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ABSTRACT 

In normal tissue, mitosis is strictly regulated to ensure equal segregation of chro-

mosomes into each daughter cell. However, this process can become dysregulated and 

fail in several ways causing chromosome mis-segregation, which is persistent in cancer. 

This persistent chromosome mis-segregation, otherwise called chromosomal instability 

(CIN), results in continuous gains and losses of chromosomes over time and is a nearly 

universal feature of cancer biology. The level of CIN (i.e., the rate at which these gains 

and losses occur in tumors) contributes to cancer progression in several ways. By rapidly 

increasing intratumoral genomic heterogeneity and promoting metastasis, drug re-

sistance, and a litany of downstream mutational processes, elevated CIN associates with 

poor prognosis.  On the other hand, elevated CIN is also associated with enhanced re-

sponse to some chemotherapies. However, despite the clinical significance of the innate 

level of CIN in patients’ tumors, there is no clinically accessible method of measuring CIN. 

Such a measure would improve patient prognostication and help determine who should 

receive certain chemotherapies. To overcome this obstacle, I have improved our overall 

approach to measuring CIN. Combining single cell genomics, which is becoming increas-

ingly available, with bioinformatics, and computational experiments in tumor evolution, I 

have developed a method which can reliably infer quantitative mis-segregation rates from 

single cell DNA. Importantly, this method accounts for the confounding effect of ongoing 

karyotype selection. In validating this method, I elucidated the baseline mis-segregation 

rates that mediate the mechanism of action of paclitaxel as well as the range of mis-seg-

regation rates that occur in breast and colorectal cancer. In development of this approach, 



 xix 

I also uncovered the primary mode of ongoing karyotype selection and threshold condi-

tions for populations’ tolerance of nullisomy, complete loss of a homologous set of chro-

mosomes. When performed in tandem in cell-line models with inducible CIN, I find that 

this method outperforms most other CIN measures and that another widely used method 

of CIN measurement, the CIN70 score, does not actually reflect ongoing CIN. I then 

demonstrate a user-friendly tool that delivers this method for any who wish to measure 

CIN in their experimental or clinically derived samples. The work described here improves 

our understanding of the relevant rates (and their limits) of chromosome mis-segregation 

in cancer and brings us closer to the clinical measure of CIN. 



 1 

1 
THE RECKONING OF CHROMOSOMAL INSTABILITY: PAST AND 

PRESENT 

Adapted from Lynch, Bradford, and Burkard. (Manuscript 1). Under review. 

 

 

INTRODUCTION 

During a series of lectures on applications of electricity in 1883, Sir William Thompson 

stated, “In physical science, a first essential step in the direction of learning any subject 

is to find principles of numerical reckoning and methods for practicably measuring some 

quality connected with it” (1). The timing of Thompson’s talk coincided with a wave of 

seminal work in the nascent fields of chromosome biology and cell division. Two of 

Thompson’s contemporaries, Theodor Boveri and David Paul von Hansemann, with re-

markable prescience, proposed a role for abnormal cell divisions in tumorigenesis (2–4). 

These observations served as seeds for what would later be understood as a basic mech-

anism of oncogenesis: chromosomal instability (CIN). Though Boveri’s and Hansemann’s 

hypotheses are now supported by numerous additional findings, and CIN is an established 

feature of tumor biology, we still lack “principles of numerical reckoning” that would allow 

for the rapid measure of CIN in human cancers.  

Understanding CIN and its consequences has progressed hand-in-hand with funda-

mental knowledge of cell and chromosome biology. From the inception of microscopy as 
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a scientific method and the first observations of cells’ nuclei, new methods of observation 

and measurement have uncovered ever deeper insights into cell division, its errors, and 

their frequency and consequences in disease. Yet there are still many questions about 

CIN’s contribution to cancer progression. These questions will be advanced by  improved 

quantitative measures of CIN.  

In this review, we discuss the origins of CIN as a field (Figure 1.1) and how methodo-

logical development has impacted the field and our understanding of the CIN’s causes, 

consequences, and frequency (particularly in the context of cancer). We then propose a 

standardization of CIN measures, Mis-segregations per Diploid Division (MDD) (Table 

A2.1), and look forward to the future of the field, asking, “what can new CIN measures 

give us?” 

THE GIANTS OF CIN: A SHORT HISTORY 

Microscopy, Cytology, and the Birth of Modern Biology (1665-1888) 

Though Theodor Boveri and David Paul von Hansemann are commonly cited as the 

earliest investigators of CIN, there is a rich history of work that enabled Boveri’s observa-

tions in Ascaris megalocephala (nematode) and Paracentrotus lividus (sea urchin) and 

Hansemann’s in cancers and which informed their eventual hypotheses. Of course, none 

of these studies would have been possible without the compound microscope. Though 

invented in the late 16th century (5), leading to Robert Hooke’s first observation of and 

coining of the term cell (6), it wasn’t until Antonie van Leeuwenhoek that animal cells were 

regularly studied under the compound microscope. Of particular relevance here is Leeu-

wenhoek’s observation of the nucleus — which he referred to as a globule — in the blood 
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cells of salmon and cod (7, 8). Leeuwenhoek did not understand these globules’ signifi-

cance at the time as it was just one of the many discoveries characteristic of the cellular 

cataloging he and Hooke undertook, the phenomenology which would become a charac-

teristic of cell science until the mid-20th century. His observation of the nucleus was of 

course a critical discovery for many fields including those of genetics, cell division and 

chromosome biology. The name nucleus was eventually coined in 1831 by Robert Brown 

while studying the cellular morphology and reproduction of orchids (9). Brown’s detailing 

of nuclei, made possible by the development of the achromatic microscope, came at the 

fore of a wave of consequential studies throughout the rest of the 19th century that would 

transform biology. 

A few years later, a Botanist named Hugo von Mohl who studied algae made a crucial 

observation which we now take for granted. His alga were dividing. Hugo von Mohl be-

came the first to suggest that new cells are generated by  division (10). This was later 

confirmed by Robert Remak in 1852 (11) and popularized by Rudolf Virchow in 1855 (12). 

The work of Mohl and Remak refuted the hypothesis of spontaneous cellular genera-

tion and was summarized by Virchow as, “omnis cellula e cellula” — ”all cells from cells.” 

This itself was an extension of Francesco Redi’s, “omne vivum ex vivo” — ”all life from 

life” (13), which turned out to be a timely homage.  

Over the next decade, Charles Darwin and Alfred Wallace would describe their new 

theory of natural selection (14) and Gregor Mendel would publish his studies of heredity 

in pea plants (15). Though the latter’s work would go unnoticed for some time, the concept 

of heredity was not new and the identity of the physical carriers of heredity were frequently 
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speculated upon. In 1869 Friedrich Miescher would isolate chromatin, which he named 

nuclein, from nuclear extracts of surgical bandages and in 1877 Oscar Hertwig discovered 

the mechanism of sexual fertilization and the involvement of the nucleus, later noting that 

Miescher’s nuclein is the key component of fertilization and heredity (16–19). Yet the 

structures that actually packaged nuclein in the nucleus had yet to be visualized. So, in 

1879, Julius Arnold became the first to publish drawings of individual chromosomes (yet 

unnamed) in the dividing cells of tumors (20). Moreover, many of these drawings depicted 

the characteristic ‘Y’ and ‘X’ shaped metaphase plates of multipolar mitotic cells, a com-

mon phenotypic expression of chromosomal instability. However, the chromosomes in 

Arnold’s renderings are simplistic. It wasn’t until Walther Flemming pioneered the use of 

aniline dyes as histological stains and published his seminal 1882 book, Zellsubstanz, 

Kern und Zelltheilung, that a modern view of cell division took shape (though, it is worth 

noting that Flemming’s initial findings, without the stunning drawings, were first published 

in 1878, before Julius Arnold’s) (21). In the stained tissue sections of salamanders, Flem-

ming saw dividing cells bearing ‘thread-like’ structures after which he would coin the 

name mitosis (after the Greek for thread). The unprecedented resolution allowed Flem-

ming to carefully characterize discrete phases of mitosis and how his nuclear threads 

moved throughout. Finally, in a manuscript relating karyokinesis and fertilization published 

in 1888, Heinrich Wilhelm Gottfried von Waldeyer-Hartz would rename Flemming’s ‘nu-

clear threads’ as ‘stainable bodies’, or chromosomes (22, 23). 
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Chromosome Biology at the Nexus (1889-1914) 

Though Oscar Hertwig had concluded that the nucleus was the carrier of heredity, his 

work had been observational; he had no experimental evidence. Enter Theodor Boveri. 

Boveri had joined the laboratory of Richard Hertwig (Oscar’s brother) at the Zoological 

Institute in Munich around 1886 (24). Building on the Hertwig’s previous work on the mer-

ogonic fertilization of enucleated sea urchin eggs (25), Boveri showed that fertilization of 

enucleated Sphaerechinus eggs with the sperm of Echinus produced a merogone hybrid 

(i.e., produced asexually from a haploid and enucleated germ cells) resembling the Echi-

nus species. Thus, in 1889, he definitively concluded that the nucleus, rather than the 

cytoplasm, is the carrier of heredity (26). 

In parallel, Boveri performed experiments in the double-fertilization of sea urchin eggs, 

characterizing the morphology of the resulting cell divisions. Work which resulted in the 

most comprehensive collection of examples of abnormal mitoses up to that point (27). 

This was quickly followed by David Paul von Hansemann’s celebrated illustrations of ab-

normal mitoses in carcinoma cells, depicting every phenotypic expression of CIN we see 

today (3, 4). Hansemann was the first to acknowledge that “asymmetric” karyokinesis is 

an abnormal event that would lead to daughter cells with unequal chromosome numbers 

and that they are commonly observed in cancer, thus seeding what would become the 

field of chromosomal instability. Gino Galeotti supported Hansemann in his assessment, 

further noting that more proliferative tumors exhibit more frequent asymmetric divisions, 

perhaps the first published acknowledgment of the relative levels of CIN between tumors 

(28). Though, Hansemann later clarified his thoughts on their importance in cancer as 
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being a consequence, not a cause, of anaplasia (29, 30). Nevertheless, Hansemann’s 

views certainly influenced Boveri’s and in 1902, in a study on multipolar mitoses in sea 

urchin eggs, he first speculated that asymmetric divisions, including multipolars, may be 

a cause of tumor formation (31).  

Boveri was influenced by another scientist whose work had only recently been brought 

to his attention. In 1900, three botanists independently rediscovered and confirmed 

Gregor Mendel’s laws of inheritance (32–35). The Mendelian laws provided a framework 

that complemented Boveri’s (and Beneden’s) previous observations of meiosis. The eggs 

of the roundworm Ascaris, upon maturation, undergo a division (meiosis) that results in 

daughter nuclei about half the size of the mother (haploidy) and that egg and sperm nuclei 

of Ascaris contribute equally to fertilization (27, 36–38). Further analysis of dispermic-

fertilized sea urchin development after multipolar divisions allowed Boveri to conclude 

that each individual chromosome is important to development and are the mediators of 

Mendel’s laws of heredity (39). In combination with the contemporaneous work of Walter 

Sutton in mapping Mendelian patterns back to the homologous chromosomes of grass-

hoppers (Brachystola), wherein he states, “Thus the phenomena of germ-cell division and 

of heredity are seen to have the same essential features,” this collective work of Boveri 

and Sutton at this time became known as the Boveri-Sutton chromosome theory of inher-

itance (40, 41). However, the theory had its detractors. Of note is the work of Paolo Della 

Valle who opposed the concept of chromosome individuality and posited that chromo-

some numbers are not constant but vary around a typical chromosome number for the 
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species. He described this as teoria dei cromosomi labile — or chromosome instability 

(42, 43). 

A year before Boveri’s death, spurred by Otto Aichel’s supposition of tumorigenesis 

via cell-fusion-induced aneuploidy, Boveri laid forth his perspective in detail, recalling his 

earlier view that asymmetric division and resulting aneuploidy was the cause of tumor-

igenesis (2). His much-lauded treatise would draw on ideas from decades of cytology to 

natural selection to genetics. The synthesis of these concepts, now fundamental, but con-

troversial at the time, is a remarkable demonstration of scholarship, logic, and creativity. 

While defending his primacy on the topic, he also provides ample credit to the ideas of 

David Paul von Hansemann whose findings certainly guided his thinking. Though not 

acknowledged or cited, the additional intellectual contributions of his wife Marcella 

O’Grady Boveri (24, 44, 45) as well as Drs. Nettie Stevens, Mary Hogue, and Alice Boring, 

all of whom worked in his laboratory, should not be ignored. These factors come together 

here to develop a hypothesis with profound foresight and lasting relevance: 

Abnormal mitoses can generate a host of different chromosome combi-

nations so that, if our hypothesis is correct in principle, those combinations 

that make a cell a tumour cell must turn up occasionally, whether this is due 

merely to the absence of certain chromosomes or, in addition, to an excess 

of one sort of chromosome relative to the others. 

However this might arise, a particular tumour will be the result. 
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The New Science of Instability (1914-1941) 

The identification of chromosomes as units of heredity was a watershed moment for 

genetics. With it came the recognition that abnormal chromosome segregation may affect 

form and function, not just in tumors, but in all tissues of all organisms. Calvin Bridges, 

working under Thomas Hunt Morgan, would publish his proofs of chromosome theory 

(46–48). He coins the term non-disjunction and demonstrates that this failure of chromo-

some separation causes sex differences and gynandromorphism, the presentation of both 

sex organs, in Drosophila. He also calls on contemporaneous work in other plant and 

animal model systems which display somatic variegation or mosaicism which were of ris-

ing interest. 

The study of germinal and somatic variegation largely began in the wake of the redis-

covery of Mendel's work as it was noted that the phenotypes of many plants do not con-

form to the principles he laid out. References to germinal instability arose in relation to 

variegation within and between species of Oenothera (49). Later, genetic instability was 

commonly used more generally to refer to germinal and somatic variegation in a host of 

organisms including Oenothera (50), Drosophila, and maize. However, these mentions 

were rarely attributed explicitly to chromosome mis-segregation and often focused on 

genes responsible for variegation. With few exceptions (51, 52), the quantitative nature of 

these studies on somatic variegation primarily focused on the frequency and degree of 

phenotypic outcomes rather than the frequency of segregation errors (50, 53–55). The 

explicit association of abnormal chromosome structure and segregation with somatic mo-

saicism, particularly in Drosophila and maize, was catalyzed by the increasing availability 
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of X-ray technology in research labs throughout the 1920s-30s. Irradiation caused varia-

tion in eye color, morphology of leg bristles and wings as well as gynandromorphism; all 

noted in relation to increases in chromosome abnormalities (56–63).  

The study of cytogenetic variation and its effect on organismal form and fitness be-

came a full-fledged discipline of its own. However, most studies, despite experimentation 

with crossing and irradiation, produced largely phenomenological conclusions with spec-

ulation on molecular mechanisms. Dr. Barbara McClintock changed this. Interested in the 

variegated striations of pigment on the stalks of Zea mays, Dr. McClintock sought the 

mechanism of this variegation. By 1938, she had  already identified and mapped the locus 

responsible for the appearance of this recessive pigmentation (Bm1) and demonstrated 

(along with Dr. George Beadle) that stalk and endosperm variegation corresponded to the 

presence of ring-shaped or ‘sticky‘ mitotic chromosomes (64–68). Putting these pieces 

together, she showed 1) irradiation of pollen spores causes chromosome breaks, rear-

rangements, and fusions which produce chromatin bridges during mitosis; 2) these 

bridges break during mitosis and subsequently form dicentric chromosomes; 3) these 

dicentric chromosomes also produce mitotic chromatin bridges, generating continuous 

chromosome rearrangement; 4) the Bm1 locus can be maintained or lost through these 

cycles, and 5) that this continuous genetic alteration determines the variegated patterns 

on the stalks of Zea mays (69–71). Dr. Barbara McClintock detailed the first complete 

mechanism of chromosomal instability — breakage-fusion-bridge cycles — from cause, 

to mitotic defect, to genetic alteration, to phenotypic expression. Her work ushered the 
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field of chromosomal instability from the phenomenological to the mechanistic and mo-

lecular.  

CIN as a Quantitative Science (1941-1960) 

That X-ray’s and other mutagens elicit mitotic errors in model organisms, cultures, and 

tumors themselves, which coincide with carcinogenic (and therapeutic) properties was 

not lost on researchers of the 40’s and 50’s (72). PC Koller, seeking to characterize mitotic 

abnormalities in the absence of these mutagens, coupled rapid fixation and staining with 

enhanced contrast, allowing a broad survey of mitosis in a variety of tumors (73). His new 

method allowed quicker microscopic characterization of mitosis in a large number of tu-

mors from different sources. Additionally, he observed that chromosome bridges were 

the most common mitotic error and that, within a single tumor, cell-to-cell chromosome 

counts and region-specific error rates are variable, evidence of the intratumor heteroge-

neity (ITH) so evident today (74). His improvement of mitotic chromosome preparation 

and analysis was one of three concurrent methodological developments critical for the 

quantitative study of chromosomal instability, along with phase-contrast microscopy and 

tissue culture.  

Phase-contrast microscopy (75), was rapidly adopted by cell biologists. Leveraging 

interference between background light with light scattered as it passes through the cell, 

phase-contrast illuminates cellular structures without the use of toxic dyes, critical for the 

longitudinal study of cell division. Phase-contrast microscopy allowed for detailed descrip-

tions of the dynamics of chromatin coiling (76), mitotic duration (77), and confirmation of 

the presence of mitotic spindle fibers (78, 79). 
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Tissue culture developed rapidly during the 1940s-50s as a result of the race to de-

velop a polio vaccine (80), and enhanced our ability to isolate tumor cells and interrogate 

the longitudinal nature of genetic instability and its effect on cell fitness. By 1955, the first 

immortalized cell line (HeLa) had been established and Harry Eagle would publish his 

‘minimum essential medium’ for tissue culture (81, 82). 

Dr. Albert Levan’s laboratory used phase-contrast microscopy and improved methods 

of tissue culture and chromosome analysis (73, 83, 84), to interrogate CIN’s role in cancer 

and to establish a fundamental principle of human karyotypes. Using a new hypotonic 

preparation of mitotic chromosomes for counting, they identified near-diploid and near-

tetraploid mouse tumors from ascites samples. The near-tetraploid cells seeded tumors 

in different mouse strains, while growth of near-diploid tumor cells was strain-specific, 

early evidence that karyotypes may affect tumor aggressiveness and immune evasion 

(85). While visiting Levan’s laboratory, Dr. Joe Hin Tjio further improved this hypotonic 

chromosome preparation to precisely enumerate human chromosomes. In 1956 the two 

would publish The chromosome number of man, and go on to lead a convention to settle 

the nomenclature of the human karyotype (86, 87). Notably, the discovery came four 

years after Rosalind Franklin’s famous Image 51 of DNA’s structure was taken (88).  

Finally, recalling  the term chromosomal instability, Levan and Biesele performed serial 

culture and mitotic and chromosomal analysis of normal mouse skin cells in an experiment 

similar to what might be performed today (89). Using mitotic chromosome counts and 

analysis of abnormal anaphases over generations of cultured normal cells, they that nor-

mal cells generally maintain the normal complement of chromosomes, yet occasionally 
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acquire chromosomal instability. The karyotypes of their chromosomally unstable popu-

lations changed and diversified over time as the fittest cells outcompeted the others, even-

tually exhibiting malignant properties such as continuous growth and the ability to form 

tumors when re-seeded in mice. They confirmed that evolutionary action on chromosomal 

instability can drive malignancy and did so using the modernized methods of analysis 

employed today. 

THE OBSERVABLE 

Modern Cytogenetics 

Mitotic chromosomes and micronuclei. Levan and colleagues’ methodological im-

provements catalyzed the field of cytogenetics. The ability to accurately identify the cor-

rect number of chromosomes lead to identification of conditions caused by aneuploid 

karyotypes and chromosomal instability. The aneuploid causes of Down Syndrome (47, 

+21), Klinefelter Syndrome (47, XXY), and Turner’s Syndrome (45, XO) were all identified 

in 1959 (90–92). The Philadelphia chromosome, which Nowell and Hungerford described 

as a ‘minute’ chromosome, was also identified in 1959 in chronic granulocytic leukemia 

(93). Then, DNA rings (or double minutes) were identified among the scatter of mitotic 

chromosome spreads of many cancer cell samples and, as McClintock had concluded, 

are the result of DNA damage (94). Later, chromosome breakage syndromes like Bloom 

Syndrome and Fanconi Anemia would be identified by their increased frequency of ab-

normal chromosomes (95, 96). Total and abnormal chromosome counts were the main-

stay of cytogenetics for many years and remain in use. While time consuming and insuf-

ficient for determining mis-segregation rates, the distribution of chromosome counts 
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provides a window to chromosomal diversity and polyploidy (97, 98). The variation in the 

population can be estimated as the the standard deviation of the count distribution or the 

percent of non-modal chromosome counts, both measures of CIN. Further, chromosome 

counts are more direct than phenotype-inferred quantification of non-disjunction rates 

such as those previously used in Oenothera and Zea mays (49, 66). 

With the rise of mitotic chromosome analysis in the 1950’s-60’s, the presence of mi-

cronuclei in human samples was quickly recognized (99). Micronuclei, small nuclei which 

may contain chromosome fragments to multiple chromosomes, often result from chromo-

some mis-segregation, and thereby chromosome pulverization, or chromothripsis (100–

105). Analogous to the frequency of abnormal mitotic chromosomes, the frequency of 

micronuclei in interphase cells has been used to quantify CIN (106). This is advantageous 

as micronuclei are often observable in cancer tissue sections, though the number and 

identity of chromosomes, particularly acentric chromosomes, in a micronucleus is chal-

lenging to determine. 

The development of chromosome banding protocols addressed the problem of chro-

mosome identity in routine mitotic chromosome analysis (107, 108). This likewise im-

proved the detection of structural variation in karyotypes and resulted in a new nomen-

clature for karyotype alterations. For example, the Philadelphia chromosome was found 

to be a reciprocal translocation — t(9;22) (109). Since the development of banding pro-

tocols, a host of new fluorometric karyotyping techniques, such as multicolor-FISH and 

spectral karyotyping have been developed (110, 111). These can be multiplexed with 

banding protocols and are faster to prepare and analyze, but offer less resolution than a 
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simple banding analysis. Much like distributions of chromosome counts, the diversity of 

karyotypes has been used as a  measure of CIN (112). Nevertheless, the numerical and 

structural complexity and heterogeneity of these karyotype data provide a more granular 

view of the diversity within the population and complexity of rearrangements in a given 

cell. Over time, karyotypes from thousands of samples reported in the literature have been 

compiled into catalogs and databases (113, 114), which themselves have been used to 

assess the relative levels of CIN between cancer types (115, 116).  

Fluorescence in situ hybridization (FISH). The concomitant development and pro-

liferation of stable fluorescent dyes (117) and in situ DNA hybridization methods (118–

120) enabled the fluorescent detection of specific DNA sequences and improved 

measures of cell-cell variation of chromosome copy numbers. Because FISH probes can 

be targeted to centromeric and telomeric DNA repeat sequences and multiplexed using 

different fluorochromes, FISH allows measurement of the variance for a limited set of 

chromosomes across a population. By subcloning and expanding cells for a fixed number 

of divisions, the resulting variance of FISH probes can be used to calculate a range of 

mis-segregation rates. While not feasible in a clinical setting, this method has been used 

in cancer cell line experiments to estimate the first empirically derived chromosomal mis-

segregation rates (per chromosome per division) or mis-segregations per diploid division 

(MDD) (121–123). Though it is worth noting that these measures don’t account for natural 

selection on karyotypes or non-random chromosome mis-segregation. 

Limitations of cytogenetics. Although cytogenetic studies have been critical to the 

field, they are a proxy measure of a dynamic process — a snapshot in time. Chromosome 



 15 

counts, banding patterns, and FISH-based measures all may be subject to natural selec-

tion on karyotypes, thus masking the true variability generated by CIN. Both chromosome 

counts and FISH are prone to noise and artifacts of sample preparation due to poor chro-

mosome spreading and tissue sectioning. Individually, chromosome counts require mi-

totic cells to obtain a sample, which may not always be possible and biases samples to-

ward cells viable enough to enter the cell cycle. Because FISH probes target specific 

sequences, they likely will not detect structural changes to the target chromosome, thus 

underestimating structural and potentially numerical CIN. Micronuclei frequencies are in-

dicative of abnormal mitoses, but cannot, on their own, reveal if a mis-segregation has 

occurred. Accordingly, inferences of CIN from any of these methods should be inter-

preted in light of these limitations. 

Modern Mitotic Imaging 

In addition to the advancements that led to the development of FISH, the foundation 

for the use of fluorescence microscopy in cell biology was laid by advancements through-

out the 1950’s (invention of the laser), ‘60’s (isolation of GFP), and ‘70’s (inception of 

recombinant molecular cloning) (124–127). The subsequent development of myriad fluor-

ophores that can be expressed in cells and observed in real time ensured that direct 

observation of mitosis remained the gold-standard measure of CIN (128, 129). Today, 

most microscopy experiments designed to study CIN use fluorescence to visualize one 

or more of the following: centrosomes or centrioles, kinetochores, centromeres, microtu-

bules and, of course, chromosomes. Even the real-time visualization of specific homolo-

gous chromosomes is increasingly common using Cas-based systems  to target 
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chromosome-specific repetitive sequences (130–132). Tagging the major structures in-

volved in cell division has allowed more comprehensive analysis of the causes and con-

sequences of mitotic defects in experimental and clinical ex vivo settings. However, tradi-

tional histological staining remains the most common method of assessing mitotic defects 

in patient tissue. 

Mitotic phenotypes of CIN. There has been long-standing recognition that different 

types of mitotic errors likely signal different mechanisms by which CIN is acquired. For 

clarity, we will differentiate between a mitotic phenotype of CIN and the molecular mech-

anism that produces the phenotype. The canonical phenotypes of CIN have changed very 

little since the days of Flemming, Hansemann, and Boveri. While there is still much to be 

revealed about how defects in cellular processes produce CIN, the relative frequency of 

these defects can tell us a great deal about the cellular processes involved. Thus the 

identification of the primary phenotypes of CIN in certain cancers is important and remains 

of interest. 

Lagging chromosomes are thought to be the most common mitotic defect across all 

cancers. These chromosomes, which lag behind the segregating chromosome masses 

during anaphase, commonly arise when microtubules from opposing poles attach to the 

same kinetochore and are not corrected (i.e., merotelic attachment). Lagging chromo-

somes have been the most commonly observed defect in cancer and non-cancer cell 

lines (133–137). This would suggest defective attachment error correction and/or spindle 

assembly checkpoint mechanisms as the primary source of CIN. However, in stained his-

tological tissue sections from patients’ tumors, lagging chromosomes can be challenging 
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to differentiate from bridging chromosomes, which, as McClintock discovered, are caused 

by DNA damage and breakage-fusion-bridge cycles. Chromosome bridges are the most 

common mitotic error in colorectal and ovarian cancer patient-derived organoids (138, 

139), indicating unchecked DNA damage as a primary source of CIN in cancer. Alterna-

tively, it could be that different cancer types have distinct landscapes of mitotic errors. 

Further highlighting this, a recent study found neither lagging nor bridging chromosomes, 

but misaligned chromosomes, as the most common CIN phenotype in primary and meta-

static breast cancer tissue samples (140). Misaligned chromosomes arise from defective 

chromosome transit to the metaphase plate, attachment error correction, or spindle as-

sembly checkpoint and vary in severity from slight misalignment at a metaphase plate to 

complete failure to congress (i.e., a polar chromosome). In primary breast cancers, misa-

ligned chromosomes are found in 20% of mitoses compared to lagging in 15% and 

bridges in 10%. In metastatic breast cancer, the incidence of lagging and bridging chro-

mosomes remained similar, but the incidence of misaligned chromosomes increased to 

30%. Further, the incidence of misaligned chromosomes correlated best to CIN as meas-

ured by non-modal FISH probe counts on the same microarray. Importantly, lagging and 

bridging chromosomes can resolve to segregate to the correct daughter cell (141, 142). 

However, misaligned chromosomes, and polar chromosomes in particular, are more likely 

to result in mis-segregation. Slight misalignments often display attachment errors and 

portend subsequent lagging (143) while polar chromosomes guarantee mis-segregation 

as sister chromatids of the polar chromosome will fail to separate and remain in the same 

daughter cell. However, a caveat of fixed analysis of misaligned metaphase chromosomes 
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is that the misaligned phenotype is, by definition, prometaphase. Thus, the cell with a 

misaligned chromosome may just be in an early mitotic phase and could have segregated 

normally if additional time was allotted before fixation. By the same token, while anaphase 

is typically the most informative for the measure of CIN, misaligned chromosomes often 

go unobserved in anaphase. 

Multipolar spindles diverge from previously discussed phenotypes in their frequency 

and consequences. Multipolar spindles are often produced by the presence of supernu-

merary centrosomes, which themselves arise from centrosome amplification through 

dysregulation of the centriole replication cycle (e.g., Plk4 overexpression), centriole frag-

mentation, or by failure to complete a previous mitosis (e.g., mitotic slippage and cytoki-

nesis failure) (144). However, de novo spindle poles can arise without centrosomes 

through an uncharacterized mechanism. This is most clearly demonstrated in the pres-

ence of the chemotherapeutic drugs paclitaxel and vinorelbine, which stabilize and desta-

bilize microtubules respectively. Multipolar spindles occur at a lower frequency in cancer 

than other CIN phenotypes. This may be due to the high, presumably lethal, rates of mis-

segregation they are capable of producing. While lagging chromosomes in a bipolar set-

ting often occur one or two at a time, multipolar spindles can produce many merotelic 

attachments that, if left uncorrected, can result in a significant number of lagging chromo-

somes, even after focusing down to a pseudo-bipolar phenotype (145, 146). Further, if 

multipolar spindles are not focused, multipolar division would produce a high rate of mis-

segregation and nullisomy by nature of segregating a diploid genome into three or more 

daughter cells, even without accompanying attachment errors. Because cells undergoing 
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multipolar division rarely present discrete chromosome mis-segregations, measuring the 

rate of mis-segregation by microscopy is extremely difficult. This rate was measured using 

using scDNAseq at 18 missegregations per diploid division (MDD) (147). 

To summarize, different phenotypes of CIN occur at different frequencies and at var-

ying severities of chromosome mis-segregatation. For example, multipolar spinddles may 

occur at 5% in a given tumor, but mis-segregate 18 chromosomes; is this low or high CIN? 

What if 50% of cells mis-segregate 1 chromosome? The degree to which these mecha-

nisms contribute to CIN should be taken into account when interpreting microscopic 

measures of CIN. Current approaches to quantifying CIN phenotypes by microscopy vary 

in resolution and effort. Measuring CIN as ‘% abnormal mitoses’ is the least informative of 

a mis-segregation rate, but is easily quantified and summarized. A measurement such as 

‘% anaphases with polar chromosomes’ takes more time to record, but provides a sense 

of how much CIN is occurring. Meanwhile, a measurement like ‘number of lagging chro-

mosomes per anaphase’ gives an exact number of mis-segregations expected, assuming 

a given the rate of laggards that resolve into the correct daughter cell. However, this ap-

proach may not always be achievable as the number of individual chromosomes in an 

area can be challenging to discern, even with centromere labeling. Nevertheless, inter-

preting microscopic CIN measures in terms of the number of chromosomes that could 

potentially be mis-segregated is a more informative approach than using subjective terms 

like ‘low’ and ‘high’ CIN.  

Advances in Imaging Quantification. New methods have been developed that may 

enhance our ability to quantify CIN by microscopy. One such method seeks to address 
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the specific problem of quantifying CIN caused by multipolar spindles, as previously men-

tioned. A recent study has used fluorescence intensity of labeled H2B to measure the net 

loss and gain of chromatin content in daughter cells resulting from multipolar divisions 

(148). Another has applied deep learning to histopathology images to identify abnormal 

mitoses and quantify CIN in the sample (149). While the accuracy of this approach was 

limited, advancements may enable rapid microscopic analysis of CIN in tissue. Cell biol-

ogy-oriented machine learning classification platforms such as CellProfiler (150) and ilas-

tik (151) could increase the speed of microscopic CIN measures in clinical and experi-

mental samples. Flow Cytometry 

Flow Cytometry 

Flow cytometry was quickly adapted to measure DNA content and cell cycle kinetics 

after its invention in the late 1960’s (152, 153). This allowed for the identification of con-

ditions and compounds that altered the state of the canonical cell cycle profile. Flow cy-

tometric assays have been used to identify polyploidy or cell cycle arrest, which may or 

may not be caused by CIN, in a variety of scenarios, including in the CIN syndrome Fan-

coni Anemia (154). However, unless the rate of mis-segregation is high enough to appre-

ciably change the width of the G0/G1 peak, as experimentally-induced by drugs like 

paclitaxel, for example (147), flow cytometric cell cycle analysis is likely not sensitive 

enough to measure relative levels of CIN directly. Conversely, relatively recent advance-

ment — imaging cytometry — has been shown to identify cells with micronuclei using 

specialized image analysis software and centromeric copy number alterations using FISH 
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probes. Therefore, imaging cytometry shows promise in estimating relative levels of CIN 

(155–157). 

Phenotypic Reporters 

As discussed previously, phenotypic readouts, such as the dark variegated patterns 

McClintock observed in Zea mays, were among the earliest measures of genetic instabil-

ity. If the known gene that imparts a phenotypic trait is encoded on a mis-segregated 

chromosome, the phenotype of either daughter cell may be changed. Since then reporter 

assays have been developed to experimentally quantify mis-segregation rates. 

In yeast, introduction of multiple selective and colorimetric reporters into a single chro-

mosome has allowed the estimation of mis-segregation rates secondary to both polyploi-

dization, mutation of cell cycle and spindle assembly genes, and environmental challenge 

(158–161). Similar to experiments using FISH probe diversity as a readout for mis-segre-

gation, yeast with these selective markers can be subcloned and grown for a predeter-

mined number of generations. These studies were among the first to  show that polyploid 

cells tend to have higher rates of chromosome mis-segregation and, through cell cycle 

challenge, provide clues into the molecular origins of CIN. 

More recently, a new class of experimental CIN reporter has been developed for hu-

man cells using human artificial chromosomes (HAC) constitutively expressing GFP. In 

similar fashion, over a predetermined number of generations, the rate of GFP loss in the 

population (as a result of mis-segregation of the HAC) is used to quantify mis-segregation 

rates using fluorescence microscopy or flow cytometry (162–164). While these reporter 

assays are some of the few methods capable of producing quantitative measures of 
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chromosomal mis-segregation rates, they do not account for karyotype selection. They 

may also be affected by mutations that cause the loss of the reporter phenotype, which 

would either underestimate or overestimate mis-segregation rates respectively. Further 

the possibility that HACs are mis-segregated more frequently than endogenous chromo-

somes would need to be considered when drawing conclusions using this method. 

THE MOLECULAR 

A section by Shermineh Bradford in Lynch, Bradford, and Burkard. (Manuscript 1) Under review. 

Comparative Genomic Hybridization 

Comparative Genomic Hybridization (CGH), an adjustment to FISH, was later devel-

oped to detect chromosome copy number variations (CNV) (165, 166). CGH utilizes dif-

ferent fluorescent dyes to hybridize to and label DNA and distinguish CNVs by comparing 

their relative intensity. However, despite this technique offering a higher resolution than 

FISH, sensing CNVS as minor as several hundred base pairs rapidly, it cannot detect 

structural CIN such as deletions and chromosomal rearrangements and relies on the use 

of chromosomes at the metaphase state.  

Furthermore, to reduce the effect of false changes in signal intensity due to sample 

quality, the CGH method requires an adequate amount of high-quality genomic input. 

Later on, in 1997-1998 (165, 167), to overcome some of the disadvantages discussed 

above, array CGH (a-CGH) was implemented, benefiting through the knowledge gained 

from the Human Genome Project to use the data of identified locations throughout the 

genome for DNA microarray probes development. As a result, this optimized approach 

eliminated the need for metaphase chromosomes by hybridization to an array of mapped 
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sequences. Additionally, to adjust for low genome input in the CGH process, whole ge-

nome amplification approaches were adopted and added preceding genomic labeling 

(168).  

Eventually, as the technology developed, CGH reached single cell resolution and ush-

ered comprehensive characterization of cell-cell karyotype heterogeneity into the age of 

the molecular sequence. It was used to further characterize intratumoral heterogeneity 

and karyotypic differences between minimal residual and metastatic disease (169, 170). 

Though much of the same information could be obtained by traditional microscopic kary-

otype analysis, the advancement of single cell CGH allowed for analysis of non-mitotic 

cells and was an important step toward development of higher throughput sequencing 

technologies used today. 

PCR-based assays 

A relatively simple and cost-effective multiplex PCR-based assay was introduced in 

2018 to sense CIN in formalin-fixed paraffin-embedded (FFPE) tumor biopsy specimens 

(171). In this approach, upon successful detection of microsatellite instability, allelic im-

balances or loss of heterozygosity were assessed in only microsatellite-stable samples. 

This was accomplished by comparing the frequencies of the paternal and maternal alleles 

between normal and tumor tissues and setting an experimentally defined cut-off rate for 

each microsatellite indicator. The allelic imbalances were then used as a proxy for CIN 

measurement by associating it with a genome-wide analysis of chromosomal alterations 

in a subset of the TCGA tumor data. However, this method is only reliable in FFPE samples 

with higher than 24% tumor purity and requires a genomic sample from paired normal 
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tissue. Furthermore, the final analysis does not distinguish the gain or loss of a chromo-

somal region nor the rate of mis-segregations. Another limitation of this method is popu-

lation averaging in pooled samples, which masks the cell-to-cell tumor heterogeneity lead-

ing to the imprecise measurement of ongoing CIN (171, 172). Masking cell-to-cell het-

erogeneity results in an ensemble profile of the most common aneuploid states, 

which is often conflated with CIN. 

Bulk Genome Sequencing 

The continuous developments in high throughput sequencing technologies allowed 

the detection of chromosome number alterations with greater accuracy than array CGH 

(168, 173, 174). Massively parallel whole genome sequencing (WGS) methods requiring 

high-depth coverage and later more cost-efficient shallow whole genome sequencing 

(sWGS) were adopted to measure chromosome copy number alterations. Due to its low-

demanding computational platforms and storage-friendly data, sWGS rapidly became 

available in clinic and research settings to access the state of aneuploidy and intra-tumor 

heterogeneity (ITH) (175–178). 

In bulk analysis, the accuracy of identified tumor's copy number alteration depends on 

the sample purity and, in most cases, will require sequencing reads from the matched 

normal sample. Furthermore, to analyze sWGS data, the common strategy is to normalize 

the read counts of each region of sample DNA to median read counts normalized through 

the whole sample's genome, making it challenging to infer since the relatively generated 

data will not directly represent the sample's karyotype.  
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Utilizing multiple regional bulk genome sequencing methods for tumors and paired 

primary tumor and their metastases further perpetuated the cancer evolution through kar-

yotype heterogeneity, detecting the aneuploidy and confirming karyotype divergence and 

the possibility of chromosome instability in the tumor (179–182). The somatic copy num-

ber changes due to chromosomal instability can be used to assess the type and degree 

of cancer evolution by quantifying their allele-specific heterogeneity in paired primary and 

metastatic tumor studies. The systematic and prevalent formation of clonal and subclonal 

somatic copy number changes across tumor types imitate constant adjustment within the 

fitness landscape and enduring CIN throughout cancer evolution and metastasis. Further-

more, multi-sample phasing and higher sequencing depth to incorporate the mirrored 

allelic imbalance events in which two subclones simultaneously lose/gain a maternal or 

paternal allele of the matching chromosome provides a greater resolution of CIN's driving 

impact of ITH (182–184). Specific mutational events involved in the driving genome insta-

bility can be extracted from sWGS data employing non-negative matrix factorization par-

allel to copy number analysis shedding light on underlying mechanisms of CIN and provid-

ing a foundation for target therapy (185, 186). 

Gene Expression Scores 

Using computational methods and to identify the concurrent altered expression of the 

top 70 and 25 distinct genes in tumors with chromosomal aberrations, Carter et al. de-

scribed the possibility of CIN as a tool to predict a patient's clinical response (187, 188). 

These studies identified correlations between the upregulation of these genes in CIN25 

and CIN70 tumors and poor clinical outcomes across many cancer types. However, the 
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reliance on tumors’ clonal aneuploidy masks the impact of intermittent aneuploidies 

caused by chromosomal instability. 

In addition, a tumor with an aneuploidy state may not be undergoing CIN in its current 

state. In fact, some studies showed a negative correlation between chromosomally unsta-

ble tumors with CIN70, indicating that the increased gene score could also result from an 

altered proliferation rate (189). In addition, another set of genes, named HET70, that were 

completely independent of proliferation was later identified in tumors with ITH, which was 

also linked with poor clinical outcomes. These genes' direct correlation with CIN rates is 

yet to be determined (189, 190). Nevertheless, in mice harboring mutations in Kras and 

Mps1 previously shown to induce CIN and tumors, gene set enrichment analyses of CIN70 

and HET70 genes show no indication of the expected increase in CIN over Kras mutated 

mice with wild type Mps1. To determine the directness of these measures, we would pro-

pose an analysis of the validity of these scores in models of induced CIN. 

Single Cell Genomics and Transcriptomics 

Single-cell methodologies were established to better understand ITH and cancer de-

velopment (138, 191–196). A fully distinguished ITH allows the identification of chromo-

some copy number alterations in all clones including the minor subclones which might 

have been missed in bulk analysis, hence a more accurate way of measuring CIN rates. 

Some studies have found a correlation between direct measurement of CIN rates taken 

by time-lapse imaging of tumors in 2D or 3D cultures and single-cell genome sequencing 

analysis of CIN rate, though this correlation is not as strong as expected, indicating ongo-

ing karyotype selection (138, 196). In addition, the single cell approaches offer solutions 
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to bulk sequencing shortcomings, such as the need for data deconvolution during phylo-

genetic tree reconstruction and misinterpretation of low single with noise during tumor 

evolution analysis.  

One of the main constraints of analyzing each cell’s genomic profile independently is 

the low input DNA which requires a whole genome amplification (WGA) step in order to 

gain adequate DNA input for library preparation.  The WGA process is indeed a fault-

prone step due to generating false-positive alternative alleles or incomplete amplification 

leading to variant alleles dropout. Nevertheless, pairing bulk genome sequencing and sin-

gle-cell whole genome sequencing can resolve some of these problems, allowing for 

greater resolution in mapping cancer evolution and capturing CNA. 

Before the discovery of single-cell RNA sequencing, multiple studies showed the effect 

of CNA on transcriptomic response using measurable whole-genome proteomics meth-

ods such as chromatography, mass spectrometry, phenotypic profiling (growth, metabo-

lism), and whole genome expression array both in yeast and human cells (197–201). For 

instance, in 2007, Torres and colleagues demonstrated that the presence extra chromo-

somes in engineered aneuploid yeast stains increases the expression of the majority of 

the encoded gene on that chromosome. However, subsequent studies found that those 

yeast strains have dosage compensation at the protein level (202). 

More recent studies utilizing single-cell RNA sequencing demonstrated that CIN could 

lead to transcriptional tumor heterogeneity in addition to genomic heterogeneity, and this 

transcriptional heterogeneity can be buffered at the proteomic stage (203). In addition, 

some common transcriptional alterations observed in aneuploid clones are independent 
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of copy number alterations; therefore, measuring CIN rates from RNA data alone is chal-

lenging due to regulation of gene expression and uneven genome coverage from RNA 

sequencing (204, 205). 

