

Minerals yearbook, Centenniel edition 1981: Metals and minerals. Year 1981, Volume 1 1981

Bureau of Mines

Washington, D. C.: Bureau of Mines : United States Government Printing Office, 1981

https://digital.library.wisc.edu/1711.dl/PPYAWXJZXOESO8L

http://rightsstatements.org/vocab/NoC-US/1.0/

As a work of the United States government, this material is in the public domain.

For information on re-use see: http://digital.library.wisc.edu/1711.dl/Copyright

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

Minerals Yearbook

GENTENNIAL EDITION 1981

Volume I METALS AND MINERALS

Prepared by staff of the BUREAU OF MINES

UNITED STATES DEPARTMENT OF THE INTERIOR • James G. Watt, Secretary

BUREAU OF MINES • Robert C. Horton, Director

As the Nation's principal conservation agency, the Department of the Interior has basic responsibilities to protect and conserve our land and water, energy and minerals, fish and wildlife, and park and recreation areas, and for the wise use of all those resources. The Department also has a major responsibility for American Indian reservation communities and for the people who live in Island Territories under U.S. administration.

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1982

Engin SUNIY 1981

Foreword

This edition of the Minerals Yearbook marks the centennial of the first annual publication of comprehensive mineral industry statistics by the Federal Government. The need for complete, reliable mineral statistics on a regular basis was recognized in 1880, when Clarence King, then Director of the United States Geological Survey, stated in his annual report:

"As a whole it is true, and can never be refuted, that the Federal Government alone can successfully prosecute the noble work of investigating and making known the natural mineral wealth of the country, current modes of mining and

metallurgy, and the industrial statistics of production."

In reponse to this suggestion the Forty-seventh Congress, in an appropriations act of August 7, 1882 (22 Stat. 329), placed collection of mineral statistics on an annual basis, stating in the act that"...not to exceed ten thousand dollars of the amount appropriated in this paragraph may be applied under the direction of the Secretary of the Interior to the procuring of statistics in relation to mines and mining other than gold and silver..."

Data on minerals production for 1882, collected under this appropriation, along with census data for 1880 and such data as were available for 1881, were published in a report entitled Mineral Resources of the United States." That volume began the

annual series that has continued unbroken to the present.

"Mineral Resources of the United States" was compiled and published by the Geological Survey from the initial volume through the volume covering 1923. Beginning with the 1924 edition, compilation and publication of this report became the responsibility of the Bureau of Mines, then part of the Department of Commerce. The title "Mineral Resources of the United States" continued in use through the 1931 edition, when after a half century of publication, the title was changed to the current "Minerals Yearbook."

The first "Minerals Yearbook" covered the period 1932-33 and had a statistical appendix. Before the edition was completed, however, the Bureau of Mines was transferred to the Department of the Interior; therefore, the statistical appendix bears the seal of the Department of the Interior, rather than that of the Commerce

Department.

Throughout a century of publication, the content, format, and length of these volumes have changed in response to user requirements and a changing industry. Initially a single volume of some 800 pages, the Yearbook became a two-part report "Metals" and "Nonmetals" in 1907 and continued in that format through the 1931 edition. From the combined 1932-33 edition through that of 1951, it returned to single-volume format, although the editions of 1932-33, 1934, and 1935 each had a statistical appendix. Beginning with the 1952 edition, the multivolume format of

commodity and geographic area coverage was instituted, continuing through this edition as follows:

1952-62-Volume I. Metals and Minerals Volume II. Fuels Volume III. Area Reports 1963-65-Volume I. Metals and Minerals Volume II. Fuels Volume III, Area Reports, Domestic Volume IV, Area Reports, International 1966-69-Volume I-II, Metals, Minerals, and Fuels Volume III, Area Reports, Domestic Volume IV. Area Reports, International 1970-76—Volume I. Metals, Minerals, and Fuels Volume II, Area Reports, Domestic Volume III. Area Reports, International 1977-81-Volume I, Metals and Minerals Volume II, Area Reports, Domestic Volume III. Area Reports, International

Commodity coverage has also changed thoughout the period. Some minerals that were given substantial space in the early volumes no longer have separate chapters, and new mineral commodities have been added. The 1882 edition contained 48 commodity or commodity group chapters whereas this edition contains 71. Data on the mineral fuels, included in the Yearbook from its onset, were deleted beginning with the 1977 edition, when responsibilities for those commodities were transferred to the new Department of Energy.

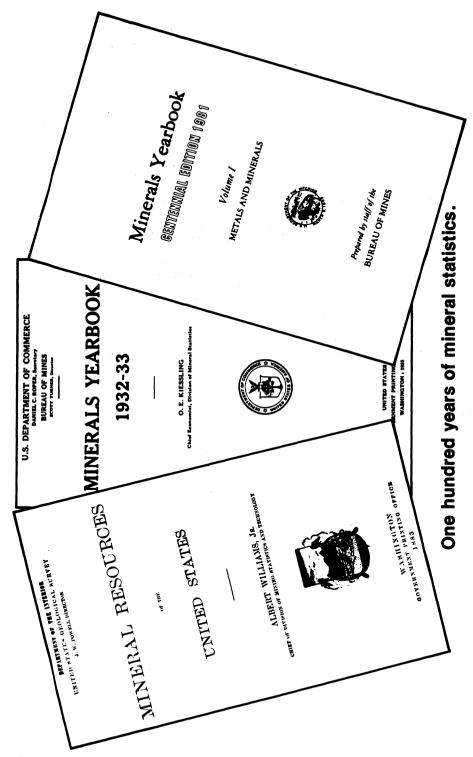
As we move into the second century of publication, our philosophy remains to publish a viable document responsive to the needs of its varied user community. To this end we continue to invite constructive comments and suggestions from our readers.

Robert C. Horton, Director

Acknowledgments

This volume of the Minerals Yearbook, covering metals and minerals, presents data on about 90 mineral commodities that were obtained as a result of the mineral information gathering activities of the Bureau of Mines.

The collection, compilation, and analysis of domestic mineral industries data were performed by the staffs of the Divisions of Ferrous Metals, Nonferrous Metals, and Industrial Minerals of the Assistant Directorate, Minerals Information. Statistical data were compiled from information supplied by mineral producers and consumers in response to canvasses, and their voluntary response is gratefully appreciated. Information obtained from individual firms by means of Bureau of Mines canvasses has been grouped to provide statistical aggregates. Data on individual firms are presented only if available from published or other nonproprietary sources or when permission of the respondent has been granted. Other material appearing in this volume was obtained from the trade and technical press, industry contacts, and other sources, and this cooperation is gratefully acknowledged.


Statistics on world production were compiled in the Division of Foreign Data from numerous sources including reports from the Foreign Service, U.S. Department of State. U.S. foreign trade data were obtained from reports of the Bureau of the Census, U.S. Department of Commerce.

The Branch of Publication Support Services, Division of Publication, provided general guidance on the preparation and coordination of the chapters in this volume and reviewed the manuscripts to insure statistical consistency among the tables, text, and figures between this volume and other volumes, and between this edition and those of former years.

The Bureau of Mines has been assisted in collecting mine production data and supporting information by numerous cooperating State agencies. These organizations are listed in the acknowledgments to Volume II.

In this the centennial volume, acknowledgment is also extended to the past authors, statisticians, and editors who initiated, improved, and expanded this annual minerals report, in response to a changing industry and changes in the needs of our user community. Their foresight and dedication insured that the fledgling 1882 volume that covered a domestic minerals industry whose nonfuel mineral output was valued at \$283 million, kept pace with an industry whose 1981 output was valued at over \$25 billion.

Albert E. Schreck, Chief, Division of Publication

Contents

	Page
Foreword, by Robert C. Horton	iii
Acknowledgments, by Albert E. Schreck	v
Mining and quarrying trends in the metal and nonmetal industries, by Char	
D. Martens	1
Statistical summary, by Rose L. Ballard	27
Abrasive materials, by J. Fletcher Smoak	57
Aluminum, by Frank X. McCawley and Pamela A. Stephenson	75
Antimony, by Patricia A. Plunkert	93
Asbestos, by R. A. Clifton	103
Barite, by Sarkis G. Ampian and David E. Morse	113
Bauxite and alumina, by Luke H. Baumgardner and Ruth A. Hough	123
Beryllium, by Benjamin Petkof	135
Bismuth, by James F. Carlin, Jr.	139
Boron, by Phyllis A. Lyday	143
Bromine, by Phyllis A. Lyday	155
Cadmium, by Robert Reese	163
Calcium and calcium compounds, by J. W. Pressler	171
Cement, by Sandra T. Absalom	177
Chromium, by John F. Papp	209
Clays, by Sarkis G. Ampian	223
Cobalt, by Scott F. Sibley and William S. Kirk	257
Columbium and tantalum, by Thomas S. Jones and Larry D. Cunningham.	267
Copper, by W. C. Butterman	279
Diatomite, by A. C. Meisinger	309
Feldspar, nepheline syenite, and aplite, by Michael J. Potter	313
Ferroalloys, by Raymond E. Brown	323
Fluorspar, by Lawrence Pelham	339
Gallium, by Benjamin Petkof	349
Gem stones, by J. W. Pressler	353
Gold by I. M. Lucas	365
Graphite, by Harold A. Taylor, Jr	393
Gypsum, by J. W. Pressler	405
Helium, by Philip C. Tully	417
Iron ore, by F. L. Klinger	425
Iron oxide pigments, by William I. Spinrad, Jr	447
Iron and steel, by Frederick J. Schottman	455
Iron and steel scrap, by Franklin D. Cooper	473

	Page
Iron and steel slag, by Cynthia T. Collins	495
Kyanite and related materials, by Michael J. Potter	505
Lead, by John A. Rathjen and William D. Woodbury	509
Lime, by J. W. Pressler	537
Lithium, by John E. Ferrell and James P. Searls	551
Magnesium, by Benjamin Petkof	557
Magnesium compounds, by Benjamin Petkof	565
Manganese, by Thomas S. Jones	573
Mercury, by Linda C. Carrico	585
Mica, by Wilton Johnson	593
Molybdenum, by James A. O'Donnell	603
Nickel, by Scott F. Sibley	615
Nitrogen, by Charles L. Davis	629
Peat, by Charles L. Davis	637
Perlite, by A. C. Meisinger	645
Phosphate rock, by William F. Stowasser	649
Platinum-group metals, by J. Roger Loebenstein	667
Potash, by James P. Searls	679
Potash, by James P. Searls Pumice and pumicite, by Arthur C. Meisinger	693
Rare-earth minerals and metals, by James B. Hedrick	697
Rhenium, by Ivette E. Torres	709
Salt, by Dennis S. Kostick	713
Sand and gravel, by Valentin V. Tepordei	725
Silicon, by Gerald F. Murphy	741
Silver, by Harold J. Drake	751
Sodium compounds, by Dennis S. Kostick	767
Stone, by Harold A. Taylor, Jr. and Valentin V. Tepordei	775
Sulfur, by David E. Morse and John E. Shelton	807
Talc and pyrophyllite, by Robert A. Clifton	. 827
Thorium, by William S. Kirk	. 833
Tin, by James F. Carlin, Jr	
Titanium, by Langtry E. Lynd and Ruth A. Hough.	. 853
Titanium, by Langtry E. Lynd and Ruth A. Hough	869
Vanadium, by Peter H. Kuck	883
Vermiculite, by A. C. Meisinger	893
Zinc, by James H. Jolly	897
Zirconium and hafnium, by William S. Kirk	997
Other metals (arsenic, cesium and rubidium, germanium, indium, selenium	
tellurium, thallium), by Staff, Division of Nonferrous Metals	930
Other nonmetals (asphalt-native, greensand, iodine, meerschaum, quartz	
crystal, staurolite, strontium, wollastonite, zeolites), by Staff Division	
of Industrial Minerals	955

Mining and Quarrying Trends in the Metal and Nonmetal Industries

By Charles D. Martens¹

Raw nonfuel minerals produced in the United States during 1981 had an estimated value of \$25 billion, about the same as that of 1980. In terms of 1980 dollars, the value of minerals produced during 1981 was \$23 billion.

This chapter includes tables for 1980 that were not available for publication in the 1980 Minerals Yearbook, but does not include the corresponding tables for 1981.

The underlying causes of the overall decline in U.S. nonfuel mine production during 1981 were varied, but the common factor was the worldwide recession. In some cases the decline was traced to foreign competition. For example, iron ore production was lower in part because of increased imports of steel products such as coiled steel sheet. Another problem experienced by the domestic mining industry was the continuing difficulty in attracting capital. This was due in part to the attractiveness of investments outside the mining industry, such as short-term, high-interest securities. Another reason was the importation of commodities from countries where overall costs were lower because of such factors as high ore grade, lower taxes, lower wages, government subsidies, and less stringent safety and environmental regulations.

The dominant trends in the nonfuel mining industry during 1981 were to reduce costs and improve or close uneconomic operations. Exploration and development of new mines was curtailed except for precious metals and a few other minerals. Mining equipment manufacturers emphasized design refinement to improve performance and efficiency.

Emphasis on cutting costs in existing mines created a need for sophisticated operations and equipment controls that were sometimes met by new technology such as computer applications. The use of low-cost portable computers in the mining industry for exploration, geochemistry, and ore blending was expected to expand to other applications such as open pit design and ore reserve estimation.

Legislation and Government Programs.—In March 1981, President Reagan called for the expenditure of \$100 million to purchase strategic and critical materials for the Nation's stockpiles. Of this sum, \$78 million was allocated for purchasing cobalt.

The U.S. Department of the Interior (DOI) organized an effort during 1980 and 1981 to make more public lands available for mineral exploration. This effort was expected to become an important part of the policy to help ensure an adequate supply of strategic and critical minerals. A DOI task force on strategic and critical minerals began meeting during 1981 to recommend a national minerals policy.

During 1981, the DOI Office of Surface Mining (OSM) began an extensive program of review and revision of regulations established under the Surface Mining Control and Reclamation Act of 1977. Of the approximately 34 areas on which rule revisions were being considered, the following actions were taken during 1981. The so-called "State window" provision was replaced by one that allowed the States to adopt regulations that are as effective as Federal regulations in meeting the requirements of the Surface Mining Control and Reclamation

Act of 1977. A third draft of revised regulations on Areas Unsuitable for Mining and a second draft on Permitting were issued. Proposed revised rules were also issued on Inspection and Enforcement, Bonding, Abandoned Mine Lands, State Program Approval Procedures, and Effluent Limitations and Sedimentation Ponds. Some of the overall effects of these proposed changes would be to shift part of the regulatory responsibility to individual States and to make compliance easier for mine operators.

During 1981, a series of lawsuits was filed in the District of Columbia U.S. District Court challenging various OSM regulations. Most of the cases brought by the American Mining Congress and the National Coal Association were stayed pending OSM regulatory reform. In a more basic action, the Supreme Court ruled that the Surface Mining Control and Reclamation Act of 1977 is constitutional.

The Economic Recovery Tax Act of 1981 was passed. Designed to increase capital investment, the act allows accelerated depreciation schedules and encourages research and development by industry, including mining.

Exploration.—With the exception of continuing high levels of exploration for precious metals and the increased activity in Alaska, exploration for nonfuel minerals declined in 1981. Exploration increased significantly in Alaska as a result of the passage of the Alaska National Interest Lands Conservation Act in December 1980. This act, which designated those areas that were to be in the public domain, conversely removed uncertainty about other areas, effectively opening them to exploration.

One of the reported technical trends in exploration was the improvement of data interpretation through the use of computers. Computers make this possible by rapid reduction of data and by their capacity to search the assembled data for matches to geophysical models developed by the user. Computers also make it feasible to collect and use more data. More capability at lower cost led to the increased use of portable microcomputers for evaluation of data in the field. Exploration teams were increasingly using digital recording, some with microprocessor control, to record data from analog instruments. Digital computers, which promise to eventually replace most programable calculators, provided important new capabilities in the field for digital filtering of data, video presentations, and modeling algorithms.

Significant advances were achieved in electromagnetic exploration techniques in both frequency-domain and time-domain systems.3 Advances in frequency-domain systems included the Genie system developed by Scintrex Ltd. This ground-based exploration system does not require a wire connection between the transmitter and receiver. For this reason, and because of the system's low sensitivity to coil orientation or position, it is expected to be good for reconnaissance. Scintrex also began marketing an induced polarization spectral receiver, a microprocessor-controlled unit whose output to a cassette tape can record 10 time intervals of secondary voltage decay from up to 6 receiver dipoles. Phoenix Geophysics Inc. began testing its 100kilowatt induced polarization-resistivity transmitter. Although developed for oilfield exploration, the transmitter was expected to have application in exploring deep mineral deposits.

Advances in time-domain electromagnetic systems chiefly consisted of increasing signal strength to increase capabilities for exploring at greater depths. Crone Geophysics Ltd. increased the power of its pulse electromagnetic system by changing to a 20-ampere transmitter-loop capability. GEOEX Proprietary Ltd. modified its SIROTEM II system to increase transmitter power by incorporating a portable motor generator. Geonics Ltd. developed a digital recording system for logging data with its EM-37 system.

Advances were made in airborne gravity surveys for mining and petroleum exploration. Carson Manufacturing Inc. used a modified shipborne La-Coste-Romberg platform in helicopters for flying grid surveys to achieve accuracies of 0.5 milligal.

Surface magnetic surveys were facilitated by the introduction of detectors having built-in data storage and processing capabilities. Both GeoMetrics Inc. and EDA Instruments Inc. introduced field magnetometers with these accessories.

Some technical advances in borehole exploration technology were announced. Mount Sopris Instrument Co. introduced a logging system that features microprocessor control and the capability of recording up to four data channels. Owl Technical Associates Inc. announced a 1.5-inch-diameter version of its digital deviation probe. A magnetic susceptibility sonde was introduced into the United States by OYO Instruments Inc.

Long-term field trials were initiated in New Mexico on a retractable core bit drilling system developed under a Bureau of Mines contract. The system allows bit changes without removing the drill string.

One of the leading drilling equipment manufacturers announced the availability of hydrostatic controls on a widely used diamond core drill. The industry is increasingly using hydraulic controls for more accurate drilling control and ease of use.

Development.—Technological advances for mine development included the use of a large rodless shaft borer for excavating a coal mine shaft. This type of borer could be applied to nonfuel mineral mine development. The first of four large shafts planned for a coal mine being developed by the Jim Walter Resources Corp. was bored using a Wirth V Mole machine produced by Wirth Maschinen-und Bohrgerate-Fabrik GmbH of the Federal Republic of Germany. After a pilot hole was drilled and reamed using conventional raise boring equipment, the shaft was bored to a diameter of 7 meters in one downward pass. The Wirth V Mole has the capability of boring a shaft up to 8.5 meters in diameter. Muck was dropped down the pilot hole, and concreting followed the boring down the 520-meter-deep shaft.

Other improvements included the use of Dosco boom-type continuous miners for metal mine development. Cities Service Co. reported good success with these machines for developing its copper mine at Miami, Ariz. Cities Service also planned to use these continuous miners for production.

Surface Mining.—During 1981, automated computerized truck dispatching systems were successfully used in several mines. Increases in truck productivity in the range of 14% to 20% were reported. Because truck operation typically accounts for 50% of surface mining costs, the benefits were significant. The system consists of a radio and display in each truck, 10 to 20 or more signposts that sense the number of passing or nearby trucks, and a computer and dispatching station. The computer keeps track of the location of all the trucks, plus many other facts and conditions, such as shovel location and status, ore analyses, ore requirements, equipment maintenance to be performed, and segregated material such as toxic overburden or topsoil. The computer continuously determines optimal dispatching to move the most material at the least cost. Radio signals to the truck result in a dashboard display telling the driver which shovel or dump to go to.

Elsewhere in surface mining, improvements in truck design continued to reduce haulage costs. Komatsu Ltd. introduced 120-

and 170-ton trucks with mechanical transmissions. These are reportedly the first trucks in this common size range for mining that are not powered by electrical wheel motors. Elimination of the need for power train electrical system maintenance and the need for an onsite electrician are the chief advantages claimed.

Development of low-energy detonating cord systems for use in surface mining was announced by the E. I. du Pont de Nemours & Co. The advantages claimed for the low-energy detonating cord are reduced ignition noise from cord runs on the surface and less disruption of the blasting agent as ignition passes through the agent prior to detonation. Non-cap-sensitive blasting agents such as ammonium nitrate-fuel oil (AN-FO) and water gels are thought to be disrupted and made less effective by high-energy detonating cord.

Trolley-assisted motor systems for haulage trucks that were used at United States Steel Corp.'s Lac Jeannine Mine from 1970 to 1977 were being reconsidered by some companies and were the subject of recent Bureau of Mines research. This approach was being evaluated by some mines because of the potential cost savings from using low-cost electrical power from local coal-fired generating plants rather than increasing the size of the less efficient truck-mounted, diesel-fueled engine generators to meet peak load requirements.

A new 34-cubic-yard electric shovel was announced by Bucyrus-Erie Co. The shovel is equipped with heavy-duty alternating current (AC) motors controlled by solid-state electronic equipment. Bucyrus-Erie also introduced a similarly equipped version of their widely used 27-cubic-yard bucket shovel. These are the first electric shovels with AC motors, which cost less to repair and require less maintenance than direct current (DC) motors. The solid-state controls and AC motors give more available horsepower than do static DC systems and are compatible with most mine electrical distribution systems.

Track-mounted hydraulic excavators were reported to be widely used in central Georgia for mining small pods of kaolin clay. In these mines, draglines were not selective enough and wheel loaders had poor traction. The hydraulic excavators were more mobile than draglines, had fast cycling, and had both high penetration and high breakout force.

The Bureau of Mines announced the results of field trials with a bulldozer blade

system that reduced the cost of reclaiming windrows of displaced overburden at a strip mine. The three special-purpose blades were successfully tested at a lignite mine in Texas and a coal mine in Arizona. The blades provided 50% savings in earthmoving costs. These devices, as well as a bull-dozer-work-rate indicator developed by the Bureau of Mines, can be applied to other similar mining and construction operations.

Underground Mining.—Sublevel open stoping operations using large-diameter drill holes for blasting were reportedly successful at Cities Service's Cherokee copper mine in Tennessee. Introduction of a trackmounted hydraulically actuated rotary drill capable of drilling 6-3/4-inch-diameter holes was the key factor in increasing the efficiency of its operations.

FMC Corp. initiated longwall mining in one of its trona mines in lieu of production with continuous miners. The longwall system was expected to improve safety and mining costs.

A low portable crusher for underground mines, with an estimated output of 250 tons per hour and capable of crushing up to 30-inch-diameter rocks, was developed and tested in a quarry by a Bureau of Mines contractor. The crusher was expected to increase the efficiency of ore handling and allow crushing of waste rock near the face for construction and backfilling stopes.

A Bureau of Mines contractor developed a cooler for mine ventilation air that sprays cool water directly into a ventilating duct rather than using a conventional heat exchanger. Greater efficiency and reduced maintenance during extensive tests at the Homestake gold mine in South Dakota led to the purchase of additional coolers by Homestake Mining Co.

In Situ Mining.—There were additional applications of in situ mining because it offers a means of mining otherwise inaccessible or scattered deposits while reducing environmental damage and reclamation costs.

Several improvements were made for in situ mining of uranium. Union Carbide Corp. reported successful field trials of a leachant containing dissolved oxygen. The leachant was only one-twentieth as costly as hydrogen peroxide-type leachants and was more chemically stable in the delivery pipelines.

The Bureau of Mines developed a threepart modeling system that simulates specific multiwell sites for uranium leaching fields. The model consists of an integrated system using two computer programs with

laboratory chemical analysis of core samples of the ore. The outputs of the hydrology computer program include streamlines that are used in the mass transport computer program to generate information about the projected field, such as the uranium output during 3 months of operation. The system allows comprehensive modeling to predict leaching and groundwater flows during production and restoration, thereby reducing expensive trial and error methods of establishing field configurations and operating parameters. The program has been tested by projecting performance at two leach fields, one for Intercontinental Energy Corp. and the other for Rocky Mountain Energy Co. These uses of the system provided new insights into field configuration and are expected to improve mining and reclamation when those fields are developed.

In another in situ development, FMC initiated a demonstration project by injecting solutions into two trona wells at Green River, Wyo. By yearend, eight wells had been drilled for this relatively large demonstration project. After 20 years of research, the company had committed \$30 million to the 10-well project.

Plans were completed during 1981 to test the borehole mining system developed by the Bureau of Mines for mining phosphate. The system was previously tested successfully in both uranium-bearing sands and oil sands. In this mining method, a hole is drilled down through the ore zone and the ore is dislodged by a high-pressure water jet. The slurry is pumped to the surface from the cavity by a jet pump. After the ore has been processed the tailings are backfilled into the cavity. The method is most applicable to small, rich ore bodies or where minimal land disturbance is advantageous or required.

The Los Alamos National Laboratory drilled two parallel boreholes 2.6 miles deep to tap heat energy from a hot granite formation. The bottom 3,000 feet were precision drilled at an angle of 35° from the vertical. Spring water will be pumped down one hole, radiate to the other hole through interstices created by hydraulic fracturing, and return as steam. When used to generate electricity, the steam will have a projected power output of 35 megawatts.

Beneficiation and Processing.—The Bureau of Mines developed two selective flocculation-desliming processes that increased U.S. iron ore reserves by 50 to 75 years at current consumption rates. Both-a cationic and an anionic flotation process were developed. For the cationic process,

concentrates averaged 37.7% by weight of the feed and contained 63.0% iron and 5.3% SiO₃, with an iron recovery of 73.5%. The reagent cost was \$1.44 per long ton of crude ore, and 88% of the process water requirements were filled using reclaimed water. The anionic process was almost as efficient.

The Bureau of Mines also developed a model for predicting and improving the dump leaching of ores containing a variety of copper sulfide minerals. Accurate predictions of copper extractions during 500 days of large-scale tests were made using the model.

A survey of ore sampling and blending control was completed at large iron ore mines on the Mesabi Range. Shovel location was the chief method for controlling the blending of taconite ore for producing pellets. Shovels are moved at intervals ranging from 1 day to a week or more, depending on ore composition changes and the blending needed to maintain the ore within processing specifications. Computer programs were used for determining shovel movements for blending. The number of variables considered and the sophistication of the programs vary according to the difficulty in consistently meeting the specifications of the mine product as the ore quality changes at the excavation places. In the Tilden Mine, ore is blended by narrowly limiting several variables such as total oxides, talc, concentrate weight recovery, and concentrate silica. Blasthole sample data are processed with a portable computer used to generate a daily printout for determining shovel locations.

In Bureau of Mines tests on copper tailings containing about 0.38% recoverable titanium dioxide, almost 70% of the recoverable titanium dioxide was captured as 34% concentrate. The tailings contained 0.75% titanium dioxide of which about 67% was rutile.

A continuous electrostatic separator was developed by the Bureau of Mines for sorting fine mineral particles. Minerals such as rutile, zircon, monazite, celestite, and ilmenite were separated from quartz gangue and to a lesser degree from quartz-feldspar mixtures. Other minerals including barite, scheelite, witherite, and sphalerite were separated from quartz. The unit separates particles based on the dielectric constant of the material.

The Bureau of Mines continued to improve its method for heap leaching of gold and silver ores and tailings. In its agglomeration method, low-grade gold and silver ore are tumbled with small amounts of portland cement and water to form pellets that, after

curing, are strong enough to be piled for leaching. Agglomeration serves to bind together the finer ore particles and thereby enhance the rate at which leaching solutions can percolate through the heap. At a number of mines in the West, particularly in Nevada, heap leaching was being used to extract gold and silver from newly mined ore as well as from abandoned tailings piles.

Goldera Resources Inc. and Normarc Explorations Ltd. planned to use cyanide solution to heap leach low-grade material at the Mary Ann ore dump in Nevada to recover about 25,000 ounces of silver.

Health and Safety.—Accidental deaths in the metal and nonmetal mines declined from 103 during 1980 to 84 during 1981. This is the lowest number of U.S. mine fatalities since 1958 when sand and gravel fatalities were first included in the statistics.

The Bureau of Mines continued developing fire protection equipment for surface mining equipment. A system designed for AN-FO trucks and another for draglines were announced. Systems have been developed previously for haulage trucks, bulldozers, excavators, augers, and other equipment. By the end of 1981, almost 10% of U.S. mining companies had fire protection systems derived from this research on their trucks.

Erie Mining Co. developed a comprehensive system to reduce truck fire damage. In addition to improving inspections, Erie Mining installed additional suppression systems, solenoid-operated fuel cutoffs, shielding for hot components, and high-temperature-resistant wires in critical circuits.

Field-tested techniques developed by the Bureau of Mines related to ground control safety included a lightweight, easy to use, solid projectile device for shooting down hangups in ore passes and chutes; a rock fracturing system that reduces rockburst occurrence; an economical method for measuring stresses in mine walls; and steel-reinforced concrete cribbing to replace timber cribbing.

The Bureau of Mines also developed a computer program that simulated the effect of fires on mine ventilation. The program simulates how a fire affects airflow and quality at specific locations and times in a mine.

¹General engineer, Office of Technical Information.

²Based on inflation rate derived from gross national product data.

Product data.

*Crebs, T. J. Moderate Increase Again Reported in Geophysical Activity. Min. Eng., May 1982, 3 pp.

Corbett, J., Anaconda Minerals Co. Unpublished communication, 1982. Available upon request from C. D. Martens, Bureau of Mines, Washington, D.C.

Table 1.—Material handled at surface and underground mines in the United States, by type

(Million short tons)

		Surface			Jndergrou	nd		All mines ¹	
Type and year	Crude ore	Waste	Total ¹	Crude ore	Waste	Total ¹	Crude ore	Waste	Total
Metals:									
1976	573	1,250	1,820	73	15	87	040	1 000	
1977	490	1,030	1,530	74	12	87	646	1,260	1,910
1978	554	995	1,550	74	21		564	1,050	1,610
1979	580	1,350				95	628	1,020	1,640
1980			1,930	93	10	103	673	1,360	2,030
Vonmetals:	520	1,180	1,700	77	11	- 88	597	1,190	1,790
									_,
1976	2,000	393	2,390	80	6	86	2,080	399	2,480
1977	2,120	472	2,590	80	6	86	2,200	478	2,680
1978	2,320	571	2,890	87	ĭ	88	2,410	572	2,980
1979	2,360	590	2,950	81	(2)	81			
1980	2,060	620	2,680	78			2,440	590	3,040
otal metals and	2,000	020	2,000	18	(2)	78	2,140	620	2,760
nonmetals:1							5 5.		
1976									
	2,570	1,640	4,210	153	21	174	2,720	1,660	4,390
1977	2,610	1,510	4,120	155	18	173	2,760	1,520	4.290
1978	2,870	1,570	4,440	161	22	183	3,030	1.590	4,620
1979	2,940	1.940	4,880	174	10	185	3,120	1,950	5.070
1980	2,580	1,800	4,380	155	11	167	2,730		
	.,		-,000	100	11	101	2,130	1,810	4,540

 $^{^{1}\}mathrm{Data}$ may not add to totals shown because of independent rounding. $^{2}\mathrm{Less}$ than 1/2 unit.

Table 2.—Material handled at surface and underground mines in 1980, by commodity:

		Surface			Underground			All mines ²	
Commodity	Crude	Waste	Total²	Crude	Waste	Total ²	Crude	Waste	Total
METALS Bauxite	3,250	14,900	18,200	10 10 10	1.230	22.300	3,250 240,000	14,900 531,000	18,200 771,000
	3,550 2,980 284,000 W	9,190 4,270 251,000	12,700 7,250 485,000 W	6,240 2,740 10,800	1,140 -3 2,860	$7,380$ $2,74\overline{0}$ $13,600$	9,790 2,980 237,000 10,800	10,300 4,270 251,000 2,860	20,100 7,250 488,000 13,600
Platinum Platinum Platinum Platinum and ilmenite Titanium and ilmenite Urungaten Urenium Zine	W 758 27,200 3 11,500	6,0 <u>20</u> W 324,000 29	W 6,780 27,200 336,000 29 58,400	1,220 727 6,640 7,120 20,500	614 124 3,550 1,170 410	1,840 851 10,200 8,290 21,000	1,980 27,200 730 18,200 7,120 88,400	6,630 W 124 328,000 1,200 41,000	8,610 27,200 27,200 854 346,000 8,310 79,400
Total ³	520,000	1,180,000	1,700,000	77,000	11,100	88,200	597,000	1,190,000	1,790,000
Abrasives* Asbestos Asbestos Asbestos Clays Clays Clays Clays Clays Polistomite Feldapar Fluorspar Fluorspar Prosplate rock Potesplate rock Potesplate rock Potesplate rock Salt Sand and gravel	214 1,750 3,770 44,800 1,770 1,810 5,810 8,810 8,840 1,770 1,770 1,770 1,770	55.520 55.520 55.520 1,670 3,780 3,500 485,000 13 13 13 13 13 13 13 13 13 13 13 13 13	271 7.270 4.280 82.700 2.570 5.650 5.650 13.300 716,090 716,090 716,000	261 W W 184 184 185 2,660 2,660 11,000 11,000		261 W 187 187 2,660 2,660 11,000 11,000	475 1,750 8,770 44,400 1,870 11,870 12,500 13,900 13,900 13,900 13,900 12,900 12,900	5,5520 9,8550 1,670 3,780 8,500 8,500 485,006 138 138 138 138	

See footnotes at end of table.

Table 2.—Material handled at surface and underground mines in 1980, by commodity' —Continued

		Surface			Underground			All mines	
Commodity	Crude ore	Waste	Total ²	Crude ore	Waste	Total ²	Crude	Waste	Total
NONMETALS —Continued									
Stone:		į							
Dimension	950,000 6.340	1.640	1,030,000	90°,800 80°,80	£ 509	30,500 32,500	980,000	975,700	1,060,000
Talc, soapstone, pyrophyllite	1,090	1,690	2,780	383	¦æ;	313	1,530	1,710	3,230
Curation of the contract of th	9,200	2,300	10,500	2002	98	230	8,400	2,390	10,800
Total ²	2,060,000	620,000	2,680,000	78,200	396	78,600	2,140,000	620,000	2,760,000
Grand total ²	2,580,000	1,800,000	4,380,000	155,000	11,500	167,000	2,730,000	1,810,000	4,540,000
evaluated www.heledate; a died.		*	:						

¹Excludes material from wells, ponds, or pumping operations.

**Data may not add to totals shown because of independent rounding.

**Antimony, beryllium, manganiferous ore, mercury, molybdenum, nickel, rare-earth metals, tin, vanadium, and metal items indicated by symbol W. Withheld to avoid disclosing company proprietary data; included with "Other metals" and "Other nonmetals."

⁴Abrasive stone, emery, garnet, and tripoli. ⁵Less than 1/2 unit.

⁶Aplite, boron minerals, graphite, greensand marl, iron oxide pigments (crude), kyanite, lithium minerals, magnesite, olivine, tube-mill liners, vermiculite, wollastonite, and nonmetal titems indicated by symbol W.

Table 3.—Material handled at surface and underground mines (including sand and gravel and stone) in 1980, by State¹

		Surface			Underground			All mines ²	
State	Crude ore	Waste	Total ²	Crude ore	Waste	Total ²	Crude ore	Waste	Total
41-1 · · · · ·	97 900	2 6.40	40.800	œ		00	37.200	3.640	40,800
Alabama	200	200	000	M	B	B	51 100	5,190	26.300
Alaska	01,10	0,000	0000		į		000	000	450.000
Arizona	185,000	248,000	434,000	15,3W	26	70,01	201,000	000,27	200
Arkenage	36.800	15.100	21,800	≥	*	≥	30,800	00T'CT	000,10
O-16 miles	170,000	37,700	208,000	750	82	835	171,000	37,800	209,000
California	41,700	40,00	00,700	91 700	1.570	23 300	63.400	20.600	114.000
Colorado	901,14	000,64	20,00	36	201	8	15,000	700	16 200
Connecticut	15,600	78.	16,300	Σ	1	C	000,0	701	1000
Delewere	1.080	1	1,080	1	1	1	1,080	10	1,000
Double	309,000	381.000	000.069	×	≱	×	309,000	381,000	90,000
FIORIGH	64,000	15,500	70,300	В	B	A	54.800	15.500	70.300
Georgia	000,40	10,000	000		•	•	7.740	591	8.960
Hawaii	1,740	170	007,0	13	19	1;	0.000	100	
Ideho	16.400	60.100	76,500	1,610	499	2,110	18,000	00,00	0000
TM::-	83,000	4.580	88,500	2.160	15	2.170	86.100	4,590	90,706
Illinois	000	100	000	1	; -	12.	55,200	9,930	58.500
Indiana	53,600	0,220	000,00	1,110	* ;	1,1	266	0 460	100
[owe	39,500	2,440	42,000	2,070	27	2,030	41,000	004,4	7,100
Verses	98,800	1 920	30,700	5.900	23	2.920	31,700	1,930	33,600
Wansas	96	0706	30,400	6,860	48	6,910	43 200	3.090	46.300
Kentucky	90,400	2000	20,400	00,7	P	180	82,600	974	88,600
Louisiana	26,400	4.0	004.00	7,100	1	2014	9	160	8,350
Maine	8,190	3	8,350	13	1.	19	001.00	000	
Maryland	30.300	2,010	32,300	122	_	123	30,500	2,010	32,500
Management of the contraction of	91,700	843	22.500			;	21.700	843	22,500
IMERICULAR CONTRACTOR	195,000	30 300	164 000	4 120	l	4.120	129,000	39.300	169.000
Michigan	000,000		000,126	2111	!		107,000	174 000	371,000
Minnesota	197,000	1.4,000	000176		1	1	000	1,500	17,900
Mississippi	15,600	1,540	17,200	!	1.	10	000'01	1,540	000,01
Missonimi	54.200	4.310	28.600	18,200	2,800	21,000	72,500	011,	0006/
Management	19,400	2,090	21,500	401	105	505	19.800	2,200	22,000
Mondaid	14 200	225	14,600	116		212	14.500	336	14.800
Nebraska	000	1	90,400	176	170	205	19 100	11 800	30,000
Nevada	10,900	11,00	00,000	5	2#1	9	101,5	100	7.250
New Hampshire	0,1,0	182	000,	¦;	!		0,000	700	00,00
New Jersev	28,000	1,030	29,100	≥	1	>	000,52	1,030	23,100
New Mexico	41.800	224,000	266,000	24,000	1,790	25,800	65,800	226,000	292,000
New Vork	58,100	3,470	61,600	3,880	22	3,930	62,000	3,510	65,500
North Carolina	29,600	20,300	111.000	. 1	;	;	29,600	20,900	111,000
Night Delicate	5 930	M	5 230				5.230	×	5,230
North Dakota	2,500	5 940	86,800	3 180	12	3.190	84.700	5.250	90.000
Ohio	00,10	0,750	45,000	M.	8	B A	49,300	9,730	45,000
Oklahoma	42,900	7,100	2000	Ě	* #	B	000,04	4 030	44,000
Oregon	40,000	4,050	900,84	200	= 5	9 9 10	1000	200,4	85,400
Pennsylvania	000,00	007,0	92,200	9,100	60	0,410	0,100	0,000	9.730
Rhode Island	2,710	7	2,130	1	1	1	6,110	3	3

See footnotes at end of table.

Table 3.—Material handled at surface and underground mines (including sand and gravel and stone) in 1980, by State' —Continued (Thousand short tons)

a sign		Surface			Underground			All mines	
	Crude ore	Waste	Total ²	Crude ore	Waste	Total ²	Crude ore	Waste	Total
-									
South Carolina	24.400	2.870	27 300				007 700	0	5
South Dakota	7.680	471	2,50	'n	Ė	¦B	005,47	2,870	008,72
Tennessee	49,600	11.800	90,19	0076	1 940	10.604	96,0	19 000	0,150
Texas	135,000	69.700	205,000	1.260	E7.	1 260	000,00	00,00	000,500
Utah	46,900	110,000	157,000	5.510	1.940	7.450	52 400	100,000	200,000
Vermont	4,770	986	5.750	258		926	7,030	900	300
Virginia	23,600	4,620	58,200	1.680	17	9	55,300	980	20,010
Washington	31,700	5,700	37,400	33	14	77	31,700	5,710	37,500
West Virginia	12,100	1,100	13,200	2,120	15	2.140	14.200	1110	15,300
Wisconsin	44,700	7,770	52,500	≱	A	×	44.700	7.770	52,500
Tradistributed	22,500	220,000	242,000	14,400	45	14,400	36,900	220,000	257,000
pangringniio		(9)	(3)	3,750	180	3,930	3,750	180	3,930
Total ² 4	2,580,000	1,800,000	4,380,000	155,000	11,500	167,000	2,730,000	1,810,000	4,540,000

W Withheld to avoid disclosing company proprietary data; included with "Undistributed." Excludes material from wells, ponds, or pumping operations.

²Data may not add to totals shown because of independent rounding.

²Less than 1/2 unit

*Includes estimated data in table 2.

Table 4.—Value of principal mineral products and byproducts of surface and underground ores mined in the United States in 1980

(Value per ton)

		Surface			Underground			All mines	
Ore	Principal mineral product	By- product	Total	Principal mineral product	By- product	Total	Principal mineral product	By- product	Total
METALS Bauxite Copper	\$7.00 10.31	\$20.89 3.29	\$27.89 13.60	\$16.13	\$8.97	\$20.10	\$7.00 10.80	\$20.89 3.35	\$27.89 14.15
Code Lode Iron pre- Lode Lode Lode Lode Lode	18.30 10.55 10.55	1.38	19.68 1.83 2.84	90.59 20.84 44.58	7.11 W̄ 15.18	97.70 20.84 59.76	34.67 1.83 10.67 43.76	2.67	37.34 1.83 10.67 58.69
Flatinum Silver Titanium and ilmenite Tungaten Uranium Zinc	41.59 43.6 72.24 84.53	16.98 2.33 	6.69 6.69 72.24 34.53	238.22 52.76 69.59 26.81	81.87 5.39 6.57 10.06	270.09 58.15 76.16 86.87	160.40 4.36 52.84 48.64 26.81	25.98 2.33 5.37 1.71 10.06	W 186.38 6.69 58.21 45.35 36.87
Average ¹	12.05	1.65	13.70	34.59	5.80	40.39	14.83	2.16	16.99
Asbestos Barite Clays Clays Clays Peldapar Fluorspar Mice (errap) Phospitae rock Potassium salts Punice	974 1737 18.52 18.52 18.52 16.73 8.86 8.86 8.11 11.39 5.11	1.19 1.7.7 1.7.7 1.00 1.00 1.00	9.74 17.56 18.52 18.81 16.33 16.33 18.33 5.46 5.46	8.27 8.27 8.22 8.22 W W		W 8.27 47.67 8.22 8.22 14.69	974 1737 1737 1737 1848 9864 888 888 1113 1139 541 1469	. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00

Table 4.—Value of principal mineral products and byproducts of surface and underground ores mined in the United States in 1980 —Continued

(Value per ton)

•		Surface			Underground			All mines	
Ore	Principal mineral product	By- product	Total	Principal mineral product	By- product	Total	Principal mineral product	By- product	Total
NONMETALS —Continued									
Salt Sand and gravel Sand and gravel Sonium carbonate (natural)	\$10.34	\$4.62	\$14.96 2.88	\$14.23 49.40	\$1.53	\$15.76 49.40	\$13.71 2.88 49.40	\$1.94	\$15.65 2.88 49.40
Crushed and broken Dimension Talc, soapstone, pyrophyllite	3.25 20.35 9.58	.04 2.60 1.57	3.29 22.95 11.15	4.35 W 8.90		4.35 W 8.90	3.29 20.35 9.38	.03 2.60 1.10	3.32 22.95 10.48
Average ¹	4.03	.05	4.08	16.00	.34	16.34	4.47	90.	4.53
Average, metals and nonmetals!Average, nonmetals (excluding stone and sand	5.63	.37	6.00	24.94	2.96	27.90	6.70	.51	7.21
and grave]) ¹ Average, metals and nonmetals (excluding stone and	9.00	17	9.11	23.25	7 .	23.79	10.90	.17	11.07
sand and gravel) ¹	10.90	1.07	11.97	30.07	3.70	33.77	13.33	1.40	14.74

W Withheld to avoid disclosing company proprietary data. $^{\rm I}$ Includes unpublished data.

Table 5.—Crude ore and total material handled at surface and underground mines in 1980, by commodity

(Percent)

	Crud	e ore	Total m	aterial
Commodity	Surface	Under- ground	Surface	Under- ground
METALS				
ntimony		100.0		100.
auxite	100.0		100.0	-
eryllium	100.0	==	100.0	. =
pper	91.2	8.8	97.1	2.
old:	00.0	00.5	20.4	0.0
Lode	36.3 100.0	63.7	63.4 100.0	36
Placer	98.8	$\bar{1}.\bar{2}$	99.4	_
on oread	20.0	100.0	00.4	100
anganiferous ore	$10\bar{0}.\bar{0}$		100.0	100
ercury	100.0		100.0	_
olybdenum	37.3	62.7	70.4	29
ckel	100.0		100.0	-
atinum	100.0		100.0	-
re-earth metals	100.0	.7 =	100.0	
ver	38.3	61.7	78.7	21
n	100.0 -		100.0	-
tanium and ilmenite	100.0	00.0	100.0	99
ingsten	.4	99.6	$\begin{array}{c} .3 \\ 97.1 \end{array}$	
ranium	63.5 100.0	36.5	100.0	2
anadium nc	100.0	100.0	.3	99
· · · · · · · · · · · · · · · · · · ·				
Average	87.1	12.9	95.1	4
NONMETALS	-			
brasives	¹100.0	w	¹ 100.0	
plite	100.0		100.0	_
sbestos	¹ 100.0	W	¹ 100.0	
arite	100.0		100.0	_
oron minerals	100.0		100.0	-
ays	99.6	.4	99.8	
iatomite	100.0		100.0	
eldspar	100.0	.==	100.0	
uorspar	3.0	97.0	7.9	92
ypsum	78.8	21.2	83.4	16
on oxide pigments (crude)	100.0		100.0	
yanite	100.0 100.0		100.0 100.0	
thium minerals	100.0	-,-	100.0	
agnesite	100.0		100.0	
ica (scrap)	100.0		100.0	
livine	100.0		100.0	
orlite	100.0	==,	100.0	
nosphate rock	¹100.0	w	100.0	
otassium salts		100.0		10
imice	100.0		100.0	
At	13.8	86.2	13.8	8
and and gravel	100.0		100.0	
dium carbonate (natural)		100.0		10
cone:			o= -	
	96.9	3.1	97.1	:
Crushed and broken	¹ 100.0	w	¹100.0	_
Dimension		28.4	86.0	1-
Dimension alc, soapstone, pyrophyllite	71.6			
	71.6 100.0		100.0	
Dimension alc, soapstone, pyrophyllite		.9	99.2	

W Withheld to avoid disclosing company proprietary data; included with "Surface." Includes underground; the Bureau of Mines is not at liberty to publish separately.

Table 6.—Crude ore and total material handled at surface and underground mines in 1980, by State

(Percent)

	Crud	e ore	Total m	aterial
State	Surface	Under- ground	Surface	Under- ground
Alabama	100.0		100.0	
Alaska	100.0		100.0	
Arizona	92.4	$\bar{7}.\tilde{6}$	96.4	3.6
Arkansas	¹100.0	w	1100.0	
California	99.6		99.6	W
Colorado	65.7	34.3	79.6	- 4
nnecticut	100.0	04.0		20.4
alaware	100.0		100.0	
orida	100.0		100.0	
	98.3	$\bar{1}.\bar{7}$	100.0	· . = -
eorgialawaiilawaii		1.7	98.6	1.4
	100.0		100.0	
daho	91.0	9.0	97.3	2.7
llinois	97.5	2.5	97.6	2.4
ndiana	96.9	3.1	97.1	2.9
OWA	95.0	5.0	95.3	4.7
Cansas	90.8	9.2	91.3	8.7
Kentucky	84.1	15.9	85.1	14.9
ouisiana	87.2	12.8	87.6	12.4
Maine	100.0		100.0	
Maryland	¹ 100.0	w	¹ 100.0	w
Massachusetts	100.0	•	100.0	• • • • • • • • • • • • • • • • • • • •
Michigan	96.8	3.2	97.5	2.5
Ainnesota	100.0	0.5	100.0	
Mississippi Mississippi Mississippi Mississippi	100.0		100.0	
Missouri	74.8	25.2	73.6	$2\overline{6}.\overline{4}$
Montana	98.0	2.0	97.7	20.4
Vebraska	1100.0	2.0 W	1100.0	
Vevada	98.7	1.3		W
New Hampshire			98.7	1.3
Vew Jersey	100.0		100.0	
	100.0	07.7	100.0	8.8
New MexicoNew York	63.5	36.5	91.2	
	93.7	6.3	94.0	6.0
North Carolina	100.0		100.0	
Vorth Dakota	100.0	==	100.0	
	96.2	3.8	96.5	3.5
Oklahoma	¹ 100.0	W	¹ 100.0	w
)regon	100.0		100.0	
Pennsylvania	96.0	4.0	96.2	3.8
Rhode Island	100.0		100.0	
outh Carolina	100.0		100.0	
outh Dakota	¹ 100.0	w	¹100.0	w
ennessee	84.1	15.9	85.2	14.8
exas	99.1	.9	99.4	.6
Jtah	89.5	10.5	95.5	4.5
ermont	94.9	5.1	95.7	4.3
irginia	97.0	3.0	97.2	4.3 2.8
Vashington	¹100.0	W.	1100.0	
Vest Virginia				w
Visconsin	85.1	14.9	86.1	13.9
	¹100.0	w	¹100.0	w
Vyoming	61.1	38.9	94.4	5.6
Average	98.4	1.6	89.5	10.5

W Withheld to avoid disclosing company proprietary data; included with "Surface." Includes underground; the Bureau of Mines is not at liberty to publish separately.

Table 7.—Number of domestic metal and nonmetal mines in 1980, by commodity¹

Commodity	Total number of mines	Less than 1,000 tons	1,000 to 10,000 tons	10,000 to 100,000 tons	100,000 to 1,000,000 tons	1,000,000 to 10,000,000 tons	More than 10,000,000 tons
METALS	•						
Bauxite	10		1	4	5		
Copper Gold:	39		1	5	7	17	. 9
Lode	44	20	10	5	6	3	
Placer	36	8	10	12	6		
Iron ore	35		2	4	8	14	7
Lead	33	15	6	3	2	7	
Platinum	1				1		
Silver Titanium and ilmenite	43	20	10		7		
Titanium and ilmenite	.5				1	4	
Tungsten	29	26		10.	.2	- 5	
Uranium	265	43	73	105	44 13	2 1	
Zinc	20 20	1	1 4	4 5	3	2	- 2
Other	20	4	4.		3	Z	2
Total	580	137	118	152	105	50	18
NONMETALS						-	
Abrasives ³	15	2	6	5	2		
Asbestos	4		1		2 2 9	1	
Barite	32		6	17			
Clays	1,033	64	247	603	118	1	
Diatomite	10		2	6	.2		
Feldspar	16		3	3	10		
Fluorspar	5		2 5	2 26	1		
Gypsum	73	3 2	6	26 3	39		
Mica (scrap)	13 13	1	3	6	2 3		
Perlite Phosphate rock	44	1	4	2	11	15	1
Potassium salts	7		4	2		7	
Pumice	225	16	131	71	- - 7	•	
Salt	21	1	3	3	. 8	~ <u>~</u>	
Sand and gravel	6,165	125	982	3,115	1,870	7 <u>2</u>	
Sodium carbonate	4					4	
Crushed and broken	3,975	132	476	1.451	1,744	171	1
Dimension	388	97	168	113	10		
Talc, soapstone, pyrophyllite	44	i	13	18	6		
Other 4	30	6	6	7	8	2	
Total	12,117	456	2,064	5,451	3,852	279	15
Grand total	12,697	593	2,182	5,603	3,957	329	33

¹Excludes wells, ponds, or pumping operations.

²Antimony, beryllium, manganiferous ore, mercury, molybdenum, nickel, rare-earth metals, tin, and vanadium.

³Abrasive stone, emery, garnet, and tripoli.

⁴Aplite, boron minerals, graphite, greensand marl, iron oxide pigments (crude), kyanite, lithium, magnesite, olivine, tube-mill liners, vermiculite, and wollastonite.

Table 8.—Twenty-five leading metal and nonmetal¹ mines in the United States in 1980, in order of output of crude ore

	State	Operator	Commodity	Mining method
		METALS		
Minntac	Minnesota	United States Steel Corp	Iron ore	Open pit.
Sierrita	Arizona	Duval Sierrita Corp Kennecott Minerals Co	Copper	Do.
Jtah Copper	Utah	Kennecott Minerals Co	do	Do.
libbing Taconite	Minnesota	Pickands Mather & Co	Iron ore	Do.
ilden	Michigan	Tilden Mining Co	do	Do.
Empire Thunderbird	do	Empire Iron Mining	do	Do.
hunderbird	Minnesota	Oglebay Norton Co	do	Do.
forenci	Arizona	Phelps Dodge Corp	Copper	Do.
limax	Colorado	Climax Molybdenum Co., a	Molybdenum	Caving and
Erie Commercial	Minnesota	division of AMAX Inc.	T	open pit.
	New Mexico	Pickands Mather & Co	Iron ore	Open pit.
yrone		Phelps Dodge Corp	Copper	Do. Do.
lagdad eter Mitchell	Arizona Minnesota	Cyprus-Bagdad Copper Co	Iron ore	Do.
eur Michell	Minnesota	Reserve Mining Co	Common	
an Manuel	Arizona	Magma Copper Co Kennecott Minerals Co	Copper	Caving.
lay Pit	do	Cition Sorriso Co	do	Open pit. Do.
win Buttes	do	Cities Service Co	do	Do.
Ienderson	Colorado	Anamax Mining Co Climax Molybdenum Co., a	Molybdenum	Caving.
lenderson	Colorado	division of AMAX Inc.	Morybuenum	Caving.
Berkeley Pit	Montana	The Anaconda Company	Copper	Open pit.
Trail Ridge	Florida	E. I. du Pont de Nemours &	Titanium	Dredging.
ran rage	I lorida	Co.	. IIvaiiiuiii	Dreuging.
akehurst	New Jersey	ASARCO Incorporated	do	Do.
Disenhower	Arizona	do	Copper	Open pit.
National Pellet Project _	Minnesota	do Hanna Mining Co	Copper Iron ore	Do.
lighland	Florida	E. I. du Pont de Nemours &	Titanium	Dredging.
New Cornelia	Arizona	Co. Phelps Dodge Corp	Copper	Open pit.
		NONMETALS		
Noralyn	Florida	International Minerals &	Phosphate	Open pit.
Noralyn				o pon pro
The second of th		Chemical Corp.	rock.	
uwannee	do	Chemical Corp. Occidental Petroleum Corp_	rock. do	Do.
uwannee t. Green	do do	Chemical Corp. Occidental Petroleum Corp _ Williams Co	rock. do do	Do. Do.
Suwannee Ft. Green Ft. Meade	do	Chemical Corp. Occidental Petroleum Corp _ Williams Co Mobil Oil Corp International Minerals &	rock. do	Do.
ouwannee rt. Green rt. Meade Kingsford	do do do	Chemical Corp. Occidental Petroleum Corp _ Williams Co Mobil Oil Corp International Minerals & Chemical Corp.	rock. do do do do	Do. Do. Do. Do.
Suwannee Pt. Green Pt. Meade Kingsford Swift Creek	do do	Chemical Corp. Occidental Petroleum Corp. Williams Co	rock. do do do	Do. Do. Do.
Suwannee	do do do do	Chemical Corp. Occidental Petroleum Corp. Williams Co Mobil Oil Corp International Minerals & Chemical Corp. Occidental Petroleum Corp. International Minerals & Chemical Corp.	rock. do do do do	Do. Do. Do. Do. Do.
uwannee 't. Green 't. Meade ingsford wift Creek Payne Creek	do do do do	Chemical Corp. Occidental Petroleum Corp. Williams Co Mobil Oil Corp International Minerals & Chemical Corp. Occidental Petroleum Corp. International Minerals & Chemical Corp.	rock. do do do do	Do. Do. Do. Do. Do. Do.
Suwannee Y. Green T. Meade Kingsford Jear Spring Payne Creek Jeorgetown	do do do do	Chemical Corp. Occidental Petroleum Corp. Williams Co	rockdodododododododo Stone Phosphate	Do. Do. Do. Do. Do. Do.
uwannee	do do do do do Texas Florida	Chemical Corp. Occidental Petroleum Corp. Williams Co	rockdododododo Stone Phosphate rock.	Do. Do. Do. Do. Do. Do. Open quarry Open pit.
uwannee 't. Green 't. Green 't. Meade 'tingsford swift Creek Clear Spring 'ayne Creek eorgetown laynsworth	do do do do do Texas Florida	Chemical Corp. Cocidental Petroleum Corp Williams Co Mobil Oil Corp International Minerals & Chemical Corp. Occidental Petroleum Corp International Minerals & Chemical Corp. Williams Co Texas Crushed Stone Co American Cyanamid Co W. R. Grace & Co	rockdododododododo Stone Phosphate rockdo	Do. Do. Do. Do. Do. Open quarry Open pit.
iuwannee	do do do do do Florida do	Chemical Corp. Occidental Petroleum Corp. Williams Co	rockdododododo Stone Phosphate rockdo	Do. Do. Do. Do. Do. Do. Open quarry Open pit. Do. Do.
uwannee 't. Green 't. Meade Kingsford Singsford Silear Spring 'ayne Creek ieorgetown Haynsworth Hookers 't. Meade	do do do do do Texas Florida do	Chemical Corp. Occidental Petroleum Corp. Williams Co	rockdododododo Stone Phosphate rockdodododo	Do. Do. Do. Do. Do. Open quarry Open pit. Do. Do. Do.
iuwannee 't. Green 't. Meade 't.ingsford iwift Creek lear Spring 'ayne Creek ieorgetown laynsworth Hookers 't. Meadeee Creek	do do do do do Texas Florida do North Carolina	Chemical Corp. Occidental Petroleum Corp Williams Co	rockdodododododododo Stone Phosphate rockdodododo	Do. Do. Do. Do. Do. Open quarry Open pit. Do. Do. Do. Do. Do. Do. Do.
Suwannee 't. Green 't. Meade Kingsford Swift Creek Clear Spring Payne Creek Georgetown Laynsworth Hookers 't. Meade Lee Creek Lee Creek Lee Creek Leo Creek	do do do do do Texas Florida do	Chemical Corp. Occidental Petroleum Corp. Williams Co	rockdo	Do. Do. Do. Do. Do. Open quarry Open pit. Do. Do. Do. Do. Do. Do. Do.
Suwannee	do	Chemical Corp. Occidental Petroleum Corp Williams Co	rockdododododo Stone Phosphate rockdododo Phosphate rock.	Do. Do. Do. Do. Do. Open quarry Open pit. Do. Do. Do. Open quarry Open pit.
iuwannee	do	Chemical Corp. Occidental Petroleum Corp Williams Co	rockdo	Do. Do. Do. Do. Do. Open quarry Open pit. Do. Do. Do. Open quarry
Suwannee	do	Chemical Corp. Cocidental Petroleum Corp Williams Co	rockdododododo Stone Phosphate rockdo	Do. Do. Do. Do. Do. Open quarry Open pit. Do. Do. Open quarry Open pit. Do. Do. Do. Do. Do. Open quarry Open pit.
iuwannee	do	Chemical Corp. Occidental Petroleum Corp Williams Co	rockdodododododododo Phosphate rockdodododododo Phosphate rockdododo Stone Phosphate rock.	Do. Do. Do. Do. Do. Open quarry Open pit. Do. Open quarry Open pit. Do. Open quarry Open pit. Open quarry Open pit. Do. Open quarry Open pit.
Suwannee_ St. Green St. Green St. Green St. Meade Kingsford Swift Creek Clear Spring Payne Creek Heorgetown Haynsworth Hookers St. Meade Lee Creek Lee Creek Lockland Thornton Lonesome Sig Four Watson Calcite Stoneport St. Meade	do	Chemical Corp. Cocidental Petroleum Corp Williams Co	rockdo Stonedodo Stonedododo Stonedodododododo	Do. Do. Do. Do. Do. Open quarry Open pit. Do. Do. Open quarry Open pit. Do. Do. Do. Do. Open quarry Open pit.
Suwannee Ct. Green Ct. Green Ct. Green Ct. Green Ct. Meade Ct. Green Ct. Green Ct. Green Ct. Green Ct. Green Ct. Green Ct. Greek Ct. Greek Ct. Greek Ct. Greek Ct. Meade Ct. Greek Ct. Meade Ct. Greek Ct. Meade Ct. Greek Ct. Gre	do	Chemical Corp. Occidental Petroleum Corp Williams Co	rockdodododododo Stonedodo Phosphate rockdo Stone Phosphate rockdo Stone Phosphate rockdo Stone Phosphate rock.	Do. Do. Do. Do. Do. Open quarry Open pit. Do. Do. Open quarry Open pit. Do. Open quarry Open pit. Do. Open quarry Open pit. Open quarry Open pit. Open quarry Open pit.
Suwannee	dododododo	Chemical Corp. Occidental Petroleum Corp Williams Co	rockdodododododo Stonedodododododododododo Stonedododo Stonedodo Stonedodododo Stonedodododododododo	Do. Do. Do. Do. Do. Open quarry Open pit. Do. Do. Open quarry Open pit. Do. Open quarry Open pit. Do. Open quarry Do. Open popen pit. Do. Open popen popen pit. Do. Open popen
isuwannee	do	Chemical Corp. Cocidental Petroleum Corp Williams Co	rockdododododo Stonedodo Phosphate rockdo Stone Phosphate rockdodo Phosphate rockdodododododododododo Phosphate rock.	Do. Do. Do. Do. Do. Open quarry Open pit. Do. Do. Open quarry Open pit. Do. Open quarry Open pit. Do. Open quarry Open pit. Do. Open quarry Do. Open quarry Do. Open pit.
Suwannee T. Green T. Green T. Meade Swift Creek Clear Spring Payne Creek Georgetown Haynsworth Haynsworth Hookers T. Meade Lee Creek Cockland Chornton Lonesome Big Four Watson Calcite Stoneport Sonny Lake	dododododo	Chemical Corp. Occidental Petroleum Corp Williams Co	rockdodododododo Stonedodododododododododo Stonedododo Stonedodo Stonedodododo Stonedodododododododo	Do. Do. Do. Do. Do. Open quarry Open pit. Do. Do. Do. Open quarry Open pit. Do. Open quarry Open pit. Do. Open quarry Do. Open popen pit. Do. Open popen pit. Do. Open popen pit. Do. Open popen pit. Do.

¹Brines and materials from wells excepted.

Table 9.—Twenty-five leading metal and nonmetal¹ mines in the United States in 1980, in order of output of total materials handled

Mine	State	Operator	Commodity	Mining method
		METALS		
Tyrone	New Mexico	Phelps Dodge Corp	Copper	Open pit.
Utah Copper	Utah Minnesota	Kennecott Minerals Co United States Steel Corp	do Iron ore	Do. Do.
Minntac Hibbing Taconite	winnesota	Pickands Mather & Co	do	Do. Do.
Pima	Arizona	Cyprus-Pima Mining Co	Copper	Do.
Sierrita	do	Duval Sierrita Corp	do	Do.
Shirley	Wyoming	Getty Oil Co	Uranium	Do.
Do	do	Pathfinder Minerals Corp	do	Do.
Climax	Colorado	Climax Molybdenum Co., a division of AMAX Inc.	Molybdenum	Caving and open pit.
Morenci	Arizona	Phelps Dodge Corp	Copper	Open pit.
Jackpile-Paquate	New Mexico	The Anaconda Company	Uranium	Do.
Highland	Wyoming	Exxon Corp	do	Do.
Empire	Michigan	Empire Mining Co	Iron ore	Do.
Erie Commercial	Minnesota	Pickands Mather & Co	do	Do.
Bagdad	Arizona	Cyprus Bagdad Copper Co	Copper	Do.
Chino	New Mexico	Kennecott Minerals Co	do	Do.
Conquista	Texas	Continental Oil Co	Uranium	Do. Do.
Pinto Valley	Arizona	Cities Service Co	Copper Iron ore	Do.
Eagle Mountain	California Arizona	Kaiser Steel Corp ASARCO Incorporated	Copper	Do.
Eisenhower Thunderbird	Minnesota	Oglebay Norton Co	Iron ore	Do.
Peter Mitchell	do	Reserve Mining Co	do	Do.
Panna Mara	Texas	Chevron Resources Co	Uranium	Do.
Tilden	Michigan	Tilden Mining Co	Iron ore	Do.
Mineral Park	Arizona	Duval Corp	Copper	Do.
		NONMETALS		
Suwannee	Marida	Occidental Petroleum Corp	Phosphate	Open pit.
	Florida	i sa marangan da kabangan	rock.	• •
Kingsford	:_do:	International Minerals & Chemical Corp.	do	Do.
Lee Creek	North Carolina	Texasgulf Inc	do	Do.
Swift Creek	Florida	Occidental Petroleum Corp	do	Do. Do.
Noralyn	do	International Minerals & Chemical Corp.	do	
Ft. Green	do	Williams Co	do	Do.
Payne Creek	do	do	do	Do. Do.
Ft. Meade	do	Mobil Oil Corp United States Steel Corp	do	Do.
Rockland Haynsworth	do	American Cyanamid Co	do	Do.
Lonesome	do	do	do	Do.
Clear Spring	do	International Minerals & Chemical Corp.	do	Do.
Hookers	do	W. R. Grace & Co	do	Do.
Bonny Lake	do	do	do	Do.
Ft. Meade	do	Gardinier, Inc	do	Do.
Nichols	do	Mobil Oil Corp	do	Do.
Mabie Canyon	Idaho	Conda Partnership	do	<u>D</u> o.
Silver City	Florida	Estech General Chemical Corp.	do	Do.
Wooley Valley	Idaho	Stauffer Chemical Co Estech General Chemical	do do	Do. Do.
Watson	Florida	Corp.		
Conda	Idaho	J. R. Simplot Co	do	Do.
Big Four	Florida	Amax Phosphate, Inc	do	Do.
Georgetown	Texas	Texas Crushed Stone Co Chevron Resources Co	Stone	Open quarry.
Vernal	Utah	Chevron resources Co	Phosphate rock.	Open pit.
Saddle Creek	Florida	Williams Co	do	Do.

 $^{^{1}\}mbox{Brines}$ and materials from wells excepted.

Table 10.—Ore treated or sold per unit of marketable product at surface and underground mines in the United States in 1980, by commodity!

		Surface			Underground			Total ²	
Commodity	Ore treated (thousand short tons)	Market- able product (units)	Ratio of units of ore to units of market- able product	Ore treated (thousand short tons)	Market- able product (units)	Ratio of units of ore to units of market-able product	Ore treated (thousand short tons)	Market- able product (units)	Ratio of units of or to units of market-able product
NETALS Bauxite	3,190 23,000 23,000 23,000 23,000 23,000 23,000 1,070 1,450 23,000 1,450 23,000 1,770 1,450 23,000 1,770 1,450 23,000 1,770 1,450 23,000 1,770 1,700 1	1,540 1,110 2,42 1,620 1,620 1,620 1,620 1,620 1,620 1,630 1,600 1	2 88 88 88 88 88 88 88 88 88 88 88 88 88	20,500 2,870 10,700 1,220 1,220 6,580 7,180 W W 184 187 19,700 11,600	161 1560 14,200 18,200 18,4200	127.01 6.81.191.181.191.191.191.191.191.191.191.	242,000 10,500 10,500 10,500 10,500 10,500 11,500 1	1,540 69,300 69,300 10,500 10,500 10,500 10,500 10,000 10,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DimensiondoTalc, soapstone, pyrophyllitedo	6,340 1,760	1,180	2.3:1	W 738	W 327	2.8:1	6,340 2,490	1,180	2.3:1

*Estimated. WWithheld to avoid disclosing company proprietary data. **Excludes wells, ponds, or pumping operations.
*Data may not add to totals shown because of independent rounding.

Table 11.—Material handled per unit of marketable product at surface and underground mines in the United States in 1980, by commodity.

Total material handled ³ (thousand short tons)
17,800 749,000
12,800 7,270 476,000
6,780 27,500 336,000 29
7,270 8,770 8,770 8,770 9,877 1,650 1,090 7,16,000 1,770 1,770 1,740 1,740 1,740 1,740 1,740 1,740 1,740 1,740 1,740 1,740 1,740
1,030,000 7,980 2,780

*Estimated. W Withheld to avoid disclosing company proprietary data.

*Escludes material from wells, ponds, or pumping operations.

*The may not add to totals shown because of independent rounding.

*Placing and the development and exploration activities.

*Material from development and exploration activities is excluded from the ratio calculation.

Table 12.—Mining methods used in open pit mining in 1980, by commodity
(Percent)

	Total mat	erial handled
Commodity	Preceded by drilling and blasting	Not preceded by drilling and blasting ¹
METALS		
Bauxite		
Copper	78	2
Gold:	97	
Lode		
Placer	70	3
Iron ore	1 -=	10
Manageria	87	1
Merchanism ore	90	1
Molybdenum	. 3	9
MolyboenumNickel	92	
Rare-earth metals	18	8
Silver	100	
Tin	100	
Titanium and ilmenite		10
Tungsten	4	. 9
Uranium	57	. 10
Vanadium Vanadium		4
NONMETALS	10	9
Abrasives		
A 11.	93	
A Lt A	7	93
D14.	95	
Boron minerals	15	8
Clays	100	
Diatomite		100
Feldspar Feldspar		10
Fluorspar	74	20
Gypsum	60	40
Iron oxide pigments (crude)	89	1
Kyanite	100	100
Lithium minerals	100	
Magnesite	85 100	1
wica (scrap)	39	-
MIII BOURS	17	61 85
Olivine	100	. 80
rerlite	52	-10
nosphate rock	5	48 98
rumice	16	98 84
Salt	10	100
Sand and gravel		100
		100
Crushed and broken	99	1
Limension	00	. 100
Talc, soapstone, pyrophyllite	97	3
Vermiculite		100
Average		
	20	80

¹Includes drilling or cutting without blasting, dredging, mechanical excavation and nonfloat washing, and other surface mining methods.

Table 13.—Development and exploration activity in the United States in 1980, by method

	Met	als	Nonm	etals	Tot	al ¹
Method	Feet	Percent of total ²	Feet	Percent of total ²	Feet	Percent of total ²
DEVELOPMENT						
Shaft and winze sinking	12,800	0.5			12,800	0.5
Raising	167,000	6.5	208	0.4	168,000	6.4
Drifting, crosscutting, or tunneling _	850,000	33.1	5,510	9.4	855,000	32.5
Solution mining	1,540,000	59.9	52,800	90.2	1,590,000	60.6
Total ¹	2,570,000	100.0	58,500	100.0	2,630,000	100.0
EXPLORATION						
Diamond drilling	1,240,000	8.0	171,000	20.9	1,410,000	8.7
Churn drilling	48,200	.3	2,580	.3	50,800	.3
Rotary drilling	10,900,000	70.3	416,000	50.9	11,300,000	69.3
Percussion drilling	1,040,000	6.7	63,200	7.7	1,100,000	6.8
Other drilling	2,240,000	14.5	143,000	17.5	2,380,000	14.6
Trenching	36,900	.2	22,400	2.7	59,300	.3
Total ¹	15,500,000	100.0	818,000	100.0	16,300,000	100.0
Grand total ¹	18,000,000	XX	877,000	XX	18,900,000	XX

XX Not applicable.

¹Data may not add to totals shown because of independent rounding.

²Based on unrounded footage.

Table 14.—Development and exploration in 1980, by commodity

			Development	ent					Exploration			
Commodity	Shaft and winze sinking	Rais- ing	Drifting, cross- cutting, or tunneling	Solution mining	Total ¹	Diamond	Churn drill- ing	Rotary	Percussion drilling	Other drilling	Trench- ing	Total ¹
METALS Go, per Gol, I. Iron ore Leac. Molybdenum Nickel. Tinker Tungsten Tungsten Zinc. Zirconium Otther	2,150 1,040 100 1,970 1,440 1.8	34,500 80,400 8,610 W 6,060 8,270 6,270 8,170	100,000 1,200 1,500 40,500 40,500 10,600 52,000 51,000	1,490,000	137,000 128,000 128,000 52,800 48,600 2,060,000 57,400 85,700	223,000 223,000 224,000 161,000 1,136 1,136 1,1600 1,1600 1,1600 2,000	28,500 28,500 28,500 200 300 800	35,400 291,000 11,200 153,000 16,100 9,440 10,100,000 260 260,000	62,900 182,000 6,910 8,900 18,200 18,200 5,710 807,000	88,200 4,900 145,000 2,630 6,530 - 1,550,000 100 440,000	82,500 8,700 8,700 1	405,000 712,000 89,400 567,000 1184,000 1180 75,600 12,600,000 112,000
Total ¹	12,800	167,000	850,000	1,540,000	2,570,000	1,240,000	48,200	10,900,000	1,040,000	2,240,000	36,900	15,500,000
NONMETALS Barite Boron minerals Gypsum Phosphate rock Sulfur Talc, sogstone, pyrophyllite	11111 11	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	4,850 W W	10,000	 14,900 W 43,600	256 4,600 9,630 3,400 4,350 149,000	2,580	2,550 34,400 248,000 2,900 128,000	8,220 54,000 1,000	 143,000	16,900 3,500 2,000	27,900 39,000 3,500 260,000 6,300 58,400
Total ¹		808	5,510	52,800	58,500	171,000	2,580	416,000	63,200	143,000	22,400	818,000
Grand total	12,800	168,000	855,000	1,590,000	2,630,000	1,410,000	20,800	11,300,000	1,100,000	2,380,000	29,300	16,300,000

Withheld to avoid disclosing company proprietary data; included with "Other." Data may not add to totals shown because of independent rounding.
Antimony, bauxiet, beryllium, cobalt, columbium-tantalum, and manganese.
\$Glays, distomite, fluorapar, perlite, potassium salts, and sodium carbonate (natural).

Table 15.—Development and exploration in 1980, by State

			Developmen	ent					Exploration			
State	Shaft and winze sinking	Rais- ing	Drifting, cross- cutting, or tunneling	Solution mining	Total ¹	Diamond drilling	Churn drill- ing	Rotary drilling	Percussion drilling	Other drilling	Trench- ing	Total ¹
AlaskaArizona	$\bar{5}\bar{1}\bar{2}$	32,200 1,590	20 72,100 7,020	11	80 105,000 8,610	20,500 44,400 15,400	8,000	35,300 159,000	5,150	180	7,390 1,600	36,000 86,400
Colorado	630	15,000	136,000	1 1 1	151,000	188,000	10,000	1,150,000	2,980	241,000	i 1	1,590,000
Georgia	$1,80\overline{0}$	7,050	$21,\overline{900}$	$10,\bar{000}$	$40,\overline{700}$	44,800	2,580	115,000 26,400	{ }	138,000 2,630	1 1	253,000 76,400
Michigan				1 1	1 1 1 1	121,000 21,600	1 1	7,550	1 1	1 1	1 1	29,200
Minesota	135	350 754	42,700 $17,200$	1 1 1	$\frac{43,100}{18,100}$	211,000 75,000	28,500	$143,\overline{000}$ $195,000$	$6.8\overline{10}$ $55,000$	144,000 $2,410$	16,900	16,800 551,000 328,000
Nevada New Mexico	$1\overline{60} \\ 7,070$	$\frac{8,070}{16,100}$	$9.8\overline{20}$ $3.46,000$	111	18,100 369,000	15,600 57,500 108,000	796	$^{4,410}_{350,000}$	$\frac{178,000}{804,000}$	9,030	27,000 3,000	3,700,000 8,700,000
North Carolina Oregon South Dakota Tennessee	30	12,200 2,390	$1,9\overline{00}$ $28,000$ $45,100$! ! ! !	2,530 40,200 47,500	4,850 1,770 182,000 33,000		$\begin{array}{c} 18, \bar{200} \\ 772,000 \\ 74,600 \end{array}$	745	2,000		21,900 954,000 109,000
Texas Utah	1,730	65,400	104,000	1,490,000	1,490,000 171,000 2,820	4,900 66,100 18,400	300	1,650,000 1,340,000	27,000	17,000	1 1	1,660,000
Wyoming	640 130	185 4,820	5,690	42,800 50,800	49,300	14,300		2,520,000	17,800 3,840	145,000	1 1 1	2,700,000
Total ¹	12,800	168,000	855,000	1,590,000	2,630,000	1,410,000	50,800	11,300,000	1,100,000	2,380,000	59,300	16,300,000

¹Data may not add to totals shown because of independent rounding.

²Includes Alabama, Arkansas, Indiana, Kansas, Kentucky, Maine, New York, Pennsylvania, South Carolina, Virginia, and Wisconsin.

Table 16.—Total material (ore and waste) produced by mine development in the United States in 1980, by commodity and State

	Shaft and winze sinking	Raising	Drifting, crosscutting, or tunneling	Stripping	Total ¹
	COMMO	DITY			
METALS					
Copper	37	85	1,020	129.000	130.00
Gold	57	611	180	2,990	3.84
ron ore			3	73,500	73,50
Lead	1	19	2,240		2,26
Silver	43	61	188	177	46
rin	5.7	7.7	1 2 55	400	40
Uranium	114	84	2,460	80,600	83,30
Zinc	1	18	1,080	29	1,12
Other ²		135	400	21,500	22,00
Total ¹	252	1,010	7,570	308,000	317,00
NONMETALS					
Phosphate rock			19	24,200	24,20
Talc, soapstone, pyrophyllite		(3)	9	110	12
Other4	===	. (3)	2	2,490	2.50
		(³)	30	26,800	26,80
				20,000	20,00
Grand total ¹	252	1,010	7,600	335,000	344,00
	STAT	E			1
Alabama				W	V
Alaska	77	(3)	(3)	2,080	2,08
Arizona	14	75	691	43,200	44,00
Arkansas		- 5	64	2,410	2,41
California	$\bar{6}$	133	1,020	50	11
Colorado Georgia	v	199	1,020	27,400 W	28,50 V
Idaho	42	70	$1\overline{60}$	10.600	10.90
Michigan	46	10	100	10,000 W	10,30 V
Minnesota				63,700	63,70
Missouri		$-\overline{5}$	2,190	00,100	2.19
Montana	w	2	86	w	-,ŏ
Nevada	ï	29	86	1.260	1.38
New Mexico	115	71	1,150	85,800	87,10
New York		4	41		4
North Carolina				9.390	9,39
Oklahoma				W	v
Oregon	(³)	2	4	(³)	
Pennsylvania	Ŵ	W	W		v
South Dakota		w	W		V
Tennessee		-8	1,170	3	1,18
Гехаs		=	_===	91	9:
Utah	66	553	796	4,500	5,920
Virginia		w	w	w	V
Washington		10	4	4	18
Wyoming	. 5	(3)	22	71,200	71,20
Undistributed	2	46	128	13,300	13,500
Total ¹	252	1.010	7,600	335,000	

W Withheld to avoid disclosing company proprietary data; included with "Undistributed."

1 Data may not add to totals shown because of independent rounding.

2 Antimony, bauxite, beryllium, molybdenum, and tungsten.

3 Less than 1/2 unit.

4 Abrasives, barite, fluorspar, gypsum, and potassium salts.

Table 17.—U.S. industrial consumption of explosives

(Thousand pounds)

Year	Coal mining	Metal mining	Quarrying and nonmetal mining	Total mineral industry	Construction work and other uses	Total industrial
1976	1,798,873	488,653	493,656	2,781,182	547,347	3,328,529
1977	2,093,312	446,406	522,678	3,062,396	647,354	3,709,750
1978	¹ 2,168,630	¹ 574,213	¹ 604,955	3,347,798	² 581,391	3,929,189
1979	r 12,237,393	r 1612.820	r 1653,033	T3.503.246	r 2587,212	r4,090,458
1980	¹ 2,503,359	¹ 559,229	¹ 624,184	3,686,772	587,690	4,274,462

Note: Data for 1977-80 are not comparable to prior years owing to change in reporting by the Institute of Makers of Explosives.

Table 18.—U.S. consumption of explosives in the minerals industry

(Thousand pounds)

Year	Coal mining	Metal mining	Quarrying and nonmetal mining	Total
* .	PERMI	SSIBLE EXPLOSIVES		
1976 1977 1978 1979 1980	46,663 38,530 44,891	204 225 208 281 81	1,090 694 618 615 716	42,417 47,582 39,356 45,787 53,273
-	OTHER	HIGH EXPLOSIVES		
1976 1977 1978 1978 1979 1980	34,407 27,741 25,783	24,265 25,174 25,400 23,699 25,085	65,891 63,378 59,974 60,734 50,138	124,677 122,959 113,115 110,216 100,135
	WATER	GELS AND SLURRIES		
1976 1977 1978 1978 1979	42,406 63,494 74,739	205,429 154,704 234,470 238,738 171,213	74,176 75,062 89,322 107,280 99,947	310,476 272,172 387,286 420,757 365,076
AM	MONIUM NITRATE	: FUEL-MIXED AND UN	PROCESSED	
1976 1977 1978 1978 1979	1,969,836 2,038,865 2,091,980	258,755 266,303 314,135 350,102 362,850	352,499 383,544 455,041 *484,404 473,383	2,303,612 2,619,683 2,808,041 ^r 2,926,486 3,168,288
		TOTAL		
1976	2,093,312 2,168,630 2,237,393	488,653 446,406 574,213 *612,820 559,229	493,656 522,678 604,955 ⁷ 653,033 624,184	2,781,182 3,062,396 3,347,798 ¹ 3,503,246 3,686,772

Revised.

⁷Revised.

¹Some quantities of this use are included with "Construction work and other uses" to avoid disclosing company proprietary data.

²Includes some quantities from coal mining, metal mining, and quarrying and nonmetal mining.

Statistical Summary

By Rose L. Ballard¹

This chapter summarizes data on crude nonfuel mineral production for the United States, its island possessions, and the Commonwealth of Puerto Rico. Included also are the tables that show the principal nonfuel mineral commodities exported from and imported into the United States and that compare world and U.S. mineral production. The detailed data from which these tables were derived are contained in the individual commodity chapters of volume I and in the State chapters of volume II of this edition of the Minerals Yearbook.

Although crude mineral production may be measured at any of several stages of extraction and processing, the stage of measurement used in this chapter is what is ordinarily termed "mine output." It usually refers to minerals or ores in the form in which they are first extracted from the ground, but customarily includes the output from auxiliary processing at or near the mines.

Because of inadequacies in the statistics available, some series deviate from the foregoing definition. For gold, silver, copper, lead, zinc, and tin, the quantities are recorded on a mine basis (as the recoverable content of ore sold or treated). However, the values assigned to these quantities are based on the average selling price of refined metal, not the mine value. Mercury is measured as recovered metal and valued at the average New York price for the metal.

The weight or volume units shown are those customarily used in the particular industries producing the commodities. Values shown are in current dollars, with no adjustments made to compensate for changes in the purchasing power of the dollar.

Table 1.—Value of crude nonfuel mineral production¹ in the United States, by mineral group

(Million dollars)

	Metals	Nonmetals	Total
1979	r _{8,536}	^r 15,438	^r 23,974
1980	r _{8,922}	^r 16,224	^r 25,146
1981	8,758	16,415	25,173

^{*}Revised.

Production as measured by mine shipments, sales, or marketable production (including consumption by producers).

¹Statistical specialist, Division of Foreign Data.

Table 2.—Nonfuel mineral production in the United States

	1	979	1	980	1981	
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Valu (thousa
METALS	ere i n		-			
Antimony ore and concentrate short tons, antimony content	722	w	343	w	646	
Bauxite thousand metric tons, dried equivalent_	1,821	\$24,875	1,559	\$22,353	1,510	\$26,4
copper (recoverable content of ores, etc.) metric tons	1,443,556	2,960,675	r _{1,181,116}	r _{2,666,931}	1,538,160	2,886,4
Gold (recoverable content of ores, etc.) troy ounces ron ore, usable (excluding byproduct	^r 964,390	r296,550	r969,782	r594,050	1,377,946	633,3
iron sinter) thousand long tons, gross weight	86,130	2,811,574	69,562	2,543,484	72,158	2,914,6
ron oxide pigments, crude short tons	74,548	2,578	62,642	4,043	67,214	4,
ead (recoverable content of ores, etc.) metric tons	525,569	609,929	r550,366	r _{515,189}	445,535	358,8
Manganiferous ore (5% to 35% Mn) short tons, gross weight Mercury 76-pound flasks	240,696 29,519	2,902 8,299	173,887 30,657	2,444 11,939	175,760 27,904	2,8 11,5
Molybdenum (content of concentrate) thousand pounds	143,504	871,067	149,311	1,344,181	118,916	945,
Nickel (content of ore and concentrate) short tons	15,065	w	14,653	w	12,099	
Silver (recoverable content of ores, etc.) thousand troy ounces	r37,896	r420,261	r32,329	r667,278	40,685	427,9
Citanium concentrate: Ilmenite short tons, gross weight	646,399	32,965	593,704	32,041	523,681	37,0
Tungsten ore and concentrate thousand pounds of contained W	6,646	55,785	6,036	50,575	7,815	62,
/anadium (recoverable in ore and concentrate)short tons	5,520	73,892	4,806	64,370	5,126	71,
Zinc (recoverable content of ores, etc.) metric tons	267,341	219,841	r317,103	r261,671	312,418	306,
combined value of beryllium, magnesium chloride for magnesium metal, platinum-group metals (1980-81), rare-earth metals, tin, titanium (rutile), zircon concentrate, and values						
indicated by symbol W	XX	144,962	XX	141,492	XX	68,
Total	XX	r8,536,000	XX	r8,922,000	XX	8,758,
NONMETALS (EXCEPT FUELS)						
Abrasive stones ² short tons Asbestos metric tons Asphalt and related bitumens, native:	2,094 93,354	2,064 28,925	2,131 80,079	2,233 30,599	4,501 75,618	1, 30,
Bituminous limestone, sandstone, gilsonite thousand short tons	1,614	25,622	1,252	25,030	1,261	27,
Baritedodo	2,113 1,590	53,581 310,211	2,245 1,545	65,957 366,760	2,849 1,481	102,4 435,3
Bromine thousand pounds Calcium chloride short tons	497,000	114,500	r380,400	r _{95,400}	389,500	90,
Carbon dioxide, natural	719,709	51,884	581,012	47,950	704,691	61,
thousand cubic feet	2,028,045	3,243	1,628,424	2,561	1,577,053	2,
Masonry thousand short tons Portlanddo	3,748 78,978	204,797 3,650,436	3,040 71,612	188,456 3,613,332	$2,738 \\ 68.197$	161, 3,515,
law do	54,689	846,089	48,790	898,947	44,379	988,
do	717	90,323 204	689	100,610	687	113,
eldspar do	^e 10,005 740,472	21,474	^r W ^e 710,000	^e 23,200	W 665,000	21,
luorspar do	109,299	12,162	92,635	12,611	115,404	18,
arnet (abrasive)	21,240	r _{1,535}	26,909	r _{1,098}	25,451	2,
ypsum thousand short tons	NA 14,630	8,230 99,868	NA 12,376	6,930 r _{103,059}	NA 11,497	7, 98,
Ielium: Crude million cubic feet	_ ^r 537	r6,444	299	3,588	175	Ž,
1 timbe manufacture 1	r _{1,080}	124,840	1,159	26,657	1,223	31,
High-puritydo	20,945	862,459	19,010	842,922	18,856	884,
ime thousand short tons	134	7,708	^r 116	r _{6,262}	133	8, 18,
ime thousand short tons fica: Scrap do		15,517	788	16,190 16,500	757 591,000	18, 17,
ime thousand short tons dica:Scrap do Peat do erlite short tons	798 660,000	16,435	638,000	10,000	002,000	
ime thousand short tons flica: Scrap do eat do erlite short tons Phosphate rock thousand metric tons	798		54,415	1,256,947	53,624	1,437,
ime thousand short tons dica: Scrap do Peat do Perlite short tons Phosphate rock	798 660,000	16,435				1,437, 328,

STATISTICAL SUMMARY

Table 2.—Nonfuel mineral production in the United States —Continued

	1	979	1	980	19	981
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands)
NONMETALS (EXCEPT FUELS) — Continued	Quantity (thousands) Provided Pro					
Salt thousand short tons Sand and gravel do Sodium sulfate (natural) do Stone ³ do	979,000 533	2,427,000 29,689	^r 792,700 583	r _{2,289,000} r _{36,387}	P754,800 608	\$636,328 P2,290,000 43,186 3,276,967
Sulfur, Frasch process thousand metric tons		449,433	7,400	720,511	5,910	715,683
Talc and pyrophyllite thousand short tons_ Tripolishort tons_ Vermiculite_ thousand short tons_ Combined value of aplite, graphite (1979), iodine, kyanite, lithium miner- als, magnesite, magnesium com- pounds, marl (greensand), olivine, so- dium carbonate (natural), staurolite,	4116,009	46,279	121,233	676	107,330	31,497 617 26,181
wollastonite, and values indicated by symbol W	xx	r740,271	XX	r941,212	XX	933,515
Total	XX	r _{15,438,000}	XX	r16,224,000	XX	16,415,000
Grand total	XX	r23,974,000	XX	r25,146,000	XX	25,173,000

^eEstimated. ^pPreliminary. ^rRevised. NA Not available. W Withheld to avoid disclosing company proprietary data; included in "Combined value" figure. XX Not applicable.

¹Production as measured by mine shipments, sales, or marketable production (including consumption by producers).

²Grindstones, pulpstones, grinding pebbles, sharpening stones, and tube mill liners.

³Excludes abrasive stone and bituminous limestone and sandstone; all included elsewhere in table.

⁴Data represent prepared tripoli.

Table 3.—Nonfuel minerals produced in the United States and principal producing States in 1981

	producing States in	1301			
Mineral	Principal producing States, in order of quantity	Other producing States			
Antimony ore and concentrate_	Idaho and Mont.				
Aplite	Va.				
Asphalt (native)	Calif., Vt., Ariz. Tex., Utah, Ala.				
Barite	Nev Mo Ark Go	Ariz., Ill., Mont., Tenn.			
Dauxice	Nev., Mo., Ark., Ga Ark., Ala., Ga.	Arz., m., wont., renn.			
Beryllium concentrate	Utah and S. Dak.				
Boron minerals	Calif.				
BromineCalcium chloride	Ark. and Mich.				
Carbon dioxide (natural)	Mich. and Calif. Colo., N. Mex., Utah, Calif.				
Cement	Tex., Calif., Pa., Mich	All other States except Alaska, Conn., Del.,			
Clays	Ga., Tex., Wyo., Calif	Mass., Minn., N.H., N.J., N. Dak., R.I., Vt. All other States except Alaska, Del., Hawaii,			
Copper (mine)	Ariz., Utah, N. Mex., Mont	R.I., Vt., Wis. Calif., Colo., Idaho, Mich., Mo., Nev., Oreg., S.C., Tenn., Wash.			
DiatomiteEmery	Calif., Nev., Wash., Oreg. N.Y.	S.C., Tenn., Wasn.			
Feldspar	N.C. Conn. Go. Colif	Okla. and S. Dak.			
FeldsparFluorspar	N.C., Conn., Ga., Calif Ill., Nev., Tex. Idaho, N.Y., Maine. Nev. S. Dak. Utah. Aria	Okia. and S. Dak.			
Garnet, abrasive	Idaho, N.Y., Maine.				
Gold (mine)	Nev., S. Dak., Utah, Ariz	Alaska, Calif., Colo., Idaho, Mont., N. Mex.,			
Gungum		Oreg., S.C., Tenn., Wash.			
Gypsum	Tex., Calif., Iowa, Okla	Alaska, Calif., Colo., Idaho, Mont., N. Mex., Oreg., S.C., Tenn., Wash. Ariz., Ark., Colo., Idaho, Ind., Kans., La., Mich., Mont., Nev., N. Mex., N.Y., Ohio, S. Dak., Utah, Va., Wash., Wyo.			
Helium	Kans., Tex., Okla., N. Mex.	outin, rui, rrusti, rryo.			
Iodine	Okia. and Mich.				
Iron ore	Minn., Mich., Calif., Wyo	Colo., Mo., Mont., Nev., N.J., N.Y., Tex., Utah,			
Iron oxide pigments (crude)	Mich., Mo., Ga., Va.	Wis.			
Kyanite	Va. and Ga.				
Kyanite Lead (mine)	Mo., Idaho, Colo., Utah	Alaska, Ariz., Calif., Ill., Mont., Nev., N. Mex.,			
Lime	Ohio, Mo., Pa., Ky	N.Y., Oreg., Va. All other States except Alaska, Del., Ga., Maine, Miss., N.H., N.J., N.C., R.I., S.C., Vt.			
Lithium minerals	N.C. and Nev.	Maine, Miss., N.H., N.J., N.C., R.I., S.C., Vt.			
Magnesite	Nev.				
Magnesium chioride	Tex.				
Magnesium compounds	Mich., Calif., Fla., N.J	Del., Tex., Utah.			
Manganiferous ore	Minn SC N Mov				
Mari, greensand	N.J.				
Mercury Mica, scrap	Nev. and Calif.	C D- C D I			
Molybdenum	N.C., N. Mex., S.C., Ga Colo., Ariz., Utah, N. Mex	Conn., Pa., S. Dak. Calif.			
Nickel	Oreg.	oani.			
Olivine	N.C. and Wash.				
Peat	Mich., Fla., Ind., Ill	Calif., Colo., Ga., Iowa, Maine, Md., Mass., Minn., Mont., N.J., N.Y., N. Dak., Ohio, Pa., Wash., Wis.			
Perlite	N. Mex., Ariz., Calif., Idaho	Colo., Nev., Utah.			
Phosphate rock	Fla., Idaho, N.C., Tenn	Colo., Nev., Utah. Ala., Mont., Utah.			
Platinum-group metals Potassium salts	Alaska.	•			
Pumice	N. Mex., Calif., Utah. Oreg., Calif., N. Mex., Idaho	Anto III. II III.			
Pyrites, ore and concentrate	Tenn., Colo., Ariz.	Ariz., Hawaii, Kans., Okla.			
Rare-earth metal concentrate	Calif. and Fla.				
Salt	La., Tex., N.Y., Ohio	Ala., Ariz., Calif., Colo., Kans., Mich., Nev., N. Mex., N. Dak., Okla., Utah, W. Va.			
Sand and gravel Silver (mine)	Calif., Alaska, Tex., Ohio Idaho, Ariz., Nev., Colo	All other States. Calif., Ill., Mich., Mo., Mont., N. Mex., N.Y.,			
		Oreg., S. Dak., Tenn., Utah, Wash.			
Sodium carbonate (natural)	Wyo. and Calif.	<u> </u>			
Sodium sulfate (natural) Staurolite	Calif., Tex., Utah. Fla.				
Stone	ria. Ter Fla Pa III	All other States and D. 1. Tax D.			
Sulfur (Frasch)	Tex., Fla., Pa., Ill Tex. and La.	All other States except Del. and N. Dak.			
Talc and pyrophyllite	Mont., Tex., Vt., N.Y	Ark., Calif., Ga., N.C., Oreg., Va.			
TinTitanium concentrate	Alaska and Colo.	. 9			
Tripoli	N.J., N.Y., Fla. Ill., Okla., Ark., Pa. Calif., Colo., Nev., Mont				
Tungsten concentrate	Calif., Colo., Nev., Mont.	Alaska, Ariz., Idaho, Utah, Wash.			
Vanadium	Colo., Otan, Idano, Ark.	Ariz. and N. Mex.			
vermiculite	Mont., S.C., Va.				
womastonite	N.Y. and Calif.				
Zircon concentrate	Tenn., Mo., N.Y., Idaho Fla.	Ariz., Calif., Colo., Ill., Ky., Mont., Nev., N.J., N. Mex., Pa., Utah, Va.			

Table 4.—Value of nonfuel mineral production in the United States and principal nonfuel minerals produced in 1981

State	Value (thousands)	Rank	Percent of U.S. total	Principal minerals, in order of value
labama	\$312,657	22	1.24	Cement, stone, lime, clays.
laska	127,541	38	.51	Sand and gravel, stone, gold, tin.
rizona	2,565,840	1	10.19	Copper, molybdenum, cement, silver.
Arkansas	281,548	25	1.12	Bromine, cement, stone, sand and gravel.
California	1,975,016	3	7.85	Cement, boron minerals, sand and gravel, stone.
olorado	965,766	7	3.84	Molybdenum, cement, sand and gravel, silver.
onnecticut	62,691	43	.25	Stone, sand and gravel, feldspar, lime.
Delaware	¹ 2,800	50	.01	Magnesium compounds, sand and gravel.
'lorida	1,725,589	4	6.85	Phosphate rock, stone, cement, clays.
leorgia	804,455	9	3.20	Clays, stone, cement, sand and gravel.
lawaii	58,727	44	.23	Stone, cement, sand and gravel, lime.
daho	430,748	18	1.71	Silver, phosphate rock, zinc, lead.
llinois	428,316	19	1.70	Stone, sand and gravel, cement, lime.
ndiana	258.832	26	1.03	Stone, cement, sand and gravel, lime.
owa	232,311	29	.92	Cement, stone, sand and gravel, gypsum.
Kansas	249,060	27	.99	Cement, salt, stone, helium.
Kentucky	207,759	31	.83	Stone, lime, cement, sand and gravel.
ouisiana	573,959	14	2.28	Sulfur, salt, sand and gravel, cement.
Maine	38,369	46	.15	Cement, sand and gravel, stone, gem stones.
Maryland	178,655	34	.71	Stone, cement, sand and gravel, clays.
lassachusetts	97,037	39	.39	Stone, sand and gravel, lime, clays.
lichigan	1,438,355	6	5.71	Iron ore, cement, magnesium compounds, salt.
Minnesota	2.151.871	ž	8.55	Iron ore, sand and gravel, stone, lime.
	91,791	41	.36	Cement, sand and gravel, clays, stone.
Aississippi	870,326	8	3.46	Lead, cement, stone, lime.
Aissouri	305.071	23	1.21	Copper, cement, silver, gold.
Montana	73,995	42	.29	Cement, sand and gravel, stone, lime.
Vebraska	503,649	16	200	Gold, barite, silver, diatomite.
Nevada	25,510	47	.10	Sand and gravel, stone, clays, gem stones.
New Hampshire	142.012	37	.56	Stone, sand and gravel, zinc, titanium concentrate.
New Jersey	694,677	12	276	Copper, potassium salts, gold, cement.
New Mexico	491,971	17	1.95	Stone, cement, salt, sand and gravel.
New York		21	1.50	Phosphate rock, stone, sand and gravel, cement.
North Carolina	376,530	48	.09	Sand and gravel, salt, lime, clays.
North Dakota	22,445	48 15	2.20	Stone, lime, sand and gravel, salt.
Ohio	554,190	28	.94	Cement, stone, sand and gravel, iodine.
Oklahoma	236,612	36	.58	Stone, sand and gravel, cement, nickel.
Oregon	146,847	13	.58 2.51	Cement, stone, lime, sand and gravel.
Pennsylvania	633,056		.02	Sand and gravel, stone, gem stones.
Rhode Island	e5,279	49		Cement, stone, clays, sand and gravel.
South Carolina	205,476	32	.82	Cell stone, clays, saild and gravel.
South Dakota	193,374	33	77	Gold, stone, cement, sand and gravel.
l'ennessee	417,618	20	1.66	Zinc, stone, pyrites, cement.
Cexas	1,658,203	.5	6.59	Cement, sulfur, stone, sand and gravel.
Jtah	783,232	10	3.11	Copper, gold, molybdenum, potassium salts.
Vermont	51,019	45	.20	Stone, asbestos, sand and gravel, talc.
Virginia	282,533	24	1.12	Stone, cement, lime, sand and gravel.
Washington	212,478	30	.84	Cement, sand and gravel, stone, lime.
West Virginia	96,447	40	.38	Sand and gravel, stone, cement, salt.
Wisconsin	156,333	35	.62	Sand and gravel, stone, iron ore, lime.
Wyoming	770,338	11	3.06	Sodium carbonate, clays, iron ore, cement.
Total	25,173,000	XX	100.00	

^eEstimated. XX Not applicable. ¹Incomplete total.

Table 5.—Value of nonfuel mineral production per capita and per square mile in 1981, by State

			Value of mineral production						
State	Area	1981 population		Per square	mile	Per ca	pita		
	(square miles)	(thousands)	Total (thousands)	Dollars	Rank	Dollars	Ranl		
Alabama	51,609	3,890	\$312,657	6,058	27	80	24		
Alaska	586,412	400	127,541	217	50	319	10		
Arizona	113,909	2.718	2,565,840	22,525	4	944	2		
Arkansas	53,104	2,286	281,548	5,302	30	123	17		
California	158,693	23,669	1,975,016	12,446	12	83	22		
Colorado	104,247	2,889	965,766	9.264	17	334			
Connecticut	5,009	3,108	62,691	12.516	10	20	46		
Delaware	2.057	595	¹ 2,800	1,361	46	5			
lorida	58,560	9,740	1,725,589	29.467			50		
leorgia	58,876	5,464			1	177	12		
Iawaii	6.450	965	804,455	13,664	.8	147	15		
daha			58,727	9,105	19	61	.28		
daho	83,557	944	430,748	5,155	31	456			
llinois	56,400	11,418	428,316	7,594	21	38	39		
ndiana	36,291	5,490	258,832	7,132	23	47	36		
)wa	56,290	2,913	232,311	4,127	35	80	2		
ansas	82,264	2,363	249,060	3,028	39	105	- 19		
entucky	40,395	3,661	207,759	5,143	32	57	29		
ouisiana	48,523	4,204	573,959	11.828	13	137	16		
faine	33,215	1.125	38,369	1,155	47	34	4		
faryland	10,577	4.216	178,655	16,891	6	42	38		
fassachusetts	8.257	5,737	97,037	11,752	14	17	48		
lichigan	58,216	9,258	1.438.355	24.707	3	155	14		
Innesota	84,068	4.077	2,151,871	25,597	2	528			
Iississippi	47,716	2,521	91,791						
lissouri	69,686	4.917	870,326	1,924	44	36	40		
Iontana	147,138			12,489	11	177	13		
lebraska		787	305,071	2,073	43	388	8		
ebraska	77,227	1,570	73,995	958	48	47	37		
levada	110,540	799	503,649	4,556	33	630	3		
lew Hampshire	9,304	921	25,510	2,742	41	28	45		
lew Jersey	7,836	7,364	142,012	18,123	5	19	47		
ew Mexico	121,666	1,300	694,677	5,710	28	534	5		
lew York	49,576	17,557	491,971	9,924	15	28	44		
Iorth Carolina	52,586	5.874	376,530	7,160	22	64	27		
orth Dakota	70,665	653	22,445	318	49	34	42		
hio	41,222	10,797	554,190	13.444	9	51	33		
klahoma	69,919	3.025	236,612	3,384	37	78	25		
regon	96,981	2,633	146,847	1,514	45	56	30		
ennsylvania	45,333	11,867	633,056	13,964	7	53	31		
hode Island	1.214	947	e _{5,279}						
outh Carolina	31.055			4,348	34	6	49		
outh Dakota		3,119	205,476	6,616	25	66	26		
onnegge	77,047	690	193,374	2,510	42	280	11		
ennessee	42,244	4,591	417,618	9,886	16	91	21		
exas	267,338	14,228	1,658,203	6,203	26	117	18		
tah	84,916	1,461	783,232	9,224	18	536	. 4		
ermont	9,609	511	51,019	5,310	29	100	20		
irginia	40,817	5,346	282,533	6,922	24	53	32		
ashington	68,192	4,130	212,478	3,116	38	51	34		
est Virginia	24,181	1,950	96,447	3,988	36	49	35		
isconsin	56,154	4,705	156,333	2,784	40	33	43		
yoming	97,914	471	770,338	7,867	20	1,636	1		
Total ² or			· · · · · · · · · · · · · · · · · · ·			-,			
average	3,615,055	225,864	25,173,000						

XX Not applicable.

¹Incomplete total.

²Excludes Washington, D.C. (which has no mineral production), with an area of 67 square miles and a population of 638,000.

STATISTICAL SUMMARY

Table 6.—Nonfuel mineral production¹ in the United States, by State

		1979		1980	1981	
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
	ALA	ABAMA				
Cement:						
Masonry thousand short tons	303 2,578	\$13,930	242	\$13,012 108,438	$\frac{193}{2,270}$	\$10,721 89,216
Portlanddo Clays ² do	2,571	103,187 33,824	2,491 2,022	29,832	1,910	25,406
Gem stones	NA	2	NA	1	NA	1
Gem stones thousand short tons Sand and gravel do Stone:	1,273 13,747	54,182 31,319	1,128 ^r 11,076	53,685 *25,504	1,219 p10,382	59,454 P23,064
Crusheddodo Dimensiondo	26,443 12	83,566 2,071	23,433 11	82,270 2,259	20,706 7	88,377 2,130
Combined value of asphalt (native), bauxite, clays (bentonite), mica (scrap, 1979-80), phosphate rock, and salt	xx	14,286	XX	13,373	XX	14,288
Total	XX	336,367	XX	r328,374	XX	312,657
Total			7171	020,014		012,001
	AL	ASKA				
Gem stonesGold (recoverable content of ores, etc.)	NA	60	NA Transa	50	NA or or o	60
troy ounces Leadmetric tons	6,675	2,053	^r 12,881 31	^r 7,890 29	25,316 W	11,636 W
Sand and gravel thousand short tons Silver (recoverable content of ores, etc.)	50,900	104,905	44,911	85,214	P46,400	P87,500
thousand troy ounces	(³) 3,656	5 15,458	3,990	$172 \\ 19.978$	5,359	25 26,855
Stone (crushed) thousand short tons _ Tin metric tons _	3,030 W	W	3,330 W	W	136	1,200
Combined value of barite (1979-80), platinum- group metals (1980-81), tungsten, and val-	xx	1,384	XX	1,983	XX	265
ues indicated by symbol W	XX	123,865	XX	r _{115,316}	XX	127,541
Total				110,010		
	AR	IZONA				
Clays thousand short tons Copper (recoverable content of ores, etc.)	138	642	151	1,151	148	1,105
Gem stones	946,002 NA	1,940,211 4,000	^r 770,118 NA	^r 1,738,908 3,100	1,040,813 NA	1,953,142 3,250
Gold (recoverable content of ores, etc.) troy ounces Gypsum thousand short tons	101,840 231	31,316 1,245	^r 79,631 209	^r 48,779 2,017	100,339 213	46,120 2,594
Lead (recoverable content of ores, etc.)		•	r ₁₆₂	r ₁₅₂	993	800
metric tons Lime thousand short tons Molybdenum (content of concentrate)	354 673	27,186	514	23,904	538	29,913
thousand pounds Pumice thousand short tons	35,101 r ₁	213,065 r ₅	35,668 ^r 9	341,965 ^r 13	35,808 1	254,345 _ 3
Sand and graveldo Silver (recoverable content of ores, etc.)	430,520	474,716	24,399	73,773	P22,679	P69,855
thousand troy ounces Stone:	7,479	82,941	^r 6,268	^r 129,363	8,055	84,728
Crushed thousand short tons Dimension do	^r 6,708	^r 23,763 110	r _{6,205} W	^r 24,780 45	6,315 W	26,263 578
Zinc metric tons Combined value of asbestos, barite (1981),	w	w	Ŵ	w	138	135
cement, fluorspar (1979), perlite, pyrites, salt, tungsten, vanadium (1980-81), and values indicated by symbol W	ХX	90,870	XX	r83,037	xx	93,009
Total	XX	2,490,481	XX	r2,470,987	XX	2,565,840
	ARK	ANSAS				
			200	1.000	***	
Abrasivesshort tons Bauxite thousand metric tons	273 1.430	1,520 20,555	280 1,299	1,686 19,252	W 1,242	22,185
Clays thousand short tons	1,044	7,686	1,150	14,402	880	9,333
Gem stones	NA 160	150 6,287	NA 175	140 7,785	NA 149	200 8,102
Lime thousand short tons Sand and graveldo Stone:	16,465	35,200	^r 13,017	r34,562	p _{12,742}	P40,336
Crushed do Dimension do	19,978 14	53,723 528	20,666 8	61,399 355	13,834 7	47,260 411
Combined value of barite, bromine, cement, gypsum, talc, tripoli, vanadium, and value indicated by symbol W	xx	179,447	xx	r _{153,061}	xx	153,721
Total	XX	305,096	xx	r292,642	xx	281,548
0.6		•		• -		

Table 6.—Nonfuel mineral production¹ in the United States, by State —Continued

M		1979		1980	1981	
Mineral.	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
	CALI	FORNIA	: 			
Asbestosshort tons	76,332	\$20,434	W	w	w	w
Boron minerals thousand short tons Cement, portland do	1,590	310,211	1,545	\$366,760	1,481	\$435,387
Cement, portlanddo	9,724	541,815	8,797	542,487	7,896	518,966
Claysdodo Diatomitedo	2,531 422	18,621 60,989	2,558 W	17,766	2,309	19,118
Gem stones	NA	240	NA	200	W NA	300
Gold (recoverable content of ores, etc.)	IIA	240	IIA	200	IVA	300
troy ounces	r _{5,010}	r _{1.541}	r4,078	r _{2,498}	6.271	2,882
Gypsum thousand short tons	1,624	10,354	1,644	12,763	1,456	13,948
Lead (recoverable content of ores, etc.)	•			•	,	,
metric tons	2	2	W	w	W	W
Lime thousand short tons	564	25,545	554	29,444	472	26,834
Mercury 76-pound flasks	151	43	226	88	85	35
Perlite thousand short tons	V L	r _{1.331}	W Fro	W W	36	1,044
Pumice do do do do	r ₁₂₁		r ₅₈	r1,340	98	1,501
Silver (recoverable content of ores, etc.)	129,348	347,385	^r 114,663	r363,904	p 112,050	P381,669
thousand troy ounces	64	712	49	1,017	53	560
Stone:	04	112	43	1,011	99	900
Crushed thousand short tons	r39,267	r105,489	r37,760	r118,140	34,560	118,698
Dimensiondo	41	2.258	36	1,967	29	1,909
Talc do	176	6,960	100	1,863	111	5,855
Zinc (recoverable content of ores, etc.)		-,				5,000
metric tons	w	w			W	w
Combined value of calcium chloride, carbon						
dioxide, cement (masonry, 1979), copper,						
feldspar, iron ore, magnesium compounds,						
molybdenum, peat, potassium salts, rare-						
earth concentrates, salt, sodium carbon- ates, sodium sulfate, tungsten, wollastonite						
(1981), and values indicated by symbol W	XX	312,925	XX	F411 C10	VV	440 910
		312,323		r411,619	XX	446,310
Total	XX	r _{1,766,855}	XX	r _{1,871,856}	XX	1,975,016
	COLO	ORADO				
Clays thousand short tons	² 521	² 2.717	336	2,223	276	1,734
Copper (recoverable content of ores, etc.)	321	2,111	550	2,220	210	1,104
metric tons	362	742	461	1,041	w	w
Gem stones	NA	70	NA	70	NA	80
Gold (recoverable content of ores, etc.)						
troy ounces	13,850	4,259	39,447	24,164	51,069	23,473
Sypsum thousand short tons	275	1,727	227	3,409	203	2,346
ead (recoverable content of ores, etc.) metric tons	7,554	8,767	10.070	0.615	11 401	0.005
Molybdenum thousand pounds	, 7,554 W	8,161 W	10,272 102,498	9,615	11,431	9,207
Peat thousand short tons		299	29	915,304 327	73,615 33	636,037 299
Peat thousand short tons Sand and gravel do	25,680	456,263	427,433	474,452	P ⁴ 25,700	P 472,300
ilver (recoverable content of ores, etc.)	20,000	00,200	21,400	14,402	20,100	12,000
thousand troy ounces	2,809	31,151	2,987	61,653	3,009	31,650
tone:	_,===	01,101	2,00.	01,000	0,000	01,000
Crushed thousand short tons	rw	rW	^r W	rw.	6,969	24,083
Dimension do	3	163	6	259	1	64
inc (recoverable content of ores, etc.)					_	31
metric tons	9,910	8,149	13,823	11,406	W	w
combined value of carbon dioxide, cement,						
clays (bentonite, 1979), iron ore, lime, per-						
lite, pyrites, salt, sand and gravel (industri-						
al), tin, tungsten concentrate, vanadium, and values indicated by symbol W	XX	^r 711.791	WW	T100 500	3737	101 100
and values indicated by symbol w		711,791	XX	r160,592	XX	164,493
Total	XX	826,098	XX	1,264,515	XX	965,766
Total		ECTICUT				
	CONNI					
clays thousand short tons.		435	92	482	73	201
clays thousand short tons.	112	435 2.053	92 19	482 1.352	73 16	391 1 190
clays thousand short tons.	112 33	2,053	19	1,352	16	1.190
lays thousand short tons imedo and and gravel ⁴ do tone:	112					
clays thousand short tons ime do and and gravel ⁴ do tone: do	112 33 9,990	2,053 23,612	19 7,103	1,352 18,692	16 ^p 6,500	1,190 P18,100
lays thousand short tons ime do and and gravel	112 33	2,053	19 7,103 7,977	1,352 18,692 40,283	16 P6,500 7,247	1,190 P18,100 38,115
clays thousand short tons ime do and and gravel ⁴ do itone: Crushed do Dimension do combined value of feldspar, gem stones, mica.	112 33 9,990 8,271 13	2,053 23,612 38,767	19 7,103	1,352 18,692	16 ^p 6,500	^{1,190} ^p 18,100
Clays thousand short tons .imedo and and gravel ⁴ do tone:do	112 33 9,990 8,271	2,053 23,612 38,767	19 7,103 7,977	1,352 18,692 40,283	16 P6,500 7,247	1,190 P18,100 38,115
clays thousand short tons ime do and and gravel do tone: Crushed do Dimension do ombined value of feldspar, gem stones, mica, and industrial sand	112 33 9,990 8,271 13 XX	2,053 23,612 38,767 475 3,894	19 7,103 7,977 15 XX	1,352 18,692 40,283 723 4,231	16 P6,500 7,247 19 XX	1,190 P18,100 38,115 910 3,985
lays thousand short tons ime do and and gravel ⁴ do tone: Crushed do Dimension do ombined value of feldspar, gem stones, mica.	112 33 9,990 8,271 13	2,053 23,612 38,767 475	19 7,103 7,977 15	1,352 18,692 40,283 723	16 P6,500 7,247 19	1,190 P18,100 38,115 910

Table 6.—Nonfuel mineral production in the United States, by State —Continued

No		1979		1980		1981
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
	DEL	AWARE				•
Clays thousand short tons Sand and gravel do	11 1,674	\$9 3,281	1,075	\$2,398	p _{1,200}	°\$2,800
Total	xx	53,290	xx	⁵ 2,398	xx	p 52,800
	FL	ORIDA				
Cement:						-
Masonry thousand short tons	255	13,098	285	22,074	288	20,757
Portlanddodo	2,957	126,562	3,574	182,590	3,518	199,064
Claysdodo	681	² 31,308	614	² 24,164	731	² 35,319
Gem stones	NA 910	11 440	NA 105	5 12,434	NA 191	6 11,343
Lime thousand short tons	210 153	11,440 2,190	195 154	2,398	157	2,885
Peatdodo	21,708	39,520	r 414,412	r 428,766	P14,149	P32,719
Stone (crushed)	F63,787	^r 188,896	66,209	215,972	65,067	226,192
Combined value of clays (kaolin), magnesium compounds, phosphate rock, rare-earth concentrate, sand and gravel (industrial, 1980), staurolite, titanium concentrates	33,131	100,000				,
(ilmenite and rutile), and zircon concen- trates	xx	r _{856,589}	XX	r _{1,020,855}	XX	1,197,304
Total	XX	r _{1,269,607}	XX	r _{1,509,258}	XX	1,725,589
	GE	ORGIA				
Cement:						
Masonry thousand short tons	102	5,172	89	5,464	89	4,392
Masonry thousand short tons _ Portland do Clays do	1,335	55,117	1,231	55,463	1,150	45,423
Claysdo	8,322	437,671	8,283	500,555	8,029	553,726
Gem stonesSand and gravel ⁴ _ thousand short tons	NA 5,014	20 10,792	NA 4,858	20 11,8 9 8	NA P4,700	²⁰ p _{12,000}
Stone: Crusheddodo	40,902	154,021	40,884	162,642	35,730	153,751
Talcdo Combined value of barite, bauxite, feldspar,	244 W	17,908 W	231 25	17,466 116	268 26	17,894 182
iron oxide pigments (crude), kyanite, mica,						
peat, sand and gravel (industrial), and value indicated by symbol W	xx	18,870	XX	r _{17,663}	xx	17,067
Total	XX	699,571	XX	r771,287	XX	804,455
		WAII				
Cement:	10	1 077	19	oco	10	807
Masonry thousand short tons	12 469	1,077 29,346	13 358	960 23,722	302	23,024
Portlanddo Sand and graveldo	1,081	3,063	1,035	2,855	P1,100	P2,900
Stone:			-		_,	_,,
Crusheddo Dimensiondo	rw 1	rw W	rw W	r W 11	6,036 (³)	31,403 4
Combined value of gem stones, lime, pumice, salt, and values indicated by symbol W	XX	^r 30,418	xx	r32,169	xx	589
	XX	63,904	XX	r59,717	XX	58,727
The second secon	ID	АНО				
Antimony one and consent-to						
Antimony ore and concentrate, antimony contentshort tons	w	w	83	w	432	w
Clays thousand short tons	28	263	27	301	26	288
Copper (recoverable content of ores, etc.)						
metric tons	3,618	7,421	3,103	7,006	4,245	7,966
Gem stonesGold (recoverable content of ores, etc.)	NA	60	NA 	60	NA 	75
troy ounces Lead (recoverable content of ores, etc.)	24,140	7,423	W	W	W	W
metric tons	42,636	49,479	38,607	36,139	38,397	30,923
Phosphate rock thousand metric tons Sand and gravel thousand short tons	4,880 7.719	95,728 18 149	4,991 45,990	100,873 414 203	5,361 P5,100	108,964 P13,200
Silver (recoverable content of ores, etc.)	7,719	18,149 190,129	⁴ 5,299	*14,203 282,663		
thousand troy ounces Stone6 thousand short tons	17,144 rW	190,129 W	13,695 2,007	7,240	16,546 1,437	174,033 6,206
Zinc (recoverable content of ores, etc.) metric tons	29,660	24,391	27,722	22,876	w	w

Table 6.—Nonfuel mineral production¹ in the United States, by State —Continued

		1979		1980		1981
Mineral		Value		Value		Value
	Quantity	(thousands)	Quantity	(thousands)	Quantity	(thousand
	IDAHO-	Continued				
Combined value of cement, garnet (abrasives), gypsum, lime, perlite, pumice, sand and gravel (industrial), stone (dimension), tungsten ore (1980-81), vanadium, and values indicated by symbol W	XX	r\$44,839	XX	\$50,734	xx	\$89,093
Total	XX	r437,882	XX	522,095	XX	430,748
		INOIS	7			
Cement, portland thousand short tons	1,889	79,604	1,649	75,315	1,574	61,536
Clays ² do	542	2,355	459	1,919	322	1,540
Gem stones	NA	15	NA	15	NA	18
Gem stones	86 45,448	1,610 134,190	79 31,725	1,505 122,332	46 P28,546	1,502
Stone:	40,440	154,190	31,723	122,332	- 28,346	P118,986
Crushed do do Dimension do Combined value of barite, cement (masonry),	63,551 3	188,130 128	53,309 2	180,656 103	44,159 2	165,218 85
clays (fuller's earth), fluorspar, lead, lime, silver, tripoli, and zinc	XX	70,498	XX	61,436	XX	79,434
Total	XX	476,530	xx	443,281	XX	428,316
	INI	DIANA				
Cement:						
Masonry thousand short tons	w	W	w	w	252	10,972
Masonry thousand short tons Portlanddo Claysdo	2,389 1,185	95,549 2,341	1,769 932	73,049	1,538 691	59,344
Gem stones	1,100	2,041	902	1,930	NA	1,602
Gem stones	76 427,050	1,242 455,842	84 22,031	1,414 52,939	105 P20,457	3,140 P49,979
Crushed do Dimension do Combined value of abrasives (natural), gyp-	^r 34,147 ^r 181	^r 92,630 ^r 10,504	30,910 161	92,106 14,046	25,349 145	79,910 13,672
sum, lime, sand and gravel (industrial, 1979), and values indicated by symbol W	XX	59,036	XX	52,986	XX	40,212
Total	XX	r317,144	XX	288,470	XX	258,832
7.8				200,410		200,002
2		OWA				
Cement: Masonry thousand short tons Portland do Clays do	69 2,371 870	3,844 109,628 2,883	48 1,998 754	3,340 101,008 2,555	41 1,779 476	3,227 92,099 2,375
Gem stones thousand short tons	1,695	13,777	1,468	$13,\bar{136}$	NA 1 000	10.500
Peatdo	1,055	270	1,408	13,136 276	1,383 10	12,706 453
Peatdo Sand and graveldo Stone:	17,495	39,686	412,683	432,722	P 412,100	P 432,000
Crusheddodo	32,471 10	103,215 508	26,542 10	92,603 509	22,424 W	82,891 W
Combined value of other nonmetals and value indicated by symbol W	XX	4,090	xx	5,727	xx	6,559
Total	XX	277,901	XX	251,876	XX	232,311
	KA	NSAS				
Cement:						
Masonry thousand short tons Portlanddo Clays do	89 2,086 ² 1,061	4,525 88,619 ² 2,636	60 1,835 886	3,310 86,103 2,325	51 1,641 915	2,835 81,792
Gem stones		~			NA	4,756
Salt ⁷ thousand short tons Sand and graveldo Stone:	1,900 14,280	61,184 26,490	1,572 412,124	64,276 423,817	1,410 p10,600	60,148 P21,000
Crusheddo Dimensiondo	19,308 W	56,038 W	17,398 18	54,731 937	14,143 14	45,738 605
See footnotes at end of table.						

Table 6.—Nonfuel mineral production in the United States, by State —Continued

	1	979	. 1	. 1980		1981	
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands	
	KANSAS	-Continued					
Combined value of clays (bentonite, 1979), gypsum, helium (crude and high-purity), lime, pumice, salt (brine), sand and gravel							
(industrial, 1980-81), and value indicated by symbol W	XX	\$25,074	XX	\$26,094	XX	\$32,185	
Total	XX	264,566	XX	261,593	XX	249,060	
	KEN	TUCKY					
Clays thousand short tons	794	3,259	748	3,692	490 NA	2,395	
Gem stones Sand and gravel ⁴ _ thousand short tons Stone (crushed) do	NA 11,726	23,721	NA 7,767	17,637	P7,000	P15,547	
Stone (crushed)dodo Zinc (recoverable content of ores, etc.)	W	W	W	W	32,433	108,257	
metric tons Combined value of cement, clays (ball clay),					w	W	
lime, sand and gravel (industrial), and values indicated by symbol W	xx	180,946	xx	182,970	xx	81,559	
Total	xx	207,927	xx	204,300	xx	207,759	
	LOU	ISIANA					
Clays thousand short tons	416	6,073	380	5,841	² 380 NA	2 6,338	
Gem stones thousand short tons	14,207	$113,\overline{167}$	12,662	132,182	12,565	113,190	
Salt thousand short tons Sand and gravel do Stone (crushed) do	⁴20,446 W	⁴54,081 W	18,505 W	66,413 W	^p 18,293 ⁶ 7,228	^P 66,426 ⁶ 34,566	
Sulfur (Frasch) _ thousand metric tons_ Combined value of cement, clays (bentonite,	2,858	w	2,590	ŵ	2,235	w	
1981), gypsum, lime, sand and gravel (1979), and values indicated by symbol W	xx	281,955	XX	379,330	xx	353,438	
Total	XX	455,276	xx	583,766	XX	573,959	
	М	AINE					
Clays thousand short tons	90 NA	163 W	78 NA	174 W	57 NA	166 W	
Gem stones thousand short tons Sand and graveldo	. 3	202	. 8	534	P7,100	P14,400	
Stone (crushed)dodo	11,022 2,069	20,534 7,492	6,978 1,130	15,434 3,969	1,375	5,532	
Combined value of other nonmetals and values indicated by symbol W	XX	17,507	XX	16,856	XX	18,271	
Total	XX	45,898	XX	36,967	xx	38,369	
	MAI	RYLAND					
Clays ² thousand short tons	975	2,854	733	2,267	597 NA	1,984	
Lime thousand short tons	12	444	12	497	9	441	
Gem stones thousand short tons Peat do Sand and gravel do	3 13,988	W 39,033	10,732	W 33,625	P _{10,900}	P35,000	
Stone: Crusheddo	21,561	80,550	18,945	77,431	16,485	74,289	
Combined value of cement, clays (ball clay),	30	1,150	15	612	34	1,002	
and values indicated by symbol W	XX	68,931 192,962	XX XX	71,703	XX	65,93′ 178,65	
Total				100,100			
		CHUSETTS	210	870	259	1,32	
Clays thousand short tons Limedo	156 198	367 9,9 <u>18</u>	180	10,806 W	170 W	10,793 V	
Peat do do Sand and gravel do	416,705	56 437,164	₩ •13,925	434,459	P13,087	P 433,60	
Stone: Crusheddo	8,586 48	39,570 4,389	7,316 51	36,804 7,018	7,997 50	41,03° 8,61°	
Dimensiondo Combined value of gem stones, sand and	40	4,369	51	1,010	30	0,01	
gravel (industrial), and values indicated by symbol W	XX	1,082	XX	1,254	XX	1,66	
Total	XX	92,546	XX	91,211	XX	97,03	
See footnotes at end of table.							

Table 6.—Nonfuel mineral production¹ in the United States, by State —Continued

Mineral		.979		1980	. 1	1981
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
	MIC	HIGAN				
Cement:						
Masonry thousand short tons	262	\$16,455	206	\$14,292	173	\$10,584
Portlanddo	5,682	252,058	4,651	224,685	3,871	180,641
Claysdo	2,072 NA	7,430 10	1,982 NA	7,212	1,610	5,862
Gem stones thousand short tons Gypsum thousand short tons Iron ore (usable), thousand long tons,	2,526	14,633	1,383	8,605	NA 1,066	6,762
grose moight	17,196	596,478	15,895	634,355	14,193	w
Lime thousand short tons	1,057	43,373	836	36,750	807	36,800
Peat do	258 3,080	4,847	253	4,739	237	4,540
Saltdo Sand and graveldo	50,169	82,540 116,597	2,406	104,842	2,321	103,293
Stone:	50,105	110,591	36,597	98,354	^p 32,893	P95,787
Crusheddo	39,809	99,832	32,121	91,727	30,013	94,324
Dimensiondodo Combined value of bromine, calcium chloride, copper, iodine, iron oxide pigments (crude).	9	166	7	144	6	129
magnesium compounds, silver, and value indicated by symbol W	XX	272,107	XX	r _{259,435}	xx	899,618
Total	xx	1,506,526	XX	r _{1,485,150}	XX	1,438,355
	MINN	ESOTA				
Clays thousand short tons	² 135	²1,905	94	1,206	0.4	1.077
Gem stones ron ore (usable), thousand long tons,	NA	5	NA NA	5	. NA	1,077 5
gross weight thousand short tons	59,682	1,965,710	45,472	1,686,839	50,176	2,062,118
ime thousand short tons	140	5,133	162	3,562	155	3,818
Manganiferous oreshort tons	181,503	w	119,029	· W	139,571	w
Peat thousand short tons Sand and gravel ⁴ dodo	21 30,939	827 55,427	$\begin{array}{c} 25 \\ 25,110 \end{array}$	1,140 49,180	25 P23,200	940 P46,800
Crushed	9,751	22,175	8,606	21,731	6,995	18,438
Dimensiondodo Combined value of abrasive stone, clays (ka-	38	11,543	44	14,189	41	14,298
olin, 1979), sand and gravel (industrial), and values indicated by symbol W	xx	5,265	xx	4,458	xx	4,377
Total	XX	2,067,990	XX	1,782,310	xx	2,151,871
	MISSI	SSIPPI				
lays thousand short tons	1,820	21,841	1,596	21,714	1,218	23,309
and and gravel ⁴	70 16 040	1,571	31	707	Dec	n
Jame do	16,940 W	37,797 W	11,710 W	31,606 W	P10,400 1,984	^p 28,800 5,451
pounds (1979-80), sand and gravel (industrial), stone (crushed, 1981), and values indicated by symbol W	vv	46 490	vv	40.040		
Total	XX	107,689	XX XX	49,913	XX	34,231
	MISS			103,940		91,791
arite thousand short tons	89	3,679	117	5,570	185	0.795
ement: Masonrydodo Portlanddo	82	4,159	62	3,117	103	9,725 5,495
Portlanddodo laysdodo opper(recoverable content of ores, etc.)	4,430 2,351	194,285 20,522	3,515 1,817	156,368 16,798	3,732 1,747	168,567 18,414
metric tons	13,021	26,705	13,576	30,655	8,411	15,783
em stonesold (recoverable content of ores, etc.) troy ounces	NA 32	10	NA	15	NA	10
ead (recoverable content of ores, etc.)	472,054	10 547,824	W 497,170	W 465,393	389,721	919 970
ime thousand short tons and and graveldo	1,790	70,187	1,667	63,733	W	313,870 W
liver (recoverable content of ores, etc.)	12,558	31,310	8,900	26,753	P8,778	P18,702
thousand troy ounces	2,201	24,410	2,357	48,653	1,837	19,322
Crushed thousand short tons Dimension do inc (recoverable content of ores, etc.)	56,380 (³)	139,944 85	48,296 W	130,254 W	40,910 W	116,297 W
metric tons	61,682	50,723	^r 62,886	^r 51,893	52,904	51,966
See footnotes at end of table.						

Table 6.—Nonfuel mineral production in the United States, by State —Continued

	i	979		1980	1981	
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
•	MISSOUR	I—Continued				
Combined value of asphalt (native, 1979-80),						
gold (1980), iron ore, iron oxide pigments (crude), and values indicated by symbol W_	XX	\$46,706	XX	\$55,633	xx	\$132,175
Total	xx	1,160,559	XX	r _{1,054,835}	XX	870,326
	MO	NTANA	,			
Antimonyshort tons Clays thousand short tons Copper (recoverable content of ores, etc.)	W 424	W 11,508	260 626	22,200	214 601	W 23,111
metric tons	69,854 NA	143,268 100	37,749 NA	85,236 90	62,485 NA	117,257 100
Gem stonesGold (recoverable content of ores, etc.) troy ounces	NA 24,050	7,395	48,366	29,627	54,267	24,943
Lead (recoverable content of ores, etc.)	•	•		276	194	157
metric tons	258 216	299 8,965	295 223	9,001	194	7,621
Lime thousand short tons Sand and graveldo	7,012	15,106	46,639	416,057	^p 46,100	^p 414,900
Silver (receiverable content of ores etc.)			0.004	41 779	2,989	31,437
thousand troy ounces	3,302	36,618	2,024 1,962	41,773 6,302	1,582	5,137
Stone (crushed) thousand short tons	2,527 343	7,806 5,940	312	11,310	w	w
Talcdo Zinc (recoverable content of ores, etc.)				59	25	24
metric tons	104	86	71	59	20	24
Combined value of barite, cement, gypsum, iron ore (1979 and 1981), peat, phosphate						
rock, sand and gravel (industrial, 1980-81),						
stone (dimension), tungsten, vermiculite,				FF (10	vv	80,384
stone (dimension), tungsten, vermiculite, and values indicated by symbol $W_{}$	XX	54,196	XX	57,619	XX	
Total	XX	291,287	XX	279,550	XX	305,071
	NE	BRASKA				
Clays thousand short tons	156	454	154	456	136	409 W
Gem stones	NA	W	NA	W 22,981	NA P10,319	P22,844
Sand and gravel thousand short tons	16,197	33,001	10,538 3,775	16,301	3,139	14,024
Stone (crushed) do Combined value of cement, lime, and values	4,995	19,362		40,736	XX	36,718
indicated by symbol W	XX	46,364	XX	80,474	XX	73,995
Total	XX	99,181		80,414		10,000
		EVADA		47.000	0.400	79.716
Barite thousand short tons	1,804	35,707	1,918 64	47,800 2,082	2,482 73	2.948
Claysdo	76 NA	1,163 1,000	NA	900	NA	1,000
Gold (recoverable content of ores, etc.)	1471	-				
trov ounces	250,097	76,905	^r 278,495	r170,595	524,802	241,220
Gypsum thousand short tons	1,075	6,771	852	8,276 W	778 99	6,91 ⁴ e1,49
Iron ore thousand long tons	. W	w	W	W	99	1,43
Lead (recoverable content of ores, etc.) metric tons	24	28	26	24	W 07.010	11.51
Mercury 76-pound flasks	29,368	8,256	30,431	11,851	27,819	11,51
Molybdenumpounds	39,826 5	242 71	- 6	92	w	v
Mercury	10,498	21,387	8,439	18,360	P6,000	p12,80
Sand and gravel do Silver (recoverable content of ores, etc.)	10,430	•	0,200	•	•	
thousand troy ounces	560	6,215	r ₉₄₀	r _{19,402}	3,039	31,97
Stone (crushed) thousand short tons	rw.	rw.	rw.	rw.	1,343	5,66
Zinc (recoverable content of ores, etc.)		w	2	2	w	v
Combined value of cement (portland), copper, diatomite, fluorspar, lime, lithium compounds, magnesite, pumice (1979), salt,	W	w	2	2	•	·
		T100 501	xx	^r 114,846	xx	108,41
sand and gravel (industrial), talc (1979-80),	XX	-102,501	AA			
sand and gravel (industrial), talc (1979-80), tungsten and values indicated by symbol W	xx	r _{102,501} 260,246	XX			

Table 6.—Nonfuel mineral production¹ in the United States, by State —Continued

		1979		1980		1981
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
	NEW H	AMPSHIRE				
Sand and gravel thousand short tons Stone:	7,086	\$15,301	6,334	\$15,837	P5,800	P\$15,900
Crusheddo Dimensiondo Combined value of other nonmetals	866 86 XX	2,172 5,774 11	590 103 XX	2,281 7,167 121	665 89 XX	2,599 6,889 122
Total	XX	23,258	XX	25,406	XX	25,510
	NEW	JERSEY				
Clays thousand short tons	67	559	63	525	62	563
Gem stones thousand short tons_	NA W	W W	NA	1	NA	1
Peat	23	549	20	$5\overline{64}$	26	$1.\overline{476}$
Sand and graveldo	10,781	44,682	8,596	45,535	P8.105	P45,838
Stone (crushed) ⁶ do	13,950	63,174	11,830	61,886	10,434	57,819
Zinc (recoverable content of ores, etc.)						
metric tons	31,118	25,589	28,859	23,814	16,198	15,911
Combined value of iron ore (1981), magnesium compounds, marl (greensand), stone						
(dimension), titanium concentrate (ilmen-						
ite), and value indicated by symbol W	XX	17,135	XX	17,123	XX	20,404
Total	XX	151,689	·XX	149,448	XX	142,012
	NEW:	MEXICO				
Clays ² thousand short tons						
Copper (recoverable content of ores, etc.)	74	124	60	114	64	119
Gem stones	164,281 NA	336,934 180	149,394	337,328	154,114	289,204
Gold (recoverable content of ores, etc.)	IVA	100	, NA	150	NA	200
troy ounces	r _{14,966}	r _{4,602}	r15,847	r _{9,707}	65,749	30,221
Gypsum thousand short tons Lead (recoverable content of ores, etc.)	251	3,244	182	1,688	166	2,256
metric tons Manganiferous ore (5% to 35% Mn)	43	49			w	w
short tons	33,152	w	35,198	W	12,741	W
Mica (scrap) thousand short tons	17	W	w	: W	W	W
Peatdo Perlitedo	2 588	$\frac{40}{14,874}$	2 539	40	400	14.000
Potassium salts thousand metric tons		228,776	1,869	14,404 289,011	489 1,601	14,983 261,200
Pumice thousand showt town	2,005 r ₁₉₁	r _{1,181}	1,303 184	^r 814	93	919
Sand and gravel do do	7,141	18,245	7,050	17,676	P7,300	P18,000
Silver (recoverable content of ores, etc.)	.,	10,210	1,000	11,010	1,000	10,000
thousand troy ounces	W	W	W	w	1,632	17,170
Crushed thousand short tons	r _{3,001}	r _{9,112}	r _{2,581}	r9,473	4,162	12,485
Dimensiondo	20	117	18	91	26	173
Combined value of barite (1979-80), carbon						
dioxide, cement, clays (fire clay), helium (high-purity, 1980-81), lime, molybdenum,						
sait, vanadium, zinc, and values indicated						
by symbol W	XX	^r 72,383	XX	r85,113	XX	47,747
Total	XX	r689,861	XX	r765,609	XX	694,677
	NEW	YORK				
Claus2						
Clays ² thousand short tons Emeryshort tons	836	3,027	596	2,479	597	2,310
Gem stonesshort tons	10,005	204	r _W	r W	w	w
Lead (recoverable content of ores, etc.)	NA	20	NA	20	NA	30
metric tons	458	532	876	820	968	780
eat thousand short tons	38	630	43	917	39	811
oait do	6,387	77,751	5,509	99,395	5,597	103,668
Sand and graveldo Silver (recoverable content of ores, etc.)	⁴ 26,242	455,889	421,918	453,276	P21,255	^p 456,300
thousand troy ounces_	11	117	01	407	00	000
Stone:	11	117	21	427	29	303
Crushed thousand short tons	37,499	114,174	34,483	120,764	30,681	117,689
Dimension do	27	2,626	25	2,414	21	2,291
linc (recoverable content of ores, etc.)	40.400					
metric tons	12,133	9,977	33,629	27,750	36,889	36,235
See footnotes at end of table.						
v. vabic.						

Table 6.—Nonfuel mineral production in the United States, by State —Continued

	1	1979]	1980		1981
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
	NEW YOR	K—Continue	i			
Combined value of cement, clays (ball clay), garnet (abrasive), gypsum, iron ore, lime, sand and gravel (industrial), talc, titanium						
concentrate (ilmenite), wollastonite, and values indicated by symbol W	XX	r\$190,169	XX	r\$187,526	XX	\$171,554
Total	XX	^r 455,116	XX	r495,788	XX	491,971
	NORTH	CAROLINA			4 4 4 1	<u> </u>
Clays2 thousand short tons	3,308	8,385	2,852 e499,600	7,308	2,110 462,864	6,838 13,517
Feldsparshort tons	523,663 NA	^e 14,531 50	499,600 NA	e15,062 40	NA	50
Gem stones thousand short tons	84	5,847	NA r77	r _{4,647}	. 92	6,398
Sand and gravel	11,203	29,733	9,309	28,735	P8,936	P32,640
Stone:	00.004	125,319	34,764	125,019	28,833	117 092
Crusheddo	39,864 49	3,932	55	4,536	30	117,092 2,773 8825
Dimensiondo Talc and pyrophyllitedo	e130	e692	w	w	8104	⁶ 825
Combined value of cement, clays (kaolin),	100					
lithium compounds, olivine, phosphate rock, and value indicated by symbol W	xx	153,752	xx	194,986	XX	196,397
Total	xx	342,241	···· xx	r _{380,333}	xx	376,530
	NORTI	H DAKOTA		a e la Siere		
Gem stones	NA	1	NA	2	NA	2
Peat thousand short tons Sand and gravel do	(3)	W	W .	31	W	P14 100
Sand and gravel do	6,648	15,128	5,173	14,457	P4,900	P14,100
Combined value of clays, lime, salt, and values indicated by symbol W	XX	6,105	XX	7,886	XX	8,307
Total	xx	21,234	xx	22,376	XX	22,445
	(OHIO				1.4.
Cement:	170	10,869	126	8,549	105	7,129
Cement: Masonry thousand short tons Portland do - Clays do - Gypsum do - Lime do - Peat do - Sol+ do -	1.921	87,483	1,625	77,696	1,461	69,51
Clave do	3,374	13,495	2,718	11.516	2,217	10,41
Gvpsumdo	W	W.	136	1,346	148	1,560
Limedo	3,392	141,663	2,786 10	122,817 166	2,767 10	127,751 19
Peatdo	4,135	191 79,598	3,228	87,371	3,608	90,25
Saltdo Sand and gravel do do	45,944	121,048	36,972	114,291	P36,087	P118,49
Stone:	•					
Crusheddodo	50,717	149,819	42,441	136,929	36,950 W	125,58
Dimension do	50	1,702	35	1,558		•
Dimensiondo Combined value of abrasives, gem stones, and values indicated by symbol W	XX	1,452	XX	101	XX	3,290
Total	XX	607,320	XX	562,340	XX	554,190
	OKI	AHOMA		`		
Clays thousand short tons	949	1,999	972	2,249	838 N.A	2,06
Gem stones thousand short tons	1,480	9,770	1,326	$11,\!\bar{230}$	NA 1,177	9,87
Helium: High-purity million cubic feet	395	9,085	349 23	8,027 276	49 22	1,27- 26
Crudedo	35 1	420 W	23 1	W W	. 1	ž
Crude do Pumice thousand short tons Sand and gravel do	12,101	32,502	11,881	37,162	P11,700	p38,11
Stone:		00.000	00.150	ne oen	90.000	83,40
Crusheddo	28,312 38	66,666 1,383	28,173 16	76,267 678	29,930 18	83,40 73
Combined value of cement, feldspar, iodine, lime, salt, tripoli, and values indicated by symbol W						
mino, bare, disposi, and rando midioacca by	XX	80,696	XX	88,244	XX	100,87
symbol W	XX	202,521	XX	224,133	XX	236,61

Table 6.—Nonfuel mineral production¹ in the United States, by State —Continued

	1	1979		1980	1981	
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
	OR	EGON				
Clays thousand short tons Copper (recoverable content of ores, etc.)	139	\$263	172	\$321	176	\$300
Gem stonesGold (recoverable content of ores, etc.)	NA NA	500	\bar{NA}	$\bar{450}$	W NA	600
troy ounces Lead (recoverable content of ores, etc.)	w	W	^r W	^r W	2,830	1,301
Nickel (content of ores and concentrates)	(³)	(³)		:	w	W
Pumice thousand short tons	15,065 rW	w rw	14,653 ^r 219	w ^r 1,318	12,099 W	W
Sand and gravel dodo	17,874	45,829	16,005	47,300	P _{14,400}	P42,400
Silver (recoverable content of ores, etc.)						
thousand troy ounces	2	17	1	17	7	79
Crushed thousand short tons	rw 3	rW.	r _{19,251}	r49,606	16,482	46,055
Dimensiondo Combined value of cement, diatomite, lime,	(³)	4	15	231	(³)	5
talc, and values indicated by symbol W	XX	r118,704	XX	r52,727	XX	56,107
Total	XX	r165,321	XX	r151,970	XX	146,847
	PENNS	YLVANIA				
Cement: Masonry thousand short tons	415	04 177	004			
Portlanddo	6,508	24,177 259,756	324 5,570	20,298 237,684	293 5,150	14,799 215,883
Claysdodo	2,468	20,099	1,650	12,112	1,246	7,497
Gem stones thousand short tons	2,153	96,569	1,768	$84,\bar{291}$	NA 1,690	5 85,418
Mica (scrap)do Peatdo Sand and graveldo	4 24	W 531	3 26	W 552	3 25	134 647
Stone:	20,150	71,740	15,603	68,257	⁴ 14,300	p 455,400
Crusheddo	71,432	224,014	61,143	218,231	53,258	207,821
Dimensiondo Tripolishort tons	77 W	5,961 W	65 W	6,397 W	51 1,263	7,193 W
Zinc (recoverable content of ores, etc.) metric tons	21,447	17,636	22,556	18,613	24,732	24,293
Combined value of clays (kaolin), sand and gravel (industrial, 1981), and values indi-						24,233
cated by symbol W	XX	1,237	XX	1,171	XX	13,966
Total		721,720	XX	667,606	XX	633,056
Sand and groups thousand about the		ISLAND				
Sand and gravel thousand short tons Stone (crushed)do	3,537 249	6,737 1,148	2,506 203	4,945 1,208	^P 1,900 141	P4,100
Combined value of other nonmetals	XX	1,1,1	XX	17	XX	1,116
Total	XX	7,886	XX	6,170	XX	^p 5,279
	SOUTHC	AROLINA				
Cement, portland thousand short tons	1,831	79,377	1,704	74,539	1,765	79,407
Clays ² do	2,272 NA	24,492 5	2,211 NA	25,169	1,632	28,600
wangamierous ore _ thousand short tons	26	w	20	$\overset{5}{\mathbf{w}}$	NA 23	10 W
Sand and graveldo Stone:	8,321	26,665	5,556	22,855	P5,303	P23,531
Crusheddodo	16,589	48,352	16,107	49,207	14,825	49,830
OMDINED VAIDE OF CEMENT (masonry) clave	9	482	12	703	18	1,109
(fuller's earth), copper (1981), gold (1981), mica (scrap), peat (1979), silver (1981), ver- miculite, and values indicated by symbol W	vv	00.055				
The state of the s	XX	22,277	XX	22,301	XX	22,989
Total	XX	201,650	XX	194,779	XX	205,476
See footnotes at end of table.						

STATISTICAL SUMMARY

Table 6.—Nonfuel mineral production in the United States, by State —Continued

	1	.979		.980		1981
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
	SOUTH	I DAKOTA				
Cement:						
Masonry thousand short tons	7	\$4 34	6	\$377	6	\$454
Portlanddodo	670	31,273	459	23,042	450	23,290
	205	292	² 169	² 283	116	209
Gem stones	NA	50	NA	50	NA	70
Gold (recoverable content of ores, etc.)	045 010	75,618	r267,642	r163,947	278,162	127,854
troy ounces	245,912 (³)	15,618	(3)	100,941	210,102 W	121,094 W
Mica, scrap thousand short tons Sand and graveldo	6,001	10,119	4,209	8,243	P4,000	₽7,900
Silver (recoverable content of ores, etc.)	0,001	10,113	4,203	0,240	4,000	1,500
thousand troy ounces	58	643	51	1,058	56	587
Stone:				-,		
Crushed thousand short tons	3,891	10,317	3,151	8,942	2,985	9,085
Dimensiondodo	36	13,268	42	15,035	50	17,543
Combined value of beryllium (1981), clays						
(bentonite, 1980-81), feldspar, gypsum, iron						
Dimension do Combined value of beryllium (1981), clays (bentonite, 1980-81), feldspar, gypsum, iron ore (1980), lime, and value indicated by	vv	c c=0	vv	e 079	XX	6,382
symbol W	XX	6,670	XX	6,873		0,382
Total	XX	148,686	XX	r227,854	XX	193,374
10tal		140,000		221,004		
	TEN	NESSEE				· · · · · · · · · · · · · · · · · · ·
Cement:						
Masonry thousand short tons	170	8,600	132	7,241	66	3,209
Portland do	1,335	57,146	1,304	58,827	974	39,378
Claysdodo	1,561	26,071	1,188	22,844	1,047	23,134
Gem stones	NA 1 070	14.770	NA 1 500	12,765	NA 1.328	16,201
Phosphate rock thousand metric tons	1,873		1,582 8,921	24,930	P7,942	P26,210
Sand and gravel thousand short tons	11,210	29,056	8,921	24,950	1,342	20,210
Stone: Crusheddodo	45,718	133,727	38,584	126,993	632,497	6113,729
Dimensiondo	12	1,000	10	883	11	1,063
Zinc (recoverable content of ores, etc.)	12	1,000				2,000
metric tons.	85,119	69,995	^r 111,754	r92,218	117,684	115,597
Combined value of barite, copper, gold (1981).	,			•	•	
Combined value of barite, copper, gold (1981), lead (1979), lime, pyrites, silver, stone						
(crushed, 1981)	XX	45,378	XX	47,133	XX	79,092
Total	XX	385,744	XX	r393,835	XX	417,618
Total		EXAS		050,000		411,010
	1,1					
Cement:			041	10.010	000	17 000
Masonry thousand short tons Portlanddo	268	15,593	241	18,310	229 10,262	15,699 567,391
Portlanddo	9,353 3,871	475,836	9,517 3,763	535,690 27,022	4,172	29,135
Claysdo	NA	21,533 170	NA	160	NA	20,100
Gem stones thousand short tons _	1,903	11,438	1,681	14,124	1,783	14.900
Helium (high-purity) million cubic feet	38	874	35	805	238	6,188
Lime thousand short tons	1.507	59,520	1,515	67,075	1.393	67,158
Saltdo Sand and graveldo	11,283	67,602	9,978	93,414	8,397	84,240
Sand and graveldodo	52,846	167,076	46,704	171,576	P45,442	P178,492
Stone:	•	-				
Crusheddo	74,612	188,746	76,483	220,265	72,454	219,086
Dimensiondodo	17	3,636	37	7,095	42	5,543 W
Sulfur (Frasch) thousand metric tons	4,649	w	4,810	w	3,674	w
Talc and pyrophyllite	207	1,544	401	4,295	282	4,127
thousand short tons	201	1,044	401	4,200	404	2,141
Combined value of asphalt (native), fluorspar (1979 and 1981), graphite (1979), helium						
(crude), iron ore, magnesium chloride, mag-						
nesium compounds, sodium sulfate and val-			****	FE 4 000	vv	466,044
nesium compounds, sodium sulfate and val-	XX	391,071	XX	574,820	XX	400,044
nesium compounds, sodium sulfate and val- ues indicated by symbol W						
nesium compounds, sodium sulfate and val-	XX	1,404,639	XX	1,734,651	XX	1,658,203

Table 6.—Nonfuel mineral production¹ in the United States, by State —Continued

		1979		1980	1981	
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
	υ	ТАН				
Clays thousand short tons	355	\$1,246	365	\$1,517	290	\$2,296
Copper (recoverable content of ores, etc.) metric tons	193,082					
Gem stonesGold (recoverable content of ores, etc.)	NA	396,003 75	157,775 NA	356,251 70	211,276 NA	396,471 80
troy ounces Gypsum thousand short tons	260,916 292	80,232 2,450	179,538 287	109,978 2,612	227,706 300	104,663 2,705
Iron ore (usable), thousand long tons, gross weight Lead(recoverable content of ores, etc.)	1,618	19,391	1,307	18,540	691	w
metric tons	w	w	^r W	rw	1,662	1,338
Lime thousand short tons	198	8,250	259	13,293	333	16,679
Perlitedo Pumicedo	W (9)	(9)	(³) (⁹)	2 (⁹)	(³)	4
Saltdo	1,204	14,723	1,157	19,373	1,072	21,775
Saltdo Sand and gravel ⁴ do	10,363	18,621	8,906	17,234	P9,122	P18,186
Silver (recoverable content of ores, etc.) thousand troy ounces	2,454	27,216	r _{2,203}	r _{45,476}	2,883	30,321
Stone: Crushed thousand short tons	r _{3,452}	r _{11,339}	r _{2,954}	r _{12,123}	2,840	12,157
Dimensiondo Zinc (recoverable content of ores, etc.)	5	216	3	272	3	280
metric tons Combined value of asphalt (native), beryllium	w	w	^r W	rW	1,576	1,548
concentrate, carbon dioxide (natural), ce- ment, magnesium compounds, molybde- num phosphate rock, potassium salts, sand						
and gravel (industrial, 1979-80), sodium sul- fate, tungsten, vanadium, and values indi- cated by symbol W	XX	169,520	XX	r166,883	XX	174,729
Total	XX	749,282	XX	r763,624	XX	
		MONT		103,024		783,232
						
Sand and gravel thousand short tons Stone:	3,660	6,240	1,900	4,171	P1,900	P4,200
Crusheddo	2,077 180	13,927 23,006	1,320 169	4,787 23,649	1,319 207	5,144 30,756
Talc do	346	2,755	318	2,753	W	30,130 W
Combined value of other nonmetals and val- ue indicated by symbol W	XX	8,208	XX	7,277	XX	10,919
Total	XX	54,136	XX	42,637	XX	51,019
	VIR	GINIA				
Clays thousand short tons	1,059	3,512	762	3,172	502	2.016
Gem stones Lead (recoverable content of ores, etc.)	NA	15	NA	15	NA NA	2,016 20
metric tons	1,596	1,852	1,563	1,463	1,607	1,294
Lime thousand short tons Sand and gravel ⁴ do Stone:	872 11,803	34,935 32,268	824 8,264	33,872 29,508	804 P7,400	35,984 P27,700
Crusheddodo	51,080 9	165,223 2,042	44,615 27	167,839 2,287	37,071 4	152,630 1,130
Zinc (recoverable content of ores, etc.) metric tons Combined value of aplite, cement, gypsum,	11,406	9,380	r _{12,038}	9,934	9,731	9,558
and gravel (industrial), silver (1981), talc						
and vermiculite	XX	60,562	XX	57,216	XX	52,201
Total	XX	309,789	XX	305,306	XX	282,533
	WASH	INGTON				
Cement: Masonry thousand short tons	10	741	w	w	15	1,284
Portlanddo	1,761	98,659	1,546	89,208	1,560	100,845
Clays ² dodo	339 N.A	1,549	301	1,571	263	1,524
Gem stones thousand short tons	NA 11	170 148	NA W	150 W	NA W	200
Pumice do do	(⁹)	(⁹)	(9)	(9)	w	W
Sand and graveldo Silver thousand troy ounces	424,258 W	⁴59,382 W	⁴19,019 W	446,731 W	P18,404 67	P49,458 709
See footnotes at end of table.						-

Table 6.—Nonfuel mineral production in the United States, by State —Continued

		1979		1980		.981
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
	WASHINGT	ON—Continu	ed			
Stone: Crushed thousand short tons _ Dimension _ do do Combined value of clays (fire clay), copper	^r 15,255 4	*\$35,985 268	^r 11,085 6	rW \$248	9,516 15	\$25,619 2,378
(1979 and 1981), diatomite, gold, gypsum, lead (1979-80), lime, olivine, sand and gravel (industrial 1979-80), tungsten (1979 and 1981), and values indicated by symbol W	xx	28,248	XX	^r 69,454	xx	30,461
Total	XX	225,150	XX	207,362	XX	212,478
	WEST	VIRGINIA				-
Clays ² thousand short tons_ Salt do Sand and gravel ⁴ do Stone (crushed) do Combined value of cement, clays (fire clay), lime, sand and gravel (industrial), stone	330 1,078 4,138 11,713	592 W 18,501 37,624	291 W 2,728 9,766	642 W 11,454 36,305	220 W P2,700 7,885	502 W P11,500 28,399
(dimension, 1979), and values indicated by symbol W	XX	61,878	xx	57,885	xx	56,046
	XX	118,595	XX	106,286	XX	96,447
	WIS	CONSIN			/ .	
Iron ore (usable), thousand long tons,						
gross weight_ Lime thousand short tons_ Peat do Sand and gravel do	736 429 11 32,046	W 19,060 720 58,576	679 357 11 22,014	W 17,287 535 ^r 47,571	326 10 P20,400	W 17,548 535 P52,280
Stone: Crusheddo Dimensiondo Combined value of abrasive stone, cement,	23,924 54	52,804 4,204	20,603 45	49,245 4,501	15,189 40	39,962 4,259
clays, lead (1979), zinc (1979), and values indicated by symbol W	XX	44,318	xx	33,151	xx	41,749
Total	XX	179,682	xx	r _{152,290}	XX	156,333
	WY	OMING				
Clays thousand short tons Gem stones thousand short tons Sand and gravel do Stone do	3,471 NA 366 45,265 5,013	75,096 200 3,100 411,419 15,634	3,081 NA 312 45,454 4,374	71,512 190 2,731 412,523 14,835	3,855 NA 299 P5,200 3,224	100,926 250 2,625 P12,400 9,858
Combined value of cement, feldspar (1979), iron ore, lead (1981), lime, phosphate rock (1979), sand and gravel (industrial, 1979-80), silver (1981), sodium carbonate, and zinc (1981)	XX	484,727	xx	658,755	xx	644,279
-			XX	760,546	XX	770,338
Total	XX	590,176		100,040		110,0

^rRevised. NA Not available. W Withheld to avoid disclosing company proprietary ^pPreliminary. ^eEstimated.

data. XX Not applicable.

1 Production as measured by mine shipments, sales, or marketable production (including consumption by producers).

2 Excludes certain clays; value included with "Combined value" figure.

^{*}Less than 1/2 unit.

*Excludes industrial sand and gravel; value included with "Combined value" figure.

Excludes certain stones; value included with "Combined value" figure.

Excludes salt in brines; value included with "Combined value" figure.

Excludes talc; value included with "Combined value" figure.

⁹Revised to none.

Table 7.—Mineral production¹ in the islands administered by the United States

(Thousand short tons and thousand dollars)

Area and mineral	1979		1980		1981	
	Quantity	Value	Quantity	Value	Quantity	Value
American Samoa: Stone Guam: Stone Virgin Islands: Stone	669 W	21 2,483 2,828	^r 11 529 W	199 2,163 W	6 332 W	127 W W

Table 8.—Mineral production¹ in the Commonwealth of Puerto Rico

(Thousand short tons and thousand dollars)

Mineral	1979		1980		1981	
	Quantity	Value	Quantity	Value	Quantity	Value
Cement	1,406 260 37 27 NA 14,119	70,197 556 3,307 639 NA 59,659	1,482 291 27 NA 24,046	102,872 677 4,131 NA 104,179	1,226 200 34 NA 20,578	105,420 474 3,884 NA 98,263
Total	ХX	²134,358	XX	² 211,859	XX	² 208,041

^{*}Revised. W Withheld to avoid disclosing company proprietary data.

[‡]Production as measured by mine shipments, sales, or marketable production (including consumption by producers).

NA Not available. XX Not applicable.

¹Production as measured by mine shipments, sales, or marketable production (including consumption by producers).

²Total does not include value of items not available.

Table 9.—U.S. exports of principal minerals and products, excluding mineral fuels

Mineral		980		Value	
Miller at	Quantity	Value (thousands)	Quantity	(thousands	
METALS					
lluminum:	71 4 00C	01 107 900	944 161	# E00 040	
Ingots, slabs, crudeshort_tons	714,906 444,681	\$1,107,398 483,138	344,161 241,162	\$526,646 236,204	
Plates, sheets, bars, etc	306,214	715,899	263,672	625,181	
Castings and forgingsdo	7,496	30,626	8,930	40,482	
Aluminum sulfate metric tons	11,200	2,476	25,296	3,439	
Scrap	48,000 453	41,200 1,186	48,049 324	37,174 908	
auxite including bauxite concentrate thousand metric tons	28	6,761	41	8,090	
dervilium thousand metric tons	58,455	3,867	78,189	3,094	
Berylliumpounds bismuth, metals and alloysdodo	128,732	942	78,703	708	
ddmium metric tons	236	464	239	332	
Ore and concentrate:				F 000	
Exports thousand short tons Reexports do	6 44	1,447 8,544	71 67	5,893 9,575	
Ferrochromium do	32	22,233	14	10,361	
Ferrochromiumdododododo	583	14,576	834	16,462	
opper:		•			
Ore, concentrate, composition metal, unrefined (copper		000 1 15	100 000	001 101	
content) metric tons	117,508	226,145	166,293 50,078	231,181 70,106	
Scrapdo Refined copper and semimanufacturesdo	61,225 105,377	93,059 440,967	127,613	517,950	
Other copper manufacturesdo	41,071	94,760	18,451	37,464	
erroallovs not elsewhere listed:	,				
Ferrophosphorusshort tons_ Ferroalloys, n.e.cdo	44,692	6,778	7,463	2,031	
Ferroalloys, n.e.cdo	4,710	10,130	6,358	8,439	
old: Ore and base bulliontroy ounces	1,416,634	860,501	1,199,421	570,549	
Bullion, refineddo	4,702,197	2,787,431	5,237,585	2,501,337	
ron ore thousand long tons	5,689	230,568	5,546	244,685	
ron and steel:				1,000	
Pig ironshort tons Iron and steel products (major):	73,000	8,016	16,274	1,960	
Iron and steel products (major): Steel mill products	4,100,718	2,556,619	2,903,863	2,275,267	
Other steel products	407,101	947,094	443,796	1,138,745	
Iron and steel scrap:					
Ferrous scrap including rerolling materials, ships, boats,			0.504	450 110	
other vessels for scrapping thousand short tons	11,423	1,257,049	6,524	653,118	
ead: Oros and concentrates metric tons	27,615	11,118	33,043	18,958	
Pigs. hars, anodes, sheets, etc	164,458	164,835	23,320	25,996	
Ores and concentrates metric tons Pigs, bars, anodes, sheets, etc do Scrap do lagnesium, metal and alloys, scrap, semimanufactured	119,651	62,221	59,419	22,388	
lagnesium, metal and alloys, scrap, semimanufactured	F0 F01	107 700	04.055	00.050	
Iorms, n.e.csnort tons	56,761	127,706	34,855	90,853	
langanese: Ore and concentratedodo	52,537	6,328	65,064	5,132	
Ferromanganesedo	11,686	7,657	14,925	12,477	
Silicomanganesedodo	6,489	3,468	3,941	2,172	
Metal do	12,320	11,460	2,523	3,980	
folybdenum:					
Ore and concentrate (molybdenum content) thousand pounds	68,217	715,431	51,350	406,816	
Metals and alloys, crude and scrapdo	614	4,870	2,641	9,763	
Wiredo	705	15,984	543	9,030	
Semimanufactured forms, n.e.cdodo	306	7,471	165	4,768	
Powderdo	425	4,103	270	2,820	
Ferromolybdenumdodo Compoundsdo	1,760 10,154	17,104 89,303	455 7,328	2,983 40,686	
ickel:	10,104	00,000	1,020	40,000	
Alloys and scrap including unwrought metal, ingots, bars,					
sheets, anodes, etcshort tons_ Catalystsdo	45,204	285,545	37,671	259,712	
Catalystsdo	3,530	18,559	3,890	25,601	
Nickel-chrome electric resistance wiredo Semifabricated forms, n.e.cdo	1,087 6,854	11,766 55,613	660 4,557	8,262 40,093	
latinum-group metals:	0,004	00,010	4,001	40,030	
Ore and scraptroy ounces	173,053	68,836	212,426	61,409	
Palladium, rhodium, iridium, osmiridium, ruthenium,					
osmium (metal and alloys including scrap)do	302,457	99,494	259,745	61,136	
Platinum (metal and alloy)dodo are earths: Ferrocerium and alloysshort tons	289,454 17	172,876 196	391,194 11	179,344 117	
elenium thousand pounds_	180	1,689	133	668	
ilicon:					
Ferrosiliconshort tons	27,488	18,572	15,768	12,136	
Silicon carbide, crude and in grainsdo	r _{13,661}	^r 13,264	11,511	11,148	
ilver:					
Ore, concentrate, waste, sweepings	23,645	582,855	12,772	151,090	
	57,206	1,326,878	15,131	181,380	
thousand troy ounces					
Bullion, refineddo					
Bullion, refined do	950 251	65,329 39,880	303 97	20,520 19,999	

Table 9.—U.S. exports of principal minerals and products, excluding mineral fuels —Continued

	1	980	1981		
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands	
METALS —Continued					
in:					
Ingots, pigs, bars, etc.:					
Exports metric tons _	595	\$10,194	2,361	\$31,053	
Reexportsdo Tinplate and ternplatedo	3,699 641,401	62,382 440,671	3,719 345,718	55,508 220,998	
itanium:	041,401	440,011	040,110	220,550	
Ore and concentrateshort tons Unwrought and scrap metaldo Intermediate mill shapes and mill products, n.e.cdo	17,830	3,444	7,297	2,099	
Unwrought and scrap metaldodo	3,757	16,660	3,595	9,500	
Pigments and oxidesdodo	5,123 45,795	113,551 49,357	6,049 62,432	159,454 66,40	
ungsten (tungsten content):	40,100	40,001	02,402	00,402	
Ore and concentrate thousand pounds	2,029	15,454	175	1,150	
Carbide powder	1,440	22,716	1,213	18,15	
Alloy powderdodo	r _{1,140}	18,308	2,138	32,207	
Ore and concentrate (vanadium content)	92	517	111	578	
Pentoxide, etcdodo	1,448	2,728	692	2,01	
Ferrovanadiumdodo	1,605	6,995	869	4,39	
inc:	302	CCA	323	010	
Slabs, pigs, or blocks metric tons_ Sheets, plates, strips, other forms, n.e.c do	2,103	664 3,810	1,500	812 3,22	
Waste, scrap, dust (zinc content)dodo	34,054	21,612	35,049	25,45	
Semifabricated forms, n.e.c	1,289	2,580	1.538	3,230	
Ores and concentratesdo	54,457	29,473	54,232	29,280	
irconium: Ore and concentrate thousand pounds	15,455	2,732	23,260	3,838	
Oxide do	4,778	3,680	1,565	2,25	
Oxidedo Metals, alloys, other formsdo	1,388	29,408	1,361	35,01	
NONMETALS					
.brasives:					
Industrial diamond natural or synthetic				41.2	
Powder or dust thousand carats	28,534	70,248	28,471	65,777	
Otherdo	3,569 730	51,229 7,437	2,297 694	30,978 7,706	
Powder or dust thousand carats	NA	r _{112,286}	NA	113,016	
sbestos:	·	112,200	. 1112	110,010	
Exports:					
Unmanufactured metric tons	r48,219	r20,737	64,126	21,43	
Productsdo	NA	r _{141,299}	NA	144,53	
Reexports: Unmanufactureddodo	452	330	293	159	
Productsdo	NA	354	NA	599	
arite:					
Natural barium sulfate and carbonateshort tons foron:	96,819	13,794	62,187	9,94	
oron: Boric aciddodo	r47,000	23,735	46,184	24,602	
Sodium borates, refineddo	324,862	e64,737	227,543	e58,000	
alcium:	021,002	01,101	221,010	00,000	
Other calcium compounds including precipitated calcium					
carbonatedo	25,068	15,589	25,659	11,713	
Chloridedodododo	49,215 43,314	9,754 27,577	32,794 55,862	13,004 33,434	
ement: Hydraulic and clinker do	186,404	16,997	302,777	31,56	
lays: Kaolin or china clay thousand short tons_ Bentonitedo					
Kaolin or china clay thousand short tons	1,392 898	133,716	1,412 862	155,999	
Other do	924	62,207 67,224	877	64,53° 72,378	
biatomitedo	173	32,238	162	32,93	
Bentonite	25,998	896	28,050	1,110	
iuoisparsnort tons	17,865	1,660	11,261	1,19	
dem stones: Diamond thousand carats	1,325	1.041,200	3,215	854,100	
Pearls triousand carats_	1,323 NA	5,063	NA	5,850	
Other	NA	71,460	NA	101,649	
raphiteshort tons	8,880	3,695	11,344	4,43	
ypsum: Crude, crushed or calcined thousand short tons	88	11 774	157	14,59	
Manufactures, wallboard and plaster articles	NA	11,774 15,448	157 NA	20,84	
Ielium million cubic feet	^e 298	10,629	389	17,08	
ithium hydroxide thousand pounds imeshort tons_	6,681	9,600	6,040	9,54	
imeshort tons	41,843	3,990	28,429	3,99	
fagnesium compounds:	56,038	13,279	20,926	4,72	
Magnacita dood burned		17,692	36,683	14,559	
Magnesite, dead-burned do do	51 703				
Magnesite, dead-burned do do do do do do do do do dica:	51,703	11,032	00,000	14,00.	
Magnesite, dead-burneddodo Magnesite, crude, caustic calcined, lump or grounddo	51,703 14,462 NA	4,200 7,665	10,920 NA	3,437 7,000	

Table 9.—U.S. exports of principal minerals and products, excluding mineral fuels
—Continued

	1	980	1981		
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands	
NONMETALS —Continued					
Mineral-earth pigments, iron oxide, natural and					
sunthátia short tons	5.046	\$9,132	4.967	\$11,704	
Nitrogen compounds (major) thousand short tons_	11.121	1,842,383	8.371	1,397,786	
Phosphate rock thousand metric tons	14,320	508,524	10,554	419,999	
Phosphatic fertilizers:	14,020	000,021	10,001	110,000	
Superphosphatesdodo	34.412	287,366	22.097	245,341	
Ammonium phosphatesdodo	4.995	1.095,944	3,942	789,770	
Ammonium phosphates wotario tong	30,443	45.631	27,929	42,723	
Elemental phosphorus metric tons_ Mixed chemical fertilizers thousand metric tons_	50,445 NA	NA	NA NA	NA NA	
Mixed chemical fertilizers thousand metric wis	(1)	344	1	1,112	
Pigments and compounds: Zinc oxide (metal content)do	(-)	344		1,112	
Potash:	Fe 404 010	T	#00 400	00.000	
Potassium chloride metric tons	r _{1,161,640}	r _{131,180}	700,420	80,678	
Potassium sulfatedodo	r140,000	r23,113	79,600	16,095	
Pumice and pumiciteshort tons	e _{1,000}	NA	e1,000	NA	
Quartz, crystal, natural thousand pounds	91	366	^e 127	e490	
Salt:				1.0	
Crude and refined thousand short tons	831	r _{12.829}	1,043	18,070	
Shipments to noncontiguous territoriesdo	22	4,296	71	9,145	
Sand and gravel:					
Construction:					
Sanddodo	587	6.661	613	6,298	
Graveldo	687	1.480	652	2,454	
Industrial: Sand	1,177	32,519	1,132	27,984	
Sodium compounds:	-,	,	-,	,	
Sodium sulfatedodo	129	12,740	124	12,980	
Sodium carbonatedodo	1.094	121.945	1.051	121,107	
Stone:	1,001	,	-,		
Crusheddo	3.084	21.239	3,598	25,949	
Dimensiondo	176	r _{15,170}	227	17.867	
Sulfur: Crude thousand metric tons	1.673	185,866	1.392	187,407	
Talc, crude and ground thousand short tons	275	14,963	311	15,095	
raic, crude and ground thousand short tons	210	14,000	. 011	10,000	
Total	XX.	r23,290,651	XX	17,581,927	
Total	XX	r _{23,29}	0,651	0,651 XX	

 $^{^{\}rm e}Estimated.$ $^{\rm r}Revised.$ NA Not available. XX Not applicable. $^{\rm 1}Less~than~1/2~unit.$

Table 10.—U.S. imports for consumption of principal minerals and products, excluding mineral fuels

	19	980	19	981
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands
METALS				
Aluminum: Metalshort tons	580,515	\$777,606	710,656	\$990,869
Scrapdo Plates, sheets, bars, etcdo	59,802 72,723	59.718	81,994 142,512	79,141
Plates, sheets, bars, etcdo		152,136	142,512	79,141 308,677
Aluminum oxide (alumina) metric tons Antimony:	4,358,000	782,902	3,978,000	837,932
Ore and concentrate (antimony content)	F 00F			4.
short tons	5,235 34	11,646 216	5,168	9,09
Metal do	2.590	7,277	106 2,631	249 6,569
Sulfide including needle or liquateddo Metaldo Oxidedo	12,224	15,771	12,170	19,92
Arsenic: White (As ₂ O ₃ content)do	12,528	7.352	18,958	13,126
Metallic do do Bauxite, crude thousand metric tons. Beryllium ore short tons. Bismuth, metal and alloys, gross weight pounds.	266	1,524	323	2,079
Bauxite, crude thousand metric tons	14,087	NA	12,802	NA.
Beryllium oreshort tons	1,703	1,168	2,138	2,002
Dismith, metal and alloys, gross weight pounds Cadmium: Metal metric tons	2,217,359	5,364	2,436,249	4,883
Calcium:	2,617	14,181	P3,090	P13,369
Metalpounds_ Chlorideshort tons_ Cesium compoundspounds_	227,814	582	235,436	751
Control of the compounds	46,439	2,071	86,865	4,088
Chromium:	r _{11,822}	619	24,415	1,049
Ore and concentrate (CroO2 content)				
thousand short tons Ferrochromium (gross weight)do Ferrochromium-silicondo	410	56,525	368	49,948
Ferrochromium (gross weight)do	297	153,487	428	213,611
M-4-1	5	r2,313	11	6,000
Metaldo Cobalt:	. 4	^r 28,369	4	24,626
Metal thousand pounds Oxide (gross weight) do Salts and compounds (gross weight) do	14,992	358,583	13,906	238,820
Oxide (gross weight)dodo	414	7 630	444	5,375
Salts and compounds (gross weight)do	655	r _{3,572}	1,249	4,969
Columbium oredodo Copper (copper content):	4,595	20,289	1,882	10,102
Ore and concentrate metric tons	r52,360	72,636	39.132	56 540
Mattedo	392	719	2,718	56,548 3,232
Blister do	44,537	86,284	30,124	68,083
Refined in ingots, etcdodo	426,948	935,262	330,625	582,085
Ore and concentrate	22,769	40,865	27,002	40,705
short tons	r _{8,933}	r36,390	7,055	29 720
railium kilograms	6,175	2,637	5,536	38,730 2,472
ermaniumdo	3,329	3,004	22,350	12,328
Gold: Ore and base bullion	454 500			
Bullion do	451,509 4,090,488	243,230	487,675	214,927
Hafniumpounds	4,030,488	2,506,889 32	4,164,476 5,310	1,942,560 126
ndium thousand troy ounces_	299	5,103	461	3,152
ron ore thousand long tons	25,058	772,844	28,328	947,977
ron and steel: Pig iron short, tons	400 001	00.000	400 105	
Pig ironshort tons Iron and steel products (major): Steel mill productsdo	400,031	63,036	468,125	71,013
Steel mill productsdodo	15,495,075	6,887,462	19,898,371	10,247,660
Other productsdo Scrap including tinplate thousand short tons	753,181	825,702	822,396	954,618
ead:	582	61,192	556	62,126
One flore done	29,615	23,927	27,206	20,196
Base bullion (lead content)	296	509	449	20,196 340
Pigs and bars (lead content)do	81,300	87.629	100,108	87,026
Ore, flue dust, matte (lead content) metric tons_ Base bullion (lead content) do Pigs and bars (lead content) do Reclaimed scrap, etc. (lead content) do	2,868	2,905	2,661	2,220
fagnesium:	950	1,508	474	726
Metallic and scrapshort tons Alloys (magnesium content)do	3,324	5,048	6,122	10.182
Alloys (magnesium content)	344	1,770	625	2,652
Sheets, tubing, ribbons, wire, other forms (magnesium content)do	00			
	89	1,443	150	4,804
Ore (35% or more contained manganese)do	697,516	46,413	639,141	42,643
Ferromanganese do Ferrosilicon-manganese (manganese content)	605,703	211,365	671,178	226,618
r errosilicon-manganese (manganese content)	74.975	90.001		•
Metal do	7,915	29,291 r _{8,032}	129,005 8,343	49,754
lercury:		0,002	0,343	8,419
Compounds pounds _ Metal 76-pound flasks _	32,371	222	37,258	273
metar 76-pound flasks	9,416	2,841	12,408	5,005
See footnotes at end of table.				

 $\begin{array}{c} \textbf{Table 10.--U.S. imports for consumption of principal minerals and products, excluding } \\ \textbf{mineral fuels ---Continued} \end{array}$

	19	980	19	981
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)
METALS —Continued				
Molybdenum:				
Ore and concentrate (molybdenum content) thousand pounds	1,825	\$10,475	1,988	\$9,911
Waste and scrap (gross weight)do Metal:	373	7,246	NA	2,674
Unamought (molyhdonum content) do	163	2,637	153	2,893
Wrought (gross weight) do Ferromolybdenum (gross weight) do Material in chief value molybdenum (molybdenum content) do	137 45	4,031 243	93 1,175	2,557 6,353
Material in chief value molybdenum (molybdenum			•	
content)dodo	1,953 4,431	18,701 27,034	1,651 5,164	9,574 18,052
Nickel:				
Oreshort tons_ Pigs, ingots, shot, cathodesdo	1,124 116,193	708,693	513 123,141	42 747,920
Figs, Ingots, snot, cathodes	5,831	54,947	3,864	36,897
Slurrydo	77,459	208,742	94 796	223,060
Scrapdo	3,572	18,481	5,226	17,496
Powder and flakesdo	15,244 51,741	98,666	14,124	93,325
Ferronickel do do do do	51,741 4,182	104,156 21,753	69,853 4,330	119,321 21,779
Oxidedo Platinum-group metals:	4,102	21,100	4,000	21,113
Unwrought:				
Ci d	15,427	6,768	1,891	862
Sponge (platinum)dodo	1,191,803	560,642	888,995	424,780
Crains and nuggets (platinum)	376,500 26,090	76,543 12,974	235,379	58,462 6,203
Palladium do	1,202,342	252,075	11,110 1,1 <u>14,313</u>	142,180
Rhodiumdo	109,591	84,421	73,738	45.847
Rutheniumdodo	98,488	4,220	180,438	6,833
Rutheniumdododo Other platinum-group metalsdo	122,454	105,559	44,337	16,455
Semimanufactured:	230,344	130,537	179,321	83,972
Platinumdodo Palladiumdo	250,544 114,246	23,256	116,548	13,717
Rhodiumdo	686	594	1,733	657
Other platinum-group metalsdo	13,811	2,834	1,814	288
Rare-earth metals:	70	902	92	1,249
Ferrocerium and other cerium alloysshort tons	72 ^r 5,675	1,850	8,233	3,158
Monazitedo Metals including scandium and yttrium pounds	r8,468	307	3,750	168
Rhenium:	0,400	001	0,100	,100
Metal including scrapdodo	513	668	580	574
Ammonium perrhenatedo Selenium and selenium compoundsdo	4,991	7,889	9,089	3,297
Selenium and selenium compoundsdo Silicon:	625,472	7,966	686,887	7,766
Metal (over 96% silicon content)short tons	21,839	53,117	29,636	58,034
Ferrosilicondodo	71,152	42,640	155,648	80,317
Silver:				400 400
Ore and base bullion thousand troy ounces	9,700	187,019	9,769	100,422
Bulliondodo	^r 64,762 4.237	1,331,877 87,114	75,921 8,425	837,174 90,853
Tentalum ore thousand nounds	2,510	78,829	1,952	57,726
Tellurium pounds	64,860	1,629	83,671	1,811
Bullion	176	14	882	87
in:	040	11.000	232	2,975
Concentrate (tin content) metric tons Dross, skimmings, scrap, residue, tin alloys, n.s.p.f.	840	11,089	232	2,915
do	1,312	4,215	2,583	3,387
Tinfoil, powder, flitters, etc	NA	9,154	NA	8,666
Tin scrap and other tin-bearing material excluding		45.040	•••	***
tinplate scrap metric tons_	NA 171	13,819	NA 170	16,357
Titanium:	171	2,285	110	2,098
Ilmeniteshort_tons_	552,482	27,088	505,042	36,215
Rutiledo	281,605	62,619	202,373	59,024
Metaldo Ferrotitanium and ferrosilicon titaniumdo	10.052	108,777	11,637	139,801
Ferrotitanium and ferrosilicon titaniumdo	623	1,679	615	1,582
Pigmentsdo	97,590	91,986	124,906	127,396
Tungsten ore and concentrate (tungsten content) thousand pounds	11,372	87,129	11,752	91,195
Vanadium (vanadium content):	•	•		-
Ferrovanadiumdodo	525	3,477	1,968	13,288
Ferrovanadiumdodo Vanadium pentoxidedo Vanadium-bearing materialsdo	1,711	8,364	669	3,344
v anadium-bearing materialsdo	3,572	9,535	4,870	11,751
See footnotes at end of table.				
See received at city of table.				

 ${\bf Table~10.--U.S.~imports~for~consumption~of~principal~minerals~and~products,~excluding~mineral~fuels~--Continued}$

	19	980	19	981
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)
METALS —Continued				
Cinc: Ore (zinc content) metric tons	182,370	\$74,033	245,710	\$110.253
Blocks, pigs, slabs do	410,163	319,288	612,007	549,326
Sheets, etcdo Fume (zinc content)do	1,342 25	$^{1,041}_{7}$	332 184	472 61
Waste and scrapdo	3.470	1,361	5,782	2,578
Waste and scrap do	4,062	1,732	7,629	4,090
Dust, powder, flakesdodo	3,928 NA	3,672 254	7,993 NA	9,519 438
arconium:	. IVA	204	NA	400
Ore including zirconium sandshort_tons	113,784	10,595	91,108	8,378
Metal, scrap, compoundsdo NONMETALS	1,934	25,026	1,647	22,122
Abrasives:	01 040	110 500	00.404	110 510
Diamond (industrial) thousand carats Other	21,848 NA	110,566 r _{158,276}	20,404 NA	110,510 188,667
sbestos metric tons	327,296	91,809	337,618	103,893
arite:	1 054	100 401	1.046	100 500
Crude and ground thousand short tons Witheriteshort tons	1,854 22,207	102,401 736	1,946 99	108,599 87
Chemicalsdo	25,097	10,623	22,309	11,938
oron:	9,938	6,393	1 104	763
Calcium borate, crudedo	r _{69,400}	6,218	1,124 98,100	15,202
Calcium borate, crudedo ement: Hydraulic and clinker _ thousand short tons	5,263	195,573	3,997	151,240
laysshort tons ryolitedo	34,052 17,086	6,688	33,314	7,895
eldspar:	17,000	9,442	7,188	4,679
Crudedo Ground and crusheddo	232	112	108	44
Ground and crusheddodo luorspardo	172 899,219	$\frac{21}{94,103}$	98 826,783	18 104,938
em stones:	033,213	34,100	020,100	
Diamond thousand carats	4,161	2,251,195	4,407	2,201,262
Emeraldsdo	3,601 NA	141,413 ^r 342,123	2,298 NA	131,560
raphiteshort tons_	61,318	15,765	68,708	433,428 23,998
/psum:			•	
Crude, ground, calcined thousand short tons	7,367 NA	35,895 15,985	7,595 NA	39,605 12,115
Manufactures' thousand pounds_	6,234	28,848	6,099	36,231
me:				
Hydratedshort tons Otherdo	62,423 $417,792$	3,129 16,044	65,717 $438,623$	3,471 18,092
thium:		•	400,020	10,032
Oredo	r3,893	r460	e4,000	NA
Compounds do do agnesium compounds:	62	^r 1,841	280	1,845
Crude magnesite do	46	20	12	2
Lump, ground, caustic-calcined magnesia do	12,406	2,122	12,065	2,177
Refractory magnesia, dead-burned, fused magnesite, dead-burned dolomitedo	72,719	16,830	76,810	23,114
Compounds do do	36,124	5,907	35,382	6,241
ca:	11.055			
Uncut sheet and punch thousand pounds Scrap do	11,877 73	$\frac{3,305}{7}$	11,558 352	2,747 23
Manufacturesdodo ineral-earth pigments, iron oxide pigments:	831	3,487	664	3,059
ineral-earth pigments, iron oxide pigments:				
Ocher, crude and refinedshort tons Siennas, crude and refineddo	1 244	1 116	150 98	80 42
Umber, crude and refined do	4,434	686	5,919	944
Vandyke brown do Other natural and refined do	687	260	1,070	340
Syntheticdo	$ \begin{array}{r} 817 \\ 33,262 \end{array} $	298 18,674	971 $31,453$	970 16.539
epheline svenite:	33,202	10,014	31,433	10,555
Crudedo Ground, crushed, etcdo	6,760	71	2,780	25
itrogen compounds (major) including urea	497,580	11,193	503,320	11,504
thousand short tons	5,110	583,808	4,844	610,574
at: Fertilizer-grade short tons	944 929	Inc oon	001 700	05.055
Fertilizer-gradeshort tons Poultry- and stable-grade do	344,363 57,204	^r 38,223 ^r 5,997	291,732 50,198	37,955 6,845
nosphate, crude thousand metric tons	486	12,856	13	420
nosphatic materials:				
Fertilizer and fertilizer materials thousand metric tons	32	5,737	16	3,112
Ammonium phosphates used as fertilizers do	294	53,053		0,112
Elemental phoenhorus do	(²)	928	(²)	1,247
Elemental phosphorus				
Otherdo	(²) 77	16,630	92	15,509

Table 10.—U.S. imports for consumption of principal minerals and products, excluding mineral fuels —Continued

	19	80	19	81
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)
NONMETALS —Continued				
Pigments and salts:		*** ***	15 100	#1 F 000
Lead pigments and compounds metric tons	12,934	\$15,225	15,186	\$15,233 33,501
Zinc pigments and compoundsdodo	38,628	30,062	38,615	750,400
Potash do	8,193,000	648,000	7,903,300	100,400
Pumice:		100	0.054	70
Crude or unmanufacturedshort_tons	4,618	133	2,954	601
Wholly or partly manufactured do	r _{189,700}	r _{1,085}	89,329	
Manufactured, n.s.p.f	NA	92	NA	126
Manufactured, n.s.p.f Quartz crystal (Brazilian pebble) thousand pounds	816	402	389	233
Salt thousand short tons	5,263	44,071	4,974	49,157
I				401
Industrial sand	39	1,575	5	621
Industrial sanddodo Other sand and graveldodo	502	1,143	333	1,987
Sodium compounds:				404
Sodium hicarbonatedodo	2	425	3	680
Sodium carbonate	18	2,389	12	1,62
Sodium sulfate do	230	13,242	275	19,13
Stone:		2.5	N 1 1 2 2 2 2	
Crushed do	r _{3,590}	r _{10,576}	3,355	9,300
Dimensiondo	NA	88,948	NA	131,416
Calcium carbonate finesdo	294	3,248	270	4,577
Strontium:				
Mineral short tons	38,646	2,147	49,699	3,200
Compoundsdo	2,932	1,888	4,627	3,400
Sulfur and compounds, sulfur ore and other	,-			
forms, n.e.s thousand metric tons	2,523	138,852	2,522	209,766
Talc, unmanufactured thousand short tons	21	3,720	27	4,562
Total	XX	r26,096,469	XX	28,828,659

 $^{^{\}rm e}$ Estimated. $^{\rm p}$ Preliminary. $^{\rm r}$ Revised. NA Not available. XX Not applicable. $^{\rm 1}$ Includes titanium slag averaging about 70% TiO2. For detail, see Titanium chapter. $^{\rm 2}$ Less than 1/2 unit.

Table 11.—Comparison of world and U.S. production of selected nonfuel mineral commodities

(Thousand short tons unless otherwise specified)

		1980			1981 ^p	81 ^p	
			U.S.			U.S.	
Mineral	World	U.S.	percent	World	U.S.	percent	
Milleral	* produc-	produc-	of	produc-		of	
	tion1	tion	world	tion ¹	produc- tion	world	
	CIOII	CIOII	produc-	LIOII	LIOII	produc-	
			tion			tion	
METALS, MINE BASIS							
Antimony (content of ore and concentrate)							
-L	71,727	343	(2)	65,246	646	1	
Arsenic, white ³ dodo	31,666	w	NA	31,651	W	NA	
Arsenic, white ³ do Bauxite ⁴ thousand metric tons Beryl ⁸ short tons_ Bismuth thousand pounds	88,786	1,559	2	85,729	1,510	2	
Beryl'short tons	2,767	W	NA	2,903	W	NA	
	7,162	w	NA	7,159	w	NA.	
Chromite Cobalt (content of ore and concentrate)	10,746			10,225		· · · ·	
short tons	33,738			94 440			
Columbium-tantalum concentrate (gross	30,130			34,449			
weight) thousand pounds_	81,071	NA	NA	84,958	NA	NA	
Copper (content of ore and concentrate)							
thousand metric tons	7,656	1,181	15	8,171	1,538	19	
Gold (content of ore and concentrate)			_		· · · · · · · · · · · · · · · · · · ·		
thousand troy ounces	39,141	970	2	40,785	1,378	3	
ron ore (gross weight) thousand long tons	881,720	gn e10	8	047 104	70 177	_	
Lead (content of ore and concentrate)	001,120	69,613	8	847,184	73,174	9	
thousand metric tons	3,428	550	16	3,353	446	13	
Manganese ore (35% or more Mn, gross	0,120	000	. 10	0,000	440	10	
weitht)	29,091			25,985			
Mercury thousand 76-pound flasks	204	31	15	207	28	14	
Molybdenum (content of ore and			22				
concentrate) thousand pounds	241,745	150,686	62	240,387	139,900	58	
Nickel (content of ore and concentrate)	821	15	2	772	12	2	
Platinum-group metals ³ thousand troy ounces	c 09c		(2)	0.000	•		
Silver (content of ore and concentrate)	6,836	3	(2)	6,823	6	(2)	
do	339,800	32,329	10	364,912	40,685	11	
Fin (content of ore and concentrate)		02,020		001,012	20,000	- 11	
metric tons	246,493	w	NA	252,509	w	NA	
itanium concentrates (gross weight):			12.2				
IlmeniteRutile	4,019	549	14	3,979	509	13	
	460	w	NA	398	W	NA	
Tungsten concentrate (contained tungsten) thousand pounds	114,059	6,072	5	108,351	7.049	7	
anadium (content of ore and concentrate)	114,000	0,012	U	100,001	7,948	•	
short tons	38,281	4,806	13	38,933	5,126	13	
linc (content of ore and concentrate)		-,		00,000	0,120	10	
thousand metric tons	5,775	317	5	5,841	312	5	
METALS, SMELTER BASIS							
lluminum (primary only)	17,006	5,130	30	16,613	4,948	30	
admium metric tons	18,130	1,578	9	17,721	1,603	30 9	
obaltshort tons	33,227	500	ž	31,278	447	í	
copper smelter (primary and secondary)5	,	-	-	01,510		-	
thousand metric tons	7,939	1,053	13	8,325	1,378	17	
ron, pig	562,534	68,699	12	552,037	73,755	13	
ead, smelter (primary and secondary)6							
thousand metric tons	5,134	1,223	24	4,981	1,136	23	
Magnesium (primary only)	350	169	48	328	143	44	
lickel'	806	44	5	770	49	6	
elenium ⁸ thousand pounds	3,018	311	10	2,954	555	19	
allurium ⁸ thousand nounds	787,477 321	⁹ 111,835 W	14	776,398	9119,912	15	
teel, raw thousand pounds_ ellurium ⁸ thousand pounds_ in metric tons_	250,099	103,000	NA	279	W	NA	
inc (primary and secondary)	200,000	3,000	1	242,097	¹⁰ 2,000	1	
thousand metric tons	6.057	370	6	6,140	393	6	
NONMETALS	0,001	0.0	· ·	0,140	000	U	
	4.00						
sbestosdo	4,887	80	2	4,726	76	2	
oron minerals	8,069 3,091	112,245	28 50	8,715	112,849	33	
oron minerals thousand pounds	760,569	1,545 11378,100	50 50	3,252	1,481	46	
ement, hydraulic	974,825	1276,709	8	760,597 978,919	¹¹ 378,200 ¹² 72,932	50 7	
lavs.	0.2,020	10,100	o	310,313	12,392	7	
Bentonite ⁸ Fuller's earth ⁸ Kaolin ³	6,669	¹¹ 4,185	63	7,443	114,947	66	
Fuller's earth ⁸	1,941	111.534	79	1,998	111,656	83	
Kaolin ³	25,941	117,879	30	25,452	117,660	30	
orundum thousand carats	32			32	.,000	00	
namond thousand carats	42,107			39,121			
				•			
See footnotes at end of table.							

Table 11.—Comparison of world and U.S. production of selected nonfuel mineral commodities —Continued

(Thousand short tons unless otherwise specified)

		1980			1981 ^p	
Mineral	World produc- tion ¹	U.S. produc- tion	U.S. percent of world production	World produc- tion ¹	U.S. produc- tion	U.S. percent of world produc- tion
NONMETALS —Continued						
Diatomite Peldspar³ Fluorspar Graphite Gypsum Iodine, crude Lime (sold or used) Magnesite Mica (including scrap and ground ⁸) Nitrogen, N content of ammonia Peat Perlite Phosphate rock thousand metric tons Potash (K ₂ O equivalent) Salt Sodium compounds, natural and manufactured: Sodium carbonate	1,645 3,480 5,436 654 86,310 25,521 130,779 12,489 13730,840 78,673 224,711 1,628 138,333 27,673 14,021 185,788	11 ₆₈₉ 710 93 12,376 W 12 ₁₉ ,037 W 13454,000 16,244 1638 54,415 2,239 11 ₅₄₃ 11 12 ₄₀ ,378	42 20 2 -14 NA 15 NA 62 21 (2) 39 39 8 4 22	1,638 3,444 5,508 655 84,982 26,517 128,908 12,272 13772,976 78,778 224,959 138,630 27,357 14,084 183,106	11687 665 115 11,497 W 1218,8990 W 13500,000 15,648 686 11591 53,624 2,156 11499 11 1238,915	42 19 2 2 -14 NA 15 NA 65 20 (²) 37 39 8 4 21
Sodium sulfateShort tons Strontium ⁸ short tons	4,791 94,560	1,139	26 24 	31,214 4,848 93,665	8,281 1,143 	27 24
thousand metric tons Talc and pyrophyllite Vermiculite ⁸	56,635 7,428 588	11,866 1,240 337	21 17 57	55,669 7,292 576	12,145 1,343 320	22 18 56

PPreliminary. NA Not available. W Withheld to avoid disclosing company proprietary data.

1For those commodities for which U.S. data are withheld to avoid disclosing company proprietary data, the world total excludes U.S. output and the U.S. percent of world production cannot be reported.

2Less than 0.5%.

³World total does not include an estimate for output in China.

[&]quot;World total does not include an estimate for output in china.

4U.S. figures represent dried bauxite equivalent of crude ore; to the extent possible, individual country figures that are included in the world total are also on the dried bauxite equivalent basis, but for some countries, available data are insufficient to permit this adjustment.

5Primary and secondary blister and anode copper, including electrowon refined copper that is not included as blister or

anode.

6Includes bullion.

⁷Refined nickel plus nickel content of ferronickel, and nickel oxide.

^{*}World total does not include estimates for output in the U.S.S.R. or China.

⁹Data from American Iron and Steel Institute. Excludes production of castings by companies that do not report steel ingot.

10 Includes tin content of alloys made directly from ore.

¹¹Quantity sold or used by producers.

¹² Includes Puerto Rico.

¹³ Excludes sericite mica.

¹⁴ Excludes volcanic cinder (included in previous editions).

Abrasive Materials

By J. Fletcher Smoak¹

CONTENTS

	Page		Page
Foreign Trade	58	Corundum and Emery	62
Tripoli	60	Industrial Diamond	63
Special Silica Stone Products	61	Manufactured Abrasives	69
Garnet	69	Translated Tibrasives	09

Consumption of abrasive materials in the United States in 1981 was approximately \$340 million, of which 37% was industrial diamond (natural and synthetic), 39% manufactured abrasives, and 24% natural abrasives.

Production and shipments of natural abrasives, excluding emery and industrial diamond, decreased in quantity 9% and 7%, respectively, when compared with that of 1980. Emery showed the largest change in output, decreasing 30% in quantity and 20% in value.

Production of nonmetallic manufactured abrasives material plus shipments of metallic abrasives material decreased 5% in quantity but increased 4% in value. Non-

metallic manufactured abrasives consisted of aluminum oxide (fused) and crude silicon carbide produced in the United States and Canada and accounted for 63% of the value of all manufactured abrasives. Metallic abrasives shipments included chilled and annealed iron shot and grit, steel shot and grit, plus cut wire, aluminum, and stainless steel shot and equaled 37% of the value of all manufactured abrasives.

Although total imports increased in value, imports of industrial diamond decreased 7% in quantity and the value was approximately the same as that of 1980. Total exports and reexports of abrasive material decreased in value.

Table 1.—Salient abrasives statistics in the United States

	1977	1978	1979	1980	1981
Natural abrasives production	125,661 \$777 2,200 \$3,236 21,980 \$1,303 W 640,723 \$186,654 \$121,579 \$35,363 \$192,870	138,311 \$849 *2,175 *\$2,630 20,822 *\$1,310 W 550,877 \$172,554 \$138,659 \$41,016 \$231,720	*127,878 *\$831 *2,094 *\$2,064 21,240 *\$1,535 10,005 \$204 712,733 \$230,024 \$185,587 \$42,922 \$270,599	121,233 \$676 2,131 \$2,233 26,909 \$1,908 W W *614,963 \$216,946 \$193,679 \$47,521 \$268,842	107,330 \$617 24,501 2\$1,176 25,451 \$2,059 W 5586,915 5\$225,503 \$189,719 \$27,758 \$299,177

W Withheld to avoid disclosing company proprietary data. ^eEstimated. Revised.

Estimated. Revised. w withheld to avoid discussing company proprietary data.
¹Includes grinding pebbles, grindstones, oilstones, tube-mill liners, and whetstones. Finished product data for 1977-80 and crude production data for 1981.

and crude production data for 1701.

The large increase in quantity and decrease in value was caused by changes in reporting procedure. In 1977-80, quantity and value were for finished products; 1981 data were for crude mined quantity and value (first marketable value). Finished product data are shown in table 7.

³Primary garnet—denotes first marketable product.

Excludes U.S. and Canadian production and value of aluminum-zirconium oxide.

FOREIGN TRADE

Imports of abrasive materials in 1981 were 11% higher in value than in 1980 and exports plus reexports decreased 10% in value. Net imports, the excess of imports over exports and reexports, were valued at \$81.7 million.

Industrial diamond imports totaled 20.4 million carats of loose material valued at \$111 million, a decrease of 7% in quantity with no appreciable change in value from that of 1980. Ireland, the largest U.S. source of imported industrial diamonds in terms of quantity, shipped to the United States a total of 9.3 million carats valued at \$19.3 million, a decrease of 6% in quantity and 8% in value from that of 1980. The share of imports from Ireland was 46% of the total quantity and 17% of the total value. Of the 9.3 million carats from Ireland, 8.2 million carats were synthetic powder and dust with an average value of \$2.00 per carat.

The Republic of South Africa, the largest U.S. source of imported industrial diamonds in terms of value, shipped to the United States a total of 4.0 million carats valued at \$46.3 million, a decrease of 26% in quantity and 21% in value from that of 1980. The share of imports from the Republic of South Africa was 20% of the total quantity and 42% of the total value. Of the 4.0 million carats, 3.0 million carats were industrial diamond stones with an average value of \$14.60 per carat.

Exports of industrial diamonds, loose, were 28.3 million carats, nearly the same as in 1980; the value was \$69.5 million, a decrease of 7%. Reexports of industrial diamond, loose, were 2.4 million carats, a decrease of 33%; the value was \$27.3 million, a decrease of 42%. The diamond content in diamond wheels, exported and reexported, was 694,116 carats, a decrease of 5%; the declared value was \$7.7 million, an increase of 4%. Imports of diamond wheels are listed by number and value; the value in 1981 increased to \$5.6 million from \$4.5 million in 1980.

Includes Canadian production of silicon carbide and aluminum oxide and shipments of metallic abrasives by U.S.

Table 2.-U.S. exports of abrasive materials, by kind

(Thousands)

	198	0	1981	
Kind	Quan- tity	Value	Quan- tity	Value
NATURAL ABRASIVES				
Industrial diamond, natural or synthetic, powder or dust carats Industrial diamond, natural or synthetic, otherdo Emery, natural corundum, pumice in blocks pounds	28,162 301 31,612	\$68,866 5,570 1,195	27,887 450 35,585	\$64,166 5,331 1,099
MANUFACTURED ABRASIVES				
Artificial corundum (fused aluminum oxide)do Silicon carbide, crude or in grainsdo Carbide abrasives, n.e.cdo Other refined abrasivesdodo	37,857 27,311 811 24,760	18,864 13,258 1,472 6,958	32,326 22,979 684 36,419	17,046 11,137 1,481 8,688
Diamond carats Polishing stones, whetstones, oilstones,	696	7,161	682	7,547
hones, similar stone number Wheels and stones, n.e.cpounds_ Abrasive paper and cloth, coated with natural	681 5,978	2,181 23,330	844 5,813	2,501 26,361
or artificial abrasive materialsdodo Grit and shot, including wire pelletsdodo	19,141 31,882	35,912 8,912	16,462 27,608	35,497 8,865
Total	XX	193,679	XX	189,719

XX Not applicable.

Table 3.-U.S. reexports of abrasive materials, by kind

(Thousands)

	1980)	1981	
Kind	Quan- tity	Value	Quan- tity	Value
NATURAL ABRASIVES	, ,			
Industrial diamond, natural or synthetic, powder or dust carats Industrial diamond, natural or synthetic, otherdo Emery, natural corundum, pumice in blocks pounds_	372 3,268 113	\$1,382 45,659 35	584 1,847 73	\$1,611 25,647 16
MANUFACTURED ABRASIVES				
Silicon carbide, crude or in grainsdodo Grinding and polishing wheels and stones:	11	6	41	11
Diamond carats	34	276	12	159
Wheels and stones, n.e.c. ¹ pounds Abrasive paper and cloth, coated with natural	30	134	35	139
or artificial abrasive materials	10	29	62	172
Grit and shot, including wire pellets			11	3
Total	XX	47,521	XX	27,758

XX Not applicable.

Includes value of hones, whetstones, pulpstones, oilstones, polishing stones, and quantity and value of other abrasive wheels.

Table 4.—U.S. imports for consumption of abrasive materials (natural and artificial), by kind

(Thousands)

	19	30	1981	
Kind	Quan- tity	Value	Quan- tity	Value
Corundum, crude or crushedshort tons_	(1)	(¹)		
Emery, flint, rottenstone, tripoli, crude or crushed do	· 6	\$504	- <u>-</u> -	\$529
Silicon carbide, crudedo	78	29,112	80	33,602
Aluminum oxide, crude	181	48.520	188	61,762
Other crude artificial abrasivesdo	101	196	100	254
Abrasives, ground grains, pulverized or refined:		130		204
Rottenstone and tripolidodo	(2)	1	•	_
Silicon carbide do	5	8,314	(2)	5
Silicon carbide do Aluminum oxide do	7		5	8,611
Emery, corundum, flint, garnet, other.		4,914	9	7,784
including artificial abrasivesdodo	4	5.544	_	
Papers clothe other meterials whells as as at least	4	5,744	2	4,554
coated with natural or artificial abrasives	(3)	00.00#		
Hones, whetstones, oilstones, polishing stones number	(³) 235	38,207	(3)	45,304
Abrasive wheels and millstones:	230	337	464	490
Burrstones manufactured or bound up into				
millstonesshort tons	4			
Solid natural stone wheels number_	(*)	1	(2)	_1
Diamonddo	72	93	22	150
Abrasive wheels bonded with resins pounds	93	4,526	92	5,607
	3,794	7,066	5,215	8,728
	(3)	7,614	(3)	7,335
Articles not specifically provided for: Emery or garnet	_			
Natural corundum or artificial abrasive	(3)	44	(3)	17
Natural corundum or artificial abrasive				
materials	(3)	579	(3)	1,235
Other, n.s.p.f	(³)	2,123	(3)	2,211
Diamond, natural and synthetic:		•	, ,	-,
Diamond dies number	9	393	11	488
Crushing bort carats	60	209	12	55
Natural industrial diamond stones do	5,013	69,118	4.638	70,998
Miners' diamond do	41.161	10.183	1.310	11,858
Powder and dust, synthetic	12,003	20,775	10.874	20,215
Powder and dust, natural	3,604	10,269	3.570	7,384
Total	XX	r268,842	XX	299,177

^rRevised. XX ¹Revised to zero. XX Not applicable.

TRIPOLI

Fine-grained, porous silica materials are grouped together under the category tripoli because they have similar properties and end uses. Production of crude tripoli (table 1) decreased 11% in quantity and nearly 9% in value in 1981. Processed tripoli, sold or used (table 6), decreased 8% in quantity but increased 5% in value. The decreases in production were attributed to depressed general economic conditions. Of the processed tripoli, 62% was used for fillers in 1981 and 38% was used for abrasives, slightly changed from that in 1980.

The six tripoli producers in 1981 were Malvern Minerals Co., Garland County, Ark., which produced crude and finished material; Midwestern Minerals which produced crude material in Ottawa County, Okla., and finished material in Benton County, Ark.; American Tripoli Co., Div. of The Carborundum Co., which pro-

duced crude in Ottawa County, Okla., and finished material in Newton County, Mo.; Illinois Minerals Co. and Tammsco, Inc., both in Alexander County, Ill., which produced crude and finished amorphous (microcrystalline) silica; and Keystone Filler and Manufacturing Co., in Northumberland County, Pa., which processed rottenstone (decomposed fine-grained siliceous limestone or shale). The producer list had not changed since 1975.

Malvern Minerals Co., Hot Springs, Ark., reported plans for expansion in 1982 that would double its processing capacity. Illinois Minerals Co., Cairo, Ill., reported that an ongoing plant expansion increased its production of various product grades by almost 50%.

Prices for tripoli and amorphous silica are reported in table 5.

Less than 1/2 unit.

³Quantity not reported.

⁴Includes 679 carats of synthetic miners' diamond.

Table 5.—Quoted prices for tripoli and amorphous silica

2.75
2.90
2.90
3.15
5.00
6.00
7.00
9.50
1.00 6.50
6.50
4.50
5.00

Source: Engineering and Mining Journal, December

Table 6.—Processed tripoli¹ sold or used by producers in the United States, by use²

Use	1977	1978	1979	1980	1981
Abrasives short tons Value thousands Filler short tons Value thousands Other short tons Value thousands Value thousands	70,631 \$2,805 42,599 \$2,212 2,689 \$119	75,574 \$3,709 36,505 \$2,220 e2,190 e\$97	53,600 \$2,468 62,409 \$3,811	39,352 \$2,253 59,909 \$4,025	34,494 \$2,206 56,932 \$4,393
Totalshort tons_ Value ^s thousands_	115,919 \$5,136	114,269 \$6,026	116,009 \$6,279	99,261 \$6,277	91,426 \$6,600

^eEstimated.

SPECIAL SILICA STONE PRODUCTS

Special silica stone products produced in 1981 included oilstones-whetstones from Arkansas and Indiana, grindstones from Ohio, grinding pebbles and tube-mill liners from Minnesota, and deburring media from Ohio and Wisconsin.

Companies that mined novaculite and produced oilstones-whetstones in Garland County, Ark., were Hiram A. Smith, Inc., and Halls Arkansas Oilstone, Inc. Norton Pike Div. of Norton Co. mined novaculite in Garland County, Ark., and produced the finished stones in Littleton, N.H. Arkansas Whetstone Co. mined novaculite in Hot Springs County, Ark., and produced the finished stones in Garland County, Ark.

Companies that produced oilstones-whetstones in Garland County, Ark., but did not operate mines were: Arkansas Abrasives, Inc.; Frontier Whetstones Cutting Co.; Natural Hones, Inc.; Pioneer Whetstones Co.; and Poor Boy Whetstones. Hindostan Whetstone Co. operated a plant in Lawrence County, Ind., to finish cuticle stone obtained from a quarry in Orange County, Ind. Cleveland Quarries Co. produced grindstones at its Amherst quarry in Lorain County, Ohio. Jasper Stone Co. produced grinding media, both rough and rounded, from its quarry in Rock County, Minn.; and Baraboo Quartzite Co., Inc., produced deburring media at its quarry in Sauk County, Wis.

Includes amorphous silica and Pennsylvania rottenstone.

²Partly estimated.

³Data may not add to totals shown because of independent rounding.

Table 7.—Special silica stone products sold or used in the United States¹

Year	Quantity (short tons)	Value (thou- sands)	
1977	2,200	\$3,236	
1978 ^e	2,175	2,630	
1979	2,094	2,064	
1980	2,131	2,233	
1981	2,023	² 4,258	

e_{Estimated}

GARNET

The United States accounted for about 75% of the world's garnet production. The rest was produced primarily in India, the U.S.S.R., and Australia. Sales of domestic garnet decreased 4% in quantity, but increased 5% in value in 1981. Four producers were active-two in New York and one each in Idaho and Maine, Barton Mines Corp., Warren County, N.Y., sold garnet for use in coated abrasives, glass grinding and polishing, and metal lapping. The NYCO Div. of Processed Minerals, Inc., Essex County, N.Y., reported that its garnet was used mostly in sandblasting and in bonded abrasives. Emerald Creek Garnet Milling Co. operated two mines in Benewah County, Idaho, and reported that its garnet was used chiefly in sandblasting and water filtration. Industrial Garnet Extractives, Inc., near Rangeley in Oxford County, Maine, produced almandine garnet and a garnetcontaining utility grit that was used largely in sandblasting and water filtration. Industrial Garnet started a new drying, screening, and bagging line that doubled its processing capacity. NYCO completed a plant expansion that more than tripled its capacity and improved product sizing.

Table 8.—Garnet sold or used by producers in the United States

Year	Quantity (short tons)	Value (thou- sands)	
1977	20,022	r\$3,315	
1978	22,058	[†] 3.918	
1979	23,303	r4,647	
1980	26,550	r ₄ ,934	
1981	25,519	5,204	

^rRevised.

CORUNDUM AND EMERY

Corundum.—No domestic corundum was produced in the United States in 1981, and there were no imports of abrasive-grade corundum in 1980-81. Demand was met by withdrawal from stocks. The United Nations embargo against Zimbabwean corundum had been removed. However, the United States had not directly imported corundum from Zimbabwe since 1968. In recent years, the domestic supply had almost entirely consisted of material imported from Zimbabwe via the Republic of

South Africa by one firm in Massachusetts. Another firm, also in Massachusetts, had accounted for one-half of the total domestic consumption. Corundum was used in grinding and polishing optical components.

The latest 1981 prices quoted in Engineering and Mining Journal for crystal corundum were \$170 to \$187 per short ton of crude material, c.i.f. U.S. ports, in March 1981. This is the same price quoted in December 1980.

¹Includes grinding pebbles, grindstones, oilstones, tubemill liners, and whetstones.

²Large increase in value because finished stone producers who purchase crude material from other producers have been included.

Table 9.—Natural corundum: World production, by country¹

(Short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
India Kenya	^e 1,440	1,193 (3)	1,002 e(3)	1,603 e(3)	1,650
South Africa, Republic of	152	20	82	155	4100
U.S.S.R. ^e	8,800	9,400	9,400	9,500	9,500
Uruguay	464	^r 246	250	250	250
Zimbabwe	5,342	8,120	18,329	20,592	20,945
Total	^r 16,198	r _{18,979}	29,063	32,100	32,445

^eEstimated. ^pPreliminary. ^rRevised.

¹Table includes data available through May 26, 1982.

In addition to the countries listed, Argentina may have produced minor quantities of this commodity, but output is not reported and available information is inadequate for formulation of reliable estimates of output levels.

3 Less than 1/2 unit.

*Reported figure.

Emery.—Two companies, De Luca Emery Mine, Inc., and John Leardi Emery Mine, operated emery mines in 1981, both near Peekskill in Westchester County, N.Y. The crude material was processed by two companies: Washington Mills Abrasive, Co., North Grafton, Mass.; and Emeri-Crete, Inc., New Castle, N.H. Domestic emery was used mostly in aggregates as a nonslip additive for floors, pavements, and stair treads. Minor uses for domestic emery were as coated abrasives and tumbling or deburring media.

World production of emery was principal-

ly in Greece and Turkey. In 1980, production of emery in Greece was estimated to be 10,000 tons. Production of emery in Turkey in 1980 was reported to be 44,000 tons. No values are available on the production in either country.

Prices quoted for emery by domestic suppliers in December 1981 ranged from \$145 per ton for the lowest grade nonskid flooring material to \$520 per ton for specialized industrial abrasive grade, in truckload quantities, f.o.b. plant.

INDUSTRIAL DIAMOND

Domestic production of synthetic industrial diamond in 1981 was estimated to be 57 million carats, a 14% increase over that of 1980. Secondary production, salvage from used diamond tools and from wet and dry diamond-containing waste, was estimated to be 2.3 million carats in 1981.

The Government stockpile inventory as of December 31, 1981, included 23.7 million carats of crushing bort and 17.7 million carats of stones, exceeding the respective goals of 22.0 million carats and 7.7 million carats by 1.7 million carats and 10.0 million carats, respectively. Available for disposal from prior enabling legislation were 1.7 million carats of bort and 3.7 million carats of stone. The inventory of small diamond dies was 25,473 pieces; the goal was 60,000 pieces.

The United States remained the largest consumer of natural industrial diamond stones but was totally dependent on foreign sources, importing approximately 6 million carats. Owing to political instability, supplies from Zaire and other areas remained in potential danger of disruption. Output was largely dependent on the output of gem diamond, which was limited by economic and other factors not directly related to the demand for industrial stones. World reserves are only marginally sufficient to meet world demand for industrial stones through 2000. However, the discovery of a large deposit of diamond predominantly of industrial quality in Australia may substantially improve the supply by 1986. Increased use of synthetic polycrystalline diamond compacts and other synthetic products could also alleviate any supply shortfall.

Exports and reexports of industrial diamond dust and powder, including synthetics, totaled 28.5 million carats valued at \$65.8 million. Exports and reexports of stones totaled 2.3 million carats valued at

\$31.0 million.

Domestic exploration for diamonds continued. More than 90 kimberlite occurrences were known in the Colorado-Wyoming State line district and the Iron Mountain district of Wyoming. Microdiamonds have been recovered from some of the State line diatremes near Tie Siding, Wyo. A \$2.5 million test plant has been built in Fort Collins, Colo., to evaluate diamond-bearing rock.

Table 10.—U.S. imports for consumption of industrial diamond (excluding diamond dies)

(Thousand carats and thousand dollars)

Year	Quantity	Value
1979 1980 1981	21,848	110,934 110,566 110,510

Table 11.—U.S. imports for consumption of industrial diamond, by country.

(Thousand carats and thousand dollars)

	Natura (i eng	Natural industrial diamond stones (including glazers' and engravers' diamond, unset)	al diamono glazers' an amond, un	l stones id set)		Miners' diamond ²	iamond ²	-	Pow	der and d	Powder and dust, synthetic	etic	Pow	der and	Powder and dust, natural	lag
Country	11	1980	1981	31	1980	30	19	1981	1980	08	19	1861	1980	l	1981	=
	Quantity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan-	Value	Quan-	Value
Australia. Belgium-Luxembourg Canada Canada Congo Finland France Germany, Federal Republic of Ghana Ireland Ireland Japan Mexico Motherlands South Africa, Republic of Switzerland	142 00 00 00 00 00 01 01 01 01 01 01 01 01	3,513 292 652 653 778 278 278 278 278 278 1,345 1,389 52,188 52,188 52,188 52,188 52,188 52,188 52,188 52,188 52,188 53,56 54 54 54 54 54 54 54 54 54 54 54 54 54	648 648 648 152 1152 1152 1152 1152 1152 1152 1152	51 6,226 7,430 7,430 1,4 1,225 1,966	242	677 1,953 1,1953 1,111 1,111 1,1953 1,19	25	586	658 585 585 2 8.89 8.189 7.73 1.17 1.17 1.17 1.17 1.17 1.17 1.17	1,119 20 20 731 731 731 732 733 733 733 733 733 733 733 733 733	60 632 632 632 632 633 801 801 801 801 801 801 165 7 165 176 176	175 176 179 179 16,414 16,414 177 16,414 177 18 8 18 19 19 19 19 19 19 19 19 19 19	365 4 4 1 1 390 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5682 5682 1682 1687 1,067 20 20 20 673 244 244 244	830 839 839 839 116 -4 -4 -4 16 2652 2,652 16 16 16 16 16 16 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16
Other Africa, n.e.c	3 28 2	694 204	° 26 28	2,762 162	25 - 26 - 26	304	1,131 (°) 7	10,460 (°) 317	155	8 ¦181	162	409	397 r ₁₃	r ₃₁	455 12	410 27
Total*	5,013	69,118	4,638	70,998	1,161	10,183	1,310	11,858	12,003	20,775	10,874	20,215	3,604	10,269	3,570	7,384

TRevised.

**Includes 18772 carats of crushing bort in 1980 from the Republic of South Africa, and 12,072 carats from Ireland, the Republic of South Africa, Zaire, and the United Kingdom in 1981.

**Includes 1979 carats of synthetic miners' diamond in 1980.

**Includes 1979 carats of synthetic miners' diamond in 1980.

**Includes 172 unit.

**Data may not add to totals shown because of independent rounding.

WORLD REVIEW

Angola.—The state-controlled Endiema Corp. reportedly assumed all diamond prospecting. Output had fallen following independence in 1974 but had started to improve in 1979. Production was concentrated in the Luanda district where over 40 mines, all run by the state-owned company Companhia de Diamantes de Angola, are in operation.

Australia.-The Ashton Joint Venture evaluation program continued through 1981. Major drilling and sampling was performed on the kimberlite pipe AK-1, and sampling was performed on the alluvial deposits. A total of 34,300 tons had been sampled from the kimberlite pipe yielding 152,000 carats of diamond, and 52,100 tons had been sampled from the alluvial deposits yielding 104,000 carats. Agreement was reached with the Australian Government and engineering studies were underway on a proposal for a plant with an initial capacity of 2.25 million tons per year. Recommendation was expected to be made soon to the participants to proceed with the final design and construction of a large-scale commercial plant.4

Evaluation of the samples indicated 10% gem-quality stones, 30% near gem quality, and the balance industrial-grade diamond. Drilling had shown diamond to a depth of 200 meters. Test work on the kimberlite pipe AK-1 indicated that it contained 160 million tons, and if the average surface grade of 5 carats per ton were to persist, the potential total could be 800 million carats to a depth of 200 meters. Commercial operation was expected to start in late 1983 from the three alluvial deposits near the pipe.

Dampier Mining Co. was carrying out exploration work for diamond in the Kimberly region of Western Australia and entered into an agreement for exploration on the Stannite's lease in the Northern Territory.⁷

Botswana.—Production startup of the new Jwaneng Mine was scheduled for early 1982. The plant was designed to have a treatment rate of 4.8 million tons per year. It was estimated that 5 million carats per year could be recovered of which 60% to 70% would be industrial-grade diamond.

Ghana.—The last operating mine was expected to close in 1983 since reserves were expected to be exhausted. This, however, may not mean the end of diamond mining in Ghana because results of exploration on a large deposit in the Birim River Valley have been favorable.

Guinea.—Large-scale prospecting had proved most encouraging. A \$70 million diamond mining joint venture was to be launched by Bridge Oil Pty. Ltd. of Australia, Industrial Diamond Co. of the United Kingdom, Simonieres Vischer of Switzerland, and the Guinean Government. Production was scheduled to start in August 1983 at 200,000 carats per year and increase to 500,000 carats per year by 1985. Prospecting so far had indicated reserves of 1 million carats. 11

India.—The discovery of three reasonably large diamond stones in the Vajrakarur area of Andhra Pradesh led the Geological Survey of India to embark on a 3-year program of intensive diamond exploration.¹²

Namibia.—De Beers Consolidated Mines, Ltd., of the Republic of South Africa, has stepped up the pace of prospecting. Exploration efforts were concentrated in three areas. The greatest effort was between Chamis Bay and Bogenfels on the coast. Another intensive prospecting program was inaugurated in the northeastern corner of Namibia. De Beers was also reexamining the old German digs near Luderitz, working its way along the Orange River. De Beers also increased offshore prospecting. 13

South Africa, Republic of.—Three kimberlite pipes had been discovered near the western border with Namibia. De Beers had several diamond pipes in South Africa at an advanced stage of development that could be brought to production within the next few years. De Beers also entered into an agreement with Anglo Transvaal to examine and exploit a kimberlite pipe discovered on the farm Venetia. De Beers was building a sampling plant at the site. 15

De Beers was to close the treatment plant at Tweepad in its Namaqualand division until market conditions improved. The plant processed about 10% of the diamond from the mine. Also closed was one conglomerate treatment plant, a sample plant, and two small screening plants at the Consolidated Diamond Mine in Namibia.¹⁶

U.S.S.R.—The U.S.S.R.'s first underground diamond mine was under development in the Yakut region. It was expected to go into operation during the period 1982-85.¹⁷ Twin shafts were to be sunk—one, 6.5 meters in diameter, for ore removal and the other for ventilation. Both shafts were to be approximately 1,000 meters deep.¹⁸

TECHNOLOGY

A drill bit was produced incorporating natural diamond and synthetic diamond compacts. This bit exceeded the life of a standard tungsten carbide bit by more than 40 times, thus reducing trips to change the bits with a saving of as much as 40 hours on a 2,000-foot hole in coal seams. The drilling rates exceeded the carbide bit rate by up to three times. The higher penetration rate and longer bit life reduced drilling costs significantly.¹⁹

A polycrystalline synthetic diamond compact (PDC) core bit drilled five times faster than natural diamond core bits and produced better quality cores in pressure core drilling of San Andreas dolomite. The PDC drill increased penetration rates by 4 to 5 times that of surface set diamond core bits and by 10 times over tungsten carbide core bits in drilling uranium-bearing rock strata.²⁰

Sandia Laboratories developed a diffusion bonding technique for attaching polycrystalline diamond compact cutters to mounting studs on drill bits. The final goal of the project was to attach the cutters directly to the drill bits, thereby eliminating the studs. One of the most significant advances recently made in the bonding technology industry had been that of attaching polycrystalline diamond compact cutters to steel.²¹

Solid sintered diamond shapes (over 80% by volume diamond) were produced by incorporating diamond powder (0.7 to 90 micrometers) into a cobalt-silicon or cobalt-titanium metal alloy matrix. Shapes could be produced at lower temperatures and pressures when cobalt alloys were used instead of cobalt metal. The pressures and temperatures required were between 50 and 55 kilobars and 1,300° and 1,400° C, respectively. The high strength of the diamond matrix results from a sinter bonding of the diamonds. Leaching the bonding metal with acid did not destroy the sintered bond.

Diamond layers could be sintered onto cobalt-silicon and cobalt-titanium substrates with pressures of 55 to 58 kilobars and temperatures of 1,400° C to 1,500° C. It was also possible to sinter the diamond layers onto a tool-grade steel base if a cobalt alloy was used as an interface.²²

A new synthetic polycrystalline diamond drill was developed by a domestic manufacturer. The tool cuts rather than grinds through rock formations and was claimed to drill three times faster than conventional surface set diamond bits. The thermal stability of the 0.3-carat diamond (1,200° C)

without degradation) was a major technological breakthrough.²³

Polycrystalline diamond tools were designed to replace tungsten carbide tools in the machining of silicon-aluminum alloy engine parts. The edge life of the PDC tools averaged 18,000 engines, a 450-to-1 improvement over the carbide tools. Because the aluminum alloy does not weld to the PDC, burring was eliminated.²⁴

A manufacturer of carbon components converted its production procedure almost entirely to diamond-tooled operations. This led to a total time saving of between 35% and 40% and reduced the production cost per component by around 25%. Such savings reflect the elimination of a complete machining operation as well as a material cost saving of approximately 40%.25

A breakthrough occurred in the manufacture of rotary diamond dressing wheels. A manufacturer developed an electroforming system called the Elmet process, which eliminates the need for hand-setting of diamond and provides a strong matrix at low temperature. This factor results in a very low degree of distortion; therefore, precision rolls can be produced without the need for subsequent lapping or grinding.²⁶

An ultrathin diamond saw blade was developed for use in sawing silicon chips. The blade produces a kerf of only 0.0025 inch. This ultrathin cut reduces the waste of the expensive silicon material.²⁷

The use of synthetic diamond compacts as inserts in chain saws for cutting granite (blue stone) in Europe increased cutting rates from 54 square feet per hour with tungsten carbide inserts to 102 square feet per hour.²⁸ In a similar application in the United States, a stone company, cutting colitic limestone, doubled its output and increased the cutting life of the chain by 21 times when compared with tungsten carbide.²⁹

Use of a diamond electroplated wire in a cutting machine produced cost savings of up to 60% in marble quarrying in Italy. The single diamond wire could cut approximately 500 square meters of marble in 150 to 250 hours. 30

The use of diamond abrasive for grinding and polishing dimension stones was tested in Eastern Europe. Tests in the U.S.S.R. using diamond abrasive in dimension stone polishing doubled the output when compared with conventional abrasive polishing. Similar experiments carried out in Italy resulted in significant savings in dimension stone polishing.

Table 12.—Diamond (natural): World production, by country¹

(Thousand carats)

Sen H
trial lotal Gem
88
2,287 119
1,717
3.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1
8 8
423 538 961
⁷ 2,061 2,426
1,632
¹ 1,216 ¹ 1,441 2,657 ¹ 1,254 ¹ 372 ¹ 178 550 ¹ 320
F5,312 7,643 1
r384 r620
10 17 18
12 15
2,100 8,200 10,300 2,150 204 488 687 ¹ 271
r30,378 r39,659 r9,461

Table includes data available through May 30, 1982. Total diamond output (gem plus industrial) for each country is actually reported except where indicated by a footnote to be estimated. In contrast, the detailed separate production data for gem diamond and industrial diamond are Bureau of Mines estimates in the case of every country except Australia (1980-81), Central African Republic (1977-78), Liberia (1977-78), Liberia (1977-78), Sierra Leone (1977-78), and Venezuela (1978-81), for which source publications give details on grade as well as totals. The estimated distribution of total output between gem and industrial diamond is conjectural, and for most countries is based on the best available data at time of publication. China also produces some natural 'Revised. diamond, but output is not reported. "Preliminary. Estimated.

Total exports.

*All company output from the Republic of South Africa, except for that credited to the Finsch and Premier Mines for the years indicated; excludes De Beers Group output from Botswana, Lesotho, and Namibia.

MANUFACTURED ABRASIVES

Six firms produced crude fused alumina in the United States and Canada (table 13). Production was 64% of the furnace capacity of United States and Canadian plants. Reported 1981 production of white, high-purity material increased 9% to 37,000 tons, and production of regular material increased 5% to 166,000 tons. Of the combined output of white and regular material, 13% was, for nonabrasives applications, principally in the manufacture of refractories. Stocks reported totaled 16,500 tons as of December 31, 1981.

Washington Mills Abrasives Co. had produced for many years high-grade aluminum oxide and emery grains at its North Grafton, Mass., plant from crude ore supplied by other manufacturers. In September 1980. production of crude, high-quality fused aluminum oxide started at its new furnace plant in Niagara Falls, Ontario, Canada. The plant had been located in Canada because of the abundant supply of electrical energy and the availability of labor trained in arc furnace use. The plant contained the world's second largest electric arc furnace for the conversion of bauxite ore into aluminum oxide. Two products were produced depending on how rapidly the fused aluminum oxide was cooled. The first was basic aluminum oxide for the production of abrasive grains. The second was microcrystalline material that was converted into a tumbling media for the mass finishing mar-

Two firms produced fused aluminazirconium abrasives (table 13). Both firms operated plants in Canada, and one of the firms produced material in the United States. All production was used for abrasives applications. Output, 88% of furnace capacity in 1981, increased in both tonnage and value during the year.

Seven firms in the United States and Canada produced silicon carbide in 10 plants (table 13) in 1981. The companies produced crude material for abrasives, refractories, and other nonabrasive uses. Total production was 69% of capacity. Output decreased 8% in tonnage but increased 7% in value during the year. Abrasives use increased by 14% and accounted for 38% of the output. Metallurgical applications use decreased by 13% and accounted for 44% of the output. Refractory applications suffered

the greatest decrease in use, 38%, and accounted for 15% of the total output. Stocks totaled 14,700 tons as of December 31, 1981.

Norton Co. had recently completed a \$21 million expansion of its abrasive grain plant in Huntsville, Ala., and had a \$5.1 million expansion project underway at its vitrified grinding wheels facility in Worchester, Mass. This expansion, along with a \$3 million expansion of manufacturing capacity at its Niagara Falls, Ontario, Canada, plant, was scheduled for completion in 1982.

Universal Grinding Wheel Co. completed a \$4 million expansion at its Salem, Ill., bonded abrasive plant during late 1981. The expansion included new presses, finishing equipment, and greater oven and kiln facilities.

In the Stockpile Report to the Congress by the General Services Administration, December 31, 1981, the inventory of crude fused aluminum oxide in calendar year 1981 was approximately 250,000 tons, and the stocks of aluminum oxide abrasive grain were about 50,800 tons. The stocks of silicon carbide crude were 80,550 tons, and the goal was 29,000 tons.

Metallic abrasives were produced by 11 firms in 13 plants in the United States in 1981. Steel shot and grit comprised 92% of the total quantity of metallic abrasives sold or used; chilled iron shot and grit, 6%; and annealed iron shot and grit, 2%. The following three States supplied 80% of the total sold or used: Pennsylvania, 29%; Ohio, 26%; and Michigan, 25%. Other large suppliers operated in Indiana and Virginia. The total quantity, sold or used, decreased 2% from that of 1980, but the value increased 3%.

Cleveland Metal Abrasives Co. closed both of its operating plants in 1981. One plant was located in Toledo, Ohio, and the other in Birmingham, Ala. Metal Blast, Inc., discontinued production of chilled iron shot and grit, but manufacturing capability was maintained. Two new firms started production during 1981. One of the new firms, Jumbo Manufacturing Inc., in Tippecance, Ind., produced chilled iron shot and grit and planned to expand into malleable shot and grit in 1982. The other new firm, Metal Tec Steel Abrasives Co., Plymouth, Mich., produced steel shot. Three companies were deleted from the survey

because they either only recycled shot and grit or sold only scrap shot.

TECHNOLOGY

A domestic manufacturer developed a proprietary new synthetic mineral for abrasive products based on aluminum oxide and containing unspecified chemicals. The crystalline structure of the mineral was claimed to be more uniform than that of other abrasive minerals produced by conventional fusion processes. It was reported that this material has a toughness factor more than twice that of aluminum oxide. Coated abrasive products made with this new material reportedly increased service life 300% in metal removal operations and improved productivity.32 The product was being produced in a pilot plant operation, but a new manufacturing plant was under construction in Hastings, Minn., and was scheduled for completion in 1982.

A new energy- and cost-efficient process for manufacturing silicon carbide was being developed by a domestic manufacturer. Tests completed in the pilot plant in 1981 demonstrated the ability to produce granular silicon carbide on a continuous, steady state operating basis. The material was very uniform and was being tested as a metallurgical additive, for the manufacture of abrasives and refractories and other ceramic products.32

A domestic synthetic abrasive producer developed a new backing material for coated abrasives. The backing consists of two layers of high-strength polyester yarns that are stitched together rather than woven. The high-strength design is extremely important to the life and performance of belts operating under high bending and impact stresses. Since this backing maintains its strength throughout its life, the abrasive grains are more effectively presented to the workpiece, thereby improving grinding efficiency by as much as 20%.34

Because cubic boron nitride (CBN) reacts less with iron than does diamond, it is more applicable for certain engineering materials than diamond. Extensive studies were made on developing a practical method to synthesize the CBN from the hexagonal form under moderate pressure and temperature conditions. Research was undertaken to determine the effects of atmosphere and the additions of aluminum nitride (AlN). AlN was found to act as the catalyst for the synthesis; it lowered the transition temperature and pressure to 1,000° C and 7 gigapascals. Well-crystallized hexagonal boron nitride (BN) could be completely converted to CBN by the addition of 20 mole-percent of AlN at 1,600° C under a 6.5-gigapascals reducing atmosphere. No conversion of hexagonal BN to CBN was observed without added AlN under pressures of less than 7 gigapascals, even if the atmosphere was controlled. A dense CBN-AlN sintered compact, with a density greater than 99% of theoretical, was obtained. Direct bonding between cubic grains occurred. To enhance the catalytic effect of the AlN, the atmosphere in the high-pressure cell should be reducing.35

Because CBN has a self-sharpening capability, it cuts the metal cleanly with less frictional heat thereby reducing the possibility of thermal damage to the ground part. Many new machines have been developed to exploit the full productivity potential of CBN wheels. The material removal capabilities of these machines are so high that they may replace conventional lathes and milling machines, as well as grinding machines.36

¹Physical scientist, Division of Industrial Minerals.

²World Mining. V. 34, No. 5, May 1981, p. 108. *Industrial Minerals (London). Industrial Diamonds— Natural or Synthetic. No. 163, April 1981, p. 49. *CRA Limited (Melbourne, Australia). Press Release,

Jan. 8, 1982, 4 pp.

SEngineering and Mining Journal. V. 183, No. 1, January 1982, p. 144.

World Mining V. 34, No. 12, December 1981, p. 66.

⁷Industrial Minerals (London). No. 172, January 1982, p.

^{*}Murray, R. Botswana. Mining Annual Review—1981. Min. J. (London), June 1981, p. 482. *Page 11 of work cited in footnote 7.

¹⁰Mining Journal (London). V. 297, No. 7616, Aug. 7,

^{1981,} p. 93.

11 World Mining. V. 34, No. 10, October 1981, p. 80.

12 — V. 34, No. 7, July 1981, p. 64.

13 Lelyveld, J. De Beers Steps up Gem Search. New York Times, Jan. 7, 1981, Sec. D, p. 18.

 ¹⁴Mining Journal (London). Mining Annual Review—
 1981. Southern Africa. June 1981, p. 475.

^{1981.} Southern Africa. June 1981, p. 475.

15Engineering and Mining Journal. V. 182, No. 11,
November 1981, p. 31.

16——. V. 182, No. 8, August 1981, p. 147.

17World Mining. V. 34, No. 8, August 1981, p. 68.

15Mining Journal (London). Yakut Diamond Mine. V.

296, No. 7606, May 29, 1981, p. 410.

19General Electric Co., Specialty Materials Dept. (Worthington, Ohio). GE's Stratapax Drill Blanks Put Teeth in
Gene Praining Congretion. Cose History No. 401, July 1980. Gas-Draining Operation. Case History No. 401, July 1980,

²⁰______ Stratapax Drill Blanks Boost Penetration Rates of Coring Bit at New Mexico Mine Site. Case History No. 405, July 1980, 1 p.

Rates of Coring Dit at New Accession 1981, 1982, 1983, 1984, 1985,

Sintered Diamond Compacts. Fried Krupp GmbH, Krupp Research Inst. Essen, Federal Republic of Germany, Report No. BMPT-FB. T80-136. Available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161, Document No. N81 32334/7, 1982, 43 pp.

1982, 43 pp.

²³Engineering and Mining Journal. New Products Digest. V. 183, No. 1, January 1982, p. 112.

²⁴Leach, N. E. Machining Silicon-Aluminum Alloys. Cutting Tool Eng., v. 32, Nos. 1-2, January-February 1980, pp. 16-17. Abs. from Published Search, National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161. Document No. PB81-808941, August 1981, p. 8145.

²⁵Herbert, S. Diamonds Can Slice Carbon Cutting

²⁵Herbert, S. Diamonds Can Slice Carbon Cutting Times. Machinery and Production Eng. (Brighton, England), v. 135, No. 3492, Dec. 19, 1979, pp. 46-47. Abs. from Published Search, National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161. Document No. PB81-808941, August 1981, p. 8150.
 ²⁶Cutting Tool Engineering. Shorter Delivery Time, Lower Horsepower Requirements Promised in New Process for Making Diamond Rotary Dressers. V. 33, Nos. 12, January-February 1981, pp. 19-20. Abs. from Published Search, National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161. Document No. PB81-

808941, August 1981, p. 8101.

808941, August 1931, p. 3101.

27Herbert, S. More Chips Per Slice. Ind. Diamond Rev. (London), March 1979, pp. 79-82.

2*General Electric Co., Specialty Materials Dept. (Worthington, Ohio). Stratapax Blanks by General Electric Yield Production Economies in Stone Cutting Application.

Case History No. 406, July 1980, 1 p.

29——. Stratapax Blanks Help Double Production for Elliott Stone Company, Inc. Case History No. 407, July 1980, 1 p.

³⁰Quarry Management and Products (Nottingham). New Products. V. 8, No. 5, May 1981, p. 373.

31Page 59 of work cited in footnote 3.

³²Foundry Management and Technology. V. 109, No. 5, May 1981, p. 65.

33Industrial Minerals (London). No. 167, August 1981, p.

³⁴Obrzut, J. J. Coated Abrasive Belts Get Stronger Backing. Iron Age, Aug. 3, 1981, p. 59.
³⁵Hirano, S., T. Yamaguchi, and S. Naka. Effects of AlN Additions and Atmosphere on the Synthesis of Cubic Boron Nitride. J. Am. Ceram. Soc., v. 64, No. 12, December 1981, pp. 734-736.

³⁶Obzut, J. J. Get Superproductivity From Superabrasives. Reprint from Iron Age, May 13, 1981, 1 p.

Table 13.—Crude artificial abrasives manufacturers in 1981

Company	Location	Product
Carborundum Electro Minerals Co., Div. of Standard Oil of Ohio.	Niagara Falls, N.Y	Fused aluminum oxide (high purity) and silicon carbide.
	Vancouver, Wash Niagara Falls, Ontario, Canada	Silicon carbide. Fused aluminum oxide (regular).
ESK Corp	Shawinigan, Quebec, Canada Hennedin, Ill	Silicon carbide.
The Exolon Co	Thorold, Ontario, Canada	Fused aluminum oxide (regular), aluminum- zirconium oxide, silicon carbide.
Ferro Corp. Speciality Ceramics Group	Cape de-la-Madeleine, Quebec, Canada	Silicon carbide.
General Abrasives, Div. of Dresser Ind	Niagara Falls, N.Y Niagara Falls, Ontario, Canada	Fused aluminum oxide (regular and high purity) and silicon carbide.
Norton Co	Huntsville, Ala	Aluminum-zirconium ox- ide.
	Worchester, Mass	General abrasive process- ing.
	Cap-de-la-Madeleine, Quebec, Canada Chippewa, Ontario, Canada	Silicon carbide. Fused aluminum oxide (regular and high puri- ty) and aluminum- zirconium oxide.
Satellite Alloy Corp Unicorn Abrasives of Canada Ltd., Div. of Fusion du Saguenay.	Springfield, Pa Arvida, Quebec, Canada	Silicon carbide. Fused aluminum oxide (regular).
Washington Mills Abrasives Co	Niagara Falls, Ontario, Canada	Do.

Table 14.—Producers of metallic abrasives in 19811

Company	Location	Product (shot and/or grit)
Abrasive Materials, Inc	Hillsdale, Mich	Cut wire.
Durasteel Co		Steel.
Ervin Industries, Inc	Adrian, Mich	Do.
Do		
Hobe Steel Abrasives Co		Do.
umbo Manufacturing Co	Tippecanoe, Ind	Chilled iron.
Metal Tec Steel Abrasives Co	Plymouth, Mich	
National Metal Abrasive Co		
The Pangborn Co		
ellets. Inc.		
Steel Abrasives, Inc		
Vheelabrator-Frye Inc		
Do		

¹Excludes secondary (salvage) producers.

Table 15.—Crude manufactured abrasives produced in the United States and Canada, by kind

(Thousand short tons and thousand dollars)

Kind	1977	1978	1979	1980	1981
Silicon carbide ¹	192	182	e ₁₉₆	170	156
Value	\$53,814	\$51,371	e\$62,702	\$64,346	\$68,839
Aluminum oxide (abrasive grade)	185	142	^é 225	193	203
Value	\$48,819	\$46,633	e\$67.511	\$63,881	\$73,712
Aluminum-zirconium oxide	20	23	28	19	W
Value	\$11,281	\$14,668	\$14,893	\$8,438	w
Metallic abrasives ²	243	204	264	r ₂₃₃	228
Value	\$72,740	\$59,882	\$84,918	r\$80,281	\$82,952
Total	640	551	e ₇₁₃	r ₆₁₅	3587
Value	\$186,654	\$172,554	e\$230,024	r\$216,946	3\$225,503

 $^{^{\}rm e}$ Estimated. ^rRevised. W Withheld to avoid disclosing company proprietary data.

Table 16.—End uses of crude silicon carbide and aluminum oxide (abrasive grade) as reported by producers

		1980			1981	100
Use	Quantity (short tons)	Value	Yearend stocks (short tons)	Quantity (short tons)	Value	Yearend stocks (short tons
SILICON CARBIDE						
Abrasives	51,573	\$19,370,719	2,640	58,920	\$28,394,648	4,883
Metallurgical	78,275	27,622,033	13,171	68,440	25,865,816	6,576
Refractories	38,174	16,553,260	2,334	23,596	12.896.158	1.319
Other	2,000	800,000	1,000	4,957	1,682,808	1,881
Total	170,022	64,346,012	19,145	155,913	68,839,430	14,659
ALUMINUM OXIDE						
Regular:						
Abrasives	NA	NA.	NA	140,447	45,995,409	9,501
Refractories	NA	NA	NA	25,715	9,800,617	1,668
Other	NA	NA	NA			
Total	158.947	49,082,840	10.484	166,162	55,796,026	11,169
High purity	34,091	14,798,018	4,012	37,003	17,916,188	5,339
Grand total	193,038	63,880,858	14,496	203,165	73,712,214	16,508

NA Not available.

Figures include material used for refractories and other nonabrasive purposes.

Shipments for U.S. plants only.

Excludes U.S. and Canadian production and value of aluminum-zirconium oxide.

Table 17.—Production, shipments, and annual capacities of metallic abrasives in the United States, by product ¹

		Produc	tion	Sold or	used	Annual	
	Product	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	capacity ² (short tons)	
1980:	Chilled iron shot and grit Annealed iron shot and grit Steel shot and grit Other ³	r _{30,494} XX r _{207,462} 251	r\$8,012 XX r62,169 549	^r 31,241 115 ^r 201,152 279	r\$8,774 36 r70,708 763	r _{41,600} XX r _{373,000} r _{1,200}	
	Total	r _{238,207}	^r 70,730	r232,787	r80,281	XX	
1981:	Chilled iron shot and grit Annealed iron shot and grit Steel shot and grit Other ³	16,375 5,162 206,832 342	4,394 1,591 65,700 845	13,606 5,216 208,638 377	3,672 1,610 76,520 1,150	19,500 7,300 273,000 1,800	
	Total	228,711	72,530	227,837	82,952	XX	

TRevised. XX Not applicable.

1Excludes secondary (recycle) producers.

2Total quantity of the various types of metallic abrasives that a plant could have produced during the year, working three 8-hour shifts per day, 7 days per week, allowing for usual interruptions, and assuming adequate fuel, labor, and

transportation.

³Includes cut wire, aluminum, and stainless steel shot.

Aluminum

By Frank X. McCawley¹ and Pamela A. Stephenson²

Primary aluminum production in the United States fell to 4.95 million short tons after a record production high of 5.13 million tons in 1980. Production was cut back significantly in the last half of 1981 from a high operating level at the beginning of the year because of weak demand. The annual demand, as measured by net shipments of ingot and mill products to the domestic industry, remained at 6.0 million tons. Inventories of ingot, mill products, and scrap aluminum reached a new record high of 3.3 million tons at the end of the year. Exports of crude, semifabricated, and scrap aluminum were reduced 42% while imports increased 31%. The value of net exports declined to about \$100 million in 1981.

World production fell slightly in 1981. Major shifts in production were from countries that were dependent on external energy sources to countries with abundant supplies of low-cost energy. Japan showed the largest decrease in production followed by Venezuela, Poland, and the United Kingdom. Countries with the largest increase in production were Australia, Dubai, Canada, the U.S.S.R., and Egypt. World demand for

primary and secondary aluminum metals declined.

Legislation and Government Programs.—New contracts between the Bonneville Power Administration (BPA) and the six aluminum smelters in the Pacific Northwest, represented by the Direct Service Industries, were challenged by public utilities in the area as being invalid, and legal action was initiated. The new 20-year contracts that guaranteed power to the aluminum smelters were initiated as a result of the Pacific Northwest Power Planning and Conservation Act, Public Law 96-501, which was signed into law in December 1980.

Suits were filed in November 1981 in the Federal District Court of Portland, Oreg., and in the U.S. Circuit Court of Appeals in San Francisco, Calif., by the National Wildlife Federation, the Washington State Sportmen's Council, and electric-rate payers to invalidate a contract between Alumax, Inc., and BPA for power for a proposed aluminum smelter near Umatilla, Oreg. The suits claim that the contract was illegally written.

Table 1.—Salient aluminum statistics
(Thousand short tons and thousand dollars unless otherwise specified)

	1977	1978	1979	1980	1981
United States: Primary production	4,539	4.804	5,023	5,130	4,948
Value	\$4,683,949	\$5,191,064	\$6,130,302	\$7,346,410	\$7,520,841
Price: Producer list, ingot, average cents per pound	51.6 1,271 411 836 6,136 5,492 r15,189	54.0 1,323 520 1,080 6,839 6,045 r _{15,581}	61.0 1,401 773 840 ¹ 6,922 5,888 ¹ 16,061	71.6 1,389 1,483 713 ² 6,003 *5,065 17,006	76.0 1,656 867 935 P5,999 5,137 P16,613

Preliminary. Revised.

¹To domestic industry.

DOMESTIC PRODUCTION

Primary.—Production of primary aluminum decreased after a record production in 1980. Production capacity decreased as a result of the permanent closing in September of the Lake Charles, La., smelter of Consolidated Aluminum Corp. (Conalco). The smelter was closed owing to the lack of natural gas for the company-owned powerplant. The smelter, 100% owned by Swiss Aluminium Ltd. (Alusuisse), began production in 1971 using alumina imported from Suriname.

During 1981, 810,650 tons of annual primary aluminum production was shut down owing to a weak aluminum market. Contributing to this decline in production were consumers and fabricators who were taking advantage of short delivery schedules to lower their inventories, thereby controlling their carrying costs during a period of high interest rates. Production declined slowly during the first half of 1981, but the lack of metal orders about midyear and a 40% decline in exports during the first half caused a rapid cutback in primary production during the final half. In the period July through October, 598,069 tons of annual primary aluminum production was shut down. Excluding the Lake Charles plant closing, primary production was cut back at the Aluminum Co. of America (Alcoa) smelters at Badin, N.C., Vancouver, Wash., Rockdale, Tex., and Wenatchee, Wash., and at the Reynolds Metals Co. plants at Corpus Christi, Tex., Listerhill, Ala., Troutdale, Oreg., Longview, Wash., and Jones Mills, Ark. Kaiser Aluminum & Chemical Corp. cut back production at plants in Ravenswood, W. Va., and Chalmette, La., and Revere Copper and Brass Co. cut back its primary production at Scottsboro, Ala. Conalco cut back production at its New Johnsonville, Tenn., primary aluminum smelter. Unusual in the overall 1981 world slowdown of aluminum production was that U.S. producers cut back a larger percentage of their production than producers in other countries.

Aluminum producers in the Pacific Northwest negotiated new 20-year contracts with BPA, which were being contested as discussed under "Legislation and Government Programs." The new contracts were expected to provide the producers a greater assurance of obtaining "non-firm" power, but at increased costs in the years to come. Under the new contracts, electricity costs to the aluminum producers rose from 6 mills

per kilowatt-hour to about 17.3 mills starting October 1. Further increases in power costs were expected during 1982.

In June, Alcoa and Reynolds signed new contracts with the New York State Power Authority (NYSPA), reportedly extending until the year 2013 the availability of electric power to the two aluminum smelters located in Massena, N.Y. The contracts immediately increased the power rates from 4 mills per kilowatt-hour to 7.6 mills for Alcoa, and to 4.3 mills for Reynolds. The agreements also stipulated a gradual increase in the rates to 16 mills by 1986 for Alcoa and by 1987 for Reynolds. An option in the old Alcoa contract that authorized the NYSPA to withdraw one-half the power supplied to the Alcoa plant in 1986 and beyond was deleted in the new contract.

Secondary.—Production and shipments of secondary aluminum alloys by independent smelters increased slightly in 1981 (table 5), but in general remained weak owing to a decline in automotive markets.

Consumption of used can scrap increased dramatically by about 210,000 tons in 1981 with the primary producers utilizing about 65% of the total amount of can scrap consumed. Used beverage cans toll-treated for primary producers were tabulated by the Bureau of Mines as consumed by secondary smelters. Of all domestic purchased aluminum scrap consumed in 1981, 25% was from used beverage cans.3 Of the 43 billion aluminum beverage cans produced in the United States in 1981, 54%, or slightly more than 500,000 tons of used aluminum cans, was recycled, based on an average rate of 23 cans to the pound. In 1980, the recycling rate of used aluminum cans was about 38%.

Reynolds acquired a secondary aluminum plant in Benton Harbor, Mich., which when refurbished will have a scrap melting capacity of 35,000 tons per year. Alreco Metal Co., a wholly owned subsidiary of Reynolds, was expected to begin operating the plant in the summer of 1982. Reynolds announced it will convert a plantsite in Sheffield, Ala., to a dross processing facility. Plans call for the plant to have the capability to recover more than 30,000 tons of aluminum from dross generated at various operations of Reynolds. In addition, the plant will process nonferrous shredded scrap from automobiles, using a heavy-media separation technique.

Table 2.—Consumption of and recovery from purchased new and old aluminum scrap,¹
by class

(Short tons)

	0	Calculated	recovery
Class	Consumption -	Aluminum	Metallic
1980			=00.000
Secondary smelters	884,255	705,345	760,268
Primary producers	541,771 143,915	462,402 125,940	495,251 134,601
Fabricators Foundries	81,830	69,525	74,887
Chemical producers	41,862	23,902	24,401
	1,693,633	1,387,114	1,489,403
Estimated full industry coverage	1,982,000	1,619,000	1,738,000
1981			٠.
Secondary smelters	976,348	784,169	845,049
Primary producers	730,736	620,836	664,992
Fabricators	167,703	144,748	154,878
Foundries	99,903	84,170	90,541
Chemical producers	37,733	21,004	21,469
Total	2,012,423	1,654,927	1,776,929
Estimated full industry coverage	2,333,000	1,913,000	2,055,000

¹Excludes recovery from other than aluminum-base scrap.

Table 3.—Aluminum recovered from purchased scrap processed in the United States, by kind of scrap and form of recovery

(Short tons)

V		
	1980	1981
KIND OF SCRAP		
New scrap: Aluminum-base Copper-base	¹ 850,260 ^r 63 204 394	² 947,714 ^e 70 ^e 230 210
Total	r850,921	948,224
Old scrap: Aluminum-base Copper-base Zinc-base Magnesium-base	¹ 536,854 ¹ 96 860 319	² 707,213 ^e 80 ^e 870 31
Total	^r 538,129	708,194
Grand total	r _{1,389,050}	1,656,418
FORM OF RECOVERY		
Unalloyed Aluminum alloys In brass and bronze In zinc-base alloys In magnesium alloys Dissipative forms	4,815 1,327,372 159 1,064 713 54,927	1,167 1,606,550 150 e1,100 241 47,210
Total	r _{1,389,050}	1,656,418

^rRevised. ^eEstimated.

[&]quot;Estimated. "Kevised. "The mount of aluminum alloys recovered from aluminum-base scrap in 1980, including all constituents, was 907,471 tons from new scrap and 581,932 tons from old scrap and sweated pig, a total of 1,489,403 tons.

"The amount of aluminum alloys recovered from aluminum-base scrap in 1981, including all constituents, was 1,011,553 tons from new scrap and 765,376 tons from old scrap and sweated pig, a total of 1,776,929 tons.

"Includes recovery in deoxidizing ingot assuming 85% aluminum content in such ingot.

Table 4.—Stocks, receipts, and consumption of purchased new and old aluminum scrap and sweated pig in the United States in 1981

(Short tons)

Class of consumer and type of scrap	Stocks, Jan. 1	Net receipts ²	Consump- tion	Stocks, Dec. 31
Secondary smelters:			*.	
New scrap: Solids and clippings	21,374	904 159	000 000	10 000
Borings and turnings	12,637	284,153 154.074	286,627 152,799	18,900 13,912
Foil	W	W	W	10,512 W
Dross and skimmings		85,978	86,619	7,763
Other ³		14,465	14,462	294
Total	42,706	538,670	540,507	40,869
Old scrap:	-			
Castings, sheet, clippings	16,849	163,266	167,829	12,286
Aluminum cans	2.924	4176,424	4177,163	2.185
Other ⁵	2,825	24,034	25,128	1,731
Total	22,598	000 704	050 100	10,000
Sweated pig	22,598 8.597	363,724 68,569	370,120 65.721	16,202 11,445
		00,000	00,121	11,440
Total secondary smelters	73,901	970,963	976,348	68,516
Primary producers, foundries, fabricators, chemical plants:				
New scrap:	04.000	400 400	F0F 000	17 480
Solids and clippings Borings and turnings	24,098 648	498,460 24,687	507,080 25,007	15,478 328
Foil		24,001 W	25,001 W	W
Dross and skimmings	521	26,589	26,944	166
Other ³	4,259	41,340	40,073	5,526
Total	29,526	591,076	599,104	21,498
011				
Old scrap: Castings, sheet, clippings	1.226	60,515	60.007	1 704
Aluminum cans		4332,001	60,037 4331,142	1,704 19,597
Other ⁵	2,417	25,796	25,638	2,575
		20,100	20,000	2,010
Total	22,381	418,312	416,817	23,876
Sweated pig		20,147	20,154	1,126
Total primary producers, etc	53,040	1,029,535	1,036,075	46,500
Total of all scrap consumed:				
New scrap:				
Solids and clippings		782,613	793,707	34,378
Borings and turnings		178,761	177,806	14,240
Foil Dross and skimmings		8,975	8,526	2,219
Other	8,925 2,780	112,567 46,830	113,563 46,009	7,929 3,601
Total new scrap		1,129,746	1,139,611	62,367
Old scrap:				
Castings, sheet, clippings		223,781	227,866	13,990
Aluminum-copper radiators		17,829	18,563	1,634
Aluminum cans	21,662	508,425	508,305	21,782
Other	2,874	32,001	32,203	2,672
Total old scrap	44,979	782,036	786,937	40,078
Sweated pig	9,730	88,716	85,875	12,571
Grand total	126,941	2,000,498	2,012,423	115,016
	120,041	4,000,430	2,012,420	110,010

W Withheld to avoid disclosing company proprietary data.

¹Includes imported scrap. According to reporting companies, 17.75% of total receipts of aluminum-base scrap, or 355,101 short tons, was received on toll arrangements.

²Includes inventory adjustment.

³Includes data on foil.

⁴Used beverage cans toll-treated for primary producers are included in secondary smelter tabulation.

⁵Includes data on aluminum-copper radiators.

Table 5.—Production and shipments of secondary aluminum alloys by independent smelters

(Short tons)

	19	80	19	81
	Production	Net shipments	Production	Net shipments
Die-cast alloys:				
13% Si, 360, etc. (0.6% Cu, maximum)	77,347	76,021	93,676	93,308
380 and variations	406,260	404,705	391,585	392,672
Sand and permanent mold:				
95/5 Al-Si, 356, etc. (0.6% Cu, maximum)	24,788	24,444	37,610	36,930
No. 12 and variations	W	w	w	W
No. 319 and variations	53,912	53,880	50,652	50,314
F-132 alloy and variations	16,970	16,609	15,751	15,278
Al-Mg alloys	1,948	1,705	1,378	1,529
Al-Zn allovs	6,754	7,180	8,397	7,846
Al-Si allovs (0.6% to 2.0% Cu)	5,901	6,013	5,758	5,567
Al-Cu alloys (1.5% Si, maximum)	2,492	2,400	3,364	3,344
Al-Si-Cu-Ni alloys	4,159	4,130	4,778	4,627
Other	6,687	6,029	4,089	4,790
Wrought alloys: Extrusion billets	94,497	95,510	108,134	106,814
Destructive and other uses: Steel deoxidation:			~~ ~~	01 500
Grades 1, 2, 3, and 4	36,500	35,978	30,831	31,508
Miscellaneous:			4 000	050
Pure (97.0% Al)	4,826	_4,815	1,203	958
Aluminum-base hardeners	r _{3,243}	^r 2,847	1,493	1,857
Other ¹	11,347	11,318	10,066	10,010
m . 1	^r 757,631	^r 753,584	768,765	767,352
Total	101,001	100,004	100,100	.0.,002
Less consumption of materials other than scrap:	34,461		43,047	
Primary aluminum	40.697		39,996	
Primary silicon	3,691		2,778	
Other	0,031		2,110	
Net metallic recovery from aluminum scrap and sweated pig	r678,782		682.944	
consumed in production of secondary aluminum ingot ²	010,102		002,044	

^rRevised. W Withheld to avoid disclosing company proprietary data; included with "Other" under "Sand and permanent mold."

¹Includes other die-cast alloys and other miscellaneous.
 ²No allowance made for melt-loss of primary aluminum and alloying ingredients.

CONSUMPTION

The apparent consumption of aluminum in end products increased slightly in 1981 to 5.1 million tons (table 6); however, consumption was still considerably below the record high level of over 6 million tons in 1978. The continued low rate of consumption was primarily attributed to continuing weak markets in the automobile production and residential construction industries. An increase in the use of aluminum in the production of beverage cans and other packaging products kept the apparent consumption of aluminum from a larger decline.

The aluminum share of the beverage can market continued to increase. Sheet shipments for use in can production have tripled since 1970, and the beverage can industry has become the largest single user of aluminum sheet. In 1981, the aluminum can market shipments increased 14%4 with approximately 43 billion aluminum beverage cans used in the United States.5 Consumption of aluminum for use in foil packaging and semirigid containers also increased in 1981.6

The weakness in domestic passenger-car sales continued throughout 1981 and contributed to a large decline in aluminum consumption in the transportation industry. However, according to the Automobile and Truck Committee of the Aluminum Association, Inc., the average 2,250-pound 1982 U.S. automobile contained about 133 pounds of aluminum. Estimates of about 200 pounds of aluminum were forecast for use in the average automobile by 1990.7

Table 6.—Apparent aluminum supply and consumption in the United States (Thousand short tons)

	1977	1978	1979	1980	1981
Primary productionChange in stocks:1	4,539	4,804	5,023	5,130	4,948
Aluminum industryGovernment	-3	+106	+184	r+25	-765
ImportsSecondary recovery:2	836	1,080	840	$7\bar{1}\bar{3}$	935
New scrapOld scrap	1,074 531	1,098 575	1,163 614	1,058 680	1,169 886
Total supply Less total exports Apparent aluminum supply available for domestic manufacturing Apparent consumption ³	6,977 411 6,566 5,492	7,663 520 7,143 6,045	7,824 773 7,051 5,888	r _{7,606} 1,483 r _{6,123} r _{5,065}	7,173 867 6,306 5,137

Positive figure indicates a decrease in stocks; negative figure indicates an increase in stocks.

Metallic recovery from purchased, tolled, or imported new and old aluminum scrap expanded for full industry

coverage.

3 Apparent aluminum supply available for domestic manufacturing less recovery from purchased new scrap (a measure of consumption in manufactured end products).

Table 7.—Distribution of end-use shipments of aluminum products, by industry

	197	9	198	0	198	l ^p
Industry	Quantity (thousand short tons)	Percent of total	Quantity (thousand short tons)	Percent of total	Quantity (thousand short tons)	Percent of total
Building and construction Transportation Containers and packaging Electrical Consumer durables Machinery and equipment Other markets Statistical adjustment	r1,522 r1,539 1,612 787 511 r475 r322 r+154	20.5 20.7 21.6 10.6 6.9 6.4 4.3 2.1	1,310 1,123 1,667 689 440 416 300 +58	18.5 15.8 23.5 9.7 6.2 5.8 4.2	1,260 1,069 1,755 665 488 418 318 +26	18.8 16.0 26.3 9.9 7.3 6.3 4.8
Total to domestic users Exports Grand total	r _{6,922} 512	93.1 6.9	6,003 1,097 7,100	84.5 15.5	5,999 685 6,684	89.8 10.2

Preliminary. Revised.

Source: The Aluminum Association, Inc.

Table 8.—Net shipments of aluminum wrought¹ and cast products by producers (Short tons)

	1979	1980	1981 ^p
Wrought products:			
Sheet, plate, foil	r3,591,612	3,346,305	3,423,935
Rolled and continuous-cast rod and bar; wire	618,080	606,368	521,593
Extruded rod, bar, pipe, tube, shapes; drawn and welded tubing	1.263.261	1,164,827	1,103,337
Powder, flake, paste	62,782	58,285	52,638
Forgings (including impacts)	r79,433	66,635	69,501
Total	r5,615,168	5,242,420	5,171,004
Castings:			
Sand	142,821	120,516	120,620
Permanent mold	241,131	192,822	172,253
Die	634,596	443,357	478,290
Other	21,714	12,140	18,909
Total	1,040,262	768,835	790,072
Grand total	r6,655,430	6,011,255	5,961,076

Preliminary. Revised.

Source: U.S. Department of Commerce.

Table 9.—Distribution of wrought products

(Percent)

A CONTRACTOR OF THE CONTRACTOR	1979	1980	1981 ¹
Sheet, plate, foil:	51.2	51.4	54.4
Non-heat-treatable Heat-treatable Foil.	 4.9 7.9	4.5 7.9	3.6 8.2
	3.5	4.3	3.8
Cable and insulated wireExtruded products: Rod and bar	7.5	7.3 1.1	6.8 1.0
Rod and bar Pipe and tubing Shapes	 1.4 18.6	1.3 18.1	1.1 17.4
Ubing: Drawn	.9	.8 .9	
WeldedPowder, flake, paste	 .7 _1.1	1.1	1.1 1.0
Forgings (including impacts)	F1.4	1.3	1.4
Total	 100.0	100.0	100

^pPreliminary. ^rRevised.

Source: U.S. Department of Commerce.

STOCKS

Inventories of aluminum ingot, mill products, and scrap at reduction and other processing plants as reported by the Bureau of Industrial Economics, U.S. Department of Commerce, increased from 2,538,002 tons (revised) at the end of 1980 to 3,303,325 tons at the end of 1981.

¹Net shipments derived by subtracting the sum of producers' domestic receipts of each mill shape from the domestic industry's gross shipments of that shape.

PRICES

The producers' list price for 99.5% pure aluminum ingot was 76 cents per pound. The average spot price, or U.S. market price, as published by Metals Week (McGraw-Hill, Inc.), was 67.6 cents per pound at the beginning of the year. In March, the spot price rose slightly to 68 cents per pound, then steadily declined to a low of 48.9 cents per pound in November. At yearend, the average spot price was 50.6 cents per pound. Prices on the London Metal Exchange began the year at 64.9 cents per

pound, rose slightly in the first quarter, then declined by yearend to 57.3 cents per pound.

The price of secondary smelter alloyed aluminum ingot ranged from 82 to 96 cents per pound throughout most of the year, according to the American Metal Market. Prices of aluminum-base scrap began the year with a price range of 22 to 47 cents per pound depending on the type of scrap and its location. By yearend, the prices dropped to a range of 13 to 31 cents per pound.

FOREIGN TRADE

Crude and semicrude aluminum exports, including scrap, declined after a record high level of exports in 1980. Most of the large decrease in exports was in the form of ingot and scrap usually exported to Western European and Far Eastern countries.

U.S. tariff rates in effect during 1981 for wrought and unwrought aluminum products included the following: Unwrought aluminum (other than aluminum silicon), 0.7 cents per pound; wrought aluminum (bars, plates, sheets, strip), 3.1% ad valorem; and aluminum waste and scrap, 2% ad valorem.⁸ The U.S. International Trade Commission investigated and made a preliminary determination that secondary aluminum alloys in unwrought form from the United Kingdom were not materially injuring or likely to injure the recycling industry of the United States.

Table 10.—U.S. exports of aluminum, by class

	1	980	19	981		
Class	Quantity (short tons)	Value (thousands)	Quantity (short tons)	y Value (thousands)		
Crude and semicrude: Ingots, slabs, crude Scrap Plates, sheets, bars, etc Castings and forgings Semifabricated forms, n.e.c	714,906 444,681 306,214 7,496 9,914	\$1,107,398 483,138 715,899 30,626 43,686	344,161 241,161 263,672 8,930 9,250	\$526,646 236,204 625,181 40,482 49,017		
Total	1,483,211	2,380,747	867,174	1,477,530		
Manufactures: Foil and leaf Powders and flakes Wire and cable	43,625 8,023 16,683	76,929 16,928 36,007	36,368 3,384 9,832	47,324 9,259 23,429		
Total	68,331	129,864	49,584	80,012		
Grand total	1,551,542	2,510,611	916,758	1,557,542		

Table 11.—U.S. exports of aluminum, by class and country

											,	
			1980	0					1981	1		
Country	Ingots, slabs, crude	slabs, de	Plates, sheets, bars, etc. ¹	sheets,	Scrap	<u>.</u>	Ingots, slabs, crude	slabs, de	Plates, sheets, bars, etc. ¹	heets, stc. ¹	Scrap	ę.
f sample	Quantity (short tons)	Value (thou-sands)	Quantity (short tons)	Value (thou-	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
	100	900	6	80.00	9	970.10	ş	91 704	0000	00.050	040	61 990
Australia Policium, I membrane	5,227	12,823	1,972 3,093	90,0	982 12,618	14,688	920	, 1, 20, 1, 20, 20,	1,109	5,348	1.634	1.430
Brazil	27,300	41,148	5,478	14,855	12,362	13,515	4,562	7,453	1,623	6,155	2,636	2,707
Canada	19,761	32,355	109,922	270,665	17,026	14,404	14,874	25,821	125,396	286,470	16,931	14,326
Chile	1,521	2,333	230	1,688	265	400	1,612	3,433	202	1,663	251	402
China	9,433	14,894	101	331	£.	-	4,300	8,113	2,2	134	1	10
France	18,916	32,324	9,200	25,302	4,425	3,997	4,870	908,	8,218	15,682	G).T	ELT.
Germany, Federal Kepublic of	22,451	32,091	10,738	30,300	31,827	31,425	1 996	1,000	0,139	21,000	070'c	*,
Hong Kong	764,7	15,139	94,000	10,100	1,750	1,992	180	2,142	1,000	3,001	1 790	9.874
India	1,295	9,879	3,149	10,550	26	25.	302	1103	4.739	16,940	7.	85
Italy	19,456	29,911	8,944	32,322	16.878	17.340	83	1,008	4,784	23,110	1,311	1,124
Japan	338,482	503,092	19,007	50,999	269,356	321,214	240,219	349,328	17,658	45,116	175,536	170,809
Korea, Republic of	43,748	70,112	4,358	10,058	1,876	2,262	6,121	9,401	1,107	3,783	1,236	1,246
Malaysia	2,707	3,687	311	656	200	123	1,080	1,574	460	234	1001	100.01
Mexico	38,794	00,091 F4 77F	00,000	03,020	16,920	16,000	04,004 1001	598	9,920	8,438	9340	2002
Necheriands	1,010	200	77.4	2,000	9.367	1 207	32	149	495	7.28	, , , ,	186
Fakistan	4.789	2,08	236	780	168	289	285	429	88	662	508	258
Sandi Arabia	1,914	4.232	3.867	11.334	18	83	791	1.931	2.780	9.944	8	285
Singapore	2,046	3,167	1.049	2,814	264	410	1,261	1,882	549	1,966	154	201
South Africa. Republic of	221	368	2,460	5,824	1,794	2,315	46	144	2,796	6,570	6,100	6,722
Spain	13	29	3,865	10,106	4,130	3,038	67	14	1,674	6,873	2,362	997
Sweden	8	108	1,447	3,646	1,143	1,189	808	441	3,274	7,870	ଛ:	191
Switzerland	3,871	6,195	438	2,146	9	51	1,233	1,735	949	3,508	919	38
Taiwan	30,109	46,353	1,833	6,139	14,706	7,613	6,578	9,756	1,001	5,507	4,664	3,039 9
Thailand	6,416	10,669	3	1,117	135	808	849.	13,112	454	1,097	11	700
United Kingdom	9,751	15,931	15,659	42,724	2,521	2,836 909	1,367	2,833	14,859	30,090	910	040
Venezuela	26,105	44,231	22,517	55,048	1,663	2,037	8,378	16,688	12,585	38,571	200	1,041
Total	714.906	1.107.398	323.624	790,211	444,681	483,138	344,161	526,646	281,852	714,680	241,162	236,204
								.				

 $^{1}\!\mathrm{Includes}$ ceatings, forgings, and unclassified semifabricated forms. $^{2}\!\mathrm{Less}$ than 1/2 unit.

Table 12.—U.S. imports for consumption of aluminum, by class

	1	980	1:	981
Class	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands
Crude and semicrude: Metals and alloys, crude Circles and disks Plates, sheets, etc., n.e.c Rods and bars Pipes, tubes, etc Scrap Total	580,515 3,879 59,783 8,571 490 59,802 713,040	\$777,606 8,721 123,959 17,274 2,182 59,718	710,656 5,837 118,393 17,699 583 81,994	\$990,869 12,954 235,642 57,438 2,643 79,141
Manufactures: Foil Leaf Leaf Flakes and powders Wire Total	4,550 (1) 6,114 728 11,892	27,219 137 11,827 1,665 40,848	6,715 (¹) 1,694 1,029 9,438	34,562 131 3,501 2,721 40,915
Grand total	724,432	1,030,308	944,600	1,419,602

¹1980—Aluminum leaf not over 30.25 square inches in area, 1,772,837 leaves, and aluminum leaf over 30.25 square inches in area, 82,489,898 square inches; 1981—aluminum leaf not over 30.25 square inches in area, 1,033,500 leaves, and aluminum leaf over 30.25 square inches in area, 175,206,746 square inches.

Table 13.—U.S. imports for consumption of aluminum, by class and country

			1980	0					1981			
Country	Metals and alloys, crude	s and crude	Plates, sheets, bars, etc. ¹	theets, stc. ¹	Scrap	Gr	Metals and alloys, crude	and crude	Plates, sheets, bars, etc. ¹	iheets, etc. ¹	Scrap	9-
	Quantity (short tons)	Value (thou-	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Argentina Australia Australia Belgium-Luxembourg Brazil Br	485,620 3,425 3,425 3,804 4,44 4,44 4,189 4,189 4,189 4,189 4,199	688 888 801 800 801 800 801 800 801 800 801 800 801 800 801 800 801 800 801 800 801 800 801 800 800	2,235 2,028 2,558 2,558 1,758 1,070 1,070 1,070 1,086	\$20,859 6,1066 431 82,555 12,657 1,682 1,683 1,242 1,2	28 858 854,019 178 178 27 27 27 27 27 27 27 27 27 27 27 27 27	55, 308 2, 387 2, 387 2, 387 171 171 171 171 188 188 188 1	472 263 2637,450 7,997 7,997 7,101 94,211 1,642 88 1,642 1,642 1,642 1,642 1,644 1,694 1,6	\$650 738,551 14,468 14,468 1,464 1,640 1,640 1,537 1,537 1,538 1,5	653 17,125 18,386 18,381 2,3815 2,2815 1,513 1,513 6,824 2,184 2,184 2,184 1,125 6,86 5,886 1,125 6,866 1,125 6,866 1,125 1,125 1,125 1,126 1,12	24,256 24,256 24,256 26	280 280 280 280 280 280 280 280 280 280	\$317 215 06,896 142 13 320 2,166 141 141 141 177
Total	580,515	777,606	72,723	152,136	59,802	59,718	710,656	698'066	142,512	308,677	81,994	79,141

¹Includes circles, disks, rods, bars, pipes, tubes, etc.

WORLD REVIEW

As demand weakened in many of the industrialized countries, stocks of primary aluminum held by members of the International Primary Aluminum Institute (IPAI) increased sharply. IPAI member stocks, which represent the bulk of inventories held outside the centrally planned economies, increased 49% over 1980 levels.

Significant plant expansions were completed in Bahrain, Canada, and the Republic of South Africa. New primary aluminum smelters began production in China and Yugoslavia.

Australia.—Alcan Australia Ltd. postponed indefinitely its proposed 220,000-ton-peryear smelter planned for Bundaberg, Queensland. However, Alcan Australia still planned to expand its Kurri-Kurri, New South Wales, smelter to 150,000 tons per year by completion of the second-stage expansion from 75,000 tons to 100,000 tons per year. The third-stage expansion to 150,000 tons per year was scheduled to come onstream in 1983.

Alcoa of Australia Ltd. decided in December to continue construction of the 145,000-ton-per-year Portland, Victoria, smelter, scheduled to come onstream in 1984. Construction was delayed earlier in the year because of increased electricity rates.

Gladstone Aluminium Ltd., the consortium that was building the 227,000-ton-peryear smelter at Gladstone, Queensland, changed its name to Boyne Smelters Ltd. Comalco Ltd., Kaiser Aluminum & Chemical Corp., and five Japanese companies comprise the consortium.

Reynolds Metals Co., Colonial Sugar Refining Ltd., and Shell of Australia Ltd. decided against building a smelter in Western Australia because of high electricity costs. However, Alcoa, International Construction Corp. (a Korean company), and the government of Western Australia began discussions on building a smelter near Bunbury, Western Australia.

Alumax withdrew from the proposed 260,000-ton-per-year smelter at Lochinvar, New South Wales. The remaining two participants, Broken Hill Proprietary Co. Ltd. and Alfarl Pty. Ltd., a Japanese consortium, were seeking a new partner for the project.

The New South Wales government gave final approval for the construction of the Tomago smelter. The first 121,000-ton-per-year potline was scheduled to come onstream in 1983; the second, in 1984.

Comalco (Bell Bay) commissioned the second half of the fourth potline at its Bell Bay, Tasmania, smelter. Capacity was increased 6,000 tons per year to 129,000 tons per year.

Bahrain.—Aluminium Bahrain Co. increased its capacity by 55,000 tons to 187,000 tons per year at its Knuff primary smelter.

Brazil.—The Government of Brazil accepted a bid from the West German firm Vereinigte Aluminium-Werke AG to build a 242,000-ton-per-year primary smelter at Recife. Initial capacity of 120,000 tons per year was scheduled to come onstream in mid-1985, with full capacity scheduled for 1988. Total cost was estimated at \$800 million.

Consorcio de Aluminio de Maranhão-Alumar was formed to own and operate a \$1.2 billion alumina-aluminum complex under construction at São Luis, Maranhão. Alcoa Aluminio S.A. would own 60% and Shell Brasil Billiton Metais S.A. would own 40%. Startup was scheduled for 1984.

Cía. Vale do Rio Doce (CVRD), the Brazilian state mining company, reportedly sold part of its majority interest in the 95,000-ton-per-year Valesul aluminum smelter under construction at Santa Cruz to Shell Brasil Billiton (9%) and Abranfe, the Brazilian Nonferrous Metals Association, (12%). Partners in the project include CVRD (40%), Shell Brasil Billiton (44%), Abranfe (12%), and Revnolds (4%).

Canada.—Alcan Aluminium Ltd. completed construction of a second 63,000-ton-per-year potline at its Grande Baie, Quebec, primary aluminum smelter. Startup of the new potline was delayed until the demand for aluminum increased. Construction of a third potline was underway and scheduled for completion in 1982. Alcan and the government of Manitoba reportedly signed a letter of intent to begin a feasibility study for construction of a 220,000-ton-per-year primary aluminum smelter in Manitoba.

Canadian Reynolds Metals Co. Ltd. and the government of Quebec reached an agreement on a power contract that would allow Reynolds to increase capacity to 300,000 tons per year by 1985 at its Baie Comeau, Quebec, primary smelter.

The Anaconda Aluminum Co. and the government of Newfoundland reportedly were to begin a feasibility study for construction of an aluminum smelter in Newfoundland.

ALUMINUM 87

Table 14.—Aluminum: World production, by continent and country

(Thousand short tons)

Continent and country	1977	1978	1979	1980	1981 ^p
North America:			0.40		1 000
Canada	1,073	1,156	948	1,184	1,238
Mexico	47	48	48	48	e47
United States	4,539	4,804	5,023	5,130	4,948
South America:		_			
Argentina	55	r ₅₉	138	152	145
Brazil	184	205	262	287	283
Suriname	64	61	71	51	e ₄₅
Venezuela	48	r ₈₂	251	361	e300
Europe:					
Austria	101	101	102	104	104
Czechoslovakia	40	41	41	42	42
France	F440	431	435	476	480
German Democratic Republice	72	r72	66	66	66
Germany, Federal Republic of	818	816	817	806	803
Greece	143	159	155	161	161
Hungary	79	79	79	81	82
Iceland	82	81	80	81	82
Italy	287	298	297	321	302
Netherlands	266	288	284	289	289
Norway	686	704	727	718	701
	115	110	106	105	73
Poland ²	230	235	239	266	277
Romania ³	233	233 234	286	426	437
Spain					
Sweden	91	90	90 91	107	91 91
Switzerland	88	88		95	
U.S.S.R. ^e	1,810	1,840	1,930	1,940	1,973
United Kingdom	386	382	396	413	374
Yugoslavia	195	194	185	182	195
Africa:					
Cameroon	61	54	48	48	e ₅₀
Egypt	98	111	85	132	^e 160
Ghana	169	123	186	207	^e 210
South Africa, Republic of	86	89	95	95	^e 95
Asia:					
Bahrain	134	135	139	139	e ₁₅₅
Chinae	385	400	400	400	e400
India	r ₁₉₇	r236	233	204	235
Iran	23	28	15	11	- 6
	1,310	1,166	1,113	1,203	849
Japan ²		1,100	1,113	1,203	11
Korea, Northe	11	22	24	23	20
Korea, Republic of	20				e40
<u>Taiwan</u>	33	56	62	70	
Turkey	57	35	35	38	e45
United Arab Emirates: Dubai				28	117
Oceania:			200		44.0
Australia	273	290	298	334	418
New Zealand	160	167	170	171	173
New Beatand					

^eEstimated. ^pPreliminary. ^rRevised.

²Includes secondary unalloyed ingot.

³Includes primary alloyed ingot.

China.—The first 44,000-ton-per-year potline of a new 88,000-ton-per-year primary smelter in the southwestern Province of Guizhou reportedly came onstream in December. Full capacity was expected to be completed in 1982.

Germany, Federal Republic of.—Kaiser Aluminum purchased the remaining 50% interest in the 79,000-ton-per-year primary smelter at Voerde from Preussag A.G.

Hungary.—Plans were under consideration for construction of a 110,000-ton-peryear primary aluminum smelter near Inota.

Japan.—The Industrial Structural Coun-

cil of the Ministry of International Trade and Industry considered plans to reduce Japan's total smelting capacity to 772,000 tons per year. Actual capacity at yearend was 1,252,000 tons per year, excluding about 190,000 tons per year of decommissioned capacity. Mitsubishi Light Metal Industry Ltd. announced the shutdown of its 178,000-ton-per-year smelter at Naeotsu at the end of October, and Showa Light Metal Co. announced it would shut down its 24,000-ton-per-year smelter at Ohmachi by June 1982.

Output of primary unalloyed ingot unless otherwise specified. Table includes data available through May 21, 1982.

Table 15.—Aluminum: World capacity, by continent and country¹

(Thousand short tons)

Continent and country	1979	1980	1981
North America:			
Canada	1.175	1,238	1.29
Mexico	50	50	5
United States	5,282	5.503	5.46
South America:	0,202	0,000	0,40
Argentina	154	154	15
Brazil	295	306	30
Suriname	73	73	7
Venezuela	446	446	44
turope:		720	77
Austria	101	101	10
Czechoslovakia	ř66	r66	66
France	r470	r490	490
German Democratic Republic	94	94	94
Germany, Federal Republic of	r820	F811	
Greece	160	160	80- 160
Hungary	100 178	100 178	
Iceland			78
Italy	r ₈₃	95	9
	r315	r ₃₁₅	31
Netherlands	293	293	293
Norway	F780	r780	78
Poland	127	127	6:
Romania	220	275	27
Spain	439	439	439
Sweden	94	_94	94
Switzerland	104	*95	98
U.S.S.R	3,230	r _{3,450}	3,450
United Kingdom	^r 412	r412	42
Yugoslavia	^r 226	r276	410
frica:			
Cameroon	68	68	88
Egypt	110	147	188
Ghana	220	220	220
South Africa, Republic of	94	94	190
sia:			
Bahrain	132	132	187
China	r312	r ₃₁₂	356
India	r380	r ₃₈₀	386
Iran	55	55	58
Japan	r _{1,658}	F1,443	1.448
Korea, North	22	22	22
Korea, Republic of	20	20	20
Taiwan	r92	r92	92
Turkey	66	66	66
United Arab Emirates: Dubai	149	149	149
ceania:	140	140	140
Australia	309	r ₃₈₀	410
New Zealand	r ₁₆₅	r ₁₆₅	
	- 109	-109	165
Total	F10 400	T10.000	
*****	r _{19,439}	^r 19,966	20.353

Sumitomo Aluminium Smelting Co. increased its high-purity aluminum production capacity to 5,732 tons per year at its Kikumoto smelter, making it the largest facility in the world for this type of production.

New Zealand.—Construction reportedly began on a third 104,000-ton-per-year potline at the 165,000-ton-per-year primary smelter of New Zealand Aluminium Smelters Ltd. at Bluff. The \$200 million expansion was scheduled to come onstream in late

Alusuisse withdrew its 25% share in South Pacific Aluminium, the consortium planning to build a 220,000-ton-per-year primary smelter at Dunedin, South Island. Fletcher Holdings of New Zealand (50%) and Gove Alumina Ltd. (25%), the two remaining partners, were seeking another partner to replace Alusuisse.

Norway.-Aardal og Sunndal Verk AS (ASV) began modernization of a potline at its Höyanger smelter, increasing capacity to

^{&#}x27;Revised.

1Detailed information on the individual aluminum reduction plants is available in a 2-part report that can be purchased from Chief, Division of Finance, Bureau of Mines, Bldg. 20, Federal Center, Denver, CO 80225. Part I of 'Primary Aluminum Plants, Worldwide,' details location, ownership, and production capacity for 1978-85 and sources of energy and aluminum raw materials for foreign and domestic primary aluminum plants, including those in centrally planned economies. Part II summarizes production capacities for 1978-85 by smelter and country.

25,000 tons per year. Capacity was expected to be increased to 74,000 tons per year by 1982. ASV also considered plans to increase the capacity by 11,000 tons per year each at its Aardal and Sunndalsora smelters.

Norsk Hydro AS primary smelter at Karmöy was closed in November when power was knocked out by a storm and metal froze in the pots. Production was expected to resume in mid-1982. An additional 55,000 tons per year of expanded capacity was also expected to come onstream in 1982.

The Ministry of Industry was considering plans to rebuild and expand the state-owned Det Norske Nitridaktieselskap AS primary smelter at Tyssedal. The proposed expansion would increase capacity to 66,000 tons

Paraguay.—The Government of Paraguay was considering building a 165,000ton-per-vear aluminum smelter in a joint

venture with Japan.

Philippines.—Discussions continued between Reynolds and the Philippine Government for construction of a 154,000-ton-peryear primary smelter to be located on Mindanao Island at Misamis, Oriental. The proposed smelter was estimated to cost \$463 million.

Poland.—The Government of Poland permanently closed the 66,000-ton-per-year primary smelter at Skawina owing to pollution problems. Reportedly, a smelter to replace the Skawina facility would be built in Konin, where a 61,000-ton-per-year primary smelter already existed.

South Africa, Republic of.—Alusaf Pty. Ltd. reportedly increased capacity 190,000 tons per year at its Richards Bay primary smelter. Dismantled equipment from the closed Nippon Light Metal Co. Ltd.'s smelter at Niigata, Japan, was shipped to the Richards Bay facility in 1981.

Taiwan.—Taiwan Aluminium Corp. reportedly closed its 46-year-old, 36,000-tonper-year smelter at Kaoshuing and may eventually scrap the plant.

Turkey.-Plans were announced to double primary aluminum smelting capacity to 132,000 tons per year and alumina refining capacity to 287,000 tons per year at the Seydisehir complex. The U.S.S.R. reportedly was to provide a \$200 million loan.

U.S.S.R.—Construction of a 550,000-tonper-year primary smelter was underway at Savansk, Siberia, Startup was scheduled for 1984.

United Kingdom.—On December 31, British Aluminium Co. Ltd. closed its 110.000ton-per-year primary smelter at Invergordan, Scotland, owing to high power costs and low demand for aluminum. Reportedly, British Aluminium would maintain the smelter for 6 months while it attempted to find a buyer. After the 6-month period, the smelter would be dismantled and sold.

British Aluminium completed modernization of its Lochaber smelter, increasing capacity 10,000 tons to 41,000 tons per year.

Venezuela.—The Government of Venezuela acquired majority interest in the 138,000-ton-per-year primary aluminum smelter, Aluminio del Caroni, S.A., through an additional capital investment of \$51.5 million by the Venezuelan State Investment Fund. The 50% interest held by Reynolds was reduced to 27.9%. Reportedly, Reynolds would continue to operate the smelter.

Venezolano de Aluminio had to shut down about 110,000 tons per year of production at its 308,000-ton-per-year smelter at Cindad as a result of severe potline damage reportedly caused by poor maintenance and inadequate operational supervision.

Yugoslavia.—Capacity at the Sibenik primary aluminum smelter was reportedly increased by 33,000 tons to 116,000 tons per

vear.

Production began at the new, 101,000-tonper-year primary smelter at Bacevici, near Mostar. Péchiney Ugine Kuhlmann provided technical assistance for the smelter.

Zaire.—A consortium of nine companies headed by Alusuisse discussed plans to build a 165,000- to 220,000-ton-per-year primary smelter to be located near Banana. Feasibility studies reportedly were under-

TECHNOLOGY

New developments in aluminum smelting technology initiated during the past 20 years were reviewed.9 Two improvements of particular importance to the Hall-Heroult process were computer control of anodes,

which permitted closer interelectrode distances, and larger anode surface areas, which decreased current density and voltage for a given cell amperage. Other improvements included the design of cells that

can accommodate currents up to 250,000 amperes, the development of higher quality carbons for both anodes and cathodes, and the use of additives in the cryolite-alumina electrolyte, which permit lower operating temperatures and increase the conductivity and current efficiency of the molten salt. Mechanical improvements included the automation of all phases of potroom operations. The major result of all these changes has been a decrease in the energy requirements from about 7.7 kilowatt-hours per pound (17 kilowatt-hours per kilogram) to 5.9 kilowatt-hours per pound (13 kilowatthours per kilogram) in modern plants. Basic science investigations have increased the knowledge of electrolyte densities, surface tensions, vapor pressures, and electrical conductivities. Phase diagrams of the electrolyte system have been better established, and thermodynamic data were becoming more consistent.

A review of work on the development of inert anodes was published.10 The advantages of inert anodes include the reduction in the use of carbon and the use of a fixed anode with a constant interelectrode distance. The major disadvantage is the increased reaction voltage of 1.05 volts required to reduce alumina to aluminum metal. The physiochemical property requirements of inert anodes include (1) the insolubility of the material in molten fluoride salts and molten aluminum, (2) a resistance to anode oxygen, (3) thermal stability and resistance to thermal shock, (4) low specific resistivity and conductor bar contact resistance, (5) low overvoltage of the aluminum reactions, (6) high overvoltage of undesired anode reactions such as the discharge of fluorine. and (7) production of uncontaminated aluminum. Proposed materials for inert anodes are pressed and sintered oxides, metals, and refractory metal materials. The most feasible inert anodes appear to be those made of a metallic oxide; however, many technical problems require solving prior to commercial use.

Japan's MITI and six aluminum producers will build a small pilot plant to test a direct-reduction method for smelting aluminum.¹¹ The pilot plant, to be built at Tsukuba, outside Tokyo, based on Mitsui Alumina Co., Ltd., technology, reportedly will use less energy than the Hall-Heroult process. A direct-reduction process eliminates the alumina refining step. In the process, alumina-rich clay is reduced by coke in a blast furnace at 2,000° C form-

ing an aluminum-silicon alloy containing some iron, which is refined into aluminum ingots during a second-stage smelting operation. MITI claims that the process will use only one-half to one-third the amount of electricity required for conventional smelters, and should reduce the oil consumption used in aluminum smelting by 71%.

Mitsui Alumina Co., Mitsui Mining and Smelting Co., and Mitsui Aluminium Co. announced a blast-furnace aluminum smelting method that uses molten lead to absorb the aluminum.12 The process prevents bridging of aluminum vapor at the top of the furnace. The process is similar to the direct-reduction smelting process being developed by MITI and six aluminum producers.13 In the Mitsui process a mixture of pulverized alumina-rich clay or bauxite and coking coal are carbonized in a coking oven and fed into the lower section of the furnace. Molten lead absorbs a molten alloy of aluminum, silicon, and iron. The leadaluminum alloy mixture is transferred to a furnace where the lead is removed for recycling. The final alloy mixture is refined by vacuum distillation to a reported purity of 99.9%.

An important feature of the new technology is the generation of carbon monoxide gas. It was estimated that enough carbon monoxide may be generated for electric power and other chemical processes to pay for the smelting costs. Studies were also in progress to determine if the carbon could be utilized for a carbothermic reduction of aluminum ores.

Mitsubishi reported development of a low-cost process to produce a high-purity aluminum. The process, based on fractional solidification, will produce aluminum with a purity of 99.999% to 99.9999%. The fractional solidification process deposits the high-purity aluminum through forced cooling of molten ingots and consumes less power than conventional three-layer electrolysis or the Hoopes process. The ultrapure aluminum can be utilized for semiconductors and other electronic applications. Mitsubishi was constructing a new production facility of 200 to 250 metric tons per month utilizing the Hoopes process.

Aluminum and manganese can be utilized as replacements for chromium and nickel, respectively, in austenitic steel to form an Fe-Mn-Al alloy that is considered ideal for cryogenic applications, such as liquid gas pipelines. 15 The addition of carbon and

silicon to the Fe-Mn-Al system contribute to the alloys' good ductility at low tempera-tures and impart excellent mechanical properties at both room and subzero temperatures. Studies indicated the oxidation resistance of these alloys could be sufficient for most cryogenic applications.

A thermomechanical process was developed at the Rockwell International Science Center that imparts superplasticity to aluminum alloys.16 The process creates a finegrained structure necessary for superplasticity in aluminum alloy 7475 and other high-strength aluminum alloys. Deformation of several hundred percent can be tolerated without rupturing the alloys.

The Rockwell process, prior to superplastic forming, consists of three steps: (1) Extreme overaging from a solution-treated condition introduces large intermetallic particles. (2) Cold or warm working, depending on the alloy, introduces localized deformation around the intermetallic particles. The particles do not deform during working. (3) The metal grains are recrystallized at solution-treatment temperature for the particular alloy. The intermetallic particles inhibit further grain growth and form the nuclei for new grains. Upon completion of the three-step process, the alloy is given a normal heat treatment.

Both British Aluminium 17 and Alcan¹⁸ have developed special aluminum alloys for superplastic forming by adding grainstabilizing metals. The British Aluminium alloy known as Supral 100 (6% Cu, 0.5% Zr) and the Alcan alloy, designated 08050 (4.8% Ca, 4.8% Zn) are not regarded as structural alloys because of their lower strength. Structural aircraft parts can be formed with the 7475 high-strength alloy, and toys, automobile panels and instrument housings can be fabricated from lower strength alloys. For both types of alloys, complex components are formed by heating the finegrained alloy to its superplastic temperature, then applying gas pressure on the alloys and blowing it into female cavities or over male formers.

The Bureau of Mines investigated the use of used potlining recovered from aluminum reduction cells as a substitute for the flux fluorspar in ferrous foundry operations.19 No adverse effects were found in ferrous cupola performance. Use of these potlinings would reduce the problem of waste disposal. Fluorine recovery is equal to or higher than that of fluorspar.

Over 40 papers reporting studies on aluminum reduction, carbon, and cast-shop technologies were published. Other studies published included new developments on and health and environment conserving technology in the North American aluminum industry.20

¹Physical scientist, Division of Nonferrous Metals. ²Statistical assistant, Division of Nonferrous Metals.

"National Association of Recycling Industries, Inc. First Annual Aluminum Can Scrap Survey. 1981. "O'Donnell, R. D. Technology Will Thrust Aluminum Cans Ahead. Am. Metal Market, v. 89, No. 215, Nov. 5, 1981, p. 18.

⁵Silvestri, F. Recycled Aluminum Cans Put at 50% of Production. Am. Metal Market, v. 90, No. 56, Mar. 23, 1982, p. 1.

1982, p. 1.

"Yafie, R. C. Longer Shelf Life, New Design Seen
Spurring Foil Packaging. Am. Metal Market, v. 89, No.
225, Nov. 19, 1981, p. 4.

"Am. Metal Market. V. 90, No. 39, Feb. 26, 1982, p. 2.

"Federal Register. V. 44, No. 241, Dec. 13, 1979, p. 72496.

"Russell, A. S. Developments in Aluminum Smelting.
Alum. and Suppl. in Engl., v. 57, No. 6, June 1981, pp. 105-

¹⁸Work cited in footnote 11.
 ¹⁴Furukawa, T. Purity Boast of New Mitsubishi Process.
 Am. Metal Market, v. 89, No. 236, Dec. 3, 1981, p. 4.
 ¹⁵Berghezan, C. J., A. Lutts, and P. Dancoisne. New Cryogenic Materials: Fe-Mn-Al Alloys. Metal Prog., v. 119, No. 6, May 1981, pp. 71-74.
 ¹⁶Post, C. T. Grain Structure Holds Key to Superplastic Aluminum. Iron Age, v. 223, No. 40, Nov. 3, 1980, pp. 88-89.
 ¹⁷Modern Metals. Superplastic Aluminum for Small Volume Complex Parts. V. 36, No. 8, September 1980, pp. 78-92 and brosch cited in footnoted.

volume complex Parts. V. 36, No. 8, September 1980, pp. 78-82, and work cited in footnote 16.

18 Work cited in footnote 16.

18 Spironello, V. R., and R. H. Nafziger. An Evaluation of Used Aluminum Smelter Potlining as a Substitute for Fluorspar in Cupola Ironmelting. BuMines RI 8530, 1981, 14 pp. 14

Thouse in Crystal 14 pp.

29 Bell, G. M. (ed.). Light Metals 1981. (Proc. 110th AIME Ann. Meeting, Chicago, Ill., Feb. 22-26, 1981.) The Metallurgical Society of AIME, Warrendale, Pa., 1980, 1,060 pp.

Antimony

By Patricia A. Plunkert¹

Domestic mine production increased in 1981 compared with that of 1980 owing to the absence of strikes. A new plant, located near Memphis, Tenn., began producing antimony products during 1981. The General Services Administration (GSA) was granted authority to sell antimony metal from the Government stockpile. Bolivia, China, and the Republic of South Africa remained the major sources of imported antimony materials. Prices for antimony metal decreased steadily during the year as the economic slowdown continued.

Legislation and Government Programs.—GSA reported that at yearend the Government stocks of antimony totaled

40,728 short tons of stockpile-grade material. The Government stockpile goal remained at 36.000 tons.

The Omnibus Budget Reconciliation Act of 1981 (Public Law 97-35), signed by the President on August 13, 1981, authorized the disposal of 3,000 tons of antimony metal from the Government stockpile surplus at the rate of 1,000 tons per year, effective October 1, 1981. This metal is to be used for domestic consumption only. No carryover authority for disposal of any unsold quantities from one year to another is authorized. By yearend, GSA had not yet issued an invitation to bid on this material; therefore, no sales were made during 1981.

Table 1.—Salient antimony statistics

(Short tons unless otherwise specified)

	1977	1978	1979	1980	1981
United States:					
Production:					
Primary:					
Mine	610	798	722	343	646
Smelter ¹	12,827	14,110	15,062	16,062	17,761
Secondary	30,601	26,456	24,155	19,893	19,856
Exports of metal and alloys	742	556	485	453	324
Imports for consumption (antimony content)	13,335	17,516	22,141	17,996	17,970
Reported consumption, primary antimony	13,823	13,152	11,753	11,239	11,592
	10,020	10,102	11,,,,,,	22,200	,
Stocks: Primary antimony, all classes	8,591	8,201	7.144	8,411	9,158
(antimony content), Dec. 31			2196.00	² 200.00	2200.00
Price: New York, average cents per pound	178.00	² 175.00			
World: Production	^r 74,600	^r 68,662	^r 71,384	P71,727	°65,246

Estimated. Preliminary. Revised.

DOMESTIC PRODUCTION

MINE PRODUCTION

Domestic mine production of primary antimony in 1981 by two companies increased compared with that of 1980. The 1980 production figure was unusually low owing to a work stoppage at the Sunshine Mine that

lasted more than 8 months. In 1981, the Sunshine Mining Co., which operates the Sunshine Mine in the Coeur d'Alene district of Idaho, produced 432 tons of antimony compared with 83 tons in 1980. The antimony was produced as a byproduct of the treatment of tetrahedrite, a complex silver-

¹Includes primary antimony content of antimonial lead produced at primary lead refineries.

²Antimony price in alloy, cents per pound.

copper-antimony sulfide, one of the principal ore minerals in the Kellogg, Idaho, area. The United States Antimony Corp. (USAC) produced antimony from the stibnite mined at the Babitt, Bardot, and Black Jack Mines at Thompson Falls, Mont. In 1981, USAC produced 214 tons of antimony compared with 260 tons in 1980.

Antimony was also produced as a byproduct in the smelting of some primary lead ores.

