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Abstract 

Advancements in automation, including increasing machine autonomy, are changing 

people’s relationships to automation, and moving machines into our more unpredictable 

human world. Such developments have important implications for the resilience of joint 

human-automation systems. When humans and machine agents actively coordinate joint 

goals in complex and unpredictable environments, cooperation is required. While previous 

research in human-automation interaction focuses on how perceptions of performance 

influence reliance on or compliance with automation, this research explores social exchange 

factors influencing human-automation cooperation and system resilience. Specifically, it 

considers how different social exchange structures and different levels of an automated 

agent’s cooperation influence joint coordination in a dynamic task environment. A 

microworld was developed and the study was conducted in two parts. Part 1 tests whether 

different levels of agent cooperation affect human cooperation, given unexpected changes in 

the task environment, in a negotiated exchange structure. Part 2 also tests levels of agent 

cooperation, but in a reciprocal exchange structure, to evaluate if reciprocal exchange led to 

timelier and greater exchange of resources. Results show that the reciprocal exchange 

structure increased flow of staff resources compared to negotiated exchange, leading to 

higher joint scores. Participants’ cooperation also differed depending on the level of agent 

cooperation. In negotiated exchange, participants provided more resources to a high-

cooperation agent compared to a low-cooperation agent, and in reciprocal exchange, 

participants provided timelier resources to the high-cooperation agent compared to a low-

cooperation agent. This work departs from the typical focus on supervisory control 

automation and automation performance in terms of reliability, and suggests cooperative 

control automation and automation performance in terms of collegiality is an important area 

of research for human-automation interaction that enhances system resilience.   
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Chapter 1 Introduction 

As automation capability and autonomy increase, their human counterparts become 

less like operators, supervisors or monitors, and more like peers in equal-authority roles.  

Concurrently, automation is increasingly part of dynamic work processes and is integrating 

into our complex human world, coordinating jointly with us on shared goals. In such 

circumstances, human-automation systems will more likely face coordination situations that 

cannot be predetermined. In joint tasks, human-automation coordination relies on cooperation 

because of our limitations both in knowing the right information for swift action, and in 

predicting the future. Whereas coordination is managing dependencies and therefore largely 

tactical, cooperation is predominantly social and involves the willingness to work toward the 

shared goal at the risk of perceived or actual individual cost. Previous research focuses on 

perceptions of reliability and dependability in supervisory control automation, rather than 

social factors influencing exchanges between more equal-authority human and machine 

counterparts. Because of this, little is known about how social exchange factors can influence 

human-automation cooperation, and subsequently adhoc coordination and adaptation to 

unexpected events. The goal of this research is therefore to assess how social exchange 

factors, such as automation behavior, work environment factors, and interaction structure, 

can influence cooperation in human-automation coordination and system resilience.  

1.1 Advances in Automation 

Advancements in automation are changing the way people interact with automation, 

with implications for system safety and system design. These advancements include 

machines that can dynamically learn from human counterparts, with the potential to work 

independently on tasks previously carried out by people. Rather than levels of a function, 

today’s machines can perform whole functions, acquiring information to implementing action 

(Parasuraman, Sheridan, & Wickens, 2000), demonstrating a degree of autonomy that is only 
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recently possible. Such autonomy is demonstrated in the high-frequency trading algorithms in 

financial securities trading that interact with human traders (Zhang & Adam, 2012), and the 

pokerbot capable of alternating between aggressive and passive strategies, known as “playing 

the player” (Bowling, Burch, Johanson, & Tammelin, 2015; Kaplan, 2013). Other advances 

include algorithms that analyze social situations to coordinate with people in more dynamic 

situations (Wagner & Arkin, 2008), and automation architectures that strive to achieve more 

natural interleaving between people and automated systems (Allen, Guinn, & Horvitz, 1999). 

Machines that can engage in sophisticated game-theoretic reasoning, cooperating or 

competing, and actively coordinating with human counterparts, demonstrate abilities that go 

beyond traditional rule-based automation.  

As automation becomes more like equal-authority teammates, and the heterogeneity 

or autonomy of agents in an organization increases, group structures flatten. In these more 

lateral structures that lack pre-defined coordination mechanisms, it is more common to have 

multiple simultaneously active goals than in supervisory-control situations. Practitioners 

therefore must be able to reconcile potentially conflicting goals (Castelfranchi, 1998; Woods 

& Hollnagel, 2006). For function allocation, this type of coordination relationship has been 

described as mixed-initiative (Horvitz, 1999) or interactive control (Van Wezel, Cegarra, & 

Hoc, 2011). While mixed-initiative refers specifically to characteristics needed to achieve 

interleaving of joint action, interactive control refers generally to a relationship where the 

human and automation are both involved in an activity and each may propose, check, or 

evaluate solutions or partial solutions. Both differ from supervisory control, a “hierarchical 

control scheme whereby a system…having sensors, actuators and a computer, and capable of 

autonomous decision-making and control over short periods and in restricted conditions, is 

remotely monitored and intermittently operated directly or reprogrammed by a person” 

(Sheridan & Verplank, 1978, p. 1-1).  
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As defined, supervisory control automation reflects a different approach to 

automation integration in human work systems, and has led to much research on the costs of 

such an approach (Kirlik, 1993), including issues of reliance and compliance (Meyer & Lee, 

2013) and maintaining situation awareness (Endsley & Kaber, 1999; Endsley, 1996). While 

research on understanding how to prevent failures in existing systems is still critical, 

increasingly, it is recognized that supervisory control automation may not be the best solution 

for dynamic coordination in high-criticality work domains. When the opportunity for human 

intervention at the point of automation failure is limited in time, and the costs of system 

failure are high, the principles behind lateral coordination at least acknowledge that 

coordination emerges in unforeseen circumstances. Furthermore, by virtue of its relationship 

structure, lateral coordination engages the human counterpart, sidestepping to some degree 

issues associated with a monitoring role, including automation complacency and skill 

degradation (Bailey & Scerbo, 2007; Miller, Funk, Goldman, Meisner, & Wu, 2005; 

Parasuraman, Molloy, & Singh, 1993).  

To coordinate laterally with people in the natural world, automation needs to be able 

to reconcile goals, communicate naturally, and sustain an interactive dynamic (Allen et al., 

1999). An interactive dynamic, where either person or automation may take initiative, allows 

each agent involved to negotiate its role opportunistically, to best address the problem at 

hand, depending on the circumstances and the skills each contributes best. Previous research 

in human-automation interaction focuses primarily on information-processing approaches 

and human operators’ reliance on or compliance with automation for varying levels of 

automation performance. In these new automation contexts, with increasing autonomy and 

applications in more dynamic environments, social exchange factors that go beyond reliance 

and compliance may play an increasingly prominent role. These factors include signals from 

an automated agent’s behavior, work environment demands that influence those behaviors, 
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and the social exchange structure of human-automation interaction. While a gross 

simplification of the potential variables involved, these three dimensions focus on the key 

mechanisms impacting the analytical-based and affective-based judgments in cooperation 

that enable effective lateral coordination. In the face of incomplete information, 

reconciliation of laterally competing goals – even with automation – will rely on trust and 

social processes (Lee & See, 2004; Parasuraman & Miller, 2004; Wagner & Arkin, 2011), 

and thus the automation’s contribution to system performance may be more defined by 

collegiality than by reliability. Automation collegiality, in turn, cannot be assessed in a 

vacuum when real world coordination tasks involve more than establishing positive 

relationships (Muir, 1987; Parasuraman & Miller, 2004).  

1.2 Cooperation and Resilience Engineering 

In leveraging social-exchange theory to better understand human-automation 

cooperation in lateral relationships rather than supervisory relationships, a central 

contribution of this work is to Resilience Engineering. Resilience Engineering is an approach 

to system evaluation and design that considers how jointly interacting agents can work to 

achieve global goals in increasingly dynamic and safety-sensitive environments (Hollnagel, 

Woods, & Leveson, 2006). Though Resilience Engineering has yet to provide useful 

quantification methods to help mitigate risk and accelerate recovery from unexpected events, 

it rightly emphasizes a paradigm to help avoid the brittleness of traditional engineering 

approaches that focus on reducing variability and predicting based on past events (Sheridan, 

2008). Rather than measuring productivity and performance simply by the quantity or quality 

of widgets processed, Resilience Engineering focuses on processes that help organizations 

anticipate, mitigate, and prepare for graceful recovery from adverse events, include 

maintaining a safety margin by sharing resources (Stephens, Woods, Branlat, & Wears, 

2011), and focusing on system-level consideration of outcomes rather than local or 
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individual-level consideration. Collaborating to achieve global goals may require 

compromise of individual local goals, which can be influenced by social exchange factors. 

For automated systems interacting with human counterparts, effective collaboration requires 

an understanding of how people cooperate with automation, and the factors influencing those 

decisions.    

1.3 Research Questions and Scope 

The purpose of this research is to consider how elements of social exchange that 

define human-automation interaction enable effective lateral coordination. This approach is 

motivated by the trend towards increasingly autonomous automation partnering with humans 

as peers in dynamic joint tasks, and a lack of consideration of these factors in current human-

automation interaction research. To achieve this objective, this work explores the following 

overarching hypotheses:   

1. Automated agent behaviors that signal varying levels of cooperation will affect 

participants’ propensity to cooperate when coordinating on dynamic a joint-task.  

2. Changing the social exchange structure of human-agent interaction, from a structure 

that emphasizes consideration of others’ needs, rather than self needs, will result in 

enhanced cooperation through appropriate resource giving.   

Considering lateral coordination from the perspective of social exchange factors 

raises many issues and connotes a substantial research agenda. Not included in this research, 

but important for its application, would be to consider what type of control relationship is 

more appropriate for a given task and domain, e.g. manual, supervisory, advisory, interactive, 

or fully automatic (Kirlik, 1993; Van Wezel et al., 2011); to what extent tasks need to be 

interdependent (e.g. Cummings, 1978); and how to determine goal prioritization (examples in 

Kelley et al., 2003). This dissertation derives inspiration from a wide range of literature for 

an enhanced understanding of human behavior and responses to an autonomous agent.  
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1.4 Practical Contributions 

Drawing from the trend of increasingly autonomous automation and insights on 

interaction from social exchange theory, the current research aims to address three aspects of 

human-automation interaction: interaction strategies in a joint task, changes in the work 

environment that require goal adjustment, and the structure of interaction that affords 

different social mechanisms of cooperation. Having a better understanding of how people 

respond to different automation behaviors can inform design of automation that elicit 

cooperative engagement and appropriate action in a joint task. Furthermore, understanding 

how changes in the work environment interact with agent behavior and people’s response to 

both the agent and their environment can clarify how tradeoffs in the environment and in 

resources impact cooperation. Finally, testing different social exchange structures will turn 

attention to alternative design strategies in the space between cooperating entities, and 

highlight the potential role of interaction structures on cooperation. Focusing on these aspects 

contributes to the consideration of social exchange components of human-automation 

interaction design, and mechanisms of cooperation for human-automation teams and 

organizational resilience. This work also contributes to the empirical basis of Resilience 

Engineering by demonstrating how social exchange factors are important for the design of 

organizational processes and technology that lead to graceful extensibility through the 

benefits of joint work (Woods, 2015) 

1.5 Theoretical Contributions 

This is the first known study to use a microworld environment to explore interdependent 

social exchange factors of human-automation cooperation in a dynamic joint-task 

environment. This research departs from research on cooperation between people mediated 

by reliance on automation (Gao, Lee, & Zhang, 2006), as well as the typical information-

processing approach to human-automation interaction (Parasuraman et al., 2000). Instead, it 
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takes a relational, social exchange perspective that focuses on automation collegiality and 

joint cooperation, rather than on automation reliability and operator reliance. The assessment 

of human-automation interaction in this context is critical to future automation design and 

research, as automation increases in dynamic and safety-critical environments. Findings from 

this work may also extend to other interactions between humans and technology, or between 

remote team members. Mainly, this work serves as a starting point for an enhanced 

understanding of the fundamentals guiding behavior in human-automation systems that more 

lateral relationships make relevant.  
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Chapter 2 Background and Literature Review 

This chapter provides the motivational backdrop of this research. It presents 

background information and focuses relevant concepts informing the hypotheses explored. 

First, examples of automation advances are provided as justification for a closer look at 

human-automation interaction, specifically the flattening of their work relationship. These 

trends in technological advancements and organizational restructuring are then connected to 

the broader view of Resilience Engineering and its relevance to system design in high 

criticality environments. Previous work on human-automation interaction and related 

constructs such as trust and coordination are then reviewed in the context of Resilience 

Engineering, in particular human-agent cooperation and achieving joint tasks. Following this 

discussion, the social exchange worldview used is presented to clarify and focus key concepts 

driving the hypotheses explored. Finally, the significance of this research is summarized 

followed by a statement of the research objective and questions addressed.  

2.1 Advances in Automation 

From self-driving vehicles to expert decision-support systems and robots that learn, 

advances in automation have led to machines capable of automating whole functions that 

previously required human intervention. Furthermore, adaptable automation means people 

are increasingly able to influence and test automation. In such cases, the core of automation 

performance may actually rely on human input, changing the nature of the human-automation 

relationship from supervisory control to advisory control or interactive control (Van Wezel et 

al., 2011). Rather than determining the types or levels of automation for separate system 

functions (Parasuraman et al., 2000), trends in automation and artificial intelligence are 

showing approaches to automation that support a more interactive relationship with human 

counterparts (Allen et al., 1999; Breazeal & Scassellati, 1999; Castelfranchi, 1998; Knight, 

2013; Wagner & Arkin, 2008). These approaches reflect both technical advancements, as 
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well as a vision to apply automation in increasingly dynamic, and increasingly complex 

environments.  

2.1.1 From supervisory control to interactive partner  

In supervisory control automation, the human operator is often relegated to monitoring 

automation performance, and is tasked with intervening if the automation fails. System 

performance under this arrangement thus depends on the interplay between the automation’s 

reliability, the human operator’s ability to assess its reliability and to appropriately rely on or 

comply with the automation (Meyer, 2004; Parasuraman & Riley, 1997). However, a 

combination of increasingly capable automation and increasingly complex systems suggests a 

need to go beyond the supervisory control paradigm. Paradoxically, the work demands 

intended for increasingly capable automation require collaborative relationships with people, 

where successful interactions are synonymous with cooperation and teamwork rather than 

with consistency and reliability. Under this arrangement, the potential for goal conflict and 

ambiguity increases with more interactive automation, outlining a different human-

automation relationship in which social factors play an increasingly central role (Lewicki, 

McAllister, & Bies, 1998). 

Examples of such automation include the recent advances in commercial automotive 

engineering, social robots, computational trading algorithms, and uninhabited vehicles. These 

developments place automation in increasingly interactive situations, communicating and 

coordinating with people in real-world circumstances.  Along with these technological trends 

is a need for automation in more social and functional roles, such as gym trainer or caretaker 

(Goetz, Kiesler, & Powers, 2003). Machines have already demonstrated a capability to take 

on roles in many knowledge­based tasks and social tasks, (Ferrucci, 2012; M. Kaplan, 2013; 

Levy, 2012) that were partially or fully fulfilled by people. However, such machines are 

largely in domains where unreliability does not pose as severe of costs as it could in other 
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domains where timing is more critical. As automation expands its scope into dynamic roles 

within safety­critical domains, where coordination emerges from multiple cooperating 

entities rather than derives from pre-planned processes (Casper & Murphy, 2003; Defense 

Science Board Task Force, 2012; Robinette, Wagner, & Howard, 2013), current approaches 

to human-automation integration will be challenged.  

2.1.2 Agency and attribution 

Beyond technical capability, another reason for reconsidering social factors 

influencing human-automation interaction is the development of increasingly embodied and 

socially aware agents (Adams, Breazeal, Brooks, & Scassellati, 2000; Lee, Knox, & 

Breazeal, 2011; Verberne, Ham, & Midden, 2012). Such features and capabilities that display 

agent-like behavior may induce unintended social responses (Nass & Moon, 2000). 

Particularly with automation actions and decisions that can signal intention to others, 

people’s tendency to ascribe motives to objects may affect their decisions to cooperate with 

them (Kelley, 1973).  

There is also a trend of increased automation embodiment and more socially-aware 

automation, such as robots and avatars, bolstered by research on voice (Nass & Brave, 2005), 

touch (Markussen, 2009), conversation (Cassell & Bickmore, 2000), and goal-oriented 

movement (Hoffman & Ju, 2014; Mutlu, Kanda, Forlizzi, Hodgins, & Ishiguro, 2012; 

Terada, Shamoto, Mei, & Ito, 2007). These machine abilities with embodied applications 

reflect a desire to bring automation into our more dynamic human world (Brooks, 1991; 

Horvitz, 1999; Wagner & Arkin, 2008), with designers leveraging people’s tendency to 

interact with things as if they had agency (Epley, Waytz, & Cacioppo, 2007; Takayama, 

2009). Automation working in social environments moves them from exhibiting relatively 

understandable behaviors, i.e. teleoperation where behaviors map directly to function, to the 

more sophisticated and ambiguous behaviors of social interaction, a complexity enabled by 
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agency and embodiment rather than (more simply) capability or performance in controlled, 

well-defined settings. Cooperation with such automation may thus depend on both 

inadvertent and purposeful social cues of new machines.  

The attribution of humanlike properties, characteristics, or mental states to real or 

imagined nonhuman agents and objects goes beyond descriptions of imagined or observable 

actions (e.g. “the robot is sad”). At its core, it is inference about unobservable characteristics 

and motivations of a nonhuman agent that increases one’s ability to make sense of an agent’s 

actions, reduces uncertainty associated with an agent, and increases confidence in predictions 

of this agent in the future (Epley et al., 2007). This reduction of uncertainty also fulfills the 

human desire to interact effectively with their environment (White, 1959). While predicting 

the extent to which certain anthropomorphic characteristics elicit social responses is beyond 

the scope of this research, there is evidence supporting the general idea that experiencing 

increased agency in non-human objects or entities could lead to increased attribution of 

human-like qualities (Benninghoff, Kulms, Hoffmann, & Krämer, 2012; Fussell, Kiesler, 

Setlock, & Yew, 2008; Nass, Steuer, Tauber, & Reeder, 1993; Takayama, 2009).  

The concept of agency has been ill-defined, but has been used to refer to the ability of 

an entity to act in an environment on its own (Castelfranchi, 1998; Franklin & Graesser, 

1997). However, this definition is similar to autonomy, which has been defined as “the 

amount of freedom and discretion an individual has in carrying out assigned tasks” 

(Langfred, 2007, p. 886), or referred to as acting “in pursuit of [one’s] own agenda” (Franklin 

& Graesser, 1997, p. 26). These definitions assume not only the ability of action, but also 

imply an assignment of ability, both of which are properties of the entity. This is consistent 

with Bradshaw et al.’s (2004) discussion of self-sufficiency (descriptive of the entity) and 

self-directedness (prescriptive onto the entity) as two dimensions of autonomy. In their 

spectrum of autonomy, autonomy is closely related to the ability to reconcile multiple 
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competing goals – including the local goals relating to self-sufficiency on a particular task, 

and the shared goals relating to the ability to interact flexibly with other entities. This 

definition is necessarily context dependent. For example, a light-sensing robot will have little 

autonomy in the context of a dark room, because its environment hinders its abilities. 

Similarly, a self-driving vehicle might be considered to have a higher degree of autonomy if 

it were operating in a driving environment that did not involve other people.  

A more recent description of agency considers both the properties of the entity, as 

well as the perception of the entity. In this definition, agency refers to entities that are 

perceived and responded to in-the-moment as if they were agentic despite the likely reflective 

perception they are not agentic (Takayama, 2009). This definition differentiates reflective 

beliefs (e.g. “I know this robot is just an object”) from in-the-moment responses that treat the 

object as if it had a high degree of agency (Takayama, 2009), and supports the idea that 

reflective perceptions are fundamentally different from perceptions during interaction, in a 

biological sense (Schilbach et al., 2013). Thus, while autonomy refers mostly to the objective 

ability of an entity to accomplish functional goals on its own, agency includes both the ability 

and subjective perception of ability during interaction. This is an important distinction for 

automation that will interact with people, because it is perceptions and subjective realities 

that people judge and act upon (Tversky & Kahneman, 1974).  

Despite the excitement over advances in machine autonomy and future robotic 

teammates, Groom and Nass (2008) posit that imbuing robots with the “humanness” assumed 

of human teammates will be extremely challenging because people’s innate expectations for 

team-appropriate behavior cannot be fixed with technological innovation. Establishing trust 

between people and agentic automation may be one of the most daunting problems for the 

development and success of such mixed teams, particularly to achieve the type of cooperation 

needed to coordinate in environments with multiple competing goals. To work toward this 
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ideal, Groom and Nass (2008) observe that future research intent on developing human-robot 

teams must go beyond technical performance of automation to address the social and 

organizational qualities of successful teaming.  

2.2 Resilience in Sociotechnical Systems  

The interest in mixed teams may be partially driven by the demand for more flexible 

systems, in place of more traditional systems that strive to reduce variability. Traditional 

engineering approaches such as Reliability Engineering, which compares system 

performance to predetermined criteria (Billinton & Allan, 1983), and Lean Engineering, 

which tries to improve output by reducing variability (Main, Taubitz, & Wood, 2008), can 

lead to brittle systems and catastrophic failure in complex, safety-critical settings (Nemeth, 

Wears, Woods, Hollnagel, & Cook, 2008). Therefore, most complex, safety-critical settings 

still need people to fill the gaps that automation creates or that system designs cannot predict 

and anticipate. In complex, safety-critical settings the idea of more flexible coordination is 

increasingly popular, as automated systems improve and become a part of such settings, 

actively coordinating with human counterparts. Resilience Engineering is one such 

perspective that promotes the need for more flexible systems (Hollnagel, Woods, & Leveson, 

2006).  

Woods (2015) clarifies the different existing notions of resilience in the safety 

engineering literature: Resilience is graceful extensibility and refers to the ability to manage 

sustained adaptability of a layered network system; this differs from resilience as rebound, to 

restore a system to previous conditions prior to a disruption; or resilience as robustness, 

having an expanded set of models that effectively respond to disturbances. Rather, the 

concept of resilience as graceful extensibility derives from combining 

“graceful degradation” – the ability of a machine or networked system to maintain limited 

functionality, even when a large part is inoperative, to prevent catastrophic failure – with 
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software “extensibility” – the ability to have new functionality extended without affecting, or 

minimally affecting, existing system functions (Woods, 2015). An application of graceful 

extensibility to automation design considers how, as part of an interacting network of agents, 

automation can cooperate and draw on shared resources to accommodate surprises.  

