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Abstract

Turbulence and magnetic fields are fundamental to astrophysical and

cosmological studies, linking microscopic phenomena like cosmic rays (CRs) and

star formation to the evolution of galaxies and galaxy clusters. Despite their

significance, understanding their properties has been challenging. Traditionally

considered isotropic, recent numerical studies and in-situ solar wind measurements

have revealed the anisotropic nature of turbulence under the influence of magnetic

fields.

This thesis provides a detailed investigation—analytical, numerical, and

observational—into MHD turbulence’s anisotropy and its relevance to various

astrophysical phenomena. Guided by modern theories on MHD turbulence and fast

reconnection, we find that turbulent velocity fluctuations and their gradients are

significantly more pronounced perpendicular to the local magnetic field. We explore:

(i) the manifestation of MHD turbulence anisotropy in 21 cm striations within

spectroscopic atomic hydrogen (H I) observations; (ii) MHD turbulence damping in a

partially ionized medium; (iii) the influence of gravity, magnetic fields, radiation, and

outflow feedback on the velocity statistics of turbulent clouds; (iv) the amplification

of magnetic fields by shock wave interactions with inhomogeneous media; and (v)

the superdiffusion of cosmic rays in compressible magnetized turbulence. (i) Our

analysis shows that the anisotropy in MHD turbulence is captured in multiphase

spectroscopic observations due to velocity caustics, significantly influencing the

statistics of thin spectroscopic channels and the orientation of H I striations. The H

I striations generated by velocity caustics predominantly align with the magnetic

field. (ii) In a partially ionized medium, we demonstrate that strongly coupled ions

and neutrals exhibit similar velocity and kinetic energy spectra. Weak coupling

results in more severe turbulence damping in ions, leading to steep spectra and

differing density structures. In addition, we find large density fluctuations in ions

and neutrals and thus spatially inhomogeneous ionization fractions. As a result,

the neutral-ion decoupling and damping of MHD turbulence occur over a range of

length scales. (iii) Outflow feedback modifies the scaling of velocity fluctuations

and amplifies the velocity fluctuations by up to a factor of 7 on scales 0.01 – 0.2

pc and drives turbulence up to a scale of 1 pc. The amplified velocity fluctuations

with more solenoidal components provide more support against gravity and enhance

fragmentation on small scales, contributing to a reduction in the star formation rate.

(iv) We find the postshock turbulence is mainly driven by the strongest preshock

density contrast and follows the Kolmogorov scaling. The resulting turbulence

amplifies the postshock magnetic field reaching a maximum factor of 200, when the

initially weak magnetic field is perpendicular to the shock normal. (v) For CRs,
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we show that freely streaming CRs’ perpendicular displacement increases as 3/2

to the power of the time traveled along local magnetic field lines. This power-law

index changes to 3/4 if the parallel propagation is diffusive. We find that the CRs’

parallel mean free path decreases in a power-law relation of M−2
A , suggesting that

the suppressed diffusion in supersonic molecular clouds arises primarily due to a

large Alfvén Mach number MA.

Measuring magnetic fields in the interstellar medium (ISM) poses significant

challenges. This thesis introduces the Velocity Gradient Technique (VGT) as a

novel method for probing magnetic fields in the ISM, overcoming the limitations

of traditional approaches like polarized dust emission and Zeeman splitting.

Through 3D MHD simulations, we explore how turbulence, self-gravity, radiative

transfer, and outflow feedback influence velocity fluctuation gradients, revealing

that gradients align perpendicularly to magnetic fields under dominant turbulence

and shift to parallel alignments as self-gravity or outflow intensifies. Observational

validation in the gravitationally collapsing Serpens G3–G6 molecular cloud and the

outflow-dominant star-forming region L1551 confirms these theoretical predictions.

Significantly, (a) we apply the VGT to map the Galactic Magnetic Field (GMF) in

3D spatial space using H I emission lines and the Galactic rotational curve. Our

findings show that the magnetic field orientations determined through VGT-H I are

statistically consistent with those obtained from stellar polarization. We estimate

the GMF’s strength distribution in 3D space using the MM2 approach, revealing a

decrease in GMF strength towards the Galaxy’s outskirts. We model the Galactic

foreground polarized radiation and show that the VGT-model dust polarization

directions closely match those reported by Planck 353 GHz. (b) by applying the

VGT to 12CO (1–0), 13CO (1–0), HNC (1–0), [Ne II], and Paschen-alpha emission

lines, we map the magnetic field structure from 10 pc to 0.1 pc in the CMZ.

The VGT-measured magnetic fields show global agreement with those observed

through Planck 353 GHz and the High-resolution Airborne Wideband Camera Plus

(HAWC+) polarized dust emissions, suggesting the dynamic importance of magnetic

fields and turbulence in the Galactic Center. Utilizing the SCOUSEPY algorithm

to decompose CO line emissions into distinct velocity components, we present the

magnetic field tomography and a scheme of magnetic field configuration in the CMZ.

(c) Expanding the VGT analysis to external galaxies, particularly Seyfert galaxies

M51, NGC 1068, NGC 1097, NGC 3627, and NGC 4826, we find the magnetic

fields derived from VGT-CO in these galaxies show a remarkable correlation with

those inferred from dust polarization and synchrotron polarization, suggesting a

link between star formation and cosmic-ray generation. In the nuclear regions, a

significant radial component of the magnetic fields traced by VGT-CO highlights

potential zones of efficient molecular gas inflow or outflow, providing insights into
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the multiphase fueling mechanisms of Seyfert activity. (iv) In analogy to the VGT,

we introduce the Synchrotron Intensity Gradient (SIG) and X-ray Intensity Gradient

(XIG) as innovative approaches for mapping the magnetic field in galaxy clusters.

We apply SIG to five disturbed galaxy clusters (RXC J1314.4-2515, Abell 2345,

Abell 3376, MCXC J0352.4-7401, and El Gordo), utilizing radio data from the

Jansky Very Large Array and the MeerKAT array. The consistency of SIG with

both polarization observation and numerical validation prompts us to map magnetic

field structures in the radio halos of RXC J1314.4-2515 and El Gordo, marking the

largest-scale magnetic field measurements to date. Furthermore, the application of

XIG to Chandra X-ray observations of the relaxed Perseus, M87, Coma, and A2597

galaxy clusters reveals that magnetic fields predominantly align with the sloshing

arms in Perseus, corroborating numerical models. XIG-derived magnetic fields

exhibit hallmarks of magnetic draping around buoyant bubbles in cool-core clusters

and around merging substructures in the Coma cluster.

Mapping 3D magnetic fields, including both orientation and strength

simultaneously, is an even more formidable challenge. In this thesis, we introduce

four methods for probing the orientation and strength of three-dimensional magnetic

fields, leveraging advancements in anisotropy in MHD turbulence, dust polarization

physics, and non-linear spectroscopic mapping. These methods include (1) analysis of

anisotropic velocities in young stellar objects; (2) dust polarization fraction analysis;

(3) examination of anisotropy in spectroscopic emission lines; and (4) deployment

of a physics-informed convolutional neural network (CNN). Through analysis of 3D

compressible MHD simulations, we uncover that velocity fluctuations of young stellar

objects measured parallel to the magnetic field are minimal. The ratio between

the parallel and perpendicular velocity fluctuations has a power-law dependence

on the magnetization. Incorporating magnetic field fluctuations as raised by MHD

turbulence into the observed dust polarization enables the simultaneous retrieval of

the 3D magnetic field’s position and inclination angles. Synthetic dust emissions

from 3D MHD turbulence simulations reveal the inclination angle’s significant role

in depolarization, while the contributions from magnetic field strength and density

fluctuations are minimal.

Our exploration into the non-linear spectroscopic mapping to posi-

tion–position–velocity space illustrates that spectroscopic channel anisotropy

is affected by inclination angle, media magnetization, and plane-of-the-sky magnetic

field orientation, allowing for simultaneous estimation of the magnetic field’s incli-

nation angle and total magnetization. Utilizing these insights, we have developed

a CNN model trained on synthetic emission lines of 13CO (J = 1–0) and C18O

(J = 1–0), spanning sub-Alfvénic to super-Alfvénic conditions. We applied these
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methods to the low-mass star-forming region L1688, employing spectral emissions

and polarized dust emissions to present the first comprehensive measurement

of its 3D magnetic field. The total magnetic field strength, derived via the

Davis–Chandrasekhar-Fermi (DCF) method and the Differential Measure Analysis

(DMA) technique, is estimated at 135µG and 75 µG, respectively. Additionally,

applying the trained CNN to the L1478 molecular cloud and comparing results with

Planck 353 GHz polarization data demonstrates the CNN’s effectiveness in mapping

the plane-of-the-sky magnetic field orientation. showcasing strong concordance

between CNN-predicted orientations and observed data. This CNN model further

successfully reconstructs the 3D magnetic field topology and magnetization for the

L1478 cloud.
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2.4 Illustration of velocity crowding. Left: three constant density (n1, n2,
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the LOS (z). n1 and n3 have identical LOS velocity vlos, while n2’s

LOS velocity is larger. Right: the three clouds are mapped into PPV

space. Due to n1 and n3’s identical LOS velocities, they are crowded

into only one cloud with higher density. The cloud’s morphology gets
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2.8 Schematic of the formation of images velocity channel maps and their

comparison with velocity caustics. Panel (a): Results of the separation

of density contribution (pd) and velocity contribution (pv) from a thin

channel (p) using a non-constant 3D density field ρ from the MHD

simulations. The velocity range used for integration is indicated by

the shaded region in the top spectrum. The color bars for panels

provide the relative contributions. The left graphs show the position

of the channels relative to the average profile of the line Panel (b): The

thin channel pvc in this panel was generated using a constant density

field equal to the full volume mean density, thereby eliminating any

pre-existing density structures. The structures within the thin channel

are solely created by velocity mapping. The integration velocity range

is identical to that in panel (a). The mean magnetic field is oriented

along the vertical y−direction and thermal broadening is included. The

channel width ≈ 0.2 km/s is selected to match the GALFA-HI data. . 43

2.9 Left: 3D visualization of the multi-phase simulation’s volume density

field and magnetic field (top), as well as temperature (bottom), in PPP

space. In the highlighted square box specifically, density structures

are mostly orthogonal to the magnetic field. Right: synthetic thin

(∆v ≈ 1.5 km/s) channel maps p and their RHT-fibers. The RHT-

maps are calculated also for p’s corresponding pvc maps. The shaded

area at the top spectra indicates the velocity range used for integration. 44
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2.11 Panel (a): This panel displays the dependence of NCC on channel

width ∆v, normalized by the velocity dispersion σv. NCC values range

from -1 to 1, where 1 represents a perfect correlation, 0 indicates no

correlation, and -1 represents anti-correlation. NCC is calculated be-

tween the velocity contribution pv, thin channel maps p, column den-

sity map I, and pure velocity caustics map pvc. The column density

map I is integrated along the full LOS velocity range to erase veloc-

ity information. pRHT and pvc,RHT are the RHT-processed p and pvc
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between the pv, p, and Planck 353 GHz FIR intensity map I353 for

the GALFA-HI cloud (see Fig. 2.10). The Planck map only contains

density information in the cold phase. vlos refers to the central LOS

velocity of the channels. pv,RHT is the RHT-processed pv map. . . . . 48

3.1 Top and middle: 2D slices (taken at x = 240 cell) of ions’ (top) and

neutrals’ (middle) velocity field. The velocity maps are normalized by

the mean value. The view direction is perpendicular to the mean mag-
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3.7 Top and middle: 2D slices (taken at x = 240 cell) of ion (top) and

neutral’s (middle) density field. The density maps are normalized by

the mean value. The view direction is perpendicular to the mean mag-

netic field, which is along the vertical direction. Bottom: Spectra of

ion (red) and neutral’s (blue) density. The spectra are averaged over
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3.13 Velocity dispersion as quantified by the square root of the normalized
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4.12 Panel a: the amplitude of velocity gradients in the collapsing regions

as identified by the VGT within area A1-2 at tr ≃ 0.4 Myr, 0.6 Myr,
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were inferred from Planck 353 GHz polarized dust emission (top) and

the VGT using 12CO, 13CO, and HNC emissions. The foreground
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on corresponding integrated intensity maps. The 12CO’s contours are
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6.7 Differences and similarities of magnetic fields in different phases of
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line. The magnetic field is overlaid with the integrated [Ne II] emission
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6.10 Visualization of the decomposed 12CO (top) and 13CO (bottom). Color-

coded according to the emission line intensity peaks. . . . . . . . . . 233
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6.14 Top & Middle: Visualization of magnetic fields (red segment) inferred
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B (middle), and C (right), respectively. The magnetic fields are over-
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on 12CO and 13CO intensity maps start from the median intensity.
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ized dust emission at 353 GHz towards the CMZ. The magnetic field
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sponding intensity color maps of polarized dust emission. The 12CO’s

contours are also overlaid on the Planck maps. . . . . . . . . . . . . . 239
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sub-region A (top), B (middle), and C (bottom). . . . . . . . . . . . . 248
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6.22 Differences and similarities of magnetic fields in different gas phases

towards the M51 galaxy. Top: morphology of magnetic fields revealed

by the VGT using 12CO and HAWC+ polarization at 154 µm (Borlaff

et al. 2021). The VGT measurement is visualized by black stream-

lines and HAWC+ is represented by the colored segments. Colors

on polarization vectors present the AM of the VGT and polarization.

The magnetic field is overlaid with the HST WFC3/F814W ultravio-

let image. The black circle represents the beamwidth of observation.

Bottom: Same as the top panel, but for the magnetic field, mostly in

warm gas, revealed by VLA + Effelsberg polarization at 6.2 cm (col-

ored segments; Fletcher et al. 2011) and VGT (black streamlines). The

colorbars of background HST images are logarithmically spaced in the

range from 10−2 to 102 electrons per second. . . . . . . . . . . . . . 254

6.23 The correlation of star formation rate (SFR) and AM for the M51 galaxy.255

6.24 Same as Fig. 6.22, but for the NGC 1068 (left) and NGC 3627 (right)

galaxies. NGC 1068: the VGT uses 13CO (J = 1 - 0) emission line

(black streamlines) and HAWC+ polarization is observed at 89µm
(colored segments; Lopez-Rodriguez et al. 2020). The colorbar of the

background HST WFC3/F814W ultraviolet image is logarithmically

spaced in the range from 10−1 to 102.5 electrons per second. NGC

3627: the VGT uses 12CO (J = 1 - 0) emission line (black streamlines)

and the HAWC+ 154 µm polarization (colored segments). The mag-

netic fields are overlaid with the HSTWFC3/F814W ultraviolet images

(Lee et al. 2022). The colorbar of the HST image is logarithmically

spaced in the range from 10−6 to 106 electrons per second. . . . . . . 257
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6.25 Left: Morphology of magnetic fields revealed by the HAWC+ polariza-

tion at 89µm towards NGC 1097. The magnetic field is overlaid with

the 89 µm continuum intensity map. Colors, except the green, on po-

larization vectors represent the AM of the VGT and polarization. Dark

grey contours represent the dust lanes and the central ring observed at

89 µm, while dark blue contours mean CO structures. The colorbar of

the 89µm continuum image is uniformly spaced in the range from 0 to

0.45 Jy per pixel. Top left: A zoom-in view of the magnetic fields in

NGC 1097’s circumnuclear region, mapped with the VGT using 12CO

(J = 2 - 1) emission (black streamlines) and HAWC+ polarization at

89 µm (Lopez-Rodriguez et al. 2021) (colored segments). The magnetic

fields are overlaid onto the HST WFC3/F814W ultraviolet image (Lee

et al. 2022). Top right: a further zoom-in on the magnetic fields in the

starburst ring and the inner bar. Bottom left and right: same as the

top panel, but for the VGT (black streamlines) and VLA + Effelsberg

polarization (colored segments) observed at 3.5 cm (Beck et al. 2005).

The colorbars of background HST images are logarithmically spaced

in the range from 10−2 to 102 electrons per second. . . . . . . . . . . 259

6.26 Left: distribution of AM (between the VGT and HAWC+ polarization)

towards the starburst ring of NGC 1097. Positive AM values (i.e.,

agreement of the VGT and HAWC+) are blanked out. The colorbar

has the same range [-1, 1] as the middle panel. Middle: distribution

of HAWC+’s PM towards the same region. Positive PM values (i.e.,

tangential field) are blanked out. Right: the correlation of AM and PM

without blanking out any values. The PM is averaged over uniformly

spaced AM bins. The shadow area gives the standard deviation of the
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6.27 Morphology of magnetic fields revealed by the VGT (streamlines) using
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6.28 Distribution of AM (between the VGT and polarization) towards M51
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6.29 Distribution of AM (between the VGT and polarization) towards NGC

1068 (left; dust polarization) and NGC 3627 (right; synchrotron polar-

ization) galaxies. The background images are CO emission intensity

maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
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6.33 Left: pitch angle as a function of the distance (x-axis) to the galactic
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7.1 Numerical test of SIG. Left: comparison of the magnetic field orienta-

tion inferred from SIG (red segment) and polarization (blue segment).

Middle and right: AM of magnetic fields inferred from SIG and polar-

ization as a function of the cluster’s LOS thickness (middle) and the

beam size (right). Polarization is smoothed to match the resolution of

SIG after averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

7.2 The magnetic field orientation of the RXC J1314.4 - 2515 galaxy clus-

ter. Top: The differences and similarities of the magnetic fields mea-

sured by the two techniques (SIG and polarization) are presented. On

the top left, the morphology of the magnetic fields is revealed through

the SIG (FWHM around 25′′ or 120 kpc). On the top right, the mag-

netic field morphology is revealed through JVLA synchrotron polar-

ization at 3 GHz (FWHM approximately 25′′). Each magnetic field

segment represents the SIG (or polarization) averaged for 6 × 6 pix-

els for visualization purposes. The colors of the polarization segments

represent the AM of the SIG and polarization. The magnetic field is

overlaid on the higher resolution synchrotron emission image from the

MeerKAT survey (Knowles et al. 2022) at 1.28 GHz (FWHM around

7.6′′ or 30 kpc). The pink contours represent X-ray emission measured

by the XMM-Newton and the dotted line indicates the expected merger

axis determined by radio images. The merger axis defined by X-ray

emission’s elongation is studied accordingly. Bottom: A zoom-in view

of the magnetic field in RXC J1314.4 - 2515’s halo, indicated by the

green box in the top panel, is provided. . . . . . . . . . . . . . . . . 283

7.3 Top: Synchrotron emission image of the Abell 2345 cluster observed

with the JVLA at 1.5 GHz. The pink contours represent X-ray emis-

sion measured by the XMM-Newton and the dotted line indicates the

expected merger axis. Bottom: same as Fig. 7.2, but for the Abell

2345 cluster’s subregion E (bottom left) and W (bottom right), indi-

cated by the green boxes in the top panel. The magnetic field inferred

from the synchrotron polarization is from the JVLA observation at 1.5

GHz (FWHM approximately 30.5′′ or 110 kpc). The resolution of the

SIG is approximately 50′′ (or 180 kpc). . . . . . . . . . . . . . . . . . 285

7.4 Histograms of AM (between the SIG and polarization) towards RXC

J1314.4-2515 (left) and Abell 2345 (right). The maxima at AM = 1
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methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
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7.5 The magnetic field orientation of the Abell 3376 galaxy cluster. Top:

overall synchrotron emission intensity map from MeerKAT observation

at 1.28 GHz (FWHM approximately 7′′) of the Abell 3376 cluster.

The cyan contours represent X-ray emission obtained from the XMM-

Newton archival observations (Urdampilleta et al. 2018) and the dotted

line indicates the expected merger axis. Bottom: The magnetic field

orientation (FWHM approximately 24′′ corresponding to a physical

scale of 22 kpc), represented by white segments, in Abell 3376’s relics

(indicated by the green boxes in the top panel). . . . . . . . . . . . . 287

7.6 The magnetic field orientation of the MCXC J0352.4 - 7401 cluster

(Duchesne et al. 2021). The magnetic field orientation (white seg-

ments), superimposed on the synchrotron emission intensity map from

MeerKAT observation at 1.28 GHz (FWHM approximately 7′′), has

resolution FWHM approximately 24′′ corresponding to physical scales

of 62 kpc respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . 288

7.7 The magnetic field orientation of the El Gordo cluster. The background

emission image is from MeerKAT observation at 1.28 GHz (FWHM ap-

proximately 7′′). The SIG measurement has a resolution of FWHM of

approximately 24′′ (or 400 kpc). Each white segment represents the

SIG averaged for 6× 6 pixels for visualization purposes. The blue con-

tours represent the X-ray emission obtained from the Chandra archival

observations 2016MNRAS.463.1534B and the dotted line indicates the

expected merger axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

7.8 Cartoon illustration of magnetic field evolution in cluster merger. In

the merging of two turbulent clusters (panel A): cluster-1 and cluster-2,

the magnetic field is draped and amplified at the merger (advancing)

shock in the first phase (panel B), and then the field is stretched along

the merger axis (panel C), and finally it is further amplified by turbu-

lence generated in the cluster merger (panel D). . . . . . . . . . . . . 290
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7.9 The magnetic field orientation of the RXC J1314.4 - 2515 cluster. Panel

a: the magnetic field mapped by the Synchrotron Intensity Gradient

(SIG) technique with an FWHM of approximately 240 kpc. Panel b:

the magnetic field determined through synchrotron polarization at 3

GHz using the JVLA radio observations, with an FWHM of approx-

imately 120 kpc. The magnetic field is overlaid on the synchrotron

emission intensity map, with colors indicating the AM between the

SIG and polarization. Each (magnetic field) segment represents the

SIG (or polarization) averaged for 6×6 pixels for visualization purposes.292

7.10 Panel a: the relative angle between the POS magnetic field and merger-

axis (determined by radio observation) as a function of the distance (x-

axis) to the cluster center towards the RXCJ1314.4 - 2515 (FWHM ap-

proximately 120 kpc) and Abell 2345 (FWHM approximately 180 kpc)

galaxy clusters. The relative angle > 45◦ indicates a preferentially

perpendicular configuration, while < 45◦ suggests a parallel one. The

dashed line presents that the relative angle is 45◦. The shallower

area represents the uncertainty calculated from the standard devia-

tion. Panel b: same as panel a, but the merger axis (derived from

radio data) is rotated by ±45◦ or is determined by the X-ray map’s

elongation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

7.11 Same as Fig. 7.10, but for the clusters MCXC J0352.4 - 7401, Abell
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7.13 Left top: the predicted magnetic field morphology of the Perseus clus-

ter from XIG. The magnetic field is superimposed in the residual map

(i.e., the initial image divided by the best-fitting spherically symmetric

β-model of the surface brightness then minus one) using LIC. Left bot-

tom: the residual image of the Perseus cluster. The cluster is divided

into three sub-regions, i.e., P-A, P-B, and P-C. Right: the histogram

of global magnetic field orientation ψB for the Perseus cluster (top 1st,

red) and the histograms of magnetic field orientation ψB for the sub-

regions P-A (top 2nd, purple), P-B (top 3rd, blue), and P-C (bottom,

green) respectively. The dashed circles correspond to 4′ ≈ 80 kpc. . . 299
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7.14 Panel a: the predicted magnetic field morphology of the Perseus cluster

from SIG (left) using synchrotron emission data (right). The magnetic

field is superimposed on the intensity map with X-ray contours over-

laid. Three sub-regions P-A, P-B, and P-C correspond to the ones

highlighted in Fig. 7.13. Panel b: the histogram of global magnetic

field orientation ψB for the global Perseus cluster (top left), sub-region

P-A (top right), P-B (bottom left), and P-C (bottom right). The

dashed circle corresponds to 4′ ≈ 80 kpc. . . . . . . . . . . . . . . . . 301

7.15 Right: the distribution of the relative angle between the magnetic field

inferred from X-ray data and synchrotron emission with synchrotron

contours (at 1.75×10−3, 5×10−3, 1×10−2, 3×10−2, 5×10−2, 7×10−2,

0.1, 0.5, 1, 2 mJy/beam levels) overlaid. Bottom: the histogram of the
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7.16 The histogram of the relative angle between the magnetic field calcu-

lated from X-ray data and synchrotron data. The histogram is drawn

for each sub-region P-A, P-B, and P-C respectively, see Fig. 7.13 and

Fig. 7.14 for details of each sub-region. . . . . . . . . . . . . . . . . . 303

7.17 Left top: the predicted magnetic field morphology of the Virgo/M87

cluster from XIG. The magnetic field is superimposed in the residual

map (i.e., the initial image divided by the best-fitting spherically sym-

metric β-model of the surface brightness then minus one) using LIC.

Left bottom: the residual image of the cluster. The cluster is divided

into three sub-regions, i.e., M-A, M-B, and M-C. Right: the histogram

of global magnetic field orientation ψB for the M87 cluster (top 1st,

red) and the histograms of magnetic field orientation ψB for the sub-

regions M-A (top 2nd, purple), M-B (top 3rd, blue), and M-C (bottom,

green) respectively. The dashed circles correspond to 4′ ≈ 20 kpc. . . 304
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7.18 Top left: the predicted magnetic field morphology of the Coma cluster

center region and outer region from XIG. The magnetic field is superim-

posed in the residual map (i.e., the initial image divided by the best-

fitting spherically symmetric β-model of the surface brightness then

minus one) using the LIC. Bottom: the histograms of global magnetic

field orientation ψB for the Coma cluster’s center region (left) and outer

region (right). The red cross denotes the center R.A. = 12h59m42.67

(J2000) and Dec. = +27◦56′40.9′′ (J2000) used for the β-model fitting

in Coma-center and green cross denotes the center R.A. = 12h59m22.67

(J2000) and Dec = +27◦54′40.9′′ (J2000) used for Coma-outer. . . . . 306

7.19 The relation of AM and the distance away from the cluster center.

Negative AM implies the magnetic field tends to be tangential, while

positive AM means the magnetic field follows the radial direction. . . 308

8.1 The correlation of normalized structure function and the relative angle

between ẑzz and mean magnetic field B0B0B0. Instead of being parallel to the

magnetic field B0B0B0, ẑzz here is an arbitrary direction used for calculating

the structure-function. SF2 takes the value at 0.1 pc. . . . . . . . . . 312

8.2 The correlation of MA and v2l,⊥/v
2
l,∥ = v2l,1/v

2
l,2. The calculation is per-

formed in the global reference frame, selecting the SF2 at the scale

l ≈ 0.1 pc, below which the turbulence starts numerically dissipat-

ing. The analytical expressions are v2l,⊥/v
2
l,∥ = M

−4/3
A for MA ≤ 1 and

v2l,⊥/v
2
l,∥ = 1 for MA > 1. . . . . . . . . . . . . . . . . . . . . . . . . . 313

8.3 Illustration of the magnetic field configuration. Panel a: configuration

of the mean field ⟨BBB⟩. ⟨BBB⟩⊥ is the magnetic field projected on the POS,

i.e. x−y plane. ⟨γ⟩ is the mean inclination angle of the mean magnetic

field ⟨BBB⟩ with respect to the LOS. ⟨ϕ⟩ = ⟨ψ⟩ + π/2 is the magnetic

field’s angle relative to x-axis on the POS. Panel b: configuration of

the local total magnetic field BBB = ⟨BBB⟩+δBBB. The mean field is changed

by a perpendicular fluctuation δBBB with an angle θ. Here θ is the

angle between δBBB and the vector (i.e., δBBB sin θ) that is simultaneously

perpendicular to ⟨BBB⟩ and ˆ⟨BBB⟩ × ẑzz. Dashed black lines are within the
ˆ⟨BBB⟩−ẑzz plane, where ˆ⟨BBB⟩ and ẑ are unit vectors of ⟨BBB⟩ and zzz, respectively.316

8.4 Analytical relation Eq. 8.8 of the polarization fraction p and MA. . . 319

8.5 Histogram of the relative angle ϕoff between the magnetic field fluctu-

ation δBBB and mean magnetic field ⟨BBB⟩. The dashed line indicates the

median value. The mean inclination angle in the simulations is 90◦. . 324
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8.6 The observed pmax (top), poff (middle), and estimated sin2⟨γ⟩off (bot-

tom) as a function of the actual mean inclination angle ⟨γ⟩. The ref-

erence lines in the top two panels represent the intrinsic polarization

fraction in simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . 325

8.7 2D histogram of polarization fraction p and averaged total Alfvén Mach
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8.8 Comparison of the mean inclination angle ⟨γ⟩off/ ⟨γ⟩Ch19 (left/right)

with the real inclination angle ⟨γ⟩ of the simulation. ⟨γ⟩off is derived

in this work, while ⟨γ⟩Ch19 was proposed by Chen et al. (2019). . . . 327

8.9 Deviation of estimated inclination angle and actual inclination angle.

The upper and lower black lines represent the deviation’s maximum

and minimum, respectively. The box gives ranges of the first (lower)

and third quartiles (upper) and the orange line represents the median

value. Panel a: σ⟨γ⟩off in degrees represents the absolute difference

between ⟨γ⟩off and ⟨γ⟩. Panel b: σ⟨γ⟩Ch19
in degrees is for the absolute

difference of ⟨γ⟩Ch19 and ⟨γ⟩. . . . . . . . . . . . . . . . . . . . . . . 327

8.10 An example of the inclination angles measured for sixteen sub-regions

with size 198 × 198 cell2. Each magnetic field vector is constructed

by the POS magnetic field’s position angle (i.e., ψp + π/2) inferred

from Stokes parameters and the inclination angle of either measured

⟨γ⟩off (blue) or actual ⟨γ⟩sub (red). Note that the obtained magnetic

field is the projection along the LOS. The third axis of LOS is for 3D

visualization purposes having no distance information here. The total

intensity map Ip is placed on the POS, i.e., the x− y plane. The axis’s
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8.12 Scatter plots of minimum MA,⊥ and AM (of ⟨γ⟩off and ⟨γ⟩sub). Min-

imum MA,⊥ and AM are calculated for each 22 × 22 cell2 sub-region.
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8.13 An illustration of how magnetic field strength affects eddies’ mapping

from real PPP space to PPV space. Three isometric eddies (eddy1,

eddy2, and eddy3) have different magnetic fields (BBB1 > BBB2 > BBB3)

which are perpendicular to the LOS in PPP space. The amplitude of

velocity fluctuations for isometric eddy is anisotropic, i.e., the maxi-

mum amplitude v⊥ appears in the direction perpendicular to the local

magnetic fields. In contrast, the minimum amplitude v∥ is in the par-

allel direction. The LOS velocity vlos only consists of the turbulent

velocity v⊥, which is perpendicular to the magnetic field. For a given

amplitude of vlos = v1⊥ = v2⊥ = v3⊥, strong magnetic field induces more

significant anisotropy (i.e., v1∥ < v2∥ < v3∥, see Eq. 8.28). Three eddies

(in real PPP space; top panel) are being mapped to the PPV space

(bottom panel) with identical channel width ∆v (yellow box). The

observed intensity fluctuation corresponding to eddy1’s case is more

anisotropic (l1∥/l
1
⊥ > l2∥/l

2
⊥ > l3∥/l

3
⊥). . . . . . . . . . . . . . . . . . . . 334

8.14 An illustration of how inclination angle affects the mapping of eddies

from the real space to the PPV space. Three isometric eddies (eddy1,

eddy2, and eddy3) have identical magnetic fields strength (|BBB1| =

|BBB2| = |BBB3|). BBB1 is perpendicular to the LOS (γ = π/2), BBB2 is

inclined to the LOS with angle γ, and BBB3 is parallel to the LOS

(γ = 0). The LOS velocity vlos = v⊥ sin γ + v∥ cos γ, in which v⊥
and v∥ are components of turbulent velocity perpendicular and paral-

lel to the magnetic field, respectively. For a given amplitude of vlos,

eddy1 (i.e., γ = π/2) is more anisotropic, as v⊥ > v∥ (see Eq. 8.28) and

v1∥/v
1
⊥ > v3∥/v

3
⊥ > v3∥/v

3
⊥. Three eddies (in real PPP space; top panel)

are being mapped to the PPV space (bottom panel) with identical

channel width ∆v (yellow box). The observed intensity fluctuation cor-

responding to eddy1’s case is more anisotropic (l1∥/l
1
⊥ > l2∥/l

2
⊥ > l3∥/l

3
⊥).

Different from Fig. 8.13, this difference in anisotropy is induced by the

inclination angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

8.15 An illustration of the variation of isotropy degree with respect to ve-

locity channel width ∆v and MA at γ = π/2 considering only Alfvénic

wave. Extracted from Kandel et al. (2016). . . . . . . . . . . . . . . . 341
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8.16 Diagram of the SFA procedure to trace three-dimensional magnetic

fields. Step a: choosing a velocity channel with width ∆v. Step b: cal-

culating the structure function D(R, ϕ,∆v) at a given distance R and

position angle ϕ. Repeating this step by varying ϕ from 0 to 2π. Step c:

plotting the relation of D(R, ϕ,∆v) and ϕ. The angle ϕ corresponding

to maximum D(R, ϕ,∆v) gives the direction perpendicular to the POS

magnetic field. The angle ϕ corresponding to minimum D(R, ϕ,∆v)

gives the direction parallel to the POS magnetic field. Step d: finding

the isotropy degree iso(γ,MA,∆v) from step c. Plotting the relation of

iso(γ,MA,∆v) and ∆v by repeating steps a-c for various ∆v. Solving

the value of γ and MA from the maximum and minimum values of

iso(γ,MA,∆v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

8.17 The velocity channel maps of incompressible simulations MA = 0.8

(top) and MA = 3.2 (bottom). We use normalized velocity channel

width ∆v = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

8.18 Top: The correlation of the structure function D(R, ϕ,∆v) and posi-

tion angle ϕ. We use incompressible simulation MA = 0.8 and choose

∆v = 0.1, R = 10 pixels, and γ = π/2. Bottom: The histogram of the

POS magnetic field direction in IAU convention. . . . . . . . . . . . . 347

8.19 The correlation of isotropy degree with respect to normalized velocity

channel width ∆v. The incompressible simulation MA = 0.8 is used

here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

8.20 The correlation of isotropy degree with respect to inclination angle γ.

The incompressible simulationMA = 0.8 is used here. The dashed lines

represent the fitting model iso(γ,MA,∆v) = a′1 + a′2 cos γ + a′3 cos
2 γ. 349

8.21 The correlation of isotropy degree with respect to normalized velocity

channel width ∆v and γ = π/2. Compressible simulations Ms ≈ 0.6

are used here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

8.22 The correlation of isotropy degree with respect to MA. The compress-

ible simulationsMs ≈ 0.6 and γ = π/2 are used here. The dashed lines

represent the fitting model iso(γ,MA,∆v) = b′1 + b′2M
2/3
A . . . . . . . 351
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8.23 The 1st row: The raw velocity channel maps (left and middle) and

intensity structure functions (right) of compressible simulation Ms =

0.66 and MA = 0.12. The 2nd row: The density contribution extracted

by VDA in the raw velocity channel maps and its intensity structure

functions. The 3rd row: The velocity contribution extracted by VDA in

the raw velocity channel maps and its corresponding intensity structure

functions. The 4th row: The pure velocity caustic maps, i.e., setting

a uniform density field when generating the PPV cube, and their cor-

responding intensity structure functions. The mean magnetic field is

along the vertical direction. . . . . . . . . . . . . . . . . . . . . . . . 352

8.24 The correlation of isotropy degree and normalized velocity channel

width ∆v. We make a comparison for the raw velocity channel (i.e.,

using real density field), pure velocity caustic (i.e., uniform density

field), and the velocity contribution extracted by VDA. The compress-

ible simulation Ms ≈ 0.6, MA ≈ 0.12, and γ = π/2 is used. . . . . . . 353

8.25 The correlation of isotropy degree, MA, and cos γ. The dotted sym-

bol denotes the raw data points (blue), which are fitted with a model

iso(γ,MA,∆v) = a+b cos γ+c cos2 γ+d cos γM
2/3
A +eM

2/3
A +f cos2 γM

2/3
A .

The upper and lower layers give the fitting uncertainty. Compressible

simulations Ms ≈ 0.6 are used. . . . . . . . . . . . . . . . . . . . . . . 354

8.26 Top: The AM of measured Bpos and real Bpos in cases of different

inclination angle γ (x-axis). Bottom: The AM of measured γ and

real γ (x-axis). The color of the point represents the measured MA

for the simulation Ms ≈ 0.89, MA ≈ 0.54. The circular symbol is

the measured value and the triangular symbol gives the uncertainty

coming from the parameters used in fitting the model. . . . . . . . . . 357

8.27 The correlation of isotropy degree with respect to velocity channel

width ∆v and γ = π/2. Compressible simulations Ms ≈ 11.0 are used

here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

8.28 Top: Projected velocity maps of Alfvén (left), fast (middle), and slow

(right) modes in conditions of MA = 0.52 and Ms = 2.17. The

mean magnetic field is along the vertical direction. Bottom: Projected

structure-functions of Alfvén (left), fast (middle), and slow (right) ve-

locity modes. The structure-functions are calculated in the global ref-

erence frame. All plots are on a scale of 50 pixels from center to
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8.29 Illustration of how the observed intensity structures in channel map

regulated by MA and γ. Within all three panels, these intensity struc-

tures elongate along the POS magnetic field direction where l∥ > l⊥.

Structures 1 and 2, depicted in panels (a) and (b), are projected onto

the POS with identical inclination angles γ1 = γ2, yet exhibit differ-

ent magnetizations with M−1
A,1 > M−1

A,2. Notably, the anisotropy ob-

served, represented as l∥/l⊥, in the weakly magnetized Structure 2 is

less pronounced than in Structure 1. Structure 2 is less straightened
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Chapter 1

Introduction

The interstellar medium (ISM), the substance filling the space between stars, is

crucial in astrophysics, serving as the backdrop for processes such as star formation,

cosmic ray propagation, and the evolution of galaxies. Among the key elements

shaping these astrophysical phenomena are turbulence and magnetic fields (Larson

1981a; Armstrong et al. 1995; Chepurnov & Lazarian 2010; Crutcher 2012; Han

2017; Xu & Zhang 2017b; Ha et al. 2021). Their influence permeates the ISM,

affecting a broad range of processes. The complex interaction between turbulent

magnetic fields and the ISM has significant implications for modeling the Galactic

foreground polarization (Hu et al. 2020d; Lu et al. 2020), understanding star

formation (Mac Low & Klessen 2004a; McKee & Ostriker 2007a; Li & Henning

2011; Federrath & Klessen 2012), and studying the transport of cosmic rays (Fermi

1949; Jokipii & Parker 1969; Bell 1978; Caprioli & Spitkovsky 2014; Brunetti &

Jones 2014; Xu & Lazarian 2018; Lazarian & Xu 2023). Similarly, in the intracluster

medium (ICM)—the hot, diffuse gas residing within galaxy clusters—turbulence and

magnetic fields play pivotal roles (Ferrari et al. 2008; Carilli & Taylor 2002; Feretti

et al. 2012). These components are instrumental in shaping the dynamics and

thermodynamics of the ICM, impacting processes such as cluster formation, galaxy

evolution, and the distribution of hot gas (Schuecker et al. 2004; Churazov et al.

2012; Zhuravleva et al. 2014; Walker et al. 2015). The presence of turbulence in the

ICM can drive gas mixing, distribute metals produced by supernovae, and influence

the thermal balance of the gas, affecting the cooling rates and the consequent star

formation rates within galaxies in the cluster (Markevitch & Vikhlinin 2007; Zuhone

& Roediger 2016). Given their importance, this thesis investigates the magnetic

fields and turbulence from interstellar clouds to galaxies and galaxy clusters,

employing a range of analytical, numerical, and observational approaches. We focus

on the properties of turbulence within partially ionized media (Hu et al. 2024c) and
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star-forming regions (Hu et al. 2022a), exploring their implications for magnetic field

amplification (Hu et al. 2022f) and CR diffusion (Hu et al. 2022e). Additionally, we

introduce novel methods for magnetic field measurement in both the ISM and ICM,

including the Velocity Gradient Technique (VGT; González-Casanova & Lazarian

2017; Lazarian & Yuen 2018c; Hu et al. 2018), Synchrotron Intensity Gradient (SIG;

Lazarian et al. 2017; Hu et al. 2024b), and X-ray Intensity Gradient (XIG; Hu et al.

2020b). Addressing the challenge of mapping 3D magnetic fields, we developed

innovative approaches such as velocity anisotropy analysis (Hu et al. 2021c,b), dust

polarization analysis (Hu & Lazarian 2023c), and a Convolutional Neural Network

(CNN; Hu et al. 2024a) model.

1.1 MHD turbulence in astrophysics

1.1.1 Anisotropy in MHD turbulence

Our understanding of MHD turbulence has undergone significant changes over

the past few decades. MHD turbulence was initially considered to be isotropic

despite the existence of magnetic fields (Iroshnikov 1963; Kraichnan 1965). However,

numerous numerical studies (Montgomery & Turner 1981; Shebalin et al. 1983;

Higdon 1984; Kraichnan 1965; Montgomery & Matthaeus 1995; Cho & Vishniac

2000; Maron & Goldreich 2001; Cho et al. 2002; Kowal & Lazarian 2010; Hu et al.

2021b) and in situ measurements of solar wind (Wang et al. 2016; Matteini et al.

2020; Duan et al. 2021) have revealed that the turbulence is anisotropic, rather than

isotropic, when the effect of magnetic fields is non-negligible.

The foundational work on anisotropic MHD turbulence, initiated by Goldreich

& Sridhar (1995), focused on the trans-Alfvénic regime where the Alfvén Mach

number MA ≈ 1. They introduced the ′′critical balance′′ condition, leading to the

insight that turbulent eddies elongate along the mean magnetic field. Further study

of fast reconnection (Lazarian & Vishniac 1999), extended the applicability of the
′′critical balance′′ condition to the local magnetic field frame and across different

regimes, including the sub-Alfvénic (MA < 1) and super-Alfvénic strong turbulence

regimes. In Chapter 2 of this thesis, we expand upon these findings by deriving

scaling relations for velocity fluctuations parallel and perpendicular to the magnetic

field, demonstrating their ratio’s power-law dependence on the Alfvén Mach number

MA in sub-Alfvénic turbulence.

The anisotropy in MHD turbulence has profoundly altered our comprehension

of a broad scope of astrophysical phenomena. Building on this foundation, we delve
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into various astrophysical problems, harnessing the insights gained from the study of

MHD turbulence’s anisotropic nature.

1.1.2 Nature of striation in 21 cm channel maps

Neutral hydrogen (HI) is the most abundant element in the universe, providing

crucial information about galaxies’ structure and evolution (Cox & Reynolds 1987;

HI4PI Collaboration et al. 2016; Peek et al. 2018). In our Galaxy, studying the

physical nature of HI intensity structures is essential to understanding the ISM

(Dickey & Lockman 1990), star formation processes (Mac Low & Klessen 2004a;

McKee & Ostriker 2007a; Crutcher 2012), chemical evolution (Heckman et al. 1989;

Wakker & van Woerden 1997; Hollenbach & Tielens 1999), and Galactic dynamics

(Mihalas & Binney 1981; Kulkarni & Heiles 1988; Elmegreen & Scalo 2004).

The study of HI in astrophysics typically employs Position-Position-Velocity

(PPV) cubes, where the sky coordinates of Position-Position are complemented with

Doppler shift information in Velocity. The HI observation is commonly analyzed by

slicing PPV cubes to create channel maps. Studies by Green (1993) and Stanimirovic

et al. (1999) have shown that channel maps of the Milky Way and Small Magellanic

Cloud respectively exhibit power-law statistics. The observed power spectrum and its

variation with the thickness of the channel maps were interpreted as a consequence of

HI’s non-linear spectroscopic mapping from Position-Position-Position (PPP) space

to PPV space (Lazarian & Pogosyan 2000). In the process of this mapping, HI clouds

with different line-of-sight (LOS) positions but similar LOS velocities can be sampled

into the same location in PPV space. This causes the HI’s intensity distribution in

PPV space to appear crowded, morphologically distorted, and statistically modified.

This phenomenon, called velocity crowding, is significant in ISM that is known to be

turbulent (Armstrong et al. 1995; Chepurnov & Lazarian 2010; Xu & Zhang 2017b;

Ha et al. 2022; Yuen et al. 2022).

Lazarian & Pogosyan (2000) developed the theory describing the velocity

crowding effect and demonstrated that its significance is linked to the thickness of

the channel map. In thin channels (i.e., with high-velocity resolution), the observed

intensity structures of HI are significantly distorted. These intensity distributions are

primarily created by velocity crowding, so their statistics are controlled by velocity

rather than density statistics. The subsequent numerical studies (Esquivel et al.

2003; Chepurnov & Lazarian 2009; Padoan et al. 2009) confirmed the theoretical

predictions. On the other side, it is well known that MHD turbulence is anisotropic,

with turbulent eddies elongated along the magnetic fields (Goldreich & Sridhar 1995;

Lazarian & Vishniac 1999; Federrath 2016; Tritsis et al. 2018; Beresnyak & Lazarian
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2019; Beattie & Federrath 2020). This anisotropy is imprinted in the velocity

crowding so that the intensity structures in thin channels are striated along the

magnetic fields, denoted as HI striations. The theory of this effect was elaborated

in Kandel et al. (2016) with anisotropies induced by three major MHD modes,

solenoidal Alfvén mode, and compressive slow and fast modes, quantified (see also

Yuen et al. 2023).

The nature of striations in HI channel maps remains a hotly debated subject

(Clark et al. 2019; Yuen et al. 2019a; Peek & Clark 2019; Kalberla & Haud 2020;

Yuen et al. 2021; Kalberla & Haud 2023). The controversy involves the applicability

of the theory of Lazarian & Pogosyan (2000) to multiphase HI, where both cold

and warm phases are present (McKee & Ostriker 1977). In particular, according to

Clark et al. (2019), the alignment in thin channel maps results from the alignment

of cold-density filaments with the magnetic field, while the effect of velocity caustics

is negligible. The overlapping correlation of unsharp-masked GALFA-HI data (Peek

et al. 2018) and far-infrared (FIR) Planck observations (Planck Collaboration et al.

2020a) was employed to support this interpretation in Clark et al. (2019). However,

the statistical significance of the correlation between HI and Planck was assessed

using an un-normalized parameter. It was shown in Yuen et al. (2019a) that after

a proper normalization was introduced, this correlation is insignificant. In contrast,

according to Lazarian & Yuen (2018c); Yuen et al. (2019a); Hu et al. (2020c); Lu

et al. (2020); Yuen et al. (2021), the striation arises from the anisotropy of velocity

fluctuations in MHD turbulence.

In Chapter 2, we attempt to resolve the controversy above by exploring two

approaches. The observational one separates channel maps’ velocity and density

contributions and evaluates their relative significance. This approach has already

been explored in (Yuen et al. 2021) where the Velocity Decomposition Algorithm

(VDA; Yuen et al. 2021) was introduced and successfully applied to GALFA-HI data.

The other way is to analyze the synthetic observations obtained with multi-phase

HI simulation and explore where the Lazarian & Pogosyan (2000) theory describing

velocity crowding is applicable to describing channel maps. In Chapter 2, we present

a synergy of the approaches by analyzing thin channel maps obtained with synthetic

observations of multi-phase HI, and applying the VDA both to these synthetic and

actual GALFA-HI data. Throughout this thesis, we use the term ”velocity caustics”

to refer to HI striations that arise from turbulent velocity crowding. Notably, this

term was previously used in the studies of cosmological Large Scale Structure to

describe the enhancements of observed densities in the Hubble Flow as a function of

redshift (Diemand et al. 2007; Vogelsberger et al. 2009).
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1.1.3 Turbulence in partially ionized medium

To date, extensive numerical studies have focused on the properties of MHD

turbulence in a fully-ionized single-fluid regime (Cho et al. 2002; Cho & Lazarian

2003; Kowal et al. 2007; Burkhart et al. 2013; Federrath 2013a; Zhang et al. 2016;

Kunz et al. 2016; Hu et al. 2021c; McKee & Stone 2021; Hu et al. 2022a). However,

the multiphase ISM has a wide range of ionization fractions (Spitzer 1978; McKee

1989; Draine 2011; Meyer et al. 2014; Pineda et al. 2021), and thus MHD turbulence

should be considered in two fluids, i.e., ionized and neutral fluids. In a weakly

ionized medium, at large scales, the single-fluid treatment is valid when ions and

neutrals are strongly coupled via their frequent collisions. At scales smaller than the

neutral-ion decoupling scale, the collisional coupling of ions and neutrals becomes

weak and neutrals start to decouple from ions. The coupling state between ions

and neutrals can significantly affect the dynamics of MHD turbulence and result in

damping of its energy cascade (Braginskii 1965; Langer 1978; Zweibel & Josafatsson

1983; Balsara 1996).

MHD turbulence in partially interstellar phases regulates many key astrophysical

processes and phenomena, such as star formation (Mestel & Spitzer 1956; Nakano &

Tademaru 1972; Mouschovias & Spitzer 1976; Mouschovias 1979; Lizano & Shu 1989;

Mac Low & Klessen 2004a; McKee & Ostriker 2007a; McKee et al. 2010; Federrath

& Klessen 2012; Xu & Lazarian 2020a; Hu et al. 2022a), linewidth difference between

ions and neutrals (Li & Houde 2008; Li et al. 2010; Xu et al. 2015), density filament

formation (Xu et al. 2019b), cosmic ray propagation (Xu et al. 2016; Plotnikov

et al. 2021; Xu & Lazarian 2022a; Sampson et al. 2023), turbulent dynamo (Xu &

Lazarian 2016; Xu et al. 2019a; Brandenburg et al. 2019), injection of turbulence

in very local ISM (Xu & Li 2022), heating of solar chromosphere (Shelyag et al.

2016). In view of this importance, there has been significant effort in studying MHD

turbulence in the presence of neutrals. Earlier analytical studies were mainly focused

on linear MHD waves in a weakly ionized medium and their ion-neutral collisional

damping (Kulsrud & Pearce 1969; Ferriere et al. 1988; Balsara 1996; Khodachenko

et al. 2004; Forteza et al. 2007; Zaqarashvili et al. 2011; Mouschovias et al. 2011).

However, unlike MHD waves, MHD turbulence is highly non-linear and dynamical

(Goldreich & Sridhar 1995; Lazarian & Vishniac 1999). In a compressible medium,

it consists of energy cascades of three fundamental modes (Alfvén, fast, and slow),

rather than a collection of linear MHD waves (Cho & Lazarian 2003). The effects of

ion-neutral collisions and the resulting damping of the cascade of compressible MHD

turbulence were analytically investigated in Lithwick & Goldreich (2001); Lazarian

et al. (2004); Xu et al. (2015, 2016); Xu & Lazarian (2017b). In addition to the local

physical conditions, the properties of MHD turbulence and turbulence parameters
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are important for determining the damping effect. With the recent development in

theories, simulations, and observations of MHD turbulence (Beresnyak & Lazarian

2019), our understanding of the dynamics and scaling properties of MHD turbulence

has been significantly improved. Along the energy cascade of MHD turbulence,

its anisotropy increases with decreasing length scales (Goldreich & Sridhar 1995;

Lazarian & Vishniac 1999; Cho & Vishniac 2000; Cho et al. 2002). The ambipolar

diffusion scale derived using the wave description of MHD turbulence or isotropic

turbulence scaling cannot provide a proper estimate of the damping scale of MHD

turbulence (Xu et al. 2015). The actual ambipolar diffusion scale, i.e., ion-neutral

collisional damping scale, can be smaller due to the turbulence. In addition,

unlike infinitesimal perturbations around an equilibrium state for MHD waves,

super-Aflvénic and super-sonic turbulence in neutral-dominated cold interstellar

phases can induce magnetic and density fluctuations much larger than their mean

values (Federrath & Klessen 2012). The magnetic field and density inhomogeneity

significantly complicate the analysis of the damping of MHD turbulence.

Simulating two-fluid MHD turbulence is more challenging than single-fluid

MHD simulations due to the high Alfvén speed of ions at low ionization fractions,

which requires a much smaller time step. To address this issue, the ”heavy-ion

approximation” (HIA) has been adopted to accelerate explicit two-fluid MHD

simulations (Oishi & Mac Low 2006; Li et al. 2006; McKee et al. 2010). This

approach increases the mass of ions and reduces the ion-neutral drag coefficient γd
(Draine et al. 1983; Shu 1992) accordingly. However, for simulating MHD turbulence

in a weakly ionized medium, the HIA approximation may raise uncertainties

(Ballester et al. 2018; Tilley & Balsara 2010). The single-fluid treatment used in,

e.g., O’Sullivan & Downes (2006, 2007) for numerical modeling of MHD turbulence

in a weakly ionized medium cannot fully capture the two-fluid effects in the weakly

coupled regime (Tilley & Balsara 2010; Xu et al. 2016). Despite these challenges,

numerical methods are crucial for testing theories of two-fluid MHD turbulence

and studying ion-neutral collisional damping in an inhomogeneous medium. 3D

simulations of two-fluid MHD turbulence with the RIEMANN code (Balsara 1998)

have been carried out by Tilley & Balsara (2010); Meyer et al. (2014). These studies

show differences in the turbulent energy spectra of ions and neutrals. The persistence

of the energy cascade of Alfvén modes on scales smaller than the amplipolar diffusion

scale calculated using the wave description of MHD turbulence (Burkhart et al.

2015b) suggests that the damping of MHD turbulence is different from the damping

of MHD waves.

In Chapter 3.1, we use 3D two-fluid MHD simulations to test the theoretical

models developed by Xu et al. (2015, 2016) and study the properties of MHD
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turbulence in various ion-neutral coupling regimes in the presence of turbulence-

induced density inhomogeneities. We perform the two-fluid MHD turbulence

simulations using MHD code Athena++ (Stone et al. 2020a), updated using the

Kokkos framework (denoted as AthenaK). The code utilizes IMEX integrators

(Pareschi & Russo 2005) to enable high-order (in time) implementation of ion-

neutral drag terms, which allows for higher accuracy and stability than operator-split

methods. To reduce the computational cost, we consider a moderately low ionization

fraction. Different regimes of ion-neutral coupling are achieved by varying the

numerical value of γd. To evaluate the limitations of this approach, we also carry

out simulations with the same γdρi but a lower ionization fraction, where ρi is the

ion mass density.

1.1.4 Turbulence in star-forming region

Understanding how stars form requires knowledge of the interplay between

turbulence, magnetic fields, self-gravity, and outflow feedback within molecular

clouds and star-forming sub-regions. In the multi-phase ISM (Ferrière 2001, 2020),

turbulence permeates over a extensive range of length scales being either nearly

incompressible or highly compressive (Armstrong et al. 1995; Heyer & Brunt 2004;

Federrath et al. 2010; Chepurnov & Lazarian 2010; Xu & Zhang 2017b; Lee & Lee

2019; Federrath et al. 2021). In particular, turbulence can both provide global

support against gravitational collapse on the scales of molecular clouds (Elmegreen

1993; Padoan 1995; Klessen et al. 2000) and produce local density fluctuations

serving as seeds of star formation (Mac Low & Klessen 2004b; Krumholz & McKee

2005; McKee & Ostriker 2007b). Magnetic fields, however, uni-directionally work

against the cloud being gravitationally contracted (Federrath & Klessen 2012; Xu &

Lazarian 2020b).

Moreover, self-gravity can alter turbulence and magnetic field statistics. For

instance, gravitational collapse produces a shallower density power spectrum (Kim

& Ryu 2005; Burkhart et al. 2015a; Pingel et al. 2018; Chira et al. 2019) and drives

small-scale turbulence (Nakamura & Li 2007; Klessen & Hennebelle 2010; Krumholz

& Burkhart 2016). It may also shape a weak magnetic field to be hourglass-like

(Ewertowski & Basu 2013; Le Gouellec et al. 2019). Moreover, stellar radiation and

outflow feedback may drive supersonic turbulence (Carroll et al. 2009), reduce the

star formation rate by about a factor of ∼ 2, and shift the initial mass function

(IMF) to lower masses by a factor of ∼ 3 (Federrath et al. 2014a; Mathew &

Federrath 2021; Grudić et al. 2021). However, the effects of self-gravity and outflows

on the statistical properties of turbulence have not been studied in much detail. As
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density fluctuations alone fail to distinguish between fossil and active turbulence,

velocity fluctuations are more direct and dynamically important measurements of

turbulence (Esquivel et al. 2003), which are the focus of Chapter 3.2.

The structure function (SF) is one of the most commonly used statistical

tools to access the properties of velocity fluctuations. For nearly incompressible

turbulence, such as in the diffuse ISM, velocity fluctuations follow Kolmogorov’s

vℓ ∝ ℓ1/3 scaling, where ℓ denotes the scale of interest. Consequently the second-order

SF appears as a power law ∼ ℓ2/3 (Cho & Lazarian 2003; Qian et al. 2018; Hu

et al. 2021d; Xu & Hu 2021a). The power law, however, may change to ∼ ℓ1 for

supersonic, highly-compressible turbulence (Kritsuk et al. 2007; Schmidt et al.

2009; Federrath et al. 2009, 2010; Kowal & Lazarian 2010; Konstandin et al. 2012;

Federrath et al. 2021). In addition, in a self-gravitating medium, infall motions

induced by gravitational collapse and outflow feedback from star formation can

introduce extra velocity fluctuations. These effects may leave an imprint on the SF

by changing its amplitude and/or slope. Therefore, one may be able to use the SF to

obtain information about the structure and/or the evolution of star-forming regions.

In particular, stellar feedback, such as stellar winds and supernova explosions, inject

turbulent kinetic energy and replenish the turbulence (Nakamura & Li 2007; Hansen

et al. 2011; Federrath et al. 2014a; Federrath 2015). The turbulence amplified

by outflow feedback could provide extra support against gravity and enhance

fragmentation on small scales. Chapter 3.2 aims at determining the role of gravity

and stellar outflow feedback for turbulence. We use a series of three-dimensional,

MHD simulations of star cluster formation including self-gravity, turbulence,

magnetic fields, stellar radiative heating, and outflow feedback. These simulations

were developed by Mathew & Federrath (2021).

1.1.5 Magnetic field amplification by turbulent dynamo

Shock waves, such as supernova blast waves, the heliospheric termination shock,

and fast shocks in the ISM are crucially and extensively involved in a variety of

astrophysical processes (McKee & Cowie 1975; Seab & Shull 1983; Reames 1999;

Smith & Rosen 2003; Stone et al. 2005; Giacalone & Jokipii 2007). For instance,

the high-density contrast and compressed filaments created by supersonic shocks in

molecular clouds serve as the nurseries for new stars (Mac Low & Klessen 2004a;

McKee & Ostriker 2007a; Mocz & Burkhart 2018; Beattie et al. 2021; Hu et al.

2021a). The supernova shocks are responsible for accelerating charged particles

to high energies via the most accepted mechanism of diffusive shock acceleration

(Sonnerup 1969; Krymskii 1977; Bell 1978; Blandford & Ostriker 1980; Achterberg
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2000) or its combination with shock drift acceleration (see Xu & Lazarian 2022c).

However, a weak magnetic field 5 µG as expected in the ISM (see Crutcher 2004) is

not sufficient to confine and accelerate Galactic cosmic rays to Pev energies (Lagage

& Cesarsky 1983).

Magnetic field amplification is crucial for understanding the acceleration of

cosmic rays (Urošević et al. 2019; Marcowith et al. 2020; Xu & Lazarian 2022c).

Although the interstellar magnetic fields can be amplified by shock compression, it

alone cannot explain the observed magnetic field strength on the order of 100µG
behind a young supernova blast wave (Völk et al. 2005; Bamba et al. 2003; Berezhko

et al. 2003; Ressler et al. 2014). In particular, X-ray and radio observations of the

supernova remnant Cassiopeia A revealed that the magnetic field can be amplified

by a factor of ≈ 100 compared with those in ambient ISM (Bell 1977; Anderson et al.

1995; Anderson & Rudnick 1995; Hwang et al. 2000; Stage et al. 2006; Patnaude

& Fesen 2009). Such a substantial enhancement of magnetic fields was earlier

considered as a result of the Bell mechanism, which proposed that cosmic ray’s

streaming induces the instability of reacting current in background plasma and

amplifies the magnetic field (Bell 2004, 2005; Reville & Bell 2013; van Marle et al.

2018).

Supernova shocks in the Galactic disk propagate in a highly inhomogeneous

medium and can interact with dense circumstellar clouds (van den Bergh & Dodd

1970; Hwang et al. 2000), where the density spectrum is non-Kolmogorov and

characterized by small-scale large density contrasts (Kowal et al. 2007; Lazarian

2009; Hennebelle & Falgarone 2012; Xu & Zhang 2017a, 2020). Naturally, the

amplification of magnetic fields takes places via the turbulence driven by the shock

and density inhomogeneous’ interaction in both preshock and postshock regions

(Beresnyak et al. 2009; Drury & Downes 2012; Mizuno et al. 2014; Xu & Lazarian

2017a). Pre-shock turbulent dynamo was numerically studied in del Valle et al.

(2016), where the cosmic ray precursor interacts with upstream density fluctuations.

Here we focus on the post-shock turbulent dynamo, and the turbulence is driven

by the interaction of the shock with upstream density fluctuations. When shock

interacts with preexisting density inhomogeneities, the shock front ripples, causing

considerable vorticity in the downstream fluid (Balsara & Kim 2005; Giacalone &

Jokipii 2007; Fraschetti 2013; Inoue et al. 2013). The postshock magnetic field is

amplified by the vorticity-driven turbulence via the (nonlinear) turbulent dynamo

(Xu & Lazarian 2016). Note in Chapter 3.3, turbulence particularly refers to

turbulent velocity fluctuation.

The turbulent dynamo in the post-shock region has been predominantly

investigated by a number of studies using 1D (Dickel et al. 1989) or 2D MHD
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simulations (Giacalone & Jokipii 2007; Inoue et al. 2009; Guo et al. 2012; Fraschetti

2013; Mizuno et al. 2014). It was shown that turbulent dynamo could amplify the

postshock magnetic field by a factor of ∼ 100. The magnetic field’s morphology in 2D

simulations, however, is different from the one in more realistic 3D simulations, which

was recently investigated by Inoue et al. (2013) and Ji et al. (2016). The 3D studies

adopted a Kolmogorov spectrum for the preexisting density fluctuations, which is

observed in the warm diffuse ISM (Armstrong et al. 1995; Chepurnov & Lazarian

2010). For supernova shocks propagating through the highly inhomogeneous

medium, a shallow density spectrum is widely observed (Stutzki et al. 1998;

Deshpande et al. 2000; Swift 2006; Lazarian 2009; Hennebelle & Falgarone 2012; Xu

& Zhang 2017a; Pingel et al. 2018; Hu et al. 2020a; Xu & Zhang 2020). The effect

of preshock shallow density spectrum on driving postshock turbulence and turbulent

dynamo has not been carefully studied. Motivated by this observational fact, in

Chapter 3.2, we investigate the post-shock magnetic field amplification by using 3D

MHD simulations of a planar shock wave that propagates in density fluctuations

with a shallow density spectrum. Specifically, the preshock density fluctuations are

limited to only large scales (i.e., wavenumber k < 10) for the convenience of studying

turbulent cascades to smaller scales. Also, to focus on the effect of preshock density

inhomogeneities on post-shock turbulence and turbulent dynamo, we do not consider

preexisting preshock velocity fluctuations. In particular, we will numerically test

the nonlinear turbulent dynamo theory developed by Xu & Lazarian (2016) in the

context of shocks. It considers the magnetic feedback on turbulence and can be

generally applied to studying magnetic field amplification in diverse astrophysical

processes. Xu & Lazarian (2016)’s theory explains the inefficient dynamo growth

seen in simulations (Cho et al. 2009) and has been previously tested with numerical

simulations of magnetic field amplification during galaxy cluster formation and first

star formation (Steinwandel et al. 2021; Stacy et al. 2022).

1.1.6 Superdiffusion of cosmic rays in compressible MHD

turbulence

Diffusive propagation of CRs is a fundamental topic in the analysis of their origin

(Kulsrud & Pearce 1969; Skilling 1975; Giacalone & Jokipii 1999; Schlickeiser

2002; Blasi & Amato 2019; Fornieri et al. 2021). The diffusion also affects various

astrophysical processes, e.g., stellar modulation for exoplanets (Tabataba-Vakili

et al. 2016; Rodgers-Lee et al. 2020), heating and ionization in molecular clouds

(Schlickeiser et al. 2016; Ceccarelli et al. 2011), driving galactic winds (Wiener

et al. 2017; Krumholz et al. 2020), and shock acceleration (Jokipii 1987; Kirk et al.
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1996; Perri & Zimbardo 2012; Xu & Lazarian 2022c). In a magnetized medium, as

magnetic fields constrain CRs’ motion, the propagation parallel and perpendicular

to the magnetic fields are very different.

The fluctuations of turbulent magnetic fields affect the CRs’ propagation along

the magnetic field, which introduces pitch-angle scattering and diffusive propagation

along the magnetic field (Jokipii 1966; Bieber et al. 1996; Qin et al. 2002). In

addition, CRs can be reflected by magnetic mirrors (Cesarsky & Kulsrud 1973). It

was shown in Lazarian & Xu (2021) (hereafter LX21) that bouncing among magnetic

mirrors results in the diffusive propagation parallel to the local mean magnetic field.

This is a new type of CR diffusion that was termed in LX21 ′′mirror diffusion′′.

The textbook picture of CRs’ propagation considers a stochastic magnetic field

(Jokipii 1966, 1967; Matthaeus et al. 1990). The random magnetic lines result

in CRs’ trajectories spread across the mean magnetic field, as CRs diffuse in the

direction normal to the mean field (Jokipii & Parker 1969), and this effect dominates

the propagation in the direction perpendicular to the mean magnetic field. As the

propagation of CRs parallel to the magnetic field was known to be diffusive (Jokipii

1966), incidentally the subsequent application of the two diffusive laws would result

in the subdiffusive propagation of CRs perpendicular to magnetic field (Qin et al.

2002). The suggestion was shown to be inconsistent with the actual propagation in

MHD turbulence (Yan & Lazarian 2008). In particular, the classical assumption

of isotropic turbulence contrasts what we have learned about MHD turbulence

(Goldreich & Sridhar 1995; Lazarian & Vishniac 1999; Cho & Vishniac 2000). The

actual connection between CRs’ propagation and properties of MHD turbulence was

obtained after Lazarian & Vishniac (1999) established the superdiffusive behavior

of magnetic field lines. Being supported numerically (Lazarian & Beresnyak 2006;

Beresnyak 2013) this effect is the fundamental for the description of perpendicular

superdiffusion of cosmic ray idea as well as the reason why the subdiffusion of cosmic

rays is very unlikely (Yan & Lazarian 2008; Lazarian & Yan 2014).

The Alfvén motions were typically considered for describing CRs’ interaction

with turbulence. However, in reality, the properties of Alfvénic turbulence are

radically different from the isotropic models originally employed. The effect of the

MHD turbulence’s anisotropy has been investigated extensively in the literature

(Chandran 2000; Teufel et al. 2003; Yan & Lazarian 2002, 2004, 2008). In particular,

the anisotropy means that turbulent energy preferentially cascades along the

direction perpendicular to local magnetic fields making the eddies corresponding to

Alfvén motions elongated along the magnetic field. This dramatically decreases the

efficiency of resonance scattering if the turbulence is injected on scales much larger

than the CR Larmor radius. Moreover, importantly the Alfvénic turbulence induces
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superdiffusive divergence of magnetic field lines (Lazarian & Vishniac 1999). If CRs

propagate ballistically along the magnetic field, this imprints the superdiffusive

behavior on the dispersion of CRs perpendicular to the magnetic field. This has

important consequences for both CR propagation and the acceleration (Yan &

Lazarian 2008; Lazarian & Yan 2014). The superdiffusion of CRs is the focus of

Chapter 3.4.

The superdiffusion of magnetic field lines is related to the turbulent wandering of

magnetic fields described in Lazarian & Vishniac (1999). The wandering means that

the magnetic field lines spread out in the perpendicular direction with the distance

along the field lines. As derived in Lazarian & Vishniac (1999), the perpendicular

separation between magnetic field lines increases as the distance along the field line

to the power 3/2, i.e. as x3/2, while the earlier studies assumed the random walk

behavior, i.e x1/2. This superdiffusive law was confirmed in several numerical studies

(Lazarian et al. 2004; Beresnyak 2013; Cho 2013). In this case, the perpendicular

diffusion of CRs increases t3/2, where t is the time moved along the magnetic field.

Considering the situation of freely streaming CRs, i.e., in the absence of scattering,

CRs strictly move along the magnetic field lines. CRs’ perpendicular displacement

is governed by the lines’ separation, resulting in a superdiffusion relation (Yan &

Lazarian 2008; Lazarian & Yan 2014; Xu & Yan 2013a). In the presence of efficient

scattering, the parallel diffusion slows down the motion of CRs along the diverging

magnetic field lines. In this situation, the perpendicular diffusion of CRs increases

as t3/4 which is still superdiffusion, although a weaker one (Yan & Lazarian 2008;

Lazarian & Yan 2014).

MHD turbulence has an important role in regulating CRs’ diffusion. However,

the properties of astrophysical turbulence are different in different gas phases and

astrophysical media, e.g., highly compressible turbulence in star-forming regions

and supernova remnants (Nishimura et al. 2015; Federrath et al. 2016; Xu & Zhang

2020; Hu et al. 2021a, 2022d), weakly compressible turbulence in the diffuse ISM

(Armstrong et al. 1995; Chepurnov & Lazarian 2010; Lazarian et al. 2018). It is

important that compressible MHD turbulence consists of slow, fast, and Alfvén

modes (Goldreich & Sridhar 1995; Cho & Vishniac 2000; Lithwick & Goldreich

2001; Cho et al. 2002; Cho & Lazarian 2003). The energy fractions of Alfvén modes

and slow and fast modes can be different in the multi-phase ISM. The fast mode

is identified as the most efficient agent for scattering in the ISM (Yan & Lazarian

2002, 2004), which affects the diffusion process. This result persists in the CRs

nonlinear scattering theory (Yan & Lazarian 2008). This calls for a detailed study

of CR propagation for different levels and compressibility of MHD turbulence. An

appropriate description of turbulent magnetic fields is, therefore, indispensable for
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modeling the CRs’ propagation in magnetized interstellar turbulence.

Chapter 3.4 investigates the CRs’ diffusion using realistic turbulent magnetic

fields produced by 3D MHD turbulence simulations. The analysis focuses on

high-energy CRs, for which the CRs’ feedback is negligible, including both subsonic

and supersonic regimes covering the majority of astrophysical gas phases. The

subsonic case has been numerically tested by Xu & Yan (2013a). To obtain sufficient

scattering, artificial resonant slab fluctuations were introduced to the initial turbulent

magnetic fields in some cases considered there. The resonant slab fluctuations are

not considered in our analysis and the scattering comes from the intrinsic properties

of MHD simulations. Also, we decompose the MHD turbulence into slow, fast, and

Alfvén modes and investigate the contribution from each mode to the superdiffusion.

Our work is also complementary to the recent study in Maiti et al. (2022), which is

similar to the study by Xu & Yan (2013a), but performed turbulence decomposition.

We further consider a wide range of turbulence environments, i.e., different sonic

Mach number which varies significantly in the multi-phase ISM. For example, the

warm ionized medium is usually subsonic (Gaensler et al. 2011), while cold molecular

gas appears supersonic (Hu et al. 2021a). Studying how the fractions of the three

modes depend on the sonic Mach number is therefore important in understanding

CRs’ propagation.

1.2 Magnetic fields in astrophysics

The ISM is permeated with turbulence and magnetic fields (Crutcher 2012; Planck

Collaboration et al. 2014a; Andersson et al. 2015; Han 2017). However, tracing

the magnetic fields and characterizing the magnetized media are challenging.

The starlight polarization and thermal emissions produced by aligned dust grains

(Lazarian 2007a; Lazarian & Hoang 2007; Andersson et al. 2015) are commonly

used to trace the magnetic fields in the plane-of-the-sky (POS). Using the

Davis–Chandrasekhar–Fermi method (DCF; Davis 1951; Chandrasekhar & Fermi

1953), one can employ the dispersion of the directions of dust polarization and the

information of spectral broadening to estimate the POS magnetic field strength

in a turbulent medium (Falceta-Gonçalves et al. 2008; Cho & Yoo 2016). For the

warm and hot phases of the ISM, the POS magnetic fields can also be measured

by the synchrotron emission (Clarke & Ensslin 2006; Planck Collaboration et al.

2016c). Besides, the magnetic field strength along the LOS is commonly measured

by molecular line splitting (Zeeman effect; Crutcher 2004, 2012), which requires

very high sensitivity and extremely long integration time. Faraday rotation provides
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another measurement for the LOS magnetic field strength (Minter & Spangler 1996;

Haverkorn et al. 2006; Oppermann et al. 2015; Xu & Zhang 2016; Tahani et al. 2018).

The statistics of Faraday Rotation Measure (RM), however, may be dominated by

density’s contribution (Akahori & Ryu 2010; Xu & Zhang 2016).

1.2.1 Velocity gradient as a tracer of magnetic field

In Chapter 4, we introduce the Velocity Gradient Technique (VGT; González-

Casanova & Lazarian 2017; Lazarian & Yuen 2018c; Hu et al. 2018) as a promising

and alternative way for studying the magnetic fields across multiple scales in ISM.

VGT utilizes the anisotropy in MHD turbulence, as discussed in Chapter 2, i.e.,

turbulent eddies are elongated along the direction of the magnetic field surrounding

the eddy, i.e., the local magnetic field and the maximum velocity fluctuation appears

in the direction perpendicular to the magnetic fields. Consequently, the gradient

of velocity fluctuations is dominated by the perpendicular component. Therefore,

the magnetic fields can be probed by rotating the velocity gradients with 90◦. The

symmetry of Alfvénic perturbations in terms of velocity and magnetic field entails

that the magnetic fluctuations also share the same property. This gave rise to the

development of magnetic field tracing based on synchrotron intensity gradient (SIG;

Lazarian et al. 2017; Hu et al. 2024b), and X-ray Intensity Gradient (XIG; Hu et al.

2020b).

In Chapter 4, we evaluate the VGT’s effectiveness in tracing magnetic fields

within turbulent astrophysical environments through numerical simulations and

observations of molecular clouds, specifically accounting for radiative transfer and

self-absorption effects. Additionally, we examine how velocity gradient properties

are influenced by self-gravity. During gravitational collapse, the infall of matter

causes a directional shift in velocity gradients relative to the magnetic field. In

star-forming regions, velocity gradients induced by infall motions—aligned with the

magnetic field—start to predominate over those generated by turbulence. Outflow

feedback, discussed in Chapter 3, represents another factor modifying turbulence

properties and introducing velocity gradients unlinked to MHD turbulence. Such

effects are expected to mirror those of inflows on velocity gradients, prompting a

shift from perpendicular to parallel alignments with the magnetic fields. Near a

protostar’s core, where gas velocity reaches its peak before diminishing towards the

periphery, additional velocity gradients may arise, not stemming from turbulence but

rather pointing from the center outward. Close to protostars, the powerful outflows

overshadow turbulence, with magnetic fields likely aligning with these outflows.

Consequently, the velocity gradient is primarily influenced by these strong outflows,
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aligning parallel to the magnetic fields. However, at larger distances from protostars,

where outflows are less dominant, turbulence-driven velocity gradients become more

significant, thus aligning perpendicularly to the magnetic fields. To explore the

impacts of self-gravity and outflow feedback, we focus on the star-forming regions

Serpens and L1551 in Chapter 4, providing detailed insights into their complex

dynamics and magnetic field structures.

1.2.2 Galactic Magnetic Field in 3D spatial space

In Chapter 5, we explore innovative methods to unravel the complexities of

the Galactic Magnetic Field (GMF), crucial for understanding a variety of

astrophysical phenomena within the Milky Way. The detailed mapping of the GMF

is pivotal, particularly for interpreting the cosmic microwave background (CMB)

polarization fluctuations, which can be divided into ”electric” (E) and ”magnetic”

(B) components. These components provide insights into the early universe’s

evolution and the potential detection of inflationary gravitational waves through

CMB B-modes (Planck Collaboration et al. 2016e; Lewis 2003; Manzotti et al. 2017;

Planck Collaboration et al. 2016b). However, the main challenge in measuring

CMB B-modes lies in the contamination by polarized thermal emission from diffuse

Galactic dust, primarily present at frequencies above 100 GHz, making the GMF

critical for modeling the Galactic polarized foreground (Planck Collaboration et al.

2014b, 2015b, 2020b).

Despite its importance, the GMF is among the least understood aspects of

the ISM, with current observational techniques like dust polarization (Andersson

et al. 2015; Planck Collaboration et al. 2015a) and Zeeman splitting (Crutcher 2004,

2012) unable to directly map the magnetic field in 3D or measure the magnetic

field strength on the POS. This gap highlights the necessity for novel observational

techniques. To address this, we propose utilizing the VGT applied to H I emission

lines to trace both the magnetic field orientation and magnetization (M−1
A ), where

MA is the Alfvénic Mach number (Lazarian et al. 2018; Hu et al. 2021a). By

leveraging the Galactic rotation curve, we can determine the spatial positions of

HI gas, enabling the VGT to potentially map the GMF in three dimensions. This

approach is tested using data from the GALFA-HI and HI4PI surveys, comparing

VGT-derived magnetic field measurements with those inferred from Planck 353 GHz

dust polarization (Planck Collaboration et al. 2020a)and stellar polarization data.

We present the first mappings of POS magnetic field strength, MA, and Ms in 3D

spatial space, offering new insights into the structure and dynamics of the GMF.

We also present the Galactic foreground modeled from the VGT. This chapter
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aims to advance our understanding of the GMF, overcoming limitations of current

methodologies and paving the way for more accurate modeling of the Galactic

polarized foreground, crucial for unlocking the secrets of the CMB polarization and

the early universe.

1.2.3 Magnetic field in the Central Molecular Zone and its

role in fueling Seyfert galaxies

Understanding the magnetic field is pivotal for unraveling the physics within the

Central Molecular Zone (CMZ) and external galaxies. The CMZ, characterized

by its dense gas concentration, exhibits a star formation rate significantly lower

than expected (Longmore et al. 2013; Koepferl et al. 2015; Barnes et al. 2017), a

discrepancy that suggests the influence of magnetic fields and turbulence in the

Galactic Center (Crocker et al. 2010; Kruijssen et al. 2014) might play a crucial

role in regulating star formation processes (Federrath & Klessen 2012; Krumholz

2014; Burkhart 2018; Hu et al. 2020b). In addition, the investigation of magnetic

fields within Seyfert galaxies, one of the two main classes of active galaxies, is

crucial for delineating their role in channeling circumnuclear molecular gas. This

understanding is key to elucidating the energy sources powering Seyfert galaxies and

the link between heightened star formation and Seyfert activity (Heckman 1989;

Maiolino et al. 1997). However, the advancement in this field has been stymied

by the scarcity of direct magnetic field measurements associated with extragalactic

molecular gas. Addressing these challenges, in Chapter 6, we propose to use VGT

and molecular emission lines to measure and interpret the magnetic fields in these

complex astrophysical environments.

In Chapter 6, we expand our VGT analysis to encompass magnetic fields within

neighboring regions of the CMZ that exhibit distinct physical characteristics. This

includes the Radio Arc and the Arched Filaments—structures observed at 1.4 GHz

hinting at either poloidal or toroidal magnetic fields—and Sagittarius A West, a

region marked by extreme physical conditions due to the proximity to the central

supermassive black hole, observed through [Ne II] emission. By integrating data from
12CO (1–0), 13CO (1–0), and HNC (1–0) molecular lines with VGT, alongside Planck

353 GHz and HWAC+ 53 µm dust polarization data, we achieve a comprehensive

mapping of the magnetic field across multi-wavelengths and scales, ranging from 10

pc to 0.1 pc. This multi-scale and multi-wavelength perspective sheds light on the

interactions between magnetic fields and the multi-phase gas within various sectors

of the galactic center ecosystem.
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Additionally, the unique orbital motion characterizing the CMZ aids in

segregating gas distributions into distinct components within PPV space, thereby

facilitating the deduction of 3D spatial positions in real space. For instance,

contributions from the galactic disk predominantly align at velocities near 0 km/s,

whereas high-velocity molecular gas at ±200 km/s correlates with an expanding

ring structure. The magnetic fields, as deciphered through the VGT, offer a novel

perspective on the 3D magnetic field configuration within the CMZ. This chapter

delves into the VGT’s capacity to decompose projected POS magnetic fields along

the LOS, a process enabled by the synergy between the VGT, the Semi-Automated

multi-COmponent Universal Spectral-line fitting Engine implemented in Python

(SCOUSEPY), and the Agglomerative Clustering for ORganising Nested Structures

(ACORNS) algorithm. Our approach, applied to 12CO (1–0) and 13CO (1–0)

emission lines, is juxtaposed with magnetic field mappings derived from Planck

353 GHz polarized dust emissions, offering a novel methodology for examining the

CMZ’s complex magnetic landscape.

In Chapter 6, we extend the application of the VGT to five nearby Seyfert

galaxies—M51, NGC 1068, NGC 1097, NGC 3627, and NGC 4826—utilizing

molecular emission line data of CO isotopologues from the ALMA and PAWS

archives. This analysis leverages observations reported in several studies Hughes

et al. (2013); Tosaki et al. (2017); Leroy et al. (2021a,b) to investigate the magnetic

fields within these galaxies. We juxtapose our findings for the first four galaxies with

dust polarization data from the SOFIA legacy program and synchrotron polarization

data from the Very Large Array (VLA) Lopez-Rodriguez et al. (2020, 2021); Beck

et al. (2005); Fletcher et al. (2011); Soida et al. (2001a), providing a comprehensive

view of the magnetic environment across different gas phases. By integrating the

VGT analysis with polarization observations, we elucidate the magnetic fields’ role

in channeling gas to fuel nuclear activity, offering a nuanced understanding of the

complex interplay between magnetic fields and the processes driving Seyfert galaxies.

This chapter showcases the potential of combining VGT and polarization data to

unravel the magnetic intricacies of galactic environments, particularly in the context

of Seyfert galaxies’ nuclear activity.

1.2.4 Magnetic field in galaxy clusters

The largest-scale cosmic magnetic fields observed to date are found in galaxy clusters

(Ferrari et al. 2008; Feretti et al. 2012; van Weeren et al. 2019; Botteon et al. 2022).

These magnetic fields are a fundamental part of cosmic magnetogenesis, either

arising from the turbulent amplification of seed fields or being injected by active



18

galactic nuclei and galaxies (Grasso & Rubinstein 2001; Subramanian 2016). They

are critical to maintaining energy balance within the ICM through heat conduction

(McNamara & Nulsen 2007; Rephaeli et al. 2008), coupling CRs to the intracluster

gas (Völk et al. 1996; Drake et al. 2021; Berlok et al. 2021), and generating

synchrotron radiation by gyrating CR electrons (Brunetti & Jones 2014). Despite

the crucial importance, the origin of magnetic fields in ICM remains the grand

challenge problem. To check the existing theoretical predictions that the magnetic

field can be amplified during the galaxy mergers (Roettiger et al. 1999; Takizawa

2008; Vazza et al. 2018; Donnert et al. 2018), a comprehensive understanding of

magnetic field topology in galaxy clusters is imperative.

Polarized diffuse synchrotron emissions, particularly from radio relics and halos,

allow the study of magnetic fields within selected regions of galaxy clusters. For

instance, strongly polarized radio relics (with polarization fraction up to 60%) that

are typically located at the cluster’s periphery can be explored this way (van Weeren

et al. 2019; Stuardi et al. 2019; Donnert et al. 2018). However, depolarization effects,

such as Faraday depolarization caused by thermal electrons and turbulent magnetic

fields along the LOS, as well as beam depolarization due to a randomized magnetic

field distribution in the POS, prevent this type of studies for most extended regions

of clusters, i.e., radio halos (Burn 1966; Sokoloff et al. 1998). Thus, so far, no

polarization mapping of magnetic fields in radio halos has been carried out. This is

one of the main challenges faced by the next-generation radio facilities, such as the

Square Kilometre Array (SKA; Govoni et al. 2013; Loi et al. 2019).

Based on a comprehensive understanding of the pervasive MHD turbulence

in the ICM, in Chapter 7 we introduce the Synchrotron Intensity Gradient (SIG;

Lazarian et al. 2017; Hu et al. 2024b) as a novel method for magnetic field

measurement and apply SIG to five disturbed galaxy clusters (RXC J1314.4-2515,

Abell 2345, Abell 3376, MXCX J0352.4 - 7401, and El Gordo), which are of

particular interest in terms of magnetic field amplification and the acceleration of

cosmic rays by magnetized turbulence (Brunetti & Jones 2014; Xu & Lazarian 2016).

Our choice is motivated by the fact that magnetic fields in Abell 3376’s and El

Gordo’s relics have already been studied by polarization (Kale et al. 2012; Lindner

et al. 2014), while the fields in the relics of RXC J1314.4-2515 and Abell 2345 was

also recently mapped Stuardi et al. (2019, 2021). Thus, these four clusters provide a

valuable test bed for applying SIG. Encouraged by the consistency of the SIG results

with observational and numerical testing, we use SIG to map the magnetic fields in

the MCXC J0352.4-7401 cluster (Knowles et al. 2022) and we present the magnetic

field measurements in RXC J1314.4-2515 and El Gordo radio halos, revealing the

structure of magnetic fields on the largest scales ever measured. Other the other
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side, mapping the magnetic field in relaxed galaxy clusters is more challenging. In

analogy to SIG, we introduce the X-ray Intensity Gradient (XIG; Hu et al. 2020b) in

Chapter 7 and utilize the Chandra X-ray images to trace the magnetic field in the

relaxed Perseus, M 87, Coma, and A2597 galaxy clusters. We discussed the physical

implications of the measured magnetic field topology in the clusters.

1.3 Probing three-dimensional magnetic fields

In Chapter 8, we address the challenging task of observing three-dimensional

magnetic fields within the interstellar medium, a critical yet notoriously difficult

endeavor. Recent advancements have significantly pushed the boundaries of our

ability to probe the 3D magnetic fields in molecular clouds. For instance, the use

of polarized dust emission has been enhanced by leveraging the depolarization

effect, which arises due to varying magnetic field orientations, marking a substantial

step forward in 3D magnetic field orientation (Chen et al. 2019). Moreover, the

combination of Faraday rotation with dust polarization has opened new avenues for

inferring helical 3D magnetic field topologies across notable molecular clouds such

as Orion A, Orion B, Perseus, and California (Tahani et al. 2019, 2022). Another

promising method proposed by Lazarian & Yuen (2018a) involves the wavelength

derivative of synchrotron polarization as a technique to discern the 3D orientation

of magnetic fields. In addition to these developments, we introduce four approaches

in Chapter 8 for extracting 3D magnetic field information:

1. Utilizing dust polarization to probe the 3D magnetic field orientation through

its depolarization effect.

2. Exploring the anisotropy in velocities of young stellar objects as a window into

the 3D magnetic field’s orientation and magnetization.

3. Investigating anisotropy in spectroscopic lines to uncover 3D magnetic field

orientations and magnetization.

4. Applying a Convolutional Neural Network (CNN) to analyze spectroscopic

lines, offering a novel computational approach to mapping 3D magnetic fields.

1.3.1 Tracing 3D magnetic field with dust polarization

The pioneering work by Chen et al. (2019) marked an advance in probing 3D

magnetic fields via polarized dust emission. The POS magnetic field orientation
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can be inferred from the polarization direction, as dust grains tend to align with

their local magnetic fields (Lazarian 2007b; Andersson et al. 2015). Achieving a 3D

perspective necessitates determining the magnetic field’s inclination angle relative

to the LOS, a critical factor in depolarizing thermal dust emission and inherently

encoded in the polarization fraction. Chen et al. (2019) and Sullivan et al. (2021)

estimated this inclination angle based on the statistical properties of the observed

polarization fraction, under the assumption of a strongly magnetized medium with

negligible fluctuations in the magnetic field’s POS or LOS components. However,

given that molecular clouds often exhibit trans-Alfvénic or super-Alfvénic conditions

(Federrath et al. 2016; Hu et al. 2019b; Hwang et al. 2021; Li et al. 2021) with

non-negligible fluctuations, this assumption may not always hold.

In Chapter 8, we propose a refined approach, considering anisotropic MHD

turbulence to account for the magnetic field fluctuations arising in the highly

turbulent environment of molecular clouds (Larson 1981a; Myers 1983; Evans

1999; Hennebelle & Falgarone 2012; Yuen et al. 2022). Our model posits that the

local magnetic field along the LOS is composed of a global mean magnetic field

and perpendicular fluctuations, simplifying the analysis by focusing on the most

significant fluctuations that occur perpendicular to the mean magnetic field. By

incorporating magnetic field fluctuations, we introduce the Polarization Fraction

Analysis (PFA) method to probe the 3D magnetic field in clouds across the sub-,

trans-, and super-Alfénic regimes.

Building upon the PFA method, Chapter 9 presents the first observational

analysis of 3D magnetic fields in the L1688 star-forming region, located approximately

139 pc away. Despite extensive multi-wavelength studies, the interplay between the

3D magnetic field, turbulence, and self-gravity in L1688 has not been previously

examined. We combine Planck and HAWC+ polarized dust emission data with the

VGT to trace the POS magnetic field. The inclination angle and POS magnetic field

strength are determined using the PFA method alongside the DCF method or the

Differential Measure Approach (DMA). Turbulence is analyzed using 12CO (1-0) and
13CO (1-0) emission lines from the COMPLETE survey, with the C18O (3-2) data

from APEX offering a detailed view of the Oph A region. The role of self-gravity

is assessed using the probability distribution function of Herschel’s column density

data and VGT to pinpoint gravity-dominated areas, providing a comprehensive

understanding of the complex dynamics within L1688.
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1.3.2 Tracing 3D magnetic field with anisotropy in young

stellar objects and spectroscopic line

The anisotropy in the amplitude of velocity fluctuations in MHD turbulence, as

detailed in Chapter 2, is a key property for understanding the interaction between

turbulence and magnetic fields. Velocity fluctuations reach their maximum in

the direction perpendicular to the local magnetic fields. This phenomenon occurs

because turbulent motions, facilitated by fast turbulent reconnection, are more

freely mixed in the direction perpendicular to the magnetic field’s local orientation,

minimizing the bending of magnetic lines and allowing the cascade to evolve with

minimum resistance. Conversely, the minimum amplitude of velocity fluctuations

is found parallel to the magnetic field, highlighting the anisotropic nature of MHD

turbulence.

