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ABSTRACT 

This paper introduces an observational framework for measuring the effects of display advertising. 

Causal measurement of display ad effects using observational data presents a significant challenge 

due to the dynamic nature of the data generating process. The proposed framework, derived from 

Markov Decision Processes, accurately reflects the data generating process and accounts for the 

different sources of endogeneity by explicitly modeling the users’ browsing behavior and the 

advertiser’s decision making. Using the proposed framework, we develop a novel estimation 

method that recovers the incremental impact on outcomes attributable to a display advertising 

campaign. We validate the proposed method using a randomized controlled trial. 

Keywords: display advertising; ad effect measurement; Markov decision processes; 

reinforcement learning
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1. INTRODUCTION 

Display advertising budgets have grown rapidly over the past several years. The advent of 

real-time bidding (RTB) has enabled advertisers to target individual users and control the timing 

and location of each exposure. Advertisers view such increased precision as the key driver of return 

on investment (IAB 2021). 

The rapid growth of display advertising has resulted in the need to accurately estimate its 

impact. Assessing the incremental impact of impressions on outcomes allows advertisers to make 

informed decisions on budget allocation for the display channel, and the various campaign and 

targeting strategies therein. To measure the effects of display advertising, advertisers must estimate 

the counterfactual outcomes had the users not seen any ads. 

Despite advances in targeting, such causal measurement remains a challenging issue. While 

randomized controlled trials (RCTs) are the “gold standard”, firms are often unable or unwilling 

to implement them due to the large costs associated with experimentation (Gordon et al. 2021). 

Instead, firms rely on observational data collected during the normal course of a campaign. 

Observational methods, however, face challenges due to the dynamic nature of the data 

generating process. Unlike the traditional causal model (Rubin 2005), for each user in RTB, 

advertisers have multiple opportunities to serve an impression. At each impression opportunity, 

advertisers use information on the user’s browsing, exposure, and purchase history to compute 

their willingness to serve an impression. As a result, a user’s probability of exposure evolves 

dynamically throughout the campaign. In addition to the exposures, a user’s outcomes—

conversion metrics such as purchases and website visits—are also dynamic. Because each user can 

be exposed to multiple impressions, the timing and the temporal spacing between them jointly 

determine the user’s outcomes (Sahni 2015). To measure the causal impact of a campaign, 
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observational approaches must take these dynamics into account while modeling the data 

generating process. Indeed, Gordon et al. (2019) and Lewis et al. (2011) find that, when a static 

model of assignment and outcomes is assumed, observational approaches can yield significantly 

biased estimates. 

In this paper, we propose a novel observational approach to measure the incremental 

impact of an advertising campaign. We model the data generating process using a Markov 

Decision Process (MDP). In the model, each user is described by a state that evolves over time as 

a Markov process. At each time step, the user state—which follows the Markov property—

captures all the information required to describe the user’s current and future behavior. The 

advertiser observes partial information about this state—for example, through browsing and 

exposure history—and drives conversions by inducing alterations to the state through impressions. 

The MDP framework accurately reflects the dynamic nature of the data generating process. 

At each time period, it provides a way to explicitly model (1) a user’s probability of exposure—as 

a policy that maps the information available on the user to the advertiser’s intent to serve an 

impression, (2) the users’ response to impressions—via the state transition probabilities, and (3) 

outcomes—as a mapping from the user state to the probability of conversion. 

The identification strategy relies on an intrinsic property of the MDP that the state 

transition probabilities are invariant to the advertiser’s policy (Rust 1994, Hotz and Miller 1993). 

In other words, the state transition probabilities are structural parameters with respect to the 

advertiser’s policy (Reiss and Wolak 2007). Thus, outcomes of counterfactual policies are 

identified through these transition probabilities. In Sections 3 and 4, we show that the causal impact 

of a campaign can be estimated by computing outcomes of one such counterfactual policy. We 

estimate these counterfactual outcomes by leveraging techniques from reinforcement learning. 
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We validate the estimate provided by the proposed method through a large-scale field 

experiment where users are randomly assigned to either a treatment or a control group. The users 

in the treatment group are eligible for exposure and are served impressions using the advertiser’s 

targeting policy. The users in the control group are not eligible to receive impressions. We show 

that the proposed method recovers the counterfactual outcomes, using only data from the treatment 

group. Specifically, we show that the proposed method’s estimate of the percentage lift in 

conversions attributable to the campaign is within 6% of the estimate obtained through the RCT. 

Moreover, the difference between the two estimates is about .31 times the standard error of the 

RCT estimate. In contrast, we show that the methods that do not account for the dynamics of the 

context yield significantly biased estimates, consistent with the literature. 

We contribute to the display advertising literature by providing a novel approach to ad 

effect measurement. This approach uses readily available observational data, avoiding the large 

costs associated with RCTs. The approach also generalizes to any context involving dynamic 

treatments and is capable of computing outcomes of counterfactual treatment policies. Thus, we 

also contribute to the growing literature at the intersection of causal inference and machine learning 

by showing that techniques from reinforcement learning can be applied for inference in such 

settings. 

The rest of the document is organized as follows. We introduce the real time bidding 

ecosystem and review the relevant literature on causal methods and MDPs in Section 2. In Sections 

3 and 4, we present the MDP framework and an estimation method to recover counterfactual 

outcomes respectively. Section 5 describes the field experiment and validates the estimate 

provided by the proposed method. Section 6 concludes. 
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2. BACKGROUND AND RELATED LITERATURE 

2.1. The Real Time Bidding Ecosystem 

The RTB ecosystem is a two-sided marketplace with advertisers and publishers. Publishers 

manage webpages with content in which users are primarily interested. They supply ad inventory 

on these webpages to advertisers to generate revenue. Advertisers purchase these ad impressions 

to promote their brand, product, or service. There are many intermediaries, such as ad exchanges, 

demand and supply side platforms, that provide fundamental infrastructure to facilitate selling, 

buying, and serving ads in real time. For the sake of clarity, we limit our discussion to advertisers, 

publishers, and ad exchanges. 

When a user visits a webpage on a publisher’s website, a bid request is triggered for an 

impression opportunity. The publisher makes its impression available through an ad exchange 

which then queries all participating advertisers for bids on the impression. Advertisers evaluate 

the impression opportunity using information available from various sources. This includes 

contextual information (e.g., domain name of the publisher, topic, keywords), behavioral 

information such as browsing history tracked using cookies, and demographic information 

obtained through third parties. Each advertiser then submits a sealed bid to the ad exchange based 

on their private valuations. The ad exchange runs an auction and determines the winner. The 

winning advertiser’s ad is then displayed to the user on the publisher’s webpage. 

From the advertiser’s perspective, a campaign is a series of auctions corresponding to users 

that satisfy pre-determined matching criteria such as geographic location, device type, and 

language. A typical campaign duration can range from several weeks to a few months. Advertisers 

face challenges due to the volume and velocity of the auctions in the RTB ecosystem. Ad 

exchanges process, on average, 1.6 million auctions per second (Shen et al. 2015) and require 
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advertisers to submit bids within milliseconds for each auction (Google 2021b). As a result, 

advertisers manage their campaigns via automated targeting and bidding algorithms (Tunuguntla 

and Hoban 2021). 

2.2. Causal Measurement 

The objective of the advertiser is to drive conversions—user driven actions such as clicks, 

pageviews, and purchases. The causal impact of a campaign is therefore measured through its 

incremental impact on the total number of conversions. To measure this, advertisers must compare 

the conversions from a campaign and the counterfactual conversions that would have transpired 

had they not run a campaign. Researchers have proposed both experimental and observational 

approaches to measure the causal impact of display advertising. 