2.2.1 Organizational restructuring 

The movement of automation towards more specialized functions and lateral 

coordination with human counterparts is not just a reflection of technological advances, but 

also a way to maintain advantage in a competitive market. Following the Industrial 

Revolution, increased job specialization for human workers led to finer-grained division of 

labor and the subsequent need to coordinate among specialties (Grant, 1996). This 

disaggregation of work from Tayloristic hierarchical structures of the Industrial Revolution to 

more interdependent lateral work processes of the Information Age (Adler, 1997, 2001; 

Blomqvist & Stahle, 2004), led to achievements previously thought impossible: reviving 

patients from death-like states, erecting complicated skyscrapers, and landing military aircraft 

on carriers at sea (Gawande, 2009; Rochlin, La Porte, & Roberts, 1987).  

While the aforementioned achievements of lateral work processes refer to 

predominantly human organizations, automation is likely to continue taking on jobs that were 

once the purview of human workers (Frey & Osborne, 2013). Alongside these organizational 

changes, new approaches to human-automation interaction, such as interactive function 

allocation (Pritchett, Kim, & Feigh, 2013; Van Wezel et al., 2011), mixed-initiative 

interaction (Allen et al., 1999), and social situation analysis in robots (Wagner & Arkin, 

2008) suggests that more lateral approaches to human-automation system design are within 

reach and promising. Implied in these approaches is a level of autonomy individual agents 

have within the larger networked system, similar to the autonomy of human workers in self-

regulating work groups (Cummings, 1978).  
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Lateral work structures tend to be more useful when external controls, including 

hierarchical work structures, are unable to reduce uncertainty. Thus, increasing the internal 

control of individual workers becomes key for successful coordination. Internal control is 

having authority to work autonomously, but often collaboratively, addressing issues as they 

arise instead of following top-down procedures far removed from the issue. In these types of 

work systems, coordination and cooperation emerge more than they are predetermined. As 

advanced automation become capable of coordinating dynamically with human counterparts, 

performing reliably and robustly on predetermined criteria may be less critical than flexibly 

adjusting alongside human counterparts as conditions evolve (Woods, 2015; Zieba, Polet, 

Vanderhaegen, & Debernard, 2010). 

2.2.2 Flexible systems in dynamic environments 

For supervisory control automation, joint performance depends on automation 

reliability, the human operator’s ability to assess automation reliability, and appropriately 

rely on or comply with the automation (Parasuraman & Riley, 1997). However, for more 

advanced automation in volatile environments, interactive control, sometimes referred to as 

collaborative control, allows both agents to combine their competencies and negotiate 

conflicts (Zieba, Polet, Vanderhaegen, & Debernard, 2009). Rather than efficient but 

inflexible performance, interactive control supports resilience through adaptation to novel 

situations, accommodation of bugs in the system itself, and recovery from errors in following 

procedures (Woods, Johannesen, Cook, & Sarter, 1994).  Interactive control, now more 

possible and more likely due to the aforementioned technological advances, is similar to 

teamwork in that it allows a group of agents to adapt collectively to unexpected perturbations 

in the work environment (Zieba et al., 2009, 2010). Such perturbations have the potential to 

affect work systems outcomes, manifested in the interactions between agents.   
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While Woods (2015) discusses a larger system of networked agents more generally, 

Van Wezel et al (2011) focuses on the human-automation dyad. Van Wezel et al’s (2011) 

characterization of dynamic versus static scheduling tasks for human-automation function 

allocation supports the idea that demands of the system should inform the type of human-

automation relationship, which range from advisory to interactive and supervisory. This 

characterization of the task environment is important for determining the types of human-

automation relationships that would best address such environments. From management 

science to resilience engineering to mixed initiative approaches, there seems to be cross-

discipline support that in more unpredictable environments, function allocation needs to 

move beyond predefined roles and responsibilities (Allen et al., 1999; Baker, Day, & Salas, 

2006; Castelfranchi, 1998; Cummings, 1978; Zieba et al., 2009). Instead, successful 

coordination in these environments relies more on the ability to collaboratively resolve 

multiple goals. 

When cascading events push operations in a way that stretches an organization’s 

response to increasing demands, individuals and groups make successful adaptation possible 

by adjusting strategies and resources to provide the additional capacity (Nemeth et al., 2008). 

Such adjustments in and of themselves may increase workload, particularly in the ad hoc 

judgment and decision-making required, to make the appropriate choices given the 

environment, to best respond to requests from others, and to proactively consider the shifting 

needs of others and the organization as a whole. The potential of automation to introduce new 

forms of workload in coordinating with people may lead to breakdowns in coordination and 

cooperation within the organization (Kirlik, 1993; Mutlu & Forlizzi, 2008; Woods, Tittle, 

Feil, & Roesler, 2004).  

These new work environment contexts for automation highlight the limitations of the 

Levels of Automation framework (Parasuraman et al., 2000), mainly that in dynamic tasks 
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the time between acquiring information and implementing action cycles more quickly (Van 

Wezel et al., 2011), and it is often difficult to predict the inputs in certain work environments 

(Cummings, 1978). Designing for resilience suggests a new approach is needed, for 

understanding potential interactive control issues, as an important complement to current 

supervisory control frameworks.  

2.3 Human-Automation Coordination 

2.3.1 Are they teammates?  

Teams have been defined as a set of two or more individuals interacting adaptively, 

interdependently, and dynamically toward a common and valued goal, and they differ from 

groups in terms of task interdependency, structure, and time span (Salas, Burke, & Janis, 

2000). As the line blurs between human-automation teams and automation-mediated human-

human teams, research on teamwork may be a source for better understanding how 

interacting autonomous agents coordinate effectively. Such work has considered how 

teamwork is an essential component of avoiding adverse events in complex, hazardous 

environments where error consequences are high but their occurrence is low (Baker et al., 

2006), how human teams can learn to adapt to novel situations through perturbation training 

(Gorman, Cooke, & Amazeen, 2010), and how implicit and explicit communication, 

coordination strategies, and cooperation involving trust and team cohesion are key 

components of teamwork (Salas, Wilson, Murphy, King, & Salisbury, 2008).  

While human-automation interaction researchers have already considered studying 

human teams to better understand how people coordinate and cooperate with others (Allen et 

al., 1999), there are limitations to taking direct parallels from the teamwork literature 

comprising human members and applying them to mixed teams. A large component of 

teamwork literature refers to Shared Cognition, or the idea that teammates can share mental 

models, situation awareness, and a common language for communication. Shared Cognition 
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is the theoretical basis for understanding how teams adapt performance processes and 

interpret environmental cues to make compatible decisions and to coordinate (Salas, Cooke, 

& Rosen, 2008). Groom and Nass (2007) argue persuasively that because robotic teammates 

lack humanlike mental models and a sense of self, and that mental models are so fundamental 

to human cognition, such machines may be rejected as members of human teams. It is still 

unclear the extent to which this human quality of sharing mental models are assumed of 

teammates.  

More recent methods applied to the study of teams questions whether measurements 

of shared knowledge or shared understanding is predictive of team performance (Cooke, 

Gorman, Myers, & Duran, 2013). Therefore, an “interactionist” approach has been suggested 

to better understand team performance through communication and coordination process 

measures rather than static performance measures (Cooke & Gorman, 2009). Such 

approaches that focus on process measures may be more relevant for human-automation 

interaction as well, since it avoids the need for the automation to have a mental model at all, 

and instead focuses on the dynamic mechanisms rather than static factors that lead to 

coordination or cooperation. 

Another limitation of the teamwork literature is the conceptualizations of coordination 

and cooperation that largely derive from descriptive observation of human teams rather than 

from a first principles perspective. A definition of cooperation as “the desire to coordinate by 

engaging, anticipating, and predicting one another’s needs” (Salas, Wilson, et al., 2008) is 

difficult to separate from concepts like motivation and coordination, and more or less ignores 

the idea that certain behaviors associated with cooperation may not always lead to the desired 

system-level outcomes. Work on human teams can be an important source of inspiration, to 

better understand how people respond to others’ actions, and the desired processes and 

outcomes of good team coordination. But it is difficult, and may be unnecessary to build 
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automation that appropriately reflects human mental models in all situations. It may be 

sufficient to develop automation that can recognize situations that demand trust and 

cooperation without relying explicitly on a shared understanding with humans (Wagner & 

Arkin, 2011), and to better understand the interrelationship between processes in teamwork 

(Salas, Cooke, et al., 2008). In the meantime a more specific definition of cooperation is 

needed to clarify what is meant by human-automation teaming, and to clarify how 

cooperation is related to system resilience. 

2.3.2 Coordination and cooperation 

Drawing from the integrated work that forms coordination theory, coordination is 

defined as dependency management (Malone & Crowston, 1994). The intuition is that 

without interdependencies, there would be nothing to coordinate. One example of a common 

dependency is coordination of resources among workers. The process for managing such a 

dependency may be using the “first come, first serve” priority order. Other processes that 

help manage coordination include notifications, standardizations in usability design, and task 

decomposition for work design. When people are involved, however, understanding 

coordination also involves understanding their incentives, motivations, and emotions due to 

their impact on decisions and actions, particularly when their goals conflict with others. To 

the extent that coordination emerges in lateral team structures without being planned, 

cooperation plays a greater role in achieving a joint outcome. Cooperation is most easily 

identified in actions, that despite individual costs, benefit a group of two or more members 

(adapted from Dugatkin, Mesterton-Gibbons, & Houston, 1992).  

The importance of cooperation in resilience is highlighted in the idea of a margin of 

maneuver—a cache of actions and resources that allows the system to function despite 

unexpected demands (Woods & Branlat, 2010). Systems without an adequate margin become 

brittle and are unable to withstand unexpected demands. Based on studies of emergency 
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department interactions with other units in a hospital system, Stephens, Woods, Branlat, and 

Wears (2011) identify three classes of creating or maintaining a margin of maneuver: 

defensive strategies, autonomous strategies, and cooperative strategies. Defensive strategies 

increase the margin of an organizational unit by restricting another unit. An example of this 

would be actions associated with greediness, such as borrowing resources from another unit 

in anticipation of oncoming demand, without consideration of the other unit’s needs. 

Autonomous strategies involve local focus and may involve reducing interactions with other 

units because the benefits of sharing resources are not believed to be relevant or worth the 

costs. Such costs include both the value of the resources shared, as well as the individual time 

and effort involved in coordinating with another entity, including cognitive demands like 

gathering and processing information about the other’s needs juxtaposed to self needs and 

global needs, and choosing the best action. Cooperative strategies involve the effort of two or 

more units that, through coordinated and collective action, recognize or create common-pool 

resources from which both units can draw. Such actions help avoid the tragedy of the 

commons when resources are limited (Ostrom, 1999), and may enhance system resilience by 

giving the overall network a larger pool of resources to draw upon for greater margin of 

maneuver. 

Agents’ priorities may thus influence people’s decisions to cooperate, such as when an 

agent’s actions or other signals are perceived as the agent prioritizing individual interest over 

the shared group interest, so the costs of coordinating may not be justified. Just as initial trust 

is important for long-term collaboration between people, automation, and organizations (Li, 

Hess, & Valacich, 2008; Zheng, Veinott, Bos, Olson, & Olson, 2002), initial cooperative 

action has been found to be a more successful long-term strategy than an initial 

uncooperative action (Axelrod & Hamilton, 1981). Hoc (2001) identifies criteria that define 

situations where cooperation is relevant: each agent strives toward goals; can interfere with 
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the other’s goals, resources, procedures, etc.; and tries to manage the interference to facilitate 

individual activities and the common task when it exists. Similar to the teamwork literature, 

Hoc defines cooperation without explicitly including goals. However, this work considers 

goals to be inseparable from cooperation. Goals are a central component for explaining how 

cooperation facilitates lateral coordination. Without well-defined roles or responsibilities 

between people and automated agents, the potential for people to act in ways that tend to 

advance personal goals rather than the joint goals, or their partner’s goals more locally, are a 

fundamental difference from problems where coordination is the focus.  

The definition of cooperation used in this dissertation is the act of compromising 

individuals’ goals and self-interest to achieve shared goals and collective interest. This 

definition arises from what Clark (1996) calls private and public goals in social psychology, 

Ostrom (2000) calls self and collective interest in economic behavior, Hoc (2001) calls ego-

centric and collaborative interests in multi-agent interaction, and Woods (2004) calls local 

and global goals in resilience engineering. While these constructs are historically and thus 

conceptually distinct, they share the idea that human cooperation emerges through 

reconciliation of myriad competing goals through social processes. In such situations where 

interdependent activity involves shared resources and conflicting goals, cooperation is 

essential for coordination. Thus, rather than collaborative control, which often refers to 

managing functional dependencies by adapting levels of autonomy, cooperative control may 

be an appropriate term for scenarios where cooperation is needed for achieving shared goals 

that conflict with individuals’ goals. 

 Figure 1 illustrates the difference between a pure coordination scenario and a 

cooperation-centric scenario, using a dyad and formalisms from game theory for simplicity.  
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Figure 1. The left matrix shows two agents’ interest in the same combinations of 

behavior, i.e. coordination. The right matrix shows potential goal conflict, and how 

trust is needed, i.e. cooperation.  

The matrix on the left, adapted from the “Corresponding Mutual Joint Control” (Kelley et al., 

2003, p. 160), shows two agents’ common interest in the same combinations of behavior; the 

best outcomes simply depend on agent A and B synchronizing or arranging their behavior so 

that both choose the same option, option 1 or option 2. The cooperation matrix, adapted from 

“Matrix Representation of the Single-Trial Prisoner’s Dilemma” (Kelley et al., 2003, p. 189), 

shows how potential goal conflict means a component of trust is needed (that the other will 

not choose to defect) for both parties to avoid negative outcomes. Cooperation is thus about 

arranging actions in the desired configuration, and if individual and joint goals differ then 

aligning them. 

It should be acknowledged that human-automation roles are not often as concrete as 

this representation might suggest. Decisions often comprise multiple sub-decisions with 

myriad interacting variables. There are certainly limitations to the extent that real world 

situations, roles, and decisions can be represented so simplistically. But because perceived 

alignment of goals can play a critical role for interacting human and automation agents, 

cooperation seems better conceptualized as a sub-class of coordination that incorporates goal 
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dependencies. Goals are defined as a mental representation of a desired endpoint or target 

situation that can: guide action by repeated tests of the action against the representation itself, 

control the action search and selection, and qualify its success or failure (adapted from 

Castelfranchi, 1998). Since a goal-directed agent may have more than one goal active in the 

same situation, and skills and resources are limited, the agent must be able to form choices 

regarding prioritization of goals, unable to achieve all of them. That the goals of multiple 

agents are dependent on one another is the nature of a joint task.  

Goals, not behavioral differences, are said to distinguish social action from non-social 

action, forming the basis of exchange and cooperation among interacting, intelligent agents 

(Castelfranchi, 1998). The increasing agency demonstrated in new automation, coupled with 

the more informal interactions of lateral coordination may mean the success of future systems 

comprising people and autonomous agents may depend increasingly on social constructs like 

trust. The intuition that trust is needed for cooperation in joint decision-making is supported 

by studies on human-automation interaction which show having shared goals is associated 

with higher levels of trust in automation (Cramer et al., 2008; de Visser & Parasuraman, 

2011; Verberne et al., 2012). In light of increasingly autonomous automation and the need to 

engineer resilient systems, better understanding the factors influencing human-automation 

cooperation seems crucial. System resilience demands alternatives to the more explicit 

procedures of the supervisor-subordinate relationship, and these alternatives include informal 

interactions that promote coordination and cooperation (Rochlin et al., 1987). 

2.3.3 Trust and cooperation 

Trust, a substitute for formal controls, guides human behavior toward automation 

when a complete understanding of the automation is difficult or impractical (Lee & See, 

2004). Though cooperation may exist in the absence of trust, such as when controls are in 

place and the situation does not put a party at risk (Mayer, Davis, & Schoorman, 1995), trust 
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can reduce transactional costs in obtaining cooperation when goals conflict (Kramer, 1999). 

Especially when problems cascade, demands for cognitive activity increase as do the 

demands for coordination across agents (Woods & Patterson, 2001). In extreme cases, people 

may be even less likely to interact with automation while experiencing high stress with 

physical and cognitive fatigue as was the case for search and rescue teams at the World Trade 

Center (Casper & Murphy, 2003). These increased demands may accentuate bonding or 

fracturing of teams. Without trusting that cooperation will lead to better long term outcomes 

despite short term costs, people may resort to defensive strategies to preserve local gains at 

the cost of the global system (De Dreu et al., 2010; Stephens et al., 2011). In the face of 

transaction costs, trust is ubiquitous (Arrow, 1974). 

Trust in supervisory control automation has been said to be different from 

interpersonal trust because it is unilateral rather than relational (Lee & See, 2004). However, 

recent work focusing on more autonomous automation (e.g., agents or robots) suggests a 

relational view of trust may apply (Bray, Anumandla, & Thibeault, 2012; Fink & Weyer, 

2014; Wagner & Arkin, 2011). A relational perspective of trust may provide a better basis for 

deriving principles of interaction design and cooperative control than an information 

processing perspective. For example, a relational perspective that considers social exchange 

theory can help explain why people cooperate even when it is not in their best interest to do 

so. Social exchange theory accounts for the idea that communication with a partner shapes 

perceptions of an exchange partner and interpretation of the partner’s subsequent actions 

(Bottom, Holloway, Miller, Mislin, & Whitford, 2006). It also accounts for the idea that 

people are generally good at detecting the trustworthiness of an exchange partner based on 

such signals (Janssen, 2008). These perspectives that view trust as a relational construct, 

when the unit of analysis is at least two, rather than as an information-processing construct 
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where the unit of analysis is one, may highlight important components of cooperation with 

automation that the trust in automation literature largely ignores.   

2.3.4 Trust in automation 

Previous work on trust in supervisory control automation, which refers to a more 

hierarchical relationship between people and automation, tends to focus on reliance and 

perceptions of performance. Most notably, Lee and See’s (2004) review is cited in domains 

as diverse as the military (Barnes et al., 2014; Bertuccelli & Cummings, 2011; Lyons & 

Stokes, 2011), healthcare (Ho, Wheatley, & Scialfa, 2005; Montague, Kleiner, & Winchester 

III., 2009), and driving (Kazi, Stanton, Walker, & Young, 2007; Verberne, Ham, & Midden, 

2015) among others, for its argument that trust guides reliance on automation. Reviews 

following Lee and See (2004) include Madhavan and Wiegmann (2007), which focuses on 

trust in decision aids highlighting differences between human-human and human-automation 

trust, and a meta-analysis of trust in robots (Hancock et al., 2011) posits that trust in robots 

may differ from trust in other forms of automation, though trust is still largely discussed in 

terms of people’s use or disuse of automation. These approaches neglect the relational 

aspects of trust that may feature more prominently with increasing automation autonomy and 

agency.   

A more recent article by Hoff and Bashir (2014) reviews human-automation studies 

from 2002 to 2013, summarized as a three-layer model of human-automation trust: the 

human operator, the environment, and the automated system. These broad categories are 

described as dispositional trust, situational trust, and learned trust, and encompass a wide 

range of factors influencing trust and trust formation. While the descriptions of these 

categories hint at the interdependence of the constructs, and thus potential relational factors, 

the integrated findings still refer to trust in terms of reliance and use of automation. Hoff and 

Bashir (2014) do refer to cooperative contexts in their initial conceptualization of trust, but 
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the studies reviewed primarily relate trust to reliance and use of automation rather than to 

cooperative exchange. Key elements missing from their review – a reflection of the existing 

empirical research rather than the authors’ approach – include reciprocity and the 

interdependence of factors in learned trust, ascriptions of intention and the interdependence 

of factors in situational trust, and the inherent interdependence within the social structures of 

exchange in situational trust.  

2.3.5 Trusting automation agents 

To realize the potential of human-automation teams that support system resilience, 

automation designers need a better way to parse the mechanisms that promote flexibility and 

cooperation from mechanisms that can lead to brittle systems and breakdowns. Automation 

that considers environment changes, and adjusts goals and intent accordingly, may become 

more prevalent in the future, and what their actions signal to their human counterparts may 

lead to unexpected outcomes given the lack of research in such scenarios with automation. 

Understanding how intention is communicated and received between people and more 

autonomous automation, and how such communications can lead to system-level outcomes 

requires consideration of human-automation dynamic interactions. At the system level, 

individuals often need to fill in the gaps that system design or system failures produce, and 

cooperation is critical in enabling people to fill those gaps. Thus, rather than approach trust in 

automation as an asymmetric relationship, trust in automation as a more symmetric 

relationship – where people provide inputs to automation that can adapt, and automation can 

signal to not only elicit trust, but also to repair trust – would improve our understanding of 

how cooperation with increasingly autonomous automation evolves over time.  

2.4 Social Exchange Worldview 

Social Exchange Theory has the potential to inform a new understanding of trust in 

automation as a more symmetric relationship. Social exchange can be thought of as a 
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transference of something from one entity to another in return for something else, and may 

involve proaction and reaction within an exchange unit, which can include two people or a 

person and her environment (Roloff, 1981). Whereas economic exchanges tend to be 

impersonal, social exchanges create feelings of personal obligation, gratitude, and trust, 

although many real world exchanges include aspects of both. Because social exchange 

relationships lack formal sanctions, or unspecified obligations (Cropanzano & Mitchell, 

2005), people tend to attribute positive or negative feelings to the exchange entity or partner. 

Behavioral economics and other work that takes a social exchange worldview have done 

much to challenge our notion of people as either “rational” or “irrational” actors (Ariely, 

2008; Kahneman & Tversky, 1979; Schelling, 1960; Simon, 1955). Decisions made 

“irrationally” may in fact turn out to be rational. In a repeated exchange situation with a long 

horizon, making the “irrational” choice of trusting an unknown entity, and following a tit-for-

tat strategy in future exchanges, mathematically leads to the most advantageous outcome for 

both individuals and the larger group (Axelrod & Hamilton, 1981).  

Social exchange factors between interacting entities have been studied in contexts 

such as interpersonal and organizational relationships. Social exchange factors that influence 

a partner’s trustworthiness and decisions to trust the partner, include signals of intention, 

reciprocity of actions, level of uncertainty, and history (Ferrin, Bligh, & Kohles, 2007; 

Kramer, 1999; Mayer et al., 1995; Wagner, 2013). The structure of the exchange (Kelley et 

al., 2003; Thibaut & Kelley, 1959) and characteristics of the environment, such as its 

complexity, novelty, levels of risk and uncertainty have also been found to influence trust and 

cooperation (Delton, Krasnow, Cosmides, & Tooby, 2011; Molm, Takahashi, & Peterson, 

2000; Riedl, Mohr, Kenning, Davis, & Heerkeren, 2011). What these factors have in 

common is that their unit of analysis looks beyond the information-processing perspective of 

decision making, to where their unit of analysis includes two (if not literally, then in 
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consideration of social forces – an other entity).  Moving beyond the individual as the unit of 

analysis affords evaluation of processes beyond models of information-processing that better 

capture outcomes of multi-agent interactions (Cooke et al., 2013; Gorman, 2011). To study 

constructs such as cooperation and competition, all that is needed is a dynamic interchange 

between two entities: a dyad (Williams, 2010). 