This fundamental property lays the groundwork for tracing magnetic fields

by examining the structure of turbulent velocities. As we discuss in Chapter 8,

analyzing the minimum velocity fluctuations in real space enables the simultaneous

determination of the 3D magnetic field orientation and strength. Such an analysis

necessitates data on 3D velocity and spatial positions, which can be obtained from

GAIA’s young star survey (Gaia Collaboration et al. 2016, 2018; Ha et al. 2021).

In Chapter 8, we further refine the velocity anisotropy analysis method,

enhancing its application to spectroscopic observations and making it a more general

tool. In addition to the young star’s velocity field, the velocity information can

also be extracted from the PPV space, as the observed intensity distribution within

a spectroscopic channel is influenced by both turbulent velocities along the LOS

(Lazarian & Pogosyan 2000). As detailed in Chapter 2, the anisotropy observed

in the intensity distribution of a channel is intricately linked to the channel’s

width. Building on the analytical work by Kandel et al. (2016), who applied the

structure-function to channel maps to uncover this anisotropy, we delve deeper into

the relationship between anisotropy at a specific channel width, the Alfvén Mach

number (MA), and the inclination angle between the three-dimensional magnetic

fields and the LOS. This nuanced understanding allows us to trace the 3D magnetic

fields and their magnetization (M−1
A ) effectively using spectroscopic observations.
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1.3.3 Tracing 3D magnetic field with Convolutional Neural

Network (CNN)

Spectroscopic observations are a rich source of information about the anisotropy

characteristic of MHD turbulence, carrying detailed insights into the magnetic fields

in ISM (see Chapter 2). The intricate spatial features present in these observations

suggest that, with sufficient training data, machine learning algorithms could

effectively capture this information and yield accurate magnetic field measurements.

This potential has been tapped into for mapping the 2D POS magnetic field

orientation using channel maps from spectroscopic data (Xu et al. 2023). Moreover,

Hu et al. (2021b) discovered that the anisotropy in channel maps contains information

not only on the POS magnetic field orientation but also on the total magnetization

and the magnetic field’s inclination angle with respect to the LOS.

In Chapter 8, we aim to exploit CNN—a deep learning model renowned for

its prowess in image and signal processing—to develop a novel method capable of

extracting anisotropy from spectroscopic observations to probe the 3D magnetic

field. Previous applications of CNNs have explored their ability to differentiate

between sub-Alfvénic and super-Alfvénic turbulence states (Peek & Burkhart 2019)

and to predict the POS magnetic field orientation (Xu et al. 2023). Our work,

however, endeavors to achieve the simultaneous extraction of both LOS and POS

magnetic field orientations alongside total magnetization.

Importantly, our CNN approach is built upon the theoretical framework of

anisotropic MHD turbulence evident in spectroscopic observations. This foundation

not only allows for the accurate interpretation of the CNN model but also enables us

to identify which specific features contain magnetic field information, understand why

these features are informative and decipher their underlying physical significance.

In Chapter 8, we train a CNN with comprehensive numerical simulations that

accurately mirror the conditions of the realistic ISM. In Chapter 9, we utilize

this trained CNN model to unveil the 3D magnetic field map of the molecular

cloud L1478, demonstrating the effectiveness of our approach in extracting crucial

magnetic field characteristics from observational data.
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Chapter 2

Anisotropic nature of MHD

turbulence

This thesis chapter originally appeared in the literature as

Hu, Y., Xu, S., & Lazarian, A. 2021, ApJ, 911, 37.

Hu, Y., Lazarian, A., Alina, D., et al. 2023, MNRAS, 524, 2994.

Hu, Y., Xu, S., Arzamasskiy, L., et al. 2024, MNRAS, 527, 3945.

Abstract

Our comprehension of magnetohydrodynamic (MHD) turbulence has significantly

evolved over recent decades. Initially perceived as isotropic despite the presence

of magnetic fields, subsequent numerical studies and in-situ measurements of solar

wind have unveiled its fundamentally anisotropic nature when magnetic field effects

are non-negligible. Inspired by contemporary theories on MHD turbulence and

fast reconnection, we deduced that turbulent velocity fluctuations are markedly

more pronounced in the direction perpendicular to the local magnetic field. This

also applies to the gradient of turbulent velocity fluctuations. In sub-Alfvénic

turbulence, the ratio of turbulent velocity fluctuations perpendicular and parallel

to the magnetic field exhibits a power-law dependence on the Alfvén Mach

number, MA. This anisotropy in MHD turbulence, we discovered, is discernible

in spectroscopic observations due to velocity caustics. Our analysis, leveraging

synthetic observations from magnetized multiphase HI simulations—incorporating

thermal broadening—and observations from GALFA-HI, indicates that the statistics

of thin spectroscopic channels are primarily governed by velocity statistics. The H I
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striations generated by velocity caustics predominantly align with the magnetic field.

As the channel map thickness increases, the influence of density fluctuations becomes

more pronounced, resulting in a tendency for HI striations to orient perpendicular

to the magnetic field.

2.1 Anisotropy of MHD turbulence

2.1.1 Scaling relations for eddy scale, velocity fluctuation,

and gradient of velocity fluctuation

Fundamental work on anisotropic incompressible MHD turbulence theory was

initiated by Goldreich & Sridhar (1995) in the trans-Alfvénic regime with Alfvén

Mach number MA = vinj/vA ≈ 1, where vinj is turbulence injection velocity at the

turbulence injection scale Linj and vA represents the Alfvén speed. Goldreich &

Sridhar (1995) found the ′′critical balance′′ condition, which equates the turbulence

cascading time (k⊥vl)
−1 with the Alfvén wave period (k∥vA)

−1. k∥ and k⊥ represent

the components of the wavevector parallel and perpendicular to the magnetic field,

respectively. The turbulent velocity at scale l is denoted by vl. Considering that

Kolmogorov-type turbulence adheres to the scaling relation vl = ( l
Linj

)1/3vinj, we can

derive an anisotropy scaling as shown in the following equation:

k∥ = (k⊥Linj)
2/3L−1

inj , MA ≈ 1, (2.1)

which implies that as k⊥ increases, k∥ increases at a slower rate, indicating that

the turbulence eddies become more elongated along the magnetic field lines. This

anisotropy of MHD turbulence has been crucial in enhancing our understanding of

the complex interplay between magnetic fields and turbulent flows.

However, this derivation is conducted in Fourier space, where local spatial

information is not directly accessible. As a result, the anisotropy is measured with

respect to the mean magnetic field, thus establishing a global reference frame. In

this frame, only the anisotropy of the largest eddy is discernible due to the averaging

effect (Cho & Vishniac 2000). This leads to the observation of a scale-independent

anisotropy, predominantly influenced by the largest eddy (Cho & Vishniac 2000;

Hu et al. 2021c). The scale-dependent anisotropic characteristics of sub-Alfvénic

(MA < 1 and super-Alfvénic (MA > 1) MHD turbulence were later elucidated by

Lazarian & Vishniac (1999) within a local reference frame. This frame is defined in

real space, relative to the magnetic field passing through the eddy at scale l.
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Lazarian & Vishniac (1999) considered the ′′critical balance′′ in the local

reference frame: vl,⊥l
−1
⊥ ∼ vAl

−1
∥ and the motion of eddies perpendicular to the local

magnetic field direction obeys the Kolmogorov relation (i.e., vl,⊥ = ( l⊥
Linj

)1/3vinj).

The latter is from the fact that in the presence of fast turbulent reconnection, the

motions of eddies with size l⊥ perpendicular to the local direction of the magnetic

field are not suppressed, or in other words, the perpendicular direction gives the

minimal resistance for turbulent cascading. Consequently, turbulence predominantly

cascades perpendicular to the local magnetic field.

Furthermore, subsequent studies revealed that the ′′critical balance′′ condition

is primarily applicable in the strong turbulence regime (Lazarian & Vishniac 1999;

Lazarian 2006). Specifically: (i) in super-Alfvénic turbulence, where MA > 1,

the magnetic field’s role at the injection scale, Linj, is negligible, leading initially

to isotropic turbulence. However, as turbulence cascades to smaller scales and

the turbulent velocity decreases, the Alfvén speed becomes comparable to the

turbulent speed at the Alfvén scale lA = LinjM
−3
A . This transition gives rise to strong

turbulence at smaller scales. (ii) in sub-Alfvénic turbulence (MA < 1), the strong

turbulence regime spans from the transitional scale ltrans = LinjM
2
A to smaller scales.

Turbulence within the range from Linj to ltrans is termed weak Alfvénic turbulence,

which is wave-like and does not obey the ′′critical balance′′.

Combining the ′′critical balance′′ condition with the Kolmogorov relation in the

strong turbulence regime and within the local reference frame leads to an anisotropy

scaling. This scaling can be expressed as follows:

l∥ =

( l⊥
Linj

)2/3LinjM
−1
A , MA > 1

( l⊥
Linj

)2/3LinjM
−4/3
A , MA < 1

, (2.2)

where l⊥ and l∥ represent the perpendicular and parallel scales of eddies with respect

to the local magnetic field, respectively. Similarly, the scaling in the global reference

frame can be derived accordingly:

k∥ =

{
(k⊥Linj)

2/3L−1
injMA, MA > 1

(k⊥Linj)
2/3L−1

injM
4/3
A , MA < 1

. (2.3)

Combining Eq. 2.2 with the ′′critical balance′′ condition, the scale-dependent

anisotropy scaling for turbulent velocity in the strong turbulence regime can be

obtained as follows:

vl,⊥ =


(

l⊥
Linj

)1/3

vinj, MA > 1(
l⊥
Linj

)1/3

vinjM
1/3
A , MA < 1

, (2.4)
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Figure 2.1: A cartoon extracted from Pattle (2019) and Hu et al. (2020c), explaining

the anisotropy of MHD turbulence. Panel a: For Alfvénic fluid motions, a magnetic

field and the conducting fluid in which it is embedded move together. Panel b: Tur-

bulent eddies are elongated along magnetic field lines. Panel c: Embedded magnetic

field lines are preferentially moved perpendicular to their local direction by small-

scale turbulent eddy motions. Panel d: Turbulent reconnection is an essential part

of the dynamics of turbulent eddies, which enables the mixing of magnetic field lines

perpendicular to the magnetic field direction. The mixing motions within the eddies

(shown as magenta circles in Panel a) induce changes in the fluid velocities perpen-

dicular to the magnetic field lines. Therefore, the local gas velocity gradients (red

arrows in Panel a) are directed perpendicular to the local directions of the magnetic

field.
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which have validated by numerical simulations (Cho & Vishniac 2000; Maron &

Goldreich 2001; Cho & Lazarian 2003; Kowal & Lazarian 2010; Hu et al. 2021c)

and in situ measurements in the solar wind (Wang et al. 2016; Matteini et al.

2020; Duan et al. 2021; Zhao et al. 2023). Given the implications of Eq. 2.2, which

suggest l∥ ≫ l⊥, the gradient of turbulent velocity fluctuations is dominated by the

component perpendicular to the local magnetic field:

∇vl ≈
vl,⊥
l⊥
l̂ll⊥ =

( l⊥
Linj

)−2/3 vinj
Linj

l̂ll⊥, MA > 1

( l⊥
Linj

)−2/3 vinj
Linj

M
1/3
A l̂ll⊥, MA < 1

, (2.5)

where l̂ll⊥ represents the unit vector along the l⊥ direction. Fig. 2.1 presents a cartoon

illustration of MHD turbulence’s anisotropy.

2.1.2 The anisotropy degree of sub-Alfvénic turbulence

Deriving the ratio of squared parallel to perpendicular velocity fluctuations, termed

the degree of anisotropy, at the same scale is non-trivial. To address this, one must

consider that a turbulent eddy is characterized as a velocity contour. Therefore, the

parallel velocity fluctuation vl,∥ can be inferred from the associated vl,⊥ of a smaller

scale l′⊥ < l using Eqs. 2.2 and 2.4.

For sub-Alfvénic turbulence in the local reference frame, the turbulent velocity

vtrans = vinjMA at the transition scale ltrans = LinjM
2
A leads to the expressions:

vl,⊥ = vtrans(
l⊥
ltrans

)
1
3 , MA < 1, (2.6)

(
l⊥
ltrans

)
2
3 = v2l,⊥v

−2
trans, MA < 1. (2.7)

By replacing l⊥ with l∥ using Eq. 2.2, we derive:

(
l∥
ltrans

)
2
3 = v

4/3
l,∥ v

−4/3
transM

−4/3
A , MA < 1, (2.8)

By equating Eqs. 2.6 and 2.8, the ratio of squared parallel to perpendicular velocity

fluctuations at the same scale is obtained:

v2l,⊥
v2l,∥

= (
l∥
Linj

)−1/3M
−4/3
A , MA < 1, (2.9)

which is valid in the local reference frame.

In the global reference frame, the observed anisotropy is determined by the

anisotropy of the largest eddy at ltrans. Therefore, in this frame, the ratio l∥/l⊥ is



28

always equal to ltrans,∥/ltrans,⊥ = vA/vtrans, and the parallel velocity fluctuations, vl,∥,

can be expressed as:

vl,∥ = vtrans(
l∥

ltrans,∥
)
1
3 , MA < 1. (2.10)

Combining this expression with Eq. 2.6 and acknowledging that the transition scale

is determined predominantly by the perpendicular component, i.e., ltrans ≈ ltrans,⊥,

which marks the onset of fully eddy-like turbulence, the degree of anisotropy is

derived as:
v2l,⊥
v2l,∥

= (
vA
vtrans

)
2
3 =M

−4/3
A , MA < 1 (2.11)

This equation indicates that the ratio measured in the global frame of the mean

magnetic field follows a power-law relationship with MA for sub-Alfvénic turbulence.

The velocity fluctuation perpendicular to the magnetic field is more pronounced.

Hence, once the ratio v2l,⊥/v
2
l,∥ in the global frame is measured, one can deduce the

magnetization level M−1
A using:

M−1
A = (

v2l,⊥
v2l,∥

)3/4,MA < 1 (2.12)

2.1.3 The anisotropy degree of super-Alfvénic turbulence

In super-Alfvénic (MA > 1) regime, the transition to strong MHD turbulence occurs

at the scale lA = LinjM
−3
A with the transition velocity equal to vA (Lazarian 2006).

In terms of lA, we can express l∥, vl,⊥, and vl,∥ in the local reference frame as follows:

l∥ = l
2
3
⊥l

1/3
A , (2.13)

vl,⊥ = vA(
l⊥
lA
)
1
3 , (2.14)

vl,∥ = vA(
l∥
lA
)
1
2 . (2.15)

Consequently, the ratio v2l,⊥/v
2
l,∥ in the local reference frame can be derived as:

v2l,⊥
v2l,∥

= (
l⊥
linj

)−1/3M−1
A , MA > 1. (2.16)

In the global reference frame, super-Alfvénic is isotropic, so we always have:

v2l,⊥
v2l,∥

= 1, MA > 1. (2.17)
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2.1.4 Numerical test of the anisotropy

Setup of numerical simulation

We conduct 3D MHD simulations using the ZEUS-MP/3D code (Hayes et al. 2006),

which is designed to solve the ideal MHD equations within a periodic box. The

governing equations are as follows:

∂ρ

∂t
+∇ · (ρvvv) = 0, (2.18)

∂(ρvvv)

∂t
+∇ ·

[
ρvvvvvvT +

(
c2sρ+

B2

8π

)
III − BBBBBBT

4π

]
= fff, (2.19)

∂BBB

∂t
−∇× (vvv ×BBB) = 0, (2.20)

∇ ·BBB = 0, (2.21)

where fff represents the stochastic forcing term used to drive turbulence. ρ, vvv,

and BBB are mass density, velocity, and magnetic field, respectively. The system

assumes an isothermal equation of state p = c2sρ, where p is the gas pressure. Our

simulations are conducted under single fluid and operator-split MHD conditions

in an Eulerian frame, focusing solely on purely turbulent scenarios without the

influence of self-gravity.

Kinetic energy is injected solenoidally (ensuring the forcing term is divergence-

free) at a wavenumber k = 2π/l ≈ 2 (in the unit of 2π/Lbox, where Lbox is the

length of simulation box) in Fourier space, where l is the length scale in real

space, producing a Kolmogorov-like power spectrum. Turbulence was continuously

stimulated until it reached a state of statistical saturation. The simulation was

solved on a regular grid of 7923 cells with numerical dissipation of turbulence

occurring at scales of approximately 10 - 20 cells.

Given that the MHD simulation of turbulence is scale-free, any desired physical

scales can be assigned. For our purposes, we specify a temperature T = 10.0 K, sound

speed cs = 187 m/s, and cloud size Lbox = 10 pc to emulate an isothermal cloud.

The magnetic field is modeled as BBB = B0B0B0 + δBBB, where B0B0B0 is the uniform background

field and δBBB is the magnetic fluctuation. B0B0B0 is assumed to be perpendicular to the

LOS. We vary the sonic Mach number Ms = vinj/cs and Alfvénic Mach number

MA = vinj/vA to explore different physical conditions.
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Figure 2.2: Panel (a): the definition of structure-function in the global reference

frame. We adopt a cylindrical coordinate system in which the z-axis is parallel to

the mean magnetic field B0. Panel (b): an example of structure-function SF g
2 in

the global reference frame using simulation MA = 0.68 and Ms = 10.61. Panel (c):

an example of structure-function SF l
2 in the local reference frame using simulation

MA = 0.68 and Ms = 10.61.

Structure functions of turbulent velocity in the local and global reference

frames

To calculate v2l,⊥ and v2l,∥, we use the second-order structure-function in both the

local and global reference frames. The structure-function in the local reference

frame, as defined by Cho & Vishniac (2000), is given by:

Bl =
1

2
(B(r1)−B(r2)), (2.22)

SFl2(R, z) = ⟨|v(r1)− v(r2)|2⟩, (2.23)

where Bl defines the local magnetic fields. R and z are coordinates in a

cylindrical coordinate system with the z-axis aligned parallel to Bl. Explicitly,

R = |ẑzz × (r1 − r2)|, z = ẑzz · (r1 − r2), and ẑzz = Bl/|Bl|. Similarly, we can

replace the local magnetic fields Bl by the mean magnetic fields B0, we obtain the

structure-function in the global reference frame:

SFg2(R, z) = ⟨|v(r1)− v(r2)|2⟩, (2.24)

where z = ẑzz · (r1 − r2) and ẑzz = B0/|B0|, as shown in Fig. 2.2. The local

structure-function is more anisotropic toward a smaller scale. In both frames, v2l,⊥
and v2l,∥ are obtained from (Cho et al. 2002):

v2l,⊥ = SF2(R, 0), (2.25)

v2l,∥ = SF2(0, z). (2.26)
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Numerical results

Fig.2.2 illustrates an example of both the local and global structure-functions,

utilizing the sub-Alfvénic simulation parameters MA = 0.68 and Ms = 10.61.

The velocity contours, elongating along the z-axis parallel to Bl or B0, indicate

that velocity fluctuations are more pronounced in the perpendicular directionR,

as expected. However, it is important to note that the scale-dependent anisotropy

scaling of Eq. 2.4 is observable in a local reference frame, which is defined relative

to the local mean magnetic field (Cho & Vishniac 2000; Maron & Goldreich

2001). In the global reference frame, the anisotropy is determined by the largest

eddy, specifically the eddy at scale ltrans in sub-Alfvénic turbulence, resulting in

scale-independent observed anisotropy.

However, due to isotropic driving, it is possible to observe apparent (or ’fake’)

scale-dependent anisotropy in the global frame of reference, which aligns with the

mean magnetic field (Vestuto et al. 2003; Yuen et al. 2018) in numerical simulations.

This fake anisotropy originates from isotropic driving that produces large-scale

isotropic structures, while smaller-scale structures are anisotropic. The global

structure-function measures velocity fluctuations across scales, from small to large.

Consequently, transition scales may exhibit apparent scale-dependent anisotropy.

With a sufficiently extended inertial range, exceeding the transitional range, we

anticipate observing scale-independent global anisotropy on scales significantly

smaller than the driving scale.

Figure 2.3: Panel (a): the structure-function in the local reference frame. The

simulation MA = 0.68 and Ms = 10.61 is used here. Panel (b): an example of

structure-function in the global reference frame. k denotes the slope of the reference

line. ldiss and ltrans = lst represent dissipation scale and transition scale, respectively.

Fig. 2.3 demonstrates an example of the local and global structure-functions.
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In the local frame, we observe that for scales ldiss ≤ l ≤ lst, the velocity field

adheres to v2l,⊥ = v2l,1 ∝ l
2/3
⊥ and v2l,∥ = v22 ∝ l∥, where ldiss and ltrans = lst represent

the dissipation scale and transition scale, respectively. Beyond the scale ltrans, the

turbulence becomes weak, exhibiting wave-like properties. This aligns with the

numerical results presented by Cho & Vishniac (2000).

2.2 Anisotropy in spectroscopic observations

2.2.1 Velocity caustics

The anisotropic nature of these velocity fields can be discerned from velocity channel

maps, p(x, y, vlos), obtained through spectroscopic observations, due to the velocity

caustics effect (Lazarian & Pogosyan 2000, 2004; Kandel et al. 2016; Hu et al. 2023).

The velocity caustics effect, introduced by Lazarian & Pogosyan (2000), highlights

the distortion of density structures due to turbulent and shear velocities along the

LOS. Fig. 2.4 illustrates the velocity crowding in Position-Position-Velocity (PPV)

space due to spectroscopic mapping. Three constant-density clouds (n1, n2, n3) are

located at different spatial positions along the LOS in Position-Position-Position

(PPP) space. n1 and n3 possess identical LOS velocities. As a result, these clouds

are mapped into the same velocity coordinate in PPV space, leading to their merging

into a single crowded cloud. This new cloud is not physically present in the PPP

space but is rather created by the velocity caustics effect. n2 with a larger LOS

velocity is mapped into a different velocity coordinate. In realistic scenarios, the

mapping process is more complex due to the turbulent and magnetized nature of the

ISM (Armstrong et al. 1995; Chepurnov & Lazarian 2010; Crutcher 2012; Andersson

et al. 2015). The turbulence leads to different parts of a cloud having distinct LOS

velocities. Consequently, when mapped into PPV space, the cloud is substantially

distorted, resulting in multiple clouds or sparsely distributed atomic or molecular gas

along the same LOS becoming crowded in PPV space. This crowding redistributes

the HI gas in the PPV space and produces new HI intensity structures.

Mathematically, the velocity caustics can be formulated as follows. The observed

intensity distribution of a given spectral line in PPV space is determined by both the

density of emitters and their velocity distribution along the LOS. The LOS velocity

component vlos(xxx) comprises the turbulent velocity vtur(xxx), the coherent velocity

shear vgal(xxx) (e.g., from galactic rotation), and a residual component due to thermal

motions. This thermal component, represented as vlos(xxx)− vtur(xxx)− vgal(xxx), follows

a Maxwellian distribution ϕ(vlos,xxx), leading to intensity fluctuations in PPV space.
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Figure 2.4: Illustration of velocity crowding. Left: three constant density (n1, n2,

n3) clouds in PPP space are located at different spatial positions along the LOS (z).

n1 and n3 have identical LOS velocity vlos, while n2’s LOS velocity is larger. Right:

the three clouds are mapped into PPV space. Due to n1 and n3’s identical LOS

velocities, they are crowded into only one cloud with higher density. The cloud’s

morphology gets different from those in PPP space and intensity increases.

The PPV emission intensity ρs(x, y, vlos) is then given by:

ρs(x, y, vlos) = κ

∫
ρ(xxx)ϕ(vlos,xxx)dz, (2.27)

ϕ(v,xxx) ≡ 1√
2πc2s

exp[− [vlos − vtur(xxx)− vgal(xxx)]
2

2c2s
], (2.28)

where κ is a constant relating the number of emitters to observed intensities.

The term cs =
√
γkBT/m is the speed of sound, with m as the mass of atoms

or molecules, γ as the adiabatic index, kB as the Boltzmann constant, and T as

the temperature, which varies if the emitter is not isothermal. By integrating

ρs(x, y, vlos) over a specific velocity range, known as the channel width ∆v, we obtain

a spectroscopic velocity channel:

p(x, y, vlos) =

∫ vlos+∆v/2

vlos−∆v/2

ρs(x, y, v)dv. (2.29)

By varying vlos and collecting p(x, y, vlos), we obtain a synthetic spectroscopic

cube. If we split the 3D density into the mean density and zero mean fluctuations

ρ(x, y, z) = ρ̄+ ρ̄δ(xxx) we arrive at the representation of the channel intensity as the

sum of two terms p(x, y, vlos) = pvc(x, y, vlos) + pdc(x, y, vlos):

pvc(x, y, vlos) ≡
∫ vlos+∆v/2

vlos−∆v/2

dv

∫
ρ̄ϕ(v,xxx)dz, (2.30)

pdc(x, y, vlos) ≡
∫ vlos+∆v/2

vlos−∆v/2

dv

∫
ρ̄δ(xxx)ϕ(v,xxx)dz. (2.31)
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The first term contains the mean intensity in the channel and carries fluctuations

that are produced exclusively by velocity mapping. To reflect this we can call this

term pure ”velocity” term as far as structures in intensity maps are concerned. The

second, ”density”, term reflects inhomogeneities in the real 3D density, however, 3D

density structures are still modified by velocity fluctuations when mapped to channel

intensities. In the case of ∆v = ∞, we obtain the fully integrated intensity map.

The full line integrated pvc is reduced to the mean column density, while pdc gives

the column density variations on the POS.

Effect of the Galactic rotation

The LOS velocity in the ISM contains a contribution from Galactic rotation. It

is commonly assumed that velocity information in spectroscopic PPV space can

be used to determine the Galactic spatial location of observed objects using the

Galactic rotation curve. However, the extent to which this is possible and over what

distance scale it is possible is determined by comparing the LOS projected shear of

Galactic rotational velocity with turbulent velocity over the same distance. Lazarian

& Pogosyan (2000) noted that in the vicinity of the Galactic plane, the coherent

rotational shear is approximately 15 km/s per kpc of separation (as given by Oort’s

constants) and is even smaller in high-latitude regions. The turbulent velocity, on

the other hand, is typically around 10 km/s at 100 pc separation (Ha et al. 2022)

and scales as the cubic root of separation l, i.e., vtur = vinj(l/Linj)
1/3. Therefore, at

the injection scale Linj ∼ 100 pc to which turbulent cascade may extend, rotational

velocity differences are only 1.5 km/s, which is one-sixth of turbulence injection

velocity.

Effect of thermal broadening

In addition to turbulent velocity and Galactic shear velocity, thermal velocity

is another factor that contributes to spectroscopic mapping. Understanding the

formation of velocity caustics in the presence of shear and thermal broadening can

be achieved by considering the three settings below.

• Setting 1. Emitting atoms with zero thermal and turbulent velocities produce

emission in one channel centered at vlos = 0. In this case, the channel thickness

does not affect the observed intensities, and all the fluctuations arise from

density fluctuations. If density filaments are present, their projected images

are seen.



35

• Setting 2. Emitting atoms with thermal velocities and temperatures T

produce emission in the range ∆v ∼
√
kBT/m, and all fluctuations arise from

densities. When channels are thinner than
√
kBT/m, the intensity of channel

maps changes because only part of the total emission intensity of atoms (which

is proportional to column density) is included in the range ∆v <
√
kBT/m.

The change in channel width induces changes in intensity, so the intensity of

fluctuations measured in a channel is correlated to the channel’s thickness.

However, with only thermal velocity considered, the morphological pattern of

the intensity fluctuations in the velocity channel maps resembles that of the

total integrated intensity, as well as column density (see Eq. 2.27). If a real

density filament exists in this setting (i.e., with only thermal velocity), its

projection on the POS can also be observed in the channel map.

• Setting 3. Emitting atoms have both thermal and turbulent velocities,

leading to three sub-cases:

– (1). The regular velocity with shear only. In this case, the velocity

mapping provides a proxy for the third dimension, potentially providing

insight into the emitter’s distribution along the LOS. The intensity

distribution observed in velocity channels can change. The turbulent

velocity shear increases with the decrease of the scale, the effects of shear

arising from Galactic rotation have little effect on velocity caustics at

small scales.

– (2). Turbulent and thermal velocities only, no density fluctuations (i.e.,

emitting atoms uniformly distributed in PPP space). The turbulent

velocities create intensity fluctuations, i.e., velocity caustics, in PPV

space, as illustrated in Fig. 2.4. Due to thermal broadening, the intensity

fluctuations raised from turbulent velocities in a channel might be erased

or dominated by those raised by thermal velocities. Their relative

significance depends on the temperature and channel width. For a given

channel width, a higher temperature means a stronger thermal effect.

However, when the channel width decreases, the significance of velocity

caustics increases, so caustics are seen in thin channel maps (see Fig. 2.7).

– (3). Both velocity and density contributions affect the intensity

distribution in channel maps, but their relative importance, pv and pd,

varies with the thickness of the channel map. When a thick channel is

integrated over a large velocity range, such as the entire velocity range,

only a column density map with no velocity information is obtained (see

Fig. 2.5). However, as the channel width decreases, the contributions

from densities decrease while the velocity contributions increase. When
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the channel width is less than the turbulence velocity dispersion, σv, the

velocity contribution dominates over the density contribution, provided

that the mean density is greater than the density fluctuation (see Lazarian

& Pogosyan 2000 for a more detailed discussion). Note that in any case,

the pd term in the thin channel regime is not a pure spatial density

perturbation but is also modified by velocity mapping.

Settings 1 and 2 are straightforward while Setting 3 (1) is widely discussed

in the literature as a means of mapping the 3D distribution of emitters using

the Galactic rotation curve. However, a caveat of this setting is the absence of

turbulent velocities. In the presence of turbulence, a narrow velocity channel may

not accurately represent the actual density distribution along the LOS. Nevertheless,

the turbulence effect can be mitigated by increasing the thickness of the channel

maps. Furthermore, as indicated in Setting 3 (2) and (3), we know that (i) the

thermal effect can decrease the velocity contribution in a channel, and (ii) the

relative significance of velocity caustics depends on the thickness of the channel

maps. Nevertheless, in the following, we introduce how to separate the thermal

effect and density fluctuations from a channel.

Separating velocity contribution and removing thermal broadening

Theoretical separation is given by Eqs. 2.30 and 2.31 that generates a pure velocity

caustics contribution, pvc can be accomplished in simulations by using a constant

density field ρ(xxx) in PPP space and simulated velocity v(xxx). It is, however, difficult

to apply directly to observational channel data, since the mean spatial density

is unknown. To overcome this difficulty, Yuen et al. (2021) introduced a novel

technique named Velocity Decomposition Algorithm (VDA). From the intensity

distribution within a channel, denoted as p(x, y, vlos), VDA extracts the velocity

pv(x, y, vlos) and density pd(x, y, vlos) contributions in the channel according to the

following prescription:

pd = (⟨p · I⟩ − ⟨p⟩⟨I⟩) I − ⟨I⟩
σ2
I

, (2.32)

pv = p− pd = p− (⟨p · I⟩ − ⟨p⟩⟨I⟩) I − ⟨I⟩
σ2
I

, (2.33)

where I ≡
∫∞
−∞ dvlosp(x, y, vlos), σ

2
I = ⟨(I − ⟨I⟩)2⟩ and ⟨...⟩ denotes the ensemble

average over the entire map. Defined this way, pd describes the channel intensity

fluctuations proportional to column density fluctuations at the level given by the

cross-correlation coefficient between channel and column intensities. The ”velocity”
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part pv contains the contribution from the pure velocity part pvc. In addition, it is

worth noting that pv and pd have the following fundamental properties:

⟨pd⟩ = 0, (2.34)

⟨pv⟩ = ⟨p⟩, (2.35)

⟨pvpd⟩ = 0, (2.36)∫ ∞

−∞
dvlos pd(x, y, vlos) = I − ⟨I⟩, (2.37)∫ ∞

−∞
dv pv(x, y, vlos) = ⟨I⟩, (2.38)

which highlights firstly the fact that pd is a perturbative term, carrying information

only about density inhomogeneities, while pv contains the mean intensity background

and velocity field contribution, and secondly the orthogonality of VDA decomposition

in the sense that pd and pv are uncorrelated.

The values pv are available directly via the application of VDA to observations.

On the contrary, the quantity pvc is only available using numerical simulations

where the mean density can be obtained and serves as a theoretical template for the

structures generated purely by velocity mapping. The value of the chosen constant

density rescales pvc. Thus, if the density is significantly non-uniform, the magnitude

of pvc will depend on over which volume the mean density is determined. For

instance, if one studies the small scale structure of a cloud, the appropriate value of

the mean density entering pvc is that of a cloud, rather than the lower value averaged

over wider emptier space. This rescaling of pvc, however, does not change the shape

of the structures that this part of the signal exhibits.

2.2.2 Numerical test: isothermal and multi-phase HI

simulations

Numerical simulation setup

For the isothermal simulations, we adhere to the setup utilizing the MHD code

ZEUS-MP/3D, as detailed in § 2.1.4. For multi-phase HI simulations, we employ

the Athena++ code (Stone et al. 2020a). The numerical setup for these simulations

parallels that of the isothermal simulations (see § 2.1.4), but with a key modification

to emulate the multi-phase ISM environment. We integrate an additional ordinary

differential equation (ODE) solver to consider radiative cooling and heating effects

in addition to the original Athena++ MHD Solver. Our initial state was a 3D
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Figure 2.5: Panel (a): numerical 3D visualization of velocity caustics. The PPV

cube ρs(x, y, v) is generated with an input density field ρ(xxx) and velocity field’s LOS

component v(xxx) in PPP space. The density field ρ(xxx) is a constant sphere, while the

LOS velocity component v is adopted from the multiphase simulation. Panel (b):

spectral (three sub-plots on the right) of the synthetic PPV cube at three different

positions on the x− y plane. The three positions are labeled on the (left) integrated

intensity map with star symbols. Panel (c): the velocity spectra (top) and channel

map p (bottom) of the PPV cube presented in panel (a). The velocity range used

for integration (i.e., channel width ∆v) is indicated by the shaded region in the top

averaged spectra.
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turbulence box with periodic boundaries and a length of 200 pc, representing bulk

neutral hydrogen in the ISM. We utilized a realistic synthetic cooling and heating

function proposed by Koyama & Inutsuka (2002) and solved the equation with

an adaptive implicit solver to ensure convergence. The simulation was initially of

constant density and driven by spectral velocity perturbation in Fourier space. The

multi-phase medium began to form approximately 20 Myr into the simulation. To

ensure a realistic representation of a multi-phase medium and an accurate capture of

turbulence effects, we selected a snapshot around 100 Myr. For additional simulation

details and statistics, see Yuen et al. (2021) and Ho et al. (2023).

To generate a synthetic spectroscopic cube, we use the density field ρ(xxx),

velocity field v(xxx), and temperature information from simulations. Additionally,

to produce pvc, we use a constant density field ρ(xxx) in PPP space. This approach

ensures that pre-existing density structures are entirely excluded from consideration.

To incorporate the effects of thermal line broadening in the synthetic PPV cubes. To

include the thermal line broadening effect in the synthetic PPV cubes, ρs(x, y, vlos) is

convoluted by a thermal Gaussian kernel. The standard deviation of this Gaussian

kernel is set to the sound speed σT = cs, effectively modeling the impact of thermal

motions on the spectral lines.

Numerical results

Illustration of the velocity caustics effect: Fig. 2.5 presents a synthetic

example of PPV cubes ρs(x, y, vlos) generated from a density field ρ(xxx) and the LOS

component of the velocity field v(xxx), accounting for thermal broadening effects. The

density field ρ(xxx) is a constant sphere, while the LOS velocity component v is derived

from multiphase HI simulations. We can see the sphere in PPV space is considerably

distorted. The constant ρ(xxx) eliminates any pre-existing density structures that are

correlated with the magnetic field so that the projected ρ(xxx) map appears only as

a circular structure (see Fig. 2.5, panel b). Moreover, we take spectral lines along

three different LOS. The lines’ amplitude is not constant, but varies as a function

of velocity, resembling the line profiles obtained in observations. Then, in Fig. 2.5,

panel (c), we take channel maps by using the spectral line averaged over the cube

and vary the channel width (i.e., the velocity range used for integration). We can

see a fully integrated channel recovers the column density map, erasing velocity

information. The significance of crowding’s significance is related to the channel

width ∆v. The velocity crowding effect gradually becomes more pronounced as the

channel width decreases. In a thin channel map, the intensity structures become

filamentary. These intensity structures are solely created by the velocity caustics
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effect.

Figure 2.6: Comparisons of thick velocity channel (the 1st panel), thin center (the

2nd panel), and thin wing channels (the 3rd and 4th panels). The synthetic line

is generated by using a non-constant 3D density field ρ from the supersonic MHD

simulation. The velocity range used for integration is indicated by the shaded region in

the top spectrum. The mean magnetic field is oriented along the vertical y−direction

and thermal broadening is included.

Tests of the thermal broadening effect and VDA with isothermal

simulations: we present a supersonic MHD simulation (Ms = 10 and MA = 0.7)

in Fig. 2.6, comparing thick and thin (central and wing) channels with thermal

broadening included. However, we do not observe any significant resemblance

between the thick and thin (central and wing) channels. This is expected since, in

supersonic conditions (usually in molecular clouds), the thermal speed is considerably

smaller than the turbulent velocity, resulting in a minimal contribution of thermal

broadening.

To evaluate the significance of thermal broadening on velocity caustics,

especially in the low-Ms regime, we conducted a specific test. This involved

artificially increasing the thermal speed in the isothermal Ms = 1.2,MA = 0.6 MHD

simulation. We then compared the wing thin channels p and the pure velocity

caustic channel pvc , the latter obtained by applying the simulation velocities to a

constant density field (as illustrated in Fig. 2.5). It is important to note that pvc
effectively removes any pre-existing density structures. In Fig. 2.7, we observe that

in the standard σT = cs case, the intensity structures in p bear similarities to those

in pvc, although some differences are also evident. When σT is increased, enhancing

the thermal broadening effect, the intensity structures in p undergo further changes.

This is in line with expectations, as increased thermal broadening can diminish
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the velocity contribution within a channel. However, our results indicate that at a

normal level of thermal broadening, the impact on erasing velocity information is

marginal. Notably, pvc in these tests is generated from a constant density cube with

σT = cs. If thermal broadening were to completely erase all velocity information, pvc
would manifest as a uniform-intensity map.

Furthermore, in Fig. 2.7, we assess VDA’s efficacy by artificially varying the

level of thermal broadening from σT = cs to σT = 2cs. It is evident that the

VDA-decomposed velocity contribution pv maps remain remarkably consistent

across all cases. These pv maps closely resemble the pvc map, indicating that VDA

effectively isolates the velocity contribution, even under conditions of enhanced

thermal broadening.

Figure 2.7: Panel (a): Comparisons of thin channels p (top) and VDA-decomposed

velocity contribution pv with different thermal kernels σT . Larger σT means stronger

thermal broadening. The synthetic line is generated by using a non-constant 3D

density field ρ from the Ms = 1.2,MA = 0.6 MHD simulation. The channel width is

identical to the thin channel used in 2.6. The mean magnetic field is oriented along

the vertical y−direction. Panel (b): The thin channel in this panel was generated

using a constant density field, thereby eliminating any pre-existing density structures.

The structures within the thin channel are solely created by velocity caustics, and

thus we refer to it as the velocity caustics channel pvc. The integration velocity range

is identical to that in panel (a).

Tests of the velocity caustics effect with multi-phase simulations: In this

section, we apply VDA to synthetic observation with the purpose of determining
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the relative level of ”density” pd and pv contributions as well as analyzing the level

at which pv can be explained by the pure velocity caustic effect as encoded in pvc.

In simulations, pvc is the result of using simulation velocities and applying them

to constant density (as in Fig. 2.5). At the same time, pv is the result of VDA

separation of the effect of velocity caustics from the effect of density fluctuation. A

numerical test of VDA’s validity in removing thermal broadening and separating

velocity contributions using isothermal MHD simulations is given in Fig. 2.7. In the

main text, we directly start with the multi-phase simulation. More on the VDA

justification and application can be found in Yuen et al. (2021).

In Fig. 2.8, we perform VDA in Ms = 1.0,MA = 1.0 multi-phase HI MHD

simulation and compare obtained pv and pd with the pure velocity contribution pvc
and the full channel intensity p. Different from isothermal MHD simulations, the

multi-phase simulation is not scale-free and is composed of the cold neutral medium

(CNM), unstable neutral medium (UNM), and warm neutral medium (WNM). The

comparison is performed for three channels centering at different vlos. The channel

associated with the most prominent intensity is denoted as the central channel and

the other is called the wing channel.

We can see that for both the central and wing channels, intensity structures in p

are similar to those in velocity contribution pv and velocity caustics pvc. This means

velocity caustics have an important contribution to channel maps. The perturbative

quantity pd is allowed to have negative values and its amplitude varies because pd
contains the information of density fluctuations in a channel. Nevertheless, the

difference between central and wing channels exists. For the central channel, the

similarity also appears between p and pd, while this is not observed in the wing

channel. It suggests pd has more contribution to the central channel, while pv is still

dominated. In both cases, the correspondence of pv and the velocity caustics pvc
tests the performance of VDA with synthetic observations of multi-phase HI.

2.2.3 Physics implication: nature of 21-cm striations in thin

channels

HI is the most abundant element in the universe, playing a pivotal role in providing

crucial insights into the structure and evolution of galaxies (Cox & Reynolds 1987;

HI4PI Collaboration et al. 2016; Peek et al. 2018). Striations observed in HI channel

maps are of particular interest in a range of studies. These include tracing the

Galactic magnetic field orientation on large scales (Yuen & Lazarian 2017b; Lazarian

& Yuen 2018c; Hu et al. 2020d; Lu et al. 2020), mapping the magnetic field strength
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Figure 2.8: Schematic of the formation of images velocity channel maps and their

comparison with velocity caustics. Panel (a): Results of the separation of density

contribution (pd) and velocity contribution (pv) from a thin channel (p) using a non-

constant 3D density field ρ from the MHD simulations. The velocity range used for

integration is indicated by the shaded region in the top spectrum. The color bars for

panels provide the relative contributions. The left graphs show the position of the

channels relative to the average profile of the line Panel (b): The thin channel pvc
in this panel was generated using a constant density field equal to the full volume

mean density, thereby eliminating any pre-existing density structures. The structures

within the thin channel are solely created by velocity mapping. The integration

velocity range is identical to that in panel (a). The mean magnetic field is oriented

along the vertical y−direction and thermal broadening is included. The channel width

≈ 0.2 km/s is selected to match the GALFA-HI data.

in the diffuse ISM (Lazarian et al. 2018; Hu & Lazarian 2023b), and modeling

Galactic foreground polarization (Clark et al. 2015; Clark & Hensley 2019). As

illustrated in Fig. 2.5, the effect of velocity caustics can generate distinct intensity

structures in thin channel maps, contributing to the observed striations. One of the

important properties of the striations is that they are always aligned with magnetic
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Figure 2.9: Left: 3D visualization of the multi-phase simulation’s volume density

field and magnetic field (top), as well as temperature (bottom), in PPP space. In

the highlighted square box specifically, density structures are mostly orthogonal to

the magnetic field. Right: synthetic thin (∆v ≈ 1.5 km/s) channel maps p and their

RHT-fibers. The RHT-maps are calculated also for p’s corresponding pvc maps. The

shaded area at the top spectra indicates the velocity range used for integration.
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fields, providing a unique opportunity to distinguish whether the striations are

predominantly created by velocity caustics or are real density structures in the ISM.

The 3D visualization of the multi-phase HI simulation’s density cube in PPV

space, as presented in Fig. 2.9, reveals numerous high-density filaments. These

filaments can align either parallel or perpendicular to the magnetic field, depicted

by black lines. A comparison between the upper and lower left panels of the figure

indicates that dense structures correspond to cold gas regions. The highlighted

magenta squares show that the magnetic field is predominantly vertical, while the

cold density structures or filaments are preferentially horizontal. This observation

aligns with the theoretical expectation that cold-density filaments in PPP space

are not necessarily parallel to magnetic fields (Xu et al. 2019b). In a similar

vein, perpendicular cold density filaments are also observed in the multi-phase

simulations of Gong et al. (2023). To objectively analyze the velocity caustics’

impact on shaping the intensity distribution in PPV space, we plot six thin channel

maps (∆v ≈ 1.5 km/s) generated from the multi-phase simulation and located at

different velocity coordinates, covering almost the entire velocity range. In all these

channel maps, we observe the intensity structures preferentially follow the magnetic

field. This is also true for the regions where the cold-density structures tend to be

perpendicular to the magnetic field. This testifies that the density contributions are

subdominant to what is seen in the channel maps.

To better visualize the striated intensity structures in thin channel maps, we

employ the Rolling Hough Transform (RHT; Clark et al. 2014, 2015), which is an

algorithm for extracting linear structures in an image. The RHT results depend on

the somewhat arbitrary input parameters (Clark et al. 2014) of smoothing kernel

diameters (DK), a window diameter (DW), and an intensity threshold (Z). Different

parameters may affect the degree of alignment of ”fibers” with the magnetic field.

We repeated the RHT analyses with different parameters and selected the ”visually

correct” result with parameters of DK = 11, DW = 55, and Z = 0.7.

In Fig. 2.9, we present the RHT-identified structures (i.e., RHT-fibers) for

the six channel maps. Looking at the magenta squares it is easy to see that the

cold-density filaments perpendicular to the magnetic fields seen in PPP space are

not seen in thin channel maps. The RHT-identified filaments are aligned parallel to

the projected magnetic field. Using the synthetic pvc maps obtained with constant

density, we observe that RHT-fibers obtained for pvc are nearly identical to the fibers

thin channel maps p. This proves that RHT-fibers in thin channel maps arise from

velocity caustics. The alignment of RHT-fibers with magnetic field in our synthetic

observations is similar to that was observed earlier in GALFA-HI data (see Clark

et al. 2014, 2015). This suggests that striations of intensity observed in GALFA
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thin channel maps are dominated by velocity caustics rather than cold-density PPP

filaments.

Note that our analysis does not mean that cold HI filament cannot be aligned

with the magnetic field, but shows that the contribution of these filaments is

subdominant for RHT-filaments detected in thin channel maps. Indeed, if we

examine PPP filaments beyond the magenta square, we observe cold filaments

parallel aligned with magnetic fields, as seen in Fig. 2.9. Such alignment is expected

in MHD turbulence theory (Xu et al. 2019b; Beattie et al. 2021) e.g., if turbulent

velocities passively advect the density fluctuations. This is, for instance, the case for

density inhomogeneities arising from entropy fluctuations when turbulent gas is not

isothermal. In this case, the statistics of density fluctuations mimic the statistics of

the velocity (Monin & Yaglom 2013), and therefore the parallel alignment of density

filaments is expected in PPP space. Thus, the velocity field is responsible for the

parallel (to magnetic field) alignment of both RHT-fibers in thin channel maps and

the occasional alignment of cold-density filaments.

Figure 2.10: Same to Fig. 2.8, but for a HI cloud (vlos ≈ 3 km/s) selected from

the GALFA-HI survey. The shaded area at the top indicates the velocity range (i.e.,

channel width ∆v) used for integration. Two different channel widths have been

adopted: ∆v ≈ 4.0 km/s (top) and ∆v ≈ 0.2 km/s (bottom).
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2.2.4 Observational test: application to GALFA-HI data

In this section, we provide an observational example using GALFA-HI data and

quantify the significance of velocity caustics. We utilize the GALFA-HI survey data

from Data Release 2, as described in Peek et al. (2018). The HI data has a beam

resolution of 4′×4′, which has been gridded into 1′×1′ per pixel, with a spectral

resolution of ≈ 0.2 km/s and a brightness temperature noise of approximately 40 mK

per 1 km s−1 integrated channel. Our analysis covers the full velocity range.

Fig. 2.10 displays two channel maps of the HI cloud, located at vlos ≈ 3 km/s

but with different channel widths (∆v ≈ 4.0 km/s and ∆v ≈ 0.2 km/s). Noticeable

differences can be observed between pd and pv. In addition, pd associated with low

intensity has only a marginal contribution to the high-intensity filamentary striations

observed in p. On other the hand, structures seen in p are highly similar to those in

pv, in terms of topology and intensity amplitude. This suggests that both channels

(∆v ≈ 4.0 km/s and ∆v ≈ 0.2 km/s) are dominated by prominent velocity caustics.

NCC analysis

We further use the normalized covariance coefficient (NCC) to quantify the

correlation between pv and other maps. NCC of two maps A and B is defined as

(Yuen et al. 2019b):

NCC =
⟨(⟨A− ⟨A⟩)(⟨B − ⟨B⟩)⟩

σAσB
, (2.39)

where σA and σB represent the standard deviation of maps A and B, respectively.

NCC ranges from -1 to 1, with NCC = 1 indicating that the two maps A and B are

statistically perfectly correlated. NCC = 0 and NCC = -1 correspond to the two

maps being statistically uncorrelated and anticorrelated, respectively. NCC focuses

on the comparison of the structures’ morphology in two maps, rather than on their

relative magnitudes, to which the NCC coefficient is insensitive.

Fig. 2.11 displays the correlation between normalized NCC and channel width

for the multi-phase simulation, as well as the GALFA-HI cloud. We start with

the case of the simulated central channel associated with the most prominent

intensity. The numerical comparison reveals a strong correlation between pv and

pvc, with NCC∼ 0.8 when the channel is thin, ∆v/σv < 1 (Lazarian & Pogosyan

2000). Given that pvc is generated from a constant density field and contains solely

velocity information, this high NCC value implies that pv reveals velocity structures.

Concurrently, a strong correlation (NCC ∼ 0.7) is detected in thin channels between

pv and p, contrasting with the absence, by construction, of any correlation with
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Figure 2.11: Panel (a): This panel displays the dependence of NCC on channel

width ∆v, normalized by the velocity dispersion σv. NCC values range from -1

to 1, where 1 represents a perfect correlation, 0 indicates no correlation, and -1

represents anti-correlation. NCC is calculated between the velocity contribution pv,

thin channel maps p, column density map I, and pure velocity caustics map pvc. The

column density map I is integrated along the full LOS velocity range to erase velocity

information. pRHT and pvc,RHT are the RHT-processed p and pvc maps, respectively.

Panel (b): This panel presents the NCC values between the pv, p, and Planck 353

GHz FIR intensity map I353 for the GALFA-HI cloud (see Fig. 2.10). The Planck

map only contains density information in the cold phase. vlos refers to the central

LOS velocity of the channels. pv,RHT is the RHT-processed pv map.

the column density I. The correlation between pv and p diminishes as the channel

width increases, an expected outcome since a thicker channel integrates more density

contributions.

To better understand the origin of RHT-fibers, we employ RHT to process pvc
and p maps using the same parameters as those in Fig. 2.9, resulting in pvc,RHT and

pRHT respectively. As shown in Fig. 2.11, pvc,RHT and pRHT always display a strong

correlation with NCC > 0.6, notably regardless of the channel width. Considering

pvc,RHT contains only velocity information, this confirms that the shapes of the
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observed RHT-fibers in pRHT to a large extent follow velocity caustics.

In addition to the central channel, we repeat the NCC analysis for two more

channels centering at vlos ≈ ±σv, called wing channels. We found that NCC values of

pv v.s. pvc and pv v.s. p in the wing channels are higher than in the central channel,

even achieving NCC > 0.9 when ∆v/σv < 1. This would suggest that the velocity

contribution is more significant in wing channels. This effect, however, is in part due

to large-scale motions which separate high-velocity regions into different channels.

When we filter out the large-scale modes in RHT analysis, we find the correlation

between pvc,RHT and pRHT in wing channels, while still rather strong (NCC ∼ 0.6),

to be somewhat lower than in the central channel.

Next, we calculated the NCC for the GALFA-HI cloud at three different vlos ≈ 3,

20, and 40 km/s. Here, with pvc not available, we limit ourselves to comparing pv to

the raw channel p and the Planck 353 GHz FIR map I353. As Fig. 2.11 shows, pv is

highly correlated with p when the channel is narrow. In particular, NCC exceeds

0.6 when ∆v ≈ 0.2 km/s. In the central channel, NCC values are as high or higher

as in the simulations, however in the wings they are lower. The processed pv,RHT

maps also show a high correlation with the pRHT in the central channel, at the same

level of NCC ∼ 0.8 as pvc,RHT showed in the simulations. This provides observational

evidence that RHT-fibers here originate from velocity caustics. However in the wings

pv,RHT behavior is less consistent than that of a simulated pvc,RHT. We expect that

the existence of multiple HI clouds together with shear velocity makes it challenging

to interpret wing channels, which in simulations are defined for a single HI cloud.
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Chapter 3

MHD turbulence physics in the

Interstellar Medium

This thesis chapter originally appeared in the literature as

Hu, Y., Lazarian, A., & Xu, S. 2021, ApJ, 915, 67.

Hu, Y., Federrath, C., Xu, S., et al. 2022, MNRAS, 513, 2100.

Hu, Y., Xu, S., Stone, J. M., et al. 2022, ApJ, 941, 133.

Hu, Y., Xu, S., Arzamasskiy, L., et al. 2024, MNRAS, 527, 3945.

Abstract

Turbulence is a fundamental element in the Interstellar Medium (ISM), significantly

influencing astrophysical phenomena such as cosmic ray transport, magnetic field

amplification, and star formation. Based on the current understanding of anisotropic

magnetohydrodynamic (MHD) turbulence, we investigate (1) the damping of MHD

turbulence in a partially ionized medium; (2) the velocity statistics of turbulent

clouds in the presence of gravity, magnetic fields, radiation, and outflow feedback;

(3) the turbulent magnetic field amplification by the interaction of a shock wave and

inhomogeneous medium; and (4) the superdiffusion of cosmic rays in compressible

magnetized turbulence. We used 3D two-fluid (ions + neutrals) turbulence

simulations generated with the AthenaK code, 3D MHD simulations of star cluster

formation generated with the FLASH code, 3D MHD simulations of the interaction

between a shock wave and an inhomogeneous density distribution generated with

the Athena++ code, and test particles simulations of MHD turbulence generated

with the Zeus-MP/3D code. For (1), our results demonstrate that when ions and
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neutrals are strongly coupled, the velocity statistics resemble those of single-fluid

MHD turbulence. Both the velocity structures and kinetic energy spectra of ions

and neutrals are similar, while their density structures can be significantly different.

With an excess of small-scale sharp density fluctuations in ions, the density spectrum

in ions is shallower than that of neutrals. When ions and neutrals are weakly

coupled, the turbulence in ions is more severely damped due to the ion-neutral

collisional friction than that in neutrals, resulting in a steep kinetic energy spectrum

and density spectrum in ions compared to the Kolmogorov spectrum. In addition, we

find large density fluctuations in ions and neutrals and thus spatially inhomogeneous

ionization fractions. As a result, the neutral-ion decoupling and damping of MHD

turbulence take place over a range of length scales. For (2), we find outflow feedback

can change the scaling of velocity fluctuations but still roughly being in between

Kolmogorov and Burgers turbulence. We observe that self-gravity and protostellar

outflows increase the velocity fluctuations over all length scales. Outflows can

amplify the velocity fluctuations by up to a factor of 7 on scales 0.01 – 0.2 pc and

drive turbulence up to a scale of 1 pc. The amplified velocity fluctuations provide

more support against gravity and enhance fragmentation on small scales. The

self-gravity’s effect is more significant on smaller dense clumps and it increases the

fraction of the compressive velocity component up to a scale of 0.2 pc. However,

outflow feedback drives both solenoidal and compressive modes, but it induces

a higher fraction of solenoidal modes relative to compressive modes. Thus, with

outflows, the dense core ends up with a slightly higher fraction of solenoidal modes.

We find that the compressible fraction is fairly constant with about 1/3 on scales

0.1 – 0.2 pc. The combined effect of enhanced velocity dispersion and reduced

compressive fraction contributes to a reduction in the star formation rate. For (3),

we find the postshock turbulence is mainly driven by the strongest preshock density

contrast and follows the Kolmogorov scaling. The resulting turbulence amplifies

the postshock magnetic field. The time evolution of the magnetic fields agrees with

the prediction of the nonlinear turbulent dynamo theory. When the initially weak

magnetic field is perpendicular to the shock normal, the maximum amplification

of the field’s strength reaches a factor of 200, which is twice as large as that for a

parallel shock. We find that the perpendicular shock exhibits a smaller turbulent

Alfvén Mach number in the vicinity of the shock front than the parallel shock.

However, the strongest magnetic field has a low volume filling factor and is limited

by the turbulent energy due to the reconnection diffusion taking place in a turbulent

and magnetized fluid. We decompose the turbulent velocity and magnetic field into

solenoidal and compressive modes. The solenoidal mode is dominant and evolves

to follow the Kolmogorov scaling, even though the preshock density distribution

has a shallow spectrum. When the preshock density distribution has a Kolmogorov



52

spectrum, the turbulent velocity’s compressive component increases. For (4), we

show that freely streaming cosmic rays’ perpendicular displacement increases as 3/2

to the power of the time traveled along local magnetic field lines. This power-law

index changes to 3/4 if the parallel propagation is diffusive. We find that the cosmic

rays’ parallel mean free path decreases in a power-law relation of M−2
A in supersonic

turbulence. We investigate the energy fraction of slow, fast, and Alfvénic modes and

confirm the dominance of Alfvénic modes in the perpendicular superdiffusion. In

particular, the energy fraction of fast mode, which is the main agent for pitch-angle

scattering, increases with Alfven Mach number MA, but is insensitive to sonic Mach

number Ms ≥ 2. Accordingly, our results suggest that the suppressed diffusion in

supersonic molecular clouds arises primarily due to the variations of MA instead of

Ms.

3.1 MHD turbulence in a partially ionized

medium

3.1.1 Decoupling of ions and neutrals

The interaction between ions and neutrals can be quantified by the neutral-ion

collisional frequency νni = γdρi = γdξi(ρi + ρn) and ion-neutral collisional frequency

νin = γdρn, respectively (Shu 1992). Neutrals start to decouple from ions when the

energy cascading rate of MHD turbulence matches νni. Given νin ≫ νni in a weakly

ionized medium, ions decouple from neutrals on a much smaller scale than the

neutral-ion decoupling scale, so here we mainly consider neutral-ion decoupling. The

coupling status between ions and neutrals in MHD turbulence can be separated into

three important regimes: (i) strongly coupled regime, in which the scales are larger

than the neutral-ion decoupling scale. Neutrals and ions act as single-fluid in this

regime. (ii) weakly coupled regime, where the scales are smaller than the neutral-ion

decoupling scale but larger than the ion-neutral decoupling scale. Neutrals thus

decouple from ions, but ions still couple to neutrals. (iii) Decoupled regime, in which

the scales are smaller than the ion-neutral decoupling scale. Neutrals and ions in

this regime are fully decoupled so if the turbulence injection happens in this regime,

neutrals develop an independent hydrodynamic turbulent cascade and ions develop

an MHD turbulent cascade.

In earlier linear analysis (Kulsrud & Pearce 1969), it was considered that the

decoupling of neutrals from Alfvén wave oscillations at the neutral-ion decoupling

wavenumber kdec,∥. It can be determined by equating the Alfvén wave frequency and
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νni (Shu 1992):

kdec,∥vA = νni, (3.1)

where the subscript ′′ ∥′′ means the wavevector parallel to the magnetic field. MHD

turbulence was previously modeled as a collection of linear waves (Giacalone &

Jokipii 1999), and kdec,∥vA = νni was taken as the neutral-ion decoupling wavenumber

or ambipolar diffusion wavenumber of MHD turbulence (Kulsrud & Pearce 1969;

Mouschovias & Morton 1991; Hennebelle & André 2013). However, it is essential

to note that MHD turbulence is a highly nonlinear phenomenon and the Alfvén

wave-like motion in the strong turbulence regime with the critical balance cannot

survive for more than a wave period. With the dynamically coupled turbulent

mixing motion in the perpendicular direction and the wave-like motion in the parallel

direction, scale-dependent anisotropy is one of its most important properties (see

§ 2.1.1).

For Alfvénic turbulence, which usually carries most of the MHD turbulence

energy (Cho et al. 2002; Hu et al. 2021b), the anisotropy suggests that the neutral-ion

decoupling scale is not isotropic. The parallel component of the decoupling scale

can be much larger than the perpendicular component when it is significantly

smaller than Linj. Taking into account the critical-balance relation between

turbulent motions and wave-like motions and the anisotropy of MHD turbulence, Xu

et al. (2015) derived the parallel decoupling wavenumber kdec,∥ and perpendicular

decoupling wavenumber kdec,⊥ by using the anisotropic scaling (see Eq. 2.1) in strong

MHD turbulence regimes (i.e., kdec,⊥ > l−1
A or kdec,⊥ > l−1

trans):

kdec,∥ = νniv
−1
A ,

kdec,⊥ =

{
ν
3/2
ni L

1/2
inj v

−3/2
inj , MA > 1

ν
3/2
ni L

1/2
inj v

−3/2
inj M

−1/2
A , MA < 1

.
(3.2)

Here, we only consider Alfvén turbulence as it carries most of the turbulent energy

(Cho & Lazarian 2003; Hu et al. 2022e). For a more in-depth discussion on

neutral-ion decoupling scales of the three MHD modes (Alfvén, fast, and slow), see

Xu et al. (2015, 2016).

3.1.2 Neutral-ion collisional damping of MHD turbulence in

a partially ionized medium

At length scales larger than k−1
dec,∥, ions and neutrals are perfectly coupled, and

together carry the MHD turbulence. However, at length scales smaller than k−1
dec,⊥,

neutrals begin to decouple from ions, resulting in the development of their own
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hydrodynamic turbulent cascade, while ions continue to undergo frequent collisions

with surrounding neutrals (down to the ion-neutral decoupling scale). As a result,

the remaining MHD turbulence in ions is strongly affected and damped by the

collisional friction exerted by neutrals, which is denoted as neutral-ion (collisional)

damping.

When neutral-ion damping dominates over the damping caused by the kinematic

viscosity of neutrals, the parallel damping wavenumber kdam,∥ for Alfvénic turbulence,

as derived in Xu et al. (2015) by equating the turbulent cascading rate τ−1
cas = vl/l⊥

and the ion-neutral collisional damping rate |ωI | =
ξnv2Ak

2
∥

2νni
in the strong MHD

turbulence regime, is given by (Xu et al. 2015, 2016):

kdam,∥ =
2νni
ξn

v−1
A , (3.3)

where ξn = ρn/(ρi + ρn) is the fraction of neutrals. It holds for both sub-Alfvénic

and super-Alfvénic turbulence. The perpendicular damping wavenumber kdam,⊥ can

be derived from the anisotropy scaling in the strong turbulence regime:

kdam,⊥ =

{
(2νni
ξn

)3/2L
1/2
inj v

−3/2
inj , MA > 1

(2νni
ξn

)3/2L
1/2
inj v

−2
inj v

1/2
A , MA < 1

. (3.4)

It is important to note that the kdam,⊥ is the most crucial in determining the

damping of the MHD turbulent cascade because the cascade mainly happens in

the direction perpendicular to the local magnetic field. In addition, kdam,⊥ is larger

than kdec,∥ (see Eq. 3.2), as damping of MHD turbulence takes place after neutrals

decouple from ions.

3.1.3 Numerical setup of two-fluid turbulence simulation

The 3D two-fluid simulations are generated using the Athena++ implemented with

Kokkos (Stone et al. 2020b). We consider the two-fluid magneto-fluid system,

comprised of ions (together with electrons) and neutrals. The effects of gravity, heat

conduction, ionization, and recombination are not included in the current study.

The simulations solve the ideal two-fluid MHD equations, using periodic boundary

conditions, IMEX3 time integration algorithm, and PPM4 spatial reconstruction
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method. The equations are:

∂ρi/∂t+∇ · (ρivvvi) = 0, (3.5)

∂ρn/∂t+∇ · (ρnvvvn) = 0, (3.6)

∂(ρivvvi)/∂t+∇ ·
[
ρivvvivvv

T
i +

(
c2sρi +

B2

8π

)
III − BBBBBBT

4π

]
= γdρnρi(vvvn − vvvi) + fff i, (3.7)

∂(ρnvvvn)/∂t+∇ ·
[
ρnvvvnvvv

T
n + c2sρnIII

]
= γdρnρi(vvvi − vvvn) + fffn, (3.8)

∂BBB/∂t−∇× (vvvi ×BBB) = 0, (3.9)

∇ ·BBB = 0, (3.10)

here ρ and v are the mass density and velocity of the ionized fluid (with the subscript

”i”) and neutral fluid (with the subscript ”n”), respectively. We adopt an isothermal

equation of state, where the sound speed cs is constant. The isothermal condition

applies to a medium with efficient cooling, such as molecular clouds (Tilley & Balsara

2010; Meyer et al. 2014). It only breaks down when density exceeds ∼ 1010cm−3

(Furuya et al. 2012). The ion-neutral collisional damping under other conditions

will be studied in our future work.To drive turbulent motions in ions and neutrals, a

stochastic forcing term fff is utilized. Explicitly, fff i and fffn are weighted by ion and

neutral densities to achieve the same injected turbulent velocities in the two fluids.

At the start of the simulation, the magnetic field and (ion and neutral) density fields

are set to be uniform, with the magnetic field along the z-axis. The initial ionization

fraction is ξi = ρi/(ρi+ ρn), where ρi and ρn are the initial mass densities of ions and

neutrals. The simulation box is divided into 4803 cells and is uniformly staggered.

The forcing term, fff , is introduced to drive the turbulence in a solenoidal manner.

This is ensured by making the forcing term divergence-free. The forcing term is

modeled using the stochastic Ornstein-Uhlenbeck (OU) process, which allows us to

control the auto-correlation timescale, tc, of the turbulence. The auto-correlation

timescale is approximately equal to tc ≈ Linj/(2πvA), where Linj is the turbulence

injection scale and vA = B√
4π(ρi+ρn)

is the Alfvén speed in the two fluids. The time

step is the minimum time step allowed by the Courant–Friedrichs–Lewy stability

condition for the ion and neutral fluids, respectively.

To vary the level of turbulence, we change the values of vinj. The energy injection

is focused around wavenumber k = 2π/l = 1− 2 (in the unit of 2π/Lbox, where Lbox

is the length of simulation box) in Fourier space, where l is the length scale in real

space. The turbulence is numerically dissipated at wavenumber kdis ≈ 40− 50. We

run the simulations for six eddy turnover times to ensure that the turbulence has

reached a statistically stable state.

The simulation of scale-free turbulence can be characterized by the sonic Mach
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Run Ms MA β γd ξi kdec,∥ kdec,⊥

γ5 1.10 1.07 1.9 5 0.1 0.5 0.3

γ25 1.06 1.08 2.1 25 0.1 3 4

γ100 0.95 0.97 2.1 100 0.1 10 32

γ250 1.13 1.12 2.0 250 0.01 3 4

γ1e3 1.19 1.07 1.6 103 0.1 102 103

γ1e4 0.97 0.87 1.6 104 0.1 103 3×104

γ1e5 1.05 0.91 1.5 105 0.1 104 106

Table 3.1:: Setups of two-fluid simulations. Ms and MA are the instantaneous RMS

values at each snapshot that is taken. β = 2(MA/Ms)
2 is plasma compressibility.

kdec,∥ and kdec,⊥ are theoretically expected parallel and perpendicular components

of the neutral-ion decoupling wavenumber, respectively. The listed γd is given in

numerical units. To obtain a dimensionless value, divide γd by vinj/(Linjρi), which is

fixed at 10 and 100 (in numerical units) for ξi = 0.1 and 0.01, respectively, within the

simulations.

number, Ms =
vinj
cs
, and the Alfvén Mach number, MA =

vinj
vA

, where vinj is the

injection velocity. In this work, we fix Ms and MA to approximate unity, ensuring

that the simulations fully fall into the strong turbulence regime, in which the ”critical

balance” condition (Goldreich & Sridhar 1995) is satisfied (see § 2.1). This is defined

in the range as [ldis, LinjM
−3
A ] for super-Alfvénic (MA > 1) and [ldis, LinjM

2
A] for

sub-Alfvénic (MA < 1). Here ldis is the turbulence dissipation scale. The critical

parameters for this study are listed in Tab. 3.1.

3.1.4 Velocity statistics of ions and neutrals

Strongly coupled regime

We present 2D slices of velocity fields for ions and neutrals in Figs. 3.1 and 3.2,

taken perpendicular to the mean magnetic field at x = 240 cell. In Fig. 3.1, we show

the cases of γd = 1× 105, 1× 104, and 1× 103, where kdec,∥ and kdec,⊥ are expected to

be larger than the numerical dissipation wavenumber kdis ≈ 40− 50, indicating that

ions and neutrals are well-coupled over all length scales resolved in our simulations.

Note γd values are given in numerical units. To obtain a dimensionless value, one

can divide γd by vinj/(Linjρi), which is approximately 10 for the simulations with

ξi = 0.1. To calculate the theoretically expected kdec,∥ and kdec,⊥, as well as kdam,∥
and kdam,⊥, we adopt the mean values of density, magnetic field, and vinj at k = 1.
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Figure 3.1: Top and middle: 2D slices (taken at x = 240 cell) of ions’ (top) and

neutrals’ (middle) velocity field. The velocity maps are normalized by the mean

value. The view direction is perpendicular to the mean magnetic field, which is along

the vertical z-direction. Bottom: Turbulent kinetic energy spectra of ions (red) and

neutrals (blue). The spectra are averaged over several snapshots after turbulence

reaches a statistically steady state, with the time interval equal to the largest eddy

turnover time. The shadowed areas represent the variations. Magenta and green

lines represent the theoretically expected neutral-ion parallel decoupling (Eq. 3.2) and

damping wavenumbers (Eq. 3.3), respectively, for Alfvén modes of MHD turbulence.

The perpendicular decoupling and damping wavenumbers are not shown because they

are larger than 103.

We denote the kdec,∥ and kdec,⊥ as averaged decoupling wavenumbers. If the averaged

decoupling wavenumbers are larger than the numerical dissipation wavenumbers,

then neutrals and ions are on average well-coupled. We find that the ion and neutral

velocity spectra for the cases of γd = 1 × 105 and 1 × 104 follow approximately the

Kolmogorov scaling with a spectral slope of −5/3, while for γd = 1× 103, the spectra
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become a bit steeper, with a slope of ≈ −1.9.
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Figure 3.2: Same as Fig. 3.1, but for γd = 100, 25, 5.

Transition from strongly to weakly coupled regime

Fig. 3.2 presents the velocity distribution slices and turbulent kinetic energy spectra

for three other setups with γd = 100 and 25. We find that the spectra of ions and

neutrals are different, and the spectrum of ions with a slope of approximately −3.2

is steeper than that of neutrals, indicative of more severe damping of the turbulent

cascade in ions. The spectrum of neutrals is also steeper than the Kolmogorov one.

It suggests that the neutral-ion decoupling does not happen sharply at a particular

scale, but gradually over a range of scales. Compared to the strongly-coupled

case, the velocity distributions of both neutrals and ions show a clear deficiency of

small-scale structures, and the anisotropy is less apparent. We can also see that

the neutral-ion decoupling does not happen at the ambipolar diffusion wavenumber

kdec,∥. Instead, only at kdec,⊥, the spectra of ions and neutrals start to diverge.
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We note that previous studies with a low ionization fraction of 1 × 10−4

suggest a Kolmogorov spectrum of neutrals no matter whether they are coupled or

decoupled from ions (Meyer et al. 2014). In our case, we have a higher ionization

fraction of 0.1 and lower γd. Our result suggests that the reduced γd may cause

enhanced frictional damping and thus steepening of the spectra of neutrals and

ions when they are coupled at k < kdec,⊥. At k > kdec,⊥, with relatively higher

ion inertia neutrals are not fully decoupled from ions. Consequently, neutrals

cannot develop a completely independent hydrodynamic cascade and their spectrum

remains steep. This is, however, constrained by the limited internal range in our

current numerical simulations. We expect the neutrals spectrum would become

shallower at a sufficiently large wavenumber, in which neutrals are fully decoupled

from ions. We note that our theoretically calculated decoupling and damping

wavenumbers are based on the Kolmogorov scaling and scale-dependent anisotropy

of Alfvénic turbulence. For strongly damped MHD turbulence with a steep spectrum

and insignificant anisotropy, the theoretical estimates have a large uncertainty.

Additional uncertainty comes from the fluctuations in the local ionization fraction in

compressible MHD turbulence, and thus the decoupling of neutrals from ions does

not happen on a single-length scale. We further discuss this point in § 3.1.4.

Transition from weakly coupled to decoupled regime

At γd = 5, neutrals are decoupled from ions on the turbulence injection scale, while

ions are still globally coupled to neutrals up to k ∼ 5− 10. The velocity distributions

of ions and neutrals exhibit differences, with neutrals displaying more isotropic

velocity structures. In this regime, neutrals develop independent hydrodynamic

turbulent cascades with a Kolmogorov slope, while ions undergo frequent collisions

with neutrals, effectively damping the turbulence in ions. Therefore, ions exhibit

a steep spectrum with a slope of approximately -2.6. The slope is related to the

fraction of energy transferred to neutrals. Here we also see the ion spectrum exhibits

a higher amplitude, most likely due to the artifact of driving turbulence. Our initial

correlation timescale of the driving force is set to be equal to the crossing time of

the Alfvén speed in the neutral and ion well-coupled cases, i.e. using the Alfvén

speed calculated from the total density ρn + ρi. When neutrals decouple from ions,

neutrals do not develop the Alfvén wave. The Alfvén speed then becomes larger due

to smaller ion density. The correlation time fixed in the simulation is therefore too

large for ions, so ions’ turbulence cascades slower and gets higher velocity power.
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Fluctuations in local ionization fraction, Alfvén speed, and decoupling

scales

The neutral-ion decoupling scale, as discussed in § 3.1.1, depends on the

νni = γdρi = γdξi(ρi + ρn) (also vA for the parallel decoupling scale). Due to

variations in density and magnetic fields in compressible MHD turbulence, these two

quantities can exhibit significant fluctuations, resulting in local variations of the

decoupling scales instead of a value.

To further investigate the variation of the local decoupling scale, we present

histograms of the local ionization fraction in Fig. 3.3 with corresponding 2D slices

shown in Fig. 3.5. The histogram of the γd = 1× 105 case is very narrow, with the

ionization fraction concentrated around 0.1. However, as γd decreases, the ionization

fraction starts to spread to both higher and lower values, indicating more significant

local variations. For the other five cases with smaller γd, we observe that the

ionization fraction varies from approximately 0 to 0.3, while the global mean value

of approximately 0.1 remains the same. These variations are due to fluctuations in

ion and neutral densities. We expect that in supersonic turbulence with Ms much

larger than unity, where density fluctuations are more significant, the variation of

ionization fraction may further increase.
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Figure 3.3: Normalized histogram of ionization fraction ξi = ρi/(ρi + ρn). The

fraction is calculated over the full simulation cube.

In addition to the ionization fraction, we also investigate the local Alfvén

speed fluctuations, shown in Fig. 3.4. The Alfvén speed fluctuations come from the
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Figure 3.4: Normalized histogram of the local Alfvén speed vA = B/
√

4π(ρi + ρn)

normalized by its mean value.

variation of magnetic field strength and total density ρi + ρn. Unlike the ionization

fraction, the case of γd = 1× 105 exhibits the widest histogram indicating significant

variation of Alfvén speed. The histograms, however, become narrower for the other

five cases with smaller γd. Typically, we see the maximum value of vA/⟨vA⟩ reaches
∼ 2 and minimum values are either ∼ 0 (for γd = 1× 104 and 1× 103) or ∼ 0.5 (for

γd = 100, 25, and 5).

The Alfvén speed and ionization fraction fluctuations result in local variations

in the values of kdec,∥ and kdec,⊥. The distributions of their theoretically expected

values calculated by using the local ξi and vA are shown in Fig. 3.6, which highlights

the significant fluctuations that can occur. In the case of γd = 1× 105 and 1× 104,

the minimum values of kdec,∥ and kdec,⊥ are larger than the numerical dissipation

wavenumber, suggesting that neutrals and ions remain locally well-coupled.

Otherwise, if the local decoupling wavenumbers are smaller than the numerical

dissipation wavenumber, neutrals are locally decoupled from ions. As seen in the

case of γd = 1 × 103, the local kdec,∥ can vary from ≈ 1 to ≈ 1 × 103, indicating

the existence of local decoupling. The local kdec,⊥ can even reach a larger value of

≈ 8 × 103. Neutrals can fully decouple from ions only at wavenumbers larger than

the maximum kdec,⊥.

For γd = 100, although the expected global mean decoupling scales are

kdec,∥ ≈ 10 and kdec,⊥ ≈ 32, the local values of kdec,∥ and kdec,⊥ are also widely
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Figure 3.5: 2D slices (taken at x = 240 cell) of ionization fraction ξi = ρi/(ρi + ρn).

distributed from ≈ 1 to ≈ 50. When γd = 25, the range of kdec,∥ and kdec,⊥ is

≈ 1 to ≈ 10, and the damping of MHD turbulent cascade in neutrals due to local

coupling with ions is more noticeable than the γd = 100 case. In this case, the

neutral spectrum follows the steep spectrum of ions up to k ∼ 10, which is also the

maximum value seen in the histogram of kdec,⊥. Finally, in the case of γd = 5, kdec,∥
and kdec,⊥ do not exceed 1.5 at their maximum, indicating that neutrals are fully

decoupled from ions basically at all scales and develop a hydrodynamic turbulent

cascade independently. These results suggest that neutral-ion decoupling does not

occur on a single-length scale, but rather over an extended range of scales.

3.1.5 Density statistics of ions and neutrals

2D density distribution and density spectrum

The local variation of the ionization fraction ξi is important to understand the

neutral-ion decoupling and damping of MHD turbulence. ξi is directly related to the

density fluctuations in ions and neutrals. In this section, we investigate the density

statistics of ions and neutrals.

Figs. 3.7 and 3.8 present 2D density slices (taken at x = 240 cell, perpendicular

to the mean magnetic field) and density spectra for ions and neutrals. When
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Figure 3.6: Normalized histogram of theoretically expected local neutral-ion parallel

(green; kdec,∥ = νniv
−1
A ) and perpendicular (orange; kdec,⊥ = ν

3/2
ni L

1/2
inj v

−3/2
inj ) decoupling

wavenumber in the unit of 2π/Lbox. Dashed lines represent the median values.

γd = 1×105, we observe that the density distributions of ions and neutrals are nearly

identical, with the structure regulated by turbulence anisotropy. Similar filamentary

density structures are also seen in single-fluid MHD simulations (Xu et al. 2019b).

The spectra are a bit shallow, but they generally follow the Kolmogorov scaling,

similar to their velocity spectra. However, when γd = 1 × 104, the ion density

distribution becomes different from that of neutrals. Ion density structures exhibit

more apparent striations, while such small-scale structures are not seen in neutral

density distribution. Correspondingly, the spectrum of the ion density becomes

shallower (slope ≈ −1.1), while that of the neutral density starts to become steeper

at large k. These phenomena are more pronounced in the case of γd = 1× 103, where

the slope of the ion density spectrum is ≈ −1.3.

We see that despite the similar velocity structures seen in neutrals and ions in

the strongly coupled regime, their density structures can differ significantly. The

velocity field is likely to be dominated by incompressible Alfvénic turbulence, while

density fluctuations are mainly induced by compressible turbulent motions. This

can be seen from the difference in the velocity and density spectra of ions. Although

neutrals are strongly coupled to the Alfvénic turbulent motions, they may be poorly

coupled to the compressible MHD turbulent motions and thus do not exhibit the

small-scale density structures created by the compressible MHD turbulent motions.

Furthermore, when γd = 100 and 25, the damping of MHD turbulence occurs
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Figure 3.7: Top and middle: 2D slices (taken at x = 240 cell) of ion (top) and

neutral’s (middle) density field. The density maps are normalized by the mean value.

The view direction is perpendicular to the mean magnetic field, which is along the

vertical direction. Bottom: Spectra of ion (red) and neutral’s (blue) density. The

spectra are averaged over several snapshots with one latest eddy turnover time. The

shadowed areas represent the variations.

(see Fig. 3.2). The decoupling of neutrals from the Alfvénic turbulent motions also

contributes to the difference in the density structures of neutrals and ions. The

density distribution in neutrals appears isotropic. We observe that the anisotropic

filamentary structures in ions become less apparent, which is due to the severe

damping, while sharp-density jumps gradually appear on large scales. These sharp

jumps are most significant in the neutral density. The spectra of both ions and

neutrals are steep for γd = 100. Together with γd = 1 × 103, these three cases

are complicated because of the large variation of the local decoupling scale (see

Fig. 3.6). However, for γd = 5, the full decoupling of neutrals from ions is achieved,

and only turbulence in ions is damped (see Fig. 3.2). In this case, we clearly see
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Figure 3.8: Same as Fig. 3.7, but for γd = 100, 25, 5.

that small-scale density structures arise in neutrals and the anisotropic filamentary

structures in ions vanish, and the spectra are shallower (slope ≈ −2.6 for ions and

≈ −2.1 for neutrals) than those at γd = 100 (slope ≈ −3.4 for ions and ≈ −2.7 for

neutrals) and γd = 25 (slope ≈ −3.9 for ions and ≈ −2.3 for neutrals).

The probability distribution function of the logarithmic mass density

We present the probability distribution function (n-PDF) of the logarithmic mass

densities of ions and neutrals, normalized by their respective mean values, as shown

in Fig. 3.9. The n-PDF is a widely used tool for studying density statistics in

single-fluid MHD turbulence (Price et al. 2011; Burkhart 2018), as it directly reveals

the significance of density fluctuations. In general, the minimum and maximum

values of the neutrals’ n-PDF are approximately -1 and 1, respectively. These

values vary a bit at large γd = 1 × 105 and 1 × 104. As in the case of single-fluid

turbulence, we expect the width of the n-PDF to be correlated with Ms (Padoan
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& Nordlund 2002). A high sonic Mach number, especially greater than unity, is

typically associated with shocks, which lead to high-density contrasts and a more

dispersed n-PDF. This behavior is commonly observed in studies of single-fluid

MHD turbulence (Price et al. 2011; Burkhart 2018).
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Figure 3.9: n-PDFs of ion (red) and neutral’s (blue) logarithmic mass densities

normalized by their mean densities.

When γd = 1×105, the ions’ n-PDF closely resembles that of neutrals. However,

the ions’ n-PDFs become more dispersed with smaller γd. While the maximum value

of the ions’ n-PDFs remains stable at log(ρ/⟨ρ⟩) ≈ 1.25 − 2.0, the minimum value

reaches log(ρ/⟨ρ⟩) ≈ −3.0 for γd = 1 × 103 and 100. This suggests that the ion

density exhibits significant local fluctuations. The ions’ n-PDFs narrow again for

γd = 25 and 5, with log(ρ/⟨ρ⟩) ≈ −1.25 at the minimum.

3.1.6 Magnetic field statistics of ions

Fig. 3.10 displays 2D slices of total magnetic field strength taken at x = 240 cell

perpendicular to the mean magnetic field direction, as well as magnetic energy

spectra calculated for the full cube. In the neutral-ion locally well-coupled state,

where γd = 1×105 and 1×104, the magnetic field fluctuations elongate anisotropically

along the magnetic field direction, akin to the velocity and density structures shown

in Figs.3.1 and 3.7. The spectra exhibit Kolmogorov scaling overall. However, when

γd = 1 × 103, the magnetic field structures are less filamentary, and the spectrum
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Figure 3.10: 1st and 3rd: 2D slices (taken at x = 240 cell) of magnetic field strength.

The magnetic field maps are normalized by the mean value. The view direction is

perpendicular to the mean magnetic field, which is along the vertical direction. 2nd

and 4th: magnetic energy spectrum. The spectra are averaged over several snapshots

within one eddy turnover time. The shadowed areas represent the variations.

becomes steeper with a slope of ≈ −2.8 than that of the velocity spectra. This

steepening of the magnetic energy spectrum when the velocity spectra of neutrals

and ions are similar has been observed also in Meyer et al. (2014). It may be

attributed to the effect of local neutral-ion decoupling. Alternatively, the fast modes

in MHD turbulence may get damped at k smaller than the damping scale of Aflvén
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modes (Xu et al. 2015, 2016; Xu & Lazarian 2017b). The damping of the magnetic

fluctuations generated by fast modes may result in a steeper magnetic energy

spectrum than the kinetic energy spectrum that is dominated by the Alfvén modes.

In the weakly coupled regime with γd = 100 and 25, small-scale magnetic field

structures are less prominent, and the spectra become even steeper, indicating that

the magnetic field energy becomes concentrated on larger scales. This is naturally

expected due to the severe neutral-ion collisional damping. However, when the

neutral-ion decoupling occurs at the injection scale (i.e., γd = 5), the situation

changes. The spectrum becomes shallower compared to the cases of γd = 1 × 103,

100, and 25 (slope ≈ −2.8,−3.6, and −4.0, respectively). The slope is close to

−2.23. It suggests a weak damping effect, as seen in Fig. 3.2. Overall, we see that

the magnetic energy spectrum has a similar shape as the turbulent kinetic energy

spectrum in ions.

3.2 MHD turbulence in the presence of grav-

ity, magnetic fields, radiation, and outflow

feedback

This section aims to determine the role of gravity and stellar outflow feedback in

shaping turbulence statistics. We use a series of 3D MHD simulations (Mathew &

Federrath 2021) of star cluster formation including self-gravity, turbulence, magnetic

fields, stellar radiative heating, and outflow feedback.

3.2.1 Numerical methodology

Numerical simulation setup

The numerical simulations were developed by Mathew & Federrath (2021). We

briefly describe the numerical methodology here. The cloud is modeled by the

FLASH code (Fryxell et al. 2000; Dubey et al. 2008). FLASH solves the MHD

equations including gravity on an adaptive mesh refinement (AMR; Berger &

Colella 1989) grid using the PARAMESH library (MacNeice et al. 2000). For these

simulations, we use the HLL3R MHD solver (Waagan et al. 2011).

The cloud is simulated in a three-dimensional triple-periodic box with side

length L = 2 pc. The maximum refinement level provides a maximum effective grid
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resolution of 40963 cells or minimum cell size of 100 AU. AMR is triggered when

the local (cell-by-cell) Jeans length drops below 16 grid cell lengths on any level of

refinement other than the maximum level (Federrath et al. 2011). On the maximum

level of AMR, we introduce sink particles (Federrath et al. 2010) to model local

collapse and accretion of star-forming cores. The initial gas density is uniformly set

to ρ0 = 6.56× 10−21 g cm−3, which gives a total cloud mass of 775 M⊙ and a mean

free-fall time of tff = 0.82 Myr. The initial magnetic field B = 10−5 G is uniform

along the z-axis.

The turbulent acceleration field continuously drives turbulent motions. It

is modeled by a stochastic Ornstein-Uhlenbeck process (Eswaran & Pope 1988;

Federrath et al. 2010). Initially, in the absence of self-gravity, kinetic energy is

injected on scales that correspond to wavenumbers k = [1, 3], where k is measured in

units of 2π/L, such that the driving amplitude is largest at k = 2 and drops to zero

on either side of k = 2, following a parabolic spectrum as used in previous studies

(Federrath et al. 2008; Schmidt et al. 2009; Federrath et al. 2010; Federrath 2013b;

Federrath et al. 2021). In particular, mixed turbulence driving is implemented. It

naturally results in about 1/3 fraction of compressive power and a power-law slope

of ∼ −2 for the velocity power spectrum (Kritsuk et al. 2007; Federrath et al. 2010;

Federrath 2013b; Federrath et al. 2021), in the regime of supersonic turbulence,

typically found to be appropriate for the dense, cold phase of the ISM (Larson

1981b; Solomon et al. 1987; Ossenkopf & Mac Low 2002; Heyer & Brunt 2004;

Roman-Duval et al. 2011). The initial sonic Mach number of 5 is set by the velocity

dispersion of 1.0 km s−1 and the initially isothermal sound speed of cs = 0.2 km s−1.

After turbulence is fully developed (∼ 2 Myr), self-gravity is switched on. Here

gravity in the equations is contributed by gas and sink particles. The self-gravity of

the gas is calculated via a multi-grid Poisson solver (Ricker 2008). Also, a polytropic

equation of state P = c2sρ
γ for the gas pressure is used, where cs is the sound speed

and ρ is the gas density. The value of the polytropic exponent γ varies with the

local density of the gas and is based on previous detailed radiation-hydrodynamic

simulations of protostar formation (see Mathew & Federrath 2021 for details). The

polar stellar heating model developed by Mathew & Federrath (2020) is implemented

to include protostellar heating in the simulations.

Sink particles are introduced in regions that are undergoing gravitational

collapse, as verified by an automatic procedure involving a number of checks

performed in a control volume of radius rsink around anby computational cell that

exceeds the threshold density defined by the local Jeans length,

ρsink =
πc2s
Gλ2J

=
πc2s

4Gr2sink
, (3.11)
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where G is the gravitational constant, λJ =
√
πc2s/(Gρ) is the local Jeans length,

and rsink = λJ/2 is the sink particle radius. The size of sink particles is defined to

ensure that the Truelove criterion (Truelove et al. 1997) is satisfied on the highest

level of AMR, i.e., 2rsink = 5∆x, where 5∆x is the grid cell length on the highest

level of refinement.

Finally, use the subgrid-scale (SGS) jet/outflow model implemented in Federrath

et al. (2014b) to launch jets and outflows from sink particles. The outflow model

produces a fast collimated jet component, and a lower-speed, wider outflow

component as typically observed for protostellar jets/outflows. It transfers mass,

momentum, and angular momentum back into the parental cloud, with parameters

that were physically calibrated via dedicated high-resolution jet simulations,

theoretical models of jets launching, and observational data (Federrath et al. 2014b).

