition (MET), where 

mesenchymal-associated genes (e.g. Snai1, Zeb1, Twist1) are downregulated and 

epithelial markers, such as CDH1 and EPCAM, become upregulated (Hussein et al., 

2014; R. Li et al., 2010; Mikkelsen et al., 2008; Samavarchi-Tehrani et al., 2010) (Fig. 

2). In the intermediate phase, reprogramming cells undergo a metabolic switch from 

oxidative phosphorylation to glycolysis, accompanied by an increase in glycolytic gene 

expression and in cell proliferation (Panopoulos et al., 2012; Varum et al., 2011) (Fig. 

2). The final stages of reprogramming are characterized by cells becoming stabilized 

iPSCs through the upregulation of pluripotency-associated genes (Nanog, Sall4, Lin28, 

Dppa4, endogenous Oct4/Sox2) and are able to maintain their pluripotent identity upon 

removal of ectopic OSKM expression (transgene independence) (Apostolou & 

Hochedlinger, 2013; Apostolou & Stadtfeld, 2018; Golipour et al., 2012; Mikkelsen et al., 

2008) (Fig. 2). 

Reprogramming studies have also provided insight into the identifying features of 

cells at each phase of reprogramming or those that identify cells that are more prone to 

reprogram successfully. These features include the upregulation and downregulation of 

different cell surface markers, such as the aforementioned THY1 fibroblast marker. As 

cells reprogram, they lose Thy1 expression, and gain expression alkaline phosphatase 

(AP) followed by the surface marker SSEA1. Fluorescence-activated cell sorting (FACS) 

of reprogramming intermediates based on the THY1 and SSEA1 surface markers 

further revealed that cells who lost THY1 but failed to gain SSEA1 (THY1-/SSEA1-) 
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represent unstable intermediates whereas cells that remain THY1+ retained high levels 

of fibroblast genes and failed to upregulate MET and pluripotency-associated genes 

(Brambrink et al., 2008; Polo et al., 2012; Stadtfeld et al., 2008). Additional 

reprogramming-associated surface markers include upregulation of the MET marker 

Epcam in the early phase, cell proliferation marker c-Kit in the intermediate phase, and 

Pecam in the late phase (Polo et al., 2012). CD44 is lost while ICAM1 is gained during 

reprogramming (O’Malley et al., 2013). Using mass cytometry, CD73, CD49D, and 

CD200 are also acquired during reprogramming (Lujan et al., 2015), and in yet another 

study, more MEF, iPSC, and transiently-expressed markers were identified, such as 

VCAM1 in MEFs and the transient marker SCA-1 (Schwarz et al., 2018). The presence 

or absence of these markers can thus be informative in identifying subpopulations of 

cells across reprogramming and can indicate at what stage of the reprogramming path 

they may fall (or in some instances, if they have deviated from the path). 

Large-scale knockdown screens have been used to identify key proteins that act 

as barriers to successful reprogramming. In an RNA interference (RNAi) screen, it was 

observed that chromatin assembly factor-1 (CAF-1) is important for somatic cell identity. 

Suppression of this protein in reprogramming led to a more permissive and relaxed 

chromatin structure at enhancers early on, improved Sox2 binding, and a decrease in 

compacted heterochromatic regions in the starting somatic cells (Cheloufi et al., 2015). 

Similarly, using shRNAs to screen candidate genes identified SUMO2 as another 

reprogramming barrier. Knockdown of SUMO2 resulted in an enhanced and faster 

reprogramming process, implicating sumoylation of proteins as being combative 

towards reprogramming (Borkent et al., 2016). 
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There are key differences in the epigenomic and chromatin landscape between 

pluripotent and somatic cells that must be altered during the transition to pluripotency. 

One of these differences is that ESCs have a much more relaxed, open chromatin 

structure, as opposed to the more closed and compacted structure in somatic cells 

(Gaspar-Maia et al., 2011). Another major difference between MEFs and ESCs lies in 

their levels of various histone modifications. For example, the repressive H3K9me2/3 

mark is more highly enriched in MEFs and has been shown to be a barrier to 

reprogramming (J. Chen et al., 2013; Soufi et al., 2012; Sridharan et al., 2013; Tran et 

al., 2015). 

Similarly, H3K79me2/3, which mark regions of transcriptional activity, are also 

more enriched in MEFs compared to ESCs (Sridharan et al., 2013). While initial reports 

suggest that this mark is present at mesenchymal genes and must be lost before cells 

undergo MET (Onder et al., 2012), our lab has recently uncovered roles for 

H3K79me2/3 in inhibiting reprogramming beyond just this step. This is evidenced by 

inhibition of H3K79 methylation promoting iPSC formation in keratinocytes, which are 

already epithelial and do not require MET (Wille & Sridharan, 2022). Among these 

additional inhibitory roles are preventing establishment of a histone acetylation-rich 

state and a corresponding increase in transcriptional elongation levels to those seen in 

ESCs (Wille, Zhang, et al., 2023). In line with this, the interaction between H3K79 

methyltransferase Dot1l and its cofactor AF10 was shown to promote higher order 

H3K79 methylation at genes, promoting maintenance of the somatic identity(Wille, 

Neumann, et al., 2023). Lastly, Dot1l activity upregulated expression of reprogramming-
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associated genes such as Nfix, a TF that is important for maintaining neural and muscle 

cell identities (Wille & Sridharan, 2022). 

Another interesting feature of ESCs is that many genes acquire bivalency, 

containing both the transcriptionally active mark H3K4me2/3 and the repressive 

H3K27me3 mark, making them poised for either turning on or off, depending on the cell 

the ESC is differentiating into (Azuara et al., 2006; Bernstein et al., 2006; Pan et al., 

2007). Specifically, at pluripotency-associated promoters and enhancers, the acquisition 

of H3K4me2/3 is accompanied with loss of H3K27me3, as their expression is necessary 

for pluripotency maintenance (Koche et al., 2011). These examples highlight the 

necessity of an altered epigenome for the transition to iPSCs. 

 These reprogramming studies have also identified clonal intermediates that 

typically form later on during reprogramming and are referred to as partially 

reprogrammed iPSCs (pre-iPSCs) (Fig. 3). These intermediates have gone through 

most early steps of the reprogramming process and even adopt PSC-like features, such 

as the capacity for self-renewal and stem cell maintenance; however, they have not 

upregulated pluripotency-related genes, have failed to downregulate cell type-specific 

genes, or are genomically hypermethylated (Mikkelsen et al., 2008). Moreover, pre-

iPSCs do not display the same binding at gene promoters by the reprogramming factors 

OCT4, SOX2, and KLF4 as in ESCs and iPSCs. These binding sites were most often 

also targets of Nanog, whose absence in pre-iPSCs could be causing the impaired OSK 

binding (Sridharan et al., 2009). pre-iPSCs also have a global histone modification 

landscape that more closely resembles that of MEFs than PSCs, such as greater levels 

of the repressive H3K9me2/3 modification (Sridharan et al., 2013). When the 
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reprogramming factor are sustained at elevated levels, somatic cells may also form 

“fuzzy” NANOG-positive colonies (F-class cells) that are not yet transgene independent, 

but are stable and display some of the defining characteristics of pluripotency, including 

the ability to form teratomas (Tonge et al., 2014). 

 While some reprogramming cells become partially reprogrammed intermediates, 

others may follow alternative paths and transition into a completely different cell type. It 

had been previously shown in some reprogramming studies that endodermal genes like 

Gata4, Gata6, and Sox17 are upregulated in fibroblast reprogramming (Hou et al., 

2013; Serrano et al., 2013; Y. Zhao et al., 2015), with some reports indicating them to 

be markers of partially reprogrammed cells and inhibitory for successful reprogramming 

(Mikkelsen et al., 2008; Serrano et al., 2013). In fact, one study found that some cells 

form colonies of induced extraembryonic endoderm (iXEN) cells (Fig. 3), expressing 

endoderm-associated genes (e.g. Gata4/6, Sox7/16, Pdgfra) at a level comparable to a 

blastocyst-derived primitive endoderm cell line. These iXEN cells were also capable of 

differentiating along other endoderm lineages (visceral and parietal endoderm) (Parenti 

et al., 2016). Importantly, these iXEN cells did not come from the iPSC colonies that 

have also formed, but rather came from a separate reprogramming pathway entirely 

(Parenti et al., 2016). Thus, in addition to becoming stalled intermediates, cells could 

also be refractory to reprogramming via falling down a trajectory towards a competing 

cell fate. 

 

Alternative Reprogramming Systems 
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While the majority of reprogramming studies use MEFs as the starting cell type, 

somatic cell reprogramming has been shown to be applicable in different cells types 

which follow their own similar, but slightly different corresponding pathways. For 

example, in a comparison of three different cell types – fibroblasts, neutrophils, and 

keratinocytes – it was discovered that in all three cell types, they universally undergo 

the same main phases of reprogramming (loss of somatic identify and activation of the 

pluripotency transcriptional network) and share a requirement for downregulation of 

Egr1. They differ in the transcriptional changes that occur on their way to becoming 

iPSCs, such as keratinocytes not needing to undergo MET as they are already an 

epithelial cell type, and fibroblasts undergoing a transient upregulation of primitive 

streak genes that does not appear to occur in neutrophil or keratinocyte reprogramming 

(Nefzger et al., 2017). In the reprogramming of cells from the neural lineage (neural 

stem cells (NSCs) and astrocytes), it was shown that they must still acquire expression 

of both the epithelial marker Cadherin and pluripotency marker Nanog; however, the 

upregulation of E-cadherin can occur simultaneously with, or even after, upregulation of 

Nanog expression (Jackson et al., 2016). These studies help to highlight how applicable 

TF-mediated reprogramming is to different cell types to produce iPSCs. 

In addition to using a different cell type, reprogramming can be performed by 

using transcription factors other than the Yamanaka factors. For example, it was shown 

that the combination of pluripotency factors SALL4, NANOG, ESRRB, and LIN28 

(SNEL) can produce high quality iPSCs from MEFs (Buganim et al., 2014). Yet another 

study found that a combination of seven non-OSKM factors (7F) (JDP2, JHDM1B, 

MKK6, GLIS1, NANOG, ESRRB, and SALL4) was also capable of generating highly 



 10 

competent iPSCs (B. Wang et al., 2019). These results illustrate the modular nature of 

reprogramming, with various combinations of factors having the capability to induce this 

transition. 

It has further been discovered that by altering the cocktail of transcription factors 

that somatic cells are exposed to, they can drive reprogramming towards a state that 

resembles other early embryonic cell types outside of just ESCs. In the previously 

mentioned study of iXEN cells that appear in parallel with iPSCs, the researchers also 

found that shRNA knockdown of Gata4 and Gata6 led to the number of iXEN colonies 

to be reduced by half. Moreover, KD of Gata6 also led to a significant increase in iPSC 

colonies (Parenti et al., 2016), indicating that these factors promote the iXEN fate. 

Other studies have discovered that overexpression of different TFs (e.g. GATA3, 

EOMES, TFAP2C; or GATA3, OCT4, KLF4 and MYC) during mouse fibroblast 

reprogramming causes cells to transition into induced trophoblast stem cells (iTSCs) 

(Fig. 3), which were similar to blastocyst-derived TSCs in their epigenome, in their 

ability to differentiate into trophectoderm, and in their contribution towards placental 

development in chimeric mice (Benchetrit et al., 2015; Naama et al., 2023). 

Researchers later found that a subset of the same five transcription factors – GATA3, 

EOMES, TFAP2C, MYC, and ESRRB – were capable of producing the three pre-

implantation blastocyst-like cell types: iPSCs, iTSCs, and iXEN cells. By modifying the 

proportion of each of these factors, they were able to guide reprogramming fibroblasts 

to each of these cell fates. Greater levels of EOMES pushes the cells towards the iTSC 

fate, while increasing ESRRB will guide cells to the iXEN fate, which will later transition 

to iPSCs (Benchetrit et al., 2019). It was also discovered that the TSC trajectory was 
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guided, in part, by DNA methylation-mediated repression of the pluripotency program 

(Jaber et al., 2022). 

 

Reprogramming with Small Molecules 
 
 Despite the promise of somatic cell reprogramming to generate iPSCs for use in 

regenerative therapies, there are some setbacks associated with it. The process is slow 

and inefficient, resulting in 0.1%-5% of MEFs converting to iPSCs after about 2 weeks 

after inducing OSKM expression (Fig. 3), with iPSC colonies forming at different time 

points (Apostolou & Hochedlinger, 2013; Buganim et al., 2013; Papp & Plath, 2013). 

This is the case even when using cells that have all four factors under inducible 

expression at the same locus. As previously discussed, some reprogramming cells can 

become stalled pre-iPSCs or even an alternative cell type (e.g. iXEN cells), but they can 

also experience reprogramming-induced senescence (Banito et al., 2009), all of which 

factor into an inefficient process. To address this low efficiency, we and others have set 

out to improve reprogramming efficiency through the addition of small molecules to the 

reprogramming media (Esteban et al., 2010; Huangfu, Maehr, et al., 2008; Huangfu, 

Osafune, et al., 2008; Ichida et al., 2009, 2014; Maherali & Hochedlinger, 2009; 

Mikkelsen et al., 2008; Onder et al., 2012; Shi et al., 2008; Silva et al., 2008; Tran et al., 

2015). 

 Some of these small molecules have enhanced reprogramming efficiency 

through the modulation of the epigenomic landscape through the inhibition of 

epigenome-modifying enzymes. For example, the inhibition of histone deacetylases 

(HDACs) with valproic acid (VPA) improved efficiency about 100-fold and could 
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effectively replace MYC and KLF4, reducing the number of reprogramming factors 

required (Huangfu, Maehr, et al., 2008; Huangfu, Osafune, et al., 2008). Moreover, 

inhibition of the DNA methyltransferase DNMT1 with 5-aza-cytidine (AZA) also resulted 

in accelerated reprogramming (Mikkelsen et al., 2008). Inhibiting the H3K9 

methyltransferase G9A could also improve reprogramming efficiency and, similar to the 

addition of VPA, could replace one of the reprogramming factors, in this instance SOX2 

(Shi et al., 2008). 

 Supplementing reprogramming media with ascorbic acid (AA), or Vitamin C, has 

also been shown to improve reprogramming efficiency (J. Chen et al., 2011), in part, by 

causing cells to avoid the senescence roadblock associated with reprogramming, and 

has also enhanced the conversion of stalled pre-iPSCs to make the final jump to iPSCs 

(Esteban et al., 2010; Tran et al., 2015). Ascorbic acid works through restoring alpha-

ketoglutarate (2OG) dependent dioxygenase enzymes to a catalytically active state. AA 

acts as an electron donor, and reduces the Fe(IV) core of the inactive 2OG to Fe(II), 

making the enzyme active once again (Monfort & Wutz, 2013). Members of the 2OG 

dependent dioxygenase family of enzymes include the TET enzymes, responsible for 

DNA demethylation by catalyzing the conversion of 5-methylcytosine (5mC) to 5-

hydroxymethylcytosine (5hmC), thereby removing the epigenetic memory associated 

with DNA methylation in differentiated cells. Thus, ascorbic acid enhances TET enzyme 

activity, leading to an increase in 5hmC levels (Blaschke et al., 2013; Hore et al., 2016; 

Tran, Dillingham, et al., 2019; Tran et al., 2015; Yin et al., 2013). 

Additionally, ascorbic acid activates Jumonji domain-containing H3K9 

demethylase enzymes (e.g. KDM3B). As stated earlier, H3K9 methylation has greater 
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enrichment in somatic cells (Sridharan et al., 2013) and is an epigenetic barrier to 

reprogramming, removal of which allows stalled pre-iPSCs to convert to iPSCs (J. Chen 

et al., 2013; Tran et al., 2015). It has also been shown that the increased activity of 

KDM3B by AA is important for the early phase of reprogramming (Tran, Dillingham, et 

al., 2019). AA also reactivates the H3K36 demethylases JHDM1A/1B which enhance 

reprogramming through repression of the reprogramming antagonistic Ink4/Arf, 

consequently suppressing senescence; additionally, JHDM1A, in concert with OCT4, 

activates the pluripotency-related mir302/367 microRNA clusters, thereby enhancing 

reprogramming (H. Li et al., 2009; T. Wang et al., 2011). 

 As previously mentioned, MEFs also have greater enrichment of H3K79me2/3 

than ESCs (Sridharan et al., 2013). It has been shown that inhibition of Dot1l (Dot1li), 

the only known H3K79 methyltransferase enzyme, also improves reprogramming. When 

Dot1l is inhibited, this histone modification was lost at fibroblast genes early in 

reprogramming as well as other genes that must be repressed in pluripotent cells 

(Onder et al., 2012). Additionally Dot1li led to reduced higher-order H3K79me 

accumulation and enhanced acquisition of ESC-like H3K9 hyperacetylation, contributing 

to an increase in transcriptional elongation and redistribution of RNAPII throughout the 

gene body (Wille, Neumann, et al., 2023; Wille, Zhang, et al., 2023). Dot1li also 

repressed the reprogramming-associated expression of the antagonistic gene Nfix, and 

improved reprogramming when starting with an epithelial cell type (keratinocytes), 

further illustrating Dot1li can affect reprogramming outside of the MET step (Wille & 

Sridharan, 2022). Together, these results illustrate how effectively reprogramming can 
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be enhanced through the modulation of the epigenome via small molecule inhibition of 

epigenetic-modifying machinery. 

 Besides epigenome-modifying small molecules, chemicals that alter signaling 

pathways may also improve reprogramming efficiency. For example, inhibition of TGF-

beta signaling with RepSox allowed for enhanced reprogramming via the upregulation 

of Nanog expression on a population of partially-reprogrammed intermediate cells, and 

it was shown that it could replace MYC or SOX2 in the reprogramming factor cocktail 

(Ichida et al., 2009; Maherali & Hochedlinger, 2009). Furthermore, inhibition of the 

NOTCH signaling pathway improved reprogramming efficiency through suppression of 

the anti-proliferative gene p21 (Ichida et al., 2014). 

 Reprogramming has also been shown to be enhanced with the addition of two 

kinase inhibitors. The glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021(CHIR) 

and an inhibitor of the Erk-activating MEK1/2 enzymes, PD0325901 (PD) (together, 

referred to as 2i) (Silva et al., 2008). It has been reported that inhibition of both of these 

signaling cascades promotes self-renewal of ESCs, with GSK3 inhibition operating by 

way of stimulation of Wnt signaling (Ying et al., 2008; Ying & Smith, 2017). In the culture 

of ESCs, adding 2i to the culture media, in combination with leukemia inhibitory factor 

(LIF), maintain ESCs in a naïve ground state, resembling PSCs from pre-implantation 

blastocyst ICM, through upregulation of TET1 and downregulation of DNA 

methyltransferase enzymes (Sim et al., 2017). Culturing ESCs with 2i has also led to a 

reduction in the repressive H3K27me3 mark at gene promoters, and a downregulation 

of somatic genes (Marks et al., 2012). In combination with ascorbic acid, GSK3 

inhibition led to more efficient iPSC colony formation in multiple cell types and allowed 
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partially reprogrammed clones to transition into iPSCs (Bar-Nur et al., 2014). Combining 

GSK3 inhibition with a TGF-beta inhibitor and ascorbic acid in reprogramming resulted 

in ~80% of MEFs being able to form iPSC colonies after 7 days (Vidal et al., 2014). 

In our lab, we have combined AA and 2i in reprogramming to great effect, acting 

synergistically to significantly improve efficiency and allowing stalled pre-iPSC 

intermediates to convert to iPSCs, in part, due to the actions of 2i against epidermal and 

insulin growth factor pathways which promotes expression of the pluripotency marker 

Esrrb (Tran et al., 2015). We later combined AA and 2i with the Dot1l inhibitor SGC0936 

(altogether, referred to as A2S), to improve reprogramming efficiency >10-fold (Tran, 

Pietrzak, et al., 2019), which will be discussed further in Chapter 2 of this thesis. 

 Remarkably, other studies have demonstrated that reprogramming can be 

induced and carried out solely using small molecule compounds, effectively replacing 

ectopically expressed reprogramming factors as a stimulus for reprogramming (Hou et 

al., 2013; Y. Zhao et al., 2015). It was found that a chemical cocktail of 7 compounds 

could generate iPSCs. Forskolin was found to be a viable replacement of OCT4 in 

SKM-induced reprogramming, while VPA, CHIR, 616452, and tranylcypromine could 

promote reprogramming in single-factor (OCT4) reprogramming, thus acting as SKM 

substitutes. Combining these 5 chemicals with the late reprogramming epigenetic 

modifier DZNep and 2i could produce competent chemically induced pluripotent stem 

cells (CiPSCs) (Hou et al., 2013). 

Another study from this same lab found that chemically induced reprogramming 

causes cells to become extra-embryonic endoderm (XEN)-like early on before 

transitioning to chemically-induced iPSCs (CiPSCs) late in the process, with expression 
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of XEN markers such as Gata4/6 proving to be essential in chemical reprogramming. 

This information allowed them to improve their protocol through including additional 

small molecules (AM580 and EPZ004777) that promote XEN marker expression in the 

early stage of chemical reprogramming (Y. Zhao et al., 2015). An optimized fast 

chemical reprogramming system (FCR) was developed based on a large-scale screen 

of various compounds. Cells reprogrammed with this combination moved through a 

diapause-like state, paralleling a state of dormancy and low proliferation in the 

blastocyst that delays its implantation during development (X. Chen et al., 2023). 

Collectively, these studies show that chemical compounds can both enhance TF-

mediated reprogramming, but can also eliminate the requirement for ectopic expression 

of these factors, further illustrating the malleable nature of the reprogramming protocol. 

While these studies examined chemical reprogramming in MEFs, other research 

has unveiled that the same chemical system (with minor adjustments) can be applied to 

and induce reprogramming in other cell types, such as neural stem cells and intestinal 

epithelial cells (which, including MEFs, altogether represent cells from each of the three 

germ layers) (Ye et al., 2016). A human chemical reprogramming system has also been 

established which mediates induction of an intermediate plastic state early on and 

implicates the JNK signaling pathway as one of the major barriers in chemical 

reprogramming of human cells (Guan et al., 2022). 

 

ATAC-seq Analysis of Reprogramming Chromatin Dynamics 
 
 Given the dynamic nature of the cellular epigenome during reprogramming and 

the influence that epigenetic-modifying small molecules can have on its efficiency, 
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recent studies have utilized the assay for transposase-accessible chromatin with 

sequencing (ATAC-seq) (Buenrostro et al., 2013) to probe the changing accessibility of 

chromatin throughout a reprogramming time course. 

 Profiling cells from MEF reprogramming identified distinct patterns of 

accessibility, with some regions going from an open to close (OC) state, and others 

going from closed to open (CO); these peaks are further grouped based on the day that 

this shift occurs, but it was discovered that these changes primarily occur in two large 

waves: an early closing of open sites and a late opening of closed sites. Furthermore, 

disruption of the correct chromatin accessibility dynamics can affect reprogramming, 

with somatic TFs (e.g. c-JUN, FRA1) acting as barriers to these changes (Chronis et al., 

2017; D. Li et al., 2017). The histone deacetylase (HDAC) recruiter Sap30 has been 

implicated in the OC shift through reduced H3K27 acetylation at somatic sites (D. Li et 

al., 2017), and similarly binding of the HDAC protein Hdac1 was increased at OSK-

bound MEF enhancers after 2 days of reprogramming (Chronis et al., 2017). After 

sorting cells for that that are successfully reprogramming (SSEA1+) vs refractory 

(THY1+), ATAC-seq revealed that many of the THY1+ cells retain accessibility at some 

MEF enhancer sites and also experience inadequate OCT4/SOX2 targeting and binding 

(Knaupp et al., 2017). 

 ATAC-seq has been combined with analysis of OSKM binding to elucidate the 

exact mechanism of these factors in guiding chromatin opening and closing, which has 

led to disputing claims. For example, one thought is that OCT4 and SOX2 facilitate the 

opening of transiently accessible regions that somatic TFs are redistributed to, away 

from somatic-associated loci (Knaupp et al., 2017). Others have proposed that 
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OCT4/SOX2/KLF4 binding at already open MEF enhancers leads to this redistribution 

(Chronis et al., 2017). Lastly, it was found that KLF4 plays a key role in the 

reorganization of 3D chromatin structure and enhancer looping, as KLF4 depletion at 

pluripotent enhancers compromised enhancer-promoter interactions (Di Giammartino et 

al., 2019). Similarly, it was discovered that the opening of chromatin by OCT4 promotes 

KLF4 binding early in reprogramming which mediates MET (K. Chen et al., 2020). 

 The chromatin changes associated with reprogramming have been examined in 

non-OSKM mediated systems as well. In the chemical reprogramming system, the 

chromatin undergoes two stages of changes, including transition towards an 

intermediate state (mediated by exposure to the full chemical reprogramming cocktail), 

followed by a push toward a pluripotent state (mediated by a switch to 2i/LIF media). 

From their full chemical mix, they uncovered a particularly interesting role for the 

synthetic thymidine analog bromodeoxyuridine (BrdU), which they found to be important 

in the proper opening of sites enriched for not only KLF and SOX motifs, but GATA and 

FOX as well (Cao et al., 2018). Analysis of the optimized fast chemical reprogramming 

protocol found an upregulation of motifs associated with XEN TFs (SOX17, GATA4/6, 

and FOXA2) (X. Chen et al., 2023). ATAC-seq of the previously mentioned 7-factor 

reprogramming system found that it is distinct from OSKM with some differences in the 

motif enrichment patterns, such as earlier opening ESRRB motif sites compared to 

OSKM (B. Wang et al., 2019). In a modified reprogramming protocol, cells are 

transiently grown in a naïve culture medium to generate naïve iPSCs, which are akin to 

PSCs from the pre-implantation blastocyst. ATAC-seq revealed that there were fewer 
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differentially open regions between the naïve iPSCs and ESCs when compared to the 

more post-implantation-resembling primed iPSCs (Buckberry et al., 2023) 

 ATAC-seq has also been applied to reprogramming systems using cell types 

other than fibroblasts. It was found that exposing B cells to C/EBP-alpha makes them 

more elite and primed for efficient reprogramming to iPSCs. ATAC-seq of these cells, 

along with unaffected B cells, ESCs, and Day 1 & 2 reprogramming cells found that 

pulsing with C/EBP-alpha resulted in 525 newly opened regions that are also accessible 

in ESCs, which were also enriched for Klf4 binding sites, suggesting that C/EBP-alpha 

and Klf4 work together to alter chromatin accessibility in B cell reprogramming (Di 

Stefano et al., 2016). 

 

Single-Cell Analysis of Reprogramming 
 

The variability in reprogramming kinetics, combined with the presence of cells 

falling down alternate pathways or forming stalled intermediates results in 

reprogramming populations that are largely heterogeneous in their composition. 

Therefore, bulk population-based analyses separated by timepoint can obfuscate the 

changes associated with the truly reprogramming cells across a time course. To 

overcome this issue, recent reprogramming studies have implemented a single-cell 

approach to better understand elucidate the key dynamics associated with this process 

at the resolution of individual cells. 

As an example, different studies have implemented single-cell mass cytometry of 

cells across a reprogramming time course. From these analyses, the cell surface 

markers associated with transient or partially reprogrammed cells were identified 
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(CD73, CD49D, CD200), and represent cells in a state between MEFs and iPSCs 

(Lujan et al., 2015). Another single-cell mass cytometry study from the same group 

identified additional markers indicative of successful reprogramming (Zunder et al., 

2015). Here, they found that cells with high OCT4 and KLF4 transitioned to an 

intermediate state marked by high expression of CD73 and CD104, but decreased 

CD54. From this intermediate group, cells with low KI67 will revert to a MEF-like state, 

while those that are high in KI67 will progress through MET. After this, the cells will 

diverge yet again, with cells high in NANOG, SOX2, and CD54 becoming ESC-like, and 

another group (marked by elevated LIN28, CD24, PDGFR) are mesendoderm-like. 

Single-cells have also been arranged in a fluidigm microarray to profile a set of known 

pluripotency/ESC and proliferative genes across reprogramming, which ultimately 

revealed a stochastic change in gene expression early, followed by a hierarchical 

cascade of late in reprogramming mediated by SOX2 (Buganim et al., 2012). 

 

Single-Cell RNA-seq 
 
 In order to gain a better understanding of the transcriptional dynamics associated 

with reprogramming, recent studies have used single-cell RNA-seq (scRNA-seq) to 

capture the gene expression landscape within individual cells, albeit largely in low-

efficiency systems. One study applied scRNA-seq to cells at different stages of 

reprogramming, and discovered early activation of Ras signaling and expression of long 

non-coding RNAs (which downregulate somatic genes) are key reprogramming events 

(Kim et al., 2015). Profiling cells from the chemical reprogramming timeline found that 

the transition from the intermittent XEN-like state to iPSCs is due to transcription of 
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genes from the 2-cell stage of development as well as early pluripotency genes (T. 

Zhao et al., 2018). Based on scATAC-seq data, a pathway for reprogramming cells to 

diverge into iTSCs emerged, implicating trophectoderm-associated TFs in this 

alternative trajectory (Liu et al., 2020). 

Additional bifurcation events were revealed by scRNA-seq such as KLF4 

promoting a keratinocyte fate and IFN-gamma preventing late transition to pluripotency 

(D. Li et al., 2017). The scRNA-seq profiles of 315,000 reprogramming cells were used 

to develop a computational framework called Waddington-OT, which utilizes the 

mathematical principle of optimal transport to identify ancestor-descendant 

relationships. This analysis further identified a bifurcation event where cells become 

stromal-like or continue on with MET; the latter group can subsequently diverge into 

pluripotent, neural, or extra-embryonic cells (Schiebinger et al., 2019). The use of 

scRNA-seq, therefore, was able to identify gene expression patterns associated with 

successfully reprogramming vs refractory cells and cell fate decision points during 

reprogramming that might otherwise be hidden from a population-based analysis. 

We employed scRNA-seq on low- and high-efficiency reprogramming, 

uncovering an accelerated process in the presence of small molecules and gene co-

expression events that challenge the existing reprogramming dogma. These results are 

discussed further in Chapter 2. 

 

Single-Cell ATAC-seq 
 
 Akin to RNA-seq, the recent development of single-cell ATAC-seq (scATAC-seq) 

technology has also allowed for higher resolution chromatin accessibility studies to be 
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performed on reprogramming cell populations, all of which have thus far been 

performed in human samples (Liuyang et al., 2023; Nair et al., 2023; Xing et al., n.d.). 

Profiling reprogramming cells from human BJ fibroblasts with scATAC-seq found a 

decision point where cells that transition from a regulatory network centered around the 

somatic transcription factor Fosl1 to Tead4 will successfully acquire pluripotency as 

opposed to those that fail to do so (Xing et al., 2020). scATAC-seq was used to 

examine a chemical reprogramming system, in this case the reprogramming of human 

adipose-derived stromal cells (hADSCs) to epithelial-like cells using a control old 

condition and a new optimized, serum-free system. hADSCs, and late reprogramming 

cells (just prior to XEN upregulation) in the original and optimized conditions were 

analyzed and they found that in the optimized protocol, the XEN-associated loci were 

closed, while pluripotency loci were more open, suggesting that chemically 

reprogrammed cells can actually bypass this XEN-like state and become pluripotent 

directly (Liuyang et al., 2023). Lastly, scATAC-seq analysis of human fibroblast 

reprogramming revealed that when OSK induces reprogramming, there is opening of 

transient regulatory loci, which led them to them discovering that these sites bind and 

sequester somatic TFs, providing further evidence that redistribution of these somatic 

TFs via OSK opening of transient sites (Nair et al., 2023). To date, there has been no 

published report of scATAC-seq in mouse reprogramming. 

 We combined the scRNA-seq and scATAC-seq methodologies along with 

enhancement of reprogramming efficiency using small molecules to elucidate the 

differences in gene expression and chromatin accessibility that are characteristic of a 

high-efficient reprogramming system and contribute to the effective transition to a 
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pluripotent state. This research is explored further in Chapter 2 (scRNA-seq analysis) 

and Chapter 3 (scATAC-seq analysis) of this thesis.  

 

Single-Cell Data Analysis Algorithms 
 
 Given the complexity of large datasets from single-cell sequencing methods, it 

becomes necessary to effectively process and analyze the data by reducing its 

complexity without losing valuable information from the data. In the wake of single-cell 

studies becoming more prevalent, several labs have developed different algorithms for 

single-cell analysis. It is therefore imperative to choose an appropriate analytical 

platform that is easy to implement while also getting the most out of the data. 

 

scRNA-seq Algorithms 

 Two popularly used algorithms to analyze scRNA-seq data are Monocle (Qiu, 

Hill, et al., 2017; Qiu, Mao, et al., 2017; Trapnell et al., 2014) and Seurat (Satija et al., 

2015). Both platforms perform the same basic steps important for analysis of a complex 

single-cell dataset. This includes a dimensionality reduction step to make the complex 

single-cell data easier to analyze, clustering of cells into separate groups based on 

similarity in their gene expression profile, and visualization of clusters in a 2D space 

(Fig. 4A). 

What set Monocle apart is that it introduced cellular trajectory analysis, ordering 

cells chronologically within a pseudotime space (Fig. 4A). To do this, Monocle utilizes 

DDRTree (Mao et al., 2015, 2017), which generates a tree along which individual cells 

are organized. A unique facet of Monocle is its ability to identify branch points along the 
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pseudotime trajectory, which represent populations of cells that have somehow 

diverged from the main pathway being studied (Fig. 4A). Applying the Monocle 

DDRTree tool to a dataset of differentiating myoblasts, Monocle was able to recapitulate 

a differentiation trajectory that had one branch point where cells could take one of two 

paths. This divergence was the result of differences in the expression of over 800 genes 

associated with muscle contraction (Qiu, Mao, et al., 2017). 

Monocle was applied to datasets of blood cell differentiation, along with other 

trajectory inference algorithms including, at the time of this study, the older original 

version of Monocle (Trapnell et al., 2014), Diffusion Pseudotime (DPT) (Haghverdi et 

al., 2016), Wishbone (Setty et al., 2016), and SLICER (Welch et al., 2016). When 

compared with a reference order based on expression of marker genes, Monocle v2 

was as good or better than other algorithms at being able to assign cells to the correct 

lineage and branches. It was also the most consistent at recapitulating accurate 

trajectory and pseudotime order upon downsampling of the datasets compared to the 

other methods (Qiu, Mao, et al., 2017). 

In a large-scale benchmarking experiment comparing 45 different trajectory 

inference tools on >300 real and synthetic datasets, Monocle was identified as one of 

the top performing methods with regards to the topology metric, which is a measure of 

how accurately the method was able to identify and project the correct trajectory shape 

and bifurcation events. It also performed well at analyzing datasets with more complex 

topologies compared to many of the other methods (Saelens et al., 2019). Given the 

variety of features and its high performance metrics, Monocle is a suitable tool for 
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effective and comprehensive scRNA-seq data analysis, and was used for scRNA-seq 

data analysis in Chapter 2 of this thesis. 

 

scATAC-seq Algorithms 
 
 Analysis of scATAC-seq data presents its own set of unique challenges in that 

the data is quite sparse, with only 1-10% of accessible chromatin actually being 

targeted for fragmentation and eventual library preparation (H. Chen et al., 2019). 

Furthermore, unlike with RNA-seq data, there is no pre-determined finite list of potential 

features, i.e. a list of all possible genes, associated with ATAC-seq, leading to large cell 

to cell variability in the sequenced regions and high dimensionality data. 

 The very recent commercial availability of scATAC-seq has led to different labs 

trying to take advantage of the vacuum of supported analytical tools and the 

development of new algorithms. A recent benchmarking test (Luo et al., 2023) 

compared some of these algorithms including ArchR (Granja et al., 2021), Signac 

(Stuart et al., 2021), SnapATAC, and SnapATAC2 (Fang et al., 2021). These methods 

implement different dimensionality reduction methods. Signac and ArchR use latent 

semantic indexing (LSI), identifying the most common features across a dataset vs 

those that are more unique to a particular group of cells. SnapATAC, on the other hand, 

uses diffusion maps, which attempt to generate a graphical representation of the data to 

identify the most variable features. Testing datasets from a variety of sources, the 

benchmarking test evaluated different metrics including cell embedding (projection of 

reduced dimension data onto 2D space), cell partitioning or clustering, and memory 
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usage. SnapATAC appeared to be better than the LSI-based methods at separating 

complex datasets (Luo et al., 2023). 

 One key aspect to factor into choice of algorithm is how scalable the algorithm is 

to process variable dataset sizes while efficiently using both time and memory. ArchR 

performed the best with regards to memory usage, while SnapATAC’s memory usage 

increased with increasing data size, making ArchR ideal for analysis of large-scale 

datasets, especially with limited memory storage (Luo et al., 2023). 

ArchR provides additional features that surpass or are not available in other 

competing methods. One such feature is the identification and removal of cell doublets, 

in which two different cells are partitioned in the same single-cell reaction compartment 

(Granja et al., 2021). Differences are also seen in the identification of peaks. Signac 

uses a list of pre-selected peaks from which they generate a counts matrix, tabulating 

instances of these peaks and removing the contribution of any lowly accessible or novel 

regions in rare cell types. SnapATAC counts open regions within pre-determined bins; 

however, their bins are quite large (5kb) which far surpass the size of genomic 

regulatory elements, thus not allowing for clear separation of multiple elements within 

that window (Granja et al., 2021). ArchR curtails this issue by counting peaks using 

500bp bins across the genome (Fig. 4B). For dimensionality reduction, ArchR applies 

the aforementioned LSI in an iterative fashion, which first identifies the most common 

peaks that vary across the different major clusters/cell types. Subsequently, the most 

variable features identified are used for the next iteration of LSI, finding even more 

sources of variance, even among the established clusters while also reducing any 

contributions from batch effects. In this study, ArchR actually performed better 
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clustering of a hematopoietic cell dataset compared to other methods, as these 

methods were unable to overcome batch effects, preferentially clustering the cells 

based on their input samples rather than the variety of different cell types present in the 

samples (Granja et al., 2021). From there, the resulting cell clusters can be used to 

perform downstream analyses, including finding differentially accessible regions and 

enriched motifs between clusters. Due to its efficient use of time and memory, its 

comprehensive arsenal of analytical tools, and its use of iterative LSI for effective 

dimensionality reduction, I employed ArchR for analysis of scATAC-seq data in Chapter 

3 of this thesis. 

 

Given the inefficiency of somatic cell reprogramming and the inherent challenges 

associated with studying such a heterogeneous process, my goals for this thesis were 

to first, establish a high-efficiency reprogramming system via a rationally designed 

combination of small molecules; my next goal was to then combine this system with 

single-cell analytics to uncover the shifting expression and chromatin accessibility 

dynamics associated with an efficient pathway towards pluripotency acquisition. 
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Figure 1 
 

 

Figure 1: Pluripotent stem cell properties and sources 

Pluripotent stem cells (PSCs) have ability to self-renew indefinitely and differentiate into 

the different cell types that make up the three germ layers. They can be derived from 

the inner cell mass of the blastocyst (embryonic stem cells (ESCs)) or from somatic cell 

reprogramming of differentiated cells (induced pluripotent stem cells (iPSCs)). 
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Figure 2 

 

 

Figure 2: Cellular and transcriptional changes during reprogramming 

Schematic highlighting the cellular and transcriptional changes associated with the 

transition from mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells 

(iPSCs). Based on population-based studies, these events have been posited to occur 

in a sequential and temporal manner. (Figure adapted from Apostolou & Hochedlinger, 

2013). 
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Figure 3 

 

Figure 3: Reprogramming is inefficient and heterogeneous 

Reprogramming is an inefficient process with only about 0.1-5% of the starting 

population of cells making the transition to iPSCs. Contributing to this inefficiency are 

cells that break away from the main reprogramming pathway, such as undergoing 

reprogramming-induced senescence, becoming stuck in a partially reprogrammed iPSC 

(pre-iPSCs) state, or transitioning to a competing cell type. These factors contribute to 

the prevalent heterogeneity of reprogramming populations. 
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Figure 4 

 

 

Figure 4: Workflow of scRNA-seq and scATAC-seq Data Analysis 

A) Dimensionality reduction through identifying features, or genes, whose expressions 

contribute the most to the observed variance among the cells, which are then used 

to inform cell clustering. scRNA-seq analysis tools, (e.g. Monocle), can then perform 

downstream analyses such as identifying differentially accessible genes between 

clusters and constructing pseudotime trajectory. 

B) In the analysis of scATAC-seq data with ArchR, instances of accessible peaks are 

counted using a tile matrix of 500bp bins throughout the genome. Once the counts 

matrix is generated, scATAC-seq data also undergoes dimensionality reduction and 

clustering. From there, the resulting clusters can be used to identify loci that are 

differentially accessible between clusters or cell populations and finding which motifs 

are enriched in the clusters associated with these peaks. 
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Abstract 
 

Elucidating the mechanism of reprogramming is confounded by heterogeneity 

due to the low efficiency and differential kinetics of obtaining induced pluripotent stem 

cells (iPSCs) from somatic cells. Therefore, we increased the efficiency with a 

combination of epigenomic modifiers and signaling molecules and profiled the 

transcriptomes of individual reprogramming cells. Contrary to the established temporal 

order, somatic gene inactivation and upregulation of cell cycle, epithelial, and early 

pluripotency genes can be triggered independently such that any combination of these 

events can occur in single cells. Sustained co-expression of Epcam, Nanog, and Sox2 

with other genes is required to progress toward iPSCs. Ehf, Phlda2, and translation 

initiation factor Eif4a1 play functional roles in robust iPSC generation. Using regulatory 

network analysis, we identify a critical role for signaling inhibition by 2i in repressing 

somatic expression and synergy between the epigenomic modifiers ascorbic acid and a 

Dot1L inhibitor for pluripotency gene activation. 
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Introduction 
 

Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by 

the introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) 

(Takahashi and Yamanaka, 2006). Mouse iPSCs are functionally equivalent to 

embryonic stem cells (ESCs) because they pass all the tests of pluripotency, including 

tetraploid complementation (Zhao et al., 2009). The efficiency of reprogramming 

remains low at about 5% even when the reprogramming factors are inducibly expressed 

from a single locus in the mouse genome (Buganim et al., 2013). In addition, iPSC 

colonies appear at different times during the reprogramming process (Apostolou and 

Hochedlinger, 2013; Buganim et al., 2013; Papp and Plath, 2013). Identifying only those 

cells that successfully complete the reprogramming process versus those that fail to do 

so can reveal key mechanisms that make the reprogramming process inefficient. 

Although some markers, such as SSEA1, EPCAM, CD73, ICAM1, and CD44, enrich for 

successfully reprogramming cells (Lujan et al., 2015; O’Malley et al., 2013; Polo et al., 

2012), it is not yet possible to prospectively identify only the cells that will become 

iPSCs to follow them as they reprogram. 

Transcriptional profiling of bulk reprogramming populations over time has led to 

the description of a temporal series of events with early downregulation of somatic cell 

expression followed by metabolic and cell cycle changes that culminates in the 

activation of the pluripotency gene regulatory network (Apostolou and Hochedlinger, 

2013; Apostolou and Stadtfeld, 2018). Mouse embryonic fibroblasts (MEFs) undergo a 

mesenchymal-to-epithelial transition (MET) before pluripotency gene activation during 

reprogramming (Hussein et al., 2014; Li et al., 2010; Mikkelsen et al., 2008; 
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Samavarchi-Tehrani et al., 2010). Importantly, whether all cells undergoing 

reprogramming have to trigger these programs in the same temporal order remains 

unknown. Due to the low efficiency and variable kinetics of obtaining iPSCs, 

reprogramming cultures will have heterogeneous expression profiles. Therefore, in 

population-based analyses of unsorted cells, expression signatures from cells that will 

successfully reprogram are obscured. 

To overcome these issues with ensemble profiling, single-cell analysis of 

candidate factors in reprogramming MEFs has been performed both at the RNA and 

protein level. These studies have uncovered intermediate markers, a role for Ras-

signaling, and a role for Sox2 in the deterministic activation of the pluripotency 

network. (Buganim et al., 2012; Kim et al., 2015; Lujan et al., 2015; Zunder et al., 

2015). More recent experiments have focused on profiling cells during reprogramming 

in low-efficiency systems, including non-transgenic chemical reprogramming (Zhao et 

al., 2018; Guo et al., 2019; Schiebinger et al., 2019). 

Reprogramming efficiency can be increased by the modulation of regulators 

that decrease chromatin compaction and those that perturb signaling pathways 

(Esteban et al., 2010; Huangfu et al., 2008; Ichida et al., 2009; 2014; Maherali and 

Hochedlinger, 2009; Mikkelsen et al., 2008; Onder et al., 2012; Shi et al., 2008; Silva 

et al., 2008; Tran et al., 2015). We and others have combined such epigenomic and 

signaling modulators and found that they synergistically increase reprogramming 

efficiency from OSKM-expressing cells (Bar-Nur et al., 2014; Tran et al., 2015; Vidal et 

al., 2014). In this study, we added SGC0946 (inhibitor of Dot1L, a histone H3K79 

methyltransferase) along with our previous cocktail of ascorbic acid (vitamin C) and 2i 
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(inhibitors to mitogen-activated protein [MAP] kinase and glycogen synthetase kinase), 

in conjunction with OSKM to reprogram MEFs to iPSCs at an efficiency of ~40% within 

6 days. Although each small molecule has been used previously, to our knowledge this 

particular combination (called A2S [ascorbic acid, 2i, SGC] henceforth) has not been 

reported. 

Using single-cell RNA sequencing (RNA-seq) analysis, we profiled 

reprogramming MEFs along a time course in both a regular serum-containing (fetal 

bovine serum [FBS]) and the A2S system. We found that early events, such as 

epithelial and cell cycle activation, are turned on independently. Surprisingly, all 

mesenchymal genes are not downregulated together in the same cells, and some 

genes, such as Twist1, can even be found expressed with early pluripotency marker 

Nanog. A large majority of the cells in FBS stop cycling partly due to senescence, 

which can be overcome by the addition of A2S. Nanog, Oct4, and even Sox2 could be 

activated in individual cells, but what distinguished successful reprogramming was the 

detectable co-expression of these genes in different modules. Nanog was found in a 

sub-cluster with Epcam, Sall4, and Tdgf1; Oct4 with Zfp42; and Sox2 with Utf1 and 

Dppa5a. The lack of detectable expression of some markers, such as Epcam, with 

other pluripotency genes correlated with cells reverting to an Epcam-negative state. 

Functional experiments provide a role for reprogramming-specific transient 

upregulation of transcription factors, such as Ehf; translation initiation (Eif4a1); and 

factors such as Phlda2 for reaching an iPSC state. By applying a network-based 

analytical framework to our single-cell data, we studied the effect of individual 

components of A2S on the acquisition of pluripotency. Our analysis identified that 
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specific connections of the pluripotency network can only be made when both 

epigenomic modifiers are present, but without the suppression of somatic expression 

by the signaling inhibitors reprogramming efficiency is compromised. Thus, we have 

uncovered that reprogramming need not progress in discrete stages but instead is the 

result of co-occurring modulation of various networks. 

 

Results 
 
Combining epigenomic and signaling modifiers leads to high-efficiency 

generation of bona fide iPSCs 

We reprogrammed MEFs that have a doxycycline (dox)-inducible cassette 

containing a transgene with four reprogramming factors: Oct4, Sox2, Klf4, and c-Myc 

(OSKM). iPSC generation was monitored by immunofluorescence for NANOG at 

various time points. The NANOG+ colonies that remained after dox withdrawal are 

transgene-independent iPSCs (Brambrink et al., 2008; Stadtfeld et al., 2008). In FBS 

conditions, NANOG+ colonies emerged by day 6 and most were transgene 

independent by day 12 of reprogramming, yielding an efficiency of about 3.2% 

(Figure 1A; STAR Methods). 

As very few cells successfully reprogram in FBS, we next sought to increase 

reprogramming efficiency to elucidate the transcriptional changes required for 

pluripotency acquisition. We have previously shown that the addition of ascorbic acid 

(AA) and 2i increases reprogramming efficiency of both embryonic and adult 

fibroblasts (Tran et al., 2015). A small-molecule screen of chemicals (data not shown) 

revealed that the addition of an inhibitor to the H3K79 methyltransferase Dot1L called 
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SGC0946 (Jackson et al., 2016) to the AA+2i combination boosted iPSC generation 

from reprogrammable MEFs. By day 6, ~1,900 Nanog+ iPSC colonies were obtained 

at an efficiency of ~42% (STAR Methods) (Figure 1B). Beyond this time point, the 

colonies started merging with each other, and therefore, it was chosen as the 

endpoint for analysis. The A2S system also increased the kinetics of reprogramming 

because the NANOG+ colonies on day 4 were already transgene independent 

(Figure 1B) as compared to day 9 of FBS reprogramming (Figure 1A). To avoid 

biases from plating efficiencies (Schwarz et al., 2018), we further verified the 

efficiency by reprogramming MEFs as single cells. We found that transgene-

independent colonies were obtained in ~40% of the wells in the A2S system (Figure 

1C). Thus, the A2S combination of small molecules yielded a great increase in 

reprogramming efficiency and kinetics. 

To determine whether iPSCs generated from the A2S system were bona fide, 

colonies were picked on day 6 from an A2S reprogramming experiment and could be 

passaged in FBS without loss of pluripotency. These iPSCs were karyotypically 

normal and produced teratomas that were comprised of cells from all three germ 

layers (Figures S1A and S1B). 

 

Single-cell RNA-seq time course confirms heterogeneity of reprogramming 

populations 

To dissect the intrinsic heterogeneity during FBS reprogramming and determine 

whether the A2S system accelerated or overcame the FBS reprogramming barriers, we 

performed single-cell transcriptomics. We profiled reprogramming cells in FBS on days 
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3, 6, 9, and 12; A2S on days 2, 4, and 6; as well as the starting population of MEFs and 

endpoint of ESCs using a microfluidics-based droplet digital sequencing system (Bio-

Rad ddSeq, STAR Methods). In addition, iPSCs that were generated from the A2S 

system were profiled to determine their similarity to ESCs. Because AA and 2i are 

known to change the expression profile of ESCs (Blaschke et al., 2013; Marks et al., 

2012), we also sequenced ESCs and iPSCs that had been passaged in A2S. 

We obtained an average of about 55,000 reads and 13,000 uniquely identified 

transcripts per cell, which corresponded to a total 18,005 genes detected across all cells 

(Figure S1C; STAR Methods). We used the Monocle2 program (Qiu et al., 2017a, 

2017b) (Figures S1D and S1E) to analyze the gene expression data and identified gene 

regulatory networks using the MERLIN algorithm (Chasman et al., 2016) to provide 

insights into the different factors that influence reprogramming efficiency. A t-Distributed 

Stochastic Neighbor Embedding (t-SNE) analysis (STAR Methods) revealed the iPSCs 

derived from A2S when passaged in FBS clustered with ESCs grown in FBS and away 

from ESCs or iPSCs passaged in A2S (Figure 1D). This result further confirmed that the 

iPSCs had reached an ESC-like transcriptional state. As expected, ESCs cultured in 

A2S expressed blastocyst-enriched genes, such as Dazl, while also repressing the 

development-associated gene Emb and showed more homogeneous expression of 

naive marker Tbx3 but not Rex1 (Figure S1F). 