Table 2.—Antimony mine production and shipments in the United States

(Short tons of recoverable antimony)

»d	Shipped
	534
	863
2	701
	382 590
98 22 13	10 98 22 43 46

SMELTER PRODUCTION

Primary.—Production of primary antimony products in 1981 was 17,761 tons. A new plant, which uses a leaching process to produce sodium antimonate and antimony oxide from imported antimony ore, started production during 1981. The plant, Mineral Processes JV, which is located near Memphis, Tenn., has a capacity of about 150 tons per month. Bernuth, Lembcke Co. Inc. of Houston, Tex., is marketing the products from this new operation. ASARCO Incorporated announced that it has increased its antimony oxide capacity by one-third to about 2,500 tons per year by installing a 55ton-per-month kettle at its Omaha, Nebr., lead refinery. Asarco also produced some antimony metal at its new smelter in El Paso, Tex. The other major producers of antimony products were Anzon America Inc., Laredo, Tex.; Harshaw Chemical Co., Gloucester City, N.J.; McGean Chemical Co., Inc., Cleveland, Ohio; M & T Chemicals Inc., Baltimore, Md.; PPG Industries, Inc., La Porte, Tex.; Sunshine Mining Co., Kellogg, Idaho; and USAC at Thompson Falls, Mont.

Secondary.—Production of antimony from secondary sources continued to decline in 1981. Old scrap, predominantly battery plates, was the source of most of the secondary output; new scrap, mostly in the form of drosses and residues from various sources, supplied the remainder. The antimony content of scrap is usually recovered and consumed as antimonial lead. RSR Corp. has patented a hydrometallurgical process to recover pure lead, pure antimony, and pure tin from scrap.²

Table 3.—Primary antimony produced in the United States

(Short tons of antimony content)

		Class of ma	aterial produc	ed	
Year	Metal	Oxide	Residues	Byproduct antimonial lead	Total
1977	1,877 1,108 2,642 507 790	9,907 12,117 12,141 15,461 16,425	277 184 	766 701 279 30 546	12,827 14,110 15,062 16,062 17,761

Table 4.—Byproduct antimonial lead produced at primary lead refineries in the United States

			An	timony cont	tent	
	Gross weight	From	From	From	То	tal
Year	(short tons)	domestic ores ¹ (short tons)	foreign ores ² (short tons)	scrap (short tons)	Quantity (short tons)	Percent of gross weight
1977	7,557 5,518 3,750 971 3,922	598 539 208 18 361	168 162 71 12 185	134 82 20 - 9	900 783 299 30 555	11.9 14.2 8.0 3.1 14.1

Includes primary residues and a small quantity of antimony ore

Table 5.—Secondary antimony produced in the United States, by kind of scrap and form of recovery

(Short tons of antimony content unless otherwise specified)

	1980	1981
KIND OF SCRAP	•	
New scrap: Lead-base Tin-base		2,103 2
Total	2,695	2,105
Old scrap: Lead-baseTin-base	17,191	17,744 7
Total	17,198	17,751
Grand total	19,893	19,856
FORM OF RECOVERY In antimonial lead ¹ In other lead alloys In tin-base alloys	2,910	16,371 3,476 9
TotalValue (millions)	19,893	19,856 \$79.4

¹Includes 9 tons of antimony recovered in antimonial lead from secondary sources at primary plants in 1981.

CONSUMPTION AND USES

Domestic consumption of primary antimony metal continued to decline in 1981. In recent years, improved technology that has lowered the average antimony content of the antimonial lead alloy used in the manufacture of starting-lighting-ignition (SLI) batteries and the increased use of maintenance-free batteries, which contain a leadcalcium-tin alloy, have resulted in a decline in the use of antimony metal. The Battery Council International reported an increase of 6% in SLI battery shipments in 1981 compared with those of 1980. A joint venture set up last year by the Department of Energy (DOE), the Electric Power Research Institute, the Rural Electrification Authority, and two Michigan utilities-Wolverine and Northern Electric Cooperatives-to build a lead-acid battery load-leveling facility has been canceled. DOE has withdrawn funding from the project as a result of changes in Government energy policies.

Antimony alloyed with lead also finds industrial use in chemical pumps and pipes, tank linings, roofing sheets, and cable sheaths. In these alloys, antimony increases strength and inhibits chemical corrosion.

Nonmetallic antimony was used in plastics both as a stabilizer and as a flame retardant. Antimony trioxide in an organic solvent is used to make fabrics, plastics, and other combustibles flame retardant. Flames accompanying initial combustion are restricted or extinguished by chemicals released by heat from the treated materials. Antimony was also used as a decolorizing and refining agent in some types of glass such as special optical glass.

²Includes foreign base bullion and small quantities of foreign antimony ore.

Table 6.—Reported industrial consumption of primary antimony in the United States
(Short tons of antimony content)

		(lass of mate	rial consume	d		
Year	Ore and concen- trate	Metal	Oxide	Sulfide	Residues	Byproduct antimonial lead	Total
1977 1978 1979 1980 1981	160 131 15 	2,625 2,709 1,899 1,648 1,546	9,959 9,399 9,528 9,469 9,385	36 28 32 28 32	277 184 	766 701 279 30 546	13,823 13,152 11,753 11,239 11,592

Table 7.—Reported industrial consumption of primary antimony in the United States, by product

(Short tons of antimony content)

Product	1977	1978	1979	1980	1981
164-1				1000	1001
Metal products: Ammunition					
Ammunition	_ 138	133	253	362	409
Antimonial lead	_ 2,936	2,832	1,300	748	1.257
Bearing metal and bearings	265	279	235	223	206
Cable covering.	_ 16	21	16	31	24
		$\overline{15}$	14	10	11
Collapsible tubes and foil	16	17	24	18	9
Sheet and pipe	56	39	36	29	36
Solder	_ 220	206	199	134	105
Type metal	_ 220	200 81	37		
Other	_ 104	113	99	21	19
	- 104	113	99	74	69
Total	3,847	3,736	2,213	1,650	2,145
Nonmetal products:					
		100			
Ammunition primersFireworks		13	23	20	25
	- 9	5	6	4	4
Ceramics and glass	1,547	1.259	1,127	1.303	782
rigments	400	410	399	499	341
r iastics	1 502	1.456	1,580	1,636	1.551
readure products	472	254	182	325	232
Other	266	165	140	107	111
		100	140	101	111
Total	4,211	3,562	3,457	3,894	3,046
Flame retardant:					
Plastics	3,972	4,063	4,262	3.874	4,509
Pigments	. 149	33	35	56	40
Rubber	. 219	196	146	189	174
Adnesives	246	298	302	461	585
Termes	997	990	1.143	942	962
Paper	182	274	195	173	131
Total	5,765	5,854	6,083	5,695	6,401
Grand total	13,823				

Table 8.—Industry stocks of primary antimony in the United States, December 31 (Short tons of antimony content)

Stocks	1977	1978	1979	1980	1981
Ore and concentrate	1,869 1,359 4,576 24 516 247	1,610 1,119 4,906 19 457 90	1,757 1,184 3,398 17 730 58	2,743 680 3,855 13 1,116 4	2,529 916 4,707 25 864 117
Total	8,591	8,201	7,144	8,411	9,158

¹Inventories from primary sources at primary lead refineries only.

PRICES

The price of antimony in alloy remained at \$2 per pound in 1981. The New York dealer price for antimony metal that began the year at \$1.47 to \$1.51 per pound decreased steadily throughout most of the year to finish at \$1.20 to \$1.24 per pound. The industry price quotation for antimony trioxide increased from \$1.50-\$1.80 to \$1.60-\$1.80 per pound in May owing to a slight surge in demand. In August, Asarco began trimming its price for antimony trioxide so that by vearend its price stood at \$1.40 to \$1.50 per pound owing to a continual fall in demand. Most of the other producers continued to publish a price of \$1.80 per pound through the end of the year, but there were reports of discounting owing to the lower prices quoted by Asarco and to the availability of lower priced imported material. In February, the European market quotation for lump ore, on a 60% antimony basis, was placed at \$21 to \$23 per metric ton unit (equivalent to \$19 to \$21 per short ton unit), but by yearend, the price decreased to \$20 to \$22 per metric ton unit (equivalent to \$18 to \$20 per short ton unit).

Table 9.—Antimony price ranges in 1981, by type

Туре	Price per pound
Domestic metal ¹	\$2.00
Foreign metal ²	\$1.20-1.52
Antimony trioxide ³	1.40-1.80

¹Based on antimony in alloy. ²Duty-paid delivery, New York.

FOREIGN TRADE

Total imports of antimony (antimony content) in 1981 were at the same level as those of 1980. Imports of antimony ore and concentrates, antimony metal, and antimony oxide were virtually unchanged from those of 1980.

In 1981, approximately 80% of the antimony metal imports came from Bolivia. Bolivia also provided most of the imported antimony ore and concentrates. The Republic of South Africa remained the largest single source for imports of antimony oxide, followed by Bolivia and China.

Exports of antimony metal, alloys, and

scrap decreased in 1981 from those of 1980. Approximately 50% of the total was shipped to Mexico; the balance was shipped in small parcels to 19 countries. Exports of antimony oxide dropped to 452 tons (gross weight), a decrease of 51% from that of 1980. Mexico, Canada, the Federal Republic of Germany, Italy, and Australia, in descending order of receipts, received over 80% of the total oxide exports. Exports of antimony oxide (gross weight) for the following years were not previously reported: 1977, 257 tons; 1978, 238 tons; 1979, 688 tons; and 1980, 918 tons.

Table 10.—U.S. import duties for antimony

7.	N. 1	Most favored	nation (MFN)	Non-MFN
Item	Number	January 1, 1981	January 1, 1980	January 1, 1981
Ore Needle or liquated	601.03 603.10	Free 0.1 cent per pound	Free 0.1 cent per pound	Free. 0.25 cent per
Metal, unwroughtAntimony oxide	632.02 417.50	0.8 cent per pound 0.2 cent per pound	0.9 cent per pound 0.3 cent per pound	pound. 2 cents per pound. 2 cents per pound.

³Producer price.

Table 11.—U.S. imports for consumption of antimony, by class and country

	19	980	- 19	981
Class and country	Gross weight (short tons)	Value (thousands)	Gross weight (short tons)	Value (thousand
Antimony metal:				
Belgium-Luxembourg	172	\$45 8	175	\$408
Bolivia	1.625	4.366	2.086	5.114
Canada	25	397	2,000	170
Chile	117	235	61	10
China	457	1.231	176	46
Dominican Republic		-,	4	
Germany, Federal Republic of	(1)	38	(1)	
Japan	()	•	(1)	
Mexico	139	412	55	10
Netherlands	. 100	415	19	5
Taiwan			33	86
United Kingdom			19	5
Uruguay	55	140	13	
		140		
Total	2,590	7,277	2,631	6,569
Antimony oxide:				
Belgium-Luxembourg	214	651	470	1 000
Bolivia	927		470	1,222
Brazil	921	2,088	2,311	4,884
Conodo	19	64	110	256
Canada Chile	19	04		400
China	0.000	0.000	220	422
China	2,388	6,092	2,085	5,233
FranceGerman Democratic Republic	1,055 23	2,861	1,864	4,850
Cormony Fodoral Populity of	23 20	67	22	
Germany, Federal Republic of		54		55
Hong Kong	20 20	50	33	86
Italy		54	88	220
Japan	35	92		
Mozambique	19	_6		
NetherlandsSouth Africa, Republic of	20	55	40	111
South Africa, Republic of	7,047	2,137	4,602	1,618
Switzerland	19	120	555	
United Kingdom	398	1,380	325	966
Total	12,224	15,771	12,170	19,922
intimony sulfide: ²				
Austria	2	14	12	ne.
Belgium-Luxembourg	8	27	6	35 17
China	•	41	72	138
France	-8	27	14	36
Germany, Federal Republic of	. 0	41		
United Kingdom	16	148	(1) 2	21 21
Total				

Table 12.—U.S. imports for consumption of antimony ore and concentrate, by country

		1980			1981	
Country	Gross weight (short tons)	Antimony content (short tons)	Value (thousands)	Gross weight (short tons)	Antimony content (short tons)	Value (thousands)
Bolivia	3,543	2,336	\$6,608	4.089	2,656	\$4,916
Canada	1,624	1.017	2,073	186	86	162
Chile	79	56	131	458	302	593
China				55	36	56
Germany, Federal Republic of_				124	88	186
Guatemala	107	64	127	809	517	931
Honduras	27	Ĝ	2	000	011	201
Hong Kong		v	-	$2\overline{1}\overline{7}$	119	183
Mexico	4,771	$1,\bar{252}$	1.501	3,951	883	1.318
Peru	2,112	1,202	1,001	3,331	21	38
South Africa, Republic of	694	397	996	587	297	454
Thailand	199	107	208	275	150	454 226
Zimbabwe	100	101	200	213		
				29	13	32
Total	11,044	5,235	11,646	10,813	5,168	9,095

¹Less than 1/2 unit. ²Includes needle or liquated.

Table 13.—U.S. imports for consumption of antimony

	Antimo	ny ore and conc	entrate	Ar	Antimony sulfide		Antimony metal	y metal ²	Α Α	Intimony oxide	
Year	Gross weight (short tons)	Antimony content (short tons)	Value (thou- sands)	Gross weight (short tons)	Antimony content (short tons)	Value (thou- sands)	Gross weight (short tons)	Value (thou- sands)	Gross weight (short tons)	Antimony content (short tons)	Value (thou- sands)
1979	15,745 11,044 10,813	7,732 5,235 5,168	\$11,860 11,646 9,095	50 34 106	34 23 70	\$255 216 249	3,022 2,590 2,631	\$7,011 7,277 6,569	13,679 12,224 12,170	11,353 10,148 10,101	\$17,921 15,771 19,922

¹Includes needle or liquated.
²Does not include alloy containing 83% or more antimony.

WORLD REVIEW

Belgium.—Metallurgie Hoboken-Overpelt S.A. has announced plans to recover sodium antimonate, copper, impure nickel sulfate, arsenic trioxide, and sulfuric acid from the byproducts of its lead and copper operations. The company's research department has developed a new process that employs hydrometallurgical techniques to separate the various compounds. The plant, which is expected to have the capacity to treat 6,600 short tons of byproducts per year, will be located at Olen.

Bolivia.-The Comite Boliviano de Productores de Antimonio (CBPA), a committee of Bolivian antimony producers, invited the world's antimony producers to attend the initial meeting of the Organizacion International de Antimonio (OIA) at La Paz, Bolivia, in late October to discuss the future of the antimony industry. The meeting was attended by producers from Bolivia, Peru, Thailand, and Turkey. As yet, the organization has no formal rules or bylaws. The OIA announced that it would, however, hold a second meeting of antimony producers in October 1982 to which consumers and end users would also be invited. The CBPA has initiated the funding of the Antimony Research Institute at Battelle Columbus Laboratories in Ohio to develop, investigate, and promote new uses and current applications of antimony metal and antimony trioxide.

Canada.—Consolidated Durham Mines and Resources Ltd. halted its antimony mining and milling operations at Lake George, New Brunswick, in May 1981 as proven ore reserves were exhausted. Exploration work continues to outline a new zone of antimony-bearing ore discovered near the existing mine. As yet, a decision to reopen

the operation has not been made.

In October, construction work on the leaching plant at Equity Silver Mines Ltd. in British Columbia was completed. The plant, which is expected to be fully operational during 1982, will remove antimony and arsenic from a complex silver-gold-copper ore. The leached concentrate will be shipped to Dowa Mining Co., Ltd., of Japan for further processing, and byproduct sodium antimonate will be sold to consumers.

France.—Société Nationale Elf-Aquitaine, S.A., was granted a permit by the French Industry Ministry to prospect for lead, zinc, copper, silver, antimony, and gold in Brittany. The permit covers a 47.5-square-kilometer area at Stival in the Morbihan Department.

During the year, Compagnie Française des Mines began production at a small antimony deposit near Quimper, France.

South Africa, Republic of.—Consolidated Murchison Ltd. reduced its milling rate of antimony ore by approximately one-third compared with the 1980 level of production. During the year, approximately 60% of the antimony concentrates was treated by Antimony Products (Proprietary) Ltd. and converted to a crude antimony oxide. Most of this oxide was exported to the United Kingdom, Europe, and North America.

¹Physical scientist, Division of Nonferrous Metals.

²Prengaman, R. D., and H. B. McDonald (assigned to RSR Corp., Dallas, Tex.). Method of Recovering Lead Values From Battery Sludge. U.S. Pat. 4,229,271, Oct. 21, 1000

Process for Reducing Lead Peroxide Formation During Lead Electrowinning. U.S. Pat. 4,230,545, Oct. 28, 1980.

^{----.} Stable Lead Dioxide Anode and Method for Production. U.S. Pat. 4,236,978, Dec. 2, 1980.

101

Table 14.—Antimony: World mine production (content of ore unless otherwise specified), by continent and country1

(Short tons)

Continent and country	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Canada ^{e 2}	3,500	3,310	3,256	2,600	1,600
Guatemala	1,010	254	728	613	441
Honduras	*77	*86	51	25	22
Mexico ³	2,974	2,708	3,166	2,399	1,984
United States ⁴	610	798	722	343	⁵ 646
South America:					_
Bolivia	18,012	14,702	14,351	17,047	⁵ 16,861
Brazil	289	216	74	72	72
Peru (recoverable)	903	821	840	1,157	1,213
Europe:					
Austria	564	561	629	730	694
Czechoslovakia	e330	e330	450	452	452
Italy	891	1,026	1,047	786	772
Spain	^r 365	487	552	689	661
U.S.S.R. ^e	8,700	8,700	9,000	9,000	9,000
Yugoslavia	2,478	2,950	2,245	2,315	2,205
Africa:					
Morocco	1,553	2,437	2,175	606	606
South Africa, Republic of	12,715	10,024	12,815	14,413	⁵ 10,744
Zimbabwe	¹ 607	^r 133	174	165	165
Asia:		_			
Burma	^r 584	^r 650	750	485	386
China	11,000	11,000	11,000	11,000	11,000
Malaysia (Sarawak)	^r 291	² 290	338	147	254
Pakistan	21	23	7	11	_ 11
Thailand	2,705	3,167	3,235	3,214	1,764
Turkey	2,118	^r 2,315	2,083	2,153	2,370
Oceania: Australia ⁷	2,303	1,674	1,696	1,305	1,323
Total	r74,600	r68,662	71,384	71,727	65,246

Revised. ^pPreliminary.

¹Table includes data available through May 12, 1982.

Partly estimated on the basis of reported value of total production.

Antimony content of ores for export plus antimony content of antimonial lead and other smelter products produced.

Production from antimony mines; excludes a small amount produced as a byproduct of domestic lead ores.

⁴Production from antimony mines; excludes a small amount p.

⁵Reported figure.

⁶As reported by the Government of the Republic of South Africa; differs slightly from data reported by the Nation's only significant producer, Consolidated Murchison Ltd. Official figures apparently represent content of hand-cobbed ores and antimony concentrates, apparently excluding antimony content of arsenical concentrates reported as follows by Consolidated Murchison in short tons: 1977—1,387; 1978—1,178; and 1979 and 1980—mil.

⁷Antimony content of antimony ore and concentrates, lead concentrates, and lead and zinc middlings.

Asbestos

By R. A. Clifton¹

Shipments of asbestos (all chrysotile) in 1981 from mines in the United States decreased 6% from those in 1980. Imports in 1981 were 3% higher than those in 1980.

U.S. apparent consumption declined 3% in 1981. Canadian shipments in 1981 were

14% lower than those for 1980. Shipments from Canada to the United States rose slightly during 1981. Imports from Canada were 94% of total U.S. imports in 1981, and those from the Republic of South Africa accounted for 5%.

Table 1.—Salient asbestos statistics

	1977	1978	1979	1980	1981
United States:					
Production (sales) metric tons	92,256	93,097	93,354	80,079	75,618
Value thousands	\$25,267	\$27,987	\$28,925	\$30,599	\$30,685
Exports and reexports (unmanufactured)	04.000	45,380	r43,291	r48,671	64,419
metric tons	34,896		40,471		
Value thousands	\$12,075	\$20,533	r\$17,381	r\$21,067	\$21,508
Exports and reexports of asbestos products (value)	\$62,665	\$119,915	rs 137,690	r\$141,653	\$145,130
	. 402,000	·	¥ · · /-	ψ 1=,000	. 4,
Imports for consumption (unmanufactured) metric tons	550,693	570,020	513,084	327,296	337,618
Valuethousands	\$145,146	\$154,351	\$135,210	\$91,809	\$103,893
Released from stockpile (unmanufactured)	• • • • •				
metric tons	188		1		
Consumption, apparent ¹ dodo	609,157	618,706	560,600	358,700	348,800
World: Productiondo	r _{4,793,451}	r4,693,221	4,884,732	p4,887,215	e4,725,533

^eEstimated. ^pPreliminary. ^rRevised.

Government Pm-Legislation and grams.—Regulatory agency procedures, proposals, and regulations, including asbestos related ones, were under review in 1981 to bring about conformance with Supreme Court decisions and new administration policy. Even prior to establishment of the Cabinet level Presidential Task Force on Regulatory Relief, Federal Register (F.R.) Jan. 30, 1981, the agencies had begun some changes. For example, the Occupational Safety and Health Administration (OSHA), in the January 19th F.R., published some final rule changes in the general cancer policy, and further changes were prepared in the January 23d F.R. The significant change proposed in the January 23d issue was that OSHA must consider all relevant evidence in making its determinations.

In the February 6th F.R., a Presidential

memorandum postponing the promulgation of all regulations for 60 days was announced, and in the February 19th F.R., Executive Order 12291 requiring cost benefit analyses of all new and existing regulations was promulgated.

Asbestos Information Association/North America presented to the Task Force on Regulatory Relief the following as those regulatory initiatives that most threaten the asbestos industry: (1) A proposal outstanding at OSHA since 1975 to reduce the permissible workplace exposure level from 2.0 to 0.5 fibers per cubic centimeter, and outstanding recommendations by the National Institute for Occupational Safety and Health to reduce that standard even further to 0.1 fiber; (2) announcement by advance notice of proposed rulemaking in 1979 at the Environmental Protection

¹Measured by quantity produced, plus imports, plus stockpile releases, minus exports.

Agency (EPA), under Section 6 of the Toxic Substances Control Act (TSCA), to consider the possibility of banning all industrial and commercial uses of asbestos; (3) announcement by advance notice of proposed rulemaking in 1979 at the Consumer Product Safety Commission (CPSC) to consider the possibility of banning all uses of asbestos in consumer products; (4) outstanding waterquality criteria for asbestos issued by EPA under the Clean Water Act that, although they do not yet have formal regulatory impact, have already created marketing problems for asbestos-cement pipe manufacturers; (5) a proposal by EPA under TSCA Section 8(a) to collect enormous amounts of information on asbestos in support of numerous efforts to regulate asbestos more stringently; (6) a proposal by EPA to identify asbestos in schools; and (7) plans by EPA to reassess the existing National Emission Standard for a Hazardous Air Pollutant asbestos regulation with the possibility of tightening its requirements.

On June 17, the U.S. Supreme Court handed down a decision in the cotton dust case. Interpretations of the decision vary as the AFL-CIO says that the ruling flatly cut out cost benefit analyses, while OSHA contends that only the mandatory nature of such analyses is removed.

In the July 21st F.R., the EPA clarified which asbestos exports must be reported under the TSCA. EPA considers three categories of asbestos exports to be reportable: (1) bulk shipments of raw fiber; (2) an asbestos-containing mixture that assumes the shape of its container—for example, asbestos-containing paints; and (3) an asbestos-containing mixture that is formed to a shape that must be fundamentally changed before use. Given as examples of types of products that are not subject to the rule are asbestos-cement pipe, brake linings, sheet gasketing, unfinished asbestos textiles, floor tiling, and rolls of asbestos paper.

On December 7, the Supreme Court refused to review the separate rulings of Federal Appellate Courts that held that any insurer would be liable for health impairment claims during the period of exposure to asbestos as well as during manifestation of the disease.

Environmental Impact.—It is practically impossible to separate the large drop in 1980 in asbestos consumption into economic environmental parts. It would seem to be mainly economic, but the very large number of lawsuits about asbestos exposure-related diseases and their coverage in the

media are bound to have some effect on the market. The scope of these effects was discussed by Senator Hart and printed in the Congressional Record. The Senator introduced into the Record an article from the National Law Journal (Oct. 19, 1981) entitled "The Asbestos Case Explosion" by James Granelli.2 Mr. Granelli says that two recent Federal Appellate Court rulings and a recent medical study could radically expand the size and number of the asbestosrelated disease lawsuits. These lawsuits are already the largest type of product-liability case in the country. Any "radical expansion" of the 12,000 to 15,000 cases pending (5,000 in California alone) could overwhelm the courts.

Seamen and shipyard workers, the largest group of plaintiffs, have been deemed by an October ruling of the 4th U.S. Circuit Court of Appeals to come under admiralty law; their suits can be tried in Federal courts, thereby avoiding the statute of limitations that bind many State courts.

On October 1, Judge David Bazelon, writing for the District of Columbia Circuit Court of Appeals, settled the hard-fought question of the "moment of liability" so important to the insurance carriers. He ruled that the insurance coverage was triggered both at the time of exposure and manifestation and also while the asbestos fibers were in residence.

The Johns Manville Corp. had 8,000 cases pending involving 13,500 plaintiffs and had settled 1,000 cases. The plaintiffs have won 56% of the cases that went to trial and were awarded amounts ranging from \$16,000 to \$1,857,600.

The disposal of 395 cases in 1980 by trial or settlement resulted in an average award of \$76,000 to the plaintiffs. In the first 9 months of 1981, 302 cases were disposed of with an average cost of \$58,500 per case to the defendant. A business publication suggested that in the long run, these cases may be a social rather than a legal problem.3 It suggested that the huge scope of potential liabilities from asbestos and other latent diseases may be too great for an industry or group of industries to bear. The Government may have to step in. The inclusion of the tobacco industry and the Government itself as codefendants in many suits may influence congressional decisions.

According to one of its journals, the medical profession apparently thinks that environmental regulations are sometimes based on incomplete, inaccurate, or misinterpreted data. Affairs of the American Medical Association (AMA) in their report

105 ASBESTOS

on "Carcinogen Regulations" gave the following as major conclusions: (1) Although such carcinogens as asbestos and chromates have been identified in the workplace, there is no definitive epidemiologic evidence that the United States has experienced an overall increase in the incidence of cancer related to high levels of pollutants or contaminants in the environment; (2) much more research relating the development of cancer in animals to a parallel development in humans is needed before that relationship can be used to mandate regulating substances in the human environment: (3) the AMA should continue to encourage Federal regulatory agencies to use an independent

review processs for full scientific assessment-one that will objectively consider experimental biases and define the limits of testing accuracy before a formal proposal is made to regulate a potential carcinogen; and (4) the AMA should advise Federal regulatory agencies of the importance of providing a comment period of at least 90 days after the proposal of a regulation so that there may be indepth peer review of the proposed policy or rule.

In 1981, the first drafts of the long awaited reports on the National Toxicology Program animal feeding study became available. They give no indication of carcinoge-

nicity from ingested asbestos.

Table 2.—Stockpile goals and Government inventories as of December 31 (Metric tons)

	Stockpile	To	otal inventories		Sales of
	goals	1979	1980	1981	excesses, 1981
AmositeChrysotileCrocidolite	15,422 2,722	38,587 9,034 2,163	38,587 9,034 2,163	38,587 9,034 754	- <i>-</i> 1,409
Total	18,144	49,784	49,784	48,375	1,409

DOMESTIC PRODUCTION

Mines in the United States shipped about 6% less asbestos in 1981 than in 1980, but the value was practically identical. Three States produced asbestos; California was the leader, followed by Vermont and Arizona. Total output was 75,618 tons valued at \$30.7 million.

Calaveras Asbestos Corp. was California's and the Nation's leading producer from its Copperopolis Mine. One other mine was also active in California. On the Joaquin Ridge near Coalinga, in San Benito County, Union Carbide Corp. operated its Santa

Rita Mine.

The Vermont Asbestos Group's Lowell Mine in Orleans County, Vt., is second in the country in production.

Arizona production in 1981 was below the 1980 level. The Jaquays Mining Corp. in Gila County had the only active asbestos mine in the State. This mine will probably be closed in 1982.

Employment in U.S. asbestos mines and mills averaged about 450 persons during 1981.

Table 3.—Asbestos producers in the United States in 1981

State and company	County	Mine	Type of asbestos
Arizona: Jaquays Mining Corp California: Calaveras Asbestos Corp	Gila	Chrysotile Copperopolis Santa Rita	Chrysotile. Do.
Union Carbide Corp Vermont: Vermont Asbestos Group	San Benito Orleans	Santa Rita	Do. Do.

CONSUMPTION AND USES

Total U.S. asbestos consumption decreased 3% from 1980 to 1981. Chrysotile was 90% of that consumed; crocidolite, 9%. Small amounts of both amosite and an-

thophyllite were reported used.

Asbestos-cement pipe decreased its share of the asbestos used from 40% in 1980 to 37% in 1981. Chrysotile was 76% of that

Table 4.—U.S. asbestos consumption by end use, grade, and type (Metric tom)

				Chry	Chrysotile							
	Grades 1 and 2	Grade	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8	Total chrysotile	Lite	Amosite	Antho- phyllite	Total
	400	3,600	86,900	89,500	19,900	132,300	1	332,600	24,400	1,700	-	358,700
1981:												
Asbestos-cement pipe	1	ļ	71.300	26.100	1.100			98.500	31 300			199 800
Asbestos-cement sheet	1	100	300	2,500	2,500	12,300	: ;	17,700	1,400	200	1 1	19,300
Flooring products	1	10	19	400	15	67,800	ł	68,200	1		1	68,200
Roofing products	1	88	96	1,100	7,300	22,900	1	31,800	!	1	1	31,800
Packing and gaskets	1	1,000	1,600	2,200	8	11,400	ŀ	19,300	1	1	ł	19,300
Insulation:			900			000		9				9
Flortrice	i	S	8	!	!	96	t I	86	1	-	!	86
Friction products	1	3	100	14.200	5,800	800	į.	48 000	ļ	1	15	96 96
Coatings and compounds	1	:	90	300	100	11,600	l I	13,100	1	-	3	19,100
Plastics	181	100	; ;	88		009	l	1,100	l l	1	1.	197
Textiles	1	1.700	1		! !			1,700		1	1	1,700
Paper		100	! !	400	06	300		1,700	200	1	!	90
Other	1	100	200	100	200	6,200	1	6,800	; ;	1,100	 	7,900
Total	100	3,500	75,200	20,600	19,000	166,100		314.500	32.900	1.300	100	348.800
												2000

ASBESTOS 107

used in asbestos-cement pipe and crocidolite the rest. Flooring products with 20%, friction products with 14%, roofing products with 9%, and asbestos-cement sheet and packing and gaskets with 6% each, were the other major uses. One percent of the chrysotile used was spinning grades 1, 2, or 3. Of the rest, the grade 7's were the most used at 53%, the 4's next at 24%, the 5's at 16%, and the 6's at 6%

PRICES

Cassiar Resources, Inc., started the year optimistically with price increases that averaged 12% higher than those of 1980. Most other Western Hemisphere producer raised their published prices by varying amounts. The depressed markets and high producer inventories, though, made for a buyer's market with much selling below the

listed prices. Because most of the asbestos used in the United States came from Canada, Quebec prices set the pattern. Quebec prices are given below.⁵

Quotations for Asbestos Corp. (Quebec) chrysotile, f.o.b. mine, as of January 1, 1981, follow:

Grade	Description	Value per metric ton
3Z to 3F 4T to 4A	Spinning fiber Asbestos-cement	Can\$1,325-\$2,199
41 W 4A	fiber.	937- 1,384
5Z to 5D	Paper fiber Paper and shingle	548- 757
OD	fiber.	450- 470
7TS to 7D	Shorts	138- 278

African asbestos producers privately negotiate sales, thereby ruling out market quotations. The following tabulation shows the average value per metric ton of imports

from the Republic of South Africa, regardless of grade, calculated from 1981 and previous U.S. Department of Commerce data:

Туре	1977	1978	1979	1980	1981
Amosite	\$589	\$569	\$577	\$902	\$725
Crocidolite	582	624	686	689	676
Chrysotile	485	451	679	692	595

FOREIGN TRADE

There was a 2% increase in the value of asbestos and asbestos products exported from the United States in 1981 over that of 1980. The fiber share of the export dollar remained at 13% in 1981. All of the gain was accounted for by a 2.4% increase in the value of manufactured asbestos products. There was a 23% decrease in the unit value of imported fibers to \$430 in 1981.

In 1981, the United States recovered 160% of the cost of imported asbestos by exporting and reexporting fibers and products.

Canada remained the largest user of U.S. asbestos and products accounting for 34% of

the value of exports of these products in 1981, followed by Mexico, 14%, and Saudi Arabia, 7%. Other major buyers of U.S. asbestos and products were, in descending order, Japan, Venezuela, Australia, the United Kingdom, the Federal Republic of Germany, Colombia, and the Netherlands.

Canada provided 94% of the asbestos fiber imported into the United States in 1981, and the Republic of South Africa provided 5%. Several countries provided the remainder. Chrysotile again dominated the imported types with 98% of the total. The dollar value of imported fiber in 1981 was 13% higher than that of 1980.

Table 5.—Countries importing U.S. asbestos fibers and products, by type and country (Thousand dollars)

		1980			1981	
Country	Unmanu- factured fibers	Manu- factured products	Total	Unmanu- factured fibers	Manu- factured products	Total
Australia Canada Colombia Germany, Federal Republic of Japan Mexico Netherlands Saudi Arabia United Kingdom Venezuela Other	68 951 168 1,146 4,233 4,410 67 373 239 9,082	3,231 60,182 1,638 3,618 3,840 8,980 3,288 13,362 4,258 3,202 35,700	3,299 61,133 1,806 4,764 8,073 13,390 3,288 13,429 4,631 3,441 44,782	117 1,029 555 713 4,246 5,267 14 118 206 222 9,362	4,480 55,754 1,867 3,098 4,171 18,344 1,680 11,717 3,627 4,951	4,597 56,783 1,922 3,811 8,417 23,611 1,694 11,835 3,833 5,173
Total	20,737	141,299	162,036	21,349	34,842 144,531	44,204 165,880

Table 6.—U.S. exports and reexports of asbestos and asbestos products

	1	979		1980	1	981
Product	Quan- tity	Value (thou- sands)	Quan- tity	Value (thou- sands)	Quan- tity	Value (thou- sands
EXPORTS						
Unmanufactured:						
Crudes, fibers, and stucco metric tons_	_ 31,635	F\$12,868	36,426	\$17.044	FO 101	***
Sand and refusedo	_ 10.501	3,642	11.793	3,693	50,131 13,995	\$17,328
		0,012	11,190	0,090	13,995	4,021
Totaldo	r42,136	r16,510	^r 48,219	r20,737	64,126	21,349
Products:						
Asbestos fibersdo	_ 2,559	0.504				
Shingles and clapboarddo	_ 2,559 7,999	6,784	2,695	8,610	3,840	9,544
Uther articles of ashestos 3.	10 000	3,875	4,535	2,560	21,771	3,686
Gasketsdodododo	17,758	13,301	16,646	14,236	17,504	14,292
Packing and seals	4,203	4,556	438	3,542	451	4,144
		14,497	2,118	15,661	1,598	18,179
Other articles, n.s.p.fdo	- NA	4,524	NA	6,151	NA	8,185
Brake linings and disk brake padsdo	- NA	22,806	NA	25,442	NA	23,660
Clutch facings and linings number_	- NA	55,270	NA	55,471	NA	50,058
		9,334	NA	9,626	NA	12,783
Total	XX	^r 134,947	XX	^r 141,299	XX	144,531
REEXPORTS	-					
Unmanufactured:						
Crudes and fibers	1.000	054				
Sand and refusedo	1,039	851	383	307	240	150
		20	69	23	53	9
Total do	1,155	871	452	330	293	159
Products:						
Ashestos fihers						
Asbestos fibersdo Shingles and clapboarddodo					6	34
Gasketsdodo			477	78	84	20
Packing and seels					ĩ	ž
Packing and sealsdo	. 4	109	1	- 5	ī	ż
Insulationdo	·		NA	i	NÃ	17
		68	NA	14	NA	120
		2,492	NA	219	NA	149
Clutch facings and linings number _	. NA	52	NA	24	ŇA	234
Other articles of asbestos metric tons	NA	22	3	13	1	16
Total	XX	2,743	XX	354	XX	599

^rRevised. NA Not available. XX Not applicable.

Table 7.—U.S. imports for consumption of asbestos fibers by type, origin, and value

	Car	ada	Repub South	olic of Africa	Oth	er	To	tal
Туре	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
1979	495,914	\$123,673	16,328	\$11,135	842	\$402	513,084	\$135,210
1980: Chrysotile: Crude Spinning fibers All other Crocidolite (blue) Amosite	129 5,424 309,886 152 149	20 4,571 78,371 12 302	360 2,041 7,545 315	338 1,379 5,201 284	29 567 899 	32 578 721 	158 6,351 312,826 7,597 364	52 5,487 80,471 5,213 586
Total	315,540	83,276	10,261	7,202	1,495	1,331	327,296	91,809
1981: Chrysotile: Crude	4,450 313,917 	4,124 86,704	957 471 7,802 7,376 506	554 175 4,762 4,988 367	90 1,875 174	91 2,000 128	957 5,011 323,594 7,376 680	554 4,390 93,466 4,988 495
Total	318,367	90,828	17,112	10,846	2,139	2,219	337,618	103,893

¹Transshipment from the Republic of South Africa.

WORLD REVIEW

A wide-ranging survey of asbestos-cement use was reported at an industry meeting and described in a trade publication.⁶ The trends are detailed in figure 1, which shows a decline in use in Western Europe and North America and increases in the rest of the world after 1970. These curves illustrate what has become increasingly apparent in the last decade. The growth areas for asbestos consumption are in the less developed portions of the world.

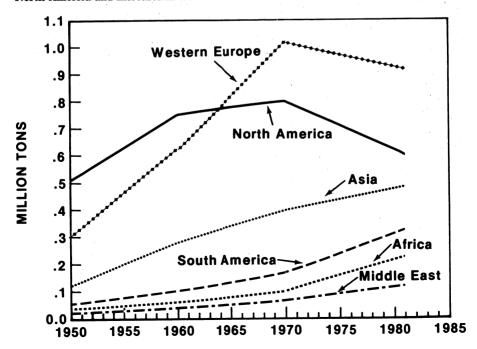


Figure 1.—Asbestos consumption by geographical area.

Australia.—Woodsreef Mines, Ltd., in Barraba received enough funds from its parent company, Trans Pacific Asbestos, Ltd., of Canada, to retire its bank loan and come out of receivership. It still owes large amounts to the Australian Federal Government and the New South Wales government. In midsummer, the recession forced reduction in work from a normal 3 shifts per day 5 days per week to 1 shift per day 5 days per week.

Canada.—As of October, the Quebec asbestos producers had inventories of about 200,000 tons. This was in spite of many layoffs and temporary mine and/or mill closures. In late November, a Canadián mining paper described the past 12 months as harder on the asbestos industry than any previous period in its history.7 The article cited an 11% downturn in sales for the first 7 months of 1981 when compared with the already low sales of 1980 and saw no apparent improvement for later in the year. An anomaly during the first part of the year saw sales of the short fibers (40% by weight of the production) grow by 0.8% while the others declined by 15.1%.

In November, the Quebec government and General Dynamics Corp. finally agreed to the terms under which control of the Asbestos Corp. would be transferred from the latter to the former. The first phase, effective immediately, called for the transfer of 51% of the voting stock of General Dynamics Canada, Ltd., which owned 54.65% of Asbestos Corp., to the Quebec government. The price was Can\$16 million. The agreement allows further acquisition at 2- and 5-year intervals.

After a temporary closure in August, Advocate asbestos mine near Baie Verte in Newfoundland was scheduled for permanent closure on December 31, 1981. The principal owners, Johns Manville Canada, Inc., and Compagnie Financiere Eternit S.A. of Belgium, said that the decision to close was mainly a problem of cash flow and the economics of an overburden-to-ore ratio of 6 to 1 compared with that in Quebec of 3 to 1. Trans Pacific Asbestos, Ltd., showed late-year interest in acquiring Advocate to showcase their Woodsreef wet milling process. The Newfoundland government, interested in maintaining the more than 500 jobs, said that at least three other firms

were interested in the acquisition of Advocate.

Greece.—On April 17, 1981, the asbestos mill at Kozani and mine at nearby Zidani were officially opened. Full production at a 100,000-metric-ton-per-year capacity was expected in 1981 with production of grades 4, 5, 6, and 7.

South Africa, Republic of.—General Mining Union Corp. (Gencor) made an offer for the former Cape Asbestos, Ltd., asbestos properties acquired in 1979 by Transvaal Consolidated Land and Exploration, Ltd. Gencor was already South Africa's largest asbestos producer through its 31% ownership of Griqualand Exploration and Finance Co. and Msauli Asbestos, Ltd.

Turkey.—A recent report cited in an international magazine from the Union of Chambers projected the value of Turkey's asbestos production to rise 37% from 1979 to \$1.7 million in 1981.

U.S.S.R.—The U.S.S.R. reported that the second stage of the Lenin asbestos plant in the Tuva Autonomous Soviet Socialist Republic reached full production. Design capacity was 120,000 tons per year.

A translation from the Russian gave a thumbnail sketch of the Uralasbest combine. It produced 62.4% of the Soviet asbestos output. It also provided all the asbestos exported from the Soviet Union. The combine incorporated 20 sections and subsections, including two asbestos mines, three asbestos milling plants, anthophyllite asbestos mining, an asbestos millboard factory, mechanical works, and factories for large building panels and other structural building materials. The total personnel numbered about 19,000, including 15,000 of labor force.

Zimbabwe.—Data on the production of asbestos and other minerals during the years of unilaterally declared independence (UDI) became available. For the UDI years 1966-79, inclusive, asbestos was the primary revenue-producing mineral with a value 32% above the next highest revenue producer (gold) and 23% of the total mineral value. Asbestos production maintained a healthy growth rate during that period.

Amiantos of Switzerland closed, in April of 1981, its Pangani, Vanguard, and Buss Mines. The no-longer-viable mines produced only 5% of Zimbabwean asbestos.

Table 8.—Asbestos: World production, by country¹

(Metric tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
North America:					91 100 000
Canada (shipments)	1,517,360	1,421,808	1,492,719	1,323,053	31,133,000
United States (sold or used by producers)_	92,256	93,097	93,354	380,079	375,618
Latin America:					1 400
Argentina	686	1,069	1,371	1,261	1,400
Brazil	92,773	122,815	138,457	169,173	180,000
Europe:				050	700
Bulgaria ^e	500	700	600	652	700
Italy	149,327	135,402	143,931	157,794	142,000
U.S.S.R. e	1,900,000	1,945,000	2,020,000	2,150,000	2,220,000
Yugoslavia	9,066	10,360	10,041	12,106	313,591
Africa:					005
Egypt	478	349	238	316	325
Mozambique			789	800	800
South Africa, Republic of	380,164	257,325	249,187	276,759	3236,999
Swaziland ⁴	38,046	r36,957	34,294	32,833	34,000
Zimbabwe	r273,194	F248.861	259,891	250,949	253,000
Asia:	,				
Afghanistan	13,000	e13,000	e4,000		
Chinae	200,000	250,000	250,000	250,000	250,000
Cyprus	36,684	34,342	35,472	34,535	34,000
India	22,177	r24,623	32,094	31,253	32,000
Japan	6,307	5,746	3,502	3,897	3,500
Korea, Republic of	6,180	13,616	14,804	9,854	10,000
Taiwan	673	2,031	2,957	683	2,600
Thailand	4	-,4	_,		
Turkey	3.975	13.372	17,210	8,800	10,000
Oceania: Australia	50,601	62,744	79,721	92,418	92,000
	r4,793,451	r4,693,221	4,884,732	4,887,215	4,725,533

Revised. ^eEstimated. ^pPreliminary.

TECHNOLOGY

Examination of an EPA document published in 1981 left no doubt about that agency's interest in asbestos.11 It described 49 different asbestos related research projects taking place in 10 laboratories under the guidance of 4 EPA offices. Of further interest is that 19 (39%) of the projects had to do with waterborne asbestos.

Funding from Trans Pacific Asbestos, Ltd., parent company of Australia's Woodsreef Mine, was intended to bring into operation a prototype mill to demonstrate its revolutionary wet milling process. At least one U.S. company was showing great interest in this process.

Substitutes.—A paper at a national glass conference gave some details about the asbestos uses in a glass plant and the hunt for substitutes.12 The author conceded that to eliminate all asbestos one must be willing to accept lower operating efficiencies and higher operating and maintenance costs. He identified 72 separate kinds of equipment in all parts of the plant that contained asbestos.

Another paper detailed one company's very novel approach to a less hazardous substitute for asbestos.13 Reasoning that, if condensed phosphates were degradable in cellular enzymes, fibrous condensed phosphates would be biodegradable and less capable of cellular damage and carcinogenicity; they produced such fibers. Analysis of the paper indicates that the following questions were not addressed: (1) Would the fibers that have much larger diameters be compatible with present asbestos manufacturing processes? (2) How would further fiberization to produce smaller fibers affect the physical parameters of the fibers? (3) Could long lasting cement products be made using these "fairly resistant to alkali" fibers?

If asbestos continues to be deemed a controllable hazard, then, because the less costly reinforcement will prevail, asbestos could likely win any economic battle. Figure 2 shows the efficacy of several reinforcing agents in plastic matrices. Asbestos is by far the least costly.

[&]quot;Table includes data available through Apr. 21, 1982.

In addition to the countries listed, Ozechoslovakia, North Korea, and Romania also produce asbestos, but output is not officially reported, and available general information is inadequate for the formulation of reliable estimates of output

³Reported figure.

Exports.

¹Physical scientust, Division of Industrial Minerals.
²Granelli, J. The Asbestos Case Explosion. Nat. Law J.,
³Rusiness Week. Suits That Are Searing Asbestos. No.
2883, Apr. 13, 1981, pp. 166-167.

2883, Apr. 13, 1981, pp. 160-167.
 Journal of the American Medical Association. Council on Scientific Affairs—Carcinogen Regulations. V. 246, No. 3, July 17, 1981, pp. 253-256.
 Asbestos. V. 63, No. 3, September 1981, pp. 20-21.

Sabestos. V. 63, No. 3, September 1981, pp. 20-21.
 Dorner, R. The Asbestos Users—World Survey of Asbestos-Cement. Pres. at Asbestos Internat. Assoc. 3d Biennial Conf., London, May 27-28, 1981, Asbestos Bull. (Astex Pub. Co., Surrey, England), v. 22, No. 5, September-October 1981, pp. 94-95 (Abstract).
 Knoll, K. Asbestos—Producers Look for Better Days. The Northern Miner, v. 67, No. 38, Nov. 26, 1981, pp. B30-21

Schemical Marketing Reporter. Quebec Government To Control U.S.-Owned Asbestos Unit. V. 220, No. 20, Nov. 16,

⁹Industrial Minerals (London). No. 168, September 1981,

pp. 15, 17.

¹⁰Kovolev, A. A. (Uralasbest in the Final Year of the Current 5-Year Plan.) Asbestos Bull. (Astex Pub. Co., Surrey, England), v. 22, No. 1, January-February 1981, p. 8 (English abs.).

¹¹Environmental Protection Agency, Office of Research and Development. Asbestos/Asbestiform Research in EPA ORD. Rept. No. EPA 600/7-81-032, March 1981, 80 pp. Single copy available from Center for Environmental Research Information, U.S. Environmental Protection Agency, Cincinnati, OH 45268; also available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. Document No. PB 81-191876.

¹²Haney, J. C. Asbestos Elimination in a Glass Plant. Ceram. Eng. and Sci. Proc., 41st Conf. on Glass Problems, Nat. Inst. of Ceram. Eng., January-February 1981, pp. 30-

¹³Griffith, E. J. Crystalline Calcium Polyphosphate Fibers. Pres. at Internat. Symp. on Phosphorous Chemistry, Duke Univ., Durham, N.C., June 1981, 27 pp.

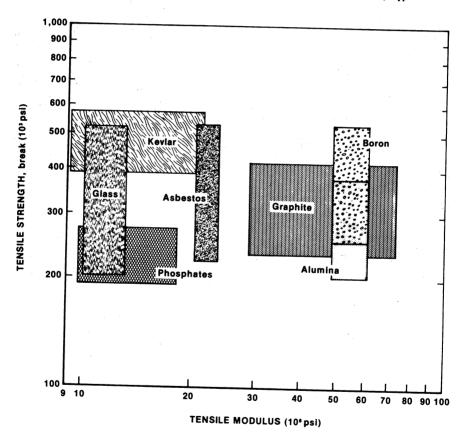


Figure 2.—Strength and modulus of selected fibers.

Barite

By Sarkis G. Ampian¹ and David E. Morse¹

Domestic production of barite increased 27% to a record 2.85 million tons in 1981 valued at \$102 million. Nevada, the leading producer, increased output 29% to 2.48 million tons, the first time that any State has exceeded 2 million tons in annual production. Production from Missouri, the second leading producer, increased substantially in 1981, and was up 58% from that of 1980. Imports for consumption of crude barite continued to increase, reaching 1.93 million tons, which was more than 80,000 tons higher than the previous record of 1.85

million tons imported in 1980. The principal use for barite, as a weighting agent in oiland gas-well-drilling fluids (muds), accounted for 97% of U.S. consumption in 1981.
Demand for barite continued at a record
high pace because of the unprecedented
high level of oil- and gas-well-drilling activity, which more than offset the decline in
demand by other consuming industries that
were adversely affected by the downturn in
economic activity during the latter half of
the year.

Table 1.—Salient barite and barium-chemical statistics

(Thousand short tons and thousand dollars)

	1977	1978	1979	1980	1981
United States:					
Barite, primary:	1 404	2.170	2,112	2,245	2,849
Sold or used by producers	1,494 \$30,264	\$45,130	\$53,581	\$65,957	\$102,439
ValueExports	50,204	r ₅₀	109	97	62
Value	\$3,436	\$2,724	\$10,861	\$13,794	\$9,947
Imports for consumption (crude)	955	1,291	1,489	1,850	1,932
Consumption (apparent) ¹	2,399	r _{3,411}	3,492	3,998	4,719
Crushed and ground (sold or used by					. = - 0
processors)2	2,593	2,897	3,223	3,649	4,716
Value	\$110,409	\$132,312	\$179,009	\$365,632	\$406,255
Barium chemicals (sold or used by processers)	56	55	50	40	34
Value	\$23,151	\$24,018	\$26,063	\$22,441	\$20,670
World: Production	r _{6,534}	r7,508	r7,791	P8,069	^e 8,715

^eEstimated. ^pPreliminary. ^rRevised. ¹Sold or used plus imports minus exports.

DOMESTIC PRODUCTION

The term "primary barite" denotes the first marketable product and includes crude run-of-mine barite, flotation concentrates, and material concentrated by other beneficiation processes such as washing, jigging, or magnetic separation. Run-of-mine barite sold or used by producers represented 32% of total production in 1981 compared with 34% in 1980; other beneficiated material

was 64% of the 1981 total compared with 62% in 1980; flotation concentrate, unchanged from 1980, was again 4% of the total 1981 production.

In 1981, reported primary barite production from 38 mines in 8 States increased 27% to the new record high of 2.85 million tons; Nevada with 20 mining operations and Missouri with 10 were the leading States in

²Includes imports.

the number of mines and in barite output. Other producing States in 1981, in descending order were Arkansas, Georgia, Montana, Illinois, Tennessee, and Arizona. Illinois produces barite as a coproduct of fluorspar mining and milling; in all other States barite was the primary product.

The leading domestic barite producers in 1981 were (in alphabetical order) Baroid Div., NL Industries, Inc., with mines in Arkansas, Missouri, and Nevada; Dresser Minerals Div., Dresser Industries, Inc., with mines in Missouri and Nevada; IMCO Services Div., Halliburton Co., with mines in Missouri and Nevada; and Milchem, Inc., with mines in Nevada. Other important producers in Nevada were (in alphabetical order) All Minerals Corp., A. W. Arnold and Associates, Inc., Chromalloy American Corp., Eisenmann Chemical Co. (a subsidiary of Newpark Resources, Inc.), FMC Corp., Old Soldier Mining Co., and T. Norris, Inc. In Missouri, Agers Brothers, Inc., DeSoto Mining Co., and General Barite Co. produced important quantities of barite in 1981.

The domestic barite industry continued its rapid expansion that began in the latter half of the 1970's. Since 1977, domestic primary barite production has increased nearly 100% from 1.5 million to 2.85 million tons. Barite grinding capacity has more than doubled in the same 5-year period with the addition of a large number of plants near the gulf coast and in Oklahoma. Additionally, nine plants that were operating in 1977 have had capacity increases. Baritegrinding capacity, which had been straining to meet demand in 1978, had increased by 1981 to a point of overcapacity.

In 1981, Milchem, Inc., was constructing a flotation plant at its Fancy Hill property near Glenwood, Ark. The company planned to have the mine and flotation plant in operation by late summer 1982.

In Louisiana, Blast Abrasives, Inc., began production from its Houma grinding facility

and constructed a second grinding plant at New Iberia; Dowell Fluid Services, a subsidiary of The Dow Chemical Co., purchased a large barite-grinding facility from G. H. Fluid Services; IMCO Services was expanding the capacity of its Houma grinding plant; Magcobar, a subsidiary of Dresser Industries, added a 66-inch mill to its New Orleans grinding plant; and NL Baroid began construction of a new grinding plant at Lake Charles, which was to be onstream in late 1982.

In Nevada, All Minerals was expanding the capacity of its beneficiating plant at its mine in Nye County; Magcobar added a 54-inch mill to its Battle Mountain grinding plant and expanded production from the Graystone Mine; NL Baroid added a second grinding mill to its Dunphy facility.

In Oklahoma, All Minerals and Eisenmann Chemical each completed construction of new grinding plants. Best Barite, Inc., was nearing completion of a new grinding plant at Cyril, southwest of Oklahoma City and near the oil well-drilling activity in the Anadarko Basin. Old Soldier Mining constructed a new grinding plant with a 54-inch mill at Elk City. Oklahoma, which did not have any grinding plants in 1978, was expected to have five in operation by mid-1982.

In Texas, All Minerals began construction of a two-mill grinding plant at Monahans. IMCO increased the capacity of its Brownsville grinding plant, and Magcobar added a 54-inch mill to its Galveston facility.

CE-Minerals, a Division of Combustion Engineering, Inc., began developing its Flagstaff Mountain property in Stevens County, Wash., after completion of a extensive drilling program. Crude ore was to be hauled to a flotation plant at Deep Lake that CE purchased from Washington Resources. Barite production was expected to start in mid-1982.

Table 2.—Primary barite sold or used by producers in the United States, by type and State

(Thousand short tons and thousand dollars)

State	Number of	Run	of mine		ation ntrates	Beneficiated material		To	tal
	opera- tions	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value
1980:									
Alaska	1	W	w					W	w
Arkansas	2	w	ŵ			w	w	w	w
Georgia	2			w	w	ŵ	w	₩-	w
Illinois	2			w	ŵ		•••	ẅ	w
Missouri	10					$1\overline{1}\overline{7}$	5,570	117	5,570
Montana	1	w	w				0,010	w	W
Nevada	16	708	16,319	w	w	1,209	31,481	¹1,918	47,800
New Mexico	1					,203 W	W	W W	41,000 W

See footnotes at end of table.

Table 2.—Primary barite sold or used by producers in the United States, by type and State —Continued

(Thousand short tons and thousand dollars)

0	Number of	Run	f mine		ation ntrates		iciated erial	т	Total	
State	opera- tions	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	
1980 —Continued										
Tennessee	2	w	w			w	w	w	W	
Total	37	772	20,444	81	4,607	1,392	40,907	2,245	¹65,957	
1981: Arizona	1 1 2 2 10 1 20 1	 W 839 W	 W 21,322 W	W W W W	W W W W	W 185 1,634	W 9,725 58,394 	W W W 185 W 2,482	W W W 9,725 W 79,716	
Total	38	909	26,347	123	7,011	1,817	69,081	2,849	102,439	

W Withheld to avoid disclosing company proprietary data; included in "Total."

¹Data do not add to total shown because of independent rounding.

CONSUMPTION AND USES

Domestic sales of crushed and ground barite reached an alltime high in 1981. Use as a weighting agent in oil- and gas-welldrilling fluids continued to be the dominant end use, accounting for 97% of total sales volume in 1981. The oil- and gas-welldrilling industry had a record year by completing over 78,500 wells and drilling more than 361 million feet of hole. Total footage drilled exceeded 10 million feet in seven States: Texas, 123.6 million feet; Oklahoma, 52.8 million feet; Louisiana, 33.2 million feet; Kansas, 23.2 million feet; Ohio, 19.6 million feet; New Mexico, 13.5 million feet; and Wyoming, 12.0 million feet. Generally, the deeper a hole is drilled, the more barite is used per foot of drilling; thus, the total footage drilled has a larger effect than

the number of wells. In the seven States with the greatest footage drilled in 1981, Wyoming had the highest average with nearly 7,200 feet per well and Kansas the lowest with about 3,400 feet per well. The U.S. average was 4,602 feet. An average of 25.1 pounds of barite was consumed per foot of drilling in 1981, compared with 23.8 pounds per foot in 1980.

The data in table 4 are mainly for ground barite but include quantities of crushed barite used by the barium chemical industry and by some glass manufacturers. Other uses of ground barite include filler in paint, paper, plastics, and rubber; flux, oxidizer, and decolorizer in glass manufacture; and miscellaneous uses.

Table 3.—Crushed and ground barite sold or used by processors in the United States, by State

		1980		1981				
State	Number of plants	Quantity (thousand short tons)	Value (thousands)	Number of plants	Quantity (thousands short tons)	Value (thousands)		
Louisiana	9	1,293	\$120,877	13	1,673	\$169,188		
Missouri	6	179	9,054	4	220	20,711		
Nevada	5	610	62,169	6	609	28,888		
Oklahoma			,	4	261	28,132		
Texas	10	1,106	129,761	12	1,392	112,823		
Utah	-6	151	13,817	6	247	19,740		
Other ¹	13	310	29,954	13	314	26,773		
 Total	49	3,649	365,632	58	4,716	406,255		

¹Includes Arkansas, California, Georgia, Illinois, Kansas (1981), Montana, and Tennessee (1980).

Table 4.—Crushed and ground barite sold or used by processors in the United States, by use1

(Thousand short tons and thousand dollars)

	Use ²	198	30	1981	
USC	Use	Quantity	Value	Quantity	Value
Barium chemicals		67	4,472	45	3,945
Filler or extender ³		119	14,660	86	12,807
Well drilling	<u>-</u>	3,462	346,500	4,585	389,505
Total ⁴		3,649	365,632	4,716	406,255

¹Includes imported barite.

Table 5.—Barium chemicals produced and sold or used by processors in the United States1

Barium chemical		198	30			198	31	
	_	Pro- duction Sold or use processo				Pro-		sed by
	Plants ²	(short tons)	Quantity (short tons)	Value (thou- sands)	Plants ²	duction (short tons)	Quantity (short tons)	Value (thou- sands)
Barium carbonate Barium chloride Barium hydroxide	4 2 1	30,000 W W	25,000 W W	\$10,000 W W	4 2	25,000 W	22,000 W	\$9,400 W
Black ash Blanc fixe Other	2 1	W W 23,546	w	W	1	W	W W	W
Total	5	53,546	15,045 40,045	12,441 22,441	5	36,000	12,000 34,000	11,270 20,670

Table 6.—U.S. hydrocarbon well-drilling and barite consumption

	Barite used for well drilling	W	ells drilled	(thousand	ls) ¹	Successful	Average depth	Average barite
Year	(thousand short tons)	Oil	Gas	Dry holes	Total	wells (percent)	per well (feet)	per well (short tons)
1961	942	21.41	5.46	17.38	44.25	60.7	4,285	21.29
1962	934	21.73	5.35	17.08	44.16	61.3	4,408	21.15
1963	907	20.14	4.57	16.76	41.47	59.6	4,405	21.87
1964	931	19.91	4.69	17.69	42.29	58.2	4,431	22.01
1965	987	18.07	4.48	16.23	r38.78	r _{58.1}	4,510	^r 25.45
1966	1,022	16.78	4.38	15.23	r36.39	58.1	4,478	r _{28.08}
1967	965	15.33	3.66	13.23	r _{32.22}	58.9	4,385	r29.95
1968	1,006	14.33	3.46	12.81	30.60	58.1	4,738	29.95 32.88
1969	1,235	14.37	4.08	13.74	32.19	57.3	4,786	32.00 38.37
1970	1,119	13.02	3.84	11.26	28.12	60.0	4,952	39.79
1971	1,044	11.86	3.83	10.16	25.85	60.7	4,806	40.39
1972	1,183	11.31	4.93	11.06	r27.30	59.5	4,932	r _{43.33}
1973	1,326	9.90	6.39	10.31	r26.60	61.2	5,129	
1974	1,440	12.78	7.24	11.67	r31.69	63.2		r49.85
1975	1,638	16.41	7.58	13.25	37.24		4,750	*45.44
1976	1,986	17.06	9.09	13.62	39.77	64.4 65.7	4,685	43.98
1977	2,372	18.91	11.38	14.69	44.98		4,571	49.94
1978	2,632	17.76	12.93			67.3	4,687	r _{52.73}
1979	2,967	19.38		16.25	F46.94	65.4	4,829	^r 56.07
1980			14.68	15.75	F49.81	68.4	4,791	r _{59.57}
1981	3,385	26.99	15.74	18.09	r _{60.82}	70.3	4,675	55.66
1901	4,526	37.67	17.89	22.97	78.53	70.8	4,602	57.63

Source: U.S. Department of Energy. Energy Information Administration.

Includes imported parite.

*Uses reported by processors of ground and crushed barite, except for barium chemicals.

*Includes glass, paint, rubber, other filler, and other uses.

*Data may not add to totals shown because of independent rounding.

W Withheld to avoid disclosing company proprietary data; included with "Other."

¹Only data reported by barium-chemical plants that consume barite are included. Partially estimated.

²A plant producing more than one product is counted only once.

¹Includes exploratory and development wells; excludes service wells, stratigraphic tests, and core tests.

PRICES

Prices for all grades of barite increased in 1981 according to the Engineering and Mining Journal. The prices listed in table 7 are from trade publications; they serve as a general guide but do not reflect actual transactions.

The total reported value of primary barite in the United States in 1981 was \$102 million; the average value per ton was \$35.95, f.o.b. plant, an increase of 22%

compared with the 1980 average value of \$29.38. The average reported value per ton of ground barite from Texas and Louisiana was \$92.01; the average value from California, Nevada, and Utah was \$58.12 per ton. In 1981, the average customs value of ground barite exported to Canada was about \$225 per ton; the customs value of material exported to Mexico and Latin America was nearly \$150 per ton.

Table 7.—Barite price quotations

Item	Price per	short ton ¹
Item	1980	1981
Barite: ²		
Chemical, filler, glass grades, f.o.b. shipping point, carlots:		
Handpicked, 95% BaSO ₄ , not over 1% Fe	\$72.00	\$72.00
Magnetic or flotation, 96% to 98% BaSO ₄ , not over 0.5% Fe	\$60.00- 70.00	105.00
Water ground, 95% BaSO ₄ , 325 mesh, 50-pound bags	80.00-133.00	\$80.00-155.00
Drilling-mud grade:	00.00 100.00	ψουιου 100.00
Dry ground, 83% to 93% BaSO ₄ , 3% to 12% Fe, specific gravity 4.20 to 4.30,		
f.o.b. shipping point, carlots	70.00- 90.00	95.00-115.00
Crude, imported, specific gravity 4.20 to 4.30, f.o.b. shipping point	30.00- 60.00	32.00- 61.00
Barium chemicals: ³	00.00 00.00	02.00
Barium carbonate:		
Precipitated, bulk, carlots, freight equalized (per pound)	.206	0.26
Electronics grade, bags	335.00	335.00
Barium chloride:	000.00	000.00
Technical crystals, bags, carlots, works	300.00	300.00
Anhydrous, bags, carlots, same basis	400.00	400.00
Barium hydrate: Mono, 55-pound bags, carlots, delivered (100 pounds)	39.50	55.00
Barium sulfate:		
Blanc fixe, technical grade, bags, carlots	430.00	430.00
USP, X-ray diagnosis grade, powder, 250-pound drums, 1,250-pound lots		
(per pound)	.53- 1.06	
USP, X-ray diagnosis grade, powder, 25-kilo bags, 10,000 kilo-lots (per pound)		.51
Barium sulfide (black ash), drums, carlots, works	150.00	115.00-150.00

FOREIGN TRADE

During 1981, over 62,000 tons of "natural barium sulfate" was exported from the United States. Export data provided by the U.S. Bureau of the Census do not indicate what type or form of barite was exported; however, based on the value of each shipment, it was estimated that 95% of barite exports was ground drilling-mud grade, 1% was crude barite, and 4% was chemical, filler, or glass grade. Mexico and Canada continued as the leading importers of barite from the United States, accounting for 81% of total exports. Barite was exported to 18 countries in 1981.

A record high 1.93 million tons of crude barite was imported by the United States in 1981. Compared with the 1980 figures, imports in 1981 increased 4.4% in quantity and 5.2% in value (c.i.f.). China supplied 80% of ground barite imports during the year, and Mexico supplied nearly 12%.

Canada and the Federal Republic of Germany supplied most of the remaining 8%. The average value of imported crude barite increased \$0.40 to \$55.50 per ton (c.i.f.). The principal source countries, in order of tonnage and average values per ton in 1981, were China, \$63.00; Peru, \$47.88; Chile, \$44.11; Morocco, \$63.41; Mexico, \$41.75; and Ireland, \$39.09.

For the most part, crude barite entered the United States through customs districts located along the gulf coast. This reflects the concentration of grinding plants along the gulf coast and the nearness to the most important drilling mud markets. The import distribution by customs district in 1981 (1980 distribution in parentheses) was New Orleans, La., 56.2% (55%); Galveston, Tex., 18.1% (15%); Houston, Tex., 14.2% (11.9%); Laredo, Tex. (Port of Brownsville, Tex.), 9.3% (12.6%); and Port Arthur, Tex. (Port of

¹Unless otherwise specified.

²Engineering and Mining Journal. V. 181, No. 12, December 1980, p. 23, and v. 182, No. 12, December 1981, p. 23.

³Chemical Marketing Reporter. V. 218, No. 26, Dec. 29, 1980, p. 27, and v. 220, No. 26, Dec. 28, 1981, p. 29.

Lake Charles, La.), 2.4% (2%). The United States imported over 13,000 tons of ground barite in 1981.

The United States imported over 22,000 tons of barium chemicals valued at \$11.9 million in 1981. The Federal Republic of Germany, China, France, and Italy were the major suppliers of imported barium chemicals in 1981.

Table 8.—U.S. exports of natural barium sulfate, by country

	198	0	198	1
Country	Quantity (short tons)	Value (thou- sands)	198: Quantity (short tons) 600 327 2 732 110 11,002 1,400 5 3,528 500 61 39,333 1,000 10 510 3,062	Value (thou- sands)
Angola	431	\$50		\$87
Argentina	312	141	327	140
Australia	3	2	2	1
Austria	211	17		
Barbados	310	40	732	80
Brazil	1.059	139		19
Canada	31,473	5,715		2,499
Chile	2,550	276		168
	2,000	2.0		58
	ő	ĩ	•	00
Costa Rica	61	26	2 529	431
Dominican Republic	4,480	459	0,020	401
Guatemala	4,480			
Indonesia	9	4	500	83
Jamaica				
Japan		2		84
Mexico	50,313	6,030		5,624
Paraguay				150
Philippines	5.7		10	2
Sevchelles	250	42		
Sierra Leone			510	93
United Kingdom	159	64		
Venezuela	3,142	397	3,062	423
Zaire	1,518	241		
Other	536	150	- 11	4
Total ¹	96,819	13,794	62,187	9,947

¹Data may not add to totals shown because of independent rounding.

Source: U.S. Department of Commerce.

Table 9.—U.S. imports for consumption of barite, by country

	198	80	198	31
Country	Quantity (short tons)	Value ¹ (thou- sands)	Quantity (short tons)	Value ¹ (thou- sands)
Crude barite:				
Australia	49,629	\$2,479		
Canada	111	- 4		
Chile	174,285	9,468	313,926	\$13,848
China	525,055	32,636	735,905	46,360
France	413	36	100,000	10,000
Greece	31,748	2,451	17.638	1.479
Guatemala	1.438	51	11,000	1,110
India	145.060	7,948	54.902	4.001
Ireland	82.823	2,603	78,287	3,060
Mexico	129,788	5,627	133,550	5,576
		12.282	230.328	
Morocco	204,928			14,605
Peru	326,908	14,453	317,236	15,188
Thailand	130,427	8,567	23,479	1,361
Total	² 1,850,334	² 101,956	²1,932,227	²107,236
Ground barite:				
Belgium-Luxembourg	17	8	53	16
Canada	397	164	451	248
China	118	20	10.844	771
	110	20	39	8
Colombia Germany, Federal Republic of	35	12	372	129
	3,224	228	1.561	107
Mexico	3,224	440		71
Netherlands	40	10	208 40	
Spain	40	13	40	12
Total ³	3,831	445	13,569	1,363

¹C.i.f. value.

²Includes 47,721 tons valued at \$3,351,000 in 1980 and 26,976 tons valued at \$1,758,000 in 1981 from Taiwan—not believed to have originated in Taiwan.

³Data may not add to totals shown because of independent rounding.

Table 10.—U.S. imports for consumption of barium chemicals

	Lithop	one	(prec	nc fixe ipitated n sulfate)	Barii chlor			ium oxide
Year	Quantity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
1977	65 142 1,535 1,310 NA	\$27 58 662 599 NA	8,729 9,424 9,352 7,752 8,402	\$3,069 4,160 4,152 4,460 5,369	5,384 5,287 6,839 4,216 3,601	\$1,170 1,173 1,398 980 1,170	2,448 3,138 3,912 2,917 3,663	\$1,222 1,539 2,009 1,694 2,451
_	Bariu	m nitrate			arbonate, oitated			
_	Quantity (short tons)	Va (th sar		Quantity (short tons)	Value (thou- sands)		Quantity (short tons)	Value (thou- sands)
1977	89 46 51 1,14 27	88 .7 .3	\$197 123 117 243 87	6,911 10,712 11,596 6,876 5,709	\$1,3 2,4 2,7 2,0 2,3	65 70 50	395 2,987 1,540 883 664	\$286 1,186 783 597 538

NA Not available.

Source: U.S. Department of Commerce.

Table 11.—U.S. imports for consumption of crude, unground, and crushed or ground witherite¹

	Crude, u	inground	Crushed or ground		
Year	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	
1977			518	\$103	
1978 1979	-5	- \$ 1	1,809 436	387 105	
1980 1981	22,145	713	62 92	23 85	

¹Barium carbonate.

Source: U.S. Department of Commerce.

WORLD REVIEW

Estimated world production of barite increased 8% to 8.7 million tons in 1981. The United States produced 33% of the world total and imported 22% of the world output.

Belgium.—NL Baroid Minerals, Inc., began operating Belgium's only barite mine at Fleurus near Namur in 1981. The Fleurus barite is relatively expensive because it requires flotation and subsequent cleanup to produce a salable product. The deposit was reported to have reserves of more

than 1 million tons.2

Canada.—In Newfoundland, Baroid of Canada, Ltd., was assisting ASARCO Incorporated and the Price Co. to both produce and market barite from the tailings of their Buchans lead-zinc-copper operation. A barite plant designed to process 85,000 tons per year of tailings to recover 15,000 tons per year of barite was put into operation in August.³

Chile.-Milchem, Inc., entered into a

Table 12.—Barite: World production, by country¹

(Thousand short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Canada	129	97	74	95	90
Guatemala		1	4	5	•
Mexico United States ³	298	255	167	297	350
United States ³	1,494	2,170	2,112	2,245	42.849
South America:	,	_,	-,	-,-10	2,010
Argentina	34	r ₅₀	61	55	54
Bolivia ⁵	2	3	2	10	2
Brazil	55	118	119	101	115
Chile	72	r204	250	249	247
Colombia	1	201	4	4	44
Peru	^r 479	r ₄₃₆	490	457	
Europe:	410	400	450	491	451
Austria	(⁶)	(⁶)	(⁶)	(⁶)	(6)
Belgium	()	()	(-)	e ₃₃	(⁶)
Czechoslovakia	e70	e70			44
			75	67	67
France	r ₂₃₃	248	187	250	230
German Democratic Republice	34	39	40	40	40
Germany, Federal Republic of	293	186	178	193	190
Greece ⁷	^r 96	49	53	53	53
Ireland	411	385	362	287	287
Italy	^r 168	261	237	224	4192
Poland	98	100	106	106	100
Portugal	1	.1	1	1	1
Romania	^e 94	96	97	97	98
Spain	r ₉₃	79	82	66	70
U.S.S.R. ^e	500	525	550	550	550
United Kingdom	55	60	50	36	45
Yugoslavia	58	47	51	e ₅₀	51
Africa:			0.	00	01
Algeria	53	81	99	e ₁₀₀	100
Egypt	i	i	3	5	5
Kenya	(6)	(⁶)	(6)	7	7
Morocco	165	195	316	353	360
South Africa, Republic of	3	3	3	3	300
Tunisia	18	18	18	30	4 ₂₅
Zimbabwe	ř ₁	(6)	(6)	. 30 (6)	
Asia:	1	(-)	(-)	(-)	(6)
Afghanistan ⁸	r ₁₃	14			
Burma	18	14 39	3	7.7	
China ^e			44	44	33
India	385 365	440 428	550	750	850
Iran			427	381	390
Ionon	204	r220	198	165	85
Japan	64	78	61	63	62
Korea, Northe	130	120	120	120	120
Korea, Republic of	.3	r 1	1	(⁶)	(⁶)
Malaysia	12	_6	2		
Pakistan	20	21	38	15	26
Philippines	6	6	7	6	6
Thailand	131	303	417	336	330
Turkey	158	_35	e 120	90	100
Oceania: Australia	13	^r 15	12	30	33
Total	r _{6,534}	r7,508	7,791	8,069	8,715

^eEstimated. ^PPreliminary. ^rRevised.

¹Table includes data available through June 16, 1982.

²In addition to the countries listed, Bulgaria also produced barite, but available information was inadequate to make reliable estimates of output levels.

³Sold or used by producers.

⁴Reported figure.

^{*}Reported figure.

*Series represents exports only; Bolivia also produced barite for domestic consumption, but available data were not adequate for formulation of estimates or levels of production to meet internal needs.

*Less than 1/2 unit.

*Barite concentrates.

*Year beginning Mar. 21 of that stated.

BARITE 121

joint venture agreement with a Chilean group to mine and jig barite ores in the Punta Colorado area of central Chile.4

China.—China exported nearly 736,000 tons of crude barite and about 11,000 tons of ground barite to the United States in 1981. Based on the volume of exports, China has become the world's second largest producer and the world's largest exporter of barite. In 1980, China exported 520,000 tons to the United States and nearly 90,000 tons to the European Economic Community.

NEI International Combustion, Ltd., of the United Kingdom, manufactured and shipped two Lopulco table and roller milling units, which were installed in a barite plant at Wuchow in 1981. KCA International Ltd. and Feoso Oil Ltd. of Hong Kong established KCA Feoso Ltd., which financed, designed, and built the barite plant. KCA Minerals Ltd. of Hong Kong was to distribute the barite, which was to be ground to drilling-mud specifications.⁵ Peru.—Perubar, S.A., began installing a jig plant at its Graciela Mine northeast of Lima to process low-grade ore that had been previously stockpiled.

United Kingdom.—In Derbyshire, SPO Minerals Ltd. began production of drilling-mud grade barite from its Galconda processing plant.

Venezuela.—Baroid de Venezuela added a Williams roller mill to its Punta Camacho grinding plant.⁷

¹Physical scientist, Division of Industrial Minerals. ²Pettifer, L. The Industrial Minerals of Belgium. Ind. Min. (London), No. 168, September 1981, pp. 21-49.

⁵Industrial Minerals (London). World of Minerals: China-Lopulco Mills for Barytes Plant. No. 168, September 1981, p. 13.

Work cited in footnote 6.

Min. (London), No. 168, September 1981, pp. 21-49.

*Sengineering and Mining Journal. Spotlight on Canada's Resourceful Mining Industry—The Maritimes and Newfoundland. V. 182, No. 11, November 1981, pp. 144-145.

*Mitchell, A. W. 1981 Annual Review—Barite. Min. Eng., v. 34, No. 5, May 1982, p. 552.

*Industrial Minerals (London). World of Minerals (London).

⁶Castelli, A. V. Barite: U.S. Production Continues Strong, Sets Record of 2 Million ST. Eng. and Min. J., v. 183, No. 3, March 1982, pp. 135-137.

Bauxite and Alumina

By Luke H. Baumgardner¹ and Ruth A. Hough²

The 1981 downturn in world aluminum metal demand was reflected by similar decreases in world bauxite production, down 3.4%, and alumina production, down 2.7% from 1980 levels. Leading bauxite producers, Australia, Jamaica, Guinea, and Suriname, registered a combined output drop of 3.3 million metric tons. A 28% increase in Brazilian bauxite production offset some of the decline in world mine output. The principal sources of crude and dried bauxite imported into the United

States in 1981 were Jamaica, Guinea, Brazil, and Suriname. Ninety-eight percent of alumina imports was supplied by Australia (74%), Jamaica (13%), and Suriname (11%).

New bauxite discoveries were reported at Tatunshan, northern Taiwan; Olmeda in Sardinia, Italy; Pula, Yugoslavia; Zabirah District, Saudia Arabia; and Fenyofo, Hungary. Known deposits in West Kalimantan, Indonesia, and Samar, Philippines, were evaluated by further sampling, analytical testing, and economic studies.

Table 1.—Salient bauxite statistics
(Thousand metric tons and thousand dollars)

	1977	1978	1979	1980	1981
United States: Production: Crude ore (dry equivalent) Value Exports (as shipped) Imports for consumption Consumption (dry equivalent) World: Production	2,013 \$27,555 26 12,989 14,528 *81,931	1,669 \$23,185 13 13,847 14,738 79,810	1,821 \$24,875 15 13,780 15,697	1,559 \$22,353 21 14,087 15,962 P88,786	1,510 \$26,489 20 12,802 13,525 85,729

Estimated. Preliminary. Revised.

¹Excludes calcined bauxite. Includes bauxite imported into the Virgin Islands.

Legislation and Government grams.—During 1981, no changes were made in stocks of bauxite in the national stockpile which is maintained by the General Services Administration (GSA). At yearend the stockpile contained 14.4 million tons of metal-grade bauxite, comprised of 9.0 million tons of Jamaica-type ore and 5.4 million tons of Suriname-type ore. Stocks of calcined refractory-grade bauxite totaled 177,401 tons. Stockpile goals included 21.3 million tons of Jamaica-type and 6.2 million tons of Suriname-type metal-grade ore, 1.4 million tons of calcined refractory-grade bauxite, and 762,000 tons of calcined abrasive-grade bauxite. There were no stocks or inventory goals for alumina.

In October 1981, GSA awarded a contract to Cometals, Inc., to supply 25,400 tons of

Chinese calcined refractory-grade bauxite. Delivery was to be made in January and February 1982 to a Government stockpile at Granite City, Ill. A second bauxite acquisition for the stockpile was ordered by Presidential directive in November 1981. The United States was to acquire from the Jamaican Government approximately 1.6 million metric dry tons of Jamaican metalgrade bauxite to be delivered to a stockpile at Gregory, Tex., during the period from March to September 1982. Payment was to be made by a combination of cash purchase, exchange of excess stockpile commodities, and barter of agricultural commodities.

No import duties on bauxite or alumina have been applied since they were suspended in 1971.

DOMESTIC PRODUCTION

Three States, Arkansas, Alabama, and Georgia, supplied all of the domestic bauxite in 1981. Approximately 75% of the bauxite mined was processed to alumina in Arkansas, while the balance of the ore produced in the three States was used by the chemical and refractory industries. Arkansas production was confined to Saline County where the Aluminum Co. of America (Alcoa), American Cyanamid Co., and Reynolds Metals Co. operated surface mines. Porocel Corp. produced activated bauxite from purchased ore at its Berger plant south of Little Rock.

In Alabama, the second largest producing State, A. P. Green Refractories Co., Harbison-Walker Refractories Co., Didier Taylor Refractories Corp., and Mullite Co. of America mined bauxite in the Eufaula district. Near Andersonville, Ga., Mullite Co. operated the only bauxite mine in the State. All production from both States was calcined in local or out-of-State plants for consumption in refractory and chemical

Domestic alumina production by nine Bayer process refineries, including Martin Marietta's U.S. Virgin Islands plant, was 5.96 million tons, or 12% below 1980 production. The total, expressed as calcined equivalent weight, includes calcined alumina. commercial alumina trihydrate, and activated, tabular, and other specialty alumina forms, but excludes aluminates.

During 1981, primary aluminum plants received an estimated 5.46 million tons of calcined alumina from domestic alumina plants. The chemical, abrasive, ceramic, and refractory industries received the balance of shipments.

Table 2.—Mine production of bauxite and shipments from mines and processing plants to consumers in the United States

(Thousand metric tons and thousand dollars)	(Thousand	metric tons	and thousand	(erelloh l
---	-----------	-------------	--------------	------------

State	Mine production			Shipments from mines and processing plants to consumers ¹		
	Crude	Dry equivalent	Value ²	As shipped	Dry equivalent	Value ²
1979:						
Alabama and Georgia Arkansas	501 1,685	391 1,430	4,320 20,555	r ₆₄₉ r _{1,783}	^r 616 ^r 1,512	⁷ 18,500 ⁷ 25,726
Total	2,186	1,821	24,875	r2,432	r2,128	r44,226
1980:	7					
Alabama and Georgia Arkansas	336 1,533	260 1,299	3,101 19,252	*477 *1,577	^r 474 ^r 1,371	r _{15,240} r _{24,405}
Total ³	1,869	1,559	22,353	r2,054	^r 1,844	r39,645
1981: [—]						
Alabama and Georgia Arkansas	342 1,505	268 1,242	4,303 22,185	389 1,429	442 1,221	17,670 26,358
Total ³	1,847	1,510	26,489	1,819	1,663	44,028

Table 3.—Recovery of dried, calcined, and activated bauxite in the United States

(Thousand metric tons)

Year	Crude	Total p bauxite	rocessed recovered ¹
	treated	As recovered	Dry equivalent
1980 1981	355 419	179 187	277 328

¹Dried, calcined, and activated bauxite. May exclude some bauxite mixed in clay products.

revised.

'May exclude some bauxite mixed in clay products.

'Computed from values assigned by producers and from estimates of the Bureau of Mines.

'Bata may not add to totals shown because of independent rounding.

Table 4.—Percent of domestic bauxite shipments, by silica content

SiO ₂ (percent)	1977	1978	1979	1980	1981
Less than 8 From 8 to 15 More than 15	2 54 44	2 55 43	1 55 44	62 38	65 35

Table 5.—Production and shipments of alumina in the United States

(Thousand metric tons)

			Other	Total ¹	
	Year	Calcined alumina	alumina ²	As produced or shipped ³	Calcined equivalent
Production:					
1977		5,580	660	6,230	6,030
1000		E EFA	580	6,130	5,960
1979		E OEO	700	6,650	6,450
1980			720	7,030	6,810
1981		5,490	700	6,190	5,960
Shipments: ^e					
1977		5,510	660	6,160	5,960
			580	6,200	6,020
1979		5,970	⁻ 710	6,680	6,480
1980		6,160	720	6,880	6,660
1981		5,610	715	6,320	6,085

*Estimated.

¹Data may not add to totals shown because of independent rounding.

³Trihydrate, activated, tabular, and other aluminas. Excludes calcium and sodium aluminates.

³Includes only the end product if one type of alumina was produced and used to make another type of alumina.

Table 6.—Capacities of domestic alumina plants,1 December 31

(Thousand metric tons per year)

Company and plant	1980	1981
Aluminum Co. of America:		
Bauxite, Ark		340
Mobile, Ala	800 1,325	800 1,325
Point Comfort, Tex		1,020
Total	2,450	2,465
Martin Marietta Aluminum, Inc.: St. Croix, V.I.	508	635
Kaiser Aluminum & Chemical Corp.: Baton Rouge, La	930	955
Gramercy, La		770
Ciamory, and I I I I I I I I I I I I I I I I I I I		
Total	1,656	1,725
Ormet Corp.: Burnside, La	544	545
Darmal Ja Madala Ch.		
Reynolds Metals Co.: Hurricane Creek, Ark	650	650
Corpus Christi, Tex		1,400
•		
Total		2,050
Grand total	7,208	7,420

¹Capacity may vary depending upon the bauxite used.

CONSUMPTION AND USES

Over 92% of the bauxite consumed during the year was processed into different forms of alumina. Consumption and production data from the alumina producers indicated that an average of 2.3 tons (dry basis) of bauxite was required to produce 1 ton of calcined alumina. As in previous years, seven domestic refineries processed imported bauxite, one used a blend of Arkansas and foreign ore, and one plant refined Arkansas ore exclusively. Although bauxite consumption increased in 1981 for chemical and refractory uses, overall consumption was 15% below the 1980 total. Approximately 35% of the bauxite consumed by the refractories industry was supplied from Alabama and Georgia mines with the balance

coming from foreign sources.

Quantities of abrasive-grade bauxite listed in table 7 include ore consumed in Canada to produce intermediate abrasive materials used by U.S. plants to manufacture a variety of abrasive end products. About 75,000 tons of bauxite was consumed in 1981 by the cement, oil and gas industries, and municipal waterworks.

In 1981, 32 domestic primary aluminum plants consumed 8,588,000 tons of calcined alumina. A considerable quantity of aluminum fluoride and synthetic cryolite made from alumina was consumed by the primary aluminum industry, however, data for this and other uses of alumina were not available.

Table 7.—Bauxite consumed in the United States, by industry

(Thousand metric tons, dry equivalent)

Industry	Domestic	Foreign	Total ¹
1980:			
AluminaAbrasive ²	1,681	13,287	14,968
Chemical	³ 64	277 ³ 224	277 211
Other		285 W	430 77
Total ^{1 2}		14,072	15,962
1981:			
AluminaAbrasive ³	1 ,23 3	11,277	12,510
Chemical	\$79	249 3227	249 232
Other		298 W	460 75
Total ^{1 2}	1,474	12,052	18,525

W Withheld to avoid disclosing company proprietary data; included with "Chemical." ¹Data may not add to totals shown because of independent rounding. ²Includes consumption by Canadian abrasive industry.

Table 8.—Crude and processed bauxite consumed in the United States (Thousand metric tons, dry equivalent)

Туре	Domestic origin	Foreign origin	Total
1980: Crude and dried Calcined and activated	1,692 198	13,523 550	¹15,214 748
Total	1,890	¹14,072	15,962
1981: ————————————————————————————————————	1,242 233	11,516 534	12,758 767
Total	1,475	12,050	13,525

¹Data do not add to total shown because of independent rounding.

³Includes other.

Table 9.—Production and shipments of selected aluminum salts in the United States, in 1980

		Number	Production	Total shipments including interplant transfers	
	Item	of producing plants	(thousand metric tons)	Quantity (thou- sand metric tons)	Value (thou- sands)
Aluminum sulfate:	municipal (17% Al ₂ O ₃)	66	1,167	1.079	\$123,985
	M2O3)	17	106	79	8,006
Aluminum chloride					-,
Liquid and crys	al (32° Bé) ¹	5	19	3	844
	% AlCla)	5	67	35	21,613
Aluminum fluoride	, technical	5	135	133	90,331
	de, trihydrate (100% Al ₂ O ₃ •3H ₂ O)	7	588	565	116,210
	minum compounds ²	XX	XX	XX	32,981

Source: Data are based upon U.S. Bureau of the Census report Form MA-28A, Annual Report on Shipments and Production of Inorganic Chemicals.

Table 10.—Stocks of bauxite in the United States, December 31

(Thousand metric tons, dry equivalent)

Sector	1980	1981
Producers and processors	r662	900
Consumers	r7.681	7,439
Government	14,661	14,661
Total	r23,004	23,000

rRevised.

Table 11.—Stocks of alumina in the United States,1 December 31

(Thousand metric tons, calcined equivalent)

Sector	1980	1981
Producers ^e Primary aluminum plants	245 1,283	155 1,267
Total ^e	1,528	1,422

eEstimated.

PRICES

Most world trade transactions in bauxite involve long-term contracts or intracompany transfers. Consequently, prices, other than for spot sales or special grades, are not quoted in trade journals as they are for commodities traded on the open market.

The Bureau of Mines estimated an average value of \$13.87 per ton for domestic crude bauxite shipments, f.o.b. mine or plant, in 1981. Shipments of domestic calcined bauxite were estimated to average \$102 per ton, compared with \$101 per ton in 1980. Data used by the Bureau in preparing these estimates were incomplete. Grade differences among producers also affected the estimated values.

The avarage value of imported bauxite consumed at domestic alumina plants could not be estimated because of insufficient data. The following prices per ton of supercalcined, refractory-grade bauxite imported from Guyana were published by Engineering and Mining Journal in 1981. The quotations for carload lots, delivered f.o.b. Baltimore, Md., Mobile, Ala., or Burnside, La., are:

Jan. to Mar. Apr. to June		July to Oct.	Nov. to Dec		
1981 1981		1981	1981		
\$208.39	\$236.66	\$214.90	\$203.22		

The average value of domestic shipments of calcined alumina was estimated at \$236 per ton in 1981. For imported alumina, including a minor amount of hydrate, the average value derived from Bureau of Census reports was \$211 per ton at port of shipment (f.a.s.) and \$222 per ton at U.S. ports (c.i.f.).

XX Not applicable.

No crystal production or shipments in 1980.

²Includes sodium aluminate, light aluminum hydroxide, cryolite and alums.

¹Domestic and foreign bauxite; crude, dried, calcined, activated; all grades.

¹Excludes consumers' stocks other than those at primary aluminum plants.

Table 12.—Average value of U.S. imports of crude and dried bauxite¹

(Per metric ton)

Country To U.S. mainland:	Port of	Delivered to	Port of	Delivered to
	shipment	U.S. ports	shipment	U.S. ports
	(f.a.s.)	(c.i.f.)	(f.a.s.)	(c.i.f.)
To U.S. mainland:				
Brazil Dominican Republic Guinea Guyana Haiti Jamaica Sierra Leone Suriname	\$23.05	\$33.17	\$26.70	\$36.36
	31.11	35.34	33.79	42.01
	25.94	32.67	26.38	36.27
	31.36	44.64	33.89	48.53
	24.20	29.46	25.15	31.49
	27.25	30.51	27.07	30.63
	16.59	26.44	19.68	29.54
	31.61	41.46	41.48	53.42
Weighted average	26.25	32.02	28.30	35.37

¹Computed from quantity and value data reported to U.S. Customs Service and compiled by the Bureau of the Census, U.S. Department of Commerce. Not adjusted for moisture content of bauxite or differences in methods used by importers to determine value of individual shipments.

Table 13.—Market quotations on alumina and aluminum compounds

(Per metric ton, in bags, carlots, freight equalized)

Compound	Jan. 2, 1981	Dec. 31, 1981
Alumina, calcined	\$228.18 203.93 352.74 200.62 270.06	\$228.18 203.93 352.74 259.04 270.06

Source: Chemical Marketing Reporter.

FOREIGN TRADE

In 1981, the United States exported 40,900 tons of bauxite, including 21,000 tons in calcined form. Canada and Mexico received 98% of the total exports. U.S. exports of alumina, down 35% from 1980, went primarily to Canada (27%), Norway (19%), and Mexico (17%). Alumina export shipments included 21,000 tons of aluminum hydroxide. About 48,000 tons of material classified as "other aluminum compounds" was distributed to many foreign destinations. A substantial amount of this material was believed to be aluminum fluoride and synthetic cryolite used as a flux in the production of primary aluminum.

Imports of calcined bauxite declined 22% from the adjusted 1980 level. Refractory-grade bauxite accounted for 79% of the 319,000 tons of calcined bauxite imported in 1981. Calcined abrasive-grade bauxite from Australia, Guinea, and Suriname was processed into fused crude aluminum oxide in Canada prior to shipment to U.S. plants for manufacture into abrasive and refractory products.

Imports of Suriname alumina rose by 200,000 tons in 1981, however, this was offset by the 560,000-ton decline in alumina supplied by Australia and Jamaica.

RAUXITE AND ALUMINA

Table 14.—U.S. exports of alumina,1 by country

(Thousand metric tons and thousand dollars)

	197	79	1980		1981	
Country	Quantity	Value	Quantity	Value	Quantity	Value
Argentina	3	1,754	16	4,514	1	501
Australia	3	1,099	4	1,920	2	1,234
Belgium-Luxembourg	(2)	323	1	729	1	1,570
Brazil	`í	863	18	5,829	2	1,363
Canada	185	44.954	264	71,488	201	63,940
France	104	2,558	4	4.214	3	3,010
Germany, Federal Republic of	ě	5,867	Ē	7,581	3	6.514
	94	14,295	151	24,958	76	13,862
Ghana	24	4,592	202	9,489	8	10,454
Japan	131	25,691	125	29,655	127	35,657
Mexico	. 2	1.391	2	1.768	i	1,392
Netherlands			226	36,241	141	21,364
Norway	204	30,042			· (2)	26
Poland	· (*)	80	23	2,570		
Spain	(2)	749	<u>(*)</u>	714	20	4,349
Sweden	2	1,585	72	16,749	15	4,358
U.S.S.R	70	8,462	18	2,124	36	8,570
United Kingdom	5	3,547	6	4,502	6	6,284
Venezuela	128	26,915	189	36,057	94	25,695
Other	8	7,301	10	10,840	. 7	8,497
Total	849	182,068	1,138	271,942	3 737	218,640

¹Includes exports of aluminum hydroxide: 1979—36,800 tons; 1980—38,000 tons; 1981—21,300 tons. Also includes alumina exported from the U.S. Virgin Islands to foreign countries: 1979—264,000 tons; 1980—271,000 tons; 1981—data not reported separately.

²Less than 1/2 unit.

Table 15.—U.S. imports for consumption of bauxite, crude and dried, by country

(Thousand metric tons)

Country	1979	1980	1981
Brazil	168	777	1,265
Brazil Dominican Republic ²	551	565	449
GreeceGuinea	10 3,924	4,112 585	3,546 463
GuyanaHaiti	425 572	585 452	463 529
Halti	6,469	6,146 75	5,352
Sierra Leone	141 1,520	75 1.369	108 1,079
SurinameOther	1,520	6	11
Total	13,780	14,087	12,802

¹Includes bauxite imported to the U.S. Virgin Islands from foreign countries: 1979—1,051,000 tons; 1980—1,241,000 tons; 1981—data not reported separately.

Dry equivalent of shipments to the United States.

Table 16.—U.S. imports for consumption of bauxite (calcined), by country¹

(Thousand metric tons and thousand dollars)

	1980		1981				
Country	Quantity \		Refractory grade		Other grade		
Country		Value ¹	Quantity	Value ¹	Quantity	Value ¹	
Australia China ² Guyana Suriname Other	16 *142 199 49 3	1,147 *14,030 34,314 5,420 89	122 101 28 (*)	14,681 19,146 4,575 22	15 12 85 6 (*)	1,561 1,410 4,406 467 23	
Total	^r 409	r55,000	251	38,424	68	7,867	

Revised.

³Data do not add to total shown because of independent rounding.

Note: Total U.S. imports of crude and dried bauxite (including U.S. Virgin Islands) as reported by U.S. Bureau of the Census were: 1979—15,274,570 tons; 1980—15,136,854 tons; 1981—13,856,826 tons.

[&]quot;IValue at foreign port of shipment as reported to U.S. Customs Service.

The 1980 and 1981 data for imports from China have been revised and adjusted to conform to information supplied by industry and the U.S. Bureau of the Census.

Less than 1/2 unit.

Table 17.-U.S. imports for consumption of alumina,1 by country

(Thousand metric tons and thousand dollars)

County-	1979		1980		1981	
Country	Quantity	Value ²	Quantity	Value ²	Quantity	Value ²
Australia	2,938	433,382	3,408	578,031	2,955	574.688
Canada	23	5,704	37	9,380	34	10,222
France	12	21,350	5	14,452	4	13,479
Germany, Federal Republic of	. 11	8,158	8	8,934	Ŕ	9,469
Guyana	18	1,539	17	1,472	ă	613
Jamaica	587	106,120	634	113,392	523	124,180
Japan	i	1,080	i	875	. 1	1,639
Suriname	239	41,245	246	55,440	448	102,486
Other	8	1,844	1	925	1	1,156
Total ⁸	3,837	620,422	4,358	782,902	3,978	837,932

¹Includes aluminum hydroxide; excludes shipments from the U.S. Virgin Islands to the United States: 1979—182,673 tons (\$30,730,428); 1980—208,506 tons (\$39,199,528); 1981—not available.

WORLD REVIEW

Twenty-six countries produced 86 million tons of bauxite in 1981, a decrease of 3% from 1980 production. Four countries, Australia, Jamaica, Guinea, and Brazil, accounted for 64% of the world bauxite production in 1981. Brazil displaced Suriname as the fourth largest producer.

World alumina production from 26 countries totaled 32.3 million tons in 1981. This was approximately 3% lower than 1980 production. Australian and U.S. refineries produced 40% of the total.

Australia.—A 9-week labor strike at Comalco Ltd.'s bauxite mines at Weipa, Queensland, and a 10-week labor dispute at the Swiss Aluminium Ltd. (Alusuisse). Gove alumina production plant in the Northern Territory were reported to be the principal reasons for the lower bauxite and alumina output.

Queensland Alumina Ltd. (QAL) at Gladstone, Queensland, with a rated annual capacity of about 2 million tons of alumina, announced that it planned to raise the plant capacity to 2.33 million tons by the first half of 1983. The possibility of recovering titanium minerals from the Weipa bauxite at the alumina plant was being studied by QAL.

Nabalco Pty. Ltd. cut production to 50% of capacity at its 1.2-million-ton-per-year Gove alumina plant in October 1981. Reduced demand for alumina was cited by the Alusuisse subsidiary as reason for the decision.

In Western Australia, construction of the Worsley Alumina Pty. Ltd. project was reported to be 23% complete at the end of November 1981. The alumina project was owned by Reynolds Australia Alumina Ltd. (40%), Shell Co. of Australia (30%), Dampier Mining Co. Ltd. (20%), and Kobe Alumina Associates (Australia) Pty. Ltd. (10%), and is scheduled to start production in mid-1983 with an annual capacity of 1 million tons. At Wagerup, a second new alumina plant in Western Australia had been scheduled by Alcoa of Australia (W.A.) Ltd. to open in July 1982 with an initial capacity of 500,000 tons per year. However, in December, Alcoa announced that the startup date had been postponed to 1983 owing to weakened alumina demand, although construction work would continue. Alcoa is reported to have added to its bauxite reserves by acquiring a 17.5% interest in the Mitchell Plateau deposits and a 22.5% interest in the Cape Bougainville deposits of northern Western Australia from Conzinc Riotinto of Australia, Ltd. In February 1981, a suit was filed in a U.S. district court against Alcoa and Reynolds by the Conservation Council of Western Australia in an attempt to curtail further growth of the State's bauxite and alumina industry. The suit was dismissed in July by the U.S. District Court in Pittsburgh on the grounds that it had no jurisdiction in Australian legal matters.

Brazil.—Bauxite production in 1981 again registered a substantial gain, attrib-

³Value at foreign port of shipment as reported to U.S. Customs Service.
³Data may not add to totals shown because of independent rounding.

utable chiefly to increased output by Mineração Rio do Norte S.A.'s (MRN) mining operation near the Trombetas River in the Amazon Basin. During 1981, changes were made in the interests held by MRN partners. Alcan Aluminium Ltd. increased its share to 24% by acquiring the 5% share held by Spain's Alumina Espanola, S.A. Aardal og Sunndal Verk AS's 5% interest was sold to Mineração Rio Xingu, a Royal/Dutch Shell Group subsidiary that originally held a 5% share. Interests held by other partners included 46% by Cía. Vale do Rio Doce (CVRD), 10% by Cia. Brasileira de Aluminio, 5% by Reynolds Metals Co., and 5% by Norsk Hydro AS.

A second bauxite reserve in the Trombetas River region, reported to contain over 250 million tons of ore, was sold by Santa Patricia Mining Co. (a D. K. Ludwig company) to Alcoa Aluminio S.A. (owned 68% by Alcoa and 32% by Hanna Mining Co.). The purchase was followed by the announcement of a new 500,000-ton-per-year alumina plant and a 100,000-ton-per-year smelter to be built at São Luis, Maranhão State. Construction of this \$1 billion project, called Consorcio-Alumar, began in 1981 and the first alumina and primary aluminum production was scheduled for 1985.

The Aluminio Brasileiro S.A.-Alumina do Norte do Brasil S.A. project, jointly financed by CVRD and Nippon Amazon AluminiumCo., was designed to include an alumina refinery and primary aluminum smelter with annual capacities of 800,000 tons and 320,000 tons, respectively. The \$2.57 billion complex was to be located in Pará State near Belém on the Amazon River, where it would receive bauxite from CVRD's share of MRN production at Trombetas and power from the Tucurui hydroelectric plant on the Tocantins River. Startup of the two plants was scheduled for 1985.

Ghana.—President Hilla Limann announced that Brown & Root, Inc., Houston, Tex., was selected as prime contractor for a feasibility study to develop the Kibi bauxite deposits and to evaluate plans for an 800,000-ton-per-year alumina plant. The \$4.5 million study was to include Granges International Mining Co. (Sweden) and Alusuisse as subcontractors. The Kibi deposits are reported to contain 180 to 200 million tons of bauxite reserves.

Guinea.—Most of the 1981 bauxite production came from the Sangaredi Mine in the Boke district operated by Compagnie des Bauxites de Guinée. The balance was

from the Fria-Kimbo deposits and the stateowned, Russian-financed, Office des Bauxites de Kindia deposits. The Friguia alumina refinery, owned jointly by the Government of Guinea (49%) and Frialco Co. (51%), produced about 680,000 tons of sandy-type alumina, having converted from a flourytype alumina product during 1980.

Nigeria was reported to have joined the Societé Guinée-Arabe d'Alumine et d' Aluminium, a consortium of petroleum-producing countries and the Government of Guinea, organized to mine bauxite from the Ayékoyé deposits.

Guyana.—The Government of Guyana was pursuing numerous avenues in an attempt to increase its bauxite output and recoup a dwindling market. The Inter-American Development Bank agreed to provide \$250,000 to fund a 10-month study of port facilities and river-mouth bars which limit both size and frequency of bauxite export shipments. A contract with Green Construction Co., Des Moines, Iowa, to remove overburden at the East Montgomery Mine was completed in midyear, and a second contract was signed authorizing Green to conduct the entire East Montgomery mining operation. U.S. imports of Guyanese calcined bauxite in 1981 were about 30% lower than in 1980.

Indonesia.—The Government announced its decision to build an alumina plant with an annual capacity of 600,000 tons on Bintan Island. Indonesia has awarded letters of intent to Kaiser Aluminum & Chemical Corp., Klöckner Industrie-Anlagen GmbH. of the Federal Republic of Germany, and Kaiser Engineers Inc., a subsidiary of Raymond International Inc., for construction of the \$570 million plant.

Jamaica.—About one-half of the bauxite produced was exported to the United States, and the balance was refined in Jamaica. Jamaica was the largest single source (42%) of metal-grade bauxite imported by the United States in 1981. Cutbacks in both bauxite mining and alumina production during the year resulted in reduction of the labor force and the threat of a strike by the National Workers Union, which subsequently agreed to continue negotiations with company and Government representatives. Many of the expected layoffs at the bauxite mines were averted when the United States decided in November 1981 to purchase 1.6 million tons of Jamaican bauxite to be delivered to a Government stockpile in Texas by September 1982. The Ja-

maican Government planned to supply the bauxite from mines operated by Reynolds Jamaica Mines Ltd. and Kaiser Jamaica Bauxite Co.

Efforts by the Jamaican Government to increase the island's alumina capacity were unsuccessful and by the yearend had failed to reach conclusive agreements with prospective participants. In one plan, Jamaica would be joined by three Norwegian companies in a project to double the annual alumina capacity of the Jamalco plant (Alcoa 94%, Jamaica Bauxite Mining Ltd., 6%) at Clarendon from 500,000 to 1 million tons.

The depressed alumina market caused two of the Norwegian firms to withdraw, leaving Norsk Hydro to continue negotiations for a smaller capacity expansion of about 340,000 tons.

A second plan explored by the Government called for the construction of a new 600,000- to 800,000-ton-per-year alumina plant in Manchester Parish to be financed by a consortium that included Iraq, Algeria, and the U.S.S.R. However, by mid-1981, these three prospective participants had withdrawn, causing the Jamaican Government to renew its search for partners.

Table 18.—Bauxite: World production, by continent and country

(Thousand metric tons)

Continent and country	1977	1978	1979	1980 ^p	1981 ^e
North America and Caribbean Islands:					
Dominican Republic ^{2 3}	576	568	524	510	440
Haiti ⁵	588	580 ·	584	477	
Jamaica ⁶	r _{11.390}	r _{11.739}			400
United States			11,618	12,054	11,664
South America:	2,013	1,669	1,821	1,559	4 1,510
T	1 100				100
	1,120	1,160	2,388	4,152	5,300
Guyana ^{e 2}	2,731	2,425	2,312	2,471	1,680
Suriname	4,805	5,188	5,010	4,696	3,728
Europe:	200				
France ⁸	2,059	1,978	1,970	1,892	41,871
Germany, Federal Republic of	· (*)	· (*)	(*)	(9)	
Greece	r _{2,885}	r2,663	2,812	3.286	3,300
Hungary	2,949	2,899	2.976	2,950	42,914
Italy	35	24	26	23	2,514
Romania.	702	708	708	710	712
Spain	. 10	ř9	17	8	9
U.SS.R. ⁶ 10	4.600	4,600	4,600	6.400	4,600
Yugoslavia	2.044	2,565	3.012	3.138	
Africa:	2,044	2,000	3,012	3,138	43,249
Ghana	244	328	214	005	101
Guinea	10.841	10.456	13,700	225	181
Mosambique	10,041	10,400	13,700	10,330	12,100
Sierra Leone	745	716	$6\overline{7}\overline{2}$	700	
Zimbabwe	3	110		766	610
Asia:		ð	5	4	4
China*	1.500	1 700	1 500		
India		1,500	1,500	1,500	1,500
Indonesia	1,519	1,663	1,934	1,740	2,100
Malaysia	1,301	1,008	1,052	1,249	1,200
Pakistan	616	615	387	920	4701
	. (9)	_ 2	2	2	2
	*567	r449	350	546	425
Oceania: Australia	26,086	24,293	27,583	27,178	25,541
Total	⁷ 81,931	r79,810	87,777	88,786	85,729

^eEstimated. ^pPreliminary. ^rRevised. ¹Table includes data available through June 23, 1982. ²Dry bauxite equivalent of crude ore.

³Shipments.

Reported figure.

^{*}Bauxite processed for conversion to alumina in Jamaica plus kiln-dried ore prepared for export.

Bauxite processed for conversion to alumina in Jamaica plus kiln-dried ore prepared for export.

Estimated dry bauxite equivalent of crude ore, calculated from reported crude ore, assuming a moisture content of

^{*}Includes bauxite identified as "usable for fabrication of alumina" as follows, in thousand metric tons: 1976—2,250; 1978—1,875; 1979—1,874; 1980—(estimated) 1,610. Less than 1/2 unit.

^{*}Less than 1/2 unit.

10 In addition to the bauxite reported in the body of the table, the U.S.S.R. produces nepheline syenite concentrates and alunite ore as sources of aluminum. Estimated nepheline syenite production was as follows, in thousand metric tons: 1977—2500; 1978—2,500; 1979—2,500; 1980—2,500, 1981—2,500, and estimated alunite ore production was as follows, in thousand metric tons: 1977—600; 1978—600; 1979—600; 1980—600, 1981—600, 1981—600, hepheline syenite concentrate grades 25% to 30% alumina and alunite ore grades 16% to 18% alumina; these commodities may be converted to their bauxite equivalent by using factors of 1 ton of nepheline syenite concentrate equals 0.55 ton of bauxite and 1 ton of alunite equals 0.34 ton of bauxite.

BAUXITE AND ALUMINA

Table 19.—Alumina: World production,12 by continent and country (Thousand metric tons)

Continent and country ³	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Canada	1,061	1,054	953	41,202	41,208
Jamaica	F2,051	⁷ 2,117	2,094	2,478	42,550
United States ^e	6,030	5,960	6,450	6,810	5,960
South America:	•	•	•	•	
Brazil	340	352	449	493	530
Guyana ⁵	271	250	200	220	198
Suriname	1,172	1,310	1,325	1,316	1,172
Europe:	•	•	•		
Czechoslovakia ^e	95	100	100	100	100
France	1.081	1.056	1,069	1,173	41,095
German Democratic Republic	39	38	41	43	43
Germany, Federal Republic of	r _{1,556}	r _{1.539}	1,608	1,422	41,419
Greece	474	£477	495	494	500
Hungary	783	782	788	805	4799
Italy	788	819	854	900	900
Poland					75
Romania	442	449	502	534	540
Spain				58	695
United Kingdom	99	94	88	102	100
U.S.S.R. ^e	2,600	2,600	2,600	2,700	3,100
Yugoslavia	499	496	836	1,056	800
Africa: Guinea	562	610	660	708	679
Asia:					
China ^e	750	750	750	750	750
India	387	480	493	e500	500
Japan	1.785	1,502	1,546	1,936	41,344
Taiwan	51	51	58	^{'e} 65	61
Turkey	170	74	70	138	138
Oceania: Australia	6,659	6,776	7,415	7,246	47,079
Total	² 29,745	r29,736	31,444	33,249	32,335

Table 20.—World annual alumina capacity, by continent and country (Thousand metric tons, yearend)

Continent and country	1979	1980	1981	
North America:				
Canada	1,225	1,225	1,225	
Jamaica	2,824	2,824	2,825	
United States	7.208	7,208	7,420	
South America:	•	•	-	
Brazil	460	540	540	
	354	354	855	
Guyana	1.350	1,350	1,350	
_ Suriname	1,000	1,000	1,000	
Europe:	100	100	100	
Czechoslovakia	100	100		
France	1,320	1,320	1,320	
German Democratic Republic	65	65	_65	
Germany, Federal Republic of	1,729	1,745	1,745	
Greece	500	500	500	
Hungary	817	895	895	
Italy	920	920	920	
Poland			100	
	540	540	540	
Romania	010	80	800	
Spain	138	138	140	
United Kingdom				
U.S.S.R.*	3,400	3,400	4,500	
Yugoslavia	1,600	1,635	1,635	
Africa: Guinea	700	660	700	

See footnotes at end of table.

^{*}Estimated. *Preliminary. *Revised.

¹Table includes data through June 23, 1982.

²Figures presented generally represent calcined alumina; exceptions are noted individually.

³In addition to the countries listed, Austria produces alumina (fused aluminum oxide), but output is entirely for abrasives production. Output totaled 28,223 metric tons in 1973; production data subsequent to 1973 are not available.

⁴Reported figure.

⁵Calcined alumina plus calcined alumina equivalent of alumina hydrate.

Table 20.—World annual alumina capacity, by continent and country —Continued (Thousand metric tons, vearend)

Continent and country	1979	1980	1981
Agia:			
China India Japan Taiwan Turkey Oceania: Australia Oceania: Australia	650 675 2,614 140 200 7,044	650 675 2,614 140 200 7,340	650 675 2,615 140 200 7,340
Total	36,573	37,118	39,295

^{*}Fatimated

TECHNOLOGY

In 1981, the Bureau of Mines carried out research on kaolin clavs, oil shales, and coal ash as potential alternate sources of metalgrade bauxite. The Bureau and five aluminum industry companies continued their participation in the cooperative, costsharing miniplant project to evaluate alumina recovery from calcined clay by hydrochloric acid digestion.4 The mineral dawsonite is another possible source of alumina. Associated with the oil shales of the Piceance Creek Basin in Colorado, dawsonite contains 35% alumina and constitutes a resource estimated at 6.7 billion tons of aluminum oxide. The Bureau conducted laboratory studies on caustic-leaching of retorted oil shale residues to recover alumina and soda ash. Work also was continued on techniques for the extraction of alumina for coal ash using acid leach and lime sinter-acid leach procedures.5

In a separate area of research, gibbsitebearing saprolites from Alabama, North Carolina, and Virginia were mechanically beneficiated and the refractory qualities of the products were tested by the Bureau. Caustic leaching of calcined kaolin clay to reduce the silica content also appeared to be a promising approach in creating a highalumina refractory raw material. Work on refractories was continued into 1982 and reports are not yet available on this work.

¹Physical scientist, Division of Nonferrous Metals ²Statistical assistant, Division of Nonferrous Metals.

^{**}Physical Scienus*, Division of Nonferrous metals.

**Statistical assistant, Division of Nonferrous Metals.

**All quantities in this chapter are given in metric tons unless otherwise specified.

**Bengston, K. B., P. Chuberka, R. R. Nunn, A. V. San Jose, G. M. Manarolis, and L. E. Malm (contract JO265048, Kaiser Engineers, Inc.). Alumina Process Faesibility Study and Preliminary Pilot Plant Design. Task 3 Report: Preliminary Design of 25 Ton Per Day Pilot Plant. Volume 1. Process Technology and Costs. Bulmines OFR 122(1)-80, 1980, 232 pp.; PB 81-125031.

Shanks, D. E., J. A. Eissele, and D. J. Bauer. Hydrogen Chloride Sparging Crystallization of Aluminum Chloride Hexahydrate. Bulmines RI 8593, 1981, 15 pp.

Sorensen, R. T., E. B. Amey III, and D. L. Sawyer. The Removal of Iron From Aluminum Chloride Leach Liquor by Solvent Extraction. Bulmines RI 8560, 1981, 28 pp.

**Canon, R. M., T. M. Gilliam, and J. S. Watson. Evaluation of Potential Processes for Recovery of Metals From Coal Ash. Electric Power Res. Inst. EPRI CS 1992, v. 1-2. August-November 1982. Prepared by Oak Ridge National Laboratory.

August-November 1906. A Leboratory.
Gabler, R. C., and R. L. Stoll. Removal of Leachable Metals, and Recovery of Alumina From Utility Coal Ash. BuMinee RI 8721, 1982.

Beryllium

By Benjamin Petkof¹

The U.S. beryllium industry was strong in 1981. Low-grade bertrandite ore mined in Utah was the major commercial source of beryllium ore. Imports of beryl have increased annually since 1977 and augmented the domestic supply of beryllium ore con-

centrates. Beryllium concentrate consumption declined from that of 1979 and 1980. Exports of beryllium materials in 1981 increased in quantity but declined in value. World beryl production showed an upward trend.

Table 1.—Salient beryllium mineral statistics

	1977	1978	1979	1980	1981
United States:					٠
Beryllium mineral concentrates:	w	w	w	w	w
Shipped from mines ¹ short tons Importsdo	7 4 6	1,031	1,037	1,703	2,138
Consumption 1	4,165	5,916	9,518	8,508	8,141
Price, approximate, per short ton unit BeO, imported	\$40	*\$40	\$47	\$69	\$94
cobbed beryl at port of exportationshort tons	3,557	1,346	835	1,350	2,223
World production of beryldodo	¹ 2,844	r2,888	2,644	P2,767	e2,903

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data. ¹Includes bertrandite ore, which was calculated as equivalent to beryl containing 11% BeO.

Legislation and Government Programs.—The strategic stockpile goals for beryllium materials (issued by the Federal Emergency Management Agency on May 2, 1980) were unchanged. No beryllium materials were released from the strategic stock-

pile.

The Occupational Safety and Health Administration, U.S. Department of Labor, did not finalize its proposed beryllium occupational and health standards, as published in the Federal Register, October 17, 1975.

DOMESTIC PRODUCTION

Brush Wellman, Inc. (Brush), was the only large commercial domestic producer of beryllium concentrates in 1981. Brush mined low-grade bertrandite ore at Spor Mountain, Utah, for processing into beryllium hydroxide. In addition, there was a small domestic output of beryl. Brush has initiated a program to stimulate domestic and foreign beryl mining to extend the life of existing bertrandite ore reserves and to make use of its existing beryl ore processing capacity.

Brush converted beryl and bertrandite ore to beryllium hydroxide at a processing plant north of Delta, Utah. The company announced a program to modify the Delta plant to allow the processing of lower grade beryllium ore. The plant modifications are expected to be completed in mid-1983.

The Cabot Berylco Div. of the Cabot Corp. continued to produce beryllium-copper and other beryllium alloys at its plant in Reading, Pa., from imported and domestic ores that were converted to beryllium hydroxide.

Domestic production of beryllium metal, beryllium oxide, beryllium-copper master alloy, beryllium-copper alloy, and other beryllium alloys was strong in 1981.

CONSUMPTION AND USES

In 1981, the domestic beryllium industry consumed beryllium ore equivalent to 8,141 short tons of beryl containing 11% beryllium oxide (BeO). Ore consumption was well above that of 1978 but below that of 1979 and 1980.

Copper-based beryllium alloys were the most widely used beryllium-containing products. The addition of beryllium to copper provides a commercial copper alloy with greatly improved physical properties that allow the alloy's use for a wide range of applications in cast and wrought forms. Much of the alloy consumption was as thin strip or small-diameter rod. The alloy was used to fabricate items such as connectors, springs, sockets, switches, bushings, bearings, noncorrosive and nonmagnetic housings, and temperature- and pressuresensing devices for the aircraft, automotive, electronic, and well-drilling industries.

Beryllium oxide (beryllia) ceramics found

increasing use in electronics and electrical industries because of its high thermal conductivity, good mechanical hardness and strength, electrical insulation capability, and low dielectric constant. Because of these physical properties, beryllium oxide was used in the manufacture of lasers, microwave tubes, semiconductors, electronic substrates, microprocessors, aerospace and communications equipment, home appliances, and other equipment.

Beryllium metal with its high stiffness-toweight ratio, light weight, excellent thermal conduction properties, and nuclear reflection and absorption properties was used in inertial guidance systems, military and commercial satellite and space vehicle structures, instrumentation, space optics, special nuclear applications, and brake components for aircraft and aerospace vehicles.

STOCKS

Consumer stocks of beryllium minerals totaled 2,223 tons (11% BeO equivalent) at yearend. Yearend stocks increased to the

highest level since 1977, reflecting increased beryllium mineral production and imports.

PRICES AND SPECIFICATIONS

From January 1 to March 2, 1981, Metals Week quoted the price of beryl ore at \$90 to \$110 per short ton unit of contained beryllia. From March 2, 1981, to the end of the year, the ore was quoted at \$100 to \$130 per short ton unit.

At yearend 1981, the American Metal Market quoted the following prices for beryllium materials: Vacuum cast ingot, \$173 per pound; metal powder (in 5,000-pound

lots), \$148 per pound; beryllium-copper master alloy, \$121 per pound of contained beryllium; beryllium-copper casting alloy, \$4.10 to \$4.96 per pound; beryllium-copper in rod, bar, and wire, \$6.70 per pound; beryllium-copper in strip, \$6.61 per pound; beryllium-alloy (100,000-pound lots), \$201 per pound; and beryllium oxide powder, \$37.50 per pound. All beryllium metal quotations were for 97%-purity metal.

FOREIGN TRADE

Exports of wrought and unwrought beryllium alloys and waste and scrap increased in quantity from that of 1980 but declined in total value. About three-fifths of U.S. exports were destined for Switzerland with significant quantities also shipped to Canada, France, and Japan.

Beryl remained the only beryllium mineral ore imported into the United States. The

average value per ton of imported ore increased from \$686 in 1980 to \$936 in 1981. China and Brazil furnished over four-fifths of total U.S. imports. In addition, 746 pounds of wrought, unwrought, and waste and scrap beryllium metal valued at \$21,370 was imported from the United Kingdom, the Federal Republic of Germany, and Canada.

Table 2.—U.S. exports of beryllium alloys, wrought or unwrought, and waste and scrap¹

	198	30	1981		
Country	Quantity (pounds)	Value (thou- sands)	Quantity (pounds)	Value (thou- sands)	
Argentina	209	84	931	\$119	
Australia	1.148	io	2.238	11	
Belgium-Luxembourg	34	ž	2,200		
Brazil	04		117	-4	
	7.829	170	7.057		
Canada				293	
France	12,633	1,128	4,387	605	
Germany, Federal Republic of	1,042	267	2,338	144	
India			276	30	
Ireland			528	3	
Israel			194	4	
Italy	4.342	35	3,000	92	
Jamaica	14	5	-,		
Japan	2,788	366	4,470	882	
Korea, Republic of	2,100	000	84	1	
			247	3	
	4 000	100			
Netherlands	4,276	126	60	44	
Portugal			54	1	
Switzerland	208	23	48,227	589	
Taiwan	2,500	12	57	6	
Turkey	2,546	13			
United Kingdom	18,582	1,701	3,914	262	
Venezuela	,	_,,	10	- 1	
Other	$\bar{304}$	4			
Total	58,455	3,867	78,189	3,094	

 $^{{}^{1}}Consisting \ of \ beryllium \ lumps, single \ crystals, powder; beryllium-base \ alloy \ powder; beryllium \ rods, sheets, and \ wire.$

Table 3.—U.S. imports for consumption of beryl, by customs district and country

	19	30	19	31
Customs district and country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Philadelphia district:				
Argentina			30 22	\$27 10
Belgium-Luxembourg Brazil	328	\$260	248	288
China	640	415	337	256
Hong Kong			33	35
Mozambique	14	10		
Portugal	44	25		
Rwanda	131	74	22	10
South Africa, Republic of			79 40	90 19
United Kingdom			40	12
Total	1,157	784	811	735
Los Angeles district:				
Argentina	55	33	-49	51
Brazil	243	190	580	573
China	222	147	616	569
Hong Kong			5	6
Mozambique			22	11
Portugal	7.5		20	16
South Africa, Republic of	15	6	18	16
Total	535	376	1,310	1,242
New York City district:				
Brazil			11	18
South Africa, Republic of	11	- 8	6	9
	11	8	17	22
New Orleans district: Belgium-Luxembourg	11	•	(¹)	1
Seattle district: Canada			(1)	2
Grand total	1,703	1,168	2,138	2,002

¹Less than 1/2 unit.

WORLD REVIEW

World beryl production remained low in 1981 but demonstrated an upward trend because of slightly increased industrial demand for beryl. Brazil and the U.S.S.R. were the major world beryl producers (table

4). However, China must be considered a significant world beryl producer because of its demonstrated ability to export the mineral.

Table 4.—Beryl: World production, by country¹

(Short tons)

Country	1977	1978	1979	1980 ^p	1981 ^e
Argentina	182	r ₂₄ .	13	34	33
Brazil	547	815	500	e550	600
Kenya			(2)	(2)	
Madagascar	e ₁₇	12	ìí	ìí	10
Mozambique	NA	NĀ	31	22	20
Nepal ³	1	(2)	(2)	(2)	(²)
Portugal	-	(2)	` 6	ží	20
Rwanda	e_60	64	51	119	100
South Africa, Republic of	3	4	1	(2)	110
Uganda ^e	50	NA	•	()	. 110
*** ~ ~ ~ *	1,870	1,930	2,000	2,000	2,000
United States ⁴	W	1,550 W	2,000 W	2,000 W	2,000 W
Zimbabwe	114	39	31	10	10
Total	r2,844	^r 2,888	2,644	2,767	2,903

eEstimated. Preliminary. Revised. NA Not available. W Withheld to avoid disclosing company proprietary

TECHNOLOGY

Tensile property, formability, and stress relaxation data were presented for an improved mill-hardened beryllium-copper alloy strip that was developed for connector applications. This treated alloy reportedly has superior physical properties and was used to manufacture precision formed pinand-socket and box receptacle contacts and crimp-fastened terminals.2

The stress relaxation characteristics for beryllium-copper and beryllium-nickel alloys were studied at room and elevated temperatures. The alloys were stressed at levels up to 100% of yield strength. Test results were given.3

¹In addition to the countries listed, China produced beryl and Bolivia and Namibia may also have produced beryl, but available information is inadequate to formulate reliable estimates of output levels. Table includes data available through Apr. 7, 1982.

²Less than 1/2 unit.

³Fiscal year ending in July of year stated.

⁴Primarily bertrandite ore.

¹Physical scientist, Division of Nonferrous Metals.

Harkness, J. C. Improved Mill Hardened Beryllium Copper Strip for Connector Applications. Proc. 13th Ann. Connector Symp., Philadelphia, Pa., Oct. 8-9, 1980. Electron Connector, Study Group Inc., Fort Washington, Pa., 1980, pp. 129-142.

³Filer, E. W., and H. T. McClelland. Stress Relaxation of

Copper-Beryllium and Nickel-Beryllium Alloys. Proc. 13th Ann. Connector Symp., Philadelphia, Pa., Oct. 8-9, 1980. Electron Connector Group Inc., Fort Washington, Pa., 1980, pp. 179-186.

Bismuth

By James F. Carlin, Jr.1

Domestic consumption and imports of bismuth increased slightly in 1981, while exports declined sharply. The price generally declined, remaining in a low range. Worldwide, a significant oversupply situation remained. Australia remained the leading producer, followed by Mexico and Peru.

and Government Legislation stocks remained grams.—Government

at 2,081,298 pounds, including 567,186 pounds in the national stockpile and 1,514,112 pounds in the supplemental stockpile. The stockpile goal remained at 2,200,000 pounds.

Federal income tax laws provided a depletion allowance of 22% for domestic production and 14% for U.S. companies producing from foreign sources.

Table 1.—Salient bismuth statistics

(Pounds unless otherwise specified)

	1977	1978	1979	1980	1981
United States: Consumption Exports ¹ Imports, general Producer price, average per pound (ton lots) Consumer stocks, Dec. 31 World: Production ³ thousand pounds.	2,379,635 95,334 2,013,333 \$6.01 436,092	2,511,876 96,346 2,657,763 \$3,38 781,868 *9,412	2,727,153 427,809 2,167,278 \$3.01 629,741	2,288,807 128,732 2,217,359 (2) 673,975 P7,162	2,392,709 78,703 2,436,249 (²) 509,003 ² 7,159

Estimated. Preliminary. Revised.

⁸Excludes the United States.

DOMESTIC PRODUCTION

Bismuth was produced almost entirely from the treatment of lead ores and bullion of both foreign and domestic origin. A single primary refinery operated by ASARCO Incorporated at Omaha, Nebr., accounted for all primary production. Small amounts of secondary bismuth were produced from recycled bismuth scrap materials by several firms, one of which was Metal Specialties Inc., Fairfield, Conn. Refinery production statistics are withheld to avoid disclosing company proprietary data.

CONSUMPTION AND USES

While overall domestic consumption in 1981 increased slightly, the trends in specific usage categories varied. The most severe decline occurred in metallurgical additives where the demand for malleable iron castings continued to decline. The most significant increase in usage occurred in the pharmaceutical category, which also includes chemicals and cosmetics.

Various steel companies continued to experiment with and introduce commercially, new bismuth-bearing steel grades for the free-machining bar steel market.

Includes bismuth, bismuth alloys, and waste and scrap.

Domestic producers' list price has been suspended since Oct. 1, 1980.

Table 2.—Bismuth metal consumed in the United States, by use

(Pounds)

Use	1980	1981
Fusible alloys	650,895	656,956
Metallurgical additives Other alloys	467,939 26,484	307,028 25,953
Pharmaceuticals ¹ Experimental	1,115,615 1,197	1,387,554 214
Other	26,677	15,004
Total	2,288,807	2,392,709

¹Includes industrial and laboratory chemicals and cos-

STOCKS

During the year, consumer stocks reached ed liquidation of stocks. a 4-year low as high interest rates encourag-

PRICES

Asarco continued suspension of its producer list price throughout the year. The list price of a major foreign producer, published in the metals media late in the year, remained at \$2.30 per pound from November through yearend. Dealer

quotations started the year at \$2 to \$2.10 per pound, peaked at \$2.50 to \$2.60 per pound in March, and then generally declined throughout the year to finish at \$1.85 to \$1.95 per pound.

FOREIGN TRADE

Exports of bismuth again declined sharply, reaching a 5-year low, owing to the world oversupply situation.

Imports were mainly from Peru, Mexico, and the United Kingdom.

Starting January 1, 1981, the tariff rates for bismuth were unwrought metal (TSUS

632.10), free for most favored nations (MFN) and 7.5% ad valorem (non-MFN); alloys (TSUS 632.66), 8.1% ad valorem (MFN) and 45% ad valorem (non-MFN); compounds (TSUS 418.00 and 423.80), 12.3% ad valorem (MFN) and 35% ad valorem (non-MFN).

Table 3.—U.S. exports of bismuth alloys, waste and scrap, by country (Pounds, gross weight)

	1980		19	81
Country	Quantity (pounds)	Value (thou- sands)	Quantity (pounds)	Value (thou- sands)
Argentina	3,185	\$21	2,500	\$10
	17,630	55	7,444 10,586	43 46
011001	70,551	$\overline{444}$	16,269	171
Denmark	570	6		
Dominican Republic	400 400	3	430	1
	101	4	11.996	55
Germany, Federal Republic of	940	44	459	2
Hong Kong	8,158	28	$1.00\tilde{6}$	- 6

BISMUTH 141

Table 3.—U.S. exports of bismuth alloys, waste and scrap, by country —Continued
(Pounds, gross weight)

	1980		198	31
Country	Quantity (pounds)	Value (thou- sands)	Quantity (pounds)	Value (thou- sands)
ndia	3,500	\$15	1,789	\$14 37
reland	784		6,451 1,508	
srael	569	6	579	12
aly	1,293	É	4,180	2
apan (orea, Republic of	209	6	287	-
eeward-Windward Islands	840	2	201	
fexico	45	2	1,308	
etherlands	4,400	12	1,000	
audi Arabia	2,460	- 5		
ingapore	331	7	$1.2\overline{24}$	
outh Africa, Republic of	5,176	197	4,905	18'
weden	926	14		
aiwan			705	10
hailand	250	$-\overline{2}$	3,086	2
Inited Kingdom	5,345	31	853	1
/enezuela	313	13	429	13
Other	^r 356	^r 15	709	20
Total	128,732	942	78,703	708

Revised.

Table 4.—U.S. general imports1 of metallic bismuth, by country

	1980		198	31
Country	Quantity (pounds)	Value (thou- sands)	Quantity (pounds)	Value (thou- sands)
Belgium-Luxembourg	88,224	\$31	156,868	\$328
Canada	80,640	197	41,740	94
Germany, Federal Republic of	158,778	563	77,162	172
Israel	820	2	·	
Japan	138.378	339	124,093	262
Korea, Republic of	9,692	21	37,556	72
Mexico	860,363	2.008	724,052	1,309
Peru	619,091	1.416	859,325	1,605
Poland	3	1		·
Spain	331	Ž		
United Kingdom	261,039	784	415,453	1,041
	2,217,359	5,364	2,436,249	4,883

¹General imports and imports for consumption were the same in 1980 and 1981.

WORLD REVIEW

World production of bismuth continued the decline evident since 1977. This was primarily due to planned production reductions in response to the continued decline in the bismuth market price.

Australia.—Australia remained the leading world producer. The main source of bismuth was a gold-bismuth bullion from the Mount Isa Mine in Queensland, which was shipped to Europe for bismuth recovery and refining.

Korea, Republic of.—The principal producer of bismuth metal in Korea was Korea Tungsten Mining Co., Ltd. The firm's bismuth production was a byproduct of tungsten mining from the Sangtong Mine in

Kangwong Province. The refinery was located in Daegu.

U.S.S.R.—Bismuth was recovered as a byproduct of lead and zinc smelting in Kazakhstan and other regions, from dust and crude metal at the Balkhash, Kirovgrad, and Mednogorsk complexes, and from tungsten and molybdenum ores. Two copper-bismuth deposits, Taryzkan and Kantarkhana, were under exploitation in Tadzhikistan. The Ustarassy Mine in the Chatkal Mountains was the only enterprise mining bismuth ore, and its concentrates were sent to the Chimkent lead refinery in Kazakhstan for processing.

¹Physical scientist, Division of Nonferrous Metals.

Table 5.—Bismuth: World mine production, by country¹

(Thousand pounds)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Australia (in concentrates)	2,054	2.324	e2,200	e2,000	1.870
Bolivia (in concentrates)	1,435	677	22	24	25
Canada ³	363	320	301	328	4271
China (in ore) ^e	500	530	570	570	570
France (metal)	r ₁₁₅	(⁵)	(⁵)	(⁵)	(5)
Germany, Federal Republic of (in ore) ^e	24	<u>20</u>	22	<u>22</u>	22
Japan (metal) ⁶	1.538	1.375	1.010	745	990
Korea, Republic of (metal) ³	293	269	192	271	220
Mexico ⁷	1.607	2.156	1.662	1.698	1.390
Peru ⁷	r _{1,420}	r1.347	1,162	950	1,200
Romania (in ore) ^e	180	180	180	180	180
Romania (in ore) ^e Sweden (in ore) ^e	r ₃₃	r ₃₃	31	31	31
Uganda (in ore) ^e	. 7	2	11	NA	NA
U.S.S.R. (metal) ^{6 e}	140	150	160	160	165
United States (in ore)	w	w	W	W	W
Yugoslavia (metal)	163	29	50	183	225
Total	r9,872	r _{9,412}	7,573	7,162	7,159

 $^{^{\}mathbf{r}}$ Revised. eEstimated. Preliminary. NA Not available. W Withheld to avoid disclosing company proprietary data; excluded from total.

³Table includes data available through Apr. 8, 1982.

²In addition to the countries listed, Brazil, Bulgaria, the German Democratic Republic, and Namibia are believed to have produced bismuth, but available information is inadequate for formulation of reliable estimates of output levels.

³Refined metal and bullion, plus recoverable bismuth content of exported concentrate.

⁴Reported figure.

⁴Reported figure.
⁵France terminated metallic bismuth production in 1977. The solitary French mine that has produced bismuth in prior years continued to operate through 1980 and may have operated in 1981, but whether bismuth was recovered at all, and if so where and in what form is unknown.

⁶Although output reported is at the smelter stage of production rather than at the mine stage, and thus could include metal contained in ores mined in other countries, it is believed that any such production derived from ores from other countries is not duplicative to any significant extent of mine production reported elsewhere in this table.

⁷Bismuth content of refined metal, bullion, and alloys produced indigenously, plus recoverable bismuth content of ores and concentrates exported for processing.

and concentrates exported for processing.

Boron

By Phyllis A. Lyday¹

Boron compounds and minerals sold or used by primary producers in the United States decreased to 230,000 short tons of boron content during 1981. This was the second consecutive decrease since the 1979 record of 248,000 short tons of boron con-

tent

Domestic availability of boron minerals in Federal land increased during 1981. A moratorium from 1976 to 1980 prohibited surface disturbances in the Death Valley National Monument (DVNM), which has had historical significance as a boron area since 1883 when 20-mule teams carried boron minerals from the Harmony Mine across Death Valley. Two companies were granted permits to drill to delineate reserves in DVNM during 1981. The Lake Meade National Recreation Area (LMNRA), with reserves of 1.5 million tons of colemanite in the Anniversary Mine claim, was opened to hard-rock mining during the year.

Interest in overseas boron also increased as several U.S. companies conducted feasibility studies of South American deposits. The Turkish Government continued to manage the boron mines and sought to establish joint venture mining operations with foreign and domestic companies.

Research has increased the usage of boron as a hardener and grain refiner in specialty steels and alloys. Boron in the form of textile-grade fiberglass has become a lightweight, high-tensile-strength, and noncorrosive replacement for metal. Boron in silicon chips for use in electronics increased because of its magnetic and electrical properties. Research on the use of boron as a fuel continued.

Legislation and Government grams.— Discharge prior to 1977 from ash ponds of a thermal powerplant in Illinois caused water quality in the Wood River to exceed the 1.0-milligram-per-liter of boron water quality standard.2 Further studies on rats found growth suppression at levels of boron in water greater than 150 milligrams per liter. A safe tolerance of boron has been suggested to be as low as 0.5 milligram per liter.3

The Environmental Protection Agency recommended that an emission standard for borax and boric acid not be developed. Borax and/or boric acid have been identified as having a potential to contribute to air pollution. The proposed regulation would have only affected new and modified boron refining and processing facilities.4

Final rules issued for four national recreational areas (NRA) relaxed rules formerly proposed by the Bureau of Land Management (BLM) and the National Park Service (NPS) in December 1980, and kept LMNRA open to hard-rock mining. LMNRA has boron reserves of 1.5 million tons of colemanite averaging 26% B₂O₃ at the Anniversary Mine claim. Areas closed to mining are the same as those in other NRA's. The BLM would need the consent of the NPS regional director before it could grant a lease or permit. Veto of a lease or permit by a regional director would be permitted only if the operation would have a significant adverse effect on the resource or administration of the area.5

During 1981, American Borate Co. (ABC) and U.S. Borax & Chemical Corp. (USB) obtained permission from the regional director of the NPS to do exploration drilling on claims in DVNM. The drilling was to explore and delineate borate claims. ABC drilled the Sigma claim, and USB drilled the White Monster claim.

A study of the biological effects of manmade vitreous fiber showed no chronic progressive diseases by inhalation of manmade fibers in animal studies. Therefore, fiberglass is not likely to come under Federal regulations. The dimensions of the manmade fibers overlap the dimensions of the larger asbestos fibers.6

Table 1.—Salient statistics of boron minerals and compounds in the United States (Thousand short tons and thousand dollars)

			•		
	1977	1978	1979	1980	1981
Sold or used by producers:					
Quantity:					
Gross weight ¹	1,469	1.554	1,590	1,545	1,481
Boron oxide (B ₂ O ₃) content	735	778	799	783	740
Value	\$236,163	\$279.927	\$310.211	\$366,760	
Exports:	4200,100	Ψ210,021	φ010,211	\$500,100	\$ 435,387
Sodium borates (refined):2					
Quantity	265	304	332	905	000
Value	\$64,634	e\$80,000		325	228
Boric acid:3	φ04,004	\$00,000	e\$94,000	e\$65,000	e\$58,000
Quantity	00				
	36	46	42	F47	46
ValueImports for consumption:	\$ 12,931	\$22,217	\$22,93 8	\$23,735	\$24,602
Colemanite:					
Quantity	51	r 4104	r 489	r 469	498
Value	\$ 3,695	\$9,320	\$10,946	\$6.218	\$15,202
Boric acid:					·,
Quantity	14	16	8	10	. 1
vaiue	\$5,596	\$8,921	\$4,267	\$6,393	\$763
Consumption: Boron oxide (B ₂ O ₃) content ⁵	389	413	410	384	373

eEstimated. Revised.

³Includes orthoboric and anhydrous boric acid

⁵See table 2.

DOMESTIC PRODUCTION

Domestic producers reported that boron minerals, for sales and use, decreased in boria content but increased 19% in value during 1981 compared with those of 1980. The majority of the output continued to come from Kern County, Calif., and to a smaller extent from San Bernardino and Inyo Counties, Calif.

ABC, a wholly owned subsidiary of Owens-Corning Fiberglas Corp. (OCF), completed development of the drifts in the Billie Mine in DVNM. During 1981, production and value of boria increased 17% and 69%, respectively, over those of 1980. The problems associated with water control were solved using surface and underground evaporative lakes that controlled the 50-gallonper-minute flow of water into the mine. ABC was given approval by the NPS to drill in DVNM to explore and delineate the Sigma 30 and Sigma 31 borate claims. With the increase in mine production, the mill at Lathrop Wells, Nev., was expected to increase production from 2,000 tons per

month to 6,300 tons per month during 1982.

During 1981. Corning-Glass Works (CGW), a major producer of borosilicate glass, announced plans to sell 23.9% of OCF. OCF is a major consumer of borates for use in textile-grade fiberglass and fiberglass insulation. An antitrust decree, entered in 1949 and modified in 1978, prohibits CGW from exercising control over OCF. The order also required divestiture of 90% of CGW's stock shares by 1986. CGW was expected to meet the consent decree by exchanging OCF stock shares for CGW stock in a tax-free transaction.

Kerr-McGee Chemical Corp. (KM) produced boron compounds as a byproduct of potash and sodium production in San Bernardino County, Calif. KM operated the Trona and Westend chemical plants at Searles Lake. Mineral-rich brines from borate deposits in the lake are processed into borax, anhydrous borax, and boric acid. Specialty products are produced at Henderson, Nev. During 1981, sales of borates

¹Minerals and compounds sold or used by producers, including both actual mine production and a marketable ore equivalent of brine products.

*Comparable quantities of crude sodium borates are exported also; however, export data are not available.

⁴Reported value includes approximately 33,100 tons of ulexite in 1978, 11,000 tons in 1979, 5,500 tons in 1980, and 44,000 tons in 1981.

BORON 145

decreased in boria quantity but increased 9% in value over that of 1980. KM owned 6,169 acres of mineral land on Searles Lake and leases an additional 15,000 acres from the U.S. Government.

At Boron, in Kern County, Calif., USB, a member of the Rio Tinto Zinc Corp. Ltd. of London, was the world's primary source of boron. Crude sodium borate, refined sodium borate, boric acid, and their anhydrous varieties are processed at the mine site. High-purity and specialty products continued to be produced at Wilmington, Calif., and Burlington, Iowa. Wilmington also served as the company's warehouse and port of export for bulk shipments.

The 200,000-ton-per-year boric acid plant at Boron reached full production in April. The new process designed by USB could continuously process raw-sodium borate ore (kernite) without the waste disposal problems that plagued the Wilmington plant. The Wilmington plant, in Los Angeles County, stopped producing boric acid in June.

Crude and refined sodium borates continued to be produced from sodium borate ore (tincal). The ore-to-waste ratio increased from 1:4 in 1977 to 1:5.8 in 1980.7

USB decreased output and sales of primary borate products in 1981 from that of 1980. Value increased 20% over that of 1980. Output of refined decahydrate, pentahydrate, and anhydrous borax for domestic and foreign customers accounted for about 48% of the company's total sales. Crude sodium borate, Rasorite 46 (a pentahydrate) and its anhydrous derivative, which is produced exclusively for foreign markets, accounted for about 41% of the company's total sales. A large percentage of USB's

exports was shipped to Europe via a warehouse and distribution facility at Botlek, near Rotterdam, Netherlands.

At yearend, USB announced preliminary plans to construct a cogeneration plant at Boron in cooperation with Southern California Edison. The plant is scheduled to be in operation by 1984.

Late in 1981, USB obtained permission from the NPS to begin drilling on the White Monster claim in DVNM to delineate reserves. Other exploration included areas in southern California and Nevada.

Duval Corp. conducted a test project to recover colemanite by solution mining near Barstow, Calif. Duval leases some of the land from N. L. Industries, Inc., which mines hectorite on adjacent property. The colemanite is located 1,200 feet below the surface and contains 8% to 14% boria.

The State of California required Great Western Cities, a subsidiary of Hunt International Resources Co., to drill 11 holes near California City to determine if borates existed under land that was being developed for housing. The land in question showed a magnetic anomoly similar to the Boron pit, which is located approximately 7 miles to the south. The holes, drilled from 750 to 1,400 feet deep, failed to prove the presence of boron.

Other U.S. companies were involved in domestic boron programs during 1981. Johns Manville Corp. discontinued its exploration program at yearend. Anaconda Copper Co. conducted a reconnaissance program of the United States and sought joint ventures with existing companies. Occidental Petroleum Corp. continued to hold leases on the shores of Searles Lake but had no plans to process the brines for boron.

CONSUMPTION AND USES

Domestic consumption of boron minerals and compounds are shown in tables 2 and 3. U.S. consumption of boron minerals and compounds during 1981 decreased from that of 1980. Insulation products and textile-grade glass fibers continued to be the most important consuming sectors.

Boron compounds found applications in many areas of industry. In metallurgy, boron is used as a flux and is added to hot metal to reduce grain size and improve metallurgical homogeneity. During 1981, boron was used in the production of 456,251 tons of steel alloys.

The largest growth area is glass fibers

used to reinforce plastic, rubber, and paper. Boron fibers are being used in epoxy-based composites for uses previously reserved for steel and reinforced plastics. Fiberglass fabricated applications included mining, petrochemical, and electrical generating industries. Fiberglass tanks are used for metallurgical extraction, processing, environmental control, and storage, and are competitive with stainless steel. Fiberglass fabricated filtration systems in baghouses are used as pollution controls. Glass fibers are used as batts, blankets, and boards in acoustical and heating insulation material. One of the advantages of fiberglass is that it does

not generate toxic products when burned.

Boron compounds in cleaning and bleaching have been an important but declining sector of consumption. During 1981, E. I. du Pont de Nemours & Co. (Du Pont) was the sole domestic producer of sodium perborate. FMC Corp. closed its Buffalo, N.Y., plant in August 1980. It was reported that 100 million pounds of sodium perborate tetrahydrate is produced annually at Du Pont's plant in Memphis, Tenn. Imports from Europe are reported to supply 20% of the U.S. market. The detergent market represents approximately 90% of sodium perborate demand in the United States. The remaining 10% is reportedly used in textiles.

Boron nitride (BN) is an unctuous, highly refractory material with excellent thermal insulation properties and chemical stability. It is not wettable by most metals, glass, cryolite, or other materials. Uses include crucibles, chemical equipment and pumps, rocket nozzles, vacuum tube separators, seals and gaskets, and as a neutron absorb-

er. It is also useful as a mold lubricant in glass manufacturing. A cubic form of BN has been made harder than a diamond and is used as an abrasive.¹⁰

Boron carbide is used in abrasive and abrasive-resistant applications. Boron carbide is second only to the diamond on Moh's scale of hardness and is chemically inert. As an abrasive, boron carbide is used for ultrasonic grinding and drilling and fine polishing. Boron carbide and elemental boron are used for nuclear reactor control elements, radiation shields, and moderators.¹¹

Boron compounds find application in the manufacture of biological growth control chemicals for use in water treatment, algicides, fertilizers, herbicides, and insecticides.

Many important end uses for borates and boron-containing chemical derivatives are placed in the miscellaneous category. Another group of borate compounds were sold to chemical distributors, and their ultimate uses are unknown.

Table 2.—U.S. consumption of boron minerals and compounds, by end use

(Short tons of boron oxide content)1

End use	1980	1981
Glass-fiber insulation	89,400	103,500
Fire retardants:		,
Cellulosic insulation	50.200	34,30
Other	1,300	2,80
Textilegrade glass fibers	50,400	57.50
Borosilicate glasses	44.800	44.00
Soaps and detergents	26,600	29,10
Enamels, frits, glazes	13,300	11.70
Agriculture	15,700	16,60
Metallurov	6,600	6.80
Metallurgy Nuclear applications	500	
Miscellaneous uses		400
Sold to distributors, end use unknown	48,300	25,400
one constitutions, end use unknown	36,900	40,500
Total	384,000	2372.70

Includes imports of boric acid, colemanite, and ulexite.

Table 3.—U.S. consumption of orthoboric acid, by end use

(Short tons of boron oxide content)

End use	1980 ^r	1981
Fire retardants:		
Cellulosic insulation ¹	24,960	13.974
Other	1,524	1.284
Textile-grade glass fibers	17,750	17,154
Borosilicate glasses	5,725	9,654
Metallurgy	993	1,485
Soaps and detergents	116	111
Enamels, frits, glazes	793	780
Nuclear applications	459	300
Agriculture	113	84
Miscellaneous uses	14,483	14,188
Sold to distributors, end use unknown _	14,792	15,678
Total	81,708	74,692

Revised.

²Data do not add to total shown because of independent rounding.

¹Includes imports of 9,939 and 629 tons in 1980 and 1981, respectively.

PRICES

At the beginning of the year, prices for basic boron compounds rose between 6% and 15%. Specialty compounds increased between 16% and 20%. By yearend, prices were effectively the same. The reason for

the price increases was attributed to rising energy, labor, and material costs. Prices for boron minerals and compounds are shown in table 4.

Table 4.—Borate prices per short ton1

Product	Price, Dec. 31, 1981 (rounded dollars)
Borax, technical, anhydrous, 99%, bulk, carlots, works ² Borax, technical, granular, pentahydrate, 99.5%, bulk, carlots, works ² Borax, technical, granular, decahydrate, 99.5%, bulk, carlots, works ² Boric acid, technical, granular, 99.9%, bulk, carlots, works ³ Boric acid, U.S. Borax & Chemical Corp., anhydrous, 96% B ₂ O ₃ , bulk, carlots, Boron, Calif Colemanite, American Borate Co., calcined and screened, minus 70-mesh, 42% B ₂ O ₃ , bulk, carlots,	501-508 186 162 511 571 966
Dunn, Calif	290
Colemanite, Turkish, 40%-42% B ₂ O ₃ , crude, lump, f.o.b. railcars, U.S. east coast portUlexite-probertite, American Borate Co., screened, minus 7-mesh, 21% B ₂ O ₃ , bulk, carlots, Dunn, Calif	325-350 52

¹U.S. f.o.b. plant or port prices per short ton of product. Other conditions of final preparation, transportation, quantities, and qualities not stated are subject to negotiation and/or somewhat different price quotations.

²Chemical Marketing Reporter. V. 220, No. 26, Dec. 28, 1981, p. 29.

FOREIGN TRADE

In 1978, the U.S. Bureau of the Census discontinued publishing export statistics on refined sodium borate compounds. Export data from a Bureau of Mines canvass are presented in table 5.

U.S. exports of boric acid decreased in quantity but increased in value during 1981. Exports of refined sodium borates decreased 30% in quantity in 1981 over those of 1980. Because there is only one producer of crude sodium borates for export, these data are withheld. During 1981, unusually small quantities of sodium borates were exported to the Netherlands, which is a major transhipment point for Europe. The change was attributed to large industry stocks in Europe that were being used and not replen-

ished. The increased availability of boric acid from the United States and Turkey and a decrease in usage of borates, as a result of a world economic recession, made it uneconomical for companies to maintain large stockpiles of raw borate materials.

During 1981, OCF through ABC imported colemanite and ulexite from Turkey, principally for use in textile-grade and insulation-grade glass fiber. Imports increased 42% in 1981 over those of 1980. The increase was primarily a result of the improved Turkish economy since the 1978 military takeover of the Government, which stopped the frequent strikes that had hampered productivity.

Table 5.—U.S. exports of boric acid and refined sodium borate compounds in 1981, by country

	Rorio	acid¹	Refined
Country	Quantity (short tons)	Value (thousands)	sodium borates ² (short tons
Argentina	-		1
Australia	2,745	\$1,740	7.677
Austria	64		352
Belgium-Luxembourg	119	42 42	6.275
Brazil	3,104	1,377	13,004
Cameroon	8.505	4.55	66
vime	8,505 18	4,185 17	19,789 351
ZhinaClombia	2	2	2
Cota Rica	473	299	2,305
ACCINOIOVARIA	8	6	1,106 2,022
Jennark	170	100	156
Dominican Republic			11
Scuador	- - 8 2	6 2	137
Imand	21	10	44 470
rance	747	449	14,115
French Polynesia Jerman Democratic Republic	20	12	,
Sermany, Federal Republic of	- 7	14	2,308
iTeece			12,571 44
iuatemala	_ <u>ē</u>	-7	53
HondurasHong Kong	24	. 9	
ndia	273	160	3,136
	100	63	3,023
reland			14
sraeltaly	82	42	4,967
vory Coast	- 7	- <u>-</u>	7,949
amaca		2	- 6
lapanKenya	15,435	9,215	52,121
CenyaCorea, Republic of	998	510	- 1
Aberia	52	516 31	7,811
lalaysia	59	42	978
IGAIW	6,990	3,064	26,431
letherlands	56	74	33
iew Guinea	326	179	2,635 206
iew bestand	967	457	3,556
ligeriaorway	93	33	55
akisan	101	93	336
eru	1.000	556	516 109
hilippines	577	347	1,293
ortugal uerto Rico			332
auu arabik	17	- <u>ē</u>	53
ierra Leone	2	(e)	
mkapore	179	8 7	1,012
outh Africa, Republic ofpain	76	66	6,403
ri Lanka	495	18	2,488
	430	18	402 332
witzerland	==		1,122
aiwan anzania	1,028	514	5,979
	161	95	1,207
1 midau and 100ago		<i>9</i> 0	1,207
unisia	-3	-ī	
nited Kingdom	376		7,495
chemens	376 685	204 419	118
ugosavia	000	413	1,738 435
ambiaimbabwe			143
			241
			
Total	46,184	424,602	227,543

¹Source: U.S. Bureau of the Census.

²Source: U.S. exporters of sodium borates.

³Less than 1/2 unit.

⁴Data do not add to total shown because of independent rounding.

Table 6.—U.S. imports for consumption of boric acid, by country

	19	80	1981	
Country	Quantity (short tons)	Value ¹ (thousands)	Quantity (short tons)	Value ¹ (thousands)
Argentina	1,210	\$708		
Belgium	40	24		
Brazil	60	35		
Canada	41	36	· (*)	\$1
Chile	6	2		
China	146	86		ēē
France	3,184	2,143	1,123	757
Germany, Federal Republic of	. (2)		(4)	4
Italy	1,607	1,031		
Japan			(*)	1
Mexico	•	(2)		
Netherlands	40	24		
Romania	66	31	·	
Singapore	65	40 219		
Spain	377	1,356		
Turkey	2,270	1,390 587		
U.S.S.R	707	(²)	<u>(4)</u>	
United Kingdom		64	(-)	
Yugoslavia	119	04		
Total ³	9,938	6,393	1,124	763

¹U.S. Customs declared values.

Source: U.S. Bureau of the Census.

WORLD REVIEW

Chile.—Drilling at Solar de Pedernales, 31 miles north of El Savador, confirmed deposits of lithium, potassium, and borax. Salt deposits extend between 43 and 92 feet. 12

At Maria Elena, boric acid is recovered as a byproduct of nitrate and iodine production. Some ores containing borax interfere with iodine purification. Boric acid had been recovered when the price was favorable by acidifying the mother liquor prior to iodine extraction. The extraction of borax directly from solutions, using kerosine as the carrier for a suitably selected extractant, has been studied at a pilot scale, but has not been practiced industrially.¹³

Sociedad Chilena de Litio, Ltda. (SCL), has 12 million short tons of boron reserves at Salar de Atacama in Antofagasta Province. SCL is owned by Corporación de Fomento de la Producción (45%) and Foote Mineral Co. (55%). International tenders were being sought for a 31,000-ton-per-year boric acid plant.¹⁴

China.—Chaerhan Lake, a 2,000-squaremile dry lake in the Qaidam Basin has a 100-foot thickness of brines that contain boron. Total reserves have been estimated at 67,000 short tons of boron, lithium, and potash. The lake is located 2,500 miles west of Peking in Qinghai Province. Jacobs Engineering Group has received a contract to prepare a study for a facility on the 100-mile-long lake.¹⁵

Three kinds of borosilicate glass—ampul tubing and laboratory ware, chemical plant piping, and pharmaceutical containers—were produced in the Peking technical glass factory in Peking. The plant has 1,500 workers and uses 6 furnaces fired by gas. The plant operates under the Ministry of Light Industries (MLI).

The Yao-Hua glass works in Shanghai, which operates under the Ministry of Building Materials, produces E glass marbles for fiberglass, draws continous filament glass, spins thread, and weaves fiberglass cloth. The cloth is primarily for electrical laminates. The boron comes from borax mines in western China. There is also a second plant that produces continuous-strand fiber for reinforcing and/or textile operations. The second plant contains a furnace and six machines producing E glass marbles and has an output of 27 tons per day. Glass fiber was produced from 200 bushings having no more than 104 fibers per bushing. A large addition was in the construction stage.

Peking Glass Research Institute operates under the MLI and has 600 workers. One area of research was glass fibers for fiberoptic face plates.¹⁶

²Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

Japan.—Production of glass wool in 1979 was reported to be 299,166 tons. This was a 214% increase in production since 1970. Usage was reported to be in thermal insulation of buildings. Usage of borates for glass wool in 1979 was 29,401 tons of borax and 7,743 tons of boric acid."

The Japanese Government's Nuclear Research Organization set 1987 as the planned date for disposal of high-level radioactive waste encased in borosilicate glass.¹⁸

Mexico.—In addition to the occurrence of howlite at Magdalina, boron occurrences have been found at other locations in the State of Sonora, including a national reserve area near Tubutama. Drilling for borates in the State of Sonora continued. Under Article 27 of the Mexican mining code, foreign investment in local mining companies is restricted to 49%. Foreign ownership in mining ventures involving national reserve lands is restricted to 34%.

Netherlands.—In February, Van Gelderapier (Amsterdam) joined with OCF to form Van Gelder Owens-Corning VOP (VGOC). In September, OCF acquired full ownership of the joint venture agreement. VGOC will manufacture nonwoven glass-fiber mat for the European market. Annual capacity of some million square yards will be operational by mid-1982.

Imports of borates from the United States totaled 418,000 short tons in 1979 and 454,000 short tons in 1980. Imports from Turkey during 1979 and 1980 was 5,000 and 14,000 short tons, respectively.²⁰

Peru.—A deposit of ulexite, a sodiumcalcium borate, occurs in Laguna Salinas, 53 miles east of Arequipa. The occurrence is located 14,000 feet above sea level and was first claimed in 1883. Borax Consolidated, Ltd., mined the deposit from 1926 until 1974. Boratos del Peru S.A. began mining in 1975. Barex, Ltd., has acquired the mining rights. Another company, Boroquimica S.A., also produces ulexite at Laguna Salinas. The ulexite is used locally for glass production and for export.

The borate in the deposit is found in discontinuous beds of variable thickness ranging from 40 centimeters to 1 meter.

Part of the lake is underwater year round because of the impermeability of the borate beds. The deposit contains 10% to 23% boria. Mining is done by a backhoe and the ore is handpicked to upgrade it to 35% boria.

Romania.—A 2,700-short-ton glass-fiber plant was under construction. No further details were available.²¹

Switzerland.—Borax, S.A., and Minmet Financina traded boron minerals at Lausanne during 1981. During 1980, it was reported that 57,000 short tons of borates was imported and 11,300 short tons was exported.²²

Turkey.—The most significant chemical feedstocks produced in Turkey were boron materials. Turkey continued to be the world's second largest producer of boron minerals and the world's largest resource base. Etibank, a State Economic Enterprise responsible for Government boron activities, ran three colemanite and one tincal mine.

The Turkish Government offered compensation to the boron mine operators for their investments, which were nationalized in a 1978 decree and put under Government management in 1979. The compensation did not include the value of the mineral reserves, which have long been considered Government property.

The Council of Ministers decreed on June 9, 1980, that the nationalized mines would be returned to the original operators. On June 27, 1980, the Supreme Administrative Court (Danistay) issued an order to halt the Council of Ministers decree. Private sector participation was limited to exports of boron ore.

During 1981, Etibank sought to establish joint-venture mining operations with both domestic and foreign companies. Foreign capital participation must be at least 10% but cannot exceed 49%, and minimum participation should be \$1.0 million.

U.S.S.R.—The 14,000-short-ton glass-fiber plant in Polotsk near Minsk continued in the planning stage. The process was being planned by Bishop.²³

BORON 151

Table 7.—Boron minerals: World production, by country¹

(Thousand short tons)

Country	1977	1978	1979	1980 ^p	1981 ^e
Argentina Chile China Peru Erurkey U.S.S.R. Evurkes United States Chile Ch	r91 5 30 r6 1,211 200 1,469	140 29 30 77 1,455 220 1,554	147 3 30 13 1,036 220 1,590	172 4 30 23 1,097 220 1,545	180 3 30 18 1,320 220 ³ 1,481
Total	r3,012	^r 3,435	3,039	3,091	8,252

Revised.

TECHNOLOGY

A fiberglass composite was introduced that used a combination of fiberglass strands, swirled strands, and a resin. There is a potential for reduced waste and improved in-house cleaning because the process involves no chopped fibers.24

Growth of textile-grade glass fibers for manufacturing high-tensile-strength glassfiber composites continued for use in a range of products that include a large segment of vehicles for transportation. The desire to lower vehicle weight and increase gasoline mileage has contributed to the demand in the automotive sector. An advantage to the fiberglass composite is the use of injection molding. The injection molded plastic is polished once by polishing the mold. Chrome can be plated onto the reinforced plastic to give a look equivalent to a metal.25

70% continuous-strand glass-fiber spring in General Motors' Corvette automobile won the Materials Engineering Grand Design Award. The 8-pound spring achieved an 80% savings over the steel version.26 The brought fiberglass-reinforced car has electric-powered transportation a step closer to reality. The lightweight vehicle uses a fiber-reinforced composite fifth wheel that serves as a power link between two electric motors and the car's rear axle.27

A plastic bicycle, injection-molded of glass-filled polyester, was planned for production in Sweden. Iter Development Center (Sweden) planned to manufacture the components, which included wheels, frame, forks, handlebars, package carriers, pedal crank arms, and fenders. The bicycles are easy to maintain and are 20% lighter than steel bicycles.28

Epoxy resins and fibers of boron, aramid, and graphite comprise the entire structure of a new jet plane, the Lear Fan. By using composites, weight savings of 30% to 40% of the equivalent use of metals can be achieved. The prop jet can transport eight people 2.300 miles at speeds up to 400 miles per hour.29

OCF entered into an agreement with the Ohio Transportation Department of test road signs made of glass-fiber reinforced composites. Advantages of the glass-fiber components over conventional aluminum are the ability to withstand damages from collision and corrosion.

Fiberglass yarns coated with Teflon resins were being used in high-temperature fluid-sealing components. The yarns exhibit characteristics of strength, durability, resilience, conformability, and absorption.30

Fiber-optics research continued for use in communication cables. Optical fiber conveys signals by light rather than by electricity. The fiber optics take less space than a copper cable, but costs are too high to replace commonly used copper wire. A pair of glass fibers can carry as many as 672 voice messages simultaneously. Copper wire can carry only one voice message per wire, or two per pair. A single strand of optical fiber can transmit signals in two directions at the same time. The light used with the signals is invisible; therefore, stray light does not interfere with signals.31

A glass-fiber cloth that can be used up to 1,000° F as a welding curtain, slow cool blanket, and heat shield was developed. The nontoxic cloth meets or exceeds the Occupational Safety and Health Administration requirements and is reported to be six times

^eEstimated. ^pPreliminary. ^rRevised. ¹Table includes data available through May 5, 1982.

³Reported figure.

stronger than asbestos cloth.32

The Columbia Space Shuttle used borosilicate glazed tiles to protect the vehicle during reentry. Various special glasses are reported to make up a total of 70% of the Columbia's outer surface area. The thermal protection system (TPS) of the space shuttle Orbiter differs from previous metallic shields in that it is reusable. The TPS uses reinforced boron carbon and silicon dioxide tiles with borosilicate glass coating. The TPS is a high temperature surface insulation and a heat radiator. The black high temperature reusable surface insulation and the white low temperature reusable surface insulation both use an amorphous silica-fiber composite structure with a borosilicate glass coating system. The three main engines in the aft are attached to a titanium thrust structure that is reinforced with boron-epoxy composites; the titanium structure distributes thrust load to an aluminum structure.33

Studies continued on using boric acid as a smolder retardant glass fiber in flame retardant uses. Boric acid is a conventional smolder-retardant additive. Studies at the National Bureau of Standards continued on the smoldering capability of cellulosic, loose-fill insulation. About 80% of residential fires involve deaths due to smoke inhalation.

Chemical companies continued research to develop a fire-resistant mattress and box springs to reduce deaths attributable to smoke inhalation. The U.S. Fire Administration reported that 40% of all residential deaths occur from fires that ignite in and around mattresses. OCF, Burlington Industries, and Martin Galex have introduced a nonflammable ticking fabric called Sandel that does not ignite or smoke when exposed to flames. The Sandel is made of glass-fiber yarn and is waterproof and stain-resistant.

A new family of flame-retardant glassreinforced nylons was developed for use in electrical and electronic applications.²⁴

A hetrocyclic boron-containing molecule inhibits lipopolysaccharide synthesis of gram negative bacteria. The molecule acts as an antibacterial agent that blocks the biosynthesis of the bacteria.²⁵

Rapid production of solidified alloys was achieved by spraying liquid metal into high-speed jets of helium gas or dropping a thin column of liquid on a spilling, water-cooled wheel. Metallic glasses can withstand cyclic stress, high temperatures, intensive neutron bombardment, and helium gas damage

and can be magnetized easily with low magnetic losses. Rapid solidification technology is an important part of the Government's strategic material program. Metallic glass alloys have demonstrated an ability to reduce U.S. dependency on imports of cobalt, chromium, tantalum, and other critical elements.³⁶

Ductile glassy ribbons of ferrous alloys, incorporating boron and known as metallic glasses, have been found to combine outstanding strength and toughness, biaxial strength, high corrosion resistance, very low accoustical attenuation, high electrical resistivity, great ease of magnetization, and inexpensive processing into wires and strips as well as ribbons. Direct quench casting on a continuous basis makes it possible to produce large quantities quickly. Long life expectancy of key parts is an important cost element in its manufacture. Resistance is only by the viscosity of the liquid metal, which reduces the energy consumption by a factor of four to five.

Because metallic glass resists chloride and sulfate solution, it is attractive for marine cables, naval aircrafts, control cables, chemical filters, reactors, electrodes, and other chemical engineering components. Ferrous glasses are easily magnetized and manufactured and should be suitable for motors, generators, transformers, amplifiers, switches, memory recording heads, etc.³⁷

Dopants were added to silicon chips for use in random access memory for electronics. Boron (one of the dopants) was added in the form of gases (diborane), liquids (boron tribromide), and solids (boron nitride).³²

Addition of boron in the form of KBF4 and titanium in the form of K2TiF6 as a grain refinement in aluminum alloys was studied. The master alloy contains up to 1% boron and 5% titanium. The addition of boron and titanium makes it possible to obtain a suitably strong grain refining effect.³⁰

Boron was chosen for a precipitationhardening component in alloys containing nickel and chrome. Boron reduces the swelling tendencies when the alloy is used in a liquid metal fast-breeder reactor.⁴⁰

Research was conducted on adding boron in an attempt to change the charge-carrier concentrations of silicon carbides. Reaction-bonded silicon carbides have found extensive application in wear-resistant parts. They are also prime candidates for ceramic gas-turbine components because of good

153 BORON

oxidation resistance at high temperatures. At room temperature, the addition of boron to silicon carbide reduces thermal conductivity significantly and increases the electric conductivity by a factor of 100. At high temperatures, the material converges to the undoped thermal and electrical conductivity values.41

Titanium-boron was used to coat multistrand graphite filament. Studies deposited titanium-diboride by a chemical-vapordeposition process. The coating provided excellent erosion resistance.42

Borides were tested by the Bureau of Mines Research Center at Tuscaloosa, Ala., as a structural material for gas turbines. New techniques to prepare the powder involve chemical preparation, vapor-phase techniques, and salt decomposition.

A nickel catalyst containing boron was used to promote the conversion of carbon monoxide into methane. The advantage of using this new catalyst over other catalysts was greater resistance against poisoning by sulfur compounds.43

A suitable barrier for high-level radioactive waste has been intensively researched. Certain liquid military waste will be solidified into either glass or ceramic. Borosilicate glass was one of the two processes that were considered the most effective. In the glass process, water components and glassforming additives, such as boron oxide and silicon oxide, are smeltered together. The glass process is tolerant of a wide variety of waste forms.44

A fiberglass nuclear-fallout shelter that absorbs blast and seismic shocks was manufactured. The shelter provided 100 times more protection from residual radiation than an average house.45

Carborundum combines the mechanical properties of stainless steel with the neutron absorption properties of boron carbide. Spent nuclear fuel is now stored in pools of borated stainless steel or boron carbide. Boron carbide must be used as a matrix in tougher materials because of its brittle failure mode. Carborundum shows high thermal neutron capture cross section, a high melting point, chemical stability, high boron-10 content, and low density.46

Neutron logs can measure porosity and can be used to make a qualitative analysis of boron, if the lithology is known. When a high energy neutron collides with a particle of approximately the same size, such as boron, they are slowed through inelastic collisions. The neutron is captured by hydrogen and a captured gamma ray is emitted. The population of thermal neutrons is proportional to the hydrogen content, which is usually a direct measure of porosity.47

Research continued on boron as an addition to a variety of propulsion systems. Boron has a high heat value and low density and is attractive as a large volumetric heat substance. The size, shape, surface area, and purity of the boron affects the propulsion capabilities. Powdered samples of amorphous boron were studied. The samples were supplied by two producers and manufactured by two processes (an electric arc process and the commercial "Thermit" process) to produce amorphous boron powder.48

Environmental problems related to the use and disposal of geothermal fluid containing toxic levels of boron were studied. In California, the geysers in the north and the Salton Sea in the southeast have high boron concentrations. Fluid releases could reach harmful levels in soil water if sufficient geothermal fluids percolate into the soil. Boron concentrations must be kept below 5 milligrams per liter to protect crops such as tomatoes, wheat, and cotton. An ionexchange process could remove boron selectively from condensates if it were necessary to reduce it to below 5 milligrams per liter.49

¹Physical scientist, Division of Industrial Minerals.

²Muchmore, C. B., and W. S. O'Brien (U.S. Department of Commerce). Economic Impact of Proposed Boron Water Quality Standard for Wood River. June 19, 1977, 40 pp. Available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161. Document No. DB 201 325 PB 281-326.

PB 281-326.

Seal, B. S., and H. J. Weeth. Effect of Boron in Drinking Water on the Male Laboratory Rat. Bull. Environ. Contamination Toxicol., v. 25, 1980, pp. 782-789.

'Environmental Protection Agency. Source Category Survey: Borax and Boric Acid Industry. EPA Contract No. 450/3-80-004, May 1980, 32 pp.

'Federal Lands. BLM/Park Service Open Four National Recreational Areas to Hardrock Mining. Dec. 28, 1981, pp. 93.

^{**}Solution of the Control of the Con 1982, 1 p.

⁹Chemical Marketing Reporter. Heavy and Agricultural Chemicals. V. 220, No. 3, July 20, 1981, p. 27. ¹⁰Ceramic Industry. Boron. V. 118, No. 1, January 1982,

¹¹Work cited in footnote 10.

Work cited in footnote 10.
 Mining Journal (London). Industry in Action. V. 297, No. 7629, Nov. 6, 1981, p. 357.
 Crozier, R. D. Chilean Nitrate Mining. Min. Mag. (London), V. 145, No. 3, September 1981, p. 173.
 Scott, U. B. Chile. Mining Annual Review—1981. Min. J. (London), June 1981, pp. 381-382.
 Chemical Marketing Reporter. Potash Recovery Studied for Chinese Brine Lake. V. 221, No. 5, Feb. 2, 1982, pp. 512.

¹⁶d for Chinese Brine Lake. V. 221, No. 5, Feb. 2, 1862, pp. 5, 13.

16Kurkjian, C. R., J. L. Pentecost, W. R. Prindle, and E. A. Thomas. Glass Plants and Glass Research in China. Am. Ceram. Soc. Bull., v. 59, No. 9, September 1980, pp. 912-915.

¹⁷Industrial Minerals (London). The Industrial Minerals of Japan. No. 170, November 1981, pp. 42-47.

¹⁸Chemical Week. Technology Newsletter. V. 128, No. 1, Jan. 7, 1981, p. 32.

¹⁹The Glass Industry. The Glass Newsletter. V. 62, No. 4,

April 1981, p. 6.

OIndustrial Minerals (London). The Industrial Minerals of the Netherlands. No. 168, September 1981, pp. 64-65.

²¹Chemical Age. International Contracts. V. 122, No. 3213, May 1, 1981, p. S-17.

22 Industrial Minerals (London). Switzerland. No. 164, May 1981, pp. 58-59.

Page S-39 of work cited in footnote 21.

²⁴Chemical Marketing Reporter. Plastic Materials. V. 221, No. 5, Feb. 2, 1982, pp. 27-28.

25 Wehrenberg, R. H. Plateable Plastics: For More Than Decoration. Mater. Eng., v. 94, No. 2, August 1981, pp. 29-

-. Reinforced Plastics Aim at Cost Efficiency. Mater. Eng., v. 93, No. 5, May 1981, pp. 47-52.

²⁷Materials Engineering. News. V. 94, No. 2, August 1981, p. 16.

28Chemical Week. Technology Newsletter. V. 129, No. 12, Sept. 16, 1981, p. 44.

²⁹Plastic World. Plastic Newsfront. V. 38, No. 10, October 1980, p. 18.

30 Materials Engineering. News. V. 94, No. 1, July 1981,

³¹Powis, T. Young Fibre Optics Gaining on Giant Copper. The Northern Miner, v. 67, No. 6, Apr. 16, 1981, pp.

³²Materials Engineering. New Products. V. 94, No. 2,

August 1981, p. 64.

33Korb, L. J., C. A. Morant, R. M. Calland, and C. S. Thatcher. The Shuttle Orbiter Thermal Protection System. Am. Ceram. Soc. Bull., v. 60, No. 11, November 1981.

pp. 1188-1193.

Section 1.188-1193.

**Wehrenberg, R. H. New Plastics Focus on Performance. Mater. Eng., v. 94, No. 1, July 1981, pp. 54-57.

35Chemical and Engineering News. Science/Technology Concentrates. V. 59, No. 44, Nov. 2, 1981, p. 25.

³⁶Peterson, Ivan. Quick Freeze Metals. Sci. News, v. 120, No. 24, Dec. 12, 1981, pp. 380-381.

No. 24, Dec. 12, 1981, pp. 380-381.

37Gilman, J. J. Ferrous Metallic Glasses. Metal Prog., v. 6, No. 2, July 1979, pp. 42-47.

38Brown, A. S. Silicon Valley: Fertile Ground for Chemical Suppliers. Chem. Marketing Reporter, v. 220, No. 19 (Part II), Nov. 16, 1981, pp. 9-17.

38Silaev, P. N., V. I. Napalkov, V. K. Yunyshev, V. I. Tararyshkin, and S. Yu. Bel'ko. Grain Refinements of Aluminum Alloy Ingots by Additions of Titanium and Boron. Light Metal Age, v. 39, Nos. 9-10, October 1981, pp. 32-33.

⁴⁰Rowcliffe, A. F., M. L. Bleiber, S. Diamond, and R. Bajoj. Alloys for a Liquid Metal Fast Breeder Reactor. U.S. Pat. 4,172,742, Oct. 30, 1979.

Pat. 4,172,742, Oct. 30, 1979.

41 North, B., and K. E. Gilchrist. Effect of Impure Doping on a Reaction-Bonded Silicon Carbide. Am. Ceram. Soc. Bull., v. 60, No. 5, May 1981, pp. 549-554.

42 Materials Engineering. News. V. 93, No. 1, January

Materials Engineering. News. V. 93, No. 1, January 1981, p. 26.
 Hammer, H., and I. Hakim. Boron Containing Nickel Catalyst for the Conversion of Carbon Monoxide Into Methane. Chem. Ing. Tech. (West Germany), v. 50, No. 8, August 1978, pp. 622-623.
 Garmon, L. The Box, Within a Box, Within a Box. Sci. News, v. 120, Nos. 25-26, Dec. 19, 26, 1981, pp. 396-399.
 Materials Engineering. News. V. 93, No. 6, June 1981, p. 29

Plouffe, R. D. Geophysical Logging for Mineral Exploration and Development. IR-100 1980 Competition Winners. V. 22, No. 10, October 1980, p. 96.

47 Plouffe, R. D. Geophysical Logging for Mineral Exploration and Development. CIM Bull., v. 74, No. 828, April

ration and Development. Cam Built, v. 17, 180. 1931, p. 86.

48 Markle, R. Atlantic Research Corp. (Alexandria, Va.).

Written Communication, Sept. 21, 1981.

48 Layton, D. W., and W. E. Morris. Geothermal Power:
Accidental Fluid. Chem. Eng. Prog., v. 77, No. 4, April 1977, pp. 62-67.

Bromine

By Phyllis A. Lyday¹

Domestic producers sold or used 378 million pounds of elemental bromine valued at \$86 million during 1981. Demand for ethylene dibromide (EDB) was down. Consumption of methyl bromide (MB), calcium bromide, and flame retardants increased.

During 1981, the Internal Revenue Service (IRS) began collecting a tax on bromine production as outlined in the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (Superfund).

Debate continued over the use of bromine in compounds for use in agriculture. The Occupational Safety and Health Administration (OSHA) and the Environmental Protection Agency (EPA) continued to discuss changes in the regulation of EDB.

Government Legislation and grams.-After the Teamster Union in California submitted a petition, OSHA set up a task force to investigate exposure of workers to EDB. A request by the union for a temporary emergency standard was refused by OSHA.² Approximately 15 million pounds of EDB are used each year in Texas, Florida, California, and Hawaii. The risk of

Table 1.—Salient bromine and bromine compound statistics

(Thousand pounds and thousand dollars)

	1977	1978	1979	1980	1981
United States:					
Bromine sold:1			_		
Quantity	59,000	53,200	^r 67,600	52,100	60,800
Value	\$12,800	\$11,300	\$15,100	\$12,500	\$11,000
Bromine used:					
Quantity	374,800	393,400	429,700	325,978	317,500
Value	\$86,900	\$88,700	\$98,200	\$83,100	\$75,100
Exports:					
Elemental bromine:					
Quantity	5,400	6,400	10,100	8,100	w
Value	\$1,100	\$1,300	\$2,100	\$1,700	W
Bromine compounds:2					
Gross weight	64,400	106,000	92,800	85,400	36,500
Contained bromine	54,100	87,900	77,600	70,400	30,900
Value	\$27,300	\$38,500	\$35,500	\$35,900	\$12,100
Imports:3		• •	• •		
Elemental bromine:					
Quantity	517	669	34	1	(4)
Value	\$102	\$102	\$5	\$5	(4)
Ethylene dibromide:	\$10Z	4102	40	40	()
	79	589	193	861	644
Quantity Value	\$22	\$102	\$33	\$165	\$139
ValuePotassium bromide:	-	Q102	400	4100	4100
	89	119	794	667	107
Quantity	\$56	\$84	\$536	\$457	-\$80
ValueSodium bromide:	400	40-2	φοσο	4101	400
	106	320	2,190	310	20
Quantity Value	\$60	\$175	\$1,056	\$201	\$12
	772,270	795,917	*888,785	P760,569	°760,597
World: Production	112,210	130,311	000,100	100,000	,

^rRevised. W Withheld to avoid disclosing company proprietary data eEstimated. Preliminary.

Exports reported to Bureau of Mines by primary producers. Source: U.S. Bureau of the Census.

⁴Negligible.

Elemental bromine sold as such to nonproducers, including exports, or used in the preparation of bromine compounds by primary U.S. producers.

EDB contamination to the consumer is reduced to safe levels 4 to 8 days after fumigation. Current Federal standards permit EDB in ambient air at 20,000 parts per million per 8-hour, time-weighted, average. On September 23, California set the State standard for workers exposed to EDB at 130 parts per million.

At yearend, OSHA amended its 1978 lead exposure standard to extend the compliance time for gasoline additives for the petroleum industry as well as several other industries. Bromine is used primarily in EDB as a scavenger for lead in gasoline.

EPA has also affected the use of EDB in gasoline by regulation designed to decrease the concentration of lead in the atmosphere. An EPA position document on EDB proposed regulatory actions to reduce the human health risk of the compound by the following actions: (1) Allow registration to continue for preplant soil fumigation; (2) cancel registration for use on stored grains and spot fumigation of grain milling machinery; (3) cancel registration for postharvest fumigation of citrus, tropical fruits, and vegetables on July 1, 1983; (4) cancel the registration for fumigation of felled logs; (5) defer the decision on use for termite control; and (6) allow the remaining uses to continue only if certain restrictions are implemented and additional data requirements are fulfilled.6

A 14-month infestation by the Mediterranean fruit fly (medfly) in California caused controversy over the use of the pesticide EDB during the late spring and early summer. It was estimated that 35,000 pounds of EDB are used annually to fumigate fruits and vegetables. On November 12, the U.S. Department of Agriculture (USDA) announced eradication of the pest.

"Solibrom" 90, an EDB-based nematicide and the only liquid nematicide on the market, was approved by EPA as a planting-time soil fumigant. Solibrom replaces dibromochloropropane (DBCP), a pesticide that has been banned in the United States. EPA exempted the use of DBCP in Hawaiian pineapple fields to control ground worms.

EPA granted an exemption to USDA for MB used as a fumigant on imported food and feed commodities for the control of the khapra beetle. Provisions, until June 4, 1982, included the wearing of masks and monitoring of the ambient air levels.¹⁰

Other EPA activities during the year included the publication of a comprehensive bibliography of published literature on bro-

moethylene. The bibliography was to be used as partial support for the preparation of a preliminary risk assessment of bromoethylene (593-60-2).¹¹ EPA also published a list of 129 priority pollutants which included MB, bromoform, bromodichloromethane, dibromochloromethane, and 4-bromophenylphenyl ether.¹²

On April 1, IRS began to collect tax on bromine production at the rate of \$4.91 per ton. The 1954 Internal Revenue Code was amended to provide for the environmental taxes, which were required by Superfund. Chemical companies will provide 87.5% of a special tax to clean up abandoned waste sites of hazardous chemicals.¹³

The National Toxicology Program found polybrominated biphenyl (PBB) to cause liver and bile cancer in rats and mice at five levels of exposure.14 Use of PBB has virtually ceased since the 1973 accident that mixed PBB, a fire retardant, with animal feed. A comprehensive medical examination was conducted on workers from a plant that manufactured decabromodiphenyl and decabromodiphenyl oxide (DBDPO). Exposed employees showed higher serum levels, higher primary hypothyroidism, and reduced motor velocities. No significant dermatological, neurological, or other adverse effects were clinically health strated.15 Tests on 25 chemical workers with high concentration of PBB's in adipose tissue showed no evidence of memory dysfunction.16 EPA issued a final ruling requiring submission of notice of manufacture or import of PBB's.17

The Dow Chemical Co. was one of several companies that sued EPA over the testing requirements for deep reinjection wells. Dow extracts bromine from subterranean brines and returns the residue to the same geologic formation. EPA at first considered the brine as an industrial waste. As a consequence of the suit, requirements for reinjection were eased.¹⁵

Tougher enforcement of local building codes increased the need for bromine in flame-retardant building materials. The Consumer Product Safety Commission and other State agencies have not developed a fire-retardant standard to test the use of bromine compounds in consumer products, and flame retardants containing bromine have to pass the EPA's test for toxicity and mutagenicity.¹⁹

The American Society for Testing and Materials' Committee E-15 was requested by bromine producers to study the handling

157

of bromine. Standards proposed by the committee could aid producers in following Federal agency regulations on bromine.²⁰

A study in New Jersey showed contamination of ground water to be at least 78% of the average concentration of contaminates in the surface water. Dichlorobromoethane, dibromochloromethane, 1,2-dibromoethane, bromoform, dibromomethane, and bromodichloromethane were some of the 56 toxic substances sampled.²¹

The Department of the Interior's Bureau of Land Management commissioned a study by the National Academy of Sciences on the environmental effects of drilling mud discharges during offshore oil and gas drilling operations. Calcium bromide is used in drilling-completion activities in offshore wells to improve the well production.²²

On July 17, the office of the U.S. Trade Representative (USTR) announced the acceptance of a petition limited to tetrabro-

mobisphenol-A (TBBA) by Ameribrom, Inc. TBBA is a brominated hydrocarbon that is used as a flame retardant primarily in epoxies and polycarbonates for electrical applications and contains approximately 60% bromine by weight. Ameribrom, the U.S. marketing group of Bromine Compounds, Ltd., an organization that is 80% owned by the Government of Israel, receives duty-free preference in the European and Japanese markets. U.S. producers of bromine felt that lower Generalized System of Preference (GSP) would adversely affect U.S. production of bromine. On September 15, hearings were held by the USTR. On November 3, the International Trade Commission held hearings on TBBA to gather information to prepare a recommendation to the USTR. The USTR planned to publish a final ruling on GSP for TBBA in the Federal Register in March 1982.

DOMESTIC PRODUCTION

Domestic production of elemental bromine during 1981 increased 2% over that of 1980. The increase was a result of increased use of bromine in flame retardants and well-drilling fluids.

In 1981, there were six companies that operated nine plants in two States. Four companies operated six elemental bromine and compound facilities. One company produces only elemental bromine for distribution to another bromine producer and to a compound producer. One company produced bromine for compounds only. One plant produced only elemental bromine to make compounds used in another plant. Bromine production from the leading State, Arkansas, decreased 2%. The decrease was attributed to a decline in usage of EDB. Arkansas production of EDB decreased 22% in production for domestic use and 38% in production for exports.

Michigan experienced a 25% increase in production primarily for use in well-drilling fluids. Dow continued to expand the Dowell Div. In 1981, Dow acquired G-H Fluid Services Div. for \$44 million in cash. This is the third drilling fluids company that Dow has acquired.

At yearend, Ethyl Corp. announced plans to build a \$7 million plant in Magnolia, Ark. The plant will produce a flame retardant for use in plastic bottles and was planned to be completed by January 1983. The flame

retardant to be produced is Saytec 102, DBDPO. The new plant will double Ethyl's capacity to produce DBDPO. Ethyl is a major producer of DBDPO at its Sayreville, N.J., plant. Capacity is also being increased at Sayreville for other brominated flame retardants.²³

Great Lakes Chemical Corp. (GLCC) announced an agreement in March to purchase Velsicol Chemical Corp., a unit of Northwest Industries, Inc., for \$29.7 million in cash.24 Velsicol bought the bromine facilities of Michigan Chemical Corp. in 1977. The Federal Trade Commission filed a restraining order based on an antitrust violation in the flame-retardant market. The merger was approved in the district and appellate courts in July. With the merger, GLCC became the sole producer of TBBA flame retardant. GLCC signed a tolling agreement with E. I. du Pont de Nemours & Co. for Halon 1301 fire extinguishant and purchased technology from Onoda Cement (Japan) and Japan Halon for the construction of a Halon facility. Halogenated fire extinguishants are used in computer facilities, record storage areas, museums, pipelines, drilling platforms, military applications, and power-generation stations. A significant feature of Halon is that people can live in the halogenated hydrocarbon atmosphere required to extinguish a fire.25

Table 2.—Bromine-producing plants in the United States

State and company	County	Plant	Production source	Elemental bromine capacity ¹
Arkansas: Arkansas Chemicals, Inc The Dow Chemical Co Ethyl Corp Great Lakes Chemical Corp Do Do Michigan: The Dow Chemical Co Do Morton Chemical Co	Union Columbiado Uniondo Mason Midland Manistee	El Dorado	Well brinesdododododo	50 110 160 105 80 50 20 85 25

Chemical Marketing Reporter. Chemical Profile. V. 221, No. 17, Apr. 26, 1982, p. 58.
 Chemical Marketing Reporter. Chemical Profile. V. 203, No. 20, May 14, 1973, p. 9.

Table 3.—Bromine compounds sold by primary U.S. producers¹

(Million pounds and million dollars)

	1980			1981 ^p		
	Quantity			Qua	ntity	
	Gross weight	Bromine content	Value '	Gross weight	Bromine content	Value
Ethylene dibromide Methyl bromide Other compounds ²	212.9 38.9 225.3	180.9 27.7 167.7	54.1 25.3 177.8	157.1 W 247.7	134.3 W 196.4	42.1 W 216.4
Total ³	477.1	376.3	257.2	404.8	330.6	258.4

Preliminary. W Withheld to avoid disclosing company proprietary data. ¹Includes exports.

⁸Data may not add to totals shown because of independent rounding.

CONSUMPTION AND USES

Consumption of EDB decreased during 1981. Since 1972, production of EDB has decreased 42%. The primary reason for the decrease has been a mandated phasedown by EPA to decrease the amount of lead in the atmosphere. EDB is used as a scavenger for lead in gasoline. With a lower lead content in gasoline, the demand for a scavenger is also reduced. EDB also is used as a preplant soil fumigant. Usage of EDB as a space fumigant has been banned, except for use on citrus crops.

MB consumption increased during 1981. Because only two companies manufacture this product, the production figures are proprietary and cannot be revealed.

Oilfield chemicals were the most promising products of the bromine industry. Calcium bromide consumption was estimated to have increased to 89 million pounds of bromine content during 1981. Clear fluids were used in drilling, drill-in, redrill, completion, packer, workover, and gravel-pack under reaming. Clear fluids assure maxi-

mum formation protection, wellbore stability, and down-hole pressure control. Chemicals in the clear-fluid classification include calcium chloride, calcium bromide, and zinc bromide-calcium bromide blends.26 Densities between 8.35 and 19.2 pounds per gallon are possible. Clear fluids can produce drilling rates double or triple that of a mud system, if used without solids. Clear fluids keep clay hydration and dispersion to a minimum; small amounts of solids can reduce a well's production potential from 10% to 85%. Legislation enacted in 1981 established a phase reduction sequence that will lower the impost on new oil by 1986.27 With the new tax policy, the expected exploration for oil and gas will translate into consumption of more bromine chemicals.

Approximately 58 million pounds of bromine was used to produce flame retardants. During 1980, flame retardants were incorrectly reported as a combination of flame retardants and well-drilling fluids.

Includes hydrobromic acid, tetrabromobisphenol-A, ethyl, calcium, ammonium, sodium, potassium, and other bromides, plus some methyl bromide exports.

BROMINE

PRICES

The average price for bulk elemental bromine sold or used, f.o.b. plant, as reported by producers in 1981 was 22.78 cents per pound, a decrease compared with the revised 1980 average price of 25.31 cents per pound. In July, domestic producers increased prices of bromine and bromine derivatives. The four major producers posted a 1.5 cent per pound increase. The average list price of bromine compounds in 1981 increas-

ed 7% over 1980 prices.

Velsicol increased the drum deposit on bromine from \$550 to \$625 per drum. The detention fee for tank cars was changed from \$75 after 4 days to the new fee of \$30 per day on 60,000-pound cars and \$45 per day on 100,000-pound cars after 15 days.²⁶ Industry sources explained the deposit cost to be attributed to the nickel-copper "monel" containers.

Table 4.—Prices for elemental bromine and selected compounds

Product	Value per pound (cents)
Bromine, purified: Carlots, truckloads, delivered Drums, carlots, truckloads, delivered east of the Rocky Mountains¹ Bulk tank car, tank trucks (45,000-pound minimum), delivered east of the Rocky Mountains¹ Ammonium bromide, national formulary (N.F.), granular, drums, carlots, truckloads, freight equalized Bromochloromethane, drums, carlots, f.o.b. Midland Bromoform, pharmaceutical grade, 5-gallon drums, f.o.b. works Calcium bromide, 53%, bulk Ethyl bromide, technical, 98%, drums, carlots, freight allowed, East Ethylene dibromide, drums, carlots, freight equalized Hydropromic acid, 48%, drums, carlots, truckloads, f.o.b. works Hydrogen bromide, anhydrous, cylinders, 130 pounds, f.o.b. works Hydrogen bromide, anhydrous, cylinders, 130 pounds, f.o.b. works Methyl bromide, distilled, tanks, 140,000-pound minimum, freight allowed Potassium bromate, granular, powdered, 200-pound drums, carlots, f.o.b. works Sodium bromide, 98, granular, drums, carlots, f.o.b. works.	75 55- 69 22- 29.5 106 107 270 25 72 33 39- 41 700 57 106 103 97

¹Delivered prices for drums and bulk shipped west of the Rockies, 1 cent per pound higher. Bulk truck prices 1 cent per pound higher for 30,000-pound minimum and 2 cents per pound higher for 15,000-pound minimum. Price f.o.b. Midland and Ludington, Mich., freight equalized, 1 cent per pound lower.

FOREIGN TRADE

Exports of bromine contained in compounds as reported by producers was 30.9 million pounds during 1981. Approximately 82% of the contained bromine exports were EDB. Other compounds exported included compounds for use in well completions, flame retardants, and agriculture.

In 1981, approximately 84% of U.S. imports of bromine and bromine compounds reported by the U.S. Bureau of the Census were from Israel. The closer proximity of Israel to overseas markets gave Israeli producers an advantage in transportation cost compared with U.S. exporters. Other coun-

tries from which bromine and bromine compounds were imported by the United States were the United Kingdom, 12%; France, 3%; and Japan, 1%. Imports reported by the U.S. Bureau of the Census included potassium bromide, 11%; sodium bromide, 2%; EDB, 69%; potassium bromate, 18%; and negligible amounts of elemental bromine. Because imports of bromine compounds are classified into multiproduct categories, some bromine compounds imported by the United States are not easily identified.

WORLD REVIEW

France.—Rhone-Poulenc, Inc. (RP), the U.S. selling agent and major shareholder of Potasse et Produits Chimiques (PPC), was

undergoing plans at yearend to be nationalized. PPC is Europe's largest producer of inorganic and organic bromine compounds.

Source: Chemical Marketing Reporter. Current Prices of Chemicals and Related Materials. V. 220, No. 6, Dec. 28, 1981, pp. 28-37.

During 1981, bromine produced in Israel was imported into France where PPC manufactured bromine products, some of which were exported to the United States.²⁹

In 1978, RP acquired an interest in Morton-Norwich (MN), one of five domestic producers of bromine. Under a 10-year agreement, RP gave MN the option to develop and market all pharmaceutical compounds of RP and its subsidiaries. At yearend, RP owned 20.3% of MN and was the largest shareholder. In 1981, RP announced an intent to sell its 2.75 million shares.³⁰

Société Octel-Kuhlman was reported to operate a seawater plant for the extraction of bromine at Port-de Bouc, near Marseilles. The company is a joint venture of Associated Octel, Ltd. (50%) (United Kingdom), and Pechiney Ugine-Kuhlman (50%) (France). Capacity was estimated to be 30 million pounds per year. The EDB produced at Port-de Bouc is transported to Paimboeuf for the manufacture of lead alkyls.

At Mines de Potasse D'Alsace, S.A., bromine was reported to be produced as a byproduct of potash production. Production of bromine was estimated to be 19 million pounds per year.

Germany, Federal Republic of.—Kali und Salz, A.G., reported bromine production as a coproduct in the processing of potash at the Wintershall Mine near Herfa and the Siegfried-Giesen Mine near Hannover.³¹ Production capacity was estimated to be 8 million pounds per year.

Israel.—Dead Sea Bromine, Ltd., completed its capacity expansion to 154 million pounds in 1981.³² No plans were under study to increase this capacity.³³ The production is exported through Eurobrom.

Italy.—S.p.A. Ing. Luigi Conti-Vecchi S.p.A. Sarramin operated a bromine-from-seawater plant with a capacity of 2 million pounds at South Gilla, Gagliari, Sardinio. The bromine was a coproduct of solar salt and magnesium production. SAIBI produced 702,000 tons per year at Margherita de Savoia. The seawater plant operated by Montedison in southern Italy was reported closed several years ago.³⁴

Netherlands.—The prosecution of a bromine-derivatives producer accused of disposal of industrial waste in a municipal sewer began in 1981. Because the statute of limitations had expired, the case went into

civil litigation.35

Gasoline-grade tertiary butyl alcohol (GTBA), 5% to 7% by volume, is produced in Europe by Oxirane 6, Botelek. GTBA is used as a substitute for EDB and lead in gasoline as an octane booster.³⁶

MB for use as a soil decontaminant had been banned from use except by special permit in the Netherlands. A proposal by a Dutch member of the European Economic Community (EEC) would ban all EEC uses of the compound.³⁷

Spain.—Derivados del Etilo, S.A., (Etilo), which is located at Almería, had a bromine capacity of 2.2 million pounds per year and was the sole producer of bromine. All of the bromine was consumed by Etilo for the production of brominated compounds for use in fumigants, fire extinguishing agents, and flame-resistant resins. Nueva Compañía Arrendataria de las Salinas de Torrevieja, S.A., in Alicante, closed bromine production in 1977. During 1978, 100,000 pounds of bromine and 330,000 pounds of compounds were imported and 6,700 pounds of compounds were exported.³⁸

Tunisia.—Société Nationale des Industries Chimiques, a state-controlled company, was formed to exploit bromine deposits associated with magnesium and potassium in brackish water in the Zarzis area of southern Tunisia.³⁹

United Kingdom.—Associated Octel operated a seawater plant to produce bromine at Amlwch, Anglesey, in North Wales. The bromine was converted into EDB for use as a lead scavenger in gasoline. Production capacity was estimated at 60 million pounds.

An increase in the use of bromine in flame retardants was expected as a result of the United Kingdom introducing safety regulations on upholstered furniture in 1980. The regulation is expected to result in increased use of bromine in reactive flame retardants for use in polyurethane foams.⁴⁰

The United Kingdom announced a reduction of lead in gasoline from 0.4 gram per liter to 0.15 gram per liter by 1985. EDB, a lead scavenger, will be affected by the decision.⁴¹ Already, substitutes such as methyl tertiary butyl ether (MTBE), tertiary butyl alcohol, methanol, and ethanol are being considered. MTBE capacity in Europe was 530,000 tons in 1980 and was planned to be 740,000 tons by 1982.⁴²

Table 5.—Bromine: World production, by country¹

(Thousand pounds)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
France	34,326	35,714	41,888	e44,000	42,000
Germany, Federal Republic of	8,236	8,583	8,862	e8,800	8,800
India	1.124	1,014	660	736	770
Israel	69,450	76,170	101,000	97,133	³ 97,047
Italy	r _{1,380}	e1,300	e _{1,300}	e _{1,300}	1,280
Japan ^e	26,500	26,500	26,500	26,500	26,500
Spain ^e	900	900	900	900	900
U.S.S.R. ^e	F142.000	r144,000	146,000	148,000	150,000
United Kingdom	54,454	55,336	64,375	55,100	55,100
United States ⁴	433,900	r446,400	497,300	378,100	3378,200
Total ⁴	r772,270	^r 795,917	888,785	760,569	760,597

^eEstimated. ^pPreliminary. ^rRevised.

TECHNOLOGY

Research involving flame and fire retardants included projects by United States and Japanese research groups. Dow completed animal studies on its dibromoneopentyl flame retardant for unsaturated polyester resins and polyurethane foams. Rats ingesting 5 milligrams per kilogram of body weight per day experienced no adverse effects. Rats ingesting 100 milligrams per kilogram per day showed minor toxic effects but no increase in tumors.43 In addition, Dow commercialized a "brominated aliphatic compound with a little phosphorus" to use as a fire retardant in rigid urethane foams. The bromine additive becomes part of the molecular structure (reactive), which increases the flame retardant's stability. Another brominated aliphatic reactive compound was being tested in rigid urethane foams.44

The CF₂Br₂ microstructure data was studied to determine the mechanism of Halon⁴⁵ inhibition of methane flames. Halon, a bromofluorochloromethane, exhibits properties of low toxicity, quick fire extinquisher, and no residue. The study supported the concept of a region of inhibition preceding the primary reaction zone, although the reaction of the inhibitor is not simple or limited in one region.⁴⁶

Studies were conducted in Japan to synthesize vinyl-type monomers containing bromine and/or phosphorus as flame retardants. The flame retardants for thermally stable polymers are comparable to the base polymer when heated.⁴⁷

Studies conducted by the Maryland Environmental Service and Dow demonstrated that bromine chloride offers advantages over other disinfectants in treating activated sludge waste water. Bromine chloride is more soluble than chlorine and reacts more quickly. The bromoamines formed by the reaction of bromine and chlorine with ammonia are hydrolized to a harmless salt in less than 1 hour. Because one-half the amount of bromine chloride is required for disinfecting, the cost is lower.

Studies on sickle cell diseases revealed that polarized groups, such as bromine substituents on aromatic rings, endowed nonpermeating compounds with the ability to penetrate the red cell membrane and to increase binding by hemoglobin. A substantial decrease in the number of abnormally shaped cells other than the sickle form was produced with dibromoaspirin. The presence of bromine substituents increased the membrane permeability.48

Other areas of research included an information release by Exxon Corp. concerning the cost and reliability of a zinc-bromide battery. Research and development on hydrogen production from water by a continuous HBr reactor using the iron-bromine family cycle was being studied. A study on the solar chemistry investigated the oxidation reduction reactions that store chemical energy. Two classes of metal complexes are being studied for hydrogen production from aqueous solution. Experiments to detect reactions that proceeded single-electron transfer used 1-bromo-2,2-dimethyl-5-hexene. 2

¹Table includes data available through Apr. 14, 1982.

²In addition to the countries listed, several other nations produce bromine, but output data are not reported and available general information is inadequate for formulation of reliable estimates of output levels.

³Reported figure. ⁴Sold or used by producers.

¹Physical scientist, Division of Industrial Minerals. ²Chemical and Engineering News. Government Concentrates. V. 60, No. 1, Jan. 4, 1982, p. 16.

³Chemical Week. Washington Newsletter. V. 129, No. 8, Sept. 16, 1981, p. 52.

*Science. Treating the Cure: Problems with Pesticides. V. 120, No. 17, Oct. 24, 1981, p. 263.

*Chemical Week. Washington Newsletter. V. 129, No. 25, Dec. 16, 1981, p. 48.

*U.S. Environmental Protection Agency. Ethylene Dibromide: Position Document 2-3. PB 81-157851, 121 pp.

*Chemical Week. EPA Takes More Time to Weigh Its Action on EDB. V. 128, No. 1, Jan. 7, 1981, p. 22.

*Chemical Marketing Reporter. EDB Gets the Okay as Soybean Nematicide. V. 219, No. 10, Mar. 9, 1981, p. 27.

*Wall Street Journal. Firms Agree to Ban but 1 Use of Fumigant Linked to Male Sterility. V. 1907, No. 47, Mar. 10, 1981, p. 8.

*OPesticide and Toxic Chemical News. Exemptions Granted for Mesurol on Grapes, Methyl Bromide. Sec. 18, v. 9, No. 30, June 17, 1981, p. 31.

*IU.S. Environmental Protection Agency. Environmental Protection Agency.

¹¹U.S. Environmental Protection Agency. Environmental and Health Aspects of Bromoethylene. PB 81-249658,

tal and rieath Aspects of Bromoethylene. PB 81-249658, June 1981, 16 pp.

12Wise, H. E., Jr., and P. D. Fahrenthold. Predicting Priority Pollutants From Petrochemical Processes. Environ. Sci. Technol., v. 15, No. 11, November 1981, pp. 1292-1304.

¹³Mining Engineering. Superfund Bill Imposes New Taxes on Mineral Producers. V. 33, No. 2, February 1981, 14 European Chemical News. ECN Technology. V. 37, No.

**European Chemical News. EAN Technology. V. of , No. 989, July 6, 1981, p. 20.

15 Bahn, A. K., O. Bialik, J. Oler, L. Houten, and E. Landau. Health Assessment of Occupational Exposure to Polybrominated Biphenyl (PBB). U.S. Environmental Protection

Agency, PB 81-159675, 67 pp.

16Science. Memory Performance of Chemical Workers
Exposed to Polybrominated Biphenyls. V. 212, No. 4501,

Exposed to Polybrominated Biphenyls. V. 212, No. 4501, June 19, 1981, pp. 1413-1415.

17Federal Register. Rules and Regulations. 40 CFR, Parts 704 and 713, v. 46, No. 125, June 30, 1981, p. 33525.

18Chemical Week. Underground Disposal Looks More Attractive. V. 129, No. 16, Oct. 14, 1981, pp. 28, 30.

19 — Fire-Retardant Materials to Meet Stiffer Codes. V. 128, No. 23, June 10, 1981, pp. 32, 41.

20Chemical Marketing Reporter. CMR Business Briefs. V. 220, No. 14, Oct. 5, 1981, p. 71.

21Page, G. W. Comparison of Ground Water and Surface Water for Patterns and Levels of Contamination by Toxic Substances. Environ. Sci. Technol., v. 15, No. 12, December 1981, pp. 1475-1481. 1981, pp. 1475-1481.

1901, pp. 1470-1481.
 ²²Chemical and Engineering News. Government Concentrates. V. 59, No. 49, Dec. 7, 1981, p. 20.
 ²³Chemical Marketing Reporter. Ethyl Subsidiary Plans to Manufacture Flame Retardant Additives. V. 221, No. 2, 7. 1, 11, 200, 200, 7. 12.

to Manuacture Fiame Retardant Additives. v. 221, No. 2, Jan. 11, 1982, pp. 7, 18.
 ²⁴European Chemical News. Newsdesk. V. 36, No. 986, June 12, 1981, p. 6.
 ²⁵Great Lakes Chemical Corp. 1981 Annual Report. 32

pp. ²⁶The Dow Chemical Co. Increasing Production Rate, Yield, and Well Life With Clear Fluids. Form No. 173-1079-81, 1981, 14 pp.
Ethyl Corp. (Baton Rouge, La.). Written communication, January 1982.

Great Lakes Chemical Corp. Oil Field Chemicals From Great Lakes. February 1982. ²⁷Gale, G. Boom Tide for Oilfield Chemicals. Chem. Mark. Rep., Pt. 2, v. 220, No. 12, pp. 64-67.

Mark. Rep., Pt. 2, v. 220, No. 12, pp. 64-67.

²⁸Chemical Marketing Reporter. Heavy and Agricultural Chemicals. V. 219, No. 11, Mar. 16, 1981, p. 34.

²⁹Chemical and Engineering News. Rhone-Poulenc Eyes French Takeover Terms. V. 59, No. 44, Nov. 2, 1981, p. 7.

³⁰European Chemical News. Newsdesk. V. 37, No. 992, July 27, 1981, p. 4.

³¹The British Sulphur Corp., Ltd. (London). World Survey of Potash Resources. 2d ed., 1975, pp. 118-120, 130.

³²Mining Annual Review (London). Israel. 1981, p. 528.

³³Dead Sea Bromine Co. Ltd. Written communication

³³Dead Sea Bromine Co., Ltd. Written communication.

33Dead Šea Bromine Co., Ltd. Written communication. Feb. 8, 1982, 1 p.
34Manufacturing Chemist. The Bromine Revolution. V.
53, No. 3, March 1982, pp. 53-54.
35Chemical Marketing Reporter. The Dutch Cope With Their Own "Love Canal." Pt. 2, v. 221, No. 2, Jan. 11, 1982, pp. 25-26, 30.
36Chemical Age. Will the UK Learn to Live Without Lead? V. 122, No. 3214, May 8, 1981, pp. 16-17.
37—— In Brief. V. 122, No. 3221, June 26, 1981, p. 5.
38La Industria Quimica En Espana (Madrid). 1980, pp.

³⁸La Industria Quimica En Espana (Madrid). 1980, pp.

38, 118-119.

39Green Markets. NPK Newswire. V. 5, No. 5, Feb. 2,

August Marketing Reporter. Flame Retardant Chemical Consumption Should Rise Strongly Through 1985. V. 220, No. 2, July 13, 1981, p. 43.
 Chemical Age. UK Acts Over Lead in Petrol. V. 122, No. 2915 May 15, 1021, p. 4

No. 3215, May 15, 1981, p. 4.

*2European Chemical News. Petrochemical 81 Supplement. Lower Lead Limit Spurs Market for Chemical Octane Boosters. V. 59, No. 50, Dec. 14, 1981, pp. 28, 32, 34.

*371.

**The Control of Petrochemical Supplement. Lower Lead Limit Spurs Market for Chemical Octane Boosters. V. 59, No. 50, Dec. 14, 1981, pp. 28, 32, 34.

⁴³Chemical and Engineering News. Science/Technology Concentrates. V. 58, No. 7, February 1980, p. 27.

44Work cited in footnote 19.

⁴⁵Reference to specific trade names is made for identifi-cation only and does not imply endorsement by the Bureau

cation only and december of Mines.

46Papp, J. F., C. P. Lazzaro, and J. C. Biordi. Structure of a CF₂Br₂—Inhibited Methane Flame. Effect of CF₂Br₂ on Composition, Net Reaction Rates, and Rate Coefficients.

a CF₂Br₂—Inhibited Methane Flame. Effect of CF₂Br₂ on Composition, Net Reaction Rates, and Rate Coefficients. BuMines RI 8551, 1981, 32 pp.

⁴⁷Morita, Y., M. Hagiwara, and K. Araki. Flame-tetardant Modification of Ethylene-Propylene Copolymer With Monomers Containing Bromine and/or Phosphorus. J. Appl. Polym. Sci., v. 25, 1980, pp. 2711-2719.

⁴⁸Klotz, I. M., D. N. Haney, and L. C. King. Rational Approaches to Chemotherapy: Antisickling Agents. Sci., v. 213, No. 14, August 1981, pp. 724-730.

⁴⁹Bellows, R. J. Recent Progress on Exxon's Circulating Zinc-Bromide Battery System. Exxon Res. and Eng. Co., 1981, 19 pp.

1981, 19 pp.

50 Tshikawa, H., H. Ishikawa, E. Ishii, I. Uehara, and M. Nakane. Bull. Chem. Soc. (Japan), v. 53, No. 9, 1980, pp.

51Gray, H. B., and A. W. Maverick. Solar Chemistry of Metal Complexes. Sci., v. 214, Dec. 11, 1981, pp. 1201-1205. 52Chemical and Engineering News. Electron Transfer More Common Than Believed. Sci., v. 59, No. 15, Apr. 13, 1981, pp. 26-27.

Cadmium

By Robert Reese¹

Domestic production of cadmium in all forms except cadmium sulfide increased in 1981. Apparent consumption of cadmium metal was also up significantly in 1981 despite increasing stocks held by producers, chemical manufacturers, and distributors. Foreign trade increased during 1981 with both export and import levels being greater than those in 1980. Domestic prices for cadmium in 1981 fell from a published price of \$2.50 per pound to \$1.40 per pound at yearend. The lower prices were believed to have led to purchases of cadmium by consumers for future needs and to the use of cadmium in some applications where cadmium substitutes had been used.

Legislation and Government Programs.—Review of the Clean Air Act of 1970 was begun by Congress during 1981 with hearings being held concerning control standards for hazardous air pollutants. Addition of at least 37 substances, including cadmium, to the lists of hazardous air pol-

lutants was proposed. Regulations require industry to prove that a listed substance is not hazardous. Final action on a revised Clean Air Act was not taken during the year.

The Occupational Safety and Health Administration (OSHA) postponed the issuance of new standards on worker exposure to cadmium and the decision on whether or not medical surveillance and exposure monitoring should be included in the standards. The existing OSHA standards set limits on exposure to airborne cadmium averaged over an 8-hour day. Medical surveillance and individual exposure monitoring are not included in the existing standards.

The strategic stockpile goal remained at 5,307 metric tons. No net inventory acquisitions or sales were made during the year, and as of December 31, 1981, the stockpile inventory consisted of 2,871 metric tons.

Table 1.—Salient cadmium statistics

	1977	1978	1979	1980	1981
United States: Production metric tons	_ 1,999	1,653	1.823	1,578	1,603
Shipments by producers ² do	_ 1,837	1,957 \$5,906	2,468 \$9,498	1,271 \$5,219	1,382 \$3,838
Value thousands_ Exports metric tons_ Imports for consumption, metal do		326 2,881	211 2,572	236 2,617	239 3,090
Apparent consumption do	_ 3,818	4,510 \$2.45	r _{5,099} \$2.76	r3,534 \$2.84	4,442 \$1.93
Price: Average per pound ³ World: Production metric tons_		F17,446	r _{18,883}	P18,130	e _{17,721}

Estimated. Preliminary. Revised.

²Includes metal consumed at producer plants.

¹Primary and secondary cadmium metal. Includes equivalent metal content of cadmium sponge used directly in production of compounds.

³ Average quoted price for cadmium sticks and balls in lots of 1 to 5 tons.

DOMESTIC PRODUCTION

Domestic production of cadmium metal increased slightly in 1981 despite the closure of The Bunker Hill Co.'s zinc smelter in Kellogg, Idaho, near the end of the year. Although metal production was up in 1981, the tonnage produced was less than the average production for the previous 5 years. Peak domestic production of 5,736 metric tons of cadmium metal occurred in 1969. Since then, the production trend has been declining. The closing of The Bunker Hill Co. left only four companies as active domestic cadmium producers at the end of 1981.

Production of cadmium compounds other than cadmium sulfide (cadmium content), which includes both electroplating salts and cadmium oxide, increased in 1981 over 1980 levels, but remained essentially the same as the average for the previous 5 years. The production of cadmium sulfide including cadmium sulfoselenide and lithopone was significantly lower in 1981 when compared with both the production of the previous year and the average for the previous 5 years.

Table 2.— Primary cadmium producers in the United States in 1981

Company	Plant location
AMAX Lead & Zinc, Inc ASARCO Incorporated	Sauget, Ill. Corpus Christi, Tex. and Denver, Colo.
The Bunker Hill Co Jersey Miniere Zinc Co National Zinc Co	Kellogg, Idaho. Clarksville, Tenn. Bartlesville, Okla.

Table 3.—U.S. production of cadmium compounds other than cadmium sulfide¹

(Metric tons)

;	Year	Quantity (cadmium content)
1977 1978 1979 1980 1981		695 708 912 826 885

¹Includes plating salts and oxide.

Table 4.—Cadmium sulfide¹ produced in the United States

(Metric tons)

Year	Quantity (cadmium content)	
1977	639	
1978	698	
1979	F813	
1980	801	
1981	527	

Revised.

CONSUMPTION AND USES

Apparent consumption of cadmium was up significantly over that of 1980, but was lower than that of 1979. The increase was possibly due to a perceived bottoming of cadmium prices and subsequent early purchases for future needs, the development of new uses for cadmium, and to a switching back to the use of cadmium in some applications where substitutes previously had been developed to replace cadmium.

Although the Bureau of Mines does not collect actual consumption data, the distribution of apparent consumption has been estimated by industry sources for the following categories: Coating and plating 34%, batteries 16%, pigments 27%, plastics and synthetic products 15%, and alloys and other uses 8%. The largest users of products from these categories continued to be the transportation and defense industries.

¹Includes cadmium lithopone and cadmium sulfoselenide

Table 5.—Supply and apparent consumption of cadmium

(Metric tons)

	1979	1980	1981
Stocks, Jan. 1	r _{2,258}	^r 1,343	1,768
Production	1,823	1,578	1,603
Imports, metal	2,572	2,617	3,090
Total supply Exports Stocks, Dec. 31	r _{6,653}	*5,538	6,461
	211	236	239
	r _{1,343}	*1,768	1,780
Apparent consumption	°5,099	r _{3,534}	4,442

Revised.

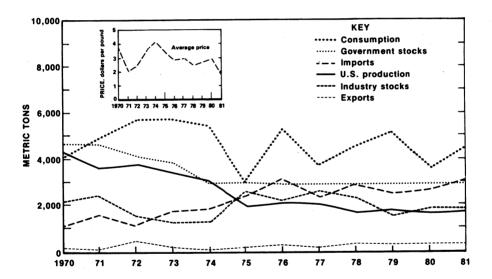


Figure 1.—Trends in production, consumption, yearend stocks, exports, imports, and average price of cadmium metal in the United States.

STOCKS

During 1981, producer and compound manufacturers' stocks fluctuated minimally; however, their inventory levels were higher, especially for metal producers, than those of 1980.

Although 1981 stock levels for metal producers and compound manufacturers were up compared with 1980 levels, they were significantly lower than metal producer inventories at the end of 1978 and com-

pound manufacturer inventories at the end of 1977.

In table 6, distributor-held stocks show a significant decrease because a few large distributors altered their market positions during 1981. If these special cases are disregarded, the remaining distributors show an 8% increase in stocks held at the end of 1981 when compared with their stocks held at the end of 1980.

¹Total supply minus exports and yearend stocks.

Table 6.—Industry stocks, December 31

(Metric tons)

	1980		1981	
	Cadmium metal	Cadmium in com- pounds	Cadmium metal	Cadmium in com- pounds
Metal producers Compound manufacturers Distributors	841 ^r 42 ^r 439	W r ₄₄₁ r ₅	1,077 45 203	W 447 8
Total	1,322	^r 446	1,325	455

Revised. W Withheld to avoid disclosing company proprietary data; included with "Compound manufacturers."

PRICES

On January 1, 1981, ASARCO Incorporated withdrew its published producer price for cadmium and began selling the metal on a daily basis. The National Zinc Co. stopped publishing a producer price on January 21, 1981, leaving Amax Lead & Zinc, Inc., and The Bunker Hill Co. as the only domestic producers with a listed price. With the announcement of the suspension of operations by Bunker Hill in late 1981, the company was no longer considered a major factor in the market.

Published producer prices were \$2.50 per pound at the beginning of the year. In mid-January, they were reduced to \$2 per pound, responding to a softer demand for the metal. As the economy slowed, prices dropped to \$1.75 per pound in early July, \$1.60 per pound in October, and finally \$1.40 per pound in early December where it remained at yearend. Daily prices of cadmium generally were 5 to 30 cents below the published price throughout 1981.

Dealer prices in January were listed at \$2 per pound. They fell steadily throughout the early months to \$1.70 per pound near the end of March. Prices then began climbing, reaching \$2 per pound in mid-May. For the remainder of 1981 dealer prices declined steadily, closing the year in the range of \$1.25 to \$1.35 per pound.

FOREIGN TRADE

Exports of cadmium metal and cadmium in alloys, dross, flue dust, residues, and scrap increased slightly over that exported in 1980. The three largest recipient countries, Finland, Belgium-Luxembourg, and Switzerland, received approximately 86% of U.S. cadmium exports.

Cadmium metal imports increased significantly in 1981, being only slightly less than the 3,094 metric tons imported in 1976, the peak for the last 20 years. Although there are yearly fluctuations, 1981 imports continued the general trend started in 1960 of increasing import tonnages. Primary supplying countries in 1981 were Canada, Australia, the Republic of Korea, and the Federal Republic of Germany.

Imports of metal and flue dust from most favored nations (MFN) and imports of flue dust from non-MFN continued to be duty free. A statutory duty of 15 cents per pound continued to be imposed on cadmium metal imported from non-MFN.

Table 7.—U.S. exports of cadmium metal and cadmium in alloys, dross, flue dust, residues, and scrap

Year	Quantity (metric tons)	Value (thou- sands)
1979 1980	211 236 239	\$550 464 332

Table 8.—U.S. imports for consumption¹ of cadmium metal, by country

Country	19	980	1981		
	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)	
Australia	573	\$3,197	693	\$2,571	
	42	292	60	225	
Belgium-Luxembourg	825	4,494	843	3,759	
	16	94	80	270	
China	ğ	46			
Cocos Islands	119	616	50	185	
Finland	37	177	86	326	
France	10	57	231	748	
Germany, Federal Republic of	50	267	-6	29	
India	50	201	36	103	
Italy	- 9	45	18	73	
Japan	175	907	P367	P3,006	
Korea, Republic of	339	1,801	188	674	
Mexico			² 89	300	
Netherlands	110	557	-09 5	17	
Norway	31	161			
Peru	142	735	166	532	
South Africa, Republic of			16	74	
Spain	50	272	121	375	
Sweden	5	35			
United Kingdom	5	29			
Yugoslavia.	70	399	.5	24	
Zaire			30	78	
Total	2,617	14,181	p3,090	p _{13,369}	

^pPreliminary

²Includes waste and scrap (gross weight).

WORLD REVIEW

Production began at the Cajamarquilla zinc refinery of Empresa Minera del Perú (Minero Peru) during 1981. The plant produced high-grade zinc, sulfuric acid, and metallic cadmium.

A new zinc reduction plant was scheduled for construction in mid-1982 at Belledune, New Brunswick, Canada, and was expected to begin production in late 1984. In addition to zinc, cadmium and sulfuric acid will also be produced. Feedstock for the plant will be provided by mines in New Brunswick, which are currently shipping concentrates to Europe for smelting.

Stemming from the general pollution controls imposed in 1979, the Swedish Government issued the final ordinance on exceptions from the ban on the use of cadmium for surface treatment, as a stabilizer, or as a coloring agent. Although the rule was to apply to both imports and exports beginning July 1, 1982, most product areas were expected to have exemptions for pigments and stabilizers through 1985 and for surface coatings through 1987.

In the Federal Republic of Germany, initial steps were taken to tighten air pollu-

tion regulations in general as well as controls on the production and use of cadmium. Final decisions were still pending.

Organization International Standardization issued two new standards affecting cadmium. One dealt with permissible limits on the release of lead and cadmium from ceramic foodware, and the other was related to testing procedures. The objectives of these standards were to preserve the ceramic markets for these metals while protecting public health. The permissible limits specified by the standard for the release of lead and cadmium include (1) ceramic flatware, 1.7 milligrams per square decimeter for lead and 0.17 milligram per square decimeter for cadmium, (2) small ceramic hollowware, 5 parts per million for lead and 0.5 part per million for cadmium, and (3) large ceramic hollowware, 2.5 parts per million for lead and 0.25 part per million for cadmium. These standards have been accepted by most countries participating in the multilateral negotiations, although a number of countries reportedly wanted more stringent limits.

¹General imports and imports for consumption were the same in 1980 and 1981.

Table 9.—Cadmium: World smelter production, by country

(Metric tons)

Continent and country	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Canada (refined)	1.185	r _{1.265}	1 400	1 000	0
United States ³	1,100	1,653	1,460	1,033	21,274
Latin America:	1,555	1,000	1,823	1,578	² 1,603
Argentina	40	22	0.0	••	
Brazil	10	10	36 21	18	20
Mexico (refined)	908	897	830	41	45
Peru	182	169	190	778	860
Europe:	102	109	190	163	180
Austria	26	33	34	00	
Belgium	r _{1.440}	1.164		36	55
Bulgaria ^e			1,440	1,527	1,070
Finland	200	210	210	210	210
	527	611	590	581	580
German Democratic Republic ^e	790	689	792	791	660
Cormony Fodoral Popublic of	18	18	15	15	16
Germany, Federal Republic of	1,336	1,182	1,266	1,197	² 1,192
Italy	F448	378	527	568	600
Netherlands ^e	302	402	416	455	540
Norway	97	120	115	130	115
Poland	754	761	773.	698	630
Romania ^e	90	90	90	r ₈₅	85
Spain	303	253	222	309	310
U.S.S.R. ^e	2,750	2.800	2.850	2.850	2,900
United Kingdom	295	291	424	2,000 375	
Yugoslavia	189	187	289		² 278
Africa:	100	101	209	290	285
Algeria	133	175	185	150	
Namibia	88	79		150	200
Zaire			81	69	
Zambia	246	186	212	168	² 230
Asia:	4			1	1
China ^e					
India	200	220	225	225	225
	44	113	166	89	80
Japan	2,844	2,531	2,597	2,173	21.977
Korea, North	150	150	150	150	150
Korea, Republic of	20	40	50	365	300
Oceania: Australia (refined)	^r 670	747	804	1,012	1,050
Total	r _{18,288}	^r 17,446	18,883	18,130	17.721

Preliminary. Revised. eEstimated

"Estimated. "Preliminary. 'Revised.

'This table gives unwrought metal production from ores, concentrates, flue dusts, and other materials of both domestic and imported origin. Sources generally do not indicate if secondary metal (recovered from scrap) is included or not; where known, this has been indicated by footnote. Data derived in part from World Metal Statistics (published by World Bureau of Metal Statistics, London) and from Metal Statistics (published by Metallgesellschaft Aktiengesellschaft, Frankfurt am Main). Cadmium is found in ores, concentrates, and/or flue dusts in several other countries, but these materials are exported for treatment elsewhere to recover cadmium metal; therefore, such output is not recorded in this table to avoid double countrie." Table includes data available through Mar. 31 1982. double counting. Table includes data available through Mar. 31, 1982.

²Reported figure. ³Includes secondary.

TECHNOLOGY

A laboratory process has been developed for catalytically splitting hydrogen sulfide into its components using visible light and an aqueous transparent suspension of colloidal cadmium sulfide particles and ruthenium dioxide.2 As the visible light passes through the solution, water is reduced to hydrogen and hydroxide ions by photoinduced electrons in the cadmium sulfide particle. The hydroxide ions then strip hydrogen from the hydrogen sulfide to reform water, leaving negatively charged sulfide ions that are then oxidized to elemental sulfur. Significantly, because no oxygen is produced, a gas separation phase to recover

the hydrogen is not needed. In addition to offering a potentially simple alternative to conventional methods of removing hydrogen sulfide from waste gases, the process offers two other potential bonuses. The hydrogen generated has a positive fuel value, and the precipitated sulfur can be used or sold without further treatment.

Ametek Inc. reported laboratory development of a low-cost, simple-to-make solar photovoltaic cell using cadmium telluride and other materials.3 Ametek reported that its solar cells in converting solar energy to electricity have achieved efficiency in excess of 8% with the theoretical efficiency

CADMIUM

equal to 26%.

Researchers at the Bureau of Mines reported laboratory research on development of a multistage hydrometallurgical process for recovering or recycling zinc, cadmium, copper, cobalt, and nickel from electrolytic zinc industrial copper filter cake.4 The stages involved are (1) wet sizing, (2) sulfuric acid leaching of undersized material, (3) sulfuric acid-manganese dioxide leaching of the sulfuric acid leach residues, (4) selective precipitation of arsenic, copper, and cobaltnickel products, and (5) precipitation of manganese for recycling to the leach circuit.

Developments in cadmium technology were abstracted in Cadmium Abstracts, a quarterly publication available through the Cadmium Association, 34 Berkeley Square, London W1X 6AJ, England. Progress reports of the projects supported by the International Lead Zinc Research Organization. Inc., were published in the Cadmium Research Digest.

¹Physical scientist, Division of Nonferrous Metals.

²Chemical and Engineering News. Visible Light Cleaves Hydrogen Sulfide. July 27, 1981, pp. 40-42. ³Chemical Week. Apr. 15, 1981, p. 54, ⁴Hebble, T. L., V. R. Miller, and D. L. Paulson. Recovery of Principal Metal Values From Electrolytic Zinc Waste. BuMines RI 8582, 1981, 12 pp.

Calcium and Calcium Compounds

By J. W. Pressler¹

Calcium metal was manufactured by one company in Connecticut. Natural calcium chloride was produced by three companies in California and two companies in Michigan. Synthetic calcium chloride was manufactured by two companies in Louisiana, one company in New York, and two companies in Washington.

DOMESTIC PRODUCTION

Pfizer Inc. produced calcium metal at Canaan, Conn., by the Pidgeon process—an aluminothermic process in which high-purity quicklime and aluminum powder are briquetted and heated in vacuum retorts. At 1,300° C, the calcium oxide is reduced to calcium metal, which vaporizes and is subsequently collected as "crowns" in a water-cooled condenser at the other end of the retort at about 700° C.

National Chloride Co. of America, Leslie Salt Co., and Hill Bros. Chemical Co. produced calcium chloride from dry-lake brine wells in San Bernardino County, Calif. Output increased 23% in 1981 compared with that of the previous year. The Dow Chemical Co. and Wilkinson Chemical Corp. recovered calcium chloride from brine in Lapeer, Mason, and Midland Counties, Mich. Average output in Michigan increased 21% in 1981 compared with that of the previous year. Total production of natural calcium chloride in 1981 was 704,700 tons, an increase of 21% compared with 1980 production.

Allied Chemical Corp. recovered synthetic calcium chloride as a byproduct of soda ash production at its Solvay plant near Syracuse, N.Y., and as a byproduct at its Baton Rouge, La., plant using excess hydrochloric acid and limestone; Texas United Chemical Corp. produced calcium chloride from purchased hydrochloric acid and limestone at its plant near Lake Charles, La.;

Reichold Chemicals, Inc., recovered synthetic calcium chloride as a byproduct of pentachlorophenol manufacture at Tacoma, Wash.; and Hooker Chemicals & Plastics Corp. manufactured calcium chloride at Tacoma using limestone and hydrochloric acid. Total output of synthetic calcium chloride in 1981 was 212,300 tons, an 8% decrease compared with the 1980 level.

W. R. Grace & Co. of New York, N.Y., announced plans to build a calcium nitrite plant in Wilmington, N.C., scheduled to come onstream in early 1983. The plant is the first of its kind in North America.² The product will be used as a concrete additive to prevent steel reinforcing bar corrosion in bridges, as described in the Technology section of the 1978-79 Calcium and Calcium Compounds chapter of the Minerals Yearbook.

Allied Chemical of Morristown, N.J., built a new plant for the production of 38% liquid calcium chloride at its Baton Rouge, La., complex in 1981. The heavy liquid completion fluid market for the oil and gas drilling industry will be the principal use.³

PPG Industries, Inc., announced that it will construct a multimillion-dollar facility for the production of calcium hypochlorite, scheduled for completion in late 1983. To be constructed in either Natrium, W. Va., or Barberton, Ohio, the facility will more than quadruple PPG's nameplate capacity to 36,500 tons per year. Principal markets

include swimming pool sanitization, municipal water facilities sanitization, controlling

algae, and as a general disinfectant.4

Table 1.—Production of calcium chloride (75% CaCl2 equivalent) in the United States

	Nat	ural	Synt	hetic	То	tal
Year	Quantity	Value	Quantity	Value	Quantity	Value
	(short tons)	(thousands)	(short tons)	(thousands)	(short tons)	(thousands)
1977	710,385	\$45,048	257,231	\$17,683	967,616	\$62,731
	773,138	53,868	257,763	21,172	1,030,901	75,040
	719,709	51,884	261,052	22,566	980,761	74,450
	581,012	47,950	230,123	26,150	811,135	74,100
	704,691	61,692	212,299	27,086	916,990	88,778

CONSUMPTION AND USES

Calcium metal was used as an aid in removing bismuth in the refining of lead; as a desulfurizer and deoxidizer in steel refining; to form alloys with metals such as aluminum, lead, and silicon; as a reducing agent to recover refractory metals such as tantalum, uranium, and zirconium from their oxides; and in the manufacture of calcium hydride used in the production of chromium, titanium, and zirconium. Some minor, but interesting, uses were in the preparation of vitamin B and chelated calcium supplements, and as a cathode coating in some types of photo tubes.

A high growth rate was forecast for the use of calcium in the battery sector, particularly in the maintenance-free (MF) automotive storage battery that uses lead-calcium (0.1% Ca) and lead-tin calcium alloys. As with nickel-cadmium batteries, the lead batteries were completely sealed, and replacement of the electrolyte is not necessary. They were sold particularly on their merit of being of long life. The weak economy in 1980-81 resulted in reduced demand for MF batteries.

In the refining of crude lead bullion, calcium metal consumption in the debismuthizing step was more than used in MF batteries for 1981.

In addition to its use in the refining of steel, calcium was used as an additive to high-tensile steels, such as those used in oil pipelines. Research has pointed to possibilities of using calcium additives in other highquality steels.

The uses of calcium chloride in 1981 were principally for road and pavement deicing (35%); dust control and road base stabilization (20%); industrial uses, including coal and other bulk material thawing (20%); oil and gas drilling (12%); concrete-set acceleration (5%); and tire ballasting and miscellaneous (4% each). The most rapidly growing end use of calcium chloride and bromide was as a completion fluid in oil and gas recovery.

The principal use of calcium chloride was to melt snow and ice from roads, streets, bridges, and pavements. Calcium chloride is more effective at lower temperatures than rock salt and is mainly used in the Northern and Eastern States. Because of its considerably higher price, it is used in conjunction with rock salt for maximum effectiveness and economy.

Sales of calcium chloride and calcium bromide as a packer and completion solidsfree fluid for oil and gas wells increased 15% in 1981 compared with that of 1980. Dow Chemical with two calcium bromide plants in Midland, Mich., and Magnolia, Ark.; Great Lake Chemical Corp. in El Dorado, Ark.; and Velsicol Chemical Corp.'s two plants in Beaumont, Tex., and El Dorado, Ark., were the principal producers.

PRICES AND SPECIFICATIONS

The price of calcium metal crowns increased from \$2.78 per pound to \$3.05 per pound on October 15, 1981. The price of calcium-silicon alloy increased from 76.3 cents per pound to 82 cents per pound on

January 2, 1981, maintaining that level for the remainder of 1981. Yearend published prices and specifications for 1981 were as follows:

	Value pe	r pound
	1980	1981
Calcium metal, 1-ton lots, 50-pound		
full crowns, 10 by 18 inches, Ca + Mg 99.5%, Mg 0.7%	\$2.78	\$3.05
Calcium-silicon alloy, 32% calcium, carload lots, f.o.b. shipping point	.763	.82

Source: Metals Week. V. 50, No. 52, Dec. 29, 1980, p. 7; Metals Week. V. 52, No. 52, Dec. 28, 1981, p. 5.

Calcium metal is usually sold in the form of crowns, broken pieces, or billets, shipped in 55-gallon metal containers with a maximum content of 300 pounds, and gasketed to provide an airtight condition, with argon atmosphere provided if desired. The value for imported calcium metal in 1981 ranged from \$2.19 to \$6.55 per pound, and averaged \$3.19 per pound for the year. This did not include the assessed tariff, which was 6.4% ad valorem for most-favored-nation status and 25% ad valorem for non-most-favorednation status. The price of calcium metal crowns increased 10% in 1981 compared with that of 1980, and calcium-silicon alloy increased 7% in 1981 compared with that of 1980

Calcium chloride is usually sold either as solid flake or pellet averaging about 75% CaCl₂, or as a concentrated liquid averaging

about 40% CaCl₂. The company-reported value of flake calcium chloride increased 55%, and liquid formulations of CaCl₂ increased 10% in 1981 compared with that of 1980. Yearend published prices and specifications for 1981 were as follows:

	Value per ton ¹ ²
Calcium chloride, regular grade, 77% to 80%, flake, bulk, carload, works	\$99.00-\$114.00
Calcium chloride, liquid, 40% to 45%, tank car or tank truck, works	38.75- 45.00

¹Differences between high and low price are accounted for by differences in quantity, quality, and location. ²1980 price quotations were same as 1981. See Source.

Source: Chemical Marketing Reporter. V. 218, No. 26, Dec. 29, 1980, p. 27; Chemical Marketing Reporter. V.220, No. 26, Dec. 28, 1981, p. 29.

As reported by producers on an f.o.b. warehouse basis, with conversions of all products to a 75% CaCl₂ basis, the average value in 1981 for natural calcium chloride was \$87.54 per ton; the average value for synthetic calcium chloride was \$127.58 per ton. Combining natural and synthetic products, the average value of solid 75% CaCl₂ for the year was \$120.57 per ton, and the average value of liquid 40% CaCl₂ was \$34.64 per ton.

FOREIGN TRADE

Exports of calcium phosphates in 1981 were 55,862 tons valued at \$33.4 million compared with 43,314 tons valued at \$27.6 million in 1980; leading destinations were Canada, Venezuela, Colombia, and Mexico. Exports of calcium chloride in 1981, mainly to Canada and Mexico, were 32,794 tons valued at \$13.0 million compared with 49,215 tons valued at \$9.8 million in 1980. Exports of other calcium compounds in 1981, including precipitated calcium carbonate, mainly to the Netherlands, Canada, and Mexico, totaled 25,659 tons valued at \$11.7 million compared with 25,068 tons valued at \$15.6 million in 1980.

Total imports of calcium and calcium compounds in 1981 were 366,600 tons valued at \$48.3 million compared with 266,200 tons valued at \$31.1 million in 1980. Imports of calcium metal from Canada, China, and France were 118 tons valued at \$751,000. Imports of calcium chloride, mainly from Canada and Mexico, were 86,865 tons valued at \$4.1 million. Substantial increases in calcium chloride imports from Mexico

through the Laredo, Tex., customs district occurred in 1981. They were consumed principally in the oil and gas drilling industry as a heavy-liquid completion fluid. Imports of other calcium compounds, mainly from Norway, Turkey, Belgium, Canada, and the United Kingdom, totaled 277,700 tons valued at \$43.4 million.

Imports of other calcium compounds in 1981 included 153,443 tons of calcium nitrate, mainly from Norway; 78,396 tons of calcium borate, mainly from Turkey; 15,569 tons of chalk whiting, mainly from Belgium; 10.065 tons of precipitated calcium carbonate, mainly from France, the United Kingdom, and Japan; 7,117 tons of calcium carbide, mainly from Canada; 5,280 tons of calcium hypochlorite and chlorinated lime, mainly from Japan and India; 1,391 tons of calcium cyanamide, mainly from Canada; and 6,563 tons of miscellaneous calcium compounds and salts, mainly from the Netherlands, the United Kingdom, and the Republic of South Africa.

Table 2.—U.S. exports of calcium chloride, by country of destination

(Short tons)

Country	19	180	19	981
Country	Quantity	Value ¹	Quantity	Value ¹
Brazil Canada Mexico Netherlands Sweden Trinidad United Arab Emirates United Kingdom Other	753 20,027 15,777 212 4,039 1,097 2,125 404 4,781	\$117,288 3,130,233 2,283,642 30,351 799,291 227,439 1,496,949 122,984 1,546,202	801 8,819 10,270 3,140 44 1,356 1,313 706 6,345	\$453,967 1,483,424 2,219,076 346,542 23,620 433,107 674,830 201,460 7,167,978
Total	49,215	9,754,379	32,794	13,004,004

¹U.S. Customs declared value, generally representing value at U.S. port of export and therefore, excluding U.S. export duties, freight, insurance, and other charges incurred in shipping merchandise overseas.

Table 3.—U.S. imports for consumption of calcium and calcium chloride

Andria Company		4 ** 5 5 5 <u>5</u>	Calci	um	Calcium ch	nloride
(4) (1) (1) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Year		Quantity (pounds)	Value ¹	Quantity (short tons)	Value ¹
1977			458,319 523,835 717,726 227,814 235,436	\$705,634 825,008 1,015,183 581,525 751,456	19,708 42,523 58,091 46,439 86,865	\$1,002,386 2,101,794 3,018,443 2,071,463 4,088,361

¹U.S. Customs import value, generally representing value in foreign country, and, therefore, excluding U.S. import duties, freight, insurance, and other charges incurred in shipping merchandise to the United States.

Table 4.—U.S. imports for consumption of calcium chloride, by country

(Short tons)

Country	19	980	19	981
- Country	Quantity	Value ¹	Quantity 28,956 68 57,833 8 86,865	Value ¹
Canada Germany, Federal Republic of Mexico Other	28,010 79 18,321 29	\$1,261,488 70,057 717,261 22,657	68	\$1,407,143 68,807 2,335,440 276,971
Total	46,439	2,071,463	86,865	4,088,361

¹U.S. Customs import value. See detailed explanation in footnote 1 of table 3.

WORLD REVIEW

The market economy world annual production of calcium metal is estimated to be between 1,400 and 1,600 short tons.

Canada.—Chromasco Corp. Ltd. produced calcium metal at its Haley smelter near Renfrew, Ontario. Canada continued to lead all other countries in the production of calcium metal in 1981, producing about 550 short tons. Most of it was exported to the United States (21%), with the balance to Mexico, the Republic of South Africa, the Federal Republic of Germany, and Australia.

Canada was the second leading source of

U.S. imports of calcium chloride in 1981. U.S. imports from Canada increased slightly from 28,010 tons in 1980 to 28,956 tons in 1981.

U.S. exports of calcium chloride to Canada decreased from 20,027 tons in 1980 to 8,819 tons in 1981.

China.—China exported its first calcium metal to the United States in 1981; 28,219 pounds of metal was imported through the Los Angeles, Calif., customs district.

France.—Planet Wattohm S.A., a subsidiary of Compagnie de Mokta, produced calcium metal by the Pidgeon process. The

calcium metal division was sold to Nobel Bozel S.A. in late 1981. France exported 11,444 pounds of metal to the United States in 1981.

U.S.S.R.—Substantial quantities of calci-

um metal was produced in the U.S.S.R. in 1981. None was exported, and all metal produced was allocated for domestic consumption.

TECHNOLOGY

Calcium bromide and its mixtures with calcium chloride and zinc bromide to produce high-density, solids-free liquids in the completion of oil and gas wells continued its strong demand pattern in 1981. The number of multiple-completion wells drilled in 1981 increased 29% compared with that of 1980, and consumption of calcium chloride and bromide high-density liquids increased commensurately. Dow Chemical increased its Ludington, Mich., plant capacity, thus facilitating increased shipments within its nameplate capacity. More facilities were established to recycle used fluids for refining and reuse, and to provide fluid services more efficiently. Heretofore mostly used for land-based wells and some in inland waters, more extensive use of high-density liquids was experienced in offshore wells. Deeper wells also required denser fluids compared with the traditional use, thereby requiring more zinc bromide consumption in the higher densities above 15 pounds per gallon.5

Modern injection metallurgy's biggest advantage is maximum refining (deoxidation and desulfurization) in the ladle in a very short period of time using limited amounts of energy and materials. Technology now has advanced to the point of computer controlling of ladle facilities, such as the newly commissioned plant in 1980 at the Swedish Steel AB works in Lulea, Sweden.6

Ladle injection's principal objective is the production of high-performance steel with minimal sulfur content and sulfide inclusions. Calcium metal, or its calcium-silicon (CaSi) alloys, continue to be a preferred additive because in the presence of manganese it will prevent the deleterious formation of manganese sulfides by the preferential formation of complex calcium sulfides, which do not cause ingot cracking and hot shortness upon rolling. Because of its higher affinity for oxygen, calcium also prevents formation of detrimental alumina inclusions by the alternate formation of an innocuous complex calcium aluminate. CaSi also facilitates the removal of macroslag inclusions and reduces the sulfur level at the same time.

Physical scientist, Division of Industrial Minerals ²Chemical Engineering. CPI News Briefs. V. 89, No. 4, Feb. 22, 1982, p. 28.

^{-.}CPI News Briefs. V. 88, No. 10, May 18, 1981, p.

<sup>58.

4</sup>Chemical Marketing Reporter. Calcium Hypochlorite
Plant is Scheduled. V. 220, No. 5, Aug. 3, 1981, pp. 4, 23.

5Dowell Division of The Dow Chemical Co. (Houston,
Tex.), Private Communication, Mar. 15, 1982.

⁶³³ Metal Producing Ladle Injection Metallurgy: Where It's At, Where It's Going, and Why. V. 19, No. 4, April 1981, pp. 53-59.

Cement

By Sandra T. Absalom¹

U.S. cement consumption and production slumped in 1981 to the lowest levels since 1975. Cement demand, which declined for the second successive year, reflected reduced activity in the construction industry and general weakness in the U.S. economy. For example, total value of construction, in terms of constant (1977) dollars, decreased 3.5% to \$155 billion, according to data published by the U.S. Department of Commerce. Housing starts decreased 16% to 1.1 million units.

Imports, a sensitive indicator of domestic cement demand, declined 24% to 4 million tons and accounted for 5% of consumption, compared with 7% in 1980. Clinker imports were 31% of the total, compared with 36% in 1980. Anticipating a recovery in cement demand, several terminals for transshipment of imported cement began operations in California, Maine, and New York.

Shipments of portland and masonry cement from U.S. plants, excluding Puerto Rico, at 71.7 million tons, were 6% less than 1980 shipments and 16% less than 1979 shipments. No regional shortages occurred during 1981. Shipments decreased by at least 5% to all geographical regions except New England (up 1%), and the West South Central and Mountain regions (up 2% each). Shipments declined most severely to the East North Central (down 13%) and Pacific regions (down 12%).

Table 1.—Salient cement statistics (Thousand short tons unless otherwise specified)

	1977	1978	1979	1980	1981
United States: Production ² Shipments from mills ² thousands Average value per ton ³ Stocks, Dec. 31 at mills ² Exports Imports for consumption Consumption, apparent ⁵ World: Production	78,647 80,247 \$2,932,403 \$36.54 6,041 236 3,989 81,537 *878,635	83,986 86,557 \$3,543,996 \$40,94 5,320 55 6,577 87,619	84,491 85,747 \$3,991,580 \$46.55 6,600 149 9,393 87,799	75,224 76,242 \$3,886,488 \$50.98 6,825 186 5,244 77,599	71,710 71,748 \$3,723,095 \$51.89 7,372 300 3,963 73,321 978,919

Two new plants in Alabama and Utah collectively added more than 2 million tons per year to domestic cement production capacity in 1981. Seven other plants completed modernization programs that added approximately 3.5 million tons to U.S. capacity. Most of these plant expansions occurred in California, and all of them were west of the Mississippi River.

Despite these capacity additions, total

^eEstimated. ^pPreliminary. ^rRevised. ¹Excludes Puerto Rico and the Virgin Islands.

²Portland and masonry cement only.

Includes imported cement shipped by domestic producers.

Value received, f.o.b. mill, excluding cost of containers.

⁵Quantity shipped, plus imports, minus exports. ⁶Adjusted to eliminate duplication of imported clinker and cement shipped by domestic cement manufacturers.

U.S. portland cement capacity declined 2% to 103 million tons in 1981. A number of plants closed temporarily or permanently because of poor market conditions and uneconomic operating parameters. Other plants were sold to companies capable of making capital investments to improve efficiency and realize economies of scale.

The trend continued toward acquisition of

U.S. cement capacity by foreign firms. Companies based in Canada, France, Italy, the Netherlands, Sweden, Switzerland, and the United Kingdom acquired whole or partial interests in U.S. plants. At yearend, foreign ownership of U.S. clinker production capacity and finish-grinding capacity was 23% and 22%, respectively.

DOMESTIC PRODUCTION

During 1981, one State agency and 47 companies operated 155 plants in 40 States. In addition, two companies operated two plants in Puerto Rico, manufacturing one or more kinds of hydraulic cement.

Some of the tables show statistical data arranged by State or by groups of States that form cement districts. A cement district may represent a group of States or a portion of a State. The States of California, New York, and Pennsylvania have, on some tables, been divided to provide additional marketing information. Divisions for these States are as follows:

California, Northern.—Points north and west of the northern borders of San Luis Obispo and Kern Counties and the western borders of Inyo and Mono Counties.

California, Southern.—All other counties in California.

New York, Western.—All counties west of a dividing line following the eastern boundaries of St. Lawrence, Lewis, Oneida, Madison, Chenango, and Broome Counties.

New York, Eastern.—All counties east of the above dividing line, except metropolitan New York.

New York, Metropolitan.—The five counties of New York City (Bronx, Kings, New York, Queens, and Richmond) plus Westchester, Rockland, Suffolk, and Nassau Counties.

Pennsylvania, Eastern.—All counties east of the eastern boundaries of Potter, Clinton, Centre, Huntingdon, and Franklin Counties.

Pennsylvania, Western.—All other counties in Pennsylvania.

PORTLAND CEMENT

Clinker production in the United States, excluding Puerto Rico, decreased 2% to 66.6 million tons in 1981, and clinker imports reported by U.S. cement producers decreased 40% to 1.3 million tons. A total of 68.9 million tons of portland cement was ground in the United States in 1981. Stocks at mills

increased by 500,000 tons to 6.9 million tons at yearend.

Production Capacity.—By yearend 1981, multiplant operations were being run by 26 companies. The size of individual companies, as a percentage of total U.S. clinker production capacity, ranged from 8.9% to 0.18%. The five largest producers provided 34% of the total 1981 production; the 10 largest producers provided a combined 54%. The 10 largest companies, in terms of 1981 clinker production, were (1) Lone Star Industries, Inc., (2) Ideal Basic Industries. Inc., (3) General Portland, Inc., (4) Martin Marietta Corp., (5) Gifford Hill & Co., Inc., (6) Lehigh Portland Cement Co., (7) Dundee Cement Co., (8) Kaiser Cement Corp., (9) Southwestern Portland Cement Co., and (10) Marquette Cement Co.

At yearend 1981, 318 kilns located at 142 plants were being operated by 42 companies and one State agency in the United States, excluding Puerto Rico. Annual clinker production capacity at yearend was 89.4 million tons, compared with 89.7 million tons in 1980. An average of 56 days' downtime was reported for kiln maintenance and replacing refractory brick. The industry operated at 75% of its apparent capacity. compared with 76% in 1980. Average annual clinker capacity of U.S. kilns was 281,000 tons, average plant capacity was 629,000 tons, and average company capacity was about 2.1 million tons. Six plants produced white cement. In addition, seven plants operated grinding mills using only imported or purchased clinker, or interplant transfers of clinker. Of these, six produced portland cement only, and one ground clinker for both masonry and portland cement. Based on the fineness necessary to grind Types I and II cements and making allowance for downtime required for maintenance, the U.S. cement industry had an estimated annual grinding capacity of 103 million tons of cement, about 2% less than that of 1980.

During 1981, clinker was produced by wet-process kilns at 68 plants and by dry-process kilns at 66 plants; 8 additional plants operated both wet and dry kilns. Most new plants that came onstream in 1981 and those currently under construction were dry-process, preheater- or precalciner-equipped single-kiln systems with annual capacities in excess of 500,000 tons of clinker. Cement producers reported the addition of 4 suspension and 13 grate preheaters in 1981, bringing the yearend totals to 58 suspension and 19 grate preheaters.

Capacity Added in 1981.—Alamo Cement Co.'s new \$50 million plant near San Antonio, Tex., was designed to produce about 500,000 tons of clinker annually and reportedly was expected to increase Alamo's production capacity to about 1 million tons of cement per year. Alamo Cement is wholly owned by Cementwerke Vigier A.G. of Switzerland and Presa S.p.A. Cementaria di Robilante of Italy.

California Portland Cement Co. completed a \$112 million modernization and expansion of its plant in Mojave, Calif. The expansion increased annual plant capacity to 1 million tons. Pending the results of a preliminary engineering study, the company was considering doubling plant capacity to 2 million tons per year.

Genstar Cement and Lime Co. completed a \$42 million modernization and expansion of its Redding, Calif., plant from 290,000 to 600,000 tons per year. This project was begun in 1979 when the plant was owned by The Flintkote Co.

Ideal Basic Industries, Inc., began operation of its new Cris Dobbins plant at Theodore, Ala., in September. Design capacity was 1.5 million tons per year. Ideal's expansion and complete renovation of its plant in Boettcher, Colo., was completed in July. Design capacity was increased from 325,000 tons to 460,000 tons per year.

Kaiser Cement Corp.'s \$112 million modernization of its 1.5-million-ton-per-year cement plant at Permanente in northern California was completed and the new coal-fired kiln replaced six oil-fired units. The plant was converted from wet to dry process.

Lone Star Industries' expansion and modernization of its plant at Davenport near Santa Cruz, Calif., was completed in September. Capacity was approximately doubled to 775,000 tons per year. New equipment included a four-stage preheater plus precalciner, a 13- by 184-foot rotary kiln, a grate cooler, a raw mill, homogenizing kiln-

feed silos, finish-grinding mills, electrostatic precipitators, and a computerized central control system.

Marquette Cement Co. completed a \$102 million modernization and expansion of its plant at Cape Girardeau, Mo. The new 1-million-ton-per-year dry-process plant replaced the old 300,000-ton-per-year wet-process plant. The new plant was designed to require only 3 million British thermal units (Btu) of energy to produce 1 ton of clinker, whereas older plants use as much as 10 million Btu per ton.

Martin Marietta's \$80 million expansion and conversion from wet to dry process at Buffalo near Davenport, Iowa, was completed. Capacity of the plant was increased from 500,000 to 850,000 tons per year. Martin Marietta's new \$85 million, 650,000-ton-per-year plant at Leamington, Utah, started operations in November.

Capacity Additions Scheduled To Be Completed in 1982.—Ash Grove Cement Co. was expanding the capacity of its Louisville, Nebr., plant by adding a new production line designed to produce 600,000 tons per year. The new system was designed to have a suspension preheater, precalciner, 12.5-by 164-foot rotary kiln, and grate cooler. The process control and monitoring system was expected to feature the latest design in digital process control and programmable motor control.

Atlantic Cement Co., Inc., scheduled for spring 1982 the opening of its slag cement plant at Bethelehem Steel Corp.'s complex at Sparrows Point, Md. The plant was expected to consume about 800,000 tons annually of water-granulated blast-furnace iron slag. The process was claimed to use six times less energy than that required to manufacture portland cement. The comminuted product was to be blended with portland cement at the point of use.

Florida Mining and Materials Corp. planned to double the capacity of its plant in Brooksville, Fla., to 1.1 million tons per year. Startup was scheduled for early 1982.

Monolith Portland Cement Co.'s expansion and conversion from wet to dry process at its Monolith, Calif., plant was designed to double capacity to 1.0 million tons per year. Plant operation was scheduled for mid-1982.

Santee Portland Cement Corp., a subsidiary of Dundee Cement Co., announced plans for a new clinker grinding, storage, and handling system, to be operational by mid-1982.

Southwestern Portland Cement Co. re-

ported capital expenditures of \$1.3 million for process modifications to be completed in the second quarter of 1982 at its Amarillo, Tex., plant. These modifications were expected to increase annual clinker capacity by 25,000 tons to about 233,000 tons and improve fuel efficiency. The plant was also converting to coal as the primary kiln fuel at a cost of \$2.3 million.

Capacity Additions Scheduled for After 1982.—Centex Corp. announced that it would double annual capacity of its Texas Cement Co. plant in Buda, Tex., to 1.1 million tons of cement by 1983.

Columbia Cement Corp. had plans to conduct an estimated \$75 million expansion of its plant at Bellingham, Wash. Cement capacity was to be approximately doubled to 750,000 tons per year. No schedule was announced. The firm also planned to modernize equipment at its Zanesville, Ohio, plant at a cost of \$3.3 million.

Genstar Cement and Lime Co. announced plans to modernize and expand its San Andreas, Calif., cement plant to 1 million tons per year.

Kaiser Cement Corp.'s \$135 million expansion and conversion from wet to dry process of its Cushenbury plant at Lucerne Valley, Calif., was scheduled for completion in early 1983. Annual capacity was designed to be 1.5 million tons.

Las Vegas Portland Cement, Inc., a private firm started by local businessmen, announced plans to build a \$272 million cement manufacturing complex near Jean, Nev. The 2-million-ton-per-year plant was scheduled to go onstream in 1983. It was to be the first cement plant in southern Nevada and the second plant in the State. The site of the complex, of which 12,320 acres are Federally controlled, contains reserves of limestone, shale, silica, and iron ore.

Lone Star Industries was considering the construction of a \$75 million, 750,000-ton-per-year clinker plant at Concrete, Wash., to replace older capacity. The clinker would be shipped to the firm's Seattle plant for finish grinding.

Louisville Cement Co. announced plans to spend \$16 million over 4 years to modernize its Bessemer, Pa., plant. The resulting capacity expansion was expected to be about 18%.

Oregon Portland Cement Co. was exploring the possibility of building additional capacity for cement production in its Northwestern U.S. market area. Southwestern Portland Cement Co. scheduled a \$100 million modernization and expansion of its Victorville, Calif., plant, to be completed in late 1984. Annual clinker capacity was planned to increase from 1.1 million tons to 1.4 million tons.

Plant Closings.—Alpha Portland Cement Co. closed its plants in Birmingham, Ala., and St. Louis, Mo., in 1981 following closure of its Jamesville, N.Y., plant in December 1980.

Ideal Basic Industries closed its Mobile, Ala., cement plant upon completion of its new Cris Dobbins plant at Theodore, Ala. At yearend, the company announced that its Houston, Tex., white and gray cement plants would discontinue production in early 1982 to become a terminal for distribution of cement manufactured at the new Alabama facility.

Marquette Co. suspended operations of its two cement plants in Cowan and Nashville, Tenn., in 1980 in anticipation of the initial operations in 1981 of its new Cape Girardeau, Mo., facility. Toward yearend 1981, Marquette ceased production at its Rockmart, Ga., plant, but continued to ship from the plant's inventory.

Medusa Cement Co. discontinued production of gray cement at its York, Pa., plant. The plant's white cement production was to continue, however.

Missouri Portland Cement Co. closed its St. Louis, Mo., cement manufacturing facility in December but continued to operate its shipping terminal on the property.

Corporate Changes.—Alpha Portland Cement Co. sold its Orange, Tex., cement manufacturing plant to River Cement Co., which is owned by Instituto Finanziario Industriale (IFI) S.p.A. of Turin, Italy. At yearend, the facility was operating as a grinding plant and distribution terminal. Alpha Portland also leased its previously closed Birmingham, Ala., plant to Allied Products Co. Allied was expected to reactivate the plant in 1982.

General Portland was acquired by Canada Cement Lafarge, Ltd., in December. The Canadian firm is 55% owned by Lafarge Coppee S.A. of France. Earlier in the year, General Portland purchased Whitehall Cement Co. Under the terms of a consent decree with the Federal Trade Commission (FTC), the new owner of General Portland must divest itself of its Chattanooga, Tenn., cement plant or, secondarily, its Demopolis, Ala., plant.

Table 2.—Portland cement production, capacity, and stocks in the United States, by district3

								1001		
			1980					1981		
			Capacity	itys	Stocks*		Produc.	Capacity	ty.	Stocks* at mills.
District	Plants active during year	Production ² tion ² (thousand short tons)	Finish grinding (thousand short tons)	Percent utilized	at mills, Dec. 31 (thou-sand short tons)	Plants active during year	tion ² (thousand short tons)	Finish grinding (thousand short tons)	Percent utilized	Dec. 31 (thousand sand short tons)
New York and Maine Pennaylvania, eastern Pennaylvania, eastern Pennaylvania, eastern Pennaylvania, eastern Pennaylvania, eastern Pennaylvania, eastern Maryland and West Virginia Michigan Illindia Illin	©∐44701-174-0886081-417-171-171-171-171-171-171-171-171-17	8,648 1,435 1,435 1,435 1,1768 1,1768 1,1768 1,1768 1,1767	8, 1199 8, 1199 1, 1199 8, 1199 1, 1199 8, 119	67.6 67.6 67.6 67.6 67.6 67.6 67.6 67.6	472 480 1181 1181 1185 1186 1186 1186 1186 1186	r5446644468868888844rrrr844848	3,645 3,840 3,840 1,262 1,762 1,762 1,762 1,762 1,763	4,559 2,846 2,846 2,126 3,126	0.5888.888.888.888.888.8888.8888.8888.8	484 485 485 485 485 485 485 485
Total or average	161	72,172 1,485	104,693	68.9 67.2	6,373 40	152 2	68,931 1,222	102,992 2,209	55.3	6,874

Includes Puerto Rico. Includes data for 6 white cement facilities: Texas (2); Pennsylvania (2); Michigan (2); Pennsylvania (2) in 1980 only); and Utah (1 in 1980 only). Includes data for 6 white cement facilities: Texas (2); Pennsylvania (2) in 1980 and 1 in 1981); Wisconsin (2) in 1980 and 1 in 1981); Wisconsin (2) in 1980 and 1 in 1981); Misconsin (2) in 1980 and 1 in 1981); Wisconsin (2) in 1980 and 1 in 1981); Misconsin (2) in 1980 and 1 in 1981); Wisconsin (2) in 1980 and 1 in 1981); Misconsin (3) in 1981); Misconsin (4) in 1981); Misconsin (5) in 1980 and 1 in 1981); Misconsin (6) in 1980 and 1 in 1981); Misconsin (7) in 1981); Misconsin (7) in 1981); Misconsin (8) in 1980 and 1 in 1981); Misconsin (8) in 1981, Misconsin (8) in 1981); Misconsin (8) in 1981 and 11 cement, making allowance for downtime required for maintenance.

**Gradual Company of Company (8) in 1980 and 11 cement, making allowance for downtime required for maintenance.

Table 3.—Clinker capacity and production in the United States, by district, as of December 31, 1981

							Amonom			
		Active plants	lants		Number	Daily	number	Apparent	Produc-	
District	Proc	Process used		;	Jo	capacity	of days	annual canacity ²	tion	Percent
	Wet	Dry	Both	Tota	kilne	short tons)	nainte- nance	(thousand short tons)	(thousand short tons)	utilized
New York and Maine Pennsylvania, eastern Pennsylvania, eastern Maryland and Weet Virginia Michigan Indiana Illinoia Illinoia South Carolina Georgia Georgia Louisiana and Mississippi Nebraska and Wisconsin Indiana Illinoia South Carolina Georgia Georgia Louisiana and Mississippi Nebraska and Mississippi Nebraska and Arkansas Illinoia Illinoia Georgia Illinoia Jouliahana and Arkansas Illinoia Illinoia Jouliahana and Arkansas Illinoia Illinoia Jouliahana and Arkansas Jouliahana and Arkansas Illinoia Jouliahana and Arkansas Jouliahana and Arkansas Illinoia Jouliahana and Arkansas	400000000 1001004 1001 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 10000000 10000000 10000000 100000000	99 12000000 12000000 12000000 9		00440444400000000000000000000000000000	e4α0558eαα6αν114α4α451513336α52ναα68α	133 173 173 173 173 174 174 174 174 174 174 174 174 174 174	834848888855884485888888888888888888888	5,5084 1,522 1,523 1,523 1,523 1,523 1,538	8.488 8.488 8.716 11.526 8.536 8.536 11.616	88.85.56.66.66.66.66.66.66.66.66.66.66.66.66
	4		:	.7	5	7.4	100	1,962	1,101	26.1

Includes Puerto Rico and white cement-producing facilities. #Calculated on individual company data; 365 days, minus average days for maintenance, times the reported 24-hour capacity. Includes production reported for plants that added or shut down kilns during the year.

Table 4.—Daily clinker capacity, December 311

Short tons	Numb	er	Total	Percent
per 24-hour period	Plants	Kilns ²	capacity (short tons)	of total capacity
1980:				
Less than 600	3	4	1,530	0.5
600 to 1,150	31	54	28,175	9.3
1.150 to 1.700	44	100	64,305	21.2
1,700 to 2,300	33	79	65,344	21.5
2,300 to 2,800	15	36	37,376	12.3
2,800 and over	26	95	106,686	35.2
Total	152	368	303,416	100.0
1981:				
Less than 600	2	3	728	0.3
600 to 1,150	22	34	18,698	6.3
1,150 to 1,700	40	82	57,275	19.3
1,700 to 2,300	29	64	57,441	19.4
2,300 to 2,800	$\overline{21}$	47	51,850	17.5
2,800 and over	30	97	110,286	37.2
Total	144	327	296,278	100.0

¹Includes Puerto Rico and white cement-producing facilities.

Table 5.—Raw materials used in producing portland cement in the United States¹
(Thousand short tons)

Raw materials	1979	1980	1981
Calcareous:			
Limestone (includes aragonite, marble, chalk)	r81.106	r78,289	73,026
Cement rock (includes marl)	30,987	24,991	26,627
Ovstershell and coral	r3.398	3.388	3,090
Argillaceous:	0,000	0,000	5,050
	7.016	e 000	E 7740
Clay	7,016	6,220	5,742
Shale	4,289	4,193	3,649
Other (includes staurolite, bauxite, aluminum dross, pumice, alumina,			
volcanic material, other)	362	313	212
Siliceous:			
Sand and calcium silicate	2,128	1,994	1,794
Sandstone, quartzite, other	808	668	734
Ferrous: Iron ore, pyrites, millscale, other iron-bearing material	1.063	1.175	1.144
Other:	2,000	2,2.0	-,
	4,324	3,859	3,600
Gypsum and anhydriteBlast furnace slag	483	132	95
Plant furfiace stag	509	601	757
Fly ash			
Other, n.e.c	6	171	162
Total	136,479	125,994	120,632

Revised.

Gulf Coast Portland Cement Co. was sold twice in 1981. The company was originally a subsidiary of McDonough Co., which was sold early in the year to Hanson Industries, Inc., a British-owned firm. At midyear, Bernard P. McDonough, founder of McDonough Co., reacquired two units of his former company, including Gulf Coast. At yearend, the cement company was under Mr. McDonough's ownership as a subsidiary of Marmac Corp.

Lehigh Portland Cement sold its Hannibal, Mo., cement plant plus three distribution terminals to Continental Cement Co., a newly formed, foreign-owned company. Continental is 51% owned by the Swedish concern Industri AB Euroc, which is the parent company of the Swedish cement firm

Cementa AB; the balance of Continental is owned by four other foreign-based companies. Lehigh divested itself of the Hannibal plant in compliance with an FTC consent decree that resulted from Lehigh's 1980 purchase of United States Steel Corp.'s Universal Atlas Cement Div.

Penn Dixie Industries, Inc., which filed for reorganization in 1980 under Chapter 11 of the Federal Bankruptcy Act, sold its remaining cement operations during 1981. Information follows on the yearend status of these plants: (1) Dundee Cement Co., a subsidiary of the Swiss firm Holderbank Financière Glaris S.A., was using the Petoskey, Mich., plant for storage and distribution only; (2) Martin Marietta was operating the Des Moines, Iowa, plant; (3) Moore

²Total number in operation at plants.

¹Includes Puerto Rico.

McCormack Cement, Inc., was operating the Kingsport and Richard City, Tenn., plants under the name Dixie Cement Co.; (4) Penn-West Cement Co., Inc., a new corporation, was operating the West Winfield, Pa., plant.

MASONRY CEMENT

Production of masonry cement totaled 2.8 million tons, a decrease of 9% from that of 1980. At yearend, 100 plants were manu-

facturing masonry cement in the United States. Three plants producing masonry cement exclusively were Cheney Lime & Cement Co., Allgood, Ala.; Genstar Stone Products Co., Frederick, Md.; and Riverton Corp., Riverton, Va. Masonry cement was not produced at cement plants in some parts of the country because many masons preferred to use portland cement and add clay or lime on the job as needed for the necessary plasticity.

Table 6.—Masonry cement production and stocks in the United States, by district

		1980			1981	
District	Plants active during year	Production (thousand short tons)	Stocks ¹ at mills, Dec. 31 (thou- sand short tons)	Plants active during year	Production (thousand short tons)	Stocks ¹ at mills Dec. 31 (thou- sand short tons)
New York and Maine	4	83	16	3	71	12
Pennsylvania, eastern	8	226	28			
Pennsylvania, western	. 4	96	20 15	- 1	228	41
Maryland and West Virginia	*			4	85	17
Ohio	3	117 129	10	4	102	14
Michigan	4		21	4	112	27
Indiana	. 9	205	71	4	181	72
llinois	Z	w	W	3	261	59
rennessee	ī	W	w	1	w	W
Kentucky, North Carolina, Virginia	5	144	22	3	64	9
South Carolina	4	199	25	4	164	21
orda	2	w	w	2	w	W
	4	299	17	5	286	22
Georgia	3	88	15	3	87	15
Alabama	6	246	35	5	195	25
ouisiana and Mississippi	3	39	7	2	W	W
Nedraska and Wisconsin	2	W	w	1	w	ŵ
South Dakota	1	5	2	1	6	2
owa	3	45	11	3	42	18
Missouri	3	72	19	4	96	22
\ansas	5	63	17	5	72	33
Oklahoma and Arkansas	5	107	10	5	100	8
Cexas	13	220	23	13	229	22
Vyoming, Montana, Idaho	3	7	- <u>ŏ</u>	3	9	4
olorado, Arizona, Utah, New Mexico	6	116	7	ŏ	112	3
vashington	2	w	w	š	17	5
Oregon and Nevada	_	••	(2)	0	11	(²)
Iawaii	- <u>-</u> -	13	`ź	$-\overline{2}$		
Other		533	77		248	3 38
Total	103	33,052	452	100	32,779	498

W Withheld to avoid disclosing company proprietary data; included with "Other."

ALUMINOUS CEMENT

Aluminous cement, also known as calcium aluminate cement, high-alumina cement, and Ciment Fondu, is a nonportland hydraulic cement. It was produced at the following three plants in the United States: Lehigh Portland Cement Co., Buffington, Ind.; Lone Star Lafarge, Inc., Chesapeake, Va.; and Aluminum Co. of America, Bauxite, Ariz.

¹Includes imported cement. ²Less than 1/2 unit.

³Includes 2,621,000 tons produced from clinker and 431,000 tons produced from cement (1980); 2,445,000 tons produced from clinker and 334,000 tons produced from cement (1981).

ENERGY

Energy conservation continued to be a major focus for reducing cement production costs. Most new or modernized plants in 1981 featured coal burning, dry-process systems with preheaters and precalciners to promote efficiency in fuel consumption.

In 1981, 81% of the energy consumed in cement production was in the form of fuel for kiln firing to produce clinker. Average energy consumption per ton of clinker was

reduced 3.7% to 5.3 million Btu.

The average consumption of electrical energy increased 2% to 144.5 kilowatt-hours per ton. Assuming a 40% energy efficiency in conversion of fuel to electrical energy, this represents a fuel equivalent of 1.2 million Btu per ton. Average fuel consumption for kiln firing plus electrical energy (primarily for finish grinding) was approximately 6.5 million Btu per ton in 1981.

Average fuel consumption in kiln firing in wet-process plants, 6.0 million Btu per ton, was 33% higher than average fuel consumption in dry-process plants, 4.5 million Btu per ton. Approximately 50% of clinker production in 1981 was by the dry process, compared with 45% in 1980.

Kilns without preheaters averaged 5.6 million Btu per ton of clinker produced; those with suspension preheaters averaged 4.3 million Btu per ton, and those with grate-type preheaters averaged 5.4 million

Btu per ton.

In 1981, coal accounted for 84% of kiln fuel consumption, compared with 77% in 1980; natural gas accounted for 12%, compared with 16% in 1980; and oil accounted for 4%, compared with 7% in 1980. On the average, 1 ton of clinker produced in 1981 consumed 369 pounds of coal, 643 cubic feet of natural gas, and 1.35 gallons of oil.

Interest increased in energy-saving additives such as fly ash and iron and steel slag as Atlantic Cement neared completion of a slag cement plant in Baltimore, Md. Use of fly ash in cements increased 26% to 757,000 tons in 1981. However, use of slags decreased 28% to 95,000 tons.

Table 7.—Clinker produced in the United States, by fuel¹

		Clinker produce	d		Fuel consum	ed
Fuel	Plants active during year	Quantity (thousand short tons)	Percent of total	Coal ² (thousand short tons)	Oil (thousand 42-gallon barrels)	Natural gas (thousand cubic feet)
1980: Coal Oil	38 3	16,719 1,623	23.9 2.3 2.3	3,751 	1,634	 8,551,904
Natural gas Coal and oil Coal and natural gas Oil and natural gas	19 52 7 30	1,596 8,848 22,352 3,802 14,881	12.7 32.0 5.5 21.3	1,536 4,488 2,449	820 660 995	23,773,914 16,827,953 11,529,607
Coal, oil, natural gas Total	153	69,821	100.0	12,224	4,109	60,683,378
1981:	32 2 4 27 56 5 22	14,539 1,100 1,568 11,849 25,285 1,292 12,082	21.5 1.6 2.3 17.5 37.3 1.9 17.9	3,251 2,219 4,924 2,095	1,185 281 122 581	11,067,620 19,717,338 6,171,226 6,635,182
Total	148	67,715	100.0	12,489	2,169	43,591,36

Includes 95.6% bituminous and 4.4% petroleum coke in 1980; 96.9% bituminous and 3.1% petroleum coke in 1981.

Table 8.—Clinker produced and fuel consumed by the portland cement industry in the United States, by process¹

		Clinker produc	ed		Fuel consum	ed
Process	Plants active during year	Quantity (thousand short tons)	Percent of total	Coal ² (thousand short tons)	Oil (thousand 42-gallon barrels)	Natural gas (thousand cubic feet)
1980: Wet Dry Both	85 60 8	36,116 29,417 4,288	51.7 42.1 6.2	6,605 4,915 704	2,709 1,197 203	40,424,076 15,408,815 4,850,487
Total	153	69,821	100.0	12,224	4,109	60,683,378
1981: Wet Dry Both	72 68 8	31,257 31,800 4,657	46.1 47.0 6.9	6,466 5,296 727	1,455 616 98	24,490,040 12,134,282 6,967,044
Total	148	³ 67,715	100.0	12,489	2,169	43,591,366

¹Includes Puerto Rico.
²Includes 95.6% bituminous and 4.4% petroleum coke in 1980; 96.9% bituminous and 3.1% petroleum coke in 1981.
³Data do not add to total shown because of independent rounding.

Table 9.—Electric energy used at portland cement plants in the United States, by process'

			Electric energy used	ergy used				Average
•	Generated at portland cement plants	ated at cement nts	Purchased	ased	Total	la)	Finished cement produced	energy used per ton
- Ртосева	Active plants	Quantity (million kilowatt- hours)	Active plants	Quantity (million kilowatt- hours)	Quantity (million kilowatt- hours)	Percent	short tons)	of cement produced (kilowatt- hours)
	,	448	858	5,037 4,321 657	5,041 4,769 657	48.2 45.6 6.2	38,365 31,132 4,160	181.4 158.2 157.9
Both Total Total electric energy used Percent of total electric energy used	4 -	452	163	10,015 95.7	10,467	100.0	73,657	142.1
1991: Wet. Dry.	14 1	396	72 74 8	4,424 4,634 710	4,424 5,000 710	48.7 49.3 7.0	32,928 32,487 4,738	134.4 153.9 150.0
Portal Total Percent of total electric energy used	4	366	154	9,768 96.4	10,134	100.0	70,158	144.5

'Includes Puerto Rico. Includes grinding plants and white cement facilities. Includes data for grinding plants.

TRANSPORTATION

U.S. shipments of portland cement to consumers were primarily in bulk (94%), by truck (92%), and made directly from cement manufacturing plants (74%) rather than distribution terminals. This pattern of cement transport did not differ significantly from that of recent years.

With respect to shipments of cement from plants to terminals, the preferred modes of transportation were railroads and waterways. Each of these transportation modes accounted for 44% of shipments from plants

to terminals. Transportation by truck accounted for 9%.

The increasingly favorable economics for transporting cement on water were realized with Ideal Basic Industries' purchase of two 8,900-ton oceangoing barges. These barges were acquired to haul cement from the company's new Alabama plant to its Houston, Tex., plant, which was undergoing a \$1.6 million conversion to a distribution center.

Table 10.—Shipments of portland cement from mills in the United States, in bulk and in containers, by type of carrier¹

(Thousand short tons)

				Shipment	s to ultimate	consumer	
Type of carrier		nts from terminal	From to to con	erminal sumer	From to con	plant sumer	Total
	In bulk	In con- tainers	In bulk	In con- tainers	In bulk	In con- tainers	ship- ments
1980:					-		
Railroad Truck Barge and boat Unspecified ²	7,519 1,190 7,336 2	159 178 76	438 16,769 71 58	7 767 1 14	4,572 46,163 614 795	^r 188 4,140 6 ^r 71	r5,205 67,839 692 r938
Total	16,047	413	17,336	789	52,144	r4,405	374,674
1981:							
Railroad Truck Barge and boat Unspecified ²	7,582 1,442 7,527 478	140 115 75	412 16,883 120 261	3 591 21	3,451 43,346 645 638	98 3,720 9 30	3,964 64,540 774 950
Total	17,029	330	17,676	615	48,080	3,857	370,228

Revised.

CONSUMPTION AND USES

Cement consumption in the United States, excluding Puerto Rico, decreased 5.5% in 1981 to 73.3 million tons. The decline in cement demand reflected reduced activity in the construction industry and general weakness in the U.S. economy. Domestic producers shipped 71.7 million tons in 1981, a 6% decrease from that of 1980. This included 2.1 million tons of cement and clinker imported and sold or used by domestic producers. Additional imports of 1.6 million tons net of cement imported by certain other importers accounted for the difference between consumption and domestic shipments.

Domestic shipments decreased by more

than 5% to all regions of the United States except the New England, Mountain, and West South Central regions, where receipts increased 2% or less. Oklahoma showed the largest consumption gain, 12%, of any State. Shipments to destinations in the East North Central and Pacific regions were particularly depressed, decreasing 13% and 12%, respectively, compared with those of 1980. No significant cement shortages occurred in the United States during 1981.

The end-use distribution pattern for portland cement did not differ significantly from that of recent years. Ready-mix concrete producers were the primary consumers, accounting for 69% of the total quantity

¹Includes Puerto Rico.

²Includes cement used at plant.

Bulk shipments were 93.0% (69,480,000 tons) and container (bag) shipments were 7.0% (5,194,000 tons) for 1980. Bulk shipments were 93.6% (65,756,000 tons), and container (bag) shipments were 6.4% (4,472,000 tons) for 1981.

shipped by domestic producers. Manufacturers of concrete products used 12% of the total to produce concrete blocks, pipe, and precast, prestressed, and other concrete products. The remainder was used by highway contractors; building contractors; cement dealers; Federal, State, and other government agencies; and miscellaneous.

According to the U.S. Department of Commerce, the value of U.S. construction put in place in 1981 decreased 3.5% from that of 1980 in terms of constant (1977) dollars to \$155 billion, although current dollar value showed an increase of 2.8% to \$237 billion. Of this total value 36% was in private housing, 41% was in private industrial and commercial building (including farms), 8% was in public buildings, 6% was in highways, and 9% was in other public construction.

Total private construction put in place decreased 2.4% in real value to \$120 billion, of which residential units decreased 9.4% to \$55 billion and industrial-commercial con-

struction increased 4.4% in real value to \$65 billion. Total public construction put in place decreased 7.0% in real value to \$35 billion, of which public buildings decreased 6.7% to \$12 billion, highway construction decreased 2.1% to \$8.3 billion, and other public construction decreased 10% to \$15 billion.

Housing starts decreased 16% to 1.1 million units, consisting of 705,000 single units and 379,000 multiunits, according to the U.S. Department of Commerce. Single housing starts decreased 17%. On a regional basis, housing starts decreased 13% in the South to 562,000 units, 6% in the Northeast to 117,000 units, 22% in the West to 240,000 units, and 24% in the North Central region to 165,000 units. The ratio of cement consumption to housing unit starts was 60% greater in the North Central region than in the South and 43% greater than in the West, reflecting the relatively greater influence of construction other than housing on cement consumption in certain regions.

Table 11.—Portland cement shipped by producers in the United States, by district1

		1980			1981	
District	Quantity (thousand short tons)	Value (thou- sands)	Average per ton	Quantity (thousand short tons)	Value (thou- sands)	Average per ton
New York and Maine	3,550	\$134.855	\$37.99	3,369	\$130,690	\$38.79
Pennsylvania, eastern	4,066	167,855	41.28	3,860	162,122	42.00
Pennsylvania, western	1,504	69,829	46.43	1,290	53,760	41.67
Maryland and West Virginia	2,079	91,159	43.85	1.894	85,316	45.05
Ohio	1.625	77,696	47.81	1,461	69,517	47.58
Michigan	4.651	224,685	48.31	3,871	180.641	46.67
Indiana	1,769	73,049	41.29	1,538	59,344	38.59
Illinois	1,649	75,315	45.67	1,574	61,536	39.10
Tennessee	1.304	58,827	45.11	974	39,378	40.43
Kentucky, North Carolina, Virginia	1,588	72,910	45.91	1.562	72,325	46.30
South Carolina	1,704	74,539	43.74	1,765	79,407	44.99
Florida	3,574	182,590	51.09	3.518	199,064	56.58
Georgia	1,231	55,463	45.06	1.149	45,423	39.53
Alabama	2,491	108,438	43.53	2,270	89,216	39.30
Louisiana and Mississippi	1,621	95,752	59.07	1.317	75,859	57.60
Nebraska and Wisconsin	842	44.136	52.42	746	39,944	53.54
South Dakota	459	23,042	50.20	450	23,290	51.76
Iowa	1.998	101,008	50.55	1,779	92.099	51.77
Missouri	3,515	156,368	44.49	3,732	168,567	45.17
Kansas	1.835	86,103	46.92	1.641	81.792	49.84
Oklahoma and Arkansas	2,726	127,483	46.77	2,703	138,336	51.18
Texas	9.517	535,690	56.29	10.262	567.391	55.29
Wyoming, Montana, Idaho	1.004	56,106	55.88	1.120	68,673	61.32
Colorado, Arizona, Utah, New Mexico	3,647	207,740	56.96	3,697	234,404	63.40
Washington	1.546	89,208	57.70	1.560	100.845	64.64
Oregon and Nevada	960	57.277	59.66	897	54,671	60.95
California, northern	2,556	151,156	59.14	2.413	152,933	63.38
California, southern	6.241	391,331	62.70	5,483	366.033	66.76
Hawaii	358	23,722	66.26	302	23,024	76.24
U.S. total or average ^{2 3}	71,613	3,613,332	50.46	68,197	3,515,600	51.55
Foreign imports ⁴	1.580	83,718	52.99	805	44.691	55.52
Puerto Rico	1,482	102,872	69.41	1,226	105,420	85.99
Grand total or average ³	74,674	3,799,923	50.89	70,228	3,665,711	52.20

¹Includes Puerto Rico. Includes data for 6 white cement facilities: Texas (2); Pennsylvania (2); California (1); and Wisconsin (1 only in 1980), and Utah (1 only in 1981). Includes data for 9 grinding plants in 1980 and 7 in 1981 as follows: Florida (1); Indiana (1 in 1980 only); New York (1); Michigan (2); Pennsylvania (2 in 1980 and 1 in 1981); Wisconsin (2 in 1980 and 1 in 1981); and Texas (1 in 1981 only).

²Includes cement produced from imported clinker.

³Data may not add to totals shown because of independent rounding.

Data may not add to totals shown because of independent rounding.
Cement imported and distributed by domestic producers only.

Table 12.—Masonry cement shipped by producers in the United States, by district1

		1980			1981	
District	Quantity (thousand short tons)	Value (thou- sands)	Average per ton	Quantity (thousand short tons)	Value (thou- sands)	Average per ton
New York and Maine	79	\$3,813	\$48.27	78	\$4,317	\$55.35
Pennsylvania, eastern	221	14.482	65.53	207	11,619	56.13
Pennsylvania, western	103	5.816	56.47	86	3,180	36.98
Maryland and West Virginia	121	6,733	55.64	111	6,518	58.72
Ohio	126	8.549	67.85	105	7.129	67.90
Michigan	206	14.292	69.38	173	10.584	61.18
Indiana	w	W	W.W	252	10.972	43.54
Illinois	· ẅ	ŵ	w	w	10,512 W	w.w
Tennessee	132	7.241	54.86	67	3.209	47.90
	193	10.191	52.80	168	8,570	51.01
Kentucky, North Carolina, Virginia	W	W	32.00 W	W	w W	51.01 W
	285	22.074	77.45	288	20,757	72.07
Florida	289 89		61.39	200 89		49.35
Georgia		5,464			4,392	
Alabama	242	13,012	53.77	193	10,721	55.55
Louisiana and Mississippi	48	2,980	62.08	W	W	W
Nebraska and Wisconsin	w	W	w	w	w	W
South Dakota	6	377	62.83	.6	454	76.67
Iowa	48	3,340	69.58	41	3,227	78.71
Missouri	62	3,117	50.27	103	5,495	53.35
Kansas	60	3,310	55.17	51	2,835	55.59
Oklahoma and Arkansas	107	6,031	56.36	101	6,295	62.33
Texas	241	18,310	75.98	229	15,699	68.55
Wyoming, Montana, Idaho	7	490	70.00	7	525	75.00
Colorado, Arizona, Utah, New Mexico	119	8.444	70.96	109	8.684	79.67
Washington	w	W	W	15	1.284	85.60
Oregon and Nevada	ï	41	41.00	(2)	25	78.00
Hawaii	13	960	73.85	ìó	807	80.70
Other	531	29,389	55.35	249	14.521	58.32
Valet		20,000	30.00			
U.S. total or average	3,040	188,456	61.99	2,738	161,819	59.10
Foreign imports ³	10	982	98.20	8	985	123.13
Grand total or average	3,050	189,438	62.11	2,746	162,804	59.29

Table 13.—Cement shipments, by destination and origin¹

(Thousand short tons)

Destination and animin	Port	land cem	ent ²	Mas	onry cen	ent
Destination and origin	1979	1980	1981	1979	1980	198
estination:						
Alabama	1,270	1,133	988	116	93	7
Alaska ³	90	94	137		w	
Arizona	1,808	1,457	1,479	w	ŵ	7
Arkansas	892	758	668	62	49	
California, northern	3,813	3.012	2,535	ī	(4)	
California, southern	5.734	5.226	4,733	13	(4)	•
Colorado	1,515	1,404	1,532	40	28	-
Connecticut ³	766	614	590	16	16	
	155	132	124	8	7	
Delaware ³				္န	:	
District of Columbia ³	126	117	116	900	400	
Florida	4,602	5,412	5,335	396	408	3
Georgia	2,100	2,050	1,882	189	159	1
Hawaii	422	365	302	12	13	
Idaho	471	362	311	. 2	ž	
Illinois	3,378	2,664	2,323	133	90	
Indiana	1,713	1,323	1,146	114	85	
Iowa	1,779	1,294	1,147	28	19	
Kansas	1,294	1,207	1,086	29	24	
Kentucky	1,231	954	915	116	80	
Louisiana	2,755	2,735	2,597	91	73	
Maine	242	221	227	12	9	
Maryland	1,358	1,290	1,165	122	115	
Massachusetts ³	1,005	959	997	42	35	
Michigan	2,874	1,993	1,729	169	109	
Minnesota	1,714	1,447	1,238	58	43	

See footnotes at end of table.

W Withheld to avoid disclosing company proprietary data; included with "Other."

¹Does not include quantities produced on the job by masons.

²Less than 1/2 unit.

³Cement imported and distributed by domestic producers only. Source of imports withheld to avoid disclosing company proprietary data.

Table 13.—Cement shipments, by destination and origin¹ —Continued (Thousand short tons)

D. M. M. and J.	Por	tland cen	nent ²	Ma	sonry cen	nent
Destination and origin	1979	1980	1981	1979	1980	1981
Destination —Continued						
Mississippi	947	861	841	76	65	51
Missouri	1.863	1.430	1,426	51	38	34
Montana	335	292	300	4	2	2
Nebraska	1.053	828	667	19	14	12
Nevada	610	565	574	(4)		
New Hampshire ³	307	221	242	11	10	10
New Jersev ³	1,727	1.486	1.267	69	57	57
New Mexico	583	600	661	10	ĭi	Ĭi
New York, eastern	776	669	542	29	24	24
New York, western	885	788	809	41	34	34
New York, metropolitan ³	916	905	1.061	35	35	36
North Carolina	1.656	1,463	1.455	227	184	178
North Dakota ³	371	271	318	9	6	- '6
Ohio	3,202	2.659	2.334	208	151	124
Oklahoma	1,699	1,626	1.827	69	56	55
Oregon	976	831	626	1	1	ĩ
Pennsylvania, eastern	1,797	1.583	1.458	71	55	48
Pennsylvania, western	1,105	920	832	94	72	64
Rhode Island ³	159	126	118	6	5	4
South Carolina	926	883	905	123	107	89
South Dakota	411	257	239	8	6	4
Tennessee	1.515	1.369	1.192	172	134	108
Texas	8,745	8,839	9,202	251	224	219
Utah	921	799	699	201	2	212
Vermont ³	138	125	125	5	4	i
	1.973	1.788	1.531	191	147	130
Virginia	1,846	1.374	1.292	11	141	100
Washington	580	546	478	51	41	34
West Virginia	1.766	1.544	1.331	64	46	41
Wyoming	462	478	503	4	3	7
wyoming	402	410	- 000			
U.S. total	83,357	74,349	70.157	3.686	3,003	2,697
Foreign countries ⁵	160	296	593	109	86	84
Puerto Rico	1.343	1,414	1,151			
ruerw Mcv	1,010	1,717	1,101			
Total shipments	84,860	76,059	71,901	3,795	3,089	2,781
Origin:						
United States ⁶	78,978	71.610	68,197	3.749	3.044	2,738
Puerto Rico	1,406	1,482	1,226	0,120	0,011	2,.00
Foreign:7	1,400	1,702	1,000			
	3.006	1.580	805	14	10	8
Domestic producers	1,470	1,387	1,673	32	35	35
Others	1,410	1,001	1,010		00	
Total shipments	84,860	76,059	71,901	3,795	3,089	2,781
roear surfumentes	02,000	10,000	11,001	0,100	0,000	2,.01

W Withheld to avoid disclosing company proprietary data; included with "Foreign countries."

1Includes cement produced from imported clinker and imported cement shipped by domestic producers, Canadian cement manufacturers, and other importers. Includes Puerto Rico.

2Excludes cement (1979—425,000 tons; 1980—283,000 tons; 1981—192,000 tons) used in the manufacture of prepared meanuracture cement.

masonry cement.

hasonry cement.

*Has no cement-producing plants.

*Less than 1/2 unit.

*Direct shipments by producers to foreign countries and U.S. possessions and territories; includes States indicated by symbol W.

*Includes cement produced from imported clinker by domestic producers.

^{*}Includes cement produced from imported clinker by domestic producers.

*Imported cement distributed by domestic producers, Canadian cement manufacturers, and other importers. Origin of imports withheld to avoid disclosing company proprietary data.

Table 14.—Cement shipments, by region and subregion¹

		Portland	cement			Masonry	cement	
Region and subregion ²		and short ons		cent otal		nd short ons		cent otal
	1980	1981	1980	1981	1980	1981	1980	1981
Northeast: New England Middle Atlantic	2,266 6,351	2,299 5,969	3.0 8.6	3.3 8.5	79 277	80 263	2.7 9.2	3.0 9.7
Total	8,617	8,268	11.6	11.8	356	343	11.9	12.7
South: Atlantic _ East Central West Central	13,681 4,317 13,958	12,991 3,936 14,294	18.4 5.8 18.8	18.5 5.6 20.4	1,172 372 402	1,071 310 383	39.0 12.4 13.4	39.7 11.5 14.2
Total	31,956	31,221	43.0	44.5	1,946	1,764	64.8	65.4
North Central: East West	10,183 6,734	8,863 6,121	13.7 9.1	12.7 8.7	481 150	392 132	16.0 5.0	14.5 4.9
Total	16,917	14,984	22.8	21.4	631	524	21.0	19.4
West: Mountain Pacific	5,957 10,902	6,059 9,625	8.0 14.6	8.6 13.7	48 22	47 19	1.6 .7	1.8 .7
Total	16,859	15,684	22.6	22.3	70	66	2.3	2.5
Grand total	74,349	70,157	100.0	100.0	3,003	2,697	100.0	100.0

 $^{^1}$ Includes imported cement shipped by domestic and Canadian cement manufacturers and other importers. 2 Geographic regions as designated by the U.S. Department of Commerce, Bureau of the Census.

Table 15.—Portland cement shipments in 1981, by district of origin and type of customer¹

	Building material dealers	ing Established	Concrete product manufacturen	ete ict turers	Ready-mixed concrete	nixed ete	Highway	way	Other	er ctors	Federal, State and other government agencies	State, her nent ies	Miscel- laneous including own use	ol- ing ing	Total
District of origin	Quantity (thousand sand short tons)	Per-	Quantity (thousand sand short tons)	Per-	Quantity (thousand	Per- cent	Quantity (thousand short tons)	Per-	Quantity (thousand	Per- cent	Quantity (thousand sand short tons)	Per- cent	Quantity (thousand sand short tons)	Per-	sand short tons)
New York and Maine Pennsylvania, eastern Maryland and West Virginia Maryland and West Virginia Michigan Indiana Indian	544-252-25-25-25-25-25-25-25-25-25-25-25-25	10104 10104 1000448888888888888888888888	384 174 174 174 174 175 175 175 175 175 175 175 175 175 175	11.20 12.25 13.55 13.55 13.55 13.55 13.55 13.55 14.15	2,529 1,390 2,848 2,848 1,176 1,176 1,176 1,220 2,340 2,540 1,220 2,540 1,230	751 751 751 751 751 751 751 751 751 751	28 28 28 28 28 28 28 28 28 28 28 28 28 2	0.11.1.0.2.4.4.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	8888354424444444444444444444444444444444	28.88.91.25.25.88.92.98.93.93.93.93.94.94.94.94.94.94.94.94.94.94.94.94.94.	18 	€8:	28 28 28 28 28 28 28 28 28 28 28 28 28 2	6846644 1-488 1020	8.869 3.860 3.860 1.524 1.538 1.538 1.538 1.765 1.
Total or average	3,827 505	41.2	8,249 84	12.0 6.8	47,530 528	68.9 43.1	2,970	4.3	4,747	6.9	286 8	4.6.	1,393 78	6.4	69,002

^{&#}x27;Includes Puerto Rico. Less than 1/2 unit. *Cement imported and distributed by domestic producers only. Source of imports withheld to avoid disclosing company proprietary data.

Table 16.—Portland cement shipped from plants in the United States, by type¹

		1980			1981	
Туре	Quantity (thousand short tons)	Value ² (thou- sands)	Average per ton	Quantity (thousand short tons)	Value ² (thou- sands)	Average per ton
General use and moderate heat (Types I and II) High-early-strength (Type III) Sulfate-resisting (Type V) Oil well White Portland slag and portland pozzolan Expansive Miscellaneous ³	67,536 2,488 245 2,513 309 839 85 659	\$3,378,495 125,705 15,136 146,766 43,280 44,426 5,446 40,671	\$50.03 50.52 61.78 58.40 140.06 52.95 64.07 61.72	62,543 2,567 200 3,272 332 683 55 576	\$3,192,940 135,214 12,633 203,990 42,721 38,189 3,648 36,376	\$51.05 52.67 63.17 62.34 128.68 55.91 66.33 63.15
Total or average	74,674	3,799,925	50.89	70,228	3,665,711	52.20

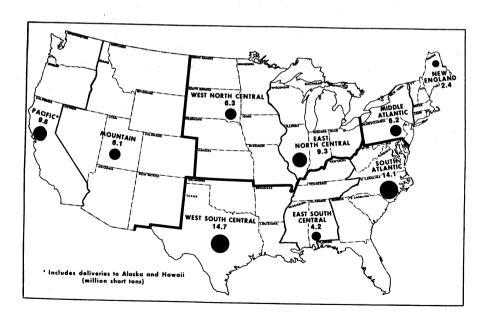


Figure 1.—Shipments of cement by geographic region of destination in 1981.

Includes Puerto Rico.

*Mill value is the actual value of sales to customers, f.o.b. plant, less all discounts and allowances, less all freight charges to customer, less all freight charges from producing plant to distribution terminal if any, less total cost of operating terminal if any, less cost of paper bags and pallets.

*Includes Waterproof cement and low-heat (Type IV).

PRICES

The average mill value of all types of portland cement increased 2.6% in 1981. From 1977 to 1980, the average mill value had increased at an average annual rate of 12%. The average mill value of masonry cement prepared at cement plants declined 4.5% in 1981, following an 11% average annual rate of increase from 1977 to 1980.

According to Engineering News-Record (ENR), yearend prices of bulk portland cement for 20 U.S. cities averaged \$62.10 per ton.3 This was 18% above the average U.S. mill value obtained from the Bureau of Mines canvass of cement producers. The lowest ENR market quotation was \$51 per ton for Chicago, and the highest was \$78.50 per ton for Seattle. The median per ton price was \$61.78.

Civil antitrust suits, originally filed in 1976 by the attorneys general of California, Arizona, and Colorado against the Portland Cement Association and several cement producers, and alleging a conspiracy to fix, maintain, and stabilize cement prices, were not resolved during 1981. The plaintiffs in the multidistrict litigation, reportedly had increased from the orignal 3 States to at least 15 States, with the addition of 29 private plaintiffs. The defendants included a majority of U.S. cement producers. In each of these suits, plaintiffs claimed treble damages based on alleged violations of Federal antitrust laws, sought injunctive relief, costs, and attorneys' fees, and in some instances, claimed damages under State antitrust laws as well. Most of the Federal cases have been consolidated in Arizona for pretrial discovery purposes.

Table 17.—Average mill value in bulk, of cement in the United States¹

(Per short ton)

Year	Portland cement	Prepared masonry cement ²	All classes of cement
1977	\$36.36	\$45.03	\$36.76
1978	40.70	50.53	41.17
1979	46.24	54.59	46.61
1980	50.89	62.11	51.32
1981	52.20	59.29	52.46

Includes Puerto Rico. Mill value is the actual value of sales to customers, f.o.b. plant, less all discounts and allowances, less all freight charges to customer, less all freight charges from producing plant to distribution termi-nal if any, less total cost of operating terminal if any, less cost of paper bags and pallets.

2Masonry cement made at cement plants only.

FOREIGN TRADE

This section contains U.S. trade data reported by the U.S. Department of Commerce, Bureau of the Census. Import and export totals contain data for the United States plus U.S. possessions and territories.

Exports of hydraulic cement and cement clinker increased 62% in 1981. Of 303,000 tons exported, 69% was shipped to Canada, 23% to Mexico, and 8% to 60 other countries. These exports accounted for 0.41% of shipments from U.S. and Puerto Rican mills, compared with 0.24% in 1980.

Imports of hydraulic cement and clinker decreased 24% to 4.0 million tons; of this 31% by weight was clinker, compared with 36% in 1980. Canada supplied 58% of the total, followed by Japan (14%), Spain (8%), France (6%), Norway (4%), and 15 other countries (10%). U.S. net import reliance (excluding Puerto Rico and the Virgin Islands) equaled 4% of apparent consumption.

Imports of white nonstaining portland cement increased to 117,000 tons, 3% above 1980 imports. White cement imports had

nearly quadrupled since 1977. Canada was the primary source in 1981, providing 38% of the total, followed by Spain (27%), Japan (15%), the French West Indies (11%), Belgium-Luxembourg (7%), and five other countries (2%). White cement imports from Canada were about two-thirds of those in 1980.

Several companies began operating new terminals for transshipment of imported cement during the year:

1. Delta Cement Co., a subsidiary of the Federal Republic of Germany's trading company Stinnes AG, opened a 33,000-ton terminal at Stockton, Calif. The source of cement was Nihon Cement Co. of Japan.