2.4.1 Human-automation cooperation 

Existing approaches to human-automation cooperation and resilience consider how 

automation facilitates collaboration with people in dynamic environments (Allen et al., 1999; 

Fong et al., 2005; Wagner & Arkin, 2011; Woods et al., 2004; Zieba et al., 2009). Other 

studies address the effects of socially sensitive automation, such as automation that develops 

trust through conversational cues, appearance, and behavior (Cassell & Bickmore, 2000; 

Desteno et al., 2012; Robinette et al., 2013), or automation that engages in good or poor 

etiquette (Parasuraman & Miller, 2004; Takayama, Groom, & Nass, 2009). Another study on 

close-proximity human-robot collaboration explored the effects of adaptive automation on 

human-robot team fluency and subjective ratings of satisfaction, safety, and comfort (Lasota 

& Shah, 2015). However, these studies either focused on human-automation interaction in 

terms of reliability and reliance, or were conducted in static task environments.  

Few studies have used social exchange theory to explain decisions to cooperate with 

machine agents in dynamic environments; however, there is potential for such theory to 

inform the design of future systems. For example, when two or more entities need to 

coordinate, there is often an interruption. As scholars have observed, interruptions despite 

their costs to cognitive workload and workflow, often serve a particular purpose – as 

necessary and timely transfer of information in adaptable and flexible work systems 

(Grundgeiger & Sanderson, 2009; Rivera-Rodriguez & Karsh, 2010; Walji, Brixey, Johnson-

Throop, & Zhang, 2004).  However, human-computer interaction studies on interruptions 
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largely consider the impact on the individual; such as task completion time, error rate, 

affective factors like annoyance or anxiety (Bailey & Konstan, 2006); the degree of 

disruption depending on task characteristics (Czerwinski, Cutrell, & Horvitz, 2000); or the 

role different interruption management strategies – immediate, negotiated, mediated, and 

scheduled – on task performance (McFarlane, 1999). While these are important efforts 

toward understanding the costs of interruptions and the effectiveness of different strategies 

dealing with them, these findings say little about potential tradeoffs of the cost and benefits 

of interruptions, as would occur in real-world coordination situations. Applying social has the 

potential to provide such insights because it considers a unit of analysis of at least two, 

focusing on how features of interactions, such as decisions to interrupt and the tradeoffs that 

occur, might influence broader system outcomes in an information-imperfect world.  

Similar to much of the early interruptions research, other work in human-automation 

interaction focus on either the information-processing elements, such as physical attributes 

and ease of use, or organizational level roles of the automation, such as integration with 

workflow. As a result of this, some approaches turn to designing around people’s 

information-processing limitations (e.g. Bailey & Iqbal, 2008). While these aspects of design 

are important, and useful in some cases, they provide a limited or static view of the 

motivations behind people’s interactions with automation, how interactions might change as 

social and work environments evolve, and how such interactions contribute to a system’s 

global goals. Beyond some recent work on human-automation cooperation in relatively static 

game theoretic situations (e.g. Sandoval, Brandstetter, Obaid, & Bartneck, 2016), there is still 

little research focusing on interdependent decision-making with more advanced automation 

and how such decisions lead to value-added cooperation in dynamic coordinative 

environments.  



 

 

30 

From a systems perspective, it may be more useful to know how automation 

behaviors influence people’s in-the-moment as well as future decisions to cooperate, and how 

their joint behaviors relate to macro-level effects and outcomes, such as degree of 

cooperativeness and overall system performance. Social exchange theory provides a 

framework for describing the tradeoffs of joint actions, how signals of the actors shape 

decision-making, and how the social structure of interactions can lead to immediate outcomes 

and macro equilibriums (Kelley et al., 2003; Schelling, 1973). The current work includes 

these perspectives but draws from a more specific line of inquiry that posits signals of agent 

cooperation (rooted in trustworthiness) influences people’s decisions to cooperate (Cox, 

2004), and that the social structure of the exchange can influence trust and cooperation 

(Molm et al., 2000).  

2.4.2 The role of reciprocity 

One of the best-known exchange rules in social exchange theory is reciprocity 

(Cropanzano & Mitchell, 2005), a mechanism that can promote cooperation. Reciprocity is 

responding in kind, such as repayment of hostility with hostility, or kindness with kindness 

(Fehr & Gächter, 1998; Sandoval et al., 2016). As a phenomenon reciprocity has accounted 

for stability and instability in social systems, including the pooling or redistribution of 

resources within a group to the group’s advantage (Ostrom, 2000), the punishing of antisocial 

behavior despite great costs to oneself (ostensibly for the good of the group) (Gintis, 2000), 

and as a key mechanism for the enforcement of social norms (Fehr & Gächter, 1998). At its 

most basic unit, reciprocity can occur in a single exchange. Over time, reciprocity serves as 

“a mutually gratifying pattern of exchanging goods and services” (Gouldner, 1960, p. 170), 

and in larger group settings, e.g. societies, may also be reinforced through convention 

(Young, 1996).  
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Whereas reciprocity refers to a particular pattern of behavior, cooperation refers to 

behavior that benefits the group involved. The important fact is that reciprocity occurs 

through the response of a heterogeneous entity, as a component of interdependent behavior 

between two or more entities, and is a likely source of conditional cooperation, i.e., 

reciprocal cooperation (Axelrod & Hamilton, 1981). Reciprocity can involve both 

instrumental or symbolic value, with instrumental value having more concreteness, and 

symbolic value implying additional value beyond its objective worth, and more likely to vary 

depending on its source (Cropanzano & Mitchell, 2005). Other facets include positive or 

negative reciprocity, which refers to altruistic acts or punishment (Fehr & Gächter, 1998), 

and direct or indirect reciprocity, which respectively correspond to personal enforcement or 

community enforcement in an exchange with a partner (Nowak & Sigmund, 2005).  

To what extent the amount of return in reciprocity is, or should be, to constitute 

“rough equivalence” (Gouldner, 1960, p. 175) is an open empirical question requiring 

consideration of how the actors or situation would define equivalence. Reciprocity has been 

measured in the simultaneous or immediate next response in an exchange, given an initial 

action (Axelrod & Hamilton, 1981; Barrett, Gaynor, & Henzi, 2002), as well as the overall 

response value relative to an initial value, within a specified time period (Barrett et al., 2002). 

Particularly when tied to cooperation, measures of reciprocity look at in-kind responses from 

the perspective of direct benefit to individuals while considering longer-term outcomes 

within the relationship or larger community. Because the primary goal of this work is to 

better understand outcomes of human-automation cooperation for improving outcomes in 

joint coordination, this dissertation focuses on positive, instrumental reciprocity where 

reciprocity describes the degree to which exchange partners return cooperative behavior in-

kind, without the partners necessarily ascribing value or exhibiting any defined mental 

attitude, although values and attitudes may be present.  
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The following criteria were used to determine if study participants’ behavior was 

reciprocal: 

1) If participants’ actions return, to the agent’s first move, resources of positive value, 

and  

2) The action is costly to the participant in the sense that the amount returned would 

diminish her ability to maximize her utility if she did not receive the first amount 

by the agent (similar to Berg et al., 1995; Cox, 2004).  

This operationalization of reciprocity considers a limited, shared resource scenario in which a 

person with altruistic or other-regarding inclinations may return the resource to the agent 

who, after making the first positive transfer to the participant, now has a lower margin of 

spare resources than participants. The mere fact that the participant returns the resource to the 

agent is not evidence of positive reciprocity. A self-regarding person presumably would not 

return resources to the agent.  

Reciprocity also relates to a social exchange conceptualization of trust in that a 

“trustor” by giving resources is said to place a trust in a “trustee.” The trustee then, keeps the 

trust, i.e., reciprocates, if she returns greater than the value imparted. Trust is therefore 

defined in terms of the following two actions; first the trustor gives a trustee the right to make 

a decision, and second, the trustee makes a decision which affects both trustor and trustee 

(Berg et al., 1995). Since reciprocity is defined as a transactional pattern of interdependent 

exchanges, inaction would therefore be outside its general realm (Cropanzano & Mitchell, 

2005). Although occasionally inaction in cooperative exchange is related to negative 

reciprocity (Cox, 2004), negative reciprocity has been defined as a separate construct from 

positive reciprocity rather than as part of the same spectrum, due to the robustness of its 

effects across situations (Gintis, 2000). Free-loading, a type of behavior that leads to 

degradation of cooperation, seems to belong to the more general idea of conditional 
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cooperation (Gächter & Herrmann, 2009) rather than reciprocity specifically. Therefore, not 

cooperating in the joint task by withholding resources, and the degree to which this leads to 

degraded cooperation and poor performance, is considered but as a separate construct from 

reciprocity. 

2.4.3 Social exchange structures 

Because social exchange occurs within a structure of mutual dependence, in which 

actors are dependent on one another for valued outcomes, the simplest exchange relation 

consists of two actors, each of whom controls resources of value for the other (Molm et al., 

2000). A defining dimension of social exchange structures is the level of control actors have 

– in their own outcomes, in their partner’s outcomes, or jointly (the extent to which outcomes 

are controlled by joint actions) (Rusbult & Van Lange, 2003), and The Atlas of Interpersonal 

Situations (Kelley et al., 2003) is a starting guide for identifying the structure of various 

exchange scenarios, which will not be reviewed here. The main point is that structures are 

important to consider in understanding outcomes of exchange because they often exert strong 

effects on behavior, relatively independent of personal goals and motives. 

Questions of trust and cooperation are of interest when the two actors have alternative 

choices within an exchange structure, as illustrated in Figure 1. Compared to negotiated 

exchanges, reciprocal exchanges were found to produce stronger trust and affective 

commitment between people (Molm et al., 2000). The difference between a negotiated 

exchange and a reciprocal exchange is their structure. In negotiated exchange, neither actor 

can obtain benefit without first agreeing explicitly; the benefits are thus bilateral however 

unequal they may be. Most economic exchanges fit this category, receiving a service or 

product for payment, and some social exchanges, like when two parties jointly decide on the 

division of household chores. In reciprocal exchanges, actors’ contributions are separately 

performed and are not negotiated. Because these choices are made individually, benefits can 
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be unilateral. These are more common in instances where acts are performed with no 

guarantee of reciprocity. The risk of incurring a loss is critical to the evolution of 

cooperation, because it provides exchange partners the opportunity to demonstrate their 

trustworthiness.  

It should be acknowledged that roles within theoretical exchange structures are not 

often as concrete as their representations might suggest, and decisions often comprise 

multiple sub-decisions with myriad interacting variables. There are certainly limitations to 

the extent that real world situations, roles, and decisions can be represented so simplistically. 

However, including a consideration of social exchange structure in human-automation 

research can reveal insights currently missing in the knowledge base, including the impact of 

different structures on cooperation. Such insights can guide information design and decision-

making strategies for future human-automation systems.  

The following studies presented in this dissertation merge insights from resilience 

engineering, human-automation interaction research, and a social exchange worldview to 

better understand cooperation in human-automation coordination. The goal is to better 

understand potential factors influencing joint performance in a dynamic coordination task. 

However, designing for and measuring system tradeoffs, such as decisions made when goals 

potentially conflict, can be difficult to determine in a real world setting with many 

confounding variables, and where system boundaries are difficult to ascertain. 

2.5 Microworlds as a Research Platform 

Many important, real-world phenomena such as coordination and cooperation involve 

people engaging in dynamic, complex decision-making behaviors. Because of this, the 

precise control and measurement that can be achieved in traditional laboratory studies may 

generate irrelevant findings. Field studies have many challenges as well, including the 

challenge of attributing causality due to complexity in the experimental setting and lack of 
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experimental control. To minimize intrusion in people’s work, gathering field data may 

involve using self-reports and researcher observation. However, self-report often invokes 

more reflective responses rather than in-the-moment responses, which can differ when 

studying people’s responses to agentic objects (Takayama, 2009). A researcher’s presence 

when observing in person can be intrusive to the task as well, or difficult when the decisions 

and actions are fast-paced. A solution for this is to use screen capture or video-recorded and 

coded data; however, video data still for the most part, and what is commercially available, 

requires manual coding and is thus time-consuming and expensive.   

Microworld environments help bridge the gap between the inherent complexity of a 

field investigation and the control of a laboratory study (Omodei & Wearing, 1995). Building 

microworlds for research are now achievable within relatively short time frames given the 

accessibility and abilities of present-day computers and software, though the use of 

microworlds has long been a tradition in the study of dynamic decision-making. Dynamic 

decision-making involves a sequence of interdependent, real-time decisions in a changing 

environment, which microworlds are well-suited to simulate (Gonzalez, Vanyukov, & 

Martin, 2005). Examples of dynamic decision-making include choosing which routes to take 

when driving a vehicle, developing and selecting the best strategy while playing a sport, and 

investing in markets as prices change. In all cases, a sequence of decisions is made in an 

environment that changes as a function of that sequence, independently of that decision 

sequence, or both.  A microworld can be a direct method for gathering human-agent 

interaction data while controlling for system level factors that would be difficult to control in 

the field or difficult to glean from mining naturalistic data. Microworlds are a compromise 

between experimental control and realism; the assumption is that they embody the essential 

characteristics of real-world decision environments while providing the experimental control 

needed to develop explanations of processes, rather than task-specific descriptions of 
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decision-making, so that results are generalizable across a variety of dynamic decision-

making tasks.  

2.6 Research Summary and Significance 

Existing research in human-automation interaction lacks insight into lateral 

coordination scenarios with increasingly autonomous agents. Such scenarios demand greater 

attention to cooperation and the role it plays in people’s interactions with automation and 

subsequent system outcomes. Based on previous work showing people’s real tendency to 

interact with machines in ways that are best explained through social constructs, and 

considering trends of increasingly autonomous and capable machines, this dissertation aims 

to provide a starting step for future work on human-automation cooperation. In particular, it 

integrates perspectives from social exchange theory to explore human-automation interaction 

dynamics that lead to more resilient systems. At the time of this writing, no human factors 

studies were found that considered potential social exchange factors and cooperation with, 

rather than reliance on, automation in a dynamic, joint-task environment.  

2.7 Research Objective and Questions  

To more clearly understand fundamental mechanisms of cooperation in networked 

and layered sociotechnical systems, the smallest unit of analysis for cooperation is the focus 

of this dissertation, the human-agent dyad (Thibaut & Kelley, 1959; Williams, 2010). The 

goal is to demonstrate that for a system to be resilient, an important complement to people’s 

reliance on automation is their cooperation with automation. A microworld scenario was 

developed that required human and automated agent dyads to cooperate in a shared-resource 

task, while varying the cooperativeness of the agent, work environment factors, and the social 

exchange structure of the joint task. The shared-resource task was developed to ensure people 

and agents had equal authority and responsibility to avoid potential confounding factors 

related to differing roles.  
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Part 1 of this work (Chapter 3) tests the hypothesis that agents’ cooperation will affect 

people’s cooperation, leading them to reciprocate with similar resource exchange behaviors. 

It was thus also expected that these differing levels of agent cooperation would subsequently 

affect coordination and joint performance. The second hypothesis posits that when people’s 

initial exposure to an agent is in a highly demanding situation, then the effects of agent 

cooperation will be particularly prominent. People’s perception of the agent’s intention may 

be a function of the task environment; therefore, people initially exposed to high-workload 

and an agent that gives more could be more inclined to cooperate in a subsequent low-

workload situation, than people initially exposed to low-workload and an agent that gives 

less. Part 2 of this work (Chapter 4) asks whether changing the structure of the task, from a 

negotiated exchange where both partners have input in the decision, to a reciprocal exchange 

where decisions to provide resources are unilateral and unprompted, will improve 

cooperation and coordination. This expectation is based on the premise that the symbolic 

value of unprompted resource provision may induce people’s social engagement and 

prosocial behavior even in risky and high-stress environments.  
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Chapter 3 Part 1: Effects of Agent Cooperation on Human-Agent Coordination 

This section is an adapted version of a manuscript titled “Cooperation in human-agent 

systems to support resilience: A microworld experiment” that was accepted for publication in 

Human Factors: The Journal of the Human Factors and Ergonomics Society (Chiou & Lee, 

2016). Additional analyses were added, mainly in section 3.5.3, to connect this section’s 

findings with Chapter 4 in this dissertation. All headers, formatting, and references were 

revised to integrate with the rest of this dissertation. 

3.1 Background and Motivation 

Automation is becoming increasingly autonomous. From self-driving vehicles to 

sophisticated decision support systems, computational advances have led to a plethora of 

machines capable of automating whole functions that previously required humans. Emerging 

new human-automation relationships pressure the existing frameworks for research, design, 

and evaluation of these joint systems (Woods & Hollnagel, 2005). Humans and machines 

increasingly enter into coordinative and cooperative relationships, where successful 

interactions demand teamwork. Resilience Engineering approaches the design of such 

systems as consisting of interactive agents, collaborating to achieve shared goals in 

increasingly dynamic and safety-sensitive environments (Hollnagel, Woods, & Leveson, 

2006). However, few controlled studies have investigated how resilience depends on 

automation design, which is the focus of this paper. 

For supervisory control, joint performance depends on automation reliability, the 

ability to assess automation reliability, and appropriately relying on or complying with 

automation (Parasuraman & Riley, 1997). However, with more advanced automation, 

reliability may be less critical than the resilience of the system (Zieba et al., 2010). Resilience 

refers to the ability to manage sustained adaptability of a layered network system (Woods, 

2015). This differs from resilience as rebound, to restore a system to previous conditions 
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before disruption, or resilience as robustness, having an expanded set of models to respond to 

disturbances (Woods, 2015). Rather, resilience as sustained adaptability considers how 

interacting agents cooperate, drawing on shared resources to accommodate surprises. 

Designing for resilience suggests collaborative or cooperative control might be an important 

complement to supervisory control.  

For human-automation interaction, collaborative control allows both human and 

automated agents to combine competencies and negotiate conflicts in dynamic settings 

(Zieba et al., 2010). Collaborative control supports resilience through adaptation to novel 

situations, accommodation of bugs in the system itself, and recovery from errors in following 

procedures (Woods et al., 1994). Furthermore, resilience calls for the continual renewal of 

shared goals, reciprocity, and the willingness to accommodate others as unexpected demands 

require shifts of individual and shared priorities (Woods, 2004). System performance is less 

about how well predetermined priorities are reliably executed, and more about how well 

goals and actions are adapted for the greater good of the system. Thus, rather than 

collaborative control, which often refers to managing functional dependencies by adapting 

levels of autonomy, cooperative control may be more appropriate for human-automation 

scenarios where cooperation precedes coordination.  

Resilience in uncertain environments with complex interdependencies demands 

alternatives to the more explicit supervisor-subordinate procedures. These alternatives 

include informal interactions that promote coordination and cooperation (Rochlin et al., 

1987). Coordination is broadly defined as dependency management (Malone & Crowston, 

1994), and concerns task scheduling and assignment, whereas cooperation is identified in 

actions that benefit a group but impose individual costs (adapted from Dugatkin, Mesterton-

Gibbons, & Houston, 1992). The need to compromise individual goals for a shared goal can 

arise from what Clark (1996) calls private and public goals, Ostrom (2000) calls self and 
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collective interest, Hoc (2001) calls ego-centric and collaborative interests, and Woods 

(2004) calls local and global goals. These constructs share the idea that cooperation emerges 

through reconciling competing goals with the help of social processes. When interdependent 

activity involves shared resources and conflicting goals, cooperation is essential for 

coordination. 

The importance of cooperation in resilience is highlighted in the margin of 

maneuver—a cache of actions and resources that allows the system to function despite 

unexpected perturbations in the work environment (Woods & Branlat, 2010). Systems 

without adequate margins become brittle, unable to withstand unexpected demands. Based on 

studies of emergency department interactions with other hospital units, Stephens, Woods, 

Branlat, and Wears (2011) identify three classes of strategies to create or maintain a margin 

of maneuver: defensive strategies, autonomous strategies, and cooperative strategies. 

Defensive strategies increase the margin of a unit by restricting another unit. Autonomous 

strategies involve local focus, such as reducing interactions with other units because the 

benefits of sharing resources are not believed to be worth the costs. Cooperative strategies 

involve the effort of two or more units that, through coordinated and collective action, 

recognize or create common-pool resources from which both units can draw. Such actions 

help avoid the tragedy of the commons when resources are limited (Ostrom, 1999), and may 

enhance system resilience by giving the overall network a larger pool of resources to draw 

upon for greater margin of maneuver. 

 In light of these properties of resilience in volatile environments and increasingly 

capable automation, understanding what contributes to human-agent cooperation seems 

crucial. When problems cascade, demands for cognitive activity increase as do the demands 

for coordination across agents (Woods & Patterson, 2001). These increased demands may 

accentuate bonding or fracturing of teams depending on the nature of their interdependence 
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and the information available regarding the trustworthiness of agents (Gao et al., 2006). 

Cooperative strategies require assuming initial generosity (Axelrod & Hamilton, 1981), trust 

that the other party will reciprocate and not exploit shared resources, and an understanding 

that the benefits of cooperation will outweigh the costs. Without such trust between agents, 

an agent may resort to defensive strategies to preserve individual gain at the cost of another 

(De Dreu et al., 2010).  

A substitute for formal controls, trust guides human behavior toward automation 

when a complete understanding is difficult or impractical (Lee & See, 2004). Such 

uncertainty is increasingly common, due to technological advances and the environments in 

which automation are deployed. In high-stress environments, human agents may be even less 

likely to proactively interact with automation, particularly when experiencing physical and 

cognitive fatigue (Casper & Murphy, 2003). Although trust in automation has been said to be 

asymmetrical, in that automation does not trust back (Lee & See, 2004), recent work with 

more autonomous automation (e.g., agents or robots), suggests a more symmetrical view and 

social exchange situations may apply to the concerns raised by resilience engineering (Bray 

et al., 2012; Fink & Weyer, 2014; Wagner & Arkin, 2011). In cooperative exchange, people 

often choose partners depending on the instrumental value of the exchange, even though 

people’s trust, affective regard, and sense of solidarity with exchange partners are strongly 

influenced by the symbolic act of reciprocity (Molm, Schaefer, & Collett, 2007). Reciprocity 

and trust influence cooperative behavior, especially when novel or complex situations 

involve risk or uncertainty (Delton et al., 2011; Molm et al., 2000; Riedl et al., 2011).  

Existing approaches to human-automation cooperation and resilience consider how 

automation can facilitate collaboration with people in dynamic environments (Allen et al., 

1999; Fong et al., 2005; Wagner & Arkin, 2011; Woods et al., 2004; Zieba et al., 2009). 

Other studies address the effects of socially sensitive automation, such as developing trust 
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through conversational cues, appearance, and behavior (Cassell & Bickmore, 2000; Desteno 

et al., 2012; Robinette et al., 2013), or engaging in good or poor etiquette (Parasuraman & 

Miller, 2004; Takayama et al., 2009). Another study explored the effects of adaptive 

automation on human-robot team fluency and subjective ratings of satisfaction, safety, and 

comfort (Lasota & Shah, 2015). However, these studies focused on reliability and reliance, or 

were conducted in static task environments. At the time of this writing, we were unable to 

find studies that considered cooperation with automation in a dynamic, shared-resource task 

environment. 