Model Jets/Ouflows t5% [tff ] SFRff [%] Nsinks

NOWIND

No 0.68± 0.15 15± 3 212

⟨σ5%
v ⟩0.01−0.1 [km/s] ⟨σ5%

v ⟩0.1−0.2 [km/s] ⟨χ5%⟩0.01−0.1 ⟨χ5%⟩0.1−0.2

0.61± 0.16 0.93± 0.22 0.30± 0.01 0.34± 0.04

Model Jets/Ouflows t5% [tff ] SFRff [%] Nsinks

OUTFLOW

Yes 0.89± 0.2 7± 2 449

⟨σ5%
v ⟩0.01−0.1 [km/s] ⟨σ5%

v ⟩0.1−0.2 [km/s] ⟨χ5%⟩0.01−0.1 ⟨χ5%⟩0.1−0.2

1.99± 1.17 2.62± 1.68 0.29± 0.01 0.32± 0.02

Table 3.2:: Key simulation parameters and results. Ten simulations with different

turbulence realizations (T1–T10) are run for both the NOWIND and OUTFLOW

models. In the table, t5% is the average time taken (in units of the free-fall time) by

the simulations to reach SFE = 5% and is measured from the moment self-gravity is

turned on. The value of SFRff quoted in the table is time average. ⟨σtur.
v ⟩ (and ⟨χtur.⟩)

and ⟨σ5%
v ⟩ (and ⟨χ5%.⟩) are calculated (see Figs. 3.18 and 3.19) for the snapshots ”fully

developed turbulence” and ”SFE = 5%”, respectively. The subscripts ”0.01 − 0.1”

and ”0.1 − 0.2” means the values are averaged over 0.01 − 0.1 pc and 0.1 − 0.2 pc,

respectively. For both model, ⟨σtur.
v ⟩0.01−0.1 = 0.30± 0.09, ⟨σtur.

v ⟩0.1−0.2 = 0.51± 0.17,

⟨χ5%⟩0.01−0.1 = 0.27± 0.01, and ⟨χ5%⟩0.1−0.2 = 0.29± 0.03. The resolution level, cloud

properties and turbulence setup are the same in both models and the only difference

is that protostellar jets/outflows are absent in the NOWIND simulations.

Here we primarily compare two simulation models: the NOWIND and the

OUTFLOW models from Mathew & Federrath (2021). Both of them have the same

initial conditions. However, the OUTFLOW simulation set additionally includes jet
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and outflow feedback from the formed stars. As in Mathew & Federrath (2021) we

use a total of ten simulations with different turbulence realizations (T1–T10) for

both the NOWIND and OUTFLOW models, which allows us to draw statistically

significant results and provides us with a quantification of the variations between

different turbulent realizations. Tab. 3.2 lists the main simulation parameters and

derived results in this work, as discussed in detail below.

The second-order structure function

We aim to quantify the turbulent velocity statistics of star-forming regions, with

a particular focus on the role of outflow feedback. In particular, we measure the

structure function, which is a commonly used method to quantify the statistical

properties of turbulent flows. The second-order structure function is defined as

SF2(r) = ⟨|vvv(xxx+ rrr)− vvv(xxx)|2⟩r, (3.12)

where vvv(xxx) represents the velocity at the spatial position xxx and rrr is the separation

vector. The structure function SF2(r) takes the ensemble average ⟨...⟩r over a

sufficiently large sample at the same separation value r. The structure function

was computed and averaged over the set of 10 simulations that are identical in

all physical parameters, but used different random seeds for the turbulence. Its

uncertainty is given by the standard deviation. In particular, we take the square

root of the normalized structure function, i.e.,

σv(r) =
√
SF2(r)/2, (3.13)

which represents the 3D velocity dispersion on scale r.

Moreover, the fraction of compressive turbulence is an important aspect in

the study of star formation. Compressive modes of turbulence create density

enhancements, which may serve as the birthplaces of stars (Federrath & Klessen

2012). Therefore we decompose the structure function into longitudinal SF
∥
2(r) and

transverse SF⊥
2 (r) components. The decomposition is performed in real space as

δvvv = vvv(xxx+ rrr)− vvv(xxx)

SF
∥
2(r) = ⟨δvvv2(δ̂vvv · r̂rr)⟩r

SF⊥
2 (r) = SF2(r)− SF

∥
2(r).

(3.14)

Accordingly, the fraction χ of the longitudinal velocity field mode χ(r) =

SF
∥
2(r)/SF2(r).
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Figure 3.11: Gas column density in one of the ten simulations (the T2 simulation,

i.e., with turbulence seed #2), at the stage of fully developed turbulence (left-hand

panel) and just before the 1st sink particle has formed (right-hand panel). The black

vectors represent the projected velocity field and their length indicates the amplitude

of the local velocity. The yellow dashed rectangle outlines the zoom-in region used

for structure function calculations below.

3.2.2 Basic evolution and structure of the clouds

Fig. 4.6 shows maps of the projected gas density along the z-axis at two different

evolutionary stages of the simulated cloud, i.e, at the stage of fully developed

turbulence (left) and just before the 1st sink particle has formed (right). We can

see a dense region developing towards the bottom right of the centre of the box, as

indicated by the dotted square. These two stages are identical in the ”NOWIND”

and ”OUTFLOW” simulations, because stars have not formed at this stage, and

therefore, no outflows have been generated yet.

Starting from Fig. 3.12, we examine how the evolution of the star formation

is influenced by the outflow feedback. We show the projected gas density at three

evolutionary stages, i.e., at star formation efficiencies SFE = 1%, 3%, and 5%, which

means 1%, 3%, and 5% of the total mass of the cloud has formed stars, respectively.

We observe that the outflows slow down the star-forming process, taking more time

to reach the same SFE (the reduction in the star formation rate due to outflow

feedback is discussed in detail in Mathew & Federrath 2021). For instance, the

OUTFLOW model takes 0.07 Myr, 0.06 Myr, and 0.14 Myr longer to reach SFE

= 1%, 3%, and 5%, respectively, than the NOWIND model. These values vary for
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different turbulent seeds. On average, however, the OUTFLOW model generates

more stars at the same SFE, with dense filaments breaking into several sub-fragments

due to the action of the outflows. This phenomenon has been investigated in detail

in Mathew & Federrath (2021). Possible explanations include that the outflow drives

small-scale turbulence and enhances the fragmentation allowing the formation of

more stars.

3.2.3 The structure function on cloud scales

In order to quantify the distribution of turbulent motions on different scales

of the cloud, we show in Fig. 3.14 the square root of the normalized 2nd order

structure function, which is equivalent to the 3D velocity dispersion δv(r), as defined

by Eq. (3.13). All structure functions have been averaged over ten simulation

realizations of the turbulence, for each model, NOWIND and OUTFLOW. Before

star formation begins and outflows are launched (snapshot just before 1st sink

formation), the structure functions are identical for the NOWIND and OUTFLOW

models, representing a state of fully developed turbulence with gravity having

modified the system such that local star formation is imminent. The SF at the

state of of fully developed turbulence in presented in Fig. 3.13. The dotted and

dashed lines indicate a power-law scaling with a slope of 1/3 (Kolmogorov 1941) and

1/2 (Burgers 1948), respectively. On scales of 0.05 ≲ r/pc ≲ 0.5, the simulations

roughly follow a scaling in between Kolmogorov and Burgers turbulence, as expected

for a mildly supersonic turbulent medium (Federrath et al. 2010; Federrath 2013b;

Federrath et al. 2021). Such scaling of velocity fluctuation is widely observed in

diffuse neutral hydrogen clouds and dense molecular clouds (Heyer et al. 2008;

Lazarian 2009). On scales r ≲ 0.05 pc, the velocity dispersion drops due to numerical

dissipation starting to act on scales below ∼ 30 grid cells (Kitsionas et al. 2009;

Federrath et al. 2011). Although the base grid (lowest level grid, covering the entire

domain) has a resolution of only 256 cells in each cartesian direction, the simulations

use AMR with Jeans refinement, up to a maximum effective resolution of 4096 cells

in each spatial direction.

Differences in the structure functions appear when stars form. While the

velocity dispersion in the NOWIND model does not change significantly in time,

the OUTFLOW model clearly evolves over time, such that the velocity dispersion

increases until SFE ∼ 2–3%, i.e., the amplitude of the structure function grows.

After SFE ∼ 2–3%, the velocity dispersion appears to reach a steady state, in which

the dissipation of turbulent flows is balanced by the injection of energy from the

outflows, at a roughly constant rate. This is consistent with the initial rise in the



74

Figure 3.12: Same as Fig. 4.6, but here the gas column density is shown at SFE=1%

(top), 3% (middle), and 5% (bottom), in the NOWIND (left) and OUTFLOW simu-

lation (right), respectively. The circular markers in each panel represent the position

of the sink (star) particles formed in the simulations.
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Figure 3.13: Velocity dispersion as quantified by the square root of the normalized

second order structure function (Eq. 3.13) as a function of separation (scale) covering

the full simulation domain (2 pc) at the stage of fully developed turbulence. Since

gravity and star formation have not started yet, the NOWIND (red) and OUTFLOW

(blue) model are identical. The shaded areas represent the standard deviation over

the set of 10 turbulent realisations per simulation model. To guide the eye, the

dotted and dashed lines represent power-law slopes of 1/3 and 1/2, for comparison

with a Kolmogorov and Burgers scaling of turbulence, respectively. On the cloud

scale (1 pc), we see that the 2nd-order SF reflects the input velocity dispersion of

1 km/s, as set by the turbulence driving.

SFR observed in these models, followed by a steady-state (nearly constant) SFR

(Mathew & Federrath 2021). The rise in velocity dispersion in the OUTFLOW

model is caused by the injected energy of the jets/outflows, driving turbulence from

small scales, i.e., the jets originate locally around each protostar, on scales as small

as sub-AU (Federrath et al. 2014b). However, as the jets propagate through the

ambient parental cloud from which they formed, their influence and energy spreads

to a scale ≳ 1 pc. Consequently, the velocity dispersion in the presence of outflow

feedback increases over all resolvable scales up to ∼ 1 pc.

We also see that the OUTFLOW model exhibits a somewhat more curved

structure function, i.e., the power-law scaling range appears to be suppressed; or

at there is no clear power-law scaling range seen anymore, especially at later times

when the influence of the outflows grows. The absence of the scaling range may be

due to limited resolution or due to the driving effect of the outflows, mixing into the
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Figure 3.14: Velocity dispersion as quantified by the square root of the normalized

second-order structure function (Eq. 3.13) as a function of separation (scale) covering

the full simulation domain (2 pc). We compare the NOWIND (red) and OUTFLOW

models (blue) at six snapshots, as indicated in the top left of each panel: after 1st

sink particle formation, and at SFE = 1, 2, 3, 4, 5%, respectively. The shaded

areas represent the standard deviation over the set of 10 turbulent realizations per

simulation model. To guide the eye, the dotted lines represent power-law slopes of

1/3 and 1/2, for comparison with a Kolmogorov and Burgers scaling of turbulence,

respectively.
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large-scale turbulent ’cascade’. The NOWIND model, however, exhibits insignificant

changes in the structure function, in terms of either amplitude or scaling. This can

be understood based on the fact that the gravitational collapse happens on relatively

small scales, and averaging the structure function over the full domain, including

diffuse regions, means that the effect of gravity is hardly noticeable in the cloud-scale

structure functions. Therefore, we zoom in onto a dense star-forming clump in the

following section, in order to determine the effects of gravity and outflows on the

dense, star-forming regions of the cloud.

3.2.4 The structure function of dense, star-forming regions

Fig. 3.15 presents the time evolution of a 0.4 pc zoom-in region in the cloud of

NOWIND and OUTFLOW models with turbulence realization T2. The zoom-in is

selected by searching for the maximum density point in 3D space at the evolutionary

stage SFE = 5%. Consequently, its spatial position is fixed among all stages. Similar

to the case of the full simulation plotted in Fig. 3.12, the OUTFLOW model produces

a higher number of stars and the difference between NOWIND and OUTFLOW is

more significant here. We can see the fragmentation in the OUTFLOW model is

stronger with several sub-filamentary structures. In particular, two extra collapsing

centers appear in the stages SFE = 3% and SFE = 5%. This suggests that with

identical initial conditions, protostellar outflows can trigger local star formation in

nearby filaments. Note that outflows create new density perturbations at small

scales, which increases gravo-turbulent fragmentation (Mathew & Federrath 2021).

Moreover, in Fig. 3.16, we show the velocity dispersion (i.e., the square root of

the normalized 2nd order structure-function) as a function of separation. Compared

with the full box cases (see Fig. 3.14), the velocity dispersion increases in both

NOWIND and OUTFLOW models. The increment seen in the NOWIND model

is contributed by the effect of gravity, including the infall velocity and probably

gravity-driven turbulence. This effect focuses on small scales and therefore is

more apparent in the zoom-in dense region, especially at the SFE = 5% stage.

The velocity dispersion is further signified in the OUTFLOW models. Here the

dispersion includes the contribution from the original turbulence, and turbulence

produced by gravitational infall and by the outflows. Compared with gravity, the

influence of the outflows seems to extend to larger scales (see Fig. 3.14). Despite the

OUTFLOW models’ velocity dispersion getting slightly curved, the overall scaling is

still approximately in between Kolmogorov σv(r) ∝ r1/3 and Burgers σv(r) ∝ r1/2

turbulence.

In Fig. 3.17, we investigate how the velocity dispersion evolves as a function of
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Figure 3.15: Same as Fig. 3.12, but for a high-density, star-forming region of size

0.4 pc.

time. Here we define the separation in the range of 0.01 - 0.10 pc as small scale

and 0.10 - 0.20 pc as large scale. The velocity dispersion is averaged over these two
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Figure 3.16: Same as Fig. 3.14, but for the zoom-in region outlined in Fig. 3.12.

scales, respectively. For both NOWIND and OUTFLOW models, the dispersion

increases with time as gravity and outflows get stronger. Gravity amplifies the

velocity dispersion by a factor of ∼ 2 approximately from the beginning (fully

developed turbulence) to SFE = 5%. However, with outflow feedback, the velocity

dispersion increases by up to a factor of ∼ 7 from the the time of fully-developed

turbulence to SFE = 5%, for both small and large scales. In particular, we see that

the OUTFLOW model exhibits a larger standard deviation, which is quantified

by the differences over the ten realizations of the simulations. This suggests that
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Figure 3.17: The plots show the square root of the normalized second order structure

function as a function of time. The structure function is averaged over the small scale

range (0.01 - 0.10 pc; red) and large scale range (0.10 - 0.20 pc; blue) in the zoom-in

0.4 pc region. Two physical models: ”NOWIND” (left) and ”OUTFLOW” (right)

are presented here. The coloured shallows represent the standard deviation over the

set of 10 simulations.

compared with gravity, outflows could perturb the velocity field further. The effect

of the outflows is more sensitive to the initial turbulent seed.

Finally, we conclude that both gravity and outflow feedback affect the velocity

field, driving larger velocity dispersion in star-forming regions. In particular, outflows

enhance fragmentation (Federrath et al. 2014b; Mathew & Federrath 2021; Grudić

et al. 2022). Compared with gravity, the outflow has its effect on larger scales up to

∼ 1 pc at least (see Fig. 3.14) and is more sensitive to the initial turbulent seeds.

To observationally test our results, it is important to obtain information on

velocity fluctuations. Using Doppler-shifted emission lines, this is achievable via

the Velocity Channel Analysis (VCA; Lazarian & Pogosyan 2000), the Velocity

Coordinate Spectrum (VCS; Lazarian 2004), and the Principal Component Analysis

(PCA; Heyer et al. 2008). It is also possible to infer some of the gas turbulence

properties on cloud scales using the velocity of young stellar objects. (Ha et al.

2021).

3.2.5 The energy fraction of the longitudinal velocity

component

Fig. 3.18 presents the energy fraction of the longitudinal velocity component as a

function of separation. Initially, the turbulence is driven by the mix of compressive



81

(i.e., longitudinal) and solenoidal (i.e., transverse) modes. The fraction of the

longitudinal component in the turbulence driving is constructed to be 1/3 at the

driving scale (referred to as the ’mixed’ driving mode). Before gravity starts acting,

i.e., at the stage of fully developed turbulence, the longitudinal fraction decreases

from the scale of 0.2 pc to 0.02 pc. It suggests that when turbulence cascades

to small scales, the compressive component dissipates somewhat faster than the

solenoidal component (Padoan et al. 2016). Gravity, in addition, increases the

Figure 3.18: The plots present the energy fraction of the longitudinal component of

the structure function as a function of separation. Two physical models: ”NOWIND”

(left) and ”OUTFLOW” (right) are presented here. The error bar is by the standard

deviation over the set of 10 simulations.

longitudinal fraction by generating longitudinal velocity fields due to infall and

gravity-driven turbulence. A portion of the gravitational potential is converted to

kinetic energy in this process. This increment is the most significant from the stage

of fully developed turbulence to the 1st sink formation stage. However, after SFE =

1%, the fraction’s increment rate gets slower. One possibility is that the zoom-in

region may evolve slower than the global simulation so that the local SFE in the

subregion varies significantly between different realizations. It is also likely that the

amplification of longitudinal modes is mainly contributed by the cloud-scale (∼ 1 pc)

contraction. At later stages, stars start forming locally so that the longitudinal field

exhibits only relatively small changes when looked at from a global perspective, i.e.,

when averaged over the total volume; however, close to the stars, the longitudinal

component increases. The global fraction of longitudinal modes finally reaches

∼ 0.35 at 0.2 pc scales on average, with a maximum of ∼ 0.40. Compared with the

NOWIND model, the OUTFLOW model shows a similar trend, but the increment

after the 1st sink formation stage is suppressed so that its maximum value is

smaller than 0.40. This is because outflow feedback slows down star formation and
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therefore slows down the development of compressible modes caused by collapse.

Another contributor to reducing the relative amount of compressible modes in the

OUTFLOW case is that outflows may drive solenoidal modes, therefore enhancing

their relative contribution.

To study the time evolution of the longitudinal energy fraction, as before (see

Fig. 3.18), we distinguish two scale ranges: (i) small scale from 0.01 to 0.10 pc

and (ii) large scale from 0.10 to 0.20 pc. As shown in Fig. 3.19, the longitudinal

fraction keeps increasing with time. Large scales host more longitudinal modes with

an average longitudinal fraction of ∼ 0.32, while small scales exhibit a fraction of

∼ 0.28. Note that the fraction is averaged over the defined scale ranges. In this case,

the OUTFLOW model is similar to the NOWIND case, but exhibits smaller values

of the fraction at large scales. This suggests that the suppression of the longitudinal

velocity field’s fraction by outflows is most significant on large scales. It leads to

a reduction in the star formation rate compared to when outflow feedback is not

included.

Figure 3.19: Same as Fig. 3.17, but for the energy fraction of the longitudinal

structure function.

3.3 Turbulent magnetic field amplification by the

interaction of a shock wave and inhomoge-

neous medium

In this chapter, we investigate the post-shock magnetic field amplification by using

3D MHD simulations of a planar shock wave that propagates in density fluctuations

with a shallow density spectrum.
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3.3.1 Numerical methodology

The MHD simulations used in this work are generated through Athena++ code

(Stone et al. 2020b). We solve the ideal MHD equations of a single fluid in the

Eulerian frame:

∂ρ/∂t+∇ · (ρvvv) = 0, (3.15)

∂(ρvvv)/∂t+∇ · [ρvvvvvv + (P +
B2

8π
)III − BBBBBB

4π
] = 0, (3.16)

∂BBB/∂t−∇× (vvv ×BBB) = 0, (3.17)

∇ ·BBB = 0, (3.18)

where ρ is gas density, vvv is velocity, P is gas pressure, and BBB is magnetic

field. We split the initial setup for postshock and preshock regimes to model a

shock propagating in an inhomogeneous ISM and uniformly grid the box into

1024 × 512 × 512 cells. On the upper and lower sides of the x-axis and z-axis, the

boundary conditions are periodic, whereas gas can freely flow out from the sides

of the y-axis. Several critical parameters are presented in Tab. 3.3 to characterize

the scale-free simulation. The following sections detail our numerical settings. The

superscripts ′′pre′′ and ′′post′′ are used to distinguish variables in preshock and

postshock media and the subscript ′′0′′ means initial value.

Model α ⟨| δρ
ρ0
|⟩ max{| δρ

ρ0
|} BBB0 direction βpre

0 max{ρmax

ρ0
} max{|BBBmax|

|BBB0| }
Para. -0.50 0.13 0.74 x-axis 10 7.0 65

Perp. -0.50 0.13 0.74 y-axis 10 7.0 210

Kol. -1.67 0.18 0.87 x-axis 10 7.3 80

Table 3.3:: Setups of MHD simulations. ”Para.” and ”Perp.” correspond to par-

allel and perpendicular shocks with a preshock shallow density spectrum. ”Kol”

corresponds to a parallel shock with a preshock steep Kolmogorov density spectrum.

⟨|δρ/ρ0|⟩, max{|δρ/ρ0|}, BBB0, and βpre
0 are initial preshock’s mean density field con-

trast, maximum density contrast, and plasma compressibility, respectively. |BBBmax|
and ρmax represent the unaveraged maximum values of magnetic field and density

among all snapshots, respectively. α is 1D power-law index of the preshock den-

sity spectrum. ρ0 and |BBB0| are the initial uniform preshock density and magnetic

field strength, respectively. Numerical values of initial magnetic field strength, mean

preshock density, Alfvén Mach number of the shock M shock
A,0 = 224, and sonic Mach

number M shock
s,0 = 100 are the same for all three models.
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Generation of density fluctuations in preshock medium

For the preshock medium, we consider the density field in the form of ρpre0 = ρ0 + δρ,

where ρ0 is the uniform preshock density field, and δρ stands for zero-mean

fluctuations. To create the fluctuation, we create a random density field in Fourier

space with a power spectrum ∝ k−(α+2)/2 and then transform it back into the real

space. Explicitly, the density field in Fourier space is created as a realization of a

Gaussian random field amplitude A(kn) and a uniform random field phase ϕn. δρ is

given by:

δρ =
N∑
n=1

A(kn)e
i(kxx+kyy+kzz+ϕn), (3.19)

where N is the total number of the modes, kn = 2π/l =
√
k2x + k2y + k2z is the

wavenumber (kx, ky, and kz are the x, y, z components, respectively) and l is

the length scale in real space. We consider a shallow density spectrum with the

1D spectral index smaller than unity (Lazarian & Pogosyan 2004, 2006). As the

shallow density spectra observed in the ISM have non-universal spectral indices

(Lazarian 2009; Hennebelle & Falgarone 2012), we adopt Ek(ρ
pre
0 ) ∝ k−α = k−1/2

as a representative example. The density spectrum is truncated at k = 10 so that

density fluctuations exist over k < 10 (corresponding to a length scale larger than

1/10Lx; see Fig. 3.20). Consequently, the wavenumber’s x, y, z components kx, ky, kz
range from 0 to 9. Such choice results in total ≈ 600 modes for k < 10. As a shallow

density spectrum has the correlation length of density fluctuations given by the

inner scale, the largest density contrast appears around k ∼ 10. We expect that

the turbulence generated by the interaction of the shock with density fluctuations

cascades down to smaller scales at k > 10. As a comparison, we also consider a

steep Kolmogorov density spectrum Ek(ρ
pre
0 ) ∝ k−5/3 over k < 10. The density

fluctuations with a steep density spectrum, for which the 1D spectral index is larger

than unity, has the correlation length given by the outer scale. We make its largest

density contrast comparable to that of a shallow density spectrum. Particularly, if

we assume that a supernova remnant (SNR) has a radius ≈ 1 pc (Krause et al. 2008),

the injection scale of the background interstellar turbulence is ≈ 100 pc (Armstrong

et al. 1995; Chepurnov & Lazarian 2010), and density fluctuation (δρ/ρ0 = 1 at the

turbulence injection scale, de Avillez & Breitschwerdt 2007) follows the Kolmogorov

scaling, the density contrast at ≈ 1 pc is roughly (1 pc/100 pc)1/3ρ0 ≈ 0.2ρ0. In the

simulations, we have the mean ratio of density fluctuation and mean density ≈ 0.15

averaged over the entire preshock volume. As here our purpose is to investigate

the effect of density spectral shape, we keep the largest density contrast similar for

all cases. The effect of density contrast’s amplitude on the generated postshock

turbulence was studied by Inoue et al. (2013).
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Figure 3.20: Spectra of initial preshock density fluctuations. Blue and red lines

correspond to shallow and Kolmogorov density spectra, respectively.

In this case of a parallel shock, the initial magnetic field BBBpre
0 = BBBpost

0 = BBB0

re-scaled with a factor of 1/
√
4π is parallel to the and shock normal, i.e., the

x-axis. For a perpendicular shock, the setup of magnetic field strength is the

same, but the direction is perpendicular to the shock normal. |BBB0| is determined

by the plasma compressibility βpre
0 = 2(cpres,0 /v

pre
A,0)

2 in the preshock medium. Here

cpres,0 = 1 (in numerical unit) is the initial sound speed of the preshock medium and

vpreA,0 = |BBB0|/
√
ρ0 is the initial Alfvén speed. We investigate two cases where the

initial upstream magnetic field is parallel and perpendicular to the shock normal, i.e.,

parallel shock (”Para.” in Tab. 3.3) and perpendicular shock (”Perp.” in Tab. 3.3).

To focus on the effects of preshock density spectral shape and shock obliquity, we

keep all other parameters the same. The initial gas pressure P pre
0 in the preshock

medium is given by the equation of state P pre
0 = (cpres,0

√
ρ0/γ)

2, where γ = 5/3 is the

adiabatic index.
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Injection of a planar shock wave

The initial conditions in the postshock medium are given by the Rankine-Hugoniot

relations (Macquorn Rankine 1870; Hugoniot 1889) for adiabatic shock:

ρpost0 = ⟨ρpre0 ⟩ γ + 1

(γ − 1) + 2
M2

s

,

P post
0 = P pre

0

2γM2
s − (γ − 1)

γ + 1
,

|vvvpost0 | = |vvvpre0 |+Ms,0

√
γP pre

0

⟨ρpre0 ⟩
2(1− 1

M2
s
)

γ + 1
,

(3.20)

where Ms,0 is the sonic Mach number of the shock and vvvpre0 = 0 is the initial velocity

of preshock medium. ⟨...⟩ denotes ensemble average. Initially, the preshock and

postshock magnetic fields are uniform. However, the magnetic field in the case of

perpendicular shock will be compressed. The jump condition of the magnetic field is

BBBpost = BBBpre γ+1

(γ−1)+ 2

M2
s

.

The preshock density inhomogeneities are initialized to the entire simulation

cube first and then we set up the initial uniform postshock (density, velocity, and

pressure) fields (from x = 0 to x = Lx/80) considering the jump conditions and set

the shock front plane at Lx/80, where Lx is the length of the x-axis. The shock

propagates along the x-axis and its speed is given by |vvvshock| = cpres,0Ms,0. The shock

propagation time to the end of the x-axis is tshock ≈ Lx/|vvvshock|.

Helmholtz decomposition

To examine the fraction of solenoidal component of turbulence, which accounts

for the dynamo growth of magnetic fields, we adopt the Helmholtz theorem to

decompose the turbulent velocity field into solenoidal component vvvs and compressive

component vvvc:

vvvtur = vvvpost − vvvpost0 = vvvs + vvvc (3.21)

The solenoidal and compressive components satisfy divergence free (∇ · vvvs = 0) and

curl free (∇× vvvc = 0) conditions, respectively. Owing to the Helmholtz theorem, vvvc
stems from a scalar potential ϕ, i.e., vvvc = −∇ϕ, and vvvs stems from a vector potential

ΦΦΦ, i.e., vvvs = ∇×ΦΦΦ.

The two potentials can be calculated from the Green’s function for the
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Laplacian:

ϕ(rrr) =
1

4π

∫
∇′ · vvvtur(rrr′)
|rrr − rrr′|

dr′r′r′3,

ΦΦΦ(rrr) =
1

4π

∫
∇′ × vvvtur(rrr

′)

|rrr − rrr′|
dr′r′r′3,

(3.22)

where rrr is the position vector and ∇′ is the ∇ operator with respect to rrr′. Thus, the

decomposition can be rewritten as:

vvvtur = − 1

4π
∇

∫
∇′ · vvvtur(r′r′r′)
|rrr − r′r′r′|

dr′r′r′3 +
1

4π
∇×

∫
∇′ × vvvtur(r

′r′r′)

|rrr − r′r′r′|
dr′r′r′3. (3.23)

Note that Eq. 3.22 basically is a convolution with the Green’s function ( 1
4π|rrr−rrr′|). It

takes advantage to solve Eq. 3.22 in Fourier space, which is adopted in this work.

The Fourier components of the potential fields are then transformed back into the

real space to obtain the two velocity components. We decompose the turbulent

magnetic field in a similar way, i.e., BBBtur = BBBpost −BBBpost
0 = BBBs +BBBc.

3.3.2 Turbulence generated behind the shock front

Fig. 3.21 presents a visualization of a shock wave propagating in an inhomogeneous

medium. It shows the structure of gas density, total velocity, magnetic field, and

pressure at cross-section z = 256. The simulation cube ”Para.” at t ≈ 0.75tshock
is used. Our results reveal that the four postshock quantities (ρ, vvv, BBB, and P )

all develop fluctuations when the shock wave interacts with a fluctuating density

field, and the shock front is corrugated. Their fluctuations are most significant

in the shell with the thickness ≈ Lx/4 behind the shock surface. The shell

thickness is mainly determined by the largest turbulent eddy’s turnover time

teddy = Linj/vinj ≈ 0.25tshock, where Linj ≈ Lx/5 is the effective injection scale of

turbulence and vinj ≈ (vmax − vpost0 ) ≈ 0.9vpost0 ≈ 0.68vshock is the largest velocity

fluctuation generated behind the shock (see Figs. 3.24 and 3.27). Turbulence here

is driven at multiple scales from k = 1 to k = 10. We use k = 5 as the effective

injection scale. Moreover, the structure of the amplified magnetic field appears

filamentary. This suggests that the postshock magnetic field is enhanced by the

turbulent stretching, i.e., turbulent dynamo. The reverse shock fronts are simply

identified as the ripples with reversal motion with speed larger than sound speed

in the postshock region. Their interactions are also observed farther downstream

behind the shell. Their effect on magnetic fields is insignificant. Strong magnetic

fields are only seen within the shell. We also present the magnetic field orientations.

The initially ordered magnetic fields aligned along the x axis become highly turbulent

with random orientations in the shell.
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Figure 3.21: Left: the 2D cross sections of gas density, total velocity, magnetic field,

and pressure at z = 256. The snapshot of model ′′Para.′′ at t ≈ 0.75tshock is used here.

The preshock mean magnetic field is parallel to the x-axis. Short white lines indicate

the magnetic field orientations. Right: averaged (over y-axis and z-axis) profiles of

the gas density, total velocity, magnetic field, and pressure as a function of x using the

same simulation. The physical variables are expressed in terms of numerical units.
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Figure 3.22: Distribution of projected decomposed turbulent velocity. Top: the

solenoidal component averaged along the z-axis. Bottom: the compressive component

averaged along the z-axis. The simulation cubes ′′Para.′′ (left), ′′Kol.′′ (middle), and
′′Perp.′′ (right) at t ≈ 0.75tshock are used here. The streamlines indicate velocity

directions.

In addition, we plot the profiles of averaged gas density, total velocity, magnetic

field, and pressure as a function of x. The average is performed over the y and z

directions perpendicular to the shock normal (i.e., the x direction). As shown in

Fig. 3.21, the shock wave compresses the preshock density and pressure by a factor

of ≈ 4 and ≈ 104, respectively, which is consistent with the strong shock limit

(Ms ≫ 1) of the jump conditions (Macquorn Rankine 1870; Hugoniot 1889). We find

that when the postshock density fluctuation is taken into account, the postshock

density can locally be ≈ 7 times higher than the preshock density (see Tab. 3.3).
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Figure 3.23: Distribution of projected decomposed turbulent magnetic fields. Top:

the solenoidal component averaged along the z-axis. Bottom: the compressive compo-

nent averaged along the z-axis. The simulation cubes ′′Para.′′ (left), ′′Kol.′′ (middle),

and ′′Perp.′′ (right) at t ≈ 0.75tshock are used here.

Figs. 3.22 and 3.23 present the maps of decomposed turbulent velocity and

turbulent magnetic field at t ≈ 0.75tshock, respectively. The maps are averaged along

the z−axis. The turbulent velocity is similar for both parallel and perpendicular

shock cases. This shows that the generation of turbulence and its properties

are insensitive to the shock obliquity given our numerical setups. Turbulence is

induced by the Richtmyer-Meshkov instability (RMI; Nishihara et al. 2010). The

shock front gets deformed when it interacts with a pre-shock density fluctuation.

The basic mechanism for RMI is baroclinic vorticity generation caused by the

misalignment of the pressure gradient and the local density gradient across the
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front (Brouillette 2002). As the shock front becomes more distorted, secondary

instabilities, such as the Kelvin-Helmholtz instability (Miura & Pritchett 1982),

ultimately drive the postshock turbulence (Fraschetti 2013; Ji et al. 2016).

The postshock turbulence is, therefore, regulated only by the pre-shock density

fluctuations, consistent with Inoue et al. (2012). We find obviously the solenoidal

component is dominant over the compressive component. The difference appears in

the case of the Kolmogorov preshock density spectrum. We find a slightly larger

compressive component compared to the case with a shallow density spectrum.

As for the magnetic fields, the dominance of the solenoidal component is even

more significant, with the solenoidal component’s amplitude ∼ 100 times higher

than the compressive component. This is naturally expected as only the solenoidal

turbulence is responsible for turbulent dynamo, which is much more efficient than

the magnetic field amplification via turbulent compression. Note that the magnetic

field amplification is also correlated with the preshock density contrasts. A larger

density contrast results in more significant postshock turbulence (i.e., velocity

fluctuation) and consequently stronger amplification of magnetic fields (Inoue et al.

2013; Fraschetti 2013).

3.3.3 The 2D energy spectrum

Fig. 3.24 shows the energy spectrum of total (i.e., including x, y, and z components)

turbulent velocity and Alfvén velocity, i.e., total magnetic field over the square root

of density, at different time. To avoid the effect of non-periodic boundary conditions

at the x-axis’ left and right ends, we consider the spectrum only on the kx = 0 plane

in Fourier space. The velocity spectrum exhibits a flat shape at k ≲ 10 and steepens

toward larger k. The numerical dissipation effect becomes significant at k ≲ 100.

As k = 10 is the cutoff wavenumber of the preshock density spectrum, this suggests

that the post-shock turbulence is driven at multiple scales at k ≲ 10, and then

cascades down to smaller scales at k ≳ 10. Particularly, with the cutoff at k = 10,

we do not expect to see the driving effect on the turbulent spectral shape over

k > 10 (see Fig. 3.24(a), left). The turbulence covers two orders of magnitude in

length scales in our simulations. This range is similar to that of the magnetic energy

spectrum in Tycho’s SNR measured by Shimoda et al. (2018). The model ”Kol.”

has a lower amplitude of turbulent spectrum. This suggests that with a similar

density contrast, a preshock shallow density spectrum is more efficient in generating

postshock turbulence than a steep density spectrum. The slope of the turbulent

energy spectrum at k ≳ 10 is between ≈ −8/3 and ≈ −3 and is independent of the

preshock density spectral shape. Note we consider the energy spectrum only on the
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Figure 3.24: Panel (a): Energy spectrum of un-decomposed postshock turbulent

velocity (left) and Alfvén velocity (i.e., magnetic field; right) at t ≈ 0.20tshock. Panel

(b): Energy spectrum of decomposed postshock turbulent velocity (left) and magnetic

field (right) at t ≈ 0.75tshock for the cases of shallow preshock density spectrum. Panel

(c): same as (b), but for the case of Kolmogorov density spectrum. α is the slope of

the preshock density distribution’s spectrum.
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kx = 0 plane in Fourier space. Therefore, we have the slope ≈ −4 + (D − 1) and

≈ −11/3 + (D − 1) for compressive and solenoidal turbulence, respectively. Here

D = 2 stands for the case of the 2D spectrum. The turbulent eddies with the largest

eddy turnover rate dominate the dynamo amplification. Given that turbulence is

mainly driven at k < 10 and cascades to smaller scales, the growth of postshock

magnetic energy starts near the smallest eddy at the dissipation scale. Due to

the additional magnetic field amplification via the shock compression, the model

”Perp.” leads to a larger amplitude of the magnetic energy spectrum. We find that

as the shock surface is corrugated after interacting with upstream multiscale density

fluctuations, the shock compression of magnetic fields happens at multiple scales

over k < 10.

In Fig. 3.24, we further present the energy spectra of decomposed turbulent

velocity and Alfvén speed at a later time t = 0.75tshock, where the dynamo is in

the nonlinear stage (see Section 3.3.4 and Fig. 3.28). As we discussed earlier,

the turbulence properties are insensitive to the shock obliquity. Given the same

preshock shallow density spectrum, both parallel and perpendicular shocks have a

very similar turbulent energy spectrum, and the solenoidal component dominates

over the compressive component. For the fully developed turbulence (i.e., velocity

fluctuation gets saturated, see Fig. 3.27)., the spectral slope is independent of

the preshock density spectral shape, i.e., the slope is the same for both cases of

preshock density being shallow and Kolmogorov. The spectral slope for compressive

velocity is close to ≈ −3, while the slope for solenoidal velocity follows Kolmogorov

scaling ≈ −8/3. The magnetic energy spectrum is similar to the one of turbulence.

The compressive and solenoidal cases have slopes ≈ −3 and ≈ −8/3, respectively.

However, the magnetic energy spectrum at large scales (i.e., k ≲ 10) is flat and the

spectral amplitude is lower than that of the turbulent energy spectrum. It shows

that the full saturation of turbulent dynamo, i.e., the equipartition between the

turbulent energy and magnetic energy at large scales, is not reached.

Fig. 3.25 presents the energy spectra of total turbulence velocity and Alfvén

speed, as well as their x, y, z components. Compared with the earlier exponential

stage t ≈ 0.2tshock, the total (i.e., including all x, y, and z components) magnetic

energy, i.e., the Alfvén speed spectrum, and total turbulent energy increases further

at the later non-linear stage t ≈ 0.75tshock. The magnetic energy is always smaller

than the turbulent energy.

In addition, we calculated the anisotropy degree of turbulence and magnetic

fluctuations over the postshock’s turbulent shell defined in Fig. 3.29. The anisotropy

degree is defined as the ratio of twice x-component’s fluctuation to the sum of y

and z-components’ fluctuations. Explicitly, for turbulent velocity, the anisotropy
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Figure 3.25: Energy spectrum of un-decomposed postshock turbulent velocity and

Alfvén velocity using the ′′Para.′′ model. Note we consider the spectrum only on the

kx = 0 plane in Fourier space. Therefore, we have the slope ≈ −11/3 + (D − 1) for

solenoidal turbulence. Here D = 2 stands for the case of 2D spectrum.
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Figure 3.26: The anisotropy degree of velocity and magnetic field fluctuations. Here

we define rv = 2δvx/(δvy + δvz) and rB = 2δBx/(δBy + δBz). The fluctuations are

calculated over the postshock’s turbulent shell.

degree is: rv = 2δvx/(δvy + δvz), where δvx =
√
δ(vposttur,x)

2, δvy =
√
δ(vposttur,y)

2, and

δvz =
√
δ(vposttur,z)

2. The anisotropy degree for magnetic field is defined in a similar

way: rB = 2δBx/(δBy + δBz), where δBx =
√
δ(btur,x)2, δBy =

√
δ(Btur,y)2, and

δBz =
√
δ(Btur,z)2. The results are presented in Fig. 3.26. rv is greater than 1.5

when t < 0.2tshock suggesting the turbulence is most significant along the x direction.

After t > 0.2tshock, the turbulence’s different components gets sufficiently developed

and a saturation value ≈ 1.5 is achieved. The trend of rB, however, is opposite.

rB starts from 0 and only after the turbulence’s anisotropy gets saturated, the

magnetic field’s increment of all components gradually reach a stable state. In our

case, rB gets saturated at ≈ 1.75 suggesting magnetic field’s fluctuation along the

y and z directions is smaller. Due to additional shock compression of the y and z
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components, the perpendicular shock case has a slightly smaller rB value, i.e., less

anisotropic, than the case of a parallel shock. The results agree with the earlier

study by Inoue et al. (2013). They showed both the anisotropies of velocity and

magnetic field fluctuations saturated at ≈ 1.3. As for the anisotropy (rB < 1) at

initial stage, the magnetic field is perturbed and fluctuations appear in all x, y, and

z directions. The y and z components are further compressed by shock so that we

observed rB < 1 when the compression effect dominates.

3.3.4 Turbulent dynamo

In this subsection, we quantify the evolution of density, total velocity, magnetic

field, and pressure in the postshock region. In Fig. 3.27, we plot the ratio of

maximum density/(total) velocity /magnetic field/pressure and its initial value

in the postshock region as a function of time for three models ”Para.”, ”Perp.”,

”Kol.”. The time evolution of density, total velocity, and pressure basically don’t

show a clear difference between cases of parallel and perpendicular shocks. There

is some difference seen between cases with different upstream density spectra. We

find that the postshock density and velocity can be amplified by a factor of ≈ 1.6

on average, i.e., the ratio of maximum fluctuation and the mean value is 1.6 times

larger than the mean value. The maximum postshock density is seven times larger

than the preshock density. The maximum value of postshock velocity depends on

the preshock density fluctuations’ amplitude, which acts as the driving source of

turbulence (see § 3.3.2). We see a peak |vvvmax|/|vvvpost0 | ≈ 2.3 appears at t ≈ 0.4tshock.

The amplification of pressure (i.e., the ratio of the maximum to the mean) reaches a

slightly lower factor of ≈ 1.5.

The difference between parallel and perpendicular shocks appears in the

magnetic field. For parallel shocks, the maximum magnetic field exponentially

increases to ≈ 30|BBBpost
0 | at t ≈ 0.5tshock (see Fig. 3.27). The rapid increase of

magnetic field comes from the stretching of magnetic fields by solenoidal turbulent

motions induced in the postshock flow. The turbulent amplification of magnetic

fields, i.e., turbulent dynamo, happens when magnetic fields are stretched by

turbulent shear. In the kinematic stage, with both conservation of mass and

magnetic flux, the turbulent stretching of a magnetic flux tube causes its lengthening

and increase of the magnetic field strength (Brandenburg & Subramanian 2005).

The dynamo growth of magnetic fields slows down in the next nonlinear stage and

the field strength reaches maximum ≈ 65|BBBpost
0 |. The magnetic field in the case

of perpendicular shock is amplified more. Its maximum value gets ≈ 210|BBBpost
0 |,

which is approximately three times larger than the parallel shock case. The higher
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Figure 3.27: The ratio of the maximum density/(total) velocity /magnetic

field/pressure and its initial value in the postshock region as a function of time.
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Figure 3.28: Magnetic field energy per unit mass EB = v2A/2 (solid line) and turbu-

lent kinetic energy per unit mass Etur. = v2tur/2 (dashed line) as a function of time.

The calculation uses the maximum magnetic field strength and its corresponding den-

sity and turbulent velocity. The energies are normalized by the initial magnetic field

energy EB0 . The dash-dotted line denotes the analytical prediction derived in Xu &

Lazarian (2016).

amplification ratio in the perpendicular shock case is contributed by the compression

of the magnetic field at the shock front.

Fig. 3.28 shows the magnetic field and turbulent energies per unit mass as a

function of time. Our measurements use the maximum magnetic field strength and

its corresponding density and turbulent velocity. To compare with the analytical

theory in Xu & Lazarian (2016), we also calculate the magnetic energy growth by

following their analytical expressions:

EB =
B2

2ρ
≈ EB0 exp (2Γvt), linear stage,

EB =
B2

2ρ
≈ Ecr +

3

38
ϵ(t− tcr), nonlinear stage,

(3.24)

where EB0 =
(Bpost

0 )2

2ρpost0

is the linear stage’s initial magnetic energy, Ecr is the magnetic

energy at the beginning of the nonlinear stage, i.e., the magnetic energy at the

end of the linear stage, ϵ = L−1
injv

3
inj is the turbulent energy transfer rate, Linj and

vinj are the injection scale and injection velocity of turbulence, tcr ≈ 0.4tshock is

the beginning time of the nonlinear stage (or the end of the linear stage), and Γv
represents the largest eddy turnover rate. Γv = vdis/ldis = (ldis/Linj)

1/3vinj/ldis, where

ldis ≈ Lx/50 is the numerical dissipation scale of turbulence, vinj ≈ 0.68vshock, and

Linj ≈ Lx/5. See Sec. 3.3.2. Linear stage and nonlinear stages here refer to the stages
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with negligible and important magnetic back-reaction, respectively. The nonlinear

stage with significant magnetic backreaction on turbulence has a linear-in-time

growth of magnetic energy. The growth rate is a small fraction of ϵ because of the

reconnection diffusion of turbulent magnetic fields (Xu & Lazarian 2016). Note that

the magnetic field in the simulation has been re-scaled by a factor of 1/
√
4π. The

magnetic energy in the parallel shock for both ”Para.” and ”Kol.” models shows a

similar evolution trend as the theoretical prediction. At t ≈ 0.5tshock, the turbulent

dynamo undergoes a transition from the linear/kinematic stage with the exponential

growth of magnetic energy to the nonlinear stage with the linear-in-time growth of

magnetic energy. We note that the original theory derived in Xu & Lazarian (2016)

applies to a stationary continuously-driven Kolmogorov turbulence. Here we find

that the shock-driven turbulence can have a more complicated spectral shape due

to the multi-scale driving that evolves with time (see Fig. 3.24). This can cause

some discrepancies between our numerical result and their analytical prediction.

Moreover, as the shock-driven turbulence decays over the largest eddy turnover

time (see § 3.3.2), there is not sufficient time for the nonlinear turbulent dynamo

to reach full energy equipartition at the largest scale of turbulence, which requires

approximately six largest eddy turnover time (Xu & Lazarian 2016).
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Figure 3.29: The ratio of the averaged magnetic field and its initial value over the

postshock’s turbulent shell as a function of time.

The perpendicular shock case further involves the compression of the magnetic

field and results in a higher magnetic energy value at an early time. Its exponential

stage is more rapid than the parallel shock case. Importantly, we find due to the

reconnection diffusion of turbulent magnetic fields (Lazarian 2005), the magnetic

energy under both compression and dynamo effects cannot exceed the turbulent

energy of the largest eddy (Xu & Lazarian 2016, 2020a), as shown in Fig. 3.24 and

Fig. 3.28.

Moreover, Fig. 3.29 presents the ratio of the mean magnetic field and its initial
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Figure 3.30: The histogram of the amplified magnetic field strength in the post-

shock’s turbulent shell.
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value as a function of t. The magnetic field is averaged over the postshock’s turbulent

shell (see Fig. 3.21). Unlike the maximum magnetic field, the mean field strength

has a much milder growth with time and reaches ≈ 2.0|BBBpost
0 | for a parallel shock

(including both ”Para.” and ”Kol.” models) and ≈ 7.9|BBBpost
0 | for a perpendicular

shock. Giacalone & Jokipii (2007) reported a similar amplification factor using 2D

simulations and particularly, Fraschetti et al. (2018) reported in Cassiopeia A the

magnetic field amplification reaches ≈ 1.7|BBBpost
0 |. This observation is consistent with

our parallel shock cases. In addition, the corresponding histograms of amplified

magnetic field strength in the postshock’s turbulent shell are given in Fig. 8.5. It

is apparent that the strong magnetic field occupies only a small fraction of space

with a low volume filling factor. This is expected as the magnetic energy does not

reach the full equipartition with the largest turbulent eddy, and accordingly, the

peak scale of the magnetic energy spectrum is smaller than the largest turbulence

scale (see Figs. 3.24 and 3.25). In addition, we see the histogram of parallel shock

cases (i.e., ”Para.” and ”Kol.”) becomes wilder at later time. The fraction of both

weak (< |BBBpost
0 |) and strong magnetic field (> |BBBpost

0 |) increases as the magnetic field

gradually gets amplified and turbulent. The change of histogram for perpendicular

shock, however, is less significant. The weak magnetic field always have a relatively

high fraction. This suggests that the strong magnetic field’s intermittency is more

significant in the presence of shock compression.

3.3.5 Distributions of post-shock turbulence Ms and MA

The observational techniques to measure MA (Lazarian et al. 2018; Hu et al. 2019b;

Xu & Hu 2021b) in supernova remnants can be used to test the dynamo theory and

probe the turbulent amplification of magnetic fields near supernova shocks. Fig. 3.31

presents the distributions of averaged (along the z-axis) postshock magnetic field

strength, ⟨Ms⟩, and ⟨MA⟩ in the vicinity of the shock front. The ⟨Ms⟩ and ⟨MA⟩ of
turbulence are defined as:

⟨Ms⟩ = ⟨|vvvpost − vvvpost0 |/cposts ⟩,

⟨MA⟩ = ⟨|vvvpost − vvvpost0 |
√
ρpost/|BBBpost|⟩,

cposts =

√
γ
P post

ρpost
,

(3.25)

where cposts is the postshock sound speed and vvvpost represents the total postshock

velocity of fluid. The initial uniform postshock velocity vvvpost0 is subtracted to get the

turbulent velocity.
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Figure 3.31: The distributions of averaged (along the z-axis) postshock magnetic

field strength, ⟨Ms⟩, and ⟨MA⟩ in the vicinity of shock front. Ms is the ratio of total

velocity and sound speed, while MA is the ratio of turbulent velocity and Alfvén

speed. The snapshot reaches t ≈ 0.75tshock. Short white lines indicate the magnetic

field orientations.

As shown in Fig. 3.31, perpendicular shock can amplify the postshock magnetic

field strength further due to the additional shock compression. The local maximum

strength of the averaged magnetic field along the z-axis can reach ≈ 15|BBBpost
0 |, while

the maximum of parallel shock’s case achieves ≈ 5|BBBpost
0 |. Nevertheless, both cases

have the same distribution of ⟨Ms⟩ with a median value ≈ 0.15. This suggests that
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the postshock turbulence and sound speed are independent of magnetic fields. The

two quantities are regulated only by the pre-shock density fluctuation distribution.

The distributions of ⟨MA⟩ appear different. Due to a stronger magnetic field, the

⟨MA⟩ of the perpendicular shock case gets smaller with a median value ≈ 7. ⟨MA⟩
in the parallel shock case (with a median value ≈ 17) increases when get close to

the shock front. However, as shown in Fig. 3.32, the perpendicular case shows an

opposite trend that ⟨MA⟩ increases when the distance from the shock front increases.

This lower value of ⟨MA⟩ around the shock front is caused by the compression of the

magnetic field by the shock wave. The compression amplifies the preshock magnetic

field by a factor of ≈ 4 in a strong shock limit so that the corresponding ⟨MA⟩ is

only ≈ 1/4 of the parallel shock’s one. In the region away from the shock front

(x < 550, see Figs. 3.32 and 3.31), ⟨MA⟩ of both cases drops from 12 to 4. In this

region, turbulence and the magnetic field’s fluctuation both decay (see Fig. 3.21).

⟨MA⟩ in this region is related to the fluctuations driven by reverse shocks.
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Figure 3.32: Averaged (over y-axis and z-axis) profiles of ⟨MA⟩ as a function of x

using the snapshot t ≈ 0.75tshock. Dashed line represents the left boundary of ⟨MA⟩’s
maps shown in Fig. 3.31.

Moreover, in Fig. 3.27, we see that the maximum magnetic strength reaches

≈ 65|BBBpost
0 | for parallel shock and ≈ 210|BBBpost

0 | for perpendicular shock. However,

Fig. 3.31 shows that in the vicinity of the shock front, the ⟨|B|⟩ averaged along

the z−axis ranges from ≈ 0 to ≈ 15 for perpendicular shock and from ≈ 0 to ≈ 5

for parallel shock. This significant difference suggests that the maximum magnetic

strength has a low volume filling factor and thus the average is much smaller than

the maximum. Accordingly, Fig. 3.28 shows that the maximum magnetic energy
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per unit mass can become comparable to the turbulent energy, suggesting local

MA ≈ 1 for perpendicular shock. The ⟨MA⟩ averaged along the z−axis, however,

ranges from ≈ 7 to ≈ 15 (see Fig. 3.32). It means that in many positions along the

z−axis, the magnetic energy is still much lower than turbulent energy. This gives

an important implication for observational measurement, which can only give an

averaged magnetic field strength. It implies that the magnetic field locally in 3D

space can be much stronger.

3.4 Superdiffusion of cosmic rays in compressible

magnetized turbulence

3.4.1 CRs perpendicular propagation induced by wandering

magnetic field lines

The anisotropy of MHD (see § 2.1.1 and Eq. 2.2) is crucial as it gives an insight

into how the separation of magnetic field lines grows when moving along the

magnetic field lines. Following Lazarian & Yan (2014), we firstly consider the case

that the parallel mean free path ⟨λ∥⟩ of CRs is much larger than the injection

scale of turbulence. Consequently, the scattering of CRs is negligible, and their

diffusion perpendicular to the mean magnetic field is determined by the divergence

of magnetic field lines.

Supposing that when CRs move a distance x in the direction parallel to local

magnetic field lines, the field lines spread out in the perpendicular direction with

distance l⊥. Consequently, one can express the rate of field line diffusion as:

d⟨z2⟩
dx

≈ d

dx
l2⊥ ≈ l2⊥

l∥
, (3.26)

where
√

⟨z2⟩ is the ensemble-averaged diffusion perpendicular to magnetic field lines.

Considering the anisotropy relation given by Eq. 2.2, we get:

d

dx
l2⊥ ≈ Linj(

l⊥
Linj

)
4
3M

4/3
A , MA ≤ 1, (3.27)

The solution of Eq. 8.3 is

l2⊥ ≈ x3

27Linj

M4
A, MA ≤ 1, (3.28)

which indicates that the diffusion
√

⟨z2⟩ of magnetic field lines increases as x3/2.

Owing to the fact the scattering is negligible here, CRs are freely streaming along
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magnetic field lines with the velocity cµ, where c is the light speed and µ is the

pitch angle so that x ∼ cµt (see Fig. 3.33), here t is time and c is light speed.

Consequently, we have the superdiffusion in the direction perpendicular to the

magnetic field:

⟨z2⟩ ≈ l2⊥ ∝ t3

27Linj

M4
A, MA ≤ 1, (3.29)

which is valid only for strong sub-Alfvénic turbulence, i.e., for perpendicular scales

that are smaller than ltr = LinjM
2
A.

Weak sub-Alfvénic turbulence (i.e., l⊥ > ltr) is wave-like and requires a different

treatment (Lazarian & Vishniac 1999):

l2⊥ ∼ xLinjM
4
A, (3.30)

which reflects the usual diffusion behavior. The special feature of this diffusion is

that it takes place on scales x > Linj, but the step of the diffusion is MALinj < Linj.

This reflects the anisotropy of turbulence on the injection scale predicted in (Lazarian

& Vishniac 1999).

Figure 3.33: An example of CRs’ parallel transport |δx̃| =
√
⟨(x− x0)2⟩ along the

magnetic field, where x0 is the initial position of particles. k denotes the power-law

slope of the reference lines.

When CRs move along magnetic field lines in a non-ballistic way and have

mean free path ⟨λ∥⟩ less than Linj, the propagation along magnetic field lines is

diffusive. This diffusion is imprinted, as discussed in Lazarian & Yan (2014), in the

CRs’ diffusion both in the directions parallel and perpendicular to the local mean
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magnetic field. However, the mean angle of the magnetic field lines is changing with

x and therefore we have parallel diffusion ⟨x2⟩ and perpendicular diffusion ⟨z2⟩:

δ⟨x2⟩ ≈ D∥δt,

δ⟨z2⟩ ≈ D⊥δt,
(3.31)

where D∥ and D⊥ are parallel and perpendicular coefficients, respectively (see

Fig. 3.33). Considering that the projection of the mean free path ⟨λ∥⟩to the

perpendicular direction is approximately ⟨λ∥⟩l⊥/x, one can get D⊥ ≈ D∥l⊥/x.

Consequently, we have:

⟨z2⟩ ≈ D⊥t ≈ l⊥/xD∥t ∝ D∥t
3/2, (3.32)

where l⊥/x ∝ t1/2 came from magnetic field wondering (see Eq. 3.291). As

demonstrated in Lazarian & Yan (2014), the diffusion of CRs with respect to the

local and global system of reference can differ. This was confirmed by a recent

numerical study in Maiti et al. (2022). Anticipating the approximate nature of the

scaling employed, we do not attempt to present the exact numerical factor for the

dependence.

In super-Alfvénic condition, turbulence is hydro-like in the range of scales [lA,

Linj] because the dynamics of magnetic fields are dominated by turbulent motions

for which the magnetic back reaction is negligible. Above, lA = LinjM
−3
A , is the scale

at which the turbulent velocity equals the Alfvén speed.

The role of the magnetic field becomes more important at scales smaller than lA
but larger than the dissipation scale (Lazarian 2006). In this scale range, turbulent

eddy gets elongated in the direction of the local magnetic field in a way similar to the

sub-Alfvénic turbulence and lA plays the role of injection scale: vl ∝ vA(l⊥/lA)
1/3.

Consequently, the anisotropy relation in ”critical balance” is:

l∥ = Linj(
l⊥
Linj

)
2
3M−1

A , MA ≥ 1, (3.34)

and we have (Lazarian & Yan 2014):

⟨z2⟩ ≈ l2⊥ =
x3

27Linj

M3
A ∝ t3

27Linj

M3
A, MA ≥ 1. (3.35)

1Eq. 3.29 and Eq. 8.32 can be expressed in terms of the distance parallel to local magnetic field

lines:
⟨z2⟩ ∝ M4

Ax
3, MA ≤ 1,

⟨z2⟩ ∝ D∥x
5/2, MA > 1.

(3.33)
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Figure 3.34: An visualization of CRs’ superdiffusion. Fifty CRs’ trajectories are

shown with Ms = 0.62 and MA = 0.56. The Larmor radius rL is set as 1/100 of cube

size Lbox. The spatial separation between CRs is one pixel and the initial pitch angle

is 0 degree.

The above relations can be obtained formally considering that in the case

of super-Alfvénic turbulence the injection happens, scale is lA rather than Linj.

Therefore, on the scales from the dissipation scale to lA one can use the relations and

all that we discussed above in terms of CR propagation for sub-Alfvénic turbulence

is applicable to this change.

It is important for CR propagation that the perturbations of magnetic fields in

a turbulent medium can scatter and isotropize cosmic rays. This is the source of the

generally accepted parallel to magnetic field diffusion. This is not the only process

that governs CR parallel diffusion, however. A new process of mirror diffusion was

introduced in Lazarian & Xu (2021). Unlike the scattering, this diffusion does not

cause the diffusion in CR pitch angles. Lazarian & Xu (2021) pointed out that the

dynamics of the pitch angle are similar to the pitch angle dynamics for the Transient

Time Damping (TTD) acceleration discussed e.g. in Shalchi & Schlickeiser (2006).

Instead, CRs bounce from the magnetic mirrors created by magnetic compression.

While the earlier studies (see Kulsrud & Pearce 1969) assumed that the magnetic

mirrors will induce trapping of CRs, Lazarian & Xu (2021) demonstrated that due

to the magnetic field wondering that we discussed above, the CRs were not trapped,

but every time bounce from a new mirror and, as a result, diffuse parallel to the
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magnetic field. This new type of diffusion, i.e. the ”mirror diffusion” is particularly

important for the CRs propagation of new CR sources (Xu 2022). However, for the

sake of simplicity, within the present study, we do not distinguish between the two

types of parallel magnetic field diffusion.

Figure 3.35: Left: The energy spectrum of velocity fluctuations for Alfvénic (top),

fast (central), and slow (bottom) modes, in the condition of MS ≈ 0.6. Right: The

energy spectrum of velocity fluctuations for Alfvénic, fast, and slow mode, with the

condition of MA ≈ 0.5. k denotes the slope of reference lines.
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3.4.2 Compressible MHD turbulence

Compressible turbulence can be presented as a superposition of Alfvén, slow, and

fast modes (see Cho & Lazarian 2003 and ref. therein). Lazarian & Vishniac (1999)

showed that Alfvénic turbulence induces magnetic field wandering. Therefore, the

CRs’ superdiffusion is dominated by Alfvénic modes of turbulence. Fig. 3.34 presents

an example of CRs’ superdiffusion using the method explained in § 3.4.3. Initially,

the spatial separation between CRs is one pixel in the direction perpendicular to the

mean magnetic field field. The separation, however, explosively grows up when CRs

travel along the magnetic field. However, fast modes dominate the scattering, which

can affect the scaling of superdiffusion (see Eq. 3.29). Therefore we will investigate

superdiffusion in compressible MHD turbulence.

3.4.3 Numerical methodology

Tracing particle’s trajectory

To trace the trajectories of CRs, we use the method developed in Beresnyak et al.

(2011) and Xu & Yan (2013b). Magnetic fields are extracted directly from the MHD

turbulence simulations described above. Considering the fact that the relativistic

particles have a speed much higher than the plasma’s Alfvén speed, we treat the

magnetic field as stationary and neglect the effect of the electric field. At each

position of a test particle, we compute the Lorentz force on each particle:

dv

dt
=

q

mc
v ×B (3.36)

where v is the particle’s velocity, q is particle’s charge, m stands for the relativistic

mass, c is the light speed, and B is the local magnetic field. The trajectory is then

obtained by integrating the Lorentz force.

The integration employs the Bulirsch-Stoer method with adaptive time step

(Press et al. 1986). In the case that the position of a test particle is not located at

the integer grid, the corresponding magnetic fields are interpolated using a cubic

spline routine. We also adopt periodic boundary conditions.

Decomposition of Alfvén, fast, and slow modes

To investigate the effect of different MHD turbulence modes, we employ the mode

decomposition method proposed in Cho & Lazarian (2003). The decomposition is
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performed in Fourier space by projecting the velocity’s Fourier components on the

direction of the displacement vectors ζ̂A, ζ̂f , and ζ̂s for Alfvén, fast, and slow modes,

respectively. The displacement vectors are defined as:

ζ̂A ∝ k̂⊥ × k̂∥

ζ̂f ∝ (1 + β/2 +
√
d)k⊥k̂⊥ + (−1 + β/2 +

√
d)k∥k̂∥

ζ̂s ∝ (1 + β/2−
√
d)k⊥k̂⊥ + (−1 + β/2−

√
d)k∥k̂∥

(3.37)

where wavevectors k∥ and k⊥ are the parallel and perpendicular to the mean

magnetic field B0, respectively. d = (1 + β/2)2 − 2β cos2 ϑ, β = 2(MA/Ms)
2, and

cosϑ = k̂∥ · B̂0.

3.4.4 Properties of MHD turbulence

Fig. 3.35 present kinetic energy spectrum. The velocity is decomposed into

fast, slow, and Alfvénic modes using the decomposition method given in

§ 3.4.3. Because magnetic field fluctuation is proportional to velocity fluctuation:

|bk| = (B0vk/cp)|B0 × ζ̂|, the spectrum also reflects magnetic field’s properties. Here

bk and vk are the magnetic field fluctuation and velocity fluctuation in Fourier space,

respectively. cp denotes the propagation speed of the slow, fast, Alfvénic mode and

ζ̂ is the corresponding displacement vector. The slope of Alfvénic mode’s spectrum

is close to -5/3 as a result of the Kolmogorov scaling. The slope is insensitive to

the value of MA and MS, although the spectrum’s amplitude increases for large

Ms cases due to more injected kinetic energy. As for fast mode, the slope k gets

steeper than −5/2 being close to the value of k = −2. k = −2 usually corresponds

to shocked gas in supersonic condition and Cho & Lazarian (2003) found a slope of

−3/2 for subsonic turbulence. The steeper slope indicates fast mode dissipates its

energy quickly. However, a discrepancy of the slope has been reported by Kowal

& Lazarian (2010) and (Kempski & Quataert 2022), who also found k = −2 for

subsonic turbulence. Our results agree with the latter study. In terms of the slow

mode, it behaves in a way similar to Alfvén mode. Its slope is, therefore, still -5/3.

Additionally, to investigate the anisotropy of each mode, we employ the

second-order structure function SF (R, z) defined in the local reference frame

(see § 2.1 and Eq. 2.23). As an example, the structure functions for simulation

Ms = 0.62,MA = 0.56 and Ms = 6.47,MA = 0.61 are presented in Fig. 3.36. The

calculation randomly uses half a million data points. We can see that in both

subsonic and supersonic conditions, the iso-contours of Alfvénic mode and slow

mode are elliptical. The semi-major axis is along the Z direction, which is parallel

to the local magnetic field. Therefore, the Alfvénic and slow mode are anisotropic.
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Figure 3.36: Two examples of structure function SF (R,Z) in the local reference

frame. Z is parallel to the magnetic field while R is perpendicular to the magnetic

field. The two simulations used here both have MA ≈ 0.5.

However, for fast mode, its iso-contours are more close to isotropic, as suggested by

Cho & Lazarian (2003).

Also, we examine the relative significance of fast, slow, and Alfvénic modes in

various astrophysical conditions, including subsonic warm gas and supersonic cold

gas. We calculate the kinetic energy for each mode over the entire box as:

EA,s,f =

∫
V

v2A,s,fdV, (3.38)

where the subscripts A, s, f denote for Alfvénic, slow, and fast modes, respectively.

The energy fraction for each mode is defined as its fraction in the total energy

Etot = EA + Ef + Es. The results are presented in Fig. 8.28. Note that we only

decompose sub-Alfvénic turbulence here, as super-Alfvénic case appears no mean

magnetic field so the decomposition method is not appropriate. We find that the fast

mode always has a smaller fraction of energy than the other two modes. In terms of

a fixedMA ≈ 0.5, the fraction of fast mode decreases untilMs ≈ 2 but gets saturated

at the value of ≈ 10% when Ms > 2. This trend exactly agrees with the change

of mean free path (see Fig. 3.38), as fast mode is the major agency of pitch angle
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Figure 3.37: Left: The energy fraction for fast, slow, and Alfvénic mode as a function

ofMs. All simulations haveMA ≈ 0.5. Right: The volume filling factor for fast, slow,

and Alfvénic mode as a function of MA. All simulations have Ms ≈ 6.0. The circular

symbol represents a resolution of 7923, while the inverted triangle symbol represents

the cases of 5123.

scattering. Our results suggest that the fast mode’s fraction, as well as the mean free

path, is insensitive to large Ms. In addition, the Alfvénic mode usually dominates

over the other two modes in terms of energy fractions, occupying a fraction of ≈ 50%

for supersonic turbulence. The trend we observe is consistent with the result from

Federrath et al. (2011), who found that the fraction of solenoidal turbulence (i.e.,

the Alfvénic mode) is nearly a constant irrespective of Ms using a solenoidal driving.

Another important factor, that can introduce more fractions of the fast mode, is MA.

Therefore, we fix Ms ≈ 6 and investigate the fraction of fast mode as a function of

MA in Fig. 8.28. We see that the fraction of fast mode increases when MA is large,

while the fraction of Afvénic mode decreases. However, the fraction of slow mode

stays at 40% around, showing no apparent relation with respect to MA.

3.4.5 Parallel mean free path of test particles

To determine the mean free path of particles, we inject 1000 test particles, which are

sufficient for the statistics (Xu & Yan 2013b), at random initial positions and initial

pitch angles 0 degrees at a snapshot of the MHD simulation after the turbulent

cascade is fully developed. The Larmor radius rL = u/Ω is set as 1/50 of cube

size L, where Ω = (qB)/(γmc) is the frequency of a particle’s gyromotion (γ is the

particle’s Lorentz factor). We trace the change of pitch angle until it achieves 90

degrees. The corresponding averaged distance traveled along the local magnetic field
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is taken as the parallel mean free path.

Figure 3.38: Left: The mean free path λ∥ in the unit of cube size L as a function

of Ms. All simulations have MA ≈ 0.5. Right: The mean free path λ∥ in the unit

of cube size Lbox as a function of MA. All simulations have Ms ≈ 6.0. The circular

symbol represents a resolution of 7923, while the inverted triangle symbol represents

5123.

In Fig. 3.38, we present the mean free path ⟨λ∥⟩ as functions of Ms and MA.

We first fix MA ≈ 0.5 and find ⟨λ∥⟩ increases until Ms ≈ 2. The increment of

⟨λ∥⟩ corresponds to weaker scattering, which indicates that the fast mode’s fraction

becomes less significant. However, when Ms > 2, ⟨λ∥⟩ stops increasing but is

saturated at the value of 4 or 5 around, and the fast mode’s fraction has little

variation. In supersonic condition Ms ≈ 6, ⟨λ∥⟩ decreases in a power-law manner as

M−2
A . As the fast mode is the primary agent for scattering, a large MA, therefore,

corresponds to a small mean free path. It suggests that an observed small mean

free path in supersonic conditions is mainly contributed by relatively weak magnetic

fluctuation, i.e., large MA.

Fig. 3.39 shows the evolution of ⟨µ⟩, i.e., the cosine of pitch angle as a function

of time, averaged over 1000 particles. Obviously, the particles are scattered by

magnetic fluctuations so that the averaged ⟨µ⟩ monotonically decreases. We can also

see that the decrease of ⟨µ⟩ is slower for low MA cases, showing that the increased

MA leads to enhanced efficiency in particle scattering. It can be understood that

the particles’ gyroresonant scattering at a smaller MA is less efficient so that the

corresponding mean free path is larger. Indeed, we find the mean free path parallel

to the local magnetic field ⟨λ∥⟩ are 12.24Linj, 3.14Linj, 1.28Linj, and 0.92Linj for

the cases of MA = 0.34, 0.56, 0.78, and 0.87, respectively. Here Linj = 0.5L is the

injection scale.
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Figure 3.39: The evolution of averaged ⟨µ⟩ over all particles, i.e., the cosine of pitch
angle with respect to the CRs’ gyro periods.

3.4.6 Perpendicular superdiffusion

Subsonic turbulence

To test the perpendicular superdiffusion, we simultaneously inject 50 beams of

test particles randomly into the simulation cube. Each beam contains 20 particles.

The spatial separations between particles in each beam are L/100 pixels. Like the

setting above, all the particles have rL = L/50 and an initial pitch angle of 0. We

trace the particle trajectories along the local magnetic fields at each time step. We

also interpolate the trajectories so that we can measure the separation δz̃ between

the trajectories at each identical time step. The rms value
√

⟨δz̃2⟩ is taken as the

perpendicular displacement of the particles.

Fig. 3.40 presents the correlation of
√

⟨δz̃2⟩ and the CRs’ gyro periods t · Ω in

sub-Alfvénic and subsonic turbulence. We can see that the growth of
√

⟨δz̃2⟩ is fast
for large mean free path cases, as the scattering of particles is very inefficient. In

contrast, a small mean free path (i.e., ⟨λ∥⟩ < Linj) corresponds to a slow increase

of the perpendicular displacement. In particular, in the absence of scattering, i.e.,

⟨λ∥⟩ ≫ Linj,
√
⟨δz̃2⟩ grows in a power-law relation with a power-law index k = 1.5

after passing the numerical dissipation scale. The analysis for super-Alfvénic and

subsonic turbulence was performed in Xu & Yan (2013b). Nevertheless, when the

role of scattering becomes more important, i.e., in the case of ⟨λ∥⟩ = 1.28Linj, the
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Figure 3.40: The plot of perpendicular displacement of the particles
√

⟨δz̃2⟩ ver-

sus the CRs’ gyro periods t · Ω in subsonic and sub-Alfvénic MHD turbulence. ltr
represents the transition scale, ldiss is the numerical dissipation scale, and Linj is the

injection scale.

power-law index becomes shallower. This power-law index finally arrives at k = 0.75

when the scattering is significant, i.e., ⟨λ∥⟩ < Linj.

Supersonic turbulence

We repeat the analysis for highly supersonic turbulence in this section. Note

because of the small energy fraction of fast mode, scattering is always weak so

that ⟨λ∥⟩ > Linj when MA ≤ 0.8. The result in sub-Alfvénic regime is presented in

Fig. 3.41. Like the subsonic cases above, when ⟨λ∥⟩ ≫ Linj,
√
⟨δz̃2⟩ grows among

transport time t in a power-law relation with a power-law index k = 1.5 after passing

the numerical dissipation scale. This superdiffusion of perpendicular displacement is

still dominated by the diverging magnetic field lines in sub-Alfvénic and supersonic

turbulence.

In Fig. 3.42, we further increase MA to super-Alfvénic regime. Similar to the
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Figure 3.41: Same as Fig. 3.40 but for sub-Alfvénic and supersonic (Ms ≈ 6)

turbulence here.

subsonic cases (see Fig. 3.40), scattering slows down the increment of perpendicular

displacement
√

⟨δz̃2⟩. When ⟨λ∥⟩ > Linj,
√

⟨δz̃2⟩ grows among the magnetic field

lines in a power-law relation
√

⟨δz̃2⟩ ∝ t1.5. In contrast, when ⟨λ∥⟩ < Linj, the

scattering becomes efficient so that
√

⟨δz̃2⟩ ∝ t0.75.
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Figure 3.42: The plot of perpendicular displacement of the particles
√

⟨δz̃2⟩ versus
the CRs’ gyro periods t · Ω. lA = LinjM

−3
A represents the transition scale, ldiss is the

numerical dissipation scale, and Linj is the injection scale. We consider super-Alfvénic

and supersonic (Ms ≈ 6) turbulence here.
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Figure 3.43: Left: The structure-function of velocity fluctuations for Alfvénic (top),

fast (central), and slow (bottom) mode, in the condition of MA ≈ 0.5. The fluctua-

tions are decomposed into parallel (red) and perpendicular (blue) components with

respect to the local magnetic field. Right: Same as the left panel, but in a supersonic

regime.
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Chapter 4

Tracing magnetic fields with

velocity gradient
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Abstract

Measuring magnetic fields in the interstellar medium (ISM) poses significant

challenges. While traditional methods such as polarized dust emission, stellar

light polarization, molecular-line Zeeman splitting, and Faraday rotation have been

primary tools, we introduce the Velocity Gradient Technique (VGT) as a promising

alternative. Our study explores the properties of velocity fluctuation gradients

under the influences of self-gravity, radiative transfer, self-absorption, and outflow

feedback. Employing 3D magnetohydrodynamic (MHD) simulations of turbulence

and star formation, we confirm that in the presence of dominant MHD turbulence,

velocity gradients are perpendicular to the magnetic field. Conversely, with the

onset of significant self-gravity, the orientation of these gradients shifts to parallel

alignments with the magnetic field, exhibiting higher gradient amplitudes. This

transition is characterized by a double-peak feature in the histogram of gradient

orientations and increased gradient curvature. Despite the substantial impact of
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self-absorption on observed intensity compared to column density structures, we

demonstrate the resilience of VGT performance using synthetic emission lines of CO

isotopologues (12CO (1–0), 13CO (1–0), and C18O (1–0)). We further illustrate the

feasibility of constructing 3D magnetic field tomography with VGT by employing

different emission lines. We used observations from the IRAM 30 m telescope of

the 13CO (1–0) emission in the Serpens G3–G6 molecular cloud, supplemented with

statistical analyses, including the probability density functions of column density and

VGT, alongside Planck 353 GHz polarized dust emission and Herschel H2 column

density data, to suggest gravitational collapse in the Serpens G3–G6 south clump.

We confirm observationally the mentioned properties of velocity gradient orientation

in the presence of self-gravity and radiative transfer. Additionally, strong outflow

feedback is anticipated to alter the velocity gradient orientation, a hypothesis we

examine in the star-forming region L1551, known for its pronounced 12CO (J =

1–0) outflows. Our findings reveal a general alignment between magnetic fields

measured with Planck 353 GHz/849 µm, SOFIA/HAWC+ 214 µm, JCMT/SCUPOL

850 µm, and VGT-12CO in the outskirts of L1551. Nearing the center of IRS 5,

these measurements predominantly indicate perpendicular orientations, suggesting

outflows may play a dynamic role over scales of approximately 0.2 pc, potentially

causing a 90-degree shift in the velocity gradient direction.

4.1 Gradient of velocity fluctuations as a tracer

of magnetic fields

4.1.1 Gradient of velocity fluctuations is perpendicular to

magnetic fields

The VGT makes use of the fact that MHD turbulence is anisotropic (see § 2.1). It

means that at a given separation, the minimum amplitude of velocity fluctuations

appears in the direction parallel to local magnetic fields, while the maximum

amplitude appears in the perpendicular direction. Consequently, the gradient of

velocity fluctuations’ amplitude is perpendicular to the local magnetic field, see

Eq. 2.5 and Fig. 2.1. This comes from the fact that fast turbulent reconnection

(Lazarian & Vishniac 1999), the process by which magnetic fields in a conducting

fluid change their topology driven by turbulence and independent of fluid resistivity,

preferentially induces fluid motions perpendicular to the local magnetic field

direction. As a result, the cascading of turbulence is preferentially along the

direction perpendicular to the local direction of the magnetic field. This phenomenon
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has been confirmed by numerical simulations (Cho & Vishniac 2000; Maron &

Goldreich 2001; Cho & Lazarian 2003; Kowal & Lazarian 2010; Hu et al. 2021c) and

in situ measurements in the solar wind (Wang et al. 2016; Matteini et al. 2020; Duan

et al. 2021; Zhao et al. 2023).

4.1.2 Effect of gravitational collapse

In the vicinity of gravitational collapse, the self-gravity radically modifies the nature

of the turbulent flow. In the case of strong self-gravity, velocity gradients are

expected to change their orientation from perpendicular to magnetic fields to align

with magnetic fields (Lazarian & Yuen 2018c; Hu et al. 2020d). As shown in Fig. 4.1,

assuming the gravitational center is located at the center of a turbulent eddy, when

gravity is sub-dominant to magnetic and turbulent energy, the magnetized turbulent

eddies are elongated in the direction parallel to the magnetic field surrounding

the eddies. As a result, the maximum change of the velocity amplitudes (i.e.,

velocity gradient), is in the direction perpendicular to the local magnetic field,

and by rotating the velocity gradient by 90◦ we can trace the magnetic field. In

regions where gravitational collapse has begun, the dynamics are different. If the

magnetic field is strong enough to provide support, we expect that in the direction

perpendicular to the magnetic field, any gravitational pull inducing the acceleration

is counteracted by a magnetic force. Hence, the gravitational pull produces the most

significant acceleration of the plasma in the direction parallel to the magnetic field,

and the velocity gradients are parallel to the magnetic field. Alternatively, in a case

where the magnetic field support is weak compared to gravity, the infall motions of

the plasma will alter the magnetic field geometry so that it tends to align parallel to

the direction of gravitational collapse. Nevertheless, the acceleration induced by the

collapse is still along the magnetic field direction. As a result, the velocity gradients

are also parallel to the magnetic field.

4.1.3 Effectc of stellar feedback and outflows

Our earlier discussion presupposes the dominance of MHD turbulence or gravitational

collapse. Nonetheless, within star-forming regions, outflow feedback might alter the

properties of velocity gradients. Outflow feedback has been shown to substantially

change fluid velocity statistics (Hu et al. 2022d) and is anticipated to mirror the

effects of inflows on velocity gradients, i.e., causing the orientation of the velocity

gradient to shift from being perpendicular to the magnetic fields to being aligned

with them (Hu et al. 2020c). It is well-documented that outflows are expelled from
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Figure 4.1: Illustrations on how self-gravity changes the maximum gradient direc-

tion, extracted from Yuen & Lazarian (2017a). Panel a: Eddies are elongated parallel

to the local magnetic field direction. When gravity is absent (left), the maximum

change of the velocity amplitudes (i.e., velocity gradient) is in the direction perpen-

dicular to the local magnetic field. Panel b: The gravitational pull produces the most

significant acceleration of the plasma in the direction parallel to the magnetic field,

and the velocity gradients are parallel to the magnetic field.

star-forming sites at high velocities (Snell et al. 1980). At a protostar’s core, gas

velocity peaks and diminishes towards its periphery. As a result, additional velocity

gradients not attributed to turbulence might emerge, pointing from the center to the

outskirts. These outflow-induced gradients are highly scale-dependent because they

correlate with the significance of outflows. On smaller scales proximate to protostars,

outflows significantly overshadow turbulence. Magnetic fields in this case are

expected to follow the outflows. Thus, the velocity gradient is primarily dominated

by the potent outflows, being parallel to the magnetic fields. Conversely, on broader

scales distant from protostars, weakened outflows allow turbulence-induced velocity

gradients to take precedence, rendering the gradients perpendicular to the magnetic

fields. A transition may exist wherein velocity gradients gradually shift from parallel

to perpendicular alignment with the magnetic fields as one moves further from the

protostar’s center, contingent upon the comparative prominence of outflows versus
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turbulence.

4.1.4 Pipeline of the velocity gradient technique (VGT)

Pseudo Stokes parameters

The VGT methodology is based on the anisotropy of turbulent velocity fluctuations.

The anisotropic nature of these velocity fields can be discerned from velocity channel

maps, p(x, y, vlos), obtained through spectroscopic observations, due to the velocity

caustics effect (Lazarian & Pogosyan 2000, 2004; Kandel et al. 2016; Hu et al.

2023). The velocity caustics effect, introduced to the field interstellar medium by

Lazarian & Pogosyan (2000), highlights the distortion of density structures due to

turbulent and shear velocities along the LOS. As outlined in Eqs. 2.27, 8.27, and

2.30, density structures possessing different velocities may be sampled into the same

velocity channel, significantly modifying the observed intensity structures in the

spectroscopic channel map. The observed intensity fluctuations in p(x, y, vlos), thus,

encompasses fluctuations exclusively produced by velocity, denoted as pvc(x, y, vlos)

and the inhomogeneities pdc(x, y, vlos) in the actual density field.

The dominance of either pvc or pdc is dependent on the channel width, i.e.,

the velocity resolution of the observation. A narrower channel width enhances

the contribution from pvc, making the intensity fluctuation in such thin channels

predominantly due to velocity fluctuation. This leads to the inheritance of velocity

information in p(x, y, vlos). When the channel width ∆v is less than the velocity

dispersion
√
δ(v2) of the turbulent eddies under investigation, that is, ∆v <

√
δ(v2),

the intensity fluctuation in such a thin channel is predominantly due to velocity

fluctuation. The velocity dispersion
√
δ(v2) is typically calculated from the

dispersion of the velocity centroid map, i.e., moment-1 map, in observation.

Similar to the polarization measurement, the VGT constructs pseudo-Stokes

parameters following the steps below (Hu et al. 2022b; Liu et al. 2023):

Step 1. Each thin channel map p(x, y, vlos) is convolved with the 3×3 Sobel

kernels Gx and Gy:

∇xp(x, y, vlos) = Gx ∗ p(x, y, vlos),
∇yp(x, y, vlos) = Gy ∗ p(x, y, vlos),

(4.1)

where the asterisks denote convolutions. ∇xp(x, y, vlos) and ∇yp(x, y, vlos) are the

gradient components in the thin channel maps along the x and y axis. They are
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used to calculate the overall pixelized gradient map ψg(x, y, vlos):

ψg(x, y, vlos) = tan−1(
∇yp(x, y, vlos)

∇xp(x, y, vlos)
). (4.2)

From here, only pixels with an intensity less than three times the RMS noise are

kept towards the following steps.

Step 2. The resulting ψg(x, y, vlos) is then processed with the sub-block

averaging method (Yuen & Lazarian 2017b). The pixelized map ψg(x, y, vlos) is

divided into rectangular sub-blocks with a size of n × n pixels. The size could be

different values, but empirically 20×20 pixels are verified to be a sufficient one for

numerical studies (Lazarian & Yuen 2018c; Hu et al. 2020a). For each sub-block:

1. a histogram of gradient orientation is produced and the histogram is fitted

with a Gaussian distribution,

2. the gradient orientation corresponding to the Gaussian distribution’s peak is

then taken as the most probable orientation of the gradient for that sub-block.

Step 3. After the sub-block averaging, we obtain the averaged gradient angle

map ψgs(x, y, vlos) for the channel at velocity vlos. Repeating the Steps 1 and 2

for every channel within the velocity range of interest, we can then construct the

pseudo-Stokes parameters Qg(x, y) and Ug(x, y):

Qg(x, y) =

∫ vlos,max

vlos,min

p(x, y, vlos) cos(2ψgs(x, y, vlos))dvlos,

Ug(x, y) =

∫ vlos,max

vlos,min

p(x, y, vlos) sin(2ψgs(x, y, vlos))dvlos,

(4.3)

where vlos,max and vlos,min represent the upper and lower levels of the velocity range

used for integration. Gaussian smoothing to Qg(x, y) and Ug(x, y) might be necessary

to achieve a more coherent magnetic field. Then the POS magnetic field orientation

can be inferred from:

(4.4)

The VGT utilizes pseudo-Stokes parameters, as defined in Eq. 4.3, to

approximate polarization measurements. However, notable differences persist

between these pseudo-Stokes parameters and the real Stokes parameters used in

polarization. In polarization observations, the Stokes parameters are calculated

based on the density-weighted magnetic field (see Eq. 8.2 and Planck Collaboration

et al. 2015a). This means that the magnetic field components are integrated



125

over the LOS, with each component’s contribution being weighted by the local

gas density. This approach inherently emphasizes regions of higher density, as

they contribute more significantly to the integrated polarization signal. However,

the weighting in the pseudo-Stokes parameters of VGT is based on the observed

intensity in spectroscopic channels (see Eq. 4.3). As discussed in § 2.2, the non-linear

spectroscopic mapping from the real spatial coordinates (x, y, z) to the velocity space

(x, y, vlos) introduces difference, especially for thin velocity channels. These can

lead to significant variations in the observed intensity distribution. Consequently,

the weighting in VGT is influenced more by the velocity field and its fluctuations,

as opposed to the density weighting in traditional polarization. This difference in

weighting mechanisms can result in VGT highlighting different components of the

magnetic field compared to polarization measurements. For instance, regions with

significant velocity fluctuations might be more pronounced in VGT mappings, even

if they are not the most densely populated.

Velocity channel gradients (VChGs)

The pseudo-Stokes parameters, as defined in Eq. 4.3, integrate all channel maps

within the velocity range vlos,max to vlos,min, enabling the tracing of projected POS

magnetic fields. However, the VGT also offers the flexibility to utilize either a

single channel or a select few channels for tracing the magnetic field at specific

velocities. This unique capability is particularly advantageous, as it allows for the

combination of HI emission lines with the Galactic rotational curve, facilitating

the reconstruction of the magnetic fields’ three-dimensional distribution within the

Galaxy (see § refchapter5:GMF for more details).

When the VGT is applied to a single thin channel, denoted as p(x, y, vlos), to

trace magnetic fields, this approach is termed velocity channel gradients (VChGs;

Lazarian & Yuen 2018c). The calculation involves Step 1 and Step 2 analogous to

those initially outlined for the pseudo-Stokes parameters. Specifically, in molecular

clouds where emission lines typically exhibit a single peak, the calculation focuses on

p(x, y, v0), where v0 represents the velocity at the central peak of the velocity profile

along the LOS. p(x, y, v0) is denoted as the central channel.

Velocity centroid gradients (VCGs)

In spectroscopic observations, alongside the thin velocity channel approach, the

velocity centroid map (or moment-1 map) offers a valuable alternative for extracting

velocity information (Esquivel & Lazarian 2005). This map, denoted as C(x, y),
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encapsulates the velocity-weighted emission intensity integrated along the velocity

axis of the spectroscopic cube:

C(x, y) =

∫ vlos,max

vlos,min
p(x, y, vlos)vlosdvlos∫ vlos,max

vlos,min
p(x, y, vlos)dvlos

, (4.5)

where p(x, y, vlos) represents the emission intensity, which could be in terms of

the radiation temperature or the antenna temperature in observational data. The

boundaries vlos,max and vlos,min specify the velocity range over which the integration

is performed. The method for calculating gradients from the velocity centroid map

is similar to that employed in VChGs. The resulting gradient map is denoted as

Velocity Centroid Gradients (VCGs).

Intensity gradients (IGs)

As previously discussed, the relative importance of velocity fluctuation, pvc, and

density fluctuation, pdc, in varies with the channel’s width, ∆v. Specifically, when

the channel width exceeds the velocity dispersion of the turbulent eddies under

study, ∆v >
√
δ(v2), intensity fluctuations within such a thin channel are primarily

attributed to density fluctuations. Notably, integrating the emission intensity along

the entire LOS eliminates all velocity-related information, resulting in the integrated

intensity map I(x, y):

I(x, y) =

∫
p(x, y, vlos)dvlos, (4.6)

which forms the basis for calculating Intensity Gradients (IGs), employing a method

similar to that used for VChGs. IGs can also be extended to continuum intensity

maps.

However, it is crucial to understand that density (or intensity) and velocity

exhibit distinct statistical properties. This distinction becomes particularly

pronounced in supersonic environments and regions undergoing gravitational

collapse. For instance, in shocked regions, high-density filamentary structures

compressed by shock are predominately perpendicular to the magnetic field.

However, for velocity structures, they are always parallel to magnetic fields (Hu

et al. 2019a).
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4.2 Numerical tests of the velocity gradient

technique

4.2.1 Description of numerical simulations

We utilized 3D MHD simulations generated by the ZEUS-MP/3D code (Hayes et al.

2006), adopting a setup consistent with those outlined in § 2.2.2. However, we

vary the sonic Mach number (Ms) and Alfvénic Mach number (MA), and include

self-gravity. The simulations, referred to by model names in Tab. 4.1, have differing

physical properties: Simulation cube A1 has a total mass of approximately 18,430

solar masses (M⊙), a magnetic Jean mass of 287 M⊙, an average magnetic field

strength of 30 µG, a mass-to-flux ratio of 1.11, and a volume density of 320 cm−3.

Cube A2 shows a total mass of 32,765 M⊙, a magnetic Jean mass of 97 M⊙, a

magnetic field strength of 31 µG, a mass-to-flux ratio of 1.92, and a volume density

of 565.90 cm−3.