2.2.1. Experimental Approaches 

 

Experimental approaches or randomized controlled trials (RCTs) randomly assign users to 

treatment and control groups and compare the conversions between these groups. The users in the 

control group are not eligible for exposure. Although all the users in the treatment group are 

eligible, not all of them receive an impression. The advertiser’s targeting algorithm determines the 

bids submitted to each auction depending on the user’s browsing/purchase history, timing, and 

location of the impression. Thus, only a subset of the users in the treatment group are exposed. 

Earlier approaches (Lewis and Rao 2015, Hoban and Bucklin 2015) delivered a public 

service announcement (PSA) to the control group users instead of the focal advertiser’s impression. 

These approaches, however, are expensive due to the cost of PSAs and require coordination among 

advertisers and third-party charities. Moreover, when advertisers use computer algorithms to 

optimize ad delivery separately for the PSA and focal campaigns, these approaches produce biased 

estimates (Johnson et al. 2017). 
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Recent approaches (Gordon et al. 2019) reduce the cost of PSAs by withdrawing from RTB 

auctions corresponding to the control group users. As a result, the control group users are never 

exposed to impressions from the focal advertiser. Johnson et al. (2017) show that one of the 

limitations of these approaches is that they provide imprecise estimates because the comparison of 

conversions from the treatment and control groups includes unexposed users. They propose a 

method involving “ghost ads” to improve measurement precision by identifying users in the 

control group that would have been exposed had they been in the treatment group. The ghost ads 

framework, however, requires coordination among advertisers, demand side platforms, and ad 

exchanges. 

Despite recent advances in reducing the cost, experimental approaches remain expensive 

due to the opportunity cost of not reaching the control group. The advertiser foregoes revenue by 

not serving impressions to these users who are otherwise as attractive to the firm as the treatment 

group users. This opportunity cost can be large because of the sample size needed for precise 

measurement. Lewis and Rao (2015) show that informative experiments can require tens of 

millions of observations due to low statistical power. Moreover, advertisers typically manage a 

large number of campaigns varying on products advertised, target markets, conversion events, and 

budgets allocated. Such diverse campaigns exhibit a large heterogeneity in their incremental 

impacts, requiring advertisers to practice continuous experimentation (Zantedeschi et al. 2017). 

Thus, the opportunity cost of implementing experiments is recurrent and is associated with each 

campaign. 

In addition to the large sample size requirements, experimental approaches suffer from a 

more serious limitation for budget constrained advertisers: they produce biased estimates of the 

potential return on investment. We illustrate this using the following stylized example. Consider a 
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scenario where there are three users—1, 2, 3 with valuations 𝑣1, 𝑣2, 𝑣3—in the treatment group 

and three users—1’, 2’, 3’ with identical valuations 𝑣1, 𝑣2, 𝑣3 —in the control group. The 

valuations denote the incremental lift in the probability of conversion resulting from an impression 

for each user. Let 𝑣1 > 𝑣2 > 𝑣3 . With an advertiser who has a budget to serve only two 

impressions, users 1 and 2 are exposed. The measured ROI is thus equal to 𝑣1 + 𝑣2. In the absence 

of the control group, however, users 1 and 1’—who have the highest valuations—are exposed. The 

maximum potential ROI of the campaign is then 2𝑣1. Thus, although RCTs provide an unbiased 

estimate of the impact on exposed users from the treatment group, they understate the potential 

impact of advertising. That is, they induce a trade-off between measurement and maximizing 

campaign impact. Given the prevalence of budgets (Choi et al. 2020) and that the primary 

motivation of causal measurement is to compute the return on investment and to inform budget 

allocation, we consider this limitation a major impediment to the deployment of RCTs in the 

context of display advertising. 

Due to these challenges, most firms either do not or cannot measure ad effects using 

experimental or quasi-experimental methods (Gordon et al. 2021). Instead, they rely on readily 

available observational data. Observational methods can be implemented with no additional cost 

or requirements on coordination with third party entities. Further, observational approaches do not 

suffer the same trade-off between measuring and maximizing campaign impact as experimental 

approaches. 

2.2.2. Observational Approaches 

 

Under an observational approach, all the users are eligible for exposure. Similar to the 

treatment group in the experimental approaches, exposure of a given user is determined by the 

advertiser’s targeting algorithm. Observational approaches use the data from all the users—
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exposed and unexposed—to compute the counterfactual conversions that would have transpired 

had the advertiser not run a campaign. 

In the absence of randomized assignment, observational approaches must account for the 

data generating process to estimate causal effects. Failure to do so can severely bias the estimates 

(Rubin 2005, Heckman and Pinto 2003). In RTB, this involves modeling the assignment of 

impressions and the distribution of conversions conditional on exposures. Modeling these, 

however, is challenging due to their dynamic nature and endogeneity concerns. 

Because an auction is triggered whenever a user visits a publisher’s website in RTB, 

advertisers have multiple opportunities to serve an impression for each user. At each auction, 

advertisers evaluate the impression opportunity using dynamic information such as browsing 

history, prior conversions, and publisher’s contextual information. As a result, a user’s probability 

of exposure evolves dynamically throughout the campaign period. Modeling the assignment 

mechanism, therefore, requires modeling a user’s probability of exposure at each auction. Ignoring 

such dynamics can lead to known issues such as activity bias (Lewis et al. 2011), which is a result 

of a user’s probability of exposure being a function of browsing intensity. 

The probability of exposure also varies across users depending on factors such as 

demographics, browsing, and purchasing behavior. These factors induce systematic differences 

between exposed and unexposed users, resulting in endogeneity. One such source of endogeneity 

is the targeting criteria (Lewis and Rao 2015). Because media buyers are generally rewarded for 

having shown their ads to users who later convert, targeting algorithms typically target users that 

are most likely to convert (Choi et al. 2020). That is, exposed users are specifically chosen based 

on their higher conversion rates. Similarly, competitive effects through the auctions are another 

potential source of endogeneity. An exposure is determined not only by the focal advertiser’s 
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valuation of the impression but also by other advertisers’ valuations. The focal advertiser is likely 

to win impression opportunities that they value highly (Gordon et al. 2019). Observational 

approaches, therefore, must account for these differences between exposed and unexposed users 

to accurately measure advertising effectiveness. 

Conversions in RTB are also dynamic. Because each user can be exposed to multiple 

impressions, their volume, timing, and the temporal spacing between them jointly determine the 

user’s outcomes. Repeated ad exposures have wear-in and wear-out effects on the user and affect 

the marginal effectiveness of each impression (Braun and Moe 2013). Similarly, impressions have 

carryover effects, which are determined by temporal spacing between them (Sahni 2015). Thus, 

the probability of conversion during any time period depends on the schedule of past ad exposures. 

Accounting for this is important to measure the effect of advertising precisely (Sahni 2015). 

Observational methods face challenges in measuring campaign effectiveness because of 

these distinctive features of RTB’s data generating process. Gordon et al. (2019) and Lewis et al. 

(2011) explore the performance of observational methods commonly used by researchers and 

practitioners. They find that, when a static model of assignment is assumed and when the sources 

of endogeneity are not sufficiently controlled for, there is a large discrepancy between the 

estimates provided by observational and experimental approaches. Gordon et al. (2019) show that 

the estimates from observational approaches are off by at least a factor of three in more than half 

of the campaigns they analyzed. They also find that these methods mostly overestimate the impact 

of advertising, although in some cases, they significantly underestimate it. 

In this work, we propose an observational method based on a Markov Decision Process 

(MDP) that reflects the data generating process. We model the assignment mechanism through the 

advertiser’s decision making. At each auction, we compute the advertiser’s willingness to serve an 
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impression—and therefore the probability of exposure—as a function of the history of observables. 

This accounts for the dynamic nature of impressions and controls for targeting criteria. 

Competition induced endogeneity can occur because a user’s exposure depends not only on the 

focal advertiser’s bid but also on other advertisers’ bids. We eliminate such endogeneity by 

quantifying the impact of bids on conversions rather than the impact of impressions. We account 

for the temporal and carryover effects of impressions by estimating a “value function” that 

quantifies their effect on future conversions. Finally, we use flexible functional forms via neural 

networks to model all relationships, thus avoiding any bias resulting from model misspecification. 