As a first step in understanding cooperation in networked and layered sociotechnical 

systems we consider the human-agent dyad (Thibaut & Kelley, 1959; Williams, 2010). Our 

goal is to demonstrate that for resilient systems, an important complement to reliance on 

automation is cooperation. To achieve this goal, we developed a microworld that required 

human and automated agent dyads to cooperate on a dynamic, shared resource task. We 

present two experiments; Experiment 1 tests the hypothesis that an agent’s cooperation will 

affect people’s cooperation, leading them to reciprocate with similar resource exchange 

behaviors. Experiment 2 tests the hypothesis that when people’s initial exposure to an agent 

is in a highly demanding situation, then the effects of agent cooperation will be particularly 

prominent. 

3.2 Overview of Scheduling Task and Microworld Environment 

A microworld hospital scheduling scenario was developed in Java and XML with the 

Android SDK, to assess cooperative behavior in a joint human-agent task with shared 

resources. A 15” laptop computer running Genymotion and a standard computer mouse were 

used. Participants acted as hospital schedulers, whose task involved assigning patients and 

staff to hospital rooms, and coordinating shared staff resources with a neighboring hospital 

managed by an automated agent. Interactions with the agent were bilateral and limited to 
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requesting staff and responding to requests for staff. The study tested different levels of agent 

cooperation on participants’ behavior and joint performance. In each of their four 

experimental trials, 36 participants in Experiment 1 experienced a slow-tempo period 

followed by a fast-tempo period (the slow-to-fast group), and 36 participants in Experiment 2 

experienced a fast-tempo period followed by a slow-tempo period (the fast-to-slow group). 

Testing these two tempo sequences allowed us to assess the effects of agent cooperation level 

in the context of recovery following a perturbation, and across variation in work 

environments. 

3.3 Experimental Design  

3.3.1 Study participants 

Participants were recruited near a Midwestern university through flyers and online 

postings and received 10 dollars at the end of the hour-long study. Self-reports showed age 

ranged from 18 to 56 with a mean age of 22 in Experiment 1 and a mean age of 24 in 

Experiment 2; gender was roughly 50% female and 50% male; 97% of participants used the 

computer daily; 47% in Experiment 1 and 64% in Experiment 2 reported using the computer 

for playing games. 

3.3.2 Independent variables 

Each experiment tested “agent cooperation level” as a within-subjects variable, 

meaning each participant was exposed to a high-cooperation and a low-cooperation agent 

(Figure 2). Agent cooperation levels were operationalized in the agents’ resource-requesting 

and resource-sharing behaviors. Exposure to the agents was counterbalanced, so participants 

worked with one agent in their first two trials, and the other agent in their final two trials. 

Within each trial there was one slow-tempo period and one fast-tempo period, and “tempo” 

was tested as a within-subject variable. “Scheduler” was a within-subject variable, to 

distinguish between the participant and the automated agent. Therefore, each study was a 
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mixed within and between 2 x 2 x 2 x 2 design that tested agent cooperation level (high or 

low cooperation), tempo (fast-tempo period or slow-tempo period), and scheduler (person or 

agent) as within-subject variables, and cooperation order as a between-subject variable (high-

cooperation followed by low-cooperation, or low-cooperation followed by high-cooperation).  

 

Figure 2. In Experiment 1, 18 participants experienced the high-cooperation agent then 

the low-cooperation agent, in a slow-to-fast tempo sequence. The other 18 participants 

experienced the counterbalanced order of cooperation agents. Experiment 2 

participants experienced the fast-to-slow tempo sequence. 

3.3.3 Tempo levels – slow-tempo and fast-tempo periods 

Each 8-minute trial was divided into five 96-second intervals, representing a slow, 

medium, or fast rate at which patients entered the waiting rooms. In the slow-to-fast sequence 

of Experiment 1, participants experienced the interval order: medium, slow, medium, fast, 

and medium. In the fast-to-slow sequence of Experiment 2, participants experienced the 

interval order: medium, fast, medium, slow, and medium (see Figure 2). For easier 

communication however, “tempo period” refers to the half of the trial that includes the 

named interval, e.g. the “slow-tempo period” in the slow-to-fast sequence was one medium 

interval, one slow interval, and half a medium interval. The slow interval had two patients 

enter the waiting room, evenly distributed throughout that interval, whereas the medium 
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interval had five patients, and the fast interval had eight patients. The medium-tempo interval 

was determined in pilot testing as an engaging pace, without high pressure. 

In both experiments, the agent’s tempo sequence was always the opposite of the 

participant’s tempo sequence. For example, in participants’ slow-to-fast sequence of 

Experiment 1, agents would experience the fast-to-slow sequence. The complementary 

sequences allowed for an obvious coordination solution if the dyad cooperated and shared 

staff, making it possible to assess how differences in cooperative behavior contributed to 

breakdowns or delays in resource sharing. Participants (or agents) in the slow-tempo period 

would more likely have excess staff, whereas participants (or agents) in the fast-tempo period 

would need additional staff to meet demand in their hospital. 

Experiment 1 was thus designed to investigate how participants reacted to an agent 

that requested staff more often and shared staff less often during participants’ slow-tempo 

period, and an agent that requested staff less often and shared staff more often, as participants 

moved into a fast-tempo period. Experiment 2 was designed to investigate how an initial 

perturbation, or fast-tempo period, might differently affect participant and joint cooperation. 

Taken together, both experiments allowed for comparison of cooperative behavior prior to a 

fast-tempo (Experiment 1) and following a fast-tempo (Experiment 2) to assess team 

cooperation and ability to adapt to environment changes in a timely manner. 

3.3.4 Agent cooperation levels – high-cooperation and low-cooperation agents 

Agent cooperation was operationalized as high-cooperation or low-cooperation 

depending on how much its behaviors emphasized joint outcome or individual outcome, 

respectively. Table 1 summarizes the resource-sharing and resource-requesting behaviors for 

the agents.  
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Table 1. Agent resource-sharing and requesting behavior by cooperation level 

Agent Cooperation Level 
Resource-Sharing Behavior 

(Acceptance Rate) 
Resource-Requesting Behavior 

High cooperation 

100 % with 1-2 patients 

75 % with 3-4 patients 

50 % with 5-6 patients 

1. Checks if it needs a resource 

2. Checks if the participant has 

this resource available 

3. Requests the resource 

Low cooperation 

50 % with 1-2 patients 

25 % with 3-4 patients 

0 % with 5-6 patients 

1. Checks if it needs a resource 

2. Requests the resource 

Note. The agents’ acceptance rates are keyed to the number of patients in the agent’s waiting 

room.  

 

The high-cooperation agent provided resources at a higher rate than the low-

cooperation agent, depending on its queue length. When a participant requested an available 

resource, and the high-cooperation agent had two or fewer patients in its waiting room, the 

agent would accept 100% of the time, 75% of the time with three to four patients, and 50% of 

the time with five to six patients. The low-cooperation agent provided resources at 50% less 

than the high-cooperation agent in each of the waiting room conditions, or 50%, 25% and 0% 

respectively. The low-cooperation agent thus expressed less individual risk and prioritized its 

own performance, compared to the high-cooperation agent. Note that the low-cooperation 

agent is not competitive, which could involve requesting all staff resources and refusing to 

return them; it is still cooperating in this context by sharing and requesting staff, just at a 

lower level. These conceptualizations of the agents’ behaviors are supported by the 

conceptualization of cooperative behavior in social exchange as actions that 1) gives a 

positive value to another entity that is 2) risky for the giver in the sense that would lead to a 

loss if none were returned by the receiver (Cox, 2004).   

Cooperation was also expressed through requesting behavior. The high-cooperation 

agent would check if it needed a resource, then check if the participant had the resource 

before requesting. The low-cooperation agent only considered its own need for staff, which 

made it more likely to make requests insensitive to the participants’ needs. Agents were 
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programmed to have an 8-second and 2-second delay when assigning patient or staff and 

when collecting staff, respectively, to simulate the pace of a human player, established during 

pilot testing. This delay also avoided continuous interruption of the participant and allowed a 

window for participants to request unassigned agent staff.   

3.3.5 Dependent variables 

Because we wanted to know how an agent’s cooperative behaviors would influence a 

person’s cooperative behaviors, the dependent variables in this study were participants’ 

resource-requesting and resource-sharing behaviors. These were measured as the number of 

staff they requested and the number of agents’ requests they accepted. Agents’ behaviors 

were tallied independently. Individual performance was measured as the sum of patients 

treated in a trial, and joint performance was the sum of the patients participants and agents 

treated in a trial. 

3.4 Procedure 

Participants were introduced to the microworld scheduling task and interface. 

Participants were told they could request staff at any time from an automated agent, 

scheduling its own hospital in the background. To avoid guiding participants to use a 

particular strategy, participants were told to, “treat as many patients as possible.” If 

participants asked if this included cooperating with the agent, the goal was restated and they 

were told it was up to them how to reach the goal. No information was given about the 

neighboring hospital agent’s behavior or potential changes in tempo.  

Participants were then exposed to two, 2-minute practice trials at a medium-tempo. At 

the end of each trial, including experimental trials, a bar graph displayed the patients they 

treated in the context of patients treated in both hospitals. The graph emphasized the goal of 

maximizing a joint score and acted as motivational performance feedback.  
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Figure 3. Feedback provided to participants showed a split bar of patients treated in 

each hospital, with a darker shade representing the participant’s contribution. The sum 

of patients missed was also reported as a split bar when applicable. 

At the beginning of a trial, participants and their agent partner were each given three 

nurses, two doctors, and two surgeons, along with one patient in their waiting room queue 

(Figure 4). Hospital staff were the only shareable resources. There were two types of patients 

that entered the queue with randomized 50% chance; patients “A” required a doctor and a 

nurse, patients “B” required a surgeon and nurse. Both types of patients therefore required a 

nurse, and to use all of one hospital’s rooms a scheduler would need to obtain all nurses from 

both hospitals, and some additional doctors or surgeons. 

The main interface components comprised a bottom control panel with three button 

options, Assign Patient to Room, Assign Resource to Room, or Request Resources (Figure 

4). At the center of the interface were the six hospital rooms, also buttons. To help with 

resource management, a side panel displayed available staff, patient waiting rooms, and a 

“score” for each hospital. Color-codes were used to signal waiting room queue length status: 

green for one to two, yellow for three to four, and red for five to six patients. Six patients was 
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a waiting room’s maximum capacity, and participants were told additional patients scheduled 

to arrive would be turned away. Participants could see the exact number of patients in their 

waiting room, with each circle representing one patient (Figure 4). However, only the color 

status of the agent’s waiting room was available to participants. This decision was inspired 

by Dabbish and Kraut (2004), which showed summarized displays can be more effective than 

detailed displays for communicating status information in a cooperative task. A summarized 

display also contributed to the uncertainty of interacting with agents, allowing a focus on the 

social-affective aspects of participants’ decision-making rather than the information-

processing aspects. Two squares in the agent’s waiting room showed it also received A and B 

patients, and a timer at the top of the screen counted down to the end of a trial.  

 

Figure 4. A screenshot of the interface at the beginning of a trial shows a bottom control 

panel, left side panel, six hospital rooms, and a timer.   

Table 2 describes the main actions of the scheduling task from the participant’s point 

of view. Level 1 refers to the bottom control panel options in Figure 4, with subsequent 

navigation options as the following levels.  



 

 

50 

Table 2. Participants’ main actions and navigation pathways in negotiated exchange 

Level 1 Level 2 Level 3 Level 4 

 

Actions and Pathways Related to Scheduling 

Assign patient to room 
Patient A  

Patient B 
(Select available room) -- 

Assign resource to room 

Doctor  

Nurse  

Surgeon 

(Select available room) -- 

 

Actions and Pathways Related to Resource-Exchanging 

Request resource 

Doctor  

Nurse  

Surgeon 

“The other hospital has given 

you a (doctor/ nurse/surgeon)” 
-- 

“Your request has been denied 

by the other hospital.” 

“The neighboring 

hospital requests your 

assistance! They would 

like to have a 

(doctor/nurse/surgeon).” 

Accept request  

 
“Send 

(doctor/nurse/ 

surgeon) to 

neighboring 

hospital?”  

 

No  -- 

 Confirm 

“A (doctor/nurse/ 

surgeon) has 

been sent to the 

other hospital.” 

Deny request -- -- 

Note. Level 1 indicates the first level of options and the subsequent levels describe potential 

pathways for the options selected. Italicized texts refer to button options and quotations refer 

to pop-up communications. Two dashes indicate levels not applicable to that pathway.  

 

Interface highlighting and feedback aided participants in the microworld. For 

example, when assigning patients and staff, rooms currently treating patients would be 

greyed out. Once a patient and staff were assigned to a room, “patient treatment” began 

automatically, lasting 60 seconds. After treatment, participants needed to click a “Collect 

Resources” button that appeared on top of the respective room to free the room and staff for 

reassignment (action not included in Table 2). The system generally did not allow erroneous 

assignments; however, if participants attempted to take action using unavailable patients or 

staff, floating text would appear with the error and last several seconds before fading. 

To request staff, participants could select “Request Resource” from the bottom 

control panel, then select nurse, doctor, or surgeon. Immediately following this, floating text 
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informed participants if their request was accepted or denied (Table 2, Level 3). If accepted, 

the resource would transfer from the agent’s hospital to participants’ hospital and the staff 

numbers in both hospitals would update. Incoming requests to participants blocked the 

control panel, forcing an interruption (Figure 5). Staff that transferred would remain at the 

hospital unless requested and accepted back.  

 

Figure 5. A screenshot of the microworld environment interface that shows the bottom 

control panel obscured by a resource request. 

3.5 Results and Discussion 

In Experiment 1, where participants experienced a slow-tempo period followed by a 

fast-tempo period, we assess whether the high- and low- cooperation behaviors affected 

participants’ behaviors using ANOVA with three within-subjects variables (scheduler, 

cooperation level, tempo) and one between-subjects variable (cooperation order). 

Participants’ and agents’ requesting and accepting behavior are discussed in the context of 

these resource-sharing variables, and mean performance (number of patients treated, 

individually and jointly) are considered in the context of agent cooperation. To assess the 
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validity of averaging performance across trials, participants’ mean performance across trials 

was compared. No significant difference was found, suggesting minimal learning effects. 

In Experiment 2, a different group of participants experienced a fast-tempo period 

followed by a slow-tempo period. Resource-sharing in Experiment 2 is compared to 

Experiment 1 by how people’s cooperation differed following a perturbation, an initial fast-

tempo period. We follow the same assessments as in Experiment 1 and supplement our 

explanations with additional visualizations and analyses. Analyses were conducted using the 

‘stats’ package in R (R Core Team, 2014); data frame manipulations and descriptive statistics 

were conducted using the ‘dplyr’ package (Wickham & Francois, 2015); data visualizations 

and figures were created using ‘ggplot2’ (Wickham, 2009). All figures are labeled from the 

participants’ perspective. 

3.5.1 Experiment 1: Slow-tempo period followed by a fast-tempo period.  

Figure 6 shows agents’ and participants’ mean requests in the background narrow 

bars, overlaid by their mean acceptances, the foreground wider bars. Data are faceted by 

cooperation order (rows), cooperation level (columns), and tempo period (columns within 

cells).  There were more requests in the fast-tempo periods (quadrants’ right columns, narrow 

bars) compared to the slow-tempo periods (quadrants’ left columns, narrow bars), 

demonstrating that agents generally behaved as designed within the microworld, and that 

participants understood the joint task and engaged in requesting staff accordingly (F(1, 34) = 

91.89, p < 0.01). Participants’ increased requests moving from slow-tempo to fast-tempo 

shows the effect of tempo (F(1, 34) = 47.47, p < 0.01), and that people engaged agents as 

they needed more staff. Mean acceptances (Figure 6 wide bars) were not significantly 

different overall between tempo periods (quadrants’ left and right columns) (F(1, 34) = 0.48, 

p = 0.5) due to the complementary tempo design and joint structure of the task. However, 

acceptances across cooperation levels did interact with tempo; participants’ mean 
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acceptances were greater in their slow-tempo period compared to their fast-tempo period 

(dark wide bars, quadrants’ left columns compared to right columns, F(1, 34 = 96.58, p < 

0.01). Furthermore, when participants were supposed to be accepting requests during their 

slow-tempo (quadrants’ left wide bars), their mean acceptances were fewer than agents’ 

mean acceptances during its slow-tempo (quadrants’ right wide bars) in three of the four 

comparisons. The same was true in participants’ fast-tempo compared to agents’ fast-tempo 

(participants’ slow-tempo), participants’ mean acceptances were fewer than the agents’ in 

three of the four comparisons. In addition, mean acceptances were generally higher in the 

bottom row of Figure 6, particularly in the high-cooperation condition, which reflects an 

interaction between cooperation order and cooperation level (F(1, 34) = 4.31, p = 0.05). 

 

Figure 6. Agents’ (bars on the left) and participants’ (bars on the right) mean requests 

(narrow bars) and mean acceptances (wide bars) with 95% CIs (confidence intervals). 
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Appropriate cooperation means participants should generally accept more requests 

during their slow-tempo period, and make more requests during their fast-tempo period. The 

question is if agent cooperation differentially affected these behaviors. While agents’ mean 

requests were greater than participants’ mean requests across conditions (F(1, 34) = 26.46, p 

< 0.01), and agents’ mean acceptances were greater than participants’ mean acceptances 

across conditions (F(1, 34) = 24.37, p < 0.01), overall mean requests in the high-cooperation 

condition were fewer compared to the low-cooperation condition (Figure 6 comparing the 

total narrow bars in the left column with the total narrow bars in the right column) (F(1, 34) = 

35.62, p < 0.01). Across conditions, the low-cooperation agents’ mean requests were greater 

than participants’ mean requests, reflecting the significant interaction for scheduler and 

cooperation level (F(1, 34) = 13.16, p < 0.01). In sum, participants requested more from the 

low-cooperation agent than from the high-cooperation agent.  

Mean acceptances, in contrast, were greater in the high-cooperation condition 

compared to in the low-cooperation condition (Figure 6, comparing wide bars in the left 

column and right column) (F(1, 34) = 37.67, p < 0.01). Thus, participants contributed to more 

productive interactions, that led to an exchange of staff, in the high-cooperation condition 

compared to the low-cooperation condition. Participants’ mean acceptances were fewer than 

agents’ mean acceptances, and even fewer in the low-cooperation condition compared to the 

high-cooperation condition (F(1, 34) = 21.33, p < 0.01). Despite interacting more often with 

the low-cooperation agent, indicated by the greater number of requests, exchanges were less 

productive – less likely to lead to resource exchange. This shows participants were still 

willing to engage the low-cooperation agent, making more requests like the low-cooperation 

agent, rather than saving effort or adopting a more autonomous strategy. It also means 

participants as a group did not exploit the high-cooperation agent’s relative generosity by 

requesting more often and refusing to return staff when requested.  
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The dyad handled resource exchanges differently in high-cooperation versus low-

cooperation conditions, particularly in their requests. In Figure 6 (left column, narrow bars), 

agents’ mean requests in participants’ slow-tempo were greater than participants’, and this 

reverses when participants reached their fast-tempo – their mean requests are greater than the 

agents’. In the low-cooperation condition (right column, narrow bars), agents’ mean requests 

are greater than participants’ in their slow-tempo, although this does not increase 

participants’ mean acceptances (wide bars). This may have led to agents’ subsequent need for 

staff and the mutually increased requests in participants’ fast-tempo. These observations are 

supported by the significant interaction for cooperation level and tempo (F(1, 34) = 21.14, p 

<0.01).  

To determine discretionary cooperation separate from task-induced cooperation, the 

number of valid requests (requests for staff that were available) and the number of valid 

acceptances (acceptances made when possessing the available resource) were calculated, 

regardless of whether or not it was appropriate to request or accept. Comparing participants’ 

discretionary cooperation against agents’ discretionary cooperation, participants accepted on 

average 35.8% (SD = 18.83%) of the high-cooperation agent’s requests in a trial, whereas the 

high-cooperation agent accepted on average 54% (SD = 20.82) of participants’ requests in a 

trial. The average ratio of percent acceptances per trial with the high-cooperation agent was 

71% (SD = 32.33%); in other words, participants’ returned 71% of the high-cooperation 

agent’s discretionary cooperation. Compared to the low cooperation agent, which accepted 

28% (SD = 13.49%) of participants’ requests, participants accepted 23% (SD = 12.8%) of the 

low cooperation agents’ requests. Participants returned 95% (SD = 69.63%) of the low-

cooperation agents’ discretionary cooperation. This large proportion mostly reflects that both 

participants and the low-cooperation agent accepted a similar number of requests from one 

another, which was in general a very low amount.  
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Did more productive interactions with the high cooperation agent lead to higher mean 

performance? Figure 7 shows mean individual performance, the sum of patients treated by 

each scheduler, and mean joint performance, the sum of participants’ and agents’ 

performance. Because of task interdependence – staff unused by participants were often used 

by the agents and visa versa – the difference between cooperation conditions is small. In 

particular, the low-cooperation agents’ higher mean performance compensates for the 

participants’ lower mean performance, and reflects the low-cooperation agent’s more 

autonomous strategy favoring individual team member performance. However, the lower 

mean joint performance supports the observation that the low-cooperation agent’s behavior 

led to less productive participant behaviors, with the high-cooperation condition producing 

higher joint performance (Figure 7) (F(1, 34) = 7.37, p = 0.01). When participants 

transitioned from the low-cooperation to the high-cooperation agent, the difference between 

the high-cooperation and low-cooperation conditions appears larger (Figure 7, right column 

differences are larger compared to the left column differences); however, cooperation order 

and cooperation level did not produce a significant interaction. These findings for joint 

performance suggest that an inconsiderate interrupter that requested staff indiscriminately, 

and was less generous in providing staff – the low-cooperation agent’s persona – could lead 

to lower joint performance in a task involving people. 
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Figure 7. Mean patients treated with 95% CIs show individual performance and joint 

performance, with joint performance lower in the low-cooperation condition compared 

to the high cooperation condition. Joint performance is plotted as the average of 

participants’ scores and agents’ scores. 