We activated the self-gravitating module, featuring a periodic Fast Fourier

Transform Poisson solver, after achieving turbulence saturation within the cube

and ensuring the simulation ran for at least two sound crossing times. The scale

of the simulations spans 10 pc, represented by 792 and 480 pixels for A1 and A2,

respectively, with thermal Jeans lengths occupying 94 pixels (1.18 pc) in A1 and

45 pixels (0.89 pc) in A2. Turbulence and self-gravity were maintained until the

violation of the Truelove criterion (Truelove et al. 1997), which prevents numerical

inaccuracies by ensuring self-gravitating cores are resolved to at least 4 pixels. This

criterion allowed us to enhance density up to approximately 552 times for A1 and 127

times for A2, resulting in maximum volume densities of about 175,712.63 cm−3 for

A1 and 71,869.30 cm−3 for A2, indicating the point at which to halt the simulation

to avoid numerical issues associated with self-gravitating collapse.

4.2.2 The change of velocity gradients’ orientation due to

self-gravity

Velocity gradients are anticipated to alter their orientation relative to magnetic

fields in the context of gravitational collapse. To test the role of gravity on gradient

properties, we examined the evolution of these gradients across different phases of

gravitational collapse. This was achieved by analyzing eighteen simulation snapshots

from simulation A2. The degree of alignment between actual magnetic fields and

those inferred from VGT using pseudo-Stokes parameters is quantified by the
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Model Ms MA β = 2(MA

Ms
)2 Resolution tr [Myr]

5.64 0.31 0.006 7923 0

6.03 0.31 0.005 7923 0.2

A1 6.23 0.31 0.005 7923 0.4

6.41 0.31 0.005 7923 0.6

6.52 0.31 0.004 7923 0.8

0.20 0.02 0.020 4803 0

0.20 0.02 0.020 4803 0.2

0.21 0.02 0.018 4803 0.4

0.25 0.02 0.013 4803 0.6

0.29 0.03 0.021 4803 0.8

0.35 0.03 0.015 4803 1.0

0.42 0.04 0.018 4803 1.2

0.52 0.04 0.012 4803 1.4

A2 0.63 0.05 0.013 4803 1.6

0.77 0.06 0.012 4803 1.8

0.94 0.08 0.014 4803 2.0

1.16 0.10 0.015 4803 2.2

1.43 0.12 0.014 4803 2.4

1.77 0.14 0.013 4803 2.6

2.20 0.17 0.012 4803 2.8

2.71 0.21 0.012 4803 3.0

3.31 0.24 0.010 4803 3.2

3.97 0.27 0.010 4803 3.4

Table 4.1:: Description of MHD simulations used. The self-gravitating module is

switched on at the beginning, i.e., running time tr is 0. We dump a snapshot of the

simulation every 0.2 Myr. Ms andMA are the instantaneous values at each snapshot.

Alignment Measure (AM):

AM = 2(⟨cos2 θr⟩ −
1

2
), (4.7)

where θr represents the angular discrepancy between two vectors, and ⟨...⟩ signifies
the average over a specified region of interest. A perfect alignment between the

magnetic field and VGT yields an AM of 1, whereas AM = -1 denotes that the

VGT-inferred magnetic field is perpendicular to the magnetic field.

We computed the AM for VGT and magnetic fields, with the results presented

in Fig. 4.2(a). Upon introducing gravity into the pre-existing magnetized turbulence



129

Figure 4.2: (a): the AM (red line) between magnetic fields and velocity gradients

concerning the time since self-gravity is turned on (0 Myr), using the sub-sonic A2

simulation set. The blue line indicates the total gravitational energy in each cube.

(b): the correlation of total gravitational energy and the mean convergence of the

3D velocity field, using sub-sonic A2 simulations. (c): the variation of total kinetic

energy, magnetic field energy, and gravitational energy for A2 simulations. (d): the

AM of the 3D magnetic field angle and 3D velocity angle for A2 simulations.

simulation at time tr = 0, snapshots were taken up to tr ≈ 3.4 Myr. Notably, at

tr ≈ 2.4 Myr, the AM drops below zero, suggesting that the VGT-inferred magnetic

field predominantly orients orthogonally to the actual magnetic field direction beyond

this point. This shift, attributed to gravitational collapse, necessitates estimating

the fraction of collapsing matters. However, despite significant gravitational energy,

magnetic field support and turbulence may prevent collapse. A more definitive

indicator of collapsing gas is the convergence of the 3D velocity field, as gravitational

collapse entails matter flows converging towards the center, markedly increasing

velocity convergence. We thus define convergence C as the negative divergence of
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velocity:

C = −∇ · v⃗ = −(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

), (4.8)

where vx, vy, and vz denote the velocity components in the x, y, and z directions,

respectively. Projecting this along the LOS onto a 2D map aggregates all divergences

and convergences, where a positive 2D convergence indicates prevalent convergent

flow in 3D. As shown in Fig. 4.2(b), we observe a positive correlation between mean

projected convergence and gravitational energy. Furthermore, Fig. 4.2(c) illustrates

variations in magnetic field energy, kinetic energy, and gravitational energy (|Eg|),
revealing increases in both kinetic (Ek) and gravitational energy as self-gravity

accelerates the convergent flow. The energy relationship approximately satisfies

|Eg| ≈ 2Ek. However, magnetic energy remains roughly constant, attributed to

(a) (b)

Figure 4.3: (a): the 2D histogram of velocity gradients’ orientation and velocity’s

convergence using A2 simulation at tr ≃ 0.0 Myr. p gives the volume fraction of each

data point. (b): the 2D histogram of velocity gradients’ orientation and projected

velocity’s convergence using A2 simulation at tr ≃ 3.4 Myr. p gives the volume

fraction of each data point and the bin size is 200 for the 2D histograms. Note that

the orientation is measured in typical cartesian coordinates, i.e., with respect to the

right horizontal direction.

turbulence reconnection processes that tend to make the magnetic distribution

uniform and not correlated with the density enhancement (Lazarian et al. 2020a).

According to our theoretical consideration, the convergent flow shall follow the

magnetic field line. In Fig. 4.2 (d), we calculate the AM of magnetic field angle and

velocity angle in 3D spatial space. We observe an AM increase from -0.2 to +0.6

concurrent with the increment of free-fall time, indicative of increasing gravitational

energy. This trend suggests that the velocity field is aligned parallel to the magnetic
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field. Consequently, as the convergent fluid motion aligns with the velocity direction,

the resulting convergent flow also becomes parallel to the magnetic field during

gravitational collapse. This is consistent with our theoretical expectations.

Moreover, the velocity gradient exhibits different reactions to the degree of

self-gravity’s dominance. Within a 2D map, the characteristic changes in gradients

attributed to self-gravity are observable only when the self-gravitating material

constitutes a significant portion of the medium. When the fraction of gas undergoing

collapse is minor, the combined projection of self-gravitating and non-self-gravitating

gases may obscure the features indicative of gravitational collapse. For instance, in

Fig. 4.2, we note a gradual shift of the AM, which quantifies the alignment between

velocity gradients and magnetic fields, toward negative values as the proportion of

collapsing gas increases. This trend suggests that regions identified by the VGT as

undergoing collapse are contributing to the observed decrease in AM.

The convergence of velocity emerges as a pertinent indicator of gravitational

collapse. Utilizing this measure, we explore the changes in velocity gradients

within collapsing regions. Through the A2 simulation, we present a series of 2D

histograms in Fig. 4.3(a) and (b) that correlate the orientation of velocity gradients

with the projected velocity’s convergence at distinct evolutionary stages. At the

initial snapshot (tr ≈ 0.0 Myr), the distribution of velocity gradients’ orientation

predominantly clusters around π/2. This distribution undergoes a significant

transformation by tr = 3.4 Myr, marked by a pronounced increase in convergence.

Crucially, this phase witnesses a substantial realignment of velocity gradients,

with orientations adjusting by π/2 to align at 0 or π. Approximately 63.5% of all

gradients fall within the range of [0: 0.4] and [2.74: 3.14], in comparison to the total

volume (sum of all gradients).

Furthermore, we employ the second-order correlation function to analyze the

projected intensity map I(x, y) across various snapshots, defined as:

CF (RRR) = ⟨I(rrr)I(rrr +RRR)⟩ (4.9)

where rrr = (x, y) represents the position vector and RRR is the lag vector. The

correlation function, as visualized through contour plots in Fig. 4.4, reveals that at

tr ≤ 1.0 Myr, the contours are predominantly elongated in the direction parallel to

the mean magnetic field, denoted as r∥. As discussed in the work of Yuen et al.

(2018), the misalignment of large contours from the r∥ direction is attributed to the

limited inertial range present in numerical simulations. Crucially, as evolutionary

time progresses, the contours undergo a notable shift in orientation, becoming

elongated in the direction perpendicular to the mean magnetic field, labeled as r⊥.

This change becomes increasingly pronounced post tr ≥ 2.6 Myr, evidenced by
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Figure 4.4: The correlation function of 2D intensity maps at different snapshots,

using simulation set A2. r⊥ and r∥ are the real space scales perpendicular and parallel

to the magnetic field respectively. For all plots, r⊥ and r∥ are in scales less than 60

pixels.

the decreasing ratio of
r∥
r⊥
. Initially, turbulent eddies exhibit anisotropy parallel to

the magnetic field direction, as outlined in Lazarian & Vishniac (1999). Upon the

dominance of self-gravity within the cloud, collapsing material aligns and converges

along the magnetic field direction, leading to the accumulation of material in the

gravitational center as filamentary structures oriented perpendicular to the magnetic

field.

4.2.3 The change of velocity gradients’ amplitude due to

self-gravity

Beyond the orientation of velocity gradients, self-gravity significantly influences the

amplitude of these gradients. The presence of self-gravitating gas exerts an additional

force and acceleration on turbulent plasma, leading to an anticipated increase in

the amplitude of velocity gradients within regions undergoing gravitational collapse.

As demonstrated in the study by Yuen & Lazarian (2018), there exists a positive

correlation between the dispersion of gradients’ amplitude and the evolutionary

time of gravitational collapse. Consequently, analyzing the amplitude of velocity

gradients offers a distinctive method for identifying regions affected by self-gravity.

In Fig. 4.5, we examine how the amplitude of velocity gradients responds to
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Figure 4.5: The 2D histogram of velocity gradients’ amplitude, i.e., log(|∇C|), and
velocity’s convergence using A2 simulation at tr ≃ 0.0 Myr (top) and tr ≃ 3.4 Myr

(bottom). p gives the volume fraction of each data point. Bin-size is 200 for the 2D

histograms.

self-gravity. We present two 2D histograms that chart the logged amplitude of

velocity gradients against the projected velocity’s convergence, utilizing data from

simulation A2 at tr ≈ 0.0 Myr and tr ≈ 3.4 Myr, respectively. It is important to

note that for these calculations, we employ the velocity centroid map to determine

the normalized amplitude of velocity gradients. The pseudo-Stokes parameters do

not preserve information on gradients’ amplitude. In the absence of self-gravity,

the 2D histogram displays no preferential direction, indicating that the probability

of encountering large gradients’ amplitude is comparable across both high and low

convergence scenarios. However, this dynamic shifts with the onset of gravitational

collapse. By tr ≈ 3.4 Myr, the 2D histogram reveals an anisotropic distribution,

where high convergence is exclusively associated with large gradients’ amplitude,

and low convergence correlates with smaller amplitudes. Given that high-velocity

convergence results from self-gravity, the observed increase in gradients’ amplitude
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serves as a direct response to self-gravitational effects. This phenomenon thus

provides a novel approach for delineating gravitational collapsing regions through

the analysis of gradients’ amplitude.

4.2.4 Identifying the gravitational collapse: methodology

Double-peak features in the histogram of velocity gradients orientation

The change of velocity gradients’ orientation provides the possibility to identify

the gravitational collapsing regions independently of polarimetry. As illustrated

in Fig. 4.6, the histogram of velocity gradients’ orientation at the periphery of

a collapsing region exhibits a distinctive double-peak feature, with an angular

separation of 90 degrees between peaks. This characteristic double-peak pattern

serves as a criterion to differentiate between diffuse environments and regions

undergoing gravitational collapse.

To demarcate the boundaries of collapsing regions based on gradients’

orientation, we introduce the ”double-peak algorithm,” the principles of which are

outlined as follows. Our theoretical framework posits that within gravitational

collapsing regions, velocity gradients undergo an orientation shift of π/2. This shift

manifests in the histogram of velocity gradients’ orientation as: (i) a single peak at

θ in diffuse regions; (ii) a single peak shifting to ϕB + π/2 within collapsing regions;

and (iii) the emergence of two peak values, ϕB and ϕB + π/2, at the transition

zone—the boundary of collapsing regions, indicative of a double-peak feature.

The double-peak algorithm operationalizes by centering each pixel ψgs within

a sub-block and compiling a histogram of velocity gradients’ orientation. The

dimension of this sub-block, designated as the 2nd block, may vary from that used

in sub-block averaging methods. To mitigate the effects of noise and insufficient bin

numbers, we derive the histogram’s envelope, a smooth curve that highlights its

extremities. Entries with a histogram weight below the envelope’s mean value are

masked. Subsequently, peak values of each smoothed profile are identified. When

multiple peak values are detected, with the largest angular difference among them

falling within 90◦ ± σψ—σψ being the standard deviation of the distribution—the

sub-block’s center is classified as lying on the boundary of a gravitational collapsing

region
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Figure 4.6: An example of how velocity gradients change orientations at the gravita-

tional collapsing region, using simulation A1 with tr ≃ 0.8 Myr (see Tab. 4.1). Panels

a and b: a global and a zoom-in magnetic field morphology inferred from VGT re-

spectively. The magnetic field is superimposed on the projected intensity map and

visualized using the Line Integral Convolution (LIC). The LIC is plotted using Par-

aview’s default setting with steps 40 and step size 0.25. Panel f and e: a global and a

zoom-in magnetic field morphology inferred from synthetic polarization respectively.

Panel c: the histograms of velocity gradients orientation in the diffuse region which

shows a single-peak Gaussian profile (left) and in the boundary of the gravitational

collapsing region which shows a double-peak Gaussian profile (right). The same re-

gion has been shown to be gravitationally collapsing in Fig. 4.8 through the N-PDF.

Panel d: the zoom-in magnetic field morphology inferred from VGT with a 90◦ re-

rotation implemented for the gravitational collapsing region. The corresponding AM

is 0.75.

The curvature of velocity gradients

Beyond the double-peak algorithm, the curvature of velocity gradients emerges as

an alternative way to identify the boundaries of regions undergoing gravitational

collapse. Within such regions, velocity gradients exhibit a rapid directional shift of

90 degrees, leading to a pronounced curvature peak at the collapsing boundary, while

the surrounding ambient regions generally display minimal curvature. By analyzing

curvature distributions, one can effectively identify the peripheries of self-gravitating

regions.
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To compute the curvature of velocity gradients, we adopt the methodology

outlined in Yuen & Lazarian (2020), which analogizes magnetic field lines to the

velocity field trajectories of an imaginary particle. This process begins with the

interpolation of the pixelized gradient field ψgs. Subsequently, we employ a second-

order Runge-Kutta (RK2) vector integrator to generate a detailed stream path,

facilitating direct curvature calculation. The RK2 vector integrator’s operation is

straightforward. Given a vector field ψgs(x, y) with a step size dt, where (x, y) ∈ R2,

the subsequent coordinates (x′, y′) and (x′′, y′′) along the gradient stream-path can

be determined as follows:

(x′, y′) = (x, y)± ψgs(x, y) ∗ dt/2 (4.10)

(x′′, y′′) = (x, y)± ψgs(x
′, y′) ∗ dt/2 (4.11)

where the choice of the plus or minus sign dictates forward or backward integration,

respectively. This integrator is applied in both directions for four steps to construct

a streamline L(t) = (xi, yi, t)i∈N for each pixel, with t serving as the parameterization

of the streamline. The curvature κ(t), unsigned, is then calculated through the

established formula (Coolidge 1952):

T(t) =
L̇(t)

|L̇(t)|
,

κ(t) = |Ṫ(t)|,
(4.12)

where T(t) represents the tangent vector normalized to unity. The derivative of T(t)

is ascertained using a one-dimensional five-point stencil method:

Ṫx(t) =
−Tx(t+ 2dt) + 8Tx(t+ dt)− 8Tx(t− dt) + Tx(t− 2dt)

12dt
,

Ṫy(t) =
−Ty(t+ 2dt) + 8Ty(t+ dt)− 8Ty(t− dt) + Ty(t− 2dt)

12dt
.

(4.13)

Executing this procedure for every pixel yields a pixelized 2D curvature map of

the gradient field ψgs(x, y). A notable increase in κ(t) signifies a 90-degree shift in

gradient orientation, pinpointing areas of maximum curvature change.

Probability density function of column density (N-PDF)

The probability density function of column density (N-PDF) offers a distinct

approach to identifying regions of gravitational collapse through the analysis of the

density field. Numerous studies have demonstrated that the density distribution

in supersonic magnetized isothermal turbulence adheres to a log-normal form
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(Vazquez-Semadeni et al. 1995; Robertson & Kravtsov 2008; Collins et al. 2012;

Burkhart 2018):

PN(s) =
1√
2πσ2

s

e
− (s−s0)

2

2σ2
s , (4.14)

where s = ln(N/N0) represents the logarithmic column density, σs is the standard

deviation of the log-normal distribution, and N0 and s0 are the mean density and

mean logarithmic density, respectively.

In scenarios involving self-gravitating MHD turbulence, the density PDF evolves

to exhibit a dual nature: a log-normal (PN) distribution at lower densities and a

power-law (PL) distribution at higher densities:

PL(s) ∝ e−αs, s > St, (4.15)

where St = ln(Nt/N0) = (α − 1
2
)σ2

s denotes the logarithm of the normalized

transitional density that demarcates the log-normal and power-law segments of the

density PDF (Vazquez-Semadeni 1994; Slyz et al. 2005; Ballesteros-Paredes et al.

2011; Körtgen et al. 2019). This transitional density, St, is influenced by the slope

α of the power law and the width of the log-normal distribution. A shallower slope

α (indicative of stronger self-gravitating turbulence) shifts the transitional density

St towards lower densities (Li 2018). The value of Nt therefore tells above which

density threshold the self-gravity effect becomes dominant.

4.2.5 Identifying the gravitational collapse: numerical

results

Evolution of the N-PDF

To explore the evolution of the N-PDF through various stages of gravitational

collapse, we applied this analysis to eighteen snapshots of simulation A2, each

separated by an interval of ∆tr = 0.20 Myr after the initiation of gravity. In Fig. 4.7,

we present the N-PDF for A2, fitted to a 95% confidence level based on initial data

analysis. Fig. 4.7(a) illustrates that the PDF remains log-normal up to tr = 2.2

Myr, during which period the width of the PDF expands. Prior research (Krumholz

& McKee 2005; Burkhart et al. 2009) has shown that for isothermal turbulence,

the width of log-normal PDF is dictated by the sonic Mach number Ms and the

turbulence driving parameter b, as described by:

σ2
s = ln(1 + b2M2

s ). (4.16)
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(a) (b)

(c)

Figure 4.7: The log-normal plus power-law models of normalized N-PDF with bin-

size 100. The dotted line outlines all the density past the transition density which is

the dense self-gravitating gas. α is the slope of the power-law part, I0 is the mean

intensity value, St denotes the transition density, and σs represents the standard

deviation of the log-normal part. In our numerical simulation, the intensity I is

proportional to the column density.

With increasing self-gravity, we anticipate A2 to exhibit super-sonic characteristics,

as evidenced by Ms ≥ 1 beyond tr > 2.0 Myr. Although the fitted PDF in

Fig. 4.7(a) are predominantly log-normal, a minority exhibit power-law behavior.

One explanation is that the volume of self-gravitating gas locally increases.

Fig. 4.7(b) presents the N-PDF for A2 from tr ≥ 2.4 Myr, transitioning to
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a composite of a log-normal distribution for low-density regions and a power-law

distribution for high-density regions. The increase in σs further indicates an

escalating sonic Mach number within the A2 simulation, with the power-law segment

presumably encompassing self-gravitating gas. A shallower power-law slope α and

a reduced transitional density St imply an expanding volume of self-gravitating gas

(Collins et al. 2012; Burkhart 2018).

Fig. 4.7 (b) shows that the N-PDF of A2 with tr ≥ 2.4 Myr. We see the

N-PDF become the combination of a log-normal component for low-density gas and

a power-law component for high-density gas. The increasing σs also indicates the Ms

of the A2 simulation is continuously getting larger. The gas within the power-law

part is expected to be self-gravitating. The shallower slope α and the smaller value

of transitional density St reveal that the volume of self-gravitating gas is increasing

(Collins et al. 2012; Burkhart 2018).

However, the super-sonic simulation A1 exhibits a different behavior under the

influence of self-gravity, with a power-law segment emerging as early as tr ≤ 0.2

Myr (see Fig. 4.7 (c)). The slope α becomes shallower, and the transitional

density St decreases as the simulation progresses, while the width of the log-normal

segment expands only marginally. This suggests a limited volume of gas undergoing

gravitational collapse, contributing minimally to the overall dynamics of the

supersonic gas.

Double-peak histogram of velocity gradients orientation

We have established that velocity gradients undergo a 90-degree orientation shift

in areas experiencing gravitational collapse. This leads to the emergence of a

double-peak feature in the histogram of gradients’ orientation near the boundaries

of self-gravitating gas, as depicted in Fig. 4.6. Consequently, we employ the

double-peak feature algorithm to delineate regions of gravitational collapse.

In an in-depth examination of two specific sub-regions, A1-1 and A1-2, from

simulation A1 at tr ≈ 0.8 Myr, both showcasing pronounced convergent flows,

we analyze the orientation of velocity gradients alongside the projected velocity

convergence. Notably, a significant fraction of gradients reverses direction by π/2,

aligning either at 0 or π. This reversal is attributed to different directions of inflow.

Comparing the shift in gradients’ orientation with the N-PDF approach reveals

that the majority of self-gravitating regions identified by both methodologies are

congruent, indicating convergent flows. However, in the A1-1 region, a discrepancy

arises: a filamentary structure is recognized as self-gravitating by N-PDF but
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Figure 4.8: Panel a: the 1st and 2nd rows are two sub-regions extracted from simu-

lation A1 at tr ≃ 0.8 Myr, denoted as A1-1 (length scale ≃ 1.7 pc) and A1-2 (length

scale ≃ 2.8 pc), respectively. The 1st column: the gravitational collapsing regions

(blue regions) identified from the N-PDF. The 2nd column: the orientation of velocity

gradients in the range of [0, π] (i.e., red: ≃ π, blue: ≃ 0, and green: ≃ π/2). The

3rd column: the projected velocity convergence of each corresponding region. The

discontinuity comes from the numerical effect. Panel b: the gravitational collaps-

ing regions (red regions) identified from the double-peak feature of velocity gradients

morphology. The 2nd block size is implemented in the double-peak algorithm to plot

the histogram of velocity gradients’ orientation in a sub-region. We test three block

sizes, i.e., 30, 40, and 50 pixels

.

overlooked by the double-peak algorithm. This divergence is due to N-PDF

establishing a density threshold that does not distinguish between self-gravitating

material and non-self-gravitating density enhancements, potentially conflating the
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two.

Figure 4.9: A comparison of velocity’s mean convergence in the self-gravitating

regions identified from N-PDF (blue dashed line) and VGT’s double-peak algorithm

(red solid line). The two corresponding regions are shown in Fig. 4.8. The black

dashed line indicates the global mean convergence in each region.

The methodology employed distinguishes between the initial sub-block used

for magnetic field tracing and the subsequent, or 2nd, sub-block for identifying

gravitational collapse. The latter’s size remains constant because it does not

necessitate Gaussian fitting for its determination. As illustrated in Fig. 4.8,

employing a larger block size, such as 50× 50 pixels, effectively identifies a broader

boundary of the self-gravitating region, aligning with theoretical expectations.

Fig. 4.9 undertakes a comparative analysis of mean velocity convergence within

self-gravitating regions identified by the N-PDF and the VGT double-peak algorithm,

alongside the global mean convergence across the entire sub-region. Notably, the

convergence metric derived from the VGT double-peak recognition algorithm exhibits

variation. This variation arises from the inclusion of non-collapsing gas within larger

2nd blocks which results in reduced convergence measurements. This explains why

the convergence obtained from the N-PDF method is always larger. Moreover,

within the examined sub-regions, the positive convergence values associated with

VGT markedly surpass the corresponding global mean convergences.

The curvature of velocity gradients

The curvature of velocity gradients gets its maximum value when the gradients

flip their direction by 90◦, but the ambient region usually has a small curvature.

The curvature therefore provides an alternative way to identify the self-gravitating
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regions. An illustrative example of applying the curvature algorithm is presented in

Fig. 4.10, showcasing three distinct stages of gravitational collapse within sub-region

A1-2 at 0.4 Myr, 0.6 Myr, and 0.8 Myr, respectively. At the onset of collapse, a

substantial presence of converging gas is anticipated, with the dynamics becoming

increasingly concentrated in later stages. This progression is reflected in the changing

orientation of velocity gradients, with Fig. 4.10 demonstrating a reduction in the area

exhibiting directional shifts as the simulation evolves. The curvature’s significant

increase at the collapsing boundaries is evident in the second row of Fig. 4.10, yet it

falls short of highlighting regions where the shift in velocity gradients’ direction is less

than 90 degrees. Such instances may occur when collapsing material constitutes only

a minor fraction of the cloud along the LOS, resulting in less pronounced directional

changes. This likely accounts for the appearance of three isolated self-gravitating

regions at the 0.4 Myr stage, as depicted in the third row of Fig. 4.10. Utilizing the

”contourf” function in Julia, we delineate the full extent of the collapsing regions,

observing the core’s formation by tr = 0.8 Myr and a concurrent reduction in the

collapsing region’s size.

When comparing the collapsing regions identified through the N-PDF against

those delineated by the VGT-curvature, we observe congruent findings at tr = 0.8

Myr. However, at the earlier stages of tr = 0.4 Myr and tr = 0.6 Myr, N-PDF

suggests a more confined area of collapse compared to VGT. This discrepancy

may be attributed to the N-PDF’ inability to detect the continuous inflow towards

star-forming cores in the initial phases of star formation before significant gas

accumulation occurs within the core. Conversely, VGT, with its sensitivity to

velocity variations, adeptly captures these inflow dynamics, offering a broader

perspective on the regions affected by gravitational collapse.

Moreover, we demonstrate in Fig. 4.3 that the significant convergence

in collapsing regions ensures a pronounced amplitude of velocity gradients.

Consequently, we investigate the amplitude of gradients in the collapsing regions

identified via the VGT-curvature and the N-PDF. In Fig. 4.11, we compute both

the average amplitude of gradients in the specified collapsing regions and the overall

mean amplitude. It is observed that both VGT and N-PDF consistently yield

amplitudes of gradients that surpass the global mean value. Nonetheless, there are

instances where N-PDF exhibits a greater amplitude than VGT. This discrepancy

can partly be attributed to the adaptive sub-block averaging method and the

employment of the second sub-block, as their inclusion accounts for additional

non-convergent inflow.

In Figure 4.12(a), we delineate the amplitude of velocity gradients in regions

undergoing collapse as identified via the VGT (see Fig. 4.10), across various stages
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Figure 4.10: The example shows how to identify collapsing regions from the curva-

ture of velocity gradients. We use three different collapsing stages of the sub-region

A1-2, i.e., 0.4 Myr (the 1st column), 0.6 Myr (the 2nd column), and 0.8 Myr (the 3rd

column). The 1st row: the orientation of velocity gradients in the range of [0, π) (i.e.,

red: ≃ π, blue: ≃ 0, and green: ≃ π/2). The 2nd row: the curvature of velocity

gradients calculated from the RK2 method. The 3rd row: the gravitational collapsing

regions (red regions) identified from the curvature of velocity gradients. The 4th row:

the gravitational collapsing regions (blue regions) identified from the N-PDF.

of collapse at approximately 0.4 Myr, 0.6 Myr, and 0.8 Myr. Within these regions,

pixels exhibiting amplitudes below the global mean are masked, leaving behind

areas characterized by elevated gradients’ amplitude and significant convergence,

indicative of convergent inflow. Fig. 4.12 reveals that, at tr = 0.4 Myr, the inflow,

while modest, spans a broader area. By tr = 0.6 , the inflow intensifies, culminating

in the center of collapse at tr = 0.8 Myr. In Fig. 4.12(b), we present a 2D map of the

actual convergent flow, where the density structures reflecting positive convergence

are normalized by the total column density along the LOS. When compared to the

actual convergent flow, both N-PDF and VGT methodologies provide comparable

results, capable of independently identifying the projected convergent flow. It is
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Figure 4.11: A comparison of the average velocity gradients’ amplitude in the self-

gravitating regions identified from N-PDF (blue) and VGT’s curvature algorithm

(red). The corresponding regions are shown in Fig. 4.10. The black line indicates the

global mean convergence in each region.

noteworthy that at tr = 0.4 Myr and tr = 0.6 Myr, the convergent flow delineated

by VGT encompasses a more extensive area than that defined by the N-PDF.

The observed difference likely stems from the fact that N-PDF is sensitive

primarily to the accreting cores that have already formed, whereas velocity gradients

trace the entirety of the convergent flow. The efficacy of the VGT is additionally

influenced by the proportion of gas in the process of collapsing within the observed

volume. VGT may not accurately identify collapsing regions when a significant

portion of the matter along the LOS is not undergoing collapse. Regarding N-PDF,

the challenge is not only the low fraction of collapsing gas but also that the

low-density portions of collapsing gas may be obscured due to the projection effect.

To test this hypothesis, we provide 3D visualizations of the actual convergent flow at

tr = 0.6 Myr in Fig. 4.12(c) and (d). A blue box is employed to demarcate the 3D

convergence as identified by VGT and N-PDF, respectively. The area of convergence

delineated by VGT encompasses the majority of the 3D convergent flows, whereas

N-PDF captures only the regions of strong convergence, missing the convergent flows

in the upper volume. This observation correlates with the low-intensity regions on

the 2D projected intensity map shown in Fig. 4.12(d). Consequently, N-PDF fails

to detect the low-intensity segments since the transition threshold St of N-PDF is

designed to accentuate the high-intensity regions. Meanwhile, in the lower portion of



145

Figure 4.12: Panel a: the amplitude of velocity gradients in the collapsing regions as

identified by the VGT within area A1-2 at tr ≃ 0.4 Myr, 0.6 Myr, and 0.8 Myr. Pixels

with amplitudes below the global mean value are masked, leaving only the vibrant

areas that signify both a high amplitude of gradients and pronounced convergence,

indicative of convergent inflow. Panel b: A comparison of the convergent flow as

determined by the N-PDF, VGT, and the actual convergent flow at 0.8 Myr. Panel c:

visualization of 3D velocity convergence, where positive convergence highlights areas

of convergent inflow as identified through VGT. Panel d: similar to panel c, but the

collapsing region is determined by the N-PDF.
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the 3D convergence, where the collapsing gas fraction is minimal, its 2D projection

is predominantly characterized by non-collapsing gas.

Figure 4.13: A comparison of velocity’s mean convergence for the regions corre-

sponding to (i) the inflow outlined by the curvature and amplitude (lime), (ii) the

collapsing region identified by the curvature algorithm (red), (iii) the collapsing re-

gion identified by N-PDF (blue), and (iv) the entire A1-2 region (black).

Besides, we calculate the mean convergence for the regions corresponding to

(i) the inflow outlined by the VGT (curvature & amplitude algorithm), (ii) the

collapsing region identified by the curvature algorithm, (iii) the collapsing region

identified by N-PDF, and (iv) the entire A1-2 region. The result is presented in

Fig. 4.13. Firstly, we see the global mean convergence is increasing with the evolution

of gravitational collapse. Both VGT and N-PDF always give larger convergence

than the global mean value, while N-PDF can also show a larger convergence than

VGT employing only the curvature algorithm. In particular, at tr = 0.4 Myr and

tr = 0.6 Myr, VGT (curvature & amplitude) appears a larger range of inflow and

the largest convergence. As for the very initial and final moments, i.e., tr = 0.2

Myr and tr = 0.8 Myr, the dynamics of collapsing are less significant, and the VGT

(curvature & amplitude) includes some non-convergent fluid. The performance of

VGT in identifying gravitational collapsing regions is therefore comparable or better

to the N-PDF.

Additionally, in Fig. 4.13, we have calculated the mean convergence for regions

corresponding to: (i) the inflow delineated by the VGT using both curvature and

amplitude algorithms, (ii) the collapsing region identified by the curvature algorithm
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alone, (iii) the collapsing region identified by the N-PDF, and (iv) the entire A1-2

region. Initially, the global mean convergence escalates as the gravitational collapse

progresses. Both VGT and N-PDF consistently report higher convergence values

than the global average, with N-PDF occasionally indicating a higher convergence

compared to VGT employing solely the curvature algorithm. Notably, at tr = 0.4

Myr and tr = 0.6 Myr, VGT (curvature & amplitude) identifies a broader inflow

range and the highest convergence levels. At the very beginning and end of the

observed periods, specifically at tr = 0.2 Myr and tr = 0.8 Myr, the collapsing

dynamics become less pronounced, and VGT (curvature & amplitude) include some

non-convergent fluid.

4.2.6 Effect of radiative transfer and self-absorption

The effect of radiative transfer imposes a significant modification on the observed

intensity structures. The radiative transfer equation (RTE) for the emission from a

homogeneous finite element with path length s:

dIν
ds

= −kνIν + ϵν , (4.17)

in which Iν , kν , and ϵnu are the specific intensity, the absorption coefficient, and the

emission coefficient at a given frequency ν, respectively. The specific intensity Iν at

a given frequency ν can be re-arranged into form:

dIν
dτν

= −Iν + Sν , (4.18)

where dτν = kνds is the optical depth, and Sν = ϵν/kν is the source function. kν
and ϵν are related to the Einstein coefficients A, B and the molecular gas density

n(xxx) = Xρ(xxx), where X is the abundance and ρ(xxx) is the H2 volume density

distributed in real space:

kijν (xxx) = nijAijϕν(xxx),

ϵijν (xxx) = (njBji − niBij)ϕν(xxx),
(4.19)

where i and j denote the starting and ending energy states of the molecular transition

under consideration. The LOS component of velocity vlos at the position xxx = (x, y, z)

is a sum of the regular gas flow due to Galactic rotation vgal(xxx), the turbulent velocity

vtur(xxx) and the residual component due to thermal motions. The Doppler broadening

function ϕν(xxx) expressed in terms of velocity can be formed into a Maxwellian

distribution of this residual thermal velocity vlos − vgal(xxx) − vtur(xxx)(Lazarian &
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Pogosyan 2004):

ϕ(vlos, rrr) =
1√

2πβ(xxx)
exp[−(vlos − vgal(xxx)− vtur(xxx))

2

2β(xxx)2
], (4.20)

where β(xxx) = kBT (xxx)/m, m being the mass of atoms or molecules. The temperature

T (xxx) can vary from point to point if the emitter is not isothermal. By assuming

the abundance X and Einstein coefficients are constant, the solution of observed

intensity Iν(x, y) is:

Iν(x, y) = Ieνe
−τν + Sν(1− e−τν )

= (Ieν − Sν)e
−AX

∫ s
0 ρ(xxx)ϕ(vlos,xxx)dz + Sν ,

(4.21)

here Ieν is the intensity of external illumination. The integration variable:

Yv(x, y, s) =

∫ s

0

ρ(xxx)ϕ(vlos,xxx)dz, (4.22)

coincidentally has it value equivalent to the density distribution ρ(x, y, vlos) in PPV

coordinates (Lazarian & Pogosyan 2004):

ρs(x, y, vlos)dvlos = [

∫ s

0

ρ(xxx)ϕ(vlos,xxx)dz]dvlos, (4.23)

which counts the number of molecules along the LOS that have a z-component of

velocity in the interval [vlos,vlos + dvlos]. Eq. 4.21 can therefore be expressed as:

Iν(x, y, vlos) = (Ieν − Sν)e
−αρs(x,y,vlos) + Sν , (4.24)

where α = AX. Here we consider an isothermal model for molecular clouds so that

the source function Sv and Ieν , which here is the radiation from CMB background,

are constant for a given molecular specie. The total intensity map I(x, y) integrated

along the LOS in PPV space is then:

I(x, y) =

∫
{(Ieν − Sν)e

−αρs(x,y,vlos) + Sν}dvlos

=

∫
Ieνe

−αρs(x,y,vlos)dvlos +

∫
Sν(1− e−αρs(x,y,vlos))dvlos.

(4.25)

In the case of weak absorption and external illumination, the intensity is given by

the linear term in the expansion of the exponent in Eq. 4.25:

I(x, y) = Sνα

∫
ρs(x, y, vlos)dvlos, (4.26)

and reflects the PPV density of the emitters.



149

Numerical implementation of radiative transfer

We generate three synthetic emission lines of CO isotopologs, i.e., 12CO(1-0),
13CO(1-0), C18O(1-0) utilizing the SPARX radiative transfer code (Hsieh et al.

2019). The SPARX utilizes the Accelerated Lambda Iteration (ALI) to describe

the radiative interaction, which reaches spatial preliminary consistency at the first

stage and then improves the random sampling resolution to the demanding accuracy

at the next stage. In general, ALI differentiates the intensity inside a cell into the

contribution from the internal intensity of the cell Jint and the contribution from the

external cell Jext to reduce the computational consumption of ray-tracing. Between

the iteration, ALI samples Jext once and then performs a detailed balance calculation

to make Jint and population self-consistent. The equation of statistical equilibrium

about the molecular levels considers molecular self-emission, stimulated emission,

and the collision with the gas particles. The information about molecular gas density

and velocity is extracted from the MHD turbulence simulations mentioned above.

The cube is observed at a distance of 10 kpc with a velocity resolution of 0.02 km

s−1 and beam width 0.26′′.

The fractional abundances of the CO isotopologs 12CO(1-0), 13CO(1-0), and

C18O(1-0) are set as 1 × 10−4, 2 × 10−6, and 1.7 × 10−7, respectively, following

Hsieh et al. (2019). The 12CO-to-H2 ratio of 1× 10−4 comes from the cosmic value

of C/H = 3 × 10−4 and the assumption that 15% of C is in the molecular form.

For the abundance of 13CO, we adopted a 13CO/12CO ratio of 1/69 (Wilson 1999).

Hence, the 13CO-to-H2 ratio is approximated to 2 × 10−6. With 12CO/C18O = 500

(Wilson et al. 2013), we obtain a C18O-to-H2 ratio of 1.7 × 10−7. When producing

the synthetic molecular channel maps, we focus on the lowest-transition J = 1-0 of

the CO isotopologs, in which the LTE condition is satisfied.

As shown in Fig. 4.14, the radiative transfer can significantly change the

observed intensity structure. 12CO, which usually trace the gas density ≈ 102

cm−3, does not resolve the collapsing material in our simulation. Dense tracer 13CO

partially resolves the collapsing core and C18O fully gets insight into the collapsing

region. The corresponding gradients of 12CO, therefore, do not show the changes

of orientation but keep aligned with the magnetic field, showing AM = 0.95. Both
13CO and C18O exhibit the change of gradients getting lower AM values 0.84 and

0.71, respectively. These lower AM values were contributed by the self-gravity. To

recover the accurate magnetic fields in the self-gravitating region, one has to identify

the regions and re-rotate the velocity gradients by 90◦ again.

Here we implement the double-peak algorithm to identify the collapsing regions.

Since each molecular tracer samples a different range of densities, the velocity
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Figure 4.14: Example of how velocity gradient is affected by radiative transfer effect,

using simulation A1 with tr ≈ 0.8 Myr. Top: the magnetic field morphology respec-

tively inferred from VGT (with the pseudo-Stokes parameters) using 12CO (left),
13CO (middle), and C18O (right). Bottom: the magnetic field morphology inferred

from synthetic dust polarization (left). Middle: A three-layer gradient tomography

showing the three-dimensional magnetic field orientation. Right: A three-layer col-

lapse tomography derived from the VGT.

gradients from multiple tracers tell us about the POS magnetic fields over different

density ranges. For instance, in Fig. 4.14, by stacking the gradient maps from 12CO,
13CO, and C18O, we can create 3D tomography information on the magnetic fields

over density ranges from 102 cm−3 to 104 cm−3. The number of layers in the gradient

tomography completely depends on how many molecular tracers were taken. A

similar idea of collapse tomography can be applied to the identification of collapsing

regions. Here the gradient map of 12CO does not show the feature of gravitational

collapse, but the feature appears in 13CO and C18O. The tomography can reveal the

volume density range in which the collapsing occurs using multiple emission lines.
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4.3 Observational tests of the velocity gradient

technique

4.3.1 Observations and data reduction

13CO (1–0) emission line

We obtained a new 13CO (J = 1–0) fully sampled map of Serpens using the IRAM

30m telescope (Carter et al. 2012). The observations were obtained in July 2020

using 16 h of telescope time under average summer weather conditions (6 mm

median water vapor). We covered a field of view (FoV) 10′ × 40′. The 13CO (J =

1–0) emission was observed using the EMIR receiver and the VESPA spectrometer

using a bandwidth of 60 MHz at 0.092 MHz resolution (≈ 0.212 km s−1). The

half-power beamwidth (HPBW) at 110.201354 GHz is ≈ 23.5′′.

We used the on-the-fly scanning strategy with a dump time of 0.7 s and a

scanning speed of 11′′/s to ensure a sampling of three dumps per beam along the

scanning direction with the scanning direction reversed after each raster line (i.e.,

zigzag scanning mode). We covered the full FoV (≈0.11 square degrees) with 15

rectangular tiles (of 15 OTF scans each) along the Declination direction and 20

rectangular tiles (of 5 OTF scans each) along the Right Ascension direction, followed

by a calibration measurement. The reference position (REF) was observed for 10 s

after each raster line following the pattern REF–OTF–OTF–OTF-OTF-OTF-REF

along the Declination direction and the pattern REF–OTF–OTF–OTF-REF along

the Right Ascension direction. Each tile is of approximately 8′′ × 40′′ size. In total,

we employed about 13 min per tile.

Data reduction was carried out using the GILDAS1/CLASS software. The

data were first calibrated to the TA scale and were then corrected for atmospheric

absorption and spillover losses using the chopper-wheel method (Penzias & Burrus

1973). A polynomic baseline of second order was subtracted from each spectrum,

avoiding velocities with molecular emission. The spectra were then gridded into

a data cube through convolution with a Gaussian kernel of FWHM ∼ 1/3 of the

IRAM-30m telescope beamwidth at the rest line frequency. The typical (1σ) RMS

noise level achieved in the map is 0.33 K per 212 m s−1 velocity channel. A large

table of the individual spectra was made and the spectra were finally combined to

obtain a regularly gridded position-position-velocity data cube, setting the pixel

size to 5′′. Here we convert the measured antenna temperature TA to brightness

temperature Tb through Tb = (Feff/Beff)TA, where Feff = 0.95 is the forward
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efficiency of the IRAM 30 m telescope and Beff = 0.79 is the main beam efficiency at

110.201354 GHz (Pety et al. 2017).

12CO (2–1) and 13CO (2–1) emission lines

The 12CO (2–1) and 13CO (2–1) emission lines were observed with the Heinrich

Hertz Submillimeter Telescope (Burleigh et al. 2013) while the H2 column density

data is obtained from the Herschel Gould Belt Survey (André et al. 2010). Each

line was measured with 256 filters of 0.25 MHz bandwidth, giving a total spectral

coverage of 41 km s−1 at a resolution of 0.33 km s−1. The angular resolution of the

emission lines is 38′′ (0.04 pc) with a sensitivity of 0.12 K RMS noise per pixel in

one spectral channel (Burleigh et al. 2013). The radial velocity of the bulk of the

emission ranges from about -1 to +18 km s−1 for 12CO (2-1) and from +2 to +13

km s−1 for 13CO (2-1) (Burleigh et al. 2013). We select the emissions within these

ranges for our analysis.

Polarized dust emission

To trace the magnetic field orientation in the POS, we use the Planck 353 GHz

polarized dust signal data from the Planck 3rd Public Data Release (DR3) 2018

of High Frequency Instrument (Planck Collaboration et al. 2020a). The Planck

observations define the polarization angle ϕ and polarization fraction p through

Stokes parameter maps Ip, Qp, and Up:

ϕ =
1

2
arctan(−Up, Qp),

p =
√
Q2
p + U2

p/Ip,
(4.27)

where −Up converts the angle from the HEALPix convention to the IAU convention

and the two-argument function arctan is used to account for the π periodicity.

To increase the signal-to-noise ratio, we smooth all maps from nominal angular

resolution 5′ up to a resolution of 10′ using a Gaussian kernel. The magnetic field

angle is inferred from ϕB = ϕ+ π/2.

4.3.2 Integrated intensity map and H2 column density map

Fig. 4.15 presents H2 column density map for the Serpens G3-G6 clump. The

H2 column density structures are elongated and filamentary. Here we plot the
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Figure 4.15: Map of H2 column density obtained from the Herschel Gould Belt

Survey. The YSOs are identified by Harvey et al. (2007).

Figure 4.16: Map of integrated brightness temperature of 13CO (J = 1–0) over

velocity range 2.6 to 12.0 km s−1 and the mean brightness temperature spectra (bot-

tom) averaged over the region. The emission line is observed with the IRAM 30m

telescope. The contour indicates a mean intensity value of 28.68 K km/s.

distribution of young stellar objects (YSOs) within this clump. The YSOs are

identified by Harvey et al. (2007). The evolutionary stage of a YSO can be classified
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as (in order of youngest to oldest): Class I, flat, Class II, and Class III (Lada 1987;

Andre & Montmerle 1994; Greene et al. 1994). We find Class I and flat YSOs

concentrate on the south dense clump core and the northeast filamentary tail. Class

II YSOs’ are mainly located at the north filamentary tail, while Class III only

occupies a small fraction. YSOs’ high surface density at the dense clump core and

the north tail indicates these two regions are actively forming stars.

The 13CO (1-0) emission line observed with the IRAM 30-m telescope zooms

into the south dense clump with a resolution of 23.5′′ (≈ 0.025 pc, see Fig. 4.16).

The radial velocity of the emission ranges from about 2.6 to 12.0 km s−1. The

spectral line appears to have two apparent peaks: 2.22 K at 7.65 km s−1 and 0.58 K

at 4.9 km s−1. After fitting a double Gaussian profile to the integrated spectral line

shown in Figure 2, we obtain the 1D velocity dispersion σv,1D = 1.1 ± 0.2 km s−1

for the dominating emission feature. Fig. 4.16 also shows the integrated intensity

maps for the south dense clump core of Serpens G3-G6. The integration of 13CO

(1-0) considers pixels where the brightness temperature is larger than 0.9 K, which is

about three times the RMS noise level. The 13CO (1-0) emission lines cover a wider

0.60◦ × 0.15◦ area. The clump’s 13CO (1-0) is still filamentary, spanning from north

to south.

Figure 4.17: 13CO (J = 1–0) spectral channel maps averaged over 636 m s−1 and

spaced 212 m s−1 apart. Mean LSR velocity is labeled in upper right.

Fig. 4.17 shows representative velocity channels from the 13CO (1-0) emission

line data, averaged over 636 m s−1. The intensity structures seen in velocity channels

do not appear filamentary. In particular, two distinct dense structures appear at 7.0

km s−1 and 7.6 km s−1. These structures suggest that the velocity caustic effect is

significant, i.e., velocity fluctuations dominate the thin velocity channels (Lazarian

& Pogosyan 2000).
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Figure 4.18: Top: Map of of H2 column density. Cyan areas indicate the gravita-

tional collapsing regions identified from the N-PDF. Middle: the N-PDF of the entire

column density map. Bottom: The N-PDF of the south dense clump (see the red

box on the top map). σs gives the dispersion of the log-normal distribution. St is the

transition density threshold and k is the slope of the reference power-law line.
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4.3.3 Gravitational collapsing regions identified from the

N-PDF

As mentioned previously in § 4.2.4, the N-PDF are widely used to study turbulence

and self-gravity in ISM. The N-PDF in gravitational collapsing isothermal supersonic

turbulence follow a hybrid of log-normal distribution PN(s) in low-intensity range

and power-law distribution PL(s) in high-intensity range (Robertson & Kravtsov

2008; Ballesteros-Paredes et al. 2011; Collins et al. 2012; Burkhart 2018; Körtgen

et al. 2019). Different from the purely hydrodynamic case, the standard deviation σs
in magnetized and turbulent ISM is related to the sonic Mach number Ms, driving

parameter b, and compressibility β (Molina et al. 2012):

σ2
s = log(1 + b2M2

s

β

β + 1
), (4.28)

where turbulence driving parameter b = 1/3 is for purely solenoidal driving, while

b = 1 is for purely compressive driving. For a natural mixture of solenoidal and

compressive driving, b is ≈ 0.4 (Federrath & Banerjee 2015; Federrath et al. 2016).

In Fig. 4.18, we plot the H2 column density PDF for the entire Serpens G3-G6

clump. The PDF are log-normal with dispersion σs ≈ 0.50 ± 0.04 till St ≈ 0.88,

which indicates the gas is gravitational collapsing when its density is larger than

N = eStN0 ≈ 1.02× 1022 cm−2. This column density threshold reveals that the south

dense clump is gravitational collapsing. The characteristic slope k of that power-law

is -2.40±0.17. Also, we zoom into the south dense region (see the red box in

Fig. 4.18), which corresponds to the measured 13CO (1-0). The south dense clump’s

N-PDF are still the combination of PN and PL. The transition density St ≈ 0.66 and

the characteristic slope k = −1.95± 0.26 identified the same gravitational collapsing

regions as before. The characteristic slope is related to the cloud mean free-fall

time, the magnetic fields, and the efficiency of feedback (Federrath & Klessen 2013;

Girichidis et al. 2014; Burkhart et al. 2017; Guszejnov et al. 2018). For instance,

k = −2.40 ± 0.17 and k = −1.95 ± 0.26 correspond to radial density distributions

ρ(r) ∝ r−1.83±0.06 and ρ(r) ∝ r−2.03±0.14, respectively1. The power-law slopes of

radial density distributions suggest that all the high-density gas having collapsed

into isothermal cores ρ(r) ∝ r−2 (Shu 1977) and star formation efficiency is in the

range of 0%–20% (Federrath & Klessen 2013).

1Here we use the relation ρ(r) ∝ r−χ and PL(s) ∝ eks = e
2

1−χ s (see Eq. 11 in Federrath & Klessen

2013).
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4.3.4 Magnetic field orientation traced by VGT

In Fig. 4.19, we present the results of the VGT analysis using the 12CO (2-1) and
13CO (2-1) emission lines data sets. We use the emission within the velocity ranges

[+1, +13] km s−1 for calculation following the recipe presented in § 4.1.4. Pixels,

where the brightness temperature is less than three times the RMS noise level (0.4

K), are blanked out. We average the gradients over 20 × 20 pixels and smooth the

pseudo-Stokes parameters with a FWHM ∼ 5 pixles Gaussian filter.

Figure 4.19: Top: The POS magnetic fields inferred from VGT (red segments)

using 12CO (2-1) emission line and Planck 353 GHz polarization (blue segments).

Bottom: The POS magnetic fields inferred from VGT (red segments) using 13CO

(2-1) emission line and Planck 353 GHz polarization (blue segments). Cyan outlines

indicate AM < 0 areas.

We also compare the magnetic field inferred from the Planck 353 GHz polarized
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dust signal data (FWHM ≈ 10′). We re-grid the Planck polarization further to

achieve the same pixel size as emission lines. The polarization vector is also averaged

over 20 × 20 pixels to match the gradient map. We find the resulting gradients

of 12CO (2-1) have good agreement with the Planck polarization, showing AM =

0.69±0.04. Several anti-alignment vectors appear in the south-dense region and

image boundary. It is likely that the dust polarization and the 12CO (2-1) emission

probe different spatial regions. The optically thick tracer 12CO samples the outskirt

diffuse region of the cloud with volume density n ≈ 102 cm−3, while dust polarization

likely traces denser regions. The theory of Radiative Torque (RAT) alignment (see

Lazarian & Hoang 2007; Andersson et al. 2015 for a review) predicts that dust

grains can remain aligned at high densities, especially in the presence of embedded

stars. This is in agreement with numerical simulations (Bethell et al. 2007; Seifried

et al. 2019). Therefore, we expect that for n ≥ 103 cm−3 grains are aligned in the

regions that we study. In addition, the low resolution (10′) of the Planck data also

contributes to the misalignment. The VGT measurements from 13CO (2-1) gives

less alignment (AM = 0.41±0.07) with the Planck polarization. In particular, the

gradients become perpendicular to the magnetic field in the south-dense region. As

the south dense region is identified to be gravitational collapsing by the N-PDF

(see § 4.2.4), this change in the gradients’ direction suggests that the presence of a

gravitational collapse. Since the overall magnetic fields horizontally cross the clump,

while the gradients are nearly vertical, the resolution effects do not change this

conclusion.

We plot the histograms of the relative alignment between rotated gradients and

the magnetic fields in Fig. 4.20. The histogram based on the 12CO (2-1) data is

more concentrated around 0, which means that the two vectors are parallel. The

distribution based on the 13CO (2-1) data, however, spreads all the way to π/2,

which means that two vectors are perpendicular. Previous studies reported that the

VGT results of the 13CO emission are more accurate than the ones derived using

the 12CO emission when comparing with dust polarization (Alina et al. 2022) in

non-gravitational collapsing clouds. Here we find that the VGT of 12CO gives better

alignment. It is likely because the gravitational collapse in the Serpens G3-G6 south

clump happens in dense gas n ≥ 103 cm−3. The 12CO emission samples more diffuse

regions so that its gradients are less affected by self-gravity.
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Figure 4.20: The histograms of the relative angle between the magnetic field inferred

from Planck polarization and VGT using 12CO (top) and 13CO (bottom).

4.3.5 Gravitational collapsing regions identified from the

VGT

The comparison of VGT and Planck polarization directly reveals the region

undergoing gravitational collapse. However, insufficient resolution in polarization

measurements limits this approach in small-scale studies. For instance, our

high-resolution 13CO (1-0) can measure the pixelized gradient up to 5′′, which is 120

times higher than Planck’s resolution 10′. Nevertheless, the double-peak histogram

extends the VGT to identify the gravitational collapsing region independent of

polarization measurements.
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Figure 4.21: Top: the VGT map obtained from 13CO (1-0) for the Serpens G3-G6

south clump. Bottom: the gravitational collapsing regions (red area) identified by

the VGT.

Figure 4.22: Integrated intensity 13CO (J = 1-0) emission in Serpens G3-G6 south

clump. Blueshifted gas is integrated in a velocity range of +3 to +7 km s−1. Con-

tours start at 1.5 times of the mean intensity value ⟨Iblue13 ⟩ with a step 0.25 ⟨Iblue13 ⟩.
Redshifted gas is integrated in a velocity range of +8 to +12 km s−1. Contours start

at 1.5 times of the mean intensity value ⟨Ired13 ⟩ with a step 0.25 ⟨Ired13 ⟩.
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In Fig. 4.21, we present the gradients map and the identified gravitational

collapsing regions using the 13CO (1-0) emission line. In dense areas, we find

the gradients flip their direction by 90◦ compared with surrounding low-intensity

regions. The VGT finds three separate gravitational collapsing regions. The largest

gravitational collapsing region covers the one identified by the PDF (see Fig. 4.18)

and covers parts of low-intensity regions. It is likely the VGT is sensitive to

gravity-induced inflows, which span to also low-intensity regions, while the N-PDF

are detecting the already formed cores. Also, the VGT covers partially diffuse

regions so that the actual gravitational collapsing area is slightly overestimated.

Nevertheless, both the VGT and the N-PDF reveal that the central clump is

gravitational collapsing.

The gravitational collapse usually shows a signature of infalling motions.

Explicitly, an infall signature in a spectral line presents itself in the form of a

red-blue asymmetry, generally with a diminished redshifted component (Walker

et al. 1994; Myers et al. 1996). To search for the signature, we integrated the 13CO

(J = 1-0) emission in a velocity range of +3.0 to +7.0 km s−1 for blueshifted gas,

as the velocity of bulk motion is 7.65 km s−1 (see Fig. 4.16). Redshifted gas is

integrated in a velocity range of +8.3 to +12.0 km s−1. In Fig. 4.22, the blueshifted

and redshifted gases are overlaid in the integrated intensity map of 13CO (J = 1-0).

We can see the clump is dominated by blueshifted gas. In the high-intensity region,

blueshifted and redshifted gases are overlapped, which indicates an infalling motion

along the LOS.

4.3.6 The overall energy budget of the Serpens G3-G6 south

clump

Through both the N-PDF and VGT, we confirm that the Serpens G3-G6 south

clump is gravitational collapsing. Here we determine the dynamics of the clump,

focusing on the energy balance. The measured and derived physical parameters are

listed in Tab. 4.2.

The area A of the south clump is measured with 13CO (1-0). We include all

pixels where their integrated brightness temperature is above the mean value (see

Fig. 4.16). Adopting 415 ± 25 pc as the distance (Dzib et al. 2010), we find A ≈ 2.14

(0.2) pc. The value in brackets indicates the uncertainty, which is the average of

upper bound and lower bound. Assuming a simple spherical geometry, we have the

effective LOS distance L ≈ 1.65 pc. The 1D velocity dispersion σv,1D ≈ 1.1 (0.2)

km s−1 is measured from the 13CO (1-0) emission line (see Fig. 4.16). σv,1D contains
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Figure 4.23: The histogram of magnetic field angle obtained from Planck 353 GHz

polarization. The angle is measured in the IAU convention.

the contribution from both turbulence velocity and shear velocity. The polarization

dispersion σp ≈ 8.54 (0.72) deg is obtained from the Planck 353 GHz polarization,

see Fig. 4.23. The mean H2 column density N0 ≈ 9.18(0.43)× 1021 cm−2.

From these physical parameters, we derive the total mass M = 440.8 (45.79)

M⊙ and volume mass density ρ0 = 8.42 (0.55) × 10−21 g cm−3. Adopting

f = 0.5, the total magnetic field strength B is calculated from the Davis-

Chandrasekhar-Fermi method (Davis 1951; Chandrasekhar & Fermi 1953), giving

B = f
√
4πρ0σv,1D/σp = 119.88 (24.35) µG. Assuming a spherical homogeneous

cloud, the corresponding total kinetic energy EK = 1.59 (0.60) × 1046 erg, total

gravitational energy EG = −1.21 (0.26) × 1046 erg, and total magnetic field energy

EB = 3.96 (1.71) × 1046 erg. The ratio of kinetic energy and gravitational energy

|EK/EG| ≈ 1.31. In particular, the magnetic field energy to kinetic energy and

gravitational energy ratios are |EB/EK | ≈ 2.50 and |EB/EG| ≈ 3.28, respectively.

The role of the magnetic field in the Serpens G3-G6 south clump is much more

significant than turbulence and self-gravity.

Note that kinetic energy and magnetic field energy may be overestimated, as

the dispersion σv,1D considers both turbulence velocity and shear velocity. The ratio

EB/EK after simplification equivalents to EB/EK = (2f 2)/(9σ2
p), which is indepen-

dent of σv,1D. Similarly, we have |EB/EG| = (10f 2σ2
v,1D)/(9πσ

2
pGN0µH2mHL). The
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Physical Parameter Symbol/Definition Value (uncertainty) Reference

Area A 2.14 (0.20) pc2 Measured

1D velocity dispersion σv,1D 1.10 (0.20) km s−1 Measured

Polarization dispersion σp 8.54 (0.72) deg Measured

H2 column density N0 9.18 (0.43)×1021 cm−2 Measured

Effective diameter L = 2
√

A/π 1.65 (0.08) pc Derived

Effective radius R = L/2 0.83 (0.04) pc Derived

H2 volume number density n0 = N0/L 1800.2 (117.62) cm−3 Derived

Mass of an H atom mH 1.67×10−24 g Ref.1

Mean molecular weight µH2 2.8 Ref.1

Volume mass density ρ0 = n0µH2mH 8.42 (0.55)×10−21 g cm−3 Derived

Mass M = N0µH2mHA 440.8 (45.79) M⊙ Derived

Magnetic field strength B = f
√
4πρ0σv,1D/σp 119.88(2435)µG Derived

Kinetic energy EK = 3Mσ2
v,1D/2 1.59 (0.60)× 1046 erg Derived

Gravitational energy EG = −3GM2/(5R) -1.21 (0.26)× 1046 erg Derived

Magnetic energy EB = B2R3/6 3.97 (1.71) ×1046 erg Derived

Viral parameter αvir = |2Ek/EG| 2.63 (1.14) Derived

Free fall time tff =
√

3π/(32Gρ0) 0.73 (0.02) Myr Derived

Sound speed (isothermal) cs =
√
kBT/µpmH 188 m s−1 Ref.1 (µp = 2.33)

Alfvén speed vA = B/
√
4πρ0 3.69 (0.75) km s−1 Derived

3D sonic Mach number MS =
√
3σv,1D/cs 10.1 (1.80) Derived

3D Alfvén Mach number MA =
√
3σv,1D/vA 0.52 (0.14) Derived

Compressibility β = 2(MA/Ms)
2 0.005 (0.001) Derived

Table 4.2:: Physical parameters of the Serpens G3-G6 clump. All physical parameters

are derived for pixels that fall within the 28.68 K km/s (mean intensity value) 13CO

(1-0) intensity contours drawn in Fig. 4.16. All uncertainties consider the error prop-

agation among each physical parameter. The gas temperature T is assumed to be 10

K (Draine & Lazarian 1998). The calculation of gravitational energy and magnetic

energy assumes that the cloud is spherical and has a uniform density. References: (1)

Kauffmann et al. (2008).

overestimated σv,1D leads to a stronger magnetic field and also an overestimated

|EB/EG|. Nevertheless, here we have the ratio2 |EB/EG| ≈ 3.28, it is unlikely

that the velocity dispersion is overestimated by a factor of two at least so that

|EB/EG| ≈ 1. Therefore, we expect the estimated magnetic field is indeed stronger

than turbulence and self-gravity. The significant magnetic field energy suggests

that gravitational collapse can happen in a strong magnetic field environment, as

2Note in calculating total magnetic field energy, we use only the POS magnetic field component.

The actual magnetic field energy can be more significant.
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numerically suggested by Hu et al. (2020b).3

In addition, assuming the gas temperature T ∼ 10 K (Draine & Lazarian 1998),

we have the isothermal sound speed cs = 188 m s−1 and Alfvén speed vA = 3.69(0.75)

km s−1. The corresponding sonic Mach numberMs and Alfvén Mach numberMA are

therefore 10.1 (1.80) and 0.52 (0.14), respectively. Also, we have the compressibility

β = 0.005 (0.001). Recall that we have the measure PDF dispersion σs = 0.55± 0.05

(see Fig. 4.18). The turbulence driving parameter b can be derived from Eq. 4.28:

b2 =
(eσ

2
s − 1)

M2
s

β + 1

β
(4.29)

using our derived parameters, we get b ≈ 0.84, which suggests the turbulence in

Serpens G3-G6 south clump is mainly driven by compressive force. The study in

Federrath & Klessen (2012) shows that supernova-driven turbulence is more effective

in producing compressive motions and is expected to be more prominent in regions

of enhanced stellar feedback. Therefore, supernovas in this region may contribute

to the compressive driving force here. On the other hand, solenoidal motions are

more prominent in the quiescent areas with low star formation activity. Intense star

formation (i.e., gravitational collapse) can also contribute, although our analysis

shows that the gravity-induced motions do not dominate over large volumes. The

latter point requires further studies.

4.3.7 Measuring mean magnetic field strength

The Planck measurement gives an overall view of the magnetic field. However, its

resolution limits our scope to smaller scales. The dispersion of polarization measures

only large-scale magnetic fields, so its value may be underestimated. The smooth

field lines on a large scale suggest this underestimation is not significant.

In addition to the DCF method, we also estimated theMA directly from velocity

gradients using the new approach proposed in Lazarian et al. (2018). It was shown

that the properties of velocity gradients over the sub-block are a function of MA. In

particular, the dispersion of velocity gradients’ orientation was shown to exhibit the

power-law relation with MA, and a different power-law relation was obtained for the

so-called ”Top-to-Bottom” ratio of the thin channel velocity gradients distribution:

MA ≈ 1.6(Tv/Bv)
1

−0.60±0.13 ,MA ≤ 1

MA ≈ 7.0(Tv/Bv)
1

−0.21±0.02 ,MA > 1
(4.30)

3For strongly magnetized media, the reconnection diffusion, which is the consequence of turbulent

reconnection, is important (Lazarian 2005; Lazarian et al. 2012; Santos-Lima et al. 2010, 2021).
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where Tv denotes the maximum value of the fitted histogram of the velocity

gradient’s orientation, while Bv is the minimum value. The analytical justification

of these relations is provided in Lazarian et al. (2020b). Here we, however, use the

empirically obtained dependencies (Hu et al. 2019a). This new way of obtaining the

Alfvén Mach number provides us a MA distribution map for the Serpens G3-G6

south clump, as shown in Fig. 8.13. We find the median value of MA is 0.62 for the

south clump. We also repeat the analysis for the 13CO (2-1) emission line and find

the median value MA ≈ 0.53.

We note that the difference between evaluating MA using the new gradient

approach in Lazarian et al. (2018) and the traditional DCF method is that the new

technique gets the value of MA over an individual sub-block. Therefore we get not a

single value of MA, but a distribution of magnetization of MA over the cloud image.

Naturally, the new way of measuring the magnetization is much more informative

compared to measuring the dispersion of the projected magnetic field over the cloud

image. This difference was demonstrated earlier in Hu et al. (2019b) where for a set

of molecular clouds the polarization provided the mean value of magnetization and

the distribution of velocity gradients provided the detailed maps of magnetization

with the averaged value in good agreement with that obtained using polarization.

Figure 4.24: The histogram of MA estimated from the distribution of velocity gra-

dients over a sub-block (Lazarian et al. 2018). The median values of MA are 0.62 and

0.53 for 13CO (1 - 0) and 13CO (2 - 1), respectively.

In the present study, we also have a similar situation. The averaged value of
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MA estimated by the new VGT approach is close to the value that is obtained

by measuring the directions of polarization. The latter is MA = 0.52 ± 0.1. This

correspondence is important as the technique in (Lazarian et al. 2018) and the

DCF-type measurements of MA are very different both in terms of the information

employed and how this information is processed. This increases our confidence in

our results.

HavingMA in hand one can use a new technique of measuring magnetic strength

in Lazarian et al. (2020b). The technique is termed there MM2, as it uses the values

of two Mach numbers, the sonic one Ms and the Alfvén one MA. Using the relation

derived in Lazarian et al. (2020b) one can evaluate the POS magnetic field as:

B = Ωcs
√
4πρ0MsM

−1
A , (4.31)

where Ω is a geometrical factor. By adopting Ω = 1 (i.e., the magnetic field

perpendicular to the LOS), MA = 0.62 (i.e., measured by VGT), Ms = 10.1,

ρ0 = 8.42× 10−21g cm−3, and cs = 188 m s−1, we get B ≈ 100 µG, which is close to

the one (≈ 120 µG) derived from the DCF method.

4.4 Velocity gradient in the presence of stellar

feedback and outflows

Outflow feedback within star-forming regions significantly alters fluid velocity

statistics, as evidenced by recent studies (Hu et al. 2022d). This section delves

into the impact of outflow feedback on velocity gradients, utilizing the 12CO

(1-0) emission line to investigate. The examination of magnetic field and velocity

gradient in the presence of stellar feedback and outflows necessitates multi-scale

and multi-frequency magnetic field measurements. These are now readily available

through the use of polarimetry on dust emission, such as the Planck satellite 353

GHz/849 µm survey (Planck Collaboration et al. 2020a), the JCMT/SCUPOL

survey at 850 µm (Matthews et al. 2009), and the SOFIA/HAWC+ survey at 214

µm (Harper et al. 2018) for the molecular cloud L1551 (Snell et al. 1980; Snell

1981; Yoshida et al. 2010; Lin et al. 2016). L1551 is a low-mass star-forming cloud

(≈ 50M⊙) exhibiting substantial bipolar molecular outflow from young stellar

objects L1551 IRS 5 (hereafter IRS 5) and L1551 NE (hereafter NE). Given that

L1551 is located approximately 160 pc away, SCUPOL and SOFIA/HAWC+ offer

high spatial resolutions of 10′′ and 18.2′′ respectively, capably resolving scales of

0.008 pc and 0.014 pc associated with stronger outflows. The measurements from

these two distinct wavelengths are expected to trace the magnetic field associated
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with different gas/dust temperatures. Additionally, we apply VGT to 12CO (J =

1-0) emission lines. As 12CO is a common tracer for protostellar outflows (Snell

et al. 1980; Stojimirović et al. 2006; Bally et al. 2007; Bally 2016), the magnetic

fields inferred by VGT from the molecular gas emission are primarily associated with

outflows in the star-forming region.

4.4.1 Description of observation data

12CO emission

The 12CO (J = 1 - 0, 115.27120 GHz) emission line of L1551 was observed by the

Nobeyama 45m radio telescope from December 2007 to May 2008 (Yoshida et al.

2010). At 115 GHz, the telescope has a half-power beam width (HPBW) of 15′′. The

region was mapped into a 45′×45′ sample with a 7.′′5 pixel grid size. The velocity

resolution of the data is 37.8 kHz in frequency or 0.098 km/s in velocity, along with

an RMS noise level of 1.23 K in Tmb (Lin et al. 2016). We applied the VGT to the

cube with a grid resolution of 7.′′5. All velocity channels within the velocity range

from -9.9 km/s to 14.9 km/s, in which the cloud’s emission is concentrated, are

considered in VGT calculation.

Polarized dust emission

We adopt the following polarized dust emission data: Planck 353 GHz data from

the 3rd Public Data Release (Planck Collaboration et al. 2020a), SOFIA/HAWC+

observation, and the JCMT/SCUPOL survey (Matthews et al. 2009).

Planck: the Planck polarization is processed in the same way as § 4.3.1.

However, the polarization fraction needs to be further debaised to correct the

instrumental error. We employ the common debiasing recipe as in Wardle &

Kronberg (1974) and Pattle et al. (2019):

pd =

√
Q2
p + U2

p − 1
2
(δQ2

p + δU2
p )

Ip
, (4.32)

where δQp and δUp are the uncertainty in the Stokes Qp and Up.

SOFIA/HAWC+: The observation was carried out in band E (214 µm) with

an HPBW of ∼ 18.
′′
2 in November 2021. Similar to Planck, the magnetic field

orientation is derived from Stokes Qp and Up. We filter the data to keep only pixels

that satisfy: i) p/δp > 3; ii) Ip/δIp > 4, where δp and δIp are the uncertainty of
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polarization fraction and intensity, respectively. In addition, it is observationally

rare to obtain a polarization fraction higher than 30% in diffuse ISM (Fanciullo

et al. 2022). For example, Planck Collaboration et al. (2020a) reported that the

polarization fraction across the full sky has a maximum of approximately 22%.

Therefore, pixels with a polarization fraction larger than 25% are blanked out.

JCMT/SCUPOL: The data used in this work was retrieved from the SCUBA

Polarimeter Legacy Catalogue with an angular resolution of 10′′×10′′ at 850 µm
(Matthews et al. 2009). The data was processed by the SCUPOL team to achieve

the following criteria: i) p/δp > 2; ii) δp < 4% ; iii) Ip > 0.

Figure 4.25: Integrated intensity map of the 12CO (1-0) emission in L1551 with

the redshifted and blueshifted components marked by contours in respective colors.

Each intensity contour is separated from adjacent levels by 25 k km/s. The redshifted

emission is marked with contour levels [25, 50, 70, 100, 125] k km/s with a velocity

range of vLSR = 7.9 ∼ 17.4 km/s, and the blue-shifted emission has contour levels [20,

45, 70, 95, 120] k km/s, residing in vLSR = -3.5 ∼ 5.5 km/s. Two protostar systems

in the region, L1551 NE (red circle) and L1551 IRS 5 (red square), have also been

highlighted.

4.4.2 Molecular outflows in L1551

Fig. 4.25 reproduced the bipolar molecular outflows observed in the L1551 region.

As detailed by Yoshida et al. (2010), the LSR velocities of the red- and blue-shifted
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components span from 7.9 km/s to 17.4 km/s and -3.7 km/s to 5.5 km/s, respectively.

These outflows are almost symmetric around L1551 IRS 5, the binary protostar

system located at the intersection of the two components. The blue-shifted flow

stretches southwest, while its red-shifted counterpart spans northeastward, with an

outlying structure that extends westward for approximately 20′. These redshifted

outflows might originate from a newly formed star near HH 102, a Herbig–Haro

diffuse reflection nebula situated 5′ west of L1551 IRS 5 (Strom et al. 1976;

Stojimirović et al. 2006). Nevertheless, other studies, like Moriarty-Schieven et al.

(2006), suggest that the east-west outflow’s driving source is one of the stars in the

multi-star system L1551 NE (Reipurth et al. 2002; Yoshida et al. 2010).

Figure 4.26: Magnetic field maps inferred from Planck (left), SCUPOL (middle),

and HAWC+ (right). The magnetic field orientations are represented by colored line

segments, overlaid upon the integrated intensity map of the 12CO emission. SCUPOL

and HAWC+ only surveyed a small portion of the L1551 region, thus the maps are

zoomed in to the main intensity structure for better illustration, and so does every

figure that contains results from the two surveys in the following sections.

4.4.3 Magnetic fields inferred from polarimetry

Fig. 4.26 presents the POS magnetic field directions inferred from three polarization

measurements, including Planck (849 µm, HPBW∼ 5′), JCMT/SCUPOL (850 µm,

HPBW∼ 10′′), and HAWC+ (214 µm, HPBW∼ 18.2′′). The Planck map reveals

that the magnetic fields appear to follow the northeastern 12CO intensity structure,

which corresponds to the positions of the red-shifted outflows (see Fig. 4.25). On

the contrary, in the southwest area, the magnetic fields are seen to cross the 12CO

intensity structure, which is associated with the positions of the blue-shifted outflows

(see Fig. 4.25). In particular, at the center of L1551, i.e. around the IRS 5 protostar,

the magnetic fields are significantly twisted.
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Figure 4.27: Polarization fraction per pixel in the Planck (left), SCUPOL (middle),

and HAWC+ (right) data. Only pixels that satisfy both the following criteria are

shown: i) p > 0%; ii) p < 25%.

We observed that Planck’s polarization fraction around the cloud is negative

after debiasing, as seen in Fig. 4.27, indicating a considerable depolarization effect.

This could be due to (1) turbulent magnetic fields on the POS and (2) significant

variation of magnetic fields along the LOS. The low polarization fraction implies

a very low signal-to-noise ratio. However, this could be reduced by increasing the

resolution of the observation, i.e., using a smaller beam. Therefore, we further

investigated the SCUPOL polarization, which was measured at a similar wavelength

as Planck but has a much smaller beam width of ∼ 10′′. As seen in Fig. 4.26, the

magnetic fields (∼ 10′′) inferred from SCUPOL polarization are less regular. The

polarization fraction is distributed in the range of 0 - 5%, approximately, as seen in

Figs. 4.27 and 4.28.

We further synergized the HAWC+ data obtained most recently with Planck

and SCUPOL to investigate the magnetic fields in L1551. Planck and SCUPOL

polarization is measured at 850 µm, which is usually associated with cold, dense

gas. HAWC+ provides measurements at a shorter wavelength of 214 µm, which is

linked to gas with a higher temperature (Draine 2011). As seen in Fig. 4.26, the

magnetic fields inferred from HAWC+ are still turbulent but do not appear to be

similar to the other two polarization measurements. While the polarization fraction

values at most pixels are no larger than 5%, the maximum value could be up to more

than 20%, as shown in Figs. 4.27 and 4.28. This suggests that the magnetic field

morphology may vary in different gas phases (or temperatures) in L1551.
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Figure 4.28: Histogram of polarization fraction for Planck (blue line), SCUPOL

(orange line), and HAWC+ (purple line).

Figure 4.29: Magnetic field orientations of total 12CO emission (left), red-shifted

emission (middle), and blue-shifted emission (right) obtained with VGT.



172

Figure 4.30: Spatial distributions of AM between VGT measurements on total 12CO

emission and Planck (left), SCUPOL (middle), and HAWC+ (right). The positions

of L1551 NE (white circle) and L1551 IRS 5 (white square) have been highlighted on

each map. To resolve the inconsistency in the spatial resolutions of the polarimetry

surveys, a Gaussian filter was applied to each of the polarimetry data so that every

resulting map has the same 20×20 pixel resolution. The graphs are different in shape

from the vectors in Fig. 4.27, which are averaged over several pixels for visualization

purposes, while each map here was produced by calculating AM at every pixel.

4.4.4 Magnetic fields inferred from VGT

Fig. 4.29 shows the magnetic fields inferred from VGT (pseudo Stokes parameters)

using the 12CO emission line. The VGT-12CO approach uniquely permits the

separation of magnetic fields correlated with distinct cloud structures: (1) total: the

full 12CO emission, integrated from -15 km/s to 25 km/s; (2) redshifted: exclusively

for the redshifted component in the gas emission, spanning 7.9 km/s to 17.4 km/s;

(3) blueshifted: exclusively for the blueshifted gas, ranging from -3.5 km/s to 5.5

km/s. The effective resolution of these VGT-12CO measurements is 20×20 pixels.

In the fully integrated VGT-12CO measurements, the magnetic fields broadly

align with the 12CO intensity configurations in both the northeastern and

southwestern parts. Remarkably, the magnetic fields in VGT-12CO are not twisted

near the IRS 5 protostar. This stands as different from the Planck polarization. As

for the red-shifted and blue-shifted ones, the magnetic fields are less regular but

still generally follow the gas structures, except for the red-shifted west tail. The

magnetic fields are also twisted towards the center around IRS 5 in both red-shifted

and blue-shifted cases.

Fig. 4.30 shows the spatial distribution of the AM between the fully integrated

VGT-12CO measurement and the magnetic field orientation inferred from Planck

polarization. In the vicinity of the IRS 5 protostar, anti-alignments (AM = -1)
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are observed. This is also seen in SCUPOL and HAWC+. We attribute this to

the strong molecular outflows characteristic of this area. As delineated in §. 4.1.4,
velocity gradients stemming from turbulent gas motion are typically perpendicular

to magnetic fields and are used in VGT to trace the magnetic fields. This type of

gradient is denoted as turbulence-associated velocity gradients. However, vigorous

outflow dynamics can create pronounced velocity differences, or non-turbulence-

associated velocity gradients, which we anticipate to align parallel to the magnetic

fields in the presence of substantial outflows.

Figure 4.31: Histogram of AM between Planck and VGT measurements on total
12CO emission (black line), redshifted emission (red line), and blueshifted emission

(blue line).

When extracting gradients from observational data, we inherently deal with

the combined velocity field (turbulence plus non-turbulence). Consequently, the

VGT-12CO — which rotates the velocity gradients by 90 degrees to estimate magnetic

field orientations — may result in a perpendicular anti-alignment with polarization

when outflows predominate. Moving outward from the center, where outflow

influence wanes and turbulence takes precedence, the VGT-12CO measurements

begin to align with magnetic field orientations inferred from polarization, indicating

the relative increase in the significance of turbulent motions.

Furthermore, Fig. 4.31 shows the histogram of the VGT-Planck AM for the

red-shifted component, the blue-shifted component, and the total gas emission. An

intriguing feature is that in both redshifted gas and total emission, the VGT-Planck

alignments (AM = 1) are statistically more significant, while in the blue-shifted

component, AM concentrates more on ∼ 0.5. We expect this is due to the
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Planck-inferred magnetic fields do not follow the blueshifted outflows, as seen in

Fig. 4.26.

Figure 4.32: Histogram of AM between VGT measurements on total 12CO emission

and SCUPOL (orange line) and HAWC+ (purple line).

The AM map between the fully integrated VGT-12CO measurement and both

SCUPOL and HAWC + results has been studied, as seen in Fig. 4.32. Since the

polarimetry surveys observed the protostar systems in L1551 at close-in scales,

the magnetic fields they trace are likely related to the protostellar outflows.

However, because of the limited sampling ranges of SCUPOL and HAWC+, their

measurements are not compared with the magnetic fields associated with individual

outflow components. Similarly to the VGT-Planck AM map, anti-alignments of

magnetic field measurements inferred by the VGT and the two polarizations are

mostly detected near the IRS 5 protostar, suggesting that strong outflows exist in

the area, resulting in a difference between VGT and the polarization measurements.

Moreover, the anti-alignment is observed in the three polarization measurements

with different beam resolutions of ∼ 5′, 10′′, and 18.2′. Since the trend of negative

AM was observed in both comparisons with the low-resolution Planck data and the

high-resolution SCUPOL and HAWC+, we infer that this may imply the outflow

motions dominate the gas dynamics of the L1551 star-forming region starting from

∼ 5′, corresponding to a physical scale of ∼ 0.2 pc.
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Chapter 5

Galactic magnetic fields in

three-dimensions

This thesis chapter originally appeared in the literature as

Hu, Y., Yuen, K. H., & Lazarian, A. 2020, ApJ, 888, 96.

Hu, Y. & Lazarian, A. 2020, Research Notes of the American Astronomical

Society, 4, 105.

Schmaltz, T., Hu, Y., & Lazarian, A. 2024, MNRAS, 528, 3897.

Abstract

Mapping the three-dimensional Galactic Magnetic Field (GMF) is essential for

unraveling the complex astrophysical processes within the Milky Way. However,

the GMF remains one of the least understood aspects of the interstellar medium

(ISM), largely due to the limitations of traditional observational methods like dust

polarization and Zeeman splitting. These methods fall short in directly tracing the

magnetic field in 3D space, especially in mapping the magnetic field strength on the

plane of the sky (POS). This gap underscores the need for innovative observational

techniques. In this chapter, we leverage the Velocity Gradient Technique (VGT) to

delineate the magnetic field orientation, applying it to atomic neutral hydrogen (H I)

emission lines from the GALFA-HI and HI4PI surveys. By integrating VGT-H I data

with the Galactic rotational curve, we construct a 3D distribution of the GMF. Our

findings show that the magnetic field orientations determined through VGT-H I are

statistically consistent with those obtained from stellar polarization, despite some

misalignments. Specifically, in the low-mass star-forming region L1688, an analysis
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incorporating stellar polarization and precise star parallax measurements uncovers

a distinct directional shift in magnetic field orientations near L1688. This shift

suggests that misalignment between VGT-H I and stellar polarization measurements

may arise from the molecular cloud’s magnetic influence on starlight polarization.

Further comparison of VGT-12CO with stellar polarization and Planck polarization

data demonstrates that VGT-12CO reconciles the misalignments observed with

VGT-H I, aligning statistically with Planck polarization measurements. This

indicates the potential of combining VGT-12CO with VGT-H I for a more accurate

depiction of molecular clouds’ magnetic fields, thereby refining our 3D magnetic field

reconstructions. Moreover, we derive the 3D distributions of the Alfén and sonic

Mach numbers using the velocity gradient dispersion and density variance methods,

respectively. This allows us to estimate the GMF’s strength distribution in 3D space

using the MM2 approach, revealing a decrease in GMF strength towards the Galaxy’s

outskirts. Addressing the contamination of B-mode polarization of inflationary

gravitational waves by Galactic foreground polarized radiation, we employ VGT

combined with high-resolution H I data from the GALFA-H I survey to model

Galactic foreground polarization. Our predicted dust polarization directions closely

match those reported by Planck 353 GHz, indicating minimal variation in dust

emission efficiency across the sky. By analyzing our predicted polarization maps,

we estimate the E- and B-mode ratio to be approximately BB/EE ≈ 0.53 ± 0.10,

aligning with Planck polarization results.

5.1 Galactic magnetic field orientation

The VGT, as discussed in § 4.1.4, offers a promising solution by leveraging

spectroscopic observations to infer the magnetic field orientation and magnetization

M−1
A , where MA denotes the Alfvénic Mach number (Lazarian et al. 2018; Hu et al.

2021a). Spectroscopic data, through the velocity caustics effect in thin velocity

channel maps (Lazarian & Pogosyan 2000), as evidenced in recent studies (Hu

et al. 2023), provide valuable velocity information (see § 2.2). By integrating these

observations with the Galactic rotation curve, the application of VGT to HI channel

maps (Hu et al. 2020d; Lu et al. 2020) emerges as a viable approach for 3D mapping

of the Galactic magnetic field.

For testing purposes, we utilize the HI emission line data from the HI4PI survey,

featuring a spectral resolution of ∆v = 1.49 km/s, which meets the thin channel

criterion outlined in § 4.1.4. The area of interest extends from Galactic longitude

l from 99.0◦ to 121.2◦ and the Galactic latitude b from 8.4◦ to 33.3◦. The VGT is
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Figure 5.1: Right and middle: the morphology of the POS magnetic fields inferred

from Planck polarization (top left) and VGT (top right and bottom). Left: the spec-

tral line used for the calculation of VGT (top, red shallow), IVC (VGT, bottom,

purple shallow), LVC (VGT, bottom, green shallow), and also the histogram of the

relative angle between the Planck polarization and VGT. The yellow segments indi-

cate the direction of stellar polarization.

applied across all thin channels of the HI emission within the velocity range of -75

< v < 25 km/s, employing pseudo-Stokes parameters.

Results, shown in Fig. 5.1, are compared with Planck 353 GHz polarized dust

emission data (see § 4.3.1). An AM of 0.83 is achieved, closely approaching the ideal

alignment scenario (AM = 1), thus validating the efficacy of VGT in tracing the

GMF with HI emissions. Additionally, a normalized histogram of the relative angle

between VGT-derived orientations and Planck polarization vectors is presented

(Fig. 5.1), exhibiting a near-Gaussian distribution with a standard deviation of

approximately σ ≈ 10.82◦.

The application of the VGT extends to the Intermediate Velocity Cloud (IVC)

and Low Velocity Cloud (LVC) identified by Panopoulou et al. (2019), centered

around (l, b) = (104.08◦, 22.31◦). Specifically, Panopoulou et al. (2019) determined
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that the LVC is situated at a distance of 346 - 393 pc associated with HI emission in

the velocity range of -3.8 < v < -1.2 km/s. The IVC is located at a distance of 1250

- 2140 pc associated with HI emission in the velocity range of -55 < v < -41 km/s.

The HI emissions within these specified velocity ranges were utilized to compute the

respective magnetic field orientations for the IVC and LVC.

The derived magnetic field morphology is presented in Fig. 5.1. A comparative

analysis was performed with stellar polarization measurements centered on (l, b) =

(103.90◦ , 21.97◦) and (l, b) = (104.08◦, 22.31◦) associated with these clouds. The

mean magnetic field orientation measured from stellar polarization within a 0.16◦

circle circle yielded ⟨ϕ∗⟩ = 106±8◦ for IVC and ⟨ϕ∗⟩ = 42.6±1◦ for IVC (Panopoulou

et al. 2019). By applying VGT over the same region, the mean magnetic field

orientation inferred was ⟨ψB⟩ = 106.3◦ for the IVC and ⟨ψB⟩ = 43.5◦ for the LVC,

demonstrating remarkable consistency with the stellar polarization results.

5.2 Galactic magnetic field strength

The DCF method (Davis 1951; Chandrasekhar & Fermi 1953) is widely used to

estimate the POS magnetic field strength (Hu et al. 2021a; Pattle et al. 2021; Hwang

et al. 2021; Li et al. 2021; Hoang et al. 2022; Tram et al. 2023). It assumes magnetic

field fluctuations δB are fully produced by velocity fluctuations σv of Alfvénic

turbulence. In this case, the kinetic energy of turbulence is completely transferred

to the energy of magnetic field fluctuations:

1

2
ρσ2

v =
1

8π
δB2, (5.1)

where ρ is the gas mass density. For observational implementation, δB can be

approximately obtained from the fluctuations of magnetic field angle: δϕB ∼ δB/B,

where B is the mean magnetic field (Zweibel 1996), so one can get:

B ≈ f

√
4πρσv
δϕB

, (5.2)

here f is a correction factor and σv is typically estimated from line width. Using

MA = δB/B and Ms = σv/cs, Eq. 5.1 can be expressed as (Lazarian et al. 2020b):

B = cs
√

4πρMsM
−1
A , (5.3)

which suggests that the mean POS magnetic field strength can be obtained more

accurately if we know MA and Ms at the same scales. For simplicity, we assume

that the HI gas is predominantly composed of its warm and unstable phases with a
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temperature of T = 10000 K. This assumption is made for several reasons. Firstly,

the volume filling factor of gas in the cold phase is found to be lower than 10%

(Ho et al. 2021). Secondly, we derived Ms from the variance of the HI column

density, and cs is used in conjunction with Ms to obtain information about velocity

fluctuations. Kalberla & Haud (2018) showed that within a velocity channel width

of 16 km/s the column density from the warm neutral medium can be one order of

magnitude larger than that of the cold neutral medium. Therefore, it is natural to

focus on the warm phase, which dominates the HI column density.

5.2.1 The Galactic rotational curve

An accurate rotation curve for the Milky Way Galaxy is crucial to constrain the

spatial distribution of HI gas. Here we adopt the high-order polynomial curve

obtained by Clemens (1985). The composite curve is in the form of:

V (R) =
6∑
i=0

AiR
i, R < 0.09R0,

=
5∑
i=0

BiR
i, 0.09R0 < R < 0.45R0,

=
7∑
i=0

CiR
i, 0.45R0 < R < 1.6R0,

= D0, 1.6R0 < R,

(5.4)

where R is the distance from the Galactic center to the point of interest within the

Galaxy, R0 = 8.5 kpc is the distance from the center of our Galaxy to the Sun, and

V is the circular velocity of the point. A,B,C,D are the fitted coefficients of the

curve assuming the Sun’s circular velocity V0 = 220 km/s. The coefficients are given

in Tab.3 in Clemens (1985). Instead of listing the numerous coefficients here, we

reproduced the plot of the rotational curve in Fig. 5.2. After 1.6R0, we assume a flat

curve.

With the curve, we can determine the spatial distribution of HI gas using the

relative velocity Vr and angular velocity ω = V/R (see Fig. 5.2) of Galactic rotation

at the point. Their relation is expressed as (McClure-Griffiths & Dickey 2007):

Vr = R0(
V

R
− V0
R0

) sin l cos b, (5.5)

where l is the Galactic longitude and b is the latitude. For the small patch of sky

considered in this chapter, we adopt l from the region’s central coordinates and
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Figure 5.2: Red: Galactic rotational curve used in this work. Adopted from Clemens

(1985). Blue: the radio V/R calculated from the Galactic rotational curve.

assume b ≈ 0 for a better definition of the Galactic curve. Vr is determined by

the central velocity of every thick HI channel. In view of that the typical value

of turbulent velocity dispersion in a 100 pc cloud is ∼ 10 km/s (Ha et al. 2022),

we adopt the value to define the width of a thick HI channel (corresponding to

an HI cloud), i.e., ∼ 10 km/s. The GALFA-HI data’s narrowest channel width of

∼ 0.184 km/s is used to define a thin channel.