2.3. Markov Decision Processes 

Markov Decision Processes or MDPs (Sutton and Barto 2018) provide a mathematical 

framework for modeling sequential decision making where a decision-making agent interacts 

sequentially with a dynamic environment in discrete time steps. The agent-environment interaction 

is shown in Figure 1. At each time step 𝑡, the environment is described by a state 𝑆𝑡. The state 𝑆𝑡 

contains all the relevant information to completely characterize the future trajectory of the 

environment. In other words, the environment state follows the Markov property: the distribution 

of future states is independent of the past states, conditional on the current state. 

The agent receives a potentially noisy representation of this state, referred to as an 

observation 𝑂𝑡. Settings where the state 𝑆𝑡  is not completely observable by the agent, i.e., the 

observation 𝑂𝑡 is not equal to 𝑆𝑡, are referred to as partially observable Markov decision processes 

or POMDPs (Arulkumaran et al. 2017). In a POMDP, the observation 𝑂𝑡 is characterized by a 

distribution 𝒪(𝑂𝑡 | 𝑆𝑡) that is conditional on the current state 𝑆𝑡. 

The agent chooses an action 𝐴𝑡  at each time step. In a POMDP, this action typically 

depends on the entire history of observations 𝐻𝑡 = {𝑂1, 𝑂2, … , 𝑂𝑡}. In part as a consequence of the 
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agent’s action, the environment moves to a new state 𝑆𝑡+1, and the agent receives a numerical 

reward 𝑅𝑡+1. The state transition and the agent’s reward are characterized by the joint conditional 

distribution 𝒯(𝑆𝑡+1, 𝑅𝑡+1 | 𝑆𝑡, 𝐴𝑡). 

The agent’s payoff is equal to the accumulated reward. Several measures of accumulated 

reward such as total cumulative reward, total discounted reward, and average long-term reward 

have been studied in the literature (Puterman 2014). The agent chooses actions such that the 

environment moves to favorable states that generate higher accumulated reward. The agent can 

control the environment’s state transition because the transition dynamics 𝒯 partially depend on 

the agent’s action. The agent’s decision making is characterized by a policy 𝜋 that maps the history 

of observations to actions. 

The MDP framework provides a generalization of goal directed behavior. Sutton and Barto 

(2018) state that any problem of goal directed behavior can be modeled using the three elements 

of an MDP: the environment’s dynamics described by a Markov process, the agent’s decision 

making characterized by a policy and the agent’s objective. Indeed, MDPs have been successfully 

applied to many different contexts: solving games like Go (Silver et al. 2017) and poker (Bowling 

et al. 2017), learning control policies in robotics (Levine et al. 2016, 2018), option pricing 

(Tsitsiklis and Van Roy 2001), portfolio optimization (Moody and Saffell 2001, Deng et al. 2016), 

disease diagnosis (Peng et al. 2018), medical imaging (Li et al. 2018), personalized education 

(Upadhyay et al. 2018), and optimizing energy usage (Glavic et al. 2017). 

MDPs are appropriately suited for modeling display ad campaigns. Psychological research 

has found that Markov models can be used to describe and formalize human behavior (Wickens 

1982, Visser et al. 2002). The states of the Markov model are interpreted to be cognitive, emotional 

states that produce behavior, while the transition probabilities describe the evolution of these states 
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(Visser 2011). In particular, hidden Markov models have been found to accurately model browsing 

behavior (Awad and Khalil 2012, Scott and Hann 2006). Furthermore, Balachandran and 

Deshmukh (1976) and Hauser and Wisniewski (1982) show that persuasive communications such 

as impressions alter the user state. They also show that the effects of such persuasive 

communications can be modeled as an alteration to the user state transition probabilities. That is, 

the distribution of the new user state is conditionally dependent on exposure to an impression. 

The MDP framework can therefore be applied to display ad campaigns by modeling the 

users as instantiations of the environment and the advertiser as the decision-making agent. The 

advertiser participates in the RTB auctions to drive conversions by inducing favorable transitions 

to the user state through impressions. In the MDP framework, the agent’s actions are the 

advertiser’s bids in the auctions and the rewards are conversions. The advertiser’s payoff is the 

accumulated conversions. 
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3. MODEL 

3.1. MDP Framework — Data Generating Process 

During the course of a campaign, the advertiser interacts sequentially with each user 𝑖 

through RTB auctions indexed by 𝑛. We treat each user as an independent instantiation of the 

MDP. Accordingly, we drop any explicit references to an individual user 𝑖 unless necessary. 

The data generating process is summarized as a directed acyclic graph (DAG, Pearl 2000) 

in Figure 2. Each node in the graph represents a variable and the directed edges capture causal 

relationships between the variables. The latent variables in the model are denoted by dotted circles 

and the observable variables by solid circles. 

The user state at auction 𝑛 is denoted by 𝑆𝑛, which satisfies the Markov property. That is, 

the user state contains all the information required to describe the user’s current and future 

behavior. We assume that the user state is latent and unobservable by the advertiser. The advertiser 

submits a bid based on the information available on the user. This includes contextual information 

of the auction (e.g., domain name of the publisher, topic, keywords), behavioral information such 

as browsing/purchase history tracked using cookies, and demographic information obtained 

through third parties. We refer to any information obtained by the advertiser at auction 𝑛  as 

observation 𝑂𝑛. This observation is dependent on the user state 𝑆𝑛 and is characterized by the 

conditional distribution 𝒪(𝑂𝑛 | 𝑆𝑛). 

The advertiser’s bid 𝐵𝑛 typically depends on the entire history of observations denoted by 

𝐻𝑛 = {𝑂1, 𝑂2, … , 𝑂𝑛}. The advertiser’s decision making is characterized by a policy 𝜋𝐴: ℋ → ℝ 

that maps a history of observations to a bid. Thus, 𝐵𝑛 = 𝜋𝐴(𝐻𝑛). 

The objective of the advertiser is to drive conversions, which are user driven actions such 

as clicks, pageviews, and purchases. Let 𝑅𝑛+1 be an indicator for user conversion during the period 
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between auctions 𝑛 and 𝑛 + 1. That is, 𝑅𝑛+1 is equal to 1 if the user converts between auctions 𝑛 

and 𝑛 + 1, and 0 otherwise. The joint distribution of 𝑅𝑛+1 and the user’s subsequent state 𝑆𝑛+1 

conditional on the current state 𝑆𝑛 and the advertiser’s bid 𝐵𝑛 is given by 𝒯(𝑆𝑛+1, 𝑅𝑛+1 | 𝑆𝑛, 𝐵𝑛). 

It is worth noting that we model the user state transitions conditional on the advertiser’s 

bid, not an exposure. This eliminates any endogeneity induced by the auction mechanism. An 

exposure is determined not only by the focal advertiser’s bid, but also by other participating 

advertisers’ bids. These competing bids can depend on variables unobservable by the focal 

advertiser, which can induce selection into the focal ad exposures by systematically altering the 

set of auctions resulting in an exposure. However, because the focal advertiser’s bid can only 

depend on variables observable by it, modeling the transition probabilities as a function of the bid 

eliminates any endogeneity induced by the auction mechanism. 

The advertiser’s payoff is equal to the accumulated conversions. While there are several 

measures of accumulated reward, we focus on the average conversions per auction as a measure 

of the advertiser’s payoff. This allows us to normalize conversions across users, who might have 

different number of auctions associated with them due to differences in browsing intensity. We 

finally note that similar analysis can be derived for any other linear combination of the conversions 

at all periods (Puterman 2014). 