Several computational approaches, such as HoneyBADGER, InferCNV, CopyKAT, 

CaSpER, and more recently, SCEVAN, detect CNA in individual cells from scRNA-se-

quencing data with the capacity of classifying malignant and non-malignant cells (206–

210). Each method has advantages and disadvantages. One can find the best method that 

suits their particular input data type depending on the type of RNA sequencing data and 

its sequencing depth.  

Combinatorial Methods 

A 2012 study first discussed a possible connection between chromothripsis and for-

mation of micronuclei (211) using an innovative strategy, "Look-Seq", to characterize in-

dividual cells via live imaging and analyze them, or their daughter cells, using single-cell 

whole-genome sequencing. Look-Seq provided the required evidence to demonstrate 

that chromothripsis can originate from fragmentation and reassembly of the micronuclei 

genome and that micronuclei formation may directly contribute to genomic instability and 

cancer (105). More recently, Look-Seq showed micronucleus formation and re-incorpo-

ration into a grand-daughter cell downstream of the CRISPR cut site, providing evidence 

of chromothripsis as an on-target consequence of CRISPR-Cas9 gene editing (212).    
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THE THEORETICAL 

Instability and Clonal Evolution 

In 1976, Dr. Peter Nowell synthesized the prior two decades’ cancer biology research 

and formulated a hypothesis: “Acquired genetic lability permits stepwise selection of var-

iant sublines and underlies tumor progression” (213). Prior to the discovery of any specific 

human oncogenes or tumor suppressors, Nowell describes his hypothesis using the ex-

ample of chromosomal instability (though he states other mutations are likely important). 

He posited that cell populations, having undergone neoplastic transformation, can lever-

age continuous genetic instability to produce rare, advantageous variant clones (and 

many disadvantageous) that are selected over neighboring cells given the pressures of 

its local environment. Recognizing that most tumors are aneuploid, that most aneuploid 

tumors display some level of karyotypic diversity, but that most cells within a tumor share 

a predominant karyotypic pattern, Nowell believed that CIN played a critical role in in-

creasing malignancy and that some specific karyotypes provide advantages over others, 

in part, by altering the dosage of genes on that chromosome. This theoretical framework, 

drawing on previous studies’ evidence, closely predicted much of what we know of tumor 

and karyotype evolution today. This practice of modeling the dynamics of tumors’ karyo-

types to understand the interplay between selection and CIN, and how this affects extant 

karyotype diversity, continues to this day.  

Computational Models of CIN  

First attempts. The first computational models of CIN focused on understanding how 

observed distributions of chromosome numbers are achieved and how CIN interacts with 
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generic oncogenes to promote growth. Shackney and colleagues simulated numerical 

and structural CIN in the context of tetraploidization and activation of oncogenes and con-

cluded that a rate of chromosome loss (secondary to tetraploidization) of 0.004 per chro-

mosome (i.e., 1 loss per ~5 divisions in a diploid background) offered the best qualitative 

fit for observed chromosome count distributions. Given equal probability of gain and loss, 

their results would also imply a total mis-segregation rate of 0.008 (i.e., 1 mis-segregation 

per ~3 divisions in a diploid background) (214). Gusev and colleagues identified sought 

to establish the numerical bounds that delineate sustainable vs unsustainable CIN levels. 

Assuming all chromosomes are essential and lethal nullisomy as the only selective con-

straint, they concluded mis-segregation rates could reach as high as 0.13 (6 MDD) before 

limiting population growth through nullisomy. Using this upper bound, they subsequently 

modeled long term (50+ generations) dynamics of CIN with defined levels of CIN (low = 

0.001, moderate = 0.01, high = 0.1, critical = 0.25 per chromosome) and concluded that 

a range of rates between 0.005 to 0.01 (0.23-0.46 MDD) recapitulated FISH results from 

a cell line experiment over a known number of generations. (215, 216). These results were 

somewhat higher than a concurrent analysis by Roschke and colleagues. Under the as-

sumption that new aneuploid states are temporarily negatively selected, they placed av-

erage numerical CIN rates in colorectal and ovarian cancer cells at ~0.001 per chromo-

some (0.046 MDD) and the rate of structural CIN at ~0.001 per chromosome (0.046 MDD) 

for  colorectal cancer and ~0.0001 per chromosome (0.0046 MDD) for ovarian cancers 

as measured by spectral karyotyping (217). These studies dealt with fundamental aspects 

of karyotype selection, such as the lethality of nullisomy, to achieve their CIN measures 



 31 

and define its ‘boundary conditions’. Yet, because there was insufficient information at the 

time, they did not consider the relative fitness levels of specific aneuploid karyotypes. 

Reckoning with karyotype selection. Through a litany of large cancer datasets pub-

lished since, we have gained a more granular view of karyotype variation among and 

within cancers. We’ve confirmed that aneuploidy is a feature of ~90% of tumors and iden-

tified common patterns of specific aneuploid states. Some chromosome gains and losses 

are common features of cancer as a whole. Some are common features of specific cancer 

subtypes or tissues of origin. However, individual tumors may deviate from these com-

monalities and karyotype variation is commonly observed within individual tumors as a 

result of CIN. Collectively, this implies a role for ongoing karyotype selection, the process 

by which different aneuploid karyotypes confer different fitness levels and outcompete or 

are overtaken by their neighbors, as Nowell predicted. Recurring pan-cancer and cancer-

specific CNAs imply both convergent (or directional) selection and subsequent stabilizing 

(or negative) selection as metastases and relapse tumors tend to retain a similar karyo-

type to the primary despite potentially vast differences in environment (218, 219). Con-

versely, the presence of intratumoral karyotype heterogeneity implies some room for kar-

yotypic drift and perhaps variable levels of selective pressure within a tumor. Positive 

selection of new relatively advantageous copy number alterations (CNAs) and negative 

selection of new relatively inhibitory CNAs, together, produce stabilizing selection in the 

tumor cell population. This stabilizing selection limits karyotypic drift to varying degrees, 

restraining the potential of new clones with karyotypes highly dissimilar to the clonal 

‘mode’. When the environment is altered or a new advantageous clone arises, the modal 
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karyotype shifts over time. In each case, the true rate of diversification as inferred by 

karyotype diversity may be masked by karyotype selection if unfit cells with new karyo-

types are more or less fit. While many studies have assumed neutral karyotype selection 

in simulations or experiments relating CIN and karyotype diversity (121, 122, 196, 214–

217, 220), others have sought to define the relationship between CIN and karyotype se-

lection (or aneuploid fitness). 

The density of oncogenes, tumor suppressor genes, and essential genes on chromo-

somes and chromosome arms has been shown to correlate with the frequency at which 

they are gained and lost in pan-cancer studies (221). In other words, chromosomes with 

many oncogenes/essential genes and few tumor suppressor genes tend to be gained 

whereas those with few oncogenes/essential genes and many tumor suppressors tend to 

be lost. This analysis assigned individual chromosomes and chromosome arms discrete 

scores to broadly describe whether its presence in a cancer karyotype enhances or sup-

presses cancer fitness. Subsequent studies used these scores to define the peaks and 

valleys of the aneuploid fitness landscape and how this is reflected in simulated popula-

tions’ karyotypic makeup. As expected, these studies recapitulate the broad trends of 

cancer evolution: convergent karyotype evolution as defined by the pan-cancer chromo-

some scores they use and convergence on a near-triploid state (147, 184, 222, 222–224). 

Two of these studies conclude that the rate of mis-segregation that maximizes survival 

and adaptive potential over long timescales is 0.001 - 0.0014 per chromosome per divi-

sion (i.e. 0.05 MDD or ~1 mis-segregation every 20 divisions) (223, 224). While this esti-

mated mis-segregation rate is lower than observed in cancer cell lines, models of 
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karyotype evolution based on recurrent aneuploidies tend to produce a higher level of 

cell-cell karyotype heterogeneity than is typically observed in single cell cancer datasets 

(147, 224). This implies that, while directional selection may guide the broad patterns of 

aneuploidy, stabilizing selection likely controls the ongoing extent of karyotypic drift, and 

thus karyotype diversity, in tumor cell populations at a given time. 

An alternative evidence-based model for selection of aneuploid cells comes from the 

recurrent observation that new aneuploid cells are less fit than their euploid or aneuploidy-

adapted progenitor in equivalent environments. In this context, the number of genes en-

coded on an aneuploid chromosome positively correlates with its detriment to cellular 

fitness (198, 225–227). Fewer studies have investigated the effect of this stabilizing selec-

tion on karyotype diversity in tumors with CIN. We developed one such computational 

model by assigning chromosome scores based on their gene content normalized to the 

total estimated number of genes in the human genome. The sum of these scores repre-

sented a cell’s fitness (euploid fitness = 1) Then, to model stabilizing selection, these 

scores were further modified depending on how far a cell’s copy of a given chromosome 

is from the average ploidy of the population. We found that this model, compared to neu-

tral selection or directional selection (via aforementioned pan-cancer chromosome 

scores) best recapitulates the amount of cell-cell karyotype variation observed in 

scDNAseq data from clinically-derived cancer samples (147). This evidence of stabilizing 

selection of karyotypes is in agreement with unreviewed work using similar methods 

(228). 
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Selection-aware computational inference of ongoing CIN. Because karyotype se-

lection can mask true mis-segregation rates inferred by karyotype diversity alone, there 

is a need for methods that account for this. We previously developed a framework that 

uses the model described above as a uniform prior dataset against which real scDNAseq 

data can be compared  (147). Further, this framework uses summary statistics for both 

karyotype heterogeneity and phylogenetic topology, which has previously been used to 

detect selection in populations (229–232), to infer mis-segregation rates. Using this 

method, we recovered the experimentally observed mis-segregation rate induced by the 

chemotherapeutic drug paclitaxel (0.42 per chromosome per division or MDD ~ 18 chro-

mosomes). We also inferred a spectrum of mis-segregation rates occurring in normal co-

lon and colorectal cancer organoids as well as a breast cancer biopsy using previously 

published datasets (138, 191). These ranged from 0.001 to 0.006 per chromosome per 

division, or an MDD of about 1 mis-segregation per 21 to 3 divisions respectively, values 

which fell within the range of mis-segregation rates in cell lines as observed by micros-

copy. This framework for inference of CIN, CINFER, is available online as a web-tool 

(https://andrewrlynch.shinyapps.io/CINFER/). 

This selection-aware inference of ongoing CIN is of increasing interest. One yet unre-

viewed study has achieved similar results as above using similar methods (233). Another, 

which uses expression of interferon gamma-related genes as a proxy measure of chro-

mosome mis-segregation, has also attempted to infer tumors’ mis-segregations rates from 

scRNAseq (234). The link between mis-segregation and upregulation of interferon gamma 

is heterogeneous as the activity of the cGAS-Sting pathway is not uniform across cancers 
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(235). This may confound the utility of scRNAseq measures of CIN, and could explain the 

finding of a broad range of inferred mis-segregation rates with bounds well outside the 

expected, directly observed range. 

While these methods are an advancement in measuring CIN in patients’ tumors, fur-

ther advancement is required before they could be considered a comprehensive measure 

and total replacement of previous methods. Namely, careful empirical study of karyotype 

selection dynamics, such as possible epistasis of higher order copy number interactions 

and environmental interactions, as well as inclusion of structural CIN at sub-chromosome 

arm resolution, which current models do not achieve. 

THE FUNCTIONAL CONSEQUENCES OF MIS-SEGREGATION RATES 

CIN is a scalar property of tumors, not a binary. This means the consequences of 

CIN in tumors are defined by the rate at which chromosomes mis-segregate (Figure 1.2), 

not just whether this occurs at all. Further, the functional consequences of chromosome 

mis-segregation are not linearly associated and, in many ways, seem paradoxical.  For 

example, CIN can be both tumor promoting and tumor inhibiting.  The context dependent 

nature of CIN’s consequences has proved a challenging hurdle for its study of the years, 

though a clearer picture has emerged over the last fifteen years.  

Aneuploidy, the immediate consequence of chromosome mis-segregation, is gen-

erally poorly tolerated in healthy human tissues. The absence of ‘normal’ aneuploid cells 

and the embryonic lethality of aneuploidy for most chromosomes suggests chromosome 

mis-segregation is almost always a lethal event in the normal course of cellular life. 
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Therefore, the consequences of mis-segregation rates in normal cells are straightforward 

and not relative, all mis-segregation seems to be bad mis-segregation. 

Aneuploidy becomes more prevalent in diseased and stressed tissues. The nearly 

universal aneuploidy in cancer is an obvious example, but aneuploidy is also prevalent in 

pre-malignant anaplastic tissue as well as stromal cells within the primary tumor itself. The 

presence of widespread aneuploidy has also been reported in brain and liver tissue. This 

all suggests 1) the occurrence of ongoing chromosome mis-segregation in non-cancer 

tissues and 2) that aneuploidy caused by chromosomes mis-segregation is not sufficient 

for transformation of otherwise healthy tissue. 

While transformation is not an immediate consequence of chromosome mis-seg-

regation, it does seem to spur tumorigenesis. Several mouse models have shown that 

elevation of chromosome mis-segregation increases tumor formation over a mouse’s life-

time. There are several explanations for this. Elevated chromosome mis-segregation 

could induce a chronic inflammatory response, which promotes tumorigenesis, and which 

is, itself, a consequence of aneuploidy. Perhaps it confers a higher baseline rate of DNA 

damage, increasing the likelihood of mutating cancer driver genes. Perhaps it just in-

creases genomic diversity in pre-malignant tissue, providing a ‘head start’ of genomic 

diversity when transformation does occur. Identifying CIN’s contribution to tumorigenesis 

is a challenge because ongoing cellular events in anaplastic tissue and incipient tumors 

is currently not possible in vivo. Though recent advances in whole-mouse lineage tracing 

present an interesting opportunity to study CIN before, during, and after tumorigenesis 

(236). 
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Chromosome mis-segregation rates contribute to a host of clinically aggressive 

features in human tumors, tumor models, and cell lines. Overall, elevated mis-segregation 

rates and large-scale chromosome CNA burden are associated with worse patient sur-

vival. For example, in a retrospective clinical analysis of tissue samples from diffuse large 

b-cell lymphoma patients, a two-fold higher frequency of mitotic aberrations was associ-

ated with 24% worse overall survival over a 12 year period (237). In a cohort of patients 

with non-small cell lung cancer whose tumors underwent multi-region sequencing, those 

with the highest levels of sub-clonal copy number heterogeneity exhibited a nearly 50% 

decrease in disease free survival over 2.5 years. Additionally, elevated chromosome mis-

segregation rates been implicated in metastasis and chemotherapeutic resistance. Mouse 

xenograft tumors with higher CIN were more likely to spread metastases than those with 

lower CIN (238). This was due to induction of a pro-metastatic inflammatory response 

through innate sensing of cytosolic DNA caused by chromosome mis-segregations. Me-

tastasized breast tumors, when examined at histology, also exhibit greater CIN that their 

primary counterpart (140), though this could be, in part, due to decreased stromal attach-

ment (239). While the mechanism of CIN’s promotion chemotherapeutic resistance is un-

clear in most cases, higher CIN does appear to confer this effect (240–243). 

The apparent monotonically increasing effect of chromosome mis-segregation on 

tumor progression, as compared to its non-monotonic effect on tumorigenesis somewhat 

counter-intuitive. However, this could be a simple case of selecting out cells who evolve 

a CIN phenotype that is too aggressive. Though, cell lines with CIN are capable of dynam-

ically decreasing their CIN level through additional mutation of spindle assembly 
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components (244). This raises the interesting prospect that tumors can devolve their high 

CIN phenotype if and when it becomes disadvantageous. 

Despite its tumorigenicity and hastening of cancer progression, chromosome mis-

segregation is not always sustainable. Some of the same studies using mouse models to 

demonstrate increased tumorigenesis from elevated CIN also showed that mice with the 

highest levels of CIN actually inhibited CIN (245–247). The point at which chromosome 

mis-segregation flips from tumor promoting to tumor inhibiting is unknown. There are real, 

numerical limits to the rate of mis-segregation a population of cells can tolerate. One ex-

ample of a very clear threshold is the induction of nullisomy, or loss of all copies of a 

homologous set of chromosomes. With the exception of chromosome Y, nullisomy is not 

recurrently observed in any human tissue, including tumors. Cells rely on genes encoded 

on all chromosomes to survive and proliferate. Thus, nullisomy presents a well-defined 

and insurmountable challenge to cell survival. Indeed, cell death and reduced tumorigen-

icity occur at the highest rates of mis-segregation observed. This is true in both chemically 

and genetically induced models of CIN as well as innate rates of mis-segregation (138, 

245, 247, 248). The extent to which nullisomy is the primary cause of mis-segregation-

mediated cell death is unknown. However, estimates of mis-segregation rates required to 

induce nullisomy are far above what is commonly observed, even in most inducible mod-

els (Appendix 1, Figure A1.1). This suggests that elevated levels of genomic imbalance or 

DNA damage through mis-segregation, rather than nullisomy alone, may be sufficient to 

cause cell death. 
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Importantly, one of the most successful and widely used classes of chemothera-

peutic agents, taxanes, work by inducing chromosome mis-segregation in cancer cells. 

By stabilizing microtubules and inducing de novo spindle poles during mitosis, it causes 

cells to undergo multipolar divisions, causing extensive chromosome mis-segregation, 

upwards of about 18 chromosomes per division (147, 249). On its own, 18 chromosome 

mis-segregations is about what is required for about 50% of an otherwise diploid popula-

tion to experience nullisomy (Appendix 1, Figure A1.1). However, multipolar divisions also 

bias mis-segregations toward chromosome loss (Appendix 1, Figure A1.2-4). If these 

types of divisions go uncorrected, which can occur through spindle pole clustering, it all 

but guarantees nullisomy in diploid cells.  

 Unfortunately, about 50% of patients who receive paclitaxel receive no therapeutic 

benefit (250). Worse, there is no biomarker to indicate who will respond. One hypothesis 

for why this occurs is that spindle pole clustering effectively rescues daughter cells from 

nullisomy by preventing multipolar divisions, instead, allowing cells to divide on pseudo-

bipolar spindles with relatively little consequence. A recent study has shown that the pre-

existence of other CIN phenotypes, aside from multipolar mitotic spindles, can interact 

with the induction of multipolar divisions to sensitize cells to chromosome mis-segregation 

(251). This suggests that pre-existing CIN could be used as a biomarker for paclitaxel 

response. However, a biomarker is only as useful as one’s ability to measure it. 

Tumors’ relative levels of CIN hold prognostic and predictive clinical value. How-

ever, these CIN levels are poorly defined because current CIN measures are insufficient 

for measuring CIN as a rate in human tumors. The clinical utility of CIN, as well as a 
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sounder understanding of its relative levels’ complex roles in malignancy, can only be 

achieved through development better measures. Measures which are quick and accurate, 

which account for confounders like karyotype selection, and which are clinically accessi-

ble. 

SCOPE 

In the following work, I work to improve the measure of CIN to achieve the ideal 

qualities described above. I address the role of karyotype selection in masking karyotype 

heterogeneity, confounding the direct inference of mis-segregation rates, and develop a 

multidisciplinary approach to address this. This is validated experimentally and applied to 

tumor-derived samples. I also explore different models of karyotype selection and identify 

the predominant ongoing mode of natural selection acting on aneuploid karyotypes in 

tumors (Chapter 2). I further explore the algorithmic principles of CIN on which this ap-

proach is based to better define the extent to which chromosome mis-segregation rates 

are capable of remodeling karyotypes over a single division (Appendix 1). I then compare 

this new approach to measuring CIN against other measures in a comprehensive survey 

of CIN measures across several specific CIN phenotypes in inducible cell line models 

(Chapter 3). I also outline CINFER, a user-friendly tool which I developed to advance the 

rapid, selection-aware, measure of CIN (Chapter 4). Lastly, I discuss how this work will 

contribute to the study of CIN and its measurement in the clinic and look ahead to what 

the next generation of CIN measurement will bring (Chapter 5).  
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Figure 1.1 — CIN’s origins and rise as a field  
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Figure 1.2 — The functional distribution of mis-segregation rates in cancer 
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Table 1.1 — Methods of CIN measurement 

Modality Method Metric 
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Imaging 
Microscopic 

readout of abnor-
mal divisions. 

% abnormal mitoses 
% abnormal anaphases 

% phase with defect 
# chromosomes with defect per cell 

# spindle poles per cell 

✔ ✘ ✔ 

Imaging 
Flow Cytometry 

Phenotypic re-
porter of mis-seg-

regation 

% cells w/wo reporter 
Mis-segregation rate (MDD) 

✘ ✘ ✘ 

Cytogenetics 
Chromosome 
spread counts 

Standard deviation or variance of 
chromosome counts 

% of cells with non-modal chromo-
some counts 

✘ ✘ ✘ 

Imaging 
Cytogenetics 

Incidence of micro-
nuclei 

% of cells with micronuclei 
# micronuclei per cell 

✘ ✘ ✔ 

Cytogenetics 
Sequencing 
Simulation 

Karyotype diversity 

Standard deviation or variance of 
chromosome counts 

# of non-modal whole or segmental 
chromosome alterations 

% of cells with non-modal chromo-
some alterations 

✘ ✘ ✔ 

Simulation-aided inference ✘ ✔ ✔ 

Cytogenetics 
FISH probe diver-

sity 

Standard deviation or variance of 
probe counts 

% of cells with non-modal probe 
counts 

Mis-segregation rate (MDD) 

✘ ✘ ✔ 
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2 
QUANTIFYING CHROMOSOMAL INSTABILITY FROM 

INTRATUMORAL KARYOTYPE DIVERSITY USING AGENT-BASED 

MODELING AND BAYESIAN INFERENCE 

Adapted from Lynch et al. eLife. 2022. (Manuscript 4) 

 

 

ABSTRACT 

Chromosomal instability (CIN)—persistent chromosome gain or loss through abnor-

mal mitotic segregation—is a hallmark of cancer that drives aneuploidy. Intrinsic chromo-

some mis-segregation rate, a measure of CIN, can inform prognosis and is a promising 

biomarker for response to anti-microtubule agents. However, existing methodologies to 

measure this rate are labor intensive, indirect, and confounded by selection against an-

euploid cells, which reduces observable diversity. We developed a framework to measure 

CIN, accounting for karyotype selection, using simulations with various levels of CIN and 

models of selection. To identify the model parameters that best fit karyotype data from 

single-cell sequencing, we used approximate Bayesian computation to infer mis-segrega-

tion rates and karyotype selection. Experimental validation confirmed the extensive chro-

mosome mis-segregation rates caused by the chemotherapy paclitaxel (18.5±0.5/divi-

sion). Extending this approach to clinical samples revealed that inferred rates fell within 
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direct observations of cancer cell lines. This work provides the necessary framework to 

quantify CIN in human tumors and develop it as a predictive biomarker. 

INTRODUCTION 

Chromosomal instability (CIN) is characterized by persistent whole-chromosome 

gain and loss through mis-segregation during cell division. Genome instability is a hall-

mark of cancer (252) and one type, CIN, is the principal driver of aneuploidy, a feature of 

~80% of solid tumors (253–255). CIN potentiates tumorigenesis (245, 256, 257) and as-

sociates with therapeutic resistance (200, 240, 258, 259), metastasis (238), and poor 

survival outcomes (182, 237, 260). Thus, CIN is an important characteristic of cancer 

biology. Despite its importance, CIN has not emerged as a clinical biomarker, in part be-

cause it is challenging to quantify.  

Although CIN has classically been characterized as binary—tumors either have it 

or not—recent evidence highlights the importance of the rate of chromosome mis-segre-

gation and the specific aneuploidies it produces. For example, clinical outcomes partially 

depend on aneuploidy of specific chromosomes (221, 261, 262). Further, higher levels of 

CIN suppress tumor growth when they surpass a critical threshold, thought to be due to 

lethal loss of essential genes and irregular expression due to imbalanced gene dosage 

(245, 249, 263, 264). Moreover, baseline CIN may predict chemotherapeutic response to 

paclitaxel (265, 266) and is proposed to both promote detection by or evasion from the 

immune system (267, 268). No single or standardized analytically valid measure of CIN 

has emerged and this gap has precluded its clinical validation as a prognostic or predic-

tive biomarker.  
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Prior measures of CIN use various means to compare levels in tumors or popula-

tions, but do not establish a standardized quantitative rate. These prior measures include 

histologic analysis of mitotic defects (237, 269), fluorescence in-situ hybridization (FISH) 

with probes to detect individual chromosomes (122), and gene-expression methodologies 

like CIN scores (187). While these methods are readily accessible, they have significant 

drawbacks for clinical application. FISH and mitotic visualization approaches are labori-

ous. Direct visualization of mitotic defects to measure CIN is only possible in the most 

proliferative tumors where enough cells are captured in short-lived mitosis. FISH typically 

quantifies only a subset of chromosomes, which will be misleading if there is bias toward 

specific chromosome gains/losses (270). While gene expression scores are proposed as 

indirect measures of CIN, they are not specific to CIN and correlate highly with prolifera-

tion and structural aneuploidy (187, 189).  

Single-cell sequencing promises major advances in quantitative measures of CIN 

by displaying cell-cell variation for each chromosome across hundreds of cells (191, 194). 

However, selection poses another complication. To date, single-cell analyses have iden-

tified surprisingly low cell-cell karyotype variation, even when mitotic errors are directly 

observed by microscopy (138, 139, 194, 196, 271). These observations highlight the con-

founding role of selection against aneuploid karyotypes in measuring CIN in human tu-

mors. Indeed, selection reduces karyotype variance in cancer cell populations that directly 

exhibit mitotic errors (258, 259, 272, 273). Here, we seek to overcome this gap by mod-

eling chromosomal instability and explicitly considering the evolutionary selection of an-

euploid cells, to derive a quantitative measure. 
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We describe a quantitative framework to measure CIN by sampling population 

structure and cell-cell karyotypic variance in human tumors, accounting for selection on 

aneuploid karyotypes. We built our framework on the use of phylogenetic topology 

measures to quantify underlying evolutionary processes (229); in this case to quantify 

CIN from both the diversity and the aneuploid phylogeny within a tumor. Using an agent-

based model of CIN, we determine how distinct types and degrees of selective pressure 

shape the karyotype distribution and population structure of tumor cells at different rates 

of chromosome mis-segregation. We then use this in silico model as a foundation for 

parameter inference to provide a quantitative estimate of CIN as the numerical rate of 

chromosome mis-segregation per cell division. We apply this model to quantify CIN 

caused by the chemotherapeutic paclitaxel in culture. Next, using existing single-cell 

whole-genome sequencing data (scDNAseq), we measure CIN in cancer biopsy and or-

ganoid samples. As a whole, this work provides a framework to quantify CIN in human 

tumors, a first step towards developing CIN as a prognostic and predictive biomarker.  

RESULTS  

A framework for modeling CIN and karyotype selection  

To assess intratumoral CIN via cell-cell karyotype heterogeneity, we considered 

how selection on aneuploid karyotypes impacts observed chromosomal heterogeneity 

within a tumor. By modeling fitness of aneuploid cells, we observe chromosomal variation 

in a population of surviving cells. The selective pressure of diverse and specific aneu-

ploidies on human cells has not been, to our knowledge, directly measured. Therefore, 

we employ previously developed models of selection. 
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In models of CIN, fit karyotypes are selected while unfit aneuploid karyotypes are 

eliminated over time (243, 261, 262, 272). We use two previously proposed models of 

aneuploidy-associated cellular fitness, as well as hybrid and neutral selection models. 

The Gene Abundance model is based on the relatively low incidence of aneuploidy in 

normal tissues and assumes cellular fitness declines as the cell’s karyotype diverges from 

a balanced euploid karyotype (226, 273). When an individual chromosome diverges from 

euploid balance (2N, 3N, 4N, for example), its contribution to cellular fitness is weighted 

by its abundance of genes (Figure 2.1A, left). Alternatively, the Driver Density model as-

sumes that each chromosome’s contribution to cellular fitness is weighted by its ratio of 

Tumor suppressor genes, Oncogenes, and Essential genes (TOEs)(221, 224). For ex-

ample, Driver Density selection will favor loss of chromosomes with many tumor suppres-

sors and favor gain of chromosomes replete with oncogenes and essential genes (Figure 

2.1A, right). The hybrid averaged model accounts for both karyotypic balance and TOE 

densities (Figure 2.1A, middle). Using these fitness models, we assigned chromosome 

scores to reflect each chromosome’s value to cellular fitness (Figure 2.1B, Table 2.1), the 

sum of which represent the total fitness value for the cell, relative to a value of 1 for a 

euploid cell. Further, we scaled the impact of cell fitness with a scaling factor, S, ranging 

from 0 (no selection) to 100 (high selection). While these models are approximations, they 

are nevertheless useful to estimate how mis-segregation and selective pressure cooper-

ate to mold karyotypes in the cell population.  

 We employed these selection models in an agent-based model of exponential pop-

ulation growth wherein each cell has its own karyotype (Figure 2.1-2.2). Briefly, simula-

tions started with 100 euploid cells and were run in discrete time steps with variable rates 
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of selective pressure, S, and rates of chromosome mis-segregation (Pmisseg, see defini-

tions in Table 2.2). The rate—or probability—of mis-segregation events, Pmisseg, is the 

measure of CIN. During each time step, cells have a Pdivision (=0.5 for euploid) chance of 

dividing. Each dividing cell has a Pmisseg chance of improper segregation of each chromo-

some. Segmental chromosome breaks occur with a probability Pbreak, set at 0 or 0.5. After 

division, fitness (F) of each daughter is assessed. Cells are removed from the population 

if any given chromosome has copy number 0 or >6. The Pdivision value of the remaining 

viable cells is adjusted by the cell’s fitness under selection (FS). Due to computational 

limitations, pseudo-Moran or Wright-Fisher models are employed to limit the modeled cell 

population (Figure 2.1C,D). These limits did not significantly affect the measures ex-

tracted from these populations (Figure 2.3). Thus, these models simulate an evolving 

population of aneuploid cells under given rates of CIN, Pmisseg, and models and strength 

of selection.  

Evolutionary dynamics imparted by CIN 

To understand the interplay between CIN and selection, we simulated 100 steps 

of cell growth with CIN under each selection model. We varied the rate of CIN (Pmisseg,c ∈ 

[0, 0.001… 0.05] per chromosome; or 0 – 2.3 chromosome mis-segregations per division) 

and selective pressure ranging from none to heavy selection (S ∈ [0, 2… 100]). As ex-

pected the simulated cell number increases rapidly to the pseudo-Moran cap of 3000, 

where it remains (Figure 2.4A). As displayed in Figure 2.4B, diversity of the cell popula-

tion, expressed as mean karyotypic variance increases over time, but also depends on 

mis-segregation rate, and selection levels (Figure 2.4B). As expected, high mis-segrega-

tion rates (Pmisseg, Y axis) and low selection (S=0; top row) enhance the variance of the 
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population. Further, without selection (S=0; top row) all models returned comparable pro-

files over time, resembling neutral selection. However, when selective pressure is applied 

(S>0), the distinct profiles appear. The abundance model (first column) negatively selects 

against all aneuploid karyotypes and yields low heterogeneity that increases modestly 

with mis-segregation rate. With the Driver model (second column), there is a sharp in-

crease in heterogeneity even at low mis-segregation rates, as this model favors specific 

aneuploid states that maximizes oncogenes and minimizes tumor suppressors. The Hy-

brid model falls between the other two. Results were not specific to the pseudo-Moran 

process of capping at 3000 cells—dynamics were similar in the constant-population 

Wright-Fisher model (Figure 2.5A,B). These data illustrate how CIN and selection operate 

together to shape the karyotype diversity in the cell population. 

High levels of selection against aneuploid cells are expected to impede cell growth. 

To visualize this, we quantified the population of viable cells with distinct models (Figure 

2.4C). As expected with the Abundance model at S=10 and S=100, cells proliferated more 

slowly with higher rates of mis-segregation. By contrast, the Driver model saw no growth 

defect as they favored specific aneuploid states that are easily reached with missegrega-

tion. As before, the Hybrid model, is intermediate, and findings are not impacted by 

pseudo-Moran or Wright-Fisher restrictions on cell number (Figure 2.5C). 

To further assess model dynamics, we examined time-course of average cellular 

ploidy—the number of chromosomes divided by 23.  In many cases, the mean ploidy of 

the populations tend to increase over time (Figure 2.4D, Figure 2.5D), particularly in the 

absence of selection (S=0; top). This is likely due to a higher permissiveness to chromo-

some gains than losses in our model (since cells ‘die’ with nullisomy or any chromosome 
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> 6, the optimum is 3.0). With selection (S=10; S=100 rows), the models diverge. In the 

abundance model, populations remain near diploid. With the Driver model, the average 

ploidy increases more rapidly due to favoring aneuploidy states that favor high oncogenes 

and low tumor suppressors, consistent with previous computational models built on chro-

mosome-specific driver densities (221, 224). Under the Hybrid model, ploidy increases 

modestly. Similar effects are seen with the constant-population Wright-Fisher model (Fig-

ure 2.5D). In summary, selection and mis-segregation cooperate to shape the aneuploid 

karyotypes diversity, cell proliferation and average ploidy in a population of cells, or a 

human tumor. Further, sampling karyotypes in a cell population does not allow direct de-

termination of mis-segregation rates, as their diversity is influenced by other factors such 

as selective pressure, selection modality, and time.  

In some tumors, genome doubling occurs early in tumor initiation relative to other 

copy number changes (274, 275). Genome doubling is accomplished, for example, by 

endoreduplication, by failed cytokinesis, or by cell-cell fusion. Genome doubling buffers 

against loss of chromosomes and thereby favors aneuploidy. To determine how genome 

doubling impacts evolution in our model, we compared diploid and tetraploid founders 

(Figure 2.4E-G). Both diploids and tetraploids tend to converge towards the near-triploid 

state (ploidy ~ 3), as observed in many human cancers (276), though this is restrained to 

a degree with the Abundance and Hybrid models. Compared with diploid cells, tetraploidy 

buffered against the negative effects of cellular fitness in the Abundance model, despite 

generating similar levels of diversity over time (Figure 2.4F,G)— this is more pronounced 

when comparing Pmisseg = 0.1 in tetraploids versus Pmisseg = 0.2 in diploids to match the 

number of chromosome mis-segregations per division. This is consistent with the idea 
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that tetraploidy serves as an intermediate enabling a near-triploid karyotype that is com-

mon in many cancers (275, 277). By contrast, in the Driver model, tetraploidy did not 

provide a selective advantage to high-CIN tumors (Figure 2.4F). Similar fitness, karyotype 

diversities, and ploidy increases were obtained with a Wright-Fisher model of population 

growth (Figure 2.5E-G, Figure 2.6). 

Taken together, the agent-based model recapitulates expected key aspects of tu-

mor evolution, lending credence to our model. Further, they illustrate the difficulty of in-

ferring mis-segregation rates directly from assessing variation in karyotypes in human 

cancer. Nevertheless, this model serves provides a framework to incorporate selection to 

measure CIN through quantitative inference from the observed karyotypes, as we will 

demonstrate. 

Long-term karyotype diversity depends profoundly on selection modality 

Some current measures of CIN are derived from karyotype diversity in the popula-

tion. Yet, our model suggests that selection pressure will profoundly shape this diversity. 

To further understand the nature of karyotype diversity under selection, we evaluated 

their long-term dynamics, whether they exhibit clonality, and whether populations simu-

lated under each model converge on a common karyotype.  

We simulated diploid and tetraploid populations for 3000 time steps at a fixed mis-

segregation rate, in an experimentally reported range, allowing for fragmentation of chro-

mosome arms (Pmisseg = 0.003, Pbreak = 0.5) (137, 138) and S ∈ [1,25] (Figure 2.7A). We 

visualized copy-number heatmaps indicating karyotypes of sampled cells from the popu-

lation. As expected, population diversity is limited under the Abundance model (Figure 

2.7B). Even after 3000 time steps, only a small number of unique alterations and sub-
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clonal alterations (+13p/-15p/-22p) existed, likely passenger alterations as they offer no 

fitness advantage in this model. Moreover, the karyotype average of 1500 cells across 5 

replicates resembled a diploid karyotype (Figure 2.7C, row 1), indicating that the Abun-

dance model provides stabilizing selection around the euploid karyotype. In fact, popula-

tions simulated under this model with elevated selection (S=25) quickly reache a low, 

steady-state level of karyotype diversity and fitness while those with the unmodified se-

lection values (S=1) take a longer time to reach this steady-state and have similar levels 

of karyotype diversity and fitness as the other models (Figure 2.8B,C). To identify any 

contingencies that may affect these associations, we performed the same simulation us-

ing several variants of our model. We found this steady state to be consistent for tetraploid 

cells as well as when we eased the upper ploidy constraint from nc = 6 to an extreme nc 

= 10, when we imposed a severe, 90% fitness reduction for all cells with a haploidy, and 

when we simulated populations under the Wright-Fisher model (Figure 2.7C, rows 2-4). 

The Driver Density and Hybrid models generate much more diversity (Figure 2.7B) 

but nevertheless converge by 3000 timesteps (2.8C). Without selection (neutral model), 

there is high diversity and no convergence over time. Taken together, these demonstrate 

a high dependence on the model of selection. However, the models are not highly de-

pendent on ploidy constraints, haploid penalties, or on selection of Pseudo-Moran or 

Wright-Fisher restriction of cell numbers. Taken together, long-term populations are 

strongly shaped by the model of karyotype selection for a given Pmisseg, but relatively in-

sensitive to other particular features of the model. This justifies our approach henceforth 

of varying only the selection model, the degree of selection (S), and Pmisseg to infer pa-

rameters from data via phylogenetic topology and Bayesian inference. 
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Topological features of simulated phylogenies delineate CIN rate and karyotype 

selection 

Given a model capable of recapitulating diversity and selective pressures, next we 

wish to infer Pmisseg as a measure of CIN from an observed population of cells. Phyloge-

netic trees provide insights into evolutionary processes of genetic diversification and se-

lection. Moreover, the topology of the phylogenetic tree has been used as a quantitative 

measure of the underlying evolutionary processes (231, 232, 278–280).  

Here, chromosome mis-segregation gives rise to karyotype heterogeneity, and the 

population of cells is then shaped by selection. To evaluate this, we use chromosome 

copy number-based phylogenetic reconstruction, since mutation rates are not high 

enough in tumors to reliably infer cellular relationships, particularly with low-copy se-

quencing. Once phylogenies are reconstructed from simulated and experimental popula-

tions, the topological features phylogenies can be compared. These features include 

‘cherries’—two tips that share a direct ancestor—and ‘pitchforks—a clade with three tips 

(Figure 2.9A). Additionally, we considered a broader metric of topology, the Colless index, 

which measures the imbalance or asymmetry of the entire tree. To understand how these 

measures are affected by selection in simulated populations, we reconstructed phyloge-

nies from 300 random cells from each population simulated with a range of selective 

pressures taken at 60 time steps (~30 divisions under Hybrid selection; Figure 2.9B). As 

seen previously, aneuploidy and mean karyotypic variance (MKV) decrease with selective 

pressure, a trend that is robust at high mis-segregation rates (Figure 2.9C). By contrast, 

Colless indices increase with mis-segregation rates and selective pressures, as the re-

sulting variation and selection generate phylogenetic asymmetry. Accordingly, this 
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imbalance is apparent in phylogenetic reconstructions of simulated populations (Figure 

2.9D). Cherries, by contrast, decrease with selection due to selection against many an-

euploidies (Figure 2.9C). Pitchforks seemed less informative. Therefore, we tentatively 

selected 4 phylogenetic parameters that can retain information about chromosome mis-

segregation—aneuploidy, MKV, Colless, and Cherries. 

To characterize how well the four measures retain information about the simulation 

parameters, we performed dimensionality reduction with measures of karyotype hetero-

geneity alone (MKV and aneuploidy) alone and adding Colless and cherries—measures 

of phylogenetic topology (Figure 2.9E). This analysis indicates that when considering het-

erogeneity alone simulations performed under high CIN/high selection (yellow) and low 

CIN/low selection (red) associate closely, meaning these measures of heterogeneity are 

not sufficient to distinguish these disparate conditions (Figure 2.9E, left). These similari-

ties arise because high selection can mask the heterogeneity expected from high CIN. 

By contrast, combining measures of heterogeneity with those of phylogenetic topology 

can discriminate between simulations with disparate levels of CIN and selection (Figure 

2.9E, right). This provides further evidence that measures of heterogeneity alone are not 

sufficient to infer CIN due to the confounding effects of selection, particularly when the 

nature of selection is unclear or can vary. Together these results indicate that phyloge-

netic topology preserves information about underlying levels of selective pressure and 

rates of chromosome mis-segregation. Further, phylogenetic topology of single-cell pop-

ulations may be a suitable way to correct for selective pressure when estimating the rate 

of chromosome mis-segregation from measures of karyotype diversity.   
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Experimental chromosome mis-segregation measured by Bayesian inference 

To experimentally validate quantitative measures of CIN, we generated a high rate 

of chromosome mis-segregation with a clinically relevant concentration of paclitaxel 

(Taxol) over 48 hours (Figure 2.10A). We treated CAL51 breast cancer cells with either a 

DMSO control or 20 nM paclitaxel, which generates widespread aneuploidy due to chro-

mosome mis-segregation on multipolar mitotic spindles (249), verified in this experiment 

(Figure 2.11A). At 48h cells will have undergone 1-2 mitoses and, consistent with abnor-

mal chromosome segregation, we observe broadened DNA content distributions by flow 

cytometry (Figure 2.11B). Using low-coverage scDNAseq data, we characterized the kar-

yotypes of 36 DMSO- and 134 paclitaxel-treated cells. As expected, virtually all cells had 

extensive aneuploidy after paclitaxel, in contrast with low variance in the control (Figure 

2.10B). Additionally, the mean of the resultant aneuploid karyotypes for each chromo-

some still resembled those of bulk-sequenced cells, highlighting that bulk-sequencing is 

an ensemble average, and does not detect variation in population aneuploidy, particularly 

with balanced mis-segregation events (Figure 2.10B, single-cell mean and bulk). In quan-

tifying the absolute deviation from the modal control karyotype in each cell, and assuming 

a single mitosis, cells exposed to 20 nM paclitaxel mis-segregate 18.5 ± 0.5—a Pmisseg of 

~0.42 considering the control’s sub-diploid modal karyotype (Figure 2.10C). The majority 

of these appeared to be whole-chromosome mis-segregations (Figure 2.12).  

In this instance, we were able to estimate mis-segregation rate by calculating ab-

solute deviation from the modal karyotype after a single aberrant cell division. However, 

such an analysis would not be possible for long-term experiments, or real tumors, where 

new aneuploid cells may be subject to selection. Accordingly, we sought to infer the 
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parameters of this experiment—the mis-segregation rate of 18.5 chromosomes per divi-

sion and low selection—using only measures of aneuploidy, variance, and phylogenetic 

topology. To display this, we used dimensionality reduction to ensure that observed 

measures from the paclitaxel-treated Cal51 population fell within the space of those ob-

served from simulated populations over 2 steps under the Hybrid model. The experi-

mental data mapped to those from simulations using high mis-segregation rates and rel-

atively low selection (red point, Figure 2.10D). However, this comparison does not provide 

a quantitative measure of CIN. Instead, parameter inference via approximate Bayesian 

computation (ABC) is well suited for this purpose.  

By deriving phylogeny metrics from simulated populations under a wide-range of 

distributions of evolutionary parameters, ABC identifies evolutionary parameters most 

consistent with the data—the posterior probability distribution. We used ABC with simu-

lated data to infer the chromosome mis-segregation rate and selective pressure in the 

paclitaxel-treated cells (281). Importantly, this data has directly observed rates of mis-

segregation, which provide a gold standard benchmark to optimize ABC inference. 