 

A2S accelerates FBS reprogramming 
 

The cells profiled from the time course analysis were grouped into 14 clusters 

(Figure 2A). The starting MEFs were heterogenous and occupied two clusters (cluster 
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2 and cluster 7) (Figure 2A). For the FBS samples, the cells on day 3 occupied a 

single cluster (77% of cluster 3) away from days 6, 9, and 12 reprogramming cells 

(Figure 2A). Similarly, the day 2 of A2S samples predominated a single cluster (92% of 

cluster 5), whereas the cells from day 4 and day 6 belonged to several clusters (Figure 

2B; Figure S2A). Therefore, at the beginning of reprogramming, the cells are more 

homogeneous than later time points, irrespective of the efficiency of the system. The 

fact that cells from different time points cluster together based on similarity in gene 

expression profiles suggests that average expression from previous time-point-based 

analysis warrants analysis by single-cell sequencing. A small fraction of cells from A2S 

were found in the FBS clusters and vice versa (Figure 2B). The entire reprogramming 

population also clustered away from ESCs and iPSCs grown in A2S (Figure S2B). 

Distance in the t-SNE does not necessarily reflect the most differential gene clusters. 

However, given that the cells in reprogramming cultures were most similar in gene 

expression profile to pluripotent cells grown in serum, ESCs grown in FBS were used 

as the endpoint for all subsequent analyses. 

From previous bulk RNA-seq and mass cytometry analysis, various cell 

surface markers have been identified that enrich for reprogramming cells that will 

transition to iPSCs (Lujan et al., 2015; Nefzger et al., 2017; O’Malley et al., 2013; 

Polo et al., 2012), although the same markers can have heterogeneous expression in 

ESCs (O’Malley et al., 2013). We reasoned that if A2S reprogramming was an 

accelerated version of FBS reprogramming, the same markers would be found in a 

greater proportion. The marker CD44 is high in MEFs, whereas ICAM1 is transiently 

increased in reprogramming cells (O’Malley et al., 2013). The CD44-/ICAM1+ 
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population was two-fold greater in A2S by day 6 than FBS on day 12 (Figure S3B). 

Similarly, the transient CD73 intermediate marker (Lujan et al., 2015) was rapidly 

acquired and downregulated (Figure S3A). There was a greater decrease in the 

MEF-specific Thy1+ or Vcam+ cells in A2S as compared to FBS reprogramming 

(Polo et al., 2012; Schwarz et al., 2018) (Figure S3A). The Thy1-/Fut9+ (SSEA1) 

(Polo et al., 2012) and the Epcam+/Sca1-/Fut9+ (Schwarz et al., 2018) populations 

that are more predictive of cells that will complete reprogramming were both ~4-fold 

higher in A2S by day 6 as compared to FBS (Figure S3B). Notably, the gene 

expression of Mbd3 and Gatad2a were not affected in A2S reprogramming (Figure 

S3A). The absence of these proteins leads to high-efficiency reprogramming (Mor et 

al., 2018; Rais et al., 2013). Taken together, these results indicate that A2S improves 

the kinetics and efficiency of the route taken by FBS reprogramming cells. 

To identify the genes that distinguished the clustering of single cells in the 

Monocle t-SNE analysis (Figure 2A), we examined the top 10% of differentially 

expressed genes between all the clusters. Because this is single-cell data, we 

measured both the percentage of cells displaying each of the four major patterns of 

expression between MEFs and ESCs as well as the average expression (Figure 2C; 

Figure S2C; Table S1). There was a net decrease in expression (groups A–D), which 

included genes in categories such as cell differentiation and migration; a 

reprogramming-related decrease (groups F–H), mainly composed of cell cycle, DNA 

replication, and spliceosome-related genes; a reprogramming-related increase 

(groups K–L); and a net increase from MEFs to ESCs (groups M–N), which included 

pluripotency genes. We also observed a fifth pattern (group O), which was made of 
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ribosomal genes that displayed tremendous cell-cell variability but was expressed in 

all cells. 

 

Mesenchymal and epithelial changes are independently regulated 
 

From bulk sequencing experiments, it is thought that downregulation of 

somatic cell gene expression, including the mesenchymal genes, are early events in 

reprogramming (Apostolou and Hochedlinger, 2013; Apostolou and Stadtfeld, 2018; 

Li et al., 2010; Samavarchi-Tehrani et al., 2010). We found that not all mesenchymal 

genes are rapidly decreased in all cells. The majority of the cells in group A (Figure 

2C) decreased expression of developmental signaling and cell migration genes, 

including Tgfb3, Snai1, and Twist2 (Figure 3A). Larger fractions of cells retained 

expression of Id1 and Id2, and the mesenchymal factors Zeb1 and Zeb2 (group B). 

Expression of several collagens, Egr1 and Twist 1 (group C), was retained in an even 

higher proportion of cells than group B (Figure 3A). Thus, there are three different 

trends for populations to lose mesenchymal gene expression with a large majority of 

cells in FBS reprogramming still retaining MEF-like gene expression even at later 

time points. The mesenchymal MEFs have to transition to an epithelial state indicated 

by the upregulation of E-cadherin (Cdh1) (Apostolou and Hochedlinger, 2013; 

Apostolou and Stadtfeld, 2018; Li et al., 2010; Samavarchi-Tehrani et al., 2010). 

Given the differential proportion of mesenchymal genes that were turned off in 

individual cells, we determined the co-expression of Cdh1 with several mesenchymal 

genes. It should be noted that because of the limit of detection of single-cell 

transcriptomics, such analysis may underestimate the number of co-expressing cells. 
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Surprisingly, Cdh1 upregulation was compatible with the expression of mesenchymal 

genes, albeit in different proportions, as well as the somatic marker Thy1 (Figure 3B). 

Instead, from our data, it is apparent that the mesenchymal gene downregulation and 

E-cadherin upregulation operate as different modules. For example, the 

downregulation of Snai1 does not automatically lead to Cdh1 expression. We 

orthogonally confirmed the RNA-seq results by performing immunofluorescence for 

Twist1 and Cdh1 and found an overlap of both markers in the proportion predicted by 

the transcriptional data (Figure 3C). The trends of dual mesenchymal gene+/Cdh1+ 

cells were similar in A2S and FBS reprogramming (Figure S2D). 

By performing a pairwise comparison between the earliest time points of the FBS 

and A2S time course (cluster 3 versus cluster 5; Figure 2C), we found that FBS cells on 

day 3 still retained the expression of genes associated with system development 

(Col3a1) as well as signal transduction (Fgf7, Egr1, and Igfbp3) that were greatly 

reduced by day 2 of A2S reprogramming. Thus, the acceleration of reprogramming in 

A2S is partially derived from increasing the rate of downregulation of somatic genes. 

 

Reprogramming-specific transient gene expression patterns are important for 

conversion to iPSCs 

Because iPSCs self-renew indefinitely, mechanisms that confer an ESC-like cell 

cycle improve reprogramming efficiency (Hanna et al., 2009; Mario´ n et al., 2009; Ruiz 

et al., 2011; Utikal et al., 2009). The starting population of MEFs heterogeneously 

expressed cell cycle markers to segregate into two different clusters (cluster 2 and 7; 

Figure 2C). Interestingly, both FBS day 3 and A2S day 2 reprogramming cells also 
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expressed cell cycle genes, such as Mcm6, Bub1b, and Ccnb1 (groups F–H; Figure 2C; 

Table S1). Therefore, either the induction of the reprogramming factors upregulated 

these genes in the majority of MEFs or reprogramming was productively initiated only 

from those MEFs that were already cycling. The initial upregulation of cell cycle 

observed in bulk transcriptomic data may represent the selection of cycling MEFs 

(Mikkelsen et al., 2008) for reprogramming rather than a true upregulation in all cells. 

After this time point, there was a dramatic difference in the way the two systems 

behaved. In the FBS clusters, the vast majority of the cells (76% of all FBS cells) 

downregulated cell cycle genes (clusters 4, 11, 13, and 14), whereas a minority retained 

expression (cluster 10) (Figure 3D). In contrast, in the A2S system, the vast majority of 

the cells still retain the expression of cell cycle genes and a small fraction (21% of all 

A2S cells, located within cluster 8) shut these genes off (Figure 3D). This result was 

corroborated by immunofluorescence for the cell cycle marker Ki67 with a rapid decline 

by day 6 of FBS reprogramming, which was not observed in A2S cells (Figure 3E). 

Cell cycle gene expression upregulation was compatible with Thy1, Zeb2, and 

Twist1 expression, as well as Cdh1 in both FBS and A2S systems (Figure 3G; Figure 

S2D). This result suggests that the cell cycle can also be activated with continued 

somatic expression. 

It is known that in FBS, most reprogramming cells experience reprogramming-

induced senescence (Banito et al., 2009; Li et al., 2009; Mikkelsen et al., 2008). 

Corroborating this notion, the antiproliferative Cdkn1c gene was highly upregulated in 

FBS reprogramming cells but not in the A2S system (Figure 3E). By contrast, p53 

transcription levels were maintained in the entire population. Senescence-associated 
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genes, such as Ink4a, were also activated during A2S reprogramming and interleukin-6 

(IL-6) remained inactivated (Figure S3A). Thus, the senescence block may be 

overcome by the lack of activation of Cdkn1c (Figure 3E). In this aspect, the A2S 

system in MEFs resembles a cohort of fast-cycling granulocytes—monocyte precursors 

that undergo non-stochastic reprogramming due to reduced levels of Cdkn1c (Guo et 

al., 2014). 

Besides senescent genes, this third pattern of reprogramming-related 

upregulation (groups K and L; Figure 2C) was without a specific gene ontology. 

Because cell fate transitions are often orchestrated by transcription factors, chromatin-

modifying proteins, or signaling molecules, we knocked down three genes belonging to 

these categories—Ano1, Aldh3a1, and Ehf—during reprogramming. Among these 

genes, the knock down of Ehf caused a decrease in A2S reprogramming efficiency 

(Figure 3H; Figure S2E). This suggests that transient upregulation of some genes is, in 

fact, required for reprogramming to iPSCs and does not represent a different lineage-

specific endpoint. 

 

Co-expression of core pluripotency factors are independent of each other  
 

The activation of genes highly expressed in ESCs (groups M and N; Figure 

2C) was largely restricted to reprogramming clusters C9, C6, and C10 that already 

expressed cell cycle genes (Figure S4A). We examined the expression of known 

pluripotency genes within this group. Epcam, Sall1, and Gdf3 were expressed in 

reprogramming clusters other than the ones with the most ESC-like characteristics 

(Figure 4A). This suggests that they can be activated in isolated cells and may not 
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predict cells completing the transition to iPSCs. Surprisingly, Sox2 was also 

expressed in cells other than the ones most similar to cluster 1, suggesting that its 

activation may not be sufficient to activate a cascade of deterministic pluripotency 

gene activation as previously suggested (Buganim et al., 2012) (Figure 4A). We next 

determined which genes were most prevalently expressed with the core pluripotency 

factors Oct4, Sox2, and Nanog in the reprogramming populations, while 

acknowledging the caveat that such analysis may be limited by the detection limit of 

single-cell transcriptional sequencing. Nanog was detected with Sall4, Epcam, and 

Tdgf1 (Cripto) (Figure 4B). Within the population of Nanog-expressing cells, Sall4 

was equally expressed in both cluster 6 and cluster 9 (Figure 4B). However, Tdgf1 

expression was higher in cluster 9 cells, suggesting that Tdgf1 may be more 

important for activating the rest of this subset (Figure 4B). On the other hand, 

although Oct4 was activated with Zfp42 (Figure S4B), Sox2 was found with Dppa5a 

and Utf1 and was part of a larger cluster that included Tet1 and Zscan10 (Figure 4C). 

In cluster 10 that is predominantly made of cells from FBS reprogramming, this larger 

subset is heterogeneously activated. In contrast, in cluster 6 that mostly contains A2S 

reprogramming, the whole group was coordinately upregulated (Figure 4C). 

The most restricted pattern of expression included Dppa4, which is known to be 

a marker of the ‘‘stabilization’’ phase of reprogramming that occurs after the core 

pluripotency genes are activated (Golipour et al., 2012). Dppa4 was detected in the 

subset with Lin28a and Phlda2, a gene involved in placental growth (Salas et al., 2004) 

(Figure 4D). 

Intrigued by this finding, we depleted the levels of Phlda2 during reprogramming. 
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Interestingly, although the number of NANOG-expressing colonies remained similar 

between Phlda2 knock down and control, we found a 25% decrease in the number of 

DPPA4-positive colonies (Figure 4E). Therefore, the co-expression of pluripotency 

factors within each subgroup may functionally predict regulators of transitions to the 

next stage toward pluripotency. 

Similar to downregulation of MEF genes and activation of cell cycle, pluripotency 

gene activation is increased in a greater proportion of cells, to a higher extent and more 

homogenously with co-expression partners in A2S as compared to FBS reprogramming. 

 

Continued mesenchymal expression is a roadblock to high-efficiency 

reprogramming 

From these analyses, it is clear that A2S is more efficient than FBS 

reprogramming in accelerating each of the four major patterns of expression. Therefore, 

examining the A2S system alone would help us identify genes that are bottlenecks to 

the completion of reprogramming in cells that are much further along the process. In 

fact, when we compared the differentially expressed genes that were only related to 

reprogramming in FBS or A2S alone, we found about 33% unique to the A2S system 

(Figure S5A). The ones that were solely found in A2S reprogramming were enriched for 

gene ontology terms, such as system development and cell differentiation, and included 

pluripotency genes, such as Nanog and Oct4. In contrast, the FBS-exclusive gene 

expression was dominated by cell cycle genes (Figure S5A). Therefore, we further 

examined the A2S cells by performing a trajectory analysis in which cells are arranged 

in pseudotime according to similarity in gene expression patterns (Trapnell et al., 2014) 
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(Figure 5A). As expected, a larger fraction of day 6 (63%) cells were found in the part of 

the trajectory toward pluripotent cells than those that were found before the branchpoint. 

We performed branched expression analysis modeling (BEAM) (Qiu et al., 

2017a) to identify the genes that were over-represented in cells that continued along 

the trajectory toward ESCs from the ones that were found in the branch. We note that 

ontogenically MEFs cannot convert to ESCs but use the trajectory to determine a path 

toward pluripotency. At the early branchpoint, the cells that continue toward ESCs 

have a higher expression of epithelial genes, such as Cdh1 and Epcam (Figure 5B). At 

the later branchpoint, cells that continue have already activated the cell cycle and 

present high levels of Nanog as expected (Figures 5B and 5C). Surprisingly, the 

mesenchymal gene Twist1 was found to be a gene that influences the branchpoint 

decision even at this late point in the pseudotime trajectory (Figure 5C) and was even 

found to be co-expressed with Nanog. Although Nanog levels were similar in cells at 

the beginning of branch 2, cells that stall have a higher level of Twist1 co-expression 

than those that continue (Figure 5D). 

From population-based studies, cells that express Epcam during intermediate 

phases of reprogramming have a greater probability of completing the process (Polo et 

al., 2012). In the branchpoint analysis, several cells that exit the trajectory express 

high levels of Epcam but at the end of the branch have decreased expression rather 

than maintained levels (Figure 5C). Given that Epcam is found co-expressed with a 

subset of genes (Figure 4B), we wondered whether the expression of Epcam was 

influenced by expression levels of other genes within its subset. In fact, we found that 

Epcam+ cells that continue along to complete pluripotency co-expressed higher levels 
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of Nanog, Tdgf1, and Sall4 than those that stall at the branchpoint (Figure 5D). This 

result suggests that activation of all the genes within a subset is important to sustain 

initial expression. Because single-cell analysis destroys the cell, the cells at the end of 

the branchpoint could represent those that never expressed Epcam and are at the end 

of the trajectory due to covariance with other genes. Therefore, we sorted cells based 

on the level of EPCAM expression on day 3 of A2S reprogramming (Figure 5E). After 

allowing reprogramming to continue for an additional 3 days, we found that 7.5% of the 

high and 16.6% of medium-expressing EPCAM cells gave rise to an EPCAM-negative 

population (Figure 5E). Taken together, these analyses suggest that without co-

expression of other genes within the subset, cells may revert to an Epcam-negative 

state, whereas with co-expression, cells persist along the trajectory toward an ESC-

like state. 

A reverse pattern to Epcam is observed for the branchpoint gene, translation 

initiation factor Eif4a1. Here, after an initial downregulation, cells that successfully 

remain on the trajectory upregulate gene expression (Figure 5C). Eif4a1 is a part of the 

translation initiation complex along with the closely related protein Eif4a2 (Modelska et 

al., 2015; Williams-Hill et al., 1997). To determine if Eif4a1 had a causal role in 

obtaining iPSCs, we depleted its levels using RNA interference during A2S 

reprogramming. Interestingly, depletion of Eif4a1 severely compromised the efficiency 

of reprogramming (Figure 5F). This decrease was not due to a change in the number of 

cells or increasing cell death (Figure 5F). Taken together, these data suggest that 

sustained expression of genes is affected by co-expression of other factors and is 

required for completing the process to a productive pluripotent state. 
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A2S concurrently enhances downregulation of MEF genes and upregulation of 

ESC genes 

The chemicals we used for high-efficiency reprogramming include signaling 

inhibitors and two epigenomic modulators— AA, which is thought to regenerate 2-

oxoglutarate-dependent chromatin-modifying enzymes (Hore et al., 2016), and 

SGC0946, an inhibitor of Dot1L-mediated histone H3K79 methylation (Jackson et al., 

2016). To understand the relative contribution of each component, we subjected MEFs 

to every dual combination of chemicals and assessed reprogramming efficiency on day 

6. We found that SGC+2i (S2) yielded approximately half the NANOG+ colonies of the 

A2S combination, whereas AA+2i (A2) and AA+SGC (AS) were only 6.6% and 10.4% 

efficient, respectively, on day 6 of reprogramming (Figure 6A). Irrespective of the dual 

combinations that were used, the iPSC colonies remained NANOG+ after dox 

withdrawal. Exposure to each individual component had lower effects on enhancing 

reprogramming efficiency (data not shown). 

We performed single-cell RNA-seq on reprogramming MEFs that had been 

subjected to each dual combination on day 4 and day 6 and compared the profiles to 

FBS and A2S reprogramming. Because none of the dual combinations were able to 

achieve the high efficiency of the A2S system, we hypothesized that each dual 

combination likely rewires some components of the gene regulatory network controlling 

the transcriptional dynamics of reprogramming. Therefore, we first reconstructed the 

putative regulatory network by using the FBS+A2S single cell RNA-seq (scRNA-seq) 

dataset collected in this study (STAR Methods) using an expression-based network 
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inference algorithm, MERLIN (Chasman et al., 2016). We focused on the ~1,800 genes 

used to initially differentiate the Monocle clusters in the FBS+A2S dataset (Figure 2A) 

along with sufficiently expressed regulators, such as transcription factors, chromatin 

remodelers, and signaling proteins (Figure 6B; STAR Methods). MERLIN is based on a 

probabilistic framework that predicts the regulators of a target gene based on the ability 

of the regulator’s mRNA levels to explain the variation in a target gene’s expression 

level. Using probabilistic modeling, MERLIN allows regulators to control target genes 

with similar expression levels to have non-identical regulatory programs. Furthermore, 

target genes are grouped into modules based on their co-expression and shared 

regulatory program (STAR Methods). Thus, there are two outputs of MERLIN: (1) 

modules that represent characteristic patterns of expression of genes and (2) networks 

that specify the regulators of individual genes as well as modules. The MERLIN analysis 

produced 15 modules with 5 or more genes. There were 4,962 interactions between 

1,009 regulators and 1,628 target genes at a stringent confidence of 0.8 or higher 

(STAR Methods). The regulatory network captures known connections among the key 

pluripotency regulators and target genes (e.g. Esrrb à Klf4, Sox2 à Klf4, Esrrb ß à 

Sox2, Esrrb ß à Nanog) and is comparable to the performance seen when using bulk 

RNA-seq data (STAR Methods), providing support to the relevance of the interactions. 

MERLIN modules recapitulated the four patterns of expression from MEFs to 

ESCs (Figure 6B). We compared the expression patterns of genes in these modules in 

cells treated with A2S and each dual combination to identify key similarities and 

differences in expression pattern across these treatments to enable us to define the 

requirement of each component for successful reprogramming. We found that 



 66 

compared to A2S, the AS combination that omitted 2i continued to have a high 

expression of modules M1 through M4, (Figure 6B) which included MEF-specific genes, 

such as Col5a1 and Tagln, even on day 6 (Figure 6C). This trend was even more 

obvious for genes that are aberrantly upregulated in the early days of reprogramming 

(module M8) and included genes such as Oasl2 and Egr1 (Figure 6C). For the cell cycle 

genes that are transiently downregulated in FBS reprogramming (modules M5 through 

M7), every dual combination could activate these genes (e.g., Mcm6 and Ccnb1) 

(Figure 6C). The A2 combination was compromised in activating pluripotency genes 

(modules M9 through M11). Contrary to earlier reports, Dot1L inhibition does not 

increase Cdh1 levels (Figure 6C) any more than the combinations that do not include 

this small molecule (Onder et al., 2012). Interestingly, the AS combination was as good 

at activating several genes of the pluripotency cluster as S2 but still resulted in a smaller 

number of iPSC colonies (Figure 6A), likely due to the continued expression of somatic 

genes because of the failure to downregulate the MEF program. However, neither AS 

nor S2 was as good as A2S at activating pluripotency, suggesting synergistic effects of 

the triple combination. 

We next used the high-confidence inferred regulatory network as a scaffold to 

estimate the relative strengths of the regulatory connections in each condition in order 

to identify which components of the network were present in each of the combinations 

(STAR Methods). Briefly, we used this network structure to fit a regression model for 

each gene in each condition and used the regression weight to estimate the edge 

strength (STAR Methods). The regression weight is reflective of the strength of the 

regulatory connection between a regulator and a target gene and provides information 
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that might not be obvious from the absolute level of expression of a gene. Hence, 

although a gene node could be less expressed in one condition, its connections with 

regulators can be stronger if the expression of its regulators can explain its expression 

variation. We found that there were several sub-networks that had different strength in 

the dual combinations compared to the A2S combination. For the modules that do not 

turn off somatic genes or transiently upregulated gene expression, the connections 

between the regulators Oas2l and Trim30, or between Col5a1 and Col1a2 were 

retained only in the AS condition (lacking 2i) (Figure 6D; Figures S5B and S5C). For the 

upregulated genes, several connections surrounding Nanog (Figure 6E) were absent in 

the A2 condition, whereas those around Epcam and Cdh1 were maintained (Figure 

S5E). For the more restricted pluripotency genes, S2 and AS differ in the kinds of 

connections that were made; for example, Pou5f1 was better correlated with Dppa3 in 

S2, whereas a greater proportion of cells expressed Esrrb with Tdh in the AS condition 

(Figure 6E). In the A2S condition, all these connections are stronger and new 

connections, such as the ones between Dppa5a, Klf2, and Dppa3, emerge (Figure 6E). 

The network surrounding DNA replication genes, such as Mcm6, remains strong in any 

of the dual combinations (Figure S5D). 

Taken together, these results indicate that any combination of small molecules is 

able to overcome the senescence block faced by cells in FBS reprogramming. 2i is 

required for the downregulation of both MEF genes and transiently upregulated genes. 

Although A2 is sufficient to activate epithelial genes, SGC is required for the activation 

of pluripotency genes that emerge late. However, only in the presence of both AA and 

SGC, the rewiring of the pluripotency network is complete. 
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Discussion 
 

Reprogramming of somatic cells to iPSCs has been studied using bulk 

sequencing of reprogramming populations as well as those sorted on the basis of cell 

surface markers (Apostolou and Hochedlinger, 2013; Hussein et al., 2014; Lujan et al., 

2015; Mikkelsen et al., 2008; O’Malley et al., 2013; Polo et al., 2012). These studies 

have led to an understanding of reprogramming trajectories taken by the majority of the 

cells. Here, by applying single-cell transcriptional sequencing, we find that there is 

overlapping expression of genes that was thought to be temporally activated 

(Apostolou and Stadtfeld, 2019; Brambrink et al., 2008; Stadtfeld and Hochedlinger, 

2010) (Figure 7). Because most studies have focused on MEFs as the starting cell 

type, an important early event is the MET, a process amenable to acceleration (Liang 

et al., 2012; Zhou et al., 2017). Surprisingly, here we find that mesenchymal genes are 

not all downregulated at the same stage. The frequently used marker of the epithelial 

transition Cdh1 can be upregulated in cells that continue to express mesenchymal 

genes, such as Twist1. Thus, our study demonstrates that in order to increase the rate 

of reprogramming, it may be worthwhile to focus on other small molecules that can 

reliably and consistently shut down mesenchymal gene expression. We also find that 

another epithelial gene, Epcam, can be downregulated in a few cells if it is not co-

expressed with other pluripotency genes. This result mirrors the recent finding that the 

reliability of Epcam as a marker is enhanced by co-expression with SSEA1 and without 

Sca1 (Schwarz et al., 2018). Such co-expression is valuable for sustaining the 

expression not only of Epcam but also of the pluripotency factors, which can be 

activated in isolated cells even in FBS reprogramming. This includes Sox2, which was 
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identified by candidate sequencing to start a cascade of deterministic pluripotency 

(Buganim et al., 2012). We find that the level of Sox2 expression is higher when found 

in cells also expressing Dppa5a and Utf1. 

It has also been noted that somatic cell nuclear transfer tends to activate the 

Oct4 locus earlier than has ever been observed for reprogramming (Bhutani et al., 

2010). One reason for this may be that genes such as Ehf that are transiently 

upregulated may have a role in restructuring the gene networks in a way that makes 

the next step conducive to reach the pluripotent state. Co-opting basic translational 

machinery (Brumbaugh et al., 2018), such as the regulation of Eif4a1, a device used by 

cancer cells (Modelska et al., 2015; Wolfe et al., 2014), may also be important for 

reprogramming, increasing the parallels between cancer and pluripotency. 

The small molecules that we have used contribute differentially to the 

pluripotency network. One way that any combination of the small molecules works is by 

decreasing the number of cells that display senescence gene expression. A greater 

number of cycling cells increases reprogramming efficiency (Hanna et al., 2009; Mario´ 

n et al., 2009; Ruiz et al., 2011; Utikal et al., 2009). Previous studies have genetically 

modulated the levels of cell cycle control genes, such as p53, to affect this change 

(Hanna et al., 2009; Mario´ n et al., 2009; Utikal et al., 2009). We now provide a 

chemical method that can be transiently applied to overcome the senescence barrier. 

By applying a network analysis method, we also identify the connections of these 

molecules. We find that the addition of 2i suppresses some aberrantly expressed 

genes and allows for faster downregulation of MEF markers. AA and SGC work 

together to reinforce the pluripotency program. The modulation of the dose and timing 
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of these factors could be harnessed in the future to rationally enhance reprogramming 

efficiency further. 
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Materials and Methods 
 
Experimental Model and Subject Details 

Primary MEFs 

Male and female MEFs were isolated from E13.5 time-mated embryos as described in 
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Tran et al., (2015) from reprogrammable mice (Sridharan et al., 2013) homozygous 

for the Oct4-2A-Klf4-2A-IRES-Sox2-2A-c-Myc (OKSM) transgene at the Col1a1 locus 

and either homozygous or heterozygous for the reverse tetracycline transactivator 

(rtTA) allele at the Rosa26 locus. MEFs were maintained in MEF media (DMEM, 10% 

FBS, L-glutamine, Pen/Strep, NEAA, 2-mercaptoethanol). Mice were maintained 

according to protocol approved by the UW-Madison IACUC. 

 

Mouse Embryonic Stem Cells 

Murine ESCs (V6.5 line, male) were maintained in ESC media (knockout DMEM, 15% 

FBS, L-glutamine, Pen/Strep, NEAA, 2-mercaptoethanol, and leukemia inhibitory 

factor) on a feeder layer of irradiated MEFs. 

 

Method Details 

Reprogramming 

MEFs were thawed and maintained in ESC media for 2 days before plating. On day -

1, 5000 cells were plated onto 0.1% gelatin-coated coverslips in 6-well plates. 24 

hours post-plating (day 0), cells were counted to determine the number of cells 

adhered to the coverslip. This number was used to calculate reprogramming 

efficiency (Figure 1A). On day 0, MEFs were treated with 2 mg/mL doxycycline to 

induce OKSM expression and irradiated MEFs were added. For A2S and dual 

combination reprogramming, 50 mg/mL of ascorbic acid (Sigma A8960) and 5 mM 

SGC0946 (ApexBio A4167) were added on Day 0. 3 mM CHIR-99021 (Stemgent 04-

0004-10) and 1 mM PD-0325901 (Stemgent 04-0006-10) (2i) were added 12 hours 
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post-doxycycline induction. Media containing doxycycline and small molecules was 

changed every two days. Efficiency of reprogramming was determined by Nanog 

immunofluorescence either on day of fixing as indicated, or after withdrawal of 

doxycycline and small molecules for an additional 4 days. Two or more biological 

replicates were performed for each set of reprogramming experiments. iPSC colonies 

were isolated from reprogramming culture on day 6 and maintained in either regular 

ESC media or A2S-containing ESC media on irradiated MEFs for several passages. 

For single-cell reprogramming, MEFs were infected with pMX-tdTomato retrovirus and 

FACS-sorted into 96-well plates as single tdTomato+ cell per well on irradiated MEFs. 

FBS and A2S reprogramming were performed as above. Doxycycline and chemicals 

were removed on day 11 and AP-positive wells were scored on day 15. 

 

Immunofluorescence 

Immunofluorescence was performed as described in Sridharan et al., (2009). Briefly, 

cells were fixed with 4% paraformaldehyde-PBS, followed by permeabilization with 

0.5% TritonX-PBS and stained with antibodies in blocking buffer (1X PBS with 5% 

normal donkey serum, 0.2% Tween-20, and 0.2% fish skin gelatin). Nanog 

(CosmoBio RCAB0002P), Dppa4 (ThermoFisher Scientific PA5-47530), Cdh1 

(Ebioscience 14-3249-82), and Twist1 (Novus Biologicals, NBP2-37364SS) 

antibodies were used at 1:100 dilution, while Ki67 (Abcam ab15580) was used at 

1:200. Imaging and colony counts were performed on Nikon Eclipse Ti using NIS 

Elements software. 
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Flow cytometry 

MEFs were induced to reprogram in the A2S condition as above, but without irradiated 

MEFs. On day 3, cells were harvested with trypsin, resuspended to a single-cell 

suspension and stained with Epcam antibody (CD326) – PE conjugated (BD 

PharMingen 563477) at 1ul per 5x105 cells for 1 hour before being sorted using BD 

FACS Aria II. Epcam+ cells were re-plated and allowed to reprogram for an additional 3 

days before another FACS was performed on day 6. 

 

siRNA Transfection 

siRNA purchased from Integrated DNA Technologies or GE Life Science were 

transfected using Dharmafect reagent (GE Life Sciences) according to manufacturer’s 

instructions. For Eif4a1 and Ehf knockdown experiments, siRNA was added on the day 

of plating at 0.5nM. siRNA was added every 48 hours and concentration was increased 

gradually up to 40nM to account for increasing cell numbers. For the Eif4a1 

experiment, live cell counts were performed every day using Trypan Blue exclusion. 

For the Phlda2 experiments, siRNA was added at days 4 and 5 at 50nM and 75nM 

respectively. Two siRNAs were combined for Phlda2. The following siRNAs were used: 

Eif4a1 siRNA #1 mm.Ri.Eif4a1.13.1, Eif4a1 siRNA#2 mm.Ri.Eif4a1.13.2, Ehf siRNA #1 

mm.Ri.Ehf.13.1, Ehf siRNA #2 mm.Ri.Ehf.13.2, Phlda2 siRNA#1 mm.Ri.Phlda2.13.1, 

Phlda2 siRNA#2 mm.Ri.Phlda2.13.2, Non-Targeting siRNA D-001810-01-50. To 

evaluate knockdown efficiency, qRT-PCR was performed using primers listed Table 

S2. 
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Single-Cell RNA-sequencing 

To ensure optimal viability of cells during droplet formation, cells were washed once 

with DPBS, followed by a media change 12 hours prior to single cell isolation. On the 

day of single cell isolation, cells in 6-well plates were washed five times with DPBS, 

dislodged with 1 mL 0.25% trypsin-EDTA and neutralized with 1 mg/ml trypsin inhibitor 

(Sigma Aldrich T6522). Cells were filtered through a 35 um nylon mesh (Corning 

352235) and centrifuged at 300xg for 3 min. Pelleted cells were gently washed with 

DPBS and pelleted again at 300xg, 3 min, RT. Cells were resuspended in 1 mL 0.1% 

BSA-DPBS (ThermoFisher 15260037) and gently pipetted 20-50 times. Single-cell 

suspension was confirmed under the microscope and cell concentration and viability 

were measured on a Bio-Rad TC20. Cells were diluted to a final concentration of about 

2500 cells/uL in 0.1% BSA-DPBS. 

 

Single-Cell Isolation and Library Preparation 

Single-cell encapsulation was performed on a ddSEQ Single-Cell Isolator (BioRad 

12004336), with reagents provided in the SureCell WTA 30 Library Prep Kit (Illumina 

20014279), according to manufacturer’s instructions. Briefly, approximately 12,500 

cells in single-cell resuspension were mixed with Cell Enzyme Mix containing reverse 

transcriptase. A ddSEQ cartridge was primed with Priming Solution before Barcode 

Suspension Mix, Cell Suspension Mix, and encapsulation oil were loaded onto the 

cartridge and into the Isolator. Generated single-cell droplets were transferred to a pre-

chilled plate and run on a thermal cycler to begin reverse transcription of mRNA. 

Droplets were subsequently disrupted, and first-strand library cDNA was used for 



 75 

second strand synthesis. Quality of pre-amplified libraries was confirmed on High 

Sensitivity DNA Chips on the Agilent Technology 2100 Bioanalyzer. Libraries with a 

minimum of 1.8 ng DNA were tagmented with DNA adapters from the SureCell WTA 30 

Library Prep Kit and amplified. 

 

Next-Generation Sequencing and Genome Alignment 

Between 7 and 9 libraries were multiplexed per lane on an Illumina HiSeq2500 Rapid 

Run (2x75), with a mean of over 280 million reads per lane. Fastq files (bcl2fastqv2.19) 

were generated, either through Illumina BaseSpace – the Illumina computing 

environment for sequencing data analysis – or through the University of Wisconsin-

Madison Bioinformatics Resource Center, and uploaded to Illumina BaseSpace. 

Sequences were aligned to Mus musculus 10 (mm10) genome using Spliced 

Transcripts Alignment to a Reference (STAR), available through the SureCell RNA 

Single Cell App v1.1.0 on BaseSpace. On average, 85.48% reads per sample aligned 

to the genome, and 2.06% reads per sample aligned to abundant features 

(mitochondria, small non-coding RNA, ribosomal RNA). A unique molecular identifier 

(UMI) per cell plot was generated using BaseSpace, which indicates the total number 

passing filter. A drop in the knee plot indicated a transition to empty beads, in which a 

cell barcode contained low UMI counts. This drop serves as the threshold for calling 

cells that pass the sample-specific knee filter, and all subsequent analyses were 

performed with cells passing this filtering step. In total, we isolated 8,334 cells, and on 

average, 260 cells passed knee filter per sample, with a median of 53,497 genic reads, 

13,100 genic UMIs and 4,274 genes detected per cell passing filter. Several libraries 
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were re-sequenced in order to achieve a sequencing a depth of approximately 50,000 

reads per cell for each sample. 

 

Bioinformatic analysis 

t-SNE Clustering 

We used Monocle2 v2.6.3 on R version 3.4.3 (Kite-Eating Tree) http://cole-trapnell-

lab.github.io/monocle-release/docs/ (Qiu et al., 2017b, 2017a) to analyze the data 

obtained after alignment. We initially plotted the distribution of UMI counts within each 

cell and filtered out any cells with UMI counts outside a range determined by: 

10^(mean(log10(Total number of UMIs within all cells of dataset)) +/2*standard 

deviation(log10(Total number of UMIs within all cells of dataset)) 

Out of the 4,374 cells passing filter, 4,167 cells were within the optimal UMI range and 

used for downstream Monocle analysis. Genes that were not expressed in at least 1 

cell were excluded from analysis. Principal component analysis (PCA) was then 

performed to identify the variance explained by each component of the cell dataset 

(cds). 

(1) cds < detectGenes(cds, min_expr = 0.1) 

(2) fData(cds)$use_for_ordering < fData(cds)$num_cells_expressed > 0.1 *ncol(cds) 

(3) plot_pc_variance_explained(cds, return_all = F) 

We reduced the number of dimensions to the number of PC components that 

explained the most variance, before the PCA components began to level off. 

Together, these components explained at least 50% of the variance for each dataset. 
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In order to remove the irradiated feeder MEFs from our analysis, we performed a t-

distributed stochastic neighbor embedding (t-SNE clustering) using data from ESCs 

grown on a feeder MEF layer in FBS and A2S. Irradiated MEFs formed a separate 

cluster and could be identified by expression of MEF markers in the ESC samples. 

We used the cell IDs of the FBS-ESCs that were found with these irradiated MEFs to 

identify where these cells are located in an initial clustering of all FBS, A2S 

reprogramming, MEF, and FBS-ESCs samples. The cells associated with this cluster 

were removed, resulting in the total of 4,374 cells that were used in the Monocle 

pipeline. A table with the Cell IDs that were removed from the analysis is available on 

GEO under entry GSE108222. 

 

t-SNE Cluster Analysis 

To identify genes important for defining clusters within the MEF reprogramming, DE 

analysis was performed between all 14 clusters within the t-SNE plot of Figure 2A. To 

determine the distribution of cells from each sample that fall into each cluster, 

phenotypic data (cell barcode ID, sample, pseudotime, cluster number) was extracted 

for each cluster and sample. The composition of a cluster or sample was then 

calculated by percentage or mean of the population. The top 10% of DEGs from this 

list were used in generating a heatmap to visualize percentage of cells within each 

cluster and sample that express these genes. Gene patterns were identified by k-

means clustering into 15 groups using Cluster3 software and visualized by Java 

TreeView (de Hoon et al., 2004; Saldanha, 2004)(Figure 2C). Database for 

Annotation, Visualization, and Integrated Discovery (DAVID) (Huang et al., 2009) was 
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used to functionally annotate groups of genes from heatmaps. 

 

Generating pseudotime trajectory 

To order cells by pseudotime, the gene expression of each cell has to be compared to 

a standard. We chose to use the top 5% of differentially expressed genes (DEG) 

between seven t-SNE clusters from only the A2S reprogramming samples and the 

MEFs and ESCs. This ensured that we were not comparing only established cell 

types or gene expression at specific time points. Using MEFs as the starting point, 

Monocle defined a pseudo-reprogramming time trajectory, termed pseudotime, where 

cells are linearly ordered relative to their progress or change in gene expression 

relative to the starting population. Lengths of the trajectory between each branchpoint 

were used to define state by the Monocle algorithm. 

(4) diff_test_resClusterDE < differentialGeneTest(cds, fullModelFormulaStr = ’’~Cluster,’’ 

cores = detectCores()) 

(5) SetOrdering(cds, ordering_genes = Top 5% DE Genes 

(6) reduceDimensions(cds) 

(7) orderCells(cds) 

(8) plot_cell_trajectory(cds, color_by = ’’Phenotype Data’’) 

Branched expression analysis modeling (BEAM) was performed to identify genes 

involved in the decision-making process of progressing along the trajectory or to a 

branch. Genes involved in BEAM with a q-value less than 1e-40 were then plotted 

along pseudotime to visualize relative expression of genes as cells progress to either 
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branchpoint or toward the end of the trajectory. 

(9) BEAM_cds < BEAM(cds, branch_point = 1/2, cores = detectCores()) 

(10) plot_genes_branched_heatmap(cds[row.names(subset(BEAM_cds, qval < 1e-

40)),], branch_point = 1, num_clusters = 10, cores = detectCores(), 

use_gene_short_name = T, show_rownames = T) 

(11) plot_genes_branched_pseudotime(cds_subset, branch_point = 2, color_by = 

‘‘Cluster,’’ ncol = 1) 

(12) diff_test_res_PseudotimeDE < differentialGeneTest(cds, fullModelFormulaStr = 

’’~Pseudotime,’’ cores = detectCores()) 

 

Co-expression Analysis 

To determine how a pair of two different genes are co-expressed within the cell 

population, Monocle’s cell type hierarchy function was implemented. Cells expressing a 

particular gene were identified using the following command: 

(13) GeneName_id < row.names(subset(fData(cds), gene_short_name = = ’’Gene 

Name’’)) 

(14) cth < newCellTypeHierarchy() 

(15) cth < addCellType(cth, ‘‘Gene Name 1 Positive’’ classify_func = function(x) { 

x[GeneName1_id,] > 0 }) 

(16) cth < addCellType(cth, ’’ Gene Name 2 Positive,’’ classify_func = function(x) { 

x[GeneName2 _id,] > 0 }) 

(17) cds < classifyCells(cds, cth, 0.1) 
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Visualizing the t-SNE plot based on cell type will identify cells that are positive for one of 

the genes of interest, those that are double positive (labeled Ambiguous), and those 

that are double negative (labeled Unknown). The phenotype data table contains 

information on cell type, which allows us to determine how prevalent each cell type is 

within each cluster, sample, etc. To visualize how different genes are expressed in cells 

that are known to be positive for a particular gene, we also generated violin plots. Note 

that due to the sequencing depth of single cell RNA-Seq (also known as ‘‘Dropout’’) co-

expression may be underestimated. After defining a cell type using the above command 

(Gene 1+ cells), we use the following code to produce violin plots: 

(18) Gene1_C1 < cds[,pData(cds)$CellType = = ‘‘Gene1+’’ & pData(cds)$Cluster = = 

‘‘1’’] 

(19) Gene1_C1_table < as.data.frame(pData(Gene1_C1)) 

(20) Gene1_C1_table$Identifier < row.names(Gene1_C1_table) 

(21) Gene1_C1_Id < row.names(Gene1_C1_table) 

(22) cds_log < log(exprs(cds)+1) 

(23) t < as.data.frame(cds_log) 

(24) Gene1_C1_counts < t[, colnames(t) %in% Gene1_C1_Id] 

(25) Gene1_C1_counts_all < as.data.frame(t(Gene1_C1_counts)) 

(26) Gene1_C1_counts_all$CellType < ‘‘Gene1+ C1’’ 

(27) ggplot(Gene1_counts, aes(x = CellType, y = Gene2)) + geom_violin() 
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Constructing gene regulatory network (MERLIN) 

MERLIN is based on a probabilistic graphical model representation of a regulatory 

network and uses a probabilistic graph structure prior to enable genes in the same 

module to have similar but not identical regulators. To infer networks, we used the top 

10% of differentially expressed genes identified by Monocle, and added a list of 445 

known transcription factors, signaling proteins, and chromatin remodelers, as well as 

genes known to be involved in early stem cell state specification, which resulted in 

2,100 genes in 4,633 cells. We applied MERLIN in a stability selection framework. 

Briefly, we created 100 subsamples by randomly selecting 2,317 cells for each, and 

ran MERLIN independently on each subsample. As initial cluster assignments for 

genes, we used k-means with 10 clusters. We used the following default options for 

running MERLIN: -5 for sparsity, 4 for modularity prior and 0.6 for redefining modules. 

The outputs of MERLIN comprise a regulatory network as well as module assignments 

for input genes. We next obtained consensus networks and consensus modules as 

described in Chasman et al., (2016). Each edge in the consensus network has a 

confidence value that indicates the percentage of subsamples in which that edge was 

inferred. Consensus modules are defined by applying hierarchical clustering to a co-

clustering matrix (which is the fraction of subsamples’ where a pair of genes were in 

the same MERLIN module). We identified a total of 15 modules with at least 5 genes 

spanning 291 genes. We associated each consensus module with regulators based on 

a significant overlap (hypergeometric test, FDR < 0.05) of regulator targets from the 

80% confidence network. Furthermore, we assessed the inferred modules for 

enrichments of Gene Ontology processes, and found 12 of the 15 consensus modules 
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to be enriched. 

 

Visualizing inferred networks for each module 

For a given module, we selected all incoming edges to that module from our 80% 

confidence network. Next, we selected cells from each condition (A2, S2, AS, and A2S, 

day 4 or day 6) and applied a linear regression model to predict the expression of the 

target gene as a function of its regulators in the 80% confidence network. We 

visualized these using the program Cytoscape (Shannon et al., 2003). Briefly, the edge 

color corresponds to regression coefficient of that regulator for the target (from -.5 

(blue) to 0 (white) to 0.5 (red)). Edge width corresponds to edge confidence (from 80% 

(1) to 100% (5)). Node color corresponds to percentage of cells in which that gene was 

expressed (from 0% (white) to 100% (green)). Node border is pink if the gene is in the 

given module, and gray if it is not. 

 

Dual Combinations 

A Monocle cell dataset was created using single-cell data from all dual combination 

reprogramming experiments as well as the data from A2S days 4 and 6. Jitter plots 

were generated in Monocle to illustrate expression of specific genes in each different 

condition. The MERLIN algorithm was applied to the dual combination and A2S RNA-

seq data to generate regulatory networks for the defined modules in each 

reprogramming condition. 

 

Quantification and Statistical Analysis 
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Information on replicates for each experiment can be found in the figure legends. p and 

q values for differentially expressed genes of single cell RNA-sequencing data were 

calculated from likelihood ratio tests on the parallel arrays of models generated through 

monocle. 

 

Data and Software Availability 

All single-cell RNA-seq data have been submitted to the National Center for 

Biotechnology Information Gene Expression Omnibus database and can be accessed 

at GEO: GSE108222. 
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Figure 1 
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Figure 1: Combining epigenomic and signaling modifiers leads to high-

efficiency generation of bona fide iPSCs 

A) Top: schematic of FBS reprogramming experiment. Cells were harvested and 

immunofluorescence performed on the days indicated by the arrows. Bottom: 

number of NANOG+ colonies counted at each indicated time point (on date) or 

after 4 additional days after doxycycline (dox) was removed (withdrawal). Bars 

represent SD between two replicate samples. Right panel – immunofluorescence 

images of NANOG. Scale bar, 250 mm. 

B) Top: schematic of A2S reprogramming experiment. Cells were harvested and 

immunofluorescence performed on the days indicated by the arrows. Bottom: 

number of NANOG+ colonies counted at each indicated time point (On Date) or 

after 4 additional days after dox was removed (withdrawal). Bars represent SD 

between two replicate samples. 

C) Top: schematic of single-cell reprogramming experiment. MEFs infected with 

tdTomato virus were sorted and plated in a 96-well plate. Dox-independent 

colonies were stained with alkaline phosphatase (AP). Bottom: number of AP+ 

wells observed in each condition. Percentages indicate how many of the wells 

were AP+ out of the total number of wells with tdTomato+ cells. Data from two 

independent experiments are presented. 

D) Monocle clustering plot showing ESCs or iPSCs cultured in A2S or FBS media. 
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Figure 2 
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Figure 2: A2S accelerates FBS reprogramming 

A) Monocle t-SNE plots showing clustering of reprogramming cells from FBS and A2S, 

MEFs, and FBS-cultured ESCs. Samples were grouped into 14 clusters. Cells 

colored by sample (i) and cluster (ii). 

B) Graph showing the composition of each cluster from Figure 2A by sample 

C) Heatmap representing the percentage of cells expressing the top 10% differentially 

expressed genes that define the 14 t-SNE clusters in Figure 2A. Each row 

represents a single gene. Genes were grouped by k-means into 15 groups 

labeled A to O, and the number of genes within each group are in parentheses. 

The 14 t-SNE clusters labeled 1–14 are presented in columns approximating their 

similarity to ESCs. Significant gene ontology terms associated with a specific 

group are labeled on the right. n.s., not significant. Arrows indicate pattern of 

expression change between MEFs and ESCs. 
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Figure 3 
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Figure 3: Reprogramming-specific gene expression patterns are important for 

conversion to iPSCs 

A) t-SNE plots based on Figure 2A highlighting the expression of MEF-associated 

mesenchymal genes that are downregulated as cells transition from MEFs to 

pluripotency. Top schematic indicates the pattern of expression. 

B) Percentage of Cdh1+ cells that also co-express the indicated MEF genes on the x 

axis. The percentage of MEF gene-expressing cells that express Cdh1 is presented 

in brackets on the x axis. Note that because of the limit of detection of single-cell 

transcriptional analysis, co-expression may be underestimated. 

C) (i) t-SNE plots based on Figure 2A illustrating co-expression of Cdh1 with Twist1. 

Note that because of the limit of detection of single-cell transcriptional analysis, co-

expression may be underestimated. (ii) Immunofluorescent staining for CDH1 and 

TWIST1. Percentage of CDH1+/TWIST1+ colonies on A2S day4 shown below 

image. Scale bar, 10 mm. 

D) t-SNE plots based on Figure 2A highlighting the expression of DNA replication and 

cell-cycle-associated genes. Top schematic indicates the pattern of expression. 

E) Left: percentage of cells that are Ki67+ at each indicated reprogramming time point 

in FBS or A2S systems. Right: immunofluorescent staining of Ki67 during FBS and 

A2S reprogramming (day 9 and day 4, respectively). Scale bar, 50 mm. 

F) t-SNE plot based on Figure 2A for the anti-proliferation gene Cdkn1c. Top schematic 

indicates the pattern of expression. 

G) Percentage of Cdh1+ cells that co-express cell cycle or anti-proliferative genes. Note 

that because of the limit of detection of single-cell transcriptional analysis co-
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expression may be underestimated. 

H) Number of NANOG+ colonies on day 4 of A2S reprogramming after small interfering 

RNA (siRNA)-mediated knock down of Ehf. Error bars represent SD of two 

replicates. 
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Figure 4 
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Figure 4: Co-expression clusters of core pluripotency factors with specific 

subsets  

A) Percentage of cells expressing each representative pluripotency-associated gene 

within the t-SNE clusters from Figure 2A, namely, C10, C6, C9, and in all clusters 

other than C1, C10, C6, and C9. 

B) (i) Co-expression measured by Jaccard index clustering of genes in group N from 

Figure 2C for genes within Box 1 from Figure S4B in clusters C10, C6, C9, and C1. 