While high-cooperation was defined as being considerate in the timing of requesting 

resources, and providing resources generously at the right time, results show fewer requests 

occurred with the high-cooperation agent compared to the low-cooperation agent. However, 

both agent and participant behaviors contributed to the higher joint performance in the high-

cooperation condition, given the appropriate timing of their actions. Overall, these results 

show the value of considering responsive (responding to requests) and proactive (making 

requests) behaviors as part of evaluating appropriate cooperation in a joint task, and that 

social exchange factors may be relevant for human-agent interaction – agent cooperation can 

affect human cooperation.  
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3.5.2 Experiment 2: Fast-tempo period followed by a slow-tempo period 

Requesting behavior in Experiment 2 was similar to Experiment 1; agents’ mean 

requests were greater than participants’ mean requests (F(1, 34) =  124.87, p < 0.01) and 

mean requests were greater in the low-cooperation condition compared to the high-

cooperation condition (F(1, 34) =  93.72, p < 0.01).  In addition, mean acceptances were 

greater in the high-cooperation condition compared to the low-cooperation condition (F(1, 

34) =  33.27, p < 0.01), and the two scheduler’s  mean requests were greater in their 

respective fast-tempo periods, demonstrating the agents behaved as designed and that 

participants were engaged in the microworld task (F(1, 34) =  169.43, p < 0.01). Furthermore, 

participants and agents differed in their requests, particularly depending on cooperation 

levels; the low-cooperation agents’ mean requests were greater than participants’ mean 

requests across conditions (F(1, 34) =  89.85, p < 0.01).  

Contrary to expectations, mean requests in the slow-tempo period were greater than in 

the fast-tempo period (F(1, 34) =  223.70, p < 0.01). This highlights the first difference 

between Experiment 2 and Experiment 1. Figure 8 (quadrants’ right columns, narrow bars) 

partially explains these findings; agents’ mean requests during participants’ slow-tempo were 

greater relative to the other conditions and relative to Experiment 1, with an especially large 

portion of requests made by the low-cooperation agent (F(1, 34) = 41.92, p < 0.01). This is 

also reflected in the significant interaction term for scheduler and tempo, where the agents’ 

mean requests were greater that participants’ mean requests during participants’ slow-tempo 

period (F(1, 34) =  222.18, p < 0.01); the significant interaction term for cooperation level 

and tempo,  where mean requests were greatest overall in the low-cooperation, slow-tempo 

period (F(1, 34) =  41.92, p < 0.01); and the significant interaction term for scheduler, 

cooperation level, and tempo (F(1, 34) =  20.48, p < 0.01).  
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Figure 8. Agents’ (bars on the left) and participants’ (bars on the right) mean requests 

(narrow bars) and mean acceptances (wide bars) with 95% CIs (confidence intervals). 

 

Because agent actions were partially contingent on participants’ actions, a 

complementary explanation for the higher number of requests in the slow-tempo period is 

that participants delayed and did not request staff early, when needed, during their fast-tempo 

period. This delay caused a backlog of patients in their hospitals, which reverberated through 

their requesting and accepting behaviors in the second half of the trial. The greater number of 

agent requests are thus likely due to participants retaining staff leading into the agents’ fast-

tempo period (and participant’s slow-tempo period), resulting in agents running out of staff 

more quickly compared to Experiment 1. This failure of participants to quickly adapt in the 

early fast-tempo might be described as a failure to maintain their margin of maneuver 

(Stephens et al., 2011), which led to subsequent system breakdowns and delays in the joint 
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task. A visualization of the request sequence shows that participants’ requests peaked at the 

end of their fast-tempo period (Figure 9).  

 

Figure 9. Number of participant requests (outlined bars) and agent requests (un-

outlined bars) show that participants’ requests peaked toward the end of their fast-

tempo period. 

The effects of participants’ delayed requests also seemed to affect participants’ and 

agents’ acceptances. Contrary to Experiment 1, participants’ mean acceptances were greater 

than agents’ mean acceptances in Experiment 2 (F(1, 34) =  15.97, p < 0.01). It seems the 

low-cooperation agent was more badly in need of staff during participants’ slow-tempo 

period in Experiment 2 compared to Experiment 1, due to participants’ delayed resource 

requests and subsequent delayed use of staff at the start of their slow-tempo period, and thus 

agents’ accepted less often in Experiment 2.  

Without the benefit –or an example– of a requesting agent early in the trial, 

participants seemed focused on their scheduling rather than requesting staff from the agent. 
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This is especially true when comparing the timing of participants’ requests in Experiment 2, 

which peak at the end of the fast-tempo period in Figure 9, and the timing of participants’ 

requests in Experiment 1 which peaked earlier, halfway through the fast-tempo period (not 

pictured). Thus, participants’ mean number of requests during an early fast-tempo may not 

have been sufficient. This would lead to requests increasing toward the end of the fast-tempo 

period to address buildup in the patient queue. Participants’ tendency to adopt an autonomous 

strategy for assigning patients and staff to available rooms, meant they neglected the 

opportunity to gain staff to serve patients.  

Despite this effect in Experiment 2, cooperation of the agent still had a positive effect 

on joint performance, supporting our initial hypothesis. The dyad in the high-cooperation 

condition had greater resource exchange between tempo periods compared to the dyad in the 

low-cooperation condition. This is reflected in the significant interaction term for cooperation 

level and tempo (F(1, 34) =  4.46, p < 0.05), the significant interaction term for scheduler, 

cooperation level, and tempo (F(1, 34) = 17.02, p < 0.01), and in Figure 8, where the 

differences between quadrants’ left and right wide bars are greater in the left column 

(“HighCoop”) compared to the right column (“LowCoop”). It is also noteworthy that 

compared to Experiment 1, and particularly in the high-cooperation condition, the fast-tempo 

period in Experiment 2 did not reduce participants’ tendency to share staff, despite the agent 

demanding much less often. 

It is tempting to compare performance in patients treated between the two 

experiments given their parallel design. However, plotting when agents released staff against 

when participants reached maximum queue length shows that in Experiment 1, even with 

earlier requests, participants were unable to treat the backlog of patients in their waiting room 

before the trial ended, mostly a function of the designed tempo patterns. Thus, the only 

conclusion we can make about joint performance in Experiment 2 is that it supported the 
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findings from Experiment 1 – cooperation affects joint performance. Joint performance was 

lower with the low-cooperation agent (F(1, 34) = 12.24, p < 0.01), and even lower when the 

participants initially interacted with the low-cooperation agent (F(1, 34) = 5.63, p = 0.02). 

 

Figure 10. Mean patients treated with 95% CIs show individual performance and joint 

performance, with joint performance lower in the low-cooperation condition compared 

to the high cooperation condition. 

To further investigate the interdependence of the agent and participant, a simple linear 

regression was calculated to predict joint performance based on participant performance. For 

Experiment 1 participants’ performance accounted for a much smaller proportion of the 

variance in the joint performance (F(1, 142) = 18.09, p < 0.01,  R2 = 0.11) compared to 

Experiment 2 (F(1, 142) = 273.00, p < 0.01, R2 = 0.66), supporting the idea that participants 

used a more autonomous strategy in Experiment 2.  
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3.5.3 Discretionary cooperation and rate of reciprocity 

To compare overall discretionary cooperation between participants and agents, the 

number of acceptances made of “valid requests” were tallied for each participant. Valid 

requests were labeled by filtering out requests made when the other hospital did not have the 

resource being requested. The number of acceptances was then divided by the number of 

valid requests for each scheduler, and the resulting percentages were averaged across trials.  

Comparing participants who experienced the fast-tempo first (Experiment 2, “Fast to 

Slow Tempo”) and participants who experienced the slow-tempo first (Experiment 2, “Slow 

to Fast Tempo”), participant and agent dyads accepted more of each other’s requests in the 

fast-to-slow tempo pattern (F(1, 70) =  17.42, p < 0.01) compared to the slow-to-fast tempo 

pattern (Figure 11). Agents accepted more of participants’ requests than participants accepted 

agents’ requests in both fast-to-slow and slow-to-fast tempo patterns (F(1, 70) =  48.65, p < 

0.01), and the high-cooperation condition dyads accepted more requests than the low-

cooperation condition dyads (F(1, 70) =  141.762, p < 0.01).  
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Figure 11. Comparison of mean percent acceptances of valid requests made shows that 

participants accepted less often than agents, and more acceptances were made in the 

high-cooperation agent condition than the low-cooperation agent condition. 

Therefore, while the effects of agent cooperation were persistent across conditions, as were 

agents generally more cooperative than participants, the differences between the fast-to-slow 

tempo pattern (Experiment 2) and the slow-to-fast tempo pattern (Experiment 1) suggests 

they were different games rather than exact complements. That the agents accepted more of 

participants’ requests than participants accepted of agents’ requests opens the question, to 

what degree did reciprocity play in resource coordination?  

Reciprocity was calculated as the percent difference beyond “matching” or returning 

the exact number of staff received from the agent (Cox, 2004) within the time frame of a 

complete experimental trial. The reason why returning based on prior exchanges, i.e., 

reciprocity through sequential turn-taking, is not used is because of the stochastic nature of 

the task at any given point of exchange – the available resources one could return depended 
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on the particular sequence of incoming patients, which was randomized between A or B type 

with 50 percent distribution. Thus, rather than calculating each sequence for each participant, 

for better generalizability, reciprocity is determined by calculating overall percentages at the 

end of each experimental trial.  

Comparing reciprocity in Experiment 2 and Experiment 1 shows that in Experiment 

2, participants demonstrated relatively high and relatively similar reciprocity (Figure 12, left 

column), with an average of 35.55% with the high-cooperation agent (SD = 49.75) and 

37.81% with the low-cooperation agent (SD =  67.54). However, in Experiment 1, reciprocity 

differed between the two cooperation conditions (Figure 12, right column). Participants in the 

slow-to-fast condition returned fewer staff to the high-cooperation agent than what they 

received (M = -18.69%, SD = 20.66%); where 0% reciprocity means they matched the 

agent’s number of staff shared. One explanation for this difference is because high-

cooperation agents were more generous, so there was a steeper baseline for matching the 

number of resources given by the high-cooperation agent.  
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Figure 12. Mean reciprocity in Experiment 2 (left) and Experiment 1 (right) show that 

reciprocity with the two cooperation agents was relatively similar in the fast-to-slow 

tempo, whereas in the slow-to-fast tempo people did not reciprocate with the high-

cooperation agent, but did reciprocate with the low-cooperation agent.  

Therefore, with the low-cooperation agent they reciprocated more easily, returning a number 

of resources greater what was received (M = 9.57, SD = 46.4), although still lower than 

participants in the fast-to-slow condition. These observations are supported by the significant 

difference found between the two tempo pattern conditions (F(1, 68) = 17.39, p < 001), 

between cooperation levels (F(1, 68) = 6.18, p = 0.02, and their interaction term (F(1, 68) = 

4.48, p = 0.04).  

The lack of a large difference between cooperation conditions in the fast-to-slow tempo 

condition indicates reciprocity had less of an effect on resource exchange behaviors between 

schedulers. One explanation for this is that in an interaction structure where resource 

exchange is negotiated, acceptances can only come from requests initiated. Participants in the 
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fast-to-slow condition had more time to request staff following an initial fast-tempo period, 

compared to the slow-to-fast condition participants who had less time to request staff 

following their fast-tempo period in the second half of the trial. In contrast, the large 

difference between cooperation conditions in the slow-to-fast tempo reflects that people were 

able to use the high-cooperation agent’s staff effectively, leading to higher joint scores than 

with the low-cooperation agent. Returning a greater number of staff to the low-cooperation 

agent than what they received may have led to the group’s lower joint scores – perhaps both 

human scheduler and low-cooperation agent would have benefitted more from participants 

withholding slightly more of the staff obtained from the low-cooperation agent in the slow-

to-fast tempo condition.  

3.6 General Discussion 

Both experiments confirm that cooperation with automation is an important 

complement to reliance on automation. People and automated agents were placed in parallel 

roles to focus on the need to coordinate in a dynamic task environment through cooperation. 

While sharing resources potentially produces conflicting goals, in this study, demand was 

engineered to minimize conflict. From the researcher’s perspective, there was a relatively 

clear coordination solution – schedulers in the slow-tempo would be able to share staff with 

their counterparts experiencing a fast-tempo period. This allowed us to test how participants 

responded to agents expressing different levels of cooperation, and to motivate future studies 

on the social or affective influences of cooperation, rather than only the information 

processing components of the task. Overall, both experiments showed agent cooperation 

affected participant cooperation, supporting our general hypothesis that agent cooperation is 

an important construct in human-agent coordination, beyond automation reliability and its 

effects on reliance and compliance.  



 

 

68 

Although the goal was to “treat as many patients as possible,” participants could take 

a defensive approach (Stephens et al., 2011), requesting staff without returning them, to 

maximize patients treated in their own hospital. However, such defensive behavior would 

undermine cooperation and reciprocity (Axelrod & Hamilton, 1981), and in the microworld, 

lead to fewer patients treated. Though resource-sharing decisions may have been governed by 

the instrumental value of staff resources (Molm et al., 2007), the environment demand was 

not made explicit to participants. Therefore, the act of sharing resources demonstrates their 

trust in the agent. Accepting requests came at the cost of losing spare staff, reducing their 

margin of maneuver, and risking that the agent would not reciprocate and return staff when 

needed. In both experiments, less cooperative agents induced less cooperative behavior in the 

participants and more cooperative agents induced more cooperative behavior in the 

participants. 

The hypothesis for Experiment 1 on cooperative reciprocity was thus supported. 

Although the rate of reciprocity was inconclusive in Experiment 1 due to the structure of the 

negotiated interaction, the cooperative nature of the two agents affected both dimensions of 

participants’ cooperation – resource-sharing and resource-requesting behaviors. Participants 

engaged in more productive exchanges – successful requests – with the high-cooperation 

agent than with the low-cooperation agent, despite the low-cooperation agent requesting staff 

from participants more often. This suggests people returned similar cooperative behaviors of 

the agents. In addition, participants who previously experienced a low-cooperation agent and 

were working with the high-cooperation agent demonstrated even more productive exchanges 

than participants who experienced the high-cooperation agent first. It may be that participants 

were better at timing their requests in later trials to coincide with when the agent had 

available staff, but there was no evidence of learning effects. It may be that the high-

cooperation agent surpassed low expectations formed with the low-cooperation agent, 
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indicating the interaction history influenced decisions to cooperate. This latter explanation 

and the higher joint score with the high-cooperation agent support the idea that to maintain 

resilience, systems must continually invest in a renewal of shared goals and a willingness to 

accommodate (Woods, 2004).  

The hypothesis for Experiment 2 – that if people’s initial exposure to an agent is in a 

highly demanding situation, then the effects of agent cooperation level will be more 

prominent – was partially supported by participants’ mean acceptances, particularly in the 

fast-tempo, high-cooperation condition. However, the reciprocity rates show that participants 

withheld more staff given to them by the high-cooperation agent, which led to higher joint 

scores compared to participants coordinating with the low-cooperation agent. This suggests 

the hospital microworld mechanics may not have supported a true one-to-one resource 

coordination scenario, and that while reciprocal cooperation may have been present in 

resource exchanging behavior, it was not necessarily the case that reciprocity as measured by 

a positive amount returned compared to what was provided would have led to higher joint 

scores.  

As alluded to earlier, the initial fast-tempo period in Experiment 2 as well as the need 

to make requests to receive staff, may have affected both participants’ rates of reciprocity and 

their ability to coordinate. Overwhelmed participants may have taken on more autonomous 

rather than cooperative requesting strategies (not requesting and requesting, respectively). 

Rather than anticipating demand and making sufficient early requests, participants’ delay led 

to a backlog that undermined their ability to accept requests as agents transitioned into fast-

tempo (especially the low-cooperation agent). However, when prompted, people still 

responded in a cooperative way that contrasted their relatively autonomous requesting 

strategy. This suggests cooperation may have two dimensions – proactive and responsive 

actions. Given that participants started with a medium-tempo margin in each trial, and were 
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free to request staff, it remains a question why participants did not anticipate demand in 

subsequent trials. Certainly expertise with such demanding situations in actual work 

environments might ameliorate the tendency towards an autonomous, reactive (Hollnagel, 

2012) response. However, these results are consistent with the general error tendency of 

cognitive tunneling when people confront unexpected high-demand situations (Woods et al., 

1994). In summary, this autonomous behavior was limited to reducing participants’ requests 

for staff, and did not reduce their tendency to accept requests. 

Previous work in human-automation cooperation has focused on performance, with 

adjustable autonomy typically referring to better coordination (Zieba et al., 2010) or better 

management of functional dependencies. That speed of assigning staff was an important 

factor for this particular task might make this study a strange example of a joint human-agent 

task; automation is known to be much better at this than people (Fitts et al., 1951). However, 

it is not always the case that automation should be used, when the costs of a disengaged 

human counterpart would be greater than the efficiencies of implemented automation (Kirlik, 

1993). Our study focuses on the social processes of coordination in resilience, in 

circumstances where reciprocity and goal tradeoffs feature more prominently than reliability 

and mode management. Doing so departs from the idea that teams should be formed purely 

based on complementary abilities, rather than how those team members interact. It also 

challenges the tempting idea that if functions can be automated then they should be 

automated.  

Establishing trust between people and autonomous agents may be one of the most 

daunting problems for the success of human-automation teams (Groom & Nass, 2007), which 

is important for cooperation and maintaining margins of maneuver. Working toward this 

ideal, we investigated a shared-resource activity between people and automation, where 

social processes could potentially limit joint performance. As Groom and Nass (2007) 
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observe, future research intent on developing human-robot teams must go beyond technical 

performance to address the social and organizational qualities that make a successful 

teammate.  

3.7 Limitations and Future Directions  

Microworlds have the advantage of mimicking interactive situations observed in field 

studies but with a greater degree of experimental control (Gonzalez et al., 2005). This 

experimental control is particularly valuable when investigating the dynamics of 

interdependent behavior. Microworlds make it possible to manipulate the behavior and 

interdependencies of dyads, the simplest unit of agent networks in complex sociotechnical 

systems, but such interdependencies can also lead to challenges in the analysis.  

In this study, the high-cooperation agent’s requesting behavior could be affected by 

participants who were slower or chose not to use their staff because the high-cooperation 

agent was designed to check if participants’ staff were unused prior to requesting them. The 

low-cooperation agent’s requesting behavior could be affected by how quickly it ran out of 

staff it needed, which could be influenced by staff it did or did not have due to the 

participant’s actions. Both high-cooperation and low-cooperation agents’ acceptances 

depended in part on when participants made requests. This led to challenges in interpreting 

the results. However, this interdependence approach echoes the challenge of designing 

strategies to combat conflict in such joint tasks, where a person’s decisions depend on the 

agent’s decisions, which depend on the person’s decisions, and so on (Schelling, 1960). Most 

studies seek to avoid interdependencies, but a systems perspective that considers these 

interdependencies is becoming more important with the changing role of automation.  

In practice, it may be difficult to draw conclusions about the impact of cooperative 

behavior on performance outcomes; it is possible that as cooperative activity goes up, 

productivity decreases or remains unchanged, or other important measures are affected, such 
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as worker turnover and quality of work life. Cooperation may create value where there is 

none, and the quality of the output is not necessarily measured in terms of responding to 

demands more quickly (Wicks, Berman, & Jones, 1999), as represented in this microworld. 

In other words, increased cooperation might not increase performance in routine situations, 

even if it enhances resilience in high-demand situations. As a consequence, organizations 

might neglect the importance of cooperative automation.  

It is challenging, but critical, to identify performance measures that emphasize 

priorities consistent with cooperative control. In practice these priorities can manifest as 

micro-decisions to cooperate that extend to macro outcomes for a system of interconnected 

agents. In designing cooperation for resilience, the next study will avoid reactive responses 

by exploring a different social exchange structure, moving from negotiated exchange, where 

exchange decisions are made jointly, to reciprocal exchange where decisions are more 

unilateral, like in altruism (Molm et al., 2000). Such a design could refocus human-agent 

interactions from interrupting to request staff, a structure with more reactive affordances, to 

interrupting with needed staff, a structure with more proactive affordances. A key question 

would be to understand how to foster proactive behavior that helps systems maintain margins 

of maneuver, and to understand what causes people to ignore or avoid early opportunities that 

could enhance cooperation.  

3.8 Conclusion 

Cooperation is central to resilience because it enables networks of interdependent 

agents to pool staff and accommodate a greater range of surprises. People can become less 

cooperative when interacting with less trusting and inconsiderate agents, and more 

cooperative when interacting with more trusting and considerate agents, and cooperative 

strategies might be expressed in both proactive and responsive behaviors. These behaviors 

are qualitatively different than those observed in investigations of supervisory control 
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automation. This study’s approach thus departs from the typical supervisory control approach 

to human-automation interaction, and acts as a starting point for future studies to explore how 

cooperation in human-agent interactions can enhance system resilience. 
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Chapter 4 Part 2: Effects of Reciprocal Exchange on Human-Agent Cooperation 

4.1 Lessons Learned from Part 1 

Findings from Part 1 (Chapter 3) show that people’s cooperative behaviors were 

differently affected by agent cooperation and by workload. Although people were generally 

more cooperative with a high-cooperation agent, and less cooperative with a low-cooperation 

agent, requesting behaviors were delayed during the high-workload situation while their 

accepting behaviors were not as affected. This suggests cooperation may have a dimension of 

proactive (requesting, in this case) to responsive exchange behavior. People’s proactive 

resource-acquisition performance suffered during the high-workload condition because their 

requests were delayed. This is consistent with the general error tendency of cognitive 

tunneling when people confront unexpected high demands (Woods et al., 1994). It thus seems 

that high-workload led participants to narrow their focus on scheduling in their own hospital, 

failing to request staff, though they were still willing to provide staff when prompted. 

High-workload is often met by suggestions to reduce workload, such as increasing 

staff or implementing automation. However, high-workload situations are often unexpected 

and unavoidable in complex systems, where activity ebbs and flows, with periods of slower 

self-paced activity interspersed with higher-tempo, externally-paced demands (Rochlin et al., 

1987). Automation is often used to shift workload or tasks from people to machines, but a 

critical feature of well-integrated work is not simply a reduction of workload by eliminating 

tasks. Instead, well-integrated work considers how automation impacts low-workload and 

high-workload periods, and how automation promotes cooperation and people’s ability to 

manage workload, by increasing operating margins given resource limitations (Rankin, 

Lundberg, Woltjer, Rollenhagen, & Hollnagel, 2013; Woods et al., 1994). People often need 

to fill the gaps that system design or system failures produce, and keeping them in the loop 

with equal authority better enables them to do so.   
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Rather than simply reducing workload by increasing automation, an alternative 

approach could consider changing the social exchange structure, from one that requires 

action-response in an exchange, to one that focuses on resource provision in exchange. Doing 

so removes potential complacency in the resource-sharing task – to over-rely on automation 

to prompt of its needs and focus on self-needs – and increases accountability through 

initiative in resource-sharing. Such a shift in focus, based in an affordance of the social 

exchange structure (Kelley et al., 2003), is a novel intervention for human-automation 

interaction design that may improve cooperative resource-sharing to enhance resilience, 

rather than encourage defensive or autonomous resource management.  