One key aspect of ABC is the selection of optimal phylogenetic summary statistics. 

A small number of summary statistics is optimal and larger numbers impair the model 

(281). To address this, a common approach is to identify a small set of summary statistics 

that achieve the best inference. Here, we used the experimentally observed mis-segre-

gation rate as a benchmark to optimally select a panel of measures for parameter infer-

ence (Figure 2.13) and selected the following four metrics to use concurrently in our ABC 

analysis: mean aneuploidy, MKV, the Colless index (a phylogenetic balance index) and 

number of cherries (normalized population size). In doing so, this analysis inferred a 
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chromosome mis-segregation rate of 0.396 ± 0.003 (or 17.4 ± 0.1 chromosomes; mean 

± SE), which compares favorably with the experimentally observed rate of 18.5 ± 0.5 

(Figure 2.10E; dashed line represents experimental rate, white ‘+’ the inferred rate). The 

distribution of accepted values for selection was skewed toward lower pressure (21 ± 0.4; 

mean ± SE), meaning that karyotype selection had little bearing on the result at this time 

point, consistent with the absence of selection in a 48-hour experiment.  

Interestingly, the incidence of nullisomy in the simulated population was higher 

than in the paclitaxel-treated populations at the observed mis-segregation rate (Figure 

2.14A). This could be due to spindle pole clustering, a recovery mechanism often seen in 

paclitaxel treated cells that causes non-random chromosome mis-segregations. A poste-

rior predictive check of the summary statistics demonstrates how each contributes to the 

inference of CIN rate (Figure 2.14B). In short, this experimental case validated ABC-de-

rived mis-segregation rate as a measure of CIN, with an experimentally determined mis-

segregation rate. Importantly, prior estimations of mis-segregation rate selective pressure 

were not required to develop this quantitative measure of CIN. 

Together, these data indicate that combining simulated and observed metrics of 

population diversity and structure with a Bayesian framework for parameter inference is 

a flexible method of quantifying the evolutionary forces associated with CIN. Moreover, 

this method reveals the hitherto unreported potential extent of chromosome mis-segre-

gation induced by a clinically relevant concentration of the successful chemotherapeutic 

paclitaxel consistent with the measured mis-segregation from non-pharmacologically in-

duced multipolar divisions (282). 
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Minimum sampling of karyotype heterogeneity 

 The cost of high-throughput DNA sequencing of single cells is often cited as a 

limitation to clinical implementation (283). In part, the cost can be limited by low-coverage 

sequencing which is sufficient to estimate the density of reads across the genome. Fur-

ther, it may be possible to minimize the number of cells that are sampled to get a robust 

estimate of CIN, though sampling too few cells may result in inaccurate measurements. 

Accordingly, we determined how sampling impacts measurement of mis-segregation 

rates using approximate Bayesian computation. We first took 5 random samples from the 

population of paclitaxel-treated cells each at various sample sizes (Figure 2.15A). We 

then inferred the mis-segregation rate in each sample and identified the sample size that 

surpasses an average of 90% accuracy and a low standard error of measurement. We 

found that even small sample sizes can accurately infer the mis-segregation rate, in this 

context, with a low standard error (Figure 2.15B-D). A sample size of 60 cells produced 

the most accurate measurement at 99.5% and a standard error of 0.008 (± 0.35 chromo-

somes). We repeated this analysis using simulated data from the Hybrid selection model 

and a range of mis-segregation rates spanning what is observed in cancer and non-can-

cer cultures (Pmisseg ≤ 0.02; see below). We again found a range of sample sizes whose 

inferred mis-segregation rates underestimate the known value from those simulations (n 

∈	[20, 40… 180]; Figure 2.15E,F). Across all mis-segregation rates and selective pres-

sures, random samples of 200 cells had a median percent accuracy of 90% and median 

standard error of 0.0003 (± 0.0138 chromosomes per division). The difference in optimal 

sample sizes between the paclitaxel-treated population and the simulated population is 

notable and likely due to the presence of ‘clonal’ structures in the simulated population. 
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While the paclitaxel treatment resulted in a uniformly high degree of aneuploidy and little 

evidence of karyotype selection, the simulated populations after 60 steps (~30 genera-

tions) have discrete copy number clusters that may not be captured in each random sam-

ple. To verify this, we repeated the analysis using only data from the first time step, prior 

to the onset of karyotype selection (Figure 2.15H). In this case, we found that the sample 

size needed to achieve a median 90% accuracy over all simulations in this context is 100 

cells, at which point the standard error for Pmisseg is 0.0068 (placing measures within ± 

0.31 chromosomes per division; Figure 2.15I,J). Thus, a larger number of cells is required 

in the context of long-term karyotype selection than a more acute time scale, such as we 

see with paclitaxel.  

In conclusion, we recommend using 200 cells from a single sampled site which, at 

biologically relevant time scales and rates of mis-segregation, provides ≥90% accuracy. 

These data represent, to our knowledge, the first analysis of how sample size for single-

cell sequencing affects the accuracy and measurement of chromosome mis-segregation 

rates.  

Inferring chromosome mis-segregation rates in tumors and organoids 

To determine if this framework is clinically applicable, we employed previously pub-

lished scDNAseq datasets derived from tumor samples and patient-derived organoids 

(PDO) (138, 191). Importantly, the data from Bolhaqueiro et al. include sample-matched 

live cell imaging data in colorectal cancer PDOs, with direct observation of chromosome 

mis-segregation events to compare with inferred measures. We established our panel of 

measurements on these populations (Figure 2.16A) and used these to tune the prior dis-

tribution of time steps and the rejection threshold for ABC. In sensitivity analysis, 20 steps 
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or greater was sufficient to establish stable estimates of Pmisseg and selection, S (Figure 

2.17A,B)—we chose a window of 40-80 steps for further analysis. For rejection thresholds 

0.05 and smaller, the inferred mis-segregation rates remained steady (Figure 2.17C). 

With these model parameters chosen, we evaluated the different selection models, and 

found that the Abundance model resulted in simulated data that best resembled experi-

mental data, for both exponential and constant-population dynamics (Table 2.3). Given 

that the Abundance model is the most biologically relevant, we will use data simulated 

under this model in our prior dataset for inference.  

Having confirmed the summary statistics from these samples were within the 

space of the simulation data with our chosen priors (Figure 2.16B), we performed ABC 

analysis on these datasets to infer rates of chromosome mis-segregation and levels of 

selection pressure and display the joint posterior distributions as 2D density plots (Figure 

2.16C,D; Figure 2.18; Figure 2.19). Figure 6C illustrates the results for two individual co-

lon organoid lines, showing the distribution of parameters used for simulations that gave 

the most similar results. With ABC, inferred parameters fall within rates of mis-segregation 

of about 0.001 to 0.006. Applied to a near-diploid cell, this translates to a range of about 

5-38% of cell divisions having one chromosome mis-segregation. Importantly, these in-

ferred rates of chromosome mis-segregation fall within the range of approximated per 

chromosome rates experimentally observed in cancer cell lines and human tumors (Fig-

ure 2.16E; Table 2.5) (122, 136, 137, 157, 237, 249, 284–286). Higher inferred mis-seg-

regation rates tended to coincide with lower inferred selection experienced in these sam-

ples (Figure 2.16F). Posterior distributions in these samples were skewed toward high 
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selection (S) indicating the presence stabilizing selection in all cases, where the average 

of the distributions of some samples were slightly lower or higher (Figure 2.19).  

To confirm the relevance of the inferred scalar exponent we performed our model 

selection scheme using only the simulation data with unmodified fitness values (S=1; Ta-

ble 2.4). In this case we found that the inferred mis-segregation rates for most samples 

fell well below the expected range found in cancer cell lines (Figure 2.16E). Additionally, 

when we inferred mis-segregation rates and selection in the early timepoint of longitudi-

nally sequenced organoid clones from Bolhaqueiro et al., 2019, the composition of the 

resultant populations simulated using these inferred characteristics better resembled the 

late-timepoint organoid data than those with unmodified selection values (S=1; Figure 

2.20; Figure 2.21).   

As further validation for mis-segregation rates, we compared these inferred rates 

from CRC PDOs with those directly measured in live imaging from Bolhaqueiro et al., 

2019. Though mis-segregation cannot be directly inferred from microscopy, diversity 

should correlate with the observed rate of mitotic errors. There was a strong correlation 

but for two outliers—14T and U1T (Figure 2.16G). In fact, when adjusting to the same 

scale and correcting for cell ploidy, these data follow a strong positive linear trend with a 

slightly lower slope than a 1:1 correlation, which could reflect an overestimation of mis-

segregation rates in the microscopy data (Figure 2.16H). Particularly with lagging chro-

mosomes, despite a chromosome’s involvement in an observed segregation defect, it 

may end up in the correct daughter cell. Overall, these results indicate that the inferred 

measures using approximate Bayesian computation and scDNAseq account for selection 

and provide a quantitative measure of CIN.   
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DISCUSSION 

The clinical assessment of mutations, short indels, and microsatellite instability in 

human cancer determined by short-read sequencing currently guide clinical care. By con-

trast, CIN is highly prevalent, yet has remained largely intractable to clinical measures. 

Single-cell DNA sequencing now promises detailed karyotypic analysis across hundreds 

of cells, yet selective pressure suppresses the observed karyotype heterogeneity within 

a tumor. Optimal clinical measurement of CIN may be achieved with scDNAseq, but must 

additionally account for selective pressure, which reduces karyotype heterogeneity. 

Despite the major limitations with current measures of CIN, emerging evidence 

hints at its utility as a biomarker to predict benefit to cancer therapy. For example, CIN 

measures appear to predict therapeutic response to paclitaxel (251, 265, 266). Neverthe-

less, existing measures of CIN have had significant limitations. FISH and histological 

analysis of mitotic abnormalities are limited in quantifying specific chromosomes or re-

quiring highly proliferative tumor types, such as lymphomas and leukemia. Gene expres-

sion profiles are proposed to correlate with CIN among populations of tumor samples 

(187), though they happen to correlate better with tumor proliferation (189); in any case, 

they are correlations across populations of tumors, not suitable as an individualized diag-

nostic. We conclude that scDNAseq is the most complete and tractable measure of cel-

lular karyotypes, and sampling at least 200 cells, coupled with computational models and 

ABC, promises to offer the best measure of tumor CIN. 

Computational modeling of aneuploidy and CIN has been used to explore evolu-

tion in the context of numerical CIN and karyotype selection (196, 215, 223, 224, 287, 

288). Gusev and Nowak lay the foundation for mathematical modeling of CIN. While 
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Gusev focused on the karyotypic outcomes of CIN, Nowak considered the effects of CIN-

inducing mutations and the subsequent rate of LOH. Neither considered the individual 

fitness differences between specific karyotypes (215, 287, 288). This was improved in 

Laughney et al., 2015 and Elizalde et al., 2018 where the authors leveraged the chromo-

some scores derived in Davoli et al., 2013, which enable the inclusion of oncogenes and 

tumor suppressors in models of CIN as we have done. These studies have provided im-

portant insights such as the role of whole-genome doubling as an evolutionary bridge to 

optimized chromosome stoichiometry. Yet the populations derived in these studies tend 

to vary to a greater degree than observed with scDNAseq, as they do not model strong 

selection against aneuploidy. Further they do not attempt to use their models to measure 

CIN in biological samples. Here, we build on these models by considering, in addition to 

the selection on driver genes, the stabilizing selection wrought by chromosomal gene 

abundance. Further, we consider that the magnitude of selection pressure may not be a 

constant and implement a modifier to tune selection in our models. Lastly, we use our 

models as a quantitative measure of CIN that accounts for this selection.   

Previous studies using single-cell sequencing identified surprisingly low karyotypic 

variance in human tumors including breast cancer (194, 196, 271) and colorectal and 

ovarian cancer organoids (138, 139). It has been difficult to understand these findings in 

the light of widespread CIN in human cancer (226, 245, 247, 262, 289). The best expla-

nation of this apparent paradox is selection, which moderates karyotypic variance. Ac-

counting for this, we can infer rates of chromosome mis-segregation in tumors or PDOs 

well within the range of rates observed microscopically in cancer cell lines. Additionally, 
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no previous work, to our knowledge, has estimated the required sample size to infer CIN 

from scDNAseq data.  

As described by others (277, 284), and consistent with our findings, early emer-

gence of polyploid cells can markedly reduce apparent selection, leading to an elevated 

karyotype diversity over time. While we do not explicitly induce chance of whole genome 

doubling (WGD) events in simulations, populations that begin either diploid or tetraploid 

converge on near-triploid karyotypes over time, consistent with the notion that WGD can 

act as an evolutionary bridge to highly aneuploid karyotypes. Notably, our analysis indi-

cates the samples with apparent polyploidy experienced among the lowest levels of kar-

yotype selection. 

In some early studies, CIN is considered a binary process—present or absent. We 

assumed that CIN measures are scalar, not binary, and measure this by rate of chromo-

some mis-segregation per division. A scalar is appropriate if, for example, there was a 

consistent probability of chromosome mis-segregation per division. However, we recog-

nize that some mechanisms may not well adhere to this simplified model of CIN. For 

example, tumors with centrosome amplification may at times undergo bipolar division 

without mis-segregation, or, at other times, a multipolar division with extensive mis-seg-

regation. Further, it is possible that some mechanisms may have correlated mis-segre-

gations such that a daughter cell that gains one chromosome is more likely to gain other 

chromosomes, rather than lose them. Another possibility is that CIN could result in the 

mis-regulation of genes that further modify the rate of CIN. Our model does not yet ac-

count for punctuated behavior or changing rates of CIN. Furthermore, while recent studies 

have reported non-random mis-segregation of chromosomes (157, 243), we did not 
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incorporate these biases into our models as these studies do not reach consensus on 

which chromosomes are more frequently mis-segregated, which may be model-depend-

ent. 

Our approach reconstructs phylogenetic trees via copy number variation (CNV) 

analysis. This approach may be suboptimal given the selection on aneuploid states and 

could be particularly problematic in the setting of convergent evolution. It is possible that 

this method results in low accuracy of the reconstructed phylogenies. Alternative ap-

proaches are possible but would likely require re-design of the scDNAseq assay to in-

clude spiked-in primers that span highly polymorphic regions on each chromosome. If this 

were done, these sequences could be read in all cells and single-nucleotide polymor-

phisms could track individual maternal and paternal chromosomes, allowing a means of 

reconstructing cell phylogeny independent of CNVs. Despite this limitation, our phyloge-

netic reconstructions did seem to allow inference of CIN measures consistent with directly 

observed rates of chromosome mis-segregation in our taxol-induced CIN model as well 

as several independent cancer PDO models and cell lines. 

 A final limitation of our approach is we used previous estimates of cellular selec-

tion in our agent-based model and used these selection models to infer quantitative 

measures of CIN. While this approach seems to perform well in estimates of mis-segre-

gation rates, we recognize that the selection models do not necessarily represent the real 

selective pressures on distinct aneuploidies. Future investigations are necessary to 

measure the selective pressure of distinct aneuploidies—a project that is now within tech-

nological reach. Selective pressures could also be influenced by cell type (205, 290–292), 

tumor cell genetics (293–297), and the microenvironment (246). 
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In summation, we developed a theoretical and experimental framework for quanti-

tative measure of chromosomal instability in human cancer. This framework accounts for 

selective pressure within tumors and employs Approximate Bayesian Computation, a 

commonly used analysis in evolutionary biology. Additionally, we determined that low-

coverage single-cell DNA sequencing of at least 200 cells from a human tumor sample is 

sufficient to get an accurate (>90% accuracy) and reproducible measure of CIN. This 

work sets the stage for standardized quantitative measures of CIN that promise to clarify 

the underlying causes, consequences, and clinical utility of this nearly universal form of 

genomic instability. 

MATERIALS AND METHODS 

Agent-based modeling 

Agent-based models were implemented using the agent-based platform, NetLogo 

6.0.4 (298).  

1. Underlying assumptions for models of CIN and karyotype selection 
1.1. Chromosome mis-segregation rate is defined as the number of chromo-

some mis-segregation events that occur per cellular division.  

1.2. Cell division always results in 2 daughter cells. 

1.3. Pmisseg,c is assigned uniformly for each cell in a population and for each chro-

mosome. 

1.4. Cells die when the copy number of any chromosome is equal to 0 or ex-

ceeding 6 unless otherwise noted. 

1.5. Steps are based on the rate of division of euploid cells. We assume a prob-

ability of division (Pdivision) of 0.5, or half of the population divides every step, for 

euploid populations. This probabilistic division is to mimic the asynchrony of 
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cellular proliferation and to allow for positive selection, where some cells may di-

vide more rapidly than their euploid ancestors. 

1.6. No chromosome is more likely to mis-segregate than any other. 

2. Chromosome-arm scores 

2.1. Gene Abundance Scores. The R package biomaRt v.2.46.3 was used to 

pull the chromosome arm location for each gene in Ensembl’s ‘Human genes’ da-

taset (GRCh38.p13). The number of genes on each chromosome arm were enu-

merated and Abundance scores were generated by normalizing the number of 

genes on each chromosome arm by the sum of all enumerated genes across chro-

mosomes. Chromosome arms with no recorded genes were given a score of 0. 

2.2. Driver Density Scores. Arm-level ‘TSG-OG-Ess’ scores derived in (221) were 

adapted for our purposes. These values were derived from a pan-cancer analysis 

(TCGA) of the frequency of mutation of these genes and their location in the ge-

nome. These scores correlate with the frequency with which chromosomes are 

found to be amplified in the genome. We adapted these scores by normalizing the 

published ‘TSG-OG-Ess’ score for each chromosome arm by the sum of all Charm 

scores. Chromosome arms with no published Charm score were given a score of 

0. We refer to these as TOE scores for our purposes. 

2.3. Hybrid Scores. Chromosome arm scores for the Hybrid selection model are 

the average of the chromosome arm’s Gene Abundance and Driver Density 

scores.  

3. Implementing karyotype selection 
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In each model, numerical scores are assigned to each chromosome, the sum of which 

represents the fitness of the karyotype (Figure 2.2B). At each simulation time step, fitness 

is re-calculated for each cell based on its updated karyotype. These fitness values deter-

mine if they undergo mitosis in the next round. However, the modality of selection 

changes how those karyotypes are assessed. Here, we implement 4 separate karyotype 

selection models 1) gene abundance, 2) driver density, 3) a hybrid gene abundance and 

driver density, and 4) neutral selection. The scores that are generated in each produce a 

fitness value (F) that can then be subjected to pressure (S) as described above. 

3.1. Selection on Gene Abundance. The Gene Abundance selection model relies 

on the concept of gene dosage stoichiometry where the aneuploid karyotypes are 

selected against and that the extent of negative selection scales with the severity 

of aneuploidy and the identity and gene abundance on the aneuploid chromo-

somes (299). Chromosome arm fitness contribution scores (fc) are taken as the 

chromosome arm scores derived above (section 2.1) and the sum of these scores 

is 1. These base values are then modified under the gene abundance model to 

generate a contextual fitness score (CFSGA,c) at each time step such that… 

CFSGA,c= fc-
fc×|nc-x̅p|

x̅p
 

F = ∑ CFSGA,c

46

c=1
 

… where x#p is the average ploidy of the population and nc is the chromosome 

copy number. In this model, the fitness contribution of a chromosome declines as 

its distance from the average ploidy increases and that the magnitude of this effect 

is dependent on the size of the chromosome. 



 70 

3.2. Selection on Driver Density. The Driver Density modality relies on assigned 

fitness values to chromosomes based on their relative density of tumor suppressor 

genes, essential genes, and oncogenes. Chromosome arm fitness contribution 

scores (fc) are taken as the chromosome arm scores derived above (section 2.2) 

and are employed such that…  

CFSTOE,c=
nc×TOEc

x̅p
 

F = ∑ CFSTOE,c

46

c=1
 

This selection model benefits cells that have maximized the density of oncogenes and 

essential genes to tumor suppressors through chromosome mis-segregation. 

3.3. Hybrid Selection. The hybrid model relies on selection on both gene abun-

dance and driver densities. CFSTOE,c and CFSGA,c are both calculated and aver-

aged such that…  

 

F = ∑
CFSGA,c + CFSTOE,c

2

46

c=1
 

 

3.4. Neutral Selection. When populations are grown under neutral selection, the 

fitness of each cell is constitutively set to 1 regardless of the cells’ individual kary-

otypes.  

F = 1 
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3.5. Scaling selection pressure. Within each model of karyotype selection, the 

magnitude of selective pressure upon any karyotype, with fitness F, can be scaled 

by applying the scalar exponent S to produce a modified fitness score FM. Thus… 

FM = FS 

For example, in the Gene Abundance model of karyotype selection, an otherwise 

diploid cell with 3 copies of chromosome 1 in a diploid population will have a F 

value of 0.954. Under selection-null conditions (S=0)…  

FM = FS=0.9540=1 

… the fitness of the aneuploid cell is equivalent to that of a euploid cell. Under 

conditions of high selection (S=50)…  

FM = FS=0.95450=0.097 

…fitness of the aneuploid cell is ~10% that of the euploid cell and thus divides 

~10% as frequently.  

4. Modeling growing and constant population dynamics 

To accommodate different population size dynamics, we implemented our model us-

ing either growing, pseudo-Moran limited population dynamics and constant-size popula-

tions with approximated Wright-Fisher population dynamics. 

4.1. Simulating CIN in exponentially growing populations with pseudo-Moran limits. 

4.1.1. Populations begin with 100 founder cells with a euploid karyotype of in-

teger value x#p	and the simulation is initiated. 

4.1.2. CFS values are calculated for each chromosome in a cell according to 

the chosen karyotype selection model. 

4.1.3. Cellular fitness is calculated based on CFS values. 
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4.1.4. Selective pressure (S) is applied to fitness (F) values to modify cellular 

fitness (FM). 

4.1.5. Cells are checked to see if any death conditions are met and if the pop-

ulation limit is met. Cells die if any chromosome arm copy (nc) is less than 

1 or greater than 6 (unless otherwise indicated). We implemented popula-

tion size limits in a pseudo-Moran fashion to reduce computational con-

straints. If the population size is 3000 cells or greater, a random half of the 

population is deleted. 

4.1.6. Cells probabilistically divide if their fitness is greater than a random float 

(R) between 0 and 2. Thus… 

R~U[0,2] 

Pdivision=P(FM>R) 

4.1.7. If a cell does not divide, it restarts the cycle from 4.1.2. If a cell divides, 

mis-segregations may occur. 

4.1.8. Each copy (nc) of each chromosome (c) has an opportunity to mis-seg-

regate probabilistically. For each chromosome copy, a mis-segregation oc-

curs if a random float (R) between 0 to 1 falls below Pmisseg. Thus… 

R~U[0,1] 

Mis-segregate chromosome c if Pmisseg,c>R 

4.1.9. If a chromosome copy is not mis-segregated, the next chromosome 

copy is tested. If a chromosome copy is mis-segregated, chromosome arms 

may be segregated separately (i.e. a reciprocal, arm-level CNA) if a random 

float (R) between 0 and 1 falls below Pbreak. Thus…  
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R~U[0,1] 

Break chromosome c if Pmisseg,c>R 

4.1.10. The karyotype of the cell is modified according to the results of the 

mis-segregation sequence above. When the mis-segregation sequence is 

complete, a clone of the initial cell with any reciprocal copy number altera-

tions to its karyotype is created. 

4.1.11. The simulation ends if it reaches 100 steps and data are exported. 

Otherwise, the simulation continues from 4.1.2. 

4.2. Simulating CIN in constant-size populations with approximated Wright-Fisher dy-

namics. We approximated constant-size Wright-Fisher dynamics in our model by 

re-initiating the population at each time step and randomly drawing from the previ-

ous generation’s distribution of chromosome copy numbers for each chromosome 

in each cell of the new population. Because the exponential pseudo-Moran model 

relies on proliferation rates across over-lapping generations to enact karyotype se-

lection, such a method would not be useful here. To accommodate karyotype se-

lection in this model, we employed an additional baseline death rate of about 20% 

(180) that increases for cells with lower fitness and decreases for cells with higher 

fitness (see section 4.2.9). In this way, the karyotypes of the cells that die are re-

moved from the pool of karyotypes that are drawn upon in the subsequent gener-

ation. CIN is simulated in this model as follows:  

4.2.1. Populations begin with 4500 founder cells and the simulation is (re-)ini-

tiated. The population begins with a euploid karyotype of integer value x#p if 

the population is being created for the first time. 
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4.2.2. Cells divide every step, regardless of fitness. 

4.2.3. Chromosomes are mis-segregated in the same fashion as the exponen-

tial pseudo-Moran model above (sections 4.1.8 – 4.1.10). 

4.2.4. The simulation ends if it reaches 100 steps and data are exported. Oth-

erwise, the simulation continues from 4.2.1. 

4.2.5. CFS values are calculated for each chromosome in a cell according to 

the chosen karyotype selection model. 

4.2.6. Cellular fitness is calculated based on CFS values. 

4.2.7. Selective pressure (S) is applied to fitness (F) values to modify cellular 

fitness (FM). 

4.2.8. Cells are checked to see if any death conditions are met and if the pop-

ulation limit is met. Cells die if any chromosome arm copy (nc) is less than 

1 or greater than 6 (unless otherwise indicated).  

4.2.9. Additionally, the cells’ fitness values and a random float (R) between 0 

and 5 are used to determine if they die. In this way, a cell with a fitness of 1 

has a 20% baseline death rate. Thus, cells die if… 

1
FS+0.001

>R~U[0,5] 

 

4.2.10. After determining cell death, the copy number distributions of each 

cells’ chromosome arm (c) are individually stored. 

4.2.11. The cycle repeats from 4.2.1. However, the re-initated population will 

have its chromosome arm copy numbers drawn from the previous genera-

tion’s stored chromosome arm copy number distributions. 
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Analysis of population diversity and topology in biological and simulated data 

Phylogenetic trees were reconstructed from chromosome copy number profiles 

from live and simulated cells by calculating pairwise Euclidean distance matrices and 

performing complete-linkage clustering in R (Team, 2021). Phylogenetic tree topology 

measurements were performed in R using the package phyloTop v2.1.1 (300). Sackin 

and Colless indices of tree imbalance were calculated, normalizing to the number of tree 

tips. Cherry and pitchfork number were also normalized to the size of the tree. MKV is 

taken as the variance of individual chromosomes taken across the population, averaged 

across all chromosomes, then normalized to the average ploidy of the population. Aver-

age aneuploidy is calculated as the variance within a single cell’s karyotype averaged 

across the population. 

Approximate Bayesian computation 

Approximate Bayesian computation was used for parameter inference of experi-

mental data from simulated data. For this we employed the the “abc” function in the R 

package abc v2.1 (301). In short, a set of simulation parameters, θi, is sampled from 

the prior distribution. This set of parameters corresponds to a set of simulated summary 

statistics, S(yi), in this case phylogenetic tree shapes, which can be compared to the set 

of experimental summary statistics, S(yo). The Euclidean distance between the experi-

mental and simulated summary statistics can then be calculated (d(S(yi),S(yo)). A thresh-

old, T, is then selected—0.05 in our case—which rejects the lower 1-T sets of simulation 

parameters that correspond. The remaining parameters represent those that gave sum-

mary statistics with the highest similarity to the experimental summary statistics. These 

represent the posterior distribution of accepted parameters.  
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Bayesian model selection was performed using the “postpr” function in the same 

R package using tolerance threshold of 0.05 and rejection sampling method. This was 

used to calculate the posterior probability of each selection model within each growth 

model and the Bayes factor for each selection model with neutral selection as the null 

hypothesis. Bayes factors > 5 were considered substantial evidence of the alternative 

hypothesis.  

Sliding window analysis to tune time-steps for approximate Bayesian computation 

We chose which simulation time steps to use for approximate Bayesian computa-

tion on organoid and biopsy data by repeating the inference using a sliding window of 

prior datasets with a width of 11 time steps (i.e. parameters from steps ∈ [0-10], [10-20], 

…, [91-100]) to see if the posterior distributions would stabilize over time. We then chose 

simulations from 40-80 time steps as our prior dataset as this range provided both a stable 

inference and is centered around 60 time steps (analogous to 30 generations, estimated 

to generate a 1 cm palpable mass of ~1 billion cells).  

Cell cultivation procedures 

Cal51 cells expressing stably integrated RFP-tagged histone H2B and GFP-

tagged a-tubulin were generated as previously described (249). Cells were maintained at 

37ºC and 5% CO2 in a humidified, water-jacketed incubator and propagated in Dulbecco’s 

Modified Eagle’s Medium (DMEM) – High Glucose formulation (Cat #: 11965118) supple-

mented with 10% fetal bovine serum and 100 units/mL penicillin-streptomycin. Paclitaxel 

(Tocris Bioscience, Cat #: 1097/10) used for cell culture experiments was dissolved in 

DMSO. The Cal51 cells were obtained from the DSMZ-German Collection of Microorgan-

isms and Cell Cultures and were free from mycoplasma contamination prior to study. 
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Karyotype analysis confirms the near-diploid characteristic of the cell line and the pres-

ence of both fluorescent markers suggests they are free of other contaminating cell lines. 

Time-lapse fluorescence microscopy 

Cal51 cells were transduced with lentivirus expressing mNeonGreen-tubulin-P2A-

H2B-FusionRed. A monoclonal line was treated with 20 nM paclitaxel for 24, 48, or 72 

hours before timelapse analysis at 37oC and 10% CO2. Five 2 µm z-plane images were 

acquired using a Nikon Ti-E inverted microscope with a cMos camera at 3-minute inter-

vals using a 40X/0.75 NA objective lens and Nikon Elements software. 

Flow cytometric analysis and cell sorting 

Cells were harvested with trypsin, passed through a 35 μm mesh filter, and rinsed with 

PBS prior to fixation in ice cold 80% methanol. Fixed cells were stored at -80ºC until 

analysis and sorting at which point fixed cells were resuspended in PBS containing 10 

μg/ml DAPI for cell cycle analysis. 

Flow cytometric analysis.  

Initial DNA content and cell cycle analyses were performed on a 5 laser BD LSR II. 

Doublets were excluded from analysis via standard FSC/SSC gating procedures. DNA 

content was analyzed via DAPI excitation at 355 nm and 450/50 emission using a 410 

nm long pass dichroic filter. 

Fluorescence activated cell sorting.  

Cell sorting was performed using the same analysis procedures described above on 

a BD FACS AriaII cell sorter. In general, single cells were sorted through a 130-μm low-

pressure deposition nozzle into each well of a 96-well PCR plate containing 10 μl Lysis 

and Fragmentation Buffer cooled to 4ºC on a Eppendorf PCR plate cooler. Immediately 
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after sorting PCR plates were centrifuged at 300 x g for 60 seconds. For comparison of 

single-cell sequencing to bulk sequencing, 1000 cells were sorted into each ‘bulk’ well. 

The index of sorted cells was retained allowing for the post-hoc estimation of DNA content 

for each cell. 

Low-coverage single-cell whole genome sequencing  

Initial library preparation for low-coverage scDNAseq was performed as previously 

described (302) and adapted for low coverage whole genome sequencing instead of high 

coverage targeted sequencing. Initial genome amplification was performed using the Ge-

nomePlex® Single Cell Whole Genome Amplification Kit and protocol (Sigma Aldrich, Cat 

#: WGA4). Cells were sorted into 10 μl pre-prepared Lysis and Fragmentation buffer con-

taining Proteinase K. DNA was fragmented to an average of 1 kb in length prior to ampli-

fication. Single cell libraries were purified on a 96-well column plate (Promega, Cat #: 

A2271). Library fragment distribution was assessed via agarose gel electrophoresis and 

concentrations were measured on a Nanodrop 2000. Sequencing libraries were prepared 

using the QuantaBio sparQ DNA Frag and Library Prep Kit. Amplified single-cell DNA 

was enzymatically fragmented to ~250 bp, 5’-phosphorylated, and 3’-dA-tailed. Custom 

Illumina adapters with 96 unique 8 bp P7 index barcodes were ligated to individual librar-

ies to enable multiplexed sequencing (302). Barcoded libraries were amplified following 

size selection via Axygen™AxyPrep Mag™ beads (Cat #: 14-223-152). Amplified library 

DNA concentration was quantified using the Quant-iT™ Broad-Range dsDNA Assay Kit 

(Thermo, Cat #: Q33130). Single-cell libraries were pooled to 15 nM and final concentra-

tion was measured via qPCR. Single-end 100bp sequencing was performed on an Illu-

mina HiSeq2500. 
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Single-cell copy number sequencing data processing 

Single-cell DNA sequence reads were demultiplexed using unique barcode index se-

quences and trimmed to remove adapter sequences. Reads were aligned to GRCh38 

using Bowtie2. Aligned BAM files were then processed using Ginkgo to make binned copy 

number calls. Reads are aligned within 500kb bins and estimated DNA content for each 

cell, obtained by flow cytometric analysis, was used to calculate bin copy numbers based 

on the relative ratio of reads per bin (303). We modified and ran Ginkgo locally to allow 

for the analysis of highly variable karyotypes with low ploidy values (see Code and Data 

Availability). Whole-chromosome copy number calls were calculated as the modal binned 

copy number across an individual chromosome. Cells with fewer than 100,000 reads were 

filtered out to ensure accurate copy number calls (304). Cells whose predicted ploidy 

deviated more than 32% from the observed ploidy by FACS were also filtered out. The 

final coverage for the filtered dataset was 0.03. Single cell data extracted from Navin et 

al., 2011 were separated into their individual clones and depleted of euploid cells. Single 

cell data from Bolhaqueiro et al., 2019 were filtered to include only the aneuploid data 

that fell within the ploidies observed in the study (see Code and Data Availability).   

Review and approximation of mis-segregation rates from published studies 

We reviewed the literature to extract per chromosome rates of mis-segregation for cell 

lines and clinical samples. Some studies publish these rates. For those that did not, we 

estimated these rates by approximating the plotted incidence of segregation errors thusly: 

 

Approximate missegregration rate per chromosome = Observed % frequency of errors per division/100
Total # modal chromosomes in sample
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Modal chromosome numbers were either taken from ATCC where available or were 

assumed to equal 46. Observed % frequencies were approximated from published plots. 

Approximated rates assume that 1 chromosome is mis-segregated at a time.  
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Figure 2.1 — Expanded model of chromosome mis-segregation and karyotype selection 

Models of selection on aneuploid karyotypes. Left. In the Gene Abundance model, chromosomes that 

encode a larger number of genes contribute more to cellular fitness (F). Thus, large chromosomes have a 

higher fitness score (fc). Deviation from the average ploidy of the population results in a reduced Contextual 

Fitness Score (CFS) for each chromosome, the sum of which represents the fitness of the cell. Right. In the 

Driver Density Model, the fitness contribution of a chromosome depends on the ratio of oncogenes and 
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essential genes to tumor suppressors (OG-ESG:TSG). Gaining chromosomes with a higher OG-ESG:TSG 

ratio provides a fitness advantage while gaining more suppressive chromosomes invokes a fitness cost. 

These scores are still normalized to the ploidy of the average ploidy of the population to ensure that higher 

ploidy populations are not arbitrarily more fit. Middle. The Hybrid model takes the average of the fitness 

scores calculated in the other models. The neutral selection model (not shown) treats all karyotypes as 

equally fit. Base chromosome arm fitness scores for each model. Only the Hybrid and Driver Density model 

have negatively scored chromosomes, meaning their loss provides a fitness benefit. The neutral selection 

model does not require chromosome arm fitness scores. Simulating CIN in exponentially growing popula-

tions with pseudo-Moran limits. (0) Populations are founded by 100 founder cells and the simulation is 

initiated. (1) CFS values are calculated for each chromosome in a cell according to the chosen model. (2) 

Cellular fitness is calculated based on CFS values. (3) Selective pressure (S) is applied on cellular fitness 

values (F). (4) Cells are checked to see if any death conditions are met and if the population limit is met. (5) 

Cells probabilistically enter mitosis if their fitness value exceeds a random float (R) between 0 and 2. Thus 

Pdivision = P(FM >R). If a cell does not divide, it skips the next step. (6) If a cell enters mitosis, each chro-

mosome has an opportunity to mis-segregate probabilistically. For each chromosome, a mis-segregation 

occurs if a random float (R), from 0 to 1, falls below Pmisseg. After a chromosome mis-segregation is de-

termined, the chromosome arms may be individually segregated (i.e. reciprocal CNA) if a random float (R), 

from 0 to 1, falls below Pbreak. The cycle repeats and new CFS values are calculated, unless (7) stop 

conditions are met. When populations reach or exceed 3500 cells, a random half of the population is elimi-

nated and the remaining cells continue the cycle. Simulating CIN in constant-size populations with Wright-

Fisher dynamics. (0) Populations are initiated by 4500 euploid cells which (1) divide every step. (2) Chro-

mosomes are mis-segregated as in the exponential pseudo-Moran model described above. (3) If stop con-

ditions are met, the simulation ends and data are exported. If the cycle continues, (4) CFS values are cal-

culated and used to (5) determine cellular fitness, after which, (6) selective pressure is applied. (7) Cells die 

if they lose both copies of a chromosome or exceed the upper limit of six. Additionally, to approximate 

Wright-Fisher dynamics, cells die if 1/(FS +0.001) exceeds a random float from 0 to 5. Thus, the baseline 

rate of cell death is ~0.2. (8) Each chromosome copy number is stored and the population is re-initiated 
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with 4500 new cells. The copy numbers for each of new cell’s chromosomes are randomly and inde-

pendently drawn from the copy number distributions of the previous generation. The cycle then repeats 

until the simulation ends (step 3).  
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Figure 2.2 — A framework for modeling CIN and karyotype selection 

(A) Chromosome arm scores for each model of karyotype selection. Gene Abundance scores are de-

rived from the number of genes per chromosome arm normalized to the number of all genes. Chromosome 

arms 13 p and 15 p did not have an abundance score and were set to 0. Driver Density scores come from 

the pan-cancer chromosome arm scores derived in Davoli et al., 2013, and normalized to the sum of chro-

mosome arm scores for chromosomes 1-22,X. Chromosome arms 13 p, 14 p, 15 p, 21 p, 22 p, and chro-

mosome X did not have driver scores and were set to 0. Hybrid model scores are set to the average of the 

Driver and Abundance models. The neutral model (not displayed) is performed with all cell’s fitness consti-

tutively equal to 1 regardless of karyotype. (B) Framework for the simulation of and selection on cellular 
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populations with CIN. Cells divide (Pdivision starts at 0.5 in the exponential pseudo-Moran model and is 

constitutively equal to 1 for the constant Wright-Fisher model) and probabilistically mis-segregate chromo-

somes (Pmisseg ∈ [0, 0.001… 0.05]). After, cells experience selection under one of the selection models, 

altering cellular fitness and the probability (Pdivision) a cell will divide again (green check). Additionally, 

cells wherein the copy number of any chromosome falls to zero or surpasses 6 are removed (red x). After 

this, the cycle repeats. See Materials and methods for further details. 
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Figure 2.3 — Population growth limits do not bias population measures 

(A) Growth curves of populations simulated under the Hybrid selection model and exponential pseudo-

Moran growth model with S ∈[0,1] and Pmisseg misseg = 0.022 and limited to 3000, 6000, and 24,000 cells 

(n = 4 simulations each). (B) MKV (normalized to mean ploidy of the population) values steadily increase 

over time. (C) Loess regression curves show no significant deviations based on the population threshold, 

regardless of selection. Tree-tip-normalized Sackin index values for each population over time. No signifi-

cant deviations based on the population threshold, regardless of selection.  
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Figure 2.4 — Evolutionary dynamics imparted by CIN 

(A) Population growth curve in the absence of selective pressure (Pmisseg = 0.001, S = 0, n = 3 simula-

tions). The steady state population in null selection conditions is 3000 cells. (B) Heatmaps depicting dynam-

ics of karyotype diversity as a function of time (steps), mis-segregation rate (Pmisseg), and selection (S) under 

each model of selection. Columns represent the same model; rows represent the same selection level. 

Mean karyotype diversity (MKV) is measured as the variance of each chromosome averaged across all 
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chromosomes 1–22, and chromosome X. Low and high MKV are shown in white and blue respectively (n = 

3 simulations for every combination of parameters). (C) Population growth under each model, varying Pmis-

seg and S. Pmisseg∈ [0.001, 0.022, 0.050] translate to about 0.046, 1, and 2.3 mis-segregations per division 

respectively for diploid cells. (D) Dynamics of the average ploidy (total # chromosome arms / 46) of a pop-

ulation while varying Pmisseg and S. (E) Dynamics of ploidy under each model for diploid and tetraploid found-

ing populations. Pmisseg∈ [0.01, 0.02] translate to about 0.46 and 0.92 mis-segregations for diploid cells and 

0.92 and 1.84 mis-segregations for tetraploid cells. (F) Fitness (FS) over time for diploid and tetraploid found-

ing populations evolved under each model. (G) Karyotype diversity dynamics for diploid and tetraploid 

founding populations. MKV is normalized to the mean ploidy of the population at each time step. Plotted 

lines in C-G are local regressions of n = 3 simulations.  
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Legend on next page…  
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Figure 2.5 — Chromosomal instability and karyotype selection in constant-size populations ap-

proximating Wright-Fisher dynamics. 

(A) Population size over time in the absence of selective pressure (Pmisseg = 0.001, S = 0, n = 3 simula-

tions). The steady state population in null selection conditions is ~3600 cells as data is exported before 

populations are re-initiated. Dashed line represents the population at (re-)initiation (4500 cells). (B) 

Heatmaps depicting dynamics of karyotype diversity as a function of time (steps), mis-segregation rate 

(Pmisseg), and selection (S) under each model of selection. Columns represent the same model; rows repre-

sent the same selection level. Mean karyotype diversity (MKV) is measured as the variance of each chro-

mosome averaged across all chromosomes 1–22, and chromosome X. Low and high MKV are shown in 

white and green respectively (n = 3 simulations for every combination of parameters). (C) Population growth 

under each model, varying Pmisseg and S. Pmisseg∈ [0.001, 0.022, 0.050] translate to about 0.046, 1, and 2.3 mis-

segregations per division respectively for diploid cells. Top dashed line represents the population at (re-

)initiation (4500 cells). Bottom dashed line represents the steady state population in selection-null condi-

tions. (D) Dynamics of the average ploidy (total # chromosome arms / 46) of a population while varying 

Pmisseg and S. (E) Dynamics of ploidy under each model for diploid and tetraploid founding populations. Pmisseg∈ 

[0.01, 0.02] translate to about 0.46 and 0.92 mis-segregations for diploid cells and 0.92 and 1.84 mis-seg-

regations for tetraploid cells. (F) Fitness (FS) over time for diploid and tetraploid founding populations 

evolved under each model. (G) Karyotype diversity dynamics for diploid and tetraploid founding popula-

tions. MKV is normalized to the mean ploidy of the population at each time step. Plotted lines in C-G are 

local regressions of n = 3 simulations. 
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Legend on next page…  
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Figure 2.6 — Fitness of diploid and tetraploid CIN +populations. 