Note that because of the limit of detection of single-cell transcriptional analysis, co-

expression may be underestimated. (ii) Violin plots depicting the level of expression 

of Sall4 and Tdgf1 in Nanog+ cells in clusters C10, C6, C9, and C1. 

C) Same as (B) for genes within Box 2 of Figure S4B. 

D) Same as (B) for genes within Box 3 of Figure S4B. 

E) Reprogramming results upon knockdown of Phlda2 during A2S reprogramming. (i) 

Number of NANOG+ and DPPA4+ colonies on day 6 of A2S reprogramming after 

siRNA-mediated knock down of Phlda2. Error bars represent SD of two replicates. 

(ii) Knock down efficiency of the Phlda2 siRNAs compared to a nontargeting control. 

Bars represent SD between two replicate samples. (iii) Immunofluorescence images 

for representative NANOG+/DPPA4+ and NANOG+/ DPPA4- colonies. Scale bar, 50 

mm. 
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Figure 5 
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Figure 5: Roadblocks to high-efficiency reprogramming 

A) Pseudotime trajectory generated by Monocle for the A2S reprogramming system. 

Left trajectory colored by pseudotime. Middle trajectory colored by sample. Asterisk 

indicates that MEFs cannot ontogenically convert to ESCs, but pseudotime reflects 

transition to a pluripotent state. Right trajectory colored by individual sample. 

B) Heatmaps for clustering of genes that define the branchpoints (q-value, <1E-40) 

from BEAM analysis for early branch (left panel) and late branch (right panel). 

Center of the gray bar above heatmap is the start of the branchpoint. Red represents 

cells at the end of the branchpoint. Blue represents cells at the end of the continuing 

branch. 

C) Pseudotime plots that display how the expression of the representative genes differs 

as cells either exit at the late branchpoint (solid line) or continue along the path 

toward successful reprogramming (dashed line) colored by sample. 

D) Violin plots depicting the level of expression of Twist1 in Nanog+ cells (top left) and 

the expression of Nanog, Sall4, and Tdgf1 in Epcam+ cells in both the late branch 

and in the continuing segment of the trajectory. 

E) Left: schematic of EPCAM sort experiment. MEFs were reprogrammed in A2S 

conditions for 3 days and sorted based on EPCAM expression (high or medium). 

These two populations underwent 3 more days of reprogramming and were sorted 

again based on high, medium, or no expression of EPCAM. Right: graphs depicting 

the percentage of the day 6 population that have high, medium, or no EPCAM 

expression from cells that were EPCAM-high on day 3 (top) or medium on day 3 

(bottom). 
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F) Left: number of NANOG+ colonies on day 4 of A2S reprogramming after siRNA-

mediated knock down of Eif4a1. Error bars represent SD of two replicates. Right: 

cell counts on each day of Eif4a1 knock down reprogramming experiment. 
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Figure 6 
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Figure 6: A2S concurrently enhances downregulation of MEF genes and 

upregulation of ESC genes 

A) NANOG+ colonies on specified day or after 4 days of dox withdrawal in each dual 

combination (A2, AS, and S2). Dashed line: NANOG+ colonies on day 6 of A2S. 

Bars represent standard deviation between two replicate samples. 

B) Heatmap generated from the MERLIN module analysis indicating the level of 

expression for the differentially expressed genes from the FBS+A2S analysis. Each 

row is a separate gene. Values are normalized to zero mean from the FBS and A2S 

reprogramming. Each column is a separate cell grouped based on the clusters in 

Figure 2A (left) or duration of chemical combination exposure (right). MERLIN 

modules are labeled as M1 through M11.  

C) Violin plots of representative genes from expression patterns in Figure 6B. 

D) Network wiring of regulatory connections inferred using MERLIN, colored by each 

reprogramming condition for the genes of a transiently expressed module. The edge 

color corresponds to the regression coefficient between the regulator and target 

connected by the edge (ranging from -0.5 (blue) to 0 (white) to 0.5 (red)) estimated 

using the data from the specific treatment. Edge width corresponds to edge 

confidence (from 80% [1] to 100% [5]). Node color corresponds to percentage of 

cells in a condition in which that gene was expressed (from 0% [white] to 100% 

[green]). Node border indicates gene membership in a module: pink if the gene is in 

the given module and gray if it is not. The node size is proportional to the out-degree 

of the node. Network corresponds to M8. 

E) Same as (D) for genes in an upregulated pluripotency-associated gene module M10. 
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Figure 7 

 

 
Figure 7: Model depicting regulation of key genes during MEF reprogramming  

Four general gene expression patterns are observed during MEF reprogramming: 

downregulation, transient downregulation, transient upregulation, and gene 

upregulation. Mesenchymal genes are downregulated independently of each other and 

their expression is compatible with epithelial (Cdh1) or early pluripotency (Nanog) gene 

expression. Transiently regulated genes include cell cycle and anti-proliferative genes. 

Completion of reprogramming is enhanced by co-expression of markers, such as 

EpCAM with pluripotency genes (represented by colored circles), and the complete 

activation of the pluripotency network (represented by red and white networks). The 

addition of acceleration factors can impact specific gene expression patterns, whereas 

only the combination of A2S can lead to complete rewiring of the pluripotency network. 
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Figure S1 
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Figure S1 (Related to Figure 1) 

A) Karyotype of two iPSC lines derived from A2S reprogramming generated from 

independent reprogramming experiments.  

B) Cross-section images of teratoma obtained from iPSC lines displaying 

neuroepithelial/neuroglial cells (Ectoderm), cartilage tissue (Mesoderm), and 

pancreatic cells (Endoderm). Scale bar = 20μm. 

C) Summary table of single-cell data generated from the Illumina BaseSpace Sequence 

Hub, including the number of cells passing the knee filter for each sample and the 

average number of genic reads per cell. 

D) Monocle plot showing the upper and lower bound cutoff used to filter cells in 

Monocle for the FBS and A2S analysis. 

E) PCA plot for variance explained from each component of the FBS and A2S Monocle 

analysis. We used the first 8 components for analysis. 

F) Monocle plots highlighting the expression of Dazl, Emb, Rex1, and Tbx3 in the 

clustering pattern from Fig 1D. 
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Figure S2 
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Figure S2 (Related to Figures 2 and 3) 

A) Graph showing the composition of each sample from Fig 2A by cluster. 

B) Monocle clustering of all the samples from Fig 2A along with ESCs and iPSCs 

cultured in A2S and FBS media. 

C) Heatmap showing log-transformed mean expression data of the top 10% 

differentially expressed genes that define the t-SNE clustering in Fig 2A. 

D) Percentage of cells in the FBS and A2S conditions that co-express Cdh1 (top), 

Bub1b (middle), and Cdkn1c (bottom) along with the indicated mesenchymal-

associated gene. 

E) Left Number of NANOG+ colonies on day 4 of FBS reprogramming after siRNA-

mediated knockdown of Ehf. Error bars represent standard deviation of two 

replicates. Right Knockdown efficiency of each Ehf siRNA compared to a non-

targeting control. Error bars represent standard deviation of two replicates.  
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Figure S3 

 

A
50

  25

0

-25

-50

-20 0 20 40

Thy1
50

  25

0

-25

-50

-20 0 20 40

50

  25

0

-25

-50

-20 0 20 40

50

  25

0

-25

-50

-20 0 20 40

50

  25

0

-25

-50

-20 0 20 40

Fut9

CD44 Icam1 Vcam1

Sca-1
50

  25

0

-25

-50

-20 0 20 40

50

  25

0

-25

-50

-20 0 20 40

CD73
Component 1

Component 1

Component 1

Component 1

Component 1Component 1

Component 1

C
om

po
ne

nt
 2

C
om

po
ne

nt
 2

50

  25

0

-25

-50

-20 0 20 40

Epcam

Component 1

MEFs

FBS

A2S

ESCs

50

  25

0

-25

-50

-20 0 20 40

Trp53
50

  25

0

-25

-50

-20 0 20 40

Gatad2a
50

  25

0

-25

-50

-20 0 20 40

Mbd3

Component 1Component 1 Component 1

C
om

po
ne

nt
 2

B

Th
y1

+/Fu
t9-

Th
y1

-/F
ut9

+

Cd44
+/Ic

am
1-

Cd44
-/Ic

am
1+

Epca
m+/Sca

1-/
SSEA+

0

20

40

60

80

Pe
rc

en
t o

f C
el

ls FBS Day 12
A2S Day 6

MEFs

FBS

A2S

ESCs

MEFs

FBS

A2S

ESCs

MEFs

FBS

A2S

ESCs

MEFs

FBS

A2S

ESCs

MEFs

FBS

A2S

ESCs

MEFs

FBS

A2S

ESCs

MEFs

FBS

A2S

ESCs

MEFs

FBS

A2S

ESCs

MEFs

FBS

A2S

ESCs

MEFs

FBS

A2S

ESCs

50

  25

0

-25

-50

-20 0 20 40
Component 1

MEFs

FBS

A2S

ESCs

50

  25

0

-25

-50

-20 0 20 40
Component 1

MEFs

FBS

A2S

ESCs

50

  25

0

-25

-50

-20 0 20 40
Component 1

MEFs

FBS

A2S

ESCs

p21

Ink4a IL-6

  -1   0   1   -1      0      1   -1   0   1   -1   0   1

  -1     0    1  -1    0    1  -1  0  1  -1     0     1

  -1     0     1   -1     0     1   -1     0     1   -1   0   1

 -1     0     1  -1    0    1



 104 

Figure S3 (Related to Figures 2 and 3) 

A) Monocle plots highlighting the expression of selected reprogramming and 

senescence markers. 

B) Percentage of cells on FBS Day 12 or A2S Day 6 that express each indicated 

combination of reprogramming markers.  
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Figure S4 
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Figure S4 (Related to Figure 4)  

A) Monocle plots highlighting the expression of representative pluripotency-associated 

genes that are upregulated as cells transition from MEFs to iPSCs. 

B) Matrix showing the co-expression of pluripotency-associated genes (Group N from 

Fig 2C) with each other. The values correspond to the Jaccard index (number of 

cells positive for both genes divided by the number of cells that are positive for at 

least one of the two genes). All cells from the FBS and A2S analysis were used to 

generate this matrix. Genes of interest that displayed strong co-expression were 

boxed off and identified by the number shown. Zoomed in images of the numbered 

cohorts of genes are on the right. 
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Figure S5 
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Figure S5 (Related to Figures 5 and 6) 

A) Venn diagram depicting overlap of differentially expressed genes from FBS and A2S 

reprogramming. Clustering was performed on the A2S and FBS samples individually 

and differentially expressed genes were determined. This clustering and analysis 

were performed without the presence of MEFs or ESCs, eliminating any influence 

they may have on the differential gene analysis. Gene ontology terms associated 

with each group of genes are also displayed 

B-E) Additional MERLIN network diagrams for selected patterns. 
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Figure S6 

 

 

Figure S6 (Related to Figure 6) 

A) Additional MERLIN network diagrams for selected pattern 
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Abstract 
 
 In multicellular organisms, somatic cell identity is determined during development 

and remains resilient to change unless challenged by disease or injury. In vitro, the 

ectopic expression of master transcription factors can reprogram cell fate of somatic 

cells even to a pluripotent embryonic stem cell-like state. This is remarkable because 

the properties of pluripotency are enabled by a poised chromatin state that can 

differentiate into any cell type. Here, we aimed to elucidate the chromatin-associated 

changes characteristic of successful reprogramming to induced pluripotent stem cells by 

single-cell chromatin accessibility profiling. We find that motifs for somatic transcription 

factors such as AP1 and RUNX gradually lose enrichment in accessible regions as 

those for pluripotency factors OCT4 and SOX2 become prevalent. Upon withdrawal of 

ectopic reprogramming factors, we uncover additional changes prior to pluripotency 

acquisition, including strong transient upregulation of Tcfap2c and its concomitant motif, 

which we validate to be essential in stabilization and maintenance of iPSCs. We 

uncover a key role for enrichment of binding sites for 3D chromatin organization-

associated factors (KLF4, MAZ, PATZ1) in reprogramming success. Our results 

motivated the development of a versatile computational algorithm scCISINT to predict 

3D interactions among differentially-accessible loci, both with a single putative enhancer 

controlling several genes and a single gene controlling several enhancers. Using 

scCISINT, we validate that a 1) TCFAP2 motif-containing peak can promote 

maintenance of the pluripotent state by activating the mir290 cluster, 2) a ubiquitously-

accessible region that temporally controls reprogramming efficiency which is inhibitory 

early, but late-enhancing, and 3) a RUNX motif-containing somatic accessible region 
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anti-correlated with Nanog promoter opening that acts as a barrier to reprogramming. 

Taken together, we have uncovered key chromatin changes necessary for pluripotency 

acquisition and maintenance and has led to identification of loci whose 3D interactions 

influence reprogramming efficacy. 
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Introduction 
 
 Pluripotent stem cells (PSCs) are characterized by their ability to self-renew 

indefinitely as well as the potential to differentiate into any cell type given the right 

stimulus. In addition to embryonic stem cells (ESCs), that are derived by culturing cells 

from the inner cell mass of the blastocyst, PSCs can be obtained through the 

reprogramming of somatic cells, such as mouse embryonic fibroblasts (MEFs), into a 

pluripotent state, producing induced pluripotent stem cells (iPSCs) that are the 

functional equivalents of ESCs (Boland et al., 2009; Okita et al., 2007; X. Zhao et al., 

2009). This remarkable facility to alter cell fate was first achieved through the ectopic 

expression of the Yamanaka factors OCT4, SOX2, KLF4, and MYC (OSKM) (Takahashi 

& Yamanaka, 2006). 

 One of the features that differentiates somatic from pluripotent cells is in their 

epigenome. ESCs have a more open chromatin structure compared to somatic cells, 

which have more compacted heterochromatic regions (Gaspar-Maia et al., 2011). For 

example, ESCs are less enriched for the repressive H3K9me2/3 histone modifications 

(Sridharan et al., 2013), which have been implicated as a barrier to reprogramming (J. 

Chen et al., 2013; Soufi et al., 2012; Tran et al., 2015). MEFs are also more enriched for 

H3K79me2/3, a mark of active transcription (Sridharan et al., 2013), and has been 

shown to be antagonistic to reprogramming. Initial studies proposed that its presence at 

MEF-associated genes is inhibitory for the MET (mesenchymal-to-epithelial transition) 

(Onder et al., 2012). However, our lab has recently unveiled roles for H3K79me2/3 and 

its concomitant methyltransferase Dot1l outside of MET. It was found to aberrantly 

upregulate expression of reprogramming-associated genes (e.g. Nfix) (Wille & 
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Sridharan, 2022), and mars the transition to ESC-like levels of H3K9 acetylation and 

transcriptional elongation along with proper RNAPII distribution, thus maintaining the 

somatic identity (Wille, Neumann, et al., 2023; Wille, Zhang, et al., 2023). 

Consequently, we and others have found that supplementing reprogramming 

culture media with epigenetic-modifying small molecules can enhance reprogramming 

efficiency (J. Chen et al., 2011; Esteban et al., 2010; Huangfu, Maehr, et al., 2008; 

Huangfu, Osafune, et al., 2008; Jackson et al., 2016; Mikkelsen et al., 2008; Onder et 

al., 2012; Shi et al., 2008; Tran et al., 2015, 2019). In some studies, small molecule 

combinations were even shown to be able to replace the exogenous reprogramming 

factors to generate iPSCs (Cao et al., 2018; X. Chen et al., 2023; Guan et al., 2022; 

Hou et al., 2013; Ye et al., 2016; Y. Zhao et al., 2015)(Hou et al., 2013; Zhao et al., 

2015; Ye et al., 2016; Cao et al., 2018; Guan et al., 2022; Chen et al., 2023). In our lab, 

we previously established a high-efficiency OSKM reprogramming system in MEFs 

wherein combining ascorbic acid (AA) - which enhances the catalytic activity of 

H3K9me2 demethylases (J. Chen et al., 2013; Tran et al., 2015) - , two signaling 

pathway inhibitors (2i), and the Dot1l inhibitor SGC0946 (A2S) enhanced 

reprogramming efficiency to over 40% from 3% (Tran et al., 2019). 

 Given the changing epigenetic landscape as cells undergo reprogramming, 

several studies have implemented the assay for transposase-accessible chromatin with 

sequencing (ATAC-seq) (Buenrostro et al., 2013) to probe accessible regions of 

chromatin in reprogramming populations to better understand the chromatin dynamics 

associated with this process. ATAC-seq of bulk populations of reprogramming cells 

have identified genomic regions that transition from an open-to-close or close-to-open 
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configuration with a major early wave of opening closed sites and second late wave of 

closing open sites (Li et al., 2017). Disruptions to the balance of shifting chromatin 

structure act as barriers to reprogramming efficiency (e.g. c-JUN, Fra1 expression) 

(Chronis et al., 2017; Li et al., 2017). Reprogramming-refractory cells retain accessibility 

at MEF enhancers (Knaupp et al., 2017). The information gleaned from ATAC-seq 

combined with analysis of OSK binding dynamics form ChIP-seq assays has led to 

further speculation into how over-expression of pluripotency factors can lead to closing 

of somatic enhancers. Some posit that OSK bind already open somatic regions, leading 

to somatic transcription factor (TF) redistribution (Chronis et al., 2017) or they open 

transient sites that sequester somatic transcription factors (TFs) (Knaupp et al., 2017). 

In addition to these activities, KLF4 was also discovered to be important for the rewiring 

of the 3D organization of chromatin and in promoting enhancer-promoter loop 

interactions (Di Giammartino et al., 2019), as well as mediating the mesenchymal-to-

epithelial transition (MET) upon loosening of chromatin by OCT4 (K. Chen et al., 2020). 

 ATAC-seq on non-fibroblast or non-Yamanaka factor-based reprogramming 

systems has highlighted the different chromatin accessibility pathways that can lead to 

iPSCs. For example, two different chemical reprogramming systems showed that loci 

that gain accessibility are enriched in the TF motifs for the extraembryonic endoderm 

(XEN)-associated GATA and FOX TFs (Cao et al., 2018; X. Chen et al., 2023). A 

system that used seven factors to reprogram (JDP2, JHDM1B, MKK6, GLIS1, NANOG, 

ESRRB, and SALL4) found that this combination differs from OSKM in distribution of 

motifs at changing loci (e.g. earlier accessibility of ESRRB motifs) (B. Wang et al., 

2019). In B cells, pulsing exposure to C/EBP-alpha can make them more elite and 
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primed to reprogram. ATAC-seq analysis of these cells found that they opened up over 

500 sites that are also accessible in ESCs and were enriched for Klf4 binding sites, 

suggesting a cooperative relationship between C/EBP-alpha and Klf4 (Di Stefano et al., 

2016). 

One of the primary setbacks associated with reprogramming is that the process 

is slow and inefficient due to inherent cell-to-cell variability in reprogramming kinetics 

(Apostolou & Hochedlinger, 2013; Buganim et al., 2013; Papp & Plath, 2013). Cells may 

also branch off the trajectory of successful reprogramming through transitioning into 

alternative non-iPSC cell types (Parenti et al., 2016) or forming partially-reprogrammed 

stalled intermediates (Mikkelsen et al., 2008; Sridharan et al., 2009, 2013). These 

factors contribute to a largely heterogeneous population of reprogramming cells, making 

ensemble approaches to studying this process challenging, as changes associated with 

truly reprogramming cells are obscured by those that fail to do so. Some of the 

aforementioned ATAC-seq studies have tried to overcome these challenges through the 

use of small molecules in reprogramming media to enhance efficiency. For example, 

studies have used iCD1 media containing ascorbic acid and the kinase inhibitor 

CHIR99021 (one of the 2i inhibitors) (Li et al., 2017; B. Wang et al., 2019). Others have 

attempted to bypass the heterogeneity of reprogramming by analyzing ATAC-seq data 

on clonal partially reprogrammed iPSC (pre-iPSCs) cell lines (Chronis et al., 2017), or 

through sorting cells based on somatic or pluripotency-associated surface markers (Di 

Giammartino et al., 2019; Knaupp et al., 2017). 

The recent advent of single-cell technologies, including single-cell ATAC-seq 

(scATAC-seq), has allowed the bypassing of the heterogeneity issue by identifying 
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populations of cells at comparable stages of reprogramming (or those that have 

branched off from the path), regardless of timepoint. As scATAC-seq is a relatively new 

technology, few studies have been performed applying it to reprogramming cells and all 

of which have been in human reprogramming systems. These studies found that in 

human fibroblasts, the successfully reprogramming cells transition from a FOSL1 to 

TEAD4-centered regulatory network (Xing et al., 2020), and also display transient 

opening of loci by OSK, providing further data in support of redistribution of somatic TFs 

at transient loci (Nair et al., 2023). In optimized chemical reprogramming of human 

adipose-derived stromal cells (hADSCs), cells avoid upregulation of XEN-associated 

sites compared to other systems (Liuyang et al., 2023). However, no study has yet 

performed scATAC-seq in any context of mouse reprogramming. 

 Here, we have applied scATAC-seq analysis to both low and high-efficiency 

reprogramming of MEFs using our previously described FBS and A2S systems (Tran et 

al., 2019), in which the combination of ascorbic acid, H3K79 methyltransferase 

SGC0946, and 2i improved reprogramming efficiency from ~3% to 42%. Analysis of 

scATAC-seq data revealed greater suppression of MEF-associated motifs and 

enrichment of pluripotency-associated motifs in A2S cells. Interestingly, A2S cells are 

also enriched for motifs of transcription factors associated with 3D chromatin 

organization (KLF4, MAZ, PATZ1), indicating a role for A2S in more efficiently rewiring 

the chromatin landscape to be more pluripotent-like. Upon withdrawal of ectopic OSKM, 

cells undergo even more changes, including transient accessibility of the transcription 

factor Tcfap2c gene and its associated motif, which plays a role in the transition to bona 

fide iPSCs, as well as enrichment of the somatic Tead4 motif in cells that are reverting 
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to a MEF-like state. The upregulation of 3D chromatin organization-associated motifs 

motivated us to delve further into the 3D interactions of scATAC-seq peaks. In a 

collaborative effort with computational biologist Prof. Sushmita Roy, we identified 

putative long-range interactions of novel enhancer peaks with strong gene interactions 

using a method called scCISINT. Using CRISPR-interference, we validated that an 

interaction of a TCFAP2 motif-containing peak in regulating a microRNA cluster that is 

essential for completing the transition to iPSCs. scCISINT also identified enhancer hubs 

that sequentially interact with somatic or pluripotency genes. We further validated the 

temporal activity of this putative enhancer, as reprogramming was either enhanced or 

suppressed upon repression of the peak either at the start or midpoint of 

reprogramming, respectively. This analysis has uncovered a key role for 3D chromatin 

modifiers in the transition to iPSCs, which is bolstered through the addition of 

epigenetic-modifying small molecules, leading to the discovery of novel enhancer 

regions that facilitate necessary transcriptional regulation in pluripotency acquisition. 

 

Results 
 
scATAC-seq reveals chromatin accessibility dynamics at promoter-distal regions 
 

To investigate chromatin accessibility dynamics, we implemented single-cell 

ATAC-seq (scATAC-seq) on reprogramming populations. Reprogramming was 

performed using MEFs that contain a dox-inducible cassette with the four Yamanaka 

factors of OCT4, SOX2, KLF4 and MYC (OSKM) in our previously described low-

efficiency FBS and high-efficiency A2S systems (Tran et al., 2019) (Fig. S1A). Cells 

were harvested for scATAC-seq at timepoints that match those that we have previously 
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profiled with scRNA-seq (FBS Days 3, 6, 9, 12; A2S Days 2, 4, and 6) (Fig. 1A). Along 

with unaltered starting MEFs, mouse ESCs, and iPSCs that were generated from A2S 

reprogramming (Tran, et al., 2019), all cell populations underwent lysis, transposition, 

and sequencing using the droplet-based method from 10X Genomics, averaging ~4900 

cells sequenced per sample (Fig. S1B, Methods). 

To analyze our sequencing data, we implemented the ArchR algorithm (Granja et 

al., 2021) (Fig. S1C-D). ArchR clustered cells based on the similarity in their 

accessibility profiles, and visualized them in 2D space via uniform manifold 

approximation and projection (UMAP) (Fig. 1B-D, S1E-F). The starting MEF population 

is found in two clusters (C6 and C4). Interestingly, cells from the earliest time point in 

both systems (FBS Day 3 and A2S Day 2) cluster together in C2 and C10, with FBS 

Day 3 making up 59% and 37% and A2S Day 2 making up 24% and 55% of C2 and 

C10, respectively (Fig S1E). While the proportion of FBS Day 3 and A2S Day 2 were 

slightly different in these two clusters, they both contained the majority of both of these 

samples (88%-90%) (Fig. 1D, S1E). Once the cells progress past the early timepoint, 

the cells from the two different reprogramming systems diverge and populate different 

clusters, with FBS cells primarily found in C3, C11, and C9 and A2S cells in C8 and C7 

(Fig. 1D, S1E). Each of the FBS clusters contains cells from the three timepoints of 

Days 6, 9, and 12, again illustrating the heterogeneity associated with low-efficiency 

reprogramming. Conversely, the A2S samples largely separate based on timepoint in 

their clusters (85% of Day 4 cells in C8, 68% of Day 6 cells in C7) (Fig. 1D, S1E), 

highlighting that the acceleration of reprogramming by small molecules causes 

accessibility changes to occur in a coordinated manner at each timepoint. 
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Transcriptomic-based analyses provide a snapshot of the gene expression 

landscape of a cell population. This information can also be captured by analyzing 

chromatin accessibility, as accessibility at a gene promoter typically corresponds to a 

gene that is on and being actively transcribed. However, ATAC-seq analysis provides 

greater information regarding non-gene associated loci (Fig. 1E). In ArchR, a marker 

gene analysis identified 2,134 genes whose promoter regions are differentially 

accessible across all clusters (Fig. 1F). A marker peak analysis, which identifies 

differentially accessible regions regardless of their location in the genome, identified 

over 50-fold more peaks (110,871 peaks), the majority of which are located at intergenic 

or intronic regions and ranging from 72% to 95% of each cluster’s marker peaks (with 

the exception of C18 and C19) (Fig. 1F). Thus, scATAC-seq provides information on 

reprogramming dynamics beyond a gene-centric view. 

To ascertain whether the scATAC-seq data indeed matched gene expression 

data, we looked at the accessibility of key MEF, pluripotency, and reprogramming-

associated genes in ArchR, matched to our previously published scRNA-seq data (Tran 

et al., 2019). As expected, MEF-associated genes (Zeb1 and Snai1) were more 

accessible in the MEF clusters, while pluripotency genes (Nanog and Sall4) had greater 

accessibility in advanced reprogramming cells and ESCs/iPSCs (Fig. 1G). Additionally, 

the MET marker Cdh1 becomes more accessible and Ehf displays a transient opening 

at its promoter, in line with its transient expression previously observed in scRNA-seq 

analysis. Examining the integrated scRNA-seq data, we observed that the gene 

expression profile of each marker gene generally matched the accessibility profile. 
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Therefore, our scATAC-seq data successfully recapitulated the dynamics of known 

marker genes across reprogramming.  

 

A2S Enhances Accessibility at Key Transcription Factor Binding Sites 
 
 After validating our scATAC-seq methodology and analysis, we next sought to 

investigate the differences in accessible peaks that drive reprogramming in low- and 

high-efficiency systems. To further investigate the relationship between each of the 

clusters, we generated a minimum spanning tree (MST) (Fig. 2A). Briefly, MSTs are a 

graphical representation showing the minimum possible of directionless weighted edge 

connections between vertices (clusters) without forming loops. The MST represents a 

subset of edges from the more complex graph created with partition-based graphic 

abstraction (PAGA) (Wolf et al., 2019) (Fig. S2A) with the calculated edge weights 

between all cluster pairs. Based on the clusters, we know that the earliest time points 

after dox-induction from both FBS and A2S reside in C2 and C10 (Fig. 1B-D). 

Surprisingly, the closest connection between reprogramming cells and MEFs is between 

MEF cluster C4 and C3, which primarily contains FBS Day 6 (41% of C3), along with 

Days 9 and 12 (20% and 24% of C2, respectively) (Fig. 2A). After the C2 connection to 

C10, the other “early” cluster, the tree branches off either toward the FBS (C11) or A2S 

(C8) reprogramming clusters (Fig. 2A). The MST therefore indicates that the initial 

induction of reprogramming by OSKM drives drastic changes in the chromatin 

accessibility landscape, regardless of reprogramming system. However, the low-

efficiency FBS reprogramming system has a large contingent of cells that at later 
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timepoints following these early changes, gain an accessibility profile that is similar to 

MEFs, which is largely bypassed in A2S reprogramming. 

 We further investigated the specific gene promoter accessibility and transcription 

factor motifs that were enriched in the differentially-accessible regions that informed the 

cell clusters. From our prior analysis of scRNA-seq data (Tran et al., 2019), we have 

previously found that at the transcriptome level, MEFs will separate according to their 

cycling status as indicated by the expression of cell cycle-associated genes, such as 

Bub1b and Mcm5. However, the accessibility of these genes and other cycle-related 

genes at their promoters did not differ between the two MEF clusters (Fig. S2B). 

Previous studies have shown that among a population of MEFs, there are some that are 

more elite and primed to reprogram more successfully (Jain et al., 2023). We 

investigated whether the MEF clusters represented a difference in accessibility between 

gene promoters that support elite cells. Genes such as Spp1 were less accessible in 

primed cells (more accessible in C4). For the genes that are higher in primed cells, such 

as Top2a, the differences were less apparent, though there was a slight enrichment of 

Top2a in C6, indicating that the C6 MEFs may reprogram more successfully (Fig. S2B). 

It has also been posited that Wnt1-expressing MEFs derived from the neural crest are 

also more poised for reprogramming (Shakiba et al., 2019), however, Wnt1 accessibility 

shows no difference between the two MEF populations (Fig. S2B). 

To identify the differentiating factors between the MEF clusters based on our 

scATAC-seq data, we implemented a motif enrichment analysis in ArchR to find 

transcription factor motifs that are present in the peaks of one cluster both globally 

among all samples and in a pairwise fashion against the other MEF cluster. Both MEF 
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clusters share enrichment of key somatic motifs, such as those of AP1 TFs (Fig. 2C). 

Where they differ is in the enrichment of different families of differentiation and 

development-associated TFs. For example, C4 has greater enrichment of several HOX 

TF motifs that are key in posterior development, such as limb morphogenesis and 

reproductive tract development (e.g. Hoxa13, Hoxd13, Hoxa11) (Hubert & Wellik, 2023) 

(Fig. 2B, S2C). The uniquely enriched motifs in C6 include the GATA family (Gata1-6), 

which play roles in endodermal, ectodermal, and mesodermal differentiation, including 

hematopoiesis (Lentjes et al., 2016). Also enriched are the MEIS (Meis1-3) TF motifs, 

which form complexes with PBX TFs (also enriched in C6) and have been implicated in 

the differentiation of various organismal systems, such as neuronal development 

(Schulte & Geerts, 2019) (Fig. 2B, S2C). These results suggest that the main difference 

in the MEF clusters lies in the role that each group of MEFs would have potentially 

played in the developing embryo at the time of MEF acquisition. To ensure our split 

MEF clusters was actually from endothelial cell contamination at time of harvest, I 

examined promoter accessibility at Col1a1, which is highly expressed in fibroblast but 

not endothelial tissue. This gene displayed strong and comparable accessibility scores 

in both MEF clusters, ensuring that all of our starting cells were indeed MEFs (data not 

shown).  

This same global and pairwise analysis of enriched motifs was applied to the 

reprogramming cell clusters to identify trends in motif enrichment in both FBS and A2S 

systems (Fig. 2C). Based on the MST results, we hypothesized that FBS cluster C3 are 

a group of cells that become orthogonal to reprogramming and re-acquire a more MEF-

like accessibility. We found that compared to early cells (C2) and the other FBS clusters 
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(C11 and C9), these cells were enriched for motifs that were also shared with the MEF 

clusters, such as the cytokine signaling-associated STAT TFs, which can regulate 

proliferation and apoptosis (Awasthi et al., 2021) (Fig. 2C). Relative to the MEF clusters, 

C3 still has some enrichment of pluripotency motifs, such as POU5F1 (OCT4) and 

SOX2, and has not fully opened other somatic motifs, such as FOS and JUN, causing 

them to still remain separated from the MEF clusters. Thus, cells of C3 represent a 

large population of cells in low-efficiency reprogramming that have stalled and branched 

away from the successful reprogramming track.  

We also observed some expected trends in motif enrichment, such as a gradient 

of decreasing somatic motifs (e.g. FOS, JUN, TWIST1) and increasing pluripotency 

motif enrichment (e.g. POU5F1, SOX2, KLF4) going from early cluster C2 to C10, and 

then along each reprogramming system’s trajectory (FBS: C10 à C11 à C9; A2S: C10 

à C8 à C7) (Fig. 2C, S2D). Between A2S clusters C8 and C7, the differences in 

POU5F1 and SOX2 motif enrichment were almost negligible, indicating that in A2S, 

most of the cells have acquired accessibility at POU5F1 and SOX2 motif-enriched 

locations by day 4. Applying the pairwise motif analysis between the FBS and A2S 

intermediate and most advanced clusters (C7 vs C9 and C8 vs C11), we observe that 

both FBS clusters still retain accessibility at somatic motifs, including AP1 motifs, 

against the corresponding A2S cluster (Fig. 2C). Specifically at the overlapping marker 

peaks between A2S (C7) and FBS (C9) advanced reprogramming clusters, the topmost 

enriched motifs among the shared peaks were KLF4 (p = 1e-17) and POU5F1 (p = 1e-

16). This indicates that the pluripotency factor motif sites that are opening are the same 

in both conditions. 
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The A2S clusters have stronger motif enrichment for the reprogramming factor 

KLF4 over FBS cells (Fig. 2C). KLF4 binding has previously been shown to play an 

important role in rewiring the 3D organization of chromatin and enhancer loop formation 

in MEF reprogramming to iPSCs (Di Giammartino et al., 2019). In line with this, the 

most advanced A2S cluster C7 is also enriched for the motifs of MAZ and PATZ1 (Fig. 

2C). MAZ is a co-factor of CTCF that regulates 3D chromatin organization and insulates 

active chromatin regions from repressive ones (Ortabozkoyun et al., 2022). PATZ1 is a 

chromatin remodeler that regulates gene transcription and is an important factor in 

maintenance of pluripotency in ESCs (Fedele et al., 2017; Rong et al., 2013). PATZ1 

has also been implicated to play a role in reprogramming in a dose-dependent manner 

(Ma et al., 2014). Along with these, the advanced A2S cluster C7 also begins to become 

enriched for the pluripotency marker ESRRB motif (Fig. 2C). These results indicate that 

A2S reprogramming is able to surpass FBS in part because the addition of these small 

molecules creates a chromatin state that is more permissible for binding of proteins that 

can rearrange the 3D structure of chromatin to that of a pluripotent state. 

We then parsed out the differences between each of three components of A2S. 

For this, we performed scATAC-seq on Day 4 and Day 6 reprogramming populations 

using each dual combination of the A2S molecules where one of them was dropped 

(A2, AS, and S2), and clustered these with the A2S, MEF, and ESC/iPSC cells (Fig. 

S2E-G). We have previously shown that S2 is more efficient than AS, followed by A2 

(~25%, 10%, and 6% efficient, respectively) (Fig. S1A). We did not see any clear 

separation between individual cells of the dual combination or A2S samples by 

clustering. We observe three advanced reprogramming populations, C13, C16, and C17 
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in this combined analysis (Fig. S2E). The majority of C16 is comprised of A2S Day 6 

cells (53%), followed by A2, S2, and AS Day 6 (21%, 17%, and 4%, respectively). C13 

has a more balanced mix of all 4 samples (ranging from 14% - 32%), while the primary 

sample in C17 came from A2 Day 6 (42.5%) (Fig. S2G). An MST analysis of these 

clusters showed that there was a strong connection between the A2S-dominated C16 

cluster and the ESC/iPSC clusters (Fig. S2F). Pairwise motif analysis also showed that 

these were enriched for the late reprogramming chromatin organization-associated 

KLF4, MAZ, PATZ1, and CTCF motifs compared to C13 and C17, indicating that these 

represent the cells that are primed to transition to iPSCs, with A2S cells more able to 

achieve this state.  

We clustered each dual combination sample separately with A2S and FBS cells 

to clearly compare the advantage conferred by each dual combination compared to the 

low- and high-efficiency reprogramming systems (Fig. 2D). Similar to the FBS+A2S 

clusters in Figure 1, each of these analyses had their own respective clusters for early 

timepoints, FBS Days 6, 9, and 12, A2S Day 4, and A2S Day 6. Notably, in the AS 

analysis, 47% of AS Day 4 cells were found in the early timepoint cluster C15, 

compared to 8.8% for A2 Day 4, and 7.2% for S2 in their respective analyses (Fig. 2D). 

AS Day 6 samples were split primarily between FBS cluster C8, A2S Day 4 cluster C7, 

and A2S Day 6 cluster C6 (11.1%, 32.9%, and 27.8% of AS Day 6 cells, respectively). 

Conversely, A2 and S2 Day 4 and Day 6 consistently clustered together with their 

respective A2S Day 4 and 6 clusters (Fig. 2D). Thus, there are delayed chromatin 

changes in AS reprogramming, as indicated by the clustering of AS Day 4 and 6 cells 

with earlier timepoints, suggesting a role for 2i in pushing MEFs past the initial somatic 
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chromatin accessibility identity, likely by suppressing the expression of somatic 

transcription factors. 

Overall, our results suggest that A2S surpasses normal FBS reprogramming 

through promoting enrichment of accessible sites associated with factors that mediate 

the reorganization of the 3D chromatin architecture. 

 

Enrichment of Specific Motifs Mediates Stabilization of Pluripotent State Upon 

OSKM Withdrawal 

 From our analysis in Figure 1 and 2, we observe that the most advanced 

reprogramming cells in the A2S system begin to open locations with motifs associated 

with late-stage pluripotency genes (e.g. Esrrb) (Fig. 2C). Bona fide iPSCs are those that 

can remain pluripotent without the expression of exogenously provided OSKM factors 

with the standard in the field being about 4 days. We wondered how chromatin 

accessibility is altered upon withdrawal of OSKM at late stages of reprogramming. We 

therefore performed scATAC-seq on A2S and dual combination reprogramming cells 2 

days post-OSKM withdrawal, as this is the timepoint when expression of exogenous 

OSKM is undetectable at the RNA level (Fig. S3A), to capture cells just as they are 

about to become bona fide iPSCs. We performed ArchR clustering and analysis on 

these withdrawal samples with all associated earlier timepoints, MEFs, ESCs, and 

iPSCs (Fig. 3A-B, S3B). We observed MEFs (C12 and C10) and ESCs/iPSCs (C4 and 

C3) occupying their own distinct clusters, while reprogramming cells follow a path from 

early and less advanced to more advanced cells (C8, C14, C13) (Fig. 3A). Remarkably, 
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we captured new clusters largely comprised of the withdrawal timepoints (C5, C7, C9, 

and C11) (Fig. 3B, S3B). 

From the MST plot of these clusters, the new withdrawal-associated cluster C5 is 

spatially between the advanced reprogramming cells and PSCs (Fig. 3C). This cluster 

has a large proportion of A2S Day 6+2 cells (44%) followed by AS, A2, and S2 (20%, 

17%, and 8%, respectively) (Fig. 3B, S3B). C9 and C11 lie between the MEF and the 

early reprogramming clusters with a strong edge connecting C11 and MEF cluster C12 

(Fig. 3C). These clusters have a higher proportion of dual combination Day 6+2 cells 

(21%, 32%, and 22% of A2, AS, and S2, respectively), and about 13% of A2S Day 6+2. 

The proportions of each dual condition were comparable in both C9 and C11 (within 5% 

of each other) with the exception of S2 Day 6+2 which was noticeably higher in C9 

(29%) than C11 (13%) (Fig. 3B, S3B). Directly beneath C5 lies C6, which is closest to 

the MEF-adjacent cluster C9 (Fig. 3C). The majority of C6 is composed of cells from 

A2S (29%) and S2 Day 6+2 (40%) (Fig. 3B, S3B). Thus, upon dox-withdrawal we are 

able to capture cells that make the final transition to pluripotency or revert back to a 

MEF-like state. 

 Cluster 5, when compared to the most advanced reprogramming cluster (C13) 

and the other withdrawal-associated cluster C6, had much stronger enrichment for the 

motifs of pluripotency marker ESRRB, as well as those for the previously described 3D 

chromatin organization TFs KLF4, MAZ, and PATZ1 (Fig. S3C). When compared to C6, 

POU5F1 and SOX2 motifs are also enriched in C5. These differential enrichments 

indicate that the cells of C5 reflect those cells that are on the trajectory towards 

becoming bona fide iPSCs (deemed the “bona fide” cluster), while C6 contains cells that 
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have not stably upregulated the pluripotent regulatory network, and are reverting 

towards a somatic state (“reverting” cluster). The reverting nature of this cluster is 

further illustrated by an increase in motifs for the somatic-associated TEAD factors (e.g. 

TEAD4) in C6 when compared to C5 (Fig. S3C). When compared to C6, the MEF-

adjacent clusters of C9 and C11 have very strong enrichment of somatic motifs, 

including the AP1 family of TFs (e.g., FOS and JUN), though still not as strong as in the 

MEF cells. Additionally, in this comparison, C6 still has some residual enrichment of 

motifs from the late stage clusters, such as MAZ and PATZ1 compared to C9 and C11 

(Fig. S3C). Based on these results, this indicates that C9 and C11 are comprised of 

cells that have reverted to a MEF-like state (“MEF-like” clusters). Interestingly, a 

pairwise comparison of C9 and C11 revealed that these clusters can be separated 

based on the same differences in the original MEF clusters, with one cluster (C11) 

enriched for posterior development HOX motifs (e.g. Hoxd13), and the other cluster 

(C9) more enriched for GATA and MEIS motifs (Fig. S3D). Thus, it appears that cells 

that come from either MEF cluster may revert back to a MEF-like state upon withdrawal, 

though based on the cluster compositions, S2 seems to be more effective at 

reprogramming the HOX motif-enriched MEFs as there were fewer S2 Day 6+2 cells in 

C11. Therefore, one group of MEFs, based on these scATAC-seq clusters, is not in fact 

more elite than the other and predictive of reprogramming success. 

 In an attempt to find the differences in the dual combinations and determine the 

role of each A2S component after OSKM withdrawal, we again performed clustering of 

the A2S reprogramming and withdrawal cells with those of each dual combination 

separately (Fig. 3D). Each UMAP contained “bona fide” clusters adjacent to the 
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ESCs/iPSCs, “reverting” clusters just beneath them, and “MEF-like” clusters. We 

previously observed that AS reprogramming was slower than A2 and S2 (Fig. 2D). In 

fact, of the Day 6+2 cells for each combination, AS had the highest proportion of 

withdrawal cells found in the MEF-like cluster (58%) over A2 and S2 (39% and 43%, 

respectively). Of the A2 Day 6+2 cells, the highest proportion were found in the MEF-

like cluster (39%), followed by the reverting (24%) and bona fide cluster (12%) (Fig. 3D). 

They all had fairly low representation in the bona fide cluster (12%, 17%, and 8% of Day 

6+2 cells from A2, AS, and S2, respectively), but there was a decent proportion of 

withdrawal cells within the reverting clusters for A2 (24%) and S2 (40%) (Fig. 3D). This 

suggests that cells reprogrammed with 2i are more resistant to complete reversion to a 

MEF-like state, however it is the combination of the epigenome-modifying chemicals 

ascorbic acid and SGC0946 that are required later for maintenance and stabilization of 

the pluripotent state. 

 From our motif enrichment analyses, one striking discovery we found was that 

some of the highest ranking enriched motifs in C5 (4 of the top 6 motifs) come from the 

TCFAP2 family of TFs, with TCFAP2C being the highest ranking. TCFAP2C displays 

similar promoter accessibility and gene expression patterns as its motif (Fig. 3E). These 

motifs were also highly enriched in the reverting C6 cluster, but interestingly, had little to 

no presence in any other clusters, including the preceding late stage reprogramming 

clusters or the subsequent PSC clusters (Fig. 3E). We further examined the role of 

TCFAP2C in reprogramming via shRNA knockdown (Fig. 3F-G). Our results show that 

upon knockdown of Tcfap2c, the cells are compromised in their ability to maintain iPSC 
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colonies. After 4 days of OSKM withdrawal, the cells treated with shTcfap2c had a 10-

fold greater decrease in bona fide iPSCs than the control (Fig. 3H). 

 Taken together, our results show that cells undergo important changes with 

regards to chromatin accessibility upon OSKM withdrawal in order to establish and 

maintain pluripotency in the newly formed iPSCs, namely transient enrichment of 

promoter and motif accessibility for TCFAP2C. Failure to properly open the necessary 

sites enriched for important pluripotency and chromatin organization TFs contributes to 

cells reverting to a MEF-like state, an outcome that can be bypassed through the 

synergistic action of the A2S components. 

 

Opening of OSKM Withdrawal-Associated Peak is Key in Maintenance of iPSC 

Colonies 

In the analysis of cells from FBS and A2S reprogramming and in cells after 

withdrawal of OSKM, we observe that motifs associated with the 3D reorganization of 

chromatin become more enriched within the late stages of reprogramming (Fig. 2C), 

hinting at the importance for effective reorganization of chromatin structure for the 

successful transition to iPSCs. This motivated us to elucidate the 3D interactions of 

accessible sites in the genome that guide successful reprogramming, particularly those 

sites that open up at some point during reprogramming. To this end, we implemented a 

new algorithm called scCISINT (single-cell cis interactions). Briefly, scCISINT works by 

applying a regression-based analysis to scATAC-seq clustering data to discern which 

genomic regions (partitioned into 1kb bins) best predicts the accessibility of gene 

promoters (Fig. 4A). The output is a list of regions, each with an importance score that 
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is calculated based on the predicted number of interacting genes and the strength of 

those interactions. We used only those regions that were also found from the 

differentially accessible marker peak analysis from ArchR for downstream validation.  

To identify regions associated with the regulation of gene expression, we 

overlapped the marker peaks for each cluster in ArchR with existing H3K27ac ChIP-seq 

data (Chronis et al., 2017; Di Giammartino et al., 2019) to identify regions of active 

enhancers. We took the 200 top-ranked regions based on scCISINT importance score 

and FDR value from the marker peak analysis in ArchR, and overlapped these with the 

top 200 H3K27ac enriched sites (Fig. 4A). This was performed on marker peaks from 

three different scATAC-seq datasets (Fig. 1C, Fig. S2E, Fig. 3A) From this narrowed 

down list, we identified 17 peaks of interest with distinct patterns of accessibility that 

came up during reprogramming or were more enriched in specific clusters (Fig. 4B, S4, 

5A). 

Among these 17 peaks, we pursued one peak of interest that became more open 

in the “bona fide” cluster of OSKM withdrawal-associated cells (Peak 1) (Fig. 4B), which 

was revealed via a motif analysis of the peak itself to contain a TCFAP2 motif. Among 

its predicted interactors from scCISINT (Fig. 4C) were the mir290 group of microRNAs 

(Fig. 4B-C), which have been shown to play a variety of roles in reprogramming and 

stem cell maintenance. These include promoting self-renewal, upregulating core 

pluripotency TFs, and promoting MET (Yuan et al., 2017). The mir290 family has also 

been implicated in trophoblast proliferation and placental development (Paikari et al., 

2017). Another interacting locus is the promoter for protein-coding gene AU018091, 

which is located ~32kb upstream of the peak (Fig. 4B). AU018091 is also localized to 
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the placenta, though little is known about the protein’s function. Interestingly, TCFAP2C 

is a known key regulator of the trophoblast lineage. Moreover, previous studies have 

proposed that cells can be reprogrammed to alternative cell states including trophoblast 

stem cells (TSCs) and even an extraembryonic endoderm (XEN) state prior to 

becoming iPSCs (Benchetrit et al., 2019; Jaber et al., 2022; Liu et al., 2020; Parenti et 

al., 2016; Y. Zhao et al., 2015). Given the enrichment of the TCFAP2C motif and our 

identified peak interacting with placental genes in the withdrawal cluster, we asked 

whether reprogramming cells have to go through a trophoblast-like state en route to 

becoming iPSCs. Looking at the accessibility of motifs for known trophoblast factors 

(TEAD4, EOMES, GATA3) revealed that unlike the specificity of TCFAP2C, EOMES 

and GATA3 motifs are enriched in the withdrawal as well as the PSC cluster along with 

known XEN factors (GATA4/6) (Fig. S3C, S3E). Conversely, the TEAD4 motif is lost, 

with enrichment in the reverting, MEF-like and MEF clusters (S4C). Since some of these 

markers are shared between these different cell states and not all are enriched in the 

“bona fide” cluster exclusively, we cannot definitively conclude that cells must pass 

through a trophoblast-like state from this data alone, and strongly implies that TCFAP2C 

itself must be enriched without passing through this entirely different cell state. 

To assess the importance of Peak 1 in reprogramming, we used CRISPR 

interference (CRISPRi) to target and repress this region through the addition of 

H3K9me3 by dCas9-KRAB to this site prior to reprogramming induction. We cloned a 

guide RNA targeting this region into a plasmid with GFP and the necessary CRISPRi 

machinery. After transducing this plasmid into MEFs, we sorted for GFP+ cells and 

induced reprogramming (Fig. 4D). Compared to cells with an empty control plasmid, we 
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observed a significant drop in the number of NANOG-positive colonies after 4 days of 

OSKM withdrawal compared to the day of withdrawal in the CRISPRi-targeted cells 

(Fig. 4E-F). Additionally, RT-qPCR of the interactor AU018091 showed that it was 

significantly decreased upon OSKM withdrawal when the peak is repressed, while no 

significant change was observed in the other interactors, such as the constitutively 

expressed Ndufa3 gene (Fig. 4G). Overall, these results highlight the facility of 

scCISINT in the identification of key regulatory enhancer sites, and has successfully 

found a region that plays an important role in the maintenance of the pluripotent state 

and stability of iPSC colonies. 

 

Ubiquitously Accessible Peak is Inhibitory Early but Beneficial Late in 

Reprogramming 

 From the scCISINT output, we identified a second peak (Peak 2) of interest to 

investigate through CRISPRi knockdown (Fig. 5A). Peak 2 was identified from our 

scCISINT analysis of the clusters in Fig. 1C and is located within an intron of the non-

coding RNA Gm31735. This peak has the highest number of interactors (42) (Fig. 5B) 

and highest scCISINT importance score of our 17 peaks of interest, indicating that this 

peak could be an enhancer hub that is capable of forming 3D interactions to regulate 

the expression of a large panel of different genes (Fig. 5A-C, S5). Although this peak 

has the highest enrichment in the most advanced A2S cluster, it has at least some level 

of moderate to high accessibility in nearly all clusters (Fig. 5A). Interestingly, when we 

look at the expression of its predicted interactors from previous scRNA-seq 

reprogramming data (Tran et al., 2019), they can be grouped into different categories 
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based on their patterns of expression across reprogramming (downregulated, 

upregulated or invariant expression) (Fig. 5B). The somewhat ubiquitous presence of 

this peak and the varying expression patterns of its associated genes suggests that this 

peak could play a role in regulating genes through the entirety of reprogramming, from 

somatic to early and late stages. 