4.2 From Negotiated Exchange to Reciprocal Exchange 

In Part 1, a negotiated exchange structure was tested, with a proactive resource 

acquisition (request resource) and responsive resource provision (accept or deny request) 

design. A different negotiated exchanged study could have tested a proactive resource 

provision (offer resource) and a responsive resource acquisition (accept offer design). A 

reciprocal structure, on the other hand, involves input from one member of the exchange, the 

initiator (Molm et al., 2007). Thus, the other member has no control in the decision, as would 

be the case if resource-sharing were fully automated (only the agent determines resource 

allocation) or fully manual (only the person determines resource allocation). However, 

because both members equally lack control in acquiring staff, the partnership is still an 

interactive control relationship, rather than a supervisory control relationship. In the 

negotiated exchange, actions are thus either “proactive” or “responsive” because both 

members participate in the decision and resulting outcome, whereas in reciprocal exchange, 

actions are either “proactive” or “passive”, because only one member – the initiator – can 

take action toward the immediate outcome of an exchange decision.   
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Previous research in social exchange theory suggests that cooperation may improve in 

a reciprocal exchange structure compared to a negotiated exchange structure because 

reciprocal exchange produces stronger trust and commitment between partners than in 

negotiated exchange. The reasoning behind this is that the symbolic value of pro-social 

behavior, an action that signal trustworthiness, increases when a decision is made without 

expected return; it places the initiator in a more vulnerable position (Berg et al., 1995; Molm 

et al., 2000). Due to the relationship between reciprocity and cooperation established in prior 

work, it thus seems likely that reciprocity will have a greater effect in a reciprocal exchange 

structure, with people reciprocating more than in negotiated exchange structures. 

Furthermore, in high stress environments, people’s subconscious processing of risk and 

subsequent engagement in either defensive or social engagement strategies may be affected 

by exposing participants to an environment of positive, prosocial behavior (Porges, 2001, 

2007). This supports the work in social exchange theory that suggests a proactive, giving 

agent may induce people’s social engagement and prosocial resource-exchange behaviors 

even in a risky and high-stress environment. 

People’s trusting dispositions, or propensity to trust, has been shown to influence their 

trust-related decisions (Hancock et al., 2011; Kim, Ferrin, & Rao, 2008; Parks et al., 1996; 

Robert, Denis, Hung, Dennis, & Hung, 2009). It is thus expected that people with a higher 

propensity to trust will be more cooperative in a reciprocal exchange structure. Since 

individual differences are not the focus of this dissertation, measuring people’s propensity to 

trust was used as a control to account for potential outliers or an unexpected trend in the data. 

In the following study, propensity to trust was measured using 20 items from the Propensity 

to Trust Survey (Evans & Revelle, 2008), which is shown to be effective at measuring trust in 

economic situations compared to other established scales for dispositional trust (Rotter, 1967, 
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1971). For more details on how these questions were adapted for this dissertation, see 

Appendix A: Propensity to Trust Questionnaire.  

In addition to the affective potential of reciprocal exchange, its structure focuses 

attention on the other’s needs rather than to self-needs. Instead of proactive attention to their 

self- needs (requesting staff) and responsive attention to agent needs (accepting/denying 

requests), participants would need to be proactive about the agent’s needs (giving staff) and 

passive about their own needs (no control). In other words, initiating interactions changes 

from “what do I need?” to “what can I provide?” As such, high workload and subsequent 

cognitive tunneling in the hospital-scheduling task may be reduced by changing the 

interaction structure to reciprocal exchange, shifting the focus to the resource-exchange task, 

and reducing the additional workload imposed by negotiated exchange. Such a structure may 

be effective particularly in situations where one entity’s peak workload corresponds to 

another’s trough, with the trough allowing spare capacity to look out for the needs of the 

other.  

Along those lines, people’s perception of task interdependence may also impact 

cooperative behavior (Staples & Webster, 2008). Perceived level of task interdependence has 

been found to affect decisions to cooperate (Martin, Gonzalez, Juvina, & Lebiere, 2013). 

Furthermore, when one party’s actions are understood to be contingent on another’s behavior, 

perceived interdependence thus reduces risk and encourages cooperation (Cropanzano & 

Mitchell, 2005). In the following study, task interdependence was measured through five 

items adapted from Staples and Webster’s (2008, p. 640) six-item scale for task 

interdependence, based on work by Bishop and Scott (2000), and Janssen (1999) (Appendix 

B: Task Interdependence Questionnaire).  

This social exchange approach in Part 2 continues to explore an aspect of human-

automation interaction that departs from more traditional approaches of function allocation in 
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supervisory control. A supervisory control approach might burden an automated agent to 

both push and pull relevant task information, and burden people with remaining vigilant of 

others’ needs in the face of cognitive tunneling. Rather than automating everything that can 

be automated, which can lead to operator complacency (Kirlik, 1993), the following study 

examines a new interaction structure that would be less relevant in more defined supervisory 

control relationships, but may provide useful insights for designing interactive control 

relationships in dynamic, coordinative tasks that support resilience.   

4.3 Research Questions 

In the context of this research, changing the joint work from a negotiated exchange to a 

reciprocal exchange may improve participants’ cooperation due to the affordances of 

reciprocal exchange that enhance proaction. In manipulating the exchange structure, the 

expected outcome is increased resource exchange in Part 2 (comparing gifts in Part 2 to 

requests accepted in Part 1), and subsequently improved ability of the human-agent system to 

adapt quickly to unexpected demand. Two versions of the automated agent were also tested 

in Part 2, a low-cooperation and high-cooperation agent. It was expected that the differences 

in cooperation between participants who interact with the high-cooperation agent and 

participants who interact with the low-cooperation agent will be greater, due to the increased 

symbolic value of unrequested giving.  

4.4 Overview of Microworld Environment for Reciprocal Exchange 

 The technical equipment and interface design were different in Part 2 from Part 1, due 

to the differing nature of the task, as well as factors unrelated to experimental design, 

including an improved interface resulting from design iteration and technical considerations 

for scaling the microworld for future studies. The microworld for reciprocal exchange was 

developed in Java and XML with the Java Development Kit 7. A 15” laptop computer with 

Java Runtime Environment 7 and a standard computer mouse were used. As in Part 1, 
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participants acted as hospital schedulers, whose task involved assigning patients and staff to 

hospital rooms and coordinating shared staff resources with a neighboring hospital, managed 

by an automated agent. Interactions with the agent were unilateral and limited to giving staff 

resources and accepting staff resources.  

4.5 Experimental design 

The study tested different levels of agent cooperation on participants’ giving behavior 

and joint performance as a between-subjects variable; 25 participants experienced a high-

cooperation agent, and 25 participants experienced a low-cooperation agent. The fast-to-slow 

tempo pattern was tested, in which participants experienced a fast-tempo period followed by 

a slow-tempo period, the same as in Experiment 2, Part 1. Therefore, the within-subjects 

variables in this experiment included trial (trial 1 or trial 2), tempo (fast-tempo period or 

slow-tempo period) and scheduler where applicable (participant or agent). 

4.5.1 Study participants   

A total of 50 participants were recruited from a midwestern university community, 

through online job and volunteer postings and campus fliers near the study site. Criteria for 

participation included normal or corrected-to-normal vision, between 18-65 years old, access 

to an email address, and able to use a standard computer keyboard and mouse. Interested 

participants who contacted the researcher were asked to confirm they met the criteria and 

provide their availability. Participants were then randomly assigned to condition groups for 

the experiment. Following the experiment, participants were compensated $10 for completing 

the study. 

Participants’ self-reported genders were 42% male, 56% female, and 2% other; ages 

ranged from 18 to 37, with a median age of 22 and a mean age of 23. Most participants 

reported using the computer daily (96%), and 38% reported using the computer for playing 

video games. Participants’ mean scores on questionnaire items relating to their trust 
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dispositions ranged from 3.05 to 4.68, with an overall mean of 4.08, out of a scale from 1 to 

6, with 6 meaning higher trust (Evans & Revelle, 2008). Participants’ understanding of task 

interdependence was also measured, and they generally understood that their task was 

interdependent with the agent’s task. On a scale of 1 to 6, with 6 meaning highly 

interdependent on the task interdependence questionnaire items (Staples & Webster, 2008), 

participants’ median score was 4.6. For a full list of the questionnaire items and 

demographics collected, see Appendix A: Propensity to Trust Questionnaire, Appendix B: 

Task Interdependence Questionnaire, and Appendix C: Demographic Questionnaire. 

4.5.2 Independent variables 

Agent cooperation, operationalized in the agents’ staff-sharing rates and behaviors, 

was tested as a between-subjects variable. Each participant played two trials, so “trial” was 

included as a within-subjects variable. As in Part 1, Experiment 2, within each trial there was 

one fast-tempo period, and one slow-tempo period, so “tempo” was tested as a within-subject 

variable. “Scheduler” was a within-subject variable, to distinguish between the participant 

and the automated agent. Therefore, a mixed between and within 2 x 2 x 2 x 2 designs, and 2 

x 2 x 2 designs, tested agent cooperation level (high or low cooperation) as a between-

subjects variable, with within-subjects variables including trial (trial 1 or trial 2), tempo (fast-

tempo period or slow-tempo period) and scheduler where applicable (participant or agent).  
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Figure 13. Two groups of 25 participants: one group experienced the high-cooperation 

agent, the other group the low-cooperation agent, both a fast-to-slow tempo sequence, 

while their agents experienced the slow-to-fast tempo sequence. 

4.5.3 Tempo pattern 

As in Part 1, Part 2 participants and agents experienced complementary tempo 

patterns. However, participants only experienced the fast-to-slow tempo (for more details see 

section 3.3.3). Testing this tempo pattern focuses on the staff-sharing response of participants 

in the second half of the trial, following experience with a staff-sharing agent in the first half 

of the trial. In cooperative exchange, the first move or first impression is an important factor 

of the subsequent relationship (Axelrod, 1984). Thus, a slow-to-fast tempo pattern may be 

more susceptible to exposure order effects from starting in an environment where people 

need to proactively provide resources. For a note on why a baseline tempo pattern was not 

tested, see (Appendix D: Baseline Tempo).  

4.5.4 Agent cooperation levels – high-cooperation and low-cooperation 

Similar to the high- and low- cooperation agents in Part 1, Part 2 tested two 

cooperation agents, also named high- and low-cooperation. Agent cooperation was 

operationalized as high-cooperation or low-cooperation depending on the degree to which its 

behaviors signaled joint outcome or individual outcome, respectively. Although the behaviors 

of the two agents in Part 1 and Part 2 seem similar, due to the changed structure in Part 2, 
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agent behavior was different in a few critical ways. The Part 2 agents’ behaviors are 

summarized in Table 3 below.  

Table 3. Agent resource-sharing and giving behavior by cooperation level 

Agent Cooperation Level Giving Rate Giving Behavior 

High cooperation 

100 % with 1-2 patients 

75 % with 3-4 patients 

50 % with 5-6 patients 

1. If participant spare staff is at 0,  

2. If agent has that unassigned staff, 

3. Give that staff at pre-specified 

giving rate 

Low cooperation 

50 % with 1-2 patients 

25 % with 3-4 patients 

0 % with 5-6 patients 

1. If participant spare staff is at 0,  

2. If agent has any unassigned staff,  

3. Give randomly at pre-specified 

giving rate 

Note. Agents’ giving rates were keyed to the number of patients in the agent’s waiting room, 

and to a color status in the waiting room: green for 1-2 patients, yellow for 3-4 patients, and 

red for 5-6 patients.  

 

Due to the structure and constraints of the microworld designed, cooperation entailed 

providing useful resources at the appropriate time. However, agents still needed to treat 

patients in their own hospitals to contribute to a higher joint score. Therefore, agent 

cooperative behavior was necessarily tied to the status of their own hospital.   

To make the high-cooperation agent more attuned to joint performance, and more 

cooperative, the high-cooperation agent was designed to be more discriminate and 

considerate; it would check if the participant had any staff at zero and provide that specific 

staff if it had it. Then, the high-cooperation agent provided participants staff at a rate of 100% 

when its own queue was green, 75% when its queue was yellow, 50% when its queue was 

red. While this rate was higher than the low-cooperation agent’s rates, its discriminate giving 

meant that it had fewer chances to provide a specific staff resource participants needed, and 

thus the high-cooperation agent provided approximately the same number of staff resources 

to participants as the low-cooperation agent.  

The low-cooperation agent was positioned to be more attune to its individual 

performance, in that its giving behavior was less risky for itself, emphasizing individual 

outcome. The low-cooperation agent’s giving rate was less than the high-cooperation agent’s, 
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and it gave more indiscriminately, without considering participants’ needs as carefully as the 

high-cooperation agent. While the low-cooperation agent also checked to see if participants 

needed staff, i.e., any staff values at zero, it gave random staff not currently in use 50% of the 

time when their queue was green, 25% when yellow, and 0% when red. This added check of 

participants’ staff values in the low-cooperation agent was included following pilot studies 

that found a low-cooperation agent without this check tended to overwhelm participant 

partners with staff resources.  

To prevent agents from excessively returning staff to participants, if agents received a 

resource from participants, it first checked to see if it could use the resource before enacting 

its giving behavior decision cycle. Both agents also had time delays to simulate the pace of a 

human player, established during pilot testing. Before running through an entire decision 

cycle, agents would delay 4 seconds, with an added 1-second delay when collecting staff 

from a room. This delay avoided continuous interruption of the participant and allowed a 

window between assignments for agents to have excess staff that would ensure interaction.  

4.5.5 Dependent variables 

Because we wanted to know how agent cooperation would influence a person’s 

cooperation in a reciprocal exchange structure, the dependent variables in this study 

measured different parts of cooperation: cooperation behavior, cooperation process, and 

cooperation outcome. To measure cooperation behavior, we considered the number of staff 

participants transferred to the neighboring hospital agent. To capture the cooperation process, 

we considered both the temporal pattern of staff transfers as well as the number of staff 

participants reciprocated to the agent. Both cooperation process measures were derived from 

the cooperation behavior measure. Finally cooperation outcome was measured, which was 

the number of patients treated in both hospitals. This approach to understanding cooperation 

considers how micro behaviors develop into patterns and ultimately influence outcome. Table 
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4 summarizes these parts and their corresponding measures. Because of the interdependence 

of the joint task, agents’ resource-sharing behaviors and process were also measured to help 

contextualize participants’ experience.  

Table 4. Dependent Variables 

 Measure Unit of Analysis 

Cooperation Behavior   

Providing staff to 

neighboring hospital 

Number of Staff Participant 

Cooperation Process   

Providing staff based on 

demand pattern 

Temporal pattern Participant 

Reciprocated staff provided 

by agent 

Relative difference of staff 

provided 

Participant + Agent 

Cooperation Outcome   

Joint performance Number of patients treated Participant + Agent 

 

4.6 Procedure  

Participants’ consent was obtained first, then they completed a propensity to trust 

questionnaire, were trained on the microworld task, and completed the experimental trials. 

After the experimental trials, they completed a task interdependence questionnaire and 

demographics questionnaire. In Part 2, only two experimental trials were conducted instead 

of four; Part 1 demonstrated two were sufficient exposure to capture participant and agent 

behaviors, and the within-participant variable “cooperation order” was not tested in Part 2.  

Table 5 describes the main actions of the scheduling task from the participant’s point 

of view. Level 1 refers to the right hand control panel options in Figure 14. 
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Table 5. Participants’ main actions and navigation pathways in reciprocal exchange 

Level 1 Level 2 Level 3 Level 4 

 

Actions and Pathways Related to Scheduling 

 

Assign: 

Patient A/Patient B 

(Select available 

room 1-6) 
-- -- 

Assign: 

Doctor/Nurse/Surgeon 

(Select available 

room 1-6) 
-- -- 

 

Actions and Pathways Related to Resource Exchange 

 

Give Resource 

Give: 

Doctor  

Nurse  

Surgeon 

“Are you sure you want to send 

a (Doctor/Nurse/Surgeon) to the 

neighboring hospital?” 

Yes 

No 

“The neighboring hospital 

gives you a 

(doctor/nurse/surgeon).” 

OK 

 
   

Note. Level 1 indicates the first level of options and the subsequent levels describe pathways 

for the options selected. Italicized texts refer to button options and quotations refer to pop-up 

window communications. Two dashes indicate levels not applicable to that pathway.  

 

Interface highlighting aided participants in the microworld (Figure 14). For example, 

unavailable options such as patients, staff, or rooms occupied were greyed out, and the 

system did not allow erroneous assignments. Once a patient and staff were assigned to a 

room, “patient treatment” began automatically, lasting 60 seconds. After treatment, 

participants needed to click a “Collect Resources” button that appeared on top of the 

respective room to free the room and staff for reassignment (action not included in Table 5).  

To give staff, participants could select “Give Resource” from the bottom of the right 

hand control panel, then select nurse, doctor, or surgeon. After confirming the decision 

(Table 5, Level 3) the resource would transfer to the agent’s hospital and the staff numbers in 

both hospitals would update. Because reciprocal exchange is unilateral decision-making, 

agents and participants alike had no choice but to receive the staff given to them. However, 

interface design ensured participants were aware of these interactions. When the agent gave 

the participant a resource, an immediate interruption (McFarlane & Latorella, 2002) via pop-
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up window appeared with the message, "The neighboring hospital sends you a 

(nurse/doctor/surgeon)" and participants needed to click “OK” button on the pop-up window 

before continuing (Table 5, Level 1 and 2). This ensured that participants knew when staff 

transferred from the neighboring agent’s hospital to their hospital. In Part 1 where 

participants requested staff, participants first selected the option to request, then indicated 

which resource they were requesting. In Part 2, participants selected the option to give, and 

then indicated which resource to give. 

 

Figure 14. Screenshot of the microworld design used in Part 2 shows the participant in 

the middle of assigning a resource to Room 3, which is already assigned a Patient A and 

is highlighted to demonstrate which room can take the selected resource. 

The automated agents only assigned patients to rooms when all staff were available. 

This prevented the agents from accidentally hoarding staff by assigning a patient and one 

staff resource to a room that could not begin treatment until the second staff resource is 
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available. If there were no patients to assign with the accompanying full set of appropriate 

staff, then both agents would enter the giving behavior decision cycle (Table 3). 

4.7 Data Labeling and Analysis 

Prior to analysis, two participants’ data were removed; for more details see Appendix 

E: Two Outliers. The analyses conducted considered cooperation in terms of resource-sharing 

actions, in the context of the shared goal and task environment with shifting priorities over a 

specified period of time. ANOVA was used to compare the joint scores and number of staff 

exchanged between groups (between-subjects), number of staff given in the slow- and fast- 

tempo periods (within-subjects), and in each trial (within-subjects).  

An ANOVA was also applied to the dependent measure of reciprocity, which was 

calculated as a percent difference from the overall number of staff returned to the agent per 

trial. As discussed in section 2.4.2, values above 0% were therefore considered the degree to 

which reciprocity was demonstrated (Cox, 2004); values below 0% were not considered to be 

reciprocity, and 0% meant resources lent were returned. For clarity, the criteria for 

reciprocity are measured as a separate construct from cooperation, but due to the relationship 

between reciprocity and cooperation established in prior work, they are considered in 

conjunction with cooperative behaviors to assess its role in explaining cooperation and joint 

performance.  

Finally, an independent two-group t-test was used to compare joint scores between 

Part 1 and Part 2 due to the differing sample sizes (N = 18 per group and N = 25 per group, 

respectively). Analyses were conducted in R and using the ‘stats’ package (R Core Team, 

2014); data frame manipulations and descriptive statistics were conducted using the ‘dplyr’ 

package (Wickham & Francois, 2015); figures were created using ‘ggplot2’ (Wickham, 

2009). 
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4.8 Results and Discussion 

In reporting results, all significant terms and insignificant main effects are included; 

insignificant interaction terms are not included. Propensity to trust and perception of task 

interdependence were included as covariates for each analysis reported below and were not 

found to account for significant portions of the variance, so their results are included as part 

of the sample population description (Section 4.5.1). All figures are labeled from the 

participants’ perspective. 

4.8.1 Joint performance 

Mean joint scores were not significantly different between cooperation conditions 

(F(1, 48) = 0.06, p = 0.81). Higher scores were reached in trial 2 (F(1, 48) = 7.62, p = 0.01), 

suggesting learning effects or that participants changed strategies (Figure 15).  

Figure 15. Comparing mean scores with 95% CIs (confidence intervals); joint score was 

halved for visual comparison between schedulers 
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Participants scored higher than agents (F(1, 48) = 127.45, p < 0.01), although this was 

expected. A simulation of a theoretically “perfect game” with no coordination, played by a 

fast (4-second assignment) and skilled player with A and B patients arriving just as the right 

resources become available, show a scheduler in the fast-to-slow tempo can treat a maximum 

of 21 patients. In the slow-to-fast tempo condition, a scheduler can treat a maximum of 16 

patients. When scores were scaled to these theoretical values as percent error, no significant 

differences were found between conditions other than between trials. While this suggests 

neither group definitively benefitted from coordinating with agents, it must be taken into 

account that a perfect game rarely occurred, and that participants’ speed varied from the 4-

second pace used to calculate the theoretical perfect game. These findings also demonstrate 

variability in the agents’ performance between trials, despite agents having relatively 

systematic behaviors, suggesting significant variability in people’s resource exchange 

behaviors with the automated agents. Performance in terms of patients treated thus may not 

be a good indicator of cooperation and the mechanisms that lead to cooperation and 

resilience. 

4.8.2 Resource-giving timing and utility as cooperation  

Cooperative behavior was first assessed through the number of staff given in the 

different tempo and agent conditions. Figure 16 shows participants’ and agents’ giving 

generally corresponded to the demand patterns they experienced; each gave more during their 

slow-tempo period and gave less during their fast-tempo period (F(1, 48) = 12.66, p < 0.01), 

though tempo had a larger effect in the low-cooperation condition than in the high-

cooperation condition (F(1, 48) = 46.2), p < 0.01).  However, overall difference in staff given 

between cooperation conditions was not significant as a main effect (F(1, 48) = 0.01, p = 

0.92), neither was the overall difference between trials (F(1, 48) = 2.57, p = 0.12).  
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Figure 16. Staff given by cooperation conditions and tempo period with 95% CIs 

 

Participants gave more than agents (F(1, 48) = 64.16, p < 0.01) and each gave more than the 

other during their slow-tempo period (F(1, 48) = 929.68, p < 0.01). In addition, more staff 

were exchanged during participants’ fast-tempo with the low-cooperation agent (F(1, 48) = 

12.93, p < 0.01); participants returned more of the staff given to them by the low-cooperation 

agent within the same tempo period. Such behavior indicates an effect of low-cooperation 

agents’ indiscriminate giving of resources, and participants’ inability to use many of those 

resources – participants returned those resources during the period when they should have 

withheld from giving staff to the agent.  

Qualitative observations help clarify these quantitative measures of participant 

behavior. An important result to remark on is the low-cooperation agent seemingly engaging 

in more proactive behavior than the high-cooperation agent by providing more resources 

during participants’ fast-tempo period. While this can be partially explained by the low-
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cooperation agent’s less discriminate giving behavior, it is also due to the interdependence of 

agents’ behavior on participants’ use of resources. While agents were designed to assign 

patients and staff to hospital rooms only if all resources were available, it was common for 

participants during experimental trials to assign patients and partial staff resources to hospital 

rooms prior to obtaining all staff necessary for treatment. Such a strategy of reallocating 

patients from the waiting room to hospital rooms with partial staff assignment may have 

alleviated immediate, cognitive workload in the patient assignment task, but decreased 

participants’ spare staff pool more quickly, artificially signaling to agents that participants 

did not have spare staff because all were treating patients. This was not the case, as their 

spare staff were not treating patients but were preemptively assigned to rooms. Sensing that 

participants had zero of staff in their spare staff queue, this increased staff given by agents, 

particularly the low-cooperation agent because the situation provided more opportunities for 

it to provide staff indiscriminately, staff that were not as often immediately useful. 