5.2.2 Mapping Alfvén Mach number in 3D

The VGT (VChGs) is capable of deriving the magnetization, i.e., M−1
A , where MA is

the Alfvén Mach number (Lazarian et al. 2018). This approach is also based on the

anisotropy of MHD turbulence. As illustrated in Fig. 5.3, in a strongly magnetized

medium (i.e., small MA), the turbulent eddies are highly anisotropic being elongated

along the magnetic field. The anisotropy, however, is less significant in a weakly

magnetized medium. As the gradient is perpendicular to the eddy’s structure, this

change of anisotropy can be detected by the gradient orientation’s histogram. The

histogram is less dispersed in the case of small MA, while the distribution spreads

wilder when MA increases. The dispersion of the histogram is characterized by the

so-called “Top-to-Bottom” ratio of the distribution. The correlation with MA is
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Figure 5.3: An illustration of how the magnetization MA affects the gradient ori-

entation histogram. (a): the turbulent eddies in a strongly magnetized medium are

highly anisotropic elongating along the magnetic fields. Their gradients (yellow ar-

rows) orient in similar directions so that the histogram is less dispersed. (b): in a

weakly magnetized medium, the eddies, as well as the gradients, are more isotropic.

The histogram in this case is more dispersed. In an extreme case of purely hydrody-

namic turbulence, the histogram would appear a uniformly random distribution.

given as (Lazarian et al. 2018):

MA ≈ 1.6(Tv/Bv)
1

−0.60±0.13 ,MA ≤ 1,

MA ≈ 7.0(Tv/Bv)
1

−0.21±0.02 ,MA > 1,
(5.6)

where Tv denotes the maximum value of the fitted histogram of the velocity

gradient’s orientation, while Bv is the minimum value. Based on Eq. 5.6, we take

raw velocity gradients ψg with every sub-block of 16 × 16 pixels to calculate the

Tv/Bv ratio and derive MA accordingly.

5.2.3 Column density variance & Ms in 3D

The sonic Mach number is defined as the ratio of turbulent velocity dispersion σv
and sound speed cs, i.e., Ms = σv/cs. Typically σv can be derived from linewidth for

a molecular cloud. This is, however, more difficult for HI gas, due to a significant

line broadening arising from regular motions, e.g. differential rotation, which is not

related to turbulence.

Nevertheless, Burkhart & Lazarian (2012) proposed a new way to map Ms

based on column density statistics. This method is based on the fact that density

fluctuation’s amplitude increases for a large Ms. This increase in fluctuation results

in a higher variance. Accordingly, Burkhart & Lazarian (2012) showed the relation

of Ms and the variance σ2
N/N0

of the normalized column density field N/N0 (where
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N0 is the mean column density) is:

σ2
N/N0

= (
M2

s

9
+ 1)0.11 − 1. (5.7)

To find the HI column density of every thick HI channel, we adopt the conversion

from the HI brightness temperature TMB to column density (Panopoulou et al. 2019):

N =

∫ v0+5

v0−5

1.823× 1018TMBdv, (5.8)

where N denotes the column density of HI in the unit of cm−2, dv is the spectral

resolution in the unit of km/s, and v0 is the thick channel’s central velocity in the

unit of km/s. Then the variance and Ms are calculated for every sub-block of 16× 16

pixels, which is selected to match the VGT’s resolution.

Figure 5.4: Maps of magnetic field orientation ψB at three different Galactic spatial

places. The magnetic field orientation (black segment) is superimposed on the inte-

grated HI intensity maps (right) with a channel width of ∼ 10 km/s.
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5.2.4 Galactic magnetic field in 3D

Galactic magnetic field orientation in 3D

As shown in Fig. 5.4, we present the magnetic field orientation mapped with VGT

for three HI clouds (i.e., the thick channel with a width of ∼ 10 km/s) at different

spatial places (R = 10.6, 11.3, and 12.8 kpc) in the Galaxy. The magnetic field

maps are smoothed to the spatial resolution of 30′. The intensity structures in the

three clouds exhibit apparent differences and the magnetic field generally follows the

structures.

Figure 5.5: Same as Fig. 5.4, but for the magnetization MA. The contours outline

the prominent HI intensity structures (see Fig. 5.4) in each map.
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Figure 5.6: Same as Fig. 5.4, but for the sonic Mach number Ms. The contours

outline the prominent HI intensity structures (see Fig. 5.4) in each map.

5.2.5 Alfvén Mach number and Sonic Mach number

distributions in 3D

Using the VGT and the density-variance approach, we map the distribution of MA

and Ms for the same three HI clouds, as shown in Fig. 5.5 and Fig. 5.6. The maps

have a spatial resolution of 30′. We find the clouds are globally sub-Alfvénic with

MA < 1. This finding agrees with the results in Pattle et al. (2023), which shows the

ISM is generally sub-Alfvénic up to the hydrogen volume density of nH ∼ 107 cm−3.

In addition, the clouds are globally subsonic Ms < 1 or trans-sonic Ms ∼ 1. This

can be understood based on the fact that HI gas is dominated by warm or unstable

phases (Ho et al. 2021). The high temperature in the two phases results in a large

thermal sound speed. In this case, Ms is not expected to be much larger than the

unity.
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Figure 5.7: Same as Fig. 5.4, but for POS magnetic field strength |BBB|. The contours
outline the prominent HI intensity structures (see Fig. 5.4) in each map.

5.2.6 Galactic magnetic field strength in 3D

With the knowledge of MA and Ms distributions, one can the distribution of POS

magnetic field strength accordingly using Eq. 5.3. The information on gas mass

density is derived from the HI column density. The LOS thickness of every HI cloud

is given by its spatial separation between it and another cloud located behind it.

The three maps of POS magnetic field strength are presented in Fig. 5.7. The

mean POS magnetic field strength is on the order of µG. Several strong magnetic

fields > 3 µG regions are noticed in the regions with prominent HI intensity

structures, i.e., higher density. The earlier Zeeman measurement found the LOS

magnetic field strength varies from 0.1µG to 10 µG for diffuse ISM (Crutcher 2012;

Pattle et al. 2023), with a median value of 6 µG for cold HI (Heiles & Troland

2005). Our results statistically are about a factor of 2 lower than the Zeeman

results. However, one should note that typically Zeeman measurements provide only
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upper limits of magnetic field strength, and dense cold HI usually is associated with

relatively strong magnetic fields. Thus the actual Zeeman measurements might be

biased towards places with stronger magnetic fields.

5.2.7 Variation of MA, Ms, and magnetic field strength along

the LOS

With the HI clouds’ spatial positions determined by the Galactic rotational curve, it

is possible to investigate the variation of mean MA, Ms, and magnetic field strength

along the LOS. The variation is presented in Figs. 5.8, 5.9, and 5.10.
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Figure 5.8: The mean Alfvén number ⟨MA⟩ as a function of distance R to the

Galactic center. The red shadow area indicates the range of uncertainty given by the

standard deviation.

The diffuse HI gas is generally sub-Alfvénic and sub-sonic (or trans-sonic). MA

varies from ∼ 0.6 to ∼ 0.9. An apparent low MA value appears at R ∼ 10 kpc. The

corresponding HI cloud exhibits very prominent HI structures with high intensity

and density (see Fig. 5.4). One possible reason is that the high-density structures are

expected to associate with a relatively strong magnetic field so that MA decreases.

Another possibility is that velocity dispersion at this position decreases, as a drop of

Ms is also observed at R ∼ 10 kpc. Unless the gas temperature varies significantly,

the drop ofMs suggests a smaller velocity dispersion and a smallerMA. Nevertheless,

MA and Ms tend to be stable at 0.7 and 0.8, respectively, when R > 12 kpc.
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Figure 5.9: The mean sonic number ⟨Ms⟩ as a function of distance R to the Galactic

center. The blue shadow area indicates the range of uncertainty given by the standard

deviation.
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Figure 5.10: The mean POS magnetic field strength ⟨|BBB|⟩ as a function of distance

R to the Galactic center. The lime shadow area indicates the range of uncertainty

given by the standard deviation.
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However, unlike MA and Ms, the mean magnetic field strength decreases when

R > 11 kpc. The peak value of ∼ 2.5µG appears at R ∼ 10.5 kpc. We expect the

decrease to be mainly raised by density variation. At the outskirts of the Galaxy, HI

gas is less abundant so B ∝
√
4πρ decreases.

5.3 Comparison with stellar polarization

Efforts to reconstruct the Galactic magnetic field in 3D, employing the VGT, HI

observation, and the Galactic rotational curve, have been at the forefront of several

studies (González-Casanova & Lazarian 2019; Hu & Lazarian 2023b). For instance,

Hu & Lazarian (2023b) delved into the potential of mapping both the magnetic

field orientation and strength simultaneously. González-Casanova & Lazarian (2019)

examined the synergy between VGT-HI and stellar polarization. González-Casanova

& Lazarian (2019) observed that while there was general alignment between VGT-HI

and stellar polarization, certain misalignments emerged, with the inferred magnetic

fields from both approaches occasionally appearing perpendicular. One speculation

posits that stellar polarization contains contributions from molecular clouds in which

the magnetic fields might have changes in their direction, while VGT-HI is insensitive

to the changes, resulting in this misalignment. However, this effect has not been

investigated. Thus, we aim to explore two aspects: (1) the coherence of magnetic

fields in the foreground/background and molecular clouds and (2) the alignment and

misalignment between the stellar polarization, VGT-HI, as well as the magnetic field

inferred from the molecular line 12CO with VGT. For this purpose, we target the

low-mass star-forming region L1688 in the giant molecular cloud Ophiuchi A.

The region of our study is the L1688 sub-cloud of the giant molecular cloud

Ophiuchi A. L1688 is chosen due to the prevalence of low-mass star formation and

the large amount of stellar polarization and distance data available. L1688 has a

very high star formation rate with 14–40 percent of molecular gas within the cloud

in the process of star formation (Simpson et al. 2008). The cloud is relatively close,

located at a distance 138.4 ± 2.6 pc from the Sun (Mamajek 2008; Ortiz-León

et al. 2018). Characterization of the magnetic field and associated self-gravity were

conducted in an earlier study (Hu & Lazarian 2023a). This study also found Alfvén

Mach number to be less than one because magnetic field pressure is greater than the

turbulent pressure in L1688.
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12CO emission line

In this work, we employ the 12CO (1-0) emission line provided by the COMPLETE

survey (Ridge et al. 2006). The data were acquired via an observation using the 14

m Five College Radio Astronomy Observatory (FCRAO) telescope. 12CO emission

line has an effective velocity resolution of 0.07 km/s. The FWHM of the 12CO

observation is ≈ 46′′. However, the final data cube is convolved onto a regular

23′′ per pixel resolution to satisfy the Nyquist sampling. The RMS noise level per

channel is ≈ 0.98 K for 12CO in unit of antenna temperature T ∗
A. The radial velocity

of the cloud’s bulk motion ranges from 0 to 7 km/s. This velocity range was chosen

for our analysis in this work.

HI Emission

In this work, we obtained our HI data from the 100 m NRAO Green Bank Telescope

(GBT) in West Virginia which observed Ophiuchus in 2011 (Li & Goldsmith 2003).

The HI data utilized from the GBT has a pixel size or effective resolution of 1′, an

angular resolution of ∼ 9′, a spectral resolution of 0.32 km s−1, and a normal RMS

value of 0.15 K per channel.

Stellar polarization

In this study, we have harnessed stellar polarization data from a variety of surveys

to map the magnetic field (Heiles 2000; Kwon et al. 2015; Vrba et al. 1976; Wilking

et al. 1979; Sato et al. 1988). The polarization measurements for the stars included

in our analysis were taken in the K band from each respective survey. The selection

criteria for inclusion were a signal-to-noise ratio greater than 3, and a location within

the bounds of the L1688 star-forming region.

Distance information for the stars is directly accessible from the survey

conducted by Heiles (2000) online. For the remaining surveys (Vrba et al. 1976;

Wilking et al. 1979; Sato et al. 1988), which only provide data in paper-table form,

we have compiled the relevant information—including stars’ coordinates, polarization

angle, and distance—into Tabs. 5.1 and 5.2 for ease of reference.
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Table 5.1:: Information of stars’ coordinates (first and second columns), polarization

angle (third column), and distance (fourth column) used in this work. The table is

compiled from Vrba et al. (1976); Wilking et al. (1979); Sato et al. (1988).

R.A. (J1950) Dec. (J1950) ϕ [degree] Distance [pc]

16 25 24.3 -24 27 56.6 178 136.4

16 26 18.9 -24 28 19.7 9 137.5

16 27 46.7 -24 23 22.1 61 2733.7

16 27 49.9 -24 25 40.2 32 142

16 27 30.2 -24 27 -43.4 42 NA

16 25 19.2 -24 26 52.8 166 140

16 26 10.3 -24 20 54.8 175 NA

16 26 23.4 -24 20 59.6 12 139.2

16 26 45 -24 23 7.8 55 110.1

16 27 9.1 -24 34 8.3 55 134.6

16 27 27.4 -24 31 16.4 93 174

16 26 49 -24 38 25.2 45 132.5

16 24 11.4 -24 59 4 53 594.1

16 24 8.3 -24 38 50 45 110.9

16 24 8.9 -24 12 30 20 136.4

16 24 3.8 -23 44 1 15 138.4

16 24 52.9 -24 23 6 65 114.3

16 25 2.1 -24 19 54 56 638.5

16 25 8.9 -24 9 23 52 151.8

16 25 46.1 -23 57 30 42 400.6

16 25 43.6 -24 41 21 106 1103.6

16 25 57.2 -24 42 35 103 252.6

16 26 52.9 -23 55 8 31 917.6

16 26 36.7 -24 21 53 51 650.7

16 26 32.3 -24 45 53 55 112.3

16 28 3.1 -23 58 7 65 136.1

16 27 57.8 -23 32 35 44 424.8

16 28 30 -23 50 45 48 NA

16 28 18.3 -24 23 38 21 144.5

16 28 38.9 -24 18 52 47 146.5

16 28 6.1 -24 35 52 129 NA

16 28 5.2 -24 44 27 16 236.4

16 28 10 -24 56 35 68 211.5

16 29 5.6 -24 56 16 2 NA

16 29 11.7 -24 46 50 109 81.4
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5.3.1 Magnetic field orientation mapped with stellar

polarization

Fig. 5.11 delineates the orientation of the magnetic field as a function of stellar

distances. Predominantly, the magnetic field angles span between [30◦, 110◦], with

the median orientation settling at 60◦ east of the north. Notably, a significant shift

is observed at the location corresponding to L1688, approximately 139 pc away and

up to 200 pc, where the angle exhibits a bifurcation—either escalating to nearly 180◦

or plummeting to 0◦. This bifurcation is indicative of a potential difference in the

magnetic field orientation between the foreground/background and that within the

L1688 cloud itself.

To ascertain the relative contributions of the foreground/background and the

molecular cloud, we analyze their hydrogen column densities, assuming dust grains

are uniformly mixed with hydrogen. Instead of using the typical SED fitting method,

the column density of hydrogen for the foreground/background, denoted as N f
H, is

calculated using the X-factor method from (Panopoulou et al. 2019):

N f
H = NHI + 2NH2 ≈ NHI

=

∫
1.823× 1018THI

MBdv cm−2/(K km s−1),
(5.9)

where NHI represents the column density of atomic hydrogen (H I), NH2 denotes

the column density of molecular hydrogen (H2), and T
HI
MB signifies the brightness

temperature of H I emission.

For the molecular cloud L1688, the hydrogen column density is derived similarly

using the CO-H2 conversion factor XCO = 2 × 1020, commonly applied in giant

molecular clouds (Narayanan et al. 2011):

Nmc
H = NHI + 2NH2 ≈ 2NH2

= 2XCO(

∫
TCO
MBdv) cm

−2 / (K km s−1),
(5.10)

where TCO
MB is the brightness temperature of CO emission. Differing from Eq. 5.9, the

contribution of H I is considered negligible here as H2 emission predominates.

The average values of N f
H and Nmc

H are comparably significant, with

N f
H ≈ 2 × 1021cm−2 and Nmc

H ≈ 7 × 1021cm−2. This suggests that both the

foreground/background and the molecular cloud contribute notably to stellar

polarization. At a distance of approximately 139 pc, the molecular cloud’s

contribution predominates, significantly affecting the direction of stellar polarization

to reflect the magnetic fields within the cloud. Conversely, at larger distances, the
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Table 5.2:: Continuum of Tab. 5.1

R.A. (J1950) Dec. (J1950) ϕ [degree] Distance [pc]

16 29 11.7 -24 46 50 109 81.4

16 29 14.6 -24 44 34 82 NA

16 29 9.6 -24 34 0 65 147.1

16 29 21.1 -24 33 58 57 81.1

16 29 7.6 -24 16 38 35 NA

16 29 34.6 -24 16 28 52 NA

16 29 23.4 -23 53 53 61 746.5

16 29 36.6 -23 51 37 67 715.5

16 29 20.6 -23 46 1 36 608.2

16 29 30.2 -23 45 4 44 530

16 30 1.2 -24 58 52 108 NA

16 30 1.2 -24 58 52 84 NA

16 30 6.7 -24 44 59 65 NA

16 30 7.7 -24 11 1 59 376.4

16 31 1.4 -24 36 43 1 146.1

16 31 25 -24 7 32 57 571

16 31 49.5 -24 17 57 44 361.1

16 25 24.3 -24 27 56 267 244

16 30 49.5 -24 11 11 70 126.6

16 31 0.1 -23 36 11 64 NA

background’s contribution gradually increases, leading to stellar polarization being

influenced by both the foreground/background and the molecular cloud.

5.3.2 VGT-HI: magnetic fields in the foreground and

background

The VGT (pseudo-Stokes parameters) has proven to be effectively applicable to

atomic HI emissions. When compared to molecular emissions, the VGT applied to

HI (VGT-HI) has the distinctive advantage of mapping the magnetic fields that

exist in the cloud’s foreground and background (González-Casanova & Lazarian

2019; Lu et al. 2020; Hu & Lazarian 2023b). In Fig. 5.12, we compare the integrated
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Figure 5.11: The figure presents the magnetic field orientation (east of the north)

mapped with stellar polarization versus the corresponding stars’ distances along the

LOS. The upper and lower black lines represent the deviation’s maximum and min-

imum, respectively. The box gives ranges of the first (lower) and third quartiles

(upper) and the orange line represents the median value.

VGT-HI map with stellar polarization data 1. This comparison extends beyond the

stars for which distance data are available (as depicted in Fig. 5.11) to include those

without known distances. It is observed that the global magnetic field patterns

deduced from VGT-HI broadly align with those inferred from stellar polarization.

Nevertheless, notable differences are present in the southern reaches of the map,

especially the central dense clump of L1688 (see Fig. 5.15). Given the magnetic field

variations in L1688 identified in Fig. 5.11, it is plausible that the stellar polarization

is significantly influenced by the molecular cloud, accounting for the observed

misalignments. The AM map presented in Fig. 5.12 demonstrates a concentration

of positive AM values in the northeastern, lower-intensity tail of the cloud, whereas

regions of negative AM predominantly coincide with the central dense clump.

Fig.5.13 illustrates the variation in AM as a function of distance along the

1We plotted all available stellar polarization data from multiple surveys (Heiles 2000; Kwon et al.

2015; Vrba et al. 1976; Wilking et al. 1979; Sato et al. 1988), including data for stars without

available parallax measurements. Figs. 5.13, 5.14, and 5.17 exclusively use data from stars with

known distance information.
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Figure 5.12: The top figure presents a mapping of star positions and their polariza-

tions over the magnetic field orientation inferred by VGT, using total integrated HI as

a tracer. The bottom figure presents the AM measurement comparing the magnetic

field mapped by VGT versus the magnetic field inferred by stellar polarization. The

contours start from log10(3.0) K km/s.

LOS to the stars. It is crucial to note that the VGT-HI maps from which these

measurements are derived represent an integration along the LOS. We observe that

the AM is predominantly positive at smaller distances (approximately < 200 pc),

which is indicative of the foreground magnetic field alignment. Beyond 200 pc, where



195

102 2×102 5×102 103

Distance [pc]
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

AM

Median value
Position of L1688

Figure 5.13: This figure presents the mean AM values of the stellar polarization at

certain distances compared to VGT-HI. The upper and lower black lines represent

the deviation’s maximum and minimum, respectively. The box gives ranges of the

first (lower) and third quartiles (upper) and the orange line represents the median

value.

the influence of the L1688 cloud becomes more pronounced, there is a tendency for

the AM to increase again at larger distances (> 200 pc). An evident decrease in

AM to negative values occurs around ∼ 200 pc. The data is binned uniformly in

logarithmic space, and the bins are of equal size in non-logarithmic space, resulting

in a physical bin interval of ∼ 80 pc between the second and third bins from the

left, as shown in Fig. 5.11. The bin at ∼ 200 pc, thus, should contain also the

contribution from the cloud.

As we have previously discussed, this decline in AM corresponds to distances

along the LOS that are near or slightly beyond the cloud. In Fig. 5.11, we note

that the polarization angles for stars in the vicinity of L1688 range widely from 0 to

180 degrees. In contrast, the polarization angles for the remainder of the stars are

generally confined between approximately 30 to 110 degrees with a median value of

60 degrees. Such a variation within the magnetic field orientations associated with a

molecular cloud, however, would not be captured by VGT-HI due to the lack of HI

in the cloud, where H2 and other molecules are dominant.
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Figure 5.14: The top figure presents a mapping of star positions and their corre-

sponding polarization measurement over the magnetic field orientation inferred by

VGT, using total integrated HI as a tracer. The bottom figure presents the AM mea-

surement comparing the magnetic field mapped by VGT versus the magnetic field

inferred by stellar polarization.

5.3.3 VGT-HI: magnetic fields in 3D

To facilitate a more direct comparison between VGT-HI mapping and stellar

polarization, we employed the Galactic rotation curve method to ascertain the
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spatial positioning of each HI channel within the Galaxy. In Fig. 5.14, stars are

superimposed onto 11 distinct velocity channels, each aligned with their respective

distances from the Sun. Across these channels, we observe subtle variations

in the magnetic field, reflecting the nuanced 3D magnetic field mapping that

polarization studies alone had previously found challenging. A closer examination

reveals that, compared to the integrated HI map, there is a more pronounced

agreement between the magnetic field gradient orientations and the stars within

each channel. Most notably, there is a consistent positive correlation between the

VGT-HI-derived magnetic field orientations and those of the stars at comparable

distances. Exceptions are present in a few channels—for instance, sub-figures a (65 -

155 pc), b (155 - 335 pc), d (335 - 585 pc), and g (585 - 665 pc)— have some stars

which exhibit discrepancies, typically within high-intensity regions. Nevertheless,

these instances of disagreement may be attributed to the limited number of stars in

those samples. When examining larger samples, the statistical agreement improves.

5.3.4 VGT-12CO: accounting for the contribution from

molecular clouds

As established in our investigations, while VGT-HI is proficient at reconstructing the

magnetic field within 3D space—offering a form of magnetic field tomography—it

does not encompass the nuanced contributions and variations of the magnetic fields

within molecular clouds. This caveat can be mitigated by integrating VGT with

molecular emission lines, such as 12CO.

Fig. 5.15 presents the magnetic fields inferred by stellar polarization within

the L1688 region, compared with magnetic field estimations derived from two

distinct methodologies: VGT-12CO and Planck dust polarization. Collectively, these

measurements suggest that the magnetic fields tend to align with the northeastern

low-intensity tails of the region. Nonetheless, within the central, high-density core,

the magnetic field configurations become markedly complex. Divergences among the

three methods are discernible. The stellar polarization vectors are relatively sparse

and exhibit a more disordered pattern of magnetic fields.

Fig. 5.16 presents the AM between the magnetic field orientations deduced

from stellar polarization and those inferred from VGT-12CO, alongside a comparison

with Planck polarization. For VGT-12CO, regions of low intensity predominantly

show positive AM values, suggesting alignment. In contrast, high-intensity clumps,

especially at the cloud’s center, exhibit a mix of both positive and negative

AM values. However, it is within these denser regions that the most significant
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Figure 5.15: Mapping of star positions and their polarization angles on top of the

magnetic field orientation inferred from the VGT using 12CO (top) and the magnetic

field inferred by Planck polarization (bottom). Contours for 12CO and Planck maps

are both 5, 15, and 25 K km/s.
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Figure 5.16: AMmaps of the magnetic field inferred by stellar polarization compared

to the magnetic field orientation inferred by the VGT using 12CO (top) and the

magnetic field inferred by Planck polarization (bottom).
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perpendicular orientations—or misalignments—of the magnetic fields are observed.

Several factors may contribute to this misalignment. Primarily, stellar

polarization may include influences from both the foreground and background,

which are not represented in VGT-12CO measurements. This is further corroborated

by the alignment discrepancies observed between Planck and stellar polarization

(see Fig. 5.16), where Planck data reflects the cumulative magnetic field integrated

along the LOS. Additionally, VGT-12CO tends to trace magnetic fields within

specific volume densities, as optically thick 12CO generally maps to a critical volume

density of 102 cm−3 (Draine 2011), whereas stellar polarization, driven by dust grain

alignment with magnetic fields, might encompass contributions from denser regions

(Seifried et al. 2019; Hoang et al. 2021). Despite this, the overall agreement between

VGT-12CO and Planck data (see Hu & Lazarian 2023a) attests that VGT-12CO is

capable of reliably mapping the magnetic fields associated with diffuse molecular

gas.

Moreover, our analysis extends to a comparison between VGT-12CO and

LOS-decomposed stellar polarization. As depicted in Fig. 5.17, we observe that the

negative AM observed with VGT-HI near L1688 dissipates, and the AM remains

consistently positive across all distances. This finding indicates a superior alignment

between stellar polarization and VGT-12CO within L1688, leading to the conclusion

that the negative AM associated with VGT-HI can be attributed to the magnetic

field changes within the molecular cloud.

5.4 The Galactic foreground polarization

The polarized thermal emission from diffuse Galactic dust is the main foreground

present in measurements of the CMB polarization at frequencies above 100 GHz

(Planck Collaboration et al. 2014b, 2015b, 2020c). To get insight into the CMB

B-mode polarization signal, a comprehensive picture of Galactic polarized foreground

is essential to disentangle the spectral energy distribution of dust and CMB

polarization across frequencies. The recent Plank survey gives full-sky polarization

maps of dust emission (Planck Collaboration et al. 2020c). However, the polarization

fraction is theoretically determined by the dust column along the LOS and the angle

of the mean magnetic field concerning the POS (Planck Collaboration et al. 2014b).

At high Galactic latitude regions, dust emissivity is low (Planck Collaboration

et al. 2014c), and polarization fraction is minimal (Planck Collaboration et al.

2016a). It is, therefore, challenging to characterize the complete Galactic foreground

polarization using polarized dust emission. Nevertheless, even this minimal galactic
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Figure 5.17: This figure presents the mean AM values of the stellar polarization at

certain distances compared to VGT-12CO. The upper and lower black lines represent

the deviation’s maximum and minimum, respectively. The box gives ranges of the

first (lower) and third quartiles (upper) and the orange line represents the median

value.

polarization can present a challenge in measuring the weak B mode signal.

5.4.1 Magnetic fields morphology at low Galactic latitude

regions

We applied VGT (pseudo-Stokes parameters) to the high spatial and spectral

resolution HI data from Data Release 2 (DR2) of the Galactic Arecibo L-Band Feed

Array HI survey (GALFA-HI) with the Arecibo 305m radio antenna (Peek et al.

2018). GALFA-HI has a gridded angular resolution 1′ × 1′ per pixel, a spectral

resolution of 0.18 km s−1, and a brightness temperature noise of ≃ 40 mK rms per

1 km s−1 integrated channel over 13 000 deg2 of sky. The full GALFA-HI data is

separated into three sets: East (denoted as A, close to the east of the Galactic

Plane), North (denoted as B, close to the Galactic north pole), and West (denoted as

C, close to the west of Galactic Plane). Each data set is divided into five individual

sub-regions (see Appendix. 5.4.5 for details about each region).

For illustration, we take the region A1, which stretches from R.A. ≃ 0.0◦ to 24◦
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Figure 5.18: The morphology of the POS magnetic fields on the sky patch with R.A.

from 0.0◦ to 24.0◦ and Dec. from -1.2◦ to 37.1◦. Left: the magnetic field predicted

from VGT (red segments) with resolution ≃ 1◦. Middle: the magnetic fields inferred

from Planck polarization (blue segments). The background color map of VGT is the

GALFA-HI data integrated intensity from -32 km · s−1 to 23 km · s−1. Right top: the

histogram of the relative orientation between the magnetic field predicted by VGT

and the one inferred from Planck polarization. Right bottom: the variation of the

AM with respect to the polarization percentage.

and Dec. ≃ -1.5◦ to 37.0◦ as an example. This region spans from galactic latitude

b ≃ −30◦ below the Galactic plane to b ≃ −60◦, i.e. close to the Galactic south

pole. We analyze the HI data within the velocity range -23 km/s to 32 km/s, which

contains the main structure of the HI data. Following the recipe of VGT, we show

the morphology of POS magnetic fields inferred from VGT with resolution ≃ 1◦

in Fig. 5.18. We make a comparison with the magnetic field morphology inferred

from Planck polarization and get AM = 0.77 ± 0.02, which indicates the overall

good alignment between VGT and Planck. The Qp and Up maps from Planck are

smoothed with FWHM=1◦ (see § 4.3.1). The uncertainty is given by the standard

error of the mean, i.e. the standard deviation divided by the square root of the

sample size.

The minimum tracing resolution of VGT, i.e., the sub-block size, depends on the

histogram of gradient orientation. The histogram should be a well-defined Gaussian

distribution so that the most probable angle can be found out by Gaussian fitting.

Once the minimum scale is determined, one can trace the magnetic field in any scale

larger than the minimum threshold. Given this, we test three resolutions (0.25◦,
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0.50◦, and 1.0◦) for VGT and plot the histogram of the relative orientation between

the magnetic field predicted by VGT and the one inferred from Planck polarization

in Fig. 5.18. We see that for all of those three resolutions, the histogram shows a

convex Gaussian profile with a peak value around zero.

Figure 5.19: The morphology of the POS magnetic fields on the sky patch with R.A.

from 240.0◦ to 264.0◦ and DEC. from -1.2◦ to 37.1◦. Left: the magnetic field predicted

from VGT (red segments) with resolution ≃ 1◦. Middle: the magnetic fields inferred

from Planck polarization (blue segments). The background color map of VGT is the

GALFA-HI data intensity integrated from -32 km · s−1 to 23 km · s−1. Right top: the

histogram of the relative orientation between the magnetic field predicted by VGT

and the one inferred from Planck polarization. Right bottom: the variation of the

AM with respect to the polarization percentage.

Given that, there exists a deviation between the magnetic field predicted by

VGT and the one inferred from Planck polarization. We consider two possible

reasons. One contribution is from the fitting uncertainty of the sub-block averaging

method. It has been reported that the velocity gradient orientations in a sub-block

would form a Gaussian distribution in which the peak of the Gaussian fit reflects

the ‘statistical most probable’ magnetic field orientation in this sub–block (Yuen &

Lazarian 2017b). As the area of the sampled region increases, the precision of the

magnetic field traced through the use of a Gaussian block fit becomes more and more

accurate. However, there exists uncertainty in fitting the Gaussian distribution and

the most probable value of the Gaussian distribution has its standard deviation σ.

Those factors would contribute to the overall uncertainty of gradients calculation (Hu

et al. 2019a), which is expected as a systematic error in our calculation. The second

factor is possibly the uncertainty of polarization measurements. The uncertainty
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of dust polarimetry becomes significant in the case in which the grains are not

aligned. The grain alignment theory suggests that grain alignment is driven mainly

by radiative torques, but the grains become misaligned in a number of circumstances

Lazarian (2003). For instance, in the absence of sufficiently intense radiation, the

orientation of dust grains is random (Lazarian & Hoang 2007). In view of this, we

plot the correlation between the AM and polarization percentage p in Fig. 5.18.

We take the average value of AM in each bin of the polarization percentage. We

see that the AM is positively proportional to the polarization percentage and gets

saturated when p ≥ 8%. Therefore, the insufficient polarization flux in polarimetry

measurements contributes to the deviation between the magnetic field predicted by

VGT and the one inferred from Planck polarization.

Except for the sub-region A1 which is close to the Galactic south pole, we

repeat our analysis for the sub-region C1 which spans from galactic latitude b ≃ 30◦

above the Galactic plane to b ≃ 45◦. The POS magnetic filed morphology is shown

in Fig. 5.19. The AM = 0.75 ± 0.02 indicates the overall good alignment between

VGT and Planck in C1. We see similar results in terms of the histogram of the

relative orientation and the variation of AM concerning the polarization percentage.

Moreover, we apply those analyses to all low-latitude regions, i.e., data sets A

and C, and we see all of them show a good alignment between VGT and Planck

and a positive correlation between the alignment and polarization percentage (see

Appendix. 5.4.5 for details about each region). Therefore, we conclude that the

VGT shows statistically good performance in terms of characterizing the Galactic

dust polarization compared with the Planck polarization. We see the possibility

of correcting the issue of insufficient polarization percentage through VGT. The

resultant morphology of POS magnetic fields inferred from Planck polarization and

VGT is shown in Fig. 5.20.

5.4.2 Magnetic fields morphology at high Galactic latitude

regions

VGT shows good ability in tracing the magnetic field morphology at low Galactic

regions compared with Planck polarization. As for high Galactic regions, HI gas

still follows the property of MHD turbulence. Therefore, we expect the VGT to also

work in high Galactic regions. Fig. 5.21 takes the sub-region B3, which includes

the Galactic north pole, as an example. We do see there is an agreement between

VGT and Planck in relatively high-intensity regions. From the histogram, we find

that the peak value of relative orientation between VGT and Planck is located at

≃ 20◦ ± 0.79◦, with standard deviation ≃ 22.5◦ for all three resolutions. While the
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Figure 5.20: The morphology of the POS magnetic fields at low Galactic latitude

regions inferred from Planck polarization (the 2nd and the 4th columns), and VGT

(the 1st and the 3rd columns). The background color map of VGT is the HI column

density map integrated from -90 km·s−1 to 90km·s−1. The magnetic field is visualized

using the LIC.
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Figure 5.21: The morphology of the POS magnetic fields on the sky patch with

R.A. from 168.0◦ to 192.0◦ and Dec. from -1.2◦ to 37.1◦. Left: the magnetic field

predicted from VGT (red segments) with resolution ≃ 1◦. Middle: the magnetic

fields inferred from Planck polarization (blue segments). The background color map

of VGT is the GALFA-HI data integrated from -41 km · s−1 to 14 km · s−1. Right

top: the histogram of the relative orientation between the magnetic field predicted

by VGT and the one inferred from Planck polarization. Right bottom: the variation

of the AM with respect to the polarization percentage.

histogram is more dispersed, the alignment is still increasing with the increment of

polarization percentage.

The resultant morphology of POS magnetic fields inferred from Planck

polarization and VGT is shown in Fig. 5.22. The VGT in high Galactic latitude

regions gives a moderate overall alignment, i.e., AM = 0.45 ± 0.01. The rapidly

varying magnetic fields and low signal-to-noise ratio at high Galactic latitude regions

are two possible reasons for the misalignment between VGT and Planck. The

polarization percentage p is theoretically determined by the dust column density

along the line of sight, and the angle of the mean magnetic field concerning the POS

(Planck Collaboration et al. 2014b). However, at high Galactic latitude regions,

the dust emissivity is low (Planck Collaboration et al. 2014c), and the magnetic

fields are varying rapidly (Planck Collaboration et al. 2016a, 2015a). Therefore the

polarization fraction is minimal near the Galactic north pole. Besides, the noise level

in polarization data is estimated to be higher at the high Galactic latitude region

(Clark et al. 2015). Those factors obscure the accurate measurement of the Galactic

dust polarization and the magnetic field at high Galactic latitude regions. The
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Figure 5.22: The morphology of the POS magnetic fields at high Galactic latitude

regions inferred from Planck polarization (top), and VGT (bottom). The background

color map of VGT is the HI column density map integrated from -90 km · s−1 to

90 km · s−1. The magnetic field is visualized using LIC. Black segments represent

starlight polarization angles obtained from Berdyugin et al. (2014) catalogs.

third possibility of the disagreement might come from the selection of the velocity

range in HI data. The HI data contains information on structures in the selected

velocity ranges, while polarization accumulates the information along LOS. Also, we

expect the boundary effect will also cause to disagreement appear near the image’s

boundary.

Also, we use the magnetic field inferred from starlight polarization catalogs

(Berdyugin et al. 2014) as a relative comparison in high Galactic latitude regions

(b > 30◦). In Fig. 5.23, we plot the histogram of the relative angle between the

polarization from 566 stars and VGT in corresponding positions. We see that the

histogram statistically satisfies a Gaussian distribution, with standard deviation

σ = 14.4◦ and expectation value µ ≃ 5◦. We can, therefore, conclude that the VGT

statistically shows agreement with the starlight polarization.
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Figure 5.23: The histogram of relative angle between the magnetic fields in Fig. 5.22

derived from VGT and starlight polarization obtained from Berdyugin et al. (2014)

catalogs. The standard deviation σ is 14.14◦.

5.4.3 Prediction of polarization percentage

The polarization percentage p can be derived from Stokes parameters Up and Qp

and the intensity map from Planck polarization (see § 4.3.1). As for the polarization

percentage pg from pseudo-Stokes parameters Ug and Qg, we use a similar definition

as p and use the integrated HI intensity map. In Fig. 5.24, we show the correlation

between the polarization percentage derived from Planck polarization (denoted as

p) and VGT (denoted as pg) corresponding to the same coordinate. We bin the

measured polarization percentage in uniform-spaced bins with an interval of 0.01 .

We see that pg shows a linear correlation with p at low Galactic latitude regions.

However, the value of pg is about four times larger than p. We expect ratio four to

be the systematic difference between HI and polarized dust emission data caused by

the grain alignment efficiency.

Generally, it is difficult to model grain alignment efficiency across the sky

with different physical conditions. Planck Collaboration et al. (2020d) reported

a maximum polarization fraction pmax ≃ 22% using 353GHz polarization data.

As a result, the dust grain alignment efficiency should be intrinsically similar to

pmax. In Fig. 5.25, we see a linear correlation between the polarization percentage
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Figure 5.24: The correlation between the polarization percentage derived from

Planck polarization (x-axis, denoted as p) and VGT (y-axis, denoted as pg).

Figure 5.25: Sky maps of the polarization fraction obtained from VGT (top) using

GALFA-HI data and Planck 353 GHz dust polarization (bottom) with effective res-

olution ≃ 1◦.

predicted by VGT and Planck polarization, which indicates that the variation of

grain alignment efficiency is small across the sky. Fig. 5.25 gives the sky maps of

polarization percentage obtained from VGT using GALFA-HI data and Planck 353

GHz dust polarization. We see that VGT shows similar structures with Planck

polarization in terms of polarization percentage. Note this prediction of polarization

percentage is incomplete without the knowledge of inclination angle γ.
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Figure 5.26: The cross-power spectra for the template maps constructed from VGT

and Planck polarization. The y-axis is Dl = l(l + 1)Cl. The symbols p and ϕ

indicate that we are using Planck data for the template, while pg and ϕg indicate the

polarization percentage and polarization angle obtained from VGT. The spectra are

plotted using the full GALFA data set.

5.4.4 Decomposition of EE and BB modes

The full sky cosmic microwave background (CMB) polarization field can be

decomposed into E and B components that are signatures of distinct physical

processes. To decompose the E-mode and B-mode, we modified the template used

in Clark et al. (2015):

Q∗(x, y) = p∗ · I353(x, y) · cos(2ψ∗(x, y))

U∗(x, y) = p∗ · I353(x, y) · sin(2ψ∗(x, y))
(5.11)

where p∗ is the polarization percentage derived from either VGT or Planck

polarization, I353 is the intensity of Planck 353 GHz polarized dust emission, and ψ∗

is the polarization angle defined from either VGT or Planck polarization. In Clark

et al. (2015), the polarization percentage is assumed to be ideally unity. However,

this assumption is only reasonable over a small patch of sky. For a large patch of

sky, it is indispensable to take the polarization percentage into account. The derived

Stokes maps Q∗ and U∗ at 1◦ resolution are converted to HEALPix2 format (Górski
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et al. 2005) with HEALPix resolution of Nside = 512, following Planck Collaboration

et al. (2016e). The Stokes Q∗ and U∗ maps are then decomposed into CEE
l and CBB

l

using the ′anafast′ routine of HEALPix.

Fig. 5.26 shows the cross-power spectra for the template maps constructed from

VGT and Planck polarization, using the whole set of GALFA-HI data. The multipole

moment ranges from l = 60 to l = 250, which is limited by the resolution of input

maps. We find that the spectra constructed from VGT (i.e., the combination of p

and ϕg) show a smaller magnitude than the one from Planck polarization (i.e., the

combination of p and ϕ). We expect one possible reason is the contribution of the

CMB polarization in Planck HFI data. The discrepancy of magnetic fields traced

by two different methods might also cause the deviation. Also, we see that the EE

cross-power spectra derived from Planck polarization show a larger amplitude than

the BB spectra for both combinations. We find the mean ratio between EE and BB

cross-power spectrum derived from VGT is 0.53 ± 0.10, while it is 0.61 ± 0.11 for

Plank polarization. The results coincide with Planck Collaboration et al. (2016d),

which show a systematic difference between the amplitudes of the Galactic dust B-

and E-modes BB/EE ≃ 0.5.

5.4.5 Appendix

In Fig. 5.27, we highlight the region of the Taurus molecular cloud. We see

the magnetic fields derived from VGT are well aligned with the magnetic fields

inferred from Planck polarization. In Fig. 5.31, we find there is a region, in

which the relative angle between VGT and Planck is approximately 45◦, which

is theoretically unexpected. One possible reason is the fitting uncertainty from

the sub-block averaging method, in which there exists uncertainty in fitting the

Gaussian distribution, and the most probable value of the Gaussian distribution has

its standard deviation σ. Those factors would contribute to the overall uncertainty

of magnetic field calculation (Hu et al. 2019a). Subsequently, it was found that the

σ of the distribution is correlated with the statistical mean magnetization of the

sub-region (Lazarian et al. 2018). In this case, the deviation seen in Fig. 5.31 upper

right corner indicates that the properties or dynamics of H I gas in that region

are different. For example, the supernova will change the dynamics of gas in its

surroundings.
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(a) A2

(b) A3

Figure 5.27: Same as Fig. 5.18, but for the sky patch with (a): R.A. from 24.0◦ to

48.0◦ and Dec. from -1.2◦ to 37.1◦, and (b): R.A. from 48.0◦ to 72.0◦ and Dec. from

-1.2◦ to 37.1◦.
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(a) A4

(b) A5

Figure 5.28: Same as Fig. 5.18, but for the sky patch with (a): R.A. from 72.0◦ to

96.0◦ and Dec. from -1.2◦ to 37.1◦, and (b): R.A. from 96.0◦ to 120.0◦ and Dec. from

-1.2◦ to 37.1◦.
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(a) C2

(b) C3

Figure 5.29: Same as Fig. 5.18, but for the sky patch with (a): R.A. from 264.0◦

to 288.0◦ and Dec. from -1.2◦ to 37.1◦, and (b): R.A. from 288.0◦ to 312.0◦ and Dec.

from -1.2◦ to 37.1◦.



215

(a) C4

(b) C5

Figure 5.30: Same as Fig. 5.18, but for the sky patch with (a): R.A. from 312.0◦

to 336.0◦ and Dec. from -1.2◦ to 37.1◦, and (b): R.A. from 336.0◦ to 360.0◦ and Dec.

from -1.2◦ to 37.1◦.
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(a) B1

(b) B2

Figure 5.31: Same as Fig. 5.18, but for the sky patch with (a): R.A. from 120.0◦

to 144.0◦ and Dec. from -1.2◦ to 37.1◦, and (b): R.A. from 144.0◦ to 360.0◦ and Dec.

from -1.2◦ to 37.1◦.
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(a) B4

(b) B5

Figure 5.32: Same as Fig. 5.18, but for the sky patch with (a): R.A. from 192.0◦

to 216.0◦ and Dec. from -1.2◦ to 37.1◦, and (b): R.A. from 216.0◦ to 240.0◦ and Dec.

from -1.2◦ to 37.1◦.



218

Chapter 6

Magnetic fields in the Galactic

Center and external galaxies

This thesis chapter originally appeared in the literature as

Hu, Y., Lazarian, A., Beck, R., et al. 2022, ApJ, 941, 92.

Hu, Y., Lazarian, A., & Wang, Q. D. 2022, MNRAS, 511, 829.

Hu, Y., Lazarian, A., & Wang, Q. D. 2022, MNRAS, 513, 3493.

Abstract

The Central Molecular Zone (CMZ), a dense molecular gas reservoir surrounding

the Galactic Center, dominates the interstellar medium (ISM) around the Galactic

Center. Recent advancements in high-resolution observations using the Nobeyama

45m telescope, specifically through 12CO (1–0), 13CO (1–0), and HNC (1–0)

emission lines, have facilitated the resolution of the CMZ region down to scales of

approximately 0.5 pc, in which the role of turbulence is expected to be important.

By applying the Velocity Gradient Technique (VGT) to these observations, alongside

data from multiple wavelengths—including radio 1.4 GHz continuum, Herschel

70 µm images, [Ne II], and Paschen-alpha emissions—we gain unprecedented insights

into the magnetic field structure and molecular gas density of the CMZ. Our

findings, when compared with Planck 353 GHz and the High-resolution Airborne

Wideband Camera Plus (HAWC+) 53µm polarized dust emissions, show global

agreement between the magnetic fields traced by the VGT and those observed

through polarization. This suggests the dynamic importance of magnetic fields and

turbulence in the Galactic Center. Notably, the magnetic fields within the Arched
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filaments and the thermal components of the Radio Arc align well with the HAWC+

polarization data. The VGT’s application to [Ne II] emission in the Sagittarius A

West region also mirrors the HAWC+ 53 µm observations, underscoring the VGT’s

efficacy in predicting magnetic fields associated with ionized gases down to 0.1 pc

scales. Utilizing the SCOUSEPY algorithm to decompose CO line emissions into

distinct velocity components, we constructed pseudo-Stokes parameters via the VGT

to map the plane-of-sky magnetic fields in three dimensions. This nuanced approach

reveals that while the integrated line-of-sight magnetic field orientation aligns

with Planck’s polarized dust emission at 353 GHz, individual velocity components

might display varied magnetic orientations. We present a scheme of magnetic field

configuration in the CMZ based on the decomposed magnetic fields. Expanding

our analysis to external galaxies, particularly Seyfert galaxies, through data from

the Atacama Large Millimeter/submillimeter Array and the Plateau de Bure

Interferometer Arcsecond Whirlpool Survey, we detected CO-associated magnetic

fields. The VGT-derived magnetic fields in these galaxies show a remarkable

correlation with those inferred from HAWC+ dust polarization and Very Large

Array synchrotron polarization, suggesting a link between star formation and

cosmic-ray generation. In the nuclear regions, a significant radial component of the

magnetic fields traced by VGT-CO highlights potential zones of efficient molecular

gas inflow or outflow. Specifically, the CO-traced magnetic fields within the nuclear

ring of NGC 1097 exhibit a local misalignment with dust polarization but align with

the central bar’s orientation, indicating distinct magnetic field configurations across

different gas phases and providing insights into the multiphase fueling mechanisms

of Seyfert activity.

6.1 Magnetic fields in the Central Molecular Zone

and the surrounding of Sgr A*

To have a more comprehensive picture of the magnetic fields, our analysis includes

the magnetic fields in neighboring physically different regions. For instance, the

Radio Arc, the Arched Filaments, and Sagittarius A West (Lang et al. 2010; Irons

et al. 2012). The first two structures observed at 1.4 GHz suggest either poloidal

or toroidal magnetic fields in the CMZ. The Sgr A West is observed with [Ne II]

emission and it has a very distinctive and extreme physical condition due to the

central supermassive black hole. These data, including the molecular lines, the

Planck 353 GHz (Planck Collaboration et al. 2020a) and HWAC+ 53µm (Harper

et al. 2018) dust polarization data, allow us to map the magnetic field at suitable
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multi-wavelength in both diffuse-ionized-gas region and dense-cold-gas region in

multi scales from the order of 10 pc to 0.1 pc.

6.1.1 Description of observational data

Central Molecular Zone

The 12CO (1–0), 13CO (1–0), HNC (1-0) emission lines towards the CMZ were

observed with the Nobeyama 45m telescope (Tanaka et al. 2018; Tokuyama et al.

2019). The data cover the area: −0.8◦ < l < 1.2◦ and −0.35◦ < b < +0.35◦ with

a beamwidth of FWHM ≈ 15′′ and velocity resolution of ≈ 1.3 km/s for 12CO

(1–0) and ≈ 0.67 km/s for 13CO (1–0). The final data cubes were resampled onto

a 7.5′′ × 7.5′′ × 2 km/s and 10.275′′ × 10.275′′ × 2 km/s grid for 12CO/13CO and

HNC, respectively. The RMS noises of 12CO (1–0), 13CO (1–0), and HNC (1-0)

are approximately 1.00 K, 0.20 K, and 0.21 K, respectively. We select the emission

within the radial velocity range of -220 to +220 km/s for our analysis.

The CMZ is also observed by the Herschel Space Observatory. The far-infrared

Herschel 70 µm image from the Hi-GAL survey (Molinari et al. 2010) is observed

with the PACS detector. The FWHM beam size of the PACS spectrometer is 9.2′′

near 70µm. The pixel size of 70 µm image has been set to 3′′. The 1σ sensitivity is

17.6 mJy in the PACS 70µm band.

Radio Arc and Arched Filaments

The Radio Arc, which is one of the most prominent radio continua features in

the Galactic center (Yusef-Zadeh et al. 1984), is observed at frequency 1420.406

MHz with the Very Large Array (VLA) telescope (Lang et al. 2010). It achieves a

resolution of FWHM ≈ 15′′ (0.6 pc) and a total bandwidth of 1.5625 MHz. The

RMS noise for the spectra is approximately 1σ ≈ 10 mJy.

Sagittarius A West

The [Ne II] emission line for Sgr A West was observed with the Texas Echelon Cross

Echelle Spectrograph. At the 12.8 µm wavelength, the [Ne II] finestructure line has a

spectral resolution of ≈ 4 km/s, and a spatial resolution of ≈ 1.3′′ (Irons et al. 2012).

The RMS noise level is around 0.01 K.

The Sgr A is also observed by hydrogen Paschen-α line (wavelength ∼ 1.876 µm),
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using the NICMOS instrument aboard the Hubble Space Telescope (Wang et al.

2010). It covers the Sgr A in the 1.87 and 1.90 µm narrow bands. Its spatial

resolution is around 0.01 pc (FWHM ∼ 0.2′′) at a distance of 8 kpc. The RMS noise

level is around 0.06 mJy arcsec−2 for the full resolution image with a pixel size of

0.1′′× 0.1′′.

Polarized dust emission

The POS magnetic field orientation in the CMZ was inferred from the Planck

353 GHz and HAWC+ polarized dust signal data. Similar to § 4.3.1, we use the

Planck 3rd Public Data Release (DR3) 2018 of High-Frequency Instrument (Planck

Collaboration et al. 2020a). To increase the signal-to-noise ratio, we smooth all

Stokes parameters from nominal angular resolution 5′ up to a resolution of 10′ using

a Gaussian kernel. The magnetic field angle is inferred from ϕB = ϕ + π/2. The

Planck polarization is used to reveal the magnetic fields of the large-scale entire

CMZ.

For small-scale magnetic field tracing, we use the HAWC+ polarization

measurement obtained from the HAWC+ archival database (Harper et al. 2018). We

select the band A measurement (FWHM ≈ 5′′) and only pixels with p/σp > 3 are

considered, where p is the polarization fraction, and σp is its uncertainty. We use the

HWAC+ polarization to reveal the magnetic field towards the Sickle (i.e., the radio

arc), and Sgr A*.

6.1.2 Magnetic fields in the Central Molecular Zone

Fig. 6.1 presents the morphology of magnetic fields towards the CMZ measured by

the VGT using pseudo-Stokes parameters (see § 4.1.4). Here we use 12CO and 13CO

emission lines. Pixels where the brightness temperature is less than three times the

RMS noise level are blanked out. We average the gradients over each 20×20 pixels

sub-block, which is an empirically and numerically minimum block size (Lazarian &

Yuen 2018c), and smooth the gradients map ψg (see Eq. 4.3) with a Gaussian filter

FWHM ≈ 10′. In what follows, the usage of intensity gradients (IGs; see § 4.1.4) will

be referred to as Gradient Technique (GT), and the VGT specifies velocity gradient.

We compare the magnetic field inferred from the Planck 353 GHz polarized

dust signal data (FWHM ≈ 10′). In order to study the magnetic field morphology,

it is necessary to isolate polarized dust emission originating in the CMZ from the

diffuse polarized emission associated with Galactic foreground and background
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Figure 6.1: Visualization of magnetic fields towards the CMZ. The magnetic fields

were inferred from Planck 353 GHz polarized dust emission (top) and the VGT using
12CO, 13CO, and HNC emissions. The foreground contribution has been subtracted

from the Planck polarization and is overlaid on its total dust emission intensity map.

The VGT is overlaid on corresponding integrated intensity maps. The 12CO’s con-

tours are also overlaid on the Planck map. The yellow and black boxes outline two

regions in which significantly different magnetic field morphology can be seen between

the Planck and the 12CO VGT measurements.
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dust. To do so, we use two regions as the foreground reference point. One region

is located at the west of the CMZ, spanning from l = 3◦ to 18◦ and b = −0.35◦ to

0.35◦ and another one is located at the east of the CMZ spanning from l = −18◦ to

−3◦ and b = −0.35◦ to 0.35◦. By assuming that emission in these reference regions

provides spatial uniformity foreground emission, we calculate the average Stokes Ip,

Qp, and Up in that region, and the mean values were then subtracted from each

of the Ip, Qp, Up maps of Planck polarization. Fig. 6.2 presents the histograms of

the magnetic field angle inferred from Planck polarization. The foreground region

has a mean magnetic field ≈ 90◦ (in IAU convention) being parallel to the galactic

plane. After the subtraction, the mean magnetic field shifts to ≈ 50◦ around. In

what follows, we use the foreground calibrated map for comparison. We re-grid the

Planck polarization further to achieve the same pixel size as emission lines.

Figure 6.2: The histogram of magnetic field angle inferred from Planck 353 GHz

polarization towards the CMZ and the galactic foreground.

We find the resulting gradients of 12CO and 13CO have good agreement with the

Planck polarization showing AM = 0.85± 0.01 and AM = 0.88± 0.01, respectively.

However, several apparent misalignments between the gradients of 12CO and

Planck polarization appear in the Sagittarius B region. It is likely that the dust

polarization and the 12CO emission probe different spatial regions. The optically

thick tracer 12CO samples the diffuse outskirt region of the cloud with volume

density n ≈ 102 cm−3, while dust polarization traces denser regions. The theory of

RAT alignment (Lazarian 2007b; Lazarian & Hoang 2007) predicts that dust grains
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Figure 6.3: The histogram of the relative angle between the magnetic field inferred

from the VGT and Planck 353 GHz polarization towards the CMZ.

can remain aligned at high densities, especially in the presence of embedded stars.

Therefore, we expect that for n ≈ 103 cm−3 grains are aligned in the regions that we

study, as the misalignment disappears in 13CO’s gradients. This disagreement seen

in 12CO may also be caused by the bar-driven inflow hitting the CMZ there. We

repeat the analysis for denser gas tracer HNC. Similarly, we average gradients over

each 20 × 20 pixels sub-block and smooth the gradient map with a Gaussian filter

FWHM ≈ 10′. The HNC’s gradients result in a better alignment with the Planck

polarization showing AM = 0.92 ± 0.01. In Fig. 6.3, we plot the histograms of the

relative alignment between the VGT measurements and Planck polarization. The

histograms appear as Gaussian distributions concentrating on the range of 0◦ ∼ 10◦.

The median values of the histograms are approximately 10.67◦, 8.78◦, and 6.40◦ for
12CO, 13CO, and HNC, respectively. As discussed above, the values may contain

systematic angular differences since the VGT for a single molecular tracer contains

only the information of magnetic fields within a certain gas density range.

We notice that in the east of the galaxy (l ≈ 0.1◦, b ≈ −0.15◦), the gradients

of 12CO rapidly change their direction by 90◦. This change may come from the

superbubble around the Quintuplet cluster. In this case of significant hydro effect,

the velocity gradient is not expected to be related to the magnetic field direction.

Nevertheless, here we see that the VGT agrees with the Planck polarization well

globally, which indicates MHD turbulence is more critical in regulating the dynamics
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Figure 6.4: The morphology of magnetic fields towards the CMZ region revealed by

the GT using the 70µm PACS intensity image. The contours start from an intensity

value of 5000 mJy/sr. The yellow box outlines a region showing a nearly vertical

magnetic field.

of the CMZ.

Fig. 6.4 presents the magnetic field morphology inferred from the application of

the GT to PACS’s 70 µm image. Similarly, we average the gradients over each 20×20

pixels sub-block and blank out pixels where the intensity is less than 5000 mJy/sr.

Finally, the gradient map is smoothed with a Gaussian filter FWHM ≈ 2′. This

measurement reveals the magnetic field to a different depth from the one measured

by molecular lines (see Fig. 6.1). Also note that in the case of shocks, the intensity

gradient flips its direction by 90 degrees being parallel to the magnetic fields (Yuen &

Lazarian 2017a; Hu et al. 2019a, 2020a). Other physical processes, such as outflow,

bubble, and H II region, may also change the picture of MHD turbulence. Their

effects require further study. In particular, we find agreement (between the molecular

lines and 70µm image) in the Brick and Sgr A surroundings. However, disagreement

also exists. In particular, the magnetic field morphology is closer to a divergence-free

field in the Quintuplet cluster surroundings, at which the superbubble is located.

This difference of magnetic fields inferred from different tracers is expected, as the

molecular lines and 70 µm image reveal the gas at a different LOS depth. Also,

we zoom in on a small region near the Brick. As shown in Fig. 6.5, the intensity

structures are almost perpendicular to the galactic plane. Consequently, we find a
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Figure 6.5: The morphology of magnetic fields towards a zoom-in region highlighted

by the yellow box in Fig. 6.4. The contours start from an intensity value of 20000

mJy/sr.

vertical magnetic field there. This region has been called G0.33+0.04, G0.30+0.04,

and G0.4+0.1 was suggested to be a supernova remnant superposed on another shell

of nonthermal emission (LaRosa et al. 2000; Kassim & Frail 1996; Yusef-Zadeh et al.

2004; Ponti et al. 2015).

6.1.3 Magnetic fields in the Radio Arc and the Arched

Filament

Fig. 6.6 presents the morphology of magnetic fields towards the Radio Arc and

Arched Filaments measured by GT (i.e., intensity gradient) and HAWC+ polarized

dust emission. For GT measurement, we blank out pixels where the intensity is less

than three times the RMS noise level and average the gradients over each 20×20

pixels sub-block. Finally, the resulting gradient map is smoothed with a Gaussian

filter of FWHM ≈ 1′. Note here we are using the intensity gradient of synchrotron

emission. Due to the symmetry of velocity and magnetic fluctuations in Alfvénic

turbulence (Cho & Lazarian 2003), the gradients of magnetic fluctuations are also

perpendicular to the local magnetic field. As synchrotron radiation arises from

relativistic electrons spiraling along magnetic field lines, the anisotropic property is
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also entailed by the synchrotron emission (Lazarian & Pogosyan 2012). This gave

rise to the development of magnetic field tracing based on synchrotron intensity

gradients (SIGs, see Lazarian et al. 2017).

Figure 6.6: Left: The morphology of magnetic fields towards the Radio Arc, Arched

Filaments, and Sgr A east. The magnetic fields were inferred from the GT using the

radio observation at 1.4 GHz. Right: The magnetic fields towards the Radio Arc (A

zoom-in region corresponding to the dashed box in the left panel). The magnetic

fields were inferred from the GT (top) and HAWC+’s measurement of polarized dust

emission (middle). The distribution of AM (between the GT and HAWC+) is given

in the bottom panel.

The magnetic fields measured by GT follow the Radio Arc and the Arched

Filaments. This measurement towards the Arched Filaments agrees with the

results from the earlier HAWC+ polarization (Chuss et al. 2003; Vaillancourt et al.

2007). The Radio Arc, which has been observed for decades, indicates a poloidal

magnetic field perpendicular to the Galactic plane (Heywood et al. 2019). The GT

measurement here first confirms this poloidal component. The recent polarization

measurements from the Atacama Cosmology Telescope (ACT) suggest that the

Radio Arc is invisible at frequencies above 224 GHz (Guan et al. 2021). However,

the ACT measurement at 98 GHz shows the magnetic fields follow the Radio Arc,
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Figure 6.7: Differences and similarities of magnetic fields in different phases of gas

towards Sgr A⋆. Left: morphology of magnetic fields towards Sgr A region in ionized

gas revealed by the VGT using [Ne II] emission line. The magnetic field is overlaid

with the integrated [Ne II] emission intensity map. Right: The morphology of the

magnetic field, mostly in cold gas, revealed by HAWC+.

which confirms the results from GT. The elongation of radio structures along the

magnetic field is expected to be the consequence of MHD turbulence as we discussed

above. This is the result of the dynamics of motions induced by Alfvénic turbulence.

Indeed, in the low Alfvén Mach numbers, MA the MHD turbulence is weak from the

injection scale Linj to the scale LinjM
2
A (Lazarian & Vishniac 1999). The cascade of

weak turbulence does not change the parallel scale of perturbations but decreases

their perpendicular scale. In other words, Alfvénic motions shred the medium into

thinner and thinner filaments. Visually it may correspond to what is seen in Paré

et al. (2019), who found that the radio arc breaks up into parallel sub-filaments with

magnetic fields directed along the filaments by using high-resolution radio images.

These sub-filaments are not resolved in our GT measurement due to the averaging

procedure. In this situation, the GT is detecting the large-scale intensity gradient of

the ensemble of sub-filaments.

In the zoom-in Sickle region, the magnetic field inferred from HAWC+

polarization does not follow the Radio Arc but is parallel to the Galactic plane. In

Fig. 6.6, we plot the distribution of AM and the histogram of the relative angle,

which reveals the anti-alignment (AM ≈ −1) of HAWC+ and the VGT towards

the Radio Arc. This anti-alignment is likely coming from the fact that HAWC+

measures thermal emission while GT traces non-thermal components. In particular,

in the G0.18-0.04 region and the Arched Filaments, which are not dominated by
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non-thermal emission, the GT measurement gives good agreement with the HAWC+

polarization.

6.1.4 Magnetic fields in the surrounding of Sagittarius A*

This section gives a close-up of the Sagittarius A* region and uses the same recipe

for the VGT’s calculation. Due to the high resolution of the [Ne II] data, we smooth

the gradient map with a Gaussian filter FWHM ≈ 5′′ to match the HAWC+ band

A measurement. Pixels where the intensity is less than three times the RMS noise

level are blanked out.

Figure 6.8: The distribution of alignment measurement (between the VGT and

HAWC+) towards the Sgr A region. The contours outline the structures seen in

Fig. 6.7.

In general, the magnetic fields traced by the VGT are globally compatible with

the HAWC+ polarization measurements, although moderate discrepancy exists.

HAWC+ mostly samples magnetic fields in significantly cold gas, while [Ne II]

samples ionized and diffuse gas. The regions, where magnetic fields in the two

phases are aligned, suggest the magnetic fields’ variation is small. Moreover, several

small-scale structures exhibit prominent features. For instance, the study of H30α
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mm hydrogen recombination line towards the same source in Royster et al. (2019)

shows that the N arm has red-shifted radial velocity components ≈ 100 km s−1,

which are the velocities of peak emission. It gently decreases to ≈ 0 km s−1 from

north to south. Consequently, it makes a large velocity gradient that follows the N

arm. However, we find a good correspondence of the VGT with HAWC+ polarization

towards the N arm (see Fig. 6.7). Recall that the velocity gradient calculated via the

VGT is rotated by 90 degrees here so that the VGT gradient is perpendicular to the

N arm. As the VGT accounts for both turbulent velocity fluctuations and stream

velocity, the agreement between HAWC+ and the VGT means that the contribution

of turbulent velocity fluctuations dominates the velocity gradient. In addition, the

E eastern arm’s radial velocity components change from red-shifted (at the east)

to blue-shifted (near the mini cavity) (Royster et al. 2019). This change makes a

velocity gradient following the E arm. However, the rotated VGT gradient still

agrees with HAWC+, which means the MHD turbulence dominates the E arm and

N arm.

As for the mini-cavity region (R.A. ≈ 266.415◦, Dec. ≈ −29.010◦), the situation

gets changed. The radial velocity components (i.e., the velocities of peak emission)

induce a velocity gradient following the magnetic field, pointing from the east to the

west (Royster et al. 2019). This velocity gradient is on the scale of the entire stream

and is thus a systematic one. However, in this region, the (rotated) VGT anti-aligns

with HAWC+ polarization (i.e, AM ≈ −1, see Figs. 6.7 and 6.8). This suggests that

the contribution of ionized gas stream velocity dominates the velocity gradient, and

the hydro effect is significant. Furthermore, we give the magnetic field morphology

associated with ionized Paschen-α gas in Fig. 6.9. We average the gradients over

each 20×20 pixels sub-block, blank out pixels where the intensity is less than 5 µJy,
and smooth the gradient map with a Gaussian filter FWHM ≈ 5′′. Note that here

FWHM ≈ 5′′ is chosen to match HAWC+ measurements. A higher resolution map is

flexible for GT’s measurement. Similarly, we find that the resulting magnetic fields

follow the N arm and E arm. In the mini cavity region, unlike the VGT’s [Ne II]

measurement, the magnetic field tends to be aligned with the HWAC+ polarization.

As we discussed above, this difference may come from the fact that the velocity

gradient in the mini-cavity region is dominated by stream velocity, which is not

observable in the Paschen-α image. Again, Paschen-α samples the ionized gas phase,

while HAWC+ measures the cold gas phase.
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Figure 6.9: The morphology of magnetic fields towards Sgr A region in ionized

gas revealed by the GT using Paschen-alpha emission image. The magnetic field is

overlaid with the integrated Paschen-alpha emission intensity map. The contours

start from an intensity value of 5 µJy.

6.2 Magnetic fields in three-dimensions over the

Central Molecular Zone

In § 6.1, the VGT has been applied to trace the integrated magnetic field in the CMZ.

Multiple-wavelength observations, including spectroscopic and radio data, were

employed to disentangle the magnetic fields embedded in different gas phases along

the LOS. The measurements allowed us to map the wavelength-dependent magnetic

field in diffuse-ionized-gas and dense-cold-gas clouds on multiple scales from 10 pc

to 0.1 pc over the entire CMZ. In general, the magnetic fields traced by the VGT

were globally compatible with the polarization measurements, accounting for the

contribution from the galactic foreground/background. This successful application

encouraged us to investigate further the VGT’s applicability in decomposing the

projected POS magnetic fields along the LOS. The decomposition is performed in

PPV space using emission lines. The velocity information there advantageously

reveals the 3D spatial position in real space. For instance, the galactic disk
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contribution is largely concentrated at velocity 0 km/s, while molecular gas observed

at high velocity ±200 km/s is associated with an expanding ring (Scoville 1972;

Kaifu et al. 1974; Tokuyama et al. 2019). Therefore, the decomposed magnetic fields

probed by the VGT provide a new view of the 3D magnetic field configuration in the

CMZ region.

The decomposition is achieved by making a synergy of the VGT, the Python

implementation of the Semi-Automated multi-COmponent Universal Spectral-line

fitting Engine (SCOUSEPY; Henshaw et al. 2016), and the Agglomerative Clustering

for ORganising Nested Structures (ACORNS). SCOUSEPY is a routine used to fit

large quantities of complex spectroscopic data efficiently and systematically and

ACORNS is a hierarchical agglomerative clustering technique. The SCOUSEPY

decomposes spectroscopic emission lines into various Gaussian components, which

are then grouped via the ACORNS. Application of the VGT to the grouped

components results in a velocity-resolved mapping of the magnetic fields. We test

this approach on 12CO (1–0) and 13CO (1–0) emission lines and compare the VGT

mapping of the magnetic fields with the Planck 353 GHz polarized dust emission.

6.2.1 Numerical method: the SCOUSEPY decomposition

To explore the VGT’s potential in probing three-dimensional POS magnetic fields,

we use the SCOUSEPY, a Python software based on the Semi-automated multi-

COmponent Universal Spectral-line fitting Engine (SCOUSE) proposed by Henshaw

et al. (2016, 2019), to decompose each CO spectrum. SCOUSEPY is designed for

fitting a large number of spectroscopic data with a multi-stage procedure. The

software first divides the spatial data of the user-selected region into small areas,

named Spectral Averaging Areas (SAAs), and outputs a spectrum averaged spatially

for each of the SAAs. By manually marking the applicable velocity range of the

data, then the fitting procedures are performed to find a Gaussian profile. More

details can be found in Henshaw et al. (2016).

We follow the tolerance criteria proposed in Henshaw et al. (2016): (i) all

detected components must have a brightness temperature greater than three times

the local noise level; (ii) each Gaussian component must have an FWHM line

width of at least one channel: (iii) for two Gaussian components to be considered

distinguishable, they must be separated by at least half of the FWHM of the

narrowest of the two. (iv) The size of SAAs is set to ten pixels. Moreover,

the decomposed spectrum is further processed by the ACORNS. We perform

the ACORNS clustering only on the most robust spectral velocity components

decomposed by SCOUSEPY, i.e. (i) the signal-to-noise ratio is more significant than
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three; (ii) the minimum radius of a cluster to be 20′′, which is 130% of the beam

resolution; (iii) for two data points to be classified as ”linked”, the absolute difference

in measured velocity dispersion can be no greater 10.0 km/s. The clustering

comprises ∼ 98% of all data, resulting in several hierarchical and non-hierarchical

components. Because both components contribute to VGT measurement, we

combine them into the five most significant velocity components based on the

un-decomposed averaged spectral lines. Note that the decomposition is performed

Figure 6.10: Visualization of the decomposed 12CO (top) and 13CO (bottom). Color-

coded according to the emission line intensity peaks.

for 12CO and 13CO separately, for which the clustering may not result in physically

related components. To minimize this effect, firstly, we adopt the same tolerance
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criteria for both. Then we ensure the combined velocity component falls into a

similar velocity range. Therefore, we expect the decomposed velocity components of
12CO and 13CO largely represent the same physical structure, although a prospective

joint decomposition could reduce the uncertainty.

Figure 6.11: Visualization of the decomposed emission lines 12CO (top left) and
13CO (bottom left), as well as the averaged spectrum (right). Colors are used to

distinguish the clustered five components.

6.2.2 Mapping the projected POS magnetic fields

The visualization of the decomposed 12CO and 13CO emission lines is presented

in Fig. 6.10. There we only draw the emission line maximum of each decomposed

spectrum. Compared with earlier work of Henshaw et al. (2016, 2020), in which

dense tracers HNCO (J = 4-3), N2H
+ (J = 1-0), and HNC (J = 1-0) were adopted,

12CO and 13CO emissions are more diffusive and permeated in the CMZ, which

allows us to trace the global magnetic fields and to compare the results with Planck

polarization. We observe an apparent high-intensity filamentary structure in the

velocity range of 0 − 100 km/s, which was also detected by Henshaw et al. (2016).
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Figure 6.12: Visualization of the magnetic field (red segment) associated with the

decomposed velocity components 3 and 5 (see Fig. 6.11). The magnetic field is ob-

tained from the VGT using 12CO and 13CO.

This structure is believed to represent the dense gas streams in the CMZ. The

figures show two distinguished structures in −200 - −100 km/s and 100− 200 km/s.



236

These unusual high-velocity structures are most likely from a rapidly expanding ring

with a radius ∼ 250 pc (Scoville 1972; Kaifu et al. 1974; Tokuyama et al. 2019).

We group the decomposed spectra into five components via the ACORNS algorithm

(see Fig. 6.11). These five components correspond to the most significant Gaussian

profile in the total spectrum averaged over the full CMZ. Components 1, 2, and 4,

which have small velocities (|vlos| < 100 km/s), are more associated with the gas in

the galactic central disk and the CMZ streams so they may suffer more confusion

in the decomposition. In contrast, components 3 and 5 come from an expanding

ring showing very high velocity. Therefore they are more likely to be real physical

structures.

Note that the magnetic field morphology traced by the VGT using the 12CO

and 13CO emission lines has been presented in Fig. 6.1. The VGT considers

all contributions along the LOS and exhibits good agreement with the Planck

polarization. This encourages us to decompose further the magnetic field of the

high-velocity components 3 and 5 in detail. Fig. 6.12 presents the orientation

distribution of magnetic fields towards the components 3 and 5 measured by the

VGT using the 12CO and 13CO. From the decomposed intensity map, we see that

both components span over the full CMZ while component 3 is located at the low

latitude region (b < 0) and component 5 focuses on the high latitude range (b > 0).

In particular, no apparent global mean magnetic field is observed at the VGT’s scale

∼ 5 pc, and sub-structures exhibit distinguished magnetic field orientation. This

indicates a rather turbulent magnetic field picture of components 3 and 5. Also,

as 12CO and 13CO show similar magnetic field distributions, it suggests that the

magnetic field generally has only small variation over the volume density range from

102 cm−3 to 103 cm−3 around.

6.2.3 Decomposition of velocity components

To reduce the confusion on low-velocity components on global scales, over which a

coherent structure can have a large velocity variation, we have separate close-ups

of three sub-regions A, B, and C. The sub-region A covers Sgr B2, similarly for the

other two regions B contains the Brick and Sgr A*, and C includes Sgr C. Compared

with the full CMZ, the spectra of the zoom-in regions exhibit more distinct Gaussian

profiles (see Fig. 6.13) so that they are more likely to be real physical structures.

Based on the spectra, we also decompose the sub-region into five components.

A visualization of the decomposed velocity components is presented in Fig. 6.13.

The spectral lines of the decomposed components are generally compatible with the

un-decomposed averaged one. We observe that some lines become more significant
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Figure 6.13: Panel a: visualization of the decomposed 12CO spectrum in PPV space

(top) and averaged 12CO spectrum (bottom). The decomposition is performed for

three sub-regions, i.e., A (left), B (middle), and C (right). Panel b: visualization of

the decomposed 13CO spectrum in PPV space (top) and averaged 13CO spectrum

(bottom). The decomposition is performed for the same three sub-regions. The

dashed line represents an un-decomposed averaged spectrum.

after decomposition, such as one of the sub-region B component 3 (in green color).

This difference can be easily understood. The un-decomposed spectrum contains

both high-intensity and low-intensity pixels, while the decomposition blanks out

low-intensity pixels, in which the intensity is less than three times the RMS noise
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level. Without the contribution from low-intensity pixels, the averaged spectral line

gets a higher intensity value after averaging. For each component, we calculate

the velocity vpeak of the averaged spectral line maximum and velocity dispersion

δv. The results are summarized in the Appendix Tab. 6.1. Apparently, for a single

sub-region, the difference between vpeak is more extensive than δv. Therefore, we

expected that the decomposed components are actual physical structures, and the

effect of velocity caustic is minimal.

The decomposed structures with different velocities have a more clear physical

meaning. For instance, the velocity component 1 (including A-1, B-1, C-1) falls

in the velocity range around 0 (see Tab. 6.1). Although there is significant gas

contamination in the Galactic disk at vlos ∼ 0, the bulk of the dense gas, including

Sgr B2, is in the CMZ. Other velocity components with negative velocity (i.e.,

components 2 and 3) are mostly due to the front side of the CMZ, while positive

velocity components (i.e., components 4 and 5) come from the backside. Note that

the front and backside refer to the CMZ structures on inner radius scales ∼ 250 pc.

6.2.4 Magnetic fields of the decomposed velocity components

We first present the un-decomposed magnetic field maps for each sub-region

compared with the Planck polarization. The results are shown in Fig. 6.14. For

the sub-region A, the magnetic field orientation inferred from both 12CO and 13CO

is along the northeast-southwest direction in low-intensity regions. However, the

magnetic field inferred from 12CO becomes vertically oriented in the high-intensity

region. This change is not observed in 13CO. The gas dynamics or magnetic

field properties are likely changed with respect to different volume densities. The

optically thick tracer 12CO usually samples the diffuse outskirt region with volume

density n ∼ 102 cm−3, while 13CO traces the region with n ∼ 103 cm−3. As for

the sub-region B, global magnetic fields inferred from both 12CO and 13CO appear

northeast-southwest oriented. A change of the field orientation is observed at the

superbubble around the Quintuplet cluster. The sub-region C shows relatively lower

intensity, and the magnetic fields are along the northeast-southwest with slight

variations.

Due to the low resolution of Planck, the magnetic field’s variation is slight.

Therefore, we visualize the field line via the LIC. We find the resulting magnetic fields

from 12CO and 13CO have good agreement with the Planck polarization showing

AM from ∼ 0.6 to ∼ 0.9. However, astrophysical objects may possess systematic

gradients that are imposed by external conditions, which can contribute to our

obtained velocity gradients. However, compared with the systematic gradients,
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Figure 6.14: Top & Middle: Visualization of magnetic fields (red segment) inferred

from VGT using 12CO and 13CO emissions towards the CMZ. The CMZ is separated

into three sub-regions, which are labeled as A (left), B (middle), and C (right),

respectively. The magnetic fields are overlaid on corresponding integrated intensity

color maps. The contours on 12CO and 13CO intensity maps start from the median

intensity. Bottom: Visualization of magnetic fields inferred from Planck’s polarized

dust emission at 353 GHz towards the CMZ. The magnetic field is visualized using

the LIC. The magnetic fields are overlaid on corresponding intensity color maps of

polarized dust emission. The 12CO’s contours are also overlaid on the Planck maps.

which do not depend on scales, the amplitude of turbulence’s velocity gradient

increases at small scales. We expect that turbulence’s velocity gradient is dominant

at small scales and the contribution from other effects (such as galactic shear) to

the velocity gradients is insignificant. In any case, as here we see that the velocity

gradient has good agreement with Planck polarization, the contribution from other

effects, which is not expected to have any correlation with the magnetic field, is in

general not significant.

Next, we apply the VGT to trace the magnetic field orientation of each
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Table 6.1:: Parameters of the decomposed components for each sub-region (see

Fig. 6.13), i.e., A, B, and C. For each component, vpeak is the velocity of the sub-

region-averaged emission line maximum (i.e., T peak
mb ) and δv is velocity dispersion

calculated from normalized velocity centroid (i.e., moment-1 map). The number of

decomposed spectra (i.e., Gaussian component) is given.

Emission Region Component vpeak [km s−1] δv [km s−1] T peak
mb [K] Number of spectra

12CO

A

1 37.0 19.64 18.60 63856

2 -45.0 12.43 5.22 29609

3 -91.0 17.04 4.85 41473

4 95.0 17.03 16.45 46749

5 191.0 7.57 6.52 30953

B

1 21.0 16.39 12.44 54272

2 -15.0 20.86 5.06 94462

3 -133.0 13.85 7.25 38550

4 73.0 26.29 14.36 53245

5 175.0 14.26 5.11 48586

C

1 19.0 16.06 8.39 101502

2 -39.0 18.11 12.49 53387

3 -125.0 21.25 7.33 71216

4 71.0 24.21 5.89 19230

5 145.0 12.41 7.05 61076

13CO

A

1 21.0 16.30 3.07 80639

2 -43.0 19.96 1.69 60412

3 -85.0 29.75 0.76 24770

4 91.0 13.93 2.61 38740

5 189.0 8.90 0.89 13886

B

1 -1.0 12.82 2.41 102575

2 -51.0 12.05 1.61 57204

3 -133.0 21.33 1.13 23930

4 63.0 25.80 2.20 44418

5 177.0 16.00 0.82 24832

C

1 1.0 10.12 2.68 91397

2 -43.0 17.96 1.73 44848

3 -127.0 18.24 1.34 43570

4 37.0 17.34 1.00 17780

5 149.0 12.43 1.05 26243

decomposed velocity component. The magnetic fields of the sub-regions A, B, and

C are presented in Fig. 6.15, Fig. 6.16, and Figs. 6.17-6.18, respectively. Note that

low-intensity regions may include more systematic uncertainties coming from either

the decomposition method or intrinsic observational error. We, therefore, blank

out the magnetic field vectors where the integrated intensity is less than its median
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value.

For the sub-region A, the dense clump (l ∼ 0.73◦, b ∼ −0.10◦) seen in Fig. 6.14

appears in component 1. The magnetic field structure is pretty complex, showing

a vortex-like shape. In general, 12CO tends to show distinctly different magnetic

structures in the north-south orientations, while for 13CO, more magnetic field

vectors aligned along the northeast-southwest, being similar to the magnetic field

orientation observed in Fig. 6.14. This can be understood because component 1

has the most significant intensity (see Fig. 6.13) so its contribution dominates the

projected magnetic field map, which is contributed by all components. In addition,

the upper left filamentary structure in A-1 may be due to the collapse of gas

along the vertical magnetic field, consistent with the theoretical prediction. As for

components 2 and 3, the observed intensity structures are quite different in 12CO and
13CO, although the magnetic field is globally oriented along the northeast-southwest

direction. The different structures may be due to the complexity of CMZ’s streams

in the intermediate velocity range, so more confusion exists on the LOS. Component

4 has the second most significant intensity appearing as a filamentary structure. Its

magnetic field orientation is preferentially along the horizontal (west-east) direction,

which also appears in the projected magnetic field map (see Fig. 6.14). A toroidal

field dominates this magnetic field. Also, we plot the histogram of magnetic field

orientation for each component in Fig. 6.19. We can see that for both 12CO and
13CO, other less significant components 2, 3, 5 have the majority of magnetic field

angle in the range of 0− 60◦ (east from the north).

As for the sub-region B, components 1, 2, and 4 dominate the observed molecular

emission. Similar to the sub-region A, component 2 with negative moderate velocity

exhibits quite different intensity structures in two CO emissions. Magnetic fields in

the central area of this sub-region are mainly built upon components 1, 2, and 4. Two

preferential magnetic field directions are oriented along the northeast-southwest or

the east-west. This trend is more clear in the histogram (see Fig. 6.19), which shows

that the magnetic field is mostly oriented in the position angle range of 30◦ − 60◦

(east from the north). However, several small clumps show a change in magnetic

field direction. Two locate around l ∼ 0.15◦, b ∼ −0.10◦ in components 1, 4, and 5

and l ∼ −0.10◦, b ∼ 0.00◦ in component 1. Another is around l ∼ −0.06◦, b ∼ −0.10◦

in component 3. There the magnetic fields change the direction being along the

northwest-southeast. The change of direction is also observed in the un-decomposed

magnetic field map (see Fig. 8.3) in the same location as components 1, 4, and

5. The change seen in component 1 may come from the superbubble around the

Quintuplet cluster. A significant hydro effect could change the direction of the

velocity gradient. As for component 4, which is close to Sgr A*, the effect of outflows
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Figure 6.15: Visualization of the magnetic field (red segment) associated with each

decomposed velocity component in the sub-region A (see Fig. 6.13 and Tab. 6.1 for

details). The magnetic field is obtained from the application of the VGT to 12CO

(left) and 13CO (right).
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Figure 6.16: Same as Fig. 6.15, but for the sub-region B.
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perpendicular to Sgr A* streams could change the direction of magnetic fields (see

the dashed box in Fig. 6.16). Components 3 and 5 show very high velocity but were

rarely imaged before.

The sub-region C is less complicated, although several whirling structures appear

there in particular in components 2, 3, and 5. Component 1 has the most significant

intensity, while other components are at a similar level (see Fig. 6.11). There are

three preferential magnetic field directions northeast-southwest, north-south, or

east-west. The latter two suggest the dominance of poloidal and toroidal fields,

respectively. As shown in Fig. 6.19, the magnetic field is mainly orientated in the

range of 0◦ − 90◦ (east from the north) with a peak value around 45◦ or 70◦, which

could come from the superposition of poloidal and toroidal fields.

In Fig. 6.20, we compute the AM of the VGT measurement and Planck

polarization for each component. A higher value of the AM suggests that

the corresponding component contributes more to the projected polarization

measurement. As we see, for the sub-region A, both 12CO and 13CO of components

3, 4, and 5 give similar AM values, which suggest the magnetic field’s variation is

relatively small at two density ranges. However, a significant difference appears in

components 1 and 2, in which 12CO’s AM drastically drops. As we discussed above,

the difference comes from the fact that the magnetic field inferred from 12CO changes

its direction to be along the north-south. The highest intensity value of component

1 ensures this change is observable in an un-decomposed magnetic field map. This

change is not observed in Planck polarization and VGT-13CO measurement. The

polarization is likely dominated by the contribution from denser regions.

The situation is similar for the sub-region B. For both tracers, components

1 - 4 have similar AM. The AM of component 3 is relatively low. Considering

that the magnetic field inferred from the Planck polarization is mainly along the

northwest-southeast, this low AM is contributed by the magnetic fields oriented

along the northwest-southeast and east-west. Also, the 13CO’s AM of component

5 significantly drops, while 12CO does not. The 13CO case is due to the magnetic

field associated with the observed circular structure (see Fig. 6.16) is swirling, but

the Planck polarization gives a northeastern magnetic field direction. This low AM

associated with the swirling structure is compensated by the northeastern structure

that appeared in 12CO.

As for the sub-region C, the AM of 12CO and 13CO has similar value. As their

spectral intensities are at the same level, all components have approximately equal

contributions to the total magnetic field map.
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Figure 6.17: Same as Fig. 6.15, but for the sub-region C.
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Figure 6.18: Same as Fig. 6.15, but for the sub-region C.

6.2.5 Magnetic field tomography with VGT

Dust polarization is an effective way of tracing integrated magnetic fields along the

LOS. It, however, meets difficulties in separating the magnetic field associated with

different components of a single cloud or various clouds along the same LOS.

The VGT provides a solution to the difficulties. This work shows that emissions

of different velocity components or clouds along the same LOS can be decomposed

in the position-position-velocity space. The VGT can then trace the magnetic

fields associated with individual components/clouds, resulting in a magnetic field

tomography. Here we use the CMZ as an example, while the application to the

supernova remnant W44 is presented in Liu et al. 2022b. When summing up
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Figure 6.19: The histogram of the magnetic field angle obtained from VGT using
12CO (left) and 13CO (right). The position angle is defined as east from the Galactic

north.
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Figure 6.20: The AM of the magnetic fields obtained from VGT and Planck polar-

ization. VGT is calculated from 12CO (pink) and 13CO (blue) for the sub-region A

(top), B (middle), and C (bottom).
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contributions from all components, we show that the VGT-inferred results globally

agree with those from the Planck dust polarization measurements. This agreement

increases our confidence in decomposing the magnetic fields. On the other side, the

decomposition approach here benefits the polarization study in distinguishing the

contribution from different regions along the LOS. For instance, our study shows

that several components can dominate the agreement with Planck polarization. As

shown in Fig. 6.20, the best agreements appear in components A-3 and A-5. It

suggests these components mainly contribute to the signal of polarized dust emission.

This opens a new way to study dust’s properties in the galactic center. Note here

we separately decompose 12CO and 13CO. The decomposition may contain intrinsic

uncertainty, and we view our present study as the first step in this direction.

The VGT approach of decomposing magnetic fields introduced here also works

for other objects on smaller scales, such as the Sgr A west region and the Brick,

which several molecular species can trace. The VGT approach will allow us to access

the magnetic field tomography along the LOS. Also, different tracers, which sample

various gas density ranges or phases, will enable us to explore the magnetic fields

associated with density or temperature ranges. For instance, the VGT using 12CO

reveals the magnetic field associated with diffuse molecular gas with volume density

∼ 102 cm−3, while 13CO can give information on higher volume density ∼ 103 cm−3.

6.2.6 Magnetic field configuration in the Galactic center

Owing to the advantages of the VGT, one can further explore the magnetic field

configuration in the Galactic center. Firstly, the magnetic fields preferentially

orientate along the northeast/southwest direction. This orientation may come

from the superposition of a toroidal field and a poloidal field. In particular, we

observe apparent vertical magnetic field components in the sub-regions A-1 (around

l ∼ 0.73◦, b ∼ −0.10◦) and C-1 (around l ∼ −0.45◦, b ∼ −0.14◦). Since velocity

components, A-1 and C-1 with velocity concentrate on 0 km/s (see Tab. 6.1 and

Fig. 6.12) are mainly from the Galactic disk and the streams associated with the

CMZ. This suggests a dominant role of poloidal fields.

It is natural to assume that this poloidal magnetic field is generated by the

galactic dynamo (Kulsrud 1999). It is widely believed that the process amplifies

the magnetic field starting with a seed magnetic field with differential rotation of

the galaxy naturally producing a toroidal field through magnetic field stretching

(Lazarian 1992). This is often termed the Ω-effect. The classical galactic dynamo

assumes a cyclonic motion of turbulence can make a poloidal loop from the toroidal

field through the so-called α-effect (Ruzmaikin et al. 1988). The differential rotation
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Figure 6.21: Cartoon of the magnetic field configuration in the CMZ. Dotted lines

indicate relatively lower density. The cartoon was inspired by those presented in

Sofue & Lang (1999).

can shear the newly formed loop further to amplify the toroidal component of the

magnetic field. Different from the galactic disk, the poloidal field near a spherical

object, i.e., the galactic CMZ, is more likely to be dipole and does not change its

direction (Parker 1979). An additional effect that can be important includes gas

compression that amplifies the vertical field (with respect to the galactic disk) in the

galactic center, while ambipolar diffusion removes the parallel component (Chandran

et al. 2000).