 We performed CRISPRi transduction, sorting, and induction of reprogramming in 

the same manner as Peak 1 (Fig. 4D). Surprisingly, we found that when the peak was 

targeted by CRISPRi (Fig. 5D), we consistently see a significant increase in the number 

of iPSC colonies (IF-stained for NANOG) on both the date of OSKM withdrawal and 4 

days post-withdrawal (Fig. 5E). This is contrary to the expectation that the repression of 

a peak that becomes more open upon reprogramming induction and is present 

throughout the process will compromise the process. However, since the colony 

numbers are increasing, this could be due to the enhancer activity of this peak on genes 

that are present early on but must be downregulated in the course of reprogramming. 

Without this enhancer, these genes’ expression may be more easily downregulated, 

resulting in acceleration in the formation of NANOG+ colonies, contributing to the 

observed increase. 

 We therefore hypothesized that knockdown of this peak would have different 

effects on the reprogramming outcome if the knockdown occurred at a different 

timepoint along reprogramming. To address this, I induced A2S reprogramming in 

MEFs for three days, performing a lentiviral transduction on consecutive days (Day 3 

and 4) as in our previous CRISPRi experiments (Fig. 5F). Cells were sorted on Day 6 

based on expression of the GFP marker (GFP+ and GFP- cells were both collected and 
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plated) and reprogrammed for an additional 4 days. From this experiment, we observed 

that the GFP- cells (no CRISPRi KD) had ~60-65% of their cells being positive for 

NANOG expression. The GFP+ cells (with CRISPRi KD) had a reduction with 40-47% 

NANOG+ cells (Fig. 5G-H). This could be due to the fact that the knockdown of the 

peak will now exclusively only affect the expression of genes that come up in late 

reprogramming and are likely to be important for the transition to pluripotency. 

 Our results illustrate that Peak 2 acts as an enhancer hub that affects regulation 

of a large swath of genes across the reprogramming timeline, all with varying 

transcriptional dynamics, such that knockdown of this peak will have different effects on 

the reprogramming outcome. Taken together with our results from Figure 4, we were 

able to use computational means in combination with scATAC-seq data to identify 

different novel enhancer regions that affect the regulation of genes and, consequently, 

reprogramming success, both at specific stages (e.g. OSKM withdrawal) or throughout 

the duration of the reprogramming timeline. 

 

MEF-Associated Peak is Anti-Correlated with Nearby Nanog Promoter and 

Antagonistic to Reprogramming 

 Lastly, we set out to find patterns of accessibility between correlated peaks 

associated with the same gene, using an added feature of scCISINT to identify the one 

or more marker peaks associated with each gene (Fig. 6A). In this analysis, the 

identified peaks can display, for example, a correlation with one another, with both 

peaks becoming more open or closed as reprogramming progresses; alternatively, 
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peaks can display an anti-correlated relationship, where as one peak closes, another 

opens, and vice versa (Fig. 6A). 

 We identified a peak of interest (Peak 3) associated with the pluripotency marker 

NANOG. This peak displays an accessible configuration in MEFs and early 

reprogramming, but is quickly closed prior to opening of the Nanog gene promoter 

(displaying an anti-correlative relationship) Fig. 6B). Of note, this peak contained within 

it a motif for somatic transcription factor Runx1. Analyzing ChIP-seq data for RUNX1 

from Chronis et al. 2017, we found that in MEFs, RUNX1 binding was indeed enriched 

at this locus. We again performed reprogramming on MEFs in control and CRISPRi-

mediated knockdown conditions. In so doing, we observed a significant increase in 

Nanog+ colonies, both on the date of OSKM-withdrawal and 4 days post-withdrawal 

(Fig. 6C). 

 These results indicate that this MEF-associated peak is inhibitory to 

reprogramming and illustrates another facet of scCISINT and its faculty to identify 

relationships between scATAC-seq peaks, including those that may be antagonistic 

towards reprogramming. 

 

Discussion 
 
 Recent studies have used ATAC-seq to uncover they chromatin accessibility 

dynamics associated with somatic cell reprogramming, on the scale of both bulk 

populations (Buckberry et al., 2023; Cao et al., 2018; K. Chen et al., 2020; X. Chen et 

al., 2023; Chronis et al., 2017; Di Giammartino et al., 2019; Di Stefano et al., 2016; 

Knaupp et al., 2017; Li et al., 2017; Parenti et al., 2016) and single-cell resolution in 
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human reprogramming studies (Liuyang et al., 2023; Nair et al., 2023; Xing et al., 2020). 

These studies have led to a better understanding of the shifting chromatin landscape as 

different groups of loci undergo closing and/or opening. We have combined scATAC-

seq technology with our A2S-mediated high-efficiency reprogramming to identify the 

changes associated with an enhanced reprogramming system. 

Similar to these previous studies, we found a gradual extinction of accessibility of 

the AP1 motifs and gain of POU5F1 and SOX2 motifs. Motif analysis implicated a role 

for transcription factors that are known to be associated with 3D chromatin 

reorganization (DiGiammartino, et al., 2019; Ortabozkoyun et al., 2022; Rong Ow et al., 

2013; Fedele et al., 2017; Ma et al., 2014) in successful reprogramming. This motivated 

us to pursue more specific reprogramming-associated 3D interactions between 

enhancer hubs and their predicted interacting genes using a novel algorithm scCISINT. 

In so doing, we were able to identify three loci that are distinct in their accessibility 

patterns. One peak is open primarily upon OSKM-withdrawal into pluripotency and was 

found to be important in maintenance of the pluripotency network. A second peak 

regulates transcription of genes associated with all stages of the reprogramming 

process, whose presence is inhibitory early in reprogramming, but its regulation of 

upregulated genes makes this locus important for late stage reprogramming. Finally, a 

Nanog-proximal peak that is anti-correlated with Nanog promoter opening was found to 

be inhibitory to reprogramming. While we pursued these regions to assay further, future 

research could involve a large-scale screen targeting the other peaks identified by our 

scCISINT computational analysis to more effectively identify all peaks that are crucial or 
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inhibitory for reprogramming, leading to more comprehensive understanding of the 

regulatory underpinnings of this process. 

In an attempt to parse out the contribution of each individual component of A2S, 

we analyzed reprogramming data with the dual combination permutations of A2S (A2, 

AS, and S2). This revealed that 2i is key in pushing cells beyond the somatic state as 

loss of 2i caused cells to linger behind the progression observed in the A2S cells, which 

parallels previous findings from our lab from scRNA-seq analysis of reprogramming, 

which showed that 2i helps to suppress the somatic transcriptional network (Tran et al., 

2019). Moreover, we found that the combination of AS not only promotes activation of 

the pluripotency network, as we also found previously (Tran et al., 2019), but it also 

promotes stabilization and maintenance of the pluripotency network, preventing cells 

from reverting to a MEF-like state upon withdrawal of exogenous OSKM expression. 

An examination of reprogramming cells after withdrawal of ectopic OSKM 

revealed that after 2 days, these cells experience strong transient upregulation of 

accessibility at the trophectoderm-associated factor TCFAP2C and its associated motif. 

It was previously reported that TCFAP2C plays an anti-apoptotic role and promotes the 

mesenchymal-to-epithelial transition in reprogramming of mouse fibroblasts to iPSCs 

(Y. Wang et al., 2020). We have shown here that TCFAP2C activity is also important 

late in reprogramming, promoting maintenance and stabilization of the formed iPSC 

colonies. These results are similar to what was found upon CRISPRi KD of the 

withdrawal-associated peak, which was predicted to interact with placental and 

trophectoderm-associated genes. While previous reports have shown that induced 

trophoblast stem cells (TSCs) are an alternative cell fate during reprogramming and 
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form separately, but in parallel with iPSCs (Benchetrit et al., 2015, 2019; Jaber et al., 

2022; Naama et al., 2023), our findings suggest that reprogramming cells may 

potentially need to pass through a TSC-like state upon exogenous OSKM withdrawal, 

prior to complete acquisition of pluripotency. Further experimentation and analysis of 

this population of cells is required to definitively conclude that these are indeed TSC-like 

cells. 

Our work here has led to the development of the novel computational algorithm 

scCISINT. This new tool was not only able to predict the interacting partners of any 

given site along the entire genome, but it also allowed for discernment of these regions 

and their interactions at the resolution of single-cell clusters. Thus, scCISINT provides 

knowledge on which peaks’ interactive activity is associated with which stage of the 

reprogramming process. Given this information, plotting the accessibility of these peaks 

across clusters will then help to decipher regulatory hubs whose accessibility changes 

in a temporal fashion. With this in mind, scCISINT has the potential to be an 

exceptionally useful and powerful tool that can be applied to a wide range of time-

course based analyses investigating various cellular pathways. 

Together, these results shed light on the intricate regulatory mechanisms that 

guide reprogramming. This could lead to future research uncovering combinations of 

peaks whose combined knockdown could additively or synergistically enhance 

reprogramming. This information could potentially be used to systematically improve the 

reprogramming process in a logical manner. 

 

Materials and Methods 
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Isolation of Reprogrammable MEFs 

MEFs were isolated from E13.5 embryos (as described in Tran et al., 2015) from 

reprogrammable mice that are homozygous for a transgene containing Oct4-2A-Klf4-

2A-IRES-Sox2-2A-c-Myc (OKSM) at the Col1a1 locus (Sridharan et al., 2013). All MEFs 

used in this study were also homozygous for the reverse tetracycline transactivator 

(rtTA) allele at the Rosa26 locus. MEFs were maintained in MEF media containing 

DMEM, 10% FBS, L-glutamine, Pen/Strep, NEAA, and 2-mercaptoethanol. Mice were 

housed in agreement with our UW-Madison Institutional Animal Care and Use 

Committee (IACUC) approved protocol (ID M005180-R03). 

 

Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells 

The iPSCs used in this study were derived from iPSC clone line #1 from Tran et al., 

2019. All iPSCs and V6.5 ESCs were maintained in ESC media containing Knockout 

DMEM, 15% FBS, L-glutamine, Pen/Strep, NEAA, 2-mercaptoethanol, and LIF. 

 

Reprogramming 

One day prior to reprogramming (Day -1), MEFs are plated on 0.1% gelatin-coated 6-

well plates at a seeding density of 5,000 cells per well in 6-well plates. Reprogramming 

was induced on Day 0 with the addition of doxycycline (2 µg/ml) and a feeder layer of 

irradiated human neonatal foreskin fibroblasts (ATCC HFF-1 SCRC-1041). Ascorbic 

acid (50 µg/ml, Sigma A8960) and SGC0946 (5 µM, ApexBio A4167) are also added at 

this time to A2S and dual combination reprogramming samples. For shRNA KD 

experiments, cells were collected from extra wells and counted to determine a sitting 
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count which will be used to calculate efficiency via immunofluorescent staining for 

NANOG. The culture media is switched from MEF media to ESC media. On Day 0.5 

(~12 hrs post-induction), CHIR99021 (3 µM, Stemgent 04-0004-10) and PD-0325901 (1 

µM, Stemgent 04-0006-10) (2i) were added to A2S, A2, and S2 conditions. Media is 

changed every other day until cells are collected for analysis or until the end of 

experiment. 

 

Immunofluorescence 

For immunofluorescent staining, cells were fixed for 10 minutes in 4% 

paraformaldehyde-PBS, followed by a 10 minute permeabilization with 0.5% TritonX-

PBS. Staining was performed in blocking buffer containing 1X PBS with 5% normal 

donkey serum, 0.2% Tween-20, and 0.2% fish skin gelatin. The NANOG antibody 

(CosmoBio RCAB0002P) was used to stain cells at a concentration of 1:100. 

 

Lentiviral Packaging 

Plasmids used for CRISPRi and shRNA KD experiments were transfected into 293T 

cells (maintained in D10 media – DMEM + 10% FBS) cells using 1 mg/ml PEI, along 

with packaging plasmid pspax2 (Addgene #12260) and envelop-expressing plasmid 

(Addgene #12259). Media was replaced 17 hrs later to D10 media with 10 mM Sodium 

Butyrate and 20 mM HEPES. Media was replaced again 8 hrs later to D10 media only 

containing 20 mM HEPEs. Supernatant was collected at 48 hrs and 72 hrs post-

transfection, filtered through a 0.45 µm Steriflip filter, and virus was concentrated using 

4X lentivirus concentrator (40% W/V PEG-8000, 1.2 M NaCl). 
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shRNA Knockdown Reprogramming 

For the Tcfap2c knockdown experiments, we designed two separate shRNAs targeting 

Tcfap2c and cloned separately into a pLKO-Tet-on-Neo plasmid (Addgene #21916), 

which were packaged into lentiviral vectors. MEFs were transduced with lentivirus using 

10 µg/ml polybrene on consecutive days. The following day, G418 was added at a 

concentration of 600 µg/ml to the culture medium. When cells from an un-transduced 

control had completely died, the transduced cell conditions were plated for 

reprogramming (Day -1). 

 

CRISPRi Knockdown Reprogramming 

For each target peak for CRISPRi KD, two guide RNAs (gRNAs) were designed and 

cloned into a CRISPRi machinery-containing plasmid (Addgene #71237), and packaged 

into lentivirus. For each target, MEFs were transduced on consecutive days with equal 

proportions of each plasmid containing the two gRNAs. After second transduction, cells 

sit for at least 36 hrs prior to FACS. Sorting was performed using a BD FACSAria cell 

sorter. For the Day 3 and 4 transduction experiment, cells were re-plated at a density of 

~10,000 cells/well in 12-well plates. 

 

RT-qPCR 

RNA was isolated from cells using the Isolate II RNA Mini Kit (Bioline, BIO-52702). 1ug 

of RNA was used for reverse transcription (QuantaBio #95047). After the RT reaction, 

the cDNA is diluted 1:5 and 2 µl of this sample is used to set up 10 µl qPCR reactions 
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with SYBR Green (Bio-Rad #1725124). qPCR reactions were set up in duplicate or 

triplicate. Primers for 2 housekeeping genes (Gapdh, RNA Pol II) were used as control 

reactions. 

 

ChIP-qPCR 

Cells used for ChIP-qPCR analysis were cross-linked in 1% formaldehyde (10min, 

rocking). Cross-linking was stopped by 0.14 M glycine (5 min, rocking). Cells were spun 

down and washed 3X with 1X PBS, and the cell pellets were stored at -80°C. Cells were 

resuspended in 130 µl lysis buffer (1% SDS, 50 mM tris-HCl pH 8, 20 mM EDTA, 

protease inhibitor) and sonicated using a Covaris S220 machine with the following 

parameters: 15 cycles of 45 sec on/off (peak =170, duty factor = 5, cycles/burst = 200, 

temp = 6-8°C). The samples were spun down at max speed (21,000g) for 10 min at 

6°C. The supernatant was collected and chromatin concentration was determined using 

the Qubit DNA HS Assay Kit (Thermo Fisher Scientific, Q32854). 

 

The chromatin aliquots (1 µg) were diluted 1:10 in dilution buffer (16.7 mM tris-HCl pH 

8, 0.01% SDS, 1.1% TritonX, 1.2 mM EDTA, and 167 mM NaCl). 1 µl of H3K9me3 ab 

(Active Motif #39161) was added to each aliquot which were kept at 4°C for 16 hrs, 

rocking. A pre-prepared mix of protein A and G Dynabeads (Thermo Fisher Scientific, 

10002D and 10004D) was added to each aliquot (50 µl of beads) and rotated for 2 hrs 

at 4°C. Beads were washed twice for 5 min (4°C, rocking) in each of the following 

buffers: Buffer “A” (50 mM Hepes pH 7.9, 0.1% SDS, 1% TritonX, 0.1% deoxycholate, 1 

mM EDTA pH 8, 140 mM NaCl), Buffer “B” (50 mM Hepes pH 7.9, 0.1% SDS, 1% 
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TritonX, 0.1% deoxycholate, 1 mM EDTA pH 8, 500 mM NaCl), LiCl Buffer (20 mM tris-

HCl pH 8, 0.5% NP40, 0.5% deoxycholate, 1 mM EDTA pH 8, 250 mM LiCl), and TE 

Buffer (10 mM tris-HCl pH 8, 1 mM EDTA pH 8). The beads are incubated with 2 µl 

RNAse A in 150 µl TE buffer for 30 min at 37°C. Reverse-crosslinking was performed by 

adding 3 µl SDS (10%) and 5 µl Proteinase K (20 µg/µl) and incubating at 65°C 

overnight. The next day, the beads were removed and the supernatant was cleaned up 

by phenol/chloroform extraction and ethanol precipitation. Chromatin was resuspended 

in 40 µl water. Input samples were prepared by diluting one of the aliquots in water (1:4) 

and treating with 1ul RNAse A for 30 min at 37°C, then adding 1 µl proteinase K and 

incubating overnight at 65°C. These samples were also cleaned up with phenol-

chloroform extraction and EtOH precipitation and resuspended in 40 µl water. qPCR 

was performed as described above (used maximum amount of chromatin 4.8 µl). qPCR 

reactions of 4%, 2%, 1%, 0.5%, and 0.25% of input were used to generate standard 

curve. 

 

Intracellular Flow Cytometry 

Cells were harvested and fixed and stained using the FOXP3/Transcription Factor 

Staining Buffer kit (Invitrogen #00-5523-00). The NANOG antibody (CosmoBio 

RCAB0002P) was used at a concentration of 1:100. Flow cytometry analysis was 

performed using a ThermoFisher Attune flow cytometer machine. Analysis was 

performed using FlowJo. 

 

Single-Cell ATAC-seq Library Preparation 
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For each sample submitted for scATAC-seq, cells were harvested at the appropriate 

timepoint (MEFs, ESCs, and iPSCs were passaged 2X before harvesting) and a single-

cell suspension was generated as described in Tran et al., 2019. Briefly, cell cultures 

were washed with DPBS and dissociated from plate using 0.25% Trypsin-EDTA (Gibco 

#25200-072). Trypsin was neutralized with soybean trypsin inhibitor (Sigma-Aldrich 

#T6522), and cells were filtered (40 µm) and spun down for 3min at 300g at room 

temperature (RT). Cells were then resuspended in 1 ml of 0.1% BSA-PBS (prepared by 

diluting 7.5% Bovine Albumin Fraction V solution [Gibco #15260-037] to 0.1% with 

DPBS) and pipetted up and down 50X. After one final spin, cells were finally 

resuspended in 1 ml of 0.1% BSA-PBS for nuclei isolation, and concentration was 

determined using an Invitrogen Countess II cell counter prior to nuclei isolation. Nuclei 

were isolated from the single-cell suspension in accordance with the recommended 

protocol from 10X Genomics (all spin steps were carried out at 300g for 3min at RT). 

We aimed for a targeted nuclei recovery of 4,000 and targeted read depth of 25k reads 

per nucleus. Nuclei concentration was determined using the Countess II prior to 

transposition and library preparation using the 10X Chromium platform. Sequencing 

was performed using the Illumina NovaSeq 6000 machine and samples were loaded 

onto a S1 flow cell. 

 

scATAC-seq Data Processing 

The returned sequencing data for each sample was aligned and processed using the 

cellranger-atac count pipeline openly available from 10X Genomics’ website. Based on 

the number of unique barcodes (cells) in each sample, the output fragments files were 
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randomly downsampled to match the number of barcodes found in the sample with the 

lowest number. These fragments files were used for downstream analysis in ArchR. 

 

scATAC-seq Computational Analysis 

Dimensionality Reduction and Clustering 

We used ArchR version 0.9.5 (https://www.archrproject.com/index.html, Granja et al., 

2021) on R version 3.6.3 (“Holding the Windsock”) to analyze our single-cell ATAC-seq 

data post-cellranger-atac alignment and downsampling. In all ArchR analyses, mm10 

was used as the default genome. ArchR Arrow files were created for each sample, 

which were used to create an ArchR project. The data in the ArchR project was further 

processed through filtering out “doublets” (i.e. single-cell droplets that encompassed 

more than one nucleus). 

(1) ArrowFiles <- createArrowFiles(inputFiles = inputFiles, sampleNames = 

names(inputFiles), filterTSS = 4, filterFrags = 1000, addTileMat = TRUE, 

addGeneScoreMat = TRUE) 

(2) proj1 <- ArchRProject(ArrowFiles = ArrowFiles, outputDirectory = "Outputs", 

copyArrows = FALSE) 

(3) doubScores <- addDoubletScores(input = ArrowFiles, k = 10, knnMethod = 

"UMAP", LSIMethod = 1) 

(4) proj2 <- filterDoublets(proj1) 

Dimensionality reduction via iterative latent semantic indexing (LSI) was run on the 

ArchR project, using the ArchR default of two iterations. We then used ArchR to invoke 

the tool Harmony (Korsunsky et al., 2019) to perform batch correction of the different 
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samples, which was followed by clustering using Seurat’s (Satija et al., 2015) graph 

clustering method. 

(5) proj2 <- addIterativeLSI(ArchRProj = proj2, useMatrix = "TileMatrix", name = 

"IterativeLSI", iterations = 2, clusterParams = list(resolution = c(0.2), sampleCells 

= 10000, n.start = 10), varFeatures = 25000, dimsToUse = 1:30) 

(6) proj2 <- addHarmony(ArchRProj = proj2, reducedDims = "IterativeLSI", name = 

"Harmony", groupBy = "Sample") 

(7) proj2 <- addClusters(input = proj2, reducedDims = "IterativeLSI", method = 

"Seurat", name = "Clusters", resolution = 0.8) 

For all analyses, the default resolution of 0.8 was used with the exception of the clusters 

in Fig. 1C, where we used a resolution of 0.95 to generate clusters. 

 

Marker Gene and Marker Peak Analysis 

We used the gene score matrix from the Arrow files to perform marker gene analysis. 

The final marker gene list was generated using a cutoff of FDR <= 0.01 & Log2FC >= 

1.25) 

(8) markersGS <- getMarkerFeatures(ArchRProj = proj2, useMatrix = 

"GeneScoreMatrix", groupBy = "Clusters", bias = c("TSSEnrichment", 

"log10(nFrags)"), testMethod = "wilcoxon") 

Peak calling and cluster-based marker peak analysis was performed on cell groupings 

after initially creating pseudo-bulk replicates based on our defined clusters. The final 

marker peak list was generated using a cutoff of FDR <= 0.01 & Log2FC >= 1. 

(9) proj3 <- addGroupCoverages(ArchRProj = proj2, groupBy = "Clusters") 
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(10) proj3 <- addReproduciblePeakSet(ArchRProj = proj3, groupBy = 

"Clusters", pathToMacs2 = "~/Path_to_macs2") 

(11) proj4 <- addPeakMatrix(proj3) 

(12) markersPeaks <- getMarkerFeatures(ArchRProj = proj4, useMatrix = 

"PeakMatrix", groupBy = "Clusters", bias = c("TSSEnrichment", "log10(nFrags)"), 

testMethod = "wilcoxon") 

 

Motif Analysis 

Motifs present in all accessible regions were annotated using the cisbp motif database 

and motif enrichment analysis was performed pairwise between clusters. To identify 

enriched motifs in a particular cluster against the whole population, the “bgdGroups” 

parameter was removed. This was followed by computing of per-cell motif deviation 

scores. 

(13) proj4 <- addMotifAnnotations(ArchRProj = proj4, motifSet = "cisbp", name 

= "Motif") 

(14) markerTest <- getMarkerFeatures(ArchRProj = proj4, useMatrix = 

"PeakMatrix", groupBy = "Sample", testMethod = "wilcoxon", bias = 

c("TSSEnrichment", "log10(nFrags)"), useGroups = "C1", bgdGroups = "C2") 

(15) motifsUp <- peakAnnoEnrichment(seMarker = markerTest, ArchRProj = 

proj4, peakAnnotation = "Motif", cutOff = "FDR <= 0.1 & Log2FC >= 0.5") 

(16) proj4 <- addBgdPeaks(proj4) 

(17) proj4 <- addDeviationsMatrix(ArchRProj = proj4, peakAnnotation = "Motif", 

force = TRUE) 
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Integrating scRNA-seq and scATACs-seq Data 

Within ArchR, we invoked Seurat to process scRNA-seq data from the corresponding 

samples as in our scATAC-seq data set to create a Seurat object (“seRNA”). For each 

cell from our scATAC-seq data, the integration finds a cell from our scRNA-seq data 

that is most similar and assigned that gene expression profile to the matched scATAC-

seq cell 

(18) proj5 <- addGeneIntegrationMatrix(ArchRProj = proj4, useMatrix = 

"GeneScoreMatrix", matrixName = "GeneIntegrationMatrix", reducedDims = 

"IterativeLSI", seRNA = seRNA, addToArrow = TRUE, force= TRUE, groupRNA 

= "Sample", nameCell = "predictedCell", nameGroup = "predictedGroup", 

nameScore = "predictedScore") 

 

scCISINT and Additional Computational Analysis 

Detailed methods regarding the scCISINT algorithm in preparation by Sushmita Roy’s 

lab. Marker peaks for each ArchR cluster were overlapped with sites of H3K27ac 

enrichment based on existing H3K27ac ChIP-seq data. ChIP-seq data obtained from 

Supplementary Table 2 from DiGiammartino et al., 2019 and from GEO accession 

number GSE90895 for Chronis et al., 2017. A marker peak was considered to have 

H3K27ac if it shared at least one overlapping base pair with the H3K27ac peaks. For 

each cluster, the overlapping peaks were sorted based on H3K27ac enrichment, and 

each of these were overlapped with the top 200 ranked peaks based on scCISINT 

importance score and marker peak q-value (ArchR). Runx1 ChIP-seq data obtained 
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from GEO accession number GSE90895. HOMER (http://homer.ucsd.edu/homer/motif/) 

used to perform motif analysis in Fig. 4B an Fig. 6B and annotation of marker peak lists 

in Fig. 1F(ii). All MST and PAGA graphs were created by Spencer Halberg-Spencer. 
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Figure 1 
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Figure 1: scATAC-seq reveals chromatin accessibility dynamics at promoter-

distal regions 

A) Schematic of reprogramming timeline used to acquire samples for scATAC-seq. 

Arrows indicate timepoints at which cells were harvested in the indicated 

reprogramming conditions. 

B) ArchR UMAP clustering plot of FBS, A2S, MEF, ESC, and iPSC samples colored by 

sample 

C) UMAP plot from (B) colored by cluster 

D) Number of cells from each sample found within the indicated clusters from Fig. 1C 

E) Diagram illustrating examples of promoter-associated and intergenic peaks 

F) Heatmap showing the calculated z-score for all marker genes (i) and marker peaks 

(ii) identified in ArchR in each of the indicated clusters. In (ii) the percent of marker 

peaks annotated to each of the indicated genomic regions in each cluster is shown 

to the right with the number of marker peaks for each cluster indicated. 

G) UMAP plots of representative MEF, pluripotency, and reprogramming-associated 

genes, colored by promoter accessibility (gene score matrix, top row) and gene 

expression from integrated scRNA-seq data (Tran et al., 2019) (gene integration 

matrix, bottom row) 
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Figure 2 
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Figure 2: A2S Enhances Accessibility at Key Transcription Factor Binding Sites 

A) Minimum spanning tree calculated for the clusters in Fig. 1C. Edge weights between 

connected clusters are indicated 

B) UMAP plots of two motifs enriched within each of the two MEF clusters, colored by 

promoter accessibility and motif enrichment (motif matrix) 

C) UMAP plots of representative differentially enriched motifs within the 

reprogramming-associated clusters from Fig. 1C, colored by motif enrichment 

D) UMAP plots showing clustering of FBS and A2S samples with (i) A2, (ii) AS, and (iii) 

S2 samples. Cluster composition is shown to the right of each UMAP plot, 

represented as both number of cells and percent of cells coming from each sample 
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Figure 3 
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Figure 3: Enrichment of Specific Motifs Mediates Stabilization of Pluripotent State 

Upon OSKM Withdrawal 

A) UMAP clustering plot of A2S, A2, AS, and S2 samples, including their corresponding 

withdrawal (Day 6+2) samples, with MEFs, ESCs, and iPSCs; colored by cluster 

B) Number of cells from each sample found within the indicated clusters from Fig. 3A 

C) Minimum spanning tree calculated for the clusters in Fig. 3A. Edge weights between 

connected clusters are indicated 

D) UMAP plots showing clustering of A2S samples with (i) A2, (ii) AS, and (iii) S2 

samples, including their corresponding withdrawal (Day 6+2) samples. Cluster 

composition is shown to the right of each UMAP plot, represented as both number of 

cells and percent of cells coming from each sample 

E) UMAP plots showing the motif enrichment (left), promoter accessibility (middle) and 

integrated gene expression (right) scores for Tcfap2c 

F) Schematic showing experimental timeline for shRNA knockdown of Tcfap2c 

G) RT-qPCR results for one replicate experiment of Tcfap2c from Day 10+2 of the 

shRNA knockdown experiment. Error bars indicate standard deviation between three 

replicates. Between two replicate experiments, the shRNAs averaged 59% and 51% 

knockdown for shRNA #1 and #2, respectively 

H) Decrease in reprogramming efficient between Days 10 and Day 10+4 for control and 

shTcfap2c knockdown conditions. Error bars indicate standard deviation between 

two replicate experiments 
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Figure 4 

 

 

Figure 4: Opening of OSKM Withdrawal-Associated Peak is Key in Maintenance of 

iPSC Colonies 

A) (Left) Schematic showing how scCISINT uses accessibility data to predict cis-

interacting relationships between any given genomic region and gene promoters; 

(Middle) From scCISINT the top 200 ranked peaks by importance score and marker 

peak q-value were explored for downstream analysis; (Right) Example heatmap 
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showing H3K27ac enrichment in the marker peaks from Cluster 5 of Fig. 3A. The top 

200 peaks from the sorted heatmap for each cluster were overlapped with the top 

200 ranked regions from scCISINT for consideration in experimental validation 

B) Track showing the accessibility of Peak 1 (boxed in red) in the indicated clusters 

from Fig. 3A. Distance between peak and predicted interactors is shown on top. 

Gene expression of predicted interactors that had associated scRNA-seq data from 

Tran et al., 2019 is shown on the right; numbers represent the percent of cells within 

indicated scRNA-seq cluster expressing that gene. 

C) UMAP plots (Fig. 3A) of Peak 1 interactors colored by promoter accessibility 

D) Schematic showing experimental timeline for CRISPRi repression of Peak 1 

E) H3K9me3 ChIP-qPCR results for Peak1 from one replicate experiment. Error bars 

indicate standard deviation between 3 replicate reactions. 

F) Fold change in NANOG+ colonies between D8+4 and Day 8 for control and 

CRISPRi samples, normalized to control. Error bars indicate standard deviation 

between 5 replicate experiments. (* < 0.05) 

G) RT-qPCR results for AU018091 (left) and Ndufa3 (right) on reprogramming day 8+2 

in control and CRISPRi conditions. Error bars indicate standard deviation between 5 

replicate experiments. (* p < 0.05). 
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Figure 5 
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Figure 5: Ubiquitously Accessible Peak is Inhibitory Early but Beneficial Late in 

Reprogramming 

A) Track showing the accessibility of Peak 2 (boxed in red) in the indicated clusters 

from Fig. 1C. 

B) Gene expression of predicted interactors that had associated scRNA-seq data from 

Tran et al.; numbers represent the percent of cells within indicated scRNA-seq 

cluster expressing that gene. 

C) UMAP plots (Fig. 1C) of Peak 2 interactors colored by promoter accessibility 

D) H3K9me3 ChIP-qPCR results for Peak 2 from one replicate experiment. Error bars 

indicate standard deviation between 3 replicate reactions. Cells collected on Day 8. 

E) Number of NANOG+ colonies on day 8 (left) and day 8+4 (right) of A2S 

reprogramming 

F) Schematic of experimental timeline for CRISPRi suppression of Peak 2 beginning on 

Day 3 of A2S reprogramming 

G) H3K9me3 ChIP-qPCR results for Peak 2 from one replicate experiment using the 

timeline from Fig. 1F. Error bars indicate standard deviation between 3 replicate 

reactions. Cells collected on Day 10. 

H) Percent of cells that are NANOG+ by flow cytometry in cells transduced with 

CRISPRi machinery (GFP+) and those that were not (GFP-). Cells collected on Day 

10 for flow cytometry. 
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Figure 6 

 

Figure 6: MEF-Associated Peak is Anti-Correlated with Nearby Nanog Promoter 

and Antagonistic to Reprogramming 

A) (Left) Schematic illustrating the capability of scCISINT to identify multiple peaks that 

influence a single gene. (Right) Illustration of different patterns of peaks that may 

occur between ATAC-seq and that scCISINT is able to identify 

B) Track showing the accessibility of Peak 3 (boxed in red) in the indicated clusters 

from Fig. 1C. RUNX1 ChIP-seq data from Chronis et al., 2017 visualized using IGV 

shown below track. 

C) Number of NANOG+ colonies on day 8 (left) and day 8+4 (right) of A2S 

reprogramming. (**p < 0.01, ***p < 0.001) 
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Figure S1 
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Figure S1 (Related to Figure 1) 

A) Reprogramming efficiency of FBS, A2S, A2, AS, and S2 conditions on the date of 

OSKM withdrawal (On Date) and 4 days post-withdrawal (Withdrawal), as presented 

in Tran et al., 2019 

B) Table summarizing the statistics of our scATAC-seq after processing with 

CellRanger-ATAC and the number of cells retained after ArchR QC filtering and 

downsampling of the data. 

C) Representative QC plots output by ArchR: (i) TSS enrichment profile; (ii) Fragment 

size distributions; (iii) TSS enrichment scores plotted as a ridge (left) and violin 

(right) plot. Numbers were fairly congruent between all samples. 

D) Additional ArchR QC plots from the doublet removal step in ArchR, and a filtering 

plot showing TSS enrichment against unique nuclear fragments per cell. Data shown 

for MEFs and ESCs only. 

E) Composition of clusters from Fig. 1C presented as percent of cluster coming from 

each sample. 

F) ArchR hierarchical clustering plot showing similarities between the clusters and 

samples along with the relative enrichment of each sample within each cluster. 

(Small = C1, C12, C13, and C17) 
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Figure S2 
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Figure S2 (Related to Figure 2) 

A) PAGA graph calculated for the clusters in Fig. 1C. Edge weights between clusters 

are indicated 

B) UMAP plots of genes previously associated with cells primed for reprogramming as 

well as cell cycle (Mcm5 and Bub1b), colored by promoter accessibility. 

C) Additional UMAPs of motifs differentially enriched between the two MEF clusters. 

D) Ridge plots showing the distribution of motif enrichment (deviation scores) for Twist1 

and Pou5f1 in the indicated cluster from Fig. 1C 

E) ArchR UMAP clustering plot of A2S, A2, AS, and S2 samples colored by cluster 

F) Minimum spanning tree calculated for the clusters in Fig. S2E. Edge weights 

between clusters are indicated 

G) Cluster composition of Fig. S2E, represented as both number of cells and percent of 

cells coming from each sample 
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Figure S3 
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Figure S3 (Related to Figure 3) 

A) RT-qPCR results for Klf4-IRES and Sox2-IRES on A2S reprogramming Day 6 and 

throughout 4 days of OSKM withdrawal (Day 6+1 to Day 6+4). Error bars indicate 

standard deviation between 2 replicate reactions. 

B) Composition of clusters from Fig. 3A presented as percent of cluster coming from 

each sample.  

C) UMAP plots of representative differentially enriched motifs within the 

reprogramming-associated clusters from Fig. 3A, colored by motif enrichment 

D) UMAP plots showing colored by motif enrichment for Hoxd13 and Meis1 

E) UMAP plots of representative trophoblast stem cell (TSC) and extraembryonic 

endoderm (XEN) genes, colored by motif enrichment. 
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Figure S4 
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Safb2 0.29 0.52 0.45 0.38 0.46 

Zfp119b 0.10 0.08 0.09 0.05 0.20 

Slc25a23 0.07 0.08 0.30 0.12 0.19 

Uhrf1 0.32 0.86 0.90 0.76 0.97 

Nrtn 0.01 0.02 0.18 0.08 0.18 

Stap2 0.02 0.06 0.08 0.05 0.26 

Crb3 0.00 0.00 0.09 0.27 0.39 

Gene 

Mir695 0.00 0.00 0.00 0.00 0.00 

Pigu 0.40 0.54 0.34 0.27 0.29 

Chmp4b 0.91 0.98 0.76 0.49 0.80 

Ahcy 0.40 0.91 0.83 0.55 0.79 

Necab3 0.01 0.02 0.03 0.04 0.11 

Gene 

Gpr27 0.00 0.00 0.00 0.00 0.00 

Gene 

Amn1 0.33 0.27 0.15 0.16 0.25 

Tmtc1 0.05 0.03 0.01 0.01 0.05 

Dennd5b 0.19 0.39 0.18 0.06 0.25 

Bicd1 0.10 0.28 0.28 0.08 0.24 

 

Gene 
Abhd16a 0.57 0.56 0.34 0.25 0.31 

Aif1 0.00 0.00 0.00 0.00 0.00 

Bag6 0.83 0.94 0.88 0.79 0.93 

C2 0.02 0.06 0.03 0.06 0.02 

Ddah2 0.60 0.32 0.43 0.63 0.63 

Ly6g6c 0.00 0.00 0.01 0.02 0.02 

Ly6g6e 0.00 0.00 0.01 0.17 0.19 

Snord52 0.00 0.00 0.00 0.01 0.00 
 

Gene 
Acbd4 0.19 0.27 0.25 0.22 0.15 

Arhgap27 0.04 0.17 0.12 0.05 0.15 

Arl4d 0.05 0.28 0.22 0.09 0.03 

Atxn7l3 0.37 0.50 0.39 0.27 0.53 

Brca1 0.08 0.61 0.71 0.45 0.77 

Ccdc43 0.42 0.87 0.68 0.46 0.72 

Dcakd 0.70 0.93 0.83 0.68 0.95 

Dusp3 0.62 0.90 0.63 0.16 0.20 

Etv4 0.28 0.07 0.15 0.06 0.63 

Fmnl1 0.00 0.01 0.00 0.00 0.03 

G6pc3 0.47 0.63 0.54 0.31 0.27 

Gpatch8 0.49 0.65 0.57 0.36 0.64 

Grn 0.87 0.85 0.75 0.63 0.59 

Hexim1 0.49 0.59 0.53 0.29 0.69 

Hexim2 0.03 0.03 0.04 0.05 0.11 

Kif18b 0.08 0.38 0.44 0.23 0.42 

Map3k14 0.17 0.08 0.06 0.03 0.02 

Mpp2 0.02 0.02 0.00 0.00 0.03 

Nbr1 0.72 0.81 0.71 0.54 0.86 

Plcd3 0.18 0.44 0.35 0.15 0.19 

Ptges3l 0.37 0.17 0.07 0.03 0.04 

Rnd2 0.02 0.03 0.06 0.02 0.03 

Rundc1 0.19 0.24 0.18 0.11 0.16 

Slc25a39 0.87 1.00 0.98 0.82 0.97 

Tmem106a 0.09 0.31 0.19 0.11 0.14 

Tmub2 0.38 0.38 0.31 0.18 0.22 

Ubtf 0.64 0.91 0.84 0.63 0.92 

Vat1 0.55 0.75 0.47 0.26 0.18 

Gene 
Acbd4 0.19 0.27 0.25 0.22 0.15 

Arhgap27 0.04 0.17 0.12 0.05 0.15 

Arl4d 0.05 0.28 0.22 0.09 0.03 

Atxn7l3 0.37 0.50 0.39 0.27 0.53 

Brca1 0.08 0.61 0.71 0.45 0.77 

Ccdc43 0.42 0.87 0.68 0.46 0.72 

Dcakd 0.70 0.93 0.83 0.68 0.95 

Dusp3 0.62 0.90 0.63 0.16 0.20 

Etv4 0.28 0.07 0.15 0.06 0.63 

Fmnl1 0.00 0.01 0.00 0.00 0.03 

G6pc3 0.47 0.63 0.54 0.31 0.27 

Gpatch8 0.49 0.65 0.57 0.36 0.64 

Grn 0.87 0.85 0.75 0.63 0.59 

Hexim1 0.49 0.59 0.53 0.29 0.69 

Hexim2 0.03 0.03 0.04 0.05 0.11 

Kif18b 0.08 0.38 0.44 0.23 0.42 

Map3k14 0.17 0.08 0.06 0.03 0.02 

Mpp2 0.02 0.02 0.00 0.00 0.03 

Nbr1 0.72 0.81 0.71 0.54 0.86 

Plcd3 0.18 0.44 0.35 0.15 0.19 

Ptges3l 0.37 0.17 0.07 0.03 0.04 

Rnd2 0.02 0.03 0.06 0.02 0.03 

Rundc1 0.19 0.24 0.18 0.11 0.16 

Slc25a39 0.87 1.00 0.98 0.82 0.97 

Tmem106a 0.09 0.31 0.19 0.11 0.14 

Tmub2 0.38 0.38 0.31 0.18 0.22 

Ubtf 0.64 0.91 0.84 0.63 0.92 

Vat1 0.55 0.75 0.47 0.26 0.18 
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Mllt6

97650000 97660000 97670000

chr11:97643411-97673412 

4930483O08Rik
Ctbp2

133110000 133120000 133130000

chr7:133103482-133133483 

Zfp36l1

2310015A10Rik

80110000 80120000 80130000

chr12:80103012-80133013 

Tmem131

36940000 36950000 36960000 36970000 36980000

chr1:36934526- 36989527 

Esrrb

86360000 86400000 86440000 86480000 86520000

chr12:86356116-86526117 

Pmepa1

173280000 173300000 173320000 173340000

chr2:173271532-173356533 

Alox5ap

149280000 149300000 149320000

chr5:149260003-149325004 

Tfap2c

172550000 172600000 172650000 172700000

chr2:172544592-172749593 

A2S + Dual Combination Withdrawal Analysis (Fig. 3A)
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Gene 
Skap1 0.02 0.00 0.00 0.00 0.01 

Arhgap23 0.78 0.59 0.40 0.20 0.30 

Ormdl3 0.53 0.52 0.29 0.18 0.30 

Pgap3 0.07 0.12 0.09 0.06 0.06 

Fbxl20 0.43 0.41 0.32 0.19 0.38 

Mllt6 0.33 0.58 0.50 0.33 0.65 

Gm11517 0.03 0.02 0.06 0.04 0.07 

Stac2 0.04 0.37 0.23 0.07 0.09 

Sp2 0.26 0.56 0.45 0.32 0.62 

Grb7 0.00 0.00 0.07 0.26 0.70 

Prr15l 0.00 0.00 0.01 0.07 0.03 

Srcin1 0.00 0.00 0.02 0.03 0.01 

 

Gene 
Fam53b 0.18 0.33 0.47 0.35 0.07 

Ctbp2 0.78 0.86 0.73 0.61 0.99 

Dhx32 0.47 0.71 0.65 0.42 0.68 
 

Gene 
Arg2 0.01 0.00 0.00 0.00 0.00 

 

Gene 
Fer1l5 0.00 0.00 0.00 0.00 0.00 

Arid5a 0.19 0.35 0.15 0.06 0.05 

Actr1b 0.81 0.94 0.75 0.54 0.80 

Fam178b 0.00 0.00 0.01 0.00 0.13 

Gene 
Ism2 0.00 0.01 0.00 0.03 0.01 

Esrrb 0.00 0.00 0.02 0.38 0.70 

 

Gene 
Gm15997 0.00 0.00 0.00 0.00 0.00 

Medag 0.29 0.16 0.04 0.00 0.00 

Hsph1 0.83 1.00 0.91 0.59 0.95 

Wdr95 0.00 0.01 0.01 0.00 0.01 

Tex26 0.00 0.02 0.01 0.01 0.00 

 

Gene 
Bmp7 0.00 0.00 0.03 0.04 0.11 

Tfap2c 0.00 0.01 0.33 0.53 0.44 

 

*Predicted interactors did not have
corresponding scRNA-seq data
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Figure S4 (Related to Figure 4) 

ArchR tracks of peaks of interest identified from scCISINT analysis of the data from Fig. 

1C, Fig. S2E, and Fig. 3A. Location of peaks are boxed in red. Gene expression of 

predicted interactors that had associated scRNA-seq data from Tran et al. are shown to 

the right of each peak. Numbers represent the percent of cells within indicated scRNA-

seq cluster expressing that gene. 
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Figure S5 
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Figure S5 (Related to Figure 5) 

UMAP plots (Fig. 1C) of all predicted interactors of Peak 2 listed in Fig. 5B that are not 

shown in Fig. 5C, colored by promoter accessibility. 
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Introduction  
 

The reprogramming of differentiated somatic cells back into a pluripotent state 

(iPSCs) via ectopic expression of the transcription factors OCT4, SOX2, KLF4, and 

MYC (OSKM) has been an incredible discovery (Takahashi & Yamanaka, 2006) that 

represents a tremendous capacity to change cell fate. Therefore, a comprehensive 

understanding of the molecular underpinnings of this process is essential for translating 

this process into future therapeutic applications. Despite the promise of iPSCs, there 

remains some shortcomings and issues associated with somatic cell reprogramming. It 

is an inefficient process, with cell-to-cell variability in reprogramming kinetics (Apostolou 

& Hochedlinger, 2013; Buganim et al., 2013; Papp & Plath, 2013), leading to 

heterogeneous reprogramming populations. 

 In this thesis, my work has attempted to overcome some of these issues with 

reprogramming in a couple different ways. I have used a combination of epigenetic- and 

cell signaling-modifying compounds to improve reprogramming efficiency over 10-fold. 

Additionally, I have implemented single-cell technology to bypass the heterogeneity of 

reprogramming populations and uncover transcriptional and chromatin accessibility 

dynamics associated with successful reprogramming. Thus, this research has provided 

new insights into the regulatory mechanisms of reprogramming and the factors that 

influence its efficiency. 

 

Improving Reprogramming Efficiency with Small Molecules 
 
 Previous studies have supplemented reprogramming cultures with epigenetic- 

(Chen et al., 2011; Esteban et al., 2010; Onder et al., 2012; Tran et al., 2015) or 
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signaling-modifying small molecules (Bar-Nur et al., 2014; Vidal et al., 2014) to enhance 

reprogramming efficiency. Our lab had previously shown that combining ascorbic acid 

(AA) and GSK-3 and MAPK signaling pathway inhibitors (2i) were effective at converting 

partially reprogrammed iPSCs (pre-iPSCs) to bona fide iPSCs (Tran et al., 2015). Here, 

I combined AA and 2i with an inhibitor of the only known H3K79 methyltransferase Dot1l 

(SGC0946), altogether referred to as A2S. Both ascorbic acid and SGC0946 act 

antagonistically to histone modifications that are enriched in mouse embryonic 

fibroblasts (MEFs) (H3K9 and H3K79 methylation, respectively) (Sridharan et al., 2013), 

while 2i promotes ESC self-renewal and maintains ESCs in a naïve ground state, 

resembling preimplantation blastocyst ICM cells (Sim et al., 2017; Ying et al., 2008; 

Ying & Smith, 2017). In combining these three chemicals, we synergistically improved 

reprogramming efficiency from about 3% at 12 days of reprogramming in normal serum-

based media (FBS) to about 42% by day 6 in A2S. 

 To elucidate the contribution of each component of A2S on improving 

reprogramming efficiency, we performed reprogramming with each dual combination of 

the three components. Using single-cell sequencing data from these three systems, we 

were able to computationally identify how different gene regulatory networks are 

affected by each combination of chemicals. In doing so, it was revealed that 2i is 

primarily responsible for suppressing the somatic regulatory networks, as these 

networks are still strong and active in the absence of 2i (AS). Conversely, the 

epigenetic-modifying small molecules AA and SGC both work to coordinate the 

activation of pluripotency transcriptional networks. Adding on to these findings, analysis 

of single-cell chromatin accessibility data from dual combination reprogramming further 
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illustrated that 2i plays a role in , as loss of 2i causes cells to fall behind A2S in the 

progression towards iPSCs, paralleling what we found from our transcriptional network 

analysis. The combined efforts of AA and SGC not only aid in the activation of the 

pluripotent network, but also play key roles in maintenance and stabilization of the 

pluripotent network, preventing cells from reverting back to a MEF-like state upon 

withdrawal of exogenous OSKM expression. Further research is required to determine 

the exact mechanisms by which these small molecules are causing these changes. 

 We rationally chose ascorbic acid and SGC0946 as they influence histone 

modifications that are specifically enriched in MEFs. It has been previously shown that 

the combination of GSK-3 inhibition (one half of 2i) with TGF-beta signaling inhibition 

and AA was capable of enhancing iPSC colony formation in multiple cell types, 

including granulocyte-macrophage progenitors (GMPs) and pro-B cells (Vidal et al., 

2014). However, it is unclear how our combination of A2S will affect reprogramming 

efficiency in other cell types or if our results may be specific to reprogramming of MEFs 

and other fibroblast or mesenchymal cell types. It would be interesting to test the effect 

of A2S or other combinations of chemicals on other cell types. Additionally, performing a 

screen of different combinations of small molecules to identify those that are most 

effective in each type of starting cell population, providing a framework for how to most 

efficiently generate iPSCs from a specific cell type. 

Rather than using small molecules to enhance transcription factor (TF)-mediated 

reprogramming, as we have done, other studies have completely replaced TFs with 

combinations of small molecules as a means of inducing and carrying out 

reprogramming (Hou et al., 2013; Zhao et al., 2015; Chen 2023; Ye; Guan). Therefore, 
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one interesting area of research to tackle would be a direct comparison of A2S or other 

small molecule-mediated high-efficiency Yamanaka factor reprogramming with an all 

chemical reprogramming within the same cellular context (same cell type, embryo, …). 

This could provide new insight into the advantages or disadvantages of a combined 

small molecule and TF reprogramming system against a solely chemical one. 

 

Analysis of Transcriptional Dynamics of Reprogramming 
 
 Reprogramming populations are confounded by heterogeneity, with cells 

experiencing varying rates at which they reprogram. Additionally, cells may fall off the 

main reprogramming trajectory towards alternate cell fates. In fact, surface markers 

such as the ESC-expressed SSEA1 and MEF-expressed THY1 genes have been used 

to identify cells that are more susceptible to reprogram successfully vs those that are 

refractory to pluripotency acquisition (Brambrink et al., 2008; Polo et al., 2012; Stadtfeld 

et al., 2008). These markers also identify populations of cells that have become stalled 

partially reprogrammed intermediate cell lines (pre-iPSCs) (Mikkelsen et al., 2008; 

Sridharan et al., 2009, 2013). Cells can also transition into cell types other than iPSCs. 