We assume that the distributions characterizing the MDP—transition and conversion 

dynamics 𝒯  and distribution of observations 𝒪 —are unknown. To compute counterfactual 

outcomes, we present an estimation method that is agnostic to these distributions and depends only 

on data observed from implementing the advertiser’s policy 𝜋𝐴. This data constitutes the sequence 

of advertiser’s observations {𝑂1, 𝑂2, … }, bids {𝐵1, 𝐵2, … }, and conversions {𝑅1, 𝑅2, … }. 



15 

 

 

3.2. Identification 

To estimate the causal impact of 𝜋𝐴, we must compute the counterfactual conversions in 

the absence of the campaign. We capture this counterfactual scenario by defining a null policy 𝜋𝑁 . 

The null policy submits a constant bid of zero for each auction. Because this is equivalent to not 

running a campaign, we estimate the outcomes of implementing the null policy to determine the 

causal impact of the advertiser’s policy. 

As described above, the quality of a policy is measured through the average number of 

conversions obtained per auction. Each policy 𝜋 is associated with a long-term average conversion 

rate 𝜌𝜋 defined as 

 𝜌𝜋 = lim
𝑁→∞

1

𝑁
∑ 𝔼[𝑅𝑛 | 𝐵0:𝑛−1~𝜋]

𝑁

𝑛=1

 (1) 

where the expectations are conditioned on bids submitted according to policy 𝜋. The average 

conversion rate 𝜌𝜋 depends on the steady state distribution of the Markov process while following 

𝜋. 

The incremental impact of a campaign can then be computed by comparing the average 

conversion rates resulting from the advertiser’s policy 𝜋𝐴 and the null policy 𝜋𝑁. Following the 

extant literature, we express the impact of a campaign as the percentage lift in the conversion rate. 

 𝑙𝑖𝑓𝑡(𝜋𝐴) =
𝜌𝜋𝐴

− 𝜌𝜋𝑁

𝜌𝜋𝑁

× 100 (2) 

To estimate the lift, we must estimate both 𝜌𝜋𝐴
 and 𝜌𝜋𝑁

. Because we observe data from the 

advertiser’s policy, 𝜌𝜋𝐴
 can be estimated as the ratio of total number of conversions observed and 

the total number of auctions. We now show that 𝜌𝜋𝑁
 is identified through the observed data using 
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the framework of graphical causal models (Pearl 2000). We first note that 𝜌𝜋𝑁
 can be defined using 

do-calculus (Pearl 2000) as 

 𝜌𝜋𝑁
= lim

𝑁→∞

1

𝑁
∑ 𝔼[𝑅𝑛 | 𝑑𝑜(𝐵0 = 0, … , 𝐵𝑛−1 = 0)]

𝑁

𝑛=1

 (3) 

where the notation 𝑑𝑜(𝑋 = 𝑥) refers to intervening in the data generating process by artificially 

forcing the variable 𝑋 to take value 𝑥 and the variables inside the do operator are referred to as the 

intervention variables. In this case, 𝜌𝜋𝑁
 is the average conversion rate in the counterfactual 

scenario where all the advertiser bids are forced to be zero. 

A sufficient condition for identification is that all the causal factors of the intervention 

variables are observed. When the data generating process is expressed as a DAG, this means that 

all the parents of the intervention variables are observed. This is known as the back-door criterion 

(Pearl 2000)—a generalization of the unconfoundedness assumption in Rubin’s causal model. In 

RTB, the advertiser’s bids are the intervention variables. Because bid decisions are made 

algorithmically—using information such as browsing/purchase history—it is common for 

advertisers to observe all the inputs to these bid decisions, satisfying the back-door criterion, by 

definition. In other words, it is sufficient to observe the history of observations 𝐻𝑛 in Figure 2 for 

identification of 𝜌𝜋𝑁
 through the data observed from implementing the advertiser’s policy 𝜋𝐴. 

The estimation of 𝜌𝜋𝑁
, however, also requires a sequential analogue of the overlap 

assumption, which we discuss in the following subsection. 

3.3. Bellman Equation 

Our estimation method relies on the fact that the data generating process satisfies a Bellman 

equation (Schwartz 1993). To show this, we first define a “value function”—henceforth referred 

to as the Q-function—that quantifies the effect of individual bids on the total number of 
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conversions. Consider an auction where the history of observations is ℎ, a bid 𝑏 was submitted. 

Assuming a policy 𝜋 is implemented for all subsequent bids, the Q-function is defined as 

 𝑄𝜋(ℎ, 𝑏) = 𝔼𝜋 [∑(𝑅𝑛+𝑘 − 𝜌𝜋) | 𝐻𝑛 = ℎ, 𝐵𝑛 = 𝑏

∞

𝑘=1

] (4) 

The Q-function—also known as the state-action value function in reinforcement learning 

literature (Sutton and Barto 2018)—measures the incremental impact of an individual bid on total 

conversions over the steady state average conversion rate while following policy 𝜋 . The Q-

function satisfies a Bellman equation (Schwartz 1993). The recursive relationship defined by the 

Bellman equation can be derived from Equation 4. The right-hand side of Equation 4 can be written 

as 

𝔼[(𝑅𝑛+1 − 𝜌𝜋) | 𝐻𝑛 = ℎ, 𝐵𝑛 = 𝑏] + 𝔼𝜋 [∑(𝑅𝑛+𝑘 − 𝜌𝜋) | 𝐻𝑛 = ℎ, 𝐵𝑛 = 𝑏

∞

𝑘=2

] 

By definition, the second term is equal to 𝔼[𝑄𝜋(ℎ′, 𝑏′)], where 𝐻𝑛+1 = ℎ′ is the history ℎ 

appended with the observation 𝑂𝑛+1 = 𝑜 and 𝑏′ = 𝜋(ℎ′). Thus, the Bellman equation is given by 

 𝑄𝜋(ℎ, 𝑏) = 𝔼[(𝑟 − 𝜌𝜋) + 𝑄𝜋(ℎ′, 𝑏′)] (5) 

where 𝑅𝑛+1 = 𝑟 is the immediate reward received. The expectation is with respect to the transition 

dynamics of the MDP and the distribution of observations. Intuitively, the Bellman equation states 

that the incremental impact of a bid is equal to the immediate differential reward (𝑟 − 𝜌𝜋) and the 

incremental impact of the subsequent bid. 

The Bellman equation holds for any arbitrary policy 𝜋 . The solution to the Bellman 

equation for 𝜋 = 𝜋𝑁 provides us with an estimate of 𝜌𝜋𝑁
. To gain some intuition on the estimation 

procedure, note that all bids are equal to zero under policy 𝜋𝑁. Therefore 𝜌𝜋𝑛
 encodes the impact 
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of zero bids on conversions. This information is provided by 𝑄𝜋𝑁
(ℎ, 0)  and the relationship 

between the Q-function and the average conversion rate is established by the Bellman equation. 

3.3.1. Overlap 

 

It is clear that estimating 𝑄𝜋𝑁
(ℎ, 0) accurately for all ℎ is necessary in order to estimate 

𝜌𝜋𝑁
. A sufficient condition to estimate 𝑄𝜋𝑁

(ℎ, 0) is that we observe 𝑏 = 0 in the data for any ℎ 

with non-zero probability. This is analogous to the overlap assumption in Rubin’s causal model 

(Robins 2004). A key challenge in RTB, however, is that advertisers typically employ targeting 

algorithms that are deterministic. That is, there is typically no exogenous variation in bids given a 

history ℎ. 

We overcome this challenge by taking advantage of the exogenous variation induced by 

the auctions. Consider an auction where the focal advertiser lost with a bid 𝑏. The trajectory of the 

user thereafter would be the same had the advertiser submitted any bid less than 𝑏—including a 

bid of zero. We can use this observation to augment the data with a bid of zero whenever the focal 

advertiser loses an auction (the implementation details are discussed in Section 4.2). Thus, the 

overlap assumption is satisfied if there is a non-zero probability of the focal advertiser losing an 

auction given any history of observations ℎ. This is a reasonable assumption in RTB, given the 

large number of advertisers with private information participating in any auction. 
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4. ESTIMATION 

Our estimation procedure involves two stages. In the first stage, we reduce the 

dimensionality of the history of observations by computing predictive state representations (PSRs). 