The problem with the picture above is that the classical dynamo (Parker 1971)

does not conserve magnetic helicity, which is a necessary constraint for a dynamo in

a highly conducting medium (Gruzinov & Diamond 1994). At the same time, the

model that accounts for the magnetic helicity conservation (Vishniac & Cho 2001;

?) does not have such a simple topological explanation. Similarly, a less obvious

process of magnetic reconnection in a turbulent medium induces the process of

reconnection diffusion (Lazarian & Vishniac 1999; Santos-Lima et al. 2021) that is

expected to move the magnetic field in turbulent gas faster than ambipolar diffusion

(Lazarian et al. 2015). A further discussion of these theoretical issues is well beyond

the scope of the present paper. However, we believe that the magnetic field structure
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of the CMZ revealed in the present paper can help constrain future theoretical

constructions.

Several horizontal magnetic fields are also observed in the components such as

A-4 and B-4. The toroidal magnetic field could play a crucial role in these regions.

In the region around the Sgr A* (i.e., B-4), the stream or other physical effects

could be sufficiently strong to stretch the magnetic fields. However, a change of the

magnetic field orientation around 90 degrees is found on the upper and lower part

of the cloud around the Sgr A* (see the dashed box in Fig. 6.16). This apparent

change results from an outflow perpendicular to the Sgr A* streams.

A critical aspect of the present work is the decomposition of the high-velocity

expanding ring (i.e., components 3 and 5). Its distinguished high velocity ensures

minimum confusion (i.e., some clouds with the same velocity at different spatial

positions along the LOS may be identified as one component) along the LOS. A

distinct swirling magnetic field structure is observed in component B-5 (velocity

∼ 175 km/s). In particular, the expanding ring appears with no apparent mean

magnetic field, suggesting a highly turbulent field there. Based on the decomposed

magnetic fields in this work, we present a simple cartoon of the magnetic field

configuration in the CMZ, as shown in Fig. 6.21.

6.3 Magnetic fields in Seyfert galaxies

The VGT (see § 4.1.4) has been extensively tested by numerical simulations in

various astrophysical conditions (Lazarian & Yuen 2018c; Hu et al. 2020a; Ho &

Lazarian 2021), considering CO self-absorption (see § 4.2.6; González-Casanova et al.

2019; Hsieh et al. 2019; Hu & Lazarian 2021), self-gravity effects (see § 4.1.2; Yuen

& Lazarian 2017a; Hu et al. 2020c), and applied to mapping magnetic fields in the

Milky Way in different phases, from diffuse H I media (see § 5.1; Hu et al. 2020d;

Lu et al. 2020; Hu & Lazarian 2020) to dense molecular clouds (Hu et al. 2021a;

Alina et al. 2022; Liu et al. 2022b), as well as the Central Molecular Zone (Hu et al.

2022d,c). The requirement for the application of the VGT is that the turbulent

injection scale is resolved, which is ∼ 100 pc for the Milky Way (Armstrong et al.

1995; Chepurnov & Lazarian 2010; Xu & Zhang 2017b; Ha et al. 2022) and expected

to be similar in other spiral galaxies. Therefore, with high-resolution ALMA (Tosaki

et al. 2017; Leroy et al. 2021a) and PdBI Arcsecond Whirlpool Survey (PAWS;

Hughes et al. 2013) spectroscopic data, the VGT opens a radically new avenue

to mapping magnetic fields of nearby galaxies that is complementary to both

synchrotron and dust polarization measurements.
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In this work, we employ the VGT to five nearby Seyfert galaxies, M51 (Hughes

et al. 2013), NGC 1068 (Tosaki et al. 2017), NGC 1097 (Lopez-Rodriguez et al.

2021), NGC 3627 (Soida et al. 2001b), and NGC 4826 (Garćıa-Burillo et al. 2003),

by using molecular emission line data of CO isotopologs obtained with ALMA

and PAWS archives (Hughes et al. 2013; Tosaki et al. 2017; Leroy et al. 2021a,b).

We compare our results of the first four galaxies with the dust polarization data

from the SOFIA legacy program (Lopez-Rodriguez et al. 2020; Borlaff et al. 2021;

Lopez-Rodriguez et al. 2021) and synchrotron polarization data from the Very

Large Array (VLA; Beck et al. 2005; Fletcher et al. 2011). We also use the VGT to

produce the first magnetic field map of NGC 4826, for which no polarization data

are available yet.

Galaxy Distance Resolution Emission line Data source ∆v Polarization

M51 7.6 Mpc 37.0 pc 12CO(J = 1 - 0) PAWS 5.0 km s−1 HAWC+ 154 µm & VLA 6.2 cm

NGC 1068 14.4 Mpc 98.0 pc 13CO(J = 1 - 0) ALMA 1.5 km s−1 HAWC+ 89 µm
NGC 1097 17.0 Mpc 82.0 pc 12CO(J = 2 - 1) PHANGS–ALMA 2.5 km s−1 HAWC+ 89 µm & VLA 3.5 cm

NGC 3627 9.6 Mpc 47.0 pc 12CO(J = 2 - 1) PHANGS–ALMA 2.5 km s−1 HAWC+ 154 µm
NGC 4826 5.3 Mpc 26.0 pc 12CO(J = 2 - 1) PHANGS–ALMA 2.5 km s−1 -

Table 6.2:: Summary of data sets used in this work. ∆v represents the velocity

resolution of emission lines. PAWS: Hughes et al. (2013). ALMA: Tosaki et al.

(2017). PHANGS-ALMA: Leroy et al. (2021a,b). HAWC+: Borlaff et al. (2021);

Lopez-Rodriguez et al. (2020, 2021). VLA: Fletcher et al. (2011); Beck et al. (2005).

6.3.1 Description of observational data

Emission lines

The 12CO (J = 1 - 0), 13CO (J = 1 - 0), and 12CO (J = 2 - 1) emission lines

used in this work come from the PAWS (Hughes et al. 2013), ALMA NGC 1068

project (Tosaki et al. 2017), and the Physics at High Angular resolution in Nearby

Galaxies-Atacama Large Millimeter/submillimeter Array (PHANGS–ALMA) survey

(Leroy et al. 2021a), respectively. The summary of data set is presented in the

Tab. 6.2.

M51: The PAWS maps the 12CO (J = 1 - 0) emission from the central ∼ 9 kpc

of a massive spiral galaxy M51. The effective angular resolution of the 12CO data

cube is 1.16′′ × 0.97′′, corresponding to a spatial resolution of ∼ 37 pc. The mean

RMS of the noise is ∼ 0.4 K in a 5.0 km s−1 channel.

NGC 1068: The central ∼ 1′ diameter region of NGC 1068 was observed with
13CO (J = 1 - 0) using the Band 3 receiver on ALMA. The effective beam size is
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1.4′′ × 1.4′′, giving a spatial resolution of ∼ 98 pc. The mean RMS noise level in the

channel maps is ∼ 0.64 mJy beam−1 at a velocity resolution of 1.5 km s−1.

NGC 1097, NGC 3627, and NGC 4826: PHANGS-ALMA survey provides
12CO (J = 1 - 0) emission line at ∼ 1′′ (∼100pc) spatial resolution and 2.5 km s−1

velocity resolution for the nearby galaxies NGC 1097, NGC 3627, and NGC 4826.

The survey achieves a high signal-to-noise ratio with an RMS brightness temperature

noise level of ∼ 0.30± 0.13 K km s−1.

Polarization measurement

We use the High-resolution Airborne Wideband Camera Plus (HAWC+) polarization

measurement obtained from HAWC+ archival database (Harper et al. 2018; Borlaff

et al. 2021; Lopez-Rodriguez et al. 2020). We use the band D measurement (154 µm,

Full Width at Half Maximum: FWHM ≈ 13.6′′) for galaxies M51 and NGC 3627,

while band C measurement (89µm, FWHM ≈ 7.8′′) for NGC 1068 and NGC 1097.

We also adopt the VLA radio observation (combined with the Effelsberg telescope)

at wavelength 6.2 cm (FWHM ≈ 8.0′′) for M51 (Fletcher et al. 2011) and 3.5 cm

(FWHM ≈ 3.0′′) for NGC 1097 (Beck et al. 2005), respectively. We consider only

pixels with p/σp > 2, where p is the polarization fraction, and σp is its uncertainty.

The polarization data is not smoothed further but re-grid to match that of the

VGT-measured magnetic field orientation.

The input for the VGT is the high-resolution spectroscopic cubes of molecular

tracers 12CO and 13CO. We follow the established VGT (pseudo Stokes parameters)

procedures (see § 4.1.4) to trace the POS magnetic fields. Estimates on the statistical

uncertainties of VGT measurements are provided in Appendix 6.3.8 (Fig. 6.32). We

compare our magnetic field maps to those inferred from polarization obtained with

HAWC+ as well as the VLA. The correlation between cosmic ray generation and

star formation is suggested by the ”far-infrared-radio correlation” (Matthews et al.

2021). Thus radio synchrotron radiation is expected around star-forming regions,

but with a much larger scale height due to the cross-phase diffusion of turbulent

magnetic fields and diffusion of cosmic ray electron (Planck Collaboration et al.

2014a; Xu & Lazarian 2022b; Hu et al. 2022e). Dust polarization is expected to

trace the magnetic fields in cold dense media according to Planck results for the

Milky Way (Planck Collaboration et al. 2014a).
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Figure 6.22: Differences and similarities of magnetic fields in different gas phases

towards the M51 galaxy. Top: morphology of magnetic fields revealed by the VGT

using 12CO and HAWC+ polarization at 154µm (Borlaff et al. 2021). The VGT

measurement is visualized by black streamlines and HAWC+ is represented by the

colored segments. Colors on polarization vectors present the AM of the VGT and

polarization. The magnetic field is overlaid with the HST WFC3/F814W ultraviolet

image. The black circle represents the beamwidth of observation. Bottom: Same as

the top panel, but for the magnetic field, mostly in warm gas, revealed by VLA +

Effelsberg polarization at 6.2 cm (colored segments; Fletcher et al. 2011) and VGT

(black streamlines). The colorbars of background HST images are logarithmically

spaced in the range from 10−2 to 102 electrons per second.
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6.3.2 Magnetic field in M51

Fig. 6.22 presents the morphology of magnetic fields towards M51 measured by the

VGT-12CO, HAWC+ 154 µm dust polarization (Borlaff et al. 2021), and VLA radio

6.2 cm polarization (Fletcher et al. 2011). For the VGT measurement, we average

the gradients over each 20×20 pixels sub-block, which is an optimal block size used

in earlier VGT studies (Hu et al. 2020a), and smooth the gradients map ψg with a

Gaussian filter FWHM ∼ 6′′, which is equivalent to the sub-block’s size, to reduce

the gradient’s uncertainty caused by the Gaussian fitting. The resulting magnetic

field map has a higher resolution than that of HAWC+ (∼ 13.6′′) and VLA (∼ 8′′).

From Fig. 6.22, we see that in spiral arms, the global magnetic structure traced by

the VGT and polarization are in good agreement, with the inferred magnetic fields

closely following the spiral arm pattern. On average, the AMs of the two methods are

in the range of 0.75− 1.00 (see Fig. 6.31 in the Appendix 6.3.8), with a peak value at

AM ≈ 1. Noticeably, the misalignment (i.e., negative AM) between VGT and VLA

measurements appears in the central region. However, as shown in Appendix 6.3.8,

the VGT measurement in low-CO-intensity regions typically is associated with high

uncertainty due to the poor signal-to-noise ratio. Such misalignment in low-intensity

regions may not be caused by physical reasons. A radial component of magnetic

fields is only significant in CO (see Fig. 6.33 in the Appendix 6.3.8), accompanying

the molecular gas inflow driven by the two-armed spiral towards the nucleus of M51

(Querejeta et al. 2016a).

Figure 6.23: The correlation of star formation rate (SFR) and AM for the M51

galaxy.

In general, the star formation rate (SFR) is not homogeneous across the spiral

galaxies. A high SFR means a more active star-forming process, indicating more

substantial turbulence in the ISM injected by supernovae explosions and stellar

winds. Given that the VGT is rooted in the physics of MHD turbulence, these
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turbulence injection mechanisms potentially can cause a correlation between the

VGT-traced magnetic field and SFR. Using the available SFR data from Leroy et al.

(2019), we plot the correlation of SFR and AM for the M51 galaxy in Fig. 6.23. As

expected, high SFR preferentially corresponds to positive AM, which indicates a

good agreement of the VGT and polarization. This correspondence is more apparent

in dust polarization, which is tightly associated with star formation activity.

The correspondence of negative AM and high SFR in synchrotron polarization is

contributed by the misalignment observed in the center area of M51.

6.3.3 Magnetic field in NGC 1068

In the Seyfert and starburst galaxy NGC 1068, molecular gas is abundant along the

star-forming spiral arms and the central region. Fig. 6.24 shows the POS magnetic

fields towards NGC 1068 mapped by applying the VGT (FWHM ∼ 5′′) to 13CO

(J = 1 - 0) emission, in comparison with HAWC+ 89 µm polarization (beam size

∼ 7.8′′). The two measurements are globally compatible with each other, except

in the interface regions between the bar (Garćıa-Burillo et al. 2014) and the spiral

arms. In the interface regions, the strong inward radial flow of molecular gas is

also detected and attributed to the combined action of the bar and the spiral arm

(Garćıa-Burillo et al. 2014). Beginning from the bar-arm transition regions, VGT

reveals a significant radial component of magnetic fields in CO along the bar (see

Figs. 6.33 and 6.34 in Appendix 6.3.8). The remarkable coincidence between the

inflow (Garćıa-Burillo et al. 2014; Lopez-Rodriguez et al. 2020) and radial magnetic

fields seen in molecular gas suggests that magnetic fields play an important role

in transporting CO to the central reservoir of molecular gas and powering star

formation in the kpc-scale starburst ring. However, the readers should note that in

this work, we do not explicitly distinguish inflow or outflow. For a region dominated

by gravity, we expect to observe accretion and inflows associated with molecular

material.

6.3.4 Magnetic field in NGC 3627

For this interacting galaxy (Haynes et al. 1979), the magnetic fields traced by 12CO (J

= 2 - 1) closely follow the bar and asymmetric spiral structures, with FWHM∼ 8.0′′

(see Fig. 6.24). By comparing with HAWC+ 154 µm polarization (FWHM∼ 13.6′′),

we see a good alignment between the two measurements in the western arm and

the bar. The misalignment (i.e., negative AM) appears in the southern bar end

and the eastern arm. An unusual magnetic field component crossing the dust lane
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Figure 6.24: Same as Fig. 6.22, but for the NGC 1068 (left) and NGC 3627 (right)

galaxies. NGC 1068: the VGT uses 13CO (J = 1 - 0) emission line (black streamlines)

and HAWC+ polarization is observed at 89 µm (colored segments; Lopez-Rodriguez

et al. 2020). The colorbar of the background HST WFC3/F814W ultraviolet image

is logarithmically spaced in the range from 10−1 to 102.5 electrons per second. NGC

3627: the VGT uses 12CO (J = 1 - 0) emission line (black streamlines) and the

HAWC+ 154µm polarization (colored segments). The magnetic fields are overlaid

with the HST WFC3/F814W ultraviolet images (Lee et al. 2022). The colorbar of

the HST image is logarithmically spaced in the range from 10−6 to 106 electrons per

second.

in the southeast (SE) disk was earlier found by radio polarization measurements

(Soida et al. 2001b). A recent collision with a dwarf galaxy may be responsible for

the enhanced star formation in the eastern arm and the distortion of the SE region

(Weżgowiec et al. 2012). The different magnetic field configurations seen in CO and

dust support this scenario and may reflect distinct pre- and post-collision flows of

different phases induced by the interaction. The tidal interaction with the neighbor

galaxy NGC 3628 can significantly affect its subsequent dynamical evolution and

trigger efficient radial inflow toward the nucleus (Zhang et al. 1993).
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6.3.5 Circumnuclear region of NGC 1097

A molecular ring in the nucleus and dust lanes in the bar

As an efficient driver of gas inflow, a strong bar with prominent dust lanes along

the bar is present in NGC 1097. The orbiting gas loses angular momentum at the

dust-lane shocks and falls toward the galaxy center (Athanassoula 1992). Despite

the high density of gas due to shock compression, the formation of molecular clouds

and stars are suppressed in the bar because of the strong shear along the bar

(Athanassoula 1992). The inflowing gas settles in the nuclear ring (see Fig. 6.34),

serving as the raw material for molecular cloud and star formation when the

velocity shear is mitigated. In addition to the large shear along the dust lane,

another possible cause of the different distribution between dust and molecular gas

is temperature. When temperature increases, the shock front along the bar moves

closer to the bar’s major axis, and the central ring that connects the inner ends of

the bar becomes more elongated along the bar’s major axis (Englmaier & Gerhard

1997; Patsis & Athanassoula 2000). It means that the colder molecular gas traced by

CO (and dust) and the warmer gas traced by dust can have different distributions

and flow configurations.

Magnetic fields traced by CO

As shown in Fig. 6.25, at the inner ends of the bar, the magnetic fields mapped

with CO (VGT; FWHM∼ 10′′) are curved into the central circumnuclear ring.

Magnetic fields can be compressed by shocks and stretched by shear in the dust

lanes along the bar. The tension force of bent magnetic fields can cause further

removal of the angular momentum of gas both at dust-lane shocks and within the

nuclear ring (Krolik & Meiksin 1990). MHD simulations of barred galaxies suggest

that the presence of magnetic fields leads to a more centrally concentrated ring

and enhanced mass inflow rate to the galaxy center (Kim & Stone 2012). As an

important characteristic for one to identify the role of magnetic fields, we clearly

see the magnetic fields mapped with CO are bent into an ′′L′′ shape within the

nuclear ring as expected from simulations (Kim & Stone 2012). We also see that the

magnetic fields within the ring have a radial component (see Figs. 6.33 and Fig. 6.34

in the Appendix 6.3.8) following the secondary bar of NGC 1097 reported by Quillen

et al. (1995). The magnetic fields threading the secondary bar are expected to

impose a magnetic braking effect on the gas spiraling into the innermost region

and further remove its angular momentum, as suggested in Kim & Stone (2012).

Our observed magnetic field morphology in CO indicates that in addition to the
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Figure 6.25: Left: Morphology of magnetic fields revealed by the HAWC+ polar-

ization at 89 µm towards NGC 1097. The magnetic field is overlaid with the 89 µm
continuum intensity map. Colors, except the green, on polarization vectors represent

the AM of the VGT and polarization. Dark grey contours represent the dust lanes

and the central ring observed at 89 µm, while dark blue contours mean CO struc-

tures. The colorbar of the 89 µm continuum image is uniformly spaced in the range

from 0 to 0.45 Jy per pixel. Top left: A zoom-in view of the magnetic fields in NGC

1097’s circumnuclear region, mapped with the VGT using 12CO (J = 2 - 1) emission

(black streamlines) and HAWC+ polarization at 89µm (Lopez-Rodriguez et al. 2021)

(colored segments). The magnetic fields are overlaid onto the HST WFC3/F814W

ultraviolet image (Lee et al. 2022). Top right: a further zoom-in on the magnetic

fields in the starburst ring and the inner bar. Bottom left and right: same as the top

panel, but for the VGT (black streamlines) and VLA + Effelsberg polarization (col-

ored segments) observed at 3.5 cm (Beck et al. 2005). The colorbars of background

HST images are logarithmically spaced in the range from 10−2 to 102 electrons per

second.

gravitational torques from the bars, magnetic fields introduce additional torques,

which contribute to the removal of angular momentum and transport of gas from

the galactic disk to its innermost region.
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Figure 6.26: Left: distribution of AM (between the VGT and HAWC+ polarization)

towards the starburst ring of NGC 1097. Positive AM values (i.e., agreement of the

VGT and HAWC+) are blanked out. The colorbar has the same range [-1, 1] as

the middle panel. Middle: distribution of HAWC+’s PM towards the same region.

Positive PM values (i.e., tangential field) are blanked out. Right: the correlation of

AM and PM without blanking out any values. The PM is averaged over uniformly

spaced AM bins. The shadow area gives the standard deviation of the PM.

Magnetic fields traced by dust

We see from Fig. 6.25 that the magnetic fields measured by 89µm HAWC+ dust

polarization (∼ 7.8′′; Lopez-Rodriguez et al. 2021) extend into the ring. Unlike the

magnetic fields traced by CO, there is no significant bending of field lines traced

by dust within the ring. There is a clear correlation between the regions with

misalignment and radial field (see Fig. 6.26), showing the radial magnetic fields

across the ring along the primary large-scale bar seen in dust polarization. The

misalignment between the magnetic fields traced by CO and dust may be attributed

to their different distributions in the strong bar and inner ring system. If there is

a warmer phase that is preferentially traced by dust, the morphology of magnetic

fields with AM≈ −1 reflects the more elongated shape of the central concentration

of warmer gas compared to that of colder gas. This misalignment suggests the

two-phase gas inflows along the bar and within the ring.

Fig. 6.26 displays the distributions of negative AM (i.e., misalignment between

the VGT and HAWC+ polarization) and negative HAWC+’s PM (i.e., radial

field) towards the starburst ring of NGC 1097. PM is defined as the Pitch angle

Measurement: PM = cos(2θp), where θp is the pitch angle of the magnetic field. The

spatial distribution of misalignment (i.e., negative AM) coincides with the negative

PM in statistics. In particular, we plot the correlation between AM and PM. The
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PM is averaged over uniformly spaced bins. Therefore, the misalignment between

the VGT and HAWC+ polarization is mainly contributed by the radial field within

the ring measured by HAWC+.

Magnetic fields traced by synchrotron polarization

In Fig. 6.25, we see an overall good alignment between the magnetic fields traced

by CO and synchrotron. The molecular ring of NGC 1097 coincides with the

starburst ring (Quillen et al. 1995; Davies et al. 2009; van de Ven & Fathi 2010).

This supports the correlation between star formation and cosmic ray generation

(Vollmer et al. 2022). Particularly, Liu et al. (2023) found that in NGC 3627, the

magnetic field inferred from synchrotron polarization agrees more with the magnetic

fields traced by VGT-CO instead of the one traced by VGT-Hα, suggesting that

synchrotron electron is well mixed with CO in star-forming regions. However, one

should note that the acceleration and propagation of relativistic electrons responsible

for synchrotron polarization in the centers of active galaxies is not a well-understood

process. Therefore, the interpretation of the synchrotron polarization angle as

perpendicular to the POS magnetic field component can also be misleading.

6.3.6 Prediction of NGC 4826’s magnetic field

We apply the VGT to obtain the first magnetic field map of NGC 4826, for which

polarization measurements are not yet available. Fig. 6.27 shows the VGT-predicted

magnetic field orientations using 12CO emission line, which has a complex pattern in

the central molecular gas reservoir. An hourglass-shaped magnetic field morphology

is seen in the circumnuclear region. In particular, the VGT-measured magnetic

field does not follow the spiral structures confirming the importance of the velocity

caustic effect. We find a transition from radial magnetic fields in the inner molecular

gas disk with the radius < 0.75 kpc to tangential magnetic fields in the outer region

(see Fig. 6.35 in Appendix 6.3.8). Coincidentally, streaming motions in CO were also

observed in the inner disk (Garćıa-Burillo et al. 2003).

6.3.7 Dynamo activity in Seyfert galaxy

The VGT-measured magnetic field morphology can help us understand the dynamo

process in galaxies. For instance, preferentially tangential/spiral magnetic fields,

which follow the differential rotation shear, are believed to be a product of the
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Figure 6.27: Morphology of magnetic fields revealed by the VGT (streamlines) using
12CO (J = 2 - 1) emission line towards the NGC 4826 galaxy. The magnetic field

is overlaid with the Hubble Space Telescope WFC3/F814W ultraviolet image (Lee

et al. 2022). The black circle represents the beam width of observation.

dynamo mechanism (Beck et al. 1996). Such a globally spiral field is observed in

M51, NGC 1068, NGC 1097’s starburst ring, and NGC 3627’s spiral arms (see

Figs. 6.33 and 6.34 in the Appendix 6.3.8). However, at the transition region from

the inner bar to the outskirt, NGC 1097, NGC 1068, and NGC 3627 exhibit a

preferentially radial magnetic field orientation. This change from tangential to

radial magnetic field configuration indicates the gas’s streaming motion becomes

more important (see Figs. 6.33 and 6.34 in Appendix 6.3.8). In addition, dynamo

studies in barred galaxies suggest dynamically more important magnetic fields and

a closer alignment between magnetic and velocity fields compared to normal spiral

galaxies (Moss et al. 2001). The VGT-measured magnetic fields in CO show similar

transition features, indicative of their dynamically important role in enhancing the

molecular gas inflow in Seyfert galaxies.
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Implications of the observed alignment

The overall agreement between the magnetic field orientations measured with the

VGT-CO and polarization reveals the coherence of magnetic fields across different

gas phases, including the molecular phase traced by CO, denser phases traced by

dust (Andersson et al. 2015), and the warm diffuse phase traced by synchrotron

radiation. This alignment seen in Seyfert galaxies is also observed in the normal

barred spiral galaxy Milky Way (Alina et al. 2022; Zhao et al. 2022; Tram et al.

2023). The observed coherence suggests that the magnetic fields threading the

multiphase gas with an extended range of densities all participate in the galactic

dynamic evolution and undergo dynamo amplification (Vishniac & Cho 2001) and

turbulent reconnection diffusion (Lazarian & Vishniac 1999). It supports that

molecular clouds are a part of the unified magnetic ecosystem in spiral galaxies and

magnetic fields in diffuse and molecular phases have a coherent structure. This

finding can have very important implications on many multi-scale processes, e.g.,

star formation (Ching et al. 2022), cosmic ray propagation (Padovani & Galli 2011;

Xu & Lazarian 2022b).

Implications of the observed misalignment

Despite the alignment seen for the global magnetic structure, especially in spiral

arms, the nearby Seyfert galaxies feature the misalignment between the magnetic

fields mapped with VGT-CO and polarization in regions with significant molecular

gas inflows or, less likely outflows. This is particularly seen in the central part of M51,

the bar-spiral interface of NGC 1068, and the nuclear of NGC 1097. In these regions

with misalignment predominant radial magnetic fields in CO are also identified with

the VGT. In NGC 3627, the misalignment probably marks the distortions in the

molecular disk induced by a recent collision. As non-axisymmetric instabilities like

bars and galaxy interactions are both drivers of gas inflow towards the nuclei (Wada

2004), our findings reveal the active role of magnetic fields in removing the angular

momentum of molecular gas in the galactic disk and transporting it towards the

nuclei of nearby Seyferts.

Contribution from systematic gradients

Galaxies may possess systematic gradients that are imposed by other conditions, for

instance, the galactic differential rotation and CO’s bulk motion. The systematic

gradients can contribute to the measured velocity gradients. However, the ALMA
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and PAWS data resolves the galaxies down to the scale < 100 pc, at which the

turbulence effect is already significant. The CO emission must have the imprint of

MHD turbulence.

The calculation of velocity gradient employs the concept of a thin velocity

channel based on the velocity acoustic effect (Lazarian & Pogosyan 2000). The

intensity structure observed in the thin velocity channel is dominated by turbulent

velocity fluctuation once the turbulence’s scale ∼ 100 pc is resolved (Lazarian &

Pogosyan 2000). The most important aspect is that the amplitude of turbulence’s

velocity gradient is scale-dependent. The amplitude increases when the spatial

scale decreases (see Appendix in Hu et al. 2022d), but this is not the case for the

bulk motion or shear velocity’s gradient (see § 6.1). Therefore, although there are

contributions from non-turbulence velocity gradient, we expect that at scales where

turbulence can be resolved turbulence’s contribution is dominant.

6.3.8 Appendix

Distribution of AM

We present the distribution maps of AM value (AM = 2(cos2 θr − 1
2
), where θr is

the relative angle between the two magnetic field vectors) in Figs. 6.28 and 6.29.

AM = 1 means two vectors are along the same direction, while AM = -1 suggests

two vectors are perpendicular to each other. In general, the magnetic fields traced

by the VGT are globally compatible with the polarization measurements (i.e.,

AM∼ 1). Although discrepancy exists, a good agreement suggests turbulence’s role

is important. Turbulence’s intrinsic properties may contribute to the discrepancy

because super-Alfvénic turbulence is isotropic. It is possible that the telescope does

not resolve the scale lA in some super-Alfvénic regions (see § 2.1), so we observe a

disagreement of the VGT and polarization.

In addition, dust is well mixed with all the interstellar phases, including both

molecular and atomic gas (Andersson et al. 2015). Dust size distribution, alignment,

as well as the magnetic field direction, can change in different phases. For instance,

shocks and radiative torque disruption change the size distribution of dust. This

affects dust alignment. (Lazarian & Hoang 2021). Therefore, the polarization from

dust depends on the intensity of radiation in the wavelength comparable with the

size of the grains. The alignment of dust has never been studied in the environment

of active galaxies. Therefore, it may not be surprising that we see the differences

between the dust polarization sampling aligned dust in very different conditions

along the LOS, and the VGT-CO.
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Figure 6.28: Distribution of AM (between the VGT and polarization) towards M51

(top), NGC 1097 (bottom left: dust polarization; bottom right: synchrotron polar-

ization) galaxies. All plots share the same colorbar and are overlaid on CO emission

intensity maps.
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Figure 6.29: Distribution of AM (between the VGT and polarization) towards NGC

1068 (left; dust polarization) and NGC 3627 (right; synchrotron polarization) galax-

ies. The background images are CO emission intensity maps.

Figure 6.30: Distribution of AM (between the VGT and polarization) towards the

zoom-in central part of NGC 1097. For both AM maps of VGT - VLA (right) and

VGT - HAWC+ (left), we blanked out negative AM (VGT - VLA) values. The

background images and contours are from CO emission intensity maps.

As both the VGT and HAWC+ sample the magnetic field in the cold-gas

phase, their agreement is expected as observed in M51, NGC 1068, and NGC 3627.
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However, strikingly in NGC 1097, the VGT significantly differs from HAWC+ dust

polarization but agrees with VLA synchrotron polarization, which measures the

ionized gas phase. To investigate this unexpected discrepancy, we blank out the

pixels in which the AM of VGT - VLA alignment is negative. As shown in Fig. 6.30,

the discrepancy mostly appears in the central disk region, including the upper and

lower parts of the starburst ring.

Fig. 6.31 shows the histograms of AM (between the VGT and polarization)

towards the four galaxies. While the distribution spans from -1 to 1, the majority

concentrates on the range of 0.75 - 1.0 still. It suggests a globally compatible

agreement between the VGT and polarization.

Uncertainty of the magnetic field direction measured by the VGT

The two significant uncertainties of the magnetic field can come from the systematic

error in the observational map and the VGT algorithm. For the latter, the VGT

takes a subregion and fits a corresponding Gaussian histogram of the gradient’s

orientation. It then outputs the angle of orientation corresponding to the Gaussian

fitting peak value of the histogram. The uncertainty therefore can be considered as

the error σψgs(x, y, v) from the Gaussian fitting algorithm within the 95% confidence

level.

Considering the noise σn(x, y, vlos) in velocity channel p(x, y, vlos) and error

propagation, the uncertainties σQ(x, y) and σU(x, y) of the Pseudo Stokes parameters

Qg(x, y) and Ug(x, y) can be obtained from:

σcos(x, y, vlos) = |2 sin(2ψgs(x, y, vlos))σψgs(x, y, vlos)| (6.1)

σsin(x, y, vlos) = |2 cos(2ψgs(x, y, vlos))σψgs(x, y, vlos)| (6.2)

σq(x, y, vlos) = |p · cos(2ψgs)|
√
(σn/p)2 + (σcos/ cos(2ψg))2 (6.3)

σu(x, y, vlos) = |p · sin(2ψgs)|
√
(σn/p)2 + (σsin/ sin(2ψg))2 (6.4)

(6.5)

σQ(x, y) =

√∑
vlos

σq(x, y, vlos)2 (6.6)

σU(x, y) =

√∑
vlos

σu(x, y, vlos)2 (6.7)

σψg(x, y) =
|Ug/Qg|

√
(σQ/Qg)2 + (σU/Ug)2

2[1 + (Ug/Qg)2]
(6.8)
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Figure 6.31: Histograms of AM (between the VGT and polarization) towards M51

(top left), NGC 1097 (top right dust), NGC 0168 (bottom left), and NGC 3627

(bottom right) galaxies. The red line indicates dust polarization, while the blue line

means synchrotron polarization.

where σψg(x, y) gives the angular uncertainty of the resulting magnetic field direction.

The uncertainty maps of the galaxies are presented in Fig. 6.32. The median value

is listed in Tab. 6.3.

Pitch angle

In Figs. 6.33 and 6.35, we plot the pitch angle as a function of the distance to the

galactic center. We follow the recipe used in Borlaff et al. (2021) for calculating the

pitch angle. We generate a zero pitch angle template by computing the radius r

and zero pitch angle, which is perpendicular to the radial direction, of every pixel

in galactocentric coordinates. Then we transform the zero pitch angle and radius

back to the observer’s coordinates, i.e., the POS. The pitch angle is calculated
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Galaxy R.A.(J2000) Dec. (J2000) i P.A. σψg ⟨θp⟩ (VGT, HAWC+, VLA)

M51 202.469◦ 47.195◦ 20.3◦ 12.0◦ 14.99◦ 24.98◦ ± 0.12◦, 26.54◦ ± 1.34◦, 28.32◦ ± 0.38◦

NGC 1068 40.670◦ -0.013◦ 48.1◦ 52.0◦ 10.50◦ 16.26◦ ± 0.14◦, 31.28◦ ± 1.11◦, -

NGC 1097 41.579◦ -30.275◦ 45.0◦ -45.0◦ 12.37◦ -30.60◦ ± 0.35◦, -8.80◦ ± 1.98◦, -38.47◦ ± 0.35◦

NGC 3627 170.063◦ 12.991◦ 65.0◦ 170.0◦ 11.30◦ 11.48◦ ± 0.12◦, -7.77◦ ± 1.31◦, -

NGC 4826 194.182◦ 21.683◦ 60.0◦ 112.0◦ 8.92◦ 14.11◦ ± 0.24◦, -, -

Table 6.3:: Summary of galaxies’ parameters used in this work. The inclination (i) of

the galaxy disk is measured with respect to the POS and the position angle (P.A.) of

the major axis of the projected galaxy disk in the sky plane is measured in the IAU

convention. σψg represents the median uncertainty of the VGT measurement and ⟨θp⟩
is the mean pitch angle.

as the difference between the measured position angle of the magnetic field and

the template in the IAU convention. The pitch angle is averaged at each annulus

from the galaxy center with linearly spaced radial bins. The essential calculation

parameters are listed in Tab. 6.3.

We find M51 has a mean pitch angle around ∼ 25◦ and the difference between

the three measurements is not significant except at the outskirt r > 5 kpc region,

which is also reported by Borlaff et al. (2021). NGC 1097’s three measurements

exhibit significantly different pitch angles. Dust polarization appears at a smaller

pitch angle. The difference between the VGT and synchrotron polarization at r ∼ 1

kpc is mainly contributed by the contact region of the shock front and inner bar,

while they have more similarity along the dust lanes. An apparent difference in the

VGT and dust polarization in NGC 1068 is observed. Like Lopez-Rodriguez et al.

(2020), we find a mean pitch angle ∼ 20◦ at r < 1.5 kpc. Notably, the VGT’s pitch

angle decreases to ∼ 0 at r > 2.0 kpc due to the south tail’s contribution. NGC 3627

shows a similar pitch angle for both the VGT and dust observation at r > 4.0 kpc.

As for the NGC 4826, a change of the pitch angle’s sign is observed at r < 0.25 kpc.

To quantify the morphology of the magnetic field, like the definition of AM,

we introduce the Pitch angle Measurement: PM = cos(2θp), where θp is the pitch

angle of the magnetic field. Also, we average the PM at each annulus from the

galaxy center. Unlike the averaged pitch angle, PM has a clear physical meaning

that PM > 0 indicates a preferentially tangential field, while the one smaller than 0

represents a preferentially radial field. The difference between PM and pitch angle

can be easily understood based on the fact that the angular average of two pitch

angles 45◦ and −45◦ is 0, while these two angles do not have a preference for being

tangential or radial, i.e., PM = 0 in this case.

The PM as a function of the distance to the galactic center is presented in
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Figure 6.32: Uncertainty maps for the magnetic field measured by the VGT for

the five galaxies M51, NGC 1068, NGC 1097, NGC 3627, and NGC 4826. All plots

share the same colorbar. The background images and contours are from CO emission

intensity maps.

Figs. 6.33 and 6.35. We find that M51, NGC 1068, and NGC 3627 have tangential

fields spanning almost all scales. For M51, a negative PM of the VGT at a large

distance (r > 5 kpc ) may come from the noise effect. In addition, NGC 1097 and

NGC 4826 exhibit radial fields at small scales (r < 0.5 kpc for NGC 1097 and



271

Figure 6.33: Left: pitch angle as a function of the distance (x-axis) to the galactic

center towards the M51, NGC 1097, NGC 1068, and NGC 3627 galaxies. Middle: PM

as a function of the distance to the galactic center. PM > 0 indicates a preferentially

tangential field and PM < 0 suggests a preferentially radial field. Right: AM as a

function of the distance to the galactic center. AM = 1 means two measurements are

identical, while AM = -1 suggests an orthogonal relative angle.

r < 0.75 kpc for NGC 4826) but the tangential field at large scales. In particular,

Fig. 6.34 presents the spatial distribution of PM. We find that negative PM usually
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Figure 6.34: The distribution of PM in M51 (panel a), NGC 1097 (panel b), NGC

3627 (panel c), and NGC 1068 (panel d) galaxies. PM > 0 indicates a preferentially

tangential field and PM < 0 suggests a preferentially radial field. Approximated

locations of the inner-bar are labeled by green segments and yellow arrows indicate

the direction of inflows.
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Figure 6.35: Same as Fig. 6.33 and Fig. 6.34, but for the NGC 4826 galaxy. The

background images and contours are CO emission intensity maps.

appears in the positions of inflow. The references used to locate the inner-bars and

inflows for Fig. 6.34 and Fig. 6.35 include: (i) M51: (Meidt et al. 2013; Querejeta

et al. 2016b); (ii) NGC 1097: (Quillen et al. 1995; Davies et al. 2009; van de

Ven & Fathi 2010); (iii) NGC 1068: (Garćıa-Burillo et al. 2014; Lopez-Rodriguez

et al. 2020); (iv) NGC 3627: (Haan et al. 2009; Beuther et al. 2017). We find the

tangential fields, most apparent in the positions of inflows. A similar trend is also

observed in NGC 4826, in which the VGT measurement is radial at r < 0.75 kpc.

However, the radial fields cover the entire central region of NGC 4826, instead of

only the transition region.
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Moreover, we calculate the AM of the VGT measurement and polarization as

a function of the distance to the galactic center. We can see that for M51, the

VGT agrees with both synchrotron and dust polarization. However, in NGC 1097,

the VGT aligns with synchrotron polarization better than dust polarization. The

agreement significantly drops in the inner-bar region. A decreasing trend of AM

is observed in NGC 1068 and NGC 3627. The effect of a low signal-to-noise ratio,

i.e., high VGT uncertainty, may contribute to the misalignment of the VGT and

polarization in the south part.
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Chapter 7

Magnetic fields in galaxy clusters

This thesis chapter originally appeared in the literature as

Hu, Y., Lazarian, A., Li, Y., et al. 2020, ApJ, 901, 162.

Hu, Y., Stuardi, C., Lazarian, A., et al. 2023, Nature Communications

15, 1006 (2024).

Abstract

Cosmic magnetic fields, integral to the fabric of the universe, reach their most

grandiose scales within galaxy clusters. These fields play a pivotal role in cosmic

magneto-genesis, emerging either through the turbulent amplification of primordial

seed fields or via injection from active galactic nuclei and galaxies. Their significance

extends to regulating the energy equilibrium within the intracluster medium (ICM),

facilitating heat conduction, binding cosmic rays to the intracluster gas, and

catalyzing synchrotron radiation through the gyration of CR electrons. Despite their

critical role, mapping the magnetic fields within the ICM stands as a formidable

challenge in astrophysics. Leveraging a profound understanding of pervasive

magnetohydrodynamic (MHD) turbulence within the ICM, we introduce the use

of the Synchrotron Intensity Gradient (SIG) and X-ray Intensity Gradient (XIG)

as innovative approaches for mapping the magnetic field. We apply SIG to five

disturbed galaxy clusters (RXC J1314.4-2515, Abell 2345, Abell 3376, MCXC

J0352.4-7401, and El Gordo), utilizing high-resolution radio data from the Jansky

Very Large Array and the MeerKAT array. The consistency of SIG with both

polarization observation and numerical validation prompts us to map magnetic

fields within the MCXC J0352.4-7401 cluster and to present detailed magnetic field
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structures in the radio halos of RXC J1314.4-2515 and El Gordo, marking the

largest-scale magnetic field measurements to date. Furthermore, the application of

XIG to Chandra X-ray observations of the Perseus, M87, Coma, and A2597 galaxy

clusters reveals that magnetic fields predominantly align with the sloshing arms

in Perseus, corroborating numerical models. XIG-derived magnetic fields exhibit

hallmarks of magnetic draping around buoyant bubbles in cool-core clusters and

around merging substructures in the Coma cluster. We calculate the relative angle

between the magnetic field and the radial direction in these clusters, uncovering a

preferential azimuthal alignment in the core regions of cool-core clusters. Notably,

there is a statistical agreement between the magnetic field orientations in the Perseus

cluster as mapped by XIG and those inferred from SIG.

7.1 Map the magnetic fields with synchrotron

intensity gradient

7.1.1 Methodology: synchrotron intensity gradient and

X-ray intensity gradient

Synchrotron Intensity Gradient and X-ray Intensity Gradient

SIG introduced in Lazarian et al. (2017); Lazarian & Yuen (2018b); Hu et al.

(2020b) initially assumed the Alfvén scale, i.e., the scale at which magnetic fields

become dynamically important (Brunetti & Lazarian 2007) and MHD turbulence is

sub-Alfvénic, is observationally resolved. Here we extended SIG to be applicable for

super-Alfvénic turbulence present in the ICM.

In § 2.1, Eq. 2.4 provides the scaling relation for velocity fluctuations of MHD

turbulence. The corresponding relations for density and magnetic field fluctuations

can be derived from the linearized continuity and induction equations in Alfvénic

turbulence (Cho & Lazarian 2003):

ρl = vl
ρ0
vA

F−1(|k̂kk · ξ̂ξξ|), (7.1)

Bl = vl
B0

vA
F−1(|B̂BB0 · ξ̂ξξ|), (7.2)

where ρ0 and B0 denote the mean density and mean magnetic field strength. k̂kk and ξ̂ξξ

represent the unit wavevector and displacement vector, respectively. F−1 denotes an
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appropriate inverse Fourier transform. The density and magnetic field fluctuations

are still dominated by their perpendicular components.

Given the implications of Eq. 2.2, which suggest l∥ ≫ l⊥, the gradient of the

magnetic field or density fluctuations is dominated by the component perpendicular

to the local magnetic field:

∇ρl ≈
ρl,⊥
l⊥
l̂ll⊥ =

ρ0
Linj

M
4/3
A (

l⊥
Linj

)−2/3F−1(|k̂kk · ξ̂ξξ|)̂lll⊥, (7.3)

∇Bl ≈
Bl,⊥

l⊥
l̂ll⊥ =

B0

Linj

M
4/3
A (

l⊥
Linj

)−2/3F−1(|B̂BB0 · ξ̂ξξ|)̂lll⊥. (7.4)

The scaling relation for the gradient is of particular importance as it underscores

that the gradient amplitude is inversely proportional to l
−2/3
⊥ . This relation is derived

under the assumption that the velocity fluctuations adhere to the Kolmogorov

scaling. However, if these fluctuations follow the Burgers scaling, characterized by

vl,⊥ = ( l⊥
Linj

)1/2vinj, the dependence of the gradient amplitude on the scale changes

to l
−1/2
⊥ . In both scenarios, whether following Kolmogorov or Burgers scaling, the

implication remains that the amplitude of turbulence-induced gradients increases at

smaller scales. This property typically is not observed with non-turbulent-related

gradients, such as velocity gradients induced by sloshing motion or differential

rotation. In sub-Alfvénic conditions, the density and magnetic field fluctuations

exhibit anisotropy. Synchrotron emission and X-ray residual maps (obtained by

subtracting a beta model from the X-ray image) inherit the anisotropy present in

magnetic fields and gas density. Consequently, their corresponding Synchrotron

Intensity Gradient (SIG) and X-ray Intensity Gradient (XIG) are dominated by the

component perpendicular to the magnetic field.

In the super-Alfvénic regime (i.e., MA > 1), turbulent motions at the injection

scale are hydrodynamic, and the kinetic energy of the turbulence follows an isotropic

Kolmogorov cascade (vl ≈ l1/3, where vl is the velocity of the turbulence at scale l).

However, at smaller scales, the backreaction of the magnetic field becomes stronger

and the turbulence becomes anisotropic on the Alfvén scale lA = LM−3
A , where L is

the injection scale (Lazarian 2006). The typical Alfvén scale in galaxy clusters can

be calculated as follows (Brunetti & Lazarian 2007):

lA ≈ 100(
B

µG
)3(

Linj

300 kpc
)(

vL
103 km s−1

)−3(
ne

10−3 cm−3
)−

3
2pc, (7.5)

where B is the magnetic field strength, Linj is the injection scale of turbulence, and

ne is the electron number density. Based on typical values of B (0.5 - 2.0 µG), Linj

(300 - 600 kpc), vL (100 - 300 km s−1), and ne (10
−3 cm−3) from literature (Willson

1970; Govoni et al. 2001; Bonafede et al. 2009; Churazov et al. 2012; Zhuravleva
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et al. 2014, 2018; Stuardi et al. 2019), the Alfvén scale lA ranges from approximately

1 - 60 kpc. Note that quoted values of the physical quantities are typically measured

for cluster cores. In the edges of the cluster, these values may be different.

At scales smaller than lA, the anisotropic MHD turbulence causes the turbulent

eddies to elongate along the magnetic field, resulting in a gradient perpendicular to

the field. At scales larger than lA, the large-scale gas flows can still regulate the

dynamically unimportant magnetic field in the ICM, causing the field to follow or

elongate along large-scale structures, as shown in Fig. 7.1. Therefore, the actual

number of lA is not important for using SIG to map the magnetic field, because the

gradients are perpendicular to the magnetic field in both cases.

Comparison with polarization

SIG and synchrotron polarization are based on different physical effects to reveal

the magnetic field. While synchrotron polarization emerges from the magnetic

fields’ effects on relativistic electrons, SIG is grounded in the interaction between

magnetic fields and conducting fluid. Notably, measurements obtained from both

methods are subject to the effects of LOS averaging. Given the expected scenario

where the LOS integration length for cluster halos surpasses the scale of magnetic

field entanglement, turbulence-induced fluctuations are not anticipated to manifest

a preferential direction, instead accumulating through a process akin to a random

walk. These turbulence-driven fluctuations play a pivotal role in decreasing the

synchrotron polarization fraction, known as Faraday depolarization. However, SIG

is immune to the depolarization effect, maintaining its reliability in tracing the

magnetic fields in super-Alfénic radio halos. As illustrated in Fig. 7.1, the alignment

between SIG and magnetic fields remains statistically stable, even when the LOS

integration length increases. On the other side, polarization is sensitive not only to

the value of the magnetic field strength that aligns parallel to the LOS but also to

the density of thermal electrons within the environment. Given that the orientation

of magnetic fields within galaxy clusters is subject to changes along the LOS, there is

a possibility for differences between contributions to SIG and those to polarization.

A factor that can induce misalignment in observational applications is the beam

size. This effect can be illustrated by considering a particular example of a very large

beam, which covers the full field of view of the observation. Such a beam results in

a constant intensity map and the corresponding gradient vanishes, but polarization

still can give one magnetic field orientation for this large beam. This beam effect,

therefore, reduces the alignment as shown in the right panel of Fig. 7.1.
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Implementation

The intensity gradient calculated from the synchrotron intensity map Is(x, y) allows

for mapping the orientation of magnetic fields. This is achieved through a pixelized

gradient map ψ(x, y) as follows:

▽xIs(x, y) = Is(x+ 1, y)− Is(x, y), (7.6)

▽yIs(x, y) = Is(x, y + 1)− Is(x, y), (7.7)

ψg(x, y) = tan−1

(
▽yIs(x, y)

▽xIs(x, y)

)
, (7.8)

here, ▽xIs(x, y) and ▽yIs(x, y) represent the x and y components of the gradient,

respectively. Gradients are blanked out if their corresponding intensity value is less

than 3σ noise level.

The gradient map ψg(x, y) is further processed through the sub-block averaging

method Yuen & Lazarian (2017b). This method involves taking all gradient

orientations within a sub-block of interest and applying Gaussian fitting to the

corresponding histogram. The peak value of the Gaussian distribution represents the

statistically most probable gradient orientation within that sub-block. The averaging

step ensures that the resulting gradient direction incorporates turbulence’s statistical

properties. The processed gradient map is denoted as ψgs(x, y), and its uncertainty is

related to the sub-block size. A larger sub-block size guarantees a sufficient amount

of data for statistical fitting, leading to lower uncertainty. Typically, gradients are

averaged over 20 × 20-pixel sub-blocks, as this size has been determined through

previous numerical and observational studies to guarantee sufficient statistics for

extracting turbulence’s properties (Hu et al. 2020a). To address the boundary effect

in cases where the number of data points at the edge of an intensity structure may

be less than 20 × 20 pixels, a minimum of 10 × 10 pixels is established for averaging.

The averaging procedure for each sub-block is independent. However, this

is not the case for actual magnetic field lines, necessitating a correlation of the

averaged gradient with that of its neighboring. This can be mathematically handled

by performing smoothing on the pseudo-Stokes parameters (Qg and Ug), which are

defined as:

Qg(x, y) = Is(x, y) cos(2ψs(x, y)), (7.9)

Ug(x, y) = Is(x, y) sin(2ψs(x, y)), (7.10)

ψB(x, y) =
1

2
tan−1(

Ug(x, y)

Qg(x, y)
) +

π

2
, (7.11)

where similar to the Planck polarization, ψB gives the POS magnetic field orientation.

The weighted intensity ensures that (i) Qg and Ug follow a Gaussian distribution,
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which facilitates the smoothing of the pseudo-Stokes parameters using a Gaussian

filter. The FWHM of the Gaussian filter is equal to the sub-block size. (ii) The

magnetic fields mapped by SIG are intensity-weighted, which is also the case for

the magnetic field inferred from synchrotron polarization weighted by the polarized

intensity.

Uncertainties

The uncertainty in SIG is mainly due to systematic errors in radio images and

the SIG algorithm itself. We calculated SIG’s uncertainty by considering error

propagation and blanked out the pixels in which the uncertainty is larger than 30

degrees. We listed the median value of the uncertainty for each cluster in Tab. 7.2.

Numerical tests

A numerical test is presented for illustration purposes. In accordance with the

method described in Lazarian et al. (2017), we utilize several 3D MHD simulations

of turbulence (see § 2.2.2) to synthesize synchrotron emission maps, including

the synchrotron intensity Is(x, y), Stokes parameters Qs(x, y) and Us(x, y), and

polarization angle ψs(x, y). Each simulation box is divided into 5123 cells, with a

turbulence injection scale of approximately 256 cells. The calculation of these maps

is based on the following equations:

Is =

∫
ne,r(B

2
x +B2

y)B
γ
⊥dz, (7.12)

Qs =

∫
−ne,r(B2

x −B2
y)B

γ
⊥dz, (7.13)

Us =

∫
−ne,r(2BxBy)B

γ
⊥dz, (7.14)

(7.15)

where B⊥ =
√
B2
x +B2

y is the magnetic field component perpendicular to the LOS,

with Bx and By being the x and y components, respectively, and ne,r is the density of

relativistic electrons. In consideration of the fact that the anisotropy of synchrotron

emission is insensitive to the spectral index of the electron energy distribution

(Lazarian & Pogosyan 2012), a homogeneous and isotropic distribution with spectral

index α = 3 is adopted, yielding an index of γ = (α− 3)/4.

An example is shown in the left panel of Fig. 7.1. The super-Alfvénic condition

of MA ≈ 3.2 leads to a turbulence length scale of lA ≈ 8 cells. The magnetic field
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orientation inferred from SIG globally agrees with that derived from polarization

(with an agreement measure of AM ≈ 0.81). The AM values for other simulations

are listed in Tab. 7.1, which demonstrates correspondence of the magnetic field

orientation mapped by polarization and SIG.
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Figure 7.1: Numerical test of SIG. Left: comparison of the magnetic field orientation

inferred from SIG (red segment) and polarization (blue segment). Middle and right:

AM of magnetic fields inferred from SIG and polarization as a function of the cluster’s

LOS thickness (middle) and the beam size (right). Polarization is smoothed to match

the resolution of SIG after averaging.

MA 2.4 2.9 3.2 5.2 7.8

AM 0.92 0.93 0.81 0.88 0.92

Table 7.1:: Summary of global mean AM values in different Alfvén Mach number

MA conditions. The uncertainty of AM calculated from the standard deviation of the

mean is around 0.01 - 0.02.

7.1.2 Descroption of observation data

Radio observation

The synchrotron emission images used in this work are produced with JVLA

(https://data.nrao.edu/portal/#/) and MeerKAT observations (https:

//archive-gw-1.kat.ac.za/public/repository/10.48479/7epd-w356/index.

html). The summary of the data set is presented in Tab. 7.2.

For RXC J1314.4-2515, polarization images with similar resolution thanks to

the images released by the MeerKAT Galaxy Cluster Legacy Survey Data Release 1.

https://data.nrao.edu/portal/#/
https://archive-gw-1.kat.ac.za/public/repository/10.48479/7epd-w356/index.html
https://archive-gw-1.kat.ac.za/public/repository/10.48479/7epd-w356/index.html
https://archive-gw-1.kat.ac.za/public/repository/10.48479/7epd-w356/index.html
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Cluster Beam resolution (SIG) ⟨σψg⟩ Frequency Polarization data (resolution)

RXC J1314.4 30 kpc (120 kpc) 7.80◦ 1.28 GHz JVLA 3 GHz (120 kpc)

Abell 2345 58 kpc (180 kpc) E: 5.79◦, W: 3.83◦ 1.5 GHz JVLA 1.5 GHz (110 kpc)

Abell 3376 7 kpc (22 kpc) E: 6.60◦, W: 7.82◦ 1.28 GHz -

MCXC J0352.4 16 kpc (62 kpc) E: 7.44◦, W: 7.52◦ 1.28 GHz -

El Gordo 55 kpc (400 kpc) 7.41◦ 1.28 GHz -

Table 7.2:: Summary of data sets used in this work. ⟨σψg⟩ is the median value of the

SIG’s uncertainty over the region of interest.

The high-resolution 1.28 GHz image from which we derived the SIG measurements

(see Fig. 7.2) has a beam size of 7.3′′ × 7.6′′ corresponding to a spatial resolution of

about 30 kpc at z = 0.247. The RMS noise of this image is 5 µJy/beam. Instead, a

low-resolution SIG image was obtained from the same JVLA dataset from which we

derived polarization.This total intensity image at 3GHz has a resolution of 17′′× 17′′,

corresponding to 66 kpc around, and an RMS noise of 13 µJy/beam. This image is

the same as the one presented by Stuardi et al. (2019) but smoothed with a circular

beam size. As for Abell 2345, the resolution beam of the 1.5 GHz JVLA total

intensity map in Fig. 7.3 is 19′′ × 19′′, corresponding to a spatial resolution of 58 kpc

at z = 0.179. With respect to the image presented by Stuardi et al. (2021), this has

been smoothed to obtain a circular beam size. The RMS noise is 80 µJy/beam. In

terms of Abell 3376, the resolution beam of the 1.28 GHz MeerKAT total intensity

images of this cluster shown in Fig. 4 is 7.4′′ × 7.6′′, corresponding to a spatial

resolution of approximately 7 kpc at z = 0.046. The RMS noise is 3.1 µJy/beam. For

MCXC J0352.4 - 7401 (Abell 3186), the total intensity 1.28 GHz MeerKAT images of

this cluster shown in Fig. 5 have a resolution beam of 6.9′′ × 7.1′′. This corresponds

to a spatial resolution of approximately 16 kpc at z = 0.127. The RMS noise is 2.6

µJy/beam. The resolution beam of the total intensity 1.28 GHz MeerKAT image of

El Gordo shown in Fig. 6 is 7.1′′ × 7.1′′, corresponding to a physical resolution of

approximately 55 kpc at z = 0.87. The RMS noise is 1.5 µJy/beam.

Polarization measurements

We use the synchrotron polarization measurements obtained from JVLA observations

(Stuardi et al. 2019, 2021). We only report here the main characteristics of these

observations while we refer to the original works for a detailed explanation of the

data analysis. The magnetic field orientation is defined as χB = χ0 + π/2, inferred

from the intrinsic polarization angle χ0 at the source obtained with the Rotation

Measure synthesis technique (Brentjens & de Bruyn 2005). This is intended to

correct the measured Faraday rotation to represent the magnetic field orientation at
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the relic.
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Figure 7.2: The magnetic field orientation of the RXC J1314.4 - 2515 galaxy cluster.

Top: The differences and similarities of the magnetic fields measured by the two

techniques (SIG and polarization) are presented. On the top left, the morphology of

the magnetic fields is revealed through the SIG (FWHM around 25′′ or 120 kpc). On

the top right, the magnetic field morphology is revealed through JVLA synchrotron

polarization at 3 GHz (FWHM approximately 25′′). Each magnetic field segment

represents the SIG (or polarization) averaged for 6×6 pixels for visualization purposes.

The colors of the polarization segments represent the AM of the SIG and polarization.

The magnetic field is overlaid on the higher resolution synchrotron emission image

from the MeerKAT survey (Knowles et al. 2022) at 1.28 GHz (FWHM around 7.6′′

or 30 kpc). The pink contours represent X-ray emission measured by the XMM-

Newton and the dotted line indicates the expected merger axis determined by radio

images. The merger axis defined by X-ray emission’s elongation is studied accordingly.

Bottom: A zoom-in view of the magnetic field in RXC J1314.4 - 2515’s halo, indicated

by the green box in the top panel, is provided.

Nevertheless, radio images can be affected by polarization leakage between

Stokes parameters due to instrumental effects. The leakage from Stokes Is to Qs
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and Us was estimated at less than 2 % Stuardi et al. (2019, 2021). Since relics are

highly polarized, the leakage should have a marginal effect on the polarization angle

estimates. The uncertainty of mapping magnetic fields with polarization can also

arise from the adopted model of the distribution of thermal and relativistic electrons

within the relics (Lazarian & Pogosyan 2016). The uncertainty of the order 10◦ can

serve as an estimate for the misalignment of polarization and SIG vectors, which

corresponds to the reported AM variation of ±0.2.

The magnetic field orientation images of the RXC J1314.4-2515 galaxy cluster

were obtained from a 1-2 GHz JVLA observation (with a central frequency of

1.5 GHz and resolution beam of 25′′) while a 2-4 GHz JVLA observation (central

frequency of 3 GHz and resolution beam of 30.5′′) was used for Abell 2345. The

polarization images are not smoothed further but re-gridded to match that of the

SIG-measured magnetic field orientation spatially. Polarization images are already

masked to show only pixels detected with a corresponding Gaussian significance

level greater than 5σ, as explained in Stuardi et al. (2019, 2021).

7.1.3 Magnetic fields in radio relics

The detection of polarized synchrotron emission in radio relics in the peripheral

regions of RXC J1314.4 - 2515 and Abell 2345 has been achieved through JVLA

observation at a frequency range of 1-2 GHz (Stuardi et al. 2019, 2021). The

resolution of the polarization signal, represented by the full width and half maximum

(FWHM) of the Gaussian beam, is around 25′′ (or 120 kpc) for RXC J1314.4 - 2515

and around 30.5′′ (or 110 kpc) for Abell 2345. For RXC J1314.4 - 2515, SIG is

calculated per pixel (beam resolution about 7.6′′ or 30 kpc) and averaged to FWHM

about 25′′, which is similar to that of polarization signal. As shown in Figs. 7.2

and 7.4, the magnetic fields inferred from SIG and polarization are found to be in

agreement (overall AM about 0.70, with a standard deviation of the mean around

0.01), aligned with the elongated intensity relics along the south-north direction.

The measured AM is a bit lower compared to its AM obtained for SIG in Milky

Way (Lazarian et al. 2017). We attribute this to the higher signal-to-noise and the

smaller Faraday rotation effects in the Milky Way case.

SIG and polarization are sensitive to variations of magnetic field orientation

with beam size. As shown in Fig. 7.1, AM decreases for a large beam. In addition,

unlike SIG, polarization is sensitive to Faraday rotation and Faraday depolarization.

As a result, we do expect to see differences between the polarization and SIs. The

systematic difference between the two measures carries important information that

sheds light on the difference in the physical mechanisms of the processes that reveal
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Figure 7.3: Top: Synchrotron emission image of the Abell 2345 cluster observed

with the JVLA at 1.5 GHz. The pink contours represent X-ray emission measured by

the XMM-Newton and the dotted line indicates the expected merger axis. Bottom:

same as Fig. 7.2, but for the Abell 2345 cluster’s subregion E (bottom left) and W

(bottom right), indicated by the green boxes in the top panel. The magnetic field

inferred from the synchrotron polarization is from the JVLA observation at 1.5 GHz

(FWHM approximately 30.5′′ or 110 kpc). The resolution of the SIG is approximately

50′′ (or 180 kpc).
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magnetic field direction, and this difference can be explored in future studies to get

deeper insight into the physics of ICM.

Similarly, in Abell 2345, we obtain AM around 0.6 (see Fig. 7.3). The

misalignment between the SIG and polarization in the south tail of Abell 2345-E can

be attributed to the potential uncertainties in both measurements. In particular,

we noticed that the misalignment is associated with a point source. These sources

induce synchrotron intensity gradients that are not associated with magnetic fields.

The removal of the point source increases the correspondence between polarization

and SIG increases. On the other hand, intensity jumps at shock fronts may induce

deviation in the SIG from that of the underlying magnetic field. However, the

contribution of the shock fronts becomes marginal in the process of the sub-block

averaging method adopted in SIG. For the relics of Abell 2345, the polarization

resolution corresponds to FWHM about 30.5′′, which is higher than that of SIG,

which potentially also affects the AM. Nevertheless, our study confirms the overall

consistency between the directions the polarization and SIG revealed. This finding

strengthens the rationale for using this technique in mapping magnetic fields in

galaxy clusters where polarization has not been reported.

Figure 7.4: Histograms of AM (between the SIG and polarization) towards RXC

J1314.4-2515 (left) and Abell 2345 (right). The maxima at AM = 1 suggests an

excellent alignment of magnetic fields revealed by the two methods.

Figs. 7.5, 7.6, and 7.7 present the magnetic field measurement of the merging

clusters Abell 3376, MXCX J0352.4-7401, and El Gordo using the SIG. These

clusters have different redshifts (z approximately 0.87 for El Gordo, 0.127 for MXCX

J0352.4-7401, and 0.046 for Abell 3376). The SIG measurements are in agreement

with earlier partial polarization observations in Abell 3376’s double relics (Kale

et al. 2012) and El Gordo’s west relic (Lindner et al. 2014). The magnetic fields

associated with radio galaxy jets and bent by ICM in Abell 3376 have also been
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Figure 7.5: The magnetic field orientation of the Abell 3376 galaxy cluster. Top:

overall synchrotron emission intensity map from MeerKAT observation at 1.28 GHz

(FWHM approximately 7′′) of the Abell 3376 cluster. The cyan contours represent

X-ray emission obtained from the XMM-Newton archival observations (Urdampilleta

et al. 2018) and the dotted line indicates the expected merger axis. Bottom: The

magnetic field orientation (FWHM approximately 24′′ corresponding to a physical

scale of 22 kpc), represented by white segments, in Abell 3376’s relics (indicated by

the green boxes in the top panel).
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Figure 7.6: The magnetic field orientation of the MCXC J0352.4 - 7401 cluster

(Duchesne et al. 2021). The magnetic field orientation (white segments), superim-

posed on the synchrotron emission intensity map from MeerKAT observation at 1.28

GHz (FWHM approximately 7′′), has resolution FWHM approximately 24′′ corre-

sponding to physical scales of 62 kpc respectively).

observed in the SIG measurement (Chibueze et al. 2021). These earlier studies only

covered limited portions of the relics with detected polarization signals, but the SIG

measurements cover the entire structure and provide complete magnetic field maps.

In addition, we present the SIG-mapped magnetic field for the detected relics in

MCXC J0352.4-7401. Future high-resolution synchrotron intensity observations will

enable SIG to map magnetic fields at smaller scales.
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Figure 7.7: The magnetic field orientation of the El Gordo cluster. The background

emission image is from MeerKAT observation at 1.28 GHz (FWHM approximately

7′′). The SIG measurement has a resolution of FWHM of approximately 24′′ (or

400 kpc). Each white segment represents the SIG averaged for 6× 6 pixels for visual-

ization purposes. The blue contours represent the X-ray emission obtained from the

Chandra archival observations 2016MNRAS.463.1534B and the dotted line indicates

the expected merger axis.

7.1.4 Magnetic fields in radio halo

Measurement of polarized synchrotron emission in radio halos is challenging due to

the strong Faraday depolarization effect. SIG, however, offers a unique solution to

this problem as it is insensitive to depolarization. As a result, SIG opens an avenue

for studying the magnetic field of radio halos. For example, in RXC J1314.4-2515 and

El Gordo, polarization is detected only in the double relics (Stuardi et al. 2019) and

the west relic (Lindner et al. 2014), respectively. However, SIG provides a complete

picture of the magnetic fields in the entire cluster, including halos (see Figs. 7.2 and

7.7). Due to the beam and LOS averaging, the gradient signals caused by small-scale

fluctuations are averaged out in the central radio halo. SIG, however, remains

sensitive to the large-scale component of the magnetic field. At low resolution, the

magnetic field in RXC J1314.4-2515 (see Fig. 7.9) is preferentially aligned along the
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merger axis, whereas on top of this behavior, vortex-like start appearing at higher

resolution (see Fig. 7.2), yet limited to effective 120 kpc resolution. The maps clearly

show the transition between radio relics and halos, which are associated with shock

waves where the magnetic field is compressed in the direction perpendicular to the

merger axis (see Figs. 7.10 and 7.11).

Figure 7.8: Cartoon illustration of magnetic field evolution in cluster merger. In

the merging of two turbulent clusters (panel A): cluster-1 and cluster-2, the magnetic

field is draped and amplified at the merger (advancing) shock in the first phase (panel

B), and then the field is stretched along the merger axis (panel C), and finally it is

further amplified by turbulence generated in the cluster merger (panel D).

The reported magnetic field structure testifies the magnetic field amplification

during galactic mergers. It is in line with previous RM grid measurements (Stuardi

et al. 2021) and MHD simulations that predicted magnetic fields evolve with cluster

dynamics (Roettiger et al. 1999; Takizawa 2008; Vazza et al. 2018; Donnert et al.

2018), see Fig. 7.8 for an illustration. The fields are stretched/stirred and further

amplified by large-scale bulk flows along the merger axis. On the other hand, the

presence of large-scale magnetic fields suggests that the magnetic field amplification

through turbulent dynamo is rather inefficient at its non-linear stage, in which
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less than 10% of turbulent kinetic energy is transferred to magnetic field energy

(Cho et al. 2009; Xu & Lazarian 2016). Thus, for stationary turbulence, it would

take around ten of the longest eddy turnover times for the magnetic field to reach

equipartition with turbulence. Since the merging of clusters did not last for such

a long time, the more prominent magnetic field structures are formed through the

large-scale stretching caused by the flows resulting from the merger. We anticipate

that there are more magnetic field stochasticity on the small scale.

Our results open perspectives to map magnetic fields in clusters and large-scale

structures and allow for the comparison between numerical expectations of merging

clusters and observations. SIG’s ability to trace the galaxy clusters’ magnetic fields

is confirmed by (a) MHD simulations presented in Fig. 7.1, (b) the correspondence

of SIG with polarization measurements in radio relics (see Figs. 7.2 and 7.3), as

well as (c) the correspondence of the SIG-traced halo magnetic field structure to

those numerically predicted in Roettiger et al. (1999); Takizawa (2008); Vazza et al.

(2018); Donnert et al. (2018). Being insensitive to the Faraday depolarization, SIG

can be applied to many clusters with diffuse radio emission, which is especially timely

in view of the coming SKA and the Low-Frequency Array (LOFAR) observations.

It opens a unique way of using radio data for the regions where depolarization

masks and distorts the polarized signal. The prospects of SIG get more exciting in

view of recent LOFAR observations that discovered synchrotron radiation on large

scales (several Mpc), on the outskirts of the cluster or between massive cluster

pairs (Govoni et al. 2019; Botteon 2022; Cuciti et al. 2022). As soon as high

signal-to-noise images of this very large-scale synchrotron emission become available,

SIG will also enable us to map these largest-scale magnetic fields and study their

statistical properties (see Fig. 7.12). This will provide constraints on the theories

of magneto-genesis of magnetic field and their role within large-scale structures of

Universe evolution.

7.1.5 Magnetic field maps in RXC J1314.4 - 2515

Fig. 7.9 displays the low-resolution magnetic field maps in RXC J1314.4 - 2515

determined through SIG and synchrotron polarization. It provides a comparison

with the high-resolution SIG measurement in Fig. 7.2. The high-resolution SIG

measurement in RXC J1314.4 - 2515 (FWHM around 120 kpc) eliminates the

resolution difference and shows better agreement with synchrotron polarization

compared to the low-resolution measurement (FWHM around 240 kpc).
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Figure 7.9: The magnetic field orientation of the RXC J1314.4 - 2515 cluster. Panel

a: the magnetic field mapped by the Synchrotron Intensity Gradient (SIG) technique

with an FWHM of approximately 240 kpc. Panel b: the magnetic field determined

through synchrotron polarization at 3 GHz using the JVLA radio observations, with

an FWHM of approximately 120 kpc. The magnetic field is overlaid on the syn-

chrotron emission intensity map, with colors indicating the AM between the SIG and

polarization. Each (magnetic field) segment represents the SIG (or polarization) av-

eraged for 6× 6 pixels for visualization purposes.
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Figure 7.10: Panel a: the relative angle between the POS magnetic field and merger-

axis (determined by radio observation) as a function of the distance (x-axis) to the

cluster center towards the RXCJ1314.4 - 2515 (FWHM approximately 120 kpc) and

Abell 2345 (FWHM approximately 180 kpc) galaxy clusters. The relative angle > 45◦

indicates a preferentially perpendicular configuration, while < 45◦ suggests a parallel

one. The dashed line presents that the relative angle is 45◦. The shallower area

represents the uncertainty calculated from the standard deviation. Panel b: same

as panel a, but the merger axis (derived from radio data) is rotated by ±45◦ or is

determined by the X-ray map’s elongation.

7.1.6 The relative angle between the magnetic field and

merger-axis

Figs. 7.10 and 7.11 present the relative angle between the POS magnetic field and

the merger axis as a function of distance from the center of the cluster. The relative

angle is determined by averaging over linearly spaced radial bins in annuli from the

cluster center. A relative angle value of > 45◦ signifies that the magnetic field is

primarily perpendicular to the merger axis, while a value of < 45◦ indicates that the

magnetic field is predominantly parallel to the axis. The central coordinates for the

five studied clusters are: [R.A.: 198.617◦, Dec.: −25.261◦] for RXC J1314.4 - 2515,

[R.A.: 321.796◦, Dec.: −12.159◦] for Abell 2345, [R.A.: 90.354◦, Dec.: −39.998◦] for

Abell 3376, [R.A.: 58.086◦, Dec.: −74.001◦] for MCXC J0352.4 - 7401, and [R.A.:
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15.718◦, Dec.: −49.249◦] for El Gordo. The merger axis, determined by the cluster

center and the midpoint of the most prominent relic’s longer axis, has orientations

(north through east) of approximately 80◦, −70◦, 78◦, −30◦, −50◦ for RXC J1314.4

- 2515, Abell 2345, Abell 3376, MCXC J0352.4 - 7401, and El Gordo, respectively.

To account for potential uncertainties, we repeat the analysis by rotating the merge

axis by ±45◦. However, the merger axis can also be different when derived from

the X-ray map elongation or the optical analysis of the merging sub-clusters. Here

we further analyze the merger axis determined by the X-ray coutour’s elongation.

The (X-ray) merger axis orients (north through east) approximately 90◦, −15◦, 78◦,

−30◦, −30◦ for RXC J1314.4 - 2515, Abell 2345, Abell 3376, MCXC J0352.4 - 7401,

and El Gordo, respectively.

The results suggest that magnetic fields in the relics are primarily perpendicular

to the merger axis. However, in RXC J1314.4 - 2515 and EL Gordo, the magnetic

field in the radio halos is preferentially parallel to the axis within a distance of

approximately 0.5 Mpc. As a final note, these correlations are obtained for the POS

magnetic field and projected merger axis.

7.1.7 The structure function of POS magnetic field

orientation

Fig. 7.12 presents the structure-function (SFθr) of the POS magnetic field orientation

in the five clusters RXCJ1314.4 - 2515, Abell 2345, MCXC J0352.4 - 7401, Abell

3376, and El Gordo. The structure-function is defined as:

SFθr(l) = ⟨(ψB(rrr)− ψB(rrr + lll))2⟩, (7.16)

where ψB(rrr) is the magnetic field orientation and rrr = (x, y) is the spatial position

on the POS. We can see that, for Abell 2345, the structure functions of SIG and

polarization are flat at large scales and the statistics of SIG are similar to those of

polarization. For RXCJ1314.4 - 2515, polarization exhibits more significant angle

fluctuations than SIG in the relics (scales larger than > 0.3 Mpc). The difference

primarily comes from the less ordered magnetic fields (inferred from polarization) in

the west-relic’s north tail. The fluctuation of the magnetic field in the radio halo

increases further. Generally, for the five clusters, the structure functions are flat on

scales larger than > 0.3 Mpc.
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Figure 7.11: Same as Fig. 7.10, but for the clusters MCXC J0352.4 - 7401, Abell

3376, and El Gordo. The dashed line presents that the relative angle is 45◦.



296

Figure 7.12: The structure function of the POS magnetic field orientation in five

clusters: RXCJ1314.4 - 2515, Abell 2345, MCXC J0352.4 - 7401, Abell 3376, and El

Gordo.
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7.2 Map the magnetic fields with X-ray intensity

gradient

In this section, we present the predicted magnetic field maps for the Perseus

(the brightest in X-rays), M87/Virgo (the closest), and Coma (the brightest

non-cool-core) clusters using deep X-ray observations (Fabian et al. 2011; Forman

et al. 2007; Sanders et al. 2013). The convention of ψB is defined in Cartesian

coordinates, i.e., west-to-north, with the center being the center of the cluster.

Before applying GT (i.e., either XIG or SIG), we first smooth the X-ray residual

maps Ix(x, y) with a 3 arcsec Gaussian filter, and excise significant point sources in

the calculation.

The pipeline of XIG is similar to that of SIG. The input image for XIG is the

residual map of X-ray emission. For all clusters in our analysis, we use deep Chandra

observations that are available in the archive. We process the data following standard

algorithms (Vikhlinin et al. 2005) and produce a mosaic image of each cluster,

corrected for exposure and vignetting effects, and subtracting the background. After

removing the point sources, we find the best-fitting spherically-symmetric β−model

that describes the X-ray surface brightness distribution. Dividing the initial images

by this model, we obtain residual images of gas perturbations in each cluster. The

images are produced in the soft X-ray band, i.e., we remove photons with energies

above 3− 4 keV. The center of all cool-core clusters (Perseus, M87, A2397) coincides

with the central AGN. For the only non-cool-core cluster in our sample, the Coma

cluster, we choose (R.A., Dec.) = (12h59m42.67, +27◦56’40.9) (J2000) as the

center. For the Coma offset region, we shift the center by ∼ 120 kpc to account for

the large-scale asymmetry at large distances from the center. The details of data

preparation are discussed in Zhuravleva et al. (2014) and Zhuravleva et al. (2019).

7.2.1 Magnetic fields in the cool-core Perseus cluster

X-ray intensity gradient

The XIG-predicted POS magnetic field morphology of the Perseus cluster is shown

in Fig. 7.13. We test four Gaussian kernels used in the smoothing of Pseudo-stokes

parameters. We select four Gaussian kernel widths 0, 3′′, 5′′, and 10′′, and then

calculate the corresponding angular dispersion of the gradient. We get the angular

dispersion ≈ 0.991, 0.974, 0.948, and 0.945 in radian units respectively. In view that

the difference between Gaussian kernel widths 5′′ and 10′′ is insignificant and a large
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kernel may oversmooth the vectors, we choose the width 5′′ as the standard value in

the calculation.

As shown in Fig. 7.13, the magnetic fields predominantly align with the sloshing

arm of the cluster. The histogram of the global magnetic field orientation exhibits

a significant peak at an angle ≈ 0.25 radians, corresponding to the orientation

of the inner sloshing arm. This histogram spans the range [0, π) with a bin size

of 50, and it does not differentiate between angles 0 and π. We delineate three

sub-regions in the residual map: P-A, P-B, and P-C. P-A encompasses the inner

sloshing arm and the inner bubble structures, P-B contains the outer sloshing arm,

and P-C includes an outer bubble. In the histogram for P-A, a similar peak at angle

≈ 0.25 radians is observed, aligning with the orientation of the inner sloshing arm.

This alignment results from the tangential motion of the plasma (sloshing), which

stretches the magnetic field lines (e.g., ZuHone et al. 2011). It is important to note

that perturbations within the innermost ∼ 30 kpc region (within the P-A region)

are dominated by the central bubbles and the shock-heated gas surrounding them.

Consequently, the anisotropy scaling relation in this region may diverge from the

MHD turbulence scaling (see Eq. 7.3).

Nevertheless, in such clusters, weak magnetic fields still tend to follow the

anisotropic direction. In this scenario, the resulting direction of the intensity gradient

is perpendicular to the magnetic fields, and the XIG provides accurate predictions.

Moreover, for the brightest part of the inner sloshing (rightmost part of the P-A

region) and the outer sloshing (P-B region), azimuthal magnetic fields that follow

the sloshing spiral arms are observed. For P-C, the predicted magnetic fields exhibit

a rapid directional change by 90◦ at the bubble edge (as shown in the first panel

of Fig. 7.13). Consequently, there is a deficit at angle ≈ 2.50 radians between the

two peaks in the histogram, accompanied by a small peak at angle ≈ 1.00 radians.

The angular difference between ≈ 1.00 = 57.32◦ and ≈ 2.50 = 143.31◦ is nearly 90◦,

consistent with the theoretical expectation of shocks or magnetic draping caused by

the rising bubble (Dursi & Pfrommer 2008).

Synchrotron intensity gradient

The synchrotron emission from the Perseus cluster, observed using the JVLA

B-configuration at 230-470 MHz, reveals several structures associated with the

mini-halo. These structures are thought to be influenced by both AGN activity and

the sloshing motion of the hot gas (Gendron-Marsolais et al. 2017). Unlike X-ray

emissions, which arise from extremely hot gas through thermal bremsstrahlung

processes (Sarazin 1986), synchrotron emission is generated by relativistic electrons
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Figure 7.13: Left top: the predicted magnetic field morphology of the Perseus

cluster from XIG. The magnetic field is superimposed in the residual map (i.e., the

initial image divided by the best-fitting spherically symmetric β-model of the surface

brightness then minus one) using LIC. Left bottom: the residual image of the Perseus

cluster. The cluster is divided into three sub-regions, i.e., P-A, P-B, and P-C. Right:

the histogram of global magnetic field orientation ψB for the Perseus cluster (top 1st,

red) and the histograms of magnetic field orientation ψB for the sub-regions P-A (top

2nd, purple), P-B (top 3rd, blue), and P-C (bottom, green) respectively. The dashed

circles correspond to 4′ ≈ 80 kpc.
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spiraling along magnetic field lines (Pacholczyk 1970). Given the distinct sources

and mechanisms of these emissions, X-ray and synchrotron observations likely unveil

different aspects of the ICM. A detailed comparison of the X-ray and synchrotron

data is provided by Gendron-Marsolais et al. (2017). In our study, we compare the

magnetic fields derived from these two datasets. The magnetic field predicted from

synchrotron emission data using the SIG method is displayed in Fig. 7.14. Pixels

with intensities below the threshold of 5σ = 1.75 mJy/beam are excluded from our

analysis. The resulting magnetic field map encompasses most of the X-ray-defined

sub-regions P-A, P-B, and P-C (see Fig. 7.13). Visually, it is apparent that the

magnetic field significantly bends at the high-intensity center and aligns with the

sloshing arm, a pattern also observed in the X-ray data presented in Fig. 7.13.

In Fig. 7.14, we present a histogram of the magnetic field orientation derived

from synchrotron emission data. The global magnetic field histogram displays

several peaks at ψB ≈ 0, 0.6 (≈ 34.37◦), and 1.8 (≈ 103.13◦), closely mirroring the

peaks observed in the X-ray data. Specifically, for sub-region P-A, the histogram

shows two pronounced peaks at ψB ≈ 0.6 (≈ 34.37◦) and ψB ≈ 1.8 (≈ 103.13◦).

The former aligns with the sloshing arm, as identified in Fig. 7.13, while the latter

is associated with the central region. The histograms for sub-regions P-B and P-C

reveal several features consistent with those depicted in Fig. 7.13, such as the dual

peaks at ψB ≈ 0.5 - 1.0 for P-B and ψB ≈ 2.9. However, the synchrotron data does

not exhibit peaks at ψB ≈ 2.0 in P-B and ψB ≈ 1.0 as shown in Fig. 7.14.

Three primary factors may account for the discrepancies observed between

the magnetic fields derived from X-ray and synchrotron emissions: (i) the X-ray

and synchrotron emissions trace different components of the ICM; (ii) some

structures may not be well-resolved due to the comparatively lower resolution of

the synchrotron data; (iii) the coverage of the two datasets may not fully overlap,

with the synchrotron data not encompassing the upper part of P-B, for example.

Additionally, cosmic ray electrons could potentially introduce external gradients to

the synchrotron data results. The influence of cosmic-ray gradients on our findings

will be addressed in a forthcoming study.

We conducted a quantitative comparison of the magnetic fields derived from

X-ray and synchrotron data by calculating the mean field directions. The mean

magnetic field direction calculated from the synchrotron data is denoted as µ̄s,

and µ̄x represents the mean direction derived from X-ray data. For sub-regions

P-A, P-B, and P-C, the values of µ̄s are 1.443, 1.260, and 2.065, respectively. The

corresponding µ̄x values are 1.434, 1.451, and 2.107, indicating that, on average, the

magnetic fields inferred from the X-ray and synchrotron datasets are closely aligned.
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Figure 7.14: Panel a: the predicted magnetic field morphology of the Perseus clus-

ter from SIG (left) using synchrotron emission data (right). The magnetic field is

superimposed on the intensity map with X-ray contours overlaid. Three sub-regions

P-A, P-B, and P-C correspond to the ones highlighted in Fig. 7.13. Panel b: the

histogram of global magnetic field orientation ψB for the global Perseus cluster (top

left), sub-region P-A (top right), P-B (bottom left), and P-C (bottom right). The

dashed circle corresponds to 4′ ≈ 80 kpc.

Furthermore, we assessed the relative angles between the magnetic fields obtained

from the X-ray and synchrotron data. Given the resolution disparity—approximately

3′′ per pixel for the synchrotron data and approximately 1′′ per pixel for the X-ray
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Figure 7.15: Right: the distribution of the relative angle between the magnetic

field inferred from X-ray data and synchrotron emission with synchrotron contours

(at 1.75×10−3, 5×10−3, 1×10−2, 3×10−2, 5×10−2, 7×10−2, 0.1, 0.5, 1, 2 mJy/beam

levels) overlaid. Bottom: the histogram of the global relative angle between the

magnetic fields inferred from XIG and SIG.
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Figure 7.16: The histogram of the relative angle between the magnetic field cal-

culated from X-ray data and synchrotron data. The histogram is drawn for each

sub-region P-A, P-B, and P-C respectively, see Fig. 7.13 and Fig. 7.14 for details of

each sub-region.

data—the X-ray data resolves a greater number of magnetic field vectors. To align

the maps, we matched their coordinates and calculated the angular average for every

3×3 magnetic field vectors from the X-ray data, effectively reducing its resolution to

match that of the synchrotron data. The distribution of relative angles is showcased

in Fig. 7.15, revealing a general agreement in the magnetic field orientations within

the sloshing arm and its vicinity. Despite this congruence, discrepancies arise likely

because the X-ray and synchrotron emissions trace different components of the ICM.

The histogram of relative orientations, displayed in Fig. 7.15, approximates a single

Gaussian distribution with a peak at 0 and a standard deviation of approximately

26.93◦. Separate histograms for the relative angle distributions within sub-regions

P-A, P-B, and P-C are presented in Fig. 7.16. The histogram for P-A indicates

a predominant alignment with the majority of relative angles being less than

0.5 radian, suggesting a strong correlation. For P-B, the relative angles suggest

alignments that are either parallel (relative angle ≈ 0) or perpendicular (relative

angle ≈ π/2), while the alignments for P-C appear more random.
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Figure 7.17: Left top: the predicted magnetic field morphology of the Virgo/M87

cluster from XIG. The magnetic field is superimposed in the residual map (i.e., the

initial image divided by the best-fitting spherically symmetric β-model of the surface

brightness then minus one) using LIC. Left bottom: the residual image of the cluster.

The cluster is divided into three sub-regions, i.e., M-A, M-B, and M-C. Right: the

histogram of global magnetic field orientation ψB for the M87 cluster (top 1st, red) and

the histograms of magnetic field orientation ψB for the sub-regions M-A (top 2nd,

purple), M-B (top 3rd, blue), and M-C (bottom, green) respectively. The dashed

circles correspond to 4′ ≈ 20 kpc.
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7.2.2 Magnetic fields in the cool-core M87 cluster

In our examination of M87, we employ the XIG analysis on the X-ray residual maps,

mirroring the methodology applied to the Perseus analysis. We delineate three

sub-regions within M87: M-A, M-B, and M-C, with M-A and M-C encompassing

the eastern and southwestern arms, respectively, and M-B covering the inner bubble

and jet. The resulting magnetic field morphology, alongside the X-ray residual map

and histograms of magnetic field orientation, is illustrated in Fig. 7.17.

The global histogram for M87 reveals complex features, reflecting the intricate

structures within the galaxy. Specifically, the histogram for M-A identifies three

distinct peaks at angles ≈ 0.25, 1.20, and 2.40 radian, each corresponding to distinct

features within the eastern arm of M-A. M-C, containing a single significant outflow

arm, yields a histogram with a singular peak at angle ≈ 2.00 radian. Meanwhile,

M-B’s histogram displays a peak at ≈ 0.50 radian, indicative of the magnetic

field orientation within this region. Notably, our findings also highlight a coherent

magnetic field along the shock, particularly above the M-B and M-C regions.

7.2.3 Magnetic fields in the non-cool-core Coma cluster

The Coma cluster, a well-studied, nearby massive cluster, has experienced several

mergers with intermediate-mass subgroups in recent history (Vikhlinin et al.

1997). Distinct from other clusters characterized by cool cores and active central

supermassive black holes, Coma represents a merging, non-cool-core cluster devoid

of AGN activity at its center. In this study, we analyze two sub-regions within

the Coma cluster observed by Chandra, following the nomenclature of Zhuravleva

et al. (2019) as Coma-center and Coma-outer. The X-ray residual maps for these

sub-regions are shown in Fig. 7.18.

The XIG analysis predicts a magnetic field in Coma that aligns with the ICM

structures, as presented in Fig. 7.18. Notably, in regions of high intensity, we observe

more rapid changes in the orientation of the magnetic field. The histogram of

magnetic field orientation, ψB, for the Coma-center region, depicted in Fig. 7.18,

shows a bimodal distribution with peaks at ψ ≈ 1.4 radians (80◦) and ψB ≈ 0◦.

The absence of strong shocks in these regions of Coma suggests that the observed

bending of magnetic fields is primarily due to subsonic bulk motions. Specifically,

the Coma-center is notable for two structures indicative of gas stripped from

merging subclusters (visible as orange enhancements in Fig. 7.18, with the largest

enhancement associated with two massive galaxies) (Sanders et al. 2013). The

orientation of magnetic fields around one of these enhancements, likely influenced
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Figure 7.18: Top left: the predicted magnetic field morphology of the Coma cluster

center region and outer region from XIG. The magnetic field is superimposed in the

residual map (i.e., the initial image divided by the best-fitting spherically symmetric

β-model of the surface brightness then minus one) using the LIC. Bottom: the his-

tograms of global magnetic field orientation ψB for the Coma cluster’s center region

(left) and outer region (right). The red cross denotes the center R.A. = 12h59m42.67

(J2000) and Dec. = +27◦56′40.9′′ (J2000) used for the β-model fitting in Coma-

center and green cross denotes the center R.A. = 12h59m22.67 (J2000) and Dec =

+27◦54′40.9′′ (J2000) used for Coma-outer.

by magnetic draping, underscores the complex dynamics within the cluster. In

contrast, the Coma-outer’s magnetic field orientation histogram approximates a

single Gaussian distribution with a peak at ψ ≈ 2.0 radians (114.5◦), indicating a

more uniform magnetic field without strong perturbations on the scales probed.
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This uniformity suggests a relatively undisturbed state in the outer regions of the

Coma cluster, contrasting with the dynamic interplay observed in the Coma-center.

7.2.4 Characterize of magnetic field morphology in galaxy

clusters

In this section, we investigate the orientation of magnetic fields with respect to

the radial direction towards the central black hole across the previously discussed

clusters, employing the AM. The AM ranges from [-1, 1], where negative values

indicate a tendency of the magnetic field to be tangential, and positive values suggest

alignment with the radial direction. The regions selected for this calculation are

demarcated by dashed circles in Figs. 7.13, 7.14, and 7.17, with the coordinates of

the central black holes in Perseus and M87 provided in the equatorial coordinate

system.