The interpretation of these observations of participant behavior influencing agent 

behavior that subsequently influenced participant behavior was confirmed by examining the 

immediate utility of resources given (Figure 17). Utility was operationalized as staff given 

that were used in the immediate next complete patient-resource assignment by the receiver. 

This calculation assumes that a resource provided that had immediate use would generally be 

used in the next complete staff assignment by the receiver. With this assumption, results 

show the high-cooperation agent gave more staff resources that were immediately used by 

participants than the low-cooperation agent (F(1, 48) = 5.09, p = 0.03).  
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Figure 17. Number of agent staff given immediately used by participants with 95% CIs 

Agents also gave more useful resources in participants’ fast tempo compared to their slow 

tempo (F(1, 48) = 194.66, p < 0.01), with the low-cooperation agent giving fewer useful 

resources than the high-cooperation agent during the fast-tempo and during the slow-tempo 

(F(1, 48) = 6.6, p = 0.01). 

Percent utility was also calculated to account for the greater number of resources 

provided by the low-cooperation agent during the fast-tempo period (Figure 18), by dividing 

the number of staff provided (with immediate utility) by the number of total staff given. 

While the overall difference between cooperation conditions was not significant (F(1, 48) = 

2, p = 0.16), percent utility shows agents gave more staff that were immediately used by 

participants during participants’ fast-tempo period compared to the slow-tempo period (F(1, 

48) = 4.51, p = 0.03), particularly the high-cooperation agent (F(1, 48) = 4.93, p = 0.03). That 

participants generally used the same percent of staff given by the low-cooperation agent 
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across tempo conditions indicates the burden the low-cooperation enacted in creating an 

immediate resource-return response, rather than exchanges that led to more patients treated.   

Figure 18. Percent of agent staff given immediately used by participants  

The particularly wide variance in the low-cooperation, slow-tempo condition reflects several 

participants who used 100% staff resources provided immediately – few were provided in the 

first place – and several participants labeled as using 0% resources for the same reason, or 

because no resources were provided.  

 With this general understanding of what participants experienced, participants’ giving 

behavior towards agents was examined, also by the utility of the staff they provided. Of the 

resources participants provided across tempo periods, more were useful to agents during 

participants’ slow-tempo period (F(1, 48) = 13.45, p < 0.01). As Figure 19 shows, tempo 

period had a larger effect in the high-cooperation condition than the low-cooperation 

condition (F(1, 48) = 6.29, p = 0.02), meaning participants’ giving behaviors were generally 
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more cooperative with the high-cooperation agent; they provided more useful resources when 

it was most appropriate to provide resources.   

Figure 19. Number of participant staff given immediately used by agents 

In the fast-tempo periods, participants providing more resources to the low-cooperation agent 

compared to the high-cooperation agent reflects the larger number of resources returned 

during this period, as shown in Figure 16. Such behaviors, returning resources while 

experiencing the fast-tempo, may have led to the subsequent smaller number of resources 

provided to the low-cooperation agent later in the trial, compared to what was provided to the 

high-cooperation agent. Though participants received more staff from the low-cooperation 

agent during their fast-tempo period, they returned fewer staff to the low-cooperation agent 

later in the trial. No other main effects (for cooperation (F(1, 48) = 0.04, p = 0.85) and trial 

(F(1, 48) = 3.37, p = 0.07)) or interaction terms were significant.  
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 Participants’ giving behavior in terms of percent utility was also calculated. Although 

they provided more resources to the high-cooperation agent during their slow-tempo period 

(Figure 19), the high-cooperation agent was not able to use many of those resources 

immediately (Figure 20), suggesting participants were not precise in their giving behavior, in 

providing immediately useful staff. In other words, participants signaled cooperation in terms 

of quantity of resources given, but not in terms of a deeper consideration of the type of staff 

agents needed.  

Figure 20. Percent of participant staff given immediately used by agents  

Overall, a higher percent of staff participants gave were immediately used by agents during 

their fast-tempo period compared to the slow-tempo period (F(1, 48) = 7.54, p = 0.01). This 

reflects the smaller number provided to begin with (Figure 19). The high variance 

particularly in the fast-tempo periods reflects a few instances where agents used 100% of the 

few resources provided, or a few who were labeled as 0% due to no resources provided 
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during this period. Participants’ giving behavior was therefore generally burdensome for the 

agents in that when they did provide more staff to the agent, those staff tended not to be 

immediately useful for the agent, and might have led to an eventual “return of their return” of 

agent-provided staff.  The difference between cooperation conditions (F(1, 48) = 1.6, p = 

0.21), trials (F(1, 48) = 0.03, p = 0.88), and interaction terms were not significant.   

4.8.3 The role of reciprocity 

The conceptualization of reciprocity in this study considers a limited, shared resource 

scenario in which a person with other-regarding inclinations would return the resource to the 

agent who, after making the first positive transfer to the participant, now has a lower margin 

of spare resources than participants.  In a dynamic scenario like the one designed, the mere 

fact that the participant returned the resource to the agent would, therefore, not be evidence 

of positive reciprocity. This conceptualization of reciprocity allows it to be considered as a 

separate construct from cooperation – it is possible to demonstrate reciprocity without 

demonstrating cooperation in the joint goal.   

Percent reciprocity was calculated by taking the percent error of participants’ and 

agents’ staff given: ((PlayerGives - AgentGives)/AgentGives). Participants with 0% 

reciprocity meant that by the end of the trial, an equal number of staff were returned to the 

agent. Results show participants interacting with the high-cooperation agent only returned 

about 5-6% more staff than what they received from the agent, whereas participants 

interacting with the low-cooperation agent returned about 13-18% more staff (F(1, 48) = 

8.31, p = 0.01). Similar to the findings in Part 1, this seems to suggest that higher reciprocity 

with the low-cooperation agent did not necessarily result in higher joint scores.  
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Figure 21. Participants’ reciprocity per trial with the high- and low- cooperation agents 

The difference between trials was not significant (F(1, 48) = 1.37, p = 0.25) nor was 

the interaction term for cooperation and trial (F(1, 48) = 0.72, p = 0.4). One question raised 

by these results is why participants had greater reciprocity with the low-cooperation 

condition, in that they returned more staff to the low-cooperation agent.  

To examine the role of reciprocity more closely, participants were labeled as either 

scoring above 37 or 37 and below, a theoretical binary value for coordination benefit in the 

microworld. Coordination benefit is achieving greater than independent performance by 

working together, and the number 37 was derived from a simulated perfect game completed 

independently (without sharing or coordinating staff) by an “elite” human scheduler, 

experienced, knowledgeable, and fast with a consistent 4-second assignment time. The 

maximum number of patients for this elite scheduler to treat in the fast-to-slow tempo 

condition is 21 patients. The maximum theoretical number of patients an agent could treat in 
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the slow-to-fast tempo condition was 16. Therefore, the maximum theoretical joint score 

independently reached by elite, lucky players without coordination, would be 37. Participants 

who helped achieve joint scores 38 and above thus benefitted from coordination, achieving 

greater than the sum of individual contributions.  

Participants were also labeled as having reciprocated or not, with reciprocation 

meaning they returned more staff than what they received in a trial. Combined with 

coordination benefit, results show that while participants had higher reciprocity with the low-

cooperation agent, many of these participants did not achieve higher than independent joint 

performance (Figure 22). 

Figure 22. Labeling participants who benefitted from cooperation and reciprocated 

show that more reciprocity with the low-cooperation agent did not lead to better joint 

outcomes. 

 

In addition, more participants in the high-cooperation condition, from reciprocating more in 

the second trial, were able to achieve higher scores compared to participants in the first trial. 

High Cooperation Low Cooperation

0

5

10

15

20

0

5

10

15

20

T
ria

l 1
T
ria

l 2

CoopBenefit NoBenefit CoopBenefit NoBenefit

N
u

m
b

e
r 

o
f 
P

a
rt

ic
ip

a
n

ts

Reciprocated
Yes

No



 

 

99 

Important to note is that in cases where slower speed and diminished skill were prominent 

factors in participants’ performance, benefits from coordination would not be captured in this 

figure given the relatively high expectations of the theoretical maximum values.  

4.8.4 Comparisons with Part 1, Experiment 2 

 To illustrate patterns of giving behavior over time and compare Part 2’s reciprocal 

exchange to Part 1’s negotiated exchange, agents’ and participants’ mean staff given were 

calculated separately per interval and visually overlaid their mean staff given per tempo. 

Mean differences between tempos were calculated to help explain the more detailed 

qualitative comparisons between intervals. Figure 23 illustrates the experience participants 

encountered in Part 2 – a high-cooperation agent that gave more discriminately and evenly 

over time, and a low-cooperation agent that gave more indiscriminately and extremely over 

time.  

Figure 23. Part 2 reciprocal exchange agents’ resource-giving patterns differed across 

time. Light bars are resource given per tempo with 95% CIs, dark bars are resources 

given per interval (for more details see section 3.3.3). Tempo is labeled from the 

participant’s perspective. 
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While the overall mean staff given between cooperation conditions was not a significant 

difference (F(1, 48) = 0.6, p = 0.44), nor was trial (F(1, 48) = 2.77, p = 0.1), the difference 

between tempo was significant (F(1, 48) = 201.65, p < 0.01) as was the interaction term for 

tempo and cooperation (F(1, 48) = 43.53, p < 0.01). Agent giving behavior contrasted with 

participants’ giving behavior; as shown in Figure 24, participants gave less during their fast-

tempo period with the high-cooperation agent compared to with the low-cooperation agent 

(F(1, 48) = 68.91, p < 0.01). This supports the observation that participants’ higher 

reciprocity with the low-cooperation agent occurred mostly during their fast-tempo period. In 

addition, during their slow-tempo period, participants gave more to high-cooperation agents 

in fast-tempo than to low-cooperation agents in fast-tempo (i.e., Figure 24, Interval 4), 

demonstrating more appropriate giving behavior with the high-cooperation agent (F(1, 48) = 

36.11, p < 0.01).  

Figure 24. Part 2 reciprocal exchange participants’ resource-giving behaviors  
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While the above interaction terms were significant, participants’ overall mean staff given 

between cooperation conditions was not significantly different (F(1, 48) = 0.19, p = 0.67), 

nor was the difference between trials (F(1, 48) = 2.22, p = 0.14).   

In Part 1, Experiment 2 (Chapter 3), agents’ resource-giving behavior, which were 

accepted valid requests, was different than agents in Part 2 partly because of stronger 

dependence on participants’ behavior, relying on participants’ initiative to make requests. 

Overall, agents in Part 1 provided fewer staff to participants compared to agents in Part 2. 

While agents in Part 1 also provided differing levels of staff in the two tempo conditions 

(F(1, 34) = 68.27, p < 0.01),  the main difference between the high- and low-cooperation 

agents’ resource-giving behaviors is in terms of quantity, with the low-cooperation providing 

less staff than the high-cooperation agent (Figure 25).  

Figure 25. Part 1 negotiated exchange agents’ resource-giving behaviors had similar 

patterns and differed mainly in quantity.  

 

The difference between high- and low-cooperation agents in Part 2 on the other hand, is in 
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a significant difference between cooperation agents in Part 2. Differences between trials for 

the agents in Part 1 was not significant (F(1, 34) = 0.83, p = 0.37). 

 Similar differences between Part 1 and Part 2 differences were found in participants’ 

giving behaviors; Part 1 participants generally gave differently to the high- and low- 

cooperation in terms of quantity (F(1, 34) = 9.21, p < 0.01) and across tempos (F(1, 34) = 

39.66, p < 0.01) (Figure 26), whereas Part 2 participants’ giving behaviors were different in 

terms of pattern rather than quantity (Figure 24). Trial also was not a significant factor in Part 

1 participants’ giving behaviors (F(1, 34) = 2.3, p = 0.14). 

Figure 26. Part 1 negotiated exchange participants’ resource-giving behaviors with the 

high- and low- cooperation agents also mainly differed in quantity.  

 

 It is important to remember that the sample sizes and composition for Part 1 and Part 

2 participants differed, and they also had different procedures (Part 1 participants played both 

cooperation agents, though cooperation order was not a significant main effect). Therefore, 
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scheduling task and the unchanging hospital demand conditions in both experiments, it may 
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still be worth comparing how participants and agents cooperated differently in the two 

interaction structures, a negotiated exchange (Part 1) and a reciprocal exchange (Part 2).  

 Part 1 reciprocity across trials was recalculated to include only data from the first two 

trials in Experiment 2, which experienced the same fast-to-slow tempo as participants in Part 

2. Including only the first two trials, also removed cooperation order as a factor.  Plotting 

reciprocity from Part 1 (Experiment 2) and Part 2 together show wider confidence intervals 

and more variability among participants’ reciprocity in Part 1 (Figure 27), again supporting 

the observation that dependence on participants’ variable requesting behavior as well as 

responding behavior may have led to increased variance, compared to the relatively lower 

dependence on participants’ behavior in Part 2 which only involved giving staff. Percent 

reciprocity was not significantly different between cooperation conditions in Part 1 (F(1, 34) 

= 0.28, p = 0.6) , and was significantly different between cooperation conditions in Part 2 

F(1, 48) = 8.31, p = 0.01) 
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Figure 27. Comparing Part 1, Experiment 2 negotiated exchange groups (N = 18) and 

Part 2 reciprocal exchange groups (N = 25) shows more reciprocity and more variability 

in negotiated exchange. 

 

Additionally, while there was higher reciprocity in Part 1, this was likely due to fewer staff 

exchanged (Figure 26), so the base threshold for matching the agents’ staff was lower. In Part 

2, more staff were exchanged than in Part 1 (Figure 24), and mean joint scores between the 

shared conditions were higher (Figure 28).  
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Figure 28. Joint scores across shared conditions in Part 1 and Part 2 

Part 1 joint scores (M = 32.61, SD = 3.29) were lower than Part 2 joint scores (M = 35.97, SD 

= 2.38); t(122.28) = -7.38, p < 0.01.   

4.9 General Discussion 

By removing the workload needed to acquire staff through requests, Part 2 participants 

who passively acquired staff in the first half of the trial (during their fast tempo) were better 

positioned to provide the agent with staff in the second half of the trial (during their slow 

tempo).  As expected, participants’ resource provision in the second half of the trial was 

timelier and greater compared to Part 1. Furthermore, that people gave staff without 

prompting to the neighboring hospital in the second half of the trial (during participants’ slow 

tempo) demonstrated cooperative engagement in the resource-sharing task. If workload 

effects dominated, participants would not have been able to give staff during the second half 
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of the trial when the agent needed them, and overall resource provision would have been 

similar to Part 1 (measured as responsive acceptances in Part 1 and proactive gifts in Part 2). 

Because of changes to the task and task interface, including a shorter decision delay 

in the giving agent, it is difficult to say that the increased cooperation outcomes of Part 2, 

both in number of exchanged staff and number of treated patients, were a result of changing 

the social exchange structure alone. However, the improved timing of the staff exchanged 

during participants’ slow tempo period supports the idea that a reciprocal exchange structure 

could be a better interaction design to support cooperation in a joint cooperation task, 

compared to a negotiated exchange structure. Rather than adding decision workload and 

relying on the agent to prompt participants of its need, as the agents did in Part 1, participants 

proactively considered (without prompting) the agents’ needs, taking action in Part 2, and did 

not fall into automation-induced complacency or self-regarding tendencies by keeping all 

staff from the agents to themselves. The difficulty of concluding that joint performance, in 

terms of number of patients processed, was a function of cooperation raises the question 

about whether it is a useful measure for human-automation cooperation, particularly in 

complex, dynamic, and interdependent scenarios. Such doubt that performance in terms of 

number of widgets processed is not always a useful measure of important processes is 

reflected in the study of interactive team cognition (Cooke & Gorman, 2009), and in 

resilience engineering (Woods & Branlat, 2010). 

Assuming a reciprocal exchange structure increased the symbolic value of 

interactions, compared to Part 1, it was also expected that agent cooperation level would have 

a greater effect on resource provision in Part 2. In other words, the differences between the 

high-cooperation agent and low-cooperation agent conditions would diverge more in Part 2 

than in Part 1. The results did not support these expectations. The higher rate of reciprocity 

with the low-cooperation agent in Part 2, and the lack of significant joint score differences 
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suggest that although a reciprocal exchange may increase return of resources, the timing of 

when those resources were provided may not be appropriate for the joint goal and care should 

be taken in designing agent behaviors that inappropriately induce reciprocity in their human 

counterparts.  

Participants reciprocating more with the low-cooperation agent during their fast-

tempo period also suggests that an agent giving more indiscriminately but in larger quantities 

may be more likely to induce greater, immediate reciprocity from human counterparts, which 

can be counterproductive. This is particularly true in scenarios where communication 

between parties is limited. During a short debriefing session following the experiment with 

participants, an open-ended question was asked, “what did you think of the neighboring 

hospital agent?”  About 19 participants described what was later termed as “uncooperative 

giving.” For example, one participant partnered with the high-cooperation agent said, “I 

guess the agent does have the same thinking as me. When it’s not busy, it sends more 

resources to my hospital, and if it doesn’t want any of the resources it will give those back to 

me.” Similarly, “I often felt like I was giving the agent resources it did not need and ended up 

giving back. Maybe because I kept giving them things I didn’t need and we actually needed 

the same type of resource.” Such feelings were not confined to participants partnered with the 

high-cooperation agent. From a participant partnered with the low-cooperation agent, “I think 

they were similar to me in the fact that we had to analyze our needs first and then contribute 

whatever we could to the other hospital, so that we could help the most amount of patients as 

possible.” Such comments highlight that people generally acted less cooperatively than the 

high-cooperation agent, and did not recognize the high-cooperation agent’s more considerate 

and discriminate behavior targeting participants’ immediate needs.  

While the high-cooperation agent took actions that were at greater risk to itself, by 

providing more useful resources to participants than the low-cooperation agent, it is possible 
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participants did not notice this while managing their own hospital. This is a critical point for 

understanding how signals, or lack of signals, shape people’s understanding of an agent’s 

intention. Division of labor and coordination involves personal responsibility as well as 

responsibility for joint outcomes within an organization. How people allocate attention and 

actions in service of the organizational goal while managing local goals is a question that 

should provide several future opportunities for research programs. The results reported in this 

dissertation are a first step in an empirical investigation into such a question.  

Furthermore, the distinct separation of cooperation as defined by appropriate 

resource-sharing, and reciprocity as defined by resources returned in excess of those 

received, shows the complexity of each construct in more complex environments. In both 

exchange structures, people seemed to engage in more productive actions with the high-

cooperation agent, but reciprocity as measured did not define nor inform cooperation, 

although it did provide a measure of how much people returned what was received. That 

reciprocity as measured in other studies did not explain cooperation in this study may be in 

part due to the “distressingly vague” longer time frames from which reciprocity seems to 

need to emerge (Goldstein, Pevehouse, Gerner, & Telhami, 2001, p. 597) as well as the 

complexity of cooperation itself, particularly in dynamic task environments, and in this study, 

the act of resource sharing in a fast-paced and highly interdependent task. In highly 

interdependent tasks, actions or inaction have a strong influence on a partner’s actions or 

inaction, compared to less interdependent tasks (Rusbult & Van Lange, 2003). Cooperation 

in the scheduling task presented involved not only proactive and responsive behaviors, but 

also withholding of behaviors. Since withholding behaviors would be considered inaction and 

therefore not reciprocity, the calculation of reciprocity therefore excluded this critical 

component.  
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Withholding behaviors are typically considered part of a class of behaviors that lead 

to the decay of cooperation (Gächter & Herrmann, 2009). However, withholding behaviors 

may be cooperative, such as appropriately holding onto resources when one was given them 

during high demand, or appropriately refrain from requesting resources when one did not 

need them as badly as the agent. Such cooperative inactions echo the work on interruptions in 

the workplace, as discussed in section 2.4.1 – interruptions have tradeoffs. Though 

interruptions may be timely communication of important information, there are also cognitive 

costs associated with receiving and accepting an interruption. Sensitivity to such costs were 

incorporated into the agents’ cooperativeness from the perspective of etiquette (Parasuraman 

& Miller, 2004); a high-cooperation agent was more considerate about a person’s attention 

and needs, the low-cooperation agent less so.  

Despite this, participants did not seem to notice or appreciate cooperative inaction, 

and instead responded more to a more interactive low-cooperation agent. In the negotiated 

exchange structure, participants returned the high number of unproductive requesting actions 

with the low-cooperation agent, and in the reciprocal exchange structure, unproductively 

returned a high number of not immediately useful resources to the low-cooperation agent 

during the tempo period when they needed to hold on to resources the most. This highlights 

perhaps some frustration involved that manifested as behavior in having limited input on a 

partner’s decisions. More broadly speaking, the highly interdependent task and limited ability 

to communicate through a reciprocal exchange structure may unintentionally lead to a 

negotiation of sorts, i.e., communicating need through resource-giving behavior immediately 

following an exchange. As one participant in the reciprocal exchange group put it, “It was a 

burden needing to deal with someone else when you can’t communicate with them.”  
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4.10 Limitations 

The question to what degree social aspects of agent cooperation influence people’s 

cooperation, separate from task-induced cooperation, is still an open question. Other studies 

have explored machine behavior independent from a person’s activities to measure the degree 

to which people responded socially (e.g., Nass & Moon, 2000; Takayama et al., 2009; 

Takayama, 2009). However, in most real world environments, cooperation often involves 

both social and economic components. It is difficult, and often not desirable, to separate the 

symbolic value of actions that strengthen a relationship, from instrumental value of actions 

that improve the immediate outcomes in joint work. Thus, while the experiments reported 

cannot conclude about the degree to which these differ, the novelty of this research lies in its 

holistic consideration of social factors in system outcomes.  

4.11 Conclusion 

Results from Part 2 demonstrate an overall effect of agent cooperation on human 

cooperation, across variation in different workload conditions and social exchange structures, 

with increased cooperation with a high-cooperation agent compared to a low-cooperation 

agent, and improved coordination in a reciprocal exchange structure compared to a 

negotiated exchange structure. Overall, removing control over resource acquisition and 

providing greater control in resource provision reduced the workload of pulling information 

from the agent, but also provided symbolic motivation and structural affordance for 

reciprocating proactive resource provision. Changing from a negotiated exchange structure to 

a reciprocal exchange structure on a joint coordination task not only increased resource 

exchange during both participants’ and agents’ fast-tempo periods, but also more timely 

resource provision. 