2. Independent Cement Corp., a subsidiary of St. Lawrence Cement Co. of Canada, opened cement distribution terminals at Oswego, N.Y., and Portland, Maine, and announced plans for terminals at Duluth, Minn., and Willington, Conn.

3. Pacific Coast Cement Corp. began operating its 50,000-ton terminal at Long Beach, Calif. Bulk cement from Australia was the source of supply.

Table 18.-U.S. exports of hydraulic cement and cement clinker, by country

	1979		198	30	1981		
Country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	
BahamasBolivia	15,904	\$351	1,073 244	\$180 41	3,126 1,327	\$300 197	
Canada	88,965	8,034	r _{123,283}	9,571	208,278 1,072	18,251 96	
Leeward and Windward Islands	533	32	603	53	1,422	160	
Mexico	38,785	4,334	54,658	4,927	69,968	7,374	
Peru	2	1	22	9	1,575	347	
Saudi Arabia	450	183	944	332	4,157	1,429	
Venezuela	566	253	329	74	2,528	699	
Other ¹	5,641	1,383	5,249	1,812	9,324	2,711	
Total ³	150,846	^r 14,571	186,404	16,997	302,777	31,564	

Source: U.S. Bureau of the Census.

Table 19.—U.S. imports for consumption of hydraulic cement and clinker, by country (Thousand short tons and thousand dollars)

		1979		1980			1980 1981		
Country		Va	lue	<u> </u>	Va	lue		Val	
	Quantity	Customs	C.i.f.1	Quantity	Customs	C.i.f.1	Quantity	Customs	C.i.f.1
Bahamas	487	19,929	22,728	298	12,108	13,279	4	195	223
Canada	4,440	137,975	151,247	2,635	90,597	100,330	2,338	83,660	97,390
France	405	14,425	16,052	251	13,699	14,274	239	12,614	13,351
Japan	1.523	52,605	57,822	619	20,822	25,757	569	20,944	26,032
Mexico	525	19,531	22,471	329	13,841	15,924	83	4.623	4,625
Norway	281	7,182	9,760	225	6,193	8,463	146	4,295	5,613
Spain	548	16,144	21,344	479	22,458	28,461	322	12,357	15,800
Sweden		,	,	94	3,942	4,222			
United Kingdom	759	26,249	31.636	202	6,797	10,382	103	4,840	5.237
Other	445	8,318	18,104	131	5,116	6,914	193	7,713	5,237 10,988
Total	9,413	302,358	351,164	5,263	195,573	228,006	3,997	² 151,240	179,259

Source: U.S. Bureau of the Census.

Table 20.—U.S. imports for consumption of clinker, by country

(Thousand short tons and thousand dollars)

	1979				1980		1981		
Country		Value			Value			Value	
Country	Quantity	Cus- toms	C.i.f. ¹	Quantity	Cus- toms	C.i.f.1	Quantity	Cus- toms	C.i.f.1
Australia	160	3,670	5,430						
Canada	1,887	50,531	54,684	800	25,787	27,998	578	19,421	21,570
France	385	13,931	15,262	249	13,554	14,114	239	12,605	13,336
Japan	1,384	40,849	49,594	506	16,797	20,838	374	12,938	16,442
Peru	105	2,866	3,631		·				
Spain	398	9,980	12,159	298	16,270	18,629	34	1,152	1,359
United Kingdom	341	9,911	11,721						
Other	8	135	186	64	1,523	2,163	1	331	435
Total	4,668	131,873	152,667	1,917	73,931	83,742	1,226	46,447	53,142

¹Cost, insurance, and freight.

Source: U.S. Bureau of the Census.

¹Includes 40 countries in 1979, 49 in 1980, and 53 in 1981.

²Data may not add to totals shown because of independent rounding.

¹Cost, insurance, and freight.
²Data do not add to total shown because of independent rounding.

Table 21.—U.S imports for consumption of hydraulic cement and clinker, by customs district and country

(Thousand short tons and thousand dollars)

		1980			1981	
Customs district and country	Quan-	Val	ue	Quan-	Val	ue
· ·	tity	Customs	C.i.f. ¹	tity	Customs	C.i.f. ¹
Anchorage: Canada	19	1,377	1,498	14	1,124	1,633
Baltimore:			_			
Japan Germany, Federal Republic of	(2)	. 5	5	<u>(*)</u>	- <u>ī</u>	3
Yugoslavia	<u>(4)</u>	18	27	`í	131	139
Total ⁸	· (*)	23	32	1	132	143
Buffalo:					00.510	00.700
Canada Ecuador	604	17,973	20,783	690 2	23,713 61	26,732 68
Italy				(*)	1	1
Total	604	17,973	20,783	692	23,775	26,801
Chicago:			4.040			
Canada United Kingdom	53	1,842	1,842	(2)	<u>(*)</u>	- <u>-</u> 2
		1.040	1.040		(2)	2
TotalCleveland: Canada	53 99	1,842 3,097	1,842 3,506	(²) 26	864	1,004
<u> </u>						
Detroit: Belgium-Luxembourg		10 505	00 107	(²) 492	1 17,298	18,990
Canada	603	18,565	20,135			
Total ³ Duluth: Canada	603 28	18,565 951	20,135 1,078	492 5	17,300 148	18,992 238
El Paso:						
Germany, Federal Republic of	11	587	586	(²) 1	(*) 61	61
Mexico	11	587	586	1	61	62
Total	11	901	360			
Galveston:				27	1,065	1,331
Mexico	93 37	3,391 1,064	4,276 1,283	34	1,142	1,340
Spain						
Total ³ Great Falls: Canada	130 1	4,455 347	5,559 414	60	2,207 568	2,671 670
Honolulu:						
Canada	.6	250 668	346 755	<u>-</u>	- <u>-</u>	11
Japan	17					
Total	23	918	1,101	<u>, (*)</u>	6	11
Houston:	(3)	4	5			
Canada France	. O	64	66			-;
Germany, Federal Republic of Spain	176	12.994	14,460	()	6	
United Kingdom	(4)	59	68	(*)	148	190
Total ³	176	13,121	14,599	(*)	155	198
Laredo:						
Canada		5,177	5,178	(*) 80	23 4,364	21 4,360
Mexico	100					
Total ³	100	5,177	5,178	81	4,388	4,389
Los Angeles:				67	w	u
Australia	64	3,592	3,896	Ö	ŵ	W
Colombia Germany, Federal Republic of	64 35 (*)	956 11	1,291 11	<u>-</u>	w	V
Japan	273	8,497	10,608	(Ť	w	Ÿ
Spain	එ	53 55	101 1 3 0	1 (†)	W W	V V
Yugoslavia					2,888	4,31
Total	372	13,164	16,037	68	4,000	4,01.
Miami:	255	10,304	11,219	4	195	222
Bahamas	بعد	20,002		_		

See footnotes at end of table.

Table 21.—U.S imports for consumption of hydraulic cement and clinker, by customs district and country —Continued

(Thousand short tons and thousand dollars)

		1980			1981		
Customs district and country	Quan-	Val	ue	Quan-	Value		
	tity	Customs	C.i.f.1	tity	Customs	C.i.f.1	
Miami —Continued					:		
Belgium-Luxembourg	3	219	303	1 10	71 299	116	
Colombia	54	1,839	2,535	47	1.226	339 2.129	
Denmark	24	944	1,041	52	1,801	2,265	
France	1	66	69	(2)		-=	
Mexico	113	3,799	4,851	(-)	3	3	
Norway Spain	24	941	942				
	122	3,422	4,879	211	6,536	8,577	
Total ³ Milwaukee: Canada	596 60	21,534 1,953	25,839	325	10,131	13,653	
	- 00	1,555	2,256				
New Orleans: Canada	25	802	1 001	40			
Germany, Federal Republic of	2 0	802 23	1,221 30	43 (2)	1,312	2,012	
Snain	(Ž) 28	762	940	4	14 102	19 158	
United Kingdom	93	3,024	4,219	· (2)	10	12	
Total ³	146	4,611	6,410	46	1,438	2,200	
New York City:	_						
Italy Norway	(²) 175	(2) 4,586	(2) 6.578	70	1.836	0.040	
			0,010		1,830	2,643	
Total	175	4,586	6,578	70	1,836	2,643	
Nogales: Mexico	<u>(*)</u>	42	42	1	62	62	
Norfolk:							
France	44	4,427	4,559	45	4,602	4,739	
Germany, Federal Republic of United Kingdom	(2) (3)	1 2	1	(2)	1	. 1	
	(-)	Z	2				
Total	44	4,430	4,562	45	4,603	4,740	
Ogdensburg: Canada Pembina: Canada	140	4,129	4,495	72	2,330	2,582	
	92	4,184	4,711	85	4,189	4,758	
Republic of	(*)	7	9	(2)	6	7	
Republic of Port Arthur: Spain Portland, Maine: Canada	30 14	743	990	7.7			
	14	393	395	13	387	389	
Portland, Oregon: Canada Janan							
Canada	12 24	477	503	10	498	529	
	24	803	842				
Total	36	1,280	1,345	10	498	529	
St. Albans:			:				
CanadaSouth Africa, Republic of	275	8,164	7,933	396	11,404	14,859	
Yeman Arab Republic	(*)	(2)	1	(2)	2	2	
_		1	1				
Total	275	8,165	7,935	396	11,406	14,861	
San Diego:							
Japan Mexico	- <u>-</u>	101	-5-	65	3,197	3,409	
United Kingdom	109	191 3,712	191 6,093	72	136 3,666	136 3,839	
Total ³							
	111	3,903	6,284	139	6,999	7,384	
San Francisco: Australia							
Canada	1 50	67 2,055	113 2.588				
Finland		·		(2)	28	45	
Japan	172	6,820	8,503	1 ì ź	4,038	5,404	
Total	223	8,942	11,204	112	4,066	5,449	
San Juan, Puerto Rico:							
Belgium-Luxemhourg	10	822	1,234	7	753	1,116	
CanadaColombia	- <u>-</u> 2	147	178	3 1	297	462	
France	ð	9	178	(2)	101 4	122 8	
See feetmater at an 3 (5) 33				()	•	0	
See footnotes at end of table.							

Table 21.—U.S imports for consumption of hydraulic cement and clinker, by customs district and country —Continued

(Thousand short tons and thousand dollars)

		1980		1981			
Customs district and country	Quan-	Value		Quan-	Value		
Carrotto and to an actual	tity	Customs	C.i.f. ¹	tity	Customs	C.i.f. ¹	
San Juan, Puerto Rico —Continued							
Spain	7	639	1,309	8	891	1,426	
Total ³	19	1,617	2,736	19	2,047	3,134	
Seattle:	265	11,646	12,571	108	5,099	5,35	
Italy Japan	(*) 131	4,030	(*) 5,044	391	13,258	16,58	
Mexico	(*)	464	532				
Total	396	16,140	18,147	499	18,357	21,930	
Tampa: Bahamas Canada Denmark	44 225 206	1,804 8,797 9,133	2,060 10,156 9,565	340 1 194	13,040 230 W	15,48 29 V	
France Mexico Norway Spain Spa	10 25 78	191 666 2,780	268 943 4,499	76 64	2,459 W	2,97 V	
Sweden United Kingdom	94	3,942	4,223	30	1,016	1,19	
Total	682	27,313	31,714	705	28,265	32,58	
Virgin Islands of the United States: Dominican Republic			==	2 13	115 890	17 1,09	
Total				15	1,005	1,26	
Grand total ³	5,263	195,573	228,006	3,997	151,240	179,25	

W Withheld to avoid disclosing company proprietary data; included with "Total."

Source: U.S. Bureau of the Census.

Table 22.—U.S. imports for the consumption of cement

(Thousand short tons and thousand dollars)

	Roman, portland, other hydraulic cement		Hydraulic cement clinker		White nonstaining portland cement		Tot	al
Year	Quantity	Value (cus- toms)	Quantity	Value (cus- toms)	Quantity	Value (cus- toms)	Quantity	Value (cus- toms)
1977	2,394 3,589 4,664 3,232 2,654	62,920 119,048 165,258 115,271 94,653	1,613 2,968 4,668 1,917 1,226	29,224 69,264 131,873 73,931 46,447	31 40 81 114 117	1,861 2,330 5,227 6,371 10,140	4,038 6,597 9,413 5,263 3,997	94,005 190,642 302,358 195,573 151,240

Source: U.S. Bureau of the Census.

WORLD REVIEW

World cement production did not increase significantly in 1981. Many of the industrialized nations of North America, Europe, and Asia experienced a decline in production associated primarily with depressed economic conditions. During the past decade, these countries had declined in production and consumption as a percentage of world totals. To maintain growth in sales and earnings, major producers in indus-

¹Cost, insurance, and freight.

Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

trialized countries with saturated domestic markets have penetrated markets in Africa, Asia, and South America, where cement demand traditionally exceeds supply. Leading exporting nations in 1980 (the most recent year for which data were available) were, in decreasing order of exports, Spain, Japan, Greece, the Republic of Korea, the U.S.S.R., France, Canada, Romania, Belgium, the Federal Republic of Germany. and the United Kingdom, Leading importers, in decreasing order of imports, were Saudi Arabia and its neighbors on the Persian Gulf, Nigeria, the United States. the Netherlands, Hong Kong, India, Singapore, and the Federal Republic of Germany. Many of the major importing countries, however, were building or expanding their domestic production capacities, and competition for cement markets was expected to intensify in the long term as new capacity comes onstream.

Argentina.—Cement demand in Argentina had been rising steadily during the previous 5 years, creating shortages and resulting in increased imports. To reduce cement imports and also the expense of long-distance transportation of domestic cement, J. Minetti S.A. was planning to build 790,000-ton-per-year cement plant at Puesto Viejo in Jujuy Province. The project complemented the Argentine Government's objective to decentralize industry into the less developed, interior regions of the country. The plant, which was Minetti's second major expansion in 3 years, was designed to increase the firm's total annual capacity to 1.8 million tons. Part of the plant's cement production was expected to be used for international infrastructure projects assisted by the World Bank and Inter-American Development Bank.4

Australia.—Adelaide Brighton Cement Ltd. began exporting cement to the United States in September 1981. The firm contracted with Pacific Coast Cement Co., of Long Beach, Calif., to supply 660,000 tons per year.⁵

Benin.—Although Benin had been developing its minerals, cement was the only mineral product produced on a commercial scale. Two state enterprises, Société des Ciments du Benin and Société Nationale des Ciments, each operated a clinker grinding plant. These plants, which had combined annual capacity of 350,000 tons in 1981, relied on imported clinker supplies. A new plant of 550,000 tons annual capacity was under construction and scheduled to come onstream in 1982. The new Onigbolo plant was to be located in the Pobe region, which

has substantial limestone deposits to supply raw material for the plant. A joint Beninese-Nigerian enterprise was building the \$125 million project. The per-ton price of cement rose to \$90 in 1981 from \$59 in 1980, but this increase was not expected to dampen demand because Nigeria was considered a growth market for the Beninese product.

Brazil.—Cement production capacity was targeted to increase at an average annual rate of 5.4% between 1980 and 1985, reaching 39.3 million tons in 1985, according to the Sindicato Nacional da Industria do Cimento. Of the 60 cement plants in operation in 1981, at least 10 had expansion projects in progress or in the planning stage. Most of the increased output was expected to be consumed domestically to reduce Brazil's foreign exchange outlays for cement imports.

Burma.—In an effort to promote local cement and ceramic industries and to become self-sufficient in certain key minerals, Burma began to develop its nonmetallic minerals after 1962. This effort had been successful over the long term in increasing production of raw materials for Burma's fledgling cement industry. However, major increases in limestone and gypsum supplies were expected to be required within the next 2 years when a new French-financed, 220,000-ton-per-year cement plant was to be completed at Paan in Karen State. The Industrial Planning Department of the Ministry of Industry was considering building another cement plant in the Maymyo area with financial assistance from the World Bank.

Canada.—The slow economy and attendant rise in interest rates combined to restrict Canadian building activity and, therefore, demand for cement. For example, housing unit starts, which fell 20% in 1980, increased only slightly in 1981. In addition, the depressed export market for cement to the United States, Canada's principal export market, continued to reduce Canadian cement sales. Exports of finished cement to the United States in 1981 declined 4% to 1.8 million tons, and exports of clinker declined 28% to 578,000 tons.

The trend of the past few years continued toward direct involvement of Canadian cement producers in the U.S. cement industry by establishing cement distribution terminals in the United States and purchasing U.S. cement firms. St. Lawrence Cement Co. announced plans to build a distribution center in Willington, Conn., consisting of two steel silos to hold 1,500 tons of cement

and two concrete silos to hold 5,000 tons, and Canada Cement Lafarge, Ltd., purchased one of the largest U.S. cement manufacturers, General Portland, Inc.

Chile.-To keep pace with forecast domestic cement demand, the Chilean cement industry was expected to require considerable expansion and possibly a temporary increase in imports. Chile had four cement producers, one owned by Blue Circle Industries, Ltd., of the United Kingdom, one owned primarily by the Holderbank Group of Switzerland, and two owned by the Chilean Government. The privately owned plants were in the process of doubling their combined annual capacity to 1.4 million tons by 1983. This increase in capacity was planned to help satisfy demand for cement resulting from the current boom in housing and industrial expansion and the longer term needs of the Colbun hydroelectric project.9

Denmark.—AS Aalborg Portland-Cement-Fabrik centralized all cement production at its Rordal works near Aalborg. Three of the firm's other plants were closed because of shrinking cement markets and increased energy costs. A fourth cement plant at Dania was converted to production of calcined bauxite for refractory use, although it retained the capability of producing masonry cement. The company, Denmark's sole cement producer, had production capacity of 2.5 to 2.8 million tons per year.¹⁰

France.—Société des Ciments Francais, which operated 14 cement plants, 6 grinding mills, and 13 distribution centers, maintained a 33% share of the French cement market in 1981. A new white cement plant at Cruas began production in February. The firm's expansion into international markets was advanced by its 1976 acquisition of Coplay Cement Co. in the United States.

Ciments Lafarge France, with 21 cement plants, increased its usage of coal in cement production to 70% of total fuel consumed. In 1978, coal usage was only 4% of the total.¹¹

Greece.—Cement output had grown steadily at an average annual rate of about 8% since 1976. In 1981, exports accounted for 50% of total production. Titan Cement Co. S.A., the country's largest producer with over 40% of Greek cement capacity, increased its clinker production capacity by adding a second preheater with precalciner at the Patras plant, and began operating a new

cement mill, storage silos, and ship-loading facilities. All four of Titan's plants were being converted to coal firing.¹²

India.—Cement capacity utilization declined to 67% during Indian fiscal year 1980-81 because of infrastructural bottlenecks, particularly coal shortages. Most of the production came from the private sector, which accounted for about 85% of the total annual capacity of 30.6 million tons. The shortfall in domestic cement supply in 1980-81 resulted in a 550,000-ton increase in imports to 2.1 million tons. Principal suppliers included North Korea, the Republic of Korea, the Philippines, and Indonesia.

In view of the gap between supply and demand, steps were being taken to increase cement output as well as quality. The Ministry of Industry was looking into labor requirements, use of pozzolan additives, and cement technology and machinery with the objective of expanding the industry to meet long-term demand. By fiscal year 1984-85, Indian cement capacity was scheduled to reach 47 million tons per year, with the public sector share of capacity rising to 22%. More than eight plants of 1.1-millionton annual capacity each were expected to come onstream. In addition, miniplants were being established to take advantage of smaller limestone deposits. Four miniplants ranging in daily capacity from 33 to 220 tons were to be commissioned in 1981, and two additional miniplants were planned for 1982. Furthermore, public sector units were assigned a major program of utilizing slag from Indian steel plants for cement production.13

Indonesia.—Demand for cement had escalated in recent years, thereby promoting dramatic growth in the cement industry throughout Indonesia. Construction of a 66,000-ton-annual-capacity cement plant in Kupang, West Nusatenggera, and several small production units in Maluku, Irian Jaya, and South Kalimantan, plus several scheduled plant expansions were expected to raise annual production to 19 million tons by fiscal year 1984-85 and to 22 million tons by 1989-90.14

Iraq.—The Iraqi Government contracted for construction of a 2.2-million-ton-peryear cement plant in the southwestern part of the country. The first of two production lines was scheduled to begin operating in 1984. KHD Humboldt Wedag AG was the contractor.¹⁸

Japan.—Ranked as the second largest cement producer in the world, Japan had an expanded network of cement plants, made possible in part by the widespread occurrence and easy availability of high-purity limestone. To produce 1 ton of Japanese cement, the average quantity of raw materials consumed was 1.2 tons of limestone, 0.24 ton of clay, 0.034 ton of silica stone, and 0.024 ton of slag. 16

Oil consumption by Japan's industrial sector decreased 20.8% in fiscal year 1980, which ended March 31, 1981.¹⁷ The decrease was primarily the result of energy conservation and fuel substitution from oil to coal by the cement and steelmaking industries. By the end of the fiscal year, 83.6% of the heat used in calcining cement raw materials was used in calcining cement raw materials was derived from coal.¹⁸ Some firms relied entirely on coal for calcination, including Ube Industries Ltd. (three plants), Chichibu Cement Co. Ltd. (three plants), and Mitsui Mining Co. Ltd. (two plants).

Jordan.—Cement demand in 1981 of 1.9 million tons was expected to increase to 3.2 million tons by 1984. To meet this large increase in demand, the National Planning Council awarded a second contract to the Mitsubishi Corp.-Kobe Steel consortium for construction of a cement plant on a turnkey basis. The second plant, which was scheduled to go onstream in 1984, was designed with an annual capacity of 2.2 million tons. The first cement plant, which was under construction, was expected to begin operating in late 1982 to produce 1.1 million tons annually.¹⁹

Korea, North.—A new calcining method at the Chonnaeri cement plant quadrupled cement output while reducing fuel consumption 50%. The North Korean cement industry set a national target of 22 million tons of annual production by the end of the 1980's. This goal was planned to meet domestic demand and also offer potential for export.²⁰

Korea, Republic of.—The South Korean cement industry began expanding for exports in the 1960's. In 1980, South Korea exported 5.2 million tons valued at \$235 million. Primary export markets were the Middle East (31%), Southeast Asia (32%), and South Asia (33%). In 1981, the cement industry's nine producers were using about 75% of capacity because of domestic recession and increased overseas competition. Rising fuel and electricity costs and local inflation increased the industry's costs of production in 1980 by 60% compared with those of 1979. By 1981, the domestic price of cement had risen 40% above the export

price. Moreover, some Asian countries such as Thailand and Indonesia, which had been traditional markets for South Korean cement, were developing their own cement industries. Despite these problems, South Korea set a target of expanding its annual cement-manufacturing capacity 30% to about 33 million tons by 1986.²¹

Lebanon.—Cement production has been Lebanon's principal industry. All three of the country's plants are located in the northern coastal region. In 1981, domestic sales amounted to 85% of production. Export markets were primarily neighboring Arab countries. After several years of poor performance because of the 1975-76 civil war and subsequent hostilities, the Lebanese construction sector and, concomittantly, cement demand revived in 1980 and 1981. Construction activity indicators exceeded pre-civil war levels of the early 1970's. Building activity was concentrated in the coastal regions north of Beirut and was characterized by rising demand for residential and recreational facilities.22

Malaysia.—Kedah Cement Sdn. Bhd. announced plans for a new cement plant having production capacity of 4,400 tons per day. Ishikawajima-Harima Heavy Industries Co. Ltd. of Japan was selected to build the plant.²³

Mexico.—Chronic shortages of cement in northwestern Mexico were expected to be alleviated when the new Hermosillo plant of Cementos Portland Nacional S.A. begins production in 1982. Production capacity was designed to be approximately 1 million tons per year.²⁴

In recent years, strong domestic cement demand had led to a significant increase in imports and decrease in exports. For example, exports of Mexican cement to the United States decreased from 329,000 tons in 1980 to 83,000 tons in 1981. Scheduled growth in Mexican cement capacity was not expected to keep pace with domestic demand in the near term.

Norway.—AS Norcem, Norway's sole cement producer, announced its intention to reduce annual production capacity of its three plants by about 660,000 tons. Plans to modernize the Kjopsvik plant were continuing, however.²⁵

Oman.—Krupp Polysius AG of the Federal Republic of Germany was awarded a \$135 million contract to build a 2,200-ton-per-day cement plant in Rusayal. The plant, which would be Oman's first cement producer, was scheduled to begin operations in

1983.26

Spain.—With 54 cement producing facilities, Spain continued to be the world's leading exporter of cement. In 1981, approximately 40% of total production was exported.²⁷

Sweden.—Capacity of Cementa AB, Sweden's only cement producer, was reduced to 3.5 million tons per year from 4.4 million tons per year. Each of the firm's three plants was converted to dry process, and annual fuel consumption was reduced 30%. Cementa's largest plant (2.4 million tons annual capacity) began operating a new production line that featured preheating, precalcining, and computer control from limestone quarrying to cement storage in silos. It was claimed to be the most advanced cement facility in the world.²⁸

In 1981, Cementa purchased from Lehigh Portland Cement Co. of the United States a cement plant in Hannibal, Mo., and three distribution terminals.

Switzerland.—During the past decade, virtually all Swiss cement plants converted to dry-process kilns to save energy. The industry was also reverting to use of coal instead of oil or natural gas to fire the kilns.²⁹

In 1981, 11 of the country's 13 cement producers were members of Eingetragene Genossenschaft Portland, which set production quotas and prices. The largest producer, Holderbank AG, with over one-third of the Swiss market, had interests in more than 50 cement facilities worldwide, including the 3 plants of Dundee Cement Co. and its subsidiary Santee Portland Cement Corp. in the United States.

Thailand.—For the previous 2 years, high local demand and supply shortages had prevented Thai exports of cement. However, in 1981, the Siam Cement Co., Ltd., was authorized to export 11,000 tons of cement to neighboring Malaysia.³⁰

The Tabkwang-Saraburi plant of Siam City Cement Co., Ltd., was scheduled for a preheater-kiln system modification to increase its capacity from 1,900 tons to 3,900 tons per day. Completion of the project was

planned for January 1983.31

U.S.S.R.—Cement production in the U.S.S.R., the world's largest producer, was targeted to reach approximately 155 million tons by 1985. New automated operations with capacities to exceed 3 million tons per

year and reconstructed existing works were planned to increase the country's total output. By 1990, even bigger cement manufacturing facilities capable of producing up to 25 different types of cement were planned to go into operation³²

United Kingdom.—British cement producers, concerned about competition from low-priced European imports, delayed previously announced price increases of 7.5% until 1982. It was reported that Blue Circle Industries Ltd., which maintained a 60% share of the domestic cement market, suspected that sharp increases in domestic prices might attract a European producer to install a bulk import terminal somewhere along the Thames estuary. Although cement imports had been negligible, precast concrete manufacturers expressed interest in importing cement supplies if domestic prices increased significantly.*

Blue Circle, which had about 12,800 employees, announced plans to lay off 1,100 workers in 1982 because of the "continuing recession in construction" that resulted in a 20% decline in cement deliveries in 1981.44

Rio Tinto Zinc Corp. (RTZ) was in the process of acquiring Thomas K. Ward Ltd. as 1981 ended. A successful bid would enable RTZ to become the United Kingdom's second largest cement producer by gaining control of Ward's associated companies, Tunnel Cement Ltd. and Ribblesdale Cement Ltd.³⁵

Zimbabwe.—Owing to the underutilization of existing cement manufacturing capacity in 1981, Zimbabwe's two cement companies had no immediate plans for expansion. Priority projects included replacing obsolete quarry equipment and increasing comminution and bagging capacities. Both companies, Salisbury Portland Cement Ltd. (SPC) and United Portland Cement Co. Ltd. (Unicem), had production capacities of about 440,000 tons per year. SPC, a subsidiary of the United Kingdom's Blue Circle Industries Ltd., marketed highquality portland cement and two slag cements, one having 15% and the other 50% blast-furnace slag. Little competition existed between SPC and Unicem because their respective markets were limited to local demand in the vicinity of Zimbabwe's two widely dispersed major cities, Salisbury and Bulawayo.36

Table 23.—Hydraulic cement: World production, by continent and country¹ (Thousand short tons)

Continent and country	1977	1978	1979	1980 ^p	1981 ^e
orth America:					:
BahamasCanada	10.696	364	496	573	660
Costa Rica	10,626 447	^r 11,374 ^r 540	12,969 582	11,571 610	11,43 55
Cuba	2.928	2,989	2,879	3,241	3.58
Dominican Republic	950	956	977	1,119	1,08
El Salvador	413	r502	642	573	55
Guatemala	541	568	632	627	50
Haiti Haiti Honduras	267 276	274 298	298 685	268	27
Jamaica	367	324	249	700 159	55 16
Mexico	14,580	15,494	16,731	17,924	18,74
Nicaragua	249	219	95	170	11
Panama	298	331	562	623	66
Trinidad and Tobago	237	243	236	202	22
United States (including Puerto Rico) uth America:	80,058	85,480	85,904	76,709	72,93
Argentina	r6,616	r _{6,962}	7,349	7,863	8,27
Bolivia	294	280	277	280	28
Brazil	r23,284	r24,559	27.419	29,975	31,41
Chile	1,237	r _{1,297}	1,491	1,746	1.76
Colombia	3,635	4,578	4,693	4,796	5,73
Ecuador	687	919	1,211	1,531	1,60
Paraguay	220	183	171	195	210
Peru	r2,126	2,226	e2,756	e3,300	3,39
Suriname	F47	66	68	_76	7
Uruguay	*752	743	757	755	76
Venezuela	3,457	3,777	4,386	5,338	5,40
Albania ^e	827	r ₈₈₂	926	1,102	1,10
Austria	r _{6,205}	r _{6,482}	6,185	6.013	5.95
Belgium	8,558	8,351	8,491	8.247	8,27
Bulgaria	5,142	5,676	5,954	5,984	6,00
Czechoslovakia	10,746	11,248	11,307	11,624	11,73
Denmark	2,545	2,895	2,659	2,205	1,70
Finland	1,887	1,878	1,928	1,976	1,97
FranceGerman Democratic Republic	31,779	30,892	31,774	32,082	31,11
Germany, Federal Republic of	13,340 36,826	13,802 ^r 38,915	13,529	13,717	13,78
Greece	11,667	12,434	40,415 13,336	39,183 14,495	² 36,40 14,88
Hungary	5,093	5,251	5,354	5,137	5,11
Iceland	153	147	139	134	13
Ireland	1,742	1.991	2,278	2,059	1,95
Italy	r42,113	r42,144	43,309	46,046	46,30
Luxembourg	321	343	351	358	33
Netherlands	4,293	^r 4,319	4,080	4,128	_4,19
Norway	2,551	3,460	2,422	2,307	² 1,96
Poland	23,479	23,920	21,138	20,330	15,68
Portugal	4,736	r _{5,644}	5,664	6,336	6,280
Romania	15,295	16,191	17,194	17,208	16,260
Spain (including Canary Islands) ³ Sweden	30,859 *2,883	33,326	30,768	31,372	31,528
Switzerland	4,022	*2,592	2,631	2,778	2,56
U.S.S.R	r140,055	4,075 139,945	4,336 135,605	4,687 137,843	4,740 140,000
United Kingdom	17,037	17,544	17,791	16,320	14,620
Yugoslavia	8,826	9,588	8,908	10,268	210,779
ica:	0,020	2,000	0,000	10,200	10,114
Algeria	1,959	2,973	4,153	4,410	4,630
Angola ^e	330	440	440	265	27
Cameroon	400	e390	540	250	30
Cape Verde Islands ^e	4	17	17	17	1
Egypt	3,590	3,307	3,260	3,338	3,910
Ethiopia	e 80	95	102	198	220
Gabon	209	^e 210	106	121	12
Ghana	672	551	441	265	26
Kenya	1,262	1,240	938	1,402	1,430
Liberia Libya	110 2,756	146 3,527	150 3,527	117 3,527	110 3,536
Madagascar	2,150 58	73	3,321 77	66	ə,əət
Malawi	104	r ₁₁₄	114	101	110
Mali	39	38	29	22	2
Morocco	3,164	3,107	3.611	3.915	3,970
Mozambique	356	360	301	303	550
Niger	44	e 45	42	e 45	4
Nigeria	1,587	1,693 1394	1,918	2,205	2,200
Senegal	364	r394	420	426	42
South Africa, Republic of	7,245	7,522	7,606	7,937	8,800
Sudan	f166	207	203	204	200
Tanzania	287	255	309	1,213	1,325
	r ⁶³¹	972 r e ₈₈	1,524	1,962	2,210
Tunisia			55	11	9
Uganda					
Uganda Zaire	539	520	496	449	440 175
Uganda					44

See footnotes at end of table.

Table 23.—Hydraulic cement: World production, by continent and country¹ —Continued (Thousand short tons)

Continent and country	1977	1978	1979	1980 ^p	1981 ^e
Asia:			*		
Afghanistan ⁴	150	140	155	^e 55	65
Bangladesh	338	r373	355	370	380
Burma	297	280	431	426	420
China	61.343	71,914	81,461	88,030	92,600
Cyprus	1,181	1,220	1,251	1,359	1,325
Hong Kong	1.134	r _{1.362}	1,410	1,641	1,660
India	r21,010	r21.561	20,133	19,511	22,885
Indonesia	2,922	F4.072	5.179	6.413	6,945
Iran	7,998	13,227	9,921	8.818	8.820
	3,494	5.070	5.622	6.063	6,170
Iraq	2,165	2,200	2,116	2,302	2,545
Israel	80,621	r93,566	96,787	96,956	93,510
Japan	624	622	882	882	1,100
Jordan		11	002	002	1,100
Kampuchea ^e	55		0.010	8.818	8.800
Korea, North	r7,717	F7,717	8,818	17.230	17,215
Korea, Republic of	15,648	16,681	18,092	e700	
Kuwait	363	685	e695		700
Lebanon	1,499	1,522	2,239	e2,425	2,42
Malaysia	1,959	2,421	2,497	2,589	2,86
Mongolia	^r 110	183	202	196	200
Nepal	46	40	24	34	38
Pakistan	3,489	3,420	3,768	3,677	3,860
Philippines ⁵	r _{4,626}	r4,784	4,354	4,941	5,070
Qatar	[‡] 187	229	261	230	28
Saudi Arabia	1.397	1.984	2,425	3,858	5,510
Singapore ^e	r _{1.488}	r _{1.488}	1.488	2,152	2,200
Sri Lanka	392	634	653	629	660
Svria	1.538	r _{1.580}	2.036	2.199	2.370
Taiwan	11.392	12,633	13,115	15,501	15,810
Thailand	5.633	5.612	5,793	5,883	6,61
	15.248	r _{16,914}	15,194	14.192	15,430
Turkey United Arab Emirates	220	220	220	551	77(
	930	929	804	937	720
Vietnam ^e	66	69	99	89	9
Yemen	00	09	99		
Oceania:	5.536	5,504	5,779	5,938	5.840
Australia	ə,əəo 85	5,504 90	106	93	9,04
Fiji Islands	56	61	62	62	6
New Caledonia	1,003	880	833	827	830
New Zealand					
Total	r878,635	^r 940,249	959,283	974,825	978,91

rRevised.

³Excludes natural cement.

⁴Year beginning Mar. 21 of that stated.

TECHNOLOGY

Cement.—The Bureau of Mines published a report of investigations on its research into replacing a portion of the portland cement in mine backfill (waste) with pozzolan (fly ash) and lime.37 Unconfined compression tests on various ratios of fly ash to cement in 84 samples produced compressive strength curves that can be used to estimate the best backfill mix for any particular mine. Returning mine waste underground in the form of a low-strength concrete provides benefits in waste disposal, ground control, ventilation, and fire control; however, the support potential gained by adding portland cement to the mine waste is often offset by the cost of cement. Partial substitution of fly ash as a cementing agent not only reduces the material costs of backfilling but also alleviates the waste disposal problems of power generation from coal.

The University of Surrey, United Kingdom, initiated a research program to improve understanding of the processes involved in the setting of portland cement, and the ways in which these processes relate to the subsequent mechanical performance and strength of cement.38 Essential to the research was an electron microscope purchased for use in a detailed series of experiments to study the developing mi-

^eEstimated. ^pPreliminary. ^rRevised. ¹Table includes data available through June 23,1982.

²Reported figure.

^{**}Converted from officially reported data provided in terms of bags of cement. Conversion factor used assumes the bags reported are bags of 94 pounds, but this may be in error for at least a part of the total.

crostructures of cement during hydration and the variability of these structures relative to chemical composition, temperature, and the presence of gypsum or other additives. A parallel study was planned to address the relationship of changes in cement microstructure to mechanical properties. The researchers' objective was to expand on current knowledge of basic principles in order to develop new types of cement for special applications.

Use of solid fuels such as coal and coke to fire a cement kiln presents problems related to the variability from batch to batch of the fuel constituents. Because of the variability in solid fuels, regular chemical analyses are necessary to determine the proper quantities required for complete combustion of the cement raw materials. The traditional thermogravimetric analysis requires several hours to determine calorific value plus fixed carbon, water, volatiles, and ash content of a coal sample. In 1981, a Texas cement company, Capitol Aggregates, Inc., installed a computer-controlled thermogravimetric system that reduced the time for fuel sample analysis to 20 minutes.39

Researchers at Brookhaven National Laboratory have successfully completed laboratory experiments on substituting commercial-grade portland cement for limestone in fluidized-bed coal combustion reactors. The cement sorbent solved most of the problems for the removal of sulfur dioxide (SO₂) gas arising from the combustion. Type III portland cement was introduced directly into the reactor in pellet form, then regenerated to reform the sorbent and produce a concentrated stream of SO₂ which could be reduced to sulfur for disposal or sale. Advantages of using cement sorbent included (1) little loss of reactivity over consecutive cycles of absorption and regeneration, (2) effectiveness at high pressures and at temperatures above 1000° C, (3) removal of 90% of the sulfur from high-sulfur coal, and (4) superiority to natural limestone in consistency of composition, reactivity, and SO2 removal.40

It was reported that cement kiln dust has an agricultural benefit that could raise the value of quality-controlled material to \$30 to \$35 per ton. Research at Pennsylvania State University determined that cement kiln dust can promote the most efficient use of herbicides in growing no-till corn.⁴¹

The Environmental Protection Agency (EPA) funded a \$500,000 research demon-

stration at the San Juan Cement Co., Puerto Rico, to study the efficacy of hazardous chemical waste disposal through burning in a cement kiln. EPA officials reportedly believe that if a cement kiln can safely destroy toxic chemicals during the normal cementmaking process, then progress will be made toward allaying public apprehension about toxic waste disposal, particularly by incineration. The San Juan kiln was to be used 3 days per week to burn about 160,000 gallons of low-to-medium-toxicity chemical waste during the 12-week demonstration. The only modification in the plant's wet-process system was to be the addition of a second burner to the kiln. Notwithstanding the questions concerning successful incineration of chemical wastes, the test was also expected to address the possibility of cement contamination that might render the product inappropriate for some uses.42

Concrete.—Polymer concretes, made by combining aggregate with resins such as epoxy, polyester, and methyl methacrylate, have been used for years as rapid-patching materials, but had not found wide acceptance for local road and bridge repair because of their high cost compared with hydraulic cements and asphalt. Brookhaven National Laboratory has developed two less expensive polymer concretes, based on furfuryl alcohol and polyester-styrene, respectively, that show promise for ordinary roadway repair as well as more demanding applications.43 Unlike products now on the market, Brookhaven's polymer concretes can be combined with wet aggregate and applied under virtually all weather conditions. They cure in less than an hour over a wide temperature range with compressive strengths above 2,000 pounds per square inch. These characteristics attracted the U.S. Air Force, which had been searching for a strong, fast-setting concrete for runway repair under hostile conditions.44 The Brookhaven formulations were expected to be tested in 1982 at the Tyndall Air Force Base (Florida) outdoor explosive crater facil-

The high cost of cement and archaic methods of moving and placing mass concrete in dam construction had become deterrents to building concrete gravity dams. For example, the constant-dollar cost of placing a cubic yard of mass concrete nearly quintupled from 1970 to 1980. To address this problem, U.S., British, and Japanese researchers developed an innovation called

roller-compacted concrete that reduces the volume of cement required and employs earthmoving equipment superior to conventional cranes and cableways in size, speed, and efficiency. Roller-compacted concrete, which is placed in thin, continuous, horizontal lifts, was scheduled to be applied for the first time in the United States in construction of the Willow Creek Dam near Hepner, Oreg. Compared with the 1981 cost of \$65 for placing a cubic foot of concrete by conventional methods, the new technique lowers the cost to a range of \$18 to \$24.45

SRI International of Menlo Park, Calif., was studying the potential for use of glassreinforced concrete in solar collectors and wind turbine blades. In solar collectors, the glass-reinforced concrete was being considered for service as both a structural material and a reflector substrate. The material consists of sand-portland cement concrete reinforced with 1.5-inch-long alkali-resisting glass fibers. Fabricators succeeded in making very thin (3/16 inch), strong, and resilient concrete sections using 5% by weight of the glass fibers. Although the material was more expensive than conventional concrete and heavier than more expensive materials that offer similar performance (for example, foamed glass and glass fiber-reinforced plastic), it appeared to offer advantages over these materials in renewable-energy-resource applications.46

¹Physical scientist, Division of Industrial Minerals.

Page 80 of work cited in footnote 5.

207

⁸U.S. Embassy, Rangoon, Burma. State Department Airgram A-36, July 31, 1981, p. 6.
 ⁹U.S. Embassy, Santiago, Chile. State Department Airgram A-13, June 24, 1981, p. 51.
 ¹⁰Industrial Minerals (London). No. 171, December 1981,

p. 51.

11 Pages 58 and 59 of work cited in footnote 5.

¹²Page 59 of work cited in footnote 5.
 ¹³U.S. Embassy, New Delhi, India. State Department Airgram A-49, July 6, 1981, pp. 10-12.
 ¹⁴World Cement Technology (Wexham Springs, Slough, England). V. 12, No. 7, September 1981, p. 336.
 ¹⁵Page 83 of work cited in footnote 10.
 ¹⁶Industrial Minerals. No. 170, November 1981, p. 37.
 ¹⁷U.S. Embassy, Tokyo, Japan. State Department Airgram A-100, July 8, 1981, p. 2.
 ¹⁸Rock Products. V. 84, No. 9, September 1981, p. 30.
 ¹⁹Page 13 of work cited in footnote 4.
 ²⁰Page 38 of work cited in footnote 4.

²⁰Page 83 of work cited in footnote 10.

²⁸Page 83 of work cited in footnote 10.

²¹U.S. Embassy, Seoul, Korea. State Department Airgram A-76, Oct. 22, 1981, 3 pp.

²²U.S. Embassy, Beirut, Lebanon. State Department Airgram A-6, Apr. 18, 1982, pp. 11-12.

²³Page 81 of work cited in footnote 10.

²⁴U.S. Consulate, Hermosillo, Mexico. State Department
 Airgram A-01, Jan. 15, 1982, p. 4.
 ²⁵Norcem Group Report. Oslo, Norway, September 1981,

4 pp.

28 Page 83 of work cited in footnote 10.

"Page 83 of work cited in footnote 10.

"Page 60 of work cited in footnote 5.

"Page 60 of work cited in footnote 5.

"Page 60 of work cited in footnote 5.

"Page 80 of Scandinavia. No. 171, December 1981, p. 23.

"December 1981, p. 23.

"Page 83 of work cited in footnote 10.

³⁰Page 83 of work cited in footnote 10.
 ³¹Pit and Quarry. V. 74, No. 4, October 1981, p. 36.
 ³²Industrial Minerals (London). No. 172, January 1982,

p. 49.

33 Page 76 of work cited in footnote 16.

34 Wall Street Journal V. 198, No. 86, Oct. 30, 1981, p. 49.

35 Pages 14 and 15 of work cited in footnote 32.

³⁷Phillips, E. L. Laboratory Analysis of Ash) Concrete. BuMines RI 8584, 1981, 27 pp.

³⁹Page 344 of work cited in footnote 14. ³⁹Pit and Quarry. V. 74, No. 6, December 1981, pp. 84-85. ⁴⁰Steinberg, M., H. J. Yoo, and P. J. McGauley. Portland Cement as a Regenerable Sorbent for the Removal and Cement as a Regenerable Sorbent for the Removal and Recovery of SO₂ in the Fluidized-Bed Combustion of Coal. Brookhaven National Lab. (Upton, N.Y.), March 1981, 38 pp.; available from National Technical information Service, Springfield, Va., DE 81027304.

⁴¹Rock Products. V. 84, No. 5, May 1981, p. 17.

⁴²Severo, R. Waste Disposal Methods Given New Attention. Minneapolis Tribune, May 24, 1981, p. 7D.

⁴⁶Chemical Week. Polymer Concretes: More Than Patches. V. 129, No. 21, Nov. 18, 1981, pp. 81-84.

⁴⁴Fischer, J. B. 30-Minute Concrete. Sci. 81, v. 2, No. 7, July 1981, p. 86.

July 1981, p. 86.

**Engineering News-Record. Cheaper Way to Build Dams. V. 207, No. 21, Nov. 19, 1981, p. 96.

**Chemical Engineering. V. 88, No. 12, June 15, 1981, p. 19.

²U.S. Department of Commerce, Bureau of Industrial Economics. Construction Review. V. 28, No. 2, March-April 1982, pp. 10-17.

^{1982,} pp. 10-17.

*Engineering News-Record. ENR Materials Prices. V. 208, No. 1, Jan. 7, 1982, pp. 34-35.

*Industrial Minerals (London). No. 166, July 1981, p. 9.

*Rock Products. International Cement Review. V. 85, No. 4, April 1982, p. 102.

*U.S. Embassy, Contonou, Benin. State Department Airgram A-12, July 21, 1981, p. 1.

Chromium

By John F. Papp¹

Consumption of chromium decreased in 1981 for the second consecutive year, falling to its lowest level since 1975. After rising slightly during the first two quarters, demand dropped sharply in the latter half of the year. The greatest decline in demand was in ferrochromium, where consumption decreased steadily throughout the year. By yearend, ferrochromium consumption had dropped 60% compared with that at the beginning of 1981, reflecting the sharp

downturn in the steel industry, ferrochromium's major consumer. Imports of chromite declined and were at their lowest level since 1946. Imports of ferrochromium continued to rise, following the pattern of the last several years, and were at a record high in 1981, about 31% above the previously recorded high of 327,000 short tons in 1978. As a result of increased imports and low demand, domestic ferrochromium production was at its lowest record level.

Table 1.—Salient chromite statistics

(Thousand short tons)

	1977	1978	1979	1980	1981
United States: Exports Reexports Imports for consumption Consumption Stocks, Dec. 31: Consumer World: Production	187	23	27	6	71
	61	29	28	44	67
	1,293	1,013	1,024	982	898
	1,000	1,010	1,209	968	879
	1,338	1,301	907	675	663
	10,415	10,210	•10,676	P10,746	•10,225

^eEstimated. ^pPreliminary. ^rRevised.

Legislation and Government Programs.—No new stockpile goals for chromium materials were set in 1981 by the Federal Emergency Management Agency. Current goals and inventories are shown in table 2. There were no stockpile acquisitions or disposals of chromium material in 1981.

The Committee of High-Carbon Ferrochromium Producers petitioned the International Trade Commission (ITC) in May for an extension of 3 years of the penalty duty on ferrochromium imported below a specified floor price. The current 4-cent-perpound penalty duty applied at a floor price of \$38.01 per pound was set in 1978. After hearings were held in July, the ITC determined that high-carbon ferrochromium imports represented a substantial threat of serious injury to domestic producers. In

November, the President proclaimed (Proclamation 4884) an extension of the current import relief provisions on high-carbon ferrochromium for 1 year. A rate of duty of 4.625 cents per pound on chromium content is to be applied to ferrochromium, containing 3% by weight of carbon, valued at less than 38 cents per pound of chromium content.

In a related action, the Ferroalloy Association, representing domestic ferroalloy producers, filed an application in August with the U.S. Department of Commerce (DOC) requesting an investigation to determine the effect on the national security of various ferroalloy imports, including ferrochromium. The investigation by DOC was being conducted under Section 232 of the Trade Expansion Act of 1962. DOC has 1 year to

make its recommendations.

A 4% duty was applied to imported South African ferrochromium effective in March. The duty was applied as a result of the Court of International Trade ruling that preferential railroad freight rates in the Republic of South Africa constitute a bounty or grant. The 4% duty was lifted in June, and duty deposits were refunded after DOC found that the South African Government had made its rail rate retroactive to January.

Table 2.—Stockpile goals and Government inventories as of December 31

(Thousand short tons)

	Stockpile	Inve	ntory
Material	goals	Stockpile grade	Nonstock- pile grade
Chromite, metallurgical	3,200	1,957	531
Chromite, chemical	3,200 675	242	001
Chromite, refractory	850	391	
High-carbon ferrochromium	185	402	- 1
Low-carbon ferrochromium	75	300	19
Ferrochromium-silicon	90	57	ĭ
Chromium metal	20	4	

DOMESTIC PRODUCTION

The major marketplace chromium products are chromite, alloys, chemicals, and metal. In 1981, the United States produced chromium alloys, chemicals, and metal from imported chromite. No chromite was mined domestically.

The principal domestic chromium materials producers are listed in table 3 by industry. Union Carbide Corp. completed the sale in June of its two ferrochromium alloy plants to a Norwegian group led by Elkem AS. Elkem Metals Co., a subsidiary of Elkem AS, will operate the plants. These facilities are located at Marietta, Ohio, and Alloy, W. Va.

Private companies continued exploration of chromite deposits in California, Oregon, and Alaska. California Nickel Corp. contracted with Kaiser Engineers, Inc., to carry out a final feasibility study for surface mining lateritic deposits in northern California. The deposits contain 1% to 2% chromite, which would be recovered as a byproduct, with cobalt and nickel as the principal products. UOP, Inc., has tested the recovery system, which was developed

and patented by the Bureau of Mines (BOM), on a pilot plant scale. Another company, American Chromium Ltd., continued drilling in the same area; it has confirmed previous reserves indicated by BOM and identified an additional mineralized zone. Exploration has also taken place on the Kenai Peninsula in Alaska in areas previously mined for chromite.

Continued weak demand and increased imports of ferrochromium forced domestic producers to close or operate at reduced levels during various periods of the year. Macalloy, Inc., the major high-carbon producer, halted production at its two Charleston, S.C., furnaces in November. Production was scheduled to resume in the first quarter of 1982. Ferrochromium consumption decreased for the second consecutive year, and domestic ferrochromium producers continued to lose a greater share of the domestic market to imported ferrochromium.

Domestic chromium metal production capacity increased in 1981, as Elkem Metals increased its metal production capacity by 50% to 4,500 tons at its Marietta plant.

Table 3.—Principal producers of chromium products

Company	Plant
Metallurgical industry:	
Chromasco, Ltd	Woodstock, Tenn.
Elkem Metals Co	
Michi Media 60	Allov, W.Va.
Foote Mineral Co	' ' ' ' ' ' '
roote mineral Co	Graham, W. Va.
*	5 1 01:
Interlake, Inc	
Macalloy, Inc	2: 1 21 21:
Satralloy Corp	Steubenville, Onio.
Shieldalloy Corp., a division of Metallurg, Inc	Newfield, N.J.
SKW Alloys, Inc	Calvert City, Ky.,
	and Niagara Falls, N.Y
Refractory industry:	
Basic, Inc	Maple Grove, Ohio.
Corhart Refractories Co., Inc	Pascagoula, Miss.
Davis Refractories, Inc	
General Refractories Co	Baltimore, Md., and
General Refractories Co	Lehi, Utah.
Harbison-Walker Refractories	
Harbison-walker Refractories	Baltimore, Md.
Kaiser Aluminum & Chemical Corp	Moss Landing, Calif.,
	and Columbiana, Ohio.
North American Refractories, Co., Ltd	Womelsdorf, Pa.
hemical industry:	
Allied Chemical Corp	Baltimore, Md.
American Chrome & Chemical, Inc.	Corpus Christi, Tex.
Diamond Shamrock Corp	0 11 11 110

Table 4.—Production, shipments, and stocks of chromium ferroalloys and chromium metal

	Prod	uction		Producer
Year and alloy	Gross weight	Chromium content	Shipments	stocks, Dec. 31
1980:				
Low-carbon ferrochromium }	184,408	115,380	185,480	31,510
High-carbon ferrochromium Ferrochromium-silicon	54,207	26,935	51,987	12,410
Other ¹		,		
Total	238,615	142,315	237,467	43,920
1981:				
Low-carbon ferrochromium }	164,933	99,208	148,425	45,680
High-carbon ferrochromium Ferrochromium-silicon }	62,319	28,365	58,852	14,322
Other ¹				
Total	227,252	127,573	207,277	60,002

¹Includes chromium metal, exothermic chromium additives, and other miscellaneous chromium alloys.

CONSUMPTION AND USES

Domestic consumption of chromite ore and concentrate was 879,000 tons in 1981. Of the total chromite consumed in 1981, the metallurgical industry used 57%; the refractory industry, 16%; and the chemical industry, 27%. The metallurgical industry consumed 501,000 tons of chromite to produce 227,000 tons of chromium ferroalloys and metal.

Chromium has a wide range of uses in the three primary consumer groups. In the metallurgical industry, its principal use in 1981 was in stainless steel. Of the total chromium ferroalloys consumed, 434,000 tons, stainless steel accounted for 70%; full-alloy steel, 18%; high-strength low-alloy and electrical steels, 3%; and carbon steel, 2%. Total chromium alloy consumption increased 2% above that of 1980.

The refractory industry used chromium in the form of chromite primarily to make refractory bricks to line metallurgical furnaces. Chromite consumption by the refractory industry decreased 10% compared with that of 1980.

The chemical industry consumed chro-

mite for manufacturing pigments, chromic acid, and sodium and potassium bichromate. Sodium and potassium bichromate are base materials used to make a wide range of chromium chemicals. Chromite consumption by the chemical industry decreased less than 1% compared with that of 1980.

Table 5.—Consumption of chromite and tenor of ore used by primary consumer groups in the United States

	Metalli indu		Refra indu	ctory stry	Cher indu		Total	
Year	Gross weight (thousand short tons)	Average Cr ₂ O ₃ (percent)						
1977 1978	578 534	41.3 39.8	208 237	36.0 36.6	214 239	44.7 45.3	1,000 1,010	40.9 39.9
1979 1980	774 573	39.9 37.5	193	36.2	242	44.9	1,209	40.2
1981	501	36.2	155 139	34.8 34.9	240 239	45.4 44.6	968 879	39.3 38.3

Table 6.—U.S. consumption of chromium ferroalloys and metal in 1981, by end use (Short tons, gross weight)

End use	Low-carbon ferrochromium	High-carbon ferrochromium	Ferrochromium silicon	Other	Total
Steel:		- '			
Carbon	2.275	5,554	1,307	52	9,188
Stainless and heat-resisting	16,100	271,233	13.966	294	301,593
Full-alloy	16,401	54,910	4,424	2,969	78,704
High-strength low-alloy and elec-	10,401	04,510	4,424	2,909	18,104
tric	2,611	4,151	2,307	2,545	11,614
Tool	558	3,927	125	2,010	4,610
Cast irons	946	8.978	198	$5\overline{12}$	10,634
Superalloys	3,718	3,085	w	2,478	9,281
Welding materials (structural and	0,110	0,000	**	2,410	9,281
hard-facing)	737	805			
			7.7	164	1,706
Other alloys1	1,041	780	12	1,849	3,682
Miscellaneous and unspecified	2,034	328	144	23	2,529
Total	46.421	353,751	22,483	² 10.886	400 541
Chromium content	30,769				433,541
Stocks, Dec. 31, 1981		207,122	8,258	7,199	253,348
DWC85, DCC. 01, 1301	5,198	46,601	1,801	32,468	56,068

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and unspecified."

STOCKS

Reported consumer stocks of chromite declined for the fourth successive year in 1981, from 0.68 to 0.66 million tons, with most of the decline occurring in the metallurgical industry. Because of continued low demand and high interest rates, maximum efforts were made by consumers to reduce their inventories in 1981. Yearend producer stocks of ferroalloys rose 37% compared

with those at yearend 1980, while consumer stocks declined 7%. A considerable tonnage of chromium alloys was in the hands of traders at yearend.

Stocks of chromium chemicals (sodium bichromate equivalent) at producer plants increased from 11,924 tons in 1980 to 14,151 tons in 1981.

Table 7.—Consumer stocks of chromite, December 31

(Thousand short tons)

Industry	1977	1978	1979	1980	1981
Metallurgical Refractory Chemical	900 174 264	755 185 361	416 161 330	219 134 322	174 119 370
Total	1,338	1,301	907	675	663

Includes magnetic and nonferrous alloys.

²Includes 3,835 tons of chromium metal. ³Includes 744 tons of chromium metal.

Table 8.—Consumer stocks of chromium ferroalloys and chromium metal, December 31
(Short tons, gross weight)

Product	1977	1978	1979	1980	1981
Low-carbon ferrochromium High-carbon ferrochromium Ferrochromium-silicon Other¹	6,247 66,114 4,777 2,228	6,455 69,196 3,492 2,618	6,683 45,465 3,701 2,465	5,432 50,258 2,578 1,935	5,198 46,601 1,801 2,468
Total	79,366	81,761	58,314	60,203	56,068

¹Includes chromium briquets, chromium metal, exothermic chromium additives, and other miscellaneous chromium alloys.

PRICES

There was no price movement of chromite in 1981. The published price of South African Transvaal chromite was \$51 to \$55 per metric ton (\$46 to \$50 per short ton), f.o.b. South African ports. Turkish chromite was \$110 per metric ton (\$100 per short ton), f.o.b. Turkish ports.

There was no significant price increase for the various chromium ferroalloys. The small increases that did occur were attributed to increased operating costs, inflation, and increased power costs in particular. There was little pressure to increase prices of chromite ore because of slow demand and large stocks. The lack of demand by the steel industry kept ferrochromium prices from rising significantly. Price cutting was apparent in many sales of chromite and ferrochromium materials during the latter part of the year. Chromium alloy and chromium metal prices as published in Metals Week are shown in table 9.

Table 9.—Price quotations for chromium materials at beginning and end of 1981

Material	January	December
	Cents per poun	d of chromium
U.S. charge chromium (50% to 55% chromium) Imported charge chromium (50% to 55% chromium) Imported charge chromium (60% to 65% chromium) U.S. charge chromium (66% to 70% chromium) U.S. low-carbon ferrochromium (0.025% carbon) U.S. low-carbon ferrochromium (0.05% carbon) Imported low-carbon ferrochromium (0.05% carbon) Simplex (low-carbon ferrochromium)	46.25- 47.5 45 - 46.25 46 - 50 48.5 - 52 100 95 89 - 95 95	47.5 46.5- 47.5 48 - 49.5 52 - 54 100 95 89 - 95 100
	Cents per pou	nd of product
Ferrochromium-silicon	34.5 425	35.3 375

FOREIGN TRADE

Reported exports of chromium and chromium containing compounds from the United States included chromite, ferrochromium, chromium metal, pigments, and chemicals. Reported U.S. imports of chromium and chromium-containing compounds included chromite, chromium metal and alloys, ferrochromium, pigments, chemicals, and carbides. Within the categories for

which both imports and exports are reported (all except carbide), only chromium chemicals were exported in excess of imports.

Exports of chromite in 1981 were over 1,000% greater than those of 1980, exceeding combined total exports of the previous 3 years. In 1981, exports were valued at \$5.9 million. Reexports were the highest since

1976, valued at \$9.6 million.

Ferrochromium exports of 14,098 tons, down 56% from those of 1980, were valued at \$15.9 million. Exported ferrochromium went primarily to Canada (74%) and Mexico (24%).

Chromium metal alloys (wrought and unwrought), waste, and scrap exports totaling 395 tons were valued at \$5.2 million. These exports went principally to Mexico (26%) and Venezuela (22%) among the 37 recipients.

Exports of chromium-containing pigments totaling 2,604 tons were valued at \$8.6 million. Of the 46 countries receiving pigments, Japan (21%) and Canada (20%) were the principal recipients.

Chromium-containing chemical (excluding pigments) exports totaling 23,121 tons were valued at \$21 million. Of the 55 recipients, these exports went principally to China (27%) and Mexico (28%).

Imports of chromite decreased for the third consecutive year. Ore grading less than 40% Cr₂O₃ was supplied primarily by the Philippines (33%) and the Republic of South Africa (28%); more than 40% but less than 46% ore by the Republic of South Africa (89%); and greater than 46% ore by the Republic of South Africa (44%) and the U.S.S.R. (39%).

Ferrochromium imports continued to increase, rising to their highest recorded level. Low-carbon ferrochromium imports increased 85%, while high-carbon ferrochromium imports increased 41% compared

with those of 1980. The Republic of South Africa was the principal supplier of low-carbon (35%) and high-carbon (64%) ferrochromium. Ferrochromium-silicon was imported principally from Zimbabwe (75%). Ferrochromium alloy imports totaled 440,770 tons valued at \$220 million; high-carbon ferrochromium totaled 387,637 tons (\$174 million); low-carbon ferrochromium totaled 40,602 tons (\$40 million); and ferrochromium-silicon totaled 11,435 tons (\$6 million).

Imports of chromium metal (wrought and unwrought), alloys, scrap, and waste totaling 3,539 tons were valued at \$3.5 million. Principal suppliers were the United Kingdom (44%) and Japan (41%). The average value of imports was \$3.48 per pound.

Imports of pigments totaling 6,484 tons were valued at \$14 million. Chromium oxide green was the main chromium pigment import (38%), coming principally from the United Kingdom and Japan. Pigments containing zinc yellow (23%) were imported principally from Poland.

Chromium carbide imports totaling 243 tons were valued at \$2 million. Of the three countries supplying chromium carbide, the Federal Republic of Germany supplied 79%, Japan 15%, and the United Kingdom 6%.

Tariff rates for chromium materials as of January 1, 1981, and as established for January 1, 1987, as published in the Tariff Schedules of the United States, Annotated (1981), are shown in table 13.

Table 10.—U.S. exports and reexports of chromite ore and concentrates

(Thousand short tons and thousand dollars)

Year	Expe	orts	Reexp	orts
1 car	Quantity	Value	Reexp Quantity 61 29 28 44 47	Value
1977	187	10,105	61	4 913
1978	23	2,767		2.574
1979	27	2,514		4,913 2,574 2,860
1980	6	1,447		8.544
1981	71	5,893	67	8,544 9,575

Table 11.-U.S. imports for consumption of chromite, by year, grade, and country

(Thousand short tons and thousand dollars)

Veer and country	Less	Less than 40% Cr ₂ O ₃	,r ₂ O ₃	Mor less t	More than 40% but less than 46% Cr ₂ O ₃	but r2Os	46%	46% or more Cr2O3	203		Total	
f sample and a	Gross	Cr ₂ O ₃ content	Value	Gross	Cr ₂ O ₃	Value	Gross	Cr ₂ O ₃	Value	Gross	Cr ₂ O ₃	Value
1980:	,	. 1										
Finland	88	r- 00	1,454	44	∞	2,944	23	13	2,420	28	8	6,818
Madagascar Philippines	100	¥	11,745	88	12	2,419	10	120	<u>80e</u>	43	ន្ទ	2,149 3,225
South Africa, Republic of	348	2 15	1,779	276	122	$12,\overline{783}$	¦8	¦&	4,498	138 402	45 178	11,740
U.S.S.R	28	30	2,707 3,791	ន្តន	12.0	1,623 1,899	87.82	8 8 8	1,794	86 170	37	6,124
Total	362	126	22,545	425	188	22,743	195	96	11,237	885	410	56,525
1981:												
Albania Finland	11	4.0	979	က္		237	Đ	Đ	5	14	2	1,221
Madagascar	3 ¦€	9 ÷	010,6	.⊒∞	04	44 32 22 23	10	i iro	$\bar{624}$	28 18 18	%	3,846 1.056
Philippines	£.	€	11.236	1	1	!	=	18	103	Ð	Ð	7
of	112	142	4,017	302	135	15,485	1 8 °	. % .	4,274	145 482	211	23,776
	223	19	2,456	er -	9	1,000	619	ొబ	633 2,773	111	88	3,076 5,229
Total ²	403	140	23,115	339	151	18,018	156	7.7	8,815	868	368	49.948
. 9.4												

1 Less than 1/2 unit
 2 Data may not add to totals shown because of independent rounding.

Table 12.—U.S. imports for consumption of ferrochromium, by year and country

		arbon ferrochr s than 3% car			arbon ferroch % or more carl	
Year and country	Gross weight (short tons)	Chromium content (short tons)	Value (thousands)	Gross weight (short tons)	Chromium content (short tons)	Value (thousands
1980:				• .		
Brazil				5,303	2,855	\$2,170
France	248	177	\$265			
Germany, Federal Republic of	4.846	3,410	6,056	278	187	291
Italy	19	. 14	28			
Japan	2,632	1.800	3,634			_:_
Korea, Republic of	56	37	61			
South Africa, Republic of	6.381	4,222	6,023	219,476	123,473	98,797
Spain	0,001	-,	-,	2,756	1.485	1,225
Sweden	7.145	5,163	8.527	2,237	1,471	1.267
Turkey	1,140	0,100	0,02.	5,485	3,588	3,093
Yugoslavia	55	39	57	20,172	13,157	11,103
Zimbabwe	610	430	677	19,519	12,589	10,213
Total	21,992	15,292	25,328	275,226	158,805	128,159
=						
1981:		•				
Belgium	26	19	31	00.070	11 150	8.601
Brazil		,		20,673	11,152 1,799	
China			2.75	2,767	1,799	1,385
France	2,448	1,695	2,452		200	351
France Germany, Federal Republic of	4,482	3,134	5,405	341	232	991
Italy	722	528	892		·	
Japan	1,404	944	2,123			
Norway	1,246	778	1,042	556	356	539
Philippines				2,315	1,447	1,224
South Africa, Republic of	14,204	9,026	11,479	246,358	130,483	102,865
Spain				1,383	922	701
Sweden	7,959	5,681	9,047	3,308	1,819	1,428
Turkey	231	165	209	7,984	5,122	3,936
Yugoslavia			'	47,466	30,642	23,527
Zimbabwe	7,875	5,482	7,402	54,486	35,986	28,971
Total ¹	40,602	27,453	40,082	387,637	219,961	173,529

 $^{^{1}\}mathrm{Data}$ may not add to totals shown because of independent rounding.

Table 13.—U.S. import duties on chromium containing materials

		Most favored n	ation (MFN)	Non-MFN
Item	Number -	Jan. 1, 1981	Jan. 1, 1987	Jan. 1, 1981
Ore and concentrate	601.15	Free	Free	Free.
Low-carbon ferrochromium	606.22	4% ad valorem	3.1% ad valorem _	30% ad valorem.
High-carbon ferrochromium	606.24	1.9% ad valorem1	No change	25% ad valorem.
Ferrosilicon chromium	606.42	10% ad valorem	10% ad valorem	Do.
Sodium chromate and dichromate	420.98	2.8% ad valorem	2.4% ad valorem _	8.5% ad valorem.
Potassium chromate and dichro-	420.00	2.0 % au valorem ==	2.170 da valorent =	0.0 % 44 (4.01010)
	420.08	1.6% ad valorem	1.5% ad valorem _	3.5% ad valorem.
 Chromium carbide	422.92	5.8% ad valorem	4.2% ad valorem _	25% ad valorem.
Chrome metal (wrought,	466.06	5.5 % au valorein	4.D /c du valorem =	20 /0 44 141010111
unwrought, and waste and scrap)	² 632.18	4.7% ad valorem	3.7% ad valorem	30% ad valorem.
	-032.10	4.1% au valorem	o.i /e au valorem _	oo /b uu vaiorein.
Pigments:	479.10	For - 1 1	5% ad valorem	Do.
Chrome green	473.10	5% ad valorem		Do.
Chrome yellow	473.12	do	do	
Chromium oxide green	473.14	4.8% ad valorem $_$ $_$	3.7% ad valorem $_{-}$	Do.
Hydrated chromium oxide			•	D-
green	473.16	do	do	Do.
Molybdenum orange	473.18	5% ad valorem	5% ad valorem	Do.
Strontium chromate	473.19	4.8% ad valorem	3.7% ad valorem $_{-}$	₽o.
Zinc yellow	473.20	5% ad valorem	5% ad valorem	Do.
Chromic acid	423.0092	4.7% ad valorem $_$ $_$	3.7% ad valorem $_{-}$	Do.

¹Total duty of 4.625 cents per pound on material valued at less than 38 cents per pound of chromium through Nov. 15, 1982.

²Temporarily suspended.

WORLD REVIEW

World chromite production in 1981 decreased to 10.2 million short tons from 10.7 million tons in 1980. Chromite mining is expected to increase in Greece and the Philippines, where new mines are planned or came into production in 1981. Future chromite mining appears likely in Papua New Guinea, where exploration has revealed reserves greater than previously expected.

The greatest activity in the world chromium industry is the vertical integration of the industry in chromite-producing countries. Integration takes the form of installing ferrochromium production facilities to process chromite concentrates from local chromite mines. Such upgrading permits the producing country to increase export revenues by the added value of the processed product. Developing countries have the advantages of lower personnel, energy, and transportation costs, compared with those of developed countries such as the United States or Japan. In 1981, new ferrochromium production commenced in Zimbabwe. In addition, construction of new ferrochromium plants was announced in Greece, India, and Zimbabwe. Albania, India, the Philippines, and Turkey are planning new or expanded ferrochromium production facilities.

Albania.—Fondmetall, a Gothenburg-based metals and steel trading company in Sweden, reportedly has signed a contract to be the sole agent to sell Albanian ferrochromium worldwide. Albanian ferrochromium production, which started in 1979, is about 28,000 tons per year. Albania's current 5-year plan calls for a substantial increase in both chromite and ferrochromium production.

China.—China is reported to have two chromite mines, one each in the Xinjiang Autonomous Region, north of Urumqi, and in Jilin Province, east of Changchun. Chromium deposits, are reported in the Provinces of Xizang, Yunnan, Hunan, Jiangsu, Zhejiang, and Liaoning. The major consumers of Chinese chromite ore are Japan and Southeast Asian countries. China exported 2,800 short tons of high-carbon ferrochromium to the United States in 1981. These are the first recorded shipments of chromium materials received in the United States from China.

Greece.-Greece is continuing develop-

ment of a ferrochromium industry. The development project is being carried out by the Government-owned Hellenic Industrial and Mining Investment Co., S.A. (HIMIC), and represents a vertical upgrading of Greek chromite reserves at an estimated cost of \$65 million. The project includes: (a) chromite mine development near Kozanis in the Macedonia Province, (b) concentrator construction near the mine sites, and (c) high-carbon ferrochromium plant construction at Tsigeli near Almyros in Thessalia Province. The concentrator will have a capacity of about 60,000 tons per year and cost about \$3.4 million, while the ferrochromium plant will have a capacity of about 30,000 tons per year and cost about \$53.4 million. This project is part of a larger Greek Government plan to create a basic metallurgical industry. Hellenic Ferroalloys, S.A., was established by HIMIC to carry out the project. Greece contracted with Outokumpu Oy of Finland to construct the ferrochromium plant, noting the energy efficiency of the Finnish process. Ground breaking for the ferrochromium plant was held in March. Upon completion of this project in 1983, Greece will be the only European Community ferrochromium producer to use its own raw materials.

India.-Ferro Alloys Corp., Ltd. (FA-COR), a private company, started construction of a 50,000-ton-per-year ferrochromium plant near the chromite mines in Orissa. FACOR is purchasing a 45-megavoltampere (MVA) ferrochromium furnace from Japan's Tanabe Kakoki Ltd. and is converting a 16-MVA furnace to ferrochromium production. India's state-owned Orissa Mining Corp. Ltd. (OMC) is planning a 50,000-ton-per-year ferrochromium plant at Baminipal in Keonihar district in Orissa State. OMC has contracted with Outokumpu Oy for its Kemi-Tornio technology and with Vöest-Alpine of Austria for equipment. Outokumpu's process is for low-grade chromite, upgraded and pelletized before smelting. OMC's charge chrome plant has received local cabinet approval for construction at Baminipal. Indian Metals and Ferro Alloys Ltd. has proposed the construction of a third 50,000-ton-per-year ferrochromium plant, which is still under consideration by the Indian Government.

Japan.—About 50% of Japan's ferrochromium consumption is imported, principally

from the Republic of South Africa (80%). Japan's high-carbon ferrochromium industry, composed of seven manufacturers, has had an oversupply in recent years. Steel production, which consumes 80% of Japan's domestic high-carbon ferrochromium, was dower in 1981 than in 1980. Japan purchased ferrochromium from alternate sources on a spot basis, reportedly to curb South African attempts to raise prices.

Norway.—Elkem AS completed the purchase of Union Carbide's ferrochromium plants in the United States. The purchase included several other domestic and foreign ferroalloy plants owned by Union Carbide.

Pakistan.—The possibility of developing chromite mines at Muslimbagh in the Zhob Valley region of Baluchistan Province in conjunction with a ferrochromium smelter is being studied by the Baluchistan Development Authority. Reportedly some 9,500 tons of chromite have been extracted for testing.

Papua New Guinea.—A joint venture formed by Nord Resources Corp. (via its subsidiary Nord Australex), Mount Isa Mines Ltd., and Highlands Energy Corp. is investigating the extent, quality, and mining potential of a cobalt-bearing nickel laterite deposit overlain by chromite mineralization at the Ramu River concession southwest of Madang. Nord Resources revealed that 100 million tons of 5% to 10% free Cr.O. has been outlined. A feasibility study is being conducted for Nord by the Bechtel Group of San Francisco. It was reported that Nord is considering divesting itself of its oil and gas operations to devote its resources to the development of its Papua New Guinea deposits.

Philippines.—AMAX Inc. (United States) and Kawasaki Steel Corp. (Japan) along with Philchrome Mining Corp., started production at a new refractory chromite mine in the Narra area of Palawan Island. At full production, mine output will be 20,000 tons per year of chromite.

Trident Mining and Industrial Corp. completed expansion of its Palawan Island operations. Capacity has been increased to 750 tons per day from 200 tons per day. Owing to weak demand, Trident closed one of its two concentrating plants on Palawan Island.

Ferrochrome Philippines, a joint venture between Herdis Group Inc. and Vöest-Alpine, has secured sufficient credit to build a ferrochromium plant in Cagayan de Oro. Acoje Mining, another subsidiary of Herdis/Vöest-Alpine, would supply the plant's requirements for metallurgicalgrade chromite concentrates. Upon completion in 1982, this 50,000-ton-per-year charge chrome plant will make the Philippines' first ferrochromium product.

Consolidated Mines Inc. (CMI), the owner of Masinloc refractory chromite mines, and Benguet Corp., the mine operator, have renewed their operating contract that was due to expire in early 1981. The new agreement will run for 25 years and allow CMI to take 25% of the production, with the remainder going to Benquet. Plans are to increase production capacity from about 340,000 to 400,000 tons per year of concentrates.

South Africa, Republic of.—The Council for Mineral Technology (Mintek) is proceeding with the formation of a Chromium Centre. One of the main aims of the Centre will be the stimulation of research and development work on new uses for chromium. Mintek met with the South African industry in August to discuss the proposed Centre. The representatives unanimously agreed to recommend to their companies that they actively support the Chromium Centre.

Southern Cross Steel Co. (Pty.) Ltd. started producing a new steel, a 12% chromium corrosion-resistant steel designated 3CR12, which is expected to be competitive with carbon steels treated with special protective coatings. If the company's production projection of from 3,000 tons per year in 1981 to more than 1 million tons per year by mid-1990 is accurate, this would by itself double the worldwide consumption of chromium.

In 1981, the Republic of South Africa supplied the United States with about 40% of its chromite imports and 62% of its ferrochromium imports.

Turkey.—Etibank, the Governmentowned mining concern, converts part of Turkey's chromite production into highand low-carbon ferrochromium at its smelters in Elazig and Antalaya, respectively. High-carbon ferrochromium capacity is 50,000 tons per year and low-carbon ferrochromium, 100,000 tons per year. Expansion of the high-carbon ferrochromium capacity at Elazig to 250,000 tons per year, at a cost of \$44 million, is to be engineered by Elkem. utilizing Outokumpu Oy process technology. The new unit is expected to go into production in 1985.

Zimbabwe.—Zimbabwe Mining and Smelting (owned by Union Carbide) is increasing its ferrochromium production capacity with the addition of two new furnaces. The first of these has been brought into production for high-carbon ferrochromium; the second will be brought into production in 1982 for low-carbon ferrochromium and ferrochromium-silicon. The ferrochromium plant is located at Que Que between Union Carbide's mines at Mtorashanga and Selukwe, which are at opposite ends of the Great Dyke. The two new 18megawatt furnaces each add 83,000 tons per year to production capacity, increasing capacity by 55% to over 230,000 tons per year at a cost of \$35 million. Zimbabwe Mining and Smelting is expecting to increase its chromite mining capacity at Mtorashanga and Selukwe by 40% to 500,000 tons per year. The Que Que plant could supply 12% of the Western World's high-carbon ferrochromium production.

Plans by Rhodall, Ltd. (owned by Anglo American Corp.), to expand its high-carbon ferrochromium production have been shelved owing to poor market prospects. Rhodall's smelter is at Gwelo, and it has three chromite mines on the Great Dyke. Current smelter capacities are 52,000 tons per year

of high-carbon ferrochromium, 32,000 tons per year of low-carbon ferrochromium, and 25,000 tons per year of ferrochromiumsilicon.

Zimbabwe requested the U.S. Government for inclusion of its low-carbon ferrochromium and ferrochromium-silicon in its scheme of Generalized System of Preferences. Inclusion would grant duty-free status to those products. Currently, low-carbon ferrochromium and ferrochromium-silicon are imported into the United States at 4% and 10% ad valorem duties, respectively. International Minerals and Chemicals Corp., the sole U.S. distributor of Zimbabwean low-carbon ferrochromium, supported Zimbabwe's request. By yearend, the request was under consideration by DOC.

The Zimbabwean Government is creating the Mineral Marketing Corp., which will transfer the mining industries marketing function from foreign-owned multinationals to state control. A mining development corporation is to be formed to promote Government investment in mining operations and exploration.

Table 14.—Chromite: World production, by country¹

(Thousand short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Albania ^e 3	970	1.090	1,120	1.190	1,260
		297	375	316	450
Brazil Colombia ^e		(4)	(4)		
		32	31	33	32
	10	17	17	18	18
CyprusEvot		1	(⁵)		·
Egypt Finland ⁶		^F 449	479	376	455
		41	49	47	47
Greece ⁷		293	341	352	370
India		218	150	90	33
Iran ^e	- 00	10	13	15	12
Japan	- 100	152	141	198	175
Madagascar		202	14	2	3
New Caledonia		12	3	3	3
Pakistan		r ₅₉₅	613	547	490
Philippines		3,466	3,634	3,763	3,160
South Africa, Republic of		722	34	31	30
Sudan		(š)	(5)		
Thailand	200	r413	50ó	440	440
Turkey ^{e s}		*2,550	2,550	2,700	2,650
U.S.S.Ř. ^e			15	17	17
Vietnam ^e	14	14	(⁵)	(⁵)	(s)
Yugoslavia	2	-2		608	580
Zimbabwe	<u> </u>	527	597	608	980
Total	F10,415	r10,210	10,676	10,746	10,225

Revised. Preliminary. eEstimated.

5Less than 1/2 unit.

¹Table includes data available through June 9, 1982. In addition to the countries listed, Bulgaria, China, and North Korea may also produce chromite, but output is not reported quantitatively and available general information is inadequate for formulation of reliable estimates of output

vels.

*Figures represent crude ore output, not marketable production.

⁴Revised to zero.

Production of marketable product (direct-shipping lump ore, plus concentrates and foundry sand).

^{**}TEXPORTS of direct-shipping ore plus production of concentrates.

**BEstimated production of marketable product (direct-shipping ore plus concentrates) based on reported production of marketable product (direct-shipping ore plus concentrates) based on reported production of **Estimated production of marketable product (direct-shipping ore plus concentrates) based on reported production of **Estimated production of marketable product (direct-shipping ore plus concentrates) based on reported production of **Estimated production of marketable product (direct-shipping ore plus concentrates) based on reported production of **Estimated production of marketable product (direct-shipping ore plus concentrates) based on reported production of **Estimated production of *

TECHNOLOGY

The BOM is conducting research on extracting chromium from low-grade ores, on extending the lifetime of chromium-containing chemicals, and on developing substitutes for commonly used chromium-containing metals.

Ore samples have been collected by BOM from central, southern, and southeastern Alaska and from Montana, including chro-- mites and chromium-containing alluvial deposits. Sample analyses indicate several samples have Cr:Fe ratios in excess of 2:1 and beneficiation is possible. For one sample, concentration yielded about 45% Cr₂O₃ with a Cr:Fe ratio of 1.3:1 at about 20% recovery. More complex, but currently practiced, beneficiation techniques yielded better results. Bench-scale studies to extract chromium from domestic chromite or leached laterite residues by a low-temperature roast-leach method are being conducted. Chromium extraction of 92% has been achieved in the laboratory.2

Leather tanning requires a chromiumcontaining solution. BOM started research on the tanning process to determine how chromium consumption can be economically minimized. It appears that the greatest potential for reducing chromium consumption in leather tanning lies in recovering chromium from leather scraps.

Earlier studies by BOM found that 73,000 tons per year of chromium is lost to the domestic industry through waste and scrap materials. BOM has developed two processes to recover chromium from superalloy scrap. Both of these processes have now been tested and verified in the laboratory.3 One process uses a pyrometallurgical oxidation-reduction approach to selectively oxidize chromium in a superalloy molten bath, resulting in a chromium-rich slag. This slag can then be used in the same way chromite is now used. Chromium recoveries of 99% have been achieved for some superalloys in the laboratory. The other process sulfurizes a molten bath of superalloy to form a matte. The solid matte contains chromium (and other metal) sulfides. The metallic sulfides are then separated by conventional techniques. Chromium recoveries of 93% have been achieved for some superalloys in the laboratory.

A patented plasma smelting process is being commercialized by British and U.S. companies in the Republic of South Africa. Tetronics Research and Development of Faringdon, Oxfordshire, in the United Kingdom, has operated a 1.4-megawatt plasma furnace. Middleburg Steel and Alloys of the Republic of South Africa has contracted Foster Wheeler Corp. of Livingston, N.J., to design, engineer, and construct the first commercial plasma ferrochromium furnace of 10.8 megawatts at its Krugersdorp, Republic of South Africa, plant. Advantages of the plasma furnace are reduced capital cost, the use of coal instead of coke in the process, and a 25% reduction in overall operating costs.

A new application may have been found for chromium. Chrome aggregate is being tested for highway use. The aggregate is made from slag material resulting from the processing of chromite ore into ferrochromium alloy for steelmaking. A preliminary study conducted by the Tennessee Highway Department indicated that the slag produces a high-quality aggregate which retains skid resistance. The chrome aggregate does not polish. Warren Brothers, a subsidiary of Ashland Oil Co., is testing the materials provided by Chromasco, Ltd.,'s Memphis, Tenn., ferrochromium plant. Chromasco has a large stockpile of aggregate accumulated from years of ferrochromium production.

Pieles Raras S.A., a Mexican company, has perfected a fishskin tanning process in which chromium-containing compounds are the main tanning agents. Pieles Raras is tanning 12,000 skins per month and has increased its tanning capacity by a factor of 10. The skins are soft and durable when tanned and are used in making expensive leather products.

A commonly used chromium-containing chemical is an etching solution. Etching solutions are used in anodizing aluminum, etching circuit boards, and plating chrome. A BOM-developed process and equipment to regenerate chromic acid were tested in a commercial circuit board etching process. The BOM-developed hardware is connected to the etching bath and continuously regenerates the chromic acid without interrupt-

ing the production process. BOM's patented regenerator extended the life of the chromic acid from 1 day to over 6 months and eliminated the need to add chromium to the bath. The system is becoming commercially available.4

Flotation of Chromite Ores From the Stillwater Complex, Mont. BuMines RI 8502, 1981, 12 pp.

**3De Barbadillo, J. J., J. K. Pargeter, and H. V. Makar. Process for Recovering Chromium and Other Metals From Superalloy Scrap. BuMines RI 8570, 1981, 73 pp.

Kusic, C. L. K. Parameswaran, D. J. Kinneberg, and H. V. Makar. Pyrometallurgical Recovery of Chromium and Other Metals From Superalloy Scrap. BuMines RI 8571, 1981, 73 pp.

*Soboroff, D. M., J. D. Troyer, and A. A. Cochran. Regeneration and Recycling of Waste Chromic Acid-Sulfuric Acid Etchants. BuMines RI 8377, 1979, 13 pp.

¹Physical scientist, Division of Ferrous Metals. ²Smith, G. E., J. L. Huiatt, and M. B. Shirts. Amine

Clays

By Sarkis G. Ampian¹

Clays in 1 or more of 6 classification categories (kaolin, ball clay, fire clay, bentonite, fuller's earth, or common clay and shale) were produced in 44 States and Puerto Rico during 1981. Clay production was not reported in Alaska, Delaware, Hawaii, the District of Columbia, Rhode Island, Vermont, or Wisconsin. The States leading in output were Georgia, 8.0 million tons; Texas, 4.2 million tons; Wyoming, 3.9 million tons; California, 2.3 million tons; and Ohio, 2.2 million tons, followed in order by North Carolina and South Carolina. Georgia also led in total value of clay output with \$554 million; Wyoming was second with \$101 million. Compared with 1980 figures, clay production increased in 10 States and value increased in 20 States. Total quantity of clays sold or used by domestic producers in 1981 was 9% lower than that of 1980; total value rose 10% to an alltime high. Increases in value per ton were reported for all clays in 1981 owing to increased labor, fuel, and material costs. The energy crisis, or more specifically, the unpredictable shortages and costs of fuels. continued to cause considerable concern among clay producers and clay product manufacturers. Industrywide efforts were made both to economize and to obtain standby fuels. The cost of environmental protection equipment, environmental restrictions, and rising capital costs also continued to adversely affect production during 1981.

Production of the specialty clays, ball clay, fire clay, and kaolin, all decreased, except for bentonite and fuller's earth, which showed increased production. A downturn in construction that lowered demand for building materials (brick, lightweight aggregate, vitrified clay pipe, clay floor and wall tile, etc.) was responsible for the decline in production of common clay and shale. Production of bentonite increased 18% and that of fuller's earth increased 8%, while the following decreased: Common clays, 15%; fire clay, 8%; ball clay, 5%; and kaolin, 3%. The decreases were largely due to the overall downturn in the economy that lowered demand across the board.

Kaolin in 1981 accounted for only 17% of the total clay production but for 58% of the value.

Table 1.—Salient clays and clay products statistics in the United States

(Thousand short tons and thousand dollars)

	1977	1978	1979	1980	1981
Domestic clays sold or used by producers: Quantity Value	53,196	56,822	54,689	48,790	44,379
	\$579,170	\$717,274	\$846,089	\$898,947	\$988,845
Exports ² : Quantity Value	2,561	2,665	3,205	3,214	3,151
	\$160,790	\$194,914	\$243,722	\$263,147	\$292,914
Imports for consumption ² : Quantity	36 \$1,917 \$465,442 \$993,508	25 \$2,082 \$497,567 \$1,158,278	\$3,972 \$580,257 \$1,179,058	34 \$6,688 \$557,386 \$1,061,507	33 \$7,895 \$609,949 \$971,824

¹Excludes Puerto Rico.

²U.S. Department of Commerce.

Table 2.—Clays sold or used by producers in the United States in 1981, by State1 (Short tons)

State	Ball clay	Ben- tonite	Common clay and shale	Fire	Fuller's earth	Kaelin	Total	Total value
Alabama		W	7 1.402.897	257,879	·	249,395	21,910,171	2\$25,406,161
Arizona		33,24	114,924				148,164	1,105,236
Arkansas		·	738,235			141.683	879,918	9,332,946
California	W	75,280		. w		32,312	2,308,778	19,118,482
Colorado		41,100		24,742			275,880	1,734,234
Connecticut							72,854	390,668
Florida					518,031	32,071	731,066	³ 35,318,515
Georgia			1,209,399		584,103	6,235,867	8,029,369	553,726,128
Idaho		W		w		W	26,344	288,377
Illinois			300,192	21,553	W		4321,745	41,540,081
Indiana			. 690,593				690,593	1,601,914
Iowa			476,249				476,249	2,374,802
Kansas		27,000	887,714				914,714	4,756,060
Kentucky	w	<u>-</u> -	484,157	5,815			5489,972	52,394,327
Louisiana		w	379,921	-,			² 379,921	² 6,337,687
Maine			. 56,650				56,650	166,460
Maryland	w		596,811				⁵ 596,811	⁵ 1,984,202
Massachusetts			OFO OFO				258,853	1,322,424
Michigan							1,609,562	5,862,484
Minnesota			83,778				83,778	1,077,154
Mississippi	w	285,446	649,145		w		1,217,705	23,309,359
Missouri			973,710	668,839		104,488	1,747,037	18,413,648
Montana		586,991	13,095	546		, 101,100	600,632	23,110,541
Nebraska			135,965				135,965	409.278
Nevada		14,127	W		w		72,947	2,947,865
New Hampshire			W				W	2,041,000 W
New Jersey			51,786	10,644	-==		62.430	562,898
New Mexico			63,720	w			663,720	6118,811
New York	w		597,276				5597,276	⁵ 2,310,037
North Carolina			0 440 000			w	³ 2,110,380	³ 6,838,420
North Dakota			_,110,000 W			**	2,110,560 W	-0,038,420 W
Ohio			1.853.302	360,031		3,592	2,216,925	10,411,492
Oklahoma		1==	838,339			0,002	838,339	2,063,568
Oregon			176,359		- ==		176,359	299,642
Pennsylvania			1,020,275	226,109		w	31,246,384	³ 7,497,144
uerto Rico			200,049	,			200.049	473,932
South Carolina			907,432		w	724,724	41,632,156	428,600,339
South Dakota		w	116,250		**	•	² 116,250	2000,009
Cennessee	559,468	w	403,330		w			² 209,050
Cexas	w	116,096	3,901,802	$41.9\overline{41}$	w	$\bar{\mathbf{w}}$	1,047,115	23,134,060
Jtah		7,845	247,271	W	w	**	4,172,364	29,134,663
/irginia			501,829	**	**		289,614	2,295,997
Washington			262,652	w			501,829 ⁶ 262,652	2,015,834
Vest Virginia			219,693	w			6010.002	61,524,212
Vyoming		3,584,287	270,909	**			⁶ 219,693	⁶ 502,231
Indistributed	7285,692	7175,740	⁷ 91,899	7309,024	⁷ 553,720	7190 040	3,855,196	100,926,186
_					·	⁷ 136,349	⁸ 934,853	⁸ 26,371,300
Total	845,160	4,947,158	27,543,486	1,927,123	1,655,854	7,660,481	44,579,262	989,318,829

W Withheld to avoid disclosing company proprietary data; included with "Undistributed."

Includes Puerto Rico.

Excludes bentonite.

SExcludes kaolin.

Excludes fuller's earth.

SExcludes ball clay.

Table 3.—Number of mines from which producers sold or used clays in the United States in 1981, by State

State	Ball clay	Bentonite	Common clay	Fire clay	Fuller's earth	Kaolin	Total
Alabama		1	25	-			
Arizona		<u> </u>	45	7		14	47
Aubonass		4	5				9
Colifornia			18			3	21
Calanada	1	6	55			10	72
O		4	29	8			41
Connecticut			3	_			31
Florida			ă		- 5	$-\bar{2}$	19
Georgia			16		12		15
Idaho			10		12	65	93
T11::-		1	. 2	1		1	5
Indiana			13	1	3		17
			21				21
Iowa			16				16
Canaa		1	21				22
Kentucky	6		10	13			29
Louisiana	-	- 1	å	10			
		-					10

^{*}Excludes our cap.

Excludes fire clay.

Total of States indicated by symbol W.

Incomplete total; difference included with individual State totals.

CLAYS 225

Table 3.—Number of mines from which producers sold or used clays in the United States in 1981, by State —Continued

State	Ball clay	Bentonite	Common clay	Fire clay	Fuller's earth	Kaolin	Total
Maine			5				5
	-7		ă				10
Maryland	1		ğ				ž
Massachusetts			ă				9
Michigan			š				2
Minnesota		- 4	19		$-\overline{2}$		26
Mississippi	1	4	16	77	_	16	109
Missouri		13	10	';		10	24
Montana		10	5	1			- 5
Nebraska					-ī		
Nevada		6	į.		1		ĭ
New Hampshire			i				1
New Jersey			ž	2			e e
New Mexico			4	Z		, · ·	11
New York	1		<u>10</u>	- -			59
North Carolina			57			2	59
North Dakota			4				4
Ohio			62	19		1	82
Oklahoma			17				17
Oregon			10				10
Pennsylvania			42	32		1	75
South Carolina			34		- 1	17	52
South Dakota		1	2				3
Tennessee	22		14		1		37
Texas	3	8	84	1	3	1	100
Utah		3	8	. 5	1		17
Virginia			15				15
Washington			7	3			10
West Virginia			3	i			4
Wyoming		121	4				125
	35	174	706	173	33	133	1,254

DOMESTIC PRODUCTION, PRICES, AND FOREIGN TRADE, BY TYPE OF CLAY

KAOLIN

Domestic production of kaolin in 1981 decreased 3%, and the value increased 10%. The average unit value for all grades of kaolin in 1981 was \$75.44 per ton, \$8.54 higher than in 1980. Kaolin was produced at mines in 12 States. Two States, Georgia (81%) and South Carolina (9%), accounted for 90% of total U.S. production in 1981. Alabama ranked third; Arkansas, fourth; and Missouri, fifth. Output in 1981 increased in Missouri and Florida, but declined in Alabama, Arkansas, California, Georgia, Idaho, Nevada, North Carolina, Pennsylvania, South Carolina, and Texas.

Kaolin is defined as a white, claylike material approximating the mineral kaolinite. It has a specific gravity of 2.6 and a fusion point of 1,785° C. The other kaolingroup minerals, such as halloysite and dickite, are encompassed.

All Georgia waterwashed kaolin producers again either announced planned increases in production or were increasing production during 1981. The J. M. Huber Corp. was completing a major expansion at its Wilkinson County mining operations, with a new pipeline and dragline project that was estimated to cost \$14 million. The

company also announced plans to build a new calcining facility costing between \$5 and \$10 million for 1983 startup. In another Huber activity, the company completed its new facility for delaminating kaolin clays at its Edisto, S.C., complex.

Installation of, and/or plans for, spray dryers and high-intensity magnetic separator units (HIMS) continued in the Macon-Sandersville, Ga., kaolin belt. Georgia Kaolin Co. took delivery of a dryer at its Dry Branch complex, and Freeport Kaolin Co. ordered another for installation at Gordon. Engelhard Minerals and Chemical Corp. ordered another spray dryer, reportedly the largest in the United States, for phasing-in at its McIntyre facility. Engelhard, also at McIntyre, installed a 120-inch magnetic separator, and Nord Kaolin Co. received a smaller unit at its Jeffersonville plant. These two separators represent a new series of reduced-power consumption magnets. To date, every major Georgia waterwashed kaolin producer has at least one HIMS onstream. HIMS and spray dryers are the most important pieces of capital equipment to be incorporated into the modern-day waterwashed kaolin flowsheets. The magnetic separator impacts favorably on the reserve picture, while the spray dryers economically produce dust-free and freeflowing kaolin aggregates.

A majority of the waterwashed kaolin producers began supplying a new whole-fraction filler directly from degritted, crude, fine-particle clays. This lower cost filler slurry essentially replaced coarse-fraction filler obtained by classifying crude Georgia kaolins. The coarse-fraction became feed for producing premium coating clays by the delamination process.

Among acquisitions, Allied Corp. purchased the West Coast Refractories and Minerals Div. of Interpace Corp. for its Eltra subsidiary. Eltra was already in this business through its North American Refractories Div. The acquisition was to increase and diversify North American's raw material base and expand its marketing capabilities in the West Coast. The Interpace unit had been a leading manufacturer of aluminosilicate refractory brick in the Western United States and operated kaolin. fire clay, and pyrophyllite mines in the West. It had mines and/or plants in Ione, Victorville, Pittsburg, and Indian Hill. Calif., and Renton, Wash. In another acquisition, Ottawa Silica Co. acquired the assets and business of the Kosse, Tex., industrial sand- and kaolin-producing facilities of Dresser Industries, Inc. The new company was to be known as Texas Industrial Minerals Co., a wholly owned subsidiary of Ottawa Silica, Ottawa, Ill. The Kosse operation produced a high-grade silica sand used by the glass container industry in its area. The facility also produced pulverized sand and calcined and uncalcined kaolin.

Exports of kaolin, as reported by the U.S. Department of Commerce, increased from 1.39 million tons valued at \$134 million in 1980 to 1.41 million tons valued at \$156 million in 1981. The tonnage of kaolin exported in 1981 increased slightly, while the value rose 17% over that shipped in 1980. The increased unit value of exported

kaolin was attributed to both the greater percentage of higher quality paper-coating grades shipped and higher prices.

Kaolin, including calcined, was exported to 73 countries. The major recipients were Japan, 31%; Canada, 15%; the Netherlands, 13%; Italy, 11%; the Federal Republic of Germany, 5%; and the remaining countries, 25%. Of those countries listed in 1981. exports to 16 countries increased, and those to 10 countries decreased. Kaolin producers reported the end uses for their exports as follows: Paper coating, 48%; refractories, 21%; paper filling, 7%; rubber, 3%; paint, 2%; and others, including ceramics, chemical manufacturing, medical, pharmaceutical and cosmetics, pesticides and related products, sanitary ware, graphite, anodes, ink, and plastics, 19%.

Kaolin imports in 1981 decreased from 15,800 tons valued at \$1.87 million in 1979 to 13,600 tons valued at \$1.51 million. The United Kingdom supplied 79%; Canada, 21%; and three other countries supplied small quantities.

Kaolin prices quoted in the trade journals in 1981, except for the calcined and delaminated grade, remained unchanged from 1980. Chemical Marketing Reporter, December 29, 1981, quoted prices as follows:

Waterwashed, fully calcined, bags, carload lots, f.o.b.	
Georgia, per ton	\$218.00
Paper-grade, uncalcined, bulk,	,
carload lots, f.o.b. Georgia,	
per ton:	
No. 1 coating	94.00
No. 2 coating	75.00
No. 3 coating	73.00
No. 4 coating	70.00
Filler, general purpose, same	10.00
basis, per ton	58.00
Delaminated, waterwashed.	98.00
uncalcined, paint-grade,	
1-micrometer average, same	
hosis to	
basis, per ton	182.00
Dry-ground, airfloated, soft,	
same basis, per ton	60.00
National Formulary, powder, colloi-	
dal, bacteria controlled, 50-pound	
bags, 5,000-pound lots, per pound	.24

227 CLAYS

Table 4.—Kaolin sold or used by producers in the United States, by State

Š+-+-	19	980	19	981
State	Short tons	Value	Short tons	Value
Alabama Arkansas California Florida Georgia Missouri South Carolina	413,170 213,358 52,001 30,777 6,311,407 77,113 657,752	\$19,017,072 12,847,072 1,706,901 W 463,700,320 1,450,516 20,835,482	249,395 141,683 32,312 32,071 6,235,867 104,488 724,724	\$12,896,587 7,983,553 1,353,600 W 519,496,664 2,220,370 25,928,842
Other¹	7.878.993	7,541,246 527,098,609	139,941 7.660,481	8,013,986 577,893,602

Table 5.-Kaolin sold or used by producers in the United States, by kind

	77. 1	19	980	19	981
	Kind	Short tons	Value	Short tons	Value
Calcined ¹ Delaminated Unprocessed		1,558,386 1,656,351 438,310 700,394 3,525,552	\$59,966,953 144,921,268 40,600,948 8,232,709 273,376,731	1,311,093 1,494,801 470,998 759,795 3,623,794	\$56,426,719 147,637,273 43,603,922 11,262,648 318,963,040
Total	-	7,878,993	527,098,609	7,660,481	577,893,602

¹Includes both low-temperature filler and high-temperature refractory grades.

Table 6.—Calcined kaolin sold or used by producers in the United States, by kind and State

G4-4-	High ter	nperature	Low tem	perature
State	Short tons	Value	Short tons	Value
1980				
Georgia Other ¹	707,446 671,886	\$58,791,366 35,872,777	277,019	\$50,257,125
Total	1,379,332	94,664,143	277,019	50,257,125
1981				
Georgia Other ¹ Other O	672,648 419,032	60,198,079 23,576,182	403,121 	63,863,012
Total	1,091,680	83,774,261	403,121	63,863,012

¹Includes Alabama, Arkansas, California, Idaho, Pennsylvania, and Texas.

Table 7.—Georgia kaolin sold or used by producers, by kind

Kind	19	980	19	981
Kind	Short tons	Value	Short tons	Value
Airfloat	1,067,084	\$38,748,311	753,930	\$29,574,295
Calcined ¹	984,465	109,048,491	1,075,769	124,061,091
Delaminated	438,310	40,600,948	470,998	43,603,922
Unprocessed	295,996	1,925,839	313.841	3,435,670
Waterwashed	3,525,552	273,376,731	3,621,329	318,821,686
Total	6,311,407	463,700,320	6,235,867	519,496,664

¹Includes both low-temperature filler and high-temperature refractory grades.

W Withheld to avoid disclosing company proprietary data; included with "Other."
¹Includes Idaho, Nevada (1980), North Carolina, Ohio, Pennsylvania, Texas, and data indicated by symbol W.

Table 8.—Georgia kaolin sold or used by producers, by kind and use

•			2001				1961	10	
Ose		Air- float	Unproc- essed ¹	Water- washed ²	Total	Air- float	Unproc-	Water-	Total
Adhesives Adhesives Adhesives Aum (aluminum sulfate) and other chemicals Animal feed Animal feed Ashalt tile and inioleum Catalysts (oil-refining) China and dimerware; crockery and earthenware Electrical porcelain Flectrical porcelain Flect	g, other,	40.668 9.511 10.520 5.744 22.827 22.827 28.611 852 86.611 872 873 874 873 874 873 874 873 874 873 874 873 874 873 874 873 874 873 874 873 874 873 874 873 874 873 874 874 873 874 874 873 874 874 874 874 874 874 874 874 874 874	219,520 6,000 2,096 32,083 2,658 4,492 W W	16,885 9,282 8,547 8,547 56 73,103,426 734,198 42,657 10,657	57,488 288,288 11,744 11,744 11,744 89,687 3,010 444,748 1,181 1,182,294 41,182,294 41,183 1,182,294 1,182,294 1,182,294 1,182,294 1,182,294 1,182,294 1,182,294 1,182,294 1,183,294 1,184	5,685 8,131 11,923 11,923 11,923 14,698 464 W W W W W W W W W W W W W W W W W W	229,717 4,955 2,490 11,121 2,984 446,779 W	41,906 209 209 209 8,444 12,690 12,690 7,555 7,555 7,40,889 7,555	47,591 288,746 3,340 4,390 99,008 11,984 27,788 27,788 27,788 27,788 27,788 11,565 11,565 11,103,778 11,103,778 11,103,78
nnknown	i i	40,280	;	.	40,280	39,625	-	1	

icides and related products, waterproofing and seeling, other, 24,934 18,935 24,569 42,569 42,569 9,035 17,646 11,380	Miscellaneous, unprocessed: Drain tile, flower pots, gypsum products, other (1981)	;	6,263	1	6,263	1	19,441	1.	19,441
1,054,082 743,402 8,253,670 5,051,154 739,181 767,117 8,566,377 5,6 1,054,085 77 5,	Cypsum products, peeticides and related products, waterproofing and sealing, other, unknown. Undistributed	24,934	18,935	42,569 890	42,569 ³ 9,637	9,035	17,646	73,800 11,360	73,800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total	1,054,082	743,402		5,051,154	739,181	767,117	3,566,377	5,072,675
CT. 107. CO. COC CO. 100 C.		1 [[]	260,040	25,494 691,446 72,399 21,997 498 175,377 987,211	25,494 691,446 72,429 21,997 260,040 576 188,271	87 55 14,607	219,372	31,310 604,296 77,992 23,895 364 191,214 929,071	31,397 604,296 77,992 23,895 219,372 205,821 1,163,192

W Withheld to avoid disclosing company proprietary data; included with "Undistributed."
Includes high-temperature calcined.
Includes low-temperature calcined and delaminated.
Includes low-temperature calcined and delaminated.
Incomplete total; difference included in totals for specific uses.

Table 9.—South Carolina kaolin sold or used by producers, by kind

Kind	1	980	1	981
Killü	Short tons	Value	Short tons	Value
Airfloat Unprocessed	457,231 200,521	\$19,231,850 1,603,632	514,070 210,654	\$24,309,941 1,618,901
Total	657,752	20,835,482	724,724	25,928,842

Table 10.—South Carolina kaolin sold or used by producers, by kind and use (Short tons)

1980 Kind and use 1981 Airfloat: 13,802 1,444 23,395 20,383 17,766 Animal feed and pet waste absorbent Ceramics¹_____ 117,941 Fertilizers.
Fiberglass 15,444 98,427 841 3,292 105,709 1,146 4,292 Paint.
Paper coating and filling
Pesticides and related products ------15,135 17,075 Plastics _____ 11,499 191,059 13,966 122,625 Rubber Other refractories² 7.213 5,202 7,268 50,744 Exports⁴___ 50,747 56,612 458,957 198,795 514,070 210,654 Unprocessed: Face brick; firebrick, block and shapes; miscellaneous Grand total 657,752 724,724

⁴Includes ceramics, paper filling, pesticides and related products, rubber, and miscellaneous.

¹Includes floor and wall tile; glazes, glass, and enamels (1980); pottery; roofing granules; and sanitary ware.

²Includes refractory grogs and crudes; refractory mortar and cement.

Includes common brick, crockery and other earthenware (1980), ink (1980), roofing tile (1981), structural tile (1980), and miscellaneous.

Table 11.—Kaolin sold or used by producers in the United States, by kind and use

		1980	0			1981	31	
Use	Airfloat	Unprocessed 1	Water- washed ²	Total	Airfloat	Unprocessed 1	Water- washed ²	Total
Damaretia								
Louiseus: Adheaiyea	54,465	4.376	16,835	75,676	23,451	6,161	41,900	71,512
Alum (aluminum sulfate) and other chemicals	9,633	332,616	9,252	351,501	77,701	373,388	260 200 200	451,349
Animal feed	11,004	956 576	1	10,114 957 954	1,001	969,090	607	970 153
Brick, common and face	1,010	010,002	67.082	67.082	29.511	760,607	99,093	128,604
	1 1	×	M	18,947		10,105	. !	10,105
China and dinnerware	23,829	3,679	8,547	36,055	12,191	4,923	8,444	25,558
Crockery and other earthenware	7,922	618	-	8,540	X 5	> 5	1	1,417
Electrical porcelain	31,964	2,373	1	34,337	20,103	3,650	10	23,133
1.	099,62	11,935	18	184 090	119,85	9,100	19 690	135,653
Fiberglass; mineral wool and other insulation	0,000	100,170	8	901 955	9388	128,904	14,000	131,292
Firebrick, block, snapes	20,153	3.050	1 1	23,203	12,435	5,425		17,860
Flue linings and high-alumina brick	41,099	4,492		45,591	65,253	2,934	1	68,187
	1,188	11	210	1,643	571	10	232	908
Glazes, glass, enamels	38	3,737	1	3,797	(I)	4,168		4,883
Grogs and crudes, refractory	4,300 9,799	805,561	607	203,801	4,074	001,000	100	19,664
Gypsum products	7,107 M	610,1	400	W.W	070'7 M	3	≥≽	11.805
Kilo furniture	2,056	! !	1 1	2,056	2,582	2,500	1	5,082
Linoleum and asphalt tile	5,744	9,000	1	11,744	ļ	4,955	;;	4,955
Medical, pharmaceutical, cosmetic	M :	1000	≱	1,990	≥ ?	100	>	986
Mortar and cement, refractory	17,395	22,815	100 400	40,210	4,994	20,746	200 22	76,066
Paint	34,405	000,02	9 955 979	9 506,606	10,000	i	9 405 505	2 405 505
Paper coating	990 958	<u> </u>	734 103	963,551	496 567	1	758 503	1,185,070
Perticides and related products	15,235	32,273	1,326	48,834	40,372	39,009	1,280	80,661

See footnotes at end of table.

Table 11.—Kaolin sold or used by producers in the United States, by kind and use —Continued

		19	1980			1981	18	
U86	Airfloat	Unprocessed 1	Water- washed ²	Total	Airfloat	Unproc-	Water-	Total
Domestic —Continued								
Pleating								
Pottery	16,776	16	42,557	59,333	21,438		44.889	66 327
Roofing granules	19,001	9,246	1	28,247	10,149	9,400		19,549
Roofing tile and structural tile	701'61	999 467	!	19,551	9,944	460	1	10,404
Kubber	257,908	8,549	10,657	277.114	155.245	9,000 9,866	AP KAR	1,606
Waterproofing and sealing	128,080	4,088	69	132,237	150,979	4,553	52	155,584
Miscellaneous.	73,581	21.062	2 G	694 474 596	9,212	1000	159	9,371
				000121	10,121	070,02	20,117	-108,884
1.00al	1,489,680	1,780,966	3,251,223	6,521,869	1,243,993	1.594.428	3.568.842	6 407 963
Exports:								1
Ceramics	007 6							
Foundry sand; grogs, crudes, other refractories	308	298.760	2,447	4,927	3,071	110 110	1,851	4,922
Paint	; ;		25.494	25,494	220	7.50,102	1010	257,368
Parer filling			691,446	691,446	5	!	604 996	604,09
Plastics	5,620	!	72,399	78,019	4,225		77,992	82.217
Rubber	AA KKA	1	21,997	21,997	10	-	23,895	23,895
Other	15,744	1	490	45,052	43,058	;	364	43,422
•			110,011	121,121	10,338		189,363	205,701
	68,706	298,760	989,628	1,357,124	67,100	257,047	929.071	1.253.218
Grand total								
Ottana wat	1,558,386	2,079,726	4,240,881	7,878,993	1,311,093	1,851,475	4,497,913	7.660.481
W Withhall to 3 3: 1 - 5								

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous." Includes high-temperature calcined.

"Includes high-temperature calcined and delaminated.

"Includes low-temperature calcined and delaminated.

"Includes soil conditioners and mulches.

"Includes soil conditioners and mulches.

"Incomplete total; remainder included with totals for specific uses.

BALL CLAY

production of domestically mined ball clay in 1981 decreased 5%, while value increased 4%. Tennessee provided 66% of the Nation's output, followed in order by Kentucky, Mississippi, Texas, Maryland, New York,2 and California. Production in Kentucky and Mississippi increased over that reported in 1980; production in all remaining States decreased.

Ball clay is defined as a plastic, whitefiring clay used principally for bonding in ceramic ware. The clays are of sedimentary origin and consist mainly of the clay mineral kaolinite and sericite micas.

Increased production capacities, new plants, and acquisitions and/or mergers slowed during 1981. By yearend, Kentucky-Tennessee Clay Co. had expanded its laboratory facilities in Kentucky and Tennessee and began operation of a new quality control laboratory at its Gleason, Tenn., operation. In addition, the company's customer service laboratory, presently located in Alliance, Ohio, was scheduled to be merged with the Mayfield, Ky., laboratory.

The average unit value for ball clay reported by domestic producers rose in 1981 to \$32.95 per ton, an increase of \$2.92 per ton. Chemical Marketing Reporter, December 29, 1981, listed ball clay prices unchanged from 1980, as follows:

Domestic, airfloated, bags,	
carload lots, Tennessee,	\$18.00-\$22.00
Domestic, crushed, moisture- repellent, bulk, carload lots,	
Tennessee, per ton	8.00- 11.25
Imported, airfloated, bags, carload lots, Atlantic ports, per ton	70.00
Imported, lump, bulk, Great Lakes, per ton	40.50

Ball clay exports in 1981 amounted to 212,000 short tons valued at \$6.6 million, compared with 211,000 tons worth \$6.4 million in 1980. Unit value increased \$0.87 per ton. Shipments were made to 29 countries. The major recipients were Mexico, 58%, and Canada, 35%.

Ball clay imports, largely from Canada and the United Kingdom, decreased from 9,400 tons valued at \$1.06 million in 1980 to 7.300 tons valued at \$856,000 in 1981.

Table 12.—Ball clay sold or used by producers in the United States, by kind and State

	Air	float	Unpro	cessed	To	otal
State	Short tons	Value	Short tons	Value	Short tons	Value
1980 TennesseeOther	374,144 ¹208,396	\$12,419,212 17,701,968	231,440 279,644	\$5,112,716 21,610,230	605,584 288,040	\$17,531,928 9,312,198
Total	582,540	20,121,180	311,084	6,722,946	893,624	26,844,126
1981 Tennessee Other	317,156 1231,225	11,751,863 18,704,208	242,312 ² 54,467	6,212,308 ² 1,175,908	559,468 285,692	17,964,171 9,880,116
Total	548,381	20,456,071	296,779	7,388,216	845,160	27,844,287

¹Includes Kentucky, Maryland, Mississippi, and Texas

Table 13.—Ball clay sold or used by producers in the United States, by kind and use (Short tons)

		1980			1981	
Use	Air- float	Un- processed	Total	Air- float	Un- processed	Total
Adhesives Animal feed Brick, face China and dinnerware Crockery and other earthenware Drilling mud Electrical porcelain Fiberglass and catalysts (oil-refining) Firebrick, block, shapes Glazes, glazs, enamels	1,614 W 37,308 13,525 W 28,159 48,860	 W 15,255 W	1,614 W W 37,308 13,525 W 28,159 48,860 15,255 2,808	3,577 W 13,838 976 W 12,614 W 524 W	 W 23,427 8,259 11,150 6,171 W	3,577 W 37,265 9,235 W 23,764 W 6,695 2,567

See footnotes at end of table.

²Includes Arizona (1980), California, Kentucky, Maryland (1981), Mississippi, New York, and Texas.

Table 13.—Ball clay sold or used by producers in the United States, by kind and use -Continued

		1980			1981	-
Use	Air- float	Un- processed	Total	Air- float	Un- processed	Total
Grogs and crudes, high-alumina;						
mortar and cement refractories	79,989	19,630	99,619	87,846	9.813	97,659
Kiln furniture	W	W	2,505	w	W	2,540
Paper coating and filling	13.874		13,874	15.533		15,533
Pesticides and related products	898		898	W	w	763
Pottery	129,631	92,150	221,781	192,092	26,933	219.025
Rubber	W	,	w w	102,002	W	215,020 W
Sanitary ware	64,265	20.171	84,436	68.698	12.130	80,828
Tile:	,	,	01,100	00,000	12,100	00,020
Floor and wall	53,299	37,289	90,588	69,467	12,649	82,116
Other	,	0.,200	00,000	00,101	W	W
Miscellaneous	38,837	68.944	¹ 102.468	52,090	104.979	¹ 151,199
Exports	72,281	57,645	129,926	31,126	81,268	112,394
	. =,201	01,040	120,020	01,120	01,200	112,394
Total	582,540	311.084	893,624	548,381	296,779	845,160

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous." $^{\rm 1}$ Incomplete total; difference included in totals for specific uses.

FIRE CLAY

Fire clay sold or used by domestic producers in 1981 was reported at 1,927,123 tons valued at \$31.2 million. Fire clay is defined as detrital material, either plastic or rocklike, containing low percentages of iron oxide, lime, magnesia, and alkalies to enable the material to withstand temperatures of 1,500° C or higher. Fire clay is basically kaolinite but usually contains other materials such as diaspore, ball clay, bauxite clay, and shale. Fire clays commonly occur as underclay below coal seams and are generally used for refractories. Some fire clay was previously reported in other end uses in this report.

Fire clay production was reported in 1981 from mines in 16 States. The first five States-Missouri, Ohio, West Virginia, Alabama, and Pennsylvania-in order of volume, accounted for 92% of the total domestic output.

Exports of fire clay decreased from 308,000 tons worth \$17.9 million in 1980 to 290,000 tons valued at \$19.3 million in 1981. Fire clay exports decreased 6% in tonnage and increased 7% in value. The price of exported fire clay increased by \$8.31 to \$66.59 per ton, indicating a larger percentage of higher quality material shipped.

Fire clay was exported to 37 countries in 1981, with Mexico and the Federal Republic of Germany receiving 25% each, while Canada and Japan received 17% and 14%, respectively. No imports of fire clay were reported during 1981.

There were no price quotations in domestic journals for fire clay, but per-ton value reported by producers ranged from \$4.77 to \$22.40. The reported average unit value for fire clay produced in the United States decreased 6% from \$17.19 per ton in 1980 to \$16.18 in 1981.

Table 14.—Fire clay sold or used by producers in the United States, by State1

State	19	80	19	81
	Short tons	Value	Short tons	Value
Alabama	223,146	\$4,379,015	257,879	\$5,777,179
Colorado	24,128	179,599	24.742	204,771
IIIIIIOI8	19,758	204,298	21,553	245,920
Indiana	256	2,825	,,	=10,0=0
Kentucky	55,457	475,568	5.815	67.037
Missouri	699,512	12.807.753	668,839	13,396,750
Montana	535	2,670	546	2,730
New Jersey	11,239	222,880	10.644	233,539
Ono	410,312	5.023,064	360,031	4.641.786
Pennsylvania	309,014	7,268,546	226,109	3,582,448
Texas	56,731	743,454	41.941	258,954
Other ²	285,273	4,712,462	309,024	2,766,098
Total	2,095,361	36,022,134	1,927,123	31,177,212

Refractory uses only

²Includes California, Idaho, New Mexico, Utah, Washington, and West Virginia.

CLAYS 235

BENTONITE

Bentonite production in 1981 increased 18% in tonnage and 30% in value over that of 1980. A general increase was noted in domestic consumption, particularly in drilling mud with smaller increases in foundry sand and pelletizing iron ore. A decrease was noted in bentonite exports.

Bentonite was produced in 15 States in 1981. Increased bentonite production was reported for Alabama, California, Colorado, Mississippi, Nevada, South Dakota, Tennessee, Texas, and Wyoming. Production decreased in Arizona, Idaho, Kansas, Monderessee, Texas, Texas, Monderessee, Texas, and Wyoming.

tana, and Utah.

The high-swelling or sodium bentonites have been produced chiefly in Wyoming, Montana, and California. The calcium or low-swelling bentonites have been produced in the other States.

During 1981, all of the major western and southern bentonite producers either announced planned expansions or had expansions underway. With successful conversion to coal from oil and gas firing in dryers, the industry was continuing to explore the practicality of augmenting coal with wood chips as a fuel. Kaiser Aluminum and Chemical Corp. acquired the catalyst and clay products operations of Filtrol Corp., a wholly owned subsidiary of Ashland Oil, Inc., for \$92 million. Filtrol's catalysts, acid-activating plants, and bentonite mines in the United States and Canada were to become part of Kaiser's Industrial Chemicals Div.

On December 29, 1980, Chemical Marketing Reporter quoted bentonite prices as unchanged. Domestic material, 200 mesh, bags, carload lots, f.o.b. mines, was priced from \$28 to \$30 per ton; imported Italian, white, high-gel material, bags, 5-ton lots, ex-

warehouse was not listed. The average unit value reported by domestic producers for bentonite sold or used in 1981 was \$30.17, an increase of \$2.63 from the \$27.54 average of 1980. Per-ton values reported in the various producing States ranged from \$10.00 to \$86.87, but the average value reported by the larger producers was near the Montana average figure of \$39.32.

Bentonite exports in 1981 decreased from 898,000 tons in 1980 to 862,000 tons; value increased from \$62.2 million in 1980 to \$64.5 million in 1981. The unit value of exported bentonite increased from \$69.27 per ton in 1980 to \$74.87 per ton in 1981. This increase in unit value was attributed to a larger percentage of the higher cost drilling muds and foundry sand grades shipped. Domestic bentonite producers were facing increased competition in foreign markets. Bentonite from the Greek Island of Milos was being blended with the U.S. clay for pelletizing Canadian taconite ores on a large scale.

Bentonite was exported to 84 countries in 1981. The major recipients were Canada, 36%; Japan and the Netherlands, 10% each; Singapore, 9%; Saudi Arabia, 8%; and others, 27%. Domestic bentonite producers reported that the end uses of their exports were drilling mud, 58%; foundry sand, 35%; iron ore pelletizing, 6%; and other, 1%.

Bentonite imports in 1981, 98% chemically activated material, totaled 10,024 tons valued at \$4.8 million, compared with 5,300 tons valued at \$2.7 million in 1980. The chemically activated bentonite was imported from six countries, with Canada supplying 51%; the Federal Republic of Germany, 34%; Mexico, 10%; and the United Kingdom, Japan, and Switzerland, the remaining 5%.

Table 15.—Bentonite sold or used by producers in the United States, by kind and State

	Nonsw	elling	Swe	lling	To	tal
State	Short tons	Value	Short tons	Value	Short tons	Value
1980						
Arizona	35,155	\$715.682			35,155	\$715,682
California	44,935	2,594,650	19,431	\$787,262	64,366	3,381,912
Colorado	1,510	18,000	35,450	567,200	36,960	585,200
**	1,010	20,000	30,000	368,700	30,000	368,700
	274,998	6,233,997	00,000	000,.00	274,998	6,233,997
Mississippi	214,550	0,200,001	606,130	22,142,532	606,130	22,142,532
			11,201	498,813	11,201	498,813
Nevada	108,602	7,058,484	50	2,500	108,652	7,060,984
Texas	100,002	1,000,404	8,504	71,708	8,504	71,708
Utah			2.877.040	70,682,075	2.877.040	70.682,075
Wyoming	1	10				3,493,393
Other	¹ 116,413	¹ 2,763,433	² 15,200	2729,960	131,613	3,493,393
	581,613	19,384,246	3,603,006	95,850,750	4,184,619	115,234,996

See footnotes at end of table.

Table 15.—Bentonite sold or used by producers in the United States, by kind and State —Continued

	State	_	Nonsw	elling	Swe	lling	To	otal
	State		Short tons	Value	Short tons	Value	Short tons	Value
	1981							
Arizona			33,220	\$655,126	20	\$1,200	33,240	\$656,326
California			53,073	3,433,167	22,213	1.036,324	75,286	4,469,491
Colorado			2,000	28,000	39,100	391,000	41,100	419.000
Kansas					27,000	331,830	27,000	331,830
Mississippi .			285,446	7,060,084			285,446	7.060,084
Montana					586,991	23.077.808	586,991	23,077,808
Nevada					14,127	706,717	14,127	706.717
Texas			116,046	8,262,576	50	2,500	116,096	8.265,076
Jtah				-,,-	7,845	89.062	7.845	89,062
Wyoming $_{-}$.					3.584,287	99,745,102	3.584.287	99,745,102
Other			¹ 147,648	¹ 3,334,000	² 28,092	21,118,111	175,740	4,452,111
Total			637,433	22,772,953	4,309,725	126,499,654	4,947,158	149,272,607

¹Includes Alabama, Idaho, and Louisiana (1981). ²Includes Idaho, South Dakota, and Tennessee.

Table 16.—Bentonite sold or used by producers in the United States, by kind and use (Short tons)

		1980			1981	
Use	Non- swelling	Swelling	Total	Non- swelling	Swelling	Total
Domestic:						-
Adhesives	W	W	3,696	w	w	382
Animal feed	64,057	106,379	170,436	57.855	99,258	157,113
Brick, face	W	,	W	0.,000	W	W
Catalysts (oil refining)	8,722		8,722	7.749	' '5	7.754
Cement, portland	-,	w	, W	1,120	w	ı,ıoz
Drilling mud	59.061	1,374,150	1.433.211	60.554	2,004,088	2,064,642
Fertilizers	00,001	4.658	4.658	00,004		
Filtering, clarifying, decolorizing:		4,000	4,000		4,054	4,054
Animal oils and mineral oils and						
greases	00.000	0.505	100 515	100 500		
Vegetable oils	99,930	2,787	102,717	102,702	2,610	105,312
vegetable ous	9,242		9,242	55,662		55,662
Foundry sand	228,550	403,530	632,080	270,289	521,430	791,719
Glazes, glass, enamels		w	W		W	W
Medical, pharmaceutical, cosmetic		2,451	2,451		2.818	2.818
Paint		14,111	14.111		14,412	14.412
Pelletizing (iron ore)	849	861.538	862,387		884,976	884,976
Pesticides and related products	3,251	2,694	5,945	506	2,872	3,378
Pet waste absorbent	W	_,001	w	w	2,012	9,516
Waterproofing and sealing	2,160	89,494	91.654	1.897	88.882	90,779
Miscellaneous	86.043	126.941				
	00,040	120,941	¹ 209,288	63,944	71,168	¹134,730
Total	561,865	2,988,733	3,550,598	621,158	3,696,573	4,317,731
Exports:						
Drilling mud	1 700	001 000	000 004			
Foundry sand		331,302	333,084		364,342	364,342
Pelletizing (iron ore)	12,646	222,681	235,327	13,956	203,928	217,884
relieuzing (iron ore)					37,771	37,771
Other	5,320	60,290	65,610	2,319	7,111	9,430
Total	19,748	614,273	634,021	16,275	613,152	629,427
Grand total	581,613	3,603,006	4,184,619	637,433	4,309,725	4,947,158

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous." ¹Incomplete total; difference included with total for each specific use.

FULLER'S EARTH

Production of fuller's earth in 1981 increased 8% in quantity and 17% in value. The average unit value increased \$4.31 in 1981 to \$56.28 per ton.

Fuller's earth production was reported from operations in nine States. The two top producing States, Georgia (35%) and Florida (31%), accounted for 66% of domestic production. All States except Georgia and Illinois showed slight gains in production. Missouri reported no production for 1981.

Fuller's earth is defined as a nonplastic clay or claylike material, usually high in magnesia, which has adequate decolorizing

and purifying properties.

Production from the region that includes Attapulgus, Decatur County, Ga., and Quincy, Gadsden County, Fla., is composed predominantly of the lath-shaped amphibole clay mineral attapulgite. Most of the fuller's earth produced in other areas of the United States contains varieties of montmorillonite.

In 1981, expansions were either underway or completed by the Pennsylvania Glass Sand Corp. in its gelling clay and granules units at its Quincy, Fla., mining and processing complex; Molthan, Inc., a subsidiary of Gurley Oil Co., Memphis, Tenn., at its Paris, Tenn., operation outside of Memphis; and by Mid-Florida Mining Co., Inc., at its Lowell, Fla., mill by the new owner, Florida

Crushed Stone, Inc. SCA, Inc., acquired the idle Bennett Minerals works at Pinewood, S.C. Mid-Florida Mining was processing material from the newly acquired SCA operation in Florida. Bennett Minerals' new mine and processing facilities at Walkerton, Va., 23 miles northeast of Richmond, came onstream with the industries first wood-fired kiln.

Attapulgite, a fuller's earth-type clay, finds wide application in both the absorbent and thickening areas. Mineral thickeners are used in such diverse markets as paints, joint compound cement, polishes, and plastics. The thixotropic properties of attapulgite clays provide the important thickening and viscosity controls necessary for suspending solids.

Prices for fuller's earth were not publicly quoted in 1981, but the value per ton for attapulgite reported by producers ranged from \$45.00 to \$61.25; montmorillonite prices ranged from \$35.09 to \$54.29.

In 1981, fuller's earth was exported to 42 countries; exports decreased from 115,000 tons in 1980 to 111,000 tons in 1981. The unit value of exported fuller's earth increased by \$14.00 to \$94.23 per ton. The major recipients were Canada, 47%; the Netherlands, 23%; the United Kingdom, 10%; and other countries, 20%.

Imports of fuller's earth in 1981 were 216 tons valued at \$55,000, all from the United Kingdom.

Table 17.—Fuller's earth sold or used by producers in the United States, by kind and State

	Attar	oulgite	Montmo	rillonite	To	tal
State	Short tons	Value	Short tons	Value	Short tons	Value
1980						
Florida	417,358	\$23,849,643		·	417,358	\$23,849,643
Georgia	425,084	23,081,875	223,718	\$9,585,352	648,802	32,667,227
Other	¹ 83,552	12,375,494	2384,091 220,831,653 607,809 30,417,005		467,643	23,207,147
Total	925,994	49,307,012			1,533,803	79,724,017
1981						
Florida	518.031	34,955,895			518,031	34,955,895
	346,995	19.035,619	237,108	11,137,782	584,103	30,173,401
Georgia	¹ 51,283	¹ 3,108,462	² 502,437	² 24,945,910	553,720	28,054,372
	916,309	57,099,976	739,545	36,083,692	1,655,854	93,183,668

¹Includes Nevada and Texas. ²Includes Illinois, Mississippi, Nevada, South Carolina, Tennessee, and Utah.

Table 18.—Fuller's earth sold or used by producers in the United States, by kind and use
(Short tons)

		1980			1981	
Use	Atta- pulgite	Montmoril- lonite	Total	Atta- pulgite	Montmoril- lonite	Total
Domestic:						
Adhesives	969		969	1.226		1 004
Animal feed	290	20	310	5,969	·	1,226
Drilling mud	158,203	1,453	159,656	191,287	0.007	5,969
Fertilizers	61.185	24,532			2,027	193,314
Filtering, clarifying, decolorizing	01,100	24,002	85,717	55,442	22,841	78,283
mineral oils and greases	22.318		00.010	~~~		
Medical, pharmaceutical, cosmetic	22,318 82		22,318	20,647		20,647
Oil and grease absorbents		150 500	82	74	_	74
	235,667	158,796	394,463	196,465	246,821	443,286
	3,732		3,732	5,347		5,347
Paper filling	2,503		2,503	4,472		4,472
Pesticides and related products	108,243	72,351	180,594	117,549	66,669	184,218
Pet waste absorbent	169,308	253,875	423,183	116,657	304,080	420,737
Rubber	362	· 1221	362	252	00 2,000	252
Miscellaneous	24,651	54,994	79,645	70,220	36,378	106,598
Total	787,513	566,021	1,353,534	785,607	678,816	1,464,423
Exports:						
Drilling mud	6					
Oil and grease absorbents	53,805	04 700	50.505	363		363
Pet waste absorbent		24,732	78,537	37,330	33,112	70,442
Miscellaneous	70,770	10,741	81,511	85,666	27,283	112,949
Muscenaneous	13,900	6,315	20,215	7,343	334	7,677
Total	138,481	41,788	180,269	130,702	60,729	191,431
Grand total	925,994	607,809	1,533,803	916,309	739,545	1,655,854

COMMON CLAY

Domestic production of common clay and shale in 1981 totaled 27.5 million tons valued at \$109.9 million. Common clay and shale represented 62% of the quantity and 11% of the value of the total clays in 1981. Domestic clays and shales are for the most part used by the producer in fabricating or manufacturing products. Less than 10% of the total clay and shale output was sold. The average unit value for all common clay and shale produced in the United States and Puerto Rico in 1981 was \$3.99 per short ton, \$0.46 more than in 1980. The range in unit value reported for the bulk of the output was from \$1.83 to \$16.88 per ton.

Common clay is defined as a clay or claylike material that is sufficiently plastic to permit ready molding and that vitrifies below 1,100° C. Shale is consolidated sedimentary rock composed chiefly of clay minerals that has been both laminated and indurated while buried under other sediments. These materials are used in the manufacture of structural clay products such as brick and drain tile, portland cement clinker, and bloated lightweight aggregates.

Increased production capacities, new plants, and acquisitions and/or mergers slowed during 1981. Acme Brick Co., a subsidiary of Justin Industries, dedicated its third brick manufacturing plant in Mal-

vern, Ark. This new Quachita plant represents an investment of \$6 million and will be eventually capable of producing in excess of 40 million bricks per year. A contract was awarded to Basic Machinery Co., Inc., to design and construct a raw material grinding plant at the Martinsburg, W. Va., facility of the Continental Clay Product Co. The new grinding plant completes the firm's initial modernization program and opens the way for further enlargements of its brickmaking facilities. Particulars of the Western Hemisphere's largest brick kiln installed at the Interstate Brick and Ceramic Tile Co.'s plant in West Jordan, Utah, were released. The kiln, built solely to fire a new 16-inch loadbearing brick, is 509 feet long and has a theoretical capacity of 80 million brick equivalent per year. Total cost of the new complex was more than \$12 million.

A major expansion of Sun Valle Tile Kiln, Inc.'s, main plant at Corona, Calif., was announced. The expansion of the roof tile operation featured an additional fuel-efficient kiln that was to increase capacity by 40% and enable Sun Valle to diversify its product line in the future.

Boral, Ltd., of Australia, purchased the Merry Co.'s brickmaking facilities in Augusta and Macon, Ga., Baltimore, Md., and Anniston, Ala. Merry, after acquisition by Boral, either bought or assumed control of Frame Brick Co., Anniston, Ala.; BaltiCLAYS 239

more Brick Co., Baltimore, Md.; and Burns Brick Co., Macon, Ga. The combined production capacities of these three facilities exceeded 600 million bricks per year.

Output of the energy-intensive common clay and shale industry was hindered again by high fuel costs and labor shortages; also, lower construction rates depressed demand in 1981. Industry attention in the Northwest and Southeast focused on coal, sawdust, and woodchip firing as a possible

escape from the high cost and intermittent shortages of oil and gas.

Export data on common clay and shale are not collected by the U.S. Department of Commerce. Most countries have local deposits of clays and/or shales that are adequate for manufacturing structural clay products, cement clinker, and lightweight aggregates, and thus have no need to import such materials.

Table 19.—Common clay and shale sold or used by producers in the United States, by State¹

	19	80	198	81
State	Short tons	Value	Short tons	Value
Alabama	1.385.485	\$6,435,401	1,402,897	\$6,732,395
Arizona	115.377	434,967	114,924	448,910
Arizona	936,609	1,555,393	738,235	1,349,398
	2,422,097	12,580,201	2,183,227	13,208,448
California	275,354	1.458,479	210.038	1,110,46
colorado	92,188	481,692	72,854	390,668
Connecticut	165,683	314,128	180,964	362,620
florida	1,322,574	4.187.253	1,209,399	4.156.06
Georgia	439,463	1.714.575	300,192	1,294,16
llinois	931.765	1.926.675	690,593	1,601,91
ndiana	753,879	2,555,129	476.249	2,374,80
owa			887,714	4.424.23
(ansas	855,780	1,956,105	484.157	2,327,29
Kentucky	692,303	3,216,353	379.921	6.337.68
Louisiana	379,838	5,841,314		
Maine	77,924	173,803	56,650	166,46
Maryland	733,152	2,267,089	596,811	1,984,20
Massachusetts	210,457	870,273	258,853	1,322,42
Michigan	1.981.957	7,211,572	1,609,562	5,862,48
Minnesota	93,660	1,206,310	83,778	1,077,15
Minnesota	1.054,446	3,291,888	649,145	2,028,45
Mississippi	1.040.718	2,539,693	973,710	2,796,52
Missouri	19,062	55.016	13,095	30,00
Montana	153,781	456,295	135,965	409.27
Nebraska	52,215	301,803	51,786	329.35
New Jersey	59,866	113,910	63,720	118,81
New Mexico		2.479.416	597.276	2,310,03
New York	596,182		2.110.380	6,838,42
North Carolina	2,851,749	7,307,603		5,752.62
Ohio	2,303,746	6,473,395	1,853,302	2,063,56
Oklahoma	971,625	2,249,374	838,339	
Oregon	171,690	321,214	176,359	299,64
Pennsylvania	1,340,577	4,843,644	1,020,275	3,914,69
Puerto Rico	290,866	677,050	200,049	473,93
South Carolina	1.552,821	4.333,397	907,432	2,671,49
	168,664	283,080	116,250	209,05
South Dakota	499,809	1.171.215	403,330	939,80
<u> </u>	3,475,351	13,265,270	3.901,802	15,359,28
Texas	348,544	1,229,612	247,271	1.048.19
Utah	761.632	3,172,455	501.829	2,015,83
Virginia	301,100	1.571.409	262,652	1.524.21
Washington		642,183	219,693	502,23
West Virginia	290,955		270,909	1.181.08
Wyoming	203,644	829,823		598.83
Other ²	120,249	704,789	91,899	096,63
Total	32,494,837	114,700,246	27,543,486	109,947,15

¹Includes Puerto Rico.

CONSUMPTION AND USES

The manufacture of heavy clay products (building brick, sewer pipe, and drain, roofing, structural, terra cotta, and other tile), portland cement clinker, and lightweight aggregate accounted for 29%, 20%, and

11%, respectively, of total domestic consumption for 1981. In summary, 60% of all clay produced in 1981 was consumed in the manufacture of these clay- and shale-based construction materials. The utilization of

²Includes Idaho, Nevada, New Hampshire, North Dakota, and Wisconsin (1980).

clays in 1981 for portland cement and lightweight aggregates remained unchanged and decreased 3% for heavy clay products over the 1980 value.

Heavy Clay Products.—The value reported for shipments of heavy clay products for 1981 decreased 8% to \$972 million from the 1980 value of \$1,062 million. Thousand-unit counts for building or common face brick decreased 20% in 1981 from that shipped in 1980, shipments of glazed and unglazed ceramic tile and glazed brick decreased 24%, and clay floor and wall tile decreased 11%. The tonnage of unglazed structural tile decreased 10%, and vitrified clay sewer pipe and fittings shipped during the year decreased 29%. The value of these shipments decreased 14% for building brick and clay and increased 10% for floor and wall tile. The value decreased 33% for clay sewer pipe and increased 14% for the structural tiles.

Lightweight Aggregates.—Consumption of clay and shale in the making of lightweight aggregate decreased 9% in 1981 to 4.89 million tons. This was attributed to a downturn in construction rates, but uses in the newer markets, such as running tracks, golf courses, potting plants, and a host of other horticultural applications, continued growing.

The tonnage of raw material mentioned in tables 20 and 23 for lightweight aggregate production refers only to clay and shale and does not include the quantity of slate and blast furnace slag similarly used. In 1981, 238,000 tons of slate was expanded for lightweight aggregate, a 53% decrease from the 1980 figure of 503,000 tons. The amount of slag used for lightweight concrete aggregate and in block manufacture increased more than 100% from 369,000 tons in 1980 to 800,000 tons in 1981.

Refractories.—All types of clay were used in manufacturing refractories. Fire clay, kaolin, and bentonite accounted for 45%, 22%, and 20%, respectively, of the total clays used for this purpose. Bentonite was used primarily as a bonding agent in proprietary foundry formulations. Minor tonnages of ball clay, fuller's earth, and common clay and shale (the remaining 13%) were also used, primarily as bonding agents.

The tonnage used for refractories in 1981 increased slightly and constituted 9% of the total clays produced. This reversed a downward trend noted in 1979-80. The previous increases, as in 1981, were caused primarily

by the continued expansion in refractory aggregate production and an upsurge in the manufacturing of more conventional bricktype refractories. Refractory aggregates are used mostly in plastic, gunning, ramming, and castable mixes.

Filler.—All kinds of clay have been used to some extent as fillers in one or more areas of use. Kaolin, fuller's earth, and bentonite have been the principal filler clays. Kaolin was used in the manufacture of a large number of products, such as paper, rubber, paint, and adhesives. Fuller's earth was used primarily in pesticides and fertilizers. Clays in pesticides and fertilizers have been used either as carriers, diluents, or prilling agents. Bentonites were used mainly in animal feed.

In 1981, 10% of clay produced was used in filler applications. Of all clay used for these purposes, kaolin accounted for 89%, fuller's earth, 6%, and bentonite, 4%. Ball clay, common clay and shale, and fire clay accounted for the remaining 1%. The total amount of kaolin consumed as fillers did not change significantly. In the individual kaolin categories, an increase of 17% occurred for gypsum products, while paper coating and rubber decreased 4% and 25%, respectively. Decreases occurred also for adhesives (6%) and fertilizers (29%), while plastics increased 12%. The total quantity of fuller's earth used in insecticides and fungicides increased 2%.

Absorbent Uses.—Absorbent uses for clays accounted for 979,000 tons, or 2% of the total 1981 clay production. Demand for absorbents in 1981 increased 6% over that reported for 1980. Fuller's earth was the principal clay used in absorbent applications; 88% of the entire output was consumed for this purpose. Bentonite was used to a lesser degree. Demand for clays in pet waste absorbent, representing 50% of the 1981 absorbent demand, decreased 2% from that reported for 1980. Demand for use in floor absorbents, chiefly to absorb hazardous oily substances, represented the remaining 50% of absorbent demand and increased 15% from the 1980 figure.

Drilling Mud.—Demand for clays in rotary-drilling muds increased 42% in 1981, from 1.59 million tons in 1980 to 2.26 million tons. The Natural Gas Policy Act of 1978 continued to spur exploratory gas well drilling. To a lesser degree, oil well drilling was stimulated by both the oil price increases and the Presidential Executive Order No. 12287, January 28, 1981, which not

CLAYS 241

only advanced the price deregulation of crude oil, originally scheduled for September 1981, but also freed gasoline and propane from price regulations. Drilling muds consumed 5% of the entire 1981 clay production. Swelling-type bentonite is the principal clay used in drilling mud mixes, although fuller's earth and nonswelling bentonite are also used to a limited extent. Bentonite and fuller's earth accounted for nearly 100% of the total amount of clay used for this purpose. Small amounts of ball clay and kaolin were used in specialized formulations.

Floor and Wall Tile.—Common clay and shale, ball clay, fire clay, and kaolin, in order of demand, were used in manufacturing floor, wall, and quarry tile. This end-use category accounted for less than 1% of the total clay production in 1981. Demand in 1981 decreased 27% to 349,000 tons.

Pelletizing Iron Ore.—Bentonite is used

as a binder in forming hard iron ore pellets. Demand increased slightly in 1981 to 885,000 tons. This increase in the use of bentonite for iron ore pelletizing, reflecting a slight upturn in taconite pellet production because of increasing steel demand, was tempered by inroads made by cheaper foreign bentonites into a traditional U.S. clay market. Of the total bentonite produced in 1981, about 9% of the swelling variety was consumed for this purpose. U.S. deposits continued to be the major world source for swelling bentonites.

Ceramics.—The total demand for clays in the manufacture of pottery, sanitary waste, china and dinnerware, and related products (excluding clay flower pots) accounted for 3% of the total 1981 clay output. This demand, principally ball and kaolin clays, increased from approximately 842,000 tons in 1980 to approximately 1,132,000 tons in 1981.

Table 20.—Clays sold or used by producers in the United States in 1981, including Puerto Rico, by type and use

Use	Ball clay	Bentonite	Common clay	Fire clay (refractory	Fuller's	Kaolin	Undistrib	F-12
			alla sitale	only)	earth		uted1	TOM
	3,577	382			1 996	71 519		200 00
Animal feed	73,298 W	2,044		¦ ;;	M	451,349	M	526.691
Building brick:	•	611,161	1	*	5,969	12,030	1,577	176,689
Face	≱∄	M	1,969,789	M	1	33,432	26.678	2.029.899
Catalysts (oil-refining)	≱≱	7.754	10,227,307	≥	1	236,721	32,562	10,496,590
Cement, portland	: 10	M	8,744,549	·M	\$	128,604	31,811	168,169
Crockery and other earthenware	37,265 9,235	!	¦#	: }	1 1	25,558	00001	62,823
Drilling mud	M	2,064,642	ĕ .¦	1 	193.314	1,417 w	W 6	10,652
Fertilizers	23,764	120	M	: :	F10(001	23,753	750,2 W	47,517
Fiberglass, mineral wool, other insulation	!	4,0 4,0 4,0 4,0 4,0	!	;	78,283	29,559	:	111,896
Filtering, clarifying, decolorizing:	!	1016 1016	1	1	1	135,653	1	141,807
Mineral oils and greases	!	89,900	!	1	1			89 900
Vegetable oils	1	15,412	!	1	20,647			36,059
Firebrick, block, shapes	6,695	700,000 W	64.209	1 259 948	ĺ	191 905	ili I	55,662
Flue linings and high-aliminim (minimum 500% Al O \	100	1	32,680	009	1 1	1.245	*	1,455,144
3 '	9,429	107	36,192	153,116		68,187	! ! ! !	266,924
Glazes, glass, enamels	2,567	W W	\$	36,239	!	908	≱	828,764
Grogs and crudes, retractory	1,133	:	M	160,754	1 1	635.727	≱≱	797,614
Ink	1	1	ł	1	M	12,664	M	12,664
Kiln furniture	2.540	-	1	!	1	11,805	1	11,805
Lightweight aggregate: Concrete block	i i	!	1	1	Í	280°c	1	7,622
Structural concrete	ŀ	;	2,983,586	!	1	!	1	2,983,586
Highway surfacing	1 1	!	230,074	!	1	1	1	1,550,074
Timelanna and seal teachers and seal teachers are a seal teachers.	;		129.246	1	!	!	1	230,856
Medical abarmacontriol accounties	3,927				1	4 955	1	0,246
medical, pliatiliaceutical, cosmeticananananananananananananananananananan	i	2,818	!	Î I	74	986 986	! !	3,878 3,878

Mortar and cement, refractory Oil and grease absorbents Paper Paper filling Pelesticides and related products Pet vaste absorbent Plastics Plug, tap, wad Pottery Roofing granules Rubber Sanitary ware Sanitary ware Sanitary ware Sanitary ware Sanitary ware Sanitary ware	87,097 W 878 14,655 768 219,025 W 80,828	W 14,412 14,412 W 884,976 3,976 1,77	209,260 W W W W W W W W W W W W W	206,268	443,286 5,347 4,472 184,218 420,218 7 W W 252	25,740 76,966 1,185,070 80,661 66,327 19,549 19,540 19,540 19,540 19,540 19,540 19,540 19,540 19,540 19,540 19,540 19,540 19,540 19,540 19,540 19,540 19,540 19,540 19,640 19,	47,108 5,450 W W 7,00 10,139 2,014 W W	580,171 490,389 1,204,137 1,204,137 884,976 884,976 488,805 76,466 76,466 49,489 49,489 49,489 209,922 238,412 608,577 4,400
Tile: Floor and wall Floor and wall Guard Guard Guard Floor and wall Floor and wall Structural Materproofing and sealing Miscilancous Exports Total undistributed	82,116 10,049 112,894 781,235 681,925	90,779 70,135 629,427 4,890,761 56,387	115,308 77,424 152,422 34,836 42,112 1,605 20,535 27,426,643 116,643	600 W W 20,055 21,889 1,867,853 59,770	8,665 19,431 1,609,732	W 17,860 1,606 9,871 1,268,218 7,619,313 41,168	W	115,308 178,000 152,422 36,432 42,112 215,770 2,234,844 44,465,500 113,762
Grand total	845,160	4,947,158	27,543,486	1,927,123	1,655,854	7,660,481	!	44,579,262

W Withheld to avoid disclosing company proprietary data; included with "undistributed." Publishable total of clays indicated by symbol W; unpublishable data included with "Total undistributed." Plata may show incomplete total; difference included with "Total undistributed." Included subthat emulsion, graphite anodes, and unknown uses.

Table 21.—Shipments of principal structural clay products in the United States

Product		1977	1978	1979	1980	1981
Unglazed common and face brick:		F 17.	,			
Quantity million	standard brick	8.060	8.957	8,020	6.513	5,202
Value	million	\$607	\$765	\$749	\$625	\$540
Unglazed structural tile:		4001	Ψ100	ψ120	Φ020	φυπι
Quantity thous	sand short tons	50	76	69	102	92
Value	million	\$3	\$4	\$4	\$7	\$8
Vitrified clay and sewer pipe fittings:		Ψ0	φ2	φ4	Φ1	• •
Quantity thous	and short tons	1.140	924	847	654	463
Value	million	\$140	\$126	\$120	\$109	\$73
Unglazed, salt-glazed, ceramic-glazed structura	1	Φ140	φ120	Ø120	9109	\$10
facing tile, including glazed brick:	T _e som to the second					
Quantitymil	lion equivalent	63	58	56	46	95
Value	million	\$11	\$11			35
Clay floor and wall tile, including quarry tile:	IIIIIIOIL	ФІТ	\$11	\$11	\$11	\$10
Quantity mill	ion sausans foot	291	299	01.4	000	
Value	ion square leet			314	323	288
v arue	million	\$233	\$253	\$295	\$310	\$341
Total value	do	enn 4	101 150	01 150	****	
		\$994	¹ \$1,158	\$1,179	\$1,062	\$972

 $^{^{1}\}mathrm{Data}$ do not add to total shown because of independent rounding.

 $Source: Bureau \ of \ Census \ Report \ Form \ M32-D(81), Current \ Industrial \ Reports-Clay \ Construction \ Products.$

Table 22.—Common clay and shale used in building brick production in the United States, by State

State	19	980	19	81
State	Short tons	Value	Short tons	Value
Alabama	717,422	\$2,308,673	641.145	\$2,135,878
Arizona and New Mexico	137,014	313.567	139,985	342.327
Arkansas	517.645	948,613	422,690	848,809
California	511.265	1,661,139	445,498	1,594,921
	254,542	1.364.979	201,584	1,062,536
Connecticut, Florida, New Jersey (1981)	143,762	773,345	125,998	715,318
deorgia	1.165.412	3,754,359	1,056,185	3,790,366
Idaho and Utah	85,396	475,020	56,520	391,447
Illinois	199,986	930,364	144,200	749,296
Indiana and Iowa	416.725	1.110.001	367.652	936,988
Kansas	189,954	394.413	156,166	346,385
Kentucky	186,048	784.326	182,071	809,379
Ollisiana	125,838	253,314	137,921	311.887
Maine, Massachusetts, New Hampshire	163,516	803.712	129,231	
Maryland and West Virginia	389,866	1,352,104	315.328	737,801
Michigan, Minnesota, Wisconsin (1980)	192.715	1,839,204		1,170,087
Mississippi	669.278	2,393,262	96,590	812,290
Missouri	146,700		460,241	1,572,078
Nebraska and North Dakota	175,373	457,146	87,579	325,494
New York		477,325	148,077	418,971
North Carolina	168,410	456,833	137,466	182,455
Ohio	2,346,506	6,030,305	1,801,488	5,953,531
	1,036,304	2,584,711	865,976	2,482,645
Oklahoma	347,268	846,740	288,400	766,472
Oregon	33,300	62,496	29,485	40,291
Pennsylvania	1,109,867	3,800,961	838,867	3,032,334
South Carolina	753,116	2,223,396	605,265	1,849,449
'ennessee	279,073	544,007	217,222	439,964
	1,588,407	5,556,020	1,485,188	5,532,686
Virginia	634,552	1,419,242	442,299	1,110,668
Washington	159,058	681,169	146,125	602,603
Wyoming	39,602	248,745	24,654	238,479
Total	14,883,920	46,849,491	12,197,096	41,303,830

Table 23.—Clay and shale used in lightweight aggregate production in the United States, by State and use

			Short tons			
State	Concrete block	Structural concrete	Highway surfacing	Other	Total	Total value
1980						4.
Alabama and Arkansas	610.569	122,118	21,558		754,245	\$3,342,777
California	270.568	311,861		66,965	649,394	6,357,224
California	377,492	26,800	10,349	·	414,641	1,217,314
Florida, Indiana, Iowa	495,601	174,531	65,333	5,666	741,131	7,273,748
Kansas, Kentucky, Louisiana	444,305	46,570	00,000	7,900	498,775	2,220,016
Maryland, Massachusetts, Minnesota	444,000	40,010		1,000	,	-,,
Mississippi, North Carolina,	000 100	141,242	173,753		648,423	1,554,774
North Dakota	333,428		110,100	1,500	304.850	1,750,451
Montana and New York	168,600	134,750	100	1,500	369,915	858,507
Ohio, Oklahoma, Pennsylvania	293,858	75,957	100	0.500	389,015	2,538,381
South Dakota, Utah, Virginia	270,045	115,390	7	3,580		2,292,780
Texas	290,428	207,841	75,014	93,957	667,240	2,292,100
	3,554,894	1,357,060	346,107	179,568	5,437,629	29,405,972
1001						
1981			05.005		710 114	3.191.196
Alabama and Arkansas	579,261	105,158	25,695	40.400	710,114	
California	238,791	317,661	·	60,438	616,890	5,833,408
Florida, Indiana, Iowa	227,841	49,324		5,222	282,387	1,084,707
Kansas, Kentucky, Louisiana	499,906	147,090	62,570	12,736	722,302	9,867,171
Massachusetts, Minnesota, Missouri	191,437	85,083	7,500	7,004	291,024	2,587,258
Mississippi and New York	291,334	171,189	12.275	1,500	476,298	2,263,173
Montana, North Carolina, North Dakota	118,366	72,844		1,240	192,450	538,032
Montana, North Carolina, North Dakota	278,342	70,979	100		349,421	838,114
Ohio, Oklahoma, Pennsylvania	188.797	84.868	100	8,860	282,525	1,631,353
South Dakota, Utah, Virginia	369.511	445,878	122,716	32,246	970,351	3.078.803
Texas	909,911	440,010	100,110	02,20		
Total	2,983,586	1,550,074	230,856	129,246	4,893,762	30,913,215

Table 24.—Shipments of refractories in the United States, by product

			1980		1981
Product	Unit of quantity	Quan- tity	Value (thou- sands)	Quan- tity	Value (thou- sands)
CLAY REFRACTORIES					
Superduty fire clay brick and shapes	1,000 9-inch equivalent.	51,188	\$49,388	48,727	\$51,608
Other fire clay, including semisilica, brick and shapes, glasshouse pots, tank blocks, feeder parts, upper structure parts used only for glass tanks.	do	129,646	78,003	110,309	73,910
High-alumina (50% to 60% Al ₂ O ₃) brick and shapes	do	73,210	135,317	76,779	150,115
Insulating firebrick and shapes	do	46,399	35,789	46,373	40,398
Ladle brick	do	162,034	47,168	149,582	49,407
Sleeves, nozzles, runner brick, tuyeres	do	39,312	29,682	42,311	35,480
Hot-top refractoriesKiln furniture, radiant heater elements, potter's	Short tons	11,261	1,855	6,067	1,022
supplies, other miscellaneous-shaped refractory items.	do	16,823	23,740	22,350	22,761
Refractory bonding mortars	do	63,661	19.836	65,113	23,569
Plastic refractories and ramming mixes, containing up to 87.5% Al ₂ O ₃ . ²	do	157,500	35,160	170,444	39,442
Castable refractories	do	142,266	34,064	139,643	36,103
Gunning mixesOther clay refractory materials sold in lump or	do	82,297	14,251	96,973	20,648
Other clay refractory materials sold in lump or ground form. ^{3 4}	do	433,833	53,133	420,028	65,486
Total clay refractories		XX	557,386	XX	609,949
NONCLAY REFRACTORIES				1.10	
Silica brick and shapes	1,000 9-inch equivalent.	NA	NA	NA	NA
Magnesite and magnesite-chrome brick and shapes	do	67,285	218,364	71.444	273,164
Chrome and chrome-magnesite brick and shapes	do	9,193	34,507	8,558	35,590
Shaped refractories containing natural graphite	Short tons	23,179	34,509	24,995	42,000
Zircon and zirconia brick and shapes; other carbon refractories: Forsterite, pyrophyllite, dolomite, dolomite-magnesite molten-cast, other brick and shapes.	1,000 9-inch equivalent.	17,285	109,237	13,461	83,454
Other mullite, kyanite, sillimanite, or andalusite brick and shapes.	do	3,524	17,106	3,025	15,748
Other extra-high (over 60%) alumina brick and fused bauxite, fused alumina, dense-sintered alumina shapes. ⁶	do	2,103	39,972	8,426	44,506
Silicon carbide brick, shapes, kiln furniture	do	1.728	12,102	1.158	32.382
Refractory bonding mortar	Short tons	27.265	15.038	30.849	16,693
Hydraulic-setting nonclay refractory castables	do	44,676	25.887	35,752	24,494
Plastic refractories and ramming mixes	do	215,061	93,725	224,031	108,005
Gunning mixes Dead-burned magnesia or magnesite ^{3 7}	do	362,769	97,437	365,863	89,812
Dead-burned magnesia or magnesite ^{3 7}	do	515,949	130,045	426,954	118,905
Other nonclay refractory material sold in lump or ground form. ³	do	567,611	57,454	557,113	58,717
Total nonclay refractories		XX	885,383	XX	943,470
Grand total refractories		XX	1,442,769	XX	1,553,419

NA Not available. XX Not applicable.

¹Heated short of fusion; volatile materials are thus driven off in the presence of chemical changes, giving more stable material for refractory use.

²More or less plastic brick and materials which, after the addition of any water needed, are rammed into place.

³Materials for domestic use as finished refractories and all exported material.

¹Including calcined clay, ground brick, and siliceous and other gunning mixes.

⁵Molten cast refractories are made by fusing refractory oxides and pouring the molten material into molds to form finished shapes. **Months Cast retractories are made by tusing retractory oxides and pouring the interest in finished shapes.

**Completely melted and cooled, then crushed and graded for use in a refractory.

**Includes shipments to refractory producers for reprocessing in the manufacture of other refractories.

Table 25.—U.S. exports of clays in 1981, by country and type

(Thousand short tons and thousand dollars)

	Ball clay	lay	Bentonite	nite	Fire clay	lay	Fuller's earth	earth	Kaolin	lin	Clays, n.e.c.	n.e.c.	Total ¹	11
Country	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
Argentina	. !		-	329	€	11	(2)	28	11	1.700	-	889	14	2.787
Australia	¦€	1 20	88	1.960	14	966) -	32	12	2,095	· 60	1,412	73	6,563
Belgium-Luxembourg	`		€	2	က	281	9	797	7	938	-	232	17	2,312
Brazil	8	12	15	2.168	•	2	€	52	9	1.283	8	303	ន	3,820
Canada	75	1,872	310	16,782	25	2.919	25	3,995	213	17,420	57	5,552	757	48,540
Chile	€	15	7	1,175	1	. :	€	9	63	395	1	195	10	1,840
Colombia	•	4	2	745	-	28	•	1	9	825	-	160	15	1,820
Ecuador	8	133	23	240	€	4	•	9	2	298	1	170	7	851
Finland	1	1	2	155	1	i	1	ŀ	2	200	•	4	6	329
France	•	20	-	223	•	7	τĊ	757	23	6,402	67	378	31	7,817
Germany, Federal Republic of.	•	9	က	409	73	5,277	€	31	70	6,432	16	1,513	162	13,668
Guatemala	(15	2	694	€		-	107	က	368	67	210	11	1,394
Hong Kong	: 1	1	-	566	1	1	;	ŀ	-	160	-	172	က	298
Indonesia	•	13	15	773	€	22	1	1	2	343		!	18	1.184
Italy	: 1		-	145	©	33	•	118	155	17,621	-	234	157	18,151
JapanJapan	ıc,	463	8	8,032	42	3,428	•	17	438	47,036	99	9,057	635	68,034
Korea, Republic of	€	2	83	893	01	248	€	ıo	5 8	6,161	-	273	31	7,890
Mexico	122	3,427	6	1,218	23	2,959	1	41	88	6,840	48	6,111	336	20,595
Netherlands	!	1	82	4,410	•	9	56	1,978	182	17,792	18	1,150	311	25,390
New Zealand	€	۲-	€	101	-	1	1	115	4	336	€	57	9	619
Peru	€	11	87	272	€	47	1	i	တ	376	87	335	7	1,041
Philippines	87	170	ro	996	•	8	1	-	4	604	တ	630	14	2,390
Saudi Arabia	;	1	72	4,533	;	1	67	382	€	20	•	162	74	5,136
Singapore	!	¦	&	5,182	1	-	•	191	€	85	€	124	81	5,579
South Africa, Republic of	€	∞	1	180	ľ	-	€	30	5 8	3,584	-	243	83	4,045
Spain	1	1	9	208	€	49	1	ļ	ro.	761	€	172	12	1,490
Sweden	€	2	€	19	ı	537	€	7	82	3,129	7	68	88	4,582
Switzerland.	1	13	11	1	€'	27	®	10	16	1,991	-	117	17	2,120
Taiwan	-	32	- 0	1,051	2	797	1	1	쯦,	3,721	4.6	421	84	5,540
Thailand	1	1	N	888	I	1	ŀ	i	4	351	Đ,	80	٥	02)

See footnotes at end of table.

Table 25.—U.S. exports of clays in 1981, by country and type —Continued

(Thousand short tons and thousand dollars)

Country	Ball clay	lay	Bentonite	nite	Fire clay	lay	Fuller's earth	earth	Kaolin	lin	Clavs. n.e.c.	9 6	Total1	110
(mm.)	Quantity	Value	Quantity	Value	Quantity	Value	Orentitus	Vol.						
					Coronana	arme	anama	A aine	-duantity	varue	Quantity	Value	Quantity	Value
							•							
			u	400			é		•					
Ilnited Augh Durington	!	!	o .	408	1	1	©	∞	•	14	•	2	ĸ	770
Cilited Arab Emilianes	!	!	2	847			•	5		;	-	2	•	*
United Kingdom	•	_	2	9 401	4	1 990	:	1	1	1	11	1,	.7	×(×
Venezuela	·	' 2	i	100	3	1,000	⊒•	1,053	9	1,357	2	1.358	99	7.508
Other Control of the	←	7	3	2,930	-	88	•	2	56	2,809	œ	1 947	63	0,0
Onlier	m	161	ဓ္က	4,125	4	333	o:	447	19	0076		1,01	58	647,
ſ							,		77	2,423	0	2,407	9	3,902
Total ¹	212	6.576	698	64 597	000	10 011	:	007.01						
		2126	3	2,00	700	110,61	111	10,460	1,412	155,999	564	36,031	3.151	292.914
													-	

¹Data may not add to totals shown because of independent rounding.

²Less than 1/2 unit.

Source: U.S. Department of Commerce.

CLAYS 249

Table 26.—U.S. imports for consumption of clays in 1981, by kind

China clay or kaolin, whether or not beneficiated: Brazil Canada Germany, Federal Republic of Norway United Kingdom Total Fuller's earth, not beneficiated: United Kingdom Bentonite: Canada Germany, Federal Republic of United Kingdom	2,835 21 18 10,742 13,619 216	\$5 170 4 3 1,329 1,511 55
Canada Germany, Federal Republic of Norway United Kingdom Total Fuller's earth, not beneficiated: United Kingdom Bentonite: Canada Germany, Federal Republic of	18 10,742 13,619 216	170 4 3 1,329
Norway United Kingdom Total Fuller's earth, not beneficiated: United Kingdom Bentonite: Canada Cormany Federal Republic of	18 10,742 13,619 216	1,329 1,511
Norway United Kingdom Total Fuller's earth, not beneficiated: United Kingdom Bentonite: Canada Cormany Federal Republic of	10,742 13,619 216	1,329 1,511
United Kingdom Total Fuller's earth, not beneficiated: United Kingdom Bentonite: Canada Cermany Federal Republic of	13,619 216	1,511
Fuller's earth, not beneficiated: United Kingdom	216	
CanadaCanadaGermany Federal Republic of	59	
Canada Germany, Federal Republic of	52	
Germany, Federal Republic of		41
United Kingdom	13 13	9
Total	79	55
Common blue and other ball clay, not beneficiated:		9
Canada United Kingdom	26 5,257	4 453
Total	5,283	457
Common blue and other ball clay, wholly or partly beneficiated:	20	6
France Mexico	20	1
United Kingdom	1,994	392
Total	2,016	399
Other clay, not beneficiated:		
Canada	36	7
China	2	7 3 3
Denmark	8	10
Germany, Federal Republic of Mexico	25 139	7
United Kingdom	12	ż
Total	222	32
Clay, n.e.c., wholly or partly beneficiated:	1	_
Belgium	19 278	5 47
Canada Denmark	1	1
Germany, Federal Republic of	199	80
Japan	13	29
Mexico United Kingdom	21 1,403	3 457
Total	1,934	622
10tai	1,304	- 022
Artificially activated clay: Canada	5,100	1.068
Germany, Federal Republic of	3,370	2,482
Japan	1,007	451
Mexico Switzerland	1,007	401
United Kingdom	461	749
Total	9,945	4,764
Grand total	33,314	7,895

Source: U.S. Department of Commerce.

WORLD REVIEW

Australia.—Comalco, Ltd., was conducting a feasibility study into producing paper-coating-grade kaolin from its Weipa bauxite operation in Queensland. The extent and quality of the kaolin deposit, believed to underlie the bauxite ore, had not been revealed by Comalco. The company planned to penetrate the Japanese, western Canadian, and United States markets that were largely supplied by U.S. kaolins. In a

fuller's earth activity, Mallina Holdings Ltd. was planning an attapulgite fines pelletizing plant at its Geraldton minerals processing facility on the west coast.

Benin.—A series of test pits indicated the presence of a kaolin deposit of at least 60,000 tons in a 10-acre-square area with a trend covering more than 100 acres. The test pits, underwritten by the United Nations, were to be followed by a drilling

program in 1982. The ceramic-quality clay uncovered was targeted for local consumption.

Brazil.—The china clay plant under construction by English China Clays Ltd. (ECC) to supply the South American paper industry was scheduled to come onstream during 1982.

Canada.—Noranda Mines Ltd. nounced that it acquired a 34.5% interest in Avonlea Mineral Industries of Regina. Saskatchewan, for an undisclosed purchase price. Avonlea, the sole domestic sodium bentonite producer, mined and processed its ore 14 miles southwest of Wilcox. Annual production of the Avonlea facility was about 60,000 tons per year. A multimillion dollar turnkey contract for a complete brick plant was awarded by I-XL Industries Ltd., Medicine Hat, Alberta, to Ferro Corp.'s Temtek-Allied Div., Crystal Lake, Ill. Construction of the new plant, sited in Edmonton, Alberta, was underway. The totally automated new facility was to include provisions for future expansion from the initial production of 40 million bricks annually.

China.—Discovery of a large sodium bentonite deposit of unknown quality in the southwestern Province of Sichurn was announced.

Guyana.—The Government announced plans for a detailed feasibility study to determine whether the extensive kaolin beds underlying its bauxite deposits can be economically mined. The study, with technical assistance provided by the Inter-American Development Bank and local support by the Bauxite Industry Development Co., was to focus on the Topira bauxite near Ituni, the center of its bauxite mining belt.

Netherlands.—A one-third interest in a major catalyst manufacturer, Katalistiks International BV, was acquired by ECC. Katalistiks had announced earlier plans to construct a plant in the United States. The catalysts, essentially built up on kaolin substrates, are used in fractionating crude oil.

Pakistan.—The Punjab Mineral Development Corp. announced a planned feasibility study for developing a fuller's earth plant (calcium or nonswelling bentonites) based on clay discovered in the Dera Ghazi Khan district of Punjab.

Portugal.—In a joint venture with an unnamed Portuguese company, ECC began constructing a new kaolin calcining plant.

Saudi Arabia.—A contract in excess of \$7 million was awarded to Pullman Swindell, Div. of Pullman Inc., by Saudi Red Bricks Co., Jeddah, for two tunnel kilns, two dry-

ers, and related plant equipment. The new contract was to double the existing capacity of the plant to 1,000 tons per day and was scheduled for completion by early 1982.

South Africa, Republic of.—A new air mill and air separator was ordered for grinding and classifying bentonites by Cullinan Minerals Ltd. for its new facility. The output of the new mill was rated at 5 to 6 tons per day, with a product size of 96% passing 100 mesh.

Spain.—ECC announced two kaolin joint ventures with Spanish companies. The first was with Caobar SL to investigate the deposits in the Poveda area of Guadalajara Province. The development plans for the new company, Compania Espanola De Caolines, were not announced. The other venture, with an unannounced company, was to begin with construction of a new kaolin calcining plant.

Sweden.—Hoeganaes AB, a producer of ceramic-grade kaolin at Axeltrop, had found a large deposit of high-quality, paper-coating-grade kaolin under its existing residual deposit. A pilot plant was developing a process for recovering a paper-grade clay for domestic use. A plant capable of producing more than 100,000 tons per year was scheduled for startup in 1984. Sweden continued to import paper-grade clays largely from England.

United Kingdom.—Laporte Industries Ltd. opened its new \$11 million activated fuller's earth (calcium bentonite) plant at Widnes. The new unit, replacing older units at Redhill, Surrey, and Bath, became the only one of its kind in the country. The annual capacity of the plant was rated at 35,000 tons per year. The product was to be used largely for filtering, decolorizing, and clarifying animal and vegetable oils and one-half was destined for export.

In brickmaking activities, improvements at the Ravenhead No. 2 plant in Lancashire enabling production of 800,000 bricks per week were completed. Further planned improvements, announced by Steetley Brick Ltd. in 1979, included an eventual parallel second tunnel kiln. London Brick Co. closed its 40-million-brick-per-year Redgmont works in Bedforshire at midyear. The decision was prompted by the continuing decline of home building in the United Kingdom.

Yugoslavia.—Reserves of a newly discovered bentonite deposit near Sipovo in Bosnia-Hercegovina were established at 500,000 tons with the likelihood of containing upward of 1 million tons. Construction of a plant capable of producing 25,000 tons

per year was scheduled pending completion of tests at the INA Petrochemija enterprise at Kutina. A prospecting effort was targeted for the Kosovo region for a variety of minerals and deposits, including kaolin and bentonite.

Zambia.—A new ceramics plant, based mainly on local clays and other raw materials for producing tableware, sanitary ware, wall and floor tiles, and other ceramic products, was to be built in Kitwe.

Table 27.—Kaolin: World production, by continent and country¹

(Thousand short tons)

Continent and country ²	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Costa Rica	1	1	.1	1	
Mexico United States ³	196	198	85	158	165
United States ³	6,489	6,973	7,761	7,879	7,660
South America:	00		140	101	411
Argentina	82	51	146	101	4114
Brazil (beneficiated)	286	*325 53	385 65	452 66	485 65
Chile	61 ^r 871			867	4898
Colombia	r _{5.055}	863	903		
Ecuador	-5,055 e24	r _{3,929} 39	4,400 44	4,409 55	4,400 60
Paraguay	r ₃				
Peru	11	4 25	5 24	6 ^e 24	7 472
Venezuela	11	20	24	24	-12
Europe: Austria (marketable)	82	r ₈₅	87	92	95
		130	130	130	130
Belgium ^e	130 214	219	223	229	230
Bulgaria	639	r ₄₅₁	565	571	570
Czechoslovakia	25	25	22	22	22
Denmark ^e		r ₂₉₂		e ₃₅₃	
France	r324		347	e660	340
Germany, Federal Republic of (marketable)	551	574	613		550
Greece	^r 67 79	53 75	36 70	47 57	50 55
Hungary Italy:	79	75	70	57	98
Crude	90	76	74	74	80
Kaolinitic earth	r ₂₁	r 3	28	30	35
Poland	100	73	54	55	55
Portugal	80	^r 81	e 60	55	55
Romania ^e	100	100	100	100	100
Spain (marketable) ⁵	r ₇₃	64	80	51	55
U.S.S.R.e	2.500	2.600	2,800	2.800	2,800
United Kingdom	4,782	4,629	4,899	4,370	4,200
Yugoslavia	122	198	196	^ė 200	210
Africa:					
Algeria	13	19	^e 20	20	21
Angola ^e	1				
Burundi ^e	3	3	2	2	2
Egypt	54	61	51	45	45
Ethiopia (including Eritrea)	e 45	35	33	61	60
Kenya	1	2	^e 2	2	2
Madagascar	2	3	2	3	. 3
Mozambique			(⁶)	(⁶)	: (6)
Nigeria	e 1	^e 1	1	1	1
South Africa, Republic of	98	135	164	4 119	
Tanzania ^e	1	NA	NA	NA	NA
Asia:					
Bangladesh ⁷	5	^r 6	8	11	11
Hong Kong	3	^r 28	3	1	49
India:					
Salable crude	385	335	398	385	450
Processed	106	126	121	107	110
Indonesia	42	41	65	83	90
Iran	123	°19 <u>8</u>	176	165	110
Israel	.6	7	25	10	11
Japan	249	250	240	252	235
Korea, Republic of	¹ 393	^r 404	413	302	250
Malaysia	35	34	36	51	50
Pakistan	1	15	17	30	45
Sri Lanka	6	6	6	7	4100
Taiwan	32	73	94	88	4100
Thailand	27	37	47	22	20
Turkey	65	48	^e 65	55	55

See footnotes at end of table.

Table 27.—Kaolin: World production, by continent and country¹ —Continued

(Thousand short tons)

	Continent and country ²	1977	1978	1979	1980 ^p	1981 ^e
Oceania:			ů.,			
Australia _ New Zealar	nd	98 104	^r 98 37	160 28	154 51	160 50
То	tal	^r 24,957	^r 24,191	26,380	25,941	25,452

^eEstimated. Preliminary. rRevised. NA Not available.

Table 28.—Bentonite: World production, by continent and country¹

(Short tons)

Continent and country ²	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Guatemala		2,858	e2,900	e2,900	2,750
Mexico		154,682	187,225	194,037	198,000
United States		4.468.000	4,422,075	4.184,619	4.947.000
South America:	_ 0,110,101	1,100,000	1,122,010	1,101,010	2,0 21,000
Argentina	126.585	117.900	173,484	144,826	174,275
Brazil		184,763	234,244	273,322	275,600
Colombia	_ (3)	(3)	(3)	2.0,022	210,000
Peru		r20,729			433,620
Europe:	_ 04,002	20,120			00,020
France	_ 8,888	e8.800	e9.900	11.000	9,920
Greece		r _{450,546}	545.837	553,225	553,360
		90,622	79,904	85,633	
Hungary Italy	_ 00,100				85,500
		r259,042	310,851	356,046	⁴ 305,340
Polande	_ 55,000	55,000	55,000	55,000	55,000
Romania ^e	_ 70,000	72,000	72,000	72,000	72,000
Spain	_ r126,325	119,400	133,025	107,701	121,250
Africa:					
Algeria (bentonitic clay)		39,313	e40,000	40,000	41,900
Egypt		3,801	e3,900	5,732	5,732
Morocco	_ 5,299	5,291	1.118	3,620	3,700
Mozambique	3,025	3,307	1.825	1,650	1,650
MozambiqueSouth Africa, Republic of	_ 41.029	38,051	51,141	54,910	448,911
Tanzania	_ 39	22	88	55	55
Asia:					
Burma	_ 1.075	1.518	1.594	1.485	1.320
Cyprus ⁵	_ 14,550	9.370	7.351	9,758	8,800
Iran ^e		44,100	22,000	22,000	11,000
Israel (metabentonite)	_ 8,818	7,663	6,930	20,195	16,535
Japan e		440.000	440,000	440,000	440.000
Pakistan	_ 1,200	999	1.588	1.658	1.130
Philippines	_ 2,512	1.730	3.443	5,570	5,500
Turkey		9.127	e _{15,400}	11,000	
Oceania:	_ 4,000	9,121	15,400	11,000	11,000
	0.100	r _{5.132}	7 000	5 510	0.000
Australia New Zealand (processed)	_ 6,176		7,303	7,716	8,300
new Medianu (processed)		10,803	5,461	3,307	3,900
Total	_ r 5,929,529	r _{6,624,569}	6,835,587	6,668,965	7,443,048

^eEstimated. Preliminary. Revised.

¹Table includes data available through July 7, 1982.

²In addition to the countries listed, China, the German Democratic Republic, Lebanon, Vietnam, and Zimbabwe also produced kaolin, but information is inadequate to make reliable estimates of output levels. Guatemala and Morocco each produced less than 500 tons in each of the years covered by this table.

³Kaolin sold or used by producers.

⁴Reported figure.

⁵Excludes unwashed kaolin.

⁶Less than 1/2 unit.

⁷Data for year ending June 30 of that stated.

^{*}Estimated. *Preliminary. *Revisea.

1Table includes data available through July 7, 1982.

2In addition to the countries listed, Austria, Canada, China, the Federal Republic of Germany, and the U.S.S.R. are believed to produce bentonite, but output is not reported and available information is inadequate to make reliable estimates of output levels.

³Revised to zero.

⁴Reported figure.

⁵Includes bleaching earths.

⁶Includes bentonitic clay.

253 CLAYS

Table 29.—Fuller's earth: World production, by country¹

(Short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Algeria	4,814	5,343	e5,500	5,512	5,600
Argentina	4,551	3,838	6,002	5,205	5,700
Australia	55	e ₅₀	55	55	55
Italy	6,993	e4.382	1,190	4,740	6,000
Mexico	67,648	r44.770	53,815	56,615	57,320
Morocco (smectite)	23,176	8.819	14,976	19,213	19,840
Pakistan	19,842	19,842	44,457	26,966	22,490
Senegal (attapulgite)	3,753	7,639	14,330	4,385	4,300
South Africa, Republic of	0,.00	284	1,013	794	480
Spain (attapulgite)	e39,476	43,244	68,809	52,933	NA
United Kingdom	245.815	240,304	242,508	231,485	220,460
United States	1,428,326	r _{1,529,617}	1,568,247	1,533,802	³ 1,655,854
- Total	r _{1,844,449}	r _{1,908,132}	2,020,902	1,941,705	1,998,099

^eEstimated. Preliminary. rRevised. NA Not available.

³Reported figure.

TECHNOLOGY

The Federal Bureau of Mines published the results of clay-related research conducted at its Research Centers in Tuscaloosa (Ala.), Salt Lake City (Utah), Albany (Oreg.), and Reno (Nev.). The Tuscaloosa study developed a dewatering technique for Florida phosphatic clay wastes using moving screens.3 The report of the work, done in cooperation with 10 Florida phosphate companies, describes a novel way to compress the contained solids using a moving screen that, by distorting the gel structure of the phosphatic clay system, causes release of the water. This technique was expected to be invaluable in reclaiming water lost with clays and for reclaiming mined land. The Salt Lake City Center reported on a benchscale method for extracting more than 80% of the lithium from lithium-containing montmorillonite clays by chlorinating with HCl. The addition of calcium carbonate to the clay was found to improve the lithium recovery. The best conditions for selective chlorination of the lithium, in these calcium- and magnesium-bearing clays, were 2:1 clay-carbonate, 750° C, and 20 weight-percent HCl. The experimental results and trends were explained thermodynamically. The Albany Center detailed the successful production of titanium castings with sodium bentonite-bonded rammed olivine and zircon molds.5 These bentonitebonded sands produced titanium casting not

only superior to either of the conventional organic- or waterglass-bonded sands but also without the traditional fuming and mold instability. The Reno Center investigated sulfurous acid leaching to extract alumina from kaolin clays.6 The process consists of leaching the calcined kaolin with a 30 weight-percent SO₂ solution at 60° C and 160 psig for 17 hours, filtering the leach slurry, precipitating monobasic aluminum sulfite from the filtrate at 110° C and 60 psig and decomposing the sulfite in the spent liquor at 150° C and 55 psig to produce crude alumina that is purified using a modified Bayer process. Recoveries of nearly 70% of the contained alumina were accomplished.

A small pilot plant involving a new blast furnace technique using coke as a reductant and substituting alumina-rich clay for bauxite as a feed was to be built.7 In the process, clay containing 30% alumina is reduced by coke in the blast furnace at a temperature of 2,000° C to an aluminum-silicon alloy. This new process was reported to consume less energy than aluminum reduction by conventional electrolytic smelting.

An in-depth review of major industrial minerals, including bentonites, expanded shales, fire clays, kaolins, and other refractory and ceramic clays currently mined in Japan, was published.* The review covered the geology, mineralogy, output, production

^{**}Excludes centrally planned economy countries, some of which presumably produce fuller's earth, but for which no information is available. Table includes data available through July 7, 1982.

²In addition to the market-economy countries listed, France, Iran, Japan, and Turkey have reportedly produced fuller's earth in the past and may continue to do so, but output is not reported and available information is inadequate to make reliable estimates of output levels.

flowsheets, and consumption of clays by the refractory, ceramic, glass, and paper industries. A special feature of the article included a section on the Japanese nomenclature for clays, and the chemical and physical properties of indigenous bentonitic and kaolinitic clays. Similar reviews, including sections on companies and their marketing strategies, were devoted to Bulgaria,9 Scandinavia (Sweden, Norway, and Denmark),10 Belgium,11 the Netherlands,12 Luxembourg, 13 Austria, 14 Tanzania, 15 and Czechoslovakia.16

An article examined broadly the chemistry, mineralogy, geology, and mining flowsheets of four main producers of the Westerwald clays of the Federal Republic of Germany.17 The Westerwald region has Western Europe's largest production of plastic clays for use mainly in the heavy clayware section of the ceramics industry. A feasibility study was outlined for a plant to activate bentonites found in the Paris Basin with soda ash to supply the French foundry industry.18 The study contains engineering flowsheets and data on direct operating

A comprehensive bentonite market survey by the Indian Bureau of Mines detailed the terminology, uses and specifications, and processing methods for foundry, drilling muds, iron ore pelletizing, bleaching, earth, and civil engineering uses for bentonite.19 The report presented current and future world and internal demand for bentonites and related this to bentonite reserves in more than 13 districts in 3 Indian States.

The geology, physical properties, and uses or potential uses of clay in the Midwest States were described.20 Included were fire clays and plastic clays in Ohio, Kentucky, Indiana, Illinois, and Missouri; flint clays in Kentucky and Missouri; ball clays in Kentucky and Tennessee; absorbent clays (fuller's earth) in Missouri, southern Illinois, and Tennessee; unique kaolin clays in Minnesota, Missouri, and Illinois; halloysite in southern Indiana; and alluvial clays and shales for structural clay products from every State.

The unique adobe brick industry in New Mexico was discussed.21 The report details the history, terminology, and general characteristics, geology, mineralogy, physical properties, and techniques for adobe clays and their production in New Mexico.

Three well-known methods of preparing clay fractions, two aqueous settling and a

vacuum method, both for quantitative Xray diffraction analysis, were tested and evaluated.22 The vacuum method was preferred because the layering effect, due to differing settling rates of the finely divided clay fraction, precluded kaolinite identifica-

Several whiteware production processes that show promise of industry-changing advancement were surveyed.23 The survey compared typical present-day processes with those likely to be used in the future, as well as a brief discussion of the effects of environmental factors. The dewatering of ceramic slips by spray-drying, powderpressing instead of plastic forming, pressure casting of slips, and glazing applications by spraying techniques were a few of the new processes mentioned.

A nondestructive ultrasonic testing method was developed for detecting internal cracks and other structural defects and/or variations in fire clay refractories.24 The method was particularly useful as a control test for checking fire clay shapes both during production and under field conditions before actual construction of coke oven batteries. In another fire clay work, the mechanism of corrosion of fire clay crowns of continuous lead glass tanks were investigated under both industrial and laboratory conditions by chemical, microscopic, microprobe, and X-ray fluorescence and diffractometric techniques.25 The corrosion, which caused refractory degradation, glass contamination, and "stone" inclusion, was initiated by reaction of potassium vapors, from the glass melt, with the highly reactive glassy phase components of the firebrick. The study was expected to prove valuable in fabricating more corrosionresistant glass tank crowns.

¹Physical scientist, Division of Industrial Minerals. Albany slip clay is included with ball clay solely for statistical convenience.

³Brandt, L. W. Dewatering Florida Phosphatic Clay Wastes With Moving Screens. BuMines RI 8529, 1981, 16

pp.
Davidson, C. F. Recovery of Lithium From Clay by
Selective Chlorination. BuMines RI 8523, 1981, 19 pp. Selective Chlorination. BuMines Rt 8523, 1981, 19 pp.

*Koch, R. K., and J. M. Burrus. Bentonite-Bonded
Rammed Olivine and Zircon Molds for Titanium Casting.

BuMines RI 8587, 1981, 40 pp.

*Raddatz, A. E., J. M. Gomes, and M. M. Wong. Laboratory Investigation of Sulfurous Acid Leaching of Kaolin for
Preparing Alumina. BuMines RI 8533, 1981, 15 pp.

*The mission and M. Winger Lawrench At Press Time. New

tory investigation. BuMines RI 8533, 1981, 15 pp.

Tengring Alumina. BuMines RI 8533, 1981, 15 pp.

Tengineering and Mining Journal. At Press Time—New Japanese Process to Smelt Aluminum From Clay Tested.

V. 182, No. 8, August 1981, p. 11.

Study. No. 170, November 1981, pp. 21-51.

Stoey. S. The Industrial Minerals of Bulgaria. Ind. Miner. (London), No. 170, November 1981, pp. 73-81.

10 Industrial Minerals (London). The Industrial Minerals of Bulgaria. ¹⁰Industrial Minerals (London). The Industrial Minerals of Scandinavia. No. 171, December 1981, pp. 21-53.

CLAYS 255

11Pettifer, L. The Industrial Minerals of Belgium. Ind.
 Miner. (London), No. 168, September 1981, pp. 21-49.
 12——. The Industrial Minerals of the Netherlands.

The Industrial Minerals of the Netherlands.
 Ind. Miner. (London), No. 168, September 1981, pp. 53-65.
 — The Industrial Minerals of Luxembourg. Ind. Miner. (London), No. 168, September 1981, pp. 66-68.
 Pickson, T. The Industrial Minerals of Austria. Ind. Miner. (London), No. 161, February 1981, pp. 21-41.
 Jones, G. K. The Industrial Minerals of Tanzania. Ind. Miner. (London), No. 166, July 1981, pp. 23-39.
 Kuzvart, M. Industrial Minerals and Rocks in Caecheslevatria Ind. Miner. (London), No. 162, March 1981.

Czechoslovakia. Ind. Miner. (London), No. 162, March 1981,

Czechoslovakia. Ind. Miner. (London), No. 162, March 1981, pp. 19-35.

¹⁷Watson, I. Westerwald Clays—Meeting Ceramic and Refractory Demands. Ind. Miner. (London), No. 169, October 1981, pp. 34-43.

¹⁸Rozes, B. Sodium-Exchanged Bentonites in France. Ind. Miner. (London), No. 170, November 1981, pp. 59-63.

¹⁹Indian Bureau of Mines. Bentonite—A Market Survey. Market Survey Series MS:6, November 1980, 128 pp.; available from Indian Bureau of Mines, Mineral Economics Division, Ministry of Steel and Mines Margur. India ics Division, Ministry of Steel and Mines, Nagpur, India.

²⁰Murray, H. H. Clay Resources of the Midwest States. Min. Eng., v. 34, No. 1, January 1982, pp. 68-71.

²¹Smith, E. W. Adobe Brick Production in New Mexico. New Mexico Geology, v. 3, No. 2, May 1981; available from New Mexico Bureau of Mines and Mineral Resources,

New Mexico Dureau of Mines and Mineral Resources, Scoorro, N. Mex.

22Hosterman, J. W., and P. J. Loferski. Sample Preparation of X-ray Diffraction Analysis and Clay Mineralogy of Devonian Shale From the Appalachian Basin. U.S. Geol. Survey, Reston, Va., March 1981; available from NTIS, DOE/METC-2287/112.

²³Dinsdale, A. Modern Trends in Whitewares Processing. Bull. Am. Ceram. Soc., v. 60, No. 2, February 1981, pp.

199-201.

²⁴Lawlar, J. B., R. H. Ross, and E. Ruh. Nondestructive Ultrasonic Testing of Fireclay Refractories. Bull. Am. Ceram. Soc., v. 60, No. 7, July 1981, pp. 713-718.

²⁵Hilger, J. P., D. Babel, N. Prioul, and A. Fissolo. Corrosion of AZS and Fireclay Refractories in Contact With Lead Glass. J. Am. Ceram. Soc., v. 64, No. 4, April 1981, pp. 213-220.

Cobalt

By Scott F. Sibley and William S. Kirk¹

Domestic consumption of cobalt deteriorated significantly in 1981, reflecting general recessionary economic conditions. Reported consumption declined to 11.7 million pounds, about 24% less than that of 1980. Similarly, calculated apparent consumption dropped from 17.1 to 12.5 million pounds. Nearly all end-use areas showed declines in consumption. Notable exceptions were consumption of cobalt for full alloy steel and pigments, both of which are relatively small end uses. Consumption of cobalt in driers increased slightly. Ongoing substitution in most end uses also contributed to the general decline.

The producer price was lowered several times during the year and ended at \$17.26 per pound in response to the relatively low free market price, which reached a low point of \$9.50 per pound late in the year. In January, the spot price was \$22.00 per pound. The very soft market conditions

caused a buildup of producer inventories worldwide. Production was cut back slightly in Zaire by mining ores with a lower cobalt-to-copper ratio. The percentage of imports originating in Zaire dropped dramatically from 46% in 1980 to 33% in 1981.

Mining companies investigating a resumption of domestic production scaled back their staffs at sites in Missouri (Madison Mine) and Idaho (Blackbird Mine) and postponed plans to build new facilities.

The U.S. General Services Administration (GSA) awarded a contract to Société Zairoise de Commercialization des Minerais (SOZACOM), the Zairian marketing agency for cobalt, for the purchase of 5.2 million pounds of cobalt at \$15 per pound for the national stockpile. Partial deliveries were made by yearend. Also, an international organization was established to promote the use of cobalt and to provide technical information.

Table 1.—Salient cobalt statistics
(Thousand pounds of contained cobalt unless otherwise specified)

	1977	1978	1979	1980	1981
United States: Consumption Imports for consumption Stocks, Dec. 31: Consumer Price: Metal, per pound World: Production, mine ¹	16,577 17,548 3,738 \$5.20-\$6.40 ⁷ 51,698	19,994 19,029 4,387 \$6.40-\$20.00 59,542	17,402 19,998 3,390 \$20.00-\$25.00	15,321 16,302 2,540 \$25.00 P67,476	11,680 15,594 1,411 \$17.26-\$25.00 68,898

^eEstimated. ^pPreliminary. ^rRevised ¹Based on estimated recovered cobalt.

Legislation and Government Programs.—The Government stockpile goal of 85.415 million pounds of cobalt was lowered slightly to 85.4 million pounds by the Federal Emergency Management Agency (FEMA) in 1980. Despite a contract to purchase 5.2 million pounds of cobalt from Zaire, announced by GSA, the stockpile

inventory of cobalt remained at 40.8 million pounds throughout the year. Partial deliveries on the contract were made late in the year, but because of delays in analyzing and certifying incoming shipments as meeting the specifications for grade A or B electrolytic cobalt, the material had not been recorded as inventory. The entire purchase

was to be made directly from SOZACOM at a cost of \$78 million. The contract price, at \$15 per pound of cobalt, was appreciably below the prevailing producer price quote of \$20 per pound. In late June, the U.S. free market price for cobalt ranged from \$16.50 to \$17.00 per pound. The Zairian offer was 1 of 17 that had been received by GSA. Owing to the favorable price offered, GSA decided to exercise its option to buy an additional 4 million pounds over the 1.2-million-pound commitment that had been stipulated in the original purchase tender.

In late March, GSA amended the chemical specifications for stockpile purchases of cobalt originally announced on March 13. The amended specifications, as published by the U.S. Department of Commerce (DOC) with approval of FEMA, allowed for the purchase of a slightly lower quality grade B cobalt. The original specifications, which defined grade A cobalt, restricted purchases to material at least 99.9% pure. Specifications for grade B material allowed for a

lower minimum cobalt content of 99.6% and set higher maxima contents for several trace impurities. The purpose of allowing the lower quality cobalt was to increase the number of potential suppliers. Both grades of cobalt were to be in the form of broken cathodes and meet specified packaging, labeling, and sampling requirements. Any grade A cobalt supplies would be suitable for producing extra fine powder for cemented carbide drill bits and cutting tool inserts.

The National Oceanic and Atmospheric Administration of DOC issued regulations September 15 to implement the Deep Seabed Hard Mineral Resources Act of 1980. The regulations cover procedures mining companies must follow to obtain seabed exploration licenses. The license applications were to be processed over a 15-month period, but no mining permits would be issued for several years. Under the act, commercial mining could not begin before January 1, 1988.

DOMESTIC PRODUCTION

There was no domestic mine production of cobalt in 1981. According to the annual report of AMAX, Inc., 893,000 pounds of cobalt was recovered from imported matte at the firm's Port Nickel refinery in Braithwaite, La. AMAX also submitted a proposal to FEMA, whereby the Government would guarantee the purchase of cobalt from AMAX for the National Defense Stockpile. According to company officials, a purchase guarantee would allow the firm to expand the cobalt capacity of the Port Nickel refinery and modify it so that higher cobalt, meeting stringent stockpile specifications, could be produced. The firm would also strive to develop the capability of recovering byproduct cobalt from ores mined in the Missouri lead-zinc district.

Since 1979, Anschutz Mining Co. had conducted a program of exploration, metallurgical testing, economic evaluation and rehabilitation to determine the feasibility of reopening the Madison Mine near Fredericktown, Mo. About \$21 million had been spent on development, and the total capital and associated costs for the project were estimated at \$115 million. Annual

output of cobalt would be 2 million pounds, with copper, lead, and nickel as major byproducts. The mine was projected to have a 10-year life. Former production of copper, nickel, and cobalt at the site ended in 1961 under other management. Late in 1981, Anschutz cut back on their staff and curtailed plans for production because of depressed market conditions and unfavorable prospects for financial assistance from the Government.

Similarly, Noranda Mining Co., which had conducted extensive development work at the Blackbird Mine in central Idaho, decided to delay development plans and halved its work force of approximately 120 personnel at the site. Early in the year, Noranda had taken an option on land near Blackfoot, Idaho, in order to evaluate the property as a site for a plant to process cobalt concentrates to be produced from the Blackbird Mine. At the Blackfoot plantsite, located about 150 miles southeast of the proposed mine, cobalt metal would be recovered through leaching, solvent extraction, and electrowinning.

COBALT 259

CONSUMPTION AND USES

Reported domestic consumption of cobalt decreased approximately 24% from that of 1980. The decline in consumption was largely the result of general recessionary economic conditions. Despite price declines during the year, the relatively high price encouraged continuation of conservation and substitution efforts. Only driers, of the major end-use areas, experienced an increase in cobalt usage. The largest declines occurred in tool steel (47%), other alloys (41%), and superalloys (33%).

Apparent industrial demand, calculated from net imports, secondary production,

and change in industry and Government stocks, decreased to 12.5 million pounds, about 27% less than that of 1980. Industrial demand declined for the third consecutive year.

Of the forms of cobalt used by domestic consumers, 64% was as metal, 21% as salts and driers, 8% as purchased scrap, 5% as oxide, and 2% in other forms. Scrap consumption decreased for the first time since 1976. Consumer stocks of cobalt were held at a relatively low level throughout the year owing to high interest rates and greater availability than in 1979 and 1980.

Table 2.—Cobalt products¹ produced and shipped by refiners and processors in the United States

(Thousand pounds)	Th	ousand	pounds)
-------------------	----	--------	---------

		19	980			19	81	
	Prod	uction	Ship	ments	Prod	ıction	Ship	nents
	Gross weight	Cobalt content	Gross weight	Cobalt content	Gross weight	Cobalt content	Gross weight	Cobalt content
Metal Hydrate (hydroxide)	1,000 NA	1,000 220	NA NA	NA 392	893 NA	893 416	NA NA	NA 413
Salts ² (inorganic compounds)	NA	1,092	NA	1,062	NA	958	NA	891
Driers (organic com- pounds)	NA	962	NA	1,021	NA	1,035	NA	1,117
Total	1,000	3,274	NA	2,475	893	3,302	NA	2,421

NA Not available.

Table 3.—U.S. consumption of cobalt, by end use

(Thousand pounds of contained cobalt)

	Quanti	ity
End use	1980	1981
Steel:		05
Stainless and heat-resisting	47	35
Full-alloy	116	141 W
High-strength, low-alloy	W	
Tool	321	170
Superalloys	6,285	4,195
Alloys (excludes alloy steels and superalloys):		
Cutting and wear-resistant materials	1,344	1,076
Welding materials (structural and hard-facing)	620	488
Magnetic alloys	2,267	1,687
Nonferrous alloys	150	131
Other alloys	210	123
Mill products made from metal powder	W	w
Chemical and ceramic uses:		
Pigments	282	329
Catalysts	1,656	1,279
Ground coat frit	482	441
Glass decolorizer	40	40
Drier in paints or related usage	1,331	1,378
Feed or nutrititive additive	75	58
Miscellaneous and unspecified	95	109
Total	15,321	11,680

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and unspecified." ¹Cemented and sintered carbides and cast carbide dies or parts.

¹Figures on oxide withheld to avoid disclosing company proprietary data.

²Various salts combined to avoid disclosing company proprietary data.

Table 4.-U.S. consumption of cobalt, by form

(Thousand pounds of contained cobalt)

Form	1977	1978	1979	1980	1981
Metal Oxide Purchased scrap Salts and driers Other	11,547 426 507 3,778 319	12,823 467 1,036 5,399 269	12,006 704 1,170 13,254 268	10,825 441 1,183 ¹ 2,475 397	7,450 557 972 12,421 280
Total	16,577	19,994	17,402	15,321	11,680

¹Chemical compounds (organic and inorganic) other than oxide.

PRICES

The listed producer price of cobalt declined on three occasions in 1981 in response to a weak market. The \$25 per pound price, which had been in effect since February 1, 1979, was lowered to \$20 per pound effective March 2. Zaire's state-owned marketing organization, SOZACOM, took the lead in lowering the price. Other major producers followed suit. The price cut was forced by the minimal demand conditions, a buildup of producer inventories, and an effort by producers to counteract price discounting and substitution. The price was further adjusted downward on August 3 to \$17.66 per pound. The change was attributed to a

strengthening of the U.S. dollar with respect to the Belgian franc. Zambia adjusted its price to \$17.50 at that time. Another downward shift occurred September 1, when the price was lowered to \$17.26 per pound. The producer price remained at that level through yearend. Although spot prices for cobalt began the year above \$20 per pound, there was a progressive erosion in dealer prices throughout the year, reaching as low as \$9.50 per pound during the fall. Because Zaire did not respond quickly to this dealer market and the discounting that was prevalent, its U.S. market share declined significantly during the year.

FOREIGN TRADE

Exports of unwrought cobalt metal and waste and scrap totaled 2.2 million pounds, gross weight, with an estimated 834,000 pounds cobalt content and a value of \$16.5 million. These exports were shipped to 41 countries, with Belgium-Luxembourg, the Federal Republic of Germany, Japan, the Netherlands, France, and Norway receiving the largest quantities. Exports of wrought cobalt metal totaled 632,000 pounds, gross weight, with a value of \$12.3 million. Of the 38 countries to which wrought cobalt was shipped, Ireland, Norway, Switzerland, France, Mexico, and Canada were the major

recipients.

Total imports of cobalt in 1981 were 15.6 million pounds (contained weight), a decrease of 4.3% compared with those of 1980. The major sources of cobalt imports were Zaire, Canada, Norway, Japan, Zambia, Finland, Belgium-Luxembourg, and Botswana. Material originating in southern Africa, that is imports from Zaire, Zambia, Belgium-Luxembourg (Zairian origin), and Botswana, represented 47% of total cobalt imports during the year, compared with 62% for that area in 1980.

Table 5.—U.S. imports for consumption of cobalt, by country (Thousand pounds and thousand dollars)

		Metal ¹	le.			Oxide	ide			Other forms	orms			
Country	1980	8	1981	_ 	1980	و ا	1981	E E	1980	0	1981	11	Total content ³	nts
`	Gross	Value	Gross	Value	Gross	Value	Gross	Value	Cobalt content	Value	Cobalt content	Value	1980	1981
Australia Belgium-Luxembourg	940	18 27,598	€ 818	17,199	6.283 282	119 5,391	81 115	381 1,628	105	51,575 2,420	888	5713 629 57 405	1,259	8888
Botswana Canada Finland	1,045	24,743	1,712	26,703 24,099	107	1,879	143	1,971	§4 €	.0,200 48 14	88 ¦€	332	1,128 1,090 419	1,846 1,206 367
131	419 140	2,453	175	2,112 2,765 30,729	1 1 2	83 83 83 83 83 83 83 83	1	16	11	57 185	≋ €	972	141	213
Netherlands New Caledonia	118	1,842	. 25 55 55 55 55 55 55 55	654	1				€₹	7 52,115	84	49 51,030	113	2 8 8
Norway South Africa, Republic of United Kingdom	1,165 78 206	29,239 1,872 4,020	1,631 15 188 188	28,730 240 280 280 280 280 280 280 280 280 280 28	¦ ¦€	1 1	150	1,362	224	83,214 55	¦ 4 €	54,966 9	302 204 204 204 204 204 204 204 204 204 2	464 599 4 176
ZambiaOther	6,22,28 8,22,58 8,52,58	147,279 54,311 938	4,176 1,513 121	27,138 27,138 2,123	@ 	100		18	188-1	ింజ	%	423	2,228	1,513
Total ⁶	14,992	858,583	13,906	238,820	414	7,630	444	5,375	1,004	15,677	1,361	16,619	16,302	15,594

Includes unwrought metal and weste and scrap.
*Contained cobalt in nickel-copper and nickel matte from Australia, Botswana, New Caledonia, and the Republic of South Africa. Salts and compounds were imported from the remaining countries.
*Enginated contained cobalt.
*Lees than 1/2 unit. Figure 1981, multiplied average cobalt metal price of \$25.00 per pound for 1980 and \$19.73 per pound for 1981, multiplied by 0.6 (estimated factor for matte) for imports from Australia, Botswans, New Caledonia, and the Republic of South Africa.

**Data may not add to totals shown because of independent rounding.

Table 6.—U.S. imports for consumption of cobalt, by class

(Thousand pounds and thousand dollars)

Class	1979	1980	1981
Metal:1			
Gross weight	18,887	14,992	13,900
Cobalt content	18,887	14.992	13,900
Value	\$462,250	\$358,583	\$238,820
Oxide:	4102,200	4000,000	#200,02
Gross weight	505	414	444
Cobalt content	373	306	329
Value	\$9,429	\$7.630	\$5,37
Salts and compounds:	40,120	ψ1,000	φυ,υ ι ο
Gross weight	370	655	1,249
Cobalt content	iii	197	378
Value	\$2,192	\$3.572	\$4,969
Other forms: ²	627	807	984
Value	\$9,249	\$12,105	\$11,650
Total content	19,998	16,302	15,594

^eEstimated.

Table 7.—U.S. import duties for cobalt

Item	TSUS	Most favored	Non-MFN	
	No.	Jan. 1, 1982	Jan. 1, 1987	Jan. 1, 1982
Ore and concentrate Unwrought metal, waste and scrap _ Alloys, unwrought Chemical compounds:	601.18 632.20 632.86	Free do 9% ad valorem	Free do 9% ad valorem	Free. Do. 45% ad valorem.
Oxide	418.60	1.2 cents per pound.	1.2 cents per pound.	20 cents per pound.
SulfateOther	418.62 418.68	1.4% ad valorem _ 5.6% ad valorem _	1.4% ad valorem _ 4.2% ad valorem _	6.5% ad valorem. 30% ad valorem.

WORLD REVIEW

International.—An official of SOZACOM announced in November that the cobalt producers had decided to establish a Cobalt Development Institute. The announcement was made during the inaugural session of a Brussels, Belgium, conference on "Cobalt-Metallurgy and Uses." Refiners, distributors, and consumers of cobalt were also invited to join the Institute, which was to be operative beginning January 1, 1982. Its purpose was to assist those companies and individuals needing technical information. The Institute would also undertake various promotional activities to support and develop the use of cobalt and its alloys. The provisional location of the Cobalt Development Institute was 3 Rue Ravenstein, 1000 Brussels, Belgium. A general meeting of the founding member countries was scheduled for March 4, 1982, when the organization was to be officially launched. Member companies included La Générale des Carrières et des Mines (GÉCAMINES) of Zaire; Nchanga Consolidated Copper Mines Ltd.

and Roan Consolidated Mines Ltd., both of Zambia; Outokumpu Oy of Finland; Sumitomo Metals Mining Co., Ltd., and Nippon Mining Co., Ltd., both of Japan; Metaux S.A. of France; and Compagnie de Tifnout Tiranimine of Morocco. Inco, Ltd., and Falconbridge Nickel Mines, Ltd., both of Canada, also requested to join the organization at yearend.

The 10th session of the Third United Nations Conference on the Law of the Sea was concluded in Geneva in August. No final treaty was developed, partly because the U.S. position with respect to the treaty was under review.

Australia.—Work was underway at the Greenvale nickel laterite mine, jointly owned by Metals Exploration Pty. and Freeport Queensland. Nickel Pty., Ltd., to convert the power source for the boilers and dryers from oil to coal. By yearend, the dryers were expected to be converted, and work on the boilers was expected to be completed by mid-1982.

Includes unwrought metal and waste and scrap.

²Contained cobalt in nickel-copper and nickel matte.

COBALT 263

A possible cobalt find was reported early in the year. Known as the Gunsight prospect, grades assayed 0.26% cobalt in one drillhole, with one pocket up to 0.86% cobalt. Drilling was expected to take about 1 year to complete. The prospect was owned by North Flinders Mines, Ltd., and Marathon Petroleum of Australia, Ltd.

Botswana.—Sinking of the third shaft at the Botswana RST Ltd. Pikwe coppernickel-cobalt mine was completed early in the year to a depth of 3,163 feet. The shaft was equipped with 10 full stations spaced 197 feet apart. Total ore production at the Selebi-Pikwe complex normally totals about 220,000 short tons of ore per month, about 70% of which comes from the Pikwe Mine. According to an interim report of Botswana RST Ltd., AMAX Nickel Inc. made a request to BCL Ltd., which operates the Selebi-Pikwe Mines, to reduce contracted matte sales to AMAX by about 25% to about 33,000 tons annually. By yearend, no decision had been made on the request.

Burundi.—The Government of Burundi received a \$4 million line of credit from the International Development Association of the World Bank to explore for nickel-cobalt resources. Additional holes were to be drilled in the Musongati area to determine the nickel content. United Nations exploration in 1973-74 and 1976-77 indicated resources of 80 million tons of dry ore grading 1.6% nickel and 0.1% cobalt. Studies were also to be carried out on the quality and availability of local peat to determine its suitability for use as a fuel should a processing facility be built there. A search was to be made for sulfide minerals. Aside from the question of power supply, the difficulty of transport in and out of the remote, land-locked country was a major consideration.

Canada.—Construction of the electrolytic cobalt plant of Inco, Ltd., at Port Colborne, Ontario, continued, with completion expected by early 1983. Capacity of the plant was to be about 2 million pounds of cobalt per year. In addition, Inco announced late in the year the development of a new open pit mine at Thompson to replace its existing open pit mine there. About \$72 million was to be spent on the first phase of mine development, with new production targeted for 1984. A strike at Thompson began September 16 and lasted until yearend.

Indonesia.—No new developments took place on the P.T. Pacific Nikkel Indonesia (PTPNI) project on Gag Island because of an inability to obtain financing. The nickel-

cobalt laterite deposit was estimated to contain 160 million tons of ore grading about 1.64% nickel and 0.12% cobalt. Extensive engineering and financial studies have been made on the project, and plans call for the annual production of 57,500 tons of nickel and 550 tons of cobalt during the initial 10-year period. Equity in PTPNI is held by United States Steel Corp., Amoco Minerals, Inc., and IJmuiden Hoogovens, BV, of the Netherlands. The Indonesian Government has an option of 20% participation.

Morocco.—A United States-Moroccan Mining Colloquium was held in Rabat, March 9-11. One of the topics of discussion was the Bou Azzer cobalt mining district. The meeting provided an opportunity for exchange of information on investment potential and conditions under which investment is possible in Morocco. Also discussed were recent technological breakthroughs, especially in fields of pollution control, energy efficiency, and usage of scarce water resources in the beneficiation process. About 39 representatives of U.S. private sector mining concerns attended.

Norway.—A fire at Falconbridge Nikkelverk's nickel-cobalt refinery on October 28 had virtually no effect on cobalt production. The fire occurred in the matte leach plant.

Philippines.—Marinduque Mining and Industrial Corp. planned to build a 1,200-ton-per-year, \$20 million cobalt refinery by late 1983. At yearend, Marinduque was attempting to renegotiate a 10-year smelting contract with Sumitomo Mining Cothat still had about 7 years remaining before expiration.

South Africa, Republic of.—Matthey Rustenburg Refiners, Ltd. (MRR), opened a 21,000-ton-per-year nickel refinery on October 13. At capacity, about 12,000 tons per year of copper and 2,800 tons per year of cobalt sulfate could also be produced. Previously, a large portion of the MRR production was shipped in matte form to the Port Nickel, La., facility of AMAX, Inc., for refining. The nickel feedstock for the new plant is a byproduct of the MRR platinum mining. Sherritt Gordon Mines, Ltd., of Canada, provided technical services.

Western Platinum Mines, Ltd., which mined for platinum-group metals from the Merensky Reef, produced copper, nickel, and cobalt in matte form for shipment to the Kristiansand, Norway, refinery of Falconbridge Mines, Ltd.

Uganda.—The Government of Uganda negotiated a \$394,000 loan at midyear from the European Investment Bank for a feasibility study for reopening the Kilembe copper-cobalt mine in western Uganda. The study would include possible rehabilitation of the copper smelter at Jinja and construction of a cobalt plant. About 28 million pounds of cobalt is estimated to be contained in copper tailings, with an average grade of 1.4% cobalt, at Kisese, near Kilembe. Falconbridge Nickel Mines had held discussions with Uganda regarding possible processing of the tailings, but Falconbridge decided early in the year that the operation was not feasible at prevailing prices.

United Kingdom.—Construction of a new nickel-cobalt facility in North Wales was begun in September. High-purity nickel and cobalt and their salts were to be recovered from superalloy grindings. The refinery was to be operated by Chapman Metallurgical, Ltd., and be in production by mid-1982. Superalloy scrap would be processed to nickel and cobalt suitable for reuse in the aerospace industry. Capacity of the plant, expected to be reached by 1983, would be about 1,000 tons per year of nickel plus cobalt.

Zaire.—The state-controlled mining company GECAMINES reduced cobalt output in the second half of 1981 in response to very weak demand. Total production for the year was 14,330 tons of cobalt, a decline of 12% from that of 1980.

Work continued on the Inga-Shaba power transmission line. Construction was expected to be completed in 1983. The expansion program of the smelter and refinery complex at Kolwezi remained uncompleted, however, as available capital was diverted to other requirements. Zaire had a debt of \$6 billion to service. Maintenance and repair of existing facilities remained major problems. Additional power requirements for this expansion were to be met by the Inga-Shaba powerline. The Tenke-Fungurume project, which was halted in 1975-76, depended on completion of the Inga-Shaba powerline. The Société Minière

de Tenke-Fungurume consortium, led by the French Government agency Compagnie Générale de Matières Nucleaires (26.5%), considered reviving the project on a smaller scale than originally planned (from 6,500 to 2,200 tons per year of cobalt). Other participants included Anglo American, Ltd., and Charter Consolidated, Ltd., (28%); Mitsui (14%); and the French Bureau de Recherches Géologiques et Minières (85%).

Zambia.—Zambia's two major copper and cobalt producers, Roan Consolidated Mines, Ltd., and Nchanga Consolidated Copper Mines Ltd. (NCCM) were to be merged into one new company to be called Zambian Consolidated Copper Mines Ltd., according to an announcement by company officials. The company would still be controlled by the Zambian Government. In 1981, total production of both companies was 3,640 tons. Wildcat strikes affected operations in Zambia in January and July. Both were relatively brief.

About 10,000 expatriate workers at the two divisions of NCCM went on strike July 7 to protest a company decision to stop emergency supplies of cornmeal to the workers. The strike was not supported by the mineworkers' union. This strike ended July 14. Several days later, the Zambian workers struck, seeking pay equal to that of expatriate workers, whom they outnumber 8 to 1. This strike was also relatively brief.

Construction of a roast-leach-electrowinning cobalt plant at Rokana by NCCM proceeded as planned and was expected to be completed early in 1982. Modification and rehabilitation of the Rokana concentrator significantly improved cobalt recovery. More cobalt concentrate was produced than could be processed. The processed material was stockpiled pending completion of the new Rokana refining plant. Cobalt ore was expected to be mined in the future from Rokana, Konkola, and both the underground and open pit sections of the Chingola Mine. At Chambishi, a vacuum refining furnace was being installed. Cobalt from this furnace was expected to be suitable for use in superalloy production.

Table 8.—Cobalt: World production, by country¹

(Short tons)

	Mi	ne output, n	netal conte	nt²		Met	al ³	
Country	1978	1979	1980 ^p	1981 ^e	1978	1979	1980 ^p	1981 ^e
	r _{1,490}	1,650	1,760	1,760			1, 44 <u>1</u> 11	
Australia ^{e 4}	288	324	249	275			<u></u>	
Botswana	1,360	1.808	1,767	2.500	572	524	518	700
Canada ⁵			1,790	1,970				
Cuba ^e	r _{1,610}	1,360		61,140	1,016	1,281	1,269	61,355
Finland	r _{1,336}	1,174	1,141	1,140	998	850	1,139	1,100
France					386	424	440	440
Germany, Federal Republic of	1,						3,160	⁶ 2,669
Japan	'		.5.7		2,055	2,924	9,100	-2,009
Morrocco	1,250	1,059	924	829		· · ·		
New Caledonia ^{e 7}	170	230	200	155	===	4.055	1.405	1,592
Norway					575	1,051	1,405	1,592
Philippines	1,313	1,510	1,467	1,200		==		4 4 5 5
U.S.S.R. ^e	2,150	2,200	2,370	2,480	r3,910	3,970	4,020	4,130
United Kingdom ^{e 8}		•			720	375	800	800
United States					322	464	500	6447
Zaire	e14.660	e16.530	17.090	17,090	14,468	15,543	16,200	14,330
	r _{4,124}	4,718	4,850	4,960	2,274	3,501	3,649	3,640
Zambia	e ₂₀	e230	e130	90	19	225	127	75
$Zimbabwe_{}$	-20	230	100	- 30				
Total	^r 29,771	32,793	33,738	34,449	^r 27,315	31,132	33,227	31,278

rRevised. **P**Preliminary eEstimated.

⁴Data series on mine output represents an estimate of actual recovery. Australia does not report any production of metallic cobalt, but produces intermediate metallurgical products (cobalt oxide and nickel-cobalt sulfide) with cobalt content as follows, in short tons: 1977—916 (revised); 1978—1,286; 1979—1,745; 1980—not available; and 1981—not materials.

available.

SActual output is not reported. Data for mine output are total cobalt content of all products derived from ores of Canadian origin, including cobalt oxide shipped to the United Kingdom for further processing, and nickel-copper-cobalt matte shipped to Norway for further processing. Data presented for metal output represent the output within Canada of metallic cobalt from ores of both Canadian and non-Canadian origin.

⁶Reported figure.

Reported light:

Series reflect estimated actual recovery from ores and intermediate metallurgical products exported from New Caledonia to Japan, France, and the United States. The estimated content of total ores mined is as follows, in short tons: 1977—3,447 (revised); 1978—1,982 (revised); 1979—2,446 (revised); 1980—2,468 (revised); and 1981—2,200.

⁸Estimated recovery of elemental cobalt in refined cobalt oxides and salts from intermediate metallurgical products

originating in Canada.

TECHNOLOGY

Bureau of Mines researchers continued testing a process for recovery of nickel, copper, and cobalt from Duluth Gabbro resources in northern Minnesota. The work was conducted at the Twin Cities Research Center, Twin Cities, Minn. Also, a report on the extraction of metals from Pacific seabed nodules was published.2 In addition, differential flotation and matte separation techniques to separate the nickel and copper content of their respective fractions were evaluated. The Albany Research Center in Albany, Oreg., continued development of a method to recover nickel, cobalt, and copper from laterites containing less than 1.2% nickel and 0.25% cobalt. Pilot plant testing of the process was carried out by UOP, Inc., in Tucson, Ariz., and a final report was expected in early 1982. Other research in Albany included solvent extraction technology for cobalt separation and substitution of cobalt in cemented carbides. The Rolla (Missouri) Research Center continued its investigations into methods of recovering nickel, cobalt, and copper from mattes and drosses generated during the smelting of lead ore concentrates. Beneficiation procedures for recovering cobalt and nickel from commercial lead, zinc, and copper concentrates by modifying milling procedures, now practiced in the Missouri Lead Belt, were also developed. Other cobalt-related research at Rolla included carbonyl recovery of critical metals and minerals and the creation of intermetallic compounds from superalloy scrap to recover critical metals. In addition,

[&]quot;Table includes data available through June 10, 1982.

Figures presented represent recovered cobalt content. In addition to the countries listed, Bulgaria, Cyprus, the German Democratic Republic, Greece, Indonesia, Poland, the Republic of South Africa, Spain, and Uganda are known to produce ores that contain cobalt. Information is inadequate for reliable estimates of output levels. Other copper- and/or nickel-producing nations may also produce ores containing cobalt as a byproduct but recovery is small or nil.

Figures represent elemental cobalt recovered unless otherwise specified. In addition to the countries listed, Czechoslovakia presumably recovers cobalt from Cuba. Belgium has imported small quantities of partly processed materials containing cobalt but available information is inadequate for reliable estimates of cobalt recovery from these materials. ¹Table includes data available through June 10, 1982.

contract studies on recovery of nickel, cobalt, chromium, and other metals from superalloy scrap were completed under the guidance of researchers at the Avondale Research Center, Avondale, Md.3

At the Salt Lake City Research Center in Utah, research was conducted to determine the best methods for recovery of cobalt from concentrates that would be produced from the Blackbird district of Idaho. Other work at the Salt Lake City Center included thermodynamics and kinetics of cobalt reactions, separation and recovery of cobalt from hydrometallurgy solutions by ion exchange, and critical-metals recovery from grinding wastes.

Teledyne Vasco, Inc., of Latrobe, Pa., began marketing a new high-strength nickel maraging steel developed by Inco Research and Development Center, Inc. The new cobalt-free alloy contained less molybdenum than the conventional 250-grade maraging steel. Cobalt was replaced with titanium, but constituted a lower percentage of the alloy composition. Nickel content was about 18%. Maraging steel is used for working various metals and for highstrength components such as gun recoil springs, trunnion pins in aircraft, and drive shafts.4

DOC conducted workshops in February and June in partial compliance with the Materials and Minerals Policy, Research and Development Act of 1980, Public Law 96-479. A report was issued containing contributions by industry at the workshop, which dealt with critical-materials needs in the aerospace industry. Cobalt and other critical metals were extensively discussed.5

Research and development of substitutes for cobalt continued. New alloys were introduced in hard-facing, magnetic materials, and superalloys. These alloy substitutes would reduce but not eliminate, in most cases, quantities of cobalt consumed.6

Ion implantation, in which the ion

of one element, such as cobalt, is implanted on the surface of another, was studied as a possible means of conserving cobalt.7 Other techniques that contributed to cobalt conservation included rapid solidification rate. single-crystal growth, directional solidification, and hot isostatic pressing.

The use of ceramics and composite materials as possible substitutes for superalloys also received some attention. In particular, silicon carbide and silicon nitride, because of their strength, light weight, and low cost, were considered. Development projects for use of ceramics in automobile, truck, and aircraft gas turbine engines received Government funding. In aircraft engines, the problem of brittleness was a major obstacle to ceramics' use. It was for this reason that many experts on ceramics in this application felt its use was unlikely prior to 1990.8 With the drive both to reduce consumption of strategic and critical materials and increase operating temperatures of gas turbines, thereby increasing fuel efficiency, it is possible that this substitute will be used sooner than generally predicted.

¹Physical scientist, Division of Ferrous Metals.

²Khalafalla, S. E., and J. E. Pahlman. Selective Extraction of Metals From Pacific Sea Nodules With Dissolved Sulfur Dioxide. BuMines RI 8518, 1981, 26 pp.

³DeBarbadillo, J. J., J. K. Pargeter, and H. V. Makar. Process for Recovering Chromium and Other Metals From Superalloy Scrap. BuMines RI 8570, 1981, 73 pp.

⁴American Metal Market. New Nickel Maraging Steel Marketed by Teledyne Vasco. V. 89, No. 207, Oct. 26, 1981, p. 35.

p. 35.
⁸U.S. Department of Commerce. Proceedings, U.S. Dept.
of Commerce Public Workshop On Critical Materials
Needs in the Aerospace Industry. NBSIR 81-2305, Feb. 9-

^{10, 1981, 650} pp.

Crown, J. Cheaper Cobalt Won't Reverse Ferrite Magnet Trend. Am. Metal Market, v. 89, No. 249, Dec. 28, 1981,

Ashley, S. New Superalloys Developed With No Chrome or Cobalt. Am. Metal Market, v. 89, No. 216, Nov. 9, 1981,

pp. 11, 16.

Metals Week. Westinghouse Working to Reduce Use of Critical Materials Through New Technology. V. 52, No. 17,

Apr. 27, 1981, p. 8.

SAmerican Metal Market. Silicon-Base Ceramics Get
Foothold in Metals Domain. V. 89, No. 70, Apr. 13, 1981, p. 8.

Columbium and Tantalum

By Thomas S. Jones¹ and Larry D. Cunningham¹

A relatively insignificant quantity of columbium- and tantalum-bearing concentrates was produced domestically, and the United States continued to be dependent on imports. New developments, such as a new pyrochlore concentration plant in Brazil and upgraded milling operations in Canada and Australia, favored greater availability of both columbium and tantalum in the future. To help ensure future availability of tantalum to the United States, a contract for purchase of tantalum materials for the National Defense Stockpile was signed by the General Services Administration (GSA), the first such acquisition contract in over 20 years.

Consumption of columbium as ferrocolumbium and nickel columbium was down slightly from that of the previous year. Gains made in the steelmaking industry, where consumption for the first time exceeded 5 million pounds, were more than offset by significant declines in superalloys. Demand for tantalum materials dropped; shipments of tantalum as powder and anodes and as mill products experienced large declines. Processor consumption of tantalum in raw materials was down by about one-third.

Tantalum prices receded from their 1980 peaks, those for tantalite concentrates dropping the most. Prices for the higher purity forms of columbium also continued the decline begun in 1980.

Foreign trade declined. Imports for consumption of mineral concentrates decreased by over one-half for columbium and by over one-fifth for tantalum. Exports of tantalum metal were less than one-half as great as those of 1980.

Table 1.—Salient columbium statistics
(Thousand pounds of columbium content unless otherwise specified)

	1977	1978	1979	1980	1981
United States:					
Mine production of columbium-tantalum concentrates				(¹)	(¹)
Releases from Government excesses		2 1			
Consumption of raw materials	2,427	2,673	2,402	3,122	1,983
Production of primary products:		•			
Columbium metal	w	w	W	w	W
Ferrocolumbium	1,455	1,566	969	2,028	1,145
Consumption of primary products: Ferrocolumbium and					
nickel columbium	4,389	5,694	6,337	6,503	6,244
Exports: Columbium metal, compounds, and alloys		_	_		
(gross weight)	75	e 95	e100	^e 120	e150
Imports for consumption:					
Mineral concentrate	1,551	1,982	1,690	2,320	1,050
Columbium metal and columbium-bearing alloys	2	, (3)	e ₄	73	(8)
Ferrocolumbium ^e	2,676	4,159	5,515	5,918	6,068
Tin slags ⁴	880	⁵ 436	⁵ 1.133	51.417	NA
World: Production of columbium-tantalum concentrates	r19,406	r21.311	31,718	P33,165	e34,779

^eEstimated. ^pPreliminary. ^rRevised. NA Not available. W Withheld to avoid disclosing company proprietary data.

²Net change in inventory report. ³Less than 1/2 unit.

¹A small unreported quantity was produced.

⁴Receipts reported by consumers; includes synthétic concentrates and other miscellaneous materials.

⁵After deduction of reshipments.

Table 2.—Salient tantalum statistics

(Thousand pounds of tantalum content unless otherwise specified)

	1977	1978	1979	1980	1981
United States:					
Mine production of columbium-tantalum concentrates		12000	Barrier Commence	· (1)	(1)
Releases from Government excesses	r 2_4	- <u>2</u> -	· 7		
Consumption of raw materials	1,448	1.571	1.740	1,863	1.269
Production of primary metal	678	974	NA	ŅĀ	NA.
Consumption of primary products: Tantalum metal	732	978	NA	NA	NA
Exports:					****
Tantalum ore and concentrate (gross weight)	118	64	3329	³468	399
Tantalum metal, compounds, and alloys	110	-	020	100	
(gross weight)	470	686	426	524	205
Tantalum and tantalum alloy powder (gross weight)	234	211	296	251	97
Imports for consumption:	201		200	201	٥.
Mineral concentrate	657	596	630	860	650
Tantalum metal and tantalum-bearing alloys	126	137	144	140	432
Tin slags ⁵	1.275	6676	61,140	61.327	NA
World: Production of columbium-tantalum concentrates	901	*766	1.088	p1,321	e1.037

^eEstimated. ^pPreliminary. ^rRevised. NA Not available.

²Net change in inventory report.

³Includes reexports.
⁴Exclusive of waste and scrap.

⁶After deduction of reshipments.

Table 3.—Columbium and tantalum materials in Government inventories as of December 31, 1981

(Thousand pounds of columbium or tantalum content)

Material	Stockpile		fense Stockpile entory	Total
waterial	goals	Stockpile grade	Nonstockpile grade	Total
Columbium: Concentrates Carbide powder Ferrocolumbium Metal	5,600 100 	911 21 598 45	869 333	¹ 1,780 21 ¹ 931 ¹ 45
Total	(2)	1,575	1,202	2,777
Tantalum: Minerals Carbide powder Metal	8,400 	1,399 29 201	1,152	³ 2,551 ³ 29 ³ 201
Total	(2)	1,629	1,152	2,781

 $^{^{1}}$ All surplus ferrocolumbium and columbium metal were used to offset columbium concentrates shortfall. Total offset = 1 ,148,000 pounds.

³All surplus tantalum carbide powder and tantalum metal were used to offset tantalum minerals shortfall. Total offset = 271,000 pounds.

4100 pounds.

Legislation and Government Programs.—U.S. Government inventories of columbium and tantalum materials did not change during 1981. There were neither acquisitions nor any sales of stockpile excesses. However, in March, the President directed the Federal Emergency Management Agency to begin a program of purchasing strategic and critical materials for the National Defense Stockpile, the first such program in over 20 years. Tantalum

and columbium were identified as priority materials to be considered for acquisition, and a contract for purchase of tantalum materials was entered into by GSA in December.

This contract called for purchase of tantalum minerals containing 36,630 pounds of Ta₂O₅ (30,000 pounds of Ta) at a price of \$1,349,690 (\$36.85 per pound of Ta₂O₅, f.o.b. the Hammond, Ind., storage depot). The seller, Norore Corp. of New York City,

A small unreported quantity was produced.

⁵ Receipts reported by consumers; includes synthetic concentrates and other miscellaneous materials.

²Overall goals, on a recoverable basis, total 4,850,000 pounds for the columbium metal group and 7,160,000 pounds for the tantalum metal group.

agreed to make delivery by mid-1982. This followed a solicitation in September for tantalum minerals, Grade 1 material, containing up to 61,050 pounds of Ta₂O₅ (50,000 pounds of Ta). Grade 1 material as defined by a new National Stockpile Purchase Specification P-113a for Tantalum Source Materials, issued in August by the Department of

Commerce, requires a minimum Ta_2O_5 content of 25%, a minimum combined Ta_2O_5 plus Cb_2O_5 content of 55%, SnO_2 and TiO_2 contents not exceeding 6% of each, and a maximum Sb content of 0.01%. Necessity for the low antimony limit was questioned by some in the tantalum industry.

DOMESTIC PRODUCTION

In 1981, as in 1980, small quantities of columbium- and tantalum-bearing concentrates were produced in South Dakota; production was from mine operations as well as from existing mine stockpiles. Exploration drilling and sampling for new columbium and/or tantalum deposits continued, primarily in the West.

Domestic production of ferrocolumbium, expressed as contained columbium, was down by over two-fifths. Value of ferrocolumbium produced dropped to an estimated \$13 million. The regular grade was favored significantly over the high-purity grade of ferrocolumbium in the production mix.

Tantalum content of raw materials consumed by processors in the production of tantalum compounds and metals was reported to be less than 1.3 million pounds, a significant drop from the 1980 figure.

Consumption of purchased metal scrap by processors experienced a slight decline to 95,000 pounds. Recycling of tantalum as carbide scrap increased, but quantities were unmeasured.

Metallurg, Inc., relocated its Refractory Metals, Inc., operation from Houston, Tex., to Newfield, N.J., site of Metallurg's Shieldalloy Corp. facility. Both Metallurg manufacturing operations were consolidated under the Shieldalloy Corp.

Construction of a new hot-rolling mill was started by the Engineered Products Group of Cabot Corp., at Kokomo, Ind. This was to be gradually brought into full operation in 1982. The mill was to be initially devoted to processing superalloys and eventually will process refractory metals such as columbium and tantalum.

Table 4.—Major domestic columbium and tantalum processing and producing companies in 1981

		Products ¹									
Company	Plant location	Met	tal²	Carl	oide	Oxide a		FeCb and/or			
		Cb	Ta	Cb	Ta	Cb	Ta	NiCb			
Cabot Corp.: KBI Div Do. Kennametal, Inc Mallinckrodt, Inc. Metallurg, Inc.: Shieldalloy Corp NRC Inc. The Pesses Co. H. K. Porter Co., Inc.: Fansteel, Inc Do. Reading Alloys, Inc Teledyne Inc.: Teledyne Wah Chanz Albany Div.	Boyertown, Pa Revere, Pa Latrobe, Pa St. Louis, Mo Newfield, N.J Newton, Mass Newton Falls, Ohio Muskogee, Okla North Chicago, Ill Robesonia, Pa Albany, Oreg	x	x -x -x x x x x	 x -x x x	 X X X	x x x x	x -x x x	-x -x -x -x x x			

Cb, columbium; Ta, tantalum; FeCb, ferrocolumbium; NiCb, nickel columbium.

CONSUMPTION, USES, AND STOCKS

Overall reported consumption of columbium as ferrocolumbium and nickel columbium was 6.2 million pounds, a 4% decrease

from that of 1980 and a reversal of the upward trend of recent years. The steelmaking industry consumed over 5.3 million

²Includes miscellaneous alloys. ³Jointly owned by South American Consolidated Enterprises, S.A., and H. C. Starck Berlin.

pounds of columbium, up by 16%. In addition to an overall increase of 7% in steel production, columbium demand in steel-making was augmented by increased usage per ton of steel produced. The strongest columbium consumption increase was in carbon steel, higher by 50% and totaling more than 2 million pounds for the first time. Consumption for high-strength, low-alloy (HSLA) steel, which included a small quantity of columbium for full-alloy steel reported separately in previous years, experienced a modest 8% increase. Demand for columbium in stainless and heat-resisting steel declined again, by 28%.

Continued use of columbium in HSLA steel for pipelines was attributed chiefly to the strengthening that it imparts, which results from columbium's grain refining effect. This effect has contributed to development of modern X70 grade linepipe, which has become an important application for columbium.2 Along with such metallurgical factors as field weldability, cost and availability of the various ferroalloving elements were also noted to require consideration in choosing composition of pipeline steels. Interplay of the various selection factors was outlined for the Alaska Highway Pipeline Project, for which the leading alloying alternates for the X70 grade steels needed to meet specifications were Cb-Mo and Cb-V combinations.3 The need for lighter and more fuel-efficient vehicles sustained the demand for columbium microalloyed steels for automotive applications. Development of a Cb-P alloy steel was proving attractive for car body components.

In 1981, demand for columbium in superalloys dropped significantly, by 52%; for the

first year since 1977, consumption in this use was less than 1 million pounds. That portion used in the form of nickel columbium declined more than 50% to somewhat less than 350,000 pounds. This decreased use of columbium in superalloys was attributed partly to a decline in engine-building programs for the commercial segment of the aircraft market. Among new or potential applications for Inconel 718, containing 5% columbium, were its use in fasteners for graphite-epoxy composite structures in future aircraft, in magnets for the Tokamak fusion reactor under construction at Princeton, N.J., and as pipe-coupling material in deep sour-gas wells.5

The Tantalum Producers Association reported a 35% decrease in overall shipments of tantalum, reflecting a sizable decline in tantalum consumption. Major segments of the tantalum market showing declines were powder and anodes at 39% and mill products at 38%. This was the first year since 1975 that tantalum material shipments totaled less than 1 million pounds.

Tantalum capacitor factory sales were 7% lower as reported by the Electronic Industries Association; high tantalum powder prices and continued development of miniature aluminum and ceramic devices shared in the weakening of the tantalum capacitor market. Sprague Electric Co. announced construction of a plant in San Antonio, Tex., for expansion of its solid tantalum capacitor manufacturing capability, with operations to start in late 1982. However, tantalum capacitor production in Scottsdale, Ariz., by the Siemens Corp. was being phased out.

Table 5.—Reported shipments of columbium and tantalum materials

(Pounds of metal content)

Material	1980	1981	Change, percent
Columbium products: Compounds, including alloys	1,066,550	632,160	-41
Metal, including worked productsOther	344,700 18,500	260,500 20,500	-24 +11
Total	1,429,750	913,160	-36
Tantalum products:			
Oxides and salts Alloy additive	48,700 8,100	50,700	+4
Powder and anodes	125,730 852,900	$137,\overline{160} \\ 520,200$	 + 9 -39
Mill products	23,000 318,800	7,100 196,700	-69 -38
ScrapOther	130,900 1,700	72,700	-36 -44
Total	1,509,830	984.560	-35

Source: Tantalum Producers Association.

Table 6.—Consumption, by end use, and industry stocks of ferrocolumbium and nickel columbium in the United States

(Pounds of contained columbium)1

	1980	1981
END USE		
Steel: Carbon Stainless and heat-resisting Full alloy	1,552,338 824,904 r(2)	2,322,045 596,022 (2)
High-strength, low-alloy Electric	r2,206,264	2,387,206 (8)
Tool Unspecified	(8) 6,901	(³) 2,176
TotalSuperalloys	4,590,407 1,885,935 21,599 5,142	5,307,449 900,665 29,465 6,358
Total consumption	6,503,083	6,243,937
STOCKS		
December 31: Consumer Producer ⁴	W W	w
Total stocks	1,964,000	1,868,000

Revised. W Withheld to avoid disclosing company proprietary data.

⁴Ferrocolumbium only.

Contrary to overall trends for tantalum products, shipments of tantalum for cemented carbides experienced a moderate 9% increase over those in 1980. Based on the high-melting-point properties needed in hotter running, more-fuel-efficient turbine engines, consumption in superalloys appeared to have potential as a fast-growing end use for tantalum. Consumption in capacitor and carbide cutting tools seemed likely to continue as large uses for tanta-

lum.

Data on aggregate stocks of columbium and tantalum raw materials reported by processors for 1981 were incomplete at the time this chapter was prepared. Aggregate stocks of columbium and tantalum raw materials reported by processors for yearend 1980 contained 4,812,000 pounds of columbium and 3,261,000 pounds of tantalum, both up from those of yearend 1979.

PRICES

Prices were stable for pyrochlore concentrates and columbium products based on them. A price for Brazilian concentrates was no longer available because they were not being exported. The price of pyrochlore concentrates produced in Canada by Niobec Inc. was quoted throughout 1981 at \$3.25 per pound of contained pentoxide, f.o.b. Canada, for concentrates with a nominal content of 57% to 62% Cb₂O₅. The spot price of regular-grade ferrocolumbium containing 63% to 68% columbium was also unchanged at \$6.22 to \$6.35 per pound of contained columbium, f.o.b. shipping point.

Prices continued to decline for highpurity ferrocolumbium, nickel columbium, columbium metal, columbite concentrates, and columbium oxide. The price of highpurity ferrocolumbium was reduced three times, dropping overall by about one-fifth from \$30.15 to \$30.90 per pound of contained columbium as of January 1 to \$24.80 in the fourth quarter. Contributing to this decrease were price slides for columbite concentrates, quoted at \$9 to \$11 in January and \$8 to \$10 in December per pound of combined pentoxides, c.i.f. U.S. ports, and for both domestic and foreign columbium oxide, reported to be selling by midyear for less than \$8 per pound of oxide.

Tantalum price trends were all downward. The most pronounced decrease was for tantalite concentrates. In the spot market, where trading volume was reportedly light, the tantalite price fell by about two-thirds, ending at \$35 to \$40, after starting at \$103 to \$108 per pound of combined tantalum and columbium pentoxides, 60% basis,

¹Includes columbium and tantalum in ferrotantalum-columbium, if any.

²Small; included with high-strength, low-alloy steel.

³Withheld to avoid disclosing company proprietary data; included with "Steel: Unspecified."

c.i.f. U.S. ports. Contract prices also declined by about one-sixth for Canadian (Tantalum Mining Corp. of Canada Ltd.) tantalite, which went from \$102.50 to \$85 per pound of contained pentoxide. For about one-half of 1981, a contract price was in effect for tantalite from Australia (Greenbushes Tin N.L.), a producer price of \$101 per pound of

contained tantalum pentoxide having been initiated in May. Market conditions were such that this was lowered to \$88 in July and then withdrawn altogether late in the year. Published price quotations for tantalum mill products and powder decreased by about one-fifth, so that prices were about \$200 per pound at yearend.

FOREIGN TRADE

Net trade was at a deficit for both columbium and tantalum, with the value of imports of raw materials and such intermediates as ferrocolumbium substantially exceeding the value of net exports of upgraded forms of columbium and tantalum. Volume and value of trade in both columbium and tantalum were down appreciably for nearly all items.

In 1981, exports and reexports of tanta-

lum ores and concentrates declined approximately 80% to 99,000 pounds at a value of \$1.7 million. As in 1980, the Federal Republic of Germany was the principal recipient. Exports of ferrocolumbium and nickel columbium, mostly ferrocolumbium, were reported by the Office of Export Administration to have exceeded 90,000 pounds in 1981 and to have all gone to the Federal Republic of Germany.

Table 7.—U.S. foreign trade in columbium and tantalum metal and alloys, by class (Thousand pounds, gross weight, and thousand dollars)

Class	19	80	19	81	Principal destinations
Class	Quantity	Value	Quantity	Value	and sources, 1981
EXPORTS1					
Tantalum:					
Powder	251	39,880	97	19,999	Japan 28, \$5,978; France 28, \$5,804; Federal Republic of Ger
to y the control of the first of the control of the					many 19, \$3,900; United Kingdom 12, \$2,298.
Unwrought, and waste and scrap	399	31,539	164	12,454	Federal Republic of Germany 83, \$5,390; Belgium-Luxembourg 3 \$2,820.
Wrought	125	20,896	41	6,341	United Kingdom 10, \$1,870; Japai 11, \$1,839; Federal Republic of Germany 7, \$1,352.
Total	XX	92,315	XX	38,794	Federal Republic of Germany, \$10,600; Japan, \$9,100; France, \$7,400; United Kingdom, \$5,000.2
IMPORTS FOR CONSUMPTION Columbium:					
Ferrocolumbium ^e Unwrought metal, and waste and	9,104	28,224	9,335	32,570	All from Brazil.
scrap	4	16	1	18	Taiwan ² 1, \$10; United Kingdom ² 1, \$7.
Unwrought alloys Wrought	115 (3)	2,561 (³)			1, φι.
Cantalum:	()	(-)			
Waste and scrap	118	3,924	116	5,954	Mexico 54, \$2,880; Japan 12, \$745; France 26, \$695.
Unwrought metal	68	12,387	31	4,166	Federal Republic of Germany 13, \$2,495; Belgium-Luxembourg 17
Unwrought alloys	36	4,703	(3)	40	\$1,643. All from Canada.
Wrought	1	173	(3)	94	Netherlands (3), \$61; Austria (3), \$13.
Total	XX	51,988	XX	42,842	Brazil, \$32,600; Mexico, \$2,900; Federal Republic of Germany, \$2,700. ²

^eEstimated. XX Not applicable.

¹For columbium, data on exports of metal and alloys in unwrought and wrought form, including waste and scrap, are not available; included in basket category.

²Rounded.

³Less than 1/2 unit.

Table 8.—U.S. imports for consumption of columbium-mineral concentrates, by country (Thousand pounds and thousand dollars)

					19	81
	Country		Gross weight	Value	Gross weight	Value
			1,565	4.127	91	597
Brazil			1,446 430 91 996	4,127 3,504	926	2,141
Canada China			430	3.053		
Malaysia			91	1,043	78	608
Maiaysia			996	1,043 8,357	752	6,340
Nigeria Thailand			64	198	34	417
Uganda			4	7.		
Total ¹			4,595	20,289	1,882	10,102

¹Data may not add to totals shown because of independent rounding.

Table 9.—U.S. imports for consumption of tantalum-mineral concentrates, by country

(Thousand pounds and thousand dollars)

					19	80	19	81
		Country		erin erin er en er er er General er	Gross weight	Value	Gross weight	Value
	* .	10 mm			390	18,133	268	9.688
Australia					580	19,074	540	15,348
Brazil					5	193		
3 J .					505	15,011	628 2	20,146
Cayman Islands'					94	2,843	20	744
China					302	8,388	4	176
lermany, Federa	il Republic of				106	1,273		
Malaysia			,			492		
Mozambique					119	3,433		
					131	2.875	62	1.204
Rwanda					101	-,0.0	7	190
singapore					13	497	. 4	189
outh Africa, Re	public of				36	1,299	92	2,21
Spain					81	2,204	157	2,440
naliand						29		
Uganda	 -	:-:			18	121		
United Kingdom					112	2,601	127	3,500
					7	362	42	1,80
		**						
Total ²					2,510	78,829	1,952	57,720

¹Presumably country of transshipment rather than original source.

Imports for consumption from Brazil in 1981 included over 9 million pounds of ferrocolumbium, up only slightly from those of 1980. Imports for consumption of columbium oxides from Brazil declined 73% to less than 159,000 pounds at a value of \$1.3 million owing to lower demand. Estimated data for both ferrocolumbium and columbium oxide were based on entries in nonspecific classes.

Imports for consumption of columbiummineral concentrates declined nearly 60%, to the lowest level since 1975. Imports from Brazil were much less than in 1980 because pyrochlore concentrates were no longer being exported as of 1981. The total value of imports for consumption dropped 50%. Imports were estimated to contain 750,000 pounds of columbium and 70,000 pounds of tantalum and to have an average grade of approximately 57% Cb₂O₅ and 5% Ta₂O₅.

Imports for consumption of tantalummineral concentrates were down 22%, and average unit value was 6% lower. Imports were estimated to contain 580,000 pounds of tantalum and 300,000 pounds of columbium; average contents of Ta₂O₅ and Cb₂O₅ were 37% and 21%, respectively. Canada was the leading source, providing approximately one-third of both quantity and value.

Data on receipts of raw materials other than mineral concentrates were incomplete.

Imports for consumption of columbiumtantalum synthetic concentrates totaled 3.7 million pounds in 1981 with a value of \$76.9 million; these figures are not included elsewhere in this chapter. Approximately 9,000 pounds of potassium tantalum fluoride were imported from China in 1981 at a value of \$629,000.

²Data may not add to totals shown because of independent rounding.

WORLD REVIEW

World production of columbium and tantalum minerals is detailed in table 10; the table does not include tantalum (or columbium) recovered from contemporary or old tin slags or in struverite. Tantalum contained in tin slags produced in 1977, 1978, 1979, and 1980 was, in thousand pounds, 822, 790, 987, and 1,133, respectively, according to data of the Tantalum Producers International Study Center (TIC). No data were available for the U.S.S.R. for either minerals or slag. Exclusive of the U.S.S.R., the TIC data were believed to represent more than 90% of the recoverable tantalum contained in tin slags produced in 1977-80.

Shipments of old tin slags from Thailand rose significantly from 916 short tons in 1979 to 10,387 tons in 1980. Estimated Ta₂O₅ content of these slags was about 5%. Whereas the bulk of old slag shipments in years immediately prior to 1980 had been reported as going to Singapore and Malaysia, about two-fifths of 1980 shipments went each to the Federal Republic of Germany and the Netherlands, with most of the remaining one-fifth going to the United States. Data were not available as to further disposition of any of these shipments.

Australia.—Tin-tantalite mine operations at Greenbushes Tin N.L. were augmented by tailings retreatment at a plant commissioned in March 1981 and by production of a tantalum "glass" (slag) during tin smelting. Operating statistics for fiscal years ending June 30 follow, for 1981 and 1980, respectively: Production of tantalite concentrates, 163 versus 118 tons; Ta₂O₅ content of concentrates produced (nominal 40% Ta₂O₅), 131,000 versus 94,000 pounds; and ore processed, 1.52 (including 0.1 in tailings) versus 1.5 million cubic meters. Additionally produced in fiscal 1981 were 73 tons of tin slags (nominal 20% Ta₂O₅) containing 29,000 pounds of Ta₂O₅. Total Ta₂O₅ output was thus raised to 160,000 pounds, an increase of about 70% compared with output in fiscal 1980. Approximately 10,000 pounds of tantalum oxide and 5,000 pounds of columbium oxide were separated in Greenbushes' pilot solvent extraction plant in fiscal 1981, through processing of a portion of Greenbushes' raw material production.

Greenbushes continued exploration and development work on its underground pegmatite deposit. Resources at this site were placed at 13 million pounds of tantalum, corresponding to a cutoff grade of 0.5% tin equivalent and a Ta₂O₅ grade of 0.06%.

Diamond drilling also outlined a sizable lithium resource in a spodumene zone adjacent to tin-tantalum mineralization. Planning and financial negotiations were conducted aimed at establishing a new mine, processing plant, and refinery based on the underground pegmatite. A mine capacity of about 1 million tons of ore having a Ta₂O₅ grade of 0.06% was projected as of 1985. The proposed refinery was incorporated as a Greenbushes subsidiary, Tantalum Refinery Co. Pty. Ltd., and was to be at Kwinana. Conditions in the tantalum market caused planning to be scaled back, however, to a staged development to begin at over 250,000 tons of ore per year. Operations at the existing mine were cut back late in 1981.

Brazil.—Companhia Brasileira de Metalurgia e Mineração (CBMM) brought a new pyrochlore concentration plant onstream late in the year. This plant was rated at 55 million pounds Cb₂O₅ per year, in terms of output of pyrochlore concentrates (nominal 60% Cb₂O₅) from a mine ore feed of over 1.2 million tons (3,500 tons per day). CBMM suspended columbium oxide production for most of the year because of insufficient demand. However, the company moved further into manufacture of columbium in upgraded forms. Products added included grades of columbium oxide pure enough for optical and electronic applications, highpurity ferrocolumbium, and nickel columbium.

Brazil's production and exports of ferrocolumbium both declined for the first time since 1977 to 16,100 tons for production and to 16,000 tons for exports. The decreases, compared with the 1980 quantities, were one-sixth for production but negligible for exports.

Canada.—As reported by Teck Corp., Ltd., for fiscal years ending September 30, production of columbium oxide at the Niobec Inc. mine at St. Honoré, Quebec, increased to 5,960,776 pounds in 1981 from 5,440,159 pounds in 1980. Ore milled (762,838 tons in 1981 versus 657,074 in 1980) also increased, as the mill operated at 95% of its enlarged capacity of 2,300 tons per day. Recovery improved (67% versus 66%) in spite of a fall in Cb₂O₅ grade of ore (0.58%) versus 0.63%). Ore reserves were stated as 30% greater, content basis, as of the end of the fiscal year (13,000,000 tons at 0.67% Cb₂O₅ versus 10,347,000 tons at 0.65% Cb₂O₅).

Total production of Ta₂O₅ in concentrates

at the Bernic Lake, Manitoba, operation of Tantalum Mining Corp. of Canada Ltd. (Tanco) declined slightly to 297,000 pounds. Mill recovery was raised to around 70% in the latter part of the year by making changes to mill circuitry and operations and by lowering throughput to 800 from 1.000 tons per day. The quantity of tailings reprocessed was up significantly at a recovery of around 50%. In 1981, 152,000 tons of ore at a Ta₂O₅ grade of 0.122% was milled and 55,000 tons of tailings was reprocessed, whereas in 1980 the corresponding statistics were 162,000 tons of ore milled at a Ta₂O₅ grade of 0.136% and 35,000 tons of tailings reprocessed. Mine reserves (stated as proven, probable, and possible) at yearend were reported to have decreased only slightly, from 2.8 to 2.7 million pounds of contained tantalum. Tantalum contained in stored tailings declined to 790,000 pounds.

Exploration and test work at other Canadian properties with potential for columbium and/or tantalum included that by Société Québécoise d'Exploration Minière (SOQUEM) at the Crevier alkaline complex in the Lake St. John area, north of Quebec. columbium-tantalum-uranium-phosphorus-bearing dike, mineralized with uranpyrochlore and pyrochlore, was found to average 0.2% Cb₂O₅ and 0.02% Ta₂O₅. About the same Cb₂O₅ content was encountered by Nuinsco Resources (formerly New Insco Mines) during additional drilling of the Prairie Lake carbonatite complex near Marathon in northwest Ontario. Columbium was associated with uranium in this uranium-columbium-phosphorus-bearing complex also. Test work at the tantalum-columbium-rare earths property of Highwood Resources Ltd. in the Northwest Territories indicated further beneficiation studies were needed. Fine-grained tantalocolumbite crystals in the deposit were resistant to separation by conventional gravity and magnetic methods.

China.—Tantalum production was estimated by industry sources as 50,000 to 100,000 pounds overall. Tantalum was reportedly mined at Yichun in Jiangxi Province, near Guangzhou in Guangdong Province, and near Urumqi in Xinjiang, all from ores with 0.02% or less Ta₂O₅. Additional tantalum was obtained as a byproduct at Limu, Guangxi Province, where slag from a small tin smelter was chemically processed to produce both tantalum and columbium as oxides.

Nigeria.—Columbite production fell significantly with a combined output of 401

tons in 1981 versus 610 tons in 1980 being reported by the group of Amalgamated Tin Mines of Nigeria Ltd. (ATMN), Bisichi-Jantar (Nigeria) Ltd., Gold and Base Metal Mines of Nigeria, Ltd., and Vectis Tin Mines Ltd. Over 60% of production was by Bisichi-Jantar, with practically all the rest coming from ATMN. ATMN operated at a loss, partly because increases in the minimum wage raised mining costs.

Thailand.—Tantalum's growing contribution to Thailand's mineral economy became increasingly evident, as shown by the prior year's export statistics. In 1980, tantalumbearing tin slags were second only to tin in value of exports of metals and minerals. The proposal by Thailand Tantalum Industry Corp., Ltd. (TTIC), to set up a plant to upgrade tin slags into intermediate forms of tantalum and columbium, thereby retaining the added value of such processing for Thailand, was still being implemented. The patterns of ore movement and smelting of tin concentrates were altered somewhat when Thai Pioneer Enterprise Co., Ltd. (TPE), started a tin smelter during the first of the year. TPE's output was slow in building toward capacity, partly because its new electric furnace north of Bangkok was competing for concentrates with the much larger, established smelter of Thailand Smelting and Refining Co., Ltd. (Thaisarco), at Phuket.

Zaire.—The Government approved formation of a new consortium. Société Minière de Kivu (SOMIKIVU), to mine and process the pyrochlore ore deposit at Lueshe, Kivu Province, into concentrates. Metallurg, headquartered in New York City, was to have a majority interest in SOMIK-IVU, other participants being Société Minière et Industrielle de Kivu (SOMINKI), a producer of tin, tantalite, and other minerals, and the Government. Pending final Government approvals, a pilot treatment plant was to be built in 1982. Initial output of a subsequent production facility which might be built was expected to be several million pounds of columbium oxide per year contained in nominal 60% Cb₂O₅ concentrates.

The Government was encouraging revival of tin mining, which could also enhance production of such accessory commodities as tantalum. Efforts to increase production were underway at several small tin operations, some of which were new, as well as at the two major established producers, SOMINKI and Société Zairetain, S.Z.A.R.L.

Table 10.—Columbium and tantalum: World production of mineral concentrates, by country.

(Thousand pounds)

		þ	Gross weight		-		Colum	Columbium content	tent*			Tant	Tantalum content	ent*	
Country	1977	1978	1979	1980 ^p	1981e	1977	1978	1979	1980P	1981e	1977	1978	1979	1980₽	1981e
Argentina:		ı						-							
Columbite	4	€(4	က	မ်ာ	£.	9	က	2	~ 1	6	•	9	€;	Đ
Tantalite	€;	ε;	l d	l i	1	©	() ()	ľ	1	1	6	6	9	() ()	€
Australia: Columbite-tantalite	346	306	379	351	543	69	[9	92	20	88	114	101	125	116	190
Columbite-fantalite	303	448	825	1.189	100	92	83	153	913	981	8	141	960	878	200
Pyrochlore	34.421	F39.463	63 733	67,682	70,550	614 436	F 616 574	626 729	28 496	20 631	3	į	8	3	3
Burundi: Columbite-tantalite	r e9			2	4	2	100		1	1000	2		1	1	} .
Canada:							ì		 -	i i	1	1	1	<u>.</u>	!
Pyrochlore	9,220	9.087	9.229	8,563	10.018	93.866	63.811	3.876	3.596	4.208					•
Tantalite	595	624	783	770	6747	17	17	21	21	22	62,65	8278	345	330	200
Malaysia: Columbite-tantalite	66	51	88	23	21	8	13	នេ	123	, ∞	12	4	5	300	3
Mozambique:									1						
Columbite	2	3	ιO	Ϋ́	AN	_	7	1	Ϋ́	AN	2	2	2	Z	Ž
Microlite	88	88	e 20	V	N	4	4	60	Y	Y	8	4	40	Z	Ž
Tantalite ^e	8	8	20	NA	NA	13	13	10	AN	N	88	8	22	N	¥
Nigeria:													i		
Columbite	1,898	1,468	1,250	1,221	808	773	646	220	537	353	175	88	75	73	8
Tantalite	63	01	~	7	8	€	€	€	€	€	67	-	_		-
Portugal: Tantalite		18	œ ;	6,		~	4.0	~ 1	~	~	~ 7	4	7	7	7
Kwanda: Columbite-tantalite	142	707	104	132	120	4	88	8	45	8	2	13	23	2	88
Columbite	73	141	849	470	440	16	88	101	108	99	20	86	199	170	0
Tantalite	06	; ;	32	315	900	28	3	181	38	88	22	3	24	28	82
Uganda: Columbite-tantalite	5	20	2	:	1	-	-	-	1		, 		-	5	2
United States: Columbite-tantalite	!	;	1	€	€		1		•	•	1			€	ŧ
Zaire: Columbite-tantalite	183	40	11	203	165	41	11	20	22	45	26	က 	15	3	46
Zimbabwe: Columbite-tantalite	r65	220	65	8	100	77	77	7	2	15	77	r17	18	23	35
Total	r47,632	r 52,003	77,588	81,071	84,958	19,406	^r 21,311	31,718	33,165	34,779	901	9941	1,088	1,268	1,037

^eEstimated. PPreliminary. ^rRevised. NA Not available.

¹Excludes columbium and fantalum-bearing tin ores and slags. Table includes data available through June 6, 1982.

²In addition to the countries listed, China, Spain, Namibia, the U.S.S.R., and Zambia also produce or are believed to produce columbium and tantalum mineral concentrates, but available information is inadequate to make reliable estimates of output levels.

³Data on gross weight generally have been presented as reported in official sources of the respective countries, divided into concentrates of columbite, tantalite, pyrochlore, and microlite where information is available to do so, and reported in groups such as columbite and tantalite where it is not.

*Unless otherwise specified, data presented for metal content are U.S. Bureau of Mines estimates.

*Less than 1/2 unit.

Reported in official country sources.

⁷Revised to zero. ⁸A small unreported quantity was produced.

TECHNOLOGY

The possibility of economically coproducing phosphorus during processing of Canadian pyrochlore ore was investigated. Pilot plant tests showed a flotation circuit devised to treat reject carbonate concentrate was capable of producing an apatite concentrate analyzing 34% P2O5.6

Columbium and its compounds were the subject of a comprehensive review that covered various chemical and metallurgical aspects, including extractive metallurgy.7 In another review, a number of processes were described for producing columbium and columbium compounds from the kinds of concentrates, both natural and synthetic, that are basically used as tantalum source materials. Specialized processing methods and products were discussed, especially those involving a chloride.8 Specialized processing was found to be required also in preparing the purest columbium metal for materials characterization. According to the current state of the art, transforming commercially pure metal into the highest purity columbium was achievable by applying a sequential combination of fused salt electrolytic refining (to remove tantalum and tungsten), electron-beam float zone melting (to remove volatile metallic impurities), and ultra-high-vacuum annealing (to remove interstitial impurities).9

Contemporary commercial processes for producing tantalum metal and the chief tantalum compounds were described in a review of tantalum's extractive and process metallurgy.10 Interest in tantalum recovery from tin slags has led to development of a procedure for X-ray fluorescence analysis of such slags for tantalum and columbium. This procedure, based on fusion of a slag sample in a sodium-lithium borate flux, was to be applicable to slags with up to 15% each of Ta₂O₅ and Cb₂O₅.11

Columbium additions have been found to improve elevated-temperature performance of ferritic stainless steels, such as are used in vehicle catalytic converters, in both a steel with 18% chromium and another with 12% chromium.12

Among advances in electronic applications of columbium and tantalum was development of an improved method of fabricat-

ing filamentary columbium-bearing superconductors. Making a starting billet from a "jelly roll" of expanded columbium metal or alloy laminated with an appropriate second metal was claimed to reduce the number of extrusions required and to give a stronger product at higher yield.13 Comparative laboratory testing of aluminum electrolytic capacitors, developed recently to compete with solid tantalum capacitors, indicated tantalum capacitors were preferable when stability and/or long-term reliability was important.14

¹Physical scientist, Division of Ferrous Metals.

²Jones, B. L., and J. M. Gray. Trends in the Technology and Weldability of Large Diameter Pipelines. Proc. 9th Internat. Pipeline Exhibition and Conf. (Interpipe '81), Houston, Tex., Feb. 24-26, 1981, pp. 180-194.

Houston, Tex., Feb. 24-26, 1981, pp. 180-194.

*Cooke, R. J., and A. B. Rothwell. Ferroalloy Usage in Line Pipe for Large Diameter Pipeline Applications. Pres. at 33d Ann. Gen. Meeting of Can. Institute of Min. and Met., Calgary, Alberta, Canada, May 3-6, 1981, 23 pp.

*Manker, E. A. Columbium—An Outlook. CIM Bull., v. 74, August 1981, pp. 39-399.

*Irving, R. R. Alloy 718: The Workhorse of Superalloys. Iron Age, v. 224, June 10, 1981, pp. 77, 79, 81.

*Delisle, G. Recovery of Apatite as a By-Product From Carbonatite-Pyrochlore Ore. CIM Bull., v. 74, December 1981, np. 64-69.

1981, pp. 64-69

Payton, P. H. Niobium and Niobium Compounds. Ch. in Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc., New York, v. 15, 3d ed., 1981, pp. 820-

⁸Rockenbauer, W. Production of Niobium Metal and *Rockenbauer, W. Production of Niobium Metal and Compounds From Tantalite/Columbite Natural Ores and Synthetic Tantalum/Niobium Concentrates. Pres. at In-ternat. Symp.—Niobium 81, San Francisco, Calif., Nov. 9-11, 1981, 28 pp. *Schulze, K. K. Preparation and Characterization of Ultra-High-Purity Niobium. J. Metals, v. 33, May 1981, pp.

33-41.

¹⁰Borchers, P., and G. J. Korinek. Extractive Metallurgy of Tantalum. Ch. in Extractive Metallurgy of Refractory Metals, ed. by H. Y. Sohn, O. N. Carlson, and J. T. Smith. The Metallurgical Society of AIME, Warrendale, Pa., 1981,

pp. 95-106.

11Parker, R. J., and E. Brocchi. Analysis of Nb and Ta in Slags by X-Ray Fluorescence Spectrometry. Trans. Inst. Min. and Met., v. 90, Sec. C, September 1981, pp. C111-

Min. and Met., v. 90, Sec. C, September 1931, pp. C111-C112.

12Douthett, J. A. Oxidation Resistant 12% Cr Automotive Stainless Steel. Soc. Automotive Eng., Inc. (Warrendale, Pa.), SAE Tech. Paper 810036, 1981, 10 pp. Johnson, J. N. Influence of Columbium on the 870° C Creep Properties of 18% Chromium Ferritic Stainless Steels. Soc. Automotive Eng., Inc. (Warrendale, Pa.), SAE Tech. Paper 810035, 1981, 13 pp.

13MCDonald, W. K. (assigned to Teledyne Industries, Inc., Los Angeles, Calif.). Composite Construction Process and Superconductor Produced Thereby. U.S. Pat. 4,262,412, Apr. 21, 1981.

14Hawthornthwaite, B. G., J. Piper, and H. W. Holland. Performance Comparison: Aluminum Electrolytic and Solid Tantalum Capacitors. Proc. Symp. sponsored by NASA Marshall Space Flight Center and IEEE Components, Hybrids, and Manufacturing Technology Society, Marshall Space Flight Center, Huntsville, Ala., Feb. 24-25, 1981 (pub. as Capacitor Technologies, Applications, and Reliability by National Aeronautics and Space Administration). NASA Conf. Pub. 2186, 1981, pp. 19-25.

Copper

By W. C. Butterman¹

World consumption of refined copper in 1981 rose 9% to 9.44 million tons.2 The United States was the leading world producer of mined copper, followed by Chile, the U.S.S.R., Canada, Zambia, Zaire, Peru, Poland, and 50 other countries. Copper prices

declined in 1981 as demand slackened. The U.S. producers' price for delivered wirebar averaged \$0.89 per pound in January and dropped to \$0.80 by December; it averaged \$0.85 for the year compared with \$1.02 in 1980.

Table 1.—Salient copper statistics

	1977	1978	1979	1980	1981
United States:					
Ore produced thousand metric tons	235.844	239,247	*277.532	r221,597	277,682
Average yield of copperpercent	0.52	0.51	r _{0.47}	r _{0.48}	0.51
Primary (new) copper produced—	0.02	0.01	0.21	0.40	0.51
From domestic ores, as reported by-					
Mines metric tons_	1.364.374	1,357,586	1,443,556	r _{1,181,116}	1,538,160
Value thousands	\$2,009,297	\$1,990,323	r\$2,960,675	r\$2,666,931	\$2,886,440
	1.265.008	1.269,981	1,313,224	994,479	1,294,962
Smelters metric tons Percent of world total	16	16	1,010,224	13	1,234,302
	10	10	10		10
Refineries metric tons	1,280,035	1,327,373	1,411,518	1.121.897	1,430,210
From foreign ores, matte, etc., as reported	2,200,000	1,021,010	1,411,010	1,121,001	1,400,210
by refineriesdo	77,281	121.684	103,858	88,957	113,807
——————————————————————————————————————	,	,001	200,000	00,001	110,001
Total new refined, domestic and					
foreigndo	1,357,316	1,449,057	1.515.376	1,210,854	1,544,017
Secondary copper recovered from old				-,,	_,
_ scrap only do	409,928	501,650	604,301	613,458	598,122
Exports: Refineddo	46,745	91,923	73,677	14.489	24,397
Imports for consumption: Unmanufactureddo		•	•		
Unmanufactureddo	396,484	531,678	281.584	547.006	429,601
Refineddodo	350,957	402,673	203,855	426,948	330,625
_					
Stocks, Dec. 31: Producers:					
Refined (primary producers)do Blister and materials in solution _do	212,000	153,000	64.000	49,000	151.000
Blister and materials in solution _do	314,000	263,000	275,000	272,000	277,000
Totaldo	526,000	416,000	339,000	321,000	428,000
Consumption:					-
Refined copperdo	1,982,162	2,189,301	2,158,442	1,862,096	2,025,169
Apparent consumption, primary	•		_		
copperdodo	^r 1,622,000	^r 1,819,000	r _{1,735,000}	r _{1,638,000}	1,748,000
Apparent consumption, primary and old	•	_			
copper (old scrap only)do	r2,032,000	^r 2,321,000	^r 2,339,000	r2,251,000	2,346,000
Price: Weighted average, cents per pound World:	66.77	66.51	93.33	102.42	85.12
Production:	•			_	
Mine thousand metric tons	<u>"</u> 7,738	^r 7,618	r7,674	P7,656	^e 8,171
Smelterdo	⁷ 8,137	r8,018	r8,046	P7,939	e8,325
Price: London, average cents per pound	59.44	61.88	90.07	99.25	279.35

^eEstimated. ${}^{\mathbf{p}}$ Preliminary. Revised.

¹Series revised to show imports for consumption rather than general imports.

²Based on January-November monthly averages. (See table 32.)

Government Pro-Legislation and grams.—The second of eight annual staged reductions in tariffs negotiated during the Tokyo Round of multilateral trade negotiations went into effect January 1, 1981, and affected 37 classes of unwrought copper, copper scrap, and brass mill products.

DOMESTIC PRODUCTION

Primary Copper.-Domestic mine production rebounded in 1981 from the low 1980 total, which reflected a protracted labor strike. Production at primary smelters from ores, including a small amount of foreign ores, and refinery production derived from ores, also including some foreign ores, both increased in 1981.

Mine Production.—Copper was mined in 14 States in 1981. Arizona accounted for 68% of domestic production, and Arizona, Utah, New Mexico, and Montana together

produced 95% of the total.

Surface mines yielded 84% of U.S. primary copper, and underground mines, 16%. Twenty of the top 25 producing mines were surface mines; these, and 3 of the underground mines, were exploiting porphyry deposits. Eighty-three percent of the copper was extracted from ores that had been concentrated by flotation, and another 16% was recovered by leaching of ores and tailings. The remainder came from small amounts of direct-smelting ores and other base metal ores. The average yield of copper ores, except those leached in dumps or in place, was 11 pounds of copper per ton of ore or 0.51%.

The value of byproduct gold and silver, while still important to a number of copper mines, declined in 1981 as prices for these metals dropped sharply. Revenues from gold and silver averaged \$1.18 per ton of domestic ore (excluding leached ore) or \$0.11 per pound of copper. Revenues from molybdenum, important at some mines, also suffered in 1981, as the molybdenum price averaged nearly one-third lower than that of 1980.

Anaconda Copper Co. suspended production at its Carr Fork Mine in Utah in November but hoped to reopen the mine in about 1 year under improved market conditions and after further development work and reevaluation of the mining method. The mine had been operating at only 40% of capacity before the shutdown. The work schedule at the Berkeley pit in Butte, Mont., was cut to 6 days per week at the end of March to allow the mill to keep pace with mine output; the milling rate had slowed because of harder-than-usual ore. The company commissioned a feasibility study to determine if the Weed concentrator should be enlarged. In June, as part of a 25% reduction in its Butte labor force, Anaconda stopped development work at the Kelley Mine; the work was begun in late 1979 to test the feasibility of block-caving operations. The mine was to be maintained, and the company expected to reevaluate its status when the copper market improved.

ASARCO Incorporated began limited production in the third quarter of 1981 at its new silver-copper mine near Troy, Mont. The mine was expected to yield, when fully operational, about 18,000 tons of copper and 4.2 million ounces of silver per year. Asarco also completed the reinvestment program at its Mission Mine, in Arizona, having modified the molybdenum plant, installed new large-volume ore flotation cells, and replaced the truck fleet with more fuelefficient, 170-ton trucks. In December, the company closed the Silver Bell Mine, in Arizona, indefinitely, pending improvement in the copper market.

In March, the Chino Mines Div. of Kennecott Minerals Co. became Chino Mines Co., owned two-thirds by Kennecott Minerals and one-third by Mitsubishi Corp. of Japan. The modernization program begun the year before by Kennecott Minerals proceeded in 1981, and at yearend the new concentrator was 7 months from completion. The 3-year program called for the expansion of output by 70%, to 100,000 tons

of copper per year.

Cities Service Co., in May, expressed interest in selling its copper-producing properties to obtain capital for investment in petroleum production. The new solventextraction electrowinning plant at the Pinto Valley Mine began production of copper from dump leaching in July; its capacity was rated at more than 5,000 tons of copper per year.

Cyprus Mines Corp. continued the expansion of mine and mill facilities at the Bagdad Mine, in Arizona, designed to increase production 30% to 77,000 tons of copper per

year by 1982.

Duval Corp. closed its Esperanza, Mineral Park, and Sierrita Mines in mid-December

as a consequence of low copper prices, for a period expected to last 3 months.

Inspiration Consolidated Copper Co. announced a 10-year, \$150 million program to modernize and increase production at its mill and processing facilities in Arizona.

Kennecott Corp. became a wholly owned subsidiary of Standard Oil Co. of Ohio (Sohio) in June. The Federal Trade Commission, after considering antitrust implications, agreed in principle to the acquisition after British Petroleum Co., the majority stockholder in Sohio, agreed to sell its 6.8% share of AMAX Inc., a competitor of Kennecott Corp. in the nonferrous metals industry. It was reported later in the year that Kennecott Corp. was planning a major renovation of facilities at the Bingham Canyon Mine in Utah that would involve new orecrushing facilities, transportation of ore by conveyor belts in place of rail haulage, and a new concentrator to replace the three existing concentrators. The company was also reported to be studying a possible renovation and expansion at its Ray Mine in Arizona.

Citing unsatisfactory copper prices, Phelps Dodge Corp. closed its Metcalf Mine at the beginning of the year and moved personnel and equipment to the lower cost Morenci Mine. Production at Morenci was cut 8% in March by shortening the workweek. The company began engineering detail work on a 40-ton-per-day solvent-extraction electrowinning plant at its Tyrone Mine in New Mexico.

At yearend, Quintana Minerals Corp. was ready to start up its new open pit mine at Copper Flat, near Hillsboro, N. Mex., rated at 15,000 tons of ore per day.

Low metal prices, and the consequent need to contain costs, led some companies to halt development work on ore bodies. Magma Copper Co. near yearend scheduled the shutdown of development work on the Kalamazoo deposit adjacent to the San Manuel Mine. AMAX scaled down work on the Minnamax Copper-Nickel Project, near Babbit, Minn., in March, and then halted work in August, closing the test shaft. In September, Asarco suspended development of the deposit adjacent to the Sacaton Pit, near Casa Grande, Ariz.

Exxon Minerals Co. in February suspended plans for a test mine at its Pinos Altos, N. Mex., property. Toward yearend, the company was negotiating the sale of the property. Exxon Minerals continued exploring its large zinc-copper property near Crandon, Wis. Noranda Mining Inc. scaled

down metallurgical development work at the Blackbird cobalt-copper mine near Salmon, Idaho. Phelps Dodge slowed development work at its Safford Project in Arizona.

Smelter Production.—Fifteen primary smelters, operating in eight States, produced 1.32 million tons of copper from ores and another 0.06 million tons from secondary material. Forty-three secondary smelters, mainly in the Midwestern and Eastern States, produced 0.49 million tons from scrap.

Asarco announced plans to bring its Hayden, Ariz., smelter into compliance with State and Federal clean air regulations by April 1, 1984; until that date it would operate under an agreement signed with Environmental Protection Agency (EPA). The present reverberatory furnaces were to be replaced with an Inco Flash Furnace. In recent years air pollution regulations had forced a reduction of throughput at Hayden, as at other smelters equipped with reverberatory furnaces; it was expected that the new technology would increase effective capacity by 35%, returning the smelter to design capacity. Asarco's Tacoma, Wash., smelter continued to operate in 1981 under a variance granted by the Puget Sound Air Pollution Control Agency.

The Hurley, N. Mex., smelter of Chino Mines Co. was granted a Nonferrous Smelter Order by the EPA, which would allow it until January 1, 1983, to achieve compliance with the sulfur dioxide emission limits in the State Implementation Plan. The company was reported to be considering a \$100 million modernization of the smelter, involving the replacement of reverberatory furnaces by an Inco Flash Furnace.

Inspiration Consolidated in 1981 worked on a \$15 million improvement program at its Miami, Ariz., smelter which would allow closer control of the smelter and acid plant.

The Utah Air Conservation Committee in April approved new sulfur dioxide regulations governing Kennecott Minerals' smelter at Magna.

Phelps Dodge signed an agreement with the EPA in March to bring its Morenci, Ariz., smelter into compliance with emission standards by January 1, 1985, and its Ajo, Ariz., smelter into compliance by December 31, 1985. The company planned to achieve compliance by converting its reverberatory furnaces to oxygen-sprinkle operation using technology marketed by Dravo Corp. It was reported that the company considered it impractical to bring its Douglas, Ariz., smelter into compliance, and the smelter would probably be closed by the end of 1987 at the latest, barring changes in emissions regulations.

Refinery Production.—Twelve refineries and 10 electrowinning plants produced 2.04 million tons of refined copper, of which 76% was derived from ores and 24% from scrap. Copper Range Co. began construction of a new 55,000-ton-per-year electrolytic refinery at White Pine, Mich., scheduled for completion in late 1982.

Copper Sulfate.—Copper sulfate was produced from electrolytic refinery solutions, blister copper, and secondary metal by seven companies. Production increased 15% in 1981.

Table 2.—Copper sulfate producers in 1981

Company	Plant location
Anaconda Copper Co. Chevron Chemical Co Cities Service Co CP Chemicals Inc. Madison Industries Inc Phelps Dodge Corp Van Waters & Rogers Inc	Copperhill, Tenn. Sewaren, N.J. Old Bridge, N.J.

Byproduct Sulfuric Acid.—Sulfuric acid was produced at 13 copper smelters from the sulfur dioxide contained in offgases. Production, which had been depressed in 1980 because of the prolonged labor strike, rebounded in 1981 to 2.86 million tons.

CONSUMPTION AND USES

Consumption of refined copper increased in 1981. The refinery shapes used most frequently were cathodes and wirebars. About 53% of all copper fabricated went to electrical uses, 20% to building construction, 13% to industrial machinery, 8% to transportation, and 6% to other uses.

The Bureau of the Mint announced plans to replace the traditional copper penny with a new zinc-copper penny consisting of a core of 99.2% zinc and 0.8% copper, plated with solid copper, giving an overall content of 97.6% zinc and 2.4% copper. Copper consumption by the Bureau of the Mint in recent years amounted to less than 2% of

annual domestic copper consumption.

The use of copper in solar energy heating systems was expected to grow rapidly in the next several years, but in 1981, consumption for this use was less than 0.5% of total copper consumption.

The replacement of copper in telecommunications trunk lines by fiber optic cables was expected to grow in the decade of the 1980's but not to affect the copper market significantly for several years. The impact of nonmetallic conductors, the so-called synmetals, was estimated to be even more remote, but of eventual importance to the copper market.³

STOCKS, PRICES, AND FOREIGN TRADE

Stocks of refined copper increased by nearly one-third in 1981. Stocks at primary smelting and refining plants tripled, and stocks at wire rod mills and brass mills rose sharply, but stocks at Commodity Exchange, Inc. (COMEX), increased only slightly.

The copper price continued through 1981 the long decline that had begun in March 1980. The average was \$0.85 per pound,

down \$0.17 from the 1980 average.

The United States was a net importer of copper in 1981, but imports of unwrought copper declined, and net import reliance, calculated as a percent of apparent consumption, was only 1%. Refined copper comprised most of the imports and came principally from Chile, Canada, Peru, and Zambia.

WORLD REVIEW

After the lengthy labor strike in the United States in 1980, world mine production recovered in 1981. The United States was again the leading producer, followed by

Chile, the U.S.S.R., Canada, Zambia, Zaire, Peru, Poland, and 50 other countries. As estimated from data published by the World Bureau of Metal Statistics, world consump-

tion of refined copper remained at 9.3 million tons. Stocks of refined copper in the market economy countries increased 5% to 1.1 million tons, of which 0.3 million tons was in warehouses of COMEX (New York) and of the London Metal Exchange.4

Copper produced by member countries of the Council of Copper Exporting Countries in 1981, amounted to 3.07 million tons or 38% of the world total.

A brief review of copper in the leading producing countries follows; more detail can be found in individual country chapters in Volume III of the 1981 Minerals Yearbook.

Canada.—Copper was produced at about three dozen mines at which it was the principal product and at about one dozen mines at which it was an important coproduct. Copper was produced in the 2 Territories and in 7 of the 10 Provinces; British Columbia was the leading producer with 43% of the national total, followed by Ontario with 32%, Quebec with 12%, and Manitoba with 8%. The remaining 5% was produced in the Yukon, New Brunswick, Newfoundland, Saskatchewan, and the Northwest Territories.

Details on the operation of individual mines and on exploration and development activities were published in the Canadian Minerals Yearbook.

Chile.—The Government-owned Corporacion del Cobre de Chile (CODELCO-Chile) produced more than 85% of the Chilean copper from its four large mines, Chuquicamata, El Teniente, El Salvador, and Andina. Production at El Teniente was affected by a labor strike lasting nearly 2 months. Low copper prices reportedly forced the closure of a great many small and medium copper mines in 1981 with a loss of at least 50,000 tons of copper production. However, exploration and development continued at several important copper deposits in 1981, with several large foreign petroleum and mining companies exploring or investing in Chilean copper properties.

Peru.—Mine production declined as a result of a 7-week strike in the third quarter of 1981 at Southern Peru Copper Corp. (SPCC) operations and two earlier 1-week strikes at SPCC's Toquepala Mine. Ten mines produced about 94% of Peruvian copper in 1981; SPCC's Cuajone and Toquepala Mines together accounted for 70%; and the Cerro Verde Mine of Empresa Minera del Perú (Minero Perú) yielded about 10%. The Cobriza Mine of Empresa Minera del

Centro del Perú (Centromin) produced about 8%, and six other mines produced another 6%.

Peru sought to promote the development of its mining industry, which produces nearly half its export earnings, by extensive changes in taxation and reinvestment laws, making private-sector mines more competitive with the Government mining corporations and encouraging the flow of foreign funds needed to develop the country's several large copper porphyry deposits.

Plans to expand the Toquepala Mine from its present capacity of 110,000 tons of copper per year to 145,000 tons per year were delayed when a feasibility study completed in 1981 showed the planned expansion to be uneconomical. Alternative plans were being considered.

Loans covering most of the capital needed to develop the Tintaya deposit in southern Peru were obtained from Canada's Export Development Corp. and a group of Canadian banks.

Poland.—Political unrest and the adoption of a shorter workweek for miners resulted in a 9% drop in Polish copper production in 1981. About 90% of mine output came from the Lubin, Polkowice, and Rudna Mines in southwestern Poland. The remainder was accounted for by the Sieroszowice Mine, currently being developed, and the Konrad Mine.

Zaire.—Copper was produced by the Government-owned La Générale des Carrières et des Mines du Zaire, which produced copper from 10 mines and accounted for nearly two-thirds of the country's export earnings, and by a joint Government-private Japanese company, Société de Développement Industriel et Minière du Zaire.

Zambia.—Copper was produced by the Government-controlled companies, Nchanga Consolidated Copper Mines Ltd. (NCCM) and Roan Consolidated Mines Ltd. (RCM), each of which operated five mines. NCCM accounted for two-thirds of Zambian copper and RCM for one-third. A merger of the two companies was proposed in 1981, and by yearend, merger terms had been agreed upon and had received Government approval. It was expected that the Zambian Government would hold 60.3% ownership in the merged corporation, which would, through copper exports, account for about 95% of Zambia's export earnings.

TECHNOLOGY

Research and development on the many facets of copper technology continued in 1981; the following is a selection of reported topics: (1) The use of an impact breaker in the San Manuel Mine of Magma Copper Co.;5 (2) energy consumption in copper production, and energy balances in refining and electrowinning:6 (3) improvements in nitric-sulfuric acid leaching:7 (4) the economics of beneficiating copper oxide ores before leaching: (5) cupric chloride leaching of chalcopyrite; (6) a broad-based scheme of temper designations for copper and copper alloys;10 (7) pickling copper with hydrogen peroxide-sulfuric acid mixtures;11 (8) electroplating of solderable coatings on copper;12 and (9) potential substitutes for copper in electrical uses.13

The Bureau of Mines published a number of reports dealing with research on various aspects of copper technology14 and in 1981 was conducting or funding research in the following areas: (1) Evaluation of improved conveyor belt systems for surface mines; (2) roasting technology for copper and zinc concentrates: (3) the use of lasers and microprocessors for controlling the operation of mining equipment; (4) byproduct recovery from leaching low-grade copper ores; and (4) recovery of metals and minerals from copper smelter slags and flue dusts.

¹Physical scientist, Division of Nonferrous Metals.

In this chapter, ton means metric ton.

Business Week. The Electric Promise of Synmetals.

Apr. 14, 1980, pp. 40E-40F.

World Metal Statistics. V. 35, No. 4, April 1982, 115 pp.

*World Metal Statistics. V. 35, No. 4, April 1982, 115 pp.

*Seaney, H. W. Impact Breakers Improve Productivity.
Min. Cong. J., v. 67, No. 4, April 1981, pp. 19-20, 52.

*Braun, T. B. Energy Balances in the Electrorefining and Electrowinning of Copper. J. Metals, v. 33, No. 2,
February 1981, pp. 59-67.

Pitt, C. H., and M. E. Wadsworth. Current Energy Requirements in the Copper Producing Industries. J.

Metals, v. 33, No. 6, June 1981, pp. 25-34.

*Davies, D. S., R. E. Lueders, R. A. Spitz, and T. C.
Frankiewicz. Nitric-Sulfuric Leach Process Improvements.

Min. Eng., v. 33, No. 8, August 1981, pp. 1252-1266.

*Meech, J. A., and J. G. Patterson. The Economics of Beneficiating Copper Oxide Ores Prior to Leaching. Eng. and Min. J., v. 181, No. 10, October 1980, pp. 71-77.

*Wilson, J. P., and W. W. Fisher. Cupric Chloride

Leaching of Chalcopyrite. J. Metals, v. 33, No. 2. February

1981, pp. 52-57.

1981, pp. 52-57.

1981, pp. 52-57.

1981, pp. 47-49.

1981, pp. 47-49.

¹¹Elias, M. C. Pickling Copper and Its Alloys With H₂O₂-

H₂SO₄ Mixtures. Metal Progress, v. 119, No. 7, June 1981, pp. 36-38.

1²Rothschild, B. F. Electroplating of Solderable Coatings. Metal Progress, v. 119, No. 7, June 1981, pp. 25-29.

¹⁴Anable, W. E., J. I. Paige, and D. L. Paulson. Copper Recovery From Primary Smelter Dusts. BuMines RI 8554, 1981, 19 pp.

Ferrante, M. J., J. M. Stuve, and L. B.

1981, 19 pp.
Ferrante, M. J., J. M. Stuve, and L. B. Pankratz. Thermodynamic Properties of Cuprous and Cupric Sulfides. High Temp. Sci., v. 14, 1981, pp. 77-90.

Haas, L. A., R. B. Schluter, and R. H. Nafziger. Low-Pressure Leaching of Duluth Complex Matte. BuMines RI 3522, 1981, 12 pp.

Hoekzema, R. B., and G. E. Sherman. Billings Glacier Molybdenum-Copper Occurrence, Whittier, Alaska. Bu-Mines Open File Report 141-81, 1981, 30 pp.; available for reference at Bureau of Mines facilities in Anchorage, Fairbanks, and Juneau, Alaska, and in Washington, D.C., and at the National Library of National Resources, U.S. Department of the Interior, Washington, D.C. Jessey, D. R., J. M. Stangl, D. H. Dike, G. R. Brown, and E. W. Schroeder. Control of Water Pollution From Surface Mining Operations. BuMines Open File Report 161-81, v. 1 and 2, 1981, 172 pp. and 275 pp.; available for reference at Bureau of Mines facilities in Tuscaloosa, Ala.; Denver, Colo.; Avondale, Md.; Twin Cities, Minn.; Rolla, Mo.; Reno, Nev.; Albany, Oreg.; Pittsburgh, Pa.; Salt Lake City, Utah; and Spokane, Wash.; U.S. Department of Energy facilities in Carbonade, Ill.; Pittsburgh, Pa.; and Morgantown, W. Va.; Mining Safety and Health Administration, Arlington, Va.; National Mine Health and Safety Academy, Beckley, W. Va.; and Office of Surface Mining Library and National Library of Natural Resources, U.S. Department of the Interior, Washington, D.C.; available in paper copy from National Technical Information Service, Springfield, Va., PB 82-139304 (\$15) and PB 82-139312 (\$22.50).

Madsen, B. W., and R. D. Groves. Alternative Methods for Copper Recovery From Dump Leach Liquors. BuMines IC 8520, 1981, 77 pp.

PB 82-139304 (\$15) and PB 82-139312 (\$22.50).

Madsen, B. W., and R. D. Groves. Alternative Methods for Copper Recovery From Dump Leach Liquors. BuMines IC 8520, 1981, 17 pp.

Madsen, B. W., and M. E. Wadsworth. A Mixed Kinetics Dump Leaching Model for Ores Containing a Variety of Copper Sulfide Minerals. BuMines RI 8547, 1381, 44 pp.

McDermott, M. M., J. Y. Foley, and D. D. Southworth. Investigation of a Copper Occurrence in the Rampart Diorities. BuMines Open File Report 148-81, 1981, 26 pp.; available for reference at Bureau of Mines facilities in Anchorage, Fairbanks, and Juneau, Alaska, and Washington, D.C., and at the National Library of Natural Resources, U.S. Department of the Interior, Washington, D.C. Salisbury, H. B., L. J. Duchene, and J. H. Bilbrey, Jr. Recovery of Copper and Associated Precious Metals From Electronic Scrap. BuMines RI 8561, 1981, 16 pp. Schluter, R. B., and W. H. Mahan. Flotation Responses of Two Duluth Complex Copper-Nickel Ores. BuMines RI 8509, 1981, 24 pp.

Sousa, L. J. The U.S. Copper Industry: Problems, Issues, and Outlook. BuMines Mineral Issues, 1981, 86 pp.

Walkiewicz, J. W., J. S. Winston, and M. M. Wong. Magnetic Properties of Alloys Containing Mischmetal, Cobalt, Copper, Iron, and Magnesium. BuMines RI 8583, 1981, 22 pp.

1981, 22 pp.

Table 3.—Copper produced from domestic ores in the United States

(Thousand metric tons)

Year	Mine	Smelter	Refinery
1977	1,364	1,265	1,280
	1,358	1,270	1,327
	1,444	1,313	1,412
	1,181	994	1,122
	1,538	1,295	1,430

rRevised.

Table 4.—Copper ore and recoverable copper produced in the United States

	Op	en pit	Undergr	ound
Year -	Ore	Copper ¹	Ore	Copper ²
1977	90	83	10	17
1978	90	85	10	15
1979	r ₈₉	84	r ₁₁	16
1980	r91	^r 86	r ₉	^r 14
1981	89	84	11	16

^rRevised.

Table 5.—Mine production of recoverable copper in the United States, by month (Metric tons)

Month	1980 ^r	1981
January	125,100	123,244
February	117,596	117,620
March	130,599	127,559
April	128,395 129,853	127,251 130,953
May	120,737	127,188
July	49.718	123,726
August	34,287	136,221
September	48,518	134,731
October	76,400	140,771
November	102,520 117,393	134,944 113,952
December	111,090	110,502
Total	1,181,116	1,538,160

rRevised.

Table 6.—Mine production of recoverable copper in the United States, by State (Metric tons)

State	1977	1978	1979	1980	1981
Arizona	838,037	891,404	946,002	² 770,118	1,040,813
California	200	w	W	W	W
Colorado	1,720	1,191	362	461	W
Idaho	3,676	3,888	3,618	3,103	4,245
Maine	1,213	0,000	•	-,	-,
16: 1:	38,442	w	w	w	w
3# .E ·	10,648	10.819	13.021	13.576	8,411
	78,202	67,326	69,854	37,749	62,485
Montana Nevada	60,837	20,453	W	0.,.40 W	W.W
	149,412	127,828	164,281	149.394	154,114
	145,412	121,020	104,201	140,004	W
Oregon	5.613	11,289	w	w	w
Tennessee		186,330	193.082	157.775	211,276
Utah	176,111				
Other ¹	259	37,057	53,335	48,941	56,815
Total ²	1,364,374	1,357,586	1,443,556	r _{1,181,116}	1,538,160

¹Includes copper from dump leaching. ²Includes copper from in-place leaching.

^rRevised. W Withheld to avoid disclosing company proprietary data; included with "Other."

¹Includes South Carolina (1981), Washington (1978, 1979, and 1981), and data indicated by symbol W.

²Data may not add to totals shown because of independent rounding.

Table 7.—Twenty-five leading copper-producing mines in the United States in 1981, in order of output

Rank	Mine	County and State	Operator	Source of copper
1	Bingham Canyon _	Salt Lake, Utah	Kennecott Minerals Co	Copper ore and copper precipitates.
2	Morenci	Greenlee, Ariz	Phelps Dodge Corp	Do.
3	San Manuel	Pinal, Ariz	Magma Copper Co	Copper ore.
4	Ray	do	Kennecott Minerals Co	Copper ore and copper precipi- tates.
5 6	Twin Buttes	Pima, Ariz	Anamax Mining Co	Copper ore.
	Pinto Valley	Gila, Áriz	Cities Service Co	Copper ore and copper precipitates.
7	Sierrita	Pima, Ariz	Duval Corp	Copper ore.
8	Tyrone	Grant, N. Mex	Phelps Dodge Corp	Copper ore and copper precipitates.
9	Bagdad	Yavapai, Ariz	Cyprus Bagdad Copper Co	Copper ore.
10	Chino	Grant, N. Mex	Chino Mines Co	Copper ore and copper precipitates.
11 12	Berkeley Inspiration	Silver Bow, Mont Gila, Ariz	Anaconda Copper Co Inspiration Consolidated Copper	Do.
13	White Pine	Ontonagon, Mich	Copper Range Co	Copper ore.
14	Eisenhower	Pima, Ariz	Eisenhower Mining Co	Do.
15	Magma	Pinal, Ariz	Magma Copper Co	Do.
16	Pima	Pima, Ariz	Cyprus Pima Mining Co	Do.
17	New Cornelia	do	Phelps Dodge Corp	Do.
18	Mission	do	ASARCO Incorporated	Do.
19	Silver Bell	do	do	Copper ore and copper précipi- tates.
20	Sacaton	Pinal, Ariz	do	Copper ore.
21	Esperanza	Pima, Ariz	Duval Corp	Copper ore and copper precipitates.
22 23	Continental	Grant, N. Mex	Sharon Steel Corp	Copper ore.
	Mineral Park	Mohave, Ariz	Duval Corp	Copper ore and copper precipitates.
24	Carr Fork	Tooele, Utah	Anaconda Copper Co	Copper ore.
25	Lakeshore	Pinal, Ariz	Noranda Lakeshore Mines Inc	Do.

Table 8.—Mine production of recoverable copper in the United States, by method of treatment

Method of	Ore treated	Recoverable	copper	
treatment	(thousand —— metric tons)	Metric tons	Percent yield	Remarks
1980				
Copper ore: By concentration By smelting By leaching	^r 207,287 111 14,199	^r 963,506 420 97,179	0.46 .38 .68	
Total or average Tailings, dump, in-place material by	^r 221,597	r1,061,105	.48	
leaching Miscellaneous from cleanup, tailings, noncopper ores		r _{102,263} r _{17,748}		
Total	ХХ	r _{1,181,116}	xx	
1981				
Copper ore: By concentration By smelting By leaching	263,069 158 14,455	1,275,999 223 131,400	.49 .14 .91	See table 10. See table 11. See table 12.
Total or average Failings, dump, in-place material by	277,682	1,407,622	.51	
leaching		113,991 16,547		See table 12.
Total	XX	1,538,160	XX	

^rRevised. XX Not applicable.

Table 9.—Copper ore shipped directly to smelters or concentrated in the United States in 1981, by State, with copper, gold, and silver content in terms of recoverable metal

State	Ore shipped or		Recoverable r	netal content		Value of gold and
	concen- trated Copper		per	Gold	Silver (troy	silver per
	(thousand metric tons)	Metric tons	Percent	(troy ounces)	ounces)	metric ton of ore
Arizona	184,476 13,730 22,615 36,678 5,728	850,180 52,136 133,425 189,049 51,432	0.46 .38 .59 .52 .90	95,496 14,403 W W 242,906	7,565,368 2,029,438 W W 4,458,032	\$0.67 2.04 W W 2.44
Total or average	263,227	1,276,222	.48	352,805	14,052,838	1.18

W Withheld to avoid disclosi-,g company proprietary data; included with "Other." ¹Includes Idaho, Michigan, Aevada, New Mexico, Oregon, Tennessee, Utah, and copper-zinc ore.

Table 10.—Copper ore concentrated in the United States in 1981, by State, with content in terms of recoverable copper

State	Ore concen- trated	Recoverable copper content	
State	(thousand metric tons)	Metric tons	Percent
Arizona Montana New Mexico Utah Other ^a	184,366 13,730 22,567 36,678 5,728	849,971 52,136 133,411 189,049 51,432	0.46 .38 .59 .52
Total or average	263,069	1,275,999	.49

¹Includes the following methods of concentration: Dual process (leaching followed by concentration), LPF (leach-precipitation-flotation), and froth flotation.

²Includes copper-zinc ore.

Table 11.—Copper ore shipped directly to smelters1 in the United States in 1981, by State, with content in terms of recoverable copper

	Ore shipped to smelters			
State	Metric tons	Recoverable copper content		
		Metric tons	Percent	
Arizona	109,716 48,255	209 14	0.19 .03	
Total or average	157,971	223	.14	

¹Primarily smelter fluxing material.

Table 12.—Copper precipitates (leached from dump and in-place material or tailings) shipped directly to smelters and copper ore leached (heap, vat, or tank) in the United States in 1981, by State, with content in terms of recoverable copper

State	Precipitates shipped (metric tons)	Recoverable copper content (metric tons)	Ore leached (metric tons)	Recoverable copper content (metric tons)	Percent
Arizona	108,095	68,284	12,192,193	122,286	1.00
Montana Nevada and New Mexico ¹ _	11,093 22,857 28,559	7,415 16,669 21,623	2,262,519	9,114	.40
Total or average	170,604	113,991	²14,454,712	131,400	.91

Combined to avoid disclosing company proprietary data.

Includes 9,595,367 metric tons of ore leached for electrowinning.

Table 13.—Copper ore smelted and concentrated and average yield in copper, gold, and silver in the United States

	Smelt	ing ore	Concentrating ore Total			Concentrating ore		Total		-
Year	Thou- sand metric tons	Yield in copper (percent)	Thou- sand metric tons ^{1 2}	Yield in copper (percent)	Thou- sand metric tons ¹	Yield in copper (percent)	Yield per metric ton in gold (ounce)	Yield per metric ton in silver (ounce)	Value per metric ton in gold and silver	
1977 1978 1979 1980 1981	272 258 199 111 158	0.31 .22 .30 .38 .14	217,861 224,893 248,722 207,287 263,069	0.51 .50 .49 .46 .49	^r 218,133 ^r 225,151 ^r 248,921 ^r 207,398 263,227	0.52 .51 r.47 .47 .51	0.0016 .0016 .0016 .0013 .0013	0.061 .056 .057 r.053 .053	\$0.52 .62 1.12 *1.90 1.18	

Revised.

Table 14.—Copper produced by primary smelters in the United States (Metric tons)

Year	Domestic	Foreign	Secondary	Total
1977	1,265,008	36,962	44,846	1,346,816
	1,269,981	18,397	54,216	1,342,594
	1,313,224	22,383	60,231	1,395,838
	994,479	13,918	44,876	1,053,273
	1,294,962	21,794	60,882	1,377,638

Table 15.—Primary and secondary copper produced by primary refineries and electrowinning plants in the United States

(Metric tons)

1977	1978	1979	1980	1981
1,052,505 126,512 101,018	1,124,585 98,416 104,372	1,207,626 98,801 105,091	^r 924,190 ^r 113,238 84,469	1,206,404 149,245 74,561
1,280,035	1,327,373	1,411,518	1,121,897	1,430,210
77,281 W W	121,684 W W	103,858 W W	88,957 W W	113,807 W
1,357,316	1,449,057	1,515,376	1,210,854	1,544,017
		•		
240,552 W W	293,437 W W	298,344 W W	315,062 W W	303,338 W W
240,552	293,437	298,344	315,062	303,338
1,597,868	1,742,494	1,813,720	1.525.916	1,847,355
	1,052,505 126,512 101,018 1,280,035 77,281 W 1,357,316 240,552 W 240,552	1,052,505 1,124,585 126,512 98,416 101,018 104,872 1,280,035 1,327,373 77,281 121,684 W W 1,357,316 1,449,057 240,552 293,437 W W 240,552 293,437	1,052,505 1,124,585 1,207,626 126,512 98,416 98,801 101,018 104,372 105,091 1,280,035 1,327,373 1,411,518 77,281 121,684 103,858 W W W 1,357,316 1,449,057 1,515,376 240,552 293,437 298,344 W W W 240,552 293,437 298,344	1,052,505 1,124,585 1,207,626 **924,190 126,512 98,416 98,801 **113,238 101,018 104,372 105,091 84,469 1,280,035 1,327,373 1,411,518 1,121,897 77,281 121,684 103,858 88,957 W W W W 1,357,316 1,449,057 1,515,376 1,210,854 240,552 293,437 298,344 315,062 W W W W 240,552 293,437 298,344 315,062

The three some ore classed as copper-zinc and minor amount of tailings. Excludes tank or vat and heap leaching. (See tables 8 and 12.)

^rRevised. W Withheld to avoid disclosing company proprietary data; included with "Electrolytic."