(A) Fitness landscape of simulations founded by diploid cells under exponential pseudo-Moran growth 

dynamics. (B) Size of simulated populations founded by diploid cells under exponential pseudo-Moran 

growth dynamics. (C) Fitness landscape of simulations founded by diploid cells under constant Wright-

Fisher growth dynamics. (D) Size of simulated populations founded by diploid cells under constant Wright-

Fisher growth dynamics. (E) Fitness landscape of simulations founded by tetraploid cells under exponential 

pseudo-Moran growth dynamics. (F) Size of simulated populations founded by tetraploid cells under expo-

nential pseudo-Moran growth dynamics. (G) Fitness landscape of simulations founded by tetraploid cells 

under constant Wright-Fisher growth dynamics. (H) Size of simulated populations founded by tetraploid 

cells under constant Wright-Fisher growth dynamics.  
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Legend on next page… 
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Figure 2.7 — Karyotype diversity depends profoundly on selection modality 

(A) Simulation scheme to assess long-term dynamics of karyotype evolution and karyotype conver-

gence. (B) Heatmaps depicting the chromosome copy number profiles of a subset (n = 30 out of 300 sam-

pled cells) of the simulated population with early CIN over time under each model of karyotype selection. 

(C) Average heatmaps (lower) show the average copy number across the 5 replicates for (1) the Exponential 

Psuedo-Moran (Base), (2) the base model with the upper copy number limit set to 10, (3) the base model 

that invokes a FM x 0.1 penalty for any cell with a haploid chromosome, (4) and the Constant Population-

Size Wright-Fisher model. Pmisseg = 0.003; S = 25 (except Neutral model; S = 0); ploidy = 2.  
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Figure 2.8 — Modeled population measures tracked over time. 

(A) Average population ploidy over time for each selection model within each model variation. Data 

represent the mean and range (vertical lines) across five replicates for every 50 time steps in diploid popu-

lations with low selective pressure (light red) and high selective pressure (dark red) and tetraploid popula-

tions with low selective pressure (light blue) and high selective pressure (dark blue). (B) Average population 

fitness (log10) over time for each selection model within each model variation. Data represent the mean 

and range (vertical lines) across five replicates for every 50 time steps in diploid populations with low 
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selective pressure (light red) and high selective pressure (dark red) and tetraploid populations with low 

selective pressure (light blue) and high selective pressure (dark blue). (C) Mean karyotype variance over 

time for each selection model within each model variation. Data represent the mean and range (vertical 

lines) across five replicates for every 50 time steps in diploid populations with low selective pressure (light 

red) and high selective pressure (dark red) and tetraploid populations with low selective pressure (light 

blue) and high selective pressure (dark blue). 
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Figure 2.9 — Topological features of simulated phylogenies delineate CIN rate and karyotype 

selection. 

(A) Quantifiable features of karyotypically diverse populations. Heterogeneity between and within kary-

otypes is described by MKV and aneuploidy (inter- and intra-karyotype variance, see Materials and meth-

ods). We also quantify discrete topological features of phylogenetic trees, such as cherries (tip pairs) and 

pitchforks (3-tip groups), and a whole-tree measure of imbalance (or asymmetry), the Colless index. (B) 

Scheme to test how CIN and selection influence the phylogenetic topology of simulated populations. (C) 

Computed heterogeneity (aneuploidy and MKV) and topology (Colless index, cherries, pitchforks) summary 

statistics under varying Pmisseg and S values. MKV is normalized to the average ploidy of the population. Top-

ological measures are normalized to population size. Spearman rank correlation coefficients (r) and p-values 
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are displayed (n = 8 simulations). (D) Representative phylogenies for each hi/low CIN, hi/low selection pa-

rameter combination and their computed summary statistics. Each phylogeny represents n = 50 out of 300 

cells for each simulation. (E) Dimensionality reduction of all simulations for each hi/low CIN, hi/low selection 

parameter combination using measures of karyotype heterogeneity only (left; MKV and aneuploidy) or 

measures of karyotype heterogeneity and phylogenetic topology (right; MKV, aneuploidy, Colless index, 

cherries, and pitchforks).  
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Figure 2.10 — Experimental chromosome mis-segregation measured by Bayesian inference 

(A) Cal51 cells were treated with either DMSO or 20 nM paclitaxel for 48 hr prior to further analysis by 

time lapse imaging, bulk DNA sequencing, and scDNAseq. (B) Heatmaps showing copy number profiles 

derived from scDNAseq data, single-cell copy number averages, and bulk DNA sequencing. (C) Observed 

mis-segregations calculated as the absolute sum of deviations from the observed modal karyotype of the 

control. (D) Dimensionality reduction analysis of population summary statistics (aneuploidy, MKV, Colless 

index, cherries) from the first three time steps of all simulations performed under the Hybrid model. (E) 2D 

density plot showing joint posterior distributions from ABC analysis using population summary statistics 

computed from the paclitaxel-treated cells using the following priors and parameters: Growth Model = 
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‘exponential pseudo-Moran’, Selection Model = ‘Hybrid, initial ploidy = 2, 2 time steps, S ∈[0, 2… 100], 

Pmisseg∈[0, 0.005… 1.00] and a tolerance threshold of 0.05 to reject dissimilar simulation results. (see Materials 

and Methods). Vertical dashed line represents the experimentally observed mis-segregation rate. White + 

represents the mean of inferred values.  
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Figure 2.11 — Induction of extensive chromosome mis-segregation via paclitaxel. 

(A) Immunofluorescence time lapse montage of control Cal51 cells undergoing normal mitosis (top) 

and paclitaxel-treated treated cells undergoing a multipolar anaphase (middle) and partial cytokinesis failure 

(bottom). (B) Cell cycle profiles from flow cytometric analysis of Cal51 cells treated with either DMSO (72 
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hr) or 20 nM paclitaxel for 24, 48, or 72 hr. For FACS, cells treated for 48 hr were sorted into individual wells 

of 96-well plates. Sorting gate is shown by the red, dashed line.  
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Figure 2.12 — Copy number profiles of DMSO- and paclitaxel-treated Cal51 cells. 

Single-cell copy number profiles for single (A) DMSO- and (B) paclitaxel-treated cells. A total of 500 Kb 

genomic bins and DNA content from FACS were used for copy number calculations (see Materials and 

methods). 
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Figure 2.13 — Summary statistic optimization for ABC. 

(A) Schematic showing calculation of aneuploidy and MKV. (B) Examples of phylogenetic topology 

metrics. (C) Phylogenetic reconstruction of a population of Cal51 cells treated with 20 nM paclitaxel for 48 
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hr and associated heterogeneity and topology metrics. Normalized and non-normalized summary statistics 

are displayed (see Materials and methods). (D) Analytical scheme to identify most accurate and least vari-

able combinations of heterogeneity and topology metrics. For each combination of 2–9 metrics, we itera-

tively re-sampled and remeasured the rate of mis-segregation in 100 random cells, three times, from our 

original dataset of paclitaxel-treated Cal51 cells. The red data point denotes our chosen combination for 

future analyses—average aneuploidy, MKV, Colless Index, and Cherries. This combination both limits re-

dundant measures (i.e. Colless and Sackin indices) and contains both heterogeneity and topology metrics. 

(E) Percent accuracy and standard error of the mean for three sampled measurements of 100 paclitaxel-

treated cells from the original population, repeated for each combination of heterogeneity and topology 

measures. 
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Figure 2.14 — Nullisomy and posterior predictive checks of summary statistics from paclitaxel-

treated Cal51 cells. 

(A) Observed incidence of nullisomy in paclitaxel-treated cells plotted against the observed mis-segre-

gation rate (Pmisseg,true = 18.5/44 = 0.42) overlaid on simulated data from the second time step (2 generations) 

under the Hybrid model with S = 0 and Pbreak = 0 (n = 3 simulations). (B) Posterior distributions of summary 
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statistics from accepted simulations most similar to the paclitaxel-treated Cal51 cells (threshold = 0.05). The 

red line indicates the observed statistic in paclitaxel-treated cells. Colless index and cherry count is normal-

ized to population size. MKV is normalized to the average ploidy of the population.  
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Legend on next page… 
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Figure 2.15 — Minimum sampling of karyotype heterogeneity. 

(A) Analytical scheme to optimize the number of cells to sample for measuring mis-segregation rates 

from karyotype heterogeneity. We iteratively re-sampled and remeasured the rate of mis-segregation for a 

range of sample sizes (n = 5 random samples). (B) Predicted mis-segregation rates over a range of sample 

sizes (n = 5 samples). Points and error bars are the mean ± standard error. Black solid line denotes the 

mean observed rate of mis-segregation induced by 20 nM paclitaxel. Black dashed lines are half the stand-

ard deviation of observed mis-segregation rates per cell. (C) Mean percent accuracy of ABC-inferred rates 

of mis-segregation due to paclitaxel taken from each set of five random samples using the observed rate of 

mis-segregation as the ‘true value’. Calculated as mean % accuracy = 100 − (true −

meaninferredtrue × 100). Dashed lines represent 90% accuracy. (D) Standard error of ABC-inferred rates 

of mis-segregation for each set of random samples from paclitaxel-treated cells. (E) ABC-inferred mis-seg-

regation rates by sample size from simulations with known parameters (n = 5 samples). Points represent 

mean ± standard error across 5 samples for each of 11 selective pressure (S) values. Solid line represents 

a perfect correlation. Inner dashed line represent ±10% margin. Outer dashed line represents ±20% margin. 

Simulation parameters: Pmisseg∈ [0, 0.005… 0.02], time steps = 60, Selection Model = ‘Hybrid’, Growth Model 

= ‘exponential pseudo-Moran’, S = [0, 10... 100], and a tolerance threshold of 0.05. (F) Mean percent accu-

racy of ABC-inferred rates of mis-segregation in simulations (parameters in E) taken at various sample sizes. 

Gray lines represent the mean percent accuracy of five random samples for each sample size for the same 

simulated population (n = 55 simulations). The dashed line represents 90% accuracy. Calculated as de-

scribed above but taking the known simulation parameter as the ‘true’ value. (G) Standard error of ABC-

inferred rates of mis-segregation in simulations (parameters in E) taken at various sample sizes. Gray lines 

represent the standard error of five random samples for each sample size for the same simulated population 

(n = 55 simulations). (H) ABC-inferred mis-segregation rates by sample size from simulations with known 

parameters (n = 5 samples). Points represent mean ± standard error across 5 samples for each of 11 se-

lective pressure (S) values. Solid line represents a perfect correlation. Inner dashed line represent ±10% 

margin. Outer dashed line represents ±20% margin. ABC was performed with the following parameters and 
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priors: Pmisseg∈[0, 0.005… 0.05], time steps = 1, Selection Model = ‘Hybrid’, Growth Model = ‘exponential 

pseudo-Moran’, S ∈ [0, 10… 100], and a tolerance threshold of 0.05. (I) Mean percent accuracy of ABC-

inferred rates of mis-segregation in simulations (parameters in H) taken at various sample sizes. Gray lines 

represent the mean percent accuracy of five random samples for each sample size for the same simulated 

population (n = 121 simulations). The dashed line represents 90% accuracy. (J) Standard error of ABC-

inferred rates of mis-segregation in simulations (parameters in H) taken at various sample sizes. Gray lines 

represent the standard error of five random samples for each sample size for the same simulated population 

(n = 121 simulations). Note: Red lines in F, G, I, and J represent the median. 
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Figure 2.16 — Inferring chromosome mis-segregation rates in tumors and organoids 

from  Bolhaqueiro et al. 2019 and Navin et al., 2011. 
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(A) Computed population summary statistics for colorectal cancer (CRC) patient-derived organoids 

(PDOs) and breast biopsy scDNAseq datasets from Bolhaqueiro et al., 2019 (gold) and Navin et al., 

2011 (pink). (B) Dimensionality reduction analysis of population summary statistics showing biological ob-

servations overlaid on, and found within, the space of simulated observations. Point colors show the simu-

lation parameters and summary statistics for all simulations using the following priors and parameters: 

Growth Model = ‘exponential pseudo-Moran’, Selection Model = ‘Abundance’, initial ploidy = 2, time steps 

∈[40, 41… 80], S ∈[0,2… 100], Pmisseg∈[0,0.001… 0.050] and a tolerance threshold of 0.05 to reject dissimilar 

simulation results. (see Materials and Methods). (C) 2D density plots showing joint posterior distributions of 

Pmisseg and S values from the approximate Bayesian computation analysis of samples 26 N (left) and 24Tb 

(right) from Bolhaqueiro et al., 2019. White + represents the mean of inferred values. (D) Inferred selective 

pressures and mis-segregation rates from each scDNAseq dataset (mean and SEM of accepted values). 

(E) Predicted mis-segregation rates in CRC PDOs and a breast biopsy plotted with approximated mis-seg-

regation rates observed in cancer (blue triangle) and non-cancer (red circle) models (primarily cell lines) 

from previous studies (Table 5; see Materials and methods). The predicted mis-segregation rates in these 

cancer-derived samples fall within those observed in cancer cell lines and above those of non-cancer cell 

lines. (F) Pearson correlation of predicted mis-segregation rates and predicted selective pressures in CRC 

PDOs from Bolhaqueiro et al., 2019. (G) Pearson correlation of predicted mis-segregation rates and the 

incidence of observed segregation errors in CRC PDOs from Bolhaqueiro et al., 2019. Error bars represent 

SEM values. (H) Pearson correlation of observed incidence of segregation errors in CRC PDOs 

from Bolhaqueiro et al., 2019 to the ploidy-corrected prediction of the observed incidence of segregation 

errors. These values assume the involvement of 1 chromosome per observed error and are calculated as 

the (predicted mis-segregation rate) x (mean number of chromosomes observed per cell) x 100. Dotted line 

= 1:1 reference. 
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Figure 2.17 — ABC-inference threshold and step-window analysis. 

Posterior distributions of mis-segregation rates (A) and selective pressure, S (B) inferred using ABC 

analysis of CRC organoids and a breast biopsy from Bolhaqueiro et al., 2019 and Navin et al., 2011 re-

spectively using a sliding window prior distribution of time steps. ABC was performed for every interval of 

10 steps between 0 and 100 using a tolerance threshold of 0.05. Schematic of analysis shown below. ABC 

was performed with the following parameters and priors: Pmisseg∈ [0...0.001...0.05], S ∈ [0...2...100], indicated 

time step window, Selection Model = ‘Abundance’, Growth Model = ‘exponential pseudo-Moran’, and a 

tolerance threshold of 0.05. (C) Posterior distributions of mis-segregation rates inferred using ABC analysis 

on the same samples as in A using tolerance thresholds of 0.005, 0.01, 0.05, 0.1. ABC was performed with 

the following parameters and priors: Pmisseg∈ [0, 0.001… 0.05], S ∈ [0, 2… 100], time steps ∈ [40, 41… 80], 
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Selection Model = ‘Abundance’, Growth Model = ‘exponential pseudo-Moran’, and the indicated tolerance 

threshold. 
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Figure 2.18 — ABC-inferred step count in patient-derived samples. 

Mean and standard error for steps in each patient-derived sample (accompanying data in Figure 6), 

inferred via approximate Bayesian computation. 
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Figure 2.19 — ABC-inferred mis-segregation rates and selective pressures in patient-derived 

samples. 

Joint (2D density plots) and individual (1D density plots) distributions of mis-segregation rates and se-

lective pressures in patient-derived CRC organoids and a breast biopsy from Bolhaqueiro et al., 
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2019 and Navin et al., 2011respectively (accompanying data in Figure 6). The prior (yellow) distribution 

represents the parameters used for simulation while the posterior (gray) distribution represents the param-

eters from simulations whose observed measurements were similar to the measurements taken from the 

patient-derived sample using a tolerance threshold of 0.05. White + signs on joint distributions represent 

the mean of both parameters. 
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Legend on next page…  
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Figure 2.20 — Validation of selection in longitudinally sequenced CRC organoids. 

(A–C) Copy number heatmaps showing the deviation from the mode of each chromosome derived from 

longitudinally sequenced clonal organoids from Bolhaqueiro et al., 2019. ABC was performed on 

scDNAseq data from three clones at 3 weeks of growth. The resulting inferred mis-segregation rate (Pmisseg) 

and selective pressure (S) were used to simulate CIN and selection in these clones over 60 time steps, at 

which point the composition of the populations were compared to the scDNAseq data from each of the 

clones at 24 weeks of growth (D–K). Additional simulations using S = 0 (not shown) and S = 1 were also 

performed. Inferred Pmisseg values for (A) clone 1, (B) clone 2, and (C) clone 3 were 0.0042, 0.0046, and 

0.0051 respectively. S = 60 was inferred for each clone. ABC was performed on the 3 week data with the 

following parameters and priors: Pmisseg∈ [0, 0.001... 0.05], S ∈ [0, 2… 100], time steps ∈ [40, 41... 80], Selec-

tion Model = ‘Abundance’, Growth Model = ‘exponential pseudo-Moran’, and a tolerance threshold of 0.05. 

(D) MKV values from n = 10 simulations per clone. Dotted line represents the MKV value observed in the 

scDNAseq data. (E) Aneuploidy values from n = 10 simulations per clone per S value. Dotted line represents 

the Aneuploidy value observed in the scDNAseq data. (F) Colless index values from n = 10 simulations per 

clone S value. Dotted line represents the Colless index value observed in the scDNAseq data. (G) Normal-

ized cherry values from n = 10 simulations per clone S value. Dotted line represents the normalized cherry 

value observed in the scDNAseq data. (H) Percent error for MKV observations in n = 10 simulations per 

clone per S value. Dotted line represents 0% error. (I) Percent error for aneuploidy observations in n = 10 

simulations per clone per S value. Dotted line represents 0% error. (J) Percent error for Colless observa-

tions in n = 10 simulations per clone per S value. Dotted line represents 0% error. (K) Percent error for 

normalized cherry observations in n = 10 simulations per clone per S value. Dotted line represents 0% error. 
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Figure 2.21 — Joint posterior distributions from CRC organoids at 3 weeks. 

Joint (2D density plots) and individual (1D density plots) distributions of mis-segregation rates and se-

lective pressures in individual clones of a patient-derived CRC organoid line from Bolhaqueiro et al., 

2019 after 3 weeks of growth (accompanying data in Figure 6—figure supplement 4). The prior (yellow) 

distribution represents the parameters used for simulation while the posterior (gray) distribution represents 

the parameters from simulations whose observed measurements were similar to the measurements taken 

from the patient-derived sample using a tolerance threshold of 0.05. White + signs on joint distributions 

represent the mean of both parameters. 
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Table 2.1 — Base chromosome-specific fitness scores for individual karyotype selection models 

 Selection Model 
Chr Arm Gene Abundance Driver Density Hybrid 

1p 0.04780162 -0.0024018 0.02269992 
1q 0.04340321 0.03244362 0.03792341 
2p 0.02733655 0.02935717 0.02834686 
2q 0.04244054 0.03943267 0.0409366 
3p 0.02310412 0.03289695 0.02800053 
3q 0.0299756 0.05416736 0.04207148 
4p 0.01238195 0.01784909 0.01511552 
4q 0.03181796 0.02901324 0.0304156 
5p 0.01178443 0.04281166 0.02729805 
5q 0.03787615 0.01949934 0.02868775 
6p 0.02557719 0.02398619 0.02478169 
6q 0.02554399 0.00011625 0.01283012 
7p 0.0179588 0.09889284 0.05842582 
7q 0.03231589 0.06933314 0.05082451 
8p 0.01591728 0.02769564 0.02180646 
8q 0.0254942 0.05861427 0.04205423 
9p 0.01301266 -0.0012941 0.00585929 
9q 0.02572657 0.04702681 0.03637669 

10p 0.0112201 -0.0364218 -0.0126008 
10q 0.02750253 0.01142688 0.01946471 
11p 0.01961858 0.03818621 0.0289024 
11q 0.03629936 0.01898784 0.0276436 
12p 0.0142575 0.0551551 0.0347063 
12q 0.03659812 0.06273786 0.04966799 
13p 0 0 0 
13q 0.02333649 -0.0101539 0.00659128 
14p 1.66E-05 0 8.2989E-06 
14q 0.03792594 0.02557439 0.03175016 
15p 0 0 0 
15q 0.03701306 0.0206566 0.02883483 
16p 0.02383442 0.04334736 0.03359089 
16q 0.01900446 -0.0071444 0.00593005 
17p 0.01548573 -0.0085975 0.00344414 
17q 0.03553586 0.04363474 0.0395853 
18p 0.00627396 0.00533697 0.00580547 
18q 0.01434049 -0.0263632 -0.0060113 
19p 0.02159372 0.05371416 0.03765394 
19q 0.02813325 0.00550338 0.01681831 
20p 0.0089628 0.04351025 0.02623653 
20q 0.01526996 0.04993593 0.03260295 
21p 0.00232369 0 0.00116185 
21q 0.01233215 -0.0033092 0.00451147 
22p 0.00013278 0 6.6391E-05 
22q 0.02297134 -0.0051581 0.0089066 
Xp 0.01555213 0 0.00777606 



 122 

Xq 0.02499627 0 0.01249813 
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Table 2.2 — Parameters varied during agent-based modeling 

Parameter Description 
Pmisseg Probability of mis-segregation per chromosome per division 
Pbreak Probability of chromosome breakage after mis-segregation 
Pdivision Probability of cellular division per time step 

S Magnitude of selective pressure on aneuploid karyotypes 
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Table 2.3 — Model selection 
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7T exponential pseudo-Moran Abun-
dance 

0.62
1 

Inf 0.0033 ± 1e-
05 

60.5416 ± 0.2053 59.8475 ± 
0.0937 

7T exponential pseudo-Moran Driver 0.14 Inf 0.001 ± 1e-05 49.6557 ± 0.2389 58.7002 ± 
0.0943 

7T exponential pseudo-Moran Hybrid 0.23
9 

Inf 8e-04 ± 1e-05 49.3428 ± 0.2377 58.5789 ± 
0.0935 

7T exponential pseudo-Moran Neutral 0 NA 9e-04 ± 5e-05 0 ± 0 57.7994 ± 
0.6728 

7T constant Wright-Fisher Abun-
dance 

0.98
5 

Inf 0.0062 ± 2e-
05 

69.7026 ± 0.1724 59.9318 ± 
0.0937 

7T constant Wright-Fisher Driver 0 NA 0.0012 ± 1e-
05 

48.2881 ± 0.2384 57.5239 ± 
0.0933 

7T constant Wright-Fisher Hybrid 0.01
5 

Inf 9e-04 ± 1e-05 50.7803 ± 0.2359 58.2514 ± 
0.0941 

7T constant Wright-Fisher Neutral 0 NA 9e-04 ± 5e-05 0 ± 0 58.7803 ± 
0.6701 

U1T exponential pseudo-Moran Abun-
dance 

0.58
2 

199 9e-04 ± 1e-05 56.8672 ± 0.2168 59.9906 ± 
0.0937 

U1T exponential pseudo-Moran Driver 0.11
3 

39 0.001 ± 1e-05 49.6611 ± 0.2389 58.6886 ± 
0.0944 

U1T exponential pseudo-Moran Hybrid 0.15
6 

54 8e-04 ± 1e-05 49.3658 ± 0.2375 58.569 ± 0.0935 

U1T exponential pseudo-Moran Neutral 0.14
9 

1 9e-04 ± 5e-05 0 ± 0 57.7102 ± 0.67 

U1T constant Wright-Fisher Abun-
dance 

0.65
4 

290 0.001 ± 1e-05 61.4358 ± 0.2029 60.0021 ± 
0.0937 

U1T constant Wright-Fisher Driver 0.11
5 

51 0.0012 ± 1e-
05 

48.2767 ± 0.2383 57.5267 ± 
0.0934 

U1T constant Wright-Fisher Hybrid 0.11
5 

51 9e-04 ± 1e-05 50.8033 ± 0.2358 58.2507 ± 
0.0941 

U1T constant Wright-Fisher Neutral 0.11
5 

1 9e-04 ± 5e-05 0 ± 0 58.7803 ± 
0.6701 

U2T exponential pseudo-Moran Abun-
dance 

0.62
8 

251 0.0054 ± 1e-
05 

59.4269 ± 0.2108 59.8349 ± 
0.0935 

U2T exponential pseudo-Moran Driver 0.07
9 

32 0.0027 ± 2e-
05 

50.1513 ± 0.2396 57.4538 ± 
0.0934 

U2T exponential pseudo-Moran Hybrid 0.16
6 

66 0.0022 ± 2e-
05 

48.7779 ± 0.2413 57.7078 ± 
0.0934 

U2T exponential pseudo-Moran Neutral 0.12
7 

1 0.0021 ± 7e-
05 

0 ± 0 56.8535 ± 
0.6619 

U2T constant Wright-Fisher Abun-
dance 

0.91
8 

2817 0.0112 ± 3e-
05 

69.7222 ± 0.1703 60.0655 ± 
0.0934 

U2T constant Wright-Fisher Driver 0.00
1 

4 0.0027 ± 2e-
05 

48.7794 ± 0.2389 56.4812 ± 
0.0919 

U2T constant Wright-Fisher Hybrid 0.06
4 

196 0.0022 ± 1e-
05 

50.9564 ± 0.2379 57.1161 ± 
0.0925 

U2T constant Wright-Fisher Neutral 0.01
7 

1 0.0022 ± 1e-
04 

0 ± 0 57.7898 ± 
0.6841 

U3T exponential pseudo-Moran Abun-
dance 

0.58
2 

199 0.0029 ± 1e-
05 

60.9557 ± 0.2091 59.8273 ± 
0.0938 

U3T exponential pseudo-Moran Driver 0.11
3 

39 0.001 ± 1e-05 49.6707 ± 0.2389 58.6986 ± 
0.0944 

U3T exponential pseudo-Moran Hybrid 0.15
6 

54 8e-04 ± 1e-05 49.3754 ± 0.2376 58.5711 ± 
0.0935 
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U3T exponential pseudo-Moran Neutral 0.14
9 

1 9e-04 ± 5e-05 0 ± 0 57.7102 ± 0.67 

U3T constant Wright-Fisher Abun-
dance 

0.73
6 

Inf 0.0052 ± 2e-
05 

69.8357 ± 0.1713 59.932 ± 0.0934 

U3T constant Wright-Fisher Driver 0.13 Inf 0.0012 ± 1e-
05 

48.2864 ± 0.2383 57.5385 ± 
0.0934 

U3T constant Wright-Fisher Hybrid 0.13
4 

Inf 9e-04 ± 1e-05 50.8219 ± 0.2357 58.2482 ± 
0.0941 

U3T constant Wright-Fisher Neutral 0 NA 9e-04 ± 5e-05 0 ± 0 58.8567 ± 
0.6676 

14T exponential pseudo-Moran Abun-
dance 

0.58
2 

199 9e-04 ± 1e-05 56.8672 ± 0.2168 59.9906 ± 
0.0937 

14T exponential pseudo-Moran Driver 0.11
3 

39 0.001 ± 1e-05 49.6614 ± 0.239 58.695 ± 0.0944 

14T exponential pseudo-Moran Hybrid 0.15
6 

54 8e-04 ± 1e-05 49.3716 ± 0.2375 58.5632 ± 
0.0935 

14T exponential pseudo-Moran Neutral 0.14
9 

1 9e-04 ± 5e-05 0 ± 0 57.7102 ± 0.67 

14T constant Wright-Fisher Abun-
dance 

0.65
4 

290 0.0011 ± 1e-
05 

62.8579 ± 0.2075 60.0029 ± 
0.0936 

14T constant Wright-Fisher Driver 0.11
5 

51 0.0012 ± 1e-
05 

48.2967 ± 0.2383 57.5295 ± 
0.0934 

14T constant Wright-Fisher Hybrid 0.11
5 

51 9e-04 ± 1e-05 50.8274 ± 0.2357 58.2478 ± 
0.0941 

14T constant Wright-Fisher Neutral 0.11
5 

1 9e-04 ± 5e-05 0 ± 0 58.8567 ± 
0.6676 

16T exponential pseudo-Moran Abun-
dance 

0.58
2 

199 0.002 ± 1e-05 61.2401 ± 0.2028 59.9109 ± 
0.0935 

16T exponential pseudo-Moran Driver 0.11
3 

39 0.001 ± 1e-05 49.6539 ± 0.2389 58.7006 ± 
0.0943 

16T exponential pseudo-Moran Hybrid 0.15
6 

54 8e-04 ± 1e-05 49.3611 ± 0.2376 58.574 ± 0.0935 

16T exponential pseudo-Moran Neutral 0.14
9 

1 9e-04 ± 5e-05 0 ± 0 57.7994 ± 
0.6728 

16T constant Wright-Fisher Abun-
dance 

0.65
4 

290 0.0038 ± 1e-
05 

69.8456 ± 0.1701 59.9523 ± 
0.0936 

16T constant Wright-Fisher Driver 0.11
5 

51 0.0012 ± 1e-
05 

48.261 ± 0.2384 57.5233 ± 
0.0933 

16T constant Wright-Fisher Hybrid 0.11
5 

51 9e-04 ± 1e-05 50.7713 ± 0.2359 58.2554 ± 
0.0941 

16T constant Wright-Fisher Neutral 0.11
5 

1 9e-04 ± 5e-05 0 ± 0 58.7803 ± 
0.6701 

19Ta exponential pseudo-Moran Abun-
dance 

0.71
1 

313 0.004 ± 1e-05 60.6391 ± 0.2074 59.7801 ± 
0.0934 

19Ta exponential pseudo-Moran Driver 0.03
8 

17 0.0028 ± 2e-
05 

50.2185 ± 0.2399 57.3764 ± 
0.0934 

19Ta exponential pseudo-Moran Hybrid 0.13
5 

59 0.0022 ± 3e-
05 

48.3823 ± 0.242 57.5368 ± 
0.0935 

19Ta exponential pseudo-Moran Neutral 0.11
6 

1 0.0022 ± 9e-
05 

0 ± 0 56.5955 ± 
0.6549 

19Ta constant Wright-Fisher Abun-
dance 

0.97 1176
0 

0.0075 ± 2e-
05 

69.3863 ± 0.1735 59.956 ± 0.0938 

19Ta constant Wright-Fisher Driver 0 0 0.0028 ± 2e-
05 

48.8413 ± 0.2392 56.4529 ± 
0.0917 

19Ta constant Wright-Fisher Hybrid 0.02
6 

315 0.0023 ± 1e-
05 

50.8588 ± 0.2383 57.1031 ± 
0.0925 

19Ta constant Wright-Fisher Neutral 0.00
4 

1 0.0023 ± 1e-
04 

0 ± 0 57.9522 ± 
0.6869 

19Tb exponential pseudo-Moran Abun-
dance 

0.72
7 

320 0.0036 ± 1e-
05 

60.5885 ± 0.2085 59.829 ± 0.0938 

19Tb exponential pseudo-Moran Driver 0.03 13 0.001 ± 1e-05 49.6622 ± 0.2389 58.6929 ± 
0.0944 

19Tb exponential pseudo-Moran Hybrid 0.12
7 

56 8e-04 ± 1e-05 48.5237 ± 0.2322 58.9663 ± 
0.0931 
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19Tb exponential pseudo-Moran Neutral 0.11
6 

1 9e-04 ± 5e-05 0 ± 0 57.7102 ± 0.67 

19Tb constant Wright-Fisher Abun-
dance 

0.97
9 

4732
0 

0.0068 ± 2e-
05 

69.5697 ± 0.173 59.9232 ± 
0.0935 

19Tb constant Wright-Fisher Driver 0 0 0.0012 ± 1e-
05 

48.2786 ± 0.2383 57.5433 ± 
0.0934 

19Tb constant Wright-Fisher Hybrid 0.02 982 9e-04 ± 1e-05 50.8162 ± 0.2357 58.2495 ± 
0.0941 

19Tb constant Wright-Fisher Neutral 0.00
1 

1 9e-04 ± 5e-05 0 ± 0 58.8376 ± 0.669 

24Ta exponential pseudo-Moran Abun-
dance 

0.73
1 

321 0.0036 ± 1e-
05 

60.5303 ± 0.2082 59.8208 ± 
0.0938 

24Ta exponential pseudo-Moran Driver 0.02
9 

13 0.001 ± 1e-05 49.6703 ± 0.2389 58.6938 ± 
0.0944 

24Ta exponential pseudo-Moran Hybrid 0.12
5 

55 8e-04 ± 1e-05 49.3669 ± 0.2376 58.5778 ± 
0.0935 

24Ta exponential pseudo-Moran Neutral 0.11
6 

1 9e-04 ± 5e-05 0 ± 0 57.7102 ± 0.67 

24Ta constant Wright-Fisher Abun-
dance 

0.97
9 

4734
6 

0.0068 ± 2e-
05 

69.6173 ± 0.173 59.933 ± 0.0934 

24Ta constant Wright-Fisher Driver 0 0 0.0012 ± 1e-
05 

48.2789 ± 0.2383 57.5377 ± 
0.0934 

24Ta constant Wright-Fisher Hybrid 0.02 956 9e-04 ± 1e-05 50.8229 ± 0.2357 58.2524 ± 
0.0941 

24Ta constant Wright-Fisher Neutral 0.00
1 

1 9e-04 ± 5e-05 0 ± 0 58.8567 ± 
0.6676 

24Tb exponential pseudo-Moran Abun-
dance 

0.68 294 0.0046 ± 1e-
05 

60.2602 ± 0.2084 59.8073 ± 
0.0936 

24Tb exponential pseudo-Moran Driver 0.05
4 

23 0.0031 ± 3e-
05 

50.2981 ± 0.2399 57.2927 ± 
0.0934 

24Tb exponential pseudo-Moran Hybrid 0.14
9 

65 0.0025 ± 4e-
05 

48.3833 ± 0.244 57.4236 ± 
0.0936 

24Tb exponential pseudo-Moran Neutral 0.11
8 

1 0.0025 ± 
0.00013 

0 ± 0 56.7229 ± 
0.6579 

24Tb constant Wright-Fisher Abun-
dance 

0.95
4 

7730 0.0215 ± 
0.00011 

33.6703 ± 0.2962 59.9064 ± 
0.0937 

24Tb constant Wright-Fisher Driver 0 2 0.003 ± 2e-05 48.7528 ± 0.2393 56.4175 ± 
0.0918 

24Tb constant Wright-Fisher Hybrid 0.03
9 

318 0.0024 ± 2e-
05 

50.7006 ± 0.2389 57.107 ± 0.0925 

24Tb constant Wright-Fisher Neutral 0.00
6 

1 0.0024 ± 
0.00011 

0 ± 0 58.0318 ± 
0.6822 

26N exponential pseudo-Moran Abun-
dance 

0.58
2 

199 0.0021 ± 1e-
05 

60.9877 ± 0.2031 59.9205 ± 
0.0934 

26N exponential pseudo-Moran Driver 0.11
3 

39 0.001 ± 1e-05 49.6389 ± 0.2389 58.7018 ± 
0.0944 

26N exponential pseudo-Moran Hybrid 0.15
6 

54 8e-04 ± 1e-05 49.3389 ± 0.2377 58.5755 ± 
0.0935 

26N exponential pseudo-Moran Neutral 0.14
9 

1 9e-04 ± 5e-05 0 ± 0 57.7994 ± 
0.6728 

26N constant Wright-Fisher Abun-
dance 

0.65
4 

290 0.0039 ± 1e-
05 

69.794 ± 0.1704 59.9547 ± 
0.0935 

26N constant Wright-Fisher Driver 0.11
5 

51 0.0012 ± 1e-
05 

48.2849 ± 0.2384 57.5175 ± 
0.0933 

26N constant Wright-Fisher Hybrid 0.11
5 

51 9e-04 ± 1e-05 50.737 ± 0.2359 58.2609 ± 
0.0941 

26N constant Wright-Fisher Neutral 0.11
5 

1 9e-04 ± 5e-05 0 ± 0 58.7803 ± 
0.6701 

9T exponential pseudo-Moran Abun-
dance 

0.68
5 

299 0.0044 ± 1e-
05 

60.2829 ± 0.2086 59.7955 ± 
0.0936 

9T exponential pseudo-Moran Driver 0.05
2 

23 0.0029 ± 2e-
05 

50.2323 ± 0.2398 57.3657 ± 
0.0934 

9T exponential pseudo-Moran Hybrid 0.14
7 

64 0.0022 ± 3e-
05 

48.3829 ± 0.2422 57.5193 ± 
0.0936 
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9T exponential pseudo-Moran Neutral 0.11
7 

1 0.0023 ± 9e-
05 

0 ± 0 56.6083 ± 
0.6581 

9T constant Wright-Fisher Abun-
dance 

0.95
8 

9299 0.0087 ± 2e-
05 

69.6836 ± 0.1724 59.926 ± 0.0937 

9T constant Wright-Fisher Driver 0 1 0.0028 ± 2e-
05 

48.8394 ± 0.2392 56.4465 ± 
0.0917 

9T constant Wright-Fisher Hybrid 0.03
7 

360 0.0023 ± 1e-
05 

50.8477 ± 0.2384 57.0952 ± 
0.0925 

9T constant Wright-Fisher Neutral 0.00
5 

1 0.0023 ± 1e-
04 

0 ± 0 57.9427 ± 0.687 

PolyB
1 

exponential pseudo-Moran Abun-
dance 

0.63
5 

261 0.0053 ± 1e-
05 

59.5088 ± 0.2104 59.8379 ± 
0.0935 

PolyB
1 

exponential pseudo-Moran Driver 0.07
6 

31 0.0028 ± 2e-
05 

50.2364 ± 0.2398 57.4025 ± 
0.0934 

PolyB
1 

exponential pseudo-Moran Hybrid 0.16
4 

67 0.0022 ± 3e-
05 

48.6949 ± 0.2419 57.6322 ± 
0.0934 

PolyB
1 

exponential pseudo-Moran Neutral 0.12
4 

1 0.0022 ± 9e-
05 

0 ± 0 56.5955 ± 
0.6549 

PolyB
1 

constant Wright-Fisher Abun-
dance 

0.92
5 

3482 0.0111 ± 3e-
05 

70.2557 ± 0.169 60.042 ± 0.0936 

PolyB
1 

constant Wright-Fisher Driver 0.00
1 

4 0.0028 ± 2e-
05 

48.8194 ± 0.2391 56.4451 ± 
0.0917 

PolyB
1 

constant Wright-Fisher Hybrid 0.06
1 

228 0.0023 ± 1e-
05 

50.895 ± 0.2381 57.1073 ± 
0.0925 

PolyB
1 

constant Wright-Fisher Neutral 0.01
4 

1 0.0023 ± 1e-
04 

0 ± 0 57.9809 ± 
0.6861 

PolyB
2 

exponential pseudo-Moran Abun-
dance 

0.60
3 

218 0.0059 ± 1e-
05 

58.6612 ± 0.212 59.7835 ± 
0.0937 

PolyB
2 

exponential pseudo-Moran Driver 0.08
6 

31 0.0038 ± 4e-
05 

50.2948 ± 0.2394 57.0217 ± 0.093 

PolyB
2 

exponential pseudo-Moran Hybrid 0.17 61 0.004 ± 7e-05 48.9466 ± 0.2472 57.28 ± 0.0942 

PolyB
2 

exponential pseudo-Moran Neutral 0.14
1 

1 0.0033 ± 
0.00022 

0 ± 0 56.5732 ± 
0.6597 

PolyB
2 

constant Wright-Fisher Abun-
dance 

0.89
3 

1277 0.0301 ± 1e-
04 

3.0543 ± 0.0165 59.9142 ± 
0.0936 

PolyB
2 

constant Wright-Fisher Driver 0.00
3 

4 0.0034 ± 3e-
05 

48.7328 ± 0.2396 56.3664 ± 
0.0917 

PolyB
2 

constant Wright-Fisher Hybrid 0.06
9 

98 0.0027 ± 2e-
05 

50.3534 ± 0.2405 57.1445 ± 
0.0928 

PolyB
2 

constant Wright-Fisher Neutral 0.03
6 

1 0.0026 ± 
0.00014 

0 ± 0 58.1592 ± 
0.6741 
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Table 2.4 — Model selection with selective pressure constrained to S = 1 
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7T exponential pseudo-Moran Abundance 0.274 1 9e-04 ± 5e-05 1 ± 0 58.2452 ± 0.6646 
7T exponential pseudo-Moran Driver 0.238 1 9e-04 ± 5e-05 1 ± 0 58.4745 ± 0.6725 
7T exponential pseudo-Moran Hybrid 0.26 1 9e-04 ± 5e-05 1 ± 0 58.586 ± 0.6668 
7T exponential pseudo-Moran Neutral 0.228 1 9e-04 ± 6e-05 1 ± 0 58.5446 ± 0.6791 
7T constant Wright-Fisher Abundance 0.259 1 9e-04 ± 6e-05 1 ± 0 58.8089 ± 0.6627 
7T constant Wright-Fisher Driver 0.24 1 9e-04 ± 6e-05 1 ± 0 58.1783 ± 0.6771 
7T constant Wright-Fisher Hybrid 0.257 1 9e-04 ± 5e-05 1 ± 0 59.0924 ± 0.6742 
7T constant Wright-Fisher Neutral 0.245 1 9e-04 ± 7e-05 1 ± 0 58.7516 ± 0.6787 