 

 

111 

Chapter 5 General Discussion and Conclusion 

While automation is defined as “the execution by a machine agent (usually a 

computer) of a function that was previously carried out by a human” (Parasuraman & Riley, 

1997, p. 231),  it will always be a part of a larger system designed by and for people. As 

automation advances, understanding their changing role in human systems – and how this 

role affects human-automation coordination – will be key in this pursuit moving forward.  

For system designers to best leverage automation in increasingly dynamic and unpredictable 

work environments, a continuing need to understand how humans and automation can 

seamlessly integrate their work must consider the factors and outcomes of cooperation in 

service of the larger system’s goals. The success of such joint systems will rely on more 

closely considering the human-automation relationship, including social exchange factors of 

their interactions. This dissertation is motivated by the need for this understanding, 

specifically of cooperation with an automated agent in a dynamic joint task.    

A shared-resource scheduling task was developed as two microworld environments to 

explore human-automation cooperation, and address two main research questions: “Does 

agent cooperation influence people’s cooperation in a joint task?” and “Does changing the 

interaction structure from negotiated exchange to a reciprocal exchange improve cooperation 

in the human-agent dyad?” Part 1 (Chapter 3) reports participants’ cooperation with a high- 

and low- cooperation agent in a negotiated exchange structure and the influence on human-

agent cooperation. Motivated by the results of unexpected workload effects in Part 1, Part 2 

(Chapter 4) reports the results from two different high- and low-cooperation agents in a 

reciprocal exchange structure. Comparisons across Part 1 and Part 2 are reported as part of 

Part 2. In this chapter, the combined results are discussed more in depth, including limitations 

and conclusions for designers and future research.  
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5.1 Summary of Key Findings 

Part 1 (Chapter 3) was a first step in exploring how cooperation in human-agent 

interactions can enhance system resilience. It looked specifically at how an automated 

agent’s cooperation can influence people’s cooperation in a dynamic joint coordination task 

with shared staff, and found that across variation in the task environment, people generally 

reciprocate higher cooperation with an agent that signals trusting, considerate behavior, and 

lower cooperation with an agent that signals less trusting, less considerate behavior. Part 1 

also helped characterize the limitations of a negotiated exchange structure for interaction 

design. While negotiated exchange allows both parties to have input in decisions, it may lead 

to unnecessary workload, exchange delays, and disengagement (i.e., automation 

complacency) when it comes to considering other’s needs. Having the ability to appropriately 

and actively consider another’s needs is key to successful joint coordination, knowing when 

to push and pull information.  

Part 2 (Chapter 4) of this dissertation, inspired by the findings from Part 1, considers 

an alternate interaction design, a reciprocal exchange structure involving unilateral decision-

making, as a way to remove the added workload and resource acquisition delay from the 

resource-sharing task. Because reciprocal exchange ostensibly increases symbolic value of 

exchanges, Part 2 also looked at whether the effects of agent cooperation on people’s 

cooperation were more prominent than in Part 1. Results show that although participants 

interacted differently with the high- and low-cooperation agents, there was greater reciprocity 

with the low-cooperation agent. Qualitative observation of participants’ behavior partially 

explains this. A common strategy for participants managing demand in their hospital was to 

make partial patient and staff assignments to rooms, eliciting increased provision of random 

resources from the low-cooperation agent. Counter to expectations, this led to greater 

reciprocity with the low-cooperation agent during a particularly inappropriate period – 



 

 

113 

participants should have withheld providing resources to agents to better treat their high 

demand of incoming patients in the fast-tempo period. These results show that while people 

might have signaled intentions to cooperate, they failed to cooperate by returning resources to 

the low-cooperation agent at an inappropriate time. Thus, higher reciprocity in the 

coordination task was inappropriate behavior that did not lead to higher joint performance.  

5.2 Cooperation to Support Resilience 

Investigating human-agent cooperation in a dynamic joint task contributes to 

Resilience Engineering because of the important role cooperation plays among networked 

people and agents, interacting and coordinating in an ad hoc manner to address unexpected 

demands as they occur. In such environments, where coordination is difficult to preplan, 

cooperation is needed. When people are involved, social processes facilitate cooperation. 

Understanding how people cooperate with increasingly autonomous automation will be 

important for avoiding automation designs that elicit or encourage unproductive behaviors 

from their human counterparts. Likewise, better understanding these social processes and the 

structures that influence them may improve future automation design and their integration in 

human systems.   

This work approaches cooperation by considering cooperation behaviors (signals and 

actions), cooperation processes, and cooperation outcomes. This multi-tiered approach adds 

to a better understanding of how micro-level behaviors lead to processes and macro-level 

outcomes. In using this approach to investigating cooperation, a more holistic assessment was 

possible, which emphasizes the conclusion that cooperation is a nuanced construct that 

depends on its context, and cannot be defined as simply providing more resources. Rather, 

providing resources cooperatively requires not only the willingness to sacrifice local 

resources for the shared good, but also consideration of timing and need in providing those 

resources. Furthermore, while joint outcome and other summative measures can be useful as 



 

 

114 

measures of joint performance, they may not be enough to understand the underlying 

processes leading to joint performance.  

5.3 Limitations 

The results from this research have important implications for human-automation 

interaction, particularly increasingly autonomous agents interacting dynamically with human 

counterparts. Though inferences can be made about the effects of agent behavior and the 

interaction structure on people’s cooperative behaviors, attempting to address the degree to 

which a comprehensive range of factors influence human-automation interaction would be 

unwieldy given the intended focus of this dissertation. The results must therefore be 

considered through the lens afforded by the research objectives, the population sample tested, 

and the microworld environment. 

The microworld environment developed for this research was not intended to mimic a 

real world hospital scheduling scenario, but more simply a generic cooperation situation that 

could be completed within an hour for practical and convenience reasons. It should be noted 

that the outcomes of this research may differ depending the context of the work, and the level 

of risk involved in the individual task and in the shared task. In general, the population 

sample tested was biased and not random, as it comprised a generally younger adult 

population living or working near a university community in a developed country. While this 

allows more straightforward comparison with studies that have similar demographics, it 

contributes little to the overarching knowledge base of human cooperation or larger group 

cooperation, including potential differences between cultures (Fehr & Fischbacher, 2003). 

The reasons for the studies’ time limit were both budgetary and to avoid participant fatigue 

and disengagement (Cummings, 2015). Groups of people who are required to work longer 

periods of time with automation may be more susceptible to fatigue and its associated 

negative effects (Barker & Nussbaum, 2011; Smith, Carayon, Sanders, Lim, & Legrande, 
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1992), and specialized groups that train with automation in actual work scenarios may have 

different mental models or attitudes toward automation that would affect cooperation and that 

differ from a more general population.  

Furthermore, this dissertation avoids the ongoing discussion of differences between 

interactions with other people and interactions with machines. Previous research reports 

conflicting findings. Some studies report differences in how people treat other people 

compared to how they treat machines, and rightly caution against generalizing between the 

two (Demir & Cooke, 2014; Groom & Nass, 2007; Lee & See, 2004; Madhavan & 

Wiegmann, 2007; Mcknight, Carter, Thatcher, & Clay, 2011). Other studies report a lack of 

difference in certain circumstances, or suggest compelling similarities in the way people 

behave with machines and the way they behave with people (Fogg & Nass, 1997; McCabe, 

Houser, Ryan, Smith, & Trouard, 2001; Nass & Moon, 2000; Parasuraman & Miller, 2004). 

Trends in robotics certainly seem to be taking directions that make machines more like 

people (Breazeal, 2000; Kaplan, 2001; Mutlu et al., 2012); however, differences in the effects 

of perceived agency and perceived competence on cooperation may influence how people 

respond to machines. This dissertation does not speculate on how participants may or may 

not have treated the agent were they told it was another person. What is important for 

automation designers is to be aware of potential differences, and to test and evaluate these 

factors. For researchers, they must be sensitive to potential differences when generalizing 

from exchange studies between people and exchanges between people and machines. 

5.4 Suggestions for Practitioners 

When designing direct exchange between people and automated agents, this study 

found that a negotiated exchange structure allowed for better communication of need, 

affording more accountability for each individual scheduler’s acquisition of resources. 

However, this led to cognitive tunneling among participants who experienced an initial high 
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demand, encouraged a more autonomous strategy, and a failure to request enough resources 

during the high demand period. A potential solution to help reduce individual cognitive 

tunneling, the reciprocal exchange structure allowed schedulers to make decisions without 

needing to check in with one another. This led to increased resource exchanges and higher 

joint scores, though participants lacked sensitivity of the agent’s status or need, particularly 

with the more insensitive and more active (low cooperation) agent. Though the two exchange 

structures were tested separately to determine their differences, a mix of both interactions 

structures that allow participants and agents to both push and pull the right information at the 

right time may provide a better outcome, depending on the task context.   

In terms of agent cooperation, it is important to note that a highly cooperative agent 

that is sensitive to others’ needs may go unnoticed if its sensitivity is expressed as inaction, 

i.e., not taking an inappropriate action. In Part 2, we found participants were insensitive to 

both sensitive and insensitive agents, and additionally, reflected the more insensitive agent’s 

behavior by providing resources to the insensitive agent in response to its behavior rather 

than in response to environment and individual and global need.  Thus, agent cooperation 

should be additionally considered in the context of the social exchange structure. Since 

participants were unable to negotiate with the agent on what resources they needed at a 

particular time, they may have tried to use the only action they had – resource provision – in 

their attempts to better coordinate with the agent.  

5.5 Suggestions for Future Research 

This work demonstrated two ways to explore cooperation in human-automation joint 

tasks — through agent behavior and the interaction structure. However, these are just two of 

many possible lines of inquiry, a few of which are expanded on below, derived from the 

findings of this dissertation. 
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5.5.1 Cooperation when goals conflict 

In Part 2’s reciprocal exchange structure, where decisions were unilateral, results 

show that indiscriminately giving in large quantities, despite potentially negative effects on 

the joint task, may have led to inappropriate resource provision. Cooperation is not simply 

providing resources, but also whether that provision fits in the context of the joint task 

environment and shifting priorities, which the measure of reciprocity used did not capture on 

its own. Another way to measure cooperation could be the degree to which people are willing 

to self-sacrifice for the greater good, e.g., actions taken when goals inadvertently conflict, or 

actions taken when local margins are depleted, rather than in excess, as was implemented in 

this research. An alternate microworld where demand patterns conflict rather than 

complement may yield interesting insights for this question.  

5.5.2 Collegiality and competence 

The term automation collegiality was introduced at the beginning of this work to 

describe a relationship between peers, or laterally organized entities, who have a common 

goal. Whereas cooperation was defined as self-sacrifice in service of this common goal, the 

collegiality of an entity would entail its signals of intention, as well as the perception of its 

intentions. While acts, signals, and perception are not exclusive, separating the act of self-

sacrifice from signals (and perception) of intention allows a discussion on how signals of 

cooperation might differ from acts of cooperation.  This dissertation mainly focuses on 

agents’ signals of cooperation without optimizing for actual cooperation given the known 

demand patterns designed by the researcher.   

Past research in human-automation interaction tends to focus on how the joint human-

automation system varies with automation performance; this continues to be important. 

While not the focus of this dissertation, perceptions of the automation’s capability can still 

influence how people choose to interact with the automation, even in more lateral 
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coordination scenarios like the one studied. During a short debriefing session of the 

experiment with participants, an open-ended question was asked, “what did you think of the 

neighboring hospital agent?” Around 13 participants mentioned agent performance related to 

its capability. One participant said, paraphrased, “I’m not sure whether the neighboring 

hospital agent is optimizing its strategy. That’s why I put priority in treating my own patients 

even when I saw the other hospital was red. I was worried that even if I sent resources to the 

neighboring hospital, it would not use them correctly.”  

This suggests there is an additional gap in the research, the relationship between 

collegiality and competence. The extent to which collegiality and competence are related is 

still unknown, let alone how different situations might mediate their relationship. Some 

situations might benefit more from automation collegiality where automation competence is 

difficult and the consequences are low (Takayama, Dooley, & Ju, 2011);  situations with 

higher risk may not benefit as much. Future work on collegiality and competence could look 

more closely at the effects that the intention to fulfill requests, apart from fulfilling requests 

appropriately, might have on human-agent cooperation. For example, do acts signaling 

intention to cooperate without actual instrumental value facilitate a cooperative relationship, 

or do they undermine perceptions of capability and subsequently undermine cooperation?   

5.5.3 Cognitive effort as resources in joint action 

This research focuses on previously neglected factors in joint human-automation 

system performance by taking a more relational approach. By applying social exchange 

theory, much was gleaned from studying human-automation cooperation in the context of a 

dynamic task with limited resources. Most notably, this dissertation raises an aspect of 

cooperation not often addressed by more theoretical accounts (Axelrod, 1984; Castelfranchi 

& Falcone, 2001; Hoc, 2000, 2013), including the investment of cognitive resources to 

facilitate joint action. Whereas game-theoretic accounts establish cooperation as a tradeoff of 
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instrumental risks and benefits, and social-psychological accounts establish cooperation as 

affective or symbolic processes in social relationships, the human-factors account from this 

dissertation contributes the idea that cooperation involves not only the sharing of material 

resources, but also the sharing of cognitive resources, and that the work context matters. 

Cooperation not only involves tradeoffs from exchanging instrumental resources, but also 

tradeoffs from exchanging cognitive resources, such as putting effort into the timing of when 

to give instrumental resources to minimize the negative effects of interruptions (McFarlane & 

Latorella, 2002), or of offloading decision-making workload. Taking a social exchange 

approach to cognitive resources can apply to the study of interruptions, as a way to structure 

a study weighing the benefits and advantages of interruptions in time-critical work 

environments. For example, do the costs of interruptions outweigh the benefits (Grundgeiger 

& Sanderson, 2009), and how might such costs be reduced through cooperation and other-

regarding behavior? 

5.5.4 Technology-mediated cooperation between people 

While this dissertation focused specifically on human-automation cooperation, 

parallels may be drawn to research in technology-mediated human-human cooperation. As 

ubiquity of information and communication technologies virtualize work environments, 

insights from studies on interactions with increasingly autonomous agents may both derive 

inspiration from and inspire research on interactions between people in virtual environments.  

Future work in distinguishing the differences between these two types of partners may 

explore the degree to which sensitivity to automation capability and error, compared to 

human capability and error, plays a role in lateral control contexts. People’s tendency to 

overestimate the role of dispositional factors and underestimate the role of environmental 

factors in automation (Madhavan, Wiegmann, & Lacson, 2006; Muir, 1987) may lead to 

certain patterns of cooperation depending on agent signaling and information about the 



 

 

120 

environment in a display interface. During the open-ended debriefing of Part 2, in which 

participants were asked, “what did you think of the neighboring hospital agent?” 8 

participants mentioned environmental factors influencing the agent and giving dynamics, 

while 9 mentioned the agent’s intention. Future studies may want to further explore the 

extent to which people are sensitive to an automated agent’s capability compared to human 

compatibility in more lateral control situations.  

5.6 Conclusion and Contributions 

This dissertation presents among the first known empirical studies to explicitly 

consider human-automation interaction in a dynamic task environment from the perspective 

of social exchange behaviors with more autonomous agents. What prior human-automation 

interaction research neglects is an investigation into how social exchange factors of 

cooperation contribute to resilience. This dissertation broached this gap by investigating 

human-automation cooperation in a dynamic shared-resource task. Furthermore, prior social 

exchange research does not include the idea that cognitive effort is also a resource that is 

invested to facilitate joint action. The results presented showed cooperation with an 

automated agent must include consideration of this type of cognitive investment, as it may 

influence cooperation apart from the instrumental or symbolic value of an exchange. Future 

work will need to explore this relationship more fully. The main contributions of this work 

thus center around insights into cooperation and reciprocity in human-automation interaction, 

and how research in this area might be conducted to support the design of resilience in future 

systems. Findings from this research can help designers of such systems identify and avoid 

potential coordination breakdowns in dynamic joint task environments. Most practically, this 

work demonstrates that factors influencing human-agent cooperation include signals of 

cooperative behavior and the social exchange structure of the interaction.   
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Appendices 

Appendix A: Propensity to Trust Questionnaire 

The questionnaire as follows was administered at the start of the study. Each item was 

accompanied by a six-point scale with the options: “Strongly inaccurate”, “Inaccurate”, 

“Somewhat inaccurate”, “Somewhat accurate”, “Accurate”, and “Strongly accurate”. 

Negatively scored questions are marked with a (-), which were not shown on the actual 

questionnaire, which was administered on Qualtrics, a web-based platform.  

  

Instructions: Please rate the extent that each item describes you.  

1. I listen to my conscience. 

 

2. I anticipate the needs of others. 

 

3. I respect others. 

 

4. I can get along with most people. 

 

5. I have always been completely fair to others.  

 

6. I stick to the rules.  

 

7. I believe that laws should be strictly enforced.  

 

8. I have a good word for everyone. 

 

9. I value cooperation over competition.  

 

10. I return extra change when a cashier makes a mistake.  

 

11. I would never cheat on my taxes. 

 

12. I follow through with my plans. 

 

13. I believe that people are basically moral. 

 

14. I finish what I start. 

 

15. I retreat from others. (-) 

 

16. I am filled with doubts about things. (-) 

 

17. I feel short-changed in life. (-) 

 

18. I avoid contact with others. (-) 

 

19. I believe that most people would lie to get ahead. (-) 

 

20. I find it hard to forgive others. (-)  
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Appendix B: Task Interdependence Questionnaire 

Task interdependence is measured through five items from Staples and Webster’s 

(2008, p. 640) six-item scale for task interdependence, based on work by Bishop and Scott 

(2000), and Janssen (1999). An item on team communication was removed because team 

communication was severely limited in this study. Other adaptations to the items replace 

“team members” with more related terms for this study, such as “neighboring hospital agent”. 

The questionnaire as follows was administered following the microworld trials. Because the 

microworld task is highly interdependent, and given explicit training on the task and task 

goals, it was generally expected that participants would respond accordingly. Each item was 

rated on a six- point scale with the options: “Strongly disagree”, “Disagree”, “Somewhat 

disagree”, “Somewhat agree”, “Agree”, “Strongly agree”. The following questionnaire was 

administered on Qualtrics, a web-based survey and questionnaire platform. 

 

Instructions: Please select the answer that best describes how you feel about the task you just 

completed, including interacting with the neighboring hospital.  

 

1. I frequently must coordinate my efforts with the neighboring hospital.  

 

2. Goal attainment for one hospital helped goal attainment for the other hospital.  

 

3. To achieve high performance, it was important to rely on each other.  

 

4. The tasks performed by the different hospital schedulers were related to one another.  

 

5. Success for one hospital implied success for the other hospital. 
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Appendix C: Demographic Questionnaire 

To assess the sample population, a demographics questionnaire was administered at 

the end of the study. The questions assessed age, gender, education level and profession, 

experience with computers, and experience with video games to control for these potential 

factors in the results.  The questionnaire was roughly formatted as follows, and administered 

on Qualtrics, a web-based survey and questionnaire platform.  

Age:  ________  

  

Gender (select): Male / Female / Other      

 

If a current student, please write in the following: 

 

 College ______________________________ 

Major _______________________________ 

Degree in pursuit of____________________ 

Number of years pursuing this degree ______ 

 

If employed, please write in your occupation: _______________________________ 

 

 

Highest level of education (select one):    

 ____  Some high school or less 

____   High school diploma 

____   2-year college degree or trade school 

____   4-year college degree 

____   Masters degree 

____   Professional degree 

____   Doctorate degree 

 

 

I use a computer (select one):  

____ Daily    

 ____ Every couple days     

____ Once a week 

____ Every couple weeks   

 ____ Less than once a month     

 ____ Never 

 

I use the computer for (check all that apply):  

____   Internet searching 

____   Email 

____   Document processing 

____   Computer Games  

____ Other (Please specify _____________________________) 
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I play the following categories of video games (check all that apply): 

___ Sports      

___ Real-time strategy     

 ___ First person shooter      

___ Racing      

___ Role-playing (RPG)     

___ Flight simulator      

___ Other (Please specify _____________________________) 

 

I use the following technologies (check all that apply): 

____ Basic mobile phone   

____ Mobile smart phone/PDA/Blackberry/MP3 player  

____ Touch screens (on commercial tablets, phones, or GPS navigation devices) 

 

How much experience do you have playing video games? 

____ None        

____ Less than 1 year       

____ 1 – 2 years       

____ More than 2 years 

 

I play video games (select one):  

____ Daily     

____ A few times a week    

____ A few times a month 

____ A few times a year    

____ Less than a few times a year      

____ Never 
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Appendix D: Baseline Tempo 

It was opted not to test a baseline tempo pattern, due to the suspicion that an 

appropriate baseline condition may not exist. A dynamic, random tempo pattern would allow 

testing of cooperation across variation in tempo patterns, but trust in automation research 

suggests that higher variability in the environment, thus increased uncertainty, may lead to 

stronger reliance on automation. A random tempo pattern might indeed lead to higher 

perceived variability in the environment, and a separate study focusing on people’s 

perceptions of environmental uncertainty in the different conditions would be needed before 

considering a dynamic random tempo as a viable baseline. A static tempo pattern would not 

be an appropriate baseline either because a static tempo would not represent a dynamic task 

environment by definition, and the predictability of a static tempo may lead to boredom or 

disengagement in the task. Furthermore, a static tempo would potentially direct focus to 

individual differences between participants, which is not the purpose of this study. The 

differences between people with higher and lower skills, e.g. due to speed or strategy, may be 

emphasized in a static tempo compared to a dynamic tempo. 

  



 

 

139 

Appendix E: Two Outliers  

 Two participants were removed as outliers, due to closer inspection of their data 

which showed neither gave any staff to the agent during their experimental trials. These data 

were not included in the analysis because such behavior would greatly skew the results –

mainly, there was no interaction data on the participants’ side to inspect, and receiving staff 

from the agent without ever returning any would lead to poor joint scores due to the 

microworld design. Additional participants were collected at the end of the study period to 

reach the target sample size of N = 50.  

It was uncertain why the two participants did not give staff; both scored relatively 

high on the disposition to trust scale (at least four out of six, where six indicates more 

trusting) and high on the task interdependence scale (at least five out of six, where six 

indicates they perceived the task as very interdependent). The training trial each participant 

experienced involved the researcher observing that every participant was exposed to every 

potential function of the interface, so that understanding the user interface would not be an 

issue during experimental trials. This included the researcher suggesting to participants they 

try each action and then observe them doing so correctly, if some participants did not attempt 

certain actions – like giving staff – on their own during the 2 minute practice trial. In 

addition, in researcher notes taken during post-experiment debriefing, both participants 

mentioned they believe they gave less staff than the agent and were less cooperative, 

indicating they accurately perceived their comparative performance, and understood the joint 

goal and mechanisms of the microworld. One participant mentioned, “I was going so fast I 

forgot the other agent” and the other, “It was a busy hospital, should help it more with my 

medical staff”; however, it should be noted that neither of these responses were unique to 

these two participants.   