For example, it was shown that some of the reprogramming cells become induced 

extraembryonic endoderm (iXEN) cells in parallel with those that become iPSCs 

(Parenti et al., 2016), and reprogramming cells are also capable of becoming induced 

trophoblast stem cells (iTSCs), whose formation is enhanced through ectopic 

expression of TSC-associated TFs (Benchetrit et al., 2015, 2019; Naama et al., 2023). 

 These factors contribute to the inherent heterogeneity observed in 

reprogramming, and make population-based studies of reprogramming challenging, as 
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the features of successfully reprogramming cells are confounded by the various sub-

populations of cells that arise during this process and the differential rates of 

reprogramming between cells. That being said, previous studies have utilized bulk 

population-based RNA-seq to identify the transcriptional changes that occur during 

reprogramming, and have used this information to develop a reprogramming dogma 

that describes reprogramming occurring in a step-wise temporal manner. Included in 

these steps are an initial downregulation of somatic genes, which is followed by a 

mesenchymal-to-epithelial transition (MET) (Hussein et al., 2014; R. Li et al., 2010; 

Mikkelsen et al., 2008; Samavarchi-Tehrani et al., 2010). The latter steps of 

reprogramming are characterized by an upregulation of pluripotency-associated genes 

and culminate in stabilization of the pluripotent network in iPSCs that can maintain their 

PSC state independent of exogenous OSKM expression (Apostolou & Hochedlinger, 

2013; Apostolou & Stadtfeld, 2018; Golipour et al., 2012; Mikkelsen et al., 2008). 

 In Chapter 2 of this thesis, I found that my single-cell RNA-seq analysis of 

reprogramming cells disputes and challenges this established reprogramming dogma of 

it being a temporal series of events. Interestingly, we found that there were populations 

of cells that could begin the MET step prior to completely losing the somatic 

transcription, with cells co-expressing the MET-associated Cdh1 with mesenchymal 

genes, such as Twist1, and the MEF marker Thy1 to varying degrees. Similarly, 

upregulation of the cell cycle-associated genes Mcm5 and Bub1b also occurred before 

complete loss of somatic gene expression. Even more strikingly, we demonstrate that 

cells can already upregulate expression of the pluripotency marker Nanog while there is 

still persistent expression of the mesenchymal gene Twist1, albeit this co-expression is 
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more prevalent in cells that branch off the main reprogramming trajectory. All of these 

findings indicate that each of these steps are independently regulated as evidenced by 

co-expression of somatic, MET, pluripotent, and cell cycling genes within individual 

cells, information that is unobtainable in population-based analyses. 

 Previous studies have found that some genes display a transient upregulation 

during reprogramming  such as those associated with the primitive streak (Nefzger et 

al., 2017) as well as the surface marker Sca-1 (Schwarz et al., 2018). In our analysis, 

we also uncovered genes that display a transient pattern, including the epithelial-

associated transcription factor Ehf. Knockdown of Ehf revealed that although it is not 

expressed in either MEFs or ESCs, its depletion actually compromises reprogramming. 

Further investigation is required to determine the exact mechanism by which EHF 

activity affects reprogramming 

 The cells from the scRNA-seq dataset were ordered along a pseudotime 

trajectory, which revealed branch points representing cells that veer away from the 

primary reprogramming pathway. Branching cells notably failed to upregulate or 

downregulate the appropriate pluripotent or somatic genes (Nanog and Twist1, 

respectively), but the branchpoint analysis did also find a role for the translation initiation 

gene Eif4a1. It’s also important to note that the cells that displayed co-expression of 

both Twist1 and Nanog largely fell in these branches as well. Further investigation into 

expression and co-expression of genes highlighted how A2S accelerates normal FBS 

reprogramming. We observed more coordinated upregulation of groups of pluripotency-

related genes, such as Epcam, Sall4, Nanog, and Tdgf1. Meanwhile in FBS, these 

genes were not all upregulated within the same cells. One of these subsets of genes 
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contained the pluripotency markers Dppa4 and Lin28a, as well as the placental growth-

associated Phlda2, whose knockdown led to a decrease in DPPA4+ colonies. 

Additionally, in A2S reprogramming cells, the cell cycle-associated genes Mcm5 and 

Bub1b are more consistently expressed throughout the reprogramming process, while 

also repressing the antiproliferative gene Cdkn1c, which are downregulated and 

upregulated respectively in FBS reprogramming. Thus, A2S allows cells to circumvent 

the reprogramming-associated senescence block that normal reprogramming cells 

experience (Banito et al., 2009; H. Li et al., 2009; Mikkelsen et al., 2008). Together, 

these results suggest that A2S is able to bypass many of the transcriptional and 

senescence barriers that are inhibitory to reprogramming, and thereby accelerating the 

transition to pluripotency. 

 

Analysis of Chromatin Accessibility Dynamics in Reprogramming 
 
 Given the shifting epigenetic landscape (J. Chen et al., 2013; Gaspar-Maia et al., 

2011; Onder et al., 2012; Soufi et al., 2012; Sridharan et al., 2013) and influence of 

epigenome-modifying small molecules on reprogramming efficiency (Esteban et al., 

2010; Huangfu, Maehr, et al., 2008; Huangfu, Osafune, et al., 2008; Mikkelsen et al., 

2008; Shi et al., 2008; Tran et al., 2015), recent research has turned to the assay for 

transposase-accessible chromatin with sequencing (ATAC-seq) methodology 

(Buenrostro et al., 2013) to examine chromatin accessibility dynamics in the context of 

somatic cell reprogramming. 

 Similar to RNA-seq studies, population-based ATAC-seq analyses have been 

conducted to elucidate chromatin dynamics in populations of reprogramming cells 
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(Buckberry et al., 2023; Cao et al., 2018; K. Chen et al., 2020; X. Chen et al., 2023; 

Chronis et al., 2017; Di Giammartino et al., 2019; Di Stefano et al., 2016; Knaupp et al., 

2017; D. Li et al., 2017; Wang et al., 2019). These studies again fail to account for the 

widespread heterogeneity among populations of reprogramming cells. Recently, single-

cell technology has been adapted to now perform single-cell ATAC-seq (scATAC-seq), 

which has been applied in a few studies investigating human reprogramming systems. 

 Here, we have implemented scATAC-seq analysis on cells from both our low-

efficiency FBS and high-efficiency A2S reprogramming systems of MEF 

reprogramming, again in an attempt to identify the features that distinguish successful 

reprogramming from an inefficient process. Many key differences were highlighted from 

motif enrichment analysis of accessible regions in the clusters of cells. In both our 

scRNA-seq and scATAC-seq analyses we saw a separation of the starting MEF 

population into two separate clusters. By scRNA-seq, MEFs separate based on 

differential expression of cell cycle markers (Mcm5, Bub1b) (Tran et al., 2019). 

However, scATAC-seq data separates MEFs by differential enrichment of motifs for 

different families of development-associated transcription factors (TFs) (MEIS, GATA, 

HOX). 

Other studies have previously found that certain MEFs are more “elite” with a 

higher proclivity for successful reprogramming (Jain et al., 2023), with neural crest-

derived Wnt1-expressing cells more poised for reprogramming (Shakiba et al., 2019), 

though these previously discovered factors do not appear to be contributing to this 

separation of MEFs based on scATAC-seq data. Furthermore, cells that fail to 

reprogram and revert back to a MEF-like state seem to come from both of these MEF 
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populations, suggesting that one group of MEFs is no more advantageous than the 

other in the transition to iPSCs. However, future research could examine 

subpopulations of MEFs based on these differentiating factors to see if there are any 

differences at all in the route that they take towards reprogramming. 

 One discovery that distinguishes high-efficiency from low-efficiency 

reprogramming is a large population of cells in the FBS system that, after an initial 

drastic global rewiring of the chromatin network, soon after reacquire enrichment of 

motifs that are also strongly represented in MEFs (e.g. the STAT motifs). Such a cluster 

is not observed among the A2S cells, suggesting that these chemicals prevent any cells 

from re-opening somatic-associated motifs and push the cells forward along the 

reprogramming trajectory, stably maintaining repression of MEF loci and opening of 

pluripotency loci as these changes happen. However, it’s not clear from this data 

exactly what’s causing the re-opening of STAT motifs, and further inquiry is required to 

better understand this phenomenon. 

 Another key difference between FBS and A2S that we observed is the 

enrichment of motifs associated with TFs that mediate 3D chromatin reorganization and 

promoter-enhancer interaction loops, including KLF4, MAZ, and PATZ1 (Fedele et al., 

2017; Ma et al., 2014; Ortabozkoyun et al., 2022; Rong et al., 2013). Given this 

information, we decided to delve deeper into finding loci that act as enhancer hubs and 

whose 3D interactions are important in regulation of reprogramming. In a collaboration 

with Sushmita Roy’s lab, this inquiry led to the development of scCISINT, which is able 

to use scATAC-seq data to predict interacting genes and the strength of those 

interactions among accessible loci. 
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In so doing, we were able to identify two loci with disparate accessibility patterns, 

that affect reprogramming along different mechanisms. One locus was exclusive to the 

more advanced reprogramming cells upon exogenous OSKM-withdrawal; another 

maintains fairly consistent accessibility throughout the duration of reprogramming. While 

the former predictably was found to play a role in the maintenance of iPSC colonies and 

independence from OSKM, the latter was found to regulate different genes at different 

stages of reprogramming, leading to different reprogramming outcomes when depleted 

at different timepoints (repression early enhanced reprogramming, while repression at a 

midpoint impeded it). Implementation of scCISINT also led to the discovery of a peak 

that has an anti-correlative accessibility pattern with the nearby Nanog gene promoter. 

This peak was observed to be inhibitory to reprogramming. This data serves to 

demonstrate the remarkable ability of scCISINT to identify regulatory peaks, and 

highlight the vastly different roles and accessibility dynamics of different loci at different 

stages of the reprogramming process. While I was only able to study these three 

regions in depth within the scope of this project, a great future direction for this research 

could involve a large-scale knockdown screen of other top-scoring loci from scCISINT. 

This could lead to the discovery of several peaks whose depletion can enhance or 

promote reprogramming. Furthermore, a systematic method of knocking down multiple 

loci in a combinatorial manner could help identify a more precise combination of peaks 

whose depletion or activation can help improve the reprogramming protocol. 

 We also pursued further investigation of the changes that accompany the final 

transition to iPSCs as they become reprogramming factor-independent. We profiled 

cells two days post-withdrawal. These cells experienced greater upregulation of the 
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pluripotency factor ESRRB, as well as strong transient regulation of TCFAP2C. 

Although its motif is almost exclusively enriched in these withdrawal cells, its 

upregulation is important for the final transition to becoming bona fide iPSC colonies. 

TCFAP2C is a known regulator of trophoblast cells. Moreover, our identified withdrawal-

associated peak from scCISINT is predicted to interact with placental-associated 

miR290 microRNAs (Paikari et al., 2017; Yuan et al., 2017) and the protein-coding gene 

AU018091. As previously mentioned, it has been posited that cells can transition into 

iTSCs as an alternative to iPSCs. Our data, on the other hand, suggests that 

reprogramming cells actually pass through a trophectoderm-like state on their way to 

becoming iPSCs. While our scATAC-seq data is insufficient to definitively conclude this, 

further isolation of and investigation into this transitory population of cells could provide 

greater insight into the plasticity of these cells and whether they’re adopting 

characteristics of iTSCs upon exogenous OSKM withdrawal prior to making the final 

transition to iPSCs. 

 Altogether, our single-cell analysis of the transcriptional and accessibility 

dynamics has helped illuminate more of the regulatory mechanisms that underlie the 

reprogramming process and how a high-efficiency system is better able to overcome 

many of the barriers associated with the transition to induced pluripotency. 

 

Additional Potential Future Directions 
 
 While we have utilized two separate single-cell methodologies to study 

reprogramming dynamics, we are limited in our ability to directly examine the interplay 

between transcriptional and chromatin dynamics. Some methods are available that can 
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artificially match single-cell data across modalities (Granja et al., 2021; Stuart et al., 

2019; Welch et al., 2016) obtaining this same data from the same individual cell will 

provide a more accurate snapshot of the relationship between these two features. 

Recently, multi-omics technology has become available, allowing capture of both 

scRNA-seq and scATAC-seq data from the same cell. While I expect there to be some 

correlation between the promoter and motif accessibility and expression of the 

corresponding gene, there could be incongruence between these two cellular features 

and could help further identify characteristics of reprogramming-refractory cells. 

Additionally, the potential combination of single-cell ATAC-seq with single-cell ChIP-seq 

could shed light on how TF binding influences or is influenced by chromatin accessibility 

dynamics, perhaps again identifying cells whose TF binding and accessibility profiles 

are misaligned. 

 The scRNA-seq and scATAC-seq analyses that we have performed here 

provides a snapshot of the expression and chromatin accessibility landscapes of a 

particular cell from any given timepoint during the reprogramming process. While we 

can and have used computational means to artificially generate a reprogramming 

trajectory in pseudotime, we don’t know exactly which parent cells gave rise to the 

subsequent cells at subsequent timepoints during reprogramming. Therefore, another 

potential future study would that it would be to perform a lineage tracing experiment, in 

which each starting cell is tagged with an identifying sequence, to get a more accurate 

description of which cells from the starting population give rise to iPSCs vs those that 

veer away from the trajectory. 
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 My research in this thesis has broadened our understanding of the regulatory 

mechanisms underlying the process of somatic cell reprogramming. The information 

presented here has helped to identify characteristics of successful reprogramming as 

well as ways in which the process can be improved, and has also set up other potential 

future directions for ours and other labs to pursue in the investigation of the 

reprogramming landscape. 
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Abstract 
 

Immune-mediated destruction of insulin-producing b cells causes type 1 diabetes 

(T1D). However, how b cells participate in their own destruction during the disease 

process is poorly understood. Here, we report that modulating the unfolded protein 

response (UPR) in b cells of non-obese diabetic (NOD) mice by deleting the UPR 

sensor IRE1a prior to insulitis induced a transient dedifferentiation of b cells, resulting in 

substantially reduced islet immune cell infiltration and b cell apoptosis. Single-cell and 

whole-islet transcriptomics analyses of immature b cells revealed remarkably 

diminished expression of b cell autoantigens and MHC class I components, and 

upregulation of immune inhibitory markers. IRE1a-deficient mice exhibited significantly 

fewer cytotoxic CD8+ T cells in their pancreata, and adoptive transfer of their total T 

cells did not induce diabetes in Rag1-/- mice. Our results indicate that inducing b cell 

dedifferentiation, prior to insulitis, allows these cells to escape immune-mediated 

destruction and may be used as a novel preventive strategy for T1D in high-risk 

individuals. 
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Introduction 
 

Type 1 diabetes (T1D) is an autoimmune disease in which insulin producing 

pancreatic islet b cells are targeted and destroyed by autoreactive immune cells 

(Atkinson, 2012; Bluestone et al., 2010; van Belle et al., 2011). Although genetic 

predisposition is strongly associated with T1D progression, environmental factors can 

also trigger T1D onset and affect its progression. Environmental factors include viral 

infections, toxins, reactive oxygen species (ROS), and chronic inflammation, which are 

well-established triggers of endoplasmic reticulum (ER) stress. ER stress initiates the 

unfolded protein response (UPR), which operates through inositol-requiring protein-1 

(IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor-6 

(ATF6), all of which are localized in the ER membrane and respond to stress by relaying 

signals from the ER to the cytoplasm and nucleus. While the UPR initially attempts to 

mitigate ER stress, if the stress is prolonged or severe, it switches from being a pro-

adaptive to a pro-apoptotic response (Bernales et al., 2006; Walter and Ron, 2011). 

Mammals have two IRE1 paralogs, IRE1a and IRE1b. IRE1a is ubiquitously 

expressed, whereas IRE1b is specifically expressed in digestive tissues. Dual-

functioning IRE1a removes an intronic region from the transcription factor X-box binding 

protein 1 (XBP1) with its endoribonuclease activity, leading to its transcriptional 

activation (Calfon et al., 2002; Yoshida et al., 2001). Spliced XBP1 (sXBP1) then 

upregulates the expression of chaperones and ER-associated degradation components. 

IRE1a also promotes mRNA and miRNA degradation through regulated IRE1a-

dependent decay (Hollien and Weissman, 2006). IRE1a, with its kinase activity, 

mediates the phosphorylation of the c-Jun N-terminal protein kinase (JNK) and induces 
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inflammatory signals and apoptosis (Urano et al., 2000). The IRE1a/XBP1 pathway is 

the most conserved branch of the UPR, and highly secretory pancreatic b cells have 

constitutively active IRE1a/ XBP1 under physiological conditions. Although IRE1a has a 

role in promoting cell survival under acute and mild stress conditions, it can promote cell 

death in the presence of unresolvable ER stress (Chen and Brandizzi, 2013). IRE1a 

regulates cell death by downregulating mRNAs and miRNAs involved in b cell 

homeostasis and survival (Han et al., 2009; Hollien and Weissman, 2006; Lipson et al., 

2008; Upton et al., 2012). Hyperactivated IRE1a increases thioredoxin-interacting 

protein (TXNIP) mRNA stability, and in turn, elevated TXNIP activates the NLRP3 

inflammasome and causes b cell death (Lerner et al., 2012; Oslowski et al., 2012). 

Although these studies clearly indicate that modulation of IRE1a under chronic stress 

versus non-stress conditions may lead to differential survival/apoptotic outcomes, the 

function of IRE1a in b cells in the context of autoimmune diabetes remains unclear. 

Due to the autoimmune nature of T1D, there has been a longstanding interest in 

understanding the role of dysregulation of the immune system in the pathogenesis of 

T1D. However, emerging data indicate that b cells themselves can play a much more 

active role in the initiation and progression of autoimmunity than previously appreciated 

(Engin, 2016; Engin et al., 2013; Maganti et al., 2014; Soleimanpour and Stoffers, 2013; 

Thompson et al., 2019). The indication that the b cell UPR may play a role in 

pathogenesis of autoimmune diabetes is supported by the detection of dysregulated ER 

stress markers in inflamed islets of both mice (Tersey et al., 2012) and patients with 

autoimmune diabetes (Marhfour et al., 2012). We previously showed that the adaptive 

functions of the UPR were greatly defective in b cells of two different T1D mouse 
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models and human patients during the progression of T1D (Engin et al., 2013). 

Diabetes incidence in these mouse models was dramatically reduced upon mitigation of 

b cell ER stress with a chemical chaperone. Although this study provided the first direct 

link between a defective b cell UPR and T1D, the molecular mechanisms by which the 

UPR regulates pancreatic b cell death/survival in T1D still remain largely unknown. 

Here, we investigated the specific role of the b cell UPR in initiation and 

progression of T1D and deleted IRE1a in b cells of an established T1D pre-clinical 

model, non-obese diabetic (NOD) mice, prior to the initiation of islet infiltration by 

immune cells (insulitis). Deletion of IRE1a in b cells of NOD mice led to transient mild 

hyperglycemia. However, unexpectedly, mice recovered from hyperglycemia within a 

couple of weeks and were protected from autoimmune destruction for up to a year. 

Single-cell transcriptional profiling in dissociated islets, bulk RNA sequencing (RNA-seq) 

of intact islets, as well as histological analyses demonstrated loss of mature b cell 

identity and remarkably increased expression of endocrine progenitor and fetal-like b 

cell markers, suggesting that upon losing IRE1a expression, b cells of NOD mice 

undergo a transient dedifferentiation. Furthermore, we identified significantly reduced 

MHC class I expression and defective antigen processing, notably reduced expression 

of b cell autoantigens, upregulation of immune inhibitory markers, as well as 

substantially diminished CD8+ T cell population in pancreas. Taken together, we show 

that loss of IRE1a in b cells prior to initiation of islet immune infiltration protects against 

diabetes in a pre-clinical model of T1D by inducing transient dedifferentiation of b cells, 

which allows escape from immune-mediated destruction. 

 



 214 

Results 
 
IRE1ab–/– NOD Mice Are Protected from T1D 

To examine the b cell-specific functions of IRE1a in T1D, we backcrossed IRE1a 

flox/flox (IRE1afl/fl) (Iwawaki et al., 2009) and Ins2CreERT/+ mice (Dor et al., 2004) to 

NOD mice for more than 10–20 generations and confirmed their genetic purity on NOD 

background by genome scan services. To generate mice with b cell-specific IRE1a 

deletion, we mated IRE1afl/fl and IRE1afl/fl; Ins2CreERT/+ mice and administered 

tamoxifen to lactating mothers, beginning the day after delivery (Figure 1A). We 

reasoned that tamoxifen-mediated deletion of IRE1a in pups would allow us to elucidate 

its function before the onset of islet insulitis, as insulitis typically starts after weaning age 

in female NOD mice. The deletion of IRE1a in b cells (referred to as IRE1ab-/-) was 

confirmed via immunofluorescence (IF) by staining pancreatic sections with anti-sXBP1, 

a direct target of IRE1a, and anti-insulin antibodies (Figure 1B), and by performing a 

qPCR on islets for sXBP1 (Figure 1C). Weekly blood glucose measurements were 

recorded, starting from 3 weeks of age through 50 weeks (Figure 1D). Mice with a blood 

glucose level R250 mg/dL for two consecutive weeks were accepted as diabetic. 

IRE1a deficiency in b cells of NOD female mice resulted in hyperglycemia 

starting after weaning age (Figure 1D), in agreement with recent reports showing that 

IRE1a deletion in b cells of non-stressed wild-type mice also induces hyperglycemia 

(Hassler et al., 2015; Tsuchiya et al., 2018). However, in striking contrast to previous 

reports, where deletion of IRE1a in either prenatal or adult b cells led to a diabetic 

phenotype (Hassler et al., 2015; Tsuchiya et al., 2018), the hyperglycemia in IRE1ab-/- 

NOD mice was temporary, with mice recovering from diabetes (94.7% of the IRE1ab-/- 
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mice exhibited normoglycemia following an initial hyperglycemia) starting at 6–7 weeks 

of age. Surprisingly, IRE1ab-/- NOD mice not only recovered from hyperglycemia but 

were also protected from development of T1D through 50 weeks of age (Figures 1E and 

1F). 

To rule out any potential artifacts arising from the expression of Cre 

recombinase, we generated another cohort by breeding NOD and NOD Ins2CreERT/+ 

mice, administered tamoxifen as described above, and measured the blood glucose 

levels of these animals weekly up to 22 weeks of age. Unlike IRE1ab-/- mice, 

hemizygous Ins2CreERT/+ mice did not exhibit early hyperglycemia, and the diabetes 

incidence of Ins2CreERT/+ mice was similar to that of the littermate control NOD mice as 

well as IRE1afl/fl mice (Figures S1A and S1B). In addition, the expression of Cre did not 

significantly differ between Ins2CreERT/+ and IRE1ab-/- mice (Figure S1C). Histological 

analyses confirmed the presence of aggressive insulitis in the islets of diabetic 

Ins2CreERT/+ mice (Figure S1D). Finally, we did not detect any significant differences in 

glucose tolerance between pre-diabetic Ins2CreERT/+ and NOD mice, ruling out impaired 

glucose homeostasis in Ins2CreERT/+ mice prior to the development of diabetes (Figures 

S1E and S1F). Taken together, these data demonstrate that Cre transgene expression 

in our mouse line does not appear to alter the natural progression of diabetes in NOD 

mice and that the phenotype seen in IRE1ab-/- mice is most likely independent of a Cre 

effect. 

The unexpected recovery from hyperglycemia in NOD IRE1ab-/- mice, as opposed 

to the previously demonstrated diabetic phenotype seen in non-stressed, non-

autoimmune ‘‘normal wild-type’’ mice upon IRE1a deletion in b cells, led us to ask 
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whether autoimmunity or the intrinsic ER stress and fragility of b cells seen in NOD mice 

(Dooley et al., 2016) was the underlying cause of this differential phenotype. Thus, we 

deleted IRE1a in b cells of NOD Rag1-/- mice, which lack mature T cells and b cells. 

Interestingly, NOD IRE1ab-/-; Rag1-/- mice phenocopied NOD IRE1ab-/- mice, suggesting 

that the transient hyperglycemia phenotype was independent of T and b cell-mediated 

autoimmunity but involved b cell stress (Figure S2A). 

Thus, these intriguing results indicate that while inactivation of IRE1a in adult b 

cells under physiological conditions can lead to diabetes, under stressed conditions as 

seen in T1D, the loss of IRE1a at an early stage of disease (i.e., prior to initiation of 

insulitis) can have beneficial effects on b cell survival and function leading to protection 

from T1D. 

 

Improved b Cell Function and Survival in IRE1ab–/– NOD Mice upon Recovery from 

Hyperglycemia 

To investigate the cellular basis of the phenotype, we performed hematoxylin and 

eosin (H&E) staining on pancreatic sections obtained from 5- and 24-week-old IRE1afl/fl 

and IRE1ab-/- mice (Figure 2A). Although there was no immune infiltration in the islets of 

IRE1afl/fl mice at 5 weeks of age, we detected considerable amount of insulitis in the 

islets of 24-week-old IRE1afl/fl mice as expected in the NOD model. In contrast, IRE1ab-

/- mice showed improved islet morphology and substantially reduced immune infiltrates 

at 24 weeks of age. Additionally, immunofluorescence staining showed that insulin 

intensity in b cells of the 24-weekold IRE1ab-/- mice was comparable with the insulin 

intensity in b cells of normoglycemic control mice, despite initially being reduced at 5 
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weeks of age. (Figure 2B). CD3 (a marker of T cell lineage) staining of pancreatic 

sections confirmed significantly less immune infiltration in the islets of IRE1ab-/- mice at 

24 weeks of age (Figure 2C). To quantify the extent of islet immune cell infiltration, we 

generated step sections from pancreata of these mice and performed insulitis scoring. 

Quantification revealed a remarkable increase in the percentage of islets without any 

insulitis in pancreatic sections of IRE1ab-/- mice in comparison with that in IRE1afl/fl mice 

(Figure 2D). Furthermore, the number of islets with aggressive insulitis was significantly 

decreased in IRE1ab-/- mice compared with that in controls (Figure 2D). These data 

suggest that, in addition to the intrinsic effects of IRE1a in b cells, IRE1a could also 

affect the migration of inflammatory cells, as well as their infiltration, activation, and/ or 

cytotoxic function. We then assessed the function of b cells by measuring pancreatic 

insulin and proinsulin content and determining proinsulin/insulin ratio by ELISA at 7 

weeks of age (Figures 2E–2G). Consistent with our histological data, both insulin and 

proinsulin content of the pancreata were substantially reduced in IRE1ab-/- mice at this 

time point (Figures 2E and 2F). Proinsulin:insulin ratio was greatly increased in 7-week-

old IRE1ab-/- mice, suggesting a defect in processing of proinsulin (Figure 2G). At 24 

weeks of age, pancreatic insulin content was still significantly less in IRE1ab-/- mice in 

comparison with that in non-diabetic IRE1afl/fl mice albeit to a much lesser degree 

(Figure 2H), while proinsulin content (Figure 2I) and proinsulin:insulin ratio (Figure 2J) 

were fully restored in IRE1ab-/- pancreata. These data suggest that ER secretory 

function and processing were significantly improved in IRE1ab-/- mice at this age. 

Consistent with a restored ER function and secretory capacity, serum insulin levels of 

IRE1ab-/- mice were comparable with that of control non-diabetic IRE1afl/fl mice (Figure 
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2K). Furthermore, an intraperitoneal glucose tolerance test revealed no differences in 

glucose tolerance between IRE1ab-/- mice and non-diabetic control mice at 32 weeks of 

age (Figures S2B and S2C), indicating that the b cell function was substantially 

improved in IRE1ab-/- mice. 

To examine if there was an apparent difference in b cell death, we performed 

TUNEL assays on pancreatic sections at various time points. Although we did not detect 

any significant apoptosis in b cells of 3- and 5-week-old mice, there was a marked 

reduction in b cell apoptosis in IRE1ab-/- mice at 24 weeks of age (Figures 2L and 2M). 

We then examined the proliferation of b cells during the hyperglycemic phase by co-

staining the pancreatic sections with antibodies against insulin and proliferation marker 

Ki67. IRE1ab-/- mice exhibited significantly less Ki67+ cells in their b cells compared with 

those in the b cells of the control mice at 3 weeks of age, but at 5 weeks of age, there 

was no significant difference in Ki67+ b cells between the control and IRE1ab-/- mice 

(Figures 2N and 2O). Taken together, these data suggest that b cells of IRE1ab-/- mice 

undergo a transient loss of both expression and content of insulin and proinsulin prior to 

insulitis, and that by 24 weeks of age, insulin expression and serum insulin levels are 

restored while insulitis and apoptosis are significantly reduced, leading to protection 

from T1D in these mice. 

 

Islet Morphology and Architecture Are Altered in IRE1ab–/– Mice during the 

Hyperglycemic Phase 

To assess islet cellular composition and architecture, we performed an 

immunofluorescence assay on the pancreata from IRE1ab-/- mice and their littermate 



 219 

controls using antibodies against markers of a, b, and d cells. At 3 weeks of age, we did 

not observe any obvious alterations in islet composition and architecture of IRE1ab-/- 

mice (Figure 3A). However, at 5 weeks of age, we detected a substantially increased 

number of glucagon-positive cells (roughly 4-fold increase in a cell area), accompanied 

by markedly diminished number of b cells (30% reduced b cell area) (Figures 3B and 

3G) in the islets of IRE1ab-/- mice. Moreover, in contrast to control mice, which exhibited 

normal islet morphology with glucagon-positive cells residing on the islet periphery, 

islets of IRE1ab-/- mice had significantly increased proportion of a cells intermingled in 

the core of the islets in the hyperglycemic (5 week) phase. The area of the d cells was 

increased by approximately 3-fold in the islets of IRE1ab-/- mice in comparison with that 

in their littermates (Figures 3C and 3G). This altered islet cell composition, function, and 

morphology were still apparent at 12 weeks of age (Figure 3D). At 24 weeks, we 

identified an almost 2-fold increase in a cell area, whereas b cell area had notably 

improved (10% reduction versus 30%) compared with that at 5 weeks of age, though it 

was still significantly reduced compared with that in IRE1afl/fl mice (Figures 3E and 3H). 

The d cell area was increased by 3-fold in the islets of IRE1ab-/- mice in comparison with 

that of their littermates (Figures 3F and 3H). Furthermore, in addition to altered a cell:b 

cell ratio, we identified a significantly increased number of somatostatin-positive cells in 

the islets of IRE1ab-/- mice at 5 and 24 weeks of age (Figures 3C and 3F). Although 

somatostatin-positive d cells were distributed in the islet periphery in the islets of control 

mice, we found a relatively abundant fraction of d cells intermingled with b cells in the 

islets (Figure 3C). In addition to these changes in islet morphology and hormone 
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expression, we detected a number of bihormonal (insulin/ glucagon co-expressing) cells 

in the islets of IRE1ab-/- mice (Figure 3I). We also occasionally observed single islets or 

small islet clusters consisting of less than five to ten insulin-positive cells in IRE1ab-/- 

pancreata (Figure 3J), suggesting that these cells might also contribute to glucose 

homeostasis. Finally, we examined the islet size distribution on pancreatic sections from 

animals at 4 and 12 weeks of age and detected a significantly smaller average islet size 

(<5,000 mm2 ) in the pancreata of 4 weeks of age IRE1ab-/- mice (Figure 3K). We did 

not observe any differences in islet size distribution between IRE1afl/fl and IRE1ab-/- 

mice at 12 weeks of age (Figure 3L). 

These data indicate that during the hyperglycemic phase, islets of IRE1ab-/- mice 

show a strikingly disorganized architecture and altered islet composition. However, by 

24 weeks of age, b cell morphology, islet architecture, and function were significantly 

improved in the islets of IRE1ab-/- mice. 

 

Bulk RNA-Seq on Intact Islets from Hyperglycemic IRE1ab–/– Mice Indicates 

Changes in the Expression of Cell Survival and Differentiation Markers 

To gain insight into the molecular mechanisms and consequences of this altered 

cellular composition, we sequenced bulk RNA from islets of IRE1afl/fl and IRE1ab-/- NOD 

female mice at 7 (hyperglycemic phase) and 15 weeks of age (recovery phase). 

Differential expression analysis of IRE1ab-/- and IRE1afl/fl mice at 7 weeks of age 

(hyperglycemic phase) with edgeR (McCarthy et al., 2012; Robinson et al., 2010) at 

false discovery rate (FDR) of 0.05 identified 2,320 upregulated and 1,918 

downregulated genes (Figures 4A and 4B). Gene set enrichment analysis (Yu et al., 
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2012) of these differentially expressed genes (DEGs) revealed epithelial-mesenchymal 

transition, hypoxia, estrogen response, and KRAS signaling as top hits (Figure 4C). 

Gene ontology (GO) analysis revealed significant enrichment in several biological 

process, cellular components, and molecular functions. Most notable among these are 

upregulated extracellular matrix and downregulated vesicle organization (Figures S3A 

and S3B). In contrast, we identified 342 upregulated and 729 downregulated genes 

between the IRE1ab-/- and IRE1afl/fl mice at 15 weeks of age (recovery phase) with 

major changes in sterol and cholesterol transporter activity (Figures S3C–S3F). 

Interestingly, markers of b cell maturation/ dedifferentiation were also significantly 

changed in IRE1ab-/- mice during the hyperglycemic phase, suggesting a loss of mature 

b cell identity under stress conditions (Figure 4D). To examine if the reduced mRNA 

levels correlate with protein levels, we analyzed the expression of key markers of b cell 

maturity, Ucn3 and MafA (Blum et al., 2012; Matsuoka et al., 2004; van der Meulen et 

al., 2012), in control and IRE1ab-/- mice via immunofluorescence assay. The protein 

expression levels of maturity markers were visibly diminished in b cells of 4-week-old 

IRE1ab-/- mice (corresponding to the hyperglycemic phase) compared with those in 

control IRE1afl/fl mice (Figure 4E). 

Bulk RNA-seq revealed significantly increased expression of islet hormones 

glucagon, somatostatin, PPY, and reduced insulin 1 and insulin 2 in IRE1ab-/- mice 

(Figure 4F), consistent with the increases in non-b endocrine cells observed by 

histology (Figure 3). Interestingly, in addition to a substantially diminished expression of 

the b cell maturity markers, the expression of b cell ‘‘disallowed genes’’ (Pullen et al., 

2010; Quintens et al., 2008; Thorrez et al., 2011), which are typically repressed in 
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mature adult b cells, were markedly increased in IRE1ab-/- mice (Figure 4G). It has been 

previously shown that DNA methyl transferase 3a (Dnmt3a) directs the methylation and 

repression of disallowed genes during b cell maturation (Dhawan et al., 2015). 

Consistent with an increased expression of disallowed genes, our RNA-seq data 

revealed significantly reduced Dnmt3a expression (p value of 7.39e-18) in IRE1ab-/- 

islets (Figure 4G). Finally, we detected markedly increased expression of the ErbB 

family of genes, regeneration-related genes, and growth factors in IRE1ab-/- islets 

(Figures 4H–4J). Together, bulk RNA-seq on intact islets from IRE1ab-/- mice indicates 

alterations in the expression of cell survival and differentiation markers during the 

hyperglycemic phase. 

 

Single-Cell RNA-Seq Identifies Altered Proportion of Islet Cell Clusters, Hormonal 

Expression, and Expression of Non-b Cell Islet Cell Markers in b Cells of IRE1ab–/– 

Mice 

Given that changes in the expression profile in the whole islets of IRE1ab-/- mice 

could reflect either changes in individual cells or at the population level because of the 

altered islet cellular composition, we performed single-cell RNA-seq (scRNA-seq) 

analysis in disassociated islets obtained from mice that were 5 weeks of age. Monocle 

analysis of the cells partitioned them into distinct clusters based on their expression 

profiles (Figure 5A). As expected, the major populations were a, b, and d cells, with a 

small proportion of ductal, endothelial, and immune cells. We also identified a minor b 

cell population both in wild-type NOD and IRE1ab-/- mice, indicating a greater degree of 

heterogeneity in cell identity. We provisionally designated the minor sub-population of b 
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cells as ‘‘beta2 cells.’’ The proportion of each population was markedly different in the 

knockout mice. Cell cluster analysis indicated decreased beta1 and increased beta2 

and a cell populations in IRE1ab-/- mice (Figure 5B). Interestingly, percentages of ductal 

and endothelial cells were also increased in IRE1ab-/- mice, whereas minimal immune 

cell population did not differ between IRE1afl/fl and IRE1ab-/- mice (Figures 5A and 5B). 

These expression changes were not observed in bulk sample averages, indicating that 

our scRNA-seq method can reveal novel molecular features associated with islet cell 

composition. 

We then examined the hormonal expression of islet cells. The b cells of IRE1ab-/- 

mice demonstrated a polyhormonal phenotype with significantly decreased 

Insulin1/Insulin2 expression and markedly increased glucagon (Gcg), somatostatin 

(Sst), and PPY expression (Figure 5C). In a cells, glucagon expression levels remained 

similar between the wild-type and knockout mice. The minimal levels of insulin 

expressed in a cells were further reduced, whereas PPY expression was markedly 

higher in the a cells of knockout mice (Figure 5C). The d cells of IRE1ab-/- mice showed 

significantly reduced (2-fold with a p value of 2.4e-101) Ins1 expression, whereas Gcg 

expression was markedly upregulated (greater than 3-fold with a p value of 4e-198) 

(Figure 5C). 

 

Loss of IRE1a in b Cells Induces Dedifferentiation 

To investigate whether the changes in the characteristics of b cells were only 

restricted to the hormone genes, we examined the expression of the canonical a cell 

(Irx2, Ttr) (Petri et al., 2006; Su et al., 2012) and d cell markers (Hhex, Rbp4) (Artner et 



 224 

al., 2010; Zhang et al., 2014) within the b cell clusters. We identified significantly 

increased expression of a cell (Irx2, Ttr) (Figure 6A) and d cell markers (Hhex,Rbp4) 

(Figure 6B). Interestingly, the changing expression pattern was accompanied by a 

reduction in the number of cells expressing b cell maturity markers, such as MafA and 

Ucn3 (Blum et al., 2012; van der Meulen et al., 2012) (Figure 6C). There were also 

more cells expressing ‘‘disallowed’’ genes, such as Olfm1 and Ndrg4 (Pullen et al., 

2010) (Figures 6D and S4A). Concomitant with the lack of maturity, there was a marked 

increase in the expression of dedifferentiation genes Rfx2 and Fabp3 (Kim-Muller et al., 

2016; Szabat et al., 2011). These data, along with significantly increased expression of 

disallowed genes and endocrine progenitor cell markers (Aldh1a3, Gast) (Cinti et al., 

2016; Gittes et al., 1993) (Figure 6E), confirmed the dedifferentiation of b cells in 

IRE1ab-/- mice. Interestingly, we also detected markedly increased expression of 

regeneration/proliferation-related genes in b cells of IRE1ab-/- mice (Figure S4B). Finally, 

we demonstrated that these dedifferentiated cells indeed lost IRE1a by examining the 

gene expression profile of targets of sXBP1. Expression of many of the sXBP1 targets 

(Fkbp11, Erol1b, Fkbp2, Sec61g, and Pdia5) was significantly reduced in b cells (Lee et 

al., 2003) (Figures 6F and S4C). 

Next, we performed differential gene expression analysis using the Monocle 

package. Using this approach, we identified 469 DEGs in beta1 and 412 DEGs in beta2 

cell clusters (FDR < 0.01, FC > 2) (Figures 6G and 6H). The most significantly DEGs in 

these b cell clusters were associated with cell differentiation, growth, survival, and 

immune inhibition, whereas expression of several markers associated with pancreas 

development and protein secretion were significantly downregulated (Figures 6G and 
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6H). Taken together, bulk RNA-seq from intact islets, scRNA-seq, and histological 

analyses identify initiation of b cell dedifferentiation in IRE1ab-/- mice prior to insulitis. 

 

b Cells of IRE1ab–/– Mice Have Altered Expression of Genes Associated with 

Immune Cell Recruitment 

b cells can actively participate in their autoimmune destruction by affecting the 

local homing of inflammatory cells, antigen presentation, and the levels of autoantigen 

or neoantigen expression. Thus, we examined the expression of genes that are involved 

in immune regulation in b cells of IRE1ab-/- mice. Interestingly, several immune-related 

genes and genes that are involved in immune cell recruitment were differentially 

regulated in b cells of IRE1ab-/- mice. Among these, significantly increased expression of 

genes that play a key role in the suppression of T cell, B cell, and macrophage activities 

was notable (Figure 7A). For example, the expression of immune inhibitory ligands Qa-2 

(H2-Q7/H2-Q9) and Qa-1 (H2-T23), which were shown to play a major role in the 

suppression of CD4+ T cell and natural killer (NK) cell responses (Carosella et al., 2008; 

Jiang et al., 1995; Klein et al., 1983; Robinson et al., 1989), was significantly 

upregulated (H2-Q7, p = 1.94e-20; H2-T23, p = 6.66e-25) in b cells of IRE1ab-/- mice. 

Interestingly, we found that the expression of tumor necrosis factor (TNF) receptor 

superfamily (Tnfrs) genes, which play a key role in the antigen presentation and in the 

generation of cytotoxic T cells (Ward-Kavanagh et al., 2016), was significantly 

downregulated (e.g., Tnfrsf9, p = 1.3257e-4; Tnfrsf23, p = 1.94e-10). The expression of 

several members of the tetraspanin family of genes (Cd81, Cd9, and Cd151), which 

also play important roles in the regulation of pattern recognition, antigen presentation, 
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and T cell proliferation (Jones et al., 2011), was also significantly altered in IRE1ab-/- 

mice. 

We demonstrated that protein expression of proinsulin and insulin, key 

autoantigens in triggering T1D (Arvan et al., 2012; Narendran et al., 2003; You and 

Chatenoud, 2006), was significantly reduced in IRE1ab-/- mice (Figures 2F and 2G). We 

further examined whether the expression of other autoantigens was also altered in b 

cells of IRE1ab-/- mice. In addition to proinsulin and insulin, scRNA-seq revealed 

substantially reduced expression of additional b cell autoantigens Ins1/2, IAPP, and 

Ptprn in IRE1ab-/- mice (Figure 7B). Major histocompatibility complex (MHC) class I 

molecules, which present peptides derived from intracellular proteins to CD8+ T cells, 

are assembled in the ER; ER stress was shown to affect MHC class I expression as 

well as processing of MHC-class-I-associated peptides (Granados et al., 2009; Ulianich 

et al., 2011). To elucidate whether the antigen presentation pathway was altered in 

IRE1ab-/- mice, we examined the expression of MHC class I components and the 

peptide loading pathway genes. Analysis of scRNA-seq data identified significantly 

diminished expression of b2-microglobulin (b2m) (Figure 7C) and marked alterations in 

the expression of several MHC class I peptide loading pathway genes, suggesting that 

antigen processing was defective in IRE1ab-/- mice (Figure 7D). 

To evaluate the effects of IRE1a deficiency on the immune cells, we performed 

immunophenotyping in the pancreas, spleen, and pancreatic lymph nodes (PLNs) of 

these mice at 21 weeks of age. Although there were no significant alterations in the 

percentage of CD4+ T cells, the percentage of CD8+ T cells in the pancreata of IRE1ab-/- 

mice was significantly reduced (Figures 7E and 7F). The percentage of T regulatory 
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cells (Tregs) (Figures S5A and S5B), B cells (Figures S5C and S5D), or macrophages 

(Figures S5E and S5F) did not show significant alterations in the pancreas. There were 

also no differences in these immune cell populations within the lymph nodes and spleen 

in control compared with those in IRE1ab-/- mice (Figures S6 and S7). Hence, deletion of 

IRE1a in b cells in NOD mice significantly reduced the relative representation of CD8+ T 

cells specifically in the pancreas, whereas other immune cell populations did not show 

any obvious alterations. Of note, these mice show significantly less islet infiltration by 

immune cells, suggesting that better islet function and survival recruited fewer immune 

cells to the islets, resulting in less antigen presentation. Although our 

immunophenotyping studies analyze the immune cells in the later stage of the disease, 

it is well established that macrophages and dendritic cells play a critical role during the 

initiation of the disease process. Thus, we examined whether the relative representation 

of these immune cells was altered in the islets of control and IRE1ab-/- mice at 5 weeks 

of age. However, we did not detect any significant differences in the proportions of 

Cd11c+ dendritic and F4/F80+ macrophage cell populations in IRE1afl/fl and IRE1ab-/- 

mice, suggesting that recruitment of these immune cells into the islets was unaltered 

(Figures 7G–7J). Finally, to determine the diabetogenic potential of T cells of IRE1ab-/- 

mice, we performed adoptive transfer experiments and transferred purified total T cells 

of 8-week-old IRE1afl/fl and IRE1ab-/- mice into 5- to 6-week-old female 

immunodeficient NOD Rag1-/- mice and monitored them for diabetes development. 

Recipient mice transferred with IRE1afl/fl mouse T cells developed diabetes at 16 weeks 

after the cell transfer, and 60% of recipient mice became diabetic by 20 weeks after cell 
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transfer (Figure 7K). In contrast, transfer of IRE1ab-/- T cells did not induce diabetes in 

NOD Rag1-/- mice, suggesting that IRE1ab-/- T cells were not diabetogenic.  

Taken together, our data suggest that IRE1a deletion in b cells, prior to insulitis, 

promotes transient b cell dedifferentiation, which significantly diminishes autoantigen 

expression and antigen processing, and increases the expression of immune inhibitory 

markers within the b cells. These phenotypic changes in b cells early in life in IRE1ab-/- 

NOD mice most likely have effects on the autoimmune responses leading to 

substantially reduced CD8+ T cells in the pancreas. The T cell adoptive transfer 

experiment further indicates that there are long-lasting effects on IRE1ab-/- T cells, 

rendering them incapable of inducing diabetes in NOD Rag1-/- mice. 

 

Discussion 
 

To investigate the b cell-specific function of the key UPR sensor IRE1a in T1D, 

we generated NOD IRE1ab-/- mice by exposing pups to tamoxifen via their dam’s milk to 

achieve IRE1a deletion prior to islet infiltration of immune cells, which usually occurs 

later in the postnatal period. These mice, after a transient mild hyperglycemia, were 

protected from T1D. Recently, b cell-specific deletion of IRE1a, driven by Ins-Cre in 

unstressed wild-type mice (mixed C57BL/6 3 129/SvJae background), was shown to 

result in hyperglycemia starting from 4 weeks of age lasting up to at least 24 weeks of 

age (Tsuchiya et al., 2018). Similarly, deletion of IRE1a in adult b cells led to diabetes 

under a non-autoimmune context (C57BL/6 background) (Hassler et al., 2015). 

Interestingly, unlike NOD IRE1ab-/- mice, no b cell dedifferentiation, bihormonal islet 

cells, and altered islet architecture or composition were observed in these IRE1a-
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deleted mouse models, despite presence of chronic hyperglycemia (Hassler et al., 

2015; Tsuchiya et al., 2018). These data indicate that loss of IRE1a in b cells has 

remarkably different outcomes in the context of b cell stress as seen in NOD mice. 

 Stress-induced dedifferentiation is well described in plants and mammalian 

somatic cells, such as Schwann cells, cardiac myocytes, germ cells, and b cells (Bersell 

et al., 2009; Chen et al., 2007; Talchai et al., 2012). Cells can use dedifferentiation as 

an adaptive mechanism to minimize damage (Puri et al., 2015; Shoshani and Zipori, 

2011). Our scRNA-seq, bulk RNA-seq, and histological analyses demonstrate that b 

cells of IRE1ab-/- mice have markedly increased expression of disallowed genes, and 

increased expression of markers of progenitor cells (Aldh1a3, Gast, and Ngn3), as well 

as reduced gene and protein expression of b cell maturity markers (MafA and Ucn3). In 

addition, the presence of bihormonal (Ins+ , Glu+ ) cells detected in pancreatic sections 

indicates that b cells of IRE1ab-/- mice similarly underwent a reversible dedifferentiation 

process under the chronic stressed background of NOD mice. Of note, immune-

independent b cell fragility, as a result of genetic variations in Glis3 and Xrcc4, was 

shown to alter the responses of b cells to ER stress in NOD mice (Dooley et al., 2016). 

 Our histological and scRNA-seq data indicate increased numbers of a cells, 

suggesting that an a cell to b cell conversion could potentially be a mechanism for the 

restoration of the b cell population in islets of IRE1ab-/- mice. However, conversion of a 

cells to b cells was reported only after extreme b cell loss (>90%) (Thorel et al., 2010), 

and our scRNA-seq analysis did not indicate a ‘‘b cell-like’’ signature in a cells of 

IRE1ab-/- mice, suggesting that this may not be the main mechanism of recovery from 
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hyperglycemia. Successful redifferentiation of dedifferentiated b cells was reported in 

both mouse and human islets (Gershengorn et al., 2004; Ouziel-Yahalom et al., 2006; 

Wang et al., 2014). In addition, reduced insulin production was shown to promote b cell 

proliferation in a cell-autonomous manner (Szabat et al., 2016). Interestingly, a recent 

study shows that increased proliferation of b cells prior to insulitis in NOD mice is 

protective against T1D (Dirice et al., 2019). Thus, increased proliferation of immature b 

cells of IRE1ab-/- mice, and/or non-recombined cells prior to insulitis, might have 

contributed to a diabetes-protected phenotype. However, we detected significantly less 

proliferation in IRE1ab-/- mice at 3 weeks of age and no difference in proliferation at 5 

weeks of age. Indeed, our results are consistent with previous reports indicating 

significantly reduced b cell proliferation upon deletion of UPR sensors Perk and Xbp1 in 

b cells (Lee et al., 2011; Zhang et al., 2006), ruling out the possibility that increased 

proliferation prior to insulitis contributes to the protection from T1D in IRE1ab-/- mice. At 

the molecular level, Betacellulin, a ligand in ErbB signaling, was shown to play a key 

role in the redifferentiation and restoration of b cell gene expression and insulin content 

in human islets (Ouziel-Yahalom et al., 2006). Consistent with this observation, both our 

bulk and scRNA-seq indicate markedly increased expression of genes that are involved 

in b cell growth and the ErbB pathway. Indeed, Amphiregulin (Areg), an ErbB pathway 

ligand, has a pro-regenerative function and plays an important role in promoting the 

healing, and regeneration of multiple tissues, and was our top hit in bulk RNA-seq 

(greater than 200-fold) (Burzyn et al., 2013; Monticelli et al., 2011; Shao and Sheng, 

2010). In addition to redifferentiation, neogenesis might also have contributed to the 

recovery from hyperglycemia in IRE1ab-/- mice. Indeed, we observed small islet clusters 



 231 

(<10 insulin-positive cells) and the occasional lone b cell in pancreata of IRE1ab-/- mice. 