These PSRs follow the Markov property and act as sufficient statistics for computing advertiser’s 

bids and predicting a user’s future trajectory. In the second stage, we implement an iterative 

algorithm that solves the Bellman equation to jointly estimate the Q-function and the average 

conversion rate of the counterfactual policy. 

4.1. Predictive State Representation 

Recall that the Q-function is computed at a history ℎ  for a bid 𝑏 . While this can be 

estimated in theory, there is a potential computational challenge. Histories grow with the number 

of auctions per user and can become large and unwieldy. Therefore, for computational tractability, 

we first implement a dimensionality reduction step that maps each history to a finite dimensional 

representation. These finite dimensional representations act as a compact representative summary 

of the history. 

To construct such a representative summary, we first note that any dynamical system can 

be completely characterized as a probability distribution over all possible future observations 

conditional on the past. Therefore, it is sufficient for the representative summary to follow the 

Markov property and be as predictive of the future observations as the actual history (Singh et al. 

2012). Formally, let 𝑍𝑛 = 𝑓(𝐻𝑛) be the representative summary. The function 𝑓 must be such that, 

for any histories ℎ and ℎ′ that are mapped to the same representation—i.e., 𝑓(ℎ) = 𝑓(ℎ′)—they 

also have the same probabilities for their next observation (Sutton and Barto 2018). 

𝑓(ℎ) = 𝑓(ℎ′) ⟹ Pr(𝑂𝑛+1 = 𝑜 | 𝐻𝑛 = ℎ, 𝐵𝑛 = 𝑏) = Pr(𝑂𝑛+1 = 𝑜 | 𝐻𝑛 = ℎ′, 𝐵𝑛 = 𝑏) ∀𝑜, 𝑏 
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Predictive state representations or PSRs (Littman et al. 2001, Thon and Jaeger 2015) 

provide a way to compute such representative summaries. They are constructed by minimizing a 

prediction loss between the predicted and the realized future observations. PSRs are widely used 

in modeling dynamical systems and construction of Markov state spaces (Downey et al. 2017a). 

Zhu et al. (2020) have recently applied them to marketing settings and found that the resulting 

summaries satisfy the Markov property and are even robust to non-Markov distortions of the data 

generating process. 

Recurrent neural networks (RNNs) are aptly suited to compute a PSR (Downey et al. 

2017b). RNNs model sequential data by maintaining an internal hidden state that is useful to 

predict future elements of the sequence. This internal state serves as the PSR. Moreover, RNNs 

provide a computationally convenient way to calculate the PSR using a recursive update 𝑢 for 

every observation 

 𝑍𝑛 = 𝑢(𝑍𝑛−1, 𝐵𝑛, 𝑂𝑛) (6) 

Note that, for any function 𝑓 above that maps histories to PSRs, there always exists a 

corresponding recursive update 𝑢 (Sutton and Barto 2018). 

We build an RNN—referred to as the PSR network henceforth—as depicted in Figure 3. 

We provide the implementation details in Appendix A. The RNN has two modules, a recurrent 

and a predictive module. The recurrent module takes as input the tuple (𝑂𝑛, 𝐵𝑛) and computes the 

PSR 𝑍𝑛  recursively, as shown in Equation 6. The predictive module predicts the subsequent 

observation �̂�𝑛+1 using the PSR 𝑍𝑛 . We train the RNN by minimizing the mean squared loss 

between the predicted and realized observations, �̂�𝑛+1 and 𝑂𝑛+1 respectively. For the campaign 

we discuss in Section 5, we implement the recurrent module with two gated recurrent unit (GRU; 
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Cho et al. 2014) layers with 512 and 128 units respectively. Similarly, we implement the predictive 

module with two fully connected layers with 64 and 29 units respectively. 

4.2. Solving the Bellman Equation 

Because PSRs satisfy the Markov property, the Bellman equation in Equation 5 can be 

rewritten with the histories replaced by their corresponding PSRs. 

 𝑄𝜋𝑁
(𝑧, 𝑏) = 𝔼[(𝑟 − 𝜌𝜋𝑁

) + 𝑄𝜋𝑁
(𝑧′, 𝑏′)] (7) 

The Bellman equation holds for every auction. Moreover, at each auction, it only depends 

on the corresponding PSR 𝑧, bid submitted 𝑏, the immediate conversion 𝑟, and the PSR at the 

subsequent auction for the same user 𝑧′ . Therefore, for the purposes of solving the Bellman 

equation, an auction is completely characterized by the tuple (𝑧, 𝑏, 𝑟, 𝑧′). For the rest of this section, 

we assume that the observed data is a collection of tuples of the form (𝑧𝑚, 𝑏𝑚, 𝑟𝑚, 𝑧𝑚
′ ), where 𝑚 =

1, … , 𝑀 indexes auctions in some particular order. 

In order to satisfy the overlap condition discussed in the Section 3, we augment this list of 

tuples. Consider a tuple (𝑧, 𝑏, 𝑟, 𝑧′) where the focal advertiser lost the auction. If the bid had been 

zero instead of 𝑏, the advertiser would have still observed the same conversion 𝑟 and the same 

PSR 𝑧′  at the subsequent auction. Therefore, for the purposes of learning the Q-function, 

(𝑧, 0, 𝑟, 𝑧′) is a valid tuple. This observation helps us learn 𝑄𝜋𝑁
(𝑧, 0)—which informs the estimate 

of 𝜌𝜋𝑁
 through the Bellman equation—even when the advertiser uses a deterministic algorithm 

that maps 𝑧 to a bid 𝑏. For every auction in the data that the focal advertiser lost, we augment the 

data with tuples of the form (𝑧, 𝑏′, 𝑟, 𝑧′), where 𝑏′ < 𝑏. Adding these additional tuples other than 

just (𝑧, 0, 𝑟, 𝑧′) helps with efficiency in learning the Q-function. 

To solve the Bellman equation, we first represent the Q-function as a neural network, 

referred to as the Q-network henceforth. Let 𝑤 denote the vector of all weights of the Q-network. 
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We denote the Q-function corresponding to an arbitrary 𝑤 by  �̂�(𝑧, 𝑏; 𝑤). We now present an 

iterative algorithm that solves the Bellman equation to estimate 𝑤𝜋𝑁
 and 𝜌𝜋𝑁

, where 

�̂�(𝑧, 𝑏; 𝑤𝜋𝑁
) ≈ 𝑄𝜋𝑁

(𝑧, 𝑏). 

4.2.1. Temporal Difference Algorithm 

 

For each tuple (𝑧, 𝑏, 𝑟, 𝑧′), we define the temporal difference error or the TD-error (Sutton 

and Barto 2018) for arbitrary 𝑤, 𝜌 as follows 

 𝛿𝑤,𝜌(𝑧, 𝑏, 𝑟, 𝑧′) = (𝑟 − 𝜌) + �̂�(𝑧′, 0; 𝑤) − �̂�(𝑧, 𝑏; 𝑤) (8) 

The TD-error is related to the Bellman equation described in Equation 5. For a given 𝑤 

and 𝜌, the difference between the left-hand side and the right-hand side of the Bellman equation is 

known as the Bellman error (Sutton and Barto 2018). It is evident from Equations 7 and 8 that the 

expectation of the TD-error over all tuples (𝑧, 𝑏, 𝑟, 𝑧′) is equal to the Bellman error. 