U1T exponential pseudo-Moran Abundance 0.275 1 9e-04 ± 5e-05 1 ± 0 58.2452 ± 0.6646 
U1T exponential pseudo-Moran Driver 0.239 1 9e-04 ± 5e-05 1 ± 0 58.4745 ± 0.6725 
U1T exponential pseudo-Moran Hybrid 0.258 1 9e-04 ± 5e-05 1 ± 0 58.586 ± 0.6668 
U1T exponential pseudo-Moran Neutral 0.228 1 9e-04 ± 6e-05 1 ± 0 58.5446 ± 0.6791 
U1T constant Wright-Fisher Abundance 0.259 1 9e-04 ± 6e-05 1 ± 0 58.8089 ± 0.6627 
U1T constant Wright-Fisher Driver 0.24 1 9e-04 ± 6e-05 1 ± 0 58.1783 ± 0.6771 
U1T constant Wright-Fisher Hybrid 0.257 1 9e-04 ± 5e-05 1 ± 0 59.1592 ± 0.6715 
U1T constant Wright-Fisher Neutral 0.245 1 9e-04 ± 7e-05 1 ± 0 58.7516 ± 0.6787 
U2T exponential pseudo-Moran Abundance 0.276 1 0.0021 ± 8e-05 1 ± 0 57.3057 ± 0.653 
U2T exponential pseudo-Moran Driver 0.235 1 0.0024 ± 0.00011 1 ± 0 57.7452 ± 0.6634 
U2T exponential pseudo-Moran Hybrid 0.264 1 0.0021 ± 7e-05 1 ± 0 58.1274 ± 0.654 
U2T exponential pseudo-Moran Neutral 0.225 1 0.0024 ± 0.00011 1 ± 0 57.8758 ± 0.6772 
U2T constant Wright-Fisher Abundance 0.269 1 0.0023 ± 1e-04 1 ± 0 58.3439 ± 0.6532 
U2T constant Wright-Fisher Driver 0.233 1 0.0023 ± 9e-05 1 ± 0 57.4777 ± 0.693 
U2T constant Wright-Fisher Hybrid 0.263 1 0.0023 ± 1e-04 1 ± 0 57.8662 ± 0.6683 
U2T constant Wright-Fisher Neutral 0.236 1 0.0025 ± 0.00012 1 ± 0 57.1433 ± 0.6655 
U3T exponential pseudo-Moran Abundance 0.275 1 9e-04 ± 5e-05 1 ± 0 58.1624 ± 0.6643 
U3T exponential pseudo-Moran Driver 0.239 1 9e-04 ± 5e-05 1 ± 0 58.4554 ± 0.6736 
U3T exponential pseudo-Moran Hybrid 0.258 1 9e-04 ± 5e-05 1 ± 0 58.586 ± 0.6668 
U3T exponential pseudo-Moran Neutral 0.228 1 9e-04 ± 6e-05 1 ± 0 58.6178 ± 0.6777 
U3T constant Wright-Fisher Abundance 0.259 1 9e-04 ± 6e-05 1 ± 0 58.7611 ± 0.6614 
U3T constant Wright-Fisher Driver 0.24 1 9e-04 ± 6e-05 1 ± 0 58.1783 ± 0.6771 
U3T constant Wright-Fisher Hybrid 0.257 1 9e-04 ± 5e-05 1 ± 0 59.0955 ± 0.674 
U3T constant Wright-Fisher Neutral 0.245 1 9e-04 ± 7e-05 1 ± 0 58.7516 ± 0.6787 
14T exponential pseudo-Moran Abundance 0.275 1 9e-04 ± 5e-05 1 ± 0 58.1624 ± 0.6643 
14T exponential pseudo-Moran Driver 0.239 1 9e-04 ± 5e-05 1 ± 0 58.4554 ± 0.6736 
14T exponential pseudo-Moran Hybrid 0.258 1 9e-04 ± 5e-05 1 ± 0 58.586 ± 0.6668 
14T exponential pseudo-Moran Neutral 0.228 1 9e-04 ± 6e-05 1 ± 0 58.5446 ± 0.6791 
14T constant Wright-Fisher Abundance 0.259 1 9e-04 ± 6e-05 1 ± 0 58.8089 ± 0.6627 
14T constant Wright-Fisher Driver 0.24 1 9e-04 ± 6e-05 1 ± 0 58.1783 ± 0.6771 
14T constant Wright-Fisher Hybrid 0.257 1 9e-04 ± 5e-05 1 ± 0 59.0924 ± 0.6739 
14T constant Wright-Fisher Neutral 0.245 1 9e-04 ± 7e-05 1 ± 0 58.7516 ± 0.6787 
16T exponential pseudo-Moran Abundance 0.274 1 9e-04 ± 5e-05 1 ± 0 58.2452 ± 0.6646 
16T exponential pseudo-Moran Driver 0.238 1 9e-04 ± 5e-05 1 ± 0 58.4745 ± 0.6725 
16T exponential pseudo-Moran Hybrid 0.26 1 9e-04 ± 5e-05 1 ± 0 58.586 ± 0.6668 
16T exponential pseudo-Moran Neutral 0.228 1 0.001 ± 6e-05 1 ± 0 58.6274 ± 0.6789 
16T constant Wright-Fisher Abundance 0.259 1 9e-04 ± 6e-05 1 ± 0 58.8089 ± 0.6627 
16T constant Wright-Fisher Driver 0.24 1 9e-04 ± 6e-05 1 ± 0 58.1783 ± 0.6771 
16T constant Wright-Fisher Hybrid 0.257 1 9e-04 ± 5e-05 1 ± 0 59.1051 ± 0.6742 
16T constant Wright-Fisher Neutral 0.245 1 9e-04 ± 7e-05 1 ± 0 58.7516 ± 0.6787 
19Ta exponential pseudo-Moran Abundance 0.273 1 0.0021 ± 8e-05 1 ± 0 57.4045 ± 0.6565 
19Ta exponential pseudo-Moran Driver 0.243 1 0.0024 ± 0.00011 1 ± 0 57.8025 ± 0.663 
19Ta exponential pseudo-Moran Hybrid 0.261 1 0.0022 ± 8e-05 1 ± 0 57.9108 ± 0.65 
19Ta exponential pseudo-Moran Neutral 0.222 1 0.0025 ± 0.00012 1 ± 0 57.9331 ± 0.6777 
19Ta constant Wright-Fisher Abundance 0.27 1 0.0024 ± 0.00011 1 ± 0 58.2866 ± 0.6566 
19Ta constant Wright-Fisher Driver 0.233 1 0.0023 ± 1e-04 1 ± 0 57.8185 ± 0.6927 
19Ta constant Wright-Fisher Hybrid 0.261 1 0.0023 ± 1e-04 1 ± 0 58.0478 ± 0.6705 
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19Ta constant Wright-Fisher Neutral 0.237 1 0.0025 ± 0.00012 1 ± 0 57.2261 ± 0.6669 
19Tb exponential pseudo-Moran Abundance 0.275 1 9e-04 ± 5e-05 1 ± 0 58.1624 ± 0.6643 
19Tb exponential pseudo-Moran Driver 0.239 1 9e-04 ± 5e-05 1 ± 0 58.4554 ± 0.6736 
19Tb exponential pseudo-Moran Hybrid 0.258 1 9e-04 ± 5e-05 1 ± 0 58.586 ± 0.6668 
19Tb exponential pseudo-Moran Neutral 0.228 1 9e-04 ± 6e-05 1 ± 0 58.5796 ± 0.6796 
19Tb constant Wright-Fisher Abundance 0.259 1 9e-04 ± 6e-05 1 ± 0 58.7611 ± 0.6614 
19Tb constant Wright-Fisher Driver 0.24 1 9e-04 ± 6e-05 1 ± 0 58.1178 ± 0.679 
19Tb constant Wright-Fisher Hybrid 0.257 1 9e-04 ± 5e-05 1 ± 0 59.1592 ± 0.6715 
19Tb constant Wright-Fisher Neutral 0.245 1 9e-04 ± 7e-05 1 ± 0 58.7516 ± 0.6787 
24Ta exponential pseudo-Moran Abundance 0.275 1 9e-04 ± 5e-05 1 ± 0 58.1624 ± 0.6643 
24Ta exponential pseudo-Moran Driver 0.239 1 9e-04 ± 5e-05 1 ± 0 58.4554 ± 0.6736 
24Ta exponential pseudo-Moran Hybrid 0.258 1 9e-04 ± 5e-05 1 ± 0 58.586 ± 0.6668 
24Ta exponential pseudo-Moran Neutral 0.228 1 9e-04 ± 6e-05 1 ± 0 58.6656 ± 0.6783 
24Ta constant Wright-Fisher Abundance 0.259 1 9e-04 ± 6e-05 1 ± 0 58.7611 ± 0.6614 
24Ta constant Wright-Fisher Driver 0.24 1 9e-04 ± 6e-05 1 ± 0 58.1783 ± 0.6771 
24Ta constant Wright-Fisher Hybrid 0.257 1 9e-04 ± 5e-05 1 ± 0 59.1592 ± 0.6715 
24Ta constant Wright-Fisher Neutral 0.245 1 9e-04 ± 7e-05 1 ± 0 58.7516 ± 0.6787 
24Tb exponential pseudo-Moran Abundance 0.273 1 0.0023 ± 0.00011 1 ± 0 57.0446 ± 0.6526 
24Tb exponential pseudo-Moran Driver 0.242 1 0.0025 ± 0.00012 1 ± 0 57.551 ± 0.6661 
24Tb exponential pseudo-Moran Hybrid 0.264 1 0.0022 ± 9e-05 1 ± 0 57.9108 ± 0.6512 
24Tb exponential pseudo-Moran Neutral 0.222 1 0.0026 ± 0.00013 1 ± 0 57.7516 ± 0.6758 
24Tb constant Wright-Fisher Abundance 0.267 1 0.0024 ± 0.00013 1 ± 0 58.379 ± 0.6601 
24Tb constant Wright-Fisher Driver 0.237 1 0.0024 ± 1e-04 1 ± 0 57.7357 ± 0.6922 
24Tb constant Wright-Fisher Hybrid 0.257 1 0.0023 ± 1e-04 1 ± 0 57.9045 ± 0.6718 
24Tb constant Wright-Fisher Neutral 0.239 1 0.0025 ± 0.00012 1 ± 0 57.2643 ± 0.6726 
26N exponential pseudo-Moran Abundance 0.274 1 9e-04 ± 5e-05 1 ± 0 58.2452 ± 0.6646 
26N exponential pseudo-Moran Driver 0.239 1 9e-04 ± 5e-05 1 ± 0 58.4045 ± 0.6706 
26N exponential pseudo-Moran Hybrid 0.26 1 9e-04 ± 5e-05 1 ± 0 58.586 ± 0.6668 
26N exponential pseudo-Moran Neutral 0.227 1 0.001 ± 7e-05 1 ± 0 58.6815 ± 0.6776 
26N constant Wright-Fisher Abundance 0.259 1 9e-04 ± 6e-05 1 ± 0 58.8089 ± 0.6627 
26N constant Wright-Fisher Driver 0.239 1 9e-04 ± 6e-05 1 ± 0 58.1783 ± 0.6771 
26N constant Wright-Fisher Hybrid 0.257 1 9e-04 ± 5e-05 1 ± 0 59.1178 ± 0.6745 
26N constant Wright-Fisher Neutral 0.245 1 0.001 ± 7e-05 1 ± 0 58.6879 ± 0.6762 
9T exponential pseudo-Moran Abundance 0.274 1 0.0021 ± 8e-05 1 ± 0 57.3854 ± 0.6574 
9T exponential pseudo-Moran Driver 0.242 1 0.0024 ± 0.00011 1 ± 0 57.8025 ± 0.663 
9T exponential pseudo-Moran Hybrid 0.261 1 0.0022 ± 8e-05 1 ± 0 57.9108 ± 0.65 
9T exponential pseudo-Moran Neutral 0.222 1 0.0025 ± 0.00012 1 ± 0 57.9522 ± 0.6787 
9T constant Wright-Fisher Abundance 0.269 1 0.0024 ± 0.00011 1 ± 0 58.2866 ± 0.6566 
9T constant Wright-Fisher Driver 0.233 1 0.0023 ± 1e-04 1 ± 0 57.9076 ± 0.6927 
9T constant Wright-Fisher Hybrid 0.261 1 0.0023 ± 1e-04 1 ± 0 58.1115 ± 0.6708 
9T constant Wright-Fisher Neutral 0.236 1 0.0025 ± 0.00012 1 ± 0 57.2261 ± 0.6669 

PolyB1 exponential pseudo-Moran Abundance 0.274 1 0.0021 ± 8e-05 1 ± 0 57.4045 ± 0.6565 
PolyB1 exponential pseudo-Moran Driver 0.243 1 0.0024 ± 0.00011 1 ± 0 57.7102 ± 0.6622 
PolyB1 exponential pseudo-Moran Hybrid 0.261 1 0.0022 ± 8e-05 1 ± 0 57.9459 ± 0.6512 
PolyB1 exponential pseudo-Moran Neutral 0.222 1 0.0025 ± 0.00011 1 ± 0 57.9522 ± 0.6776 
PolyB1 constant Wright-Fisher Abundance 0.271 1 0.0023 ± 0.00011 1 ± 0 58.2834 ± 0.6575 
PolyB1 constant Wright-Fisher Driver 0.231 1 0.0023 ± 9e-05 1 ± 0 57.6656 ± 0.6949 
PolyB1 constant Wright-Fisher Hybrid 0.261 1 0.0023 ± 1e-04 1 ± 0 57.9713 ± 0.6668 
PolyB1 constant Wright-Fisher Neutral 0.237 1 0.0025 ± 0.00012 1 ± 0 57.207 ± 0.6674 
PolyB2 exponential pseudo-Moran Abundance 0.272 1 0.0027 ± 2e-04 1 ± 0 56.8471 ± 0.6544 
PolyB2 exponential pseudo-Moran Driver 0.245 1 0.0029 ± 0.00021 1 ± 0 57.3312 ± 0.6609 
PolyB2 exponential pseudo-Moran Hybrid 0.263 1 0.0024 ± 0.00011 1 ± 0 57.9204 ± 0.6466 
PolyB2 exponential pseudo-Moran Neutral 0.221 1 0.0029 ± 0.00017 1 ± 0 57.4236 ± 0.6784 
PolyB2 constant Wright-Fisher Abundance 0.268 1 0.0025 ± 0.00013 1 ± 0 58.2484 ± 0.6616 
PolyB2 constant Wright-Fisher Driver 0.235 1 0.0026 ± 0.00014 1 ± 0 57.5796 ± 0.6897 
PolyB2 constant Wright-Fisher Hybrid 0.257 1 0.0026 ± 0.00015 1 ± 0 58.1115 ± 0.6741 
PolyB2 constant Wright-Fisher Neutral 0.24 1 0.0027 ± 0.00014 1 ± 0 57.379 ± 0.6701 
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Table 2.5 — Approximate reported per chromosome mis-segregation rates 
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Mean Lagging 8 46 0.00174 

Nichol-
son https://doi.org/10.7554/eLife.05068  Amniocyte 
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Approx. 
Mean Lagging 0 46 0.00000 

Nichol-
son https://doi.org/10.7554/eLife.05068  DLD1 Tumor 

Approx. 
Mean Lagging 1 46 0.00022 
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st 
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Acute aneuploidy 
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Bak-
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Mean Lagging 13 82 0.00159 
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mor 
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 131 

Worrall 
https://doi.org/10.1016/j.celrep.201

8.05.047   RPE1 
Non-tu-

mor 
Approx. 
Mean 

Unspecified 
Error 5 46 0.00109 
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3 
A SURVEY OF CHROMOSOMAL INSTABILITY MEASURES ACROSS 

INDUCIBLE MECHANISTIC MODELS 

Adapted from Lynch et al. (Manuscript 3). In preparation. 

 

 

ABSTRACT 

Chromosomal instability (CIN) is the persistent reshuffling of cancer karyotypes via 

chromo-some mis-segregation during cell division. In cancer, CIN exists at varying levels 

that have dif-ferential effects on tumor progression. However, mis-segregation rates re-

main challenging to assess in human cancer despite an array of proposed measurement 

methods. To evaluate measures of CIN, we compared quantitative methods using specific, 

inducible phenotypic models of CIN including chromosome bridges, pseudobipolar spin-

dles, multipolar spindles, and polar chromosomes. For each, we measured CIN using mul-

tiple approaches: fixed and timelapse fluorescence microscopy, chromosome spreads, 6-

centromere FISH, bulk tran-scriptomics, and single cell DNA sequencing (scDNAseq). 

While direct microscopy of tumor cells in live and fixed samples correlated well correlated 

well (R = 0.77; p < 0.01) and sensitively detected CIN, fixed imaging often underestimated 

transient causes of CIN. Commonly used cytogenetics approaches include chromosome 

spreads and 6-centromere FISH, which also correlated well (R = 0.77; p < 0.01) but had 

limited sensitivity for lower rates of CIN. Turning to genomics, inducible CIN is not 
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detected with bulk genomic DNA signatures and bulk tran-scriptomic scores, CIN70 and 

HET70. By contrast, single cell DNA sequencing (scDNAseq) de-tects CIN with high sen-

sitivity, and correlates very well with imaging methods (R = 0.83; p < 0.01). scDNAseq is 

further enhanced by accounting for cellular selection using approximate Bayesian com-

putation (ABC). We conclude that single-cell methods such as imaging, cytoge-netics, 

and scDNAseq can measure CIN, and that scDNAseq is the most comprehensive meth-

od accessible to clinical samples. To facilitate comparison of CIN rates between groups 

and methods, we propose a standardized unit of measure of CIN: Mis-segregations per 

Diploid Division (MDD). This systematic analysis of common CIN measures highlights the 

superiority of single-cell methods and provides guidance for measuring CIN in the clinical 

setting. 

INTRODUCTION 

David von Hansemann and Theodor Boveri described chromosomal instability (CIN) 

and proposed its role in human cancer over 100 years ago (305, 306). Indeed, CIN accel-

erates tumor evolution, and portends increased metastasis (238, 262), therapeutic re-

sistance (240, 241, 243), and worse prognosis (182, 237, 260). Importantly, tumors’ CIN 

levels vary considerably. While moderate CIN levels promote these advanced clinical fea-

tures, and while high CIN levels are tumor-inhibiting in mouse models(245, 246, 263), it is 

unclear whether high CIN levels improve (188, 251, 307–309) or impair (182, 237, 310, 

311) patient survival outcomes in human cancer. This discrepancy is due in large part to 

poorly defined levels of CIN, highlighting the need for accurate, quantitative CIN measures 

that are amenable to clinical use.  
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 Since Hansemann and Boveri, several methods of quantifying CIN have been used 

in basic and translational studies. However, these methods vary in accuracy as well as 

how comprehensively and directly they assess CIN, leading to disagreement among 

measures (157, 270). It is important to compare and judge the analytic validity of these 

approaches to optimize CIN measures for human cancer. 

 Among cell biologists, direct observation of mitotic abnormalities is a common 

measure of CIN. Fixed and time-lapse microscopy rely on the visual identification of ab-

normal mitotic phenotypes such as lagging, polar, and bridging chromosomes as well as 

spindle multipolarity. This direct observation of mitotic defects is considered the ‘gold 

standard’. However, the identity of the missegregated chromosome(s) remains unclear 

and, in some cases, even direct observation requires assumptions to infer chromosome 

mis-segregation, such as whether a lagging chromosome segregates to the correct or 

incorrect daughter cell (135, 240, 241, 243). Further, these methods are not readily appli-

cable to human tumors. 

 Cytogenetic methods can be used to infer CIN by cell-to-cell variation in chromo-

some numbers or karyotypes. Actively cycling cells can be captured in mitosis for chro-

mosome counts and karyotypes. However, the reliance on mitotic cells may bias the sam-

ple, particularly as de novo aneuploidy may may delay progression through interphase 

(198, 201, 268). By contrast, centromeric fluorescence in situ hybridization (cenFISH) 

identifies abnormal complements of chromosomes in fixed cells without bias for cycling 

cells. However, interphase FISH is limited to a small number of chromosomes and may 
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suffer from other limitations such as sectioning artifacts. Further, any analysis of living 

cells in a tumor is biased by cellular selection (138, 147, 228, 241).  

 Genomics promises more comprehensive measures of genomic heterogeneity, 

and a variety of genomic methods have been proposed to assess CIN. Bulk transcriptional 

data (bRNAseq) has been used to assign CIN scores to tumor samples. Expression scores 

such as CIN70 (187), meant to reflect the level of CIN, are derived from an inferred level 

of aneuploidy and correlate with proliferation and structural aneuploidy. Thus, they may 

correlate with CIN but do not directly measure it. The HET70 score correlates with high 

karyotype heterogeneity in the NCI60 panel without correlating with PCNA, suggesting it 

is independent of proliferation (312). However, it is unclear if bulk transcriptional scores 

can discriminate ongoing CIN or merely correlate with it in cancer models. Similarly, bulk 

DNA sequencing (bDNAseq) CIN signatures are proposed to quantify and identify initial 

cause of CIN, by inferring mechanisms that could produce an observed cell-averaged 

DNA copy number profile. Whether bulk sequencing measures detect ongoing CIN has 

not been tested.  

 Single-cell genomic measures of cell-to-cell variation in copy number analysis are 

less commonly used in clinical samples but have an advantage over bulk methods as they 

are not averaged across cells, allowing for direct evaluation of cell-to-cell variation (147).  

Low-coverage single cell DNA sequencing (scDNAseq) can determine numerical copy 

numbers of all chromosomes in single cells in experimental models and patient tumors 

(191, 313). Like FISH, this information can be used to measure CIN by quantifying cell-to-

cell heterogeneity in genomics-inferred karyotypes. scDNAseq can be further improved 
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by accounting for cellular selection against highly aneuploid cells using computational 

modeling and approximate Bayesian computation (ABC) (147).  

 Here, we directly compare these various measures of CIN in well-defined inducible 

cell-based models. The results reveal the pre-eminence of single-cell measures (micro-

scopic analysis of mitosis, cytogenetic methods, scDNAseq) in measuring ongoing CIN 

and the inability of bulk molecular sequencing (transcriptional profiles and bulk DNA se-

quencing) to detect CIN. Among single-cell measures, those that survey all chromosomes 

across hundreds of cells are most sensitive. The data collected here are made available 

to investigators who seek to establish novel measures of CIN and are an important touch-

stone to establish their directness for ongoing CIN. We anticipate that this comprehensive 

comparison will allow the most accurate CIN measures to be employed in clinical samples 

to advance mechanistic insight, as well as clinical significance and to facilitate use of CIN 

as a predictive biomarker, such as for microtubule-targeted therapies (251). 

RESULTS 

Design and validation of CIN models with distinct mechanisms 

 We developed 4 phenotypic models of CIN induced by distinct mechanisms (Fig-

ure 3.1): 1) Bridging chromosomes (Br, red) in CAL51 cells via tetracycline-inducible ex-

pression of a dominant negative mutant  of telomeric repeat binding factor (TERF2-DN) 

lacking both its basic domain and Myb-binding box (314), 2) pseudobipolar spindles (Pb, 

blue) in MCF10A cells via induction of centrosome amplification and subsequent spindle 

pole focusing after tetracycline-inducible expression of polo-like kinase 4 (PLK4), 3) mul-

tipolar spindles (Mp, green) in MCF10A cells by inhibition of HSET to prevent focusing in 
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the Pb model (251), and 4) polar chromosomes (Po, orange) in MCF10A cells by mitotic 

enrichment and sequential inhibition of CENP-E then MPS1. This sequential chemical 

treatment induces anaphase onset with multiple polar chromosomes with high penetrance 

(315). After induction of each CIN model, we performed imaging (fixed immunofluores-

cence and 4–12-hour time lapse fluorescence microscopy), cytogenetic (mitotic chromo-

some counts and cenFISH), and sequence-based assays (bRNAseq, bDNAseq, 

scDNAseq) to measure CIN. 

 We first verified that our models induced CIN by microscopy. Using fixed and time 

lapse imaging, we found the expected CIN phenotypes for each model, indicating suc-

cessful induction (Figure 3.2). As expected, the Br model induced ~30-40% anaphase 

bridges after doxycycline, visible on fixed and live analysis (Figure 3.2A,E). For the Pb 

model, we often observed multipolar spindles that focus to pseudobipolar spindles by 

anaphase onset such that a single spindle pole often has two pericentric foci (Figure 2B). 

The Pb model displayed pseudobipolar anaphases in 40-50% of cells (Figure 3.2B,F), 

though about  5-15% of cells exhibited multipolar anaphase (Figure 3.2C,G). The Mp 

model induced ~25% multipolar anaphases after doxycycline + CW-069. The Po model 

induced high penetrance of CIN with polar chromosomes found in virtually all cells (Figure 

3.2D-H). 

 To evaluate measures of CIN, we quantified the total mitotic aberrations by micros-

copy using fixed and time lapse imaging (Figure 3.2I,J). As expected, all had statistically 

elevated CIN over controls and the two methods were closely correlated (Figure 3.2K). 

To directly compare the relative levels of CIN imparted by each model, we quantified a 
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standardized measure of CIN, mis-segregations per diploid division (MDD), which we pre-

viously described (316). This measure accounts for the relative mis-segregation rates pro-

duced by different CIN phenotypes, the relative penetrance of these phenotypes, and the 

ploidy of the cell. In short, we assume that pseudobipolar spindles produce no mis-seg-

regations, bridging and lagging chromosomes each produce 1 mis-segregation, polar 

chromosomes produce 7.8 mis-segregations based on quantitative immunofluorescence 

imaging of polar centromere foci (Figure 3.3A) and multipolar spindles produce 18 mis-

segregations based on Lynch et al. 2022 (Table 3.1, Materials & Methods). By this ap-

proximation, the mis-segregation rates (MDD) observed for each model are 0.22 ± 0.1 for 

CtrlC, 0.61 ± 0.04 for Br, 0.28 ± 0.06 for CtrlM, 1.21 ± 0.37 for Pb, 4.59 ± 0.56 for Mp, and 

7.77 ± 0.15 for Po by fixed imaging (Figure 2L). By time lapse imaging, these approxima-

tions are 1.32 ± 0.63 for CtrlC, 1.45 ± 0.22 for Br, 0.65 ± 0.62 for CtrlM, 2.91 ± 0.56 for 

Pb, 4.63 ± 0.7 for Mp, and 8.04 ± 0.37 for Po (Figure 3.2M).  

 In summary, these findings validate our CIN models and demonstrate low levels of 

CIN with Br and Pb, intermediate levels with Mp, and very high levels with Po. These 

distinct models and mechanisms of CIN confirm they are suitable models to compare 

quantitative measures of CIN. 

Short-lived CIN phenotypes are underestimated in fixed imaging 

 While the two imaging methods correlated well (Figure 3.2K), time lapse imaging 

appeared more sensitive to certain CIN phenotypes. For example, we detected signifi-

cantly more multipolar metaphases and anaphases with lagging chromosomes using time 

lapse imaging. Anaphase polar chromosomes were more readily detected using time 
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lapse imaging as well. These differentially detected defects are transient in nature, sug-

gesting that the differences are not an artifact of live imaging alone. For example, multi-

polar spindles can be clustered rapidly throughout mitosis while lagging and polar chro-

mosomes are often incorporated into the segregating chromosome mass during ana-

phase (Figure 3.3B). Together, these results indicate that measurement of CIN pheno-

types using fixed imaging, as is common in retrospective clinical analyses of CIN, may 

underestimate the incidence of some mitotic defects.  

Cytogenetic methods exhibit low sensitivity to ongoing CIN 

 Mitotic chromosome counts and centromeric FISH are commonly used cytoge-

netic approaches to measure CIN (89, 121, 249, 251). Chromosome counts detected var-

iation around the modal chromosome count (46 for CAL51s and 47 for MCF10As) in all 

CIN models and their controls (Figure 3.4A). In several models, in addition to near-diploid 

aneuploidy there were small fractions of counts consistent with triploid (n=69) or tetraploid 

(n=92) cells. The variation in chromosome counts only significantly differs from control for 

the highest rate of CIN generated, the Po condition, in which nearly all cells were affected 

(Figure 3B). FISH probe counts also had low sensitivity for CIN (Figure 3.4C,D). Nonmodal 

probe counts were seen at similar levels to control for Br and Pb. Though nonmodal 

counts were elevated two-fold and three-fold for Mp and Po, the models with the highest 

level of CIN (based on approximated MDD values), FISH only significantly detected a dif-

ference in Mp (Figure 3.4D). In fact, the fraction of non-modal counts was much less than 

with chromosome spreads, likely because this method only surveys 3 of 23 unique chro-

mosomes, making single chromosome alterations harder to detect. This could be 
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improved by increasing the number of probes or cells counted. Recent data also suggest 

a bias in mis-segregation of larger chromosomes (270, 317) which might make it im-

portant to survey chromosomes more broadly than possible with interphase FISH. These 

data suggest that cytogenetics methods are less sensitive than inspection of mitosis at 

detecting ongoing CIN. 

Published bulk transcriptomic and genomic CIN signatures do not reflect ongoing 

CIN 

 Transcriptional signatures of CIN such as CIN70 and HET70 (to a lesser extent) are 

commonly used as a proxy measure to assess CIN from bulk transcriptomic data in tumor 

samples (189, 318). These are derived indirectly by identifying gene expression that cor-

relates with aneuploidy in tumor samples (CIN70)(187) and karyotype heterogeneity in 

cell lines (HET70)(189). CIN70 is known to be confounded by proliferation-associated 

transcription and neither CIN70 nor HET70, to our knowledge, have been tested in induc-

ible models of CIN. To determine if these directly measure induced CIN, we employed 

these transcriptional measures with our models of ongoing CIN. We performed bulk RNA 

sequencing and measured CIN70 and HET70 signatures in our models (Table 3.2). To 

validate our results, we verified that doxycycline addition caused a 4-fold increase of 

TERF2 expression in the Br condition and a 32-fold increase in PLK4 expression in Pb 

and MP. In each case, these were among the top differentially expressed genes (Figure 

3.5). Turning to CIN scores, we plotted the distribution of all 70 genes in violin plots (Figure 

3.6A,B) with the mean representing the score. As illustrated, neither CIN70 nor HET70 

was increased in any of the CIN models. In fact, CIN70 decreased slightly in Pb and Mp 
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models (Figure 3.6A), likely due to a decrease in cell proliferation after centrosome am-

plification (319). This suggests that these bulk transcriptional scores do not detect ongo-

ing CIN. 

 In addition to RNA, bulk genomic DNA measures of CIN are proposed to detect 

characteristic signatures of copy number variation (CNV) from SNP array and genome 

sequencing data—essentially measuring patterns of aneuploidy (186). These measures 

characterize the final state of the tumor, which could either arise from an early event in 

oncogenesis, or through continuous CIN with selection for certain aneuploid clones. In 

the latter circumstance, bulk DNA would potentially measure CIN. Whole-genome se-

quencing (~10x coverage) and copy number calling in our models revealed nearly iden-

tical copy number profiles between control and CIN-induced groups (Figure 3.6C). We 

next analyzed recently published CIN signatures (186) in each replicate and clustered the 

models and controls by signature (Figure 3.6D). CX1 is the predominant CIN signature in 

all groups. Importantly, it also appeared in control cells. CX1 corresponds to large scale 

copy number alterations consistent with whole chromosome or chromosome arm mis-

segregation, though is only slightly higher in Pb and Po models than in control cells. Sur-

prisingly, CX6 did not differ between controls and induced CIN models, other than Pb, 

even though it similarly represents whole chromosome and chromosome arm mis-segre-

gation. CX2, which corresponds to impaired homologous recombination (IHR), is mod-

estly elevated with in Pb, Mp, and Po models, though it is also elevated in control MCF10a 

cells. (Figure 3.6E). CX3 was only elevated in MCF10a control cells. Since our models of 

CIN are induced over 8-72h, they do not provide sufficient time for extensive cellular 
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selection, a process that is likely required for these signatures to appear as they are based 

on the averaged CNVs of the population. Nevertheless, we conclude that the DNA ge-

nomic signatures of CIN do not directly measure ongoing CIN of samples. In sum, we find 

that bulk genomic measures of CIN, whether transcriptomic or genomic, do not directly 

measure ongoing CIN, even in an ideal context where tumor purity is not at issue. 

scDNAseq detects ongoing numerical CIN and enables inference of mis-segregation 

rates 

 The analyses above highlight characteristics of optimal CIN measures—they (i) de-

tect all chromosomes, (ii) directly detect CNV variation across cells, and (iii) have high 

throughput. Single cell DNA sequencing (scDNAseq) meets these characteristics. Even 

low coverage of reads across the genomes are sufficient to infer copy numbers across all 

chromosomes. Thus, scDNAseq has been employed to measure cell-cell variation in chro-

mosome copy number and to infer CIN (147, 233). We therefore evaluated scDNAseq as 

a sensitive measure of CIN in our models.  

 To evaluate scDNAseq, we sampled 32 single cells per replicate by FACS (Figure 

3.7) and included a bulk sample of 500 cells to infer average karyotype. We filtered for 

quality and inferred large-scale chromosome copy number alterations at 1Mb resolution, 

resulting in 378 high-quality single-cell copy number profiles (Figure 3.8A). Bulk analyses 

reveal CAL51 as diploid with a focal 8q amplification; MCF10A cells also had 8q plus gains 

of 1q, 5q, and recurring sub-clonal gains of Xq. To quantify chromosomal deviations, we 

evaluated the absolute difference between each single-cell karyotype and the modal kar-

yotype inferred from bulk samples. Both controls—CAL51 and MCF10A—had a small 
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number of deviations from modal karyotype (Figure 3.8B). We did not detect a clear in-

crease in chromosomal deviations in the Br model. This could be due to 1) resolution of 

chromatin bridges, 2) chromosome breakages resulting in structural variation, but con-

served copy number, which would be undetectable by low coverage scDNAseq, or 3) 

segmental copy number changes smaller than 50% of the chromosome. However, we 

ruled out the latter possibility using an alternative analysis to detect telomere proximal 

breaks resulting from breakage of bridging chromosomes, which produced no significant 

results (Figure 3.9).  We found a modest increase in non-modal chromosomes with the 

Pb model and significant increases in the Mp and Po models, which average about 5-6 

deviations per cell respectively (Figure 3.8B). The percentage of cells with deviations from 

the mode followed a similar trend, though also detects a small increase in the Br model 

that is not statistically significance (Figure 3.8C). As expected, the Mp model displayed a 

significant bias of chromosome losses over gains (Figure 3.8D)—this is expected since 

division of duplicated chromosomes into 3+ daughter cells reduces chromosome number. 

Other models showed no such bias with gains/losses being roughly equal. Taken as a 

whole, these data support scDNAseq as a sensitive method for detecting CIN.  

 Single-cell resolution may enable detection of CIN signatures (186), so we re-

peated our previous analysis using the single cell copy number profiles. Again, the pro-

posed whole/arm mis-segregation signature, CX1, was the predominant among the 

groups (Figure 3.10). However, this relative activity of this signature between groups did 

not correspond to CIN as observed by microscopy or by directly measuring whole-chro-

mosome copy number alterations. CX6, the other proposed whole/arm mis-segregation 
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signature had much lower activity among groups and did not correspond to observed 

CIN. Interestingly, despite their low activity, the only signatures that seemed to reflect the 

observed trend were decreasing CX4 and increasing CX8, proposed signatures of whole 

genome doubling and replication stress respectively. This analysis suggests that these 

measures of CNV at single cell resolution do not well characterize ongoing CIN (Figure 

3.10).  

 Because the fitness levels imparted by different karyotypes can be acted on over 

time by natural selection, the absolute number of chromosomal deviations in a population 

may not capture CIN in its entirety. We recently addressed this issue and developed a 

computational framework to infer mis-segregation rates from scDNAseq datasets using 

approximate Bayesian computation (ABC), a method to statistically relate biological and 

simulated data (147). This relies on establishing a phylogenetic tree of single cells and 

measurements of indexes describing this tree from experimental and simulated data. ABC 

infers biological parameters from the simulation parameters that produce similar phylog-

eny.  

 To employ ABC, we characterized the populations with summary indexes: aneu-

ploidy (average sub-clonal variance within karyotypes), mean karyotype variance (MKV; 

average variance within chromosomes across the population), and the Colless index, a 

metric of the imbalance of phylogenetic trees reconstructed from cells’ copy number pro-

files, an indication of ongoing selection (229, 230) (Figure 3.8E-G). As expected, our CIN 

models increased aneuploidy and all but Br increased MKV compared with controls (Fig-

ure 3.8E,G). Further, Colless index decreased indicating a low level of selection is at place 
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after CIN induction (Figure 3.8F). This likely reflects the lack of selection over the short-

time of the experiment (8-72h); by contrast, the control population has been under long-

term selection and has higher Colless. Together, the summary statistics enable inference 

of mis-segregation rates by ABC.  

 We next applied ABC to infer chromosome mis-segregation rates. First, we per-

formed dimensionality reduction, which verified that the biological data falls within the 

‘summary space’ of the simulated data (Figure 3.8H). Inferring mis-segregation rates 

(taken as the average of the posterior rate distributions) revealed a wide range across 

models from 0.3-11.5 MDD (316, 320). There was only a 2-fold increase in mis-segrega-

tion rate in the Br model of bridging chromosomes: CtrlC and Br showed mis-segregation 

rates of 0.12±0.07 and 0.28±0.02 MDD respectively. CtrlM cells had inferred mis-segre-

gation rates at about 0.83±0.64 MDD while the Pb, Mp, and Po models had much higher 

mis-segregation rates of about 5.37±0.46, 6.53±1.27, and 11.30±1.83 MDD respectively 

(Figure 3.8I). In comparison, the approximated mis-segregation rates of in RPE1 cells is 

0.01-0.05 MDD and for U2OS, 0.33-0.46 MDD (316). These rates compare favorably with 

the number of deviations measured directly from whole chromosome copy number data, 

particularly when accounting for the partial induction of CIN over 8 hours with the Po 

model (Figure 3.8B). They similarly compare with MDD values approximated for each 

model by imaging methods (Figure 3.8L,M). Further, joint posterior distributions reflect 

lower apparent evidence of ongoing selection in the Po model, as compared to the other 

models, in concordance with the short timespan of CIN induction (Figure 3.8J). The mis-

segregation rate observed in the Mp model, when taking into account the penetrance of 
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the phenotype, agrees with previously observed mis-segregation rates caused by multi-

polar divisions (147). 

 We conclude that CIN can be measured several ways using single cell copy num-

ber profiles. Copy number alterations can be calculated directly, particularly if the period 

of CIN is relatively short, in which case karyotype selection is not a significant factor. In-

ferring chromosome mis-segregation rates by comparing to simulated data works in both 

short and long time periods, though it is ideal for long time periods when karyotype se-

lection becomes a strong confounder. 

Concordance and performance of CIN measures 

To assess and summarize the performance of CIN measures, we performed standard-

ized effect size and pairwise correlation analyses. As expected, fixed immunofluores-

cence, time lapse, non-modal mitotic chromosome, and centromeric probe counts were 

significantly correlated (α = 0.01), excepting the pair of fixed imaging and chromosome 

counts (Figure 3.11A).  By contrast, bulk transcriptional CIN signatures (CIN70, HET70) 

did not correlate to imaging, nor cytogenetics, nor between themselves. Considering ge-

nomic signatures on bulk (CX1, CX6 bDNAseq), and with single cell data (CX1 scDNAseq; 

CX6 scDNAseq), these also correlated poorly with one another with the exception of sin-

gle-cell CX1 and CX6. Interestingly, the CIN signature CX1, when measured in bDNAseq 

data, did modestly correlate with time-lapse imaging, but not fixed imaging. HET70 nega-

tively correlated with the CX1 and CX6 signatures in single cells. This seemed to be a cell 

line-dependent effect as MCF10A cells had relatively high HET70 expression and low CX1 

and CX6 signature activity than CAL51, regardless of CIN model (Figure 3.12). scDNAseq 
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chromosomal analyses performed well whether they considered whole-chromosome de-

viations from mode or inferred MDD from ABC—not only do these correlate with each 

other, but also with fixed and time lapse imaging quantifications of defect rate and approx-

imate mis-segregation rates, and with FISH analyses. We conclude that the single cell 

analyses perform well for measuring rates of ongoing CIN.  

 We next turned to effect size, Hedge’s g, which allows us to compare sensitivity of 

different measures (Figure 3.11B). Average standardized effect sizes across all CIN phe-

notypes were high among the imaging methods, followed closely by inferred MDD using 

scDNAseq and ABC. CX1 measured by bDNAseq was similarly high, though, as noted 

previously, these scores do not reflect observed CIN levels by imaging or single-cell se-

quencing. The average effect sizes for whole chromosome deviations measured by 

scDNAseq and non-modal centromeric FISH measurements were similar while those for 

putative CIN signatures CX6 as measured by bulk or single cell DNAseq and CX1 as 

measured by single cell DNAseq were middling. Transcriptional measures of CIN (CIN70 

and HET70) and CIN measured by mitotic chromosome counts exhibited the lowest effect 

sizes. We conclude that highly sensitive quantitative measures of CIN can be achieved by 

direct microscopy or by scDNAseq combined with inference of rates by ABC. 

In summary, our data compare proposed and widely used measures of CIN on simpli-

fied models where CIN is induced. Paradoxically these exhibit vastly different capabilities 

in detecting CIN. Direct observation of CIN by imaging is the most sensitive and reliable 

followed by scDNAseq measures and cenFISH. By contrast, transcriptional CIN scores, 

mitotic chromosome counts, and statistically derived CIN signatures, regardless of bulk 
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or single cell resolution, were far less capable in measuring ongoing CIN terms of effect 

size and correlation with other measures. 

DISCUSSION 

 Ongoing CIN is defined by an elevated rate of chromosome mis-segregation, which 

varies across tumors and depends on the penetrance and error frequency of specific CIN 

mechanisms. The intrinsic rate of mis-segregation in a cell population produces functional 

consequences for tumorigenesis, cancer progression, and treatment response. Low mis-

segregation rates limit tumorigenesis, presumably due to reduced adaptive potential, 

while high mis-segregation rates have the same effect through loss of necessary genetic 

material. Moderate mis-segregation rates promote tumorigenesis. Once a tumor has 

formed, patients whose tumors exhibit moderate to high intrinsic rates of mis-segregation 

tend to have poorer clinical outcomes. Though, breast cancer patients whose tumors ex-

hibit high mis-segregation rates tend to have a more durable response to paclitaxel due 

a reduced capacity for correcting attachment errors and multipolar mitotic spindles pro-

duced by the drug. Despite the clinical significance of CIN and its relative severity across 

tumors, its measurement is not currently used to guide patient care (235, 237, 245, 246, 

251). 

 The reason CIN is not measured for clinical use is ultimately due to three factors: 

accessibility, scalability, and sensitivity. In reviewing the CIN measures tested in this study, 

we find varying levels of accessibility and scalability (Table 3.3). Some measures are clin-

ically accessible in terms of necessary equipment and reagents, but they do not easily 

scale in time required for sample preparation or data acquisition. For example, fixed 
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imaging is commonplace for pathological assessment of tumors. In this study, fixed im-

munofluorescence imaging was among the most sensitive methods to detect ongoing 

CIN. However, the quantification of CIN phenotypes in these samples is not scalable as 

data acquisition requires substantial time commitments and sampling a sufficient                                                                                                                

number of mitoses requires highly proliferative tumors, such as diffuse large B-cell lym-

phoma (237). Karyotypes and chromosome counts are not readily possible in patient tis-

sues, as they require a large number of mitotic cells, not easily obtained by culturing tumor 

tissues. Likewise, time lapse imaging is not possible directly in patient tumors, and is la-

borious, time-consuming, and expensive even with ex vivo culture, fluorescent labeling, 

and imaging of patient organoids. 

 Measures of CIN based on bulk genomic and transcriptomic sequencing are at-

tractive due to the wide availability of shared high-throughput sequencing data, and be-

cause they are already in routine clinical use. However, bulk sequencing failed to detect 

ongoing CIN in any of our phenotypic models. This is likely because, despite the mislead-

ing nomenclature, bulk sequencing measures detect RNA or DNA levels averaged across 

many cells and thus establish an average aneuploid state, without the ability to detect cell-

to-cell differences in chromosome copy numbers.  One fundamental problem in the 

field of genomic integrity is that CIN and aneuploidy are often conflated. To be fair, aneu-

ploidy is a product of prior mis-segregation events, providing a rationale to infer a degree 

of CIN from the current degree of aneuploidy in a tumor. We can describe this as historical 

CIN, which represents an accumulation of prior chromosome gains/losses and cellular 

selection. However, this does not permit inference of ongoing chromosome gains or 
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losses because any degree of aneuploidy could, in fact, be a product of a single event 

that was not repeated. By contrast, ongoing CIN, described here, is a process in which 

there are ongoing aberrations over multiple cell divisions, which is associated with metas-

tasis and response to microtubule-targeted therapies (235, 237, 245, 246, 251). 

 The de novo karyotype heterogeneity in cell populations with ongoing CIN does 

not significantly alter the predominant karyotype and is not detected by bulk genomic CIN 

signatures (e.g., CX1 and CX6). This demonstrates that these signatures detect historical 

aneuploidy rather than ongoing CIN. Nor do the gene expression states of new aneuploid 

clones significantly alter the predominant transcriptional phenotype with respect to previ-

ously established transcriptomic CIN scores (CIN70 and HET70). As for the CIN70 score, 

this result was unsurprising for two reasons — 1) the derivation of CIN70 was based on 

the fundamental assumption that aneuploidy is derived by CIN and 2) CIN70 is con-

founded by upregulation of proliferative genes, as aneuploidy, proliferation, and advanced 

tumor grade are all co-variates. Further this result comports with previous findings (189, 

321). MCF10A cells scored slightly higher on HET70 than CAL51. While this may repre-

sent cell line specific gene expression, we note that the scDNAseq data shows MCF10A 

cells exhibiting higher karyotype heterogeneity than CAL51 at baseline, despite exhibiting 

similar rates of mitotic errors during imaging. Thus, while HET70 scores did not respond 

to induced CIN and karyotype heterogeneity, we cannot rule out that HET70 detects a 

pre-existing transcriptional phenotype that is tolerant of aneuploidy and increased karyo-

type heterogeneity. However, while HET70 did not detect induced, ongoing CIN in any of 

our models, MCF10A cells did score higher on HET70 than CAL51. While this may 
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represent cell line specific gene expression, we note that the scDNAseq data shows 

MCF10A cells exhibiting higher karyotype heterogeneity than CAL51 at baseline, despite 

exhibiting similar, if somewhat lower rates of mitotic errors during imaging. Although 

HET70 scores did not increase with induced CIN and karyotype heterogeneity, we cannot 

rule out that HET70 detects a transcriptional phenotype that correlates with aneuploidy 

tolerance. 