The bulk RNA-seq demonstrated increased expression of regeneration genes in islets, 

and scRNA-seq revealed significantly increased ductal cell clusters in IRE1ab-/- mice. 

Unfortunately, as Cre or reporter lines on the NOD background for islet and ductal cells 

are not currently available, these possibilities cannot yet be explored directly with 

lineage tracing experiments. 

 How can the loss of IRE1a in b cells protect against autoimmune destruction? 

Could undifferentiated, immature b cells have reduced antigenicity and altered immune 

activating/regulating signatures that can avoid autoimmune destruction? Insulin and 

proinsulin have a key role in the initial triggering of the autoimmune response and 

driving of autoimmune b cell destruction (Arvan et al., 2012; Nakayama, 2011; 

Nakayama et al., 2005). Interestingly, among all the different islet cell types, only the 

highly secretory b cells are specifically targeted by immune cells in T1D. Thus, reducing 

insulin levels and allowing highly secretory b cells to rest during a critical window of the 

disease, together with altering ER functional capacity to disrupt assembly of MHC 

complex and peptide processing, may be crucial to prevent subsequent immune-

mediated destruction of b cells. Recently, a specific sub-population of b cells (15%) in 

NOD mice was described to resist autoimmune attack. These b cells expressed 

reduced levels of b cell-specific genes in the face of autoimmunity, suggesting 

dedifferentiation of b cells (Rui et al., 2017). In addition to expressing significantly lower 

levels of insulin, these immune-resistant b cells exhibited substantially reduced 

expression of autoantigens (Igrp, ZnT8, Gad1, and Ia-2) and markedly increased 

expression of immune inhibitory genes (Qa-2, Cd81) compared with that in normal b 
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cells. Although these cells did not show altered expression of a subset of ER stress-

related genes, none of the markers assessed in that study were direct targets of the 

IRE1a/sXBP1 branch of the UPR (Rui et al., 2017). Thus, in the same vein, in the 

presence of immune-independent b cell fragility in NOD mice (Dooley et al., 2016), 

IRE1a deletion might have caused loss of mature b cell identity. Immature b cells may 

have escaped autoimmune attack because of their significantly reduced expression of 

autoantigens, altered antigen processing, and upregulated expression of 

immunomodulatory genes. Consistent with this, levels of major autoantigens proinsulin, 

insulin, Iapp, and Ptprn were significantly reduced in dedifferentiated b cells of IRE1ab-/- 

mice. Moreover, ER stress and the UPR can directly affect MHC class I assembly, 

peptide processing, and antigen presentation by regulating protein translation, 

degradation, decay of ER mRNAs, and ER homeostasis (Granados et al., 2009; 

Ulianich et al., 2011). Indeed, we identified markedly reduced expression of MHC class I 

component b2m and altered expression of MHC class I peptide loading pathway genes 

in IRE1ab-/- mice, suggesting that protection of IRE1ab-/- mice from T1D was, in part, 

because of UPR-dependent defects in production and processing of autoantigens, 

which in turn significantly reduced cytotoxic CD8+ T cells and islet infiltration. Protection 

from autoimmune destruction is further supported by significant upregulation of immune 

inhibitory markers, downregulation of genes that are implicated in immune cell 

activation, and markedly altered expression of chemokines, cytokines, and ECM 

proteins, which play an important role in immune cell recruitment. 

 NOD IRE1ab-/-; Rag1-/- mice exhibited the same b cell functional alteration as 

seen in NOD IRE1ab-/- mice. Thus, the phenotypic changes of the b cells in IRE1ab-/- 
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NOD mice are likely cell intrinsically regulated, but not a result of altered adaptive 

immune cells. In addition, two findings suggest that b cell dedifferentiation observed 

early in life in NOD IRE1ab-/- mice alters the autoimmune response of the adaptive 

immune cells. First, the majority of NOD IRE1ab-/- mice remained non-diabetic at 50 

weeks of age. Second, T cells isolated from 8-week-old NOD IRE1ab-/- mice could not 

induce diabetes in NOD Rag1-/- recipients. Collectively, our results support the idea that 

dedifferentiation of b cells in young NOD IRE1ab-/- mice has long-lasting effects on the 

diabetogenic activity of T cells. There are several non-mutually exclusive mechanisms 

that could contribute to reduced diabetogenic activity of IRE1ab-/- T cells. The b cell 

autoreactive CD8+ T cells could be tolerized in the forms of anergy or deletion when 

they are not properly stimulated in NOD IRE1ab-/- mice. It is also possible that T cells 

with regulatory functions are enhanced in NOD IRE1ab-/- mice. Although we did not 

observe a proportional difference in FOXP3+ CD4+ Tregs in NOD IRE1ab-/- mice, the 

possibility that they are functionally enhanced cannot be ruled out. Future studies are 

needed to determine the mechanism underlying immune tolerance induction of b cell 

autoreactive T cells in NOD IRE1ab-/- mice. 

 Aberrant expression of the UPR genes was detected in b cells of mouse models 

of diabetes and human patients (Engin et al., 2013, 2014). Mitigation of ER stress and 

restoration of the UPR dysfunction with a chemical chaperone, TUDCA, prevented 

diabetes in pre-clinical T1D models (Engin et al., 2013). TUDCA is currently under 

phase I clinical trial (NCT02218619) for patients with new-onset T1D. Interestingly, the 

tyrosine kinase inhibitor imatinib, currently being tested in a phase II clinical trial 

(NCT01781975) for the treatment of new-onset T1D, was recently demonstrated to 
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blunt RNase activity of IRE1a and reverse T1D in the NOD mouse model (Louvet et al., 

2008; Morita et al., 2017). These studies support the notion that modulating b cell UPR 

can be a promising therapeutic strategy for people at high risk for T1D. 

 Autoantibodies directed against b cell proteins are used as biomarkers for risk 

prediction and clinical diagnosis. The presence of multiple autoantibodies is associated 

with a high risk of progression to overt disease (Regnell and Lernmark, 2017). The 

relationship between autoantibody positivity and the presence or absence of insulitis is 

an actively pursued research area (Pugliese, 2016). Emerging data suggest that donors 

with multiple autoantibodies can have absence of insulitis (In’t Veld et al., 2007; Wiberg 

et al., 2015). Thus, inducing a reversible dedifferentiation state for b cells to limit their 

antigen availability during this critical therapeutic window may provide an important non-

immune-based preventive or therapeutic strategy in high-risk individuals. Interfering with 

antigen processing and presentation, by modulating b cell ER functional capacity and 

the UPR, can further support diabetes protection. Whether similar strategies can be 

applicable to prevent other autoimmune diseases associated with highly secretory 

target cells remains to be tested. Future studies identifying the function of IRE1a and 

the other UPR sensors during different stages of T1D progression will be necessary to 

fully reveal the role of b cell ER stress and the UPR in T1D. 

 

Limitations of Study 

Our current breeding scheme does not allow us to obtain the littermate control mice 

expressing Cre transgene alone. Thus, the mice used to identify the effects of Cre 

expression on diabetes progression were not obtained from the experimental group. 
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Although we confirmed that Cre transgene levels in these mice did not differ from the 

knockout mice, and Cre transgene did not alter diabetes progression and pathology in 

NOD mice, we still consider this a limitation. In addition, due to the lack of reporter lines 

on NOD background, we were not able to perform lineage tracing experiments to 

definitively identify the contribution of neogenesis or transdifferentiation to the recovery 

from hyperglycemia in IRE1ab-/- mice. 
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Experimental Model and Subject Details 

Mouse Lines and Tamoxifen Injections 

The animal care and experimental procedures were carried out in accordance with the 

recommendations of the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals. The protocol (#M005064-R01-A03 by F.E. for mice) was approved 

by the University of Wisconsin-Madison Institutional Animal Care and Use Committee. 

Female NOD/ShiLtJ mice and Rag1-/- mice were purchased from Jackson Laboratory. 

All animals had ad libitum access to food (Envigo 2919) and water and were housed at 

20-24°C on a 12 h light/12 h dark cycle. Mice were bred and maintained under specific 

pathogen-free conditions at University of Wisconsin-Madison under approved protocols. 

The IRE1a floxed mice were a gift of Dr. Takao Iwawaki (Kanazawa Medical University). 

Ins2-CreERT/+ mice were a gift of Dr. Douglas Melton (Harvard University). Mice were 

backcrossed to NOD background more than 10 generations. The genetic backgrounds 

of all intercrossed mouse models were verified by Genome Scan Services (purity of 

IRE1afl/fl mice on NOD background >99.8% via Jackson Laboratory’s Genome Scan 

Service, purity of Ins2CreERT mice on NOD background >99.9% via Neogen, MiniMUGA 

array). To induce Cre recombinase activity, tamoxifen (T5648; Sigma-Aldrich) was 

dissolved in sterilized corn oil (C8267; Sigma-Aldrich) by shaking overnight in a 37°C 

incubator. The solution was protected from light, and 10 mg/ml tamoxifen was 

administrated to dams the day after delivery via intraperitoneal injection twice every 24 

hours in five consecutive days. Animals were observed daily for health status, any mice 

that met IACUC criteria for euthanasia were immediately euthanized. Experiments were 

performed on female mice between 3 and 50 weeks of age. 
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Method Details 

Histological Analyses 

Pancreata from mice were fixed with 10% zinc formalin overnight and paraffin 

embedded. 5-µm sections of the pancreata were generated, and staining was 

performed after blocking with 5% normal goat serum with the following antibodies: anti-

Insulin (Linco), anti-Glucagon (Cell Signaling), anti-Somatostatin (Santa Cruz), anti-Ki67 

(Cell Signaling), anti-CD3 (Novus Biologicals), anti-MafA (Cell Signaling), anti-Ucn3 

(Phoenix Pharmaceuticals), Alexa Fluor 488 (Invitrogen), and Alexa Fluor 568 

(Invitrogen) using established protocols. After staining, slides were mounted with 

antifade mounting medium containing 4,6-diamidino-2-phenylindole (DAPI) (Vector 

Laboratories). In some cases, the harvested pancreata were fixed in 4% 

paraformaldehyde (VWR), embedded in OCT (Sakura), and frozen before being 

sectioned at 10 µm. Antigen retrieval was performed by using citrate buffer pH 6.0 

(paraffin) or HistoVT (Nacalai Tesque) (frozen). Islet size was determined by manually 

circling insulin positive clusters in the Fiji software (Schindelin et al., 2012). Insulitis 

scoring was performed on step sections (three levels separated by 200-µm) of paraffin-

embedded and hematoxylin-eosin stained sections. ‘‘peri-insulitis’’ is defined as focal 

aggregation at one pole of the islet and in contact with the islet periphery. ‘‘non-

aggressive insulitis’’ refers to lesions with a clear, and often extensive, islet infiltrate 

occupying less than 50% of the islet area, whereas ‘‘aggressive insulitis’’ refers to an 

extensive infiltrate, where lymphoid cells invade the entire islet and intermingle with 

endocrine cells, showing extensive signs of b-cell damage. The images of the 
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pancreatic sections were obtained using a Nikon A1R-SI+ confocal microscope and a 

Nikon Storm/Tirf/Epifluorescence. The images were analyzed by ImageJ or Fiji. Two 

blinded individuals independently performed manual analyses and insulitis scoring. 

 

Cell Death (TUNEL) Assay 

DeadEnd Fluorometric TUNEL assay (Promega Corporation, Madison, WI) was 

performed on formalin-fixed, paraffin-embedded pancreatic sections according to the 

manufacturer’s instructions. 

 

Islet Isolation 

Islets were isolated using the standard collagenase/protease digestion method. Briefly, 

the pancreatic duct was cannulated and distended with 4°C collagenase/protease 

solution using Collagenase P (Sigma-Aldrich, USA) in 1x Hank’s balanced salt solution 

and 0.02% bovine serum albumin. The protease reaction was stopped using RPMI 1640 

with 10% fetal bovine serum. Islets were separated from the exocrine tissue using 

Histopaque-1077 (Sigma-Aldrich, USA). Hand-picked islets were cultured overnight at 

37°C in RPMI-1640 media containing 10% FBS and 1% antibiotic/antimycotic (Thermo 

Fisher Scientific) before use in experiments. 

 

Insulin, Proinsulin Content 

For measurement of whole pancreas insulin and proinsulin content, mice were 

sacrificed after a 4-hour fast and their whole pancreas insulin/proinsulin content 
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(µg/pancreas) was assessed by acid-ethanol extraction followed by ELISA (Alpco, 

Salem, NH). Samples were done in duplicate. 

 

Glucose Tolerance Test 

Glucose tolerance tests were performed on IRE1afl/fl and IRE1ab-/- mice simultaneously 

after an overnight (16 hours) fast. Blood glucose levels were measured at 0, 15, 30, 60, 

90, and 120 minutes after an intraperitoneal administration of glucose at dose of 2g/kg 

body weight. 

 

Immunophenotyping 

Prior to organ dissection, mice were perfused with 20 ml PBS to eliminate 

contaminating blood leukocytes. Single-cell suspensions of the pancreata were 

prepared by Collagenase P (Roche) digestion. Cells from pancreatic lymph nodes and 

spleen were prepared by physical dissociation. The spleen was treated with ACK lysing 

buffer (Thermo Fisher Scientific). All stainings began with an incubation with TruStain 

fcX anti-mouse CD16/32. Antibodies used for subsequent stainings were: anti-CD45 

(30-F11), -CD19 (6D5); -CD3 (145-2C11), -CD4 (RM4-5), -CD8 (53-6.7), -CD25 (PC61), 

CD11b (M1/70), -CD11c (N418), -F4/80 (BM8), and -Gr1 (RB6- 8C5) (all from 

BioLegend). Intracellular Foxp3 (FJK-16s) staining was performed according to 

eBioscience’s protocol. Samples were acquired with an Attune NxT flow cytometer 

(Thermo Fisher Scientific) and data were analyzed with FlowJo software (Tree Star). 

 

Adoptive Transfer 
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The spleens from 8-week-old IRE1afl/fl and IRE1ab-/- mice were physically dissociated 

before filtering with a 40 µM nylon mesh. After incubation with ACK lysing buffer 

(Thermo Fisher Scientific), total T cells were isolated by negative selection (Pan T cell 

isolation kit II, Miltenyi Biotec), and 4x106 cells were injected intravenously into 5-6-

week-old NOD.Rag1-/- female recipients. The recipients were followed for diabetes 

incidence with weekly blood glucose measurements. The purity of the transferred T-

cells (>95%) was analyzed by flow cytometry using anti-TCRb, anti-CD4, and anti-CD8 

antibodies (BD Biosciences). 

 

Bulk RNA-seq 

Following isolation, RNA was extracted using RNeasy Plus Mini Kit (Qiagen), including 

a column for elimination of genomic DNA. RNA concentration was determined using 

Qubit RNA HS Assay Kit (Life Technologies). RNA Integrity Number (RIN) was 

measured using Agilent RNA 600 Nano Kit (Agilent Technologies). RIN > 7 was used in 

the experiments. RNA library was generated using the TruSeq Stranded Total RNA 

(Human/Mouse/Rat) (Illumina). Cytoplasmic ribosomal RNA was removed from the 

sample using complementary probe sequences attached to magnetic beads. 

Subsequently, each mRNA sample was fragmented using divalent cations under 

elevated temperature, and purified. First strand cDNA synthesis was performed using 

SuperScriptII (Invitrogen, Carlsbad, California, USA), reverse transcriptase, and random 

primers. Second strand cDNAs were synthesized using DNA polymerase I and RNase 

H for removal of mRNA. Double-stranded cDNA was purified using Agencourt AMPure 

XP beads (Qiagen, Valencia, California, USA) as recommended in the TruSeq RNA 
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Sample Prep Guide. The blunt ended cDNA and the adapter-ligated products were 

purified using Agencourt AMPure XP beads. Quality and quantity of finished libraries 

were assessed using an Agilent DNA1000 series chip assay (Agilent Technologies) and 

Invitrogen Qubit HS cDNA Kit (Invitrogen), respectively. Cluster generation was 

performed using a TruSeq Paired End Cluster Kit (v4) and the Illumina cBot, with 

libraries multiplexed for 1x100bp sequencing using the TruSeq 250bp SBS kit (v4) on 

an Illumina HiSeq2500. Images were analyzed using CASAVA 1.8.2. 

 

Single Cell RNA-seq 

Following islet isolation and an overnight culture, islet cells were dissociated for 30 min 

at 37°C into single-cell suspensions, using a cocktail of digestive enzymes (Accutase; 

Innovative Cell Technologies, San Diego, CA). Libraries were constructed according to 

the Chromium Single Cell 3’ Reagent Kit v2 (10x Genomics, Pleasanton, CA). Briefly, 

cells in single cell suspension were delivered to the University of Wisconsin-Madison 

Biotechnology Center on ice, where the cell concentration and viability were quantified 

on the Countess II (Thermo Fisher Scientific) using 0.4% Trypan Blue (Invitrogen, 

Carlsbad, CA). The appropriate volume of cells was loaded onto the Single Cell A Chip 

required for yielding a targeted cell recovery of 3000 cells. Following the completion of 

the Chromium run, the Gel Bead-In EMulsions (GEMs) were transferred to emulsion-

safe strip tubes for GEM-RT, using an Eppendorf Master Cycler Pro thermocycler 

(Eppendorf, Hamburg, Germany). Following RT, GEMs were broken, and the pooled 

single cell cDNA was amplified. Post-cDNA amplified product was purified using 

SPRIselect (Beckman Coulter, Brea, CA) and quantified on a Bioanalyzer 2100 (Agilent, 
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Santa Clara, CA) using the High Sensitivity DNA kit. Adapters were then added to the 

libraries after fragmentation, end repair, A-tailing, and double-sided size selection using 

SPRIselect. Following adapter ligation, libraries were purified using SPRIselect, and 

sample-specific indexes (Chromium i7 Multiplex Kit, 10x Genomics) were added by 

sample index PCR. After sample index PCR, samples were double-size selected using 

SPRIselect, yielding final libraries compatible for Illumina sequencing. Final libraries 

were quantified using the Qubit High Sensitivity DNA Kit (Thermo Fisher Scientific). 

 

t-SNE Clustering 

We used Monocle2 v2.8.0 on R version 3.5.2 (Kite-Eating Tree) http://cole-trapnell- 

lab.github.io/monocle-release/docs/ (Qiu et al., 2017) to analyze the data obtained after 

alignment. Cells with unique molecular identifier (UMI) counts outside a range 

determined of two standard deviations were filtered, leaving 2,749 cells within the 

optimal UMI range for downstream Monocle analysis. Genes that were not expressed in 

at least 10 cells were excluded from analysis. We reduced the number of dimensions to 

the number of Principal components that explained the most variance (at least 50% for 

each dataset). 

To identify genes important for defining clusters, differential gene expression 

(DGE) analysis in Monocle2 was performed between all 7 clusters within the t-SNE plot 

of Figure 5A. To determine the distribution of cells from each sample that fall into each 

cluster, phenotypic data (cell barcode ID, sample, cluster number) was extracted for 

each cluster and sample. The composition of a cluster or sample was then calculated by 

percentage or mean of the population. 
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To visualize how different genes are expressed in cells that are known to be 

positive for a particular gene, we also generated violin plots using ggplot function in R. 

DGEs between IRE1afl/fl and IRE1ab-/- mice were clustered using Cluster 3.0 (de Hoon 

et al., 2004) and visualized using Java TreeView (Saldanha, 2004). 

 

Quantification and Statistical Analysis 

For all experiments the number of biological or technical replicates (n), error bars, and 

statistical analyses have been explained in the figure legends. For each experiment 

where statistics were computed, we used at least n = 3 or more biological replicates. 

Sample size were not pre-determined by power analysis, but sufficiency of number of 

mice were estimated based on pilot experiments and previously published work (Engin 

et al., 2013). Samples were randomly assigned and blinded for data analysis of 

immunostaining and insulitis scoring. No data were excluded in this study. Data are 

represented as mean ± SEM and were analyzed using either the unpaired Student’s t-

test, or one-way ANOVA where required. P < 0.05 was considered statistically 

significant; ns = non-significant as determined by statistical analysis in GraphPad Prism 

v.8 (GraphPad Software, San Diego, CA). 

 

Data and Code Availability 

Data Resources 

The accession number for the RNA-seq data reported in this paper are NCBI GEO: 

GSE144461 (bulk sequencing) and GSE144471 (single cell sequencing). 



 244 

 
Figure 1 
 

 

 

Figure 1: IRE1ab–/– NOD Female Mice Are Protected from T1D 

A) Schematic representation of tamoxifen-induced deletion of IRE1a in b cells of NOD 

mice. 

B) Representative image of an immunofluorescence staining on pancreatic sections 

from 5-week-old IRE1afl/fl (upper panel) and IRE1ab-/- (lower panel) mice for sXBP1 

expression. Sections were co-stained with anti-insulin (green) and anti-sXBP1 (red) 

antibodies. 

C) Quantification of mRNA expression of sXBP1 in the islets of 7- and 15-week-old 

IRE1afl/fl (7 weeks, n = 6; 15 weeks, n = 5) and IRE1ab-/- mice (7 weeks, n = 5; 15 

weeks, n = 6) by qPCR. Data are averages of two technical replicates from a 

representative experiment. 
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D) Blood glucose levels of NOD control (IRE1afl/fl) and IRE1ab-/- mice (n = 24 per 

group), measured weekly upon weaning after tamoxifen administration to lactating 

mothers 

E and F) Diabetes progression in (E) IRE1afl/fl and (F) IRE1ab-/- mice monitored up to 

      50 weeks. All data are represented as mean ± SEM, with statistical analysis 

      performed by Student’s t test (***p < 0.001, *p < 0.05). w, weeks 
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Figure 2 

 

 
 
Figure 2. Improved b Cell Function and Survival in IRE1ab–/– NOD Mice upon 

Recovery from Hyperglycemia  

A) Representative H&E staining of pancreatic sections from IRE1afl/fl and IRE1ab-/- mice 

at indicated time points. 

B) Immunofluorescence staining on pancreatic sections from IRE1afl/fl (5 weeks, n = 6; 

24 weeks: n = 5) and IRE1ab-/- (5 weeks: n = 6; 24 weeks: n = 8) mice for insulin 

expression at indicated time points. 

C) Immunofluorescence staining on pancreatic sections from IRE1afl/fl (5 weeks: n = 6; 

24 weeks, n = 5) and IRE1ab-/- (5 weeks, n = 6; 24 weeks, n = 8) for insulin (green) 

and CD3 (red) expression at indicated time points. The cell nuclei were 

counterstained with DAPI (blue). 



 247 

D) Insulitis scoring assessed on H&E-stained step sections obtained from 24 weeks of 

age IRE1afl/fl (n = 5) and IRE1ab-/- (n = 4) mice. 

E and F) Insulin (E) and proinsulin (F) content of pancreata from 7-week-old mice (n = 

      4 per group) determined by ELISA and normalized per mg of pancreas. 

G) Proinsulin-to-insulin molar ratio was calculated. Data are averages of two technical 

replicates from a representative experiment 

H and I) Insulin (H) (n = 6 per group) and proinsulin (I) content of pancreata from 24 

      week-old IRE1afl/fl (n = 5) and IRE1ab-/- (n = 7) mice determined by ELISA and 

      normalized per mg of pancreas. 

J) Proinsulin-to-insulin molar ratio was calculated. Data are averages of two technical 

replicates from a representative experiment. 

K) Serum insulin levels of 24-week-old IRE1afl/fl and IRE1ab-/- mice (n = 6 per group) 

determined by ELISA. 

L) Representative images of TUNEL assay showing b cell apoptosis (arrow) on 

pancreatic sections from IRE1afl/fl and IRE1ab-/- mice. The cell nuclei were 

counterstained with DAPI (blue). 

M) Percentage of b cell apoptosis calculated using pancreatic sections obtained from 

indicated time points (IRE1afl/fl, 3, 5, and 24 weeks: n = 6, 6, and 5, respectively; 

IRE1ab-/-, 3, 5, and 24 weeks: n = 6, 6, and 8, respectively). 

N) Representative fluorescence images of pancreatic sections from IRE1afl/fl and 

IRE1ab-/- mice (n = 6–8 per group) for insulin (green) and Ki67 (red) expression 

(arrow) at indicated time points. Cells were counterstained with the nuclear dye 

DAPI (blue). 
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O) Quantification of Ki67+ proliferating b cells in pancreatic sections from IRE1afl/fl (3 

weeks, n = 6; 5 weeks, n = 7) and IRE1ab-/- mice (3 weeks, n = 8; 5 weeks, n = 7) at 

indicated time points.  

All data are represented as mean ± SEM, with statistical analysis performed by 

Student’s t test (****p < 0.0001, **p < 0.01, *p < 0.05). w, weeks; ns, non-significant. 
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Figure 3 
 

 
 
 
Figure 3. Islet Cell Composition Is Altered in IRE1ab–/– Mice during the 

Hyperglycemic Phase 

A) Representative images of immunofluorescence staining on pancreatic sections from 

IRE1afl/fl and IRE1ab-/- mice (n = 8 per group) for insulin (green) and glucagon (red) 

expression at 3 weeks of age. The cell nuclei were counterstained with DAPI (blue). 

B) Representative images of immunofluorescence staining on pancreatic sections from 

IRE1afl/fl and IRE1ab-/- mice (n = 8 per group) for insulin (green) and glucagon (red) 

expression at 5 weeks of age. 

C) Representative images of immunofluorescence staining on pancreatic sections from 

IRE1afl/fl and IRE1ab-/- mice (n = 8 per group) for insulin (green) and somatostatin 

(red) expression at 5 weeks of age. The cell nuclei were counterstained with DAPI. 
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D) Representative images of immunofluorescence staining on pancreatic sections from 

IRE1afl/fl and IRE1ab-/- mice (n = 8 per group) for insulin (green) and glucagon (red) 

expression at 12 weeks of age. The cell nuclei were counterstained with DAPI 

(blue). 

E) Representative images of immunofluorescence staining on pancreatic sections from 

IRE1afl/fl and IRE1ab-/- mice (n = 8 per group) for insulin (green) and glucagon (red) 

expression at 24 weeks of age. 

F) Immunofluorescence staining on pancreatic sections from IRE1afl/fl and IRE1ab-/- 

mice (n = 8 per group) for insulin (green) and somatostatin (red) expression at 24 

weeks of age. 

G and H) Quantification of a, b, and d cells as a percentage of total islet area at 5 weeks 

      of age (G) and 24 weeks of age (H) using ImageJ (15–25 islets/animal/ time point). 

I) Representative image of an insulin+ (purple) and glucagon+ (green) bihormonal cell 

(white) in an islet of IRE1ab-/- mice. Arrow indicates the bihormonal cell. 

J) Representative image of a pancreatic section from 5-week-old IRE1ab-/- mice stained 

with anti-insulin (green) and anti-glucagon (red) antibodies, showing the presence of 

single b cells and small islet clusters. The arrow points to a small islet cluster. The 

cell nuclei were counterstained with DAPI (blue). 

K and L) The quantification of islet area from H&E-stained sections at 4 weeks (K) and 

      12 weeks (L) of age IRE1afl/fl (n = 3 per time point) and IRE1ab-/- (4 weeks, n = 3; 12 

      weeks, n = 4) mice by using ImageJ. 

All data are represented as mean ± SEM, with statistical analysis performed by 

Student’s t test (****p < 0.0001, **p < 0.01, *p < 0.05). w, weeks. 
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Figure 4 

 

 

Figure 4. Bulk RNA-Seq on Intact Islets from Hyperglycemic Mice Indicates 

Changes in the Expression of Cell Survival and Differentiation Markers 

A) Volcano plots for the edgeR analysis of the RNA-seq data from islets of 7-week-old 

IRE1afl/fl and IRE1ab-/- female NOD mice (n = 4 per group). Horizontal line depicts 

the FDR cutoff of 0.05 and the vertical lines mark log2 fold changes of -2 and 2. 

Genes with absolute log2 fold change larger than 5 or adjusted p value smaller than 

1e-25 and absolute log2 fold change larger than 2 are labeled with their gene 

symbols. 

B) Heatmap of expression levels for the DEGs that were identified in the IRE1afl/fl and 

IRE1ab-/- mice during the hyperglycemic phase (FDR < 0.01, FC > 2). 
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C) Gene set enrichment analysis, with the Molecular Signatures Database (MSigDB) 

Hallmark gene sets, identified ten pathways significantly associated with the 

upregulated genes in hyperglycemic IRE1ab-/- mice in comparison with IRE1afl/fl mice 

(FDR < 0.05). GeneRatio in the x axis quantifies the proportion of the upregulated 

genes that are among each gene set, and Count depicts the number of upregulated 

genes in the gene set. 

D) The mRNA expression of b  cell identity and endocrine progenitor markers in the 

islets of 7-week-old IRE1afl/fl and IRE1ab-/- mice (FDR < 0.05). 

E) Immunofluorescence staining on frozen pancreatic sections from 4-week-old 

IRE1afl/fl and IRE1ab-/- mice for insulin (green), MafA (red), and Ucn3 (red) 

expression. 

F–J) The mRNA expression of (F) islet cell markers, (G) disallowed genes, (H) ErbB 

      family of genes, (I) regeneration-related genes, and (J) growth factor gene 

      transcripts in the islets of 7-week-old IRE1afl/fl and IRE1ab-/- mice (FDR < 0.05). ns, 

      non-significant; w, weeks. FC, fold change. 
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Figure 5 
 

 
 
 
Figure 5. scRNA-Seq Identifies Altered Proportion of Islet Cell Clusters, Hormonal 

Expression, and Non-b Cell Islet Markers in IRE1ab–/– Mice 

A) Distinct pancreatic islet cell clusters in IRE1afl/fl and IRE1ab-/- mice identified by 

Monocle package. Each dot represents a single cell, color-coded according to its 

cellular identity as defined by gene expression. 

B) Percentage of population composed of cell sub-types identified in (A) in dissociated 

islets obtained from 5-week-old IRE1afl/fl (wild-type, WT) and IRE1ab-/- (knockout 1 

[KO1] and knockout2 [KO2]) mice. 

C) Expression of islet hormones Ins1, Ins2 (insulin), glucagon (Gcg), somatostatin 

(Sst), and pancreatic polypeptide (Ppy) in b cells (upper panel), a cells (middle 

panel), and d cells (bottom panel) of IRE1afl/fl and IRE1ab-/- mice (FDR < 0.01). ns, 

non-significant. 
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Figure 6 

 

Figure 6. b Cells of IRE1ab–/– Mice Dedifferentiate 

A–C) Expression of a cell markers (A) (Ttr and Irx2), (B) d cell markers (Hhex and 

      Rbp4), and (C) b cell maturity markers (MafA, Ucn3, and Slc2a2) in b cell clusters of 

      IRE1afl/fl and IRE1ab-/- mice at 5 weeks of age (FDR < 0.01). 

D and E) Expression of disallowed genes (D) and dedifferentiation and endocrine 

      progenitor markers (E) in b cell clusters of IRE1afl/fl and IRE1ab-/- mice (FDR < 0.01). 

F) Mean expression of sXBP1 target genes in b cell clusters of IRE1afl/fl and IRE1ab-/- 

mice. 

(G and H) k-means clustering (seven clusters) of DEGs (FDR < 0.01, FC > 2) among 

      the beta1 (G) and beta2 (H) populations (columns). Selected genes that define each 

      cluster are displayed. Color bar represents expression changes in log2 scale. FC, 

      fold change. 
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Figure 7 

 
 
 

Figure 7. b Cells of IRE1ab–/– Mice Have Altered Expression of Genes Associated 

with Immune Cell Recruitment 

A) The expression of genes that is key in regulation of lymphocyte activation, as well as 

markers of cytokine, chemokine, and ECM that are significantly altered in b cells of 

IRE1ab-/- mice compared with IRE1afl/fl mice (FDR < 0.01). 

B) The mRNA expression of b cell autoantigens in b cells of IRE1afl/fl and IRE1ab-/- 

mice. p values are indicated. 

C and D) The mRNA expression of MHC class I component b2m (C) and genes that are 

      involved in the MHC class I loading pathway in b cells of IRE1afl/fl and IRE1ab-/- mice 

      (D) (FDR < 0.05). 
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E) Fractions of CD4+ and CD8+ T cells in representative dot plots from pancreata of 21 

weeks of age IRE1afl/fl (n = 6) and IRE1ab-/- (n = 4) mice after pre-gating for single, 

viable, and CD45+ cells. 

F) Immunophenotyping data showing percentage of CD8+ T cells in spleen, pancreatic 

lymph node (PLN), and pancreas from 21 weeks of age IRE1afl/fl (n = 6) and IRE1ab-

/- (n = 4) mice. 

G) Fractions of CD11c+ dendritic cells in representative dot plots from pancreata of 5 

weeks of age IRE1afl/fl (n = 6) and IRE1ab-/- (n = 7) mice after pre-gating for single, 

viable, and CD45+ cells. 

H) Quantification of percentage of CD11c+ dendritic cells in pancreata from 5 weeks of 

age IRE1afl/fl (n = 6) and IRE1ab-/- (n = 7) mice. Data are represented as mean ± 

SEM, with statistical analysis performed by Student’s t test. 

I) Fractions of F4/80+ macrophages in representative dot plots from pancreata of 5 

weeks of age IRE1afl/fl (n = 6) and IRE1ab-/- (n = 7) mice after pre-gating for single, 

viable, and CD45+ cells. (J) Quantification of percentage of F4/80+ macrophages in 

pancreata from 5 weeks of age IRE1afl/fl (n = 6) and IRE1ab-/- (n = 7) mice. Data are 

represented as mean ± SEM, with statistical analysis performed by Student’s t test. 

(K) Percentage of diabetes-free NOD Rag-/- mice (n = 5 per group) post-total T cell 

transfer from 8-week-old IRE1afl/fl and IRE1ab-/- mice. The incidence of diabetes was 

compared by log-rank (Mantel-Cox) test (*p < 0.05). 
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Figure S1 
 

 
 
 
Figure S1 (Related to Figure 1): Characterization of the phenotype of Ins2CreERT/+ 

mice 

A) Blood glucose levels of female NOD(n = 22) and NOD Ins2CreERT/+ (n = 17) mice. 

B) The percentage of diabetes-free mice in Ins2CreERT/+ (red line), NOD (black line), 

and IRE1αfl/fl (blue dashed line). Cohorts plotted using a Kaplan-Meier curve. A log-

rank statistical analysis was performed. 

C) The expression of Cre transgene in pre-diabetic Ins2CreERT/+ (n = 3) and IRE1αβ-/- (n 

= 5) mice. 

D) Representative H&E and immunofluorescence images showing insulin and glucagon 

expression on pancreatic sections from diabetic Ins2CreERT/+ mice. Arrows indicate 

the dense area around islets with nuclei of lymphocytes. 
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E) Blood glucose levels of pre-diabetic Ins2CreERT/+ (red line) and NOD (black line) 

mice at indicated times after administration of glucose (n = 6 per group). 

F) Quantification of the glucose area under the curve (AUC) of NOD and Ins2CreERT/+ 

mice.  

Data are represented as mean ± SEM and were analyzed using either the Student’s t-

test, or one-way ANOVA where required. P < 0.05 was considered statistically 

significant. 
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Figure S2 
 

 
 
 

Figure S2 (Related to Figure 2): Characterization of the phenotype of NOD IRE1αβ-

/- ; Rag1-/- mice and the analysis of glucose tolerance in IRE1αβ-/- mice 

A) Blood glucose levels of female NOD IRE1αβ-/- ; Rag1-/-mice (n = 5). 

B) Blood glucose levels of 32 weeks of age normoglycemic IRE1αfl/fl (n = 5) and 

IRE1αβ-/- (n = 7) mice at indicated times after intraperitoneal injection of glucose. 

C) Quantification of the glucose area under the curve (AUC) of IRE1αfl/fl (n = 5) and 

IRE1αβ-/- (n = 7) mice. 

Data are represented as mean ± SEM and were analyzed using either the Student’s t-

test, or one way ANOVA where required. P < 0.05 was considered statistically 

significant. 
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Figure S3 
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Figure S3 (Related to Figure 4): Bulk RNA-Seq in the islets of IRE1αβ-/- mice during 

the hyperglycemic and recovery phases 

A and B) Gene ontology (GO) enrichment analysis of up- and down-regulated genes 

      from the bulk RNA-seq analysis of 7 weeks of age IRE1αfl/fl vs. IRE1αβ-/- mouse 

      islets (at FDR of 0.05). GeneRatio in the x-axis quantifies the proportion of the up- 

      or down-regulated genes that are among each GO category and Count depicts the 

      number of up- or down-regulated genes in the GO category. 

C) Heatmap of expression levels for differentially expressed genes identified in 15 

weeks of age IRE1αβ-/- and IRE1αfl/fl normoglycemic mice. 

D) Volcano plots showing differentially expressed genes in the islets of 15-week-old 

IRE1αfl/fl (n = 3) and IRE1αβ-/- (n = 4) mice. The horizontal line depicts the FDR cutoff 

of 0.05 and the vertical lines mark log2 fold changes of -2 and 2. Genes with 

absolute log2 fold change larger than 5 or adjusted P value smaller than 1e-25 and 

absolute log2 fold change larger than 2 are labeled with their gene symbols. 

E and F) GO enrichment of upregulated genes categorized by molecular function and 

      cellular compartment at FDR of 0.05. 
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Figure S4 
 

 
 
 
 

Figure S4 (Related to Figure 6): Single-cell RNA-seq identifies altered expression 

of disallowed, regenerative, and sXBP1 target genes in IRE1αβ-/- mice during 

hyperglycemic (5 weeks of age) phase 

A-C) Expression of (A) disallowed genes, (B) regenerative genes, and (C) sXBP1 target 

      gene expression in β-cell clusters of IRE1αfl/fl and IRE1αβ-/- mice (FDR < 0.01, FC > 

      2) 
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Figure S5 

 
Figure S5 (Related to Figure 7): Immunophenotyping of pancreas 

A) Fractions of FoxP3+ CD25+ cells in representative dot plots from pancreata of 21 

weeks of age IRE1αfl/fl and IRE1αβ-/- mice after pre-gating for single, viable, and 

CD4+ /CD45+ cells. 

B) Quantification of percentage of FoxP3+ CD25+ cells in pancreata from 21 weeks of 

age IRE1αfl/fl (n = 6) and IRE1αβ-/- (n = 4) mice. 

C) Fractions of CD19+ B cells in representative dot plots from pancreata of 21 weeks of 

age IRE1αfl/fl and IRE1αβ-/- mice after pre-gating for single, viable, and CD45+ cells. 

D) Quantification of percentage of CD19+ B cells in pancreata from 21 weeks of age 

IRE1αfl/fl (n = 6) and IRE1αβ-/- (n = 4) mice. 

E) Fractions of F4/80+ macrophages in representative dot plots from pancreata of 21 

weeks of age IRE1αfl/fl and IRE1αβ-/- mice after pre-gating for single, viable, and 

CD45+ cells. 

F) Quantification of percentage of F4/80+ macrophages in pancreata from 21 weeks of 

age IRE1αfl/fl (n = 6) and IRE1αβ-/- (n = 4) mice. 

Data are represented as mean ± SEM and were analyzed using Student’s t-test. 
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Figure S6 
 

 
 
 

Figure S6 (Related to Figure 7): Immunophenotyping of pancreatic lymph nodes 

A) Fractions of CD4+ and CD8+ T-cells in representative dot plots from pancreatic 

lymph nodes of 21 weeks of age IRE1αfl/fl and IRE1αβ-/- mice after pre-gating for 

single, viable, and CD45+ cells. 

B and C) Quantification of percentage of CD4+ and CD8+ T-cells in pancreatic lymph 

      nodes from 21 weeks of age IRE1αfl/fl (n = 6) and IRE1αβ-/- (n = 4) mice. 

D) Fractions of FoxP3+ CD25+ cells in representative dot plots from pancreatic lymph 

nodes of 21 weeks of age IRE1αfl/fl and IRE1αβ-/- mice after pre-gating for single, 

viable, and CD4+ /CD45+ cells. 

E) Quantification of percentage of FoxP3+ CD25+ cells in pancreatic lymph nodes from 

21 weeks of age IRE1αfl/fl (n = 6) and IRE1αβ-/- (n = 4) mice. 

F) Fractions of CD19+ B cells in representative dot plots from pancreatic lymph nodes 

of 21 weeks of age IRE1αfl/fl and IRE1αβ-/- mice after pre-gating for single, viable, 

and CD45+ cells. 
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G) Quantification of percentage of CD19+ B cells in pancreatic lymph nodes from 21 

weeks of age IRE1αfl/fl (n = 6) and IRE1αβ-/- (n = 4) mice. 

H) Fractions of F4/80+ macrophages in representative dot plots from pancreatic lymph 

nodes of 21 weeks of age IRE1αfl/fl and IRE1αβ-/- mice after pre-gating for single, 

viable, and CD45+ cells. 

I) Quantification of percentage of F4/80+ macrophages in pancreatic lymph nodes from 

21 weeks of age IRE1αfl/fl (n = 6) and IRE1αβ-/- (n = 4) mice. Data are represented as 

mean ± SEM and were analyzed using Student’s t-test. 
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Figure S7 
 

 
 
 
Figure S7 (Related to Figure 7): Immunophenotyping of spleen 

A) Fractions of CD4+ and CD8 T-cells in representative dot plots from spleen of 21 

weeks of age IRE1αfl/fl and IRE1αβ-/- mice after pre-gating for single, viable, and 

CD45+ cells. 

B and C) Quantification of percentage of CD4+ and CD8+ T-cells in spleen from 21 

      weeks of age IRE1αfl/fl (n = 6) and IRE1αβ-/- (n = 4) mice. 

D) Fractions of FoxP3+ CD25+ cells in representative dot plots from spleen of 21 weeks 

of age IRE1αfl/fl and IRE1αβ-/- mice after pre-gating for single, viable, and CD4+ 

/CD45+ cells 

E) Quantification of percentage of FoxP3+ CD25+ cells in spleen from 21 weeks of age 

IRE1αfl/fl (n = 6) and IRE1αβ-/- (n = 4) mice. 

F) Fractions of CD19+ B cells in representative dot plots from spleen of 21 weeks of 

age IRE1αfl/fl and IRE1αβ-/- mice after pre-gating for single, viable, and CD45+ cells. 

G) Quantification of percentage of CD19+ B cells in spleen from 21 weeks of age 

IRE1αfl/fl (n = 6) and IRE1αβ-/- (n = 4) mice. 
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H) Fractions of F4/80+ macrophages in representative dot plots from spleen of 21 

weeks of age IRE1αfl/fl and IRE1αβ-/- mice after pre-gating for single, viable, and 

CD45+ cells. 

I) Quantification of percentage of F4/80+ macrophages in spleen from 21 weeks of age 

IRE1αfl/fl (n = 6) and IRE1αβ-/- (n = 4) mice. 

Data are represented as mean ± SEM and were analyzed using Student’s t-test. 
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Abstract 
 

Cell type-specific gene expression patterns are outputs of transcriptional gene 

regulatory networks (GRNs) that connect transcription factors and signaling proteins to 

target genes. Single-cell technologies such as single cell RNA-sequencing (scRNA-seq) 

and single cell Assay for Transposase-Accessible Chromatin using sequencing 

(scATAC-seq), can examine cell-type specific gene regulation at unprecedented detail. 

However, current approaches to infer cell type-specific GRNs are limited in their ability 

to integrate scRNA-seq and scATAC-seq measurements and to model network 

dynamics on a cell lineage. To address this challenge, we have developed single-cell 

Multi-Task Network Inference (scMTNI), a multi-task learning framework to infer the 

GRN for each cell type on a lineage from scRNA-seq and scATAC-seq data. Using 

simulated and real datasets, we show that scMTNI is a broadly applicable framework for 

linear and branching lineages that accurately infers GRN dynamics and identifies key 

regulators of fate transitions for diverse processes such as cellular reprogramming and 

differentiation. 
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Introduction 
 

Transcriptional gene regulatory networks (GRNs) specify connections between 

regulatory proteins and target genes and determine the spatial and temporal expression 

patterns of genes1,2. These networks reconfigure during dynamic processes such as 

development or disease progression, to specify cell type specific expression levels. 

Recent advances in single cell omic techniques such as single cell RNA-sequencing 

(scRNA-seq) and single cell Assay for Transposase-Accessible Chromatin using 

sequencing (scATAC-seq)3 enable collecting high resolution molecular phenotypes of a 

developing system and offer unprecedented opportunities for the discovery of cell type-

specific regulatory networks and their dynamics. However, computational methods to 

systematically leverage these datasets to identify regulatory networks driving cell type-

specific expression patterns are limited. 

Existing methods of network inference from single cell omic data4–16 have 

primarily used transcriptomic measurements and have low recovery of experimentally 

verified interactions17,18.Recentlya small number of methods have attempted to integrate 

scRNA-seq and scATAC-seq datasets19–21 to examine gene regulation, however, many 

of these methods focus on defining cell clusters and the network is defined entirely 

based on accessible sequence-specific motif matches. This restricts the class of 

regulators that can be incorporated into the regulatory network to those with known 

motifs. Furthermore, existing methods infer a single GRN for the entire dataset or do not 

model the cell population structure which is important to discern dynamics and 

transitions in the inferred networks for cell type-specificity. To overcome the limitations 

of existing methods, we have developed single-cell Multi-Task Network Inference 
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(scMTNI), a multi-task learning framework that integrates the cell lineage structure, 

scRNA-seq and scATAC-seq measurements to enable joint inference of cell type-

specific GRNs. scMTNI takes as input a cell lineage tree, scRNA-seq data and scATAC-

seq based prior networks for each cell type. scMTNI uses a probabilistic prior to 

incorporate the lineage structure during network inference and outputs GRNs for each 

cell type on a cell lineage. We performed a comprehensive benchmarking study of 

multi-task learning approaches including scMTNI on simulated data and show that 

incorporation of multi-task learning and tree structure is beneficial for GRN inference. 

We applied scMTNI to a previously unpublished scRNA-seq and scATAC-seq 

time course dataset for cellular reprogramming in mouse and two published scRNA-seq 

and scATAC-seq cell-type specific datasets for human hematopoietic differentiation. We 

demonstrate the advantage of scMTNI’s framework to integrate scATAC-seq and 

scRNA-seq datasets for inferring cell type specific GRNs on linear and branching 

lineage topologies. We examined how the inferred networks change along the trajectory 

and identified regulators and network components specific to different parts of the 

lineage tree. Our predictions include known as well as previously uncharacterized 

regulators of cell populations transitioning to different lineage paths, providing insight 

into regulatory mechanisms associated with reprogramming efficiency and 

hematopoietic specification. 

 

Results 
 
Single-cell Multi-Task learning Network Inference (scMTNI) for defining regulatory 

networks on cell lineages 
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We developed scMTNI, a multi-task graph learning framework for inferring cell 

type-specific gene regulatory networks from scRNA-seq and scATAC-seq datasets (Fig. 

1a), where a cell type is defined by a cluster of cells with a distinct transcriptional, and, if 

available, accessibility profile. scMTNI models a GRN as a Dependency network22,a 

probabilistic graphical model with random variables representing genes and regulators, 

such as transcription factors (TFs) and signaling proteins. 

scMTNI takes as input cell clusters with gene expression and accessibility 

profiles and a lineage structure linking the cell clusters (Fig. 1). Such inputs can be 

obtained from existing methods for integrative clustering23 and lineage construction24. 

scMTNI uses the scATAC-seq data for each cell cluster to define cell type-specific 

sequence motif-based TF-target interactions (e.g., a motif for a particular TF, which is 

accessible only in specific cell types will result in a TFtarget interaction only in those cell 

types) which are used as a prior to guide network inference (Methods). scMTNI can also 

take bulk ATACseq data for corresponding cell types to generate cell type-specific prior 

networks or cell type-agnostic priors derived from sequence-specific motifs that in turn 

could be filtered with relevant ATAC-seq data. scMTNI’s multi-task learning framework 

incorporates a probabilistic lineage tree prior, which uses the lineage tree structure to 

influence the similarity of gene regulatory networks on the lineage. This lineage tree 

prior models the change of a GRN from a start state (e.g., progenitor cell state) to an 

end state (e.g., more differentiated state) as a series of individual edge-level 

probabilistic transitions. The output of scMTNI is a set of cell type-specific GRNs one for 

each cell cluster in the lineage tree. scMTNI is able to incorporate both linear lineage 

and tree-based lineage structure. scMTNI takes known cell lineage tree structure or 
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computationally inferred cell lineage using, for example, a minimum spanning tree 

(MST24) approach on scRNA-seq data. While scMTNI was developed to incorporate 

both scRNA-seq and scATAC-seq data, it can be applied to situations where scATAC-

seq, and therefore a cell type-specific prior network, is not available. We refer to the 

versions of our approach as scMTNI+Prior and scMTNI depending upon whether it uses 

prior knowledge or not. The output networks of scMTNI are analyzed using two dynamic 

network analysis methods: edge-based k-means clustering and topic models (Fig. 1b). 

These approaches identify key regulators and subnetworks associated with a particular 

cell cluster or a set of cell clusters on a branch. 

 

Multi-task learning algorithms outperform single-task algorithms for single cell 

network inference 

To evaluate scMTNI and other existing algorithms with known ground truth 

networks on single-cell transcriptomic data, we set up a simulation framework, which 

entailed creation of a cell lineage, generating synthetic networks and corresponding 

single-cell expression datasets for each cell type on the lineage (Fig. 2a). We used a 

probabilistic process of network structure evolution to generate the network structure for 

three cell types, each containing 15 regulators and 65 genes and between 202–239 

edges (Methods). Next, we applied BoolODE17 to simulate the in silico single-cell 

expression data using each cell type’s generated network. To mimic the sparsity in 

single-cell expression data, we set 80% of the values to 0. We created three datasets 

with different numbers of cells: 2000, 1000, and 200, referred here as datasets1, 2, and 

3. We asked whether multi-task learning is beneficial compared to single-task learning 
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for network inference from scRNA-seq data. To this end, we compared scMTNI and four 

other multi-task learning algorithms, MRTLE25, GNAT26, Ontogenet27, and AMuSR28 to 

three single-task algorithms, LASSO regression29, INDEP, and SCENIC30 (Methods). Of 

these methods, only SCENIC uses a non-linear regression model while the others are 

based on linear models. INDEP is similar to scMTNI but does not incorporate the 

lineage prior. Each algorithm was applied within a stability selection framework and 

evaluated with Area under the Precision recall curve (AUPR) and F-score of top k 

edges, where k is the number of edges in the true network (Fig. 2b, c). On dataset 1, 

based on AUPR, scMTNI, MRTLE, and AMuSR are able to recover the network 

structure better than the other multi-task learning and single-task learning algorithms 

(Fig. 2b). Ontogenet performs better than the single-task learning algorithms in at least 

two cell types. Finally, GNAT performs comparably to the single-task learning 

algorithms. When comparing algorithms based on F-score of top k edges, we have 

similar observations that scMTNI and MRTLE have a better performance than other 

algorithms (Fig. 2c). Ontogenet performs better than LASSO and INDEP in at least two 

cell types, and comparable to SCENIC, except that Ontogenet in cell type 3 is worse 

than SCENIC. GNAT is comparable to the single-task learning algorithms for at least 2 

of the cell types. The low F-score of AMuSR is because the inferred networks are too 

sparse, with fewer than 100 edges, while the other algorithms inferred similar number of 

edges as the true networks. These results remain consistent for datasets 2 and 3 which 

have fewer cells (1000 and 200, respectively); scMTNI and MRTLE remain superior in 

performance than other algorithms measured by both AUPR and F-score (Fig. 2b, c). 