Intuitively, when 𝑤 = 𝑤𝜋𝑁
 and 𝜌 = 𝜌𝜋𝑁

, the expectation of the TD-error must be equal to 

zero. Therefore, we can implement a stochastic approximation method (Pasupathy and Kim 2011) 

that iteratively updates 𝑤 and 𝜌 using the TD-error such that its expectation is equal to zero at 

convergence. At the start of the iterative process, we arbitrarily initialize 𝑤1  and 𝜌1 . At each 

iteration 𝑘, we select a tuple (𝑧, 𝑏, 𝑟, 𝑧′) uniformly at random from the data. We then compute the 

TD-error 𝛿 = 𝛿𝑤𝑘,𝜌𝑘
(𝑧, 𝑏, 𝑟, 𝑧′) and update 𝑤, 𝜌 using 

𝑤𝑘+1 = 𝑤𝑘 − 𝛼𝑤𝛿∇ �̂�(z, b; w_k) 

 𝜌𝑘+1 = 𝜌𝑘 + 𝕀(𝑏 = 0)𝛼𝜌𝛿 (9) 

where ∇ �̂�(𝑧, 𝑏; 𝑤) is the gradient of �̂�(𝑧, 𝑏; 𝑤) with respect to 𝑤; 𝕀(⋅) is the indicator function; 

and 𝛼𝑤, 𝛼_𝜌 are the learning rates or step-sizes. We provide the implementation details of the Q-

network in Appendix A. 
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These iterative update equations are equivalent to the Robbins-Monro algorithm, a 

stochastic approximation method that guarantees convergence to 𝑤𝜋𝑁
 and 𝜌𝜋𝑁

 (Pasupathy and 

Kim 2011). More generally, this algorithm belongs to a class of algorithms known as semi-gradient 

TD methods (Szepesvari 2010). Semi-gradient TD methods approximate a stochastic gradient 

descent update of a differentiable objective function, known as the projected Bellman error (Liu 

et al. 2012). Under fairly general conditions, they have been shown to converge robustly, even 

with highly non-linear classes of functions such as neural networks (Maei et al. 2009). Under 

convergence, the estimates correspond to the maximum likelihood model of the underlying MDP 

and are therefore consistent (Sutton and Barto 2018). 

  



24 

 

 

5. EMPIRICAL ANALYSIS AND VALIDATION 

In this section, we demonstrate how the proposed method can be applied to measure the 

incremental impact of a campaign. We further validate the estimate using a field experiment. 

5.1. Experimental Design 

Throughout this section, we use data collected from a campaign run by a collaborating 

advertiser. The advertiser manages an online store that sells products in the general merchandise 

category. The campaign was active for four weeks—December 7, 2020 to January 4, 2021—during 

which users were served impressions through RTB. 

The users represent a random sample from the total population of users that satisfy a set of 

predetermined matching criteria. Each user, identified by a cookie, is randomly assigned to the 

treatment and control groups with probabilities 0.7 and 0.3 respectively. 

The users in the control group were not eligible to receive impressions. The campaign 

submitted a constant bid of zero for all the auctions corresponding to the control group users. Thus, 

the ads served to the control group through the auction process are those that would have been 

served had the campaign not been run. The outcomes of the control group, therefore, provide a 

valid counterfactual to evaluate the campaign effectiveness. For the treatment group, the campaign 

calculated bids for each auction using a targeting algorithm. The targeting algorithm took into 

consideration the browsing history of the user, the number and timing of impressions previously 

served to the user, and the history of the user’s activity on the advertiser’s website. 

The objective of the campaign was to generate traffic to the online store. Accordingly, a 

conversion is defined as a session of user activity on the advertiser’s website. Following prior 

research (Jansen et al. 2007) and the industry standard (Ulmer 2010, Google 2021a), we define a 

browsing session as a continuous period of user activity, where successive events are separated by 
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no more than 30 minutes. The advertiser observes conversions using a “conversion pixel”—a piece 

of code embedded in its web pages. The advertiser observes conversions for all users, irrespective 

of whether they are in the treatment or the control group. 

The campaign served four different creatives to the users during its course. These creatives 

shared a consistent message and varied only slightly in terms of imagery and text. Consequently, 

we treat these creatives as interchangeable to evaluate advertising effectiveness. 

5.2. Data 

The data contain information on approximately 286 million RTB auctions for 118,244 

users. The bid request for each auction contains the corresponding user’s cookie identifier, the 

timestamp at which the auction had been initiated, and an approximate geographic location of the 

user. The bid request also contains contextual information that includes the publisher’s domain, 

the URL of the web page on which the impression would be served, the ad exchange’s 

categorization of the web page into one or more verticals (e.g. news, games, shopping), and the 

size and relative location of the ad space on the web page. 

The publishers’ web pages are categorized into 26 unique verticals listed in Table 1. Each 

auction is associated with a 26-dimensional vector, whose elements correspond to the verticals. 

Each element is a number between 0 and 1, denoting the likelihood that the web page—on which 

the impression would be served—belongs to the corresponding vertical. 

The primary determinant of bids in each auction is provided by the vertical information. 

At each auction, the targeting algorithm builds a “profile” of verticals unique to the user. The 

profile measures the user’s propensity for browsing pages from each vertical. The targeting 

algorithm builds two such profiles, one using the entire browsing history, and another for the 

current browsing session. In addition to the verticals, the targeting algorithm also uses information 
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on past impressions and conversions—total number and timing of each—to account for pacing and 

wear-out. Finally, the bid also depends on publishers’ historic click-through rate provided by the 

ad-exchange. 

We observe all the determinants of bids in our data. At each auction, the observation 𝑂𝑛 

contains verticals information of the current page, whether an impression or conversion occurred 

after the last auction, time elapsed since the last auction, and the historic click-through rate of the 

current publisher. Thus, each bid is completely determined by the history of observations 𝐻𝑛. As 

a consequence, the backdoor criterion discussed in Section 3 is satisfied by definition. 

Table 2 provides a summary of the data. Of the 118,244 users, 82,612 were assigned to the 

treatment group, while 35,632 users were assigned to the control group. The campaign served a 

total of 400,239 impressions—an average of 4.8 impressions per user in the treatment group. The 

campaign also observed a total of 1,320 conversions—1,101 and 219 respectively from users in 

the treatment and control groups. It is worth noting that most users who convert do so only once, 

with only 6 users converting twice. 

5.3. RCT Estimate 

Here, we compute the incremental impact of the campaign by using data from both the 

treatment and control groups. Because the users are randomly assigned to the treatment and control 

groups1, the causal effect of the campaign is the difference between their average user conversion 

rates (Imbens and Rubin 2015). The conversion rates for the treatment and control groups are 

1101

82612
= 1.33% and 

219

35632
= .61% respectively. Thus, the impact of the campaign is 1.33 − .61 =

 
1 We performed a variety of randomization checks and found no evidence against proper randomization. 
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.72% . The percentage lift in conversions attributable to the campaign is therefore 
1.33−.61

.61
=

116.8%.The 95% bootstrapped confidence interval2 for the lift is [89.93%, 145.68%]. 

In the rest of this section, we use the lift computed here as a benchmark to assess various 

observational methods, including the proposed MDP framework. The observational methods 

compute their estimates using data only from the treatment group. 

5.4. Proposed Method and Alternatives 

We now compute the impact of the campaign using the proposed method and several 

alternatives. First, we treat the data as cross-sectional and apply the state-of-the-art 

double/debiased machine learning (DML; Chernozhukov et al. 2018). Consistent with the 

literature, this approach produces significantly biased estimates. This is because the cross- 

sectional view of the data does not account for the dynamics of the data generating process—

neither the ad serving process nor the effects of impressions. We then account for the dynamic ad 

serving process by using the PSRs at each auction as control variables. While the resulting bias is 

smaller, the estimate is still far from that of the RCT. The proposed method, on the other hand, 

accurately recovers the RCT estimate because it accounts for the dynamics of the ad serving 

process though the PSRs and the impression effects through the value function. 