¹The separation of refined copper into metal of domestic and foreign origin is only approximate, as accurate separation is not possible at this stage of processing.

²Includes electrowon and fire-refined quantities indicated by symbol W.

Table 16.—Copper cast in forms at primary refineries in the United States

	198	30	1981		
	Thousand metric tons	Percent	Thousand metric tons	Percent	
Gakes	100 65	7 4	108 84	6 5	
CathodesIngots and ingot bars	827 62	54 4 28	1,128 62 424	61 3 23	
Wirebars Other forms	432 40	3	41	20 2	
Total	1,526	100	1,847	100	

Table 17.—Production, shipments, and stocks of copper sulfate in the United States (Metric tons)

	Prod	uction		Stocks.	
Year	Quantity	Copper content	Shipments ¹	Dec. 31	
1977	27,306 31,881 35,005 31,010 35,636	7,199 8,551 9,286 8,445 9,413	28,084 31,208 33,802 34,135 36,103	6,985 7,658 8,861 5,736 5,269	

¹Includes consumption by producing companies.

Table 18.—Byproduct sulfuric acid¹ (100% basis) produced in the United States (Metric tons)

Year	Copper plants ²	Lead plants	Zinc plants ³	Total
1977	2,138,567	127,898	669,304	2,935,769
	2,484,111	202,935	686,275	3,373,321
	2,513,035	282,704	773,836	3,569,575
	2,097,692	4410,266	560,784	3,068,742
	2,593,762	4405,974	545,890	3,545,626

Table 19.—Secondary copper produced in the United States

(Metric tons unless otherwise specified)

	1977	1978	1979	1980	1981
Copper recovered as unalloyed copper Copper recovered in alloys ¹	364,721	437,120	516,271	534,556	514,518
	720,704	810,115	1,036,254	902,871	903,594
Total secondary copper ¹	1,085,425	1,247,235	1,552,525	1,437,427	1,418,112
Source: New scrap Old scrap Percentage equivalent of domestic mine output	675,497	745,585	948,224	823,969	819,990
	409,928	501,650	604,301	613,458	598,122
	80	92	108	122	92

Revised.

¹Includes acid from foreign materials.

²Excludes acid made from pyrite concentrates.

³Excludes acid made from native sulfur.

⁴Includes acid processed at molybdenum plants in order to conceal company proprietary data.

¹Includes copper in chemicals, as follows: 1977—3,283; 1978—2,911; 1979—3,004; 1980—2,869; and 1981—3,219.

Table 20.—Copper recovered from scrap processed in the United States, by kind of scrap and form of recovery

(Metric tons)

	1980	1981
KIND OF SCRAP		
New scrap:		4.
Copper-base		797,513
Aluminum-base		22,281
Nickel-base	173	162
Zino-base		34
Total	823,969	819,990
Old scrap:	*	
Copper-base	598,591	582.814
Aluminum-base		15,043
Nickel-base	127	123
Tin-base	5	
Zinc-base	125	142
Total	613,458	598,122
Grand total	1,437,427	1,418,112
FORM OF RECOVERY		
As unalloyed copper:		
At primary plants	315,062	314.053
At other plants	219,494	200,465
Total	534,556	514,518
• 1	050 100	050 510
In brass and bronze		850,546
In alloy iron and steel	2,317	1,876
In aluminum alloys		47,728
In other alloys	191	217
In chemical compounds	2,869	3,227
Total	902,871	903,594
Grand total	1,437,427	1,418,112

Table 21.—Copper recovered as refined copper and in alloys and other forms from copper-base scrap processed in the United States

(Metric tons)

Recovered by—	From new scrap		From old scrap		Total	
	1980	1981	1980	1981	1980	1981
Secondary smelters	239,675 87,281 453,017 21,467 2,087	220,407 75,049 475,883 23,809 2,365	301,327 227,781 29,868 38,833 782	273,693 239,004 31,503 37,760 854	541,002 315,062 482,885 60,300 2,869	494,100 314,053 507,386 61,569 3,219
Total	803,527	797,513	598,591	582,814	1,402,118	1,380,327

Table 22.—Production of secondary copper and copper-alloy products in the United States, by item produced from scrap

(Metric tons)

Item produced from scrap	1980	1981
UNALLOYED COPPER PRODUCTS		
Refined copper by primary producers	315,062	314.053
Refined copper by secondary smelters	200,021	179,499
Copper powder	13,203	13,594
Copper castings	6,270	7,372
Total	534,556	514,518
ALLOYED COPPER PRODUCTS		
Brass and bronze ingots:	01 145	00.00
Tin bronzes	21,145	22,064
Leaded red brass and semired brass	120,869	123,286
High-leaded tin bronze	19,884 11,892	19,416 9,860
Yellow brass	8.105	9,436
Manganese bronze	8,337	9,486
Aluminum bronze	2,707	2,909
Nickel silverSilicon bronze and brass	3,769	4.009
Copper-base hardeners and master alloys	15,430	16,737
Total	212.138	217,203
Brass-mill products	598,672	623,940
Brass and bronze castings	38,858	39,929
Brass powderBrass powder	877	1,102
Copper in chemical products	2,869	3,227
Grand total	1,387,970	1,399,919

Table 23.—Composition of secondary copper-alloy production in the United States
(Metric tons)

	Copper	Tin	Lead	Zinc	Nickel	Alumi- num	Total
Brass and bronze production: ¹							
1980	194.113	2,949	6.366	8,250	404	56	212,138
1981	193,291	4.280	8,124	11,094	370	44	217,203
Secondary metal content of brass-mill products:	200,202	-,	-,	,			
1980	482,885	366	3.003	110,734	1.661	23	598,672
1981	507.386	302	2,848	110,983	1,661 2,392	29	623,940
Secondary metal content of brass and bronze castings:	001,000		_,-	,	-,		
1980	31,272	1,174	2,382	3,848	105	77	38,858
1981	32,487	1,244	2,335	3,640	139	84	39,929
1981	32,487	1,244	2,000	3,040	199	04	00,020

 $^{^{1}}$ About 96% from scrap and 4% from other than scrap in 1980, and about 95% from scrap and 5% from other than scrap in 1981.

Table 24.—Stocks and consumption of purchased copper scrap in the United States in 1981, by class of consumer and type of scrap

(Metric tons, gross weight)

Class of consumer and type of scrap	onsumer and type of scrap Stocks, Receipts Jan. 1			Stocks.		
			Ne w scrap	Old scrap	Total	Dec. 31
SECONDARY SMELTERS					÷	
No. 1 wire and heavy copper No. 2 wire, mixed heavy and light	2,051	38,964	4,793	34,296	39,089	1,926
copper	11,639	245.918	123,427	113,039	236,466	21,091
Composition or red brass	3,653	55,579	10,657	44,499	55,156	4,076
Railroad-car boxes	254	1,750	·	1,768	1,768	236
Yellow brass	3,445	42,503	7,586	34,339	41,925	4,023
Cartridge cases and brass	90	209		255	255	44
Auto radiators (unsweated)	3,749	59,717		61,243	61,243	2,223
Bronze	1,678	17,133	2,836	14,266	17,102	1,709
Nickel silver and cupronickel	544	2,763	315	2,308	2,623	684
Low brass	528	2,772	893	1,958	2,851	449
Aluminum bronze	162	245	218	70	288	119

Table 24.—Stocks and consumption of purchased copper scrap in the United States in 1981, by class of consumer and type of scrap —Continued

(Metric tons, gross weight)

Oliver of	Stocks.			Stocks,		
Class of consumer and type of scrap	Jan. 1	Receipts	New scrap	Old scrap	Total	Dec. 31
SECONDARY SMELTERS — Continued				Begins		
Low-grade scrap and residues	10,675	202,000	155,568	44,156	199,724	12,951
Total	38,468	669,553	306,293	352,197	658,490	49,531
PRIMARY PRODUCERS			***			
No. 1 wire and heavy copper No. 2 wire, mixed heavy and light	4,220	91,884	24,408	69,018	93,426	2,678
copperRefinery brass	3,821	166,417 (3,317	36,671 68	125,432 2,978	162,103	8,135
Low-grade scrap and residues	22,226	206,880	48.492	149,718	198,210	31,167
Total	30,267	468.498	109.639	347,146	456,785	41,980
		100,100	100,000	011,110	400,100	11,000
BRASS MILLS ¹						
No. 1 wire and heavy copper No. 2 wire, mixed heavy and light	12,318	183,583	153,346	30,237	183,583	11,614
copperYellow brass	2,135 19,864	60,304 241,163	58,753	1,551	60,304	2,531
Cartridge cases and brass	10,346	67,693	241,163 67,624	69	241,163 67,693	17,788 8,841
Bronze	775	3,903	3,903		3,903	543
Nickel silver and cupronickel Low brass	3,756 3,724	19,746 57,305	19,746 57,305		19,746 57,305	3,020 2,142
Aluminum bronze	6	182	182		182	2,142
Total ¹	52,924	633,879	602,022	31,857	633,879	46,483
FOUNDRIES, CHEMICAL PLANTS, AND OTHER MANUFACTURERS		-				
No. 1 wire and heavy copper No. 2 wire, mixed heavy and light	3,042	29,523	14,122	16,075	30,197	2,368
Composition or red brass	693	7,402	3,566	3,735	7,301	794
Railroad-car boxes	680 851	14,431 6,069	2,636	11,770 5.840	14,406 5,840	705 1,080
Yellow brass	349	11.661	6,395	4,673	11.068	942
Auto radiators (unsweated) Bronze	456 869	5,271	1,528	2,287	3,815	1,912
Nickel silver and cupronickel	14	695 385	396 16	307 371	703 387	861 12
Low brass	51	1,449	1,140	320	1,460	40
Aluminum bronze Low-grade scrap and residues	72 	1,287 1	830	405 1	1,235	124
Total	7,077	78,174	²30,629	² 45,784	76,413	8,838
				10,101	10,110	0,000
GRAND TOTAL	01 601	040.054	100.000			
No. 1 wire and heavy copper No. 2 wire, mixed heavy and light	21,631	343,954	196,669	149,626	346,295	18,586
copperComposition or red brass	18,288	480,041	222,417	243,757	466,174	32,551
Railroad-car boxes	4,333 1,105	70,010 7,819	13,293	56,269 7,608	69,562	4,781
Yellow brass Cartridge cases and brass	23,658	295,327	255,144	39,012	7,608 294,156	1,316 22,753
Cartridge cases and brass Auto radiators (unsweated)	10,436	67,902	67,624	324	67,948	8,885
Bronze	4,205 3,322	64,988 21,731	1,528 7,135	63,530 14,573	65,058	4,135
Bronze Nickel silver and cupronickel	4,314	22,894	20,077	2,679	21,708 22,756	3,113 3,716
Low Drass	4,303	61,526	59,338	2,278	61,616	2,631
Aluminum bronze .ow-grade scrap and residues ³	240 32,901	1,714 412,198	1,230 204,128	475 196,853	1,705 400,981	247 44,118
Total	128,736	1,850,104	1,048,583	776,984	1,825,567	146,832
		7	_,,	0,002	_,020,001	140,002

¹Brass-mill stocks include home scrap; purchased scrap consumption is assumed equal to receipts, so lines in brass-mill and grand total sections do not balance.

²Of the totals shown, chemical plants reported the following: Unalloyed copper scrap, 2,486 tons new and 889 tons old.

³Includes refinery brass.

Table 25.—Consumption of copper and brass materials in the United States, by item (Metric tons)

Item	Primary producers	Brass mills	Wire rod mills	Foundries, chemical plants, miscella- neous users	Secondary smelters	Total
1980:						
Copper scrap	448,450	608,205		74.302	719,948	1.850,905
Refined copper ¹		511,627	1,308,922	36,580	4,967	1,862,096
Brass ingot		6,087	_,,	² 207,631		213,718
Slab zinc		90,413		2,311	6,102	98,826
Miscellaneous		00,110		180	r4.450	r4.630
1981:				100	1,100	2,000
Copper scrap	456,785	633,879		76,413	658,490	1,825,567
Refined copper ¹	100,100	536,210	1,449,583	33,931	5.445	2,025,169
Brass ingot		17,824	1,770,000	² 199,460	0,110	217,284
		104,330		2,948	5,708	112,986
Slab zinc		104,550		180	5,915	6,095
Miscellaneous				100	9,919	6,095

Table 26.—Foundry consumption of brass ingot in the United States, by type (Metric tons)

Туре	1977	1978	1979	1980	1981
Tin bronzes Leaded red brass and semired brass Yellow brass Manganese bronze Hardeners and master alloys Nickel silver Aluminum bronze	34,649 97,095 23,841 5,296 3,484 2,096 6,122	35,951 106,053 21,368 7,430 4,398 2,330 7,071	35,242 107,596 21,138 7,724 5,913 2,315 7,267	30,327 95,138 17,780 6,287 5,446 2,579 6,727	28,885 94,142 19,659 6,270 4,411 2,030 6,853
Total	172,583	184,601	187,195	164,284	162,250

⁷Revised.

¹Detailed information on consumption of refined copper will be found in table 29.

²Shipments to foundries by smelters and changes in stocks at foundries.

Table 27.—Foundries and miscellaneous manufacturers consumption of brass ingot and refined copper and copper scrap in the United States in 1981, by geographic division and State (Metric tons)

Geographic division and State	Tin bronzes	Leaded red brass and semi- red brass	Yellow brass	Man- ganese bronze	Hardeners and master alloys	Nickel silver	Alumi- num bronze	Total brass ingot	Refined copper con-	Copper scrap con-
New England: Connecticut Maine, New Hampshire, Rhode Island, Vermont	466 267	1,405 1,860	· 620 141	33	587	340) 216	8,347 (2,833)	187	449
Massachusetts	277	1,669	249	210			8 <u>.</u>	2,514	657	8
Total	1,010	4,984	1,010	547	537	340	816	8,694	844	529
Middle Atlantic: New Jersey	704	831	254	86		Λ.	(191	2,134		
New York	169	7,088	895	149	648	288	86	9,072	8,347	5,275
Pennsylvania	6,997	5,954	1,177	221			1,500	17,261	4,077	5,311
Total	8,398	13,873	2,423	798	648	538	1,789	28,467	7,424	10,586
East North Central: Illinois		(8,759	2,863	558)			1,270	14,521	349)	
Indiana	4,575	7,573	768 476	250 939	1,293	85		13,204	6.071	9,552
Wisconsin	8,321	8,207	2,929	965	88	244	429 111	19,444	6,369	(10,138
Total	12,896	34,090	8,829	2,898	2,173	336	2,277	68,499	13,203	26,799
West North Central: Iowa, Kansas, Minnesota	161	2,327	868	909	\$		(146	4,176		
Missouri, Nebraska, South Dakota	79	1,433	1,021	228	89	9	9 2	2,863	2,025	12,459
Total	240	3,760	1,919	834	28	9	222	7,039	2,025	12,459
1										

South Atlantic: Delaware, District of Columbia, Florida, Georgia, Maryland	332	404)		(65)			43	1,539)		
North Carolina, South Carolina, Virginia, West Virginia	142	8,941	478	69	2	640	342	606'6	2,253	7,830
Total	474	9,345	478	124	2	640	388	11,448	2,253	7,830
East South Central: Alabama, Kentucky, Mississippi, Tennessee – – –	1,673	11,272	1,975	278			(), goo	(15,474)		(5,149
West South Central: Arkansas, Louisiana, Oklahoma, Texas	2,105	7,776	1,032	143	104	154	77,77	12,556	7,007	1,512
Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah	301	468	276	37			14	1,098		351
Pacific: California	1,680	8,524)			8	;	9	(12,606)		π,011
Oregon and Washington	108	100	1,7,7	110	888	qT	930	1,369	11.1	[811
Total	1,788	8,624	1,717	611	688	16	330	13,975	777	7,822
Grand total	28,885	94,142	19,659	6,270	4,411	2,030	6,853	162,250	33,533	73,037

Table 28.—Primary refined copper supply and withdrawals on domestic account in the United States

(Metric tons)

	1977	1978	1979	1980	1981
Production from domestic and foreign ores, etc	1,357,316	1,449,057	1,515,376	1,210,854	1,544,017
Imports for consumption ¹	*350,957	*402,673	*203,855	⁴ 426,948	330,625
Stocks, Jan. 1 ¹	172,000	212,000	153,000	64,000	49,000
Total available supply	^r 1,880,273	r2,063,730	r _{1,872,231}	r _{1,701,802}	1,923,642
Copper exports ¹ Stocks, Dec. 31 ¹	46,745	91,923	73,677	14,489	24,397
	212,000	153,000	64,000	49,000	151,000
TotalApparent withdrawals on domestic account	258,745	244,923	137,677	63,489	175,397
	r _{1,622,000}	r _{1,819,000}	r _{1,735,000}	*1,638,000	1,748,000

rRevised.

Table 29.—Refined copper consumed in the United States, by class of consumer (Metric tons)

Class of consumer	Cathodes	Wirebars	Ingots and ingot bars	Cakes and slabs	Billets	Other	Total
1980: Wire rod mills Brass mills Chemical plants Secondary smelters Foundries Miscellaneous ¹	714,050 233,695 1,333 2,510 8,585	560,904 22,107 W W	W 54,076 2,654 6,795 4,076	W 84,251 W	117,870 W W	33,968 128 333 980 1,601 12,680	1,308,922 511,627 333 4,967 10,906 25,341
Total	960,173	583,011	67,601	84,251	117,370	49,690	1,862,096
1981: Wire rod mills Brass mills Chemical plants Secondary smelters Foundries Miscellaneous 1	950,402 236,681 1,356 3,247 7,176	467,654 21,546 W W	W 54,127 3,515 5,802 3,243	W 121,844 W	101,862 W W	31,527 150 398 574 2,290 11,775	1,449,583 536,210 398 5,445 11,339 22,194
Total	1,198,862	489,200	66,687	121,844	101,862	46,714	2,025,169

Table 30.—Stocks of copper in the United States, December 31

(Metric tons)

	Blister and			Refined copper		
Year	materials in process of refining ¹	Primary producers	Wire rod mills	Brass mills	Other ²	New York Commodity Exchange
1977 1978 1979 1980 1981	314,000 263,000 275,000 272,000 277,000	212,000 153,000 64,000 49,000 151,000	106,000 63,000 44,000 50,000 109,000	31,000 28,000 25,000 22,000 26,000	6,000 7,000 9,000 10,000 9,000	167,000 163,000 90,000 163,000 170,000

¹Includes copper in transit from smelters in the United States to refineries therein.

¹May include some copper refined from scrap.

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous."

1Includes iron and steel plants, primary smelters producing alloys other than copper, consumers of copper powder and copper shot, and other manufacturers.

²Includes secondary smelters, chemical plants, foundries, and miscellaneous plants.

Table 31.—Dealers' monthly average buying price for copper scrap and consumers' alloy-ingot prices at New York in 1980,¹ by grade

(Cents per pound)

Grade	Jan.		Feb.	Mar.	Apr.	May	June
No. 2 heavy copper scrap No. 1 composition scrap (red brass) _ No. 115 brass ingot (85-5-5-5)	74 67 98 July		82.35 70.00 120.70 Sept.	70.30 67.30 115.92 Oct.	60.18 64.45 109.50 Nov.	57.60 62.88 103.14 Dec.	56.50 60.93 100.00 Average
No. 2 heavy copper scrap No. 1 composition scrap (red brass) _ No. 115 brass ingot (85-5-5-5)	65.36 66.34 101.19	64.88 63.74 103.50	62.83	65.37 63.37 103.89	66.09 64.91 108.00	58.36 60.93 105.21	65.51 64.57 106.11

¹Data not available for 1981.

Source: Metal Statistics, 1981.

Table 32.—Average monthly prices for electrolytic copper in the United States and on the London Metal Exchange

(Cents per pound)

		19	80			19	81	
Month	Domestic	delivered	Londo	n spot1	Domestic	delivered	Londo	n spot ¹
	Cathode	Wirebar	Cathode	Wirebar	Cathode	Wirebar	Cathode	Wirebar
January	118.07	119.39	114.00	117.89	87.59	88.57	88.05	84.73
	132.85	133.81	126.71	132.29	85.06	86.07	81.25	81.67
February	105.05	106.04	100.45	104.55	86.19	87.38	81.94	82.44
	93.62	94.85	90.96	93.91	87.11	88.03	81.90	82.58
April	92.16	93.48	90.79	92.82	84.90	85.80	78.38	79.00
May	91.66	92.71	88.26	90.96	84.43	85.23	76.53	77.09
June	102.24	103.56	95.80	98.68	83.49	84.41	75.85	76.26
July	99.72	100.71	91.09	94.39	86.71	87.39	80.90	81.04
August	97.99	98.86	90.30	93.41	83.95	84.72	77.45	77.55
September	98.45	99.47	89.70	92.75	81.48	82.31	75.29	75.56
October	95.45 95.81	96.98	89.00	91.16	80.26	81.22	74.55	74.88
November				85.17	79.31	80.29	74.70	(2)
December	88.10	89.13	83.21	00.17	19.51	00.20	14.10	
Average	101.31	102.42	96.09	99.25	84.21	85.12	78.98	³ 79.35

Source: Metals Week.

Table 33.—Average weighted prices of copper delivered

(Cents per pound)

Year	Domestic copper	Foreign copper
1977	66.8 66.5 93.3 102.4 85.1	59.3 61.9 90.0 99.2 79.0

Source: Metals Week.

¹Based on average monthly rates of exchange.

²Wirehar contract replaced by high-grade contract.

³Based on January-November monthly averages.

Table 34.—U.S. exports of copper, by country

Country	Ore and concentrates (copper content)	and trates content)	Ash and residues (copper content)	esidues ¹ ontent)	Refined	ped	S _s	Scrap	Blister and precipitates	r and itates
	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value
1980	106,825	\$203,375	6,881	\$15,474	14,489	\$31,099	61,225		3.802	\$7.296
1981:									2006	00710
Africa	!	ļ	ļ				101	2		
Brazil	18	20	1,162	3,243	¦83	46	776	2,031	100	157
Canada	5,472	3,743	647	1.398	6.438	1,853	126	203	18	88
Finland	2,514	5,517	1	; ;	2	e l	34	10,032	9,203	9,886
Germany, Federal Republic of	162	368	. 18	2000	1,373	3,041	501	293	167	100
	} ;	3 1	5 1	077	1,110	2,212	1,298	1,763	995	1,663
India	1	1	277	388	! !		4.257	5.539	386 865 865	1,400
Italy	!	!	1	!	8	75			3 ;	2
Japan.	116,764	$160.48\overline{2}$	184	805	8 954 8 857	1,218	7 000	1000		
Korea, Republic of	197	<u> </u>	100	1	28	258	15,862	22.557	1,716	8,6% 6% 6%
Netherlands	0 4	40	2,062	484 484 484	7,211	13,447	5,303	8,375	88	85
Oceania	1 1		; ;	3 ¦	9	22	19	38	N 00	ඟ ල්
SpainSpain	!	ļ	305	2 2	တင္	01	111	3 ¦	74	202
Sweden	1 1:		000	617	869 145	1,684	2,090 105	2,340		87
Taiwan U.S.S.R	8,430	11,862	t I		21	115	2,038	2,798	46	140
United Kingdom	1	010,27	$1,\overline{424}$	958	1.337	2.838	697	1 081	100	192
VenezuelaOther	!	1	!	1	15	100	.	2	801	- ဂ္ဂဇာ
	1	1	-		OII	777	220	988	24	22
Total	150,782	207,012	6,284	7,774	24,397	43,353	50,078	70,106	9,227	16,395

•										
	Pipes and tubing	d tubing	Plates and sheets	d sheets	Wire and cable, bare	d cable, re	Wire and cable, insulated	d cable, ated	Other copper manufactures	ctures ²
	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)
0	17,652	\$58,284	1,843	\$6,708	6,295	\$27,868	860,39	\$317,008	41,071	\$94,760
.11:		1		:	1		60		1	
Africa Belgium-Luxembourg	134 5	252	:1°	113 113	<u> </u>	1,268	5, 8,81	30,142 5,110	517	1,099
Brazil	2.19©	6.401	775	2.728 2.722	637 672	1,674 3,383	17.847	1,501 66,137	3,604	7,723
El Salvador	1	15	€€	73	13	8	128	129	284	972
Finland France	787	981	<u> </u> -	6	35 1	28	475	9,846	¦&	168
Germany, Federal Republic of	119	387	38	192	≅ €	011°	808°	12,796	562	992 195
India	727	500	1 1: 1 1	¦ ¦	8	119	1,321	3,526	287	749
Israel	672 264	1,898		4 [-		119	1,022	7,974 3,859	3.082	10 5.658
Japan	· 00 9	199	1200	228	435	125	607	10,279	200	7.16
Korea, Kepublic of	1,705	5,462	1,231	2,659	2,422	12,915	20,884	72,988	2,394	4,629
Netherlands	242	85 85 85 85	814	102 102 103 103 103 103 103 103 103 103 103 103	នន	ន័ន៍	191	2,944 6.586		2,625
Saudi Arabia	1,132	3,281	·85°	86	1,170	3,556	13,947	64,809	នុះ	75
Singapore	1,230	2,975		20	5		68 88	1,075	7 41	19
Sweden	88	88	16	¦82	187	28	3,083	2,338 14,897	8 88	
USSR	15	10	I	1	6	2:	-18	20.00	le	-
United Arab Emirates.	1,279	3,614	16	67	88	619	1,751	19,505	ික	*8
VenezuelaOther	359	1,449 3,911	82	131 887	324 911	4,303	932 8,974	5,007 46,129	4,720 671	9,331 1,309
Total	10,939	33,038	2,333	7,045	7,022	31,994	82,922	402,520	18,451	37,464

Includes matte.
Excludes copper wire clo

Table 35.—U.S. exports of copper scrap, by country

	U	nalloyed	copper scra	p		Copper-a	lloy scrap	
Country	19	30	198	81	19	80	19	81
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands
Argentina	18	\$19			55	\$74		
Belgium-Luxembourg	5,591	7,808	776	\$2,031	14,497	23,496	5,061	\$16,354
Brazil	1,166	2,084	126	203	2,010	2,937	405	539
Canada	8,705	12,957	9,344	10,592	12,002	13,766	10.302	11,354
Finland	-,		34	62	1,609	2,861	1.150	2,138
France	184	277	201	293	250	567	180	2,130
German Democratic Republic	57	97		200	18	23	100	213
Germany, Federal Republic of	9,883	15,315	1.298	1.763	22,300	30,799	12,123	7,216
Hong Kong	167	319	89	113	1.492	1,628	291	356
India	4,304	5,399	4,257	5,539	7.083	8,374		
Italy	2,588	3,093	4,201	0,000	4.845	4.957	11,951	13,565
Janan	6,435	10,416	7.086	11,278	17,753	26,428	154	174
Japan Korea, Republic of	2,916	5,114	15.862				22,631	29,639
Mexico	6,912	11,876	5,303	22,557	7,446	11,062	5,793	8,411
Netherlands			5,303 107	8,375	3,355	3,636	3,697	4,671
Spain	2,196	3,491		90	1,444	2,322	238	296
	5,472	7,777	2,090	2,340	18,742	22,567	4,842	5,572
SwedenSwitzerland	216	389	105	74	560	965	643	3,135
Trime	18	32	0.000		163	263	74	293
Taiwan	3,062	4,168	2,038	2,798	10,843	13,714	14,185	14,423
Thailand	18	35	71	121	164	222	1	
Turkey	81	130	379	633	752	1,176	513	605
United Kingdom	903	1,708	697	1,081	2,102	3,676	1,402	2,746
Other	332	557	215	163	284	465	514	783
Total ¹	61,225	93,059	50,078	70,106	129,767	175,981	96,149	122,549

 $^{^{1}\}mathrm{Data}$ may not add to totals shown because of independent rounding.

Table 36.—U.S. imports for consumption of unmanufactured copper (copper content), by country,

	Ore and concentrates	concen-	Matte	2	Blister	ter	Refi	Refined	Scrap	ď	Total	aj
Country	Quantity (metric tons)	Value (thou-	Quantity (metric tons)	Value (thou-	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
	52,360	\$72,636	392	\$719	44,587	\$86,284	426,948	\$935,262	22,769	\$40,865	547,006 \$1,135,766	1,135,766
Argentina Augentina Augentina Augentina Belgium-Luxembourg Canada Chile Japan Mexico Panama Peru Philippinee Philippinee United Kingdom Yugoelavia Zaire Zaire Cther	981 8,445 611 10,887 20,404 20,404	1,026 4,918 854 13,719 3,618 32,393 20	8871 8873 8873 8873 8874 1,108	988 988 989 988 1148 1148	524 222 222 222 222 240 493 493 493 13,938 11,938 11,938	1,166 63 50 25,887 1,106 8,227 31,507	1,000 1,000 1,935 84,864 125,042 6,407 4,868 34,189 2,447 2,447 1,020 1,020	1,607 3,464 156,383 216,287 10,962 8,990 60,032 60,032 87,744 87,1443 80,124 1,865	82 19,274 19,274 174 177 4,809 973 29 1,164	29, 29, 3977 29, 8977 29, 858 86, 308 1, 269 1, 269 2, 090	1,082 1,506 1,967 108,479 187,816 6,517 23,823 23,823 23,823 20,404 24,683 44,082 44,083 44,083 2,273	1,699 2,192 3,527 192,144 243,761 12,107 38,017 38,017 32,338 1,199 1,199 1,199 37,443 80,124 4,053
Total	39,132	56,548	2,718	3,232	30,124	68,083	330,625	582,085	27,002	40,705	429,601	750,653

¹Table revised to show imports for consumption rather than general imports.

Table 37.—Copper: World mine production, by continent and country¹

(Thousand metric tons)

Continent and country	1977	1978	1979	1980 ^p	1981 ^e
North and Central America:					
Canada ²	759.4	659.4	636.4	716.4	3718.1
Cuba	2.6	2.8	2.8	3.3	3.6
Guatemala	2.5	2.1	1.8	.8	3.
Honduras	.5	.6	1.4	.3	.8
Mexico	89.7	87.2	107.1	175.4	3230.5
Nicaragua ⁴	.3	e.1			
United States ²	1,364.4	1,357.6	1,443.6	1,181.1	1,538.2
Arrentine	•				
Argentina Bolivia Bolivia	.2	.3	.1	.2	.2
Brazil	3.2	2.9	1.8	1.9	32.6
Chile	1,056.2	1,035.5	5.8	1.4	18.0
Colombia	1,050.2 r(5)	1,055.5 r.1	1,060.6 .1	1,067.7	1,080.0
Ecuador	1.6	.1	1.2	.1 1.2	3.1 1.2
Peru	r338.1	366.4	390.7	366.8	3327.6
rope:	000.1	000.4	050.1	900.0	-021.0
Albania e	10.0	11.5	14.0	15.3	15.5
Bulgaria Czechoslovakia ^e	57.0	58.0	58.0	58.0	58.0
Czechoslovakia ^e	5.4	4.7	6.2	6.2	6.3
Finiand	46.7	46.9	41.1	36.9	38.2
France	-ř.1	.6	.4	.5	.5
German Democratic Republice	17.0	16.0	15.0	15.0	16.0
Germany, Federal Republic of 6	1.2	.8	.9	1.3	1.3
Greece	3.5	1.5	(š)	(5)	1.3 (⁵)
Hungary	1.0	.5	.í		()
Ireland	4.9	4.8	4.9	4.2	3.5
Italy"	.7	.5	.5	.6	.8
Norway ⁶ Poland ²	29.1	r _{29.1}	28.9	28.0	28.2
Poland ²	289.3	321.0	325.0	346.1	315.2
Portugal ⁶	r _{3.2}	r3.6	3.6	5.2	5.0
Romania ²	27.0	27.0	29.0	28.0	27.0
Spain ^{6 7}	r36.0	r33.9	25.6	42.5	51.4
Sweden	44.8	47.6	45.8	42.8	342.8
U.S.S.R. ^{e 2 6}	830.0	865.0	885.0	900.0	950.0
United Kingdom	.4	.1	.1	500.0 (5)	
Yugoslavia4	116.2	123.3	111.4	e _{134.0}	.1 130.0
rica:	110.2	120.0	111.4	104.0	190.0
Algeria	.3	.2	.2	.2	.2
Botswans ⁶ Congo (Brazzaville) ⁴ Mauritania	11.8	14.6	14.6	15.6	16.5
Congo (Brazzaville)4	r _{1.0}	.8	1.0	1.3	1.3
Mauritania	7.6	1.8	1.0	1.0	1.0
Morocco	4.8	4.7	7.0	7.2	6.7
Mozambique		ï.i	.2	.2	.2
	49.2	37.7	41.9	39.2	346.1
South Africa, Republic of	208.3	r205.7	190.6	200.7	208.7
Uganda	4.0	(9)	100.0	200.1	200.1
Zaire	481.6	423.8	400.0	459.4	497.0
Zambia	656.0	643.0	588.3	595.8	588.0
Zimbabwe	34.8	33.8	29.7	27.0	21.7
nia:				-,,,,	
Burma ⁶	(⁵)	.1	.1	.1	.1
	195.0	200.0	200.0	200.0	200.0
Cyprus ⁶	6.8	5.8	1.2		
India	_31.2	_26.0	26.5	22.0	27.0
Indonesia	*57.1	r _{59.0}	60.2	58.0	60.0
Iran ^e	13.5	20.0	5.3	3.6	3.6
IsraelJapan ⁴	27.7			.8	
	81.4	72.0	59.1	52.5	51.5
Korea, North	15.0	15.0	15.0	15.0	15.0
Korea, Republic of	1.7	7	.5	.4	³ 1.1
Malaysia	^r 23.7	^r 24.9	24.0	27.0	330.0
MongoliaNepal		4.0	21.7	44.0	71.8
	(⁵)	(⁵)			(⁵)
PhilippinesTaiwan	272.8	^r 263.6	298.3	304.5	289.3
IRIWAN	2.0	.8	.8	1.2	
Turkey	33.4	^r 27.3	.0	1.4	1.0

Table 37.—Copper: World mine production, by continent and country -- Continued (Thousand metric tons)

Continent and country	1977	1978	1979	1980 ^p	1981 ^e
Oceania: Australia Papua New Guinea	221.6 182.3	^r 222.1 ^r 198.6	237.6 170.8	231.8 146.8	³ 223.2 ³ 165.4
Total	r7,738.5	r7,618.3	7,674.4	7,656.3	8,171.1

 ${}^{\mathbf{p}}$ Preliminary. Revised. eEstimated.

Table 38.—Copper: World smelter production,1 by continent, country, and metal origin (Thousand metric tons)

Continent, country, and metal origin	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Canada:	401.0	e410.3	e374.5	e473.7	457.0
Primary	481.6 18.7	e15.0	e10.0	e19.0	18.0
Secondary	18.7	15.0	10.0	15.0	16.0
Total	500.3	425.3	384.5	492.7	² 475.0
Mexico, primary	87.5	87.0	83.9	85.7	61.3
United States:					
Primary	1,302.0	1,288.4	1,335.6	1,008.4	1,316.8
Secondary	44.8	54.2	60.2	44.9	60.9
Total	1,346.8	1,342.6	1,395.8	1,053.3	1,377.7
South America: Argentina, primary ^e	.1	.1	.1	.1	.1
Chile, primary	888.4	927.4	946.9	953.1	² 953.9
Peru, primary	r307.4	318.9	371.4	321.0	253.4
Europe:	9.0	9.5	9.7	9.9	10.0
Albania, primary ^e Austria, secondary	9.0 12.1	12.1	13.2	11.0	10.0
Austria, secondary	10.1	14.1	10.2	11.0	
Belgium:				_	_
Primary ^e	13.0	9.0	1.5	.7	.5
Secondary ^e	48.6	46.9	47.8	49.3	47.5
Total ^e	61.6	55.9	49.3	50.0	48.0
Bulgaria:					
Primary ^e	57.0	61.0	61.0	61.0	61.0
Secondary ^e	3.0	8.0	3.0	3.0	3.0
Total ^e	60.0	64.0	64.0	64.0	64.0
Czechoslovakia:					
Primarye	7.4	6.7	8.2	7.6	7.4
Secondary ^e	2.6	3.3	1.8	2.4	2.4
Total ^e	10.0	10.0	10.0	10.0	9.8
=					
Finland:	61.5	53.7	55.3	e49.2	49.0
Primary Secondary	61.5 10.6	58.7 10.0	9.9	e10.0	10.0
Secondary	10.0				
Total	72.1	63.7	65.2	59.2	59.0
France, secondary	5.3	F3.2	5.0	7.3	7.0
German Democratic Republic, primary	18.0	17.0	19.0	18.0	18.0

^{*}Preliminary. 'Nevised. 'Preliminary. 'Nevised. 'India presented represent copper content (recoverable, where indicated) of ore mined wherever possible. If such data are not available, the figures presented are the nonduplicative total copper content of ores, concentrates, matte, metal, and/or other copper-bearing products measured at the least stage of processing for which data are available. Table includes data available through June 23, 1982.

*Recoverable.

*Recoverable.

Reported figure.

^{*}Copper content of concentrates produced.

*Less than 1/2 unit.

^{**}Cless than 1/2 unit.

**Includes copper content of cupriferous pyrites.

**Excludes an unreported quantity of copper in iron pyrites which may or may not be recovered.

**Copper content of matte produced.

**Revised to zero.

Table 38.—Copper: World smelter production, by continent, country, and metal origin —Continued

(Thousand metric tons)

Continent, country, and metal origin	1977	1978	1979	1980 ^p	1981 ^e
urope—Continued					
Germany, Federal Republic of:					
Primary Secondary	189.6 58.4	165.8 55.7	158.2 92.5	153.9	155.0
_ •				103.9	105.0
Total Hungary, secondary	248.0 .8	221.5 .3	250.7 .1	257.8	260.
Norway, primary	26.6	20.1	27.3	.1 33.7	²32.
Poland, primary and secondary	311.0	337.0	341.0	363.5	2330.8
Portugal:					
Primary	3.3	2.8	5.1	6.1	4.4
Secondary	.1	.2	.4	.5	.4
Total	3.4	3.0	5.5	6.6	4.8
Romania:					
Primary	41.4	38.9	41.1	40.7	40.
Secondary	4.0	4.0	4.0	4.0	4.0
Total	45.4	42.9	45.1	44.7	44.8
Spain:					
Primary Secondary	99.5	95.5	90.3	e85.1	128.1
Secondary	18.0	17.0	18.0	e18.0	20.0
Total	117.5	112.5	108.3	103.1	² 148.1
Sweden:					
Primary	46.7	53.2	51.7	45.7	² 60.€
Secondary	15.0	13.8	12.9	10.7	² 13.2
Total	61.7	67.0	64.6	56.4	2 73.8
U.S.S.R.:				4	7
Primary	850.0	865.0	885.0	900.0	950.0
Secondary	85.0	90.0	95.0	95.0	95.0
Total	935.0	955.0	980.0	995.0	1,045.0
Yugoslavia:					
Primary	97.4	107.5	108.7	114.0	110.0
Secondary	68.4	87.7	71.3	72.0	71.0
Total	165.8	195.2	180.0	186.0	181.0
rica: Namibia, primary	53.4	45.9	42.7	40.0	39.7
South Africa, Republic of, primary	188.4	r _{191.4}	178.0	180.8	² 199.4
Uganda, primary	8.3				
Zaire, primaryZambia, primary	^r 459.1 ^r 658.5	^r 400.1 ^r 653.9	382.4	447.8	462.0
Zimbabwe, primary	r32.5	r32.2	582.1 28.5	609.9 26.1	567.0 21.0
sia: China, primary and secondary ^e	105.0				
India, primary	195.0 23.5	200.0 *19.5	200.0 21.4	200.0 28.5	200.0 225.7
Iran, primary	7.0	6.0	.7	28.9 .8	-25.1 .8
Japan:					
Primary	848.4	854.5	853.7	889.5	937.0
Secondary	103.9	56.0	67.7	40.3	43.1
Total	952.3	910.5	921.4	929.8	² 980.1
Korea, North:					
Primary ^e	15.0	15.0	15.0	15.0	15.0
Secondary ^e	5.0	5.0	3.0	3.0	3.0
Total ^e	20.0	20.0	18.0	18.0	18.0
Korea, Republic of:					
Primary ^e	r20.8	r30.9	33.2	50.1	87.0
Secondary	r16.0	r _{15.0}	15.0	14.0	14.0
Total	36.8	45.9	48.2	64.1	² 101.0
Taiwan, primary	F5.0	*7.5	10.0	13.0	50.0

Table 38.—Copper: World smelter production, by continent, country, and metal origin -Continued

(Thousand metric tons)

Continent, country, and metal origin	1977	1978	1979	1980 ^p	1981 ^e
Asia —Continued					
Turkey: Primary ^e Secondary ^e	30.9 .6	25.6 .6	21.6 .6	15.3 .6	26.7 .6
Total ^e	31.5	26.2	22.2	15.9	² 27.3
Oceania: Australia: Primary Secondary	167.7 4.1	164.4 2.8	163.2 6.2	174.9 7.1	160.4 5.0
Total	171.8	167.2	169.4	182.0	165.4
Grand total Of which: Primary Secondary Undifferentiated	r8,136.9 r7,105.9 r525.0 506.0	r8,017.5 r6,984.7 r495.8 537.0	8,045.6 6,967.0 537.6 541.0	7,938.9 6,859.3 516.1 563.5	8,324.7 7,260.7 533.2 530.8

Table 39.—Copper: World refinery production,1 by continent, country, and metal origin (Thousand metric tons)

420.3 26.0 446.3 70.0 5.0	377.3 20.0 397.3	475.2 30.0 505.2	445.6 28.0 2473.6
26.0 446.3 70.0	20.0 397.3	30.0	28.0
26.0 446.3 70.0	20.0 397.3		
70.0		505.2	² 473.6
	76.8		
	76.8		
		80.6	63.0
5.0	5.0	5.0	5.0
75.0	81.8	85.6	² 68.0
1,449.1	1,515.4	1,210.9	1,544.0
420.1	498.4	515.1	493.6
1,869.2	2,013.8	1,726.0	2,037.6
45.0	53.1	63.0	² 45.0
749.1	779.5	810.7	2775.6
182.8	230.8	226.3	² 209.1
7.0	7.5	7.7	9.0

15.5	8.0	9.0	9.0
16.0	24.8	34.3	30.1
31.5	32.8	43.3	39.1
332.6	318.8	321.7	265.0
56.0	50.0	52.0	45.0
388.6	368.8	373.7	310.0
62.0	62.0	62.0	62.0
	1,449.1 420.1 1,869.2 45.0 749.1 182.8 7.0 15.5 16.0 31.5 332.6 56.0	1,449.1 498.4 1,869.2 2,013.8 45.0 53.1 749.1 779.5 182.8 230.8 7.0 7.5 15.5 8.0 16.0 24.8 31.5 32.8 332.6 318.8 56.0 50.0 388.6 368.8	1,449.1 1,515.4 1,210.9 420.1 498.4 515.1 1,869.2 2,013.8 1,726.0 45.0 53.1 63.0 749.1 779.5 810.7 182.8 230.8 226.3 7.0 7.5 7.7 15.5 8.0 9.0 16.0 24.8 34.3 31.5 32.8 43.3 332.6 318.8 321.7 56.0 50.0 52.0 388.6 368.8 373.7

^{*}Estimated. PPreliminary. Revised.

¹This table has been revised in general format to include total production of copper metal at the unrefined stage, whether produced by thermal, electrolytic, or electrowinning methods, and whether derived from ore, concentrates, or matte (primary) and/or scrap (secondary). To the extent possible, primary and secondary output of each country is shown separately. In some cases, total smelter production is officially reported, but the distribution between primary and secondary has been estimated. In instances where copper is recovered in a single step from raw material to refined product, the amount recovered has been included. Table includes data available through June 23, 1982.

*Reported figure.

Table 39.—Copper: World refinery production, 1 by continent, country, and metal origin —Continued

(Thousand metric tons)

Continent, country, and metal origin	1977	1978	1979	1980 ^p	1981 ^e
Europe —Continued					
Czechoslovakia, primary and secondary	23.1	23.8	24.6	25.6	26.0
Finland:					
Primary ^e Secondary ^e	32.8 10.0	32.7 10.0	33.0 10.0	30.5 10.0	25.8 8.0
Total ^e	42.8	42.7	43.0	40.5	² 33.8
	20.0	40.1	40.0	20.0	99.0
France: Primary Secondary	22.3 r _{22.7}	20.7 20.6	22.0 23.3	23.0 23.3	23.0 23.0
Total	r45.0	41.3	45.3	46.3	² 46.0
German Democratic Republic, primary and secondary	51.0	49.0	51.0	51.0	51.0
Germany, Federal Republic of:					
Primary Secondary	340.7 99.5	318.6 84.9	303.1 79.4	302.5 61.3	² 304.0 ² 83.3
Total	440.2	r403.5	382.5	363.8	² 387.3
Hungary, primary and secondary	12.1	13.1	12.0	12.0	12.0
Italy:	4.0	0.5	0.0		
Primary ^e Secondary ^e	4.0 16.0	3.5 14.0	2.6 13.0	2.0 10.2	1.0 22.7
Total ^e	20.0	17.5	15.6	12.2	23.7
Norway:					
Primary Secondary	21.2 1.3	15.7 5.6	^e 21.0 ^e 6.0	^e 25.8 ^e 6.0	21.1 5.0
Total	22.5	21.3	27.0	31.8	² 26.1
Poland, primary and secondary Portugal, primary	306.6 3.4	332.2 3.0	335.8 3.4	357.3 4.6	² 327.2 4.8
Romania, primary and secondary	40.0	40.5	42.0	42.0	42.0
Spain:					
Primary ^e Secondary ^e	130.0 29.0	117.0 30.0	119.4 25.0	127.7 30.0	122.4 30.0
Total ^e	159.0	147.0	144.4	157.7	² 152.4
Sweden:					
Primary	47.7	53.2	49.7	e46.7	51.9
Secondary	14.0	11.2	12.0	e9.0	10.0
Total	61.7	64.4	61.7	55.7	²61.9
U.S.S.R.:				***************************************	
Primary ^e Secondary ^e	790.0 160.0	810.0 170.0	830.0 170.0	845.0 170.0	890.0 170.0
Total ^e	950.0	980.0	1,000.0	1,015.0	1,060.0
United Kingdom:					
Primary	44.4	46.2	48.5	68.3	² 59.8
Secondary	77.8	79.4	73.2	93.0	² 76.4
Total	122.2	125.6	121.7	161.3	2136.2
Yugoslavia: Primary	00.0	100.0			
Secondary	93.0 50.5	103.9 46.9	99.2 38.3	^e 100.0 ^e 31.3	100.0 32.6
Total	143.5	150.8	137.5	131.3	²132.6
South Africa, Republic of, primary ³	145.9	149.1	150.8	140.9	144.1
Zaire, primaryZambia, primary	*140.7 648.0	^r 146.4 627.7	136.5 561.9	179.6 607.6	165.0 2573.1
Zimbabwe, primary	r3.0	r3.0	3.0	3.1	8.0

Table 39.—Copper: World refinery production,¹ by continent, country, and metal origin
—Continued

(Thousand metric tons)

Continent, country, and metal origin	1977	1978	1979	1980 ^p	1981 ^e
Asia: China, primary and secondary ^e India, primary ³ Iran, primary ^e	260.0	270.0	280.0	280.0	280.0
	r _{21.1}	17.6	14.7	17.0	² 14.6
	7.0	6.0	3.0	.8	.8
Japan: PrimarySecondary	^r 848.6	854.5	853.7	889.5	² 930.0
	^r 85.1	104.6	130.0	124.8	² 120.2
Total	933.7	959.1	983.7	1,014.3	² 1,050.2
Korea, North, primary and secondary ^e	25.0	25.0	22.0	22.0	22.0
Korea, Republic of:	^r 20.8	r30.9	46.3	54.6	87.0
Primary ^e Secondary ^e	^r 22.1	r21.5	16.8	18.3	21.0
Total	r _{42.9}	^r 52.4	63.1	72.9	²108.0
Taiwan: Primary ^e Secondary ^e	r _{4.7}	7.4	8.3	11.5	45.2
	r _{7.0}	7.0	7.0	8.0	8.0
Total ^e	^r 11.7	^r 14.4	15.3	19.5	53.2
Turkey, primary	25.3	30.1	22.2	18.8	22.6
Oceania: Australia: PrimarySecondary	152.0	152.6	138.4	144.8	² 164.2
	*31.1	r _{26.3}	33.6	38.1	¹ 26.6
Total	r _{183.1}	178.9	172.0	182.9	² 190.8
Grand total Of which: Primary	r _{8,649.8}	r8,791.9	8,903.1 6.784.8	8,971.0 6,786.4	9,184.4
Secondary	r1,134.6	r _{1,200.1}	1,288.9	1,332.7	1,283.5
Undifferentiated	775.8	815.6	829.4	851.9	822.2

^eEstimated. ^pPreliminary. ^rRevised. ¹This table has been revised in general format to include total production of refined copper, whether produced by thermal, electrolytic, or electrowinning methods, and whether derived from primary unrefined copper or from scrap. To the extent possible, primary and secondary output of each country is shown separately. In some cases, total refinery production is officially reported, but the distribution between primary and secondary has been estimated. Table includes data available through June 23, 1982. ²Reported figure. ³Although only primary production is reported, an unknown but small additional output of secondary refined copper may have been produced.

Diatomite

By A. C. Meisinger¹

Domestic production of processed diatomite was 687,000 tons in 1981, almost the same as in 1980; however, value of sales established a new record high of \$113 million, a 12% increase over that of the previous year. Production came from four Western States with California operations accounting for more than half of the 1981 output. Manville Products Corp. (formerly Johns-Manville Sales Corp.), with oper-

ations at Lompoc, Calif., continued to be the leading domestic producer.

U.S. diatomite exports declined, for the first time since 1975, to 162,000 tons, compared with 173,000 tons in 1980. Imports of diatomite increased by 31% in 1981 to 385 tons.

Apparent domestic consumption increased slightly (2%) in 1981 to 525,000 tons.

DOMESTIC PRODUCTION

U.S. output of diatomite in 1981 was 687,000 tons valued at \$113 million. Sales declined in quantity by 2,000 tons from that of 1980, but total value of sales increased 12% in 1981 to a new record high. Producers attributed the increase in value primarily to higher fuel costs.

Domestic production in 1981 was in 9 plants processing from 11 mining operations in 4 Western States: California, Nevada, Oregon, and Washington. Diatomite operations in California continued to account for more than half of the total annual U.S. production of diatomite.

The 1981 producers were the same as in 1980. Principal producers were Manville

Products, with operations at Lompoc, Calif.; Grefco, Inc. (Dicalite Div.), at Lompoc, Calif., and Mina (Basalt), Nev.; Eagle-Picher Industries, Inc. (Minerals Div.), at Sparks and Lovelock, Nev.; and Witco Chemical Corp. (Inorganic Specialties Div.) at Quincy, Wash. Other producers were Excel-Mineral Co., Taft, Calif.; Cyprus Diatomite Co., Fernley, Nev.; and Oil-Dri Production Co., Christmas Valley, Oreg.

American Exploration and Management Co. reported relinquishment of their diatomite property in Rio Arriba County, N. Mex., to new ownership. Details of the transaction were not reported.

Table 1.—Diatomite sold or used by producers in the United States

(Thousand short tons and thousand dollars)

	1977	1978	1979	1980	1981
Domestic production (sales) Total value of sales	648	651	717	689	687
	\$63,870	\$72,429	\$90,323	\$100,610	\$113,010

CONSUMPTION AND USES

Apparent domestic consumption of diatomite in 1981 (sales, plus imports, minus

exports) totaled 525,000 tons, a slight increase (2%) over that of 1980. Demand for

diatomite as a filtration medium declined 2% from that of 1980, but continued to account for most (64%) of the total sales in 1981. Diatomite used as filler increased from 21% in 1980 to 23% of total sales: however, insulation use declined from 3%

in 1980 to 2%. Other uses of diatomite in 1981 were absorbents, abrasives, fertilizer coatings, and lightweight aggregates, which together accounted for 11% of the total quantity sold or used by domestic producers.

Table 2.—Diatomite sold or used,1 by principal use

(Percent of U.S. production)

Use	1977	1978	1979	1980	1981
Filtration Fillers Insulation Other	59	63	65	66	64
	W	23	21	21	23
	5	3	3	3	2
	36	11	11	10	11

W Withheld to avoid disclosing company proprietary data; included with "Other." $^{\rm 1}$ Includes exports.

PRICES

The weighted average value reported by producers for processed diatomite sold or used in 1981 was \$164.50 per ton, a 13% increase compared with the 1980 average value of \$146.02 per ton, and a 31% increase compared with the 1979 average value. The average annual value per ton for each of the principal end uses of diatomite (table 3) in 1981 increased substantially over those of 1980.

Table 3.—Average annual value per ton1 of diatomite, by use

Use	1979	1980	1981
Abrasives Fillers Filtration Insulation Miscellaneous ²	118.22 	\$132.56 158.88 103.47 101.79	\$153.14 179.01 125.02 110.19
Weighted average	125.91	146.02	164.50

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous."

FOREIGN TRADE

In 1981, domestic producers exported 162,000 tons of processed diatomite, a decrease of 6% from the quantity exported in 1980, and the first such decrease since 1975. Average value per ton of exports continued to increase and was \$203.29 compared with \$186.35 in 1980. The quantity of diatomite exported in 1981 represented 24% of U.S. production compared with 25% the previous year. Diatomite was exported to 87 countries compared with 80 countries in 1980, and the following 4 countries received 51% of the total: Canada, 32,900 tons; Japan, 22,100 tons; Australia, 14,000 tons; and the Federal Republic of Germany, 13,400 tons.

Imports of diatomite increased from 295 tons in 1980 to 385 tons, with 78% coming from Mexico compared with 91% in 1980. Value of imports from Mexico (U.S. Customs declared average value at U.S. ports of entry) in 1981 was \$71,428, compared with \$83,545 in 1980.

Table 4.—U.S. exports of diatomite

(Thousand short tons and thousand dollars)

Year	Quantity	Value ¹
1978	153	21.463
1979	170	26,496
1980	173	32,238
1981	162	32,933

¹U.S. Customs.

¹Based on unrounded data.

Photographics data. Includes absorbents, abrasives (1980-81), admixtures and silicates (1979), catalysts (1979-80), fertilizer coatings, lightweight aggregates (1980-81), and pozzolan additive (1979).

WORLD REVIEW

World production of diatomite in 1981 was an estimated 1,638,000 tons, a slight decrease from the 1980 production of 1,645,000 tons. The United States maintained its leadership with 687,000 tons produced, or 42% of total world output in 1981. The U.S.S.R. and France were the next two largest producing countries with 250,000 tons and 243,000 tons, respectively (table 5).

Denmark.—During the year, Skarrehage Molervaerk A/S (Skamol) was reported to have acquired the Molisol Produkt moler brick operations.2 Before the acquisition, Molisol Produkt was the second largest producer of moler bricks. Moler, an impure diatomaceous earth containing 20% to 25%

clay, is used extensively in Denmark to produce insulation bricks.

Tanzania.—Two possible sources of highgrade diatomite were reported to occur in Tanzania.3 One deposit area was found in the lower reaches of the Kagera River, near Bukoba and the other at Makutapora, north of Dodoma. Many lower grade diatomite occurrences have also been reported, particularly within the Rift Valley area of the country.

pp. 47, 51.

3 Jones, G. K. The Industrial Minerals of Tanzania. Ind. Miner. (London), No. 166, July 1981, p. 39.

Table 5.—Diatomite: World production, by country¹

(Thousand short tons)

Country	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Canada	1	2		•-	
United States	648		2	^e 2	. 2
Latin America:	048	651	717	689	² 687
Argentina	14	8			
Brazil (marketable)	r ₁₁		. 8	7	7
Chile	11	13	18	19	19
Colombia	1	9	1	1	1
Costa Rica	1	ī	1	1	1
Mexico	26	F. 1	1	_ 1	1
Peru	26 r 9	^r 45	49	^e 25	25
Europe:	-9	r ₅	(³)		
Austria	.4.				
Denmark:	(4)	1			
Diatomite ^e					
Moler ^{e 5}	28	28	28	28	28
Moler S	175	175	140	140	140
rance	227	^e 220	e220	e240	243
Germany, Federal Republic of	55	52	48	58	57
iceiand	623	22	23	20	20
Italy ^e	r ₃₅	r ₃₅	35	35	20 31
Portugal	4	3	3	3 3	
Romania ^e	45	45	45		.3
Spani	31	24	30	45	45
U.S.S.R.e	235	240		30	26
United Kingdom ^e	•200	240	250	250	250
Africa:	2	2	2	2	2
Algeria	5		_	_	
Egypt	(4)	4	.5	5	5
Kenya	3	(4)	(4)		
South Africa, Republic of	9	2	2	2	2
Asia:	1	1	1	1	1
Korea, Republic of	25	01			
Thailand	(4)	21	26	28	28
Turkey		1	4	2	2
Oceania:	10	10	^e 10	e 10	11
Australia	_				
New Zealand	1	_8	4	(4)	(⁴)
Trew Dedicated	1	• ₁	e 1	èí	`í
Total	r _{1,618}	r _{1,622}	1.674	1.645	1,638

^pPreliminary. ^eEstimated. Revised.

¹Industry economist, Division of Industrial Minerals. ²Watson, I. The Industral Minerals of Scandinavia-Denmark. Ind. Miner. (London), No. 171, December 1981,

¹Table includes data available through Apr. 14, 1982.

²Reported figure.

Revised to zero.

Less than 1/2 unit.

⁵Estimated diatomite content of moler produced.

⁶Exports.

Feldspar, Nepheline Syenite, and Aplite

By Michael J. Potter¹

Total U.S. feldspar output in 1981 (including soda, potash, and mixed varieties) decreased by 6% to 665,000 tons. Feldspar was mined in six States, with North Carolina in the lead, followed by Connecticut and Georgia. The other producing States were California, Oklahoma, and South Dakota. Shipments went to at least 31 States and to foreign destinations, primarily Canada and Mexico. Aplite of glassmaking quality was produced only in Virginia; output figures are not released, but the tonnage produced was approximately 5% less than in 1980. Imports of crude and ground nepheline syenite in 1981 totaled 506,000 short tons, about the same as in 1980.

The 1981 end-use distribution of feldspar in the United States indicated that 57% went into glassmaking and 40% into pot-

tery. The remaining 3% was used in other applications such as enamels, sanitary ware, and fillers.

In Washington, Feldslite Corp. of America obtained permits to mine and process, in Chelan County, a deposit containing, principally, feldspar, quartz, and mica.

The Glass Packaging Institute launched a campaign to counteract inroads made by plastic bottles.² Most of the gain in plastic containers has been in food and beverage bottles (especially soft drinks).³

Legislation and Government Programs.—According to provisions of the Tax Reform Act of 1969, which continued in force throughout 1981, the depletion rate allowed on feldspar production (both domestic and foreign operations) was 14%.

Table 1.—Salient feldspar and nepheline syenite statistics

	1977	1 9 78	1979	1980	1981
United States:					
Feldspar:					
Produced ¹ short tons_	734,000	735,000	740,000	710,000	665,000
Value thousands	\$17,190	\$18,200	\$21,500	\$23,200	\$21,000
Exportsshort tons_	6,200	10,330	12,300	13,000	14,025
Value thousands	\$394	\$853	\$1,025	\$896	\$1,110
Imports for consumptionshort tons	242	39	266	404	206
Value thousands	\$8	\$3	\$31	\$133	\$61
Nepheline syenite:	•	• -	•	*	*
Imports for consumptionshort tons	502,600	548,000	536,000	504.000	506,100
Value thousands	\$9,135	\$10,446	\$10.846	\$11,264	\$11,529
Consumption, apparent ² (feldspar plus					,
nepheline syenite) thousand short tons	1,231	1,273	1,264	1,201	1,157
World production (feldspar)do	r3,240	r3,402	r3,512	P3,480	e3,444

^eEstimated. ^pPreliminary. ^rRevised.

¹Includes hand-cobbed feldspar, flotation-concentrate feldspar, and feldspar in feldspar-silica mixtures; includes potash feldspar (8% K₂O or higher).

FELDSPAR

DOMESTIC PRODUCTION

Soda feldspar is defined commercially as containing 7% Na₂O or higher; potash feldspar contains 10% K₂O or higher. Handcobbed or hand-sorted feldspar is usually obtained from pegmatites (coarse-grained, igneous dike rock) and is relatively high in K₂O compared with Na₂O. Feldspar flotation concentrates can be classified as either soda, potash, or "mixed" feldspar, depending on the relative amounts of Na₂O and K₂O present. Feldspar-silica mixtures (feldspathic sand) can either be a naturally occurring material, such as sand deposits, or a processed mixture obtained from flotation.

Feldspar was mined in six States in 1981, led by North Carolina and followed in descending order by Connecticut, Georgia, California, Oklahoma, and South Dakota. The combined output of the top four States was about 95% of the U.S. total.

Most of the feldspar used in glassmaking is ground no finer than 20 to 40 mesh, and substantial tonnages of feldspathic sands (feldspar-quartz mixtures) enter into glass furnace feeds with no further reduction in particle size. Feldspar for ceramic and filler applications is usually pulverized to minus

200 mesh or finer. In 1981, 10 U.S. companies operating 11 plants produced feldspar in 6 States for shipment to at least 31 States and to foreign countries, primarily Canada and Mexico. North Carolina had five plants, California had two, and Connecticut, Georgia, South Carolina, and South Dakota each had one.

In Washington, Feldslite obtained permits to mine the deposit on Wenatchee Ridge on national forest land and to build a processing plant near Nason Creek, both in Chelan County. Production at the plant could occur in late 1982, initially at about 120,000 tons per year of rock. Feldspar, quartz, and mica are the major components, and iron content is low at approximately 0.25% Fe₂O₃. Reserves were reported to be very large.

The data for potash feldspar in tables 1-6 were collected from the three U.S. producers of this material; some of this feldspar contained less than 10% K₂O (8% to 10% K₂O). Therefore, in order to publish potash feldspar data and to maintain proprietary company data, the potash feldspar included in tables 1-6 has a K₂O content of 8% or higher.

Table 2.—Feldspar produced in the United States¹

(Thousand short tons and thousand dollars)

Year	Hand-cobbed		Flotation concentrate		Feldspar-silica mixtures ²		Total ³	
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
1977 1978 1979 1980 1981	23 26 20 14 11	309 400 238 229 194	568 568 580 566 504	12,600 13,240 16,460 18,240 16,850	142 140 140 130 149	4,280 4,550 4,770 4,780 4,000	734 735 740 710 665	17,190 18,200 21,500 23,200 21,000

¹Includes potash feldspar (8% K₂O or higher).

CONSUMPTION AND USES

In 1981, there continued to be no significant consumption of run-of-mine feldspar. The majority of users acquired their supplies already ground and sized by the feldspar producers, although some manufacturers of pottery, soaps, and enamels continued to purchase feldspar for grinding to their preferred specifications in their own mills. A substantial portion of the material classi-

fied as feldspar-silica mixtures served in glassmaking without additional processing.

In 1981, 57% of total feldspar consumed in the United States was used in glassmaking (including container glass, flat glass, and fiberglass), and 40% was used in pottery. The remaining 3% was used in other applications, including enamels, sanitary ware, rubber products, and electrical insulators.

²Feldspar content

³Data may not add to totals shown because of independent rounding.

Recent trends indicate that U.S. manufacturers will ship 7.3 billion pounds of glass fibers in 1995. Reinforced plastics would be the primary growth outlet. Other promising areas are passenger car tires (glass belted) and electrical and electronic applications.5

In recent years, porcelain enamel has been the preferred finish for most household appliances and fixtures. Another potential area of growth is on the exteriors of residential buildings, with both steel and aluminum siding.6

Table 3.—Feldspar sold or used by producers in the United States, by use¹

(Thousand short tons and thousand dollars)

	1980		198	1
Use	Quantity	Value	Quantity	Value
Hand-cobbed: PotteryOther	W 15	W 995	13 1	935 45
Total	15	995	²13	980
Flotation concentrate: Glass Pottery Other	298 W 266	7,870 W 10,990	251 236 19	7,310 10,610 1,160
Total	564	18,860	² 505	19,080
Feldspar-silica mixture: ³ Glass Pottery Other	106 W 25	4,790 W 1,620	118 15 3	4,900 935 310
Total	131	6,410	136	6,145
Total: Glass ⁴ Pottery Other ⁵	404 276 30	12,660 11,390 2,220	369 264 22	12,210 12,480 1,510
Total	710	² 26,300	655	26,200

W Withheld to avoid disclosing company proprietary data; included with "Other." 1 Includes potash feldspar (8% $\rm K_2O$ or higher).

Table 4.—Destination of shipments of feldspar sold or used by producers in the United States, by State¹

(Short	tons)
--------	-------

State	1977	1978	1979	1980	1981
Alabama	(2) 5,500 (2) (2) (3) (4) (4) (6) 37,000	35,500 5,200 (*) 23,800 20,000 35,800 47,600	13,900 W (2) 21,600 23,600 69,000 43,700	21,100 W (3) 18,400 32,800 64,700 36,600	19,600 W (*) 17,800 25,700 68,300 31,100
Illinois Indiana Kentucky Louisiana Maryland Massachusetts Michigan	30,800 10,100 16,200 5,000 18,400 800	32,600 10,200 19,200 6,500 W 2,500	25,300 13,100 16,900 7,600 W 4,000	26,700 12,800 14,600 5,100 11,100 2,700	22,700 11,700 13,900 4,300 8,800

²Data do not add to totals shown because of independent rounding.

³Feldspar content.

Includes container glass, flat glass, and fiberglass. Includes container grass, nate grass, and more grass.

Includes enamel, sanitary ware, filler, electrical insulators, etc., and unknown; totals for "Quantity" and "Value" may not correspond to the sums of the subtotals of the three "Other" categories above.

Table 4.—Destination of shipments of feldspar sold or used by producers in the United States, by State -- Continued

(Short tons)

State	1977	1978	1979	1980	1981
Mississippi Missouri New Jersey New York Ohio Oklahoma Pennsylvania South Carolina Tennessee Texas West Virginia Other ⁵	20,800 7,600 45,100 20,600 63,300 34,300 53,700 NA 21,700 39,400 37,000 267,200	22,000 4,200 50,400 21,400 59,200 33,600 55,400 W 19,700 38,800 38,200 153,200	17,600 7,600 59,600 22,000 64,400 31,700 52,900 17,700 40,400 59,800 112,200	15,600 4,900 64,600 23,100 56,400 31,000 46,200 15,600 35,000 55,400 97,300	13,000 4,300 63,400 19,400 52,800 34,700 42,900 16,400 39,400 36,100 92,600
Total	⁶ 735,000	735,000	744,000	710,000	655,000

NA Not available. W Withheld to avoid disclosing company proprietary data; included with ¹Includes potash feldspar (8% K₂O or higher).

²Data are incomplete; included with "Other."

³Data are incomplete; Bureau of Mines estimate is 40,000 tons or more; included with "Other."

⁴Data are incomplete; Bureau of Mines estimate is 35,000 tons or more; included with "Other."

⁵Valude North Caveling Phode Labord Wisconsin other States and foreign destinations. W Withheld to avoid disclosing company proprietary data; included with "Other."

Table 5.—Potash feldspar sold or used by producers in the United States, by use¹

		1980		1981		
	Use	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	
PotteryOther		69,500 15,500	\$4,050 700	66,850 13,550	\$4,538 620	
Total		85,000	4,750	80,400	5,158	

¹K20 content of 8% or higher.

Table 6.—Destination of shipments of potash feldspar sold or used by producers in the United States, by State¹

(Short tons)

State	1977	1978	1979	1980	1981
Illinois, Indiana, Wisconsin Maryland, New York, West Virginia Massachusetts Ohio Pennsylvania Texas Other States Mexico Canada Other destinations	27,300 1,100 12,100 11,100 600 34,600 W 3,800 100	14,900 27,500 W 12,100 12,000 400 18,300 1,500 4,600	15,500 29,500 1,400 12,000 9,000 W 18,600 2,900 5,200	13,400 28,200 W 10,700 8,200 400 18,150 1,600 4,300 50	11,300 24,800 W 9,800 9,100 200 17,480 2,800 4,900
Total	90,700	91,300	94,100	85,000	80,400

W Withheld to avoid disclosing company proprietary data; included with "Other States." ¹K₂O content of 8% or higher.

Findudes North Carolina, Rhode Island, Wisconsin, other States, and foreign destinations.

6Data do not add to total shown because of independent rounding.

²Includes glass, enamel, sanitary ware, etc.

PRICES

Engineering and Mining Journal, December 1981, listed the following prices for feldspar, per short ton, f.o.b. mine or mill, carload lots, bulk, depending on grade:

	1980	1981	
North Carolina:			
20 mesh, flotation _	\$25.50	\$27.50	
40 mesh, flotation _	41.00	46.00	
200 mesh, flotation	38.25	\$41.25-65.00	
Georgia:			
40 mesh, granular_	41.00	46.00	
200 mesh	58.00	64.00	
Connecticut:			
20 mesh, granular_	30.25	34.50	
200 mesh	41.75	46.75	

Feldspar prices were quoted by Industrial Minerals (London), December 1981, as follows (converted from pounds sterling per metric ton to dollars per short ton, using an exchange rate of £1.00 = US\$2.00):

Ceramic grade, powder, 200 mesh, bagged, ex-store, United Kingdom	\$136-\$	145
Sand, 2 to 3 millimeters, ceramic and/or glass	73-	82

FOREIGN TRADE

U.S. exports in 1981 classified as feldspar, leucite, and nepheline syenite (but presumably mostly feldspar) amounted to 14,025 tons valued at \$1,110,000. This was 8% higher in tonnage than in 1980. Chief recipients of the exported material were Canada, 48%; Mexico, 32%; and Venezuela, 7%. The remaining 13% was shared among 11 other countries.

In addition to feldspar and nepheline syenite, U.S. imports in 1981 were 1,489 tons of "Other mineral fluxes, crushed" with a value of \$310,986 and 23,538 tons of "Other crude natural mineral fluxes" with a value of \$873,867.

The tariff schedule in force throughout 1981 for most favored nations provided for a 3.3% ad valorem duty on ground feldspar; imports of unground feldspar were admitted duty free.

Table 7.—U.S. imports for consumption of feldspar

(Short tons)

	198	0	1981		
Country	Quantity	Value	Quantity	Value	
Crude:	232	\$111,693	93	\$42,597	
JapanGround, crushed, or pulverized:			15	1,138	
Germany, Federal Republic of	1	796	2 1	484 326	
Japan Norway	$\bar{103}$	$10,\overline{401}$	(1)	1,230	
Peru Sweden	68	9,837	85 10	11,970 3,630	
United Kingdom					
Total	404	132,727	206	61,37	

¹Less than 1/2 unit.

WORLD REVIEW

A comprehensive journal article discussed the use of flux materials in the ceramics and glass industries, with special emphasis on the United Kingdom. Also discussed were other end uses such as fillers and extenders, and consumption of feldspathics in the United States. Production, major producing companies, and feldspar exports for 1978-79 were given for Norway, Sweden, the Federal Republic of Germany, France, Italy, the United Kingdom, Spain, Portugal, and the United States.⁷ Belgium-Luxembourg.—Feldspar imports in 1978 were about 71,000 tons. Principal countries of origin and the share supplied were France, 43%; Norway, 33%; and the Netherlands, 13%. In 1979, imports were 74,000 tons. Principal countries of origin and the percentages supplied were Norway, 46%; and France, 42%. In 1980, feldspar imports were from France, 45%; and Norway, 41%.

Bulgaria.—A journal article discussed specifications of feldspar produced from pegmatites and from quartz-feldspar sands that are feebly cemented by clay minerals.*

Czechoslovakia.—Feldspar deposits were discussed in a journal article. All of the mined deposits occur in the Bohemian Massif, with microcline pegmatites being the most abundant. In addition to pegmatites, leucocratic granitoids are also a source of feldspar. Among the secondary feldspar deposits is the feldspar gravel deposit at Halámky. After grinding and high-intensity electromagnetic separation, this material has an Fe₂O₃ content of 0.15% and is suitable for manufacture of chinaware and electrical porcelain. 10

Japan.—A discussion of feldspathic deposits was given in a journal article. The country's needs are mostly supplied by domestic production, and over 90% come from aplitic rocks and altered granite.¹¹

Spain.—Aislamic Silicatos Ibericos SL, a prominent producer of feldspar in the Provinces of Burgos, Madrid, and Cordoba, also has extensive mineral lease holdings throughout Spain. The company's El Cabril Mine in Cordoba has a large deposit of high-quality pegmatite. Estimated reserves are 16 million tons, and total reserves may be as high as 50 million tons. A large stockpile of pegmatite material was built up, and plans were to install a flotation plant to recover feldspar, quartz, and mica. Total output of these products would be 200,000 tons per year, with a large portion destined for export markets. 12

Another company, Llansa S.A., in Gerona produced sodium-potassium and sodium feldspar, with a total output in 1980 of approximately 44,000 tons. The company was investigating the possibility of upgrading the quality of its feldspar products by the installation of a flotation plant.¹³

Table 8.—Feldspar: World production, by country¹
(Thousand short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Guatemala	14	17	12	24	20
Mexico	126	r ₁₂₁	122	e140	140
United States	734	735	740	710	³ 665
South America:	101	100	140	110	9000
Argentina	47	46	37	36	40
Brazil ⁴	106	114	156		40
Chile.	3	114	(⁵)	136	140
Colombia	r ₃₀	29		2	2
Peru	r ₂	29 r 3	32	28	30
	2	-3 3	2	17	20
Uruguay Venezuela	29 29	3 77	3	3	3
Europe:	29	$\tau \iota$	98	7	8
Austria	4	3	•		
Finland	79	r ₇₈	_8	12	10
France			75	82	80
Germany, Federal Republic of	r226	r ₂₃₃	215	e220	220
	434	425	411	420	420
	r236	277	325	379	370
D 1 10	78	66	97	^e 77	80
Poland	44	44	44	44	44
Portugal	17	^r 24	37	45	50
Romania ^e	66	66	66	66	66
Spain ⁷	103	128	128	114	120
Sweden	*57	r ₆₀	ē55	55	60
U.S.S.R. ^e	320	330	340	340	350
United Kingdom (china stone)	55	55	55	55	
Yugoslavia	62	53	62	62	55 55

Table 8.—Feldspar: World production, by country1 —Continued (Thousand short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
	1				
Africa:	_			4	
Egypt	3	4	4	- 4	4
Kenya	. 2	1	1	· (5)	(2)
Madagascar	(⁵)	(*)	(3)	(⁵)	(5)
Mozambique ^e	1	1			
Nigoria	6	6	6	6	6
South Africa, Republic of	56	58	52	57	60
Zambia	1	(5)	· (5)	(⁵)	(⁵)
Asia:					_
Burma	2	2	2	2	2
Hong Kong	4	3	1	⁸ 18	_4
India	60	57	55	65	70
Janan ⁹	*46	46	42	- 33	30
Japan ⁹ Korea, Republic of	54	76	75	79	70
Pakistan	4	*15	17	12	13
Philippines	18	r ₂₀	19	18	20
Sri Lanka	4	3	4	4	4
Thailand	r20	36 ·	29	26	30
Turkey	83	83	e80	79	80
Oceania: Australia	. 2	r ₃	5	3	3
Occama Australia					
Total	² 3,240	r3,402	3,512	3,480	3,444

rRevised. Preliminary. ^eEstimated.

¹Table includes data available through Apr. 14, 1982.

³Reported figure.

⁵Less than 1/2 unit.

⁷Includes pegmatite.

*Includes feldspar sand, a byproduct from kaolin washing, not reported (and presumably not produced) in prior years; of the total, approximately one-fifth is feldspar and four-fifths is feldspar sand.

In addition, the following quantities of aplite were produced in thousand short tons: 1976—395; 1977—435; 1978—416; 1979-435; and 1980-e420.

TECHNOLOGY

The Federal Bureau of Mines has experimented on a laboratory scale with the separation of mineral mixtures based on their dielectric properties. A continuous device called the "rotating drum dielectric separator" consists primarily of a highvoltage drum electrode and a screen electrode immersed in a liquid. Finely divided mineral particles, 65- to 400-mesh, are fed to the top of the drum and are separated into low-dielectric particles and high-dielectric particles. Twenty-eight mineral mixtures were tested, with quartz or quartz combined

with feldspar as the gangue minerals. Minerals such as rutile, zircon, monazite, celestite, and ilmenite responded favorably to separation from quartz and, to a lesser degree, from quartz-feldspar mixture.14

A journal article discussed the response of feldspar flotation in a nonfluoride reagent system. A diamine collector (Duomeen TDO) was used in the presence of sulfuric acid. Several process variables were studied, such as flotation feed size, conditioning pH, conditioning pulp density, etc. A number of conclusions were given at the end of the article.15

In addition to the countries listed, China, Czechoslovakia, Romania, and Namibia produce feldspar, but output is not officially reported and available general information is inadequate for the formulation of reliable estimates of output

^{*}Series revised to exclude production of leucite and sodalite; data presented now consist only of that material reported by Brazil under the heading of "Feldspar." Data represent the sum of (1) run-of-mine production for direct sale and (2) salable beneficiated product; total run-of-mine feldspar production was as follows in thousand short tons: 1976—94; 1977—110; 1978—109; 1979—408; and 1980—e410.

^{*}Described in source as lump feldspar; does not include nepheline syenite as follows in thousand short tons: 1976—239; 1977—231; 1978—256; 1979—not available; 1980—not available.

NEPHELINE SYENITE

Nepheline syenite is a quartz-free, light-colored rock that, although resembling medium-grained granite in texture, consists principally of nepheline and alkali feld-spars, usually in association with minor amounts of other minerals. Large quantities of nepheline syenite (after processing to remove contaminants, especially iron-bearing minerals) are consumed in making glass and ceramics. There is no domestic production of nepheline syenite in grades suitable for these purposes, and U.S. needs are wholly supplied by imports.

In Canada, Indusmin, Ltd., and International Minerals & Chemical Corp. (Canada) Ltd. mined nepheline syenite from the deposit at Blue Mountain, Ontario. Canadian production in 1980 totaled approximately 650,000 tons valued at \$15.9 million.

A journal article discussed nepheline syenite, including Canadian exports in 1979-80, processing, and the market. Another article described the Nephton, Ontario, complex of Indusmin, the world's largest plant, including mining, processing, product specifications, etc. 17

Other than Canada, only two countries were known to be producing significant quantities of nepheline syenite, Norway with 267,000 tons in 1979¹⁸ and the U.S.S.R. where, although production figures were not released, the mineral was known to serve the customary applications of the glass and ceramics industries and was a major source of cell-feed alumina for electrolytic aluminum plants.

In Brazil, trial production of glass-quality nepheline syenite was begun at Mineraçao Canaan's 13,000-ton-per-year pilot plant. The Canaan Mine is located 18 miles north of Rio de Janeiro. Initial results from the operation were reported to be successful, and plans were being drawn up for the development of a fully commercial operation. The first stage of the plan called for construction of a 40,000-ton-per-year plant to come onstream in late 1981. Beneficiation, although not finalized, would consist of grinding and magnetic separation. Main emphasis would be on supplying material to the domestic market, with some trial lots to be shipped for evaluation by overseas consumers.¹⁹

In another journal article, a general discussion of nepheline syenite was given.²⁰

The price range quoted for imported nepheline syenite in Ceramic Industry magazine, January 1982, was from \$20 to \$145 per ton, depending upon grade, purity, grind, packaging, transportation, quantity sold, and other factors. Industrial Minerals (London), December 1981, quoted price ranges as follows (converted from Canadian dollars and pounds sterling per metric ton to dollars per short ton):

Canadian:	7.7
Glass grade, 30 mesh, bulk, car lots-truck lots, per short ton.	\$19-\$22
Ceramic grade, 200 mesh, bagged, 10-ton lots, per short ton.	37- 41
Norwegian: Glass grade, 32 mesh (Tyler), bulk, per	
short ton, c.i.f. main European port.	69
Ceramic grade, 325 mesh (Tyler), bagged, per short ton, c.i.f. main European port.	105

The April 5, 1982, issue of the American Paint & Coatings Journal quoted paint-grade nepheline syenite in 50-pound bags, car or truck lots, f.o.b. Ontario, at \$74 to \$160 per ton.

Table 9.—U.S. imports for consumption of nepheline syenite

	Cr	ude	Ground		
Year	Quantity	Value	Quantity	Value	
	(short tons)	(thousands)	(short tons)	(thousands)	
1979	2,260	\$28	533,700	\$10,818	
1980	6,760	71	497,580	11,193	
1981	2,780	25	503,320	11,504	

APLITE

Aplite is another rock of granitic texture containing quartz mixed with varying proportions of soda or lime-soda feldspar. Aplite is usually not suitable for use in ceramics, but if sufficiently low in iron, finds acceptance in the manufacture of glass, especially container glass. Japan, with an annual production of 400,000 to 500,000

tons, is the world's foremost producer of aplite.

Aplite of glassmaking quality was produced in the United States in 1981 from only one open pit operation. The Feldspar Corp. mined aplite near Montpelier, Hanover County, Va., and treated the material by wet-grinding, classification, and spiraling to remove biotite, ilmenite, and rutile, followed by dewatering, drying, and highintensity magnetic separation to eliminate iron-bearing minerals.

Domestic output in 1981 was approximately 5% lower in tonnage than in the previous year. Specific annual data on aplite production, sales, and value are not released for publication. Aplite traditionally commands a somewhat lower price than feldspar. Industrial Minerals (London), December 1981, gave a value of about \$22 per ton for glass-grade, bulk, 100% plus 200 mesh, f.o.b. Montpelier, Va.

Ceram. Ind., v. 117, No. 3, September 1981, p. 21.

Industrial Minerals (London). Washington Feldspar
Gets the Go-ahead. No. 170, November 1981, p. 19.

⁵Ceramic Industry. Newsletter. V. 117, No. 5, November 1981, p. 9.

⁶Fisher, G. Editorial—P/E Products Preferred. Ceram.

Ind., v. 177, No. 6, December 1981, p. 21.

Watson, I. Feldspathic Fluxes—The Rivalry Reviewed.

Watson, I. Feldspathic Fluxes—The Rivalry Reviewed. Ind. Miner. (London), No. 163, April 1981, pp. 21-45. *Industrial Minerals (London). Belgium-Luxembourg In-dustrial Minerals Trade Statistics, 1978-80. No. 168, Sep-

dustrial Minerals Trade Statistics, 1978-50. No. 100, 502, tember 1981, p. 47.

Stoev, S. The Industrial Minerals of Bulgaria. Ind. Miner. (London), No. 169, October 1981, pp. 77, 79.

10 Kuzwart, M. Industrial Minerals and Rocks in Czechoslovakia. Ind. Miner. (London), No. 162, March 1981, pp. 25, 27.

11 Fujii, N. The Industrial Minerals of Japan. Ind. Miner. (London). No. 170, November 1981, pp. 34-35.

12 Page 36 of work cited in footnote 7.

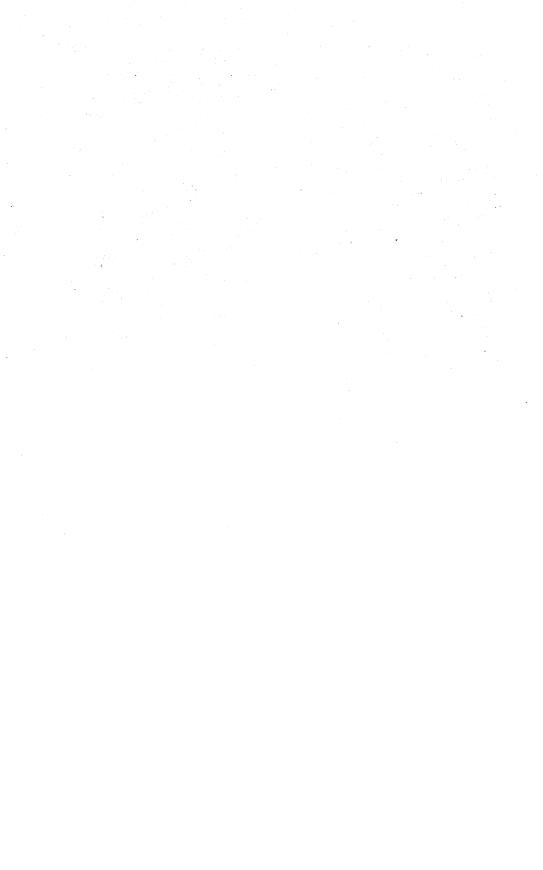
13 Industrial Minerals (London). Llansa's Feldspar Facili-

¹⁴U.S. Bureau of Mines. A Continuous Dielectric Separator for Mineral Sensitivation. Technol. News, No. 125,

tor for Mineral Beneficiation. Technol. News, No. 125, December 1981, 2 pp.

18Malghan, S. G. Effect of Process Variables in Feldspar Flotation Using Non-Hydrofluoric Acid System. Min. Eng., v. 33, No. 11, November 1981, pp. 1616-1623.

18 Industrial Minerals (London). The Industrial Minerals of Canada (a supplement to August 1981 issue of "Industrial Minerals"), pp. 22-23, 64-65, 67-68.


17 Vitunski, S. Indusmin Nepheline Syenite Plant World's Largest. The Northern Miner, v. 67, No. 24, Aug. 20, 1981, pp. B13-B14, B17.

Page 45 of work cited in footnote 7.

¹Physical scientist, Division of Industrial Minerals.

²Ceramic Industry. Newsletter. V. 117, No. 4, October 1981, p. 9. ³Endicott, W. A. Editorial—Let's Back Glass Containers.

¹ ¹Page ³5 of work cited in footnote 7. ¹Page ³7 of work cited in footnote 7. ²OAsh, D. R. Nepheline Syenite. Min. Eng., v. 33, No. 5, May 1981, pp. 582-583.

Ferroalloys

By Raymond E. Brown¹

The domestic and world ferroalloy industries were plagued by lower production in 1981 because of continued weak demand for their products. The iron and steel industry, the major consumer of ferroalloys, had lower production in 1981 than in 1980 in most industrialized countries. The shift of ferroalloy production from industrialized countries to countries that have both developing ferroalloy industries and indigenous ores, or low-cost electrical power, continued to be the trend.

Legislation and Government Programs.—The revised National Defense Stockpile goals set for ferroalloys in 1980 by the Federal Emergency Management Agency and the inventories held at yearend were unchanged in 1981.

Table 1.—Government inventory of ferroalloys, December 31, 1981

(Thousand short tons)

Alloy	Stock- pile grade	Non- stock- pile grade	Total
Ferrochromium:	dian.	13.4	
High-carbon	402	1	403
T am aambam	300	19	319
Ferrochromium-silicon	57	1	58
Ferrocolumbium	100		
(contained columbium)	.3	.2	.5
Ferromanganese:		3000	1.5
High-carbon	600		600
Medium-carbon	29		29
Ferrotungsten			
(contained tungsten)	.4	.6	1
Silicomanganese	24		24

Table 2.—Ferroalloys produced and shipped from furnaces in the United States1

		19	980		1981			
	Produ	uction	Ship	ments	Prod	uction	Ship	ments
	Gross weight (short tons)	Alloy element con- tained (average percent)	Gross weight (short tons)	Value (thou- sands)	Gross weight (short tons)	Alloy element con- tained (average percent)	Gross weight (short tons)	Value (thou- sands)
Ferromanganese ² Silicomanganese Ferrosilicon ³	189,472 188,317 686,377	80 66 61	194,347 161,568 681,420	\$99,626 70,329 442,567	192,690 173,263 680,484	76 66 60	188,255 172,542 635,201	\$104,072 81,849 397,482
Chromium alloys: Ferrochromium Other alloys ⁴	184,408 54,207	63 50	185,480 51,987	125,101 54,831	164,933 62,319	60 46	148,425 58,852	100,961 65,818
Total Ferrocolumbium Ferrophosphorus Other ^b	238,615. 1,558 116,482 126,224	60 65 24 XX	237,467 1,266 85,371 124,675	179,932 34,491 13,060 r _{289,896}	227,252 887 80,547 137,649	56 64 22 XX	207,277 807 52,817 127,680	166,779 12,608 9,382 270,295
Grand total	r _{1,547,045}	XX	r _{1,486,114}	r _{1,129,901}	1,492,772	XX	1,384,579	1,042,467

Revised. XX Not applicable.

¹Does not include alloys consumed in the making of other ferroalloys.

²Includes fused-salt electrolytic low- and medium-carbon ferromanganese (massive manganese).

Includes silicon metal and miscellaneous silicon alloys.

Includes ferrochromium-silicon, chromium briquets, exothermic chromium additives, other miscellaneous chromium alloys, and chromium metal.

Sincludes ferroaluminum, ferroboron and other complex boron additive alloys, ferromolybdenum, ferronickel, ferrotitanium, ferrotungsten, ferrovanadium, ferroziroonium, silvery iron, and other miscellaneous alloys.

DOMESTIC PRODUCTION

Total domestic ferroalloy production in 1981 was 1.5 million tons, slightly down from the low levels of 1980. This is the lowest production figure recorded over the past 20 years. Weak demand and especially strong competition from imports were major factors that contributed to the decline in production. During the peak years, 1965 through 1970, the U.S. ferroalloy industry controlled approximately 90% of the domestic market, and total production ranged from 2.6 to 2.8 million tons. Since that time. domestic production has declined, particularly for manganese and chromium ferroalloys, and in 1981 the domestic producers' market share dropped to 49%. A similar trend appears to be surfacing for ferrosilicon and silicon metal, for which the United States has domestic ores.

Because of weak demand for their products and intensified import pressure, many producers were forced to either cut back production or shut down their furnaces, at least temporarily. For example, Macalloy Inc. halted ferrochromium production in November at its Charleston, S.C., facility, which has two furnaces with a combined capacity of 80 megawatts; SKW Alloys, Inc., temporarily shut down its 40-megawatt ferrosilicon furnace in October at its Calvert City, Ky., plant. In December, Autlan Manganese Corp. shut down its only furnace at Mobile, Ala., and laid off all its employees. The furnace was rated at 27 megawatts and could produce either ferromanganese or silicomanganese. In December, the Foote Mineral Co. decreased production of silvery pig iron at its plant in Keokuk, Iowa, and ferrosilicon at its Graham, W. Va., plant.

Union Carbide Corp. permanently closed and put up for sale its Portland, Oreg., plant because of outdated equipment and rising power costs. The plant had two ferromanganese furnaces with a combined rating of 12 megawatts and one silicomanganese furnace rated at 8 megawatts. The Hanna Mining Co., the only domestic integrated mine-to-metal producer of nickel, appeared unable to sustain operations at its ferro-

nickel plant in Riddle, Oreg., owing to power rate increases proposed by the Bonneville Power Administration, which could triple the cost of power for the energy-intensive ferronickel process. In general, the overall ferroalloy industry operated at only about 50% of its rated capacity.

On July 1, Union Carbide Corp. completed its sale of five ferroalloy plants, which included three in the United States and two in Norway, to Norwegian groups headed by Elkem AS. Also, Elkem AS has an option to acquire two of Union Carbide's ferroalloy plants in Quebec, Canada, before 1988. Elkem Metals Co., a subsidiary of Elkem AS. will coordinate the operation of the three U.S. plants, located in Alloy, W. Va., and in Ashtabula and Marietta, Ohio, from its home office in Pittsburgh, Pa. The products produced at the three U.S. plants include ferroalloys of chromium, manganese, and silicon, and their respective metals. Union Carbide retained its plant at Niagara Falls. N.Y., and continued to produce ferrovanadium and ferrotungsten. Consolidated Gold Fields Ltd., an international and diversified precious and nonferrous metals mining firm based in London, attempted to buy a controlling interest in Newmont Mining Corp., the parent of Foote Mineral Co. After 6 months of negotiations between the two companies, an agreement was reached that would limit Gold Fields' interest to 26% of Newmont's stock through the end of 1984. In another proposed merger, the Fesil Group, representing four Norwegian ferroalloy producers, signed a letter of intent in June to acquire Ohio Ferro-Alloys Corp.'s three plants in Philo and Powhatan Point, Ohio, and Montgomery, Ala., which produce ferrosilicon and silicon metal. Toward yearend, the Fesil Group withdrew its offer to purchase the plants and cited unfavorable economics in ferroalloys as the reason.

The Ferroalloys Association reported that its member companies consumed 7.5 billion kilowatt-hours of electricity in 1981, down from 8.0 billion in 1980.

FERROALLOYS

Table 3.—Producers of ferroalloys in the United States in 1981

Producer	Plant location	Products ¹	Type of furnace
FERROALLOYS (EXCEPT FERROPHOSPHORUS)			e de la companya de l
Alabama Alloy Co., Inc	Bessemer, AL	FeSi	Electric.
Aluminum Co. of America,	The second of th		
Aluminum Co. of America, Northwest Alloys, Inc	Addy, WA Mobile, AL	Si, FeSi	Do. Do.
Nutlan Manganese Corp	Mobile, AL	FeMn, SiMn FeMo	Metallothermic.
MAX Inc., Climax Molybdenum Co. Div	Langeloth, PA Revere, PA	FeCb	Do.
abot Corp., KBI Div.,	nevere, FA	reob	20.
Penn Rare Metal Div.			
hromasco Ltd.,			
Chromium Mining & Smelting Corp. Div	Woodstock, TN	FeCr, FeCrSi	Electric.
ow Corning Corp	Springfield, OR	FeSi, Si FeCr, FeMn, FeSi, Si,	Do. Do.
lkem AS, Elkem Metals Co	Alloy, WV Ashtabula, OH }	SiMn, other. 2	D 0.
ikem AS, Eikem Metais Co	Marietta, OH	Divin, other.	
ngelhard Minerals & Chemicals Corp.,	(Mariena, Ori)		
Minerals and Chemicals Div	Strasburg, VA	FeV	Metallothermic.
	Cambridge, OH } Graham, WV } Keokuk, IA }	FeSi, FeV, silvery	
oote Mineral Co., Ferroalloys Div	Graham, WV }	pig iron, other.2	Electric.
	(Keokuk, lA)		
Ianna Mining Co., The:	D:441° OD	FeNi, FeSi	Do.
Hanna Nickel Smelting Co Silicon Div	Riddle, OR Wenatchee, WA	Si, FeSi	Do.
nterlake, Inc., Globe Metallurgical Div	J Beverly, OH	FeCr. Si.	Do.
interiance, inc., Globe interiaring four 21.	Selma, AL	FeSi, SiMn.	
nternational Minerals & Chemical Corp.,	Bridgeport, AL	FeSi	Do. Do.
Industry Group, TAC Alloys Div.	Kimball, TN Charleston, SC	FeCr, FeCrSi	Do.
facalloy Inc fetallurg, Inc., Shieldalloy Corp	Newfield, NJ	FeAl, FeB, FeCb, FeTi,	Metallothermic.
Metallurg, Inc., Sineldanoy Corp	Memicia, No ====	FeV, other.2	
	(Montgomery, AL)		
Ohio Ferro-Alloys Corp	Philo, OH	FeSi, Si	Electric.
	Powhatan Point, OH	PoMo	Metallothermic.
Pennzoil Co., Duval Corp	Sahuarita, AZ Newton Falls, OH _)	FeMoFeAl, FeB, FeCb,	Metaliotherine.
Pesses Co., The	Solon OH	FeMo, FeNi, FeTi,	Electric and
esses co., The	Solon, OH Pulaski, PA	FeW, other.2	metallothermic.
	Fort Worth, TX		
Reactive Metals and Alloys Corp	West Pittsburg, PA	FeTi, other2	Electric.
Reading Alloys, Inc	Robesonia, PA	FeCb, FeV	Metallothermic. Electric.
Reynolds Metals Co Satra Corp., Satralloy, Inc. Div	Sheffield, AL Steubenville, OH	Si FeCr	Do.
SEDEMA S.A., Chemetals Corp	Kingwood, WV	FeMn	Fused-salt
EDEMA S.A., Chemetals Corp	1111g.1100u, 11 1 = = =		electrolytic.
SKW Alloys, Inc	Calvert City, KY [FeCr, FeCrSi, FeMn,	Electric.
	Calvert City, KY Niagara Falls, NY _	FeSi, SiMn.	
South African Manganese Amcor, Ltd.	Rockwood, TN	FeMn, FeSi	Do.
Roane Ltd 'eledyne, Inc., Teledyne Wah Chang,	Rockwood, IN	remi, resi	ъ.
Albany Div	Albany, OR	FeCb	Metallothermic.
Mibally Diverses	(Alloy, WV)	range and arrest than a	. <u></u>
	Ashtabula, OH	FeB, FeCr, FeMn, FeSi, FeV, FeW, Si, SiMn,	Electric.
Jnion Carbide Corp., Metals Div	Marietta, OH }	other.2	
	Niagara Falls, NY	otner.	
Jnion Oil Co. of California, Molycorp, Inc	(Portland, OR / Washington, PA	FeB, FeMo	Electric and
Jinion On Co. of Camorina, Morycorp, Inc	washington, i'i ==	102,10110	metallothermic
FERROPHOSPHORUS			4.
Hostma Phas Corn	Pierce, FL	FeP	Electric.
MC Corp., Industrial Chemical Div	Pocatello, ID	do	Do.
Monsanto Co., Monsanto Industriai	Pocatello, ID	do	Do.
Chemicals Co.	Soda Springs, ID	do	Do.
Occidental Petroleum Corp.,			
Hooker Chemical Co.,	Columbia TN	do	Do.
Industrial Chemicals Group Stauffer Chemical Co.,	Columbia, TN	uv	بنب.
Industrial Chemical Div	Silver Bow, MT	do	Do.
	Tarpon Springs, FL		

¹FeAl, ferroaluminum; FeB, ferroboron; FeCb, ferrocolumbium; FeCr, ferrochromium; FeCrSi, ferrochromium-silicon; FeMn, ferromanganese; FeMo, ferromolybdenum; FeNi, ferronickel; FeP, ferrophosphorus; FeSi, ferrosilicon; FeTi, ferrotitanium; FeV, ferrovanadium; FeW, ferrotungsten; Si, silicon metal; SiMn, siliconanganese.

²Includes specialty silicon alloys, zirconium alloys, and miscellaneous ferroalloys.

Table 4.—Consumption of ferroalloys as additives in the United States in 1981, by end use1

(Short tons of allovs)

End use	FeMn	SiMn	FeSi	FeTi	FeP	FeB
Steel:						
Carbon	627,601	95.034	2115.157	603	12.017	1.194
Stainless and heat-resisting	15,075	4.707	² 46,847	1,420	(3)	21
Other alloy	167,935	41,846	² 67,112	870	1,895	432
Tool	586	66	² 2,373	(a)	1,000	102
Unspecified	879	1,019	46,300	ì9	3	
Total	812,076	142,672	277,789	2,912	13,915	1.647
Cast irons	16,698	9,450	225,119	62	4,035	w
Superallovs	421	W	256	w	•	31
Alloys (excluding alloy steels and superalloys)	13,517	2,725	66,024	161	84	88
Miscellaneous and unspecified	2,098	894	77,979	70	2,011	24
Total consumption Percent of 1980	844,810 104	155,741 100	647,167 99	3,205 105	20,045 118	1,790 122

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and unspecified."

Withheld to avoid disclosing company proprietary data; included with "Miscenianeous and unspective."

1 FeMn, ferromanganese including spiegeleisen and manganese metal; SiMn, silicomanganese; FeSi, ferrosilicon including silicon metal, silvery pig iron, and inoculant alloys; FeTi, ferrotitanium; FeP, ferrophosphorus including other phosphorus materials; FeB, ferroboron including other boron materials.

2 Part included with "Unspecified."

3 Included with "Unspecified."

Table 5.—Consumption of ferroalloys as alloying elements in the United States in 1981, by end use1

(Short tons of contained elements)

End use	FeCr	FeMo	FeW	FeV	FeCb	FeNi
Steel:						
Carbon	4.992	64		1.278	1,161	
Stainless and heat-resisting	172,823	398	25	35	298	21,179
Other alloy	54,214	1,408	33	3,955	² 1,194	3.381
Tool	2,711	200	130	584	(3)	3,361
Unspecified	(4)	(4)			1	
Total ⁵	234,740	2.070	188	5,852	2,654	24,560
Cast irons	6,423	1,128	W	42	2,004	300
Superallovs	6,931	1118	ẅ	20	450	739
Alloys (excluding alloy steels and superalloys)	3,551	275	5	511	15	681
Miscellaneous and unspecified	1,703	50	16	15	3	10
Total consumption	253,348	3,641	209	5,940	9 100	00.000
Percent of 1980	100	92	205 85	5,940 111	3,122 96	26,290 88
	100	32	00	111	90	00

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and unspecified."

w winnesd to avoid discussing company proprietary data, included with reasonable and disposition.

1FeCr, ferrorchromium including other chromium ferroalloys and chromium metal; FeMo, ferromodybdenum including calcium molybdate; FeW, ferrotungsten including melting base self-reducing tungsten; FeV, ferrovanadium including other vanadium-carbon-iron ferroalloys; FeCb, ferrocolumbium including nickel columbium; FeNi, ferronickel.

Part included with "Other alloy."

Included with "Miscellaneous and unspecified."

⁵With minor exceptions as denoted by footnote 4.

CONSUMPTION AND USES

Total ferroalloy consumption in 1981 was little changed from the low levels of 1980. Consumption increased during the first half of the year, but declined in the second half as the economy entered a downturn. Combined consumption for the bulk ferroalloys of manganese, chromium, and silicon for the production of steel increased 4%. For the second consecutive year, reported ferrosilicon consumption for cast irons was lower than that for total steel because of reduced demand by the automotive industry for iron castings. The consumption patterns for ferroalloys closely paralleled the overall production patterns for iron and steel.

Consumption was down for ferronickel,

ferromolybdenum, and ferrotungsten by a greater percentage than that for other ferroalloys. This can be attributed primarily to decreased production of tool steels, molybdenum-bearing stainless steels, and superalloys for the depressed commercial aircraft industry. A significant increase in the production of molybdenum-bearing drill pipe for the oil and gas industry was not enough to offset the reduction in consumption of ferromolybdenum for other uses. Demand for ferroalloys of vanadium, boron, and phosphorus to make alloy and carbon steels was up in 1981, and accounts for the relatively higher consumption percentage for each of these ferroalloys.

Table 6.—Stocks of ferroalloys held by producers and consumers in the United States at yearend

(Short tons)

	Prod	ucer	Cons	umer	Total		
	1980	1981	1980	1981	1980	1981	
	(gross	(gross	(gross	(gross	(gross	(gross	
	weight)	weight)	weight)	weight)	weight)	weight)	
Manganese ferroalloys ¹ Silicon alloys ² Ferrochromium ³ Ferroboron ⁴ Ferrophosphorus ⁵ Ferrotitanium	72,654 120,795 43,920 W 104,852 W	95,909 167,026 60,002 W 133,296	175,303 43,015 60,203 305 2,631 659	172,023 43,587 56,068 317 2,887 655	247,957 163,810 104,123 305 107,483 659	267,932 210,613 116,070 317 136,183 655	
Total	342,221	456,233	282,116	275,537	624,337	731,770	
	1980	1981	1980	1981	1980	1981	
	(con-	(con-	(con-	(con-	(con-	(con-	
	tained	tained	tained	tained	tained	tained	
	element)	element)	element)	element)	element)	element)	
Ferrocolumbium ⁶ Ferromolybdenum ⁷ Ferronickel Ferrotungsten ⁸ Ferrovanadium ⁹	W	W	754	W	982	934	
	1,249	1,010	754	457	2,003	1,467	
	W	W	2,046	2,257	^r 2,046	2,257	
	W	W	54	48	54	48	
	r746	1,683	770	548	^r 1,516	2,231	
Total	r _{1,995}	2,693	r3,624	3,310	^r 6,601	6,987	

Revised. W Withheld to avoid disclosing company proprietary data.

Includes ferromanganese, silicomanganese, and manganese metal.

PRICES

Price increases for most ferroalloys produced domestically were limited by weak demand and strong competition from foreign imports, despite rising production costs. Listed producer prices for ferromanganese, most low-carbon ferrochromium grades, ferrochromium-silicon, and regulargrade ferrocolumbium did not change during the year, but high-carbon ferrochromium prices advanced 7% in July. Ferrosilicon, magnesium ferrosilicon, and silicon metal prices were raised in both January and October, culminating in a total increase of between 13% and 17% for each alloy or metal specification. The price of silicomanganese advanced from \$0.245 to \$0.265 per pound of alloy in June, the first increase since May 1979. In spite of weak demand, ferrovanadium producers increased prices 10% in January to \$8.50 per pound of vanadium. Depressed prices for ferromolybdenum, ferronickel, and high-purity ferrocolumbium reflected weak demand and oversupply conditions. For ferromolybdenum, this is a reversal of the sharp escalation of prices that resulted from the shortage of molybdenum in both 1978 and 1979. Posted prices for imported ferroalloys were generally 9% to 27% lower than those of domestically produced ferroalloys.

A11	End of year price				
Alloy	1980	1981			
Charge chromium (66% to 70%)	\$0.485	\$0.52			
Low-carbon ferrochromium, 0.02% maximum carbon (Simplex)	.95	1.00			
Standard 78% ferromanganese, per long ton of alloy	490.00	490.00 9.40			
Ferromolybdenum, lump Ferronickel	11.52 3.40	3.16			
Ferrosilicon, 50% Ferrosilicon, 75%	.42 .4625	.4925 .5325			

¹Per pound contained, except as noted otherwise. If range of prices was quoted, the lowest price is shown.

²Includes ferrosilicon, miscellaneous silicon alloys, and silicon metal.

³Includes other chromium alloys and chromium metal.

⁴Consumer totals include other boron materials. ⁵Consumer totals include other phosphorus materials.

⁶Consumer totals include nickel columbium. ⁷Consumer totals include calcium molybdate.

^{*}Consumer totals include melting base self-reducing tungsten.

⁹Includes other vanadium-iron-carbon ferroalloys.

FOREIGN TRADE

The trade deficit for ferroalloys rose sharply from \$493 million in 1980 to \$702 million in 1981. This deficit, the largest ever recorded, has climbed steadily from \$7 million in 1970. In contrast, deficits ranged from \$4 million to \$54 million during the 1960 decade.

The quantity of ferroalloy exports on a gross weight basis decreased 51% to 0.06 million tons in 1981, about the same low level that it was 20 years ago. Exports over the past 2 decades have remained relatively constant, fluctuating between 0.03 and 0.2 millions tons. The value and quantity of exports in 1981 were 7% and 4% those of imports, respectively.

Total imports of ferroalloys and ferroalloy metals increased 32% to 1.5 million tons, a record high quantity. The most marked change occurred in ferrosilicon imports, which more than doubled. Ferroallov imports were equal to two-thirds of reported domestic consumption. Although demand for ferroalloys was greater in the United States than in most other steelmaking countries, domestic producers found it difficult to compete with the low-priced foreign imports.

Ferroalloys and ferroalloy metals imported into the United States in 1981 had the following breakdown by region: Africa 43%, Europe 30%, and the Western Hemisphere 21%. The Republic of South Africa and Zimbabwe collectively supplied 76% of the chromium ferroalloy imports, down from 90% in 1980. Yugoslavia and Brazil picked up a larger share of the U.S. market and together shipped 16% of the chromium ferroalloys. Major sources for imported manganese ferroalloys were the Republic of

South Africa with 37% and France with 24%. The Western Hemisphere furnished 20% of the manganese ferroallov imports with Canada, Brazil, and Mexico as the leading suppliers. Leading suppliers of ferrosilicon were Brazil (29%), Norway (20%). Venezuela (15%), and Canada (13%).

On March 11, the U.S. Court of International Trade ruled that preferential railroad rates for exported cargos in the Republic of South Africa constituted a bounty or grant. This ended a 4-year court battle between domestic and South African highferrochromium producers. Court placed a provisional 4% countervailing duty on South African high-carbon ferrochromium imports. The duty was lifted in June when the Republic of South Africa instituted a uniform rail rate system. In May, the International Trade Commission (ITC) was petitioned by domestic highcarbon ferrochromium producers to extend for 3 years the floor price and penalty duty on imported high-carbon ferrochromium, which would expire November 15. The additional charge was 4 cents per pound of contained chromium on all high-carbon ferrochromium entering the United States below a floor price of 38 cents per pound of contained chromium. After considering the recommendations of the ITC, the President extended the import trade relief for 1 year. On August 18, in response to a petition submitted by The Ferroalloys Association, the Office of Industrial Mobilization, U.S. Department of Commerce, launched an investigation under the authority of section 232 of the Trade Expansion Act of 1962 as to whether imports of chromium, manganese, and silicon ferroalloys constituted a threat to national security.

Table 7.-U.S. exports of ferroalloys

	19'	79	198	30	1981		
Alloy	Quantity	Value	Quantity	Value	Quantity	Value	
	(short	(thou-	(short	(thou-	(short	(thou-	
	tons)	sands)	tons)	sands)	tons)	sands)	
Ferrocerium and alloys Ferrochromium Ferromanganese Silicomanganese Ferromolybdenum Ferrophosphorus Ferrosilicon Ferrovanadium Ferroalloys, n.e.c	42	\$273	17	\$196	11	\$117	
	14,762	14,558	31,705	22,233	14,098	10,361	
	25,344	19,252	11,686	7,657	14,925	12,477	
	5,243	2,627	6,489	3,468	3,941	2,172	
	840	10,029	880	17,104	228	2,984	
	37,292	3,678	44,692	6,778	7,463	2,031	
	22,357	14,740	27,488	18,572	15,768	12,136	
	879	7,881	802	6,995	434	4,397	
	6,441	12,616	4,710	10,130	6,358	8,439	
Total ¹	113,200	85,655	128,470	93,133	63,226	55,114	

¹Data may not add to totals shown because of independent rounding.

Table 8.—U.S. imports for consumption of ferroalloys and ferroalloy metals

,		1980			1981	
Alloy	Gross weight (short tons)	Content (short tons)	Value (thou- sands)	Gross weight (short tons)	Content (short tons)	Value (thou- sands)
Manganese alloys:						
Ferromanganese containing less than 1% carbon	3,957	3,483	\$3,455	3,207	2,788	\$3,065
Ferromanganese containing over 1% and less than 4% carbon	38,409	31,121	23,747	31,904	25,749	18,496
Ferromanganese containing 4% or more	563,336	438,795	184,163	636,067	493,289	205,057
carbon Ferrosilicon-manganese (Mn content)	74,975	49,158	29,291	129,005	84,900	49,754
Spiegeleisen	2,850	(¹)	177	103	(¹)	67
Total manganese alloys	² 683,528	522,557	240,833	800,286	606,726	276,439
Ferrosilicon:						
8%-30% silicon	1,187	184	126	2,783	393	177
30%-60% silicon, over 2% magnesium	5,523 14,108	2,706 6,971	5,293 7,621	$4,360 \\ 14,242$	2,011 7,451	3,671 9,522
30%-60% silicon, n.e.c 60%-80% silicon, over 3% calcium	8,373	6,020	6.217	16,217	11,089	11,343
60%-80% silicon, n.e.c	41,729	30,993	23,271	116,778	87,963	54,918
80%-90% silicon	97	80	55	1,153	980	568
Over 90% silicon	135	124	56	115	111	118
Total ferrosilicon	71,152	47,078	42,639	155,648	109,998	80,317
Chromium alloys:						
Ferrochromium containing 3% or more carbon	275,227	158,806	128,162	387,637	219,961	173,529
Ferrochromium containing less than 3% carbon	21.993	15,293	25,328	40,602	27,453	40,082
Ferrosilicon-chromium	5,082	1,967	2,313	11,435	4,402	5,224
Total chromium alloys	302,302	176,066	155,803	439,674	251,816	218,835
Ferronickel	51,742	16,667	104,156	69,853	20,247	119,321
Other ferroalloys:						
Ferrocerium and other cerium alloys	72	(1)	902	92	(1) 459	1,249 6,353
Ferromolybdenum	23 4	15 (1)	243 10	587 61	459 (1)	0,555
Ferrophosphorus Ferrotitanium and ferrosilicon titanium	623	(1)	1.679	615	(1)	1.582
Ferrotungsten and ferrosilicon tungsten	272	223	4,039	198	162	3,020
Ferrovanadium	327	263	3,477	1,236	984	13,288
Ferrozirconium	981	(¹)	1,222	877	(1)	1,223
Ferroalloys, n.e.c. ³	4,826	(1)	30,942	5,816	(1)	34,392
Total other ferroalloys	7,128	XX	² 42,513	9,482	XX	61,135
Total ferroalloys	² 1,115,854	XX	585,944	1,474,943	XX	756,047
Metals:						,
Manganese	7,915	(1)	8,032	8,343	(1) (1)	8,419
Silicon (96%-99% silicon)	15,887	(1)	15,607	17,776		18,485
Silicon (99%-99.7% silicon)	5,370 4,075	5,322 (1)	5,760 28,367	11,026 3,539	10,926 (1)	12,188 24,626
Total ferroalloy metals	33,247	XX	57,766	40,684	XX	63,718

XX Not applicable.

¹Not recorded.

WORLD REVIEW

World ferroalloy production and consumption was again lower than that of the preceding year because of reduced steel production. Ferroalloy production increased in only a few countries, including India and

Zimbabwe, which have active ferroalloy industries and domestic ore supplies. However, production in major producing countries such as the United States, France, Japan, and the Republic of South Africa

²Data do not add to total shown because of independent rounding.

³Principally ferrocolumbium.

was lower. Although world production was lower, new capacity was being added. Construction of the new capacity near the ore

supply, not the consumption site, continued to be the trend.

Table 9.—Ferroalloys: World production, by country, furnace type, and alloy type¹
(Thousand short tons)

Country, ² furnace type, ³ and alloy type ⁴	1977	1978	1979	1980 ^p	1981 ^e
Albania: Electric furnace, ferrochromium ^e			NA	16	28
Argentina: Electric furnace:					1
FerromanganeseSilicomanganese	- ^r 40	28	41	r e ₃₉	38
Ferrosilicon		11	18	r e ₁₅	15
Other	- 17 - 1	11 1	17 3	r e2	14
Total	- ^r 65	51	79	73	69
Australia: Electric furnace: ⁵					
Ferromanganese	_ 78	105	, 95	95	94
Silicomanganese			22	21	21 20
Ferrosilicon	21	21	21	21	20
Total	125	126	138	137	135
Austria: Electric furnace, undistributed Belgium: Electric furnace, ferromanganese ⁶	- 8 - 61	96	10 99	9 94	9 99
Brazil: Electric furnace: Ferromanganese	142	130	147	155	7141
Silicomanganese	- 142 - 83	117	141	155 148	⁷ 135
Ferrosilicon	- 66	80	83	120	⁷ 136
Silicon metal	- 5	6	6	14	⁷ 15
Ferrochromium	- 73	69	93	103	7129
Ferrochromium-silicon	- 5	5	8	9	⁷ 11
Ferronickel	- 12	12	13	12	712
Other	23	32	42	47	⁷ 42
Total	409	451	533	608	⁷ 621
Bulgaria: Electric furnace:					
Ferromanganese ^{e 8}	. 33	31	31	31	31
Ferrosilicon	21	19	18	18	18
Other ^e	. 1	1	1	1	ĭ
Total	. 55	51	50	e ₅₀	50
		91	30	30	
Canada: Electric furnace:					
Ferromanganese ^{e 8} Ferrosilicon		77	r45	r ₉₅	120
Silicon metal	. 126 . 25	143	105	153	⁷ 121
Other ^{e 9}		31 25	$^{29}_{r_{13}}$	43 r ₂₈	⁷ 31 38
Total	e230	^e 276	192	319	⁷ 310
Chile: Electric furnace:					
Ferromanganese	-	c	c	e ₆	•
Silicomanganese	. 5 (10)	(10)	6 (10)	e/10\	6 (10)
Ferrosilicon	. 3	`ź	` 6	r e6	5
Other	ĭ	(¹⁰)	ĭ	e ₁	1
Total	. 9	8	13	r e ₁₃	12
China: ^e					
Furnace type unspecified:					
Ferromanganese ⁸	255	340	375	375	370
Ferrosilicon	120	165	180	^r 185	180
Ferrosilicon Silicon metal Ferrochromium ¹¹	. 5	9	10	15	15
Ferrochromium ¹¹ Other ⁹	80 40	100 46	100 55	100 55	100 55
TotalColombia: Electric furnace, ferrosilicon ¹²	500 r ₁	660 1	720 1	^r 730 1	720 1
Czechoslovakia: Electric furnace Ferromanganese ^{e 8}				.	
Ferrosilicon ^e	110	110	110	r ₁₁₀	108
Ferrosilicon ^e Silicon metal ^e	39	39	36	r35	34
Ferrochromium ^e	5 33	6 33	6	6	6
Other ^{e 9}	33 11	33 13	31 10	30 r ₁₀	30 9
Total ¹³	198	201	193	191	187
	100	201	130	191	101
See footnotes at end of table.					

Table 9.—Ferroalloys: World production, by country, furnace type, and alloy type $^{\scriptscriptstyle 1}$ —Continued

Country, ² furnace type, ³ and alloy type ⁴	1977	1978	1979	1980 ^p	1981 ^e
Daminiaan Panuklia Flactuis franços formaniskal	r ₇₃	41	73	47	⁷ 55
Dominican Republic: Electric furnace, ferronickelEgypt: Electric furnace, ferrosilicon	13 5	41 e ₅	10	41	
Finland: Electric furnace, ferrochromium	37	49	54	58	58
France:					
Blast furnace:	10	7	10	. 11	7
Spiegeleisen Ferromanganese	10 395	430	10 485	11 518	337
Electric furnace:					7
Silicomanganese ¹⁴ Ferrosilicon	23 266	21 219	14 300	23 271	710 7221
Silicon metal	47	46	61	66	66
Ferrochromium ¹¹	112	102	105	95	713 7126
Other ¹⁵	139	143	157	137	
Total	r992	968	1,132	1,121	⁷ 780
German Democratic Republic:					
Blast furnace, spiegeleisen		4			
Electric furnace: Ferromanganese ^{e 8}	98	88	88	86	86
Ferromanganese ^{e 8} Ferrosilicon ^e Silicon metal ^e	22	34	33	32	32
Silicon metal ^e	3	4	4	4	4
Ferrochromium	26	28 23	23 22	22	22 21
Other ^{e 9}	21	23	22	21	21
Total ¹³	170	181	170	165	165
Germany, Federal Republic of: Blast furnace:					
Blast furnace:	193	231	257	220	7236
Ferromanganese Ferrosilicon	193 96	231 86	251 87	71	⁷ 55
Electric furnace:	•	,00		••	•
Ferromanganese ^{e 8}	55	17	33	28	21
Ferrosilicon ^e	55 61	33 55	55 66	55 66	46 55
Ferrochromium ^e Other ^{e 9}	60	48	56	55	55 47
Total Greece: Electric furnace, ferronickel	520 39	470 61	554 60	495 56	460 56
Hungary: Electric furnace:					
Ferromanganese ⁸ Ferrosilicon Silicon metal ^e	3	3	5	3	3
Ferrosilicon	8	. 8	5 9	11	12
Silicon metal	2	2	2	2	2
Total ¹³	13	13	16	16	_17
Iceland: Electric furnace, ferrosilicon			17	28	728
India: Electric furnace:	010	0.40	000	150	⁷ 230
FerromanganeseSilicomanganese	213 ¹ 11	243 3	208 6	179 5	710
Ferrosilicon	49	58	56	47	⁷ 66
Silicon metal	1	$\mathbf{r_3}$	3	3	3
Ferrochromium	20	24	24	18	734
Ferrochromium-siliconOther	.5 r ₁	4 F1	4	4 1	7 ₅
Out					
Total	^r 300 24	336 22	302 20	257 20	349 20
				20	
Italy: Blast furnace:					
Blast furnace: Spiegeleisen	7	3	3	6	71
Ferromanganese	64	68	74	67	⁷ 65
Electric furnace:					
Ferromanganese	19	31	24	24	24
Silicomanganese Ferrosilicon	44 84	47 75	60 89	50 79	⁷ 60 ⁷ 61
Silicon metal	18	16	e ₁₇	e17	17
Ferrochromium	44	41	47	45	711
Ferrochromium-silicon Other ¹⁶		(10)			\bar{i}_{17}
	9	8	12	16	
Total ¹⁶	289	289	326	304	256

Table 9.—Ferroalloys: World production, by country, furnace type, and alloy type $^{\scriptscriptstyle 1}$ —Continued

	1977	1978	1979	1980 ^p	1981 ^e
Japan: Electric furnace:					
Ferromanganese	_ 581	502	665	627	7626
Silicomanganese	368	334	330	342	7312
Ferrosilicon		298	352	335	⁷ 259
Silicon metal		16	17	17	⁷ 13
Ferrochromium		302	403	444	⁷ 337
Ferronickel		10	14	23	⁷ 12
Other		219 22	335 24	305	⁷ 269 ⁷ 16
				26	
Total	2,034	1,703	2,140	2,119	⁷ 1,844
Korea, North: Furnace type unspecified:				1 1	
Ferromanganese ^{e 8} Ferrosilicon ^e	62	72	72	77	77
Other ^{e 9}	_ 25 _ 13	33	33	33	33
Other	13	15	15	22	22
Total ^e	100	120	120	132	132
Korea, Republic of: Electric furnace:	e 1740	e 1752	17=0		
Ferromanganese	- ¹⁷ 30	1734	17 ₅₈	60 33	⁷ 71 ⁷ 39
Other ¹⁷ 18	_ e1	e ₁	23	27	⁷ 31
Total	_ 71	87	123	120	⁷ 141
Mexico: Electric furnace:					
Ferromanganese	_ 110	118	136	138	138
Silicomanganese	_ 30	37	34	34	33
Ferrosilicon	_ 25	27	27	30	28
FerrochromiumOther	_ 3	5 1	$\frac{5}{1}$	$-\frac{1}{2}$	$-\frac{1}{2}$
Total New Caledonia: Electric furnace, ferronickel	_ r e 168	r e86	203 136	204 146	201 125
Norway: Electric furnace:				100	
Ferromanganese	_ 269	301	372	326	7247
Silicomanganese	_ 140	147	203	185	7218
Ferrosilicon	246	293	372	353	7302
Silicon metal	56	70	77	94	⁷ 100
Ferrochromium	_ 25	17	13	12	⁷ 13
Ferrochromium-silicon	- (¹⁰)	1	1	(10)	$\overline{\tau}_1$
Other	34	33	33	22	⁷ 13
Total ¹³	770	862	1,071	992	⁷ 894
Peru: Electric furnace:					
Ferromanganese	'	e 1	e 1	e ₁	1
Ferrosilicon	_ (10)	\mathbf{e}_{1}	e_{1}^{-}	. e ₁	ĩ
Total	(10)				
Philippines: Electric furnace, ferrosilicon ^e 19	_ (10)	e ₂ 15	e ₂ 20	e ₂	2 22
Poland:					
Blast furnace:					
Spiegeleisen	_ 12	8	9	11	8
rerromanganese	_ 136	131	143	134	131
Electric furnace:					
Ferromanganese ^{e 8}	_ 55	55	^r 57	^r 57	56
Ferrosilicon e Silicon metal e Ferrochromium e	_ 61	58	r ₆₃	^r 61	61
Ferrochromium ^e	_ 12 _ 55	12 55	12 r ₅₇	11 57	11
Other ^{e 9}	_ 55 _ 21	18	r ₁₇	r ₁₄	56 14
Total ¹³	_ 352				
		337	358	345	337
ortugal Electric Iurnace:	_ 61	86	83	82	81
Ferromanganese ^e 20		17	17	19	20
Ferromanganese ^e 20 Silicomanganese ^e 20	_ 5			60	
Ferromanganese ^e ²⁰	26	33	28	28	26
Silicomanganese structure for silicon for	_ 26 _ 15	33 22	35	36	35
Ferromanganese ^e 20 Silicomanganese ^e 20 Ferrosilicon ^e Silicon metal ^e Silicon metal ^e	26	33			

Table 9.—Ferroalloys: World production, by country, furnace type, and alloy type $^{\scriptscriptstyle 1}$ —Continued

Country, ² furnace type, ³ and alloy type ⁴	1977	1978	1979	1980 ^p	1981 ^e
bouth Africa, Republic of: Furnace type unspecified:					
Forromanganese ^e	r ₃₄₂	r364	^r 617	r ₅₅₁	496
Ferromanganese ^e Silicomanganese ^e	r ₂₄	¹ 24	r ₅₀	r ₆₆	5
Ferrosilicon	r ₈₂	r83	r ₁₆₄	r ₁₅₇	12
Silicon metal ^e	31	36	39	r ₃₃	3
Ferrochromium ^e	r386	r728	r860	r ₈₇₁ .	82
Ferrochromium ^e Ferrochromium-silicon ^e	r ₂₅	r ₂₅	r ₂₆	r ₃₁	2
Other ^{e 21}	(10)	(10)	(10)	(10)	(10
Total ¹³	r ₈₉₀	r _{1,260}	1,756	1,709	1,554
pain: Electric furnace:					
Ferromanganese	156	148	163	132	10:
Silicomanganese	70	120	138	136	6
Silicomanganese Perrosilicon Silicon metal ^e	75	108	132	102	10
Silicon metal ^e	18	22	22	22	2
Ferrochromium	18	15	22	18	1
Other	(¹⁰)	(¹⁰)	e ₁	e 1	
Total ¹³	337	413	478	411	31:
weden: Electric furnace:					
Silicomanganese					
Ferrosilicon	25	$\bar{1}$			
Silicon metal	14	10	e18	e18	1
Ferrochromium	148	183	209	208	21
Ferrochromium-silicon	9		32	22	2
Other	2	5 2	3	3	
Total ¹³	198	201	262	251	25
witzerland: Electric furnace:					
Ferrosilicon ^e	6	r 7	6	6	
Silicon metal ^e	3	3	3	, 3	
Totale	9	r ₁₀	9	9	
aiwan: Electric furnace, ferrosilicon	27	33	41	39	744
hailand: Electric furnace:					
Ferromanganese	1	1	1	(10)	(10
Ferrosilicon	•	2	2	(10)	(10
Total	1	3	3	(¹⁰)	(10
urkey: Electric furnace:					
Ferromanganese ^e	1	1	1	1	1
Ferrosilicon	3	3	3	3	
Ferrosilicon ^e Ferrochromium ^e	r ₃₉	44	33	r ₃₅	30
and the state of t					
Total ^e	r ₄₃	48	37	r39	4
.S.S.R.:					
Blast furnace:					
S.S.R.: Blast furnace: Spiegeleisen	r ₈₃	r ₈₃	r e ₅₅	r e ₅₀	4
Blast furnace:	r ₈₃	r ₈₃	r e ₅₅	r e605	
Blast furnace: Spiegeleisen Ferromanganese Other			r e ₅₅ r e ₆₀₅ e ₁₁₀		59
Blast furnace: Spiegeleisen Ferromanganese Other Electric furnace: ²²	^r 800 110	r800 110	e ₁₁₀	r e ₆₀₅	59: 8:
Blast furnace: Spiegeleisen Ferromanganese. Other Electric furnace: ²² Ferromanganese ⁶	r800 110 610	r800 110 r810	°110 °1,000	r e ₆₀₅ r e ₈₀	59: 8: 1,30
Blast furnace: Spiegeleisen Ferromanganese Other Electric furnace: Ferromanganese Silicomanganese Silicomanganese	r800 110 610 33	r800 110 r810 33	re605 e110 r1,000 33	r e605 r e80 r1,300 35	59 8 1,30 3
Blast furnace: Spiegeleisen Ferromanganese Other Electric furnace: ²² Ferromanganese ⁶ Silicomanganese ⁶ Ferrosilicon ⁶	*800 110 610 33 661	r800 110 r810 33 683	re605 e110 r1,000 33 694	r e605 r e80 r1,300 35 695	59: 8: 1,30: 3: 70:
Blast furnace: Spiegeleisen Ferromanganese. Other Electric furnace: ²² Ferromanganese ^e Silicomanganese ^e Ferrosilicon ^e Silicon metal ^e	*800 110 610 33 661 52	r800 110 r810 33 683 52	re605 e110 r1,000 33 694 63	r e605 r e80 r1,300 35 695 65	59 8 1,30 3 70 6
Blast furnace: Spiegeleisen Ferromanganese. Other Electric furnace: ²² Ferromanganese ⁶ Silicomanganese ⁶ Ferrosilicon ⁶ Silicon metal ⁶	r800 110 610 33 661 52 r590	r800 110 r810 33 683 52 r610	re605 e110 r1,000 33 694	r e605 r e80 r1,300 35 695	59: 8: 1,30: 3: 70: 6: 71:
Blast furnace: Spiegeleisen Ferromanganese Other Electric furnace: ²² Ferromanganese ^e Silicomanganese ^e Silicon metal ^e Ferrochromium ^e Ferrochromium-silicon ^e	*800 110 610 33 661 52 *590 11	r800 110 r810 33 683 52 r610 11	r e605 e110 r1,000 33 694 63 r610	r e605 r e80 r1,300 35 695 65 r700	59: 8: 1,30: 3: 70: 6: 71: 1
Blast furnace: Spiegeleisen	*800 110 610 33 661 52 *590 11 198	*800 110 *810 33 683 52 *610 11 204	r e605 e110 r1,000 33 694 63 r610 11 r214	r e605 r e80 r1,300 35 695 65 r700 11 r220	59, 81 1,30 3, 70 6, 71, 1 1, 23
Blast furnace: Spiegeleisen Ferromanganese. Other Electric furnace: ²² Ferromanganese ^e Silicomanganese ^e Ferrosilicon ^e Silicon metal ^e Ferrochromium ^e Ferrochromium ^e Total	*800 110 610 33 661 52 *590 11	r800 110 r810 33 683 52 r610 11	r e605 e110 r1,000 33 694 63 r610	r e605 r e80 r1,300 35 695 65 r700	599 80 1,300 31 700 61 710 11 233
Blast furnace: Spiegeleisen Ferromanganese Other Electric furnace: ²² Ferromanganese ^e Silicomanganese ^e Silicomanganese ^e Ferrosilicon ^e Silicon metal ^e Ferrochromium ^e Ferrochromium-silicon ^e Other ¹⁵ Total	*800 110 610 33 661 52 *590 11 198	*800 110 *810 33 683 52 *610 11 204	r e605 e110 r1,000 33 694 63 r610 11 r214	r e605 r e80 r1,300 35 695 65 r700 11 r220 r3,761	59/8 1,300 33 700 66 711 1 230 3,770
Blast furnace: Spiegeleisen	r800 110 610 33 661 52 r590 11 198 r3,148	*800 110 *810 33 683 52 *610 11 204 *3,396	r e605 e110 r1,000 33 694 63 r610 11 r214 r3,395	r e605 r e80 r1,300 35 695 65 r700 11 r220 r3,761	598 81,300 33,700 66,711 11,233 3,770
Spiegeleisen Ferromanganese. Other Electric furnace: ²² Ferromanganese ^e Silicomanganese ^e Ferrosilicon ^e Silicon metal ^e Ferrochromium ^e Ferrochromium ^e Total Total Inited Kingdom:	*800 110 610 33 661 52 *590 11 198	*800 110 *810 33 683 52 *610 11 204	r e605 e110 r1,000 33 694 63 r610 11 r214	r e605 r e80 r1,300 35 695 65 r700 11 r220 r3,761	44 599 80 1,300 31 700 67 711 113 230 3,770

Table 9.—Ferroalloys: World production, by country, furnace type, and alloy type 1 —Continued

				1980 ^p	1981 ^e
T-:4-3 C4-4 Ti					
United States: Furnace type unspecified: ²³ Ferromanganese	004	050	015		7
FerromanganeseSilicomanganese		273	317	189	719
		142	165	188	717
Ferrosilicon		703	712	559	75
Silicon metal		116	145	127	713
Ferrochromium		195	269	²⁴ 239	722
Ferrochromium-silicon		24	26	(24)	(2
Other ²⁵	136	213	241	244	72
Total ²⁶		1,666	1,875	1,547	71.49
Jruguay: Electric furnace, ferrosilicon	(¹⁰)	(10)	(10)		
Venezuela: Electric furnace:				-	
Ferromanganese			1	2	
Silicomanganese			î		
Ferrosilicon	- e ₁₂	31	43	24	
Total	- ^e 12	31	45	28	2
Jugoslavia: Electric furnace:					
Ferromanganese	60	41	50	e49	,
Silicomanganese	_ 10	31	32	r e31	
Ferrosilicon	61	66		r e74	
Silicon metal			75	r eo.	
Parasharanian	30	34	35	r e34	
Ferrochromium		r ₅₆	72	r e69	
Ferrochromium-siliconOther	- 6 - 2	9	7 4	r eg	
Total		r ₂₄₀	275	268	720
		210	2.0	200	
imbabwe: Electric furnace:					
Ferromanganese ^e	_ NA	NA	3	3.	
Ferrochrome ^e		220	220	220	28
		220	220	220	
Total		220	223	223	28
Grand total ²⁶	_ T14,845	r _{15,537}	r17.656	r _{17,410}	16,54
Of which:					
Blast furnace:	1.8				
Spiegeleisen ²⁷ Ferromanganese ²⁷	_ r112	r ₁₀₅	77	78	
Ferromanganese ²⁷	_ r _{1,695}	r _{1,736}	1,715	1,601	1.46
Other ²⁸	_ 206	196	197	151	18
Total blast furnace	_ r2,013	r2,037	1,989	1,830	1,66
Electric furnace:29					
77 90	To oce	To oct	0.500	0.500	70
Ferromanganese 30	_ r 2,867	r3,081	3,523	3,723	⁷ 3,68
Silicomanganese ³⁰ 31	_ ^r 994	^r 1,084	1,264	1,302	71,20
Ferrosilicon		r _{3,425}	3,836	3,632	73,39
Silicon metal	_ 501	^ŕ 516	604	630	⁷ 62
Ferrochromium ³²		r _{2,931}	3,316	²⁴ 3,426	7 243,27
Ferrochromium-silicon ³²	r ₁₂₇	r ₉₄	129	²⁴ 108	7 240
Ferronickel ³³	_ r ₅₂₇	r441	637	586	758
renomicker	- 7001	r853	949	959	791
Other ³³	*750				. 91
Other ³ Undistributed	- ¹⁷ 50 - 24	26	28	22	72

Table 9.—Ferroalloys: World production, by country, furnace type, and alloy type¹ -Continued

Country, ² furnace type, ³ and alloy type ⁴	1977	1978	1979	1980 ^p	1981 ^e
				1	
Furnace type unspecified: Ferromanganese and total ²⁹	r ₉₉₃	r _{1,049}	1,381	1,192	1,136

NA Not available. ^eEstimated. Preliminary. ^rRevised.

¹Table includes data available through June 28, 1982.

⁵Data for year ending Nov. 30 of that stated.

⁷Reported figure.

⁸Includes silicomanganese.

10 Less than 1/2 unit.

¹¹Includes ferrochromium-silicon, if any was produced.

13 Total for 1977-80 represents an estimate for silicon metal plus a reported total for all other types.

14Includes silicospiegeleisen.

¹⁵Includes ferronickel, if any was produced.

¹⁶Series excludes calcium silicide.

¹⁷It appears likely that the Republic of Korea produced silicomanganese during 1977-81; during 1977-79, silicomanganese output presumably was included in reported output, but whether it was included with ferromanganese or with ferrosilicon is not clear; in 1980 and 1981, it presumably was included with "Other."

¹⁸Estimates for 1977-79 represent ferrotungsten only, figures for 1980 and 1981 presumably include silicomanganese as well as other unspecified ferroalloys, possibly ferrochromium, but available information is inadequate to permit distribution between

distribution by type.

¹⁹Based on exports; additional quantities may be consumed in the Philippines.

20 Estimated figures based on reported exports and an allowance for domestic use.

²¹Ferrovanadium only; other minor ferroalloys may be produced, but no basis is available for estimation.

²²Soviet production of electric furnace ferroalloys is not reported; estimates provided are based on crude source material production and availability for consumption (including estimates) and upon reported ferroalloy trade, including

data from trading partner countries.

23 U.S. production of ferromanganese cannot be separated by furnace type in order to conceal corporate proprietary information. Similarly, ferronickel production cannot be separately reported. All U.S. ferroalloy production except a portion of ferromanganese output in 1977 is from electric furnaces or metallothermic operations.

24 U.S. output of ferrochromium-silicon included with ferrochromium.

²⁵Includes ferronickel.

²⁶Data may not add to totals shown because of independent rounding.

³⁸Data may not add to totals shown because of independent rounding.
 ²⁷Spiegeleisen for the Federal Republic of Germany is included with blast furnace ferromanganese.
 ²⁸Includes the following quantities specifically identified as ferrosilicon: 1977—96; 1978—86; 1979—87; 1980—71; 1981-55. The remainders are not identified except that they are not spiegeleisen or ferromanganese.
 ³⁹Although furnace type has not been specified for any ferroalloy production for China, North Korea, the Republic of South Africa, and the United States, all output of these countries has been included under electric furnace (and metallothermic) output except for their production of ferromanganese, which is reported separately below.
 ³⁰Ferromanganese includes silicomanganese (if any was produced) for countries carrying footnote 8 on ferromanganese data line.

data line.

as inc. 3³Includes silicospiegeleisen for France. ³³Ferrochromium includes ferrochromium-silicon (if any was produced) for countries carrying footnote 11 on **Serrothromium data line.

33"Other" includes ferronickel production for France, Norway, the U.S.S.R., and the United States.

nn audition to the countries listed, Romania is known to produce electric furnace ferroalloys, but output is not reported quantitatively and no basis is available for estimation.

To the extent possible, ferroalloy production of each country has been separated according to the furnace type from which production is obtained; production derived from metallothermic operations is included with electric furnace production.

production.

*To the extent possible, ferroalloy production of each country has been separated so as to show individually the following major types of ferroalloys: Spiegeleisen, ferromanganese, silicomanganese, ferrosilicon, silicon metal, ferrochromium, ferrochromium-silicon, and ferronickel. Ferroalloys other than those listed that have been identified specifically in sources, as well as those ferroalloys not identified specifically but which definitely exclude those listed previously in this footnote, have been reported as "Other." For countries for which one or more of the individual ferroalloys listed separately in this footnote have been inseparable from some other ferroalloys owing to the nation's reporting system, such deviations are indicated by individual footnotes. In instances where ferroalloy production has not been subdivided in sources, and where no basis is available for estimation of individual component ferroalloys, the entry has been reported as "Undistributed."

**Total for worms are indicated by of the stant of the stant

⁶Reported as blast furnace ferromanganese and spiegeleisen but believed to be electric furnace output.

⁹Includes ferrochromium-silicon and ferronickel, if any was produced.

¹²Colombia is reported to also produce ferromanganese, but output is not reported quantitatively and no basis is available for estimation.

Albania.—Fondmetall AB signed its first multiyear contract with Albania to market Albania's ferrochrome production of 28,000 tons per year. Fondmetall AB is a metals and steel trading company in Sweden.²

Australia.—Agnew Clough Ltd. announced plans for a \$51.5 million silicon metal plant with an initial capacity of 30,000 tons per year. The plant would be built at Wundowie, Western Australia, and will be Australia's first silicon smelter. Production was to commence in 1983.3

Belgium.—The Belgian Government was to contribute toward the establishment of a new ferromanganese-producing company that would absorb Sadaci's operations and fixed assets. Sadaci, a subsidiary of Sadacem Ltd., had several years of problems with its ferromanganese operations at its Langerbruggekaai plant.

Brazil.—Ferroalloy capacity in Brazil continued to expand. In the 2-year period, 1980-81, capacity for all ferrosilicon increased 50% to 146 megavolt-amperes, and capacity for 75% ferrosilicon doubled.

Canada.—Construction of a 50,000-tonper-year ferrosilicon plant in Kimberly, British Columbia, was expected to be announced by a consortium of five companies including Cominco Ltd. and Mitsui & Co. Production was scheduled to begin in 1984.

A joint feasibility study on production of ferrosilicon in British Columbia was also being conducted by SKW Canada Ltd. and Japan's Sumitomo Corp. Production capacities of either 28,000 or 55,000 tons per year were being considered. Most of the plant's output would be consumed by the Japanese iron and steel industry.

Norwegian groups led by Elkem AS obtained an option to acquire two Union Carbide Corp. ferroalloy plants in Quebec before 1988. The Quebec plants, Beauharnois and Chicoutimi, primarily produce ferromanganese and ferrosilicon, respectively.

China.—China has changed from being a net importer to a net exporter of ferroalloys. Exports of ferrosilicon and silicon metal to Japan were especially strong during the year. China's total ferroalloy capacity was estimated at 750,000 tons per year.

Dominican Republic.—At midyear, Falconbridge Dominicana C. por A. began operating its Dominicana ferronickel operation at 50% capacity. The company was considering converting its expensive oil-based operation to a less costly coal-based one.¹⁰

Greece.—A \$65 million ferrochromium plant with a capacity of 30,000 tons per year was being constructed in Greece by Outo-kumpu Oy of Finland. Elsi-Greek Ferroalloys S.A. was managing the project. Elsi is a subsidiary of Elevine, a Greek industrial and mining company. Part of the cost was to be financed by Finnish export credits. The plant was scheduled for completion by the end of 1983.11

India.—A proposal to build a charge chrome plant which will have an annual capacity of 55,000 tons was submitted by Indian Metals & Ferro Alloys Ltd. for Government consideration. In addition, the Karnataka Government-owned Mysore Minerals Ltd. was considering the construction of a charge chrome plant at Byrapura. Most of India's charge chrome production is slated for export.¹²

Uniferro International, Ltd., a subsidiary of Universal Ferro & Allied Chemicals, Ltd., started producing ferromanganese in 1981 at its new 65,000-ton-per-year plant in Tumsar.¹³

Indonesia.—Japan's Pacific Metals Co. Ltd. and Indonesia's state-owned PT Aneka Tambang reached an agreement to erect jointly a 17,000- to 22,000-ton-per-year ferrosilicon plant in Celebes by 1985. The Government was also planning to build a 135,000-kilovolt-ampere hydroelectric power station for its expanding ferronickel operation. The powerplant could also satisfy the energy requirements of the ferrosilicon plant.¹⁴

Japan.—Production of ferroalloys continued to be restrained because of sharply rising power costs, competition from cheap imports, and weak markets. The most marked reduction in Japanese output involved the power-intensive ferroalloys of silicon and chromium. China flooded the Japanese market with ferrosilicon and silicon metal. Announcements that Fukuden Kogyo Co. Ltd. and Kureha Seitetsu Co. Ltd. would close their 1,900- and 27,000-ton-peryear plants, respectively, continued the trend toward less ferrosilicon production in Japan. 15

Norway.—Norwegian interests, led by Elkem AS, acquired Union Carbide's ferroalloy plants in Meraker and Sauda, Norway, along with three U.S. plants in a package deal that became effective on July 1. Elkem AS also has an option to purchase two of Union Carbide's ferroalloy plants in Quebec, Canada, before 1988. At its recently acquired 22,000-ton-per-year Meraker plant.

Elkem was forced to cut back silicon and ferrosilicon production because of high inventories. Poor economic conditions may result in the permanent closure of the Fesil-Nord & Co. operations. Toward yearend, the Norwegian ferroalloy industry was operating at only 50% to 60% of capacity, and plans to expand operations were curtailed. The Norwegian ferroalloys industry requested the Government's assistance to lower electricial power rates and to postpone pollution abatement requirements. 16

South Africa, Republic of.—The continued worldwide low level of stainless steel production during 1981 resulted in an excess of ferrochromium capacity in the Republic of South Africa, the world's largest producer. Cutbacks in production, implemented by South African Manganese Amcor Ltd., the world's largest producer of ferroalloys, ranged from 15% to 35% for

short periods.17

Spain.—Ferroaleaciones Especiales Asturianas S.A. added ferrotitanium to its speciality ferroalloys line in June. The alloy is being produced at the Maqua plant near Aviles in a new 1.7-ton induction furnace that has an annual capacity of 2,000 tons.¹⁸

Sudan.—A Japanese mission is studying the possibility of building a 5,000- to 15,000ton-per-year ferrochromium plant in the Ingessana Hills, south of Khartoum, which are reported to have a source of highquality chrome ore.¹⁹

United Kingdom.—Ferromanganese pro-

duction at British Steel Corp. began to recover from the strike that occurred in 1980. Although ferromanganese production in 1981 was up from the low levels of 1980; it was still down compared with that of 1979.

Venezuela.—Fesilven, formerly Venbozel, and its foreign creditors were negotiating a new agreement that would reschedule its foreign debt. The ferrosilicon producer has had a history of financial problems since its startup in 1975.20

Yugoslavia.—Dalmacija planned to install a 30-megavolt-ampere ferrosilicon furnace with an annual capacity of 17,000 tons at its ferroalloys complex at Dugi Rat near Split. Startup was slated for 1983.²¹

Mining

Zimbabwe.—Zimbabwe

Smelting Co., a subsidiary of Union Carbide Corp., increased its ferrochromium capacity 55% to 230,000 tons by adding two new furnaces rated at 18 megawatts each. The furnaces, capable of a combined annual production of 83,000 tons, are located in Que Que and cost \$30 million. One of the furnaces started production in 1981; the other

naces started production in 1981; the other was to come onstream in 1982.²² Rhodall abandoned plans to double its current 79,000-ton-per-year ferrochromium capacity at its Gwelo plant because of increased production costs and higher wages. The company had planned to build three new ferrochromium furnaces but all plans were shelved despite extensive research into the project.²³

TECHNOLOGY

Bureau of Mines research to reduce U.S. dependence on imported strategic and critical materials included investigation of novel methods to produce chromium ferroalloys from low-grade domestic resources in the Western States, and to develop substitutes to replace part or all of the chromium in stainless steels and other alloys that contain chromium.

Ferrochromium and silicon metal are currently made in submerged-arc electric furnaces. A unique but different process has been developed for each of these products. The new process for ferrochromium involves the first commercial application of a 10.8-megawatt plasma smelter in the Republic of South Africa at the Middelburg Steel and Alloys (Pty.) Ltd. plant in Krugersdorp. The prototype, a 1.4-megawatt experimental model, was devel-

oped and tested by Tetronics Research and Development of the United Kingdom in association with Foster Wheeler Energy Limited. A plasma furnace smelts materials by subjecting them to high temperatures created by partially ionizing a gas between two or more electrodes. The new process for silicon metal was developed and patented by scientists at Stanford University in California. This high-temperature electrolytic process extracts silicon from diatomaceous earth and is analogous to the Hall process for aluminum production. Stanford reported that the process yields silicon metal that is 99.98% pure. Estation from the subject of th

A promising new development in casting ferroalloys and silicon metal is the Granshot method, developed by Uddeholms AB of Sweden, and marketed by Elkem AS of Norway. The process consists of tapping the metal into a tundish and allowing the stream produced at the spout to strike a refractory brick. At this point, the molten metal disperses and the droplets fall into a water-filled tank. The noise and pollution from the crushing operations are eliminated when this method is used.26

¹Physical scientist, Division of Ferrous Metals.

²Metals Week. V. 52, No. 28, July 13, 1981, p. 2.

³Engineering and Mining Journal. V. 182, No. 2, February 1981, p. 156.

⁴Metal Bulletin. No. 6634, Oct. 27, 1981, p. 19.

⁵Metal Bulletin Monthly. Ferro-Silicon Leads the Ferro-Alloys. No. 130, October 1981, p. 77.

⁶Metals Week. V. 52, No. 36, Sept. 7, 1981, p. 8.

⁷Engineering and Mining Journal. V. 182, No. 8, August 1981, p. 185. 1981, p. 135.

⁸Metal Bulletin. No. 6584, Apr. 28, 1981, p. 19.

**Metal Bulletin. No. 6584, Apr. 25, 1981, p. 19.

***— No. 6593, June 2, 1981, p. 13.

***— No. 6648, Dec. 15, 1981, p. 13.

***10 — No. 6626, Sept. 29, 1981, p. 13.

**11 — No. 6524, June 5, 1981, p. 17.

**12 American Metal Market. Charge Chrome Projects Underway in India. V. 89, No. 241, Dec. 17, 1981, pp. 17-18.

**13 Metal Bulletin. Uniferro's New Indian Plant. No. 6567, Eeb. 24, 1981, p. 17.

1981, p. 142.

15 Metal Bulletin. No. 6601, June 30, 1981, p. 17.
 ——. No. 6644, Dec. 1, 1981, p. 17.
 Metals Week. V. 52, No. 11, Mar. 16, 1981, p. 8.
 16 American Metal Market. Norway's Ferroalloy Units at 50% to 60% of Capacity. V. 89, No. 247, Dec. 23, 1981,

at 50% to 50% of Capacity. V. 59, No. 241, Dec. 20, 1801, p. 6.

Metals Week. V. 52, No. 47, Nov. 23, 1981, p. 3.

Engineering and Mining Journal. Norway's New Government Must Solve Power Problems. V. 182, No. 12, December 1981, p. 124.

17Mining Journal. SAMANCOR. V. 296, No. 7607, June 5, 1981, pp. 441-443.

The Wall Street Journal. V. 198, No. 4, July 7, 1981, nd.

p. 42.

18 Metal Bulletin. No. 6651, Dec. 30, 1981, p. 15.

-. No. 6571, Mar. 10, 1981, p. 17. -. No. 6615, Aug. 18, 1981, p. 16.

²¹Engineering and Mining Journal. V. 182, No. 12,

December 1981, p. 137.

27 Iron Age. Union Carbide Dedicates Ferrochrome Furnaces. V. 224, No. 12, Apr. 27, 1981, p. 85.

28 Mining Journal. Chrome Plans Abandoned. V. 296,

²³Mining Journal. Chrome Plans Abandoned. V. 296, No. 7601, Apr. 24, 1981, p. 318.
²⁴Barcaa, N. A., T. R. Curr, W. D. Winship, and C. P. Heanley. The Production of Ferrochromium in a Transferred-Arc Plasma Furnace. Proc. 39th Electric Furnace Conf., ISS-AIME, Houston, Tex., Dec. 8-11, 1981. American Institute of Mining, Metallurgical, and Petroleum Engineers, Warrendale, Pa., 1982, pp. 243-260.
American Metal Market. Pact for Ferrochrome Plasma Smelter in South Africa Awarded Foster Wheeler. V. 89, No. 236, Dec. 3, 1981, p. 10.
²⁵Chemical Marketing Reporter. Silicon Process Patented. V. 220, No. 1, July 6, 1981, p. 7.
²⁶Metal Bulletin. Elkem Launches Granshot Ferro-Silicon. No. 6572, Mar. 13, 1981, p. 19.

Fluorspar

By Lawrence Pelham¹

Domestic shipments of finished fluorspar increased in 1981 for the first time in 5 years. Reported domestic consumption decreased in 1981, the third consecutive year of declining fluorspar consumption, primarily because of economic conditions and their impact on the U.S. production of steel. Byproduct fluosilicic acid (H₂SiF₆) recovery by domestic phosphoric acid plants was below 1980 production. In the chemical industry, H₂SiF₆ augments fluorspar as a source of fluorine. Prices for all grades of

Mexican fluorspar increased by 15% on January 1. Most other world prices remained near 1980 levels.

The United States continued to depend on foreign sources to supply over 85% of its fluorspar requirements. Mexico remained the major supplier of metallurgical- and acid-grade fluorspar. The Republic of South Africa was a significant source of acid-grade material in 1981. China showed potential for increasing its capacity as a supplier of metallurgical- and acid-grade material.

Table 1.—Salient fluorspar statistics1

	1977	1978	1979	1980	1981
United States:					
Production:	*				
Mine productionshort tons	613,000	447.876	407.054	372,092	415,862
Material beneficiated do	538,000	447,560	355,655	321,219	419,058
Material recovereddo	164,600	124,947	106,099	88.831	111,281
Finished (shipments) do	169,489	129,428	109,299	92,635	115,404
Value f.o.b. mine thousands	\$16,479	\$13,261	\$12,162	\$12,611	\$18,412
Exportsshort tons	6,642	8.267	14,454	17.865	11,261
Value thousands_	\$975	\$978	\$1,339	\$1,660	\$1,194
Imports for consumptionshort_tons_	971,355	916,703	1,021,085	899,219	826,783
Value ² thousands	\$69,457	\$67,569	\$80,090	\$94,103	\$104,938
Consumption (reported) short tons_	1.162,336	1.203.448	1.135.451	976,644	932,855
Consumption (apparent) ³ do	1,191,000	1,062,988			
Stocks, Dec. 31:	1,191,000	1,002,988	1,090,665	1,017,559	897,572
Domestic mines:					
Crude do	004 400	101 000	100 010	010 001	200 200
7	204,466	121,329	166,619	213,204	200,698
	12,243	4,322	5,400	8,930	12,924
Consumerdo World: Productiondo	226,320	201,158	226,423	182,853	216,207
World: Productiondo	r4,830,684	r _{5,136,957}	5,096,315	P5,435,873	e5,507,580

^eEstimated. ^pPreliminary. ^rRevised.

Legislation and Government Programs.—On March 13, 1981, President Reagan announced the beginning of a major purchase program for the national defense stockpile. Fluorspar was listed as a priority material to be acquired. The current U.S. Government stockpile goals for fluorspar are 1.4 million tons for acid grade and 1.7 million tons for metallurgical grade. At

yearend, the Government stockpile inventory was 895,983 tons of acid grade and 411,738 tons of metallurgical grade.

The controversy over depletion of the ozone layer by chlorofluorocarbons (CFC) continued. Congressional hearings were held in July to take testimony concerning the Environmental Protection Agency proposal (October 7, 1980, Federal Register)

¹Does not include fluosilicic acid (H₂SiF₆) or imports of hydrofluoric acid (HF) and cryolite.

²C.i.f. U.S. port.

³Apparent consumption includes finished shipments plus imports, minus exports, minus consumer stocks increase.

that CFC production be held to the amount of material produced in 1979. The ban on the sale and manufacture of "nonessential" aerosol products containing CFC, which was instituted in April 1979, continued in effect. The ban was instituted because of the uncertainty of the role of CFC in the depletion

of stratospheric ozone.

As in previous years, a 22% depletion allowance was granted against Federal income tax applied to the mining of domestic fluorspar compared with a 14% allowance for foreign production.

DOMESTIC PRODUCTION

Shipments of finished fluorspar from domestic mining operations increased to 115,400 short tons in 1981, the first increase in 5 years. Illinois was the leading producing State in 1981, accounting for well over 90% of all U.S. shipments. Statistics on shipments of fluorspar by State and by grade are withheld to avoid revealing company proprietary data.

For most of the year, the Inverness Mining Co. operated the Minerva Mines north of Cave-In-Rock, Ill., which it had acquired from Allied Chemical Corp. Production from these mines was a significant reason for the overall increase in domestic production in 1981 over that of 1980. Crude ore was also produced from the Spivy Mine.

Ozark-Mahoning Co., the Nation's largest fluorspar producer, maintained a high production level from its mines and plants in Pope and Hardin Counties, Ill.

The only other active fluorspar producer in Illinois was the Hastie Trucking and Mining Co. operating near Cave-In-Rock. Hastie's primary products were metallurgical gravel spar and construction aggregate.

In the west, J. Irving Crowell, Jr. and Sons operated its Crowell-Daisy Mine in Nye County, Nev. D & F Minerals Co. continued operations at its Paisano Mines south of Alpine, Tex. Spor Brothers reported development work on a fluorspar mine in Juab County, Utah.

Reported production of fluorspar briquets for use in steel furnaces was approximately 127,000 tons; 1980 production was approximately 130,000 tons. Flurospar briquets, made mostly from imported concentrates, vary in calcium fluoride (CaF₂) content from 25% to 95% and contain various combinations of manganese dioxide, ferric oxide, alumina, dolomite, hydrated lime, flue dust, feldspar, soda ash, olivine, ilmenite, and mill scale sweepings along with binding agents.

Eight plants processing phosphate rock for the production of phosphoric acid recovered nearly 43,000 tons of $H_2\mathrm{SiF}_e$ in 1981 compared with nearly 58,000 tons in 1980. Total $H_2\mathrm{SiF}_e$ shipments were 40,170 tons in 1981; 49% was used for water fluoridation chemicals, 41% for aluminum fluoride (AIF₃) and cryolite, and 10% for other chemicals. The $H_2\mathrm{SiF}_e$ shipments were equivalent to 70,000 tons of acid-grade fluorspar.

CONSUMPTION AND USES

Different grades of fluorspar are consumed depending on the end use. Acid-grade fluorspar, containing greater than 97% CaF₂, is used as feedstock in the manufacture of hydrofluoric acid (HF), a key ingredient in the aluminum, fluorchemical, and uranium industries. Ceramic-grade fluorspar, containing 85% to 95% CaF₂, is used in the ceramics industry for the production of glass and enamel. Metallurgical-grade fluorspar, containing between 60% and 85% or more CaF₂, is used primarily by the iron and steel industry as a neutral flux. Traditionally, U.S. steelmakers have used

metallurgical-grade fluorspar containing a minimum of 70% effective CaF₂; however, lower grade material and briquets have gained widespread usage.

The HF and steel industries accounted for 57% and 41%, respectively, of the 1981 reported fluorspar demand. The American Iron and Steel Institute (AISI) reported that raw steel production was 119.9 million tons in 1981, 8.1 million tons more than 1980. Comparing the AISI data with fluorspar consumption data received by the Bureau of Mines from the steel producers, the calculated fluorspar consumption rate for the

domestic steel industry was 6.02 pounds per ton of raw steel in 1981. On the basis of furnace type, the average fluorspar consumption per ton of raw steel was as follows:

Type of furnace	Fluorspar consumption (pounds per ton)				
	1979	1980	1981		
Open hearth Basic oxygen Electric	9.3 8.10 5.35	8.90 7.08 4.20	9.90 6.59 3.20		
Industry average	7.59	6.51	6.02		

Seven companies operating 11 plants produced HF in 1981. Data collected by the U.S. Department of Commerce, Bureau of the Census, indicated the HF "produced and withdrawn from system" amounted to approximately 171,500 short tons on an anhydrous basis in 1981 compared with 213,100 short tons in 1980. Imports of 70% HF augmenting domestic production amounted to 105,600 short tons in 1981.

The CFC production in 12 plants by 5 producing companies was a major end use for HF. According to data collected by the U.S. International Trade Commission on select CFC, the 1981 production of trichlorofluoromethane (F-11) was 78,900 tons, dichlorodifluoromethane (F-12) output was 148,800 tons, and chlorodifluoromethane (F-22) production was 118,700 tons. Compared with production in 1980, F-11 production increased 4.4%, F-12 output increased by 3.5%, and F-22 production increased by 8.5%. The major uses of CFC were refrigerants, foam-blowing agents, and fluorinated solvents. The use of CFC as propellants in aerosol sprays was restricted to essential products and by and large had been replaced by hydrocarbons and carbon dioxide.

Fluorine chemicals used in the reduction of alumina to primary aluminum by the Hall process was another major end use of HF. Six major companies accounted for most of the domestic production of AlF₃ and synthetic cryolite used by the aluminum industry. Domestic primary aluminum production was 4,948,000 short tons in 1981. An estimated 48 pounds of fluorine was consumed for each ton of aluminum produced, amounting to about 118,700 tons of fluorine. Fluosilicic acid supplemented fluorspar as a source of fluorine. The fluorine content in H₂SiF₆ shipped to consumers for the manufacture of fluorine chemicals used in aluminum production was 16,600 tons in 1981.

Hydrofluoric acid was consumed in the concentration of uranium isotope U-235 for use as nuclear fuel energy. The U_3O_6 concentrate from ore is reacted with HF to produce UF₄, which is then converted to gaseous UF₆ through the additions of fluorine gas. Hydrofluoric acid was consumed in diverse applications, including stainless steel pickling, petroleum alkylation, glass etching, oil and gas well treatment, and in the manufacture of a host of fluorine chemicals used in dielectrics, metallurgy, wood preservatives, pesticides, mouthwashes, and decay-preventing dentifrices, plastics, and water fluoridation.

In the ceramics industry, fluorspar was used in the production of flint glass, white or opal glass, and enamels. Fluorspar acts both as a flux and as an opacifier in these uses. Fluorspar was used in the manufacture of fiberglass, was added directly in small amounts in aluminum production, and was used in the melt shop by the foundry industry and by cement and brick producers.

Table 2.—Reported domestic consumption of fluorspar, by end use and grade

(Short tons)

End use or product	Containing more than 97% CaF ₂		Containing not more than 97% CaF ₂		Total	
·	1980	1981	1980	1981	1980	1981
Hydrofluoric acid	587,380 6,103 220 551 549 13,372	525,764 5,510 W 728 526 W 18,056 119	4,241 404 746 10,047 58,107 242,778 50,510 1,636	4,715 1,224 1,122 12,304 66,595 241,156 53,159 1,877	587,380 10,344 624 1,297 549 10,047 58,107 242,778 63,882 1,636	525,764 10,225 1,224 1,850 526 12,304 66,595 241,156 71,215 1,996
TotalStocks, Dec. 31	608,175 91,892	550,703 68,264	368,469 90,961	382,152 147,943	976,644 182,853	932,855 21 6 ,207

W Withheld to avoid disclosing company proprietary data; included with "Other."

Table 3.—Reported consumption of subacid grades of fluorspar in 1981, by end use and form

(Short tons)

	Containing not more than 97%					
End use or product	Flotation concentrates		Briquets or pellets			
Chemicals and allied products: Welding fluxesGlass, ceramic, bricks:	1,227	, .				
GlassOther glass, clay products	4,703 1,248	W				
Primary metals: Steel mills: Open-hearth furnaces	144	66,269	178			
Basic oxygen furnaces Electric furnaces Electric furnaces	2,397 567	140,961 48,257	97,798 4,335			
Other steel furnaces		229 4,024	8,284			
Other identified end uses	10.319	1,498 261,238	110.595			

W Withheld to avoid disclosing company proprietary data; included with "Other identified end uses."

Table 4.—Fluorspar (domestic and foreign) consumed in the United States, by State
(Short tons)

State		1980	1981
Alabama, Kentucky, Tennessee		76.974	78,63
Arizona, Colorado, Utah		28,601	23.47
Arkansas, Kansas, Louisiana, Missouri		157,291	133,69
California		20,330	22.83
Connecticut, Massachusetts, New York, Rhode Island		16,915	12,56
llinois		31,022	31,14
ndiana		49,347	50,46
ndiana owa and Wisconsin		257	V
dichigan		21,397	12,28
New Jersey Dhio Dhio Dhio		20,555	19,52
Oregon and Washington		95,200 682	101,34
onnewbania		92,053	510 104,462
Pennsylvania Texas	7 65-7-1-	305.667	275.800
West Virginia		39,249	38,77
Other ¹		21,104	27,33
Total		976,644	932,85

W Withheld to avoid disclosure of company proprietary data; included with "Other." ¹Includes Delaware, Georgia, Maryland, North Carolina, Oklahoma, and Virginia.

STOCKS

The 1981 yearend mine stocks of finished fluorspar totaled 12,900 short tons, 45% higher than that at yearend 1980. Consumer stocks increased from 182,900 tons in 1980 to 216,200 tons in 1981. Government stockpiles of fluorspar remained unchanged

and included 896,000 short tons of acidgrade fluorspar (of which 630 tons was considered nonstockpile grade) and 411,700 tons of metallurgical-grade fluorspar (of which 116,860 tons was of nonstockpile grade).

PRICES

Domestic producers reported no change in the price of metallurgical-grade shipments, and the price for acid-grade shipments settled at the upper value of the range reported in 1980. Mexican producers on January 1 increased the price for all grades of fluorspar by 15%, the third price increase in 13 months. The January prices held for the remainder of the year. Yearend

price quotations by the Engineering and Mining Journal are presented in table 5; price quotations serve as a general guide but do not necessarily reflect actual transactions.

For most of 1981, HF prices were stable. Yearend price quotations were \$72 per 100 pounds, f.o.b. plant, tank cars for anhydrous HF. For aqueous HF, 70% in 55-gallon

tanks or 30-gallon drums, f.o.b. plant, prices were quoted as \$56 per 100 pounds. Yearend prices for cryolite and AlF₃ as listed by the Chemical Marketing Reporter were unchanged from 1980, at \$550 per ton and 17.5 cents per pound, respectively, in bulk,

ex-works. However, industry sources indicate that AIF₃ sold for as high as 50 cents per pound. The Bureau of Mines does not have information concerning actual contract prices.

Table 5.—Prices of domestic and imported fluorspar

(Dollars per short ton)

	1980		1981
Domestic, f.o.b. Illinois-Kentucky:	2.75		
Metallurgical: 70% effective CaF2 briquets	110		110
Ceramic, variable calcite and silica:			
88% to 90% CaF2	100		100
95% to 96% CaF2	140		165
97% CaF ₂	165-175	165	-175
Acid, dry basis, 97% CaF ₂ :			
Carloads	160-171		171
88% effective CaF ₂ briquets	168-179		179
European and South African: Acid, term contracts	140-175	175	-180
Mexican: ²			
Metallurgical:			
70% effective CaF ₂ , f.o.b. vessel, Tampico	97.25		111.84
70% effective CaF ₂ , f.o.b. cars, Mexican border	93.39		107.40
Acid, bulk: 97+%, Mexican border	121.79	135.4	47-140.05

C.i.f. east coast, Great Lakes, and Gulf ports.

Source: Engineering and Mining Journal, December 1980 and 1981.

FOREIGN TRADE

U.S. fluorspar exports totaled 11,300 short tons in 1981, about 6,600 tons less than exports in 1980. Domestic exports are not reported by grade. Exports may have been acid-, ceramic-, or metallurgical-grade fluorspar and may include briquets manufactured from domestic ore. Synthetic cryolite exports totaled 29,000 short tons valued at \$9.56 million in 1981.

U.S. imports of fluorspar declined 8% from those of 1980 to 826,800 short tons in 1981. Acid-grade imports were down 10%, while imports of subacid-grade material were down 2.5% compared with those of 1980. Imports from Mexico, the largest for-

eign supplier, totaled 60% of all 1981 U.S. fluorspar imports. The Republic of South Africa supplied 30%, Italy 4.1%, Spain 3.2%, and China 3.1%. Small quantities were also imported from Canada.

U.S. imports of cryolite decreased in 1981 by 42% to 7,200 tons. Denmark, Canada, and Japan were the leading suppliers in 1981. Imports from China were reduced by 85%. Imports of HF increased 7% to 105,600 tons. Mexico and Canada continued to be the major suppliers of imported HF in 1981. Data on exports and imports of AlF₃ were not available.

Table 6.—U.S. exports of fluorspar

	19	80	1981		
Country	Quantity (short tons)	Value	Quantity (short tons)	Value	
AustraliaCanadaChile	16,767	\$ 1,515,532	10,078 118	\$4,939 995,400 11,766	
Chile Dominican Republic Germany, Federal Republic of	462	69,666	447 23	81,589 2,266	
Ghana Japan Japan	96	11,385	15 28	1,474 2,800	
Mexico	 13	1,302	6 166	534 55,862	
SurinameTaiwan	95 22	13,914 4,265			
United Kingdom Venezuela	247 163	24,695 18,811	331	36,870	
Total	17,865	1,659,570	11,261	1,193,500	

²U.S. import duty, insurance, and freight not included.

Table 7.—U.S. imports for consumption of fluorspar, by country and customs district

		1980			1981	
Country and customs district	Quantity	Vali (thouse		Quantity	Val (thous	
	(short tons)	Customs	C.i.f.	(short tons) -	Customs	C.i.f.
CONTAIN	ING MORE TH	IAN 97% CAL	IUM FLUO	RIDE (CaF ₂)		
anada:						
Cleveland	6,554 1,953	\$640 87	\$693 162			
El Paso Laredo	147	15	15	664	\$93	\$98
	8,654	742	870	664	93	9:
taly: Galveston	34,261	3,939	4,673	33,826	4,381	5,178
ermany, Federal Republic of:	448	27	27			
enya: Houston	16,949	1,506	2,188			
lexico:						
Buffalo	11	2	9,514	85,219	11,396	11,48
El Paso Galveston	90,413 10,417	8,889 1,191	1,331	89,219	11,590	11,40
Laredo	207,159	19,682	19,712	178,209	21,681	21,79
New Orleans	5,664 11 591	616	724 1,336	10,978	1,424	1,47
Philadelphia	11,581	1,194	1,000	10,510	1,424	
Total	325,245	31,574 400	32,620 401	274,406	34,501	34,75
lorocco: Cleveland =	2,976	400	401			
outh Africa, Republic of:	0.101		1.005	7 100	1 050	1 00
Galveston Houston	9,121 11,902	964 1,126	1,205 1,447	7,123 40,708	1,052 4,640	1,28- 5,74
Laredo	r _{6,085}	598	780	15,273	1,535	1,91
New Orleans	192,406	17,570	22,711	163,101	20,151	24,000
Philadelphia	8,637	920	1,074	9,035	1,147	1,21
Total	228,151	21,178	27,217	235,240	28,525	34,16
pain:						
Cleveland	13,289	1,788	2,008	19,211 7,636	2,488 1,074	2,793 1,223
Laredo New Orleans	6,910	922	1,171	1,050	1,014	1,22
Total	20,199	2,710	3,179	26,847	3,562	4,02
Total Inited Kingdom: Milwaukee	20,199 (1)	2,710	1	20,041		4,02
Grand total	636,883	62,077	² 71,176	570,983	71,062	78,21
CONTAININ	G NOT MORE	THAN 97% C	LCIUM FL	UORIDE (CaF ₂) .	
anada:						
Buffalo Detroit	150	12	15	19 85	1 6	
El Paso	248	15	15			
Total	398	27	30	104	7	
fexico:						
Baltimore	17,558	1,336	1,787	26,939	2,800	3,28
Buffalo Detroit	3,428 76	270 6	295 6	2,533	280	30
El Paso	29,755	2,135	2,261	28,234	2,578	2,75
Laredo	130,779	11,147	11,178	120,985	12,484	12,55
Mobile New Orleans	8,812 19,800	753 1,552	822 1,739	23,085	2,581	3,03
New York				445	48	4
Philadelphia	9,711	809	971	16,937	1,725	2,00
Total China: New Orleans	219,919 27,623	18,008 2,011	19,059 2,681	219,158 25,604	22,496 1,460	23,98 1,52
=						
outh Africa, Republic of: Baltimore	2,755	167	215			
Detroit				10,933	827	1,20
New Orleans	11,640	728	940			
Total	14,395	895	1,155	10,933	827	1,20
sweden: Houston			-,	1	1	-,
Germany, Federal Republic of:		1	1			
Milwaukee	1	1				
Milwaukee	262,336	20,942	22,926	255,800	24,791	26,72

^rRevised. ¹Less than 1/2 unit.

Table 8.—U.S. imports for consumption of 70% hydrofluoric acid

	19	80	1981		
Country	Quantity (short tons)	Value, c.i.f. (thousands)	Quantity (short tons)	Value, c.i.f (thousands	
Austria			17	\$22	
Canada	37,498	\$32,659	39,929	\$22 40,915	
France	65	264	·		
Germany, Federal Republic of	257	496	36	56	
Japan	5,445	4,681	2,555	2,385	
Mexico	55,045	56,218	63,086	68,121	
Netherlands	57	87			
Spain	111	115			
United Kingdom	252	401	(¹)	13	
Total	98,730	94,921	105,623	111,512	

¹Less than 1/2 unit.

Table 9.—U.S. imports for consumption of cryolite¹

	. 19	80	1981		
Country	Quantity (short tons)	Value, c.i.f. (thousands)	Quantity (short tons)	Value, c.i.f (thousands	
Canada China Denmark Germany, Federal Republic of Greenland Hong Kong Israel Japan Netherlands Sweden Switzerland Taiwan United Kingdom	5,291 5,725 2,741 3 40 557 12 2,353 51 21 1 291	\$2,272 2,986 2,055 3 18 249 8 1,626 47 17 11	1,782 827 2,595 91 80 1,599 68 6	\$1,043 305 1,853 67 47 1,199 53 1	
Total	17,086	9,442	7,188	4,679	

¹Only the material from Denmark is natural cryolite; all other material is synthetic.

WORLD REVIEW

World production of fluorspar increased 1.3% in 1981 to 5.5 million tons. Mexico, with 22% of the world total, remained the world's leading producer, followed by, in descending order, Mongolia, the U.S.S.R., the Republic of South Africa, China, Spain, and France. Fluorspar was produced commercially in over 30 nations worldwide.

Argentina.—Minera Patagonica S.A. of Buenos Aires has begun to exploit fluorspar ore reserves located 15 kilometers southwest of Sierra Grande in Rio Negro Province. The project includes the Delta Mine development, evaluation of 30 other known ore bodies, and the construction of a processing and briquetting plant at Puerto Madryn, Chubut Province. Reserves were estimated at over 4 million tons of ore averaging 52% CaF₂.

Canada.—Alcan Smelters and Chemicals Ltd. announced plans to increase the production capacity of its planned AlF₃ chemicals plant in Tonquiere, Quebec, from 30,000 to 40,000 tons per year.²

Canada has had no fluorspar production since 1977. In British Columbia, Eaglet Mines, Ltd., continued surface exploration and a diamond drill coring program on its fluorite property near Quesnel Lake.

China.—Indications are that China has significantly increased its capacity to produce acid-grade fluorspar. A portion of this capacity results from the conversion of copper processing facilities to process fluorspar. The largest acid-grade facility appears to be the 70- to 80-ton-per-year Dong Feng Mill in Wu Yi County, Zhe Jiang Province.

Mexico.—The nation's nearly 140 fluor-spar mines produced over 1.2 million tons in 1981, retaining Mexico's position as the world's largest producer. Eight major producers contributed about 85% of the total output and Compania Minera Las Cuevas S.A., operating the world's largest fluor-spar mine, produced nearly 450,000 tons. Fluorspar sales, as reported by the Mexican Fluorspar Institute (Instituto Mexicano de

la Florita), declined to 1,097,000 short tons from 1,209,000 short tons in 1980. Mexican fluorspar exports fell from nearly 860,000 short tons in 1980 to 674,000 short tons in 1981 because of the economic downturn in North America.

Table 10 shows sales of Mexican fluorspar for the period 1977-81. It is probable that a large portion of Mexico's sales of submetallurgical-grade fluorspar are upgraded either in Mexico or the United States.

U.S.S.R.-It was announced that a new fluorspar plant has gone into operation at the Yaroslavaiksy mining complex with an

annual capacity of around 80,000 tons per year.3

Yugoslavia.—A fluorite deposit of 500,000 short tons has been established at Ravnaja near Krupanjn, Serbia. The Metallurgical Association of Serbia is organizing a group of investors to finance the opening of a 25,000-ton-per-year mine and to continue further exploration at deeper levels.4

¹Physical scientist, Division of Industrial Minerals. ²Industrial Minerals (London). Alcan Increases AlF₃ Production. No. 168, September 1981, pp. 9-10.

³Page 9 of work cited in footnote 2.

⁴Engineering and Mining Journal. V. 182, No. 4, April 1981, p. 216.

Table 10.—Sales of Mexican fluorspar, by grade¹

(Thousand short tons)

Grade	1977	1978	1979	1980	1981
Submetallurgical Metallurgical Ceramic Acid	224,512	249,102	196,436	236,470	211,949
	271,971	327,937	306,494	312,218	250,647
	36,124	49,726	85,523	96,167	100,620
	460,344	540,259	588,572	564,608	533,987

¹Courtesy of Instituto Mexicano de la Florita.

Table 11.—Fluorspar: World production, by country¹

(Short tons)

Country ² and grade ³	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Canada, acid grade ^e	_ 65,600				
Mexico (all grades) ⁵	_ r727,621	r _{1,057,980}	1,084,514	1,219,755	1,230,544
United States (shipments):					
Acid grade	_ 100,605	74,880	W	W	W
Metallurgical grade	68,884	54,548	W	w	W
Total	169,489	129,428	109,299	92,635	⁶ 115,404
South America:					
Argentina:					
Acid grade ^e Metallurgical grade ^e	_ 14,482	8,845	12,592	5,115	6,440
metallurgical grade	_ 33,790	20,637	29,380	11,935	15,030
Total	48,272	29,482	41,972	17,050	21,470
Brazil:7					
Direct shipping ore, grade unspecified					
(sales)	_ *14,508	513	106	110	100
Beneficiated product (output):					
Acid grade		34,363	29,599	36,078	38,600
Ceramic grade Metallurgical grade					
mecanurgical grade	- *30,493	33,247	28,161	24,956	27,600
Total	- *75.598	68.123	57,866	61.144	66,300
Uruguay, grade unspecified	_ 83	125	^e 85	^e 95	90
Europe:					
Czechoslovakia: e 4					
Acid grade	_ 53,000	53,000	53,000	53,000	53,000
Metallurgical grade	_ 53,000	53,000	53,000	53,000	53,000
Total		106,000	106,000	106,000	106,000
10001		100,000	100,000	100,000	100,000

FLUORSPAR

Table 11.—Fluorspar: World production, by country¹ —Continued (Short tons)

	(CHIOLO GOID)				
Country ² and grade ³	1977	1978	1979	1980 ^p	1981 ^e
Europe —Continued					
France:8	T 6100 000	I104 440	173,504	178,106	177,000
Acid and ceramic grade Metallurgical grade	r e188,300 r e127,000	^F 194,448 F107,433	112,218	110,241	110,000
Total	r e315,300	^r 301,881	285,722	288,347	287,000
C. Dtis Danublia 6 4					
German Democratic Republic: ^{e 4} Acid grade Metallurgical grade	27,600 82,400	27,600 82,400	27,600 82,400	27,600 82,400	27,600 82,400
Total	110,000	110,000	110,000	110,000	110,000
Germany, Federal Republic of (marketable).4					
Acid grade ^e Metallurgical grade ^e	83,086	F75,122	62,672	77,533 8,615	77,400 8,600
Metallurgical grade ^e	9,232	r8,347	6,963		
Total Greece, grade unspecified	92,318 551	^r 83,469 672	69,635 397	86,148 440	86,000
•					
Italy: Acid grade	158,000	143,320 14,969	148,094 7,589	137,540 1,060	137,800 1.100
Ceramic grade Metallurgical grade	14,544 32,209	30,314	45,809	28,912	27,600
	204,753	188,603	201,492	167,512 22,000	166,500 22,000
TotalRomania, metallurgical grade ^{e 4}	22,000	22,000	22,000	22,000	22,000
Spain:	200 407	222,121	171,164	225,528	300,400
Acid grade Metallurgical grade	233,497 108,727	109,999	41,469	44,261	44,300
Total	342,224	332,120	212,633	269,789	344,700
•					
Sweden: ⁴ Acid grade ^e	1,464 1,197	·	· · · <u></u>		
Metallurgical grade ^e	2,661				
Total	2,001				
U.S.S.R.: ⁶	265,000	270,000	275,000	275,000	280,000
Acid grade Metallurgical grade	287,000	292,000	298,000	298,000	305,000
Total	552,000	562,000	573,000	573,000	585,000
II. it. J Vin adom 9					
United Kingdom: ⁹ Acid grade	115,743	143,300	114,640 13,228	151,016 11,023	110,000 11,000
Metallurgical grade Unspecified	25,353 72,752	17,637 47,400	41,888	26,455	44,000
Total	213,848	208,337	169,756	188,494	165,000
Africa: Egypt, grade unspecified	1,548	2,464	730	1,931	2,000
Kenya: Acid grade	116,575	103,278	e74,727	90,499	87,900
		14,189	e10.266	12,433	12,10
Metallurgical grade	20,111	14,100	10,200		
Metallurgical grade Total		117,467 *59,745	e84,993 69,666	102,932 70,989	
Metallurgical grade Total Morocco, acid grade	136,686	117,467	e84,993		
Metallurgical grade Total Morocco, acid grade South Africa. Republic of:	136,686 44,092	117,467	*84,993 69,666 426,930	70,989	71,60 6497,81
Metallurgical grade Total Morocco, acid grade South Africa, Republic of: Acid grade Ceramic grade	136,686 44,092 258,656 72,378	117,467 *59,745 328,038 16,432	*84,993 69,666 426,930 9,344	70,989 517,735 9,798	71,600 6497,819 66,74
Metallurgical grade Total Morocco, acid grade South Africa, Republic of: Acid grade	136,686 44,092 258,656 72,378	117,467 *59,745 328,038	*84,993 69,666 426,930 9,344 60,991	70,989 517,735 9,798 48,664	6497,813 66,74 642,75
Metallurgical grade Total Morocco, acid grade South Africa, Republic of: Acid grade Ceramic grade Metallurgical grade Total	136,686 44,092 258,656 72,378 55,523 386,557	117,467 F59,745 328,038 16,432 89,042 433,512	*84,993 69,666 426,930 9,344 60,991 497,265	70,989 517,735 9,798 48,664 576,197	100,000 71,600 6497,811 66,74 42,750 6547,92
Metallurgical grade Total Morocco, acid grade South Africa, Republic of: Acid grade Ceramic grade Metallurgical grade	136,686 44,092 258,656 72,378 55,523 386,557 31,809	117,467 F59,745 328,038 16,432 89,042	*84,993 69,666 426,930 9,344 60,991	70,989 517,735 9,798 48,664	6497,819 66,74 642,75

Table 11.—Fluorspar: World production, by country¹ —Continued

(Short tons)

Country ² and grade ³	1977	1978	1979	1980 ^p	1981 ^e
Asia:					
China:					
Acid grade ^e	38,600	38,600	68,300	84,900	91,500
Acid grade ^e Metallurgical grade ^{e 4}	440,000	440,000	440,000	440,000	440,000
Total	478,600	478,600	508,300	524,900	531,500
India:					
Acid grade	9,997	10,668	12.115	13.612	13,200
Metallurgical grade	6,768	4,794	7,021	9,808	9,900
Total	16,765	15,462	19,136	23,420	23,100
Korea, North, metallurgical grade 4	44,000	44,000	44,000	44.000	44,000
Korea, Republic of, metallurgical grade	14,309	12,531	9,315	7,619	7,700
Mongolia, metallurgical grade ⁴	r e352,000	r e480,000	r e 625,000	r e666,000	660,000
Pakistan, grade unspecified		369	461	1,305	4,400
Thailand:10					
Acid grade	60,435	60,627	62,362	66.258	99,000
Metallurgical grade	213,093	193,490	195,914	190,461	182,000
Total	273,528	254,117	258,276	256,719	281,000
Turkey, metallurgical grade	1,886	1,381	6,834	e6,600	6,600
Total acid grade	r _{1,896,613}	r _{1.884.616}	¹¹ 1,819,232	112,053,996	¹¹ 2,106,959
Total all other grades	^r 2,934,071	r3,252,341	3,277,083	3,381,877	3,400,621
Grand total	r4,830,684	r _{5,136,957}	¹¹ 5,096,315	¹¹ 5,435,873	¹¹ 5,507,580

^eEstimated. ^pPreliminary. ^rRevised. W Wit ¹Table includes data available through May 5, 1982. W Withheld to avoid disclosing company proprietary data.

¹Table includes data available through May 5, 1982.

²In addition to the countries listed, Bulgaria is believed to have produced fluorspar, but production is not officially reported, and available information is inadequate for the formulation of reliable estimates of output levels.

³An effort has been made to subdivide production of all countries by grade (acid, ceramic, and/or metallurgical). Where this information is available in official reports of the subject country, the data have been entered without qualifying notes; where a secondary source has been used to subdivide production by grade, the source for the basis of this subdivision has been identified by footnote. Where no basis for subdivision is available, the entry has been identified with the notation "grade unspecified."

⁴Information on grade obtained from Bundesanstalt Für Bodenforschung Hannover and Deutsches Institut Für Wirtschaftsforschung Berlin. Untersuchungen über Angebot and Nachfrage Mineralischer Rohstoffe 4. Flusspat, March 1974. n. 39.

1974, p. 39.

Series revised to reflect actual total production of all grades of fluorspar; distribution of this number by grade is not

available.

6Reported figure.

Official Brazilian sources list crude ore mined as follows in short tons: 1977—127,824 (revised); 1978—139,147; 1979— 179,874; 1980--179,897; 1981—not available.

179,874; 1980—179,897; 1981—not available.

*Data for 1977 are marketed production estimated from domestic consumption and trade data; data do not take into account changes in stocks. Figures for 1978-80 are reported marketed output. Total run-of-mine production (direct-shipping plus ore destined for concentration) was as follows in short tons: 1977—586,000; 1978—590,070 (revised); 1979—557,454 (revised); 1980—583,322; 1981—583,000 (estimated).

Includes material recovered from lead-zinc mine dumps.

Includes material recovered from lead-zinc mine dumps.

10 Acid-grade material listed for Thailand is beneficiated product resulting from processing of reported low-grade material; metallurgical-grade material is run-of-mine material reported under the term "high grade." Recorded production of low-grade material was as follows in short tons: 1977—51,246; 1978—92,875; 1979—90,524; 1980—147,210; 1981—149,000 (estimated).

¹¹Total does not include U.S. acid-grade production; data are withheld.

Gallium

By Benjamin Petkof¹

Domestic gallium consumption in 1981 exceeded that of 1979 but was below that of 1980. Gallium recovered from domestic sources supplied a significant portion of U.S. consumption. Data on world gallium

production, consumption, and stocks were not available. Gallium in metal or metallic compounds was used primarily in the production of solid-state electronic devices.

Table 1.—Salient gallium statistics in the United States

(Kilograms unless otherwise specified)

	1977	1978	1979	1980	1981
Production Imports for consumption Price per kilogram	NA	NA	NA	NA	NA
	2,884	3,721	6,401	6,175	5,536
	8,789	8,908	9,461	10,460	9,560
	\$500-\$600	\$500-\$600	\$510	\$510-\$630	\$630

NA Not available.

DOMESTIC PRODUCTION

Only two domestic companies recovered gallium in 1981. The Aluminum Co. of America, using proprietary technology, recovered gallium as a byproduct of its alumina production process at Bauxite, Ark. Eagle-Picher Industries, Inc., produced gallium metal, oxide, and trichloride from zinc production residues at its Quapaw, Okla., facility. Production data were not available. Based on import and consumption data, total domestic output of gallium metal appeared to be near that of 1980.

CONSUMPTION

Consumption of gallium was high in 1981 but below that of 1980. More than 90% of consumption was used in electronic applications. The remainder was used to produce alloys and in research and development.

General acceptance by industry and the public of electronic devices that use gallium-based components maintained the high demand for gallium. Continued use and development of items such as fiberoptic light transmission cables actuated by
gallium-based light-emitting diodes and
lasers, gallium-based electronic devices for
computers, and ongoing research and development of gallium-based solid-state devices
and systems were expected to maintain the
high demand for gallium and gallium compounds.

Table 2.—Consumption of gallium, by end use

(Kilograms)

	5. 61		
End use	1979	1980	1981
Specialty alloys	5	14	2
Electronics ¹	8,782	9.635	8,865
Research and development	617	754	636
Unspecified	57	57	57
Total	9,461	10,460	9,560

¹Light-emitting diodes, semiconductors, and other electronic devices.

STOCKS

Consumer stocks of gallium metal for at yearend 1981 were above those of 1979 1980 and 1981 are shown in table 3. Stocks and 1980.

Table 3.—Stocks, receipts, and consumption of gallium¹

(Kilograms)

Purity	Beginning stocks	Receipts	Consump- tion	Ending stocks
1980: 97.0%-99.9%	106 4 3 1,637	13 14 74 10,485	15 15 73 10,357	104 3 4 1,765
Total	1,750	10,586	10,460	1,876
1981: 97.0%-99.9%	104 3 4 1,765	19 16 88 9,474	4 15 87 9,454	119 4 5 1,785
Total	1,876	9,597	9,560	1,913

¹Consumers only.

PRICES

The American Metal Market quoted the price for 99.999%-pure metal at \$630 per

kilogram, in 100-kilogram lots, throughout the year.

FOREIGN TRADE

Data on the exports of gallium metal are not reported separately but are included in the export category "base metals and alloys, not elsewhere classified, wrought or unwrought, waste and scrap." Significant quantities of gallium and gallium compounds are exported as parts of manufactured electronic and electrical components and equipment.

U.S. imports of gallium in 1981 declined in quantity and value from those of 1980. Almost half of U.S. imports came from Switzerland. Other significant sources of U.S. imports were China, Canada, and the Federal Republic of Germany. The average value of imported gallium metal increased from \$427 per kilogram in 1980 to \$447 per kilogram in 1981.

GALLIUM 351

WORLD REVIEW

Data on production and consumption of gallium for the rest of the world were not available. However, nations with welldeveloped electronic and electrical industries consumed most of the world gallium supply. It was thought that minimum world gallium consumption was equal to twice that of the United States or at least 20,000 kilograms. World production was thought to be commensurate with world consumption.

Table 4.—U.S. imports for consumption of gallium (unwrought, waste and scrap), by country

Country	1980		1981	
	Kilograms	Value	Kilograms	Value
Belgium			200	\$87.979
Canada	1,449	\$675,911	589	303,873
China	409	119,288	916	403,185
France	232	90,521	386	134,964
Germany, Federal Republic of	561	233,107	585	272,941
India			10	5,714
Italy			98	16,632
Japan	13	14,861		
Malaysia		,	2	1,250
Sweden			ī	680
Switzerland	3,444	1.470,558	2,679	1,215,460
Taiwan	11	2,775		_,,
United Kingdom	56	30,214	70	29,418
Total	6,175	2,637,235	5,536	2,472,096

TECHNOLOGY

A method was described for the extraction of gallium from hydrochloric-acid solutions using diphenyl-2-pyridylmethane as an extractant. The method was stated to be useful as a preconcentration procedure for analytical techniques and for the produc-

tion of high-purity gallium.2

¹Physical scientist, Division of Nonferrous Metals.

²Hasany, S. M., M. Imtaz, and M. Ejaz. Solvent Extraction of Gallium (III) From Hydrochloric Acid Solutions Using Diphenyl-2-Pyridylmethane as an Extractant. J. Less Common Metals, v. 77, No. 2, February 1981, pp. 157-167.

Gem Stones

By J. W. Pressler¹

The value of gem stones and mineral specimens produced in the United States during 1981 was estimated to be \$7.6 million. During the year, turquoise production decreased while tourmaline and sapphire production increased. Amateur collectors

accounted for much of the activity in many States. Commercial operators produced rough jade, jasper, agate, sapphire, turquoise, opal, and tourmaline, which they sold mainly to wholesale or retail outlets and also to jewelry manufacturers.

DOMESTIC PRODUCTION

Mines and collectors in 46 States produced gem materials with an estimated value of \$1,000 or more in each State in 1981. Ten States supplied 90% of the total value, as follows: Arizona, \$3.3 million; Nevada, \$1.0 million; Maine, \$700,000; Oregon, \$600,000; California, \$300,000; Wyoming, \$250,000; and Arkansas, New Mexico, Texas, and Washington, \$200,000 each. In 1981, estimated production increased 33% in New Mexico and Washington, 25% in Texas, 20% in Oregon, 5% in Nevada, and 3% in Arkansas, but decreased 12% in Maine.

Park authorities at the Crater of Diamonds Park in Pike County, Ark., reported that approximately 97,000 people visited the park in 1981 and found 1,327 diamonds with a total weight of 244 carats. This was an increase of 99% compared with the old record of 668 stones found in 1975. The largest was an 8.3-carat white stone of undetermined value. The next three largest diamonds, one brown and two whites, ranged from 5.90 to 6.25 carats. The principal factor contributing to this new record was the introduction of new concentrating and screening techniques that enable diggers to recover more of the smaller (1- to 24-point) diamonds. The average for all diamonds found was 18 points. Ticket sales and total attendance were up substantially from the

75,000 tickets sold in 1980. The "dig for fee" operations remained popular.

In Pala, San Diego County, Calif., Pala Gem Mines produced tourmaline at their Stewart lithia mine. The other small mines, in the same county, continued to produce fine gem-quality and specimen tourmaline, kunzite, and morganite.

Montana continued to lead the other States in the production of corundum, particularly gem-quality sapphire. Gemco International produced 35,000 carats of sapphires in 1980 from Yogo Gulch, Fergus County, with a high percentage of prize blues. A 500-ton-per-day recovery plant was planned to be onstream by 1982. Three other pay-as-you-dig or fee placer operations were active: Eldorado Bar and Castle's Sapphire Mine near Helena, and Gem Mountain Sapphire Mine near Philipsburg. Gemquality rubies and sapphires are also found in the Cowee Valley near Franklin, N.C. A 163-carat ruby is believed to be one of the largest rubies ever found in the area.

The largest single emerald ever found in North America was a 1,438-carat crystal from the Rist Mine near Hiddenite, N.C., in 1969. Each year, many small emeralds are found by visitors there, as well as from the Crabtree Mine near New Switzerland, N.C.

CONSUMPTION

Domestic gem stone output went to amateur and commercial rock, mineral, and gem stone collections, objects of art, and jewelry. Apparent consumption (domestic production plus imports minus exports and reexports) in 1981 was \$1,812 million, 1% more than that of 1980.

PRICES

Yearend domestic sales of commercialgrade gem diamonds (inexpensive commercial-grade stones up to 1 carat) surged during the Christmas season, but there was a reduced market for better quality certificate stones over 1.0 carat.

The U.S. price of 1.0-carat, D-flawless, investment-grade diamond plummeted during the year, decreasing more than 60% from an alltime high in October 1980 of \$54,250 to a \$20,000-to-\$25,000 range at vearend 1981.

Colored stones languished during the year, with commercial materials being more popular, and expensive stones experienced poor sales. Average prices of some high-quality stones-emerald, black opal, and ruby-decreased 30% to 50%, while others—sapphire, star sapphire, tanzanite, and tourmaline—increased 56% to 80%.

Table 1.—Prices of U.S. cut diamonds, by size and quality

•			Price range	Median pric	e per carat ³
Carat weight	Description, color ¹	Clarity ² (GIA terms)	per carat 1981	December 1980	Early December 1981
0.04-0.08	G-I	VS ₁	\$ 375- \$ 650	\$570	\$467
.0408	G-I	Slı	325- 550	520	400
.0916	G-I	VS ₁	475- 750	655	550
.0916	G-I	Slı	400- 615	585	470
.1722	G-I	VS ₁	600- 1.205	1.080	837
.1722	G-I	Slı	510- 1,045	975	687
.2328	Ğ-Ī	VS ₁	750- 1,375	1.385	900
.2328	G-I	Slı	640- 1.215	1,150	800
.2935	G-I	VS ₁	875- 1.795	1,550	1,200
.2935	Ğ-I	Sli	740- 1,535	1,375	917
.4655	G-I	VS ₁	1,300- 2,285	2,738	1,800
.4655	Ğ-İ	Slı	1,000- 2,000	1.950	1,500
.6979	Ğ-İ	VS ₁	1,600- 3,010	3,556	2,300
.6979	Ğ-İ	Sli	1,200- 2,420	2,530	1,850
1.00-1.15	Ď	FL	(4)	⁵ 53,000	26,500
1.00-1.15	Ē	VVS.	10,000-16,050	⁵ 23,000	11,250
1.00-1.15	Ğ	VS ₁	4,600-10,000	⁵ 8,600	5,075
1.00-1.15	й	VS ₂	3,500- 5,700	⁵ 5,650	3,800
1.00-1.15	Ï	Sl ₁	2,600- 4,000	⁵ 3,550	2,750

¹Gemological Institute of America (GIA) color grades: D—colorless; E—rare white; G·I—traces of color.
²Clarity: FI—no blemishes; VVS₁—very, very slightly included; VS₁—very slightly included; VS₂—very slightly included; VS₂—very slightly included, but more visible; Sl₁—slightly included.
³Jewelers' Circular-Keystone, v. 152, No. 1, January 1981, p. 124; v. 153, No. 2, February 1982, p. 150. These figures represent a sampling of net prices that diamond dealers in various U.S. cities charged their customers during the month.
⁴Not enough sales reported to quote prices. Last quoted as \$36,000.\$44,000 in July 1981 Jewelers' Circular-Keystone. Quoted at yearend in The Diamond Registry Bulletin, New York, NY., as \$20,000.\$25,000.
³Representative of early November 1980 sales. December sales are nonrepresentative.

Table 2.—Prices of U.S. cut colored gem stones, by size

	Carat	Price range		Median price per carat ¹	
Gem stone	weight	per carat 1981	December 1980	Early December 1981	
Amethyst	10	\$10- \$25	\$15	\$18	
Aquamarine	5	40- 300	168	187	
Cat's eye	2	(2)	850	(2)	
Citrine	10	12- 45	12	16	
Emerald:					
Medium to better	1	1,200-4,000	3,500	2,500	
Commercial	ī	800-2,500	900	1,175	
Garnet, green	ī	400-1,000	725	625	
Opal, black	3	200- 300	500	250	
Opal, white	š	45- 125	75	80	
Peridot	5	45- 100	55	65	
Ruby:	•		•		
Medium to better	1	1,200-5,000	2,750	1.650	
Commercial	ī	600-3,000	850	700	
Sapphire:	-	000 0,000	000		
Medium to better	1	450-2,500	1,200	1,500	
Commercial	î	250- 800	425	750	
Star sapphire:	-	200 000	150	100	
Sky-blue	5	350- 500	250	450	
Gray	5	80- 200	100	102	
Tanzanite	5	400-1.000	590	850	
Copaz	5	75- 350	245	237	
Courmaline, green	5	45- 150	75	125	
Fourmaline, pink	ž	65- 200	80	125	

¹Jewelers' Circular-Keystone, v. 152, No. 1, January 1981, p. 126; v. 153, No. 2, February 1982, p. 152. These figures epresent a sampling of net prices that colored stone dealers in various U.S. cities charged their cash customers during the month.

Not reported.

FOREIGN TRADE

U.S. imports of rough and polished natural diamonds, excluding industrial diamonds, attained a record \$2.2 billion declared custom value in 1981. Total polished diamond imports, principally from Belgium (36%) and Israel (29%), increased 43% to \$1.8 billion, a new alltime record. The over-0.5-carat category, mostly from Belgium (42%), Israel (19%), and Switzerland (17%), increased 66% to \$760 million, and the lessthan-0.5-carat group, mostly from Israel (37%), Belgium (31%), and India (24%), increased 30% to \$1.04 billion. However, imports of rough natural diamond, principally from the Republic of South Africa

(70%), the United Kingdom (9%), and Sierra Leone (4%), decreased 41% in caratage and 59% in value in 1981 compared with that of 1980. The decrease in carat value from \$731 in 1980 to \$359 in 1981 for South African imports was an indication that De Beers Consolidated Mines Ltd. was withholding the better quality rough stones from the market.

The total value of emerald imports decreased 7% to \$132 million in 1981. The total value of rubies and sapphires imported in 1981 increased 30% to \$177 million, compared with the revised figure of \$136 million in 1980.

Table 3.—U.S. exports and reexports of diamond (exclusive of industrial diamond), by country

	19	80	1981		
Country	Quantity (carats)	Value (millions)	Quantity (carats)	Value (millions)	
Exports:					
Belgium-Luxembourg	31,797	\$95.9	47,781	\$49.4	
Canada	7,041	5.1	9,020	7.1	
France	5.112	31.0	5,909	23.0	
Germany, Federal Republic of	2,452	7.5	3,037	6.8	
Hong Kong	69,927	240.5	47,802	134.8	
Israel	21,164	16.2	16,253	11.8	
Japan	28,039	64.2	31,415	66.8	
Netherlands	739	5.7	371	4.3	
Singapore	6,836	13.7	6.585	12.3	
Switzerland	24,110	127.3	16,930	98.4	
United Kingdom	5,068	19.5	5.278	18.3	
Other	8,358	16.7	6,729	8.8	
Total	210,643	643.3	197,110	441.8	
Reexports:					
Belgium-Luxembourg	333,186	119.2	¹ 1,973,297	142.0	
France	6,922	6.9	4.315	5.2	
Hong Kong	36,345	40.6	55,118	44.9	
India	199,201	6.7	323,785	7.2	
Israel	262,625	93.2	386,840	79.3	
Japan	61,579	7.3	79.813	19.5	
Netherlands	42,987	6.8	41,324	3.2	
Switzerland	18.323	44.6	28,182	58.5	
United Kingdom	109,024	18.4	43,719	39.1	
Other	43,918	54.2	81,484	13.9	
	1,114,110	397.9	3,017,877	412.8	

 $^{^1}$ Artificially inflated in 1981 by auction of 1,477,365 carats of U.S. Government stockpile industrial diamond stones with subsequent reexport as gem stones to Belgium-Luxembourg.

Table 4.—U.S. imports of diamond for consumption, by kind and country

	19	80	1981		
Kind and country Rough or uncut, natural: Belgium-Luxembourg Central African Republic Israel Liberia Sierra Leone South Africa, Republic of Switzerland United Kingdom Venezuela Other Total Cut but unset, not over 0.5 carat: Belgium-Luxembourg Hong Kong India Israel South Africa, Republic of Switzerland United Kingdom Other Total Cut but unset, not over 0.5 carat: Belgium-Luxembourg Hong Kong India Israel South Africa, Republic of Switzerland United Kingdom Other Total Cut but unset, over 0.5 carat: Belgium-Luxembourg Hong Kong India Israel South Africa, Republic of Switzerland United Kingdom Other Total Cut but unset, over 0.5 carat: Belgium-Luxembourg Hong Kong India Israel Israel South Africa, Republic of	Quantity (carats)	Value (millions)	Quantity (carats)	Value (millions)	
Rough or uncut natural.1					
	32,587	\$19.5	28.122	\$12.2	
Central African Republic	66.308	7.1	19,869	2.2	
Igrael	23,635	12.5	21,609	6.7	
Liberia	5,023	10.5	3,717	2.7	
Sierra Leone	85,352	49.2	37,872	23.3	
South Africa, Republic of	907,749	662.1	656,362	282.5	
	18,988	11.6	7.943	4.1	
	201,138	193.5	80.010	56.9	
Venezuela	204,513	16.8	67,351	6.0	
Other	48,310	12.4	10,430	6.5	
Total	1,593,603	995.2	933,285	403.1	
Cut but unset, not over 0.5 carat:					
	531.251	223.6	777.054	319.9	
	10,128	3.6	19,370	10.0	
India	854,526	198.9	1.120,122	246.0	
Target	787,535	322.8	958,153	383.3	
South Africa, Republic of	34,751	25.6	45,150	27.9	
Switzerland	9,528	4.6	29,660	13.8	
United Kingdom	12,192	5.9	17,571	10.8	
	30,882	13.4	68,851	25.5	
Total	2,270,793	798.4	3,035,931	1,037.2	
Cut but unset, over 0.5 carat:					
Belgium-Luxembourg	155,280	242.2	206,171	319.3	
Hong Kong	1,298	3.4	5,899	26.2	
India	5,155	2.7	11,409	6.3	
Israel	89,015	117.8	138,107	146.7	
Netherlands	2,555	4.9	8,288	16.0	
South Africa, Republic of	28,638	43.1	26,463	48.2	
Switzerland	3,678	16.6	18,688	125.6	
United Kingdom	5,475	15.4	11,112	40.1	
Other	5,011	11.5	11,927	31.4	
Total	296,105	457.6	438,064	759.8	

¹Includes some natural advanced diamond.

Table 5.—U.S. imports of precious and semiprecious gem stones, by kind and country

	19	1980		81
Kind and country	Quantity (carats)	Value (millions)	Quantity (carats)	Value (millions
nerald:				
Belgium-Luxembourg	1,777	\$0.7	6,645	\$3
Brazil	240,198	7.5	48,977	5
Canada	2,587	7	18,788	.1
Colombia	81,910	55.7	121,708	40
France	5,073	1.5	9,759 41,795	2
France Germany, Federal Republic of	38,618	3.0	41,795	4
Hong Kong	56,073	8.6	120,313	12
India Israel	3,025,578	18.6	1,572,510	15
Israel	88,234	21.2	96,870	22
PakistanSouth Africa, Republic of	793	.4	4,651	1
South Africa, Republic of	6,200	1.1	14,787	1
Switzerland	27,310	12.0	49,721	1
Thailand	6,779	.5	31,940	2
United Kingdom	6,032	7.2	7,097	4
Other	13,728	2.7	152,098	12
	3,600,890	141.4	2,297,659	131
· · · · · · · · · · · · · · · · · · ·	0,000,000		2,201,000	
by: Belgium-Luxembourg \		.2		, 1
Burma		.8		
Canada		.1		
France		.7		
Germany, Federal Republic of		.9		
Hong Kong	• NA	₹ 13.5	> NA	.
India		3.1		
Switzerland		3.3		1:
Thailand		58.1		4'
United Kingdom		1.3		1.3
Other		3.0		` '
Total	NA	85.0	NA	9:
ophire:				
Äustralia \		(.4 \		1 2
Fuence		.3		
Germany, Federal Republic of		.6		
Hong Kong		4.9		
India	NA.	1.6	NA.	,
Sri Lanka	7	6.8	7	, ,
Switzerland		1.7		1
Thailand		31.8		3
United Kingdom		.8		
Other/	*	2.0		· . (
Total	NA	50.9	NA	. 8
er:				
Rough, uncut:				
Australia		(2.0)		- (
Brazil		4.5		1
ColombiaSouth Africa, Republic ofSwitzerlandSwitzerland		1.8		1
South Africa, Republic of	NA NA	₹ 3.2 }	NA	- ₹
Switzerland		3.5		
Zambia		1.9		
Other		(3.4)		,
Outer				
Total	NA NA	20.3	NA	1′
Cut but unset:				
Australia \		, 2.4		1.
Brazil	1	17.4		3
Brazil Germany, Federal Republic of		7.9		1
Hong Kong	1	17.1		1
India	> NA	₹ 2.7 }	NA NA	- ₹
Switzerland		.4		1
Taiwan	1	1.0		
Thailand	l	1.5		
		(6.5)		` `
Other		0.0		
	NA	56.9	NA.	8

NA Not available.

Table 6.—Value of U.S. imports of synthetic and imitation gem stones, by country

(Million dollars)

Country	1980	1981
Synthetic, cut but unset:		
Austria	0.9	1.7
France	.8	1.2
France Germany, Federal Republic of	7.5	5.8
Korea, Republic of	5.3	8.2
Switzerland	2.1	2.6
Other	3.1	3.1
Total	19.7	22.6
Imitation:	·	
Austria	8.5	7.7
Czechoslovakia	.8	.8
Germany, Federal Republic of	3.1	3.8
Other	1.3	1.0
Total	13.7	13.3

Table 7.—U.S. imports for consumption of precious and semiprecious gem stones

(Thousand carats and thousand dollars)

Stone	1	980	1981		
Swife	Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value Quantity Quant	Quantity	Value		
Diamonds:					
Rough or uncut ¹	1.594	995.212	935	404,354	
Cut but unset			3,474	1,796,908	
Emeralds: Cut but unset			2,298	131.560	
Coral: Cut but unset, and cameos suitable for use in jewelry			NA	3,630	
Rubies and sapphires: Cut but unset	NA	r _{135,914}	NA	176,758	
Marcasites			ŇA	498	
Pearls:				100	
Natural	NA	3.829	NA	2,008	
Cultured			ŇÄ	105,942	
Imitation			NA	1,966	
Other precious and semiprecious stones:		-,		1,000	
Rough and uncut	NA	20.323	NA	17,697	
Cut but unset	NA		ŇĀ	87,325	
Other n.s.p.f	NA		NA	665	
Synthetic:		.,		000	
Cut but unset ²	17,848	19,714	28,846	22,646	
Other	ŇA	1.277	NA	961	
Imitation gem stones	NA	13,689	ŇĀ	13,332	
		20,000	11/21	10,002	
Total	XX	r2,734,731	XX	2,766,250	

^rRevised. NA Not available. XX Not applicable.

²Quantity in thousands of stones.

WORLD REVIEW

Angola.—Prior to Angola's independence in 1974, annual diamond production was 2.4 million carats, and by 1979, production had fallen to 840,000 carats. A revitalization of this country's important diamond mining industry, spearheaded by Companhia de Diamantes de Angola (Diamang), bolstered by increasing prices, caused annual production of diamonds to climb to 1.5 million carats, with export earnings of \$400 million in 1980. Diamang was 77.1% owned by the

Government, with the remainder held by British, South African, United States, Belgian, and Swiss interests, with marketing handled by De Beers.²

Australia.—Exploration and evaluation of the Argyle prospect by the CRA-Ashton Joint Venture continued during the year with drilling and bulk sampling of the kimberlite pipe AK-1, and bulk sampling of the Upper Smoke Creek, Lower Smoke Creek, and the Limestone Creek alluvial

Includes 16,544 carats of other natural diamond, advanced, valued at \$1.15 million in 1980, and 1,823 carats valued at \$1.26 million in 1981.

359

deposits. Cumulative totals for all work performed (including 1980), indicate that 152,000 carats have been recovered from 37,800 short tons of the AK-1 pipe, and 102,000 carats have been recovered from 52,100 tons of the alluvials. Composite sorting of these diamonds showed a quality of 10% gem, 30% near-gem, and some high-quality industrials, and the balance industrials. A representative sampling has been evaluated by the Central Selling Organization at \$8.00 per carat, depending on the bort value assumed.

The final feasibility study commenced at yearend for the design and construction of a large-scale commercial plant with an initial capacity of 2.5 million short tons per year. Large-diameter core drilling for kimberlite sampling and geological continuity of the pipe progressed to depths of 145 meters. With these assumptions, diamond production should start in 1985 at a level of 10 to 15 million carats per year, slightly better in the initial years until the alluvials are processed, and with a project life of 20 to 30 years. This mine alone would easily surpass Zaire as the world's largest producer of industrials and would have a strong impact upon the world market. At yearend, an agreement was made by the Central Selling Organization with the Ashton Joint Venture and the Australian Government to market most of the production, with some concessions to allow domestic sales, and the development of a cutting and polishing center in Perth.3

Australia produces five types of precious gem stones—black, gray, and white fire opal, sapphires, diamonds, chrysoprase, and rubies. The Aga emerald mine in Western Australia is a recent development. Although it has been an intermittent producer since 1909 with exports to India, recent exploration revealed an increased potential for emerald production. Recovery of gemquality was about 11%, and the largest crystal found so far was 9.6 carats. The lower grade emeralds were being sold to the United States.

Belgium.—Total imports of diamonds by Belgium reached 54 million carats in 1981, a 17% increase compared with that of the previous year; however, total value decreased 3.4% compared with that of 1980. Total exports were 48 million carats valued at \$3.1 billion, a caratage increase of 8.5% and value increase of 7.4% compared with that of 1980. The major market for Belgium diamonds continued to be the United States.

which received 1 million carats in 1981. The Central Selling Organization's share of Belgium's rough stone imports had gradually fallen from 89% in 1977 to 68% in 1981.⁵ Price setting of investment-grade diamonds was being done twice daily by an important Antwerp-based diamond dealer.⁶

Botswana.—At yearend 1981, De Beers asked Botswana to stockpile diamonds because of the world slump in prices. De Beers had a 50% interest in De Beers Botswana Mining Co. in the operation of the Orapa and Letlhakane Mines, and the new Jwaneng Mine near Gabarone in the southern part of the state. The Jwaneng Mine, scheduled to have a rated capacity of 5.3 million short tons per year, was to be onstream in the second half of 1982. It is expected to have a higher recovery grade than that of any other mine in the Group, and to produce diamonds of medium quality. De Beers reported it to be probably the most important kimberlite pipe discovered anywhere in the world since Kimberley more than a century ago.7

Brazil.—Most of the gem diamond production in Brazil has come from independent prospectors called "garimpeiros" who produce about 120,000 carats per year. A conservative estimate for 1981 indicated total state production of 228,000 carats of gem and 372,000 carats of industrial diamond, mostly from Minas Gerais and Mato Grosso Provinces.⁸

China.—OCTHA, a South African diamond mining, cutting, and marketing group, is investing \$3 million in China to establish the first diamond cutting and polishing operation in China.9

Colombia.—Econominas, the Colombian state mining organization, reported that legal exports of emeralds in 1980 were valued at \$196 million, principally to Japan, the United States, and Taiwan. Emerald exports accounted for almost 50% of the total mineral exports from Colombia. However, it was estimated that this was only 40% of the real amount exported, the remainder being smuggled out of the country illegally.¹⁰

Ghana.—The Akwatia diamond mine, 65 miles from the Ghanaian capital of Accra, was facing several financial difficulties. The mine, which started operations in 1924, was no longer profitable, and its closing was a possibility. In 1973, the mine had produced 2.4 million carats annually and only produced about 1.0 million carats in 1981. However, at yearend the Government

underwrote a \$15 million loan to Ghana Consolidated Diamond Co. to modernize its plant and improve its economic viability. Also at yearend, the Government of India announced an agreement to purchase rough diamonds from the Diamond Marketing Corp. of Ghana, and it was estimated that this would result in additional margins for Ghana, compared with the previous sales through the Diamond Trading Co. of London.¹¹

Guinea.—A \$70 million alluvial diamond venture was being developed in the Kissidougou Banankor area close to the border of Sierra Leone, an area noted for high-quality diamonds. Initial production was expected to begin in August 1983 at an annual production level of 200,000 carats and increase to 500,000 carats per year by 1985. The project was a joint venture between Bridge Oil of Australia (45%) and the Republic of Guinea (50%). The remaining 5% was to be shared by Simonius Vischer and Industrial Diamond Co. of Switzerland, with marketing performed by Aredor Sales managed by Industrial Diamond Co. 12

A diamond of 800 carats was discovered in Guinea in 1981. The diamond, the largest found in the country since 1958, was of industrial quality.¹³

India.—The discovery of three large diamonds in the Vajrakarur area of Andhra Pradesh has led the Geological Survey of India to embark on a 3-year program of intensive diamond exploration. The Majhagawan diamond mines of the Panna district have yielded a total of 233,000 carats of diamonds worth \$20 million since 1960. The Panna area has also produced about 3,200 carats of crude emerald per year.¹⁴

The Gem and Jewellery Export Promotion Council in India reported that exports of gem stones and jewelry rose by 8% to \$700 million in 1980-81. The council fixed a new target of \$860 million for 1981-82, with most of the revenue from cut and polished gem diamonds, which ranks as India's top foreign exchange earning commodity. India already led the world in quantity of diamond exports and was ranked third after Israel and Belgium in terms of value.¹⁵

Israel.—The Israeli diamond cutting, polishing, and trading industry, one of the most important in the world, was severely affected by the recent decline in world gem sales. The industry has been the nation's largest industrial export business, with exports totaling \$1.4 billion at its peak. At its

peak in 1979, 700 companies employed 12,000 people, compared with about 600 companies employing 8,000 people in 1981. Exports in 1981 were about \$950 million, 68% lower than the peak year of 1979.16

Israel accounts for about 50% of world production of cut emeralds, and exports have grown in value from \$2.6 million in 1971 to \$10 million in 1977. It is expected that exports exceeded \$50 million in 1981.

Ivory Coast.—Diamond mining of both gem and industrial quality in the Ivory Coast has been centered in the Tortiya and Seguela regions. Société Anonyme de Recherches et d'Exploitations Minières en Côte d'Ivoire's operation at Tortiya began in 1948 and continued until 1975, when it closed because of high costs. The Seguela Mine was successfully operated by the Watson Society from 1971 to 1977. The Ivory Coast has not produced any diamonds in the past 2 years. 18

Lesotho.-At the Letseng-la-Terai Mine of De Beers Lesotho Mining Co., Ltd., the tonnage treated was down slightly to about 2.1 million short tons, and the grade was practically the same at 2.80 carats per 110 short tons. The percentage of gem diamonds remained high at 93%, and the diamonds larger than 10 carats in size represented 12% of the production. 19 Commercial operations at other diamond-bearing kimberlites in this small, landlocked country surrounded by the Republic of South Africa had been organized into two labor-intensive cooperatives with portable washing plants, which provided profitable work for over 1,100 employees.20

The Lesotho Government's Bureau of Statistics reported that 1980 production, 105,245 carats of diamonds, was valued at \$274.88 per carat.²¹

Namibia.—Responding to poor market conditions, curtailment of the mining and treatment operations of Consolidated Diamond Mines (Pty.) Ltd., a subsidiary of De Beers, resulted in a 25% reduction in total tonnage treated, and a reduction of 20% in diamond production from 1.6 million carats in 1980 to 1.25 million carats in 1981. These beach placers near Oranjemund yield diamonds of 95% gem-quality, and contributed as much as 18% of De Beers pretax profits in 1979.²²

The T.O.N.M. Oil and Gas Exploration Corp. has acquired a 50% interest in African Coast Diamond and Minerals (Pty.) Ltd. (ACDM). ACDM has mining rights to 90 square miles along the Atlantic coast of Namibia. A large-scale pilot plant with

Sortex equipment is located between the Hoarusib and Hoanib Rivers. Reserves have been estimated to be 2 to 6 million carats.²³

It was reported that three kimberlite pipes had been discovered near the western border of the Republic of South Africa with Namibia, and De Beers inaugurated an extensive prospecting program across the frontier in the northeastern corner of Namibia.²⁴

Sierra Leone.—During 1981, the National Diamond Mining Co., Ltd. (DIMINCO) of Sierra Leone mined principally alluvial deposits to produce about 595,000 carats of diamonds. Over 50% of the diamonds were of gem-quality, including some very large stones, which has resulted in illicit operations and theft. DIMINCO estimates that as much as 50% of the diamonds mined have been smuggled out. DIMINCO initiated an Alluvial Diamond Mining Scheme to have frequent sights in Freetown with payment in hard currency to detract from the smuggling. In the July sights, DIMINCO sold almost 45,000 carats for \$188 per carat, not including a special sale of a 119-carat diamond for \$1.1 million. A new joint venture of the Sierra Leone Government (60%), the Kuwait Foreign Trading, Contracting and Investment Co. (30%), and Sierra Leone Selection Trust (10%) was formed to mine the diamond-bearing kimberlites in the Kono area, to be initiated in 1981 and fully operational by 1985.25

South Africa, Republic of.—De Beers continued its widespread reconnaissance and prospecting program in the Republic of South Africa without the discovery of any new important kimberlite provinces. Shaft sampling of a kimberlite cluster on the Venetia farm, with bulk sample treatment by a heavy media separation plant, progressed during the year. Sampling for reserve extension of existing mines in Nama-qualand continued.

The Namaqualand Div. of De Beers suspended operations in the Tweepad area for the last 7 months of 1981, and production at Annexe Kleinzee and the Koingnaas complex was reduced by 10% for the remainder of the year. Diamond recovery declined 15% to a level of 1.2 million carats with an average grade of 18.6 carats per 110 short tons.

At the Finsch Mine, operation of the new treatment plant for the full year at a high throughput and improved diamond recovery efficiency resulted in a 50% increase of diamond production in 1981 compared with

1980. The open pit mine, presently producing from the 160- to 220-meter levels, was scheduled to change over to underground production in 1988. Vertical shaft sinking to 763 meters was completed in August 1981.²⁶

Leichardt Exploration of Australia discovered more diamonds on Farm "C" at the Reads Drift prospect, confirming expectations that higher grades exist at depth.²⁷

The Octha diamond group was expanding its investment program to \$160 million in South Africa, to create an integrated diamond mining, cutting, marketing, and retailing operation. Included in its operations was a Namaqualand Mine and four mines in the Kimberley area. Production in 1981, about 100,000 carats of 85% gem-quality, was expected to be increased to 1 million carats per year 50% gem-quality, by 1986.28

Sweden.—Two diamonds, each about 0.3 millimeter, were found in an area of kimberlite on the Baltic island of Alnon, just off the east coast of Sweden near Sundsvall. Washing of 12 short tons of ore yielded one diamond. This was the first confirmed diamond find ever made in western Europe.²⁹

Thailand.—Thailand continued to be one of the most important centers of gem stone cutting and polishing in the world, principally diamonds, rubies, and sapphires. Export value of all precious stones in 1980 was approximately \$2.5 billion.30

U.S.S.R.—The Siberian platform of the Soviet Union in north-central Asia has emerged as one of the most remarkable kimberlite and diamond areas on earth. Since the pioneering days 25 years ago, over 400 kimberlite pipes have been discovered within an oval belt 300 miles long and 250 miles wide southwest of the Lena River, a kimberlite province comparable with the Diamond Belt of southern Africa. Twelve principal kimberlite and/or diamond regions have been delineated, and the state has concentrated on these for maximum production development. The famous Mir diamond mine is in the Malo Botuoba region and was one of the richest pipes. However, it is questionable whether the full potential of this remote area will ever be realized, because at least 5 of the 12 principal regions are well within the Arctic Circle, where deep permafrost prevails along with long winters and extremely sub-Arctic temperatures. In one case at Mirnyy, construction engineers were fortunate in finding a dolerite sill upon which to build a milling and recovery plant.31

A new diamond mine was under develop-

Table 8.—Diamond (natural): World production, by country and type¹

(Thousand carats)

		Total	1,400 1,400 1,000 1,000 2,53 2,286 1,248 5,594	24,465 22,040	22,672 349	29,526 280 7,500	2205 600 10	10,600 2490	39,121
	1981	Indus- trial	350 4,217 100 900 26 169 621 272	3,463 1,530	1,069 35	6,097 140 7,240	2184 372 6	8,480 2388	29,024
		Gem	1,050 1,44 744 200 100 12 12 49 49 1,186 320	1,002	1,603 314	3,429 140 260	228 4 230 4 230	2,120 2,120	10,097
		Total	1,500 5,101 5,101 1,258 38 38 54 54 298 1,560	2,907	3,039 435	8,420 274 10,235	667 10 14	10,850 721	42,005
	1980P	Indus- trial	375 4,336 1,132 1,132 26 26 175 175 275	2,442	1,489	5,607 137 9,890	48 414 6 6	8,600 483	31,723
		Gem	1,125 765 227 227 126 12 12 50 1,482 317	465	1,550	2,813 137 345	253 4 12	2,250 238	10,282
		Total	841 4,394 315 1,253 85 85 48 52 302 1,653 855	2,585	3,220 498	8,384 314 8,734	620 16 16	10,700	39,400
	1979	Indus- trial	211 3,735 110 1,128 58 24 4 4 4 4 4 132 83 83 83	2,120	1,370	5,198 157 8,440	384 10 22	8,500 556	29,180
ì		Gem	630 659 205 125 27 24 24 48 1,570 1,570	465	403	3,186 157 294	236 6 14 3	2,200	10,220
		Total	7650 72,799 284 1,423 80 745 67 67 1,898 1,898	2,630	2,649 465	7,727 *282 11,243	r620 17 16	10,550 r820	r39,623
	1978	Indus- trial	162 12,379 1,281 1,281 55 123 5 180 95 426	r2,227 r1,608	1,030 F145	r5,370 r141 10,603	7384 10 2	8,400 F549	r30,162
		Gem	7488 7420 1990 1142 25 722 62 128 1,808 353	r403 r380	1,204	⁷ 2,357 ⁷ 141 640	r ₂₃₆ 7 14	2,150 ¹ 271	r9,461
		Total	2,691 2,691 1,947 1,947 80 80 2,99 2,001 961	2,426 2,010	550	7,643 408 11,214	7620 17 18	10,300	r39,659
	1977	Indus- trial	88 2,287 119 1,717 15 119 163 100 538	r2,061 r1,632	1778	75,312 204 10,681	7384 10 3	8,200 483	r30,378
		Gem	285 404 178 280 280 720 39 1,901 423	1365 1378 17916	1,212	⁷ 2,331 204 533	7 7 15 3	2,100	r9,281
		Country	Africa: Angola Botswana Botswana Central African Republic Ghana Guinea Ivory Coast Lecotho Liberia Namibia Sierra Leone	South Africa, Republic of: Finsch Mine Premier Mine Other De Beers	Other	TanzaniaZaireOther areas:	Austrana Brazil Guyana India	U.S.S.R.* Venezuela	Total

Table includes data available through May 7, 1982. Total diamond output (gem plus industrial) for each country is actually reported except where indicated by a footnote to be estimated. In contrast, the detailed separate production data for gem diamond and industrial diamond are Bureau of Mines estimates in the case of every country except Australia (1980-81), Central African Republic (1977-78), Liberia (1977-78), Sierra Leone (1977-78), and Venezuela (1978-81), for which source publications give details on grade as well as totals. The estimated distribution of total output between gem and industrial diamond is conjectural, and for most countries is based on the best available data at time of publication. China also produces some natural ^rRevised diamond, but output is not reported. PPreliminary. Estimated.

²Reported figure. ³Total exports.

*All company output from the Republic of South Africa, except for that credited to the Finsch and Premier Mines for the years indicated; excludes De Beers Group output from Botswana, Lesotho, and Namibia.

ment near Mirnyy in the Yakutsk Autonomous Soviet Socialist Republic . The mine, which was the first Soviet underground diamond mine, was to go into operation during the period 1983-85. Twin 21-foot shafts will be sunk by freezing techniques in the unconsolidated formation below permafrost-one for ore removal and the other for ventilation. Both shafts will be approximately 3,300 feet deep.32

Zaire.—Zaire is the largest producer of industrial diamonds in the world. Production by Société Minière de Bakwanga (Miba) progressively dropped from a record 18 million carats in 1961 to an estimated 7.5 million carats in 1981. Illegal mining and smuggling have been reported to represent 50% of official production by Miba.

Faced with higher operating costs and declining grades, Miba was seeking financing for a new mine, as well as modernization and expansion of current alluvial operations. The plant was to treat primary kimberlite and to purchase two dredges to work deposits in riverbeds and adjoining

areas. The Miba deposits at Mbuji-Mayi are about 1,400 kilometers east of Kinshasa in Kasai Oriental Province. The deposits were first worked over 60 years ago; recent exploitation has been equally divided between alluvial deposits and primary kimberlite deposits to depths of 60 meters.33

In 1981, Sozacom, the Zairean state marketing agency, announced a break with De Beers' Central Selling Organization, which had exclusive marketing rights for the last 14 years. At yearend, Sozacom announced that they had marketed 10 millions carats for 1981, as demand for industrials and lowgrade gems had held up better in a recession year compared with the demand for larger gems.34

At yearend, three companies—International Diamond Co. of London, and Caddi Sprl and Glasol NV of Belgium-who had agreed to market Zaire's diamonds in cooperation with Sozacom, also agreed to assist a local diamond cutting and polishing industry by constructing a \$2 million plant.

TECHNOLOGY

The labeling of the so-called reconstructed or reconstituted Geneva ruby, produced in the early development of synthetic ruby in 1903-04, has been convincingly proven incorrect. The most popular production technique explanation—that of fusing small pieces of genuine ruby together by flame fusion such as with Verneuil torch—has been discounted by scientific experiments. Genuine reconstructed products from these experiments do not resemble in any way the boules or cut stones of the original reconstructed ruby. The originals can now be attributed to multiple-step boule production under less than ideal conditions.35

The quality of synthetic ruby has now so improved that the new synthetic Kashan ruby is so similar to the natural that only professional laboratories can distinguish the difference. Heretofore, a professional with a 10-power hand lens could distinguish between natural rubies with crystal and Saturn-like inclusions, coarse twinning, and wispy fingerprints, and synthetic ruby with bubble inclusions and curved striae, but 45power microscopic observation by a professional is now necessary.36

Zircon-based age-dating of six different Siberian kimberlite pipes have indicated a geological age ranging from 148 to 450 million years. Diamond-bearing eclogite examination presented definite conclusions that the diamonds were formed in a medium close to normal basalt in chemical composition, the only difference being that the formation of diamonds took place at a depth of about 200 kilometers. Isolation and separate examination of diamond-bearing inclusions such as red garnet and chrome diopside indicated that the morphology of the enclosed mineral is a perfect copy of the morphology of the diamond itself, and confirm the age of the diamond.37

¹Physical scientist, Division of Industrial Minerals ²World Mining. Southern Africa. V. 35, No. 2, p. 68. Mining Annual Review (London). 1981, p. 490.

Mining Annual Review (London). 1981, p. 490.

Industrial Minerals (London). Ashton's Cut? Comment.

No. 172, January 1982, p. 7.

Ashton Joint Venture. Fourth Quarter 1981 Progress
Report. Melbourne, Australia, Jan. 8, 1982, pp. 1-4.

World Mining. Australia. Argyle Could Be Largest
Diamond Deposit in the World. V. 34, No. 13, December

^{1981,} p. 66.

⁴Mining Magazine (London). The Aga Khan—an Australian Emerald Mine. V. 145, No. 2, August 1981, p. 77.
⁵Industrial Minerals (London). World of Minerals. No.

[&]quot;173, February 1982, p. 11.

"Company News & Mineral Notes. No. 174, March 1982, p. 76.

"De Beers Consolidated Mines Ltd. Annual Report 1981.

Kimberley, Republic of South Africa, Apr. 28, 198 ⁸Minerais Não. Balanco Mineral Brazileiro. V. 2, 1980, p.

U.S. Embassy, Rio De Janeiro, Brazil. State Department Airgram A-13, 1980, p. 29. Industrial Minerals (London). Company News & Miner-

al Notes. No. 172, January 1982, p. 48.

10Mining Journal (London). V. 297, No. 7613, July 17,

^{1981,} p. 48.

11 World Mining Yearbook, 1981 (London). V. 34, No. 9, Aug. 25, 1981, pp. 112, 115.

Work cited in footnote 5.

Industrial Minerals (London). No. 172, January 1982, p.

Industrial Mining. What's Going on in World Mining. V. 34, No. 11, October 1981, p. 801.

13 Industrial Minerals (London). Company News & Mineral Notes. No. 164, May 1981, p. 72.

14 World Mining. V. 34, No. 7, July 1981, p. 64.

15 Industrial Minerals (London). No. 166, August 1981,

pp. 11-12. Dull Times for Diamonds. No. 170, November

Dull Times for Diamonds. No. 170, November 1981, p.13.

179age 50 of work cited in footnote 9.

18U. S. Embassy, Abidjan, Ivory Coast. State Department Airgram A-07, Apr. 30, 1982, p. 3.

18page 22-23 of work cited in footnote 7.

¹⁷Page 22-23 of work cited in footnote 7.

²⁰World Mining. V. 34, No. 6, June 1981, p. 158.

²¹U.S. Embassy, Maseru, Lesotho. State Department

Telegram 1606, June 23, 1981.

²²Page 20 of work cited in footnote 7.

²³Skillings' Mining Review. T.O.N.M. Buys Interest in

African Coast Diamond & Minerals. V. 70, No. 48, Nov. 28,

African Coast Planton 1981, p. 4.

24 Mining Journal (London). Mining Annual Review—
1981. South Africa Section. June 1981, p. 475.

25 Pages 126-128 of work cited in footnote 11.

Industrial Minerals (London). No. 162, March 1981, p. 48. U.S. Embassy, Freetown, Sierra Leone. State Department Telegram 5772, Nov. 20, 1981.

Page 19 of work cited in footnote 7.

²⁷Rage 19 of work close in second 27 Work cited in footnote 13. ²⁸World Mining. V. 35, No. 3, March 1982, pp. 85-86.

²⁹Mining Magazine (London). Diamond Find in Sweden. V. 143, No. 3, September 1981, p. 158.

 V. 143, No. 3, September 1997, p. 130
 Work cited in footnote 6.
 31Wilson, A. N. Diamonds: From Birth to Eternity.
 Gemological Institute of America, Santa Monica, Calif., 1981.

Jeweler's Circular-Keystone. Gemstones. V. 153, No. 2, February 1982, pp. 126-128, 130, 132.

32 Mining Journal (London). Industry in Action. V. 296, No. 7606, May 29, 1981, p. 410.

33 Engineering and Mining Journal. V. 183, No. 3, March

1982, p. 210.

34Industrial Minerals (London). No. 165, June 1981, p.

18. 35 Nassau, K. Gems Made by Man. Chilton Book Co., 1980, pp. 42-53. 35 Nassau, V. Janualows' Civoular-Keystone. V. 152, No. 1,

1980, pp. 42-53.

³⁶Huffer, H. Jewelers' Circular-Keystone. V. 152, No. 1,
January 1981, pp. 118-120.

³⁷Sobelev, N. V. What the Siberian Diamonds Tell Us.
Indiaqua Ind. Diamond Quarterly (London), No. 30,
1981/III, pp. 11-13.

Gold

By J. M. Lucas¹

As a result of exploration for new gold deposits over the past several years, the discovery of many millions of ounces2 of gold reserves at new or existing locations, especially in the Southwestern United States, were reported during 1981. Large, low-grade deposits of micron-sized gold that escaped the attention or interest of most earlier explorers and that favor modern, improved low-cost mining and recovery techniques have been the principal targets of these exploration efforts. The success of these continuing efforts, which have been encouraged by unprecedented gains in the price of gold over recent years, has resulted in a steady increase in domestic mine production since 1979 with production during 1981, at 1.4 million ounces, approaching its highest level in nearly a decade. There has also been a similar, though less dramatic, growth in total world mine production since 1979.

Table 1.—Salient gold statistics

	1977	1978	1979	1980	1981
United States:					
Mine production thousand troy ounces	1,100	999	^r 964	r970	1,378
Value thousands	\$163,192	\$193,324	r\$296,550	r\$594,050	\$633,359
Ore (dry and siliceous) produced:	4100,101	4100,021	4200,000	400 2,000	4000,000
Gold ore thousand short tons	5,806	4,292	7,046	r _{9,893}	10.451
Gold-silver oredo	481	738	756	872	1,006
Silver oredodo	800	992	962	r _{1,925}	4,435
Percentage derived from:	000			1,020	1,100
Dry and siliceous ores	60	58	r ₅₈	r ₆₆	71
Base-metal ores	38	40	r ₄₁	32	27
Placers	2	2	1	r ₂	2
Refinery production:	2	2	1	2	4
Domestic ores thousand troy ounces	956	962	795	773	801
Secondary (old scrap)	1,040	1.384	1.675	2,184	1,590
Exports:	1,040	1,004	1,010	2,104	1,000
Commercial do	7.011	5.509	16,499	6,119	6,437
Monetarydodo	1,660	NA NA	NA NA	NA NA	NA NA
Imports for consumptiondo	4,454	4,690	4,630	4,542	4,652
Gold contained in imported coinsdo	1,614	3,736	2,790	3,081	2,612
U.S. Treasury gold medallion sales ¹ do	1,011	0,100	2,100	338	189
Net sales from foreign stocks in Federal Reserve				000	100
Bankdodo	6,406	1,569	40	1,785	1,181
Stocks, Dec. 31:	0,100	1,000	20	1,100	1,101
Monetarymillion troy ounces	277.6	276.4	264.6	264.3	264.1
Industrial ² thousand troy ounces_	1.976	1.672	r868	872	630
Consumption in industry and the artsdo	4,863	4,738	4,785	3,215	2,793
Price: Average per troy ounce	\$148.31	\$193.55	\$307.50	\$612.56	\$459.64
riice. Average per troy ounce	ф140.01	ф1 <i>3</i> 3.33	\$301.50	\$012.30	\$405.U4
World:					
Production thousand troy ounces	r38,906	r38,983	r38,769	P39,141	e40.785
Official reserves million troy ounces_	r _{1.170.8}	r _{1,162.9}	r _{1,143.3}	r _{1,146.9}	1,146.6
Official reservesmillion troy ounces	1,170.8	1,102.9	1,145.5	1,146.9	1,140.0

 $^{^{\}mathbf{r}}$ Revised. ^eEstimated. ^pPreliminary. NA Not available.

¹Sales program began July 15, 1980. ²Unfabricated refined gold held by refiners, fabricators, and dealers.

³Engelhard Industries quotations.

⁴Held by market-economy-country central banks and Governments and international monetary organizations. Source: International Monetary Fund.

Table 2.—Volume of U.S. gold futures trading

(Million troy ounces)

Exchange	Location	1977	1978	1979	1980	1981
Commodity Exchange, Inc New York Mercantile Exchange International Monetary Market Chicago Board of Trade Mid-America Commodity Exchange	New Yorkdo Chicagododo	98.17 .03 90.82 1.33 .09	373.40 .85 281.30 5.49 1.50	654.15 .21 355.87 10.30 6.65	788.72 (¹) 254.35 7.15 14.86	1,041.67 251.82 1.47 15.59
Total		190.44	662.54	1,027.18	1,065.08	1,310.55

¹Less than 5,000 troy ounces. Trading in gold futures terminated in January 1980.

The rate of decline in the domestic demand for gold in fabricated products during 1980 continued in 1981 but slowed as markets adjusted to higher prices and changing economic conditions. Conversely, the reported demand for gold in the other market-economy countries rose sharply, exceeding supplies of newly mined gold by about 1.6 million ounces.

Legislation and Government Programs.—On March 19, the State of South Dakota imposed a new severance tax on precious metals mined in that State. The legislation increases the previous severance tax, based on pretax earnings, to a 6% tax on gross revenues from the sale of precious metals produced from South Dakota sources. The tax does not apply to producers mining less than 1,000 ounces of metal in any one calendar year.

In mid-1981, pursuant to legislation introduced in late 1980, the Congress established a Gold Commission to study U.S. policy with respect to the role of gold in the domestic and international monetary systems and to also consider the question of returning to a gold standard. Hearings were conducted in late 1981; the final report and conclusions of the Commission were scheduled for release in March 1982.

Legislation appropriating \$20 million for

a mining loan fund was signed by the Governor of Alaska on July 23, 1981. State residence and 5 years of mining or prospecting experience in the State is required before individuals may be considered for a loan. A broader range of requirements determines the eligibility of partnerships and corporations to obtain loans. The legislation specified that repayment of the loan for lode or placer operations shall begin 5 years and 2 years, respectively, following the date of initial production.

On October 1, 1981, Public Law 94-450, the Gold Labeling Act of 1976, which amended the National Stamping Act of June 13, 1906, and reduced permissible deviation in gold content of articles made in whole or part of gold became effective. The tolerance was reduced from one-half of one karat to three parts per thousand for most articles, or if soldered, to seven parts per thousand. The act, also referred to as the "plumb gold" amendment, was designed to take effect 5 years after the date of enactment to enable jewelry manufacturers to clear their stocks of gold pieces labeled under the previous regulations. The purpose of the act was to assist the domestic industry in meeting the requirements of foreign countries, thereby increasing U.S. exports.

DOMESTIC PRODUCTION

Domestic gold mine production, stimulated by the higher metals prices of recent years, increased for the second consecutive year. Many new or rehabilitated gold mines under development for the past several years began producing or reached full capacity during 1981 and, in spite of the decline in the gold price from its historic high of the previous year, corporate exploration for new deposits, especially in the

West, continued at a brisk pace. The volume of material washed for gold by placer operators increased threefold over that washed in 1980. Exploration, both inside and outside of established gold mining districts, continued to be directed toward high-grade vein and placer deposits, as well as large low-grade disseminated gold deposits amenable to improved heap leaching and bulk haulage techniques. The lower 1981 price did not

appear to have dampened the enthusiasm of either the amateur or the professional prospector to search for gold or to reap the recreational benefits associated with this popular outdoor activity.

Approximately one-half of domestic gold mine output was accounted for by five mines—Homestake, Utah Copper (Bingham Canyon), Carlin, Battle Mountain, and Alligator Ridge. The 25 largest mines (table 5) accounted for 89% of domestic production in 1981.

Gold production in 1981 was reported by 241 mines, of which 32 were placer mines, 78 were lode mines producing from precious metal ores or tailings, and 131 were

lode byproduct producers. About 71% of the gold came from precious metal ores, 26% came from base metal ores, and 2% came from placers (figure 1, table 6). The methods by which gold was extracted from its ores reflected the nature of the ores; thus, most of the gold was recovered by cyanidation of precious metal ores and by smelting of base metal ores, while minor quantities were recovered by amalgamation and by gravity methods (tables 7-9). The average recovery grade of gold ores mined in lode mines was 0.09 ounce per ton, while placer mines averaged 0.009 ounce per cubic yard of gravel washed.

Table 3.—Mine production of gold in the United States, by State

GOLD

(Troy ounces)

State	1977	1978	1979	1980	1981
Alaska	18,962	18,652	6,675	r12,881	25,316
Arizona	90,167	92,989	101.840	r79,631	100,339
California	5,704	7,480	r ₅ .010	r ₄ .078	6.271
Colorado	72,668	32,094	13,850	39,447	51,069
Idaho	12,894	20,492	24,140	W	W
Montana	22,348	19,967	24,050	48,366	54,267
Nevada	324,003	260,895	250,097	r278,495	524,802
New Mexico	13,560	9,879	r14,966	r _{15.847}	65,749
Oregon	675	340	w W	W	2,830
South Dakota	304,846	285,512	245.912	r267.642	278,162
Tennessee	13	W	210,012	_0.,01_	w
Utah	210,501	235.929	260.916	179.538	227,706
Washington	24,006	W	w	W.	· W
Other		14,603	r _{16,934}	r _{43,857}	41,435
	1,100,347	998,832	r964,390	r969,782	1,377,946

Revised. W Withheld to avoid disclosing company proprietary data; included in "Other."

Table 4.—Mine production of gold in the United States, by month

(Troy ounces)

Month	1977	1978	^r 1979	^r 1980	1981
January	90,768	82,304	71,827	77,922	98,887
February	81,705	89,695	68.850	78,301	93,385
March	93,498	87,198	75,567	87,040	115,200
April	87,294	89,196	75,222	89,477	110,366
May	94,166	81,305	76,153	93,054	108,291
June	86,924	84,701	76,500	83,279	119,383
July	82,238	69,119	79,557	59,595	126,365
August	93,690	83,502	92,974	57,130	125,198
September	85,855	85,600	88,654	73,888	124,324
October	99,402	94,090	92,331	84,161	123,201
November	101.034	80,506	85,370	83,366	119,386
December	103,773	71,616	81,385	102,569	113,960
Total	1,100,347	998,832	964,390	969,782	1,377,946

Revised.

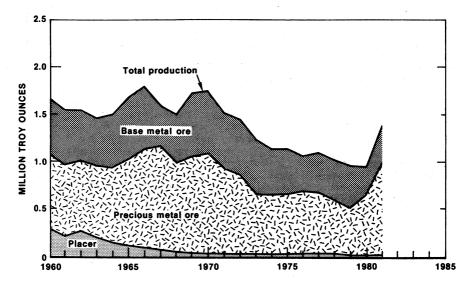


Figure 1.—Gold mined in the United States.

Several years of intensive exploration and development by various mining interests culminated in the opening of many new gold or gold-silver mines in Nevada during 1981 and for the second consecutive year. the State retained its ranking as the leading gold producing State. Exploration in Nevada added over 18 million ounces of new gold to that State's sizable reserves during 1981. Production, at 524,802 ounces, was 246,307 ounces or 88% greater than production reported the previous year. The last year in which Nevada's gold mine production exceeded that of 1981 was 1915. Nine mines in Nevada were among the top 25 gold producers in the Nation during the year. Louisiana Land & Exploration Co. announced the discovery of substantial additional reserves of gold and silver at a new ore body under evaluation adjacent to its Smokey Valley Mining Div.'s Round Mountain Mine in Nye County, about 45 miles north of Tonopah. Reserves at the new deposit, the limits of which have yet to be defined, are 8.4 million ounces of gold and 15.7 million ounces of silver. Overburden stripping was underway at yearend. Mining is expected to begin in early 1984 and reach full capacity at about 300,000 ounces per year by 1986. Following dedication ceremonies in June, Amselco Minerals Inc. began heap leaching operations on ore mined from their Alligator Ridge Mine located 70 miles northwest of Ely in White Pine County. When fully operational the mine, which is operated by Amselco, a joint venture between Selection Trust Ltd. and Occidental Minerals Corp., is expected to produce about 100,000 ounces of gold per year from three adjacent open pits.

The Pinson Mining Co., a joint venture between the U.S. subsidiaries of Lacana Mining Corp., Rayrock Resources Ltd., and United Siscoe Mines, began open pit mining and milling operations at their new mine in Humboldt County. The new computercontrolled, carbon-in-pulp mill is capable of processing 1,000 tons of ore per day for a yield of about 45,000 ounces of gold per year. Near Hawthorne, Nev., Houston International Minerals Corp., a subsidiary of Tenneco Inc., dedicated its New Borealis Mine and heap leaching complex in early November. From an identified ore reserve of nearly 3 million tons, the company expects to mine 780,000 tons of ore per year for an annual yield of 30,000 ounces each of gold and silver. Also in November, the Duval Corp., the mining subsidiary of the Pennzoil Corp., announced the discovery of a significant gold and silver deposit on a Duval-owned property near its existing Battle Mountain Mine in Lander County. The new ore body contains an estimated 2.4 million ounces of gold and 9.3 million ounces of silver in proven and probable ore reserves of about 6 million tons. Overbur-

den stripping to prepare for open pit mining began before the end of the year. Elsewhere in Lander County, Placer Amex Inc. completed reactivation of its Cortez Gold Mine and modernization of its 200-ton-per-day mill located southeast of Battle Mountain. United Mining Corp. dedicated a newly constructed Chollar ventilation shaft and escape raise at the New Savage gold and silver mine on the Comstock Lode in Storey County. The new construction will permit underground mining to begin.

Output from the Carlin Mine, west of Elko, from three open pits and two ore leaching operations increased to about 136,600 ounces. Newmont Mining Corp., parent of the Carlin Gold Mining Co., announced that its gold exploration program had resulted in several significant discoveries during the year. Drilling in progress on the Gold Quarry deposit near Carlin resulted in identifying mineralization containing 8 million ounces of gold and a new discovery south of Gold Quarry, the Rain deposit, has thus far been credited with 700,000 ounces of metal. Metallurgical investigations currently underway will determine the recovery process to be used in a new milling and heap leaching facility to be built to serve the Gold Quarry project. At yearend, Carlin's total reserves of millinggrade ore, including Maggie Creek's milling ore but excluding Gold Quarry, were 6,988,000 tons containing 0.165 ounce of gold per ton. On July 4, the Freeport Gold Co., a subsidiary of Freeport-McMoRan Oil & Gas Co., poured the first bar of gold at its new Enfield Bell (Jerritt Canyon) mining and milling complex. The mine is a joint venture of Freeport Gold Co. and FMC Gold and is located in the Independence Mountains about 50 miles north of Elko. The new project is expected to reach its full designed production capacity of about 200,000 ounces per year by mid-1982. Proven and probable reserves at yearend were about 2,900,000 ounces of gold contained in oxide and carbonaceous ores. The new mill incorporates dual recovery circuits to simultaneously process both of the ore types. The average grade of the Jerritt Canyon ore is about 0.22 ounce per ton and recovery is expected to be about 87.5%.

In California, the exploration division of the Homestake Mining Co. elevated the status of its new McLaughlin project from the advanced exploration stage to that of development. The company also announced

that exploration of the deposit had more than tripled the previous year's ore reserve estimates to a mininum of 3.2 million ounces contained in 20 million tons of ore bearing 0.16 ounce of gold per ton. Homestake also announced the discovery of higher grade gold mineralization at depth, some of which occurs below the limits of the proposed open pit. Evaluation of this higher grade occurrence, which would require underground mining methods, is continuing. Mining at McLaughlin, located in a remote area of Napa County northeast of San Francisco, is expected to startup in 1985. Near Marysville, Yuba Natural Resources, Inc., formerly Yuba Goldsfield, Inc., in a joint venture with Placer Service Corp., a subsidiary of the St. Joe Minerals Div. of the Fluor Corp., placed their recently rehabilitated gold dredge in operation on goldbearing gravels and dredge tailings along the Yuba River. The dredge, the deepestdigging dredge in the Western World, was rebuilt after several decades of inactivity and is expected to process 4.5 million cubic yards of gravel per year for an annual yield of about 25,000 ounces of gold.

In Tuolumne County, New Jersey Zinc, a division of the Gulf + Western Natural Resources Group, continued exploration of five old mining properties in the Sonora-Jamestown area. Results to date indicate a sizable reserve of low-grade gold ore. Construction at Noranda's Gray Eagle open pit gold-silver mine in northern California was well underway at yearend. The mine and mill complex, which is designed for a production capacity of 500 tons per day, is expected to startup in 1982. Northcal Gold Inc. of Northair Mines Ltd., Vancouver, British Columbia, Canada, obtained all the necessary consents to commence drilling of their Bully Hill gold-silver and base metal deposit near Redding. Pending favorable results, a decision to begin production will be made in 1982. Throughout California many companies and individual prospectors maintained the previous year's high level of exploration and reexamination of the many long-abandoned mines and prospects located throughout the State.

The Homestake Mine at Lead, S. Dak., retained its position as the Nation's largest gold mine, producing 267,392 ounces of gold from 1.8 million tons of ore hoisted and milled. The average recoverable grade of the Homestake ore is 0.150 ounce per ton. The cost per ounce of gold produced at the

Lead facility in 1981 was \$342, compared with \$308 in 1980. Mining is currently being conducted to a depth of 6,800 feet and plans are proceeding to extend mining to the 8,000-foot level. Exploration for gold by Homestake and other companies continued in promising areas of the State. Several companies conducted experimental heap leaching operations at new discoveries or on tailings and dumps left by past producers.

Kennecott Copper Corp.'s Utah Copper (Bingham Canyon) Mine, near Salt Lake City, the largest copper mine in the Nation, was again the second largest gold producer during the year. At Utah Copper, gold is recovered as a byproduct of copper production. Kennecott Minerals Co., a division of Kennecott Copper, continued exploration for precious metals on lands leased in the East Tintic mining district, Juab County, Utah. The leased area includes lands occupied by the Trixie Mine. Exploration drilling along the Homansville Fault area by Kennecott was completed during the year. In Tooele County, about 50 miles southwest of Salt Lake City, Getty Mineral Resources, a wholly owned subsidiary of Getty Oil Co., was developing its gold project at Mercur Canyon. Open pit mining at a rate of 3,000 tons per day is expected to commence in mid-1983. A new process to recover the micron-sized gold was developed initially with participation of the U.S. Bureau of Mines Research Center in Salt Lake City. The Mercur Canyon project is a joint venture between Getty and Gold Standard Inc. Anaconda Mining Co., Denver, Colo., plans to treat and process tailings and dumps for base and precious metals on lands leased in the East Tintic mining district. In November, Anaconda Minerals Co., formerly Anaconda Copper Co., temporarily suspended mining operations at its Carr Fork Mine near Tooele. Development work and engineering studies were unaffected by the suspension.

Canadian Superior Mining (U.S.), Ltd., has nearly completed development of an open pit gold heap leach operation at the old mining town of Stibnite in Valley County, Idaho. The company expects to recover about 1 ounce of gold per 10 to 20 tons of ore processed during the 8-month working season. The property was last worked for gold during the 1940's. In Idaho County, following a favorable geological evaluation indicating over 120,000 tons of ore containing about 0.5 ounce of gold per ton, Center Star Gold Mines Inc. contracted with several

firms to rehabilitate, explore, and develop the old Center Star gold mine near Elk City. In Custer County, Sunbeam Mining Co. announced plans to develop a heap leaching operation at the old Golden Sunbeam Mine, which was a major gold producer in the early 1900's. In January, Mapco Minerals Corp. purchased all mining and mineral-related properties of Earth Resources Co., including the Delamar Mine in Owyhee County. The Delamar ranked 13th in domestic gold production in 1981. Many lode and placer deposits in Idaho, mostly abandoned past producers, were under investigation or development during 1981.

Over 50 major exploration companies and numerous individual prospectors searched for gold, silver, and base metals in Montana during the year. Helicopters and occasional pack horse strings were used to gain access to several remote roadless areas. In August, Placer Amex Inc. a subsidiary of Placer Development Ltd. of Vancouver, British Columbia, Canada, announced that it will place its Golden Sunlight property, located near Whitehall, into production by mid-1983. Open pit production is expected to average 72,000 ounces of gold per year for at least 13 years. This development will be followed by underground operations to tap the deeper portions of the ore body. The property is reported to contain about 26 million tons of ore with a grade of 0.05 ounce of gold per ton. Road and site development were underway during the latter half of the year.

Placer Amex also purchased an option from U.S. Minerals Co. of Arvada, Colo., to explore and develop U.S. Mineral's Montana Tunnels property near Helena. The property has a probable reserve of 25 million tons of gold, silver, lead, and zinc ore. Ranchers Exploration and Development Corp. of Albuquerque, N. Mex., completed drilling at their Golden Grizzly property near Cooke City; results indicate an open pit reserve of about 453,000 tons of ore containing 0.15 ounce of gold per ton and 1.17% copper. Throughout Montana both experimental and operational heap leaching was performed on crude ore as well as old tailings and dumps of past producers; one indoor, all-weather, leaching facility began operations near Phillipsburg. Placer mining by small mine operators and prospectors was conducted in Missoula, Powell, Ravalli, Meagher, Mineral, and Lincoln Counties.

The Cripple Creek mining district appear-

ed to again be the focal point of gold activity in Colorado during the year. Near the end of 1981, Cripple Creek and Victor Gold Mining Co., a joint venture of Texasgulf, Inc., and Golden Cycle Corp., began limited ore production at their recently reopened Ajax and Cresson Mines. Test milling is being performed at the nearby Carlton mill; the 350-ton-per-day mill, which had been closed for over 20 years, was extensively reequipped prior to beginning test runs in late 1981. Gold mines were also under lease. development, or evaluation in the Cripple Creek district by Standard Metals Corp., Gold Run Joint Venture, Gold Ore Ltd., Silver State Mining, Yellow Gold of Cripple Creek Inc., and Newmont Minerals. In the Idaho Springs district, recently formed Equity Gold, Inc., began shipping ore from the old Stanley Mine to the nearby Black Eagle mill. Equity is also rehabilitating the Glory Hole Mine and mill and is operating mines in the Freeland Group under a leasing agreement. Cobb Resources of Albuquerque N. Mex., in a joint venture with HNG Fossil Fuels Co., a subsidiary of Houston Natural Gas Corp., is developing the old London Mine near Fairplay. Many other gold properties and prospects received attention in Colorado during the year.

Ranchers Gold & Silver Exploration Program, a New Mexico limited partnership in which Ranchers Exploration and Development Corp. has a 60% interest, continued exploration of its Mystic property, 9 miles north of Sun City, near Phoenix, Ariz. Drilling and surface sampling at the property indicate high-grade gold in a number of targets widely distributed over the property. Much additional drilling is required to fully evaluate the prospect. At Bisbee, the Small Mines Div. of the Phelps Dodge Corp., was attempting to develop additional gold and silver reserves in low-grade copper zones left unmined when the Bisbee copper mines were closed in 1975. The company, in a joint venture with Verde Explorations Ltd., was also preparing to reenter the Little Daisy Mine in Yavapai County to explore from the old workings for overlooked extensions of gold- and silver-bearing ore and to pull copper- and precious metalbearing pillars left behind when the mine was closed in 1938. Mining and exploration companies interested in precious metals pursued their objectives in most of the mining districts of Arizona, especially those in Yavapai and Yuma Counties.

From January through November the number of new mining claims staked in Alaska rose to over 26,000, which exceeds the record number staked in 1978 and 1980.3 A large percentage of these claims were staked by individual gold prospectors. In 1981, the Alaska State Div. of Geological and Geophysical Surveys conducted a field survey of 153 Alaskan gold producers and estimated that over 128,000 ounces of gold were produced during that year; of this total, all except 5,200 ounces was from placers. The total number of active gold mining operations were estimated at over 400. Conversely, the much lower total reported on a voluntary basis by producers and tabulated in tables 3 and 6, reflects a seasonal reporting problem aggravated by the remote location of most of the mining operations. In the Chandalar district north of Fairbanks, Jan-Drew Holding Ltd. of Edmonton, Alberta, Canada, continued their seasonal gold lode and placer mining operations on properties of the Little Squaw Gold Mining Co. Placer gold was also produced by TriCon Mining, Inc., in the nearby Wiseman district. TriCon also continued lode mining at the Grant Mine west of Fairbanks. Near Fairbanks, Placid Oil Co. and St. Joe American continued testing and tunneling work on their various gold properties. The Alaska Gold Co. operated three dredges at Nome and Hogatza and Tuluksak Dredging Ltd. had two dredges working on the Tuluksak River. On Livengood Creek, 60 miles north of Fairbanks, Livengood Joint Venturers, which has the largest placer gold reserves in Alaska, began using a DC-10 tractor, the largest made, to improve the efficiency of their mining. During the winter, when gravel washing is not possible, the company rips and repositions frozen pay gravel and overburden, materials, which are more manageable as large frozen chunks than as thawed loose material. On Unga Island near the south end of the Alaska Peninsula, Catalina Energy and Resources Ltd., continued exploration of the lode gold properties of Apollo Mines. Cook Inlet Exploration and Development Co. prepared to commence suction dredging operations on its tidal and offshore placer tracts in Cook Inlet near the Anchorage International Airport.

Cusac Industries Ltd., of Vancouver, British Columbia, Canada, plans to construct a 700- to 1,000-ton-per-day pilot plant to develop a suitable process for recovering gold

from their beach sand claims along the Gulf of Alaska at Cape Yakataga. Ranchers Exploration and Development Corp. expanded its placer operations on Slate Creek on the south flank of the Alaska Range. The company expected to recover between 4,000 and 5,000 ounces of gold from 300,000 cubic yards of gravel during the 1981 season. Coronado Mining Co. began underground mining at the old Independence Mine in the Willow Creek district and several placer operations were active in the Yentna-Cache Creek area west of Talkeetna.

In the Mormon Basin-Basin Creek areas west of Baker, Oreg., Veta Grande Co. Inc. of Northridge, Calif., was operating a dragline and washing plant to recover gold values from two adjacent placer deposits. Gold was produced at the Pyx and Thomason Mines in eastern Oregon. Also in eastern Oregon, Texasgulf Inc. was trucking 150 tons per day of gold, silver, and copperbearing sulfides from their Iron Dyke Mine to the Silver King flotation mill at Cuprum, Idaho. The company reported that gold production from the mine amounted to over 2,900 ounces during 1981. Several lode and placer mines were reported to be operating in western Oregon. Other mining and exploration companies pursuing gold in Oregon during the year included UNC Resources. Hanuman (Galactic Resources Ltd.), Comanche Petroleum and Blue Diamond Energy Resources, Noranda Exploration Co., Brooks Minerals Inc., Amax, Baretta Mining Inc., and Homestake Mining Co.

In Washington State, 1981 gold production at the Republic Unit (formerly the Knob Hill Mine) at Republic in Ferry County, declined slightly owing to a 1-month shutdown during October and November to make needed repairs to the main hoist and concentrator; 55,812 tons of ore bearing 0.23 ounce of gold and 1.43 ounces of silver per ton were produced during the year. In 1981, Hecla Mining Co. acquired the properties and assets of Day Mines, Inc., owners and operators of the Republic Unit. The mine has been operating since 1935 from a deposit discovered in 1896. Elsewhere in Ferry

County, Rocky Mines of Republic started a heap leaching operation for gold and silver and the Astra Corp. of Spokane, Wash., was planning to recover gold from the tailings and dumps at the old First Thought Mine near Orient, an intermittent producer of free-milling gold since 1904. In Okanogan County a small gold and silver leaching operation was begun at the Minnie Mine near Carlton and Western Land Resources was blocking out ore reserves at the old Bodie Mine near Wauconda. Houston International Minerals Corp., a subsidiary of Tenneco Inc., continued exploration in the Bodie-Wauconda area and in the area southwest of the town of Twisp an exploration drilling project was underway by the lease holders at the Alder Mine. Lion Mines Ltd. (N.P.L.) of Vancouver, British Columbia, Canada, continued seasonal exploration and development work at their New Lite property in Whatcom County. Small-scale placer operations were conducted at a number of localities statewide, most notable in the Liberty district of Kittitas County along Swauk, Williams, and Boulder Creeks; in Okanogan County on the Similkameen River placers; in northern Stevens County along the Columbia River; and in Asotin County along the Snake River.

In the south, a small production of gold was reported from South Carolina and many companies and individuals were investigating the prospects for new gold deposits in Virginia, North Carolina, Georgia, Alabama, and Texas. Elsewhere in the Nation, Callahan Mining Corp. continued their exploration and evaluation program at the old Ropes gold mine in Marquette County in the Upper Peninsula of Michigan. Gold exploration and development projects were also reported to be proceeding in Minnesota, Wyoming, and elsewhere in Michigan.

Refinery production of gold extracted from foreign and domestic ores in 1981 increased only about 2% from production reported during the previous year. Gold refined from old scrap and new (manufacturer's) scrap declined 27% and 11%, respectively, from 1980 production levels.

Table 5.—Twenty-five leading gold-producing mines in the United States in 1981, in order of output

Source of gold	Gold ore. Gold ore. Gold ore. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do
Operator	Homestake Mining Co Rennecott Copper Corp Carlin Gold Mining Co- Duval Corp Armseloo Minerals Inc Pinson Mining Co Carlin Gold Mining Co Carlin Gold Mining Co Carlin Gold Mining Co Carlin Gold Mining Co Carlin Gold Mining Co Freeport Gold Mines Barth Resources Co Cortex Cold Mines Barth Resources Co Cortex Cold Mines Cold Cold Cold Cold Cold Cold Cold Cold
County and State	Salt Lake, Utah Bureka, Nev Lander, Nev White Pine, Nev White Pine, Nev Nye, Nev Bureka, Nev Bureka, Nev Bureka, Nev Bureka, Nev Bureda, Nev Elko, Nev Final, Ariz Phillips, Mont Phillips, Mont Phillips, Mont Phillips, Mont Phillips, Mont Phillips, Mont Phillips, Mont Phillips, Mont Phillips, Mont Phillips, Mont Phillips, Mont Phillips, Mont Phillips, Nev Fire, Vash Fire, Vash Fire, Vash Fire, Colo Seward Peninsula, Alaska
Mine	Homestake Utah Copper Carlin Battle Mountain Alligator Ridge Pinson Prinson Cortis Magma Cortis Cortis Cortis Magma Manuel March Magma Cortis Magma Manuel Magma Manuel March Magma Manuel March Magma Manuel March Magma Manuel March Magma Manuel March Magma Manuel March Magma Manuel March Magma Manuel March Magma Manuel March Magma Manuel March Magma Manuel March Magma Manuel March Magma Manuel March Magma Manuel March Magma Manuel March Magma Manuel March Magma Manuel March
Rank	12844661884458788888888888888888888888888888888

Table 6.—Gold produced in the United States, by State, type of mine, and class of ore

									-
	Placer				Tode				
State	(troy ounces	Gold ore	ore	Gold-silver ore	ore.	Silv	Silver ore	Cop	Copper ore
	of gold)	Short tons	Troy ounces of gold	Short tons Th	Troy ounces of gold	Short tons	Troy ounces of gold	Short tons	Troy ounces of gold
1979: Total	^r 9,527 ^r 16,968	7,045,714 r9,892,599	516,747 *599,506	756,220 872,019	35,184 33,428	962,289 ^r 1,924,939	5,816 ¹ 5,472	^r 234,631,289 ^r 197,292,230	"383,348 "272,665
Alaska	25,217 2,225 W W	301 1,683 27,755 W 593,987	3,645 3,645 3,845 W 38,786	14,851 1,445 106,000 4,532	1,850 312 889 414	118,118 168 231,891 584,928	367 14 1,619 273	$183,828,\overline{115} \\ \\ 15,130,8\overline{77}$	95,496 14,403
Oregon South Dakota Other ¹	200 62	0,000,5005 462 1,848,303 1,369,814	277,962 277,962 93,363	W 879,293	35,395	2,523,111 976,946		$26,646$ $65,370,\overline{819}$	2,700 240,169
Total	27,712	10,450,608	922,401	1,006,121	38,860	4,435,162	16,437	264,356,457	352,768
Percent of total gold	2	XX	19	xx	8	X	1	XX	25
				Lode					
	Lead an	Lead and zinc ores	Copper-lea zinc, and co	Copper-lead, lead-zinc, copper- zinc, and copper-lead-zinc ores	-i- 85	Old tailings, etc.	etc.	Total ²	2 ₁ 1
•	Short tons	Troy ounces of gold	s Short tons	s Troy ounces of gold		Short tons Tr	Troy ounces of gold	Short tons	Troy ounces of gold
1979: Total	3,379,021 3,410,956	434 1,887	4 1,002,073 7 1,145,259	73 12,497 59 37,092	97 92	42,493 67,623	837 2,764	^r 247,819,099 ^r 214,605,625	r964,390 r969,782
1981: Aliaska ———————————————————————————————————	377 	I			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	173,174 790 W 9,000 111,935	2,418 375 W 875 412	801 184,135,978 30,158 1,108,512 16,323,924 9,302,469	25,316 100,339 6,271 51,069 54,267 524,802

South Dakota Other	-	0 	1 15	1 19	11		$\begin{array}{c} 27,108 \\ 1.848,303 \end{array}$	
Total		or	110,261,6	11,582	689,99	4,881	70,991,432	
	638	30	3,152,611	11,582	361,588	8,156	283,763,185	
Fercent of total gold	XX	€	XX	1	XX	-	*	1
Revised. WWithheld to savid disclosing common security	and the second					•	¥	

2,830 278,162 334,890 1,377,946

Includes Idaho, New Mexico, South Caroling, Tennessee, Utah, Washington, and items indicated by symbol W. Plata may not add to State totals because of items withheld to avoid disclosing company proprietary data.

*Includes hyproduct gold recovered from tungsten ore.

*Less than 1/2 unit.

Table 7.—Gold produced in the United States from ore, old tailings, etc., by State and method of recovery

			Ore and	l old tailings	to mills			
State	Total ore, old tailings, etc., treated ¹	Thousand	Recove in bul		Concent smelted recoverabl	and	old ta et	le ore, iilings, tc., elters ¹
	(thou- sand short tons)	short - tons ¹	Amalga- mation (troy ounces)	Cyani- dation (troy ounces)	Concentrates (short tons)	Troy ounces	Thou- sand short tons	Troy ounces
1979: Total 1980: Total	305,566 r263,309	304,747 r _{262,564}	1,238 9,015	518,554 r603,255	5,859,021 r _{5,569,699}	r _{415,968} r _{324,132}	819 745	19,103 16,412
1981: Alaska Arizona California Colorado Montana Oregon South Dakota _ Utah Other Other Other	(2) 3217,231 3 430 31,207 316,342 3 611,861 27 1,848 40,629 35,538	(2) 3216,846 3 429 31,199 316,321 3 611,859 27 1,848 40,474 35,436	 38 14,912 	913 321 3,300 38,353 524,064 277,962 67,829	3,801,815 3,293 60,598 260,995 5,149 2,924 824,169 1,274,367	99 95,481 3,849 31,724 15,149 446 2,706 218,462 37,334	385 1 8 21 2 (²) 156 102	3,945 343 51,133 757 5292 124 9,244 2,021
Total ⁷	324,715	324,040	14,945	912,742	6,233,314	404,750	675	⁵ 17,859

Table 8.—Gold produced at amalgamation and cyanidation mills in the United States and percentage of gold recovered from all sources

Year	Bullion an tates rec (troy or	overed			from all source rcent)	s
iear _	Amalga- mation	Cyani- dation	Amalga- mation	Cyani- dation	Smelting ¹	Placers
1977 1978	26,615 2,254 1,238 9,015 14,945	597,633 532,670 518,554 *603,255 912,742	2.4 .2 .1 .9 1.1	54.3 53.3 *53.8 *62.2 66.2	41.2 44.3 *45.1 35.1 30.7	2.1 2.2 r1.0 r1.8 2.0

Revised.

Table 9.—Gold produced at placer mines in the United States, by method of recovery

			Material		Gold recover	able
Method and year	Mines produc- ing	Washing plants	washed (thousand cubic yards)	Thou- sand troy ounces	Value (thou- sands)	Average value per cubic yard
Bucketline dredging: 1977	3 2 2 2 2 3	4 3 3 3 5	1,377 1,010 475 170 12,190	12 11 3 3 15	\$1,742 2,187 977 1,719 6,731	\$1.265 2.164 2.056 10.111 3.073

See footnotes at end of table.

¹Revised.

¹Includes some nongold-bearing ores not separable.

²Less than 1/2 unit.

³Includes tonnages from which gold was recovered by heap leaching.

³Includes tonnages from which gold was recovered as a byproduct.

⁴Excludes tonnage of tungsten ore from which gold was recovered as a byproduct.

⁵Includes a small amount of placer production to avoid disclosing company proprietary data.

⁶Includes tonnages from which gold was recovered by vat leaching.

⁷Data may not add to totals shown because of independent rounding.

¹Crude ores and concentrates.

Table 9.—Gold produced at placer mines in the United States, by method of recovery -Continued

·			Material		Gold recover	able
Method and year	Mines produc- ing	Washing plants	washed (thousand cubic yards)	Thou- sand troy ounces	Value (thou- sands)	Average value per cubic yard
Dragline dredging:	4.3					
1977	r ₁	7	² 10	32	\$311	⁴ \$5.932
1978	r ₃	9	² 60	33	519	44.339
1979	3	r ₁₀	r 286	r 3 ₄	r _{1.110}	44.019
1980	3	r11	² 55	r 36	r _{3.379}	45.780
1981	ĭ	7	230	ağ	1.200	413.023
Undervlieling	•	•	00	Ū	1,200	10.020
1977	12	13	273	5	754	2.762
1978	10	10	233	4	784	3.367
1979	ž	8	176	2	613	3.480
1980	14	14	453	4	2.657	5.869
1981	7	7	157	ī	526	3.354
Nonfloating washing plants:	•			=		
1977	r ₅	7	² 106	33	477	42.319
1978	r ₉	11	² 152	34	812	⁴ 2.448
1979	7	- 8	2 ₄₂	31	225	42.988
1980°	7	10	2314	34	2,605	47.811
1981	8	11	² 694	38	3,880	45.467
Underground placer, small-scale mechanical	•	11	094	.0	9,000	5.407
and hand methods, and suction dredge:						
1977	7	7	41	1	159	3.901
1978	5	5	1	(⁵)	13	13.431
	3	3	4	(5)	5	1.281
1979 1980	2	2	3	(5)	33	12.473
	6	7	108		401	3.728
1981	ь	· · · · · ·	108	1	401	3.728
Total placers: ⁶	Foo	00	21 005	300	0.440	41.638
1977	^r 28	38	² 1,807	323	3,443	
1978	r ₂₉	38	² 1,456	322	4,314	42.483
1979	23	r ₃₂	² 784	r 310	r2,930	42.639
1980 ^r	28	40	1 2994	³ 17	10,394	47.220
1981	25	37	¹ ² 3,179	³ 28	12,738	43.723

Revised.

¹Does not include platinum-bearing material from which byproduct gold was recovered.

³Includes gold recovered at commercial sand and gravel operations.

5Less than 1/2 unit.

Table 10.—U.S. refinery production of gold

(Thousand troy ounces)

Source	1977	1978	1979	1980	1981
Concentrates and ores:					
Domestic	956	962	795	773	801
Foreign	62	71	83	14	4
Old scrap ¹	1,040	1,384	1,675	2,184	1,590
New scrap	1,414	1,701	1,208	1,640	1,465
Total	3,472	4,118	3,761	² 4,612	3,860

¹Excludes upgrading of U.S. Government-owned gold (mostly coin gold) by the U.S. Assay Office, amounting to 316,137 ounces in 1977; 2,386,874 ounces in 1978; 3,000,068 ounces in 1979; 2,921,587 ounces in 1980; and 2,476,628 ounces in 1981. Refining activity suspended from September 1981 through the end of the year.

²Data do not add to total shown because of independent rounding.

CONSUMPTION

Domestic consumption of refined gold, as measured by its conversion into fabricated and semifabricated forms, declined for the second consecutive year to a level 42% below that reported for 1979 (figure 2, table 11). Jewelry and arts usage accounted for

52% of consumed gold, industrial uses for 39%, and dental uses for about 8%. Compared with the previous year, declines were registered in nearly all demand categories, except for industrial karat gold applications which rose 18% and the use of gold in gold-

²Excludes tonnage of material treated at commercial sand and gravel operations recovering byproduct gold.

⁴Gold recovered as a byproduct at sand and gravel operations not used in calculating average value per cubic yard.

⁶Data may not add to totals shown because of independent rounding.

filled jewelry which registered a gain of less than 1%. Rapidly rising gold prices in late 1979 and early 1980 had a severe impact on consumption in those years, as users, to conserve their inventories of refined gold, turned to less expensive substitutes and used fewer units of gold per product. Thus, electronics manufacturers were substituting palladium, tin, and other suitable metal for gold where possible, and jewelry makers were reportedly beginning to shift away

from karat golds to gold-filled, rolled gold, gold-plated, and gold-silver combinations. In 1981, however, the benefits accruing to demand by moderating gold prices were apparently more than offset by continuing substitution, factors relating to the prolonged economic recession, and the continuing high cost of borrowed money required to maintain manufacturer or consumer inventories

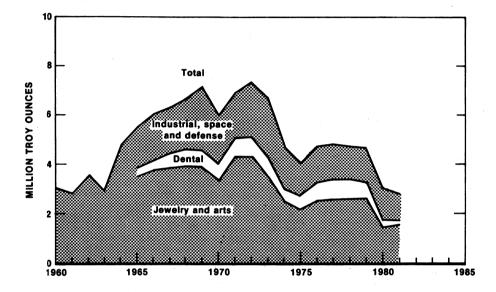


Figure 2.—Consumption of gold in the United States.

Table 11.—U.S. consumption of gold, by end use¹

(Thousand troy ounces)

End use	1977	1978	1979	1980	1981
Jewelry and arts: Karat gold Fine gold for electroplating Gold-filled and other	2,236	2,224	2,276	1,249	1,203
	37	42	32	30	24
	385	385	380	226	228
Total Dental	2,658	2,651	2,688	1,505	1,455
	728	706	646	341	221
Industrial: Karat gold Fine gold for electroplating Gold-filled and other	60	64	64	38	45
	656	687	797	592	528
	494	562	545	657	523
Total ² Small items for investment ³	1,209	1,313	1,406	1,287	1,095
	268	68	45	82	22
Total consumption ²	4,863	4,738	4,785	3,215	2,793

¹Gold consumed in fabricated products only. Does not include monetary bullion. ²Data may not add to totals shown because of independent rounding.

³Fabricated bars, medallions, coins, etc.

Although data are not reported on the purchase, or "consumption" of gold bullion by the private sector, the quantities purchased annually are believed to be represented approximately by the sizable supply surpluses that occurred each year from 1975 through 1979 and 1981. In 1975, the supply surplus was 52,000 ounces which grew to 4.1 million ounces in both 1978 and 1979 and 1.3 million ounces in 1981. In 1980 a deficit of about 0.7 ounces of bullion was registered largely because of completion, in that year, of the International Monetary Fund (IMF) auctions and suspension of

Department of the Treasury sales. Also, the flow of gold coins, mostly "bullion coins," into the United States has been substantial since the purchase of nonnumismatic coins in quantity was authorized in 1974. Estimated imports of gold coins, in millions of ounces were: 1975, 1.7; 1976, 1.3; 1977, 1.6; 1978, 3.7; 1979, 2.8; 1980, 3.1., and 1981, 2.6. In mid-1980, the Department of the Treasury began public sales of gold medallions bearing the images of celebrated American artists; a total of 189,000 ounces of gold in medallions was sold during 1981.

STOCKS

Official.—There were no public bullion auctions by the Department of the Treasury during 1980 or 1981. Stocks of bullion held by the Department at yearend 1981 were 214,000 ounces less than stocks on hand at yearend 1980. The decline was attributed in part to the use of bullion stocks to satisfy the minting requirements of the Department's gold medallion sales program.

There was no gold bullion distributed under the restitution provision of the IMF Gold Accord during 1981. The fourth and final restitution took place during December 1979 and January 1980, when 1.4 million ounces were restituted to the United States.

Official gold reserves of the marketeconomy countries, including stocks held by the IMF and the Bank for International Settlements, totaled 1.147 billion ounces at yearend. IMF bullion stocks at yearend 1981 were essentially unchanged from stocks held at the close of 1980.

Commercial.—Industrial stocks of refined gold held by U.S. refiners, fabricators, and dealers were drawn down substantially from 0.872 million ounces at yearend 1980 to 0.630 million ounces at the close of 1981. These yearend inventories, at their lowest level in several decades, reflect the further impact of relatively higher metal prices and the continuing economic recession on demand as well as high interest and operating costs that existed throughout the year. Futures exchange stocks, at 2.45 million ounces, were considerably less than those at yearend 1980 and more in line with levels posted in earlier years (table 12).

Table 12.—Stocks of gold in the United States, end of period

(Thousand troy ounces)

	1977	1978	1979	1980	1981
Treasury Department ¹ Industry Futures exchange Earmarked gold ²	277,570	276,433	264,614	264,330	264,116
	1,976	1,672	868	872	630
	1,835	2,752	2,473	4,998	2,449
	378,683	366,248	359,285	354,453	350,640

¹Includes gold in Exchange Stabilization Fund.

²Gold held for foreign and international official accounts at New York Federal Reserve Bank.

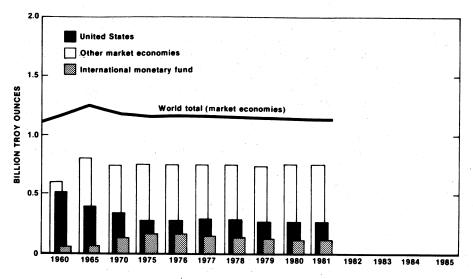


Figure 3.—World monetary gold stocks.

PRICES

After attaining record levels in January 1980, the price of refined gold (figure 4, table 13) seesawed downward and by year-end 1981 still remained well above levels reached in 1978 and early 1979. The average Engelhard Industries price of unfabricated gold in 1981 was \$459.64 per troy ounce.

Since 1979, many of the industrialized nations have adopted market-related prices for valuation of their bullion reserves; again, the United States was the only holder of large gold stocks still valuing its bullion at a fixed price (\$42.22 per ounce).

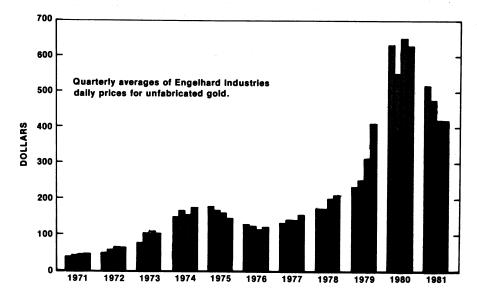


Figure 4.—U.S. gold prices.

Table 13.—U.S. monthly gold prices1

(Dollars per troy ounce)

		1980			1981	
Month	Low	High	Average	Low	High	Average
January	559.80	850.00	675.36	493.75	599.25	557.39
February	606.00	710.50	665.32	489.00	519.50	500.26
March		643.50	553.58	461.50	539.50	498.76
April	485.75	554.00	516.77	473.75	533.75	494.90
May		535.50	513.97	466.50	493.00	479.79
June		653.50	600.72	426.00	483.25	460.76
July		687.50	643.27	397.75	422.00	408.88
August		645.25	627.45	391.25	431.50	410.90
September		711.00	675.76	421.50	463.50	444.10
October		690.00	661.15	424.50	453.50	437.76
November	700.00	652.00	622.44	396.75	431.25	412.86
December	558.00	635.00	594.92	394.74	426.00	409.32
Year	481.50	850.00	612.56	391.25	599.25	459.64

¹Engelhard Industries daily quotation.

FOREIGN TRADE

In spite of the completion of bullion auctions by the IMF in early 1980 and the absence of bullion sales by the Department of the Treasury during 1981, exports of refined gold were about 500,000 ounces greater than the 4.7-million-ounce level achieved during 1980. In 1981, the United Kingdom received 70% of the refined total, compared with 37% in the previous year, followed by Canada and Mexico with 23% and 2%, respectively. Of the gold in all forms imported into the United States in

1981, 60% came from Canada, followed by the Republic of South Africa and Switzerland with 10% and 6%, respectively. An estimated 2.6 million ounces of gold in coins was imported during the year; of this total, 30% came from the Republic of South Africa, compared with over 50% from that source during the previous year. Important amounts also came from Canada, Mexico, and Switzerland, with Mexican coins gaining in popularity toward the end of the year.

Table 14.—U.S. exports of gold in 1981, by country

	Ore, base and s			ned lion	То	tal
Country	Troy ounces	Value (thou- sands)	Troy ounces	Value (thou- sands)	Troy ounces	Value (thou- sands)
Belgium-Luxembourg Canada France Germany, Federal Republic of Italy Japan Mexico. South Africa, Republic of Switzerland United Kingdom Other	123,581 786,613 61,534 52,866 2,312 6,596 4 14,142 23,583 115,650 12,540	\$58,045 373,839 29,478 25,095 955 2,731 2 8,273 11,367 54,601 6,164	2 1,186,744 91,470 32,715 14,123 16,517 101,758 5 88,808 3,645,677 59,766	\$1 560,702 45,596 18,332 6,207 8,059 56,826 2 38,536 1,738,895 28,182	123,583 1,973,357 153,004 85,581 16,435 23,113 101,762 14,147 112,391 3,761,327 72,306	\$58,046 934,541 75,074 43,427 7,162 10,790 56,828 8,275 49,903 1,793,496 34,346
Total ¹	1,199,421	570,549	5,237,585	2,501,337	6,437,006	3,071,886

¹Data may not add to totals shown because of independent rounding.

Table 15.—U.S. imports for consumption of gold in 1981, by country

	Ore, base bullion, and scrap		Refined bullion		Total	
Country	Troy	Value (thou- sands)	Troy ounces	Value (thou- sands)	Troy ounces	Value (thou- sands)
Argentina		\$560	72,266	\$33,143	73,632	\$33,703
Brazil		7,001	143,532	65,105	159,609	72,106
Canada		45,039	2,682,009	1,268,993	2,785,419	1,314,032
Chile	3,697	1,660	97,733	45,951	101,430	47,611
Dominican Republic		91,898	542	216	202,395	92,114
Guyana		3,191	860	490	9,631	3.681
Japan	10,075	4,569	117,289	56,584	127,364	61,153
Mexico	2,294	1,047	12,759	5.387	15,053	6,434
Panama	61,840	26,764	18,284	7,650	80,124	34,414
Peru	10.638	4.566	49,290	23,615	59,928	28,181
South Africa, Republic of	592	263	446,645	187,738	447,237	188,001
Switzerland	3.281	1,498	281,353	132,361	284,634	133,859
U.S.S.R		746	38,245	21,368	39,697	22,114
United Kingdom	6.683	2.072	12,329	6,093	19,012	8,165
Uruguay		7	127,884	56,012	127,884	56,012
Yugoslavia		1,138	33,493	16.895	36,781	18,033
Other		22,915	29,963	14,959	82,321	37,874
Total	487,675	214,927	4,164,476	1,942,560	4,652,151	2,157,487

Table 16.—Value of U.S. gold trade

(Thousand dollars)

Year		Exports	Imports ¹	
1978 1979 1980			1,112,711 1,113,794 4,907,864 3,647,932 3,071,886	674,026 903,024 1,480,203 2,750,120 2,157,487

¹Value of general imports for 1977. Value of imports for consumption for 1978-81; values of general imports were \$921,504,188 (1978), \$1,506,716,888 (1979), \$2,795,549,207 (1980), and \$2,157,486,432 (1981).

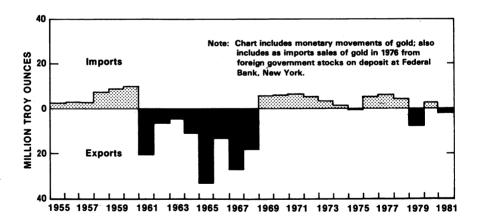


Figure 5.—Net U.S. trade in gold.

WORLD REVIEW

Estimated world gold mine production increased to about 40.8 million troy ounces in 1981. Production in the United States increased substantially as many new mines in the Western States started up or reached full-scale production. Except for developments in Brazil and Peru the pattern of production established in recent years remained essentially unchanged, with the Republic of South Africa accounting for 52% of the world mine output, followed by the U.S.S.R., China, Canada, the United States, Brazil, and 56 other countries for the remainder (figure 6, table 17).

The supply of gold (excluding most secondary gold) available to official and commercial purchasers in the market-economy countries in 1981 as reported in Consolidated Gold Fields annual summary was about 40 million ounces, of which 30.9 million ounces was mined in the marketeconomy countries and 9.1 million originated as net trade with the centrally planned economy countries. When net purchases of gold for official or governmental financial purposes, 8.4 million ounces, were excluded, the supply available to the commercial sectors of the market-economy countries was about 31.6 million ounces. Most of the gold entering the market from the Republic of South Africa, the U.S.S.R., and several other producing countries continued to be funneled through Switzerland, England, and other Western European countries. Nearly 0.5 million ounces of raw alluvial

gold of unspecified African origins was reported to have been processed by European refiners during the year. Much of the gold flowing from the United States to Europe in 1980 was bullion auctioned from IMF stocks; there were no bullion sales by the Department of Treasury during 1980, nor were there any IMF or Department of Treasury sales during 1981.

The tendency of gold to move from the official sector to the private sector, as occurred between 1973 and 1979, was reversed in 1980, and consequently, in 1981, official purchases of gold exceeded official sales by an estimated 8.4 million ounces. Demand for gold in the commercial sector of the market-economy countries during 1981 was estimated at 33.3 million ounces, a 91% increase over estimated 1980 demand, and for the first time since 1972, the demand for new gold in jewelry, coins, and industrial products exceeded the supply by about 1.6 million ounces. Gold consumed in the developed and developing countries of the market-economy world was divided, in millions of troy ounces, between the following end use categories (figures for the developing countries are in parentheses): jewelry 12.0 (7.1); electronics 2.7 (0.03); dental 2 (0.03); other industrial and decorative uses 2 (0.13); medallions and unofficial coins 0.42 (0.48); and official coins 4.8 (1.6). The totals for all categories were 23.92 (9.4) million troy ounces.

Table 17.—Gold: World mine production, by country¹
(Troy ounces)

Country² 1977 1978 1979 1980^p 1981^e North America: 1.733,609 1,735,077 1,644,265 1,627,477 e16,000 31,512,526 Costa Rica^e _ Canada _ 12,200 15,900 342,830 16,718 16,000 Dominican Republic_____ 352,982 412,982 369,603 3,619 e2,500 202,003 e73,947 El Salvador 2,156 2,720 2,492 1,000 Honduras _____ 2,481 212,709 1,501 2,027 3,000 185,000 195,991 60,000 Mexico_____ 190,364 Nicaragua_____ 65.764 61.086 50,000 United States_____ 31,377,946 1,100,347 998,832 964,390 969,782 South America: Argentina_____ 5,509 r5,600 10.956 10,900 55,600 10,140 Bolivia______ 24,293 24,660 30,319 52,075 279,520 300,898 319,258 1,300,000 1,200,000 Brazil⁴______ Chile 116,376 r102,287 111,405 219,773 297,000 Colombia ______ ^r246,446 2,734 269,369 3,215 510,439 3,537 535,000 Ecuador 8,124 3,700 r e5,000 e5,000 e4,000 French Guiana 4,823 4,000 r_{15,404} Guyana ______ 319,263 11,899 10,593 11,003 104,393 *386 103,069 Peru 141,656 148,890 220,000 Suriname _____ 380 300 350 Venezuela______ 17,403 13,384 14,989 16,519 17.500 Europe: Finland ______ 27,392 29,096 28,325 41,828 40,000 France_____ 50,444 59,640 54,109 e50,000 49,000

See footnotes at end of table

Table 17.—Gold: World mine production, by country1 —Continued

(Troy ounces)

Country ²	1977	1978	1979	1980 [©]	1981 ^e
Europe —Continued					
Germany, Federal Republic of	2,392	2,119	2,357	2,964	2,900
Hungary ^é	115,000	60,000	60,000	60,000	60,000
Portugal	r 8,841	^r 9,131	10,706	8,855	11,000
Romania ^e		65,000	65,000	65,000	65,000
Spain	117,800	102,882	91,404	108,154	105,000
Sweden	67.934	76,294	e70,000	e70,000	70,000
U.S.S.R.e	7.850,000	8,000,000	8.160,000	8,300,000	8,425,000
Yugoslavia ⁵	164,226	142,556	138,987	e138,000	138,000
Africa:	104,220	142,000	100,001	100,000	100,000
Burundi	^e 450	e450	133	130	100
Cameroon		e200	147	72	50
Central African Republic	e ₁₀₀	e965	2,181	2,000	1.500
		7.000	7,000	7,000	7,000
Ethiopia		e8,000	67,970	e9,000	12,000
Gabon		965 402,034	964	553	550
Ghana			362,000 e200	353,000	330,000
Kenya		205		125	100
Liberia		NA 125	1,086	7,243	7,000
Madagascar	76		125	114	110
Mali ^e	932	965	1,000	1,500	1,500
Mauritania	28,000	8,000	$4\overline{7}\overline{2}$	<u></u>	000
Rwanda	1,814	1,125		944	800
South Africa, Republic of		22,648,558	22,617,179	321,669,468	321,121,157
Sudan ^e		_300	300	300	300
Tanzania	23	r ₁₃₃	322	246	250
Zaire		76,077	69,992	339,963	70,000
Zambia		8,457	7,933	10,576	10,000
Zimbabwe	401,884	398,990	388,000	368,000	371,000
Asia:					
China ⁷	100,000	150,000	200,000	225,000	1,700,000
India ⁵	96,902	89,186	84,781	78,834	80,000
Indonesia8	82,300	66,166	57,452	60,231	56,000
Japan	149,004	145,240	127.626	102,339	399,314
Kampuchea ^e	1.000				
Kampuchea ^e Korea, North ^e		160,000	160,000	160,000	160,000
Korea, Republic of	r _{21,392}	¹ 27,397	24,077	41,204	35,000
Malaysia:		21,001	24,011	11,201	00,000
Peninsular Malaysia	4.172	5,805	5,273	4.621	5,800
Sarawak		971	1,062	3379	100
Philippines		586,531	535,166	589.965	670.000
Taiwan		13,407	14,243	13,278	53,300
Oceania:	11,000	10,101	11,210	10,210	00,000
Australia	^r 624,270	647,579	596,910	544,022	530,000
Fiji		28,065	25,656	e26,000	26,500
New Zealand		7,011	6,998	6,419	6,300
Papua New Guinea		751,265	630,496	451,707	3540,325
Solomon Islands		400 e400			
Colonion Islanus	3/2	-400	1,076	1,093	1,050
Total	^r 38,906,145	r38,982,769	38,768,978	39,141,041	40,784,803
	00,000,140	00,004,109	00,100,718	07,141,041	40,104,80

^eEstimated. ^pPreliminary. ^rRevised. NA Not ¹Table includes data available through June 2, 1982. NA Not available.

²Gold is also produced in Bulgaria, Burma, Czechoslovakia, the German Democratic Republic, Guinea, Norway, Poland, Senegal, Thailand, and several other countries. However, available data are insufficient to make reliable output estimates. The 1977 and previous editions of this table listed Angola and Nigeria as gold producers, but output of these countries for 1976 and later years has been revised to zero.

³Reported figure.

⁴All figures except that for 1978 differ substantially from those appearing in latest available official Brazilian sources owing to the inclusion of estimates for unreported production by small mines (garimpos). Offically reported figures are as follows, in troy ounces; major mines: 1977—121,047; 1978—128,860; 1979—107,158; 1980—131,500; small mines (garimpos); 1977—51,120; 1978—172,038; 1979—36,234; 1980—357,645.

⁵Refinery output.

⁶Data are for year ending July 6 of that stated.

[&]quot;Very conservative estimate of output 1977-80; total national production probably is much greater than these estimates, but no basis for quantification of the balance of output is available. 1981 estimate prepared by the Gold Institute, Washington, D.C.

*Excludes production from so-called people's mines.

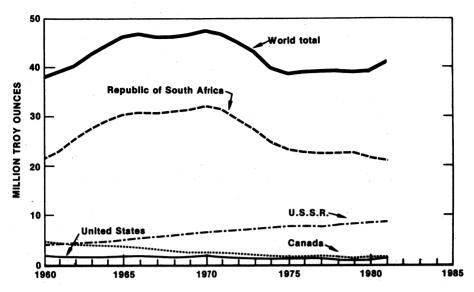


Figure 6.—Gold: World mine production.

The Goldfields report went on to note that in 1981, identified investment hoarding of gold bars totaled over 9 million ounces, the highest figure recorded since the company's annual survey began in 1970. Contrasting with the strong demand for physical gold in the market-economy countries, there was also an apparent total absence of any large-scale investment or speculative interest in gold at the sophisticated end of the market. The report concluded that in order to satisfy the increased demand for fabrication and bar approximately 10.6 hoarding, ounces of gold must have been sold from investment holdings during the year. This high volume of disinvestment during a period of rising demand may help to explain why the price of gold during 1981 failed to follow the upward path established by demand.

Australia.—Australian gold production declined from production reported during the previous year. Exploration and development of both new and established gold deposits continued at a high level, especially in the State of Western Australia. Western Mining Corp. Holdings Ltd. commissioned a 550,000-ton-per-year carbon-in-pulp

gold extraction plant at Kambalda, south of Kalgoorlie, Western Australia, for treatment of gold ores from the region, including ore produced from the Sand King open pit near Menzies, north of Kalgoorlie. The company also continued underground development at the Lancefield Mine near Windara and the Hunt gold-nickel mine at Kambalda and began development of an open pit at the Victory Mine south of Kambalda. Hill 50 Gold Mine N.L. and Western Mining began mining and/or further development of the Morning Star, Hill 50, and Saturn deposits in the Mount Magnet mining district of Western Australia. Exploration by the consortium at nearby Water Tank Hill outlined two ore shoots. Kalgoorlie Mining Associates (KMA) continued expansion of the Mount Charlotte Mine, including preparations to sink a new deep haulage-service shaft to gain access to ore bodies below the Flanagan Fault: KMA continued development of their Fimiston leases at Kalgoorlie and opened a 430,000-ton-per-year refractory ore treatment plant there.

At the Marvel Loch Mine near Southern Cross, Kia Ora Gold Corp. N.L. announced steadily improving results since the mine was reopened in 1980; Kia Ora plans to extend the depth of the main shaft to expand the development of the mine. Preliminary drilling results by the joint owners of the Big Bell Mine near Cue indicated 11 million tons of ore bearing 0.14 ounce of gold and 0.12 ounce of silver per ton; metallurgical studies are in progress and a decision to proceed further is expected in early 1982. An open pit mine is planned by Forest Gold at the Labouchere Prospect north of Meekathara. During the year, various companies were exploring new and old gold deposits near Menzies, Leonora, Wiluna, Coolgardie, Norseman, Marble Bar, and elsewhere in the goldfields of Western Australia.

In Queensland, Peko Wallsend Ltd. closed their Mount Morgan Mine after exhausting the remaining ore. The company also increased gold production at the Mount Chalmers open pit and erected a new plant to recover gold from the Mount Morgan tailings. Placer Exploration Ltd. announced completion of a feasibility study on their Kidston gold property west of Townsville. Minable reserves at the property were computed to be 43.3 million tons grading 0.06 ounce of gold and 0.65 ounce of silver per ton. In the Goonumbla area of New South Wales, Peko Wallsend continued detailed exploration on its Parkes project, a large copper-gold porphyry deposit. Exploration in central Victoria by C.R.A. Exploration Pty. Ltd. has defined two major zones of deep gold mineralization, and drilling has indicated the existence of at least three additional zones. At Roxby Downs in South Australia, Western Mining Corp. and their joint venture partners continued development of their large Olympic Dam copperuranium-gold project.

Brazil.—Brazil continued in the grip of gold fever for another year, as the metal's lure drew hundreds of alluvial gold miners, or garimpeiros, and camp followers to remote villages springing up along the routes of the new mining activity. Brazilian gold production during 1981 was estimated to have declined slightly from the 1980 high of 1.3 million ounces to 1.2 million ounces in 1981. This difference reflects a large decline in production from the Serra Pelada deposit in the State of Pará and a lesser increase in production by garimpeiros elsewhere. Production at Serra Pelada, the site of a classic gold rush during 1980, was reduced largely through the imposition of Government restrictions on mining there, which included a

temporary shutdown to alleviate unsafe working conditions and the inevitable response of the garimpeiros to the news of gold strikes and rushes elsewhere in tropical Brazil. Preliminary official Government estimates of production for 1981, which includes production from established underground and mechanized surface mines and some garimpeiro production, was about 515,000 ounces. Of the total, Brazil's largest underground mine, the Morro Velho Mine at Nova Lima, produced an estimated 160,000 ounces. The Morro Velho, which is operated by the Anglo American Corp. do Brazil Limitada (Ambras), has been operating continuously since 1835. The company, together with Mineração Morro Velho, also plans to reopen the old Cuiba-Raposas Mine in the State of Minas Gerais. Ambras announced during the year that a decision has been taken to proceed with development of a 22,000-ton-per-year mine at their Jacobina gold project in the State of Bahia.