Fig. 7.19 illustrates the relationship between AM and distance from the cluster

center. For Perseus, observed in X-ray, AM sharply decreases to about -0.6 at

r ≈ 10 kpc, reaching a minimum of approximately -0.8 at r ≈ 35 kpc. Synchrotron

observations of Perseus show a decline in AM at r ≈ 30 kpc, stabilizing at about

-0.7 within the range of [30 kpc, 65 kpc], with both datasets indicating the minimum

AM at r ≈ 35 kpc.

In M87, AM descends to its minimum at r ≈ 2.5 kpc. The presence of

outflow arms at larger distances contributes to a radial magnetic field, slightly

increasing AM, yet it remains negative throughout. It’s noted that AM calculations

exclude distances corresponding to the minimum scale resolvable by the XIG/SIG,

translating to approximately 7/25 kpc for Perseus (X-ray/synchrotron), 2 kpc for

M87, and 27 kpc for Coma from the center. This exclusion accounts for potential

artificial effects due to XIG/SIG’s resolution limitations, especially noticeable in

Perseus (synchrotron) and M87 where AM increases within distances smaller than

30 kpc.

The prevalent negative AM within the cores of Perseus and M87 suggests a

predominant tangential orientation of magnetic fields, attributed in part to magnetic

draping by rising bubbles and, in Perseus, potentially to sloshing arms. Contrarily,

M87 and Abell 2597, lacking pronounced sloshing arms, exhibit randomized magnetic

field lines due to AGN feedback-induced outflow arms.

For the Coma cluster, utilizing centers as identified by Zhuravleva et al. (2019),

we observe an AM close to 0 within its core, contrasting with the cool-core clusters.
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Figure 7.19: The relation of AM and the distance away from the cluster center.

Negative AM implies the magnetic field tends to be tangential, while positive AM

means the magnetic field follows the radial direction.
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At distances of approximately 100-300 kpc, a measured positive AM signifies

radially oriented magnetic fields, potentially linked to previously discussed infalling

structures. Beyond 300 kpc, AM exhibits significant fluctuations, a likely result of

limited sampling within the analyzed annulus. Consequently, further observations

and analyses are essential for accurate assessments of mean AM in Coma’s outer

regions.
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Chapter 8

Probing three-dimensional

magnetic fields

This thesis chapter originally appeared in the literature as

Hu, Y., Xu, S., & Lazarian, A. 2021, ApJ, 911, 37.
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Abstract

Mapping three-dimensional magnetic fields in the interstellar medium is crucial

for understanding various astrophysical processes, yet it remains a formidable

challenge. Utilizing principles from anisotropy in magnetohydrodynamic (MHD)

turbulence, dust polarization physics, and non-linear spectroscopic mapping, we

propose four novel methods to probe the orientation and strength of 3D magnetic

fields: (i) analyzing the anisotropic velocity of young stellar objects; (ii) employing

dust polarization fraction analysis; (iii) leveraging anisotropy in spectroscopic

emission lines; and (iv) applying a physics-informed convolutional neural network

(CNN). Our analysis of three-dimensional compressible MHD simulations reveals

that the velocity fluctuations of young stellar objects, measured parallel to

the magnetic field, are minimal. The ratio between parallel and perpendicular

velocity fluctuations has a power-law dependence on the Alfvén Mach number MA,

which is inversely proportional to the magnetization. We confirm this anisotropy

in young stellar objects’ velocity allows for the estimation of both the field’s



311

orientation and magnetization. Furthermore, by incorporating magnetic field

fluctuations as influenced by MHD turbulence in polarization fraction analysis,

we can simultaneously retrieve the 3D magnetic field’s position and inclination

angles with respect to the line of sight from dust polarization. By generating

synthetic dust emissions from 3D MHD turbulence simulations, we determine that

the inclination angle significantly contributes to depolarization, overshadowing

the effects of magnetic field strength and density fluctuations. This methodology

proves effective across sub-Alfvénic to moderately super-Alfvénic conditions, with

the estimated inclination angle differing from the actual angle by a median value of

less than or equal to 10◦. Advancing our understanding of non-linear spectroscopic

mapping to position–position–velocity space, we find that the anisotropy within a

spectroscopic channel is influenced by the inclination angle, media magnetization,

and the plane-of-the-sky magnetic field orientation. Adjusting the channel width

allows for the simultaneous estimation of the magnetic field’s inclination angle and

total strength. Capitalizing on these insights, we design a CNN model trained on

synthetic emission lines of 13CO (J = 1–0) and C18O (J = 1–0), generated from 3D

MHD simulations spanning sub-Alfvénic to super-Alfvénic conditions. Our CNN

model effectively reconstructs the 3D magnetic field topology and magnetization,

offering a groundbreaking tool for probing the complexities of cosmic magnetic fields.

8.1 Anisotropy in young stellar object’s velocity

Drawing upon the foundational principles of MHD turbulence theory (Goldreich &

Sridhar 1995) and turbulent reconnection theory (Lazarian & Vishniac 1999; Lazarian

et al. 2020a), recent advances have introduced several innovative methodologies for

investigating the orientation of magnetic fields Notably, the VGT, as elaborated

in § 4.1.4 and further discussed by González-Casanova & Lazarian 2017; Yuen &

Lazarian 2017b; Lazarian & Yuen 2018c; Hu et al. 2018, leverages the inherent

anisotropy of MHD turbulence. This anisotropy manifests in velocity fluctuations,

which are maximized perpendicular to the local magnetic field lines and minimized

when parallel. By comparing the amplitude of velocity fluctuations along various

directions, the anisotropy facilitates the tracing of magnetic field orientations. Ha

et al. (2021) observed that the velocities of young stars within a molecular cloud bear

the imprints of the cloud’s turbulent nature. Given that magnetic fields influence the

anisotropy of these velocity fields, the motion of these stars encapsulates valuable

information regarding the magnetic environment of their natal cloud. The Gaia

survey, with its provision of 3D positions and velocities for young stars (Gaia

Collaboration et al. 2016, 2018), offers a direct pathway to assess these velocity
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fluctuations and 3D magnetic field by employing the structure function.

Figure 8.1: The correlation of normalized structure function and the relative angle

between ẑzz and mean magnetic field B0B0B0. Instead of being parallel to the magnetic field

B0B0B0, ẑzz here is an arbitrary direction used for calculating the structure-function. SF2

takes the value at 0.1 pc.

8.1.1 Measuring magnetic field orientation

As discussed in § 2.1.1, the squared perpendicular velocity fluctuation v2l,⊥ consistently

exhibits a higher amplitude than the parallel fluctuation v2l,∥ in both global and local

frames, which implies the turbulence cascade is preferentially along the direction

perpendicular to the magnetic fields. In the sub-Alfvénic regime, Alfvén waves

initially evolve by the so-called weak turbulence cascade increasing the perpendicular

wavenumber while keeping the parallel wavenumber the same (Lazarian & Vishniac

1999; Galtier et al. 2000, 2005). The perpendicular wavenumber’s increase makes

the Alfvénic wave vectors more and more perpendicular to the magnetic field. The

weak cascade proceeds until the ′′critical balance′′ condition, namely, l∥/vA ∼ l⊥/v⊥
is fulfilled.

In our numerical methodology, outlined by Eqs. 2.24 and 2.25, we initially align

the ẑzz axis of the structure function with the magnetic field vector B0B0B0. However,

here we vary the direction of ẑzz so that the relative angle between ẑzz and B0B0B0 gets

different. Fig. 8.1 presents the correlation between the global structure function SFg2
and the relative angle. To minimize the impact of artificial anisotropy, we assess

SFg2 at a scale of 0.1 pc, a threshold below which numerical dissipation of turbulence
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is typically observed. In practical observational scenarios, however, opting for a

larger scale to measure SFg2 might be beneficial. This is due to the presence of

Figure 8.2: The correlation of MA and v2l,⊥/v
2
l,∥ = v2l,1/v

2
l,2. The calculation is

performed in the global reference frame, selecting the SF2 at the scale l ≈ 0.1 pc,

below which the turbulence starts numerically dissipating. The analytical expressions

are v2l,⊥/v
2
l,∥ =M

−4/3
A for MA ≤ 1 and v2l,⊥/v

2
l,∥ = 1 for MA > 1.

scale-independent global anisotropy across a broader inertial range, enabling an

averaged anisotropic assessment that potentially mitigates sampling uncertainties.

We normalize the resultant SFg2 values, setting the peak value to unity. Fig. 8.1

shows a distinct pattern: the SFg2 value increases with the widening of the relative

angle, particularly noting a sharper ascent for angles less than 70 degrees. Crucially,

the maximum normalized SFg2 is achieved when ẑzz lies perpendicular to B0B0B0, whereas

its minimum occurs when ẑzz aligns parallel to B0B0B0. Thus, the orientation of ẑzz that

yields the lowest SFg2 value effectively delineates the magnetic field’s direction.

8.1.2 Measuring magnetization

The corresponding ratio v2l,⊥/v
2
l,⊥ can reveal the magnetization M−1

A of a medium

(see Eqs. 2.12 and Eq. 2.17):

v2l,⊥
v2l,∥

=

{
M

−4/3
A , (global,MA ≤ 1)

1, (global,MA > 1)
. (8.1)

The change in the power-law index for cases with MA > 1 is anticipated. When the

injection velocity exceeds the Alfvén speed, large-scale motions become dominated

by hydrodynamic-type turbulence. The magnetic field directions within the flow are

significantly randomized, leading to a shallower power-law.
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Fig. 8.2 illustrates the correlation between MA and v2l,⊥/v
2
l,∥ = v2l,1/v

2
l,2 in the

global reference frame. To minimize the impact of driving effects, we consider

only the velocity fluctuations at the scale l ≈ 0.1 pc, below which turbulence

begins to numerically dissipate. The standard deviation of the mean represents

uncertainty. We find a close alignment between the measured ratio and its

theoretical correlation, suggesting that the velocity fluctuations in this frame are

indicative of MA. Thus, MA can be accurately inferred from the ratio v2l,⊥/v
2
l,∥. For

practical application, especially in determining the magnetic field orientation and

the medium’s magnetization, it is recommended to measure the global structure

function SFg2 across various position angles. This approach aims to identify the

maximum and minimum values of velocity fluctuations. The angle yielding the

minimum fluctuation value precisely indicates the direction of the magnetic field.

Concurrently, the ratio of maximum to minimum fluctuation values serves as a

measure of the medium’s magnetization.

8.2 Estimating the inclination angle from dust

polarization

An important step of probing the 3D magnetic field via polarized dust emission

was initiated by Chen et al. (2019). The POS magnetic field can be easily inferred

from polarization direction based on the fact that dust grains preferentially align

with their ambient magnetic fields (Lazarian 2007b; Andersson et al. 2015). To

achieve a three-dimensional picture, the inclination angle of the magnetic field

relative to the LOS is crucial. As the inclination angle is one of the major agents

of depolarizing thermal emission from dust, the polarization fraction intrinsically

inherits the angle’s information. Therefore, Chen et al. (2019) and Sullivan et al.

(2021) estimated the inclination angle based on the statistical properties of the

observed polarization fraction. Their method assumes an ideal scenario that which

there are no fluctuations in either the magnetic field’s POS or LOS components.

This assumption could be valid for strongly magnetized mediums.

To accommodate the magnetic field fluctuations, here we consider a scenario

that the fluctuations arise from anisotropic MHD turbulence based on the fact

that molecular cloud is highly turbulent (Larson 1981b; Myers 1983; Evans 1999;

Hennebelle & Falgarone 2012) and is dominated by slow and fast components of MHD

turbulence that follow Kolmogorov scaling (Yuen et al. 2022). This consideration

advantageously simplifies the problem because the most significant fluctuations

preferentially appear in the direction perpendicular to the mean magnetic field
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(Goldreich & Sridhar 1995; Lazarian & Vishniac 1999; Cho & Lazarian 2003).

Therefore, we propose a simple model in this work in which the local magnetic

field along the LOS is built up by a global mean magnetic field and perpendicular

fluctuations. This assumption is typically valid for cloud-scale and clump-scale

objects in which their magnetic fields’ variation along the LOS is insignificant.

Based on the assumption that in polarization measurements we deal with

magnetic field fluctuation preferentially perpendicular to the mean field, we can

investigate the properties of polarized dust emission. We adopt dust polarization

equations from Planck Collaboration et al. (2015b):

Ip(x, y) =

∫
n[1− p0(sin

2 γ − 2/3)]dz,

Qp(x, y) =

∫
p0n

B2
x −B2

y

B2
dz,

Up(x, y) =

∫
p0n

2BxBy

B2
dz,

ψp(x, y) =
1

2
tan−1(

Up
Qp

),

(8.2)

where n(x, y, z) is dust volume density, ψp is polarization angle, and p0 is a

polarization fraction parameter related to the intrinsic polarization fraction

(assumed to be constant throughout a cloud; Chen et al. 2019). B(x, y, z) denotes

total magnetic field strength, while Bx(x, y, z) and By(x, y, z) are its x-axis

component and y-axis component. γ is the magnetic field’s inclination angle with

respect to the LOS (i.e., the z-axis). Accordingly, the polarization fraction is (Fiege

& Pudritz 2000):

p =

√
Q2
p + U2

p

Ip
= p0

√
(
∫
n
B2

x−B2
y

B2 dz)2 + (
∫
n2BxBy

B2 dz)2∫
ndz − p0

∫
n(sin2 γ − 2/3)dz

. (8.3)

To describe magnetic field fluctuations, we use a simple configuration of

magnetic field (see Fig. 8.3). Assuming the local total magnetic field is built up by a

mean magnetic field ⟨BBB⟩ and a fluctuation δBBB(x, y, z):

BBB(x, y, z) = ⟨BBB⟩+ δBBB(x, y, z), (8.4)

The mean-field also has a mean inclination angle ⟨γ⟩ and POS magnetic field

angle ⟨ϕ⟩. We consider the magnetic field fluctuation δBBB that is preferentially

perpendicular to the mean field. However, since δBBB ∝ ξ̂ξξ × ⟨BBB⟩, the fluctuation does

not necessarily lie on the plane defined by ⟨BBB⟩ and the LOS (i.e., the z-axis). Instead,
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Figure 8.3: Illustration of the magnetic field configuration. Panel a: configuration

of the mean field ⟨BBB⟩. ⟨BBB⟩⊥ is the magnetic field projected on the POS, i.e. x − y

plane. ⟨γ⟩ is the mean inclination angle of the mean magnetic field ⟨BBB⟩ with respect

to the LOS. ⟨ϕ⟩ = ⟨ψ⟩ + π/2 is the magnetic field’s angle relative to x-axis on the

POS. Panel b: configuration of the local total magnetic field BBB = ⟨BBB⟩ + δBBB. The

mean field is changed by a perpendicular fluctuation δBBB with an angle θ. Here θ is the

angle between δBBB and the vector (i.e., δBBB sin θ) that is simultaneously perpendicular

to ⟨BBB⟩ and ˆ⟨BBB⟩ × ẑzz. Dashed black lines are within the ˆ⟨BBB⟩ − ẑzz plane, where ˆ⟨BBB⟩ and
ẑ are unit vectors of ⟨BBB⟩ and zzz, respectively.
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we consider that δBBB has an angle θ with respect to the ⟨BBB⟩ − z plane. Specifically, θ

is that angle between δBBB and the vector that is simultaneously perpendicular to ⟨BBB⟩
and ˆ⟨BBB⟩ × ẑ (see Fig. 8.3). Accordingly, we project the fluctuations and mean field

into x and y components:

Bx = ⟨B⟩ sin⟨γ⟩ cos⟨ϕ⟩+ (δB cos θ) cos⟨γ⟩ cos⟨ϕ⟩ − (δB sin θ) sin⟨ϕ⟩,
By = ⟨B⟩ sin⟨γ⟩ sin⟨ϕ⟩+ (δB cos θ) cos⟨γ⟩ sin⟨ϕ⟩+ (δB sin θ) cos⟨ϕ⟩.

(8.5)

The first term comes from the mean magnetic field angle ⟨ϕ⟩ and mean inclination

angle ⟨γ⟩. Their fluctuations δγ and δϕ are introduced by the last two terms involved

with δBBB.

Note that the direction of δBBB is defined by the displacement vector and the

mean field (see Eq. 7.3). As the displacement vector varies in different spatial

positions along the LOS, θ is not a constant. By assuming a uniform distribution of

θ along the LOS, we integrate θ from 0 to 2π and take averages:

Qp =
1

2π

∫
p0n

∫ 2π

0

B2
x −B2

y

B2
dθdz

=

∫
p0n

cos(2⟨ψ⟩)[sin2⟨γ⟩+ 1
2
M2

A cos2⟨γ⟩ − 1
2
M2

A]

1 +M2
A

dz,

Up =
1

2π

∫
p0n

∫ 2π

0

2BxBy

B2
dθdz

=

∫
p0n

sin(2⟨ψ⟩)[sin2⟨γ⟩+ 1
2
M2

A cos2⟨γ⟩ − 1
2
M2

A]

1 +M2
A

dz,

1

2π

∫ 2π

0

sin2 γdθ =
1

2π

∫ 2π

0

(1− cos2 γ)dθ

= 1− M2
A sin2⟨γ⟩

2(M2
A + 1)

− cos2⟨γ⟩
M2

A + 1
.

(8.6)

Eq. 8.6 gives the effective values of the three quantities along single LOS. Here

MA = δB/⟨B⟩ is the Alfvén Mach number.1. In the presence of a mean magnetic

field, the integral of local MA weighted by density n can be replaced with its mean

value MA averaged along the LOS, as a first order approximation. In this work,

the upper ”−” symbol means LOS average, while ⟨...⟩ is averaged over a volume of

interest. For convenience, we introduce MA,⊥, which is the Alfvén Mach number

1For a turbulent volume, the scalar MA at scale l is defined as the ratio of turbulent velocity in

the volume to Alfvén speed: MA = vl/vA. For Alfvénic turbulence, we have vl/vA = δB/⟨B⟩ so

that MA = δB/⟨B⟩.



318

corresponding to the motions perpendicular to the LOS, i.e.:

MA,⊥ = (vl
√
4πρ)/(⟨B⟩ sin γ) = vl/(vA sin γ)

=MA/ sin γ,
(8.7)

where ρ is mean gas mass density. The 3D turbulent velocity vl has been already

incorporated in available observational methods of calculating MA,⊥. For instance,

the Davis-Chandrasekhar-Fermi (DCF) method (Davis 1951; Chandrasekhar &

Fermi 1953) calculates vl from the emission line’s width (Hwang et al. 2021) 2. The

projection, therefore, is applied only to the total magnetic field strength.

Combining Eqs. 8.3 and 8.6, the polarization fraction can be written as:

p =
p0

1 +MA
2 ·

sin2⟨γ⟩(1− 1
2
MA

2
)

1− p0(1/3− sin2⟨γ⟩(MA
2−2)+2

2(MA
2
+1)

)
. (8.8)

Note here we write the Eq. 8.3’s integral of the product in the numerators’ two terms

and the denominator second term as a product of two integrals (one is
∫
ndz) as we

disregard the correlation of fluctuations of density and magnetic field. Consequently,

the column density
∫
ndz appears in both the numerator and denominator and

is canceled off. In reality, the observationally measured polarization angle and

inclination angle are density-weighted. However, the main effect of polarization is

expected from the variations in the magnetic field direction.3 As shown in Fig. 8.4,

the variations of the magnetic field direction along the LOS induce depolarization

effects so that p gets its minimum value at large MA.

In observations, as p is measured, the key problem in determining sin2⟨γ⟩ is to
get p0 and MA. Chen et al. (2019) showed that p0 can be recovered approximately

from:

p0 =
3pmax

3 + pmax

, (8.9)

2Note that the LOS turbulent velocity vlos calculated from the emission line, after correcting

thermal speed and telescope beam effect (Crutcher 1999; Hwang et al. 2021), corresponds to the

fluctuation at the injection scale which is isotropic. Consequently, the 3D turbulent velocity at

injection scale vinj can be obtained from vinj =
√
3vlos. When turbulence cascades to a small

scale, the fluctuation becomes anisotropic, i.e., most significant in the direction perpendicular to the

magnetic field, as confirmed by numerical simulations (Hu et al. 2021c). The turbulent velocity vl
at scale l is vl = (l/Linj)

1/3vinj for Kolmogorov-type turbulence, where Linj is the injection scale. vl
obtained in observation, therefore, contains the contribution not only from the LOS velocity.

3Grain alignment by radiative torques (Lazarian 2007b; Andersson et al. 2015) and related dust

disruption (Lazarian & Hoang 2021; Hoang 2019) can also vary for different LOS and affect polar-

ization. These effects are expected for clouds with active star formation or for LOS with high optical

depth. We disregard these effects within our model.
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where pmax is the maximum polarization fraction that can be obtained when the

local inclination angle is 90◦.

0.0 0.2 0.4 0.6 0.8 1.0
MA

0.00
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= /3
= /4
= /6

Figure 8.4: Analytical relation Eq. 8.8 of the polarization fraction p and MA.

If we know p0, we can express the distribution of total Mach number explicitly

from the observed polarization fraction p:

MA
2
=

p0 sin
2⟨γ⟩(1 + p)− p(1 + 2

3
p0)

1
2
p0 sin

2⟨γ⟩(1 + p) + p(1− 1
3
p0)

. (8.10)

Note that the conditionMA ≥ 0 implicitly restricts the numerator to be non-negative.

With the assumption of vanishing fluctuations (MA
2 ≈ 0), Chen et al. (2019)

generalized Eq. 8.10 to every LOS to get local γ instead of the mean value ⟨γ⟩:

sin2 γCh =
p(1 + 2

3
p0)

p0(1 + p)
, (8.11)

where the subscript ”Ch” is used to distinguish the expression in Chen et al. (2019)

from our expression. Here we see an inconsistency in the treatment of the problem

in Chen et al. (2019). The condition MA
2 ≈ 0 cannot be satisfied for every LOS in

observation. As we are interested in the realistic situation of MA being nonzero, by

accounting for MA, we address this inconsistency. Combining Eq. 8.7 and Eq. 8.10,

the expression for local sin γ is:

sin2 γ =
1

MA
2

,⊥

·
p0 sin

2⟨γ⟩(1 + p)− p(1 + 2
3
p0)

1
2
p0 sin

2⟨γ⟩(1 + p) + p(1− 1
3
p0)

. (8.12)
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Or alternatively, we have:

p =
p0

1 +MA
2

,⊥ sin2 γ
·

sin2⟨γ⟩(1− 1
2
MA

2

,⊥ sin2 γ)

1− p0(1/3−
sin2⟨γ⟩(MA

2
,⊥ sin γ2−2)+2

2(MA
2
,⊥ sin2 γ+1)

)
. (8.13)

In the situation of the zeroth order approximation MA
2

,⊥ ≈ 0, the contribution

from MA
2

,⊥ sin2 γ vanished. Or in other situation that MA
2

,⊥ is the leading term, the

condition MA
2

,⊥ ≪ 1 also guarantees that MA
2

,⊥ sin2 γ is negligible. Consequently, if

one can find a LOS satisfying MA
2

,⊥ ≪ 1, Eq. 8.13 reduces to:

poff =
p0 sin

2⟨γ⟩off
1− p0(sin

2⟨γ⟩off − 2
3
)
, MA

2

,⊥ ≪ 1, (8.14)

where poff is the polarization fraction corresponding to MA,⊥ ≪ 1. Equivalently, the

mean inclination angle is:

sin2⟨γ⟩off =
poff(1 +

2
3
p0)

p0(1 + poff)
, MA

2

,⊥ ≪ 1, (8.15)

where the subscript ”off” represents that the mean inclination angle is calculated

with the knowledge of polarization fraction and MA,⊥ at a reference position. In this

work, we explore the combination of Eqs. 8.9 and 8.15 in obtaining three-dimensional

magnetic field assuming MA
2

,⊥ is the leading term:

sin2⟨γ⟩off =
poff(1 + pmax)

pmax(1 + poff)
, MA

2

,⊥ ≪ 1. (8.16)

Also, the total mean Alfvén Mach number can be naturally accessed via

⟨MA,⊥⟩ sin⟨γ⟩off = ⟨MA⟩. Note that Eq. 8.9 assumes that the local inclination

angle can achieve 90◦, which, however, might not be the case in observation.

We, therefore, generalize pmax to the maximum value of the observed polarization

fraction. Although this generalization introduces uncertainty to the estimation of

sin2⟨γ⟩off , we numerically find it is insignificant.

Moreover, Eq. 8.16 requires the information ofMA,⊥ to estimate ⟨γ⟩off . However,
observations of dust polarization allow us to measure the magnetic field’s variation

δϕ perpendicular to the LOS. In the case that the polarization’s integration length

scale along the LOS does not exceed the turbulent injection scale, one can introduce

the relation MA,⊥ ≈ δϕ (Falceta-Gonçalves et al. 2008; Lazarian et al. 2018). This

approximation can be easily understood based on the fact that fluctuations are

more significant for a weak magnetic field (i.e., large MA,⊥). It is approximately
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true for molecular clouds and it is implicitly employed in the traditional treatment

of DCF method to find the strength of the magnetic field. Thus with polarization

measurement alone, one can still estimate ⟨γ⟩off from:

sin2⟨γ⟩off =
poff(1 + pmax)

pmax(1 + poff)
, δϕ

2 ≪ 1, (8.17)

where δϕ that we associate with MA,⊥ should be determined statistically. Therefore,

we deal with statistically averaged quantities, similar to what is done in the DCF

method. For the simplicity of the test, we calculate the distribution of MA,⊥
from numerical simulations directly. To implement it in observation, additional

approaches of measuring MA,⊥ or δϕ are required.

8.2.1 Perturbation expansion

As suggested by Eq. 8.6, the magnetic fluctuation magnifies further depolarization.

Here we consider a more general form of perturbation expansion to investigate its

significance. We introduce λ as a dimensionless parameter that can take on values

ranging continuously from 0 (no fluctuation) to 1 (the full fluctuation):

BBB(x, y, z) = ⟨BBB⟩+ λδBBB(x, y, z). (8.18)

Consequently, the Qp and Up in Eq. 8.6 becomes:

Qp =

∫
p0n

cos(2⟨ψ⟩)[sin2⟨γ⟩+ λ2

2
M2

A cos2⟨γ⟩ − λ2

2
M2

A]

1 + λ2M2
A

dz,

Up =

∫
p0n

sin(2⟨ψ⟩)[sin2⟨γ⟩+ λ2

2
M2

A cos2⟨γ⟩ − λ2

2
M2

A]

1 + λ2M2
A

dz.

(8.19)

In the case that the fluctuation is sufficiently weak, Qp and Up can be written as a

power series in λ:

Qp ≈
2∑

n=0

λn
1

n!

dnQp

dλn
|λ=0 =

∫
p0n cos(2⟨ψ⟩) sin2⟨γ⟩(1− 3λ2M2

A)dz,

Up ≈
2∑

n=0

λn
1

n!

dnUp
dλn

|λ=0 =

∫
p0n sin(2⟨ψ⟩) sin2⟨γ⟩(1− 3λ2M2

A)dz,

(8.20)

here we expand the Qp and Up only to the second-order. We notice that the

first-order expansion vanishes because of dQp

dλ
|λ=0 = 0, dUp

dλ
|λ=0 = 0. It suggests that

the depolarization contributed by the fluctuation in magnetic field is a second-order

quantity. The primary source of depolarization is the inclination angle’s fluctuation

3 sin2⟨γ⟩M2
A.
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8.2.2 Sub-region sampling

Eq. 8.16 could reveal the mean inclination angle for a given cloud under the

assumption that p0 is constant across the entire cloud and dust grains’ properties

are homogeneous. We denote this method as Polarization Fraction Analysis (PFA).

The accuracy of the PFA mainly depends on (i) the presence of a mean magnetic

field; (ii) the existence of a reference position with MA
2

,⊥ ≪ 1 assuming MA,⊥ is the

leading factor in Eq. 8.13; (iii) the samples within a region are sufficient so that

our assumption of perpendicular magnetic field fluctuations is valid; and (iv) the

whether the maximum value pmax of observed polarization fraction corresponds to

the case that the local inclination angle is 90◦. We will numerically show that the

underestimation of pmax has an insignificant effect.

The four conditions, more or less, are related to the number of samples within a

region. Therefore, it is not necessary to choose the full cloud as the object for the

application. Once the four conditions are satisfied for a sub-region within the cloud,

the PFA is applicable. We denote this zoom-in procedure as sub-region sampling.

8.2.3 Numerical method

The numerical simulations used in this work are generated through ZEUS-MP/3D

code (Hayes et al. 2006). Similar simulations have been used in § 2.2.2. We refer to

the simulations in Tab. 8.1 by their model name or key parameters.

Synthetic dust emission is then calculated from Eq. 8.2 by extracting the

necessary information from the MHD simulation. We assume a constant intrinsic

polarization fraction p0 = 0.1. The mean inclination angle ⟨γ⟩ of the simulation is

calculated from:

⟨γ⟩ = cos−1(
⟨Bz⟩
⟨B⟩

). (8.21)

Model Ms MA Resolution β

A0 5.38 0.41 7923 0.01

A1 5.40 0.61 7923 0.03

A2 5.23 0.95 7923 0.07

A3 5.12 1.13 7923 0.10

Table 8.1:: Description of MHD simulations. The compressibility of turbulence is

characterized by β = 2(MA

Ms
)2.
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Note here ⟨...⟩ means averaging over all cells. We rotate the simulation box to achieve

different inclination angles. In particular, M3D
A at a cell and its POS projection MA,⊥

are approximated by:
M3D

A = (|BBB − ⟨BBB⟩|)/⟨B⟩,

γ3D = cos−1(
|Bz|
B

),

MA,⊥ =
M3D

A

sin γ3D
,

(8.22)

where γ3D is the local inclination angle at a cell. Averaging MA,⊥ along each LOS

gives MA,⊥ accordingly.

We compare the global inclination angle estimated by our approach with the

one proposed by Chen et al. (2019). We denote the mean inclination angle inferred

from Eq. 8.16 as:

⟨γ⟩off =

√
sin−1[

poff(1 + pmax)

pmax(1 + poff)
], MA

2

,⊥ ≪ 1, (8.23)

and the one calculated from Chen et al. (2019) as:

γCh19 =

√
sin−1[

p(1 + 2
3
p0)

p0(1 + p)
],

⟨γ⟩Ch19 = tan−1(
⟨sin γCh19⟩
⟨cos γCh19⟩

).

(8.24)

8.2.4 The relative angle of mean magnetic field and

fluctuations

Fig. 8.5 presents the histogram of the relative angle ϕoff between the magnetic field

fluctuation δBBB and mean magnetic field ⟨BBB⟩. The adopted simulations consist of

compressible turbulence rather than only incompressible turbulence. However, we

can see that for both sub-Alvénic and super-Alvénic cases, the histogram is close to

a nearly symmetric distribution with a median value concentrated on 90◦ around.

The super-Alvénic case has a larger dispersion due to relatively stronger turbulence.

This median value of ϕoff ≈ 90◦ is crucial for our assumption that the magnetic

field’s fluctuation preferentially appears in the mean field’s perpendicular direction.

This assumption is also valid in compressible turbulence.
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Figure 8.5: Histogram of the relative angle ϕoff between the magnetic field fluctu-

ation δBBB and mean magnetic field ⟨BBB⟩. The dashed line indicates the median value.

The mean inclination angle in the simulations is 90◦.

8.2.5 Effect of pmax’s underestimation

Eq. 8.9 is crucial in deriving the inclination angle using Eq. 8.16. It requires the

value of pmax, which corresponds to the case of local inclination angle ∼ 90◦, to

estimate the intrinsic polarization fraction p0. In a real scenario, this might not

always be achieved. When the mean inclination angle is small, it is more difficult

to locally achieve ∼ 90◦ . The only available information in observation is the

maximum value of observed p, which does not necessarily correspond to the case

that local inclination angle ∼ 90◦. Therefore, for practical application, we can only

generalize Eq. 8.9 to the maximum value of observed p and we denote this value

as the observed pmax. This generalization might underestimate p0 and introduce

uncertainty to the estimated mean inclination angle.

In Fig. 8.6, we study the effect of pmax’s underestimation in calculating sin2⟨γ⟩off
assuming homogeneous dust properties. The maximum intrinsic polarization fraction

in simulations is ∼ 0.1. However, we can see that the observed pmax achieves this

value ∼ 0.1 only when the mean inclination angle ⟨γ⟩ is larger than ∼ 60◦. When

⟨γ⟩ < 60◦, the observed pmax rapidly decreases to ∼ 0.05, because local inclination

angle cannot achieve ∼ 90◦. However, we find the decreasing trend of observed pmax

when ⟨γ⟩ gets smaller is independent of MA, which characterizes the significance of
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Figure 8.6: The observed pmax (top), poff (middle), and estimated sin2⟨γ⟩off (bottom)

as a function of the actual mean inclination angle ⟨γ⟩. The reference lines in the top

two panels represent the intrinsic polarization fraction in simulations.

magnetic field strength’s fluctuation, i.e., the strength of the fluctuations relative
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Figure 8.7: 2D histogram of polarization fraction p and averaged total Alfvén Mach

number MA in the conditions of various mean inclination angle ⟨γ⟩. P denotes the

percent of sampling points.
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Figure 8.8: Comparison of the mean inclination angle ⟨γ⟩off/ ⟨γ⟩Ch19 (left/right)

with the real inclination angle ⟨γ⟩ of the simulation. ⟨γ⟩off is derived in this work,

while ⟨γ⟩Ch19 was proposed by Chen et al. (2019).
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Figure 8.9: Deviation of estimated inclination angle and actual inclination angle.

The upper and lower black lines represent the deviation’s maximum and minimum,

respectively. The box gives ranges of the first (lower) and third quartiles (upper) and

the orange line represents the median value. Panel a: σ⟨γ⟩off in degrees represents

the absolute difference between ⟨γ⟩off and ⟨γ⟩. Panel b: σ⟨γ⟩Ch19
in degrees is for the

absolute difference of ⟨γ⟩Ch19 and ⟨γ⟩.
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Figure 8.10: An example of the inclination angles measured for sixteen sub-regions

with size 198 × 198 cell2. Each magnetic field vector is constructed by the POS

magnetic field’s position angle (i.e., ψp + π/2) inferred from Stokes parameters and

the inclination angle of either measured ⟨γ⟩off (blue) or actual ⟨γ⟩sub (red). Note

that the obtained magnetic field is the projection along the LOS. The third axis of

LOS is for 3D visualization purposes having no distance information here. The total

intensity map Ip is placed on the POS, i.e., the x − y plane. The axis’s length ratio

is 1:1:1 when plotting the vectors.

Figure 8.11: The AM of ⟨γ⟩off and ⟨γ⟩sub as a function of the sub-region’s size. ⟨γ⟩
denotes the global mean inclination angle of the full simulation box.
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to the strength of the mean field, across the cloud. This suggests that the major

depolarization agent is the inclination angle rather than the magnetic field strength’s

fluctuation.

In addition to the observed pmax, the value of poff is also required to calculate

sin2⟨γ⟩off (see Eq. 8.16). Here we obtain poff from the polarization fraction

corresponding to the minimum of MA,⊥. Due to statistically sufficient samples in the

simulation, this choice satisfies the condition that MA
2

,⊥ ≪ 1. As shown in Fig.8.6,

poff rapidly decreases in the case of small ⟨γ⟩. poff is already close to ∼ 0 when

⟨γ⟩ < 10◦. Similar to the case of observed pmax, poff has little dependence on MA.

Moreover, we find the calculated value of sin2⟨γ⟩off well follows the reference

line of sin2⟨γ⟩ when ⟨γ⟩ > 45◦. sin2⟨γ⟩off deviates more for small ⟨γ⟩ due to the

underestimation of pmax. We will quantify this uncertainty in the following.

8.2.6 Inclination angle as the major depolarization agent

In general, in addition to the mean inclination angle and its fluctuation, magnetic

field strength’s fluctuation also contributes to the depolarization effect. However,

as we see in Fig. 8.6, the inclination angle dominates the depolarization, while

magnetic field strength’s fluctuation gives an insignificant contribution. Moreover,

the supersonic simulations of compressible MHD turbulence used in Fig. 8.6 consist

of significant density fluctuations. The observed pmax, however, still achieves

∼ 0.1 when ⟨γ⟩ > 75◦. It suggests that density fluctuation contributes little to

depolarization.

Fig. 8.7 presents the 2D histograms of polarization fraction p and averaged total

Alfvén Mach number MA along the LOS using the simulation A0. The histogram

concentrates in a narrow range of p when MA is relatively small, i.e., approximately

< 0.4. The histogram spreads to a wider range of p when MA > 0.4. This more

dispersed correlation is mainly caused by the inclination angle’s fluctuation instead of

the magnetic field strength’s fluctuation. When MA is large, significant fluctuations

appear in both inclination angle and magnetic field strength. Because the inclination

angle is the major agent for depolarization, its fluctuation, in this case, causes a

rapid variation of p. Also, due to this effect, the observed pmax is more likely to

appear in a position with relatively large MA. This position locally achieves a large

inclination angle so that the depolarization effect is relatively weak.
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Comparison with Chen et al. (2019)

Fig. 9.7 presents the comparison of the full simulation cube’s mean inclination angle

obtained from Eq. 8.16 with the one calculated from Chen et al. (2019)’s method. For

⟨γ⟩off calculated through our method, generally, it is well compatible with the actual

inclination angle ⟨γ⟩ of the simulation, although ⟨γ⟩off gives slightly underestimated

values. This underestimation might come from two reasons: (i) the underestimation

of pmax as we discussed above; (ii) density fluctuation in compressible turbulence.

Eq. 8.16 is derived from the condition of incompressible turbulence, which contains

no density fluctuation. Density fluctuation may introduce uncertainties, although

not significant.

As for Chen et al. (2019)’s method, its estimation agrees with ⟨γ⟩ better in

strong magnetic field cases, i.e., sub-Alfvénic MA = 0.41 and 0.61. ⟨γ⟩Ch19, however,

significantly deviates from ⟨γ⟩ when MA > 0.61. This is caused by significant

fluctuations in weakly magnetized turbulence, which breaks Chen et al. (2019)’s

assumption that the fluctuations are negligible.

Fig. 8.9 shows the deviation between the estimated inclination angle and the

actual angle. We calculate the absolute difference between ⟨γ⟩off (or ⟨γ⟩Ch19) and

⟨γ⟩. The calculation is performed over all data points shown in Fig. 9.7 and we

denotes the difference as σ⟨γ⟩off (or σ⟨γ⟩Ch19
). Generally we see that the median

value of σ⟨γ⟩Ch19
monotonically increases when MA increases. It increases from

≈ 6◦ (MA = 0.41) to ≈ 15◦ (MA = 1.13). The trend of σ⟨γ⟩off ’s median value is

more complicated. It is similar to σ⟨γ⟩Ch19
in sub-Alfvénic case MA < 0.61. In

trans- and super-Alfvénic cases, σ⟨γ⟩off ’s median stays in 10◦ around. In addition to

median value, the maximum σ⟨γ⟩Ch19
significantly increases to ∼ 35◦ in trans- and

super-Alfvénic conditions, which comes from ⟨γ⟩Ch19’s underestimation in large ⟨γ⟩
cases (see Fig. 9.7). In general, σ⟨γ⟩off ranges from 0 to ∼ 20◦ with a median value

≤ 10◦, while σ⟨γ⟩Ch19
is in the range of 0 to ∼ 35◦.

Sub-region sampling

As discussed above, our method mainly depends on three conditions: (i) the existence

of a mean magnetic field; (ii) the existence of a reference position with MA
2

,⊥ ≪ 1;

(iii) the number of the sample within a region is sufficient so that perpendicular

magnetic field fluctuations dominate. Thus, it is not necessary to perform the

calculation to the full cloud or simulation. This method can be generalized to

sub-regions satisfied with the conditions. In this section, we test the relation of

⟨γ⟩off ’s accuracy and the sub-regions size.
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Figure 8.12: Scatter plots of minimum MA,⊥ and AM (of ⟨γ⟩off and ⟨γ⟩sub). Mini-

mum MA,⊥ and AM are calculated for each 22× 22 cell2 sub-region. Color indicates

the polarization fraction poff corresponding to minimumMA,⊥. ⟨γ⟩ denotes the global
mean inclination angle of the full simulation box.
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Fig. 8.10 presents an example of the inclination angles measured for sixteen

sub-regions, whose size is 198 × 198 cell2. For simplicity, the sub-region is defined

as a square, and we refer to its size using the length scale in the following. Each

vector is constructed by the POS magnetic field’s position angle (i.e., ψp + π/2)

inferred from Stokes parameters and the inclination angle of either measured ⟨γ⟩off
or actual ⟨γ⟩sub of that sub-region. As we see, globally, the simulation has inclination

⟨γ⟩ = π/4 and the POS magnetic field is along the x-axis. While the magnetic field’s

orientation exhibits slight variation for each sub-region, the measured inclination

angles agree well with the actual angles.

Moreover, we test the accuracy of ⟨γ⟩off with various sub-region sizes. The

global agreement of ⟨γ⟩off and ⟨γ⟩ is quantified by the AM (see § 8.2.3). As shown

in Fig. 8.11, in general, the AM increases for a large sub-region size. This can be

easily understood as a large sub-region, which means the probability of finding out

min{MA
2

,⊥} ≪ 1 increases. Therefore, the estimation for a large sub-region is always

more accurate. Also, we note that in the super-Alfvénic case (i.e., MA = 1.13), the

increment of AM at a large sub-region is more significant than the sub-Alfvénic case.

This indicates that the accuracy of the estimated inclination angle mainly depends on

the condition that whether there exists a position with MA
2

,⊥ ≪ 1. As super-Alfvénic

turbulence has significant magnetic field fluctuations, it is possible that in several

positions, the local physical condition becomes sub-Alfvénic. Consequently, the

probability of finding out a position with MA
2

,⊥ ≪ 1 increases in a large sub-region.

In addition, we notice that the estimation of ⟨γ⟩off is more accurate when

the actual mean inclination angle ⟨γ⟩ is small. Intuitively this disagrees with our

theoretical consideration that large ⟨γ⟩ suggests a small value of MA,⊥, which better

constrains ⟨γ⟩off . However, the crucial term in determining ⟨γ⟩off is MA
2

,⊥ sin2 γ

instead of MA
2

,⊥ (see Eq. 8.13). The choice of using MA
2

,⊥ ≪ 1 is based on the fact

it is the only achievable variable in observation. For a given MA value, a small

inclination angle significantly and non-linearly reduces the value of MA
2

,⊥ sin2 γ. For

instance, sin2(π/10) is one order of magnitude smaller than sin2(2π/5). Therefore,

sin2 γ becomes the leading factor when the mean inclination angle is small, and

consequently, Eq. 8.16 is better constrained with a small inclination angle.

Fig. 8.12 presents the relation of min{MA,⊥} and the AM (of ⟨γ⟩off and ⟨γ⟩sub)
calculated for each 22 × 22 cell2 sub-region. min{MA,⊥} is the minimum value of

MA,⊥ within one sub-region. The sub-region 22 × 22 cell2 cells guarantee sufficient

samples for characterizing overall statistical properties. First of all, as we expected,

a small value of min{MA,⊥} is associated with large AM, i.e., high accuracy, as well

large polarization fraction.



333

For the case of ⟨γ⟩ = 2π/5, the AM starts dropping to negative when

min{MA,⊥} > 0.50. In this situation, the contribution from MA
2

,⊥ sin2 γ is not

negligible so that the assumption of Eq. 8.16 breaks. A smaller inclination angle

⟨γ⟩ = π/10 shifts min{MA,⊥} to larger value and increases AM. For such a small ⟨γ⟩,
MA,⊥ is less important in determining ⟨γ⟩off . In observation, ⟨γ⟩off can be obtained

from Eq. 8.16 targeting the full cloud. Once the value of ⟨γ⟩off is available, the

sub-region size can be selected accordingly. One should use a pretty large size when

both min{MA,⊥} > 0.5 and ⟨γ⟩off is large (for instance, ⟨γ⟩off > π/4). Otherwise,

if ⟨γ⟩off is small, the restriction on min{MA,⊥} and sub-region size can be released.

Note that in the real observation that MA,⊥’s estimation also has uncertainty.

Therefore, unlike our numerical results of using the min{MA,⊥} in Fig. 8.12, it is

better to search for a number of reference positions satisfying MA
2

,⊥ ≪ 1 and check

the corresponding polarization fraction and inclination angle’s variation.

Mapping the POS MA distribution

The proposed method of probing three-dimensional magnetic fields requires maps

of observed polarization fraction and MA,⊥ distribution. We list several approaches

of getting MA,⊥ here. The first way is using the polarization measurement.

For instance, Falceta-Gonçalves et al. (2008) suggested a generalization of the

Davis–Chandrasekhar–Fermi method (Davis 1951; Chandrasekhar & Fermi 1953) to

obtain the MA,⊥ by tan δθ ∼MA,⊥. Here δθ is the dispersion of polarization angles.

Also, the MA,⊥ can be calculated from the polarization fraction using the

relation σpol% ∼ MA
2

,⊥ (Lazarian et al. 2018), where σpol% is the dispersion of

polarization fraction. Although the measurement of δθ or σpol% over a region reduces

the observation’s resolution, once the MA,⊥ distribution is available, as presented in

Lazarian et al. (2018), Hwang et al. (2021) and Li et al. (2021), one can access the

three-dimensional magnetic field using our proposed PFA.

The VGT (González-Casanova & Lazarian 2017; Lazarian & Yuen 2018c; Hu

et al. 2018) and the structure-function analysis (SFA; Hu et al. 2021c; Xu & Hu

2021b; Hu et al. 2021b) are other two approaches of getting MA,⊥. The VGT relies

on the fact that the velocity gradient’s dispersion is small in a strongly magnetized

medium, but becomes large in a weak magnetized medium. The relation of velocity

gradient’s dispersion and MA,⊥ is given in Lazarian et al. (2018).

The SFA estimates MA,⊥ from the ratio of velocity fluctuations perpendicular

and parallel to the POS magnetic field. Its foundation is also MHD turbulence’s

anisotropy, which suggests that the maximum velocity fluctuation appears in the
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Figure 8.13: An illustration of how magnetic field strength affects eddies’ mapping

from real PPP space to PPV space. Three isometric eddies (eddy1, eddy2, and eddy3)

have different magnetic fields (BBB1 > BBB2 > BBB3) which are perpendicular to the LOS in

PPP space. The amplitude of velocity fluctuations for isometric eddy is anisotropic,

i.e., the maximum amplitude v⊥ appears in the direction perpendicular to the local

magnetic fields. In contrast, the minimum amplitude v∥ is in the parallel direction.

The LOS velocity vlos only consists of the turbulent velocity v⊥, which is perpendic-

ular to the magnetic field. For a given amplitude of vlos = v1⊥ = v2⊥ = v3⊥, strong

magnetic field induces more significant anisotropy (i.e., v1∥ < v2∥ < v3∥, see Eq. 8.28).

Three eddies (in real PPP space; top panel) are being mapped to the PPV space

(bottom panel) with identical channel width ∆v (yellow box). The observed intensity

fluctuation corresponding to eddy1’s case is more anisotropic (l1∥/l
1
⊥ > l2∥/l

2
⊥ > l3∥/l

3
⊥).

direction perpendicular to the magnetic field, but the minimum appears in the

parallel direction. Their ratio is positively proportional to (MA,⊥)
−4/3.

Moreover, the VGT and SFA potentially contain the necessary information for

getting pixelized distributions of total magnetic field strength and inclination angle

from the Eq. 8.10. The dilemma of Eq. 8.10 is that we need sufficient samples to

constrain turbulence’s property, which does not appear in a single data point of

dust polarization. However, the Doppler-shifted lines used by the VGT or SFA
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usually has a higher resolution than polarization measurement. For example, the

CO (1-0) emission line observed with the Green Bank Telescope achieves a beam

resolution ∼ 8′′. If one selects a sub-region size smaller than 80 × 80 cell2, the

measured turbulence’s property by the VGT or SFA for each sub-region would have

resolution ∼ 10′, which is comparable with the Planck polarization measurement.

This information, therefore, could be implemented in Planck polarization to obtain

local magnetic field strength and inclination angle.

8.3 Anisotropy in spectroscopic lines

Extracting velocity information from PPV space is non-trivial (Lazarian & Pogosyan

2000). One of the most common ways is using the velocity centroid, i.e., the

moment-one map. Earlier studies of velocity centroids have been developed to reveal

the direction of the POS magnetic field through the structure-function (Lazarian

et al. 2002; Esquivel & Lazarian 2005, 2011; Burkhart et al. 2014; Kandel et al. 2017;

Xu & Hu 2021b). Here, instead of using the velocity centroid, we explore the second

way of extracting velocity fluctuations from the velocity caustic effect in PPV cubes.

The concept of velocity caustic was firstly explained by Lazarian & Pogosyan (2000),

see also § 2.2. It reveals that the observed intensity distribution in a PPV channel is

regulated by turbulent velocity and thermal velocity along the LOS. Kandel et al.

(2016) analytically implemented the structure-function to velocity channels. They

found the anisotropy of observed intensity distribution has a dependence on the

channel width. Based on this finding, we further elaborate that the anisotropy at a

given channel width is related to Alfvén Mach number MA and the inclination angle

γ of the 3D magnetic fields with respect to the LOS. We combine these insights to

trace three-dimensional magnetic fields and magnetization M−1
A using PPV cubes.

8.3.1 Nature of PPV space

As given in § 2.2, the observed intensity distribution of a given spectral line in PPV

space is determined by both the density of emitters and their velocity distribution

along the LOS. The LOS velocity component vlos(xxx) comprises the turbulent velocity

vtur(xxx), the coherent velocity shear vgal(xxx) (e.g., from galactic rotation), and a

residual component due to thermal motions. This thermal component, represented

as vlos(xxx) − vtur(xxx) − vgal(xxx), follows a Maxwellian distribution ϕ(vlos,xxx), leading to

intensity fluctuations in PPV space. The PPV emission intensity ρs(x, y, vlos) is then
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given by:

ρs(x, y, vlos) = κ

∫
ρ(xxx)ϕ(vlos,xxx)dz, (8.25)

ϕ(vlos,xxx) ≡
1√
2πc2s

exp[− [vlos − vtur(xxx)− vgal(xxx)]
2

2c2s
], (8.26)

where κ is a constant relating the number of emitters to observed intensities.

The term cs =
√
γkBT/m is the speed of sound, with m as the mass of atoms

or molecules, γ as the adiabatic index, kB as the Boltzmann constant, and T as

the temperature, which varies if the emitter is not isothermal. By integrating

ρs(x, y, vlos) over a specific velocity range, known as the channel width ∆v, we obtain

a spectroscopic velocity channel:

p(x, y, vlos) =

∫ vlos+∆v/2

vlos−∆v/2

ρs(x, y, v)dv. (8.27)

Dependence on MA

In Fig. 8.13, we consider a simple case that the magnetic fields are perpendicular

to the LOS. There three isometric eddies (eddy1, eddy2, and eddy3 in PPP space)

have different magnetic fields (BBB1 > BBB2 > BBB3). For a given channel width ∆v,

for example, ∆v = 1 km s−1, the amplitude of maximum LOS velocity vlos is then

determined. However, here vlos is only contributed by the perpendicular component

of turbulent velocity. The studies in Hu et al. (2021c) and Xu & Hu (2021b) derived

that the amplitude of velocity fluctuations for isometric eddy is anisotropic, i.e., the

maximum amplitude v⊥ appears in the direction perpendicular to the local magnetic

fields while the minimum amplitude v∥ is in the parallel direction. In particular, the

anisotropy of turbulent velocity (i.e., the ratio of v2⊥/v
2
∥) is a power-law relation with

MA:

v2⊥/v
2
∥ =

{
(l∥/Linj)

−1/3MA
−4/3, (local,MA ≤ 1)

M
−4/3
A , (global,MA ≤ 1)

, (8.28)

here ”local” means the measurement is performed in the local reference frame,

i.e., the parallel and perpendicular directions are defined by local magnetic fields.

”global” means global mean magnetic fields define the global reference frame, i.e.,

the parallel and perpendicular directions.

In our case, the LOS velocity vlos only consists of the turbulent velocity v⊥,

which is perpendicular to the magnetic field. For a given channel width, we have

vlos = v1⊥ = v2⊥ = v3⊥. Consequently, a strong magnetic field (BBB1 > BBB2 > BBB3)
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Figure 8.14: An illustration of how inclination angle affects the mapping of eddies

from the real space to the PPV space. Three isometric eddies (eddy1, eddy2, and

eddy3) have identical magnetic fields strength (|BBB1| = |BBB2| = |BBB3|). BBB1 is perpendic-

ular to the LOS (γ = π/2), BBB2 is inclined to the LOS with angle γ, and BBB3 is parallel

to the LOS (γ = 0). The LOS velocity vlos = v⊥ sin γ + v∥ cos γ, in which v⊥ and v∥
are components of turbulent velocity perpendicular and parallel to the magnetic field,

respectively. For a given amplitude of vlos, eddy1 (i.e., γ = π/2) is more anisotropic,

as v⊥ > v∥ (see Eq. 8.28) and v1∥/v
1
⊥ > v3∥/v

3
⊥ > v3∥/v

3
⊥. Three eddies (in real PPP

space; top panel) are being mapped to the PPV space (bottom panel) with identical

channel width ∆v (yellow box). The observed intensity fluctuation corresponding to

eddy1’s case is more anisotropic (l1∥/l
1
⊥ > l2∥/l

2
⊥ > l3∥/l

3
⊥). Different from Fig. 8.13, this

difference in anisotropy is induced by the inclination angle.

corresponds to a small value of v∥ (i.e., v1∥ < v2∥ < v3∥, see Eq. 8.28). It indicates

a more anisotropic turbulent velocity field v(rrr). These three isotrometic eddies (in

real PPP space) are then mapped to the PPV space with identical channel width

∆v. As shown in Eq. 2.27, the observed intensity in a PPV channel is related to

the distribution of turbulent velocity v(rrr)4. An anisotropic v(rrr) would result in

4Note that the intensity fluctuation in a thin velocity channel is dominated by velocity fluctuations
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an anisotropic intensity distribution (Lazarian & Pogosyan 2000). Therefore, the

observed intensity is more anisotropic for a strongly magnetized medium.

Parameter Meaning

rrr 3D separation

RRR 2D sky separation

ϕ 2D angle between RRR and the POS magnetic field

θ Angle between LOS ẑ and rrr

γ Angle between LOS and mean magnetic field direction

µ Cosine of the angle between rrr and mean magnetic field direction

∆v Channel width

ξI(R, ϕ,∆v) Intensity correlation function

D(R, ϕ,∆v) Intensity structure function

Dz(rrr) z-projection of velocity structure function

W (v) Window function

βT Thermal velocity

MA Alfvén Mach number

Ms Sonic Mach number

vlos LOS velocity

v(rrr) Turbulent velocity

v⊥ Velocity fluctuation perpendicular to local magnetic field

v∥ Velocity fluctuation parallel to local magnetic field

ϵ Emissivity

ρ̄ Mean density

Table 8.2:: List of notations used in this paper

Dependence on the inclination angle of magnetic fields

In a real scenario, the isometric eddies may incline to the LOS with angle γ. This

inclination changes the observed anisotropy in the PPV channel. In Fig. 9.7, we

consider three magnetized isometric eddies (eddy1, eddy2, and eddy3). The magnetic

field strength are identical (|BBB1| = |BBB2| = |BBB3|), but BBB1 is perpendicular to the

LOS, BBB2 inclines to the LOS with angle γ, and BBB3 is parallel to the LOS. We

consider mapping the eddies to a given channel width ∆v. For eddy1, vlos is purely

contributed by v⊥. However, vlos of eddy2 consists of both v⊥ and v∥. Considering

(Lazarian & Pogosyan 2000).
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the fact that v∥ < v⊥ and the v⊥ ∝ l
1/3
⊥ , the only way to achieve the same amplitude

of vlos is to increase the eddy’s size. Eddy3 is facing a similar situation. As vlos of

eddy3 only comes from v∥, the eddy must further increase its size to get the same vlos
value. However, this increment of size results in a smaller anisotropy of turbulent

velocity, i.e., a smaller ratio of v2⊥/v
2
∥ (see Eq. 8.28), as well as the observed intensity.

This change of anisotropy induced by the inclination angle is distinguishable from

the one induced by magnetic field strength. It is clear that eddy3’s anisotropy (i.e.,

γ = 0 case) is not observable in PPV space, while it is not the case when only

magnetic field strength gets changed (i.e., γ ̸= 0).

The anisotropy of observed intensity in a PPV channel is thus constrained by

both MA and γ. By measuring two PPV channels’ anisotropies, at least MA and γ

could be determined simultaneously. In the following, we will analytically show the

anisotropy’s dependence on MA and γ through the second-order structure-function.

Structure function analysis

The statistical description for a turbulent field within PPV space is firstly performed

by Lazarian & Pogosyan (2000). Later, Lazarian & Pogosyan (2004) derived that for

optically thin lines the intensity correlation function ξI(R, ϕ,∆v) is
5:

ξI(R, ϕ,∆v) ∝
ϵ2ρ̄

2π

∫ S

−S
dz[1 + ξ̃ρ(rrr)][Dz(rrr) + 2βT ]

−1/2

×
∫ +∆v/2

−∆v/2

dvlosW (vlos) exp[−
v2los

2(Dz(rrr) + 2βT )
],

(8.29)

where R is the 2D separation of two points in the POS, ϕ is the position angle

that R makes with the POS magnetic field, and ∆v gives the channel width. ϵ is

emissivity, ρ̄ is the mean density, S is the LOS distance. The integration along the

LOS involves the overdensity correlation ξ̃ρ(rrr) = ρ̄2(r0/r)
ν , the projected (along the

LOS) velocity structure function Dz(rrr), the thermal broadening term βT = kBT/m,

where T is temperature, kB is Boltzmann constant, and m is molecule/atoms’

mass . rrr = rrr1 − rrr2 means the 3D separation of two points. The integration over

velocities is described by the window function W (vlos). In terms of Alfvén waves, as

they are incompressible and do not create any density fluctuations, the overdensity

correlation ξ̃ρ(rrr) must be zero.

Compared with the intensity correlation function, the intensity structure

function D(R, ϕ,∆v) is better at describing intensity statistics at small scales

5Note that here the measurement can only be performed in the global reference frame.
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(Lazarian & Pogosyan 2004). D(R, ϕ,∆v) can be expressed as:

D(R, ϕ,∆v) = 2[ξI(0, 0, 0)− ξI(R, ϕ,∆v)]. (8.30)

The isotropy degree is defined as:

iso(R, γ,MA,∆v) =
D(R, 0,∆v)

D(R, π/2,∆v)

=
ξI(0, 0, 0)− ξI(R, 0,∆v)

ξI(0, 0, 0)− ξI(R, π/2,∆v)
,

(8.31)

here γ is the inclination angle of 3D magnetic field with respect to the LOS and

MA is the Alfvén Mach number. γ and MA are implicitly included in D(R, ϕ,∆v)

(see Appendix 8.3.6). The dependence of iso(R, γ,MA,∆v) will be shown in the

following.

The analytical calculation of iso(R, γ,MA,∆v) was carried by Kandel et al.

(2016). Here we just briefly summarize it. Computing Eq. (8.29) requires the

knowledge of Dz(rrr), which can be obtained from the projection of structure function

tensor for the velocity field:

Dz(rrr) =⟨(vi(rrr1)− vi(rrr2))(vj(rrr1)− vj(rrr2))⟩ẑiẑj
=2[(B(0)−B(r, µ)) + (C(0)− C(r, µ)) cos2 γ

− A(r, µ) cos2 θ − 2D(r, µ) cos θ cos γ],

(8.32)

which is determined by the coefficients A(r, µ), B(r, µ), C(r, µ), D(r, µ), and the

angle θ between the LOS and rrr. We list the coefficients in Appendix. 8.3.6 and the

derivation can be found in Kandel et al. (2016). By performing Legendre expansion

for the coefficients up to the second order, i.e., A(r, µ) =
∑

nAn(r)Pn(µ) ≈
A0(r) + A2(r)P2(µ), and using the relation µ(γ, θ, ϕ) = sin γ sin θ cosϕ + cos γ cos θ,

Dz(rrr) can be further simplified to:

Dz(rrr) ≈ c1 − c2 cosϕ− c3 cos
2 ϕ. (8.33)

The parameters c1, c2, and c3, which absorb the dependence on γ and MA, are listed

in Appendix. 8.3.6 for Alfvén mode. As we can write |rrr| =
√
R2 + z2 and tan θ = R

z
,

the parameters only depends on R, z, γ, MA. By performing integration along

z-direction, the resulting isotropy degree iso(R, γ,MA,∆v) is only the function of R,

γ, MA, and ∆v.

Here we normalize ∆v so that its maximum value is 1. In the limit cases of thin

channel ∆v = 0 and thick channel ∆v = 1, defining:

α(R, ϕ) = [Dz(rrr) + 2βT ]
−1/2,

χ(R, ϕ) = α(0, 0)− α(R, ϕ),
(8.34)
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the corresponding isotropy degree can be expressed as:

iso(R, γ,MA,∆v = 0) =

∫ S
−S χ(R, 0)dz∫ S

−S χ(R, π/2)dz
,

iso(R, γ,MA,∆v = 1) =

∫ S
−S χ(R, 0)dz

∫ +1/2

−1/2
W (vlos) exp[−1

2
v2losα

2(R, 0)]dvlos∫ S
−S χ(R, π/2)dz

∫ +1/2

−1/2
W (vlos) exp[−1

2
v2losα

2(R, π/2)]dvlos
.

(8.35)

Figure 8.15: An illustration of the variation of isotropy degree with respect to

velocity channel width ∆v and MA at γ = π/2 considering only Alfvénic wave. Ex-

tracted from Kandel et al. (2016).

Note that in the global reference frame, the anisotropy is scale-independent. It

means the denominator and nominator of iso(R, γ,MA,∆v) are both proportional to

∝ Ra, where a is a constant determined by turbulence’s properties (as Dz(rrr) ∝ rν ;

see Appendix. 8.3.6 and Kandel et al. 2016). Consequently, the measured

iso(γ,MA,∆v = 0) and iso(γ,MA,∆v = 1) only depend on γ and MA. The two

values of iso(γ,MA,∆v), therefore, are sufficient to determine γ and MA for a given

system.

Considering that the intensity structure function D(R, ϕ,∆v) is proportional to

cos−1 γ, cos−2 γ, and M
−2/3
A (as Dz(rrr) depends on cos−2 γ, cos−4 γ, and M

−4/3
A ; see
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Figure 8.16: Diagram of the SFA procedure to trace three-dimensional magnetic

fields. Step a: choosing a velocity channel with width ∆v. Step b: calculating the

structure function D(R, ϕ,∆v) at a given distance R and position angle ϕ. Repeating

this step by varying ϕ from 0 to 2π. Step c: plotting the relation ofD(R, ϕ,∆v) and ϕ.

The angle ϕ corresponding to maximumD(R, ϕ,∆v) gives the direction perpendicular

to the POS magnetic field. The angle ϕ corresponding to minimum D(R, ϕ,∆v)

gives the direction parallel to the POS magnetic field. Step d: finding the isotropy

degree iso(γ,MA,∆v) from step c. Plotting the relation of iso(γ,MA,∆v) and ∆v by

repeating steps a-c for various ∆v. Solving the value of γ andMA from the maximum

and minimum values of iso(γ,MA,∆v).

Appendix. 8.3.6), we separate the variables into 6:

iso(γ,MA,∆v) = (a1 + a2 cos γ + a3 cos
2 γ)(b1 + b2M

2/3
A )f(∆v), (8.36)

6we drop higher orders as | cos γ| ≤ 1 and MA ≤ 1 for sub-Alfvén turbulence
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where a1, a2, a3, b1, b2 are parameters to be determined and f(∆v) is a function

of ∆v. Note that the dependence on γ, which only involves the projection of

structure-function (see Eq. 8.32), is the same for all MHD modes, i.e., Alfvén, fast,

and slow modes. The MA term comes from the amplitude of the power spectrum

(see Appendix. 8.3.6). Nevertheless, the power spectrum of slow mode is the same

as that of Alfvén mode and fast mode is isotropic in the zeroth approximation (see

Kandel et al. 2016 and Appendix. 8.3.8). Therefore, we expect the fitting function

to work for the mixture of all MHD modes. As an example shown in Fig. 8.15,

at γ = π/2 and constant density, iso(γ,MA,∆v) is negatively related to ∆v, but

positively related to MA. In the following, we will perform a numerical study to

determine the parameters.

8.3.2 Numerical methodology

Structure function analysis

The calculation of isotropy degree is performed by the second-order structure-

function, which is called the Structure-Function Analysis (SFA; Hu et al. 2021c; Xu

& Hu 2021b). The first step is to determine the POS magnetic field. As illustrated

in Fig. 8.16, we choose a velocity channel that has an arbitrary width ∆v. For this

velocity channel, we calculate the intensity structure-function D(R, ϕ,∆v) :

D(R, ϕ,∆v) = ⟨|p(X1)− p(X2)|2⟩, (8.37)

where X1 and X2 denote the 2D coordinates of two intensity data points locating

at position angle ϕ. Note this calculation is performed in the global reference frame,

which means the anisotropy is scale-independent. Consequently at arbitrary R,

D(R, ϕ,∆v) always exhibits maximum value when ϕ is perpendicular to the POS

magnetic field direction and minimum value when ϕ is parallel to the POS magnetic

field direction. Therefore, the POS magnetic field direction can be determined by

varying the position angle from 0 to π. Note in numerical simulations, there exists

a fake dependence of the anisotropy on length scales, due to the isotropic driving

and insufficient inertial range (Cho & Vishniac 2000; Yuen et al. 2018). To avoid

this fake anisotropy, one should select R at sufficiently small scales away from the

driving scale. In our case, we have R = 10 pixels (see also Fig. 8.23).

The second step is to figure out the LOS magnetic field direction and 3D

magnetization, i.e., the inclination angle γ and 3D MA. Here we define the istropy

degree iso(γ,MA,∆v) = max[D(R, ϕ,∆v)]/min[D(R, ϕ,∆v)]. To extract γ and MA,

one needs at least two measurements of iso(γ,MA,∆v). For instance, one chooses to
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measure iso at normalized channel width ∆v ≈ 1 and ∆v ≈ 0. By solving Eq. (8.36),

one can get the values of γ and MA.

Velocity Decomposition Algorithm

Above we discussed the pure Alfvénic turbulence case neglecting the compressible

components, i.e., fast and slow modes, as well as density fluctuations. This

simplification holds for subsonic turbulence, in which the density field passively

regulated byTHE velocity field follows the statics of velocity fluctuation (Beresnyak

et al. 2005; Xu et al. 2019b). However, for supersonic turbulence, the turbulent

compression is more significant, and the presence of shocks modifies the density

field’s statics (Kowal et al. 2007; Hu et al. 2020a; Xu & Hu 2021b). The contribution

from density can further change the anisotropy of the observed intensity structure.

It is, therefore, essential to remove density’s contribution from channel maps.

In addition to the density effect, in a real scenario, one has to consider the

thermal broadening effect in the velocity channel map, particularly for warm

media. In this work, the temperature in simulations is set to 10 K, so the thermal

broadening is marginal. Nevertheless, Yuen et al. (2021) recently developed a novel

technique, i.e., the Velocity Decomposition Algorithm (VDA), to reduce the density

and thermal broadening effect in a given channel map. We briefly discuss the recipe

of VDA here, and more details can be found in Yuen et al. (2021).

For a given velocity channel p(x, y, vlos) in PPV space, we can define the

integrated intensity map I(x, y) (i.e., the moment-0 map) as:

p(x, y, vlos) =

∫ vlos+∆v/2

vlos−∆v/2

ρs(x, y, v)dv

I(x, y) =

∫ +∞

−∞
p(x, y, vlos)dvlos

(8.38)

where v0 is the velocity of the averaged emission line maximum. Velocity fluctuation

dominates the observed intensity fluctuations in the channel map when channel width

∆v satisfies ∆v <
√
δ(v2los), where

√
δ(v2los) is the velocity dispersion (Lazarian &

Pogosyan 2000). Accordingly, the velocity contribution pv and density contribution

pd in p can be extracted from (Yuen et al. 2021):

pv = p− (⟨p · I⟩ − ⟨p⟩⟨I⟩)I − ⟨I⟩
σ2
I

pd(x, y) = (⟨p · I⟩ − ⟨p⟩⟨I⟩)I − ⟨I⟩
σ2
I

(8.39)

where σ2
I = ⟨(I − ⟨I⟩)2⟩ and ⟨...⟩ denotes the ensemble average.
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Figure 8.17: The velocity channel maps of incompressible simulations MA = 0.8

(top) and MA = 3.2 (bottom). We use normalized velocity channel width ∆v = 0.1.

MHD simulations of incompressible turbulence

The 3D incompressible MHD simulations are produced from a pseudospectral code

developed by Cho & Vishniac (2000). The code is a third-order-accurate hybrid

employing the Essentially Non-Oscillatory (ENO) scheme. It uses hyperviscosity and

hyper-diffusivity to solve the periodic incompressible MHD equations in a periodic

box of size 2π:

∂vvv

∂t
= (∇× vvv)× vvv − v2A(∇×BBB)×BBB + ν∇2vvv + fff +∇P ′ (8.40)

∂BBB

∂t
= BBB · ∇vvv − vvv · ∇BBB + η∇2BBB (8.41)

where fff is the random driving force and P ′ = P + vvv · vvv/2 is the pressure. ν and η

represent kinematic viscosity and magnetic diffusivity (η = ν = 6.42× 10−32) . The

magnetic field is considered as BBB = BBB0 + δBBB, where BBB0 is the uniform background

field and δBBB is fluctuation. BBB0 initially is perpendicular to the LOS. vA is the Alfvén

speed of the uniform background. The code employs a pseudospectral method. We

calculate the MHD equations in real space and transform them into Fourier space to

obtain the Fourier components of nonlinear terms. The calculation of the temporal
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evolution is performed in Fourier space. Turbulence is solenoidally driven by 21

forcing components with 2 < k <
√
12 resulting in a peak of energy injection at

k ≈ 2.5. Each forcing component has a correlation time of one. In our case, we

vary the value of BBB0 to achieve MA = 0.8 and MA = 3.2 and stagger the simulation

to 5123 cells/pixels. The respective parameters are listed in Tab. 8.3. We refer the

reader to Cho & Vishniac (2000) and Cho (2010) for further details.

MHD simulations of compressible turbulence

Similar to the setup in § 2.2.2, we generate 3D compressible MHD simulations

through ZEUS-MP/3D code (Hayes et al. 2006). The simulation parameters are

listed in Tab. 8.3.

Model Ms MA Resolution β

A1 0.66 0.12 7923 0.07

A2 0.63 0.34 7923 0.58

A3 0.62 0.56 7923 1.63

A4 0.60 0.78 7923 3.38

A5 0.60 1.02 7923 5.78

A6 0.89 0.54 7923 0.74

B1 0 0.8 5123 ∞
B2 0 3.2 5123 ∞
C1 10.81 0.26 7923 0.001

C2 11.12 0.37 7923 0.002

C3 10.53 0.51 7923 0.005

Table 8.3:: Description of our MHD simulations. Ms and MA are the instantaneous

values at each the snapshots are taken. The compressibility of turbulence is charac-

terized by β = 2(MA

Ms
)2.

8.3.3 Test with incompressible MHD turbulence

We first examine the application of SFA to incompressible turbulence. Fig. 8.31

presents the velocity channel maps (normalized ∆v = 0.1) of incompressible

simulations MA = 0.8 and MA = 3.2 at various inclination angles of mean magnetic

fields. When the total mean magnetic field is perpendicular to the LOS (i.e.,

γ = π/2), the channel map’s intensity structures (MA = 0.8) are dominated by

striations aligned with the POS magnetic field. The decreasing inclination angle,
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Figure 8.18: Top: The correlation of the structure functionD(R, ϕ,∆v) and position

angle ϕ. We use incompressible simulation MA = 0.8 and choose ∆v = 0.1, R = 10

pixels, and γ = π/2. Bottom: The histogram of the POS magnetic field direction in

IAU convention.

however, diminishes the anisotropic striation. When the total mean magnetic field is

parallel to the LOS, the intensity structures become isotropic. As for sup-Alfvénic

turbulence, the intensity structures are always isotropic. In Fig. 8.18, we calculate

the intensity structure-function D(R, ϕ,∆v) using the incompressible simulation

MA = 0.8 and choosing ∆v = 0.1, R = 10 pixels, and γ = π/2. We vary the

position angle ϕ from 0 to 180◦. The maximum value of D(R, ϕ,∆v) appears at 0,

and 180◦, while the minimum value appears at 90◦. Note there is a 180◦ ambiguity.

Also, from the histogram of the POS magnetic field direction, we find the magnetic

field direction concentrates at 90◦ with a mean value ≈ 89.96◦. ϕ = 90◦ which

corresponds to the minimum D(R, ϕ,∆v), therefore, gives the direction of the mean

POS magnetic field.
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Figure 8.19: The correlation of isotropy degree with respect to normalized velocity

channel width ∆v. The incompressible simulation MA = 0.8 is used here.

Furthermore, we rotate the simulation cube so that the relative angle between

the mean magnetic field and the LOS is γ. By varying the normalized channel

width ∆v, we plot the isotropy degree corresponding to different inclination angles

in Fig. 8.19. Its uncertainty is given by the standard error of the mean, which is

negligible here due to large sample size of the entire cube. We find the isotropy

degree generally decreases when the channel becomes thick. The maximum and

minimum values appear at normalized ∆v ≈ 0.01 and ∆v ≈ 1, respectively. This

decrease can be understood as all thin channel emitters have similar LOS velocities,

and anisotropy is suppressed. Also, when γ is smaller, i.e., the mean magnetic field

is more parallel to the LOS, the observed anisotropy gets smaller as well. This

decrease with respect to γ comes from the fact that the anisotropy is less projected

onto the POS.

In Fig. 8.20, we fix the normalized channel width ∆v to be 0.01, 0.10, and 1.00

but varying the value of γ, which is uniformly spaced in [0, 90◦]. We can see the

isotropy degree decreases when γ becomes larger since more anisotropy is projected

onto the POS. In the case of γ < 10◦, the isotropy degree is 1, which indicates that

the velocity channel is isotropic. In addition, we find the data points well fit the

model iso(γ,MA,∆v) = a′1 + a′2 cos γ + a′3 cos
2 γ. Note here we already fixed ∆v and

MA = 0.8. The fitting parameters are:
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Figure 8.20: The correlation of isotropy degree with respect to inclination angle γ.

The incompressible simulation MA = 0.8 is used here. The dashed lines represent the

fitting model iso(γ,MA,∆v) = a′1 + a′2 cos γ + a′3 cos
2 γ.

1. ∆v = 0.01: a′1 = 0.58± 0.04, a′2 = 0.07± 0.18, and a′3 = 0.33± 0.17;

2. ∆v = 0.10: a′1 = 0.36± 0.03, a′2 = −0.06± 0.13, and a′3 = 0.75± 0.12;

3. ∆v = 1.00: a′1 = 0.19± 0.08, a′2 = −0.39± 0.38, and a′3 = 1.24± 0.35;

We find a′1 is small and a′3 becomes large for a thick channel. It implies that the

thick channel is more anisotropic and the γ has a more important role in regulating

the thick channel’s intensity structure.

8.3.4 Testing with compressible MHD turbulence

In this section, we test the SFA using compressible MHD simulations. Unlike the

incompressible case, compressible slow and fast modes as well density field start to

affect the anisotropy.

In Fig. 8.21, we calculate the correlation of isotropy degree and normalized

velocity channel width ∆v at γ = π/2. We find for sub-Alfvén turbulence, the

isotropy degree is negatively related to ∆v ≤ 0.3. When ∆v ≥ 0.3, the isotropy
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Figure 8.21: The correlation of isotropy degree with respect to normalized velocity

channel width ∆v and γ = π/2. Compressible simulations Ms ≈ 0.6 are used here.

degree starts increasing, which indicates smaller anisotropy. This can be understood

as the density fluctuation dominates the thick channel so that the anisotropy is

diluted (see also Fig. 8.24 and Lazarian & Pogosyan 2000).

In addition, in Fig. 8.22, we further fix the normalized channel width ∆v to

be 0.01, 0.10, 0.30, and 1.00. We find it clear that strong magnetic field cases

exhibit more significant anisotropy. Sup-Alfvénic case is closer to being isotropic,

as the intrinsic turbulence is isotropic. We also fit the data points with the model

iso(γ,MA,∆v) = b′1 + b′2M
2/3
A . Note here we already fixed ∆v and γ = π/2. The

fitting parameters are:

1. ∆v = 0.01: b′1 = 0.52± 0.04 and a′2 = 0.37± 0.06;

2. ∆v = 0.10: b′1 = 0.16± 0.07 and b′2 = 0.57± 0.10;

3. ∆v = 0.30: b′1 = 0.08± 0.14 and b′2 = 0.61± 0.19;

4. ∆v = 1.00: b′1 = 0.19± 0.09 and b′2 = 0.49± 0.13;

The models’ good fitness (see also Fig. 8.20) with the data points confirms our

theoretical expectation. We find that the fitted curve of ∆v = 1.00 gets crossed with

other curves. We expect that this comes from the density effect, as the ∆v = 1.00

case keeps only density fluctuations. We will study the effect of density contribution

in the following section.
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Figure 8.22: The correlation of isotropy degree with respect to MA. The compress-

ible simulations Ms ≈ 0.6 and γ = π/2 are used here. The dashed lines represent the

fitting model iso(γ,MA,∆v) = b′1 + b′2M
2/3
A .

Removing density contribution

From Eq. (8.29), it is clear that when the channel is thick, i.e., ∆v → ∞, the

observed intensity fluctuations only include density’s contribution (Lazarian &

Pogosyan 2004):

ξI(R, ϕ) ∝
∫ S

−S
dz

1 + ξ̃ρ(rrr)√
Dz(rrr) + 2βT

∫ +∞

−∞
dvlos exp[

−v2los
2(Dz(rrr) + 2βT )

]

∝
∫ S

−S
dz[1 + ξ̃ρ(rrr)]

(8.42)

in which all the velocity information is erased, and density contribution plays a

primary role in the observed intensity statistics. As velocity information is the most

crucial in calculating the isotropy degree, we have to remove the density contribution

in channel maps. To do so, here we use the VDA method (Yuen et al. 2021).

In Fig. 8.23, we use the compressible simulation Ms = 0.66 and MA = 0.12

choosing ∆v = 0.6 and ∆v = 0.01 at γ = π/2. Firstly, we plot the raw channel maps,

and we find the thin channel map (∆v = 0.01) appears to have more filamentary

structures that are elongating along the mean magnetic field direction. We also
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Figure 8.23: The 1st row: The raw velocity channel maps (left and middle)

and intensity structure functions (right) of compressible simulation Ms = 0.66 and

MA = 0.12. The 2nd row: The density contribution extracted by VDA in the raw

velocity channel maps and its intensity structure functions. The 3rd row: The velocity

contribution extracted by VDA in the raw velocity channel maps and its correspond-

ing intensity structure functions. The 4th row: The pure velocity caustic maps, i.e.,

setting a uniform density field when generating the PPV cube, and their corresponding

intensity structure functions. The mean magnetic field is along the vertical direction.
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Figure 8.24: The correlation of isotropy degree and normalized velocity channel

width ∆v. We make a comparison for the raw velocity channel (i.e., using real density

field), pure velocity caustic (i.e., uniform density field), and the velocity contribution

extracted by VDA. The compressible simulation Ms ≈ 0.6, MA ≈ 0.12, and γ = π/2

is used.

calculate the intensity structure-function with respect to the mean magnetic fields’

parallel and perpendicular directions. The structure functions get shallower for the

thin channel map as more small-scale structures appear. After that, we decompose

the velocity and density contributions from the raw channel maps with the VDA

method. We find that for both thick and thin channel maps, their corresponding

density contribution maps are highly similar. Importantly, the (raw) thick channel

map’s intensity structures show more similarity with the density contribution map.

In contrast, the (raw) thin channel map is similar to the velocity contribution

map. This is exactly the theoretical prediction of Lazarian & Pogosyan (2000),

i.e., the intensity fluctuations in thick and thin channels are dominated by density

fluctuations and velocity fluctuations, respectively.

Also, the velocity contribution map exhibits more significant anisotropy in

terms of the structure functions, i.e., the larger difference between the parallel and

perpendicular components. The density contribution map’s structure functions show

higher amplitude for the thick channel, as the density fluctuation is more significant

in the thick channel. In contrast, the velocity contribution map’s structure functions

for the thin channel, in which the velocity fluctuation is more important. We also

analyzed the pure velocity caustic effect by setting a uniform density field when
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Figure 8.25: The correlation of isotropy degree, MA, and cos γ. The dotted symbol

denotes the raw data points (blue), which are fitted with a model iso(γ,MA,∆v) =

a+b cos γ+c cos2 γ+d cos γM
2/3
A +eM

2/3
A +f cos2 γM

2/3
A . The upper and lower layers

give the fitting uncertainty. Compressible simulations Ms ≈ 0.6 are used.
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generating a PPV cube 7. The VDA decomposed velocity contribution maps are

highly similar to the pure velocity caustic maps, which confirm the validity of the

VDA method. However, for the thick velocity caustic map, its structure starts

oscillating when the separation is larger than 20 pixels. We find this comes from the

fact that velocity information is marginal in a thick channel. For instance, for the

pure velocity caustic case, because we set a uniform density field (i.e., ρ(x, y, z) = 1)

for a 7923 MHD simulation, the intensity value at the density-dominated position

would be saturated to 792, which erases all velocity information. These saturated

intensity values are excluded when calculating the structure function so that only

velocity information is taken into account. The remaining velocity information does

not guarantee an accurate structure-function at a large scale from what we see. This

insufficiency of velocity information is more significant if the channel width increases

further.

In Fig. 8.24, we make a comparison for the isotropy degrees calculated from the

raw channel map, velocity caustic map, and VDA decomposed velocity contribution

map of simulation MS = 0.66 and MA = 0.12. We find three crucial ∆v ranges, at

which the isotropy degree shows distinguishable behavior. For all three kinds of

channel maps (i.e., raw channel map, velocity caustic map, and VDA decomposed

velocity contribution map), the isotropy degree monotonically decreases when ∆v

gets larger until ∆v ≈ 0.3. However, for the raw channel map, the isotropy degree

starts increasing when 0.3 ≤ ∆v ≤ 0.6. In contrast, the isotropy degrees of the

velocity caustic map and VDA velocity map keep decreasing until ∆v ≈ 0.6. As

discussed above, the velocity caustic map and VDA velocity map contain only

velocity information while the raw channel map includes both density and velocity

contribution. The difference of the isotropy degrees in the range of 0.3 ≤ ∆v ≤ 0.6

therefore comes from density contribution, which diminishes anisotropy. When

0.6 ≤ ∆v, the isotropy degree of the raw channel map gets saturated since the

projected density field’s anisotropy is not related to channel width. The other two

isotropy degrees, however, are dramatically diverged. This can be understood as

the velocity information in a very thick channel is not statistically sufficient for the

structure function’s calculation, i.e. the sample size is not enough. For instance, in

Fig. 8.23, the structure-function of pure velocity caustic case gets fluctuates when

separation is larger than 20 pixels. When the channel becomes thicker, the remaining

valid information of velocity fluctuations may drop down so that the isotropy

7The concept of velocity caustics is firstly proposed by Lazarian & Pogosyan (2000) to signify the

effect of density structure distortion due to turbulent velocities along the LOS. Setting a uniform

density field, the intensity distribution in velocity channel maps is purely generated by velocity

fluctuations.
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degree at the 10-pixel scale (i.e., the numerical dissipation scale) gets diverged.

Nevertheless, in observations, the inertial range and sample size are sufficiently

large. One should perform the SFA at larger separations for thick channels to find

sufficient velocity information. For supersonic turbulence, the density contribution

is more significant. We discuss the case of supersonic turbulence in Appendix. 8.3.7.

∆v a b c d e f

∆v = 0.01 0.54 (0.51, 0.58) -0.46 (-0.53, -0.39) 0.86 (0.80, 0.91) 0.26 (0.23, 0.29) 0.29 (0.28, 0.31) -0.47 (-0.49, -0.45)

∆v = 0.10 0.26 (0.19, 0.34) -0.89 (-1.03, -0.75) 1.47 (1.37, 1.58) -0.03 (-0.06, 0.06) 0.54 (0.51, 0.57) -0.39 (-0.43, -0.43)

∆v = 0.30 0.22 (0.14, 0.39) -1.12 (-1.23, -0.97) 1.76 (1.65, 1.88) 0.05 (-0.02, 0.12) 0.57 (0.53, 0.60) -0.51 (-0.56, -0.46)

∆v = 0.60 0.20 (0.09, 0.32) -1.08 (-1.29, -0.87) 1.68 (1.52, 1.84) -0.04 (-0.09, 0.09) 0.58 (0.53, 0.63) -0.49 (-0.56, -0.42)

Table 8.4:: The coefficients for fitting model iso(γ,MA,∆v) = a+ b cos γ + c cos2 γ +

dM
2/3
A cos γ + eM

2/3
A + fM

2/3
A cos2 γ. The upper and lower bounds within the 95%

confidential level of the fitting model are provided in brackets. The compressible

simulations Ms ≈ 0.6 are used for the fitting.

8.3.5 Determining the inclination angle γ and Alfvén Mach

number MA

The POS magnetic field direction can be traced by varying the position angle used for

calculating the intensity structure function. Combining the model of iso(γ,MA,∆v)

determined in this section, one can further access the inclination angle γ and the

total Alfvén Mach number MA. The three-dimensional magnetic field information,

including both orientation and strength, is achievable in PPV space.

As the isotropy degree iso(γ,MA,∆v) for a given ∆v depends only on γ and

MA, two measurements of iso(γ,MA,∆v) are sufficient to determine a unique pair

of γ and MA, although multiple measurements could reduce uncertainty. Fig. 8.25

considers a fitting model iso(γ,MA,∆v) = a + b cos γ + c cos2 γ + dM
2/3
A cos γ +

eM
2/3
A + fM

2/3
A cos2 γ, which comes the expansion of Eq. 8.36. We selected four

normalized channel widths ∆v = 0.01, 0.10, 0.30, 0.60. We vary the values of γ for

each compressible simulation Ms ≈ 0.6. By performing a two-variable fitting, we

find out the coefficients and list them in Tab. 8.4. We find the terms cos γ, cos2 γ,

and M
2/3
A have higher weights in a thick channel. It means the anisotropy in a

thick channel is more sensitive to cos γ. Also, the weights of M
2/3
A cos γ term are

close to zeros when ∆v > 0.01, which means their contribution is negligible. Note

that density has an important role in thick channel ∆v ≥ 0.3. When calculating

the isotropy degree, it is advantageous to take thin channel width at the range of

∆v ≤ 0.3.
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We test our fitting model in the compressible simulation Ms ≈ 0.89, MA ≈ 0.54.

We rotate the simulation so that the mean magnetic field is inclined to the LOS with

angle γ. Following the recipe illustrated in Fig. 8.16, we first determine the mean

POS magnetic field direction. To measure the mean POS magnetic field, we vary the

position angle ϕ from 0 to 180◦ with resolution 1◦. The position angle corresponding

to the minimum value of the intensity structure function reveals the POS magnetic

field direction. Also, here we select the velocity channel with widths ∆v = 0.01 and

∆v = 0.10.

Figure 8.26: Top: The AM of measured Bpos and real Bpos in cases of different

inclination angle γ (x-axis). Bottom: The AM of measured γ and real γ (x-axis).

The color of the point represents the measured MA for the simulation Ms ≈ 0.89,

MA ≈ 0.54. The circular symbol is the measured value and the triangular symbol

gives the uncertainty coming from the parameters used in fitting the model.

In Fig. 8.26, we find the measured POS magnetic fields (using ∆v = 0.01)

have excellent agreement (AM ≈ 1) with the real POS magnetic fields when γ



358

is larger than 18◦. when γ is close to zeros, the AM becomes negative. This

can be understood from the fact that the POS magnetic field is isotropic in

γ ≈ 0. Consequently, the intensity structure-function gets similar results along all

directions, which cannot determine the POS magnetic field. With the knowledge of

the POS magnetic field direction derived from the SFA, one can further calculate

the isotropy degree, which is defined as the ratio of the intensity structure functions

measured in the direction parallel and perpendicular to the POS magnetic field. We

calculate the isotropy degrees at ∆v = 0.01 and ∆v = 0.10 and then solve the fitting

model iso(γ,MA,∆v) = a + b cos γ + c cos2 γ + dM
2/3
A cos γ + eM

2/3
A + fM

2/3
A cos2 γ.

The uncertainties are given by the upper and lower limits of the fitting model

listed in Tab. 8.4. As shown in Fig. 8.26, the SFA measured γ gives AM ≥ 0.6

when the real γ is larger than 18◦. In the case of γ < 18◦, the AM dramatically

drops down to negative, and MA is underestimated. The misalignment and

underestimation come from the fact that the turbulent components dominate over

the mean-field components at small γ. This effect is more significant in estimating

total magnetic field strength. The bound for this underestimation theoretically is

γ < 4 tan−1(MA/
√
3) (see Lazarian et al. 2020b). Also, we find the AM gets smaller

than 0.8 when γ is in the range of [36◦, 63◦]. This comes from the deviation of the

measured POS magnetic field, which affects the resulting isotropy degree. As the

measured γ and MA highly depend on the isotropy degree, a small fluctuation in the

isotropy degree can lead to a significant deviation.

8.3.6 Appendix: coefficients of the projected structure

function

As shown in Kandel et al. (2016), Dz(rrr) can be derived from the projection of

structure function tensor for the velocity field:

Dz(rrr) =2[(B(0)−B(r, µ)) + (C(0)− C(r, µ)) cos2 γ − A(r, µ) cos2 θ − 2D(r, µ) cos θ cos γ]

(8.43)

where θ is the angle between the LOS and three-dimensional separation

rrr. γ is the inclination angle of the magnetic field relative to the LOS and

µ(γ, θ, ϕ) = sin γ sin θ cosϕ + cos γ cos θ, where ϕ is the angle between the sky-

projected rrr and the POS magnetic field. To determine the coefficients A(r, µ),

B(r, µ), C(r, µ), D(r, µ), we firstly consider the velocity correlation tensor in the real

space:

⟨vi(xxx1)vj(xxx1 + rrr)⟩ =
∫
dkk2dΩke

ikkk·rrrA(k, k̂kk · λ̂)(ξ̂kkk ⊗ ξ̂∗kkk)ij (8.44)
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here k̂kk is wavevector in Fourier space, A(k, k̂kk · λ̂) is the power spectrum , ξ̂ is the

direction of allowed displacement, and λ̂ represents the mean direction of magnetic

field. (ξ̂kkk ⊗ ξ̂∗kkk)ij is a λ̂ dependent tensor built from the displacement direction

characteristic for the given mode.