We expect scMTNI to be better since the network simulation procedure is similar, but 
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the data generation process is different and independent from scMTNI’s model. Finally, 

we aggregated the results across all three cell types and datasets to obtain an overall 

comparison of the algorithms. Here we considered algorithms across all parameter 

settings tested as well as the best parameter setting determined by the best F-score or 

AUPR. Based on the AUPR of “all parameter setting”, we found that multi-task learning 

methods, especially scMTNI and MRTLE are generally better than single-task learning 

methods with higher AUPRs (Supplementary Fig. 1A, C). AMuSR also outperformed the 

single-task algorithms based on AUPRs, although this was not as significant as MRTLE 

and scMTNI. When considering the “best parameter setting”, the methods were not 

significantly different when using AUPR, though MRTLE and scMTNI had the highest 

AUPR (Supplementary Fig. 1B, D). When using the Fscore, scMTNI and MRTLE 

remained top performing algorithms for the “all parameter setting” (Supplementary Fig. 

2A, C) and the “best parameter setting” (Supplementary Fig. 2B, D). Further, GNAT and 

Ontogenet had a higher F-score than the single-task learning method LASSO for the “all 

parameter” and “best parameter” settings, respectively. AMuSR suffered on the F-score 

metric due to the high sparsity in the inferred networks. Across different single-task 

algorithms, LASSO had the worst performance. Overall, the results on the simulated 

networks suggest that multi-task learning algorithms have a better performance than 

single-task algorithms for network inference on sparse datasets such as single-cell 

transcriptomic data. Furthermore, scMTNI and MRTLE are able to more accurately infer 

networks than other multi-task learning algorithms. 
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Inference of gene regulatory networks of somatic cell reprogramming to induced 

pluripotent stem cells 

Cellular reprogramming is the process of converting cells in a differentiated state 

to a pluripotent state and is important in regenerative medicine as well as for generating 

patient-specific disease models. However, this process is inefficient as a small fraction 

of cells get reprogrammed to the pluripotent state31. To gain insight into gene regulatory 

networks that govern the dynamics of this process, we profiled single cell accessibility 

(scATAC-seq) during reprogramming of mouse embryonic fibroblasts (MEFs) to the 

induced pluripotent state and four intermediate timepoints, day 3, day 6, day 9, and day 

12, to constitute a dataset of 6 timepoints. We used LIGER to integrate the scRNA-seq 

and scATAC-seq datasets (Fig. 3a, b) and identified 8 clusters (Methods). Of these 

clusters, C4 is MEF-specific while C5 is ESC-specific (Fig.3c, d) and showed good 

integration of the scRNA-seq and scATAC-seq profiles (Supplementary Fig. 3). We 

removed C6 as it did not have scRNA-seq cells and applied a minimum spanning tree 

(MST24) approach to construct the cell lineage tree from the 7 cell clusters with both 

scRNA-seq and scATAC-seq (Methods, Fig. 3e). The MEF-specific cluster (C4) is at 

one end of the tree, while the ESC-specific cluster (C5) is at the other end. This is 

consistent with the starting and end state of the reprogramming process and we 

considered C4 to represent the root of the tree. The other clusters represented a mix of 

cells from different time points, which is consistent with the level of heterogeneity of the 

reprogramming system32. We further verified the identity of these intermediate clusters 

with a Monocle based trajectory analysis33 which shows that C7, C2, and C3 represent 
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cells that might exit the trajectory towards reprogramming and C8 represents cells 

upstream of this point (Supplementary Fig. 4). 

We applied scMTNI, scMTNI+Prior (scMTNI with prior network), INDEP, 

INDEP+Prior (INDEP with prior network), SCENIC and additionally CellOracle to this 

dataset (Fig. 3f). We included CellOracle as it combines scRNA-seq and scATAC-seq 

data, by using accessibility to restrict the set of edges selected based on expression. 

We used the matched scATAC-seq clusters to obtain TF-target prior interactions for 

each scRNA-seq cluster needed for INDEP+Prior, scMTNI+Prior and CellOracle 

(Methods). We assessed the quality of the inferred networks by comparing to multiple 

gold standard datasets in mouse embryonic stem cells (mESCs, Table 1): one derived 

from ChIP-seq experiments ("ChIP”) from ESCAPE or ENCODE databases34,35,one 

from regulator perturbation experiments ("Perturb”)34,36, and the third from the 

intersection of edges in ChIP and Perturb ("ChIP + Perturb”). We first compared the 

performance of the methods using F-score on the top 500, 1k, and 2k edges across 

methods (Fig. 3f, Supplementary Figs. 5, 6). On Perturb, CellOracle and scMTNI+Prior 

had the best performance, beating other algorithms significantly. On ChIP, SCENIC and 

CellOracle were the best performing methods. Finally, on Perturb + ChIP, CellOracle 

and scMTNI+Prior had the best performance. Although CellOracle had high F-scores, 

its inferred GRNs included a substantially smaller number of regulators (7–11) 

compared to SCENIC or scMTNI + Prior (29–36). In addition to F-score, we also 

considered the number of predictable TFs as an additional metric (Supplementary Fig. 

7, Methods). This is defined as the number of individual TFs whose targets had a 

significant overlap with the gold standard. Higher the number of predictable TFs, the 
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better is a method. On ChIP, scMTNI + Prior had the highest average number of 

predictable TFs. scMTNI had the highest number of predictable TFs for the Perturb, 

Perturb + ChIP datasets followed closely by scMTNI + Prior. Overall, scMTNI+Prior had 

among the highest F-scores, high number of predictable TFs and a greater coverage of 

the gold standards compared to competing methods using expression alone (SCENIC) 

as well as those that either incorporated accessibility information (CellOracle, INDEP + 

Prior) or cell lineage information (scMTNI). 

To perform an initial assessment of the network dynamics on the cell lineage, we 

computed F-score between each pair of inferred networks defined by the top 4k edges 

(Fig.3g). Both scMTNI and scMTNI + Prior networks diverged in a manner consistent 

with the lineage structure. scMTNI networks formed three groups of cell types, (C4, C8, 

C1, C7), (C2, C3) and (C5 (ESC)). scMNTI + Prior found similar groupings but placed 

C5 (ESC) closer to (C1, C7, C8, C4) branch. Both methods showed that C5 is closest to 

C1, which could be an important transitioning state of cells during reprogramming. 

SCENIC showed similarity among C1, C4, C7, however had lower similarity scores for 

most pairwise comparisons which made it difficult to discern a clear lineage structure. 

CellOracle topology identified the (C2, C3) group, but placed it under a subtree with 

(C4, C8), which, though feasible given the heterogeneity of the system, is less 

consistent with the gradual progression of the reprogramming process through the 

intermediate C7 state. The networks inferred by the other methods were very dissimilar 

which is biologically unrealistic given the high heterogeneity of the reprogramming 

system with several intermediate populations32. Overall, these results suggest that 
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scMTNI+Prior recovered regulatory networks of high quality and the networks exhibit a 

gradual rewiring of structure from the MEF to the pluripotent state. 

 

scMTNI predicts key regulatory nodes and GRN components that are rewired 

during reprogramming 

To gain insight into the regulatory mechanisms of cell populations that 

successfully reprogram versus those that do not and to further characterize these 

different cell clusters, we examined the rewired network components in each cell type-

specific network inferred by scMTNI + Prior. We used two complementary approaches: 

k-means edge clustering and Latent Dirichlet Allocation (LDA, Methods). In the k-means 

edge clustering approach, we represented each edge in the top 4k confidence set of 

any cell cluster, by a vector of confidence scores in each cell cluster-specific network (if 

an edge is not inferred in the network it is assigned a weight of 0). Next, we clustered 

edges based on their edge confidence pattern into 20 clusters determined by the 

Silhouette Index coefficient optimization (Fig. 4a). The largest “edge clusters” exhibited 

interactions specific to one cell cluster (e.g., E4, E6, E7, E11, E13, E15, and E16), while 

smaller clusters exhibited conserved edges for more than one cell cluster (e.g., E2, E5, 

E12). To interpret these edge clusters, we identified the top regulators associated with 

each of the edge clusters (Fig.4b). E16, which was MEF-specific (C4) had Npm1, 

Nme2, Thy1, Ddx5, and Loxl2 as the top regulators which are known MEF-specific 

genes. In contrast, E11, which was ESC-specific(C5) had Klf4, Sp1, Sp3 as some of its 

top regulators, which have known roles in stem cell maintenance (Klf4), or are essential 

for early development (Sp137) and post natal development (Sp338). Edge clusters that 
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shared edges across multiple cell clusters, e.g., E5 (C4, C8, and C1), shared some of 

the top-ranking regulators such as Npm1 and Thy1 with the MEF-specific cluster and 

also identified other fibroblast-specific genes such as Col5a2 and Ybx1. Finally, E2 

which comprised shared edges between cell clusters C1 and C5, contained Esrrb, as its 

top regulator (Fig. 4b). Esrrb plays an important role for establishing and maintaining the 

pluripotency network39. This further supports the lineage structure that C1 likely 

represents a population of cells that are committed to becoming pluripotent. 

While the k-means analysis identified regulatory hubs specific to individual cell 

clusters, it was challenging to identify entire subnetworks that rewired at specific branch 

points because it treats each edge independently. We developed an approach by 

adopting Latent Dirichlet Allocation (LDA) that was recently used to study regulatory 

network rewiring from transcription factor ChIP-seq datasets40 (Methods). In this 

approach, each TF is treated as a “document” and target genes are treated as “words” 

in the document. Each document (TF) is assumed to have words (genes) from a mixture 

of topics, each topic in turn interpreted as a pathway. TFs across cell clusters are 

treated as separate documents. We applied LDA with k =10 topics (Fig. 4c, d, 

Supplementary Figs. 8–10),and examined each of the topics based on their Gene 

Ontology process enrichment (Supplementary Fig. 11), and the tendency and identity of 

specific regulators to rewire across the cell clusters. Topics 3 and 6 are enriched for cell 

cycle terms (Supplementary Fig. 11). Other processes associated with these topics 

included immune response (topic 1), developmental processes (topics 1, 3 and 8), 

electron transport (topic 9), and chromosome organization (topic 10). Topic 3 networks 

were among the most divergent networks across the cell populations and identified 
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several known regulators of pluripotency (Fig. 4c). In particular, Esrrb was a hub in C5 

(ESC) and C1 (closest to ESC) but absent in the other cell clusters. 

We used the LDA analysis to further characterize cell populations that become 

pluripotent (C1-C5 branch), and those that remain stalled (C7-C3-C2 branch) by 

identifying regulators that gained or lost connections between these two branches. 

Several topics included regulators that showed a difference in connectivity between 

these branches including topics 2, 3, 4, 6, 8, and 9. The regulators that gained edges in 

the pluripotency branch compared to the stalled branch included cell cycle regulators 

(Top2a, Ccnb1: topic 3) and known pluripotency genes (Esrrb: topic3 and Klf4: topic 4, 

Fig. 4d). In contrast, regulators that gained connections in C7-C3-C2 branch relative to 

the C1-C5 branch (or maintained connections similar to C4), included MEF-specific 

genes such as Loxl2, Fosl2 (topic 2), Aebp1 (topic 6), Hoxd13 (topic 8), and Fosl1, 

Nme2 and Ccng1 (topic 9). Nme2 is known to regulate Myc, which is one of the four 

reprogramming factors41. Aebp1, associated with fibroblast differentiation42, and Loxl2, 

associated with connective tissue43,44, persisted in all three cell clusters in the stalled 

branch (C7-C3-C2). Overall, our analysis indicated that in cell populations that do not 

reprogram successfully, cell cycle regulators have lower connectivity while several of 

the MEF regulators (e.g., Nme2, Aebp1) persist or gain connections. These new 

predicted regulators can be perturbed to examine the impact on cellular reprogramming 

efficiency. 

 

Inferring gene regulatory networks in human hematopoietic differentiation 
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To examine the utility of scMTNI in a different cell fate specification system, we 

applied scMTNI to a published scATAC-seq and scRNA-seq dataset for human adult 

hematopoietic differentiation45. This dataset profiled accessibility and transcriptomic 

state of immunophenotypic populations that were sorted based on cell surface markers 

and enabled studies of how multipotent progenitors transition into lineage-specific cell 

states. We considered the cell populations profiled with both scATAC-seq and scRNA-

seq datasets: hematopoietic stem cell (HSC), common myeloid progenitor (CMP), 

granulocyte macrophage progenitors (GMP) and monocyte (Mono). These populations 

are known to be heterogeneous comprising multiple subpopulations45. To identify these 

sub-populations, we again applied LIGER23 and identified 10 integrated clusters of 

RNA and accessibility (Fig. 5a–d). Most clusters exhibited a mixed composition: C8 is 

mainly composed of HSCs but also included CMP0 cells; C6 and C9 are composed of 

GMP and CMP0 cells. C1 (73 cells) and C4 (37 cells) were mainly composed of Mono 

cells and were combined into C1. C5 had too few RNA cells (22 cells) and was 

excluded from further analysis. We next inferred a cell lineage tree from these 8 cell 

clusters using a minimal spanning tree approach24 as described in the reprogramming 

study (Fig. 5e, Methods). As C8 is largely made up of HSC cells and HSC is the starting 

cell type, we treated C8 as the root of the lineage. 

We applied the same set of network inference algorithms to this dataset as the 

reprogramming dataset: scMTNI, scMTNI+Prior, INDEP, INDEP+Prior, SCENIC and 

CellOracle. We assessed the quality of the inferred networks from each method by 

comparing them to gold standard edges from published ChIP-seq and regulator 

perturbation assays from several human hematopoietic cell types. This included ChIP-



 291 

seq datasets from the UniBind database (Unibind46), ChIP-seq (Cus_ChIP) and 

regulator perturbation (Cus_KO) experiments in the GM12878 lymphoblastoid cell line 

from Cusanovich et al.47 and the intersection of ChIP and perturbation studies 

(Cus_KO+Cus_ChIP, Cus_KO+Unibind). In total, we had five gold standard networks. 

We used F-score and the number of predictable TFs of the top 500, 1k, 2k edges in the 

inferred network (Methods, Fig. 5f, Supplementary Fig. 12). The relative performance of 

the algorithms depended upon the gold standard. Algorithms that did not use priors 

(INDEP, SCENIC and scMTNI) performed comparably (with no significant difference) on 

three of the five gold standards. On Unibind and Cus_KO+Unibind, SCENIC is 

significantly better than INDEP and scMTNI (Fig. 5f, Supplementary Fig. 13). Methods 

that used prior knowledge, CellOracle, INDEP+Prior, scMTNI+Prior, were generally 

better than methods without priors for the ChIP-based datasets (Cus_ChIP, Unibind). 

CellOracle performs better than INDEP+Prior and scMTNI+Prior on Cus_ChIP and 

Unibind, but is outperformed by all methods on any of the regulator perturbation 

datasets. INDEP+Prior and scMTNI+Prior are comparable across the gold standard 

datasets with no significant difference in performance (Fig. 5f, Supplementary Fig. 13). 

Based on number of predictable TFs in the predicted networks (Supplementary Fig. 14), 

INDEP+Prior and scMTNI+Prior recovered more predictable TFs especially in KO 

experiments, while CellOracle recovered more predictable TFs in Cus_ChIP and 

UniBind. For the Unibind dataset, we had ChIP-seq based gold standard edges for 

different blood cell types, with 1 to 48 transcription factors (Table 1). Of the 10 cell 

types, methods that used priors performed significantly better than methods that did not 

on the GM_B-cells and Hematopoietic Stem Cells (HSCs) which had the largest number 
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of TFs (Supplementary Figs. 15, 16). However, CellOracle had much lower performance 

in other cell types and was outperformed by methods with and without priors, likely 

because of the smaller number of TFs in these datasets. The number of predictable TFs 

per dataset and method was generally low with the exception of GM_B-cells where 

methods with priors were better than methods without priors (Supplementary Fig. 17). 

However, these gold standards were much smaller and therefore can assess smaller 

portion of the inferred networks. 

We next examined the inferred networks for the extent of change on the lineage 

structure (Fig. 5g). The single-task learning methods INDEP and INDEP+Prior exhibited 

a low overlap across each pair of cell lines and did not as such obey the lineage 

structure. SCENIC recovers part of the lineage structure, but placed C7 (common 

myeloid) close to C6 (granulocyte-macrophage progenitors (GMP)) rather than C10, 

which has similar sample composition as C7. In contrast, scMTNI and scMTNI+Prior 

were able to find two groups of cell types, one corresponding to the HSC and CMP2 

branch consisting of C8, C3, and C2, and the second corresponding to the CMP0, 

CMP1, and GMP branch (C6, C9, C10, and C7). CellOracle also inferred a similar tree 

with small variations within these two groups. For this dataset, the addition of 

accessibility or lineage information was helpful to capture realistic extents of network 

level changes. 

 

Inferring shared and lineage-specific regulators for hematopoietic differentiation 

Similar to our cellular reprogramming study, we examined the scMTNI+Prior 

networks to identify cell type-specific regulators and network components (Fig. 6) with k-
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means and LDA analysis. We applied k-means edge clustering to the union of top 5k 

edges in any of the cell clusters and identified 19 edge clusters (Methods). Compared to 

the reprogramming study, a larger portion (94% vs 86%) of the edges are specific to 

one cell cluster (Fig. 6a). We used these edge clusters to examine the differences and 

similarities at the branch between the CMP clusters (C7, C10), and the GMP clusters 

(C6 and C9). Edge cluster E12 was specific to C7 and C10, E18 was specific to C6 and 

C9, and E19 shared edges from C6, C9, C10, C7. Both E19 and E12 had YBX1 and 

TSC22D3 as top regulators (Fig. 6b). YBX1 is known to direct fate of HSCs with high 

expression in myeloid progenitor cells48 and involved in monocyte/macrophage 

differentiation49. TSC22D3, which is a glucocorticoid leucine zipper50, is involved in 

differentiation of hematopoietic stem cells51. E12 additionally had KLF1, FLI1, S100A4 

as top regulators. KLF1 is an essential regulator for the erythroid lineage52,53, which is 

derived from the myeloid progenitor cells. FLI1 also plays a role in erythroid lineage by 

regulating the Erythpoetin protein54, suggesting these cells are committed to the 

erythroid lineage. In contrast, E18 which shared edges between C6 and C9 identified 

immune system-related regulators such as IRF8 and NFKBIA which have been 

associated with general lymphoid development (IRF855) or specific lineages such as B 

cells (NKBIA56). Overall, the k-means edge clustering approach helped identify the key 

regulators with known or plausible roles in hematopoiesis that could explain the 

differences among the different lineages. 

Our LDA topic analysis predicted several cell type-specific network components 

with different extents of conservation across the lineage (Fig. 6c, d, Supplementary 

Figs. 18–20). These topics were enriched in diverse biological processes such as cell 
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cycle (Topic 1 and 8, Supplementary Fig. 21) and blood related processes (Topic 9). 

Topic 2 showed a gradual rewiring of an ID2-specific network from the HSC populations 

(C8, C3, C2), to KLF1 and MYC centered networks for C7 and C10 which represented 

the CMP populations (Fig. 6c, d). ID2 which belongs to the Inhibitors of DNA family of 

proteins has been shown to regulate both the erythroid and lymphoid lineages57 and is 

consistent with its presence in the C8, C3, C2 clusters. Furthermore, KLF1 connectivity 

was more pronounced in C7 compared to C10, which could indicate these cells are 

more committed than those in C10. Similarly, PBX1 which is a key regulator of 

differentiation versus self-renewal was seen in C7 and C9. Topic 3 captured additional 

differences between the two GMP clusters, C6 and C9, with IRF8 exhibiting more 

connections in C6 compared to C9 (Fig. 6d, Supplementary Fig. 18). Topics 1, 6 and 10 

exhibited a conserved core around HMGB2, TSC22D3, and YBX1 respectively, across 

all cells clusters (Supplementary Figs. 18–20). HMGB2 is an important regulator for 

HSCs58. Both YBX1 and TSC22D3, which were also identified in our k-means analysis, 

have known roles in hematopoiesis48. Topic 8 was associated with various cell cycle 

and chromatin remodeling regulators such as TOP2A, CDC20, and CCNB1 

(Supplementary Figs. 20, 21). Taken together, the LDA analysis identified subnetworks 

centered on candidate key regulators with known general roles in hematopoiesis as well 

as regulators involved in specific lineage decisions. 

 

Inferring gene regulatory networks in human fetal hematopoiesis 

Our applications of scMTNI so far were on cell lineages where a branching 

structure was computationally inferred. To examine the utility of scMTNI in a system 
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with known branching lineage structure, we. Applied it to a published scATAC-seq and 

scRNA-seq dataset of human fetal hematopoiesis59, which captured specification to 

multiple blood lineages (Fig. 7a). We considered the cell populations measured with 

both scATAC-seq and scRNA-seq datasets at two resolutions: (1) coarse resolution 

comprising hematopoietic stem cell (HSC), multipotent progenitors (MPPs), lymphoid-

myeloid progenitors (LMPs), MK-erythroid-mast progenitors (MEMPs), granulocytic 

progenitors (GPs), and (2) fine-grained resolution, which additionally included the 

derived cell types from these progenitor populations. We evaluated the methods that 

incorporate prior and their no-prior versions on this dataset: scMTNI, scMTNI+Prior, 

INDEP, INDEP+Prior, and CellOracle, at two levels of resolution of the cell types 

(Methods). 

On the fine lineage, algorithms that did not use priors (INDEP and scMTNI) 

performed comparably based on F-score (with no significant difference) on all five gold 

standards (Fig. 7b, Supplementary Figs. 22, 23)). INDEP+Prior, scMTNI+Prior, which 

use priors were significantly better than methods without priors, while CellOracle 

performed the worst in all gold standards. INDEP+Prior and scMTNI+Prior are 

comparable across the gold standard datasets. Based on predictable TFs, 

scMTNI+Prior and INDEP+Prior were the best (Supplementary Fig. 24). As observed in 

the Buenrostro dataset, CellOracle did comparably to other methods on the ChIP-based 

gold standards (Unibind, Cus_ChIP), but had fewer predictable TFs in the other gold 

standards. The poor performance of CellOracle is likely due to its complete reliance on 

the prior network for determining the structure of the final inferred network. We 

compared scMTNI+Prior and CellOracle on the coarse lineage and observed similar 
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superior performance of scMTNI+Prior on both F-score and predictable TF metrics 

(Supplementary Fig. 30A, B). 

We next examined the lineage structure by constructing an MST from pairwise 

distances of the inferred networks and compared it to the ground truth (Fig. 7c). The 

single-task learning methods INDEP and INDEP+Prior inferred networks had very low 

overlap for each pair of cell lines and the resulting lineage tree was different from the 

ground truth (Fig. 7c). In contrast, scMTNI and scMTNI+Prior were able to recover the 

cell lineage exactly as the input cell lineage tree. CellOracle, inferred more similarity 

across cell types and captured several aspects of the original lineage (e.g., MEMP 

deriving from HSC-MPP), but did not correctly recover several other aspects (e.g., 

LMPs and GPs derived from HSC, Granulocytes derived from GPs). For the coarse 

lineage, scMTNI+Prior and CellOracle inferred the same tree, but placed LMPs and 

GPs under MEMPs instead of under HSCs (Supplementary Fig. 30C). Taken together, 

these results show that scMTNI+Prior’s framework of using lineage information and 

accessibility results in inference of more accurate GRN structure and dynamics during 

the differentiation process for known branching cell type trajectories. 

 

Examining dynamics of GRN components for fetal hematopoiesis 

We applied our k-means and LDA analysis to identify regulators associated with 

edge rewiring and subnetwork changes for the fine (Fig. 8a–c, Supplementary Figs. 25–

28) and coarse hematopoiesis lineages (Fig. 8d, Supplementary Figs. 31–35). The k-

means analysis identified edge clusters spanning multiple cell types of the lineage tree 

(e.g., E16, E15, E21, E14, E13, E19, E7) as well as individual lineages (E4: B cells, E3: 
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Granulocytes, E5: Erythrocytes, E9: Mast cells, E2: HSCMPPs, E18: MEMPs) (Fig. 8a). 

We examined the regulators associated with the edge clusters shared across multiple 

cell types and found HNRNPK and PTMA to be frequently associated with these 

clusters (Fig. 8b). HNRNPK has a number of regulatory functions across diverse cell 

types including as a regulator of hematopoiesis60. PTMA, which stands for prothymosin 

alpha is not well understood for its function but is implicated in growth and survival of 

cells of hematopoietic origin, and required for the filament-inducing activity of 

macrophage lysate61, which would be consistent with its expression in the 

hematopoietic lineage62. E17 had edges common to the Myeloid lineage spanning HSC-

MPPs, MEMPs, Mast-cells, Megakaryocytes and Erythroid populations and had ENO1, 

NPM1, SNRPD1 in addition to HNRNPK and PTMA as top regulators (Fig. 8b). ENO1 

encodes a glycolytic enzyme which is expressed in several human tissues and has 

been shown to be a regulatory enzyme with links to the MYC pathway63. E2 had edges 

specific to HSC-MPPs and was associated with PTMA, SNRPD1, SOX4 and EEF1A1, 

which have immune-related functions. E18 which was specific to MEMPs was 

associated with KLF1, BRPF3 and PTMA. KLF1, which was found in the Buenrostro et 

al. dataset of adult hematopoiesis as well45, is an essential regulator for the erythroid 

lineage52,53, and was also found to be upregulated by Ranzoni et al. as cells transitioned 

from HSC/MPP to MEMPs59. E16and E14 are edge clusters shared across all cell types 

with EEF1A1, CDC20, HMGN2, NPM1, TOP2A as top regulators. HMGN2 belongs to 

the high mobility group of proteins, which was identified in our analysis of the 

Buenrostro et al. dataset as well. Other regulators implicated cell cycle (CDC20, 

TOP2A) or more general regulators of development and proliferation (NPM1). Cell-cycle 
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and cell-fate decisions are inherently tied especially in progenitor populations where the 

cell fate decision could be influenced by the cell cycle stage of the cells64. The k-means 

analysis of the coarse lineage exhibited much more shared network structure compared 

to the fine lineage, though it also identified edge sets specific to each coarse cell type 

(E1: HSC, E3: GPs, E2: LMPs, Supplementary Fig. 31). Several of the regulators 

identified in the fine lineage analysis were seen in the coarse lineage analysis showing 

overall consistency of our results. For example, E8 which had edges shared across all 

cell types had EEF1A1, FOS, HMGN2, NPM1 as the top regulators. Similarly, KLF1 was 

identified in the MEMP-specific edge cluster in the coarse (E4) and fine lineages (E17). 

The coarse lineage analysis also found additional regulators. For example, E2, which 

was specific to the LMP lineage was associated with IRF8, KLF3, BAG4, and MAP2K7. 

IRF8, which was identified in the Buenrostro et al. dataset as well plays a key role in 

innate immune response and is an essential for development of the lymphoid lineage 

including B cells55, monocytes and pDCs65. 

Our LDA analysis identified topics representing subnetworks that rewire from the 

HSC state to different lineages (Methods). The topic genes were enriched in immune 

response (topic 1), cell-cycle (topics 2, 3 and 5), cellular respiration (topic 4) and 

general metabolic processes (topic 7, Supplementary Fig. 29A). LDA topic 3 identified a 

regulatory subnetwork that gained connections in B cells for regulators like FOXP4 and 

PPR2R5B (Fig. 8c, Supplementary Fig. 26) and was enriched for cell cycle processes 

(Supplementary Fig. 29A). In contrast, topic 1 represented an opposite pattern of 

gradual loss of edges connected to FOS from HSC-MPP to downstream lineages 

(Supplementary Fig. 25). FOS was found to be upregulated in Ranzoni et al. in the 
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HSCs/MPPs population59. Other topics exhibited conserved hubs like PTMA (topic 4, 

Supplementary Fig. 26), HNRNPK (topic 8, Supplementary Fig. 27)), and NPM1 (topic 

5, Supplementary Fig. 26) across multiple lineages and several cell cycle regulators 

such as TOP2A and CDC20 (topic 2, Fig. 8c, Supplementary Fig. 25). On the coarse 

lineage, the LDA analysis revealed more hubs in HSC-MPPs which were lost when 

differentiating to the other lineages (Fig. 8d, Supplementary Figs. 31–35). The 

exceptions were ENO1 (topic 7, Supplementary Fig. 34), HMGN2 and NPM1 (topic 4, 

Supplementary Figs. 31, 33) and PTMA (topic 3, Supplementary Fig. 31), which 

persisted at all lineages. NPM1, which was found both in fine and coarse tree, plays an 

important role in hematopoietic progenitors, especially in early myeloid 

differentiation66.A few regulators also gained connections in specific lineages, for 

example, LGALS1 (topic 3), JAG1 (topic 7), CDK1 (topic 4) had more edges in the LMP 

lineage and PLEK in the MEMP lineage (Supplementary Fig. 31). Both LGALS167 and 

JAG168 have been shown to be involved in hematopoiesis, however, the specific roles in 

this process is not as well-characterized. In topic 5, we observed the persistence of an 

IRF8-specific network from the HSCs/MPPs to LMPs populations, which was lost in 

MEMPs/GPs lineage and is consistent with our k-means analysis and our results from 

Buenrostro et al. (Supplementary Fig. 33). Taken together, the k-means and LDA 

analysis identified several components of fetal hematopoiesis GRNs that changed as 

cells differentiated from HSC-MPP to differentiated cell types. While many of the 

regulators have well-characterized roles in hematopoiesis, several are previously 

uncharacterized that can be followed up with targeted functional studies. 
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Discussion 
 

Single-cell technologies have transformed our ability to study cellular 

heterogeneity and cell-type specific gene regulation of known and novel cell 

populations. Defining gene regulatory networks from scRNA-seq data of developmental 

systems has remained challenging as most existing methods have assumed a static 

view of the GRN and do not leverage accessibility to inform the GRN structure. To 

address this need, we developed single-cell Multi-Task Network Inference (scMTNI), a 

probabilistic graphical model-based approach that uses multi-task learning to infer cell 

type-specific GRNs on a cell lineage tree by integrating scRNA-seq and scATAC-seq 

data and model the dynamics of these regulatory interactions on a lineage. A major 

benefit of the scMTNI framework is its flexibility in incorporating different sources of 

accessibility information as well as the ability to model dynamics on cell lineages of 

different topologies. The probabilistic prior-based framework makes scMTNI more 

robust to noisy or incomplete accessibility data and allows the incorporation of 

additional regulators such as signaling proteins and TFs with no binding information. 

Guided by the cell lineage structure, scMTNI’s inferred networks exhibit meaningful 

changes along the trajectory and identify regulators and network components specific to 

cell populations transitioning to different lineage paths. 

Multi-task learning is well-suited for the inference of cell type-specific GRNs. 

However, a key question is how to implement multi-task learning for GRN inference. A 

number of multi-task learning algorithms were developed for inferring GRNs and 

functional networks from bulk transcriptomic data but have not been systematically 

compared for their effectiveness on single-cell transcriptomic data. Some approaches, 
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such as AMuSR28 have used a flat hierarchy where all the tasks are considered equally 

related. For heterogeneously related datasets, a hierarchy or a tree is well-suited to 

model the dependence across datasets. Such hierarchies can be implemented as a 

phylogenetic tree with observed data at the tips of the tree as in GNAT26 and 

MRTLE25,or as a cell-lineage tree with observations at all nodes in the tree. scMTNI and 

MRTLE both use a tree-based structure prior, whereas AMuSR, GNAT, and Ontogenet 

used a regularized regression parameter to implement multi-task learning. scMTNI and 

MRTLE have better performance in predicting the gene regulatory relationships than 

single-task learning algorithms. The performance of Ontogenet is better than the single-

task learning algorithms LASSO and INDEP in at least two cell types, and comparable 

to SCENIC. A prominent factor contributing to the difference in the performance of the 

algorithms was whether the models inferred a directed graph versus an undirected 

graph, with GNAT generally suffering likely due to this reason. Performance of GNAT is 

worst among multi-task learning algorithms and comparable to the single-task learning 

algorithms. We speculate that the undirected graphical models learned by GNAT might 

be a reason that the performance is not as good as other multi-task learning algorithms. 

We also examined the performance of algorithms across different parameter settings 

that control for sparsity as well as for sharing information. We found that the algorithms 

were generally robust to the setting of sharing and more sensitive to the extent of 

sparsity. However, multi-task learning algorithms generally outperformed single-task 

learning algorithms indicating that this is a useful direction for methodological 

development for GRN inference from single cell omic datasets. Importantly, single-task 
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learning infers very different networks that makes it challenging to study transitions 

across the networks. 

Once GRNs are inferred across multiple cell types, the next challenge is to 

examine which components of the GRNs change along the lineage. We developed two 

complementary techniques to study dynamics. Our k-means edge clustering method 

was able to find regulatory connections that were unique to each cell cluster, while our 

LDA topic model-based dynamic network analysis highlighted subnetworks that were 

activated or deactivated along the lineage. We applied our tools to study GRN dynamics 

in adult and fetal hematopoietic cell differentiation and reprogramming from mouse 

embryonic fibroblasts to embryonic stem cells. We found that these systems exhibited 

different dynamics, with the reprogramming system exhibiting more edges shared 

across populations compared to the adult hematopoietic system which identified most 

edges as cell cluster-specific. In all three systems, our analysis identified known and 

previously uncharacterized regulators. For example, in the reprogramming system, we 

found that cells that were closer to the end point pluripotent state already had an Esrrb-

centered GRN component active. In contrast, cells that were on an alternate trajectory 

exhibited persistence of the MEF regulatory program including regulators such as 

Aebp1. Between adult and fetal hematopoiesis we found several shared regulators that 

were known lineage-specific regulators (e.g., IRF8 in the lymphoid lineage), but also 

identified regulators unique to each system which could be followed up with future 

validation studies. 

scMTNI currently assumes that the input lineage structure is accurate. However, 

lineage construction, especially from integrated scRNA-seq and scATAC-seq datasets 
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is a challenging problem. One direction of future work is to assume the initial lineage 

structure is inaccurate and incorporate the refinement of the lineage structure as part of 

the GRN inference procedure. A second direction of work is to model more fine-grained 

transitions within each cell population, for example using RNA velocity or pseudotime69, 

which will complement the coarse-grained dynamics that scMTNI currently handles. 

Studies from bulk RNA-seq data have shown that estimating hidden transcription factor 

activity (TFA)70 can further improve the performance of network inference. Thus, 

another direction of future work is to estimate hidden TFA and incorporate these to 

improve the accuracy of the inferred networks. Finally, SCENIC generally outperforms 

the single-task learning algorithms which do not use prior, which is likely because of its 

regression-tree based model that captures non-linear dependencies and is less prone to 

the sparsity of the dataset. While scMTNI’s stability selection framework can capture 

some non-linearities, another direction of future work is to extend scMTNI to model 

more non-linear dependencies. 

In summary, scMTNI is a tool to infer cell type-specific regulatory networks and 

their dynamics on a cell lineage which combines scRNA-seq and scATAC-seq data. As 

single cell multi-omic datasets become increasingly available, we expect scMTNI to be 

broadly applicable to predict GRNs and prioritize regulators associated with regulatory 

network dynamics across cell types in diverse cell-fate specification processes. 
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Materials and Methods 
 
This research complies with all relevant ethical regulations. Mice used in the 

reprogramming study were maintained in agreement with our UW-Madison Institutional 

Animal Care and Use Committee (IACUC) approved protocol (ID M005180-R03). 

 

Single-cell Multi-Task Network Inference (scMTNI) 

Single-cell Multi-Task Network Inference (scMTNI) is a probabilistic graphical model-

based approach that uses multi-task learning to infer gene regulatory networks for cell 

types related by a cell lineage tree (Fig. 1). We define a cell type to be a group of cells 

with similar transcriptome and accessibility levels as defined by existing cell clustering 

methods. Each task learns the gene regulatory network (GRN), G(d) for each cell type or 

cell cluster d. Given cell type-specific datasets for M cell types, D ={D(1), ⋯ , D(M)}, our 

task is to find the set of graphs G ={G(1), ⋯ , G(M)} and parameters Θ ={θ(1), ⋯ , θ(M)} for 

each of the cell types. G(d) is modeled as a dependency network22, a class of 
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probabilistic graphical models for inferring directed, predictive relationships among 

random variables (regulators and genes). Each gene is modeled as a random variable 

𝑋$
(&) which encodes the expression level of gene i in each cell. A conditional probability 

distribution 𝑃(𝑋$
(&)|𝑅$

(&)) models the relationship between gene i and its set of 

regulators, 𝑅$
(&) in cell type d. In a dependency network, GRN inference entails 

estimating the regulators 𝑅$
(&) for each gene i in each cell type d. To enable joint 

learning of these cell type-specific networks, our goal is to find the set G ={G(1), ⋯ , G(M)} 

and parameters Θ ={θ(1), ⋯ , θ(M)} by estimating the posterior distribution of these two 

sets and finding their maximum a posteriori values: 

 

P(D∣G, Θ) is the data likelihood, expanded as ∏dP(D(d)∣G(d), θ(d)). In a dependency 

network, pseudo likelihood22 is used to approximate the data likelihood for each cell 

type, defined as the products of the conditional distribution of each random variable  

𝑋$
(&)given its neighbor set 𝑅$

(&) in cell type d,	𝑃(𝑋$
(&)|𝑅$

(&), 𝜃$
(&)). Thus, the likelihood can 

be written as:  

 

Given the neighbor set 𝑅$
(&), the above quantity can be computed efficiently. We 

assume that each variable 𝑋$
(&) and its neighbor set 𝑅$

(&) in cell type d are from a multi-

variate Gaussian distribution. Thus, 𝑃(𝑋$
(&)|𝑅$

(&), 𝜃$
(&)) can be modeled using a 

conditional Gaussian distribution with mean 𝜇01(2)|31(2)
 and variance 𝜎01(2)|31(2)

which can be 
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estimated in closed form. 𝑅$
(&) is selected from the input list of regulators using a greedy 

search algorithm, executed in parallel across all cell types (See Supplementary 

Methods). The second term P(Θ∣G) in Equation (1) is estimated using the maximum 

likelihood settings of the parameters. The third term P(G)=P(G(1), ⋯ , G(M)) in the 

objective function is the structure prior and is defined in a way to capture the state of an 

edge across all cell types modeled, where G ={G(1), ⋯ , G(M)}. We assume that P(G) is 

composed of two priors, one is the cell-type specific prior P(T), where T ={T(1),...,T(M)}, 

and the other one is a cell lineage structure prior P(S) which captures the similarity 

between related cell types along the cell lineage tree, where S ={S(1),...,S(M)}. 

 P(T) is the cell-type specific prior, which decomposes over a product of cell-type 

specific graphs: 𝑃(𝑇6,… , 𝑇8) = 	∏ 𝑃(𝑇&)8
&;6 . The 𝑃(𝑇&) decomposes over a product of 

individual edge configurations, 𝑃(𝐼=,>
(&)), where 𝐼=,>

(&)is an indicator function that represents 

whether there exists an edge between regulator u to target gene v in cell type d, Xu → 

Xv as follows: 

 

As in Roy et al.71, we model the prior probability using a logistic function:  

 

The β0 parameter is a sparsity prior that controls the penalty of adding of a new edge to 

the network, which takes a negative value (β0 < 0). A smaller value of β0 will result in a 

higher penalty on adding new edges and will therefore infer sparser networks. The β1 
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parameter controls how strongly motifs are incorporated as prior (β1 ≥ 0). A higher value 

of β1 will result in motif presence being valued more strongly to select an edge. β1 is set 

to 0 when there is no cell type-specific motif information available. 𝑚=,>
(&) is the weight of 

the edge from regulator u to target v in the prior network and is computed based on the 

motif instance score if gene v has a motif instance of regulator u in its promoter region, 

additionally filtered by available bulk or single cell ATAC-seq peaks. Thus, we have 

 

The cell lineage structure prior P(S) is constructed to make use of multi-task learning. 

We define P(S(1),...,S(M)) as a product over a set of edges between regulators and target 

genes: ∏ 𝑃(𝐼=,>
(6)

=,>;=A> , … , 𝐼=,>
(8)). Under the assumption that the prior probability of the 

edge state in one cell type is only dependent upon its state in the predecessor cell type, 

we have: 

 

where pa(d) denotes the predecessor cell type of cell type d on the cell lineage tree and 

r denotes the starting root cell type. 𝑃(𝐼=,>
(&)|𝐼=,>

BC(&)) is a measure of overall gain and loss 

of regulatory connections between related cell types and is assumed to be the same 

across the set of edges. Thus, it can specified by three parameters: the probability of 

gaining a regulatory edge in the root cell type, 𝑝E = 𝑃(𝐼=,>
(E)), the probability of gaining a 

regulatory edge in cell type d given that the edge does not exist in its predecessor cell 

type, 𝑝F& = 𝑃(𝐼=,>
(&) = 1|𝐼=,>

BC(&) = 0), and the probability of maintaining a regulatory edge in 
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cell type d, given it is present in its predecessor cell type 𝑝I& = 𝑃(𝐼=,>
(&) = 1|𝐼=,>

BC(&) = 1). 

These parameters of the priors can be set by the user or estimated empirically by 

analyzing different configurations and selecting those values with the best agreement 

with existing biological knowledge of the system. scMTNI uses a greedy score-based 

structure learning algorithm. Please refer to Supplementary Methods for details. 

 

Input datasets 

Simulated datasets 

To benchmark the performance of different multi-task and single-task learning 

algorithms, we simulated single cell expression data from a lineage resembling a linear 

differentiation process for three cell types (Fig. 2a). We simulated network dynamics on 

the lineage while controlling the extent of similarity with the three prior parameters: 𝑝E, 

the probability of having an edge in the starting/ root cell type; 𝑝F&, the probability of 

gaining an edge in cell type d that is not in the predecessor cell type; 𝑝I& , the probability 

of maintaining an edge in cell type d from the predecessor cell type. We set  𝑝E = 0.5, 

𝑝F& = 0.4, and 𝑝I& = 0.7	𝑜𝑟	0.8 and simulated three networks from a linear lineage tree for 

each of the three cell types, each with 15 regulators and 65 genes. Next, we applied 

BoolODE on the simulated gene regulatory networks and generated single cell 

expression data for 2000 cells for each cell type. To mimic the dropouts in the scRNA-

seq data, we added 80% sparsity uniformly to all genes on the simulation data. We refer 

to this simulated dataset as dataset 1, consisting of 65 genes and 2000 cells for three 

cell types. We generated smaller sample sizes of these datasets, dataset 2 and dataset 

3 by downsampling dataset 1 to 1000 cells (dataset 2) and 200 cells (dataset 3). We 
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applied each of the algorithms on these three datasets within a stability selection 

framework and evaluated their performance based on AUPR and F-score as described 

in the Evaluation section. 

 

Human hematopoietic differentiation data 

Buenrostro et al.45 measured single-cell accessibility (scATAC-seq) and single-cell RNA 

sequencing (scRNA-seq) data to study the regulatory dynamics during human 

hematopoietic differentiation for multiple immunophenotypic cell types: hematopoietic 

stem cells (HSCs), common myeloid progenitors (CMPs) and granulocyte-macrophage 

progenitors (GMPs) and Monocytes (Mono). We downloaded processed scRNA-seq 

data for each cell type from Data S2 of Buenrostro et al. (https://ars.els-

cdn.com/content/image/1-s2.0-S009286741830446Xmmc4.zip) and fragment files for 

the scATAC-seq data from Chen et al.72 (https://github.com/pinellolab/scATAC-

benchmarking/tree/ master/Real_Data/Buenrostro_2018). For the scATAC-seq data, we 

mapped the fragments into 23,347,540 bins with length of 1000bp. Next, we mapped 1 

kb bins to the nearest gene and extracted cells with cell barcodes labeled as HSC, 

CMP, GMP, and Mono. Next, we filtered out genes with sum of counts in all samples 

less than 100, producing a processed scATAC-seq dataset with 54,344 genes and 1315 

cells across the four cell types. We extracted the count matrix of scRNA-seq from these 

four cell types; note that CMP cells were in three different clusters: CMP0, CMP1, and 

CMP2. After filtering out genes with non-zero expression in less than 5 cells, the 

scRNA-seq data had 12,558 genes and 4165 cells. We normalized the count matrix for 

depth and variance stabilization based on the pagoda pipeline73. We kept 12,393 
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common genes between scATAC-seq and scRNA-seq data and applied LIGER23 to 

define integrated cell populations. We applied LIGER with k ∈ 8, 10, 12, 15, 20 factors 

and found k = 10 to be most appropriate. Cluster C8 was mainly composed of HSCs, C6 

was mainly composed of GMP cells, C7 was mainly CMP0 cells, C1 was composed of 

Monocyte cells, and the rest of the clusters were a combination of several cell types. C5 

had too few RNA cells (22 cells) so we excluded it from further analysis. Since the 

composition of C1 (73 cells) and C4 (37 cells) are very similar, mainly GMP and Mono 

cells, we combined these two clusters as C1. We inferred a cell lineage tree from the 8 

cell clusters using a minimal spanning tree (MST) approach using the python package 

scipy.sparse.csgraph. Briefly, we used the mean expression profiles across samples of 

these cell clusters and computed the Euclidean distance between every pair of cell 

clusters. Then, we inferred the MST from the distance matrix using 

scipy.sparse.csgraph. 

To derive the prior network for each cell cluster we created cluster-specific bam 

files from the scATAC-seq data using the LIGER clusters. We pooled these bam files to 

generate pseudo bulk accessibility coverage and applied MACS2 (v2.1.0) to identify 

scATAC-seq peaks for each cell cluster74. We obtained sequence-specific motifs from 

the Cis-BP database (http://cisbp.ccbr.utoronto.ca/)75 and used the script 

pwmmatch.exact.r available from the PIQ toolkit76 to identify significant motif instances 

genome-wide using the human genome assembly of hg19. We mapped motifs to each 

scATAC-seq peak and mapped the peak to a gene if it was within ± 5000 bp of the 

transcription start site (TSS) of a gene. In this case, we connect all motifs to a TSS that 

are mapped to the same scATAC-seq peak. We used the maximum motif score from 
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pwmmatch.exact.r for each motif-TSS pair and took the maximum value among all 

TSSs of a gene as the value for each motif-gene pair. The motif instance score is the 

log ratio of the Position Weight Matrix (PWM) match score to a uniform background. 

Finally, to generate the edge weight for each TF gene pair, we used the max score 

among all motifs mapped to the same TF. To normalize the edge weights across TFs, 

we converted these weights into percentile scores and selected the top 20% of edges 

as prior edges. 

 

Mouse cellular reprogramming data 

We generated an scATAC-seq time course dataset for cellular reprogramming 

from mouse embryonic fibroblast (MEFs) to induced pluripotent cells (iPSCs). The 

dataset contains a total of 6 time points corresponding to the starting MEF, the end 

pluripotent state (mESC), and four intermediate timepoints of day 3, day 6, day 9 and 

day 12. The mice used to generate the MEFs used for reprogramming were housed in a 

facility that ran a 12 h light/12 h dark cycle, had an ambient temperature 72 ∘F and 

maintained humidity between 20–50%. Mice were maintained in agreement with our 

UW-Madison Institutional Animal Care and Use Committee (IACUC) approved protocol 

(ID M005180-R03). Male and female mice of breeding age (at least 6–8 weeks old) from 

a mixed 129/Bl6 background that are homozygous for the Oct4-2A-Klf4-2A-IRES-Sox2-

2A-cMyc (OKSM) transgene at the Col1a1 locus and heterozygous for the reverse 

tetracycline transactivator (rtTA) allele at the Rosa26 locus were time-mated, from 

which MEFs were isolated at E13.5. On E13.5, the pregnant female mouse is carefully 

dissected and all embryos are removed. The head and neck region of the embryo is 
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separated from the rest of the body and any organ tissues present are also removed, 

leaving only the fibroblasts. The remaining fibroblast tissue is emulsified and plated onto 

a 15 cm. The cells are passaged 1–2 additional times before being collected and stored 

in liquid nitrogen until the start of the experiment. In this study, MEFs with a 

homozygous genotype for the OSKM transgene and rtTA allele were used for 

reprogramming experiments. Male neonatal human foreskin fibroblasts (HFFs) from 

American Type Culture Collection (HFF-1 SCRC-1041) were used as feeders for our 

reprogramming cells. HFFs were passaged and expanded ~5 times prior to being 

irradiated. HFFs were irradiated at a level of 80 Gray prior to being used as feeders for 

the reprogramming MEFs. The process of somatic cell reprogramming is unaffected and 

is not influenced by the sex of the starting cell population, so the sex of the MEFs used 

in this experiment is unknown as it is irrelevant to the observed results. 

On Day -2, E13.5 reprogrammable MEFs were thawed and on Day -1, they were 

plated in gelatinized 6-well plates at a seeding density of 5000 cells per well. 

Reprogramming was induced on Day 0 by adding 2 ug/ml doxycycline (Sigma-Aldrich 

D9891) to each well, which induced OKSM expression, as well as irradiated DR4 feeder 

MEFs. Reprogramming cells were maintained in ESC media (knockout DMEM (Gibco 

#10829-018), 15% FBS (Biowest S1620), L-glutamine (Gibco #15140-122), Pen/Strep 

(Gibco #33050-061), NEAA (Gibco #11140-050), 2-mercaptoethanol (Sigma-Aldrich 

#M6250) and leukemia inhibitory factor (Sigma-Aldrich #L5158)). Media was changed 

every two days. Cells were collected and prepared in a single-cell suspension on days 

3, 6, 9, and 12. To generate single-cell suspensions, cells in the wells were washed 5X 

with DPBS (Gibco #14190-144) and dissociated from plate using 0.25% Trypsin-EDTA 
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(Gibco #25200-072). Trypsin was neutralized with soybean trypsin inhibitor (Sigma-

Aldrich #T6522), cells were filtered through a 40um filter, and spun down for 3min at 

300xg (RT). Cells were then resuspended in 1ml of 0.1% BSA-PBS (prepared by 

diluting 7.5% Bovine Albumin Fraction V solution (Gibco #15260-037) to 0.1% with 

DPBS) and pipetted up and down 50X. 6 ml of 0.1% BSAPBS were added to cells and 

spun down again at 300 × g for 3 min. Cells were finally resuspended in 1 ml of 0.1% 

BSA-PBS. Cell concentration was determined using an Invitrogen Countess II cell 

counter prior to nuclei isolation, transposition, and single-cell ATAC-sequencing. 

scATAC-seq data were generated using the 10x Genomics platform with a 

targeted nuclei recovery of 4000 and targeted read depth of 25k reads per nucleus. 