Placer mining activities by the garimpeiros were concentrated along the Middle Tapajós River in the States of Pará and Amazonas. There was also considerable activity along the Rio Madeira in the Federal Territory of Rondônia and along drainages in the Federal Territory of Amapá and the State of Mato Grosso. Along waterways suitable for floating dredges, garimpeiros are using compact, mechanized, homemade suction dredges consisting of two small motor boats between which a sluice box and motorized suction pump have been mounted. The suction hose inlet is directed to gold-bearing sediments on the river bottom by a scuba diver. During the year, two Government-controlled exploration companies, Dosegeo and the Companhia de Pesquisas de Recursos Minerais, were granted permission to explore for gold and other minerals on Brazilian Indian reservations which have heretofore been off limits to such activity. In September, in an attempt to stem the flow of newly mined gold, which was apparently being exported illegally from the country, and to bolster the country's national gold stockpile, Brazil's National Monetary Council approved a new policy banning the export of Brazilian gold. The new proposal authorizes the country's Central Bank to buy and sell gold to the domestic markets at international prices.5 The new policy will also aid the Government in locating and controlling unregistered gold mining activities, a source of

many illegal gold transactions. For those disinclined to go prospecting, a gold futures exchange market, the Bolsa de Mercadorias, began operations in São Paulo on July 30. Only gold of Brazilian origin is deliverable against the contracts.

Canada.—At the close of 1981 there were 36 lode gold mines in Canada compared with 29 mines operating at the end of the previous year; however, reported gold production declined for the third consecutive year as miners continued to process greater tonnages of leaner ores. Ontario remained the leading gold producing Province with 33% of the total followed by Quebec with a fraction of a percentage point less, then British Columbia and the Northwest Territories with 16% and 7%, respectively. Though 4 lode mines closed during the year, 10 mines were opened-3 in Quebec, 5 in British Columbia, and 1 each in Ontario and the Northwest Territories. Other mines were completing mill construction and mine development programs and will be in full production in early 1982. The intense level of exploration that developed in 1980 was sustained throughout 1981 and a number of new discoveries were announced during the year. Dome Mines announced that preliminary drilling at a new discovery on Opapimiskan Lake, Ontario, indicated over 220,000 ounces of gold. The production of placer gold increased again over production reports during 1980, with most of the production increase attributed to placers operating in the Yukon. Details of the operations of individual mines and highlights of exploration and development were published in the Canadian Minerals Yearbook.

Chile.—In the Coquimbo area at an elevation of about 14,000 feet, St. Joe International Corp. began full-scale mining at their El Indio gold-silver-copper mine. When fully operational in 1982, the mine will produce 1,400 tons of ore per day and annual metal production is expected to be about 175,000 ounces of gold, 1.5 million ounces of silver, and 1,300 tons of copper. Prior to the development of the El Indio Mine most of the gold produced in Chile was produced as a byproduct of copper mining. In the Paihuano Commune, about 70 miles east of La Serena near the El Indio property, Chevron Exploration Corp. (Standard oil of California) in a joint venture with the Chilean subsidiary of St. Joe purchased the Libra and Mena gold-silver-copper deposits. Exploration at these properties was expected to begin in late 1981; the venture team was

also considering the possible acquisition of two other precious metals properties in the region. Several other gold prospects are under study by various companies elsewhere in Chile. A new organic mining law was prepared by the Chilean Ministry of Mines in 1981. The law is scheduled for approval and release by early 1982.

China.—Actual gold production in China is unknown, and may vary considerably from the estimates shown. A more realistic appraisal of China's gold production will not be possible until more precise data become available. To meet the immediate expenses required to implement new economic policies and to provide a means for readily accumulating foreign currency, China has placed the highest priority on the development of its gold resources. China's current policy is to expand geological exploration and the development of both new and established gold mines; accordingly, various reports originating from China during the year included announcements of new discoveries in nearly all Provinces including those of Yunnan, Inner Mongolia, Zinjiang, and Shandong.

Costa Rica.—Following 6 years of planning and construction, the Santa Clara gold mine in Puntenaras Province began production at a rate of about 1,500 tons of ore per day. The open pit, heap leaching operation is a joint venture between Canadian Barranca Corp. Ltd. of Edmonton, Alberta, and United Hearne Resources Ltd. of Vancouver, British Columbia, operators of the mine. Ore reserves at the mine are estimated to be about 4.0 million tons averaging 0.51 ounce of gold per ton.

Dominican Republic.—The output of the Pueblo Viejo gold and silver mine, the sole gold producer in the country, increased over that of 1980. The mine, which has been state-owned since 1979, is managed under a contract with the Dominican Government by Rosario Dominicana, S.A. (a subsidiary of AMAX Inc.). At present, only doré, a mixture of gold and silver, is produced; however, the Government has commissioned the construction of a domestic refinery to handle the output of the mine. The new facility is expected to start production in 1982.

Ghana.—On August 11, 1981, the Government of Ghana adapted their new Investment Code, 1981. The new code, which was incorporated to liberalize and stimulate investment, particularly from foreign sources, consolidates various existing investment

laws and is designed to create an economic environment that assures both the foreign and Ghanian investor protection of, and a fair rate of return on, their investment. All mining operations are accorded certain special benefits under the new code, including tax exemptions and deduction of some costs incurred for scientific research and development. Gold mining is individually addressed and incorporates a sliding-scale royalty based on the gross value of metal produced.

Guinea.—A private Canadian firm, Somig Inc., exploring a large block of lands leased from the Government of Guinea in the northeastern part of the country, announced the discovery of what may prove to be extensive placer deposits with associated quartz lode deposits. The presence of ancient gold mine workings provided the initial clues which led to the discovery. The placer deposits may be both eluvial and alluvial in origin. The company expected to begin a bulk sampling and testing program in late 1981.

Haiti.—The potential of three possible lode gold deposits discovered by an earlier geochemical survey were under investigation by a United Nations Technical Cooperation for Development team in northern Haiti near the border of Haiti with the Dominican Republic. Project activities during the year included mapping, sampling, drilling, and trenching of targeted areas.

India.—In response to declining production of gold and gold ore reserves in India's principal gold producing area, the Kolar and Hutti Goldfields, the Government of India launched an intensive 5-year gold exploration program focusing on the States of Karnataka, Andhra Pradesh, Bihar, Orissa, Kerala, and Maharashtra. The plan. to be executed jointly by the Geological Survey of India (GOI) and Mineral Exploration Corp., includes mapping, sampling, and exploration drilling as well as exploratory mining. The GOI is also exploring gold mining areas that were abandoned earlier for economical or operational reasons. The Ramagiri gold mines in the State of Andhra Pradesh, closed since 1929, are also being reopened.

Mexico.—Reported Mexican gold production in 1981 declined from that of the previous year. Nearly all production is recovered as a byproduct or coproduct with silver or other metals. At mid-year the Government of Mexico eliminated the variable-rate tax on gold and silver which had been adopted in early 1980.

Papua New Guinea.—Bougainville Copper Ltd., which in 1981 completed a decade of operations at their open pit mine on Bougainville Island, increased production over the 1980 level. Measured ore reserves at the property, which were recalculated at the end of 1981 from recently completed geostatistical copper and gold ore body models based on an updated ultimate pit design. amounted to about 882 million tons averaging 0.40% copper and 0.015 ounce of gold per ton. Early in the year the consortium developing the Ok Tedi gold and copper project in the Star Mountains near the Indonesian border, advised the Government of Papua New Guinea of their decision to proceed with development of the project and to form a new company, Ok Tedi Mining Ltd., to direct the development of the \$1.6 million project. Construction of the project will proceed in three stages with mining of the gold-rich cap—containing an estimated 1 million ounces of gold to highlight the first stage of development which is scheduled to begin in 1984. Later stages will focus on copper production. Another consortium continued exploration at the Frieda River copper-gold prospect in the West Sepik Province, northeast of the Ok Tedi Exploration and engineering studies were continued by a third consortium at the Porgera project located near Mount Hagen in Western Enga Province. The Porgera gold-silver deposit is estimated to contain about 110 million tons of ore. On Misima Island in the Louisiade Archipelago southeast of the New Guinea mainland, Placer (PNG) Pty Ltd., a subsidiary of Placer Development Ltd., reported favorable exploration and drilling results on their Misima gold property. Twenty-five million tons of potentially economic mineralization are indicated. The project is a 50-50 joint venture with C. R. A. Exploration Pty. Ltd.

Peru.—Not unlike a similar situation extant in Brazil, where the quest for gold has lured many people to remote areas of the country in search of their fortune, several areas of Peru have likewise become the focal point of gold rushes precipitated by the high price of gold in recent years. On the coast of Peru, north of Chimbote, 1,500 or more prospectors and adventurers rushed in during the second half of 1981 to establish claims and work the newly discovered deposits of alluvial gold exposed by a relatively recent shift in the coastal position of the mouth of the Rio Santa. In the jungles of southeastern Peru, in the remote

GOLD 389

Province of Madre de Dios, placer mining, which may be responsible for an estimated 50% of Peru's total annual gold production. is pursued by a large number of gold prospectors using hand mining methods as well as several Government and private gold mining companies using advanced exploration techniques and mechanized mining methods. Although the original Peruvian gold boom began in 1978 when the Government of Peru issued a special law to promote gold mining, mining activity peaked in 1980 and has since leveled off with the remaining mines settling down to a more carefully planned approach oriented toward long-term mining. One small town, 3-yearold Labertino, which sprang up at a gold deposit on the Madre de Dios River, now has 15,000 inhabitants, all engaged in gold panning or timbering. The Madre de Dios area is so remote that all heavy equipment and most essential supplies must be flown in at great expense. In spite of Peruvian laws requiring that newly mined gold must be sold to the state-owned Banco Minero, it has been estimated that only 50% of the actual production is so handled; the remainder is presumably sold to private individuals or smuggled out of the country.

Philippines.—Gold production at mines in the Philippine Islands increased over 1980 levels. At the Banquet Corp.'s Dizon Mine in Zimbales Province, the average monthly production rate was 8,671 ounces compared with 8,495 ounces during 1980, which was the first full year of production at the new facility. Expansion of the company's Balatoc gold mill near Bagio, which began in 1980, will, when completed, raise the average monthly output of gold from about 8,500 ounces to about 10,000 ounces per month. The expansion was expected to be completed in early 1982. Philippine Eagle Mines, Inc. (formerly Metals Exploration Asia, Inc.), continued development of their new Longos gold mine in Camarines Norte Province on Luzon; the company also acquired financing to begin construction of a gold mill at the mine site. The new facility is expected to be operational in late 1982 or early 1983. In December, the Government of the Philippines announced that it would establish a fund to assist mining companies impacted by poor world demand for copper; the fund is aimed especially at copper companies with little or no compensatory gold output. The Philippine Ministry of Natural Resources, Bureau of Mines, and Geo-Sciences continued their project aimed at accelerating the assessment, exploration, and evaluation of gold deposits in selected areas of the country; technical assistance which may be granted to qualified gold claimholders includes geological mapping, exploration drilling and metallurgical testing, chemical analyses, engineering and planning services, and technical and economic feasibility studies.

Saudi Arabia.—Gold Fields Mahd-ad-Dhahab, a joint venture between Consolidated Gold Fields Ltd. and the Saudi Arabian Petroleum and Mining Agency (Petromin), completed its study of the gold and silver deposit at Mahd-ad-Dhahab located about 200 miles north-northeast of Jiddah. The company expects to embark on a 3-year plan to develop an underground mine to produce over 130,000 tons of ore per year for an annual yield of about 95,000 ounces of gold. Several other potential gold producing properties are under investigation by other companies elsewhere within the Arabian Shield.

South Africa, Republic of.—Gold production in South Africa during 1981 amounted to 52% of world gold mine production. For the fourth consecutive year, the South African gold mining industry flourished as relatively high metal prices continued to spur activity and expansion in all sectors of the industry from exploration to refining. Many mines that had recently closed or were threatened with closure were being actively developed in response to the increased value of their product. The 36 mines and 1 metallurgical recovery operation that were members of the Chamber of Mines accounted for 96.8% of all South African production. The total ore milled, including ore milled by producers of byproduct and coproduct uranium, amounted to 101.3 million tons, averaging 0.22 ounce of gold per ton, compared with 1980 when 99.1 million tons averaging 0.23 ounce per ton were milled, for a total yield of 21.7 million ounces. Working costs for South African gold mines in 1981 averaged, in South African rands (R) R177.88 (US\$185.96) per ounce and ranged from R96.70 (US\$101.09) per ounce at East Driefontein to R426.83 (US\$446.21) per ounce at Wit Nigel. Production by the six major mining groups was as follows in million ounces; Anglo American Corp. of South Africa, Ltd., 7.7; Gold Fields of South Africa, Ltd., 4.5; General Mining Union Corp., Ltd., 3.5; Rand Mines Ltd., 2.3; Johannesburg Consolidated Investment Corp., Ltd., 1.3; and Anglo Transvaal Consolidated Investment Co. Ltd., 1.2.

The largest producing mines, in terms of millions of ounces of gold output, were Vaal Reefs, 2.4; Western Holdings, 1.3; West Driefontein, 1.3; and Western Deep Levels, 1.2. Nine gold mines and two metallurgical recovery units also produced uranium during 1981. Vaal Reefs was the largest uranium producer, with a yield of 1,867 tons of uranium oxide. Estimates of fully developed or blocked-out gold ore reserves reported by the Chamber of Mines at the close of 1981 totaled 511 million tons, containing an average of about 0.29 ounce of gold per ton. The world's largest gold mine, in terms of gold production, was formed on July 1, by the merger of the East Driefontein Gold Mining Co. Ltd. and the West Driefontein Gold Mining Co., both members of the Consolidated Gold Fields Group. The new company, Driefontein Consolidated Ltd., will produce over 2.5 million ounces of gold annually. On July 1, the establishment of the Anglo American Group's Western Holdings complex became effective. The complex, which resulted from the three-way merger of three mines—those of Free State Saaiplaas Gold Mining Co. Ltd., Welkom Gold Mining Co., Ltd., and Western Holding Ltd., was undertaken to increase production efficiency and to jointly exploit a gold- and uraniumbearing area located near the three existing mines. The combined ore treatment capacity of the new complex makes Western Holding the largest gold mine in the world in terms of the quantity of ore processed. Anglo American's Western Deep Levels Ltd. announced an expansion plan that includes surface and sublevel shaft systems, a new gold recovery plant, and personnel housing projects. The plan is expected to take over 10 years to complete.

In spite of escalating costs and depressed gold prices in 1981 compared with 1980, a number of South African gold mining companies announced plans to expand or streamline their production capabilities over the next several years.

U.S.S.R.—Soviet gold production was estimated to have increased over estimated 1980 production. The export of gold by centrally planned economy countries to market-economy countries was estimated to have amounted to up to 6.5 million ounces in 1981 compared with exports of 7.4 million ounces in 1979 and 2.9 million ounces in 1980. Because nearly all of that gold, which was exported to gain essential foreign exchange, came from the U.S.S.R., the decline in Soviet gold exports between 1978 and 1980 may indicate that during that period the Soviet Union was able to satisfy a growing percentage of its exchange requirements from other exports such as oil and gas. In 1981, however, reduced demand for these products in the market-economy countries was apparently responsible for reversing this trend in declining gold exports. Nearly 40,000 ounces of Soviet gold, mostly in the form of refined bullion, was imported into the United States during 1981. No direct imports of Soviet gold were received by the United States during 1980, however, 35% of U.S. gold imports during 1979 were from that source.

A 1981 study by the U.S. Bureau of Mines estimated that Soviet gold production could rise about 1.1% per year to between 9.3 and 11.2 million ounces by 1990. Assuming that consumption and some stockbuilding absorb an average of 20% of the annual production, the U.S.S.R. could be selling 7.4 to 9 million ounces per year in the 1980's and still have extra reserves for emergency grain purchases.

TECHNOLOGY

The Bureau of Mines conducted further research aimed at improving the recovery of precious metals from low-grade resources and industrial waste and scrap. In 1981, a summary of recent Bureau of Mines results concerning in situ mining research was published. The principles associated with gold and silver leach mining, problems confronting potential leaching operations, and leaching projects in progress to resolve these problems were addressed. The Bureau investigated methods for the recovery of byproduct heavy minerals from sand and

gravel operations in Oregon and Washington. Samples from more than 40 locations were subjected to a variety of separation techniques and gold and heavy minerals were identified in the resultant concentrates. Recovery rates for the individual mineral products ranged from 67% to 95%. The Bureau also reported on the development of economic methods for recovering copper and associated metals, including precious metals, from three categories of complex electronic scrap. A means of effecting an initial separation and upgrad-

391 GOLD

ing to produce a high-grade cement copper containing all or most of the precious metals was developed.11 A process for improving the heap leaching characteristics of some gold and silver ores was developed and patented by the Bureau. Solution flow rates through ore heaps are effectively increased by agglomerating fine particles in the ore with a binder such as cement or lime, water, and an aging or curing step. 12 A new process for the recovery of gold from sulfide residues by roasting and leaching with thiourea was developed and patented.13

The Gold Bulletin, a quarterly journal of the Chamber of Mines of South Africa, contained a variety of articles on new gold uses and technology.14

⁴DuBoulay, L. Gold 1982. Pub. by Consolidated Gold Fields, PLC., London. May 1982.

⁵Gold Regulations and Taxes for Mining, Refining, Manufacturing and Trade in Thirteen Countries. Pub. by the Gold Institute/L'Institut De L'or, Washington, D.C., 1981, 87 pp.

*Martino, O., D. Hyde, and P. Velasco. Mineral Industries of Latin America. BuMines MP, 1981, p. 31.

*Work cited in footnote 5.

*Grichar, J. S., R. Levine, and L. Nahai. The Nonfuel Mineral Outlook for The U.S.S.R. Through 1990. BuMines

MI, 1981, pp. 14-15.

Staff, Bureau of Mines. In Situ Mining Research.

*Staff, Bureau of Mines. In Situ Mining Research. Proceedings, Bureau of Mines Technology Transfer Seminar, Denver, Colo., 1981. BuMines IC 8852, 1981, 107 pp. 1 Martinez, G. M., J. M. Gomes, and M. M. Wong. Recovery of Byproduct Heavy Minerals From Sand and Gravel Operations in Oregon and Washington. BuMines RI 8563, 1981, 14 pp. 1 Salisbury, H. B., L. J. Duchene, and J. H. Bilbrey. Recovery of Copper and Associated Precious Metals From Electronic Scrap. BuMines RI 8561, 1981, 16 pp. 1 Heinen, H. J., G. E. McClelland, and R. E. Lindstrom. Leaching Agglomerated Gold-Silver Ores. U.S. Patent

Leaching Agglomerated Gold-Silver Ores. U.S. Patent 4,256,705, Mar. 17, 1981.

13Bodson, F. J. J. Metal Recovery From Sulfur-Containing Material. French Demande 2476137. Aug. 21,

1981, 11 pp.

14 Chamber of Mines of South Africa Research Organiza14 Chamber of Mines of South Africa Research Organiza14 Chamber of Mines of South Africa Research Organiza15 Chamber of Mines of South Africa Research Organiza-

¹Physical scientist, Division of Nonferrous Metals. ²Ounce means troy ounce.

³Eakins, G. R. Mineral Activity in Alaska, 1981. Pres. at Northwest Min. Association Ann. Convention, Spokane, Wash., Dec. 5, 1981.

Graphite

By Harold A. Taylor, Jr.1

Consumption of natural graphites, all imported, increased 9% in 1981 to 57,364 short tons. Imports of natural crystalline and amorphous graphite increased 14% in quantity from the 1980 level. Natural crystalline flake graphite became generally more available, and a shift in usage from amorphous to crystalline flake was indicated by the import data. Prices of imported

graphites generally rose during the year, although some prices began to drop around yearend.

Production of manufactured graphite in 1981 increased slightly to 372,223 tons valued at \$935 million. Production of graphite fibers increased 75% to 830 tons valued at \$49 million.

Table 1.—Salient natural graphite statistics

	1977	1978	1979	1980	1981
United States: Apparent consumption	² 73,773 13,783 \$2,662 87,556 \$8,058 ⁵ 543,925	90,396 9,595 \$2,304 99,991 \$11,700 \$582,511	77,562 8,623 \$3,741 86,185 \$13,035 r684,826	52,438 8,880 \$3,695 61,318 \$15,765 P653,639	57,364 11,344 \$4,433 68,708 \$23,998 655,288

^eEstimated. ^pPreliminary. ^rRevised.

Legislation and Government Programs.—National stockpile goals for strategic graphite, changed in 1980 to reflect specification revision, were unchanged in

1981. Stockpile goals and inventories for each type of graphite are shown in table 2. There were no acquisitions or disposals of strategic graphite in 1981.

Table 2.—Government stockpile goals and yearend stocks of natural graphite in 1981, by type

(Short tons)

Туре	Goal	National stockpile inventory
Madagascar crystalline flake Sri Lanka amorphous lump Crystalline, other than Madagascar and Sri Lanka Non-stockpile-grade, all types	20,000 6,300 2,800	17,895 5,443 1,933 935

Source: General Services Administration. Inventory of Stockpile Materials as of Dec. 31, 1981.

Excludes domestic production.

²Revised to include some manufactured graphite imported for consumption.

³Includes some manufactured graphite; see table 9.

DOMESTIC PRODUCTION

The one U.S. mine, near Burnet, Tex., owned by the Southwestern Graphite Co., a division of Joseph Dixon Crucible Co., made no shipments from stocks and thus completed its closure. Other domestic graphite deposits, such as those in Alabama, Montana, and Alaska, received little attention from investigators contemplating the development or redevelopment of any mines. Therefore, no mine openings seemed likely in the near future.

Reported production of manufactured graphite increased slightly to 372,223 tons in 1981. Manufactured graphite was produced at 32 plants in 1981, with some additional production for in-house use likely.

Production of all kinds of graphite fiber and cloth increased 75% to 830 tons in 1981. The value per pound of high-modulus fibers expressed as an index (1976 = 100) was 48 in 1981, compared with 52 in 1980, 62 in 1979, 72 in 1978, and 85 in 1977. The value per pound of cloth and low-modulus fibers expressed as an index (1976 = 100) was 121 in 1981, compared with 116 in 1980, 107 in 1979, 112 in 1978, and 118 in 1977.

The Department of Energy has released a new study of the Narragansett Basin anthracite-amorphous graphite resources. On the basis of 28 drill holes and previous knowledge of the regional geology, it was estimated that resources total 17.1 million tons of anthracite-amorphous graphite in the Rhode Island part of the basin where the amorphous graphite is concentrated. Amorphous graphite was last mined in Rhode Island in 1957 and was used in foundry facings, as a carbon raiser in steel, and as a paint pigment.²

Domestic plant capacity for graphite fiber continued to grow. Hercules, Inc., announced that it would increase the capacity of its Utah plant to 550 short tons annually by early 1982 and 1,250 short tons by 1984. Celanese Corp. announced that it would begin production at its new 200-ton-per-year plant near Rock Hill, S.C., in April 1982. It planned to expand the new plant by an additional 500 to 800 tons annual capacity by the end of 1983.

Union Carbide Corp. made some changes in its graphite operations. The Acheson plant at Niagara Falls, N.Y., was to be closed and its graphite specialties operations moved to the Clarksburg, W. Va., plant. Two other plants at Niagara Falls were to be modernized and expanded. Some

electrode production facilities were to be moved from the Clarksburg plant to the Columbia, Tenn., plant. The biggest change planned was a \$40 million expansion program for the Yabucoa, P.R., plant that would improve handling of the raw materials and petroleum coke and pitch and would increase environmental protection. The new Clarksville, Tenn., plant of Union Carbide came onstream in 1981.

Sigri Carbon Corp. started a major expansion of its Hickman, Ky., graphite electrode plant and acquired Polycarbon, Inc., of North Hollywood, Calif., a producer of graphite fiber and cloth."

Airco, Inc., the wholly owned U.S. subsidiary of the BOC group of the United Kingdom, announced its intention to invest \$247 million to expand its synthetic graphiterelated operations. It planned to build a new 15,000-ton-per-year graphite electrode plant at Ridgeville, S.C., and a petroleum needle coke facility at Seadrift, Tex. The new electrode plant would get its raw material from the petroleum coke plant, which will meet 90% of the company's needs in the 1980's. The new electrode plant, plus expansions at the existing plants, will raise company capacity in the U.S. for graphite electrodes by 20% to 120,000 tons per year. Plans to construct an electrode plant at Tallulah, La., were canceled because of foundation problems encountered upon beginning plant construction.8

A comprehensive article on graphite electrodes indicated that the Airco expansion, along with previously announced recent expansions by other graphite electrode manufacturers, will serve a fairly rapidly expanding market for graphite electrodes created by the electric arc furnace steelmakers.9 These steelmakers comprise one of the few growth areas in the steel industry. Although North America has been the best market for electrodes in the last few years, the rest of the world market is expected to recover. The long-term future for electrodes looks good; the electric arc furnace portion of world steel output, now 22%, is expected to grow substantially. However, adoption of a composite electrode with a water-cooled upper section made of metal could potentially reduce graphite electrode consumption by 20% in a steel plant, if proven to be feasible.

The Stackpole Corp. installed a new furnace for carbonization that will drastically

cut its natural gas consumption per pound of product to a small fraction of the present amount. Most of the other major producers of synthetic graphite have also taken determined action to curb their natural gas consumption.

Table 3.—Principal producers of manufactured graphite in 1981

Company	Plant location	Product ¹
Airco Carbon, a division of Airco, Inc	Niagara Falls, N.Y	Anodes, electrodes, crucibles, motor
Do	Punxsutawney, Pa	brushes, refractories, unmachined
Do	St. Marys, Pa	shapes, powder.
Avco Corp., Avco Specialty Materials Div_ The Carborundum Co., Graphite Products	Lowell, Mass	High-modulus fibers.
Div.	Sanborn, N.Y	Motor brushes, unmachined shapes, cloth.
Celanese Corp., Celanese Research Lab	Summit, N.J.	High-modulus fibers.
Fiber Materials, Inc.	Biddeford, Maine	Do.
Fiber Technology Corp	Provo, Utah	20.
BF Goodrich Co., Engineered Systems Div.,	11010,0000 = = = = = = = = = =	
Sunar Town Operation	Santa Fe Springs, Calif	Other
Great Lakes Carbon Corp	Elizabethton, Tenn	Outco.
Do	Morganton N.C.	Anodes, electrodes, powder,
Do	Morganton, N.C Niagara Falls, N.Y	high-modulus fibers.
Do	Ozark, Ark	mgn-modurus mocrs.
Do	Rosamond, Calif	
Hercules Inc	Salt Lake City, Utah	High-modulus fibers.
HITCO Materials Group, ARMCO Inc	Gardena, Calif	Cloth and high-modulus fibers.
Pfizer Minerals, Pigments & Metals Div	Easton, Pa	Other.
Poco Graphite, Inc	Decatur, Tex	Unspecified.
Polycarbon, Inc	North Hollywood, Calif	Cloth.
Signi Carbon Corn	Hickman, Ky	Electrodes and other.
The Stackpole Corp., Carbon Div	Lowell. Mass.	High-modulus fibers, anodes, motor
Do	St. Marys, Pa	brushes, unmachined shapes, powder.
Superior Graphite Co	Chicago, Ill	brusiles, unmachineu snapes, powder.
Duporior Grapina COLLEGE	Omeagu, m	Powder and other.
Do	Hopkinsville, Ky	Towaer and ouner.
Ultra Carbon Corp	Bay City. Mich	Other.
Union Carbide Corp., Carbon Products	Day Ony, Mich	Ounci.
Div.	Clarksburg, W. Va \	
Do	Clarksville, Tenn	
Do	Columbia, Tenn	Anodes, electrodes, unmachined shapes,
Do	Fostoria, Ohio	motor brushes, powder, cloth,
Do	Greenville, S.C	high-modulus fibers, other.
Do	Niagara Falls, N.Y	men-modulus libers, valer.
Do	Yabucoa, P.R	
2	1 40 4004, 1 .10/	

¹Cloth includes low-modulus fibers; electric motor brushes include machined shapes; crucibles include vessels.

Table 4.—Production of manufactured graphite in the United States, by use

	198	30	1981		
Use	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	
Synthetic graphite products: Anodes	17,848	\$42,364	18.816	\$ 42,445	
Cloth and fibers (low-modulus)	r ₁₆₉	*11,254	216	15,293	
Crucibles, vessels, refractories	W	W	W	w	
Electric motor brushes and machined shapes	W	w	W	w	
Electrodes	258,453	527,949	257,938	641,709	
Graphite articles	_===	44,482		45,432	
High-modulus fibers	r306	^r 17,379	614	33,828	
Unmachined graphite shapes	12,625	27,533	17,508	32,931	
Other	r _{51,729}	r93,622	40,196	96,749	
Total	r341.130	r764.583	335,288	908,387	
Synthetic graphite powder and scrap	25,940	11,226	36,935	26,252	
Grand total	r367,070	r775,809	372,223	934,639	

^rRevised. W Withheld to avoid disclosing company proprietary data; included with "Other."

Table 5.—Production of graphite fibers in the United States

Year		h and ulus fibers	High-mod	lulus fibers	Total		
	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands	
1974	w	w	w	w	e ₁₅₀	e\$14,000	
1975	168	e\$12,000	e30	e\$3,500	^e 198	e _{15,500}	
1976	163	11.376	^r 37	[‡] 3,870	200	15,246	
1977	r ₁₃₆	r8,800	r49	r ₄ ,330	185	13,130	
1978	r ₁₄₁	r8,720	r ₁₄₉	r _{11,804}	290	20,524	
1979	169	r _{10.089}	^r 194	r _{13,031}	363	23,120	
1980	r169	r _{11,254}	r306	r _{17,379}	475	28,633	
1981	216	15,293	614	33,828	830	49,121	

^eEstimated. ^rRevised. W Withheld to avoid disclosing company proprietary data.

CONSUMPTION AND USES

Apparent consumption of natural graphite, all imported, increased 9% to 57,364 tons. Reported consumption of natural graphite in 1981 (table 6) increased 9% to 48,046 tons. The three major uses of natural graphite—refractories, foundries, and steelmaking—accounted for 55% of reported consumption in 1980 and 58% in 1981.

The actual amount of natural graphite consumed was greater than that shown in table 6, which lists only the results of a canvass of major known consumers. While this canvass probably gives some indication of consumption patterns, caution is advised in using these data owing to incomplete coverage.

Arc Technologies System Ltd. marketed a new holder for graphite electrodes that was said to reduce graphite electrode consumption by 30% to 40% in electric arc furnace operation.¹⁰

Most new applications for graphite fiber composites will reportedly require improved manufacturing and fabricating methods, especially for new applications in the automobile. After several methods were examined, it was concluded that most methods do not easily lend themselves to mass production, although some new methods do look promising 11

Graphite fiber has been chosen for several important new uses. The National Aeronautics and Space Administration-Lockheed Space Telescope, scheduled for launching in the mid-1980's, will use structural booms made of 60% aluminum-40% graphite fiber composite material and will have one of the highest stiffness-to-weight ratios of any structure ever built. The Food and Drug Administration approved the use of graphite fiber in clinical trials to enhance the regrowth of tendons and ligaments. The Food and Drug Administration approved the use of graphite fiber in clinical trials to enhance the regrowth of tendons and ligaments.

Table 6.—Consumption1 of natural graphite in the United States, by use

	Crysta	ılline	Amor	phous ²	To	Total		
Use	Quantity value Quantity value	Value (thousands)	Quantity (short tons)	Value (thousands)				
1980								
Batteries	w	w	w	w	w	w		
Brake linings	933	\$959	r _{1,677}	r\$1,261	r2,610	r\$2,220		
Carbon products3	r272	¹ 328	^r 381	¹ 349	^ŕ 653	¹ 677		
Crucibles, retorts, stoppers,								
sleeves, nozzles	5,188	3,360			r _{5,188}	r _{3,360}		
Foundries	r _{1,393}	r _{1.098}	r _{5.394}	r _{2.113}	r _{6,787}	r _{3,211}		
ubricants4	867	1,176	r _{1,751}	r _{1,330}	r _{2,618}	r2,506		
Pencils	r _{1,706}	r _{2,103}	r ₆₅₉	⁷ 364	r _{2,365}	r2,467		
Powdered metals	288	361	112	182	400	543		
Refractories	1,062	225	r8,863	r2,049	r _{9,925}	r2,274		
Rubber	31	25	241	168	272	193		
Steelmaking	386	165	r _{6.880}	r _{1.964}	r7,266	r _{2,129}		
Other ⁵	^r 4,211	r3,280	r _{1,627}	^r 2,449	r _{5,838}	r5,729		
Total ⁶	^r 16,338	r13,080	r27,585	r12,230	r _{43,923}	r25,309		

See footnotes at end of table.

Table 6.—Consumption of natural graphite in the United States, by use —Continued

	Crysta	lline	Amor	phous ²	To	otal
Use	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)
					e .	
1981						
Batteries	w	w	w	w	W	w
Brake linings	834	\$778	1,915	\$1,787	2.749	\$2,565
Carbon products ³	287	545	260	468	547	1,013
Crucibles, retorts, stoppers,	201	010	200	100	011	1,010
sleeves, nozzles	5,307	3,578			5,307	3,578
Foundries	563	324	5,387	2.613	5,950	2,937
Lubricants ⁴	984	1,259	2,020	1,816	3,004	3,075
Pencils	1.912	2,336	632	372	2,544	2,708
Powdered metals	342	490	147	279	489	769
Refractories	1,928	441	9.682	2,782	11,610	3,223
	64	85	183	96	247	181
Rubber Steelmaking	391	166	9,792	2,493	10.183	2,659
	3,852	2,656	1,564	1,905	5,416	4,561
Others	3,892	2,000	1,004	1,900	0,410	4,001
Total	16,464	12,658	31,582	14,611	48,046	27,269

W Withheld to avoid disclosing company proprietary data; included with "Other."

Data may not add to totals shown because of independent rounding.

PRICES

Actual graphite prices are often negotiated between the buyer and seller, and published price quotations are given as a range of prices, such as those shown in table 7. Another source of information for imported graphite is the average customs value per ton of the different classes of imports, which can be derived from table 9. However, it should be noted that these mainly represent shipments of unprocessed graphite.

Average prices of graphite imports increased in 1981. Prices for crystalline flake rose from \$585 per short ton in 1980 to \$662 per short ton in 1981. Prices for Mexican amorphous graphite rose from \$42 per short

ton in 1980 to \$66 per short ton in 1981. Prices for all types of Sri Lankan lump graphite rose from \$971 per short ton in 1980 to \$1,509 per short ton in 1981. Prices for other natural graphite (mostly fine crystalline flake and dust) rose from \$440 per short ton in 1980 to \$520 per short ton in 1981.

Representative yearend prices of several types of imported graphite, as published in the Engineering and Mining Journal, are shown in table 7.14 All prices are f.o.b. the foreign port or border station and have been converted from metric tons.

Table 7.—Representative yearend graphite prices1

(Per short ton)

	1980	1	198	31
Flake and crystalline graphite, bags:	4070.4	1 001	0070	61 740
China Germany, Federal Republic of	\$272-\$ 381-	2,177		\$1,542 2,540
Madagascar	272-	816	227-	635
Norway Sri Lanka	318- 816-	726 2,268	354- 816-	635 2,268
Amorphous, nonflake, cryptocrystalline graphite (80% to 85% carbon):		82	71	
Korea, Republic of (bags) Mexico (bulk)	71- 54-	82 77	71- 59-	82 91

¹F.o.b. foreign port or border.

Source: Engineering and Mining Journal, v. 182, No. 12, December 1981, p. 23.

¹Consumption data incomplete. Small consumers excluded.

²Includes mixtures of natural and manufactured graphite.

³Includes bearings and carbon brushes

Includes ammunition, packings, and seed coating.

Includes paints and polishes, antiknock and other compounds, drilling mud, electrical and electronic products, insulation, magnetic tape, small packages, miscellaneous, and uses indicated by symbol W.

FOREIGN TRADE

Exports of natural graphite in 1981 increased while exports of artificial graphite decreased.

Imports of natural graphite increased 14% to 65,659 short tons in 1981. Brazilian exports of both natural and artificial graphite gained significantly, rising from 4,305 short tons in 1980 to 6,593 short tons in 1981.

Imports of graphite electrodes for consumption totaled 46,351 short tons worth \$64.8 million in 1981, of which 21,421 tons (\$42.1 million) came from Japan, 3,065 tons

(\$3.7 million) from France, 5,981 tons (\$2.2 million) from Canada, 6,158 tons (\$5.6 million) from the Federal Republic of Germany, 6,387 tons (\$7.4 million) from Italy, and the balance from other sources. Exports of graphite electrodes in 1981 totaled 70,527 short tons worth \$140.0 million, of which 6,293 tons (\$11.8 million) went to Canada, 14,187 tons (\$33.3 million) to Venezuela, 8,236 tons (\$18.6 million) to Brazil, 6,998 tons (\$17.4 million) to Argentina, and the balance to other destinations.

Table 8.—U.S. exports of natural and artificial graphite, by country

	Nat	ural ¹	Art	ificial	To	Total		
Country	Quantity (short tons)	Value	Quantity (short tons)	Value	Quantity (short tons)	Value		
1980	8,880	\$3,695,315	9,281	\$5,637,810	18,161	\$9,333,125		
1981: Canada Germany, Federal Republic of Italy Japan Mexico Netherlands United Kingdom Venezuela Other ²	6,764 775 766 167 848 13 360 554 1,097	2,009,707 614,943 282,952 197,743 321,476 15,730 145,473 309,369 535,444	1,456 823 406 846 633 796 314 20 1,973	393,174 471,391 169,480 614,981 195,562 325,566 151,513 53,509 1,096,227	8,220 1,598 1,172 1,013 1,481 809 674 574 3,070	2,402,881 1,086,334 452,432 812,724 517,038 341,296 296,986 362,878 1,631,671		
Total	11,344	4,432,837	7,267	3,471,403	18,611	7,904,240		

¹Amorphous, crystalline flake, lump or chip, and natural, not elsewhere classified.
²Includes 41 other recipient countries to which varying, but lesser, tonnages of natural and/or artificial graphite were exported.

Table 9.—U.S. imports for consumption of natural and artificial graphite, by country

			Nat	ural						
Country		talline ake	lump	o, chip crud		natural Arti le and ined		ficial ¹	Total ²	
	Quan- tity (short tons)	Value (thou; sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
1979	5,970	\$2,334	435	\$ 151	76,363	\$7,657	3,419	\$2,893	86,185	\$13,035
1980:										
Austria					18	5			18	5
Belgium-Luxembourg					17	19			17	19
Brazil	2,921	1,634			345	168	1,039	582	4,305	2,385
Canada	530	152	22	5	451	130	518	127	1,521	414
China	228	152			2,222	943			2,450	1,095
France Germany, Federal	199	116			3	12			202	129
Republic of	160	166			800	697	32	428	992	1,291
Hong Kong	88	104			165	95			253	198
India	55	37							55	37
Japan					346	307	191	1,050	537	1,357
Madagascar	2,011	1.063			462	144			2,473	1,207

See footnotes at end of table.

Table 9.—U.S. imports for consumption of natural and artificial graphite. by country —Continued

			Nat	ural						
Country		alline ke	Crystalline lump, chip or dust		Other natural crude and refined		Artificial ¹		Total ²	
Country	Quantity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)
1980 —Continued										
Mexico Netherlands Norway South Africa, Republic of Sri Lanka Sweden Switzerland Taiwan U.S.R United Kingdom	137 18 71 137 597 (*) 36	\$106 6 28 83 541 3 12	77 	\$43 	40,277 173 279 1,036 18 	\$1,677 95 144 1,076 53 -27 1,089 45 1	1,905 (*)	\$\bar{1}\\\\\\ 2,585\\\\ \\ 12	40,414 21 244 416 1,710 18 1,905 55 3,594 118 (*)	\$1,784 7 122 227 1,661 53 2,588 27 1,089 69
Venezuela	7,188	4,203	99	48	50,343	6,728	3,688	4,787	61,318	15,765
1981: Australia	18 4,606 1,126 1,536 40 537 68 386 14 1,955 287 	 8 3,159 427 796 23 286 81 232 1,261 206 15	(*)	1	12 17 1,755 3,124 5,042 166 1,005 118 317 1,183 39,184 (*)	6 72 1,170 1,239 2,371 84 673 108 337 592 2,576 1	(3) 	2 161 98 52 126 1,414 1	12 17 18 6,593 4,597 6,578 40 5 703 1,155 504 3,088 39,471 (3) (3) (5)	8 72 8 4,490 1,764 3,167 23 52 370 881 1,763 2,153 2,782 2 4 304
Norway	81 304 	44 421 	 		161 1,167 4 401 341 159	82 1,799 7 205 132 78	2,173 	3,049 	242 1,471 2,177 401 341 159	126 2,220 3,056 205 132 78
Total ²	10,991	7,274	(3)	1	54,668	11,819	3,049	4,905	68,708	23,998

¹Includes only that received in raw material form; excludes products made of graphite.

WORLD REVIEW

World production of natural graphite increased slightly from 1980 to 1981. Supplies of all types of graphite were sufficient to meet demand in 1981, and markets were firm but not tight. China was very active in world graphite markets in 1981. World graphite fiber production is expected to expand rapidly in the next several years as new plants come onstream.

Canada.—Orrwell Energy Corp. Ltd. did extensive drilling, testing, and evaluation of their crystalline flake graphite properties located near Mont Laurier, Quebec, and Perth, Ontario. Both properties were previously known but inactive. The Mont Laurier property was further along the road to development, having had 6,300 feet of diamond drilling by yearend. Another 2,000 feet of drilling was planned, and then the Ontario property was to be drilled. Orrwell estimated that there is about 400,000 tons of ore averaging 10% graphite, a large portion of which is coarser No. 1 flake, in the main vein, and about 1 million tons of lower quality material in other veins. Orrwell indicated that previous work at the Ontario property showed 1 million tons of ore averaging 9% graphite and that flotation tests

²Data may not add to totals shown because of independent rounding. ³Less than 1/2 unit.

on previously mined material indicate that a salable product could be made. At yearend, Orrwell was continuing work on establishing commercial feasibility, locating financing, and negotiating sales of the future product.¹⁵

The mine opened by Asbury Graphite Mills, Inc., in 1980 near Mont Laurier,

Quebec, continued to operate.

China.—Chinese crystalline flake graphite and other natural graphites, mostly crystalline flake dust, have been rapidly increasing in importance on the world market and did well in 1931. For example, exports to Japan increased from 2,130 short tons in 1978 to 23,200 short tons in 1980 to an estimated 23,000 short tons in 1981. Exports to the Federal Republic of Germany increased from 4.380 short tons in 1978 to 5,420 tons in 1980 to an estimated 11,000 tons in 1981. Exports to the United States changed from about 3,046 short tons in 1978 to 2,450 short tons in 1980 and 6,578 short tons in 1981. The Chinese continued to actively seek a greater market share for their natural graphite products. In addition. the Chinese were reported at yearend to be seeking U.S. markets for their graphite electrodes, which they have been selling in Far Eastern markets at low prices for the past 2 years.16

Czechoslovakia.—Production was centered in southern Bohemia, where a fine flake graphite is produced, and northern Moravia, where microcrystalline and amorphous graphites with flakes sized under 0.1 millimeter are produced. The graphite ore is concentrated by flotation to yield a concentrate containing 80% to 96% carbon in a plant at Netolice. The concentrate is further refined by leaching and melting to obtain a graphite with 99.9% carbon in a plant at Tyn nad Vitarou. The major end use for the macrocrystalline (flaky) graphite was in steel plants (37%), and the major end use for microcrystalline graphite was in foundries for molding of sand and inner mold coating (34%) and in lubricants (8%). A significant amount of microcrystalline graphite was exported.17

France.—Two joint ventures are planning to build graphite fiber plants. Hercules formed a joint venture with Pechiney Ugine Kuhlmann (PUK) after an arrangement with Hexcel Corp. fell through. The joint venture was planning to construct a 200-ton-per-year plant that would come onstream in the third quarter of 1983 and produce fiber mostly for the aerospace industry, but also for the automotive and

sporting goods markets. The raw material would be polyacrylonitrile imported from Japan. Both partners have had experience with graphite fibers. Hercules, which holds 40% of the venture, is the largest U.S. producer, and PUK, which holds 60% of the venture, has a fiber-producing French subsidiary.¹⁸

The other joint venture was composed of Société Nationale Elf Aquitaine, Union Carbide, and Toray Industries Inc. (Japan). They were considering the possibility of constructing a 300- to 360-ton-per-year plant based on polyacrylonitrile, probably in southwestern France.¹⁹

Japan.—A number of small low-grade graphite deposits exist in Japan, but they have provided very little or no production in recent years. The Japanese market for natural graphite is large and has been growing in recent years, mostly because of strong demand for carbon-magnesite brick.

Over 275,000 short tons of synthetic graphite was produced in 1979, of which about 240,000 short tons was electrodes.²⁰

The Japanese graphite fiber industry has been expanding rapidly. Toray Industries, the largest producer, announced that it would triple its plant capacity to almost 1,500 short tons per year by 1982. Other producers have also been expanding their capacity or have expected to do so shortly. The producers continued to view graphite fiber production as a high-growth, high-profit area.²¹

Kenya.—The Intermediate Technology Development Group of the United Kingdom was considering the establishment of a crystalline flake graphite operation near Nyahurura Falls, 100 miles north of Nairobi, based on local deposits. The deposits could be developed by sometime in 1982 to produce 16- to 60-mesh, high-carbon crystalline flake graphite for pencils and crucibles; much of the product would go to export markets.²² There are a number of small graphite deposits scattered about Kenya, but mostly in the south near Voi and Tsavo on the Nairobi-Mombasa railroad.²³

Mexico.—The new crystalline flake graphite mine and plant of Grafito de Mexico S.A. de C.V. in Oaxaca that had startup problems in 1980 did better in 1981.²⁴ Exports of Mexican crystalline flake to the United States was 287 tons in 1981, compared with 137 tons in 1980.

Sri Lanka.—The Asian Development Bank was to begin providing technical assistance to the State Mining & Mineral Development Corp. for rehabilitating and expanding the corporation's existing mines and for investigating new resources. Output of graphite ore would be increased by an additional 18,700 short tons, more than doubling the Nation's production.25

Switzerland.—Lonza Ltd., a member of the Alusuisse group, is preparing to double the capacity of its synthetic graphite powder plant at a cost of \$17 million (28 million Swiss francs). This special graphite powder is made from petroleum coke or anthracite and has many of the crystallinity characteristics of natural varieties while being higher in purity and more consistent in its properties. It is likely to become more competitive as natural graphite becomes more expensive.26

Yugoslavia.—Crystalline flake graphite deposits have been discovered near Bosiljgrad, Serbia. The largest deposit is estimated to contain 220,000 tons of ore averaging 12% graphite and is near the Ljubata River.27

Table 10.—Graphite: World production, by country¹

(Short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Argentina	94	r ₉	11	6	8
Austria	38,898	44,645	44,664	40,454	38,600
Brazil (marketable)	10.127	11,417	13,753	318,090	25,350
Burma ⁴	106	309	295	219	330
China ^e	66,000	88,000	200,600	176,000	176,000
Czechoglovakia ^e	49,600	49,600	49,600	49,600	49,600
Germany, Federal Republic of 5	9,178	7,034	4.047	6,270	6,300
India (mine) ⁶	r53,523	70,310	58,225	53,787	55,100
Italy	4,210	4,528	4,522	4,362	4,400
Italy Korea, North ^e	22,000	22,000	28,000	28,000	28,000
Korea, Republic of:	22,000	,	,	,	
Amorphous	68,904	59,288	59,789	65,209	60,600
Crystalline flake	3,799	2,793	2,704	1,575	2,200
Madagascar	17,336	18,326	15,699	13,506	13,200
Mexico:	•	•			
Amorphous	64,410	57,611	56,086	48,860	44,900
Crystalline flake				200	500
Norway	10,028	12,292	13,109	11,883	12,000
Romania ^e	6,600	6,600	6,600	6,600	6,600
Sri Lanka	9,783	11,581	10,364	8,591	5,700
South Africa, Republic of	1,004	643	434		
Thailand	r ₂₅	25		2,286	2,200
U.S.S.R. ^e	105,000	110,000	110,000	110,000	116,000
United States	W	· w	w	·	
Zimbabwe	r e3,300	r e5,500	6,324	8,141	7,700
Total	⁷ 543,925	r582,511	684,826	653,639	655,288

Preliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data. ^eEstimated.

⁶Indian marketable production is about 30% of mine production.

TECHNOLOGY

Technological advances with potentially significant commercial applications were made in 1981, especially for graphite fibers.

Several ways of using graphite fibers in construction emerged this year, possibly laying the groundwork for graphite fiber moving into an entirely new market. The U.S. Army awarded contracts to Fiber Technology Corp. to design and produce planks and a launch beam, a major structural

member, for a transportable bridge. The bridge will be 40% lighter, much stronger, and much easier to erect.28 Sumitomo Metal Industries Ltd. and Kajima Corp. have developed a graphite fiber-reinforced concrete that contains 1% to 5% fiber and is 5 times stronger and 50 times more plastic than ordinary concrete.29

Some recent research may help to bring intercalated graphite into more general use.

¹Table includes data available through May 26, 1982.

²In addition to the countries listed, Namibia may have produced graphite during the period covered by this table, but output is unreported and available general information is inadequate for formulation of reliable estimates of output levels.

Sincludes 6,000 short tons of crude product that was marketed and used directly in 1980.

⁴Data are for fiscal year beginning Apr. 1 of that stated.

⁵Series revised; data now presented represents estimated marketable product derived from raw graphite mined indigenously, assuming that marketable output equals one-half of officially reported raw graphite production.

Intercalated cobalt-graphite catalysts display an unusual product selectivity during hydrogenation of carbon monoxide; their use for this purpose is dependent on their adaptation to a flow-type reaction system and the effect of pressure on product selectivity.30 Graphite intercalated with platinum-group metals hexafluorides or pentafluorogermanates has an oxidizing potential close to that of fluorine, making it a good electrode material in a solid-state galvanic cell. The cell uses the graphite fluorometallate in combination with a superionic fluoride-ion-conducting solid electrolyte.31

Mitsui Coke and Toray Industries, both Japanese firms, announced the joint development of a process to make graphite fiber from a byproduct of solvent-refined coal at one-half the cost of present methods. A pilot plant using this process and with a 35- to 60ton-per-year capacity was to come onstream in mid-1983 at Omuta; if successful, a 3,000ton-per-year plant was scheduled to be built by 1985.32

Graphite fiber has been modified to increase and decrease its electrical resistivity. Treating polyacrylonitrile-based graphite fiber with either aluminum chloride or nitric acid mixtures increased resistivity by 10% to 50% without any adverse effect on the tensile strength or the Young's modulus.33 Japanese scientists have developed a graphite fiber that contains particles of iron. nickel, and cobalt and is 5 times harder and has one-tenth to one-hundredth of the resistivity of presently available graphite fibers. A chemical firm, Showa Denko, planned to commercialize it by 1984.34

Georgia Institute of Technology has set up a graphite fiber processing laboratory in its School of Textile Engineering. The facility can be utilized to prepare the polyacrylonitrile polymer, fiberize it, heat treat it, and convert it to graphite-carbon fiber, all under carefully controlled conditions of time, temperature, and tension.35

Two major studies on graphite fibers appeared in 1981. One was on markets for advanced composites and included data on costs and cost trends of fibers, properties of the fibers, comparative advantages and disadvantages of the different fibers, and advantages and disadvantages of the different matrix materials; fibers studied included several kinds of graphite, boron, aluminum oxide, an organic fiber (Du Pont Keylar). and silicon carbide.36 The other was on the possibility of placing controls on the transfer overseas of composite technology. This study included a description of the current state of graphite fiber composite technology

in most major nations, possible new developments, new technology needed, major firms involved and their products, methods of fiber and composite production and equipment required, and fiber availability and plant capacity.37

¹Physical scientist, Division of Industrial Minerals. ²University of Rhode Island (Kingston). Planning a Comprehensive Program for Exploration of the Anthracite Deposits of the Narragansett Basin of Massachusetts and Rhode Island. February 1981, 131 pp.; available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161, Document No. DE 81-1028490.

3Chemical Week. New Composites Will Cut Jet Planes' Fuel Bills. V. 129, No. 18, Oct. 28, 1981, p. 44.

European Chemical News. Toho Rayon and Celanese Carbon Fibre Pact. V. 37, No. 1000, Sept. 28, 1981, p. 25.

⁵Chemical Marketing Reporter. Carbide Begins Phase-Out of Carbon Products Plant. V. 220, No. 15, Oct. 12, 1981,

out of Carbon Frontes Fiant. V. 220, No. 15, Oct. 12, 1981, p. 4.

Caribbean Business. Union Carbide Announces a \$40 Million Investment. Sept. 16, 1981, p. 9.

Chemical Marketing Reporter. Germany's Sigri Group Sees Problems in Steel Clouding Outlook for 1981. V. 220, No. 9, Aug. 31, 1981, p. 49.

⁸European Chemical News. Airco Plans \$247 Million Carbon Investment. V. 38, No. 1016, Jan. 25, 1982, p. 6.

⁹Metal Bulletin Monthly. Graphite Electrodes. No. 130, October 1981, pp. 89-99. ¹⁰Chemical Marketing Reporter. Diamond, German Firm Set up Joint Venture. V. 220, No. 19, Nov. 9, 1981, p.

of Plastics in Autos. Mater. Eng., v. 93, No. 1, January

of Plastics in Autos. Mater. Eng., v. 93, No. 1, January 1981, pp. 56-62.

¹²Business Week. Teaching New Tricks to an Old Metal (advertisement). No. 2714, Nov. 16, 1981, pp. 36-37.

¹³Kohn, P. M. Tendons and Ligaments. Chem. Eng., v. 88, No. 12, June 15, 1981, p. 49.

¹⁴Engineering and Mining Journal. Markets. V. 182, No. 12, December 1981, p. 23.

¹⁵Mining Journal (London). Flake Graphite Find. V. 298, No. 7642, Feb. 5, 1982, p. 101.

¹⁶Burgert, P. Low-Cost Electrodes From China in U.S. Am. Metal Market v. 89, No. 243, Dec. 17, 1981, p. 7

Am. Metal Market, v. 89, No. 243, Dec. 17, 1981, p. 7.

17Kuzvart, M. Industrial Minerals and Rocks in Czechoslovakia. Ind. Miner. (London), No. 162, March 1981,

pp. 19, 27, 29.

18 European Chemical News. Hercules and PUK Join Forces in French Carbon Fibre Venture. V. 37, No. 1013,

Dec. 28, 1981, p. 6.

19 Elf, UCC and Toray in Carbon Fiber Joint
Venture. V. 37, No. 1007, Nov. 16, 1981, p. 40.

Venture. V. 37, No. 1007, Nov. 16, 1981, p. 40.

²⁰Fujii, N. The Industrial Minerals of Japan. Ind. Miner. (London), No. 170, November 1981, pp. 21-49.

²¹Business Week. Taking the Initiative in Carbon-Fiber Growth. No. 2687, May 11, 1981, p. 48.

²²Industrial Minerals (London). Talc Now, Graphite Later. No. 168, September 1981, p. 15.

²³Mason, J. E., and F. G. Theuri. Industrial Minerals Development in Kenya. Proc. 4th Ind. Miner. Internat. Cong. Ind. Miner. (London), 1981, pp. 111, 127.

²⁴Mining Journal (London). Mining Annual Review-1981, Mexico, June 1981, p. 369.

²⁵Industrial Minerals (London). News. No. 164, May 1981, p. 73.

World Mining. What's Going on in World Mining—Sri Lanka. V. 34, No. 4, April 1981, p. 76.

26 Industrial Minerals (London). Lonza Expansion Plans.

²⁸Industrial Minerals (London). Lonza Expansion Plans.
 No. 160, January 1981, p. 13.
 ²⁷World Mining, Worldwide Survey—Yugoslavia. V. 34,
 No. 9, Aug. 25, 1981, p. 175.
 ²⁸Goodwin, J. Graphite Epoxy Composites Could Replace Metals in New Army Bridge Building. Metals Daily, June 8, 1981, p. 4.
 ²⁹Industrial Minerals (London). Company News and Mineral Notes. No. 166, July 1981, p. 55.
 ³⁰Rosynek, M. P. Transition Metal-Graphite Catalysts for Production of Light Hydrocarbons From Synthesis Gas. Interim Report, Aug. 1, 1976-64pr. 30, 1978. Texas Adv. University, College Station, Tex., May 1978, 18 pp.; available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161, Document No. DOE/ET/10673-T1.

403 GRAPHITE

27205/6.

34European Chemical News. In Brief. V. 37, No. 1011,
Dec. 14, 1981, p. 21.

35 Tincher, W. C., F. L. Cook, and A. S. Abhiraman. Precursor Structure-Fiber Property Relationships in Polyacrylonitrile Based Carbon Fibers. Ga. Inst. of Tech., Atlanta, Ga., May 26, 1981, 35 pp.; available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161, Document No. AD-A100 453/0.

36 Watts, A. A. (ed). Commercial Opportunities for Advanced Composites. American Society for Testing and

Materials, Philadelphia, Pa., 1980, 125 pp.

³⁷Channon, S. L. Status and Recommendations for Export Control of Composite Materials Technology. Inst. for Defense Analyses, Arlington, Va., IDA Paper P-1592, September 1981, 473 pp.

 ³¹McCarron, E. M., III. Novel Graphite Salts of High Oxidizing Potential. Univ. of Calif., Berkeley, Calif., August 1980, 143 pp.; available from National Technical Information Service, E285 Port Royal Rd., Springfield, VA 22161, Document No. LBL-11272.
 32Chemical Week. Technology Newsletter. V. 129, No. 25, Dec. 16, 1981, p. 41.
 European Chemical News. In Brief. V. 36, No. 969, Feb. 16, 1981, p. 22.
 33Thompson, T. E. Carbon Fiber Modification. SRI Internat., Menlo Park, Calif., Nov. 9, 1979, 22 pp.; available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161, Document No. N81-27205/6.

Gypsum

By J. W. Pressler¹

The gypsum industry, suffering from a 2-year recession in housing demand, with 1.3 million housing unit starts (public and private) in 1980 and 1.1 million starts in 1981, ended the year with the lowest shipments of gypsum wallboard since 1976, 13.8 billion square feet, a decrease of 3% compared with 1980 shipments. However, preliminary data for 1981 indicated an increase of value of additions and alterations to residential buildings, and in the consumption of gypsum wallboard for trailer and modular-type

homes, which mitigated the impact of the decline in housing starts. In 1981, output of crude gypsum decreased 7% to 11.5 million tons. Production of calcined gypsum decreased 1% to 11.7 million tons. Sales of gypsum products decreased 3% to 19.0 million tons, and total value of gypsum products sold decreased 4% to \$1.2 billion. Imports for consumption of crude gypsum increased 3% in 1981 to 7.6 million tons. Total value of gypsum product exports increased 30% to \$35.4 million.

Table 1.—Salient gypsum statistics

(Thousand short tons and thousand dollars)

	1977	1978	1979	1980	1981
United States:				•	
Active mines and plants ¹	115	116	113	^r 114	113
Crude:	1 1 1 1 1 1 1 1 1			10.074	11 405
Mined	13,390	14,891	14,630	12,376	11,497
Value	\$74,341	\$92,726	\$99,868	\$103,059	\$98,101
Imports for consumption	7,074	8,308	7,773 828	7,365	7,593
Byproduct gypsum sales	797	669	828	663	696
Calcined:					
Produced	12,590	14,041	14,543	11,848	11,687
Value	\$277,835	\$387,010	\$442,157	\$270,324	\$243,140
Products sold (value)	\$910,526	\$1,248,013	\$1,391,993	\$1,241,949	\$1,196,236
	\$15,703	\$19,804	\$22,388	\$27,222	\$35,484
Exports (value)	\$31,398	\$63,882	\$65,079	\$51,880	\$51,720
Imports for consumption (value)	POL,000	186,698	F89,684	⁵ 86,310	\$51,720 84,982
World: Production	¹ 82,134	-80,098	69,084	- 90,910	04,304

^eEstimated. ^pPreliminary. ^rRevised.

DOMESTIC PRODUCTION

The United States was the world's leading producer of gypsum, accounting for 14% of the total world output.

In 1981, 45 companies mined crude gypsum at 70 mines in 22 States. Output decreased 7% compared with that of 1980. Leading producing States were Texas, California, Iowa, Oklahoma, and Michigan. These five States produced more than 1 million tons each and together accounted

for 60% of the total domestic production. Stocks of crude ore at mines and plants at yearend 1981 were 3.6 million tons.

Leading companies in 1981 were United States Gypsum Co. with 12 mines, National Gypsum Co. and Georgia-Pacific Corp. with 6 mines each, Celotex Div. of Jim Walter Corp. and Genstar Building Materials Co. with 3 mines each, and Weyerhaeuser Co. with 1 mine. These 6 companies, operating

¹Each mine, calcining plant, or combination mine and plant is counted as 1 establishment; includes plants that sold byproduct gypsum.

31 mines, produced 78% of the total crude

gypsum in 1981.

Leading individual mines in 1981 were United States Gypsum's Plaster City Mine, Imperial County, Calif.; United States Gypsum's Sweetwater Mine, Nolan County, Tex.; National Gypsum's Tawas Mine, Iosco County, Mich.; United States Gypsum's Southard Mine, Blaine County, Okla.; United States Gypsum's Shoals Mine, Martin County, Ind.; Weyerhaeuser's Briar Mine, Howard County, Ark.; and National Gypsum's Shoals Mine, Martin County, Ind. These seven mines accounted for 34% of the national total. Average output per mine in 1981 for the 70 U.S. mines was 164,200 tons compared with 169,500 tons per mine in 1980.

In 1981, 14 companies calcined gypsum at 72 plants in 30 States. Output decreased from 11.8 million tons of calcine valued at \$270 million in 1980 to 11.7 million tons valued at \$243 million in 1981; a tonnage decrease of 1% and a value decrease of 10%. Output in 1981 was the lowest since 1976. Leading States were California, Texas, Iowa, and New York. These 4 States, with 23 plants, accounted for 37% of the national output.

Leading companies were United States Gypsum with 22 plants, National Gypsum with 19 plants, Georgia-Pacific Corp. with 9 plants, Genstar with 6 plants, and Celotex Div. of Jim Walter Corp. with 4 plants. These 5 companies, operating 60 plants, accounted for 85% of the national output in 1981.

Leading individual plants were United States Gypsum's Plaster City plant, Imperial County, Calif.; Weyerhaeuser's Briar plant, Howard County, Ark.; United States Gypsum's Sweetwater plant, Nolan County, Tex.; United States Gypsum's Stony Point plant, Rockland County, N.Y.; United States Gypsum's Shoals plant, Martin County, Ind.; United States Gypsum's Jacksonville plant, Duval County, Fla.; United States Gypsum's Fort Dodge plant, Webster County, Iowa; Georgia-Pacific's Acme plant. Hardeman County, Tex.; United States Gypsum's Southard plant, Blaine County, Okla.; and Pacific Coast Building Products' Apex plant, Clark County, Nev. These 10 plants accounted for 28% of the national output. Average calcine output for the 72 U.S. plants in 1981 was 162,300 tons, a 1% decrease compared with the 164,600 tons per plant in 1980.

In 1981, the following companies sold a total of 696,000 tons of byproduct gypsum,

valued at \$6.6 million, for agricultural purposes: Occidental Petroleum Corp., Allied Chemical Corp., and SimCal Chemical Co., all in California; Occidental Petroleum Corp. in Florida; Texasgulf Inc. in North Carolina; and American Cyanamid Co. in Georgia.

One new gypsumboard plant and several plant expansions and improvements increased the national production capacity an additional 470 million square feet per year. The available capacity of operating gypsumboard plants in the United States at yearend 1981 was 19.14 billion square feet per year, a 3% increase compared with that of yearend 1980. Total 1981 gypsumboard production in the United States was 13.8 billion square feet. This indicated a 72% national utilization of capacity for the year.

United States Gypsum completed a major wallboard expansion project at the Jacksonville, Fla., plant in 1981. The company added 290 million square feet of gypsumboard capacity to the plant, and its total capacity of 600 million board feet per year ranked it next to the company's Plaster City, Calif., plant. United States Gypsum also added 190 million square feet of wallboard capacity to its Sweetwater, Tex., plant, onstream in 1981. United States Gypsum purchased the dormant Kaiser Gypsum Co.'s Delanco gypsum wallboard plant in Delanco, N.J. United States Gypsum planned to use the facility, which has been closed since 1975, only as part of its warehousing consolidation program.²

Domtar Gypsum America Inc.'s new \$19 million wallboard plant in Tacoma, Wash., came onstream in 1981 with a capacity of 300 million square feet of gypsumboard per year. Gypsum rock was imported from Domtar Gypsum's mine on San Marcos Island, Baha California Sur, Mexico. Domtar Gypsum had the largest capacity of any gypsum wallboard manufacturer on the Pacific coast when combined with its other two plants in Long Beach and Antioch, Calif.³

Owing to poor markets in the housing sector, two small wallboard plants closed indefinitely during 1981—Three Rivers Gypsum, Inc.'s Longworth plant in Fisher County, Tex., with an annual capacity of 150 million square feet; and Western Gypsum Co.'s Rosario Mine and plant in Santa Fe County, N. Mex., with an annual capacity of 70 million square feet. Domtar Industries Inc. of Montreal, Canada, purchased the Grand Rapids Gypsum Co. mine and plant in Grand Rapids, Mich., which had recently filed bankruptcy proceedings.

GYPSUM 407

Table 2.—Crude gypsum mined in the United States, by State

		1980		1981		
State	Active mines	Quantity (thousand short tons)	Value (thousands)	Active mines	Quantity (thousand short tons)	Value (thousands)
Arizona	4	209	\$2,017	4	213	\$2,594
Arkansas, Kansas, Louisiana	5	1.040	6,047	5	1,059	7,090
California	8	1,644	12,763	8	1,456	13,948
Colorado	ě	227	3,409	6	203	2,346
Idaho, Montana, South Dakota,			0,100	•		
Washington	e.	128	1.431	5	97	915
Indiana, New York, Virginia	ă	1,501	13,646	Ă	1,371	10,904
Iowa	ā	1,468	13,136	ā	1,383	12,706
Michigan	ě	1,382	8,605	, ,	1,066	6,762
	ž	852	8,276	7	778	6 014
New Mexico	4	182	1,688	*	166	6,914 2,256
	9		1,000	. 3		1,400
Ohio	Ī	136	1,346	ī	148	1,566
Oklahoma	. 6	1,326	11,230	5	1,177	9,870
Texas	7	1,681	14,124	7	1,783	14,900
Utah	- 5	287	2,612	5	300	2,705
Wyoming	3	312	2,731	3	299	2,625
Total ¹	73	12,376	103,059	70	11,497	98,101

 $^{^{1}\}mathrm{Data}$ may not add to totals shown because of independent rounding.

Table 3.—Calcined gypsum produced in the United States, by State

		1980		1981		
State	Active plants	Quantity (thousand short tons)	Value (thousands)	Active plants	Quantity (thousand short tons)	Value (thousands
Arizona, Colorado, New Mexico,						
Utah	6	461	\$12,048	6	470	\$9,847
Arkansas, Illinois, Indiana, Kansas,			, ,,,,,,,,,			4-,
Louisiana, Oklahoma	12	2,293	48,313	12	2,277	45,337
California	-7	1.457	24,776	7	1,331	29,719
Delaware, Maryland, North		1,101	22,110	•	1,001	20,120
Carolina, Virginia	6	1.154	29,702	ß.	1,192	25,624
Florida	š	637	15,998	6 3 3	637	13,627
Georgia	š	621	18,455	ğ	613	13,612
Iowa	ğ	912	17,505	5	932	18,167
Massachusetts, New Hampshire,	J	312	11,000	9	302	10,101
New Jersey, Pennsylvania	5	674	15,425	5	658	14.267
Michigan	, A	386	10,764	š	321	6,248
Montana, Washington, Wyoming	7	373	10,764	ş	358	7,844
	3	576	10,653	5 3 5 3	518	9.846
New York	. 2	768	21,626	ş	839	18,777
	. 9	302		3	288	
	ð		7,191			6,030
Texas	6	1,235	27,608	6	1,254	24,197
Total ¹	72	11,848	270,324	72	11,687	243,140

¹Data may not add to totals shown because of independent rounding.

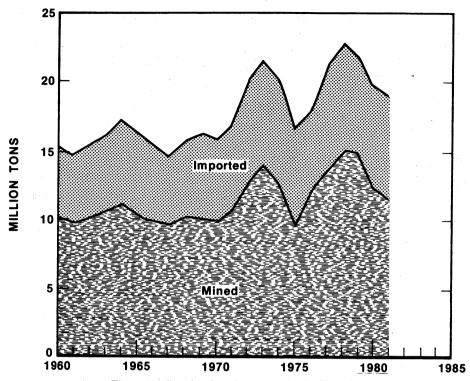


Figure 1.—Supply of crude gypsum in the United States.

CONSUMPTION AND USES

Apparent consumption of crude gypsum in 1981, production plus imports minus exports, decreased 4% to 18.9 million tons. Imports provided 40% of the crude gypsum consumed. Apparent consumption of calcined gypsum in 1981 decreased 2% to 11.5 million tons.

Stocks of crude gypsum at mines and calcining plants at yearend 1981 were 3.5 million tons. Of this, 2.3 million tons, 66%, was at calcining plants in coastal States.

Of the total gypsum products sold or used in 1981, 5.3 million tons, 28%, was uncalcined. Of the total uncalcined gypsum, 3.6 million tons, 69%, was used for portland cement, and 1.5 million tons, 29%, was used in agriculture. The leading sales regions in 1981 for gypsum used in cement were the West South-Central, Pacific, and West North-Central; these three regions account-

ed for 52% of the total. For agricultural gypsum, the Pacific sales region accounted for 69% of the total.

Of the total calcined gypsum in 1981, 94% was used for prefabricated products and 6% for industrial and building plasters. Of the prefabricated products, 69% was regular gypsumboard, 24% was fire-resistant Type X gypsumboard, 3% was veneer base, and 2% was sheathing and predecorated wallboard. Of the regular gypsumboard, 82% was 1/2 inch and 10% was 5/8 inch. The leading sales regions for prefabricated products were the South Atlantic, West South-Central, and Pacific, accounting for 53% of the total. For industrial and building plasters, the Pacific, East North-Central, and Middle Atlantic regions accounted for 53% of the total.

GYPSUM 409

Table 4.—Gypsum products (made from domestic, imported, and byproduct gypsum) sold or used in the United States, by use

(Thousand short tons and thousand dollars)

•••	19	80	1981		
Use	Quantity	Value	Quantity	Value	
Uncalcined:					
Portland cement	3,885	41,440	3,634	41,530	
Agriculture ¹	1,658	19,121	1,525	20,736	
Fillers and miscellaneous	135	4,353	113	4,891	
Total ²	5,678	64,914	5,273	67,157	
Calcined: Industrial plaster	393	28,296	360	29,689	
Building plaster:					
Regular base coat	^r 232	^r 14,642	238	16,984	
Poured gypsum cement and concrete	^r 57	r3,663	60	4,303	
Veneer plaster	79	7,942	75	8,706	
Gaging plaster and Keene's cement	_30	2,733	26	2,730	
Other	r(3)	31	(8)	40	
Total ²	398	29,011	398	32,764	
Prefabricated products ⁴	13,025	1,119,728	12,927	1,066,626	
Total calcined ²	13,816	1,177,035	13,686	1,129,078	
Grand total ²	19,494	1,241,949	18,958	1,196,236	

^{*}Revised to conform to new format, which includes "Mill-mixed base coat" with "Regular base coat" and establishes "Poured gypsum cement and concrete" as a new entry.

*Includes 662,987 tons of byproduct gypsum in 1980 and 696,245 tons in 1981.

*Data may not add to totals shown because of independent rounding.

*Less than 1/2 unit.

Table 5.—Prefabricated gypsum products sold or used in the United States

		1980			1981	
Product	Thousand square feet	Thousand short tons ¹	Value (thou- sands)	Thousand square feet	Thousand short tons ¹	Value (thou- sands)
Lath: 3/8 inch	75,319	58	\$6,323	56,980	44	\$4,978
1/2 inch	3,730	3	308	14,970	14	1,178
Total Veneer base	79,049 338,362	61 353	6,631 26,051	71,950 328,213	58 339	6,156 24,607
Sheathing	199,416	176	17,487	199,405	184	18,844
Regular gypsumboard:						
3/8 inch	710,998	548	51,058	651,596	531	46,024
1/2 inch	8,910,714	7,763	644,931	8,171,442	7,269	570,657
5/8 inch	822,033	755	73,437	963,834	873	83,832
1 inch	32,034	49	5,960	53,672	85	7,889
Other3	74,881	54	9,606	118,527	121	9,561
Total ⁸	10,550,660	9,169	784,992	9,959,071	8,879	717.962
Type X gypsumboard	2,637,933	2,998	231,539	2,778,482	3,107	238,086
Predecorated wallboard	118,838	105	35,224	133,040	126	84,915
5/16-inch mobile home board Other	219,975	164 	17,802	269,213 14,880	220 15	22,981 3,078
Grand total ³	14,144,233	13,025	1,119,728	13,754,254	12,927	1,066,626

Includes weight of paper, metal, or other materials.

¹Includes weight of paper, metal, or other material.

²Includes 1/4-, 7/16-, and 3/4-inch gypsumboard.

³Data may not add to totals shown because of independent rounding.

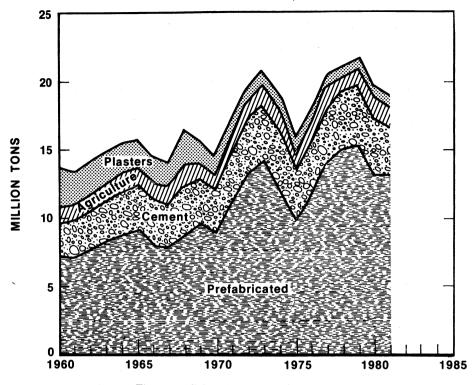


Figure 2.—Sales of gypsum products, by use.

ENERGY

Although the gypsum industry's national operational capacity was only 72% for 1981, efficient production scheduling, superior insulation, and energy-saving processing equipment such as one-step drying and calcining combined to approximate the same utilization of energy per unit of wallboard as in 1980. The Gypsum Association reaffirmed its improvement target of 22% by 1985, compared with the base year of

1972. In 1981, British thermal unit (Btu) consumption per thousand square feet of gypsum wallboard sales was 2.63 million compared with 2.65 million Btu in 1980.

As reported by the Gypsum Association, fuel sources for the gypsum industry at yearend 1981 were natural gas, 78.7%; electricity, 6.1%; propane, 1.4%; fuel oil, No. 2, 5.9%; fuel oil, No. 4 and No. 6, 4.9%; and coal, 3.0%.

PRICES

The average value of crude gypsum increased from \$8.33 per ton in 1980 to \$8.53 in 1981. The average value of calcined gypsum decreased from \$22.82 per ton in 1980 to \$20.80 in 1981. The average value of byproduct gypsum sold increased from \$8.56 per ton in 1980 to \$9.42 in 1981.

The average value of gypsum products sold or used was \$63.10 per ton in 1981 compared with \$63.71 in 1980. In 1981, prefabricated products were valued at

\$82.51 per ton, industrial plaster at \$82.47 per ton, building plaster at \$82.32 per ton, and uncalcined products at \$12.74 per ton.

Quoted prices for gypsum products are published monthly in Engineering News-Record. Prices at yearend 1981 showed a wide range, based on truck lots delivered to the job. Regular 1/2-inch wallboard prices ranged from \$78 per thousand square feet at Dallas, Tex., to \$152 at Boston, Mass. Average price at yearend for 19 cities was

\$122.33 per thousand square feet, with some minor discounts for prompt settlement. Prices for building plaster in 1981 ranged from \$98 per ton at Denver, Colo., to \$183 at New York City.

FOREIGN TRADE

In 1981, the gypsum industry continued to rely on imports for 40% of apparent consumption. Imports for consumption of crude gypsum were from Canada, 72%; Mexico, 22%; Spain, 4%; and the Dominican Republic, Jamaica, and Ghana, the remaining 2%. Imports increased 3% from the 1980 level to 7.6 million tons. Most of the imported crude gypsum was mined by subsidiaries of U.S. companies in Canada and Mexico. For 1981, total value of gypsum and gypsum products imported was \$51.7 million, virtually the same as that of 1980. In 1981, 116 million square feet of wallboard was imported from Canada, 22% less than that of 1980. Total value of gypsum product exports to all countries was \$35.4 million in 1981, a 30% increase compared with the 1980 value.

Table 6.—U.S. exports of gypsum and gypsum products

(Thousand short tons and thousand dollars)

Year	Crude, c		Other manu- factures,	Total value
	Quantity	Value	n.e.c. (value) ¹	
1979	91 88 157	10,891 11,774 14,590	11,497 15,448 20,844	22,388 27,222 35,434

¹Includes gypsum or plaster building boards and lath (TSUSA 245.7000) and articles, n.s.p.f., of plaster of Paris (TSUSA 512 4500)

Table 7.—U.S. imports for consumption of gypsum and gypsum products

(Thousand short tons and thousand dollars)

Year	Crude		Ground or calcined		Alabaster manufac-	Plaster- board ²	Other manu- factures,	Total value
	Quantity	Value	Quantity	Value	tures¹ (value)	(value)	n.s.p.f. ³ (value)	
1979 1980 1981	7,773 7,365 7,593	34,095 35,664 39,266	2 2 2	194 231 339	2,319 1,959 1,169	25,379 10,958 8,419	3,092 3,068 2,527	65,079 51,880 51,720

Table 8.—U.S. imports for consumption of crude gypsum, by country

(Thousand short tons and thousand dollars)

	19	80	1981	
Country	Quantity	Value	Quantity	Value
Canada ¹	5,463	r25,606	5,436	27,497 918
Dominican Republic	69	623	83 12	918 55
Ghana	11	71	66	847
MexicoSpain	1,565 250	8,030 1,271	1,696 300	8,112 1,818
Other	7	63	(1)	19
Total	r7,365	^r 35,664	7,593	39,266

Revised.

¹Includes imports of jet manufactures, which are believed to be negligible.

²Includes gypsum or plaster building boards and lath (TSUSA 245.7000).

³Comprised of "articles, n.s.p.f., of plaster of Paris, with or without reinforcement" (TSUSA 512.3100, 512.3500, 512.400).

¹⁷ acludes anhydrite.

Less than 1/2 unit.

WORLD REVIEW

Canada.—Canada was the second leading producer of crude gypsum in 1981, accounting for 10% of the world total with shipments of 8.6 million tons, valued at \$3.9 million, an 8% increase in tonnage compared with that of 1980. In 1980, 67% of the crude gypsum was shipped from Nova Scotia, followed by Ontario, 11%; British Columbia, 10%; Newfoundland, 9%; and the remaining 3% from Manitoba and New Brunswick. All mining of gypsum was conducted by open pit operations, with the exception of three underground mines in Ontario at Hagersville, Caledonia, and Drumbo. Exports in 1980 were 5.5 million tons to the United States, valued at \$22 million. Imports were 132,000 tons, principally from San Marcos Island, Mexico, shipped to British Columbia. In 1980, 18 gypsum product plants included 1 each in Newfoundland and Nova Scotia. The crude gypsum produced in Ontario was used in the seven product plants in Quebec and Ontario, serving the urban concentrations there. Nine gypsum product plants served the western provinces, with three each in British Columbia and Alberta, two in Manitoba, and one in Saskatchewan.5 All Canadian gypsum wallboard manufacturers were members of the Gypsum Association in the United States, which announced that Canadian wallboard capacity as of yearend 1981 was 3.66 billion board feet. Geological and mining production information were discussed in detail for all gypsum and anhydrite deposits in the Canadian Provinces.6 Reserves are extremely large and are conservatively estimated at over 2 billion tons.7

China.—The State Statistical Bureau of China reported that 3,567,000 tons of gypsum was produced in 1979. As cement production was 81.5 million tons for that year, apparently most of the gypsum was used as a cement set-retarder.⁸

Egypt.—The Egyptian Gypsum, Marble and Quarries Co., Egypt's largest gypsum producer, has signed a contract for the supply of a 1,000-ton-per-day gypsum plant with the Claudius Peters Industrieanlagen GmbH of Hamburg, Federal Republic of Germany.

Germany, Federal Republic of.—Fels-Werke Peine-Salzgitter GmbH of Goslar, part of the state-owned Salzgitter Group, had constructed a fully automatic plant for the production of gypsum fiber plates with a capacity of 200 million square feet per year. Total plant investment was \$8 million.¹⁰

Ireland.—An extensive deposit of gypsum in the Kingscourt area has been known since 1879. It has been passed through several companies and is currently owned by Gypsum Industries Ltd., a subsidiary of British Plasterboard (Holdings) Ltd. Two mines were operated in the counties of Cavan and Monaghan, and production has been fairly consistent over the last few years in the range of 350,000 to 400,000 tons per year. A wide range of gypsum products were manufactured, including plasterboard, plaster, woodwool slabs, jointing and finishing compounds, and some pulverized gypsum supplied for agricultural purposes.¹¹

Japan.-In 1962, Japanese output of natural gypsum was 880,000 tons per year, and by 1978, production was completely phased out. Use of synthetic gypsum had replaced that of natural gypsum and had reached a total annual consumption by 1981 of 6.8 million tons. In 1970, phosphogypsum, a byproduct of the acidulation of phosphate rock in the production of phosphoric acid. corresponded to over 80% of total synthetic gypsum production. However, by 1979 this percentage had decreased to 58%, with byproduct gypsum from desulfurization of industrial stack gases responsible for the difference. In 1979, the major consumption of gypsum in Japan was for cement, 44%; gypsum wallboard, 36%; construction plaster, 8%, and other, 12%.12

Pakistan.—Pakistan's gypsum production has ranged from 300,000 to 600,000 tons per year in recent years. The Government announced in 1981 a plan to increase production threefold over the next 5 years. The Punjab Mineral Development Corp. was responsible for the exploration, mining, processing, and marketing of the deposits near Daud Khel, Punjab. Export markets to the Arabian Gulf and East Africa were being investigated.¹³

Qatar.—The Qatar Industrial Development Technical Centre (ITDC) announced in 1981 the discovery of large deposits of gypsum in Qatar. ITDC described the gypsum in several bedded deposits at Al Naf-kah.¹⁴

Sudan.—A gypsum deposit near the Red Sea Hills containing an estimated 240 million tons was being mined by the state-owned Sudanese Mining Corp. (SMC). SMC produced 6,600 tons in 1981, and two small private operations produced a similar tonnage in 1981. Total gypsum output was used principally by cement plants at Atbara and

GYPSUM 413

Rabak.15

Tanzania.—Bedded deposits of highgrade gypsum associated with Jurassic limestones and shales were discovered at Kilwa in the south of Tanzania. Gypsum and anhydrite were also found in thicknesses up to 660 feet near Mbaru. Extensive superficial deposits of gypsite also occurred near Mkomazi with only some from Mkomazi sold as a cement set-retarder.16

Yugoslavia.—The Yugoslavian news agency, Tanjug, reported the discovery of a gypsum deposit in the Republic of Bosnia and Herzegovina, estimated to contain 1.4 million tons. At Bratunac, a new plant for the production of ceramic wall tiles had been placed into operation with a capacity of 27 million square feet per year.¹⁷

Table 9.—Gypsum: World production, by continent and country¹

(Thousand short tons)

Continent and country ²	1977	1978	1979	1980 ^p	1981 ^e
North America:					_
Canada ^{3 4}	7,974	8,901	8,927	7,947	⁵ 8,598
Cuba ^e	100	105	100	134	145
Dominican Republic	249	190	193	206	200
El Salvador	8	8	8	10	7
Guatemala	35	42	28	37	30
Honduras	20	e ₂₅	^e 25	25	20
Jamaica	237	148	64	105	105
Mexico	1.649	1.938	2,228	1.884	⁵ 2,076
Ni	40	40	40	44	35
Nicaragua ^e United States ⁶		14.891	14,630	12,376	⁵ 11,497
United States	13,390	14,091	14,050	12,010	11,431
outh America:	200	05.4	040	1 000	5748
Argentina	603	674	648	1,028	
Bolivia	r e ₁	. e ₁	^e 1	1	⁵ 1
Brazil ⁷	r ₅₉₉	r ₅₂₃	512	668	695
Chile	^r 162	r ₁₉₂	179	218	⁵ 293
Colombia	231	281	283	289	300
Ecuador	46	38	e40	39	40
	15	10	12	13	15
Paraguay	r ₁₅₇	r ₁₈₆	239	309	385
Peru					⁵ 240
Venezuela	^r 184	^r 206	287	129	240
lurope:					
Austria ³	892	844	880	919	915
Belgium ³	185	202	212	192	180
Bulgaria	325	375	341	343	340
Czechoslovakia	752	768	809	834	830
France ³	r7.385	r _{6,692}	6.878	e6,600	6,950
Common Demonstration Demonstra	375	385	397	397	400
German Democratic Republic			2.481	e2,580	2,480
Germany, Federal Republic of (marketable) ³	2,445	2,467			
Greece	^r 685	^r 601	666	é500	550
Ireland	^r 377	432	460	421	400
Italy	r4.608	r e _{4,630}	^e 4,630	e4,630	4,400
Luxembourg	´ 3	´ 1	· 1	1	1
Polande 7	r _{1.477}	r _{1,488}	1.500	1.433	1,430
Portugal	194	¹ 230	265	226	220
	6,042	5,918	5.815	5.757	5,730
Spain					95
Switzerland ^e	F77	*77	77	88	
U.S.S.R. ^{e 8}	5,700	5,800	6,000	6,000	6,000
United Kingdom ³	3,648	3,662	3,858	3,748	3,420
Yugoslavia	532	554	626	e 630	640
frica:	002				
	190	190	210	220	220
Algeria	22	28	28	28	22
Angola ^e					
Egypt	^r 56 <u>1</u>	r880	877	1,036	1,050
Ethiopia	7	_ 1	1	1	1
Kenya ³	29	e33	33	33	35
Libya	320	198	200	198	200
Mauritania	11	15	18	€19	18
Niger	3	3	3	e ₃	3
South Africa, Republic of	485	429	416	499	⁵ 612
		e ₂₂			3
Sudan3	e ₁₇		71	11	
Tanzania	9	r ₂₂	10	12	13
Tunisia	44	44	66	83	85
Zambia	5	2	(9)		
Asia:	•	-	` '		
Afghanistan	NA	7			
Burma ¹⁰	37	39	42	40	34
Okina	1,100	1.700	4,000	3.700	3,800
China				3,700 48	46
Cyprus	*105	*67	51		
India	858	974	949	943	1,040

See footnotes at end of table.

Table 9.—Gypsum: World prod	uction, by continent and country ¹ —Continued
	(Thousand short tons)

Continent and country ²	1977	1978	1979	1980 ^p	1981 ^e
Asia —Continued				• .	
Iran	r7.606	e8,800	7,700	7,700	6.600
Iraq ^e	180	180	180	190	190
Israel	220	220	80	e90	110
Japan ⁸	6,118	6.387	6.915	6,730	56,765
Jordan	24	40	40	77	85
Korea, Republic of 8	660	680	680	700	700
Lebanon	17	12	11	111	100
Mongolia ^e	e31	e31	31	33	35
Pakistan	312	279	378	626	265
Philippines ⁸	123	123	121	121	120
Saudi Arabia	22	231	331	331	390
Syrian Arab Republic	94	e95	70	79	80
Taiwan ⁸	8	4	3	13	57
Thailand	419	310	388	454	500
Turkey	72	67	e70	80	80
Vietnam ^e	13	15	15	17	17
Oceania: Australia	1.010	r _{1.045}	1.356	1.427	1,435
	1,010	1,040	1,000	1,441	1,430
Total	^r 82,134	r86,698	89,684	86,310	84,982

^eEstimated. ^pPreliminary. ^rRevised. NA Not available.

¹Table includes data available through June 30, 1982. ²Gypsum is also produced by Romania, but production data are not available.

⁵Reported figure.

⁶Excludes byproduct gypsum.

Series revised to represent sum of (1) mine product sold without beneficiation and (2) output of concentrates.

Includes byproduct gypsum. (In the case of Japan, byproduct gypsum was virtually all gypsum consumed during 1977-

ess than 1/2 unit.

¹⁰Data are for years beginning Apr. 1 of that stated.

TECHNOLOGY

Reinforced gypsum was a potentially attractive indigenous material for housing in Egypt. A paper presented strengths and related properties of experimental gypsum panels reinforced with jute, wire mesh, glass wool, polypropylene fiber, and Nile reeds.18

Arklow Gypsum Co., a wholly owned subsidiary of Nitrigin Eireaan Teoranta in Ireland, was manufacturing wallboard from synthetic gypsum obtained from its fertilizer plant at Arklow, County Wicklow.19

The Florida phosphate industry has had to contend with disposal of large quantities of byproduct gypsum from phosphoric acid plants for many years. Little use has been found except as a soil moderator and stimulant for fertilizer utilization in agriculture. Technology is available to use this material in wallboard manufacturing and as a setretarder in cement, as is evident from the large-scale use of byproduct gypsum for these purposes in Japan. A bill was before the Florida State government proposing to study gypsum to determine if it should be included in the State's hazardous waste laws. If this became a law, it would impose an extra burden on the phosphate rock

industry and preclude any further utilization of this material, including any other potential industrial application.20

A patent (Ger. Offen. 2,940,785) was issued on April 16, 1981, to Peter Eckhardt of Hoechst AG, Federal Republic of Germany, for porous gypsum and construction elements containing it. The porous plaster elements were produced by a foaming mixture of α -hemihydrate gypsum, a polyurethane pre-adduct, a catalyst, and possibly other conventional additives in the presence of polyvinyl alcohol and boric acid. After casting, a volume weight of 360 grams per liter, good bending-tensile, and compressive strengths were claimed.21

Drill core samples from nine stockpiles of the phosphogypsum produced by the Florida phosphate industry were characterized using chemical, X-ray diffraction, emission spectrographic, radiological, and physical means. Data developed indicated that the phosphogypsum was not a corrosive or toxic hazardous waste as defined by the Environmental Protection Agency criteria. Radium concentration averaged 21 picocuries per gram, and its content was inversely related to particle size.22

³Includes anhydrite.

⁴Shipments.

GYPSUM 415

C. F. Industries was experimenting with byproduct gypsum from its phosphate fertilizer operation for use in building an 8-inch base for an entrance road to its plant, 40 miles southeast of Tampa, Fla. It was considered as an alternative to the use of shell or limerock.23

Detailed economic and geologic descriptions of the gypsum resources of New Mexico were published. Large deposits of potential commercial value occur in the northcentral, south-central, and southeastern sections of the State. Reserves of highpurity gypsum in New Mexico are enormous, certainly in the billions of tons.24

The Dowa Mining Co., Ltd., flue gas desulfurization (FGD) process is one of the double alkali processes using basic aluminum sulfate with slurried limestone (80% minus 200-mesh) to maintain basicity and air oxidation and precipitation of gypsum with quality satisfactory for wallboard manufacturing. It is simple in design and has low construction and operating costs. Since 1970, nine commercial plants in Japan and one in China have been built, and were treating a variety of waste gases, including those from oil-burning boilers, smelters, and sulfuric acid plants. A lime-scrubbing FGD process at Dowa's Kosaka smelter was converted into one using the Dowa FGD process, which reduced raw materials costs by 50% and provided additional income from sales of commercial byproduct gypsum.25

¹Physical scientist, Division of Industrial Minerals ²Burlington County Times. U.S. Gypsum Buys Shutdown Delanco Plant. Willingboro, N.J., Aug. 18, 1981, p. 1.

³Rock Products. Industry News. Wallboard Plant Starts Production. V. 84, No. 12, December 1981, p. 29.

⁴Rock Products. Industry News. V. 84, No. 6, June 1981,

⁴Rock Products. Industry News. V. 24, NO. 9, June 1501, p. 38.
 ⁵Industrial Minerals (London). ⁴IM Canada Supplement 781. No. 167, August 1981, pp. 57-58.
 ⁶Pages 11, 13, 17, 22, and 35 of work cited in footnote 5.
 ⁷Stonehouse, D. H. Gypsum and Anhydrite. Can. Miner. Yearbook, 1980, p. 6 (preprint).
 ⁸U.S. Embassy, Beijing, China. U.S. State Department Airgram A-85, Sept. 14, 1981.
 ⁹Industrial Minerals (London). Industry News & Mineral Notes. No. 165, June 1981, p. 59.
 ¹⁰Page 57 of work cited in footnote 9.

¹⁰Page 57 of work cited in footnote 9.

11 Industrial Minerals (London). Industrial Minerals of Ireland. No. 174, March 1982, pp. 46-47.
12 Fujii, N. The Industrial Minerals of Japan. Ind. Miner. (London), No. 170, November 1981, pp. 48-49.
13 Industrial Minerals (London). Company News & Min-

eral Notes. No. 172, January 1982, p. 50. 14Work cited in footnote 13.

Mining Week. Optimism for Mining. Min. J. (London),
 298, No. 7660, June 11, 1982, p. 483.
 Jones, G. K. The Industrial Minerals of Tanzania. Ind. Miner. (London), No. 166, July 1981, p. 37.
 Industrial Minerals (London). Minerals in the News.

Thoustria Minerals (London), Minerals in the News. No. 165, June 1981, p. 18.

18 Youssef, M. A., and A. G. H. Dietz. Reinforced Gypsum for Egyptian Housing. ASCE Ann. Conv. and Exposition, Portland, Oreg., Apr. 14-18, 1980, Preprint 80-169, 20 pp.

18 Page 47 of work cited in footnote 11.

²⁰Industrial Minerals (London). No. 176, May 1982, p. 11. ²¹Chemical Abstracts. CA Selects—Zeolites. No. 21,

1981, p. 4.

22 May, A., and J. W. Sweeney. Assessment of Environmental Impacts Associated With Phosphogypsum in Florida. BuMines RI 8639, 1982, p. 19.

23 U.S. Bureau of Mines. Minerals & Materials—A. W. March 1982, p. 8.

Monthly Survey. March 1982, p. 8.

²Dickson, T. Gypsum Resources of New Mexico. 17th Industrial Mineral Forum—A Report From the Albuquer-que Meeting. Ind. Miner. (London), No. 167, August 1981,

p. 50. 25 Konada, T., and J. Nagao. Application of the Dowa Process to Smelter Gases. J. Met., v. 33, No. 3, March 1981,

Helium

By Philip C. Tully¹

Grade-A helium (99.995% or better) sales volume in the United States by private industry and the Bureau of Mines was 866 million cubic feet (MMcf) in 1981.2 Grade-A helium exports by private producers were 389 MMcf for total sales of 1,255 MMcf of U.S. helium. The Bureau's price, f.o.b. plant, for Grade-A helium was \$35 per thousand cubic feet (Mcf), unchanged since 1961. The price of Grade-A helium gas sold by private producers was \$27 per Mcf at the end of the year, and the price of liquid helium averaged \$32 per Mcf gaseous equiv-

alent.

Legislation and Government Programs.—On June 18, 1981, Bureau representatives testified before the House Subcommittee on Energy Conservation and Power of the Committee on Energy and Commerce about H.R. 3877, the Helium-Energy Act of 1981. The primary purpose of this bill was to provide for additional helium conservation by the Government. No future action by the Congress during 1981 was indicated.

DOMESTIC PRODUCTION

In 1981, there were nine privately owned domestic helium plants, which were operated by seven companies. One new plant was under construction (table 1). Seven privately owned plants and two Bureau plants extracted helium from natural gas. Private and Bureau plants use a cryogenic extraction process. The Bureau and four of the five private plants that produce Grade-A helium; i.e., Cities Service Cryogenics, Inc., Ulysses, Kans.; Kansas Refined Helium Co., Otis, Kans.; Phillips Petroleum Co., Elkhart, Kans.; and Union Carbide Corp., Linde Div., Bushton, Kans., have helium liquefaction facilities. Air Products and Chemicals, Inc., is building a 250-MMcf-per-year helium plant in Hansford County, Tex., which is expected to be completed in 1982.

The volume of crude (a gas mixture containing about 50% to 80% helium) and

Grade-A helium recovered from natural gas for 1977-81 is summarized in table 2, and the combined volumes recovered and sold are plotted in figure 1. All of the natural gas processed for helium extraction came from the gasfields shown in figure 2. Supply and disposal of helium for 1979-81 at the Bureau's helium plants are summarized in table 3.

The Bureau awarded a contract for a pressure swing adsorption helium purification unit in 1979. The unit was installed at the Masterson, Tex., (Exell) plant during 1980 and accepted in 1981. A new cryogenic helium purification unit and helium liquefier, also purchased under contract, were installed at the Bureau's Exell plant. The liquefier was accepted, and performance tests on the purifier were in progress at the end of 1981.

Table 1.—Ownership and location of helium extraction plants in the United States, in 1981

Category and owner or operator	Location	Product purity
Government-owned:		
Bureau of Mines	Masterson, Tex	Crude and Grade-A helium.
Do	Keyes, Okla	Do.2
Private industry:	neyes, on	ъ.
Air Products and Chemicals, Inc	Hansford County, Tex	Grade-A helium ¹ (under construction).
Cities Service Cryogenics, Inc	Scott City, Kans	Crude helium.3
Do	Ulysses, Kans	Grade-A helium 1
Cities Service Helex, Inc	do	Crude helium
Kansas Refined Helium Co	Otis, Kans	Grade-A helium.1
Navajo Refined Helium Co	Shiprock, N. Mex	Grade-A helium.
Northern Helex Co	Bushton, Kans	Crude helium.
Phillips Petroleum Co	Elkhart, Kans	Grade-A helium. ¹
Do.4	Hansford County, Tex	Crude helium.
Union Carbide Corp., Linde Div	Bushton, Kans	Grade-A helium.1

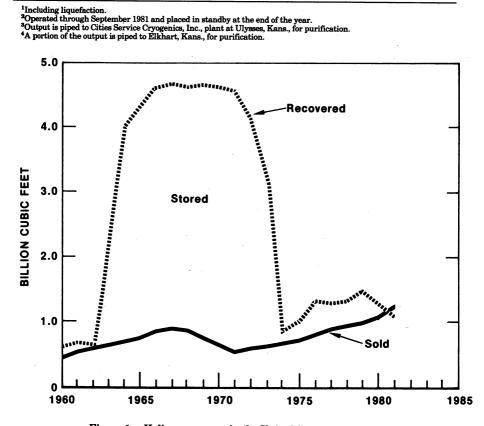


Figure 1.—Helium recovery in the United States, 1960-81.

1980

1981

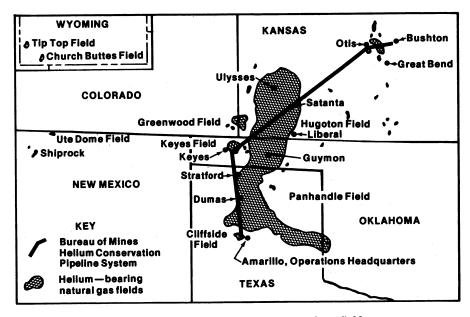


Figure 2.—Major U.S. helium-bearing natural gas fields.

Table 2.—Helium recovery in the United States¹ (Thousand cubic feet)

1977 1978 1979

Crude helium: Bureau of Mines: Total storage	116,715	42,483	34,868	22,887	-257,799
Private industry: Stored by Bureau of Mines Withdrawn	582,935	723,788	787,123	633,956	452,880
	-108,062	-157,716	-180,840	-266,898	-304,987
Total private industry storage Total crude helium Stored private crude helium withdrawn from	474,873	566,072	606,283	367,058	147,893
	591,588	608,555	641,151	389,945	-109,906
storage and purified by the Bureau of Mines for redelivery to industry	-204,948	-229,512	-222,320	-200,612	-80,208
Grade-A helium: Bureau of Mines sold Private industry sold	213,472	208,252	209,680	187,735	240,880
	727,908	779,434	890,160	986,601	1,014,543
Total sold	941,380	987,686	1,099,840	1,174,336	1,255,423
Total stored	386,640	379,043	418,881	189,333	-190,114
Grand total recovery	1,328,020	1,366,729	1,518,671	1,363,669	1,065,309

¹Negative numbers denote net withdrawal from the Government's underground helium storage facility, a partially depleted natural gas reservoir in Cliffside Field near Amarillo, Tex.

Table 3.—Summary of Bureau of Mines helium plant operations

(Thousand cubic feet)

	1979	1980	1981
Supply:			
Inventory at beginning of period ¹	18,066	16,326	14,510
Helium recovered: Exell plant:			
Crude ²	60,103	-70.275	-280,174
Grade-A	38,222	35,063	³ 237,719
Total ²	-21,881	-35,212	-42,455
Keyes plant:	. =====================================		
Crude	94.971	93,162	22,375
Grade-A ⁴	394,946	348,912	49,346
Total	489,917	442,074	71,721
Total recovered	468,036	406,862	29,266
Helium returned in containers (net) ²	-2,894	^r 2,556	33,888
Total supply	_ 483,208	^r 425,744	77,664
Disposal:			
Sales of Grade-A helium		187,735	240,880
Redelivered to private producers	_ 222,334	r200,612	80,208
Net deliveries to helium conservation system ²	34,868	22,887	-257,799
Inventory at end of period ¹	16,326	14,510	14,375
Total	483,208	r425,744	77,664

Revised.

CONSUMPTION AND USES

The major domestic end uses of helium in 1981 were cryogenics, welding, and pressurizing and purging, as shown in figure 3. Minor uses included synthetic breathing mixtures, chromatography, leak detection, lifting gas, heat transfer, and controlled atmospheres. Annual helium sales volumes for 1977-81 are shown in table 4. The Pacific and Gulf Coast States were the principal areas of demand.

Federal agencies purchase their major helium requirements from the Bureau. Direct helium purchases by the Department of Energy, the Department of Defense, the National Aeronautics and Space Administration (NASA), and the National Weather Service constituted most of the Bureau's Grade-A helium sales (table 5). All of the remaining sales to Federal agencies were through private helium distributors, which purchased equivalent volumes of Bureau helium under the Code of Federal Regulations (30 CFR 602). Some of the private

distributors also have General Services Administration helium supply contracts. These contracts make relatively small volumes of helium readily available to Federal installations at reduced freight charges.

The Bureau of Mines price, f.o.b. plant, of Grade-A helium in 1981 was \$35 per Mcf, unchanged since the Government established that price in 1961. Private producers' price for Grade-A helium gas was \$27 per Mcf at the end of the year. The price of liquid helium averaged \$32 per Mcf gaseous equivalent.

Table 4.—Total sales of Grade-A helium in the United States

(Million cubic feet)

Year	Volume	
1977	779	
1978	811	
1979	817	
1980	863	
1980	866	

¹At Amarillo and Exell helium plants.

Negative numbers denote net withdrawal from Government's underground helium storage facility.

³Includes 67,591 Mcf purified for private industry in 1981. ⁴Includes 222,334 Mcf purified for private industry in 1979, 200,612 Mcf in 1980, and 12,617 Mcf in 1981.

421

All Grade-A gaseous helium sold by the Bureau was shipped in cylinders, special railway tank cars, or highway tube semitrailers. Liquid helium was shipped in dewars from the Amarillo and Exell helium plants and in semitrailers from the Exell helium plant. Private industrial gas distrib-

utors shipped helium as gas or liquid. Much of the private helium was transported in liquid form by semitrailers to distribution centers, where a portion was gasified and compressed into trailers and small cylinders for delivery to the end user.

ESTIMATED TOTAL HELIUM USED 866 million cu. ft. Leak Other detection 36 Welding 25 168 Cryogenics Controlled 286 22 atmospheres 156 Pressurizing and purging 38 30 32 73 Chromatography

Figure 3.—Helium consumption by end use in the United States in 1981 (million cubic feet).

Synthetic

breathing

mixtures

Lifting

gas

Heat

transfer

Table 5.—Bureau of Mines sales of Grade-A helium, by purchaser

(Thousand cubic feet)

Purchaser	1979	1980	1981
Federal agencies: Department of Energy Department of Defense National Aeronautics and Space Administration National Weather Service Other	23,634	24,894	29,44
	114,050	103,267	92,40
	27,555	24,059	44,22
	1,483	1,301	1,00
	1,916	2,464	2,66
Total	168,638	155,985	169,736
Federal agency sales supplied by private-contract helium distributors ²	38,478	29,478	68,55
Commercial sales	2,564	2,272	2,599
Grand total	209,680	187,735	240,886

¹Table identifies purchaser, which is not necessarily a Federal helium user.

²Purchased from the Bureau of Mines by commercial firms and redistributed to Federal installations under contract authority of 30 CFR 602.

CONSERVATION

The volume of helium stored for future use in the Bureau of Mines helium conservation storage system, which includes the conservation pipeline network and the Cliffside Field near Amarillo, Tex., totaled over 40 billion cubic feet (Bcf) at the end of 1981 (table 6). The conservation storage system contains crude helium purchased by the

Bureau of Mines under contract, Bureau helium extracted in excess of sales, and privately owned helium stored under contract. During 1981, 453 MMcf of private helium was delivered to the Bureau's helium conservation storage system and 385 MMcf was withdrawn, for a net increase of 68 MMcf of private helium in storage.

Table 6.—Summary of Bureau of Mines helium conservation storage system operations (Thousand cubic feet)

	1979	1980	1981
Helium in conservation storage system at beginning of period: Stored under Bureau of Mines conservation program ² Stored for private producers under contract	37,825,559	37,860,427	37,883,314
	2,031,567	2,415,532	2,582,426
Total	39,857,126	40,275,959	40,465,740
input to system: Net deliveries from Bureau of Mines plants ³ Stored for private producers under contract ⁴	34,868	22,887	-1,745,704
	787,125	634,309	1,940,492
Total	821,993	657,196	194,788
ledelivery of helium stored for private producers under contract ³	-403,160	-467,415	-385,194
Net addition to system ³	418,833	189,781	-190,406
Helium in conservation storage system at end of period: Stored under Bureau of Mines conservation program Stored for private producers under contract	² 37,860,427	² 37,883,314	36,137,610
	2,415,532	2,582,426	4,137,724
Total	40,275,959	40,465,740	40,275,334

¹Crude helium is injected into or withdrawn from the Government's underground helium storage facility, a partially depleted natural gas reservoir in Cliffside Field near Amarillo, Tex.

Includes 1,518,008 Mcf of helium accepted in 1973 under court order.

Negative numbers denote net withdrawal from storage

Includes 1,518,008 Mcf of helium (minus 2%) originally accepted under court order but returned to private producers under terms of court settlements

RESOURCES

Domestic measured and indicated helium resources as of January 1, 1981 (the latest figures available), are estimated to be 346 Bcf. The resources included measured and indicated resources estimated to be 163 Bcf and 37 Bcf, respectively, in natural gas with

a minimum helium content of 0.3%. The measured reserves included 40 Bcf stored in the Bureau's helium conservation storage system. Measured helium resources in natural gas with a helium content of less than 0.3% are estimated to be 55 Bcf. Indicated

HELIUM 423

helium resources in natural gas with a helium content of less than 0.3% are estimated to be 91 Bcf. Approximately 95% of the domestic helium resources under Federal ownership or control are in the Tip Top and Church Buttes Fields in Wyoming, the Keyes Field in Oklahoma, and the Cliffside Field in Texas.

The majority of domestic helium resources are located in the midcontinent and Rocky Mountain regions of the United States. The measured and indicated helium

resources are located in approximately 76 gasfields in 10 States. About 89% of these reserves are contained in the Hugoton Field in Kansas, Oklahoma, and Texas; the Keyes Field in Oklahoma; the Panhandle and Cliffside Fields in Texas; and the Tip Top Field in Wyoming. The Bureau analyzed a total of 242 natural gas samples from 18 States during 1981 in conjunction with a program to survey and identify possible new sources of helium.

FOREIGN TRADE

Exports of Grade-A helium, all by private industry, increased by 30% in 1981 to 389 MMcf (table 7). Nearly 53% of the exported helium was shipped to Europe. The United Belgium-Luxembourg, Kingdom. France, collectively, received more than 95% of the European helium imports from the United States. Fourteen percent of the U.S. helium exports went to Asia, 3% to North America, 22% to Central and South America, 3% to Australia and New Zealand, 4% to the Middle East, and less than 1% each to Africa and the Caribbean. The shipments of large volumes of helium to Western Europe in 1981 were attributed to helium's use in breathing mixtures for diving and for welding in the exploration for oil and gas, especially in the North Sea. Exploration in Mexico and Brazil accounted for the large increase in Central and South America.

Table 7.—Exports of Grade-A helium from the United States

(Million cubic feet)

Year	Volume
1977	168 190 245 298 389

Source: U.S. Bureau of the Census.

WORLD REVIEW

World production of helium, excluding the United States, was estimated to be 120 MMcf. This production was attributed to the central-economy countries, part of which was extracted in Poland.

TECHNOLOGY

Two successful launches of the Columbia Space Shuttle of NASA's Space Transportation System were made using Bureau helium.

The 4,000-liter-per-hour helium liquefier, the world's largest, at Fermi National Accelerator Laboratory continued operation. Liquid helium was circulated to satellite liquefiers. Magnet testing is nearly complete.

The Bureau's helium-4 pilot plant produced a dozen cylinders of the isotopically purified gas containing an average helium-3 content of 3 parts per billion. Normally helium contains about 200 parts per billion helium-3. Two cylinders have been sold to universities for research purposes.

Superconducting magnet development for fusion and magnetohydrodynamic systems is proceeding. Los Alamos National Laboratory completed a superconducting magnet for energy storage for the Bonneville Power Administration.

The Electric Power Research Institute has entered into a \$19 million, cost-sharing contract with Westinghouse Electric Corp. for the design and construction of a 270-megawatt superconducting electric generator. The project has reached the development stage. The generator will be the largest of its kind and will be partially cooled by liquid helium to maintain the near-absolute-zero temperature (-452° F) necessary to achieve the superconducting state. Superconducting generators are smaller, lighter, and more efficient than conventional generators of the same capacity.

²All helium volumes herein are reported at 14.7 pounds per square inch absolute at 70° F.

 $^{^{1}}$ Chemical engineer, Division of Helium Operations, Amarillo, Tex.

Iron Ore

By F. L. Klinger¹

U.S. production of iron ore increased in 1981, as demand from the iron and steel industry recovered briefly from the low level of 1980. Demand remained relatively weak, however, and by yearend, output of ore had again been drastically cut and the prospects of recovery in 1982 were uncertain.

The situation of iron ore industries in the rest of the world was similar to that of the

United States. Iron ore production and trade continued to decline in 1981 as production of iron and steel was reduced by most of the industrialized countries. Ocean freight rates declined, and there was a downward pressure on iron ore prices although costs of production continued to rise. New markets for iron ore continued to grow, however, among developing countries.

Table 1.—Salient iron ore statistics
(Thousand long tons and thousand dollars unless otherwise specified)

	1977	1978	1979	1980	1981
United States:					
Iron ore (usable, 1 less than 5% manganese):			07.510	00.010	73,174
Production	55,750	81,583	85,716	69,613	
Shipments ²	54,053	83,207	86,218	69,594	72,181
Value ²	\$1,422,696	\$2,401,387	\$2,814,440	\$2,544,121	\$2,915,239
Average value at mines, dollars per ton	\$26.32	\$28.86	\$32.64	\$ 36.56	\$40.39
	2,143	4.213	5,148	5,689	5,546
Exports	\$62,760	\$136,721	\$178,749	\$230,568	\$244,685
Value		33,616	33,776	25,058	28,328
Imports for consumption	37,905		\$923,426	\$772,844	\$947,977
Value	\$956,584	\$845,039		98,879	104.385
Consumption (iron ore and agglomerates)	116,034	124,797	125,431	20,012	104,000
Stocks, Dec. 31:					40.504
At mines ³	14,811	12,359	11,266	r _{11,725}	12,734
At consuming plants	42,271	39,301	38,969	35,706	36,203
	2,979	3,569	5,416	6,095	6,571
At U.S. docks	2,0.0	0,000	-,		
Manganiferous iron ore (5% to 35% manga-	193	279	215	155	157
nese): Shipments		*833,894	*889.988	P881,720	e847,184
World: Production	r827,816	-533,894	009,900	001,120	021,102

^eEstimated. ^pPreliminary. ^rRevised.

¹Direct shipping ore, concentrates, agglomerates, and byproduct ore.

²Includes byproduct ore. ³Excludes byproduct ore.

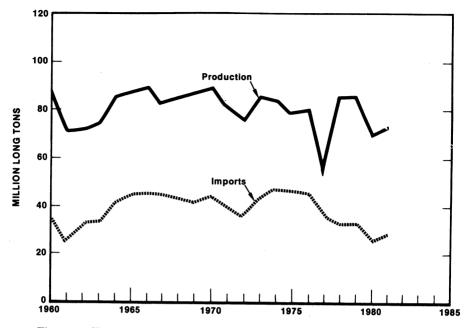


Figure 1.—United States iron ore production and imports for consumption.

EMPLOYMENT

Statistics on employment and productivity in the U.S. iron ore industry in 1981 are shown in table 2. Employment data were supplied by the Mine Safety and Health Administration of the U.S. Department of Labor, from reports received from producers. The statistics in table 2 include persons employed at mines and ore processing plants but do not include 2,133 engaged in management, research, or office work.

Total employment and number of hours worked in the industry in 1981 were not significantly different from those of the previous year, even though production of crude ore increased by 7% and production of usable ore increased by about 5% in 1981. Productivity for usable ore increased by 5% in the Lake Superior district and by 4% for the industry as a whole. The increase of productivity occurred because the larger, more mechanized taconite mines contributed a larger share of production in 1981 than in the previous year.

DOMESTIC PRODUCTION

U.S. mine production and shipments of iron ore increased moderately in 1981, compared with those of the previous year, but demand from the iron and steel industry remained relatively low. The 1981 gains in production and shipments occurred mainly between May and October, when demand was substantially higher than in the corresponding period of 1980. Demand fell sharply in the last quarter, however, and produc-

tion of ore in November was the lowest since the strike-bound months of 1977 and before that, since 1963.

Iron ore was produced from 31 open pit mines and 1 underground mine during 1981. Two mines were closed during the year, owing to depletion of ore reserves, but production of many others was reduced or temporarily suspended, owing to low demand. For example, in the Lake Superior

IRON ORE 427

district, 8 of the 13 taconite operations were closed for periods ranging from 2 weeks to 11 months; production at 3 others was sharply reduced; and by December 1, production of iron ore pellets had dropped to about 50% of production capacity.

Crude ore production totaled 227 million tons,² almost all of which was extensively beneficiated to obtain ore suitable for blast furnace use.² An average of 3.10 tons of crude ore was mined for each ton of usable ore produced compared with 3.05 tons in 1980 and 2.93 tons in 1979. The annual increase of this ratio was due to the decline in production of direct-shipping ore and increasing production of low-grade ore of the taconite type. Most crude ore produced in 1981 contained 20% to 28% of recoverable iron. The average iron content of usable ore was 63.6%, compared with 63.0% in 1980 and 62.6% in 1979.

Iron ore pellets and other agglomerates made up nearly 96% of mine output of usable ore in 1981. Unagglomerated concentrates made up 4%, and direct-shipping ores made up less than 1%. Pellets were produced by 16 plants, including 8 in Minnesota, 4 in Michigan, and 1 each in California, Missouri, Wisconsin, and Wyoming. The Humboldt pelletizing plant in Michigan was not operated in 1981. Iron ore pellets made up more than 99% of the agglomerates produced.

The Lake Superior district produced 92% of all usable ore produced in 1981. Minnesota produced 70%; Michigan and Wisconsin 22%; and the remainder was produced in eight other States. U.S. production capacity for usable ore at the end of 1981 was estimated at 105 million tons per year, including about 92 million tons of capacity for pellets.

In Minnesota, the Canisteo and Arcturus natural-ore mines were closed in 1981 owing to depletion of ore reserves. Both facilities were located on the western Mesabi Range and produced hematite concentrates by gravity methods. The Canisteo Mine, closed June 13 by Cleveland-Cliffs Iron Co., had produced about 53 million tons of concentrates since it was opened in 1907. The Arcturus Mine, closed October 22 by United States Steel Corp. (USS), was opened in 1917 and had produced about 15 million tons. USS awarded contracts for dismantling three major natural-ore processing facilities, including the Trout Lake and Sherman concentrators near Coleraine and Chisholm, respectively, and the Rouchleau crushing and screening plant near Virginia. Elsewhere on the Mesabi, four of the eight taconite mining operations were temporarily closed during 1981. The Minorca facility of Inland Steel Co. was closed from October 4 to November 14. The Butler Taconite and National Steel Pellet projects, operated by Hanna Mining Co., were closed from October 18 to December 13. The pelletizing plant of National Steel Pellet Co. was operated at about 60% of capacity during most of 1981. Pickands Mather & Co. closed the Hibbing Taconite facility for 2 weeks at the end of the year. On October 11, USS reduced production of its Minntac facility to about 40% of capacity for an indefinite period. These actions resulted in a temporary layoff of about 4,000 employees in 1981. Reserve Mining Co. announced plans to suspend production for 11 weeks in 1982.

In Michigan, Hanna Mining Co. closed the Groveland Mine in January for an indefinite period. The mine remained closed for the rest of the year. Cleveland-Cliffs Iron Co. closed the Republic Mine from July 5 to August 11, and from October 3 through the end of the year. Production at the Empire and Tilden Mines was reduced by 25% and 50%, respectively, at the end of August, and on November 14 the Empire Mine was closed for an indefinite period. Normal production was resumed at the Tilden Mine on December 21. These actions affected about 2,500 employees.

Elsewhere in the Lake Superior district, Inland Steel Co. closed its mine and pelletizing plant at Black River Falls, Wis., from November 8 to December 6, idling about 250 employees.

In California, Kaiser Steel Corp. announced plans to close the Eagle Mountain Mine and to terminate production of iron at Fontana, Calif., by the end of 1983. The mine was closed for 2 weeks in late December, affecting about 1,000 employees of whom about 150 were laid off permanently.

In Utah, the Comstock Mine, operated by Utah International, Inc., for CF&I Steel Corp., was closed in January for an indefinite period and was not reopened in 1981. Utah International also announced in January that its mine and concentrator at Iron Springs were closed owing to lack of demand. The company's contract to supply ore to the Geneva Works of USS reportedly expired in late 1980. USS suspended production at the Mountain Lion Mine but continued to ship ore from stockpiles at Desert Mound. Production from the Iron Springs

district was therefore suspended during most of 1981.

In other developments, Nevada-Barth Corp. continued to ship ore to Geneva, Utah, in 1981 from its mine stockpile near Carlin, Nev., but production reportedly ended in 1980 owing to exhaustion of ore reserves. In Wyoming, the Sunrise under-

ground mine of CF&I Steel Corp. remained idle in 1981. In Missouri, the Pea Ridge underground mine was operated throughout the year. St. Joe Minerals Corp. continued to study the feasibility of building a coal-based direct-reduction plant to process Pea Ridge pellets, but a decision was not announced by yearend.

CONSUMPTION

Following a brief surge in demand for iron and steel that began in late 1980, monthly consumption of iron ore in 1981 rose to 9.3 million tons in March, then declined gradually to 6 million tons in December. Despite this decline, consumption in 1981 increased compared with that of the previous year because a much steeper decline had occurred in 1980. Thus, by the end of September, consumption in 1981 was 15% more than during the corresponding period of 1980. The net increase for the year, however, was only about 5% owing to a further decline in the last quarter.

Consumption of iron ore and agglomerates in 1981 totaled about 104 million tons, of which 99% was consumed in the manufacture of iron and steel. Consumption of primary ore totaled about 94 million tons, including 75 million tons of pellets, 14 million tons of fines and concentrate consumed in production of sinter, 4 million tons of natural ore charged directly to ironmaking and steelmaking furnaces, and 1 mil-

lion tons used in the manufacture of miscellaneous products. Consumption of pellets was 12% more than in 1980; consumption of sinter was relatively unchanged; and consumption of natural ores in ironmaking and steelmaking furnaces was the lowest in many years. Of the primary ore consumed by the iron and steel industry, approximately 71% was supplied from domestic mines, 20% came from Canadian mines, and 9% came from other countries.

Consumption data are shown in tables 10 and 11. The data do not include iron ore fines or concentrate used to produce pellets or other agglomerates at mine sites. In table 11, the difference in weight between iron ore consumed and agglomerates produced is due to the elimination of moisture, as well as the addition of other raw materials to the sinter mix. Consumption of other materials reported in sinter plants in 1981 included (in million tons): Flue dust, 1.5; mill scale, 3.5; slag, 2.3; limestone, dolomite, and other fluxes, 5.6; and coke breeze, 1.2.

STOCKS

Stocks of iron ore and agglomerates reported at U.S. mines, receiving docks, and consuming plants on December 31, 1981, totaled 55.5 million tons, 2 million tons more than at the beginning of the year. About one-half of the increase occurred at the mines because 1981 shipments were less than production. The rest of the increase was due to accumulation of imported ore at

receiving docks and consuming plants, because consumption of domestic ore was proportionately higher in 1981. Of the total stocks on hand at receiving docks and consuming plants at yearend, 61% consisted of domestic ores, 22% consisted of Canadian ores, and 17% consisted of other foreign ores.

PRICES

Published prices for Lake Superior iron ores, delivered rail-of-vessel at lower lake ports, continued to increase in 1981. In January, the price of iron ore pellets rose to 80.5 cents per long ton unit (ltu) of iron, natural, and remained at that level for the rest of the year. The new price was about 9% higher than that previously quoted. Cleveland-Cliffs Iron Co. was the first to announce the increase, and was followed

within the next week by Hanna Mining Co. and Oglebay Norton Co. According to Hanna Mining Co., the increase only partly offset rising costs of fuel, labor, power, and supplies. Oglebay Norton Co. stated that the new price included transportation and unloading charges, and fuel surcharges, in effect on December 31, 1980, and that any increases in these charges after that date were to be borne by the buyer. In June, USS

announced that its price for Mesabi nonbessemer ore (basis 51.5% Fe, natural) would be \$32.53 per long ton, effective June 30. The new price, which was equivalent to 63.17 cents per ltu, applied to both coarse ore and fines, and represented an increase of about 14% compared with the price in effect since mid-1980. Cleveland-Cliffs' price for the same ore was \$32.25 per ton, effective April 27. In late July, the published prices for manganiferous ore and Old Range nonbessemer ore increased to \$32.78 per ton, equivalent to 63.65 cents per ltu. The new price, which was unchanged during the rest of the year, represented an increase of 14% for Old Range nonbessemer ore, but 32% for maganiferous ore, because prior to the 1981 increase, a difference of \$3.90 per ton existed between the base prices of these ores. During 1981, the price of semitaconite fines was unchanged at \$21.54 per ton, equivalent to 41.83 cents per ltu.

The average f.o.b. mine value of usable iron ore shipped from domestic mines in 1981 was estimated at \$40.39 per long ton, equivalent to about 63.4 cents per ltu, an increase of about 10% compared with the average value in 1980. Average values are mainly based on producers' statements and are believed to approximate the average commercial selling price less the cost of mine-to-market transportation; however, owing to the concentration of iron ore production in the Lake Superior district and the relatively high value of the principal product (pellets), the average value of ores and concentrates shipped by producers in other States may be considerably different.

Published prices for most Canadian and other foreign ores marketed in the United States were not available. The price of Canadian (Wabush) pellets, f.o.b. Pointe Noire, Quebec, was 63.5 cents per ltu in 1981, compared with 58.25 cents in 1980. The average f.o.b. value of Canadian ore imported by the United States in 1981, as determined from data released by the U.S. Bureau of the Census, was \$37.57 per long ton, equivalent to about \$0.60 per ltu. The average f.o.b. value of ores imported from Venezuela and Brazil, based on U.S. Bureau of the Census data, was \$27.79 and \$30.07, respectively, per long ton. Both of the latter values were equivalent to an estimated \$0.46 per ltu. Prices for Canadian and other foreign iron ores are usually lower than prices for U.S. Lake Superior ores, partly because foreign ore prices are quoted on an f.o.b. basis while U.S. prices include transportation charges to receiving ports. Also, value estimates based on U.S. Customs data are only approximate because the Tariff Schedule of the United States does not classify imported iron ores by physical structure or iron content.

The published price of direct-reduced iron (DRI), f.o.b. Georgetown, S.C., during 1981 was \$125 to \$135 per metric ton. This price range was the same as in October 1980 but \$10 to \$20 higher than that quoted in previous months. F.o.b. prices of DRI at Contrecoeur, Quebec, and Point Lisas, Trinidad, during the last half of 1981 were \$115 and \$120 per metric ton, respectively.

TRANSPORTATION

Vessel shipments of iron ore from U.S. ports on the upper Great Lakes in 1981 totaled 61.8 million tons, including 37 million tons from Minnesota, 14.1 million tons from Michigan, and 10.7 million tons from Wisconsin. An estimated 92% of the total was destined for domestic ironmaking and steelmaking plants and the rest was exported, principally to Canada. Shipments of iron ore from Canadian ports, including those on the Gulf of St. Lawrence, to destinations on the Great Lakes totaled 13.1 million tons, of which an estimated 10 million tons was destined for U.S. ports.

Ore shipments from ports in Minnesota and Wisconsin increased by about 9% in 1981, compared with those of the previous year, while shipments from ports in Michigan were about 9% less. Tonnage shipped

from each port during 1981 is shown in the accompanying tabulation:

Port	Date of first shipment	Date of last shipment	Total tonnage (thou- sand long tons)
Duluth, Minn Two Harbors, Minn Taconite Harbor, Minn Silver Bay, Minn Superior, Wis Escanaba, Mich Marquette, Mich	Apr. 1 Apr. 2 Apr. 13 Apr. 8 Apr. 12 Apr. 3 Mar. 28	Dec. 16 Dec. 28 Dec. 10 Dec. 10 Dec. 16 Dec. 18 Dec. 30	13,071 9,996 7,644 6,351 10,669 8,743 5,342
Total ¹			61,814

¹Data do not add to total shown because of independent rounding.

Source: American Iron Ore Association, and Skillings' Mining Review (various issues). Lake freight rates for iron ore during the 1981 shipping season were about 16% higher than those in 1980. Bulk vessel freight rates announced by Interlake Steamship Co., effective April 1, 1981, were as follows, per ton: From the head of the lakes to lower lake ports, \$7.13; from Marquette to lower lake ports, \$5.88; from Escanaba, Mich., to Lake Erie, \$5.42; and from Escanaba to lower Lake Michigan, \$4.28. An additional \$0.40 per ton was charged for shipments requiring more than 24 hours to unload, or

delivery to docks not capable of handling vessels of more than 23 feet draft. Dock handling and storage charges at lower lake ports in late 1981 were about 15% to 20% higher than in 1980.

Rail freight rates for iron ore in 1981 were 10% to 15% higher than those in 1980 for most mine-to-dock and dock-to-consumer major haulage routes, although rates for all-rail shipments from mines to consuming points appeared unchanged. Examples of rates in late 1981 were as follows:

From	То	Rate (per long ton)
Nashwauk and Keewatin, Minn.	Superior, Wis. (Allouez).	\$4.07
Marquette Range	Escanaba, Mich	2.11
Black River Falls, Wis	Chicago, Íll	6.23
Mesabi Range	Minnegua, Colo	21.83
Lake Erie ports	Pittsburgh and Wheeling districts	8.85
Philadelphia, Pa. or Baltimore, Md	Pittsburgh district.	13.00
Philadelphia, Pa	Bethlehem, Pa_	7.05
Burnside, La	Lone Star, Tex _	11.85
Winton Junction, Wyo	Geneva, Útah	5.24

Sources: Skillings' Mining Review. V. 70, No. 47, Nov. 21, 1981, p. 14; and Cleveland-Cliffs Iron Co.

Published freight rates for ocean shipments of iron ore from eastern Canada to U.S. ports north of Hatteras (\$3.50 to \$3.75 per ton) and to U.S. gulf coast ports (\$7.50 to \$8 per ton) were unchanged in 1981, but it was evident that some rates had declined. Two shipments of 50,000 tons or more from Sept-Iles to Houston were reportedly contracted for \$3.50 to \$3.75 per ton in late 1981.

Two new 1,000-foot, self-unloading ore carriers began service on the Great Lakes in 1981. The William J. DeLancey, operated by Interlake Steamship Co., loaded its first cargo at Silver Bay, Minn., on May 12. The Columbia Star, operated by the Columbia Transportation Division of Oglebay Norton Co., loaded its first cargo at the same port on June 1. Twelve vessels of this type are now in service.

A \$33 million terminal for transfer and

storage of pellets was completed by Chessie System, Inc., at the Port of Toledo, Ohio, in 1981. Operations at the facility began in June, with the transfer of a cargo of pellets to railway cars for delivery to steelworks of Armco Inc. at Hamilton, Ohio, and Ashland, Ky. The terminal was designed to accommodate 1,000-foot vessels.

Tolls on the Montreal-Welland Canal section of the St. Lawrence Seaway were scheduled to increase by an average of 18% (cargo-ton basis) at the beginning of the 1982 ore shipping season. A further increase of 10% was scheduled for 1983. The increased revenue was reportedly needed to offset deficits forecast for the 1981-83 period owing to reduced traffic and increased costs of operation. The additional tolls were expected to increase iron ore transportation costs by 16 cents per ton in 1982 and 9 cents per ton in 1983.

IRON ORE 431

FOREIGN TRADE

U.S. exports of iron ore declined slightly in 1981, compared with those in 1980. Exports totaled 5.5 million tons valued at \$245 million. The average value was \$44.12 per ton, compared with \$40.51 in 1980. Exports consisted almost entirely of iron ore pellets from Michigan and Minnesota, shipped by way of the Great Lakes to Canadian steel companies participating in U.S. taconite projects.

U.S. imports of iron ore for consumption increased moderately in 1981, compared with those of the previous year. Imports in

1981 totaled 28.3 million tons, valued at \$948 million. The average value was \$33.46 per ton, compared with \$30.84 in 1980. Canada remained the principal supplier, with 18.8 million tons, followed by Venezuela with 5.1 million tons. Approximately 54% of all imports from Canada entered the United States at ports on the Great Lakes, whereas almost all imports from other countries were landed at U.S. ports on the east and gulf coasts. Customs districts of Philadelphia, Baltimore, and Cleveland continued to receive the largest tonnages.

WORLD REVIEW

World iron ore production and trade in 1981 declined by 4% and 5%, respectively, compared with that of 1980. Production was estimated at 847 million tons and trade was estimated at 358 million tons. The declines were mainly due to lower demand in Japan and Western Europe. Imports of iron ore by Japan and the European Communities (EC) (excluding intra-EC trade) totaled about 230 million tons, 14 million tons less than in 1980

Exports of iron ore by Australia, France, India, and Sweden were 10% to 15% less than in 1980, as demand declined in their principal markets. Brazil was the world's leading exporter of iron ore in 1981, followed by Australia, Canada, and the U.S.S.R.

Production of iron ore pellets remained relatively low, owing to depressed markets and rising costs of fuel. World output in 1981 was estimated at 190 million tons, about 70% of production capacity. Two plants remained closed in Australia and additional closures were reported in Canada, Brazil, Sweden, and Japan. New plants were completed in Sweden and Nigeria, and others were under construction in Mexico, India, the U.S.S.R., and Bahrain.

Direct reduction of iron ore continued to increase, although world output was probably about 50% of capacity. Production of DRI for steelmaking was estimated at 8.4 million tons, of which more than 50% was

produced in Latin America. Plants were completed in Nigeria and the Federal Republic of Germany in 1981. Others were under construction in at least eight countries, including Nigeria, Libya, Saudi Arabia, Indonesia, and Malaysia, all of which had access to natural gas but will require imports of iron ore. The rising cost of natural gas and relatively low prices of ferrous scrap continued to impede growth of production capacity in the United States and Western Europe. Coal-based plants for steelmaking-grade DRI were under construction in India and the Republic of South Africa.

Prices for most iron ores marketed in Japan increased by about 8% in 1981, but prices for most ores marketed in Europe were unchanged or slightly lower than 1980 prices. The 1981 prices (f.o.b., per ltu of contained iron) ranged from about 23 to 34 cents for sinter fines, 26 to 35 cents for lump ore, and 42 to 57 cents for pellets. The price of pellet feed for Japan from Brazil and Peru ranged from 22 to 27 cents. The price of beach-sand concentrates (titaniferous magnetite) for Japan from New Zealand was 18.8 cents.

Ocean freight rates declined during 1981. Spot rates published by *Metal Bulletin* indicated declines of 30% to 60% in rates from major iron ore loading ports to destinations in Japan, Western Europe, and the United

States by late 1981. Rates for shipments of 50,000 to 70,000 tons to Western Europe in late 1981 were approximately \$5.75 per ton from West Africa, \$7 per ton from Brazil, and \$9 per ton from Venezuela. For shipments of 115,000 to 140,000 tons, rates were about \$2 per ton from Narvik, Norway, \$4 per ton from eastern Canada, and \$9 per ton from Western Australia.

Angola.—Iron ore production facilities at Cassinga were being restored in 1981 by a subsidiary of Vöest Alpine AG, under an agreement with a state company. About 150,000 tons of ore was shipped by rail to Mocamedes and exported to Austria. This was the first shipment reported from Angolan mines since 1975, when production was halted because of civil war; previously, annual exports of iron ore totaled as much as 6 million tons.

Australia.—Production and exports of iron ore in 1981 declined about 10% compared with that of the previous year. Exports totaled about 71 million tons, the least since 1972. Domestic consumption was estimated at 11.3 million tons. The decline of production and exports was attributed to reduced demand from export markets in Asia and Western Europe, and to industrial strikes in Australia. Hamersley Holdings Ltd. stated that strikes were the principal cause of the company's 10-million-ton drop in production of iron ore in 1981. The company also reported that shipments of ore to Japan were only 66% of minimum contractual tonnages.

Shipments of iron ore products by Australian producers in 1981 were as follows, in million tons: Hamersley Iron Pty. Ltd., 28.6; Mt. Newman Mining Co. Pty. Ltd., 27.4; Cliffs Robe River Iron Associates, 12.4; Goldsworthy Mining Ltd., 5.3; Broken Hill Pty. Co. Ltd., 3.4; and Savage River Mines, 2.1. Hamersley's concentrator produced 3.5 million tons of high-grade lump ore and fines in 1981. The Hamersley and Robe River pelletizing plants were not operated in 1981.

Goldsworthy Mining Ltd. ended mining operations at Shay Gap late in 1981. Mining was then confined to the Goldsworthy and Sunrise Hill Mines, where 32 million tons of additional high-grade reserves were proven by drilling in 1981.

Negotiations were continued with Japanese steel companies for sales contracts needed to develop new iron mines in Western Australia, but owing to depressed markets for steel and excess production capacity for iron ore, no commitments for new projects were made.

Bahrain.—Under a contract signed in 1981 by Arab Iron & Steel Co. and Kobe Steel Ltd., a pelletizing plant with production capacity of 4 million tons per year was to be built at Bahrain by early 1984. Contracts for feed to the plant were reportedly signed with producers in India, Brazil, and Peru. Most of the plant's output was expected to be sold to DRI plants.

Brazil.—Exports of iron ore totaled 79 million tons in 1981, a new record. In addition, about 23 million tons were reportedly shipped for domestic consumption but this was believed to include about 8 million tons of fines destined for pelletizing plants at Tubarão. Domestic consumption was estimated at 17 million tons in 1981.

Companhia Vale do Rio Doce (CVRD) reported exports of 63.4 million tons of ore from Tubarão and shipments of 14.4 million tons for domestic consumption. The exports included 45.2 million tons produced by CVRD, 9.9 million tons shipped for Ferteco Mineração S.A. and S.A. Mineração da Trindade (SAMITRI), and 8.3 million tons of pellets for the Nibrasco, Itabrasco, and Hispanobras joint ventures.

Mineracoes Brasileiras Reunidas S.A. (MBR) shipped 13 million tons of ore products including 11.6 million tons for export. MBR's plan to increase production capacity to 30 million tons per year by the mid-1980's was approved by the Government in 1981.

Ferteco Mineração S.A. sold 9.1 million tons of ore products including 2.6 million tons of pellets produced at the Fabrica Mine. SAMITRI shipped 6.4 million tons of ore including 4.2 million tons from the Alegria Mine. Samarco Mineração S.A. shipped 4 million tons including 3 million tons of pellets from Ponta Ubu. Companhia Siderurgica Nacional produced 3 million tons of ore from the Casa de Pedra Mine, for consumption at Volta Redonda. The Capanema Mine, being developed by CVRD and Kawasaki Steel Corp. in Minas Gerais. was expected to begin shipping ore in 1982. The mine was reported to have a production capacity of about 10 million tons annually.

CVRD continued construction at the Carajas iron mining project in northern Brazil. A pilot beneficiation plant with production capacity of 1 million tons per year was operated at the mine site in 1981. A deepwater port for large carriers was under construction near São Luis, and the roadbed for the 560-mile railway from São Luis to the

IRON ORE 433

mine site was reportedly completed. Production capacity of the mine was expected to be 35 million tons per year of ore averaging 66% iron.

Canada.—Exports of iron ore in 1981 totaled about 40 million tons. Imports of iron ore, mostly pellets from the Lake Superior district of the United States, totaled about 5.7 million tons. Domestic consumption was about 15 million tons. A protracted labor strike at the Hamilton steelworks of Stelco Inc. led to buildups of pellet stockpiles at the Wabush and Griffith pelletizing plants, and both mines were closed for 3 weeks in December 1981. Earlier in the year, 3-year labor contracts were successfully negotiated at all iron mines except for the Adams and Sherman Mines where contracts come up for renewal in 1982.

Shipments of iron ore products by Canadian producers in 1981 were as follows, in million tons: Iron Ore Co. of Canada (IOC), 21.0 including 11.2 of pellets, 7.0 of concentrates, and 2.8 of direct-shipping ore; Quebec Cartier Mining Co. (QCM), 13.3 from Mount Wright: Pickands Mather & Co., 5.2 from Wabush Mines and 1.5 from the Griffith Mine; Sidbec-Normines Inc., 4.7 of pellets; Cleveland-Cliffs Iron Co., 2.3 of pellets including 1.2 from the Adams Mine; Algoma Steel Corp. Ltd., 1.5 of sinter; and Inland Steel Co., 0.15 of natural ore from stockpiles at Thunder Bay. Algoma's sinter was produced at Wawa, Ontario, from 1.9 million tons of siderite ore produced at the MacLeod underground mine and conveyed to the surface through a 3-mile, 10° incline.

Owing to weak demand for iron ore, IOC closed its concentrator and pelletizing plant at Sept-IIes, Quebec, on May 9 for an indefinite period. QCM suspended production at Mount Wright for 6 weeks in the summer. Sidbec-Normines closed its concentrator at Gagnon for 1 month, and its pelletizing plant at Port Cartier for 6 weeks. Stelco's direct-reduction plant at Bruce Lake remained idle during 1981, but the Sidbec plants at Contrecoeur, Quebec, produced about 1 million tons of DRI during the year.

Chile.—Shipments of iron ore by Cía. de Acero del Pacifico in 1981 totaled 7.5 million tons, 11% less than in 1980. The shipments included 3.4 million tons of coarse and fine ores from El Romeral, 3.1 million tons of Algorrobo pellets, and 1 million tons of ore from Santa Fe. About 1 million tons was shipped for domestic consumption and

the rest was exported.

European Communities (EC).—Iron ore production, trade, and consumption continued to decline in 1981. Production of iron ore in France declined by about 25%, and exports of Lorraine ores to Belgium-Luxembourg, and the Federal Republic of Germany declined to a total of 6.3 million tons. Imports of iron ore by the EC from other countries totaled about 109 million tons, including about 44 million tons by the Federal Republic of Germany, 16 million tons by France, 16 million tons by Italy, 13 million tons by the United Kingdom, and 7 million tons by the Netherlands. The cost of imported ore increased in 1981 owing to weakened exchange rates for the U.S. dollar. Imports of ore by the United Kingdom increased sharply in 1981 as the steel industry experienced a relatively normal year following the long strike in 1980. In the Netherlands, ore handling facilities were being increased at Rotterdam. At Emden, Germany, the 880,000-ton-per-year directreduction plant of Norddeutsche Ferrowerke GmbH was completed, and shipments of sponge iron were reported to France, Spain, Italy, and the German Democratic Republic. The DRI plant of Hamburger Stahlwerke was closed, because of rising prices for natural gas.

Guinea.—A subsidiary of USS was reported in 1981 to have agreed to manage construction and mining at the Mifergui-Nimba iron ore project, but a firm contract had not been announced by yearend. The project was designed to produce 15 million tons per year of ore averaging 66.5% iron from proven reserves of 350 million tons. The ore would be transported through Liberia on the railway owned by the Liberian-American-Swedish Minerals Co. (LAMCO), for export from the Liberian Port of Buchanan. An 11-mile extension of the railway was required to reach the proposed mine shipping point. Development of the project was expected to require 3 years.

India.—Exports of iron ore in 1981 totaled 23 million tons, about 10% less than in 1980. The decline was due to reduced shipments to the U.S.S.R. and Japan. Exports from Goa declined to 11.2 million tons, and exports by the National Mineral Development Corp. totaled about 7.2 million tons.

A Romanian firm, Uzine Export-Import, was awarded a contract in 1981 to provide a 3-million-ton-per-year pelletizing plant for Kudremukh Iron Ore Co. Ltd. at Mangalore. Engineering and construction are to be

done by Lurgi Chemie und Huttentechnik GmbH, and the plant was to be completed by 1984. Under a separate contract, the Romanian Government agreed to buy 1 million tons per year of Kudremukh concentrate for 3 years beginning in November 1981. Additional contracts for future exports of Kudremukh products, reportedly negotiated in 1981, included 1.5 million tons per year of concentrate for a pelletizing plant in Bahrain and exchange of Kudremukh pellets for DRI produced in Indonesia.

Japan.—Imports of iron ore in 1981 totaled about 121 million tons. Australia supplied 44% of the total; Brazil, 22%; and India, 13%. Consumption of iron ore totaled 115 million tons including about 10 million tons of pellets. Production of pellets in Japan declined to 3 million tons from 4.1 million tons in 1980. The pelletizing plant operated by Nippon Steel Corp., which had a production capacity of 2.5 million tons per year, was closed in September 1981.

Korea, Republic of.—Imports of iron ore in 1981 were estimated at more than 10 million tons, as output of iron and steel continued to grow rapidly. Consumption of ore in 1981 was estimated at 12 million tons. The principal supplying countries were Australia, India, Peru, and Brazil.

Liberia.—Exports of iron ore increased to 20 million tons in 1981. Shipments by LAM-CO rose to 11.3 million tons, while those by Bong Mining Co. totaled about 7.9 million tons including 2.8 million tons of pellets. Shipments by the National Iron Ore Co. Ltd. again declined by about 30%, to 1.2 Ltd. again declined by about 30%, to 1.2 million tons in 1981, and the company continued to seek financial assistance from the World Bank.

Mauritania.—Exports of iron ore totaled about 8.8 million tons, of which more than 80% was destined for EC countries. The producing company continued to develop the Guelbs magnetite deposits for production by 1984, to replace depleting reserves at Zouerate. Completion of the pelletizing plant at Nouadhibou appeared to have been postponed.

Mexico.—Two projects were under construction in 1981 to supply iron ore for expansions of ironmaking and steelmaking capacity at Monclova and Lázaro Cárdenas. In northern Mexico, concentrators were being built at the La Perla and Hercules Mines. The La Perla plant will have a production capacity of 1.5 million tons of concentrates per year, and the plant at the

Hercules Mine will have a production capacity of 3 million tons per year. Slurried concentrate from La Perla is to be pumped through an 8-inch, 87-mile pipeline to the Hercules plant, from which the combined output of both plants is to be pumped to Monclova through a 14-inch, 303-mile pipeline. A pelletizing plant was under construction at Monclova, with a production capacity of 3 million tons per year. Two-thirds of the concentrate is to be pelletized at Monclova, and the remainder is to be shipped by rail to Monterrey for pelletizing in the existing plant of Fundidora de Monterrey S.A. Completion of these facilities was expected in 1983.

In Michoacán, a 3-million-ton-per-year pelletizing plant and a 2-million-ton-per-year direct-reduction plant were under construction at the Lázaro Cárdenas steelworks. Pellet feed was to be supplied by pipeline from a concentrator near the Ferrotepec Mines, about 28 miles from the steelworks. Completion of these facilities was expected by 1984.

Nigeria.—A pelletizing plant, a directreduction plant, and an electric steelmaking furnace were reportedly completed at the Delta Steel project near Warri in 1981. Production of pellets and DRI was expected to begin in 1982, using iron ore imported from Brazil and Liberia. At Ajaokuta, construction of an integrated steelworks was continued.

Peru.—Exports of iron ore declined to 5.3 million tons in 1981. Exports included 3.2 million tons of sinter fines and 1.2 million tons of pellets. Only one of the two pelletizing lines was operated during 1981, owing to lack of demand. Ore shipments for domestic consumption totaled about 325,000 tons.

South Africa, Republic of.—Exports of iron ore in 1981 were estimated at 14 million tons. Domestic consumption was estimated at 11.3 million tons. Iron ore shipments by Iscor Ltd. totaled 22.1 million tons including 12.7 million tons for export and 9.3 million tons for consumption at the company's steelworks. Domestic shipments included 7.3 million tons from the Sishen Mine and 2.1 million tons from the Thabazimbi Mine.

Highveld Steel and Vanadium Corp. Ltd. produced 1.9 million tons of magnetite ore from the Mapochs Mine for consumption at Highveld. Mine output was scheduled to increase by 25% in 1983. The company began operating a 10th prereduction kiln at Highveld in June 1981 and ordered 3 more

435 IRON ORE

kilns, each with a production capacity of 250,000 tons per year, to be installed by 1984.

Contracts for construction of two coalbased direct-reduction plants were awarded in 1981. Scaw Metals Ltd. contracted with the Davy McKee firm of the United Kingdom for construction of a 75,000-ton-peryear reduction plant at Germiston. The plant is to use a process developed by Direct Reduction Corp. of New York. Iscor Ltd. contracted with Lurgi Chemie and Huttentechnik GmbH for construction of a 600,000-ton-per-year reduction plant at Vanderbiilpark. The plant is to consist of four kilns, each with a production capacity of 150,000 tons per year, and was scheduled for completion in 1984.

Sweden.—Production and exports of iron ore declined by about 15% in 1981, compared with those of 1980. Exports totaled 17.4 million tons, and 2.5 million tons was shipped for domestic consumption. Stocks of iron ore increased to 10.5 million tons, the highest in several years.

Luossavaara-Kiirunavaara AB (LKAB) produced 20.3 million tons of ore including 4 million tons of pellets. The company began operating its new pelletizing plant at Kiruna in December 1981. LKAB's production capacity for pellets was increased to 9.5 million tons per year.

Iron ore production in central Sweden was estimated at 2.6 million tons, including 550,000 tons from the Dannemora Mine and an estimated 1.7 million tons at Grangesberg. Svenskt Stal AB closed the Strassa pelletizing plant April 30, 1981, and ceased production of coarse concentrate at yearend. At Grangesberg, the company planned to modify the plant formerly used to produce cement-bonded pellets, for production of a new product called "granulated concentrates" in 1982.

U.S.S.R.-After 5 years of construction, the first stage of the Kostamus iron ore project in Soviet Karelia was expected to begin production of pellets in 1982. Production capacity of the first stage was about 3 million tons annually. Completion of the second and third stages was expected by 1987. Part of the output was scheduled for delivery to Finland, and the rest was reportedly scheduled for consumption at the Cherepovets steelworks.

Exports of iron ore from the U.S.S.R. in 1981 were estimated at 35 million tons. about 2 million tons less than in 1980. Almost all exports were destined for countries in Eastern Europe.

Venezuela.—Exports of iron ore in 1981 were estimated at 12 million tons. CVG Ferrominera Orinoco C.A. reported production of 14.5 million tons, and sales of 15 million tons of which 40% was sold to EC consumers and 35% to U.S. firms. Domestic consumption of ore was estimated at 3.4 million tons, most of which was consumed in direct-reduction plants. Fior de Venezuela S.A. reported exports of about 240,000 tons of DRI briquets, of which 190,000 tons was destined for the United States. The Minorca HIB direct-reduction plant produced about 200,000 tons of briquets in 1981, about one-third of its production capacity, and may be closed by Ferrominera in 1982.

¹Physical scientist, Divison of Ferrous Metals.

²Unless otherwise specified, the unit of weight used in this chapter is the long ton of 2,240 pounds.

³Because very little crude ore is now shipped direct to consumers, the table "Crude iron ore shipped from mines in the United States in 19—, by district, State, and disposition" has been deleted from this chapter.

Table 2.—Employment at iron ore mines and beneficiating plants, quantity and tenor of ore produced, and average output per worker in 1981, by district and State

	•		Producti	Production (thousand long tons)	ong tons)		Average pe	Average per worker-hour (long tons)	(long tons)
District and State	Average number of employees	Worker hours (thousands)	Crude ore	Usable ore	Iron contained (in usable ore)	content (natural, percent)	Crude ore	Usable ore	Iron
Lake Superior: Minnesota Michigan and Wisconsin	12,189 3,868	23,744 6,672	164,950 47,498	51,025 16,437	32,507 10,579	63.7	6.95	2.15 2.46	1.37
Total or average	16,057 315 1,788	30,416 594 3,339	212,448 1,695 12,858	67,462 1,134 4,578	43,086 751 2,702	63.9 66.2 59.0	6.98 2.85 3.85	2.22 1.91 1.37	1.26
Total or average	2,103	3,933	14,553	5,712	8,453	60.5	3.70	1.45	
Grand total or average	18,160	34,349	227,001	73,174	46,539	63.6	6.61	2.13	1.35

¹Includes California, Colorado, Montana, Nevada, New York, Texas, Utah, and Wyoming.

IRON ORE 437

Table 3.—Crude iron ore mined in the United States in 1981, by district, State, and mining method

(Thousand long tons and exclusive of ore containing 5% or more manganese)

District and State	Open pit	Underground	Total quantity
Lake Superior: Michigan Minnesota Wisconsin	W 164,950 W		164,950 W
Total reportable	164,950		212,448
Other States: Missouri Other ¹ Other ²	12,858	1,695	1,695 12,858
Total Total withheld	12,858 47,498	1,695	14,553 47,498
Grand total	225,306	1,695	227,001

W Withheld to avoid disclosing company proprietary data; included with "Total withheld" and "Total quantity." Includes California, Colorado, Montana, Nevada, New York, Texas, Utah, and Wyoming.

Table 4.—Crude iron ore mined in the United States in 1981, by district, State, and variety (Thousand long tons and exclusive of ore containing 5% or more manganese)

District and State	Number of mines	Hematite	Limonite ¹	Magnetite	Total quantity
Lake Superior: Michigan Minnesota Wisconsin	4 14 1	W 4,099 	,	W 160,851 2,367	45,131 164,950 2,367
Total reportable	19	4,099		163,218	212,448
Other States: Missouri Other ²	1 12	w	ã₩	1,695 W	1,695 12,858
Total reportable Total withheld	13	23,958	ã₩	1,695 34,030	14,553
Grand total	32	28,057	³W	198,943	4227,001

W Withheld to avoid disclosing company proprietary data; included with "Total withheld" and "Total quantity." Includes siderite ore.

Includes siderite ore.

*Includes California, Colorado, Montana, Nevada, New York, Texas, Utah, and Wyoming.

*Included with hematite ore.

*Data do not add to total shown because of independent rounding.

Table 5.—Usable iron ore produced in the United States in 1981, by district, State, and variety

(Thousand long tons and exclusive of ore containing 5% or more manganese)

District and State	Hematite	Limonite ¹	Magnetite	Total quantity ²
Lake Superior: Michigan Minnesota Wisconsin	W 1,681		W 49,344 854	15,583 51,025 854
Total reportable	1,681		50,198	67,462
Other States: MissouriOthers	w	€₩	1,134 W	1,134 4,578
Total reportableTotal withheld	8,902	₫Ŵ	1,134 11,259	5,712
Grand total ²	10,583	4W	62,590	73,174

W Withheld to avoid disclosing company proprietary data; included with "Total withheld" and "Total quantity."

¹Includes siderite ore.

Table 6.—Usable iron ore produced in the United States in 1981, by district, State, and type of product

(Thousand long tons and exclusive of ore containing 5% or more manganese)

District and State	Direct- shipping ore	Concen- trates	Agglomer- ates	Average iron content (natural), percent
Lake Superior: Michigan Minnesota Wisconsin	W	1,698	W 49,327 854	64.3 63.7 65.3
Total reportable		1,698	50,181	63.9
Other States: MissouriOther	w	W W	1,080 W	66.2 59.0
Total reportable	194	1,330	1,080 18,690	66.0
Grand total ²	194	3,029	69,952	63.6

W Withheld to avoid disclosing company proprietary data; included with "Total withheld."

¹Includes California, Colorado, Montana, Nevada, New York, Texas, Utah, and Wyoming.

²Data may not add to totals shown because of independent rounding.

Includes siderite ore.
 Data may not add to totals shown because of independent rounding.
 Sincludes California, Colorado, Montana, Nevada, New York, Texas, Utah, and Wyoming.
 Included with hematite ore.

Table 7.—Shipments of usable iron ore from mines in the United States in 1981 (Thousand long tons and thousand dollars exclusive of ore containing 5% or more manganese)

		Gross weight	Gross weight of ore shipped			Iron content	Iron content of ore shipped		
District and State	Direct- shipping ore	Concen- trates	Agglomer- ates	Total quantity ¹	Direct- shipping ore	Concen- trates	Agglomer- ates	Total quantity ¹	Total value ¹
Lake Superior: Michigan Minnesota Wisconsin	W	2,719	W 47,457 853	14,198 50,176 853	M	1,490	W 30,339 555	9,099 31,829 555	W 2,062,118 W
Total reportable	1	2,719	148,311	65,222	i	1,490	30,894	41,483	2,062,118
Other States: Missouri Other ² ³	<u>-</u> -	52 1,514	1,291 W	1,344 5,615	Ţ.	35 870	848 W	882 3,291	56,138 134,206
Total withheldTotal	1,012	1,566	1,291	6,959	558	1904	848 10,962	4,173	190,344 662,777
Grand totals	1,012	4,285	66,885	72,181	829	12,395	42,704	45,656	2,915,239

W Withheld to avoid disclosing company proprietary data; included with "Total withheld."

"Included may not add to totals shown because of independent rounding.

"Includes California, Colorado, Nevada, New Jersey, New Mexico, New York, Texas, Utah, Virginia, and Wyoming.

"Includes byproduct ore.

Table 8.—Usable iron ore produced in Lake Superior district, by range

(Thousand long tons and exclusive after 1905 of ore containing 5% or more manganese)

Year	Mar- quette	Menom- inee	Gogebic	Ver- milion	Mesabi	Cuyuna	Spring Valley	Black River Falls	Total ¹
1854-1975	439,123	318,149	320,334	103,528	3,046,489	70,336	8,149	5,203	4,311,309
1976	14,663	2,318			49,764			668	67,413
1977	w	W			30,943			690	43,952
1978	w	W			55,316	·		660	72,727
1979	W	W			59,320			698	77,151
1980	W	W			45,162			699	62,282
1981	W	W			51,025			854	67,462
Total	523,116	329,344	320,334	103,528	3,338,019	70,336	8,149	9,472	4,702,296

W Withheld to avoid disclosing company proprietary data; included in "Total."

¹Data may not add to totals shown because of independent rounding.

Table 9.—Average analyses of total tonnage1 of all grades of iron ore shipped from the U.S. Lake Superior district

***	Quantity			Content	(percent) ²		
Year	(thousand — long tons)	Iron	Phosphorus	Silica	Manganese	Alumina	Moisture
1975 1976 1977 1977 1978 1979 1980	64,174 64,928 43,239 74,307 77,837 61,536 64,925	60.91 61.38 61.66 62.26 62.55 62.98 63.13	0.030 .029 .028 .025 .031 .023 .020	6.72 6.72 6.60 6.44 6.24 5.88 5.70	0.28 .26 .28 .27 .22 .18	0.39 .43 .44 .40 .35 .32	3.53 3.20 2.99 2.61 2.61 2.57 2.59

¹Railroad weight—gross tons

Source: American Iron Ore Association. Iron Ore, 1981, p. 90.

Table 10.—Consumption of iron ore and agglomerates in the United States in 1981

(Thousand long tons and exclusive of ore containing 5% or more manganese)

State		ore and ntrates ¹	Agglome	rates ²	Miscella-	Total
State	Blast furnaces	Steel furnaces	Blast furnaces	Steel furnaces	neous ³	reportable
Alabama, Kentucky, Texas California, Colorado, Utah Ohio and West Virginia Illinois, Indiana, Michigan Maryland, New York, Pennsylvania Undistributed	418 357 165 672 1,905	W W W 169 40	8,179 5,240 18,795 38,821 27,716	W W 39 470	W W W W 1,399	8,597 5,597 18,960 39,493 29,829 1,909
Total ⁴	3,516	209	98,752	510	1,399	104,385

W Withheld to avoid disclosing company proprietary data; included with "Undistributed."

²Iron and moisture on natural basis; phosphorus, silica, manganese, and alumina on dried basis.

w withheld to avoid disclosing company proprietary data; included with "Undistributed.

1 Not including pellets or other agglomerated products.

2 Includes 63,679,034 tons of pellets produced at U.S. mines and 11,364,870 tons of foreign pellets.

3 Includes iron ore consumed in production of cement and direct reduced iron, and iron ore shipped for use in manufacture of paint, ferrites, heavy media, cattle feed, refractory and weighting materials, and in lead blast furnaces.

4 Data may not add to totals shown because of independent rounding.

Table 11.—Iron ore consumed in production of agglomerates at iron and steel plants in 1981

(Thousand long tons)

	State	The Section 1	Iron ore consumed ¹	Agglomerates produced
Ohio and West Virginia		 	1,701 1,370 755 3,975 6,348	2,849 845 1,787 8,594 9,838
Total		 	14,149	² 23,914

¹Includes domestic and foreign ores.

Table 12.—Beneficiated iron ore shipped from mines in the United States¹

(Thousand long tons and exclusive of ore containing 5% or more manganese)

Year	Beneficiated ore	Total iron ore	Proportion of beneficiated ore to total (percent)
1976	74.848	76,697	97.6
1977	52,061	53,880	96.6
1978	80,875	82,826	97.6
1979	84,489	86,130	98.1
1980	68,272	69,562	98.1
1981	71,169	72,181	98.6

¹Beneficiated by further treatment than ordinary crush ing and screening. Excludes byproduct ore.

Table 14.—Stocks of usable iron ore at mines,1 December 31, by district

(Thousand long tons)

District	1980	1981
Lake SuperiorOther States	^r 6,439 5,286	8,670 4,064
Total	^r 11,725	12,734

Revised.

Table 13.—Production of iron ore agglomerates1 in the United States, by type

(Thousand long tons)

	Agglomerate	s produced
Туре	1980	1981
Sinter	² 24,351 64,218	³ 24,327 69,538
Pellets	88,569	93,865

¹Production at mines and consuming plants.

Table 15.—Average value of usable iron ore1 shipped from mines or beneficiating plants in the United States in 1981

(Dollars per long ton)

Type of ore	Lake Superior district	Other States ²
Direct-shipping Concentrates Pellets	W W 42.79	^e 15.42 22.12 32.46

^eEstimated. W Withheld to avoid disclosing company

²Data do not add to total shown because of independent rounding.

¹Excluding byproduct ore.

²Includes 10,840,615 tons of self-fluxing sinter. ³Includes 10,683,505 tons of self-fluxing sinter.

proprietary data.

1F.o.b. mine or plant. Excludes byproduct ore.

2Includes California, Colorado, Missouri, Montana, Nevada, New Jersey, New York, Texas, Utah, and Wyoming.

Table 16.-U.S. exports of iron ore, by country

(Thousand long tons and thousand dollars)

Country	197	79	190	80	198	31
Country	Quantity	Value	Quantity	Value	Quantity	Value
Canada	5,108	177,069	5,652	228,868	5,529	243,527
France	(1)	7	(1)	48	(1)	2
Germany, Federal Republic of	2	162	`í	42	à	3
Japan	(¹)	4	(1)	6	(4)	2
Mexico	24	914	. <u>2</u> 5	1,212	ìí	720
Norway					(1)	59
Taiwan	.(¹)	9	(1)	3	()	
United Kingdom	Ìá	197	à	10	(1)	21
Other	11	386	ìí	379		351
Total ²	5,148	178,749	5,689	230,568	5,546	244,685

Table 17.—U.S. imports for consumption of iron ore, by country

(Thousand long tons and thousand dollars)

Country	197	9	198	30	198	31
	Quantity	Value	Quantity	Value	Quantity	Value
Australia	183	2,936	(¹)	1		
Brazil	3,095	81,446	1,995	62.889	1.738	52,267
Canada	22,602	683,286	17,311	581,759	18,845	707,974
Chile	245	4,458	322	10,293	342	6,329
India	54	1,332		,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Liberia	2,190	38,112	1,590	$27.\overline{612}$	2,160	35,505
Norway	44	561	-,	,	•	00,000
Peru	456	14.126	193	6,678	77	2,402
South Africa, Republic of	106	2,551	6	82	• •	_,
Sweden	171	4,568	33	917	87	2,318
Venezuela	4,563	87,613	3,602	80.981	5,071	140,931
Other	65	2,437	6	1,632	8	251
Tetal	² 33,776	923,426	25,058	772,844	28,328	947,977

¹Less than 1/2 unit.

Table 18.—U.S. imports for consumption of iron ore, by customs district

(Thousand long tons and thousand dollars)

Customs district	197	79	198	30	198	31
	Quantity	Value	Quantity	Value	Quantity	Value
Baltimore	6,763	207.840	5,230	185,445	5.421	212,960
BuffaloCharleston	1,482	41,322	592	10,756	629	13,096
Chicago	5,013	141,691	2,811	102,566	3,854	128,320
Cleveland Detroit	5,367	135,439	4,333	124,893	4,995	179,616
Galveston	668	16,255	547 212	8,751 5,979	765 123	25,303 2,579
Houston	1,075	35,053	944	34,633	775	30,809
Los Angeles Mobile	695 4,933	15,388 130,231	107 3.675	2,745	0.04	101 44
New Orleans	856	14.641	180	113,050 3,465	3,847 237	131,445 5.177
Philadelphia Portland, Oreg	6,087	164,775	6,005	166,943	7,218	203,969
Wilmington, N.C	199 638	3,536 17,227	406	13.140	425	13,428
Other	(1)	27	16	478	38	1,275
Total ²	33,776	923,426	25,058	772,844	28,328	947,977

 $^{^1\}mathrm{Less}$ than 1/2 unit. $^2\mathrm{Data}$ may not add to totals shown because of independent rounding.

²Data do not add to total shown because of independent rounding.

 $^{^1\}mathrm{Less}$ than 1/2 unit. $^2\mathrm{Data}$ may not add to totals shown because of independent rounding.

Table 19.—Iron ore, iron ore concentrates, and iron ore agglomerates: World production, by continent and country.

(Thousand long tons)

8		9	Gross weight ³				W	Metal content		
Tunent and country	1977	1978	1979	1980P	1981	1977	1978	1979	1980P	1981
North and Central America:										
Canada	56.727	41.091	58.942	47.984	49.844	35.596	25.814	37.086	30.316	631.400
Mexico7	15.296	15.249	5.965	7.510	67,893	13,530	3.500	3.977	5,007	65,209
United States	55,750	81,583	85,716	69,613	673,174	34,489	50,764	53,639	43,888	646,539
South America:						•				
Argentina	1,014	892	601	430	487	7545	r 482	828	231	262
Bolivia	5	18	ន	9	မ္	4	8	16	7	3
Brazil	80,706	83,643	94,594	112,920	98,400	52,459	54,368	61,486	73,398	63,960
Chile	7,535	re,695	2,006	8,138	7.873	r 4,596	4.267	4.561	5.203	5.019
Colombia	f497	1 489	391	498	6412	f 229	1224	180	623	, 190
Peru	F6.184	4.844	5.358	5.614	5.973	4.000	3.148	3.565	3.735	8.508
Venezuela	13,467	13,302	15,019	15,848	*15,286	8.349	8.247	9.312	9.856	69.477
Europe:				•	•	•				
Albania 10 6	205	205	521	541	290	176	176	₹	189	197
Austria	8,894	2,744	3,149	3,149	8,149	1,062	828	983	970	970
Belgium	97	7	1	110	13	71	81	1	1	1,
Bulgaria	7,234	2,413	2,070	1,856	1,968	96	120	641	281	615
Czechoslovakia	1,963	1,991	1,980	1,938	1,870	280	597	280	517	288
Denmark	•	٠	3	20	×	20	N	4	~	00
Finland**	1,123	1,071	1,126	1,158	1,158	741	2	126	743	743
France	36,061	82,925	81,127	28,522	21,258	10,875	10,147	9,645	8,920	6,673
German Democratic Republic ¹²	8	6	8	8	69	121	S	ន	83	83
Germany, Federal Republic of (salable)	⁷ 2,430	¹ 1,572	1,622	1,917	1,547	r816	r 510	256	597	6477
Greece	2,017	1,658	1,803	1,428	1,378	1 881	725	38	624	9
Hungary	517	256	224	988	6415	r 116	120	121	8	88
Italyla	r 470	347	215	182	121	¹ 201	139	88	22	8
Property Pro	^r 1,512	822	620	551	492	7 454	r246	186	165	148
Norway	8,577	8,718	4,181	8,746	4,064	⁷ 2,325	72,418	2,718	2,434	2,642

See footnotes at end of table.

Table 19.—Iron ore, iron ore concentrates, and iron ore agglomerates:
World production, by continent and country'—Continued

(Thousand long tons)

Continued to the Continued		0	Gross weight ³		-		M	Metal content		
Continent and country	1977	1978	1979	1980P	1981°	1977	1978	1979	1980P	1981€
Europe —Continued										
Poland	649	521	236	102	86	195	156	71	8	83
Portugal ¹⁴	25	2	23	26	2 6	98	97	83	8	56
Romania	2,428	12,471	2,483	2,296	2,362	r 631	r642	979	294	614
Spain	8,196	8,444	8,687	9,081	8,430	4,057	3,845	3,931	4,303	4,151
Sweden	24,446	21,147	25,755	26,755	22,858	15,861	13,724	16,714	17,364	14,835
United Kingdom	3,686	4.172	4.202	90,040	738	18001	155,239 r1 102	1110	152,400	180,987
Yugoslavia	4,381	4,492	4,544	4,458	64,718	1,514	r1,621	1,619	1,600	1,680
Africa:	0 100	To one	0110	070 0	9700	1001	1,000			
Earnt	1.387	1,93	1.412	1.748	1,771	1,091	1,022	1,701	1,704	, 28 28, 28
Kenya ¹⁶	16	8	ន	14	14	6	12	•12 •12	9	8
Liberia	17,381	17,705	18,055	17,900	19,393	•10,776	e 10,978	e11,194	11,000	12,000
Mauritania	689'6	6,824	9,225	8,587	68,741	6,217	4,231	5,720	5,248	6 5,160
South Africa. Republic of 16	26.062	23.824	31.066	25.897	627.871	r16.680	15.247	19.883	16.574	617 837
Swaziland	1,418	1,246		-	: :	851	748			1
Tunisia	888	334	387	383	990 200	172	r178	197	211	202
Zimbabwe	1,157	1,105	1,182	1,596	1,112	106	r674	721	973	8
Chine	006 07	000	70 000	70 000	000	TO 4 200	007 76	000 000	000 00	007 600
India	41,925	38.224	38,910	40.028	40.470	26,245	23.53 626.53	24.357	25,057	25,334
Indonesia	307	230	79	62	885	r178	133	46	98	49
Iran ¹⁷	1,083	1,535	009	e 290	290	099	937	*365	360	360
Japan 18	-674	1586	453	410	435	-400	r361	284	294	275
Korea, North	9,800	7,000	7,300	7,900	7,900	2,800	2,900	3,000	3,200	8 2,200 1,200
Malaysia	325	915 315	945 345	965	6594 6594	198	382	305 910	342	87/3
Philippines	} ¦	8	8	8	7	3 !	1	8	3 1	4
Taiwan Thailand	22.69	160	15	18	102	16	170	19	194	- 67
Turkey	r3,392	r3,157	*2,952	2,489	2,460	1,763	1,641	1,532	r e1,292	1,277
Oceania: Australia	94,408	81,821	90,268	94,033	84,641	59,508	51,990	56,440	59,318	53,737

New Zealand 19	2,908	3,884	8,472	3,336	2,953	1,658	2,214	1,979	1,902	1,683
Total	r827,816	r 833,894	886,688	881,720	847,184	r 478,415	r476,255	511,895	510,057	491,551

Preliminary. Fatimated.

Table includes data available through June 30, 1982.

In addition to the countries listed, Cube and Vietnam may produce iron ore, but definitive information on output levels, if any, is not available.

Insofar as availability of sources permits, gross weight data in this table represent the nonduplicative sum of marketable direct-shipping iron ores, iron ore concentrates and agglomerates produced from imported iron ores have been excluded, under the assumption that the ore from which such materials are produced has been credited as marketable ore in the country where it was mined. *Data represent actual reported weight of contained metal or are calculated from reported metal content. Estimated figures are based on latest available iron ore content reported, sacept for the following countries from which grades are U.S. Bureau of Mines estimates: Albania, Denmark, Hungary, Zimbabwe, China, and North Korea. Schries revised to represent gross weight and metal content of usable iron ore (including hyproduct ore) actually produced, natural weight. (Data in previous edition represented

¹¹Includes magnetite concentrate, pelletized iron oxide (from pyrite sinter) and rosated pyrite (purple ore).
¹²Includes "rosated ore," presumably pyrite sinter, not separable from available sources.
¹⁸Excludes iron oxide pellets produced from pyrite sinter. 10 Nickeliferous iron ore.

¹⁴Includes manganiferous iron ore.

Verbot counter managements or as follows in thousand long tons: 1977—4,971 (revised); 1978—8,821; 1979—4,004; 1980—4,221; and 1981—4,175.

17 Year beginning Mar. 21 of that stated.

18 Concentrate including concentrate derived from iron sand as follows in thousand long tons: 1977—124; 1978—66; 1979—2; 1980 and 1981—no production reported. *Largely concentrates from titaniferous magnetite beach sands.

Iron Oxide Pigments

By William I. Spinrad, Jr. 1

Mine production of crude iron oxide pigments declined, but production of regenerator oxide from steel plant wastes increased. Shipments of finished iron oxide pigments increased in 1981. Consumption in the paint industry declined slightly, while in other industries, such as private nonresidential building construction and manufacture of magnetic tape, consumption increased. U.S. consumption patterns for iron oxide pigments are becoming similar to European end-use patterns as construction materials claim a larger share of total end use. The use of synthetic iron oxides continued to increase, accounting for 57% of total shipments of iron oxide pigments in 1981. Price

increases announced in 1981 for a large share of natural and synthetic iron oxides were attributed to rising costs of energy, labor, and transportation. Imports of natural iron oxide pigments increased 33%. Imports of synthetic iron oxides decreased because of increased domestic production.

In 1981, Pfizer Inc. announced a \$50 million expansion program to increase production capacity for synthetic iron oxides and a \$1 million expansion of research facilities. A new trade association, the Powder Coatings Institute, was formed to promote the use of powder coatings for industrial products.

Table 1.—Salient iron oxide pigments statistics in the United States

1977	1978	1979	1980	1981
59,233	84,796	87,869	49,078	46,213
				67,214
	\$2,799	\$2,578	\$4,043	\$4,142
21,024	20,924			20,879
\$1,644	\$1,396	\$1,703	\$1,394	\$1,637
140.707	152,510	156.036	136,336	141,252
\$73.851	\$81,830	\$94,175	\$97,270	\$110,859
6.493	7.064		5,046	4,967
\$4,065	\$6,649		\$9,132	\$11,704
58,694	70.549	55,377		39,661
\$20,596	\$24,706	\$24,341	\$20,035	\$18,915
	59,233 55,953 \$2,143 21,024 \$1,644 140,707 \$73,851 6,493 \$4,065 58,694	59,233 84,796 55,953 75,967 \$2,143 \$2,799 21,024 20,924 \$1,644 \$1,396 140,707 152,510 \$73,851 \$81,830 6,493 7,064 \$4,065 \$6,649 58,694 70,549	59,233 84,796 87,869 55,953 75,967 74,548 \$2,143 \$2,799 \$2,578 21,024 20,924 25,186 \$1,644 \$1,396 \$1,703 140,707 152,510 156,036 \$73,851 \$81,830 \$94,175 6,493 7,064 4,852 \$4,065 \$6,649 \$7,359 58,694 70,549 55,377	59,233 84,796 87,869 49,078 55,953 75,967 74,548 62,642 \$2,143 \$2,799 \$2,578 \$4,043 21,024 20,924 25,186 20,717 \$1,644 \$1,396 \$1,703 \$1,394 140,707 152,510 156,036 136,336 \$73,851 \$81,830 \$94,175 \$97,270 6,493 7,064 4,852 5,046 \$4,065 \$6,649 \$7,359 \$9,132 58,694 70,549 55,377 \$8,446

DOMESTIC PRODUCTION

Mine production of crude iron oxide pigments declined by 6% in 1981, but total domestic shipments of finished iron oxide pigments rose 4% in quantity and 14% in value compared with those of the previous year. Notable increases occurred in shipments of natural brown (including Vandyke brown) and synthetic specialty, yellow, and brown iron oxides. Synthetic iron oxides comprised 57% of total finished iron oxide

shipments, 2% more than in 1980. Synthetic iron oxides continued to make inroads in traditional markets for natural iron oxide pigments while dominating specialized markets of their own.

Sales data for finished iron oxide pigments, shown in table 2, were compiled from reports received by the Bureau of Mines from the 19 companies shown in table 3. In 1981, these companies represent-

ed 95% of all companies that produce finished natural and/or synthetic iron oxide pigments. Eight of the companies reported increased production in 1981.

Iron oxides recovered from steel plant wastes, reported by four steel companies, were up slightly from those of 1980.

In 1981, Pfizer announced a \$50 million capital expansion program to increase production capacity of its plants located in Easton, Pa., and East St. Louis, Ill. A special line of cobalt-modified gamma-ferric oxide for audio and video tape applications will be

produced at these plants beginning in late 1982. Pfizer also announced a \$1 million expansion of its research facilities in Easton, Pa., for magnetic particle research and development, introduction of new specialty products, and improvement of technical service capabilities. This expansion was to be completed in 1981. Pfizer's new synthetic iron oxide plant at Valparaiso, Ind., which currently produces a gamma-ferric oxide, is expected to start production of a metallic particle exhibiting exceptional recording properties in 1982.

Table 2.—Finished iron oxide pigments sold by processors in the United States, by kind

	a 1980 a 1980 a 1980 a	1	980	19	81
	Kind	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)
Natural: Black: Magnetite Brown:		_ 5,402	\$6 35	6,068	\$851
Iron oxide ¹		8,123	2,026	13,111	3,720
Umbers: Burnt Raw Red:		3,954 1,383	2,583 873	3,723 1,344	2,572 885
Iron oxide ² Sienna, burnt		_ 544	3,379 401	27,203 567	3,186 504
		_ 5,214	850 395	4,970 358	809 297
Total.		_ 58,386	⁴ 11,143	57,344	12,824
Brown: Iron oxide ⁵ Red: Iron oxide Yellow: Iron oxide	ides	31,998 21,703	10,820 34,791 21,424 17,367	11,158 32,423 23,925 13,469	12,595 40,014 25,982 17,501
Total Mixtures of natural ar	ad synthetic iron oxides		84,402 1,726	80,975 2,933	⁴ 96,093 1,942
Grand	l total	136,336	497,270	141,252	110,859

¹Includes Vandyke brown.

Table 3.—Producers of iron oxide pigments in the United States in 1981

Producer	Mailing address	Plant location
Finished pigments:		
BASF Wyandotte Corp., Pigments Div.	100 Cherry Hill Rd. Parsippany, NJ 07054	Wyandotte, Mich.
Blue Ridge Talc Co., Inc	Box 39 Henry, VA 24102	Henry, Va.
Chemalloy Co., Inc	Box 350 Bryn Mawr, PA 19010	Bryn Mawr, Pa.
Columbian Chemicals Co	Box 37 Tulsa, OK 74102	St. Louis, Mo.; Monmouth Junction, N.J.; Trenton, N.J.
Combustion Engineering, Inc., CE Minerals Div.	901 East 8th Ave. King of Prussia, PA 19406	Camden, N.J.
DCS Color & Supply Co., Inc	1050 East Bay St. Milwaukee, WI 53207	Milwaukee, Wis.
E. I. du Pont de Nemours & Co	Pigments Dept. Wilmington, DE 19898	Newark, N.J.
Ferro Corp., Ottawa Chemical Div	700 North Wheeling St. Toledo, OH 43605	Toledo, Ohio.

²Includes pyrite cinder.

³Includes yellow iron oxide.

⁴Data do not add to total shown because of independent rounding.

⁵Includes synthetic black iron oxide.

Table 3.—Producers of iron oxide pigments in the United States in 1981 —Continued

Producer	Mailing address	Plant location
Finished pigments —Continued		
Foote Mineral Co	Route 100 Exton, PA 19341	Exton, Pa.
Hoover Color Corp	Box 218 Hiwassee, VA 24347	Hiwassee, Va.
Mobay Chemical Corp	Penn Lincoln Parkway West Pittsburgh, PA 15205	New Martinsville, W. Va.
New Riverside Ochre Co	Box 387 Cartersville, GA 30120	Cartersville, Ga.
Pfizer Inc., Minerals, Pigments & Metals Div.	235 East 42d St. New York, NY 10017	Emeryville, Calif.; East St. Louis, Ill.; Easton, Pa.; Valparaiso, Ind.
Prince Manufacturing Co	700 Lehigh St. Bowmanstown, PA 18030	Quincy, Ill., and Bowmanstown, Pa.
Reichard-Coulston, Inc	15 East 26th St. New York, NY 10010	Bethlehem, Pa.
St. Joe Lead Co., Pea Ridge Iron Ore Co.	7733 Forsyth Blvd. Clayton, MO 63105	Sullivan, Mo.
George B. Smith Chemical Works, Inc.	1 Center St. Maple Park, IL 60151	Maple Park, Ill.
Solomon Grind-Chem Service	Box 1766 Springfield, IL 62705	Springfield, Ill.
Sterling Drug, Inc., Hilton- Davis Chemicals Div.	2235 Langdon Farm Rd. Cincinnati, OH 45237	Cincinnati, Ohio.
Crude pigments: Cleveland-Cliffs Iron Co., Mather Mine & Pioneer Plant (closed July 31, 1979; shipping from stockpile).	1460 Union Commerce Bldg. Cleveland, OH 44115	Negaunee, Mich.
Hoover Color Corp	Box 218 Hiwassee, VA 24347	Hiwassee, Va.
St. Joe Lead Co., Pea Ridge Iron Ore Co.	7733 Forsyth Blvd. Clayton, MO 63105	Sullivan, Mo.
New Riverside Ochre Co	Box 387 Cartersville, GA 30120	Cartersville, Ga.
Virginia Earth Pigments Co	Box 1403 Pulaski, VA 24301	Patterson, Va.

CONSUMPTION AND USES

Demand for iron oxide pigments in paint and coatings was 49,124 short tons in 1981, down 3% from that of 1980. This end use accounted for 35% of total iron oxide pigment consumption in 1981. Shipments of paint, varnish, and lacquer in 1981, reported by the U.S. Department of Commerce,2 totaled 991 million gallons valued at \$8.4 billion, down 3% in quantity from that of 1980. Of this total, 505 million gallons were architectural coatings; 302 million gallons were product finishes—original equipment manufacture; and 184 million gallons were special purpose coatings. Iron oxide pigments comprised the largest share of inorganic colored pigments used in coatings.

Consumption in construction materials, which accounted for 23% of iron oxide consumption in 1981, increased 6% compared with that of 1980. Although new housing starts, totaling 1.085 million units in 1981, were at their lowest level since 1946, construction of private nonresidential buildings, measured in 1977 constant dollars, increased 9% in 1981. Increases in this end use have brought U.S. consumption more in line with European usage patterns for iron oxide pigments.

Ferrites and other magnetic and electron-

ic applications accounted for 10% of total domestic consumption of iron oxides in 1981. The increasing market for magnetic iron oxide, which includes audio, video, and computer tape applications, is estimated to have consumed between 30 million and 40 million pounds in 1981. The remaining 32% of iron oxide consumption was used in the manufacture of colorants for plastics, rubber, paper, textiles, glass, and ceramics; industrial chemicals; animal feed and fertilizers; foundry sands; cosmetics; and jeweler's rouge.

The Powder Coatings Institute, a nonprofit, professional organization based in Greenwich, Conn., was formed in 1981 by the principal manufacturers of powder coatings. Its purpose is to promote the use of powder coatings for industrial products. Powder coatings, a dry painting process, uses no solvents or liquid carriers; is said to exhibit superior film qualities, material usage efficiency of 95% or more, and savings in energy consumption and labor costs; and lacks hazardous wastes and volatile organic emissions. Powder coatings can be used on most products that can be baked at 275° to 400° F such as appliances, automobiles and automotive parts, metal furniture, lawn

and garden equipment, and electrical apparatus.

No new major end uses were established for iron oxide pigments in 1981, but traditional uses continued to grow. Published forecasts relating to iron oxide pigment consumption include an average annual 2.8% growth for production of paint between 1979 and 1995, a 15% to 20% growth rate for magnetic tape through the first half of the eighties, and a 5% to 10% growth rate in the colored preformed concrete market over the next 5 years.

Table 4.—Percent of iron oxide pigment consumption, by end use

End use	All iron oxides		Natural iron oxides		Synthetic iron oxides	
	1980	1981	1980	1981	1980	1981
Coatings (industrial finishes, trade sales paints, varnishes, lacquers) Construction materials (cement, mortar, preformed concrete,	37	35	28	27	44	40
roofing granules) Ferrites and other magnetic and electronic applications	22 9	23 10	25 7	24 6	21 10	23 13
Colorants for plastics, rubber, paper, textiles, glass, ceramics Industrial chemicals (such as catalysts) Animal feed and fertilizers	11 7	11 6 7	7 5 15	9 5 14	13 8	13 7
Foundry sandsOther (including cosmetics and jeweler's rouge)	5 2	6 2	11 2	13 2	$-\frac{3}{1}$	$-\frac{2}{2}$
Total	100	100	100	100	100	100

PRICES

Reichard-Coulston, Inc., announced price increases for selected natural and synthetic iron oxides on May 15, 1981 and July 25, 1981. The increases in May affected 38% of Reichard-Coulston's iron oxides with the majority held at, or below, 2 cents per pound. Notable were a 3-cent-per-pound increase for burnt siennas and 5-cent-per-pound increases for brown and micaceous iron oxides. Among reported increases in July, umbers increased 3 to 5 cents per

pound, and synthetic yellow oxides increased 7 cents per pound. Prices quoted were for 24,000 pounds or more. According to the producer, the price increases were necessary to offset rising costs of energy, labor, and transportation.

High prices for some grades of imported sienna have caused many companies to substitute domestic grades, although domestic siennas lack the transparency and tinting strength of the imported pigments.

Table 5.—Prices quoted on finished iron oxide pigments, per pound, bulk shipments, December 31, 1981

Pigment	Low	High
Black:		
Synthetic	•• •••	
• • • • • • • • • • • • • • • • • • • •	\$ 0.6050	\$0.730
MicaceousBrown:	.6875	
Ground iron ore		.142
Metallic	.1950	232
Pure, synthetic	.5750	.600
Siema, Italian, birnt	.0100	.700
Umber, Turkish, burnt	$.34\overline{00}$	
Vandyke brown	.3400	.422
Vandyke brown		.400
	.3100	.335
	.5950	.630
Spanish	.3200	.360
Synthetic		.587
Ocher, domestic	.1000	.220
	.1000	.2200

Source: American Paint Journal.

FOREIGN TRADE

U.S. exports of pigment-grade iron oxides and hydroxides decreased 2% in quantity but increased 28% in value in 1981. Principal destinations were Canada, the United Kingdom, Italy, Mexico, France, and Japan. Exports of other grades decreased 19% in quantity but increased 43% in value. Exports of nonpigment grades went mainly to the Netherlands, Japan, Canada, Mexico, and the Federal Republic of Germany.

U.S. imports for consumption of natural iron oxide pigments, which accounted for 21% of total imports, increased 33% in quantity and 75% in value compared with that of the previous year. Imports of natural iron oxides were received mainly from Cyprus, the Federal Republic of Germany, and

Spain. Imports of synthetic iron oxides, which comprised 79% of the total, decreased in quantity and value by 5% and 11%, respectively, reflecting increased production capacity of U.S. synthetic iron oxide plants. Imports of synthetic iron oxides were chiefly from the Federal Republic of Germany, Canada, and Japan. There were no imports of crude or finished siennas from Italy in 1981. This spurred an increase in imports of finished siennas from Cyprus. In 1981, Cyprus supplied virtually all U.S. imports of siennas. U.S. imports of micaceous iron oxides from Austria increased by 30% compared with that of 1980 and amounted to 103 short tons.

Table 6.—U.S. exports of iron oxides and hydroxides, by country

		19	80			1981			
•	Pigmen	t grade	Other	grade	Pigment grade		Other grade		
Country	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	
Argentina	1	\$16	6	\$11	10	\$24	15	\$1	
Australia	216	445	131	432	88	231	146	44	
Belgium-Luxembourg	142	190	37	42	33	.89	176	249	
Brazil	398	459	124	227	174	412	53	170	
Canada	1,929	1,986	1,622	1,559	2,178	2,386	684	97	
Colombia	13	28			45	41	9	2	
Costa Rica	8	14	1	1	7	9	1		
Denmark	14	65	23	53	1	6	6		
Dominican Republic	5	6	7	10	2	5	3		
Ecuador	14	20	8	9	12	27	(¹)	:	
El Salvador	2	1							
Finland	172	155			4	- 5	30	3	
France	94	173	105	148	213	293	115	149	
Germany, Federal Republic of	60	147	264	756	196	325	177	60	
Guatemala	4	6	2	1	6	17	(¹)		
Hong Kong	98	119	_	_	76	198			
India	ž	7		- - - - - - - - - - -	6	16	42	8	
Indonesia	15	46		•	25	182	1	- 7	
Israel	2	5					56	25	
Italy	277	735	25	32	388	1,164	55	19	
Jamaica	- i		20	02	ĭ	2,102	-		
Japan	267	1,264	1,523	4.024	200	1.653	1.651	5.08	
Korea, Republic of	289	454	57	208	21	38	41	20	
Liberia	7	7	9	208	12	18	10	10	
Mexico	25	46	206	344	379	661	356	87	
Netherlands	95	279	3,198	2,250	77	272	2,308	5.29	
New Zealand	7	20	3,130	2,200	ii	20	2,000	10,23	
	•	20	-	v	(1)	1	1	2	
Pakistan	21	20	- ₁	- <u>-</u> 2	8	20	2		
Philippines	21	20	3	15	(¹)	20	4	•	
Poland					(-)	Z	33	8	
Portugal		57	22 66	83 96	10	35		24	
Singapore	30		99	96		30	104		
South Africa, Republic of	25	86	- - <u>-</u> <u>-</u> <u>-</u>		8	22	5	(
Spain	32	41	.5	20	.8	10		174	
Sweden	22	54	12	19	14	68	25	14	
Switzerland	(1)	1	.6	23	- - - <u>-</u> -		1		
Taiwan	39	142	15	61	5	69	.6	2	
Thailand	. 9	8	40	64	7	32	16	13	
United Kingdom	391	1,631	188	244	515	2,947	162	494	
Venezuela	254	319	117	195	169	271	141	24	
Other	66	80	218	376	60	135	86	223	
Total ²	5,046	9,132	8,042	11,318	4,967	11,704	6,527	16,19	

¹Less than 1/2 unit.

Source: U.S. Bureau of the Census.

²Data may not add to totals shown because of independent rounding.

Table 7.—U.S. imports for consumption of selected iron oxide pigments

	198	0	1981		
Pigment	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	
Natural: Crude:					
Siennas	151	\$73	·		
Umbers	3,800	444	5,404	\$763	
Other	10	74	38	247	
Total	¹3,962	591	5,442	1,010	
Finished:	*				
Ochers	1	1	150	. 80	
Siennas	93	43	98	42	
Umbers	634	242	515	181	
Vandyke brown	687	260	1,070	340	
Other	807	224	933	723	
Total	2,222	770	2,766	1,366	
Synthetic:					
Black	3,694	1,832	2,854	1,576	
Red	5,667	3,103	5,241	3,740	
Yellow	11,648	8,484	10,768	5,909	
Other ²	12,253	5,255	12,590	5,314	
Total	33,262	18,674	31,453	16,539	
Grand total	39,446	20,035	39,661	18,915	

Source: U.S. Bureau of the Census.

Table 8.—U.S. imports for consumption of iron oxide and iron hydroxide pigments, by country

		Natu	ıral		Synthetic				
	1980		1981		1980		1981		
Country	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	
Austria	79	\$57	103	\$57					
Belgium-Luxembourg			(¹)	(1)	163	\$68	36	\$20	
Brazil			128	66					
Canada	2	6	69	41	9,750	2,805	11,190	3,258	
Cyprus	4,136	551	5,804	894			·		
France	1	6	11	172	(¹)	(¹)	1	2	
Germany, Federal Republic of _	689	271	1,077	412	16,836	11,595	16,912	8,944	
Italy	163	88			·		11	13	
Japan	13	74	64	499	5,057	3,481	1,846	3,387	
Mexico					998	485	1,111	672	
Netherlands					208	89			
South Africa, Republic of	1	1							
Spain	719	142	757	144	40	8	68	23	
United Kingdom	360	159	189	87	155	107	179	158	
Other	14	6	7	4	56	37	99	64	
Total ²	6,184	1,361	8,208	2,376	33,262	18,674	31,453	16,539	

Less than 1/2 unit.

Source: U.S. Bureau of the Census.

WORLD REVIEW

World mine production of natural iron oxide pigments was estimated to have decreased in 1981. In addition to the countries listed in table 9, other countries undoubtedly produced iron oxide pigments, but production data were not available.

The principal countries producing natural red iron oxide were India and Spain; those producing yellow ocher included the Republic of South Africa, France, Cyprus, Spain, and the United States. Cyprus was the major producer of sienna and umber.

¹Data do not add to total shown because of independent rounding.

²Includes synthetic brown oxides, transparent oxides, and magnetic and precursor oxides.

²Data may not add to totals shown because of independent rounding.

Japan.-Hercules, Inc., and Japan Magnetics, Ltd., reportedly formed a joint venture company, Sakai Chemical Industries, Ltd., located in Osaka, Japan. The new company is marketing a new line of magnetic particles for video, audio, and computer tape applications. The tapes were reported to offer better performance than other commercially available materials. Production was to commence in 1982 at the rate of 500 short tons per year.

TDK Electronics Corp., of Tokyo, Japan. continued to lead in world production of audio and video tapes. The company was estimated to supply 35% of total world demand for video tape cassettes and 22% of total world demand for audio tape cassettes. TDK was also the world's largest producer of ferrite cores. The company operated two tape-producing facilities in the United States, one located in Irvine, Calif., and the

other in Peachtree, Ga., producing audio and video tapes, respectively.

Zimbabwe.—Red iron oxide was produced at the Zoe Mine near Hunters Road, located in the central portion of Zimbabwe. The material was mined by G & W Industrial Minerals, Ltd., and sent to a plant in Salisbury for further grinding. Most of the material was exported to the Republic of South Africa, where it was used to color concrete slabs and roofing tiles. The red iron oxide is found in faulted zones of massive ferruginous quartzites from which silica has been leached and iron oxide has been concentrated by downward percolating waters. Reserves of oxide have been estimated to be 28,000 short tons. Annual production is estimated at 1,200 short tons per year. Iron oxide content was reported to be 79%.

Table 9.—Natural iron oxide pigments: World mine production, by country¹ (Short tons)

1				
1977	1978	1979	1980 ^p	1981 ^e
230	534	963	1,053	1,050
68	r ₃₁₀	245	248	280
10.808	r11.640	13,556	12,080	11,000
7,308	6,833	8,303		8,380
254	508			390
		3,000		3,100
8,979	5,801	2,855		4,400
r30,504	r33,069	^r 28,983		30,000
35	270	154		140
17,529	e17,600	^e 18,200	^e 17,600	16,530
29.124	23,672	31,483	27,193	27,600
	r85,374	109,168	95.017	93,700
			550	550
			r _{1.100}	1,100
				110
		1.133	359	330
		220	220	220
		e ₆₅	72	70
			1.510	1,130
_,	_,	-,	-,	•
13,630	13.478	16,621	15,097	15,400
	r e26,500	e27,600	e27,600	27,600
			49,078	546,213
100	100	500		1,200
	230 68 10,808 7,308 254 8,979 *30,504 35 17,529 29,124 83,704 *3,900 1,900 1,900 39 15,774 132 68 2,392 13,630 39,971 59,233	230 534 68 7310 10,808 711,640 7,308 6,833 254 508 8,979 5,801 730,504 733,069 35 270 17,529 17,600 29,124 23,672 83,704 785,374 83,900 2,200 1,900 1,500 1,900 1,500 1,900 1,500 1,900 1,500 2,392 2,411 13,630 13,478 39,971 78,6500 59,233 84,796	230 534 963 68 **10.808 11,640 13,556 7,308 6,833 8,303 254 508 407 8,979 5,801 2,855 **30,504 **33,069 **28,983 35 270 154 17,529 **17,600 **18,200 29,124 23,672 31,483 83,704 **85,374 109,168 **3,900 **2,200 **1,100 1,900 1,500 1,100 39 **22 28 15,774 5,150 1,133 132 165 220 68 90 65 2,392 2,411 2,492 13,630 13,478 16,621 39,971 **e26,500 **27,600 59,233 84,796 87,669	230 534 963 1,053 68 **10.0 245 248 10.808 **11.640 13.556 12.080 7.308 6,833 8,303 8,378 254 508 407 364 8,979 5,801 2,855 4,906 **30,504 **33,069 **28,983 **30,291 35 270 154 139 17,529 **17,600 **18,200 **17,600 29,124 23,672 31,483 27,193 83,704 **85,374 109,168 27,193 83,704 **85,374 109,168 27,193 1,900 **2,200 **1,100 550 1,900 1,500 1,100 1,100 39 **22 28 133 15,774 5,150 1,133 359 132 165 220 220 68 90 65 72 2,392 2,411 2,492 1,510 13,630 13,478 16,621 15,097 39,971 **e26,500 **27,600 **27,600 \$\$7,809 49,978

^eEstimated. $^{\mathbf{p}}$ Preliminary. rRevised.

[&]quot;Table includes data available through May 5, 1982.

In addition to the countries listed, a considerable number of others undoubtedly produce iron oxide pigments, but output is not reported, and no basis is available for formulating estimates of output levels. Such countries include (but are not limited to) China and the U.S.S.R. Because unreported output is probably substantial, this table is not added to provide a world total.

³Includes Vandyke brown

⁴Iranian calendar year (Mar. 21 to Mar. 20), beginning in the year stated.

⁵Reported figure.

TECHNOLOGY

A comprehensive review of patent literature, dealing with the manufacture of inorganic pigments since 1975, was published in 1981. The review includes new pigment compositions, and processes for facilitating the dispersion of pigments in aqueous organic liquids.6

A circulation tank attrition mill is claimed to require little operator attention, reduce downtime, and more easily handle iron oxide materials for fine grinding than continuous batch-operating and continuous attrition mills. Batches of iron oxide materials up to 1,000 gallons and greater than 100 mesh can be wet milled to 2 to 3 micrometers by continuous recirculation through grinding media consisting of hardened steel, stainless steel, or ceramic balls.7

A regenerative process, developed by Lurgi Apparate-Technik GmbH, of the Federal Republic of Germany, produces ferric oxide and hydrochloric acid from spent pickle liquor. In this process, the spent pickle liquor, an aqueous solution containing ferrous chloride and some unused hydrochloric acid, is decomposed thermally. This is accomplished by first heating the spent pickle liquor to approximately 98° C, concentrating this liquor in a venturi scrubber, and then charging the concentrate into a fluidized bed of granular ferric oxide kept at

approximately 850° C. Here, in the presence of oxygen and water, ferrous chloride decomposes to hydrogen chloride gas and ferric oxide. The cooled hydrogen chloride is passed through an absorption column, where it is dissolved in water to form hydrochloric acid. Ferric oxide is continually removed from the bottom of the fluidized bed, thus keeping the bed in equilibrium. The ferric oxide recovered is over 98% pure Fe₂O₃, is dust free, spherical in shape, fairly hard with a bulk density of 3 to 4.5 grams per cubic centimeter, and ranges from 0.2 to 2.00 millimeters in diameter. One of the main uses is in the production of hard ferrites.8

¹Physical scientist, Division of Ferrous Metals.

²Bureau of the Census, U.S. Department of Commerce.
Paint, Varnish, and Lacquer. Report M28F, 1981 (month-

ly).

**Chemical Marketing Reporter. Iron Oxide, an Old Workhorse Showing Some Foot. V. 219, No. 22, June 1, 1981, pp. 33-37.

^{*}Brown, A. S. Paint Companies Scrape Along. Chem. Marketing Reporter, v. 220, No. 16, Oct. 19, 1981, pp. 8-21.

^{*}Work cited in Poolable 9.

*Gutcho, M. H. Inorganic Pigments Manufacturing Processes. Noyee Data Corp., 1981, 488 pp.

*Geiser, B. T., and D. Byrnes. Circulation Tank Attrition Mill Reduces Maintenance Downtime in Grinding Iron Oxide Coatings. Chem. Process., v. 45, No. 2, February 1989, p. 158. 1982, p. 158.

⁸Bilkhu, G. S. Ferric Oxide Production From Spent Pickle Liquor. Iron and Steel Eng., v. 59, No. 3, March 1982, p. 68.

Iron and Steel

By Frederick J. Schottman¹

Pig iron and raw steel production in the United States recovered slightly in 1981 from the low levels of 1980. Production levels increased in the first half of the year over those of the previous year but then declined in the second half. Although many markets for steel were still weak, demand for oil country tubular goods exceeded capacity. The average composite price for steel rose 11.9% compared with that of the previous year. Imports of steel increased during 1981, and the trigger price mechanism (TPM) continued in effect throughout the year. Several investigations were instituted to determine if imported steel was

being dumped or unfairly subsidized.

World production of pig iron and raw steel declined for the second consecutive year. The steel industry of most of the industrialized nations suffered from the weak world steel market. The European Economic Community (EEC) agreed to phase out government subsidies to the steel industry. Within the EEC, pricing agreements and production quotas were, in effect, intended to reduce the financial losses of steel companies. New primary steel production capacity continued to be planned and built in less developed countries, often based on direct-reduced iron.

Table 1.—Salient iron and steel statistics

(Thousand short tons unless otherwise specified)

	1977	1978	1979	1980	1981
United States:					
Pig iron:					
Production	81,494	87,690	86,975	68,699	73,755
Shipments	82,392	88,543	87,781	69,445	74,218
Annual average composite price, per ton	\$189.57	\$198.31	\$203.00	\$203.00	\$204.66
Exports	51	51	105	73	16
Imports for consumption	373	655	476	400	468
Steel:1					
Production of raw steel:					
Carbon	108,130	116,916	116,226	94,689	100,619
Stainless	1,862	1,954	2,107	1,701	1,745
All other alloy	15,341	18,161	18,008	15,445	17,548
Total	125,333	137,031	136,341	111,835	119,912
Capability utilization2percent	78.4	86.8	87.2	72.8	77.7
Net shipments of steel mill products	91,147	97,935	100,262	83,853	87,014
Finished steel annual average composite price	,	* · ,	,	,	
cents per pound	15.577	17.957	20.006	^r 21.655	24,224
Exports of major iron and steel products ³	3,098	3.271	3,400	4,729	3,557
Imports of major iron and steel products	19,930	22,027	18,428	16.355	20,818
World production:	13,500	22,021	10,420	10,000	20,010
Pig iron	r537,419	r560,410	r584,402	P562,534	e552,037
			*821,237	P787.477	e776,398
Raw steel (ingots and castings)	^r 741,628	¹ 787,170	041,231	- 101,411	110,000

^eEstimated. ^pPreliminary. ^rRevised.

³U.S. Bureau of the Census. Figures for 1977 not strictly comparable to those of later years.

¹American Iron and Steel Institute (AISI).

²Raw steel production capability is defined by AISI as the tonnage capability to produce raw steel for a sustained full states the contract of

and Government Pro-Legislation grams.—The Steel Industry Compliance Extension Act (Public Law 97-23) permitted the Environmental Protection Agency (EPA) to grant steel companies 3-year extensions of the December 31, 1982, compliance deadline for air pollution regulations. The extensions were to be granted on a case-by-case basis and required that money saved by deferring pollution control costs must be used to modernize production facilities. The law was enacted in response to complaints by the steel industry that environmental control expenditures made it difficult financially to make improvements needed to keep the industry internationally competitive.

For the first time, EPA approved a "bubble" plan for air pollution control for a steel plant. In the bubble concept, total emissions of a pollutant from an entire plant are regulated rather than from each source within the plant. The company is allowed to choose the most economical means to meet the overall standard, even though emissions from some of the individual sources may exceed source standards. Late in the year, EPA said that the bubble could be expanded to cover plants of different companies within the area. Companies with pollution control better than that required by standards could sell pollution credits to other companies. EPA also planned to simplify administrative procedures for the approval of bubble plans. After EPA set general guidelines, State pollution control agencies could approve plans that met the guidelines without further Federal action.

EPA issued proposed new regulations for water pollution control by the steel industry. As a result of revisions of the Clean Water Act, the new regulations emphasize control of toxic pollutants.²

The Economic Recovery Tax Act (Public Law 97-34) aided the steel industry through changes permitting more rapid depreciation and the sale of unused tax credits to other companies. On the other hand, the U.S. Department of the Treasury ruled that continuous casting equipment did not qualify for a tax credit for energy-saving equipment.

DOMESTIC PRODUCTION

Pig iron and raw steel production was slightly higher in 1981 compared with the low levels in 1980. The recovery in steel production that had begun in the second half of 1980 continued into early 1981. The rate of capability utilization as reported by the American Iron and Steel Institute (AISI) rose to a peak of 88.6% in March. Production declined for the rest of 1981 with capability utilization down to 58.6% in December. Average capability utilization for 1981 was 77.7% compared with 72.8% in 1980.

Shipments to the two most important steel markets, construction and transportation, were lower in 1981 than in 1980. The one particularly strong market was for pipes and tubes, for which shipments increased 13% over those of 1980. This increase was largely due to a boom in oil and gas exploration. Shipments of oil country tubular goods rose over 17% and were limited by lack of capacity.

Total shipments of iron and steel castings were essentially unchanged from those in 1980, according to U.S. Department of Commerce (DOC) reports. Shipments included 9.7 million tons³ of gray iron, 2.2 million tons of ductile iron, 0.4 million tons of malleable iron, and 1.8 million tons of steel

castings.

Wheeling-Pittsburgh Steel Corp. was dropped from the industry bargaining group that negotiates with the United Steelworkers of America. Wheeling-Pittsburgh had privately negotiated contract concessions that deviated from the industry agreement.

Much of the capital investment in 1981 was in facilities for the production of pipes and tubes or for continuous casting of steel. Demand for pipes and tubes exceeded capacity in 1981. Continuous casting offered improved yields, reduced energy consumption, and quality improvements. The domestic steel industry has lagged behind many foreign industries in the use of continuous casting, but the projects announced in 1981 will significantly increase that portion of domestic steel produced using this process.

The United States Steel Corp. (U.S.S.) budgeted \$1.325 billion for capital investment in steel in 1981. Major projects included five continuous caster projects, which will raise the portion of the company's steel production that is continuously cast to about 25% or 30%. By the end of the decade, U.S.S. intends to continuously cast 75% of production. New casters are to be installed at Lorain, Ohio; at the South

Works in Chicago, Ill.; at Fairfield, Ala.; and at an unspecified plant of the Eastern Div. The continuous caster at Gary, Ind., will be upgraded. U.S.S. will build a new rail mill at the South Works that will eventually replace rail mills at Gary, Ind., and Birmingham, Ala. A \$650 million seamless pipe and tube mill was being built at Fairfield, Ala., to begin operation in late 1983. The mill will be operated by U.S.S. but owned by other investors. A market for the mill's products is assured by long-term contracts from 12 major consumers. U.S.S. was increasing its seamless tube capacity at Gary from 91,000 to 155,000 tons per year (tpy). The company continued the trend to diversification with its purchase of Marathon Oil

Bethlehem Steel Co. started up its new \$110 million electric-furnace shop at Johnstown, Pa., and ended production by blast and open-hearth furnaces at Johnstown. Bethlehem was also finishing construction of a new \$170 million coke oven battery at Sparrows Point, Md. The company planned \$750 million of modernization projects over the next 5 years. New continuous casters at Steelton, Pa., Sparrows Point, Md., and Burns Harbor, Ind., will increase Bethlehem's portion of steel that is continuous cast from 8% to about 33%. Other projects included improvements in rolling mills at Bethlehem, Pa., and at Sparrows Point. The company discontinued production of alloy tool steel because of growing imports.

Wheeling-Pittsburgh started up a new rail mill at Monessen, Pa. The \$105 million mill has a capacity of 400,000 tpy. In addition, the company planned two continuous casters. A five-strand bloom caster was to be built to feed the Monessen rail mill, and a slab caster was to be built at Steubenville, Ohio.

Jones & Laughlin Steel Corp. ordered a two-strand, \$165 million, slab caster for its Indiana Harbor plant. It was rebuilding coke ovens at Youngstown, Ohio, and a blast furnace at Indiana Harbor, Ind.

Armco Inc. planned to spend \$671 million to increase its capacity for oil country tubular goods from 300,000 to 750,000 tpy. The program includes a new seamless pipe mill at Ashland, Ky., improvements to the pipe mill at Ambridge, Pa., and a pipe finishing plant at Gulfport, Miss. A \$90 million continuous caster was to be built at Ashland.

CF&I Steel Corp. was doubling its seamless tube capacity at Pueblo, Colo. The \$140 million project included a continuous caster and a seamless tube mill, both of which should start up in 1983.

Other continuous casters were planned or being built by Republic Steel Corp. at Cleveland, Ohio, and by Inland Steel Co. at Indiana Harbor, Ind.

The Timken Co. started work on a \$500 million electric-furnace plant to be built near its steel plant in Canton, Ohio. It will have a capacity of 550,000 tpy of ingots and will include continuous casting, rolling, and tube mills.

Several minimill-type operations were sold or restarted during the year. Armco sold a plant at Marion, Ohio, to Steel Bar Products Inc., a new company, and sold a plant at Sand Springs, Okla., to HMK Industries Inc. That plant will operate as Sheffield Steel Corp. Newport Steel Corp. restarted the Newport, Ky., plant formerly shut down by Interlake Inc., and Razorback Steel Corp. restarted the Newport, Ark., plant formerly operated by Tennessee Forging Steel Corp. McDonald Steel Corp. restarted a rolling mill in the old U.S.S. McDonald Works. The company has a lease with option to buy. Hunt Energy Corp. planned to spend \$80 million to install an electric-furnace shop and a seamless tube mill in the old Jones & Laughlin Brier Hill Works at Youngstown, Ohio.

New minimills were started up by Nucor Corp. at Plymouth, Utah (650,000 tpy); by Florida Steel Corp. at Jackson, Tenn. (400,000 tpy); and by Bayou Steel Corp. at Laplace, La. (650,000 tpy). Structural Metals Inc. at Sequin, Tex., added a new furnace to increase capacity from 200,000 to 300,000 tpy. Chaparral Steel Co. at Midlothian, Tex., was expanding capacity from 450,000 to 1 million tpy. Quanex Corp. planned an \$85 million, 280,000-tpy plant for Fort Smith, Ark.; Davis Walker Corp. planned to build a 600,000-tpy plant in Stockton, Calif.

Kaiser Steel Corp. decided to phase out in coming years its coke-oven, blast-furnace, and oxygen-furnace operations at Fontana, Calif., but planned to continue finishing operations using imported slabs. Similarly, Lukens Steel Co. said that it was considering buying carbon steel slabs from outside the company because of high local electrical costs. Alloy steel production would continue.

McLouth Steel Corp. and Penn-Dixie Industries Inc. (owner of Penn-Dixie Steel Corp.) filed for bankruptcy but continued operation under Chapter 11 of the Bankruptcy Act. The Washburn Wire Co. minimill in Rumford, R.I., was closed. The Ford Steel Div. of Ford Motor Co. was made a subsidiary and renamed the Rouge Steel Co.

Materials Used in Ironmaking.-Materials used in ironmaking are shown in tables 3 and 5. Domestic pellets charged to blast furnaces in 1981 totaled 71.2 million tons, and sinter charged amounted to 26.7 million tons. Pellets and other agglomerates from foreign sources amounted to 12.7 million tons. A total of 15.8 million tons of iron ore was consumed by agglomerating plants at or near blast furnaces in producing 26.8 million tons of agglomerates. Other materials consumed by agglomerating plants were 3.9 million tons of mill scale, 1.7 million tons of flue dust, 2.6 million tons of slag, 1.4 million tons of coke breeze, 153,000 tons of anthracite, and 6.4 million tons of fluxes.

Blast-furnace oxygen consumption totaled 24.3 billion cubic feet according to AISI. Blast furnaces, through tuyere injection, consumed 44.2 billion cubic feet of natural gas; 84.2 billion cubic feet of coke oven gas; 272 million gallons of oil; 755 million gallons of tar, pitch, and miscellaneous fuels; 90,000 tons of bituminous coal; and 4,000 tons of anthracite. The revised consumption of bituminous coal in 1980 was 121,000 tons.

Materials Used in Steelmaking.—In addition to the materials shown in tables 8 and steelmaking furnaces, according to AISI. consumed 0.4 million tons of fluorspar, 1.0 million tons of limestone, 7.3 million tons of lime, 0.7 million tons of other fluxes, and 174.0 billion cubic feet of oxygen. Metalliferous materials consumed in domestic steel furnaces, per ton of raw steel produced, averaged 1,189 pounds of pig iron, 1,054 pounds of scrap, 28 pounds of ferroalloys, and 13 pounds of ore and agglomerates. The revised figures for 1980 were 1,172 pounds of pig iron, 1,108 pounds of scrap, 29 pounds of ferroalloys, and 14 pounds of ore and agglomerates.

PRICES

The annual average composite price for finished steel in 1981, as reported by Iron Age, was 24.224 cents per pound, an increase of 11.9% over the average price in 1980. The composite price increased from 22.286 cents per pound in December 1980 to 25.195 cents per pound in December 1981. When the market weakened in the second half of the year, discounting from list prices was reported. The composite price for pig iron, according to Iron Age, increased from \$203 to \$213 per ton during 1981 with an average of \$204.66.

Prices for structural shapes and plates were increased in March and September. The yearend price for structural shapes was 22.90 cents per pound, up 15.0% compared with that of a year earlier, and the price of plates was up 12.8% to 24.25 cents per pound. However, prices were generally weaker in coastal regions where imports restrained prices. The price of special quality bars increased 5.0% to 23.95 cents per

pound. Prices for merchant bar and reinforcing bar varied by region and company. Minimills took advantage of low scrap prices and were generally able to price their products below the list prices of the integrated producers. Most minimills reduced prices in the last quarter of 1981 as the market weakened.

During 1981, prices for hot- and coldrolled sheet increased 12.7% and 12.5%, respectively. Late in the year, service centers and the automobile industry were offered special discounts. Tinplate prices were increased 7.0% on January 1, but a hike announced in September by some producers was rescinded because of weak demand.

Because of heavy demand, prices were strong for oil country tubular goods for most of 1981. Near the end of the year, however, when consumers had built up adequate stocks, demand weakened for at least readily available, lower quality products, and some discounts were offered.

FOREIGN TRADE

Exports of major iron and steel products declined and imports increased in 1981, compared with those of 1980, resulting in an unfavorable trade balance of 17.3 million tons and \$7.6 billion. Generally weak markets abroad and excess production capacity

encouraged many foreign producers to export to the United States. An increase in the value of the dollar relative to many other currencies made U.S. imports less expensive and made U.S. exports less competitive in foreign markets.

The high level of activity in the U.S. oil and gas drilling industry attracted increased imports of pipe and tubes as U.S. producers were unable to meet demand. Imports of pipe and tube increased by 74% compared with those of 1980, and accounted for 63% of the total increase in imports of steel mill products. Also because of the oil and gas industry, the Gulf Coast States had the largest regional change in imports, an increase of 49%.

The EEC replaced Japan as the leading supplier of imported steel mill products. While imports from Japan increased by only 3.6% to 6.2 million tons, imports from the EEC increased 67% to 6.5 million tons. Of the EEC countries, the Federal Republic of Germany, France, and Belgium-Luxembourg were the leading suppliers to the United States, with exports of 2.2 million, 1.3 million, and 1.1 million tons, respectively. Imports of steel mill products from Canada increased 22% to 2.9 million tons.

The TPM, to discourage dumping of imported steel, was continued throughout 1981. However, industry dissatisfaction with the system grew, especially in the second half of the year, as imports gained a larger share of a declining market. Trigger prices were increased an average of 4.4% for the second quarter of 1981, were left almost unchanged for the third quarter, and increased 1% to 2% for the fourth quarter.

During the year, DOC monitored prices at foreign mills to discourage evasion of TPM by sales between related parties. Steel companies in a number of countries requested preclearance from DOC to export steel to the United States at prices below the trigger prices. The companies claimed that they could document that their production costs were less than the trigger prices based on the costs of Japanese producers. In April, DOC granted preclearance for certain prod-

ucts from Canada and Greece, but the entire preclearance program was eliminated in November.

Monitoring for surges of imports was in effect for products covered by the TPM. For these products, a surge was defined as imports of over 15.2% of the market while domestic capacity utilization was less than 87%. In August, it was announced that there had been surges in imports of specific products from six countries. Oil country tubular goods were not included because of the shortage of these products. In November, major countervailing duty or dumping investigations were begun against imports from France, Belgium, Romania, the Republic of South Africa, and Brazil. Late in the year, U.S. steel companies threatened to file large numbers of their own countervailing duty and dumping cases. The EEC and DOC discussed ways to ease the steel trade problem yet avoid the disruption in trade that might result from the pending cases.

A monitoring program was instituted in January for imports of six groups of specialty steels, including stainless steels. A surge that would result in a DOC investigation was defined as import penetration higher than that for the previous 10-year average and also higher than the level found to be injurious by a 1976 International Trade Commission (ITC) investigation. At various times during the year there were surges in imports of stainless steel sheet and strip, stainless steel bar, stainless steel pipe and tube, and alloy tool steel.

In December, a group of domestic specialty steel producers filed a suit under Section 301 of the Trade Act of 1979 alleging that the specialty steel industries in seven countries were subsidized by their governments in violation of international agreements. The countries involved were Austria, Belgium, Brazil, France, Italy, Sweden, and the United Kingdom.

WORLD REVIEW

Total world pig iron production and steel production were little changed in 1981 compared with those of 1980. Most Western European countries continued to have excess capacity as their home markets remained stagnant and they faced new competition from the new steel industries in developing nations. The industry in Western Europe was faced with the politically and socially difficult task of reducing employment, both to eliminate unneeded ca-

pacity and to improve labor productivity.

Belgium.—Cockerill and Hainaut-Sambre S.A. merged to form Belgium's largest steel company, Cockerill-Sambre. The new state-controlled company required continuing financial support from the state, a critical political issue in Belgium with strong union opposition to reductions in jobs.

Canada.—A strike shut down most production for 4 months at the Steel Co. of

Canada Ltd. (Stelco), Canada's largest steel producer. The strike coincided with a weakening market and did not result in serious shortages. The government of Nova Scotia agreed to assume \$250 million of debts of the provincially owned Sydney Steel Corp. (Sysco). The provincial government along with the Federal Government have also agreed to provide \$80 million for the first stage of a 10-year modernization project.

Algoma Steel Corp. Ltd. planned to spend \$1.25 billion over 5 years. The investment would increase raw steel capacity from 3.5 to 4 million tpy and includes a 200,000-tpy seamless tube mill that was under construction and scheduled to begin operation in 1984.

Interprovincial Steel & Pipe Corp., Ltd. (Ipsco), began construction of a \$50 million tube plant in Calgary, Alberta. The plant had a planned capacity of 200,000 tpy and will take over the production of oil country tubular goods from other Ipsco plants when it begins operations in 1983. Ipsco also completed improvements at Regina, Saskatchewan, and Edmonton, Alberta, which increased capacity for large-diameter pipe by 300,000 tpy.

China.—Because of a shift in emphasis away from heavy industry and because of a lack of foreign currency, China canceled most of a planned 6-million-tpy steel plant being built in Baoshan. That decision was reversed later in the year with the first stage of the project scheduled to begin operations in 1984, 2 years later than originally planned. The second stage construction will be stretched out, and no target date for the completion was set.

European Communities (EC).—In June, the 10 member nations of the EC reached a compromise agreement on Community policy for restructuring the steel industry. Under the agreement, the governments agreed to end all state aids to the steel industry by the end of 1985. In the meantime, state aid programs would need to be approved by the EC Commission with any plans for such aid to be submitted by September 30, 1982. The European steel industry was strongly divided over the issue of continuing subsidies. Independent steel companies, particularly in the Federal Republic of Germany, claimed that needed reductions in production capacity were being delayed by continuing subsidies. As part of the EEC agreement, production quotas were continued on products making up about 65% of EEC steel production. The agreement also approved over \$200 million of aid to relieve social stress resulting from plant closings. Most of the funds were to be used for early retirement programs.

Steel prices within the EEC increased sharply during 1981 as the industry tried to reduce financial losses. The price increases were supported by production cutbacks, pricing agreements between companies, and EEC rules against unofficial discounting from list prices. The EEC also maintained minimum prices on imported steel. The EEC had bilateral agreements with 14 countries that allowed imports at 4% to 6% lower than the usual minimum prices in exchange for quantitative limits.

France.—The newly elected socialist government formally nationalized Union Sidérurgique du Nord et de l'Est de la France (Usinor) and Acieries et Laminoirs de Lorraine (Sacilor), which had been under effective state control since 1978 when the Government provided aid to prevent failure of the companies. Metallurgique de Normandie and Ugine Aciers, privately controlled, were also to be nationalized.

Germany, Federal Republic of.—The Federal Government approved \$541 million in aid to the German steel industry. The Government had generally opposed all state aid in the EEC but acted to protect its domestic industry against the subsidized industries in other countries. The Government also proposed special "equalization" duties on subsidized imports from other EEC countries.

Fried. Krupp Hüttenwerke AG and Hoesch Werke AG, part of Estel NV, discussed a possible merger. The Federal Government urged that state-owned Stahlwerke Peine-Salzgitter AG also be included. The merger would involve the breakup of Estel, which was formed in 1972 by combining Hoesch of the Federal Republic of Germany and Hoogovens IJmuiden BV of the Netherlands.

India.—The Steel Authority of India (SAIL) was nearly ready to start construction on two new integrated steelworks. Construction was to start at Visakhapatnam for a 3.7-million-tpy plant. The plant is scheduled for completion in 1985 or 1986 but it has a history of delays. A turnkey contract was let for construction for the first 1.3-million-tpy stage of the Paradip steelworks. However, the project was likely to to be delayed as SAIL considered moving the plant from a coastal site to another site closer to iron ore

suppliers.

India's first direct-reduction plant, a 34,000-tpy coal-fired plant, was commissioned at Paloncha, Andra Pradesh. A 330,000-tpy plant in Orissa and a 130,000-tpy plant in Bihar have also received Government approval and several other plants are planned.

Expansion projects were underway at Mukand Iron & Steel Works Ltd. and at the Bhilai State steelworks. New specialty steel capacity was added with the startup of the 35,000-tpy stainless steel rolling mill at Salem and with the startup of an electrical sheet mill with a capacity of 80,000 tpy of electrical steel at Rourkela.

Ireland.—Irish Steel Ltd. restarted steel production at Haulbowline. The plant had been out of production for a year while the plant was rebuilt to double the capacity of the mill to about 380,000 tpy of raw steel.

Japan.—Production by Japan's exportoriented steel industry declined in 1981. Markets in Europe and the United States were still weak, and Japan faced increasing competition in Asian markets from producers in the Republic of Korea and Taiwan. Furthermore, Japan's own imports increased markedly, although they were still small compared with exports.

Seamless pipe was one strong export market with good demand and higher prices. Much of the new investment by the major Japanese steel companies was to expand capacity for high-quality, high-value pipes and tubes. Companies expanding seamless pipe capacity (and their capacity increases) included Nippon Steel Corp. (440,000 tpy), Sumitomo Metal Industries, Ltd. (22,000 tpy), Nippon Kokan KK (NKK) (660,000 tpy), and Kawasaki Steel Corp. (350,000 tpy).

Korea, Republic of.—State-owned Pohang Iron and Steel Co. (POSCO) completed its fourth stage of expansion with the addition of a fourth blast furnace and a second hot-strip mill bringing the company's capacity to 9.4 million tpy. By 1985, the plant capacity will be expanded to 10.6 million tpy. Beginning in 1985, a second plant with an eventual capacity of 13 million tpy is to be built at Kwangyang.

Libya.—Libya signed contracts for the construction of an integrated steel mill at Misurata with a capacity of 1.4 million tpy. The plant will include two Midrex direct-reduction units with a combined capacity of 1.2 million tpy.

Mexico.—Two groups considered building

HYL-III direct-reduction plants at Altamira, a port being developed on the gulf coast. Prereducidos Mexicanos S.A. (Premexsa), a group of 10 electric-furnace steel companies, planned a 1-million-tpy plant; Hylsa Group and Nippon Direct Reduction Iron Development Co. conducted a feasibility study for a jointly owned plant to have a capacity of 500,000 tpy.

Siderúrgica Lázaro Cárdenas-Las Truchas S.A. (Sicartsa) plans to triple its steel mill capacity to 3.5 million tpy. The project includes a 2-million-tpy HYL direct-reduction plant due to start up in 1982, a new melt shop, and a continuous caster. A 2-million-tpy plate mill will also be built.

Tubos de Acero de Mexico S.A. announced a \$650 million expansion of its works at Veracruz. The project, to be completed in stages by 1986, will increase raw steel capacity to 1.1 million tpy and seamless tube capacity to 700,000 tpy.

New Zealand.—New Zealand Steel Ltd. plans to expand its capacity from 170,000 to 850,000 tpy of billets by 1984. The expansion will add four coal-fired direct-reduction kilns, two electric pig iron furnaces, a Q-BOP converter, and two continuous casters. The company will continue to use titaniferous ironsands as raw material.

Poland.—Because of political unrest, Poland's steel production will be reduced from a normal 22 million tpy to about 1.6 million tpy for the next several years, according to the metallurgy and engineering ministry.

South Africa, Republic of.—South African Iron & Steel Industrial Corp. Ltd. (Iscor) chose Lurgi Chemie & Hüttentechnik to build a four-kiln, 660,000-tpy, coal-fueled direct-reduction plant at Vanderbijlpark. Iscor is also studying a 1-million-tpy direct-reduction plant for its Pretoria steelworks.

Direct Reduction Corp. will build a solid fuel 80,000-tpy direct-reduction plant for Scaw Metals Ltd. Scaw Metals is a private steelmaker with a plant at Germiston.

Taiwan.—China Steel Corp. was expanding its capacity from 1.6 million tpy. New facilities scheduled to be ready in 1982 included a second blast furnace, a third basic-oxygen furnace, a cold-rolling mill, and a hot-strip mill. The company has longer range plans to expand to 6.3 million tpy capacity.

Trinidad and Tobago.—The Iron and Steel Co. of Trinidad and Tobago (ISCOTT) continued to start up operations at its new plant at Point Lisas, 35 miles south of Portof-Spain. The plant takes advantage of low

priced natural gas to convert imported iron ore to direct-reduced iron and steel with about 80% of the product intended for export. The first of two Midrex directreduction units operated in 1981 with the second to begin production in 1982 for a total capacity of 1 million tpy. Steelmaking facilities include two 100-ton electric furnaces, continuous casters, and a 660,000-tpy rod mill.

U.S.S.R.—Goals for production by the iron and steel industry in 1985 were published. The target for pig iron was 130 million tons, for raw steel it was 186 million tons, and for finished steel it was 130 million tons.

The 1981-85 5-year plan included the development of the large Stary Oskol steel plant using direct-reduced iron, and a 5,000cubic-meter blast furnace at Cherepovets. The plan also includes three scrap-based minimills intended to serve local markets.

United Kingdom.—The British Steel Corp. reported that, during the fiscal year ending February 28, 1981, the company had losses of \$1.9 billion and employment was reduced by 45,500 to 120,900. Further employment cuts were planned, but they were not expected to be as drastic as in previous

TECHNOLOGY

Progress was made in continuous casting processes. Southwire Co. of the United States and Hitachi, Ltd., of Japan have each developed wheel-and-belt casters similar to those used to cast copper. The casters are compact compared with the vertical casters now common and should be relatively inexpensive to build and house. In addition, the billet is cast at a relatively high speed (up to 60 feet per minute) with the intention of feeding directly into a rolling mill. Since no reheating is needed, less energy is required overall. Other companies are working on horizontal casters. The horizontal arrangement reduces the required height of the equipment and building and eliminates the need for equipment to bend or lower the casting from the vertical to horizontal position.5

Korf Technologies, Inc., introduced a system of bottom blowing oxygen in openhearth furnaces. The process reportedly increases productivity, reduces fuel and oxygen consumption, and increases refractory life.6

A relatively low-cost method to produce billets and other shapes from powder was introduced by Cyclops Corp. In the process, a glass mold is filled with powder, evacuated, and sealed. The filled mold is placed in a conventional furnace until the powder consolidates to 98% to 99% density. As in other powder metallurgy processes, the product is very fine grained and free from segregation.7

Large shapes were built up almost entirely from weld-deposited material by Thyssen AG of the Federal Republic of Germany. The process allows very large shapes such as rotors and pressure vessel components to be built up with well-controlled composition and if desired with different compositions in different locations. Furthermore, in contrast to the forgings with which the welded shapes compete, the welded shapes can have very high yield and require relatively little machining.8

¹Physical scientist, Division of Ferrous Metals. ²Federal Register. V. 46, No. 4, Jan. 7, 1981, pp. 1858-

³Tons in this chapter refer to short tons of 2,000 pounds. ⁴Metal Bulletin. Poland Cuts Output Target. No. 6635,

oct. 30, 1981, p. 31.

McManus, G. J. Continuous Casting Continues To Evolve New Techniques. Iron Age, v. 224, No. 4, Feb. 2, 1981, pp. MP-7—MP-11.

^{1981,} pp. MP-7—MP-11.

*Iron and Steel Engineer. High-Productivity Open Hearth Operation Through Bottom Blowing. V. 58, No. 10, October 1981, p. 70.

*Therebier, L. W. Promise in Powder. Am. Metal Market, v. 89, No. 153, Aug. 10, 1981, pp. 12A-13A.

*Irving, R. R. Shape Welding: A New Concept in Fabrication. Iron Age, v. 223, No. 33, Nov. 23, 1981, pp. 111-114.

Table 2.—Pig iron produced and shipped in the United States in 1981, by State

	D. J. stien	Shipped fro	m furnaces	Average value
State	Production - (thousand short tons)	Quantity (thousand short tons)	Value (thousands)	per ton at furnace
Alabama	2,656	2,654	\$580,869	\$218.87
Illinois	4,504	4,503	928,687	206.24
Indiana	18,264	18,273	3,651,952	199.86
Michigan	5,757	5,756	1,108,562	192.59
New York	2,714	2,531	546,594	215.96
Ohio	11,756	11.754	2,579,640	219.47
Pennsylvania	14,176	14,804	3,011,028	203.39
California, Colorado, Utah.	4,263	4,249	851,202	200.33
Kentucky, Maryland, Texas, West Virginia	9,666	9,692	2,050,185	211.53
Total ¹ or average	73,755	74,218	15,308,719	206.27

¹Data may not add to totals shown because of independent rounding.

Table 3.—Foreign iron ore and manganiferous iron ore (excluding agglomerates) consumed in manufacturing pig iron in the United States, by source of ore

Source	1980¹	1981 ²
Australia Brazil Canada Venezuela Other countries	263 37 1,042 1,871 124	250 37 492 1,968 130
Total	3,337	³2,878

¹Excludes 11,448,192 tons used in making agglomerates.

²Excludes 11,404,938 tons used in making agglomerates.

³Data do not add to total shown because of independent

Table 4.—Pig iron shipped from blast furnaces in the United States, by grade¹

		1980			1981	
Grade	Quantity	Val	ue	Quantity	Val	ue
	(thousand short tons)	Total (thousands)	Average per ton	(thousand short tons)	Total (thousands)	Average per ton
Foundry	740 66,916 402 W 840 547	\$153,635 13,148,597 82,594 W 169,719 101,702	\$207.61 196.49 205.46 W 202.05 185.93	429 71,922 411 W 931 524	\$87,711 14,810,426 88,491 W 215,637 106,454	\$204.46 205.92 215.31 W 231.62 203.16
Total or average	69,445	13,656,247	196.65	² 74,218	15,308,719	206.27

W Withheld to avoid disclosing company proprietary data; included with "All other."
¹Includes molten iron transferred directly to steel furnaces.

²Data do not add to total shown because of independent rounding.

rounding.

Table 5.—Iron ore and other metalliferous materials, coke, and fluxes consumed in blast furnaces, and pig iron produced in the United States,

(Thousand short tons unless otherwise specified)

	F	d etallifero	us materi	Metalliferous materials consumed in blast furnaces	ed in blas	t furnaces				Pig	Metallife per	Metalliferous materials consumed per ton of pig iron made (short tons)	erials cons ; iron made tons)	sumed le	Coke and fluxes consumed per ton of pig iron (short tons)	fluxes ed per g iron
State	Iron and manganiferou	Iron and inganiferous ores	Ag-	Net ores	Zet	Mis-	Z Ta	coke	Fluxes	iron pro- duced	Net	to N	Mis-	3	1	
	Do- mestic	For- eign	glom- erates	and ag- glomer- ates ¹	scrap2	lane-	total4				and ag- glom- erates ¹	scrap ²	lane-	total4	coke	Fluxes
	ŀ	ŀ	9	90	, 8	,		,								
Illinois.	≱≱	>	3,408 6,410	4,080 6,548	422 222	19 144	4,120 7,113	1,657	257 616	2,624 4,376	1.555 1.496	0.08 0.096	0.007	1.570	0.631 589	0.098
Indiana and Michigan	994 W	069 M	32,585 3,291	33,758 3,350	914 132	1,284	35,956 3,486	11,978	1,010	21,231	1.590	0.043	96.	1.694	262	048
Ohio	377	136	15,691	15,936	320	663	16,949	6,709	1,811	10,692	1.490	988	0.00	1.585	.627	169
California, Colorado, Utah	1,556	W	5,596	7,338	307	81	7,727	2,307	638 889	4,147	1.769	.045 .074	080. 080.	1.863	.592 .556	.091 .154
Kentucky, Texas	M	202	14,282	14,168	202	191	14,531	4,514	465	8,944	1.584	.023	810.	1.625	.505	.052
Total ⁴	3,984	3,337	101,949	107,568	2,996	3,088	113,654	39,595	56,355	68,699	1.566	.044	.045	1.654	.576	.093
Alabama	M	472	3,906	4,334	2	12	4,351	1,683	192	2,656	1.632	.002	.005	1.638	634	079
llinois————siouil	≯¦	18	6,815	7,000	516	43	7,594	2,495	449	4,504	1.554	.115	.018	1.686	554	100
indiana and Michigan	230 M	504 M	30,065 4 114	36,708 4,226	1,552	878	39,190 4 385	12,570	1,043	24,021	1.528	.065	.039	1.631	.523	.043
Ohio	148	117	17,092	17,159	83	$\frac{1}{914}$	18,356	6,540	1,467	11,756	1.460	.039 420	078	1.010	556	198
PennsylvaniaCalifornia Colorado IItah	375 316	1,577 w	20,555 5,869	22,209	490 215	604 4	23,303	8,203	1,214	14,176	1.567	585	0.43	1.644	.579	98
Maryland, West Virginia,		:	2006	2,00	011	•	0,000	C#047	000	4,200	1.430	nen.	2002	1.548	166.	.136
Kentucky, Texas	1	141	15,585	15,368	330	168	15,865	4,909	454	999'6	1.590	.034	.017	1.641	.508	.047
Total ⁴	1,583	2,878	110,601	113,380	3,550	2,714	119,644	40,379	65,678	73,755	1.537	.048	.037	1.622	.547	7.20.
W Withhald to and died .				7 171												

W Withheld to avoid disclosing company proprietary data, included with "Total." "Net ores and agglomerates equal ore plus agglomerates plus flue dust used minus flue dust recovered.

Excludes home scrap produced at blast furnaces. ³Does not include recycled material.

Data may not add to totals shown because of independent rounding.

Figures consisted of the following: 2,865 limestone, 1 burnt lime, 3,250 dolomite, and 239 other fluxes, excluding 3,520 limestone, 13 burnt lime, 3,036 dolomite, and 59 other fluxes used in agglomerating production at or near steel plants and unknown that used in making agglomerates at mines.

Fluxes consisted of the following: 2,710 limestone, 1 burnt lime, 2,827 dolomite, and 150 other fluxes, excluding 2,980 limestone, 26 burnt lime, 3,299 dolomite, and 67 other fluxes used in agglomerating production at or near steel plants and an unknown quantity used in making agglomerates at mines.

Table 6.—Number of blast furnaces in the United States, by State

		1980			1981	
State	In blast ¹	Out of blast	Total	In blast ¹	Out of blast	Total
Alabama California Colorade Illinois Indiana Kentucky Maryland Michigan New York Ohio Pennsylvania Texas Utah West Virginia	5 4 3 6 16 2 2 7 3 16 22 22 2 2 3 3	1 -1 6 6 -3 2 2 6 12 20 	6 4 12 22 2 5 9 28 42 2 3 4	3 3 6 18 2 2 7 4 14 17 2 2 3	3 1 1 2 4 	6 4 4 8 22 2 4 9 9 23 40 23 40
Total	94	58	152	86	54	140

¹In blast for 180 days or more during the year.

Table 7.—Steel production in the United States, by type of furnace

Year	Open- hearth	Basic oxygen converter	Electric	Total
1977	20,043	77,408	27,882	125,333
	21,310	83,484	32,237	137,031
	19,158	83,256	33,927	136,341
	13,054	67,615	31,166	111,835
	13,452	73,231	33,229	119,912

Source: American Iron and Steel Institute.

Table 8.—Metalliferous materials consumed in steel furnaces1 in the United States (Thousand short tons)

	Iron o	ore ²	Agglom	erates²	Pig iron	Ferro-	Iron and steel
Year	Domestic	Foreign	Domestic	Foreign	1 16 11 011	alloys ³	scrap
1977 1978	112 110 73 45 27	372 537 409 244 207	123 441 704 429 537	102 79 74 50 34	77,086 83,577 81,948 •65,543 71,284	r _{1,721} r _{1,917} r _{1,978} r _{1,603} 1,663	64,231 70,375 71,715 *61,930 63,195

Revised.

¹Basic oxygen converter, open-hearth, and electric furnace.

²Consumed in integrated steel plants only.

Table 9.—Consumption of pig iron in the United States, by type of furnace or other use

	19	79	198	30	19	31
Type of furnace or other use	Thousand short tons	Percent of total	Thousand short tons	Percent of total	Thousand short tons	Percent of total
Basic oxygen converter Open-hearth Electric Cupola Air and other furnaces¹ Direct castings²	68,526 12,865 905 1,026 397 3,738	78.4 14.7 1.0 1.2 .4 4.3	56,414 8,606 855 698 299 2,182	81.7 12.5 1.2 1.0 .4 3.2	62,162 8,867 583 685 254 2,489	82.8 11.8 .8 .9 .3
Total ³	87,458	100.0	69,053	100.0	75,040	100.00

3Data may not add to totals shown because of independent rounding.

Includes ferromanganese, spiegeleisen, silicomanganese, manganese metal, ferrosilicon, ferrochromium, and ferromolybdenum. Includes ferroalloys added to steel outside the furnace.

¹Includes vacuum-melting furnaces and miscellaneous melting processes.

²Castings made directly from blast furnace hot metal. Includes ingot molds and stools.

Table 10.—Consumption of pig iron¹ in the United States, by State

State	1980	1981
Alabama	2,559	2,583
Arkansas	2	, 1
California	1,703	1.751
Connecticut	10	g
Georgia	4	8
Illinois	4,386	5,432
Indiana	15,787	18,287
Iowa	21	24
Kansas	6	7
Kentucky	1,650	1.946
Maine	(2)	(2)
Maryland	3.537	3.892
Massachusetts	18	19
Michigan	5,601	5.869
Minnesota	30	30
Missouri	12	10
Nevada	(2)	· (2)
New Jersey	`ś	`4
New York	2,001	2,374
North Carolina	4	_,0,,
Ohio	10.847	11.880
Oklahoma	13	13
Pennsylvania	14.583	14.444
Rhode Island	3	3
Tennessee	12	14
Texas	1.378	1.262
Utah	1,622	1,595
Virginia	37	23
Washington	Ϋ́i	20
West Virginia	2.286	2.565
Wisconsin	65	2,000
Undistributed ³	870	925
Total	69,053	75,040

¹Includes molten pig iron used for ingot molds and direct castings.

²Less than 1/2 unit.

³Includes Colorado, Florida, New Hampshire, Oregon, and South Carolina.

Table 11.-U.S. exports of major iron and steel products

	19	979	19	180	19	81
Product	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands
Steel mill products:						
Ingots, blooms, billets, slabs, sheet						
bars	357.965	4\$93,696	912,310	\$249,092	540,600	\$ 154,511
Wire rods	28,403	14,180	212,823	70,291	102,688	44,878
Structural shapes, 3 inches and	,		•	· ·	•	
over	139,054	73.393	151.075	83,950	131,384	80,328
Structural shapes, under 3 inches	18,234	16.551	25,234	21,196	16,176	16,065
Sheet piling	6,823	4,614	2,677	1,664	7,607	9,654
Plates	207.866	100,986	207,840	119,042	199,536	126,794
Rails and track accessories	38,148	21.565	130,016	65,289	78,325	51,696
	2.496	9,182	4,520	20,392	7,390	24,785
Wheels and axles	86.281	28,180	166,171	52,030	137.317	41.927
Concrete reinforcing bars		28,872	80,913	34,386	91.041	48,587
Bars, carbon, hot-rolled	68,488		100 507	76,346	58.518	57.793
Bars, alloy, hot-rolled	48,382	41,613	128,587	10,340	28,724	36.498
Bars, cold finished	29,486	30,561	28,442	34,261		9,379
Hollow drill steel	7,874	6,330	4,241	6,369	4,818	
Pipe and tubing	728,430	791,131	470,168	718,647	472,447	841,474
Wire	34,827	45,243	42,648	55,054	37,360	62,470
Nails, brads, spikes, staples	10,320	26,014	11,600	31,681	11,949	34,152
Blackplate	125.548	35,377	179,459	52,046	89,717	25,711
Tinplate and terneplate	440,399	204,986	707,023	440,671	381,089	220,993
Sheets, hot-rolled	100.527	53,582	211,291	104,937	195,294	105,394
Sheets, cold-rolled	142,507	98,704	145,462	110,958	92,485	89,378
Strip, hot-rolled	15,607	14.932	40,764	27,568	36,598	24.258
Strip, novioned	50,146	65,507	44,320	72,064	51,534	73,855
Strip, cold-rolled Plates, sheets, strip, galvanized,	00,140	00,001	11,000	,	,	
coated or clad	130,132	73,236	193,134	108,685	131,266	94,686
Total ¹	2,817,943	1,878,437	4,100,718	2,556,619	2,903,863	2,275,267
=						
Other steel products:			00 500	FO 010	40.044	CC 404
Plates and sheets, fabricated	22,362	38,417	28,763	52,913	40,244	66,404
Structural shapes, fabricated	121,296	195,258	175,035	313,644	172,388	390,526
Architectural and ornamental						
work	4,157	8,349	10,405	23,966	10,193	23,998
Sashes and frames	10,237	25,943	12,470	32,283	12,804	39,141
Pipe and tube fittings	42,058	214,369	50,104	259,805	50,716	300,810
Pipe and tubing, coated or lined _	14,595	20,173	18,012	21,729	19,470	23,806
Bolts and nuts	95,094	113,687	56,131	123,230	70,254	133,442
Forgings	56,011	72,397	47,413	104,586	58,195	144,420
Cost steel rolls		7,008	4.265	7,729	5.074	8,811
Cast-steel rolls Railway track material	4,769	5,723	4,503	7,209	4,458	7.386
Namway track material	4,100	0,120	1,000			
Total ¹	374,011	701,325	407,101	947,094	443,796	1,138,745
T						
Iron products:	ee gen	121,517	86,245	140,661	95,386	145,519
Cast-iron pipes, tubes, fittings	66,367		134,714	83,755	113,521	88,998
Iron castings	141,194	102,740	104,/14	00,100	110,021	00,000
Total	207,561	224,257	220,959	224,416	208,907	234,517
Grand total ¹	3,399,515	2,804,018	4,728,778	3,728,129	3,556,566	3,648,528

¹Data may not add to totals shown because of independent rounding.

Table 12.—U.S. imports for consumption of pig iron, by country

	19	979	19	180	19	981
Country	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands
Australia Belgium-Luxembourg	7,880	\$1,000	46,482	\$6,258	3,707 27	\$470 12
Brazil	183,925	21,622	84,862	10.123	138,951	15,443
Canada	184,635	28,656	222,365	39,837	267,877	46,658
France	19,579	2,659	8,746	1,303	4,833	771
South Africa, Republic of	41,776	5,193	18,885	2,608	45,988	-6,972
Spain	28,888	3,286				57
Sweden Venezuela	9,658	834	18,658	2,884	4,526 2,204	430 236
Other			33	24	12	21
Total ¹	476,342	63,251	400,031	63,036	468,125	71,013

¹Data may not add to totals shown because of independent rounding.

Table 13.—U.S. imports for consumption of major iron and steel products

er er er er er er er er er er er er er e	19	779	19		19	81
Product	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands
teel mill products:						
Ingots, blooms, billets, slabs, sheet						
bars	344.690	\$91,863	155,345	\$51,802	790,062	\$212,449
Wire rods	985,401	379,156	829,272	347,210	888,456	388,315
Wire rods Structural shapes, 3 inches and	000,101	0.0,100		011,210	000,400	900,010
OVOR	1.881.959	596,769	1,739,543	589,762	1,976,769	727,669
Structural shapes, under 3 inches	231,608	76,162	136,939	49,960	105,412	38,027
Sheet piling	102,812	37,822	89,423	33,750	98,718	40,512
Plates	1,819,805	561,640	2,059,710	670,729	2,447,687	900,595
Plates Rails and track accessories	213,677	74,336	271,164	106,264	282,877	109,788
Wheels and axles	99,550	58,877	142,906	101,150	35,702	30,955
Concrete reinforcing bars	116,958	33,164	78,641	23,770	52,647	15,415
Bars, carbon, hot-rolled	452,433	147,958	366,659	129,253	418,006	163,516
Bars allow hot-rolled	153,894	90,499	129,147	90,054	176,571	
Bars, alloy, hot-rolled Bars, cold finished	170,510	134,527	146,786			119,706
Hollow drill steel	110,010	0.010	1,814	145,251 1,742	231,278 1,442	219,096
Welded pipe and tubing	2,023 1,750,470	2,212 724,360	1 000 000	004.070	1,442	1,588
Other pipe and tubing	1,169,584	710 070	1,862,058	824,876	2,740,842	1,414,377
Wine	1,109,004	716,279	1,914,540	1,262,704	3,827,736	3,157,481
Wire Wire nails Wire fencing, galvanized	479,162	369,930	414,429	339,254	412,802	332,389
Wire feering and and and and and and and and and and	336,849	188,176	292,169	152,841	303,471	160,045
wire lending, gaivanized	11,261	7,848	8,318	6,430	8,446	6,419
Blackplate	82,072	30,850	68,250	27,365	97,836	41,35
Tinplate and terneplate	262,781 2,161,764	137,252	309,292	179,232	288,414	180,390
Sheets, hot-rolled	2,161,764	608,111	1,491,791	441,740	1,628,141	526,902
Sheets, cold-rolled	2,412,994	894,821	1,477,122	589,037	1,626,016	720,356
Sheets, coated (including						
galvanized) Strip, carbon, hot-rolled	2,139,151	892,511	1,349,790	597,424	1,303,588	604,046
Strip, carbon, hot-rolled	27,345	9,661	15,807	6,762	24,934	10,719
Strip, carbon, cold-rolled	49,581	45,151	46,965	43,023	50,866	50,218
Strip, alloy, hot- or cold-rolled						•
(including stainless)	21,267	36,682	15,341	34,362	23,087	42,832
Plates, sheets, strip, electro-						
lytically coated (other than						
with tin, lead, or zinc)	38,588	20,124	81,854	41,716	56,565	32,502
Total ¹	17,518,189	6,966,738	15,495,075	C 007 4C0	10 000 071	10.045.000
	11,010,100	0,300,138	10,430,010	6,887,462	19,898,371	10,247,660
ther steel products:						
Plates, sheets, strip, fabricated	6,749	7,582	6,010	5,879	4,832	5,526
Structural shapes, fabricated	154,365	113,101	175,292	170,719	168,779	179,719
Pipe fittings	81.753	107,851	88,329	131,293	131,829	221,691
Rigid conduit	3,095	5,035	2,058	3,705	1,928	3,952
Rigid conduit Bale ties made from strip	8,046	3,677	2,050	1.339	1,390	
Nails, brads, spikes, staples,	0,040	0,011	2,000	1,000	1,550	1,190
tacks, not of wire	17,071	15 451	14 464	10 174	16 100	10.500
Bolts, nuts, rivets, washers, etc	477,092	15,451 496,999	14,464	12,174	16,123	12,709
Forgings	90.046		430,011	473,632	445,743	491,230
Forgings	39,240	27,231	34,967	26,962	51,772	38,601
Total ¹	787,417	776,928	753,181	825,702	822,396	954,618
on products:						
Cast-iron nines tubes fittings	26,852	25,387	23,859	25,278	25,554	27,515
Iron castings	95,841	53,460	82,712	53,577	71,207	56,442
Total		78,847	106,571	78,855	96,761	83,957
Grand total						
	18,428,299	7.822.513	16.354.827	7,792,019	20,817,528	11,286,235

¹Data may not add to totals shown because of independent rounding.

Table 14.—Pig iron: World production, by country¹

Country ²	1977	1978	1979	1980 ^p	1981e
North America:					40.000
Canada	10,649	11,399	12,021	12,327	10,880
Mexico ³	4,771	5,662	5,541	5,806	6,160
United States	81,494	87,690	86,975	68,699	473,755
South America:	•	Fo 040	0.100	1 001	1.900
Argentina ³	r _{1,527}	*2,012	2,136	1,991	412.049
Brazil ³	10,735	11,388	13,137 674	14,286 685	643
Chile	476 246	594 327	265	307	290
Colombia	240 269	r ₂₆₂	283	288	4195
Peru	209 548	764	1,468	2,609	42,458
Venezuela ³	940	104	1,400	2,000	2,100
Europe:	3,268	3,392	4.081	3.842	43,832
Austria	9,837	10,310	11.878	10.857	410,789
Belgium Bulgaria	1.779	1.645	1,598	1,696	1,650
Czechoslovakia	10,709	10,961	10,504	10,824	10,860
Finland	1.944	2.112	2,247	2,226	42,180
France	19.714	19,952	20,906	20,580	418,697
German Democratic Republic ⁵	2,896	2,822	2,630	2,709	2,600
Germany, Federal Republic of	r31,633	r32,916	38,421	37,118	435,137
Greece	485	660	362	^é 385	330
Hungary	2,520	2,568	2.611	2.441	42,417
Italy	12,578	12,500	12,486	13,392	13,513
Luxembourg ⁵	3,933	4.102	4,190	3,934	43,183
Netherlands	4.323	5,085	5,307	4,771	45,070
Norway	565	⁷ 611	717	681	4626
Poland	10,490	12,246	12,087	12,787	12,100
Portugal	393	389	403	330	330
Romania	8,580	8,989	9,787	9,934	10,400
Spain	^r 7,299	r _{6,882}	7,174	7,408	47,080
Sweden ³	2,745	2,735	3,343	2,685	41,962
Switzerland	30	38	33	32	33
U.S.S.R	^r 117,389	^r 121,250	119,331	117,515	117,230
United Kingdom	r _{13,542}	F12,712	14,213	6,958	410,291
Yugoslavia	2,136	2,294	2,603	2,673	43,105
Africa:		•			450
Algeria	473	r ₅₂₉	437	440	470
Egypt	^r 606	^r 661	661	717	715
Morocco ^e	_ 13	13	13	13	13
South Africa, Republic of	r _{6,740}	r _{6,515}	7,750	8,284 166	48,088 175
Tunisia	146	148	165		440
Zimbabwe ^e	^r 340	^r 660	660	660	440
Asia:	Tor. 010	00 040	40.488	41,910	37.500
China	r27,613	38,349	9,664	9.324	410.443
India	10,798	10,397	9,004	900	550
Iran ^e	770	1,000	. (6)		350
Israel ^e	(⁶)	(6)		95,946	488,239
Japan	94,673	86,629	92,402		3,300
Korea, North	3,000	3,100	3,200	3,300 6.148	48,739
Korea, Republic of	2,673	3,022	5,581	0,148 1.857	41.775
Taiwan	*687	r _{1,962} 23	1,940 33	1,857	22
Thailand	22			2,249	2,150
Turkey	1,905	^r 2,014	2,456	4,449	2,100
Oceania:	7 444	8.088	8,610	7,675	47.525
Australia	7,444 13	8,088 31	30	1,615	148
New Zealand ^{e 3}	13	91	- OU	143	140
Total	r537,419	r560,410	584,402	562,534	552,037

^rRevised. ^eEstimated. $^{\mathbf{p}}$ Preliminary.

^{*}Estimated. *Preliminary. *Revised.

1 Table excludes all ferroalloy production except where otherwise noted. Table includes data available through June 2,

1982.

2 In addition to the countries listed, Vietnam and Zaire have facilities to produce pig iron and may have produced limited quantities during 1977-81, but output is not reported and available general information is inadequate to permit formulation of reliable estimates of output levels.

3 Includes sponge iron output.

4 Reported figure.

5 May include blast furnace ferroalloys.

5 Periginal to zero.

Revised to zero.

Table 15.—Raw steel: World production, by country²

Country	1977	1978	1979	1980 ^p	1981 ^e
North and Central America:	-				
Canada	15,026	16,423	17,723	17,512	316,321
Cuba	364	357	361	335	330
El Salvador	15	e ₁₅	e ₁₅	15	11
Mévico	6,174	r7,469	7,845	7,884	
Trinidad and Tobago	0,212	1,200	1,020	1,004	8,380 50
Trinidad and TobagoUnited States	125,333	137,031	136,341	$111,8\overline{3}\overline{5}$	119,912
outh America:	• • • • • • • • • • • • • • • • • • • •	101,001	100,041	111,000	115,512
Argentina	r _{2,958}	r3.071	3,530	2,961	32,800
Brazil	12,306	13,346	15,314	16,885	14,570
Chile	604	¹ 658	724	735	
Colombia	364	431	399	446	700
Ecuador	NA.	NA	9		435 330
Peru	418	r ₄₁₂		16	930
Henmoy	19		481	519	375
Uruguay Venezuela	942	10 948	19	15	11
rope:	342	948	1,624	1,966	2,003
Anotrio	4	4 ===			
Austria	4,511	4,779	5,420	5,097	³ 5,132
Belgium	12,408	13,890	14,817	13,580	313.540
Bulgaria	2,854	2,723	2,736	2,829	2,755
BulgariaCzechoslovakia	16,605	16,859	16,333	16,783	2,755 16,800
Denmark	756	952	886	809	3675
Finland	2,420	2,572	2,754	2,765	32,658
France	24,354	25,178	25,750	25,480	³ 23,440
German Democratic Republic	7,551	7,690	7.742	8,056	20,440
Germany, Federal Republic of	42,974	45,474	50,750		8,200
Greece	837		90,790	48,323	345,870
Hummer	4104	1,032	1,102	e1,100	1,100
HungaryIreland	4,104	4,274	4,308	4,149	4,020
Telano	52	76	79	2	°335
Italy	25,721	26,767	26,731	29,212	327,074
Luxembourg	4,772	5,280	5,456	5.090	34,179
Netherlands	5,431	6,162	6,400	5,811	36,023
Norway	784	ŕ895	1,015	1,017	3935
Poland Portugal	19,666		21,184	21.478	17,300
Portugal	591	21,221 ^r 636	715	720	3607
Romania	12,629	12.984	14.230	14,523	
Spain	12,238	r12,422	13,563		14,330
Sweden	4,374	14,444		13,874	14,200
Switzerland		4,767	5,101	4,665	34,150
U.S.S.R	721 161.685	864	977	990	980
United Kingdom		166,929	164,353	163,076	164,200
Vugasharia	^r 22,498	22,389	23,631	12,431	317,192
Yugoslavia	3,510	r3,804	3,899	4,006	4,380
	_			•	•
AlgeriaAngola ^e	F452	*460	459	589	600
Angola	6	11	11	11	11
Egypt	290	e660	e700	877	880
Ghana ^e	17	11	6	6	6
Ghana ^e Kenya ^e Libya ^e	îi	ii	11	11	
Libya ^e	11				11
Morocco ^e	F6	11 r ₇	11	11	11
Moroccoe			7	7	7
Minnie	13	19	22	22	
Nigeria ^e South Africa, Republic of	17	17	17	17	17
South Africa, Republic of	8,131	8,710	9,775	9,996	*9,858
Tunisia	172	175	194	196	200
Uganda	17	17	40.5	100	200
Zaire	33	NA	NĀ	NA	NĀ
Zimbabwe	r ₈₀₉	¹ 858	815	886	11A 3700
a:	000	000	019	886	3762
Bangladesh ⁴	r ₁₁₉	r ₁₂₉	100	150	
Burma			139	152	150
Chine	24	44	(5)	(⁵)	(⁵)
ChinaHong Kong ^e	26,169	35,031	37,953	40,918	40,000
Hong Kong ^e India	83	83	83	83	83
IIIUI8	10,933	11,009	11,019	10,384	311,883
Indonesia	160	165	550	584	660
Iran ^e	600	860	770	770	550
		55	388	286	
lraq*		90	120	280 121	50
lraq*	r ₈₀	r100		121	130
Iraq Israel ^e	r ₈₀	r100	199 101	199 700	
Iraq Israel ^e Japan	112.882	112.551	123,181	122,792	112,100
Iraq° Israel ^e Japan	112,882 *46	112,551 * 66	123,181 100	122,792 100	100
Iraq Israel ^e Japan	112,882 *46 3.400	112,551 ^r 66 ^r 3,500	123,181 100 3,700	122,792 100 3,900	100 3,860
iraq" Israel ^e	112,882 -46 3,400 -4,792	112,551 ^r 66 ^r 3,500	123,181 100	122,792 100	100 3,860
Iraq"	112,882 r46 3,400 r4,792 8	112,551 r66 r3,500 r5,477 7	123,181 100 3,700 8,389	122,792 100 3,900	100
Iraq"	112,882 r46 3,400 r4,792 8 214	112,551 r66 r3,500 r5,477 7 224	123,181 100 3,700	122,792 100 3,900 9,435	3,860 311,854
Iraq" Israele	112,882 r46 3,400 r4,792 8	112,551 r66 r3,500 r5,477 7	123,181 100 3,700 8,389 257	122,792 100 3,900 9,435 220	3,860 311,854 220
Iraq° Israele Japan Jordane Korea, Northe Korea, Republic of Lebanone Malaysia Philippines Oatar	112,882 r46 3,400 r4,792 8 214 401	112,551 r66 r3,500 r5,477 7 224 304	123,181 100 3,700 8,389 257 438	122,792 100 3,900 9,435 	3,860 311,854 220 440
Iraq" Israel" Japan Jordane Korea, Northe Korea, Republic of Lebanone Malaysia Philippines Qatar Saudi Arabiae	112,882 r46 3,400 r4,792 8 214 401	112,551 r66 r3,500 r5,477 7 224 304 95	123,181 100 3,700 8,389 	122,792 100 3,900 9,435 220 462 496	100 3,860 311,854 220 440 502
Iraq" Israe! Japan Jordane Korea, Northe Korea, Republic of Lebanone Malaysia Philippines Qatar Saudi Arabiae	112,882 r46 3,400 r4,792 8 214 401 -r6	112,551 r66 r3,500 r5,477 7 224 304 95 r6	123,181 100 3,700 8,389 	122,792 100 3,900 9,435 220 462 496 55	100 3,860 311,854 220 440 502 80
Iraq" Japan Jordane Korea, Northe Korea, Republic of Lebanone Malaysia Philippines Qatar	112,882 r46 3,400 r4,792 8 214 401	112,551 r66 r3,500 r5,477 7 224 304 95	123,181 100 3,700 8,389 	122,792 100 3,900 9,435 220 462 496	3,860 311,854 220 440 502

See footnotes at end of table.

IRON AND STEEL

Table 15.—Raw steel: World production, by country 2—Continued

Country	1977	1978	1979	1980 ^p	1981 ^e
Asia —Continued					
Taiwan Thailand Turkey Vietname	°1,951 331 °2,097 95	r _{3,783} 365 r _{2,394} 110	4,685 320 2,641 120	4,657 472 2,795 130	³ 3,465 440 ³ 2,655 120
Oceania: Australia New Zealand	8,061 248	8,365 249	8,956 e220	8,360 246	8,300 250
Total	^r 741,628	^r 787,170	821,237	787,477	776,398

eEstimated. PPreliminary. Revised. NA Not available.

Steel formed in first solid state after melting, suitable for further processing or sale; for some countries, includes material reported as "liquid steel," presumably measured in the molten state prior to cooling in any specific form.

Table includes data available through June 2, 1982.

Reported figure.

Data are for year ending June 30 of that stated.

Remelt capacity is 40,000 tons; however, plant output, if any, is not known.

Iron and Steel Scrap

By Franklin D. Cooper¹

In 1981, scrap consumption was 85.1 million tons, 2 1.7% more than in 1980; consumption was 8.4 million tons in March and fell to 5.7 million tons in December.

Consumption of direct-reduced iron (DRI) was 611,000 tons compared with 715,000 tons in 1980.

Table 1.—Salient iron and steel scrap and pig iron statistics in the United States

(Thousand short ton	and thousand dollars)
---------------------	-----------------------

	1980	1981
Stocks, Dec. 31: Scrap at consumer plants Pig iron at consumer and supplier plants	8,018 889	8,118 859
Total	8,907	8,977
Consumption: Scrap Pig Iron Exports:	83,710 69,053	85,097 75,040
Scrap (excludes rerolling material and ships, boats, other vessels for scrapping) Value Imports for consumption:	11,168 \$1,225,941	6,415 \$638,644
Scrap (includes tinplate and terneplate scrap) Value	582 \$61,192	556 \$62,126

Legislation and Government Programs.—The Interstate Commerce Commission (ICC) was directed by the U.S. Court of Appeals in July 1981 to order railroads to reduce rates on recycled materials immediately to the maximum set by the Staggers Rail Act (Public Law 96-448, October 14, 1980) and to prohibit increases that would exceed that level. Consolidated Rail Corp. (Conrail) filed a new rate scale with the ICC for iron and steel scrap shipments, with reductions of as much as 23% from current rail rates and as much as 30% from applicable truck rates. The new rates were effective September 1 for all points on Conrail lines, except in New England.

The Institute of Scrap Iron and Steel (ISIS) in April in letters to Commerce Secretary Baldrige and Trade Ambassador Brock requested that iron and steel scrap be in-

cluded in the Administration's goal to increase exports. ISIS urged the Senate Finance Committee's Subcommittee on Agriculture and Taxation to adopt Senate bill 750 to increase the present energy tax credit from 10% to 20% and to extend the effective date through December 31, 1986.

The U.S. Department of Energy in September 1981 abandoned its 2-year-old proposal to provide Federal price support for recyclable commodities from municipal solid waste demonstration facilities.

The Army Defense Property Disposal Service planned to furnish descriptions of its contaminated surplus ferrous metals to be sold to the scrap industry in tonnages approximating 450,000 tons per year from the U.S. Defense Department's 215 scrapyards throughout the world.

A November 1981 report of a Bureau of

Mines financed study started in August 1980 by the Battelle Columbus Laboratories concluded that the contaminant level of ferrous scrap has not increased in the past 30 years.³

The dispute over ferrous scrap export monitoring between the American Iron and Steel Institute (AISI) and ISIS continued in early 1981. However, AISI reportedly dropped plans in May 1981 to petition the U.S. Commerce Department for export monitoring because depressed levels of scrap exports made it difficult to meet the Commerce Department's criteria showing that exports increased domestic prices, had resulted in a domestic shortage, or had an adverse impact on the economy or a sector thereof.

AVAILABLE SUPPLY, CONSUMPTION, AND STOCKS

The domestic consumption of iron and steel scrap, including stainless scrap and alloy steel scrap, in million tons, increased from 83.7 in 1980 to 85.1 in 1981, ranging from a high of 8.4 in March to 5.7 in December. Consumption by type of furnace in 1981 and the monthly maximums and minimums, in thousand tons, were as follows: Blast furnaces, 4,046 (421 in March, 275 in October); basic oxygen process furnaces, 23,278 (2,239 in March, 1,501 in December); open-hearth furnaces, 7,498 (764 in May, 428 in November); electric furnaces, 39,642 (3,929 in March, 2,751 in December); cupola furnaces, 9,113 (931 in February, 570 in December); and air and other furnaces, 1,520 (157 in March, 97 in November).

Consumption of stainless steel scrap only, in thousand tons in 1981, totaled 984 ranging from 99 in June to 61 in November. Manufacturers of pig iron and raw steel consumed 872, manufacturers of steel castings used 36, and iron foundries and miscellaneous users, 26.

Monthend stocks of purchased and home scrap, including stainless steel scrap, in million tons, averaged 8.20 compared with 7.97 in 1980. Stocks at the end of February were 7.86, increasing to 8.45 on November 30, and declining to 8.12 at yearend 1981 compared with 8.02 at yearend 1980.

Stainless steel scrap stocks on December 31, 1981, were 110,000 tons compared with 102,000 tons at yearend 1980. During 1981, pig iron and raw steel manufacturers increased their stocks by 6,000 tons, and iron foundries and miscellaneous users increased their stocks by 1,000 tons.

Reportedly, a shortage of stainless steel scrap was predicted when the U.S. economy regains normalcy because the generation of this type of scrap had so decreased by October 1981 that there was not enough available to meet any increase in demand. Traditionally, new industrial scrap furnishes 70% to 75% of the scrap consumed,

but by October, this supply had decreased to 50% or less. High interest rates discouraged dealers from holding large stocks.

Compared with that of 1980, net receipts of scrap in 1981, in thousand tons, by pig iron and raw steel producers were 876 greater; steel castings manufacturers received 77 less; and iron foundries and miscellaneous users received 226 more.

Domestic receipts of iron and steel scrap from other own-company plants at 7.4 million tons were 168,000 tons less than in 1980.

The production of all types of home scrap in 1981 was 43.3 million tons compared with 42.2 million tons in 1980.

Scrap available for domestic consumption in 1981, in thousand tons, was as follows: Net receipts, 41,981; production of home scrap, 43,260; and imports, 556.

Domestic receipts of iron and steel scrap, in million tons, from brokers, dealers, and other outside sources increased to 40.0 in 1981 from 39.3 in 1980. Pig iron and raw steel manufacturers received 29.7 million tons ranging from 3.1 million tons in May to 1.9 million tons in December. Steel castings producers received 1.8 million tons ranging from 164,000 tons in June to 123,000 tons in July. Iron foundries and miscellaneous users received 8.5 million tons ranging from 795,000 tons in April to 596,000 tons in July.

The Tin Mill Products Producers Committee of AISI reported that about 10 million steel food and beverage cans are reclaimed magnetically daily from domestic refuse and that 2 million steel cans are recovered daily at recycling centers.

In 1981, foundry closures included some of the largest captive foundries including the Ford Motor Co.'s Casting Center at Flat Rock, Mich., and four foundries of the Midland-Ross Corp., whose principal product was steel castings for the railroad industry. Some capacity was added by 20 gray and ductile iron castings producers. Re-

portedly, domestic ferrous casting capacity, in million tons, decreased from 23 in 1979 to 19 in 1981, during which year the industry shipped 12.8 million tons.⁵

Information from the business manager of Foundry Magazine in early 1981 estimated the number of U.S. foundries as follows: Gray iron, 1,461; ductile iron, 643; malleable iron, 110; and steel, 691. Many of these foundries produced several types of castings.

The 1981 domestic demand for steel and other ferrous products was disappointing to the steel industry. Shipbuilding had a poor year, and railroad car builders delivered only 44,000 new cars, had few new orders, and their backlogs were low. The forging industry had a disappointing year because new models of a smaller number of new automobiles contained few forgings. Construction machinery was one of the hardest hit big capital goods industries, and the farm equipment industry had a huge inventory because of the lack of the usual seasonal sales. Some mining equipment makers had a moderate amount of business. The oil country tubular goods industry competed with 2 million tons of imports. Material handling equipment makers had a good year despite lack of interest by automobile makers. Appliance builders produced 0.25 million more units than in 1980.

The L. B. Foster Co., specializing in the recovery and sale of relay rail, contracted to dismantle about 3,000 miles of track of the Chicago, Rock Island, and Pacific railroad. Scrap will be sold to domestic dealers, and rerolling and relaying rail will be marketed in the United States and abroad. Dismantling will require 3 years after starting in 1982. One million tons of ferrous items worth \$150 million were expected to be recovered. The Foster Co. also purchased 234 miles of track and accessories, 50 bridges, all buildings, and the right-of-way from the Erie-Lackawanna Board of Trustees for \$10.9 million with the approval of the U.S. Court of Bankruptcy. Dismantling began in April 1981 and was expected to require 2.5 years to complete during which time substantial amounts of ballast, utility poles, and crossties would also be recovered.

Mayer Pollock Steel Corp. completed scrapping the machinery and equipment of the former Firestone Tire and Rubber Co. plant in Pottstown, Pa. Allied Erecting and Dismantling Co. contracted to dismantle the Ohio works of the United States Steel Corp. whereby an estimated 150,000 tons of

scrap would be recovered in the 3-year project.

The David J. Joseph Co. completed a new scrapyard provided with a hammer mill shredder at Plymouth, Utah. This yard will supply about 25% of the scrap needed nearby by Nucor's newest minimill with the balance being provided by the Joseph Co. through its brokerage operation. Pacific Steel Co., controlled by a Mexican steelmaker, in September started operation on the San Diego, Calif., site formerly occupied by Scrap Disposal.

Permanent closures of two separate scrap export terminals in Port Newark, N.J., were completed by Luria Bros. & Co., Inc., and Associated Metals and Mineral Corp. The complete ferrous scrap detinning plant of Wisconsin Metals and Chemical Co. was sold at a public auction in July.

Schiavone-Bonomo Corp. and Michael Schiavone & Sons formed a partnership for purchasing, processing, and marketing stainless steel scrap beginning in mid-July from a site in New Haven, Conn.

Luria Bros. & Co., Inc., agreed to furnish onsite services for supplying Wheland Foundry, Chattanooga, Tenn., with 60,000 tons of scrap annually and to also furnish the foundry with hot-processed briquettes. Joseph Behr & Sons, Inc., acquired the scrap processing plant of the Morrow Steel Co., Detroit, Mich. Georgetown Steel Corp. acquired a 50% interest in Addlestone International Corp. having scrapyards in Augusta, Ga., and Georgetown, S.C. Chapparal Steel Co. purchased the 10,000-ton-per-year scrap processing operation of Schwartz Iron & Metal Co., Texas City, Tex.

In December, Steelmet, Inc., Pittsburgh, Pa., one of the world's largest stainless steel processors and brokers, acquired the assets of Louis Usdin, Inc., Newark, N.J.

A revised ISIS booklet released in 1980, "Recycling Iron and Steel Scrap Energy," estimated the number of the following types of scrap processing equipment in the United States and their annual capacity, in million tons: 1,065 guillotine shears, 19.0; 2,150 alligator shears, 5.3; 1,170 balers, 17.7; 200 shredders including 15 wet shredders, 14.6; 155 turnings crushers, 2.4; and 110 briquetters, 1.1. Additionally, domestic scrap processors had a significant investment in blockbusters, conveyors, cranes, dumpsters, flatteners, forklift trucks, front-end loaders. grapples, magnets, scrap containers, tie balers, torches, tractor-trailer trucks, and weight scales.

A subsidiary of ISIS, the ISIS Service Corp., sold three turnkey computers designed especially for the scrap industry. Marathon Le Tourneau Co. began marketing its new, all-electric, 360° rotation, 20-ton-gross-capacity jib crane.

Foreign-made equipment available to U.S. scrap processors included the Cosmo baler from France; the Liebherr R-942 hydraulic scrap handler, a 1,500-ton shear with precompression box by Lindemann KG GmbH, shears, presses, and shredders from Thyssen Henschel, and the Venti Oelde windsifter and deduster, all from the Federal Republic of Germany; shears, balers, and grabs from British McIntyre, Ltd., and the QUICK SORT analytical system by Lind System, Ltd., from the United Kingdom; and the Lollini MAX 300 mobile baling press from Italy.

Titan Engineering Corp. agreed to purchase the Stelco-Lurgi/Republic-National Lead DRI plant last operated in 1977 by Hecla Mining in Casa Grande, Ariz.

Pelletech, Inc., became the exclusive licensee for a special hydrothermal agglomeration process developed by the Michigan Technological University. The process produces DRI using saturated steam as heat, lime and silica as bonding agents, and carbon as a reducing agent. The company planned to use the process for the first time in its new \$12.6 million plant in McKeesport, Pa., to be completed in 1982. The plant was expected to produce 60,000 tons per year of DRI, from mill scale, as a feed for foundry cupolas and electric furnaces.

Luria Bros. & Co., Cleveland, Ohio, and Commercial Metals Co., Dallas, Tex., started a venture in February 1981 to market up to 300,000 tons annually of DRI produced by Nordfero of the Federal Republic of Germany. However, a decrease of \$20 to \$25 per ton in the price of No. 1 heavy melting scrap temporarily stopped import plans. In late 1981 and January 1982, the price for sponge iron from one Canadian producer having an oversupply was \$91.54 per short ton, although Sidbec-Dosco (Canada) had a published price of \$105.23 per short ton. Georgetown Texas Steel Co., Beaumont, Tex., September temporarily abandoned a plant to construct a 200,000-ton-peryear DRI plant using the new MIDREX ELECTROTHERMAL D-R (EDR) process because of high interest rates and general economic uncertainty. The EDR process uses coal as reductant in an electrically heated shaft furnace.

By November 1981, foreign pig iron producers controlled nearly half of the U.S. market for the product by underselling U.S. producers by at least \$25 per ton.

TRANSPORTATION

Increased freight rates and a shortage of general-purpose gondola railcars prompted some steelmakers to receive an increasing tonnage of ferrous scrap by trucks and barges. At yearend 1981, Class I railroads owned 142,300, 75-ton-average-capacity gondola cars, down from 147,650 at the end of 1980. Class I railroads put 2,600 new units in service and retired 7,950 units during 1981. Smaller railroads, including switching and terminal companies, added 500 units.

making their total 11.350.

Class II railroads added 3,000 units. Railgon Corp. added 3,800 units and reached its 4,000-unit goal in October after a 15-month, \$175.6 million construction program. In July, Conrail suspended a program that would have constructed 4,700 units by 1982.

Scrap iron gondola traffic normally represents 5% of the carloadings in the United States.

PRICES

Based on 1981 Iron Age composite prices in dollars per long ton delivered in the Pittsburgh, Chicago, and Philadelphia districts, No. 1 heavy melting steel scrap averaged \$91.53 compared with \$91.35 in 1980. In March 1981, the price was \$105.23 and decreased to \$75.63 in November. In general, the quoted prices of many other grades of scrap in these three districts attained a maximum in early April and a minimum at the end of November.

As quoted by Iron Age, delivered prices in 1981 for two types of stainless steel scrap in the Pittsburgh and Chicago districts in dollars per long ton were as follows: Bundles and solids, \$642.79 average; \$710.00 maximum in January and February, and \$480.00 minimum in December. Turnings averaged \$529.13, reaching a maximum of \$592.50 in January and a minimum of \$380.00 in December.

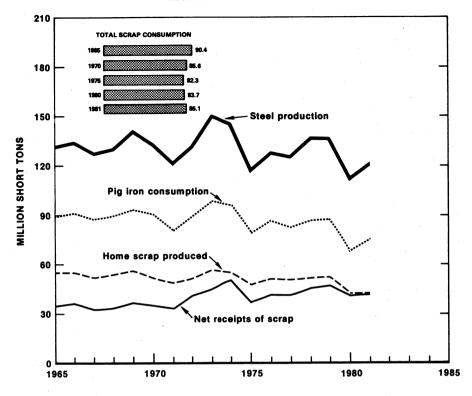


Figure 1.—Steel production (AISI), total iron and steel scrap consumption, pig iron consumption, home scrap production, and net scrap receipts.

FOREIGN TRADE

U.S. exports of ferrous, stainless, and alloy steel scrap to 64 countries in 1981 totaled 6,415,378 tons, valued at \$638,644,000 or \$99.55 average customs value per ton, \$10.22 per ton less than in 1980. This tonnage was the smallest since 1977 when approximately 6 million tons were exported. Maximum exports of 693,679 tons in April 1981 decreased to 347,880 tons in July.

Exports of all types of ferrous scrap to 10 countries each receiving more than 100,000 tons totaled 5,963,290 tons, averaging \$98.16 per ton, and ranging from \$114.15 per ton for 896,453 tons to Mexico to \$71.16 per ton for 737,244 tons to Canada. Collectively, the Republic of Korea, Japan, and Mexico received 3,327,960 tons, 51.9% of all exports, averaging \$102.08 per ton. Twelve countries importing 10,000 to 100,000 tons of scrap from the United States received 396,592 tons averaging \$100.40 per ton; 42 other countries received 55,496 tons averaging \$240.87 per ton.

Of the total exports of scrap, 1,633,697

tons were shipped to Canada and Mexico through 12 customs districts, principally by surface transportation. Laredo, Tex., alone handled 646,136 tons. Scrap exports by water transportation totaled 4,781,681 tons. Of the total exports, 13 east coast districts accounted for 37.4%; six west coast districts reported 30.7%; while 11 districts on the Great Lakes and gulf coast handled 6.4%. Districts handling the largest tonnages in their respective areas were New York City, N.Y., with 938,917 tons; San Francisco, Calif., with 732,158 tons; Detroit, Mich., with 156,685 tons; and Tampa, Fla., with 115,345 tons.

In 1981, the Republic of Korea was the leading importer of U.S. scrap with 1,240,757 tons, compared with 1,190,750 tons to Japan.

The principal grades of scrap exported in 1981 were shredded steel, 1,923,233 tons at \$93.40 average value per ton, and No. 1 heavy melting steel, 1,606,167 tons averaging \$87.91 per ton.

Exports of stainless steel scrap totaled

63,545 tons, averaging \$634.59 per ton. Japan received 29,466 tons at \$642.52 per ton, and Spain received 14,472 tons at \$617.64 per ton. Shipments to 23 other countries totaled 19,607 tons, averaging \$635.17 per ton.

Exports of other ferrous alloy scrap totaled 98,341 tons averaging \$227.90 per ton. Collectively, Taiwan, Japan, Canada, and Mexico received 93,429 tons at \$221.58 per ton. Shipments to 18 other countries totaled 4,912 tons, averaging \$348.14 per ton.

Spain purchased large tonnages of U.S. ferrous scrap because the United Kingdom, a prime supplier of scrap to Spain, had raised prices appreciably. Although it was a major producer of DRI, Mexico increased its dependence on U.S. scrap because of a high demand for steel by a rapidly growing petrochemical industry. Japan's smaller purchases of U.S. scrap were attributed to higher costs resulting from a weaker yen, a significant decrease in steel production, and

the availability of Chinese scrap and pig iron.

Imports of iron and steel scrap not containing dutiable alloys totaled 535,653 tons averaging \$98.95 per ton. Canada supplied 493,125 tons at \$94.29 per ton; Mexico supplied 31,101 tons at \$88.78 per ton; and 22 countries supplied 11,427 tons averaging \$327.77 per ton.

Imports of iron or steel waste and scrap totaled 20,512 tons averaging \$489.23 per ton. Canada furnished 18,085 tons at \$428.15 per ton and 12 other countries supplied 2,427 tons at \$944.39 per ton.

Imports of pig and cast iron free of dutiable alloy equaled 433,013 tons averaging \$174.53 per ton. Imports in tons by countries and average values per ton were as follows: Canada, 234,979 tons averaging \$195.71; Brazil, 138,950 tons at \$140.95; the Republic of South Africa, 45,988 tons at \$174.44; and 13,096 tons from six other countries at \$151.07 per ton.

WORLD REVIEW

News items in various U.S. and foreign publications relating to foreign-produced DRI and pig iron show their impact on U.S. ferrous scrap exports and domestic pig iron producers. The domestic prices of DRI at \$122.47 to \$127.01 per short ton was about \$20 more than the price per long ton of No. 1 bundles of ferrous scrap. Although the six DRI plants in the United States had an approximate 1.2-million-ton-per-year capacity, only two of the plants were in regular operation. Worldwide DRI capacity was about 30 million tons in 1980, from which about 8.0 million tons of commercial steelmaking grades were produced in 1981.

Shipbreaking was particularly active on small tonnage vessels in Pakistan and in Taiwan where vessels up to 100,000 lightweight tons could be broken in the Kaohsiung facility. Prices paid for ships scrapped in Pakistan and Taiwan ranged from \$78 to \$193 per lightweight ton. Plans were suggested to build or expand shipbreaking yards in Finland, Greece, Pakistan, and the United Arab Emirates. According to the International Association of Independent Tanker Owners, ships scrapped in 1981 included 41 very large cargo carriers. These vessels, totaling almost 10 million deadweight tons, comprised 4 tankers of 150,000 to 200,000 deadweight tons, 35 of 200,000 to 250,000 deadweight tons, and 2 over 250,000 deadweight tons.

Bangladesh.—A \$180 million, 660,000ton-per-year DRI plant was planned at Chittagong by a consortium comprising India's state-owned Metallurgical & Engineering Consultants and Austrian and Japanese companies.

Brazil.—Pig iron exports were expected to total 118,000 tons in August and September 1981. Taiwan was expected to take 49,000 tons; the United States, 30,000 tons; the Middle East, 15,000 tons; Argentina, 13,000 tons; and the European Communities (EC), 10,000 tons. However, Chinese pig iron reportedly replaced Brazilian material in the Japanese market.

SIDERBRAS of Brazil received governmental approval for the construction of a \$35 million, 200,000-ton-per-year DRI plant that will use a solid fuel as reductant.

Burma.—A new 20,000-ton-per-year capacity Kinglor-Metor coal-based DRI plant was commissioned in September, and a contract for an identical unit was let by the Government to Danieli & C S.p.A., an Italian firm.

Canada.—A trend was developing whereby scrap processors and brokers exported less material to the United States and increased sales to expanding Canadian steel producers. Luria Bros. & Co., Inc., the largest U.S. scrap merchant, had a verbal agreement with Sidbec-Dosco, Ltd., of Canada, Montreal, Quebec, to market 100,000 to 150,000 tons of DRI in the United States in 1981. Lake Ontario Steel Co., Ltd. (Lasco), purchased 50% of the ferrous scrap operation of I. Waxman & Sons, Ltd., Hamilton, Ontario. Lasco, owned by Costeel International, Ltd., also in Whitby, owned four other scrapyards in Ontario to supply Lasco's 1-million-ton-per-year minimill with scrap.

China.—Japan increased imports of Chinese scrap. Some 4,175 tons were booked by individual customers in January alone. Kurimoto Ironworks, Japan, a leading producer of cast iron pipe, imported some 3,000 tons of Chinese scrap; nonintegrated steel producers also imported small tonnages from China.

China was expected to supply 650,000 tons or 68% of the pig iron to be imported by Japan in 1981. Most of the iron imported was of steelmaking quality although 60,000 to 70,000 tons brought in during the first 7 months of 1981 was foundry material. The Steel Authority of India, Ltd., contracted for 200,000 tons of pig iron from the China Metallurgical Import and Export Corp. at \$95 per ton f.o.b., and Japanese buyers contracted for 200,000 tons of pig iron at \$106 to \$110 per ton. Some pig iron was sold to Japan through Hong Kong at \$105 per ton, less than the \$115 per ton charged for direct exports.

Colombia.—Design work was started on the state-owned Ferrominera 200,000- to 250,000-ton-per-year DRI plant estimated to require an \$80 million investment. The plant will use iron ore pellets from Brazil, Venezuela, or Peru.

Egypt.—The Government and a NKK-led Japanese consortium agreed to operate the projected El Dikheila 800,000-ton-per-year DRI plant using Egyptian natural gas and iron ore from Brazil and Australia.

European Communities (EC).—The president of the ferrous division of the Bureau International de la Recuperation, representing 45 member countries, foresaw no EC restrictions on scrap exports or imports in any form. He believed that in the long run, sponge iron will have to compete pricewise with scrap, so long as it is available and on the market at a cheaper price. The dropped antidumping proceedings against imports of malleable cast iron from Brazil after that country's only producer and exporter, Fundicao Tupy SA, raised the price of its exports to EC. Low U.S. scrap prices encouraged increased flows of scrap to Italy and Spain to the detriment of EC exporters.

Germany, Federal Republic of.—Fried Krupp contracted with the Dravo Corp., Pittsburgh, Pa., to permit Dravo to sell and construct Krupp's coal-based Codir DRI plants in North and Central America and Australia. Hamburger Stahlwerke closed its Midrex DRI plant at yearend, and the plant was to be transferred to the Point Lisas site of the Iron & Steel Co. of Trinidad & Tobago (Iscott) to be used for a hot discharge-hot briquetting works fed by Iscott's own DRI modules.

A 60,000-ton-per-year DRI pilot plant passed its first trial in midyear at Badische Stahlwerke's Kehl works. The plant used a coal-reduction process developed jointly by Korf Stahl and Voest Alpine, the Austrian state-owned steel concern, a partner with Korf Engineering.

In early 1981, the world's first exclusively merchant direct reduction works was started by Norddeutsche Ferrowerke Nordfero in Emden to exploit the growing Eureopean DRI market. The plant is a joint effort of Nordfero, the Midrex owner Korf group, and the Norwegian iron ore miner and processor Sydvaranger. The new plant in August shipped 17,599 tons of DRI to Spain at a c.i.f. price of \$137 per ton.

Viersener Metallhandel intalled a completely new process as a pilot project that was developed by Lindemann using an air system to separate residues from shredder scrap. Lindemann announced a new range of automobile shredders, claimed to be capable of reclaiming nearly 100% of the nonferrous metals without the need for shears or preshredders. Bankruptcy suits were filed by Metallhuttenwerke Lubeck GmbH, whose two Still coking batteries, with combined capacity of 440,000 tons per year, continued operation while awaiting a buyer.

Guam.—Short's Iron & Metal Co., Redding, Calif., started processing ferrous debris accumulated since World War II. About 90,000 tons of salable scrap was expected to be recovered from debris already collected by the Government.

India.—The Government in October proposed to import 200,000 tons of pig iron and 300,000 tons of DRI from Indonesia.

The 100% noncoking coal-based 30,000-ton-per-year DRI Paloncha plant was formally handed over to the national and state government-owned Sponge Iron India, Ltd., on June 5. Four DRI technology firms were competing for orders in India's coming DRI boom; in addition to Lurgi and Allis-Chalmers, Direct Reduction Corp. and

Krupp's Codir coal-based processes were involved. A proposed greenfield sponge iron plant at Maharashtra will use natural gas. The Indian Government's science and technology department studied the feasibility of a demonstration DRI plant based on technology from Sweden's Boliden. This plant's output would be used in domestic foundries. The Government's Metal Scrap Trade Corp. (MSTC) in August raised the price of integrated steelworks' home scrap by \$18.30 per ton. This price increase was criticized by the Indian Foundry Association, whose members were the main market for this scrap. MSTC exempted from customs duty all categories of ferrous scrap used in electric arc furnaces. MSTC, in a joint venture called Ferro Scrap Nigam, Ltd., allowed a U.S. firm, Harsco Corp., Inc., a 40% holding interest. In 1981, India received 21,000 tons of pig iron from Pakistan.

Indonesia.—Indonesia's DRI-based Krakatau steelworks put into operation the third and fourth modules of its sponge iron plant in August and October, using Mexico's Hojalata y Lamina (HYL) technology. These two modules are rated at 1.1-million-ton-per-year capacity. The Krakatau plant shipped 13,000 tons of DRI to India in exchange for iron pellets. Indonesia PT Tosan received 33,000 tons of ferrous scrap from Australia.

Italy.—The increasing cost of energy and imported raw materials discouraged Danieli & C S.p.A. from continuing construction of the Kinglor-Metor two-module DRI plant at Cremona that was offered for sale and dismantled in April 1981. The pilot plant under construction at Piombino by the Italimpianti division of the Finsider group will be completed. Italimpianta was more interested in perfecting the technology process. called Flufer, because the firm was building a 130,000-ton-per-year plant scheduled to start operation in early 1982. Danieli indicated the direct cost per short ton of 92% metallized DRI in June 1980 as \$108.94, distributed as iron ore, 52%; coal, 18%; natural gas, 17%; labor, 5%; electricity, 2%; consumables and spares, 2%; and retorts, 4%. At the same time, the cost of No. 1 heavy melting steel scrap, delivered at Acciarie Arvedi, was \$101.00 per ton.

Japan.—In tests using HYL sponge by three major Japanese electric furnace operators on behalf of Nippon Direct Reduction Iron Development Co., it was shown that when using continuous charging of a 100ton furnace the power consumption increased as the proportion of DRI was increased although the melting time was reduced. In two furnaces using batch charging, it was found that a higher ratio of DRI in the blend lowered the yield because of the tendency of the DRI to stick to the sides and bottom of the furnace.

Because of the general depressed production of the steel industry, nonintegrated steelmakers turned to low-priced pig iron and in the first 6 months of 1981 imported 200,000 tons from China. In the first 11 months of 1981, nonintegrated steel producers imported 140,000 tons of ferrous scrap from the U.S.S.R. and 53,000 tons from China.

In the first half of 1981, Japanese imports of ferrous scrap, in thousand tons, by country were as follows: United States, 744; Australia, 165; U.S.S.R., 62; United Kingdom, 42; Chile, 13; and China and Hong Kong, 7 each. Reportedly, Japanese imports of alloy steel scrap in the same time period totaled 36,200 tons of which the United States provided 15,400 tons, Hong Kong, 7,200 tons, and Taiwan, 6,000 tons.

Japanese ferrous scrap importers turned to the U.S. east coast because of large contracts placed on the U.S. west coast by South Korean buyers for available tonnages.

Libya.—A \$300 million contract was signed April 5, 1981, for two MIDREX direct reduction modules for a steel mill complex at Misurata. Each 550,000-ton-per-year module will use natural gas as the reductant.

Malaysia.—The Government of the State of Sabah on May 19, 1981, signed a contract for a 600,000-ton-per-year Midrex Series module. The 92% metallized DRI will supply the steel industries of the Association of Southeast Asian Nations. Plant startup was scheduled for early 1984. On November 9, 1981, the Heavy Industries Corp. of Malaysia Berhad and Nippon Steel signed a letter of intent to construct a 600,000-ton-per-year DRI plant to be built in Trengganu. The Nippon process features high-pressure shaft furnace technology, the addition of soot to prevent the cohesion of solids in the hightemperature reducing zone, and hot briquetting of the product to prevent reoxidation.

Mexico.—The first commercially scaled HYL III continuous direct reduction plant for iron ore completed its first year of operation in May 1981, and was operating at a 330,690-short-ton-per-year rate. This

plant can accommodate feeds comprising several kinds of iron ore pellets, combinations of pellets and lump ore, or 100% lump ore.

Netherlands.—On July 1, 1981, the Ministry of Economic Affairs removed the duty on exports of alloy scrap including stainless steel and chrome steel. However, any export of alloy scrap will remain subject to export licensing.

New Zealand.—Lurgi Chemie and Huttentechnik of the Federal Republic of Germany and Davy McKee of the United Kingdom completed a basic engineering study in early 1981 for the expansion of New Zealand Steel's plant by the addition of four new SL/RN kilns. The expansion plan was submitted to the New Zealand Government for approval.

Nigeria.—Work was completed on the first of two Midrex Series 600 DRI modules ordered by the Nigerian state-owned steelmaker Delta Steel Co., Ltd. The November startup awaited developments related to the company's oxide pellet plant that apparently awaited lime delivery from nearby Calabar.

Peru.—Fried. Krupp GmbH signed a contract with Siderperu on December 15, 1980, to supply a Codir 292,000-ton-per-year DRI plant at the Chimbote works. The project work was to be started after financing contracts were signed.

Philippines.—The ministeelworks of the National Steel Corp., Iligan City, Mindanao, contacted United States Steel Corp.'s subsidiary USS Engineers and Consultants to perform the engineering and act as consultants on the construction of a 1.2- to 1.4-million-ton-per-year DRI plant. Allis-Chalmers Corp. held exploratory talks with U.S. steelmaker Armco's Philippine subsidiary, Marsteel Corp., and with its own plant distributor, Engineering Equipment, Inc., on prospects for a private sector DRI works.

South Africa, Republic of.—The Direct Reduction Corp. of the United States in early 1981 won its first coal-based DRI order from the Republic of South Africa's Scaw Metals, Ltd. The plant will use a rotary kiln rated at 75,000 tons per year of product at 90% metallization.

Spain.—The pellet and DRI project of Presursa was approved by the Spanish cabinet in April. The investment of \$255.6 million covers the construction of a 1.12million-ton-per-year pellet plant at Fregenal de la Sieria using 3 million tons of ore from mines at Badajoz and Huelva, and a Midrex DRI plant in Huelva with a 774,000-ton-per-year capacity at 92% metallization. The DRI sponge plant will consume 248 million cubic meters of gas annually from wells near the Gulf of Cadiz.

Luria Bros. & Co., Inc., closed its Spanish subsidiary Luria Europe, Inc., and will in the future handle its Spanish scrap business through an exclusive agent, Mariano Detorres.

Sweden.—The Swedish special steelmaker AB Svenska Kullagerfabriken in February completed the first phase of its DRI plant using its Plasmared process. Energy consumption was kept within the expected level of about 2.1 gigacalories per ton of product at 90% metallization.

Thailand.—The Royal Thai Navy opposed the siting of a projected 2.1-million-ton-per-year DRI-based integrated steelworks at Ban Mab Cha Lud in Rayong Province because some of the navy's docks would have to be transferred to the steelworks.

U.S.S.R.—The scrap steel group is part of the steel industry and is responsible for the collection, processing, and sale of ferrous scrap in all parts of the Soviet Union. Deliveries are allocated to steelmakers based on their production plans. About half of the scrap consumed is supplied by the central agency; the balance is home production scrap.

United Kingdom.—On several occasions, the British Steel Corp. entirely suspended scrap purchases. Because of the closure of many steel plants and other heavy industrial plants, thousands of tons of good scrap was available for the cost of dismantling. In the third quarter of 1981, British steelmakers held 770,000 tons of scrap, a 6- to 8-week supply.

Many scrap consumers, particularly foundries, had monetary liquidity problems. Indecision among foundries ended Lazard Bros.' self-financing scheme to reduce by 25%, or 30,000 to 50,000 tons per year, the capacity of the United Kingdom's light to medium steel castings industry.

More than 30 members of the British Scrap Federation ceased trading or closed yards because of the reduced domestic demand, the decline in prices, rising freight rates, and world competition. R. Taylor & Sons (Scrap), Ltd., Bury, withdrew from the export market for an indefinite period. The major goal of scrap processors was to increase exports, which in 1981 nearly attained 3 million tons valued at \$265 million. Scrap cargoes up to 25,000 tons could be

handled at Barry, Cardiff, London, Newport, and Swansea.

A license to export ferrous alloy scrap was only possible if the exporter could show purchase refusals by six domestic consumers. Eisenlegierungem Handelgesellschaft GmbH established a new British firm called ELG Metals, Ltd., in Rotterdam, to trade in scrap stainless steel and scrap high-speed steel and cobalt and titanium and their alloys. Procor (UK), Ltd., was building 40

70-ton railcars to transport scrap.

Venezuela.—In 1981, Fior de Venezuela S.A. shipped 271,376 tons of briquetted DRI from its plant in Ciudad Guayana for \$107.05 per ton. Eight shipments to the United States totaled 203,512 tons.

Zambia.—The Government sold as scrap the plant and equipment from the Tika steelworks that was 70% completed when abandoned.

TECHNOLOGY

Ford Motor Co., in its Rawsonville, Mich., powder-parts division, developed a new process for converting light, ductile scrap into iron powder. The scrap is made brittle by heat treatment before grinding.6

A study for the U.S. Environmental Protection Agency (EPA) Municipal Environmental Research Laboratory indicated that eight resource recovery facilities operating on municipal solid wastes did not provide the least cost mode of disposal and that increased ferrous recovery would not have resulted in cost break-even operations in any of the facilities.7

Electric furnace operators showed less interest in factory bundles of scrap because of electrode breakage problems. Instead, they preferred easier to handle and quickly charged No. 1 busheling, structural, plate, and shredded scrap and No. 1 heavy melting grades.8

In 1980, the Bureau of Mines issued a publication dealing with the availability of critical scrap metals containing chromium in the United States.9

National Steel Corp., at its Great Lakes steel plant, adopted the Kloeckner-Maximilianshuette process to modify an existing basic oxygen furnace (BOF) by installing tuyeres in the bottom of the vessel to permit the injection of oil with oxygen to preheat scrap. This was expected to increase the scrap charge from approximately 30% to 40% or 45%. Two additional BOF vessels were to be modified at the company's Granite City, Ill., plant by yearend 1981.10

A scrap metals research program begun in 1978 by the Bureau of Mines in cooperation with the National Association of Recycling Industries was extended until 1983. The \$600,000-per-year program comprises four projects including the recovery of recyclable wastes from automobile shredding and a detinning process for steel cans.11

Based on 20 pilot heats using different amounts of scrap in each, Bureau of Mines metallurgists concluded that electric arc furnaces can produce acceptable grades of steel even when using charges containing more than 50% of scrap from municipal refuse processing facilities. The Midwest Research Institute, in a report to the EPA, indicated that the agency should reach a balance between acceptable levels of ambient air quality standards and maintaining the economic viability of the foundry industry.12

The Krupp Research Institute, Essen, developed and tested the Coal-Oxygen-Injection (COIN) process for preheating and melting scrap and sponge iron. The process includes the afterburning of carbon monoxide above the bath and the injection of a secondary fuel. The process can be used in BOF practice, thereby replacing the electric arc furnace for straight melting. In combination with a direct reduction process, the COIN process is suitable for producing steel from ore using coal fines and oxygen.13

¹Physical scientist, Division of Ferrous Metals.

¹Physical scientist, Division of Ferrous Metalis.

²All quantities are in short tons unless otherwise noted.

³Swager, W. L., H. W. Lownie, Jr., and C. E. Mobley.

Potential Effect of Ferrous Scrap Composition Changes on the Quality of Iron and Steel Castings. BuMines OFR 37-82, 1981, 226 pp.; available from National Technical Information Service, Springfield, VA 22161, PB 82-194184.

⁴A-main Matal Matalot Hustas Case Stripless Scrap.

American Metal Market. Hunter Sees Stainless Scrap Shortage. V. 89, No. 208, Oct. 27, 1981, p. 10. Bennett, K. W. Foundries Find the Recession Cramping Their Capacity. Iron Age, v. 225, No. 3, Jan. 22, 1982, pp.

^{37, 39, 45.}Gamerican Metal Market. Process for Turning Machine Scrap Into Powder Being Developed by Ford. V. 89, No. 88,

Scrap Into rower Being Ecology May 23, 1981, p. 4. Tklingshirm, J. V., and O. W. Albrecht. Impediments to Energy and Materials Recovery for Municipal Solid Waste. EPA Project Summary. EPA-600/S2-81-1981, October 1981,

⁴ pp.

8 Howard, H. P'gh Mart Seen Strengthening for Electric
Furnace Grades. Am. Metal Market, v. 90, No. 244, Dec. 18,

^{1981,} p. 9.

*Kusik, C. L., H. V. Makar, and M. R. Mounier.
Availability of Critical Scrap Metals Containing Chromium in the United States. Wrought Stainless Steels and

Heat-Resisting Alloys. Bureau of Mines IC 8822, 1980, 51

pp.