5.4.1. Cross-sectional View 

 

We conduct the analysis at the user level. Following the extant literature, we define 

‘treatment’ as a binary variable indicating whether a user is exposed to one or more impressions 

during the campaign period, and the ‘outcome’ variable as the total number of conversions by that 

user. All the information obtained through the auctions—verticals and bids submitted—are 

collected as a vector of ‘control’ variables. We also include the total number of auctions in the 

 
2 All the confidence intervals in this section are computed by bootstrapping at the user level. 
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control variables to account for activity bias. Together, these variables constitute the same 

information used by the proposed algorithm. To account for the variable number of auctions for 

each user, we reduce the vector of control variables to a fixed length representation using a 

standard recursive neural network (Socher 2014). The resulting DAG is shown in Figure 4, where 

X is the vector of control variables, T is the treatment, and Y is the outcome. 

DML (Chernozhukov et al. 2018) provides a non-parametrically efficient estimator for the 

average treatment effect on the treated (ATT) on such a DAG. It uses machine learning methods 

to compute the propensity score 𝜈(𝑋) = Pr(𝑇 = 1 | 𝑋) and the conditional expectation 𝜇(𝑋, 𝑇) =

𝔼[𝑌 | 𝑋, 𝑇]. The ATT is then computed as 

𝐴𝑇𝑇 =
1

𝑁𝑒
∑ 𝑇𝑖 [

𝑇𝑖(𝑌𝑖 − 𝜇(𝑋𝑖, 1))

𝜈(𝑋𝑖)
−

(1 − 𝑇𝑖)(𝑌𝑖 − 𝜇(𝑋𝑖, 0))

1 − 𝜈(𝑋𝑖)
+ 𝜇(𝑋𝑖, 1) − 𝜇(𝑋𝑖, 0)]

𝑁𝑢

𝑖=1

 

where 𝑁𝑢 is the total number of users and 𝑁𝑒 is the number of users treated. The resulting estimate 

is root-n consistent and non-parametrically efficient (Chernozhukov et al. 2018). Moreover, its 

mean squared error outperforms that of traditional methods like regression adjustment, inverse 

probability weighting, and propensity score matching. Because 𝜈(𝑋)  and 𝜇(𝑋, 𝑇)  are non-

parametrically estimated, DML can be applied to settings with a large number of control variables 

(compared to sample size) by using methods such as regularization. 

Note that the ATT provided by DML is not directly comparable to the intent to treat (ITT) 

estimate provided by the RCT. The ITT, however, can be computed by simply multiplying the 

ATT with the fraction of users treated in the data (Gordon et al. 2019). The percentage lift is then 

computed as 

 𝑙𝑖𝑓𝑡 =
𝐼𝑇𝑇

𝜂𝑢 − 𝐼𝑇𝑇
× 100 (10) 

where 𝜂𝑢 is the average number of conversions observed per unit. 
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If the DAG in Figure 4 reflects the true data generating process, we expect DML to recover 

the RCT estimate. When we apply DML to our data, however, the resulting lift is equal to 184.92% 

with a confidence interval of [175.71%, 194.29%], overestimating the RCT lift by 68.12%. This 

large bias is a result of an inaccurate model of the data generating process. When collapsed to a 

cross-section, information on the mapping from history of observables to the probability of 

exposure as well as the timing and interactive effects of impressions is lost. As a result, approaches 

that adopt the cross-sectional view cannot account for the dynamic nature of the ad serving process 

nor the dynamic effects of impressions. 

5.4.2. Dynamic Ad Serving 

 

Here, we account for one of two sources of dynamics in the data generating process—the 

ad serving mechanism. To do so, we conduct the analysis at the auction level. At each auction, we 

compute the PSR as described in Section 4.1. Because the PSR is a representative summary of the 

history of observations, it accounts for selection due to targeting by the focal advertiser. We use 

the PSR as a set of ‘control’ variables, whether an impression is served as the ‘treatment’, and an 

indicator for conversion before the subsequent auction as the ‘outcome’ variable. 

We construct the PSRs using the PSR-network that takes as input observations 𝑂𝑛. At each 

auction 𝑛, the observation 𝑂𝑛 is a 29-dimensional vector. The first element of 𝑂𝑛 is the time—

measured in seconds—since the preceding auction. This allows the model to compute any lagged 

effects that depend on time. The next 26 elements represent the vertical information of the 

publisher’s webpage, each specifying the likelihood—between 0 and 1—that the webpage belongs 

to its corresponding vertical. The penultimate element of 𝑂𝑛 is an indicator for whether the focal 

advertiser’s impression is served through auction 𝑛. The last element of 𝑂𝑛 is an indicator for 

whether a conversion occurred between auctions 𝑛 − 1 and 𝑛. 
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Similar to Section 5.4.1, we implement DML to compute the percentage lift in conversions 

attributable to the campaign. The resulting lift is 158.65% with a confidence interval of [148.42%, 

169.39%]. Although this represents an improvement over the cross-sectional analysis, the resulting 

error of 41.85% is still large. This is a result of analyzing each auction independently. An 

impression’s effect only on the immediate conversion is considered, ignoring its temporal effects 

and interactive effects with other impressions served to the same user. Note that these dynamic 

effects of impressions are accounted for by the Q- function in the proposed method. 

5.4.3. Proposed Method 

 

Here, we estimate the impact of the campaign using the proposed MDP framework. The 

advertiser interacts with any given user through a sequence of RTB auctions indexed by 𝑛. The 

estimation procedure discussed in Section 4 depends only on the sequence of advertiser’s 

observations {𝑂1, 𝑂2, … }, bids {𝐵1, 𝐵2, … }, and conversions {𝑅1, 𝑅2, … }. 

To estimate the impact of the campaign, we compute the average conversion rates per 

auction 𝜌𝜋𝐴
 and 𝜌𝜋𝑁

 corresponding, respectively, to the advertiser’s policy 𝜋𝐴 and the null policy 

𝜋𝑁. 𝜌𝜋𝐴
 can be computed from Table 2 as the ratio of total number of conversions observed and 

the total number of auctions, 𝜌𝜋𝐴
=

1101

200498908
= 5.49 × 10−6. Using the proposed method, we 

estimate 𝜌𝜋𝑁
 to be 2.47 × 10−6 . The estimated lift is thus 

5.49−2.47

2.47
= 122.19% . The 95% 

bootstrapped confidence interval for the estimated lift is [108.3%, 136.19%]. 

Thus, the proposed method’s estimate of the impact of the campaign is within 6% of the 

RCT estimate and lies within the confidence interval of the RCT estimate. It is also worth noting 

that the difference between the two estimates is about .31 times the standard error of the RCT 

estimate. This shows that the proposed method can accurately measure the effects of display 

advertising. Moreover, this shows that observational approaches can be used for ad measurement 
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if the different components of the ad serving process—advertiser’s decision making, the user’s 

response to impressions, and the advertiser’s total payoff—are explicitly modeled. 
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6. CONCLUSION 

In this paper, we propose an observational framework to measure the incremental impact 

of display advertising campaigns. The framework accounts for the different sources of endogeneity 

present in the RTB ecosystem by explicitly modeling the users’ browsing behavior, the advertiser’s 

decision making, and the users’ response to impressions. We leverage techniques from the 

reinforcement learning literature to develop a novel estimation method that accurately recovers 

counterfactual outcomes. Empirically, we validate the estimate provided by the proposed method 

through an RCT. We show that the proposed method’s estimate of the impact of a campaign is 

within 6% of the RCT estimate. 

Our framework contributes to the growing literature on measuring display advertising 

effectiveness. Gordon et al. (2019) and Lewis et al. (2011) show that commonly used observational 

methods produce significantly biased estimates. As a result, the recent approaches have focused 

on integrating experimentation directly into the advertiser’s targeting algorithms (Gordon et al. 