 As a clinically accessible alternative to imaging, scDNAseq provides the best meas-

ure of CIN in terms of sensitivity and correlation to both fixed and time lapse imaging. CIN 

can be measured by quantifying the absolute number of chromosomal deviations from 

the modal (i.e., clonal) karyotype of a population. Additionally, the rate of mis-segregation 

resulting in a given population of single cell copy number profiles can be measured by 

pairing computational modeling and statistical inference. Both analysis methods per-

formed well in measures of ongoing induced CIN over relatively few cell divisions. How-

ever, we have previously found that the latter, inference of CIN, performs better in the 

context of longer time scales, such as the growth of a tumor (147). While single-cell se-

quencing is not currently used in clinical care, major advances in ultra-high-throughput 

sequencing will likely make low-coverage scDNAseq accessible at clinical capacity (220, 

322, 323). Toward this end, we estimated that ~200 cells are needed for accurate meas-

urement of CIN (147). Although we did not detect increased segmental copy number al-

terations caused by bridging chromosomes in our inducible model, further advancement 

of sequencing technology and scDNAseq methods may enable more robust detection of 

copy-neutral structural variation in single cells. Importantly, the measurement of structural 
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CIN using scDNAseq would require relatively uniform coverage of the entire genome, 

which is not provided by mutation panels. For intact tumors, it would be important to dis-

tinguish the genome structures of tumor cells from stromal cells, which could be accom-

plished by simultaneously detecting cancer-specific mutations.  

 One limitation of this study is that we measured CIN in cell-line models a short time 

after inducing CIN. This approach is ideal to ensure ongoing CIN, but we cannot rule out 

that methods that failed in these models would correlate with ongoing CIN after cellular 

selection or would indicate a permissive cellular context for ongoing CIN. For example, 

although we found that cenFISH only detects the highest levels of CIN in our system, we 

cannot rule out that this method becomes more sensitive over several generations with 

elevated CIN, which would increase the probability that one of a limited set of probes 

would detect an alteration. Further, in this study, we did not evaluate single cell RNAseq 

(scRNAseq) as a method of measuring CIN. Currently, there are no widely used 

scRNAseq-based measures of CIN and we did not seek new methods of CIN measure-

ment. However, given the preponderance of evidence of the transcriptional conse-

quences of CIN and aneuploidy (200, 201, 204, 324–326), it is conceivable that robust 

transcriptional CIN signatures could be derived at single cell resolution. Whether these 

would reflect gene dosage, a general response to CIN or would be phenotype/mecha-

nism-dependent is unclear. In any case, the reliability of these measures could be limited 

by dosage compensation (327–331). Although we could select specific genes unaffected 

by compensation, the sparse data with current scRNAseq platforms remains a challenge. 

On the other hand, large-scale DNA copy number alterations can be inferred from 
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scRNAseq data (209, 210), which would provide an additional dimension of single cell 

genomic data and perhaps increase the reliability of a measure of CIN based on single 

cell chromosome copy number data. 

 This work provides a thorough empirical analysis of the relative capability of current 

CIN measures to detect ongoing CIN across specific, inducible phenotypic models of CIN. 

We find current measures differ in their ability to detect ongoing CIN and that some fail to 

reliably detect CIN at all. Imaging approaches are the most sensitive and reliable. Cyto-

genetic approaches have low sensitivity, only significantly detecting the model which had 

among the highest mis-segregation rates. Bulk genomic and transcriptomic measures do 

not reflect ongoing CIN while single cell genomic methods, particularly the inference of 

mis-segregation rates, offer both sensitivity and potential for clinical accessibility. In light 

of these conclusions, we recommend single-cell genomics with Bayesian inference as the 

best method for further development of a clinically accessible measure of CIN. Im-

portantly, the models and data generated here serve as a resource for investigators seek-

ing to validate innovative measures of ongoing CIN from bulk and single-cell sequencing. 

MATERIALS AND METHODS 

Cell line derivation and cultivation conditions 

MCF10A-PLK4-WT-tetOn cells were kindly provided by the laboratory of Dr. David 

Pellman (332). We used lentiviral transduction to stably express H2B-mNeonGren and 

mScarlet-α-Tubulin. CAL51 cells were obtained from DSMZ-German Collection of Micro-

organisms and Cell Cultures and CAL51-TERF2-DN-tetOn was generated using retroviral 

transduction of pCMV Retro TetO into which we cloned the TERF2-DN mutant sequence 
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(Addgene, 16069) and an mScarlet reporter. To make retrovirus, we transfected 293T 

cells then transduced CAL51 cells expressing TetR for ~18 hours with 4 ug/mL polybrene. 

We selected with puromycin (2 ug/mL) and sub-cloned in 96-wells to generate monoclo-

nal lines. All cell lines were tested and free from mycoplasma contamination prior to study. 

 Cells were maintained at 37oC and 5% CO2 in a humidified, water-jacked incubator 

and propagated in either Dulbecco’s Modified Eagle’s Medium (DMEM)/High Glucose 

(Cytiva Hyclone, SH3024301) for CAL51 cells or mammary epithelial basal media for 

MCF10A cells, consisting of DMEM/F12 (Cytiva Hyclone, SH3026101), 5% horse serum 

(Gibco, 16050122), 20 ng/mL EGF (Peptrotech, AF-100-15), 0.5 mg/ml hydrocortisone 

(MP Biomedicals, 0219456901), 100 ng/ml cholera toxin (Enzo Life Sciences, 

BMLG1170001), and 10 ug/ml insulin (Millipore Sigma, I9278). All growth media is sup-

plemented with 10% fetal bovine serum (GeminiBio, 900-108),100 units/mL penicillin-

streptomycin (Gibco, 15070063), and plasmocin prophylactic (Invivogen, ant-mpp) to a 

final concentration of 5 ug/mL. 

Statistical Analyses 

Statistical analysis was completed in R/Rstudio (v4.2.3/v1.2.5019) (333, 333). Unless 

otherwise specified, statistical significance between group means is determined using 

two-tailed, two-sample Student’s t-tests and a = 0.05 over at least 3 biological replicates. 

Fixed immunofluorescence microscopy 

Cells were re-seeded on sterile glass #1.5 cover slips (Fisher, 12-545-81P) at 40% and 

grown to ~70-80% over 18-24 hours. Coverslips are rinsed in warmed (37°C) PBS (x1) 

before fixation in warmed 4% paraformaldehyde (PFA) in PHEM buffer (120 mM PIPES, 
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50 mM HEPES, 20 mM EGTA, 4 mM MgSO4 in pure water, pH 7.0) for 10 minutes. Co-

verslips are rinsed of fixative (x3), extracted with 1% NP40 in PHEM buffer for 15 minutes, 

and blocked with 3% bovine surum albumin (BSA)(Millipore Sigma, A2153) and 0.1% Tri-

ton X-100 in PBS (BSA + PBSTx) for 30 minutes. Primary and secondary antibodies were 

pooled separately in BSA + PBSTx. Coverslips were incubated with primary antibodies 

for 1 hour at room temperature, rinsed (x3) in PBSTx, then incubated with secondary 

antibodies for 30 minutes, and rinsed (x3) again in PBSTx. Coverslips were counterstained 

with 10 ug/mL DAPI (Sigma-Aldrich, 62248), mounted on glass slides with Prolong Di-

maond anti-fade medium (Molecular Probes, P36970), and cured for 48 hours. Cells were 

immunostained to visualize α-tubulin (Primary — 1:1000 mouse (γ1) anti-α-tubulin 

(DM1A)(Invitrogen, 14-4502-82, RRID: AB_1210456; Secondary — 1:350 goat anti-mouse 

(γ1) + Alexa Fluor 750 (Invitrogen, A-21037, RRID: AB_2535708) for CAL51 cells or goat 

anti-mouse (H+L) + Alexa Fluor 555 (Invitrogen, A-11001, RRID: AB_2534069) for 

MCF10A cells) and pericentrin (Primary — 1:1000 rabbit anti-pericentrin (Abcam, 

ab4448); Secondary — 1:350 chicken anti-rabbit (H+L) + Alexa Fluor 647 (Invitrogen, A-

21443, RRID: AB_2535861) for CAL51 cells or goat anti-rabbit (H+L) + Alexa Fluor 488 

(Invitrogen, A-11008, RRID: AB_143165) for MCF10A cells) 

Image acquisition was performed on a Nikon Eclipse Ti inverted microscope equipped 

with motorized stage, LED epifluorescence light source (Spectra X), 60x/1.4NA (Plan Apo) 

DIC oil immersion objective, and ORCA Flash4.0 V2+ digital sCMOS camera (Hamama-

tsu). Optical sections were taken at 200-nm intervals and deconvolved using the LIM 3D 
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Deconvolution module in Nikon Elements. Micrograph montages were prepared in Affinity 

Designer. 

For analysis, mitotic phenotypes of all mitotic cells observed in metaphase, anaphase, 

or telophase were recorded until at least 50 metaphase cells were counted or until all four 

coverslips were expended. Exceptions are replicate 2 of Po, with 10 metaphase cells and 

137 anaphase and telophase cells, replicate 3 of CtrlM with 30 metaphase cells and 21 

anaphase and telophase cells, and replicate 3 of Pb, with 11 metaphase cells and 3 ana-

phase and telophase cells. Data from these replicates were retained and reported as the 

alternative measures of the replicate provided sufficient information. 

Time lapse fluorescence microscopy 

Cells were re-seeded in 4- or 8-well chamber slides (Ibidi, 80426) at 40% and grown 

to ~70-80% over 18-24 hours. At the time of re-plating, CAL51-TERF2-DN-mCherry-Te-

tOn cells were transduced with adenovirus to express β-tubulin-mScarlet + P2A-H2B-

NeonGreen to visualize mitotic spindles and DNA. They were then imaged on a Nikon Ti-

E2 inverted fluorescence microscope outfitted with a Yokogawa CSU-W1 spinning disk 

confocal scanning unit. Images were collected every 2.5 minutes for 4-12 hours with a 

20x/0.5NA (P Fluotar) objective and an ORCA Flash 4 digital sCMOS camera (Hamama-

tsu). Environmental control was maintained by a humidified, stage-top chamber (Tokei 

Hit) set to 37°C and 5% CO2. Micrograph montages were prepared in Affinity Designer. 

 For analysis, at least 20 cells for each replicate and each CIN model were tracked 

from nuclear envelope breakdown through to cytokinesis and mitotic phenotypes were 

recorded for metaphase, anaphase, and telophase. Exceptions are replicate 1 of CtrlC, 
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with 17 cells, and replicate 5 of Pb, with 18 cells. Data from these replicates were retained 

and reported as the alternative measures of the replicate provided sufficient information. 

Imaging-based approximation of mis-segregations per diploid division (MDD) 

MDD was approximated using fixed immunofluorescence and time lapse fluorescence 

imaging data as well as the formula MDD = (Errors per Defect × Defect Rate × Penetrance
Modal Chromosomes ) × 46, 

as previously described (316). 

To derive the values for this formula, we made the following assumptions: 1) Lagging 

and bridging chromosomes are assumed to produce 1 mis-segregation; 2) Polar chromo-

somes are assumed to produce 7.8 mis-segregations as we observed cells treated under 

the Po model (prior to anaphase onset) had an average of 15.6 polar ACA foci (Figure 

3.3A); 3) Pseudobipolar spindles do not produce mis-segregation events; 4) Multipolar 

spindles are assumed to produce 18 mis-segregations based on Lynch et al. 2022; 5) 

CAL51 cells have 46 chromosomes and MCF10A cells have 47 chromosomes; 6) The 

penetrance of each observed CIN phenotype is 100% (i.e., 100% chance the defect re-

sults in mis-segregation). The fraction of cells with polar chromosomes represents meta-

phase cells wherein they are most readily detectable. All other CIN phenotypes are taken 

from anaphase or telophase cells. 

Cytogenetics 

Cells were re-seeded in T75 flasks at 40% and grown to ~70-80% density over 18-24 

hours prior to harvest. For Po, AZ3146 was washed out at T-0 hours and harvest per-

formed at T+24 hours. Colcemid (Millipore Sigma, 234109) was added to a final concen-

tration of 50 ng/mL and incubated for 2 hours to enrich mitotic cells. We retained the 
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media and trypsinized cells, rinsing once in warm PBS. Cells were resuspended and 

swelled for 5 minutes in 75 mM KCl with 10 drops of Carnoy fixative (3:1 methanol:glacial 

acetic acid). This was followed by three successive resuspensions in Carnoy fixative, after 

which, samples were stored at -30°C then cells were dropped onto slides and dried in a 

drying chamber. For analysis, at least 50 mitotic chromosome spreads were counted for 

each replicate of each model with the exception of a replicate of CtrlC, with 2 biological 

replicates, the Mp model, which exhibited a relatively few mitotic cells in each biological 

replicate (18, 32, and 35 mitotic chromosome spreads). Data from these replicates were 

retained and reported as the alternative measures of the replicate provided sufficient in-

formation. 

Fluorescence in situ hybridization (FISH) enumeration of chromosomes 3, 4, 7, 9, 10, 

and 17 was completed using the following 2 probe mixes: Vysis CEP 3 (D3Z1) labeled 

SpectrumOrange (Vysis, 06J3613) localizing to 3p11.1-q11.1, Vysis CEP 7 (D7Z1) labeled 

SpectrumAqua (Vysis, 06J5427) localizing to 7p11.1-q11.1, Vysis CEP 9 labeled Spec-

trumGreen (Vysis, 06J3719) localizing to 9p11-q11 in IntelliFISH hybridization buffer (Vy-

sis, 08N8701), and Vysis CEP 4 labeled SpectrumGreen (Vysis, 06J3714) localizing to 

4p11-q11, Vysis CEP 10 labeled SpectrumAqua (Vysis, 06J5420) localizing to 10p11.1-

q11.1 and Vysis CEP 17 (D17Z1) labeled SpectrumOrange (Vysis, 06J3697) localizing to 

17p11.1-q11.1 in IntelliFISH hybridization buffer (Abbott Molecular, Des Plaines, IL). 

Slides were aged for 2 minutes in 2xSSC at 74°C and put through a dehydration ethanol 

series (70%, 85%, and 95%). Slides and probe were codenatured by heating at 80°C for 

2 minutes using a ThermoBrite instrument (Abbott Molecular). Hybridization was 
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performed overnight at 37°C. Finally, the slides were mounted with Vectashield containing 

DAPI (Vector Laboratories). Localization of the probes was confirmed on pooled cytoge-

netically normal blood controls.  For analysis, at least 100 interphase cells were 

counted per 3-probe set. 

Single-cell DNA sequencing and analysis 

Single cell DNA sample preparation 

Cells were re-seeded in 6-well plates at 40% and grown to ~70-80% density over 18-

24 hours prior to harvest. Cells were washed with HBSS, trypsinized, pelleted, and 

washed by resuspension in wash buffer (2% FBS in 1x PBS). Pelleting once more, cells 

were resuspended in 500 µL wash buffer and fixed by dropwise addition to 4.5 mL 80% 

ethanol. Samples were stored at -30°C. 

Flow cytometry and fluorescence activated cell sorting 

Fixed cell suspensions were pelleted and resuspended in wash buffer containing 10 

µg/mL DAPI. Single cells or bulk samples (500 cells) were sorted by FACS (BD FACS 

AriaII), gating on 0.5-1.5x the DAPI signal intensity of the G1 peak, through a 130 μm low-

pressure deposition nozzle into 96 well PCR plates containing 10 µL 1x prepared Cell 

Lysis and Fragmentation Buffer Mix (Millipore Sigma, WGA4). Doublets were excluded 

from analysis via standard FSC/SSC gating procedures. DNA content was analyzed via 

DAPI excitation at 355 nm and 450/50 emission using a 410 nm long pass dichroic filter. 

Gating for cell sorting was defined by 0.5x/1.5x (lower/upper) the DAPI intensity of the G1 

peak. After sorting, the PCR plates were immediately centrifuged at 100 x g for 1 minute 

before library preparation. Plates were kept at 4°C when not on the cell sorter. 
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Single cell DNA library preparation 

Initial cell lysis, genomic fragmentation, and genomic amplification reactions were 

done with the GenomePlex® Single Cell Whole Genome Amplification Kit (Millipore 

Sigma, WGA4). Initial genomic library distributions were assessed on a 1.5% agarose gel 

and purified using a ZR-96 Genomic DNA Clean & Concentrator-5 Kit (Zymo Research, 

D4067). Library concentrations were quantified using the Quant-iT™ dsDNA Broad Range 

Assay Kit (Invitrogen, Q33130) and normalized before additional preparation. Genomic 

libraries were enzymatically fragmented to ~250 bp, 5’-phosphorylated, 3’-dA-tailed, and 

index adaptor-ligated with the sparQ DNA Frag & Library Prep Kit (Quantabio, 95194). 

Ligated adaptors were standard P5 and custom uniquely indexed P7 illumina adaptors 

described previously (302). Indexed libraries underwent eight additional amplification cy-

cles, purification with Axygen® AxyPrep MAG PCR Clean-Up beads (Corning, MAG-PCR-

CL), and DNA concentration quantification as above. Up to 96 libraries with unique indices 

were pooled in equimolar concentrations. Library quality was validated on an Agilent 

TapeStation and concentration was measured via Qubit 2.0 fluorometer and qPCR. 

Single cell sequencing and data pre-processing 

Paired-end bulk RNA sequencing (2x150bp) was performed on an Illumina HiSeq se-

quencer and demultiplexed using Illumina bcl2fastq (v2.20). Reads were trimmed of adap-

tor sequences, quality filtered, and de-duplicated in fastp (v0.23.2) and aligned to refer-

ence sequence hg19 with bowtie2 (v2.3.5). Format conversions were performed with 

samtools (v1.9) and bedtools (v2.29.2). 

Single cell copy number calling 
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Copy number calls were performed in a local installation of Ginkgo (303) with a varia-

ble bin size of ~2.5 Mb using global segmentation. Minimum ploidy was set to 1.35 and 

maximum ploidy to 3 to reflect our flow cytometric gating strategy for FACS. Whole chro-

mosome copy numbers were estimated by taking the mode of copy numbers across ge-

nomic bins for each chromosome. Thus, even sub-chromosomal gains and losses of 

greater than 50% of a chromosome should remain detectable. 

Quantification of single cell CIN signatures 

We quantified previously published putative CIN signatures from Drews et al. 2022 

using resources made publicly available in a github repository by the authors 

(https://web.archive.org/web/20220615195321/https://github.com/markowetzlab/CIN-

SignatureQuantification). We used the function ‘quantifyCNSignatures’ in the available R 

package CINSignatureQuantification (186) to call signatures from unrounded segment 

copy number matrices derived using Ginkgo, as described above and report the normal-

ized, unscaled signature activity levels to avoid masking the relative activity of each sig-

nature. 

Inference of mis-segregation rates 

We used agent-based simulation and approximate Bayesian computation to infer mis-

segregation rates from scDNAseq data. Agent-based simulation of CIN and karyotype se-

lection in growing populations was performed in NetLogo (v6.0.4) (298) and approximate 

Bayesian computation was performed using the R (v4.2.2) (333) using the abc package 

(v2.1)(281) as previously described (147). 
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Agent based simulation. We initiated simulated populations with 100 diploid cells and 

evolved exponentially growing populations using a pseudo-Moran process to reduce 

computational demands (a random 50% of cells are culled when the population surpasses 

3000 cells). Euploid cells had a 50% chance to divide at every step, a probability that is 

modified according to a cell’s fitness level. We used a karyotype selection scheme that 

emulates stabilizing selection by negatively selecting genetically unbalanced karyotypes. 

The contribution of each chromosome to karyotype selection is dependent on the abun-

dance of genes it encodes. We simulated populations using the following parameters: 

MDD = [0, 0.046, 0.092, …, 46], S = [0, 1, 2, …, 200], Time Steps = [0, 1, 2, …, 100]. We 

assumed whole-chromosome mis-segregation and that chromosome copy numbers be-

low 1 and above 7 would result in cell death. Accordingly, as cells divide and mis-segre-

gate chromosomes, more aneuploid cells with more unbalanced karyotypic stoichi-

ometries are less likely to continue division. A random selection of 300 karyotypes is ex-

ported to measure summary statistics at each time step. Each combination was repeated 

3 times for a total of 1,006,005 independent simulations. See Lynch et al. 2022 for addi-

tional details. 

Population summary statistics. To summarize the characteristics of karyotypes from 

simulated populations and scDNAseq data, we quantified three features: aneuploidy, 

mean karyotype variance (MKV), and Colless index. Aneuploidy was quantified as the 

mean variance of copy numbers within each cell’s sub-clonal karyotype (normalized to 

the modal karyotype). MKV was quantified as the mean variance of copy numbers for 

each chromosome across the population. Colless index was measured using the R 



 163 

package phyloTop (v2.1.1)(300) and was normalized to the number of leaf tips. Phyloge-

netic trees for measuring the Colless index were reconstructed from chromosome copy 

numbers by computing Euclidean distance matrices and hierarchical clustering using 

complete linkage, both in the R stats package (v.4.2.3)(333). Hierarchical clustering may 

not produce the same results every time, and rare, highly different dis-similar observations 

can drastically skew Colless indices, both of which result in measurement noise. To re-

duce this noise we, we permute the copy numbers of individual homologous chromo-

somes (i.e., a population’s copy numbers for chromosome 1 are permuted separately 

from those of chromosome 2) across the population and repeat this Colless index meas-

urement, taking the average of 200 iterations. This preserves phylogenetic imbalance for 

populations with sub-clonal alterations but reduces imbalance for those with a rare highly 

dissimilar karyotype, resulting in a stable and reproducible measure. Also, because hier-

archical clustering requires at least 3 observations, we removed all simulated datasets 

that failed to maintain at least 3 cells, which could occur when high mis-segregation rates 

force cells past the pre-defined lethal chromosome copy number thresholds (1 to 7), pro-

moting population collapse. 

Approximate Bayesian computation. Parameter inference of mis-segregation rates and 

selection pressure from scDNAseq data was performed with approximate Bayesian com-

putation using our simulated dataset as a prior dataset. We used the R package abc (v2.1) 

(281) to complete the analysis with rejection sampling and a tolerance threshold of 0.01. 

We chose independent prior datasets that best matched each control and experimental 

group. For example, we assigned control groups a prior dataset that encompassed 30-50 
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time steps (i.e., 15-25 generations) to reflect the number of passages after mono-clonal 

culture. Groups with doxycycline-induced CIN were assigned a prior dataset with £ 4 time 

steps (2 generations) to encompass about 48 hours of growth with fully penetrant CIN 

induction (this assumes induction of the tetOn constructs takes about 24 hours to become 

fully induced). The polar chromosome model (Po), which was induced using sequential 

chemical treatments and enrichment of about 50% of the population, was assigned a prior 

dataset with £ 2 time steps (1 generation).  

Bulk DNA sequencing and analysis 

Bulk sample and library preparation 

Sample preparation, sorting, and bulk DNA library preparation were prepared in par-

allel with and in the same manner as single-cell DNA samples. 500 cells were sorted for 

each bulk DNA sample.  

Bulk DNA sequencing and data pre-processing 

Paired-end bulk DNA sequencing (2x150bp) was performed on an Illumina HiSeq to 

~10x coverage and demultiplexed using Illumina bcl2fastq (v2.20). Sequencing reads 

were adaptor-trimmed, filtered, de-duplicated, and aligned to hg19 with the Illumina DRA-

GEN Bio-IT Platform using default settings.  

Bulk copy number calling 

Bulk DNA copy numbers were called in R using QDNAseq (v1.34.0) (334) and a bin 

size of 30 Kb. Segment copy numbers were called using bin copy numbers smoothed 

over 2 bins and Anscombe transformed (transformFun = “sqrt” in the ‘segmentBins’ func-

tion). 
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Quantification of CIN signatures 

Putative CIN signatures were derived from bulk copy number profiles and reported in 

the same manner as for single cell DNA copy number profiles as described above. 

Bulk RNA sequencing 

Bulk RNA sample preparation 

Cells were re-seeded in 6-well plates at 40% and grown to ~70-80% density over 18-

24 hours prior to harvest. Media was removed from cells and immediately lysed with TRI 

Reagent (ThermoFisher Scientific, AM9738) to preserve RNA, which was stored at -80°C. 

Total RNA was isolated using Zymo Direct-zol RNA MiniPrep kit (Zymo Research, R2050) 

and the concentration and quality were assessed with a Qubit 2.0 fluorometer and Agilent 

TapeStation respectively. 

Bulk RNA library preparation 

RNA libraries were prepared using the NEBNext Ultra II RNA Illumina Library Prep Kit 

(New England Biolabs, E7775) and mRNAs were enriched with oligo-d(T) beads then frag-

mented for 15 minutes at 94°C prior to first and second strand cDNA synthesis. cDNAs 

were end-repaired, 3’-adenylated, ligated with universal Illumina adapters and unique in-

dex sequences, then enriched by PCR. Library quality was validated on an Agilent TapeS-

tation and concentration was measured via Qubit 2.0 fluorometer and qPCR. 

Bulk RNA sequencing, data pre-processing, and analysis 

Paired-end bulk RNA sequencing (2x150bp) was performed on an Illumina HiSeq se-

quencer and demultiplexed using Illumina bcl2fastq (v2.20). Demultiplexed reads were 

trimmed of universal Illumina index sequences with BBMap’s bbduk (v38.95) (335). We 
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aligned trimmed reads to reference sequence hg19 and generated fragment count matri-

ces in R/Rstudio (v4.2.3/v1.2.5019) (333, 336) using Rsubread (v2.4.3) (337). Library size 

normalization and dispersion estimation was performed in edgeR (v.3.32.1) (338) while 

linear modeling and differential expression analysis was performed in limma (v3.46) (339, 

340). 
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Figure 3.1 — Multimodal analysis of specific and inducible CIN phenotypes 

Schematic showing genetically and chemically inducible models of CIN phenotypes and subsequent 

CIN measures employed. Bridging chromosomes (Br) are produced by tetracycline-controlled expression 

of a dominant negative TERF2 mutant in CAL51 cells. Pseudobipolar spindles (Pb) are produced by tetra-

cycline-controlled expression of WT PLK4 in MCF10A cells. Multipolar spindles (Mp) are produced by fur-

ther perturbation of Plk4 inducible cells with a chemical inhibitor of HSET (25 μM CW-069). Polar chromo-

somes (Po) are produced by enrichment of mitotic cells with nocodazole (1 μg/mL), washout into a CENP-
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E inhibitor (1.5 μM GSK923295) followed by an inhibitor of MPS1 (2 μM AZ3146). All tetracycline-controlled 

systems were constitutively activated for 72 hours (2 μg/mL doxycycline) before harvest. Po cells used for 

mitotic chromosome spreads and centromeric cenFISH were washed out at T-0 and harvested 24 hours 

later after a 2 hour 50 ng/mL colcemid treatment. 

 

Figure 3.2 — Incidence and specificity of CIN phenotypes via imaging 

(A-D) Representative images of specific CIN phenotypes in their respective cell line model and quanti-

fications of their observed incidence using fixed immunofluorescence or (E-H) time lapse fluorescence im-

aging. (I) Quantification of the fraction of mitoses with any abnormality across phenotypic CIN models for 
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fixed immunofluorescence or (J) time lapse fluorescence imaging. Symbolic significance thresholds are 

0.05 (*), 0.01 (**), 0.001 (***), and 0.0001 (****). (K) Correlation between fixed immunofluorescence and 

fluorescence time lapse imaging with Pearson correlation coefficient. (L) MDD values approximated from 

fixed imaging. (M) MDD values approximated from time lapse fluorescence imaging. MDD values were ap-

proximated as the sum of phenotype specific MDD values for each condition (Table 3.1). Colors of individual 

points indicate the biological replicate. Bars and error bars indicate mean and standard error. Significance 

values above data are from a two-tailed, two-sample Student’s t-tests. For time lapse imaging, N ³ 20 cells 

for each of ³ 3 biological replicates. (Exceptions are single replicates of CtrlC and Pb. See Materials and 

Methods.) For fixed imaging, N ³ 50 metaphase and ³ anaphase/telophase cells for each of ³ biological 

replicates. (Exceptions are single replicates of CtrlM, Pb, and Po. See Materials and Methods.) 
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Figure 3.3 — Supplemental Imaging Data 

(A) Number of anticentromere antibody (ACA) foci at or behind the spindle pole in late prometaphase 

(i.e., discernable metaphase plates) MCF10A cells treated under the Po condition but prior to anaphase 

induction.  (B) Differences in observed frequencies of mitotic defects between fixed immunofluorescence 

and time lapse fluorescence imaging in metaphase or anaphase/telophase. Significance values beneath 

data are from two-tailed, one-sample Student’s t-tests where Ho: μ = 0. Colors of individual points indicate 

the biological replicate. Bars and error bars indicate mean and standard error. Significance values above 

data are from a two-tailed, two-sample Student’s t-tests. 
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Figure 3.4 — Cytogenetics methods exhibit low sensitivity to ongoing CIN 

(A) Representative images of mitotic chromosome spreads from each phenotypic CIN model with cor-

responding histograms of mitotic chromosome counts per spread. (B) Quantification of the fraction of mi-

totic chromosome spreads whose chromosome counts differ from the mode +/- 1. N ³ 50 mitotic spreads 

for each of 3 biological replicates. (Exceptions being CtrlC, with 2 biological replicates, and Mp model, which 

had a low mitotic index in all 3 replicates (see Materials and Methods).) (C) Representative centromeric 

FISH images from each phenotypic CIN model with corresponding histograms of centromeric probe counts 

per cell. Diploid counts are excluded from histograms to emphasize aneuploid counts. (D) Quantification of 

the fraction of cells whose cenFISH probe counts differ from the mode. Shapes of individual points indicate 

the biological replicate. N ³ 200 cells for each of 3 biological replicates. Bars and error bars indicate mean 

and standard error. Significance values above data are from a two-tailed, two-sample Student’s t-tests. 

Symbolic significance thresholds are 0.05 (*). 
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Figure 3.5 — Gene expression in inducible phenotypic models of CIN 

(A) Expression levels (log2 counts per million (CPM)) of TERF2 and PLK4 in CAL51-TERF2-DN-tetOn 

and MCF10A-PLK4-WT-tetOn cells respectively. Two-tailed, two-sample Student’s t-tests are shown above 

data. N ³ 3 biological replicates. (B) Volcano plots of differential gene expression in each CIN-induced 

model compared to its uninduced control and a pooled analysis of all CIN-induced groups compared to all 

non-induced groups. Dashed lines indicate log2 fold-change thresholds of -1/1 and unadjusted P value of 

0.05. 
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Figure 3.6 — Previously published bulk transcriptomic and genomic CIN signatures do not reflect 

ongoing CIN 

(A) Expression levels (mean log2 counts per million (CPM)) of CIN70 and (B) HET70 

genes from bRNAseq data from each phenotypic CIN model. Each point indicates the 

average expression level across 3 biological replicates. (C) Representative whole-ge-

nome copy number profiles of 500 cells from each phenotypic CIN model sequenced 

together to ~10x depth. Points indicate copy number of 30 Kb bins. Black lines indicate 

segment copy number. Alternating shades indicate chromosomes. (D) Normalized CIN 

signature activities of all putative signatures defined in Drews et al. 2022 which provided 

signal for at least one sample. Color annotations on left of heatmap indicate models and 
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shades indicate replicates. Rows are clustered by similarity of CIN signatures. (E) Normal-

ized signature activities of all putative CIN signatures whose mechanistic etiologies are 

classified as ‘high confidence’ in Drews et al. 2022. CIN signatures for a given sample are 

normalized to sum to 1. Shapes of individual points indicate the biological replicate. Bars 

and error bars indicate mean and standard error. Significance values above data are from 

a two-tailed, two-sample Student’s t-tests.
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Figure 3.7 — DNA content analysis and gating for pre-scDNAseq FACS 

Cell cycle profiles (measured by flow cytometric analysis of DAPI intensity) for each replicate of each 

phenotypic model of CIN. Dashed lines indicate gating strategy for FACS of cells for scDNAseq and were 

determined by 50% and 150% of the intensity of the G1 peak. Red ticks indicate the DAPI intensity of cells 

sorted for scDNAseq. Note the broader G1 peaks of CIN-induced models Pb, Mp, and Po, indicative of 

extensive aneuploidy. 
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Figure 3.8 — scDNAseq detects ongoing numerical CIN and enables inference of mis-segrega-

tion rates 

(A) Heatmaps of unsorted single cell and bulk (500 cells) copy number profiles low coverage scDNAseq 

of each phenotypic CIN model. Copy numbers were called using 2.5 Mb genomic bins. Color annotations 

on left of heatmap indicate models and shades indicate replicates. Color annotations on top of heatmap and 

vertical lines indicate chromosomes. Heatmap colors indicate copy number. Whole chromosome copy 
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numbers are derived as the mode of bin copy numbers across each chromosome and used to quantify, for 

each phenotypic model, (B) the absolute number of whole chromosome deviations from its modal karyo-

type, (C) the percentage of cells with whole chromosome deviations, and (D) the net change of total chro-

mosomes in each cell. Quantified (E) aneuploidy (the sub-clonal mean variance within karyotypes), (F) Col-

less indices (i.e., phylogenetic imbalance), and (G) mean karyotype variance (MKV, the mean variance of 

each chromosome) were used as summary statistics for approximate Bayesian computation (ABC). (H) 

Space of summary statistics of independent prior simulation datasets used for ABC projected (small data 

points) with summary statistics measured in each phenotypic CIN model (large data points) using uniform 

manifold approximation and projection (UMAP). Blue points indicate accepted simulations for at least one 

model and replicate, whereas grey were rejected. (I) Posterior distributions (violin plots) of mis-segregation 

rates (mis-segregations per diploid division, MDD) across all replicates for each phenotypic CIN model (in-

dividual points) inferred using ABC. A log2 scale is used to better illustrate the data. (J) Joint posterior 

density distributions of accepted mis-segregation rates and selective pressure values from ABC for all rep-

licates of each phenotypic CIN model. Data points are mean values for each replicate. Parameter values for 

prior simulation datasets are as follows: CtrlC and CtrlM — MDD = [0 … 2.3], S = [0 … 200], Time Steps = 

[30 … 50]; Br, Pb, and Mp — MDD = [0 … 46], S = [0 … 200], Time Steps = [0 … 4]; Po — MDD = [0 … 46], 

S = [0 … 200], Time Steps = [0 … 2]. See Materials and Methods for further detail. Shapes of individual 

points indicate the biological replicate. Bars and error bars indicate mean and standard error. Significance 

values above data are from a two-tailed, two-sample Student’s t-tests.  
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Figure 3.9 — Breakpoint analysis in scDNAseq data 

Breakpoint analysis of discordant and concordant telomere-proximal copy number alterations. Copy 

numbers are normalized relative to those of the modal karyotype of each phenotypic CIN model to uncover 

subclonal or relatively recent alterations. Only segments with copy number alteration consensus across the 

4 telomere-proximal genomic bins (10 Mb), but which terminate at or before the centromere, are consid-

ered. Discordant subclonal telomere-proximal alterations are defined as those that are not matched by an 

alteration on the opposite chromosome arm. Concordant alterations are those that are matched on the 

opposite chromosome arm. The quantification shows the average number of each alteration per cell for 

each model. 
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Figure 3.10 — Putative CIN signatures in inducible phenotypic models of CIN at single cell reso-

lution 

(A) Heatmap of all normalized putative CIN signature measurements in single cells showing with rows 

clustered by similarity. Colorized annotation on the left indicates phenotypic CIN model and shade indicates 

biological replicate. (B) Normalized putative CIN signature measurements in single cells grouped by model. 

Results from two-tailed, two-sample Student’s t-tests are shown above data using all cells across 3 biological 

replicates. Shape and shade of data points indicate biological replicate. 

  

S
ig
na
tu
re

A
ct
iv
ity

CtrlC
ReplicatesBr

CtrlM
Pb
Mp
Po

A B



 181 

 

Figure 3.11 — Concordance and performance of CIN measures 

(A) Pairwise correlations of CIN measurements. Only statistically significant Pearson correlation coeffi-

cients (α = 0.01) are shown. Size of circles represents degree of correlation. (B) Effect sizes (Hedge’s g) of 

CIN measurements for each model compared to its control. White diamond and error bars indicate mean 

and standard error. 
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Figure 3.12 — Extended pairwise correlations of CIN measurements 

Pairwise correlations between each CIN measurement. Colors of data points indicate the phenotypic 

model of CIN. Pearson correlation coefficients and p-values of regression are shown. 
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Table 3.1 — MDD by phenotype approximated by imaging 

Group Phenotype Fraction w/ 
Phenotype 

Pheno-
type SE 

Approximate MDD MDD SE 

Fixed Imaging 
CtrlC Multipolar 0 0 0.09 0.09 

Polar 0.02 0.01 0.13 0.08 
Bridging 0.03 0.01 0.03 0.01 
Lagging 0 0 0 0 

Br Multipolar 0.01 0 0.24 0.06 
Polar 0.01 0.01 0.07 0.07 

Bridging 0.32 0.02 0.32 0.02 
Lagging 0.01 0.01 0.01 0.01 

CtrlM Multipolar 0.01 0 0.21 0.04 
Polar 0.02 0.01 0.14 0.05 

Bridging 0.03 0.01 0.03 0.01 
Lagging 0.01 0.01 0.01 0.01 

Pb Multipolar 0.05 0.02 0.92 0.32 
Polar 0.03 0.01 0.26 0.06 

Bridging 0.03 0.02 0.03 0.02 
Lagging 0.04 0.01 0.04 0.01 

Mp Multipolar 0.23 0.04 4.21 0.71 
Polar 0.05 0.02 0.35 0.13 

Bridging 0.03 0 0.03 0 
Lagging 0.11 0.03 0.11 0.03 

Po Multipolar 0.01 0.01 0.13 0.13 
Polar 0.99 0 7.72 0.04 

Bridging 0.07 0.04 0.07 0.04 
Lagging 0.06 0.03 0.06 0.03 

Time Lapse Imaging 
CtrlC Multipolar 0.08 0.05 1.51 0.84 

Polar 0.02 0.02 0.19 0.19 
Bridging 0.08 0.03 0.08 0.03 
Lagging 0.06 0.06 0.06 0.06 

Br Multipolar 0.04 0.02 0.66 0.37 
Polar 0.06 0.06 0.49 0.49 

Bridging 0.4 0.02 0.4 0.02 
Lagging 0.07 0.03 0.07 0.03 

CtrlM Multipolar 0.04 0.04 0.72 0.72 
Polar 0 0 0 0 

Bridging 0.01 0.01 0.01 0.01 
Lagging 0.07 0.04 0.07 0.04 

Pb Multipolar 0.14 0.03 2.6 0.54 
Polar 0.03 0.02 0.22 0.12 

Bridging 0.05 0.02 0.05 0.02 
Lagging 0.12 0.02 0.12 0.02 

Mp Multipolar 0.24 0.05 4.37 0.82 
Polar 0.01 0.01 0.1 0.1 

Bridging 0.08 0.08 0.08 0.08 
Lagging 0.2 0.04 0.2 0.04 

Po Multipolar 0.02 0.02 0.43 0.43 
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Polar 0.98 0.02 7.67 0.13 
Bridging 0.08 0.02 0.08 0.02 
Lagging 0.18 0.02 0.18 0.02 

 

Approximated MDD for each CIN phenotype in each model. MDD was calculated using 𝑀𝐷𝐷	 =

	&!""#"$	&'"	(')'*+	×	(')'*+	-.+'	×	/'0'+".0*'
1#2.3	45"#6#$#6'$

' × 46 and assumptions of the number of chromosomes mis-segre-

gated for each defect (see Materials and Methods). The fraction of cells with polar chromosomes represents 

metaphase cells wherein they are most readily detectable. All other CIN phenotypes are taken from ana-

phase or telophase cells. 
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Table 3.2 — CIN70 and HET70 genes 

CIN70 HET70 
TPX2 MSH6 AHCYL1 LPP 
PRC1 EZH2 AKT3 MED8 

FOXM1 CTPS1 ANO10 MMP2 
CDK1 DKC1 ANTXR1 MUL1 
TGIF2 OIP5 ATP6V0E1 MYO10 
MCM2 CDCA8 ATXN1 NAGK 
H2AZ1 PTTG1 B4GALT2 NR1D2 
TOP2A CEP55 BASP1 NRIP3 
PCNA H2AX BHLHE40 P4HA2 
UBE2C CMAS BLVRA PKIG 
MELK NCAPH CALU PLOD2 

TRIP13 MCM10 CAP1 PMP22 
NCAPD2 LSM4 CAST POFUT2 
MCM7 NCAPG2 CAV1 POMGNT1 

RNASEH2A ASF1B CLIC4 PRKAR2A 
RAD51AP1 ZWINT CTSL MOK 

KIF20A PBK CYB5R3 RHOC 
CDC45 ZWILCH ELOVL1 RRAGC 

MAD2L1 CDCA3 EMP3 SEC22B 
ESPL1 ECT2 FKBP14 SERPINB8 
CCNB2 CDC6 FN1 SPAG9 
FEN1 UNG FST SQSTM1 
TTK MTCH2 GNA12 TIMP2 

CCT5 RAD21 GOLT1B EMC3 
RFC4 ACTL6A HECTD3 TRIM16 

ATAD2 GPI HEG1 TRIO 
CKAP5 SRSF2 HOMER3 TUBB2A 
NUP205 HDGF IGFBP3 VEGFC 
CDC20 NXT1 IL6ST VIM 
CKS2 NEK2 ITCH WASL 
RRM2 DHCR7 P3H1 YIPF5 

ELAVL1 AURKA P3H2 YKT6 
CCNB1 NDUFAB1 LEPROT ZBTB38 
RRM1 NEMP1 LGALS1 ZCCHC24 

AURKB KIF4A LIMA1 ZMPSTE24 
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Table 3.3 — Characteristics of CIN measurement methods 

Method Accessibility Scalability Sensitivity 

Imaging 
Concord-

ance 

fixed imaging +++ no 
(4/4) bridges / pseudobipolar / multi-

polar / polar 
- 

time lapse im-
aging 

- no 
(4/4) bridges / pseudobipolar / multi-

polar / polar 
- 

chromosome 
spread 

- no (1/4) polar no 

6-centromere 
FISH 

+++ yes (1/4) multipolar yes 

bulk RNA seq ++ yes (0/4) no 

bulk DNA seq +++ yes (0/4) no 

scDNAseq + yes (3/4) pseudobipolar / multipolar / polar yes 

 
Categories for clinical accessibility are (-) insurmountable barriers, (+) requires special equipment 

and/or reagents and time-consuming and/or laborious, (++) requires special equipment and/or reagents or 

time-consuming and/or laborious, or (+++) commonly performed clinical assays use the same equipment 

and reagents. Scalability is determined by the pre-existence of established protocols and/or platforms for 

high throughput sample preparation and data acquisition in a clinical or non-clinical setting. Sensitivity to a 

specific mechanism is determined by a significant difference between the control and CIN-induced groups. 

Imaging concordance is determined by significant correlation to both imaging methods. 