19 National Steel Corp. News. Oct. 23, 1979, p. 3.

11 American Metal Market. BuMines' Scrap Program
Extended Through 1983. V. 89, No. 36, July 16, 1981, p. 18.

-. Refuse Scrap OK for Arc Furnaces. V. 90, No.

26, Feb. 8, 1982, p. 28.

13Hartwig, J., and D. Neuschutz. New Process Developments in Melting Scrap and Sponge Iron. Iron and Steel Eng., v. 59, No. 2, February 1982, pp. 36-42.

Table 2.—U.S. consumer receipts, production, consumption, shipments, and stocks of iron and steel scrap and pig iron in 1981, by grade

	Receipts o	f scrap	Production of	of home scrap				
Grade	From brokers, dealers, other outside sources	From other own-company plants	Recircu- lating scrap resulting from cur- rent oper- ations	Obsolete scrap (in- cludes in- got molds, stools, scrap from old equip- ment, build- ings, etc.)	Consumption of both purchased and home scrap (includes recirculating scrap)	Ship- ments of scrap	Ending stocks, Dec. 31	
MANUFACTURERS OF PIG IRON AND RAW STEEL AND CASTINGS ¹								
Carbon steel:								
Low-phosphorus plate and	000	-	00	•	425	37	32	
punchings	399 550	7 139	33 632	6	1,385	11	93	
Cut structural and plate No. 1 heavy melting steel	8,140	2,500	14,583	110	23,142	2,030	2,315	
No. 2 heavy melting steel	2,043	215	922	2	3,167	101	423	
No. 1 and electric-furnace			0.000	. 2	0.000	151	1.075	
bundles	5,845	439 80	2,606 78	(2)	8,629 2,071	151 15	1,075 246	
No. 2 and all other bundles _ Electric furnace 1 foot and	1,646	80			2,011	10	240	
under (not bundles)	45	(*)	(2)	(2)	49	·	7	
Railroad rails	148	(*)	(2)		144	(2)	15	
Turnings and borings	1,221	103	455	$\overline{1}$	1,658	97 405	141 223	
Slag scrap (Fe content 70%)_	1,221 2,643	53 621	3,728 31		4,455 3,297	405 7	259	
Shredded or fragmentized No. 1 busheling	1,249	16	76	$-\overline{1}$	1,328	. 12	118	
All other carbon steel scrap_	2,328	328	9,501	20	11,205	761	689	
Stainless steel scrap	406	39	467	14	872	34 138	102 321	
Alloy steel (except stainless)	252 351	193 608	1,528 977	12 1,613	1,773 2,516	762	664	
Ingot mold and stool scrap Machinery and cupola cast iron	1	7	2	3	151	15	49	
Cast iron borings	293	11	$11\overline{4}$	3	343	163	. 20	
Cast iron borings Motor blocks	4				3	$\bar{349}$	266	
Other iron scrap Other mixed scrap	588 337	62 140	586 309	10 1	934 797	24	72	
Total ³	29,708	5,562	36,628	1,796	68,343	5,111	7,130	
MANUFACTURERS OF STEEL								
CASTINGS ⁴								
Carbon steel: Low-phosphorus plate and								
punchings	545	15	195		761	2	45	
Cut structural and plate	193	13	22		224	1	16	
No. 1 heavy melting steel	148	13	61		228 76	· 6	19 6	
No. 2 heavy melting steel No. 1 and electric-furnace	64		10		10	()	U	
bundles	35	1	2		37		1	
No. 2 and all other bundles _	10	1	1		12		(2)	
Electric furnace 1 foot and	70		94		98	1	6	
under (not bundles) Railroad rails	79 3		24		98 3		Å	
Turnings and borings	43	-1	22		51	7	(2)	
Slag scrap (Fe content 70%)_			<u>(*)</u>			(*)	. (P)	
Shredded or fragmentized	47				47		3 3	
No. 1 busheling	14	13	259	- <u>-</u> 2	12 654	- ₁	36	
All other carbon steel scrap_ Stainless steel scrap	389 12	1	209 24	2	36	(*)	5	
Alloy steel (except stainless)	68	2	105	<u>(4)</u>	168	ź	5 25	
Ingot mold and stool scrap	2		(4)		2	1	1	
Machinery and cupola cast iron	3		1		3		()	
Cast iron borings	68	2	26		82 (*)	1	6	
Motor blocks	(*) 57	- <u>-</u>	49	(*)	101	5	(A) 11	
Other iron scrap Other mixed scrap	57 (*)		6		6		Ä	
Total ³	1,781	62	808	2	2,602	27	185	

Table 2.—U.S. consumer receipts, production, consumption, shipments, and stocks of iron and steel scrap and pig iron in 1981, by grade —Continued

	Receipts	of scrap	Production	of home scrap			
Grade	From brokers, dealers, other outside sources	From other own-company plants	Recircu- lating scrap resulting from cur- rent oper- ations	Obsolete scrap (in- cludes in- got molds, stools, scrap from old equip- ment, build- ings, etc.)	Consumption of both purchased and home scrap (includes recirculating scrap)	Ship- ments of scrap	Ending stocks, Dec. 31
IRON FOUNDRIES AND MIS-							
CELLANEOUS USERS							
Carbon steel:							
Low-phosphorus plate and							
punchings Cut structural and plate	702	95	80	@	863	9	54
No. 1 heavy melting steel	1,426	141	99	(2)	1,628	5	.98
No. 2 heavy melting steel	113 81	38	65 22	1 - <u>1</u>	182	36	11
No. 1 and electric-furnace	. 01	=-	44	1	101	2	4
bundles	132	44	57	(2)	241	1	5
No. 2 and all other bundles _	307	8	-		312	(2)	31
Electric furnace 1 foot and		•			012	()	01
under (not bundles)	91	64	1		158		4
Railroad rails	131		(2)	(*)	125	(2)	18
Turnings and borings	481	61	18	(2)	565	23	48
Slag scrap (Fe content 70%)_	_13		_ ()		15	(2)	7
Shredded or fragmentized	793	1	(2)	. 1	788	. 1	75
No. 1 busheling All other carbon steel scrap_	173 695	18	14		208	18	7
Stainless steel scrap	10	301	139	(2)	1,178	11	36
Alloy steel (except stainless)	21	(2)	19 5	(4)	26	3	3
Ingot mold and stool scrap	146	(²) 2	56	1 6	24 197	4 9	10
Machinery and cupola cast iron	945	135	456	1	1,577	6	48
Cast iron borings	679	154	177	1	1,003	34	100 38
Motor blocks	539	9	297	17	809	5	53
Other iron scrap	705	143	2,140	20	2,949	97	107
Other mixed scrap	356	521	323	7	1,204	6	48
Total ³	8,541	1,735	3,969	57	14,152	271	804
TOTAL—ALL TYPES OF MANUFACTURERS ³					-		
Carbon steel:							
Low-phosphorus plate and							
punchings	1,645	117	309	6	2,049	49	132
Cut structural and plate	2,169	294	753	(2)	3,236	17	207
No. 1 heavy melting steel	8,401	2,552	14,710	1 ì ó	23,552	2,072	2,346
No. 2 heavy melting steel No. 1 and electric-furnace	2,188	215	954	3	3,344	103	432
bundles	6,013	484	2,665	•	0.005	150	4 00-
No. 2 and all other bundles _	1,963	89	2,005 79	1	8,907	152	1,082
Electric furnace 1 foot and	1,000	. 00	19		2,394	15	277
under (not bundles)	215	64	25	(2)	305	1	17
Railroad rails	282	(2)	(2)	(2)	272	(2)	33
Turnings and borings	1,744	165	495	` ź	2,275	127	192
Slag scrap (Fe content 70%)_ Shredded or fragmentized	1,234	53	3,729	$-\frac{1}{1}$	4,469	405	230
No. 1 busheling	3,483 1,436	622 34	31	1	4,132	.8	337
All other carbon steel scrap_	3,412	641	91 9,899	$\frac{1}{22}$	1,548	30	127
Stainless steel scrap	428	40	5,059 510	22 14	13,037 934	773 37	760 110
Alloy steel (except stainless)	. 341	195	1,638	13	1,965	144	355
ngot mold and stool scrap	499	610	1,033	1,619	2.715	771	712
Machinery and cupola cast iron	949	142	458	4	1,732	21	149
Cast iron borings	1,040	167	317	4	1,428	198	64
Motor blocks Other iron scrap	543 1,350	9 207	297	17	812	_5	54
Other mixed scrap	1,350 693	660	2,775 638	31 8	3,984 2,007	451 30	383
Grand total ³	40,030	7,359	41,405	1,855	85,097	5,408	120
	,	.,000	41,200	1,000	00,001	0,400	8,118

¹Includes only those castings made by companies producing raw steel.

²Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

⁴Excludes companies that produce both raw steel and steel castings.

Table 3.—U.S. consumer receipts, production, consumption, shipments, and stocks of pig iron and direct-reduced iron in 1981

	ž	Receipts	Produc- tion	Consump- tion	Ship- ments	Stocks, Dec. 31
MANUFACTURERS OF PIG IRON AND RAW STEEL AND CASTINGS						
Pig iron MANUFACTURERS OF STEEL CASTINGS		2,276	73,755	73,011	3,955	786
Pig iron IRON FOUNDRIES AND MISCELLANEOUS USERS		47		46	(1)	5
Pig iron		1,962		1,983	5	68
TOTAL—ALL TYPES OF MANUFACTURERS Pig iron Direct-reduced or prereduced iron		4,285 472	73,755 W	75,040 611	² 3,959 W	859 74

W Withheld to avoid disclosing company proprietary data.

Table 4.—Consumption of iron and steel scrap and pig iron in the United States in 1981, by type of furnace or other use

(Thousand short tons)

Type of furnace or other use	Manufacturers of pig iron and raw steel and castings		Manu ture of ste castir	rs el	Iron found ries a miscel neous u	d- nd lla-	Total all types ¹	
- 	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron
Blast furnace ²	4,046						4,046	
Basic oxygen process ³	23,278	62,162					23,278	62,162
Open-hearth furnace	7,450	8,862	48	5		(4)	7,498	8,867 583
Electric furnace	32,467	260	2,430	40	4,745	283	39,642	
Cupola furnace	37	175	114	(4)	8,961	511	9,113	685
Other (including air furnace)5	1.065	208	10	1	446	44	1,520	254
Direct castings		1,344		·		1,145		2,489
Total	68,343	73,011	2,602	46	14,152	1,983	85,097	75,040

¹Data may not add to totals shown because of independent rounding.

Table 5.—Proportion of iron and steel scrap and pig iron used in the United States in 1981, by type of furnace

(Percent)

Type of furnace	Scrap	Pig iron
Basic oxygen process	27.2	72.8
Open-hearth furnace	45.8	54.2
Electric furnace	98.6	1.4
Cupola furnace	93.0	7.0
Other (including air furnace)	85.7	14.3

Less than 1/2 unit.

²Data do not add to total shown because of independent rounding.

^{*}Includes ocnsumption in all blast furnaces producing pig iron.

Includes scrap and pig iron processed in metallurgical blast cupolas and used in oxygen converters.

Less than 1/2 unit.

⁵Includes vacuum melting furnaces and miscellaneous uses. ⁶Includes ingot molds and stools.

Table 6.—Iron and steel scrap supply¹ available for consumption in 1981, by region and State

	Receipts	of scrap	Production of	of home scrap			
Region and State	From brokers, dealers, other outside sources	From other own-company plants	Recircu- lating scrap re- sulting from current operations	Obsolete scrap (in- cludes in- got molds, stools, scrap from old equip- ment, build- ings, etc.)	Total new supply ²	Ship- ments of scrap ³	New supply available for consumption ²
New England and Middle Atlantic: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island.							
Vermont	1.461	107	1,169	25	2,762	182	2,580
Pennsylvania	5,565	2,422	9,111	566	17,665	1,936	15,729
Total ²	7,026	2,530	10,281	591	20,427	2,118	18,310
North Central: Illinois Indiana Iowa, Kansas, Michigan, Minnesota, Missouri Ohio Wisconsin	4,387 2,436 5,355 5,295 708	625 143 1,559 1,352 10	3,469 8,204 2,731 6,860 523	52 469 48 310 (4)	8,533 11,251 9,693 13,817 1,242	198 975 149 1,229 21	8,334 10,276 9,545 12,588 1,221
Total ² South Atlantic: Delaware, Florida, Georgia, Maryland. North Carolina.	18,181	3,689	21,788	878	44,536	2,572	41,964
South Carolina, Virginia, West Virginia South Central: Alabama, Arkansas, Kentucky.	4,413	243	2,916	183	7,754	189	7,565
Louisiana, Mississippi, Oklaho- ma, Tennessee, Texas Mountain and Pacific: Arizona, California, Colorado, Ha-	7,095	603	4,102	111	11,911	343	11,568
waii, Montana, Nevada, Oregon, Utah, Washington	3,315	294	2,319	92	6.020	187	5,833
Grand total ²	40,030	7,359	41,405	1,855	90,649	5,408	85,241

¹New supply available for consumption is a net figure computed by adding production to receipts and deducting scrap shipped during the year. The plus or minus difference in stock levels at the beginning and end of the year is not taken into consideration.

²Data may not add to totals shown because of independent rounding.

³Includes scrap shipped, transferred, or otherwise disposed of during the year.

⁴Less than 1/2 unit.

Table 7.—Consumption of iron and steel scrap and pig iron in 1981, by region and State (Thousand short tons)

Region and State	Pig iro steel i	ingots	Steel ca	nstings	Iron fou and mis neous	scella-	Tot	al²
Region and State	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron
New England and Middle Atlantic: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey,								
New York, Rhode Island, Vermont Pennsylvania	1,643 14,312	2,327 13,847	116 333	5 11	867 891	79 585	2,626 15,536	2,412 14,444
Total ²	15,955	16,174	448	16	1,758	665	18,161	16,855
North Central: Illinois Indiana	6,999 9,476	5,101 18,222	328 185	(³) 5	1,052 629	331 60	8,379 10,290	5,432 18,287
Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska Ohio Wisconsin	5,636 9,684	5,643 11,478	299 206 267	$\begin{smallmatrix}1\\13\\1\end{smallmatrix}$	3,849 2,504 965	295 390 68	9,784 12,394 1,232	5,939 11,880 69
Total ²	31,795	40,444	1,285	19	8,999	1,144	42,079	41,607
Delaware, Florida, Georgia, Maryland, North Carolina, South Carolina, Virginia, West Virginia South Central:	7,253	w	49	2	710	42	8,012	44
Alabama, Arkansas, Kentucky, Louisiana, Mississippi, Okla- homa, Tennessee, Texas Mountain and Pacific:	8,482	⁴ 12,155	461	, 4	2,158	109	11,101	12,268
Arizona, California, Colorado, Hawaii, Montana, Nevada, Ore- gon, Utah, Washington	4,856	4,238	359	5	529	23	5,744	4,266
Grand total ²	68,343	73,011	2,602	46	14,152	1,983	85,097	75,040

Table 8.—Consumer stocks of iron and steel scrap and pig iron, December 31, 1981, by region and State

Region and State	Carbon steel (ex- cludes re- rolling rails)	Stain- less steel	Alloy steel (excludes stainless)	Cast iron (includes borings)	Other grades of scrap	Total scrap stocks ¹	Pig iron stocks
New England and Middle Atlantic: Connecticut, Maine, Massachu- setts, New Hampshire, New Jersey, New York, Rhode				•			
Island, Vermont	199	21	17	59	.2	297	256 225
Pennsylvania	1,540	42	161	345	40	2,127	225
Total ¹	1,739	63	177	403	42	2,425	481
North Central: Illinois Indiana	607 618	5 5	24 14	72 305	(²) 2	708 943	24 25
Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska Ohio Wisconsin	355 614 12	5 16 1	1 95 (*)	69 126 9	16 5 (²)	446 857 23	21 76 5
Total ¹	2,207	32	135	581	23	2,977	151

See footnotes at end of table.

W Withheld to avoid disclosing company proprietary data.

Includes molten pig iron used for ingot molds and direct castings.

Data may not add to totals shown because of independent rounding.

Less than 1/2 unit.

⁴Includes South Atlantic region.

Table 8.—Consumer stocks of iron and steel scrap and pig iron, December 31, 1981, by region and State -Continued

Region and State	Carbon steel (ex- cludes re- rolling rails)	Stain- less steel	Alloy steel (excludes stainless)	Cast iron (includes borings)	Other grades of scrap	Total scrap stocks ¹	Pig iro
South Atlantic:							
Delaware, Florida, Georgia, Maryland, North Carolina, South Carolina, Virginia,							
West Virginia	626	W	15	69	2	712	15
Alabama, Arkansas, Kentucky, Louisiana, Mississippi,							
Oklahoma, Tennessee, Texas	1,019	³ 14	19	192	20	1,264	183
fountain and Pacific: Arizona, California, Colorado, Hawaii, Montana, Nevada.							
Oregon, Utah, Washington	580	1	9	116	33	740	29
Grand total ¹	6,171	110	355	1,362	120	8,118	859

Table 9.—Average monthly price and composite price for No. 1 heavy melting scrap in 1981

(Per long ton)

Month	Chicago	Pittsburgh	Philadel- phia	Composite price ¹
January	\$95,50	#104 F0	405.55	
February		\$104.50	\$95.75	\$98.58
March	101.25	105.75	91.50	99.50
	108.10	116.10	91.50	105.23
	104.50	110.75	90.00	101.7
, ,	96.75	105.00	84.50	95.42
une	88.50	100.10	79.50	89.3
uly	88.50	102.50	79.50	
rugust	97.50	107.10		90.17
eptember			79.30	94.6
October	91.25	101.50	78.50	90.42
Vovember	81.00	93.00	69.50	81.17
,	75.50	84.90	66.50	75.63
December	75.50	87.25	66.50	76.42
Average 1981	91.99	101.54	91.05	01.50
Average 1980 ^r			81.05	91.52
	87.05	95.00	92.00	91.38

Revised.

Source: Iron Age, Jan. 4, 1982.

Table 10.—U.S. exports of iron and steel scrap, by country

(Thousand short tons and thousand dollars)

Country1977		977	19	778	1	979	19	980	19	181
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
Canada Greece Italy Japan Korea,	522 300 208 1,036	23,847 17,192 18,441 61,927	795 340 657 3,190	41,698 25,079 54,522 238,979	861 500 1,186 2,922	60,275 52,395 124,361 305,509	790 545 892 2,838	57,507 57,484 101,865 308,784	737 271 34 1,191	52,463 25,452 2,407 117,724
Republic of Mexico Spain Taiwan Turkey Other	1,441 322 784 435 310 496	88,668 22,555 46,909 35,647 20,044 45,811	1,503 450 744 394 258 708	117,742 35,808 53,038 41,126 19,583 70,662	1,418 814 1,400 634 242 1,077	152,483 85,098 127,592 70,004 23,482 141,207	1,736 1,134 1,163 990 318 762	192,745 137,273 114,837 125,716 31,363 98,367	1,241 896 434 374 364 874	114,736 102,329 34,570 59,874 31,814 97,274
Total ¹	5,854	381,041	9,039	698,237	11,054	1,142,406		1,225,941	6,415	638,644

¹Data may not add to totals shown because of independent rounding.

SIncludes South Atlantic region.

¹Composite price, Chicago, Pittsburgh, and Philadelphia.

Table 11.-U.S. exports and imports for consumption of iron and steel scrap, by class

(Thousand short tons and thousand dollars)

	1977		1978	78.1	13	19791	19	19801	1981	1,
Ciabs	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
Exports: No. 1 heavy melting scrap No. 2 heavy melting scrap No. 2 bundles. No. 2 bundles. Stainless steel scrap Shredded steel scrap Borings, stovelings, turnings Other steel scrap Tron scrap.	1,750 534 103 103 386 75 1,606 476 6914	107,089 88,870 2,442 14,429 87,154 97,602 17,916 49,960 20,579	2,362 837 148 326 115 2,684 750 1,382 434	175,933 56,433 11,231 17,055 44,439 198,377 38,163 128,350 33,258	2,697 1,117 145 652 652 112 2,980 1,828 1,828	269,845 104,017 14,455 46,889 66,118 308,383 59,467 211,352 61,879	2,907 1,067 119 314 125 3,323 769 1,762 783	297,666 102,137 11,542 24,852 78,034 345,946 50,381 240,886 74,497	1,606 618 618 41 273 63 1,928 486 908	141,205 51,630 3,476 18,993 40,307 179,626 24,757 127,937 127,937
Total ³ Ships, boats, other vessels (for scrapping) Rerolling material	5,854 35 321	381,041 2,613 31,691	9,039 2 50	698,237 232 5,528	11,054 73 70	1,142,406 5,436 10,222	11,168 169 86	1,225,941 18,340 12,768	6,415 52 57	688,644 3,643 10,831
Total ³	6,211	415,345	060'6	703,996	11,197	1,158,064	11,423	1,257,049	6,524	653,118
Imports for consumption: Iron and steel scrap.	614	40,501	794	50,220	760	70,804	582	61,192	556	62,126

¹Starting in 1978, exports of rerolling material are not comparable with those of previous years because of a change of classification by the Bureau of Census.

**Includes terneplate and timplate.

**Data may not add to totals shown because of independent rounding.

Table 12.—U.S. exports of rerolling material (scrap), by country

(Thousand short tons and thousand dollars)

	197	77	197	81.	197	91	198	01	198	11
Country	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
Korea, Republic of	99	9,371		==	_2	172	4	538	7.5	10 005
Mexico Pakistan	21 18	2,061 742	38 7	4,176 470	57	8,614	65 2	10,848 185	55 	10,267
Thailand	133 16	14,078 1,709				32				
Other	34	3,730	6.	882	11	1,436	14	1,197	2	564
Total ²	321	31,691	50	5,528	70	10,222	86	12,768	57	10,831

¹Starting in 1978, exports of rerolling material are not comparable with those of previous years because of a change of classification by the Bureau of Census.

²Data may not add to totals shown because of independent rounding.

Table 13.—U.S. imports for consumption of iron and steel scrap,1 by country

	198	30	1981		
Country	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	
Austria	18	\$161			
Belgium-Luxembourg	71	159	153	\$8	
Canada	499,271	51,935	511,209	52,600	
Germany, Federal Republic of	125	322	939	140	
Japan	24.827	943	1,114	2,628	
Mexico	25,792	2,548	31,112	2,797	
Netherlands	7,900	516	211	206	
Panama	8,422	600	15	6	
Sweden	7,787	1,266	2,336	676	
United Kingdom	457	1,424	2,423	1,770	
Other	6,843	1,318	6,653	1,295	
Total	² 581,512	61,192	556,165	62,126	

Table 14.—Iron and steel scrap consumption, by continent and country¹

(Thousand short tons)

Continent, country group, and country	1976	1977	1978	1979	1980
North America:					
Canada ^{2 3 4 5}	r7.131	7,683	8.622	9.145	9,395
United States ^{2 5}	r89,909	r 692,138	r 699,223	698,901	683,710
Latin America:7	00,000	02,100	00,220	00,002	00,120
Argentina	1.657	1.892	1,523	1,775	e _{1,490}
Brazil	4.644	5.044	5.800	86.497	87,119
Chile	186	227	177	r e200	e215
Colombia	229	250	183	e170	e190
Mexico	3,406	2,690	3.097	r e _{3,220}	e3,230
Peru	185	2,090 184	150	e170	e ₁₈₅
Uruguay	34	55	57	e ₆₀	e ₅₅
Venezuela				r e550	e ₅₅₀
Central America, not further detailed	499	583	602		-550 e60
	67	57	61	e 60	-60
Europe:					
European Economic Community:	4.000	0.500	4.400	4 405	4.00
Belgium ²	4,032	3,728	4,182	4,467	4,065
Denmark ^{3 9 10}	*854	862	1,068	999	894
France ^{3 4 5}	8,964	8,282	9,018	8,941	8,748
Germany, Federal Republic of	23,263	22,262	23,359	23,993	22,401
Ireland	75	60	^r 87	1193	118
Italy ³	16,362	16,629	17,897	^r 17,928	1119,825
Luxembourg	1,577	1,555	1,942	1,968	1,738
Netherlands	1,957	1,857	2,030	2,166	2,025

See footnotes at end of table.

¹Includes tinplate.
²Data do not add to total shown because of independent rounding.

Table 14.—Iron and steel scrap consumption, by continent and country1 —Continued (Thousand short tons)

Continent, country group, and country	1976	1977	1978	1979	1980
Europe —Continued					
European Economic Community —Continued					
United Kingdom	18,534	17,070	16,902	r16,761	10,248
European Free Trade Association:					
Âustria	r _{1,992}	1,789	1,926	2,013	¹¹ 1,903
Finland	³ 634	898	³ 832	³ 819	³ 848
Norway ^{2 4 5}	593	3485	r e490	^r 607	e605
Portugal	219	396	r ₄₉₁	e520	e520
Swaden ² 3	3,468	2.679	r _{2.872}	r3.045	e2,730
Council for Mutual Economic Assistance:	0,100	2,010	_,0	0,0	=,
Bulgaria e	680	750	720	r805	860
	8.088	8,216	8.173	8,438	e8.490
Czechoslovakia ^{2 4 5} German Democratic Republic ^{2 3 4 5}	5,117	4.730	r _{5.040}	r _{5.545}	5,833
Hungary	2.420	2,467	2,566	2,595	2,528
Poland	10.352	11.083	12,518	11.597	11,817
Romania ^e	*3,605	3,890	4,080	4.190	4,300
USSR ^e	52,800	52,800	*54.450	r53.020	52,690
Other:	52,800	52,800	34,430	33,020	52,050
	170	180	300	330	340
Greece ^e	3 4 57,759	3 4 58.111	3 4 58.726	r7.961	119.195
Spain					
Yugoslavia ^{3 4 5}	1,747	1,921	2,249	2,272	2,287
Africa: South Africa, Republic of 12	r _{3,099}	3,147	3,656	e3,800	e3,890
Asia:		= 000		0.000	0.000
China ^e	7,000	7,000	8,000	8,000	8,000
India ^e	^r 4,080	r _{4,300}	^r 4,400	⁴ 4,400	4,080
Japan	42,138	38,147	43,445	r _{50,292}	1148,291
Korea, Republic of	1,300	1,800	1,860	1,800	2,200
Taiwan ^{e 13}	400	550	600	760	700
Turkey ^{2 5}	r _{1.017}	141,279	14 1,017	^e 1,100	^e 1,100
Oceania:	•	•	•	•	
Australia	2,697	2,105	152,448	r 162,639	^e 2,770
New Zealand	€165	14181	^é 182	r 15160	é160
Total	r345,105	^r 342,012	r367,021	r374,772	352,283

eEstimated. Revised.

[&]quot;Issumated. "Revised.

'IUnless otherwise noted, figures represent reported actual consumption of iron and steel scrap utilized in the production of pig iron, ferroalloys, crude steel, foundry products, and rerolled steel, as well as in other unspecified uses by the steel industry and by other unspecified industries as reported by the United Nations Economic Commission for Europe in its Annual Bulletin of Steel Statistics for Europe, v. 8, 1980, New York, 1981, 94 pp., which is the source of all data unless otherwise noted. (All estimates included are made by the U.S. Bureau of Mines.)

²Excludes scrap consumed by steel rerollers. ³Excludes scrap consumed in iron foundries.

^{*}Excludes scrap consumed within the steel industry for purposes other than the manufacture of pig iron, ferroalloys, crude steel, foundry products, and rerolled steel.

Excludes scrap consumed outside the steel industry.

Source: U.S. Bureau of Mine

[&]quot;Source (except where individually noted as an estimate or another specific source): 1976-77—Instituto Latinoamericano del Fierro y el Acero. Statistical Yearbook of Steelmaking and Iron Ore Mining in Latin America, 1977. Santiago, 1979,
178 pp.; 1978—Instituto Latinamericano del Fierro y el Acero. Siderurgia Latinoamericano, No. 243, July 1980, p. 56.
Source does not provide details on what is included; presumably figures represent total steel industry scrap consumption, excluding scrap used outside the steel industry.

*Source: Iron and Steel Statistics Bureau (United Kingdom). International Steel Statistics, Brazil 1980. London 1981, p.

⁹Excludes scrap consumed by pig iron producers

¹⁰Includes scrap used in production of steel castings in shipyards.

¹¹Source: Organization for Economic Cooperation and Development. The Iron and Steel Industry in 1980. Paris 1982, p. 15. 12Source: Iron and Steel Statistics Bureau (United Kingdom). International Steel Statistics, South Africa. 1978, p. 4;

^{1979,} p. 4.

18 Excludes a substantial tonnage derived from shipbreaking possibly of the order of several million tons annually for electric furnace equipped steel mills.

14Source: Organization for Economic Cooperation and Development. The Iron and Steel Industry in 1978. Paris 1980, 40

pp. 15Source: Organization for Economic Cooperation and Development. The Iron and Steel Industry in 1979. Paris 1981, 32

pp. ¹⁶Source: Iron and Steel Statistics Bureau (United Kingdom). International Steel Statistics, Australia 1980. London 1981, p. 4.

Table 15.—Iron and steel scrap imports, by continent and country¹

Continent, country group, and country	1976	1977	1978	1979	1980
North America:					
Carada	907	644	1.052	1,156	1.119
United States ²	507	625	794	761	58
tin America:		020	101	101	. 00
Argentina	279	2177	² 18	e ₂₂	e ₂ :
Brazil ²	(3)	(3)	(3)	(3)	2
Chile	217	211	28	e ₁₀	e ₁₀
Colombia	210	213	223	e ₂₅	e ₂
Cuba	486	r 481	492		
Mexico	² 577	r 2389	r 2531	480 F 2000	e 80
	-511 224	389	581	r 2363	e38
Peru					
Venezuela ^e	66	66	55	50	60
irope:					
European Economic Community:	0.40	T 40	1.050	1.000	
Belgium-Luxembourg	646	543	1,079	1,069	94'
Denmark	8	14	290	313	239
France	302	316	434	465	50
Germany, Federal Republic of	1,703	1,569	1,705	1,769	1,65
Ireland	1	2	10	6	5
Italy	6,914	6,421	7,238	7,596	8,16
Netherlands	177	126	182	136	5170
United Kingdom	765	110	47	49	2
European Free Trade Association:					
Austria	50	- 88	127	149	15
Finland	60	69	24	98	11'
Norway	78	20	11	8	: 58
Portugal	32	105	731	161	5129
Sweden	151	36	130	143	584
Switzerland	49	r ₆₄	96	197	15
Council for Mutual Economic Assistance:			• • •		
Bulgaria	(6)	(6)	(6)	r 4 ₁	e-
Czechoslovakia	r 437	r 449	454	447	e ₅ (
German Democratic Republic	596	r546	602	780	51,00
Hungary	10			100	-1,00
Poland	52	2 37	3		05
Romania	92	91	10	.7	250
U.S.S.R.	r 721	r 720	$^{9}_{^{7}21}$	$ au_{22}^{11}$	62 e20
Other:	-21	- 20	.21	- ZZ	~20
	88	103	010	054	004
Greece Spain	2,930		218	254	263
Yugoslavia	2,930 377	2,197	2,811	3,805	4,83
frica:	911	451	443	292	437
Egypt	2 41	2127	² 46	940	900
Morross				² 18	^e 20
Morocco	(3)	(3)	1	(3)	e(3
South Africa, Republic of	2 37	233	² 19	29	e10
			•		
China ⁴	52	_r(3)	19	6	. 2
Hong Kong ²	120	*100	139	116	103
India	2 31	r 282	r 2119	e130	^e 130
Indonesia ²	32	52	89	33	49
Iran	e ₁₁	e11	NA	NA	NA
Japan Korea, Republic of ²	1,986	1.587	3,559	3.688	3,291
Korea, Republic of ²	1,206	1,732	1.867	1.742	2,130
Malaysia	23	23	1,001	1,142 e3	2,100
Pakistan	152	e ₁₆₅			
Philippines	2117	100	187	139	368
Singapore ²		² 68	² 87	² 105	e10
Taiwan	61	25	103	120	190
	² 327	² 629	² 686	² 839	e800
Thailand ²	304	489	884	678	378
Turkey	260	331	356	399	381
eania:					
Australia ²	_1	1	1	1	1
New Zealand ²	(³)	18	19	1	69
Total	22,061				

^eEstimated. rRevised. NA Not available.

^{**}Estimated. **Revised. NA Not available.

1Unless otherwise noted, source is United Nations Economic Commission for Europe. Annual Bulletin of Steel

Statistics for Europe. V. 8, 1980. New York, 1981, 94 pp.

2Source: Official trade returns of subject country.

3Less than 1/2 unit.

^{*}Less than 1/2 unit.

*Partial figures, compiled from export statistics of trading partner countries.

*Source: United Nations Economic Commission for Europe. Quarterly Bulletin of Steel Statistics for Europe. V. 32, No.

3, 1981. New York, 1981, 66 pp.

*Revised to zero.

*Officially reported, but may be incomplete figure.

Table 16.—Iron and steel scrap exports, by continent and country¹

Continent, country group, and country	1976	1977	1978	1979	1980
North America:					
Canada	1,117	768	963	1,139	865
United States ^{2 3}	r8,118	r _{6.175}	r9.089	F11,124	11.254
Latin America:	0,110	0,110	0,000	,	11,20
Mexico	21	22	(2 4)	r 2 ₁	e ₁
Europe:			()		
European Economic Community:					
Bolgium I urombourg	581	552	585	606	592
Belgium-Luxembourg	128		89		
Denmark		63		100	110
France	3,772	3,702	4,038	3,887	3,651
Germany, Federal Republic of	2,863	2,735	3,048	r3,304	3,392
Ireland	9	9	60	79	593
Italy	26	12	8	14	9
Netherlands	1,055	1,021	1.311	1,259	1,316
United Kingdom	660	1,034	1,725	1.475	3,092
European Free Trade Association:		-,	-,	-,	-,
Austria	- 50	9	9	17	14
Finland	4	š	ĭ	3	(4)
	20	14			42
Norway			40	46	
Portugal	3	4	11	6	_⁵6
Sweden	10	83	86	19	⁵ 15
Switzerland	^r 78	68	97	110	71
Council for Mutual Economic Assistance:					
Bulgaria	^r 148	67	184	143	171
Czechoslovakia	58	89	126	137	109
German Democratic Republic	<u>(*)</u>	1	15	2	54
	41	78	46	41	34 34
Hungary					
Poland	101	_1	² 15	² 12	² 17
Romania ²	r ₈	r 2	3	1	_ (1)
U.S.S.R	² 2,025	² 2,412	² 1,849	² 2,190	61,620
Other:					
Greece	(4)	1	(4)	(4)	(4)
Iceland	`4	2	()	`á	`á
Spain	(4)	· (4)	- <u>ī</u>	(4)	ĭ
Yugoslavia	22	46	87	52	50
Africa:	44	40	01	52	50
		-		•••	
Morocco ²	55	21	50	98	39
South Africa, Republic of	3	3	8	2	• ₂
Asia:					
China			. (4)	(4)	11
Hong Kong	195	250	3Ì5	412	302
India	r111	r ₆₀	r ₃₁	r e30	e30
Indonesia	(4)	00	7	00	1
	224	233	181	166	175
Japan					
Korea, Republic of	21	1	9	14	10
Malaysia	18	12	e 10	e 10	e10
Philippines	(4)	(4)	3	3	e 3
Singapore	3	8	4	2	6
Taiwan	69	40	172	79	e80
Thailand					ĭ
Oceania:					•
Australia	769	713	755	63	e100
New Zealand	109 12	113	199 1 2	5 5	49
11cm Tealand	-z	-Z	-Z	-9	49
Total	00.970	90.000	05.000	oc cer	97 401
Total	22,372	20,296	25,033	26,655	27.401

 $^{^{\}rm e}$ Estimated.

^eEstimated. ¹Unless otherwise noted, source is United Nations Economic Commission for Europe. Annual Bulletin of Steel Statistics for Europe. V. 8, 1980, New York, 1981, 94 pp.

²Source: Official trade returns of subject country.

³Includes rerolling material.

⁴Less than 1/2 unit.

⁵Source: United Nations Economic Commission for Europe. Quarterly Bulletin of Steel Statistics for Europe. V. 32, No. 3, 1981, New York, 1981, 66 pp.

⁶Partial figure; compiled from import statistics of trading partner countries.

Iron and Steel Slag

By Cynthia T. Collins¹

Combined sales and use of iron and steel slag were down significantly for the second consecutive year, as shown in table 1. Average unit prices of all sales were up 7% in 1981. Major end uses for the various kinds of slag followed traditional patterns. However, in addition to the customary uses, there has been a growing interest by the

cement industry in the use of blast-furnace slag for the manufacture of portland cement. In 1981, this was reflected in sales of small quantities of expanded slag for cement manufacture and in the construction by Atlantic Cement Co., Inc., of new facilities at Sparrows Point, Md., to produce granulated slag for cement.

DOMESTIC PRODUCTION

Production of iron and steel slag apparently increased in 1981, owing to a slight increase in production of both pig iron and steel. However, sales of all kinds of iron and steel slag were down in 1981 from the levels of 1980, reflecting the general decline in the construction industry, which uses much of the slag produced by iron and steel plants. Table 1 shows sales of iron and steel slag produced as reported to, or estimated by, the Bureau of Mines for those companies listed in table 3.

During 1981, Atlantic Cement Co., Inc., continued construction of its slag processing

facilities at Sparrows Point, Md. From the "L" blast furnace of Bethlehem Steel Corp., Atlantic Cement will be able to produce more than 2,200 tons² per day of granulated slag, which will be used in the manufacture of cement.

The Lorain-Cuyahoga steel slag processing plant of United States Steel Corp. in Lorain, Ohio, was recognized for its outstanding production safety record. By the end of 1981, the plant had a record of more than 21 years without a lost-time accident in spite of the risks involved in handling extremely hot raw materials.

CONSUMPTION AND USES

Although consumption of iron and steel slag declined in 1981, uses of the several kinds of slag generally followed their traditional patterns. Air-cooled blast-furnace slag was used predominantly for road bases, railroad ballast, aggregates in concrete, and as fill material.

Granulated blast-furnace slag was used mostly for road bases, where its natural

cementing properties impart the ability, on damp compaction, to slowly set into a hard, dense mass that minimizes settlement of pavements. Expanded blast-furnace slag was used chiefly in concrete products. Small quantities were used, also, in cement manufacture and as lightweight aggregate. The major uses of slag from steel furnaces were for road bases and fill.

PRICES

The most significant price change in 1981 resulted from an 11% decrease from that of 1980 in the average unit value of expanded

blast-furnace slag. Unit values of all other kinds of slag increased from 5% to 15%, for an average overall increase of 7%.

FOREIGN TRADE

Granulated blast-furnace slag for use in the manufacture of hydraulic cements was imported from Japan and France in 1981. However, it is not possible to determine the quantities imported owing to the Tariff Schedule classification; slag imports are reported in a blanket category designated as "Mineral substances not provided for." Because of similar problems, it is not known whether any slag was exported in 1981. However, blast-furnace slag is known to be both exported and imported to and from Canada periodically in small quantities.

WORLD REVIEW

Data on production of slag in other countries were not available for 1981, nor were data on resources (new slag plus old stockpiles). However, resources and usage are known to be significant in such countries as France, the Federal Republic of Germany, Japan, and the United Kingdom, where there are large iron and steel industries. At Nippon Kokan's Kukuyama works in Japan, the world's first facility for recycling slag and waste heat from basic oxygen furnaces (BOF) was placed in operation in November 1981. The facility has the capacity to process 22,000 tons of BOF slag per month and to generate 200 tons of steam per day. The airblown BOF slag is an improved product now used in such construction materials as mortar reinforcement for walls.

In Raahe, Finland, Rautaruukki Oy and Ovato Oy, steel producers, and Oy Partek AB and Oy Lohja AB, cement producers, jointly established a new company, Kuonan-jaloste Oy, to operate a slag-processing plant. The facility processes slag for use in the manufacture of fertilizer, mineral wool, and cement, and also ships unprocessed slag for road construction aggregate. The company intends eventually to be able to upgrade all of the blast-furnace slag produced in the country.

In Luxembourg, the Calumite Co. Europe S.A. constructed a plant at Esch-sur-Alzette to process their high-grade slag tradenamed "Calumite Slag"; the new plant has a planned annual capacity of 110,000 tons. The company closed its older processing facility at Neuss, Federal Republic of Germany, where a similar product was shipped to glass manufacturers in northern Europe. With the relocation, the company plans to expand its sales into southern Europe also.

TECHNOLOGY

Interest in the technology of slag cement processes has increased in the United States over the last several years. The technology is not new, and portland blast-furnace slag cement has been produced in Europe, Japan, and the Republic of South Africa for many years, and in the United States briefly during World War II. Interest in slag cement processes in this country increased when cement companies became faced with the cost of replacing or modernizing old, inefficient plants and escalation of kiln fuel costs. It is estimated that building a slagprocessing facility would require one-half the per-ton capital of building a portland cement plant and would utilize only about one-fifth of the total unit energy requirement.3

The first U.S. facility to produce granulated slag for cement continued to be under construction in 1981 by Atlantic Cement at the Bethlehem Steel plant at Sparrows Point, Md. Molten slag from Bethlehem's large new "L" blast furnace flows directly to a high-pressure water granulator for quenching. A water-to-slag ratio of 10:1 results in granulated slag with a glass content of 95% to 98%. The granulated slag is pumped into filter beds for drainage and then trucked to the plant for drying, grinding, and storage. Atlantic Cement grinds the granulated slag separately from cement clinker, a method that allows greater control over product quality. Tests have shown that separate grinding of the granulated slag improves the rate of hydration reaction in cement over that of interground slag and clinker. The two products are stored in adjacent facilities at the company's distribution terminals and are later blended to customers' specifications.4

In addition to economic and environmental advantages to cement companies of constructing slag granulating and grinding facilities at blast furnaces, savings accrue to the steel companies as well. The rapid quenching of molten slag as it comes from

the blast furnace eliminates the otherwise more costly methods of transporting the slag away from the furnace with its inherent dangers.5

¹Mineral specialist, Division of Ferrous Metals. ²Tons in this chapter refer to short tons of 2,000 pounds. Tons in this chapter refer to short tons of 2,000 pounds.

Spellman, L. Use of Blast Furnace Slag as a Cementitious Component. Am. Min. Cong. J., v. 68, No. 4, April 1982, pp. 57-59.

Burriss, C. Atlantic Moves Ahead Into Slag Cement. Rock Prod., v. 84, No. 6, June 1981, pp. 94-99.

Work cited in footnote 3.

Table 1.—Iron and steel slags sold or used in the United States1

			I	fron blast-furnace s	furnace slag				Steel slag	slag	Total	Potal slag ²
Year	Air-co	vir-cooled	Granulated	lated	Expanded	nded	Total iron slag	n slag ²		;	:	;
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	4nancic)	vaine	Quantity	Value
1977 1978 1979 1980 1981	22,753 25,119 25,009 17,113 14,461	61,270 73,148 78,415 65,313 60,164	1,488 1,372 855 772 456	3,579 3,608 3,037 2,938 1,823	1,475 1,914 1,648 1,156 800	6,414 9,641 10,794 8,028 4,953	25,716 28,404 27,512 19,041 15,717	71,262 86,398 92,246 76,279 66,941	6,668 8,457 8,252 6,158 5,770	10,850 14,510 18,476 16,270 17,494	32,384 36,861 35,764 25,199 21,487	82,112 100,908 110,722 92,549 84,435

¹Value based on selling price at plant. ²Data may not add to totals shown because of independent rounding.

Table 2.—Iron blast-furnace slags sold or used in the United States, by region and State1

		19	1980			1981	81	
Region and State	Air-cooled, screened and unscreened	screened reened	Total all types	al pes	Air-cooled, screened and unscreened	screened reened	Total all types	1 1
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
North Central: Illinois, Indians, Michigan Ohio	3,519 3,210	10,245 14,740	W	W	2,642 2,311	9,202 11,217	MΑ	ΜM
Total	6,729	24,985	7,590	29,678	4,953	20,419	5,495	23,637
Middle Atlantic: Pennsylvania Maryland, New York, West Virginia	4,299 1,603	17,885 4,996	W	WM	8,891 1,570	18,197 4,849	ΜM	M M
Total ²	5,902	22,881	896'9	29,154	5,461	23,047	6,175	26,607
West: Colorado, Texas, Utah South: Alabama and Kentucky Pacific: California	2,446 1,509 528	8,751 7,298 1,898	2,446 1,509 528	8,751 7,298 1,398	2,356 1,299 891	9,016 6,476 1,205	2,356 1,299 891	9,016 6,476 1,205
Grand total ²	17,113	65,313	19,041	76,279	14,461	60,164	15,717	66,941

W Withheld to avoid disclosing company proprietary data; included in "Total."

1Value based on selling price at plant.

2Data may not add to totals shown because of independent rounding.

Table 3.—Locations and processing methods of iron slag and sources of steel slag

		,						
ě		LTOCESSI	Processing method of iron slag	iron slag		Sour	Sources of steel slag	lag
State and city	Company	Air- cooled	Expanded	Granu- lated	Steel	Open hearth	Basic oxygen process	Electric
Alabama: GityBirmingham	Vulcan Materials Co Jim Walter Resources, Inc		111			111		
California: Pontana Colorado: Pueblo — Delaware: Claymont —	Heckett Co Fountain Sand and Gravel Co International Mill Service	8	11111	1111	21111	11111	2000 1	
Illinois: Chicago Chicago Granite City D Peoria Total	do de Ballast Co lininois Siag & Ballast Co International Mill Service St. Louis Siag Products, Co, Inc	11 11 6	11111			11111	¦∺⊷ ¦ ¦ o	
Indiana: Burna Harbor East Chicago	Levy Co., Inc Vulcan Materials Co				* -		1 2	
Total Kentucky: Ashland Maryland: Baltimore	Standard Slag Co Maryland Slag Co	27.11		111	-		1 1 1	
Michigan: Defroit Ecorse Trenton	Edward C. Levy Cododododo	- -	# 	T !!		111		
Total	International Mill Service	67		- !	8-		တေး	67 -

New Jersey: Perth Amboy	Buffalo Slag Co	_1_	ļ	1 1	-			-
Ohio: Cleveland Cleveland Do	Heckett Co Sein, Inc Standard Slag Co American Materials Corp Spang and Co. United States Steel Corp Standard Slag Co International Materials Corp McGraw Construction Co. International Mill Service Standard Slag Co Heckett Co. Standard Slag Co Heckett Co. Heckett Co. Heckett Co. Heckett Co. Heckett Co.	- -			-			
TotalOklahoma: Sand Springs	International Mill Service	6 -	1 1	1	8 1	က ၊ ၊	4	8
Pennsylvania: Belle Verson Belle Verson Bethebem Do Burdabor Burgetstown Burgetstown Burgetstown Castewille Chalson McKees Rocks Midland Park Hill Penn Hills	Duqueene Slag Products Co Bethelhem Mines Corp Sheridan Slag Co. Burdshow Sing Products Duqueene Sing Products Duqueene Sing Products Span and Co. International Mill Service Sheridan Slag Cor Phillips Contracting Phillips Contracting International Mill Service Standard Slag Co. United States Steel Corp	- -						

Table 3.—Locations and processing methods of iron slag and sources of steel slag —Continued

		Processir	Processing method of iron slag	iron slag		Sour	Sources of steel slag	lag
State and city	Company	Air- cooled	Expanded	Granu- lated	Steel slag	Open hearth	Basic oxygen process	Electric
Pennsylvania —Continued								
Phoenixville Pittsburgh	International Mill Service	1 -	1	1		1	!	!
Pricedale	New Enterprise Stone & Lime Co., Inc.	-		!		! !	1 1	
Steetion West Aliquippa	Hempt Bros							
Wheatland	Dunbar Slag Co		1 1	11		- !		
Total South Carolina: Darlington	APAC-Carolina, Inc	21	- 1	4	-1	4	2	87-
Техав:								
Beaumont Houston Lone Star Midlothian	International Mill Service Houston Slag Materials Co Gifford-Hill Co International Mill Service	111	1 1 1	111	-	111	111	<u> </u>
Total		2	1	-	۵ ۵	1		٦°
Utah: Provo	United States Steel Corp		-	: :	۰	_1	1 1	0
West Virginia: Weirton Do	International Mill Service	- -	-		1	-	-	
Total		-	1	1 1	-	-		1
Grand total		88	ro	9	88	°	16	&

Table 4.—Shipments of iron and steel slag in the United States in 1981, by method of transportation

Method of transportation	Quantity (thousand short tons)	Percent of total
Truck	17,213 3,011 603	80 14
WaterwayNot transported (used at plant site)	603 660	3
Total	21,487	100

Table 5.—Air-cooled iron blast-furnace slag sold or used in the United States, by use¹ (Thousand short tons and thousand dollars)

TT-	198	30	198	31
Use	Quantity	Value	Quantity	Value
Concrete aggregate	1,516	6,743	1,382	6,900
Concrete products	390	1,601	320	1,494
Cement manufacture	1	5		
Asphaltic concrete aggregate	2,928	12.587	2.133	10,037
Road base	5.881	22,582	5,252	20,402
Fill	2,362	6,813	1,868	7,046
Railroad ballast	2,151	7,415	2,266	8,243
Mineral wool	680	3,354	604	3,055
Roofing, built-up and shingles	234	1.311	249	1,278
Sewage treatment	59	180	W	Ŵ
Glass manufacture	. W	W	w	w
Other ²	911	2,724	388	1,710
Total ³	17,113	65,313	14,461	60,164

W Withheld to avoid disclosing company proprietary data; included with "Other." Value based on selling price at plant.

		19	980			19	981	
Use	Granu	lated	Expar	nded	Granu	lated	Expar	nded
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
Lightweight concrete aggregate			369	3,420			w	w
Concrete products			527	3,203			408 W	-2,537 W
Road base	$6\overline{4}\overline{4}$	$2,\bar{149}$			w	w	w	w w
Other ²	128	789	260	1,405	456	1,823	392	2,416
Total	772	2,938	1,156	8,028	456	1,823	800	4,953

W Withheld to avoid disclosing company proprietary data; included with "Other."
¹Value based on selling price at plant.

²Includes miscellaneous uses indicated by symbol W.

Includes ice control, miscellaneous, and uses indicated by symbol W.
Data may not add to totals shown because of independent rounding.

Table 6.—Granulated and expanded iron blast-furnace slags sold or used in the United States, by use1

Table 7.—Steel slag sold or used in the United States, by use1

Use	198	30	198	31
	Quantity	Value	Quantity	Value
Asphaltic concrete aggregate	662 3,231 1,251 644 371	2,259 7,499 3,552 1,990 970	649 2,151 1,617 678 676	2,386 5,949 5,238 1,977 1,945
Total ³	6,158	16,270	5,770	17,494

¹Excludes tonnage returned to furnace for charge material. Value based on selling price at plant.
²Includes ice control, soil conditioning, and miscellaneous uses.
³Data may not add to totals shown because of independent rounding.

Table 8.—Value per ton at the plant for iron and steel slags sold or used in the United States, by type

			Iron blast-i	furnace slag	;	Gi I	
	Year	Air- cooled	Granu- lated	Expand- ed	Total iron slag	Steel slag	Total slag
1977		\$2.69	\$2.41	\$4.35	\$2.77	\$1.63	20 5 4
1978		2.91	2.63	5.04	3.04	1.72	\$2.54 2.74
1979		3.14	3.55	6.55	3.35	2.24	3.10
1980		3.82	3.81	6.94	4.01	2.64	3.67
1981		4.16	4.00	6.19	4.26	3.03	3.93

Table 9.—Average selling price and range of selling prices at the plant for iron and steel slags in the United States in 1981, by use

(Dollars per short ton)

			Iron blast-	urnace slag			Stee	l slag
Use	Air-c	cooled	Gran	ulated	Exp	anded	A	
	Average	Range	Average	Range	Average	Range	Average	Range
Concrete aggregate Lightweight concrete	4.99	1.27-6.24	. 	- -				
_ aggregate					. W	W		
Concrete products	4.66	2.48-6.24			6.22	4.94-8.80		
Cement manufacture _					W	W		
Asphaltic concrete					•••	• • • • • • • • • • • • • • • • • • • •		
aggregate	4.70	2.76-6.35					3.67	1.70-8.2
Road base	3.88	1.50-6.24	3.63	3.44-3.64				
	3.77	1.13-5.65				-=	2.76	.90-8.1
Railroad ballast			6.02	3.60-7.70	W	w	3.23	.93-7.78
	3.63	2.75-7.73					2.91	1.24-7.59
Mineral wool	5.06	2.98-8.00						
Roofing, built-up								
and shingles	5.14	2.80-9.00						
Sewage treatment	W	w						
oil conditioning	**	**						
Blass manufacture	w	w					W	W
Other	3.75	1.29-6.50			6.16	2.51-10.20	2.89	1.77-4.44

W Withheld to avoid disclosing company proprietary data; included with "Other."

Kyanite and Related Materials

By Michael J. Potter¹

Kyanite, and alusite, and sillimanite are anhydrous aluminum silicate minerals that are alike in both composition and use patterns and have the same chemical formula, Al₂O₃·SiO₂. Related materials include synthetic mullite, dumortierite, and topaz, also classified as aluminum silicates, although the last two additionally contain substantial proportions of boron and fluorine, respectively. All of these kyanite-group substances can serve as raw materials for manufacturing special high-performance, high-alumina refractories, but there has been no record in recent years of significant utilization of either dumortierite or topaz for this purpose in the United States.

Although published statistics are incomplete, it appears that the United States, India, and the Republic of South Africa are the leading world producers of kyanitegroup minerals. It can be presumed that the U.S.S.R. and perhaps a few other industrialized nations also produce significant quantities of these materials.

U.S. kyanite output in 1981 was estimated to have shown a decrease compared with that of 1980. Export and import data

since 1977 for kyanite and mullite-containing materials are no longer collected as a separate category by the Bureau of the Census.

There has been a trend in recent years to replace lower duty refractories with higher duty, longer lasting refractories, such as those based on kyanite and mullite. As a result, the consumption of all refractories in the iron and steel, metallurgical, glass, etc., industries has decreased.

In steelmaking (which utilizes 75% of all refractories of all kinds), developments such as continuous casting have had a similar effect. During 1980, 18% of U.S. steel was cast continuously, and this was expected to increase to 25% by 1982 and to 45% by 1988. By contrast, in Europe, 43% of the steel was processed by continuous casting in 1980, and in Japan, the figure was 65%.

Legislation and Government Programs.—The allowable depletion rates for kyanite, established by the Tax Reform Act of 1969 and unchanged through 1981, were 22% for domestic production and 14% for foreign operations.

DOMESTIC PRODUCTION

Kyanite was produced in the United States in 1981 at three open pit mines, two in Virginia and one in Georgia. Kyanite Mining Corp. operated the Willis Mountain and East Ridge Mines in Buckingham County, Va. C-E Minerals, Inc., operated the Graves Mountain Mine in Lincoln County, Ga.

The tonnage of domestic kyanite in 1981 was estimated to have shown a decrease compared with that of 1980. Kyanite production statistics for 1981 (and for all previ-

ous years since 1949) are withheld to avoid disclosing company proprietary data.

There are three types of synthetic mullite. Fused synthetic mullite is made by melting Bayer process alumina and silica, or bauxite and kaolin, in an electric furnace at around 3,450° F. High-temperature sintered synthetic mullite is prepared by sintering mixtures of alumina and kaolin, bauxite and kaolin, or alumina, kaolin, and kyanite above 3,180° F. Low-temperature sintered synthetic mullite is made by sin-

tering siliceous bauxite or mixtures of bauxite and kaolin above 2,820° F.

Output of synthetic mullite in 1981 was largely of the high-temperature sintered variety, and the four producers of this material were A. P. Green Refractories Co. at Philadelphia, Pa.; C-E Minerals, at Americus, Ga.; Didier Taylor Refractories Corp. at Greenup, Ky.; and Harbison-Walker Refractories Co. at Eufala, Ala. Electric furnace-fused mullite was produced by The Carborundum Co. at Niagara Falls, N.Y.

Table 1.—Synthetic mullite production in the United States

Year	Quantity (short tons)	Value (thou- sands)
1977	40,280	\$5,283
1978	38,080	5,442
1979	40,660	6.675
1980	40,540	8,012
1981	42,000	9,050

CONSUMPTION AND USES

Conforming to established end use patterns, kyanite and related materials were consumed in 1981 mostly in the manufacture of high-alumina or mullite-class refractories and in lesser quantities as ingredients in some ceramic compositions. Domestic kyanite, already ground to minus 35 mesh as required by the flotation process used in its separation and recovery, was marketed either in the raw form or, after heat treatment, as mullite, which was sometimes further reduced in particle size before use. In the 35- to 48-mesh range, the mineral

was used mostly in monolithic refractory applications such as for high-temperature mortars or cements, ramming mixes, and castable refractories, or with clays and other ingredients in refractory compositions for making kiln furniture, insulating brick, firebrick, and a wide variety of other articles. More finely ground material, minus 200 mesh, for example, was used in body mixes for sanitary porcelains, wall tile, investment-casting molds, and miscellaneous special-purpose ceramics.

PRICES

Engineering and Mining Journal, December 1981, listed prices for kyanite, f.o.b. Georgia, ranging from \$85 to \$137 per short ton for bulk shipments and \$9 more per ton for bagged material.

Price ranges quoted for kyanite-group materials in Ceramic Industry magazine, January 1982, follow:

	Per short ton
Andalusite	\$180 \$150- 180
Mullite, calcined kyanite	\$150- 180 59- 187
Mullite, fused	920-1,440

The December 1981 issue of Industrial Minerals (London) quoted kyanite-group prices approximately equivalent to the following (converted from pounds sterling per metric ton to dollars per short ton):

	Per short ton
Andalusite, Transvaal, 52% to 54%	
Al ₂ O ₃ , bulk, c.i.f. main European port	\$127
Andalusite, Transvaal, 60% Al ₂ O ₃ , c.i.f.	
main European port	163
Sillimanite, South African, 70% Al ₂ O ₃ , bags, c.i.f. main European port	308

FOREIGN TRADE

Export data of kyanite and mullitecontaining materials are no longer collected as a separate category by the Bureau of the Census. Data had been collected until 1977, and these export figures were published in this section in what was then table 2 (U.S. exports and imports for consumption of kyanite and related minerals). However, these census figures did not distinguish between synthetic mullite and materials that were in part mullite.

Import data for kyanite-group minerals have likewise not been collected as a separate category since 1977.

WORLD REVIEW

Belgium-Luxembourg.—Imports of kyanité-group minerals in 1979 amounted to 2,200 tons. Principal countries of origin and the share supplied were the United States, 42%, and the United Kingdom, 23%. In 1980, imports of kyanite-group minerals were 3,400 tons. Principal countries of origin and the quantities supplied were the United States, 41%; the Republic of South Africa, 21%; the United Kingdom, 18%; and Brazil, 10%.4

Bulgaria.-Kyanite deposits are represented by kyanite schists, forming seams and lenses of up to 160 feet in thickness but with an average of 16 to 20 feet in thickness. Kyanite content in the schists is about 25% and is associated with other minerals such as almandine-garnet, biotite, feldspar, etc. A combined processing flowsheet was said to have been developed that includes autogenous grinding, gravity separation on concentration tables, magnetic separation, etc. It is thought that kyanite concentrate will obtain a large industrial application in the next few years.5

India.—The Indian Government reiterated that it does not intend to permit export of refractory-grade minerals, such as kyanite and sillimanite. Export licenses have been granted for only those materials of nonrefractory grade after studying the conservation aspect and also the need to earn foreign exchange. It was also reported that the mineral development board had achieved substantial progress in the beneficiation of low-grade kyanite available in the Purulia and Singhbhum districts.6

Netherlands.-In 1979, imports of kyanite-group minerals were 1,600 tons. Principal countries of origin and the share supplied were said to be the Republic of South Africa, 72%, and the Federal Republic of Germany, 19%. In 1980, imports of kyanitegroup minerals were 3,700 tons. Principal countries of origin and the percentage

supplied were the Republic of South Africa, 57%; the Federal Republic of Germany, 24%; and Brazil, 9%.7

South Africa, Republic of.—Hudson Mining Co. was purchased by Rand London Corp. from Zimro (Pty.) Ltd. for \$4.4 million. Hudson is the operator of the Republic of South Africa's largest andalusite mine at Annesley in the Northern Transvaal. Annual production capacity was around 65,000 tons, with actual output running about 44,000 tons per year.8

Tanzania.—The highly metamorphosed Archaean schists and gneisses in eastern Tanzania are found to have both kyanite and sillimanite as fairly common components, usually occurring as bands containing disseminations of the minerals within the rock body. Only a small amount of massive blue kyanite has been found. So far, there has never been any attempt to establish a conventional separation plant, and the commercial potential has remained untapped.9

United Kingdom.—Imports of kyanitegroup minerals in 1980 were approximately 51,000 tons. Principal countries of origin and the share supplied were the Republic of South Africa, 57%; France, 24%; and the

United States, 11%.10

-. Dutch Industrial Mineral Statistics, 1979 and 1980. No. 168, September 1981, p. 65.

1900, 190, 190, ceptember 1901, p. 00.

8——. Rand Acquires Andalusite and Diamond Operations. No. 167, August 1981, p. 14.

9 Jones, G. K. The Industrial Minerals of Tanzania. Ind. Miner. (London), No. 166, July 1981, p. 39.

10 Industrial Minerals (London). United Kingdom Industrial Minerals Statistics. No. 162, March 1981, p. 45.

¹Physical scientist, Division of Industrial Minerals. ²Industrial Minerals (London). Comment: Refractories-

The Stakes Are High. No. 169, October 1981, p. 9.

Brick and Clay Record. Executive Report. V. 178, No. 6,

June 1981, p. 9.

Industrial Minerals (London). Belgium-Luxembourg Industrial Minerals (London).

⁻ industrial Minerals (London). Belgium-Luxembourg Industrial Minerals Trade Statistics, 1978-1980. No. 168, September 1981, p. 49.

Stoev, S. The Industrial Minerals of Bulgaria. Ind. Miner. (London). No. 169, October 1981, p. 79.

*Industrial Minerals (London). No Export of Refractory Raw Materials. No. 165, June 1981, p. 12.

Table 2.—Kyanite, sillimanite, and related materials: World production, by country¹

Country ² and commodity	1977	1978	1979	1980 ^p	1981 ^e
Australia: Sillimanite ³	606	r ₆₂₆	626	729	730
Brazil: Kyanite ⁴	r ₁₉	r _{1.954}	1,929	r e _{1.930}	2,000
France: Kyanite-andalusite	29,579	r35,904	r e33,000	r e 33,000	33,000
India:		00,001	00,000	00,000	33,000
Andalusite	427	248			
Kyanite	46,433	34.058	44.874	51,282	52.900
Sillimanite	16,560	14,849	17,752	14.315	15,400
Korea, Republic of: Andalusite	127	67	66	90	10,400
South Africa, Republic of:		••		•	
Andalusite	124,645	123,503	147.905	216,622	5199,829
Sillimanite	17,036	10.516	21,577	17.851	510,422
Spain: Andalusite	3.286	5,607	5.903	7.133	7,200
United States:	. 0,200	0,001	0,000	1,100	1,200
Kyanite	W :	w	w	w	w
Synthetic mullite	40,280	38.080	40,660	40.540	542.000

^eEstimated. PPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data.

¹Owing to incomplete reporting, this table has not been totaled. Table includes data available through Mar. 31, 1982.

²In addition to the countries listed, a number of other nations produce kyanite and related materials, but output is not reported quantitatively and no reliable basis is available for estimation of output levels.

³In addition, sillimanite clay (also called kaolinized sillimanite) is produced, but output is not reported quantitatively, and available information is inadequate for the formulation of reliable estimates of output levels.

⁴Series revised to reflect output of marketable products; crude production (as reported in previous editions of this chapter) was as follows, in short tons: 1977—121; 1978—7,615; 1979—9,031; 1980—9,050 (estimated); 1981—9,300 (estimated).

⁵Reported figure.

Lead

By John A. Rathjen¹ and William D. Woodbury²

U.S. mine output of recoverable lead in 1981 dropped sharply owing to midyear strikes at the Missouri mines of the St. Joe Lead Co. and the Buick, Mo., lead complex owned by AMAX Lead Co. of Missouri and Homestake Lead Mining Co. Primary refinery production of lead in 1981 from domestic and foreign raw materials, including lead in antimonial lead, decreased slightly, as the shortfall in domestic mine production was partially offset by imports of raw mate-

rials. The principal countries supplying raw materials were Canada, Peru, Australia, and Honduras. Production of secondary lead dropped slightly owing to a shortage of scrap and low prices during the second half of the year.

Total stocks of refined and antimonial lead rose moderately in 1981, with an increase in producer stocks partially offset by a decrease in secondary and consumer inventories.

Table 1.—Salient lead statistics

(Metric tons unless otherwise specified)

	1977	1978	1979	1980	1981
United States:					
Production:				_	
Domestic ores, recoverable lead content	537,499	529,661	525,569	^r 550,366	445,535
Value thousands	\$363,789	\$393,516	\$609,929	r\$515,189	\$358,821
Primary lead (refined):	*****		******	•	
From domestic ores and base bullion	486,659	501,643	529,970	508,163	440,238
From foreign ores and base bullion	62,041	63,530	45,641	39,427	55,085
Antimonial lead (primary lead content)	2,987	2,914	2,596	851	3,008
Secondary lead (lead content)	757,592	769,236	801.368	675,578	641,105
Exports (lead content):	101,002		002,000	0.0,0.0	,
Lead ore and concentrates	NA	54,231	32,902	27,615	33,043
Lead materials excluding scrap	8.931	8,225	10.646	164,458	23,320
	0,001	0,220	10,010	101,100	20,020
Imports, general:	66,533	52,985	39,998	44,095	58,545
Lead in ore and matte		4.307	1.681	296	449
Lead in base bullion	7,319			88.995	107.185
Lead in pigs, bars, and reclaimed scrap	243,164	226,926	198,344	00,330	101,100
Stocks Dec. 31 (lead content):	04.440	00 005	00.000	105.004	140.007
At primary smelters and refineries	91,113	98,665	89,322	125,994	140,207
At consumers and secondary smelters	121,387	125,234	153,195	126,214	123,216
Consumption of metal, primary and secondary	1,435,473	1,432,744	1,358,335	1,070,303	1,167,101
Price: Common lead, average, cents per pound ¹	30.70	33.65	52.64	42.46	36.53
World:					
Production:					
Mine thousand metric tons	r3,345.3	r3,372.6	r3,400.5	P3,428.3	e3,352.6
Smelter ² do	r3.189.9	r3.224.2	r3,299.2	P3,205.0	e3,159.0
Secondary smelterdo	r _{1.949.8}	r1.961.0	r2,070.4	P1.929.4	e1.822.0
	1,343.0	1,001.0	2,010.4	1,040.4	1,000.0
Price: London, common lead, average, cents per	28.00	29.86	54.52	41.21	-33.30
pound	20.00	25.00	04.02	41.21	00.00

Estimated. Preliminary. Revised. NA Not available.

¹Quotation on a nationwide, delivered basis.

²Primary metal production only. Includes secondary metal production where inseparably included in country total.

The U.S. monthly producer price continued a decline that began in 1980, reaching a yearly low of 30 cents per pound in February 1981. In mid-February, the price trend turned upward and rose steadily to an annual high of 44 cents per pound in August. Most of the increase was attributed to midyear labor problems in the Missouri lead belt. In August, when strike problems had been settled, the U.S. producer price began a steady decline, with the December monthly average price reduced to 31 cents per pound. The average price for lead in 1981 was 36.5 cents per pound compared with 42.5 cents per pound in 1980. London Metal Exchange (LME) quotations for lead essentially paralleled the U.S. price with the exception of a short period from mid-January to mid-February when the LME quotation was higher than the U.S. producer price. LME quotations began the year at 32 cents per pound and closed at 31 cents according to Metals Week.

World mine and smelter production

decreased slightly in 1981, reflecting depressed market conditions and labormanagement problems in the United States, Canada, and South America.

Legislation and Government Programs.—The International Lead and Zinc Study Group, at its 26th session in Geneva during October, estimated that world mine production in 1981 would be slightly lower than that of 1980 and that metal production and consumption would remain relatively unchanged from the 1980 totals. For 1982, increases in both mine and metal production were predicted along with a nominal growth in consumption.

The Federal Emergency Management Agency, which revised the national stockpile goal for lead in 1980 to 998,000 tons, did not initiate any futher modification, and the goal was unchanged through 1981. The stockpile inventory at yearend was 545,000 metric tons, indicating a continuing net shortage.

DOMESTIC PRODUCTION

MINE PRODUCTION

U.S. mine production of recoverable lead decreased 19% in 1981 from the 5-year high achieved in 1980. This was primarily the result of strikes at seven of the major producing mines in Missouri and was the lowest total in recent years. Eight lead mines in Missouri yielded 87% of total domestic production and, together with lead producing mines in Idaho and Colorado produced 99% of the total U.S. mine output.

The Buick Mine in Iron County, Mo., equally owned by AMAX Lead and Homestake Lead, continued as the largest single producing unit, milling 1.6 million tons of ore, down 16% from that of the previous year. Buick ore contributed 105,000 tons of lead in concentrates. Total reserves of the Buick Mine were estimated to be over 40 million tons at an average grade of 5.9% lead.

St. Joe Lead, the largest wholly owned domestic lead producer, was acquired by the Fluor Corp. on August 3, 1981. The company operated four lead mine and milling complexes in southeastern Missouri producing up to 1,000 tons per day of concentrates to feed its smelter at Herculaneum, Mo. The Viburnum trend properties operating during 1981 milled 3.4 million tons of ore averaging 4.6% lead, which generated 152,380 tons of lead in concentrates, a de-

crease of 29% from that of 1980. St. Joe Lead had proven domestic reserves of 58 million tons of ore containing 5.1% lead and was expected to have a daily production capability of 20,000 tons of ore in 1984 when the new Viburnum No. 35 is fully productive.

The Magmont Mine in Iron County, Mo., jointly owned by Cominco American, Inc., and Dresser Industries, Inc., produced slightly over 1 million tons of ore at an average grade of 7% lead, which yielded about 89,000 tons of lead concentrates. These concentrates were tolled by AMAX-Homestake Lead Tollers, at the Buick smelter in Boss, Mo. During 1981, the East ore body was brought into production and development of the new West ore body was 78% completed, which was expected to extend the mine life to about 1990.

Development continued at the new West Fork Mine of ASARCO Incorporated, 23 miles from its smelter at Glover, Mo. Shaft sinking and construction of the mill and surface facilities proceeded according to schedule. Full production will be about 3,450 tons per day of ore and 46,000 tons of lead in concentrates annually, which will triple Asarco's domestic lead mine capacity. The estimated development cost of West Fork was \$77 million, and there were 15 million tons of measured reserves assaying 5.5% lead and 1.2% zinc.

Hecla Mining Co. reported that its Lucky Friday Mine, which was acquired through the acquisition of Day Mines, Inc., during 1981, produced 135,000 tons of ore at a grade of 8.4% lead. Overall production was down 21% from 1980 owing to a 9-week strike. The mine was connected with the Hunter Ranch property, formerly operated by Day Mines, Inc., and is now mined as one unit. A new shaft is being sunk that was planned to bottom 7,500 feet. Ultimate production will be increased 35% by the new shaft. The Star-Morning Unit, equally owned by The Bunker Hill Co. as of May 31, 1981, but operated by Hecla, produced 274,000 tons of ore at 5.0% lead, up 7% from that of 1980. Reserves at the Lucky Friday and Star-Morning mines were estimated to be 534,000 and 1,017,000 tons, respectively. Owing to the announced closure of the Bunker Hill smelter, new contracts were negotiated with Asarco to process lead concentrates from both units at East Helena, Mont. Prior to the Bunker Hill closing, all of the Star-Morning and 50% of the Lucky Friday lead concentrates were tolled at Kellogg, Idaho. Hecla produced 17,000 tons of lead in 1981 from these two mines, which did not include Bunker Hill's share from the Star-Morning

In August, Gulf Resources and Chemical Corp., the parent company of Bunker Hill announced the closing of the Bunker Hill Mine at Kellogg, Idaho, owing to excessive current and projected losses. Despite the phaseout and cessation of production late in the fourth quarter, the mine was the eighth largest domestic producer during 1981, producing approximately 14,500 tons of lead in concentrates. The Bunker Hill share of the Star-Morning production was approximately 6,000 tons of lead in concentrates.

SMELTER AND REFINERY PRODUCTION

Primary.—Domestic production of primary lead, including lead in antimonial lead from the five primary refineries in 1981, was 9% less than that in 1980. During the year, St. Joe Minerals Corp. licensed patents and technology for the production of wrought lead-calcium and lead-calcium-tinstrip in the United Kingdom. The rolled lead strip alloy is used in maintenance-free batteries. The company also announced the discontinuation of its subsidiary, Formet Technology Corp., which had been researching new alloys with super plastic properties.

The St. Joe Lead smelter-refinery at Herculaneum, Mo., was the Nation's largest at 204,000 tons per year capacity. It produced 152,390 tons of lead metal in 1981, down 29% from that of the previous year, primarily because of a 12-week mine strike that deprived the smelter of raw feed material. The smelter processed concentrates from company mines in the Viburnum trend of southeastern Missouri.

At Boss, Mo., the AMAX-Homestake smelter-refinery produced 91,403 tons of lead metal from concentrates produced at their Buick Mine and the Magmont Mine in Iron County, Mo.

Asarco reported that its three smelters at East Helena, Mont., El Paso, Tex., and Glover, Mo., produced 169,825 tons of lead bullion in 1981. The El Paso and East Helena operations, which custom toll concentrates from domestic and foreign sources, ship bullion to Asarco's Omaha refinery where 89,720 tons of refined lead metal was produced. The Glover smelterrefinery complex produced 69,580 tons of lead metal from Missouri and Illinois ores. The company production of 159,300 tons of metal was 16% greater than that of 1980 but was only 60% of its total smelting capacity. Foreign sources of concentrates at East Helena and El Paso came primarily from Canada, Australia, Honduras, Mexico, and Peru. At East Helena, the completion of a \$2.9 million, 425-foot concrete stack and fan on the baghouse, through which blast furnace emissions are filtered, will enable the plant to operate without the necessity of periodic curtailment for air-quality purposes. At Glover, a new 375-foot stack on the baghouse was completed along with a second blast furnace.

The Bunker Hill smelter-refinery produced an estimated 100,000 tons of lead metal in 1981 over 11 months, at which time operations were terminated. Reasons for the permanent closure cited by Gulf included projected losses for Bunker Hill in excess of \$21 million in 1981 and no foreseeable near-term return to profitability. Raw material feed to the plant during 1981 came from Bolivia, Canada, Peru, and the United States.

At yearend, total domestic primary smelting-refining capacity for primary lead was 595,000 tons compared with 714,000 tons at the start, as a result of the announced Bunker Hill closure.

Secondary.—Production of lead from recycled materials continued to decline owing to a shortage of available scrap and reduced profit margins at secondary conversion plants.

A new 27,000-ton-per-year secondary lead smelter at St. Helens, Oreg., to be operated by the Bergsoe Metal Corp., was scheduled to come onstream in April 1982. Preliminary construction was completed and breakin procedures were initiated. Expansion at the Gould Inc. secondary smelter in Los Angeles, Calif., proceeded according to plan. It was expected that the new complex will produce about 54,000 tons of secondary lead per year beginning about August 1982.

CONSUMPTION AND USES

Domestic consumption of lead reversed its downward trend in 1981, increasing to 1.17 million tons, compared with 1.07 million tons in 1980. Declines in use for gasoline additives, solder, and casting metals were more than offset by increased demand for lead in the manufacture of lead-acid storage batteries, pigments, and ammunition. Starting-lighting-ignition (SLI) batteries, which are used primarily in the automotive industry, were the main contributors to increased consumption in 1981. Although production of new automobiles was reduced. there was strong demand for replacement SLI batteries. Shipments were about 7% above the 1980 total of 53.6 million units.

LEAD PIGMENTS

Consumption of pig lead in the manufacture of lead oxides and pigments in 1981 increased 27% from the 1980 total. The

growth was attributed mainly to the upturn in use for storage battery oxides and chemicals required by the paint, ceramic, and plastic industries.

Prices.—The quoted price for lead chemicals in 1981 was based on the selling prices for pig lead in a given period; however, premium adjustments were made by the individual companies to reflect differences in manufacturing technique, freight considerations, quality requirements, and other factors. The average premium during 1980 for litharge was approximately 7.0 cents per pound above the U.S. price, and for red lead, about 9.0 cents per pound above the U.S. price.

Foreign Trade.—Imports of lead chemicals and pigments in 1981 increased about 17% above the 1980 receipts and reflected an increased demand in the replacement storage battery industry.

PRICES

The U.S. producer price for lead, which was declining at the beginning of the year, continued its downward trend to a Metals Week monthly published average of 30 cents per pound in February. During the last 2 weeks of February, Bunker Hill, Asarco, Cominco, and several of the larger secondary smelters increased their price quotations by 2 cents per pound. The reasons given for higher prices were a disparity in the world market where lead was being traded above the U.S. price, and a shortage of raw material in the secondary sector. This price increase initiated an upward trend that peaked at an average price of 44 cents per pound in August. The upward pressure on the pricing structure was accentuated by strikes at the Missouri lead mines of St. Joe Lead and a complete shutdown at the AMAX-Homestake lead complex. In September, following the resolution of labor problems in the Missouri lead belt, the U.S. producer price again fell into a decline which lasted through the balance of the year. The December average was published in Metals Week at 31 cents per pound. The annual average U.S. producer price for lead was 36.5 cents per pound in 1981, compared with 42.5 cents in 1980.

LME quotations during 1981 were not competitive with U.S. pricing. The average spread for the year on a 12-month weighted basis was about 3.6 cents per pound, and the cost of shipping, duty, handling, and inland freight was estimated to be above 6.0 cents. The average annual cash lead price on the LME was 33.3 cents per pound.

FOREIGN TRADE

In 1981, the United States was a net importer of about 15,000 tons of lead metal for consumption, in all forms excluding oxides, as compared with net exports of 197,000 tons in 1980. The change in trade

balance was largely attributed to declines in exports of unwrought lead, lead alloys, and scrap because of depressed foreign markets. Because of labor problems at domestic primary smelters-refiners, there was a modest

increase in exports of lead concentrates, while exports of wrought lead and lead alloys declined slightly. Canada and Mexico continued as the primary sources of imports. Honduras, Australia, and Peru also contributed to the domestic supply, exporting both metal and lead contained in concentrates, to the United States.

Tariff regulations in effect during 1981 are given in table 2, on a lead content basis.

Table 2.—U.S. import duties for lead materials, January 1, 1981

Item	TSUS No.	Most favored nation (MFN)	Least developed develop- ing countries (LDDC)	Non-MFN	
Ore	602.10	$0.75\mathrm{cent}$ per pound	Free	1.5 cents per pound on lead content.	
Lead bullion Other unwrought Waste and scrap	1624.02 1624.03 1624.04	3.5% ad valorem 23.0% ad valorem 3.4% ad valorem	do do 2.3% ad valorem	10.5% ad valorem. 10% ad valorem. 11.5% ad valorem.	

¹The minimum duty shall not be less than 1.0625 cents per pound of lead.

WORLD REVIEW

Consumption of refined metal in the market economy countries dropped approximately 4.5% during 1981 to slightly under 3.8 million tons. Producer, consumer, and merchant stocks in these Nations remained essentially unchanged at 524,200 tons at yearend, according to International Lead and Zinc Study Group statistics. The U.S. Bureau of Mines estimated total world refined production, excluding remelt scrap, remained essentially unchanged at 5.3 million tons, and total world mine production declined slightly.

Australia.—Mine production decreased and smelter and refinery production increased slightly. Estimated exports of bullion remained essentially the same. During 1981, one new mine with lead ore, the Que River project in Tasmania, was opened by Aberfoyle Ltd., owned 47% by Cominco. Primarily a silver and zinc project, the mine will also produce about 1,000 tons per month of lead, starting in 1982. No lead mine closings were announced during the year in Australia.

At Mount Isa Mines Holdings, Ltd. (MIM), Mount Isa Mine, the largest lead and silver mine in the world, work continued on development to expand lead production by 20% to 177,000 tons per year by 1983. During 1981, the mill modernization was completed. Asarco, which owned 49% of MIM Holdings, Ltd., announced intentions to reduce its holdings to 44% in order to give MIM greater flexibility in developing new resource projects under Australia's 50% domestic equity quidelines. Near Cobar, New South Wales, the Electrolytic Zinc Co. of Australasia Ltd. (EZ Industries) continued with development of the zinc-leadsilver Elura Mine, which was expected to start up in 1983 with a capacity of 40,000 tons per year of lead by 1985. In the Kimberley region in Western Australia near the Northern Territory, Aquitaine Proprietary Ltd. and MIM continued exploration and hydrogeochemical assessment of the Sorby Hills lead deposit. During 1982 and 1983, total mine capacity for lead in Australia was expected to increase by about 100,000 tons per year.

Bolivia.—Construction started during the year on the \$165 million Karachipampa primary lead and silver smelter complex in the Potosí district. The plant will be jointly owned by Corporacion Minera de Bolivia and Empresa Nacional de Fundiciones and will use the Soviet KIVCET direct-reduction technology. The plant was expected to be operational in 1983, and production was expected to reach the level of 22,000 tons per year by 1984. At Quioma, Asarco, a 58% owner, completed a 50% expansion of its mine system to a capacity of 300 tons per day of ore and 6,000 tons per year of lead.

Canada.—Mine production of lead reached a 5-year high, primarily owing to Brunswick Mining and Smelting Corp. Ltd. completing the expansion of its No. 12 Mine near Bathurst, New Brunswick, early in the year and achieving full production of 10,000 tons per day of ore by April. The mine's lead capacity of 85,000 tons per year was second only to Cominco's Sullivan Mine, equivalent to 90,000 tons per year, at Kimberly, British Columbia. Also near Bathurst, Anaconda Canada Exploration Ltd. performed metallurgical testing to determine the feasibility of reopening its Caribou Mine. Two new producers in Nova Scotia, the Gays River Mine of Esso Resources Canada Ltd. and the Cape Breton Mine of Yava Mines Ltd. encountered major production problems

²Temporary reduction until July 1, 1983, unless rescinded.

during the year and temporarily ceased operations. Ore production at Cominco's Sullivan Mine in British Columbia was the highest since 1964 as ore grades improved by 0.5% and lead concentrate production was correspondingly higher. Conversion of the mine to a mechanized system progressed, and major improvements were made to the ventilation system. At Cominco's Polaris Mine on Little Cornwallis Island, Northwest Territory, the world's most northern mine, surface construction and underground contract development work was completed, and ore was first fed into the mill in November. The mill design capacity is 30,000 tons per year of lead in concentrates. When full production is achieved, Cominco will become the world's largest wholly integrated producer of lead and zinc.

Cadillac Explorations Ltd. of Calgary continued with development of the Prairie Creek Mine in the Nahanni mining district, Northwest Territory, and constructed a 900-ton-per-day mill. The average ore grade in proven reserves from 12 mineralized zones is 11.2%. The combined leases of Cadillac will yield mine production estimated at 25,000 tons per year lead in concentrates. Startup was scheduled for 1982.

In exploration during 1981, Cyprus Anvil Mining Corp. and Hudson Bay Oil and Gas Company Ltd. conducted a major program on the Cirque deposit in the Akie River district north of Williston Lake in northcentral British Columbia. A diamond drilling program was completed that reportedly indicated a lead-zinc-silver district of potentially major proportions. Cyprus Anvil continued its Vangorda Plateau development program in the Yukon, completing a \$71 million modification of its Anvil concentrator and starting a \$240 million long-term development of the Vangorda and Grum opencast mines. These ores will be blended with those from the existing Faro Camp (presently 85,000 tons per year). In Newfoundland, Asarco continued with exploration and development of deeper and contiguous ore deposits of the Buchans Mine.

Italy.—Societa per Azioni Minero-Metallurgiche (SAMIM) closed its 30,000-ton-peryear primary smelter at San Gavino, Sardinia, but kept operating its 80,000-ton-peryear refinery and started construction of a new 80,000-ton-per-year smelter, scheduled for completion in 1985.

Mexico.—Although mine production was slightly higher than that of 1980, it was

significantly below any level achieved in the previous 5 years. Smelter and refinery production rose moderately. Mexico Desarrollo Industrial Minero, S.A. (MEDIMSA), is a holding company owned 34% by Asarco, which owns the shares of the part of Industrial Minera Mexico, S.A. (IMMSA), that is engaged in the mining, milling, smelting and refining of nonferrous metals. In 1981, production of IMMSA's Santa Barbara and Santa Eulalia mines was reduced by strikes that lasted for 75 and 81 days, respectively. In March, MEDIMSA signed a \$250 million loan agreement with a consortium of banks to finance the completion of several major expansion and construction projects. Three of those projects were completed for IMM-SA in 1981. The Velardena Mine in Durango reached design capacity of 800 tons per day of ore in September; the Taxco Mine had an expansion from 2,400 tons per day of ore to 3,600 tons per day in July; and the Santa Barbara Mine in Chihuahua had an expansion from 2,600 tons per day to 5,300 tons per day by yearend. Development work also continued at IMMSA's Rosario project in Sinaloa. The new underground mine will have an estimated lead production capacity of 11,000 tons per year and is scheduled for startup in 1983. Comision de Fomento Minero, Frisco S.A. de C.V., and Placer Development Ltd. of Canada continued development of the Real de Angeles open pit mine in Zacatecas with an anticipated 1982 startup. This mine has an estimated capacity of 31,000 tons per year of lead in concentrates. By 1983, new mines and scheduled or ongoing expansions will add an estimated 55,000 tons per year to Mexican capacity for lead production. During 1981, the Cuale Mine was opened by Industrias Peñoles near Puerto Vallarta, Jalisco, which offset the closing of the company's mine at Reforma, Sinaloa.

Yugoslavia.—Expansion of three existing underground mines at Blagodat, Srebrenica, and Trepca, planned for completion by 1984, will provide additional capacities of 3,000, 4,000, and 9,000 tons per year of lead, respectively. A new open pit mine was under development at Vares by Energoinvest for startup in 1983, producing 4,000 tons per year of lead, and the new Topanica Mine near Kriva Planka in Macedonia came onstream. The Topanica Mine had reported reserves of 13.8 million tons of ore, sufficient for 20 years of mining.

TECHNOLOGY

During 1981, the Bureau of Mines Rolla Research Center developed an electrochemical system for recycling secondary lead materials that is energy efficient and less polluting than conventional pyrometallurgical smelting. Electrorefining of lead anodes made from scrap battery grid metal yielded cathode deposits of 99.99% lead at near 100% current efficiency. The scrap grid metal was cleaned in a ball mill containing (NH₄)₂CO₃ solution prior to melting to remove the adhering sludge and eliminate fumes that are normally generated during melting. The sludge was treated for recovery of lead during a second phase electrowinning operation. A hydrometallurgical treatment procedure was developed for recovery of the antimony, lead, and other values from slimes generated during electrorefining and for recycling the drosses generated in the melt prior to casting anodes. A report describing initial bench-scale work on the process was published in December.4 and a patent was awarded in June.5

In a related development, the statecontrolled Italian engineering company, Snamprogetti S.p.A., announced that it will license technology for its electrochemical technique that reclaims battery lead, known as the Ginatla process. The process fundamentally involves cutting the bottoms off whole batteries and immersing them directly in an electrolyte where the lead values are dissolved prior to electrowinning.

A comprehensive coverage of lead-related investigations and an extensive review of current world literature on the extraction and uses of lead and its products are contained in quarterly issues of Lead Abstracts published by the Lead Development Association, London, England.

Progress reports of the projects supported by the International Lead and Zinc Research Organization, Inc. (ILZRO), are released annually in the ILZRO Research Digest.

¹Mineral specialist, Division of Nonferrous Metals. ²Physical scientist, Division of Nonferrous Metals. ³International Lead and Zinc Study Group (London). ead and Zinc Statistics. Monthly Bull., v. 22, No. 4, April

Lead and Zinc Statistics. Monthly Bull., V. 22, No. 4, April 1982, pp. 15, 17.

Cole, E. R., Jr., A. Y. Lee, and D. L. Paulson. Electrolytic Method for Recovery of Lead From Scrap Batteries. BuMines RI 8602, 1981, 19 pp.

5—. Electrowinning of Lead From H₂SiF₆ Solution. U.S. Pat. 4,272,340, June 9, 1981.

U.S. Pat. 4,272,340, June 9, 1981.

⁶American Metal Market. Snamprogetti To Market Non-Polluting Process To Recover Battery's Pure Lead. V. 89, No. 135, July 15, 1981, p. 8.

Table 3.—Mine production of recoverable lead in the United States, by State
(Metric tons)

State	1977	1978	1979	1980	1981
Arizona	288	416	354	r ₁₆₂	993
California	3	W	W	. W	W
Colorado	20,860	15.151	7.554	10.272	11,431
Idaho	42,872	44,761	42,636	38,607	38,397
Maine	161	,	,	,	
Missouri	453,824	461,762	472,054	497,170	389,721
Montana	96	132	258	295	194
Nevada	674	653	24	26	w
New York	2,520	990	458	876	968
Oregon	-,	•••	(1)		w
Tennessee			77		**
77. 1	9,749	$2.5\overline{41}$	w	w	1,662
· · · · · · · · · · · · · · · · · · ·	1,998	1,803	1,596	1.563	1,607
		1,808 ₩		1,505 W	1,001
	1,090		(1)		
Other	3,364	1,452	635	r _{1,395}	562
Total	537,499	529,661	525,569	r550,366	445,535

^rRevised. W Withheld to avoid disclosing company proprietary data; included with "Other." ¹Less than 1/2 unit.

Table 4.—Production of lead and zinc in the United States in 1981, by State and class of ore from old tailings, etc., in terms of recoverable metal

(Metric tons)

		Lead ore			Zinc ore		Le	Lead-zinc ore			
State	Gross weight (dry basis)	Lead	Zinc	Gross weight (dry basis)	Lead	Zinc	Gross weight (dry basis)	Lead	Zino		
Arizona	(¹)	(1)	(¹)								
Colorado	· · · · · · · · · · · · · · · · · · ·						(1)	(1)	W		
Idaho	(1)	. (1)	w	(¹)	(¹)	w	845,579	26.821	W		
Missouri	7,729,301		52,904				- 1		4		
Montana	549	21	4								
New Jersey				89,037	٠	16,198	100	==			
New York				509,799	968	36,889					
Pennsylvania				491,543		24,732					
Tennessee				4,511,557		115,369					
Utah						´	33,160	1,660	1,578		
Virginia				398,291	1,607	9,731			·		
Other ²	. 7	4		11,431		149	11	3	43,260		
Total Percent of total	7,729,857	389,746	52,908	6,011,658	2,575	203,068	878,750	28,484	44,835		
lead-zinc	XX	87	17	XX	1	65	XX	6	14		
	Cobber.	lead, copp		All other sources ³			Tot		otal		
	coppe	and r-lead-zind	cores	All of	her sour	ces ³		Total			
	Gross weight (dry basis)		Zinc	Gross weight (dry basis)	her sour	Zinc	Gross weight (dry basis)	Total Lead	Zino		
- Arizona	Gross weight (dry	r-lead-zind		Gross weight (dry basis)	Lead	Zinc	weight (dry basis)	Lead			
ArizonaColorado	Gross weight (dry	r-lead-zind		Gross weight (dry basis)	Lead	Zinc	weight (dry basis) 64,180,556	Lead	138		
Colorado	Gross weight (dry	r-lead-zind		Gross weight (dry basis) 164,180,556 1826,211	Lead 1993 111,431	Zinc 1138 W	weight (dry basis) 64,180,556 826,211	Lead 993 11,431	138 W		
Colorado Idaho	Gross weight (dry	r-lead-zind		Gross weight (dry basis)	Lead 1993 111,431	Zinc	weight (dry basis) 64,180,556 826,211 1,715,219	993 11,431 38,897	138 W		
Colorado Idaho Missouri Montana	Gross weight (dry	r-lead-zind		Gross weight (dry basis) 164,180,556 1826,211 1869,640	1993 111,431 111,576	Zinc 1138 W W	weight (dry basis) 64,180,556 826,211 1,715,219 7,729,301	993 11,431 38,897 389,721	138 W W 52,904		
Colorado Idaho Missouri Montana	Gross weight (dry	r-lead-zind		Gross weight (dry basis) 164,180,556 1826,211	Lead 1993 111,431	Zinc 1138 W	weight (dry basis) 64,180,556 826,211 1,715,219 7,729,301 559,613	993 11,431 38,897	138 W W 52,904		
Colorado Idaho Missouri Montana New Jersey	Gross weight (dry	r-lead-zind		Gross weight (dry basis) 164,180,556 1826,211 1869,640	1993 111,431 111,576	Zinc 1138 W W	weight (dry basis) 64,180,556 826,211 1,715,219 7,729,301 559,613 89,037	993 11,431 38,897 389,721 194	138 W W 52,904 25 16,198		
Colorado Idaho Missouri Montana New Jersey New York Pennsylvania	Gross weight (dry	r-lead-zind		Gross weight (dry basis) 164,180,556 1826,211 1869,640	1993 111,431 111,576	Zinc 1138 W W -21	weight (dry basis) 64,180,556 826,211 1,715,219 7,729,301 559,613 89,037 509,799	993 11,431 38,897 389,721	138 W W 52,904 25 16,198 36,889		
Arizona Colorado Idaho — Missouri Montana New Jersey New York Pennaylvania — Tennessee — — —	Gross weight (dry	r-lead-zind		Gross weight (dry basis) 164,180,556 1826,211 1869,640	1993 111,431 111,576 173	Zinc 1138 W W	weight (dry basis) 64,180,556 826,211 1,715,219 7,729,301 559,613 89,037 509,799 491,548	993 11,431 38,897 389,721 194	138 W 52,904 25 16,198 36,889 24,732		
Colorado Idaho Missouri Montana Now Jersey New York Pennsylvania Tennessee Utah	Gross weight (dry basis)	r-lead-zind	Zinc	Gross weight (dry basis) 164,180,556 1826,211 1869,640 559,064	1993 111,431 111,576 173	Zinc 1138 W W -21	weight (dry basis) 64,180,556 826,211 1,715,219 7,729,301 559,613 89,037 509,799 491,543 6,295,162	993 11,431 38,897 389,721 194 968	138 W 52,904 25 16,198 36,889 24,732 117,684		
Colorado Idaho	Gross weight (dry basis)	r-lead-zind	Zinc	Gross weight (dry basis) 164,180,556 1826,211 1869,640	1993 111,431 111,576	Zinc 1138 W W -21	weight (dry basis) 64,180,556 826,211 1,715,219 7,729,301 559,613 89,037 509,799 491,548	993 11,431 38,897 389,721 194	138 W 52,904 25 16,198 36,889 24,732 117,684 1,576		
Colorado Idaho	Gross weight (dry basis)	r-lead-zind	Zinc	Gross weight (dry basis) 164,180,556 1826,211 1869,640 559,064	1993 111,431 111,576 173	Zinc 1138 W W -21	weight (dry basis) 64,180,556 826,211 1,715,219 7,729,301 559,613 89,037 509,799 491,543 6,295,162 37,242	993 11,431 38,397 389,721 194 968 1,662	Zinc 138 W 52,904 25 16,198 36,899 24,732 117,684 1,576 9,731 52,541		
Colorado Idaho Missouri Montana Now Jersey New York Pennsylvania Tennessee Utah	Gross weight (dry basis)	r-lead-zind	Zinc	Gross weight (dry basis) 164,180,556 1826,211 1869,640 559,064 4,082	1993 111,431 111,576 173 2	Zinc 1138 W W 1	weight (dry basis) 64,180,556 826,211 1,715,219 7,729,301 599,613 89,037 509,799 491,543 6,295,162 37,242 398,291	993 11,431 38,397 389,721 194 968 1,662 1,607	138 W W 52,904 25 16,198 24,732 117,684 1,576 9,731 52,541		

cleanups.

Table 5.—Mine production of recoverable lead in the United States, by month (Metric tons)

Month	1980	1981
January	51,432	42.64
February	50,278	40.89
March	49,838	43,396
April	48,904	26,74
May	49,893	27.846
June	46,101	17.40
July	43,409	31,82
August	41.541	38.236
September	r39,384	47.994
October	r48.553	47.499
	r39,715	39,760
December	^r 41,318	41,295
Total	r550,366	445,535

Revised.

W Withheld to avoid disclosing company proprietary data; included with "Other." XX Not applicable.

1 Lead ore, zinc ore, lead-zinc ore, copper-lead ore, and ore from "All other sources" combined to avoid disclosing company proprietary data.

2 Includes Alaska, California, Illinois, Kentucky, Nevada, New Mexico, Oregon, and lead and zinc recovered from tailings not distinguishable as to State origin.

3 Lead and zinc recovered from copper, gold, silver, and fluorspar ores and from mill tailings and miscellaneous cleanura.

Table 6.—Twenty-five leading lead-producing mines in the United States in 1981, in order of output

Rank	Mine	 County and State 	Operator	Source of lead
1	Buick	Iron, Mo	AMAX Lead Co. of Missouri	Lead ore.
2	Milliken	Reynolds, Mo	Ozark Lead Co	Do.
3	Magmont	Iron, Mo	Cominco American, Inc	Do.
4	Fletcher	Revnolds.Mo	St. Joe Lead Co	Do.
5	Viburnum No. 29	Washington, Mo	do	Do.
6	Viburnum No. 28	Iron, Mo	do	Do.
7	Brushy Creek	Reynolds, Mo	do	Do.
Ŕ	Bunker Hill	Shoshone, Idaho	The Bunker Hill Co	Lead-zinc ore
8	Star Unit	do	Helca Mining Co	Do.
1Ŏ	Lucky Friday	do	do	Silver ore.
īĭ	Indian Creek	Washington, Mo	St. Joe Lead Co	Lead ore.
īē	Leadville Unit	Lake, Colo	ASARCO Incorporated	Lead-zinc ore
เรี	Sunnyside	San Juan, Colo	Standard Metals Corp	Gold ore.
14	Ontario Project	Summit, Utah	Noranda Mines, Ltd.	Lead-zinc ore
15	Austinville and	Dummis, Cum	110141144 1111100, 11411	2002 2110 010
-0	Ivanhoe	Wythe, Va	The New Jersey Zinc Co	Zinc ore.
16	Bulldog Mountain	Mineral, Colo	Homestake Mining Co	Silver ore.
iř	Balmat	St. Lawrence, N.Y	St. Joe Lead Co	Zinc ore.
18	Sherman Tunnel	Lake, Colo	Helca Mining Co	Silver ore.
19	McCracken	Mohave, Ariz	Mindy Inc	Do.
20	Clayton	Custer, Idaho	Clayton Silver Mines	Do.
21	Inverness	Hardin, Ill	Inverness Mining Co	Fluorspar.
22	Camp Bird	Ouray, Colo	Federal Resources Co	Silver ore.
23	Silver Bell Unit	Pima, Ariz	ASARCO Incorporated	Copper ore.
24	Rosiclare	Hardin & Pope, Ill	Ozark Mahoning Co	Fluorspar.
25	Baker's Park	San Juan, Colo	Baker's Park Mining & Milling Co	Gold-silver ore.

Table 7.—Refined lead produced at primary refineries in the United States, by source material

	1977	1978	1979	1980	1981
Refined lead.¹ From primary sources: Domestic ores and base bullion Foreign ores and base bullion	486,659	501,643	529,970	508,163	440,238
	62,041	63,530	45,641	39,427	55,085
TotalFrom secondary sources	548,700	565,173	575,611	547,590	495,323
	86	1,244	2,862	2,117	1,745
Grand total	548,786	566,417	578,473	549,707	497,068
Calculated value of primary refined lead (thousands) ²	\$371,371	\$419,277	\$668,004	\$512,590	\$398,908

Table 8.—Antimonial lead produced at primary lead refineries in the United States

	Production	Antimony content			Lead content by difference (metric tons)			
Year	(metric tons)	Metric tons	Percent	From domestic ore	From foreign ore	From scrap	Total	
1977 1978 1979 1980	6,855 5,006 3,402 881 3,557	816 710 271 27 503	11.9 14.2 8.0 3.1 14.1	2,459 2,384 2,491 711 1,989	528 530 105 140 1,019	3,052 1,382 535 3 46	6,039 4,296 3,131 854 3,054	

¹GSA metal is not included in refined lead production.
²Value based on average quoted price and excludes value of refined lead produced from scrap at primary refineries.

Table 9.—Stocks and consumption of new and old lead scrap in the United States in 1981 (Metric tons, gross weight)

G6	G4 1		(Consumption			
Class of consumer and type of scrap	Stocks Jan. 1	Receipts	New scrap	Old scrap	Total	Stocks Dec. 31	
Smelters and refiners:							
Soft lead	_ 1,988	27,538		27,925	27,925	1,601	
Hard lead	_ 1,684	19,562		19,831	19,831	1,415	
Cable lead	_ 4,704	2,280		4,806	4,806	2,178	
Battery-lead plates	_ 34,724	735,029		731,255	731,255	38,498	
Mixed common babbitt	_ 167	6,656		6,729	6,729	94	
Solder and tinny lead	_ 1,931	11,605		11,829	11.829	1.707	
Type metals	_ 1.908	13,795		14,041	14.041	1,662	
Drosses and residues	12,484	83,900	84,799	,	84,799	11,585	
Total	_ 59,590	900,365	84,799	816,416	901,215	58,740	
Foundries and other manufacturers:							
Soft lead							
Hard lead							
Cable lead							
Battery-lead plates							
Mixed common babbitt	_ 43	2,803		2,775	2,775	71	
Solder and tinny lead							
Type metals							
Drosses and residues							
Total	43	2,803		2,775	2,775	71	
All consumers:							
Soft lead	_ 1.988	27.538		27,925	27,925	1.601	
Hard lead	_ 1.684	19,562		19.831	19,831	1.415	
Cable lead	4,704	2,280		4.806	4,806	2,178	
Battery-lead plates	34.724	735,029		731,255	731,255	38,498	
Battery-lead plates Mixed common babbitt	210	9,459		9,504	9,504	165	
Solder and tinny lead	1.931	11,605		11.829	11.829	1.707	
Type metals	1,908	13,795		14,041	14,041	1.662	
Drosses and residues	12,484	83,900	84,799		84,799	11,585	
Grand total	_ 59,633	903,168	84,799	819,191	903,990	58,811	

Table 10. —Secondary metal recovered from lead and tin scrap in the United States in 1981, by type of product

	Lead	Tin	Antimony	Other	Total
Refined pig lead	264,872 17,282				264,872 17,282
Total	282,154				282,154
Refined pig tinRemelt tin		1,570 18			1,570 18
Total		1,588			1,588
Lead and tin alloys: Antimonial lead Common babbitt Genuine babbitt Solder Type metals Cable lead Miscellaneous alloys	304,376 6,112 13 22,997 9,521 1,193 1,083	791 200 61 3,035 576 106	14,851 837 6 561 1,727 11 20	619 5 1 34 6 - 1	320,637 7,154 81 26,627 11,830 1,204 1,210
Total Tin content of chemical products	345,295 	4,769 265	18,013	666	368,743 265
Grand total	627,449	6,622	18,013	666	652,750

¹Most of the figures herein represent actual reported recovery of metal from scrap.

Table 11.—Secondary lead recovered in the United States
(Metric tons)

	1977	1978	1979	1980	1981
As metal: At primary plants At other plants	86	1,244	2,862	2,117	1,745
	303,063	281,340	349,359	313,061	280,409
Total	303,149	282,584	352,221	315,178	282,154
In antimonial lead: At primary plants At other plants	3,052	1,382	535	3	46
	380,335	408,528	378,295	306,683	304,330
Total	383,387	409,910	378,830	306,686	304,376
In other alloys	71,056	76,742	70,317	53,714	54,575
Grand total: Quantity Value (thousands) ¹	757,592	769,236	801,368	675,578	641,105
	\$512,753	\$570,662	\$930,019	\$632,397	\$516,313

 $^{^{1}}$ Value based on average quoted price of common lead.

Table 12.—Lead recovered from scrap processed in the United States, by kind of scrap and form of recovery

	198	0 1981
KIND OF SCRA	P	
New scrap: Lead-base Copper-base Tin-base		,934 58,8 ,162 4,2 95
Total	<u>94</u>	,191 63,0
Old scrap: Battery-lead plates All other lead-base Copper-base Tin-base		,624 481,3 ,966 81,7 ,796 14,9
Total		,387 578,0
Grand total	675	,578 641,1
FORM OF RECOVI	ERY	
As soft lead: At primary plants At other plants		,117 1,7 ,061 280,4
Total		,178 282,1
In antimonial lead¹ In other lead alloys In copper-base alloys In tin-base alloys		,686 304,3° ,531 40,0° ,174 14,5° 9
Total		400 358,9
Grand total		.578 641.10

¹Includes 3 tons of lead recovered in antimonial lead from secondary sources at primary plants in 1980 and 46 tons in 1981.

Table 13.—Lead consumption in the United States, by product (Metric tons)

SIC Code	Product	1980	1981
	Metal products:		
3482	Ammunition: Shot and bullets	48,662	49,514
	Bearing metals:		
5	Machinery except electrical Electrical and electronic equipment	1,634	1,660
6 71	Electrical and electronic equipment Motor vehicles and equipment	39 2,242	2.46
$\dot{7}^{\dagger}$	Other transportation equipment	3,893	2,77
	Total bearing metals	7,808	6,922
351	Total bearing metals Brass and bronze: Billets and ingots	13,981	13,300
6	Cable covering: Power and communication	13,408	12,072
5	Calking lead: Building construction	5,684	5,522
	Casting metals:		
<u>6</u>	Electrical machinery and equipment	776	99
71 7	Motor vehicles and equipment	1,267 12,380	1,24' 12.63
443	Other transportation and equipment Nuclear radiation shielding	4,598	3,708
	Total casting metals	19,021	18,582
_	Pipes, traps, and other extruded products:		
5 443	Building construction Storage tanks, process vessels, etc	7,734 863	8,509 320
110			
	Total pipes, traps, and other extruded products	8,597	8,829
	Sheet lead:		
5	Building construction	12,943	12,283
443 693	Storage tanks, process vessels, etc Medical radiation shielding	6,853 (1)	938 6.134
•••	•		
	Total sheet lead	19,796	19,355
	Solder:		
5	Building construction	4,507	6,167
41 67	Metal cans and shipping containers Electronic components and accessories	10,268 8,232	7,749 5,60 0
6	Other electrical machinery and equipment	2,733	2,58
71	Motor vehicles and equipment	15,626	7,600
	Total solder	41,366	29,705
	Storage battery grids, post, etc.:		
6911	Storage battery grids, post, etc.: Storage batteries: SLI automotive	276,996	313,531
6912	Storage batteries: Industrial and traction	25,244	28,664
	Total storage battery grids, post, etc	302,240	342,195
	Storage battery oxides:		
6911	Storage batteries: SLI automotive	328,234	407,053
6912	Storage batteries: Industrial and traction	14,883	20,904
	Total storage battery oxides	343,117	427.957
		2,861	3.971
71	Terne metal: Motor vehicles and equipment	2,001	
	Type metal: Printing and allied industries	8,997	7,838
71 7 4	Terne metal: Motor vehicles and equipment Type metal: Printing and allied industries Other metal products ²	8,997 10,506	7,838
	Type metal: Printing and allied industries	8,997	7,838 7,939
	Type metal: Printing and allied industries Other metal products Total metal products	8,997 10,506	7,838 7,939
7 4 85	Type metal: Printing and allied industries Other metal products Total metal products Pigments: Paints	8,997 10,506 846,044	7,838 7,939 953,707
7 4 85 2	Type metal: Printing and allied industries Other metal products Total metal products Pigments: Paints Glass and ceramic products	8,997 10,506 846,044 20,736 45,361	7,838 7,938 953,707 16,316 44,338
7 4 85 2	Type metal: Printing and allied industries Other metal products Total metal products Pigments: Paints	8,997 10,506 846,044 20,736	7,838 7,938 953,707 16,316 44,338
	Type metal: Printing and allied industries Other metal products Total metal products Pigments: Paints Glass and ceramic products	8,997 10,506 846,044 20,736 45,361	7,838 7,938 953,707 16,316 44,338 19,510
7 4 85 2	Type metal: Printing and allied industries Other metal products2 Total metal products Pigments: Paints	8,997 10,506 846,044 20,736 45,361 12,333	7,838 7,938 953,707 16,316 44,338 19,510 80,165
7 4 85 2 8	Type metal: Printing and allied industries Other metal products Total metal products Pigments: Paints Glass and ceramic products Other pigments ³	8,997 10,506 846,044 20,736 45,361 12,333 78,430	7,838 7,938 953,707 16,316 44,338 19,510

¹Included in "Storage tanks" to avoid disclosing company proprietary data.

²Includes lead consumed in foil, collapsible tubes, annealing, galvanizing, plating, and fishing weights.

³Includes color, lead content of leaded zinc oxide, and other pigments.

Table 14.—Lead consumption in the United States, by month¹

Month	1980	1981
January	100,852	101,21
February	85,423	93,44
March	91,294	99,06
April	83,587	93,26
May	84,199	90,520
June	73,181	92,62
July	64,814	79,44
August	78,979	95,44
September	99,253	103,06
October	112,607	117,04
November	94.413	94,35
December	101,701	107,61
Total ²	1,070,303	1,167,10

¹Monthly totals include monthly reported consumption plus the monthly distribution for companies that report on an annual basis only.

²Includes lead that went directly from scrap to fabricated products and lead contained in leaded zinc oxide.

Table 15.—Lead consumption in the United States in 1981, by State¹ (Metric tons)

State	Refined soft lead	Lead in antimonial lead	Lead in alloys	Lead in copper- base scrap	Total
California	74.834	36,758	5,891	613	118,096
Colorado	608	269	15		892
Connecticut	8.223	13,994		325	22,542
District of Columbia	25				25
Florida	10.908	8,914	319		20,141
Georgia	53,343	21,791	2,392	12	77,538
Illinois	17,706	32,539	2,193	1,162	53,600
Indiana	101.017	18,966	6,962	513	127,458
Kansas	24,979	10,121	752	51	35,903
Kentucky	5.730	9,854	. 2		15,586
Maryland	339	823	170		1,332
Massachusetts	1.223	194	31	335	1,783
Michigan	7.766	9.752	238	6	17,762
Missouri	14.465	11,425	1,754	1,098	28,742
Nebraska	828	77	1,132	1,170	3,207
New Jersey	86.525	5.011	5.137	405	97,078
New York	23.242	4,772	4.951	588	33,553
Ohio	12767	8,524	2,024	413	23,728
Pennsylvania	99,080	49,123	22,425	1.095	171,723
Rhode Island	3,384	61	10		3,455
Tennessee	1.530	12.955	55	96	14,636
Virginia and West Virginia	256	1,913	17		2,186
Washington	10.569	298			10,867
Wisconsin	5.927	8.674	48	154	14,803
Alabama and Mississippi	7.292	4,008	1.157	. 1.797	14,254
Arkansas and Oklahoma	2105	1.204	-,	·	3,309
Hawaii and Oregon	2710	5,400			8,110
Iowa and Minnesota	13.456	14.875	105		28,436
Louisiana and Texas	122,814	24,606	1,523		148,943
Montana and Idaho	771		_,,		771
New Hampshire, Maine, Vermont, Delaware	10.038	13.573		119	23,730
North Carolina and South Carolina	22,737	19,258	-3		41,998
Utah, Nevada, Arizona			914		914
Total	747,197	349,732	60,220	9,952	1,167,101

 $^{^{1}}$ Includes lead that went directly from scrap to fabricated products and lead contained in leaded zinc oxide.

Table 16.—Lead consumption in the United States in 1981, by class of product and type of material

(Metric tons)

Product	Soft lead	Lead in antimonial lead	Lead in alloys	Lead in copper- base scrap	Total
Metal products	83,206 456,007 80,165 111,367 16,452	54,781 292,066 2,885	35,616 22,079 2,525	9,952 	183,555 770,152 80,165 111,367 21,862
Total	747,197	349,732	60,220	9,952	¹1,167,101

¹Includes lead that went directly from scrap to fabricated products and lead contained in leaded zinc oxide.

Table 17.—Production and shipments of lead pigments and oxides in the United States

		1980			1	1981	
Product	Pro- Shipments		Pro-	Ship	ments		
	(metric tons)	Metric tons	Value ²	duction - (metric tons)	Metric tons	Value ²	
White lead, dry	1,111 12,533 41,412 361,130	1,056 13,110 47,060	\$1,406,310 15,562,624 47,419,465	1,022 14,688 46,891 444,625	1,029 15,077 47,141	\$1,297,317 16,327,054 35,342,133	

¹Excludes basic lead sulfate; withheld to avoid disclosing company proprietary data.

²At plant, exclusive of container.

Table 18.—Lead content of lead pigments¹ and oxides produced by domestic manufacturers, by source

(Metric tons)

Product	Lead in pigme from pig lea		
	1980	1981	
White lead	889	818	
Red lead	11,405	13.366	
Litharge	38,514 329,151	43,608	
Leady oxide	329,151	13,366 43,608 423,723	
Total	379,959	481,515	

 $^{^{1}\}mathrm{Excludes}$ basic lead sulfate; withheld to avoid disclosing company proprietary data.

Table 19.—Distribution of red lead shipments, by industry

Industry	1977	1978	1979	1980	1981
Paints Ceramics	5,914	5,993	5,300	3,241	3,172
Storage batteriesOther	₩ 11.870	W 13,234	₩ 12.846	2,597 6,068 995	2,307 7,573 2,025
Total	17,784	19,227	18,146	12,901	15,077

W Withheld to avoid disclosing company proprietary data; included with "Other."

Table 20.—Distribution of litharge shipments, by industry

(Metric tons)

Industry	1977	1978	1979	1980	1981
Ceramics	27,161	33,865	37,620	36,560 3,015	34,732 4,247 227
Oil refining	W	W	W	170	227
Paints	2,455	3,200	3,038	3,362	3,765
Rubber	2,868	2,153	1,520	943	1,107 3,063
Other	78,789	62,887	58,792	784	3,063
Total	111,273	102,105	100,970	44,834	47,141

W Withheld to avoid disclosing company proprietary data; included with "Other."

Table 21.—U.S. imports for consumption of lead pigments and compounds

	198	30	198	1981		
Kind	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)		
White lead Red lead Litharge	116 1,298 9 414	\$252 1,420 9,195	187 993 11,026	\$344 822 8.812		
Atthrage Chrome yellow Other lead pigments Other lead compounds	9,414 1,214 35 857	3,050 164 1,144	1,204 297 1,479	8,812 2,919 487 1,849		
Total	12,934	15,225	15,186	15,233		

Table 22.—Stocks of lead at primary smelters and refineries in the United States, December 31

(Metric tons)

Stocks	1977	1978	1979	1980	1981
Refined pig lead Lead in antimonial lead Lead base bullion Lead in ore and matte	12,044 1,945 5,312 71,812	17,001 556 5,818 75,290	45,448 646 5,683 37,545	54,728 122 5,398 65,746	78,836 666 4,872 55,833
Total	91,113	98,665	89,322	125,994	140,207

Table 23.—Stocks of lead at consumers and secondary smelters in the United States, December 31, by type of material

(Metric tons, lead content)

Year	Refined soft lead	Lead in antimonial lead	Lead in alloys	Lead in copper-base scrap	Total
1977	74,004	39,247	6,669	1,467	121,387
	72,065	44,417	7,564	1,188	125,234
	95,655	49,188	7,346	1,006	153,195
	72,601	44,820	7,851	942	126,214
	69,636	46,194	6,523	863	123,216

Table 24.—Average monthly and annual quoted prices of lead¹
(Cents per pound)

			19	980	19	81
	- 1 1.	Month	U.S. producer	London Metal Exchange	U.S. producer	London Metal Exchange
June July August			49.88 49.56 49.22 44.02 36.00 34.19 35.60 40.96 42.26 45.00 43.81 38.97	50.66 52.93 50.72 43.88 35.49 33.44 38.67 40.01 39.50 36.89 33.68	33.79 30.42 35.06 37.52 36.41 37.97 40.99 43.89 40.32 37.05 33.88 31.07	31.95 31.24 33.06 34.35 31.55 32.30 35.55 37.34 34.61 32.47 30.15
Average			 42.46	41.21	36.53	33.30

¹Metals Week. Quotations for United States on a nationwide, delivered basis.

Table 25.—U.S. exports of lead, by country

	19	80	1981		
Country	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands	
re and concentrates:					
Belgium-Luxembourg	437	\$416	291	\$34	
Drazii		4110	4.983	2,87	
Bulgaria			7,808	5,01	
Canada	24,840	9.051	15,420	8.55	
Dominican Republic	,	0,001	69	2	
Nand .	== :		799	69	
Germany, Federal Republic of			2,450	1.05	
Japan	522	276	_,100	1,00	
Mexico	812	352	776	23	
Netherlands	752	817	18		
Philippines			iğ	1	
Spain			328	11	
Talwan	169	108			
United Kingdom	38	41	49	3	
Other	45	57	33	ĭ	
Total	27,615	11,118	33,043	18,95	
nwrought lead and lead alloys:					
Argentina	397	322	2		
Australia	15	26	. <u> </u>		
Austria	10	20	64		
Belgium-Luxembourg	30,175	$34.09\overline{2}$		8:	
Canada	2,910		4,316	2,83	
Chile	160	3,028	2,996	2,59	
Colombia	14	149 39	2	1.	
Costa Rica	7	39 12	-7		
Denmark	79	76	4		
Dominican Republic	1	2			
Ecuador	42	88	31	6	
Egypt	4		62	5	
El Salvador	4	21	30	120	
France	1.000	7	2		
Germany, Federal Republic of		749	12	14	
Haiti	1,386	1,647	65	3′	
Honduras	2	1	21	30	
Hong Kong	21	22	10	34	
India	16	18	.1	2	
Indonesia	1,429	1,015	(¹)	2	
Igraal	130	109			
Israel	14	32	22	28	
Italy	2,890	2,780	13	17	
Japan	2,667	2,502	876	1,088	
Korea, Republic of	2,051	1,838	1,478	972	
Kuwait			23	41	
MEXICO	1,033	1,671	234	390	
Mozambique	208	183			
Neulerianns	93,124	88,118	4.037	4.138	
Netherlands Antilles	15	12	25	29	
Nicaragua	1	27	28	32	
Panama	(¹)	1	150	107	
PhilippinesSaudi Arabia	94	104	159	168	
	75	189	100		

Table 25.—U.S. exports of lead, by country —Continued

	19	80	1981		
Country	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousand	
wrought lead and lead alloys —Continued					
Singapore	· · · · · · · · · · · · · · · · · · ·		132	\$10	
South Africa Republic of			163	17	
Spain	87	\$149	27	2:	
Spain Switzerland Switzerland Spain	1,004 1.746	850 1,649	174	Ī.	
Taiwan Thailand	656	620	238	î	
Trinidad			106	ī	
Turkev	529	583			
United Arab Emirates	5,414	4,502	11		
United Kingdom Venezuela	6,716 270	6,009 357	856 282	6 6	
VenezuelaZambia	210	991	27		
Other	117	151	36		
Total	156,500	153,750	16,804	15,5	
ought lead and lead alloys:					
Argentina	3	4 31	20		
Australia	17 21	31 29	20		
BahrainBelgium-Luxembourg	1,531	790	1,740	É	
Brazil	6	14	10		
Brazil ————————————————————————————————————	818	1,087	2,746	2,8	
Chile	16	39	- 2		
Colombia	3 4	6 10			
Costa Rica Dominican Republic	19	38	(¹) 7		
Ecuador	7	25			
Finland	3	6	-=		
France	. 9	3	7		
Germany, Federal Republic ofGuatemala	83 9	92 32	43		
Guatemala		32 26	(1)		
HondurasHong Kong	7 3	9	31	1	
India	32	142	77	2	
Igrael	3	5	16	1	
Italy	4	88	2	2	
Japan	195 37	214 24	143 30	2	
Korea, Republic of	925	3,262	1,375	4,9	
MexicoNetherlands	3.023	3,056	15	-,-	
Netherlands Antilles	5	7	21		
Panama	6	10	13 42	:	
Philippines	7 79	25 215	42 42		
Saudi Arabia	13	57	2		
South Africa Republic of	(1)	2	2		
Spain	112	384	20		
Sweden	2	18			
Taiwan	30	351	20	;	
United Kingdom	836 13	740 30	9 50		
VenezuelaOther	81	214	31		
	7,958	11,085	6,516	10,4	
rap:			4.		
Argentina	606	296	(¹)		
AustriaBelgium-Luxembourg	16 495	12 369	768		
Brazil	1,118	538	1,771	. `	
Canada	28,643	10,552	18,477	6,0	
Denmark	5,561	2,855	1,187	1	
Egypt	1,066 348	740 362	17		
France German Democratic Republic	1.810	933			
Germany Federal Republic of	9,255	5,814	3,268	1,	
Germany, Federal Republic of	´		102	-•	
	172	109	1,147		
Ireland	165	127	32 17		
Italy	3,621 49	3,047 17	17		
Jamaica	6,316	3.918	1.819		
vapau	9,924	4,550	1,991	i	
Korea. Republic of					
Korea, Republic of Kuwait Mexico	249 8,143	164 2,519	10,847	2.	

Table 25.—U.S. exports of lead, by country —Continued

	19	80	1981		
Country	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)	
Scrap —Continued					
Mozambique			100		
Netherlands	6,626	\$5,499	199 2,784	\$175 1,489	
Norway Philippines Saudi Arabia	139 459	75 278	47 36	53 40	
South Africa, Republic ofSpain	945 77	724 122	3,764 45	1,709	
Sweden Taiwan	108 15,033	64 6,068	45 147 8,732	49 50	
ThailandTurkey	252 699	111 339	0,182	2,996	
Trust Territory of the Pacific Islands	54	18			
United Kingdom Venezuela	16,280 1,300	11,250 654	2,040 98	1,844 70	
Other	122	97	84	63	
Total	119,651	62,221	59,419	22,388	
Grand total	311,724	238,174	115,782	67,342	

¹Less than 1/2 unit.

Table 26.—U.S. exports of lead, by year

	1	Blocks, pig	s, anodes, e	tc.			t lead and alloys		,		
Year	Unwrought		Unwr all	Unwrought alloys		Sheets, plates, rods, other forms		Foil, powder, flakes		Scrap	
	Quan- tity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	
1979 1980 1981	6,585 147,356 14,484	\$8,383 143,458 12,591	795 9,144 2,320	\$1,466 10,292 2,936	2,349 7,522 5,966	\$3,456 10,507 9,719	917 436 550	\$624 578 750	119,748 119,651 59,419	\$53,514 62,221 22,388	

Table 27.—U.S. imports¹ of lead, by country

	19'	79	19	80	19	81
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
Ore, flue dust, and residues, n.s.p.f. (lead content):						
Argentina	152	\$160	61	\$56	0.000	40.000
Australia	1,923	1,828			3,932	\$3,023
Bolivia	1,320	1,020	2,971 571	2,309	2,160	1,228
Canada	12,762	10.954		477	20 500	
Chile	12,102	10,954	8,520	6,901	23,500	17,149
Colombia	100	-7.7	2,236	1,927	2,084	1,719
Honduras	136	145	211	154	122	64
Mexico	10,923	11,619	3,974	3,943	11,617	9,271
	1,646	1,606	781	665	961	864
	12,444	11,287	17,980	13,169	14,149	8,397
South Africa, Republic of			6,790	5,514		
Other	12	10			20	14
Total	39,998	37,609	44,095	35,115	58,545	41,729
Base bullion (lead content):						
Canada	1,654	1.654	0.477	010		
Denmark	27	36	247	219	59	58
Mexico	41	30	~=			
Peru			27	30		
PeruOther					390	278
VIII	(2)	1	22	260	(2)	4
Total	1,681	1,691	296	509	449	340

Table 27.—U.S. imports1 of lead, by country —Continued

	19	79	19	80	1981	
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
Pigs and bars (lead content):						
Argentina					300	\$220
Anatrolia	17.275	\$18,597	11.338	\$12,365	10,893	8.023
Belgium-Luxembourg	1.981	11.026	846	5.567	286	1,666
Canada	71,342	79,512	34,929	31,649	50.849	39,298
Denmark	521	726	619	591	354	34
	2.000	2,041	010	001	001	01.
FranceGermany, Federal Republic of	574	5,529	446	4.342	1.433	8.899
Mexico	73.643	76,488	28,636	27,987	33,723	25,18
Namibia	3,913	4,231	20,000	21,001	00,120	20,100
Netherlands	0,510	4,201	56	590		
	17.903	19.387	3,298	2.974	2,907	2,14
PeruSouth Africa, Republic of	1.299	1,260	0,200	2,514	2,501	2,17
South Africa, Republic of	1,299	1,200	1.036	1.313		
Spain	801	1 070		1,515	989	2.26
United Kingdom		1,979	468		989 186	2,20 49
Other	410	535	61	45	190	493
Total	191,662	221,311	81,733	88,508	101,920	88,544
B 11 1						
Reclaimed scrap, etc. (lead content):	2.676	2.349	4.747	3,458	2.605	1.61
Australia		2,349	26	0,400	2,005 83	1,01
Bahamas	18	2	20	•	22	1
Barbados	3		1.639	1.570	1,792	1.39
Canada	2,661	2,720	1,059	1,510	87	2,05
Chile	70	39	86	32	81	4
Dominican Republic	56			5	77	2
Guatemala	102	62	. 8	3	77	2
Haiti	.5	12	13	វ	-3	-
Jamaica	48	7				
Mexico	896	652	551	405	456	34
Panama	19	16	18	. 8		
Spain	36	157	108	637	92	38
United Kingdom	17	16	66			2
Other	145	94	66	20	48	<u> </u>
Total	6,682	6,129	7,262	6,145	5,265	3,83
Grand total	240.023	266,740	133,386	130,277	166,179	134,44

¹Data are "general imports," that is, they include lead imported for immediate consumption plus material entering the country under bond.

²Less than 1/2 unit.

Table 28.—U.S. imports for consumption of lead, by country

	19'	79	198	1980		1981	
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	
Ore, flue dust, and residues, n.s.p.f. (lead content):							
Argentina	152	\$160	61	\$ 56	3,932	\$3,023	
Australia	5,780	1,831	365	322	648	457	
Bolivia	0,100	1,001	571	477	0.0		
Canada	7.866	4.822	2,985	2.873	1.913	1,353	
· · · · · · · · · · · · · · · · · · ·	1,000	2,022	2,236	1.927	2,084	1,719	
Chile	136	145	211	154	122	64	
Colombia	15.048		3,973	3,943	11,617	9,271	
Honduras		12,814			961	864	
Mexico	1,646	1,606	781	665			
Peru	13,761	11,638	18,141	13,292	5,909	3,431	
South Africa, Republic of			291	218	7.7	=-	
Other	12	10			20	14	
Total	44,401	33,026	29,615	23,927	27,206	20,196	
Base bullion (lead content):							
	1.654	1.654	247	219	59	58	
	27	36	22.	210	•	•	
Denmark	21	90	27	30			
Mexico			21	90	390	278	
Peru	-75						
Other	(¹)	1	22	260	(1)	4	
Total	1.681	1,691	296	509	449	340	

Table 28.—U.S. imports for consumption of lead, by country —Continued

	19	79	19	80	1981	
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou sands
Pigs and bars (lead content):	-					
Argentina					900	
Australia	8,163	\$6,737	10.884	\$11,464	300	\$22
Belgium-Luxembourg	1.981	11,026	846		9,080	6,50
Canada	71,342	79.512	34,929	5,567 31,649	286	1,66
Denmark	521	726	619	591	50,849 354	39,29 34
France	2,000	2.041	019	991	554	- 54
Germany, Federal Republic of	574	5,529	446	4,342	1.433	0.00
Mexico	73,643	76.488	28,657		33,723	8,89
Namibia	3,913	4,231	20,001	28,009	00,120	25,18
Netherlands	0,510	4,201	56	590		_
Pern	17.903	19,387			0.007	0.14
PeruSouth Africa, Republic of	1,299	1,260	3,298	2,974	2,907	2,14
Spain	1,200	1,200	1.036	1,313		_
United Kingdom	801	1.979	468		989	0.00
Other	410	535	408 61	1,085		2,26
VIIII	410	555	01	45	187	49
Total	182,550	209,451	81,300	87,629	100,108	87,02
Reclaimed scrap, etc. (lead content):	_					
Australia	(¹)	2	353	218		_
Bahamas	18	3	26	7	83	. 1
Canada	2,661	2,720	1,639	1,570	1,792	1,39
Chile					87	2
Dominican Republic	56	39	86	32		_
Guatemala	102	62	8	. 5	77	2
Jamaica	48	7			4	
Mexico	896	652	551	405	456	34
Panama	19	16	18	8		_
Spain	36	157	108	637	92	38
United Kingdom	17	16			· :	_
Other	153	108	79	23	70	3
Total	4,006	3,782	2,868	2,905	2,661	2,22
Sheets, pipe, shot:						
Canada	201	305	280	544	203	34
Germany, Federal Republic of	201 1	8	57	119	203 51	34 8
Italy		•	91	119	20	3
Mexico			588	647	177	16
United Kingdom	- 3	-4	8	36	4	10
Other	10	11	17	162	19	84
Total	215	328	950	1,508	474	72
Grand total	232,853	248.278	115,029	116,478	130,898	110.50

¹Less than 1/2 unit.

Table 29.—U.S. imports for consumption of lead, by class

(Thousand metric tons and thousand dollars)

Year	Ore (lead content)		Base bullion (lead content)		Pigs and bars (lead content)		Sheets, plates, strip, other forms	
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
1978 1979 1980 1981	62 44 30 27	25,220 33,026 23,927 20,196	4 2 (1) (1)	2,930 1,691 509 340	225 183 81 100	169,866 209,451 87,629 87,026	1 (¹) (¹) (¹)	2,116 328 888 564
-	Waste and scrap (lead content)		Dross, skimmings, residues, n.s.p.f. (lead content)		Powder and flakes		Total value	
_	Quantity	Value	Quantity	Value	Quantity	Value		
1978 1979 1980 1981	3 4 2 2	2,086 3,207 2,144 1,568	(¹) 1 1	806 575 761 652	(¹) (¹) 1 (¹)	64 288 620 162		203,088 248,566 116,478 110,508

¹Less than 1/2 unit.

Table 30.—U.S. imports for consumption of miscellaneous products containing lead¹

Year	Gross weight (metric tons)	Lead content (metric tons)	Value (thou- sands)	
1979	362	107	\$3,565	
1980	968	388	11,144	
1981	1,090	520	7,813	

¹Babbitt metal, solder, white metal, and other lead-containing combinations.

Table 31.—Lead: World mine production, by continent and country¹
(Thousand metric tons)

Continent and country ²	1977	1978	1979	1980 ^p	1981 ^e
North America:	201.0	010.0	010.5	006.7	000 1
Canada	281.0	319.8	310.7	296.7	332.1
Guatemala	.1	e.1	e.1	1.1	.1.0
Honduras	20.6	21.8	16.4	15.1	14.0
Mexico ³	163.5	170.6	173.5	145.5	157.4
Nicaragua United States ⁴	1.0	.4	==		=
United States ⁴	537.5	529.7	525.6	550.4	445.5
outh America:			o	040	00.4
Argentina	_33.6	30.3	31.7	34.0	32.0
Bolivia	r _{18.9}	18.0	15.4	17.7	16.
Brazil	24.0	31.2	27.9	27.5	29.
Chile	r.1	.4	.3	.5	
Colombia	r.2	.1	.2	.2	
Ecuador	.2	.2	.2	.2	.2
Peru ⁵	r _{175.7}	182.7	174.0	189.1	186.7
Curope:					
Austria	4.3	4.6	4.5	4.3	4.2
Bulgaria	117.0	117.0	116.0	116.0	116.0
Czechoslovakia	4.3	4.0	4.0	3.3	3.4
Finland	.6	.8	1.0	1.1	1.6
	31.5	32.5	29.5	28.8	19.0
FranceGermany, Federal Republic of	r30.5	23.2	25.2	23.1	21.6
Greece	16.4	r20.3	21.7	20.5	21.
Greenland	28.8	30.6	31.9	34.3	30.0
Hungary	1.2	r _{1.1}	1.0	1.1	1.0
	41.0	47.8	71.0	59.0	29.9
Ireland	31.5	r30.5	28.1	22.9	20.0
Italy	3.3	30.5 8.6	3.6	3.3	3.0
Norway	63.0	63.9	61.9	60.0	50.4
Poland	35.0	33.3	33.3	33.5	33.
Romania	65.5	71.3	72.8	87.1	83.
Spain	88.1	81.9	81.6	72.2	84.
Sweden	.1111	410.0	410.0	410.0	410.
U.S.S.R.e					2.
United Kingdom	*7.7	4.6	4.7	2.4	
Yugoslavia	130.0	^r 129.4	129.8	121.4	120.
Africa:	_				
Algeria	.9	1.8	2.3	2.4	2.0
Congo (Brazzaville)		4.2	r e3.5	r e3.5	3.
Morocco	93.4	100.2	115.7	115.4	125.
Namibia	41.2	38.6	46.0	47.7	59.
Nigeria South Africa, Republic of	1	.1	.1	.1	1.0
South Africa, Republic of		==		86.1	98.
Tunisia	10.2	8.0	10.0	8.3	8.0
Zambia	13.5	15.8	17.6	14.0	14.
Asia:	_				
Burma	r _{8.3}	⁷ 9.9	14.5	14.2	15.
China		145.0	155.0	155.0	155.
India	12.7	12.8	16.0	12.7	15.
Iran		e 30.0	^e 15.0	15.0	10.
Japan ⁶		56.5	46.9	44.7	44.
Koree North		105.0	100.0	100.0	100.
Korea, North ^e Korea, Republic of	16.6	16.1	11.1	11.4	11.4
Philippines	3.7	1.4	1.9	1.8	1.0

Table 31.—Lead: World mine production, by continent and country¹ —Continued (Thousand metric tons)

Continent and country ²	1977	1978	1979	1980 ^p	1981 ^e
Asia —Continued					
Thailand Turkey Oceania: Australia ⁷	.5 8.7 432.2	1.7 9.5 400.3	8.7 7.5 421.6	10.6 6.7 397.4	17.0 7.2 392.3
Total	⁷ 3,345.3	r3,372.6	3,400.5	3,428.3	3,352.6

Table 32.—Lead: World smelter production, by continent and country1 (Thousand metric tons)

Continent and country	1977	1978	1979	1980 ^p	1981 ^e
North America: Canada:					
Primary (refined) Secondary (refined) ³	187.5 53.1	194.1 ^r 51.8	183.8 68.6	162.5 72.1	² 168.5 ² 69.7
TotalGuatemala, primary		^r 245.9 .1	252.4 .1	234.6 .1	² 238.2 .1
Mexico: Primary Secondary (refined) ³	153.9 62.3	166.1 49.3	173.0 50.0	145.0 50.0	156.7 50.0
• Total		215.4	223.0	195.0	206.7
United States: Primary (refined) Secondary (refined) ^S	548.7 757.6	565.2 769.2	575.6 801.4	547.6 675.6	² 495.3 ² 641.1
Total	1,306.3	1,334.4	1,377.0	1,223.2	² 1,136.4
South America: Argentina: Primary (refined) Secondary	^r 38.0	¹ 19.7	32.0 (⁴)	26.7	30.0
Total	^r 38.0	^r 19.7	32.0	26.7	30.0
Brazil: Primary (refined) Secondary (refined) ³	48.3 29.0	47.2 33.2	55.1 43.0	44.5 40.4	34.7 31.1
TotalPeru, primary (refined) Peru, primary (refined) Venezuela, secondary	79.2	80.4 ¹ 74.3 (⁴)	98.1 85.1 (4)	84.9 82.0	65.8 279.2
Europe: Austria:					
PrimarySecondary	6.3 10.5	5.8 9.3	6.0 10.8	5.4 11.5	5.3 11.5
Total	16.8	15.1	16.8	16.9	16.8
Belgium: Primary ^{e 5} Secondary ³	31.6 42.0	44.7 30.0	33.7 27.0	51.7 30.0	43.8 28.1
Total	73.6	74.7	60.7	81.7	71.9
See footnotes at end of table.					

^eEstimated. ^pPreliminary. ^rRevised. ¹Table includes data available through June 16, 1982.

[&]quot;Table includes data available through June 16, 1982.

In addition to the countries listed, Egypt and Uganda may produce lead, but available information is inadequate to make reliable estimates of output levels.

Recoverable metal content of lead in concentrates for export plus lead content of domestic smelter products (refined lead, antimonial lead, mixed bars, and other unspecified items).

4Recoverable.

^{*}Recoverable metal content of lead in concentrates for export plus lead content of domestic smelter products (refined lead, antimonial lead, and bismuth-lead bars).

*Content of concentrates.

Content by analysis.

Table 32.—Lead: World smelter production, by continent and country¹ —Continued (Thousand metric tons)

Continent and country	1977	1978	1979	1980 ^p	1981 ^e
Europe —Continued					
Bulgaria: Primary (refined) Secondary (refined) ³	112.0 8.0	115.0 5.0	115.0 4.0	115.0 4.0	115.0 4.0
Total Czechoslovakia, primary and secondary	120.0	120.0	119.0	119.0	119.0
•	(4)	(4)	(4)		
France: Primary Secondary	*126.1 *318.3	³ 125.9 ³ 25.5	³ 129.1 ³ 30.8	³ 126.0 ³ 35.7	126.0 34.0
Total German Democratic Republic, secondary (refined) ^{e 3}	^r 144.4 37.0	^r 151.4 38.0	159.9 40.0	161.7 40.0	160.0 40.0
Germany, Federal Republic of: Primary Secondary (refined) ³	r _{182.9} r _{190.6}	r _{189.9} r _{179.1}	194.8 178.5	191.1 159.2	190.8
Total	r373.5	r369.0			168.0
	-818.8	369.0	373.3	350.3	358.8
Greece: Primary (refined) Secondary	^r 14.5 (⁴)	r _{15.6} (4)	15.6 (⁴)	21 .1	21.0
Total Hungary, secondary	r _{14.5}	^r 15.6 (⁴)	15.6 (4)	21.1	21.0
Italy: Primary Secondary (refined) ³	r34.2 83.5	r31.1 85.1	26.8 101.0	42.1 91.6	38.0 92.0
Total	117.7	116.2	127.8	133.7	130.0
Netherlands: Primary ^e Secondary	3.3 (⁴)	.5 (4)	6.8 (⁴)	6.0	5.5
TotalNorway, secondary	r _{3.3}	.5 (*)	6.8 (⁴)	6.0	5.5
Poland: Primary (refined) ^e Secondary (refined) ^{e 3}	63.4 22.0	61.7 25.0	59.2 25.0	56.0 26.0	48.0 21.0
Total ^e	85.4	86.7	84.2	82.0	² 69.0
Portugal: Primary Secondary	r.1 (*)	.1 (4)			
Total	r.1	.1	(4)		
Romania: Primary (refined) Secondary	34.7 (⁴)	34.0 (*)	35.0 (*)	35.0	35.0
Total	34.7	34.0	35.0	35.0	35.0
Spain:	89.2	r83.4	87.2	84.3	80.2
Secondary (refined) ^{e 3}	29.4	38.8	39.8	39.7	37.8
Total	118.6	122.2	127.0	124.0	118.0
Sweden: Primary	*23.7	r26.9	22.6	20.3	27.6
Secondary	(4)	(4)	(4)		

Table 32.—Lead: World smelter production, by continent and country¹ —Continued (Thousand metric tons)

Continent and country	1977	1978	1979	1980 ^p	1981 ^e
urope —Continued		í		4	
U.S.S.R.:					
Primary (refined)	405.0	410.0	410.0	410.0	410.0
Secondary (refined) ^{e 3}	205.0	210.0	215.0	215.0	220.0
Total ^e	610.0	620.0	625.0	625.0	630.0
United Kingdom:					
Primary	35.0	30.4	32.3	30.0	26.
Secondary (refined) ³	211.4	223.0	244.2	211.4	198.0
Total	246.4	253.4	276.5	241.4	224.
Yugoslavia:					
Primary	111.7	100.3	92.0	91.0	49.0
Secondary	33.3	40.1	41.6	42.0	40.
Total	145.0	140.4	133.6	133.0	89.
rica:					
Morocco:	00.4	00 =			
Primary (refined)Secondary	33.1 (⁴)	28.5 (4)	35.3 (⁴)	40.3	40.0
ing the control of th					
Total	33.1 42.7	28.5 39.5	35.3 41.7	40.3 42.7	40.0 48.
Namibia, primarySouth Africa, Republic of, secondary ³	r24.0	23.6	23.3	35.4	25.4
Tunisia: Primary (refined)	19.2	101	16.2	10.0	
Secondary	(4)	16.1 (4)	10.2 (4)	19.2	20.
-					
TotalZambia, primary (refined)	19.2 13.1	16.1 12.9	16.2 12.8	19.2 10.0	20.0 10.0
	10.1		10.0	10.0	10.0
sia: Burma:					
Primary ^e	r _{4.8}	r _{5.0}	6.2	6.0	7.8
Secondary ^e	(4)	· (4)	(⁴) .		
Total ^e	r _{4.8}	r _{5.0}	6.2	C 0	
	4.0	5.0	0.2	6.0	7.5
China:					
Primary (refined) ^e Secondary (refined) ^e 2	135.0	140.0	150.0	150.0	150.0
Secondary (refined) ^e 2	15.0	20.0	20.0	20.0	20.0
Total ^e	150.0	160.0	170.0	170.0	170.0
India:					
Primary (refined)	7.6	10.1	9.8	14.9	14.8
Secondary	(4)	(⁴)	(4)	14.5	14.0
Total	7.6	10.1	9.8	14.9	14.8
Innov					
Japan: Primary	187.4	188.9	187.8	185.8	230.0
Secondary (refined) ³	117.8	105.0	106.4	129.8	230.0 90.3
Total	r305.2	293.9	294.2	315.6	320.8
			W-1.0	010.0	020.0
Korea, North: Primary (refined) ^e	Ima a	Inc o	5 0.0	=	
Secondary ^e	*70.0 (4)	^r 75.0 (⁴)	70.0 (⁴)	70.0	70.0
			- 0		
Total ^e Korea, Republic of, primary (refined)	r70.0	^r 75.0	70.0	70.0	70.0
Taiwan, secondary	6.7 (*)	7.2	7.6	5.5	9.3
Thailand, secondary	(2)	(4) (4)	(4) (4)		
Turkey, primary	r _{3.0}	3.0	5.9	6.5	6.0
rurkey, primary	0.U				

533 LEAD

Table 32.—Lead: World smelter production, by continent and country' —Continued (Thousand metric tons)

Continent and country	1977	1978	1979	1980 ^p	1981 ^e
Oceania: Australia, primary: Bullion for export Refined	156.4 181.5	152.0 204.0	169.5 215.6	160.2 200.5	159.5 207.7
	337.9	356.0	385.1	360.7	367.2
Grand total	r _{5,139.7}	r _{5,185.2}	5,369.6	5,134.4	4,981.0
Of which: Primary Secondary	r _{3,189.9} r _{1,949.8}	r _{3,224.2} r _{1,961.0}	3,299.2 2,070.4	3,205.0 1,929.4	3,159.0 1,822.0

Table 33.—Lead: World refined production, by continent and country¹ (Thousand metric tons)

Continent and country	1977	1978	1979	1980 ^p	1981
North America:					
Canada:					_
Primary		194.1	183.9	162.5	² 168.5
Secondary	53.1	51.8	68.5	72.1	² 69.7
Total	240.6	245.9	252.4	234.6	² 238.2
Jamaica, secondary ^e	1.5	2.0	2.0	2.0	1.0
Mexico:					
	143.7	159.3	167.1	140.3	150.8
PrimarySecondary	62.3	49.3	50.0	50.0	50.0
Total	206.0	208.6	217.1	190.3	200.5
Total Trinidad and Tobago, secondary ^e	1.5	2.0	2.0	2.0	2.0
United States:					
Primary	548.7	565.2	575.6	547.6	2495.8
Secondary		769.2	801.4	675.6	2641. 1
Total	1,306.3	1,334.4	1,377.0	1,223.2	² 1,136.4
South America:					
Argentina:	r38.0	r _{19.7}	32.0	26.7	30.0
Primary		r19.7	82.0 15.0	12.0	30.0 9.0
Secondary ^e		-10.0	15.0	12.0	9.0
Total	^r 45.0	r29.7	47.0	38.7	39.0
Brazil:					
Primary	48.3	47.3	55.1	44.5	34.7
Secondary		33.2	43.0	40.4	. 31.1
Total	77.3	80.5	98.1	84.9	65.8
Colombia secondary		r2.0	2.5	3.0	3.0

^{*}Estimated. PPreliminary. *Revised.

1 Table includes data available through June 16, 1982. Figures presented represent, to the extent possible, production of crude (or unrefined) lead, including bullion and impure lead derived from scrap. The figures for secondary crude lead for a number of countries are undoubtedly high, but insufficient information is available to separate impure secondary lead from lead merely re-refined. Countries for which this is the case have been footnoted. (See footnote 3.) For those countries for which crude lead production is not reported, but where available information suggests that there is little if any import or export of bullion for refining, refined lead output has been reported, noted parenthetically, because it is believed that the difference between crude (or smelter) output and refined output is negligible.

2 Reported figure.

3 A significant part of the total and the significant part of the significant part of the significant part of the significant part of the significant part of the significant part of the significant part of the significant part of the significant part of the significant part of the significant part of the significant part of the significant part of the significant part of the significant part of the significant part of the significant part o

^{*}Reported figure.

3A significant part of the total entered may be merely re-refined, and as such probably should not be included here, but a substantial part of the total presumably was recovered from sufficiently impure materials to qualify as a secondary smelter product. Available information is inadequate to permit differentiation, and the total has been included, although it is recognized that this produces an overly large figure.

4Revised to zero; material previously included is regarded as being merely re-refined. (Now entered in refined lead

world production table.)

5 Data not reported, derived from reported primary refined lead output minus imports of lead bullion plus exports of lead bullion and checked against sum of lead content of domestically produced ores plus lead content of imported ores (estimated) minus lead content of exported ores (estimated).

Table 33.—Lead: World refined production, by continent and country¹ —Continued (Thousand metric tons)

Continent and country	1977	1978	1979	1980 ^p	1981
outh America —Continued				-	
Peru:					
Primary	79.2	^r 74.2	85.1	82.0	279.2
Secondary ^e	5.0	5.0	5.0	5.0	5.0
Total	84.2	79.2	00.1	07.0	04.0
Venezuela, secondarye	84.2 8.0	9.0	90.1 10.0	87.0 10.0	84.2 10.0
			10.0	10.0	10.0
Europe: Austria:					
Primary	8.4	7.1	5.9	5.5	6.0
Secondary	10.7	10.5	5.2 17.7	12.4	12.5
Total	19.1	17.6	22.9	17.9	18.5
		11.0	22.3	11.3	10.0
Belgium:					
PrimarySecondary	62.1 42.0	74.2 30.0	65.2 27.0	75.9 30.0	71.9
	42.0	30.0	21.0	30.0	30.0
Total	104.1	104.2	92.2	² 105.9	101.9
Bulgaria:					
Primary	112.0	115.0	115.0	115.0	115.0
Secondary	8.0	5.0	4.0	4.0	4.0
Total	120.0	120.0	119.0	119.0	119.0
Czechoslovakia, secondary	19.0	19.0	19.0	20.0	20.0
Denmark, secondary	24.2	26.2	29.8	24.5	26.5
Finland, secondary	3.0	3.0	3.0	3.2	3.6
France:					
Primary	² 184.1	² 208.5	² 219.7	² 218.8	210.0
Secondary	80.2	82.3	90.6	92.0	90.0
Total	264.3	290.8	310.3	310.8	300.0
German Democratic Republic, secondary	37.0	38.0	40.0	40.0	40.0
Germany, Federal Republic of: Primary	r _{182.9}	189.9	194.8	191.1	190.8
Secondary	r190.6	179.1	178.5	159.2	168.0
Trade 1			***************************************		
Total	373.5	369.0	373.3	350.3	358.8
Greece:					
Primary	^r 14.5	^r 15.6	15.6	21.1	21.0
Secondary	r _{4.2}	^r 5.6	6.0	4.0	4.0
Total	r _{18.7}	r _{21.2}	21.6	25.1	25.0
Hungary, secondary	.2	r.1	.1	25.1 .1	25.0 .1
Ireland, secondary	5.0	2.1	5.0	7.0	6.8
Tholm:					
Italy: PrimarySecondary	34.2	31.1	26.8	42.0	38.0
Secondary	83.5	85.1	101.0	91.6	92.0
Total	1100	1100	107.0	100.0	100.0
TOTAL	117.7	116.2	127.8	133.6	130.0
Netherlands:					
Primary	21.1	18.2	16.4	13.9	9.5
Secondary	12.7	13.7	14.7	13.9	16.0
Total	33.8	31.9	31.1	27.8	25.5
	.9	31.9 r.9	.4	.4	
Norway, secondary					
Norway, secondary			59.2	58.0	47.0
Norway, secondary	63.4	61.7	อง.2		22.0
Norway, secondaryPoland:	63.4 22.0	61.7 25.0	25.0	24.0	22.0
Norway, secondary	22.0	25.0	25.0		
Norway, secondary				24.0 82.0	² 69.0
Norway, secondary	22.0 85.4	25.0	25.0		
Norway, secondary Poland: Primary Secondary Total Portugal: Primary	22.0 85.4	25.0 86.7	25.0 84.2	82.0	² 69.0
Norway, secondary	22.0 85.4	25.0 86.7	25.0		
Norway, secondary Poland: Primary Secondary Total Portugal: Primary	22.0 85.4	25.0 86.7	25.0 84.2	82.0	² 69.0

LEAD 535

Table 33.—Lead: World refined production, by continent and country¹ —Continued (Thousand metric tons)

(I nousand metric tons)					
Continent and country	1977	1978	1979	1980°	1981e
Europe —Continued					
Romania:	04.5	04.0	30.9	34.9	35.0
Primary ^e Secondary ^e	34.7 7.0	34.0 8.8	10.0	6.0	6.0
Total	41.7	42.8	40.9	40.9	41.0
Spain:					
Primary Secondary	89.2 29.4	83.4 38.8	87.2 39.8	83.3 37.4	77.0 39.6
Total	118.6	122.2	127.0	120.7	116.6
Sweden: Primary	23.8 17.4	26.9 18.1	22.7 18.9	20.3 22.0	17.6 10.0
Secondary					
TotalSwitzerland, secondary e	41.2 5.0	45.0 5.0	41.6 5.0	42.3 7.0	27.6 7.2
U.S.S.R.:					
Primary ^e Secondary ^e	405.0 205.0	410.0 210.0	410.0 215.0	410.0 215.0	410.0 220.0
Total ^e	610.0	620.0	625.0	625.0	630.0
United Kingdom: Primary	139.7 211.4	122.8 223.0	124.1 244.2	113.4 211.4	135.4 198.0
Secondary	351.1	345.8	368.3	324.8	333.4
Yugoslavia: Primary	111.6	r100.3	92.0	84.7	70.4
Secondary	r _{18.2}	^r 16.4	19.0	17.0	16.0
Total	r _{129.8}	116.7	111.0	101.7	² 86.4
Africa:					
Morocco: Primary	33.1	28.5	35.2	40.3	40.0
Secondary	1.5	1.5	1.5	2.1	2.1
Total	34.6 42.7	30.0	36.7	42.4	42.1
Namibia, primary Nigeria, secondary ^e	42.7	39.5	41.7 1.5	42.7 2.0	48.5 2.0
South Africa, Republic of, secondary	r24.0	23.6	23.3	35.4	25.4
Tunisia:					
Primary	19.2	16.1	16.2	19.2	20.0
Secondary ^e	5	.5	.6	.6	6
TotalZambia, primary	19.7 13.1	16.6 12.9	16.8 12.8	19.8 210.0	20.6 10.0
Asia:					
Burma:			•		5.0
Primary ^e Secondary ^e	4.3 .5	5.1 .2	6.0 .2	5.7 .2	7.3 .2
Total ^e	4.8	5.3	6.2	5.9	7.5
China:					
Primary ^e Secondary ^e	135.0 15.0	140.0 20.0	150.0 20.0	150.0 20.0	150.0 20.0
	150.0	160.0	170.0	170.0	170.0
Total ^e Cyprus, secondary ^e	2.5	2.5	2.5	2.5	2.5
India:					
PrimarySecondary	7.6 12.4	10.1 10.9	9.8 10.8	14.9 10.7	14.3 11.1
Total	20.0	21.0	20.6	25.6	25.4
Iran, secondary ^e		·			
C . C . L . L					

Table 33.—Lead: World refined production, by continent and country¹—Continued (Thousand metric tons)

Continent and country	1977	1978	1979	1980°	1981 ^e
Asia —Continued					
Japan:					
Primary	r169.9	186.1	176.3	175.1	226.3
Secondary	117.8		106.4	129.8	90.3
Total	¹ 287.7	291.1	282.7	304.9	316.6
Korea, North:					
Primary ^e	65.0	70.0	65.0	65.0	65.0
Secondary ^e	5.0		5.0	5.0	5.0
Total	70.0	75.0	70.0	70.0	70.0
Korea, Republic of:					
Primary	6.7	7.2	7.6	² 5.5	9.3
Secondary ^e			5.8	1.3	7.2
Total ^e	7.0	8.2	13.4	6.8	16.5
Malaysia, secondary ^e Pakistan, secondary ^e	2.0	2.0	2.1	2.3	.5
Pakistan, secondary ^e	1.5	1.5	1.5	1.5	1.5
Philippines, secondary	^r 3.4	r3.5	1.9	4.8	4.8
Taiwan, secondary ^e	10.8	14.0	20.0	16.8	17.0
Thailand, secondary	1.1	1.1	.8	1.7	1.8
Turkey:	-				
Primary	2.0	2.0	4.9	5.0	5.0
Secondary	<u>1.ŏ</u>	1.0	1.0	1.0	1.0
Total	3.0	3.0	5.9	6.0	6.0
Oceania:	-				
Australia:					
Primary	181.5	204.0	215.6	200.5	207.7
Secondary	36.5	35.1	42.0	32.6	32.5
Total	218.0	239.1	257.6	² 233.1	240.2
New Zealand, secondary ^e	r8.0	r _{10.0}	10.0	12.0	12.0
Grand total	r _{5,419.9}	r _{5,497.9}	5,694.7	5,422.9	5,308.8
Of which:	-,	•	-,	·,	0,000.0
Primary			3,324.7	3,225,4	3,216.2
Secondary	^r 2.207.6	r2,217.8	2,370.0	2.197.5	2.092.6

^eEstimated. ^pPreliminary. ^rRevised. ¹Table includes data available through June 16, 1982. Data included represent the total output of refined lead by each country, whether derived from ores and concentrates (primary) or scrap (secondary), and include the lead content of antimonial lead, but exclude, to the extent possible, simple remelting of scrap, particularly new scrap, unless otherwise noted.

Reported figure.

Less than 1/2 unit.

Lime

By J. W. Pressler¹

Lime output in 1981, including that for Puerto Rico, was 18.9 million tons, a decrease of 1% compared with that of 1980, and the lowest since 1968. Total value was \$888 million, a 5% increase compared with that of 1980.

In 1981, output of chemical and industrial lime remained virtually the same, but refractory lime decreased 12%, agricultural lime decreased 6%, and construction lime decreased 2% from 1980 levels.

Table 1.—Salient lime statistics in the United States1

(Thousand short tons, unless otherwise specified)

	1977	1978	1979	1980	1981
Number of plants	161	155	154	153	150
Sold or used by producers: Quicklime Hydrated lime Dead-burned dolomite	16,281	16,845	17,553	15,972	16,142
	2,698	2,582	2,599	2,544	2,279
	968	1,016	793	494	435
Total thousands thousands thousands thousands thousands time sold time used Exports 5 r consumption s time to the force of the consumption s thousands thousands thousands time to the consumption s thousands thousands thousands time to the consumption s	19,947	20,443	20,945	19,010	18,856
	\$666,472	\$749,667	\$862,459	\$842,922	\$884,197
	\$33.41	\$36.67	\$41.18	\$44.34	\$46.89
	14,202	15,062	15,423	13,809	14,271
	5,745	5,381	5,522	5,201	4,585
	33	45	45	42	28
	423	610	640	480	504

¹Excludes regenerated lime, Excludes Puerto Rico.

DOMESTIC PRODUCTION

Lime producers sold or used 18.9 million tons in 1981, compared with 19.0 million tons in 1980. Commercial sales of lime increased 3% in 1981 to 14.3 million tons. Captive lime used by producers continued its long-term decline with a 9% reduction in 1981 to 4.6 million tons. This was a 37% decrease from the record year of 1971.

In 1981, output of quicklime increased 1% to 16.6 million tons. Production of hydrated lime decreased 10% to 2.3 million tons.

Output of dead-burned dolomite decreased 12%, 82% below the 1956 record level of 2.4 million tons.

In 1981, five States—Ohio, Missouri, Pennsylvania, Texas, and Alabama—accounted for 47% of the total output. Compared with that of 1980, production increased 8% in Alabama and 4% in Missouri, but decreased 8% in Texas, 4% in Pennsylvania, and 1% in Ohio.

²Selling value, f.o.b. plant, excluding cost of containers. ³U.S. Bureau of the Census.

Table 2.—Lime sold or used by producers in the United States, by State¹

(Thousand short tons and thousand dollars, unless otherwise specified)

Diane		DOST					1981		
	Hydrated	Quicklime	Total ²	Value	Plants	Hydrated	Quicklime	Total ²	Value
Alabama 5	131	266	1.128	53.685	ıc	124	1.095	1.219	59.454
Arizona		514	514	28,904			289	288	90 918
Arkansas	A	A	175	7785	0	B	8≱	149	200
California		: 3	2 4 4	90,444	5	B	₽	200	700,00
Common Manage Williams	E 6	= §	35	44.67 0000	7,	₽ §	₽	4.	000
Colorado, Meyada, Wyolming	2;	gg °	609	20,878	<u>.</u>	ò:	202	449	13,921
The state of the s	⊒ 1	×,	ST,	1,352		≓i	۱۰	97	3,19
Florida	≥:	≥	195	12,434	90	≥	≥	191	11,343
Hawaii, Idaho, Oregon, Washington	83	432	461	24,899	œ	23	604	436	23,658
Illinois and Indiana 5	75	1,625	1.699	69,332	10	86	1.854	1.912	88,257
Iowa, Kansas, Nebraska, North Dakota, South Dakota	57	316	373	12,954	6	200	308	359	14,021
Kentucky, New York, Tennessee. West Virginia9	Z	5.309	2.363	99,152	œ	3	2.280	2.844	100,752
Louisiana, New Mexico, Oklahoma	144	294	438	28.411	16	128	286	384	22,814
Maryland	ıc	œ	15	497		4	14	3	441
Massachusetts	, T	185	18	10.806	10	14	156	170	10 709
Michigan		88	88	36,750	100	B	3	208	86,800
Minnesota	¦	163	183	3,562	4	•	. 25	35	8,00
Misaisainni	!	.		101	•	!	3	3	2106
Missouri	B	B	1 667	68 788	100	B	¦Β	1 799	79 497
Montana	•	866	866	9,0	o		19.	5	169.7
Ohio	181	988	9 786	199 217	Ä	100	0 640	194 0	197,761
Pannavivania 10	400	1,860	1,769	24,901	35	900	4,040 1,040	5	05,101
Puerfo Rico	£ 55	7,000		4 191	3-	38	1,000	7,000	00,410
Texas	967	878	1515	67,075	10	25.5	200	1 202	67.159
Utah	8	8	250	18,908	7	8	3	200	16,579
Virginia	105	719	228	33,879	* [-	:2:	707	88	85,984
Wisconsin	103	254	357	17,987	- xc	3	500	888	17,548
Other ³ (*)	239	2,311	€	€	°Đ	513	8,177	Đ	€
Tota 12	9 570	16 450	10.001	047 059	į	0 0 0 1 1	10 500	000	100
	610,2	10,400	12,001	041,000	101	110,2	10,019	10,090	100,000

W Withheld to avoid disclosing company proprietary data; included with "Other."

"Excludes regenerated lime. Includes Puerto Rico.

"Data may not sad to vlotals shown because of independent rounding.

"Includes States indicated by symbol W and exports.

"Included with data for each individual State.

539

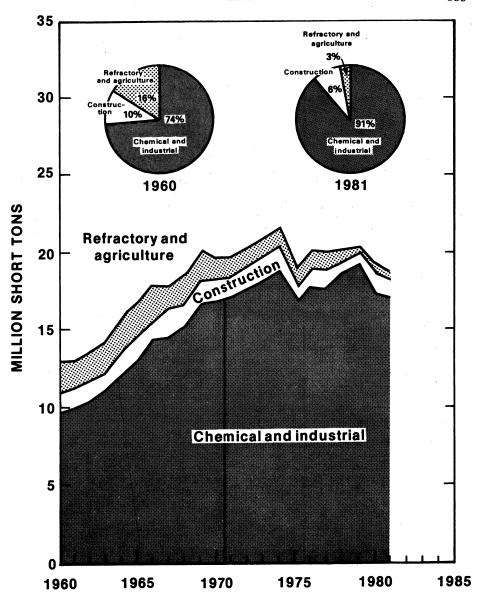


Figure 1.—Trends in major uses of lime.

Leading producing companies in 1981 were Marblehead Lime Co. with two plants in Illinois and one each in Indiana, Michigan, Pennsylvania, and Utah; Dravo Corp. with one plant each in Alabama, Kentucky, Louisiana, and Texas; Mississippi Lime Co. in Missouri; the Martin Marietta Corp. Chemical Div. in Alabama and Ohio; Bethlehem Steel Corp. with two plants in Pennsylvania and one in New York; Gen-

star Cement & Lime Co. with two plants in California, two in Nevada, and one each in Arizona, Utah, and Virginia; Allied Chemical Corp. in New York; Allied Products Co. with two plants in Alabama; Black River Lime Co. in Kentucky; United States Gypsum Co. with one plant each in Louisiana, Ohio, and Texas. These 10 companies, operating 30 plants, accounted for 48% of the total 1981 lime production.

In 1981, the seven largest lime plants, each producing more than 400,000 tons, accounted for 27% of the total lime output. Thirty-one plants produced more than 200,000 tons each and accounted for 61% of the total.

Leading individual plants in 1981 were Mississippi Lime's Ste. Genevieve plant, Dravo's Maysville plant, Marblehead's Buffington plant, Allied Chemical's Syracuse plant, and Black River Lime's Carntown plant.

A total of 483 lime kilns were operational during 1981: 244 vertical kilns, 186 rotary kilns, 25 pot kilns (primitive vertical), 16 Calcimatic traveling-hearth kilns, 6 fluidized-bed kilns, 4 Ellernan kilns, 1 Maerz two-shaft vertical kiln, and 1 traveling-grate rotary kiln. Hydrators for the production of hydrated lime totaled 120 during 1981; 22 were of the batch type, and 98 were of the continuous type.

In 1981, the number of lime plants in the United States and Puerto Rico decreased by 3 to 151, and the average output per plant was 125,100 tons per year, a 1% increase when compared with that of 1980.

New Plants and Expansions.—Marblehead Lime Co. of Chicago, Ill., a subsidiary of General Dynamics Corp., placed into operation in 1981 the world's largest lime-producing kiln, which added 350,000 tons per year to current capacity and replaced 140,000 tons per year of outdated capacity. The Fuller 15-foot-diameter by 17-foot-diameter by 14-1/2-foot-diameter by 485-foot-long rotary kiln is driven by two 500-horsepower direct-current motors controlled by variable-speed drives. Marble-head Lime continued to be the largest U.S. producer of lime in 1981.²

Continental Lime Co., a subsidiary of

Steel Brothers Canada, Ltd., placed its new 500-ton-per-day lime plant near Delta, Utah, into operation in early 1981. Fired by Utah coal, the plant produced a high-calcium lime, used for copper ore concentration, gold mining, water purification, and for removal of sulfur dioxide from utility plant stack gases. Energy consumption was 5 million British thermal units (Btu) per ton of quicklime produced.

Continental Lime purchased the Tacoma lime plant of Domtar Gypsum America, Inc., in January 1981. The plant supplied lime for the Pacific Northwest and obtained its limestone from Domtar's Texada Island quarry in British Columbia.⁴ Continental Lime was also constructing a 500-ton-perday lime plant near Townsend, Mont., which was expected to be onstream by yearend 1982.⁵

Rockwell Lime Co. of Manitowoc, Wis., tripled its plant capacity in 1981 by the addition of a second kiln measuring 8 feet in diameter by 220 feet in length, a new hydrator, and a new baghouse. The new kiln was rated at 300 tons per day, and increased the total plant capacity to 450 tons per day of quicklime and 275 tons per day of hydrate.

Three Canadian companies were active in U.S. lime operations: Domtar Chemicals Group's Lime Div. operated its Bellefonte, Pa., plant; Steetley Industries, Ltd., through its U.S. subsidiary, Steetley Resources Inc., operated the Gibsonburg, Ohio, dolomitic lime plant and also continued part-time operation of its dolomitic quicklime plant located at Woodville, Ohio; and Steel Bros. Canada Ltd., through its U.S. subsidiary, Continental Lime, Inc., operated its two lime plants in Delta, Utah, and Tacoma, Wash.

Table 3.—Lime sold or used by producers in the United States, by size of plant1

		1980			1981	
Size of plant	Plants	Quantity (thousand short tons)	Percent of total	Plants	Quantity (thousand short tons)	Percent of total
Less than 10,000 tons	9 29 30 25 26 28 7	57 461 1,026 1,810 3,644 7,192 4,847	2 5 10 19 38 25	12 26 25 27 28 26 7	77 420 837 1,925 4,057 6,590 4,983	(*) 2 4 10 21 35 26
Total ³	154	19,037	100	151	18,890	100

¹Excludes regenerated lime. Includes Puerto Rico.

Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

LIME 541

CONSUMPTION AND USES

Lime was consumed in every State. Leading consuming States in 1981 were Pennsylvania, Ohio, Indiana, Texas, and Michigan, each of which consumed more than 1 million tons. These five States accounted for 48% of the total lime consumed.

Lime consumption in the steel industry increased 9% in 1981 to 7.8 million tons and equaled 42% of all lime consumed in the United States. Low housing and building starts during 1981 caused a 12% decrease in the sales of mason's and finishing lime. Environmental uses of lime continued to appreciate rapidly. Lime consumption in flue gas desulfurization processes and effluent water cleanup increased 22% during 1981.

Leading quicklime-consuming States in 1981 were Pennsylvania, Ohio, Indiana, and Michigan, each of which consumed more than 1 million tons. These four States accounted for 43% of the total quicklime consumed.

Leading hydrate-consuming States in 1981 were Texas, Pennsylvania, Ohio, Louisiana, and Illinois, each of which consumed more than 100,000 tons. These five States accounted for 51% of the total hydrate consumed.

Lime sold by producers in 1981 was utilized for chemical and industrial uses, 89%; construction, 8%; refractories, 2%; and agriculture, 1%. Captive lime used by producers was 24% of the total, compared with 27% in 1980. Captive lime was used mainly in basic oxygen furnace (BOF) steel, 28%; sugar, 19%; alkalies, 18%; and copper ore concentration, 6%.

Leading individual lime uses in 1981 were

for BOF steel, water purification, sulfur removal from stack gases, paper and pulp, sugar refining, and electric steel, which together accounted for 62% of the total consumption.

Of the main chemical and industrial uses in 1981, lime for BOF was produced principally in Ohio, 25%; Indiana and Illinois combined, 29%; and Pennsylvania, 10%. Lime for water purification was produced mainly in Missouri; with Alabama, Texas, and Pennsylvania contributing 11%, 9%, and 8% of the totals respectively. Lime used for sulfur removal from stack gases was principally produced in Kentucky. Lime used for paper and pulp, excluding regenerated lime, was produced mainly in Alabama, 28%; Virginia, 18%; and Texas, 13%. Lime for sugar refining was produced mainly in California, 20%; Minnesota, 16%; and Idaho, 11%. Lime used for electric steel was produced mainly in Pennsylvania, 23%; and in Ohio and Texas, 17% each.

Mason's lime was produced at 29 plants in 16 States, including Puerto Rico; leading States, with three plants each, were Pennsylvania, 23%; Virginia, 15%; and Wisconsin, 12%. Finishing lime was produced in 7 States at 10 plants; the leading State was Ohio with 2 plants.

The use of lime in agriculture decreased 6% in its long-term decline to 74,000 tons in 1981, compared with 79,000 tons in 1980. Compared with its high of 250,000 tons per year in 1956, it has become of small significance. In 1981, 29 million tons of the less-reactive, pulverized limestone was sold, a decrease of 9% compared with that of 1980.

Table 4.—Destination of shipments of lime sold or used by producers in the United States, by State¹

(Thousand short tons)

		1980			1981	
State	Quicklime	Hydrated lime	Total ²	Quicklime	Hydrated lime	Total ²
Alabama	483	46	530	587	54	642
Alaska	W	w	. 1	W	w	1
Arizona	366	23	389	347	18	365
Arkansas	176	27	203	149	27	176
California	724	94	819	647	82	729
Colorado	242	15	257	249	14	264
Connecticut	33 39	16 5	49 43	16 36	13	29
Delaware District of Columbia	W	w	40 1	W	6 W	41 9
Florida	386	53	439	427	58	485
Georgia	186	39	225	179	27	206
Hawaii	2	5	6	ĭ	7	200
ldaho	116	4	119	120	4	124
[]lingis	777	117	893	740	117	857
Indiana	1,629	70	1,699	1.843	48	1,891
lowa	67	19	86	100	17	117
Kansas	87	18	105	74	15	89
Kentucky	443	17	460	453	23	476
Louisiana	192	161	353	182	127	309
Maine	36	1	37	31	(³)	32
Maryland	373	23	396	365	23	388
Massachusetts	57	16	73	84	17	101
Michigan	1,333	22	1,355	1,303	24	1,327
Minnesota	254	16	271	237	15	251
Mississippi	118	29 104	147	111	44 63	155
Missouri	155		259	146	63	209
Montana	241 120	9 6	250 126	238	7	245
Nebraska Nevada	43	9	52	94 52	5	99
New Hampshire	W	w	52 1	W W	w	59
New Jersey	88	52	140	103	44	2 147
New Mexico	105	13	118	114	28	142
New York	1.024	54	1.077	748	48	796
North Carolina	163	30	193	141	24	166
North Dakota	110	7	117	87	-6	93
Ohio	1.798	161	1,959	1.930	150	2,080
Oklahoma	102	16	118	100	20	119
Oregon	137	11	148	89	10	99
Pennsylvania	2,067	239	2,306	2,086	206	2,292
Rhode Island	5	3	- 8	. 4	- 3	7
South Carolina	109	19	128	120	21	141
South Dakota	31	17	49	7	15	22
l'ennessee	156	71	227	159	65	224
Texas	862	673	1,535	890	577	1,466
Utah	153	12	166	175	12	187
Vermont	. W	W	200	. W	w	3
Virginia Washington	132 262	76	208	137	72	209
West Virginia	202 290	16 37	277	248 426	14	262
Wisconsin	290 108	52	327 160	426 118	26	453
Wyoming	35	52 14	48	118 53	51 12	169 65
Other ⁴	4	14	18	35 14	27	99 26
	<u>*</u> _	14	10	14	- 21	20
Total United States ²	16,414	2,551	18,965	16,561	2,293	18,855
Exports:						
Canada	20	10	31	10	7	10
Mexico	20	10	20	12 3	7	19 3
Other countries	4	17	20 22	2	10	13
		11	46		10	19
Total exports ²	44	28	72	18	17	35
Grand total ²	16,458	2,579	19,037	16,579	2,311	18,890

W Withheld to avoid disclosing company proprietary data; included with "Other."

1Excludes regenerated lime. Includes Puerto Rico.

2Data may not add to totals shown because of independent rounding.

3Less than 1/2 unit.

4Includes Puerto Rico and States indicated by symbol W.

LIME 543

Table 5.—Lime sold or used by producers in the United States, by use¹

(Thousand short tons and thousand dollars)

		19	80			19	81	
Use	Sold	Used	Total ²	Value	Sold	Used	Total ²	Value
Agriculture	79		79	3,727	74		74	3,595
Construction:				20.045	200		700	00 700
Road stabilization	554		554	26,845	528		528	28,500
Soil stabilization	170	7.7	170	8,226	230		230	12,384
Mason's lime	288	40	328	15,916	185	32	217	11,695
Finishing lime	99	-a=	99	4,777	159	27	159 43	8,556
Other	16	27	44	2,111	17	ZI	48	2,343
Total ²	1,126	68	1,194	57,872	1,118	59	1,176	63,478
Chemical and industrial:								
Steel, BOF	4.409	1.441	5,850	256,469	4.806	1.300	6.107	282,974
Water purification	1,487	-,9	1,496	65,603	1,422	5	1,427	66,119
Steel, electric	755	34	789	34,556	1,071	147	1,218	56,453
Paper and pulp	1,039	116	1,156	50,658	1,079	110	1,189	55,117
Sugar refining	58	909	967	42.414	54	888	941	43,618
Sulfur removal	743	• • • • • • • • • • • • • • • • • • • •	743	32,566	908		908	42,090
Sewage treatment	848	12	860	37,705	849	- - 7	855	39,640
Alkalies	6	1,167	1.173	51,407	3	836	839	38,886
Copper ore concentration	340	318	658	28,859	376	278	654	30,301
Magnesia from seawater	010	010	000	20,000				,
or brine	w	w	648	28,414	w	w	562	26.029
Steel, open-hearth	564	38	602	26,407	493	55	547	25,365
Aluminum and bauxite	160	114	275	12,036	163	103	266	12,309
Calcium carbide	121	63	185	8,103	178	70	248	11,491
Acid water, mine or plant	419	70	490	21,467	233		233	10,799
	180	10	180	7,910	167		167	7,734
Glass	W	w	187	8,193	ĭii	155	167	7,723
Magnesium metal		. **	101	0,100		100		.,,,
Precipitated calcium	65	47	112	4.905	64	41	105	4.866
carbonate	99		99	4.327	93	**	93	4,334
Petrochemicals	18		18	773	63		63	2.904
Ore concentration, other	31	- - -	35	1,518	45		45	2,102
Metallurgy, other	59	4	59	2,567	44		44	2,029
Petroleum refining	39		39	1,689	38		38	1.744
Oil well drilling	99		09	1,000	. 00		•••	1,144
Food products, animal or	37		37	1,602	37		37	1.714
human	32		32	1,395	37		37	1,707
Oil and grease	32 28		32 28	1,243	18		18	854
Tanning	28 13		13	581	17		17	786
Wire drawing	19		10	901	6		16	263
Gelatin	- 5		$-\frac{1}{5}$	209	5		5	225
Fertilizer	. 6		6	262	4		4	185
Brick, sand-lime	. 0		0	202	3		3	143
Calcium silicate	$-\overline{2}$		$-\overline{2}$	102	3		3	121
Paint	3		3	152	i		ĭ	25
Insecticides		714	523	23.053	465	452	357	16,569
Other ³	645	714	523	20,000	400	402	901	10,000
Total ²	12,211	5.059	17,269	757,145	12,757	4,447	17,204	797,220
Refractory dolomite	420	75	494	28,308	356	79	435	23,789
=								<u> </u>
Grand total ²	13,836	5,201	19,037	847,053	14,305	4,585	18,890	888,081

W Withheld to avoid disclosing company proprietary data; included with "Other." ¹Excludes regenerated lime. Includes Puerto Rico.

*Excludes regenerated time. Includes ruerto ruco.

*Data may not add to totals shown because of independent rounding.

PRICES

The average value of lime sold or used by producers in 1981 was \$47.01 per ton, an increase of 6% over the 1980 price of \$44.50 and an increase of 170% over the 1973 price of \$17.42. Values ranged from \$43.34 for chemical and industrial lime to \$53.96 for construction lime, \$54.69 for refractory dolomite, and \$48.36 for lime used in agriculture.

Values for quicklime sold ranged from

\$46.46 for chemical lime to \$46.86 for construction lime, \$35.15 for lime used in agriculture, and \$54.88 for dead-burned dolomite, and averaged \$46.68, an increase of 5% over the 1980 average value.

Values for hydrated lime sold ranged from \$56.39 for construction lime to \$51.28 for chemical lime and \$58.58 for lime used in agriculture, and averaged \$53.55, an increase of 8% over the 1980 average value.

^{*}Includes chrome, coke and gas, explosives, manganese, rubber, silica brick, other, and uses indicated by symbol W.

FOREIGN TRADE

Exports of lime in 1981 decreased 32% to 28,400 tons, 59% below the 1968 record. Of the total exports, Canada received 56%; Mexico, 17%; Trinidad, 7%; and Guyana, 6%. The remaining 14% went to 37 countries, with order of tons shipped as follows: The Bahamas, Bermuda, Panama, Saudi Arabia, the Philippines, the Netherlands, Venezuela, Brazil, the Windward Islands, Australia, New Zealand, Israel, Colombia, Peru, Nigeria, the Netherlands Antilles, Kuwait, Chile, the Republic of South Africa, Sweden, and Japan.

Imports of lime have grown at an average

rate of over 14% during the last 10 years. Imports from Canada (98%) and Mexico (2%) were 504,000 tons, an increase of 3% compared with that of 1980. Net import reliance, expressed as a percentage of apparent consumption, was 2%.

Table 6.—U.S. exports of lime

	Quantity (short tons)	Value (thousands)
1978	44,794	\$3,082
1979	45,421	3,827
1980	41,843	3,990
1981	28,429	3,996

Table 7.—U.S. imports for consumption of lime

	Hydrated lime		Other lime Total		tal ¹	
	Quantity	Value	Quantity	Value	Quantity	Value
	(short tons)	(thousands)	(short tons)	(thousands)	(short tons)	(thousands)
1978	62,290	\$2,491	547,830	\$16,663	610,120	\$19,154
	85,169	3,450	554,332	19,165	639,500	22,614
	62,423	3,129	417,792	16,044	480,215	19,173
	65,717	3,471	438,623	18,092	504,340	21,563

¹Data may not add to totals shown because of independent rounding.

WORLD REVIEW

Lime is produced all over the world, mainly in the heavily industrialized nations. Large quantities of lime are produced in many countries of the world in small, primitive pot and vertical kilns. The quicklime is used in the manufacture of mortar and plaster for use in the construction of homes and buildings. Production statistics are not reported, and estimates can only be made that the quantities are substantial. Source materials are adequate. The United States, with 15% of the total, ranked second in world production in 1981, following the U.S.S.R.

Belgium.—Production of lime in Belgium was 3.55 million tons in 1981, the same as in 1980. The pattern of lime exports from Belgium tended to negate the recessionary influences, with about 22% of production exported to the Netherlands, 17% to Luxembourg, and a smaller percentage going to France. The largest producer of lime in Belgium was the Lhoist Group through three operating subsidiaries. In 1980, lime in Belgium was used principally for steel, 71%; construction, including ceilings, roads, and calcium silicate bricks, 18%; chemicals, 6%; and other. 5%.

Canada.—Canadian production of lime in 1981 was 2.3 million tons, virtually the same as in 1980. In spite of the downturn in the steel and mining industries, environmental uses of lime had increased growth rates in water and sewage treatment and in the removal of SO₂ from smelter stack gases and thermal powerplant emissions. In 1980, 18 companies operated 21 lime plants in Canada, 1 in New Brunswick, 4 in Quebec, 9 in Ontario, 2 in Manitoba, 3 in Alberta, and 2 in British Columbia. Of these, five were captive plants, of which three were in the sugar industry, one was in the steel industry, and one was in magnesium, calcium, and strontium production.8

Steel Brothers Canada Ltd. started up the second kiln at their Pavilion Lake, British Columbia, plant, and Domlim Inc. started production of their new oil-fired Kennedy Van Saun vertical kiln at St. Adolphe de Dunville, Quebec. Most of Domlim's product was to be used for the chemical and pulp industries and for other metallurgical uses.

Steetley Industries' Dundas plant in Ontario accounted for 85% to 95% of Canadian production of calcined dolomite for the steel industry and refractory use. It was also the

LIME 545

country's only producer of dead-burned dolomite.

Denmark.—Danish lime production in 1981 was 151,000 tons, a decrease of 19% compared with that of 1980. A/S Faxe Kalkbrud of Copenhagen was the sole producer with plants at Hedelhusene, Boesdal, and Fakse near Rodvig on the island of Zealand, and at Arhus. At both of the Zealand island plants, high-calcium coral limestone was the feedstock. Faxe Kalkbrud markets included construction products, steel, paper and pulp, water purification, and sewage treatment. 10

Finland.—The production of lime in Finland in 1981 was 208,000 tons, a 4% decrease compared with that of 1980. Most of the commerical market was supplied by Oy Partek AB from its two plants at Pargas and Lappeenranta. Two other small companies had plants at Tytyri and Ruokajarvi. The Finnish steel producer, Rautaruukki Oy, produced about 150,000 tons of burnt lime for its own consumption in steelmaking. Other principal markets included pulp and paper, metallurgy, water purification, building materials, and sugar refining. 11

France.-Production of lime in France in 1981 was 4 million tons, an 8% decrease compared with that of 1980. This was principally caused by the recession in the French steel industry, which accounted for about 60% of total lime consumption. The Lhoist Group of Belgium accounted for about 1.7 million tons of French capacity through its subsidiaries, which operated at Rety, Boran, and Dugny in the north of France. Lime was produced in 34 different locations spread throughout France, 14 of which had less than 22,000 tons per year of capacity each. Use patterns included steel, 60%; nonferrous metallurgy, road stabilization, and agriculture, 6% each; and other, 22%.12

Germany, Federal Republic of .- The Federal Republic of Germany was the leading European producer of burnt lime with production of 9.4 million tons in 1981. The largest producer was Rheinische Kalksteinwerke GmbH with a total capacity of 2.9 million short tons from 14 kilns, follow-Rheinische-Westfalische ed werke AG with burning capacity of 2.2 million tons from 1 rotary kiln and 25 to 30 shaft kilns including some Maerz kilns, and by Fels-Werke Peine-Salzgitter GmbH with a capacity of 600,000 tons. In the Federal Republic of Germany, 35% of the lime was consumed in the iron and steel industry with an average consumption of 136 pounds of lime per ton of crude steel. Other important uses included building materials, 22%; building industry, 15%; and agriculture, 7%.13

Rheinische Kalksteinwerke reported a drop in sales volume for its lime products of 18% to 1.7 million tons in 1980, caused principally by the recession in the iron and steel and building industries. The company's associate, Dolomitwerke GmbH wülfrath reported its sales of refractory products held up well for the same period, decreasing by only 2.3%.14

Libya.—The new shaft lime kiln of the Libyan Cement Co. was placed onstream in July 1981 at Benghazi, Libya, as a turnkey project of KHD Humboldt Wedag AG. In 1981, Libya operated three lime production lines with a total output of 220,000 tons per year of white hydrated lime at plants in Benghazi and Souk el Khamis. 15

Netherlands.—CV Nekami Kalk at Gouda was the only company actively producing burnt lime products in the Netherlands. The company was merged in 1981 with SA Carrieres et Foursa Chaux de la Meuse to form a company called SES. Importing high-quality lime from Belgium, SES marketed a variety of products. CV Nekami Kalk, through its subsidiary BV Nekami-Gouda, produced about 100,000 tons per year of hydrated lime and other derived products using imported lime. 16

Norway.—In 1981, the principal producers of burnt lime in Norway were Hylla Kalkvert, a subsidiary of Franzefoss in the Verdal area near Trondheim, with production of 51,000 tons per year; Mjoendalen Kalkfabrik at Aasen, with a production of 8,000 tons per year used for water purification; and A/S Norsk Jernverk, the leading Norwegian steel producer, with a captive burnt lime plant producing 53,000 tons per year used in the production of iron and steel.¹⁷

Sweden.—Since 1974, the annual production of burnt lime in Sweden had gradually declined from 1 million tons per year to an estimated level of 785,000 tons per year in 1981. In 1980, 40% of the production was consumed by the iron and steel industry. Of the commercial lime produced, 45% was sold to the steel industry, 25% was for the pulp and chemical industries, 15% was used in the manufacture of building materials, and the remaining 15% was sold for water treatment and other minor uses. Cementa AB was the sole Swedish cement producer,

and in addition, produced burnt lime at its Limhamn and Koping plants, with production of 100,000 tons and 200,000 tons per year, respectively. The Limhamn plant has a unique method of quicklime production in which siliceous limestone is burned, followed by air classification to produce two salable products—flint and burnt lime. The other major Swedish producer of commercial lime was Stabruken AB, which operated two plants, one at Boda off the southeast coast of Sweden with a capacity of 94,000 short tons per year, and the other at Raettviks in central Sweden with a capacity of 190,000 short tons per year.¹⁸

Switzerland.—Swiss production of lime increased slightly to about 90,000 short tons in 1981. Two companies accounted for virtually all of Swiss production—Kalkfabrik Netstal AB, with one plant at Netstal, and Cementfabrik Holderbank, with three plants at Lausanne, Unterterzen, and Zurich. Most of Holderbank's production was used in the construction industry. 19

United Kingdom.—The production of quicklime and hydrated lime increased 1% in 1981 to a level of 3.3 million tons. A decrease was prevented principally because of the recovery of the iron and steel industry from a prolonged strike in 1980. In the United Kingdom there were five large producers of burnt lime that supplied the commercial market as well as their own needs-Imperial Chemical Industries, Ltd. (ICI), Tilling Construction Services, Amey Roadstone Corp., Steetley Minerals Ltd., and Peakstone Ltd. Four smaller companies produced hydrated lime, and three other companies produced burnt lime for their own requirements in the iron and steel industry, sugar refining, and in the production of calcium-silicate bricks.

The largest producer of lime in the United Kingdom was the Mond division of ICI with 13 kilns at Tunstead with a total capacity of 860,000 tons per year and 2 kilns at Hindlow with a total capacity of 240,000 tons per year. Industrial uses for burnt lime in the United Kingdom in 1979 were iron and steel, 44%; chemicals, 38%; building, 4%; and other, 14%.20

Venezuela.—A quicklime and hydrated lime plant with a capacity of 550,000 tons per year of quicklime, including 190,000 tons per year of hydrated lime, was installed as an integral part of the only Venezuelan integrated steel-production facility, the state-owned enterprise Siderúrgica del Orinoca (SIDOR). Energy consumption was 4.7 million Btu per ton of quicklime. SIDOR required quicklime partly as a flux for the electric furnace operations, and to a larger extent, as hydrated lime as a binding agent in iron ore pelletizing operations.²¹

Western Europe.—Owing to the diverse uses of burnt lime in the chemical and manufacturing industries, almost every country in Western Europe was a producer of burnt lime, largely for domestic consumption, but with considerable international trade, especially with the members of the European Communities. The most significant factor affecting the production was the economic recession, which had caused a severe reduction in the high-volume consumption of lime in the iron and steel, construction, and chemical industries. This was especially apparent in the United Kingdom steel industry, which created excess burning capacity that could not be absorbed by other market outlets.22

Table 8.—Quicklime and hydrated lime, including dead-burned dolomite: World production, by country¹

(Thousand short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Canada	2,094	2,242	2,242	2,274	2,270
Costa Rica ^e	. 7	. 8	10	8	8
Dominican Republic	23	e ₂₈	42	44	45
Guatemala	50	49	45	39	35
Jamaica	159	173	225	175	. 175
Mexico	e4,575	e4.900	5.047	4,800	5,100
Nicaragua ^e	40	41	40	44	35
United States, including Puerto Rico (sold or used by	10	71			-
producers)	19.987	20.484	20,983	19,037	318,890
South America:	10,001	20,101	20,000	20,000	20,000
Brazile	4.960	r _{5.100}	5.200	5,300	5,500
Chile ^e	680	680	700	700	660
Colombia ^e	1,430	1,430	1,430	1.430	1,430
	1,450 59	42	36	61	65
Paraguay	99	42	30	61	99

Table 8.—Quicklime and hydrated lime, including dead-burned dolomite: World production, by country¹—Continued

(Thousand short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
South America —Continued					
Peru	(1)	(4)	· -(4)	(4)	40
Uruguay		94	89	22	5
Venezuela	NA	NA	NA	220	440
Europe:					
Austria	1,068	1,120	1,127	1,213	1,21
Belgium	^r 2,782	¹ 3,846	3,697	3,554	3,550
Bulgaria	1,901	1,964	2,059	2,061	1,91
Czechoslovakia	3,300 191	3,393 179	3,272 195	3,327 187	3,30
Denmark Finland	259	214	220	217	15 20
France	r e _{4,925}	r e5.071	4.266	e4.409	4.05
German Democratic Republic	3,711	3,795	3.825	3,749	3,75
Germany, Federal Republic of	9,667	9,910	10,174	9,921	9,42
Hungary	819	816	82	769	77
Ireland	88	101	80	35	3
Italy	2,421	2,360	2,315	^e 2,315	2,15
Malta	35	31	33	34	3
Norway	113	139	^e 143	143	14
Poland ⁵	9,521	10,070	8,435	8,267	7,44
Portugal	250	286	288	300	29
Romania	3,798	4,031	4,221	4,203	4,20
Spain ^e	440	390	440	500	50
Sweden ⁶	847	825	854	e882	78
Switzerland	73	75	. 77	83	9
United Kingdom	3,574	3,470	3,649	3,285	3,31
U.S.S.R. ^e	26,000	26,000	26,500	27,000	27,56
Yugoslavia	2,256	2,265	2,647	^e 2,756	2,98
Africa:					
Algeria ^e	44	55	90	100	10
Burundi	_ 1	_ (4)	(4)	(4)	(*
Egypt ^e	^r 110	r ₁ 110	100	97	10
Kenya	86	e ₅₅	30	29	3
Libya	330	243	248	255	25
Mauritius	8	. 9	eg	. 8	
Mozambique ^e	110	r ₁₁	11	11	2 2
South Africa, Republic of (sales)	1,658	2,067	1,897	2,407	2,38
Tanzaniae	2		457.4	583	E1
Tunisia	373	471	474		51
Uganda ^e	22	28	31 e ₁₁₀	17	1 11
Zaire	111	e110		110	. 19
Zambia	^e 280	^e 280	280	201	. 19
Asia:	91	177	e20	15	1
Cyprus	31 200	17 220	450	440	1 44
India		1,000	550	550	55
Iran ^e	1,100 112	1,000	137	137	90 14
Israel	9,945	9,985	10,613	10,307	9,38
Japan Jordan	3,340	3,300 3	10,013	10,501	3,00
Korea, Republic of	66	e66	66	231	22
Kuwait	22	90	e13	13	1
Lebanon	179	111	130	130	6
Mongolia	r e55	40	51	55	5
Philippines	31	37	59	96	10
Saudi Arabia ^e	22	33	165	165	20
Taiwan	r ₁₉₆	211	195	219	16
United Arab Emirates	NA	NA	NA	44	4
Omea Arab Emiraces		- 442	****		•
Australia ⁷	r945	981	963	992	1,00
T0::: T_1 3_	2	i	1	2	-,00
	100	175	190	190	19
New Zealand ^e	190		130	130	
ryi isianos New Zealand ^e	190	110	190	190	15

^{*}Estimated. *Preliminary. *Revised. NA Not available.

1 Table includes data available through June 16, 1982.

2 Lime is produced in many other countries besides those listed. Argentina, China, Iraq, Pakistan, Syria, and Turkey are among the more important countries for which official data are unavailable.

3 Reported figure.

4 Less than 1/2 unit.

5 Excludes output by small producers.

^{**}Sexcludes output by small producers.

Series reflects total production, not sales as stated in previous editions of this chapter.

Data are for years ending June 30 of that stated.

TECHNOLOGY

In the previous 20 years, there had been substantial changes in lime kiln design and technology, including the flexibility of fuels used. There had been a gradual progression from using simple vertical shaft kilns to rotary kilns, rotary hearth kilns, and twinshaft regenerative kilns for higher quality burnt lime and lower energy consumption. The choice of the kiln system depends on properties of the raw material and the use specifications of the consumer. Simple vertical kilns were highly energy efficient but produced a lower quality lime; also, the minus 2-inch material had to be screened out of the feed material. Rotary kilns could accept any practical size feed but had higher energy consumption, although the new preheater and short section adaptations could enhance energy efficiency. In the later 1960's, British Steel Corp. initiated the use of the calcimatic rotary hearth kiln for the production of low sulfur quicklime. These kilns met the strict specifications for quicklime as well as being more energy efficient. Other advantages were lower capital investment, flexibility of operations, use of small-size feed, and production of a consistently high-reactive lime.

One of the most important breakthroughs in kiln technology was the development of the multishaft regenerative kiln, which produced soft-burned lime ideal for steelmaking, along with low fuel consumption. The kiln operation depended upon the alternate firing of two or three shafts, while the other shafts used waste gas for preheating of the stone. Combustion fuel and air was transferred from one shaft to the other at short intervals, while cooling air was introduced at the bottom of both shafts, which continuously discharged quicklime.23

Three Maerz shaft lime kilns were installed by British Steel Corp. at their Shapfell works—two double-shaft kilns with capacities of 330 short tons per day and one triple-shaft kiln, fired by liquid propane gas. The kilns were commissioned in March 1975 and, with the exception of a 2-month period of lining repair, had been in continuous operation since that time. Energy consumption averaged 2.7 million Btu per short ton of quicklime.24

Advantages and disadvantages of various calcining devices were discussed with relationship to limestone feed properties, required product quality, and intended use. The choice of long rotary kilns, short kilns with limestone preheaters, vertical shaft kilns, and flash calcining systems must all be carefully considered when evaluating production equipment.25

A patented process has been developed that converts many liquid hazardous wastes to a stable form. Waste sludges undergo an exothermic reaction when mixed with quicklime, which quickly converts the organic waste to an inert powder, thereby facilitating onsite treatment, with final disposal of the product as a construction material or landfill.26

The Alzada pelletizing plant in the State of Colima, Mexico, processed the beneficiated magnetite, 67% iron, from the El Encino Mine. After vacuum filtering, 0.9% to 1.2% of hydrated lime was added to the filter cake, which was then passed through a Pekay mixer and distributed to four pelletizing disks. After induration, the pellets satisfactorily withstood the 800-mile trip by rail to the steelworks.27

A Kennedy Van Saun low-pressure-drop preheater-precalciner, a hydraulic coupling. and prior feed stone washing had cut fuel consumption at the Austin White Lime Co.'s plant in McNeil, Tex. It was estimated that annual savings during the 1980-81 period amounted to \$55,000 per year.28

A circular limestone preheater, operated much like the retangular lime preheater, can reduce energy consumption and produce high-quality lime with energy consumption of 4.5 to 5.5 million Btu per ton of quicklime produced. The unit development was designed for system capacities up to 1,000 tons per day.29

An oil-fired, parallel-flow Kennedy Van Saun MCV kiln system was producing 400 tons per day of quicklime, with a fuel consumption of 3.5 million Btu per short ton. This regenerative heat recoupment system at the Domlim, Inc., plant at Lime Ridge, Quebec, Canada, was producing highreactive lime in a computer-controlled operation.30

¹Physical scientist, Division of Industrial Minerals.

Tuysheal Scientists, Division of Industrial National Scientists, S. World's Largest Lime Kiln Onstream in Chicago. Pit & Quarry, v. 73, No. 10, May 1981, pp. 58-63.

Robertson, J. L. Convenient Raw Material Leads to Lime Plant Opening. Rock Products, v. 84, No. 10, October 1981, p. 54-58. ⁴Rock Products. Industry News. V. 84, No. 6, June 1981,

p. 44. ⁵U.S.

p. 44.

SU.S. Bureau of Mines. Minerals & Materials—A Monthly Survey. August 1981, p. 10.

Steele, C. Wisconsin Lime Producer Triples Capacity. Pit & Quarry, v. 74, No. 11, May 1982, pp. 52-55.

Clark, G. Burnt Lime in Western Europe—The Recession Takes Its Toll. Industrial Minerals (London), No. 164, May 1981, pp. 39-41.

Canadian Mining Journal. V. 103, No. 2, February 1982, pp. 134-35.

pp. 134-35. Industrial Minerals (London). Canada Supplement. No. 167, August 1981, pp. 60, 67.

10 Page 45 of work cited in footnote 7.

LIME 549

- ¹¹Pages 46 and 48 of work cited in footnote 7.
- ¹²Pages 37-39 of work cited in footnote 7.
- 13 Pages 41 and 43 of work cited in footnote 7.
- ¹⁸Pages 41 and 43 of work cited in tootnote (.
 ¹⁴Industrial Minerals (London). Company News & Mineral Notes. No. 173, February 1982, p. 68.
 ¹⁸Pit & Quarry. V. 74, No. 7, January 1982, pp. 37-38.
 ¹⁸Page 43 of work cited in footnote 7.
 ¹⁷Industrial Minerals (London). The Industrial Minerals of Scandinavia. No. 171, December 1981, p. 39.
 ¹⁸Dane Af of work cited in footnote 7.

- ¹⁸Page 46 of work cited in footnote 7. ¹⁹Page 45 of work cited in footnote 7
- ²⁰Pages 28-36 of work cited in footnote 7.
- ²¹Schwarzkopf, F. Venezuelan Steel Complex Add Lime Plant. Pit & Quarry, v. 74, No. 11, May 1982, pp. 62, 65.
- ²²Page 25 of work cited in footnote 7.
- ²³Page 25 of work cited in footnote 7
- ²⁴Downie, D. G., T. Walden, and F. John. Modern Lime-

- Burning Plant at Shapfell. Quarry Management and Products (London), v. 9, No. 3, March 1982, pp. 163-64, 167-
- Products (London), v. 9, No. 3, March 1982, pp. 163-64, 167-78, 171.

 25Shafer, R. R. Lime Calcining Options—What's Best for You? Rock Products, v. 84, No. 10, October 1981, pp. 60-68.

 26Chemical Engineering. New Products & Services. Method Converts Organic Wastes to an Inert Powder. V. 88, No. 21, Oct. 19, 1981, p. 99.

 27Price, J. F., and J. E. Aparicio. Making Iron Oxide Pellets for Direct Reduction: The HYL Process—Alzada Pellet Case. Min. Eng., v. 33, No. 4, April 1981, pp. 401-407.

 26Gardner, K. L. LPD Preheater-Precalciner Helps Fight Energy Costs at Austin White Lime Plant. Pit & Quarry, v. 73, No. 11, May 1981, pp. 66-69, 115.

 29Dorman, W. D. Circular Preheater Can Help Ease Energy Crunch. Pit & Quarry, v. 73, No. 11, May 1981, pp. 73-75.

- ³⁰Pit & Quarry. Parallel Flow Lime Kiln Lowers Heat Consumption. V. 73, No. 11, May 1985, pp. 85-87.

Lithium

By John E. Ferrell¹ and James P. Searls¹

In 1981, the United States continued as both the world's largest producer and consumer of lithium minerals and chemicals. The United States was self-sufficient in this commodity and was the world's largest exporter. Domestic production advanced slightly in 1981. Imports remained minor in 1981. U.S. exports were estimated to have risen slightly while apparent consumption increased approximately 7%.

Known world supply advanced slightly as production increased in the United States. Production in the rest of the world did not increase significantly. World consumption was estimated to have increased slightly to 7,700 short tons of contained lithium. Aluminum potlines continued to be the world's largest end use for lithium. The aluminum

industry used 33% of the lithium chemicals consumed in the United States, while glass, ceramics, and lubricants accounted for another 40%.

The United States and the U.S.S.R. are the world's primary lithium producers. The United States continued to supply about three-fourths of demand in nonproducing countries; the remainder was supplied by the U.S.S.R. and China as chemicals and by Zimbabwe as mineral concentrate. Brazil, Portugal, and Argentina produce primarily for internal consumption. The Federal Republic of Germany and Japan are large importers of lithium chemicals, primarily lithium carbonate, which they use or convert for resale to their export markets.

Table 1.—Salient lithium statistics

(Short tons of contained lithium)

	1977	1978	1979	1980	1981
United States:					
Production ¹	W	w	w	w	w
Yearend producers' stocks ¹	W	w	w	w	w
Imports ¹	10	10	50	90	150
Shipments of Government stockpile surplus ²	253	5			
Supply ^{1 3}	6.900	6,300	6,300	6.200	6,700
Supply ^e 2 4	5,900	5,400	5,600	5,500	5,800
Exports ^{e 2}	1,800	2,000	2,400	2,500	2,600
Apparent consumption 2	4.100	3,400	3,200	3,000	3,200
Rest of world: Production ^e	2,000	2,000	2,250	2,250	2,250

Estimated. W Withheld to avoid disclosing company proprietary data.

¹Mineral concentrate.

²Chemicals.

³Production plus inventory decrease.

⁴A 15% loss was assumed in converting supply from mineral concentrate to the chemical form. Changes in producers' inventories of lithium chemicals were unknown and were assumed to be zero. An estimated 50 short tons of imported chemicals are included.

Legislation and Government Programs.—No lithium hydroxide monohydrate was sold from the General Services Administration (GSA) excess stock in 1981. GSA reports that it has 11,500 short tons (1,898 short tons of contained lithium) of virgin material and 28,500 short tons (4,703 short tons of contained lithium) of depleted material (depleted of lithium 6) that may contain 8 to 9 parts per million of mercury. This material was excess from a nuclear

weapons program.

Public Law 96-386, October 1980, could encourage the consumption of lithium in the future. This law provides for an accelerated program of magnetic fusion energy technologies research and development. Fusion energy, as presently planned, would use lithium in large amounts to convert the fusion energy to heat energy for electricity production.

DOMESTIC PRODUCTION

There were two lithium producers in the United States in 1981. Foote Mineral Co., 92% owned by Newmont Mining Corp., produced lithium ore from pegmatite dikes in North Carolina and lithium compounds from subsurface brines in Nevada. Lithium Corp. of America (Lithco), owned by Gulf Resources and Chemical Corp., produced lithium from pegmatite dikes in North Carolina. Production and sales data reported to the Bureau of Mines are withheld to avoid disclosing company proprietary data.

Foote Mineral reported² production of 14,420 tons of Li₂CO₃ equivalent (2,710 tons of contained lithium) in 1981; 7,500 tons (1,410 tons of contained lithium) from the

North Carolina plant and 6,920 tons (1,300 tons of contained lithium) from the Nevada plant. Foote Mineral raised the North Carolina plant capacity rating from 7,000 to 9,000 tons per year of Li₂CO₃ equivalent during late 1980. Lithco reported³ production of 14,454 tons of Li₂CO₃ equivalent (2,717 tons of contained lithium) from its North Carolina plant. Lithco also reported that, in 1981, 39% of its sales were to foreign customers. Annual mill capacity rating at the Lithco North Carolina plant was raised from 15,000 tons of Li₂CO₃ equivalent (2,820 tons of contained lithium) to 18,000 tons of Li₂CO₃ equivalent (3,384 tons of contained lithium) during 1981.

CONSUMPTION AND USES

Some mineral concentrate, possibly as much as 10%, was used directly by the ceramics industry, but most concentrate was converted to lithium chemicals and metal. The Bureau of Mines estimates a 15% loss in conversion from ore to lithium carbonate. Lithium chemicals are used by the aluminum, air-conditioning, ceramics, grease, specialty glasses, synthetic rubber, thermoplastic, and primary battery industries.

Apparent domestic consumption of all lithium-containing products was estimated to have increased about 7% in 1981. Foote

Mineral reported that increased sales of lithium products were primarily attributable to increased use of lithium in the domestic aluminum industry. In addition, it reported that inventories of lithium products decreased in 1981 as sales exceeded production levels. Both domestic producers reported that no single customer accounted for more than 10% of sales. Lithico reported that no single industry accounted for more than 30% of its sales. Lithium battery systems continued to be one of the fastest growing markets for lithium products and technology.

PRICES

Domestic midyear prices of lithium materials increased by an average of about 17%, as indicated in table 2, probably owing to increased energy and raw material costs.

Table 2.—Domestic midyear producers' prices of lithium and lithium compounds
(Dollars per pound)

	1980	1981
Lithium bromide, 54% brine: 2,268-pound lots, delivered in drums	3.31	3.68
Lithium carbonate, technical: Truckload lots, delivered	1.205	1.41
Lithium chloride, anhydrous, technical: Truckload lots, delivered	1.93	2.19
Lithium fluoride	3.90	4.50
Lithium hydroxide monohydrate: Truckload lots, delivered	1.60	1.84
Lithium metal ingot: 1,000-pound lots, f.o.b	17.15	20.65
Lithium sulfate, anhydrous	2.12	2.64
N-butyllithium in n-hexane (15%): 3,000-pound lots, delivered	11.30	12.75

FOREIGN TRADE

U.S. exports of lithium chemicals (shown in tables 3 and 4) and metal are not completely reported in available Bureau of the Census trade statistics. However, a review of 1981 trade data, when compared with

that of 1980, indicates a slight increase in exports for lithium compounds, except for lithium hydroxide, which decreased moderately.

Table 3.—U.S. exports of lithium compounds, by country

(Gross weight)

	19	80	1981		
Country	Quantity (pounds)	Value (dollars)	Quantity (pounds)	Value (dollars)	
Argentina			159.323	214.26	
Australia	248,932	615,709	305,909	504,39	
Belgium	177,147	234,916	38,245	78,840	
Brazil	111,111	201,010	127,658	217,660	
Canada	2,071,414	2.664.753	4,586,122	5,985,69	
China	2,012,222	2,001,100	32,659	20,000	
Colombia			20,000	38,95	
Germany, Federal Republic of	8,446,484	8,998,095	8,473,063	9.671.59	
	235,089	316,147	20,476	42,46	
India taly	200,000	010,141	22,291	193,83	
Israel			35,482	87.93	
Japan	3,947,845	4,227,497	5,475,111	6.954.66	
Korea, Republic of	106,920	132.011	196,430	271.31	
	409,537	802,078	437,343	975,56	
Mexico Netherlands	193,031	206.510	65,233	138.64	
South Africa, Republic of	327,777	316,767	230,857	259.514	
	264,124	489,290	89,776	105.26	
Spain	204,124	403,230	141.876	169,30	
Taiwan	391.397	448,120	414.095	536,66	
United Kingdom	3,220,641	3,622,307	1.956.541	2,649,50	
Venezuela	526.456	1,010,076	117,016	298,750	
Other	020,400	1,010,076	117,010	230,10	
Total	20,566,794	24,084,276	22,945,506	29,414,82	

Source: U.S. Department of Commerce, Bureau of the Census.

Table 4.—U.S. exports of lithium hydroxide, by country

(Gross weight)

	19	980	19	981
ustralia elegium razil anada niile elombia gypt rance ermany, Federal Republic of dia donesia racel aly upan enya exico uilippines ngapore uuth Africa, Republic of asin veden nited Kingdom enezuela	Quantity (pounds)	Value (dollars)	Quantity (pounds)	Value (dollars)
Argentina	89,646	140,781	67,000	113,797
Australia	248,913	346,077	126,700	198,752
Belgium	249,200	345,024	220,000	365,200
Brazil	517.018	655,982	940,814	1,470,091
Canada	285,665	441.063	114,250	200,317
Chile		,	119,565	185,397
			44,700	77.328
	77.074	115.945	12,100	11,020
	187,046	299,377	201,424	353.081
Germany, Federal Republic of	1.573,400	2,170,239	709,150	1,058,352
	353,400	465,113	154.840	230.098
	000,400	400,110	30,000	53,479
			75,100	123,394
	90,468	144.452	11,000	19,075
	852,391	1,255,327	1,061,318	1,835,684
	66,112	98.155	57,228	92,885
Marim	389,411	602,432	128,376	217.087
Philipping	151.967	233,703	23,256	40.116
Singapore	101,501	200,100	69,274	108,473
	271,600	382,765	151,200	267,660
Social	184,200	263,840	123,200	191,096
	64,920	93,776		
			31,220	44,166
	511,456 105,600	787,823	478,032	701,795
		143,896	856,549	1,196,092
Other	411,231	614,673	245,450	398,132
Total	6,680,718	9,600,443	6,039,646	9,541,547

Source: U.S. Department of Commerce, Bureau of the Census.

 $\begin{array}{c} \textbf{Table 5.--U.S. imports for consumption of lithium-bearing materials,} \\ \textbf{by commodity and country} \end{array}$

		1980			1981			
Commodity and country Lithium ores: Netherlands South Africa, Republic of Total Lithium compounds: Bahamas Belgium Canada China Denmark France Germany, Federal Republic of Japan Switzerland United Kingdom	Gross weight (pounds)		Value (thousand dollars)		Value (thousand dollars)			
		Customs	C.I.F.		Customs	C.I.F.		
Netherlands	_ 45,680	1	1					
South Africa, Republic of	_ 7,739,844	459	576	e8,000,000	NA	NA.		
Total	_ 7,785,524	460	577	e8,000,000	NA	NA		
Lithium compounds:								
Bahamas	_ 72	1	2					
		48	50					
		(¹)	1	7,900	9	9		
Denmark	_ 32,805	32	38	501,496	524	600		
		$1.4\overline{77}$	1.496	13.989	1.020	1.031		
	_ 13,617	249	254	36.297	121	1,031		
Japan	_ 37	17	17	162	64	65		
Switzerland		1	1	595	1	1		
United Kingdom		16	17	213	13	13		
Total	123,599	1,841	1,876	560,659	1,753	1,845		
Lithium salts:								
Denmark	_ 48	2	2					
Germany, Federal Republic of	_ 10	5	5					
Total	_ 58	7	7					
Lithium metal:								
Germany, Federal Republic of Japan				11 6	1	1		
Total				17	1	1		

^eEstimated. NA Not available. ¹Less than 1/2 unit.

Source: U.S. Department of Commerce, Bureau of the Census.

LITHIUM 555

WORLD REVIEW

Argentina and Bolivia.—Both countries are exploring salars for lithium content. These brine deposits are located near the Salar de Atacama in northern Chile.

Australia.—Greenbush Tin NL announced a significant lithium find in association with tin, tantalum, and columbium southeast of Perth in Western Australia. The reported 4.7 million tons of reserves with a cutoff grade at 1.5% Li₂O might contain 56.000 metric tons of contained lithium.

Chile.—Sociedad Chilena de Litio, Ltda. (SCL), a limited partnership of Foote Mineral and Corporacion de Fomento de la Produccion (CORFO), announced approval of construction wells and solar evaporation ponds at the Salar de Atacama as well as a lithium carbonate production plant to be built near Antofagasta on the northern coast. CORFO is a Chilean state-owned corporation. Construction cost estimates are now at \$61 million with production commencing in 1984.5 Annual plant capacity should be 14 million pounds of lithium carbonate. SCL has a 30-year concession, renewable for 5-year intervals thereafter. During the initial 30 years, SCL can only produce up to 200,000 metric tons of lithium equivalent.6 Total Salar de Atacama reserves are estimated to contain 1.3 million tons of lithium equivalent.

CORFO has continued efforts to further develop the Salar de Atacama by offering the potash and boric acid parts of the brine to other developers. The Chileans are also exploring the Salar de Pedernales, which may also contain lithium, potash, and boric acid.

Israel.—The Dead Sea Works of Beer-Sheba, Israel, has developed a possible method for extracting lithium from the Dead Sea.⁷ The method involves precipitation as lithium aluminate followed by solvent extraction to separate the lithium from the aluminum. The total amount of lithium equivalent estimated in the Dead

Sea is 2.7 million tons. A preliminary economic analysis using this extraction method indicates a production cost of \$30 per kilogram of lithium metal compared with the current selling price, which is also \$30 per kilogram.

Japan.—On a contained-lithium basis, Japanese imports of lithium materials increased approximately 55% compared with that of the previous year. The United States captured 79% of the Japanese market, and the U.S.S.R. and China captured 16% and 4%, respectively. Japanese imports for 1981 included 3,660 short tons of lithium carbonate and 695 short tons of lithium hydroxide.

Zimbabwe.—Future lithium production in Zimbabwe appears closely tied to the country's political stability and development. Since Zimbabwe's independence on April 18, 1980, official Government policy toward mining has been friendly with encouragement both for exploration and increased production at existing mines.

Bikita Minerals Ltd. is potentially one of the world's major lithium producers. Bikita pegmatite reportedly has lithium minerals with the following approximate lithia percentages: Petalite, 4.5%; eucryptite, 8%; bikitatite, 6%; spodumene, 7.5%; lepidolite, 4.1%; and amblygonite, 10%. The lithium content of Bikita reserves has been estimated to be 125,000 short tons of contained lithium with an ore grade average of 1.4% lithium. The Bikita Al Hayat quarry extracts 11,000 short tons of ore for processing each month. The grinding plant currently has a capacity to handle about 2,050 short tons per month.

Of the lithium minerals, the Bikita principal product is ground petalite, which contains 4.1% lithia. About 12% of Bikita sales are typically spodumene in the form of a fine-grained concentrate. It has also been reported that Bikita has a stockpile of some 900,000 short tons of petalite with an average grade of 1.44% contained lithium.

Table 6.—Lithium minerals: World production, by country¹

(Short tons)

Country ² and minerals produced	1977	1978	1979	1980 ^p	1981 ^e
Argentina (minerals not specified)Brazil:	454	885	117	88	99
Amblygonite	539	r475	206	201	220
Lepidolite	638	r ₅₅	64	56	220
Petalite	1,133	2,200	1,655	2,741	2,755
Spodumene	Ť	976		108	110
China, (minerals not specified) ^{e 3}		11,000	11,000	15,000	15,000
Namibia (minerals not specified)4	2,809	NA	NA	NA	NA
Portugal, lepidolite		1,300	1,100	1.100	990
Rwanda, amblygonite ^e	33	31	31	33	28
U.S.S.R. (minerals not specified) ^{e 3}	55,000	55,000	55,000	61,000	61,000
United States (minerals not specified)		W	W	W	W
Zimbabwe (minerals not specified)	8,874	18,395	14,547	23,182	23,000

^eEstimated. Preliminary. Revised. NA Not available. W Withheld to avoid disclosing company proprietary data.

Table includes data available through Apr. 28, 1982.

Table includes data available through Apr. 28, 1982.

In addition to the countries listed, other nations may produce small quantities of lithium minerals, but output is not reported and no valid basis is available for estimating production levels.

These estimates denote only an approximate order of magnitude; no basis for more exacting estimates is available. Output by China and the U.S.S.R. have never been reported.

Output by China and the U.S.S.R. have never been reported.

Output has not been officially reported since 1966, but presumably production has continued because a number of countries record imports from the Republic of South Africa, which no longer produces lithium minerals. Data given represent imports by the United States. The countries of the European Community and Spain reported imports as originating in the Republic of South Africa, but the reader is cautioned that a portion of this material may have been mined in Zimbabwe. In 1966, actual output from Namibia totaled 1,739 short tons including amblygonite—30, lepidolite—365. and netalite—1.344. 365, and petalite-1,344.

TECHNOLOGY

The Bureau of Mines Salt Lake City Research Center continued its efforts to extract lithium from hectorite clays available in the McDermot Caldera on the Nevada-Oregon border. Research in 1981 on lithium extraction by lime-gypsum roasting included determining the effect of carbon monoxide on conventional lime-gypsum roasting and investigating the use of sulfur dioxide and sulfur trioxide as sulfating agents. Research indicated that the presence of carbon monoxide depresses conversion of lithium silicates in the clay into water-soluble lithium sulfates. Research on one method for extracting lithium from lowgrade clays-selective chlorination-was completed. Using this method, mixtures of clay and limestone are chlorinated at 750° C with hydrochloric acid vapors. Lithium is recovered from the calcines by leaching with water and precipitating lithium carbonate from the leach liquor with sodium carbonate.

The Bureau of Mines Reno Research Center continued studying the recovery of lithium, among other metals, from the brines of the Imperial Valley, Calif., geothermal wells. The superheated brine would be brought to the surface in large volumes for steam-electric power generation. If the lithium recovery process is economical, with a reasonable lithium recovery rate, there is a potential for significant amounts of lithium production.

¹Physical scientist, Division of Industrial Minerals.

²See company 10-K reports for 1981 filed with the Securities and Exchange Commission, Washington, D.C. Work cited in footnote 2.

Work cited in footnote 2.

⁵Engineering and Mining Journal. Chile Will Exploit Atacama Salar Mineral Wealth. V. 182, No. 7, July 1981,

Atacama Salar Manieta 1752.

Work cited in footnote 5.

Epstein, J. A., E. M. Feist, J. Zmora, and Y. Marcus.

Extraction of Lithium From the Dead Sea. Hydrometallur-

gy, No. 6, 1981, pp. 269-275.

Clarke, G. M. Zimbabwe's Industrial Minerals—Optimism for the Future. Ind. Miner. (London), No. 172, January 1982, pp. 19-61.

Magnesium

By Benjamin Petkof¹

Domestic primary magnesium metal production declined from that of 1980. Secondary metal recovery continued to move upward. Magnesium consumption continued the decline that commenced in 1979. Total

metal exports declined in both quantity and value; however, all classes of imports increased in quantity and value. The quoted metal price advanced in 1981. World primary metal production declined.

Table 1.—Salient magnesium statistics

(Short tons unless otherwise specified)

	1977	1978	1979	1980	1981
United States: Production:					
Primary magnesium ¹	125,958	149,463	162,464	r169,477	142,887
Secondary magnesium	32,694	36,228	37,222 54,280	40,461 56,761	46,256 34,855
Exports Imports for consumption	28,061 5,964	41,807 6,668	4.754	3,757	6,897
Consumption	103,576	108,958	108,844	95,788	91,461
Price per pound World: Primary production	\$0.96-\$0.99 283.554	\$0.99-\$1.01 *317.730	\$1.01-\$1.09 *338,850	\$1.07-\$1.25 P349,953	\$1.25-\$1.34 e328.117
World, Frimary production	200,00%	011,100	000,000	0.20,000	020,111

^eEstimated. ^pPreliminary. ^rRevised.

Derived from data reported by the International Magnesium Association and the Canadian Department of Mines and Natural Resources. Figures are the difference between total North American production reported by the International Magnesium Association and Canadian production reported by the Canadian Department of Mines and Natural Resources.

DOMESTIC PRODUCTION

Domestic primary ingot production declined from that of 1980 and followed the downward trend of the economy in 1981. Three companies produced about 143,000 short tons of magnesium: The Dow Chemical Co. (Freeport, Tex.), AMAX Specialty Metals Corp. (Rowley, Utah), and Northwest Alloys, Inc. (Addy, Wash.). The first two companies produced magnesium metal from magnesium chloride obtained from

natural brine by the electrolytic method. Northwest Alloys used the silicothermic

The American Magnesium Co., which terminated production in December 1980, had no activity in 1981 and was not expected to resume production in the future.

Secondary magnesium continued to provide a significant portion of the domestic supply of magnesium metal.

Table 2.—Magnesium recovered from scrap processed in the United States, by kind of scrap and form of recovery

(Short tons)

	1977	1978	1979	1980	1981
KIND OF SCRAP					
New scrap: Magnesium-baseAluminum-base		4,634 17,501	5,025 18,315	5,929 16,978	2,833 19,240
Total	_ 20,170	22,135	23,340	22,907	22,073
Old scrap: Magnesium-base Aluminum-base	7,269	5,522 8,571	4,778 9,104	5,275 12,279	5,593 18,590
Total	_ 12,524	14,093	13,882	17,554	24,183
Grand total	_ 32,694	36,228	37,222	40,461	46,256
FORM OF RECOVERY	* :		es.		
Magnesium alloy ingot¹ Magnesium alloy castings (gross weight) Magnesium alloy shapes Aluminum alloys Zinc and other alloys Chemical and other dissipative uses Cathodic protection	_ 859 _ 932 _ 25,211 _ 21 _ 43	4,272 956 1,909 27,301 19 48 1,723	3,739 790 2,176 28,857 13 47 1,600	4,205 836 3,144 29,612 13 9 2,642	4,230 806 13 38,755 9 55 2,388
Total	_ 32,694	36,228	37,222	40,461	46,256

¹Includes secondary magnesium content of both secondary and primary alloy ingot.

CONSUMPTION AND USES

Total U.S. magnesium metal consumption declined for the second consecutive year. Magnesium metal was used to fabricate structural products that included cast and wrought items and was used for sacrificial uses where advantage was taken of the metal's alloying and chemical properties. The metal's useful structural properties, such as low specific gravity, good machinability, hot formability, and high strength-toweight ratio, resulted in almost one-fifth of

the 1981 consumption being used in aircraft, automotive, and other types of transportation equipment; material-handling equipment; and the manufacture of such items as power tools. Almost three-fifths was used for alloying with other metals. The remainder was used for other sacrificial purposes such as cathodic protection, modular iron production, chemicals, and reducing agents for metals such as titanium, zirconium, uranium, and beryllium.

Table 3.—Consumption of primary magnesium in the United States, by use
(Short tons)

Use	1977	1978	1979	1980	1981
For structural products:					
Castings:					
Die	5,011	5,575	5,182	3 190	2,812
Permanent mold	1,048	1,012	1,069	3,190 922	917
Sand	1.142	1,064	1,209	1.735	1,222
Wrought products:	1,174	1,004	1,200	1,100	1,22
Extrusions	(1)	6,301	e 400	COFF	F 7700
7	8		6,420	6,855	5,786
	10.000	4,375	4,925	4,704	4,547
Other (includes forgings)	12,632	399	217	61	43
Total	10.000	40.500			
10081	19,833	18,726	19,022	17,467	15,327

Table 3.—Consumption of primary magnesium in the United States, by use —Continued (Short tons)

Use	1977	1978	1979	1980	1981
For distributive or sacrificial purposes:					
Alloys:	~~ ~~	* 0 *0 0	00 710	E 4 400	F0 F10
Aluminum	56,086	58,798	60,549	54,490	50,518
Copper	10	12	.9	. 6	์ b
Zinc	23	21	15	1,1	9
Other	8	8	6 700	0.000	6 4 40
Cathodic protection (anodes)	4,083	6,600	6,769	3,930	6,449
Chemicals	9,941	9,192	9,044	6,278	5,315
Nodular iron	7,297	7,956	4,335	4,176	3,755
Scavenger and deoxidizer	(*)	(¹)	(~)	(1)	(1)
Reducing agent for titanium, zirconium, hafnium, uranium,	F 00F	4 000	E 40F	7 OF	0.051
and beryllium	5,235	6,230	7,435	7,957	9,071
Other including powder	1,060	1,415	1,658	1,466	1,005
Total	83,743	90,232	89,822	78,321	76,134
Grand total	103,576	108,958	108,844	95,788	91,461

¹Included with "Other."

STOCKS

Consumer stocks of primary magnesium and alloy ingot were 11,367 tons and 756 tons, respectively, at the end of 1981. Yearend stocks for magnesium categories declined from those at yearend 1980. New and old magnesium scrap stocks are shown in table 4.

Table 4.—Stocks and consumption of new and old magnesium scrap in the United States

(Short tons)

	G41 -		(onsumption	n ,	Stocks,
	Stocks, Jan. 1	Receipts	New scrap	Old scrap	Total	Dec. 31
1980: Cast scrap Solid wrought scrap	1,077 233	6,815 791	680 864	5,797 	6,477 864	1,415 160
Total	1,310	7,606	1,544	5,797	7,341	1,575
1981: Cast scrap Solid wrought scrap	1,415 160	6,986 833	796 965	6,146 	6,942 965	1,459 28
	1,575	7,819	1,761	6,146	7,907	1,487

¹Includes borings, turnings, drosses, etc.

PRICES

At the beginning of 1981, the price of magnesium metal and magnesium diecasting alloy was \$1.25 and \$1.21 per pound, respectively. On June 1, 1981, the price of

magnesium metal increased to \$1.34 per pound. The price of diecasting alloy was unchanged. There were no price changes during the second half of the year.

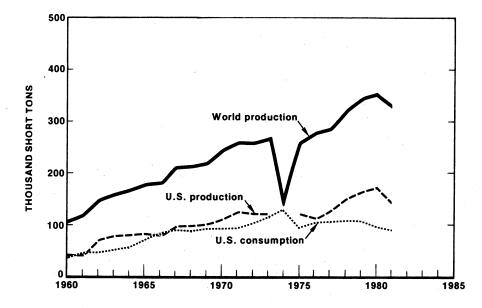


Figure 1.—U.S. and world production and U.S. consumption of primary magnesium.

FOREIGN TRADE

Total 1981 U.S. magnesium exports declined sharply from those of 1980 in both quantity and value. Large quantities of metal were exported to industrialized nations, especially those producing aluminum.

Imports of all classes of magnesium in-

creased significantly from those of 1980, suggesting the possibility of decreased magnesium demand in the rest of the world during 1981.

The United States retained its status as a net exporter of magnesium.

Table 5.—U.S. exports and imports for consumption of magnesium

				EXF	ORTS				
Year	Wast	Waste and scrap		Metals and alloys in crude form			Semifabricated forms n.e.c.		
	Quantity (short tons)	(Value thou- ands)	Quantity (short tons)	Value (thou- sands)	(s.	antity hort ons)	Value (thou- sands)	
1979 1980 1981	68 25 26	Ó	\$794 587 689	47,456 49,584 32,910	\$90,78 104,08 81,11	6	6,136 6,927 1,684	\$22,246 23,033 9,048	
				IMP	ORTS		7		
	Waste		:	Metal	Alle (magne cont	esium	tubing, wire, oth (magn	, sheets, ribbons, er forms esium ent)	
_	Quantity (short tons)	Value (thou- sands)	(short		Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	
1979 1980 1981	2,757 2,384 3,225	\$2,958 2,806 3,338	940	2,242	412 344 625	\$1,767 1,770 2,652	125 89 150	\$1,190 1,443 4,804	

MAGNESIUM

Table 6.—U.S. exports of magnesium, by country

Country	Waste a	nd scrap	Primar all	y metals, oys	n.e.c., iı	cated forms acluding oder
Country	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands
1980						
	c	204	407	\$898	37	\$160
Argentina	6	\$24	1,600	3.341	401	2,481
Australia Austria			46	117	218	545
Selgium-Luxembourg	:		40	11.	401	1,112
Brazil			10,124	21,709	ī	10
Canada	17	34	3,391	7,639	272	1,339
China			5,123	8 ,68 8		
Colombia			33	102	12	_46
France	7.5	25	42	115	105 1,338	504 3,380
Jermany, Federal Republic of	12		2,156 1,423	5,079	1,555	3,300
Shana			1,425	2,874 11	41	138
Hong Kong			517	1.089	67	183
srael			41	215	222	1,033
taly			226	895	267	886
lapan	-7	34	9,334	18,871	641	2,163
Japan Korea, Republic of	38	85	73	174	161	431
Mexico Netherlands	10	54	2,792	6,288	288	1,323
Netherlands	20	43	10,221	20,342	1,263	2,892
New Zealand			74	155	6	54 17
Norway South Africa, Republic of	$-\frac{1}{2}$	25	199 737	451 2 472	1 210	619
South Africa, Republic of	_		49	2,473 139	51	190
Spain			115	293	33	208
Faiwan	12	24	ii	19	18	58
United Kingdom	-ī	2	265	658	202	1,144
Venezuela	2	4	109	252	36	234
Other	123	233	466	1,199	635	1,883
	250	587	49,584	104,086	6,927	23,033
1981						
Argentina	39	167	390	908	6	35
Australia			1,379	3,113	232	1,239
Austria			336	857	5	69
Belgium-Luxembourg			129	328	9	73
Brazil			2,892	6,540	8	44
Cameroon	73	162	35	83	$\overline{186}$	883
Canada	78		3,943	9,819	100	000
China			59	187	25	98
Colombia France	$-\overline{1}$	$-\overline{2}$	143	364	43	566
Germany, Federal Republic of			1,247	3,225	44	362
Ghana					1	8
Hong Kong			10	25		
India			154	381	.8	17
Israel			68	380	66	443
			139	517	53	571
				18,310	71	450 36
	25	70	7,982			
Japan Korea, Republic of			266	669	3	
Japan Korea, Republic of Mexico	65	$\bar{162}$	266 2,204	5,338	400	1,775
Japan Korea, Republic of Mexico Netherlands			266 2,204 9,210	5,338 24,146	400 (1)	1,775 1
JapanKorea, Republic of Korea, Republic of Mexico Netherlands New Zealand	65	162 41	266 2,204 9,210 74	5,338 24,146 181	400 (1) 1	1,775 1 20
Japan Korea, Republic of Mexico Netherlands New Zealand Norway	65	$\bar{162}$	266 2,204 9,210 74 68	5,338 24,146 181 448	400 (1)	1,775 1 20
Japan Korea, Republic of Mexico Netherlands New Zealand Norway Romania	65 20 	162 41 	266 2,204 9,210 74 68 547	5,338 24,146 181 448 1,389	400 (1) 1	1,775 1 20 17
Japán Korea, Republic of Mexico Netherlands New Zealand Norway Romania Saudi Arabia	65	162 41	266 2,204 9,210 74 68	5,338 24,146 181 448 1,389 481 20	400 (1) 1 1 	1,775 1 20 17 177
Japán Korea, Republic of Mexico Netherlands New Zealand Norway Romania Saudi Arabia	65 20 	162 41 81	266 2,204 9,210 74 68 547 233 11 440	5,838 24,146 181 448 1,389 481 20 1,066	400 (1) 1 1 - 53 - 67	1,775 1 20 17 177 261
Japan Korea, Republic of Mexico Netherlands New Zealand Norway Romania Saudi Arabia Singapore South Africa, Republic of	65 20 	162 41 81	266 2,204 9,210 74 68 547 233	5,838 24,146 181 448 1,389 481 20 1,066 238	400 (1) 1 1 -53 -67 19	1,775 1 20 17 177 261 188
Japán Korea, Republic of Mexico Netherlands New Zealand Norway Romania Saudi Arabia Singapore South Africa, Republic of Spain	65 20 37 	162 41 81	266 2,204 9,210 74 68 547 233 11 440 84	5,338 24,146 181 448 1,389 481 20 1,066 238 12	400 (¹) 1 1 	1,775 1 20 17 177 261 188 55
Japan Korea, Republic of Mexico Netherlands New Zealand Norway Romania Saudi Arabia Singapore South Africa, Republic of Spain Sweden	65 20 37 	162 41 81	266 2,204 9,210 74 68 547 233 11 440 84 1 159	5,338 24,146 181 448 1,389 481 20 1,066 238 12	400 (¹) 1 1 -53 -67 19 5	1,775 1 20 17 177 261 188 55
Japan Japan Korea, Republic of Mexico Netherlands New Zealand Norway Romania Saudi Arabia Singapore South Africa, Republic of Spain Sweden Taiwan United Kingdom	65 20 37 	162 41 81	266 2,204 9,210 74 68 547 233 11 440 84 1 159	5,338 24,146 181 448 1,389 481 20 1,066 238 12 376 884	400 (1) 1 1 	1,775 1 20 17 177 261 188 55 102 705
Japan Korea, Republic of Mexico Netherlands Norway Romania Saudi Arabia Singapore South Africa, Republic of Spain Taiwan United Kingdom Venezuela	65 20 37 	162 41 81 	266 2,204 9,210 74 68 547 233 11 440 84 1 159 345	5,338 24,146 181 448 1,389 481 20 1,066 238 12 376 884	400 (1) 1 1 	1,775 1 20 177 177 261 188 55 102 705
Italy	65 20 37 	162 41 	266 2,204 9,210 74 68 547 233 11 440 84 1 159	5,338 24,146 181 448 1,389 481 20 1,066 238 12 376 884	400 (1) 1 1 	1,775 1 200 17 177 261 188 55 102 705 55 803

¹Less than 1/2 unit.

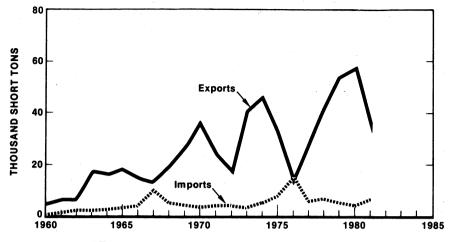


Figure 2.—U.S. imports and exports of magnesium.

WORLD REVIEW

Primary world magnesium production has increased steadily since 1975 but declined in 1981 because of reduced world demand. Despite its reduced production in 1981, the United States remained the world's largest magnesium producer and was followed by the U.S.S.R. and Norway.

Other producing countries are identified in table 7.

Available data on the world recovery of secondary magnesium appear in table 8. In 1981, the United States and Japan were the major known producers of secondary magnesium.

Table 7.—Magnesium: World primary production, by country¹
(Short tons)

Country	1977	1978	1979	1980 ^p	1981 ^e
Canada	8,414	9,159	9,937	10,199	² 9,673
China ^e	5,500	6,600	6,600	7,700	7,700
France	9,570	9,370	9,968	10,282	9,600
India	(³)	(3)	(3)	10,202	0,000
Italy	9.663	^r 10,668	9,653	8,693	8,500
Japan	10,379	r12,304	12,531	10,199	² 6,247
Norway	42,070	r43,166	48,697	48,943	52,910
U.S.S.R. ^e	72,000	77,000	79,000	83,000	86,000
United States4	125,958	149,463	162,464	169,477	² 142,887
Yugoslavia		(⁵)	(⁵)	1,100	4,600
Total	283,554	r317,730	338,850	349,593	328,117

^eEstimated. ^pPreliminary. ^rRevised.

¹Table includes data available through May 21, 1982.

²Reported figure.

^{**}Data deleted; information now available indicates that Indian production reported in previous editions as primary is actually secondary.

actuary secondary.

*Derived figure: U.S. production is not officially reported by the Bureau of Mines in order to avoid disclosing company proprietary data; figures reported represent the difference between total North American production reported by the International Magnesium Association and Canadian production reported by the Canadian Department of Mines and Natural Resources.

⁵Revised to zero.

MAGNESIUM

Table 8.—Magnesium: World secondary production, by country¹

(Short tons)

Country	1977	1978	1979	1980 ^p	1981 ^e
Germany, Federal Republic of	660	e660	e660	e660	660
India	118	25	31	32	16
Japan	8,360	12,057	18,058	23,800	231,345
United Kingdom	3,000	3,000	3,000	e3,000	3,000
United States	32,694	36,228	37,222	40,461	46,256

TECHNOLOGY

A series of papers were published describing various aspects of the magnesium industry. Subjects such as supply and demand, use of magnesium in the aluminum industry, steel desulfurization with magnesium, magnesium pressure diecasting, energy storage with magnesium, and others were discussed.2

^{*}Estimated. *Preliminary.

1 Table summarizes available information on world secondary magnesium production, but has not been totaled because of the omission of other producers for which data are not available and for which no reliable basis for estimations are available. Most notable among omitted secondary producers (and probably the only one of significance) is the U.S.S.R. Table includes data available through May 21, 1982.

*Reported figure.

¹Physical scientist, Division of Nonferrous Metals.

International Magnesium Association. Proc. From the 38th Ann. World Conf. on Magnesium, Houston, Tex., May 10-13, 1981, 58 pp.

Magnesium Compounds

By Benjamin Petkof¹

The United States was a major world producer of magnesium compounds in 1981. Most of these compounds were derived as synthetic magnesia from natural brines. Almost all of the classes of magnesium compounds shipped and used declined in quantity and value from those of the previous year. Total exports of magnesia and

magnesite declined in quantity and value from those of 1980. Total imports of magnesite increased from those of 1980. World production of magnesite declined from that of 1980. The U.S.S.R., China, North Korea, Austria, and Greece were major world magnesite producers.

Table 1.—Salient magnesium compound statistics

(Thousand short tons and thousand dollars)

	1977	1978	1979	1980	1981
United States:			•	Te e	
Caustic-calcined and specified magnesias:1					
Shipments by producers:					
Quantity Value	129	156	164	157	160
Value	\$29,574	\$43,008	\$50,047	\$51,282	\$58,420
Exports: Value ²	\$6,336	\$7,741	\$16,433	\$17,692	\$14,559
Imports for consumption: Value ²	\$566	\$793	\$1,169	\$2,122	\$2,177
Refractory magnesia:	4000	Ψ.00	41,100	40,100	φ2,1
Sold and used by producers:					
Quantity	690	796	847	r731	616
Value	\$94,799	\$125,082	\$125,289	r\$162,697	\$146,903
Exports: Value	\$16,477	\$10,617	\$8,183	\$13,279	\$4,727
Exports: Value	\$12,332	\$14,421	\$13.546	\$16,672	\$22,990
Dead-burned dolomite:	φ12,002	ф14,4 <u>2</u> 1	φ10,0 4 0	\$10,012	\$22,330
Sold and used by producers:					
Oughtity	968	1.016	793	494	435
Quantity	\$37,992	\$45,881	\$41.676	\$28,308	\$23,789
World: Crude magnesite production: Quantity					
world. Or due magnesive production: Quantity	r10,979	^r 11,278	11,869	^p 12,489	e12,272

^eEstimated. ^pPreliminary. ^rRevised. NA Not available.

DOMESTIC PRODUCTION

Synthetic magnesia, derived from natural brine solutions such as seawater, lakes, and wells, was the primary source of domestically produced magnesium compounds. Most firms that produced magnesia also produced other magnesium compounds. Magnesium compounds were also produced from natural magnesite in Nevada. Olivine was produced in North Carolina and Washington and comminuted to various grades for consumption by the foundry, steel, and refractory industries. Current domestic magnesium compound producers are shown in table 2.

¹Excludes caustic-calcined magnesia used in production of refractory magnesia.

²Caustic-calcined magnesia only.

Table 2.—Current magnesium compound producers, by raw material source, location, and production capacity

Raw material source and producing company	Location	Capacity (short tons of MgO equivalent)
Magnesite: Basic, Inc	Gabbs, Nev	150,000
Lake brines:	,	,
Great Salt Lake Minerals & Chemicals Corp	Ogden, Utah	100,000
Kaiser Aluminum & Chemical Corp	Wendover, Utah	50,000
Well brines:		
The Dow Chemical Co	Ludington, Mich	300,000
Do	Midland, Mich	75,000
Martin Marietta Chemicals	Manistee, Mich	350,000
Morton Chemical Co	do	5,000
Seawater:		-,
Barcroft Co	Lewes, Del	5.000
Basic Magnesia, Inc.	Port St. Joe, Fla	100,000
The Dow Chemical Co	Freeport, Tex	75,000
Harbison-Walker Refractories Co	Cape May, N.J	100,000
Kaiser Aluminum & Chemical Corp	Moss Landing, Calif	150,000
Merck & Co., Inc	South San Francisco, Calif	15,000
Western Magnesium Corp	Chula Vista, Calif	5,000
Total		1,480,000

CONSUMPTION AND USES

The total quantity and value of all classes of magnesium compounds shipped and used declined from those of 1980, except for caustic-calcined and specified magnesias, which increased. The manufacture of refractory products was the major end use for magnesia. Chemical processing and phar-

maceutical industries provided a strong demand for caustic-calcined and specified magnesias. Caustic-calcined and specified magnesias were used to prepare animal feeds, fertilizers, construction materials, chemicals, electrical heating rods, fluxes, petroleum additives, rayon, and uranium.

Table 3.—Magnesium compounds shipped and used in the United States

	19	180	1981		
·	Quantity	Value	Quantity	Value	
	(short	(thou-	(short	(thou-	
	tons)	sands)	tons)	sands)	
Caustic-calcined ¹ and specified (USP and technical) magnesias	157,303	\$51,282	160,067	\$58,420	
Refractory magnesia	r730,505	162,697	615,661	146,903	
Magnesium hydroxide (100% Mg(OH) ₂) ¹ Magnesium sulfate (anhydrous and hydrous) Precipitated magnesium carbonate ¹	493,326	50,791	415,009	47,922	
	42,878	11,280	33,246	8,120	
	5,144	1,456	4,002	900	

Revised.

¹Excludes material produced as an intermediate step in the manufacture of other magnesium compounds.

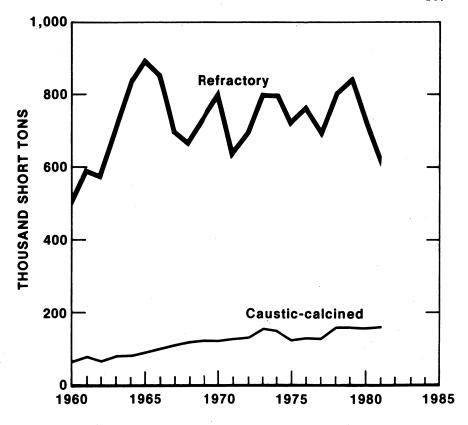


Figure 1.—Consumption and shipments of magnesia in the United States.

Table 4.—Domestic shipments of caustic-calcined and specified magnesias, by use
(Short tons)

Use	1979	1980	1981
Agriculture, nutrition, and pharmaceuticals: Animal feed Fertilizer Medicinals and pharmaceuticals Sugar and candy Winemaking	701 W	W W 598 W W	W W W W
Total	701	598	w
Construction materials: Insulation and wallboard Oxychloride and oxysulfate cement		W W	w
Total	w	w	w.
Chemical processing, manufacturing, and metallurgical: Chemical Electrical heating rods		23,632	19,330
Flux Petroleum additivePup and paper		26,012	57,581
RayonRubber		29,406 13,688	,) w
Stack-gas scrubbing Uranium processing Water treatment	6,513	4,322	} "
TotalUnspecified		97,060 59,645	76,911 83,156
Grand total	163,594	157,303	160,067

W Withheld to avoid disclosing company proprietary data; included with "Unspecified."

PRICES

At yearend, the Chemical Marketing Reporter published the following price quotations for magnesium compounds: Magnesia, natural, technical, heavy, 85% and 90% (bulk, carlot and truckload, f.o.b. Nevada), \$184 and \$210 per ton, respectively; magnesium chloride, hydrous, 99%, flake (bags, carlot, works), \$290 per ton; magnesia, technical, neoprene-grade, light (bags, carlot

and truckload, works), \$55 per ton; magnesium carbonate, technical (bags, carlot and truckload, works, freight-equalized), \$0.52 to \$0.54 per pound; magnesium hydroxide, NF, powder (drums, carlot and truckload, works, freight-equalized), \$0.54 to \$0.58 per pound; magnesium sulfate, technical (bags, mixed carlot, 10,000-pound minimum, works), \$0.121 per pound.

FOREIGN TRADE

U.S. exports of crude and processed compounds such as dead-burned magnesia and magnesite and crude caustic-calcined lump or ground magnesite declined significantly from those of 1980 in both quantity and value. Over four-fifths of total exports were shipped to Canada, Australia, Venezuela,

and Argentina.

Total imports of crude and processed magnesite were greater than those of 1980 but remained under 100,000 tons in quantity and were valued at over \$25 million. Additional magnesium compounds valued at about \$6.2 million were also imported.

MAGNESIUM COMPOUNDS

Table 5.—U.S. exports of magnesite and magnesia, by country

	N	Aagnesite a dead-l	nd magnesia, ourned		Magnesite, n.e.c., including crude caustic-calcined, lump or ground				
Destination	198	30 .	198	1981		30	1981		
Destination	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	
Argentina	65	\$15			6,368	\$2,204	1,354	\$527	
Australia	212	112	240	\$5 8	530	464	3,220	1,391	
Belgium-Luxembourg _	170	38	18	. 4	291	217	679	493	
Brazil	459	132			89	69	495	352	
Canada	48.163	11,093	17.080	3,903	35,240	9,962	24,238	7,423	
Colombia	1,389	161	1,042	132	146	114	141	133	
Costa Rica	1,365	3	1,012		112	25	1	2	
			44	10	31	17	28	34	
Ecuador			53	58	199	186	10	15	
Finland	100	34	128	41	312	287	202	195	
France	102	54	128	41	. 012	201	202	150	
Germany, Federal		1 110	46	14	444	347	611	366	
Republic of	3,411	1,118	46	14	515	445	317	274	
Italy	6	.2		-=		34	30	31	
Japan	24	25	31	7	69			70	
Korea, Republic of					37	25	104		
Mexico	251	56	518	118	73	50	828	761	
Netherlands	183	54	390	88	190	158	110	100	
New Zealand	191	43			168	133	203	222	
Peru					41	28	15	22	
Philippines	$-\overline{2}$	1			111	94	23	. 10	
Singapore		_			15	15	38	42	
South Africa.									
Republic of	142	100	92	21	237	156	138	122	
C	146	100			153	120	151	96	
Spain	254	80			200	161	191	169	
Sweden	17	27			238	158	110	6	
Taiwan	171	81	$\bar{239}$	65	394	291	508	396	
United Kingdom		93	239 231	52	5,238	1.718	2,764	1,062	
Venezuela	783		231 774	156	r ₂₆₂	¹ 214	174	188	
Other	33	- 11	774	156	-262	214	1/4	. 100	
Total	56,038	13,279	20,926	4,727	51,703	17,692	36,683	14,559	

Revised.

Table 6.—U.S. imports for consumption of crude and processed magnesite, by country

	19	80	1981		
Country	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	
Lump or ground caustic-calcined magnesia:1 Australia	556 7,619 1,782 203 1,635 551 60	\$121 1,419 212 -67 -162 125 -16	2,467 5 8,744 74 375 40 24 	\$133 1 1,917 12 21 11 8 5	
Total	12,406	2,122	12,065	2,177	
Dead-burned and grain magnesia and periclase: Not containing lime or not over 4% lime: Austria Brazil Canada China France Greece Ireland Japan Mexico	463 83 - 1 9,211 49,731 10,887	221 6 - 7 2,019 11,505 2,914	41 8,587 25 22 (2) 8,818 38,411 19,568 537	17 1,363 14 11 2,361 12,417 6,645	
Total = ===========================	70,376	16,672	76,009	22,990	

See footnotes at end of table.

Table 6.—U.S. imports for consumption of crude and processed magnesite, by country —Continued

	19	980	1981		
Country	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	
Dead-burned and grain magnesia and periclase —Continued					
Containing over 4% lime: Austria			3	\$ 1	
Canada Germany, Federal Republic of	2,288 55	\$143 15	535 233	59 57	
Ireland Japan			5 25	(²) 7	
Total	2,343	158	801	124	
Total dead-burned and grain magnesia and periclase	72,719	16,830	76,810	23,114	

In addition, crude magnesite was imported as follows: 1980—Canada, 2 short tons (\$343); the United Kingdom, 40 short tons (\$17,337); Greece, 3 short tons (\$1,683); and Australia, 1 short ton (\$366). 1981—Canada, 162 short tons (\$7); Brazil, 8,819 short tons (\$1,500); Ireland, 2,425 short tons (\$671); the Federal Republic of Germany, 785 short tons (\$55); India, 64 short tons (\$1); and Japan, 11 short tons (2).

**Less than 1/2 unit.

Table 7.—U.S. imports for consumption of magnesium compounds

Year	Oxide or calcined magnesia		Magnesium carbonate ¹ (precipitated)		Magnesium chloride (anhydrous)		chlo	Magnesium chloride (other)		Magnesium sulfate (epsom salts and kieserite)		esium dts npounds, p.f. ²
Iear	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)
1979 1980 1981	3,216 1,468 1,537	\$1,772 1,871 2,419	95 117 212	\$187 211 362	26 61 40	\$15 20 20	164 355 592	\$73 93 161	25,950 30,031 30,233	\$1,530 1,674 1,852	6,988 4,092 2,768	\$2,042 2,038 1,427

¹In addition, magnesium carbonate, not precipitated, was imported as follows: 1979—32 short tons (\$24,942); 1980—41 short tons (\$36,357); and 1981—119 short tons (\$97).

²Not specifically provided for; includes magnesium silicofluoride or fluosilicate and calcined magnesium.

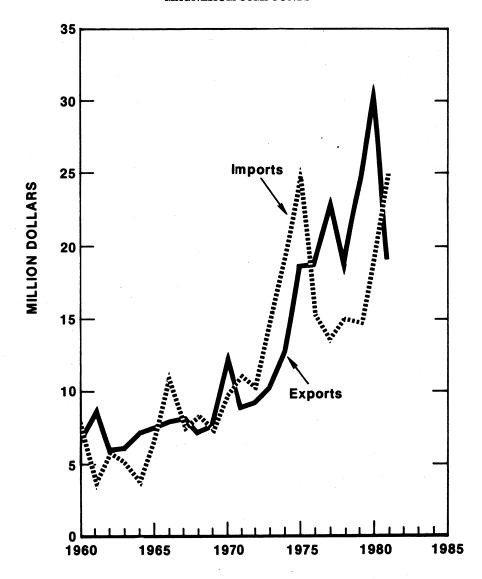


Figure 2.—Value of U.S. exports and imports of magnesia.

WORLD REVIEW

World production of natural magnesite and synthetic magnesia met industrial and other demands for refractory and caustic-calcined and specified magnesias. Most nations derived their magnesia from magnesium minerals, but countries such as the United States, Ireland, and Israel recovered magnesia from natural brines.

Zimbabwe.-Gatooma Magnesite, Ltd., a

subsidiary of the Republic of South Africa's Cullinan Refractories Ltd. and Vereeniging Refractories Ltd., produced magnesite from an underground deposit at Barton Farm near the village of Gatooma, southwest of the capital, Salisbury. Most of Gatooma Magnesite's output was 95% magnesite and was consumed by Cullinan Refractories and Vereeniging Refractories for the production

of magnesia-based refractory brick in the Republic of South Africa. G and W Industrial Minerals used small quantities of Gatooma Magnesite's magnesite to produce

caustic-calcined magnesia that was used by Sable Chemical Industries Ltd. for the production of fertilizers.

Table 8.—Magnesite: World production, by country¹

Country	1977	1978	1979	1980 ^p	1981 ^e
North America:		•			
Canada ^e	41.000	39,000	58,000	65.000	66,000
Mexico	73,193	83,814	89,971	r e88,000	
United States	W	W	W	00,000 W	88,000 W
South America:	**				
Brazil ²	226,766	r _{239,499}	292,186	348,166	386,000
Colombia	1,951	1.543	1.744	1.744	1,800
	-,001	2,010	2,122	1,177	1,000
Europe: Austria	1.105.662	1.082.821	1,216,563	1.453.017	1.430.000
Czechoslovakia	728,627	725,320	720,911	734,139	728,000
Greece	r _{1,415,757}	r _{1,497,824}	1.166,477	1,286,394	1,025,000
Poland	27,999	r26,125	22,046	21,605	21.000
Spain	464,338	337,911	420,936	557,253	550,000
U.S.S.R.e	2,040,000	2,090,000	2,150,000	2,200,000	2,290,000
Yugoslavia	380,297	367,069	322,977	399,036	3330,693
Africa:	000,201	001,000	022,011	000,000	000,000
Kenya	3.941	r e _{4,400}	e4,400	1	10
Kenya South Africa, Republic of	54,255	41,234	71.910	66,111	362.343
Zimbabwe	59,750	r72,483	93.140	86.219	77.000
Asia:	00,100	12,100	00,140	00,210	11,000
China	1,700,000	2,000,000	2,200,000	2,200,000	2,200,000
India	443,136	456,539	424.020	3408,486	440,000
Iran ⁴	5,500	5,500	5,500	4,400	4.400
Korea, Northe	1.615.000	1,720,000	2,010,000	2,040,000	2.040.000
Pakistan	1,727	2.945	3,029	2,040,000 858	2,040,000
Turkey	568,971	459,885	e562,000	r e493,000	495.000
Oceania:	330,011	200,000	502,000	200,000	455,000
Australia	20,426	23,534	32,299	34,715	34,720
New Zealand	F661	¹ 926	r e940	e960	960
Total	r _{10,978,957}	r _{11,278,372}	11,869,049	12,489,104	512,272,000

²Series reflects output of marketable concentrates. Production of crude ore was as follows: 1977—530,381 (revised); 1978—451,877 (revised); 1979—651,583; 1980—803,268; and 1981—880,000 (estimated).

³Reported figure.

Year beginning Mar. 21 of that stated.

⁵Detail does not add to total because of estimates.

TECHNOLOGY

A high carbon-magnesia refractory composition was introduced into basic oxygen steelmaking primarily for the use in the high-wear trunnion areas of the furnace. The use of this refractory composition resulted in increased refractory lining life and lowered gunning maintenance for the vessel.2

Two recent papers described the planning and technology of magnesium oxide from the brine operation at Veendam, Groningen Province, Netherlands. 3

A bibliography was published describing research relating to magnesium oxide ceramics and refractories. Research was cited

on sintering, structure, mechanical properties, strength, degradation, phase studies, additives, and uses of magnesium ceramics and refractories.4

¹Physical scientist, Division of Nonferrous Metals.

Placamu, R. L., and S. J. LaLama. High Carbon-Magnesia Refractories in Basic Oxygen Steelmaking. Iron Steelmaker, v. 8, No. 5, May 1981, pp. 21-25.

3Pettifer, L. The Industrial Minerals of the Netherlands.

Ind. Miner. (London), No. 168, September 1981, pp. 53-55. Van Den Assen, L. Planning for New Industrial Minerals Projects—Magnesium Oxide From Brine in the Netherlands. Ind. Miner. (London), No. 172, January 1982, pp. 35-

Estimated. PPreliminary. Revised. W Withheld to avoid disclosing company proprietary data.

Figures represent crude salable magnesite. In addition to the countries listed, Bulgaria produced magnesite, but output is not reported quantitatively, and available general information is inadequate for formulation of reliable estimates of output levels. Table includes data available through Apr. 26, 1982.

Manganese

By Thomas S. Jones¹

There was neither production nor shipment of manganese ore containing 35% or more manganese in the United States in 1981. Lower grade manganiferous ores were produced and shipped in Minnesota, New Mexico, and South Carolina. Imports of ferromanganese, silicomanganese, manganese metal all increased compared with those of 1980; imports of ore decreased. In 1981, considerably more manganese was imported as ferromanganese than as ore; also, more than twice as much manganese was imported as manganese ferroalloys and metal combined than as ore. Compared with industry performance in 1980, domestic production advanced only slightly for ferromanganese and declined for both silicomanganese and manganese metal. The changes from 1980 to 1981 in consumption of manganese ore, ferroalloys, and metal were a mixture of small increases and decreases. These changes did not keep pace with a 7% increase in raw steel production. Takeover of domestic manganese ferroalloy facilities by foreign interests was virtually completed with the mid-1981 sale of plants belonging to Union Carbide Corp.'s Metals Div. to a Norwegian consortium headed by Elkem AS. The General Services Administration continued to make deliveries of ore from Government stockpile excesses at a relatively low rate.

Table 1.—Salient manganese statistics in the United States

(Short tons)

	1977	1978	1979	1980	1981
Manganese ore (35% or more Mn):					
Imports, general	930.947	547.820	499.782	697,516	639,141
Consumption	1.358.811	1,281,479	1,372,190	1,070,775	1.076,631
Manganiferous ore (5% to 35% Mn):	2,000,022	_,,	-,,	-,,	_,,
Production (shipments)	215.893	312,124	240.696	173,887	175,760
Ferromanganese:	210,000	010,101	_10,000	210,0017	,
Production	334,134	272,530	317,102	189,472	192,690
Exports	6,051	9,433	25,344	11,686	14,925
Imports for consumption	534,423	680,399	821,213	605,703	671,178
	886,299	985.623	976,482	789,076	820,921
Consumption	000,299	200,020	010,402	103,010	020,021

Legislation and Government Programs.—In announcing in March the Government's first purchase program for strategic and critical materials in over 20 years, the Federal Emergency Management Agency identified manganese dioxide as 1 of 11 mineral-based materials to be given priority consideration for acquisitions for the National Defense Stockpile. However, no action was taken in 1981 on manganese dioxide.

Sales of Government manganese stockpile excesses consisted of 9,617 short tons² of stockpile-grade and 16,074 tons of nonstockpile-grade natural battery ore and 7,952 tons of nonstockpile-grade metallurgical ore.

Government stockpile physical inventories of manganese items declined at about the same rate as in 1980. The most significant change during 1981 was for stockpile-grade metallurgical ore, which decreased 271,693 tons to 2,742,079 tons. Other changes in yearend inventories were a small decrease in nonstockpile-grade metallurgical ore to 960,942 tons, a slight increase

(evidently through inventory reclassification) in stockpile-grade natural battery ore to 209,020 tons, and a decrease in nonstockpile-grade natural battery ore to 33,761 tons. Inventories remained unchanged for other items as follows, in tons: Synthetic manganese dioxide, 3,011; chemical ore, 221,045; high-carbon ferromanganese, 599,978; medium-carbon ferromanganese, 28,920; silicomanganese, 23,574; and electrolytic metal, 14,172. Yearend physical inventories included approximately 330,000 tons of stockpile-grade metallurgical ore and 24,000 tons of stockpile-grade natural battery ore that had been sold but not yet

shipped.

The National Oceanic and Atmospheric Administration, U.S. Department of Commerce, issued deep seabed mining regulations for exploration licenses effective October 15, 1981, in implementing its licensing responsibilities under the Deep Seabed Hard Mineral Resources Act of 1980. Under these regulations, licenses for seabed exploration will be for a 10-year period, renewable for up to an additional 5 years.3 In accordance with the act, a commercial recovery permit will also have to be obtained before mining can commence, and this can be no earlier than January 1, 1988.

DOMESTIC PRODUCTION

No manganese ore, concentrate, or nodules, containing 35% or more manganese. was produced or shipped in the United States. Ferruginous manganese ores or concentrates containing 10% to 35% manganese were produced and shipped in New Mexico and in the Cuyuna Range of Minnesota. Manganiferous schist, clay, or other

earthy material associated with the manganiferous member of the Battleground schist of the Kings Mountain area was mined in Cherokee County, S.C., by brick manufacturers or contractors for use in coloring brick. This latter material reported in table 2 ranged in manganese content from 5% to 15%, but averaged less than 10%.

Table 2.—Manganese and manganiferous ore shipped1 in the United States, by type and State

	19	80	19	81
Type and State	Gross weight	Man- ganese content	Gross weight	Man- ganese content
Manganese ore (35% or more Mn, natural)				
Manganiferous ore: Ferruginous manganese ore (10% to 35% Mn, natural): Minnesota New Mexico	119,029 35,198	16,712 4,069	139,571 12,741	20,712 1,453
Total	154,227	20,781	152,312	22,165
South Carolina ²	19,660	1,875	23,448	2,160
Total manganiferous oreValue of manganese and manganiferous ore	173,887 \$2,443,753	22,656 XX	175,760 \$2,889,669	24,325 XX

CONSUMPTION, USES, AND STOCKS

In the production of raw steel (ingots. continuous- or pressure-cast blooms, billets, slabs, etc., and including steel castings), consumption of manganese as ferroalloys, metal, and direct-charged ore, as reported to the Bureau of Mines by consumers,

totaled 12.0 pounds per ton of raw steel produced. On the basis of contained manganese, the makeup of the 12.0-pound total was ferromanganese, 10.3; silicomanganese, 1.5; spiegeleisen, negligible; metal, 0.2; and manganese ore containing 35% or more

XX Not applicable.

Shipments are used as the measure of manganese production for compiling U.S. mineral production value. They are taken at the point at which the material is considered to be in marketable form for the consumer. Besides direct-shipping ore, they include, without duplication, concentrate and nodules made from domestic ores.

Miscellaneous ore.

manganese, negligible. The comparable 1980 total, on the same basis, was 12.6 pounds with ferromanganese at 10.8, silicomanganese at 1.6, spiegeleisen negligible, metal at 0.2, and ore none. In addition to the aforementioned consumption of manga-

nese in 1981, there was consumed per ton of raw steel produced approximately 1.0 pound of manganese contained in manganese ore used in making pig iron or equivalent hot metal, the same as in 1980. In 1979, the comparable figure was 1.4 pounds.

Table 3.—Consumption and industry stocks of manganese ore¹ in the United States
(Short tons)

	Consumption		Stocks,
	1980	1981	Dec. 31, 1981
By use: Manganese alloys and metal Pig iron and steel Dry cells, chemicals and miscellaneous	727,530 131,516 211,729	744,832 147,812 183,987	547,811 151,186 337,210
Total	1,070,775	1,076,631	1,036,207
By origin: Domestic Foreign	60,701 1,010,074	79,432 997,199	19,865 1,016,342
Total	1,070,775	1,076,631	1,036,207

¹Containing 35% or more manganese (natural).

Table 4.—Consumption, by end use, and industry stocks of manganese ferroalloys and metal in the United States in 1981

(Short tons, gross weight)

	Ferrom	anganese			·····
End use	High carbon	Medium and low carbon	Silico- manga- nese	Spiegel- eisen	Man- ganese metal ¹
Steel:					
Carbon Stainless and heat-resisting Full alloy High-strength low-alloy Electric Tool Unspecified	515,992 11,223 88,092 46,443 164 385 697	105,098 1,082 16,795 13,943 65 79 176	95,034 4,707 31,470 10,055 321 66 1,019	53 	6,458 2,770 1,254 1,101 78 122 6
Total steel Cast irons Superalloys Alloys (excluding alloy steels and superalloys) Miscellaneous and unspecified	662,996 15,575 286 1,688 722	137,238 1,121 W 414 881	142,672 9,450 W 2,725 894	53 56 	11,789 2 135 11,359 495
Total consumption	681,267	139,654	155,741	109	23,780
Stocks, Dec. 31: Consumer Producer	137,489 15,317	17,561 31,212	13,386 42,927	W W	3,587 4,506
Total stocks	152,806	48,773	56,313	45	8,093

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and unspecified" where applicable.

1 Virtually all electrolytic.

Table 5.—Ferromanganese and silicomanganese produced in the United States and manganese ore¹ consumed in their manufacture

		P	roduction		100 July 18	real of the particular of the	* , .	
		Ferromange	nese		Manganese ore ¹ consumed (gross weight, short tons)			
Year	Gross weight	Mangan	ese content	Silico- manganese	E13	D2	Per ton of ferroman- ganese and	
	(short tons)	Percent	Short tons	(gross weight, short tons)	Foreign ²	Domestic ²	silicoman- ganese made ³	
1977	334,134 272,530	78.8 80.6	263,136 219,707	120,000 142,000	889,296 740,906	35,769 90,660	1.9 1.9	
1979 1980 1981	317,102 189,472 192,690	80.2 79.7 80.0	254,389 150,982 154,156	165,000 188,000 173,000	785,664 691,250 684,857	125,130 34,877 57,722	1.8 1.9 2.0	

¹Containing 35% or more manganese (natural).

²Includes ore used in producing silicomanganese and metal.

³Ratio of ore consumed to ferromanganese produced if silicomanganese is considered a special grade of ferromanganese. Includes ore used in producing silicomanganese.

Nearly all manganese ferroalloy plants in the United States came under control of foreign interests when sale of portions of Union Carbide Corp.'s Metals Div. to a Norwegian consortium was completed in midyear. The sale included production facilities at Alloy, W. Va., and Marietta, Ohio. Following the sale, ownership of the Alloy and Marietta plants was 49% by Elkem Metals Co.—a wholly owned subsidiary of Elkem AS of Norway-and 51% by a number of other Norwegian interests combined. It was reported that operations would be by Elkem Metals, with headquarters in Pittsburgh, Pa., and ore requirements would be satisfied through purchases by Elkem AS, the parent company. Earlier in the year, Union Carbide announced that in 1981 it would close its Portland, Oreg., plant, which had been a producer of both high-carbon ferromanganese and silicomanganese.

Electrolytic Manganese Metal.-All of the manganese metal produced domestically and virtually all of that imported was electrolytic metal. Virtually all of the metal consumed was electrolytic metal; some lowor medium-carbon ferromanganese, such as the domestically produced "Massive Manganese" or the imported "Gimel Metal," and some manganese-aluminum additives may have been erroneously reported by consumers as manganese metal. The metal that was used to make manganese-aluminum additives is included in table 4 under the "Alloys (excluding alloy steels and superalloys)" category. These additives are not knowingly included in the table, since it is desired to report consumption at the metal

rather than at the additive level of the usage cycle.

Production of electrolytic manganese metal declined by nearly 10% to 24,222 tons. Production was by four companies at three plants: Foote Mineral Co., New Johnsonville, Tenn.; Kerr-McGee Chemical Corp., Hamilton (Aberdeen), Miss.; and by Union Carbide Corp. and then Elkem Metals Co. at Marietta, Ohio.

Foote announced in October 1981 a program to modernize by mid-1982 its New Johnsonville plant, thereby improving competitiveness of its metal production. Because of excess inventories, the plant was temporarily closed in December. Included in the modernization program was provision for later converting part of the metal plant to production of electrolytic manganese dioxide without necessitating a reduction in the company's metal production level.

In the early part of 1981, KBI Div. of Cabot Corp. opened a new plant in Henderson County in northwestern Kentucky for production of aluminum master alloys, some of which would be aluminum-manganese alloys made by using manganese metal.

Ferromanganese.—Domestic production was by six companies at six locations; no blast furnaces were used. Electric furnaces were used to produce ferromanganese for shipment by five companies at five plants: Autlan Manganese Corp., Theodore (Mobile), Ala.; Roane Ltd., Rockwood, Tenn.; SKW Alloys, Inc., Calvert City, Ky.; Union Carbide Corp., Marietta, Ohio, and Port-

land, Oreg.; and Elkem Metals Co., Marietta, Ohio. Fused-salt electrolysis was used by Chemetals Corp. at Kingwood, W. Va., to make low- and medium-carbon ferromanganese sold under the trade name of Massive Manganese. Shipments of ferromanganese from U.S. furnaces declined to 188,000 tons compared with 194,000 tons in 1980. Shipments in 1979 and 1978 were 330,000 tons and 318,000 tons, respectively.

The ferromanganese production reported in the various tables is net production; that is, the quantity of ferromanganese produced for shipment outside the producing ferroalloy facility. It does not include the remelt material; that is, the fines, offgrade, or other ferromanganese output of the furnace that was fed back to the furnace or lost in the plant, and which is included in gross production data reported by the furnace operator.

Silicomanganese.—Domestic production of silicomanganese decreased by 8% to 173,000 tons. Production in 1979 and 1978 was 165,000 tons and 142,000 tons, respectively. This is net production produced for shipment and does not include silicomanganese produced for use in the same plant as an intermediate for the production of medium- or low-carbon ferromanganese. Shipments of silicomanganese from U.S. furnaces totaled 173,000 tons in 1981, compared with 162,000 tons in 1980. Six companies used six plants to produce silicomanganese for shipment in 1981: Autlan Manganese Corp., Theodore (Mobile), Ala.; Globe Metallurgical Div., Interlake Inc., Beverly, Ohio; Roane Ltd., Rockwood, Tenn.; SKW Alloys, Inc., Calvert City, Ky.; Union Carbide Corp., Marietta, Ohio, and Portland, Oreg.; and Elkem Metals Co., Marietta, consumption of silico-End-use Ohio. manganese-that is, consumption outside the ferroalloy plants-was 19.0% that of ferromanganese in 1981, compared with 19.7% in 1980 and 17.6% in 1979.

Spiegeleisen.—There was no domestic production of spiegeleisen and negligible reported consumption.

Pig Iron.—A total of 336,000 tons of manganese-bearing ores containing 5% or

more manganese (natural) was consumed in the production of pig iron or its equivalent hot metal. Domestic sources supplied 186,000 tons, of which 168,000 was manganiferous iron ore containing 5% to 10% manganese, 17,000 tons was ferruginous manganese ore containing 10% to 35% manganese, and 1,000 tons was manganese ore containing more than 35% manganese. Foreign sources supplied 150,000 tons, of which 2,000 tons was ferruginous manganese ore containing 10% to 35% manganese and 148,000 tons was manganese ore containing more than 35% manganese.

Battery and Miscellaneous Industries.— The ore reported in table 3 includes that consumed in making synthetic manganese dioxide by both electrolytic and chemical means, but it does not include consumption of synthetic dioxide. Although some synthetic dioxide is used for chemical purposes, most of it is used in the manufacture of drycell batteries, particularly for the manganese-alkaline type, for premium or heavydioxide-(manganese duty Leclanché ammonium chloride-zinc) cells, and for blending with natural ore in the ordinary Leclanché cells.

The domestic ore and much of the foreign ore used for chemical and miscellaneous purposes did not meet national stockpile specification P-81-R for chemical-grade ore.

Two companies announced plans to commence future production of synthetic manganese dioxide. Chemetals began installation of facilities for making chemical manganese dioxide at its Baltimore, Md., plant, to become operational in the latter part of 1982. Annual capacity for dioxide was to be 6,600 tons initially, with provision for expanding rapidly to twice that amount. Foote Mineral announced plans to construct a pilot plant for production of electrolytic manganese dioxide at its New Johnsonville, Tenn., facility. The pilot plant was to be built by the third quarter of 1982 and then to be operated for 6 months. Subsequent production was to be achieved by converting part of the metal plant at New Johnsonville so as to give an annual capacity for dioxide of 6,200 tons.

PRICES

Manganese Ore.—All manganese ore prices are negotiated. Prices depend primarily on manganese content but also on other chemical constituents, and on physical character, quantity, delivery terms, ocean

freight rates, insurance, inclusion or exclusion of duties if applicable, buyer's needs, and availability of ores having the specifications desired. Trade journal quotations reflect the paper's evaluation of the market.

Contract prices for 1981 delivery of metallurgical ore to the United States were not set until contracts were made, after lengthy negotiations, between foreign buyers and producers that called for only a slight price increase. A representative average 1981 price for metallurgical ore containing 48% manganese was \$1.72 per long ton unit, c.i.f. U.S. ports, only marginally greater than that of \$1.70 for 1980.

Manganese Alloys.—Slight upward price pressure was evident, although not for domestically produced standard high-carbon ferromanganese with a minimum manganese content of 78%. Two producers' list prices continued to be quoted throughout the year for this item—\$490 and \$530 per long ton of alloy, f.o.b. shipping point—reportedly with discounting. The price of imported high-carbon ferromanganese of

the same manganese content was increased minimally at midyear, from a range of \$390 to \$425 to \$400 to \$430 per long ton of alloy, f.o.b. Pittsburgh or Chicago warehouse. Prices were advanced for both imported and domestic silicomanganese, that for the imported alloy by 5% towards the beginning of 1981 and that for the domestic alloy by 8% about the middle of the year. After the increases, imported silicomanganese was listed at 21.5 to 22 cents and domestic silicomanganese at 26.5 cents, both per pound of alloy f.o.b. either warehouse or producer.

Manganese Metal.—The domestic producer price for standard and comparable grades of electrolytic manganese metal was unchanged at 70 cents per pound for bulk shipments, f.o.b. producer plant.

FOREIGN TRADE

Ferromanganese exports were 14,925 tons valued at \$12,477,137 in 1981, compared with 11,686 tons valued at \$7,656,934 in 1980. Principal 1981 recipients were Canada, 13,309 tons, and Mexico, 1,056 tons. Silicomanganese exports in 1981 totaled 3,941 tons with a value of \$2,171,783, compared with 6,489 tons valued at \$3,468,192 in 1980. Canada, with 3,768 tons, was the principal recipient in 1981. Exports classified as "manganese and manganese alloys, wrought or unwrought, and waste and scrap" were, at 2,523 tons with a value of \$3,979,619, much reduced from those in 1980, in which year the corresponding totals were 12,320 tons and \$11,459,925. Material in this classification was reported as exported to 34 countries in 1981, of which the leading recipients were Sweden, 672 tons; Canada, 603 tons; the Netherlands, 251 tons; Japan, 156 tons; and Mexico, 124 tons. This classification included electrolytic manganese metal and such nonferrous manganese alloys as manganese-copper, but not ferromanganese or silicomanganese.

Exports of ore and concentrate containing 5% or more manganese were 65,064 tons with a value of \$5,132,190, compared with 52,537 tons valued at \$6,328,371 in 1980. Practically all of the 1981 exports consisted of shipments to Canada, 31,798 tons; Mexico, 28,735 tons; and Guatemala, 3,748 tons. Much of the tonnage to Canada and Mexico is believed to have been metallurgical ore obtained from excess Government stocks, whereas most of that exported elsewhere appears to have been imported manganese

dioxide ore that may or may not have been ground, blended, or otherwise classified in the United States.

Imports of manganese ore declined overall by 8% and by nearly 70% for those from Australia. Distribution of supply was the Republic of South Africa, 36%; Gabon, 28%; Brazil, 12%; Australia, 10%; Mexico, 10%; and Morocco, 4%. The average grade of imported manganese ore remained at the 1980 average of 47%, which was a drop from the 1979 average of 49%. Imports of manganiferous ore (more than 10% but less than 35% manganese) were 6,090 tons averaging 27% manganese, all from Mexico.

The trend of growing imports of manganese ferroalloys and metal resumed, imports of ferromanganese increasing by 11%, silicomanganese by 72%, and metal by 5%. The Republic of South Africa was the leading supplier of ferromanganese, virtually the only source of manganese metal imports, and was second only to Brazil as a supplier of silicomanganese. For both ferromanganese and silicomanganese, about 90% of imports were received from the Republic of South Africa plus four other leading source countries: France, Canada, Mexico, and Portugal for ferromanganese: Brazil, Norway, Yugoslavia, and Australia for silicomanganese.

Silicomanganese imports for consumption totaled 129,005 tons containing 84,900 tons of manganese in 1981, and 74,975 tons containing 49,158 tons in 1980. Sources and gross weight tonnages in 1981 were reported as follows: Brazil, 38,942; the Republic of

South Africa, 25,557; Norway, 17,307; Yugoslavia, 16,306; Australia, 13,675; France, 6.284; the United Kingdom, 3.124; Venezuela, 2,756; Italy, 2,298; Mexico, 1,378; Lithuania, 770; Canada, 499; and Portugal, 110.

Imports for consumption classified as unwrought manganese metal were 8,331 tons, as follows: The Republic of South Africa, 8,245; Japan, 67; the United Kingdom, 18; and the Federal Republic of Germany, 2. An additional 12 tons of manganese metal waste and scrap of low unit value were imported, all from Canada except a negligible quantity from the United Kingdom.

Manganese dioxide imports for consumption rose to 16,310 tons compared with

11.512 tons in 1980. Over 16,000 tons of the 1981 total was apparently battery-grade synthetic dioxide: 11,836 tons from Japan; 2,018 tons from Belgium; 1,954 tons from Greece: 397 tons from Ireland: and 20 tons from China. Manganese sulfate imports were of variable unit value totaling 70 tons. of which 47 tons were from the Federal Republic of Germany, 22 tons from the Netherlands, and less than one-half ton each from Mexico and Sweden.

Tariffs.—The respective rates of duty for manganese and manganiferous ore, metal, and the principal manganese ferroalloys are given in table 8. Duties in 1981 were the same as in 1980.

Table 6.—U.S. imports¹ of manganese ore (35% or more Mn), by country

		1980			1981		
Country	Gross weight (short tons)	Mn content (short tons)	Value (thou- sands)	Gross weight (short tons)	Mn content (short tons)	Value (thou- sands)	
Australia	205,388	106.043	\$14,467	² 65,762	² 34,259	2\$5,028	
Brazil	69,670	33,648	3,663	76,252	38,909	6,291	
Gabon	159,959	79,858	13,610	179,528	90,629	13,582	
Mexico	43,707	318,568	2,216	64.982	25.813	4,504	
Morocco	49,821	45,260	41,161	² 25,407	^{2 3} 13.594	² 2,717	
South Africa, Republic of	208,970	86,373	11,296	227,211	97,536	10,522	
Total ⁵	697,516	329,750	46,413	639,141	300,740	42,643	

Quantities for general imports and imports for consumption were identical.

Table 7.—U.S. imports for consumption of ferromanganese, by country

		1980		1981		
Country	Gross weight (short tons)	Mn content (short tons)	Value (thou- sands)	Gross weight (short tons)	Mn content (short tons)	Value (thou- sands)
AustraliaBelgium-Luxembourg	20,206 5,427	15,674 4,311	\$5,976 1,920	6,471	5,099	\$2,168
	12,566	9,553	3,884	12,401	9,425	3,676
BrazilCanada	17,148	13,514	4,872	62,422	48,793	21,169
France	218,214	170,189	78,410	189,498	148,139	65,729
Germany, Federal Republic of	25	21	21	39	33	33
JapanKorea, Republic of	15,220	$12,1\overline{74}$	8,784	4,949 21	4,002 16	2,948 6
Mexico	41,967	32,949	13,598	45.654	35,786	18,325
Norway	22,265	17,528	9,858	5,109	4,069	2,420
Portugal	12,049	9,398	3,443	32,858	25,630	10,109
South Africa, Republic of	224,118	174,894	73,176	274,482	212,047	87,118
Spain	11,923	9,639	5,880	9,508	7,662	5,005
Taiwan	276	201	110			o ===
United Kingdom				14,257	10,659	3,565
Yugoslavia	4,299	3,353	1,432	13,503	10,465	4,343
Total ¹	605,703	473,399	211,365	671,178	521,827	226,618

¹Data may not add to totals shown because of independent rounding.

After adjustment of data for shipment originally declared as from Australia but subsequently identified as having been from Morocco.

^{*}Includes Bureau of Mines conversion of part of reported data (from apparent MnO₂ content to Mn content).

*Data include 4,559 tons gross weight, 2,416 contained weight (calculated by Bureau of Mines from reported 3,830 tons apparent MnO₂ content), with a value of \$535,000 reported as manganiferous ore. Morocco doesn't produce or export manganiferous ore.

Data may not add to totals shown because of independent rounding. nganiferous ore

Table	81	ILS.	import	duties

Tariff item	TSUS	Most favored n	Non-MFN	
Tarm tem	number	Jan. 1, 1981	Jan. 1, 1987	Jan: 1, 1981
Ore and concentrate	601.27	Free	Free	1 cent per pound Mn.
Metal Ferromanganese:	632.30	14% ad valorem	14% ad valorem	20% ad valorem.
High-carbon	606.30	0.3 cent per pound Mn.1	1.5% ad valorem	10.5% ad valorem.
Medium-carbon	606.28	0.46 cent per pound Mn.1	1.4% ad valorem	6.5% ad valorem.
Low-carbon	606.26	0.3 cent per pound Mn plus 2% ad valorem.1	2.3% ad valorem	22% ad valorem.
Silicomanganese	606.44	0.46 cent per pound Mn plus 3.5% ad valorem. ¹	3.9% ad valorem	23% ad valorem.

¹Free from certain countries under Generalized System of Preferences.

WORLD REVIEW

Australia.-Manganese ore production declined about 30% to 1,554,000 tons from the 1980 peak of 2,162,000 tons. Virtually all production was by Groote Eylandt Mining Co. Pty. Ltd. (Gemco), whose mining and processing operations on Groote Eylandt in the Gulf of Carpentaria, Northern Territory, were reviewed.4 Gemco's production capacity was increased to approximately 2,600,000 tons per year by installation of a plant for beneficiating fines that previously were discarded. Market conditions caused plans for further expansion to be deferred and mine operations to be cut back by yearend to a third of capacity. Gemco's exports were lower to all major markets; in tons, shipments were to Japan, 493,000; Europe, 289,000; the Republic of Korea, 141,000; and the United States, 70,000; for a total of 993,000. Shipments for domestic consumption decreased to a lesser extent, to 525,000 tons. Production of metallurgicalgrade ore in the Peak Hill area of Western Australia was 1,318 tons in 1981 and 1,866 tons in 1980.

Brazil.—Exports of manganese ore products from the Serra do Navio, Amapa Territory, operations of Industria e Comercio de Minerios S.A. totaled 925,000 tons, nearly a one-third decrease from 1980 shipments. The largest portion of 1981 exports, 642,000 tons, went to Europe via Porto de Santana on the Amazon River. Destinations of the remainder were Asia, 136,000 tons; North America, 117,000 tons; and South America other than Brazil, 30,000 tons.

Manganese deposits were among those in northern Brazil identified as having high potential for future production. Upwards of 60 million tons of high-grade ore have been projected to be minable by open pit methods from the Azul, Buritirama, and Sereno deposits in the Serra dos Carajas mining district, Pará State. The Azul deposits were the largest of the three and the most favorably situated with respect to projected future infrastructure.

Gabon.-Manganese ore production totaled 1,640,000 tons at an average manganese content of 51%, of which 1,500,000 tons was metallurgical ore and 140,000 tons was battery-grade (battery and chemical) ore (83% MnO₂). Exports shipped by Cie. Minière de l'Ogooué S.A. (COMILOG) out of Pointe Noire in the Congo decreased by about 30% to 1,710,000 tons, of which 1,545,000 tons was metallurgical ore and 165,000 tons was battery-grade ore.6 The Government of Gabon announced that it would increase its share in COMILOG to 25% from 11%. Of the other shareholders, all foreign, the United States Steel Corp. had the largest interest. During 1981, United States Steel's ownership of COMILOG decreased from 44% to 41%. The contribution of manganese ore to Gabon's total export earnings had dropped to 6% in 1980 from 7% in 1979. Manganese ore was exported in 1980 to as many as 20 countries, of which, on a value basis, France and Norway received the largest amounts.

Ghana.—Exports of manganese ore by Ghana National Manganese Corp., which have been declining at about a 15% annual rate for the last few years, fell to 217,000 tons in 1981. Production from the Nsuta Mine was shipped through the Port of Takoradi to five West European countries (Belgium, Ireland, the Netherlands, Norway, and Spain) and to Japan.

Table 9.—Manganese ore: World production, by country¹

(Short tons, gross weight)

Country ²	Percent Mn ^e	1977	1978	1979	1980 ^p	1981 ^e
North America: Mexico ³	35+	536,409	576,692	543,068	492,874	4637,500
South America:		•				
Bolivia ^{3 5}	28-54	9,464	1,364	11,574	4,960	
Brogil6	38-50	1.670,741	r2,113,261	2,490,483	2,601,452	2,090,000
Chile	33-40	19.843	25,621	27,524	30,535	29,800
Europe:		,			•	
Bulgaria	30-	44.100	44,100	46,300	54,000	55,100
Greece	48-50	r10,573	7,727	6.283	6.123	6,060
Hungary ⁷	30-33	132,000	126,000	91,000	97,000	91,000
Italy	22+	10,267	10,738	10,783	10.103	49,918
U.S.S.R.8	35	9,470,000	9.984.000	11.292,000	10.748,000	10,360,000
Yugoslavia	30+	27.282	30,203	33,235	e33.000	27,600
	90+	21,202	30,203	00,200	00,000	21,000
Africa:	28+	4,225	191			
Egypt	50-53	2.039.857	r _{1.885,414}	2.535.417	2.366.386	41.639.700
Gabon	30-53		347.864	300,005	278,279	248,000
Ghana		321,417		149,583	144,750	4120,868
Morocco	50-53	125,164	139,112			
South Africa, Republic of	30-48 ₊	5,564,411	4,758,721	5,712,615	6,278,125	45,555,000 441
Sudan	48	504	496	500	400	
Zaire	30-57	42,216			18,283	11,000
Asia:		•			1 550 000	1 500 000
China ^{e 9}	20+	r _{1,250,000}	1,400,000	1,650,000	1,750,000	1,760,000
India 10	10-54	2,055,865	1,784,503	1,934,641	1,813,692	1,650,000
Indonesia	47-56	r _{6,587}	6,492	6,514	4,739	4,950
Iran ¹¹	33+	44,100	33,100	e22,050		
Janan	24-28	139,063	114,802	96,925	87,721	96,130
Korea Republic of	23-40	732	823	39	89	88
Korea, Republic of Pakistan	35-	58	317	121	205	28
Philippines	35-45	22,706	4,311	4,155	2,818	2,200
Thailand	46-50	84,836	79,599	38,984	59,866	12,000
Turkey	35-46	21,275	e22,000	20,750	45,500	24,250
Oceania:				•		
Australia	37-53	1.531.113	1,376,699	1,871,722	2,161,630	41,553,600
Vanuatu (formerly New	2. 30	-,,	-,,			
Hebrides)	40-44	25,397	22,853	11,623		
	XX	r _{25,210,205}	°24,897,003	28,907,894	29,090,530	25,985,218

Revised. XX Not applicable. ^eEstimated. Preliminary.

¹Table includes data available through June 30, 1982.

"Table includes data available through June 30, 1982. "In addition to the countries listed, Colombia, Cuba, and Namibia may have produced manganese ore and/or manganiferous ore, but available information is inadequate to make reliable estimates of output levels. Low-grade ore not included in this table has been reported as follows in short tons: Argentina (16% to 22% Mn) 1977—90,814, 1978—20,389, 1979—11,233, 1980—6,775 (revised), 1981—3,417; Czechoslovakia (about 17% Mn) 1977—1,003, 1978 through 1981—an estimated 1,000 in each year; Malaysia (grade unspecified but apparently a manganiferous ferruginous ore) 1977—50,040, 1978—47,092, 1979—43,839, 1980—4,413, 1981—nil; Romania (about 22% Mn) an estimated 90,000 in each year; the Republic of South Africa (15% to 30% Mn, in addition to material listed in table) 1977—266,930, 1978—105,490, 1979—nil, 1980—nil, 1981—nil.

Settimated on the besis of reported contained manganese

³Estimated on the basis of reported contained manganese.

⁴Reported figure.

⁵Exports.

Figures are the sum of (1) sales of direct shipping manganese ore and (2) production of beneficiated ore, both as

reported in Annuario Mineral Brasileiro.

Concentrate. Crude ore tonnages (18% to 26% Mn) as previously reported were 1977—177,072 (revised), 1978—172,160, 1979—114,280 (revised), 1980—148,230, 1981—148,800 (estimated). ⁸Reported in Soviet sources. Grade represents the annual averages obtained from reported metal contents of the gross

weights shown.

⁹Includes manganiferous ore.

 ¹⁰Much of India's production grades below 35% Mn; recent details on output by grade are not available.
 ¹¹Reported as if data are for calendar years, but may actually represent output for Iranian calendar years beginning Mar. 21 of the year stated.

India.—Exports of manganese ore of various grades rose, according to preliminary figures, to a total of 777,000 tons in 1981, as compared with 720,000 tons in 1980. Japan's share of ore exports continued to be the largest, although it decreased to about twothirds of the total in 1981, compared with three-fourths in 1980. Exports to East Europe were up significantly, with Romania and Bulgaria the chief recipients. Domestic ore requirements were projected to double by 1990. As part of the effort to meet growth in internal demand, Manganese Ore India Ltd. was expanding its exploration activities to include search in Orissa State for high-grade, low-phosphorus ore that could be blended with already known quantities of lower grade ore.

A new ferromanganese plant was brought into production at Tumsar by Uniferro International, a subsidiary of Universal Ferro & Allied Chemicals, Bombay. This new capacity, rated at 72,000 annual tons of ferromanganese additional to that of the existing plant at Tumsar, has increased the concentration of ferromanganese production facilities in Maharashtra State. In line with the Government's relaxation of restrictions on ferromanganese exports, the new plant was export oriented. Phibro Corp. of the United States provided a production loan and had about a 40% share in the plant's equity.

Italy.-Through Samim Ocean, a U.S. subsidiary of Ente Nazionale Idrocarburi. the Italian Government moved towards involvement in ocean mining by becoming a participant in Ocean Mining Associates (OMA). OMA, long interested in developing plans to recover manganese nodules from the depths of the Pacific Ocean, had been a partnership between two U.S. firms-United States Steel Corp. and Sun Co.—and Belgium's Union Minière S.A. The Government was also involved in the study of possible deep-sea mining in Italian territorial waters, especially of a deposit of volcanic nodules in waters northwest of Sicily. These nodules reportedly had much higher manganese content than Pacific Ocean nodules.

Japan.—Completion of expansion of annual production capacity for electrolytic (synthetic) manganese dioxide to 27,500 tons at its Takehara plant was extended to mid-1982 by Mitsui Mining & Smelting Co., Ltd.

Norway.—The manganese ferroalloy plant at Sauda that had belonged to Union Carbide was acquired at midyear by a Norwegian consortium led by Elkem AS, and Elkem's ownership of Sauda Smelteverk AS became 91%.

South Africa, Republic of.—Exploration work in or near the Kalahari Field revealed

possible additions to the already large manganese reserves of that field. South African Manganese Amcor Ltd. reported having intersected potential ore zones on a property north of its Wessels Mine and on its Rissik property next to its Mamatwan Mine. At the Mamatwan Mine, rich ore with as much as 50% manganese and as much as 70% manganese dioxide was found. On the farm Olive Wood, about 10 miles west of Hotazel, General Mining Union Corp. Ltd. drilled into substantial quantities of ore, some with over 50% manganese, at depths of 3,300 to 4,600 feet. On the adjacent farm Olive Pan, South Africa Iron and Steel Industrial Corp. Ltd. also drilled into highgrade ore.

On the basis of provisional figures, overall production of manganese ore in 1981 was 5,555,000 tons, a 12% decrease from the 1980 total. Of the 1981 total, approximately 5,180,000 (tons) was metallurgical ore, of which 2,678,000 contained 30% to 40% manganese, 745,000 contained 40% to 45% manganese, 1,351,000 contained 45% to 48% manganese, and 406,000 contained over 48% manganese. The remaining 376,000 was chemical ore, of which 327,000 contained less than 35% manganese dioxide, 49,000 contained 35% to 65% manganese dioxide, and 250 contained 65% to 75% manganese dioxide.

U.S.S.R.—Ore production was down somewhat in 1981. However, production capacities were being increased through mine developments at the two large producing centers of the Nikopol' Basin in the Ukraine and the Chiatura Basin in Georgia. In the Ukraine, capacity of the Ordzhonikidze complex in the Nikopol' Basin was enlarged. Across the Dnieper River to the southeast, initial development of the Bol'she-Tokmak carbonate ore deposit was scheduled for 1981-85.

TECHNOLOGY

Under contract to the Bureau of Mines, the National Materials Advisory Board of the National Academy of Sciences independently evaluated present land-based manganese reserves and resources of the world. This study was carried out by a panel that also reviewed geology of the deposits, manganese extraction and metallurgical processing, and implications of consumers' dependence on a limited number of manganese suppliers.

The industrial aspects of manganese were

addressed in two other reviews. One reviewed the currently used metallurgical manganese ores and the technology for processing them into ferroalloys and metal. The other reviewed the chemical properties of manganese compounds and the methods for manufacturing such commercially significant compounds as manganese dioxide and potassium permanganate. 10

The Bureau of Mines reported laboratory development of a hydrometallurgical extraction system applicable to manganesebearing Pacific Ocean nodules. Employing sulfur dioxide as leachant, this selective leaching process rapidly solubilized metal values in mixed hydrous oxide ores at room temperature and ambient pressure. By this procedure, in excess of 90% of the manganese, nickel, and cobalt contents were extracted and copper was rejected to the residue to a comparable degree. Success of the method depended on suitable choice of a parameter—ratio of number of moles of SO₂ in the leaching solution to weight of nodules being leached—and reduction of ore particle size to at least less than 100 mesh.¹¹

A laboratory study of leaching with dilute acids showed that high-phosphorus manganese ore from central India could be dephosphorized as effectively with hydrochloric acid as with either nitric or sulfuric acid. For India, hydrochloric acid was indicated to be the least costly of the three acids. These studies delineated processing conditions whereby phosphorus contents of about 0.25% to 0.50% in ore samples from Madhya Pradesh and Maharashtra could be lowered to below 0.10%. It was demonstrated that powdery, dephosphorized ore could be pelletized by a heat-hardening treatment conducted at about 1.100° C.12

The manganese oxygen refining (MOR) process developed by the Metals Div. of Union Carbide for production of mediumcarbon ferromanganese was described. In this process, as taught in the underlying 1967 patent, high-carbon ferromanganese is top-blown with oxygen to a carbon level of 1.0% to 1.5%, in a fashion similar to steelmaking in a basic oxygen furnace. Advantages claimed for the MOR process over conventional silicothermic reduction methods for making medium-carbon ferromanganese included lower energy usage and costs. Beginning in 1976, the MOR process was used in full-scale production facilities at manganese ferroalloy plants operated by Union Carbide in the United States and Norway, and since 1977 has displaced silicothermic methods at Union Carbide plants in the United States. Under a technology purchase agreement with Union Carbide, Cía. Minera Autlán has placed a MOR production facility in operation at its Tamos plant in Mexico.13

Burden movement in submerged-arc ferromanganese furnaces was mathematically modeled. The model was tested in trials conducted on large commercial furnaces in which samples of irradiated manganese ore were inserted into the furnace and radioactivity of tap samples was measured. The model, which applied only to behavior of the liquid metal phase during smelting, was judged valid and of possible use for improving process control.¹⁴

In another investigation of factors involved in ferromanganese smelting, conditions inside a model submerged-arc furnace were explored by shutting off the power and digging out the furnace after it had cooled. Conclusions reached from examination of the furnace interior, especially those dealing with positioning of the taphole and the electrodes, were used to improve continuity of operation for large commercial furnaces.¹⁵

The unusual electrical and mechanical design features of the rectangular, six-electrode ferromanganese furnace at Nikopol' in the U.S.S.R. were discussed. It was noted that this type of furnace might be used to conduct a duplex smelting operation whereby ferromanganese acceptably low in phosphorus could be produced from typical Soviet ore relatively high in phosphorus. 16

Mechanical properties of samples of Hadfield steel containing about 1.1% carbon and 11% manganese were investigated in an ongoing experimental study. The results were interpreted as indicating that rapid work hardening in this type of steel was caused mainly by dynamic strain aging stemming from the behavior of certain carbon atoms during deformation. It was inferred that wear resistance of Hadfield steel could be improved by increasing carbon content and simultaneously adding an appropriate substitutional solute.¹⁷

The reason why higher manganese contents improve corrosion resistance of aluminum-manganese alloys was studied in the laboratory for commercial compositions containing iron as typical impurity. It was found that increasing the manganese content of the alloy increased the amount of manganese in solid solution in the matrix, up to a limit, and also increased the manganese-to-iron ratio of intermetallic phases. Both of these compositional effects worked towards reducing the electrochemical potential difference between matrix and intermetallics, and thereby decreased overall corrosion. 18

¹Physical scientist, Division of Ferrous Metals.

²Unless otherwise stated, the unit of weight used in this chapter is the short ton of 2,000 pounds.

³National Oceanic and Atmospheric Administration. Deep Seabed Mining Regulations for Exploration Licenses. Federal Register, v. 46, No. 178, Sept. 15, 1981, pp. 45,890-45,920.

⁴Mining Magazine. Groote Eylandt. V. 144, March 1981, pp. 216-225. ⁵Skillings' Mining Review. V. 71, No. 14, Apr. 3, 1982,

6—... V. 71, No. 13, Mar. 27, 1982, p. 19.
7—... V. 71, No. 7, Feb. 13, 1982, p. 5.

8 National Materials Advisory Board, National Research
Council-National Academy of Sciences. Manganese Reserves and Resources of the World and Their Industrial
Implications. NMAB-374, 1981, 334 pp.

9 Matricard I. P. 2011 I. I. D. 2011 I.

Implications. NMAB-374, 1981, 334 pp.

*Matricardi, L. R., and J. H. Downing. Manganese and Manganese Alloys. Ch. in Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc., New York, v. 14, 3d ed., 1981, pp. 824-843.

1ºReidies, A. H. Manganese Compounds. Ch. in Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc., New York, v. 14, 3d ed., 1981, pp. 844-895.

1¹Khalafalla, S. E., and J. E. Pahlman. Selective Extraction of Metals From Pacific Sea Nodules With Dissolved Sulfur Dioxide. BuMines RI 8518, 1981, 26 pp.

1²Kanungo, S. B., and B. R. Sant. Dephosphorization of Phosphorus-Rich Manganese Ores by Selective Leaching With Dilute Hydrochloric Acid. Internat. J. Miner. Proc.,

v. 8, No. 4, 1981, pp. 359-375.

¹³Kozak, D. S., and L. R. Matricardi. Production of Refined Ferromanganese Alloy by Oxygen Refining of High-Carbon Ferromanganese (MOR). Iron & Steelmaker, v. 8, April 1981, pp. 28-31.

¹⁴Dyason, G. J., and J. B. See. Burden Movement in Submerged-Arc Ferromanganese Furnaces. Met. Trans. B, v. 12B, No. 1, March 1981, pp. 149-160.

¹⁸Yoneka, S., K. Harada, K. Kojima, and K. Nakagaw. Consideration of Electric Furnace Dimension and Dynam.

Consideration of Electric Furnace Dimension and Dynamic Operation Based on Research of Reduction Burden in a Model Furnace. J. Four Electr., No. 1, January 1981,

Model Furnace. J. Four Electr., No. 1, January 1981, pp. 28-34.

18 persson, J. A. Nikopol 63 MVA Six-Electrode Manganese Alloy Furnace. 39th Elec. Furnace Conf. Proc., Houston, Tex., Dec. 8-11, 1981. Iron and Steel Soc., AIME, Warrendale, Pa., 1982, pp. 261-266.

17 Dastur, Y. N., and W. C. Leslie. Mechanism of Work Hardening in Hadfield Manganese Steel. Met. Trans. A, v. 12A, May 1981, pp. 749-759.