2021). However, we show here that observational data can indeed be used to assess the impact of 

display advertising. Thus, we view our framework as a useful addition to the literature, and we 

believe that it could play a valuable role in the display advertising landscape. We also contribute 

to the rapidly growing literature at the intersection of causal inference and machine learning by 

showing that techniques from reinforcement learning can be applied for inference in settings that 

involve sequential decision making such as display advertising. 

Leveraging our approach offers several advantages. Because the approach uses readily 

available observational data, advertisers can implement it without incurring the opportunity cost 

associated with experimentation. Furthermore, our approach allows researchers and advertisers to 

explore moderating factors of the impact of impressions, providing insights into potential changes 
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in ad responsiveness resulting from inter-temporal shifts in a user’s state. This information enables 

advertisers to examine the impacts of different targeting strategies and to optimize campaign 

performance. 

Future research can extend this work in several ways. First, although reinforcement 

learning methods perform well in practice, little is known about their asymptotic efficiency. Future 

research should explore how the variance of the proposed method’s estimate depends on the 

sample size, campaign attributes, and various neural network architectures. Similar to Gordon et 

al. (2019), future research could also investigate the empirical performance of the proposed method 

and compare it to RCTs over a large number of campaigns. Second, the proposed method relies on 

the assumption that the advertiser’s bid and the user state at any auction are unconfounded 

conditional on the history of observations. While this assumption holds in the display advertising 

context where bid decisions are made algorithmically, in settings such as those involving 

salesforces, the researcher does not always observe all the inputs to the agent’s decision making. 

This highlights the need for future research to extend the proposed method to accommodate 

techniques such as instrumental variables. Finally, future research could extend the MDP 

framework to recover an optimal targeting policy while satisfying advertiser constraints such as 

budgets. The extant literature on reinforcement learning mainly focuses on settings where a single 

criterion is to be maximized. However, in the RTB ecosystem, budget constrained advertisers seek 

to maximize conversions while keeping the total cost below the budget. 
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Appendix A. ALGORITHM IMPLEMENTATION 

For any given counterfactual policy 𝜋, we estimate the corresponding Q-function 𝑄𝜋 and 

the average conversion rate 𝜌𝜋 in two steps. First, we use the sequence of advertiser observations 

{𝑂1, 𝑂2, … }  and bids {𝐵1, 𝐵2, … }  to train a recurrent neural network (RNN) that generates a 

sequence of predictive state representations (PSRs) {𝑍1, 𝑍2, … } . Next, we apply a temporal 

difference algorithm to the sequence of PSRs {𝑍1, 𝑍2, … } , bids {𝐵1, 𝐵2, … } , and rewards 

{𝑅1, 𝑅2, … }  to train the Q-network that simultaneously estimates the Q-function 𝑄𝜋  and the 

average conversion rate 𝜌𝜋. 

A.1. PSR Network 

The model architecture is shown in Figure 3. The model has two key modules: a recurrent 

module that computes the PSRs, and a predictive module that predicts subsequent observations 

using the PSRs. 

The recurrent module consists of 2 layers with 512 and 128 gated recurrent units (GRUs; 

Cho et al. 2014) respectively. A GRU layer, which is one variant of an RNN, processes a sequence 

of inputs {𝑥1, … , 𝑥𝑁} to compute a sequence of “internal states” {ℎ1, … , ℎ𝑁}, where 𝑥𝑛 , ℎ𝑛  are 

vectors of fixed dimensions. For each 𝑛 , the GRU layer uses ℎ𝑛−1  and 𝑥𝑛  to compute ℎ𝑛  as 

follows 

ℎ𝑛 = 𝑝𝑛 ⨀ ℎ𝑛 + (1 − 𝑝𝑛) ⨀ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊ℎ𝑥𝑛 + 𝑈ℎ[𝑞𝑛 ⨀ ℎ𝑛−1]) 

Where 𝑊ℎ, 𝑈ℎ are matrices representing the parameters of the layer, and ⨀ represents element-

wise multiplication of vectors. 𝑝𝑛, 𝑞𝑛—referred to as update and reset gates respectively—are 

computed using 

𝑝𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑝𝑥𝑛 + 𝑈𝑝ℎ𝑛−1) 

𝑞𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑞𝑥𝑛 + 𝑈𝑞ℎ𝑛−1) 
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The initial internal state ℎ0 is set equal to a vector of zeros. For a more general discussion 

of GRUs, see Cho et al. (2014). 

The first GRU layer of the recurrent module takes as input the sequence of tuples (𝑂𝑛, 𝐵𝑛) 

to compute its sequence of internal states. The output of the first layer is fed as input to the second 

layer. The sequence of internal states of the final layer in the recurrent module is the sequence of 

PSRs {𝑍1, 𝑍2, … }. 

The predictive module, at each auction 𝑛 , uses the PSR 𝑍𝑛  to predict the subsequent 

observation  �̂�𝑛+1. It consists of 2 fully connected layers with 64 and 29 units respectively. 

We train the recurrent and predictive modules simultaneously by minimizing the mean 

squared error between the predicted and realized observations. We split our dataset into training 

and validation sets containing 80% and 20% of the users respectively. Using the training set, we 

train our model using the Adam algorithm (Kingma and Ba 2014), a variant of stochastic gradient 

descent that is well suited for problems that are large in terms of data and parameters. The hyper-

parameters of the model and training process such as the number of hidden units, number of layers, 

and learning rate are selected such that they minimize the mean squared error over the validation 

set. 

A.2. Q-Network 

The Q-network estimates the Q-function 𝑄𝜋(𝑧, 𝑏) where 𝑧 is a PSR and 𝑏 is a bid amount. 

The Q-network consists of 3 fully connected hidden layers with 1024, 256, and 1 unit respectively. 

Each auction is denoted by a tuple (𝑧, 𝑏, 𝑟, 𝑧′), where 𝑧 is the PSR at the auction, 𝑏 is the 

bid, 𝑟 is an indicator for a conversion between the auction and the subsequent auction, 𝑧′ is the 

PSR at the subsequent auction. 
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While the iterative update algorithm described by Equation 9 can be implemented directly, 

to ensure numerical stability, we use two identical Q-networks: a primary and a target network 

(Van Hasselt et al. 2016). The TD-error in Equation 9 is computed using the target network, while 

the gradient is computed with respect to the primary network. The parameters of the primary 

network are updated at each iteration, while the parameters of the target network are set equal to 

those of the primary network every 1000 iterations. This approach has been shown to increase 

numerical stability (Van Hasselt et al. 2016) and is widely used in reinforcement learning 

algorithms (Hausknecht and Stone 2015). 

Similar to the PSR network’s training procedure, we split our dataset into training and 

validation sets containing 80% and 20% of the auctions respectively. The temporal difference 

algorithm is applied using the training set. The hyper-parameters of the model and training process 

are selected such that the Bellman error is minimized over the validation set. 
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Figure 1. Markov Decision Processes 

 
Note. The agent-environment interaction in a Markov decision process. Reprinted from Sutton 

and Barto (2018) 
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Figure 2. Data Generating Process 
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Figure 3. PSR Network – Model Architecture 

 
  



47 

 

 

Figure 4. DAG for Cross-sectional View of the Data 
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Table 1. List of Verticals 

Arts & Entertainment Health Pets & Animals 

Autos & Vehicles Hobbies & Leisure Real Estate 

Beauty & Fitness Home & Garden Reference 

Books & Literature Internet & Telecom Science 

Business & Industrial Jobs & Education Shopping 

Computers & Electronics Law & Government Sports 

Finance News Travel & Transportation 

Food & Drink Online Communities World Localities 

Games People & Society  
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Table 2. Summary of Campaign Data 

 Treatment Control Total 

Users 82,612 35,632 118,244 

Auctions 200,498,908 86,327,804 286,826,712 

Impressions 400,239 0 400,239 

Conversions 1101 219 1320 

 