  



 187 

4 
CINFER: AN INTERACTIVE WEB-PLATFORM FOR INFERRING 

ONGOING CHROMOSOME MIS-SEGREGATION RATES FROM SINGLE 

CELL DNA SEQUENCING DATA 

Adapted from Lynch et al. (Manuscript 2). In preparation. 

 

ABSTRACT 

Chromosomal instability (CIN), persistent gain and loss of chromosomes, contributes 

to cancer progression and therapeutic response in a mis-segregation rate-dependent 

manner. However, the difficulty of measuring these rates has hindered the study of its 

origin in cancer and its clinical use as a prognostic and predictive biomarker. Here we 

present CINFER, a user-friendly and interactive web-based platform to infer ongoing chro-

mosome mis-segregation rates from single-cell DNA sequencing datasets. CINFER ena-

bles users to perform approximate Bayesian computation (ABC) using an extensive data-

base of agent-based simulations of CIN and karyotype selection in cell populations. This 

resource can be accessed at https://andrewrlynch.shinyapps.io/CINFER/. 

MAIN 

Chromosomal instability (CIN) promotes aneuploidy and intratumor heterogeneity 

through the mis-segregation of chromosomes during abnormal mitoses. The pervasive 

aneuploidy observed in tumors (80-90%) suggests that CIN occurs in most tumors (253–

255). CIN was previously considered a binary feature of tumors and mutually exclusive 
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with microsatellite instability (121). We now know the severity of CIN — the rate of chro-

mosome mis-segregation — varies from tumor to tumor and likely varies over time and 

between clones in the same tumor (138, 191, 194, 196, 220, 237). Further, the ongoing 

rate of mis-segregation influences the CIN’s roles in tumorigenesis (246, 341, 342), pro-

gression (182, 237, 245, 260, 343), and therapeutic response (249, 251, 265, 266). Know-

ing the severity of CIN in patients’ tumors would be advantageous for prognoses and 

personalized medicine. However, quantification of ongoing chromosome mis-segregation 

rates in tumors has proved challenging as methods for which are clinically intractable and 

because these measurements are confounded by ongoing karyotype selection (138, 241, 

243). For example, the observed cell-to-cell variation of karyotypes at a single timepoint 

(e.g., the time of biopsy) may underestimate a high mis-segregation rate via the death of 

unfit cells such as those that lose too many chromosomes. In addition to precluding any 

clinical benefit, the difficulty of measuring CIN in cancer patients’ tumors has hindered 

fundamental research into the molecular causes of CIN and determinants of patient-to-

patient severity. While CIN can be induced in an experimental setting by manipulation of 

genes involved in mitosis (e.g., spindle-assembly, chromosome alignment, error correc-

tion), these genes are rarely mutated in cancer. Therefore, uncovering the mechanisms 

that generate CIN in cancer requires further study in patients’ tumors.  

We previously developed a framework to account for the confounding effects of 

karyotype selection to enable the rapid, accurate measurement of CIN from single-cell 

DNA sequencing data (scDNAseq) (147). We validated this approach experimentally and 

used it to infer mis-segregation rates in clinically derived tumor samples. This confirmed 
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the expected range of mis-segregation rates in tumors and supported a role for stabilizing 

selection in limiting the diversity of cancer cell populations with ongoing CIN.  

Expanding on this work, we now present CINFER, a user-friendly, web-based plat-

form for inference of ongoing mis-segregation rates. CINFER uses chromosome copy 

numbers inferred from shallow (<1x) scDNAseq data to infer ongoing mis-segregation 

rates in the sequenced sample (Figure 4.1). These analyses are based on thousands of 

agent-based simulations of CIN and karyotype selection over a physiologically relevant 

timescale, which sweep through a parameter space from low to high rates of chromosome 

mis-segregation and low to high selective pressure. Measurements taken from these sim-

ulations are stored in a database (CINFERdb) which CINFER uses to as a prior dataset for 

parameter inference of mis-segregation rates using approximate Bayesian computation.  

The simulated data in CINFERdb consists of over 5 million measurements across 

50 thousand independent simulated cell populations grown over 100 time steps (~50 gen-

erations). This encompasses the physiological time required to form an approximately 1 

cm, palpable tumor made of around 1 billion cells, which can develop in about 30 gener-

ations. Across these simulations, we sweep through uniform parameter space using mis-

segregation rates (MDD) from 0 to 4.6 and karyotype selection pressures from 0 to 100 

(Table 4.1, Figure 4.2A). Most evidence points to stabilizing selection as the predominant 

mode of ongoing karyotype selection (147, 218, 225, 226, 228). While karyotypic drift 

occurs through chromosome mis-segregation, most single cell karyotypes resemble that 

of the ensemble population. The simulations in CINFERdb emulate this process by nega-

tively selecting aneuploid cells that stray from the average ploidy of the population. Each 
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chromosome affects this to a different extent according to the number of genes it en-

codes. While karyotypic drift can occur, the karyotypes of individual simulated cells are 

constrained depending on the strength of the selective pressure parameter (S).  

The seven summary statistics in CINFERdb are measured at each time step for 

each independent simulation (Figure 4.2B). These measurements summarize the karyo-

typic diversity and phylogenetic shape at each point in time.  

CINFERdb’s three karyotype diversity measures are quantifications of subclonal 

aneuploidy, mean karyotype diversity, and fraction of unique clones in the population. 

While aneuploidy itself is not indicative of CIN as some aneuploid clones can be chromo-

somally stable, the subclonal aneuploidy metric measures the extent to which each indi-

vidual cell differs from the clonal population. For example, if all cells but one share the 

same karyotype, this measure would differentiate whether the outlier bears a single chro-

mosomal alteration, which could result from a lagging chromosome, or fifteen, which 

could result from a multipolar spindle.  Mean karyotype diversity (MKV) is a transposed 

quantification of aneuploidy. Instead of measuring intra-karyotype variance and taking the 

mean across all cells, it measures the trans-karyotype variance for each chromosome and 

takes the mean across all chromosomes. In this way, population with the single outlier 

would score low on MKV. However, if each cell differs slightly, it will score higher. The 

fraction of the population consisting of unique clones (based on karyotype) is similarly 

indicative of ongoing chromosome mis-segregation, though with a smaller dynamic range. 

 CINFERdb’s four phylotopology measures are quantifications of the shape of phy-

logenetic trees reconstructed from each cells karyotype. Phylogenetic shape is indicative 
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of the evolutionary processes that shape them (229, 230, 232, 344). Thus, these measures 

aid the inference of mis-segregation rates by correcting for the degree of ongoing karyo-

type selection. To do this, phylogenetic trees of each simulated population at each time 

step are reconstructed from single cell karyotypes using hierarchical clustering. Sackin 

and Colless indices measure the imbalance (i.e. asymmetry) of these reconstructed phy-

logenetic trees, with greater imbalance indicative of greater ongoing karyotype selection. 

In some cases, a rare, highly aneuploid cell, such as a daughter cell resulting from a recent 

multipolar division, can heavily skew phylogenetic tree reconstructions. We also imple-

mented a measure of the Colless index where copy numbers for each chromosome (e.g., 

chromosome 1) are permuted across the population. The permuted Colless index pre-

serves repetitive karyotype alterations indicative of ongoing selection, but minimizes the 

outsized effects of rare, highly dissimilar cells. And while Colless and Sackin indices are 

whole-tree measures of imbalance, the number of ‘cherries’ (i.e., clades consisting of sin-

gle pairs of tree tips), offers a measure of more discrete structures within a given tree. 

While the number of cherries is inversely correlated to the imbalance of the tree, they are 

informative as an orthogonal method to counter outsized effects of small numbers of cells 

on overall tree shape. Further, each phylotopology measure is normalized to the size of 

the population to accommodate any number of cells in a scDNAseq dataset.  

 Measuring these same statistics using scDNAseq-derived copy numbers enables 

the use of ABC, a statistical method for parameter inference by comparing simulated and 

biological data (301, 345–347). Thus, mis-segregation rates can be inferred by identifying 
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the simulation parameters (MDD, S, and time steps) that produced sets of summary sta-

tistics in CINFERdb that most closely resemble the biological data.  

 We previously validated this approach by recalling experimentally observed mis-

segregation rates caused by the chemotherapeutic drug, paclitaxel, and by demonstrating 

that mis-segregation rates inferred from patient-derived colorectal cancer organoids as-

sociate with rates observed by microscopy. We validated the stabilizing selection model 

by demonstrating that simulations using inferred mis-segregation rates with karyotype se-

lection more closely resemble biological data than those inferred without this selection. 

Further, we confirmed stabilizing selection as the predominant mode of ongoing karyo-

type selection through model selection against other proposed selection models (147). 

We also found that this method of measuring mis-segregation rates performs better than 

any other measure of CIN, excluding direct imaging, when performed in tandem across 

inducible cell culture models of several CIN phenotypes (Lynch et al., in submission). 

 We developed CINFER with several built-in user-defined settings to allow users to 

tailor analyses to their experimental requirements. To demonstrate, we have measured 

ongoing chromosome mis-segregation rates in the high-grade serous ovarian cancer cell 

line, OV2295 (Figure 4.3). After retrieving previously published scDNAseq-derived abso-

lute copy number data (322), we filtered out poor-quality cells using the authors’ pre-

defined quality metrics. We then took the mode of copy numbers for each chromosome 

as whole-chromosome copy numbers, performed hierarchical clustering on karyotypes, 

and k-means clustering of 4 major ‘clones’ within the population as determined by within-

cluster sums of squares. We extracted the copy numbers for one of these clones as a 
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data matrix with chromosomes as columns and single cells as rows. Importing this matrix 

into CINFER, population summary statistics for karyotype diversity and phylotopology are 

automatically measured. We selected prior parameter distributions relevant to the popu-

lation of cells (in particular, a long timescale since, to our knowledge, these cells had not 

recently been sub-cloned) and which was encompassed by the space of our selected 

summary statistics (aneuploidy, MKV, and the permuted Colless index) using UMAP di-

mensionality reduction. To handle ABC in CINFER, we implemented a previously pub-

lished package designed specifically for running this analysis on pre-simulated data (281), 

in our case, CINFERdb. Accordingly, we allow users to select from the four ABC strategies 

defined in this implementation. For computational simplicity, we selected ‘Rejection’ sam-

pling, which simply takes the median parameter value across all accepted simulations 

within a given tolerance threshold as the inferred value. For the tolerance threshold, we 

chose 0.05 to include only the most similar 5% of prior simulations in the posterior distri-

bution. After running parameter inference, CINFER outputs the joint posterior distribution 

of mis-segregation rate and selection pressure. CINFER also outputs clear values for each 

inferred parameter. In our case, we find that the inferred values for mis-segregation rate, 

selection pressure, and time steps are MDD = 0.23 ± 0.119, S = 13 ± 5.379, and Steps = 

95 ± 3.167 respectively (median ± standard deviation). This means that, given the as-

sumption of our chosen prior parameter distributions, the mis-segregation rate that most 

likely resulted in the observed scDNAseq data is 0.23 mis-segregations per diploid divi-

sion, or about 1 mis-segregation every 4 divisions. CINFER then prompts users to check 

the predictive power of these inferences against the null hypothesis that no karyotype 
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selection has occurred. Here, CINFER takes the inferred values and re-initializes a limited 

number of additional simulations, re-measures the selected summary statistics, and com-

pares them to the observed measures and to those from simulations without karyotype 

selection. In this case, we find that summary statistics from the posterior prediction fall 

relatively close to those measured in the OV2295 cells and outperform those from simu-

lations use the null hypothesis of no karyotype selection.  

 This analysis can be extended to scDNAseq from other longitudinal samples from 

other cell culture experiments, tumor-derived organoids, and even tumor biopsies. More-

over, CINFER is flexible in accommodating shorter time periods and higher mis-segrega-

tion rates characteristic of acute molecular or chemical perturbations used to induce CIN, 

such as inhibition of the spindle assembly checkpoint protein, MPS1. Though, because 

the data in CINFERdb was simulated under the assumption of whole-chromosome mis-

segregation, CINFER is not suitable for inferring rates of chromosome arm-level copy 

number alterations characteristic of ongoing structural CIN or mis-segregation of whole 

albeit highly re-arranged chromosomes. While this could be achieved using additional 

simulation data, CINFER is currently computationally constrained to smaller datasets. 

 In summary, CINFER is a computational platform for inference of chromosome mis-

segregation rates. It guides users through the steps necessary to perform a robust anal-

ysis including user-defined prior parameter distributions and population summary statis-

tics, a configurable inference framework, and the option to perform additional simulations 

to assess the posterior predictive power of one’s results. This user-friendly platform is 

backed by CINFERdb, which contains over 5 million measurements taken simulated 
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populations grown over a physiologically relevant timescale using a broad and uniform 

set of CIN and selection parameters. Prior to developing CINFER, we previously validated 

this approach to measure CIN in several cases. We then used CINFER to measure ongo-

ing mis-segregation rates in the OV2295 HGSOC cell line. However, relative levels of CIN 

are challenging to measure, particularly when microscopic observation is not a viable op-

tion, such as in a clinical setting. CINFER is a leap forward in making the karyotype selec-

tion-aware measurement of CIN easier in both clinical and experimental samples. 

MATERIALS AND METHODS 

Data requirements for end-users 

 CINFER currently requires pre-formatted absolute chromosome copy number data 

in CSV format with chromosomes in columns and cells in rows. Cell IDs should be in-

cluded as row names, rather than in the matrix, while chromosome IDs can remain in the 

matrix. Users may exclude any chromosome they wish, such as the sex chromosomes.  

Agent-based modeling 

 CINFERdb was created using simulations developed and performed in NetLogo 

(see Table 4.2 for package versions) as previously described (147). In short, we initiated 

simulated populations with 100 diploid cells and evolved exponentially growing popula-

tions using a pseudo-Moran process to reduce computational demands (a random 50% 

of cells are culled when the population surpasses 3000 cells). Euploid cells had a 50% 

chance to divide at every step, a probability that is modified according to a cell’s fitness 

level. We used a karyotype selection scheme that emulates stabilizing selection by nega-

tively selecting genetically unbalanced karyotypes. The contribution of each chromosome 
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to karyotype selection is dependent on the abundance of genes it encodes. We simulated 

populations using the following parameters: MDD = [0, 0.046, 0.092, …, 4.6], S = [0, 1, 2, 

…, 100], Time Steps = [0, 1, 2, …, 100]. We assumed whole-chromosome mis-segregation 

and that chromosome copy numbers below 1 and above 7 would r7esult in cell death. 

Accordingly, as cells divide and mis-segregate chromosomes, more aneuploid cells with 

more unbalanced karyotypic stoichiometries are less likely to continue division. A random 

selection of 300 karyotypes is exported to measure summary statistics at each time step. 

See Lynch et al. 2022 for additional details.  

Hierarchical clustering 

 Complete-linkage clustering of chromosome copy number data was performed in 

R using Euclidean distance matrices for both heatmap visualization and derivation of phy-

lotopology measurements (described below). Heatmaps were constructed using Com-

plexHeatmap. We determined the optimal number of OV2295 clusters, or clones, using 

the ‘elbow’ method by plotting the total within sum of squares for 1 to 10 clusters with 

locally estimated scatterplot smoothing (loess) (span = 1) and selecting the number of 

clusters closest to the estimated inflection point.   

Population summary statistics 

 CINFERdb contains seven quantitative measures of karyotype diversity and phy-

lotopology, all of which are measured in R.  

 Aneuploidy is measured by calculating the modal karyotype of the population, then 

subtracting the modal karyotype from each cell’s own karyotype. This masks clonal aneu-

ploidies that are less likely to associate with ongoing CIN. The variance within each cell’s 
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karyotype is calculated and the mean of all cell’s intra-karyotype variance represents the 

aneuploidy of the population.  

 Mean Karyotype Variance (MKV) is similar to the quantification of aneuploidy, 

though it measures the dissimilarity between karyotypes instead of the variance within 

karyotypes. It does not require subtraction of the modal karyotype and the variance and 

mean calculations are transposed. The variance of each individual chromosome (e.g., 

chromosome 1) is calculated, then the average of these variance values across the 24 

chromosomes (23 if the Y chromosome is excluded, for example) represents the MKV of 

the population.  

 The fraction of the population consisting of unique subclones is measured simply 

by consolidating all cells to their unique karyotypes to get the number of unique subclones 

and normalizing to the size of the population. 

 Phylotopology measures, in our case, require hierarchically clustering the popula-

tion on whole chromosome copy number values as described above. This results in a 

cluster object which can be interpreted as a binary, mid-point rooted tree. Then, each 

measurement is made using the phyloTop package in R. 

 The Colless index, a broad measure of tree imbalance, is measured by calculating 

the sum of absolute values of differences in the number of leaf tips between each pair of 

clades joined by each node in the tree. Thus, more imbalanced, or asymmetric trees, have 

a higher Colless index. The Sackin index, another measure of tree imbalance, is measured 

similarly. Here, the sum of the number of ancestor nodes for each leaf tip is calculated. 

Thus, more imbalanced trees have a higher Sackin index. Both indices are normalized by 
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the number of tip pairs in the tree. Additionally, we implemented a variant of the Colless 

index that takes a tree constructed after randomly permuting the copy number values 

within each chromosome (e.g., chromosome 1) and is averaged over 100 permutations. 

In some cases, a rare cell with a vastly different may be present in the copy number data, 

particularly if the input data are not clustered and selected prior to analysis. In these cases, 

these rare cells can have an outsized effect on the imbalance indices as the they would 

appear to have far fewer ancestor nodes or far fewer cells in its respective clade. Permut-

ing the copy number data distributes the variance of the outlier throughout the tree, min-

imizing the effect of these rare outliers while preserving the broad topological structure of 

the rest of the population.  

 In a phylogenetic tree, cherries are pairs of adjacent leaf tips connect by a common 

ancestor node and are local measures of tree balance inversely correlated to the Sackin 

and Colless indices. We quantify cherries simply by normalizing their number to the num-

ber of tip pairs in the tree. 

Uniform manifold approximation and projection (UMAP) 

UMAPs are performed using the uwot package in R and a matrix of summary statistics 

measured from simulated data and scDNAseq data. In CINFER, UMAPs are generated 

using a random sub-sample of 2500 data points from user-selected distributions of simu-

lated data and summary statistics. (UMAP parameters: n_neighbors = 5, bandwidth = 0.33, 

fast_sgd = TRUE). For UMAPs in Figure 4.2 of this manuscript, we used a random sub-

sample of 100,000 data points from CINFERdb in its entirety and include all 7 summary 

statistics. (UMAP parameters: n_neighbors = 8, bandwidth = 0.5) 
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Approximate Bayesian computation 

 In CINFER, we implement ‘abc’, a previously published R package designed to per-

form ABC on pre-simulated datasets (281). We do not change its underlying framework 

and three of its features include for configuration and cross-validation within CINFER:  

1. Choice of 1 of 4 methods for ABC, rejection sampling, rejection with local linear 

regression, rejection with ridge regression, and a neural network for non-linear re-

gression of inferred values.  

2. Choice of tolerance threshold to control the proportion of the prior distribution of 

simulated data that is accepted.  

3. Cross-validation of tolerance thresholds to evaluate how one’s chosen tolerance 

threshold affects the parameter inference within the selected prior distributions.  

Posterior predictive checks 

 The median of posterior distributions for each parameter are passed into nlrx, an 

R package used as a wrapper for running NetLogo simulations. This initializes 10 new 

simulations in the same manner as previously described. However, 5 of these simulations 

use the inferred parameters for simulating new populations and 5 use the inferred rate 

and time parameter, but neutral selection as a null hypothesis to assess the choice of a 

selective pressure distribution. Summary statistics from these populations are measured 

identically to those measured in the imported scDNAseq data and in CINFERdb.  

Application architecture and hosting 

CINFER was built in R and shiny and hosted on shinyapps.io. 
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Code Availability 

The source code for CINFER and scripts for analyses in this manuscript are available 

on GitHub (https://github.com/andrewrlynch/CINFER). 
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Figure 4.1 — CINFER: a web-platform for inferring chromosome mis-segregation rates from 

scDNAseq data 

CINFER is backed by a database (CINFERdb) of over 5 million measurements of karyotype diversity 

and phylotopology from agent-based simulations of CIN and karyotype selection over time. Inferring mis-

segregation rates requires only a few steps: (1) Users upload chromosome copy number matrices inferred 

from shallow scDNAseq to CINFER to measure the relevant summary statistics from their data. (2) Selection 

of relevant prior parameters to pull down data from CINFERdb. (3) Configuring and running approximate 
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Bayesian computation to compare user’s data to the CINFERdb prior. (4) Check the posterior predictive 

power of the inference and cross-validate the users selected tolerance threshold.  
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Figure 4.2 — Characteristics of the CINFERdb dataset 

(A) Uniform prior parameter distributions for simulated data in CINFERdb. Resolution of distributions is 

shown in Table 1. (B) Dimensionality reduction projections (uniform manifold approximation and projection, 

UMAP) which show the relationships between simulation parameters and measured summary statistics from 

simulated data in CINFERdb. UMAP projections are randomly down-sampled to 100,000 data points.   
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Figure 4.3 — Inference of mis-segregation rates in OV2295 

Representative workflow of mis-segregation rate inference. Shallow scDNAseq data of OV2295 cells 

were retrieved from Laks, McPherson, Zahn et al. 2019 and filtered according to the authors’ quality metrics 

(quality ≥ 0.6). Modal chromosome copy numbers were taken for each chromosome and imported into 

CINFER, from which each population summary statistic was measured. Prior parameters of MDD = 

[0,0.046, …, 1], S = [0, 1, …, 100], and Steps = [90, 91, 100] w5/24/23 11:53:00 AMere selected and the 
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population measurements of the scDNAseq data were projected onto the space of summary statistics to 

ensure goodness of fit. Aneuploidy, MKV, and a permuted Colless index were used as summary statistics 

for ABC, as well as rejection sampling and a tolerance threshold of 0.05. A joint posterior distribution shows 

the parameter density of accepted simulations and the median MDD, S, and steps is taken as the inferred 

values. These are used to perform additional posterior predictive simulations and compared to a null hy-

pothesis of S = 0. Measurements from these simulations are then compared to those taken from the 

scDNAseq data (solid horizontal line). Dashed lines represent ± 25% and ± 50% error. 	
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Table 4.1 – Characteristics of the CINFERdb dataset 

Simulation Parameters 

Rate (MDD) 0 – 4.6 by 0.046 

Pressure (S) 0 – 100 by 1 

Time steps 0 – 100 by 1 

Database Statistics 

Replicates per combination 5 

Total simulations  51005 

Total measurements 5151429 
 

Table 4.2 – Critical software packages 

Software Version Reference 

NetLogo 6.1.1 (298) 

R 4.2.3 (333) 

RStudio 2022.7.0.548 (336) 

R Packages 

abc 2.2.1 (281) 

nlrx 0.4.3 (348) 

phyloTop 2.1.2 (300) 

RSQLite 2.3.0 (349) 

shiny 1.7.4 (350) 

tidyverse 2.0.0 (351) 

uwot 0.1.14 (352) 
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5 
PERSPECTIVES 

Adapted from Lynch, Bradford, and Burkard (Manuscript 1). Under review. 

 

 

CONCLUSIONS IN SUMMARY 

1. Karyotype diversity depends on the primary mode of karyotype selection.  

2. Low CIN populations under low karyotype selection can produce similar levels 

of karyotype diversity to high CIN populations under high karyotype selection, 

which confounds the inference of CIN from karyotype heterogeneity.  

3. The topology of phylogenies reconstructed from chromosome copy numbers 

detect ongoing karyotype selection and delineate CIN and karyotype selection 

in otherwise confounded scenarios.  

4. Bayesian inference using simulated populations with chromosomal instability 

and karyotype selection can recover experimentally observed mis-segregation 

rates. 

5. Paclitaxel induces an average of 18 chromosome mis-segregations in a single 

cell division, confirming predicted baseline mis-segregation rates caused by 

multipolar spindles.  

6. Ongoing mis-segregation rates in cancer samples (breast biopsy, colorectal 

cancer organoids) fall between 0.05 and 0.4 mis-segregations per diploid 
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division (MDD). This implies the dynamic range of mis-segregation rates, and 

their relative effects in tumor progression fall within one order of magnitude.  

7. The primary mode of ongoing karyotype selection in tumors is stabilizing selec-

tion around the clonal karyotype.  

8. A widely used transcriptional measures of CIN, the CIN70 gene panel, fails to 

detect ongoing, genetically and chemically induced CIN.  

9. Selection-aware inference of mis-segregation rates is clinically accessible and 

outperforms most current methods of measuring CIN. 

10. Induction of nullisomy as a strategy to induce cell death requires extensive 

chromosome mis-segregation rates (about 16 mis-segregations to achieve nul-

lisomy in 50% of a diploid population.  

11. Prior chromosome loss sensitizes cells to mis-segregation through nullisomy.  

12. Spindle pole clustering and partial cytokinesis failure can rescue cells from nul-

lisomy-mediated cell death.  

TOWARD THE CLINICAL APPLICATION OF CIN MEASUREMENTS 

The clinical significance of CIN is well established and has been thoroughly re-

viewed here and elsewhere (116, 353, 354). To summarize, experimental, pre-clinical, and 

post hoc clinical studies have shown that the level of CIN in cancer cell populations drives 

malignancy in a non-linear fashion. Low levels of CIN limit the evolvability of tumors. Mod-

erate levels of CIN promote tumorigenesis and drive cancer progression by increasing 

adaptability, promoting increased fitness, LOH of tumor suppressors, amplification of ac-

tivated oncogenes, metastasis, and therapeutic resistance. High levels of CIN promote 
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unsustainable genomic catastrophe such as nullisomy (138, 182, 237, 240, 245, 246, 248, 

343). Further, the intrinsic level of CIN in a tumor has long been thought, and recently 

been demonstrated, to predict sensitivity to drugs that further increase CIN (248, 249, 

265, 266, 355). Paclitaxel, for instance, is widely used and very effective in about half the 

patients who receive it (356). The other half receive no benefit and there is no clinical 

biomarker to inform who should receive paclitaxel. Thus, if CIN were measured in the 

clinic, it may be viable as a predictive biomarker for paclitaxel treatment. Indeed, despite 

the clinical significance of CIN levels, and unlike microsatellite instability (MIN), tumors’ 

CIN status is not used in any clinical capacity to inform patient prognosis or treatment 

strategies.  

Why? As we’ve established thus far, the widely used measures of CIN each suffer 

barriers to clinical accessibility. Fixed microscopy is direct, but slow and imprecise as 

chromosome fate is unknown. Time lapse microscopy is, of course, only available ex vivo. 

Cytogenetics methods display cell-cell karyotype resolution and can, with the exception 

of FISH and simple chromosome counts, detect structural CIN. Yet, these are also slow 

and may suffer the effects of karyotype selection masking. Bulk transcriptomic CIN signa-

tures have been shown to be uninformative of ongoing CIN. Bulk genomic sequencing 

can detect aneuploidy and, to a limited extent, subclonal and allelic alterations indicative 

of CIN, but are insufficient to establish rates of mis-segregation. Further, for the time be-

ing, most clinical sequencing relies on panel or exome sequencing, which are less robust 

in calling large-scale CNAs induced by CIN. Single cell genomics and transcriptomics, if 

CNAs can reliably be inferred from the latter, offer the necessary sensitivity and 
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completeness of cell-cell variation and potential for the necessary throughput to capture 

recently acquired, yet-unselected, CNAs. These methods remain costly and require addi-

tional computational methods to account for selection and infer mis-segregation rates. 

Nevertheless, the combination of single cell and computational technologies will likely be 

the fastest route to benefit patients through robust, clinically accessible measures of CIN.  

The pace of basic research into CIN’s function is also impeded by the lack of clin-

ical CIN measurements. The wealth of CIN research in model systems and post hoc clin-

ical analysis up to this point has allowed us to make broad hypotheses regarding its broad 

roles in cancer progression. Yet the lack of a clinically established CIN measure prevents 

some key questions from being addressed. 

QUESTIONS REMAINING 

How does CIN contribute to advanced disease? We know that high-grade, ag-

gressive cancers are associated with elevated levels of CIN. It is generally thought that 

the increased karyotype diversification provides a richer substrate for natural selection of 

ever-more optimal gene combinations in tumors. Is the shuffling of large genomic regions 

like whole chromosomes or chromosome arms sufficient to promote aggressive clinical 

phenotypes without further structural CIN and focal alterations? Or does numerical CIN 

only serve to enrich the substrate for subsequent structural CIN and focal alteration of 

specific genes? Similarly, as CIN promotes chromothripsis and extrachromosomal DNA 

formation, do cancers with higher or earlier CIN have a greater diversity of extrachromo-

somal DNA?  
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Alternatively, to what extent is CIN’s role in cancer progression an epi- or extra-

genomic effect? For instance, cells with higher CIN may be less differentiated (238, 357–

359). Does CIN cause cancer cell dedifferentiation or does dedifferentiation increase tol-

erance to CIN through altered transcriptional plasticity, for example. Further, CIN can pur-

portedly induce metastasis by inducing an inflammatory cytosolic DNA response second-

ary to mis-segregation and rupture-prone micronucleation of chromosomes (238). What 

level of CIN is sufficient to promote this in tumors? 

How does CIN develop? Perhaps a more fundamental challenge than determining 

CIN’s role in cancer, is determining its origin. In laboratory experiments, CIN can be trig-

gered by manipulation of genes associated with DNA damage repair and synthesis, cell 

cycle progression, mitotic spindle assembly, kinetochore-micotubule attachment error 

correction, and chromosome congression. However, these genes are rarely mutated or 

differentially transcribed in cancer. The combination of this low ‘signal’ and the high ‘noise’ 

of insufficient and ineffective CIN measures has stymied the identification of CIN’s etiology 

in cancer. 

How is CIN tolerated? Inactivation of p53 is commonly cited as a potent driver of 

CIN tolerance (297, 360, 361). However, p53 is mutated in ~60% of tumors while aneu-

ploidy is present in 80-90% (254, 255). Though, other alterations of the p53 pathway, such 

as MDM2 amplification, could produce similar tolerance. Nevertheless, multiple additional 

mechanisms could be responsible in addition to the p53 pathway — unfolded protein re-

sponse, endoplasmic reticulum stress response, and transcriptional, translational, and 

post-translational mechanisms of dosage compensation to name a few (327–329, 331). 
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The measure of CIN levels in patients would help us understand the ways in which CIN is 

tolerated. 

Does CIN or CIN tolerance come first? Low levels of somatic aneuploidy in nor-

mal tissue (313) could be due to intolerance to CIN or exceedingly low rates of mis-seg-

regation. Does increased CIN tolerance allow subsequent outgrowth of rare cells that 

have developed CIN early in neoplasia? Do cells develop CIN first and subsequently de-

velop tolerance mechanisms to support it?  

What is the critical threshold of tolerable CIN in tumors? Mathematical model-

ing suggests the boundary conditions that should be universal to all cells, not just cancer 

and selection-aware models further refine these models. For example, most cells are not 

likely to enjoy mis-segregating a quarter of their chromosomes in a single division. How-

ever, different cancers could have varying levels of CIN tolerance. For example, ovarian 

cancers tend to exhibit a high burden of CNAs, which could (though not definitive evi-

dence) portend greater levels of CIN in ovarian cancer than hematological cancers, for 

example. This may suggest that the typical developmental trajectory of ovarian cancers 

promote and/or tolerate higher CIN whereas hematological cancers would be more sen-

sitive to that very same level. Accordingly, the interactions between canonical cancer 

driver pathways, CIN promoting pathways, and CIN tolerance mechanisms would be of 

interest once sufficient data are available. 

What is low CIN vs high CIN? It is common to refer to different rates of chromo-

some mis-segregation, subjectively, as ‘low’, ‘moderate’, or ‘high’, when discussing its 

role in cancer. This is because, up to this point, methods of CIN measurement have not 
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been amenable to the quantification of a rate. Therefore we don’t know what the relevant 

mis-segregation rates are as they pertain to a functional role in cancer. The consequence 

of this is conflicting definitions of CIN levels depending on the context. For example, most 

post hoc clinical studies that have measured CIN in various ways, refer to the highest 

levels of CIN they observe as ‘high’, understandably. In this context, the range of mis-

segregation rates seems to fall between 0-0.5 MDD (Table A2.2). However, observational 

clinical trials have examined the strategy of using chemotherapeutics like paclitaxel to 

elevate CIN as a mechanism of action. In these studies the same levels would be consid-

ered ‘low’ or ‘moderate’ compared to the ‘high’ rate of mis-segregation that can cause 

cell death, which are not common in cancer without therapeutic challenge. For example, 

paclitaxel treatment of cultured cells can induce CIN in excess of ~18 MDD. A widely 

used, quantitative measure of CIN would unify these paths of investigation, provide a scale 

of what is truly ‘low’ and ‘high’ CIN, and clarify the range of CIN’s consequences related 

to mis-segregation rate. 

NEXT GENERATION CIN MEASURES 

The measure of CIN has advanced greatly since its discovery, a progress catalyzed 

by technological and methodological advancements and evidence of its importance in 

cancer over nearly two centuries. However, further advancements are required to use 

measures of CIN to benefit cancer patients and answer some fundamental questions 

about the biology of CIN. Fifteen years ago, Geigl et al. introduced criteria for a definition 

of CIN and some recommendations for its measure (362). With advancements in single-
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cell sequencing technologies since then, we update these recommendations and provide 

a set of criteria, some aspirational, for a next generation of CIN measures.  

Do not conflate CIN with aneuploidy. First and foremost, recall the adage “CIN 

is a rate, aneuploidy is a state.” While the extent of subclonal aneuploidy in a population 

can be a helpful metric to infer CIN, aneuploidy itself is not sufficient evidence of CIN. 

Therefore, refrain from making conclusions about CIN when only measuring a level of 

aneuploidy, particularly clonal aneuploidy. 

Provide single-cell resolution. In lieu of direct observation, the measure of CIN 

relies on cell-to-cell karyotypic variation. Even with multiregion sampling and subclonal 

inference, a great deal of heterogeneity can be masked through bulk measures. Single 

cell measures are required. 

High throughput and information rich. The accurate measure of the extent of 

CIN in a population requires the full karyotypes of hundreds to thousands of cells from the 

same sample. Small sample sizes will be more sensitive to sampling bias and the inherent 

stochasticity of CIN. 

Comprehensively measure numerical and structural CIN. While the inference 

of structural variation from most single cell sequencing data is challenging, this will likely 

not always be the case. Efforts to quantify the rate of whole-chromosome mis-segregation 

as well as chromosomal rearrangements should be made. 

Clinically accessible. The clinical measurement of CIN requires rapid sampling, 

preparation, and analysis as well as relatively cost-effective strategies. One way this could 
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be achieved is by combining the measurement of CIN with other clinical assays like mu-

tation panel sequencing, though on a high-throughput, single cell platform.  

Account for empirically-derived selection dynamics. Measures of CIN should 

incorporate known, empirically-derived selection dynamics. The observable degree of 

karyotype heterogeneity is not the full story as other cells may not survive mis-segregation 

or are otherwise outcompeted. Therefore, further characterization of karyotype selection 

dynamics will benefit the inference of CIN. 

Use a standard metric — mis-segregations per diploid division (MDD). Sub-

jective ‘levels’ of CIN become unnecessary when the rate of mis-segregation can be quan-

tified. Several factors need to be accounted for in a singular CIN measure: time, back-

ground ploidy, and penetrance. Time can be expressed as the number of divisions that 

have occurred in a population. We propose that background ploidy should be normalized 

to the typical diploid human karyotype rather than per chromosome to correlate with di-

rect imaging, rather than per cell to relate to the rate per chromosome at risk. For a given 

MDD, a tetraploid cell mis-segregates 2x the chromosomes as a diploid one. Penetrance 

can be thought of as the fraction of a population that mis-segregates n chromosomes per 

division. To illustrate this latter point, cell population A might mis-segregate 1 chromo-

some every division through a lagging phenotype while cell population B might mis-seg-

regate 10 chromosomes every 10 divisions through a multipolar division phenotype. The 

penetrance of CIN differs between populations A and B, but the total CIN in the population 

can be considered equal (Table A2.3). We propose measuring CIN using a standard met-

ric — mis-segregations per diploid division (MDD) — which accounts for each of these 
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factors. Importantly MDD can be measured using sequencing-based inference methods 

discussed above or estimated from microscopy-based mitotic analyses.  

CLOSING 

In the end, I hope the findings of these studies and other perspectives herein are 

of use. The study of CIN is challenging, in no small part because it has been a challenge 

to measure. The major goal of this work has been to improve the measure of CIN so as to 

improve our understanding of the relevant rates of mis-segregation that occur in patients’ 

tumors. This improved understanding will serve both basic and clinical purposes. By un-

derstanding rates of chromosome mis-segregation that occur in tumors, we can delineate 

levels of CIN in patient samples and understand the molecular determinants of CIN se-

verity and perhaps even its origin. Further, understanding these rates will improve our 

understanding of how CIN contributes to cancer progression, not just ‘in general’, but in 

individual patients, and will improve clinicians’ prognostication and confidence in pre-

scribing effective therapies.  

To conclude, I return to the words of Theodor Boveri who recognized the im-

portance of experimental and methodological development: 

There are still many other facts to be gleaned from the histological and 

experimental study of malignant tumours and from clinical and statistical 

evidence that could provide criteria for the validation of our point of view… 

For in this field, as in any other, many important phenomena remain unob-

served despite the most assiduous investigation because they are not 
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anticipated by any of our current concepts and must therefore appear to be 

adventitious concomitants. 
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APPENDIX 1: ALGORITHMIC FIRST PRINCIPLES OF 

CHROMOSOMAL INSTABILITY 

Adapted from Lynch (Manuscript 2). In progress. 

 

 

0 ABSTRACT 

  Chromosome mis-segregation commonly occurs in tumors and works to remodel cancer 

cell karyotypes. However, the extent to which to karyotypes are remodeled as a function of mis-

segregation rates and specific CIN phenotypes has not been thoroughly examined. Here I intro-

duce a series of deterministic and stochastic models aimed at exploring the karyotypic conse-

quences of mis-segregation rates and various aspects of multipolar divisions over single divisions. 

I find that induction of nullisomy requires extensive mis-segregation rates most readily achievable 

by multipolar division, which appear to induce a high baseline mis-segregation rate of about 15 

chromosomes (in diploid cells undergoing tripolar divisions). Conversely, clustering of multipolar 

spindles can otherwise rescue daughter cells from nullisomy.  These results comport with 

scDNAseq data from CAL51 cells treated with paclitaxel which showed a best-fit with simulations 

performed with a high degree of clustering and a moderate level of spindle asymmetry. Altogether, 

these data lay a theoretical foundation for the extent to which chromosome mis-segregation can 

remodel a cell’s karyotype.  

1 INTRODUCTION 

Mitosis is strictly regulated to ensure faithful bi-directional segregation of bioriented 

sister chromatids on a bipolar mitotic spindle. However, this process can fail in several 
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ways, ultimately leading to chromosome mis-segregation with varying phenotypes and 

severity. Chromosomal instability (CIN) is characterized by the persistence of these failed 

mitoses, leading to losses and gains of chromosomes over time, which is commonly ob-

served in cancer cells. In this way, CIN is a powerful driver of intratumoral heterogeneity 

by increasing aneuploidy, altering the copy number of hundreds to thousands of 

genes(201, 363) and triggering additional secondary mutational processes like chro-

mothripsis (104, 105). Further, the severity of CIN, or rate at which chromosome mis-

segregations occur, has its own spectrum of consequences in the context of cancer. Low 

rates of chromosome mis-segregation hamper tumorigenesis and, perhaps, the progres-

sion of cancer by limiting the evolutionary potential. However, high rates of chromosome 

mis-segregation can cause cell death (245, 246, 249). While there is relatively little re-

search on chromosome mis-segregation-mediated cell death, it could occur due to the 

traversal of an intolerable threshold of gene dosage imbalance or acute DNA damage or 

by induction of nullisomy, the complete loss of a set of homologous chromosomes. The 

basis of the latter putative cause of cell death is relatively more certain. Nullisomy is not 

observed in human cells with the exception of chromosome Y and some cases of acute, 

high levels of chromosome mis-segregation. For example, in a cell line model, high rates 

of chromosome mis-segregation through multipolar divisions induced by the chemother-

apeutic drug paclitaxel produced nullisomy in about 50% of cells (147). Indeed, chromo-

some mis-segregation on multipolar spindles is the clinical mechanism of action of 

paclitaxel (249). This finding confirmed previous hypotheses that significant elevation of 

CIN in a tumor could produce a therapeutic response in cancer patients (248, 265) and 
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increased interest in other CIN-increasing drugs that could have the same effect. Many of 

these have failed in clinical trials (364, 365). It is currently unclear if paclitaxel represents 

an extreme example of an agent that is particularly effective at inducing CIN, if multipolar 

spindles are always a potent phenotype of CIN, or what would be required for other mech-

anisms of CIN to produce the same effect. This is because the baseline numerical conse-

quences of mis-segregation rates over single divisions have not been closely examined. 

Here, I model several facets of chromosome mis-segregation to determine the theoretical 

numerical consequences of mis-segregation rate and mechanism. In exploring how these 

variables interact, I lay a theoretical foundation to determine the fates of daughter cell 

genomes resulting from abnormal divisions. 

2 MODELING NULLISOMY ACROSS MIS-SEGREGATION RATES 

There are two ways to define mis-segregation rate which depend on whether the 

mis-segregation is quantified in the mother cell or the daughter cells. For example, a mis-

segregation rate of 18 chromosomes is derived when the karyotype of a daughter cell 

deviates from diploid (46 chromosomes) by 18 chromosomes. However, if the number of 

chromosomes is quantified in the mother cell, 36 mis-segregated chromatids would result 

in the same 18 deviations in the daughter cell. It will be important to note that I take the 

former perspective to frame the investigation on consequences of mis-segregation for 

daughter cells rather than as a characteristic of a single division. 

2.1 Initial Assumptions 

1) The probability of mis-segregation is applied across all cells uniformly. 
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2) The probability of mis-segregation is applied across all chromosomes uni-

formly. 

3) Cells are euploid unless otherwise stated. 

4) Sex chromosomes are equivalent. Thus, cells are considered to have 23 sets 

homologous chromosomes. 

2.2 A deterministic model of nullisomy after a single division with mis-

segregation 

2.2.1 Mis-segregation with independence 

Consider the probability of mis-segregating both copies, in the case of diploidy, of 

a homologous chromosome pair during the same division with given mis-segregation rate 

𝐦. Under the additional assumption that mis-segregation events are independent, we can 

first calculate the probability of any two chromosomes being mis-segregated in a daughter 

cell as  

 (m
46)

2, (1) 

 which can also be extended to other ploidy levels, where p is the ploidy of mother 

cell M, as  

 ( m
23p)p. (2) 

Because this also represents the probability of two homologous chromosomes 

both mis-segregating, and because there is a 1: 2p chance that these mis-segregations 

result as two losses for daughter cell D (Figure A1.1A), we can write the probability that 

chromosome set C will achieve nullisomy as 
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 Cnullisomy = ( m
23p)2 × 1

2p. (3) 

 Applying this to calculate the number of the 23 homologous chromosomes that are 

affected by nullisomy across mis-segregations rates in daughter cell D gives  

 Dnullisomies = ( m
23p)2 × 23

2p. (4) 

2.2.2 Mis-segregation with dependence 

The previous model assumes that mis-segregation events are independent of each 

other. Thus, the probability for a chromosome to mis-segregate does not change as a set 

number of chromosomes are mis-segregated. We may consider an alternative model 

where these mis-segregations are dependent wherein the mis-segregation of one chro-

mosome affects the probability of another. Under this framework we can adapt Eqn. 3 to 

include n, which controls the dependency of chromosome mis-segregation events on pre-

ceding events, the maximum value of which is equal to p. The probability of a chromosome 

being nullisomic is then   

 Cnullisomy = 1
2p × ∏ m−n

23p−n
p−1
n=0 . (5) 

Likewise, as in Eqn. 4, the number of nullisomic chromosomes after mis-segrega-

tion can be shown as  

 Dnullisomies = 23
2p × ∏ m−n

23p−n
p−1
n=0 . (6) 

2.2.3 A stochastic model of uniform mis-segregation over single divisions 

To orthogonally validate the mathematical models proposed above, I wrote a sto-

chastic simulation of single division chromosome mis-segregation (Algorithm 1). In this 

simulation, a random sample of chromosomes, with sample size equal to mis-segregation 
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rate m, are mis-segregated and the number of resulting nullisomies in each cell is calcu-

lated. 