18 Zamin, M. The Role of Mn in the Corrosion Behavior of Al-Mn Alloys. Corrosion, v. 37, November 1981, pp. 627-632.

Mercury

By Linda C. Carrico¹

U.S. mine production of mercury decreased 9% in 1981. Production was reported by three mines—one in California and two in Nevada. Secondary supplies also declined, owing primarily to the decrease in the General Services Administration (GSA) monthly sales.

Mercury consumption increased slightly in 1981. The largest increase appeared in the instruments and related products category owing mainly to an increase in dental care applications. Mine producers stocks increased 6% while consumer and dealer stocks decreased 29%.

New York dealer and London prices showed similar patterns, increasing moderately in 1981, owing partly to restriction of sales and decline in output by some foreign producers.

Imports for consumption increased dramatically over the low level of 1980, with Spain, Yugoslavia, and Japan the principal suppliers.

GSA continued through October its monthly auctions of surplus secondary mercury from the U.S. Department of Energy (DOE). Starting in November, GSA held its first in a series of auctions of surplus primary mercury held in the national defense stockpile.

World mine production increased for the second consecutive year with the reopening of one mine in Italy and the reported opening of a new mine in the U.S.S.R.

Table 1.—Salient mercury statistics

	1977	1978	1979	1980	1981
United States:					
Producing mines	5	2	3	4	3
Productionflasks	28,244	24,163	29,519	30,657	27,904
Value thousands_	\$3,833	\$3,705	\$8,299	\$11,939	\$11,549
Exportsflasks_	852	NA	NA	NA	NA
Reexportsdo	101	NA	NA	NA	NA
Imports:					
For consumptiondodo	28,750	41.693	26,448	9,416	12,408
Generaldodo	28,750	42,874	28,818	11,564	13,024
Stocks, Dec. 31do	34,178	38,749	27,582	33,069	27,339
Consumptiondo	61,259	59,393	62,205	58,983	59,244
Price: New York, average per flask	\$135.71	\$153.32	\$281.10	\$389.45	\$413.89
World:	4 -5511-	Ψ200.0 <u>=</u>	Ψ=01.10	ψοσοσ	4220.00
Productionflasks	190 736	181 484	174 795	P203.925	e206,604
					\$417.52
Productionflasks Price: London, average per flask	190,736 \$140.70	181,434 \$131.57	174,735 \$291.73	\$398.0	

^eEstimated. ^pPreliminary. NA Not available.

Legislation and Government Programs.—Since 1965, surplus secondary mercury, obtained from DOE and other Government agencies, has been sold at monthly auctions to industry through GSA; in 1981, GSA sold 7,000 flasks.² In October, the agency suspended the longstanding series of monthly auctions.

On August 13, the President signed Public Law 97-35,3 the Omnibus Budget Reconciliation Act of 1981, which authorized disposal of 50,000 flasks of primary mercury and 710,253 pounds of mercuric oxide held in the national defense stockpile. GSA announced in early November plans to auction 1,500 flasks per month of primary

mercury. At yearend, 191,391 flasks of primary mercury were held in the national defense stockpile.

Mercury was one of 42 hazardous chemicals and petroleum products covered by Public Law 96-510,4 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, commonly known as "the superfund." As provided by that law, mercury sold by the manufacturer, producer, or importer was taxed starting April 1, 1981. The money goes into a hazardous

substance response fund intended to cover the costs of cleaning up hazardous chemical waste sites and spills. The tax will terminate on September 30, 1985.

In 1978, the Environmental Protection Agency (EPA) proposed plans to implement the Toxic Substances Control Act of 1976. Mercury had not been included in the list of toxic substances by yearend 1981, but the metal was being evaluated by EPA to determine if there is a need for its regulation.

DOMESTIC PRODUCTION

Mercury mine production in the United States decreased in 1981. Three mines were in operation, the Carlin gold mine and the McDermitt mercury mine, both located in Nevada, and the Knoxville Mine, located in California. Despite the higher prices in 1981, most small mines remained closed. Of the total output, Nevada supplied 27,819 flasks and California supplied 85 flasks.

It was reported that exploration work was underway at the McDermitt Mine in Nevada in an effort to open another section of its open pit.

Secondary mercury production in 1981 decreased, due primarily to the dramatic decline in GSA sales. Major sources of secondary mercury besides GSA material were batteries, dental amalgams, sludges, and industrial and control instruments.

Table 2.—Mercury produced in the United States

Year and State	Pro- ducing mines	Flasks	Value ¹ (thou- sands)
1980: California and Nevada _ 1981:	4	30,657	\$11,939
California and Nevada _	3	27,904	11,549

¹Value calculated at average New York price.

Table 3.—Mercury ore treated and mercury produced in the United States¹

	Ore	Mercury produced		
Year	treated (short tons)	Flasks	Pounds per ton of ore	
1977	216,577	28,244	9.9	
1978	256,197	24.144	7.2	
1979	242,564	29,499	9.2	
1980	356,043	30,623	6.5	
1981	262,380	27,888	8.1	

¹Excludes mercury produced from old surface ores, dumps, and placers, and as a byproduct.

Table 4.—Production of secondary mercury in the United States

(Flasks)

Year	Industrial production	GSA releases	Total
1977	5,566	1,000	6,566
1978	3,560	5,702	9,262
1979	4,287	11,300	15,587
1980	6,793	10,013	16,806
1981	4,244	7,000	11,244

CONSUMPTION AND USES

Industrial consumption of mercury in 1981 increased slightly. The largest increase appeared in the instruments and related products category (table 6) due partly to an increase in dental care applications.

Pennwalt Corp. announced plans to close

its Calvert City, Ky., chlorine and caustic soda plant in the spring of 1982. Pennwalt has made arrangements to sell the plant's mercury stocks and the mercury used in the production process, totaling about 4,000 flasks.

587 MERCURY

Table 5.—Mercury consumed in the United States, by use (Flasks)

Use	1977	1978	1979	1980	1981
Agriculture ¹	584	w	w	w	79
Amalgamation	w				
Catalysts	1.545	W	548	265	815
Dental preparations	1.230	512	793	r1.041	1.866
Electrical apparatus	29,180	(²)	(²)	(²)	(²)
Electrolytic preparation of chlorine and caustic soda	10,744	11.166	12,180	9,470	7.323
General laboratory use	406	420	410	363	328
Industrial and control instruments	5,221	(²)	(²)	(2)	(²)
Paint, mildew proofing	8,365	8.956	9.979	8.621	7.049
Pharmaceuticals	w	w	w	0,022	.,0 20
Other ³	2,589	(²)	· (²)	(2).	(2)
Total known uses	59,864	59,393	62,205	58,983	59,244
Total unknown uses	1,395		·		
Grand total	61,259	59,393	62,205	58,983	59,244

^rRevised. W Withheld to avoid disclosing company proprietary data; included in "Other."

¹Includes fungicides and bactericides for industrial purposes.

²See table 6 of this chapter and those of previous years for SIC end use data.

³Includes mercury used for installation and expansion of chlorine and caustic soda plants.

Table 6.—Mercury consumed in the United States in 1981

(Flasks)

Use	Primary	Redistilled	Secondary	Total
Chemicals and allied products:				
Chlorine and caustic soda preparation	7.323		W	7,323
Pigments	Ŵ			W
Catalysts	w	w		815
Laboratory uses	149	157	22	328
Plastic materials and synthetic (processing and resins)	W			W
Pharmaceuticals				
Paint	7.049			7,049
Agricultural chemicals	79			79
Chemicals and allied products, n.e.c	w	w		· w
Electrical and electronic instruments:	••	•••		
Electrical lighting	w	w		1,043
Wiring devices and switches	ŵ	688	w	2,641
Batteries	20,675	w	ŵ	29,441
Other electrical and electronic equipment	20,010 W	ẅ	**	w
Instruments and related products:	. **	**		•••
Measuring and control devices	w	1,880	w	5,671
Dental equipment and supplies	514	1,099	ŵ	1,613
Other instruments and related products	w	1,033 W	ŵ	253
Other Instruments and related products	8,161	9,362	2,086	2,988
Other	0,101	9,004	4,000	2,300
Total known uses	43,950	13,186	2,108	59,244

W Withheld to avoid disclosing company proprietary data; included in "Other."

Table 7.—Stocks of mercury, December 31

(Flasks)

Year	Producer (mine)	Con- sumer and dealer	Total
1977 1978 1979 1980	11,275 16,600 9,181 11,095 11,783	22,903 22,149 18,401 21,974 15,556	34,178 38,749 27,582 33,069 27,339

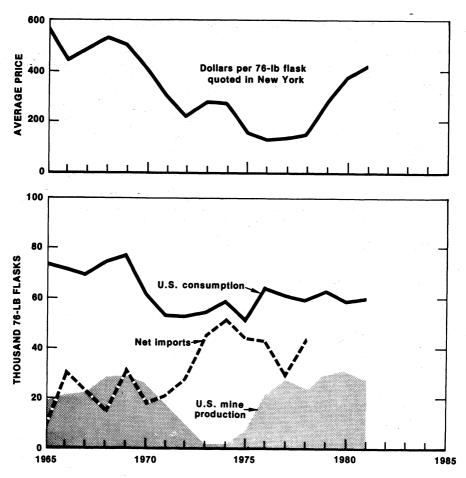


Figure 1.—Trends in production, consumption, net imports, and price of mercury, in the United States.

PRICES

The 1981 average New York dealer price for primary mercury was \$413.89 per flask, compared with \$389.45 per flask in 1980. At the beginning of 1981, the New York price of mercury was \$355 to \$360 per flask, compared with \$408 to \$418 per flask at yearend. The London prices showed a simi-

lar pattern during 1981. The annual average London price was \$417.52 per flask in 1981, compared with \$398.07 per flask in 1980. At the beginning of 1981, the London price was \$360 to \$370 per flask, compared with \$416 to \$422 per flask at yearend.

MERCURY

Table 8.—Average monthly prices of mercury at New York and London

(Per flask)

	19	80	1981		
	New York ¹	London ²	New York ¹	London ²	
January	\$378.64	\$390.06	\$364.52	\$368.06	
February _	390.00	393.33	381.39	389.00	
March	393.81	396.56	409.77	413.61	
April	402.05	404.39	417.96	421.88	
May	389.52	394.17	413.75	426.67	
June	381.43	386.88	419.32	430.00	
July	389.32	399.33	433.17	429.33	
August	387.62	408.11	441.67	430.56	
September	394.05	415.00	430.52	430.06	
October	404.77	414.72	426.14	427.78	
November	398.53	399.31	418.22	422.38	
December _	363.64	374.94	410.18	420.95	
Average	389.45	398.07	413.89	417.52	

¹Metals Week, New York.

FOREIGN TRADE

Data on mercury exports were last reported in 1977.

Imports for consumption increased 32% in 1981, with Spain supplying 40% of the total, followed by Yugoslavia, 23%, and Japan, 19%. Imports from Yugoslavia were 2,901 flasks, the first sign of trade to the United States since 1977 when its Idria Mine closed because of depressed prices.

The average unit value of imports for the year was \$403.37 per flask, compared with \$301.72 per flask in 1980.

The U.S. rate of duty on mercury metal imports from "most favored nation" countries in 1981 was 11.3 cents per pound (\$8.59 per flask). The statutory rate of 25 cents per pound (\$19 per flask) applied to other countries.

Table 9.—U.S. imports for consumption of mercury, by country

	19	1979		80	1981	
Country	Flasks	Value (thou- sands)	Flasks	Value (thou- sands)	Flasks	Value (thou- sands)
Algeria	100	\$34				
Canada	3,943	783	843	\$197	112	\$ 78
China			204	61	801	308
Denmark					500	201
Dominican Republic	611	129	200	73	129	54
France	470	127			(2)	(²)
Germany, Federal Republic of			15	24		
Italy	4,429	675			=.=	
Japan	7,960	1,755	3,813	1,260	2,372	925
Mexico	403	60	989	206	104	29
Netherlands	25	4				
Spain	8,507	1,640	3,352	1,020	4,989	2,021
Turkey					500	197
Yugoslavia					2,901	1,192
Total	26,448	5,207	9,416	2,841	12,408	5,005

¹General imports: 1979—28,818 (\$5,659,206), China 1,400 (\$182,674), Italy 5,369 (\$926,522), Japan 8,611 (\$1,919,543), and Spain 8,356 (\$1,621,083); 1980—11,564 (\$3,618,781), China 200 (\$60,635), Japan 5,464 (\$1,840,377), and Spain 3,853 (\$1,218,025); 1981—13,024 (\$5,259,480), Japan 2,317 (\$898,675), and Spain 6,160 (\$2,503,566).

²Less than 1/2 unit.

²Metal Bulletin, London; reported in terms of U.S. dollars.

WORLD REVIEW

World mine production of mercury increased for the second consecutive year due primarily to rising prices and the opening of mines. Although prices have increased in the past 3 years, mining operations in Canada and Yugoslavia remained closed in 1981. The international association of mercury producers, Assimer, met periodically in 1981 to review the mercury market.

Italy.—Italy's nonferrous metals agency, Societa per Azioni Minero Metallurgiche, reported the reopening of the Monte Amiata mercury mine, which had closed in 1976 because of low prices. The mine came onstream around May with planned production of about 5,000 flasks annually, all of which will be used domestically.

Spain.—Minas de Almáden Arrayanes was investigating a new mercury mine at La Cuevas. Studies in 1980 concluded that the mine could be profitable; if current studies confirm that conclusion, the mine could come onstream around 1986 or 1987.

U.S.S.R.—According to reports, a new mercury mine, Glubokaya, came onstream in early 1981. The mine is the first stage of a mining complex in Kirgiziya, U.S.S.R., which should meet the ore requirement of the Khaydarkan mercury complex.

Yugoslavia.—The Idria mercury mine in Slovenia was closed in 1977 because of depressed prices and declining grade of ore. It was reported that the Yugoslavian Government plans to reopen the mine in 1983. One factor favoring the reopening was the discovery of a new mineral vein, close to the surface, containing an estimated 163,000 flasks of mercury. It was reported that production would run about 8,700 flasks annually, with 20% used domestically.

Table 10.—Mercury: World production, by country¹

(Flasks)

Country	1977	1978	1979	1980 ^p	1981 ^e
Algeria	30,429	30,603	14,736	24,425	25,000
Australia	1	·	1 1		
Chile	20				
China ^e	20,000	20,000	20,000	20,000	20.000
Czechoslovakia	5,309	5,686	4,960	4.612	4,600
Dominican Republic	495	500	500	e ₅₀₀	500
Finland	630	1,145	1.347	2.170	2,000
Germany, Federal Republic of	2,872	2,437	2,639	1.624	1,200
Italy	406	87	_,,,,,	96	4,000
Mexico	9,660	2.205	1.973	4.206	4,000
Spain	26,851	29,588	33,275	49,198	50,000
Turkey	4,686	5,020	4,786	4,437	4,400
U.S.S.R.*	58,000	60,000	61,000	62,000	63,000
United States	28,244	24.163	29.519	30,657	² 27,904
Yugoslavia	3,133				21,504
Total	190,736	181,434	174,735	203,925	206,604

^eEstimated. ^pPreliminary.

²Reported figure.

TECHNOLOGY

The Bureau of Mines Albany Research Center, Albany, Oreg., reported the modification of an atomic absorption spectrophotometer to rapidly determine trace levels of mercury. For the past 2 years, this coldvapor mercury analysis system was successfully used at the Albany Research Center.⁵ A cold-vapor atomic absorption

system for the determination of volatile mercury in stack gases of a municipal solidwaste incinerator was described by the Institute for Nuclear Sciences located in Belgium.⁶

The use of sulfides to precipitate mercury from water has been instrumental in reducing mercury losses to the environment.

Table includes data available through Apr. 14, 1982.

591 MERCURY

However, a study published in 1981 concluded that sulfide treatment does not effect adequate removal of elemental mercury, although it is excellent for removing ionic mercury species from industrial wastewaters.7

³U.S. Congress. Omnibus Budget Reconciliation Act of 1981. Public Law 97-35, Aug. 13, 1981, 95 Stat. 357.

⁴——. Comprehensive Environmental Response, Compensation, and Liability Act of 1980. Public Law 96-510, Dec. 11, 1980, 94 Stat. 2767.

⁵Perry, J. A., R. F. Farrell, and A. J. Mackie. Modification of a Commercial Atomic Absorption Spectrophotometer for Cold-Vapor Determination of Mercury. BuMines RI 8573, 1981, 11 pp.

⁶Dumarey, R., R. Heindryckx, and R. Dams. Determination of Mercury Emissions From a Municipal Incinerator. Environ. Sci. Technol., v. 15, No. 2, February 1981, pp. 206-209.

⁷Findlay, D. M., and R. A. McLean. Removal of Elemen-

⁷Findlay, D. M., and R. A. McLean. Removal of Elemental Mercury From Wastewaters Using Polysulfides. Environ. Sci. Technol., v. 15, No. 11, November 1981, pp. 1388-1390.

¹Mineral specialist, Division of Nonferrous Metals.

 $^{^2}$ Flask, as used throughout this chapter, refers to the 76pound flask.

Mica

By Wilton Johnson¹

In 1981, a total of 133,000 tons² of scrap and flake mica was reported produced in the United States, an increase of 15% from the 1980 production. Output of ground mica, sold or used, was 117,000 tons, a 5.4% increase from that of the previous year.

Consumption of mica block increased by 6.4% to 166,000 pounds. Mica film consumption decreased by 25% to 3,000 pounds. Consumption of mica splittings remained unchanged from that of 1980 at 4.4 million pounds.

Exports of unmanufactured mica decreased 21% to 11,000 tons, and imports of all forms of mica increased 8% to 13,000 tons.

Legislation and Government Programs.—The total Government stockpile inventory of natural sheet mica was reduced to 27.4 million pounds by December 31, 1981. Sales of sheet mica by the General Services Administration during 1981 totaled 277,000 pounds, all muscovite splittings. There were no sales of block or film mica.

Table 1.—Salient mica statistics

	1977	1978	1979	1980	1981
United States: Production (sold or used by producing companies): Sheet mica thousand pounds Value thousand short tons Value thousand short tons Ground mica thousand short tons Value thousand.	1 (1) 2129 2\$7,039 2122 2\$11,906	(1), (1) 2139 2\$7,916 2124 2\$12,979	1 (1) 2134 2\$7,708 2122 2\$14,522	NA NA *116 *\$6,262 *111 *\$14,112	NA NA 133 \$8,212 117 \$16,373
Consumption:	439 \$952 9 \$38 4,144 \$2,718 10 4	239 \$1,328 8 8 4 5,537 \$3,031 9 7	277 \$1,841 \$25 4,877 \$3,248 12 10 *786,965	r156 r\$1,886 4 \$18 4,383 \$3,101 14 12 P730,840	166 \$1,533 3 \$13 4,386 \$3,064 11 13 e772,976

^eEstimated. ^pPreliminary. ^rRevised. NA Not available.

¹Less than 1/2 unit.

²Data have been revised to exclude low-quality sericite.

Table 2.—Stockpile status, December 31, 19811

(Thousand pounds)

M aterial		Total inven- tory	Available for disposal	Sales 1980-81
Stockpile grade:				
Block:				
Muscovite, Stained and better	6,200	5,006		
Phlogopite	210	17		
Film: Muscovite, 1st and 2d qualities	90	1.274		
Splittings:	•	1,211		
Muscovite	12,630	19.035	5,773	277
Phlogopite	930	2,029	5,115 772	211

¹In addition to the data shown, the stockpile contains the following: Material with goals (nonstockpile grade) includes 206,740 pounds muscovite block, Stained and better; 640 pounds muscovite film, 1st and 2d qualities; and 114,027 pounds phlogopite block.

DOMESTIC PRODUCTION

Scrap and Flake Mica.—U.S. production of scrap (flake) mica³ in 1981 was 133,000 tons valued at \$8,212,000. North Carolina was again the major producing State with 92,000 tons or 69% of the total. The remaining 31% was produced in Connecticut, Georgia, New Mexico, Pennsylvania, South Carolina, and South Dakota. Most of the scrap (flake) mica includes mica recovered from mica and high-quality sericite schist and mica that is a byproduct of kaolin, feldspar, and lithium beneficiation. The five leading producers in 1981 were Deneen Mica Co., Micaville, N.C.; Harris Mining Co., Spruce Pine, N.C.; Mineral Industrial Commodities of America, Inc. (M.I.C.A.), Santa Fe, N. Mex.; Lithium Corp. of America, Inc., Gastonia, N.C.; and Kings Mountain Mica Corp., Kershaw, S.C.

Ground Mica.—Production (sold or used) of ground mica, from scrap and flake mica. increased in 1981 by 5.4% to 117,000 tons. Dry-ground mica, which represented 91% of the total ground mica production, increased by 7%, and wet-ground mica production increased by 10%. The total value of ground mica production increased by 16% to \$16,373,000.

During 1981, 15 companies operated 16 plants producing ground scrap (flake) mica including high-quality sericite; of these, 12 produced dry-ground, 2 produced wetground, and 1 produced both wet- and dryground material. Leading ground mica producers were the same as those for scrap and flake mica, except for Lithium Corp. of America, Inc., which did not produce ground mica.

In 1981, production of low-quality sericite, primarily for use in brick manufacturing, was 28,000 tons valued at \$82,300. Approximately 28,000 tons of ground sericite valued at \$167,700 was produced from this crude sericite.

Table 3.—Scrap and flake mica sold or used by producers in the United States1

Year and State	Quantity (thousand short tons)	Value (thousands)
1977	129 139 134 ¹ 116	\$7,039 7,916 7,708 ¹ 6,262
1981: North Carolina Other States ²	92 42	6,398 1,814
1981 total	³133	8,212

¹Includes finely divided mica recovered from mica and Includes tinely divided mica recovered from mica and high-quality sericite schist, and mica that is a byproduct of feldspar, kaolin, and lithium beneficiation. 1977-79 data have been revised to exclude low-quality sericite.

2Includes Connecticut, Georgia, New Mexico, Pennsylvania, South Carolina, and South Dakota.

3Data do not add to total shown because of independent

rounding.

Table 4.—Ground mica sold or used by producers in the United States, by method of grinding¹

(Thousand short tons and thousand dollars)

Year	Dry-ground		Wet-ground		Total	
	Quantity	Value	Quantity	Value	Quantity	Value
1977	107 110 108 100 107	8,233 9,039 10,193 10,797 12,692	15 14 14 10 11	3,673 3,940 4,329 ^r 3,315 3,681	122 124 122 122 12111 2117	11,906 12,979 14,522 14,112 16,373

rRevised.

²Data do not add to total shown because of independent rounding.

CONSUMPTION AND USES

Sheet Mica.—Consumption of muscovite block (ruby and nonruby) totaled 154,700 pounds, an increase of 8% from that of 1980. Of the total muscovite block fabricated, 83% went into electronic uses (66% for vacuum tubes and 17% for capacitors and other uses); the remaining 17% went into nonelectronic uses, including gauge glass and diaphragms.

In 1981, Stained-quality muscovite block was in greatest demand and accounted for 76% of consumption, followed by Lowerthan-Stained quality, 21%, and Good-Stained or better, 3%. Consumption by increasing size (grade) was: Smaller than No. 6, 14%; No. 6, 30%; No. 5 1/2, 23%; No. 5, 19%; and larger than No. 4, 14% of the total.

Mica film consumption, first and second quality, decreased 30% from that of 1980 to 2,800 pounds. This decline could be attributed to a continued increase in fabrication overseas, and substitution by other materials. First-quality film represented about 46% of the total amount fabricated, and second-quality film accounted for the remainder.

Muscovite block and film was consumed by eight companies in seven States; two plants in North Carolina, one in Massachusetts, and one each in New Jersey, New York, Ohio, Pennsylvania, and Virginia. New York, Pennsylvania, and Virginia companies consumed 80% of the total block and film used for fabrication in 1981.

Phlogopite block fabrication totaled 10,800 pounds, a decrease of 19% from the 1980 total. This amount was consumed by six companies in five States.

Consumption of mica splittings in 1981 remained unchanged from that of 1980 at 4.4 million pounds. Of the total amount consumed, 97% was muscovite splittings from India and the remainder phlogopite splittings from Madagascar. The mica splittings were fabricated into various built-up mica products by 11 companies operating 11 plants in 9 States.

Built-up Mica.—The primary use of this mica-base product, made by mechanical or hand setting of overlapping splittings and alternate layers of binders and splittings, was as electrical insulation material. In 1981, total production, sold or used, of built-up mica decreased by 5.8% from that of 1980. Molding plate and segment plate represented the major end uses; each accounted for 34% of the total, followed by tape, 13%.

Ground Mica.—In 1981, a total of 117,000 tons of ground mica was sold or used by U.S. producers, an increase of 5.4% over 1980 production. The major end uses were joint cement (44%) and paint (15%). Miscellaneous end uses, including ground mica used in oil well drilling muds, roofing, and rubber, represented 41% of the total.

Domestic and some imported scrap. 1977-79 data have been revised to exclude low-quality sericite.

Table 5.—Fabrication of muscovite ruby and nonruby block and film mica and phlogopite block mica in the United States in 1981, by quality and end-product use

(Pounds)

		Electronic uses			Nonelectronic uses				
Variety, form, and quality	Capac- itors	Tubes	Other	Total	Gauge glass and dia- phragms	Other	Total	Grand total ¹	
Muscovite: Block:									
Good Stained or better Stained Lower than Stained ²	300	300 96,800 4,600	100 17,600 8,900	700 114,400 13,500	3,000 400 	700 3,300 18,800	3,700 3,700 18,800	4,400 118,000 32,300	
Total ¹	300	101,700	26,600	128,600	3,400	22,800	26,200	154,700	
Film: 1st quality 2d quality	1,300 1,500		==	1,300 1,500				1,300 1,500	
Total	2,800			2,800		:		2,800	
Block and film: Good Stained or better ³ Stained ⁴ Lower than Stained	3,100 	300 96,800 4,600	100 17,600 8,900	3,500 114,400 13,500	3,000 400 	700 3,300 18,800	3,700 3,700 18,800	7,200 118,000 32,300	
Total ¹ Phlogopite: Block (all qualities)	3,100	101,700 	26,600 300	131,400 300	3,400	22,800 10,500	26,200 10,500	157,500 10,800	

¹Data may not add to totals shown because of independent rounding.
²Includes punch mica.
³Includes 1st- and 2d quality film.

(Pounds)

Form, variety, and quality	No. 4 and larger	No. 5	No. 5 1/2	No. 6	Other ¹	Total ²
Block: Ruby:						
Good Stained or better Stained Lower than Stained	8,100	700 28,200 500	200 30,700 4,000	500 42,900 1,400	3,900 14,500	3,700 113,700 25,900
Total ²	16,000	29,400	34,900	44,800	18,300	143,300
Nonruby: Good Stained or better Stained Lower than Stained	3,100	200 300	400 	600 700	3,000	700 4,300 6,500
Total ²	6,300	500	400	1,300	3,000	11,400
Total block (ruby and nonruby) ²	22,300	29,800	35,200	46,000	21,300	154,700
Film: Ruby:						
1st quality 2d quality 2d quality 2d quality		300 400	200 600	200 200		700 1,300
Total	100	700	800	400		2,000
Nonruby: 1st quality 2d quality	==		300 200	300		600 200
Total			500	300		800
Total film (ruby and nonruby) ²	100	700	1,400	700		2,800

¹Figures for block mica include all smaller No. 6 grade and punch mica.

Includes other-quality film.

Table 6.—Fabrication of muscovite ruby and nonruby block and film mica in the United States in 1981, by quality and grade

²Data may not add to totals shown because of independent rounding.

MICA 597

Table 7.—Consumption and stocks of mica splittings in the United States, by source
(Thousand pounds and thousand dollars)

	Ind	India		Madagascar		al
	Quantity	Value	Quantity	Value	Quantity	Value
Consumption:						
1977	3,979	2,525	165	193	4,144	2,718
1978	5,371	2,837	166	194	5,537	3,031
1979	4.714	2,745	163	503	4,877	3,248
1980		2,543	167	557	4,383	¹ 3,101
1981	1,000	2,601	117	463	¹ 4,386	3,064
Stocks on Dec. 31:		2,001		100	2,000	0,001
1977	3,130	NA	68	NA	3,198	· NA
1978	2,695	NA	76	ŇA	2,771	NA
1979	2,331	ŇA	110	NA	2,441	NA
1980	2,917	NA NA	69	NA	2,986	NA
1981	2,621	NA	101	NA	2,722	NA NA
1001	2,021		101	1111	ـــــ, ۱ ــــــــــــــــــــــــــــــ	1423

NA Not available.

Table 8.—Built-up mica1 sold or used in the United States, by product

(Thousand pounds and thousand dollars)

Product	198	30	1981		
	Quantity	Value	Quantity	Value	
Molding plate Segment plate Heater plate Flexible (cold) Tape Other	1,351 1,309 116 328 719 299	3,554 3,818 402 1,314 3,406 1,453	1,318 1,329 110 289 512 325	3,696 4,208 437 1,247 2,420 1,600	
Total ²	4,122	13,946	3,882	13,607	

¹Consists of alternate layers of binder and irregularly arranged and partly overlapped splittings.

Table 9.—Ground mica sold or used by producers in the United States, by end use
(Thousand short tons and thousand dollars)

.	198	80	1981		
End use	Quantity	Value	Quantity	Value	
Roofing	w	w	w	· w	
Rubber	r ₃	r646	w	w	
Paint	r ₁₇	r _{1,935}	18	2,262	
Joint cement	50	r _{5,762}	52	6,774	
Other ¹	41	r _{5,769}	47	6,774 7,337	
Total	^r 111	^r 14,112	117	16,373	

^rRevised. W Withheld to avoid disclosing company proprietary data; included with "Other."

¹Includes mica used for agricultural products, molded electric insulation, plastics, wallpaper (1980), welding rods, well drilling mud, textile and decorative coatings, and uses indicated by symbol W.

STOCKS

Reported yearend consumer stocks of sheet mica in 1981 were 3.0 million pounds.

Mica splittings represented 90% and mica block represented 10%.

PRICES

Average reported values of muscovite data, were block, \$9.34 per pound; film, sheet mica in 1981, based on consumption \$4.56 per pound; and splittings, \$0.61 per

Data do not add to total shown because of independent rounding.

²Data may not add to totals shown because of independent rounding.

pound. The average values of phlogopite sheet mica for 1981 were \$7.79 per pound for block and \$3.95 per pound for splittings. Compared with 1980 average reported values, muscovite block decreased 26%, muscovite film increased 1%, and muscovite splittings increased 2%. Compared with that of 1980, the average value of phlogopite block and splittings increased 40% and 18%, respectively.

The average value of scrap (flake) mica, including high-quality sericite, was \$61.74 per ton. The average value per ton for North Carolina scrap (flake) mica, predominantly a flotation product, was \$69.54.

The averages of reported prices for ground mica are shown in table 10.

Table 10.—Averages of reported prices for dry- and wet-ground mica sold or used by U.S. producers in 1981

(Dollars per short ton)

Wet-ground	349
Dry-ground	119
End uses:	
Roofing	W
Rubber	W
Paint	127 129
Joint cement Other ¹	156
Omer	190

W Withheld to avoid disclosing company proprietary data; included in "Other."

Includes mica used for agricultural products, molded electrical insulation, plastics, welding rods, well drilling mud, textile and decorative coatings, miscellaneous, and uses indicated by symbol W.

FOREIGN TRADE

Unmanufactured mica exports included block, film, splittings, and waste; sometimes small quantities of ground mica were also included in this category. These exports totaled 3,943 tons valued at \$1.35 million in 1981. Japan was again the leading country of destination receiving 1,326 tons valued at \$575,000.

Exports of ground mica totaled 6,977 tons valued at \$2.1 million. Canada was the leading country of destination receiving 2,638 tons valued at \$511,000.

The total value of stamped or built-up mica exports was \$7 million, with Canada the leading country of destination accounting for 38% of the total value shipped.

Imports of all classes of mica in 1981 rose 7.5% to 25.9 million pounds. The increase was caused by additional imports of unmanufactured mica waste from China, the Federal Republic of Germany, and India. Tables 11-13 list in detail U.S. mica imports and exports, by kind and country.

Table 11.—U.S. exports of mica and manufactures of mica in 1981, by country

Country	Mica, unmai including b splittings, a	lock, film,	Mica, gro	Mica, cut or stamped, built-up mica	
	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Value (thou- sands)
Angola	11	\$2	145	\$66	
Australia	241	68	43	16	\$189
Brazil	4	1			578
Canada	314	89	2,638	511	2,658
Egypt	26	5	177	85	_,
France	18	5	745	156	60
Germany, Federal Republic of	143	40	231	45	31
India					231
Italy	10	- 3	$\bar{310}$	$1\overline{25}$	807
Japan	1,326	575	168	87	105
Mexico	332	94	213	57	626
Netherlands			288	107	31
Nigeria	57	$\overline{12}$	200	201	••
Peru	53	20	165	55	39
Singapore	31	17	206	100	1
South Africa, Republic of	01		21	5	205
Spain	82	44	301	61	346
United Arab Emirates	0 2	**	52	27	2
United Kingdom	661	$\bar{205}$	29	17	514
Venezuela	193	41	796	357	9
Other ²	441	131	449	208	568
	3,943	1,352	6,977	2,085	7,000

¹Some shipments of ground mica are included in this category.

²Includes Argentina, Austria, the Bahamas, Barbados, Belgium, Belize, Bolivia, Cayman Islands, Chile, China, Colombia, Costa Rica, the Dominican Republic, Ecuador, El Salvador, Finland, Gabon, Ghana, Haiti, Honduras, Ireland, Israel, the Ivory Coast, Jamaica, the Republic of Korea, Kuwait, Malaysia, Morocco, New Zealand, Pakistan, Panama, the Philippines, Portugal, Saudi Arabia, Sudan, Sweden, Switzerland, Taiwan, Thailand, Trinidad and Tobago, and Tunisia.

Table 12.—U.S. imports for consumption of mica, by country

				τ	JNMANUF	ACTURE	D				
		Waste a	nd scrap					0	ther		
Country	Phlogo	pite	Oth	er	Block	mica -	Muscovite		Othe	r, n.e.c.	
	Quantity (pounds)	Value (thou- sands)	Quantity (pounds)	Value (thou- sands)	Quantity (pounds)	Value (thou- sands)	Quantity (pounds)	Value (thou- sands)	Quantit (pounds		
1979	72,570	\$7	176,368 	\$9 	243,480 70,591	\$752 477			6,365,888 7,568,423		
1981: Belgium Brazil Canada		==		==	4,516	34			806 461,966 162,136	167	
France India United Kingdom Other	352	 23 		===	3,418 22,278 1,555 29	24 88 15 11	- ==		114,198 7,336,609 614 23,938	69 1,065 31	
Total	352	23			31,796	172			8,100,267	1,374	
					MANUFA	CTURED	H		'		
					_		Cu	or stam	ped		
	Spli	Not cut or stamped Splittings not over 0.006 inch in thickness		006 inch	06 inch Not over 0.006 inch				Over 0.006 inch in thickness		
· ·	Quantity (pounds)	(th		antity unds)	Value (thou- sands)	Quantit (pounds		u- 🦞	uantity ounds)	Value (thou- sands)	
1979	3,977,205 4,223,989		547 660 1	921 13,825	\$2 40	96,71° 102,78			109,725 103,331	\$416 700	
1981: Canada France Germany Federal	3,306			1,610	1	12,14	2	28	2,623	16	
Germany, Federal Republic of India Switzerland	2,413,174	1,		21,430 32,143	10 69	39: 60,24: 42:	2 8	5 38 1	58,921	355	
United Kingdom Other	530 662		12 31	3,096	- - 1 5	886 1,038	3	40 68	41 91,263	353	
Total	2,417,672	1,	115 1,00	08,288	86	75,124	1 9	80 1	152,848	728	
	Mica plates and built-up mica			Ground or pulverized			Articles not especially provided for of mica				
_	Quanti (pound		Value (thou- sands)		uantity (short tons)	Valu (thou sand	1-	Quantity (pounds	? (·	/alue thou- ands)	
1979		,957 ,443	\$1,34 1,41		4,533 5,673		\$743 .,065	10,9 9,1		\$122 95	
1981: Belgium Canada France India	105	,156 ,375 639 ,944	26	1 32	6,462 110	1	,317 16	1,5 17,5 17,4	05 15	11 25 332	
Japan Korea, Republic of _ United Kingdom Other		,120 ,835 	-	35 3 -	(1) 111 1		1 55	_	83 23 95	10 10 46	
Total	395	,069	91		6,684	1	,389	41,4		434	
¹ Less than 1/2 unit.											

¹Less than 1/2 unit.

Table 13.—Summation of U.S. mica trade data

*	*** *** *** *** *** *** *** *** *** **			EXP	ORTS	1 ,			
	Unma	Unmanufactured ¹			pulverized		Manufactured, cut or stamped, built-up		
	Quantity (short tons)	(tl	alue (nou- nds)	Quantity (short tons)	Value (thou- sands)	(sl	ntity nort ons)	Value (thou- sands)	
1977		4 7 5	\$3,557 2,051 1,673 1,953 1,352	NA 5,848 5,846 8,187 6,977	NA \$1,20 1,37 2,24 2,08	4 4 7	506 NA NA NA NA	\$3,267 4,697 5,224 7,665 7,000	
				IMP	ORTS			7.1	
	Uncut s		Sc	rap	Groui pulve		Manufa cut stamped,	or	
	Quantity (thou- sand pounds)	Value (thou- sands)	Quantity (thou- sand pounds)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (thou- sand pounds)	Value (thou- sands)	
1977 1978 1979 1980		\$1,680 2,629 3,147 3,305 2,747	2,348 1,221 176 73 352	\$112 59 9 7 23	146 1,728 4,533 5,673 6,684	\$29 263 743 1,065 1,389	827 969 776 831 664	\$2,652 3,096 2,929 3,487 3,059	

NA Not available.

¹Includes block, film, splittings, and waste. Sometimes shipments of ground mica are placed in this category. ²Includes ground mica

³The "Other" classification included in this category often contains scrap mica shipments.

WORLD REVIEW

World production of all forms of mica increased 6% to 773 million pounds in 1981. India led the world in production of sheet mica. The United States remained the leader for production of scrap (flake) mica.

India.—The Government's Mica Trading Corp. announced plans to establish two new micronized mica production units and a wet-ground mica powder unit. When in full production, these plants should add substantially to India's export earnings of fabricated mica.4

Price negotiations between India and the U.S.S.R. intensified in 1981. The U.S.S.R. is traditionally India's largest buyer of mica. The outlook for India mica exports brightened with successful trade agreements signed with the U.S.S.R. and Czechoslovakia during 1981.5

U.S.S.R.—The estimated output of mica remained at about 50,000 short tons, still inadequate to meet domestic demand. Strategic-grade mica continued to be imported from India.

Table 14.—Mica: World production, by country¹

(Thousand pounds)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Argentina: Sheet Waste, scrap, etc. Brazil³- Colombia⁴ Egypt France⁴	666 4,057 4,310 (4) 190 15,400	785 5,018 10,033 r e ₁₉₀ 16,100	1,896 2,513 8,979 15,400	481 1,358 8,818 15,400	423 1,609 9,921 15,000
India: Exports: Block Film and disk Splittings Scrap	2,423 278 7,595 21,954	3,208 271 9,229 e21,800	1,366 353 10,891 27,470	1,323 441 11,023 27,558	1,102 441 11,023 28,660

See footnotes at end of table.

601 MICA

Table 14.—Mica: World production, by country¹ —Continued

(Thousand pounds)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
India —Continued Exports —Continued					
Powder	16,546	e18,100	21,054	22,046	19,842
Manufactured	1,036	882	838	882	1,100
Domestic consumption, all forms ^e	24,691	25,100	25,600	26,000	26,500
Total	74,523	78,590	87,572	89,273	88,668
Korea, Republic of (sericite)	22,339	37,309	22,057	22,773	22,046
Madagascar (phlogopite):	BT A	NA	134	185	187
Block Sheet and splittings	NA 3.303	3.452	2.438	3,631	3,638
Sneet and splittings	3,303 NA	NA	2,400 NA	NA NA	NA
Scrap	1,700	884	536	e880	880
Mexico	e 21,764	e 21,984	553	e440	440
Mozambique (including scrap)			6.426	6.393	6,400
Norway (including scrap) ⁵	6,213	r _{5,925} r ₂₂₀	6,426 e110	e ₁₃₀	130
Peru	^r 330	-220	-110	-130	130
South Africa, Republic of:	(6)	6)	(⁶)	(⁶)	(6)
Sheet	(6) 0.007	(⁶) 5,604	7.974	11.125	5,330
Scrap	6,927	5,604 7,374	11.395	10,650	11.020
Spain	6,468 e220	309	814	320	440
Sri Lanka (scrap)				e3,300	2.200
Sudan	e880	2,200	4,409 13	22	2,200
Tanzania (sheet)	15	13			
U.S.S.R. (all grades) ^e	97,000	99,000	101,000	101,000	104,000
United States:		(A)		274	BTA
Sheet ^e	1	(6) Torro 000	200 200	NA OOO OOO	NA Socc ooo
Scrap and flake 7	r258,000	r278,000	268,000	232,000	8266,000
Ground mica	r244,000	r248,000	244,000	222,000	8234,000
Yugoslavia	306	152	745	661	620
Grand total	r748,612	r801,142	786,965	730,840	772,976

^rRevised. Preliminary. NA Not available.

TECHNOLOGY

The Bureau of Mines announced the results of research to concentrate coarse, liberated mica particles by the pneumatic process. A Bureau-designed system of crushers, screens, and zigzag air classifiers was used to concentrate mica ores from Arizona, North Carolina, and South Dakota and waste tailings from Alabama, Georgia, and South Dakota. Results demonstrated that plus 65-mesh size mica can be effectively recovered by the pneumatic method and that this method can also be used to recover up to 78% of the mica that was originally contained in the samples. The pneumatic beneficiation process may prove to be most advantageous in areas with limited water resources.6

The Bureau also announced results of

research to determine the effectiveness of crushing techniques for pneumatic concentration of mica. Three types of crushers were investigated, a roll crusher, a jaw crusher, and a hammer mill. The hammer mill proved to be the most effective, producing four concentrates with recoveries of at least 70%.7

¹Table includes data available through May 12, 1982. ²In addition to the countries listed, China, Namibia, Pakistan, Romania, Sweden, and Zimbabwe are known to produce mica, but available information is inadequate to make reliable estimates of output levels.

Exports. ⁴Revised to zero

Official Norwegian sources indicate that actual mica output is "not available for publication," but one or two mines evidently were in operation during 1977-81.

⁶Less than 1/2 unit.

⁷Excludes U.S. production of low-quality sericite.

⁸Reported figure.

¹Mineral specialist, Division of Industrial Minerals.

²Short tons are used throughout unless otherwise stated. ³Production of high-quality sericite is included in the totals; however, figures for low-quality sericite, used principally for brick manufacturing, are not included.

Industrial Minerals (London). No. 170, November 1981, pp. 12-13.

^{5——.} No. 171, December 1981, p. 13.
Godan, C. E., G. V. Sullivan, and B. E. Davis. Pneumatic Concentration of Mica. BuMines RI 8457, 1980, 24 pp. ⁷Smith, C. W., C. E. Jordan, and G. V. Sullivan. Crushing Techniques for Pneumatic Concentration of Mica. BuMines RI 8601, 1982, 16 pp.

Molybdenum

By James A. O'Donnell¹

Domestic and foreign molybdenum markets were imbalanced throughout most of 1981. Worldwide mine production exceeded demand, while consumer stocks were kept at a minimum. U.S. mine output of molybdenum decreased to a level of 139.9 million pounds, 7% below that of 1980, and represented 58% of world production. Reported end-use consumption of molybdenum in raw materials and apparent domestic demand declined 6% and 3%, respectively, compared with the same figures for 1980. World demand for molybdenum fell by an estimated 5% to 10%, resulting in smaller quantities of molybdenum being exported from the United States and domestic producer stocks of molybdenum concentrate and products increasing by about 175%. Confronted with large stock inventories, domestic producers reduced price listings several times during the year. World market prices were considerably below that of the U.S. producer listings for most of the year. Despite a lack of global economic stability, several companies completed new molybdenum mine projects and expansion programs.

Legislation and Government Programs.—The U.S. Government stockpile, maintained by the General Services Administration, no longer contains molybdenum materials. The stockpile goal of zero for molybdenum was reaffirmed by the Federal Emergency Management Agency in 1980.

The Alaska National Interest Lands Conservation Act (Public Law 96-487) was signed into law on December 2, 1980. A section of this law permits additional exploratory and development work by U.S. Borax & Chemical Corp. on its Quartz Hill molybdenum deposit located in the Tongass National Forest of southeastern Alaska.

Table 1.—Salient molybdenum statistics
(Thousand pounds of contained molybdenum and thousand dollars)

	1977	1978	1979	1980	1981
United States:					
Concentrate:					
Production	122,408	131,843	143,967	150,686	139,900
Shipments	124,974	130,694	143,504	149,311	118,916
Value	\$450,421	\$607,950	1\$871,068	\$1,344,181	\$945,541
Consumption		96,375	103,152		80,725
Imports for consumption	1,976	2,705	2,329	1,825	1,988
Stocks, Dec. 31: Mine and plant	9,161	8,980	9,520	18,101	35,548
Primary products:	0,101	0,000	0,020	20,202	00,010
Production	90,520	96,052	101.753	106,284	76,840
Shipments		105,920	109,419	95,391	64,368
Consumption		61,091	60,388	53,265	50,189
Stocks, Dec. 31: Producers		7,996	8,502	27,007	44,961
World: Production	r209,707	^r 220,712	229,423	P241.745	e240,387

^eEstimated. ^pPreliminary. ^rRevised

¹For 1979, value is based on the average domestic price of molybdenum in technical-grade molybdic oxide (\$6.07 per pound) sold by the major domestic producer.

DOMESTIC PRODUCTION

In 1981, domestic mine production of molybdenum decreased for the first time in 5 years to a total of 139.9 million pounds. The country's three primary molybdenum mines (Climax, Henderson, and Questa) provided about 66% of the year's total U.S. output. The balance of domestic production was supplied as a byproduct or coproduct of copper mining. Tungsten and tin were reclaimed as byproducts at the Climax molybdenum mine in Colorado. In addition, small quantities of rhenium were reclaimed in the roasting of molybdenite concentrate from certain domestic copper ores.

AMAX Inc.'s Climax and Henderson Mines, located in Colorado, remained two of the world's largest primary molybdenum mines, together producing over 90 million pounds of molybdenum in 1981. This quantity represented nearly 64% of U.S. output and 41% of total world production. Ore reserves at the two mines indicate that production levels of 100 million pounds of molybdenum per year could be sustained for the remainder of this century. Output at Molycorp Inc.'s Questa Mine in New Mexico remained small because lower grade deposits were being worked by surface mining methods. As a result, Molycorp moved ahead with the development of its adjacent Goat Hill underground mine, which is scheduled to be operational in 1983.

Molybdenum produced in association with domestic copper mining was recovered at 17 mines operated by 10 companies. Byproduct molybdenum from copper operations accounted for over 34% of total U.S. output and increased approximately 4 million pounds from that of the previous year. Duval Corp. (a subsidiary of Pennzoil Co.) and Kennecott Corp. remained the leading producers of molybdenum from copper mining operations. Other domestic mining firms that recovered molybdenum from copper ore were Anamax Mining Co., ASARCO Incorporated, Cities Service Co., Cyprus Mines Corp. of Amoco Minerals Co., Eisenhower Mining Co. (a partnership of Anamax and Asarco), Inspiration Consolidated Copper Co., Magma Copper Co. (a subsidiary of Newmont Mining Corp.), and Phelps Dodge Corp. Duval's Sierrita Mine in Arizona and Kennecott's Bingham Mine were again in 1981 the copper mines producing the largest quantity of byproduct molybdenum in the United States.

During the second half of 1981, domestic producers attempted to correct oversupply conditions by reducing production, closing mines, and canceling new project development.

In September, AMAX announced that fourth quarter molybdenum production from its Climax and Henderson Mines in Colorado would be decreased by 10%. Then in December, AMAX announced further production cutbacks for the two western mines in 1982 that amounted to approximately 25% to 30%. Also in December, Duval closed its Sierrita, Esperanza, and Mineral Park molybdenum-copper mines in Arizona for a period of 3 months, beginning December 14.

In December, AMAX notified the Colville Confederated Tribe that it was withdrawing from a cooperative mining venture for the development of molybdenum-copper ore deposits located at Mount Tolman on the Colville Indian Reservation in the State of Washington. Reserves of the Mount Tolman deposit were estimated to be 900 million tons of ore, grading 0.10% molybdenum disulfide. Several months earlier, AMAX had postponed development of the Mount Emmons molybdenum project in Colorado for at least 2 years. Mount Emmons ore reserves were estimated at 155 million tons, with an average grade of about 0.19% molybdenum disulfide.

Despite a worldwide surplus of molybdenum stocks in 1981, some producers moved ahead on new mining and processing projects.

Near the end of 1981, U.S. Borax was in the final stage of exploration and beginning development of its Quartz Hill molybdenum project in southeast Alaska. Reserves of the mine were estimated at 1.5 billion tons averaging 0.13% molybdenum disulfide. Development of the Quartz Hill deposit is scheduled to begin in 1984 and production to begin in 1987. Annual output of the mine was expected to be 40 million pounds of molybdenum concentrate. By yearend, the company had made no decision relative to the construction of roasting facilities near the mine site.

The Anaconda Minerals Co. (formerly Anaconda Copper Co.) began production during the fourth quarter of 1981 at its new Tonopah open pit molybdenum mine near Tonopah, Nev. The mine produced 598,000

pounds of molybdenum concentrate in 1981 and is expected to produce 8 to 13 million pounds of concentrate in 1982.

In November, Asarco completed the expansion of the molybdenum recovery plant at its Mission copper mine. The plant modification will increase molybdenum concentrate production by approximately 25%. Molybdenum production of the mine in 1981 was 537,000 pounds.

Cyprus Mines continued to develop the Thompson Creek molybdenum mine and nearby concentrator in central Idaho. Ore reserves of the Thompson Creek Mine were estimated at 193 million tons, with an average grade of 0.18% molybdenum disulfide. Mine production is scheduled to begin in 1983 and, when in full operation, produce 18 to 20 million pounds of molybdenum concentrate annually.

Table 2.—Production, shipments, and stocks of molybdenum products in the United States

(Thousand pounds of contained molybdenum)

	1980	1981	1980	1981	1980	1981
	Molybdic		Metal		Ammonium	
	oxides ¹		powder		molybdate	
Received from other producers	6,453	5,767	180	45	1,643	1,144
	115,523	86,507	6,093	4,062	3,845	3,273
	30,969	26,864	1,189	548	1,878	1,558
	84,554	59,645	4,904	3,513	1,967	1,715
	73,759	49,044	4,785	3,603	3,101	2,689
	22,825	38,999	560	507	944	1,075
	moly		Other ²		Total	
Received from other producers	27	23	14	262	8,317	7,241
	1,142	96	13,793	11,886	140,396	105,824
	(³)	(³)	76	14	34,112	28,984
	1,142	96	13,717	11,871	106,284	76,840
	1,179	131	12,567	8,901	95,391	64,368
	48	27	2,630	4,353	27,007	44,961

¹Includes technical and purified molybdic oxide and briquets.

³Less than 1/2 unit.

CONSUMPTION AND USES

The quantity of molybdenum in concentrate roasted domestically to produce technical-grade molybdic oxide decreased to 80.7 million pounds, about 25% below that of 1980. The remainder of the mine production of concentrate, containing about 59.2 million pounds of molybdenum, was either exported for conversion, added to producer inventories, or purified to lubrication-grade molybdenum disulfide. The oxide, or roasted concentrate, is the chief form of molybdenum utilized by industry, particularly steel. cast iron, and superalloy producers. However, some of the material is also converted to other molybdenum products such as ferromolybdenum, high-purity oxide, ammonium and sodium molybdate, and metal powder.

Apparent domestic demand, calculated from mine production, imports minus exports, and change in industry stocks, decreased by about 3% from that of 1980 to 59.1 million pounds of molybdenum. The decline in apparent demand was the second since 1975 and reflected the depressed economic conditions existing in 1981. Likewise, total reported end-use consumption of molybdenum in raw materials decreased about 6% from that of 1980. Molybdenum consumed in oxide form (technical-grade, purified, and briquets) accounted for about 72% of total reported consumption; in ferromolybdenum and calcium molybdate, 15%; and in other forms, 13%.

Molybdenum reported as consumed in the production of steel accounted for over 71% of total consumption in 1981. Approximately 18% of consumption was attributed to other metallurgical uses, such as cast irons, superalloys, and as a refractory metal. Catalyst, lubricant, pigment, and other nonmetallurgical applications comprised the final 11% of total consumption. Most enduse areas exhibited a decline in molybdenum consumption when compared with

Includes ferromolybdenum, calcium molybdate, phosphomolybdic acid, molybdenum disulfide, molybdic acid, molybdenum metal, pellets, molybdenum pentachloride, and molybdenum hexacarbonyl.

that of 1980. Molybdenum used in the production of steel increased 2%, while the production of cast irons decreased by 6%. Molybdenum use in superalloys and in mill products made of powder fell by nearly

38%. Molybdenum consumption in the ca lyst area increased about 2%; other nonmetallurgical uses were less than those of 1980.

Table 3.—U.S. consumption of molybdenum, by end use and form

(Thousand pounds of contained molybdenum)

End use	Molybdic oxides	Ferro- molyb- denum ¹	Ammo- nium and sodium molybdate	Other molyb- denum mate- rials ²	Total
1980					
Steel:					
Carbon	2,390	133		31	2,554
Stainless and heat resisting	6,582	1,156		140	7,878
Full alloy	17,340	2,123		35	19,498
High-strength, low-alloy	1.357	311		9	1.677
Tool	2.641	559		36	3,236
Cast irons	476	2,460		132	3,068
Superalloys	1.906	446		2,174	4,526
Alloys (excludes steels and superalloys):	- ,			-,	1,020
Welding and alloy hard-facing					
rods and materials		305		47	352
Other alloys ³	$2\bar{1}\bar{5}$	324		185	724
Mill products made from metal powder		021		4,222	4,222
Chemical and ceramic uses:				4,222	4,222
Pigments	397		268		665
Catalysts	2.585		w	77	2,662
Other	12		17	1.033	1.062
Miscellaneous and unspecified	179	137	483	342	1.141
Total	36,080	7,954	768	8,463	53,265
=		-,		5,100	
1981					
Steel:					
Carbon	1.145	128		12	1,285
Stainless and heat resisting	5,595	796		134	6,525
Full alloy High-strength, low-alloy	20.843	2.192	~-	44	23,079
High-strength, low-alloy	1,521	624		66	2.211
Tool	2,099	400		49	2,548
Cast irons	457	2,257		177	2,891
Superalloys	923	236		1,191	2,350
Alloys (excludes steels and superalloys): Welding and alloy hard-facing				1,101	2,000
rods and materials		331		12	343
Other alloys ³	228	218			
Mill products made from metal powder				140	586
Chemical and ceramic uses:				3,035	3,035
Pigments	w		332		000
Catalysts	2.648			70	332
Other			W	72	2,720
Other Miscellaneous and unspecified	$^{8}_{673}$	101	505	829 168	837 1,447
Total	36,140	7,283	837	5,929	50,189

W Withheld to avoid disclosing company proprietary data.

¹Includes calcium molybdate.

²Includes purified molybdenum disulfide, molybdenite concentrate added directly to steel, molybdenum metal powder, molybdenum metal, pellets, and other molybdenum materials.

³Includes magnetic and nonferrous alloys.

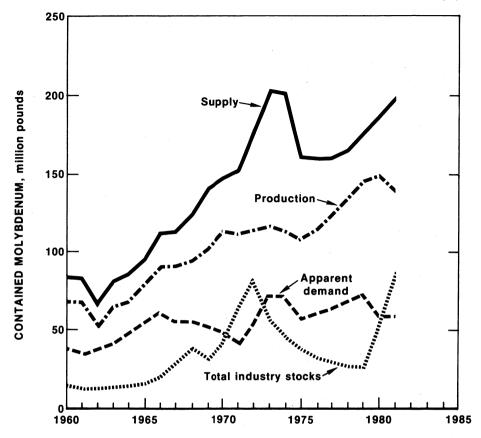


Figure 1.—Apparent demand, supply, production, and total industry stocks of molybdenum in the United States.

STOCKS

With the continued decline in consumption and lower exports, inventories of domestic molybdenum producers rose sharply during 1981. Inventories of industrial stocks were at their highest levels since 1972. Total industry stocks (including both producers' and consumers') increased by almost 64% to 86.3 million pounds of contained molybdenum during 1981. Inventories of molybdenum in concentrate at mine locations registered an advance from 18.1 to 35.5 million pounds, moving up steadily throughout most of the year. Producers'

stocks of molybdenum in consumer products (oxide, ferromolybdenum, molybdate, metal powders, and other types) increased from 27 million pounds at the beginning of the year to 45 million pounds by yearend. Compared with monthly molybdenum shipments, yearend producer stocks of these materials totaled almost a 12-month supply. Domestic consumers held inventories of about 6 to 7 million pounds throughout most of 1981, representing approximately a 2-month supply when compared with average monthly reported consumption.

Table 4.—Industry stocks of molybdenum materials, December 31

(Thousand pounds of contained molybdenum)

Material	1977	1978	1979	1980	1981
Concentrate: Mine and plant	9,161	8,980 .	9,520	18,101	35,548
Producers: Molybdic oxides¹ Metal powder Ammonium molybdate Sodium molybdate Other²	6,914 327 640 97 2,163	5,275 300 495 47 1,879	6,172 270 381 58 1,621	22,825 560 944 48 2,630	38,999 507 1,075 27 4,353
Total	10,141	7,996	8,502	27,007	44,961
Consumers: Molybdic oxides¹ Ferromolybdenum³ Ammonium and sodium molybdate Other⁴	5,761 1,940 338 1,421	5,893 1,864 444 1,824	5,102 1,872 325 1,761	3,816 1,507 280 1,813	3,217 914 167 1,467
Total	9,460	10,025	9,060	7,416	5,765
Grand total	28,762	27,001	27,082	52,524	86,274

¹Includes technical and purified molybdic oxide and briquets.

³Includes calcium molybdate.

PRICES

The economic downturn in 1981 greatly affected domestic molybdenum markets. Producers and dealers, under pressure from weak demand accompanied by excess stocks, lowered product prices several times during the year.

In the first quarter, U.S. producers, including Duval Sales Corp., Climax Molybdenum Co., Molycorp, and Kennecott Minerals Co., reduced domestic molybdenum prices by \$0.35, listing technical-grade molybdic oxide at \$9.35 and ferromolybdenum at \$10.25 (all prices per pound of contained molybdenum). Two Canadian firms—Noranda Mines Ltd. and Placer Development, Ltd.—decreased export prices for canned oxide by \$0.60 to \$9.60 and ferromolybdenum by \$0.67 to \$10.85.

Midway into the year, Duval Sales decreased domestic quotes on molybdenum products by \$1.10, pricing canned molybdic oxide at \$8.25 and ferromolybdenum at \$9.15 Climax Molybdenum lowered its market postings by \$0.85 to \$8.50 for canned oxide and \$9.50 for ferromolybdenum. Kennecott Minerals matched Climax's price actions.

During the fourth quarter, two Canadian producers—Noranda Mines and Placer Development—lowered their export prices for molybdic oxide by \$1.60 to \$7 and

ferromolybdenum by \$1.65 to \$8.10. Also, Corporación del Cobre de Chile (CODELCO) decreased its export prices of molybdic oxide by \$1.38 to \$6.87. Duval Sales reduced domestic pricing of canned molybdic oxide and ferromolybdenum by \$1.40 to \$6.85 and \$6.91 and \$7.75, respectively. Climax Molybdenum notified consumers that it would continue to list published prices of canned oxide at \$8.50 and ferromolybdenum at \$9.40, but in actual sales transactions it would price products competitively.

Domestic producers also lowered molybdenum export prices during 1981. The differential between export and domestic oxide quotes narrowed during the year from \$0.50 (\$10.20 versus \$9.70) to \$0.15 (\$7 versus \$6.85) and similarly for ferromolybdenum, from \$0.92 (\$11.52 versus \$10.60) to \$0.35 (\$8.10 versus \$7.75). Major foreign producers generally listed molybdenum prices at levels approaching that of U.S. producers' export quotes. Over the year, dealers and traders reduced molybdenum oxide export quotes from a range level of \$7.10 to \$8.40 in the first quarter to a level of \$3.45 to \$5.15 in the fourth quarter.

Yearend published prices for products, per pound of contained molybdenum, are shown in table 5.

Includes ferromolybdenum, calcium molybdate, phosphomolybdic acid, molybdenum disulfide, molybdic acid, molybdenum metal, pellets, molybdenum pentachloride, and molybdenum hexacarbonyl.

⁴Includes purified molybdenum disulfide, molybdenite concentrate added directly to steel, molybdenum metal powder, molybdenum metal, pellets, and other molybdenum materials.

Table 5.—Major domestic producer price listings for molybdenum

	1980	1981
Producer quotes:		
Concentrate-export	\$5.80-\$9.20	\$3.35-\$7.90
Oxide-domestic	9.00- 9.70	6.85- 8.50
Oxide-export	9.75-10.20	5.51- 8.75
Ferromolybdenum-domestic	10.60	7.75- 9.40
Ferromolybdenum-export $_{-}$	11.52	8.10- 9.90
Dealer quotes: Oxide-domestic	9.75-10.20	3.45- 5.15

FOREIGN TRADE

Exports.—Exports of molybdenum in concentrate and oxide dropped to 51.4 million pounds, nearly 25% under that of the previous year. Molybdenum exports were about 37% of domestic mine production and in terms of calculable molybdenum content, 98% of total exports. Approximately 85% of exported concentrate and oxides were shipped to Austria, the United Kingdom, Netherlands, Japan, Belgium-Luxembourg, and the Federal Republic of Germany. Exports of other molybdenum materials were almost negligible and varied slightly from that of 1980. The calculated molybdenum content of all exports decreased from 70.4 million pounds in 1980 to 52.4 million pounds in 1981. Because of both the lower quantity of exports and lower unit price, the total value of exports fell sharply from \$854 million in 1980 to \$477 million in 1981.

Imports.—Approximately 7.4 million pounds of molybdenum in various forms was imported into the United States during 1981, an increase of 25% compared with

that of 1980. This quantity represented 3% of total U.S. supply and 12% of apparent demand for 1981. Total value of all forms of molybdenum imported decreased by 26%, from \$70 million in 1980 to \$52 million in 1981. In terms of both value and quantity, the major forms of molybdenum imported were as concentrate, miscellaneous materials in chief value molybdenum, and ammonium molybdate. The principal originating countries for these imports were Canada, Chile, China, and Peru. China was a notable supplier of ammonium molybdate in 1980 and 1981.

Table 6.—Molybdenum reported by producers as shipments for export from the United States

(Thousand pounds of contained molybdenum)

	1980	1981
Molybdenite concentrate	35,026	37,328
Molybdic oxide	33,167	19,072
All other primary products	2,390	932

Table 7.—U.S. exports of molybdenum ore and concentrates (including roasted concentrates), by country

(Thousand pounds of contained molybdenum and thousand dollars)

	19	1979		1980		81
Country	Quantity	Value	Quantity	Value	Quantity	Value
Austria			2,034	20,407	2,723	21,793
Belgium-Luxembourg	14,834	117,879	11,412	129,004	2,518	24,069
Brazil	439	4,667	445	4,762	115	1,052
Canada	600	4.798	314	2,593	369	2,204
Chile	430	3,691	312	2,055	2,315	7,691
France	(¹)	7	901	8,430	408	3,381
Germany, Federal Republic of	6.733	87.212	9,077	94,824	5,080	30,374
Japan	12,369	111,509	12,654	134,099	7.958	73,567
Mexico	865	10.231	624	5.471	863	5,969
Netherlands	27,938	226,700	24.642	252,911	22,027	189,116
Sweden	2,049	23,207	2,601	27,536	1,840	13,556
Switzerland	317	4,019	83	1.215	81	395
U.S.S.R	3,463	41,098	277	2,802	1,080	9,547
United Kingdom	1,398	16,187	2.003	20,974	3,501	20,047
Other	807	7,677	838	8,348	472	4,055
Total	72,242	658,882	68,217	715,431	51,350	406,816

¹Less than 1/2 unit.

Table 8.-U.S. exports of molybdenum products

(Thousand pounds, gross weight, and thousand dollars)

Product and country	198	80	198	31
Froduct and country	Quantity	Value	Quantity	Value
Ferromolybdenum: ¹				
Australia	426	3,178	208	1,223
Canada	118	867	99	561
Colombia	4	33		-1-
Japan	161	1,268	14	93
Malaysia	31	42	3	20
Mexico	20 403	149		
Netherlands	102	4,652 793	39	$\overline{442}$
Philippines Poland	114	1,600	39	442
South Africa, Republic of	366	4,450	$\overline{14}$	104
Other	15	72	78	540
Total	1,760	17,104	455	2,983
Metal and alloys in crude form and scrap:				
Belgium	10	98	. 8	53
Canada	16	190	24	269
France	$\begin{array}{c} 5 \\ 172 \end{array}$	55 899	1,604	61 4,248
Germany, Federal Republic of	8	104	1,604 5	4,248
India Japan	159	1.845	138	$\frac{56}{1,317}$
Mexico	16	164	83	370
Netherlands	15	163	12	82
Spain	5	47	- 5	43
Sweden	18	198	342	1,935
United Kingdom	176	996	50	223
Other	14	111	363	1,106
Total	614	4,870	2,641	9,763
Wire:				
Argentina	10	151	4	97
Australia	19	380	4	76
Austria		183	(2)	11
Bahamas	19	27	125	137
Belgium-Luxembourg	6	199	(²) 14	1
Brazil	39	827	14	373
Canada	51	1,060	27	485
France	66 167	2,008 3,807	$\frac{4}{98}$	136 1,700
Germany, Federal Republic of	4	99	5	81
Ireland	9	88	J	01
Italy	6 0	1.305	83	1,954
Japan	138	2,766	76	1.514
Mexico	6	323	19	488
Netherlands	11	484	9	501
Singapore	12	311	· (2)	62
South Africa, Republic of	11	235	ĺ	21
Spain	19	450	16	337
Sweden	21	565	12	284
United Kingdom	14	332	15	216
Other	15	384	31	556
Total	705	15,984	543	9,030
Powder:	3	49		
ArgentinaAustralia	(²)	49	(2)	
	60	423	(-)	9
Politium I uwomboum	14	423 87	18	138
Belgium-Luxembourg		85	13	167
Canada France				33
Canada France	5		4	
Canada France Germany, Federal Republic of		708 52	$\frac{4}{3}$	48
Canada France Germany, Federal Republic of Italy	$\begin{smallmatrix} 5\\66\\6\end{smallmatrix}$	708 52	3 48	48 275
Canada France Germany, Federal Republic of Italy Japan Mexico	5 66 6 109	708 52 592	3 48 29	48 275 181
Canada France Germany, Federal Republic of Italy Japan Mexico Netherlands	$\begin{smallmatrix} 5\\66\\6\end{smallmatrix}$	708 52	3 48 29 3	275 181 20
Canada France Germany, Federal Republic of Italy Japan Mexico Netherlands	$ \begin{array}{r} 5\\66\\6\\109\\\hline{-21}\\7 \end{array} $	708 52 592 117 77	3 48 29 3 8	275 181 20 81
Canada France Germany, Federal Republic of Italy Japan Merico Netherlands Sweden Taiwan	5 66 6 109 21	708 52 592 117 77 1,043	3 48 29 3 8 83	275 181 20 81 1,382
Canada France Germany, Federal Republic of Italy Japan Mexico Netherlands Sweden Taiwan United Kingdom	5 66 6 109 	708 52 592 117 77 1,043 734	3 48 29 3 8 83 48	275 181 20 81 1,382 345
Canada France France Germany, Federal Republic of Italy Japan Mexico Netherlands Sweden Taiwan	5 66 6 109 21 7 80	708 52 592 117 77 1,043	3 48 29 3 8 83	275 181 20 81 1,382

See footnotes at end of table.

MOLYBDENUM

Table 8.—U.S. exports of molybdenum products —Continued

(Thousand pounds, gross weight, and thousand dollars)

Product and country	1980		1981	
Froduct and country	Quantity	Value	Quantity	Value
Semifabricated forms, n.e.c.:				
Australia	1	27	4	81
Austria	51	501		
Belgium-Luxembourg	11	213	(2)	1
Brazil	16	412	2 0	625
Canada	23	638	24	517
France	19	843	-8	283
Germany, Federal Republic of	63	1,799	36	767
Japan	46	674	16	236
Mexico	i	46	-6	178
Netherlands	16	879	3	192
PhilippinesPhilippines	å	44	. 2	41
Singapore	(²)	17	(2)	5
South Africa, Republic of	14	249	`ģ	643
United Kingdom	21	673	21	559
Other	21	456	16	640
VIIIVI		100		010
Total	306	7,471	165	4,768
Molybdenum compounds:				
Argentina			4	11
Australia	135	907	9	14
Belgium-Luxembourg	578	4.261	382	1,110
Brazil	63	486	22	118
Canada	382	2.548	499	3,328
German Democratic Republic	386	5,449	100	0,020
Germany, Federal Republic of	1.075	13,162	$\bar{112}$	777
Japan	5,256	43,997	4.765	28,768
Mexico	83	450	81	414
Netherlands	811	6,477	577	1.879
Sweden	127	712	(2)	2,010
Switzerland	180	2.284	4	61
Taiwan	127	706	7	39
United Kingdom	603	4.276	233	985
Other	348	3,588	633	3,180
_				
Total	10.154	89,303	7.328	40,686

 $^{^1\}mathrm{Ferromolybdenum}$ contains about 60% to 65% molybdenum. $^2\mathrm{Less}$ than 1/2 unit.

Table 9.—U.S. imports for consumption of molybdenum products

(Thousand pounds and thousand dollars)

		1980			1981		
TSUS No.	Material	Gross weight	Con- tained molyb- denum	Value	Gross weight	Con- tained molyb- denum	Value
601.33 603.40 606.31 628.70 628.72 628.74 417.28 419.60 421.10 423.88	Ore and concentrate Material in chief value molybdenum Ferromolybdenum Waste and scrap. Unwrought Wrought Ammonium molybdate Molybdenum compounds Sodium molybdate Mixtures of inorganic compounds, chief value molybdenum Molybdenum orange	4,520 3,264 45 373 NA 137 3,140 185 50 (1) 1,056	1,825 1,953 29 NA 163 NA 1,805 115 23 (¹)	10,475 18,701 243 7,246 2,637 4,031 23,307 1,520 568	4,959 5,085 1,175 NA NA 93 3,866 206 31	1,988 1,651 918 296 153 NA 2,217 152 13	9,911 9,574 6,353 2,674 2,893 2,557 15,387 1,056 114 15 1,480
	Total	12,770	5,913	70,367	16,476	7,389	52,014

NA Not available.

¹Less than 1/2 unit.

473.18

TSUS	Article	Most Favored	Nation (MFN)	Non-MFN
No.	Article	Jan. 1, 1982	Jan. 1, 1987	Jan. 1, 1982
601.33 _ 603.40 _	Ore and concentrate Material in chief value molybdenum.	11.3 cents per pound _ 9 cents per pound plus 2.7% ad valorem.	9 cents per pound 6 cents per pound plus 1.9% ad valorem.	35 cents per pound. 50 cents per pound plus 15% ad valo- rem.
606.31 _	Ferromolybdenum Molybdenum:	10 cents per pound plus 3% ad valorem.	4.5% ad valorem	31.5% ad valorem.
628.70 _	Waste and scrap	9.4% ad valorem1	6% ad valorem	50% ad valorem.1
628.72 _	Unwrought	9 cents per pound plus 2.7% ad valorem.	6.3 cents per pound plus 1.9% ad valorem.	50 cents per pound plus 15% ad valo- rem.
628.74 _	Wrought Molybdenum chemicals:	11% ad valorem	6.6% ad valorem	60% ad valorem.
417.28 _	Ammonium molybdate	5.7% ad valorem $___$	4.3% ad valorem	29% ad valorem.
418.26 _	Calcium molybdate	4.8% ad valorem	4.7% ad valorem	24.5% ad valorem.
419.60 _	Molybdenum			
	_ compounds.	3.9% ad valorem	3.2% ad valorem	20.5% ad valorem.
420.22 _	Potassium molybdate _	3.6% ad valorem	3% ad valorem	23% ad valorem.
421.10 _ 423.88 _	Sodium molybdate Mixtures of inorganic	4.8% ad valorem	3.7% ad valorem	25.5% ad valorem.

Table 10.—U.S. import duties on molybdenum articles

compounds, chief

value molybdenum.

WORLD REVIEW

3.4% ad valorem ___

5% ad valorem __

World mine production of molybdenum was 240.4 million pounds, less than 1% below that of 1980. Over 95% of world production was supplied by Canada, Chile, the U.S.S.R. (production estimated), and the United States. Although comprehensive statistics on world consumption were not available, market evidence clearly indicated that for the second year in succession supply exceeded demand. As world molybdenum consumption continued to decline in 1981. production remained steady, resulting in a sharp increase in producer stocks. Four new mines came into production during 1981, with three additional mines scheduled for operation in the next several years.

Canada.—Molybdenum production creased by about 4% in 1981 to an estimated 35.5 million pounds, owing mainly to the addition of two new Canadian mines, plus the expansions of two other mines.

AMAX of Canada, Ltd., reopened its open pit mine and mill near Kitsault, British Columbia. Between May and December of 1981, AMAX produced approximately 3.8 million pounds of molybdenum concentrate. Unfortunately, most of this production did not meet the company's concentrate quality specifications. By yearend, mill processing problems were reportedly corrected and commercial production was expected to begin in January 1982. When fully operational, the Kitsault Mine will be able to produce 9 to 10 million pounds of molybdenum per year.

18% ad valorem.

2.8% ad valorem ___

5% ad valorem ____

In midyear, Teck Corp. Ltd. brought onstream the second mill circuit at its Highmont copper-molybdenum mine in British Columbia. Highmont's two-line circuit was expected to raise production capacity to an annual rate of nearly 4.5 million pounds.

Lornex Mining Corp. Ltd. expanded its Lornex molybdenum mining and milling operations in British Columbia. As a result of this major program, production was expected to increase by over 50% to 6.8 million pounds per year.

Placer Development Ltd. expanded the flotation circuit and roasting plant at its Endako Mine in British Columbia. However, reports indicated that Placer had lowered its molybdenum production by almost 30% in 1981.

By yearend, Noranda Mines had almost completed mill expansion at its Boss Mountain molybdenum mine in British Columbia. Milling capacity was expanded from 1,800 to 3,000 tons per day. Over the next several years, Boss Mountain molybdenum production capacity will reportedly be increased to approximately 2.9 million pounds per year from the current 2-million-pound level.

Chile.—Molybdenum production in Chile increased slightly from that of 1980. CO-DELCO was the sole producer of molybde-

Molybdenum orange_ ¹Duty on waste and scrap temporarily suspended.

num from its four divisions, Chuquicamata, El Teniente, El Salvador, and Andina. To be able to maintain the production capacity of its four divisions, considering the decrease in the ore grade of its deposits, CODELCO is going ahead with plans to expand their extraction capacity. Of these expansions, the one at Chuquicamata will contribute the most toward maintaining production capacity. The changes at Chuquicamata include additional drilling capacity, more loading and transportation equipment, replacement of the primary crusher, and increased capacity of the concentrator. New technology is planned to upgrade several areas of the process. Working conditions will be improved by expansions in housing and industrial and community services.

China.—During the past few years, two large molybdenum deposits have been found in the Provinces of Hunan and Hebei. Reserves have not yet been verified, because prospecting work is still in progress.

Japan.—New molvbdenum ore reserves have been discovered by Sumitomo Metal Mining Co. at the abandoned Hirase molybdenum mine. Located in central Japan, initial reserves are estimated at 150,000 metric tons averaging 1.4% to 1.5% molybdenum. Exploratory work will continue for another year to determine the size and quality of the deposit. The Hirase Mine had been in operation from 1951 to 1974 and produced about 100 metric tons of molybdenum per year.

The Government of Japan approved a stockpile program that includes molybdenum. The Special Metal Stockpile Association planned to start the program in April 1982. The money for the program was expected to be secured from private banks with 66% of the interest being paid by the Government.

Korea, Republic of .- A large molybdenite deposit was discovered in late 1980. The deposit, which is located in the Pangdong Area of Yongwol County, Kangwou Province, is estimated to contain about 80 million metric tons of low-grade 0.41% molybdenite. At present time, there are no plans to develop the ore body.

Peru.—Southern Peru Copper Corp. (SPCC) was the major producer of molybdenum in Peru during 1981—from its two mines, Toquepala and Cuajone. Production declined about 7% from that of 1980 and was attributed to low prices and to work interruption created by a 45-day strike at the two mines.

A feasibility study was conducted to evaluate the planned expansion of Toquepala's Mine and mill operations. This expansion was directed toward the extension of the mine's life expectancy from 12 to 30 years. The study concluded that the expansion would be uneconomical under present Peruvian mining laws. Other alternatives are being considered by the company. A change in legislative and tax laws could induce SPCC to go ahead with the expansion plans.

A new nitrogen unit installed at the Cuajone molybdenum recovery plant during January 1981 to replace air with nitrogen gas in the flotation process has reportedly decreased operation costs by producing sizable savings in reagent consumption.

Table 11.—Molybdenum: World mine production, by country¹

(Thousand pounds contained molybdenum)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Bulgaria ^e	330	330	330	330	330
Canada (shipments)	36,526	r30,739	24,634	26,211	331,160
Chile	r24,112	29,092	29,895	30,133	33,300
China ^e	3,300	4,400	4,400	4,400	4,400
Japan	401	271	258	209	175
Korea, Republic of	223	485	417	661	3692
Mexico	2	24	105	225	770
Peru	r _{1,005}	1,607	2,606	5,860	5,485
Philippines		121	311	130	175
U.S.Ś.Ř. ^e	21,400	21,800	22,500	22,900	24,000
United States	122,408	131,843	143,967	150,686	³ 139,900
Total	r209,707	r220,712	229,423	241,745	240,387

^eEstimated. Preliminary. Revised.

Table includes data available through Apr. 7, 1982.

In addition to the countries listed, Mongolia, Niger, North Korea, Romania, Turkey, and Yugoslavia are believed to produce molybdenum, but output is not reported quantitatively, and available general information is inadequate to make reliable estimates of output levels.

³Reported figure.

TECHNOLOGY

Molybdenum research in 1981 was directed mostly toward metallurgical and chemical applications. Faced with potential supply problems associated with mineral imports, various research and development programs focused on materials substitution of strategic minerals, including chromium and manganese, in various molybdenum steels.

A new 0.2% Mo steel for electric-resistance-welded pipe for L-80 and N-80 petroleum applications was produced commercially late in 1981 and is expected to capture a portion of a market that has traditionally depended on molybdenum-free C-Mn steel.2

Two steels for heavy wellhead components were identified. One is the 2 1/4 Cr-1 Mo steel modified with 0.9% Ni and 1.2% Mo; the other is a 1% Cr steel alloyed with similar amounts of manganese and nickel, but also alloyed with 0.03% Cb and with molybdenum ranging from 0.75% to 1.35%.3

Research on corrosion inhibitors for automotive cooling systems has demonstrated molybdate additions to be critical to satisfactory performance in systems containing aluminum along with iron, copper, and solders—combinations encountered in the new lightweight engines. In 1981, Toyota began to use molybdates in a portion of their production. Molybdates are nontoxic alternatives to nitrites in water-base metalworking fluids, and partial substitution of sodium molybdates for organic inhibitors significantly improves rust protection.4

Justification for molybdenum above the traditional 1% in steels for elevated temperature service was documented as a result of 1981 research. Low-carbon 12 Cr-Mo steels and modifications with 1.5% Mo and 1% W exhibit excellent creep resistance.5

Research aimed at replacing Cr-Mo carburizing steels with lower price Mn-Cr steels slowed. Lower prices and greater availability of molybdenum, aided by technical progress, prompted producers and users to stay with molybdenum technology. Research in 1981 revealed the deterioration of properties in Mn-Cr steels when phosphorus and nitrogen levels approach the higher levels encountered in normal commercial production; Cr-Mo steels are insensitive.6

In the high-hardenability carburizing steels used in heavy gearing and oil well drill bits, those with higher levels of chromium and molvbdenum can be annealed for machining much more readily than those with higher levels of manganese and nickel.7

¹Commodity specialist, Division of Ferrous Metals.

¹Commodity specialist, Division of Ferrous Metals.

²Sponseller, D. L., J. A. Straatmann, and A. L. Mincher. The Development of NEW ERW Steels for L-80 and N-80 Oil Well Tubulars. Pres. at 23d Mech. Working and Steel Proc. Conf., Pittsburgh, Pa., Oct. 28, 1981, 57 pp.

³Wada, T., E. J. Vineberg, and W. Fairhurst. Cr-Mo Steels for Heavy Section Pressure Vessels. Pres. at 20th Journees des Aciers Speciaus Meeting, Brussels, Belgium, May 11-13, 1981, 31 pp.

⁴Climax Molybdenum Company (Greenwich, Conn.). Moly Corrosion Inhibitors. V. 1, No. 1, October 1981, pp. 1-2.

⁵Vineberg, E. J., P. J. Grobner, and V. A. Biss. 12 Cr-Mo Steels With Improved Rupture Strength and Weldability. Pres. at ASM Intern. Conf. on Production, Fabrication, Properties, and Applications of Ferritic Steels for High-Temperature Applications, Warren, Pa., Oct. 6-8, 1981, 15 pp.

Gameron, T. B., and D. E. Diesburg. Influence of Aluminum, Nitrogen, and Phosphorus on the Fracture Properties of Carburized Cr-Mo and Mn-Cr Steels. Pres. at 23d Mech. Working and Steel Proc. Conf., Pittsburgh, Pa.,

20d Meen: Working and Sect 1706. Cont., 1706501g1, 12., Oct. 28, 1981, 33 pp.

7Scales, S. R., and D. E. Diesburg. A New Rock Bit Steel.
Metal Prog., v. 119, No. 2, February 1981, pp. 31-33.

Nickel

By Scott F. Sibley¹

The nickel market experienced further weakening in 1981, as domestic consumption declined about 7% compared with that of 1980. Stainless steel and corrosion-resistant alloy producers and electroplaters continued to operate well below capacity. Reduction in demand occurred in nearly all end-use areas in line with the recessionary conditions in the economy. A similar situation existed in Europe and Japan. Continuing high interest rates throughout the year dampened consumption in the capital goods sector on which nickel depends. Producer inventories in the United States increased above 200 million pounds, partly owing to

the dropoff in demand. Producers world-wide operated on the average at about 60% of capacity. In summary, the nickel market was characterized by producer shutdowns and cutbacks worldwide, depressed demand, collapsing prices, and general oversupply conditions.

Major consumption occurred in stainless and alloy steel, 46%; nonferrous alloys, 34%; and electroplating, 15%. Cathode nickel prices, listed by several major producers, were lowered on or about November 25 from \$3.45 to \$3.20 per pound during a period of very low demand.

Table 1.—Salient nickel statistics

(Short tons unless otherwise specified)

	1977	1978	1979	1980	1981
United States:					
Mine production ¹	14,347	13,509	15,065	14,653	12,099
Plant production:					
Domestic ores	12,897	11,298	11,691	11,225	10,305
Imported materials	25,000	26,000	32,500	33,000	38,500
Secondary ²	12,449	12,304	13,201	11,338	NA
Exports (gross weight)	39,412	36,293	50,810	56,675	46,778
Imports for consumption	194,770	234,352	177,205	r _{189,188}	200,348
Consumption (primary)	155,260	180,723	196,293	156,299	144,748
Stocks, Dec. 31: Consumer	18,581	20,443	r19,518	r _{15.231}	22,508
Price, cents per pound	241-208	210-193	193-320	320-345	345-320
World: Mine production	r912,875	^r 722,786	r748,774	P820,947	^e 771,969

^eEstimated. ^pPreliminary. ^rRevised. NA Not available.

Legislation and Government Programs.—The Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (Superfund), under which producers of metals and chemical substances are to be taxed in order to fund toxic waste cleanup, became effective April 1. Industry was to provide 88% of the 5-year

\$1.6 billion fund. The Environmental Protection Agency was to administer the act, but the Internal Revenue Service was to be responsible for collection of the industry tax. Nickel companies paid a tax of 0.225 cent per pound on pure nickel products produced or brought into the United States.

The U.S. Bureau of the Mint issued a

¹Mine shipments.

²Nonferrous scrap only; does not include nickel from stainless or alloy steel scrap.

tender in August for 8 million pounds of cupronickel 5-cent coinage strip for delivery to the Denver Mint. Delivery was scheduled to begin January 4, 1982, in 160,000-pound increments. Also solicited were sealed bids for the sale of 3.5 million pounds of electrolytic cut nickel cathodes or briquettes for delivery to the Philadelphia Mint. Shipments were made in 120,000-pound increments beginning October 5, 1981. F. W. Hempel, Inc., bid \$2.7189 per pound and won the latter contract.

The National Oceanic and Atmospheric

Administration of the U.S. Department of Commerce issued regulations September 15 to implement the Deep Seabed Hard Mineral Resources Act of 1980. The regulations cover procedures mining companies must follow to obtain seabed exploration licenses. The license applications were to be processed over a 15-month period, but no mining permits would be issued for several years. Licenses for exploration would extend over a 10-year period. Under the act, commercial mining cannot begin before January 1, 1988.

DOMESTIC PRODUCTION

The nickel mine of Hanna Mining Co., at Riddle, Oreg., shipped 12,099 tons of nickel in laterite ore in 1981. Nickel recovered at the smelter as ferronickel, and byproduct nickel salts and metal produced at copper and other metal refineries, totaled 10,305 tons. The Port Nickel refinery of AMAX Nickel, Inc., at Braithwaite, La., was operated at about 75% of capacity, processing nickel matte from Botswana, Australia, and the Republic of South Africa. Production of nickel at the facility totaled about 38,500 tons.

A strike at Riddle by the United Steelworkers of America (USWA), that began August 1, ended August 8. A 1-year agreement, which was to terminate on July 31. 1982, provided for quarterly cost-of-living adjustments equal to 1 cent for each 0.3 point increase in the consumer price index. The operation also experienced a significant increase in energy costs. Although rate increases were moderated by a clause in the Pacific Northwest Electric Power Planning and Conservation Act of 1980, utility charges by the Bonneville Power Administration (BPA) rose about 40% during the year. The specific clause permitted an easing of rates for industrial operations using indigenous resources of the Northwest United States. The BPA created a special industrial power rate for the nickel operations. The grant of the special rate was contingent on the acceptance by Hanna of a lower quality of power than would be provided under the standard contract. Certain aspects of the rate were negotiated with the BPA.

AMAX Nickel also scaled back its Minna-

max copper-nickel project near Babbitt, Minn., by laying off 5 of the 17 workers stationed at the site. However, about \$100,000 was to be spent annually to pump water out of the 1,728-foot shaft that was sunk in 1977. About \$20 million had been spent in sinking the shaft, geological exploration, and numerous environmental studies. AMAX Nickel negotiated with Bear Creek Mining Co. for renewal of its lease, which was to expire in October 1982. Phase II of the project, if carried out, would include construction of a small pilot plant for testing the metallurgical process that had been developed. The facility would cost about \$40 million and employ about 35 people.

International Metals Reclamation Co., Inc. (INMETCO), Ellwood City, Pa., a subsidiary of Inco United States, Inc., began construction in August of a \$2 million facility to recover nickel from chemical wastes. Capacity of the new plant was to be 12,500 tons per year of materials containing spent nickel catalysts, from which about 1,800 tons of nickel could be recovered. The catalysts were mainly those generated in industrial facilities that process edible and inedible fats and oils, and fatty amines. The spent material was to be converted into a salable nickel-containing product for use in stainless and alloy steels. Construction of the facility, to be run by INMETCO's Pittsburgh Pacific Processing Div., on Neville Island in Pittsburgh, Pa., was to be completed by February 1982. INMETCO's other operating plant in Ellwood City recycled wastes generated by the specialty steel industry.

CONSUMPTION AND USES

Demand for nickel remained depressed throughout the year and approximated the low point of 1975. Total demand, including secondary nickel, was estimated at 195,000 tons, the lowest since 1964. Only nickel-copper and copper-nickel alloy and electro-

NICKEL 617

plating (sales to platers) consumption showed significant gains. Stainless steel, alloy steel, high-nickel heat and corrosionresistant alloys, and superalloys all experienced a reduction in consumption of nickel. Reported consumption (primary nickel) was the lowest since 1971.

Pure unwrought nickel lowered its share of the total primary nickel market for the first time in 3 years, from 71% in 1980 to 70% in 1981; ferronickel dropped from 19% in 1980 to 18% in 1981; and nickel oxide sinter dropped from 7% to 6% of the market. The pure nickel forms (Class I) were utilized principally in the production of

nickel wrought products, high-nickel heatand corrosion-resistant alloys, copper-base alloys, and in electroplating; whereas ferronickel and oxide sinter were used largely in the production of stainless and alloy steels. The latter is referred to as charge or Class II nickel.

Although primary nickel consumption declined during the year, the pattern of consumption by type of product remained similar, as follows: Stainless and heat-resisting steels, 35%; high-nickel heat- and corrosion-resistant alloys, 22%; electroplating, 15%; alloy steels, 11%; superalloys, 9%; and other, 8%.

STOCKS

In October, 32,209 tons of nickel was transferred from the U.S. Mint to the national stockpile. The goal for nickel in the stockpile remained at 200,000 tons. Consumer stocks at yearend increased by 48% compared with those at the end of 1980, from 15,231 tons to 22,508 tons, owing to

exceptionally large discounts offered by producers during the fall. Stocks held by producers or their agents in the United States more than doubled to 110,000 tons because of depressed demand conditions and contractual obligations.

PRICES

Prices deteriorated significantly during the year, as most consumers bought nickel at prices considerably below the producer list price. Throughout most of the year, list prices for principal product forms (per pound) were \$3.50 for plating cathode, \$3.45 for melting cathodes, \$3.40 for domestic ferronickel, \$3.44 for imported ferronickel, and \$3.35 for charge nickel. Computed average import prices, based on custom declared value per pound for 1981, were \$3.04 for cathode nickel, pellets, and briquets; \$2.95 for ferronickel; and \$3.27 for nickel oxide.

An announced 6% discount, which had been put into effect by INCO, Ltd., on November 7, 1980, was officially lifted by INCO effective February 28, but discounting at equivalent or greater levels contin-

ued throughout the year. In its 1981 annual report, INCO stated that the average realized price on all product forms sold in 1981 was \$3.10 per pound, compared with \$3.14 per pound in 1980.

Heavy discounting began in August after the U.S. Mint purchased melting nickel for \$3.71 per pound. The discounting continued to the end of the year in response to low demand. Producers, led by INCO, attempted to counter this price collapse in late November by lowering asking prices by 7% to what was believed to be a more realistic level. New base prices were \$3.12 per pound for charge nickel, \$3.20 per pound for melting nickel, and \$3.29 per pound for plating-grade material.

Table 2.—Nickel recovered from nonferrous scrap processed in the United States, by kind of scrap and form of recovery

(Short tons)

	1980	1981
KIND OF SCRAP		
New scrap: Nickel-base Copper-base	1,585 1,887 1,750	1,315 NA NA
Total	5,222	NA

Table 2.—Nickel recovered from nonferrous scrap processed in the United States, by kind of scrap and form of recovery —Continued

(Short tons)

	1980	1981
KIND OF SCRAP —Continued		
Old scrap: Nickel-base	5,244 575 297	4,889 NA NA
Total	6,116	NA
Grand total	11,338	NA
FORM OF RECOVERY		
As metal In nickel-base alloys In copper-base alloys In aluminum-base alloys In aluminum-base alloys In ferrous and high-temperature alloys ¹ In chemical compounds	556 2,637 4,125 2,173 1,197 650	NA NA NA NA NA
Total	11,338	NA

Table 3.—Stocks and consumption of new and old nickel scrap in the United States in 1981

(Gross weight, short tons)

Class of consumer and	Stocks, beginning	D!	C	onsumptio	n	Stocks
type of scrap	of year	Receipts -	New	Old	Total	end of year
Smelters and refiners:						
Nickel and nickel alloys	25	6,258	1,820	4,246	6,066	217
Nickel-copper metal	201	870	505	396	901	170
Nickel-silver ¹	536	2,756	315	2,301	2,616	676
Cupronickel ¹	8	7		7	7	8
Nickel residues	W	468	47	421	468	W
Total	226	7,596	2,372	5,063	7,435	387
Foundries and other manufacturers: Nickel and nickel alloys	120	982	844	197	1.041	
Nickel-copper metal	34	302	044	197	1,041	61 34
Nickel-silver ¹	2,282	328	526	e380	e906	e _{1.704}
Cupronickel ¹	1,488	1.743	e _{1,885}	e ₂₀	e _{1,905}	e1,704
Nickel residues	150	161	119	191	310	1,020
Total	304	1,143	963	388	1,351	96
Grand total:						
Nickel and nickel alloys	145	7,240	2,664	4,443	7.107	278
Nickel-copper metal	235	870	505	396	901	204
Nickel-silver1	2,818	3,084	841	2.681	3,522	2,380
Cupronickel ¹	1,496	1,750	e _{1,855}	2,001 e27	e1,912	1,334
Nickel residues	150	629	166	612	778	1,559
Total	530	8,739	3,335	5,451	8,786	483

^e Estimated. W Withheld to avoid disclosing company proprietary data; included in "Nickel and nickel alloys." ¹Excluded from totals because it is copper-base scrap, although containing considerable nickel.

Table 4.—Nickel (exclusive of scrap) consumed in the United States, by form

(Short tons, contained nickel)

Form	1977	1978	1979	1980	1981
Metal Ferronickel Oxide powder and oxide sinter Salts¹ Other	96,058 31,784 22,446 2,395 2,577	122,972 33,272 19,817 2,026 2,636	135,987 39,977 14,189 3,944 2,196	111,609 29,919 8,492 3,330 2,949	101,847 26,290 9,346 4,161 3,104
Total	155,260	180,723	196,293	156,299	144,748

¹Metallic nickel salts consumed by plating industry are estimated.

NA Not available. $^{\rm 1}$ Includes only nonferrous scrap added to ferrous high-temperature alloys.

NICKEL 619

Table 5.—U.S. consumption of nickel (exclusive of scrap) in 1981, by use and form

(Short tons, contained nickel)

Use	Commer- cially pure un- wrought nickel	Ferro- nickel	Nickel oxide	Nickel sulfate and other nickel salts	Other forms	Total
Steel:						
Stainless and heat-resisting	25.375	21,179	2,952	1	1,140	50,647
Alloys (excludes stainless)	8,264	3,381	4,775		61	16,481
Superallovs	12,586	739	2	78	83	13,488
Nickel-copper and copper-nickel alloys	10,046	3	310	73	198	10,630
Permanent magnet alloys	484					484
Other nickel and nickel alloys	19.063	678	647	22	78	20,488
Cast irons	1,732	300	328	4	1,332	3,696
Electroplating (sales to platers) ¹	18,775			3,518	27	22,320
Chemicals and chemical uses	1,329	==	162	408	93	1,992
Other ²	4,193	10	170	57	92	4,522
Total reported by companies						
canvassed and estimated	101,847	26,290	9,346	4,161	3,104	144,748

Table 6.-Nickel (exclusive of scrap) in consumer stocks in the United States, by form

(Short tons, contained nickel)

Form	1979	1980 ^r	1981
Metal Ferronickel Oxide powder and	14,716 2,467	10,825 2,046	18,355 2,257
oxide sinter Salts Other	1,314 427 594	1,503 547 310	1,039 508 349
Total	19,518	15,231	22,508

Revised.

Table 7.—Consumption, stocks, receipts, shipments, and/or sales of secondary nickel in 1981, by use

(Short tons, contained nickel)

Use	Receipts	Consump- tion	Shipments or sales	Stocks, end of year
Steel (stainless and heat-resisting and alloy) Nonferrous alloys (super, nickel-copper and	36,838	31,155	3,657	10,744
copper-nickel, permanent magnet, other nickel) Foundry (cast irons) Chemicals (catalysts, ceramics, plating salts, other	5,942 602	5,919 604	18 	564 15
chemical uses)	2	2		3
Total reported by companies canvassed and estimated	43,384	37,680	3,675	11,326

FOREIGN TRADE

The estimated contained nickel in U.S. exports of unwrought nickel, powders, flakes, and anodes in 1981 was 13% of total primary demand.

Canada remained the principal supplier of nickel to the United States in 1981, and accounted for 37% of total imports. The next most important sources in decreasing

order of magnitude were Botswana (matte for domestic refining), Australia, Norway, the Philippines, the Dominican Republic, New Caledonia, and the Republic of South Africa. In the aggregate, these eight countries accounted for 91% of U.S. imports. Imports increased in 1981 compared with those of 1980 in spite of the weak domestic

¹Based on monthly estimated sales to platers.
²Includes batteries, ceramics, and other alloys containing nickel.

market. Consequently, producer stocks held in the United States rose to over 110,000 tons, double that of yearend 1980, while consumer stocks also rose dramatically compared with those of the previous year.

World consumption of primary nickel was approximately 675,000 tons in 1981 compared with approximately 750,000 tons consumed in 1980.

Table 8.—U.S. exports of nickel and nickel alloy products, by class

	19	79	19	80	19	81
Class	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Unwrought Bars, rods, angles, shapes, sections Plates, sheets, strip Anodes Wire Powders and flakes Catalysts Tubes, pipes, blanks, and fittings thereof, hollow bars	19,759 3,162 5,379 108 733 4,082 5,197	\$106,743 38,095 52,558 725 7,993 24,836 19,993 23,468	13,886 3,443 7,113 139 1,087 5,438 3,530	\$114,779 48,270 82,865 979 11,766 37,101 18,559	16,298 2,463 8,057 94 660 3,224 3,890	\$116,494 39,066 81,648 909 8,262 23,929 25,601 16,164
Waste and scrap Total	10,162 50,810	22,822	20,623 56,675	38,652 371,483	10,759	21,595 333,668

Table 9.—U.S. imports for consumption of nickel products, by class

	19	79	19	980	19	981
Class	Quantity	Value	Quantity	Value	Quantity	Value
	(short	(thou-	(short	(thou-	(short	(thou-
	tons)	sands)	tons)	sands)	tons)	sands)
Ore	4,977	\$12	1,124	\$13	513	\$42
	113,280	510,535	116,193	708,693	123,141	747,920
	1,820	8,079	4,182	21,753	4,330	21,779
	61,291	123,060	77,459	208,742	94,796	223,060
	1,937	13,249	2,396	20,918	1,011	9,321
	1,808	11,333	2,635	21,583	2,198	18,317
	14	142	83	892	21	552
	1,617	21,783	717	11,554	634	8,707
	13,393	66,681	15,129	98,001	13,909	91,944
	784	3,522	115	665	215	1,381
	3,596	16,634	3,572	18,481	5,226	17,496
	62,593	91,340	51,741	104,156	69,853	119,321
Total (gross weight) Nickel content ²	267,110	866,370	275,346	1,215,451	315,847	1,259,840
	177,205	XX	189,188	XX	200,348	XX

Table 10.—U.S. imports for consumption of new nickel products, by country (Short tons of nickel)

Country	М	etal		er and kes		nd oxide iter	Ferro	nickel	Slur oth	ry and er ^e 1
	1980	1981	1980	1981	1980	1981	1980	1981	1980	1981
Australia Botswana	6,573	10,659	2,905	1,804		7		5	9,334 15,608	10,147 24,625
Canada	61,652	62,414	7,795	8.659	$3.1\overline{15}$	3.085	65	$\overline{525}$	1,614	1,711
Dominican Republic	20	,	-,	-,	-,	0,000	12,077	9,390	36	-,
Finland	4,262	3,122					,	-,	13	106
France	843	604			90	31			5	1
Germany, Federal									_	_
Republic of	150	56	114	167		136		38	23	75
Japan	737	799					1,007	3,586	18	23
Netherlands	72	77								43
New Caledonia							3,485	5,294	4,408	2,710
Norway	21,055	22,223		58	17	11	15	7		,
Philippines	10,755	9,740	2,766	1,830						

See footnotes at end of table.

XX Not applicable.

1 Nickel-containing material in slurry, or any form derived from ore by chemical, physical, or any other means, and requiring further processing to recover nickel or other metals; principally matte for refining.

2 Estimated from gross weight of primary nickel products.

NICKEL 621

Table 10.—U.S. imports for consumption of new nickel products, by country —Continued (Short tons of nickel)

Country	M	letal		ler and ikes		nd oxide iter	Ferre	onickel	Slur oth	ry and er ^e 1
	1980	1981	1980	1981	1980	1981	1980	1981	1980	1981
South Africa, Republic of _ Sweden	3,816 282	4,353	790 2	816			10	12	6,725 11	$-\frac{1}{4}$
U.S.S.R United Kingdom	3,839 554	6,638 696	835	$\bar{786}$, ==		$-\frac{1}{2}$	
Zimbabwe Other	1,437 146	1,492 268	37	$-\overline{4}$		64	- 8	1,391	65	56
Total	116,193	123,141	15,244	14,124	3,222	3,334	16,667	20,248	37,862	39,501

eEstimated nickel content.

WORLD REVIEW

Discussions between major producer and consumer governments, related to the creation of an international organization to improve world nickel statistics, continued. However, no final action was taken. The 10th Session of the 3d United Nations Conference on the Law of the Sea was concluded in Geneva in August. No final treaty was developed. The U.S. position, with respect to the proposed treaty, was under review.

Australia.-- A major sulfide deposit was located at Mount Keith in Western Australia by Cliff's International Ltd. Cliffs is a major partner in exploration with Charterhall Mining Corp. Pty., Petroleum Securities, Ltd., and Greenbushes Tin N.L. An average of 3.5% nickel was determined over a large portion of the deposit. The prospect is 53 miles north of the Agnew nickel project, owned jointly by Mount Isa Mines, Ltd., and Western Selcast Pty., Ltd. At the Agnew Mine, it was found that the disseminated ore body near the surface was not as uniformly distributed as drilling had indicated, which could necessitate mining underground earlier than planned.

Western Mining Corp., Ltd., considered reopening its Windarra Mine in Western Australia. However, the reopening was contingent on the reopening of the nearby Lancefield gold mine. The Windarra concentrator would process ores from both mines. The Windarra Mine is jointly owned with Billiton Metals and Ores, Ltd., a subsidiary of the Royal Dutch/Shell Group.

At the Greenvale nickel laterite mine, jointly owned by Metals Exploration, Pty.,

and Freeport Queensland Nickel Pty., Ltd., work continued to convert the power source for the boilers and dryers from oil to coal. By yearend both dryers were converted, and work on the boilers was expected to be completed by mid-1982.

Botswana.—Sinking of the third shaft at Botswana RST Ltd.'s Pikwe Mine was completed early in the year to a depth of 3,163 feet. During the year, the shaft was equipped with 10 fuel stations spaced 197 feet apart. Total ore production at the Selebi-Pikwe complex totals about 220,000 short tons per month, about 70% of which comes from the Pikwe Mine. According to an interim report of Botswana RST, AMAX Nickel made a request to BCL, Ltd., which operates the Selebi-Pikwe Mines, to reduce contracted matte sales to AMAX Nickel by about 25% to about 33,000 tons annually. By yearend no decision had been made on the request.

Burundi.—The Government of Burundi received a \$4 million line of credit from the International Development Association to continue exploration for nickel resources. Additional holes were to be drilled in the Musongati area to determine the nickel content. Studies will also be carried out on the quality and availability of local peat to determine its suitability for use as a fuel should a processing facility be built. A search will also be made for sulfide minerals. Aside from the question of power supply, the difficulty of transport in and out of the remote, landlocked country was a major consideration.

Canada.—A strike at INCO's Thompson,

¹Nickel-containing material in slurry or in any other form derived from ore by chemical, physical, or any other means and requiring further processing; principally matte for further refining; includes nickel in laterite ores for testing purposes; excludes bars, plates, sheets, and anodes.

Manitoba, refinery by 1,900 workers began September 16. Pay rates and contract length were the main issues in the labor dispute. The workers, who are members of the USWA, sought a 1-year contract in order that bargaining in 1982 might be coordinated with six other locals in North America. These locals' contracts were to expire May 30, 1982. Although the Thompson works supplied the Fort Saskatchewan refinery at Sherritt Gordon Mines, Ltd., with part of its feedstock, the latter operation was not significantly affected by the strike. The strike ended December 14, when the USWA voted to ratify a 33-month contract. The new contract called for a 52.5% wage increase to be spread over 33 months, with some additional benefits. The nickel market lost about 10,000 tons of nickel production because of the strike, but there was little effect on prices. Production was resumed by yearend. The Thompson works provided an estimated one quarter of IN-CO's Canadian nickel production in 1980.

Late in the year, ÎNCO announced the development of a new open pit mine at Thompson to replace its existing open pit mine there. About \$72 million was to be spent on the first phase of mine development, with new production targeted for 1984.

As part of its effort to reduce inventories and costs, INCO planned to cut 1982 production below 1981 levels (70% of capacity) by putting one mine on standby, reducing shifts at another, and scheduling a 4-week vacation shutdown for its Ontario operations. Production at the company's Indonesia facility was also to be greatly curtailed. The Coleman Mine, accounting for about 5% of INCO's Sudbury output, was to be put on standby. Production was to be reduced at the Garson and Shebandowan Mines, 60 miles west of Thunder Bay. In December, INCO announced its withdrawal from the battery business, which sustained significant losses in 1980-81. INCO acquired the subsidiaries in 1974 and named the company INCO Electro-Energy Corp. This group included Exide Corp., Exide Electronics Corp., and Ray-O-Vac Corp.

Late in the year, Falconbridge Nickel Mines, Ltd., opened its new Fraser nickel-copper mine in the Sudbury District. The mine was expected to produce 2,300 tons of ore per day by 1983, to be shipped to the Strathcona mill for processing.

Colombia.—Significant progress was made at the Cerro Matoso S.A. nickel

laterite project in Colombia, where production is scheduled to begin by mid-1982. With an investment of about \$350 million, a consortium that includes Econiquel (stateowned, 45%), Billiton Overseas, Ltd. (35%), and Hanna Mining Co. with Standard Oil of California (20%), expected to complete 80% of the facility and infrastructure by yearend. Capacity of the mine, located about 250 miles northwest of Bogotá, will be about 21,000 tons of contained nickel in ferronickel. The deposits are estimated to contain 40 million tons of ore averaging 2.71% nickel. The ferronickel product, with 35% to 40% nickel, was to be marketed by Billiton during the first 12 years of operation.

Cuba.—Nickel-cobalt matte was shipped to Eastern Europe for further refining and a finished nickel oxide sinter (76% nickel) was shipped to Western and Eastern European countries. Mine production totaled about 44,600 tons of contained nickel.

Dominican Republic.—In January, after a 5-month shutdown, Falconbridge Dominicana C. por A. near Bonao, restarted production at its nickel-bearing laterite operation. During this period, a number of improvements were made, including plant overhaul, road construction, and community projects. Also, five new hydraulic excavators were erected, replacing those used since the mine began production in 1971. At full production of 31,500 tons of nickel per year, three electric furnaces smelt the ore to ferronickel after drying and calcining. Crude oil to run the powerplant is imported from Venezuela to Haina on the Dominican south coast and then delivered through a 50-mile pipeline to the mine. Naphtha is used to fuel the ore dryers. Mining of the garnierite layer, enriched with up to 3% nickel, is accomplished without drilling or blasting. Ore thickness ranges from about 10 to 200 feet. About 1,500 people work at the site.

In the second quarter, Falconbridge Dominicana shut down the second of its three electric furnaces at Bonao to prevent an excessive inventory buildup, owing to continuing recessionary markets in nickel. Production in 1981 was 21,500 tons of nickel in ferronickel. Falconbridge Nickel of Canada and ARMCO Steel Corp. of the United States provided significant financial support to Falconbridge Dominicana during the year. Payments of about \$43 million were made to cover operating deficit and debt service.

Finland.—Outokumpu Oy was to expand

NICKEL 623

capacity of its Harjavalta smelter from 14,300 tons per year of nickel to 18,200 tons per year by about 1985. The expansion was to handle ore from a new mine to be developed at Enonkoski near Savonlinna. The mine was to replace the Kotalahti Mine, which was expected to be depleted of ore by 1985. About 500,000 tons of ore per year, containing better than 1% nickel, could be mined over a 10-year period.

Greece.—LARCO, S.A., shelved plans to raise its nickel capacity to 40,000 tons per year from the current 27,000 tons. The project would have cost about \$170 million. In 1979, LARCO completed a \$68 million expansion program, and in November 1980, the company completed and brought onstream a new crushing facility near its mines on the island of Euboea. During 1981, a 10-kilometer, closed-top ore conveyor belt linking this new crushing facility to the Politika Port was scheduled for completion.

Eleusis Bauxite Mines, Mining, Industrial and Shipping, Inc. (Scalistiri Group), planned to build a 10,000-ton-per-year nickel plant when nickel market conditions improve. The estimated cost of the project was \$100 million, and Bechtel Corp. of Canada reportedly was involved in the feasibility study.

Guatemala.—In the third quarter, INCO decided to indefinitely mothball its 12,500ton-per-year laterite nickel operation beginning early in 1982. The complex, known as Exploraciones y Explotaciones Mineras Izabel, S.A. (EXMIBAL), is 20% owned by Hanna of Cleveland, Ohio, and produced nickel matte until it was put on a standby status late in 1980. In the 9 months the plant was operating that year, 15.3 million pounds of nickel was produced. It was estimated that a nickel price of \$4.15 per pound would be required for the operation to break even. The high cost of oil and poor market for nickel were the principal impediments to resumption of production. Conversion of energy source to coal had been considered. but was regarded as too costly. It would take about 6 months to bring the facility back onstream.

India.—It was reported that a Canadian firm began preparation of a prefeasibility study for the development of the Sukinda ultramafic complex in Orissa Province. Ore reserves are estimated at about 72 million tons of 0.85% nickel. The prefeasibility study was expected to be completed by yearend. A full feasibility study may be undertaken in 1982.

Indonesia.—A feasibility study on the expansion of the ferronickel plant at Pomalla in southeast Sulawesi was completed. Construction of the plant expansion was scheduled to begin in 1982 and when finished would triple capacity to 75,000 tons per year of ferronickel ingots. Indonesian Government officials announced the purchase of a 4% share in the P. T. International Nickel project, which is owned primarily by INCO, Ltd., of Canada. The Government plans eventually to increase its stake in the project to 20%.

No new developments took place on the P. T. Pacific Nikkel Indonesia (P.T. PNI) project on Gag Island because of inability to obtain financing. The nickel-cobalt laterite deposit was estimated to contain 160 million tons of ore grading about 1.64% nickel and 0.12% cobalt. Extensive engineering and financial studies have been made on the project, and plans called for the annual production of 115 million pounds of nickel and 1.1 million pounds of cobalt during the initial 10-year period. Equity in P.T. PNI is held by United States Steel Corp., Amoco Minerals Inc., and Hoogovens Ijmuiden, B. V., of Holland. As with P. T. International Nickel, the Indonesian Government has an option of 20% participation.

Japan.—Pacific Metal Co. began sintering and prereducing its ore in a kiln in order to lower the energy costs in its electric furnace operation. The company also experimented jointly with a Swedish company on a segregation process to upgrade ore of less than 2% nickel from sources in New Caledonia, Indonesia, and the Philippines to shipping grade, averaging about 2.5% nickel.

Nippon Mining Co., Ltd., spent \$24 million to boost ferronickel capacity at its Saganosiki smelter by 180 to 1,500 short tons per month.

The Ministry of Trade and Industry estimated a 7% drop in Japanese consumption of nickel in fiscal year 1981 (to March 31, 1982), to 120,000 tons. Nickel stocks were estimated at about one-third of this figure.

New Caledonia.—Société Le Nickel S.A. (SLN) announced a temporary shutdown of two of its furnaces at Doniambo. The reduced operating level resulted in a lowering of the annual production to about 38,600 tons of nickel, about 50% of capacity. SLN produced nickel in matte and ferronickel. The matte was treated at the company's refinery at Sandouville, France. SLN is owned equally by Imetal, S.A., and Société

Nationale Elf-Aquitaine, the 70% state-owned energy company. Two representatives from New Caledonia in the French National Assembly petitioned the French Government for financial assistance to SLN. An official of the French Government responded that the Government would take all necessary measures to insure the financial viability of SLN, and that assistance would be provided to carry out a coal conversion program.

Philippines.—Marinduque Mining and Industrial Corp. began conversion of its energy source for refining of nickel from oil to coal and expected the project to be completed by the end of 1982. The project was an attempt to stabilize long-term operating costs. Initially, coal would be imported from Australia, but exploration for Philippine coal was undertaken to find a domestic source. The Philippine Government provided financing for the conversion. A new financial package was also provided by the Philippine Government to the company to keep it financially viable and which also made the Government a controlling stockholder.

South Africa, Republic of.—Matthey Rustenburg Refiners, Pty., Ltd. (MRR), opened a 21,000-ton-per-year nickel refinery on October 13, 1981. At capacity, about 12,000 tons per year of copper and 2,800 tons per year of cobalt sulfate could also be produced. Previously, a large portion of MRR's production was shipped in matte form to the Port Nickel, La., facility of AMAX, Inc., for refining. The nickel feedstock for the new plant is a byproduct of MRR's platinum mining. Sherritt Gordon Mines, Ltd., provided technical services.

Western Platinum Mines, Ltd., mining for platinum-group metals from the Merensky Reef, produced copper, nickel, and cobalt in matte form for shipment to the Kristiansand, Norway, refinery of Falconbridge.

U.S.S.R.—A new copper-nickel facility was completed in the Norilsk region of Siberia. Potential production of concentrates was estimated at 550,000 tons per year of nickel-bearing concentrates and 650,000 tons per year of copper-bearing concentrates.

United Kingdom.—Construction of a new nickel-cobalt refining facility in North Wales was begun in September. High-purity nickel and cobalt and their salts were to be recovered from superalloy grindings. The refinery was to be operated by Chapman Metallurgical and be in production by mid-1982. Superalloy scrap would be processed to nickel and cobalt suitable for reuse in the aerospace industry. Capacity of the plant, expected to be reached by 1983, is about 1,000 tons per year of nickel and cobalt.

Zimbabwe.—Production at the Bindura nickel refinery north of Salisbury, was suspended for about 8 weeks beginning in late April because of an explosion that damaged an electric furnace. The Bindura Nickel Corp. refinery is managed by Anglo American Zimbabwe, Ltd., and accounts for more than one-half of Zimbabwe's nickel output, which was 16,617 tons in 1980. Planned production for Bindura in 1981 was 7,800 tons. The refinery is supplied by the Madziwa, Trojan, Epoch, and Shangani Mines. Rio Tinto Zinc, Ltd., operates another refinery and two mines in Zimbabwe, the Empress and Perseverance. Early in the year, the London Metal Exchange approved the listing of Rio Tinto nickel on the Exchange. Total output of Zimbabwe in 1981 was about 12,700 tons of nickel.

Table 11.—Nickel: World mine production, by country¹

(Short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Albaniae	5,500	5,600	5,800	6,100	6,200
Australia (content of concentrate)	94,653	90,785	76,841	81,927	381,600
Botswana	13,331	17,691	17,828	17,022	18,200
Brazil (content of ore)	4,675	3,968	3,267	2,800	2,600
Burma (content of speiss)	19	20	19	15	15
Canada ⁴	256,300	r _{141,437}	139,422	203,709	3176,032
China ^e	r12,000	r12,000	r _{12,000}	r _{12,000}	12,000
Cuba (content of oxide and sulfide)	r40.510	r _{38,346}	35,631	42,108	44,600
Dominican Republic	r27,446	r15.765	27,680	18,019	21,500
Finland:	21,440	10,100	21,000	10,010	21,000
Content of concentrate	6,434	4.858	6.393	7.199	7,600
Content of nickel sulfate	246	191	NA	,,133 NA	NA
German Democratic Republice	2.800	3,000	2,800	r3,000	3.000
Greece (recoverable content of ore) ⁵	r _{24.857}	*20.431	22,214	16.796	17.200
Guatemala	328	r _{1.189}	6.833	7.434	NA
Independent of the second of t					
Indonesia (content of ore) ⁵	36,468 37	r34,628	34,212	33,644	28,700
Mexico (content of ore) Morocco (content of nickel ore and cobalt ore)		24	170	1.40	$\bar{140}$
	172	192	176	148	
New Caledonia (recoverable) ⁶	^r 124,913	^r 71,839	88,696	95,451	³ 82,103

NICKEL 625

Table 11.—Nickel: World mine production, by country¹—Continued

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Norway (content of concentrate)	599 40,544 r1,230 r25,089 r162,000 14,347 18,377	591 32,549 1,230 131,636 164,000 13,509 17,307	e550 36,693 r1,230 33,339 r166,000 15,065 16,084	e550 42,196 r1,230 28,329 170,000 14,653 16,617	550 40,800 1,230 29,100 174,000 312,099 12,700
Total	^r 912,875	r722,786	748,774	820,947	771,969

^pPreliminary. ^rRevised. eEstimated. NA Not available.

⁵Includes a small amount of cobalt not reported nor recovered separately.

⁶Series revised to reflect reported nickel content of all ore produced.

Table 12.—Nickel: World smelter production, by country¹

(Short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Australia ³	37,633	41.146	43,366	38.921	446.854
Brazil ⁵		r _{2,522}	2,715	2,760	⁴ 2,579
Canada ⁶	167,515	98,360	92,315	167,881	127,000
China ^e	11,000	11,000	11,000	11,000	11,000
Cuba ⁷	r7,637	r7,414	6.951	8,200	8,600
Czechoslovakia	e2,400	e2,400	2,202	2,240	2,400
Dominican Republic ⁵		r _{15,765}	27,680	18.019	21,500
Finland	10,414	8,268	12,638	14,117	414,672
France ⁶	11,331	r8,543	3,660	10.802	11,000
German Democratic Republic ^e	3,100	3,300	3,300	3,300	3,300
Germany, Federal Republic of	100	993	1,348	1.361	1,300
Greece ⁵	10,582	r16,410	16,129	15,300	15,900
Indonesia ⁵	5,432	4,959	4,409	4,625	5,300
Japan	103,507	87,303	111,333	108,421	4103,176
Mexico	37	24	1		,
New Caledonia ⁵	31,177	21,924	33,480	35,913	430,852
Norway	42,134	26,166	33,778	40,716	440,791
Philippines	24,111	20,654	23,675	27,778	27,600
Poland ^e	r _{1,230}	r _{1,230}	r _{1,230}	r _{1,230}	1,230
South Africa, Republic of		^r 24,802	8,863	19,950	19,800
U.S.S.R.e	^r 184,000	r _{186,000}	r _{188,000}	192,000	196,000
United Kingdom	25,525	23,553	20,793	21,275	19,800
United States	37,897	37,298	44,191	44,225	448,805
Zimbabwe ^e	14,300	14,300	14,600	15,500	11,000
Total	^r 786,601	^r 664,334	707,657	805,534	770,459

eEstimated. ${}^{\mathbf{p}}$ Preliminary. Revised.

Refined nickel plus nickel content of ferronickel produced from ore and/or concentrates unless otherwise specified.

Table includes data available through May 21, 1982.

⁴Reported figure.

Insofar as possible, this table represents recoverable mine production of nickel; where data relate to some more highly processed form, the figure given has been used in lieu of unreported actual mine output to provide some indication of the magnitude of mine output, and is so noted parenthetically following the country name, or by footnote. Table includes data naganouse of mine output, and is so noted parenthetically following the country name, or by footnote. Table includes data available through May 5, 1982.

2In addition to the countries listed, Yugoslavia began producing nickel in small quantities in either 1978 or 1979, but output has not yet been officially reported quantitatively, and no basis is available for estimating the output level.

3Reported figure.

⁴Refined nickel and nickel content of oxides and salts produced, plus recoverable nickel in exported mattes and speiss.

²In addition to the countries listed, Albania is known to have initiated smelter production in 1978, and North Korea is believed to have produced metallic nickel and/or ferronickel, but information is inadequate for formulation of reliable testimates of output levels. Several countries produce nickel-containing mattes, but output for incikel in such materials have been excluded from this table in order to avoid double counting. Countries producing matte include the following, with output indicated in short tons of contained nickel: Australia: 1977—36,651 978—36,045; 1978—42,66; 1980—35,825; 1981—36,223; Botswana: 1977—13,331; 1978—17,691; 1979—17,828; 1980—17,063; 1981—16,954 (estimated); Indonesia: 1977—none: 1978—(none) revised; 1979—7,403; 1980—17,428; 1981—16,100 (estimated); New Caledonia: 1977—25,395; 1978—18,353; 1979—13,296; 1980—17,063; 1981—16,954 (estimated).

³Refined nickel plus the nickel content of oxide.

Spickel content of ferronickel only. (No refined nickel is produced.)

Includes nickel content of ferronickel, refined nickel and nickel oxide.

^{**}Toutent of nickel oxide and powder only; Cuba also produces nickel sinter and a processed sulfide, but these are not included in order to avoid double counting, as they may be processed to metal elsewhere. Output of sinter was as follows in short tons: 1977—9,553; 1978—9,496; 1979—10,776; 1980—10,800 (estimated); 1981—11,200 (estimated). Output of processed sulfide was as follows in short tons: 1977—9,989; 1978—9,083; 1979—7,315; 1980—9,800 (estimated); 1981—10,500 (estimated).

⁸Includes nickel content of nickel alloys

⁹Byproduct of metal refining, including that derived from both domestic ores and imported materials.

TECHNOLOGY

Bureau of Mines researchers continued testing a process for recovery of nickel, copper, and cobalt from the Duluth Gabbro complex of Minnesota. The work was conducted at the Twin Cities Research Center, Twin Cities, Minn. Differential flotation and matte separation techniques to separate the nickel and copper content of their respective fractions were evaluated. Also, a report on the extraction of metals from Pacific sea nodules was published.2 The Albany Research Center in Albany, Oreg., continued development of a method to recover nickel, cobalt, and copper from laterites containing less than 1.2% nickel and 0.25% cobalt. Pilot plant testing of the process was carried out by UOP, Inc., in Tucson, Ariz., and a final report was expected in early 1982. The Rolla (Mo.) Research Center continued its research into methods to recover nickel, cobalt, and copper from mattes and drosses generated during the smelting of lead ore concentrates. Beneficiation procedures for recovering cobalt and nickel from commercial lead, zinc, and copper concentrates by modifying milling procedures now practiced in the Missouri Lead Belt, were also developed. Contract studies on recovery of nickel and chromium and other metals from superalloy scrap were completed under the guidance of researchers at the Avondale Research Center, Avondale, Md.3 A report was also issued from this Center on the processing of nickel-cadmium scrap batteries.4

AMAX Nickel developed an acid-leach process for oxide nickel ores. In the process, nickel and cobalt were selectively precipitated using H2S gas at relatively low temperatures and pressures. With a high concentration of recycled solids, almost complete precipitation was obtained in about 1 hour. Claimed advantages of this technique were (1) elimination of the use of highpressure reactors and equipment; (2) recovery, compression, and recycle of large quantities of H₂S gas; and (3) elimination of heavy scaling of precipitation vessels. The process was demonstrated on several leach liquors in a pilot plant operated for more than a year.5

Teledyne Vasco, Inc., of Latrobe, Pa., began marketing a new high-strength nickel maraging steel developed by Inco Research and Development Center, Inc. The new cobalt-free alloy contained less molybdenum than the conventional 250-grade maraging steel. Cobalt was replaced with

titanium, but the titanium constituted a lower percentage of the alloy composition. Nickel content was about 18%. Maraging steel is used in dies for working various metals and for high-strength components such as gun recoil springs, trunnion pins in aircraft, and drive shafts.

The use of manganese as a substitute for nickel, and aluminum as a substitute for chromium, in austinitic stainless steels was investigated. Researchers found that the FeMn-Al alloy was ideal for cryogenic applications such as liquid gas pipelines. However, oxidation resistance was inferior to the FeNi-Cr alloy. Additions of carbon and silicon contributed to the Fe-Mn-Al alloy's good ductility and mechanical properties.

Scientists at General Motors Research Laboratories in Warren, Mich., developed a process for reclaiming nickel from used batteries. The nickel-bearing batteries were considered prime candidates for use in the first generation of electric vehicles, which were not expected to be commercialized on a large scale before 1986. The ability to recycle nickel from zinc-nickel oxide batteries is of great importance to their continued development because nickel accounts for about one-half of material cost. In the process developed, dislodged electrodes were fed into a magnetic separator to segregate the magnetic nickel hydroxide electrodes from the zinc electrodes. The addition of dilute sulfuric acid at 90° C dissolved nickel hydroxide and zinc contaminant and oxidized nickel in the nickel metal matrix. Controlled amounts of sodium hydroxide were then added to selectively precipitate first the contaminants and then nickel as nickel hydroxide. In benchscale testing, the process enabled 96% recovery of the nickel.8

Gould, Inc., of Rolling Meadows, Ill., which had been conducting research and development work on the use of a nickel-oxide zinc battery for use in electric vehicles, discontinued the project early in the year. The effort to develop the battery was a joint project with Ford Motor Co. Officials at Gould stated that lack of technical progress and a belief that nickel would be too high in cost compared with competitive materials, motivated their decision. Gould planned to continue to develop a lighter lead acid battery with the same performance characteristics as the current heavier models.9

627 NICKEL

The relatively high cost of tin in making cans spurred development of nickel coating on steel as an alternative, lower cost material. Inroads made by aluminum into this market also contributed to this research by several major steelmakers. In 1981, nickel was about one-half the price of tin and could be coated on steel to a thickness of fifteen ten-millionths of an inch, about one-tenth that of tin. Another substitute, chromium. was already in use. Although this application for nickel was still in the research stage, advancement in technology and increases in raw materials cost indicated the probable eventual use of nickel.10 Nippon Steel Corp. and National Steel Corp. conducted some of the research in this field. In another plating application, that of electronics, M&T Chemicals, Inc., of Rahway, N.J., focused its research and development efforts on chromium and nickel plated parts for the electronics industry as substitutes for more costly precious metals. A tin-nickel alloy was considered for use in the circuit board industry.11

A study conducted by the Maritime Administration, U.S. Department of Commerce, found that use of copper-nickel sheathing for ship hulls could result in significant savings in fuel costs, as well as reduced maintenance time. The coppernickel hulls would provide a low-friction surface without the corrosion, pitting, and salt water damage that characterize painted steel hulls. Because of reduced drag, less fuel would be used, according to the study. Even though the sheathing might add as much as \$3.4 million to the cost of the ship, fuel savings would more than offset this cost, resulting in a savings of nearly \$100 million over a 20-year operating life. While most savings were credited to lower fuel usage, about \$4 million could be saved in reduced drydock time and credits from sale of the hull for scrap upon retirement of the vessel. In addition, because a ship's effective speed would be increased, a smaller engine could be used and, therefore, more space would be available on board for cargo.12

¹Physical scientist, Division of Ferrous Metals.

²Khalafalla, S. E., and J. E. Pahlman. Selective Extraction of Metals From Pacific Sea Nodules With Dissolved Sulfur Dioxide. BuMines RI 8518, 1981, 26 pp.

Suitur Dioxide. Dumines A. 6316, 129.1, 20 pp.

DeBarbadillo, J. J., J. K. Pargeter, and H. V. Makar. Process for Recovering Chromium and Other Metals From Superalloy Scrap. BuMines RI 8570, 1981, 73 pp.

Wilson, D. A., and H. V. Makar. A Pyrometallurgical

Method for Processing Ni-Cd Scrap Batteries. BuMines RI

\$574, 1981, 14 pp.

*Mahesh, J. C., A. M. Gustavo, and G. R. Wicker. An Improved Process for Precipitating Nickel Sulfide From Acidic Laterite Leach Liquors. J. of Metals, v. 33, No. 11, November 1981, pp. 48-52

⁶American Metal Market. New Nickel Maraging Steel Marketed by Teledyne Vasco. V. 89, No. 207, Oct. 26, 1981,

Marketed by Teledyne Vasco. V. 89, No. 207, Oct. 26, 1981, p. 35.

7Charles, J., A. Berghezan, A. Lutts, and P. L. Dancoisne. New Cryogenic Materials: Fe-Mn-Al Alloys. Metal Prog., v. 119, No. 6, May 1981, pp. 71-74.

8Chemical and Engineering News. Nickel Recovery Aids Battery Developments. V. 59, No. 44, Nov. 2, 1981, p. 33.

9Collie, G. Gould Abandons Nickel-Zinc Battery. Am. Metal Market, v. 89, No. 51, Mar. 17, 1981, p. 1, 12.

19McManus, G. J. After a Long Drought, Are Tinplate Producers Ready for Comeback? Iron Age, July 6, 1981, pp. MP.7, 9, 18.

MP-7, 9, 13. Wechsler, P. National Tests Nickel-Coated Steel for Cans. Am. Metal Market, v. 89, No. 65, Apr. 6, 1981, p. 34.

¹¹Kingston, J. M&T's Reorganized Plating To Focus on Industrial Marts. Am. Metal Market, v. 89, No. 197, Oct.

12, 1981, p. 42.

12, 1981, p. 42.

13Sandor, L. W. Phase Report: Copper-Nickel Hull
Sheathing Study. Maritime Administration Report No.
DO-RD-930-81025, Dec. 31, 1980, 96 pp.

Nitrogen

By Charles L. Davis¹

Ammonia production in 1981 in the United States was less than the 1980 level. Production was greatest in the first quarter of the year and decreased to the yearly low in the fourth quarter, followed by increased production at the end of the year. Ammonia production in 1981 was valued at \$3.1 billion, and the value of 1980 ammonia production was \$2.7 billion. U.S. consumption of ammonia in 1981 was less than 1980 consumption, but the value of 1981 consump-

tion was \$3.3 billion, compared with the 1980 consumption value of \$2.9 billion. Production and apparent consumption values were based on the average annual 1980 and 1981 f.o.b. gulf coast prices.

Exports of ammonia and other major nitrogen compounds were down compared with 1980 levels. Ammonia imports were 11% less than 1980 tonnage, and total imports of major nitrogen compounds were down 5% compared with that of 1980.

Table 1.—Salient ammonia statistics

(Thousand short tons of contained nitrogen)

	1977	1978	1979	1980	1981 ^p
United States: Production ^{1 2} Exports Imports for consumption Consumption	14,712 346 884 14,831	14,169 434 1,247 15,270	r15,420 649 1,603 r16,574	16,244 681 1,921	15,648 506 1,719
Consumption* Superior Consumption Consumpt	r68,311	^{15,270} ^r 72,562	r76,899	17,664 P78,673	16,384 ^e 78,778

^eEstimated. ^pPreliminary. ^rRevised.

Legislation and Government Programs.—The fiscal year 1982 budget, submitted to Congress by President Carter, increased the funding for the Tennessee Valley Authority (TVA) fertilizer development center. However, the TVA budget for the ammonia-from-coal facility was reduced

from the 1981 level of \$1.6 million to the 1982 level of \$0.4 million.

Since November 1, 1981, fertilizer producers could obtain exemption from gas prices based on incremental rates by submitting an affidavit to the Federal Energy Regulatory Commission for the exemption.

DOMESTIC PRODUCTION

Production of ammonia in the United States in 1981 was 15.6 million tons of contained nitrogen. Anhydrous ammonia plant capacity was more than 19 million tons. Some plants became idle, others resumed production after periods of inactivity, and a few plants increased capacity. Most U.S. ammonia plants operated near

1980's 93% of design capacity. High operating costs contributed to the closing of eight plants totaling 1.5 million tons per year of capacity. Because of the current weak export market and potentially low future demand for exports, plans to increase capacity were delayed.

¹Synthetic anhydrous ammonia and coke oven ammonia.

²1981 coke oven ammonia not available.

³Includes producers' stock changes in synthetic anhydrous ammonia and coke oven ammonia.

Table 2.—Fixed nitrogen production in the United States

(Thousand short tons of contained nitrogen)

	. 1977	1978	1979	1980	1981 ^p
Anhydrous ammonia, synthetic plants ¹ Ammonium compounds, coking plants:	14,602	14,072	^r 15,317	16,155	15,648
Ammonia liquorAmmonium sulfate Ammonium phosphates	7 103 (²)	7 90 (²)	7 96 (²)	7 82 (²)	NA NA NA
Total	14,712	14,169	^r 15,420	16,244	15,648

 $^{^{\}mathbf{p}}$ Preliminary. ^rRevised.

Table 3.—Major nitrogen compounds produced in the United States

(Thousand short tons, gross weight)

Compound	1979	1980	1981 ^p
Acrylonitrile	1.009	915	1,003
Ammonium nitrate	r _{8,293}	9,127	8,791
Ammonium sulfate ¹	r _{2,479}	2,236	22,111
Ammonium phosphates	12,082	13,378	12,141
Nitric acid	r8.916	9,231	9,040
Urea	r7,000	7,830	7,610

Pr. liminary. rRevised.

Sources: Bureau of the Census and International Trade Commission.

Table 4.—Domestic producers of anhydrous ammonia in 1981

(Thousand short tons per year of ammonia)

Company	Location	Capacity
Agrico Chemical Co Williams	Blytheville, Ark	407
Do		468
Do		840
Air Products & Chemicals, Inc	New Orleans, La	210
Do		100
Allied Chemical Corp	LaPlatte, Nebr	
Do		1(2
Do		
Do		
American Cyanamid Co		
Atlas Chemical Industries, Inc.		
Borden Chemical Co		
		340
CF Industries, Inc		
Do		48
Do	Terre Haute, Ind	150
Do	Tunis-Ahoskie, N.C	
Do	Tyner, Tenn	170
Chemical Distributors	Chandler, Ariz	33
Chevron Chemical Co	Pascagoula, Miss	530
Do	Fort Madison, Iowa	
Do	El Camanda Calic	
Columbia Nitrogen Corp	Augusta, Ga	
Commico American	Koger Tev	400
Diamond Shamrock Chemical Co	Dumas, Tex	160
Dow Chemical Co		115
E. I. du Pont de Nemours & Co	Beaumont, Tex	340
Do	Dodumont, ICA	
El Paso Products Co	01 7	
Farmland Industries, Inc		
Do		210
Do		210
	D :1 01	
	Enid, Okla	840
Do	Lawrence, Kans	340
Felmont Oil Corp		85
First Mississippi Corp (AMPRO)		
Gardinier, Inc.	Tampa, Fla	120

Preliminary. ^rRevised. NA Not available. ¹Current Industrial Reports, U.S. Department of Commerce, Bureau of the Census. ²Included with ammonium sulfate to avoid disclosing company proprietary data.

¹Includes ammonium sulfate from coking plants. ²Excludes ammonium sulfate from coking plants.

NITROGEN 631

Table 4.—Domestic producers of anhydrous ammonia in 1981 —Continued

(Thousand short tons per year of ammonia)

Company	Location	Capacity
Georgia Pacific Corp	Plaquemine, La	196
Goodpasture, Inc	Dimmitt, Tex	40
Grace-Oklahoma Nitrogen	Woodward, Okla	400
W. R. Grace & Co	Woodstock, Tenn	340
Green Valley Chemical Co	Creston, Iowa	35
Hawkeye Chemical Co	Clinton, Iowa	138
Hercules. Inc	Louisiana. Mo	70
Hooker Chemical Co	Tacoma. Wash	28
International Minerals & Chemical Corp	Sterlington, La	400
Jupiter Chemical Co	Lake Charles, La	78
Kaiser Agricultural Chemicals Co	Savannah. Ga	100
Do	Pryor, Okla	105
Mississippi Chemical Corp	Yazoo City, Miss	393
Do	Pascagoula, Miss	175
Monsanto Co	Luling, La	850
New Jersey Zinc Gulf & Western	Palmerton, Pa	35
		94
N-Ren Corp	Pryor, Okla East Dubuque, Ill	238
Do	Carlsbad, N. Mex	68
Do		30
Do	Pine Bend, Minn	490
Olin Corp Pennwalt Chemical Co	Lake Charles, La	
	Portland, Oreg	. 8
Phillips Pacific Chemical Co	Kennewick, Wash	155
Phillips Petroleum Co	Beatrice, Nebr	210
PPG Industries	Natrium, W. Va	50
Reichhold Chemicals, Inc	St. Helens, Oreg	90
SimCal Chemical Co	El Centro, Calif	210
J. R. Simplot Co	Pocatello, Idaho	108
Tennessee Valley Authority	Muscle Shoals, Ala	74
Terra Chemicals International, Inc	Port Neal, Iowa	210
Triad Chemical Co	Donaldsonville, La	340
Union Chemical Co	Kenai, Alaska	1,100
Do	Brea, Calif	250
Do U.S.S. Agri-Chemicals, Inc	Cherokee, Ala	175
Do	Geneva, Útah	70
Vistron Corp	Lima, Ohio	475
Wycon Chemical Co	Cheyenne, Wyo	167
Total		19,507

Source: Economics and Marketing Research Section, Tennessee Valley Authority. World Fertilizer Capacity, Ammonia. Muscle Shoals, Ala., Jan. 6, 1982.

CONSUMPTION AND USES

Domestic ammonia consumption decreased to 16.4 million tons of contained nitrogen in 1981. The decrease was attributed to fewer applications of nitrogen fertilizers and lower demand for downstream ammonia products. Fertilizers amounted to an

estimated 75% of ammonia use either in direct application or in the manufacture of downstream compounds. Ammonia also was used to produce other chemicals, including explosives, resins, fibers, plastics, and animal feeds.

STOCKS

At yearend 1981, producers' stocks totaled 2.4 million tons of anhydrous ammonia, containing almost 2 million tons of nitrogen. This amount of ammonia was up 32% from the previous year's ending inventory.

PRICES

U.S. price increases of ammonia did not increase profitability for the producers. Rising natural gas costs and competitively priced ammonia from offshore brought pressure on the domestic market. In 1981, am-

monia prices, f.o.b. gulf coast, were \$122 at the beginning of the year gradually increasing to \$190 by late summer, and gradually decreasing to \$132 by yearend.

Table 5.—Price quotations for major nitrogen compounds at yearend 1981

(Per short ton)

Compound	Price
Anhydrous ammonia:	
F.o.b. gulf coast	\$131 -\$133
Delivered Corn Belt	190 - 195
Ammonium sulfate: F.o.b. Corn Belt	70 - 86
Ammonium nitrate: Delivered Corn Belt	138 - 150
Urea:	
F.o.b. gulf coast	130 - 135
Delivered Corn Belt	170 - 180
Diammonium phosphate: F.o.b. Tampa	168 - 172

FOREIGN TRADE

The tonnage of ammonia exported by the United States decreased 26% in 1981. Exports of downstream ammonia products decreased by 25%. Diammonium phosphate and urea continued to lead exported nitrogen compound tonnage.

U.S. ammonia imports for 1981 were 11%

below 1980 totals. The U.S.S.R. was the leading foreign supplier of ammonia to the United States with more than 796,000 tons, Canada followed with almost 488,000 tons, followed by Mexico with nearly 434,000 tons, and Trinidad and Tobago with 340,000 tons.

Table 6.—U.S. exports and imports for consumption of major nitrogen compounds in 1981

(Thousand short tons and thousand dollars)

Compound	Gross weight	Nitrogen content	Value
EXPORTS			
Industrial chemicals:			
Ammonia, aqua (ammonia content)	3	2	294
Ammonium nitrate	14	5	1.020
Ammonium phosphate	8	i	6.00
Ammonium sulfate	1	(1)	70
Pertilizer materials:	1	()	
Ammonium nitrate	60	20	10.63
Diammonium phosphates	4.345	808	789,77
Other ammonium phosphates	428	47	82.38
Ammonium sulfates	738	155	62,06
Anhydrous ammonia	616	507	90,740
Sodium nitrate	23	4	3.30
Urea	1,578	726	272,05
Nitrogen solutions	247	79	30,26
Other nitrogen fertilizers	147	29	19,44
Mixed chemical fertilizers	163	16	29,73
Total	8,371	2,399	1,397,78
IMPORTS			
ndustrial chemicals:			
Anhydrous ammonia and chemical-grade aqua	19	16	2,804
Ammonium nitrate	198	69	21.36
Ammonium phosphate	1	(1)	83
Ammonium sulfate	(1)	(1)	4
ertilizer materials:	()	()	*
Ammonium nitrate	264	88	29,71
Ammonium nitrate-limestone mixtures	(1)	(¹)	20,11
Diammonium phosphates	117	22	20.06
Other ammonium phosphates	207	23	39,22
Ammonium sulfate	327	69	28,53
Calcium cyanamide or lime nitrogen	1	(1)	28,55
Calcium nitrate	153	(¹) 23	10.76
Nitrogen solutions	147	47	17.95
Anhydrous ammonia	2.091	1,719	244.86
Potassium nitrate	43		10.18
Potassium nitrate-sodium nitrate mixtures	29	5 4	3.61
Sodium nitrate	159	25	7.52
Urea	853	392	131,23
Other nitrogenous fertilizers	86		131,238
Mixed chemical fertilizers	149	17 15	26,600
Total	4,844	2,534	610,574

¹Less than 1/2 unit.

NITROGEN 633

WORLD REVIEW

World fertilizer nitrogen consumption was higher in 1981 because of the increasing application of fertilizers in Eastern Europe and the U.S.S.R. and the growth in fertilizer consumption in Asia. Some countries with new ammonia production exported most of their product initially to help reduce the debt for plant construction.

European nitrogen fertilizer companies with a naphtha-based ammonia industry had to decide whether to build more energyefficient plants designed to use natural gas, which continues to increase in price, or to import, and if they import, whether to import ammonia or fertilizer in finished form. Similar decisions must be made by North American nitrogen fertilizer producers operating energy-inefficient natural gas plants. Some U.S. companies were making their plants more energy efficient and some have increased their imports of ammonia. The decisions to import could be affected as marketing pressures increase from Government-owned world capacity ammonia plants that were commissioned in 1981, and whose production was designated for export. The decision to produce or import will of course be determined by the economics of the industry and the price of ammonia on the international market. For ammonia producers that pay high prices for natural gas, such as in Western Europe, the prospect of increased export of cheaper ammonia from the Middle East could lead to plant closings and a decline in exports from Western Europe, especially at the present time when the nitrogen market is depressed by oversupply and slack demand.

As competition from the Middle East builds up again in the markets of Asia, export-bound production in Western Europe and the United States will be reduced.

World nitrogen production capacity exceeds demand. Continuing high production rates, high inventories, and flat demand have brought reduced prices.

Argentina.—Petrosur of Argentina was granted a loan of \$21.5 million to increase its urea capacity at Campana from 27,000 tons per year of nitrogen to 41,000 tons per year.²

Bahrain.—Gulf Petrochemical Industries of Bahrain awarded a contract for technology and engineering to Uhde GmbH of the Federal Republic of Germany. The \$400 million petrochemical complex will consist of a 1,000-ton-per-day ammonia plant using natural-gas as feedstock, with construction to begin in 1981.

Burma.—Construction of a new fertilizer complex was initiated by Vöest Alpine of Austria and Coppee-Rust of Belgium at the existing complex at Sale, Burma. The new nitrogen complex is to come onstream in mid-1982 producing 180 tons per day of ammonia and 260 tons per day of urea.⁴

Petrochemical Industries Corp. of Rangoon awarded Uhde GmbH a contract to supply a fertilizer complex for Burma. The contract was for ammonia and urea plants located at Kyaw-Zwa near the Irawadi River. The complex was scheduled to come onstream in 1984.

Canada.—A four-company consortium proposed a \$670 million nitrogen fertilizer complex. The complex would consist of three plants with production capacity of 1,600 tons per day of ammonia, 1,600 tons per day of urea, and 900 tons per day of nitrogen solutions.

CIL, Inc., signed a letter of intent retaining Uhde GmbH as engineering-procurement contractor for the 1,200-ton-per-day expansion of its 296,000-ton-per-year ammonia facility at Courtbright, Ontario.

India.—A new fertilizer complex was commissioned in India at Panki, near Kanpur, in Uttar Pradesh. The new complex consists of a 150,000-ton-per-year ammonia plant and a 225,000-ton-per-year urea unit.8

Indonesia.—Toyo Engineering of Japan was to build the first joint Association of Southeast Asian Nations fertilizer complex at Aceh on the Island of Sumatra. The plant would have a capacity of 272,000 tons per year of ammonia and 262,000 tons per year of urea and would use natural gas from the Arun Gasfield in Sumatra.

Korea, Republic of.—The second urea plant of the Namhae Chemical Co. was scheduled to come online in 1981, which would double the urea capacity at the company's Yosu site from 152,000 tons per year of nitrogen to 304,000 tons per year. The expansion was needed to meet domestic and export demands. 10

Kuwait.—Technipetrol of Italy won a major contract in Kuwait to construct a 1,000-ton-per-day ammonia plant, for a Government-owned firm, in the industrial region of Shuaiba.¹¹

Mexico.—Petroleos Mexicanos has awarded contracts to M. W. Kellogg Co. for construction of two 1,500-ton-per-day ammonia plants. One plant will be located at Salina Cruz, Oaxaca, on the Pacific coast and the other at Camargo, Chihuahua, in

northern Mexico. The plants were scheduled to come onstream in 1984.¹²

Netherlands.—Onie van Kunstmestfabrieken of the Netherlands has selected Kellogg Continental of Amsterdam to construct a new world-scale ammonia plant at its South Limburg site. The project will have a capacity of 360,000 tons per year of nitrogen of ammonia.¹³

Nigeria.—The Nigerian Government plans to construct a large fertilizer complex at Port Harcourt using natural gas as the feedstock. The complex was scheduled to start production in 1984 and will produce 272,000 tons per year of ammonia and 228,000 tons per year of urea.¹⁴

Portugal.—The Quimigal Group started construction of a 310,000-ton-per-year ammonia and 33,000-ton-per-year sulfuric acid complex at Barreiro, Portugal.¹⁵

Somalia.—The Somalia Government awarded a contract to an Italian company for a nitrogen fertilizer complex. The contract calls for a 165-ton-per-day ammonia and a 220-ton-per-day urea plant at Mogadishu on the Indian Ocean. 16

South Africa, Republic of.—Sasol Fertilizer Secunda Ltd. was undergoing a major expansion of its ammonia facilities from 47,000 tons per year to 137,000 tons per year of nitrogen, and an additional 137,000 tons

per year was to come onstream in 1982.17

Sri Lanka.—Construction of the fertilizer complex at Sapugaskanda has been completed. The complex had a planned capacity of 540 tons per day of ammonia and 940 tons per day of urea.

Sudan.—A large fertilizer complex, comprising a 109,000-ton-per-year ammonia plant and a 46,000-ton-per-year urea unit, was under construction near Khartoum. The first phase of the project was due onstream in 1982. 18

Trinidad and Tobago.—The new worldscale ammonia plants were commissioned in Trinidad. The Fertrin plants have a capacity of 630,000 tons per year of ammonia, and all production is available for export.¹⁹

Yugoslavia.—The ammonia capacity at the Hemijska Industrija Pancevo complex was being expanded with the installation of a new 1,000-ton-per-day plant due onstream at the end of 1981. Part of the ammonia output was to produce urea in a 33,000-tonper-year unit due onstream in 1982.²⁰

Zambia.—The 200-million-pound expansion of fertilizer facilities by Nitrogen Chemicals of Zambia at Kafve was to be commissioned. Part of the increased capacity will be 130 million pounds of ammonia that will be used as feedstock for nitric acid and ammonium nitrate facilities.²¹

Table 7.—Ammonia: World production, by country¹

(Thousand short tons of contained nitrogen)

Country	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Canada	1,944	2,123	2.184	2,200	² 2,404
Cuba ³	r ₆₄	43	171	220	240
Mexico	860	r _{1,437}	1,498	1,706	21,902
Netherlands Antilles	r ₃₇	-,	-,	-,	-,
Trinidad and Tobago	195	442	428	506	2437
United States	14,712	r _{14,169}	15,420	16,244	215,648
South America:	,	11,100	10,120	10,211	10,010
Argentina	46	52	67	72	244
Brazil	160	224	293	388	2414
Colombia	72	70	77	77	2101
Peru ^e	91	89	90	68	2108
Venezuela	299	299	285	397	² 457
Europe:	200	200	200	001	201
Albania ^e	72	83	79	83	85
Austria	513	518	573	529	2536
Belgium	644	*595	585	597	² 635
Bulgaria	r899	r868	860	912	910
Czechoslovakia	r869	r ₈₉₂	883	930	940
Denmark	36	36	36	34	² 34
Finland	145	165	126	77	276
France	2.242	r _{2.227}	2,370	2,298	² 2,480
German Democratic Republic	1.245	1,253	1,188	1.303	1.310
Germany, Federal Republic of	2,192	2.155	2,382	2,253	² 2,162
Greece	2,152	2,155 252	316	249	² 281
Hungary	804	822	885	876	2902
Iceland ^e	7	8	8	8	802
Ireland	31	r ₂₆	188	280	² 320
					21.323
Italy Netherlands	1,287	1,591	1,577	1,540	
Netherlands	2,359	2,368	2,244	2,195	² 2,172

See footnotes at end of table.

635

Table 7.—Ammonia: World production, by country1 —Continued

(Thousand short tons of contained nitrogen)

Country	1977	1978	1979	1980 ^p	1981 ^e
Europe —Continued	-				
Norway	556	580	600	568	² 57
Poland	1,835	1,776	1,681	1,700	1.65
Portugal	204	278	245	220	214
Romania	1,975	2,488	2,573	2,478	2,40
Spain	1.064	970	904	881	² 81
Sweden	112	105	99	95	28
Switzerland ^e	50	50	50	50	23
U.S.S.R	11.843	12.456	13,448	13,754	13.90
United Kingdom	1,798	1.764	1,836	1,800	21.96
Yugoslavia	460	459	461	459	² 46
Africa:	100	200		100	- 10
Algeria	e ₃₅	r ₅₀	23	33	24
Egypt	231	275	290	441	265
Libya ^e		90	147	165	15
South Africa, Republic of	560	621	620	605	² 60
Zambia	e 20	e20	² 20	22	219
Zimbabwe ^e	80	70	70	66	25
sia:		10	10	. 00	-9
Afghanistan ^e	40	30	30	11	10
Bangladesh	118	116	184		219
	64	61	61	154	
Burma ^e				66	70
China ^e India ⁴	6,200	7,400	7,900	8,300	8,20
India" Indonesia	2,245	*2,447	2,487	2,448	² 3,24
	*452	^r 645	837	796	² 1,160
Iran	299	196	202	240	23
Iraq	150	200	500	551	- 90
Israel	76	75	76	60	² 4(
Japan	2,526	2,705	2,561	2,369	² 2,039
Korea, North	450	500	500	500	_500
Korea, Republic of	799	989	1,059	934	2820
Kuwait	443	475	^e 480	485	2420
Malaysia	37	44	57	45	2 ₄ 1
Pakistan	348	341	425	474	² 654
Philippines	^e 45	e 45	44	43	238
Qatar	116	183	334	460	2404
Saudi Arabia	138	154	171	184	2188
Syria	25	21	84	53	220
Taiwan	359	483	431	457	2446
Thailand ^e	8	10			7
Turkey	118	239	226	275	² 66
Vietnam ^e	10	20	30	(⁵)	(5)
Ceania: Australia	r349	324	340	389	2384
	r68,311	r72,562	76,899	78,673	78,778

^eEstimated. Preliminary. ^rRevised.

TECHNOLOGY

The TVA of Muscle Shoals, Ala., has tested a new technique for granulating urea. The method was melt granulation by the falling-curtain process and evaporative cooling. As the rotary drum granulator turns, the feed to the drum and undersized granules are raised in the drum. Before reaching the drum apex, the granules are discharged onto a pan from which they flow onto another lower pan. Granules falling off the lower pan form a thin dense curtain onto which sprays of molten urea are directed. As the coating cools, it solidifies and enlarges the granule size.22

Monsanto Co. developed a hollow fiber, permeable membrane, large-scale gas separator used in the purge system of synthesis gas loops in ammonia plants. Air is introduced into the loop to provide the necessary nitrogen for ammonia synthesis, but unfortunately levels of inert gases, methane, carbon dioxide, and carbon monoxide also are brought in and accumulated in the loop. When the loop is purged of the gas buildup, hydrogen is lost in the purge. The loss of hydrogen reduces the efficiency of the ammonia synthesis process. To reduce hydrogen loss, the membrane separator is used

¹Table includes data available through May 12, 1982.

²Reported figure.

^{*}Series revised to reflect officially reported Cuban data for 1977-80 (1981 figure is an estimate).

*Data are for years beginning April 1 of that stated.

⁵Nitrogen (N content of ammonia) production capacity in Vietnam is 60,000 tons per year; it is not known at what output level plant is operating.

and has been very efficient and maintenance free.23

Uhde GmbH, Dortmund, Federal Republic of Germany, has developed a low-energy concept for ammonia plants. The concept deviates from the conventional ammonia plant in the following ways: (1) Application of a process-integrated gas turbine as driver of the process air compressor: (2) preheating of the gas turbine combustion air in the connection bank of the primary reformer; (3) higher reforming pressure; (4) CO₂ removal systems; (5) application of an absorption refrigeration system; (6) low-pressure ammonia synthesis; and (7) purge gas recovery unit incorporated in a plant. Uhde suggested that if these specific features are incorporated, it would be possible to have a specific energy consumption lower than 25 million British thermal units per ton based on an inlet pressure of 15-bar for the feedstock and production of liquid ammonia at -33° C.24

Research and development activity focusing on mechanisms, catalysts, and reactor designs initiated a new life for the old Fischer-Tropsch (F-T) technology. This activity yielded a three-pronged program to convert F-T technology to chemical feedstock production. One program was aimed at development of more selective catalysts to improve the yield of C2 to C4 olefins. A second program was aimed at the production of a coal-derived naphtha suitable for

cracker feedstock. The third program was aimed at producing C10 to C20 aliphatic, straight-chain hydrocarbons for making detergents. These programs and other efforts in plant management were directed toward improving energy efficiency and reducing operating costs.25

¹Physical scientist, Division of Industrial Minerals. ²Nitrogen (London). Plant and Project News. No. 129, January-February 1981, p. 13. ³Page 14 of work cited in footnote 2.

⁴European Chemical News. V. 36, No. 971, Mar. 2, 1981,

5 Nitrogen (London). Plant and Project News. No. 133, September-October 1981, p. 15.
6 European Chemical News. V. 36, No. 970, Feb. 23, 1981,

p. 23.

Page 14 of work cited in footnote 5.

News. V. 37,

⁸European Chemical News. V. 37, No. 995, Aug. 17-24, 1981, p. 11.

⁹Page 15 of work cited in footnote 2.

10 Page 15 of work cited in footnote 2. ¹¹European Chemical News. V. 37, No. 1004, Oct. 26, 1981, p. 29. ¹²Chemical Marketing Reporter. Feb. 23, 1981, pp. 7, 32.

¹³Page 23 of work cited in footnote 8

Fage 20 of work cited in rootates.
 Fertilizer International. No. 141, March 1981, p. 7.
 Chemical Age. V. 121, No. 3196, Jan. 16, 1981, p. 7.

¹⁶Page 15 of work cited in footnote 6. ¹⁷Page 14 of work cited in footnote 5.

¹⁸Work cited in footnote 14 ¹⁹European Chemicals News. V. 37, No. 994, Aug. 13, 1981, p. 6.

20Work cited in footnote 2.

²¹Page 14 of work cited in footnote 2. ²²Page 30 of work cited in footnote 5.

²³Chemical Engineering. Unique Membrane System Spurs Gas Separations. V. 88, No. 24, Nov. 30, 1981, p. 62.

Spurs Gas Separations. V. 88, No. 24, Nov. 30, 1981, p. 62.

²⁴Chemical Engineering Progress. High Pressure Steam
Equipment for a Low Energy Ammonia Plant. V. 77, No.
10, October 1981, p. 54.

²⁵Chemical and Engineering News. Fisher-Tropsch: New
Life for Old Technology. V. 59, No. 43, Oct. 26, 1981, p. 22.

Peat

By Charles L. Davis¹

The U.S. peat industry produced nearly 686,000 short tons of peat of all types in 1981. Compared with the previous year's production of 785,000 short tons, production for 1981 declined by nearly 13%. Michigan produced more peat than any other State, accounting for 236,540 tons, which was 31% of the U.S. total. Michigan, Florida, Indiana, and Illinois were the major peat-producing States in 1981. Reed-sedge peat accounted for 61% of the U.S. domestic peat production. Humus peat amounted to 20%, hypnum moss peat to 5%, sphagnum moss peat to 3%, and other unclassified types to 11%.

The sale of peat in the United States totaled \$18.8 million, an increase of 16%

compared with 1980 sales. About 64% of domestic peat sold in 1981 was packaged. The average apparent peat price in 1981 was \$24.82 per ton, f.o.b. plant, 21% higher than the 1980 average.

Peat imports decreased 15% to 341,930 tons in 1981. About 99% of the 1981 peat imports were premium-grade sphagnum moss peat from Canada. Apparent consumption of peat decreased 8% to 1.1 million tons. Imports contributed about 31% of apparent consumption tonnage in 1981 and 70% of apparent consumption value. World production in 1981 was approximately 225 million tons, with the U.S.S.R. producing about 94% of the total.

Table 1.—Salient peat statistics

	1978	1979	1980	1981
United States:				
Number of active operations	100	97	96	90
Production thousand short tons	822	825	785	686
Sales by producersdo	750	798	788	757
Bulkdodo	328	324	298	276
Packageddodo	422	474	491	481
Value of sales thousands	\$12,988	\$15,517	\$16,190	\$18,784
Average per ton	\$17.32	\$19.44	\$20.54	\$24.82
Average per ton—bulk	\$13.98	\$15.05	\$15.46	\$17.28
Average per ton—packaged or baled	\$19.92	\$22.46	\$23.61	\$29.14
Imports thousand short tons	380	381	402	342
Apparent consumptiondodo	1,130	1.179	1,190	1,099
Yearend producers' stocksdodo	394	350	330	269
World: Productiondo	^r 224,379	^r 223,372	P224,711	e224,959

^eEstimated. ^pPreliminary. ^rRevised. ¹Sales plus imports.

DOMESTIC PRODUCTION

Peat was produced by 90 active mines in the United States in 1981. Approximately 46% of U.S. production in 1981 was from six large mines with annual capacities greater than 25,000 tons. The six peat mines included one reed-sedge mine each in the States of Florida, Indiana, and Michigan, one humus mine in New York, and one unclassified

peat mine each in the States of Florida and Colorado.

Reed-sedge production decreased 6% in 1981 and was 61% of the U.S. total peat production. Humus production declined 15% in 1981 and was 20% of the U.S. total peat production.

Table 2 —Relative size of peat operations in	the	he United St	ates
--	-----	--------------	------

Size in tons per year	Number of active plants		Production (thousand tons)	
Size iii wiis per year	1980	1981	1980	1981
25,000 and over	7 10 4 15 17 12 31	6 4 19 15 12 28	362 184 47 108 56 19 9	316 106 53 134 49 17
Total	96	90	785	686

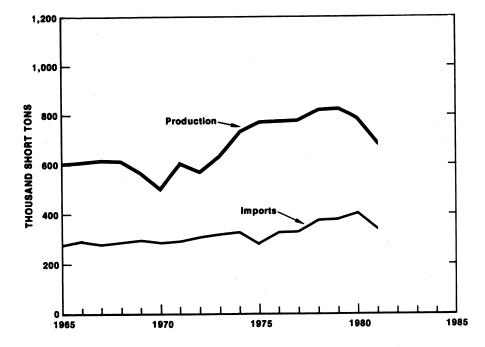


Figure 1.—Production and imports of peat in the United States.

CONSUMPTION AND USES

Domestic sales by U.S. peat producers in 1981 reached 757,000 tons, a decrease from 1980 sales. Peat sold in packaged form was 64% of 1981 sales, slightly less than that of 1980. Bulk sales declined 7%. The percentage of each peat type packaged in 1981 was sphagnum moss, 85%; reed-sedge, 81%; hypnum moss, 48%; humus, 41%; and other

unclassified peat, less than 1%.

Domestic peat sales for soil conditioning decreased slightly from that of 1980 to 59% in 1981. Sales of peat in 1981 for potting soils decreased by 15% from 1980 sales. Apparent consumption of peat decreased by 8% in 1981 to 1.1 million tons.

639 PEAT

Table 3.-U.S. peat sales by producers in 1981, by use

Use	In bulk		In packages		Total	
	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Earthworm culture medium	13,931	\$233	21,247	\$549	35,178	\$782
General soil improvement	60,973	1,027 540	383,451 729	9,950 42	444,424 26,101	10,977 582
Golf course Ingredient for potting soils	25,372 77,282	1.328	51,608	2,025	128,890	3,353
Mixed fertilizers	17,549	190	4,292	2,020	21,841	281
Mushroom beds	1.353	53	1,752	127	3,105	180
Nurserv	60,195	1,026	6,223	233	66,418	1,259
Packing flowers, plants, shrubs, etc	2,972	57	4,142	316	7,114	¹ 374
Seed inoculant	268	41	4,759	549	5,027	590
Vegetable growing	4.135	53	292	21	4,427	74
Other	11,636	208	2,986	124	14,622	332
Total	275,666	4,756	481,481	¹14,028	757,147	18,784

¹Data do not add to total shown because of independent rounding.

PRICES AND SPECIFICATIONS

The average price per ton, both f.o.b. mine for domestic and at port of entry for imported peat, was \$24.82, an increase of 21% compared with that of 1980. The average domestic price per ton for bulk peat was

\$17.28, an increase of 12%. The average domestic price per ton for packaged peat in 1981 was \$29.14, an increase of 23% compared with that of 1980.

Table 4.—U.S. peat sales by producers in 1981, by State

State	Quantity (short tons)	Value ¹ (thou- sands)	Percent packaged
Colorado Florida Illinois Indiana Iowa Michigan Minnesota New Jersey North Dakota Ohio Pennsylvania Wisconsin Other	33,365 157,120 45,834 104,935 10,180 236,540 24,622 26,020 38,999 W 10,479 25,302 9,878 33,873	\$299 2,885 1,502 3,140 452 4,540 940 1,475 811 36 191 647 535 1,335	4 35 87 79 20 93 91 57 94 -74 15 45 XX
Total	757,147	318,784	63

W Withheld to avoid disclosing company proprietary data. XX Not applicable.

1Values are f.o.b. producing plant.

Includes California, Georgia, Maine, Maryland, Massachusetts, Montana, and Washington.

3Data do not add to total shown because of independent

rounding.

Table 5.—U.S. peat sales by producers in 1981, by use and kind

	Sph	Sphagnum moss		H	Hypnum moss	92		Reed-sedge	
The	Quantity	tity	77-1-2	Qua	Quantity		Q.	Quantity	;
eso	Weight (short tons)	Volume ¹ (cubic yards)	(thou-sands)	Weight (short tons)	Volume (cubic yards)	(thou-sands)	Weight (short tons)	Volume (cubic yards)	Value (thou- sands)
Barthworm culture medium General soil improvement Golf course Ingredient for potting soils Mixed fertilizers Mushroom beds Nursery Packing flowers, plants, shrubs, etc Seed incoulant Vegetable growing Total²	210 16,972 922 292 292 1,788 1,788 1,788 292 292 292 292 292 292 292 292 292 2	700 111,068 5,020 2,920 11,520 11,520 12,830 2,920 2,920 2,920 2,920 161,778 Humus	21,289 37,37,37,37,37,37,37,37,37,37,37,37,37,3	85,809 695 1,876 75 75 75 1,265 89,979	909 84,547 1395 1,390 1396 1,390 175 1,500 169 1,728 178 4,780 179 97,386 179 97,386 179 97,386 179 97,386	\$1,059 9 16 22 22 51 51 1,181	295,311 17,634 56,508 68,508 41,684 41,684 41,684 5,067 1,050 5,636 6,636 6,636 Que	25,500 11,430 11,430 14,588 18,41,688 19,208 19,	\$750 6,078 4,87 2,108 15 818 327 480 18 72 11,111
	Weight (short tons)	Volume (cubic yards)	(thou-sands)	Weight (short tons)	Volume (cubic yards)	value (thou- sands)	Weight (short tons)	Volume (cubic yards)	Value (thou- sands)
Barthworm culture medium General soil improvement General soil improvement Golf course Ingredient for potting soils Musca fertilizers Musca fertilizers Nursery Packing flowers, plants, shrubs, etc Seed incoulant Vegetable growing	1,845 83,182 15,650 31,019 4,225 640 18,483 205 523 2785 1,683	3,090 115,730 11,100 73,578 8,298 1,060 35,472 410 717 717 5,350 8,366	\$22 2,413 86 502 81 15 249 4 4 89 89 89	525 13,150 1,200 39,375 17,124 7,136 1,550 300 2,951	1,000 24,271 2,000 83,000 28,540 12,727 3,000 500 6,127	\$5 158 102 170 171 22 22 	35,178 444,424 26,101 128,565 21,841 3,105 69,830 7,114 5,027 4,427 11,535	76,220 1,025,574 64,928 297,521 40,257 21,378 154,118 18,956 11,870 11,270 27,543	\$782 10,977 5822 3,354 281 180 1,259 374 590 74
Total ²	150,240	293,171	3,655	83,311	161,165	1,196	757,147	757,147 1,739,397	18,784

 $^{1}\rm Volume$ of nearly all sphagnum moss was measured after compaction and packaging. $^{2}\rm Data$ may not add to totals shown because of independent rounding.

Table 6.—Prices for peat in 1981,1 by type

(Dollars per unit)

	Sphag- num moss	Hypnum moss	Reed- sedge	Humus	Other	Total
Domestic:						
Bulk:						
Per ton	46.53	18.23	20.81	15.00	14.35	17.28
Per cubic yard	16.78	7.99	9.77	7.42	7.42	8.41
Packaged or baled:	200					0.11
Per ton	74.07	38.15	25.04	33.41	15.97	29.14
Per cubic yard	9.98	14.94	11.10	17.75	8.00	11.95
Total:	0.00	11.01	11.10	110	0.00	11.50
D- 4-	72.29	29.53	24.12	24.33	14.36	24.82
Per cubic yard	10.15	12.12	10.83	12.47	7.42	10.80
Imported, total, per ton ²	130.72	XX	XX	XX	XX	130.72

Table 7.—Average density of domestic peat sold in 1981

(Pounds per cubic yard)

	Sphag- num moss	Hypnum moss	Reed- sedge	Humus	Other
Bulk	720	965	958	1,179	1,138
	200	783	908	1,235	1,002
	233	852	918	1,200	1,137

FOREIGN TRADE

Peat imports decreased 15% to 341,930 tons in 1981. Most of the imports, about 99%, came from Canada. Canadian sphagnum moss peat has more desirable qualities

than some domestically produced peat. Minor amounts of peat were imported from the Federal Republic of Germany.

Table 8.—U.S. imports for consumption of peat moss in 1981, by country

	Poultr stable			Fertilizer- grade		tal
Country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Canada	50,125	\$6,795	291,391	\$37,849	341,516	\$44,644
Finland	· 2	· 6			2	6
Germany, Federal Republic of	46	Ř	$2\overline{1}\overline{3}$	32	259	. 4Ŏ
Honduras	46 e ₂	(¹)		-	2	(1)
Japan	_		22	- <u>-</u> 2	22	۱,
Netherlands	22	35	22	-	22	35
N T	24	99	34	60	22	
Norway			34		34	60
South Africa, Republic of			70	10	70	10
Sweden			2	1	2	1
Total ²	50,198	6,845	291,732	37,955	341,930	44,800

^eEstimated.

Source: Bureau of the Census.

XX Not applicable.

¹Prices are f.o.b. mine.

²Average customs price.

¹Less than 1/2 unit.

²Data may not add to totals shown because of independent rounding.

Table 9.—U.S. imports for consumption of peat moss in 1981, by customs district

	Poultr stable	y- and grade	Ferti gra		Total	
Customs district	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Anchorage, Alaska ¹			14	\$2	14	\$2
Boston, Mass	-3	\$2	37	31	40	33
Buffalo, N.Y. ¹	21,792	3,237	3,613	414	25,405	3,651
Chicago, Ill	2	6	e ₁	(2)	e ₃	6
Detroit, Mich.1	26,274	3,276	5,687	746	31,961	4,022
Duluth, Minn. ¹			2,776	538	2,776	538
Great Falls, Mont. 1	148	15	33,793	4,859	33,941	4,874
Los Angeles, Calif			289	39	289	39
Miami, Fla. 1	177	9			177	9
Milwaukee, Wis.1			58	10	58	10
New York, N.Y. ¹	3	(²)			- 3	(²)
Norfolk, Va	1	(2)			. 1	(2)
Ogdensburg, N.Y.1	431	47	112,680	12,670	113,111	12,717
Pembina, N. Dak. ¹	493	80	49,029	7,900	49,522	7,980
Portland, Maine ¹	574	104	24,627	3,218	25,201	3,322
Portland, Oreg	17	2	,	´	17	. 2
St. Albans, Vt.1	64	6	20,165	2,391	20,229	2,397
San Juan, P.R. ¹	47	37	13	31	60	68
Savannah, Ga.1	3	(2)			3	(2)
Seattle, Wash.1	169	23	38,821	5,088	38,990	5,111
Tampa, Fla. ¹			89	9	89	´ 9
Virgin Islands ¹			40	6	40	6
Total ³	50,198	6,845	291,732	37,955	341,930	44,800

¹Predominately of Canadian origin.

WORLD REVIEW

World production of peat was approximately 225 million short tons in 1981. The U.S.R. produced more peat than any other country, approximately 94% of the world total. Other significant producers were Ireland, the Federal Republic of Germany, Finland, and the United States.

Brazil.—The Mineral Reserves Prospecting Co. reported discovery of more than 110 million short tons of peat about 120 miles from Salvador, the capital city of Bahia State. Total reserves of peat in Bahia and Sergipe are reported to be 440 million short tons.²

Canada.—Peat Resources completed

phase one of a five-part feasibility study into the viability of peat fuel in Canada. The \$281,000 study included engineering, reconnaissance, and environmental studies on northern Ontario bogs.³

A 720-kilowatt, peat-fueled, gas-fired generator is expected to produce its first power in 1985 on Anticoste Island in the Gulf of St. Lawrence. The thermal plant, to be completed in 1984, will operate the first year on wood chips and then switch to peat.

Saskatchewan was to demonstrate peat's potential for home heating by installing four hybrid furnaces and evaluating results over two heating seasons.

²Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

PEAT 643

Table 10.—Peat: World production, by country¹

(Thousand short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Argentina: Agricultural use	7	r ₅	4	5	5
Australia	7	r7	13	11	11
Canada: Agricultural use	426	480	529	538	535
Denmark: Agricultural use ³	44	52	50	34	33
Finland:					
Agricultural use	255	224	852	637	550
Fuel	661	2,061	1,710	2,029	2,205
France: Agricultural use	^r 204	^é 155	^e 155	^e 155	155
Germany, Federal Republic of:					
Agricultural use	2,107	^r 2,256	2,038	2,348	2,315
Fuel	244	251	254	308	310
FuelHungary: Agricultural use ^e Ireland:	80	80	80	80	80
Agricultural use	91	91	99	97	100
Fuel	6.009	5.443	4,330	5.251	5,555
Israel: Agricultural use	22	22	20	22	22
Netherlands ^e	450	450	450	450	450
Norway	200				
Agricultural use ^e	66	66	66	66	66
Fuel ^e	1	1	1	1	1
Poland:		_	_		
Fuel and agricultural use	r ₂₂₀	r ₂₂₀	220	220	225
Spain	46	r ₃₅	51	49	50
Sweden:					
Agricultural use	r ₁₀₁	^r 105	105	105	105
Fuel	33	r ₃₃			
U.S.S.R.:					
Agricultural use	145,500	145,500	145,500	145,500	145,500
Fuel ^e	66,000	66,000	66,000	66,000	66,000
United States: Agricultural use	781	822	825	785	4686
Venezuela: Agricultural use ^e	10	20	20	20	NA.
Total	r223,365	r224,379	223,372	224,711	224,959
Fuel peat included in total	^r 73,168	¹ 74,009	72,515	73,809	74,296

^eEstimated. ^pPreliminary. ^rRevised. NA Not available.

TECHNOLOGY

The Darvon Co. analyzed competing methods of harvesting and dewatering peat. Rockwell International and Dynatech studied the relatively new fields of hydrogasification and alcohol-from-peat processes.

A team of researchers at the University of Sherbrooke, Sherbrooke, Ontario, experimented with a conversion process using a vacuumized pyrolytic reaction to extract solid and liquid products from peat.5

¹Table includes data available through May 15, 1982.

²In addition to the countries listed, Austria, Iceland, and Italy produce negligible quantities of fuel peat, and the German Democratic Republic is a major producer. However, output is not officially reported and available information is inadequate for formulation of reliable estimates of output levels.

³Sales. ⁴Reported figure.

¹Physical scientist, Division of Industrial Minerals.

²F & M Journal. September 1981, p. 304.

³The Northern Miner. V. 67, No. 33, Oct. 22, 1981, p. 31.

^{*}Canadian Renewable Energy News. U.S. Peat Activity
Mounting Despite Government Cuts. V. 4, No. 8, October
1981, p. 40.

Perlite

By A. C. Meisinger¹

U.S. production of processed perlite sold and used by producers in 1981 declined 7% to 591,000 tons valued at \$17.4 million. Total ore output for processing by 11 companies at 13 operations in 7 Western States was 710,000 tons, a 14% decrease from the 1980 output. Five New Mexico operations accounted for 83% of the perlite ore total in 1981.

Expanded perlite sold and used declined 12% to 475,000 tons. New Jersey led all States in total quantity of expanded perlite sold and used. Active plant operations de-

clined from 78 in 33 States in 1980 to 73 in 32 States in 1981. California and Texas each had seven active plants.

Domestic consumption of expanded perlite in 1981 totaled 475,000 tons, a 12% decrease from that of 1980. Construction industry use of perlite decreased 14% compared with that of 1980.

The average value of processed perlite sold and used increased 14% to \$29.47 per ton, f.o.b. plant. The average value of expanded perlite sold and used increased 8% to \$138.74 per ton, f.o.b. plant.

Table 1.—Perlite mined, processed, expanded, and sold and used by producers in the United States

(Thousand short tons and thousan	ıd (dollars)	
----------------------------------	------	----------	--

*****			Pı	ocessed perli	ite		Ex	panded perli	te
Year	Perlite mined ¹	Sold to ex	panders	Used a plant to expanded	make	Total quantity sold and used	Quantity produced	Sold an	d used
		Quantity	Value	Quantity	Value			Quantity	Value
1977 1978 1979 1980 1981	871 939 847 824 710	298 320 322 334 324	5,514 6,813 7,996 9,053 9,888	299 321 338 304 267	5,239 6,927 8,439 7,447 7,530	597 641 660 638 591	504 553 551 544 484	498 546 543 537 475	53,600 64,300 61,200 69,200 65,900

¹Crude ore mined and stockpiled for processing.

DOMESTIC PRODUCTION

The quantity of perlite mined for processing by 11 companies from 13 operations in 7 Western States in 1981 was 710,000 tons, a 14% decrease from the quantity mined in 1980. Five New Mexico operations accounted for 83% of the total ore mined compared with 86% the previous year; the remaining 17% was mined from deposits in Arizona, California, Colorado, Idaho, Nevada, and Utah.

The quantity of processed perlite sold and used by producers in 1981 decreased 7% to 591,000 tons. The value of the processed perlite was \$17.4 million, an increase of 5% compared with that of 1980.

Perlite ore producers in 1981 were Filters International, Inc., and Harborlite Corp. in Arizona; American Perlite Co. in California; Persolite Products, Inc., in Colorado; Oneida Perlite Corp. in Idaho; Delamor Perlite Co. and United States Gypsum Co. in Nevada; Grefco, Inc., Manville Products Corp., Silbrico Corp., and United States Gypsum Co. in New Mexico; and Mountain Maid, Inc., in Utah.

Expanded perlite was produced in 73 plants in 32 States in 1981, compared with 78 plants in 33 States in 1980. The quantity of expanded perlite produced was 484,000 tons, an 11% decrease from that of 1980. The quantity sold and used by producers declined 12% in 1981 to 475,000 tons, valued at nearly \$65.9 million compared with \$69.2 million in 1980.

Leading States in descending order of expanded perlite produced in 1981 were New Jersey, Illinois, Mississippi, Texas, California, Pennsylvania, Virginia, Colorado, Florida, Kentucky, and Indiana. The leading States in descending order of value of expanded perlite sold and used in 1981 were Illinois, Texas, California, Mississippi, Pennsylvania, New Jersey, Florida, Virginia, Indiana, Colorado, and Kentucky. In 1981, California and Texas each had seven producing plants, followed by Pennsylvania with six, and Illinois and Indiana with five each.

Table 2.—Expanded perlite produced and sold and used by producers in the United States

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		198	80			198	81	
~	Quantity		Sold or used		Quantity		Sold or used	
State	produced (short tons)	Quantity (short tons)	Value (thou- sands)	Average value per ton ¹	produced (short tons)	Quantity (short tons)	Value (thou- sands)	Average value per ton ¹
Arkansas	700	700	\$120	\$182.00	1,000	1.000	w	w
California	53,600	52,500	7,000	132.80	36,500	35,000	\$5,100	\$146.60
Florida	31,700	31,600	3,700	116.11	29,900	29,700	3,900	130.10
Illinois	53,900	51,500	8,500	165.15	44,500	43,100	7,600	176.19
Indiana	44,900	45,100	6,000	134.04	20,100	19,800	3,600	179.92
Maine	7,300	7.300	1,100	147.00	W	W	w	W
Massachusetts _	3,100	3,100	600	202.34	2,400	2,400	650	264.27
Michigan	9,100	9,100	W	w	w	W	W	W
Nevada	2,900	2,900	300	107.39	w	Ŵ	w	w
New York	W	w	w	W	5,900	5,600	1.000	180.34
Ohio	8,400	8,400	1,000	131.24	w	w	w	W
Pennsylvania _	39,000	38,900	5,200	133.42	36,500	36,300	4,800	132.81
Tennessee	4,300	4,400	800	179.00	W	W	, W	W
Texas	39,800	39,200	6,300	160.13	39,900	38,900	7.000	180.83
Other2	245,000	242,000	28,500	113.50	266,900	263,500	32,200	122.28
Total ³	544,000	537,000	69,200	128.90	484,000	475,000	65,900	138.58

³Data may not add to totals shown because of independent rounding.

CONSUMPTION AND USES

In 1981, domestic consumption (quantity sold and used by producers) of expanded perlite declined nearly 12% from that of 1980 (table 3). Construction-industry-related uses, such as concrete and plaster aggregates, loose fill insulation, wallboard, and ceiling tile, decreased 14%. With the exception of "Other" uses, all principal end uses for expanded perlite declined in quantity sold and used compared with those of 1980. The significant decreases were 38% for fillers, 30% for plaster aggregate, 27% for concrete aggregate, and 23% for lowtemperature insulation.

W Withheld to avoid disclosing company proprietary data; included with "Other."

1 Average value per ton based on unrounded data.

2 Includes Alabama, Colorado, Georgia, Idaho, Iowa, Kansas, Kentucky, Louisiana, Minnesota, Mississippi, Missouri, New Hampshire (1980), New Jersey, North Carolina, Oregon, Utah, Virginia, Wisconsin, and Wyoming, and items indicated by symbol W.

Table 3.—Expanded perlite sold and used by producers in the United States, by use

(Short tong)

Use	1980	1981
Concrete aggregate	29,800	21,800
Fillers	10,000	6,200
Filter aid	102,300	94,400
Formed products ¹	289,900	256,000
Horticultural aggregate ²	40,900	40,200
Low-temperature insulation	7,700	5,900
Masonry and cavity fill insulation	20,900	20,000
Plaster aggregate	24,000	16,700
Other ³	11,200	14,100
Total ⁴	537,000	475,000

¹Includes acoustic ceiling tile, pipe insulation, roof insulation board, and unspecified formed products.

PRICES

Processed (crushed, cleaned, and sized) perlite ore was sold by producers to expanders in 1981 at an average price of \$30.52 per ton, a 13% increase over the 1980 price of \$27.10 per ton. Processed perlite used by producers in their own expanding plants was valued at \$28.20 per ton, a 15% increase over the 1980 price of \$24.50 per ton. The average price of all processed perlite in 1981 was \$29.47 per ton, a 14% increase compared with the 1980 average price of \$25.86 per ton.

The value of expanded perlite sold and used in 1981 averaged \$138.74 per ton, an 8% increase over that of 1980. Average values for expanded perlite sold and used at plants in 32 States in 1981 ranged from \$95 to \$260 per ton, compared with the 1980 range in 33 States of \$79 to \$220 per ton.

WORLD REVIEW

Production of crude and/or processed perlite by the principal producing countries in 1981 was estimated to be 1.58 million tons, a decrease of 3% from the 1.63 million tons estimated for 1980. The United States, the U.S.S.R., and Greece, together, continued to account for nearly three-fourths of the world's output.

A world review article published near yearend highlighted recent developments in the perlite industries in the principal producing countries.2

Greece.—Processed perlite production was estimated to be 165,000 tons, a slight increase over the 1980 production of 163,000 tons. Total ore production was not available for 1981, but was reported in 1980 to be 307,000 tons.

Peletico Ltd., which mines perlite on the Island of Milos through a subsidiary (Peletico Minerals Ltd.) and has perlite expanded by Peletico Plasters Ltd. at Larnaca, Cyprus, was reported to have established perlite expansion facilities in Kuwait to directly supply Middle East consumers.3

United Kingdom.—Silvaperl Products Ltd. announced plans in 1981 to install a second expansion furnace in the company's plant at Lowestoft, Suffolk, in 1982, to increase production of six industrial grades and four horticultural grades of perlite.

Tilcon Ltd. initiated construction of an expanding plant at Cliffe near Rochester in Kent to facilitate the company's marketing in southern England.4

Includes fertilizer carriers.

Includes fines, high-temperature insulation, paint texturizer, refractories, and various nonspecified industrial

⁴Data may not add to totals shown because of independent rounding.

¹Industry economist, Division of Industrial Minerals. *Industry economist, Division of Industrial Minerals.

*Pettifer, L. Perlite—Diversification, the Key to Overall
Expansion. Ind. Miner. (London), No. 171, December 1981,
p. 69.

*Work cited in footnote 2.

*Smith, M. Tilcon—"All Rounders" in the Minerals
Industry. Ind. Miner. (London), No. 169, October 1981, p.

Table 4.—Perlite: World production, by country¹

(Thousand short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Australia ³	2	2	2	2	9
Czechoslovakia ^e	11	22	33	44	44
Greece	r ₁₅₇	r ₁₆₆	189	163	165
Hungary ³	114	102	108	109	110
Italy ^e	100	100	100	100	100
Japan ^e	77	80	83	85	83
Mexiω ³	25	27	46	49	50
New Zealand ³	1	1	40	45	90
Philippines	9	r ₃	4	1	ĭ
Purkey	33	30	33	28	29
U.S.S.R.e	380	400	400	400	400
United States (processed ore sold and used by producers)	597	641	660	638	4591
Total	r _{1,499}	r _{1,574}	1,660	1.628	1,585

^eEstimated. ^pPreliminary. ^rRevised. ¹Unless otherwise specified, figures represent processed ore output. Table includes data available through June 9, 1982. ²In addition to the countries listed, Algeria, Bulgaria, China, Iceland, Mozambique, the Republic of South Africa, and Yugoslavia are believed to have produced perlite during the 1977-81 period, but output data are not reported and available information is inadequate for formulation of reliable estimates of output levels. ³Crude ore. ⁴Reported figure.

Phosphate Rock

By William F. Stowasser¹

The phosphate industry of the United States produced 53.6 million metric tons of phosphate rock in 1981, similar to the 1980 level. The value of the marketable rock increased to \$1.4 billion. To complete the perspective of the year, it should be noted that the quantity of both domestic and export sales of phosphate rock and processed phosphates declined compared with those of the previous year. Inventory levels rose, particularly in Florida, to record highs. At the end of the year, most Florida producers reduced operating levels by ap-

proximately 50%, and several companies suspended operations to reduce unmanageable inventories.

The phosphate industry of the United States appears to be in transition. Historically, the industry performed as though demand would continue to expand forever. The change in demand and foreign competition are moving the industry to recognize that there are limits to continued expansion. The transition will be slow as the phosphate industry moves from growth and expansion to supply/demand equilibrium.

Table 1.—Salient phosphate rock statistics

(Thousand metric tons and thousand dollars unless otherwise specified)

	1977	1978	1979	1980	1981
United States:					
Mine production	166,893	173,429	185,757	209,883	183,733
Marketable production	47,256	50,037	51,611	54,415	53,624
Value	\$821,657	\$928,820	\$1,045,655	\$1,256,947	\$1,437,986
Average per metric ton	\$17.39	\$18.56	\$20.26	\$23.10	\$26.82
Sold or used by producers	47.437	48,774	53,063	54,581	45,526
Value	\$829,084	\$901,378	\$1,063,517	\$1,243,297	\$1,212,433
Average per metric ton	\$17.48	\$18.48	\$20.04	\$22.78	\$26.63
Exports ¹	13.230	12.870	14.358	14.276	10,395
P ₂ O ₅ content	4.251	4.118	4.611	4,554	3,300
Value	\$288,603	\$297,357	\$356,481	\$431,419	\$373,192
Average per metric ton	\$21.81	\$23.10	\$24.83	\$30.22	\$35.90
Imports for consumption ²	158	908	886	486	· 13
Customs value	\$6.079	\$24,379	\$21,595	\$12,856	\$420
Average per metric ton	\$38.47	\$26.85	\$24.37	\$26.45	\$32.31
Consumption ³	34.365	36,812	39.591	40.791	35,144
World: Production	r119,310	r _{128,620}	r _{132,913}	p _{138,333}	e138,630

^eEstimated. ^pPreliminary. ^rRevised.

¹Exports reported to the Bureau of Mines by companies.

²Bureau of the Census data.

³Measured by sold or used plus imports minus exports.

Pro-Legislation and Government grams.-In response to the U.S.S.R.'s invasion of Afghanistan, President Carter embargoed grain shipments to the U.S.S.R. on January 4, 1980. On February 4, 1980, the U.S. Department of Commerce's Secretary Philip Klutznick ordered that validated licenses would be required for phosphate exports to the U.S.S.R. Exports of superphosphoric acid (SPA) from Occidental Chemical Co. to the U.S.S.R. were terminated. The original agreement between Occidental Chemical and the U.S.S.R. specified that Occidental Chemical would ship 700,000 metric tons of P₂O₅ as SPA annually. The grain and phosphate embargoes were lifted by the Reagan administration, and Occidental Chemical announced that shipments of SPA to the U.S.S.R. would immediately resume. It was understood that the first SPA shipment left Jacksonville, Fla., on June 14, 1981, and that Occidental Chemical shipped about 500,000 metric tons by the end of 1981.

Among the taxes levied by States on the phosphate industry are severance taxes. Of the producing States, Tennessee, North Carolina, and Utah have not levied a severance tax. Idaho taxes 2% of net value, and Florida taxes at the rate of 10% of market value.

DOMESTIC PRODUCTION

Marketable phosphate rock production and value are shown in table 1. In 1981, Florida and North Carolina produced 47.3 million metric tons, 87% of the total marketable phosphate rock production; the Western States and Alabama produced 6 million metric tons, 11%; and Tennessee produced 1.3 million metric tons, 2%.

Florida and North Carolina.—Production and value of marketable phosphate rock are shown in table 2. Agrico Chemical Co., Amax Phosphate, Inc., Beker Phosphate Corp., Brewster Phosphates, CF Industries, Inc., Estech, Inc., Gardinier, Inc., W. R. Grace & Co., International Minerals & Chemical Corp. (IMC), Mobil Chemical Co., and USS Agri-Chemicals produced marketable phosphate rock from the Bone Valley Formation in central Florida. Occidental Chemical produced marketable phosphate rock from a similar matrix in Hamilton County in north Florida. Howard Phosphate Co., Kellogg Co., Loncala Phosphate Co., Manko Co., and Sun Phosphate Co. mined an estimated 45,000 metric tons of soft rock in 1981 from tailing ponds remaining from past hard-rock phosphate mines in north-central Florida. The soft-rock producers will not in the future be surveyed by the Bureau of Mines. The production of the recovered tailings are included in the Florida and North Carolina marketable phosphate rock production as shown in table 10.

In North Carolina, Texasgulf Chemicals Co., a subsidiary of Société Nationale Elf Aquitaine, operated a mine and fertilizer complex near Aurora, N.C. A mining system of hydraulic dredges and draglines are used to strip overburden and mine ore from an estimated 1.8 billion metric tons of

reserves, recoverable by today's mining and processing technology. An expansion program at Texasgulf's Lee Creek phosphate operation included the addition of a 30-inch dredge to increase mining capacity. In 1981, the plant's P₂O₅ production capacity was about 3.4 million metric tons.

In 1984, North Carolina Phosphate Corp. plans to start producing phosphate rock at an annual rate of 3.4 million metric tons in eastern North Carolina. A design and construction contract was awarded to complete this phase by January 1984. North Carolina Phosphate will use both draglines and bucket wheels to strip and mine ore. North Carolina Phosphate first formed a 50-50 partnership with Francaise de l'Azote for a 19% share of the mine and another 50-50 partnership with ANIC, the Italian state-owned fertilizer company, for a 21.6% share of the mine.

Occidental Petroleum Corp. announced on June 8, 1981, that Occidental Chemical would resume shipping SPA to the U.S.S.R. after the Reagan administration lifted the embargo imposed by the Carter administration. Occidental Chemical announced plans to ship about one-half million metric tons to the U.S.S.R. by the end of the year.

Agrico Chemical, in central Florida, operated the Fort Green, Payne Creek, and Saddle Creek Mines in 1981. The Saddle Creek Mine was closed during the latter part of the year. When Agrico Chemical decided to mine its Palmetto tract, located about 13 kilometers from the Payne Creek washer, the rail haul concept was selected to recover the matrix from the small deposit. A dragline stacks the matrix in a line parallel to the mining cut. Front-end load-

ers are used to load 63-metric-ton hopper cars. The railcars are unloaded at the dump station with two pit guns that wash the matrix out of the open-bottom cars onto a grizzly.

Amax Phosphate, Lakeland, Fla., purchased the Big 4 Mine, a phosphate fertilizer complex, and a feed phosphate plant from Borden Inc., in May 1980. Amax Phosphate plans to expand the capacity of the Big 4 Mine from its current base of 1.5 million metric tons per year to 2.3 million metric tons per year in 1983 and expects that by 1987 the reserve will be depleted at planned operating rates. As reserves at this mine are depleted, Amax Phosphate plans to phase in production from the Pine Level property.

Beker Phosphate announced the start of mining phosphate rock in November 1981 at its Wingate Creek phosphate mine in Manatee County, Fla. The capacity is about 1 million metric tons per year and is planned to triple by 1983. Shipments of phosphate rock from the mine were held up in 1981 when a local court in Manatee County prohibited truck transport to the loading

facility at Port Manatee.

Brewster Phosphates is a partnership between American Cyanamid Co. and Kerr-McGee Corp. It operates the Haynsworth and Lonesome Mines at an annual average rate of 4.3 million metric tons. Most of Brewster's phosphate rock moves through the port of Tampa to the phosphoric acid plant at Uncle Sam, La. It is estimated that the Haynsworth Mine, with the planned expansion along State Road 37, will extend its life into the 1980's. The life of the Lonesome Mine at projected mining rates is 1997.

CF Industries phosphate operations are located in Hardee County, Fla., and complex No. 1 reached its design capacity of about 1 million metric tons per year. CF Industries plans to develop and operate another phosphate mine in Hardee County on the company's South Pasture tract. The proposed South Pasture Mine is planned to start in 1985 with an initial capacity of 2 million metric tons per year. After operating 4 years at this rate, the mine will be expanded to a capacity of about 4 million metric tons per year and operate at this level for its remaining life.

Estech has a 10,000-acre site in Florida's Manatee County with an estimated 60 million metric tons of recoverable phosphate rock. The county has opposed mining in the

Manatee River watershed and voiced concern over a proposed 480-acre settling pond that would threaten the area's drinking water from Lake Manatee. The issue was not resolved in 1981.

Farmland Industries Inc. received approval from the Hardee County Commission to mine phosphate rock on 7,800 acres near Ona, Fla. A 1.8-million-metric-ton-per-year mine is scheduled to start up in late 1984. The Hardee County Commissioners refused to rezone adjacent land for a proposed Farmland Industries fertilizer plant.

Gardinier continued to produce phosphate rock from the Fort Meade Mine and increased the capacity from 2.3 to 2.7 million metric tons per year. Gardinier plans, in the next several years, to install a waste slime dewatering system that was success-

fully tested in 1981.

W. R. Grace's Four Corners Mine is due onstream in 1982 after almost 10 years of planning and construction. The Four Corners project, a 4.5-million-metric-ton-peryear mine, is a joint venture with IMC. W. R. Grace will manage construction and production. IMC's financial contribution will entitle it to 50% of the product. Grace's Bonny Lake Mine is nearing depletion and will probably operate only when demand warrants. Grace's Hookers Prairie Mine is scheduled to operate into the 1990's.

In addition to participating in the Four Corners Mine, IMC produces phosphate rock from Clear Springs, Noralyn, and Kingsford Mines. IMC acquired the Atlantic Richfield property, the Hunt Brothers property, and some land from Farmland Industries in Hillsborough County that may form the basis for a replacement mine as Noralyn will probably be depleted by the end of the decade. IMC's Florida phosphate rock production capacity is about 12 million metric tons per year, which makes IMC the largest phosphate rock producing company in the market economy countries.

Mobil Chemical plans to construct a new phosphate rock terminal in Tampa's port. The terminal is scheduled to start operating in 1984. The South Fort Meade Mine, planned on a 6,591-hectare tract, is scheduled to

start producing in 1985.

USS Agri-Chemicals continued to produce phosphate rock from the Rockland Mine but agreed with Freeport Phosphate Rock Co., its partner in the Rockland Mine, to defer some expansion and renovation work. USS Agri-Chemicals awarded a contract to engineer, design, and construct a 1,270-metric-

ton-per-day P_2O_5 phosphoric acid plant at South Fort Meade.

Western States.—Production tonnage and value of marketable phosphate rock are shown in table 2. Production of phosphate rock for agricultural purposes was 3.2 million metric tons, and 2.8 million metric tons were used in electric furnaces.

Conda Partnership, a 50-50 association of Western Cooperation Fertilizers, Ltd., and Beker Industries, operated the Mabie Canvon Mine in Idaho. Monsanto Co. produced phosphate rock from the Henry Mine in Idaho. The total deposit is about 10 kilometers long, and the mining pit is currently about 2,300 meters long. The capacity of the Henry Mine is about 900,000 metric tons per year. The ore is trucked to the electric furnace plant at Soda Springs, Idaho, Stauffer Chemical Co. continued to operate the Wooley Valley Mine northeast of Soda Springs, Idaho. The ore was shipped to Silver Bow, Mont., for reduction to elemental phosphorus in electric furnaces. Stauffer sold its Vernal, Utah, phosphate rock mine, a fertilizer plant at Garfield, Utah, and phosphate handling facilities and a rail terminal at Phoston, Utah, to Standard Oil of California through Chevron U.S.A., Inc., a Standard Oil unit, at the beginning of the year. J. R. Simplot Co. proceeded to develop the Smokey Canyon Mine near Afton, Wvo. The plan is to start mining in 1984 and to produce 1.8 million metric tons per year

over the mine's projected 30-year life. This mine will replace the Conda, Idaho, mine that will be depleted in 3 years. The Smokey Canyon Mine is in the Caribou National Forest about 40 kilometers east of Soda Springs, Idaho, and 16 kilometers west of Afton, Wyo.

J. R. Simplot operates the Gay Mine, located approximately 48 kilometers northeast of Pocatello, Idaho. It is a joint venture with FMC Corp. J. R. Simplot uses acid-grade ore of at least 31% P₂O₅ and FMC uses 24.5% P₂O₅ electric furnace-grade material. Ore that grades between 16% and 24% P₂O₅ is stockpiled.

Cominco American, Inc., operated the only phosphate underground mine in the United States near Garrison, Mont.

It is not certain how rapidly Chevron Resources Co. will expand the Vernal Mine, near Vernal, Utah, to supply a proposed fertilizer plant near Rock Springs, Wyo. It proposed that the concentrate will be slurried and pumped through a 130kilometer pipeline to Rock Springs. Sulfur from a sour gasfield will be piped about the same distance from Evanston, Wyo. If Chevron Resources plans to consume all of the byproduct sulfur generated, phosphate rock production at Vernal will approach 1 million metric tons per year initially and gradually increase to 3.2 million metric tons per year by 1986 to consume all of the recovered sulfur.

Table 2.—Production of phosphate rock in the United States, by State
(Thousand metric tons and thousand dollars)

	Mine production			roduction lirectly		ated pro- tion	Marl	duction	
	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content	Value
1980:									
Florida and North									
Carolina	198,332	21,020	29	6	47,214	14.652	47,243	14,658	1.124.929
Tennessee	2,981	602			1.582	410	1,582	410	12,765
Western States ¹	8,570	2,146	2,535	666	3,055	977	5,590	1,643	119,254
Total ²	209,883	23,767	2,564	672	51,851	16,039	54,415	16,711	1,256,947
1981:		W							
Florida and North									
Carolina	173.898	21,434	27	5	46,254	14.283	46,281	14,288	1,290,134
Tennessee	2,547	516	2.	-	1,328	340	1,328	340	16,201
Western States ¹	7.288	1.809	2,809	$\bar{741}$	3,205	996	6.015	1,737	131,651
	1,200	2,000	2,000	141	0,200	- 330	0,010	1,101	101,001
Total ²	183,733	23,759	2,836	746	50,788	15,619	53,624	16,365	1,437,986

¹Includes Alabama, Idaho, Montana, and Utah.

²Data may not add to totals shown because of independent rounding.

Tennessee.—Production and value of phosphate rock are shown in table 2. Hooker Chemical Co., Monsanto, and Stauffer mined and beneficiated phosphate rock in Tennessee for reduction to elemental phosphorus in electric furnaces located in the Columbia and Mt. Pleasant, Tenn., areas. Monsanto is mining phosphate rock in Alabama to augment production from Tennessem

see mines. Production of phosphate rock in Tennessee declined from 1.9 million metric tons in 1979, to 1.6 million metric tons in 1980, and to 1.3 million metric tons in 1981. Both Monsanto and Stauffer have electric furnace plants in the Western United States. With lower power costs in the West, the companies favor production from plants in Idaho and Montana.

CONSUMPTION AND USES

Consumption of marketable phosphate rock, defined as the quantity sold or used plus imports minus exports, is shown in table 1. Table 1 also reports the quantity of phosphate rock sold or used.

The consumption pattern as reported by producers is shown in table 7.

The percent distribution by grade of marketable phosphate rock consumed in the United States and sold in the export market in 1981 is compared with the distribution patterns for prior years 1977-80 in table 3. Trends in U.S. grade distribution patterns of phosphate rock are somewhat disguised in these data because of the mix of furnace and wet-process phosphoric acid-phosphate rock feed in the total distribution pattern.

Table 3.—United States phosphate rock grade distribution pattern

Grade (percent	Distribution (percent)							
BPL¹ content)	1977	1978	1979	1980	1981			
Less than 60	5.7	6.2	5.4	5.3	5.6			
60 to 66	11.6	13.3	14.2	15.7	15.7			
66 to 70	57.3	54.3	56.3	56.7	60.1			
70 to 72	12.2	13.3	13.6	12.7	9.6			
72 to 74	7.4	8.6	6.6	6.0	6.0			
Over 74	5.8	4.3	3.9	3.6	3.0			

 $^{^{1}1.0\%}$ BPL (bone phosphate of lime or tricalcium phosphate) = 0.458% $P_{2}\hat{O}_{5}.$

Florida and North Carolina.—The quantity of phosphate rock sold or used is shown in table 8. Table 9 shows the distribution of phosphate rock sold or used in Florida and North Carolina by domestic and export tonnages.

The percent distribution by grade of the marketable rock sold or used from Florida and North Carolina, including exports, is shown in table 4 for the years 1977-81.

Tennessee.—The quantity and value of

marketable phosphate rock sold or used is shown in table 8. All of this rock was used in electric furnaces to produce elemental phosphorus and industrial chemicals. Most of the phosphorus was converted into intermediate phosphoric acid, the base for a large number of sodium, calcium, and potassium chemicals.

Table 4.—Florida and North Carolina phosphate rock grade distribution pattern

Grade (percent	Distribution (percent)						
BPL¹ content)	1977	1978	1979	1980	1981		
Less than 60	0.1	0.1	0.2	0.1	0.2		
60 to 66	10.5	11.9	12.6	15.3	14.4		
66 to 70	62.7	60.8	62.4	62.2	67.0		
70 to 72	14.1	15.7	12.7	11.2	7.7		
72 to 74	5.9	6.5	7.6	7.0	7.1		
Over 74	6.7	5.0	4.6	4.2	3.6		

 $^{^{1}1.0\%}$ BPL (bone phosphate of lime or tricalcium phosphate) = 0.458% $P_{2}O_{5}.$

The percent distribution by grade of marketable rock sold or used in Tennessee during the 1977-81 period is shown in table 5.

Western States.—The quantity of marketable phosphate rock sold or used is shown in tables 8-9. In 1981, 80% was consumed in the United States and 20% was exported to Canada. The percent distribution by grade of marketable rock sold or used from the Western States during the 1977-81 period is shown in table 6.

Table 7 shows the phosphate rock sold or used by producers by use, domestic (agriculture or industrial) and exports, and by State groupings.

The recent history of phosphate rock sold or used by producers by kind is shown in tables 10-12 for Florida, Tennessee, and the Western States, respectively.

Table 5.—Tennessee phosphate rock grade distribution pattern

Grade (percent	Distribution (percent)							
BPL¹ content)	1977	1978	1979	1980	1981			
Less than 60	75.4	68.3	60.3	75.3	50.6			
60 to 66	24.6	31.7	37.0 2.7	24.7	49.4			

 $^{^11.0\%}$ BPL (bone phosphate of lime or trical cium phosphate) = 0.458% $P_2O_5.$

Table 6.—Western States phosphate rock grade distribution pattern

Grade (percent	Distribution (percent)						
BPL¹ content)	1977	1978	1979	1980	1981		
Less than 60	29.7	32.6	27.4	27.7	31.4		
60 to 66	16.3	17.9	18.9	16.5	16.0		
66 to 70	31.5	23.2	26.8	27.7	28.5		
70 to 72			26.5	28.1	24.1		
72 to 74	22.6	26.3	.4				

^{11.0%} BPL (bone phosphate of lime or tricalcium phosphate) = $0.458\% P_2 \hat{O}_5$.

Table 7.—Phosphate rock sold or used by producers in the United States, by use (Thousand metric tons)

2	19	80	1981	
Use	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content
Domestic:1				
Wet-process phosphoric acid	33,884	10,444	29,085	8,956
Normal superphosphate	333	107	184	60
Triple superphosphate	1.348	436	1,198	378
Defluorinated rock	430	145	492	166
Direct applications	37	8	27	6
Elemental phosphorus	4.083	1.067	4,055	1,049
Ferrophosphorus	190	49	89	22
Total ²	40,305	12,256	35,131	10,638
Exports ³	14,276	4,554	10,395	3,300
Grand total ²	54,581	16,810	45,526	13,939

Table 8.—Phosphate rock sold or used by producers in the United States, by grade and State in 1981

(Thousand metric tons and thousand dollars)

	Florida	and North C	arolina		Tennessee		
Grade (percent BPL¹ content)	Rock	P ₂ O ₅ content	Value	Rock	P ₂ O ₅ content	Value	
Below 60	79	17	1,274	698	170	5,732	
60 to 66	5,553	1,585	171,443	681	187	11,669	
66 to 70	25,727	7,962	639,586				
70 to 72	2,984	967	90,303				
72 to 74	2,761	929	102,219				
Plus 74	1,371	477	60,015				
Total ²	38,475	11,938	1,064,839	1,379	357	17,401	
_	ν γ	Vestern State	28	Total United States			
_	Rock	P ₂ O ₅ content	Value	Rock	P ₂ O ₅ content	Value	
Below 60	1.783	445	16.999	2,560	632	24,005	
60 to 66	907	250	14,243	7.140	2,022	197,354	
66 to 70	1.614	506	46,353	27,341	8,468	685,939	
70 to 72	1,368	443	52,599	4,353	1,410	142,902	
72 to 74	_,,		0=,000	2,761	929	102,219	
Plus 74				1,371	477	60,015	
Total ²	5,672	1,644	130,194	45,526	13,939	1,212,433	

 $^{^{1}1.0\%}$ BPL (bone phosphate of lime or tricalcium phosphate) = 0.458% P₂O₅.

¹Includes rock converted to products and exported.

²Data may not add to totals shown because of independent rounding.

³Exports reported to the Bureau of Mines by companies.

²Data may not add to totals shown because of independent rounding.

Table 9.—Phosphate rock sold or used by producers, by use and State

(Thousand metric tons)

***		da and Carolina	Tenr	essee			otal d States	
Use	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content
1980: Domestic:¹ Agricultural Industrial	33,877 271	10,452 78	1,665	432	2,155 2,337	687 606	36,032 4,273	11,140 1,116
Total ² Exports ³	34,148 13,055	10,530 4,166	1,665 	432	4,493 1,221	1,293 388	40,305 14,276	12,256 4,554
Total ²	47,203	14,696	1,665	432	5,713	1,681	54,581	16,810
1981: Domestic:¹ Agricultural Industrial	29,021 222	8,944 62	1,379	357	1,965 2,544	623 653	30,986 4,145	9,566 1,072
Total Exports ³	29,243 9,232	9,006 2,933	1,379 	357 	4,509 1,163	1,276 368	35,131 10,395	10,638 3,300
Total ²	38,475	11,938	1,379	357	5,672	1,644	45,526	13,939

Table 10.—Florida and North Carolina phosphate rock sold or used by producers, by kind

		Lan	d pebble		Soft rock ^e			Total ¹				
	Rock	P ₂ O ₅ con- tent	Va	lue	Rock	P ₂ O ₅ con-	Va	lue	Rock	P ₂ O ₅ con-	Va	ılue
Year	(thou- sand metric tons)	(thou- sand met- ric tons)	Total (thou- sands)	Aver- age per ton	(thou- sand metric tons)	tent (thou- sand metric tons)	Total (thou- sands)	Aver- age per ton	sand (thou metric sand tons) metr	tent (thou- sand metric tons)	Total (thou- sands)	Aver- age per ton
1976 _ 1977 _ 1978 _ 1979 _ 1980 _ 1981 _	33,886 40,970 41,388 45,459 47,171 38,458	10,568 12,838 12,861 14,189 14,690 11,935	\$774,517 726,950 778,339 935,127 1,108,991 1,064,459	\$22.86 17.74 18.81 20.57 23.51 27.68	29 25 27 26 32 17	6 5 6 5 6 3	\$580 504 537 545 668 380	\$20.00 20.16 19.89 20.96 20.88 22.35	33,915 40,994 41,415 45,484 47,203 38,475		\$775,096 727,454 778,876 935,672 1,109,659 1,064,839	\$22.85 17.75 18.81 20.57 23.51 27.68

^eEstimated.

Table 11.—Tennessee phosphate rock sold or used by producers

	Rock	P ₂ O ₅ content	Val	ue	
Year	(thou- sand metric tons)	(thou- sand metric tons)	Total (thou- sands)	Average per ton	
1976	1,731	448	\$15,326	\$8.85	
1977	1,723	436	14,064	8.16	
1978	1,688	434	13,833	8.19	
1979	2,140	545	17,008	7.95	
1980	1,665	432	13,330	8.01	
1981	1,379	357	17,401	12.62	

Table 12.—Western States phosphate rock sold or used by producers

	Rock (thou-	P ₂ O ₅ content	Val	lue
Year	sand metric tons)	(thou- sand metric tons)	Total thou- sands)	Average per ton
1976	4,877	1,383	\$66,767	\$13.69
1977	4,719	1,382	87,566	18.56
1978	5,671	1,647	108,669	19.16
1979	5,439	1,585	110,837	20.38
1980	5,713	1,681	120,309	21.06
1981	5,672	1,644	130,194	22.95

¹Includes rock converted to products and exported.

²Data may not add to totals shown because of independent rounding.

³Exports reported to the Bureau of Mines by companies.

¹Data may not add to totals shown because of independent rounding.

STOCKS

At the end of 1980, inventories of marketable phosphate rock had declined to 13.8 million metric tons. The gradual decline of stocks that characterized 1980 changed abruptly as stocks increased every month during 1981 to a record level of 20.2 million metric tons in November. The increase in stocks was finally halted as several companies stopped producing during the last month of the year.

Rising inventory levels in Florida and North Carolina were the principal cause for the national increase in phosphate rock stocks. Inventories rose from 12.3 million tons at the beginning of the year to 19.7 million metric tons at the end of the year.

Stocks in Tennessee were at 167,000 metric tons at the beginning of the year and were at a similar level at the end of the year. Western States phosphate rock stocks were at 1.5 million metric tons at the beginning of the year and about the same at the end of the year. Because of climate, stocks in the Western States are increased during mild temperature months and are drawn down during subfreezing winter months.

PRICES

Phosphate rock exporters and buyers negotiated the selling price of phosphate rock in late 1981 and early 1982. The negotiated prices between buyers and sellers in both domestic and international markets are not published. List prices are published by the Phosphate Rock Export Association, Tampa, Fla., and can be used as a guide to export contract prices. The Office Cherifien des Phosphates, Casablanca, Morocco, occasionally publishes a price list.

Florida export prices as estimated in table 13 include the f.o.b. mine price, rail freight, loading, and weighing charges. In December 1981, the cost of moving phosphate rock from the mine to the vessel was \$5 per metric ton. The severance tax collected on all phosphate rock was \$1.84 per metric ton and is included in the tabulated prices.

The Moroccan Office Cherifien des Phosphates changed phosphate rock export prices at the beginning of 1981. Published prices were not available. Estimated contract prices are shown in table 14.

The Phosphate Rock Export Association attempted to increase prices by about 15% at the beginning of the year to offset increases in sulfur prices, rail rates, taxes, and other inflation-induced costs. It is probable that U.S. export prices in 1982 will not differ significantly from those of 1981.

The price or value of Florida and North Carolina, Western States, Tennessee, and the United States phosphate rock by grade is shown in tables 15, 16, 17, and 18. respectively.

Table 13.—Phosphate rock estimated export prices per metric ton, unground, f.o.b. vessel Tampa Range or Jacksonville, Fla.

Grade (percent BPL¹ content)	1978 ²	1979 ³	19804	1981 ⁵
77	\$34.55 32.55 30.55 28.55 26.55	\$38.00 34.00 30.00 26.00 25.00 25.00	\$44.00 40.00 36.00 34.00 34.00	\$50.00 43.00 39.00 38.00 38.00

 $^{^{1}1.0\%}$ BPL (bone phosphate of lime or tricalcium phosphate) = 0.458% P₂O₅.

²Estimated selling price including \$0.55 severance tax.

³Estimated selling price including \$1.15 severance tax.

Estimated selling price including \$1.54 severance tax.

⁵Estimated selling price including \$1.84 severance tax.

Table 14.—Moroccan phosphate rock export prices, U.S. dollars per metric ton, f.a.s. Safi or Casablanca

Grade (percent BPL ¹ con- tent)	1978	1979	1980	1981 ^e
Khouribga:				
76 to 77 _	41.00	43.00	56.00	55,00
75 to 76 _	37.00	42.00	54.00	53.00
72 to 73	32.00	40.00	52.00	50.00
70 to 71		43.00	48.50	47.50
Youssoufia:				
68 to 69 _	30.00	35.25	45.50	44.00
74 to 75 _		42.00	53.00	53.50

Table 15.—Price or value of Florida and North Carolina phosphate rock

(Dollars per metric ton, f.o.b. mine)

Grade (percent BPL¹ content)		1980			1981		
	Domes- tic	Export	Average	Domes- tic	Export	Average	
Less than 60	20.91		20.91	16.04		16.04	
60 to 66		24.53	24.89	31.66	27.54	30.88	
66 to 70		27.83	21.08	23.57	31.29	24.86	
70 to 72		30.61	26.87	25.26	33.93	30.26	
72 to 74	22.50	33.83	31.36	32.81	37.93	37.02	
Over 74	_ 24.90	37.11	32.24	32.00	45.54	43.77	
Average	_ 21.01	30.03	23.51	25.17	33.74	27.68	

 $^{^{1}1.0\%}$ BPL (bone phosphate of lime or tricalcium phosphate)= 0.458% P₂O₅.

Table 16.—Price or value of Western States phosphate rock

(Dollars per metric ton, f.o.b. mine)

	1980			1981		
Grade (percent BPL ¹ content)	Domes- tic	Export	Average	Domes- tic	Export	Average
Less than 60	8.86		8.86	9.54		9.54
60 to 66	10.00	33.70	14.36	10.46	35.33	15.71
66 to 70	24.83	33.07	26.62	24.25	37.88	28.71
70 to 72				35.94	37.08	38.44
72 to 74	31.50	31.49	31.49			
Average	18.02	32.25	21.06	18.06	37.09	22.95

 $^{^{1}1.0\%}$ BPL (bone phosphate of lime or tricalcium phosphate)= 0.458% P₂O₅.

Table 17.—Price or value of Tennessee phosphate rock

(Dollars per metric ton, f.o.b. mine)

Grade (percent BPL¹ content)	1980	1981
Less than 6060 to 6666 to 70	7.50 9.57	8.21 17.15
Average	8.01	12.62

 $^{^{1}1.0\%}$ BPL (bone phosphate of lime or tricalcium phosphate)= 0.458% P₂O₅.

 $^{^{}e}Estimated. \\ ^{1}1.0\%$ BPL (bone phosphate of lime or tricalcium phosphate) = 0.458% $P_{2}O_{5}.$

Table 18.—Price or value of United States phosphate rock

(Dollars per metric ton, f.o.b. mine)

	1980			1981		
Grade (percent BPL¹ content)	Domes- tic	Export	Average	Domes- tic	Export	Average
Less than 60	8.26		8.26	9.38		9.38
60 to 66	22.44	25.57	23.00	27.11	28.15	27.64
66 to 70	19.88	28.16	21.37	23.60	31.75	25.09
70 to 72	24.73	30.78	27.94	28.35	34.36	32.83
72 to 74	25.72	33.83	31.36	32.81	37.93	37.02
Over 74	24.90	37.11	32.24	32.00	45.54	43.77
Average	20.14	30.22	22.78	23.82	33.93	26.63

 $^{^{1}1.0\%}$ BPL (bone phosphate of lime or tricalcium phosphate)= 0.458% P₂O₅.

FOREIGN TRADE

In 1981, producers reported that exports of phosphate rock from the United States were 10.4 million metric tons.

Except for 5,388 metric tons imported from the Netherlands Antilles and 7,998 metric tons imported from Mexico in 1981, no other reports of phosphate rock imports were received. Imports of phosphate rock were 0.9 million metric tons in 1979 and 0.5 million metric tons in 1980. Imports from Morocco were terminated in 1980 as their landed costs rose. Imports of low-fluorine phosphate rock from the Netherlands Antilles declined as remaining stocks were depleted.

Tables 19-25 are included to show the quantities of phosphate rock, phosphate fertilizers, and phosphate intermediates exported from the United States in 1980.

Table 26 lists phosphate fertilizers and chemicals imported during 1981.

Table 19.—U.S. exports of phosphate rock, by country

(Thousand metric tons and thousand dollars)

D. dination	19	80	1981		
Destination	Quantity	Value ¹	Quantity	Value ¹	
Australia	462	16,419	126	4,855	
Austria	132	5,306	208	10,823	
Belgium-Luxembourg	831	29,664	849	35,959	
Brazil	113	4,901	115	5,563	
Canada	3,825	122,879	3,080	106,483	
Denmark	104	4,307	68	3,170	
Finland	108	5,088	62	3,080	
France	907	31,547	763	29,375	
Germany, Federal Republic of	857	30,400	430	16,861	
India	236	9.757	263	11.921	
Italy	290	10.379	120	4,480	
Japan	1,471	57,723	1,365	61,204	
Korea, Republic of	1,751	60,915	993	36,701	
Mexico	265	8,869	325	15,800	
Netherlands	757	26,284	851	29,568	
New Zealand	20	745	97	4,834	
Norway	99	3,249	52	1,859	
Philippines	99	4,701	124	6,472	
Poland	900	31,672	187	6,691	
Romania	382	17.275	136	6,397	
Sweden	120	4.796	138	6,391	
Taiwan	32	1.452	41	1,969	
United Kingdom	391	12,415	15	614	
Other	167	7,779	148	8,933	
Total ²	14,320	508,524	10,554	419,999	

Source: U.S. Bureau of the Census.

All values f.a.s. (free alongside ship).
 Data may not add to totals shown because of independent rounding.

Table 20.—U.S. exports of superphosphates more than 40% P₂O₅, by country

(Thousand metric tons and thousand dollars)

	19	80	19	81
Destination	Quantity	Value ¹	Quantity	Value ¹
Algeria	85	19,339		
Argentina	4	562	9	1,570
Belgium-Luxembourg	107	19,320	77	10,811
Brazil	277	49,715	104	16,737
Bulgaria	58	9,943	196	29,872
Burma	27	6,107	53	9,766
Canada	61	9,395	140	18,242
Chile	86	15,220	84	14,219
Thina	153	29,545	203	32,579
Colombia	23	4,295	20	3,788
Costa Rica	14	2,889	4	648
Dominican Republic	īī	2,349	9	1,890
France	39	7.216	48	7,875
Germany, Federal Republic of	178	31,694	171	26,930
	1.0	02,002	45	7,278
Hungary	105	20,149	67	13,376
	14	2,272	41	6.345
	25	5,184	10	1.468
taly	26	3,938	25	3,739
Japan	11	1.821	10	1.847
Kenya	11	3,433	10	1,041
Libya	29	4.746		
Pakistan	15	2,768	15	1.976
Peru				
Singapore	34	5,750	(*)	121
Turkey	79	13,263		1 100
Uruguay	15	2,645	7	1,133
Venezuela	32	7,190	10	1,928
Other	25	5,046	149	30,561
Total ³	1,544	285,792	1,499	244,701

Source: U.S. Bureau of the Census.

Table 21.—U.S. exports of superphosphates, less than 40% P₂O₅, by country

	19	980	1981	
Destination	Quantity (metric tons)	Value ¹ (thousands)	Quantity (metric tons)	Value ¹ (thousands)
BrazilCanada	8,530 18,899 5,371	\$751 413	2,626 17,716	\$250 385
ChileOther	5,371 68	399 12	256	_ <u></u>
Total ²	32,868	1,574	20,598	640

Source: U.S. Bureau of the Census.

All values f.a.s. (free alongside ship).
 Less than 1/2 unit.
 Data may not add to totals shown because of independent rounding.

¹All values f.a.s. (free alongside ship). ²Data may not add to totals shown because of independent rounding.

Table 22.—U.S. exports of diammonium phosphates, by country

(Thousand metric tons and thousand dollars)

Destination	19	980	1981	
Destination	Quantity	Value ¹	Quantity	Value ¹
Algeria	11	3,913		
Argentina	97	22,754	83	15.579
Australia	22	5,282	60	13,17
Bangladesh	11	2,568	59	14.714
Belgium-Luxembourg	242	55,349	347	66,789
Brazil	431	92,297	149	28,35
Canada	108	20,861	116	23,18
Chile	51	11.541	44	9,05
China	355	85.168	348	76.41
Colombia	37	8,234	39	7,709
Costa Rica	22	5,556	16	3.12
Dominican Republic	52	12,279	15	2,98
Ecuador	28	5,503	20	4.407
Ethiopia	64	18.344	20	4,40
Finland	43	8,865	17	3.373
France	168	40,339	83	
Germany, Federal Republic of	73			16,657
Customals		9,603	79	11,846
Guatemala	9	2,400 171,872	20	4,584
	841		787	155,909
[reland[taly	13	2,505	.56	10,992
	399	85,844	457	89,21
Japan	195	42,484	185	33,213
Mexico	245	44,763	232	49,473
Mozambique	80	21,596	6	1,23
Netherlands	1	283	49	9,608
New Zealand	10	2,617	25	4,744
Nicaragua	44	10,469		
Pakistan	496	111,371	40	11,068
Spain	201	41,593	82	15,293
Fhailand	87	16,361	40	7.987
Turkey	269	66,551	44	9.145
Uruguay	61	13,871	31	5,888
Yugoslavia	40	8,340	120	24,080
Other	192	44,566	291	59,990
	4,995	1,095,944	3,942	789,770

Source: U.S. Bureau of the Census.

Table 23.—U.S. exports of phosphoric acid, less than 65% P₂O₅, by country

(Thousand metric tons and thousand dollars)

Destination	19	80	19	81
Destination	Quantity	Value ¹	Quantity	Value ¹
Argentina	10	1,321		
Brazil	619	153,701	204	65,171
Canada	2	382	3	466
Colombia	26	5,728	19	4,054
Czechoslo-		0,120		1,001
vakia	6	1,051		
Germany,		-,		
Federal Re-				
public of	23	6,915	15	3,821
India	228	42,490	208	42,241
Indonesia	79	15,885	125	38,335
Mexico	32	5.415	(2)	18
Netherlands	22	4,307	()	10
Turkey	122	34.116	150	47.301
U.S.S.R	100	04,110	231	88,249
Venezuela	34	8.511	46	12,764
Other	8	1,524	3	971
<u>-</u>		1,024	3	9/1
Total ³	1,212	281,348	1,004	303,390

All values f.a.s. (free alongside ship).

Source: U.S. Bureau of the Census.

Table 24.—U.S. exports of phosphoric acid, more than 65% P_2O_5 , by country

(Thousand metric tons and thousand dollars)

Destination	19	1980		81
Destination	Quantity	Value ¹	Quantity	Value ¹
Brazil Canada Colombia U.S.S.R Other	5 83 -67 (²)	$ \begin{array}{r} 997 \\ 3,246 \\ 17,\overline{440} \\ 2 \end{array} $	23 9 498 20	5,925 2,084 168,898 6,600
Total ³ _	156	21,686	549	183,506

Source: U.S. Bureau of the Census.

¹All values f.a.s. (free alongside ship). ²Data may not add to totals shown because of independent rounding.

²Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

¹All values f.a.s. (free alongside ship).

²Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

Table 25.—U.S. exports of elemental phosphorus, by country

	19	980	1981	
Destination	Quantity (metric tons)	Value ¹ (thousands)	Quantity (metric tons)	Value ¹ (thousands
Argentina	2	\$7	20	\$44
Australia	287	411	2	3
Brazil	6,476	9,800	7,049	11,459
Canada	1,010	1,514	1,777	2,656
Denmark	501	825		
Japan	5,221	7,435	6,493	10,139
Korea, Republic of	475	442	324	502
Mexico	16,006	23,929	11,754	17,055
Taiwan	190	280	422	594
Other	275	987	88	271
Total	30,443	² 45,631	27,929	42,723

¹All values f.a.s. (free alongside ship).

Source: U.S. Bureau of the Census.

Table 26.—U.S. imports for consumption of phosphate rock and phosphatic materials

(Thousand metric tons and thousand dollars)

	19	80	198	31
Fertilizer	Quantity	Value ¹	Quantity	Value ¹
Phosphates, crude and apatite	486	12,856	5	162
Phosphatic fertilizers and fertilizer materials	32	5,737	16	3,112
Ammonium phosphates, used as fertilizers	294	53,053		
Bone ash, bone dust, bone meal, and bones ground, crude or		-		
steamed	3	1,143		
Dicalcium phosphate	1	1,027	1	958
Basic slag	(2)	113	(2)	38
Manures including guano	· (2)	1,111		
Phosphorus	(2)	928	(2)	1,247
Dhoonharia asid	(2)	337	`ģ	816
Phosphoric acidPhosphoric acid, fertilizer grade	24	4,182	56	
Phosphoric acid, iertilizer grade	24	3,949	20	7,791 3,855
Normal superphosphate	25	4,768	13	2,051
Triple superphosphate	20	2,100	10	2,001

¹Declared customs valuation.

Source: U.S. Bureau of the Census

WORLD REVIEW

World phosphate rock production increased in 1981 to an estimated 138.6 million metric tons. Phosphate rock expansions occurred in Brazil, China, Jordan, Mexico, Morocco, the Republic of South Africa, Syria, Tunisia, the U.S.S.R., and the United States. World production has steadily increased, rising from 108, 119, 129, 133, and 138 million metric tons in 1976, 1977, 1978, 1979, and 1980, respectively. With expansion plans expected to be implemented during the 1980's, adequate supplies of phosphate rock appear assured for this period.

World demand for phosphate rock and processed phosphates declined in 1981, which was dramatically demonstrated by the reduction in both phosphate rock and processed phosphate exports from producing countries. Lower demand has not altered the expansion plans in most producing countries to increase capacity for phosphate rock and increase capacity to convert phosphate rock into phosphate intermediates or finished phosphate fertilizer.

Algeria.—The expansion of mining operations at Djebel Onk, which was to replace the exhausted reserve from El Kouif, was canceled. The current capacity of the mine is 2.4 million metric tons of ore, which is sent to the beneficiation plant. The scheduled expansion of 600,000 metric tons per year of 63% bone phosphate of lime (BPL) product was planned for 1981-82. The 2.4 million metric tons of ore is concentrated to 1.43

²Data do not add to total shown because of independent rounding.

²Less than 1/2 unit.

million metric tons of 63% to 65% BPL product of which 800,000 tons are washed and calcined to 500,000 metric tons of 75% to 77% BPL product. The calcined products are exported, and the lower grade 63% BPL rock is used in domestic phosphoric acid plants.

Australia.—Mining the Duchess phosphate rock deposit began in 1975 but was stopped in 1978 when it became uncompetitive in Pacific markets and when problems developed in phosphoric acid manufacture. Western Mining reopened the mine in late 1981 with the intention of producing 200,000 metric tons per year. About one-half will be used in Australia and one-half will be exported.

Brazil.—Brazil was for many years the only significant producer of phosphate rock in the South American continent but was only able to supply about one-half of the country's demand. As the demand for phosphate fertilizer increased, the Government encouraged development of domestic phosphate rock deposits to reduce reliance on imports. Since 1967, all production of phosphate rock has come from the carbonatiteapatite complexes located in the States of São Paulo and Minas Gerais. The Institudo Brasileiro do Fosfato forecasts that there will be 1.3 million metric tons of installed capacity in 1981 and 1.5 million metric tons in 1982.

China.—China produces most of its phosphate fertilizers in small plants using local raw materials. Recent exploration by Chinese geologists indicates that in Yunnan Province there are potential reserves of the order of 4 billion metric tons. The deposit is located 60 to 70 kilometers southwest of Kunming, the provincial capital of the Province. The Kunyang open pit phosphate mine produced an estimated 1.5 million metric tons of 22% to 30% P2O5 product in 1981. Another deposit, located about 60 kilometers south of Kunming, is considered by the Chinese to be a potential 2-millionmetric-ton-per-year operation. It is called the Haikow deposit, and because the grade of the rock is less than that at Kunyang, it will be necessary to beneficiate the ore to obtain an acceptable product. The Bureau of Mines Albany Research Center has assisted to develop a beneficiation flowsheet under a memorandum of agreement with a contracting company.

Christmas Island.—The Australian Territory of Christmas Island lies in the Indian Ocean 2,400 kilometers northwest of Perth.

Western Australia, and about 300 kilometers south of Java. The annual capacity is 1.4 million metric tons A Grade per year, 150,000 metric tons of dust, and up to 200,000 metric tons of B Grade. At an annual production rate of 1.4 million metric tons of A Grade material, mining will end about 1986. It is possible that after 1986, mining could be organized on a smaller scale to utilize remaining B and C Grade phosphates.

Egypt.—Although the mining and marketing of phosphates from the Abu Tartour area was considered a most important mineral project in terms of future exports, implementation of the project has not advanced during this year. Opposition to the project, which will cost in excess of \$1 billion, was voiced by the Egyptian People's Assembly because of costs and low international demand for phosphates.

Finland.—Kemira announced plans to expand the phosphate rock mine at Kuopia in central Finland from 210,000 to 500,000 metric tons per year of apatite concentrates. The ore as mined analyzes $4\%~P_2O_5$ and is concentrated to $36\%~P_2O_5$. The expansion is scheduled for completion in $1982.^2$

Iraq.—Despite the adverse effects of the Iraq-Iran war on construction schedules, the Akashat Mine, which will have a capacity of 3.4 million metric tons per year, was inaugurated on April 7, 1981. The fertilizer plant at Al Qain was scheduled to start up before the end of 1981, but this was dependent on completing the rail link between the mine and the fertilizer plant.³

Israel.—Phosphate rock is the only source of uranium available in Israel. In Israel, phosphorites are found throughout southern parts of the country in the Negev Desert in relatively small synclinal basins. Of the 20 identified basins, 4 were proven to have commercial value and are exploited. All of the phosphates in Israel contain uranium, and in general, uranium concentrations vary with P₂O₅ concentrations.

The principal phosphate deposits in Israel are Zefa-Ef'e, Makhtesh, Qatan, Oron, Hor-Ha'ar (Zin), and En Yahav. At present, the recovery of uranium from phosphates is feasible only as a byproduct, when the costs of mining, handling, and digesting the rock are paid by the phosphate industry. It is estimated that from 58 to 75 metric tons of uranium are being recovered per year.

Jordan.—Phosphate rock is produced from the three principal mines at El Hassa, Wadi al Abyad, and Ruseifa. Studies are being made to determine the feasibility of opening a new phosphate mine at Shidiya in southeastern Jordan along the Saudi border. The plans are to design a mine to produce from 5 to 6 million metric tons per year in the late 1980's.

Mexico.—Roca Fosforica Mexicana S.A. de C.V. (Rofomex) started mining phosphate rock at San Juan de la Costa, Baja California, on the Gulf of California, about 60 miles from LaPaz. Some tonnage was shipped to Lazaro Cardenas on Mexico's Pacific coast, a distance of 1,390 kilometers by sea. From Lazaro Cardenas, the concentrates were shipped by rail to Fertimex plants at San Luis Potosi, Quenetaro, and Guadalajara. At capacity, the mine is designed to produce 730,000 metric tons per year. The San Juan de la Costa deposit has proven reserves of 45 million metric tons assaying 18% P₂O₅ in the ground.

At Santo Domingo on the Pacific shore of the Baja California peninsula, Rofomex is constructing a mine to produce 1.5 million metric tons per year of concentrates by dredging a 4% P₂O₅ beach sand deposit. The mine is scheduled to start in 1982 and will ultimately produce 4.5 million metric tons per year to meet Mexico's anticipated growing demand. The resource at Santo Domingo is estimated to total 1.1 billion metric tons.

Morocco.-Phosphate rock is produced from the Oulad Abdoun Plateau with Khouribga as its mining center, the Ganntour Plateau where mining is centered at Youssoufia, and the Meskala area where no mining has taken place. The Office Cherifien des Phosphates estimated that these areas contain about 40 billion metric tons of phosphate rock. The Bu-Craa deposit in the Western Sahara is estimated to contain another 1.6 billion metric tons of phosphate rock reserves. Production peaked at Bu-Craa in 1975 when a total of 2,681,000 metric tons was produced. It is rumored that after repairs to equipment are completed, limited production will resume at Bu-Craa in 1982.

The planned expansions of Moroccan phosphate rock mines, soluble phosphate production capacity, and new port facilities indicate the Office Cherifien des Phosphates intends to change from a supplier of phosphate raw material to a supplier of intermediate and finished phosphate fertilizer. New processing capacity at Safi, Jorf Lasfar, and Nador will be capable of processing about 10 million metric tons of phos-

phate rock annually. At Safi, Maroc Chemie I and II and Maroc Phosphore I and II were constructed during the 1965-81 period. At Jorf Lasfar, Maroc Phosphore III will be constructed in the 1983-86 period. Further ahead, Maroc Phosphore IV is scheduled to be constructed at Nador from 1984 to 1987.

Peru.—Empresa Promotora Bayovar (Probayovar), a new company owned by Minero Peru, Cofide, and the Empresa Nacional de Comercializacion de Insumos, was formed in 1980 to promote the development of the Bayovar phosphate deposit. In July 1980, the World Bank granted a \$7.5 million loan to Probayovar for technical and economic studies to determine the viability of developing the 600-million-ton phosphate reserve. The estimated resource is of the order of 10 billion tons of recoverable phosphate rock and 8.3 million tons of potassium chloride. The studies will establish the economics of producing phosphoric acid, phosphate fertilizers, and potash from the deposits.

Senegal.—Industries Chimiques du Senegal started constructing a fertilizer complex that is scheduled to start producing in 1984. A 560,000-metric-ton-per-year sulfuric acid plant and a 400,000-metric-ton-per-year phosphoric acid plant will be built near the phosphate mine at Taiba, about 100 kilometers north of Dakar. A 165,000-metric-ton-per-year diammonium phosphate plant will also be constructed at Mbao near an existing fertilizer complex.

South Africa, Republic of.—Foskor, the Phosphate Development Corp. Ltd., has increased capacity to over 3 million metric tons per year from Phalaborwa. Foskor supplies concentrates to the Federal Fertilizer Co. (Fedmis), the Triomf Fertilizer Company, and Omnia. Starting in 1976, phosphoric acid from Fedmis and Triompf was exported from Richards Bay. Foskor began exporting phosphate concentrates for the first time in 1981 and plans to ship as much as 2 to 3 million tons of phosphate rock in future years to markets where it can compete with selling prices and freight rates.

Syria.—The principal phosphate deposits are located near the city of Palmyra, 45 kilometers east of Homs. The mines are the Kneifiss, Sharkya A, and Sharkya B. The combined capacity of the mines is 1.2 million metric tons per year. Identified reserves are in the range of 500 to 600 million metric tons. The phosphate rock produced from Kneifiss averages 31% to 32% P₂O_s. The overburden ranges from 7 to 40 meters

in thickness, and the phosphate bed averages 7 meters. The mines at Sharkya are both open pit operations. The overburden is a maximum 13 meters thick. The stripping ratio is 1 to 2 and the phosphate bed is about 12 meters. The ore grades analyze from 29% to 31% P₂O₅.

Togo.—In 1980, Togo's phosphate rock capacity was increased to 3.4 million metric tons per year when a fifth production line was started. In March 1981, the new line was shut down to synchronize production with current sales volume. A new slimes recovery plant was reported to be operating. The product from this line contains 8% iron and aluminum oxides, high water and chlorine levels, and grades 31% to 32% P₂O₅. The market for this phosphate rock will be limited to perhaps secondary rock for triple superphosphate production.

Tunisia.—Because phosphate rock from the Gafsa district is relatively low grade, Tunisia converts some of this ore to phosphoric acid for export. Tunisia was the first producer to develop this practice and is increasing its capacity of phosphoric acid and diammonium phosphate. To be able to meet the demand of these fertilizer plants for phosphate rock and maintain phosphate rock exports, Tunisia plans to increase phosphate rock capacity to about 10 million metric tons by the end of this decade. Three new phosphate rock mines are planned for the Gafsa district and a fourth is planned at

Sra Ouertane near El Kef in the northwest part of the country for the early 1980's. The new Gafsa mines include the Jellabia-Mzinda, the Kef Eddour, and the Oum el Khjer with projected production of 1.5, 1.0, and 0.5 million metric tons per year, respectively.

U.S.S.R.—Production information about individual phosphate rock mines in the U.S.S.R. are not published. It is estimated that the mining areas in decreasing order of production are (1) Kola Apatite, (2) Kingisepp-Fosforit, (3) Podmoskovsk, (4) Maardu, (5) Bryansk, (6) Verkhrekamsk, and (7) Chelsaisk. The Kara Tau sedimentary mines were not included in this listing of apatite deposits released by Soyuzgorkhimprom, the Soviet chemical combine.

The Soviet press indicated that increases in the beneficiation capacity at the Kola Apatite combine and at the Kara Tau complex will boost production of phosphate rock during the 1981-85 period to meet the demand for increased fertilizer production. Near the end of this period, a new apatite combine based on the Oshurkon deposit will be completed near Lake Baikal.

President Reagan canceled the grain embargo, imposed in February 1980, and lifted the embargo on fertilizer exports to the U.S.S.R. in April 1981. The lifting of the embargo permitted Occidental Petroleum to resume shipping 1 million tons per year of SPA from north Florida to the U.S.S.R.

Table 27.— Phosphate rock and guano: World production, by country¹
(Thousand metric tons)

Commodity and country ²	1977	1978	1979	1980 ^p	1981 ^e
Phosphate rock:					
Algeria	1,173	1,136	1,084	1,025	³ 858
Australia	450	^r 248	7	4	7
Brazil ⁴	^r 676	r _{1,096}	1,628	2,472	32,637
China ^e	4,000	4,500	5,500	5,500	5,500
Christmas Island (Indian Ocean)	1.186	r _{1,386}	1,357	1,638	31,336
Colombia	r 6	r ₁	7	8	9
Egypt	472	639	623	658	700
Finland			2	125	130
France	25	25	12	25	25
Germany, Federal Republic of	80				
India	740	789	681	541	550
Indonesia	4	6	5	e 5	5
Israel	1,227	1,725	2.086	2,307	32,290
Jordan	1,782	2,303	2.825	3.911	33,523
Kiribati (Banaba Island, formerly Ocean	•		-,	•	•
Island)	446	465	420		
Korea, North ^e	500	500	550	550	550
Mexico	285	322	171	283	355
Morocco	17,572	⁵ 19,713	⁵ 20.032	⁵ 18,824	^{3 5} 19,696
Nauru	1,146	1,999	1,828	2,087	2,000
Netherlands Antilles (Curacao)	79	81	49		
Philippines	10	1	2	17	16
Senegal ⁶	1,871	1,759	1,835	1,632	32,017
South Africa, Republic of	2,403	2,699	3,221	3,282	32,910

See footnotes at end of table.

Table 27.— Phosphate rock and guano: World production, by country¹—Continued (Thousand metric tons)

Commodity and country ²	1977	1978	1979	1980 ^p	1981 ^e
Phosphate rock —Continued					
Sweden ⁷	50	83	58	83	75
Syria	425	800	1,272	1,319	31,321
Thailand	3	3	5	6	. 6
Togo	2,857	2,827	2,920	2,933	32,244
Tunisia	3,615	3,712	4,154	4,582	34,596
Turkey	65	32	27	21	25
Uganda ^e	5	5			
U.S.S.R. ^e	r26,925	^r 27,712	r28,405	r29,450	30,950
United States	47,256	50,037	51,611	54,415	353,624
Venezuela	139	109			
Vietnam ^e	1,500	1,800	400	500	550
Western Sahara	232	(⁵)	(⁵)	(⁵)	(5)
Zimbabwe	^r 105	r ₁₀₇	136	130	125
Total	^r 119,310	^r 128,620	132,913	138,333	138,630
Guano:					
Chile	7	(⁸)			
Kenya	(⁸)	20			(8)
Philippines	(8)	1		25	25
Seychelles Islands ⁹	<u>`</u> ź	6	7	4	5
Total	12	27	10	29	30

Preliminary. eEstimated. Revised.

³Reported figure.

*Froduction from Western Sanara area (former spanish Sanara) included with Morocco.

*Includes aluminum phosphate as follows, in thousand metric tons: 1977, 275, 1978, 204; 1979, 184; 1980, 224; 1981, 225 (estimated). Data do not include figures for output of several types of manufactured phosphatic fertilizers that are produced from the reported calcic phosphate and aluminum phosphate void double counting.

*As reported by the International Superphosphate Manufacturer's Association; official Swedish statistics show no production of phosphate rock; this material is byproduct apatite concentrate derived from iron ore.

⁸Less than 1/2 unit.

⁹Exports.

TECHNOLOGY

In July 1980, the Bureau of Mines advertised for assistance to collect information on phosphate deposits in the market economy countries and centrally controlled economy countries. A contract was awarded in September 1980. A total of 102 individual deposit profile reports were completed by September 1981. The comprehensive investigation of worldwide phosphate occurrences was made to acquire the information to characterize the deposits, develop capital and operating costs for each deposit, and prepare deposit profile reports. The final report will be issued in 1983.

A study to characterize and cost all known phosphate deposits in the United States was initiated by the Bureau of Mines, Division of Minerals Availability. The report will be issued in 1983.

After operating a pilot plant designed by the Bureau of Mines, a producer of Western

phosphate rock was able to increase P2O5 recovery by 13% and improve concentrate quality. The objective of the program was to reduce MgO levels in concentrates to the range of 0.4% to 0.7% and increase mill P₂O₅ recovery by treating ore fines that were discarded with tailings. A full-scale flotation section to utilize the Bureau's carbonate-silicate flotation process was installed and is operating.

The carbonate-silicate process was used to float samples of phosphate ores obtained from the Haikow Mine near Kunming, China. Bench-scale tests on one sample produced a 32% P2Os concentrate with 94% flotation recovery. Another sample produced a 32% P₂O₅ product with a 79% flotation recovery.

The Bureau of Mines rotary screen dewatering unit, designed to separate water from flocculated phosphate slimes, was in-

¹Table includes data available through Apr. 7, 1982. Prepared by Division of Foreign Data.
²In addition to the countries listed, Belgium and Tanzania may have produced small quantities of phosphate rock, and Namibia may have produced small quantities of guano, but output is not officially reported, and available information is inadequate for formulation of reliable estimates of output levels.

Figure represents total of direct sales of run-of-mine product plus output of marketable concentrate. Direct sales of run-of-mine product were as follows, in thousand metric tons: 1977, 26; 1978, 27; 1979, 39; 1980, 40; 1981, 40 (estimated). Total output of crude ore reported in Brazilian sources is far higher than figures presented here, but such figures are not equivalent to data shown for other countries in this table.

5Production from Western Sahara area (former Spanish Sahara) included with Morocco.

stalled and operated in several Florida phosphate mining and beneficiating plants. Slimes containing 3% solids were dewatered to a solid content as high as 20%.

Samples of low-grade phosphate pebble and flotation feed characterized by high magnesium content were obtained from Florida to study procedures necessary to produce an acceptable grade of concentrate with low MgO concentrations. The flotation studies will continue to attempt to improve concentrate quality and recovery.

Tailings from seven Florida phosphate operations were analyzed for P2O5, uranium, and radium-226. The P2O5 content ranged from 1.1% to 18.7%. The radiation levels from both uranium and radium-226 ranged from 1.7 to 18.4 picocuries per gram and 1.7 to 19.1 picocuries per gram, respectively. A technical progress report will be published. Only two of the seven samples had flotation tailings less than the proposed Environmental Protection Agency radium-226 level of 5 picocuries per gram.

The boreholed technology that was used to slurry mine coal and uranium in the Western United States was tested in St. Johns County, Fla. Joint experiments were concluded in 1981 by the Bureau of Mines and a phosphate producing company. In the first experiment, the high-pressure mining jet was operated in a flooded cavity. Over 700 metric tons of matrix were extracted from a 4.6-meter-radius cavity at a rate of about 33 metric tons per hour. When the cavity water level was pumped down to conduct an air experiment, the roof cap rock failed, terminating the test. The second experiment, well number 2, was conducted to determine the effective radius of the mining jet in an air environment. Mining progressed to the monitoring well, a distance of 6 meters from the slurry well, when the roof suddenly failed. The test was terminated. The third experiment was conducted to confirm test number 1 and to test an air shroud around the mining jet. The test was initially conducted in a water environment, and almost 400 metric tons were extracted. At this point, the air shroud was activated, and another 160 metric tons were extracted. The improvement in extraction was confirmed with the air shroud, and the cavity radius was extended 5 to 6 meters. No roof collapse problems were encountered, and the first program phase ended. During the second phase of the program, scheduled for 1982, tests will be conducted to establish costs, to pump matrix from the ground to a slurry pond, deslime and store products, and backfill the cavity with slimes and flotation feed.

¹Physical scientist, Division of Industrial Minerals.

^{*}Industrial Minerals. January 1981, p. 11.

*Mining Journal. May 1, 1981, p. 232.

*Ketzinel, Z., Y. Yolksman, and M. Hassid. Research on Uranium Recovery From the Phosphate Industry in Israel. Nuclear Research Center, Nagen, Israel.

Platinum-Group Metals

By J. Roger Loebenstein¹

World production of platinum-group metals (PGM) in 1981 was estimated at 6.8 million troy ounces, the same level as production in 1980. The Republic of South Africa remained the leading producer of platinum and accounted for 44% of world production of PGM. The U.S.S.R. remained the leading producer of palladium and accounted for 49% of world production of PGM. Canadian production of PGM, a byproduct of nickel production, accounted for 6% of the total world production.

Mine production of PGM in the United States is a byproduct of copper refining. Following the settlement of the 1980 U.S. copper strike, mine production of PGM increased to 6,150 troy ounces. Total refined production of PGM increased for the 5th

consecutive year to 1.6 million troy ounces in 1981. Sales of PGM in 1981 decreased 13% from the 1980 level, primarily as a result of decreased sales to the automotive, chemical, and petroleum industries. Stocks of platinum, osmium, and rhodium decreased, while stocks of palladium, iridium, and ruthenium increased.

Lower world demand for PGM prompted the two world leading producers, Rustenburg Platinum Mines, Ltd., (RPM) and Impala Platinum Ltd., to reduce production. Lower demand also caused PGM prices to decline sharply in 1981. There was considerably less investor interest in platinum and other precious metals in 1981 than in 1979 and 1980.

Table 1.—Salient platinum-group metals¹ statistics

(Troy ounces)

	1977	1978	1979	1980	1981
United States:					
Mine production ² Value	5,545 \$396,649	8,246 \$759,925	7,300 \$1,288,155	3,348 \$923,423	6,150 \$1,335,722
Refinery production:	···	*****			
New metal Secondary metal	5,199 195,219	8,303 257,191	8,392 309,022	2,300 330,923	5,607 391.637
Toll-refined metal	1,005,023	1,023,314	1,090,678	1,079,813	1,192,315
Total refined metal	1,205,441	1,288,808	1,408,092	1,413,036	1,589,559
Exports (except manufactured goods)	426,631 2,510,374	702,547 2,921,411	899,598 3,479,128	764,964 3,501,782	863,365 2,849,617
Stocks Dec. 31: Refiner, importer, dealer	1.012.812	861,411	761,282	973.261	946,769
Consumption (sales)	1,592,277	2,259,558	2,756,021	2,205,910	1,920,672
World: Production	r _{6,510,617}	^r 6,440,190	r6,486,402	P6,836,137	e6,823,265

Estimated. Preliminary. Revised.

¹The platinum group comprises six metals: Platinum, palladium, iridium, osmium, rhodium, and ruthenium.

²Recovered from platinum placers and as byproducts of copper refining.

Legislation and Government Programs.—U.S. Government inventories of platinum, palladium, and iridium were unchanged in 1981. The quantities, in troy ounces, held in the national defense stockpile and the goals (objectives) at yearend were as follows:

	Goal	Inventory
Platinum	1,310,000	452,640
Palladium	3,000,000	1,255,003
Iridium	98,000	16,991

The General Services Administration entered into basic ordering agreements with suppliers for the purchase of iridium for the national stockpile. The agreements set the purity and conditions for purchase without specifying the price or quantity to be purchased.

Automobile emission standards for 1982 models remained unchanged from those set

for 1981 models. The current standards allow emissions of 3.4 grams of carbon monoxide per mile, 0.41 gram of hydrocarbons per mile, and 1.0 gram of nitrogen oxides per mile. About 30% of engines manufactured in 1981 were allowed to meet a less stringent carbon monoxide standard of 7.0 grams per mile.

DOMESTIC PRODUCTION

In 1981, domestic mine production of PGM, largely a byproduct of copper mining, increased following the settlement of the 1980 U.S. copper strike. Production of platinum and palladium accounted for 95% of total secondary refined production of PGM shown in table 2. Platinum and palladium were produced in nearly equal amounts both in 1980 and in 1981. Secondary refined production of ruthenium nearly tripled from the amount recovered in 1980.

Platinum and palladium were recovered from copper ores by U.S. Metals Refining Co., a subsidiary of AMAX Copper Inc., ASARCO Incorporated, and Kennecott Corp. Numerous refiners process PGM scrap on a toll and a nontoll basis. The largest processors in the United States are Engelhard Minerals & Chemicals Corp., Johnson Matthey Inc., and U.S. Metals Refining Co.

The Anaconda Company continued exploration and test production of platinum and palladium at its deposit near Nye, Mont., within the Stillwater complex. In August 1981, Anaconda submitted an operating permit application to the Montana Department of State Lands. The application was reportedly filed in order to expedite completion of an environmental impact statement being prepared by the Montana Department of State Lands and the U.S. Forest Service. A final decision by Anaconda on whether to proceed with production will probably be made sometime in 1982. Anaconda expects the earliest date for pro-

duction to be late 1984 or early 1985. Production is planned in the range of 30,000 to 35,000 troy ounces per year of platinum, or about 4% of 1981 U.S. consumption of 873,000 troy ounces. Production of palladium is expected to total about 100,000 troy ounces per year, or about 11% of 1981 U.S. consumption of 889,000 troy ounces.

Stillwater PGM Resources, a joint venture of Manville Products Corp. and Chevron USA, Inc., continued exploration for PGM within the Stillwater complex. The company expects to make a final decision on whether to proceed with the project during 1983. Ore assays indicate a combined platinum-palladium content of 0.5 to 0.75 ounce per short ton. The palladium-to-platinum ratio is about 3.5 to 1.

Full-scale dredging operations were resumed in May at Goodnews Bay, Alaska, after a 5-year shutdown. Potentially, 10,000 troy ounces of platinum per year over a period of 50 years could be recovered from a total deposit of 500,000 troy ounces.

Refinement International, Inc., announced plans to develop a collection network for recovering PGM from scrapped automotive catalytic converters. The spent catalyst will be shipped to the company's Woonsocket, R.I., refinery for processing.

United Smelting & Refining Co. began operation of its expanded precious metals smelting facility at Franklin Park, Ill., in June 1981. Capacity was increased to 50,000 pounds per day of precious metals, principally from industrial scrap.

CONSUMPTION AND USES

Reported sales of PGM in 1981 decreased from the 1980 level, primarily as a result of decreased sales to the automotive, chemical, and petroleum industries. Sales of PGM to both the electrical and dental industries changed little in 1981. The automotive industry remained the largest purchaser of

PGM, accounting for 32% of sales in 1981.

U.S. automobile production of 6.3 million automobiles was the lowest in 20 years in 1981, according to Ward's automotive reports. Lower automotive production and a continuing trend towards downsizing automobiles reduced demand for PGM in automobiles.

PLATINUM-GROUP METALS

Table 2.—Platinum-group metals refined in the United States
(Troy ounces)

Year	Platinum	Palladium	Iridium	Osmium	Rhodium	Ruthe- nium	Total
PRIMARY METAL							
Nontoll-refined:							
1977	831	4.300	52	9	6	1	5,199
1978	1.081	7.222	-	•	•	-	8,303
1979	1,980	6,412					8,392
1980	535	1.765					2,300
1981	1.005	4,602					5,607
Toll-refined:	2,000	2,002					0,001
1977	466	610	4		3		1.083
1978	177	1,177	•		·		1,354
1979	56	420					476
1980	128	673					801
1981	235	934					1,169
SECONDARY METAL	200	204					1,103
Nontoll-refined:	F0.000	104000	1 440	10		0.000	407.040
1977	50,838	134,086	1,442	12	5,011	3,830	195,219
1978	75,585	166,371	1,565	3	8,266	5,401	257,191
1979	75,038	220,639	1,647	~-	7,964	3,734	309,022
1980	154,075	162,408	3,186	13	10,106	1,135	330,923
1981	187,883	185,764	3,318	64	11,317	3,291	391,637
Toll-refined:							
1977	620,848	327,450	4,970	1,955	42,178	6,539	1,003,940
1978	630,961	344,022	6,599	667	35,914	3,797	1,021,960
1979	585,932	446,189	5,487		38,875	13,719	1,090,202
1980	533,101	498,905	4,933	1,371	33,362	7,340	1,079,012
1981	520,717	607,397	7,826	1,865	34,870	18,471	1,191,146
1980 TOTALS							
Total primary	663	2,438					3,101
Total secondary	687,176	661,313	8,119	1,384	43,468	8,475	1,409,935
Grand total	687,839	663,751	8,119	1,384	43,468	8,475	1,413,036
	001,000	000,101		1,001	10,100	0,110	1,110,000
1981 TOTALS							
Total primary	1.240	5.536					6,776
Total secondary	708,600	793,161	11.144	1.929	46,187	21,762	1,582,783
		100,101	11,144	1,020	40,101	21,102	1,002,100
Grand total	709,840	798,697	11,144	1,929	46,187	21,762	1,589,559

mobile catalysts.

The principal domestic uses of PGM in 1981 were as catalysts to control automobile exhaust emissions, reforming catalysts to upgrade the octane rating of gasolines, catalysts to produce acids and organic chemicals, electrical contacts and relays primarily for use in telephone systems, bushings

for glass fiber manufacture, and dental alloys for orthodontic and prosthodontic uses.

Uses of platinum and palladium in 1981 are shown in figure 1. Catalytic uses include automotive, chemical, and petroleum end uses. Corrosion-resistant uses include dental, medical, and glass end uses.

Table 3.—Platinum-group metals¹ sold to consuming industries in the United States
(Troy ounces)

Year and industry	Platinum	Palla- dium	Iridium	Osmium	Rhodium	Ruthe- nium	Total
1977 1978 1979	789,819 1,196,341 1,408,925	700,469 917,928 1,132,621	13,456 16,839 17,301	911 817 974	55,216 69,640 83,470	32,406 57,993 112,730	1,592,277 2,259,558 2,756,021
1980: Automotive Chemical Dental and medical Electrical Glass Jewelry and decorative Petroleum Miscellaneous	517,143 118,956 25,831 150,060 52,897 50,998 144,039 58,307	176,518 119,905 244,279 312,778 1,155 13,491 22,013 21,828	4,134 495 11,273 50 3,092 4,058 482	321 498 	37,012 5,273 45 14,818 8,581 5,434 662 1,703	674 35,972 508 37,224 560 2,843	731,347 284,561 271,656 526,153 62,683 73,575 170,772 85,163
Total	1,118,231	911,967	23,584	819	73,528	77,781	2,205,910

See footnotes at end of table.

Table 3.—Platinum-group metals¹ sold to consuming industries in the United States
—Continued

(Troy ounces)

Year and industry	Platinum	Palla- dium	Iridium	Osmium	Rhodium	Ruthe- nium	Total
1981:							
Automotive	446,677	129,214	83		30,009	1,300	607,283
Chemical	78,134	90,272	999	413	8,899	51,843	230,560
Dental and medical	18,739	255,114	173	250	35	233	274,544
Electrical	111,697	345,365	3,551		12,050	27.323	499,986
Glass	29,272	2,922	0,002		3,950	,	36,144
Jewelry and decorative	27,604	14,772	558		3,618	700	47,252
Petroleum	88,314	20,877	1.874		-,	170	111,235
Miscellaneous	72,202	30,650	1,178		3,549	6,089	113,668
Total	872,639	889,186	8,416	663	62,110	87,658	1,920,672

¹Comprises primary and nontoll-refined secondary metals.

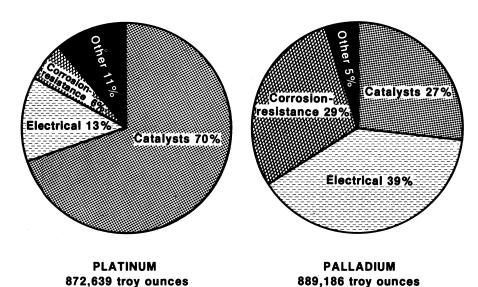


Figure 1.—Uses of platinum and palladium in 1981.

STOCKS

Stocks of platinum decreased and stocks of palladium increased as a result of changes in inventories held by the New York Mercantile Exchange (NYME). Stock data in table 4 are partial stocks because the Bureau of Mines does not collect inventory data from end users of PGM, some of whom may hold sizable inventories. In

addition, there were Government inventories of platinum, palladium, and iridium.

The NYME upgraded the minimum quality standard platinum contract from 99.5% to 99.9% pure platinum. The amended contract trading was opened in August and was effective beginning for the January and April 1983 contract months.

Table 4.—Refiner, importer, and dealer stocks of platinum-group metals in the United States, December 31

Year	Platinum	Palladium	Iridium	Osmium	Rhodium	Ruthe- nium	Total
1977	438,045	475,358	15,689	420	48,392	34,908	1,012,812
1978	369,823	369,937	16,264	708	51,322	53,357	861,411
1979	305,605	323,865	18,303	1,487	49,678	62,344	761,282
1980	502,185	353,002	15,032	200	46,105	56,737	973,261
1981	429,830	399,083	16,819	37	43,355	57,645	946,769

¹Includes metal in depositories of the New York Mercantile Exchange; on Dec. 31, 1981, this comprised 195,350 troy ounces of platinum and 98,400 troy ounces of palladium.

PRICES

All PGM prices declined sharply in 1981.

Table 5.—Monthly average producer and dealer prices¹ of platinum-group metals

(Dollars per troy ounce)

	Plat	inum	Pall	adium	Rho	dium	Irio	lium	Ruth	enium	Osr	nium
	Pro- ducer	Dealer	Pro- ducer	Dealer	Pro- ducer	Dealer	Pro- ducer	Dealer	Pro- ducer	Dealer	Pro- ducer	Dealer
1979: Average	352	445	113	120	733	770	257	280	45	32	150	130
1980:							,					
January _	420	820	155	231	800	839	350	351	45	34	150	130
February _	420	889	188	271	800	833	381	461	45	36	150	130
March	420	699	225	230	800	801	419	557	45	36	150	130
April	420	600	225	195	800	761	500	624	45	36	150	130
May	420	564	225	160	800	733	500	702	45	36	150	130
June	420	648	225	170	800	749	500	769	45	35	150	130
July	420	664	225	199	800	727	500	769	45	35	150	130
August	433	650	225	205	787	705	513	752	45	35	150	130
September	475	707	225	213	700	652	600	750	45	35	150	130
October	475	671	225	201	700	652	600	767	45	35	150	130
November	475	634	225	183	700	661	600	750	45	35	150	130
December_	475	580	200	151	700	634	600	735	45	35	150	130
Average	439	677	214	201	766	729	505	666	45	35	150	130
1981:												
January _	475	522	200	128	700	609	600	689	45	33	150	130
February _	475	480	170	112	700	581	600	670	45	33	150	130
March	475	496	140	119	700	567	600	643	45	33	150	130
April	475	478	140	107	700	547	600	589	45	33	150	130
May	475	462	134	103	687	527	600	530	45	33	150	130
June	475	440	110	92	600	497	600	508	45	32	150	130
July	475	408	110	85	600	472	600	483	45	32	150	130
August	475	423	110	86	600	467	600	463	45	32	150	130
September	475	434	110	87	600	462	600	450	45	32	150	130
October	475	419	110	78	600	436	600	453	45	32	.150	130
November	475	393	110	69	600	419	600	444	45 45	31	150	130
December_	475	397	110	70	600	392	600	421	45	31	150	130
December	710	331	110	- 10	000	992	000	*41	40	91	100	190
Average	475	446	130	95	641	498	600	529	45	32	150	130

¹Average prices calculated at the low end of the ranges of weekly averages and rounded to the nearest dollar.

Source: Metals Week.

FOREIGN TRADE

Exports of PGM increased to 863,000 troy ounces valued at over \$300 million in 1981. Principal recipients were Japan, the United Kingdom, Switzerland, and Canada. Principal recipients were Japan, the United Kingdom, Switzerland, and Canada.

pal import sources were from the Republic of South Africa, the U.S.S.R., and the United Kingdom.

Table 6.—U.S. exports of platinum-group metals, by year and country

				•					
	Ores and concen-	Waste, scrap,	4	Metal not rolled (troy ounces)	_	Metal rolled (troy ounces)	rolled . unces)	T,	Total
Year and country	trates (troy ounces)	sma sweepings (troy ounces)	Platinum	Palladium	Other platinum group	Platinum	Other platinum group	Troy	Value (thousands)
Argentina Australia Belguin-Luxembourg	1 1 1 18	27,662	57 80 58 197		707 701 1,093	29 5 19 774	36 1,028 1,593	936 799 32,283 4,634	\$230 267 12,166 915
Finland Finland France Germany, Federal Republic of Greece Hong Kong	1,472	358 14,001 	2,065 43,264 		23,184 23,184 23,184 511 139	614 732	1,649 20	2,684 11,838 11,175 2,815 984	2,508 3,878 3,878 2,536 281 281
Ireland Italy Japan Korea, Republic of Mexico Netherlands	289	173	1,667 97,949 124 253 (¹)	581 983 983 780 323 9,347 9	2,805 23,715 5,044 1,115 3,929	844 29,655 497 1,106	3,282 198 198 21 218 35	6,393 237,963 1,102 6,144 11,786 3,967	2,514 108,498 131 2,126 2,984 2,298
Singapore South Africa, Republic of Sweden Sweden Switzerland United Kingdom Venezuela Other	17 17 80 88 387 30	 69 4 100,106 2 <u>53</u>	1,000 48,649 52,101 282	211 40 1,286 8,032 13,945 152 1,030	$\begin{array}{c} 361 \\ 1,897 \\ 2,551 \\ 10,367 \\ 4,060 \\ 1,464 \end{array}$	7. 13 275 4 35	315 326 326 49 2,867 21 844	572 3,252 4,249 67,194 173,741 521 4,071	100 1,950 1,835 38,862 71,723 1,236
Total	2,797	170,256	254,495	179,686	109,511	34,959	13,260	764,964	2341,206
Argentina Argentina Argentina Belgium-Luxembourg Brazil	$\frac{157}{217}$	52 38,891	474 47 3 <u>52</u>	$\frac{321}{1,096}$	121 816 3,764 890	 854 99	279 50 848 93	1,404 913 45,453 1,651	263 382 13,447 326

Canada China	190 3,215	48,197	5,441	12,066	19,989	484	1,261	87,628 3,215	32,327 107
Finland		17.5	730	2,606	1,971	123	410	5,913	1,925
Greece	1,100	5,259	30,344 12	22,437 3,471	4, 88, 98, 98, 98, 98, 98,	243	2,951 43	67,220 4,166	22,031 319
Hong Kong	222	<u> </u>	962 662	1,589	372 15	2,399	7	4,363 931	1,388
	1655	1300	1,500	559 73.299	1929	164 56.123	187 9.589	4,339 339,982	1,493 130.074
Korea Republic of	182	-	326	1,471	119	182	168	1,810	214
Netherlands	8 !	-	628	1,388	257	202	1,819	4,294	916
Norway South Africa, Republic of	!	1 1	¦86	ا د	5,312 2,355	387	997	5,484 2,842	2,459 1,052
Sweden Switzerland	1 1	308	151 96.967	$2.8\overline{19}$	2,473 7,998	1,940 880 880	138 40	5,010 108,204	1,641
United Kingdom	677 225	109,889 109	6,089 5,261	22,468 4,005	1,526 2,178	60 237	8,799 1,255	149,508 13,270	36,514 3,922
Total	8,246	204,180	327,328	149,794	81,848	63,866	28,103	863,365	301,890

¹Less than 1/2 unit.
²Data do not add to total shown because of independent rounding.

Table 7.—U.S. imports for consumption of platinum-group metals, by year and country

	up Sweepings, sals waste, man and scrap	675 376,500	25,695 41,000 41,000 43,518 43,518 7,650 7,650 7,73 7,73 7,73 7,73 7,73 7,73 7,73 7,7	1,442 235,379
	Unspeci- group fied metals combi- precious nations metals metals	110,951	577 111 111 111 111 110 110	32,736
	Ur Ruthenium α	98,488	250 250 368 368 52,499 3,000 3,000 10,695 96,437 50 17,139	180,438
	Rhodium 1	109,591	148 213 213 1,492 100 100 1,604 1,604	73,738
Unwrought (troy ounces)	Osmiri- dium	10,388	483 	9,309
	Osmium	440		820
	Iridium	26,090	194 194 100 100 100 1262 1,262	11,110
	Palladium	1,202,342	85,025 28,625 28,812 24,032 13,200 10,315 29,638 81,638 1,165	1,114,313
	Platinum sponge	1,191,803	24 13.034 1,760 1,200 1,424 10.038 2,817 6,850 14,247 759,845 759,845 2,100 9,115 2,090	888,995
	Platinum grains and nuggets	15,427	2877 683 683 100 100 255 250 250 250 250 250 250 250 250 2	1,891
	Year and country		Australia Australia Belgium Luxembourg Belgium Luxembourg Ganada Colombia Colombia Colombia Colombia Colombia Finland Finland Germany, Federal Republic of Hong Kong Heavy Italy Italy Italy Italy Spain South Africa, Republic of South Africa, Republic of Sweden Switzerland Switzerland Switzerland U.S.S.R. Usike Kingdom Other Colour Africa Colour Africa Colour Africa Colour Africa Colour Africa Colour Africa Colour Africa Colour Africa Colour	Total

		Sen	Semimanufactured (troy ounces)	7 5		Platinum- group metals in	L L	Total
	Platinum	Palladium	Iridium	Rhodium	Unspecified combinations	naterials not selsewhere specified (troy ounces)	Troy	Value (thousands)
1980	230,344	114,246	73	989	744	12,994	3,501,782	\$1,176,747
1981:								
Dalminm I membring	1	1	ŀ	15	1	!	25,719	2,341
Canada	9 194	;	ŀ).TG	!	1 5.69	140,395	36,591
Colombia	1016	!	1	48	!	1,000	10,010	9,145
Costa Rica	! !	1 1		2	1	i i	9,844	2,140
Finland		l I	!	!	!	!	0,00	1,170
Germany, Federal Republic of	387	¦83	184	1	1	!	18,80	6.959
Hong Kong	ţ	67	1		! !	! !	52,501	920
Italy	1	1	1	!	1	!	3,011	1,524
Japan	1	-	!	!	!	i	682	361
Mexico	1	7 400	100	!	1	!	78,591	4,096
Norway	: :	321	007	114	1 1	-	32,818	10.284
Panama	-	1		1	1 1		5,920	2,700
South Africa Remublic of	108 977	10.797	1	000	i	!	11,499	1,188
Spain	100	10,101	1 1	607		1 1	9.117	928 828
Sweden.	11	110	!	1			6,472	2,742
Switzerland	6,597	3,925	1	!	1	-	36,578	12,348
United Kingdom	55,543	60,577	! !	370	-	!	303,039	90,327
Other	1	180	1		2	1	7,323	3,104
Total	179,321	116,548	248	1,733	တ	1,563	2,849,617	800,256

		-				
Platinum	Palladium	Iridium	Osmium	Rhodium	Ruthe- nium	Total imports
					1	
66	40	46	2	70	78	54
1	21			7		11
16	13	29	98	13	10	14
17	26	25		10	12	21
75	42	61	2	67	53	57
2	24			7		13
10	10	8	98	13	9	10
13	24	31		13	38	20
	66 1 16 17 75 2 10	66 40 1 21 16 13 17 26 75 42 2 24 10 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fraction Falsacium Fraction Commun Rodoum Rod

Table 8.—Imports of platinum-group metals, by year and country
(Percent of total imports)

WORLD REVIEW

World production of PGM in 1981 was estimated at 6.8 million troy ounces. The U.S.S.R. and the Republic of South Africa remained the leading producers. Byproduct production of PGM from nickel-copper ores in Canada, the third largest PGM producer, declined slightly in 1981.

Lower economic activity in the United States and abroad resulted in less demand for PGM. Owing to high interest rates and relatively low inflation in the United States in 1981, most investors and speculators avoided purchases of precious metals.

A review and outlook for platinum and palladium was published by J. Aron Commodities Corp.² Included in the review was a discussion of supply and demand, investment demand, the U.S. strategic stockpile, and the future outlook.

Canada.—Inco Ltd. and Falconbridge Nickel Mines Ltd. decreased mine production levels in 1981 as nickel demand decreased. Both companies recovered PGM as byproducts of nickel and copper production. Inco processed the concentrate at its refinery in Acton, England, and Falconbridge recovered PGM from nickel-copper matte at its refinery in Kristiansand, Norway. Inco tested a proprietary process for refining precious metals.3 If the process proves successful, Inco could build a \$30 million to \$50 million refinery that would upgrade refining of PGM at Sudbury. The process would still require shipment of PGM concentrate to Acton for final refining.

Japan.—Imports of PGM by Japan increased 22% to 2.2 million troy ounces, roughly equivalent to Japanese consumption of PGM in 1981. The Republic of South Africa remained the primary supplier of platinum, the U.S.S.R. remained the primary supplier of palladium, and the United Kingdom was the primary supplier of rhodium. Over 500,000 troy ounces of platinum were consumed by the jewelry industry

alone in Japan in 1981. About 200,000 troy ounces of palladium were consumed by the dental industry. Two Japanese automobile manufacturers signed contracts with Johnson Matthey Public Ltd. Co. for supply of automobile catalysts.

South Africa, Republic of.—The Republic of South Africa continued to be the world's largest producer of platinum, ruthenium, and possibly rhodium and osmium. Virtually all of the country's production was mined from the Merensky Reef of the Bushveld complex in Transvaal by three companies. Osmiridium also was recovered as a byproduct of gold mining.

RPM, a subsidiary of Rustenburg Platinum Holdings Ltd. (RPH), continued to operate three major mines for the production of platinum-group metals from the Merensky Reef. ATOK Platinum Mines (Pty.) Ltd., a subsidiary of RPH, continued to operate a mine at the eastern end of the Merensky Reef.

RPM's mine output was refined at two plants, one of which was in the Republic of South Africa, and the other in the United Kingdom. The plants were operated and owned by Matthey Rustenburg Refiners (Pty.) Ltd., which was jointly owned by RPM and Johnson Matthey Public. All PGM products were marketed exclusively by Johnson Matthey Public.

Impala operated four mines in Bophuthatswana for the production of PGM. Ore was concentrated into a nickel-copper matte containing small quantities of PGM. Nickel, copper, and PGM were produced at two refineries in Springs, the Republic of South Africa.

Western Platinum Ltd. mined ore in the Merensky Reef and produced a copper, nickel, and cobalt matte containing PGM. Matte was shipped to the Falconbridge refinery at Kristiansand, Norway, where it was processed to obtain refined copper, nickel, and cobalt. The precious metal sludge byproduct was sent back to the Republic of South Africa for final processing and extraction of PGM.

Western Platinum continued development work on the UG-2 Reef, which underlies the Merensky Reef. Mining of UG-2 is scheduled to begin in 1982.

In response to lower world demand for PGM in 1981, the two leading world PGM producers, RPM and Impala, announced plans to reduce production. Impala reduced its production by 10% to 15%, and RPM deferred plans to expand its Amandelbult Mine.

United Kingdom.—Matthey Rustenburg Refiners approved construction of a \$33 million to \$36 million PGM refinery at Royston, about 60 miles north of London. The facilities will process both South African concentrates and secondary materials using a new solvent extraction process. The refinery is scheduled for completion by vearend 1982.

Table 9.—Platinum-group metals: World production, by country¹

(Troy ounces)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Australia, metal recovered domestically					
from nickel ore: ³					
Palladium, metal content, from nickel ore	9,581	7,395	6,880	7,100	7,000
Platinum, metal content, from nickel ore	3,697	r _{12,958}	2,765	2,500	2,400
Ruthenium	225	^é 300	^é 200	150	140
Canada: Platinum-group metals from nickel ore	465.371	346,213	197,943	410,757	400,000
Colombia: Placer platinum	r _{17.315}	13,939	12,933	14,345	15,000
Ethiopia: Placer platinum	e100	123	108	113	125
Finland: Platinum-group metals from copper ore	r ₆₄₀	r640	720	700	700
Japan, metal recovered from nickel and			,		
copper ores:4					
Palladium	22,716	24,221	22,495	28,968	25,600
Platinum	9,737	10,176	12,142	12,366	10,400
South Africa, Republic of: Platinum-group metals	0,101	10,110	,	12,000	20,200
from platinum ores ^{e 5}	2,870,000	2,860,000	3,017,000	3,100,000	3,000,000
U.S.S.R.: Placer platinum and platinum-group met-	2,010,000	2,000,000	0,011,000	0,100,000	0,000,000
als recovered from nickel-copper ores	3,100,000	r3,150,000	3,200,000	3,250,000	3,350,000
United States: Placer platinum and platinum-	0,100,000	0,100,000	0,200,000	0,200,000	0,000,000
group metals from gold and copper ores	5,545	8,246	7,300	3,348	6,150
Yugoslavia:	0,010	0,210	1,000	0,010	0,100
Palladium	4,951	5,562	5,241	5,150	5,100
Platinum	739	417	675	640	650
* W. W. W	100				
Total	r6,510,617	r6,440,190	6,486,402	6,836,137	6,823,265

^pPreliminary ^eEstimated. ^rRevised

*Estimated. *Preliminary. *Revised.

1Table includes data available through May 12, 1982. Platinum-group metal production by the Federal Republic of Germany, Norway, and the United Kingdom is not included in this table because the production is derived wholly from imported metallurgical products and to include it would result in double counting.

In addition to the countries listed, China, Indonesia, Papua New Guinea, and the Philippines are believed to produce platinum-group metals, and several other countries may also do so, but output is not reported quantitatively, and there is no reliable basis for the formulation of estimates of output levels. However, a part of this output not specifically reported by country is presumably included in this table credited to Japan. (See footnote 4.)

*Partial figure; excludes platinum-group metals recovered in other countries from nickel ore of Australian origin; however, a part of this output may be credited to Japan. (See footnote 4.)

*Inances figures do not refer to Japanese mine production but rather represent Japanese smelter-refinery recovery.

"Japanese figures do not refer to Japanese mine production, but rather represent Japanese smelter-refinery recovery from ores originating in a number of countries; this output cannot be credited to the country of origin because of a lack of data. Countries producing and exporting such ores to Japan include (but are not necessarily limited to) Australia, Canada, Indonesia, Papua New Guinea, and the Philippines. Output from ores of Australian, Indonesian, Papua New Guinea, and Philippine origin are not duplicative, but output from Canadian material might duplicate a part of reported

Canadian production.

5Includes osmiridium produced in gold mines.

TECHNOLOGY

The Bureau of Mines investigated the concentration of PGM ore from the Stillwater complex in Montana.5 Best results were obtained with a flotation scheme utilizing a mercaptobenzothiazole collector and sulfuric acid.

The Bureau of Mines tested ore from four potential platinum deposits in Alaska.6 An

attempt was made to concentrate PGM with primary minerals such as chromite, copper sulfide, or magnetite. A high-grade sample from the Salt Chuck copper sulfide deposit yielded the best PGM concentrate; the maximum grade attained was 0.04 ounce platinum and 1.5 ounce palladium per ton of high-grade copper sulfide concentrate.

Johnson Matthey Public continued to investigate technologies for reducing automobile emissions.7 Progressively tighter emission standards in the United States have necessitated the use of rhodium-platinum three-way catalyst systems by automobile manufacturers. Three-way catalysts are capable of removing the three major exhaust pollutants: Hydrocarbons, carbon monoxide, and nitrogen oxides. In order for a three-way catalyst to work at maximum efficiency, the air-to-fuel ratio must be carefully controlled by using a method such as electronic air injection.

As an alternative to the single three-way catalyst, Johnson Matthey Public studied the use of a dual catalyst system consisting of a rhodium-platinum three-way reduction catalyst and an oxidation catalyst.8 After exhaust gases pass through the reduction catalyst, most of the nitrogen oxides and some of the hydrocarbons and carbon monoxides are removed. Air is added to the exhaust gases after the gases leave the reduction catalyst but before the gases enter the oxidation catalyst. After passing through the oxidation catalyst, the remainder of the hydrocarbons and carbon monoxide are removed.

Johnson Matthey Public researched the protection of gas turbine blades from corrosive environments using platinum aluminide diffusion coatings.9 According to the report, gas turbine engines operating in marine environments often ingest saltladen air. The combination of corrosive salt and the high operating temperatures causes premature destruction of internal engine components. Conventional aluminide coatings are widely used for corrosion protection, but platinum aluminides provide better corrosion resistance.

¹Physical scientist, Division of Nonferrous Metals.

²J. Aron Commodities Corp. Annual Platinum-Palladium Review and Outlook. May 1981, 111 pp.

³American Metal Market. Testing of Inco Process Could Lead to Refinery. V. 89, No. 3, Jan. 7, 1981, p. 8. ⁴Japan Metal Journal. Imports of Precious Metals in Entire 1981 and Jan. 1982. V. 12, No. 10, Mar. 8, 1982, pp.

⁵Bennetts, J., E. Morrice, and M. M. Wong. Preparation
Concentrate From Stillof Platinum-Palladium Flotation Concentrate From Stillwater Complex Ore. BuMines RI 8500, 1981, 18 pp.

⁶Dahlin, D. C., A. R. Rule, and L. L. Brown. Beneficiation of Potential Platinum Resources From Southeastern Alas-

of Potential Flatinian Resources From Southeastern Alas-ka, BuMines RI 8553, 1981, 14 pp.

Tharrison, B., B. J. Copper, and A. J. J. Wilkins. Control of Nitrogen Oxide Emissions From Automobile Engines. Platinum Met. Rev., v. 25, No. 1, January 1981, pp. 14-21.

⁸Work cited in footnote 7 Wing, R. G., and I. R. McGill. The Protection of Gas Turbine Blades. Platinum Met. Rev., v. 25, No. 3, July 1981, pp. 94-105.

Potash

By James P. Searls¹

U.S. potash production declined 4% while apparent consumption fell 2% with the decline occurring primarily in the second half of the year. Domestic sales fell 14%. Exports from the United States also fell sharply in the second half of the year. Stocks at the producers' plants had risen strongly by yearend. Domestic producers discounted prices in response to lower demand and foreign discounting with delay-of-payment schedules.

Worldwide potash supply appeared to be in general balance with demand in the first half of the year, but larger than demand in the second half of the year. Brazilian demand for potash fell owing to lack of foreign reserves for purchasing imports of any sort. Brazilian authorities allocated their imports of potash at a lower-than-historical level as part of their effort to achieve a positive balance-of-payments position at the end of the year. Polish demand for potash also declined owing to the social unrest, which forced its usual suppliers, the U.S.S.R. and the German Democratic Republic, to look to the international market with their unsold product. Additionally, the U.S.S.R. apparently brought new production capacity into the market. The U.S.S.R. was also in need of hard currencies to support its client country economies and to purchase foodstuffs to supplement their poor 1981 harvest. The U.S.S.R.'s efforts to sell potash by price cutting appeared to be part of a larger effort that involved gold. petroleum products, and other commodities moving out of the U.S.S.R. All this, plus the

strengthening U.S. dollar, caused U.S. potash exports to fall sharply in the second half of the year.

In the United States, the full year average prices, as measured at the plant, for muriate (standard, coarse, and granular) increased from \$133 per metric ton, K₂O equivalent,² in 1980 to \$137 per ton, f.o.b. mine, in 1981. The sulfate of potash price increased from \$299 per ton in 1980 to \$349 per ton, f.o.b. mine, in 1981.

Société Nationale Elf Aquitaine, a French national oil and chemical company, took control of Texasgulf, Inc., a U.S. potash producer, by buying 87% of its stock. Texasgulf's Canadian holdings were split and came under Canadian control. In the United States, Texasgulf had about 5% of the U.S. potash capacity.

Legislation and Government Programs.—In late March, the U.S. International Trade Commission determined that the domestic potash industry would not be materially injured if the 1969 antidumping order was modified or revoked.

The Department of Energy Waste Isolation Pilot Plant, which is east of and borders the Duval Corp.'s Nash-Draw langbeinite mine and includes some Duval and International Minerals & Chemical Corp. leases, met a new difficulty when an exploratory drill hole penetrated a brine pocket. This brine pocket is about 1,460 feet from the nearest point of the proposed storage galleries and about 850 feet below the gallery level. The implications of this find are not presently clear.

Table 1.—Salient potash statistics1

(Thousand metric tons and thousand dollars unless otherwise specified)

	1977	1978	1979	1980	1981
United States:					
Production	4,241	4,326	4,271	4,315	4,153
K ₂ O equivalent	2,229	2,253	2,225	2,239	2,156
Sales by producers	4,241	4,358	4,549	4,265	3,670
K2O equivalent	2,232	2,307	2,388	2,217	1,908
Value ²	\$206,900	\$226,500	\$279,200	\$353,900	\$328,900
Average value per ton of product dollars	\$48.78	\$51.97	\$61.38	\$82.98	\$89.62
Average value per ton of K ₂ O equivalentdo	\$92.68	\$98.16	\$116.92	\$159.63	\$172.40
Exports ³	1,497	1,431	1,119	r _{1,584}	887
	845	809	635	r840	491
K ₂ O equivalent Value ⁴	\$90,200	\$88,600	\$79,500	r\$179,830	\$107,950
Imports for consumption ^{3 5}	7.608	7,762	8,505	8,193	7,903
K ₂ O equivalent	4,605	4,707	5,165	4,972	4,796
Customs value	\$374,000	\$399,000	\$520,800	\$648,000	\$750,400
Apparent consumption ⁶	10,352	10,689	11,935	r10,874	10,686
K ₂ O equivalent	5,992	6,205	6,918	r _{6,349}	6,213
Yearend producers' stocks, K ₂ O equivalent	467	414	251	273	520
World: Production, marketable K ₂ O equivalent	r _{25,252}	r _{26,113}	r25,677	P27,673	e27,357

Preliminary. Revised. eEstimated.

DOMESTIC PRODUCTION

Domestic production declined about 4% from the 1980 level. In 1981, 79% of all potassium chlorideproduction was muriate of potash (standard, coarse, or granular)—and 9% was potassium sulfate sulfate of potash. The remaining production comprised manure salts, soluble and chemical grades of muriate of potash, and potassium magnesium sulfate. The New Mexico potash producers accounted for 83% of the total domestic potash production. New Mexico mine production in 1981 was 18.5 million tons of 13.1% K₂O equivalent crude salts. This was down from 13.6% K₂O in 1980. Production in other States was from brines or a solution mine, so no comparable ore grade is available.

Seven companies produced potash in New Mexico in 1981 from underground, bedded deposits east of Carlsbad. The companies were AMAX Chemical Corp. of AMAX Inc.; Duval of Pennzoil Co., Inc.; International Minerals & Chemical; Kerr-McGee Chemical Corp. of Kerr-McGee Corp.; Mississippi Chemical Corp.; National Potash Co. of Freeport-McMoRan; and Potash Co. of America of Ideal Basic Industries, Inc. Sylvinite ores were mined to produce potassium chloride. Langbeinite ores were mined to produce potassium magnesium sulfate. One company reacted potassium chloride and potassium magnesium sulfate to produce potassium sulfate. Potassium sulfate was also produced by three plants in Texas that treated potassium chloride with sulfuric acid. These plants were operated by AMAX Chemical Corp., Stauffer Chemical Co., and Dorchem, Inc., of Dorchester Gas Corp. The Dorchem plant was sold in 1981 to a private investor group operating under the name of Permian Chemical Corp.

In April, Ideal Basic Industries, parent to Potash Co. of America, rejected a takeover bid from an unidentified company. In May, Standard Oil Co. of California abandoned a merger attempt with AMAX Inc., parent company of AMAX Chemical Corp. The AMAX potash plant was closed for a week in September because of an electrical fire in the refining plant. Superfos of Denmark has acquired shares of stock in Mississippi Chemical. Superfos plans to invest in Mississippi Chemical's planned Carlsbad potash expansion for a portion of the new production. National Potash laid off 75 employees in October owing to fall sales slowdown.

Methane was found in gas samples from

¹Includes muriate and sulfate of potash, potassium magnesium sulfate, and some parent salts. Excludes other chemical compounds containing potassium.

²F.o.b. mine.

³Excludes potassium chemicals and mixed fertilizers.

F.a.s. U.S. port.

Includes nitrate of potash.

⁶Measured by sales plus imports minus exports.

POTASH 681

roof relief holes in two potash mines. The Hobbs Mine of Kerr-McGee Chemical and Mississippi Chemical mine were operating under variances because the methane level was above 0.25% in the samples. The underground potash industry was threatened with being declared "gassy" and having to invest in new nonsparking equipment. Most or all of the companies felt that they could not support the additional investment.

There were three potash producers in Utah in 1981. Great Salt Lake Minerals & Chemicals Corp., a subsidiary of Gulf Resources and Chemical Corp., produced potassium sulfate as a coproduct from the Great Salt Lake brines. Kaiser Aluminum & Chemical Corp. of Kaiser Industries Corp. produced potassium chloride from natural near-surface brines at the west end of the Bonneville Salt Flats near Wendover. Utah.

Texasgulf produced potassium chloride from underground mines near Moab, Utah, using solution mining techniques. On June 26, 1981, the French oil company Société Nationale Elf Aquitaine started a successful takeover of Texasgulf. The Canadian Development Corp. (CDC) which held 37% of Texasgulf because of Texasgulf's Canadian investments, sold its Texasgulf's Canadian property and the Elf Aquitaine Canadian property and about \$500 million.

In California, in 1981, Kerr-McGee Chemical produced both potassium chloride and potassium sulfate as coproducts along with other products from underground brines at Searles Lake. The labor strike in 1981 at the Searles Lake complex did not involve the

potash production plant.

Table 2.-Production, sales, and inventory of U.S. produced potash by type and grade

(Thousand metric tons and thousand dollars)

		Production	ction				Sold or used	pesn.			Stock	s, end of 6	Stocks, end of 6-month period	8
Type and grade	Gross weight	oes ght	K ₂ O equivalent	O alent	Gross weight	sas ght	K ₂ O equivalent	O alent	Va	Value ¹	Gross weight	j.	K ₂ O equivalent	ent
	1980	1981	1980	1981	1980	1981	1980	1981	1980	1981	1980	1981	1980	1981
January-June: Muriate of potash, 60% K ₂ O minimum: Standard Coarse Granular Chemical Potassium sulfate Other potassium salts ²	701 281 468 30 222 528	709 242 416 29 205 492	426 172 283 19 114 132	432 148 252 105 119	702 274 463 30 202 523	683 231 398 28 190 469	427 168 281 19 104	415 141 241 18 97 115	51,400 22,500 37,200 29,700	58,200 20,400 34,300 W 83,600 W	169 58 68 4 62 243	193 79 92 62 62 284	102 36 41 3 32 88	117 48 56 56 32 65
Total ³	2,230	2,094	1,145	1,073	2,194	1,998	1,125	1,027	172,600	181,300	603	712	27.1	318
July-December: Muriate of potash, 60% KgO minimum: Sandard- Coarse Cranular Chemical Potassium sulfate Other potassium selts²	729 271 447 32 175 431	809 215 409 26 185 415	443 166 271 20 90	492 131 248 17 95	731 262 441 35 190 412	605 176 372 28 156 333	445 160 267 22 97	368 108 226 18 80 81	59,500 23,100 38,700 W 30,400	48,800 14,800 29,500 W 28,400 W	167 67 74 1 47 262	397 118 128 90 96	101 41 45 1 24 61	240 727 784 46
Total ³	2,086	2,059	1,094	1,083	2,071	1,672	1,092	881	181,300	147,600	618	1,099	273	520
Grand total ³	4,315	4,153	2,239	2,156	4,265	3,670	2,217	1,908	353,900	328,900	×	×	×	X

Withheld to avoid disclosing company proprietary data included in "Total." XX Not applicable.

¹F. ob. mine. The control of the c

POTASH 683

Table 3.—Production and sales of potash in New Mexico

(Thousand metric tons and thousand dollars)

				Market	able potass	ium salts	
Period		e salts ¹ roduction)	Prod	luction		Sold or used	
	Gross weight	K ₂ O equivalent	Gross weight	K ₂ O equivalent	Gross weight	K ₂ O equivalent	Value ²
1980: January-June July-December	8,985 9,046	1,232 1,222	1,872 1,788	945 926	1,889 1,756	952 916	143,600 145,400
Total	18,031	2,454	3,660	1,871	3,645	³ 1,869	289,000
1981: January-June July-December	9,129 9,361	1,186 1,234	1,786 1,726	904 894	1,732 1,386	881 720	147,600 113,700
Total	18,490	2,420	33,513	1,798	3,118	1,601	261,300

¹Sylvinite and langbeinite.

Table 4.—Salient sulfate of potash statistics1 in the United States

(Thousand metric tons of K₄O equivalent and thousand dollars)

	1977	1978	1979	1980	1981
	1911	1910	1010	1300	1301
Production	221	205	205	203	200
Sales by producers	221	222	204	201	178
Value ²	\$42,400	\$45,300	\$46,230	\$60,080	\$61,993
Exports ³	84	83	81	r70	40
Value ⁴	NA	NA	NA	\$23,113	\$16,095
Imports ⁵	34	29	10	22	18
Value ⁶	\$6,800	\$6,230	\$2,710	\$7,111	\$7,380
Apparent consumption ⁷	171	169	133	[†] 153	156
Yearend producers' stocks	38	21	22	24	46

Revised. NA Not available.

CONSUMPTION AND USES

Apparent domestic consumption of all forms of potash was down in 1981. Spring sales were nearly normal despite a winter drought and spring rains during planting season. The fall harvest was quite large, and with high interest rates and low crop prices, the farmers had little money available for fertilizer purchases in late 1981. Prices declined in the fall as Brazil slowed its buying of fertilizers and the potash started to build up at the producers' warehouses worldwide. The relative strength of the U.S. dollar intensified this producers' stockpile buildup for domestic producers.

Discounts were not enough to reduce the producers' stocks.

According to the Potash & Phosphate Institute, which reports only the sales of United States and Canadian producers, the consumption of muriate of potash for agricultural uses declined as follows: Standard grade fell 8% to less than 900,000 tons, coarse grade fell 7% to 2.1 million tons, granular grade fell 8% to 1.5 million tons, and sulfates (both potassium sulfate and potassium magnesium sulfate) fell 11% to 217,000 tons.

The Potash & Phosphate Institute report-

²F.o.b. mine

³Data do not add to total shown because of independent rounding.

¹Excluding potassium magnesium sulfate.

²F.o.b. mine

³Export data supplied by Potash & Phosphate Institute (1977-79) and the U.S. Bureau of the Census (1980-81).

F.a.s. U.S. port

⁵U.S. Bureau of the Census

C.i.f. to U.S. port.

⁷Sales plus imports minus exports, independent rounding.

ed that U.S. domestic agricultural sales by United States and Canadian producers were, by K₂O content, 40% coarse muriate, 30% granular muriate, 17% standard muriate, 9% soluble muriate; and 4% sulfates. These fractions are unchanged from those of 1980. Of these fractions, potash from the U.S. mines was 45% of the standard muriate, 8% of the coarse muriate, 24% of the granular muriate, 4% of the soluble muriate, and 100% of the sulfates.

In addition, the Potash & Phosphate Institute reported that 383,000 tons of potash was sold for nonagricultural (chemical) uses. Standard muriate was 68% of the total, soluble muriate was 31%, and sulfates were 1%. Nonagricultural use of potash is primarily for caustic potash-chlorine plants.

Caustic potash (potassium hydroxide) was used as the major pathway to the other potassium chemicals as well as for a caustic chemical. Caustic potash has slightly different properties in comparison to caustic soda and competes with caustic soda on price and availability. Caustic potash supplies were

also hindered by the excess of byproduct chlorine on the market in 1981. Some muriate was also used in petroleum well drilling muds for shale stabilization and in petroleum well stimulation by massive fracturing where the potassium ion inhibits clay particle expansion.

According to the Potash & Phosphate Institute, the top six States for agricultural potash consumption were Illinois, Iowa, Ohio, Minnesota, Indiana, and Wisconsin. These six States consumed 54% of the agricultural potash from United States and Canadian producers. The top six States for agricultural consumption using domestically produced potash were Mississippi, Texas, Florida, Missouri, Georgia, and California. These six States consumed 52% of the agricultural potash from U.S. producers. The top six States for agricultural consumption using domestically produced sulfates of potash were Florida, Kentucky, Georgia, California, North Carolina, and Texas. These six States consumed 61% of the domestically produced sulfates of potash.

Table 5.—Sales of North American potash, by State of destination
(Metric tons of K₂O equivalent)

State		ultural tash	Nonagri pot	
	88 88 88 88 88 88 89 89 89 89 89 89 89 8	1981		
Alabama	112,613	109,345	54,893	52,287
Alaska		·	88	,
Arizona	1,266	4.092	2.746	344
Arkansas	54,526	54.281	486	1,381
California	62,078	55,943	10.955	12,738
Colorado				258
Connecticut				
Delaware				26,988
Florida Florida				1.060
Georgia				1,559
Hawaii			101	1,000
Idaho			10	151
Illinois				29.085
Indiana				4,835
lowa				1,100
Kansas				4.187
Kentucky				13,990
				4,358
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				45
				1,121
Michigan				583
<u></u>	197,546	158,646	2,645	2,665
MinnesotaMississippi	415,802	404,039	57	171
Missonini	248,918	217,987	6,808	9,984
MissouriMontana	272,853	238,920	3,885	5,831
	7,196	10,293	13	40
	52,522	53,275	211	1,624
Nevada		54	629	625
New Hampshire	435	455		
New Jersey	8,532	7,951	608	904
New Mexico	5,600	3,378	12,558	33,957
New York	53,319	86,625	44,269	41,014
North Carolina	126,006	115,707	634	1,739

POTASH 685

Table 5.—Sales of North American potash, by State of destination —Continued (Metric tons of K₂O equivalent)

State		ultural tash		icultural ash
	1980	1981	1980	1981
North Dakota	15,556	21,788	78	9
Ohio	482,688	470,391	46,524	46,49
Oklahoma	26,583	24,345	12,266	14,390
Oregon	20,477	20,801	1,774	1,399
Pennsylvania	54,437	44,401	3,835	3,67
Rhode Island	2,209	1.643	161	133
South Carolina	80,653	74,387	318	450
South Dakota	10,470	12,531	,	
Cennessee	125,948	133,854	79	33'
	117,123	131,356	52,209	53.06
Texas	1,142	913	1,288	2,10
	5,566	4,462	2,200	_,
Vermont	59.083	52,585	1.087	1,40
Virginia	29,210	35,152	2,937	2,60
Washington	4.720	5,217	2,001	2,00
West Virginia	308,973	347,121	166	45
Wisconsin	4.060	3.049	931	1,46
Wyoming	4,000	0,040	301	1,40
Total	5,555,416	5,144,027	355,365	382,72

Source: Potash & Phosphate Institute.

Table 6.—Sales of North American muriate of potash to U.S. customers, by grade

(Thousand metric tons of K₂O equivalent)

Grade	1978	1979	1980	1981
Agricultural:				
Standard	954	1.067	948	873
Coarse	2,305	2,459	2,228	2,070
Granular	1,747	1.952	1,687	1.549
	387	522	447	435
Soluble	387	922	441	400
Total	5,393	6,000	5,310	4,927
Nonagricultural: Soluble Other	103 191	118 237	108 242	118 260
Total	294	355	350	378
Grand total _	5,687	6,355	5,660	5,305

Source: Potash & Phosphate Institute.

STOCKS

Yearend 1981 producers' stocks of potash were 91% higher than 1980's comparable quantity and were equal to 24% of 1981 production by K₂O content. Yearend 1980 stocks were about 1.5 months of average

production while yearend 1981 stocks were 2.9 months of average production. All types of potash stocks increased except for chemical muriate.

TRANSPORTATION

Potash Corp. of Saskatchewan (PCS) opened its fourth warehouse for receiving unit train shipments in Danville, Ill. The first three are in Seneca, Ill.; Waterloo, Iowa; and Springfield, Ill. A fifth center is planned for Fort Dodge, Iowa, in 1982.

PCS formed a separate division to handle the transportation of its potash.

Shipments of Canadian potash through the Thunder Bay harbor on Lake Superior to sites on the southern shores of Lake Michigan and Lake Erie commenced this year. There were some railroad tariff reductions to meet these lower shipping costs.

Across the United States, rural fertilizer dealers on lightly used railroad spurs were facing railroad abandonment as railroad management sought to reduce its losses. This increased costs of fertilizers to some farmers.

PRICES

The average value, f.o.b. mine, of U.S. potash production of all types and grades in 1981 was \$172.40 per ton. The average value, f.o.b. mine, during the first half of the year was \$176 per ton, and the average value for the second half was \$168 per ton. The average value per ton of the three

major muriate grades was \$137 for the year. The individual average year prices for the three muriates were standard, \$137; coarse, \$142; and granular, \$137. The average value per ton for sulfate of potash for 1981 was \$349.