Sequencing was performed using the Illumina NovaSeq 6000 machine and samples 

were loaded onto a S1 flow cell. The scATAC-seq data was first processed through 

CellRanger ATAC pipeline (version 1.1.0) to provide the fragments file. We binned the 

genome at non-overlapping 1 kb bin and computed the number of fragments mapped to 

each 1 kb bin. Next, we mapped 1 kb bins to the nearest gene for all of the samples. 

The processed scATAC-seq data contains 25,824 genes and 30,344 cells. 

We downloaded scRNA-seq datasets (GEO: GSE108222) for the same time 

points from ref. 32. We concatenated the expression data from two replicates at each 

time point and normalized the concatenated matrix for depth and variance stabilization 

based on a simplified implementation of the pagoda pipeline73. Next, for each time point, 

we removed genes with expression in less than 5 cells. We took the union of genes 

among all time points and concatenated the expression data across all time points as 

our final scRNA-seq data matrix. The processed scRNA-seq dataset contains 14,953 
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genes and 3460 cells. We had a total of 11,926 genes in common between the two 

datasets, which were used for downstream analysis. We applied LIGER with k ∈ 8, 10, 

12, 15, 20 and found k = 8 to provide the optimal clustering of the scRNA-seq and 

scATAC-seq data determined based on the clustering of the accessibility and 

transcriptome of the MEF and ESC time points. We inferred a minimal spanning tree 

from the distance matrix of the pseudobulk expression profiles of each cluster using 

scipy.sparse.csgraph, similar to the Buenrostro et al. hematopoiesis dataset, and used it 

as the cell lineage tree. The prior motif was generated in the same way as for the 

hematopoiesis differentiation dataset using motifs for mouse from the CisBP 

database75. We used the 10 mm mouse genome assembly for this analysis. 

 

Human fetal hematopoietic differentiation data 

Ranzoni et al.77 measured scRNA-seq and scATAC-seq data to study the 

regulatory dynamics during human developmental hematopoiesis for multiple 

immunophenotypic blood cell types from fetal liver and bone marrow. We obtained the 

scRNA-seq (gene by cell) and scATAC-seq data (peak by cell) matrices from 

https://gitlab.com/cvejic-group/integrativescrna-scatac-human-foetal. We used the 

annotated cell clusters in ref. 77 for the scRNA-seq data: HSCs/MPPs combined with 

cycling HSCs/MPPs (HSCs-MPPs), lymphoid-myeloid progenitors (LMPs), MK-

erythroid-mast progenitors combined with cycling MEMPs (MEMPs), granulocytic 

progenitors (GPs), granulocytes, erythroid cells, megakaryocytes, mast cells, 

monocytes, plasmacytoid dendritic cells (pDCs) and B cells. We took the union of genes 

among all cell types and concatenated the expression data as our final scRNA-seq data 
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matrix. We normalized this concatenated matrix for depth and performed variance 

stabilization based on the pagoda pipeline73 and removed genes with expression in less 

than 20 cells. The labeling provided by Ranzoni et al. for the scATAC-seq data omitted 

many of these cell types making it challenging to determine cell-type specific priors. To 

overcome this challenge we utilized a label transfer technique based on the method 

provided in the Seurat v3 package78. Briefly, we embedded the scRNA-seq and 

scATAC-seq cells (after mapping peaks to gene promoters) into a shared lower 

dimensional embedding (k = 10) utilizing LIGER23. We next defined “anchors”, which 

are pairs of cells that provide a correspondence between the scRNA-seq and scATAC-

seq modalities. Each anchor is defined as a mutual nearest neighbor in the lower 

dimensional space and has an anchor score computed based on the overlap of within 

and between dataset neighborhoods as specified in the Seurat v3 package. Once the 

anchor scores are established, we computed the anchor weights for each cell in the 

scATAC-seq data and transferred labels based on a linear combination of the anchor 

weights and labels associated with the scRNA-seq cells. Each scATACseq cell with a 

label score greater than 0.3 was assigned the maximally scoring label. Cells with score 

below 0.3 were not used to generate the prior network. 

To derive the prior network for each cell type, we extracted scATAC-seq peaks 

present in each cell type derived from our label transfer method. For LMPs, as there are 

no cells in the scATAC-seq data labeled as LMPs, we took the union of peaks across 

LMP’s derived cell types (monocytes, pDCs, and B cells) as the scATAC-seq peaks for 

LMPs. We used a similar strategy as the Buenrostro et al. dataset to generate the prior 

network. Briefly, we used the same sequence-specific motifs from the Cis-BP 
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database75 as the Buenrostro et al. data, mapped motifs to each scATAC-seq peak and 

mapped the peak to a gene if it was within ± 5000 bp of the gene TSS. For the coarse 

cell lineage tree, we merged all derived cell types from each parent cell type to produce 

four cell populations as follows: monocytes, pDCs, NK cells and B cells were merged 

with the LMP cells; erythroid cells, megakaryocytes, and mast cells were merged with 

MEMPs; and Granulocytes were merged with GPs. We applied the same approach as 

the fine tree to prepare the scRNA-seq expression data and prior networks for each cell 

type using union of scATAC-seq peaks in each cell type and its derived cell types. 

 

Application of network inference algorithms on simulated datasets 

We used the simulated datasets to perform benchmarking of the different network 

inference algorithms. We also used this dataset to study the sensitivity of the algorithms 

to the different parameter settings. Below we describe each of the algorithms as well as 

the parameters used for each of the algorithms for the simulated datasets. For all three 

simulation datasets, we applied all algorithms other than SCENIC within a stability 

selection framework to estimate the confidence score for each edge in the predicted 

networks. For stability selection, we subsampled each dataset 20 times randomly using 

half of the cells and all genes. SCENIC has its own internal sub-sampling and directly 

outputs the edge importance. scMTNI and baseline methods require list of regulators 

and target genes information as input. This information is provided to all methods under 

comparison. 

scMTNI: scMTNI has five hyper-parameters: 𝑝E, probability of having an edge in 

the starting cell type; 𝑝F& , probability of gaining an edge in a child cell type d; 𝑝I&  the 



 317 

probability of maintaining an edge in d from its immediate predecessor cell type; a 

sparsity penalty β0,that controls penalty for adding edges; β1, that controls the strength 

of incorporating prior network. We tested different configurations of the hyper-

parameters: 𝑝E	∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}, and 𝑝F& ∈	{0.05, 0.1, 

0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}, and 𝑝I&  ∈	{0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9}, 

β0 ∈ {−0.005, −0.01, −0.05, −0.1, −0.5}. β1 was set to 0 as there is no prior network in 

the simulations. If the size of the predicted network for a parameter setting was smaller 

than the size of the simulated network, we disregarded this parameter setting for 

comparison. We used the area under the precision-recall curve(AUPR) to compare the 

scMTNI inferred networks to simulated networks. We also computed F-score on top K 

edges ranked by the confidence score (where K is the number of edges in the simulated 

network, C1: K =202, C2:K =217, C3:K = 239). Overall performance of scMTNI was 

stable across different parameter configurations (Supplementary Fig. 36, 

Supplementary Methods). To compare against methods, we used values from the best 

parameter settings for each dataset and cell type as well as all parameter settings 

(Supplementary Figs. 1, 2). 

MRTLE: Multi-species regulatory network learning (MRTLE)25 is a probabilistic 

graphical model-based algorithm that uses phylogenetic structure, transcriptomic data 

for multiple species, and sequence-specific motifs to infer the genome-scale regulatory 

networks across these species simultaneously. It was developed for bulk transcriptomic 

data and uses a dependency network model to specify the directed relationship among 

regulators to target genes. Sequence-specific motif instances can be incorporated as 

prior knowledge to favor edges supported with the presence of motifs. The multi-task 
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learning framework is embedded in the phylogenetic prior, which captures the 

evolutionary dynamics of regulatory edge gain and loss guided by the phylogenetic 

structure. The MRTLE algorithm has four parameters: 𝑝F the probability of gaining an 

edge in a child species s that is not in the ancestor species; 𝑝I, the probability of 

maintaining an edge in a species s given it is also in s’s immediate ancestor of s; β0, a 

sparsity penalty that controls penalty for adding edges, and a penalty β1 that controls 

the strength of motif prior. In the simulation case, we examined different parameter 

configurations: 𝑝F ∈ {0.05, 0.1, 0.15, 0.2, 0.3, 0.4}, 𝑝I ∈ {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 

0.8, 0.85}, β0 ∈ {−0.005, −0.01, −0.05, −0.1, −0.5, −1}. β1 was set to 0. The overall 

performance of MRTLE was stable across different parameter configurations 

(Supplementary Fig. 37). Similar to scMTNI, we used the AUPR and F-score of top K 

edges to select the best parameter setting. The best parameter setting and all 

parameter settings were used to compare against other algorithms. 

GNAT: The GNAT26 algorithm uses a hierarchy of tissues to share information 

between related tissue and infers tissue-specific gene co-expression networks. It was 

developed for bulk transcriptomic data. GNAT models each network using a Gaussian 

Markov Random Field (GMRF). It has two parameters: the L1 penalty λs that controls the 

sparsity of the network, and the L2 penalty λp that encourages the precision matrix of 

children to be similar to its parent precision matrix. It initially learns a co-expression 

network for each leaf tissue. Then it infers the networks in internal nodes using the 

networks in the leaf nodes and updates the networks in leaf nodes iteratively until 

convergence. Since GNAT learns undirected networks, we transformed them to directed 

networks by adding edges from a regulator to a target. If the nodes of an edge are both 
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candidate regulators, we output the edge in both directions. We tested different 

parameter configurations of λs and λp. For data 1(n = 2000), λs were set to {30, 31, 

32,..., 37}, and λp were set to {30, 31, 32,..., 40}. For data 2 (n = 1000), λs were set to 

{18, 19,..., 22}, and λp were set to {18, 19,..., 25}. For data 3 (n = 200), λs were set to {5, 

6, 7, 8}, and λp were set to {5, 6, 7, 8}. We found that λs dominates the performance and 

under the same λs, changing λp does not change the performance substantially 

(Supplementary Fig. 38). If the size of the predicted network for a parameter setting is 

smaller than the size of the simulated network, we removed this parameter setting. The 

ranges of λs and λp are slightly different and varying across different datasets. We used 

AUPR and F-score of top K edges to select the best parameter settings. We compared 

the algorithms using the best and all parameter settings. 

 Ontogenet: The Ontogenet27 algorithm was developed to reconstruct lineage-

specific regulatory networks using cell type-specific gene expression data across cell 

lineages. It was developed for bulk transcriptomic data. To infer the regulatory networks 

for each cell type, Ontogenet uses a fused LASSO framework combined with an 

additional L2 penalty. The L1 penalty is introduced to control the sparsity of regulators, 

while the L2 penalty is used to select correlated predictors. The multi-task learning uses 

a fused LASSO framework with an additional L1 penalty on the difference of the 

regression weight of related cell types, which encourage the consistency of regulatory 

programs between related cell types. The Ontogenet algorithm has three parameters: 

the L1 penalty λ that controls the sparsity of the network, the L2 penalty κ that handles 

correlated predictors, and γ that encourages the similarity of regulatory programs 

between related cell types. We tested different parameter configurations of λ, γ and κ. 
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For data 1 (n = 2000), λ were set to {1000, 1250, 1500, 1750, 2000, 2250, 2500}, and γ 

were set to {1000, 1250, 1500, 1750, 2000, 2250, 2500}. For data 2 (n = 1000), λ were 

set to {500, 1000, 2000, 3000}, and γ were set to {500, 1000, 2000, 3000}. For data 3 (n 

=200), λ were set to {475, 500, 525}, and γ were set to {475, 500, 525}. κ was set to {1, 

5, 10} for each of the datasets. We found that λ and γ dominate the performance, while 

changing κ does not change the performance significantly (Supplementary Fig. 39). If 

the size of the predicted network for a parameter setting is smaller than the size of the 

simulated network, we removed this parameter setting. The ranges of λ and γ are 

slightly different and vary across different datasets in order to infer similarly sized 

networks for different datasets. We used AUPR and F-score of top K edges to select the 

best parameter settings. We compared the algorithms using the best and all parameter 

settings. 

 AMuSR: The Inferelator-AMuSR28 algorithm uses sparse block-sparse regression 

to estimate the activities of transcription factors and infer gene regulatory networks from 

expression datasets. The multi-task learning approach decomposes the model 

coefficients matrix into a dataset-specific component using a sparse penalty and a 

conserved component using a block-sparse penalty to capture both conserved 

interactions and dataset-unique interactions. It is able to incorporate prior knowledge 

from multiple resources and robust to false interactions in the prior network. For our 

simulation setting, we applied AMuSR without TFA estimation by setting 

worker.set_tfa(tfa_driver = False) in the SingleCellWorkflow from Inferelator 3.0 

package. To be comparable across different algorithms, AMuSR was applied on the 

same subsample of the three simulation datasets within a stability selection framework 
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to estimate the confidence score for each edge in the AMuSR networks. The AMuSR 

algorithm has two sparsity parameters: λs that controls the sparsity of the network for 

each dataset, the block-sparse penalty λb that controls the sparsity of the conserved 

network across all datasets. AMuSR has its own parameter selection framework (see 

ref. 28 for details) and uses extended Bayesian information criterion (EBIC) to select the 

optimal (λs, λb). We additionally externally tuned the parameters by setting c to {0.01, 

0.02154435, 0.04641589, 0.1, 0.21544347, 0.46415888, 1, 2.15443469, 

4.64158883,10} and set 𝜆T = 𝑐 ∗ W&∗XYZ	(B)
[

 as suggested in the paper, where d is the 

number of cell types, n is the number of samples and p is the number of genes. 

However, by setting λb to 0 and λs to 0 (the lowest sparsity settings), we found that the 

inferred networks are too sparse with 7–100 edges for data 1, and 71–129 edges for 

data 2. We kept two settings for AMuSR, one using our criteria to select the best setting 

based on AUPR and F-scores among different c settings (AMuSR_tuned) and another 

version using AMuSR’s default optimal parameter selection (AMuSR_default). We 

computed AUPR and F-score of top K edges (where K is the number of edges in the 

simulated network) for AMuSR inferred networks with optimal parameter settings for 

comparison with other algorithms. We compared the algorithms using the optimal and 

all parameter settings. 

 INDEP: The INDEP algorithm is the single-task framework of scMTNI which does 

not have the prior for sharing information across cell types and infers a regulatory 

network for each cell type independently. Similar to scMTNI, it models each network 

using a dependency network. INDEP learns the graphs for each cell type using a 

greedy graph learning algorithm with a score-based search, where the score contains 
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only the data likelihood. At each iteration, the algorithm computes the change in data 

likelihood score22 for all candidate regulators for each target gene, selects the best 

regulator for the target gene and adds this (regulator, target) edge to the current graph. 

INDEP has two parameters in the model: a sparsity penalty β0 that controls penalty for 

adding edges, and a penalty β1 that controls the strength of motif prior. In the simulation 

case, β0 were set to {−0.005, −0.01, −0.05, −0.1, −0.5, −1}, and β1 were set to 0. AUPR 

and F-score of top K edges were used to select the best parameter settings 

(Supplementary Fig. 40). If the size of the predicted network for a parameter setting is 

smaller than the size of the simulated network, we removed this parameter setting. As 

mentioned above, we compared INDEP to other algorithms using best and all 

parameter settings for a dataset. 

 LASSO: The LASSO method uses linear regression with L1 regularization. For 

each gene, we use the expression profiles of candidate regulators to predict the 

expression profiles of this gene. The regulators with non-zero coefficients are inferred 

as the regulators for this gene and these edges are added to the gene regulatory 

network. We used MATLAB implementation of LASSO regression. Similar to scMTNI, 

GNAT, INDEP, Ontogenet, AMuSR, LASSO was run on the same subsample of the 

three simulation datasets within a stability selection framework to estimate the 

confidence score for each edge in the networks. LASSO has only the L1 penalty λ that 

controls the sparsity of the network. In the simulation case, λ were set to {0.01, 0.02, 

0.03, 0.04, 0.05, 0.06}. AUPR and F-score of top K edges were used to select the best 

parameter settings (Supplementary Fig. 41). If the size of the predicted network for a 

parameter setting is smaller than the size of the simulated network, we removed this 
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parameter setting. We compared LASSO to other algorithms using the best and all 

parameter settings. 

 SCENIC: The SCENIC30 algorithm uses GENIE3 or GRNBoost2 to infer TF-

target relationships available as part of the Arboreto framework79. We used the 

GRNBoost2 algorithm with default parameters for network inference. SCENIC is based 

on an ensemble of trees with its own bootstrapping and hence was directly applied to 

each cell type-specific dataset in the simulation. SCENIC uses the feature importance 

score of each edge to rank the edges in the inferred network. We computed AUPR and 

F-score of top K edges (where K is the number of edges in the simulated network) for 

SCENIC inferred networks for comparison with other algorithms. 

 

Application of network inference algorithms to cellular reprogramming data 

We applied scMTNI, scMTNI+Prior, INDEP, INDEP+Prior, SCENIC, and CellOracle to 

the cellular reprogramming data, which contains 12,216 genes and 2036 potential 

regulators (Table 2). All of these methods require list of regulators and target genes 

information provided as input, and the same information is provided to all methods 

under comparison. The CellOracle algorithm is a new method that can integrate scRNA-

seq profiles with non-transcriptomic data (such as bulk ATAC-seq and scATAC-seq 

profiles) to infer cell type-specific GRNs21. The algorithm is based on a regularized 

linear regression model and implemented in a Bayesian Ridge or Bagging Ridge 

framework to improve stability and reproducibility. CellOracle uses scATAC-seq data or 

bulk ATAC-seq data to identify accessible promoters and enhancers, and then scans TF 

motifs to construct a context-independent “base GRN”. Subsequently, for each context, 
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CellOracle assigns edge weights to the edges of the base GRN with the help of the 

context-specific scRNA-seq profiles. To infer the edge weights, CellOracle builds a 

regularized linear regression model to predict the expression of target gene using 

expression of candidate regulators. The inferred GRNs are context-specific weighted 

directed graphs with regression coefficients corresponding to the strength of the 

connections. 

scMTNI and INDEP algorithms were applied within a stability selection 

framework to estimate edge confidence. In the stability selection framework, we 

subsampled the data 50 times, each with 12,216 genes and 2/3 of the cells, applied the 

algorithms to each subsample and used the inferred networks to estimate the 

confidence score for each TF-target edge in the predicted networks. In both scMTNI 

and scMTNI+Prior, we used the following hyper-parameter settings for the lineage 

structure prior 𝑝E = 0.2, 𝑝F& = 0.2 and 𝑝F& = 0.8. For the sparsity prior we set β0 = −0.9 for 

scMTNI, and β0 ∈ {−0.9, −2, −3, −4} for scMTNI+Prior. To generate the prior network, 

we used the matched scATAC-seq clusters to obtain TF-target prior interactions for 

each scRNA-seq cluster. For scMTNI+Prior which uses the scATAC-seq prior, we set 

β1 ∈ {2, 4}. INDEP and INDEP+Prior were applied on the same subsampled data 

followed by edge confidence estimation. We used the same settings for β0 and β1 for 

INDEP as scMTNI. Final results of scMTNI+Prior used β0 = −4 and β1 = 4, which was 

determined by the distribution of edges at different confidences. Final results for INDEP 

+Prior used β0 = −4 and β1 = 4. scMTNI and INDEP were run in parallel by splitting the 

target gene set into subsets, e.g., of 50 genes while keeping the regulator list and other 

settings the same. The inferred networks of each subset target genes were 
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concatenated as the final inferred network. The average runtime and memory usage of 

scMTNI and scMTNI+Prior for this dataset are reported in Supplementary Table 2. 

SCENIC has its own subsampling framework which can estimate an edge importance, 

and was applied to the entire dataset with default parameter settings. CellOracle was 

applied using the Bagging Ridge regression model, which has its own bootstrapping to 

estimate edge importance. CellOracle was applied to the entire dataset with default 

parameter settings and the same prior networks as for INDEP+Prior and scMTNI+Prior 

to enable a fair comparison of their GRN inference capabilities. 

 

Application of network inference algorithms to human adult hematopoietic differentiation 

data 

We used a similar workflow for the human hematopoietic differentiation dataset 

as the reprogramming system. This dataset had 11,994 genes and 1999 potential 

regulators (Table 2). We subsampled the scRNA-seq data for each cell cluster 50 times, 

each with 11,994 genes and 2 3 of the cells, and applied scMTNI, scMTNI+Prior, 

INDEP, INDEP+Prior on each subsample to estimate the edge confidence of the GRNs. 

For scMTNI and scMTNI+Prior, the lineage structure prior parameters were set as 

follows: 𝑝E = 0.2, 𝑝F& = 0.2 and 𝑝F& = 0.8. The sparsity prior β0 was set to −0.9 for 

scMTNI. For scMTNI+Prior, the sparsity prior was set β0 ∈ {−0.9, −2, −3, −4} and β1 ∈ 

{2, 4}. For INDEP and INDEP+Prior, we used the same settings for β0 and β1 as scMTNI 

and scMTNI+Prior respectively. Final results of scMTNI+Prior are with β0 = −4 and β1 

=4 and final results for INDEP+Prior are using β0 = −4 and β1 = 4. The runtime and 

memory usage of scMTNI and scMTNI+Prior for this dataset are reported 
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Supplementary Table 2. SCENIC was applied to the entire dataset with default 

parameter settings. CellOracle was applied to the entire dataset with default parameter 

settings using the same prior networks as for scMTNI+Prior and INDEP+Prior. The 

same list of regulators and target genes are provided to all methods under comparison. 

 

Application of network inference algorithms to human fetal hematopoiesis data 

We applied scMTNI, scMTNI+Prior, INDEP, INDEP+Prior and CellOracle to the 

fine-grained lineage version of this dataset using a similar workflow as the other 

datasets. We applied scMTNI+Prior and CellOracle to this dataset when using the 

coarse lineage structure. For the fine-grained lineage, there are 16,737 genes and 2195 

potential regulators. For the coarse lineage, there are 17,425 genes and 2227 potential 

regulators (Table2). We subsampled the scRNA-seq data for each cell cluster 50 times, 

each with all genes and 2 3 of the cells, and applied scMTNI, scMTNI+Prior, INDEP, 

INDEP+Prior on each subsample to estimate the edge confidence of the GRNs. For 

scMTNI and scMTNI+Prior, the lineage structure prior parameters were set as follows: 

𝑝E = 0.2, 𝑝F& = 0.2 and 𝑝F& = 0.8. The sparsity prior β0 was set to −0.9 for scMTNI. Final 

results of scMTNI+Prior are with β0 = −4 and β1 =4 and final results for INDEP+Prior are 

using β0 = −4 and β1 =4.INDEPand INDEP+Prior used the same settings for β0 and β1 

for as scMTNI and scMTNI+Prior, respectively. The runtime performance and memory 

usage of scMTNI and scMTNI+Prior are reported in Supplementary Table 2. CellOracle 

was applied to the entire dataset with default parameter settings with the same prior 

networks as scMTNI+Prior and INDEP+Prior. The same list of regulators and target 

genes are provided to all methods under comparison. 
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Evaluation 

Gold standard datasets 

To evaluate the predicted networks of different inference algorithms on real data, 

we downloaded and processed several gold standard datasets (Table 1). For mouse 

reprogramming study, we curated multiple experimentally derived networks of 

regulatory interactions from the literature and existing databases. The statistics of the 

gold standard datasets are provided in Table 1. One of these datasets is ChIP-chip or 

ChIP-seq based gold standard (referred to as “ChIP”) from ESCAPE 

(http://www.maayanlab. net/ESCAPE/) or ENCODE databases34,35 

(https://www.encodeproject. org/), which contains ChIP-chip or ChIP-seq experiments in 

mouse ESCs. The second dataset is a knock down-based gold standard (referred to as 

“Perturb”), which is derived from regulator perturbation followed by global transcriptome 

profiling34,36. We took a union of the networks from LOGOF (loss or gain of function) 

based gold standard networks from the ESCAPE database34 and the networks from 

Nishiyama et al.36 as the perturbation interactions. Finally, we took the intersection of 

the interactions between ChIP and knock-down based gold standards to create the third 

gold standard network referred to as “ChIP+Perturb”. 

 For human hematopoietic cell types, we have five gold standard datasets. Two 

gold standard datasets were a ChIP-based (Cus_ChIP) and a regulator knock down-

based (Cus_KO) dataset in GM12878 lymphoblastoid cell line downloaded from 

Cusanovich et al.47.Forthe knock down dataset, we had TF-target relationships at two p-

value thresholds, 0.01 and 0.05. We used the TF-target relationships at 0.01 to have a 
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more stringent gold standard. The third gold standard was from human hematopoietic 

cell types from the UniBind database (https://unibind.uio.no/)46, which has high 

confidence TF binding site predictions from ChIP-seq experiments. To obtain the TF-

gene network, we mapped TF binding sites to the nearest gene if there is overlap 

between the TF binding sites and the promoter of the gene defined by ±5000 bp of the 

gene TSS. If multiple ChIP-seq datasets were available for the same TF in a given cell 

type, we took the union of TF-gene edges for the same cell type. We took the union of 

these individual cell type-specific gold standards to create our Unibind gold standard 

(UniBind). Finally, we took the intersection of the ChIP-based gold standards with the 

knock down based gold standards, to produce the fourth and fifth gold standards, 

Unibind+Cus_KO and CusChIP+Cus_KO. The statistics of the gold standard datasets 

are provided in Table 1. 

 

Area under the precision recall curve 

To evaluate the performance of scMTNI and other algorithms, we compared the inferred 

networks to the simulated networks or interactions from the gold standard datasets 

based on Area under the precision recall curve (AUPR). Edge weights for all but the 

SCENIC and CellOracle algorithms were obtained using stability selection. Both 

SCENIC and CellOracle have internal bootstrapping or bagging approaches to estimate 

confidence in the inferred edges. In our stability selection framework, we generated N 

random subsamples of the data, inferred a network for each subsample, and calculated 

a confidence score for each edge as the fraction of how many times this edge was 

present in the inferred networks across all subsamples. Next, we ranked the edges by 
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the confidence score and estimated precision and recall as a function of edge 

confidence. Precision P is defined as the fraction of the number of edges that are true 

positives among the total number of predicted edges. Recall R is defined as the fraction 

of the number of edges that are true positives among the total number of true edges. 

Then, we plotted the precision recall curve and estimated the area under this curve 

using the AUC Calculator package developed by Davis et al.80. The area under the 

precision recall curve is computed as an overall assessment of the inferred networks 

compared to “true” networks. The higher AUPR, the better the performance. For the real 

scRNA-seq datasets, we filtered the inferred networks to include TFs and targets that 

were in the gold standard. 

 

F-score 

While AUPR uses a ranking of the edges, F-score is a metric to compare a set of 

predicted edges to a set of “true” edges. F-score is defined as the harmonic mean of the 

precision (P) and recall (R), F-score = (2*P*R)/(P+R). F-score enables us to control for 

the number of edges across network inference algorithms as these can vary 

significantly across algorithms. To control for number of edges in the predicted 

networks, we ranked the predicted network by the confidence score or edge weight, 

selected top K edges and computed F-score compared to simulated networks or gold 

standard networks. K in the simulated datasets corresponded to the size of the 

simulated networks. For the real datasets, we considered top 500, 1000, 2000 edges. 

We obtained the top K edges after filtering the inferred networks based on the TFs and 
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targets in the gold standard networks. The higher the F-score, the better the 

performance. 

 

Predictable transcription factors (TFs) 

Predictable TFs was defined based on the gold standard datasets similar to McCalla et 

al.18. For each TF’s target set in the gold standard network, we computed its overlap 

with the predicted targets in the inferred network and used the hypergeometric test to 

assess the significance of overlap. We consider a TF to be predictable if the P-value < 

0.05. We count the total number of predictable TFs for each algorithm as a metric of 

evaluation. The higher the number of predictable TFs, the better the performance. 

 

Examining network dynamics on cell lineages 

We used several global and subnetwork-level methods to examine how regulatory 

networks change on a cell lineage. These include F-score based comparison of all pairs 

of networks on the lineage, k-means based edge clustering and Latent Dirichlet 

Allocation (LDA) model. 

 

F-score based analysis of inferred network change along cell lineage tree 

To examine the overall conservation and divergence between the inferred cell type-

specific networks along the cell lineage tree, we computed F-score on the predicted 

networks between each pair of cell types and applied hierarchical clustering on the 

inferred networks based on the F-score. To compute F-score, we selected top X edges 

ranked by confidence score to obtain a reliable network for each cell type. This was 4k 
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in the mouse reprogramming dataset and 5k for the hematopoietic differentiation 

datasets. We visualized the dendrogram obtained from the hierarchical clustering and 

compared this to the original cell lineage tree. 

 

Latent Dirichlet Allocation (LDA) model for regulatory network rewiring 

We adopted Latent Dirichlet Allocation (LDA) to examine subnetwork level rewiring as 

described in TopicNet40. LDA was originally developed to cluster documents based on 

their word distributions. Each document, i is assumed to have a certain composition of 

topics, as captured by a θi parameter and each topic, k, is assumed to have a specific 

distribution of words denoted by a φk parameter. In the application of LDA to a 

regulatory network, we first concatenated the TF by target network across cell types to 

have as many rows as there are TFs times the number of cell types. Each TF in a cell 

type is treated as a document and its targets are treated as words in the document. The 

topic distribution for all documents constitutes a M × K matrix for document-topic 

distribution, where M is the total number of TFs in any of the networks and K is the total 

number of topics. The distribution of words (genes) in each topic is captured by a K × V 

matrix for V genes. Each gene can be assigned to a topic based on its maximum 

probability across topics. We applied LDA to the 80% confidence networks of all cell 

clusters or types inferred from scMTNI+Prior with 10 or 15 topics and found 10 topics to 

be suitable for all three datasets. We extracted the subnetworks in each cell type 

associated with each topic by obtaining the induced graph for the genes and regulators 

associated with each topic and visualized the giant components of each network to 

identify change across cell clusters within the same topic. To interpret the topics in each 
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cell type, we tested the genes in the cell type-specific subnetwork for each topic for 

enrichment of gene ontology (GO)81 processes using a hypergeometric test with FDR 

correction. We define the gene set for each topic to include the cell-type specific 

regulators and targets per cell type. We used an FDR < 0.01 to determine significant 

enrichment (Supplementary Figs. 11, 21, 29). These results are described in 

Supplementary Figs. 8-10 for mouse cellular reprogramming, in Supplementary Figs. 

18–20 for the hematopoietic differentiation data from Buenrostro et al., in 

Supplementary Figs. 25–28 for the fetal hematopoiesis fine-grained lineage and in 

Supplementary Figs. 31–35 for the fetal hematopoiesis coarse lineage data. 

 

Statistics and reproducibility 

In the scATAC-seq reprogramming experiment, six samples representing different time 

points of the reprogramming study were used. The sample size is the number of 

biological samples. We chose six samples to analyze because these specific 

timepoints, along with MEFs and ESCs, provide sufficient coverage on the various 

states and progression of cells during the reprogramming process. One biological 

replicate for each sample data was used for analysis. Previous experiments were 

conducted in which cells were reprogrammed using identical conditions and reagents 

(see Tran et al.32). The setup of experiments in this paper assume that one 

experimental replicate and one scATAC-seq submission for each sample reflects the 

same reprogramming time course observed in our previous experiments. For 

randomization, MEFs from a single embryo were randomly seeded at a density of 5000 

cells per well in 6-well plates. Blinding was not applicable to this study as no portion of 
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this data can be skewed based on participant’s knowledge of the experiment. All cells 

from the reprogramming plates were collected during scATAC-seq submission and the 

scATAC library prep and sequencing portions were performed by unbiased third parties 

who have no knowledge of any experimental details. 

Network inference was done in a stability selection mode where we drew multiple 

subsamples from the original data. Each subsample’s size was set to 2/3 of the number 

of cells in the dataset. This number was determined to enable sufficient number of cells 

for each subsample. Subsamples were generated by selecting uniformly at random 

samples from our full dataset. We have provided code, scripts, inputs and outputs from 

our experiments to enable replication of our study. For data exclusion, cells with low 

read depth and genes with fewer than 5 or 20 measurements were filtered from 

downstream analysis. Some cell clusters were excluded if they had either no or too few 

scRNA-seq cells. Cluster C1 for the hematopoietic differentiation data from Buenrostro 

et al. was removed from evaluation using the gold standards due to very few TFs 

overlapping the gold standards compared to the other cell clusters. 

 

Data Availability 

The reprogramming scATAC-seq dataset generated in this study has been deposited to 

Gene Expression Omnibus (GEO) with accession ID GSE208620. The scRNA-seq 

datasets for the same time points from Tran et al.32 were downloaded from Gene 

Expression Omnibus (GEO) with accession ID GSE108222. The processed cluster-

specific scRNA-seq matrices and the prior networks for reprogramming study are 

available at Zenodo https://zenodo.org/record/787922882. 
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The scRNA-seq data for human hematopoietic differentiation from Buenrostro et 

al. were downloaded from Data S2 of Buenrostro et al. (https://ars.els-

cdn.com/content/image/1-s2.0-S009286741830446Xmmc4.zip) and the scATAC-seq 

data were downloaded from Chen et al.72 (https://github.com/pinellolab/scATAC-

benchmarking/tree/ master/Real_Data/Buenrostro_2018). The scATAC-seq data are 

also available from GEO accession GSE96772.ThescRNA-seqdata(DataS2 from 

Buenrostro et al.,) and the scATAC-seq data have been additionally uploaded to 

Zenodo https://zenodo.org/record/7879228. The processed datasets for human 

hematopoietic differentiation are available at Zenodo 

https://zenodo.org/record/7879228. 

The scRNA-seq (gene by cell) and scATAC-seq (peak by cell) data matrices for 

the human fetal hematopoietic differentiation data from Ranzoni et al. were obtained 

from https://gitlab.com/cvejic-group/ integrative-scrna-scatac-human-foetal. These are 

also available at ArrayExpress: E-MTAB-9067 for scRNA-seq and E-MTAB-9068 for 

scATAC-seq. The cluster-specific scRNA-seq matrices and the prior networks are 

available at Zenodo https://zenodo.org/record/7879228. 

For the mouse reprogramming study, the ChIP-based gold standard datasets 

were downloaded from ESCAPE (http://www.maayanlab. net/ESCAPE/) and ENCODE 

databases34,35 (https://www.encodeproject. org/). The Perturbation-based gold standard 

networks were constructed from a union of the networks from LOGOF (loss or gain of 

function) based gold standard networks from ESCAPE database34 and the networks 

from Nishiyama et al.36. The mouse gold standard datasets are available at Zenodo 

https://zenodo.org/record/7879228. 
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For the human hematopoietic data, two gold standard datasets were a ChIP-

based (Cus_ChIP) and a regulator knock down-based (Cus_KO) dataset in GM12878 

lymphoblastoid cell line downloaded from Cusanovich et al.47. The third gold standard 

from ChIP-seq experiments in human hematopoietic cell types was downloaded from 

the UniBind database (https://unibind.uio.no/)46.Thehumangold standard datasets are 

available at Zenodo https://zenodo.org/record/ 7879228. 

The source data underlying Figs. 2–8, Supplementary Figs. 2, 3, 5, 7–10, 12, 14, 

15, 17–20, 22, 24–28, 20–29, 30–49, the cluster-specific scRNA-seq matrices and the 

prior networks for all datasets and scMTNI inferred consensus networks are available at 

Zenodo https://zenodo. org/record/787922882. All other relevant data supporting the key 

findings of this study are available within the article and its Supplementary Information 

files or from the corresponding author upon reasonable request. Source data are 

provided with this paper. 

 

Code Availability 

The scMTNI code and custom scripts to process data and compute various validation 

metrics and perform dynamic network analysis are available at https://github.com/Roy-

lab/scMTNI and Zenodo https:// doi.org/10.5281/zenodo.785453583. Custom scripts 

include shell scripts, python scripts, R scripts and MATLAB scripts and we used R 

version 3.5.1, MATLAB version R2014b, and Python version 3.6.12 to perform data 

analysis. The scATAC-seq data was processed through CellRanger ATAC pipeline 

(Version 1.1.0). The simplified implementation of the pagoda pipeline for normalizing 

scRNA-seq data for depth and variance stabilization is available at 



 336 

https://github.com/Roy-

lab/scMTNI/blob/master/Scripts/Integration/adjustVariance_depth_ Generic.R. R 

package rliger version 1.0.0 was used to integrate scRNAseq and scATAC-seq data, 

and the R script is available at https://github.com/Roy-

lab/scMTNI/tree/master/Scripts/Integration/. To generate prior networks, we used MACS 

v2.1.0 to call ATAC-seq peaks to generate prior networks and used custom code for 

mapping TF binding peaks to genes, which is available at https://github.com/Roy-lab/ 

scMTNI/tree/master/Scripts/genPriorNetwork/. The scripts for evaluation based on 

AUPR and F-score are available at https://github.com/ Roy-

lab/scMTNI/tree/master/Evaluation/. The scripts for dynamic network analysis are 

available at https://github.com/Roy-lab/scMTNI/ tree/master/Scripts/Network_Analysis/. 
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Fig. 1 | An overview of the scMTNI framework 

a. scMTNI takes as input a cell lineage tree and cell type-specific scRNA-seq data and 

cell type-specific prior networks derived from scATAC-seq datasets. If scATAC-seq 

data is not available, bulk or sequence-based prior networks can be used for the cell 

types. The output of scMTNI is a set of cell type-specific gene regulatory networks 

for each cell type on the cell lineage tree. 

b. The output networks of scMTNI are analyzed using two dynamic network analysis 

methods: edge-based k-means clustering and Latent Dirichlet Allocation (LDA) 

based topic models to identify key regulators and subnetworks associated with a 

particular cell cluster or a set of clusters on a branch. 

c. Datasets used with scMTNI. The simulation data comprised a linear trajectory of 

three cell types, while the three real datasets came from a reprogramming 

timeseries process, immunophenotypic cell types identified during human adult 

hematopoietic differentiation, and immunophenotypic blood cells during human fetal 

hematopoiesis. MEF mouse embryonic fibroblast, iPSCs induced pluripotent cells, 

HSC hematopoietic stem cell, CMP common myeloid progenitor, GMP granulocyte-

macrophage progenitors, Mono monocyte, HSC-MPP hematopoietic stem cells and 

multipotent progenitors, LMP lymphoid-myeloid progenitors, MEMP MK-erythroid-

mast progenitors combined with cycling MEMPs, GP granulocytic progenitors, Ery 

erythroid cells, pDC plasmacytoid dendritic cells. 
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Figure 2 
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Fig. 2 | Benchmarking algorithms on simulated data 

a. Simulation framework for scMTNI. We first simulate GRNs for cell types across a cell 

lineage tree. Next, we generate in silico single-cell gene expression data for each 

cell type using BoolODE using the simulated GRNs and add 80% zeros in the 

simulation data. Then, we apply five multi-task learning algorithms and three single-

task learning algorithms for GRN inference to the simulated datasets and predict 

networks in stability selection framework. We compare the performance of these 

algorithms based on area under precision and recall curve (AUPR) and F-score of 

top edges. 

b. AUPR comparing inferred networks to ground truth networks of simulated datasets 

1, 2, 3. 

c. F-score comparing top K edges in the inferred networks to those in the ground truth 

networks of simulated datasets 1, 2, 3 (cell type 1: K =202, cell type 2: K = 217, cell 

type 3: K = 239). The brighter and larger the circle the better the performance of the 

algorithm. Source data are provided as a Source Data file. 
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Figure 3 
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Fig. 3 | Inference of cell-type specific networks of mouse cellular reprogramming 

data 

a. UMAP of LIGER cell clusters on the scATAC-seq data and scRNA-seq data. 

b. UMAP depicting the sample labels of the scATAC-seq and scRNA-seq data from 

mouse cellular reprogramming. 

c. The distribution of samples in each LIGER cluster. 

d. The distribution of LIGER clusters in each sample. 

e. Inferred lineage structure for scMTNI linking the 7 cell clusters with scRNA-seq 

measurements. 

f. F-score of top 1k edges in predicted networks of scMTNI, scMTNI+Prior, INDEP, 

INDEP+Prior, SCENIC and CellOracle compared to three gold standard datasets: 

ChIP, Perturb and Perturb+ChIP. The top boxplots show the F-scores of n = 7 cell 

clusters, while the bottom heatmaps show FDR corrected t-test comparing the F-

scores of the row algorithm to that of the column algorithm. The two-sided paired t-

test is conducted on F-scores of n = 7 cell clusters for every pair of algorithms. A 

FDR < 0.05 was considered significantly better. The sign < or > specifies whether 

the row algorithm’s F-scores were worse or better than the column algorithm’s F-

scores. The color scale is specified by −log(FDR), with the red color proportional to 

significance. Non-significance is colored in gray. In the boxplot, the horizontal middle 

line of each plot is the median. The bounds of the box are 0.25 quantile (Q1) and 

0.75 quantile (Q3). The upper whisker is the minimum of the maximum value and Q3 

+1.5*IQR,whereIQR = Q3 − Q1. The lower whisker is the maximum of the minimum 

value and Q1 − 1.5*IQR. 
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g. Pairwise similarity of networks from each cell cluster using F-score on the top 4k 

edges. Rows and columns are ordered based on the dendrogram created using the 

F-score similarity. Source data are provided as a Source Data file. 
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Figure 4 
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Fig. 4 | Network dynamics analysis of GRNs from cellular reprogramming 

a. k-means clustering analysis of top 4k edges in inferred networks. Shown are the 

mean profiles of edge confidence of 20 edge clusters. Each row corresponds to an 

edge cluster and each column corresponds to a cell cluster. The red intensity 

corresponds to the average confidence of edges in that cluster. Shown also are the 

number of edges in the edge cluster. 

b. Top 5 regulators for each edge cluster. Shown are only regulators that have at least 

10 targets in any edge cluster. The size and brightness of the circle is proportional to 

the number of targets. 

c. LDA topic 3 networks along the cell lineage. The layout of each network is the same, 

edges present in a particular cell cluster are shown in red. Labeled nodes 

correspond to regulators with degree larger than 10. 

d. Top cell cluster-specific regulators for each topic. Shown are only regulators that 

have at least 10 targets in any cell cluster. The more yellow and larger the circle, the 

greater are the number of targets for the regulator. Source data are provided as a 

Source Data file. 
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Figure 5 
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Fig. 5 | Inference of cell type-specific networks for human hematopoietic 

differentiation data 

a. UMAP of LIGER cell clusters of the scATAC-seq and scRNA-seq data. 

b. UMAP depicting the original cell types (samples) with scATAC-seq and scRNA-seq 

data. 

c. The distribution of cell clusters in each sample. 

d. The distribution of samples in each LIGER cluster. 

e. Inferred lineage structure linking the eight cell clusters with scRNA-seq data. 

f. Boxplots showing F-scores of n = 7 cell clusters (all cell clusters excluding C1) for 

top 1k edges in predicted networks from scMTNI, scMTNI+Prior, INDEP, 

INDEP+Prior, SCENIC and CellOracle compared to gold standard datasets (top). 

FDR-corrected t-test to compare the F-score of the row algorithm to the F-score of 

the column algorithm (bottom). The two-sided paired t-test is conducted on F-scores 

of n = 7 cell clusters for every pair of algorithms. A FDR < 0.05 was considered 

significantly better. The sign < or > specifies whether the row algorithm’s F-scores 

were worse or better than the column algorithm’s F-scores. The color scale is 

specified by − log(FDR), with the red color proportional to significance. Non-

significance is colored in gray. In the boxplot, the horizontal middle line of each plot 

is the median. The bounds of the box are 0.25 quantile (Q1) and 0.75 quantile (Q3). 

The upper whisker is the minimum of the maximum value and Q3 

+1.5*IQR,whereIQR = Q3 − Q1. The lower whisker is the maximum of the minimum 

value and Q1 − 1.5*IQR. 
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g. Pairwise similarity of networks from each cell cluster using F-score on the top 5k 

edges. Rows and columns ordered by hierarchical clustering using F-score as the 

similarity measure. Source data are provided as a Source Data file. 
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Figure 6 
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Fig. 6 | Network rewiring during hematopoietic differentiation 

a. k-means edge clusters of the top 5k edges (rows) across 8 cell clusters (columns). 

The edge confidence matrix was clustered into 19 clusters to identify common and 

divergent networks. The red intensity corresponds to the average confidence of 

edges in that cluster. Shown also are the number of edges in the edge cluster. 

b. Top 5 regulators of each edge cluster. Shown are only regulators with at least 10 

targets in a given edge cluster. The size and brightness (yellow) of the circle is 

proportional to the number of targets. 

c. Topic-specific networks across each cell cluster for topic 2. The layout of each 

network is the same, edges present in a particular cell cluster are shown in red. 

Labeled nodes correspond to regulators with degree larger than 10. 

d. Top regulators associated with each cell cluster’s network in each topic. Shown are 

only regulators that have at least 10 targets in any cell cluster. The more yellow and 

larger the circle, the greater are the number of targets for the regulator. Source data 

are provided as a Source Data file. 
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Figure 7 
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Fig. 7 | Inference of cell type-specific networks for human fetal hematopoiesis 

data 

a. Cell lineage structure linking the cell clusters from scRNA-seq. 

b. Boxplots showing F-scores of n = 11 cell clusters for top 1k edges in predicted 

networks from scMTNI, scMTNI+Prior, INDEP, INDEP+Prior, and CellOracle 

compared to gold standard datasets (top). FDR-corrected t-test to compare the F-

score of the row algorithm to the F-score of the column algorithm (bottom). The two-

sided paired t-test is conducted on F-scores of n = 11 cell clusters for every pair of 

algorithms. A FDR < 0.05 was considered significantly better. The sign < or > 

specifies whether the row algorithm’s F-scores were worse or better than the column 

algorithm’s F-scores. The color scale is specified for − log(FDR), with the red color 

proportional to significance. Non-significance is colored in gray. In the boxplot, the 

horizontal middle line of each plot is the median. The bounds of the box are 0.25 

quantile (Q1) and 0.75 quantile (Q3). The upper whisker is the minimum of the 

maximum value and Q3 +1.5*IQR,whereIQR = Q3 − Q1. The lower whisker is the 

maximum of the minimum value and Q1 − 1.5*IQR. 

c. Pairwise similarity of networks from each cell cluster using F-score on the top 5k 

edges. Rows and columns ordered by hierarchical clustering using F-score as the 

similarity measure. Reconstructed cell lineage trees are shown at the bottom of the 

pairwise F-score similarity matrix and are constructed using the MST algorithm on 

the F-score matrix. HSC-MPP hematopoietic stem cells and multipotent progenitors, 

LMP lymphoid-myeloid progenitors, MEMP MK-erythroid-mast progenitors combined 

with cycling MEMPs, GP granulocytic progenitors, Ery erythroid cells, Mono 
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monocyte, pDC plasmacytoid dendritic cells. Source data are provided as a Source 

Data file. 
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Figure 8 
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Fig. 8 | Network rewiring during human fetal hematopoiesis 

a. k-means edge clusters of the top 1k edges (rows) across 11 cell clusters (columns). 

The edge confidence matrix was clustered into 21 clusters to identify common and 

divergent networks. The red intensity corresponds to the average confidence of 

edges in that cluster. Shown also are the number of edges in the edge cluster. 

b. Top 5 regulators of each edge cluster. The size and brightness of the circle is 

proportional to the number of targets. Regulators mentioned in text are in red. 

c. Top regulators associated with each cell cluster’s network in each topic for fine-

grained lineage tree. Shown are only regulators that have at least 10 targets in any 

cell cluster. The brighter and larger the circle, the greater are the number of targets 

for the regulator. 

d. Top regulators associated with each cell cluster’s network in each topic for coarse 

lineage tree. Shown are only regulators that have at least 10 targets in any cell 

cluster. The brighter and larger the circle, the greater are the number of targets for 

the regulator. For ease of interpretation only the top 10 regulators per topic are 

shown. The full list of regulators per topic are shown in Supplementary Fig. 31. 

Source data are provided as a Source Data file. 

 

Additional supplementary information and figures are available at: 

https://doi.org/10.1038/s41467-023-38637-9  
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Table 1 | The statistics of the gold standard datasets used for the mouse 

reprogramming and human hematopoiesis studies 

 

 

Table 2 | The statistics of the real datasets and the size of the prior networks in 

mouse cellular reprogramming data, human hematopoietic data from Buenrostro 

et al., and human fetal hematopoiesis data from Ranzoni et al. 

 

The averages are computed across the cell clusters or cell types for each dataset 

(cellular reprogramming data: n = 7, adult hematopoiesis data: n = 8, fetal 

hematopoiesis (fine tree): n = 11, fetal hematopoiesis (coarse tree): n =4). 

Dataset Gold standards Number
of TFs

Number
of targets

Mouse
reprogramming

763,1345PIhC

910,12971brutreP

901674PIhC+brutreP

Human
hematopoiesis

Hematopoietic stem cells (HSC) 6 9173

CD14_monocytes 1 6523

megakaryocytes 4 8733

erythroid_progenitors 1 7955

R3R4_erythroid_cells 1 8494

3611segahporcam

CD34_hematopoietic_stem_cells-
derived_proerythroblasts

3 5847

98163sllec-T

63071sllec-B

795,0184sllec-B_MG

Human
hematopoiesis

126,0165dniBinU

9716941PIhC_suC

801605OK_suC

Cus_KO+ Cus_ChIP 26 2124

Cus_KO+UniBind 12 2020

krowtenroirPtesatadlaeR

segdefo#.gvasenegfo#.gvasrotalugerfo#.gvaseneg#srotaluger#tesataD
66629809211793612216302gnimmargorperralulleC

13956638201423499119991siseiopotamehtludA

Fetal hematopoiesis ( fi 3181453049552737615912)eerten

38956880321823524717222)eertesraoc(siseiopotamehlateF

The averages are computed across the cell clusters or cell types for each dataset (cellular reprogramming data: n = 7, adult hematopoiesis data: n = 8, fetal hematopoiesis ( fine tree): n = 11, fetal
hematopoiesis (coarse tree): n = 4).
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