In the case of Alfvén wave, the power spectrum A(k, k̂kk · λ̂) can be decomposed

into spherical harmonics:

A(k, k̂kk · λ̂) =
∑
l1m1

4π

2l1 + 1
Al1(k)Yl1m1(k̂kk)Y

∗
l1m1

(λ̂) ∝ k−11/3 exp[−MA
−4/3 |µk|

(1− µ2
k)

2/3
]

Al1(k) =
2l1 + 1

4π

∫ ∫
A(k, k̂kk · λ̂)Y ∗

l1m1
(k̂kk)Yl1m1(λ̂)dΩkdΩλ

Tll1(r) =

∫
dkk2jl(kr)Al1(k)

(8.45)

where Yl1m1 is the spherical harmonics function, µk = k̂kk · λ̂, and jl is the spherical

bessel function. The coefficients A(r, µ), B(r, µ), C(r, µ), and D(r, µ) then can be

written as (see Kandel et al. (2016) for details):

A = −8π
∑
l,l1,l2

il(2l + 1)(2l2 + 1)

√
(l − 2)!(l2 − 2)!

(l + 2)!(l2 + 2)!
Tll1 ×

(
l l1 l2
0 0 0

)(
l l1 l2
−2 0 2

)
∂2Pl(µ)

∂µ2
,

B = 2π
∑
l=0,2

ilTllPl(µ) + 4π
∑
l,l1,l2

il(2l + 1)(2l2 + 1)×

√
(l − 2)!(l2 − 2)!

(l + 2)!(l2 + 2)!

(
l l1 l2
0 0 0

)(
l l1 l2
−2 0 2

)
Tll1P

2
l (µ),

C = −2π
∑
l=0,2

ilTllPl(µ)− 4π
∑
l,l1,l2

il(2l + 1)(2l2 + 1)×

√
(l − 2)!(l2 − 2)!

(l + 2)!(l2 + 2)!

(
l l1 l2
0 0 0

)(
l l1 l2
−2 0 2

)
× Tll1(2µ

2∂Pl(µ)

∂µ2
+ P 2

l (µ)),

D = 8π
∑
l,l1,l2

il(2l + 1)(2l2 + 1)

√
(l − 2)!(l2 − 2)!

(l + 2)!(l2 + 2)!
Tll1 ×

(
l l1 l2
0 0 0

)(
l l1 l2
−2 0 2

)
µ
∂2Pl(µ)

∂µ2
,

(8.46)

where Pl(µ) is the Legendre polynomial.

(
l l1 l2
0 0 0

)
and

(
l l1 l2
−2 0 2

)
are

Wigner’s 3-j symbols. By performing Legendre expansion for the coefficients A(r, µ),

B(r, µ), C(r, µ), D(r, µ) up to the second order, i.e., A(r, µ) =
∑

nAn(r)Pn(µ) ≈
A0(r) + A2(r)P2(µ), Dz(rrr) can be further simplified to:

Dz(rrr) ≈ c1 − c2 cosϕ− c3 cos
2 ϕ. (8.47)
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The coefficients are expressed as:

c1 = (q1 + q2 cos
2 θ + q3 cos

4 θ)rν

c2 = (s1 + s2 cos
2 θ)rν sin θ cos θ sin γ cos γ

c3 = (u1 + u2 cos
2 θ)rν sin2 θ sin2 γ

q1 = 2(B0(0)−B0) + 2(C0(0)− C0) cos
2 γ +B2 + C2 cos

2 γ

q2 = −2A0 + A2 − 4D1 cos γ − 3(B2 + C2 cos
2 γ) cos2 γ

q3 = −3A2 cos
2 γ

s1 = 6(B2 + C2 cos
2 γ) + 4D1

s2 = 6A2

µ1 = 3(B2 + C2 cos
2 γ)

µ2 = 3A2

(8.48)

Note Eq. (8.46) only gives the coefficients for the Alfvén wave. The coefficients for

fast and slow waves can be found in Kandel et al. (2016).

8.3.7 Appendix: supersonic turbulence

The density effect in subsonic turbulence is insignificant since the density statistics

passively follow the velocity statistics (Beresnyak et al. 2005). As shown in Fig. 8.24,

density has little effect for channel width ∆v ≤ 0.3. Also, density contribution in

thin channels can be removed by VDA. However, density fluctuation in supersonic

turbulence has different properties, which can change the anisotropy. In Fig. 8.27,

we investigate the density effect in the supersonic simulation Ms = 10.81 and

MA = 0.26. We plot the correlation of isotropy degree with respect to velocity

channel width ∆v at γ = π/2. We find the isotropy degree for the raw channel map

(i.e., real density field) appears almost like a flat curve, showing isotropy degree

≈ 0.7. The pure velocity caustic map (i.e., uniform density field) exhibits a steep

isotropy curve until ∆v ≈ 0.4. It indicates that the flattened curve for the real

density field case comes from density’s contribution. To remove the density effect,

several experiments have been tested in Yuen et al. (2021) using the VDA technique.

Here we briefly describe one of the possibilities.

To extract the velocity information, one can use the low-density sampling

method. This method selects the data points whose corresponding column density

is low to calculate the structure-function. For instance, Xu & Hu (2021b) uses only

10,000 data points with the lowest column density to calculate the structure-function

of the velocity centroid. They successfully retrieve velocity’s anisotropy in this way.
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This low-density sampling is based on the fact that low-density statistics still exhibit

scale-dependent anisotropy arising from shearing by Alfvén waves (Beresnyak et al.

2005) and the SFA requires only a few valid data points to retrieve the anisotropy

(Hu et al. 2021c).

We test this low-density sampling method in Fig. 8.27. We select the data

points for each channel map whose corresponding column density is lower than the

10th percentile threshold. The threshold results in approximately 65,000 valid data

points. We set γ = π/2 and R = 10 pixels. As shown in Fig. 8.27, the isotropy degree

gets retrieved. It decreases until ∆v ≈ 0.1, after which the density contribution gets

dominated again. Therefore, in supersonic turbulence, one can still get rid of the

density contribution by selecting only low-density data points in a thin channel.

Compared with the pure velocity caustic case, the isotropy degree calculated from

low-density data points is overestimated. The coefficients for determining γ in the

supersonic case might be different. Nevertheless, the coefficients can be established

empirically from numerical simulations.

8.3.8 Appendix: anisotropies of Alfvén, fast, and slow

modes

Compressible MHD turbulence consists of three MHD modes, i.e., incompressible

Alfvén mode, compressible fast mode, and compressible slow mode. To investigate

the anisotropies of different modes, we employ the mode decomposition method

proposed in ?. The decomposition is performed in Fourier space by projecting the

velocity’s Fourier components on the direction of the displacement vectors ζ̂A, ζ̂f ,

and ζ̂s for Alfvén, fast, and slow modes, respectively. The displacement vectors are

defined as:
ζ̂A ∝ k̂⊥ × k̂∥

ζ̂f ∝ (1 + β/2 +
√
D)k⊥k̂⊥ + (−1 + β/2 +

√
D)k∥k̂∥

ζ̂s ∝ (1 + β/2−
√
D)k⊥k̂⊥ + (−1 + β/2−

√
D)k∥k̂∥

(8.49)

where wavevectors kkk∥ and kkk⊥ are the parallel and perpendicular to the mean

magnetic field BBB0, respectively. D = (1 + β/2)2 − 2β cos2 ϑ, β = 2(MA/Ms)
2, and

cosϑ = k̂∥ · B̂0.

We only decompose the LOS velocity component and calculate the second-order

structure function in the global reference frame. The projected (along the LOS)

2D velocity maps and structure functions are plotted in Fig. 8.28. The contours,

i.e., the anisotropies, of Alfvén and slow modes are elongating along the vertical

direction, which is also the direction of the mean magnetic field. Fast mode,
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Figure 8.27: The correlation of isotropy degree with respect to velocity channel

width ∆v and γ = π/2. Compressible simulations Ms ≈ 11.0 are used here.

Figure 8.28: Top: Projected velocity maps of Alfvén (left), fast (middle), and slow

(right) modes in conditions of MA = 0.52 and Ms = 2.17. The mean magnetic

field is along the vertical direction. Bottom: Projected structure-functions of Alfvén

(left), fast (middle), and slow (right) velocity modes. The structure-functions are

calculated in the global reference frame. All plots are on a scale of 50 pixels from

center to boundary.
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however, is isotropic only in the zeros approximation. It can still exhibit anisotropy

perpendicular to the Alfvén and slow modes. Nevertheless, Alfvén mode is the most

important component of MHD turbulence (Cho & Lazarian 2003; Hu et al. 2022e)

and contributes the most significant anisotropy. Therefore, we expect the fitting

function Eq. 8.36 to apply to the majority of ISM environments.

8.4 Convolutional Neural Network

8.4.1 Anisotropy of MHD turbulence: revealing magnetic

field orientation and magnetization

Scale-dependent anisotropy of MHD turbulence was introduced by Goldreich &

Sridhar (1995) and Lazarian & Vishniac (1999), see § 2.1. Eq. 2.4 provides two

critical insights: (1) Turbulent eddies stretch along the local magnetic field

(i.e., l∥ ≫ l⊥), and (2) the degree of anisotropy, defined as l∥/l⊥, depends

on the magnetization M−1
A . As we illustrated in Fig. 8.29, this indicates that

eddies become increasingly anisotropic in a strongly magnetized medium. For the

case where MA ≫ 1, turbulence is essentially isotropic due to the predominance of

hydrodynamic turbulence. However, the essence of turbulence lies in the cascading

of energy from larger injection scales to smaller ones, which leads to a decrease in

turbulent velocity. Eventually, at the transition scale lA = Linj/M
3
A, the strength

of the magnetic field becomes comparable to the turbulence (i.e., the Alfvén Mach

number at lA is unity, see Lazarian 2006), and anisotropy starts to manifest.

Furthermore, (3) changes in MA are distinctly reflected in the magnetic

field topology. Within a strongly magnetized medium, the magnetic field lines

exhibit minimal variation due to the presence of weaker fluctuations, resulting in

more straightened field lines. In contrast, in the context of a weaker magnetic

field, which corresponds to a larger value of MA, fluctuations in the magnetic field

direction intensify significantly. This leads to the field lines adopting a more curved

configuration (Yuen & Lazarian 2020). As turbulent eddies extend along the local

magnetic field, the topological changes induced by MA become evidently imprinted

within these eddies.
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Figure 8.29: Illustration of how the observed intensity structures in channel map reg-

ulated byMA and γ. Within all three panels, these intensity structures elongate along

the POS magnetic field direction where l∥ > l⊥. Structures 1 and 2, depicted in panels

(a) and (b), are projected onto the POS with identical inclination angles γ1 = γ2, yet

exhibit different magnetizations withM−1
A,1 > M−1

A,2. Notably, the anisotropy observed,

represented as l∥/l⊥, in the weakly magnetized Structure 2 is less pronounced than

in Structure 1. Structure 2 is less straightened because the weak magnetic field has

more fluctuations. The curvature of the observed magnetic structures is suggested for

magnetization studies by Yuen & Lazarian (2020). Comparatively, Structures 1 and

3—showcased in panels (a) and (c)—possess equivalent magnetizations M−1
A,1 =M−1

A,3,

but divergent inclination angles with γ1 > γ3. The observed anisotropy decreases with

smaller γ, though it is crucial to note that the straightness of Structure 3 remains

unaffected by this projection. It should be noted that here the projection effect is

simplified. The intensity structures are predominantly created by the velocity caus-

tics effect, due to MHD turbulence. The projection effect is applied to the velocity

field and then subsequent intensity structures in velocity channels.

Obtaining velocity information from spectroscopic observation

The anisotropy outlined in Eq. 2.4 pertains to turbulent velocity fluctuations, and

the turbulent eddy refers to the velocity fluctuation contour. This suggests that

anisotropy manifests in turbulent velocity fields. Such anisotropic velocity can be

obtained from the velocity channel map of spectroscopic observations, due to the

velocity caustics effect (Lazarian & Pogosyan 2000). Detailed discussion is given in

§ 2.2.



365

Anisotropy in thin velocity channels: dependence on the inclination angle

of magnetic fields

The anisotropy of the observed intensity in a PPV channel, represented by

p(x, y, vlos), is also affected by the inclination angle γ of the magnetic field with

respect to the LOS, due to the projection effect (see § 8.3 and Hu et al. 2021b).

For example, as illustrated in Fig. 8.29, we consider two magnetized structures (or

eddies), s1, and s3, both having identical magnetization. Although these unprojected

structures have the same anisotropy degree, their projections differ. Specifically, a

projection with a smaller inclination angle results in a lower anisotropy degree by

reducing the scale parallel to the magnetic fields. When γ = 0, the parallel scale of

the eddy aligns with the LOS, making the anisotropy unobservable on the POS.

However, as previously mentioned, the degree of anisotropy is also controlled

by magnetization. As shown in Fig. 8.29, although two magnetized structures (s1
and s2) share identical inclination angles, the projection of the weakly magnetized

s2 shows less anisotropy. Importantly, the topology of s2 is further changed being

less straightened. This is because a weak magnetic field has more deviations and

exhibits significant curvature in terms of its POS orientation (Yuen & Lazarian

2020). Consequently, the observed structure, as well as the structure’s topology,

in p(x, y, vlos) is governed by both MA and γ (Hu et al. 2021b). To summarize

succinctly, the thin channel maps p(x, y, vlos) from spectroscopic observations

capture the anisotropy of MHD turbulence. This leads to the following important

implications:

1. The intensity structures in p(x, y, vlos) align with the POS magnetic field.

2. The degree of anisotropy observed in these intensity structures is influenced by

two distinct factors: MA and γ. These factors contribute to the anisotropy:

(a) γ introduces a projection effect that consequently decreases the anisotropy.

(b) MA defines the magnetization level of the medium. A larger MA represents

a weaker magnetic field, resulting in less pronounced anisotropy.

3. Additionally, changes in MA alter the topology of the magnetic field lines,

as well as the observed intensity structure, manifesting itself as significant

curvature.

The interconnection between magnetic field topology and MA is vital to

extracting accurate 3D magnetic fields. A subtle change in the degree of anisotropy

responds sensitively to variations in both MA and γ, leading to degeneracy. This

degeneracy necessitates the introduction of an additional feature that is sensitive
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Figure 8.30: Architecture of the CNN-model. The input image is a 22 × 22 pixel

map cropped from the thin velocity channel map. The network outputs the prediction

of ϕ, γ, or MA.

to MA or γ to solve for these parameters, and the topology of the magnetic field

conveniently provides this required information.

Additionally, it is crucial to acknowledge that relying solely on anisotropy does

not offer a clear distinction regarding the magnetic field’s orientation along the LOS,

specifically whether the field is directed towards or away from our observation point.

Consequently, the value of γ is inherently restricted to a limited range between 0

and 90◦.

8.4.2 Convolutional neural network

To construct a deep neural network for the purpose of tracing the 3D magnetic field

from a spectroscopic map, we adopt a CNN-based (LeCun et al. 1998) architecture.

CNNs have demonstrated significant success in processing multidimensional data.

The typical CNN architecture, as illustrated in Fig. 8.30, consists of initial layers

comprising a stack of convolutional layers followed by pooling layers. To facilitate

faster convergence during the network training process using backpropagation of the

loss and enhance the stability of learning, we introduce a batch normalization layer

following each convolution layer. After several iterations of convolution and pooling

layers, we extract a compressed image feature, which is then processed by the fully

connected layers to predict the desired properties. In the following, we introduce the

core modules in the CNN architecture as well as the training procedure for the CNN

network.

Convolutional Layer: Serving as the fundamental component of a CNN,

the convolutional layer processes input data to produce feature maps (LeCun et al.

1989). In this layer, each neuron connects to a local region of the input feature map.

This connection is achieved by applying a 2D convolutional kernel wl to the input
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feature map. This process can be mathematically described as follows:

al = σ(wl ∗ hl−1 + bl), (8.50)

where hl−1 and al are the input and output feature map for the l − th convolutional

layer, respectively, and wl is the learnable convolution kernel, and ∗ indicates the

convolution operation. In addition, a learnable bias bl is applied to the input feature

map. To be more concrete,

al(x, y) = σ(
k∑

i=−k

k∑
j=−k

wl(i, j)hl−1(x− i, y − j) + bl(x, y)). (8.51)

By applying the 2D convolution kernel wl ∈ R(2k+1)×(2k+1) to the input

feature map hl−1 ∈ Rdin×din , we yield the output feature map with size

(din − k − 1)× (din − k − 1). Here, din denotes the size of the input feature map and

2k + 1 is the size of the convolution kernel. The resulting locally-weighted sum,

once added to the learned bias, undergoes a non-linear transformation via the ReLU

activation function σ(·).

To constrain the number of parameters that need to be learned in our network,

we generally use small kernel sizes. While each layer has a limited receptive field

focusing on local features through the utilization of small convolutional kernels,

stacking multiple layers allows for the gradual expansion of this receptive field.

Consequently, the network becomes capable of capturing global features within the

image as the depth increases.

Batch Normalization Layer: it is a technique frequently utilized in neural

networks, playing a pivotal role in stabilizing them and hastening the convergence of

the training loss during the backpropagation process (Ioffe & Szegedy 2015). During

each training iteration, it functions on a mini-batch of data. The layer normalizes

each feature within the input data by centering its values around the mean and

scaling based on the feature’s standard deviation within the given batch. This

normalization process is instrumental in mitigating the internal covariate shift — a

phenomenon where the distribution of inputs at each layer undergoes changes during

training — facilitating a more stable and efficient training process.

Following the normalization, batch normalization introduces two learnable

parameters per feature: a scaling parameter and a shifting parameter. These

parameters allow the network to learn the optimal scale and shift for the normalized

values autonomously, providing the model with the flexibility to modify the

normalization if it learns that such reversal or adjustment is beneficial for its

predictive performance. These dynamic adjustments, enabled by the introduced
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parameters, imbue the network with a degree of adaptability, allowing it to fine-tune

the transformations applied to the features as needed during the training.

Pooling Layer: following the detection of local features in the input feature

maps by the convolution layer, a pooling layer is typically employed to merge similar

local features into a singular feature (Sermanet et al. 2013). One common variant

of the pooling layer is the Max Pooling Layer. This layer works by calculating the

maximum value within a local patch of neurons and then outputting this maximum

value as a single neuron. Importantly, the patches of input neurons for adjacent

pooling units are shifted by more than one row or column, which effectively reduces

the dimensionality of the feature representation. This process imparts the network

with a degree of invariance to minor shifts and distortions in the input data, as

it condenses the information in the feature maps while retaining the most salient

features. This reduction not only helps in making the detection of features invariant

to scale and orientation changes but also enhances computational efficiency by

reducing the number of parameters and computations in the network.

Fully Connected Layer: After sequential operations that involve multiple

convolutional layers and aggregation, the network derives a lower-dimensional

compressed image feature map. Subsequently, this 2D feature map undergoes a

transformation, being flattened into a 1D vector. The fully connected layer then

processes this vector (Goodfellow et al. 2016). The role of the layer is critical, as it

integrates the high-level reasoning of the features extracted and flattened previously.

The mechanism involves applying learned weights and biases to this flattened vector

to predict the final output. Mathematically, this operation can be represented as:

y = σ(Wh+ b), (8.52)

In this equation, h ∈ Rdin represents the flattened, compressed image feature vector,

and y ∈ Rdout symbolizes the predicted result. Here, W ∈ Rdout×din and b ∈ Rdout

denote the learnable weights and biases for the fully connected layer, respectively.

dout represents the size of the output feature map. These weights and biases are

integral to the layer’s functionality, providing the means for it to learn and adapt

during the training phase, ultimately allowing for the accurate prediction of the

desired output from the input images.

Network Training: The trainable parameters within the CNN are optimized

by adhering to a conventional neural network training methodology, where the

mean-squared error of the 3D magnetic field prediction serves as the training loss

for backpropagation, as outlined in the seminal work by Rumelhart et al. (1986).

During the training process, we implement a strategy designed to enrich the diversity

of the training dataset and consequently enhance the generalization capabilities of
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the deep neural network. Specifically, this involves augmenting the input images by

subjecting them to random cropping operations, resulting in smaller patches of size

22 × 22 cells. Such augmentation introduces variability and randomness into the

training data, which is instrumental in refining the network’s ability to generalize

from the training data to unseen data, thereby bolstering its predictive accuracy and

robustness. In total, we generated ≈ 1.7× 107 input 22× 22-cell maps, with 20% of

them serving as a validation set, for each molecular species.

Run Ms MA min{M sub
A } max{M sub

A } min{M sub
s } max{M sub

s }
A0 5.33 0.20 0.03 0.28 2.97 7.84

A1 5.38 0.41 0.10 0.81 2.90 7.24

A2 5.40 0.61 0.21 1.00 3.15 7.33

A3 5.20 0.79 0.29 1.37 3.10 6.55

A4 5.23 0.95 0.30 1.99 3.00 7.18

A5 5.12 1.13 0.32 2.49 3.17 6.80

A6 5.38 1.09 0.41 3.37 3.13 6.96

A7 5.23 1.39 0.40 4.13 3.19 7.41

A8 5.16 1.46 0.39 4.94 3.21 6.76

A9 5.08 1.43 0.48 6.06 2.87 7.10

Table 8.5:: Ms and MA are the sonic Mach number and the Alfvénic Mach number

calculated from the global injection velocity, respectively. M sub
A and M sub

s are de-

termined using the local velocity dispersion calculated along each LOS in a 22 × 22

cell sub-field. The expressions ”min{...}” and ”max{...}” denote the minimum and

maximum value averaged over each 22 × 22 cell sub-field within the corresponding

simulation.

8.4.3 Description of numerical simulations

MHD simulations of turbulence

The numerical simulations used in this study were executed using the ZEUS-MP/3D

code (Hayes et al. 2006) using a similar setup as § 2.2.2. Furthermore, we rotated

the simulation cubes so that the mean angle of inclination with respect to the LOS

(or z-axis) reached 90◦, 60◦, and 30◦. The sonic Mach number, Ms = vinj/cs, and the

Alfvénic Mach number, MA = vinj/vA, characterize MHD turbulence simulations.

To model different ISM conditions, we used a typical mean number density of 300

cm−3 and varied the initial uniform magnetic field and the injected kinetic energy to
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obtain a range of MA and Ms values. In this paper, we refer to the simulations in

Tab. 8.5 by their model name or key parameters.

Synthetic emission lines of 13CO and C18O

We generate synthetic emission lines for two CO isotopologues: 13CO (1-0) and C18O

(1-0), following the procedures used in Hu & Lazarian (2021). This was achieved

using the SPARX radiative transfer code (Hsieh et al. 2019). SPARX solves the

radiative transfer equation (RTE) for finite cells, which means that it considers the

emission from a homogeneous finite element. The equation of statistical equilibrium

for molecular levels takes into account molecular self-emission, stimulated emission,

and collisions with gas particles. Information on the distribution of molecular gas

density with mean density ∼ 300 cm−3 and LOS velocity was extracted from the

MHD simulations mentioned above.

The fractional abundances of the CO isotopologues 13CO(1-0) and C18O(1-0)

were set at 2 × 10−6 and 1.7 × 10−7, respectively. We derive the 12CO-to-H2 ratio

of 1 × 10−4 from the cosmic value of C/H = 3 × 10−4 and the assumption that

15% of C is in molecular form. The abundance of 13 CO is determined using a
13CO/12CO ratio of 1/69, as indicated by Wilson (1999), giving a 13 CO / H2 ratio

of approximately 2 × 10−6. Using a 12CO/C18O ratio of 500, as given by Wilson

et al. (2013), we obtained a C18O-to-H2 ratio of 1.7× 10−7. When generating these

synthetic emission lines, we specifically focused on the lowest-transition J = 1-0 of

the CO isotopologues, with the Local Thermodynamic Equilibrium (LTE) satisfied.

Training images

Our training input is a thin velocity channel map, p(x, y, v0), derived from either the
13CO (1-0) or C18O (1-0) line, calculated from:

p(x, y, v0) =

∫ v0+∆v/2

v0−∆v/2

Te(x, y, v)dv, (8.53)

where v0 is the velocity associated with the line’s central peak, Te is the emission

line’s intensity, and ∆v =
√
δ(v2). Here

√
δ(v2) is the velocity dispersion derived

from the moment-1 map (velocity centroid map). The 12CO line, a common diffuse

cloud tracer, is not used in this work due to numerical limitations related to the

saturation of the intensity of 12CO in the channel centering at v0, which obliterates

the spatial features of that channel (Hsieh et al. 2019). However, the CNN method
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could be extended to include wing channels centering at |v| < v0 to bypass this

numerical saturation, a possibility we might explore in future work.8

We generate p(x, y, v0) for the full cloud, a region of 792 × 792 cells, then

randomly segment p(x, y, v0) into 22 × 22-cell subfields for input into the CNN

model. The choice of 22 × 22-cell avoids that the features fall into the numerical

dissipation range, in which the anisotropy of MHD turbulence is distorted by

numerical diffusivity. In observation, the inertial range of MHD turbulence is much

longer and the velocity channel map is not affected by the dissipation. The size of

the sub-field, thus, could be smaller to achieve higher resolution. For each subfield,

we also generate corresponding projected maps of ϕsub, γsub, M sub
A , and Msub

s as per

the following:

ϕsub(x, y) = arctan(

∫
By(x, y, z)dz∫
Bx(x, y, z)dz

),

γsub(x, y) = arccos(

∫
Bz(x, y, z)dz∫
B(x, y, z)dz

),

M sub
A =

vlosinj

√
4π⟨ρ⟩los

⟨B⟩los
,

M sub
s =

vlosinj

cs
,

(8.54)

where B =
√
B2
x +B2

y +B2
z is the total magnetic field strength, and Bx, By, and

Bz are its x, y, and z components. ⟨ρ⟩los and ⟨B⟩los are the gas mass density and

magnetic field strength averaged along the LOS. M sub
A and Msub

s are defined using

the local velocity dispersion for each LOS (i.e., vlosinj), rather than the global turbulent

injection velocity vinj used to characterize the full simulation. The ranges of M sub
A

and Msub
s averaged over the subfield in each simulation with different γ are listed in

Tab. 1, while γsub spans from 0 to 90◦. These values of M sub
A , Msub

s , and γsub cover

typical physical conditions of diffuse molecular clouds (Hu & Lazarian 2023a).

8.4.4 Numerical training and tests

Fig. 8.31 provides a visualization detailing the influence of MA and γ on the

anisotropy of intensity structures within thin velocity channels. In scenarios

where both MA and γ values are small, the intensity structures distinctly manifest

as slender strips, extending in alignment with the POS magnetic fields. These

8The use of wing channels has its own advantages through increasing the ratio of velocity to

density fluctuations (Yuen et al. 2021; Hu et al. 2023).
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Figure 8.31: An numerical illustration of the anisotropy in 13CO (top) and C18O

channel map. The red streamlines represent the POS magnetic field orientation.

Panel (a): MA = 0.20, γ = 90◦. Panel (b): MA = 1.43, γ = 90◦. Panel (c):

MA = 0.20, γ = 60◦.

structures are produced predominantly by the turbulent velocity (Lazarian &

Pogosyan 2000), as demonstrated in Hu et al. (2023). As MA increases, representing

a weakening in the magnetic field, the MHD turbulence begins to more closely

resemble isotropic hydrodynamical turbulence. This shift brings about a marked

change in the topology of intensity structures, making them less anisotropic.

Alternatively, when dealing with smaller values of γ, which imply that magnetic

fields are oriented more proximally to the LOS, the inherent anisotropy is subdued

due to the projection effect. Comparing 13CO and C18O, C18O is more sensitive

to denser gas, so its associated intensity structures exhibit distinct characteristics.

Despite these differences, the underlying physical principle of anisotropic MHD

turbulence remains the same, suggesting MA and γ continue to shape the observed

structural formations.

Fig. 8.32 provides a comparative visualization between the actual 3D magnetic

fields and those predicted through the utilization of the trained CNN model with
13CO. This comparison is framed within two distinct conditions: sub-Alfvénic

(simulation with ⟨MA⟩ ≈ 0.5 and ⟨γ⟩ ≈ 90◦) and super-Alfvénic (simulation with

⟨MA⟩ ≈ 2.0 and ⟨γ⟩ ≈ 30◦). Within these settings, the mean projected total Alfvén

Mach number on the POS is given as ⟨MA⟩ ≈ 0.5 for sub-Alfvénic conditions and
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Figure 8.32: An comparison of the CNN-predicted 3D magnetic fields using 13CO in

sub-Alfvén (top, ⟨MA⟩ ≈ 0.5 and ⟨γ⟩ ≈ 90◦) and super-Alfvén (bottom, ⟨MA⟩ ≈ 2.0

and ⟨γ⟩ ≈ 30◦) conditions. Each magnetic field segment is constructed by the POS

magnetic field’s position angle (i.e., ϕ) and the inclination angle γ. Note that the

magnetic field obtained is the projection along the LOS and averaged over 132×132

pixels for visualization purposes. The third axis of the LOS is for 3D visualization

purposes and does not provide distance information here. The total intensity map I

is placed on the POS, i.e., the x− y plane.

⟨MA⟩ ≈ 2.0 for super-Alfvénic ones.

The visual segment displayed in Fig. 8.32 is constructed from the POS magnetic

field’s position angle, ϕ, and the inclination angle, γ, with a superimposed color

representation signifying the projected MA. Upon comparison with the intrinsic

magnetic field embedded within the simulation, a noteworthy observation is the

alignment between the orientations of the CNN-predicted 3D magnetic field and the
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Figure 8.33: Same as Fig. 8.32, but for C18O.

actual field, evident under both sub-Alfvénic and super-Alfvénic conditions. In the

sub-Alfvénic case, the CNN-predicted MA is slightly larger (by ≈ 0.1 − 0.2) than

the actual values. Conversely, in the super-Alfvénic scenario, the predicted value

is somewhat smaller, with a deviation ranging from ≈ 0.5 − 1.0. Another example

with ⟨MA⟩ ≈ 0.15 and ⟨γ⟩ ≈ 60◦, is presented in Appendix 8.3.6. Although this

simulation shows an anisotropy degree similar to the case with ⟨MA⟩ ≈ 0.5 and

⟨γ⟩ ≈ 90◦, the CNN model effectively resolves the degeneracy in the correlation of

the anisotropy degree with γ and MA, successfully recovering the 3D magnetic field

(see Fig. ??). It should be noted that the predicted MA is still overestimated by

approximately 0.1 0.2.

Fig. 8.33 offers a similar visual comparison but focuses on the C18O line. This

line is generally recognized as denser tracers compared to 13CO. Despite these

differences in tracer density, the CNN predictions for C18O lines maintain a general
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Figure 8.34: 2D histogram of the 13CO CNN-predictions, i.e., ϕCNN (left), γCNN

(middle), and MCNN
A (right) and the corresponding actual values in simulation (Top:

sub-Alfvén, ⟨MA⟩ ≈ 0.5 and ⟨γ⟩ ≈ 90◦. Bottom: super-Alfvén, ⟨MA⟩ ≈ 2.0 and ⟨γ⟩ ≈
30◦). The dashed reference line represents the ideal scenario, where the predicted

values and actual values match perfectly.

alignment with the actual 3D magnetic fields observed within the simulations.

Moreover, there is less significant overestimation and underestimation in the

CNN-predicted MA.

Figs. 8.34 and 8.35 present 2D histograms illustrating the correspondence

between CNN predictions—ϕCNN, γCNN, and MCNN
A —and actual values obtained

from two test simulations, A2 and A6. In sub-Alfvénic cases for both 13CO and

C18O molecules, we observe a close alignment between the CNN predictions and the

real values. The scatter of the predictions, which includes ϕCNN, γCNN, and MCNN
A ,

demonstrates a small deviation from the actual values, tightly congregating near

the one-to-one reference line. This minimal deviation suggests that the CNN model

offers a high degree of accuracy and reliability when operating under sub-Alfvéénic

conditions.

However, the scenario is a bit different in super-Alfvénic cases. Here, the

scatter is noticeably more widespread, indicating that deviations from the real values

increase in these conditions. The ϕCNN predictions, in particular, show a tendency

for both overestimation and underestimation. In contrast, the γCNN predictions are

primarily characterized by overestimations, a trend that is especially prominent

in cases involving C18O molecules. Meanwhile, the scatter related to the MCNN
A
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Figure 8.35: Same as Fig. 8.34, but for C18O.

predictions is distributed more uniformly around the reference line.

This suggests predicting the 3D magnetic field under super-Alfvénic conditions

is more challenging with higher uncertainty. In these environments, the magnetic

field exerts a weaker influence, and the turbulence observed more closely resembles

that of hydrodynamic turbulence, thereby complicating the prediction process.

Enhancing prediction accuracy is feasible through two strategies. First, it is possible

to further refine and optimize the CNN model to improve its adaptability and

responsiveness to the unique features of super-Alfvénic MHD turbulence. For

instance, Peek & Burkhart (2019) put forth a CNN model designed specifically

to differentiate between sub-Alfvénic and super-Alfvénic turbulence. This model,

with its specialized focus, offers a promising avenue for enhancing the accuracy of

predictions in super-Alfvénic environments. Second, enrich the data set to train

the CNN model. By incorporating a broader and more diverse range of images, the

model can be exposed to a wider array of scenarios and conditions, thereby reducing

uncertainty and improving its ability to make accurate predictions across different

environments and conditions.

Figs. 8.36 and 8.37 plot the histograms of the deviation between the CNN-

predicted and the actual 3D magnetic field. We calculate the absolute difference

between ϕCNN and ϕ, between γCNN and γ, and between MCNN
A and MA, respectively.

These differences are denoted as σϕ, σγ, and σMA
. In the sub-Alfvénic scenarios,

we observed that the distributions of σϕ and σγ are relatively condensed, primarily

falling within the 0 to 20◦ range. This concentration indicates a close alignment
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Figure 8.36: Histograms of difference in CNN-predicted ϕCNN (left), γCNN (middle),

and MCNN
A (right) and the actual values in simulations using 13CO.
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Figure 8.37: Same as Fig. 8.36, but for C18O.

between the CNN predictions and the actual values in sub-Alfvénic environments,

suggesting that the CNN model performs with high precision in these conditions.

However, as ⟨MA⟩ increases, the distributions of σϕ and σγ broaden, spanning a

more extensive range from 0 to 60◦. This dispersion is indicative of larger deviations

between predicted and actual values under these conditions, implying that the CNN

model may face challenges in accurately capturing the magnetic field dynamics when

⟨MA⟩ increases.

Examining specific molecules, for 13CO under sub-Alfvénic conditions, the

median deviation values are relatively low: σϕ = 3.26◦, σγ = 2.98◦, and σMA
= 0.16.

In contrast, under super-Alfvénic conditions, these values increase to 12.32◦,

9.08◦, and 1.1, respectively, highlighting an increase in prediction deviation as the

environment transitions from sub- to super-Alfvénic. Similarly, for C18O, the median

deviation values are 2.22◦, 3.20◦, and 0.16 under sub-Alfvénic conditions and 12.08◦,

13.60◦, and 1.36 under super-Alfvénic scenarios, underlining a consistent trend of

increased deviation in super-Alfvénic environments across different molecules.
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Chapter 9

Three-dimensional magnetic fields

in star-forming regions L1688 and

L1478

This thesis chapter originally appeared in the literature as

Hu, Y. & Lazarian, A. 2023, MNRAS, 524, 4431.

Hu, Y., Lazarian, A., Wu, Y., et al. 2023, MNRAS, 527, 11240.

Abstract

Interaction of three-dimensional magnetic fields, turbulence, and self-gravity in

the molecular cloud is crucial in understanding star formation but has not been

addressed so far. In this chapter, we target the low-mass star-forming region L1688

and use the spectral emissions of 12CO, 13CO, C18O, and H I, as well as polarized

dust emissions. Through an application of the dust polarization fraction analysis,

combined with the plane-of-the-sky (POS) magnetic field strength determined

via the Davis–Chandrasekhar-Fermi (DCF) method and the Differential Measure

Analysis (DMA) technique, we present the first comprehensive measurement of

L1688’s 3D magnetic field, capturing both its orientation and strength. The total

magnetic field strength, as derived from the DCF method, averages to 135µG,

whereas the DMA technique estimates it at 75 µG. We find that L1688’s magnetic

field has two statistically different inclination angles. The low-intensity tail has

an inclination angle ≈ 55◦ on average, while that of the central dense clump is

≈ 30◦. Employing the Velocity Gradient Technique (VGT), we discern the POS
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orientation of magnetic fields associated with L1688, distinguishing it from the

foreground/background magnetic fields. Our analysis indicates a statistical coherence

in the orientations of these magnetic fields. The probability density function of

H2 column density, analyzed in conjunction with VGT, suggests that L1688 might

be experiencing large-scale gravitational contraction (approximately 1.0 pc) and

small-scale gravitational collapse (approximately 0.2 pc). This contraction, primarily

along the magnetic field lines, follows a power-law relation for total magnetic field

strength Btot ∝ n
1/2
H for volume densities nH below approximately 6.0 × 103 cm−3.

Furthermore, we explore the application of a convolutional neural network (CNN) to

the L1478 molecular cloud, comparing the CNN-predicted magnetic field orientations

with those derived from Planck 353 GHz polarization data. The CNN approach

demonstrates a strong concordance, allowing us to construct a detailed 3D magnetic

field map for L1478, revealing a global inclination angle of approximately 76◦ and a

total Alfén Mach number (MA) of approximately 1.07.

9.1 Three-dimensional magnetic fields in the

star-forming regions L1688

To access the 3D magnetic field, we employ the recently proposed dust polarization

fraction analysis (see § 8.2 and Hu & Lazarian 2023c). This method uses the

fact that the linear polarization fraction is sensitive to the efficiency with which

grains are aligned with respect to the magnetic field, the POS magnetic field’s

degree of disorder, and the 3D magnetic field’s inclination angle with respect to the

LOS. Under the assumption of homogeneous dust grains’ properties, the observed

polarization fraction in a strongly magnetized region, i.e., with an ordered POS

magnetic field angle, is only determined by the inclination angle (Chen et al. 2019;

Hu & Lazarian 2023c). The inclination angle, therefore, can be calculated from the

corresponding polarization fraction based on their correlation given in Hu & Lazarian

(2023c). This technique is termed Polarization Fraction Analysis (PFA). Combining

with the Davis–Chandrasekhar-Fermi method (DCF; Davis 1951; Chandrasekhar &

Fermi 1953) or the Differential Measure Approach (DMA; Lazarian et al. 2022), this

technique opens a new way to characterize the 3D magnetic field, including both

POS and LOS components’ orientation and strength. Especially, since both the POS

and the LOS components are inferred from the same polarization data set, the two

components are not fully independent. PFA ensures the measured LOS and POS

magnetic fields are from the same ISM phase and spatial region.

Here we aim to provide the observational analysis of 3D magnetic fields in
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nearby molecular clouds. We target the star-forming region L1688, which is one

of the closest star-forming clouds located at a distance of approximately 139 pc

(Wilking et al. 2008; Ortiz-León et al. 2018). It has a large and varied population

of young stellar objects, serving as an excellent object for studying low-mass star

formation (Dunham et al. 2015).

9.1.1 Description of observational data

12CO, 13CO, and C18O emission lines

We adopt the 12CO (1-0) and 13CO (1-0) emission lines over the L1688 cloud

provided by the COMPLETE survey (Ridge et al. 2006). The observation was

performed with the 14m Five College Radio Astronomy Observatory (FCRAO)

telescope. Each line was measured with a total bandwidth of 25 MHz and 1024

channels, yielding an effective velocity resolution of 0.07 km/s. The Half Power

Beam Width (HPBW) of the observation is ≈ 46′′ for 12CO and ≈ 44′′ for 13CO. The

final data cube, however, is convolved onto a regular 23′′ per pixel resolution. The

RMS noise level per channel is ≈ 0.98 K for 12CO and ≈ 0.33 K for 13CO in unit of

antenna temperature T ∗
A. The radial velocity of the cloud’s bulk motion ranges from

0 to 7 km/s. We select the emissions within this velocity range for our analysis.

The C18O (3-2) emission was observed with the 12m APEX telescope (Liseau

et al. 2010). The observation at 329 GHz has HPBW ≈ 19′′ and is sampled according

to the Nyquist criterion onto 2.5′′ per pixel. The data cube achieves a velocity

resolution ≈ 0.11 km/s with an RMS noise ≈ 0.05 K in the unit of T ∗
A.

H I emission line and H2 column density

Cube of 21 cm H I emission was observed with the 100m NRAO Green Bank

Telescope (Li & Goldsmith 2003). The data has beam resolution HPBW ≈ 9′ and is

gridded to 4′ per pixel. The final data have a spectral resolution of 0.32 km/s and

the corresponding RMS noise level is ≈ 0.15 K.

The H2 column density data with beam resolution ≈ 18.2′′ is obtained from

the Herschel Gould Belt Survey (André et al. 2010). The data of the Ophiuchus

molecular cloud was presented in Ladjelate et al. (2020).
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Polarized dust emission

Similar to § 4.3.1, the POS magnetic field orientation was inferred from the Planck

353 GHz and HAWC+ polarized dust thermal emission. In this work, we use the

Planck 3rd Public Data Release (DR3) 2018 of High-Frequency Instrument (Planck

Collaboration et al. 2020a) at 353 GHz (HPBW≈ 5′), HAWC+ band A (53µm;

HPBW≈ 4.8′′), and HAWC+ band C (89 µm; HPBW≈ 7.8′′). To correct the

observed polarization fraction p for the bias, we adopt the commonly used debiasing

method (Wardle & Kronberg 1974; Pattle et al. 2019) introduced in § 4.4.1.

As for HAWC+, the debaised polarization fraction and corresponding

uncertainty maps are directly available in the SOFIA data archive (see Santos et al.

2019). We select only pixels with p/δp > 3 and I/δI > 100. A summary of the data

sets is available in Tab. 9.1.

9.1.2 Analysing methodology

Probability density function of H2 column density

The PDF of H2 column density is widely used to study turbulence and self-gravity

in the ISM. The PDF follows a hybrid of log-normal distribution PN(s) in diffuse

turbulence-dominated region and power-law distribution PL(s) in gravity-dominated

region (Ballesteros-Paredes et al. 2011; Collins et al. 2012; Burkhart 2018; Körtgen

et al. 2019; Hu & Lazarian 2021):

PN(s) ∝
1√
2πσ2

s

e
− (s−s0)

2

2σ2
s , s < St,

PL(s) ∝ eas, s > St,

(9.1)

where s = log(NH2/NH2) is the logarithm of the column density NH2 normalized by

its mean value NH2 . St is transitional density between the PL and PN. s0 is the

Observation Frequency or wavelength Beam resolution Velocity resolution Reference

H I 21 cm 9′ 0.32 km/s Li & Goldsmith (2003)
12CO (1-0) 115.271 GHz 46′′ 0.07 km/s Ridge et al. (2006)
13CO (1-0) 110.201 GHz 44′′ 0.07 km/s Ridge et al. (2006)

C18O (3-2) 329 GHz 19′′ 0.11 km/s Liseau et al. (2010)

H2 - 18.2′′ - André et al. (2010)

Planck polarization 353 GHz 5′ - Planck Collaboration et al. (2020c)

HAWC+ polarization 154 µm & 89µm & 53µm 7.8′′ & 4.8′′ - Santos et al. (2019)

Table 9.1:: Information of observational data sets used in this work.
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mean logarithmic density, σs represents the standard deviation, and a stands for the

power-law distribution’s slope. The value of a changes in roughly the cloud mean

free-fall time from steep ≈ −3 to shallow ≈ −1.5. A shallow slope indicates a high

star formation rate (Burkhart 2018).

The velocity gradient technique

VGT is a novel approach to tracing the POS magnetic field in molecular clouds.

VGT relies on the theories of MHD turbulence and turbulent reconnection (Goldreich

& Sridhar 1995; Lazarian & Vishniac 1999). It used the fact that the magnetized

and turbulent eddies are anisotropic, i.e., elongating along the direction of the

magnetic field. The anisotropy means maximum velocity fluctuation appears in

the direction perpendicular to the magnetic field. Consequently, the gradient of

velocity fluctuation is also perpendicular to the magnetic field. However, in the case,

that gravitational collapse dominates over MHD turbulence, the velocity gradient’s

orientation is determined by the infall acceleration being parallel to the magnetic

field (Hu et al. 2020c, 2021a). The properties of velocity gradients were theoretically

predicted and then confirmed observationally and numerically, see § 4.1.4.

We adopt the VGT (pseud Stokes parameters) recipe used in Hu et al.

(2022d) and § 4.1.4. The alignment between VGT measurement and polarization

measurement is quantified by the Alignment Measure (AM; González-Casanova &

Lazarian 2017), defined as:

AM = 2(cos2 θr −
1

2
), (9.2)

where θr is the relative angle between the two angles. AM is a relative scale ranging

from -1 to 1, with AM = 1 indicating that two angles are parallel and AM = -1

denoting that the two are orthogonal.

Measuring magnetic field strength: the Davis–Chandrasekhar-Fermi

(DCF) method

Traditional DCF: the POS magnetic field strength can be obtained via the DCF

method (Davis 1951; Chandrasekhar & Fermi 1953). Assuming the variations of

the magnetic field direction arise from isotropic incompressible turbulence and

ordered variation in the magnetic field is insignificant, the magnetic field strength is

expressed as:

B = f
√

4πρσv/δϕB, (9.3)
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Figure 9.1: Comparison of the angle dispersion estimated from Eq. 9.4 and the real

dispersion generated from Gaussian random numbers. Colors represent the mean

(randomly generated) of the Gaussian random numbers.

where f = 0.5 is an empirically chosen correction factor (Ostriker et al. 2001), ρ

is the volume mass density. σv and δϕB represent 1D turbulent velocity dispersion

along the LOS and polarization angle’s dispersion on the POS. The uncertainty of

polarization angle (with a median value of ≈ 14◦) may affect δϕB. In any case, we

discuss more about the uncertainties related to the DCF method in § 9.1.10.

Modification of DCF: The shortcoming of the traditional DCF is that the

dispersion of angles is calculated about the mean, the latter being a poorly defined

quantity in observations. To deal with this problem we propose a modified DCF,

where we calculate the angle dispersion in a different way. In our study, δϕB is

characterized by angular statistics (Fisher 1995; Lazarian et al. 2018):

δϕB =
√

− log(⟨cosϕB⟩2 + ⟨sinϕB⟩2), (9.4)

where ⟨...⟩ stands for ensemble average. Note that in the formula, ϕB is in the

range of [−π, π], but the polarization angle in observational data is in the range

of [−π/2, π/2]. Therefore, we double the polarization angle when processing the

observational data and divide δϕB by two as the final result. Fig. 9.1 presents a

simple numerical test of Eq. 9.4. We generate 10 sets of Gaussian random numbers

(1000 numbers per set). Each set is assigned a dispersion and a random mean value.

We see Eq. 9.4 accurately recovers the dispersion. For our purpose of using the DCF
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method, δϕB is estimated for each sub-block with size 30×30 pixels (pixel resolution:

≈ 23′′) covering approximately 3× 3 independent beams of Planck observation. The

uncertainties raised by the choice of sub-block size and other factors are discussed in

§ 9.1.10.

Measuring magnetic field strength: Differential Measure Approach

(DMA)

One of the limitations of DCF is that it is difficult to obtain the dispersion of the

angles and velocities over limited areas. The subtraction of the thermal speed is also

subject to errors. Moreover, DCF assumes that the observed fluctuations are purely

raised Alfvén waves on the POS. The real MHD turbulence, however, is composed

of compressible modes (Cho & Lazarian 2003).

These and other problems of DCF were addressed by the DMA technique in

Lazarian et al. (2022). In what follows, we employ the simplest, version of the

DMA. It was shown in Lazarian et al. (2022) that even this ”naive” version of the

DMA provides better recovery of the magnetic field values compared to DCF. That

simplified version can be presented as:

B = f ′
√
4πρ

√
Dv(l)/DϕB(l), (9.5)

where Dv and DϕB are the second order structure function of velocity centroid C(rrr)

and polarization angel at scale l, respectively. The adjustment factor f ′ depends on

the composition of turbulence in terms of three basic MHD modes (Cho & Lazarian

2003) and the magnetic field’s inclination angle. Here we choose a constant scaling

factor f ′ = 0.5 to compare DCF and DMA.

C(rrr) =

∫
Tmb(rrr, vlos)vlosdvlos/

∫
Tmb(rrr, vlos)dvlos,

Dv(l) = ⟨(C(rrr)− C(rrr + lll))2⟩,
DϕB(l) = ⟨(ϕB(rrr)− ϕB(rrr + lll))2⟩,

(9.6)

where Tmb(rrr, v) is
12CO brightness temperature, v is the LOS velocity, and rrr = (x, y)

is the spatial position on the POS. Note, that Dv and DϕB are scale-dependent, but

their ratio is not and can give the mean magnetic field strength over a sub-block

of interests via Eq. 9.5. The sub-block size is selected as 30 × 30 pixels to keep

consistent with the DCF method.
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Measuring the inclination angle: Polarization fraction analysis (PFA)

To access the angle γ that the total magnetic field inclined to the LOS, we use the

PFA proposed in Hu & Lazarian (2023c). It is well known that the polarization

fraction is correlated with dust grains’ intrinsic properties, the POS magnetic field’s

degree of disorder, and the 3D magnetic field’s inclination angle 1 (Chen et al. 2019;

Hu & Lazarian 2023c). Assuming homogeneous conditions for dust grains, in a

strongly magnetized region, M2
A,POS ≪ 1, the fraction is mainly determined by the

inclination angle. Here MA,POS is the POS Alfvén Mach number. Obtaining the

distribution of MA,POS is non-trivial in observation2. However, MA,POS is positively

correlated with the dispersion of polarization angle, so we simplify the condition by

using δϕB ∼ MA,POS (Falceta-Gonçalves et al. 2008). Therefore, for such a region,

we have (Hu & Lazarian 2023c):

sin2 γ =
poff(1 + pmax)

pmax(1 + poff)
, δϕ2

B ≪ 1, (9.7)

where pmax is the maximum polarization fraction observed in a cloud and poff is

the polarization fraction corresponding to the region with δϕ2
B ≪ 1. δϕ2

B is a

second-order quantity so its uncertainty is even smaller and has only minimum effect.

The procedure to calculate the γ distribution is then: (i) calculating the map

of δϕB and finding the maximum value of p across the full cloud; (ii) dividing the

map into a number of sub-blocks and getting the non-zero polarization fraction poff
corresponding to minimum δϕB for each sub-block. To reduce uncertainty, here we

take the polarization fraction’s average in the five positions satisfying δϕ2
B ≪ 1 as

poff . (iii) computing γ for each sub-block using Eq. 9.7. Same as the calculation of

δϕB, we set the sub-block size to 30× 30 pixels to match the polarization dispersion

map.

Note that PFA is different from another method proposed in Chen et al.

(2019). There the observed polarization fraction in every pixel, together with

pmax, is used to derive a pixelized γ distribution. This method, however, assumes

the polarization fraction is determined only by the inclination angle neglecting all

magnetic field’s fluctuations, which could significantly decrease the polarization

fraction in a turbulent molecular cloud.

1Note PFA is measuring the (effective) mean inclination angle of an accumulation of various

magnetic fields along the LOS.

2The distribution of MA,POS can be obtained from the velocity gradient’s dispersion (Lazarian

et al. 2018; Hu et al. 2019b) or the structure function analysis of velocity centroid (Xu & Hu 2021b;

Hu et al. 2021c).
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Figure 9.2: Left: the PDFs of the H2 column density. Dotted lines represent the best

fitting of log-normal and power-law distributions. St is the transition density thresh-

old. Right: Map of H2 column density NH2 obtained from the Herschel Gould Belt

Survey. Red and blue areas indicate the gravitationally collapsing regions identified

from the PDFs. We assume the cross point denoted by a star symbol (R.A.≈ 246.65◦,

and Dec.≈ −24.52◦) of Oph A and B’s elongation as the cloud center.

9.1.3 Gravitational contraction and collapse in L1688

The PDF of H2 column density is presented in Fig. 9.2. The PDF appears as

log-normal at a low-density range, while it becomes power-law at a high-density

range. In particular, the power-law part exhibits two distinct slopes. A shallow slope

≈ −0.99 is observed in the range of 0.35 ≤ s ≤ 1.51, while the slope becomes steep

for s ≥ 1.51. The pow-law distribution indicates the presence of a self-gravitating

medium while its slope characterizes the star formation activity. Slope ≈ −1 suggests

a rapid collapse process associated with a radial density distribution ρ(r) ∝ r−3,

where ρ is volume mass density and r is the radius to the center of collapse

(Federrath & Klessen 2013). Slope ≈ −2.5 suggests ρ(r) ∝ r−2 in approximation.

The two different slopes also results in two transition density St ≈ 0.35 and St ≈ 1.51

corresponding to column density NH2 ≈ 5.5× 1021 cm−2 and NH2 ≈ 1.7× 1022 cm−2,

respectively. We outline the density structures within these two density ranges in

Fig. 9.2. The high-density structures NH2 ≥ 1.7 × 1022 cm−2 are more filamentary

than the relatively low-density structures 5.5× 1021 cm−2 ≤ NH2 ≤ 1.7× 1022 cm−2.

While both of the structures are identified as gravity-dominated, it is more likely

that the low-density structures are under global gravitational contraction at scale

≈ 1 pc and high-density structures are gravitationally collapsing or fragmenting at

scale ≈ 0.2 pc. The corresponding infalling motion is evident in the increase of

NH3’s LOS velocity close to Oph B, C, E, and F (Choudhury et al. 2021).
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Figure 9.3: Top: Morphology of magnetic fields revealed by the Planck polarization

(streamlines) at 353 GHz and VGT (yellow segment) using 12CO (J = 1-0) emission.

The magnetic field is overlaid with the intensity map of 353 GHz dust emission. The

black circle represents the beamwidth of observation. Contours outline the intensity

structures of 12CO starting from 5 K km/s. Bottom : Morphology of magnetic fields

revealed by VGT (colored segments) using 12CO emission. Colors on vectors present

the AM of VGT and Planck polarization.
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9.1.4 POS magnetic field orientation in L1688

Figs. 9.3 and 9.4 show the POS magnetic field morphology traced by Planck and

HAWC+ dust polarization, respectively. Planck focuses on a large field-of-view

≈ 1.6◦ × 1.6◦ and large-scale magnetic field ≈ 0.2 pc, while HAWC+ zooms in the

dense core Oph A and provides information of small-scale magnetic field ≈ 0.003 pc.

We see that the large-scale magnetic field is along L1688’s north low-intensity tail.

The magnetic field, however, is bent in the surroundings of the high-density clump

appearing as an hourglass shape. This bending of the magnetic field happens exactly

at the gravity-dominated region identified by the PDF (see Fig. 9.2). The hourglass

magnetic field morphology is more apparent in the surroundings of the dense core

Oph A (see HAWC+ 154µm in Fig. 9.4 and Santos et al. 2019 for a streamline

visualization). The magnetic field is dragged into the densest region.

Apart from dust polarization, we also use VGT to trace the magnetic field

morphology. VGT-H I, VGT-12CO, and VGT-13CO provide a view of large-scale

magnetic field (H I: FWHM ∼ 20′; 12CO and 13CO: FWHM ∼ 7′) over the

entire L1688 clump, while C18O gives the information of small-scale magnetic field

(FWHM ∼ 0.8′) in a zoom-in region. The magnetic fields inferred from VGT-12CO

and VGT-13CO measurements are globally similar. VGT agrees well with the Planck

polarization at L1688’s north low-intensity tail. Misalignment appears in the central

dense clump coincident with the self-gravitating region identified by the PDF (see

Fig. 9.2). The misalignment, therefore, comes from the effect of self-gravity and it is

more significant in the dense-gas tracer 13CO. The misalignment, however, is usually

less than 90◦ suggesting the gravitational collapse and gravitational contraction are

not strong enough at scale ≈ 0.2 pc and volume density ≈ 103 cm−3 so that the

velocity gradient of turbulence is not overwhelmingly dominated by gravitational

acceleration.

Importantly, although VGT-H I measurement is associated with the foreground

and background rather than the molecular cloud, the VGT-H I magnetic field in the

central dense clump agrees with Planck, VGT-12CO, and VGT-13CO measurements.

This agreement means the variation of the magnetic field is insignificant in the

foreground/background and the molecular cloud. The magnetic field in this case is

expected to be strong so that the molecular gas’ motion is channeled by the magnetic

field. The cloud is contracting and accreting gas along the magnetic field direction

resulting in a disk-like or filamentary high-intensity clump Oph A, C, E, and F (see

Fig. 9.2).

VGT-C18O zooms in the small dense clump Oph A. The gradient’s orientation

in the low-intensity region is almost along the west-east direction, while it changes
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Figure 9.4: Top: magnetic fields inferred from HAWC+ polarization at 154 µm for

a zoom-in region as indicated in the middle panel by a blue dashed box. Middle:

magnetic fields inferred from HAWC+ polarization at 89µm for a zoom-in region as

indicated in Fig. 9.3 by a dashed box. Bottom: magnetic fields inferred from HAWC+

polarization at 53µm for a zoom-in region as indicated in the middle panel by a black

dashed box.
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Figure 9.5: Top: Morphology of magnetic fields revealed by VGT (colored segments)

using H I emission. The magnetic field is overlaid with the NH column density map.

Colors on vectors present the AM of VGT and Planck polarization. Contours outline

the intensity structures of 13CO starting from 2.5 K km/s. Middle: same as top

panel, but using 13CO emission. Bottom: magnetic fields inferred from VGT (colored

segments) using C18O emission for a zoom-in region as indicated in the middle panel

by a dashed box. Colors, except white, on polarization vectors, present the AM

of VGT and HAWC+ polarization at 89µm polarization. White color means no

corresponding polarization measurement.
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Figure 9.6: Histogram of the AM calculated from VGT and polarization measure-

ments.

by 90◦ in the high-intensity region along the north-south direction. Compared with

HAWC+ polarization, the north-south orientation shows AM = -1, i.e., VGT is

perpendicular to the polarization (see Fig. 9.6). This change of gradient’s orientation

and perpendicular relative angle both suggest the high-intensity part of Oph A

is undergoing rapid gravitational collapse at volume density ≈ 104 cm−3. Earlier

Zeeman splitting measurements from OH or CN observations discovered that the

molecular clouds at volume density ≈ 105 − 108 cm−3 are mainly self-gravitating

(Crutcher 2012). Our finding shows the volume density threshold for the collapse

could be lower. However, more samples are required to achieve a statistically general

conclusion.

9.1.5 Distribution of magnetic field inclination angle in

L1688

The calculation of γ relies on the dispersion of polarization angle and polarization

fraction, which are displayed in Fig. 9.7. The northwest part of L1688 shows

small-angle dispersion and a relatively high polarization fraction. However, the

dispersion dramatically increases in the dense southwest part and the polarization

fraction decreases to ≈ 2%. The low polarization fraction suggests that the large
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dispersion results from a small inclination angle so that the POS component is weak

and more turbulent.

The distribution of γ is presented in Fig. 9.7 and the histograms of polarization

fraction and inclination angle are given in Fig. 9.8. The inclination angle of the

northeast tail is around 45◦ − 70◦, but it changes to 10◦ − 40◦ in the southwest

clump. The Planck polarization reported a maximum polarization fraction ≈ 22%

across the full sky (Planck Collaboration et al. 2020d), which should correspond to

the case of inclination angle ≈ 90◦.

For our data, we have the maximum fraction pmax ≈ 10% due to the

depolarization effect caused by the changes in the magnetic field’s direction within

the beam and along the LOS 3. To find out the uncertainty in the obtained

inclination angle due to the beam-average effect, we repeat the analysis for the

HAWC+ zoom-in region presented in Fig. 9.3’s middle panel. Polarization in this

region is measured at wavelength 89µm and 154µm (similar to Planck 353 GHz being

submillimetre-wavelength), with beam resolution ≈ 7.8′′ and ≈ 13.6′′, respectively,

so that the beam average effect is reduced. For 154µm, we get pmax ≈ 20% and

poff ≈ 14%, which is averaged over the polarization fraction in the five positions

associated with the smallest five δϕB. Consequently, we get γ ≈ 58◦, which is a

bit larger than that (≈ 40◦) derived from the Planck polarization. The difference,

although not significant, does not necessarily mean the beam average effect vanishes,

especially Planck’s pmax ≈ 10% is only half of the one obtained from HAWC+. We

expected the beam average effect to appear in both Planck’s poff and pmax so that

its contribution in Eq. 9.7’s the numerator and denominator partially cancels off.

Moreover, HAWC+ is measuring the magnetic field at smaller scale and denser

regions, it is also possible the loss of grain alignment at high-density regions and

local variation of the magnetic field contribute to the difference and uncertainty. We

discuss it more in § 9.1.10.

9.1.6 Velocity dispersion and mass density in L1688

The velocity dispersion σv maps measured from 12CO and 13CO are presented

in Fig. 9.9. σv is calculated from the Full Width at Half Maximum (FWHM):

σv = FWHM/2.355. We identify the central peak of the spectrum and the velocities

corresponding to half of the central peak. The velocity difference is taken as the

FWHM. We note that 12CO is typically optically thick and subject to self-absorption,

3Note that the condition of δϕ2
B ≪ 1 used in PFA means the magnetic fluctuations are minimum

in that position, so the depolarization is dominantly caused by the mean inclination angle.
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Figure 9.7: Top: the dispersion of (Planck) polarization angle. Middle: the polar-

ization fraction. Bottom: the distribution of the inclination angle γ. Contours outline

the intensity structures of 12CO starting from 5 K km/s.
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Figure 9.8: Histogram of Planck’s polarization fraction (top) and inferred inclination

angle (bottom).

which can result in a double-peaked line, which may raise a bit of overestimation in

FWHM, or complicated velocity components. For the latter, we use only the most

prominent component, as it represents the maximum turbulence. It is worth noting

that 12CO is also sensitive to outflows, which can increase the velocity dispersion.

Since we did not exclude the contribution of outflows, caution should be exercised

in regions with significant outflows, such as VLA 1623 in Oph A and IRS 45/47 in

Oph B (Ridge et al. 2006; White et al. 2015).

By assuming the excitation temperature can be approximated by dust

temperature Tex = Tdust, we convert the velocity dispersion to sonic Mach number

Ms =
√
3σv/cs using the Herschel dust temperature map (Ladjelate et al. 2020).

Here cs =
√

TexkB
mHµH2

(kB is Boltzmann constant, mH = 1.67× 10−24 g is the mass of a

hydrogen atom, and µH2 = 2.8 is mean molecular weight, see Kauffmann et al. 2008)

is the isothermal sound speed. We can see the central clump in the surrounding of
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Figure 9.9: The distribution of sonic Mach number Ms = σv/cs. σv is calculated

from the linewidth of 12CO (top) and 13CO (bottom). Contours outline the intensity

structures of 12CO (top) starting from 5 K km/s and 13CO (bottom) starting from

2.5 K km/s.

Oph B, E, and F is highly supersonic with peak Ms ≈ 15 for 12CO and ≈ 10 for
13CO. The ambient gas is still supersonic but has smaller Ms values. The global
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Figure 9.10: Top: the distribution of the POS magnetic field strength calculated

from the DCF method. Bottom: the distribution of the total magnetic field strength

Btot. Contours outline the intensity structures of 12CO starting from 5 K km/s.

mean Ms is around 5 for 12CO and around 4 for 13CO. The contribution from

thermal speed to σv is therefore insignificant for such a highly supersonic cloud.

The volume mass density ρ is calculated from H2 column density. As the central

dense clump is gravitationally contracting and its POS projection is approximately
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Figure 9.11: Top: the distribution of the POS magnetic field strength calculated

from the DMA method selecting l = 10 pixels. Bottom: the distribution of the

total magnetic field strength Btot. Contours outline the intensity structures of 12CO

starting from 5 K km/s.

circular, naturally, we can assume the L1688 is as deep as it is wide. The effective

diameter is L = 2
√
A/π, where A is the area within 13CO’s intensity contour of 5

K km/s (see Fig. 9.9) corresponding to the gravity-dominated region identified by

the PDF and VGT (see Fig. 9.2). This contour well represents the clump’s POS
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Figure 9.12: The global mean value of the POS magnetic field strength calculated

from the DMA method as a function of the separation l. The box gives ranges of

the first (lower) and third quartiles (upper) and the colored line represents the mean

value.

projection as it covers the majority of the clump and part of the northeast tail. Here

we get L ≈ 1.84 pc and calculate the mass density map from ρ = NH2µH2mH/L.

9.1.7 3D Magnetic field strength via the DCF method

For estimating the POS magnetic field strength over a region of interest, the DCF

uses the velocity dispersion estimated from 12CO’s line broadening, the dispersion

of magnetic field angle obtained from polarization’s angular statistics, and the

mass density calculated from H2 column density. These maps are presented in

Figs. 9.2, 9.8, and 9.9. Particularly, the mass density map and 12CO’s velocity

dispersion map are smoothed by the Gaussian filter to achieve the same resolution

as Planck polarization’s dispersion map. The choice of 12CO is based on the fact

that VGT-12CO gives the best agreement with Planck polarization suggesting the

self-gravity effect is minimum. The obtained POS magnetic field strength map is

shown in Fig. 9.10. The POS magnetic field in the low-density northeast tail is

stronger than the one in the central dense clump. However, this is caused by the

projection effect.
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We recover the total magnetic field strength by using the inclination angle.

Without the projection effect, the central dense clump consequently exhibits the

strongest total magnetic field due to compression and gravitational collapse. The

maximum strength achieves ≈ 1100µG, and the global mean value is ≈ 135 µG.

9.1.8 3D Magnetic field strength via the DMA method

Different from the DCF method, DMA uses the second-order structure function to

calculate the velocity dispersion from the velocity centroid map and the magnetic

field angle dispersion from the polarization map. The DMA-estimated POS magnetic

field strength distribution is presented in Fig. 9.11. Here we select l = 10 pixels

for calculating the structure-function (see Eq. 9.5). As we show in Fig. 9.12, the

DMA estimation is insensitive to l. While variation exists, the global mean values

of the POS component (≈ 40 µG - 50µG), as well as the distributions, for different

l values are statistically similar. The slightly decreasing trend may be contributed

by non-turbulent fields when considering large-scale fluctuations. In combination

with the inclination angle distribution, we see the mean value of 3D magnetic field

strength at l = 10 pixel is ≈ 75 µG, which is smaller than the DCF estimation.

Moreover, we also observe other apparent differences compared with the DCF

estimation (see Fig. 9.10). In the north tail and central clump, the DMA-estimated

magnetic field strength in high-density (relative to its surroundings, see Fig. 9.2)

regions, is weaker. In general, we expect the effects of self-gravity to distort

the magnetic field direction and decrease the value of the magnetic field. In the

high-density Oph A region, the magnetic field bending caused by self-gravity

increases the polarization angle’s dispersion, but the DCF method used in this work

does not account for such an effect 4. As a result, we expect that Oph A gives

excessive angle dispersion, which results in underestimating the actual magnetic

field strength. However, DCF may intrinsically have overestimation so that the

self-gravity effect is only apparent in DMA.

4Note in other modified DCF methods, the effect of field line distortions whether due to self-

gravity or otherwise are considered (Hildebrand et al. 2009; Houde et al. 2009). This effect can

be handled by DMA that uses structure-function to calculate the angle dispersion (Lazarian et al.

2022).
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Figure 9.13: The annulus-averaged total magnetic field estimated from DCF (the

first panel), total magnetic field estimated from DMA (the second panel) column

density (the third panel), and sonic Mach number calculated from 12CO (the fourth

panel) as a function of the distance to the cloud’s center. The width of each annulus

is ≈ 0.15 pc. The upper and lower black lines represent the maximum and minimum

values, respectively. The box gives ranges of the first (lower) and third quartiles

(upper) and the colored line represents the mean value.
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9.1.9 Energy budget in L1688

To quantify how the magnetic field, turbulence, and self-gravity interact in L1688,

we first assume the cross point (R.A.≈ 246.65◦, and Dec.≈ −24.52◦) of Oph A and

B’s elongation as the collapsing center (see Fig. 9.2). Then we take the annulus

average for the three quantities as a function of the distance to the center. The

width of each annulus is ≈ 0.15 pc. As shown in Fig. 9.13, the magnetic field, Ms,

and column density have a significantly higher value in the vicinity (≈ 0.6− 1.5 pc)

of the collapse center, while they dramatically decrease in the envelope of the cloud

(≈ 2.0− 3.0 pc). The increment around the center can be easily understood because

the gravitational contraction/collapse accretes gas and compresses the magnetic

field. The infall velocity and gravity-driven turbulence also contribute to the velocity

dispersion resulting in a high sonic Mach number.

We similarly calculate the annulus-averaged energy density (i.e., pressure) of

the magnetic field, turbulence, and gravitational potential as a function of the

distance to the cloud’s center. The magnetic and isotropic turbulent pressure could

be computed as:

Pmag. =
B2

tot

8π
,

Ptur. =
3

2
ρσ2

v .

(9.8)

As for the pressure of gravitational potential, we can consider that a mass element

ρ(r)dV (here V represents volume) at radius r is attracted by a central massive

sphere. The pressure is then:

Pgra. = −GM(r)

r
ρ(r), (9.9)

where G is the gravitational constant and M(r) is the sphere’s mass within radius r.

ρ(r) is taken from the annulus-averaged mass density.

As shown in Fig. 9.15, the magnetic field gives the strongest supportive pressure

≈ 107 K cm−3 for DCF and ≈ 5 × 106 K cm−3 for DMA. Although the turbulence

and gravitational potential pressure increases in the center’s vicinity (≈ 0.5−1.5 pc),

their magnitudes are at a comparable level to the magnetic field’s pressure. In

particular, instead of viral equilibrium, we observed |Pgra.| > 2Ptur. due to the

fact that the magnetic field acts against gravity so that the velocity dispersion is

expected to be lower in the magnetized cloud. However, |Pgra.| is slightly larger than

2Ptur. when the distance is larger than ≈ 1.5 pc and 2Ptur. exceeds |Pgra.| in the

center’s vicinity (≤ 1.5 pc) . The higher 2Ptur. pressure could be contributed by the

infall velocity from gravitational collapse and gravity-driven turbulence suggesting
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the ambient material is falling into the center. The cloud’s averaged Jeans length is

LJ =
√

πc2s
Gρ

≈ 0.70 pc with a mean volume mass density ρ ≈ 3.52 × 10−21 g cm−3

(i.e., volume number density around 750 cm−3). When the distance is less than the

Jeans length, thermal support is stronger than self-gravity. Consequently, the global

contraction slows down within ≈ 0.70 pc, and local collapse and fragmentation

appear.

Correlation of total magnetic field strength and volume density

The correlation between the total magnetic field strength and the volume mass

density is an important aspect of the theory of star formation. Under the

flux-freezing ideal MHD condition, the scaling Btot ∝ ρ2/3 ∝ n
2/3
H corresponds to the

isotropic gravitational contraction of a sphere (Mestel 1965; Hartmann et al. 2001;

Vázquez-Semadeni et al. 2011), where nH = 2nH2 ≈ 2NH2/L is the volume density

of hydrogen atom. However, the scaling can be Btot ∝ n
1/2
H if the flux-freezing

condition breaks due to reconnection diffusion (Lazarian 2005, 2014). In addition,

the initial contraction can preferably take place along the strong magnetic field so

that the gas settles into a flattened cylindrical structure perpendicular to the mean

field (Mouschovias 1976; Scott & Black 1980; Crutcher 1999).

In Fig. 9.15, we show the logarithmic Btot-nH scatter 2D histogram. At a

low-density regime, the scatter dots cover an extended area without apparent scaling

relation. At high densities, the scatter is reduced, but characteristic scaling is still

not clearly distinct. The scatter dots lie between scaling with slopes 1/2 and 2/3.

We further bin the measured total magnetic field strength in uniformly spaced nH

bins with an interval of ≈ 150 cm−3, as shown in Fig. 9.16. For both cases of DCF

and DMA measurements, when volume density is smaller than 6.0 × 103 cm−3, the

characteristic scaling is closer to 1/2. This indicates that the collapse is affected

magnetic field. The measured turbulence can induce reconnection diffusion or the

collapse can preferably take place along the strong magnetic field. However, one

should note that it is possible the correlation of Btot ∝ n
1/2
H results from the intrinsic

assumption of Bpos ∝
√
4πρ in the DCF and DMA method.

9.1.10 3D magnetic field in L1688

Probing the magnetic field in the molecular cloud is always challenging. In this work,

we rely on dust polarization and VGT to access the POS magnetic field in the L1688

star-forming region. L1688’s low-intensity northeast tail follows the magnetic field
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Figure 9.14: The annulus-averaged pressure (i.e., energy density) of magnetic field

(red; top: from DCF; bottom: from DMA), turbulence (green), and gravitational

potential (blue) as a function of the distance to the cloud’s center. The width of each

annulus is ≈ 0.15 pc. The Shadow area ranges from the first (lower) to third quartiles

(upper) and the colored line represents the mean value.
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Figure 9.15: 2D histogram of logarithmic volume density nH and logarithmic total

magnetic field strength estimated from DCF method (top) or DMA technique (bot-

tom). The slopes are overplotted for comparison.
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Figure 9.16: The correlation of volume density nH and total magnetic field strength

estimated from the DCF method (top) or DMA technique (bottom). The magnetic

field strength is averaged over uniformly spaced (volume density) bins. The error bar

is given by the standard deviation. The slopes are overplotted for comparison.
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direction. The magnetic field, however, is slightly bent in the vicinity of the central

dense clump being an hourglass shape (see Fig. 9.3, HAWC+ 154 µm in Fig. 9.4, and

Santos et al. 2019 for a better streamline visualization of HAWC+ 154µm.). This

hourglass feature is a very specific prediction of gravitational collapse in a region

with a strong magnetic field (Galli & Shu 1993; Fiedler & Mouschovias 1993; Frau

et al. 2011).

The magnetic fields measured by VGT-12CO, VGT-13CO, and VGT-H I

generally agree with the one inferred from dust polarization. The agreement reveals

the fact that the magnetic field is coherent up to volume density nH2 ≈ 103 cm−3

at least. In particular, VGT-H I traces the magnetic field associated with the

foreground/background rather than the molecular cloud L1688. However, VGT-H I

still agrees with VGT-12CO, VGT-13CO, and Planck polarization suggesting that

L1688’s motion and evolution are regulated by a strong magnetic field.

An earlier study of Sullivan et al. (2021) reported an inclination angle ≈ 57◦

for the entire Ophiuchus molecular cloud assuming the magnetic field’s fluctuation

is negligible. In this paper, we employ a new technique employing both polarization

fraction and polarization angle dispersion to trace the magnetic field inclination

angle with respect to the LOS. We find the magnetic field in L1688’s low-intensity

northeast tail has an inclination angle ≈ 55◦, while the central clump’s magnetic

field is inclined by ≈ 30◦ on average. Our estimation accounts for magnetic field

fluctuations and explains the low polarization fraction in L1688.

Dynamics of L1688

Based on the spectral emissions, H2 column density, and polarization data, we

evaluate L1688’s dynamical properties. The PDF of H2 column density reveals two

different power-law slopes. A shallow slope ≈ −0.99 is observed in the density range

of 5.5× 1021 cm−2 ≤ NH2 ≤ 1.7× 1022 cm−2 and a steep slope ≈ −2.49 appears for

1.7× 1022 ≤ NH2 cm−2. These two different slopes suggest the L1688 is undergoing

global gravitational contraction at large scale ≈ 1.0 pc and gravitational collapse

at small scale ≈ 0.2 pc. The observed misalignment of VGT and polarization and

the hourglass shape magnetic field morphology confirm this point. In particular,

the relative angle of VGT-12CO/13CO and polarization are less than 90◦ suggesting

that turbulence is still more dominated than self-gravity up to the volume density

nH2 ≈ 103 cm−3. However, the 90◦ relative orientation is observed in VGT-C18O and

HAWC+ polarization in a small dense core (≈ 0.05 pc) Oph A. Such 90◦ difference

reveals a strong gravitational collapse in Oph A at density nH2 ≈ 104 cm−3.
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Moreover, L1688 is highly supersonic and strongly magnetized. The global mean

Ms is around 7 for 12CO and around 5 for 13CO. Its kinetic energy is approximately

in viral equilibrium with gravitational potential energy, while the kinetic energy

exceeds the gravitational potential energy at a scale less than ≈ 1.5 pc due to the

contribution from infall velocity and thermal energy. Based on the DCF method and

estimated inclination angle, we find L1688’s maximum strength achieves ≈ 1100µG
and the global mean value is ≈ 135µG. The magnetic field energy is larger than

kinetic and gravitational potential energy by more than one order of magnitude. Such

a strong magnetic field regulates the gravitational contraction so that we observe a

power-law relation Btot ∝ n
1/2
H in the volume density range of nH ≤ 6.0× 103 cm−3.

The reconnection diffusion, possibly assisted by the accumulation of matter along

magnetic field lines is most likely the cause of the observed dependence.

Uncertainty

The major uncertainty in our estimation comes from the DCF method and the

polarization fraction method. The DCF method assumes that (i) ISM turbulence is

an isotropic superposition of linear Alfvén waves, (ii) the compressibility and density

variations of the media are negligible, and (iii) the variations of the magnetic field

direction and the velocity fluctuations arise from the same region in space. These

assumptions could raise uncertainty. In particular, gravitational contraction and

collapse can magnify both velocity and the magnetic field’s dispersion, resulting in

overestimating the POS magnetic field strength. More discussion about the DCF

method’s uncertainty could be found in Lazarian et al. (2022); Skalidis et al. (2021);

Chen et al. (2022); Liu et al. (2022a).

Uncertainty in the total magnetic field strength: Another uncertainty

may come from our assumption of the cloud’s depth along the LOS for calculating

the mass density. We assume a spherical cloud model for the calculation. |Pgra.|
and 2Ptur. may be underestimated with this assumption. If the cloud is highly

sheet-like with a LOS length scale approximately one order of magnitude smaller

than L ≈ 1.84 pc (from the spherical model), |Pgra.| and 2Ptur. could be comparable

or greater than Pmag. from DCF (for DMA measurement, Pmag. is approximately

four times lower). As the observed POS projection of the cloud is close to circular

(see Fig. 9.2), the cloud can be sheet-like if it is compressed along the LOS direction.

However, the magnetic field’s inclination angle is ≈ 30◦ (see Fig. 9.8) and the

insignificant variation of the magnetic field in the foreground/background and the

cloud implies a strong magnetic field. The cloud can be sheet-like if it is compressed

along the LOS direction. We do not expect such a compression almost along the
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strong magnetic field. In any case, the cloud’s 3D real structure potential can be

better determined by combining extinction maps and star distance provided by the

Gaia mission (Zucker et al. 2021).

Earlier Zeeman measurements found that the LOS magnetic field strength in the

H I self-absorption region in front of the cloud is around 10 µG (Goodman & Heiles

1994; Troland et al. 1996). The Zeeman effect from dense tracer OH, however, is

poorly sampled and we can expect the LOS magnetic field in the cloud to be stronger

than 10 µG. Nevertheless, Crutcher (2012) statistically reported the upper limit of

the LOS magnetic field strength is ≈ 100 µG for volume density nH ≈ 1.0× 104 cm−3

using Zeeman splitting measurement. Assuming a simple equivalent of the POS and

LOS magnetic fields, the DCF-measured total magnetic field strength (≈ 250 µG for

nH ≈ 1.0 × 104 cm−3, see Fig. 9.16) might be overestimated by a factor of 2, but

the DMA measurement is closer to the Zeeman results. This overestimation may

come from the limited sub-block size selected for calculating the angle dispersion.

The velocity dispersion estimated from line broadening corresponds to the velocity

fluctuation at injection scale Linj, but the POS magnetic field angle’s dispersion for

a small sub-block with size s corresponds to the fluctuation at scale s. Compared

to the angle dispersion for the entire cloud (i.e., at turbulence injection scale

Linj), the dispersion for a small sub-block is reduced by a factor of ∼ (s/Linj)
1/3,

assuming Kolmogorov-type turbulence. An additional decrease comes from the

fact that the observed angle dispersion is a LOS-averaged quantity. This average

for a small sub-block suppresses magnetic field angle dispersion by an additional

factor (s/Linj)
1/2 in a random walk manner. Thus the angle dispersion is totally

underestimated by a factor of (s/Linj)
5/6 and the POS magnetic field is, therefore,

overestimated. This overestimation results from a combination of the intrinsic

typical DCF overestimation of field strength and of the effects of the approaches to

estimating velocity dispersion and magnetic field angle dispersion (Lazarian et al.

2022).

Uncertainty in the inclination angle: The polarization fraction analysis

assumes that the intrinsic polarization fraction p0 is constant throughout a cloud.

This implicitly requires that dust grains’ properties, i.e., emissivity, temperature,

etc., are homogeneous within the cloud. Such an assumption would result in a

systematic uncertainty of 0 − 20◦ with a median value of ∼ 10◦ (Hu & Lazarian

2023c). On the other hand, this method requires δϕ2
B ∼ MA,POS ≪ 1 in a strongly

magnetized reference position. This condition may not be satisfied in the central

dense clump as the observed δϕB is large. However, as numerically shown in Hu &

Lazarian (2023c), the condition of M2
A,POS ≪ 1 can be relaxed to M2

A,POS ≈ 1 when

the inclination angle is less than 30◦. Such a small inclination angle ubiquitously
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Figure 9.17: The 2D histogram of inclination angle derived from PFA and Planck

emission intensity at 353 GHz.

dominates the depolarization effect so that it reduces the contribution from M2
A,POS.

Therefore, we expect the uncertainty from the condition of M2
A,POS ≪ 1 is not

significant in L1688.

On the other hand, polarization fraction is typically strongly anti-correlated

with Stokes I, which is an effect usually due to the loss of grain alignment at high

extinction AV (Whittet et al. 2008; Alves et al. 2014; Jones et al. 2015) or field

variation along the LOS (Planck Collaboration et al. 2015b; Seifried et al. 2019),

a phenomenon known as the ”polarization hole”. In Fig. 9.17, we present the 2D

histogram of the inclination angle γ and Ip and find γ tends to be small with a

high Ip. However, we note that a sharp drop of polarization fraction happens at

hydrogen column density NH ∼ 1022 cm−2 (see Planck Collaboration et al. 2015a).

Our analysis mostly covers low-density regions (NH < 1022 cm−2, see Fig. 9.2). In

Fig. 9.7, we see the large dispersion of polarization angle and small inclination angle

also appear in low-density regions (see also the 2D histograms in Fig. 9.18). It

suggests that the magnetic field’s variation is indeed large. In addition, Pattle et al.

(2019) studied high-density Oph A, Oph B, and Oph C and found that dust grains

may remain aligned with the magnetic field. Considering the fact that the number

of aligned large grains decreases in high-density regions (Hoang et al. 2021). The

grain alignment, in low-density regions, should be better than those observed in Oph

A, B, and C. For these two reasons, we, therefore, expect the depolarization due to
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Figure 9.18: The 2D histogram of polarization angle dispersion (top), as well as

VGT-12CO angle dispersion (bottom), and column density.

field variation to dominate L1688, especially in low-density regions.

However, the extent to which loss of grain alignment contributes to the

polarization hole at parsec scales remains contentious. For instance, Seifried et al.

(2019) performed a numerical study showing that dust grains remain well aligned

even at high volume densities (n > 103 cm−3 and AV > 1). A more recent study of

Hoang et al. (2021) estimated the maximum AV that grains still align with magnetic

fields. They found for gas density of n ≈ 104, 105, 106 cm−3, the maximum AV
for grain alignment is ∼ 20.3, 8.2, 3.3 for the standard maximum size of interstellar

dust ∼ 0.25 µm. These values of AV further increase in the presence of radiation



411

from stars. For our targets, the maximum volume density is around 104 cm−3 (see

Fig. 9.16) and the maximum AV is around 20 by adopting a linear relation between

the hydrogen column density and AV (NH = 2.21 × 1021AV ; Güver & Özel 2009).

Nevertheless, for high-density regions, like Oph A, Oph B, and Oph C, the loss of

grain alignment can be a potential bias in the PFA analysis.

Figure 9.19: Comparison of the POS magnetic fields predicted by CNN-13CO (red

segment) for the L1478 cloud and inferred from Planck polarization (blue segment).

The background image is the integrated 13CO intensity map.

9.2 Probing the 3D magnetic field in L478 with

the Convolutional Neural Network

For the observational tests of the CNN method proposed in § 8.4, our target is the

nearby L1478 cloud. We utilized 13CO spectral line from a previous study Lewis et al.

(2021). The data has a beam resolution of 38′′ and was regrid to a pixel resolution of

10′′, while achieving a velocity resolution of 0.3 km s−1. The 1D velocity dispersion

σv of the
13CO line was reported within the range of 0.40− 0.70 km s−1 (Lewis et al.

2021). Assuming an isotropic velocity dispersion in 3D and uniform temperature

of 10 K (corresponding to an isothermal sound speed of cs ∼ 0.187 km s−1, see Hu

et al. 2021a), we find the sonic Mach number Ms =
√
3σv/cs ranges from 3.69 to

6.45, falling into the parameter regimes in our numerical simulations (see § 8.4).

With these refined data, we applied our adeptly trained CNN model to the 13CO

channel map, aiming to predict the key 3D magnetic field parameters, denoted as

ϕCNN, γCNN, MCNN
A .

To validate the results yielded through our CNN application, we engaged in



412

a comparative analysis with POS magnetic field orientations as predicted through

Planck 353 GHz polarization data. The data harnessed for this comparative

process was drawn from the third Public Data Release (DR3), provided by Planck’s

High-Frequency Instrument (Planck Collaboration et al. 2020a). The POS magnetic

field orientation was inferred from Stokes parameters, similar to § 4.3.1. To enhance

the signal-to-noise ratio, we smoothed the Stokes parameter maps from an angular

resolution of 5′ to 10′ using a Gaussian kernel. As presented in Fig. 9.19, a

remarkable alignment between the magnetic field orientations as predicted by both

the CNN model and the Planck polarization data is observed, while we notice the

difference is apparent in the northeast clump (see the zoom-in plot in Fig. 9.19).
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Figure 9.20: Histograms of CNN-predicted (as well as Planck measured) ϕCNN (left),

defined east from the north, γCNN (middle), and MCNN
A (right).

A noteworthy advantage of our CNN model over traditional polarization

methodologies is its ability to trace the 3D magnetic fields. This is achieved through

the model’s predictions regarding γ and MA. These predictions are summarised

in histograms within Fig. 9.20. According to the histograms, the median γ and

MA of the L1478 cloud are estimated at ≈ 76◦ and ≈ 1.07, respectively. These

measurements suggest that the L1478 is a trans-Alfvénic could. In this state,

there is an equilibrium between magnetic and turbulent kinetic energies within the

cloud. The parameters derived from the CNN application have been instrumental

in creating the first-ever 3D magnetic field map for L1478, which can be viewed in

Fig. 9.21.



413

Figure 9.21: An visulization of the CNN-predicted 3D magnetic fields using 13CO

for the L1478 cloud. Each magnetic field segment is constructed by the position

angle of the POS magnetic field and the inclination angle. Note that the magnetic

field obtained is the projection along the LOS and averaged over 12×12 pixels for

visualization purposes. The third axis of the LOS is for 3D visualization purposes

and does not provide distance information here. The total 13CO intensity map I is

placed on the POS, i.e., the l − b plane.
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Donnert, J., Vazza, F., Brüggen, M., & ZuHone, J. 2018, Space Sci. Rev., 214, 122

Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium

Draine, B. T., & Lazarian, A. 1998, ApJ, 494, L19

Draine, B. T., Roberge, W. G., & Dalgarno, A. 1983, ApJ, 264, 485

Drake, J. F., Pfrommer, C., Reynolds, C. S., et al. 2021, ApJ, 923, 245

Drury, L. O., & Downes, T. P. 2012, MNRAS, 427, 2308

Duan, D., He, J., Bowen, T. A., et al. 2021, ApJL, 915, L8

Dubey, A., Fisher, R., Graziani, C., et al. 2008, in Astronomical Society of the

Pacific Conference Series, Vol. 385, Numerical Modeling of Space Plasma Flows,

ed. N. V. Pogorelov, E. Audit, & G. P. Zank, 145

Duchesne, S. W., Johnston-Hollitt, M., & Bartalucci, I. 2021, , 38, e053

Dunham, M. M., Allen, L. E., Evans, Neal J., I., et al. 2015, ApJS, 220, 11

Dursi, L. J., & Pfrommer, C. 2008, ApJ, 677, 993

Dzib, S., Loinard, L., Mioduszewski, A. J., et al. 2010, ApJ, 718, 610

Elmegreen, B. G. 1993, ApJ, 419, L29



420

Elmegreen, B. G., & Scalo, J. 2004, ARA&A, 42, 211

Englmaier, P., & Gerhard, O. 1997, MNRAS, 287, 57

Esquivel, A., & Lazarian, A. 2005, ApJ, 631, 320

—. 2011, ApJ, 740, 117

Esquivel, A., Lazarian, A., Pogosyan, D., & Cho, J. 2003, MNRAS, 342, 325

Eswaran, V., & Pope, S. B. 1988, Computers and Fluids, 16, 257

Evans, Neal J., I. 1999, ARA&A, 37, 311

Ewertowski, B., & Basu, S. 2013, ApJ, 767, 33

Fabian, A. C., Sanders, J. S., Allen, S. W., et al. 2011, MNRAS, 418, 2154
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2511

Vazquez-Semadeni, E., Passot, T., & Pouquet, A. 1995, ApJ, 441, 702
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