2.2.4 Modeling populations’ nullisomic fraction across mis-segregation rates 

The number of nullisomies is a cell’s karyotype must be 0 or greater. Thus, 

Dnullisomies should follow a Poisson distribution and can be equated to λ in the Poisson 

probability mass function 

 𝑃 (𝑥) = 𝑒−𝜆𝜆𝑥

𝑥! . (7) 

 Accordingly, the probability of inducing nullisomy with a given mis-segregation rate 

m and ploidy p can be written as 

 𝐷𝑛𝑢𝑙𝑙𝑖𝑠𝑜𝑚𝑦  =  𝑃 (Dnullisomies  >  0) = 1 − 𝑃 (Dnullisomies = 0) 

= 1 −
(𝑒−( 𝑚

23𝑝)
𝑝

×23
2𝑝) ( 𝑚

23𝑝
𝑝 × 23

2𝑝)
0

0!  

= 1 − 𝑒−( 𝑚
23𝑝)

𝑝
×(23

2𝑝). 

(8) 

2.2.5 Incorporating prior aneuploidy 

 The previous models explore nullisomy as a function of mis-segregation rate in 

euploid cells. However, euploid cancer cells are very rare. Therefore, we must consider 

how pre-existing aneuploidy affects the rate of nullisomy after mis-segregation. Instead of 

using a euploid ploidy p, we can define a karyotype set 𝐾 = {𝑛!, 𝑛", … , 𝑛"#} where 𝑛	 ∈ 𝐾 

is the copy number of each chromosome (for a G1 mother cell). Thus, the probability of 

nullisomy is calculate for each set of homolog9us chromosomes independently. Accord-

ingly, Eqns. 4 and 6 can be modified to  
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 Cnullisomy = ( m
∑ K)

n
× ( 1

2n) (9) 

for a given set of homologous chromosomes and 

 Dnullisomies = ∑ ( m
ΣK)

n

n∈K
× ( 1

2n) (10) 

as the frequency of nullisomy within the daughter cell karyotype. Thus, the incidence 

of nullisomy in a population with modal karyotype K, the incidence of cells with nullisomy 

in the population (as in Eqn 8), is 

 Dnullisomy = 1 − e− ∑ ( m
∑ K)

n
n∈K ×( 1

2n). (11) 

2.3 Results 

2.3.1 Interdependence of discrete mis-segregation events does not have a signifi-

cant impact on the incidence of nullisomy.  

 I find that the functions of nullisomy incidence with respect to mis-segregation rate 

produce similar results regardless of whether mis-segregations are independent or de-

pendent events. (Figure A1.1B-D). While it is possible these models may reflect different 

phenotypic expressions of chromosome mis-segregation — for example, attachment er-

rors alone vs combined attachment and congression errors — the functional difference 

between them in terms of the incidence of nullisomy appears to be negligible over a large 

range of mis-segregation rates (Figure A1.1E). Either appear to be suitable to estimate 

this incidence for a given phenotypic expression of CIN. Therefore, going forward, inde-

pendence of mis-segregation rates will be assumed unless otherwise noted.  

2.3.2 Nullisomy is a rare event at biologically relevant mis-segregation rates, par-

ticularly in polyploid cells 
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As expected, the probability of nullisomy for a given set of homologous chromo-

somes increases with mis-segregation to 0.25 for diploid cells. Even in the extreme event 

where all chromosomes are mis-segregated, the probability of nullisomy remained quite 

low, particularly in triploid and tetraploid cells. This is true even at mis-segregation rates 

that are much higher than what is commonly observed in cancer cell culture (m < 1; 

Figure A1.1B-E). This supports polyploidization as a buffer against nullisomy and may 

permit increased mis-segregation rates, as recent studies suggest. Accordingly, the fre-

quency of nullisomy within a daughter cell after mis-segregation increased with mis-seg-

regation (Figure A1.1G). Interestingly, to reliably induce a single nullisomy in all diploid 

cells in a single division, one would have to induce mis-segregation of ~20 chromosomes, 

though even this is low incidence is markedly decreased in triploid and tetraploid cells. 

Notably, we recently found that paclitaxel, on average, induces 18 chromosome mis-seg-

regations, which would appear to satisfy the requirement for extensive mis-segregation to 

cause cell death via nullisomy. This finding also raises the bar on how effective a CIN-

inducing drug must be to cause cell death in this manner. Raising the rate of mis-segre-

gation in a tumor to 1-2 mis-segregations per division is unlikely to cause significant levels 

of nullisomy in tumors, at least over a single division.  

2.3.3 The incidence of nullisomy in a population follows a Poisson distribution.  

 Stochastic modeling of nullisomy as a function of mis-segregation rate also con-

firmed that the frequency of nullisomic cells in a population follows a Poisson distribution 

(Figure A1.1H). Although I found that the mis-segregation rate that produced an average 

of 1 nullisomy per cell was ~20, I also found that only ~75% of the population appeared 
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nullisomic at this rate (Figure A1.1I). This result is useful because if we consider induction 

of nullisomy to be the primary mechanism of action of a CIN-inducing drug, then we can 

calculate the number of mis-segregations required to produce an EC50. In this case, 

where I used euploid cells, the EC50s for diploid and triploid cells were about 16 and 42 

mis-segregations respectively (dashed lines), while the EC50 for tetraploid was not 

achieved between within the 0-46 chromosome mis-segregations considered. This raises 

the possibility of targeting CIN-inducing drugs to those tumors exhibiting hypodiploidy.  

2.3.4 Prior chromosome losses potentiate nullisomy after mis-segregation 

 Because the EC50s of euploid cells were high relative to what is biologically rele-

vant (excluding the chemical induction of CIN), I asked if chromosome losses in an other-

wise euploid context substantially changes this result. Applying Eqn. 11 to accommodate 

prior aneuploidies and updating my stochastic model, I find that chromosome losses seem 

to have a greater impact on the incidence of nullisomy than chromosome gains. Prior loss 

of 5 random chromosomes in a diploid background reduced the EC50 from 16 to 9 chro-

mosome mis-segregations whereas 5 gains increased it to 20 chromosome mis-segrega-

tions. In a triploid background, 5 losses reduced the EC50 to about 32 chromosome mis-

segregations and 5 gains increased it to about 45 chromosome mis-segregations. Again, 

the EC50 of tetraploid cells was not achieved between the 0-40 chromosome mis-segre-

gations used here.  

2.3.5 Summary 

 In total, these results provide a framework for how nullisomy can be achieved 

through mis-segregation and reveal that nullisomy may be harder to achieve than 
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previously thought. This could explain the relatively poor performance of several CIN-

inducing drugs in clinical trials as compared to taxanes. 

3 MODELING MIS-SEGREGATION RATES WITH RESPECT TO MULTIPOLAR 

SPINDLE ARCHITECTURE  

3.1 Initial Assumptions 

1) Mis-segregation occurs solely by nature of distributing two amphitelically at-

tached chromatids (𝑡1, 𝑡2) over 3+ spindle poles. Accordingly, each chromatid 

of a pair must attach one spindle pole with mutual exclusion. Erroneous attach-

ments will be explored later. 

2) Each existing pole has a non-zero probability of attaching a chromatid. 

3) Each spindle pole will ultimately produce a single daughter cell. Alternatives will 

be explored later.  

4) The attachment of each chromatid at a given pole are dependent events such 

that that they form and attachment matrix (𝐴) where 

 

  𝑡2 

  𝛱1 𝛱2 ∙ 𝛱𝑛 

𝐴 = 𝑡1 

𝛱1 0 
𝜋2𝜋1

1 − 𝜋1
 ∙ 

𝜋𝑛𝜋1
1 − 𝜋1

 

𝛱2 
𝜋1𝜋2

1 − 𝜋2
 0 ∙ 

𝜋𝑛𝜋2
1 − 𝜋2

 

∙ ∙ ∙ 0 ∙ 

𝛱𝑖 
𝜋1𝜋𝑛

1 − 𝜋𝑛
 𝜋2𝜋𝑛

1 − 𝜋𝑛
 ∙ 0 

 

(12) 
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3.2 A deterministic model of mis-segregation on multipolar spindles 

3.2.1 A basic model of spindle multipolarity 

 Consider a mitotic mother cell 𝑀 with a set of spindle poles Π = {Π{i} | i ∈ I} and 

spindle pole symmetry π = {πi | i ∈ I} where 𝐼 is the index set I =  {1,2 … , n} that de-

fines each pole and 𝑛 the total number of poles in the cell. The probability that a given 

pole (and resultant daughter cell 𝐷) will not receive either chromatid of a pair, resulting in 

mis-segregation through loss, is 

 
α = (∑    ∑

πjπk

1 − πkk∈I∖i;k≠jj∈I∖i
) − 2

|π|
 (13) 

where 𝑗, 𝑘 are pairwise poles of the index set 𝐼 ∖ 𝑖. Here 
"
|%|

 represents the probability 

of distributing correctly attached toward a given pole and resultant daughter cell while the 

numerator, 2, is a corrective factor to account for the impossibility of amphitelic mis-seg-

regation occurring on bipolar spindles.  

 If spindle attachments are dependent events and each pole has an equal probabil-

ity of forming an attachment to a given chromatid (π1 = π2 = . . . =  πi) — spindle sym-

metry, in other words — then mis-segregation occurs solely by nature of unequal distri-

bution of the genome into the incorrect number of daughter cells. Thus, the mis-segrega-

tion rate 𝑚 for any daughter cell 𝐷 from mother cell 𝑀 with euploid ploidy 𝑝 in this case 

is  

 m = 23pα (14) 

3.2.2 Incorporating spindle asymmetry 
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 The above case can easily be adapted to accommodate asymmetric spindles 

which segregate unequal fractions of the genome. While these cannot necessarily be pre-

dicted a priori at this time, they are frequently observed after anaphase onset (148). 

Therefore, they are worth considering.  

 Assuming all poles receive a non-zero share of the genome, the sum of all pole 

symmetry values (π) should equal 1. Thus, a symmetric tripole could be represented as 

πi ∈ {0. 33̅̅ ̅̅ ̅̅, 0. 33̅̅ ̅̅ ̅̅, 0. 33̅̅ ̅̅ ̅̅} and an asymmetric tripole, for example, as πi ∈ {0.45, 0.25, 0.30}. 

In the latter case, Π! would have a greater chance of receiving a given chromatid than 

would Π" or Π#. This would give rise to daughter cells Di ∈ {1, 2, 3} with an average mis-

segregation rate m of 15.3 chromosomes. With the assumption of correct, dependent 

attachments, these would all yield copy number losses. 

3.3 A stochastic model of multipolar divisions 

3.3.1 The basic model – multipolar mis-segregation via amphitelic attachment 

 To stochastically simulate the segregation of chromosomes symmetrically into 

three daughter cells, I constructed a simple nested ‘for’ loop to iterate through and dis-

tribute homologous sets of sister chromatids to two poles per sister chromatid pair (Algo-

rithm 2, lines 16 and 61-67). This alone, assuming one daughter cell forms from a single 

spindle pole, would simulate the theoretical scenario where sister chromatids are segre-

gated on proper amphitelic attachments into two daughter cells despite the presence of 

three spindle poles and in the absence of any additional attachment errors. Thus, this 

represents the most basic instance in which chromosomes may be mis-segregated.  

3.3.2 Clustering: spindle focusing and partial cytokinesis failure 
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 One complicating variable often seen during ongoing multipolar division is the oc-

currence of partial cytokinesis failure and spindle pole focusing, which I will collectively 

call ‘clustering’. Partial cytokinesis failure can occur when at least two daughter cells of a 

multipolar division fail to completely transit mitosis, resulting in the collapse of the would-

be daughter cells into one, often forming a binucleated cell. Spindle pole focusing can 

occur any time prior to cytokinesis and is characterized by the coalescence of two or 

more discrete spindle poles into one ‘pseudo-pole’. This often results in a ‘pseudo-bipolar’ 

spindle. For my purposes here, I will consider partial cytokinesis failure and spindle pole 

focusing to be analogous. To accommodate these phenomena, I include chance for ran-

dom pairs of ‘poles’ or ‘daughter cells’ to combine to produce a set number of daughter 

cells from the initial number of spindle poles. This is an iterative process where a random 

pair of poles is combined to create a new pseudo-pole prior to the next round of clustering 

(Algorithm 2, lines 68-74). For example, if a cell with 4 poles is made to cluster to 2 daugh-

ter cells, there would be 2 rounds of clustering which may either result in 2 pseudo-poles 

consisting of pairs of the initial 4 poles, or 1 pseudo-pole consisting of 3 of the initial poles, 

with 1 of the initial poles remaining.  

3.3.3 Spindle pole asymmetry 

 Another complicating variable for the genomic fate of daughter cells resulting from 

multipolar divisions is the occurrence of asymmetric segregation. The simulation as out-

lined thus far assumes that each of the daughter cells are equally likely to inherit chromo-

somes. However, in practice, the chromosome masses in transit to the three or more 

nascent daughter cells may differ in genomic content. To accommodate this 
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phenomenon, in several instances in Algorithm 2, I invoke a weighted probability that 

chromosomes are segregated to individual poles equal to its pre-defined spindle sym-

metry π&.  

3.3.4 Additional mis-segregation via erroneous attachment 

Finally, to accommodate mis-segregation through additional attachment errors in 

combination with those caused by amphitelic attachment on multipolar spindles, I incor-

porated probabilities for different types of attachment errors as well as the rate at which 

these attachment errors are corrected (Algorithm 2, lines 23-60). In this case, the sequen-

tial order of attachment error mis-segregations relative to multipolar mis-segregations 

matters, as attachment errors effectively limit the number of chromosomes which can be 

mis-segregated amphitelically on multipolar spindles. Likewise, the relative order of at-

tachment errors is meaningful in that atelic attachment errors (unattached chromosomes) 

effectively limit monotelic attachments and so on. Therefore, the order in which mis-seg-

regations are determined are decided is as follows: atelic, monotelic, syntelic, merotelic, 

amphitelic (multipolar). Importantly, atelic, monotelic, and syntelic mis-segregations all re-

sult in mis-segregation toward the pole that nucleated their erroneous attachments, 

whereas merotelic attachments may still result in correct segregation. 

 Once established, I apply these procedures to any number of cell divisions and 

measure nullisomies, mis-segregation rates, total chromosome numbers, aneuploidy to 

understand how spindle architecture affects the karyotypes of daughter cells.  
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3.4 Results 

3.4.1 Division on multipolar spindles produces high average baseline rates of mis-

segregation, irrespective of spindle symmetry or clustering 

 To explore the models defined above, I first consider two cases of multipolar spin-

dles: a spindle with three poles and perfect spindle symmetry πi ∈ {0. 33̅̅ ̅̅ ̅̅, 0. 33̅̅ ̅̅ ̅̅, 0. 33̅̅ ̅̅ ̅̅}, and 

one with four poles and asymmetry πi ∈ {0.2, 0.3, 0.1, 0.4}, which produce the following 

attachment matrices (also shown in Figure A1.2A,B). 

 

 Π1 Π2 Π3 

Π1 0 0.17 0.17 

Π2 0.17 0 0.17 

Π3 0.17 0.17 0 
 

 Π1 Π2 Π3 Π4 

Π1 0 0.08 0.03 0.10 

Π2 0.08 0 0.04 0.17 

Π3 0.03 0.04 0 0.04 

Π4 0.10 0.17 0.04 0 
 

 Applying Eqn. 14 across diploid, triploid, and tetraploid cells, I find, as expected, 

that the average mis-segregation rate in symmetrical tripolar divisions, regardless of 

ploidy, is about 1/3rd of the total ploidy of the cell: ~15, 23, and 31 chromosomes for dip-

loids, triploids, and tetraploids respectively. On the other hand, average mis-segregation 

rates for tetrapolar cells were ½ the total ploidy of the cell.  

 To determine the extent to which the degree of symmetry affects average mis-

segregation rate among daughter cells of multipolar divisions, I ran instances of the sto-

chastic model using 500 randomly drawn symmetry vectors for tripolar and tetrapolar 

spindles and diploid, triploid, and tetraploid cells. I find that the degree of asymmetry, as 

measured by the variance between symmetry values, has little bearing on the average 
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mis-segregation rate in daughter cells (Figure A1.2D). Because karyotypes can be con-

sidered a closed system when all daughter cells are tracked, no chromosomes are lost or 

gained. Instead, cells that lose more chromosomes are reciprocated by cells which gain 

more chromosomes. 

 This is clear when returning to our pre-defined spindle pole symmetries and track 

the number of mis-segregations caused in each case. Symmetrical tripolar divisions pro-

duce monomodal distributions of mis-segregated chromosomes for all ploidy levels, 

meaning mis-segregation rates were relatively consistent across daughter cells. However, 

asymmetric tetrapolar divisions resulted in multimodal distributions that reflect the num-

ber of mis-segregations that occurred in each daughter cell. In general, the ‘minor’ daugh-

ter cells with lower spindle symmetry values mis-segregate more chromosomes than ‘ma-

jor’ daughter cells. However, the average mis-segregation rate in each case is recapitu-

lated by the deterministic model defined in Eqn. 14 (Figure A1.2E).  

 Spindle clustering seems to have a similarly small effect on average mis-segrega-

tion rates after multipolar division. Stochastic simulations using the same parameters, ex-

cept forcing spindle clustering down to 2 daughter cells results in very similar mis-segre-

gation rate distributions and averages (Figure A1.2G). This makes the same intuitive 

sense as before. Mis-segregation is a reciprocal process in a closed system. 

3.4.2 Partial spindle clustering following multipolar division results in near-triploid 

and near-tetraploid karyotypes. 

When plotting copy number profiles from the same dataset as in 3.4.1 as heatmaps 

I found differences in distributions of total ploidy between cells resulting from symmetric 
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or un-clustered divisions and those from asymmetric and clustered divisions (Figure 

A1.2F,H). Symmetric un-clustered divisions (Figure A1.2F; heatmaps 4-6 from the left) 

resulted in populations with a relatively uniform level of karyotype heterogeneity, whereas 

asymmetric un-clustered divisions (Figure A1.2F; heatmaps 1-3 from the left) resulted in 

a gradient of total ploidy levels across cells, reflecting their individual ability to capture 

and inherit chromosomes according to their symmetry value. Likewise symmetric, clus-

tered divisions (Figure A1.2H; heatmaps 4-6 from the left) resulted in a bifurcated popu-

lation wherein the relative levels of karyotype heterogeneity and ploidy are uniform and 

where one falls beneath the background ploidy while the other supersedes. Asymmetric 

clustered divisions gave a similar, if more well-defined gradient as compared to asymmet-

ric un-clustered divisions (Figure A1.2H; heatmaps 1-3 from the left). This suggests that 

multipolar spindles, while often producing cells with nullisomy, can produce near-triploid 

and near-tetraploid cells that are often observed in tumors by the same token. 

To further understand how total ploidy are affected by spindle clustering and the 

other CIN factors I simulated additional populations across the gamut of CIN factors dis-

cussed thus far as a supplement to analyses moving forward (Figure A1.3). These addi-

tional datasets support the role of spindle clustering in producing near-triploid and near-

tetraploid cells. Whereas mis-segregation via attachment errors alone was able to pro-

duce similar mis-segregation rates as multipolar spindles when pushed high enough (Fig-

ure A1.3; rows 1, 10; columns F-J), it did not cause most cells to significantly alter their 

background ploidy (Figure A1.3; rows1, 10; columns K-O) as compared to spindle clus-

tering, which did. Instead, cells which only experienced attachment errors without 



 235 

multipolar division exhibited a broadened the distribution of their ploidy around a mean 

equal to their background ploidy.  

Combined, these results indicate that the production of near-triploid and near-tet-

raploid cells within a single division is a unique feature of multipolar division with asym-

metric and/or clustered spindle poles. 

3.4.3 Partial spindle clustering can rescue multipolar daughters from nullisomy 

As we’ve seen, multipolar divisions in diploid cells can result in a substantial frac-

tion of sub-haploid cells, particularly in the context of asymmetric genome distributions. 

Given the certainty that nullisomy occurs in these cells as well as well as the deleterious 

effect it exerts on real cells, I sought to understand the interaction between multipolar 

spindle architecture and the incidence of nullisomy in a population.  

Simulated symmetric tripolar divisions in diploid populations resulted in an average 

of about 3 nullisomies per cells when allowed to proceed unclustered (Figure A1.3; row 

5; column A) with about 5% of cells exhibiting no nullisomy. Clustering cells in an other-

wise identical simulation resulted in about 50% of cells exhibiting no nullisomy. Additional 

spindly asymmetry in tripolar spindles works to polarize this effect (Figure A1.3; row 3; 

column A). On one hand, should the two major daughters cluster, the likelihood they ex-

perience nullisomy is lower than would be seen in a symmetric division, as would any 

major daughter alone as it inherits a greater fraction of the genome. However, the minor 

daughter and any daughter resulting from a clustering event between a major and minor 

daughter are increasingly likely to experience nullisomy. Nevertheless, clustered popula-

tions remain over 50% non-nullisomic. This is amplified in cases of extreme asymmetry 
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and larger initial pole numbers (Figure A1.3; rows 7, 9). Further, while the numbers of 

nullisomy per cell are reduced overall, the dynamics of these spindle architectural effects 

on nullisomy are conserved for tetraploid cells (Figure A1.3; rows 10-18). 

As an aside, the karyotypic consequences of multipolar divisions appear to be 

more extensive than those produced by attachment errors alone (Figure A1.3; rows 1, 10) 

across total nullisomies, total mis-segregations, and total chromosome number. In each 

simulated daughter cell population, the addition of attachment errors to multipolar divi-

sions only seems to broaden the extant distribution that is present without attachment 

errors (Figure A1.3).  

These results show that clustering, whether it be through partial cytokinesis failure 

or spindle pole focusing, can rescue daughter cells of multipolar divisions from nullisomy. 

3.4.4 CAL51 daughter cell genomes treated with paclitaxel meet expectations for 

asymmetric divisions with a high penetrance of partial cytokinesis failure 

Lastly, I sought to determine whether these results comport with the previously 

mentioned biological ground-truth scenario using paclitaxel in CAL51 cells. To do this I 

used a Kolmogorov-Smirnov test to compare distributions of karyotype characteristics 

from stochastically simulated populations (diploid background, no additional attachment 

errors, tripolar spindles, spindle symmetries = {0.333, 0.333, 0.333} or {0.4, 0.4, 0.2} or 

{0.45, 0.45, 0.1}, 0% clustering, 50% clustering, or 100% clustering) to those from the 

paclitaxel-treated population (Figures A1.4A-C, red-outlined plots). The Kolmogorov-

Smirnof distances between distributions of absolute deviations were most sensitive to ge-

nome distribution symmetric and were lowest among the simulations with {0.2, 0.4, 0.4} 
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symmetries among daughter cells indicating a moderately asymmetric distribution is prev-

alent in the biological data (Figure A1.4D, left). For the prevalence of nullisomy in the 

population, simulations where 100 percent of divisions resulted in partial cytokinesis fail-

ure exhibited the lowest KSD (Figure A1.4D, right). Together, these results comport with 

the observed biological circumstances where multipolar spindles are induced by 

paclitaxel and often experience partial cytokinesis failure. Though, whether these also co-

occur with a high degree of asymmetric genomic distribution is yet to be established. 

4 DISCUSSION 

Multipolar divisions are a relatively infrequent (140), but potent driver of chromo-

some mis-segregation during tumor progression. Whether the daughter cells that arise 

from multipolar divisions continue to proliferate has not been fully examined and is likely 

dependent on other factors like the fraction of the genome received by the daughter cells, 

and the co-occurrence of partial cytokinesis failure. Though a recent study, which adopted 

the concept of spindle pole symmetry described here, shows that cells which form from 

spindle poles that segregated less genomic content are more likely to die (148). Addition-

ally, whole genome doubled cells, which are more likely to undergo multipolar division 

due to the presence of supernumerary centrosomes, may be more likely to sustain the 

significant karyotypic insult caused by multipolar division (145, 275, 277, 284, 332). How-

ever, the use of paclitaxel to cause cell death by induction of multipolar spindles calls this 

into question. The relative likelihood of these outcomes is uncertain because the karyo-

typic consequences of multipolar divisions have not been thoroughly examined.  
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While paclitaxel is effective for about 50% of patients, the reason for the remaining 

patients’ lack of response is unknown (250, 356). One hypothesis is that non-responding 

tumors have a lower baseline rate of chromosome mis-segregation and that the added 

chromosomal instability induced by paclitaxel remains at a tolerable level (249, 265, 266). 

Another is that a cancer cells' ability to 'cluster' their spindle poles prior to division medi-

ates tolerance to paclitaxel (251). This work lends quantitative credence to the latter hy-

pothesis as simulations of pole clustering significantly reduced the incidence of nullisomy 

in the population. Moreover, this supports the hypothesis that inhibiting pole clustering 

may increase the efficacy paclitaxel.  

On the other hand, recent work has proposed that multipolar divisions produce 

'hopeful monsters', cells whose karyotypes have become highly aneuploid (282). In rare 

instances, these cells may continue to proliferate with the adaptive advantages of its highly 

aneuploid karyotype. Spindle clustering drastically reduces the likelihood of nullisomy in 

daughter cells of multipolar division. Thus, this phenomenon may be a frequent and more 

parsimonious method of producing viable 'monsters' by inducing significant aneuploidy 

as well as a whole genome doubled-like state in one of the daughter cells in the same 

division, a phenomenon which is often observed to occur early in tumor development 

(196, 274, 277).  

A limitation of these simulation experiments is the assumption that all cells will fol-

low the same general rules of division. However, biological systems likely exhibit hetero-

geneity in these phenotypes, even within the same population. For example, the symmetry 
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of genomic distributions into daughter cells certainly does not always follow a {20, 40, 40} 

arrangement; there is a spectrum of symmetry commonly seen in multipolar divisions.  

While nullisomy is presumably lethal, more work is needed to determine the viabil-

ity of cells arising from abnormal divisions that do not produce nullisomy, but a high de-

gree of aneuploidy, nevertheless. This work may well serve as a theoretical baseline 

against which hypotheses regarding the viability of such cells can be tested. 

5 STOCHASTIC ALGORITHMS 

Algorithm 1 — Stochastic simulation of chromosome mis-segregation 

1 INPUT VARIABLES: 
2 i: iterations 
3 m: mis-segregation rate 
4 p: ploidy 
5  
6 START 
7  Create k (a G1 karyotype vector with ploidy p) 
8  FOR i iterations 
9   Randomly sample m terms from k, without replacement 
10   Let h be the total number of homologous chromosome sets sampled p times 
11   Randomly sample a vector 1 to 2p, h times, with replacement 
12   Let n (number of nullisomies) be the number of samples = 1 
13  ENDFOR 
14   Export all n 
15   Export | Compute average n 
16 END 
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Algorithm 2 — Stochastic simulation of mis-segregation with respect to spindle architecture and at-

tachment. 

1 INPUT VARIABLES: 
2  i: iterations 
3  poles: the number of spindle poles 
4  daughters: the number of daughter cells 
5  symmetries: the symmetry values of all poles 
6  ζ: probability of atelic attachment error 
7  ζ’: probability of atelic attachment penetrance 
8  μ: probability of monotelic attachment error 
9  μ’: probability of monotelic attachment penetrance 
10  σ: probability of syntelic attachment error 
11  σ’: probability of monotelic attachment penetrance 
12  ψ: probability of merotelic attachment error 
13  ψ’: probability of monotelic attachment penetrance 
14   
15 START 
16  FOR i iterations 
17   IF poles < daughters 
18   BREAK 
19   IF poles ≠ symmetries 
20   BREAK 
21   Create k 
22   Create cells, a matrix with poles rows and 23 columns 
23   START AtelicMisseg 
24    FOR chromosome in k 
25     IF random float (0-1) £ ζ x ζ’ 
26      Let selected = 1 random sample of poles, weighted by symmetries 
27      Let cells[selected, chromosome] = cells[selected, chromosome] + 2 
28      Remove chromosome from k 
29     ENDIF 
30    ENDFOR 
31   END AtelicMisseg 
32   START MonotelicMisseg 
33    FOR chromosome in k 
34     IF random float (0-1) £ μ x μ’ 
35      Let selected = 1 random sample of poles, weighted by symmetries 
36      Let cells[selected, chromosome] = cells[selected, chromosome] + 2 
37      Remove chromosome from k 
38     ENDIF 
39    ENDFOR 
40   END MonotelicMisseg 
41   START SyntelicMisseg 
42    FOR chromosome in k 
43     IF random float (0-1) £ σ x σ’ 
44      Let selected = 1 random sample of poles, weighted by symmetries 
45      Let cells[selected, chromosome] = cells[selected, chromosome] + 2 
46      Remove chromosome from k 
47     ENDIF 
48    ENDFOR 
49   END SyntelicMisseg 
50   START MerotelicMisseg 
51    FOR chromosome in k 
52     IF random float (0-1) £ ψ x ψ’ 
53      Let combo = 1 random pole combo, weighted by mean of symmetries 
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54      Let selected = 2 random samples combo, weighted by symmetries of combo, 
with replacement 

55      Let cells[selected[1], chromosome] = cells[selected[1], chromosome] + 1 
56      Let cells[selected[2], chromosome] = cells[selected[1], chromosome] + 1 
57      Remove chromosome from k 
58     ENDIF 
59    ENDFOR 
60   END MerotelicMisseg 
61  START Segregation 
62   FOR chromosomes in k 
63    Let selected = 2 random samples of poles, weighted by symmetries 
64    Let cells[selected[1], chromosome] = Let cells[selected, chromosome] + 1 
65    Let cells[selected[2], chromosome] = Let cells[selected, chromosome] + 1 
66   ENDFOR 
67  END Segregation 
68  IF poles > daughters 
69   START Clustering 
70    FOR u in 1 to (poles-daughters) 
71     Let selected = 2 random rows from cells 
72     Let cells = cells where cells[selected] are additively merged 
73    ENDFOR 
74   END Clustering 
75  ENDIF 
76   Export | Compute sum k as TotalChromosomes 
77   Export | Compute average k as TotalPloidy 
78   Export | Compute total chromosomes = 0 as TotalNullisomies 
79   Export | Compute abs(k-p) as TotalMissegs 
80 END  
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Figure A1.1 — Modeling nullisomy across mis-segregation rates 

(A) Schematic of the number of ways in which homologous chromosomes can be mis-segregated in 

diploid and triploid cells. (B-E) probability of nullisomy per homologous chromosome (Cnullisomy) and fre-

quency of nullisomy with daughter cells (Dnullisomies) as a function of independent or dependent chromosome 

mis-segregations in diploid, triploid, and tetraploid cells. (F) Correlation of Cnullisomy between independent 
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and dependent chromosome mis-segregation rates across ploidy. (G) Dnullisomies observed in a stochastic 

model of mis-segregation in a single division. Distributions of Dnullisomies per mis-segregation rate are shown 

as grey violin plots, average of stochastic model observations shown as solid line, with the deterministic 

function (Eqn 10) overlaid as a dashed line. (H) Histograms of Dnullisomies caused by mis-segregation rates of 

5, 10, and 15 chromosomes. Average of histogram shown dashed line. Poisson distribution with λ = mean 

of distribution overlaid as solid line. (I) Dnullisomy of stochastically simulated populations across ploidies. Aver-

ages shown as data points with the deterministic function (Eqn 11) overlaid as a dashed line. (J) Effect of 

prior chromosome losses or gains on Dnullisomy as a function of mis-segregation rate. Data points are means 

of stochastic simulations. Dashed curves are overlays of the deterministic function (Eqn 11) and straight 

dashed lines show the EC50 of nullisomy as a function of mis-segregation rate. 250 divisions were simulated 

for each stochastic simulation. 
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Figure A1.2 — Modeling mis-segregation rates with respect to multipolar spindle architecture 

(A-B) Schematics and attachment matrices for (A) a symmetric tripolar spindle and (B) asymmetric 

tetrapolar spindle. (C) Mis-segregation rates calculated from the deterministic model (Eqns 13 and 14). (D) 

Mis-segregation rates variance of symmetry values randomly generated for the stochastic model derived in 

section 3.3. (E) Distribution of mis-segregation rates and (F) chromosome copy number heatmaps of daugh-

ter cells from multipolar divisions without spindle clustering. (G) Distribution of mis-segregation rates and 

(H) chromosome copy number heatmaps of daughter cells from multipolar divisions without spindle clus-

tering. 1000 divisions were simulated for each stochastic simulation. Heatmaps show random sub-samples 

of 100 cells.  
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Legend on next page…   
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Figure A1.3 — Karyotypic features of daughter cells across the CIN gamut 

(A-E) Distributions of nullisomic chromosomes, (F-J) distributions of mis-segregated chromosomes, and 

(K-O) distributions of total chromosome number across 90 configurations of parameters for the stochastic 

model defined in section 3.3. Rows 1-9 are simulated in a diploid background while rows 10-18 are simu-

lated in a tetraploid background. Colors of distributions define the unique combination of ploidy, pole num-

ber, and symmetry values. Columns within each metric (e.g., columns A-E) are defined by the total CIN 

probability. Total CIN probability represents the sum of all probabilities for each attachment error (i.e., 

(𝜁 × 𝜁7) + (𝜇 × 𝜇′) + (𝜎 × 𝜎7) + (𝜓 × 𝜓7). These were produced by iterating through the model with attach-

ment error probabilities in {0, 0.05, 0.2} and attachment error penetrance rates in {0, 0.5, 1}. 
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Figure A1.4 — CAL51 daughter cell genomes treated with paclitaxel meet expectations for asym-

metric divisions with a high penetrance of clustering 

(A-C) Distributions of total chromosome number (A), mis-segregated chromosomes (B), and nullisomic 

chromosomes (C) in simulated daughter cell populations after tripolar division with pole symmetries {0.33, 

0.33, 0.33}, {0.4, 0.4, 0.2}, and {0.45, 0.45, 0.1} (rows). These divisions involved pole clustering either 100% 

of the time (left column) , 50% of the time (middle column), or went unclustered (right column). Distributions 

outlined in red show karyotype charactersitics derived from CAL51 cells treated with 20 nM paclitaxel over 

48 hours (from Lynch et al. 2022) (D) Kolmogorov-Smirnov distances between mis-segregation and nul-

lisomy distributions from each simulation configuration and the distribution observed in paclitaxel-treated 

cells. Lower values indicate a better fit. Data points correspond to those indicated in the upper-right corner 

of each distribution’s panel.  
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APPENDIX 2: MIS-SEGREGATIONS PER DIPLOID DIVISION (MDD) 

Table A2.1 — MDD: a standardized measure of mis-segregation rates 

Chromosome mis-segregation rates are affected by multiple factors: 
1. The number of apparent attachment errors (e.g., lagging chromosomes) per abnormal division. 
2. The rate of abnormal division (i.e. penetrance of CIN). 
3. The rate of resolved attachment errors (i.e., resolution rate). 
4. The number of chromosomes in a cell (i.e., ploidy).  

Cells can present with mis-segregations in several ways. Some cell lines may mis-segregate a chromo-
some every other division. Others may undergo multipolar division every 10 divisions, mis-segregating 

many chromosomes in a punctuated burst. Further, the appearance of attachment errors does not 
guarantee a chromosome mis-segregation. In some instances, the chromosome defect will ultimately 

resolve and segregate to the correct daughter cell. Even if any given chromosome in a cell line mis-seg-
regates at the same rate, the background ploidy of a cell may change the apparent magnitude of a de-

fect by nature of a higher chromosome number. 
We propose a standardized measure of CIN that accounts for the above factors to accurately convey 

the number of mis-segregations per diploid division (MDD). 
Observed errors → Mis-segregation per chromosome per division (MCD) 

𝑴𝑪𝑫	 = 	
(𝑬𝒓𝒓𝒐𝒓𝒔	𝒑𝒆𝒓	𝑨𝒃𝒏𝒐𝒓𝒎𝒂𝒍	𝑫𝒊𝒗𝒊𝒔𝒊𝒐𝒏	 × 	𝑨𝒃𝒏𝒐𝒓𝒎𝒂𝒍	𝑫𝒊𝒗𝒊𝒔𝒊𝒐𝒏	𝑹𝒂𝒕𝒆) 	×	(𝟏 − 𝑹𝒆𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏	𝑹𝒂𝒕𝒆)

#	𝑴𝒐𝒅𝒂𝒍	𝑪𝒉𝒓𝒐𝒎𝒐𝒔𝒐𝒎𝒆𝒔  

MCD → Mis-segregations per diploid division (MDD) 
𝑴𝑫𝑫	 = 	𝑴𝑪𝑫	 × 𝟒𝟔 

Example 1: HCT116 cells with 45 chromosomes where 23% of divisions present 1 lagging chromo-
some, but a resolution rate is unknown. 

𝑴𝑫𝑫	 = 	O
(𝟏	 × 	𝟎. 𝟐𝟑)

𝟒𝟓 U × 𝟒𝟔	

𝑴𝑫𝑫	 = 	𝟎. 𝟐𝟑𝟓 
Example 2: HCT116 cells with 45 chromosomes where 23% of divisions present 1 lagging chromo-

some, and a resolution rate of 70%. 

𝑴𝑫𝑫	 = 	O
(𝟏	 × 	𝟎. 𝟐𝟑)	× (𝟏 − 𝟎. 𝟕)

𝟒𝟓 U × 𝟒𝟔	

𝑴𝑫𝑫	 = 	𝟎. 𝟎𝟕𝟏 
Example 3: Near-tetraploid HCT116 cells with 90 chromosomes where 46% of divisions present 1 lag-

ging chromosome, and a resolution rate of 70%. 

𝑴𝑫𝑫	 = 	O
(𝟏	 × 	𝟎. 𝟒𝟔)	× (𝟏 − 𝟎. 𝟕)

𝟗𝟎 U × 𝟒𝟔	

𝑴𝑫𝑫	 = 	𝟎. 𝟎𝟕𝟏 
See Tables 2 and 3 for more information. 
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Table A2.2 — CIN rates in human cancers and cancer models 
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Tissue Cancer DLBCL 
Mitotic 

Analysis 
Lagging + 
Bridging 

31.3 0.0068 0.313 46a Reported (237) 

Cell Line Cancer U2OS 
Mitotic 

Analysis 
Lagging 32.5 0.00707 0.325 46 Approximate (286) 

Cell Line Cancer HeLa 
Mitotic 

Analysis 
Lagging 22 0.00268 0.123 82b Approximate (286) 

Cell Line Cancer SW-620 
Mitotic 

Analysis 
Lagging 22.5 0.00450 0.207 50b Approximate (286) 

Cell Line 
Non-

cancer 
RPE1 

Mitotic 
Analysis 

Lagging 2.5 0.00054 0.025 46 Approximate (286) 

Cell Line 
Non-

cancer 
BJ 

Mitotic 
Analysis 

Lagging 8 0.00174 0.080 46b Approximate (286) 

Cell Line 
Non-

cancer 
Primary 

Amniocytes 
Mitotic 

Analysis 
Lagging 0 0 0 46 Approximate (285) 

Cell Line Cancer DLD1 
Mitotic 

Analysis 
Lagging 1 0.0002 0.009 46 Approximate (285) 

Cell Line Cancer HCT116 
Mitotic 

Analysis 
Lagging + 
Bridging 

23 0.0051 0.235 45b Approximate (284) 

Cell Line Cancer HCT116 
Mitotic 

Analysis 
Lagging + 
Bridging 

50 0.0056 0.258 90b Approximate (284) 

Cell Line Cancer U2OS 
Mitotic 

Analysis 
Lagging -— 0.0100 0.460 46 Reported (137) 

Cell Line Cancer CAL51 
Mitotic 

Analysis 
Lagging 0.5 0.00011 0.005 44 Approximate (249) 

Cell Line 
Non-

cancer 
RPE1 FISH — — 0.00025 0.012 46 Approximate (122) 

Cell Line Cancer HCT116 FISH — — 0.00025 0.012 45b Approximate (122) 

Cell Line Cancer HT29 FISH — — 0.0025 0.115 71b Approximate (122) 

Cell Line Cancer CACO2 FISH — — 0.009 0.414 96b Approximate (122) 

Cell Line Cancer MCF-7 FISH — — 0.007 0.322 82b Approximate (122) 

Cell Line 
Non-

cancer 
BJ 

Mitotic 
Analysis 

Unspecified 5 0.00109 0.050 46b Approximate (157) 

Cell Line 
Non-

cancer 
RPE1 

Mitotic 
Analysis 

Unspecified 5 0.00109 0.050 46 Approximate (157) 

Cell Line Cancer HCT116 
Mitotic 

Analysis 
Lagging 6 0.00133 0.060 45b Approximate (136) 

Cell Line Cancer DLD1 
Mitotic 

Analysis 
Lagging 2 0.00043 0.020 46b Approximate (136) 

Cell Line Cancer HT29 
Mitotic 

Analysis 
Lagging 14 0.00197 0.140 71b Approximate (136) 

Cell Line Cancer SW-620 
Mitotic 

Analysis 
Lagging 12 0.00240 0.120 50b Approximate (136) 
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Cell Line Cancer MCF-7 
Mitotic 

Analysis 
Lagging 17 0.00207 0.095 82b Approximate (136) 

Cell Line Cancer HeLa 
Mitotic 

Analysis 
Lagging 13 0.00159 0.073 82b Approximate (136) 

Tissue Cancer BRCA 
Mitotic 

Analysis 

Misaligned 
+ 

Lagging + 
Bridging 

20 0.0057 0.262 46a Reported (140) 

Organ-
oid 

Cancer CRC 
Mitotic 

Analysis 

Misaligned 
+ Lagging + 
Bridging + 
Multipolar 

2 - 
50 

0.0004 - 
0.0068 

0.020 - 
0.311 

45 - 
74 

Approximate (138) 

 
Extended from and originally compiled in Lynch et al. eLife. 2022. (a) indicates assumed ploidy value 

and (b) indicates ploidy retrieved from ATCC. 
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Table A2.3 — Mis-segregations per diploid division (MDD) 

 
Mis-segregations 

per erroneous dip-
loid (tetraploid) di-

vision 

Penetrance of erroneous divisions (%) 

0 10 20 40 60 80 100 

0 (0) 0 0 0 0 0 0 0 

1 (2) 0 0.1 0.2 0.4 0.6 0.8 1 

2 (4) 0 0.2 0.4 0.8 1.2 1.6 2 

4 (8) 0 0.4 0.8 1.6 2.4 3.2 4 

8 (16) 0 0.8 1.6 3.2 4.8 6.4 8 

16 (32) 0 1.6 3.2 6.4 9.6 12.8 16 
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