Table 7.—Prices1 of U.S. potash, by type and grade

(Dollars per metric ton of K₂O equivalent)

	19	979	19	980	19	981
Type and grade	January- June	July- December	January- June	July- December	January- June	July- December
Muriate, 60% K₂O minimum:						
Standard	81.33	93.70	120.30	133.82	140.18	132.45
Coarse	96.63	106.26	134.28	144.69	144.92	137.28
Granular	96.79	107.53	132.48	145.10	142.42	130.94
All muriate ²	89.75	100.66	126.88	139.27	141.70	132.71
Sulfate, 50% K ₂ O minimum	218.87	234.61	285.75	313.06	344.84	354.55

Average prices, f.o.b. mine, based on sales.

FOREIGN TRADE

Total U.S. potash exports in 1981 decreased 42% from that of 1980 owing to a world-wide excess of potash. Three factors appear to have caused this. Because of a trade imbalance, the Brazilians started to limit their total imports to rescue their foreign currency reserves. The German Democratic Republic and the U.S.S.R. apparently put more potash on the world market because one of their customers, Poland, was unable to take its usual quantity owing to political unrest. Finally, a relatively strong U.S. dollar put U.S. potash exports at a disadvantage relative to other suppliers.

Potash exports to Latin America and Asia fell 51% and 33%, respectively, on a product tonnage basis.

Total $\bar{U}.S.$ imports of potash decreased 4% in 1981 from that of 1980, with only mixed potassium-sodium nitrate increasing. Muriate from Canada declined 4% but was 94% of all muriate imported and 93% (by K_2O equivalents) of all potash imports. Israel was the second largest source of imports with an increase of 31% to 5% of total muriate imports and 5% of all potash imports because it supplies both muriate and potassium nitrate.

²Excluding soluble and chemical muriates.

POTASH 687

Table 8.—U.S. exports of potash

	A		1980 ^r			1981	
	Approxi- mate average K ₂ O	Quantity	(metric tons)	Value ¹ (thou- sands)	Quantity	(metric tons)	Value ¹ (thou- sands)
	content (percent)	Product	K₂O equiva- lent		Product	K₂O equiva- lent	
Potassium chloride, all grades	61	1,160,640	708,000	\$131,180	700,420	427,300	\$80,680
Potassium sulfates, all grades ²	(3)	423,640	132,400	48,650	186,470	63,300	27,270
Total	XX	1,584,280	840,400	179,830	886,890	490,600	107,950

Source: U.S. Bureau of the Census.

Table 9.—U.S. exports of potash, by continent and country

			Metric tons	of product				
Continent and country	Potas chlor		Potassium all gra		Tot	al²	Total va (thous	
	1980	1981	1980	1981	1980	1981	1980	1981
Latin America:			_				•	
Argentina		720	r _{5,200}	5,170	r _{5,200}	5,890	r\$490	\$700
Belize			r 630		630		120	
Brazil	509,300	211,210	¹ 34,910	16,200	^r 544,210	227,410	^r 68,330	27,330
Chile	40		^r 16,660	11,750	r _{16,700}	11,750	r _{2,820}	2,130
Colombia	43,800	32,340	r _{5,360}		r49,160	32,340	^r 4,940	4,100
Costa Rica	r13,130	6,950	⁷ 13,750	10,180	r _{26,880}	17,130	r _{3,100}	1,790
Dominican Republic	r50,350	26,830	440	2,100	r50,790	28,930	r _{6,590}	4,000
Ecuador	17,090	17,350	r _{1.280}	1,550	r ₁₈ .370	18,900	r _{2,310}	2,090
French West Indies	2.,,,,,	4,200	-,	3,150		7,350	1	950
Guatemala	10,920	8,000	r _{9,350}		r20,270	8,000	r2,760	1,150
Guyana	10,020	5,555	r _{1,540}		r _{1,540}		^ŕ 210	·
Honduras			r ₁₅	1,370	15	1,370	1	390
Jamaica	5.800	4.470		1,0.0	5.800	4,470	690	560
Mexico	63,180	25.610	¹ 37,260	21.740	r100,440	47,350	r9,300	5.820
Nicaragua	6,510	20,010	01,200	5.060	6,510	5,060	880	490
Panama	r _{1.450}	5,050	r270	160	1,720	5,210	240	600
Peru	13,760	10,500	r4,080	2.900	r17,840	13,400	r2.280	1.770
Uruguay	6,420	5,100	r6,000	1,500	r12,420	6,600	r _{1.280}	790
Venezuela	14,110	•	3,410	•	17,520	0,000	r2,380	
venezueia	14,110		0,410		11,020		2,000	
Total ²	r755,850	358,330	r140,160	82,830	r896,010	441,160	r _{108,700}	54,700
Oceania:								
Australia	r25,220	60,990	r _{5.340}	5,580	r30,560	66,570	r\$3,750	8,400
Canada	r33,630	00,000	r87,460	40.880	r121,090	40,880	F14,710	5,640
New Zealand	r _{141,640}	98.630	*750	350	r142,390	98,980	12,800	10,920
-								
Total ²	r200,490	. 159,620	¹ 93,550	46,810	r294,040	206,430	31,260	24,960
Asia:								
India		44,950				44,950		4,490
Indonesia	21,000				21,000	·	2,740	
Japan	91,460	79,690	⁷ 98,510	22,000	r _{189,970}	101,690	r _{21,270}	12,820
Korea, Republic of			*180	60	[‡] 180	60	15	14
Malaysia			752,940	19,100	F52,940	19,100	r4,300	1,630
Philippines	r _{5,000}		r3,650	1,650	r8.650	1.650	r _{1,110}	380

See footnotes at end of table.

^{*}Revised. XX Not applicable.

*Export values are f.a.s. U.S. port.

*This includes potassium magnesium sulfate.

*Varies from year to year according to relative quantities of the two types of sulfates exported.

Table 9.—U.S. exports of potash, by continent and country —Continued

			Metric ton	s of produ	ct			
Continent and country	Potas chlo			n sulfates, rades¹	То	tal ²	Total (thou	value ^{2 3} isands)
	1980	1981	1980	1981	1980	1981	1980	1981
Asia —Continued								
Saudi Arabia Singapore Taiwan Thailand Other	10,500 30,270 	160 41,060 	*70 4,000 *40	200 5,000 70	70 10,500 30,270 4,000 ^r 40	160 41,260 5,000 70	\$13 1,270 3,160 310 r ₈	\$15 4,310 490 10
Total ²	r _{158,230}	165,860	r _{159,390}	48,080	r317,620	213,940	r34,196	24,160
Europe: Denmark Greece Sweden Other	44,800 350 870	16,640 	r30,500 	 450 280	*75,300 350 870	16,640 450 280	r _{5,650} 40 170	1,730 100 30
Total ²	^r 46,020	16,640	r30,500	730	^r 76,520	17,370	r _{5,860}	1,860
Africa: Zambia Other	r ₅₀	==	r_40	7,990	r 90	7,990	-r ₈	2,290
Total ²	^r 50		r ₄₀	7,990	r ₉₀	7,990	r ₈	2,290
Grand total ²	rT,160,640	700,420	r423,640	186,470	r _{1,584,280}	886,890	r _{179,820}	107,950

Source: U.S. Bureau of the Census.

Table 10.—U.S. imports for consumption of potash

		-	•		
	Approxi- mate	Quantity (metric tons)	Value (t	nousands)
	average K ₂ O content (percent)	Product	K ₂ O equivalent ^e	Customs	C.i.f.
1980					
Potassium chloride Potassium sulfate : Potassium nitrate Potassium sodium nitrate mixtures	61 50 45 14	8,080,000 44,800 35,600 32,500	4,929,000 22,400 16,000 4,550	\$628,700 6,550 8,620 4,050	\$753,800 7,110 9,600 4,880
Total ¹	XX	8,193,000	4,972,000	648,000	775,300
1981					
Potassium chloride Potassium sulfate Potassium nitrate Potassium nitrate Potassium sodium nitrate mixtures	61 50 45 14	7,800,000 36,600 32,800 33,900	4,758,000 18,300 14,760 4,740	729,540 6,860 9,340 4,650	811,150 7,380 10,360 5,180
Total ¹	XX	7,903,300	4,796,000	750,400	834,100

Source: U.S. Bureau of the Census.

^rRevised.

¹This includes potassium magnesium sulfate.

²Data may not add to totals shown because of independent rounding.

³F.as. U.S. port.

^eEstimated. XX Not applicable. ¹Data may not add to totals shown because of independent rounding.

Table 11.—U.S. imports for consumption of potash, by country

				4	fetric ton	Metric tons of produc	ct					Fotal value	Fotal value (thousands)	
Country	Pota chl	Potassium chloride	Pota sul	Potassium sulfate	Pota nit	otassium nitrate	Potaz sodium	Potassium sodium nitrate	Ľ	Total	Cust	Sustoms	ິບ	Ci.f.
	1980	1981	1980	1981	1980	1981	1980	1981	1980	1981	1980	1981	1980	1981
Belgium-Luxembourg	1000	10	14,800	11,600		!	-{	ŀ	14,800	11,600	\$2,040	\$2,040	\$2,250	\$2,290
Canada	7,642,200	7,304,600	1	1,	i	!	100	100	7,642,200	7,304,600	587,600	677,400	706,700	753,770
Collie Democratic Demublic	2,500	000 68	1	1	-	!	32,400	33,900	38,80	88,900	4,430	4,650	5,280	5,180
Cerman Deliberatio Republic	000	92,300	00.00	100	1	1	I I	1	008,70	92,900	4,410	2,200	6,500	6,740
Cermany, rederal nepublic of	10,090	20,200	016,67	001,62	100	100	!	ł	40,000	008,72	5,450	5,100	6,200	5,370
Jones	917,100	401,800	1	1	20,000	32,800	10	-	347,700	440,600	40,260	53,900	43,600	58,500
Netherlands	3 150	1	1.	i	!	1	POT	1	9 150	1	200	1	€.	1
Spain	1,00	2000	l	1.	1	1	1	1	1,150	000 66		0.00	077	1000
USSR	38.400		!	1	1	1	1	ľ	38,400	2000	0076	6,010	1,040 9,040	7,200
	200	:	i	1		1	1	-	00,*00	-	2,400		0,000	!
Total ¹	8,080,000	7,800,000	44,800	36,600	35,600	32,800	32,500	33,900	8,193,000	7,903,300	648,000	750,400	775,300	834.100

¹Data may not add to totals shown because of independent rounding.

Source: U.S. Bureau of the Census.

WORLD REVIEW

For 1981, the total world potash production was estimated at 27.4 million tons, down 1% from that of 1980. Of this, the U.S.S.R. and the German Democratic Republic produced an estimated 11.8 million tons or 43%. North America produced 9.0 million tons or 33% of the world total. Western Europe produced 5.7 million tons or 21% of the world total.

Brazil.—The released plans for the potash mine at Sergipe revealed an initial plant capacity of 60,000 metric tons per year from reserves of 5 million metric tons grading 16% to 22% K_2O , with a capital cost of \$160 million. Capacity could be increased to 315,000 metric tons per year. Brazil also revealed a discovery of unknown size in the Amazon Basin.

Canada.—PCS, a provincial crown corporation, announced completion of the Rocanville Phase II site expansion in late October. This effort, both underground and in the mill, added 330,000 tons per year capacity to the site to reach a 975,000-ton-per-year capacity. PCS announced its withdrawal of participation in Canpotex Ltd. as of June 30, 1982; Potash Corp. of Saskatchewan International Ltd. will handle all offshore business excluding Canada and the United States from that date forward.

International Minerals & Chemical Corp. (Canada) Ltd. (IMCC) and PCS were given approval by the Saskatchewan provincial government for an 800,000-ton capacity increase at the Esterhazy Mines. In-place capacity was 2,560,000 tons per year. The Viscount potash mine and mill (Central Canadian Potash Co. Ltd.) owned by Noranda Mines Ltd. was denied permission to expand its capacity by 300,000 tons per year because of the other capacity expansions already in progress. Brascade Resources. Inc., owned 70% by Brascan Resources Ltd. and 30% by Caissi de Depot et Placement du Quebec (the Quebec government's pension fund manager), became the largest single shareholder, at 37%, of Noranda Mines Ltd. during the fall.

In a complex trading arrangement, the 40% of the Allan potash mine owned by Texasgulf was transferred to CDC. Société Nationale Elf Aquitaine purchased Texasgulf and sold its Canadian properties to CDC for \$994 million. CDC exchanged its shares (37%) of Texasgulf for the Texasgulf properties in Canada plus about \$400 mil-

lion. The Allan potash mine is now owned 60% by PCS and 40% by CDC.

Potash Co. of America and Denison-Potacan continued development of their respective mine sites in New Brunswick. Denison-Potacan Potash Co. reportedly had some problems with water-bearing strata while sinking its first shaft. This site is reported to be problematic owing to extensive folding of the ore body. A bulk loading dock was in the planning stages at the Port of Saint John, New Brunswick, only 46 miles from the PCS potash site and 31 miles from the Denison-Potacan site.

In Manitoba, IMCC signed a Memorandum of Agreement to develop a mine and mill near McAuley, about 40 miles northwest of Virden. The signers, including IMCC and the Manitoba government as Manitoba Mineral Resources Ltd. (MMR), agreed to form a company to be called the Manitoba Potash Co. IMCC will initially own 75% of the company, but MMR has the option to increase its equity from 25% to 40% within 5 years of start of production.

There have been sylvinite showings in southwest Newfoundland and Nova Scotia; continued exploration was planned for both locations.

Both Canadian railroads are considering rail-capacity increases for routes between the Province of Alberta and the west coast. Besides planned potash export increases, there will be more coal and grain moving to the ports, and the present rail system is near capacity.

Table 12.—Salient Canadian potash statistics

(Thousand metric tons of K₂O equivalent)

1978	1979	1980	1981
6,124	6,715	7,300	7,175
370	379	378	332
4,498	4,931	4,563	4,182
1,596	1,846	2,170	1,823
39	29	33	11
409	408	411	343
832	378	564	1,308
	6,124 370 4,498 1,596 39 409	6,124 6,715 370 379 4,498 4,931 1,596 1,846 39 29 409 408	6,124 6,715 7,300 370 379 378 4,498 4,931 4,563 1,596 1,846 2,170 39 29 33 409 408 411

¹Data supplied by the Potash & Phosphate Institute. ²From U.S. Bureau of the Census export data. Sulfate of potash was probably landed on the Canadian east coast from European sources.

³Domestic sales by domestic producers plus imports.

POTASH 691

Finland.—There are indications that Kemira Oy has entered the potassium sulfate market in the German Democratic Republic and the Pacific Basin. It buys muriate of potash from the German Democratic Republic, the U.S.S.R., and the Federal Republic of Germany for conversion to sulfate of potash at its Kokhola Works. Kemira Oy is investigating the recovery of potassium ions from mica found in the Siilinjarvi apatite deposit. This would reduce its need to import muriate of potash.

France.—The French members of the Rhine Salt Convention have agreed, although the French legislature has not ratified the agreement, to reduce the release of chloride ions into the Rhine River from 120 to 100 kilograms per second. Fourteen kilograms per second of chloride ions have been targeted for underground injection and 6 kilograms per second of chloride ions have been targeted for a sodium chloride plant. The French Government's nationalization policy will not have an effect on Enterprise Minière et Chemique since it is already a state-owned operation, except to possibly transfer its animal feeds business to another company.

Germany, Federal Republic of.—Kali Chemie AG, a subsidiary of Deutsche Solvay-Werke GmbH, sold its potash mine, Friedrichshall, near Hannover, to Kali und Salz AG, a subsidiary of BASF. The mine had production problems and the new owner expects to reduce employment levels from 600 to 400 workers when the facility returns to production. The facility was inactive at the end of the year.

Israel.—The Israeli Government has proposed canaling Mediterranean Sea water to the Dead Sea to establish needed additional electrical generation capacity through hydropower. The Dead Sea water level is 400 meters below the Mediterranean water level, which would provide an excellent head for the water turbines. It is not clear if the threat is the greatest from changing the chemical composition of the Dead Sea, from disturbing the stratification of the water layers by turbulent mixing, or from the threat to Dead Sea Works Ltd. dikes from a rise in the Dead Sea water level. The Jordanians have also proposed a similar plan for hydropower using a canal from Akaba. The Dead Sea Works of Israel Chemical Ltd. completed its latest expansion on July 1, adding 285,000 tons of capacity.

Mexico.—Fertilizantes Mexicanos S.A. signed a contract for a plant to recover muriate and other salts from the brine of the Cerro Prieto geothermal electricity generating plant. Cerro Prieto is about 25 miles south of Mexicali and the California border. Targeted production is 46,000 tons per year. Estimated cost was \$25 million for the complex.

Spain.—In November 1980, Spain's National Institute for Industry revealed that it was considering closing the publicly-owned Pamplona Mine, which is operated by Potasas de Navarra. The mine had operating losses for several years. By midyear 1981, the labor unions and the Spanish Government had agreed on a program to keep the mine operating. The agreement included improved production methods, searching for new mining sites, and "a general diversification of activities."

Thailand.—Development of Thailand's large deposit of carnallite and sylvinite is under consideration. A joint venture of Duval Corp. and C.R.A. Exploration Pty. Ltd. (a unit of Conzinc Riotinto of Australia Ltd.) was awarded an exploration concession in northeast Thailand in the Khon Kaen Province. AMAX Exploration, Inc., was negotiating for an exploration concession in the Sakon Nakhon Province, and Agrico Chemical Co. was negotiating for an exploration concession a little further south in the Khorat Basin. The problem in Thailand is to find a lens of sylvinite large enough to justify development costs. As a backup effort, the Thai Government has arranged a loan from the World Bank of \$8.9 million to investigate the mining and beneficiation of the much more abundant, high-grade carnallite. French and German experts are advising on this effort. There were also efforts to improve the Nation's railways and seaports.

Tunisia.—A state-controlled company is considering a small production facility to produce potassium sulfate from the brackish waters of the Chott El Djeria with help from Mines de Potasse d' Alsace.

U.S.S.R.—A new potash find was announced this year in the Irkutsk Oblast, which is north of Mongolia, on the new Trans-Siberian or Baykal-Amur railway. Reserves are estimated at 70 million tons. Lurgi Umwelt und Chemotechnik GmbH of the Federal Republic of Germany won a contract to build a 1.2-million-ton-per-year crystallization, compaction, and gran-

ulation plant at the Berezniki site. The U.S.S.R. designed and built crushing, grinding, and beneficiation facilities will be upstream of the Lurgi plant. The Lurgi contract is valued at about \$70 million.

The Soligorsk No. 4, first stage, apparently produced some product after starting up in 1979. This was the first stage of three planned stages that have been under construction since 1971. The stage apparently consists of 1.8 million tons of product capacity of 41.6% K₂O or 750,000 tons K₂O per year. The seam is about 3,300 feet underground, 6 feet thick, and about 17% K₂O sylvinite. Longwall mining has been ascribed to this mine. Beneficiation appears to be by the "halurgic" method, probably a

dissolution recrystallization process, for higher sylvinite recovery. The technology was provided by PEC Engineering of France. This stage has started the trial operation of a compacting line, to produce granular products, with a capacity of 450,000 tons or 190,000 tons K₂O per year. The authorities wish to compact the complete 1.8 million tons of product of this stage, which would add 750,000 tons K₂O of granular potash to the world market.

Solikamsk No. 2, which entered startup sometime in the 1971-75 period, had continuous problems including complete stoppage for 104 days in 1979. In 1980, it apparently

reached normal operation.

Table 13.—Marketable potash: World production, by country¹

(Thousand metric tons of K₂O equivalent)

Country	1977	1978	1979	1980 ^p	1981 ^e
Canada (sales) ²	5,764	6,340	7,074	7,532	36,815
Chile	11	15	15	15	15
China	18	21	16	12	11
Congo	136				
France	1.580	1,795	1,850	1,735	31,969
German Democratic Republic	3,229	3,323	3,395	3,422	3,490
Germany, Federal Republic of	2,341	2,470	2,616	2,737	³ 2,591
Israel	730	¹ 744	737	797	850
Italy	r224	196	182	156	155
Spain	562	r613	668	658	705
U.S.S.R	8.347	8,193	6,635	8,064	8,350
United Kingdom	81	150	264	306	250
United States	2,229	2,253	2,225	2,239	2,156
Total	^r 25,252	r _{26,113}	25,677	27,673	27,357

^eEstimated. ^pPreliminary. ^rRevised.

¹Table includes data available through Apr. 21, 1982.

³Reported figure.

TECHNOLOGY

The Bureau of Mines Salt Lake City Research Center continued with studies of potash recovery from low-grade resources. The project is divided into (1) potash recovery from carnallite ore and (2) potash recovery from plant process and waste brines by solar evaporation. The Bureau of Mines Denver Research Center continued an investigation of mining evaporate deposits (trona, salt, and potash). The effort was aimed at identifying strata conditions that affect mining methods and layout. Longterm mine passage stability and exclusion of water are the desired results. The U.S. Geological Survey (USGS) continued studies of developing new potash ore-finding techniques. Parallel with the Thailand potash development, USGS is using modern geophysical techniques and a deposition model to investigate new methods of sensing nonexposed ore bodies.

The University of Saskatchewan (Canada) is investigating the use of waste (sodium chloride and slime) from the potash refinery to backfill the potash mines. This would provide roof support and allow a recovery of ore greater than the 35% presently practiced in the deep Saskatchewan mines.³

The New Mexico Bureau of Mines and Mineral Resources along with the University of Texas at Dallas initiated a study to identify a microorganism that will accelerate the clay settlement from potash refinery wastes.⁴

²Official Government figures. Potash & Phosphate Institute production data are given in table 12.

¹Physical scientist, Division of Industrial Minerals.

²All quantities in this report are in metric tons, K₂O equivalent, unless otherwise noted.

³Canadian Mining Journal (Ontario). Salt as Backfill in Potash Mines May up Recovery. V. 102, No. 11, November 1981, p. 12.

⁴Science News (Washington, D.C.). Helping Clay Return. V. 119, No. 12, Mar. 21, 1981, p. 184.

Pumice and Pumicite

By Arthur C. Meisinger¹

Data on U.S. production and consumption of volcanic cinder and scoria from 1953 through 1980 were included with pumice and pumicite. Beginning with 1981 data, volcanic cinder and scoria were to be incorporated with crushed stone (in the Minerals Yearbook chapter on Stone) because of their similar use and price patterns in the domestic market.

In 1981, domestic production of pumice and pumicite was 499,000 tons valued at \$4.3 million, a decrease of 8% in quantity, but an increase of 1% in value compared with that of 1980. U.S. output came from 22 operations in 8 States, of which 4 States together accounted for more than 90% of the national total. Apparent consumption of pumice and pumicite declined 20%, owing largely to a slowdown in construction activity during 1981. Pumice imports, used primarily for concrete masonry products, decreased by 53%. The average value of pumice and pumicite produced domestically was \$8.64 per ton, an increase of 10% over that of 1980.

Table 1.—Salient pumice and pumicite statistics

(Thousand short tons and thousand dollars unless otherwise specified)

	1977	1978	1979	1980	1981
United States: Sold and used by producers: Pumice and pumicite Value (f.o.b. mine and/or mill) Average value per ton Exports Imports for consumption Apparent consumption World: Production, pumice and related volcanic materials	1,178	1,208	1,172	543	499
	\$4,625	\$4,836	\$4,864	\$4,267	\$4,311
	\$3.93	\$4.00	\$4.15	\$7.86	\$8.64
	2	e2	\$2	e1	e1
	253	216	62	194	92
	1,429	1,422	1,232	736	590
	*15,375	r15,650	14,786	P14,021	e14,084

^eEstimated. ^pPreliminary. ^rRevised.

DOMESTIC PRODUCTION

Domestic production of pumice and pumicite (volcanic ash) in 1981 declined 8% in quantity (499,000 tons) from that of 1980, but value showed a slight increase (1%) to \$4.3 million. Domestic output came from 22 operations in 8 States: Arizona, California, Hawaii, Idaho, Kansas, New Mexico, Oklahoma, and Oregon. Four States, California,

Idaho, New Mexico, and Oregon, together accounted for more than 90% of 1981 production.

The principal producers of pumice and/or pumicite, as in 1980, were American Pumice Products, Inc., Littlelake, Calif.; Amcor, Inc., Idaho Falls, Idaho; Central Oregon Pumice Co., Bend, Oreg.; Copar Pumice Co.,

¹Quantity sold or used, plus imports, minus exports.

Inc., Espanola, N. Mex.; General Pumice Corp., Santa Fe, N. Mex.; Graystone Corp. - Cascade Pumice Co., Bend, Oreg.; Hess Pumice Products, Malad City, Idaho; Tionesta Aggregates Co., Tulelake, Calif.; U.S.

Pumice Co., Burbank, Calif.; and Volcanite, Ltd., Kailua Kona, Hawaii. Together, these 10 companies in 1981 accounted for 92% of the tonnage and 85% of the value of total U.S. production of pumice and pumicite.

Table 2.—Pumice and pumicite sold and used by producers in the United States, by State
(Thousand short tons and thousand dollars)

State	198	0 ¹	198	1
State	Quantity	Value	Quantity	Value
Arizona	9	13	1	3
California	58	1,340	98	1,501
Kansas	(2)	· w	w	. w
New Mexico	84	814	93	919
Oklahoma	1	W	1	W
Oregon	219	1,318	w	w
Other ³	172	782	306	1,888
Total	543	4,267	499	4,311

W Witheld to avoid disclosing company proprietary data; included with "Other."

CONSUMPTION AND USES

U.S. apparent consumption of pumice and pumicite (table 1) was 590,000 tons in 1981, a decrease of 20% from that of 1980. The decreased activity in domestic construction during the year was largely responsible for the continuing decline in consumption.

Consumption of domestically produced pumice and pumicite (table 3) was 8% lower

than that of 1980. Abrasive uses and concrete aggregate (including admixtures) uses were down 30% and 12%, respectively, compared with those of 1980; however, pumice used for landscaping increased 79% over that of 1980, and other uses of pumice and pumicite increased 11% in quantity, compared with that of the previous year.

Table 3.—Pumice and pumicite sold and used by producers in the United States, by use

(Thousand short tons and thousand dollars)

Use	198	0	198	1
Use	Quantity	Value	Quantity	Value
Abrasives (includes cleaning and scouring compounds)	27	568	19	486
Concrete admixture and concrete aggregate	459	2,515	404	2,469 370
Landscaping	19	249	34	370
Other ¹	38	935	42	986
Total	543	4,267	499	4,311

¹Includes decorative building block, heat-or-cold insulating medium, pesticide carriers, road construction material, roofing granules, and miscellaneous uses.

PRICES

Prices quoted in Chemical and Marketing Reporter for pumice from domestic and foreign sources were as follows at yearend 1981: Domestic grades, bagged in 1-ton lots, \$205 per ton for fine (4F-0); \$225 per ton for medium (0-1/2, 1-1/2); and \$205 per ton for coarse (2-extra coarse). Yearend quoted prices on imported (Italian) pumice, f.o.b.

east coast, bagged in 1-ton lots, were \$200 per ton for fine; \$285 per ton for medium, a \$5-per-ton increase during the year; and \$250 per ton for coarse.

The average value, f.o.b. mine and/or mill, for pumice and pumicite sold or used by domestic producers in 1981 was \$8.64 per ton, an increase of 10% over the 1980

Revised to exclude volcanic cinder and scoria.

²Less than 1/2 unit.

³Hawaii, Idaho, and items indicated by symbol W.

average value. Average values in 1981 for pumice and pumicite used in abrasives and as concrete aggregate, including admixture, increased from 1980 values by 22% and 11%, respectively. However, pumice used

for landscaping decreased 17% in value compared with that of 1980. The average value for other uses of pumice and pumicite also declined, but by only 5% compared with that of the previous year.

FOREIGN TRADE

The total quantity of pumice imported for domestic consumption in 1981 was 92,283 tons, a substantial decrease (53%) from the total imported in 1980. Pumice specifically imported for use in the manufacture of concrete masonry products also decreased

by 53%, to 89,252 tons, compared with that of 1980. The quantity of pumice and pumicite exported was estimated at 1,000 tons, the same as in 1980.

Table 4.—U.S. imports of pumice for consumption, by class and country

Country	Crud unmanui		Wholly o manufa		For use manufa of concrete prod	acture masonry	Manu- factured, n.s.p.f.
	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Value (thou- sands)
1980: Greece	2,345 2,273 ———	\$27 106 	323	\$37 	171,630 17,747	\$953 95 	\$27 65
Total	4,618	133	323	37	189,377	1,048	92
1981: Germany, Federal Republic of Greece Italy Japan Mexico United Kingdom Other ³	2,543 343 66 1 	(2) 36 32 1 1	 77 (²)	14 1	89,252 	586 	$ \begin{array}{r} 23 \\ 51 \\ 6 \\ -7 \\ 39 \end{array} $
Total	2,954	70	77	15	89,252	586	126

¹Austria, Belgium, Canada, China, the Federal Republic of Germany, Japan, Mexico, Taiwan, and the United Kingdom.

²Less than 1/2 unit.

Table 5.—Pumice and related volcanic materials: World production, by country¹
(Thousand short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Argentina ³	72	24	51	40	44
Austria: Pozzolan	10	10	9	9	9
Cape Verde Islands: Pozzolan ^e	17	17	18	18	18
Chile: Pozzolan	175	201	242	275	265
Costa Rica ^e	1	2	r 1	1	1
Dominica: Pumice and volcanic ashe	120	120	120	120	120
France: Pozzolan and lapilli	r987	e648	e ₆₅₀	e660	660
Germany, Federal Republic of:	•••	010	000	000	•
Pumice (marketable)	1.928	r _{2,301}	1,579	890	880
Pozzolan	131	192	215	220	220
Greece:					
Pumice	626	827	692	695	690
Pozzolan	1,385	1,565	1.235	e _{1,650}	1,650
Guadeloupe: Pozzolan	209	220	220	220	220
Guatemala:					
Pumice	NA	21	20	20	17
Volcanic ash	29	39	41	14	11
Iceland	48	9	27	40	40
Italy:	ŭ	•			
Pumice and pumiceous lapillie	825	860	940	990	880
Pozzolan ^e	6,300	6,400	6,500	6,600	6,600

See footnotes at end of table.

¹Industry economist, Division of Industrial Minerals.

³Austria, Belgium, Canada, China, Denmark, Hong Kong, India, the Netherlands, the Republic of Korea, and Taiwan.

Table 5.—Pumice and related volcanic materials: World production, by country¹ -Continued

(Thousand short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Martinique: Pumice New Zealand Spain ² United States (sold or used by producers):	316 31 1,027 1,178	183 44 759 1,208	172 28 854 1,172	141 15 860 543	145 15 1,100 6499
Total	r _{15,375}	r _{15,650}	14,786	14,021	14,084

^eEstimated. ^pPreliminary. ^rRevised. NA Not available.

¹Table includes data available through Apr. 14, 1982.

²Pumice and related volcanic materials are also produced in a number of other countries, including (but not limited to)
Iran, Japan, Mexico, Turkey, and the U.S.S.R., but output is not reported quantitatively and available information is inadequate for the formulation of reliable estimates of output levels.

³Unspecified volcanic materials produced mainly for use in construction products.

⁴Data represents exports.

⁵Includes Canary Islands.

⁶Reported figure.

Rare-Earth Minerals and Metals

By James B. Hedrick¹

Domestic mine production of ores containing bastnasite and monazite decreased slightly in 1981. Production of domestic rare-earth concentrates, however, showed an increase. Molycorp, Inc., and Associated Minerals Ltd., Inc. (AMC), were the only domestic producers. Molycorp and W. R. Grace & Co. remained the principal processors of rare earths in the United States. Major end uses were in petroleum catalysis and metallurgical applications.

Legislation and Government Programs.—Shipments of previously sold rare earths by the General Services Administration from the National Defense Stockpile

totaled 802 metric tons² of contained rareearth oxides (REO) in 1981. No Government stocks of rare earths were sold in 1981. Government stocks of rare earths at yearend 1981 were 443 (dry) tons REO in sodium sulfate. The stockpile of yttrium oxide remained unchanged throughout 1981 at 108 kilograms.

Lower tariffs for imported rare earths, resulting from the 1979 Tokyo Round of negotiations, continued for nations having most-favored-nation status. The tariffs for these countries will decline annually through January 1, 1987. The new rare-earth schedule is shown in table 1.

DOMESTIC PRODUCTION

Concentrate.—Domestic mine production of REO contained in bastnasite and monazite concentrates increased 7.6% above the 1980 level. Bastnasite continued to be the major domestic source of rare earths. Less than 5% was produced from monazite.

Molycorp produced bastnasite concentrates at its Mountain Pass Mine in California. According to the annual report of the Union Oil Co. of California, the parent company of Molycorp, production of REO contained in bastnasite concentrates was 17,082 tons.

Associated Minerals was the only domestic producer of monazite. AMC's mine at Green Cove Springs, Fla., recovered monazite as a byproduct of minerals sands processing. Planned improvements at the processing operations were replacement of sluice concentrators and Humphrey spirals with Wright spirals, installation of a bucketwheel excavator in place of the suction dredge, relocation of the caustic scrub

operation, and a reduction of process water usage. A new horizontal undercutting mining system was also initiated to provide a more uniform feed grade.

Compounds and Metals.—Molycorp completed construction of a \$15 million separation plant at Mountain Pass, Calif., to supplement existing separation facilities. Separation circuits at the new plant will initially produce samarium oxide and gadolinium oxide. Startup of the plant began at the end of 1981 with production scheduled for the first quarter of 1982. Molycorp also completed construction of a samarium metal plant in Washington, Pa. The new facility has the capacity to produce 36 tons of samarium metal per year using controlled-atmosphere induction furnaces.

Rhône-Poulenc Inc. announced the completion and startup of its rare-earth separation plant at Freeport, Tex. The first phase of the \$50 million project has a production capacity of 4,000 tons per year of rare-earth

Table 1.-U.S. import duties for rare earths

on SIIST	Itom	W	Most favored nation (MFN)	Ê	Non	Non-MFN
	TOTAL	Jan. 1, 1981	Jan. 1, 1982	Jan. 1, 1987	Jan. 1, 1981	Jan. 1, 1982
601.12, 601.45	Ore and concentrate	Free	Free	Free	Free	Free.
423.0030 632.38	Rare-earth oxides except cerium oxide Rare-earth metals (including scandium	4.7% ad valorem _	4.5% ad valorem	3.7% ad valorem _ do	25% ad valoremdo	25% ad valorem. Do.
632.78	Alloys wholly or almost wholly of rare-	45 cents	43 cents	32 cents	\$2 per pound	\$2 per pound.
632.79	earth metals (mischmetal). Other alloys wholly or almost wholly of rare-earth metals.	per pound. 42 cents per pound	per pound. 38 cents per pound	per pound. 20 cents per pound	\$2 per pound plus 25%	\$2 per pound plus 25%
		plus 5.1% ad valorem.	plus 5.1% ad valorem.	plus 2.4% ad valorem.	ad valorem.	ad valorem.
755.35	Ferrocerium and other pyrophoric alloys.	43 cents per pound	39 cents per pound	22 cents per pound	op	Ď.
		plus 5.1% ad valorem.	plus 4.7% ad valorem.	plus 2.6% ad valorem.		

¹Crude or concentrated by crushing, flotation, washing, or by other physical or mechanical processes which do not involve substantial chemical change.

oxides. Rare-earth products were available from the plant at the end of 1981.

W. R. Grace's Davison Chemical Div. began operation of a new 25,000-ton-per-year plant at Curtis Bay, Md., to produce rare-earth-containing fluid cracking catalysts. In response to increased demand from the petroleum industry, W. R. Grace planned expansion of catalyst production at three U.S. locations: Curtis Bay, Md., Lake Charles, La., and South Gate, Calif.

Katalistics International, a joint venture of Catalyst Recovery Inc., and EAB of Göteburg, Sweden, planned to build a \$30 million fluid cracking catalyst facility in Savannah, Ga. The new plant will reportedly produce 50,000 tons per year of catalysts containing rare earths. Construction was begun in 1981 with completion scheduled for 1983.

Ronson Metals Corp. increased mischmetal capacity at its Newark, N.J., facilities 20% during the year.

Reactive Metals & Alloys Corp. (Remacor) planned to install a new \$4 million submerged-arc furnace at its West Pittsburg, Pa., facilities. The new furnace reportedly will be used to produce three new specialty silicon alloys and triple production

of rare-earth silicide. Completion is scheduled for the first quarter of 1982. Additional arc furnaces are planned for 1983 and 1985.

Producers of concentrates and mixed rare-earth compounds were Molycorp, W. R. Grace, and Associated Minerals, with Rhône-Poulenc starting production at the end of 1981. All categories of concentrate production increased during the year. Production of both mixed and purified rare-earth compounds also increased. Purified rare earths were produced by Molycorp, Research Chemicals, W. R. Grace, and Transelco Div. of Ferro Corp.

Metallurgical demand for rare earths during 1981 was stronger than in other sectors. Mischmetal, rare-earth silicide, and other rare-earth alloy production was 15% higher in response to demand. Mischmetal was produced by Remacor and Ronson Metals. Other rare-earth alloys were produced by Foote Mineral Co. and Cabot Corp. Producers of rare-earth silicide were Globe Div. of Interlake Inc., American Metallurgical Products Co., Foote Mineral, and Remacor.

High-purity rare-earth metal production was double that of 1980. Research Chemicals and Molycorp were the major producers.

CONSUMPTION AND USES

Domestic rare-earth processors consumed an estimated 21,100 tons of REO contained in raw materials in 1981, reflecting an 11% increase from the 18,900 tons consumed in 1980. Compared with that of 1980, bastnasite consumption was 15% higher. Monazite consumption was virtually unchanged. Shipments of rare-earth and yttrium products from primary processing plants to consumers were about 18,100 tons of contained REO, essentially the same as that of 1980.

The approximate distribution of rare earths by end use, based on information supplied by primary processors and certain consumers, was as follows: Petroleum cracking catalysts, 43%; metallurgical uses (including iron and steel, alloys, and mischuding iron and steel, alloys, and mischal), 34%; ceramics and glass, 21%; and miscellaneous (including nuclear, electrical, phosphors, lighting, and research), 2%.

Consumption of mixed rare-earth compounds during 1981 by primary processors increased 7% because of increased rare-earth chloride use in catalyst and metallurgical applications. Consumption of purified rare-earth compounds was slightly lower.

The primary producers of mischmetal,

rare-earth silicide, and other rare-earth alloys consumed 30% more REO in 1981 than in 1980. Shipments of these rare-earth metals to other consumers increased 34%. High-purity rare-earth metal consumption also increased.

In the glass industry, purified oxides and compounds were used as colorants and decolorizers, color stabilizers, polishing agents, dopants in laser glass, absorbers of ultraviolet light, additives to increase refractive indices and decrease dispersion, and color correctors in incandescent and fluorescent lighting.

Activated phosphors containing rare earths were used in color television tubes, X-ray intensifying screens, radar screens, avionics displays, thermometers, low- and high-pressure mercury vapor lamps, and trichromatic fluorescent lights.

Gadolinium was used in nuclear applications, phosphors, high refractive index glass, and gadolinium-gallium-garnet (GGG) substrates for magnetic bubble memory systems in computers.

The ceramic industry used purified rare earths in pigments, heating elements, di-

electric and conductive ceramics, and as principal constituents and stabilizers in high-temperature ceramics and glazes. Purified rare-earth compounds were also used in gas mantles, electronic components, and synthetic gem stones.

Rare-earth permanent magnets were used in various electric motors, alternators, generators, line printers, disk-drive actuators, proton linear accelerators, earring and necklace clasps, medical and dental applica-

tions, traveling wave tubes, aerospace applications, and in speakers, microphones, and headphones.

Metallurgical applications of rare earths included alloys and additives in high-strength, low-alloy steels; gray and ductile iron; stainless and carbon steels; high-temperature and corrosion-resistant metals; hydrogen storage alloys; lighter flints; armaments; permanent magnets; nuclear control rods; and welding materials.

STOCKS

Stocks of rare earths in all forms held by 16 producing, processing, and consuming companies decreased 13% during 1981.

Bastnasite concentrate stocks held by the principal producer and four other processors decreased about 31%. Yearend inventories of monazite and other rare-earth concentrates also decreased.

Stocks of mixed rare-earth compounds

increased from 1,897 tons of contained REO at yearend 1980 to 2,590 tons at yearend 1981. Inventories of purified rare-earth compounds were 354 tons of REO in 1980 compared with 356 tons in 1981. Yearend stocks of mischmetal, rare-earth silicide, and alloys containing rare earths decreased 25%. High-purity rare-earth metal inventories were 64% higher.

PRICES

The average declared value of imported monazite increased during 1981 to \$423 per ton, an increase of \$64 per ton over the 1980 value. The price of Australian monazite (minimum 60% REO including thoria, f.o.b./f.i.d.), as quoted in Metal Bulletin (London), increased from \$403-\$460 (A\$350-A\$400) per ton at yearend 1980 to \$437-\$495 (A\$380-A\$430) per ton by yearend 1981. Industrial Minerals quoted yearend prices for yttrium concentrate (60% Y₂O₃, f.o.b. Malaysia) at \$46 per kilogram.

Prices quoted from Molycorp of unleached, leached, and calcined bastnasite containing 60%, 70%, and 85% REO increased from \$0.85, \$0.90, and \$1.05 per pound of contained REO, respectively, at yearend 1980 to \$0.92, \$0.97, and \$1.12 per pound of contained REO at yearend 1981. The price of cerium concentrate quoted by American Metal Market increased from \$1.15 per pound REO at yearend 1980 to \$1.32 per pound REO at yearend 1981. Lanthanum concentrate also increased from \$0.90 per pound REO at yearend 1980 to \$1.02 per pound REO at yearend 1980.

Mischmetal (99.8%, 50- to 100-pound lots, f.o.b. Newark, N.J.) prices, quoted in American Metal Market, remained at the yearend 1980 level of \$5.60 per pound throughout 1981. Molycorp listed prices of Sm-Co₅ and mischmetal-Co₅ permanent magnet alloys (99%, f.o.b. Washington, Pa.) at \$55 and \$40 per pound, respectively.

Rhône-Poulenc quoted rare-earth prices, per kilogram, net 30 days, f.o.b. New Brunswick, N.J., or duty paid at point of entry, effective January 1, 1981, as follows:

Product ¹ (oxide)	Percent purity	Quantity (kilograms)	Price per kilogram
Ceric	98	20	\$14.30
Erbium	96	50	196.00
Gadolinium	99.99	50	142.50
Lanthanum	99.9	50	14.60
Neodymium	95	20	8.45
Praseodymium_	96	50	43.40
Samarium	96	50	51.50
Terbium	99.9	20	1,140.00
Yttrium	99.9	50	86.00

 $^{^{1}\}mathrm{Dysprosium},~\mathrm{europium},~\mathrm{holmium},~\mathrm{lutetium},~\mathrm{thulium},~\mathrm{and}~\mathrm{ytterbium}~\mathrm{oxide}~\mathrm{prices}~\mathrm{on}~\mathrm{request}.$

Nominal prices for various rare-earth materials were also quoted by Research Chemicals, net 30 days, f.o.b. Phoenix, Ariz., effective January 12, 1981:

Cerium \$20 \$125 Dysprosium 110 300 Erbium 200 650 Europium 1,900 7,500 Gadolinium 140 485 Hc*-aium 650 1,600 Lanthanum 19 125 Lutetium 80 260 Neodymium 80 260 Praseodymium 130 310 Samarium 120 2,800 Terbium 1,200 2,800 Thulium 3,400 8,000 Ytterbium 225 875 Yttrium 94 430	Element	Oxide ¹ price per kilogram	Metal ² price per kilogram
	Dysprosium Erbium Gadolinium Hci-nium Lanthanum Lutetium Neodymium Praseodymium Terbium Terbium Thulium Ttulium Thulium Ttulium Ttulium	110 200 1,900 140 650 19 5,200 80 130 1,200 3,400 225	300 650 7,500 485 1,600 125 14,200 260 310 330 2,800 8,000 875

¹Minimum 99.9% purity, 1- to 20-kilogram quantities. ²Ingot form, 1 to 5 kilograms, from 99.9% grade oxides.

Molycorp quoted prices for rare-earth oxides, net 30 days, f.o.b. Louviers, Colo., Mountain Pass, Calif., or York, Pa., effective September 1, 1981:

Product (oxide)	Percent purity	Quantity (pounds)	Price per pound
Cerium	99.9	1-199	\$8.75
Europium	99.99	1-24	900.00
Gadolinium	99.99	1-69	65.00
Lanthanum	99.99	1-299	7.00
Neodymium	99.99	1-49	60.00
Praseodymium_	95.0	1-299	17.50
Terbium	99.99	1-49	575.00
Yttrium	99.99	1-49	50.00

Prices for rare-earth metals were also quoted by Molycorp, net 30 days, f.o.b. Washington, Pa., effective May 5, 1980, and throughout 1981:

Product (metal)	Percent purity	Quantity (pounds)	Price per pound	
Cerium	99	10-100	\$35	
Gadolinium	99	<10	210	
Lanthanum	99	10-100	35	
Neodymium	99	<10	100	
Praseodymium_	99	10-100	65	
Samarium	99	10-100	70	
Yttrium	99	10-100	170	

FOREIGN TRADE

Exports of ferrocerium and other pyrophoric alloys containing rare earths totaled 9,935 kilograms in 1981, a 36% decrease from that of 1980. Major destinations were Canada (30%), the Federal Republic of Germany (18%), and Australia (11%).

Exports of rare-earth metal ores, excluding monazite, increased 5% from the 1980 total of 9,114,773 kilograms to a total of 9,586,505 kilograms in 1981. Shipments in 1981 were valued at \$19,107,983. Major destinations were Japan (44%), the Federal Republic of Germany (29%), and Austria (9%).

Exports of thorium ore, including mona-

zite, in 1981 increased fortyfold. France received all of the reported total of 129,405 kilograms valued at \$146,421.

Imports for consumption of monazite (table 2) showed a substantial increase in 1981. U.S. receipts of monazite totaled more than one-half of Australia's 1981 monazite production.

Rare-earth oxide, metal, and alloy imports are shown in table 3. Imports increased only in the cerium oxide and ferrocerium categories. France remained the largest source of imported rare-earth oxides. Brazil was the leading supplier of metals and alloys.

Table 2.—U.S. imports for consumption of monazite, by country

Country	1977		19	1978		1979		80	1981	
	Quan- tity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)
Australia	2,857	\$491	5,018 53	\$1,154 < 1	5,686	\$1,501	4,933	\$1,749	7,469	\$3,158
Malaysia South Africa,	$2,\overline{114}$	409	1,157	255	561	161	$2\overline{15}$	101		
Republic of Thailand			767	193	3 37	2 13				
Total REO content ^e	4,971 2,734	900 XX	6,995 3,847	1,603 XX	6,287 3,458	1,677 XX	5,148 2,831	1,850 XX	7,469 4,108	3,158 XX

^eEstimated. XX Not applicable.

Table 3.—U.S. imports for consumption of rare earths, by country

	1	979	1	980	1981		
Country	Quantity (kilo- grams)	Value	Quantity (kilo- grams)	Value	Quantity (kilo- grams)	Value	
Cerium oxide:		<u>.</u>					
Austria	100						
Belgium	1,000		0.70	****		***	
France Germany, Federal Republic of	2,649 5				7,450	\$51,644	
Germany, rederal Republic of	44		-				
Switzerland United Kingdom	2,402	4,109 59.799			197	1,068	
Oliteta Kingdolli	2,402	00,100	Value Quantity (kilograms) Value (kilograms) \$1,002 — — — 40,519 2,180 \$26,896 7,450 40,519 2,180 \$26,896 7,450 1,624 4 1,975 — 4,769 10 1,095 — 53,788 3,636 71,524 127 115,852 5,830 101,490 7,577 49,492 50 1,372 100 49,492 50 1,372 100 49,492 6,123 1 7,660,675 245,950 11,199,793 147,256 3,276,152 967 126,314 10,808 1,298,004 168 125,002 14,736 152,222 222 222 222 282,976 2,067 166,609 3,984 2,417,062 33,465 2,256,545 11,728 153,469 524,105 17,955,007 196,153 159,070 31	1,000			
Total	6,200	115,852	5,830	101,490	7,577	52,712	
Rare-earth oxide, excluding cerium oxide:							
Austria			50	1,372		1,339	
Belgium	1,000				4,097	466,781	
Brazil	50	880		3,890,000	NA	299	
Canada			34,192		1	950	
China	a.a.==		2	1,229	4		
France Germany, Federal Republic of	242,776					8,169,455	
Germany, Federal Republic of	62,019	3,276,152			10,808	1,947,385	
Italy	10.05	1 000 004		34,540	14 500	1.1545.7	
Japan	19,971		168	125,002	14,736	1,154,744	
Malaysia	16,000	152,232	0.005	100 000	0.007	410 100	
Norway	3,846	282,976		166,609		419,193	
U.S.S.R United Kingdom	38,871	2,417,062				895,932	
United Kingdom	150	19,996	1,031	147,480	3,443	121,927	
Total	384,683	15,153,469	524,105	17,955,007	196,153	13,178,005	
D 414-1- (-11)							
Rare-earth metals (alloys):	20,000	150.070	914 094	0.040.000	170 000	1 510 400	
Brazil		159,070			179,998	1,518,469	
France Germany, Federal Republic of	549 160					833	
	10,000	2,140 69 696	90	820	900	8,157	
Japan United Kingdom	35,000		230	55 597	555	123,503	
Omat imgaom ====================================	00,000	001,401	200	00,001	000	120,000	
Total	65,709	577,162	318,314	2,917,616	181,540	1,650,962	
Rare-earth metals, including scandium and yttrium:							
France	1,850	52,129				11,568	
Germany, Federal Republic of					15	1,415	
Japan	1.55				3	9,329	
U.S.S.R	2,001					34,638	
United Kingdom	219	29,217	126	54,459	483	110,940	
Total	4,070	185,998	3,841	306,684	1,701	167,890	
Other rare-earth metals:							
Brazil Brazil			0.000	71 616			
Germany, Federal Republic of	(1)	001				100.00	
United Kingdom	(-)	261				10,848	
Officer Kingdom				454	25	2,874	
Total	(¹)	261	8,013	72,970	193	13,722	
Forreserium and other purenhavia all							
Ferrocerium and other pyrophoric alloys: Austria	188	9 001			040	10.01.	
Belgium	100	0,021	200	1 400	840	13,314	
Brazil	189	750	208	1,400	6 795	102.818	
France	41,786		43 282	633 100		745,169	
France Germany, Federal Republic of	34		40,400	000,100		1.854	
Japan	13,154		21 210	255 249		332,733	
Switzerland	2		21,019	200,240	20,141	002,100	
United Kingdom	538		507	12.054	1.310	53,287	
Total	55,891	679,612	65,317				
10001	00,001	013,012	00,517	901,810	83,159	1,249,175	

NA Not available.

¹Less than 1 unit.

WORLD REVIEW

Australia.—Mining royalties on minerals sands in Western Australia reportedly will be raised 0.5%. Starting December 1, 1981, the royalties were to be assessed at 2.5% of the realized value of the concentrates, including monazite.

It was estimated that 45% (11,000 tons REO in monazite) of Australia's east coast minerals sands reserves are excluded from mining because of environmental concerns. The Minerals Sands Producers' Association (MSPA) considers the restrictions to be excessive in view of improved environmental controls and rehabilitation programs. The MSPA also noted that the government of New South Wales has ordered the sands mining companies to cease operations by 1982 in newly created national parks, although the parks were created after the minerals sands operations had been established.

The Queensland government decided it would allow mining for monazite and other minerals sands on Moreton Island, off the coast of Brisbane. However, mining will be restricted to less than 7% of the island on the northeast coastline.

Murphyores Pty. Ltd. planned to finance exploration and development of minerals sands, including monazite, at Gladstone, Shoalwater Bay, Curtis Island, and Moreton Island. Murphyores properties on Fraser Island remained closed because of a Government ban on mining based on environmental concerns.

Westralian Sands Ltd. completed an agreement to sell certain heavy minerals sands leases in the Eneabba area to Allied Eneabba Pty. Ltd. In exchange for the leases, Westralian Sands will reportedly receive 27,500 tons of zircon over a 3-year period and an option to purchase 50,000 tons of ilmenite per year over a 10-year period. Monazite production by Westralian Sands was about 1,900 tons in 1981.

Consolidated Goldfields Australia Ltd. (United Kingdom) reorganized, allotting themselves a 49% share and the public (Australia) a 51% share in a new holding company, Renison Goldfields Consolidated Ltd. (RGC). Under the new structuring, Associated Minerals Consolidated Ltd. will become a wholly owned subsidiary of RGC. The new restructuring will be in line with the Australian Government's foreign investment policy of having controlling inter-

est held by Australians.

Allied Eneabba acquired 56 heavy minerals sands claims containing monazite, north of the town of Eneabba, Western Australia. As a result its total ore reserves increased 66% over that of 1980 to 13,328,000 tons. Allied Eneabba reported monazite production for 1981 at 7,603 tons.

Joint venture partners Western Mining Corp. Ltd. (51%) and BP Australia Ltd. (49%) planned additional feasibility studies at the Olympic Dam copper-uranium-goldrare earth deposit near Roxby Downs, South Australia.

Brazil.—Brazilian rare-earth production in kilograms was as follows:

Year	Carbonate	Chloride	Oxide
1976	3,351	2.036.000	3,320
1977	7.210	2,527,455	16,926
1978	7.000	2,799,000	21,000
1979	14,000	2,725,000	16,000
1980	5,750	2,071,000	11,716

China.—The Chinese Rare Earth Co. (CREC) estimated 1980 rare-earth chloride production at 5,600 tons. Japan imported 2,035 tons of Chinese rare-earth chlorides during 1980, an increase from the 1,037 tons imported in 1979. CREC also reportedly signed a 3-year contract to supply 2,000 tons of chlorides per year to a U.S. company. In 1981 the Bayan Obo mining district accounted for over 20% of the country's rare-earth chloride production.

Rare-earth localities, reported in various news releases and publications, include Nei Monggol Province (Bayan Obo Mine), Jiangxi Province, Henan Province (xenotime), Guangdong Province, Hunan Province, and an undisclosed producing bastnasite deposit. Additional discoveries of rare earths were found in minerals sands near Xiamen, within the coastal Province of Fujian.

Mitsui Mining and Smelting Co., Ltd. (Japan), was contracted by China to build two rare-earth plants in Baotou, Inner Mongolia. The plants would process and smelt ore from the Bayan Obo Mine. Production capacities of 2,000 tons (smelter) and 5,000 tons (ore dressing) were planned. Other rare-earth extraction and smelting operations are the Shanghai Yaolong Chemical Plant and the No. 1 Smelting Plant (Gansu Province).

Total rare-earth reserves for China were reported at 36 million tons of contained

REO.3

China now has two mineral trading firms handling rare earths. Both firms, MINME-TALS, under the Ministry of Foreign Trade, and the China Metallurgical Import and Export Corp., under the Ministry of Metallurgical Industry, exported rare earths in 1981.

Egypt.—Minerals sands near Rosetta contain 4.28% heavy minerals, including 0.5% monazite. Total economic reserves at Rosetta were calculated at 1.9 million tons.

France.—In 1981, nationalization was the major issue facing France's industrial sector. The Government announced at midyear that it would begin nationalizing several chemical and metal producers including Rhône-Poulenc and the Pechíney Ugine Kuhlmann Group (PUK). The new Socialist government planned to purchase all shares owned by French shareholders, with foreign investors having the option to sell or retain their interests. The nationalization of Rhône-Poulenc was expected to be finalized in the first quarter of 1982. Rhône-Poulenc did not anticipate that any operational changes would occur as a result of the takeover.

Rhône-Poulenc's U.S. subsidiary completed construction of a 4,000-ton-per-year (REO) separation plant in Freeport, Tex. (United States). The official startup for the \$50 million facility was December 9, 1981. The Texas plant, in addition to the La Rochelle, France, plant, gives Rhône-Poulenc worldwide capacity of 9,000 tons per year REO.

PUK has purchased the Swiss rare earthcobalt magnet company, Recoma, previously owned by Brown Boveri & Cie. The acquisition was to be operated through PUK's subsidiary, Aimants Ugimag.

India.—Indian Rare Earths Ltd.'s (IREL) 1980-81 fiscal year monazite production was 4,210 tons, an increase of 60% above the 1979-80 level. The higher production was attributed to the startup of the preconcentrator at Manavalakurichi, Tamil Nadu, and the modernization of the Chavara plant near Quilon, Kerala.

Continued problems at IREL's Orissa mineral sands complex has delayed completion of the project. Completion has been rescheduled for the first half of 1983.

Japan.—The Japanese Government in 1981 was considering a program to stockpile metals for its high-technology industries. The rare earths were among those minerals cited for possible acquisition.

Japanese consumption of rare earths during 1980 was reported in Topics in Japanese Newer Metals Industry 1980-81, as follows: Cerium oxide, 2,300 tons; europium oxide, 3 tons; gadolinium oxide, 10 tons (estimated); lanthanum oxide, 361 tons; samarium oxide, 40 tons (estimated); yttrium oxide, 90 tons; mischmetal, 550 tons; and rare-earth fluoride, 70 tons.

The report also estimated yttrium oxide consumption in Japan would be 150 tons in 1981. An estimated 54 to 58 tons of yttrium oxide was scheduled for domestic production from imported raw materials. Tight supplies and higher prices for yttrium in Japan were predicted for 1981. Santoku Metal Industries entire yttrium output for 1981 reportedly will be sold within Japan. Mitsubishi Chemical Industries (MCI), also a producer of yttrium oxide, was to use 5 to 6 tons of its output in-house and sell the remainder to Japan Yttrium and Shinetsu Chemical.

For 1980, it was estimated that 60 to 65 tons of yttrium oxide (phosphor grade) were consumed in 19,987,000 color television tubes, 18 tons as optical glass additives, and 12 to 13 tons as zirconia stabilizers. An additional 10 to 12 tons of yttrium oxide were exported to Eastern Europe and the Soviet Union for color television manufacturing.

Japan imported 6,376 tons of rare-earth raw materials (bastnasite, chlorides, and crude oxides) in 1980 containing an estimated 3,800 tons of REO. This included 35 tons of crude yttrium oxide (60% Y₂O₃). Imports in 1980 of high-purity oxides, fluorides, and mischmetal totaled 362 tons of contained REO, including 86 tons of yttrium oxide.

Japanese imports of rare earths were reported by the Japan Tariff Association. Shipments from the United States in 1980 were as follows:

Product	Quantity (kilograms
Cerium fluoride	373
Cerium oxide	8,410
Lanthanum oxide	181
Yttrium oxide	30
Rare-earth metals including yttrium and	
scandium	932
Ferrocerium and other pyrophoric alloys	4.825
Crude rare-earth chloride, for manufactur-	•
ing metallic compounds	575,435
Compounds of rare-earth metals including	,
yttrium and scandium	1,051,858

Norway.-Surface investigations at Ule-

floss, Telemark County, southern Norway, continued to indicate a large deposit of rare earths. Exploration drilling by Union Mineral Norway, and Fenco, a joint venture of the Norwegian companies S. D. Cappelen. Ardal og Sunndal Verk AS, Elkem Spigerverket AS, and AS Sydvaranger, is planned. S. D. Cappelen has reportedly obtained mining rights for 450 acres.

MCI Megon AS is reportedly producing about 30 tons of yttrium oxide per year. The high-purity oxides are produced from xenotime and yttrium concentrates imported from Malaysia, Australia, and the United States.

Sierra Leone.—Sierra Rutile Ltd., a joint venture of Bethlehem Steel Corp. (85%) and Nord Resources Corp. (15%), started a minerals sands operation in 1980 near Mogbwemo. Although monazite occurs in the minerals sands it is not currently being recovered.

South Africa, Republic of.—A new plant to recover monazite is planned for General Mining Union Corp. Ltd.'s Buffalo Fluorspar Mine. The 2,500- to 3,000-ton-per-year monazite plant was scheduled for commissioning in 1981. Monazite of a red brick color and lesser amounts of a yellowishbrown monazite (radioactively bombarded) is present in up to 2% of the ore.4

U.S.S.R.-A large apatite deposit has reportedly been discovered in Zhitomir Oblast in the Ukranian S.S.R. The deposit, which may contain rare earths, is said to be smaller than the Kola Peninsula deposits.

Table 4.—Monazite concentrates: World production, by country

(Metric tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Australia Brazil India Malaysia Sri Lanka Thailand United States Zaire	9,379 2,440 2,734 1,977 5 	14,992 2,540 3,303 1,263 213 (*5) W 77	16,340 1,890 3,254 669 213 32 W 90	13,748 1,205 e4,210 400 63 152 W 51	13,500 1,500 4,300 350 60 150 W
Total	16,631	22,388	22,488	19,829	19,910

W Withheld to avoid disclosing company proprietary data; not included in total. eEstimated. Preliminary.

TECHNOLOGY

Samarium-cobalt permanent magnets were used by General Electric Co. to build a high-power density direct current motor that outperforms conventional electric motors nearly tenfold. The motor weighs 14 kilograms and produces 141 horsepower at 20,000 revolutions per minute. Applications will reportedly be as lightweight startergenerators for aircraft, variable-speed drives for electric vehicles, and industrial use motors.5

Other samarium-cobalt research studied the biological effects of implanted permanent magnets. In experiments with rats, no unusual or harmful effects were attributed to the strong magnetic fields. The magnets have sufficient strength to be considered for use in dental prostheses and orthodontics.6

Researchers at General Motors Research Laboratories have achieved coercivities (resistance to demagnetization) in praseodymium-iron and neodymium-iron magnets that are the largest reported for any rare earth-iron material. A melt-spinning alloying technique with a controlled interval quench rate was used to produce the high coercivities. The new technique also reduces the conventional two steps of synthesis and magnetic hardening to a single process.7

General Motors laboratory also reviewed the development of rare-earth₂-transition metal₁₇ (RE₂TM₁₇) permanent magnets. A summary of the state-of-the-art technology

¹Table includes data available through May 26, 1982.

In addition to the countries listed, China, Indonesia, Nigeria, the Republic of Korea, and North Korea may produce monazite, but output, if any, is not reported quantitatively, and available general information is inadequate for formulation of reliable estimates of output levels.

3 Data are for years beginning April 1 of that stated.

Revised to zero; figure previously reported (845 short tons) was the 1978 export, and apparently was possible because of production in 1975 and before that had not been shipped when mined. Exports were not permitted in 1977.

for the RE₂TM₁₇ metal is covered.8

An automated film characterization apparatus was developed by Quadra-Bubble Memory Technology to evaluate the magnetic parameters of bubble memory film. Using a laser and high-speed computer, the device analyzes the film in less than 1 minute, 50 times faster than conventional microscope techniques. Future applications may include quality control of epitaxial growth in rare earth-metal-garnets.

Researchers at Luxtron Corp. developed a phosphor-fiberoptic temperature measurement system that operates in electrically, thermally, and chemically harsh environments. An optical fiber tipped with europium doped oxysulfide phosphor was used to measure temperatures from -50° C to 250° C within ±0.1° C. Future development of a disposable, sterilizable sensor would be useful in clinical and food processing applications. 10

A research safety vehicle (RSV) built by Calspan Corp. and Chrysler Corp. was designed for 40- to 50-mile-per-hour impacts. One of the major factors in making the RSV safe was the use of 146 kilograms of highstrength, low-alloy steel containing rare earths. Widespread use of this car would reportedly reduce car fatalities and injuries significantly.

A new zinc-aluminum-mischmetal alloy for galvanizing steel was developed by the International Lead Zinc Research Organization. The alloy exceeded conventional galvanizing materials in corrosion resistance, ductility, weldability, and paintability. The new alloy also showed excellent edge and scratch protection.¹²

An overlay coating that reportedly extends jet engine turbine bucket life was developed by General Electric. The cobalt-chromium-aluminum-yttrium alloy was said to be resistant to hot corrosive turbine gases, have superior ductility, and excellent thermal expansion resistance.¹³

Toshiba introduced two color televisions using terbium-doped yttrium phosphors as the green coloring agent. The 20- and 26-inch screen tubes reportedly have high brightness and ultraclear definition.¹⁴

Researchers at Sandia Laboratories have implanted hydrogen, helium, argon, and neon ions in lead-lanthanum-zirconium-titanate (PLZT) ceramics to improve photosensitivity. Argon and neon ion coimplantation resulted in improving photosen-

sitivity 10,000 times over that of unimplanted PLZT. Implanted ferroelectric-phase PLZT is currently the most sensitive, non-volatile, selectively erasable image storage medium known.¹⁵

Bureau of Mines research on permanent magnets determined that rare earth-cobalt-copper-magnesium-iron alloys could be developed with magnetic properties approaching that of high-magnetic strength samarium-cobalt magnets. The highest magnetic strength product obtained was a lanthanum-praseodymium-cobalt-copper-magnesium alloy, although its resistance to demagnetization (coercivity) was low.

The Bureau of Mines published a report on the magnetic properties of alloys containing mischmetal-cobalt-copper-iron-magnesium. 16 Although the alloys obtained had lower magnetic strength than that of samarium-cobalt permanent magnets, coercivity values were higher.

Results of research involving the beneficiation of bastnasite and recovery of associated barite were completed by the Bureau of Mines.¹⁷ Rare-earth concentrates were prepared with slightly higher grades using lower energy-saving pulp temperatures. Barite recovered from the tailings would reportedly require further upgrading to meet drilling mud specifications. A summary of the findings was to be published in 1982.

The Fifteenth Rare Earth Research Conference was held at the University of Missouri, Rolla, Mo., June 15-18, 1981. Proceedings of the conference will be available in 1982.

A bibliography on the use of rare earths in optical and special property glasses was completed by Molycorp. A report on the discovery and commercial separation of rare earths was published by Rhône-Poulenc. 19

 ¹Physical scientist, Division of Nonferrous Metals.
 ²All measurements are metric units unless otherwise

specified.

Radio Broadcast by XINHUA from Beijing, China, in English 12:51 GMT, Nov. 16, 1981.

⁴Clarke, G. South African Fluorspar Penetrating the Export Market. Ind. Miner. (London), September 1981, pp. 69-79.

pp. 69-79.

**General Electric Co. Permanent Magnet Motor From General Electric Wins Competition for Technical Innovation. (Developed by project engineer C. T. Luddy). News Release, Sept. 11, 1981, 2 pp; available from General Electric Co.

Gerny, R. L. Biological Effects of Implanted Cobalt-Samarium Magnetic Fields. Pres. at 59th General Session of Am. Assoc. for Dental Research, Chicago, Ill., Mar. 19-

of Am. Assoc. for Dental Research, Chicago, Ill., Mar. 19-22, 1981.

**Croat, J. J., and J. F. Herbst. Melt-Spun Rare Earth-Iron Alloys: Dependence of Coercivity on Quench Rate. Physics Dept., General Motors Research Laboratories, Warren, Mich., Sept. 23, 1981, 11 pp.

*Lee, R. W. The Future of Rare Earth-Transition Metal Magnets of Type RE-27M₁r. J. Appl. Phys., v. 52, No. 3, March 1981, pp. 2549-2553.

**Johnson, P. B., M. Karnezos, and R. D. Henry. Automated Spatial Filtering for Rapid Characterization of LPE Bubble Garnet Films. Mat. Res. Bull., v. 15, 1980, pp. 1669-1677.

1677.

16Wickersheim, K. A., and R. V. Alves. Fluoroptic Thermometry: A New RF-Immune Technology. Biomedical Thermology, A. R. Liss (pub.), New York, to be published in 1982.

11E-biog. C. J. Matariala for the Colonom (Chymlon

published in 1982.

¹¹Fabian, G. J. Materials for the Calspan/Chrysler Research Safety Vehicle (RSV). No. 810231. Pres. at the Internat. Congr. and Expo. Cobo Hall, Detroit, Mich., Feb. 23-27, 1981, 12 pp; available from the Society of Automotive Engineers, Inc., 400 Commonwealth Dr., Warrendale, PA 15096.

¹²Gschneidner, K. A., Jr. (ed.). Galvanization. Rare-

Earth Information Center News, v. 16, No. 3, Sept. 1, 1981,

p. 3. (Developed at the Centre Rews, v. 16, 180. 3, Sept. 1, 1961, p. 3. (Developed at the Centre de Recherches Metallurgi-que (CRM) in Liege, Belgium.)

13Rairden, J. R., and E. M. Habesch. Low-Pressure-Plasma-Deposited Coatings Formed From Mechanically Alloyed Powders. Thin Solid Films, v. 83, 1981, pp. 353-360.

Alloyed Fowders. Inin Solid Films, v. 60, 1261, pp. 305-500-¹⁴Nomura Research Institute. Topics in Japanese Newer Metals Industry 1980-81. Pp. 94-107. ¹⁵Peercy, P. S., and C. E. Land. Ion-Implanted PLZT Ceramics: A New High-Sensitivity Image Storage Medium. IEEE Trans. on Electron Devices, v. ED-28, No. 6, June

1981, pp. 756-762. 16 Walkiewicz, J. W., J. S. Winston, and M. M. Wong. Magnetic Properties of Alloys Containing Mischmetal, Cobalt Copper, Iron, and Magnesium. BuMines RI 8583,

1981, 22 pp. ¹⁷Walkiewicz, J. W. Personal communication.

"Nibbe, M. (ed.). Abstracts of Major Work Concerning Rare Earths in Optical & Special Property Glasses Including Decolorization & Analytical Methods. V. 2, Application Report \$109, 80 pp; available from Molycorp, Inc., White Plains, NY.

¹⁹Kaczmarek, J. Rare Earths: Discovery and Commercial Separations. Pres. to the ACS, Aug. 26, 1980, 17 pp; available from Rhône-Poulenc, Inc., Monmouth Junction,

Rhenium

By Ivette E. Torres¹

Rhenium was produced by two firms in 1981. One firm recovered rhenium from domestic porphyry copper ores, while the other recovered it on a toll-conversion basis. Consumption of rhenium decreased an estimated 9.6% from that of 1980, to 6,600 pounds. The major use for rhenium continued to be in bimetallic reforming catalysts to produce low-lead and lead-free high-

octane gasoline. Imports of rhenium in ammonium perrhenate increased from 4,991 pounds in 1980 to 9,089 in 1981. Prices in 1981 continued to decrease. During the first quarter, the price for the metal ranged from \$700 to \$800 per pound, but began dropping in late summer to end the year at about \$525 per pound.

Table 1.—Salient rhenium statistics

(Pounds of contained rhenium)

	1977	1978	1979	1980	1981
Mine production Consumption Imports (metal) Imports for consumption of ammonium perrhenate Stocks, Dec. 31	7,300 148 6,111 17,300	12,500 449 12,042 W	W 9,500 927 8,299 W	W 7,300 513 4,991 W	W 6,600 580 9,089 W

eEstimated. W Withheld to avoid disclosing company proprietary data.

¹Includes 850 pounds of perrhenic acid.

DOMESTIC PRODUCTION

Kennecott Corp., near Salt Lake City, Utah, was the sole producer of rhenium from domestic porphyry copper ores in 1981.

In September, Duval Corp. announced the opening of its rhenium recovery plant at its Sierrita property near Tucson, Ariz. Production of ammonium perrhenate as a byproduct of molybdenum roasting was scheduled to begin in October, but because of problems with the grade of the material

being produced, marketable ammonium perrhenate production did not begin until January 1982. Metallic rhenium and perrhenic acid will also be produced at the facility when market conditions improve.

Shattuck Chemical Co., a subsidiary of Phibro Corp., recovered rhenium from Canadian molybdenite concentrates on a toll-conversion basis, returning the rhenium to its owner for subsequent sale.

CONSUMPTION AND USES

Domestic consumption of rhenium fell an estimated 9.6% below that of 1980 to 6,600 pounds. The decrease was attributed to the decline in demand for platinum-rhenium reforming catalysts. These catalysts are

used by the petroleum industry to produce low-lead and lead-free high-octane gasoline and account for about 90% of the rhenium demand. In the reforming process, bimetallic platinum-rhenium catalysts compete

with conventional monometallic and other bimetallic catalysts. Platinum-rhenium's lower price, resistance towards sulfur, greater carbon tolerance, and resistance to high temperatures make it attractive and suitable for cleaning and regeneration. The regeneration of the platinum-rhenium catalysts reduces the demand for the first generation of catalytic feedstock.

Total reforming capacity decreased by 1.8% in 1981 to 3,978,180 barrels per stream day. Of this total, 80.5%, or 3,201,750 barrels per stream day, represented bimetallic reforming capacity.²

The three basic types of bimetallic reforming catalysts are as follows: The semiregenerative, cyclic, and other types (nonregenerative, continuous, and moving-bed systems). The semiregenerative reforming catalyst accounted for 60% of the total reforming capacity. Cyclic catalysts and other types accounted for 13% and 7%, respectively. Platinum-rhenium was used in an estimated 85% of the total bimetallic

reforming capacity.

Most of the bimetallic platinum-rhenium catalysts contain 0.3% rhenium and 0.3% platinum, by weight, using alumina (Al₂O₃) as the base. The rhenium content may be as low as 0.25% and as high as 0.9%.

Platinum-rhenium catalysts are also used in the production of benzene, toluene, and xylenes.

About 10% of the total domestic consumption of rhenium in 1981 was accounted for by use in thermocouples, ionization gauges, electron tubes and targets, electrical contacts, X-ray tubes and targets, metallic coatings, semiconductors, heating elements, high-temperature nickel-based alloys, mass spectrographs, vacuum tubes, and electromagnets. For these uses, the major portion of the rhenium is contained in the tungsten-rhenium and molybdenum-rhenium alloys.

Rhenium is alloyed with other metals to improve acid and heat resistance, wear and corrosion resistance, durability, and mechanical properties.

PRICES

In 1981, the price of rhenium continued to decrease, following the trend that characterized 1980. During the first quarter, the price of rhenium powder ranged from \$700 to \$800 per pound, decreasing to about \$550 per pound during the second quarter. Thereafter, the price stabilized and ended the year at about \$525 per pound. The price

of perrhenic acid was about \$650 per pound during the first quarter, after which it decreased to about \$460 per pound and remained at this level through the rest of the year. Gasoline oversupply was the major cause for the soft market price. The oversupply caused a lower demand for rhenium used in reforming catalysts.

FOREIGN TRADE

U.S. imports for consumption of rhenium in ammonium perrhenate increased 82% from that of 1980. The value of these imports was \$3.3 million. Imports of rhenium metal increased by 13%, to 580 pounds and were valued at \$0.6 million. All ammonium perrhenate originated from Chile and the Federal Republic of Germany. Over 99.5% of the rhenium metal came from the Federal Republic of Germany.

The import duty on ammonium perrhenate from countries with market economies was 3.8% ad valorem; the import duty from countries with central economies was 25% ad valorem. The duty on rhenium metal from countries with market economies was 4.7% ad valorem for unwrought metal and 8.1% ad valorem for wrought metal. The duty on wrought and unwrought metal from countries with central economies was 45% and 25% ad valorem, respectively. The duty on waste and scrap has been suspended indefinitely.

Table 2.—U.S. imports for consumption of ammonium perrhenate, by country ¹
(Phenium content)

Country	1977		1978		1979		1980		1981	
	Quan- tity (pounds)	Value (thou- sands)	Quan- tity (pounds)	Value (thou- sands)	Quan- tity (pounds)	Value (thou- sands)	Quan- tity (pounds)	Value (thou- sands)	Quan- tity (pounds)	Value (thou- sands)
Chile Germany, Federal Re-	4,187	\$1,087	5,855	\$889	4,335	\$1,380	2,049	\$2,775	5,767	\$2,401
public of Poland	1,924	533	2 6,187	1,512	3,898	1,854 25	2,721	4,720	3,322	896
U.S.S.R Yugoslavia _	== -				66 	25 	$1\overline{35}$ 86	229 165		
Total	6,111	1,620	12,042	2,401	8,299	3,259	4,991	7,889	9,089	3,297

¹Adjusted by Bureau of Mines.

Table 3.—U.S. imports for consumption of rhenium metal, by country

(Gross weight)

Country	1977		1978		1979		1980		1981	
	Quan- tity (pounds)	Value	Quan- tity (pounds)	Value	Quan- tity (pounds)	Value	Quan- tity (pounds)	Value	Quan- tity (pounds)	Value
Belgium-										
Luxembourg	18	\$4,120	15	\$6,075						
France					238	\$97,836	100	\$43,587		
Germany, Federal										
Republic of	130	51,734	434	161,920	468	426,735	390	539,985	578	\$573,009
U.S.S.R					220	82,594				
United Kingdom_							23	84,135		
Other ¹					1	478			2	1,429
Total	148	55,854	449	167,995	927	607,643	513	667,707	580	574,438

¹Includes Austria and Switzerland.

WORLD REVIEW

Rhenium was recovered from porphyry copper deposits in Canada, Chile, Peru, the U.S.S.R., and the United States. In the U.S.S.R., the majority of the rhenium was produced from the Dzhezkazgan sedimentary copper deposit. Rhenium was recovered from concentrates in Chile, the Federal Republic of Germany, France, Sweden, the United Kingdom, the U.S.S.R., and the United States.

Canada.—Rhenium production in Canada increased an estimated 10% over that of 1980 to 4,400 pounds. Rhenium in molybdenite concentrates was exported to the Federal Republic of Germany and the United States for recovery. About 60% of the rhenium was returned to Canada to be marketed. Utah International Inc., the owner of the Copper Island Mine in British Columbia, continued to be the sole producer of rhenium in Canada. The Island Copper

Mine contains one of the highest concentrations of rhenium in the world.

Papua New Guinea.-Approval by the Government of Papua New Guinea for the development of the OK Tedi copper, gold. and molybdenum deposit was finalized during 1981. An international consortium named OK Tedi Co. Ltd. was formed to develop the deposit. The first phase of production, which was previously scheduled to start in early 1984, will reportedly start by yearend 1984 or the beginning of 1985. During this phase, only gold will be produced. During the second and third phases, copper and copper-molybdenum concentrates will be extracted, respectively. Rhenium concentration has been estimated at 300 parts per million in the molybdenite concentrates.

Peru.—Southern Peru Copper Corp. (SPCC), owner of the Toquepala and Cua-

²Includes 850 pounds of perrhenic acid.

ione Mines, did not recover any rhenium in 1981 but sent MoS2 concentrates to be processed in the Federal Republic of Germany and the United States. The concentrates average 300 parts per million rhenium. Some of the rhenium is recovered and sold by the companies roasting the Peruvian molybdenite.

U.S.S.R.-The major source of rhenium in the Soviet Union is the Dzhezkazgan sedimentary copper deposit in Kazakhstan. In this deposit, rhenium occurs in bornite and chalcocite ores.3 Recent reports indicate that the majority of the Soviet rhenium output comes from the Dzhezkazgan deposit and not from porphyry copper deposits as previously believed. The Dzhezkazgan copper smelting facility, in conjunction with various research institutes in the Soviet Union, has done considerable work to increase the extraction of copper, lead, rhenium, sulfur, gold, and silver from these ores.4 To achieve better recovery, new methods have been developed to improve the handling of concentrates and the exit gases

in the smelting process.

In chemical balance studies performed in 1974 and 1977, it was found that rhenium is distributed among the smelting products as follows: 70% in gases, 25% in matte, and 5% in slag.

The original design capacity of the rhenium extraction circuit of the smelter provided for a recovery of about 73%. The losses of rhenium occur in charge preparation, slag, commercial dust, and spent acid. In actual practice, rhenium recovery for the first half of 1980 averaged about 42%. This represents an increase of about fourteenfold over the 1973 recovery rate which was 3.1%.

¹Physical scientist, Division of Ferrous Metals. ²Oil and Gas Journal. V. 80, No. 12, Mar. 22, 1982, pp.

^{128-150.} 128-150.

*Demeshkin, S. S., G. A. Nelidova, A. A. Zubkov, K. F. Levin, and I. A. Litinskiy. Distribution of Rhenium at the Dzhezkazgam Mines and in the Concentration Products. Nonferrous Metals (U.S.S.R.), No. 3, March 1981, pp. 23-25.

*Pyzhov, V. S., I. E. Li, S. P. Zabortzev, V. T. Khvan, and V. K. Laykin. Ways of Increasing the Extraction of Sulphur, Lead, and Rhenium at the Dzhezkazgan Copper Smelting Plant. Nonferrous Metals (U.S.S.R.), No. 1, January 1981, no. 95-98.

ary 1981, pp. 95-98.

Salt

By Dennis S. Kostick¹

Total domestic production of salt in 1981 decreased for the second consecutive year to 38.9 million short tons. The previous low production was 36.5 million tons in 1966. The decrease in salt production is attributed to the generally poor economic conditions affecting the chloralkali and agricultural sectors as well as the downturn in salt usage in certain food product industries.

Legislation and Government Programs.—The Food and Drug Administration, with the support of the U.S. Department of Health and Human Services, is investigating limiting the amount of sodium in processed food in response to public concern about the effect of salt on human health. Proposed legislation, H.R. 4031, pending before the House Health and Environment Subcommittee, would require food processing companies to specify the sodium content of foods in excess of 35 milligrams of sodium per serving. The proposed action

would allow individuals the choice of increasing or decreasing the sodium level of their diets.

Many food and salt trade associations support a voluntary labeling program. Some companies are voluntarily labeling the sodium content or introducing new low-sodium products. A new product line of soups, for example, will contain between 30 to 106 milligrams of sodium per serving compared with present soups on the market that contain from 780 to more than 1,000 milligrams of sodium.²

In conjunction with the Solution Mining Research Institute, the Bureau of Mines is examining sinkholes in Kansas to determine the causes and mechanisms of solution cavity failures. The work will attempt to develop useful methods for monitoring surface stability over solution mining operations.³

Table 1.—Salient salt statistics
(Thousand short tons and thousand dollars)

	1977	1978	1979	1980	1981
United States:					
Production ¹	42,922	42,878	46,317	41,483	38,893
Sold or used by producers ¹	43,412	42,869	45,793	40,352	38,907
Value	\$451,579	\$499,345	\$538,352	\$656,164	\$636,328
Exports	1,008	776	697	831	1,043
Value	\$10,881	\$9,795	\$9,025	\$12,829	\$18,070
Imports for consumption	4,529	5,380	5,275	5,263	4,974
Value	\$26,694	\$34,247	\$40,860	\$44,071	\$49,157
Consumption, apparent	46,933	47,473	50,371	44,784	42,695
World: Production	^r 173,107	r _{189,105}	r _{191,345}	P185,788	e183,106

Estimated. Preliminary. Revised.

DOMESTIC PRODUCTION

The total quantity of domestic salt sold or used by producers in 1981 decreased to 38.9 million short tons. In 1981, 47 companies

operated 88 salt-producing plants in 16 States. Ten of the companies sold or used over 1 million tons each, accounting for

¹Excludes Puerto Rico.

80% of the U.S. total.

The five leading States in the amount of salt sold or used follow:

Ct. 4	Percent	of total
State	1980	1981
Louisiana	31 25	32 22
New York	14	14
Ohio Michigan	6	9 6
Total	84	83

The percentage of salt sold or used by domestic producers in 1981 by type follow:

:	Percent		
	1980	1981	
Salt in brine	55	53	
Mined rock salt	30	31	
Vacuum pan salt and grainer or			
open pan salt	9	10	
Solar-evaporated salt	6	6	
Total	100	100	

Rickano Corp. purchased the abandoned salt mine of Carey Salt Co. in Lyons, Kans.,

with the intention of using it as a low-level radioactive waste disposal facility. An application for a State license is under review by the Kansas Legislature amid concerns by special interest groups regarding the safety of the operation.⁴

Diamond Crystal Salt Co. amended its suit against Texaco Oil Co. concerning the loss of the Jefferson Island salt mine in Louisiana in November 1980. The \$219 million suit is being contested by Texaco, which cites that the flooding was caused by the salt company's negligence.⁵

Diamond Crystal closed its solar salt facility at Long Island in the Bahamas late in 1981. The operation suffered from excessive rainfall and hurricane damage through the years. The company also entered into a long-term, rock salt supply agreement with Les Mines Seleine, Inc., a subsidiary of Soquem of Quebec, Canada. Diamond Crystal will receive a certain percentage of production from the new 1.5-million-ton-per-year salt mine being developed on Magdelen Island in the Gulf of St. Lawrence.

CONSUMPTION AND USES

In 1981, the domestic apparent consumption of salt fell to 42.7 million short tons, the lowest recorded since 1967. Compared with those of previous years, the quantity of salt used for producing chlorine, caustic soda, and soda ash fell the sharpest of all the end uses. This decline was attributed to the slowdown in the construction and automotive industries, which use soda ash, polyvinyl chloride, and other copolymers. Rock salt for highway deicing increased 6% in 1981 despite adoption of improved deicing programs (knowing when and how much salt to use per road application, and when to substitute with alternate deicing materials). which help to reduce salt utilization.

The distribution by end use of the various types of salt sold or used by producers in the United States in 1981 is shown in table 7. Evaporated salt has been divided into vacuum pans-open pans salt and solar salt commencing with this publication in order to show a better distribution.

Production of chlorine gas, caustic soda, and metallic sodium, in thousand short tons, in 1981, as reported by the U.S. Department of Commerce, was as follows:

	1980	1981	Percent change
Chlorine gas (100%) Sodium hydroxide, liquid	^r 11,190	10,559	-5.6
(100%) Metallic sodium	^r 11,311 112	10,649 103	-5.9 -8.0

^rRevised.

STOCKS

Total yearend salt stocks, as reported by producers, amounted to 3.2 million tons in

1981. Most was in the form of rock and solar salt.

Table 2.—Salt sold or used by producers in the United States, by recovery method

(Thousand short tons and thousand dollars)

D	19	80	1981		
Recovery method	Quantity	Value	Quantity	Value	
Evaporated: Bulk:					
Open pan or grainer and vacuum pan Solar Pressed blocks	3,587 2,334 393	274,188 36,516 24,412	3,500 2,298 404	278,878 42,176 26,099	
Total ²	6,314	335,117	6,201	347,148	
Rock: Bulk Pressed blocks	11,742 65	172,039 4,502	11,809 62	162,457 4,722	
Total ² Salt in brine (sold or used as such)	11,806 22,231	176,541 144,507	11,871 20,835	167,178 121,996	
Grand total ²	40,352	656,164	38,907	636,328	

¹Excludes Puerto Rico.

Table 3.—Salt sold or used by producers in the United States, by State

(Thousand short tons and thousand dollars)

State	198	30	1981		
State	Quantity	Value	Quantity	Value	
Kansas ¹	1.572	64.276	1,409	62,892	
Louisiana	12,662	132,182	12,565	113,190	
Michigan	2,406	104,842	2,321	103,293	
New York	5,509	99,395	5.597	103,668	
Ohio	3,228	87,371	3,608	90,254	
Texas	9,978	93,414	8,397	84,240	
Utah	1,157	19,373	1.072	21,775	
West Virginia	953	W	963	. W	
Other ²	2,887	55,311	2,974	57,016	
Total	40,352	656,164	338,907	636,328	
Puerto Rico ^e	27	642	8	144	

Table 4.—Evaporated salt sold or used by producers in the United States, by State

State	198	30	1981		
	Quantity	Value	Quantity	Value	
Kansas Louisiana Michigan New York Utah Other¹	901	56,555	901	54,292	
	280	20,487	232	21,870	
	1,133	90,916	1,148	89,442	
	638	50,579	649	51,393	
	1,091	19,005	1,034	21,478	
	2,271	97,575	2,238	108,673	
Total	6,314	335,117	² 6,201	347,148	
Puerto Rico ^e	27	642	8	144	

eEstimated.

²Data may not add to totals shown because of independent rounding.

Estimated. W Withheld to avoid disclosing company proprietary data; included with "Other."
 Quantity and value of brine included with "Other."
 Includes Alabama, Arizona, California, Colorado, Hawaii, Kansas (brine only), Nevada, New Mexico, North Dakota, Oklahoma, and items indicated by symbol W.
 3Data do not add to total shown because of independent rounding.

¹Includes Arizona, California, Hawaii, New Mexico, North Dakota, Ohio, Oklahoma, and Texas.

²Data do not add to total shown because of independent rounding.

Table 5.—Rock salt sold by producers in the United States

(Thousand short tons and thousand dollars)

Year	Quantity	Value
1977 1978	14,958 14,688 14,891 11,806 11,871	136,437 150,794 152,192 176,541 167,178

Table 6.—Pressed-salt blocks sold by original producers of salt in the United States

(Thousand short tons and thousand dollars)

Year	From evaporated salt		From rock salt		Total	
	Quantity	Value	Quantity	Value	Quantity	Value
1977	388	19,307	65	3,281	453	22,588
1978	381	20,625	58	3,041	439	23,666
1979	391	19,727	64	3,987	455	23,714
1980	393	24,412	65	4,502	458	28,914
1981	404	26,099	62	4,722	466	30,821

Table 7.—Distribution of salt sold or used by producers in the United States in 1981, by consumer or use

(Thousand short tons)

	Evapor	Evaporated			
Consumer or use	Vacuum pans and open pans	Solar	Rock	Brine	Total ¹
Chlorine, caustic soda, soda ash	45	383	1,718	19,747	21,893
All other chemicals	214	207	568	144	1,133
Textile and dyeing	152	17	51		220
Meatpackers, tanners, casing manufacturers	123	7i	256		450
Dairy	72	iî	8		91
Canning	125	35	70		230
Baking	87	15	ž		109
Flour processors (including cereal)	53	13	17		83
Other food processing	171	27	25		223
Feed dealers	408	335	401		1,144
Feed mixers	225	107	312		644
Metals	42	w	228	w	294
Rubber	43	ŵ	3	ŵ	102
Oil	121	328	98	290	837
Paper and pulp	w	57	130	w	247
Water softener manufacturers and service	. "	0.	100	**	- 1.
companies	287	193	218	5	703
Grocery stores	760	78	179	9	1.017
Highway use	72	117	6,487		6,676
U.S. Government	iī	54	62	(2)	127
Distributors (brokers, wholesalers, etc.)	502	w	574	w	1,431
Miscellaneous and undistributed ³	254	553	1.010	662	1,984
wiscenaneous and undistributed	204	993	1,010	002	1,984
Total ¹	43,767	42,600	412,422	420,849	539,638

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and undistributed."
¹Data may not add to totals shown because of independent rounding.

²Less than 1/2 unit; included with "Miscellaneous and undistributed."

^a Sincludes with held figures and some exports and consumption in overseas areas administered by the United States.

^b Differs from totals shown in tables 2, 4, and 5 because of changes in inventory.

^c Differs from totals shown in tables 1, 2, and 3 because of changes in inventory.

Table 8.—Distribution (shipments) of evaporated and rock salt in the United States, by destination¹

(Thousand short tons)

	19	80		1981	
			Evapor	rated	
Destination	Evapor- ated	Rock	Vacuum pans and open pans	Solar	Rock
Alabama	47	504	35	W	541
Alaska	16		W	w	
Arizona	61	\bar{r}_{5}	28	40	W
Arkansas	29	68	27	W	37
California	934	1	171	841	W
Colorado	130	50	33	92	36
Connecticut	. 24	. 83	20	9	W
Delaware	47	272	4	W	270
District of Columbia	W	W	W	w	W
'lorida	67	86	52	67	52
Georgia	93	90	58	w	71
Iawaii	W	7.5	W	7.7	
daho	66	_ w	w	55	W
llinois	360	r _{1,074}	280	91	1,042
ndiana	150	r ₆₃₈	159	W	551
owa	205	289	168	45	23
Cansas	97	222	100	7	193
Centucky	35	589	37	W	717
ouisiana	53	464	46	W	45
Maine	7	89	8	W	110
Maryland	39	139	. 50	102	96
Massachusetts	37	_ 194	36	30	360
Michigan	170	^r 1,144	144	162	1,203
Innesota	182	315	126	65	317
fississippi	23	116	21		139
fissouri	106	353	96	30	278
Iontana	69	2	29	45	W
[ebraska	_125	101	78	55	96
levada	r ₃₀₄	W	9	W	W
lew Hampshire	3	W	. 4	W	W
lew Jersey	194	360	143	127	277
Vew Mexico	_ 70	_ 27	10	112	26
lew York	^r 324	r _{1,408}	218	116	1,626
forth Carolina	102	152	105	W	110
North Dakota	^r 78	1	93	54	
Ohio	r ₄₀₃	1,399	340	W	1,428
Oklahoma	63	87	53	w	77
Oregon	158		W	223	W
ennsylvania	159	969	181	94	979
hode Island	13	w	5	w	W
outh Carolina	31	17	34	w	19
outh Dakota	46	41	46	24	32
'ennessee	88	49 8	92		332
'exas	233	243	153	w	231
Jtah	241	W	34	217	W
ermont	5	104	6	w	11
/irginia	103	252	100	w	168
Vashington	r ₅₅₄	w	350	404	W
Vest Virginia'	63	_210	18	w	21
Visconsin	186	^r 765	191	w	639
Vyoming	32	_ w	w	27	W
Other2	r _{1,027}	r ₅₈₃	95	787	804
Total ³	r7,652	r14,004	4,090	3,919	13,880

Revised. W Withheld to avoid disclosing company proprietary data; included with "Other."
 Each salt type includes domestic and imported quantities.
 Includes shipments to overseas areas administered by the United States, Puerto Rico, exports, some shipments to unspecified destinations, and shipments to States indicated by symbol W.
 3Data may not add to totals shown because of independent rounding.

PRICES

The average values of different classes of salt, f.o.b. works, as reported by producers follow:

The following salt prices were quoted at yearend 1981 in Chemical Marketing Reporter:⁸

-	1980	1981
Evaporated:		
Open pan or grainer and vacuum		
pan	\$76.44	\$79.68
Solar	15.65	18.35
Pressed blocks, all sources	63.20	66.14
Rock salt, bulk	14.65	13.76
Salt in brine	6.50	5.86

Salt, evaporated, common, 80-pound bags, carlots or truckloads, North, works, 80 pounds	\$3.00 3.20
80 pounds	2.05
Bulk, same basis, per ton	50.00

FOREIGN TRADE

In 1981, exports of salt from the United States increased to 1,043,000 short tons. Approximately 97% of the salt was shipped to Canada with minor quantities being exported to Saudi Arabia, Iraq, and Mexico.

U.S. imports of salt decreased to about 5 million short tons in 1981 as a result of reduced consumption of salt in the United States. Imports from Canada and Mexico represented about 61% of the total.

Table 9.—Salt shipped to the Commonwealth of Puerto Rico and overseas areas administered by the United States

	198	30	1981		
Area	Quantity	Value	Quantity	Value	
	(short	(thou-	(short	(thou-	
	tons)	sands)	tons)	sands)	
Puerto Rico	22,315	\$4,281	70,572	\$9,144	
	173	15	3	1	

Table 10.—U.S. exports of salt, by country

Country	19	80	1981	
	Quantity	Value	Quantity	Value
Angola			1	57
Bahamas	1	169	ī	193
Bermuda	(¹)	2		
Canada	800	8,224	1,011	11.818
Costa Rica	1	157	1	78
Denmark	(¹)	42	(¹)	38
Germany, Federal Republic of	(¹)	15	· (1)	7
Hong Kong	(¹)	30	(¹)	26
Iraq	7	301	5	2,245
Mexico	- 3	326	3	399
Netherlands Antilles	(¹)	68	(¹)	161
Saudi Arabia	12	2,348	12	2,314
South Africa, Republic of	(¹)	5	1	14
Sweden	(¹)	7		
Trinidad and Tobago	2	186	(¹)	32
United Arab Emirates	(¹)	97	``i	73
United Kingdom	(1)	93	(¹)	55
Venezuela	(1)	29	`í	10
Other	` ś	730	6	550
Total	831	12,829	1,043	18,070

¹Less than 1/2 unit.

Table 11.—U.S. imports for consumption of salt, by country

(Thousand short tons and thousand dollars)

Country	19	980	1981	
	Quantity	Value	Quantity	Value
Bahamas	531	5,573	753	6,501
Brazil	62	608	28	175
Canada	¹ 2.089	¹ 16,515	² 1,685	² 16,248
Chile	341	2,689	77	554
Colombia	273	2,280		
Italy	(³)	(3)	430	4669
Mexico	1,457	10,216	1,328	20,153
Nepal	22	161	_,	
Netherlands	104	2.034	5746	⁵ 1,588
Netherlands Antilles	193	2,031	149	1,565
Spain	99	831	690	6753
Tunisia	60	530	61	459
Yemen Arab Republic	31	163	<u>(7)</u>	3
Other	8 (7)	8439	27	489
Total ⁹	5,263	44,071	4,974	49,157

¹Includes salt brine through Detroit customs district, 11,490 short tons (\$39,205), and Ogdensburg customs district, 20

⁹Data may not add to totals shown because of independent rounding.

Table 12.—U.S. imports for consumption of salt, by year

	Year	In bags, sacks, barrels, or other packages (dutiable)		Bulk (dutiable)		
		Quantity	Value	Quantity	Value	
1979 1980 1981		1 1 27	1,760 1,478 1,483	¹ 5,275 ² 5,263 ³ 4,974	¹ 39,099 ² 42,593 ³ 47,674	

^{*}Includes sait brine through Decroit customs district, 25 short tons (\$372), and Detroit customs district, 710 short tons (\$1,465), salt in bags, sacks, and barrels through 9 different customs districts amounted to 204 short tons (\$1,079,143).

*Includes 405 pounds (\$6,389) salt in bags, sacks, and barrels.

*Includes 405 pounds (\$6,389) salt in bags, sacks, and barrels.

Includes salt in bags, sacks, and barrels through Boston and New York customs districts, 24 pounds (\$3,351).

Finctudes salt in loags, sacks, and barrels through Disson and rew 10th cushing district, 22 pounds (\$0,001).

Fincludes salt in bags, sacks, and barrels through Philadelphia customs district, 37 pounds (\$15,775).

Fincludes salt in bags, sacks, and barrels through Portland, Boston, and Chicago customs districts, 3 short tons (\$21,947).

7Less than 1/2 unit.

^{*}Includes salt brine from Austria through New York customs district, 50 short tons (\$500); from Sweden through New York customs district, 36 short tons (\$727). Salt in bags, sacks, and barrels from Denmark through Boston and Cleveland customs district, 66 short tons (\$28,577); from Japan through Norfolk, Los Angeles, and Anchorage customs districts, 19 short tons (\$268,695)

¹Includes salt brine from Canada through Detroit customs district, 239 short tons (\$5,370); from the United Kingdom through Washington customs district, less than 1 short ton (\$344); from Denmark through Cleveland customs district, 6 short tons (\$43,410); from Finland through New York customs district, less than 1 short ton (\$949); from Sweden through New York customs district, less than 1 short ton (\$637).

¹Includes salt brine from Canada through Ogdensburg customs district, 20 short tons (\$1,406), and Detroit district, 11,490 short tons (\$3,205); from Sweden through New York customs district, 26 short tons (\$727); from Denmark through Cleveland customs district, 2 short tons (\$20,498); from the Federal Republic of Germany through Boston customs district, 2 short tons (\$1,774); from Austria through New York customs district, 50 short tons (\$500); from Poland through Cleveland customs district, less than 1 short ton (\$300).

³Includes salt brine from Canada through Portland and Detroit customs districts, 25 short tons (\$373) and 710 short tons (\$11,452), respectively; from Denmark through Cleveland customs district, 72 short tons (\$1,437); from the United Kingdom through Boston customs district, 500 pounds (\$791); from France through Los Angeles customs district, 2,012 short tons (\$40,234).

Table 13.—U.S. imports for consumption of salt, by customs district

(Thousand short tons and thousand dollars)

Customs district	198	30	1981	
Customs district	Quantity	Value	Quantity	Value
Anchorage, Alaska	(1)	278	2	252
Baltimore, Md	472	3,497	135	1,284
Boston, Mass	33	319	28	254
Buffalo, N.Y	64	434	136	1,15
Chicago, Ill	554	3.810	307	2,489
Cleveland, Ohio	34	600	35	434
Detroit. Mich	599	4.715	512	4.527
Duluth, Minn	179	1,434	100	1.358
Los Angeles, Calif	190	1,700	243	2,970
Milwaukee, Wis	442	2,959	334	2.774
New Orleans, La	66	463	744	752
New York, N.Y	397	5,401	155	2,347
Norfolk, Va	86	751	44	37
Ogdensburg, N.Y	58	530	63	714
Philadelphia, Pa	47	469	45	369
Portland, Maine	397	3,640	370	3,583
Portland, Oreg	513	3,158	400	4.280
Providence, R.I		0,200	83	80
St. Albans, Vt	39	590	65	1,148
San Juan, P.R	6	70	7	104
Savannah, Ga	273	2,178	344	2,388
Seattle. Wash	576	3,843	568	11.520
Tampa, Fla	51	394	88	678
Wilmington, N.C	184	2,692	166	2,569
Other	3	146	100	2,000
		110		
Total ²	5,263	44,071	4,974	49,157

¹Less than 1/2 unit.

Table 14.—U.S. imports for consumption of salt, by use as reported by salt producers (Thousand short tons)

Use	1980	1981
Government (highway use) Chemical industry Water-conditioning service companies Other	1,087 803 179 260	1,581 829 303 386
Total ¹	² 2,330	3,099

¹Disagreement with totals in tables 1, 11, 12, and 13 is because of incomplete data on the uses of imported salt.

WORLD REVIEW

The world production of salt, by region and by percent of total in 1980 and 1981, in million short tons, follow:

	1980	Per- cent of total	1981	Per- cent of tota
Europe	r76.2	41.0	73.0	39.9
North America	F57.0	30.7	56.6	30.9
Asia	r36.0	19.4	36.8	20.1
South America	^r 7.5	4.0	7.7	4.2
Oceania	5.9	3.2	5.8	3.2
Africa	r _{3.2}	1.7	3.2	1.7
Total ¹	185.8	100.0	183.1	100.0

Revised.

Greece.—The Messolonghi salt works plans to increase its production capacity to

450,000 tons per year by 1983. The expansion is expected to fulfill the anticipated growth in the domestic and export markets.⁹

Netherlands.—Akzo Zout Chemie Nederland B.V. is investigating the technical and economic aspects of underground salt mining near Hengelo and other locations in Western Europe. The company presently extracts salt by hot-water injection, a high energy-intensive process.¹⁰

Pakistan.—As part of the 1981-85 5-year plan of the Ministry of Commerce and Industry, a 10,000-ton-per-year salt plant will be built in Qurayat. About two-thirds of the production will be shipped to Ghubra where the salt will be processed into soda ash and refined sodium chloride.¹¹

²Data may not add to totals shown because of independent rounding.

²Data do not add to total shown because of independent rounding.

¹Data may not add to totals in table 15 because of independent rounding.

SALT 721

Table 15.—Salt: World production, by country¹

(Thousand short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Bahamas	1,841	1,800	485	754	31,069
Canada	6,657	7,112	7,585	7,748	8,030
Costa Rica Cuba	30 142	38 144	51 134	44 137	45 140
Dominican Republic	38	42	42	61	70
El Salvador ^e	30	30	30	30	25
Guatemala	12	. 12	16	11	10
Honduras ^e	35	35	35	35	35
Honduras ^e Leeward and Windward Islands ^e	55	55	55	_ 55	55
Mexico Netherlands Antilles ^e	5,400	6,212	6,800	7,248	7,720
Netherlands Antilles ^e	440	440 20	440 20	440 22	440 20
Nicaragua ^e Panama	18 23	20 17	20 21	21	25
PanamaUnited States, including Puerto Rico:	20				-
Rock salt	14,958	14,688	14,891	11,806	11,871
Other salt:	•				
United States	28,454	28,181	30,902	28,545	27,036
Puerto Rico ^e	27	27	27	27	8
South America:					
Argentina: Rock salt	2	1	1	1	1
Other salt	1,263	771	682	1,106	1,205
Brazil:				·	
Rock salt	323	631	759	877	885
Marine salt	2,735	3,006	3,159	3,353	3,530
Chile	467	434	650	486	440
Colombia: Rock salt	r ₃₈₃	r416	422	383	3348
Other salt	r655	r507	407	541	3440
Peru	r ₃₅₀	r ₃₈₄	440	504	550
Venezuela	266	174	e170	268	275
Europe:					
Albania ^e	55	55	70	75	75
Austria:		_			
Rock salt	r ₃₆₆	1 354	1 419	1 452	1 465
Evaporated salt	160	354 172	229	243	250
Salt in brineBulgaria	96	96	95	96	95
Czechosloyakia	280	284	299	305	300
Denmark ⁴	346	358	419	e420	420
France:					
Rock salt	316	505	631	331	³ 328
Brine salt	1,120	1,215	1,310	1,227	1,204
Marine salt	1,087	952	1,986	e _{1,405}	31,517
Salt in solution German Democratic Republic:	3,844	4,254	4,955	4,867	34,266
Rock salt	2,855	2,963	3,304	3,391	3,420
Marine salt	58	58	60	57	60
Germany, Federal Republic of:				-	
Marketable:				•	
Rock salt	7,860	7,546	9,876	e7,600	7,450
Marine salt and other salt	5,723	6,407	6,757	e6,700	6,065
Greece	209	147	149	133	130
Iceland Italv:				(⁵)	(-)
Rock salt and brine salt	3,969	4,102	4,949	4,406	4,000
Marine salt	r _{1,123}	1,334	e ₁ 300	1,400	1,400
Malta	1	1	e ₁	1	1
Netherlands	3,429	3,240	4,355	3,818	3,860
Poland:			4 005		
Rock salt	1,722	1,582	1,607	1,615	1,200
Other salt Portugal:	3,081	3,261	3,275	3,383	2,535
Rock salt	387	360	450	442	440
Marine salt	164	165	e155	140	130
Romania:		200	200		
Rock salt	NA	1,827	1,819	1,950	1,875
Other salt	NA	3,397	3,384	3,622	3,640
Spain:	Fo	Fo ***		0.000	2 4
Rock salt	r _{2,095}	r2,306	2,411	2,622 1,245	2,650 1,325
			1,389	1 2/15	
Marine salt and other evaporated salt ⁶ Switzerland	1,323 403	1,408 431	430	406	410

See footnotes at end of table.

Table 15.—Salt: World production, by country¹—Continued

(Thousand short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Europe —Continued					
U.S.SR.e	15,760	15,980	15,760	16,000	16,000
United Kingdom:	998	1,445	1.770	1.005	1 505
Rock salt Brine salt ⁷	2,062	1,445 1,940	1,752 2,111	1,925	1,765
Other salt	5,981	4,673	4,756	1,773 4,190	1,740 4,000
Yugoslavia:	0,001	4,010	4,100	4,190	4,000
Rock salt	94	94	151	NA	NA
Marine salt	23	23	23	NA	NA
Salt from brineAfrica:	207	212	212	NA	NA
Algeria	162	189	e ₁₈₂	105	200
Algeria Angola ^e Benin	55	55	55	187 55	200
Benin	(⁵)	(⁵)	(5)	55 (⁵)	55 (⁵)
Egypt	658	832	679	701	720
Ethiopia:8					0
Rock salte	6	11	17	17	20
Marine salt	e ₈₅	55	182	110	110
Ghana ^e Kenya:	55	55	55	55	55
Crude	44	22	24	27	30
Refined	14	\mathbf{e}_{13}^{22}	e_{13}^{24}	22	30 23
Libya ^e	11	17	11	11	23 11
Madagascar	29	33	e33	e33	35
Mali ^e	5	5	5	5	5
Mauritania	1	1	1	ĭ	_
Mauritius	7	7	e7	7	10
Morocco Mozambique ^e	14	38	112	74	80
Mozambique	31	31	31	31	30
Morocco Mozambique ^e Namibia (marine salt) ^e Niger ^e	250	250	250	250	250
Senegal	1 154	1 154	3 154	$\begin{array}{c} 3\\154\end{array}$	3
Senegal Sierra Leone ^e	200	200	200	200	154 200
Somalia	$\tilde{\mathbf{r}}_{2}$	-r ₂	33	33	30
South Africa, Republic of	267	540	594	625	580
Sudan	101	79	90	90	90
Tanzania Togo	31	r ₃₂	41	44	45
Tunicia	110	1	1	1	1
Uganda ^e	446 1	469	440	481	³ 467
asia:	1	1	1	1	20
Afghanistan Bangladesh ⁸ Burma	86	89	22	e ₆	10
Bangladesh ⁸	381	866	743	772	770
Burma	254	336	284	296	300
Cilila	18,850	21,528	16,281	19,048	20,200
Cyprus India:		r _{3,659}	6	8	8
Rock salt		r_4			
Marine salt	4 5,873	7,381	7.751	e _{8,000}	9 000
Indonesia	867	259	7,751 779	-8,000 761	8,000 770
Iran ^y	770	770	770	660	660
Iraq Israel	90	90	100	100	90
Israel	^e 110	134	118	130	130
Japan ¹⁰	1,164	1,183	1,202	1,215	1,100
JordanKampucheae	33	33	33	33	30
Korea, North ^e	33 600	13 600	29	33	30
Korea, Republic of	875	717	600 551	630 502	630 500
Korea, Republic of Kuwait	18	21	21	22	20 20
Laos	11	17	20	22	20
Lebanon ^e Mongolia ^e	39	13	11	e13	10
Mongolia	17	17	17	17	20
Pakistan:					
Rock salt ⁸	424	455	564	446	550
Other saltPhilippines	126 ^r 220	250	212	220	220
Sri Lanka	57	249 165	355	382	390
Syria	117	e120	134 83	126 99	120
Taiwan	547	375	83 404	796	100 400
i naliand:	,	310	404	100	400
Rock salt	14	13	12	18	20
Other salt ^e	180	180	180	180	180
Turkey Vietnam ^e	857	1,024	1,246	690	770
Yemen Arab Republic	640 80	585 30	580	570	550
Yemen, People's Democratic Republic of	80 83	30 83	100	70	70
	00	00	83	90	80

See footnotes at end of table.

Table 15.—Salt: World production, by country¹ —Continued

(Thousand short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Oceania: Australia (marine salt and brine salt) New Zealand	5,197 58	6,356 72	5,701 61	5,859 11 ₆	5,840 NA
	r173,107	r _{189,105}	191,345	185,788	183,106

Revised. NA Not available. eEstimated. Preliminary.

¹Table includes data available through June 8, 1982.

5Less than 1/2 unit.

¹⁰Includes Ryukyu Islands

TECHNOLOGY

Researchers at the Iowa Department of Transportation developed a deicing material that could substitute for rock salt. The method uses sand that is coated with calcium magnesium acetate, obtained by reacting powdered limestone with acetic acid. Although, at the present time, the price of calcium magnesium acetate is high, using the new deicer would reduce the deterioration of steel in highway structures, be environmentally safe, and be formulated to work at temperatures below 20° F.12

The Franklin Institute Research Laboratory, Inc., and the Philadelphia Electric Co. began tests on a process that destroys polychlorinated biphenvls (PCB). The process involves mixing modified sodium salts of polyethylene glycol with PCB-contaminated oil. The mixture is then stirred and heated to slightly above 212° F. In the reaction, the sodium strips the chlorine from the PCB to form usable sodium chloride, and the remaining oil can be reused.13

The Bureau of Mines is engaged in a research project involving the occurrence and distribution of methane in salt mines in the Louisiana gulf coast salt domes. One objective of the project is to predict regions of high-methane buildup in salt domes by correlating the lithographic-structural relationships of the salt with the gas content.14

¹Physical scientist, Division of Industrial Minerals

¹Physical scientist, Division of Industrial Minerais.
²Chemical Week. Hayes and Health Take the Salt Out of Soups. V. 129, No. 24, Dec. 9, 1981, pp. 24-25.

³U.S. Bureau of Mines. Subsidence from Solution Mining. Art. in Bureau of Mines Research 1981, comp. and ed. by J. R. Pederson, 1981, pp. 95-96.

⁴Newton-Kansan. Salt Mine May House Nuclear Wastes. Feb. 20, 1981, p. 5A.

⁵Industrial Minerals (London). The Value of a Salt Mine.

V. 172, January 1982, p. 17.

Chemical Marketing Reporter. Diamond Crystal Salt to Close Its Facility in Long Island, Bahamas. V. 219, No. 8, Feb. 23, 1981, p. 4.

Diamond Salt in Pact. V. 219, No. 18, May 4,

Current Prices of Chemicals and Related Mate-

rials. V. 220, No. 26, Dec. 28, 1981, p. 36.

*Business Week. Special Advertising Section on Greece.
No. 2680, Mar. 23, 1981, 11 pp.

10 Chemical Age (London). Akzo Salt Mine Probe. Jan.

10 Chemical Age (LORIGOR), ARA CASE CASE AND A 1981, p. 5.

11 Industrial Minerals (London). Company News and Mineral Notes. No. 162, March 1981, p. 50.

12 Des Moines Register. Iowa DOT Develops New Road De-Icer. Jan. 6, 1982, p. 5A.

13 Chemical Week. Sodium Salts Destroy PCBs. V. 129, Ne. 18, Oct. 28, 1981, p. 52.

14 U.S. Bureau of Mines. Methane Control in Salt Mines.

Art. in Bureau of Mines Research 1981, comp. and ed. by J. R. Pederson, 1981, pp. 43-44.

²Salt is produced in many other countries, but quantities are relatively insignificant and reliable production data are not available.

³Reported figure.

⁴Data represents sales

^{*}Includes production in the Canary Islands (Spanish Provinces of Las Palmes and Santa Cruz de Tenerife) totaling 17,434 short tons in 1977, 15,766 short tons in 1978, 8,685 short tons in 1979, and 24,208 short tons in 1980 (1981, not

available).

That captioned "Brine salt" for the United Kingdom are the quantities of salt obtained from the evaporation of brines; that captioned "Other salt" are the salt content of brines used for purposes other than production of salt by evaporation.

⁸Year ending June 30 of that stated.

⁹Year beginning Mar. 21 of that stated.

¹¹Production of 5,500 tons (312,123 New Zealand dollars), as per Department of State Airgram A-46, Dec. 4, 1981.

Sand and Gravel

By Valentin V. Tepordei¹

A total of 755 million tons of sand and gravel valued at \$2.3 billion, f.o.b. plant, was estimated to have been produced in the United States in 1981. This tonnage is the lowest production reported in the last 20 years, 24% below the record high production of 1978. Of the 1981 total, about 96% was construction sand and gravel and 4% was industrial sand and gravel.

Preliminary production estimates for con-

struction sand and gravel indicate a decrease of 5% in 1981, reflecting the impact of the recession on the construction industry. Production of industrial sand and gravel remained about the same as that of 1980. Exports of sand and gravel in 1981 decreased minimally, and imports decreased 38% to 338,000 tons. Domestic apparent consumption of total sand and gravel (construction and industrial) was 753 million tons.

Table 1.—Salient sand and gravel statistics in the United States¹

	1977	1978	1979	1980	1981
Sold or used: Construction:					
Sand: Quantity Value	439,400 \$848,200	489,800 \$989,200	455,000 \$974,100	r373,400 r\$925,400	NA NA
Gravel: Quantity Value	458,400 \$968,700	473,500 \$1,064,000	490,500 \$1,170,000	r389,700 r\$1,071,000	NA NA
Total construction: ² Quantity Value	897,900	963,300	945,500	^r 763,100	^p 724,800
	\$1,817,000	\$2,053,000	\$2,144,000	^r \$1,996,000	^p \$1,958,000
Industrial: Sand: Quantity Value	29,610	31,810	32,120	^r 28,711	29,250
	\$201,900	\$243,200	\$275,200	^r \$286,500	\$326,300
Gravel:	1,745	1,041	1,391	865	728
Quantity Value	\$8,704	\$5,554	\$8,574	\$6,458	\$5,997
Total industrial: ² Quantity Value	31,360	32,850	33,510	r29,600	29,980
	\$210,600	\$248,800	\$283,800	r\$293,100	\$332,300
Grand total: ² Quantity Value	929,200	996,200	979,000	^r 792,700	754,800
	\$2,028,000	\$2,302,000	\$2,427,000	^r \$2,289,000	\$2,290,000
Exports: Quantity Value	3,689	4,260	2,076	2,451	2,397
	\$21,515	\$29,270	\$32,440	\$40,660	\$36,736
Imports: QuantityValue	386	625	423	541	338
	\$1,278	\$2,084	^r \$2,321	\$ 2,718	\$2,608

Preliminary. Revised. NA Not available.

¹Puerto Rico excluded from all sand and gravel statistics.

²Data may not add to totals shown because of independent rounding.

Legislation and Government Programs.—In August 1981, the Economic Recovery Tax Act became Public Law 97-34. This law provides accelerated cost recovery system incentives for plant, equipment, and real property placed in service after 1980.

Despite the introduction of several bills in both houses of the 97th Congress favoring transfer of regulatory responsibility for mining all surface stone and sand and gravel from the Mine Safety and Health Administration (MSHA) to the Occupational Safety and Health Administration (OSHA), no final decision was made on this matter. A temporary restraint of MSHA's enforcement of safety rules in the surface mining of sand and gravel and stone operations was achieved by Congress by limiting the funding of the Department of Labor through March 1982.

CONSTRUCTION SAND AND GRAVEL

To reduce the Federal Government's paperwork and costs, as well as respondents' reporting burden, in 1981 the Bureau of Mines implemented new canvassing procedures for its surveys of sand and gravel

producers. Beginning with the collection of 1981 production data, the annual survey of construction sand and gravel producers will be conducted for even-numbered years only. The preliminary survey, which collects total

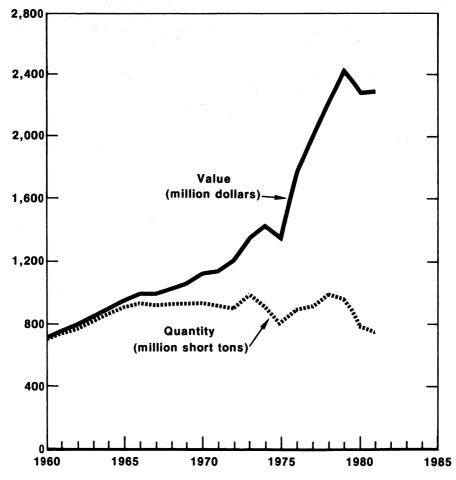


Figure 1.—Production and value of sand and gravel in the United States for 1960-81 (includes preliminary estimates for 1981 construction sand and gravel).

production data for 9 months only, is used to generate annual preliminary estimates and will continue to be conducted every year. The survey of industrial sand and gravel producers, which canvasses a much smaller number of operations, was scheduled to continue to be conducted every year. Therefore, the 1981 chapter contains only preliminary estimates for total construction

sand and gravel production for the United States, geographic regions, and States, but complete data on industrial sand and gravel. It is planned to revise and finalize the preliminary estimates of the annual total production of construction sand and gravel for even-numbered years during the following year.

INDUSTRIAL SAND AND GRAVEL

DOMESTIC PRODUCTION

In 1981, the East North Central region led the Nation in the production of industrial sand and gravel with 11.9 million tons or 40% of the U.S. total. The West South Central region was next with 4.7 million tons or 16% of the total, followed by South Atlantic region with 13%. If the four major geographic regions are compared (tables 2 and 6), the North Central led the Nation in the production of industrial sand and gravel with 44% of the total, followed by the South with 33%, and the West in third place with 11%. Approximately 77% of the total U.S. industrial sand and gravel was produced in two regions, North Central and South.

A comparison of 1980 and 1981 production by regions indicates that the output of industrial sand and gravel in the North Central and South increased in 1981 by 4% and 5%, respectively, more than the national average of about 1%; in the Northeast, output decreased 14%.

Based on 1980 census data on population, U.S. per capita industrial sand and gravel production was 0.13 ton. At the regional level, per capita production was 0.22 ton in the North Central, followed by the South with 0.13 ton, the West with 0.08 ton, and Northeast with 0.07 ton.

The five leading States in the production of industrial sand and gravel in 1981, in order of decreasing volume, were Illinois, Michigan, New Jersey, Texas, and California. Their combined production represented 52% of the national total.

Compared with that of 1980, 1981 production of industrial sand and gravel increased significantly in two major producing States, Texas, 9%, and Michigan, 8%; it decreased 17% in New Jersey, and showed small changes in the rest of the top 10 States.

In 1981, a total of 91 producers of industrial sand and gravel with 141 operations was canvassed by the Bureau of Mines; actual reports were received from 121 operations that produced 82% of the total tonnage. The production for the remaining 20 operations was estimated. Some industrial sand and gravel companies also produced construction sand and gravel, but that part of their production was not surveyed this year. Most of the industrial sand and gravel produced in 1981 came from operations with an annual production larger than 300,000 tons; 40 operations representing 28% of the total number of operations produced 71% of the total tonnage. The number of active industrial sand and gravel operations in each geographic region, as well as the number and kind of processing plants, are shown in table 5.

The 10 leading producers of industrial sand and gravel in 1981 were, in descending order of tonnage: Pennsylvania Glass Sand Corp., Martin Marietta Aggregates, Ottawa Silica Co., Hardy Sand Co., Owens-Illinois Inc., Manley Brothers of Indiana, Inc., Oglebay Norton Co., Unimin Corp., Energy and Minerals Inc., and Badger Manufacturing Corp. Their combined production, from 46 operations, represented 61% of the U.S. tôtal.

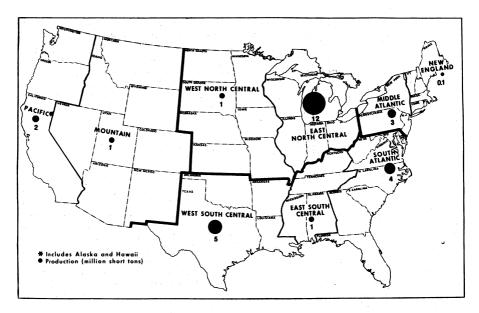


Figure 2.—Production of industrial sand and gravel by geographic region in the United States in 1981.

In 1981, Ottawa Silica Co. purchased two industrial sand operations from Dresser Industries Inc. One located in Dubberly, La., became Louisiana Industrial Sand Co., and the second, a producer of kaolin as well as industrial sand, located at Kosse, Tex., became Texas Industrial Minerals Co.

Martin Marietta Aggregates announced plans to double the capacity of its industrial sand operation at Byron, Calif., to approximately 800,000 tons per year. The operation, located about 50 miles east of San Francisco, produced high-grade silica sand for glass containers, primarily for the local wine industry and also for foundry sand and specialized uses in the construction industry.

Simplot Silica Products announced plans to expand its Overton, Nev., industrial sand operation from 380,000 tons per year to about 1 million tons per year because of increased demand for silica sand in California. Most of the industrial sand produced by this operation has been used by the glass industry for container glass and flat glass, and also by the foundry industry.

J. L. Shiely Co. of St. Paul, Minn., opened a new industrial sand operation at Jordan, Minn., to produce mostly hydraulic fracturing sand. The new operation, known as Minnesota Frac Sand Co., was expected to be onstream at the beginning of 1982.

Unimin Corp. of Stamford, Conn., initiated work at Kasota, Minn., to develop a new industrial sand operation that would produce exclusively hydraulic fracturing sand.

CONSUMPTION AND USES

The sand and gravel production reported by producers to the Bureau of Mines is material that is sold or used by companies. Stockpiled production is not reported until it is sold or consumed. Therefore, the sold or used tonnage represents the amount of production released for domestic consumption or export in a given year.

In 1981, U.S. consumption of industrial sand and gravel was about 30 million tons, valued at \$332 million. About 40% of this tonnage was used as glassmaking sand, and 33% as foundry sand. Other important uses were abrasive sand, about 7% of the total. and hydraulic fracturing sand, about 5%. At the regional level, most of the glass sand was consumed in the South (37%) and the North Central (31%), while most of the foundry sand was used in the North Central (70%), and a significantly smaller amount was used in the South (20%). Of the smaller, but no less important end uses, most of the abrasive sand was used in the South (73%) and in the Northeast (15%), and most of the hydraulic fracturing sand was used in the South (55%) and the North Central (38%).

Detailed information on consumption of industrial sand by end uses and major geographic regions is shown in table 6.

Compared with that of 1980, the 1981 consumption of glassmaking sand showed a 6% drop, while foundry sand and hydraulic fracturing sand increased 10% and 20%, respectively.

PRICES

For purposes of this chapter, price means f.o.b. plant value per ton of sand and gravel, which usually is the first point of sale or self-use. This value does not include transportation from the plant, yard, or deposit to the consumer. It does, however, reflect those transportation costs needed to bring mined sand and gravel to the plant.

Based on the 1981 canvass, the average national values for industrial sand and industrial gravel were \$11.16 and \$8.24 per ton, respectively. Table 6 shows the average values per ton for different end uses in the four major geographic regions. Nationally, industrial sand used as fillers had the highest value per ton at \$28.50, followed by ceramics at \$26.54 and hydraulic fracturing sand at \$23.11.

TRANSPORTATION

Of the total industrial sand and gravel produced in 1981, 57% was transported from the plant or pit to the site of the first point of sale or use by truck, 33% was transported by rail, and 6% by waterway, as shown in table 7. Because most of the producers have not kept records nor reported data regarding the distance to which industrial sand was shipped or the cost per ton-mile of the shipments, no such information has been available.

TECHNOLOGY

The 65th Annual Convention of the National Sand and Gravel Association and the 51st Annual Convention of the National Ready Mixed Concrete Association were jointly held in San Francisco, Calif., in February 1981. Federal and local regula-

tions, including the MSHA-OSHA transfer, energy and land use, industry forecasts, and the environment were the major topics discussed.²

The 17th Forum on Geology of Industrial Minerals organized by the New Mexico Bureau of Mines was held in Albuquerque, N. Mex., in May 1981. About 20 papers were presented at the conference, most of them concentrating on the general theme of "Industrial Rocks and Minerals of the Southwest." Field trips to several industrial minerals operations in New Mexico were also organized for the forum's participants.³

A conference on "Minerals and Chemicals in Glass and Ceramics—The Next Decade" was held in Corning, N.Y., in October 1981. The major topics discussed at the conference were future prospects for the glass and ceramics industries, the impact of changes in the specifications for raw materials and glass and ceramic products on energy consumption, and the future of research and development in glass and ceramics industries.

Higher oil and natural gas prices in recent years had brought a significant increase in the number of wells drilled, about 75,000 in 1981, and in the amount of hydraulic fracturing sand used in oilfields. New fracturing methods were designed (Massive Hydraulic Fracturing)⁵ and new proppants (Super Sand)⁶ were produced to meet more and more stringent requirements imposed by the oil industry.⁷

The American Petroleum Institute completed in 1980 a survey of the use of silica flour as a cement additive for deep oil wells. Recent research had shown that silica flour is the best additive for cements that have to be used at high temperatures (230°-400°F), while maintaining high compressive strength and low permeability.

A gradual shift in glass sand specifications to finer products had occurred in the previous decade. The impact of this change on energy consumption and capital investment for new plants was an area of major concern for the industry.9

FOREIGN TRADE

Ninety-four percent of the 613,000 tons of construction sand and gravel exported went to Canada, and the remainder was shipped to 62 different countries. Seventy-two percent of the 1.1 million tons of industrial

sand exported went to Canada, 20% to Mexico, and the remainder to 76 other countries.

Of the minor quantity of construction sand and gravel imported, 82% came from

Canada, 17% from Antigua, and the remainder from 12 other countries. The sand and gravel imported from Antigua went to the Virgin Islands, not the continental United States.

Comp. by G. S. Austin. N.M., Bur. Mines Miner. Res. Cir. 182, 1982, 111 p.

4 Industrial Minerals (London). Minerals and Chemicals

*Industrial Minerals (London). Minerals and Chemicals in Glass and Ceramics—The Next Decade. October 1981, pp. 23-33.

*White, J. L., and E. F. Daniel. Key Factors in MHF Design. Pet. Technol. August 1981, pp. 1501-1512.

*Sinclair, A. R., and J. W. Graham. A New Proppant for Hydraulic Fracturing. Am. Soc. of Mech. Eng., 78-Pet-34, 1070. 102. 1979, 18 pp.

Waters, A. B. Stimulation of Hydrocarbon Reservoirs. Ind. Min. (London), October 1980, pp. 57-65.

Smith, D. K. Silica Flour—Mechanism For Improving Cementing Composition for High-Temperature Well Conditions. Pet. Eng. Internat., December 1980, pp. 43-48.

⁹Sparks, R. W. Glass Sands in the 1980's. Ind. Min. (London), October 1981, p. 23.

¹Physical scientist, Division of Industrial Minerals.

²Stearn, E. W. N.S.G.A. Speakers Reveal Optimism in Spite of a Bad Year. Rock Prod., April 1981, pp. 155-160.

Levine, S. Future Holds Center Stage at NSAGA Convention. Pit & Quarry, April 1981, pp. 86-88.

³Dickson, T. 17th Industrial Minerals Forum. Ind. Miner. (London), August 1981, pp. 50-52.

New Mexico Bureau of Mines & Mineral Resources. Industrial Rocks and Minerals of the Southwest, 1982.

Table 2.—Sand and gravel sold or used in the United States, by geographic region

		స్త	Construction			ď	Industrial			To	Total ¹	
Geographic region	Quantity (thousand short tons)	Per- cent of total	Value (thousands)	Per- cent of total	Quantity (thousand short tons)	Per- cent of total	Value (thousands)	Per- cent of total	Quantity (thousand short tons)	Per- cent of total	Value (thousands)	Per- cent of total
Northeast:									-			
New England Middle Atlantic	38,750 42,300	6.5	\$93,540 127,700	70.00	159 3,868	13	\$2,134 39,900	141	38,910 46,170	70.00	\$95,670 167,600	4.1-
East North Central	138,000 77,990	18	339,800 170,500	17 8	*11,400 1,360	39	$^{\mathbf{r}96,360}_{13,120}$	88.2	*149,400 79,350	19	*436,100 183,600	8
South Atlantic Bast South Central West South Central	54,700 r38,870 r85,610	7 5 11	151,900 ⁷ 95,750 ⁷ 256,500	8 13	r4,410 645 r4,494	15 2 15	^r 41,350 4,375 ^r 53,260	14 1 18	759,100 739,500 90,110	7 5 11	193,200 100,100 1309,700	8 4 4
Mountain	93,450 r193,500	22 53	242,300 r518,100	12 26	877 °2,378	ေဆ	12,240 r30,410	10	94,330 *195,800	12 25	254,600 r548,600	11.22
Total ¹	*763,100	100	1,996,000	100	729,600	100	r293,100	100	792,700	100	2,289,000	100
1981 Northeast:												
New England Middle Atlantic	P36,200 P41,300	rc 60	P90,300 P131,100	5	3,326	\ =	2,677 39,790	12	36,340 44,630	.c. 9	92,980 170,900	46
East North Central	P126,500 P73,100	17	P321,300 P154,600	16 8	11,880 1,346	04 4	114,200 13,870	% 4	138,400 74,450	18	435,500 168,500	19
South Atlantic East South Central West South Central	P52,900 P34,400 P83,500	7 5 12	P152,500 P86,900 P259,800	8 4 EI	3,965 1,357 4,678	. E 2 9	47,300 6,891 63,570	14 2 19	56,870 35,760 88,180	8 5 12	199,800 93,790 323,400	9 4 41
Mountain	P87,000 P189,900	12 26	P228,900 P532,300	12 27	830 2,454	တ တ	12,380 31,630	10	87,830 192,400	12 25	241,300 563,900	25
Total ¹	P724,800	100	P1,958,000	100	29,980	100	332,300	100	754,800	100	2,290,000	100

PPreliminary. TRevised.

¹Data may not add to totals shown because of independent rounding.

Table 3.—Sand and gravel sold or used in the United States, by State

Value Quantity Value
120
1200
r2.169
W W
≱
260
M 868
722 W I,
M
4,062
31,606 W
759
<u>}</u> ≽
75
≥
9246
676
A
1,472
1

118,493 38,117 42,400 W W 23,531	26,210 178,492 18,186 4,200 W	49,458 W 52,280 12,400	2,290,000
36,087 11,700 14,400 W W 5,303	7,942 45,442 9,122 1,900 W	18,404 W 20,400 5,200	754,800
20,893 14,317 — W W 10,531	5,610 36,992 286 	3,358 W 13,180	332,300
1,487 1,500 W W 803	1,142 2,242 22 W	304 W 1,100	29,980
97,600 23,800 42,400 55,400 13,000	20,500 141,500 17,900 4,200 27,700	46,100 11,500 39,100 12,400	1,958,000
34,600 10,200 14,400 14,300 1,900 4,500	43,200 43,200 1,900 4,000	18,100 2,700 19,300 5,200	724,800
114,291 37,162 47,300 68,257 4,945 22,855 9,945	24,930 171,576 4,171 W	W W r47,571	°2,289,000
36,972 11,881 16,005 15,603 2,506 5,506	8,921 46,704 1,900 W	22,014 W	r792,700
16,601 13,767 12,374 9,628	2,106 31,684 W	W W r9,546 W	r293,100
$\begin{array}{c} 1,510\\ 1,587\\ 1,049\\ \hline 8\overline{19} \end{array}$	2,054 W.	w r947 W	r29,600
97,690 23,395 47,300 55,883 4,945 13,227 8,243	22,824 139,892 17,234 4,171 29,508	46,731 11,454 738,025 12,523	°1,996,000
35,462 10,294 16,005 14,554 2,506 4,737	8,906 8,906 1,900 8,264	19,019 2,728 721,067 5,454	r763,100
Ohio Oklahoma Oregon Pennsylvania Rhode Island South Garolina South Dakota	Tennessee Texas Utah Vermont	Washington West Virginia Wisconsin	Total ¹

Ppreliminary. Revised. W Withheld to avoid disclosing company proprietary data; included in "Total." 1Data may not add to totals shown because of independent rounding.

Table 4.—Industrial sand and gravel production in the United States, by size of operation

		19	80			19	81	
Sales and use level	Number of operations	Percent of total	Thousand short tons	Percent of total	Number of operations	Percent of total	Thousand short tons	Percent of total
Less than 25,000	34	21.8	415	1.4	25	17.7	289	1.0
25,000 to 49,999	r ₂₃	14.7	^r 870	2.9	17	12.1	604	2.0
50,000 to 99,999	^r 24	15.4	r _{1,715}	5.8	22	15.6	1.611	5.4
100,000 to 199,999	r ₂₃	14.7	r _{3,204}	10.8	28	19.9	4.014	13.4
200,000 to 299,999	16	10.3	3,954	13.4	9	6.4	2,200	7.3
300,000 to 399,999	r ₁₃	8.3	r _{4,469}	15.1	17	12.1	5,909	19.7
400,000 to 499,999	r ₁₁	7.1	r4,677	15.8	8	5.7	3,611	12.0
500,000 to 599,999	3	1.9	1,631	5.5	4	2.8	2,222	7.4
600,000 to 699,999	3	1.9	1,962	6.6	$ar{2}$	1.4	1,203	4.0
700,000 to 799,999		.0		.0	$\bar{3}$	2.1	2,239	7.5
800,000 to 899,999	1	.6	876	3.0	2	1.4	1,730	5.8
900,000 to 999,999	1	.6	993	3.3	. 1	0.7	956	3.2
1,000,000 to 1,499,999	_3	1.9	3,333	11.3	3	2.1	3,393	11.3
1,500,000 to 1,999,999	r ₁	.6	r _{1,500}	5.1				
Total ¹	^r 156	100.0	r29,600	100.0	141	100	29,980	100

^{*}Revised. ¹Data may not add to totals shown because of independent rounding.

Table 5.—Number of industrial sand and gravel active operations and processing plants in the United States, in 1981, by geographic region

		•	,	Active operat	Active operations with processing plants	essing plants		
	Total	Total number of	Associated	Associated with extraction areas on land	ion areas on	Associated with dredging operation	Associated with dredging operations	Total number of
Geographic region	number of active operations	active operations with	Plants	Plants at site	Plants not at site	Plants	Plants	operations without
		plants	Stationary Portable	Portable	(stationary or portable)	on board	on land	plants
	4.5	ေလာင္	ณ่อ	-	-	1	100	16
1	*	7	•	•	1	1	1	1
	10	98 6	31 6		- 1	1 1	01,01	eo
	17	16	13	+	16	-	-15	ļ -
	28	, 20°	14	1	1	• !	120	٠ ¦
	111	8 12	9	22.03	1	1 1	1 1	
	141	122	91	6	70	23	15	7

¹Based on reports submitted by individual companies.

Table 6.—Industrial sand and gravel sold or used by U.S. producers, by major use

		North East	t	Z	North Centra	ĘĘ		South			West		P	United States	88
Major use	Quantity (thousand sand short tons)	Value (thou- sands)	Value per ton	Quantity (thousand sand short tons)	Value (thou- sands)	Value per ton	Quantity (thousand sand short tons)	Value (thou- sands)	Value per ton	Quantity (thousand short tons)	Value (thou-sands)	Value per ton	Quantity (thousand short tons)	Value (thou- sands)	Value per ton
1980						٠.		1							
Sand: Glassmaking: Containers	9 149	690 690	80 66	0 880	617 500	7	Fo 777.0	100 600	90	1.0.0	900	Totopa	0000		
Flat (plate and window)	88 1	968	11.00	492 243 243	3,629	7.38	1927	*6,850 16,850 14,591	7.39	1,017	2,025	11.13	1,689	\$80,967 113,472	. \$9.14 . 7.98
Fiberglass (unground) Fiberglass (ground)	83	601 762	8.23 9.18	542 118	4,129 1,987	7.62 16.84	268	4,53 5,138	7.57 19.17	124	1,392	11.23	1,134 747 473	6,175 6,175 7,938	8.27 16.78
Molding and coreMolding and core facing (ground) Morally arrivoly	657 67 45	7,860 632 750	$^{11.96}_{9.43}$ $^{16.67}$	F6,449 57 302	*45,991 255 2,783	r7.13 4.47 9.22	^r 1,167 26 49	r8,954 229 551	7.67 8.81 11.24	r215	^r 2,998 40	13.94 10.00	*8,488 153 395	F65,803 1,156 4,083	7.75 7.56 10.34
Silicon carbide	1	15	15.00	144 10	1,470	10.21	27	19	9.50	°131	98 •1,065	10.89 r8.13	156 r 141	1,603 r1,095	10.28 17.77
Blasting Scouring cleansers (ground)	142	1,760	12.39	161	2,484	15.43	1,150	15,392 1 374	13.38	^r 149	r 1,740	r11.68	1,601	^r 21,375	13.35
Sawing and sanding Chemicals (ground and unground) Fillers (ground)	383	149 802	7.45 10.99	211	379	6.32 8.54	132	735 1,688	8.96 12.79	12 20 4	r32 447	*16.00 11.18	r164 456	1,294 4,739	7.89 10.39
Ceramic (ground):	39	1,060	27.18	85	2,693	32.84	197	r 3,107	⁷ 32.03	1.4	^r 117	r _{16.71}	r225	r6,977	r31.01
Pottery, brick, tile, etc	11.	267 1.087	24.27 15.31	æ æ	2,853	32.42	8 46 89	1828	20.93 79.30	4:	52	13.25	148	4,136	27.95
Traction (engine)Coal washing	17	178	10.47	188	1,354	7.20	140	935	6.68	158	r490	18.45	1403	r2,958	7.34
Roofing granules and fillers	17	266	15.65	323	500	9.14	.112	1,564	13.96	152	r591	111.37	r203	r2,623	9.40 -
Other	333	2,504	7.52	648	6,446	9.95	r371	14,558 r3,548	r9.56	-109 r328	-2,486 -6,460	.22.81 19.70	1,177 1,679	.24,023 -18,958	'20.41 '11.29
Total ¹	4,027	42,030	10.44	"12.680 "108,700	108,700	r8.57	r8,833	r94,030	₹10.64	r3,191	r41,890	^r 13.13	r28,730 ¹	r286,700	r9.98
1															

7.39 11.00 7.36	7.47	r9.90		10.14 8.99 11.34 8.91	21.00	7.90 16.53 11.18	7.04	15.91	8.15 12.15	28.50	26.54 12.40	
5,027 209 1,222	6,458	93,100		84,093 15,188 10,628 6,434	9,094	74,598 1,984 4,317	3,259	25,536	5,178	8,095	4,751 3,088	
680 19 166	865	r29,600 r293,100		8,296 1,690 937 722	433	9,442 120 386	463 246	1,605	180 456	284	179 249	
9.00 11.86	11.81	r13.10		13.00 9.71 12.74 11.64	21.00	15.38 21.00 W	13.50 10.52	13.73	$\frac{19.50}{9.75}$	7.05	12.60 21.00	
_ <u>9</u> 747	756	^r 42,650		20,645 W W	*	3,492 W	≱≱	1,455	**	A	W 42	
-1-	64	r3,255		1,588 W W	≱	227 S	**	106	MM.	×	82	
7.38 3.90 4.48	6.92	r10.37		$\frac{9.59}{9.18}$	22.36	6.67 10.19 13.06	M	15.61	8.58 13.90	38.62	21.39 9.07	
4,465 39 452	4,957	°98,980		27,307 7,841 4,346	6,551	12,587 W 470	M	19,199 W	970 2,113	3,012	1,369 998	
605 10 101	716	19,549		2,848 854 424	293	1,886 W 36	X	1,230 W	113	482	64 110	
7.49 20.00 11.50	8.76	r8.57		7.68 8.17 11.85	23.68	7.57 18.48 9.13	6.85	18.96	6.84 11.19	36.96	30.83 11.82	
562 160 23	745	109,500		17,095 5,058 2,691 4,633	1,871	49,969 1,534 2,539	3,104 W	2,939	W 2,205	2,957	$\substack{2,929\\981}$	
75 8 2	85	r12,760 r109,500		2,225 619 227 564	1 2	6,597 83 278	453 W	155	w 197	8	83.22	
1 1 1	1	10.44		11.65 12.03 12.30	10.32	11.66 16.30 18.08	18.25	17.04 W	7.69 11.93	43.41	26.07 19.76	
111	:	42,030		19,046 W W	:≱	8,550 W 1,302	M	1,943	***	×	W 1,067	
1 1 1	-	4,027		1,635 W W	* ≱	733 W 72	*	114	***	M	≱2;	
Gravel: Metallurgical: Silicon, ferrosilicon Filtration Other	Total ¹	Grand total ¹	1981	Sand: Glass making: Containers Flat (plate and window)	Fiberglass (unground)	Molding and core Molding and core facings (ground) Refractory	Metallurgical: Silicon carbide Flux for metal smelting	Abrasives: Blasting	Scouring cleansers (ground) Sawing and sanding Chemicals (ground and unground)	Fillers (ground): Rubber, paints, putty, etc	Ceramic (ground): Pottery, brick, tile, etc Filtration	

See footnotes at end of table.

Table 6.—Industrial sand and gravel sold or used by U.S. producers, by major use —Continued

		North East		ž	North Central			South			West		þ	United States	
Major use	Quantity (thousand sand short tons)	Value (thou- sands)	Value per ton	Quantity (thousand sand short tons)	Value (thou- sands)	Value per ton	Quantity (thousand sand short tons)	Value (thou- sands)	Value per ton	Quantity (thousand	Value (thou- sands)	Value per ton	Quantity (thousand sand short tons)	Value (thou- sands)	Value per ton
1981 —Continued Sand —Continued															
Traction (engine) Coal washing Roofing granules and fillers Hydraulic fracturing	18 W W 369	\$ 212 W W W 3,380	\$11.78 13.00 17.33 19.00 9.16	180 W W 532 539	\$1,496 W W 11,669 11,271	\$8.31 12.80 14.92 21.93 20.91	134 W 114 775 158	\$882 W 1,743 18,696 2,762	\$6.58 9.07 15.29 24.12 17.48	65 14 W 347	\$661 146 W 6,582	$$10.17$ $10.\overline{43}$ 21.53 18.97	398 40 1,407 1,413	\$3,252 395 2,448 32,513 23,996	\$8.17 9.88 15.11 23.11
Total ¹	3,467	42,462	12.25	13,163	127,598	69.6	9,400	112,898	12.01	3,222	43,375	13.46	29,252	326,333	11.16
Metallurgical: Silicon, ferosilicon Filtration	1 1 1	-	411	≱≱≽	888	7.91 3.00 6.29	505 W W	4,402 W W	8.72 8.67 4.78	**	& &	10.23 8.50	652 9 9 9	5,467 46 484	8.79 7.67 4.89
Total	1	-:	1	99	498	7.55	009	4,868	8.11	62	631	10.18	728	5,997	8.24
Grand total ¹	3,467	42,462	12.25	13,229	128,096	89.6	10,000	117,766	11.78	3,284	44,006	13,40	29,980	332,300	11.08

 T Revised. W Withheld to avoid disclosing company proprietary data; included in "Total." 1 Data may not add to totals shown because of independent rounding. 2 Less than 1/2 unit.

Table 7.—Transportation of industrial sand and gravel in the United States, in 1981, to site of first sale or use

Method	Thousand short tons	Percent of total
Truck Rail Waterway Not shipped, used at site	17,020 10,000 1,780 1,180	57 33 6 4
Total	29,980	100

Table 8.—U.S. exports of construction sand, gravel, and industrial sand, by country (Thousand short tons and thousand dollars)

	Construct	tion sand	Gra	vel	Industri	al sand
Country	Quantity	F.a.s. value ¹	Quantity	F.a.s. value ¹	Quantity	F.a.s. value ¹
1980						
Bahamas	6	46			31	115
Canada	504	2,535	663	1,284	729 13	14,896 194
Costa Rica	49	1.056	20	39	341	7,168
Panama	45	1,000	20		9	236
Peru					13	1,316
Yugoslavia					. 9	209
Other	28	3,024	4	157	32	8,385
Total	587	6,661	687	1,480	1,177	32,519
1981						
Bahamas	(²)	10	23	104	6	106
Canada	574	2,632	609	1,977	814	14,851
Costa Rica			(2)	4	10	157
Dominican Republic	(2)	18			3	135
Ecuador					5	70
Germany, Federal Republic of	3	157			6	1,251
Japan	(2)	95		87	14 224	1,322
Mexico	13	366	11	87	224 10	3,380 293
Panama	(2)				11	1,007
Peru Saudi Arabia	(2)	4 392	- <u>-</u>	40	2	387
United Kingdom	1	124	1	40	3	559
Venezuela	î	206	(2)	2	4	396
Other	17	2,294	` <u></u> 8	240	20	4,070
	613	6,298	652	2,454	1,132	27,984

¹Value of material at U.S. port of export; based on transaction price, including all charges incurred in placing material alongside ship.

²Less than 1/2 unit.

Table 9.—U.S. imports for consumption of sand and gravel, by country

Country	Construction gra		Industri	al sand
Country	Quantity	C.i.f. value ¹	Quantity	C.i.f. value ¹
1980				
Australia Canada Germany, Federal Republic of Japan	(²) 502 (²) (²)	41 1,027 3 21	34 (2) (2)	903 120 196 55
South Africa, Republic ofOther	(-) 	5 <u>1</u>	(2) (2) 5	16 285
Total	502	1,143	39	1,575
1981				
Antiqua Canada France France	56 275	812 1,112	3 1 (2)	36 57 155
Germany, Federal Republic ofOther	 (²)	63	(2) (2)	279 94
Total ³	333	1,987	5	621

¹Value of material at U.S. port of entry; based on purchase price and includes all charges (except U.S. import duties) in bringing material from foreign country to alongside carrier.

²Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

Silicon

By Gerald F. Murphy¹

Although overall production of silicon materials in 1981 changed only slightly from that of 1980, production of 56% to 95% ferrosilicon decreased 23%. Demand for miscellaneous silicon alloys, silvery pig iron, and silicon carbide was 15% to 20% lower when compared with that of the previous year. Imports of ferrosilicon materials were more than double those of 1980,

with the 75% grade of ferrosilicon making up about 75% of the total. Domestic producers posted price increases in January and October. However, the price increases were mostly ineffective owing to poor market conditions and to the availability of large amounts of cheap, imported material, mainly 75% ferrosilicon.

DOMESTIC PRODUCTION

Production and shipments of silicon metal were least affected by the depressed economy, remaining essentially unchanged from 1980, while those of 50% ferrosilicon and miscellaneous silicon alloys changed by small amounts. The most pronounced decline occurred for 75% ferrosilicon (56% to 95% range) with shipments declining by 20% and production by 23%. Production decreased slightly overall for silicon materials, exclusive of silicon metal, and shipments were off 7%. Magnesium ferrosilicon constituted about four-fifths of production classified as miscellaneous alloys, the remainder in this class being calcium-silicon, silicon-manganese-zirconium, and proprietary inoculants. Producer inventories increased by about 56% for 50% ferrosilicon and silicon metal.

Union Carbide Corp. completed its sale of five ferroalloy plants in the United States and Norway to groups headed by Elkem AS of Norway. The U.S. facilities will be operated by Elkem Metals Co., Pittsburgh, Pa. The U.S. plants produce ferrosilicon, silicon metal, electrolytic manganese metal, calcium carbide, foundry inoculants, and specialty chromium products, and are located in Alloy, W. Va., and in Ashtabula and Marietta, Ohio. Union Carbide retained and is

expanding its silane and silicones production facilities. In July, Ohio Ferro-Alloys Corp., Canton, Ohio, signed a letter of agreement to sell its facilities to the Fesil Group, Oslo, Norway. The plants, located in Philo and Powhatan Point, Ohio, and Montgomery, Ala., all produced silicon alloys. However, the Fesil Group subsequently withdrew its offer to buy the plants, apparently because of unfavorable economics.

SKW Alloys, Inc., temporarily ceased production of 75% ferrosilicon at its Calvert City, Ky., facility in October. In December, Foote Mineral Co. reduced production of silvery pig iron at its Keokuk, Iowa, plant and ferrosilicon at its Graham, W. Va., plant to 50% and 25% of capacity, respectively. The actions were reported to be a consequence of the depressed economy.

Domestic ferrosilicon production is directly related to demand for the material by the iron and steel industries. The high level of imported 75% ferrosilicon, priced considerably below domestic material, further eroded the domestic producers' position in the marketplace. The combined effect of weak demand by consumers and increasing imports has had a major impact on the domestic ferrosilicon industry.

Table 1.—Production, shipments, and stocks of silvery pig iron, ferrosilicon, and silicon metal in 1981

(Short tons, gross weight, unless otherwise specified)

Alloy		content cent)	Producers' stocks as of	Pro-	Ship-	Producers' stocks as of
	Range	Typical	Dec. 31, 1980	duction	ments	Dec. 31, 1981
Silvery pig iron	5-24	18	w	***		
Ferrosilicon (includes briquets)	25-55	48	70,345	W 467,518	W 362,975	110,331
DoSilicon metal (excluding semiconductor	56-95	76	24,152	92,693	87,367	23,115
grades) Miscellaneous silicon alloys (excluding	96-99	98	11,081	131,178	123,573	17,312
silicomanganese)	32-65		15,217	70,849	65,358	13,614

W Withheld to avoid disclosing company proprietary data.

Table 2.—Producers of silicon alloys and/or silicon metal in the United States in 1981

Producer	Plant location	Product
Alabama Alloy Co., Inc	Bessemer, Ala	FeSi
Aluminum Co. of America, Northwest Alloys, Inc	Addy, Wash	
Chromasco, Ltd., Chromium Mining & Smelting Corp. Div	Addy, wasn	FeSi and Si.
Dow Corning Corp	Woodstock, Tenn	FeSi.
Elkem Metals Co	Springfield, Oreg	Si.
Do	Alloy, W. Va	FeSi and Si.
Foote Mineral Co., Ferroalloys Div	Ashtabula, Ohio	FeSi.
Do	Graham, W.Va	Do.
Hanna Mining Co.:	Keokuk, Iowa	Silvery pig iron
	D	
Hanna Nickel Smelting Co	Riddle, Oreg	FeSi.
Silicon Div	Wenatchee, Wash	FeSi and Si.
nterlake, Inc., Globe Metallurgical Div	Beverly, Ohio	Do.
	Selma, Ala	Si.
nternational Minerals & Chemical Corp., Industry Group, TAC	Bridgeport, Ala	FeSi.
Alloys Div.		
Do Dho Ferro-Alloys Corp	Kimball, Tenn	Do.
onio Ferro-Alloys Corp	Montgomery, Ala	FeSi and Si.
D0	Philo, Ohio	FeSi.
Do	Powhatan Point, Ohio_	Si.
Reynolds Metals Co	Sheffield, Ala	Do.
Satralloy, Inc	Steubenville, Ohio	FeSi.
KW Alloys, Inc	Calvert City, Ky	Do.
	Niagara Falls, N.Y 💶	Do.
outh African Manganese Amcor, Ltd., Roane Ltd	Rockwood, Tenn	Do.
nion Carbide Corp., Metals Div.	Alloy, W. Va	FeSi and Si.
ъо	Ashtabula, Ohio	FeSi.
Do	Portland, Oreg	Do.

¹Sold in July to a group led by Elkem AS of Norway.

CONSUMPTION AND USES

Reported consumption of silicon materials changed only slightly compared with that of 1980, about a 2% decline. The more significant decreases, amounting to 15% to 20%, occurred for silvery pig iron, miscellaneous silicon alloys, and silicon carbide. The greatest demand in 1981 was for the 50% and 75% ferrosilicon grades and silicon metal, followed by, on the basis of silicon content, silicon carbide, miscellaneous silicon alloys, and silvery pig iron. The end uses for silicon materials were, in decreasing order, steel, cast irons, nonferrous alloys, and silicones and silanes, with about 80% of consumption being accounted for by ferrous applications. Cast iron production

consumed the largest amounts of silvery pig iron and miscellaneous silicon alloys, while steelmaking was the biggest user of 75% ferrosilicon. Iron foundries and steel plants together accounted for 93% of 50% ferrosilicon usage; 90% of silicon metal went into nonferrous alloys and silicones.

Consumption of silicon alloys is dependent mainly on iron foundries and the steel industry, both of which have been in a depressed state for about 2 years. The aluminum industry, which uses silicon metal to make castings, was confronted with an excess of supply over demand and cut back production. The reduction was in large part caused by the depressed housing and trans-

SILICON 743

portation market.

Consumption of silicon metal for silicones increased by 12% compared with that of 1980. All three major producers were already expanding production facilities or planning to do so. Dow Corning Corp. is more than doubling capacity for silicones at its Carrollton, Ky., facility. The \$310 million expansion by the General Electric Co. of its Waterford, N.Y., silicones plant is expected to be completed in 1984. Union Carbide has started construction of a new silicones plant at South Charleston, W. Va., which is expected to begin operation in mid-1983.

Silicon metal produced by tonnage methods is used as a raw material for the manufacture of the relatively small quantity of hyperpure polycrystalline silicon for electronics and other highly specialized applications. Domestic polysilicon production was estimated at 1,500 tons. Hemlock Semiconductor Corp., a subsidiary of Dow Corning, plans to expand its polysilicon capacity by an additional 880 tons per year. The new 770-ton-per-year, semiconductor-grade silicon plant of Monsanto Co. at Spartanburg, S.C., is scheduled to begin production by 1983. Union Carbide has announced plans for a 1,100-ton-per-year polycrystalline silicon plant in Washington State. The plant will use technology developed by Komatsu Electronic Metals Ltd. of Japan to produce high-purity silicon metal from trichlorosilane. Production is slated to begin in 1984.

Table 3.—Consumption, by major end use, and stocks of silicon alloys and metal in the United States in 1981

(Short tons, gross weight, unless otherwise specified)

End use	End use	Silicon content (percent)	Silvery pig iron		Ferro	silicon ¹	Silicon metal	Miscel- laneous silicon alloys ²	Silicon carbide ³
	Range	5-24	25-55	56-70 65	71-80 76	81-95	96-99	50	63-70 64
	Typical	18	48			85	98		
Full alloy High-stren Electric _ Tool	and heat-resisting gth low-alloy d	(4) -(4) -(4) 884	85,528 26,727 40,252 7,600 (4) 1,341 13,815	(4) (4) (4) 5,525	27,745 19,632 14,449 1,874 (4) 1,032 24,328	(4) 47 (4) -714	(4) 281 1,635 (4) 92	1,884 160 1,302 (⁴) (⁴) 942	173 (4) (4) 148
Cast irons Superalloys _ Alloys (exclude and superal Silicones and	ling alloy steels lloys) silanes s and unspecified	884 39,352 5 181	175,263 125,895 141 6,421 15,891	5,525 3,476 	89,060 27,860 38 105 89	761 545 32 24 	2,008 66 40 59,248 52,047 59,708	4,288 27,925 45 244	321 25,648 4
Po Total : Consu	ercent of 1980 silicon content ⁶ _ mers' stocks, . 31, 1981	40,422 85 7,276 1,740	323,611 99 155,333 24,586	9,001 113 5,850 289	117,152 110 89,036 10,865	1,362 103 1,158 180	123,117 100 120,654 5,233	32,502 86 16,251 2,434	25,973 80 16,623 1,365

Primarily magnesium-ferrosilicon but also includes other silicon alloys. Average silicon content estimated as 50%, based on 1981 production survey.

3 Does not include silicon carbide for abrasive or refractory uses.

4 Included with "Steel: Unspecified."

⁵Includes an estimated 9,400 tons consumed for unspecified chemicals.

⁶Estimated based on typical percent content.

PRICES

Despite weak demand by the steel and foundry industries and heavy imports, particularly of low-priced 75% ferrosilicon, domestic producers of silicon metal and alloys posted price increases in January and again in October. These increases were attributed to surging power and operating costs. However, market conditions led to domestic producer discounting.

The price of domestic lump silicon metal with 1% maximum iron and 0.07% maximum calcium increased at the beginning of 1981 from 59.5 to 64 cents per pound of contained silicon and remained at that level until October 1 when the price rose to 67.5 cents per pound of contained silicon. No further changes occurred through the remainder of the year. In May, the price of imported silicon metal increased from 58-59 cents to 62-63 cents per pound.

The price of domestic regular 75% ferrosilicon increased from 46.25 cents per pound of contained silicon to 49.5 cents per

pound in January and to 53.25 cents per pound on October 1, remaining at that level the rest of the year. The f.o.b. warehouse price of imported 75% ferrosilicon, as quoted in Metals Week, began the year in the range of 37.5 to 39 cents per pound and ended the year in the range of 39 to 41 cents per pound. However, prices of this material fluctuated frequently during 1981, and the year-average price was 40.09 cents per pound. The price of regular 50% ferrosilicon also increased in January from 42 to 45 cents per pound of contained silicon and on October 1 rose to 49.25 cents per pound. Regular 5% magnesium with no cerium increased from 46.5 to 50 cents per pound of material, effective January 2, while the 9% grade went from 62 to 67 cents per pound of material. Prices of both the 5% and 9% grades rose again on October 1 to 53 cents and 72 cents per pound of material, respectively.

FOREIGN TRADE

Exports of ferrosilicon declined to their lowest level in terms of quantity and value in the last 3 years. The largest quantities were exported to Canada and Australia, 8,948 and 4,165 tons, respectively, which accounted for about 80% of both total quantity and value. Exports went to 33 countries. Silicon metal exports declined by 40% compared with that of 1980 to a total of 8,673 tons, but were still much above those of 1978 and 1979. Most of the metal was exported to Japan and Mexico, 6,979 and 1,040 tons, respectively, making up about 92% in terms of total quantity and about 47% of total value. Exports went to 22 countries.

Compared with that of 1980, imports increased 119% in volume and 89% in value for ferrosilicon overall and 36% in volume and 9% in value for silicon metal. Imports of 75% ferrosilicon were the most significant on a volume basis, nearly equaling the reported consumption.

The 75% grade (60% to 80% silicon) ferrosilicon accounted for three-fourths of ferrosilicon imports. Brazil shipped more than one-third of the total in this range while Venezuela and Norway, each with about one-fifth of the total, were the next largest sources. Imports in this class in-

creased dramatically, about three times, compared with those of 1980. The next largest import class was calcium-silicon (60% to 80%), which comprised slightly more than one-tenth of ferrosilicon imports. The two main sources of this material were France and Norway, which accounted for 65% of the total. Average silicon content of all imported ferrosilicon in 1981 rose to 71% from 66% in 1980. Imports of silicon metal in the 96% to 99% range changed little from that of 1980. Canada and Yugoslavia were the dominant sources with 8,303 and 3,903 tons, respectively. However, imports of silicon metal in the 99% to 99.7% range increased by 105%, with Canada, the Republic of South Africa, and Portugal the principal shippers.

The marked increase in imports and the moderate decline in exports left the United States as a net importer of ferrosilicon. Net imports amounted to slightly more than 140,000 tons and a trade deficit of about \$68 million. As a consequence of the increasing flow of ferrosilicon and other ferroalloy imports, the domestic ferroalloy industry, as represented by The Ferroalloys Association, petitioned the Department of Commerce for import relief under the National Security Clause (sec. 232) of the Trade

Expansion Act of 1962. The Office of Industrial Mobilization, Department of Commerce, subsequently initiated an investigation to determine whether burgeoning quantities of ferroalloy imports are a threat

to the national security. Domestic producers based their complaint on unfair trade practices that placed foreign producers at an advantage in the U.S. market.

Table 4.—U.S. exports of ferrosilicon and silicon metal

Year	Quantity (short tons)	Value (thou- sands)		
FERROSILICON				
1978	11.900	\$7,871		
1979	22,357	14,740		
1980	27,488	18,572		
1981	15,768	12,136		
SILICON METAL				
1978	2,404	21.974		
1979	4,987	45,752		
1980	14,372	65,478		
1981	8,673	57,001		

Table 5.—U.S. imports for consumption of ferrosilicon and silicon metal, by grade and country

		1980		1981		
Grade and country		Quantity (short tons)		Quantity (short tons)		Value
	Gross weight	Silicon content	(thou- sands)	Gross weight	Silicon content	(thou- sands)
Ferrosilicon:						
Over 8% but not over 30% silicon:						
Canada	1,106	170	\$85	2,783	393	\$177
Germany, Federal Republic of	82	14	42	(1)	(¹)	(1)
Total	1,188	184	127	2,783	393	177
Over 30% but not over 60% silicon, with over						
2% magnesium:	0.000	4 000				
Brazil	2,733	1,308	1,992	2,244	1,042	1,849
Canada	527 1.316	289 651	1,054 1,287	1,287 326	580	1,079
France Germany, Federal Republic of	393	203	530	320 2	162 1	333 2
Italy	307	140	204	192	88	166
Japan	•••	110		102	, (1)	100
Mexico				33	16	17
Norway	246	114	226	275	122	223
Total ²	5,523	2,706	5,293	4,360	2,011	3,671
Over 30% but not over 60% silicon, not						
elsewhere classified:						
Brazil	154	91	180	311	167	285
Canada	6,099 2,569	2,996 1,485	1,610 3,187	$7,128 \\ 3.772$	3,360	2,221
France Germany, Federal Republic of	2,569 586	328	3,187 758	826	2,184 452	5,279 1,181
Italy	37	19	34	820	402	1,101
Norway	1.765	1.004	582	2,205	1.288	556
Norway South Africa, Republic of	2,898	1,047	1,272			
Total ²	14,107	6,971	7,621	14,242	7,451	9,522
Over 60% but not over 80% silicon, with over						
3% calcium:						
Brazil	2.702	2,013	1,741	1.487	932	1.929
Canada	1.133	2,013 880	678	1,483	1.076	973
France	2,272	1.475	2,128	6,234	4,504	4.663
Germany, Federal Republic of	438	267	579	911	571	1.502
Italy	121	77	139	206	131	248
Norway	===			4,277	2,825	1,322
South Africa, Republic of	1,706	1,308	953		=	
Spain				76	47	90
Yugoslavia				1,543	1,003	616
Total ²	8.373	6.020	6.217	16,217	11.089	11,343

See footnotes at end of table.

Table 5.—U.S. imports for consumption of ferrosilicon and silicon metal, by grade and country —Continued

	1980			1981		
Grade and country	Quantity (short tons)		Value	Quantity (short tons)		Value
	Gross weight	Silicon content	(thou- sands)	Gross weight	Silicon content	(thou- sands)
Ferrosilicon —Continued						-
Over 60% but not over 80% silicon, not elsewhere classified:						
Argentina Brazil Canada Chile	9,233 7,513 1,547	6,962 5,532 1,171	\$4,779 4,326 645	679 41,018 7,885 920	511 31,138 5,848 691	\$32 19,67 4,50 50
China France Germany, Federal Republic of Lceland	1,572 447 4,163	$1,\overline{115}$ 315 $3,161$	$1,\overline{239}$ $1,040$ $2,228$	1,728 383 12,176	1,322 289 9,153	1,11 1,03 6,30
Norway South Africa, Republic of Venezuela Yugoslavia	10,417 661 6,176	7,603 502 4,632	4,916 372 3,726	23,736 1,869 23,783 2,599	17,754 1,452 17,852 1,953	10,41 96 8,71 1,34
Total ²	41,729	30,993	23,271	116,778	87,963	54,91
Over 80% but not over 90% silicon: Argentina Canada	42	35	34	1,100 53	936 44	534 34
Chile	55 97	45 80	55 55	1,153	980	568
Over 90% but not over 96% silicon: Belgium-Luxembourg				39	38	3(
CanadaChile	16 119	$\begin{array}{c} -\overline{14} \\ 110 \end{array}$	5 51			-
France Germany, Federal Republic of	·			37 39	35 a 38	4: 3:
Total	135	124	56	115	111	11
Grand total	71,152	47,078	42,640	155,648	109,998	80,31
Silicon metal: Over 96% but not over 99% silicon: Argentina Australia	- ₁	`	((1)	741	1	68'
Belgium-Luxembourg Brazil Canada France	7,9 <u>27</u> 68		39 8,147 64	168 331 8,303 226		56' 355 8,955 24
Germany, Federal Republic of Japan Norway South Africa, Republic of Sweden	57 (¹) 888 4,661) NA	46 10 790 4,511	(1) 4 1,606 1,419	NA	1,500 1,500
Sweden United Kingdom Yugoslavia	2,281	J	2,002	$1,074$ $3,9\overline{03}$)	$\frac{1,12}{3,47}$
Total ²	15,887	NA	15,617	17,776	NA	18,48
Over 99% but not over 99.7% silicon: Argentina				385	382	36:
Brazil Canada China France	3,888 	3,852 	4,257	4,856 116 269	4,812 115 267	5,674 118 270
Germany, Federal Republic of India				(1) (1)	(1) (1)	(1
Japan Norway Portugal	827 549	820 520	830	2 28 2,205	2 28 2,185	6. 2,16
South Africa, Republic of Switzerland United Kingdom	$\frac{5\overline{43}}{\overline{(^1)}}$	538 (1)	$5\overline{7}\overline{4}$ $-\frac{1}{1}$	3,109 55 (1)	3,080 55 (1)	3,46: 68 (1
Yugoslavia	1 <u>12</u> 5,370	111 5,322	97 5,760	11,026	10,926	12,188
	0,010	0,022	0,100	11,020	10,520	12,10

See footnotes at end of table.

747 SILICON

Table 5.—U.S. imports for consumption of ferrosilicon and silicon metal. by grade and country —Continued

Grade and country		1980		1981		
	Quantity (short tons)		Value (thou-	Quantity (short tons)		Value
	Gross weight	Silicon content	sands)	Gross weight	Silicon content	(thou- sands)
Silicon metal —Continued						
Over 99.7% silicon: Belgium-Luxembourg Canada China Denmark France German Democratic Republic Germany, Federal Republic of India Italy Japan South Africa, Republic of Sweden Switzerland Taiwan United Kingdom Yugoslavia	11 (1) (2) 9 19 429 104 4 -1 5 1 (1)	NA	$ \begin{cases} \$88 \\ 2 \\ 1 \\ 2,157 \\ 235 \end{cases} $ $ 21,\overline{538} $ $ 21,\overline{538} $ $ 5,\overline{737} $ $ 459 $ $ -\frac{5}{5} $ $ 1,477 $ $ 40 $ $ 1 $	(1) 48 9 15 1 (1) 418 (2) 39 39 94 8 1 -(2)	NA NA	\$2 52 316 854 366 66 11 19,704 1,307 100 77 396 -5
Total ²	582	NA	31,740	834	NA	27,361
Grand total	21,839	XX	53,117	29,636	XX	58,034

NA Not available.

¹Less than 1/2 unit. XX Not applicable.

²Data may not add to totals shown because of independent rounding.

WORLD REVIEW

Australia.-Agnew Clough, Ltd., announced plans to build a \$56.5 million silicon metal smelter at Wundowie, Western Australia. The plant will have two electric furnaces capable of producing a total of 29,700 short tons of metal per year. Production will be primarily for domestic demand with a small quantity reserved for export.2 A \$100 million silicon wafer plant is to be set up by the National Semiconductor Corp. in Canberra. The wafer plant is scheduled for completion in late 1982.3

Brazil.—Ferrosilicon accounted for most of the recent growth of the Brazilian ferroalloy industry. Ferrosilicon producers have increased their installed capacity to 146.2 megavolt-amperes (14 doubling the capacity for 75% ferrosilicon. However, large quantities of the material are being exported owing to the depressed local market. Brazil exported approximately 41,000 short tons of 75% ferrosilicon to the United States and about 16,900 short tons to Japan.5

Canada.—Cominco Ltd., Mitsui & Co., and other Japanese ferrosilicon producers are expected to announce construction of a 55,000-short-ton-per-year ferrosilicon plant in Kimberly, British Columbia. Production

is scheduled for 1984.6 Also, SKW Canada, Inc., and Sumitomo Corp. of Japan are conducting a joint study on the feasibility of producing ferrosilicon in British Columbia. Both a 27,500- and a 55,000-short-ton-peryear operation is being considered. Plant output would go mainly to the Japanese iron and steel industry.7

China.—China became a major exporter of ferrosilicon and silicon metal in 1981, mainly to Japan. Western European exporters were at a disadvantage since they could not compete with China in the Far East on a freight cost basis.8 China supplied Japan with approximately 55,000 short tons of ferrosilicon and about 10,700 short tons of silicon metal in calendar year 1981° compared with about 680 short tons of ferrosilicon and about 220 short tons of silicon metal in calendar year 1980.10

Indonesia.-PT Aneka Tambang, a stateowned mining company, and Pacific Metals Co. of Japan reached an agreement to jointly build a 16,500- to 22,000-short-tonper-year ferrosilicon plant in Celebes (Sulawesi) by 1985. Power will be available from a currently planned hydroelectric power station. Indonesian electricity rates are now about one-third those of Japan.11

Italy.—The Materiali Iperpuriper Elettronica S.p.A. unit of Dynamit Nobel A.G. has begun a program to expand its polysilicon capacity. Polysilicon capacity at its Merano plant will be expanded to 385 short tons by the end of 1982 from a current 308 short tons annually. A new facility to increase wafer slicing, lapping, etching, and polishing capacity next to the company headquarters in Navara is scheduled for completion in November. 12 The new Union Carbide silicones plant at Termoli is scheduled to come onstream in 1982.

Japan.—Spiraling power costs hurt domestic ferrosilicon producers, resulting in more unplanned closures in 1981. Unable to remain competitive in the face of surging, cheap imports, Kureha Seitetsu Co. Ltd. scheduled its 29.700-short-ton-per-year plant in Toyomo for shutdown in late summer. Fukuden Kogyo closed its 1,900-shortton-per-month plant in June. Japanese production of silicon metal in 1981 was about 13,100 short tons, a 24% decrease from about 17,320 short tons in 1980.13 However, production of polycrystalline silicon for the Japanese semiconductor industry increased to approximately 653 short tons, up 26% from about 517 short tons in 1980.14 In 1981, ferrosilicon and silicon metal imports from China expanded rapidly and were enough to make that country the leading supplier to Japan with about 26% and 18% of the respective totals imported.¹⁵

Norway.—The new Orkla Industrier 42,000-ton-per-year ferrosilicon furnace at Thamshavn was started up in April as planned, expanding plant capacity to 66,000 short tons. Elkem AS cut back production at its 22,000-short-ton-per-year silicon and ferrosilicon plant in Meraker because of high inventories. Fesil-Nord was reportedly ready to close permanently owing to poor economic conditions. The ferroalloy industry has asked the Government for help in the form of a lower electricity tax and delay of pollution abatement requirements. 16

United Kingdom.—Dow Corning is expanding its silicones plant at Barry, South Wales. The first phase of the \$230 million expansion is expected to be onstream in 1983.¹⁷

Yugoslavia.—Dalmacija Metallurgical Industry of Dugi Rat announced plans to build an additional 16,500-short-ton-per-year ferrosilicon plant at its ferroalloy complex near Split in Croatia. The new furnace and related technology will be supplied by Elkem AS of Norway. The plant will use equartz from deposits near Sinj on the Adriatic Sea. The plant is due onstream in 1983.18

TECHNOLOGY

Photovoltaics (solar cells) as a commercial source of electricity have been severely limited by the high cost associated with production of high-purity, single-crystal silicon, the material from which solar cells are made. Much effort is being expended by manufacturers to overcome this obstacle. Laboratory researchers at Mobil Tyco Solar Energy Corp., Waltham, Mass., have developed a new technique in which a thin-wall, nonagonal tube of single-crystal silicon is pulled from molten silicon in a nine-sided die. Since the nine-faced tube has no outer edges, the problem of thermally induced discontinuities in width along edges of single ribbons is avoided. A laser is used to cut the tube into flat rectangles for use in solar cells.19

Stanford University scientists announced development of an electrolytic process for producing high-purity silicon from diatomaceous earth. The technique uses a controlled-atmosphere furnace for electrodeposition of silicon at about 1,450° C, a temperature above the melting point of

silicon. Two electrodes are placed in a molten solution of silica containing barium carbonate and barium fluoride additives. Silicon is deposited at the cathode. Further purification may be required before the silicon can be used in solar cells. The main advantage over conventional processes is reported to be lower power costs.²⁰

Exxon Enterprises, a division of Exxon Corp., and Elkem AS of Norway have initiated a \$7 million research and development program to provide low-cost polycrystalline silicon metal (polysilicon) for solar photovoltaic cells. The Exxon-Elkem project will focus on development of a production process that avoids the costly trichlorosilane purification step used in manufacturing semiconductor-grade polysilicon. Elkem is one of the world's leading producers of ferroalloys. Exxon Enterprises has an affiliate, Solar Power Corp., that manufactures solar electric systems.²¹

Phillips Petroleum Co., Bartlesville, Okla., announced an agreement with Aerochem Laboratory Inc., Princeton, N.J., to

749 SILICON

develop Aerochem's new processes for making high-purity silicon, suitable for solar cells and semiconductors at lower costs than existing processes. The process involves the spontaneous reaction of an alkali metal and a halide in which heat, a fine spray of silicon, and a molten salt are produced.22

Japan Metals and Chemical Co. constructed a new closed lid furnace for ferrosilicon production at Wakagawa, Honshu Island. Use of a closed lid raises furnace temperature from 350° C-400° C to 750° C-1,000° C. As a result, electrical requirements are reduced from an average of 9.5 megawatt-hours per ton of product to 8.6 megawatt-hours per ton, while product yield improves by nearly 10%. Structural damage by the higher temperature operation is prevented by (1) use of aluminabased insulation and (2) a cooling-water jacket on the lid and other furnace parts.23

The Superior Graphite Co., Chicago, Ill., began testing a new process for continuous production of granular silicon carbide for metallurgical purposes. A proprietary furnace originally designed for continuous desulfurization of coke is used. Raw materials are coke and sand. The silicon carbide product is a free-flowing granular material with uniform composition. Reaction time in the furnace is much less than that required for a conventional system, with a proportional decrease in energy requirements.24

Research chemists at the University of Wisconsin and the University of Utah reported that they made tetramesityldisilene

by photolysis (at -100° C) of 2, 2-bis(mesityl) hexamethyltrisilane, the first known stable solid compound containing a silicon-silicon double bond. In the absence of air, the bright orange-yellow crystalline solid is stable up to its melting point of 176° C. The discovery is expected to lead to a whole new field of silicon chemistry.25

¹Physical scientist, Division of Ferrous Metals.

²Engineering and Mining Journal. V. 182, No. 2, February 1981, p. 156.

³Metal Bulletin (London). No. 6578, Apr. 3, 1981, p. 15.

Metal Bulletin Monthly. No. 130, October 1981, p. 77.

*Japan Metal Journal. V. 12, No. 9, Mar. 1, 1982, p. 10.

*Metals Week. V. 52, No. 36, Sept. 7, 1981, p. 8.

*Engineering and Mining Journal. V. 182, No. 8, August

⁸Metal Bulletin (London). No. 6648, Dec. 15, 1981, p. 13. ⁹Japan Metal Journal. V. 12, No. 9, Mar. 1, 1982, p. 10. ———. V. 12, No. 8, Feb. 22, 1982, p. 10.

¹⁰Japan Tariff Association. Japan Exports and Imports, v. 12, 1980, pp. 122, 321.

"Engineering and Mining Journal. V. 182, No. 7, July 1981, p. 142.

Metal Bulletin (London). No. 6596, June 12, 1981, p. 19. ¹²Electronic News. V. 27, No. 1357, Sept. 7, 1981, p. 60. ¹³Japan Metal Journal. V. 12, No. 12, Mar. 22, 1982, p. 9.

¹³Japan Metal Journal. V. 12, No. 12, Mar. 22, 1982, p. 9.
 ¹⁴Ministry of International Trade and Industry (Japan).
 MTI Resource Statistics Monthly, 1981, p. 19.
 ¹⁵Japan Metal Journal. V. 12, No. 9, Mar. 1, 1982, p. 10.

 ——. V. 12, No. 8, Feb. 22, 1982, p. 10.
 ¹⁶Metals Week. V. 52, No. 47, Nov. 23, 1981, p. 3.
 ¹⁷Chemical Week. V. 128, No. 4, Jan. 28, 1981, p. 26.
 ¹⁸Engineering and Mining Journal. V. 182, No. 12, December 1981, p. 137.
 American Metal Market. V. 89, No. 215, Nov. 5, 1981, p.

¹⁹Electronics. V. 54, No. 14, July 14, 1981, p. 40.
 ²⁰Chemical Week. V. 129, No. 2, July 8, 1981, p. 40.
 ²¹Chemical and Engineering News. V. 59, No. 10, Mar. 9,

1981, p. 25.

22 Chemical Week. V. 129, No. 19, Nov. 4, 1981, p. 50. ²³Chemical Engineering. V. 88, No. 22, Nov. 2, 1981, p.

17.
24Chemical Week, V. 129, No. 4, July 22, 1981, p. 45. ²⁵Chemical and Engineering News. V. 59, No. 51, Dec. 21, 1981, p. 8.

Silver

By Harold J. Drake¹

U.S. mine production of silver increased and U. S. consumption decreased in 1981. The increased production was attributed to the cessation of strikes at production facilities and production from new operations. The decrease in consumption was due to the depressed economy. The United States was a net importer of silver in 1981, as imports exceeded exports by 66 million ounces.²

The annual average price of silver was sharply lower than the comparable price for 1980, which reflected the lack of speculative interest in silver and an increase in available supplies.

Increased consumption was reported for

photography and catalysts. Official U.S. coinage use, although minor, was well above that of 1980. Uses showing decreased consumption included sterlingware, contacts and conductors, batteries, bearings, coins, medallions, commemorative objects, and others

Refinery output rose moderately in 1981 as production from ores and concentrates increased, whereas production from old scrap fell mainly as a result of lower bullion prices which led to sharply decreased recovery from demonetized coin and a more moderate decrease in recovery from high-silver-content scrap.

Table 1.—Salient silver statistics

	1977	1978	1979	1980	1981
United States:					
Mine production thousand troy ounces	38,166	39,385	^r 37,896	r32,329	40,685
Value thousands	\$176,325	\$212,681	r\$420,261	^r 667,278	\$427,943
Ore (dry and siliceous) produced:					
Gold ore thousand short tons	3,478	3,499	4,202	5,511	6,480
Gold-silver oredodo	481	738	756	872	1,006
Silver oredo	976	1,102	1,066	^r 2,064	4,565
Percentage derived from:					
Dry and siliceous ores	43	55	51	51	54
Base metal ores	57	45	49	49	46
Refinery production thousand troy ounces	36,729	44,018	38,982	36,171	44,487
Exports ² dodo	22,394	22,400	35,563	80,851	27,903
Imports for consumption ² dodo	79,147	75,641	92,381	78,795	94,115
Stocks, Dec. 31:	•	•	•	•	
Treasury ³ million troy ounces	39	39	39	39	39
Industry ⁴ thousand troy ounces	165,343	146,902	149,131	138,053	117,456
Consumption:	,	,	,		
Industry and the artsdodo	153,613	160,165	157,258	124,694	116,621
Coinagedodo	91	45	168	72	179
Price ⁵ per troy ounce	\$4.62	\$5.40	r\$11.09	\$20.63	\$10.52
World:	•	•	,		-
Production thousand troy ounces	r331,270	r345,428	r344.630	P339,800	e364,912
Consumption:6	,	,		,	
Industry and the artsdodo	433,600	442,600	419.800	349,400	363,300
Coinagedo	23,400	36,300	27,800	13,700	6,000

^eEstimated. ^pPreliminary. ^rRevised.

¹From domestic ores. ²Excludes coinage.

³Excludes silver in silver dollars.

⁴Includes silver in COMEX warehouses and silver registered in Chicago Board of Trade.

⁵Average New York price. Source: Handy & Harman.

⁶Market economies only. Source: Handy & Harman.

A major silver and base metal producer in Idaho announced the closing of its operations, and a number of base-metal companies that produce byproduct silver began cutting back operations late in 1981. A law was enacted authorizing the sale of a large portion of the silver held in the National Defense Stockpile, and another law was enacted that suspended sales from the stockpile pending further study.

Trading of silver futures on the New York Commodity Exchange (COMEX) and the Chicago Board of Trade (CBT) rose from 7.0 billion ounces in 1980 to 7.5 billion ounces in 1981. Stocks on the exchange fell to 93.1 million ounces, a net outflow of 28 million ounces. Industrial stocks were moderately higher, whereas Treasury bullion stocks were only slightly below the level of 1980. The national stockpile contained 137.5 million ounces at yearend 1981.

Legislation and Government Programs.—Two laws were enacted in 1981 that affected the 139.5 million ounces of surplus silver held in the National Defense Stockpile. Public Law 97-35, the Omnibus Budget Reconciliation Act of 1981, enacted on August 31, 1981, authorized the President to dispose of 46,537,000 ounces of silver beginning on October 1, 1981; 44,682,000 ounces beginning on October 1, 1982; and 13,900,000 ounces beginning on October 1, 1983. The fundamental reason for the sale of the excess silver was to provide funds to purchase those strategic and critical materials, such as titanium and tantalum, that are more essential to defense priorities and that are seriously short of stockpile goals. The sales were subject to certain conditions as set forth in the law and were to be conducted by the U.S. General Services Administration (GSA).

By law, GSA, when selling excess stocks, must deal responsibly in the market to protect the United States from avoidable loss, and producers, processors, and consumers against avoidable market disruptions. GSA initially planned to sell 1,250,000 ounces of silver per week beginning on October 14, 1981. Sales fell considerably short of this level in the first 4 weeks, and all bids were determined unacceptable in the sale of November 12, 1981, largely because of inadequate bid prices and their potential impact on market prices. By yearend 1981, 2 million ounces had been sold by the GSA.

Public law 97-114, the Defense Appropriation Act of 1982, enacted on December 29, 1981, suspended all sales of silver from the stockpile and required the President to redetermine by July 1, 1982, that the silver authorized for disposal was not required for national defense purposes. New studies were immediately initiated by the Federal Emergency Management Agency and the Department of the Interior to respond to the requirements of Public Law 97-114.

The Bureau of Mines awarded a contract to a private consulting firm to determine the potential supply of secondary silver in the form of scrap, coins, and privately held commercial bullion that might enter the market at various price levels and market conditions. The results of the study were expected to be available by the middle of 1982.

DOMESTIC PRODUCTION

Mine production rose to 40.7 million ounces valued at \$428 million in 1981, mainly as a result of the end of strikes at copper mines producing byproduct silver and mines producing silver ore. In addition, new mines such as the Escalante in New Mexico, the Candelaria and the Taylor in Nevada, and the Troy in Montana began producing large volumes of silver for the first time. The value of the silver produced was, however, 36% below that of 1980. At yearend 1981, copper mines, some of which produce significant quantities of byproduct silver, began curtailing operations as demand for copper continued to decline.

The 25 largest silver producers contributed 80% of the total output. Ten of these,

the 1st, 2d, 3d, 4th, 7th, 9th, 15th, 17th, 19th, and 25th, mined silver ores; one, the 8th, mined gold-silver ores; and the others mined base-metal ores and produced by-product silver. Eleven of the mines produced over 1 million ounces of silver each, which in the aggregate equaled 57% of total production. Domestic mine production was equivalent to 31% of consumption in 1981.

The Sunshine Mine in Idaho's Coeur d'Alene silver district regained its position as the largest silver producer in the United States. The mine, owned by Sunshine Mining Co., underwent a prolonged strike in 1980 that resulted in loss of production. Sunshine Mining Co. continued construction of its 16-to-1 Mine in Esmeralda Coun-

SILVER 753

ty, Nev., and planned to open it early in 1982. Output is expected to total 1 million ounces per year for 9 years.

ASARCO Incorporated reported production of silver at 3.5 million ounces from the Galena Mine and 2.6 million ounces from the Coeur Mine, both in Idaho's Coeur d'Alene silver district.4 The company completed development of the Troy coppersilver deposit in western Montana, and after tuneup activities were completed in September, the mine was placed in operation in December. The mine is expected to produce 4.2 million ounces of silver per year for about 16 years. Asarco's silver refinery in Amarillo, Tex., produced 34.6 million ounces of silver in 1981 compared with 27.1 million ounces in 1980. Asarco installed precious metal scrap handling facilities at the refinery and began producing silver from scrap materials in 1981.

Hecla Mining Co., Wallace, Idaho, reported production of 5.7 million ounces of silver in 1981.5 Hecla's Lucky Friday Mine produced 2.3 million ounces, and its shares of the Sunshine Mine and the Star-Morning Mine totaled 1.05 million ounces and 0.4 million ounces, respectively. The grade of ore milled at the Lucky Friday Mine in 1981 averaged 15.3 ounces per ton. Reserves at yearend 1981 totaled 589,000 tons compared with 636,000 tons at the end of 1980. The new Silver shaft at the Lucky Friday Mine, which is expected to increase capacity at the mine 35%, reached a depth of 4,900 feet at vearend.6 A production station is being cut at that level although production will not begin until the shaft reaches 6,100 feet. Hecla Mining is the managing partner of a joint venture to operate the mining properties of the Consolidated Silver Corp. near Osborn, Idaho. The main shaft on the property was rehabilitated, and production commenced in October 1980 but was suspended at yearend 1981. Hecla Mining also suspended production at the Sherman Tunnel Mine, Leadville, Colo. Hecla Mining merged with Day Mines Inc., thereby acquiring the Knob Hill gold-silver mine in Republic, Wash.; the Sherman Tunnel Mine, Leadville, Colo.; the Victoria coppersilver mine, Elko County, Nev.; and interests in the Coeur Mine and the Galena Mine in Idaho, in addition to other properties primarily in the Coeur d'Alene silver district in Idaho.

Homestake Mining reported production of 1.4 million ounces of silver from its Bulldog silver mine near Creede, Colo. This level of production was slightly lower than that of 1980, which reflected partly the processing of lower grade ore. Ore reserves in the Bulldog Mine at yearend 1981 totaled 794,000 tons, averaging 16.3 ounces of silver per ton.

The Bunker Hill Co., a subsidiary of Gulf Resources and Chemical Corp., announced the closing of its mining-smelting-refining operation near Kellogg, Idaho.* Included in the facilities to be closed were the Bunker Hill and Crescent Mines, which together produced about 1.5 million ounces of silver per year, and a silver refinery with a capacity of more than 10 million ounces per year. The company had reported that considerable financial losses had been incurred from its operations, and when all efforts to sell the complex failed, the decision to close down was made.

Phelps Dodge Corp. reported that 3.2 million ounces of byproduct silver was produced from the company's domestic copper mining operations. During 1981, Phelps Dodge established a Small Mines Division to acquire and develop small mining projects and to that end had put into production two small gold-silver projects in Arizona which produced 189,200 ounces of silver and 2,100 ounces of gold. The Division was evaluating a number of properties in several Western States.

The Louisiana Land and Exploration Co. reported that reserves at its 50% owned Smokey Valley Mine, Round Mountain, Nev., totaled 195 million tons containing 15 million ounces of silver and 8.4 million ounces of gold.¹⁰

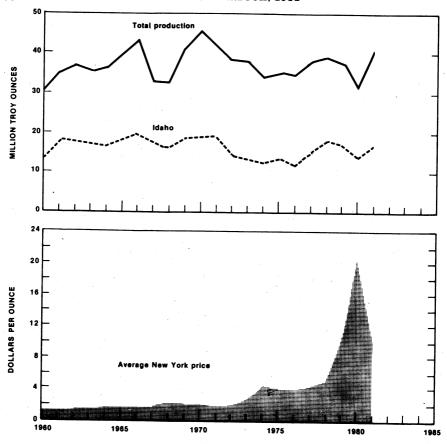


Figure 1.—Silver production in the United States and price per ounce.

CONSUMPTION AND USES

Industrial consumption of silver fell in 1981, mainly as a result of high silver prices whose effect was increased by declining business activity. The weakness in silver demand continued throughout most of the year notwithstanding the declining trend in silver prices that was prevalent during the year. Of the major uses, electroplated ware, sterlingware, jewelry, batteries, brazing alloys and solders, and contacts and conduc-

tors were most noticeably affected as demand for silver in their manufacture fell anywhere from 5% to 51%. In the aggregate, these uses accounted for 44% of total consumption in 1981 compared with 49% in 1980. Use of silver in sterlingware dropped 51%. Most other uses recorded declines in consumption during 1981. Photography and catalysts recorded increased usage.

SILVER

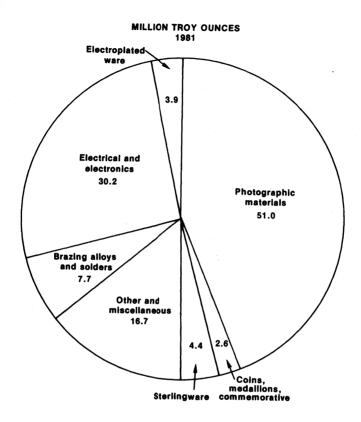


Figure 2.—Silver consumption in the United States in 1981.

STOCKS

Total accountable stocks at yearend 1981 were 296.9 million ounces, a level 24.0 million ounces below that of 1980. Refinery, fabricator, and dealer stocks rose slightly, while silver stocks in registered vaults of COMEX recorded a 9.3-million-ounce decline. Silver bullion held by the CBT fell 45%, and that of the U. S. Department of

Defense fell an estimated 0.5 million ounces. The strategic stockpile contained 137.5 million ounces at yearend 1981, all of which had been declared surplus to national defense needs. Under Public Law 97-35, 2 million ounces of silver in the stockpile were sold before sales were suspended.

PRICES

The price of silver continued to fall in 1981 as speculative interest in silver metal declined and the economy in general remained in a depressed condition. The aver-

age daily price per ounce of silver, as quoted by Handy & Harman, New York, began the year at \$16.35, rose to the year's high of \$16.45 on January 6, and then fell to \$8.30 on July 6. The price then rose moderately until the announcement in the middle of September that the Federal Government was going to sell silver in the stockpile. The price then began to fall and reached \$7.85, the low for the year, on December 29.

The average daily price was \$10.52 compared with \$20.63 in 1980. The average monthly price, which was \$14.75 for January, declined to \$8.63 for July, then rose to \$10.04 for September before falling to \$8.44 in December. The year ended with no abate-

ment in the downward pressure on the price.

Prices on the London Metal Exchange ranged from \$16.30 on January 6 to \$8.03 on November 23. The average for 1981 was \$10.52.

Trading volume on the COMEX was 6.2 billion ounces during 1981, an increase of 0.9 billion ounces from 1980. The CBT trading volume was 1.3 billion ounces, a decline of 0.4 billion ounces from that of 1980.

FOREIGN TRADE

Exports of silver totaled 27.9 million ounces in 1981, a 65% decrease from the comparable figure for 1980. Refined bullion, which accounted for 54% of total exports, totaled 15.1 million ounces, a level 74% below that of 1980. Exports of waste, scrap, and sweepings decreased to 9.7 million ounces, which was equivalent to 35% of total exports. Most of the exports of waste, scrap, and sweepings occurred in the first half of 1981. Exports of doré and precipitates rose moderately. The remainder of the exports consisted of very minor quantities of silver ore and concentrates. The principal foreign markets for bullion were the United Kingdom, Canada, and Japan, and for waste, scrap, and sweepings, the United Kingdom, Belgium-Luxembourg, and Cana-

Imports for consumption of silver increased to 94.1 million ounces mainly because of increased shipments of refined bullion from Canada, Mexico, and Peru. Refined bullion, which accounted for 81% of the imports, increased 17%, while imports of ore and concentrate and waste and scrap increased slightly. Imports of doré and precipitates nearly tripled in 1981. The principal sources for imported silver in 1981 were Canada, Mexico, and Peru, which, in the aggregate, accounted for 84% of total imports and 93% of bullion imports. Chile, the other major source of bullion, accounted for 5% of total imports.

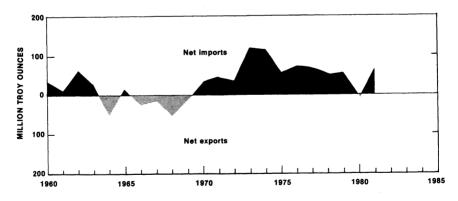


Figure 3.—Net exports or imports of silver, 1960-81.

SILVER 757

WORLD REVIEW

World mine production of silver in 1981, including centrally planned economy countries, increased 25 million ounces to 364.9 million ounces. The United States, Canada, Mexico, and Peru accounted for 49% of world output; the U.S.S.R., 13%; Australia, 7%; and Poland, 6%. The remainder came from numerous other countries. Strikes in 1980 at mining facilities in some countries, notably the United States, Canada, and Peru, ended, and world output began to rise towards the level expected from recent expansions in capacity.

Consumption of silver in 1981 in the market economies for industrial and coinage uses totaled 369.3 million ounces compared with 363.6 million ounces in 1980.11 A 4% increase in industrial use, which accounted for 98% of total use in 1981, was accompanied by 56% decrease in use of silver in coinage. Total consumption by market economy countries exceeded newly mined supply by 105 million ounces according to Handy & Harman estimates. Secondary production totaled 105 million ounces; outflow from Indian stocks, 33.5 million demonetized coin, 12 million ounces: ounces; and U.S. and foreign government stock withdrawals, 4.1 million ounces. Privately held bullion stocks increased by 49.3 million ounces, according to Handy & Har-

Australia.—The Woodlawn Mine in New South Wales, which commenced operating late in 1979, produced about 1.5 million ounces of silver in 1981 after resolution of metallurgical problems. The mine is operated as a joint venture between Phelps Dodge Corp., CRA Ltd., and St. Joe International Corp., with each having an equal interest. Silver production from the Mount Isa Mine of M.I.M. Holdings Ltd., for the fiscal year ending June 30, 1981, was 11.8 million ounces.12 Silver reserves at the Elura leadzinc-silver deposit of EZ Industries, Ltd., total 27 million tons averaging 4.5 ounces of silver per ton. Construction of the mine continued in 1981; it is expected to be in operation by the end of 1982 with production expected to exceed 4.5 million ounces of silver per y 1.13

Canada.—Mine production of silver in 1981 by United Keno Hill Mines, Ltd., fell to 1.2 million ounces as a result of a strike during the first 5 months of the year. 40 or reserves of the Elsa Mining Div. dereased from 418,000 tons averaging 25.3 ounces of silver per ton to 226,800 tons averaging 27.9 ounces per ton because of increasing costs

and the decrease in the price of silver. The company completed a precious metal refinery and commenced shipments of bullion in November.

Noranda Mines Ltd. reported that silver production from the No. 12 and No. 6 Mines of Brunswick Mining & Smelting Corp., Ltd., totaled 3.0 million ounces in 1981, essentially the same as in 1980.15 Proven reserves at both mines at yearend totaled about 67 million tons containing 186 million ounces of silver. Noranda Mines has a 64.1% interest in Brunswick Mining & Smelting. Noranda's Geco Div. reported production of 1.4 million ounces of silver in 1981 from an ore reserve that contained 29.8 million ounces at yearend. Production of silver by Mattabi Mines Ltd. totaled 753,000 ounces in 1981, while ore reserves totaled 13.2 million ounces at yearend. Noranda Mines has an operating interest in this mine.

Placer Development, Ltd., with a 70% interest in Equity Mining Corp.'s silvergold-copper property located at Houston, British Columbia, completed construction of the mine in 1980 and the leach plant in 1981. The property was estimated to contain 26 million tons of ore containing 3.3 ounces of silver per ton. Production in 1981 was 7.3 million ounces of silver. Placer Development is responsible for operating the mining and processing facilities.

Chile.—St. Joe International Corp. began operating the El Indio gold-silver-copper deposit in northeastern Chile, which has a proven reserve of 3.4 million tons of ore averaging 4.3 ounces of silver per ton. ¹⁷ The mine began operating towards the end of 1981 and reportedly will produce 1.5 million ounces of silver per year.

Honduras.—Production of silver in 1981 at AMAX Inc.'s El Mochito Mine totaled 1.7 million ounces. 18 Ore reserves at yearend totaled 7.6 million tons containing 33.4 million ounces of silver in addition to gold, lead, zinc, and copper. Rate of ore production is being increased from a current 1,200 tons per day to 2,500 tons per day by 1983.

Mexico.—Mine production of silver in 1981 was 53.2 million ounces, a level below that expected from the extensive expansion of silver mines and plants of recent years. Production had been expected to increase to about 60 million ounces by the end of 1979 and to about 80 million ounces in 1982.

Lacana Mining Corp. reported production of silver at its 30% owned Torres mining complex, Guanajuato, at 4.4 million ounces.¹⁹ The mill processed 660,000 tons of ore averaging 8.0 ounces of silver per ton from an ore body that contained 3.4 million tons averaging 8.2 ounces of silver per ton at yearend 1981. The Torres complex is composed of a centrally located 2,200-ton-per-day flotation concentrator fed with ore from four mines, the Torres-Cedros, the Peregrina-Triunvirato, the Cebada, and the Bolanitos. Other mines being developed underground were Sirena, Melladitos, Los Viejitos, and La Luz.

Lacana owns 40% of Encantada Mining Group, Coahuila, which is composed of a 1,320-ton-per-day flotation concentrator fed by three mines, the Encantada, the Los Angeles, and the Plomo. Silver production in 1981 totaled 1.5 million ounces from deposits containing 1.7 million tons averaging 9.3 ounces of silver per ton.

Subsidiary companies of Lacana continued to explore numerous silver prospects in Mexico. Diamond drilling of the Guiterra vein at the Temascaltepec silver-gold prospect encountered high-grade mineralization, which was being explored by underground methods at yearend 1981. Tres Amigos, another silver-gold prospect, gave indications of a multimillion-ton potential, which Lacana planned to explore by diamond drilling in 1982. The Preciosa silvergold property was being explored by underground methods, which gave indications that a considerable body of ore existed, averaging 8 ounces of silver per ton. Other properties being explored by Lacana included the La Olla, silver, and the Tecolote, silver-lead.

Papua New Guinea.—Bougainville Copper Ltd. reported production of 1.4 million ounces of silver in concentrates from its open pit copper-gold-silver mine near Panguna.²⁰ Ore reserves at the mine at yearend 1981 totaled 880 million tons containing approximately 40 million ounces of silver.

Peru.—Southern Peru Copper Corp. reported silver production from its Toquepala and Cuajone copper mines totaled 2.1 million ounces in 1981.²¹

South Africa, Republic of.—Black Mountain Mineral Development Co., Ltd., continued to develop the Black Mountain Mine ore body, one of the three large contiguous lead, zinc, copper, and silver deposits located near Aggeneys, northwestern Cape Province. In the aggregate, the three deposits contain about 600 million ounces of silver. The property came onstream early in 1980 and produced 4.7 million ounces of silver in 1981. Gold Fields of South Africa, Ltd., the manager of the project, owns a 51% interest, and Phelps Dodge Corp. of the United States owns 49%.

Spain.—The Aznalcollar open pit mine of Andaluza de Piritas SA reportedly was operating at about 4 million tons per year and producing approximately 1.5 million ounces of silver in addition to copper, lead, and zinc.²³ Ore reserves at the mine total 90 million tons containing about 108 million ounces of silver.

TECHNOLOGY

Research scientists at the Bureau of Mines Reno (Nev.) Research Center conducted studies in 1981 to recover silver from low-grade resources.24 The research investigated particle agglomeration techniques as a means for improving the flow of leaching solutions through heaps of low-grade ores. The research resulted in markedly enhanced percolation rates and increased silver recovery. Silver leaching production and problems were reviewed by Bureau scientists at the Twin Cities Research Center, Minneapolis, Minn.25 Various aspects of leaching operations using dilute alkaline cyanide on gold-silver ores were reviewed.26 Key factors include extent of ore preparation and delivery, method of applying and recovering the leach solution, recovery of the precious metals from the leach solutions, and others. Low-cost methods outlin-

ed should stimulate development of gold and silver operations notwithstanding the current low price of these precious metals.

The Federal Government's program for precious metal recovery from surplus military items was described.27 The two principal aspects of the program are the identification of kinds and amounts of precious metals in items supplied to the military services and their recovery from the mass of heterogeneous materials used by the military. Construction and operations of the tailings dam at the Pueblo Viejo gold-silver mine in the Dominican Republic were discussed.28 Climatic conditions and a local agricultural industry required careful planning to assure a strong dam and a highly efficient and safe system of tailings disposal and cyanide solution reclamation.

- ¹Physical scientist, Division of Nonferrous Metals. ²Ounce as used throughout this chapter refers to the
- troy ounce.

 *Steele, G. L. Candelaria: Famous Silver Producer. Min. Eng., v. 33, No. 6, June 1981, pp. 658-660.

 *ASARCO Incorporated, 1981 Annual Report. 40 pp.
- **Hoela Mining Co. 1981 Annual Report. 28 pp. *Crandall, W. E., P. Boyko, and G. Hemphill. Silver Shaft. Eng. Min. J., v. 182, No. 4, April 1981, pp. 68-73. *Homestake Mining Co. 1981 Annual Report. 32 pp.
- ⁸Gulf Resources and Chemical Corp. 1981 Annual Report. 60 pp.
- ⁹Phelps Dodge Corp. 1981 Annual Report. 40 pp. ¹⁰The Louisiana Land and Exploration Co. 1981 Annual
- Report. 36 pp.

 14 Handy & Harman. The Silver Market, 1981. 66th
 Annual Report. 26 pp.

 12 Work cited in footnote 4.

 - ¹³EZ Industries, Ltd. 1981 Annual Report. 32 pp.
- ¹⁴United Keno Hill Mines, Ltd. 1981 Annual Report. 20 pp. 15 Noranda Mines, Ltd. 1981 Annual Report. 53 pp. 1991 Annual Report. 64 Annual Report.
- 16Placer Development, Ltd. 1981 Annual Report. 40 pp.
 17Fluor Corp. 1981 Annual Report. 60 pp.
- ¹⁸AMAX Inc. 1981 Annual Report. 48 pp.

- ¹⁹Lacana Mining Corp. 1981 Annual Report. 28 pp.
 ²⁰Bougainville Copper Ltd. 1981 Annual Report. 32 pp.
- ²¹Work cited in footnote 9.
- ²²Work cited in footnote 9.
- Work cited in footnote 9.
 Mining Journal. Aznalcollar Well in Stride. V. 296, No. 7599, Apr. 10, 1981, p. 272.
 McClelland, G. E., and J. A. Eisele. Improvement in Heap Leaching to Recover Silver and Gold From Low-Grade Resources. BuMines RI 8612, 1982, 26 pp.
 Chamberlin, P. G., and M. G. Pojar. Gold and Silver and Strippe Resources. Publicack C8959.
- Leaching Practices in the United States. BuMines IC 8852, 1981, pp. 8-16.
- ²⁶Chamberlin, P. D. Heap Leaching and Pilot Testing of Gold and Silver Ores. Min. Cong. J., v. 67, No. 4, April

- Gold and Silver Ores. Min. Cong. J., v. 67, No. 4, April 1981, pp. 47-51.
 Potter, G. M. Design Factors for Heap Leaching Operations. Min. Eng., v. 33, No. 3, March 1981, pp. 227-281.
 Potter, G. M. Gold and Silver Low Cost Processing Methods—State of the Art. Skillings' Min. Rev., v. 70, No. 10, Mar. 7, 1981, pp. 1, 10-12.
 2*Tolino, V. C. Department of Defense Precious Metal Recovery Program. Recycling Today, v. 19, No. 1, January 1981, pp. 55-54, 72, 163.
 2*Addision, R., and R. O. Granor. Rosario Dominicana's Cyanide Tailings Dam Construction and Operation. Min. Eng., v. 33, No. 6, June 1981, pp. 709-714.

Table 2.—Mine production of recoverable silver in the United States, by month

(Thousand troy ounces)

Month	1979 ^r	1980 ^r	1981
January	3,252	3,271	3,062
February	3,055	3,365	3,404
March	3,310	3,280	3,408
April	3,228	3,335	3,314
May	3,341	3,006	3,151
June	3,240	3,163	3,315
July	3.198	1.993	3,577
August	3,482	1.741	3,408
September	2,897	1.776	3,503
October	3,057	2.074	3,797
November	2,888	2.144	3,354
December	2,948	3,181	3,392
Total	37,896	32,329	40,685

Revised.

Table 3.—Twenty-five leading silver-producing mines in the United States in 1981, in order of output

Rank	Mine	County and State	Operator	Source of silver
1	Sunshine	Shoshone, Idaho	Sunshine Mining Co	Silver ore.
2	Galena	do	ASARCO Incorporated	Do.
3	Coeur	do	do	Do.
4	Lucky Friday	do	Hecla Mining Co	Do.
5	Utah Copper	Salt Lake, Utah	Kennecott Corp	Copper ore.
6	Berkeley Pit	Silver Bow, Mont	The Anaconda Company	Do.
7	Candelaria	Mineral, Nev	Candelaria Partners	Silver ore.
8	Delamar	Owyhee, Idaho	Earth Resources Co	Gold-silver ore.
9	Bulldog Mountain_	Mineral, Colo	Homestake Mining Co	Silver ore.
10	Twin Buttes	Pima, Ariz	Anamax Mining Co	Copper ore.
11	Tyrone	Grant, N. Mex	Phelps Dodge Corp The Bunker Hill Co	Do.
12	Bunker Hill	Shoshone, Idaho	The Bunker Hill Co	Lead-zinc ore.
13	Star Unit	do	Hecla Mining Co	Do.
14	Sierrita	Pima, Ariz	Duval Corp	Copper ore.
15	Troy Unit	Lincoln, Mont	ASARCO Incorporated	Silver ore.
16	Morenci	Greenlee, Ariz	Phelps Dodge Corp	Copper ore.
17	Sherman Tunnel	Lake, Colo	Hecla Mining Co	Silver ore.
18	Eisenhower	Pima, Ariz	Eisenhower Mining Co	Copper ore.
19	Taylor	White Pine, Nev	Silver King Mines, Inc	Silver ore.
20	Magma	Pinal, Ariz	Magma Copper Co	Copper ore.
21	Buick	Iron, Mo	Amax Lead Co. of Missouri	Lead ore.
22	San Manuel	Pinal, Ariz	Magma Copper Co	Copper ore.
23	Mission	Pima, Ariz	ASARCO Incorporated	Do.
24	Bagdad	Yavapai, Ariz	Cyprus Bagdad Copper Co	Do.
25	Crescent	Shoshone, Idaho	The Bunker Hill Co	Silver ore.

Table 4.—Silver produced in the United States, by State, type of mine, and class of ore yielding silver, in terms of recoverable metal

	Placer				Lode		
G1-1-	(troy	Gold or	e.	Gold	l-silver ore	Silv	er ore
State	ounces of of silver)	Short tons	Troy ounces of silver	Short	Troy ounces of silver	Short tons	Troy ounces of silver
1979: Total	431 467	^r 4,201,963 5,510,745	^r 677,819 749,785	756,221 872,019	2,152,845 1,953,874	1,065,591 r2,064,191	16,766,967 13,699,057
1981: AlaskaArizonaCalifornia	1,704 135	301 W 22,955	227 W 3.923		W 10,447	14 122,597 257	203,601 1,851
Colorado Idaho Missouri	100 	W W	W W	W W	W	335,500 955,927	2,408,286 13,161,698
Montana Nevada New York		593,984 2,938,928	105,671 $282,451$	₩ 48,120	W 252,057	586,837 2,540,598	833,084 2,484,636
South Dakota Washington Other ¹		1,848,303 56,308 1,019,253	55,792 67,390 247,419	956,556	1,905,357	22,970	88,659
TotaL	1,839	6,480,032	762,873	1,006,121	2,167,861	4,564,700	19,182,250
Percent of total silver	(2)	xx	2	xx	5	xx	47
	Co	pper ore		Lode Lead o		Zino	
	Short	Troy ounces of silver		hort ons	Troy ounces of silver	Short tons	Troy ounces of silver
979: Total 980: Total	r267,313,44 r220,293,48			22,812 80,986	2,278,603 2,534,828	672,292 370,702	12,98- 20,956
981: Alaska Arizona	197,106,14	6 7,565,36	5	3.937	1,907		
California Colorado			-			==	
Idaho Missouri Montana Nevada	V 15,134,47 57.85	7 2,029,438	8,5	20,094 W	1,837,011 W	w 	W
New York South Dakota Washington		 	- - -			561,957 	28,829
Other¹	69,649,78			14	280	439,054	2,178
Total	281,948,26	4 13,952,838	8,5	24,045	1,839,198	1,001,011	31,007
Percent of total silver	XX	K 34	1	XX	5	xx	(2)

See footnotes at end of table.

SILVER 761

Table 4.—Silver produced in the United States, by State, type of mine, and class of ore yielding silver, in terms of recoverable metal-Continued

		Lod	е			1.65
State	Copper-lead copper-zi copper-lead	nc, and	Old taili	ngs, etc.	То	tal ³
	Short tons	Troy ounces of silver	Short tons	Troy ounces of silver	Short	Troy ounces of silver
1979: Total	3,103,669 3,256,562	2,055,561 2,112,419	42,493 67,623	72,783 122,163	r _{286,278,481} r _{242,516,315}	r37,895,524 r32,329,373
1981: Alaska Arizona. California Colorado Idaho Missouri Montana Newada New York South Dakota Washington Other¹	932,091 	 W W 1,836,133 533,652	94,948 W W 2,741 	173,507 W W 6,028 W 11,750 4186,381	315 197,344,162 25,459 910,823 2,774,457 8,520,094 16,328,835 5,697,437 561,957 1,848,803 56,308 72,929,430	2,372 8,055,231 53,286 3,008,994 16,545,648 1,837,011 2,988,810 3,039,480 28,829 55,792 67,390 5,002,474
Total	3,186,988	2,369,785	286,419	377,666	306,997,580	40,685,317
Percent of total silver	xx	6	XX	1	XX	100

¹Revised. W Withheld to avoid disclosing company proprietary data; included in "Other." XX Not applicable.

¹Includes Illinois, Michigan, New Mexico, Oregon, South Carolina, Tennessee, Utah, Virginia, States indicated by symbol W, and a small amount of silver recovered from tailings, not distinguishable as to State origin.

²Less than 1/2 unit.

Table 5.—Mine production of recoverable silver in the United States, by State (Troy ounces)

State	1977	1978	1979	1980	1981
Alaska	1,725	2,052	w	8,354	2,372
Arizona	6,828,145	6,637,838	7.478.942	r6,267,588	8,055,231
California	57.891	58.014	64,185	49,257	53,286
Colorado	4,663,496	4,217,181	2,808,934	2,987,058	3,008,994
Idaho	15,291,964	18,379,417	17,144,209	13,694,902	16,545,648
Michigan	335,479	W	W	W	W
Missouri	2.362.752	2.056.053	2.201.112	2,357,236	1,837,011
Montana	3,367,442	2,918,317	3,301,928	2,023,893	2,988,810
Nevada	738,402	803,887	560,435	r939,997	3,039,480
New Mexico	918.155	894,833	W	W	1,632,346
New York	56,353	20,911	10.538	20,702	28,829
Oregon	7,134	1,714	1.572	841	7,487
South Dakota	68.717	53,099	57,973	51,257	55,792
Tennessee	60.246	w	w	W	00,.0 <u>u</u>
Utah	3,283,323	2,885,065	2.454.136	r2,203,289	2,882,671
Washington	120,582	2,000,000 W	2,404,100 W	2,200,205 W	67,390
Other	3,897	456,989	r1.811.560	r _{1,724,999}	479,970
	38,165,703	39,385,370	r37,895,524	r32,329,373	40,685,317

W Withheld to avoid disclosing company proprietary data; included with "Other."

^{*}Data may not add to State totals because of items withheld to avoid disclosing company proprietary data.

Includes byproduct silver recovered from tungsten ore in California and fluorspar in Illinois.

Table 6.—Silver produced in the United States from ore, old tailings, etc., by State and method of recovery, in terms of recoverable metal

	-		Ore a	nd old tailing	s to mills			
State	Total ore, old tail- ings, etc. treated ¹ ²	Thou-		verable pullion	smel	entrates ted and able metal	old e	ude ore, tailings, tc., to elters ¹
	(thousand short tons)	short tons ¹ ²	Amalga- mation (troy ounces)	Cyani- dation (troy ounces)	Concentrates Troy (short ounces tons)		Thou- sand short tons	Troy ounces
1979: Total 1980: Total	r329,174 r274,015	r328,354 r273,270	170 1,502	r2,374,767 r2,637,809	^r 6,282,071 ^r 6,068,875	^r 34,184,240 ^r 28,643,779	^r 821 ^r 746	1,335,916 1,045,816
1981:								
Alaska	(³)	(3)			. 4 227		(³)	441
Arizona	4217,231	4216,846		1,592	3,801,815	7.694.911	385	358,728
California	430	429	- 6	44	3,293	49,635	1	3,466
Colorado	1,207	1,199			60,598	2,757,910	8	251,084
Idaho	2,774	2,769		1,494,251	147,035	14,994,849	6	56,548
Missouri	8,520	8,520			701,476	1,837,011		·
Montana	416,342	416,321		105,185	260,995	2,818,002	21	65,623
Nevada	4 511,861	4 511,859		2,961,954	5,149	64,680	2	12,846
New Mexico _	25,767	25,671		7,848	4 5,149 64,680 8 840,440 1,533,229		96	91,269
New York	562	562			72,941	28,829		
Oregon	27	27			2,924	6,900	(³)	587
South Dakota_	1,848	1,848		55,792				
Utah	440,629	440,474		1,000	824,169	2,483,786	156	397,885
Washington	56	-56			116	67,361	(³)	29
Other ⁶	11,535	11,535			477,053	479,970		
Total ⁷	338,392	337,717	6	4,627,666	7,198,008	34,817,300	675	1,238,506

Revised.

Table 7.—Silver produced at amalgamation and cyanidation mills in the United States and percentage of silver recoverable from all sources, by year

Year	tates re	nd precipi- coverable ounces)		all so	verable from ources cent)	
	Amalga- mation	Cyani- dation	Amalga- mation	Cyani- dation	Smelting ¹	Placers
1977	16,720	1,308,209	0.04	3.43	96.52	0.01
1979	654 170	2,600,357 2,374,767	(2) (2)	6.60 r6.27	93.39 193.73	.01 ②
1981	1,502 6	^r 2,637,809 4,267,666	r(2) (2)	^r 8.16 11.37	^r 91.84 88.62	.01

Revised.

includes some nonsilver-bearing ore not separable.

Excludes tonnages of fluorspar and tungsten ores from which silver was recovered as a byproduct.

³Less than 1/2 unit.

^{*}Less than 1/2 unit.

*Includes ore from which silver was recovered by heap leaching.

*Includes ore from which silver was recovered by vat leaching.

*Includes Illinois, Michigan, South Carolina, Tennessee, Virginia, and small amounts of silver recovered from tailings, not distinguishable as to State origin.

*Thata may not add to totals shown because of independent rounding.

¹Crude ores and concentrates.

²Less than 0.005%.

Table 8.—Silver produced at refineries in the United States, by source

(Thousand troy ounces)

Source	1980	1981
Concentrates and ores: Domestic Foreign		44,487 2,520
Total	39,353	47,007
Old scrap: CoinsOther		1,118 37,949
Total	¹ 53,131	39,067
Total net production		86,074 44,738
Grand total	1158,127	130,812

¹Data do not add to total shown because of independent rounding.

Table 9.—U.S. consumption of silver, by end use

(Thousand troy ounces)

End use ¹	1980	1981
Electroplated ware	4.350	3,904
Sterlingware	9,082	4,407
Jewelry	5,893	5,368
Photographic materials	49.825	51,025
	2.212	1,709
Dental and medical supplies	672	581
Mirrors	8,508	7,718
Brazing alloys and solders	0,000	1,110
Electrical and electronic products:	F 000	0.000
Batteries	5,976	3,803
Contacts and conductors	27,796	26,411
Bearings	649	248
Catalysts	3,035	3,830
Coins, medallions, commemorative objects	4,693	2,622
Miscellaneous ²	2,005	4,995
Total net industrial consumptionCoinage	³ 124,694 72	116,621 179
Total consumption	³ 124,766	116,800

Table 10.—Value of silver exported from and imported into the United States, by year (Thousand dollars)

Year	Exports	Imports
1979	471,162	961,761
1980	1,909,733	1,606,010
1981	332,470	1,028,450

¹End use as reported by converters of refined silver.

²Includes silver-bearing copper, silver-bearing lead anodes, ceramics, paints, etc.

³Data do not add to total shown because of independent rounding.

Table 11.-U.S. exports of silver in 1981, by country

Country	Ore	Ore and concentrates	Wast	Waste and sweepings	Doré preci	Doré and precipitates	Refi bull	Refined bullion	Total ¹	al ¹
	Thousand troy ounces	Value (thousands)	Thousand troy ounces	Value (thousands)	Thousand troy ounces	Value (thousands)	Thousand troy ounces	Value (thousands)	Thousand troy ounces	Value (thousands)
Belgium-Luxembourg Canada France Germany, Federal Republic of Japan Japan Japan United Kingdom	6 108 40 85 85 	\$192 849 279 70 106	1,238 2,412 54 127 322 785 4,728	\$13,497 27,243 27,243 2,021 5,339 9,445 55,555 1,069	1,206 1,014 1,014 271 271 158 34	\$12,242 12,931 58 1,769 4,512 2,514 447	152 6,982 36 1 3,452 3,784 724	\$1,900 77,248 372 37,693 37,693 54,397 9,761	2,602 10,516 136 287 4,045 785 8,677 857	\$27,831 118,271 1,646 3,869 47,544 9,445 112,480 11,383
Total ¹	213	1,510	9,746	115,106	2,813	34,474	15,131	181,380	27,903	332,470

¹Data may not add to totals shown because of independent rounding.

Table 12.—U.S. imports for consumption of silver in 1981, by country

Country	Ore and concentrates	Ore and ncentrates	Wast	Waste and sweepings	Doré precip	Doré and precipitates	Refi	Refined bullion	Total ¹	al ¹
	Thousand troy ounces	Value (thousands)	Thousand troy ounces	Value (thousands)	Thousand troy ounces	Value (thousands)	Thousand troy ounces	Value (thousands)	Thousand troy ounces	Value (thousands)
BrazilCanada	109	\$1,549	833	\$9.439	110	\$1.530	99 861	\$625	175	\$2,174
Chile Dominican Republic	089	∞	110	70	2,414	26,387	1,220	14,489	4,814	40,884
France Germany, Federal Republic of		1	020	51 8	€ <u>8</u>	4,035	20 1	6,322 2,816	514 504	6,494 6,878
Hong Kong	1,523	15,638	€8	2,345	569	8,436	848	8,920	1,523	15,642
Korea, Republic of	210	2,312		t	910	1,332	274	3,074 10,073	1,211	3,165 13,717
Peru Lingdom Lingdom	2,938 2,938 616	25,155 35,998 6,842	73 73 571	707 964 1.084	1,173	6,514 13,824 213	19,271 18,859	197,576 221,817 2,767	22,157 23,043 1,495	227,930 272,603 10 908
Yugoslavia	755	7,071	199	1,612	66	1,185	354	8,377 4,329	1,407	8,377 14,197
Total ¹	9,769	100,422	2,051	16,414	6,374	74,439	75,921	837,174	94,115	1,028,450

 $^{\rm i}{\rm Data}$ may not add to totals shown because of independent rounding. $^{\rm i}{\rm Less}$ than 1/2 unit.

Table 13.—Silver: World production,1 by country

(Thousand troy ounces)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
North and Central America:		1. 1. 1.			
Canada	42,236	40,733	36,874	33,340	37,418
Costa Ricae	1 050	2	2	2	0.000
Dominican Republic	1,852 112	1,848 185	2,276 152	1,623 146	2,062 110
El Salvador Guatemala	NA	100	102	10	110
Honduras	2,819	2,788	2,434	1,766	32,400
Mexico	47,030	50,779	49,408	47,344	53,204
Nicaragua	167	482	389	164	150
United States	38,166	39,385	37,896	32,329	340,685
outh America:	•				
Argentina	r2,450	r2,164	2,209	2,305	2,300
Bolivia	5,813	6,285	5,742	6,099	6,602
Brazil ⁴	372	506	1,065	837	800
Chile	8,461 91	8,210 177	8,740 99	9,598	10,000 3143
Colombia ⁵	57	29	e ₄₄	152 45	44
Ecuador Peru	r39,731	r _{37,022}			
urope:	99,191	31,022	39,248	42,989	46,940
Bulgaria ^e	840	900	920	930	930
Czechoslovakia ^e	1,192	1,300	1,300	1,300	1,300
Finland	813	r _{1,069}	1,028	1,430	1,215
France	3.004	¹ ,755	2,408	2,373	2,400
German Democratic Republic ^e	1,600	1,600	1,550	1,510	1,600
Germany, Federal Republic of	1,061	799	1,039	1,038	1,038
Greece	1,070	1,360	1,752	1,672	1,600
Greenland	521	559	765	771	720
Hungary ^e	39	r ₃₂	32	33	33
Ireland	936	631	1,059	771	700
Italy ^{5 6}	1,222	890	1,065	1,366	1,600
Poland ^e	r10,708	21,900	22,600	24,665	22,690
Portugal	26	23	e ₃₁	19	18
Romania ^e	1,125	1,030	965	900	850
Spain	r2,966	r2,924	3,168	4,526	4,800
Sweden	5,438	r _{5,007}	5,649	5,112	5,100
U.S.S.R. ^{e 5}	45,000	46,000	46,000	46,000	46,500
Yugoslavia ⁵	4,679	r _{5,125}	5,214	4,790	34,437
rica:					
Algeria ^e	40	75	100	100	110
Ghana	NA	19	20	^e 20	20
Mauritania	^e 26	19			
Morocco	^r 2,820	r3,131	3,283	3,154	2,500
Namibia	r _{1,758}	r _{1,866}	2,106	2,172	3,258
South Africa, Republic of	r3,135	r3,110	3,240	5,500	7,568
Tunisia	236	281	231	235	230
Zaire	2,730	4,391	3,892	2,733	2,100
Zambia	e1,450 207	1,069	914 978	764	750
Zimbabwesia:	201	1,109	918	954	730
sia: Burma	355	377	340	587	590
China ^e	1,000	1,500	2,000	2,500	2,500
	425	388	370	366	2,500 555
India ⁵ Indonesia	790	826	662	693	753
Japan	9.604	9,664	8,680	8,930	8,982
Korea, Northe	1,600	1,600	1,600	1,600	1,600
Korea, Republic of	2,106	1,385	2,278	2,292	3,148
Malaysia (Sabah)	² 410	² 459	433	432	430
Philippines	1.621	r _{1.640}	1.838	1.952	1.900
Solomon Islands	NA	NA	(7)	(7)	1,300
Taiwan	68	75	85	95	215
Turkey	e220	219	250	200	200
ceania:					200
Australia	27,525	26,123	26,756	25,375	25,000
Fiji	15	10	11	10	10
	-8	2	2	i	ĩ
New Zealand					
New Zealand Papua New Guinea	1,523	r _{1,681}	1,428	1,180	1,363
New Zealand		r _{1,681}	1,428 344,630	1,180 339,800	1,363 364,912

^eEstimated. ^pPreliminary. ^rRevised. NA Not available. ¹Recoverable content of ores and concentrates produced unless otherwise noted. Table includes data available through

June 30, 1982.

In addition to the countries listed, Austria and Thailand may produce silver, but information is inadequate to make

In addition to the countries listed, Austria and Thailand may produce silver, but information is inadequate to make reliable estimates of output levels.

Reported figure.

Officially reported output, including that obtained from treatment of gold, as follows in troy ounces: 1977—14,339; 1978—21,348; 1979—14,725; 1980—15,657; 1981—not available; and that recovered from treatment of lead, as follows in troy ounces: 1977—358,002; 1978—484,157; 1979—1,050,717; 1980—721,205; 1981—not available.

Smelter and/or refinery production.

Includes production from imported ores.

Less than 1/2 unit.

Sodium Compounds

By Dennis S. Kostick¹

The 1981 total domestic production of soda ash was 8,281,000 short tons. Domestic apparent consumption declined slightly to 7,112,000 short tons from the 1980 level of 7,134,000 short tons. Although exports of soda ash were stronger in the second half of 1981, total exports of 1,051,000 short tons were still slightly less than the 1980 record high of 1,094,000 short tons.

Production of natural and synthetic sodium sulfate increased from 1,139,000 short tons in 1980 to 1,143,000 short tons in 1981. The domestic apparent consumption of sodium sulfate was 1,262,000 short tons, a slight increase compared with the 1980 level of

1,236,000 short tons.

Legislation and Government Programs.—The Bureau of Land Management (BLM) of the U.S. Department of the Interior issued an Environment Assessment draft that contained various sodium leasing options within the Known Sodium Leasing Area in the Green River Basin of Wyoming. For the past several years, only lease applications were accepted by the BLM; however, no applications were approved. The U.S. Department of the Interior is also examining the issue of increasing the Federal royalty rate on sodium minerals from 5% to 8%.

Table 1.—Salient sodium compound statistics

(Thousand short tons and thousand dollars)

	Soda	ash	Sodium	sulfate
	1980	1981	1980	1981
United States:				
Production ¹	8,275	8,281	1,139	1,143
Value ²	\$768,168	\$ 787,469	\$71,096	\$81,187
Exports	1,094	1.051	129	124
Value	\$121,945	\$121,107	\$12,740	\$12,980
Imports for consumption	18	12	230	275
Value	\$2,389	\$1,625	\$ 13,242	\$19,135
Stocks, producer	133	* 3 263	433	466
Consumption, apparent	7,134	7.112	1.236	1,262
World: Production	P31,442	e31,214	P4,791	e4,848

^eEstimated. ^pPreliminary.

¹Includes natural and synthetic.

The value for soda ash includes synthetic soda ash. The value for synthetic sodium sulfate is based upon the average value for natural sodium sulfate.

³Includes synthetic soda ash. ⁴Natural only.

DOMESTIC PRODUCTION

Production of natural and synthetic soda ash in 1981 increased slightly over the total recorded for 1980 (table 1). The entire soda ash industry worked at 88% of total nameplate capacity. Domestic production of sodium sulfate in 1981 increased slightly compared with that of the previous year. Production of natural sodium sulfate by three domestic producers represented 53% of the total output. Synthetic sodium sulfate production, as reported by the U.S. Bureau of the Census, decreased slightly from 556,000 short tons in 1980 to 535,000 short tons in 1981.

FMC Corp. introduced a new longwall unit in March to its mining operation in Wyoming. The unit, modified with slab plates to minimize the slabbing problems associated with trona, is expected to increase the ore extraction ratio to about 75% compared with an ore extraction ratio of 45% for continuous and conventional techniques.

Texasgulf Chemicals Co., with a soda ash plant at Granger, Wyo., was acquired at midyear by the French Government-controlled Société Nationale Elf Aquitaine. A concurrent expansion to increase name-plate capacity to 2 million tons per year

was indefinitely delayed because of economic conditions rather than the sale of the company.

A small sodium carbonate mining facility owned by Lake Minerals Corp. at Owens Lake in California was sold in the third quarter to Cominco American Incorporated. The new owner will continue to mine crude sodium carbonate but may expand operations in the future to produce commercial-grade soda ash.

Allied Chemical Co. announced that it will downrate its Syracuse, N.Y., synthetic soda ash plant to 700,000 short tons per year from its present annual capacity of 900,000 short tons effective January 1, 1982. The cutback is in response to poor market conditions, particularly in the glass sector, in the Northeast.

The U.S. soda ash industry is contemplating forming a Soda Ash Export Trading Association under the provisions of the Webb-Pomerene Act of 1918. One benefit of forming the association would be to obtain favorable transportation rates for larger unit shipments to foreign markets. Two areas for increased export potential are the Far East and Western Europe.

Table 2.—Producers of soda ash and natural sodium sulfate in 1981

Product and company	Plant nameplate capacity (thousand short tons)	Plant location	Source of sodium
Soda ash. natural:			
Allied Chemical Co	2,200	Green River, Wyo.	Underground trona.
FMC Corp	2,850	do	Do.
Kerr-McGee Chemical Corp	1,300 150	Argus, Calif Westend, Calif	Dry lake brine.
Stauffer Chemical Co. of Wyoming	1,960	Green River, Wyo.	Underground trona.
Texasgulf Chemicals Co Soda ash, synthetic:	1,000	Granger, Wyo	Do.
Allied Chemical Co	900	Syracuse, N.Y	Ammonia-soda process.
Sodium sulfate:			process.
Great Salt Lake Minerals & Chemical Corp	40	Ogden, Utah	Salt lake brine
Kerr-McGee Chemical Corp	225	Trona, Calif	Dry lake brine.
Do	225	Westend, Calif	Do.
Ozark-Mahoning Co	70	Brownfield, Tex.	Subterranean brine.
Do	100	Seagraves, Tex	Do.

Table 3.—Manufactured and natural sodium carbonates produced in the United States

(Thousand short tons and thousand dollars)

Year	Manufactured soda ash (ammonia-soda process) ¹ ²		l sodium nates ³	Total quantity
	Quantity	Quantity	Value	
1977	1,812	6,228	337,516	8,040
1978	e _{1,500}	6,790	370,147	8,290
1979	W	w	4543.812	8,253
1980	W	w	4768,168	8,275
1981 _	w	w	4787,469	8,281

eEstimated. W Withheld to avoid disclosing company

Table 4.—Source of U.S. soda ash

(Thousand short tons)

	Sol	vay	Nat	ural
Year	Produc- tion	Percent of total	Produc- tion	Percent of total
1977	1,812	22.5	6,228	77.5
1978	e1,500	18.1	6,790	81.9
1979	W	w	W	w
1980	W	w	W	w
1981	w	W	w	W

W Withheld to avoid disclosing company eEstimated. proprietary data.

Table 5.—Manufactured and natural sodium sulfate produced in the United States1

(Thousand short tons and thousand dollars)

	Manufa	ctured and r	atural ²	Natura	l only
Year	Lower purity ³ (99% or less)	High purity	Total ⁴	Quantity	Value
1977	r ₆₇₇	r ₅₂₂ r ₅₀₉	1,199 r _{1,169}	636 605	29,313 27,865
1979 1980 1981	^r 612 ^r 676 690	^r 509 ^r 464 453	r _{1,121} r _{1,139} 1,143	533 583 608	29,689 r _{36,389} 43,186

Revised.

CONSUMPTION AND USES

Unfavorable economic conditions resulted in a decrease in the apparent domestic consumption of soda ash during 1981. The third consecutive year of declining soda ash usage was due to slowdowns in the construction and automotive industries, both large users of glass, which is the largest consumer of soda ash.

Polyethylene terephthalate (PET) soft drink bottles continue to displace glass containers, which are made with soda ash. After capturing the lead in the 1- and 2liter-size soft drink bottles, PET bottle manufacturers are concentrating their efforts toward the smaller 16.9-ounce soft drink bottles. The U.S. bottle industry consumed over 275,000 tons of PET resin in 1981, an increase of 25% over that of the previous year. The advantages of PET bottles, which retain carbonation better than other plas-

Prestmated. W withheld to avoid discressing company proprietary data.

¹Current Industrial Reports, Inorganic Chemicals, U.S. Bureau of the Census. Bureau of Mines responsible for data compilation after January 1979.

²Includes quantities used to manufacture caustic soda, sodium bicarbonate, and finished light and dense soda ash.

³Soda ash and trona (sesquicarbonate). ⁴Includes value for synthetic soda ash.

¹All quantities converted to 100% Na₂SO₄ basis.

²Current Industrial Reports, Inorganic Chemicals, U.S. Bureau of the Census.

³Includes Glauber's salt.

⁴Data may not add to totals shown because of independent rounding.

tics, over glass are that they have no adverse effect on the taste of the beverage, are safer, and are very easy to recycle because they are made completely of polyester.²

The total U.S. primary demand for soda ash in 1981 was 7,112,000 short tons. The estimated consumption of soda ash in each of the end uses is shown in table 6.

Apparent consumption of sodium sulfate increased 2% in 1981 to 1,262,000 short tons. The major end uses of sodium sulfate include pulp and paper, 48%; detergents, 39%; and glass and miscellaneous, 13%.

Table 6.—Estimated consumption of soda ash in 1981, by end use

(Thousand short tons)

Glass: Bottle and container	2,627 555 260 258
TotalChemical	3,700
Soaps and detergents. Pulp and paper Water treatment	1,420 500 210 250
Other ¹	1,032 3,412
Grand total	7,112

¹Includes soda ash used in petroleum and metal refining, leather tanning, enamels, etc.

STOCKS

Depressed economic conditions in 1981 affected total sales of soda ash. As a result, producer inventories increased compared with those of previous years. In order to better 'analyze the domestic supply and demand balance of soda ash, effective June 1981, the Bureau of Mines started canvassing to obtain data on soda ash inventories stored on teamtracks, in terminals, and

in warehouses in addition to the monthly survey of producers' plant stocks. Synthetic soda ash stocks were also canvassed for the first time as well. As a result, these yearend stocks, as reported by most of the producers, rose to 263,000 short tons. Yearend stocks of natural sodium sulfate were 66,000 short tons.

PRICES

The average value of bulk natural soda ash, f.o.b. Green River, Wyo., and Searles Valley, Calif., in 1981 was \$91.19 per short ton, a slight increase over the 1980 average value of \$89.85 per short ton. The f.o.b. price of dense, bulk soda ash of the four Wyoming producers increased from \$86 per ton to \$92 per ton effective July 1, 1981. Kerr-McGee Chemical Corp. raised its f.o.b. price of dense, bulk soda ash on July 15, 1981, from \$103.25 to \$106.25.

The average value of bulk natural sodium sulfate, f.o.b. mine or plant, of the three

producers was \$71.03 per short ton, an increase of 13.8% over the revised 1980 average value of \$62.42 per short ton. Kerr-McGee increased its price of fine, standard, and coarse grades of bulk sodium sulfate from \$82 to \$85 per ton. The price for special coarse grade sodium sulfate increased \$3 to \$85 per ton and for pulp and paper grades of sodium sulfate, \$4 to \$79 per ton.

Yearend 1981 quoted prices of sodium carbonate and sodium sulfate are shown in table 7.

Table 7.—Sodium compounds yearend prices

	1980	1981
Sodium carbonate (soda ash):		•
Light, paper bags, carlots, works per ton	\$150.00	\$150.00
Light, bulk, carlots, worksdodo	123.00	123.00
Dense, paper bags, carlots, worksdodo	112.00	112.00
Dense, bulk, carlots, worksdodo	86.00	92.00
Sodium sulfate (100% Na ₂ SO ₄):		
Technical detergent, rayon-grade, bags, carlotsdodo	\$70.00- 72.00	\$70.00- 72.00
Sodium sulfate, bulk, carlots, works1dodo	78.00	78.00
Domestic salt cake, bulk, works ¹ dodo	47.00- 52.00	47.00- 52.00
National Formulary (N.F. XII), drumsper pound_	.235	.235

¹East of Mississippi River.

FOREIGN TRADE

The United States produced over onefourth of the world's soda ash in 1981 and exported a total of 1,051,000 short tons to 58 countries. The distribution of exports on a regional basis was North America, 27.2%; South America, 23.7%; Asia, 20.6%; Africa, 14.7%; Europe, 7.6%; Oceania, 3.1%; Central America, 1.9%; and the Caribbean, 1.2%.

Table 8.—U.S. exports of sodium carbonate and sodium sulfate

(Thousand short tons and thousand dollars)

Year	Sodium c	arbonate	Sodium	sulfate
I ear	Quantity	Value	Quantity	Value
1978 1979 1980 1981	779 997 1,094 1,051	61,454 86,663 121,945 121,107	84 102 129 124	5,475 8,516 12,740 12,980

Table 9.—U.S. imports for consumption of sodium sulfate

(Thousand short tons and thousand dollars)

Year	Crude (sa	lt cake)1	Anhy	irous	Tot	al ¹
Tear	Quantity	Value	Quantity	Value	Quantity	Value
1978 1979 1980 1981	41 85 97 136	1,701 3,763 4,872 8,038	96 104 133 139	4,890 5,748 8,370 11,097	² 136 ² 188 230 275	² 6,590 9,511 13,242 19,135

¹Includes Glauber's salt as follows: 1978, 1 ton (\$1,157); 1979, 926 tons (\$24,854); 1980, 1,418 tons (\$37,372); 1981, 30 tons (\$13,800).

Table 10.—U.S. imports for consumption of sodium carbonate and bicarbonate (Thousand short tons and thousand dollars)

	19	80	19	81
	Quan- tity	Value	Quan- tity	Value
Sodium carbonateSodium bicarbonate	18 2	2,389 425	12 3	1,625 680
Total	20	2,814	15	2,305

Source: Chemical Marketing Reporter. Current Prices of Chemicals and Related Materials. V. 218, No. 26, Dec. 29, 1980, p. 34; v. 220, No. 26, Dec. 28, 1981, p. 36.

²Crude and anhydrous quantities may not add to totals shown because of independent rounding.

WORLD REVIEW

Bulgaria.—The European Economic Community (EEC) Commission imposed an antidumping duty of \$26.07 per metric ton (\$23.65 per short ton) on imports of Bulgarian light soda ash into Western Europe. Bulgaria and other centrally controlled economies were found guilty of similar violations in 1978. All countries except Bulgaria consented to raise their prices of soda ash to meet the established price level of \$105.10 per metric ton (\$95.35 per short ton). Bulgarian authorities filed a protest with the EEC Commission, stating that the antidumping allegation was unjustified and would cause severe hardships to the Bulgarian soda ash industry.3

Canada.—The Quebec government is considering a synthetic soda ash plant at Beconcour, midway between Montreal and Ontario, in order to reduce imports of soda ash from the United States. Asahi Glass Co., Ltd., one of the major Japanese soda ash producers, was commissioned to determine if the project would be competitive with the U.S. soda ash industry. If the project is accepted, Asahi Glass would probably supply the technology and may form a joint venture with the Canadians.

Netherlands.—In an effort to comply with

revised environmental and safety legislation, Akzo Zout Chemie Nederland B.V. announced it will spend \$35 million to modernize its 450,000-ton-per-year capacity soda ash plant at Delfzijl. The work is scheduled to start early in 1982.5

Poland.—Labor strikes affected the Polish coal industry and resulted in coal shortages at the Janikowo soda ash plant. The plant began operation in 1978 with an annual capacity of about 450,000 tons. Approximately 100,000 tons of additional soda ash was to be produced for export in 1981; however, total production fell short of the estimated goal because of political and social problems.⁶

Spain.—The sodium sulfate mine of Criaderos Minerales y Derivados S.A. in Burgos Province resumed production in April 1981 after violence and protests prompted the mine closure several months earlier. Shortages of sodium sulfate in the detergent and paper industries necessitated the lifting of import tariffs by the Spanish Ministry of Commerce. The duties ranged from 9.9% for imports from the EEC countries to 13.2% for other countries. The tariffs were reinstated after production resumed at the mine.

Table 11.—Sodium carbonate: World production, by country¹

(Thousand short tons)

Country	1977	1978	1979	1980 ^p	1981 ^e
Albania ^e	25	r ₂₆	26	28	28
Australia ^e	175	180	180	200	210
Austriae	185	190	190	190	190
Belgium	487	471	e480	480	440
Brazil	155	133	131	143	140
Bulgaria	1,343	1,426	1,651	1.630	1,619
Canada ^e	500	500	500	500	500
Chad ²	12	12	12	9	6
Chile ^e	11	12	12	12	
China	e _{1,200}				11
Colombia	1,200	1,465 184	1,638	1,778	1,900
Czechoslovakia	130	133	147 131	137	140
Denmark ³	190			135	135
Egypt	NT A	2	3	(4)	
France	NA	T1 401	4	5	5
Common Day of D. 11	1,505	r _{1,491}	1,708	e1,800	1,650
Germany, Federal Republic of	925	939	948	955	960
Greece	1,489	1,356	1,544	1,555	1,540
India	1	1	1	1	1
	626	650	e670	660	660
	^r 105	r ₁₀₅	105	105	100
Japan	1,300	^r 1,281	1,493	1,494	1,430
Kenya ²	r ₁₂₂	168	247	226	280
Korea, Republic of	^r 187	194	225	245	220
Mexico ⁵	e460	456	463	e500	500
Netherlands	304	r315	e460	e460	460
Norway ^e	27	29	30		100
Pakistan	r ₉₄	r ₁₂₀	125	129	130
Poland	740	r806	754	840	770
Portugal	143	r ₁₄₄	202	193	187
Romania	949	991	202 984	1.033	1,070
Spain	e350	550	e ₅₅₀		
Sweden ^e	33U	ออบ	550	555	550
J. C. C. C. C. C. C. C. C. C. C. C. C. C.	1	1	1	1	1

See footnotes at end of table.

Table 11.—Sodium carbonate: World production, by country¹ —Continued

(Thousand short tons)

	Country	1977	1978	1979	1980 ^p	1981 ^e
		 11/2 - 12	. • • • •	M.5		10,100
Switzerland ^e Taiwan		50 88	50 85	50 89	50 102	50 82
Turkey ^e U.S.S.R		 65 5,375	70 5,355	75 5,271	65 5,269	5,29
United Kingdom ^e United States ⁵		 1,650 8,040	1,760 8,290	1,550 8,253	1,500 8,275	1,433 68,28
Yugoslavia		 173	183	181	182	180
Total		 ^r 29,148	r30,128	31,084	31,442	31,21

²Natural only.

Table 12.—Sodium sulfate: World production, by country¹

(Thousand short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Natural:					
Argentina	40	45	40	21	28
Canada	435	415	488	547	610
Chile ³	. 15	4	2	6	6
Egypt	6	3	4	4	3
Iran	44	39	^e 25	10	22
Mexico ⁴	r ₁₂₀	^r 365	400	440	400
Spain	200	229	229	150	⁵ 176
Turkey	80	71	53	53	55
U.S.S.R. e 6	350	365	375	385	385
United States ⁷	636	605	533	3583	3608
Total	^r 1,926	r _{2,141}	2,149	2,199	2,293
Synthetic:					
Austria	60	60	60	60	60
Belgium ^e	275	275	275	275	275
Chile ⁸	33	48	76	66	66
Finland ^e	50	55	50	50	50
France	131	138	168	165	165
German Democratic Republic	r ₁₅₁	144	140	140	140
Germany, Federal Republic of	267	233	233	209	210
Greece ^e	7	7	8	12	12
Hungary	11	11	11	11	11
Italy e	r ₁₀	r10	10	10	10
Japan	357	353	373	342	330
Netherlands	55	55	e ₅₅	55	55
Portugal	51	56	e50	57	55
Spain ⁹	192	134	193	193	190
Sweden	116	116	116	116	116
U.S.S.R. e 6	250	265	265	275	275
United States ¹⁰	r ₅₆₃	r ₅₆₄	r ₅₈₈	556	535
Total	r _{2,579}	r _{2,524}	r2,671	2,592	2,555

Preliminary. rRevised.

⁶Conjectural estimates based on 1968 information on natural sodium sulfate and general economic conditions.

^eEstimated. ^pPreliminary. ^rRevised. NA Not available.

¹Table includes data available through May 12, 1982. Synthetic unless otherwise specified.

³Production for sale only; excludes output consumed by producers. ⁴Less than 1/2 unit.

⁵Includes natural and synthetic. ⁶Reported figure.

[&]quot;Table includes data available through May 12, 1982.

In addition to the countries listed, China, Norway, Poland, Romania, Switzerland, and the United Kingdom are known to or are assumed to have produced synthetic sodium sulfate, and other unlisted countries may have produced this commodity, but production figures are not reported and available general information is inadequate for the formulation of reliable estimates of output levels.

Natural mine output, excluding byproduct output from the nitrate industry, which is reported separately under

^{*}Series revised to reflect output reported by Mexico's principal producer, Industrias Peñoles, S.A. In 1979, and probably in other years, an additional 20,000 tons (estimated) of natural sodium sulfate was produced by a smaller producer.

*Reported figures.

⁷Sold or used by producers.

⁷Sold or used by producers.

⁸Byproduct of nitrate industry.

⁹Quantities of synthetic sodium sulfate credited to Spain are reported in official sources in such a way as to indicate that they are in addition to the quantities reported as mined (reported in this table under "Natural"), but some duplication may exist.

¹⁰Derived approximate figure; data presented are the difference between reported total sodium sulfate production (natural and synthetic, undifferentiated) and reported natural sodium sulfate sold or used by producers (reported under "Natural" in this table).

TECHNOLOGY

A feasibility study was prepared under contract with the U.S Department of Energy detailing the use of soda ash in an experimental peat biogasification project. The abundant peat resources of the United States could be used as an alternate energy source. Soda ash would be used to solubilize the peat before oxidation and fermentation reactions convert the peat to methane. Preliminary data indicate that about 1 ton of soda ash would be needed for every 3 tons of peat converted. The major advantage of this biogasification process is that wet peat can be used without the need for predrying for

treatment.8

¹Physical scientist, Division of Industrial Minerals.
²Chemical Week. PET Makes It Big in World Bottle
Markets. V. 130, No. 8, Feb. 24, 1982, pp. 55-56.
³European Chemical News. EEC Slaps Antidumping
Duty on Imports of Bulgarian Soda Ash. V. 37, No. 997,
Sept. 7, 1981, p. 15.
⁴Chemical Week. Quebec Considers Soda Ash Production. V. 129, No. 16, Oct. 14, 1981, p. 27.
⁵European Chemical News. Akzo Invests Dfl. 45m. in
Soda Ash Modernization. V. 37, No. 1009, Nov. 30, 1981, p. 29.

p. 29. Chemical Age. Coal Hitch Hits Polish Soda Ash. May

"Chemical Age. Coal filter Fulls Fulls Soula Age. May, 15, 1981, p. 12.

"Chemical Week. Spain Lifts the Duty on Sodium Sulfate. V. 128, No. 5, Feb. 4, 1981, p. 25.

"Bynatech R/D Co. Peat Biogasification Development Program. U.S. Dept. of Energy. Contract No. ACO1-79ET14696, Apr. 21, 1981, 150 pp.

Stone

By Harold A. Taylor, Jr. and Valentin V. Tepordei¹

A total of 873 million tons of crushed stone valued at \$3.1 billion, f.o.b. plant, was reported produced in the United States in 1981. This tonnage is the lowest production reported in 11 years, 11% less than that of 1980 and 21% below the record high production of 1979, reflecting mainly the impact of the recession on the construction industry. About three-quarters of crushed stone production continued to be limestone, followed by granite, traprock, sandstone, shell, marl, volcanic cinder, marble, and slate, in order of volume.

Production of dimension stone totaled 1.33 million tons valued at \$150.5 million in 1981, little changed in tonnage from the last 5 years. One-half of the dimension stone produced was granite, followed by limestone and sandstone.

The Bureau of Mines canvass of dimension stone does not include processors of purchased rough stone. All producers are covered; if the producer sells rough stone to a processor, it is tabulated as rough stone; if the producer processes finished stone, only the finished stone is tabulated, and the rough stone is deducted. The Bureau of Mines generally accepts the stone classifica-

tion reported by producers.

Granite usually includes all coarsergrained igneous rocks. Limestone may be pure calcium carbonate or may be bituminous, dolomitic, or siliceous. The term "traprock" pertains to all dense, dark, finegrained igneous rocks. Marble may include calcareous rock that will polish. Sandstone may be calcareous, quartz or quartzite, or a conglomerate. Quartzite may be described as any siliceous-cemented sandstone. Quartzite that has been comminuted to sand is included in the sand and gravel chapter.

Exports of crushed stone in 1981 increased 17% to 3.6 million tons, and imports decreased 7%. Ninety-two percent of the exported and 62% of the imported crushed stone was limestone. Domestic apparent consumption of crushed stone in 1981 was 873 million tons.

Although exports of dimension stone increased 29% in 1981, the quantity was still relatively minor. Imports of dimension stone value increased 48% to \$131 million, equivalent to 87% of the value of domestic production. World production of dimension stone was about the same.

Table 1.—Salient stone statistics in the United States

(Thousand short tons and thousand dollars)

	1977	1978	1979	1980	1981
Sold or used by producers:					
Dimension stone	1,416	1,394	1,350	1,315	1,331
Value	\$103,900	\$113,100	\$122,800	\$138,900	\$150,500
Crushed stone ¹	954,000	1,049,600	*1,099,500	r983,500	873,000
Value	\$2,353,000	\$2,773,000	r\$3,275,900	r\$3,265,800	\$3,126,500
Total stone ²	955,400	1,051,000	r _{1,100,850}	*984,815	874,400
Total value ³	\$2,457,000	\$2,886,000	r\$3,398,700	r\$3,404,700	\$3,277,000
Exports (value)	\$22,600	\$31,400	\$40,200	\$36,400	\$43,800
Imports for consumption (value):					
Dimension stone	\$37,900	\$51,700	\$65,800	r\$88,900	\$131,400
Crushed stone	\$10,700	\$13,100	\$16,000	\$13,900	\$13,900

rRevised.

¹Includes volcanic cinder and scoria in 1979-81.

²Does not include American Samoa, Guam, Puerto Rico, and Virgin Islands.

³Data may not add to totals shown because of independent rounding.

Legislation and Government Programs.—In August 1981, the Economic Recovery Tax Act became Public Law 97-34. This law provides accelerated cost recovery system incentives for plant, equipment, and real property placed in service after 1980.

Despite the introduction of several bills in both houses of the 97th Congress favoring transfer of regulatory responsibility for mining all surface stone and sand and gravel from the Mine Safety and Health Administration (MSHA) to the Occupational Safety and Health Administration (OSHA), no final decision was made on this matter. A temporary restraint of MSHA's enforcement of safety rules in the surface mining of stone and sand and gravel oper-

ations was achieved by Congress by limiting the funding of the U.S. Department of Labor through March 1982.

Following a decision of the Federal Mine Safety and Health Review Commission, in April 1981, new guidelines were issued to MSHA inspectors regarding changes in their practice of designating "significant and substantial" violations of safety and health rules by the mine operators. A comparative analysis of the Mine Safety and Health Act and the Occupational Safety and Health Act was presented during the National Crushed Stone Association and National Sand and Gravel Association Government Affairs Conference in Washington, D.C., in April 1981.²

CRUSHED STONE³

DOMESTIC PRODUCTION

Of the total 873 million tons of crushed stone produced in the United States in 1981, 646 million tons or 74% was lime-stone, 101 million tons or 12% was granite, and 71 million tons or 8% was traprock. Total quantities and values of crushed stone by kind produced in the United States in 1980 and 1981, as well as the approximate number of quarries producing each kind of stone are shown in table 2.

In 1981, the South Atlantic region led the Nation in the production of crushed stone with 206 million tons or 24% of the U.S. total. Next was the East North Central region with 152 million tons or 17% of the total, followed by West South Central with 124 million tons or 14%. If the four major geographic regions are compared, the South led the Nation in the production of crushed stone with 48% of the total, followed by the North Central with 28%, and the Northeast with 13%. Approximately 76% of the total U.S. crushed stone was produced in two major geographic regions, South and North Central.

A comparison of 1980 and 1981 production by regions indicates that, except for New England, output of crushed stone decreased in all regions in 1981 between 2% and 16%. The largest decrease in production was recorded in the West North Central region, 16%, significantly more than the national average of about 11%. In New England, production of crushed stone increased by 1% (table 4).

Based on 1980 census data on population, per capita crushed stone production in 1981 was 3.85 tons, a decrease of 11% from 1980.

At the regional level, per capita production was 5.6 tons in the South, followed by the North Central with 4.1 tons, and the North East, and West with 2.3 tons each.

Crushed stone was produced in every State except Delaware and North Dakota. The 10 leading States in the production of crushed stone in 1981, in order of volume, were Texas, Florida, Pennsylvania, Illinois, Missouri, Virginia, Ohio, Georgia, California, and Tennessee. Their combined production represented 52% of the national total.

Production of crushed stone decreased in most States in 1981, including all of the top 10. The only States that showed an increase in production were Alaska, Arizona, Colorado, Maine, Massachusetts, New Hampshire, New Mexico, and Oklahoma, all small producers of crushed stone, except Oklahoma (table 3).

In 1981, a total of 1,809 producers of crushed stone with 5,137 quarries were canvassed by the Bureau of Mines; actual reports were received from 2,620 operations that produced about 75% of the total tonnage. Production for about 1,200 quarries was estimated. Most of the crushed stone produced in 1981 came from quarries with an annual output larger than 300,000 tons; 837 quarries, representing 22% of the total number of active quarries, produced 74% of the total tonnage. The number of crushed stone quarries by size, and their output, is shown in table 5. The 10 leading producers of crushed stone in 1981 were, in descending order of tonnage: Vulcan Materials Co.; Martin Marietta Aggregates; Koppers Co. Inc.; Lone Star Industries, Inc.; U.S. Forest

STONE 777

Service; Dolese Brothers Co.; General Dynamics Corp.; Genstar Ltd.; Florida Rock Industries, Inc.; and the United States Steel Corp.

In 1981, Vulcan Materials Co., the largest commercial producer of crushed stone in the world, bought 10 limestone operations: 5 quarries in Alabama from Trinity Quarries of Decatur, Ala., and 5 quarries in Illinois from Pontiac Stone Co. of Pontiac, Ill. It now operates a total of 84 quarries in the United States. Genstar Ltd. bought from Flintkote Stone Products Co. several limestone quarries located in Maryland, Virginia, New York, Arizona, and California. The quarries were being managed by a new subsidiary company, Genstar Stone Products. Amoco Minerals Co., a subsidiary of Standard Oil Co. of Indiana, bought a limestone quarry in Kentucky from Harbest Corp. Acadian Sand & Limestone Inc. of Abbeville, La., changed its name to Ingram Aggregates Inc. to reflect its relationship with the parent company, Ingram Industries Inc. of Nashville, Tenn.

A specific kind of stone—volcanic cinder and scoria—is included in this chapter for the first time. It had been included in prior years in the Pumice and Volcanic Cinder chapter.

Limestone.—Limestone includes dolomite. Compared with that of 1980, 1981

output of crushed limestone decreased 11% in tonnage and 4% in value to 646 million tons and \$2,227 million. Limestone was produced by 1,238 companies at 2,673 quarries in 46 States. Leading States, in order of tonnage, were Texas, Florida, Illinois, Pennsylvania, and Missouri; these five States accounted for 40% of the total U.S. output. The 1981 production of crushed limestone decreased in most of the States, including the top five, by 2% to 17%. Leading U.S. producers were, in order of volume, Vulcan Materials Co., Martin Marietta Aggregates, and Lone Star Industries, Inc. These three companies accounted for 10% of total U.S. output (table 7).

Granite.—Compared with that of 1980, 1981 output of crushed granite decreased 14% in tonnage and 8% in value to 101 million tons and \$386 million. Granite was produced by 132 companies at 361 quarries in 29 States. Leading States continued to be, in order of tonnage, Georgia, North Carolina. Virginia, and South Carolina; these four States accounted for 73% of U.S. output. The 1981 production of crushed granite decreased in most of the States, including the top four; the decrease was between 11% and 21%. Leading U.S. producers, in order of tonnage, were Vulcan Materials Co., Martin Marietta Aggregates, and Koppers Co. Inc.; their combined production repre-

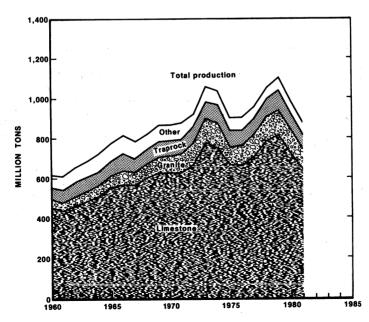


Figure 1.—Crushed stone sold or used by producers in the United States, by kind.

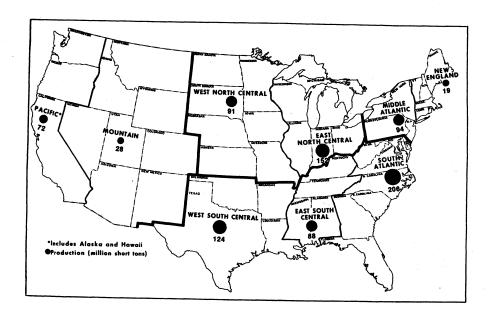


Figure 2.—Production of crushed stone by geographic region in 1981.

sented 46% of the U.S. total (table 8).

Traprock.—Compared with that of 1980, 1981 production of crushed traprock decreased 13% in tonnage and 6% in value to 71 million tons and \$282 million. Traprock was produced by 293 companies at 514 quarries in 23 States. Leading States, in order of total tonnage were Oregon, New Jersey, and Washington; these three States accounted for 42% of U.S. output.

The 1981 production of crushed traprock decreased in most of the States, including the top three; the decrease was between 10% and 15%. Leading U.S. producers, in order of tonnage, were U.S. Forest Service, Tilcon Inc., and Koppers Co. Inc. Their combined production accounted for 25% of total U.S. output (table 9).

Sandstone.—Compared with that of 1980, 1981 output of crushed sandstone decreased 21% in tonnage and 18% in value to 23 million tons and \$84 million. Crushed sand-

stone was produced by 150 companies at 319 quarries in 27 States. Leading States, in order of volume, were Arkansas, Pennsylvania, and California; these three States accounted for 40% of U.S. output. Leading producers of sandstone, in order of tonnage, were Martin Marietta Aggregates, East Bay Excavating Co. Inc., and U.S. Forest Service; their combined production represented 16% of the U.S. total (table 10).

Shell.—Shell is mainly fossil reefs of oyster shell. Compared with that of 1980, 1981 output of crushed shell decreased 1% to 10.8 million tons valued at \$50 million. Crushed shell was produced by 13 companies at 21 quarries in 6 States. Louisiana accounted for 67% of U.S. output. The other major producing States, in order of volume, were Florida, Texas, and Alabama. Leading producers, in order of tonnage, were Radcliff Materials Inc. (a subsidiary of Dravo Corp.), Pontchartrain Dredging Corp., and Parker

779

Brothers & Co., Inc.; their combined production represented 69% of U.S. output.

Marble.—Compared with that of 1980, 1981 production of crushed marble decreased 21% to 1.1 million tons, valued at \$22.5 million. Crushed marble was produced by 9 companies at 18 quarries in 6 States. Leading States, in order of tonnage, were Alabama, Georgia, and Texas. Alabama alone accounted for 49% of the U.S. total. Leading producers of crushed marble, in order of tonnage, were Georgia Marble Co., Standard Oil Co. of Indiana, and Moretti-Harrah Marble Co.; their combined production represented 87% of the total U.S. output (table 13).

Calcareous Marl.—Compared with that of 1980, 1981 output of marl showed a small increase of 3% to 3.8 million tons valued at \$8.0 million. Marl was produced by 25 companies at 26 quarries in 9 States. South Carolina accounted for 71% of total U.S. output, followed by Texas and Mississippi. Leading producers, in order of tonnage, were Dundee Cement Co., Gifford-Hill & Co., Inc., and Giant Portland Cement Co.; their combined output accounted for 71% of the total U.S. production. These three leading producers of marl were also manufacturers of portland cement (table 11).

Volcanic Cinder and Scoria.—Compared with that of 1980, 1981 production of volcanic cinder and scoria increased 13% in tonnage and 19% in value to 3.7 million tons and \$13.4 million. Volcanic cinder and scoria was produced by 50 companies from 199 operations in 8 States. Leading States, in order of volume, were Arizona, Oregon, California, and New Mexico; their combined production accounted for 84% of the total U.S. output. Leading producers, in order of tonnage, were U.S. Forest Service, Twin Mountain Rock Co., and Apache City Highway Department. These top three producers accounted for 67% of U.S. output (table 12).

Slate.—Compared with that of 1980, 1981 output of crushed slate decreased by 51% to 521,000 tons valued at \$7.7 million. Crushed slate was produced by eight companies at nine quarries in six States. Leading States, in order of tonnage, were Virginia, Georgia, and Arkansas; their combined production accounted for 96% of U.S. output. Leading producers, in order of tonnage, were Galite Corp., Arvonia-Buckingham Slate Co., and Amlite Corp. The top three producers accounted for 79% of U.S. output.

Miscellaneous Stone.—Compared with

that of 1980, 1981 output of miscellaneous crushed stone increased 6% in tonnage and 30% in value to 12.6 million tons and \$45 million (table 14).

CONSUMPTION AND USES

The crushed stone production reported to the Bureau of Mines by producers is material "sold or used" by the producers. Stockpiled production is not reported until it is sold or used. Therefore, the sold or used tonnage represents the amount of production released for domestic consumption or export in a given year.

In 1981, U.S. consumption of crushed stone decreased 11% to 873 million tons valued at \$3.1 billion. About 70% of this tonnage was used as construction aggregates, mostly for highway and road construction and maintenance, 14% was for cement and lime manufacturing, 4% was for agricultural purposes, and 2% was for metallurgical processes (table 15).

Limestone.—Of the 646 million tons of crushed limestone consumed in 1981, 67% was used as construction aggregates, 19% was for cement and lime manufacturing, and 5% was for agricultural purposes (table 16). No significant changes occurred in the use patterns of crushed limestone at the national level. At the State level, consumption of crushed limestone as construction aggregates decreased significantly in most of the top producing States, from 7% in Texas to between 13% and 20% in Pennsylvania, Ohio, Tennessee, Missouri, and Illinois, and 29% in Wisconsin. The only State that showed an increase in consumption of construction aggregates was Oklahoma, 12%.

Consumption of crushed limestone for lime manufacturing decreased between 13% and 35% in Ohio, Texas, and Alabama, but increased in Missouri, 7%, and Michigan, 10%. Consumption of aglime decreased significantly in Illinois, 16%, in Iowa and Missouri, 24% each, and in Florida, 27%. Also notable during 1981 were significant increases in the consumption of flux stone in Kentucky and riprap in New Mexico. The consumption of riprap in Illinois and railroad ballast in New York showed significant decreases (table 17).

Granite.—Of the 101 million tons of crushed granite consumed in 1981, 81% was used as construction aggregates, and 13% was used as railroad ballast. Compared with that of 1980, consumption of construction aggregates in 1981 decreased 16%, filter stone decreased 73%, and railroad ballast

increased 6% (table 18).

Traprock.—Of the 71 million tons of crushed traprock consumed in 1981, 91% was used as construction aggregates, and 5% was used as railroad ballast (table 19).

Sandstone.—Of the 23 million tons of crushed sandstone consumed in 1981, 77% was used as construction aggregates, and 6% was used as railroad ballast (table 20).

Shell.—Of the 11 million tons of crushed shell consumed in 1981, 75% was used as construction aggregates, mostly for roads, and 11% was used for cement manufacturing. No significant changes in the use pattern occurred (table 21).

Calcareous Marl.—Of the 3.8 million tons of marl consumed in 1981, 92% was for cement manufacturing, and 7% was for agricultural purposes. No significant changes in the use pattern occurred.

Volcanic Cinder and Scoria.—Of the 3.7 million tons of volcanic cinder and scoria consumed in 1981, 92% was used as construction aggregates, mainly for road construction and maintenance (table 22). This was the only use that showed an increase.

Marble.—No significant changes in enduse patterns of crushed marble occurred in 1981 (table 23).

Slate.—Of the 521,000 tons of crushed slate consumed in 1981, 83% was used as construction aggregates, and 9% as slate flour. No significant changes occurred in the consumption pattern.

Miscellaneous Stone.—Of the 13 million tons of miscellaneous crushed stone consumed in 1981, 96% was used as construction aggregates, mainly for road construction and maintenance (table 24).

PRICES

Compared with that of 1980, the 1981 average unit price of crushed stone increased 8%, to \$3.58 per ton. By kind of stone, the average unit prices showed increases from 4% for sandstone, 5% for volcanic cinder, and 8% for limestone, granite, and traprock, 19% for marble, 25% for shell, and 31% for slate. Crushed marl was the only kind of stone that showed a very small decrease in average unit price (table 2).

All unit prices by end use showed increases except for a significant decrease in unit price, 19%, for slate flour.

TRANSPORTATION

Of the total crushed stone produced in 1981, 83% was transported by truck from the plant or quarry to the site of the first point of sale or use, 8% was transported by rail, and 5% by waterway, as shown in table

6. Because most of the producers have not kept records or reported data regarding the distance to which crushed stone was shipped or the cost per ton per mile of the shipments, no transportation cost data have been available.

FOREIGN TRADE

Exports.—Exports of crushed stone, increased 17% to 3.6 million tons, and 22% in value to \$25.9 million. Ninety-two percent of the crushed stone exported in 1981 was limestone and 91% of it was exported to Canada. Exports of quartzite also increased significantly to a total value of \$2.5 million (table 25).

Imports.—Imports of crushed stone decreased 7% in 1981 to 3.4 million tons valued at \$9.3 million. Approximately 62% of this tonnage was limestone, 93% of which came from Canada. Imports of quartzite, over 99% from Canada, more than quadrupled to 71,000 tons valued at \$761,000.

Imports of calcium carbonate fines decreased 8% to 270,000 tons valued at \$4.6 million; of this, aragonite from the Bahamas accounted for 90% on a tonnage basis but only 8% on a value basis. Imports of chalk whiting, 95% from France, increased 100% to 16,000 tons. About 10,000 tons of precipitated calcium carbonate was imported in 1981; of this, 41% came from France, 37% came from the United Kingdom, and 20% was imported from Japan (table 26).

WORLD REVIEW

The estimated world annual production of crushed stone in 1981, excluding centrally planned economy countries, was about 2.7 billion tons, a decrease of about 10% from the 1980 production. Of this total, the United States produced about one-third.

Canada.—Preliminary estimations of crushed stone production indicate a decrease of 8% in 1981 to 95 million tons, valued at \$289 million. The estimated average unit price increased by 11% to \$3.04 per ton. The Province of Quebec was the largest producer of crushed stone with over 50% of the total, followed by Ontario with about 30%.

TECHNOLOGY

The 64th annual convention of the National Crushed Stone Association was held in January 1981 in New Orleans, La. Energy conservation, use of computers in the crushed stone industry, improvements in quarry production, optimization of productivity in stone operations, and ground vibra-

tion and air blast were among the major topics discussed at the convention.5

The 36th annual convention of the National Limestone Institute was held in January 1981 in Washington, D.C. Mine safety regulations, including MSHA-OSHA transfer, transportation, and use of limestone for agricultural purposes were discussed at the convention.

ConExpo'81, the largest heavy equipment exhibit ever organized in the Western Hemisphere, was held in February 1981 in Houston, Tex. Several new models of heavy mining and construction equipment were presented at the show as well as improvements on existing machinery.

A special water-resistant concrete has been developed in Japan, for use in underwater construction projects, such as bridge or dam foundations. The concrete, called "hydrocrete," is made of cement, sand, and crushed stone and has strong adhesive properties that make it stable in water. The strength of the concrete can be controlled by changing the ratio of its components.⁸

A new process that will enable industrial boilers to burn high-sulfur coal cleanly was patented by Conoco Coal Development Co. and Stone & Webster Engineering Co. called "Solids Circulation Fluidized-Bed Combustion." The process consists of mixing coal with crushed limestone which reacts with the sulfur dioxide combustion product of the coal. Conoco planned to construct a commercial-size demonstration plant with a capacity of 50,000 pounds of steam per hour at its Lake Charles, La., chemical complex.

High-quality mineral textile fibers with tensile strengths averaging 500,000 pounds per square inch, good chemical resistance, and high-temperature insulation characteristics was produced from basaltic waste by the Michigan Technological University at Houghton, Mich. Some of its possible applications include fabrics used in harsh chemical environments, concrete reinforcement, and as sound and thermal insulation. Basaltic fiber production has proven to be economically feasible, and a number of basalt fiber plants have been developed in Western Europe and the U.S.S.R.

Several articles dealing with crushed stone plant design, 10 plant operation and efficiency, 11 energy, 12 recycling of waste material, 13 blasting, drilling, 14 and transportation, 15 were discussed in several articles published during 1981.

Table 2.—Crushed stone sold or used by producers in the United States, by kind

		1980			1981				
Kind	Number of quarries	Quantity (thousand short tons)	Value (thousands)	Unit value	Number of quarries	Quantity (thousand short tons)	Value (thousands)	Unit value	
Limestone	2,806	723,166	\$2,315,511	\$3.20	2,673	646,168	\$2,227,474	\$3.45	
Granite	406	117,949	417,985	3.54	361	101,073	386,322	3.82	
Traprock	579	81,396	300,198	3.69	514	70,577	282,367	4.00	
Sandstone	317	28,874	102,497	3.55	319	22,811	84,016	3.68	
Shell	15	10,914	40,060	3.67	21	10,769	49,541	4.60	
Marl	26	3,719	7,901	2.12	26	3,824	8.016	2.10	
Volcanic cinder	199	r _{3,236}	r _{11,258}	r _{3.48}	199	3,667	13,400	3.65	
Marble	27	1,348	23,732	17.61	18	1,071	22,519	21.03	
Slate	īi	1,057	12.014	11.37	9	521	7,740	14.86	
Miscellaneous	234	11,882	34,674	2.92	190	12,568	45,110	3.59	
Total ¹		r983,542	r3,265,830	r _{3.32}		873,050	3,126,504	3.58	

Revised.

¹Data may not add to totals shown because of independent rounding.

Table 3.—Crushed stone sold or used by producers in the United States, by State¹

(Thousand short tons and thousand dollars)

State -	19	980	19	81	
	Quantity	Value	Quantity	Value	
Alabama	23,433	82,270	20.706	88.37	
Alaska	3,990	19,978	5,359	26,85	
Arizona	r _{6,205}	r24,780	6,315	26,26	
Arkansas	20,666	61.399	13.834	47.26	
California	r37,760	^r 118,140	34,560	118.69	
Colorado	6,277	20,068	6,969	24,08	
Connecticut	7,977	40,283	7.247	38.11	
florida	66,209	215,972	65.067	226.19	
Jeorgia	40,884	162,642	35.730	153,75	
Hawaii	6,341	30,634	6.036	31.40	
daho	2,007	7,240	1.437	6,20	
Ilinois	53,309	180,656	44.159	165.21	
ndiana	30,910	92.106	25,349	79,91	
lowa	26,542	92,603	22,424		
Kansas	17.398	54,731	14.143	82,89	
Kentucky	11,356 W	94,751 W		45,73	
ouisiana			32,433	108,25	
	W	W	² 7,228	² 34,56	
	1,130	3,969	1,375	_5,53	
Maryland	18,945	77,431	16,485	74,28	
Massachusetts	7,316	36,804	7,997	41,03	
Michigan	32,121	91,727	30,013	94,32	
Minnesota	8,606	21,731	6,995	18,43	
Mississippi	W	W	³ 1,984	35,45	
Missouri	48,296	130,254	40,910	116,29	
Montana	1,962	6,302	1,582	5.13	
Nebraska	3,775	16,301	3,139	14,024	
Nevada	1,809	7,407	1,343	5,664	
New Hampshire	590	2,281	665	2,599	
New Jersey	11,830	61.886	10,434	57.81	
New Mexico	^r 2,581	r9.473	4.162	12.48	
Vew York	34,483	120,764	30,681	117.68	
North Carolina	34,764	125,019	28,833	117,09	
Ohio	42,441	136,929	36,950	125,588	
Oklahoma	28,173	76,267	29,930	83,407	
Oregon	r19.251	r49,606	16.482	46,05	
Pennsylvania	61.143	218.231	53,258	207.821	
Rhode Island	203	1,208	141	1.11	
South Carolina	16.107	49.207	14.825	49.830	
outh Dakota	3,151	8,942	2,985	9,08	
ennessee	38,584	126,993	⁴ 32.497		
exas	76.483	220,265		4113,729	
Utah	r _{2,954}		72,454	219,086	
Townsont		r12,123	2,840	12,15	
Vermont	1,320	4,787	1,319	5,144	
Vashington	44,615	167,839	37,071	152,630	
	^r 11,085	29,024	9,516	25,619	
Vest Virginia	9,766	36,305	7,885	28,399	
Visconsin	20,603	49,245	15,189	39,962	
Vyoming bther	4 <u>,</u> 374 ^r 45,172	14,835 ^r 149,171	3,224 891	9,858 5,358	
Total ⁵	r983,542	r _{3,265,830}	873,050	3,126,504	
American Samoa	W	167	6	3,120,304	
luam	529	2,163	332		
uerto Rico	23.917	101.908	20,473	96,223	

W Withheld to avoid disclosing company proprietary data; included with "Other."

Revised. W withheld to avoid disclosing company proprietary data; included with "Other."

*Does not include miscellaneous stone, to avoid disclosing company proprietary data; included with "Other."

*Does not include marl, to avoid disclosing company proprietary data; included with "Other."

*Does not include marble, to avoid disclosing company proprietary data; included with "Other."

*Data may not add to totals shown because of independent rounding.

783 STONE

Table 4.—Crushed stone sold or used in the United States, by region¹

(Thousand short tons and thousand dollars)

D	19	980	1981	
Region	Quantity	Value	Quantity	Value
Northeast:				
New England	18,536	89,332	18.744	93,543
Middle Atlantic	107,456	400,881	94,374	383,329
North Central:	,	,	,	,
East North Central	179,384	550.663	151,660	505,002
West North Central	107,768	324,562	90,596	286,472
South:	201,100	021,002		
South Atlantic	231,290	834.415	205,895	802,184
East South Central	98,886	324.567	87,943	316,346
West South Central	133,171	389,550	124.014	389,146
West:	100,111	000,000	121,011	000,110
Mountain	r _{28,333}	r103.249	27,872	101.852
D 18	78,715	r248,609	71,952	248,631
Pacific	18,719	448,009	11,952	440,001
Total ²	r _{983,542}	r3,265,830	873,050	3,126,504

Table 5.—Crushed stone¹ sold or used by producers in the United States, by size of operation

(Thousand short tons)

		1980		1981			
Size range	Number of operations	Quantity	Percent	Number of operations	Quantity	Percent	
0 to 25	r _{1,264}	r10,485	1	1,136	10,799	1	
25 to 50	^ŕ 628	r22,868	2	560	20,804	2	
50 to 75	r291	r ₁₇ .937	2	262	16,032	2	
75 to 100	r ₂₁₉	r19,075	2	355	29,680	3	
100 to 200	r662	r90,118	9	542	77,776	9	
200 to 300	r352	r86,138	ğ	326	79,892	g	
300 to 400	207	71,490	7	205	71,219	Š	
100 to 500	185	81,846	8	157	70,105	Ę	
600 to 600	149	63,540	6	115	62,792	7	
600 to 700	105	68,134	7	88	56,688	7	
700 to 800	76	56,921	6	50	37,109	. 4	
300 to 900	56	47,686	5	49	41,665	5	
000 to 999	30	28,543	3	30	28,359	8	
1,000 and over	171	318,760	33	144	270,130	32	
Total ²	r _{4,395}	r983,542	100	4,019	873,050	100	

Table 6.—Crushed stone sold or used by producers in the United States, by method of transportation¹

(Thousand short tons)

Method	19	80	1981	
Method	Quantity	Percent	Quantity	Percent
Truck Rail Water Other	805,418 81,838 51,642 41,407	82 9 5 4	719,109 70,940 45,478 33,855	83 8 5 4
Total	980,305	100	² 869,383	100

^rRevised. ¹Includes volcanic cinder and scoria.

²Data may not add to totals shown because of independent rounding.

^rRevised.

¹Volcanic cinder and scoria data included.

²Data may not add to totals shown because of independent rounding.

Volcanic cinder and scoria not included.
 Data do not add to total shown because of independent rounding.

Table 7.—Crushed limestone sold or used by producers in the United States, by State (Thousand short tons and thousand dollars)

State	19	80	1981		
State	Quantity	Value	Quantity	Value	
Alabama	21.412	65,948	19.159	72.62	
Alaska	2,848	13,811	3,022	15,98	
	4.580	19,017	4,520	18.94	
Arizona	8,737	24,215	6.116	18.88	
Arkansas	17.359			58.96	
California		61,054	16,108		
Colorado	4,052	13,608	4,090	13,86	
Florida	65,252	213,760	63,394	222,04	
Georgia	6,143	23,738	5,618	24,27	
daho	420	1,063	379	1,00	
llinois	53,309	180,656	44,159	165,21	
ndiana	30,896	92,079	25,343	79,89	
owa	26,542	92,603	22,424	82,89	
Kansas	16,949	52,370	13,783	43,93	
Kentucky	33,687	105,207	31,900	105,40	
Maine	900	2,964	944	3,62	
Maryland	12.018	50,659	10,801	49,44	
Massachusetts	W	W	681	10.69	
Michigan	32.056	91.629	29.568	92.90	
	5,797	14,314	4.918	13.29	
Minnesota					
Mississippi	1,996	4,667	1,984	5,45	
Missouri	46,248	125,987	38,618	111,21	
Montana	1,400	4,648	1,118	3,83	
Nebraska	3,775	16,301	3,138	14,02	
Nevada	1,208	5,485	1,043	4,35	
New Mexico	1,273	4,396	1,728	6,35	
New York	30,894	103,404	27,942	102,98	
North Carolina	4,592	17,736	4,276	17,94	
Ohio	41,938	134,923	36,667	124,00	
Oklahoma	27,091	72,684	28,591	79,67	
Pennsylvania	47.620	171,358	42,226	167,00	
South Carolina	3.185	9,470	2.677	10.19	
South Dakota	2.237	5,428	2,048	5,27	
Cennessee	38,580	126.827	32,497	113,72	
	72,956	202.517	69,965	206.91	
Texas	2,712	11.246	2,653	11.82	
Jtah				4.23	
Vermont	1,123	4,036	1,093		
/irginia	18,496	62,704	16,387	62,19	
Washington	1,380	3,630	1,398	3,58	
West Virginia	8,277	30,506	6,782	24,56	
Visconsin	16,957	39,405	12,148	30,75	
Wyoming	2,646	9,524	1,750	5,92	
Other	3,624	29,931	2,510	17,52	
Total ²	723,166	2,315,511	646.168	2.227.47	
Juam	529	2,163	332	V	
Puerto Rico	20.981	91,214	18.462	87.78	

W Withheld to avoid disclosing company proprietary data; included with "Other."
¹Includes Connecticut, Hawaii, New Jersey, Oregon, and Rhode Island.

²Data may not add to totals shown because of independent rounding.

Table 8.—Crushed granite sold or used by producers in the United States, by State (Thousand short tons and thousand dollars)

	198	30	1981		
State	Quantity	Value	Quantity	Value	
Alabama	251	1,048	w	w	
Alaska	767	4,142	929	5,275	
Arizona	396	1.031	246	623	
Arkansas	6,754	19,466	4.170	14,991	
California	5,847	17,665	5,758	18,106	
Colorado	1.935	5,205	2,394	7,906	
Georgia	32,581	121,002	27,959	111,380	
daho	368	1,458	W	W	
Maryland	W	W	1.691	7,438	
Massachusetts	756	2.848	1.093	4,168	
Minnesota	2,591	6,582	1,913	4,516	
Montana	2,002	16	, w	w	
Nevada	w	w	69	138	
New Mexico	57	287	w	w	
North Carolina	26,792	94.418	21.691	86,226	
Oklahoma	Zo,.vw	144	w w	w	
South Carolina	10.614	35,173	9.424	34,140	
Cexas	23	528	0,121	01,110	
Jtah	-1	2			
Virginia	18,238	72,578	14.336	62,936	
Washington	W	.2,010 W	98	253	
Wisconsin	ẅ	ŵ	462	1,227	
Wisconsin	1,703	4.754	1,474	3,934	
	8,267	29,640	7,365	23,065	
Other ¹	8,201	49,040	1,000	20,000	
Total ²	117,949	417.985	101,073	386,322	
Puerto Rico	w	w	W	w	

Table 9.—Crushed traprock sold or used by producers in the United States, by State (Thousand short tons and thousand dollars)

Ct. I	198	30	198	31
State	Quantity	Value	Quantity	Value
Alaska	268	1,703	931	3,623
California	6,440	19,077	6,240	23,193
Colorado	84	271	· w	w
Connecticut	7.346	35.653	6.927	35,359
Hawaii	4,944	24,326	4,471	23,741
Idaho	795	2,086	532	1,980
Maryland	3,728	14.311	W	W
Massachusetts	5,790	22,949	6,223	26,177
Michigan	37	44	1	. 2
Montana	123	290	w	w
New Jersey	8,936	42,511	8.023	41,012
New Mexico	178	426	W	W
New York	2.746	14.530	2,050	11,602
North Carolina	3,128	11,805	2,587	11,639
Oregon	16,781	43,051	14,331	40,179
Pennsylvania	3,493	12,374	3,216	11,975
Texas	52	220	w	W
Utah	160	399	• • • • • • • • • • • • • • • • • • • •	
Virginia	5,866	24.052	4,376	19,467
Washington	8,287	21,735	7,368	20,030
Wisconsin	1.402	5.278	1,031	4,242
Wyoming	10	21	-,00-	-,
Other ¹	803	3,086	2,270	8,146
	81,396	300,198	70,577	282,367
	81,396 W	167	10,511	282,367 127
American Samoa				
Puerto Rico	2,146	6,657 W	1,177	4,143
Virgin Islands	w	w	290	2,565

W Withheld to avoid disclosing company proprietary data; included with "Other."
¹Includes Maine, Minnesota, Nevada (1980), and New Hampshire.

²Data may not add to totals shown because of independent rounding.

W Withheld to avoid disclosing company proprietary data; included with "Other."

*Includes Connecticut, Missouri, New Hampshire, New Jersey, Oregon, Pennsylvania, Rhode Island, and Vermont.

*Data may not add to totals shown because of independent rounding.

Table 10.—Crushed sandstone sold or used by producers in the United States, by State

(Thousand short tons and thousand dollars)

State	198	30	198	31
State	Quantity	Value	Quantity	Value
Arizona	194	758	261	1,52
Arkansas	5,053	15,215	3.432	11,37
California	4,131	9,482	2,504	6,23
Colorado	206	984	234	1,19
Idaho	421	2,623	371	2,83
Kansas	449	2,361	360	1.80
Kentucky	W	w	533	2.85
Maryland	271	2,191	139	69
Montana	430	1,348	316	1,06
Nebraska	200	1,010	i	1,00
New Mexico	$7\overline{10}$	2,149	ŵ	v
New York	833	2,744	678	3.01
Ohio	503	2,006	283	1,58
Oklahoma	950	3,170	736	2,37
Oregon	708	2,508	577	2.12
Pennsylvania	3,850	17.059	3,137	13,63
South Dakota	914	3,515	937	3,80
Texas	1,613	7,437	1,069	4,26
Utah	w	W.	187	32
Virginia	1.154	3,707	1.621	6.04
Washington	695	1.854	636	1.57
West Virginia	1,489	5,799	1,103	3,836
Wisconsin	W	3,133 W	1,548	3,734
Other ¹	4,302	15,587	2,151	8,14
Total ²	28,874	102,497	22,811	84,01

Table 11.—Crushed calcareous marl sold or used by producers in the United States, by State

(Thousand short tons and thousand dollars)

	State	198	30	1981	
	State	Quantity	Value	Quantity	Value
T. 1'		W 13	W 27	11 6	15 13
Michigan		27 252	54 1,046	43 249	112 1,173
South Carolina		2,308 5	4,564 10	2,724 3	5,495 7
Other ¹	-	1,113	2,200	787	1,201
Total ²		3,719	7,901	3,824	8,016

W Withheld to avoid disclosing company proprietary data; included with "Other."
¹Includes Maine, Mississippi, and Texas.

²Data may not add to totals shown because of independent rounding.

W Withheld to avoid disclosing company proprietary data; included with "Other." ¹Includes Alabama (1980), Georgia, Maine, Minnesota, Missouri, and North Carolina (1981).

²Data may not add to totals shown because of independent rounding.

Table 12.-Volcanic cinder and scoria sold or used by producers in the United States, by State

(Thousand short tons and thousand dollars)

Ch. L.	198	30	1981		
State	Quantity	Value	Quantity	Value	
Arizona California	981 510	3,215 1,819	1,087 672	3,186 2,961	
ColoradoHawaii	W W 364	W W 2,214	107 373 445	615 1,364 2,891	
New Mexico	871 35	2,214 1,416 347	878	1,547	
Other ¹	r475	r _{2,247}	104	836	
TotalAmerican Samoa	^r 3,236	^r 11,258 32	² 3,667	13,400	

rRevised. W Withheld to avoid disclosing company proprietary data; included with "Other."

Table 13.—Crushed marble sold or used by producers in the United States, by State

(Thousand short tons and thousand dollars)

	198	30	198	31
State	Quantity	Value	Quantity	Value
Alabama	766	12,544	522	11,419
Arizona	54	758	32	611
Missouri	4	197	W	w
Tennessee	4	166	W	w
Texas	112	2,117 536	79	1,891
Wyoming	15	536		1 _1_
Other	393	7,413	439	8,598
Total	1,348	² 23,732	² 1,071	22,519
Puerto Rico	W	W	w	w

W Withheld to avoid disclosing company proprietary data; included with "Other."
¹Includes Georgia, Utah (1980) and Washington (1980).

²Data do not add to total shown because of independent rounding.

Table 14.—Crushed miscellaneous stone sold or used by producers in the United States, by State

(Thousand short tons and thousand dollars)

C t. 4	198	30	1981	
State	Quantity	Value	Quantity	Value
Alaska	107	322	477	1,972
Arizona			169	1,369
California	3.455	8,569	3,259	8,665
[daho	3	10	154	384
Maryland	466	1.327	2,525	10,523
Michigan		-,	400	1,300
Nevada	187	529	143	514
Oklahoma	W	270	w	w
Oregon	273	620	73	130
Virginia	160	391	w	w
Washington	626	1,626	**	•••
Other ¹	6,604	21,009	5,368	20,252
Total ²	11,882	34,674	12,568	45,110

¹Includes Nevada and Washington.

²Data do not add to total shown because of independent rounding.

W Withheld to avoid disclosing company proprietary data; included with "Other."

¹Includes Arkansas, Colorado (1981), Hawaii, Louisiana, Massachusetts (1980), Pennsylvania, Rhode Island, and Vermont.

Data may not add to totals shown because of independent rounding.

Table 15.—Crushed stone sold or used by producers in the United States, by use (Thousand short tons and thousand dollars)

Use	19	180	1981		
Use	Quantity	Value	Quantity	Value	
Agricultural limestone	33,262	130,272	29,028	127,075	
Agricultural marl and other soil conditioners	¹ 683	r _{3.288}	738	3.884	
Poultry grit and mineral food	2,621	21.826	2.182	19,38	
Concrete aggregate (coarse)	r127,243	r456,788	114,935	450,81	
Bituminous aggregate	r90,513	r339,415	80.589	326,39	
Macadam aggregate	25,131	79.515	19,138	63,90	
Dense-graded road base stone	^r 221,614	r653,799	192,456	612.410	
Surface treatment aggregate	45.294	156,303	34,798	132,12	
Other construction aggregate and road stone	180,717	566,012	158,252	528,80	
Pinran and jetty stone	23,650	75,808	19,080	68,632	
Riprap and jetty stoneRailroad ballast	r30.319	r91,663	28,351		
Filter stone	5,656	19,453	28,351 4,390	91,021 15.56	
Manufactured fine aggregate (stone sand)	20.241	80.078	18.085		
Manufactured line aggregate (stone sand)				73,174	
Terrazzo and exposed aggregate	r _{1,340}	r15,519	904	11,082	
Cement manufacture	99,106	234,576	96,482	247,222	
Lime manufacture	30,261	95,051	29,421	100,95	
Dead-burned dolomite	2,001	6,329	2,391	7,498	
Ferrosilicon	133	965	143	1,010	
Flux stone	16,123	60,133	14,550	61,577	
Refractory stone (including ganister)	1,012	4,749	93	470	
Chemical stone for alkali works	1,852	5,739	1,548	5,80	
Abrasives	68	680	78	978	
Mine dusting	1,331	10,412	1,161	10,541	
Asphalt filler	948	7,141	1,400	11,107	
Asphalt fillerWhiting or whiting substitute	. 969	23,286	861	26,912	
Other fillers or extenders	3,730	50,511	3,518	48.984	
Building materials	90	262	64	218	
Chemicals	W	W	665	1.880	
Bedding materials	308	1.118			
Drain fields	72	150	w	W	
Pill	r _{3.853}	r _{8.269}	6.724	16.124	
Slate flour	54	1.067	45	709	
Glass manufacture	2.134	15.841	2.021	16.284	
Lightweight aggregate	503	8,053	238	4,892	
Paper manufacture	89	397	W	4,0 <i>52</i>	
Roofing granules	r4.488	r _{17.556}	• • • • • • • • • • • • • • • • • • • •		
Sugar refining	1.518	7,433	4,485 1,220	18,094	
Waste materials	1,518 53	145	1,220 43	6,704 133	
waste materialsSulfur removal from stack gases	667	2.129	43 563		
Other ¹				1,550	
	3,893	r14,096	2,407	12,568	
Total ²	r983,542	r3,265,830	873,050	3,126,504	

Revised to include volcanic cinder and scoria. W Withheld to aw with "Other."

¹Includes acid neutralization, carbon dioxide, and other uses.

²Data may not add to totals shown because of independent rounding. W Withheld to avoid disclosing company proprietary data; included

Table 16.—Crushed limestone sold or used by producers in the United States, by use (Thousand short tons and thousand dollars)

	19	80	1981		
Use	Quantity	Value	Quantity	Value	
Agricultural limestone	33.262	130,272	29,028	127,075	
Agricultural marl and other soil conditioners	391	2,167	448	2,573	
Poultry grit and mineral food	2.335	20,664	2.002	18,274	
Concrete aggregate	98,158	336,576	86,367	319,405	
Bituminous aggregate	57.835	204,794	49,252	191,533	
Macadam aggregate	19,897	59,719	15,978	51,166	
Dense-graded road base stone	151,869	418,500	132,305	392,535	
Surface treetment aggregate	36,445	126,260	28,853	107.848	
Surface treatment aggregate Other construction aggregate and road stone	116,622	355,856	105,814	340,892	
Riprap and jetty stone	15,321	46,709	12.812	42,651	
Railroad ballast	12,966	38,631	10.628	37.003	
	3,497	11,308	3.544	12.287	
Filter stone Manufactured fine aggregate (stone sand)	15,204	58,716	13,345	51.994	
Manufactured fine aggregate (stone sand)	15,204 577	6.091	473	5.129	
Terrazzo and exposed aggregate	94.009	222.167	91,222	233,675	
Cement manufacture					
Lime manufacture	29,662	93,629	28,847	98,776	
Dead-burned dolomite	2,001	6,329	2,391	7,498	
Flux stone	15,313	55,885	13,870	57,157	
Refractory stone	880	2,001	_66	241	
Chemical stone for alkali works	1,852	5,739	1,548	5,801	
Abrasives	49	526	77	967	
Mine dusting	1,307	10,349	1,133	10,462	
Asphalt filler	761	6,048	997	8,136	
Whiting or whiting substitute	666	20,742	628	21,160	
Other filler or extenders	2,808	32,964	2,682	33,818	
Building products	88	258	· W	W	
Other chemicals	W	. W	665	1,880	
Pill	2,092	4,804	5,835	14,094	
Glass manufacture	2,134	15,841	2,021	16,284	
Paper manufacture	89	397	W	W	
Roofing granules	476	3,589	485	3.718	
Sugar refining	1.518	7,433	1.220	6,704	
Waste material	53	145	43	133	
Sulfur removal from stack gases	667	2.129	563	1,550	
Other ¹	2.362	8.275	1.025	5,055	
Julei	2,002	0,210	1,020	0,000	
Total ²	723,166	2,315,511	646,168	2,227,474	

W Withheld to avoid disclosing company proprietary data; included with "Other."

¹Includes acid neutralization, bedding material (1980), carbon dioxide, drain fields, and other uses.

²Data may not add to totals shown because of independent rounding.

Table 17.—Crushed limestone sold or used by producers

(Thousand short tons

State	Aggı	regates	Cem	ent -	Agl	ime	Lime	
State	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
Alabama	11.103	41,374	3,375	8.896	1,150	6,153	1,694	7.626
Alaska	3,022	15,985	-,	-,	-,	0,200	1,001	.,020
Arizona	1.125	3,382	w	w			1.088	4.910
Arkansas	2.347	7.483	1,726	3,887	371	1.484	1,000 W	7,510
ArkansasCalifornia	2,313	7.464	12,205	36,425	w	W	ŵ	w
Colorado	682	2,059	2.745	9.090	3	ii	49	171
Connecticut	w	2,003 W	37	76	80	651	22	42
Florida	52.670	185,867	2.432	7,816	1.264	7.064	387	1.062
Georgia	2,723	12,206	2,452 W	1,610 W	718		901	1,002
	454	3,664	696	2.394	. 118	3,042	w	w
Hawaii	404					. W	w	w
ldaho	20 100	110 104	W	. W	35	104	7.0	
Illinois	33,186	118,124	2,759	6,093	4,351	16,207	w	W
Indiana	19,478	61,381	2,461	5,472	1,975	6,929		
lowa	15,959	60,403	2,631	5,168	2,323	8,757	204	686
Kansas	9,736	34,415	3,150	6,915	385	1,167	·	
Kentucky	23,765	78,931	W	w	1,963	7,203	1,621	3,913
Maine	211	755	W	w	W	w		
Maryland	8,851	30,966	1,055	2,379	w	w	17	64
Massachusetts	W	W	·		128	1.568	w	W
Michigan	6.769	20,593	6.357	14,251	248	948	8,450	28,166
Minnesota	3,791	10,151	-,	,	599	1.691	0,200	-0,100
Mississippi	332	852	w	w	799	3.042		
Missouri	23,129	70.439	5.037	11,063	3,051	9,363	3,107	6,116
Montana		,	w	w W	0,001	0,000	0,10.	0,110
Nebraska	1.845	8.955	w	w	186	801	w	83
Nevada	1,010	0,000	ŵ	ẅ			w	w
New Mexico	927	2.439	w	w			w	w
New York	20,446	82,317	5.187	10,798	255	1.697	w	w
North Carolina	3.111	13.139	3,101 W	10,130 W			**	,vv
	24.655		2,394		21	96	0.770	T 000
Ohio		82,012		8,365	1,612	6,938	2,768	7,298
Oklahoma	23,013	62,677	2,514	4,759	602	1,300	w	- W
Pennsylvania	25,969	96,328	6,770	17,295	1,687	13,012	2,886	12,127
South Carolina	2,246	7,808			271	1,917		
South Dakota	1,134	3,493	W	w	w	W	179	359
rennessee	26,573	89,509	1,564	5,195	1,702	5,562	235	1,076
Texas	53,401	160,201	10,507	21,077	407	1,554	1,979	6,782
Utah	w	W	820	3,381	127	945	338	1,518
Vermont	698	2,212			147	1,013		
Virginia	10,568	36,325	1,365	2,616	1,581	10.244	1.475	5,701
Washington	129	228	w	W	24	362		-,
West Virginia	4.562	18.664	: W	W	24	190	w	w
Wisconsin	11.018	25,921			696	2,589	Ŵ	w
Wyoming	623	2,431	336	w			w	w
Total (excluding withheld) ¹	432,568	1,461,163	78,124	193,412	28,785	123,605	26,500	87,700
Total withheld	304	3,055	13.098	40.265	244			
Guam	317	3,035 W	19,090	40,200	244	3,467	2,348	11,078
Puerto Rico	w	w	w	$\bar{\mathbf{w}}$	w	337		
. 40100 4100	**	**	w	W	₩	W		

W Withheld to avoid disclosing company proprietary data; included with "Total withheld" and "Other uses."
¹Data may not add to totals shown because of independent rounding.

²Includes New Jersey, Oregon, and Rhode Island.

in the United States in 1981, by State and use

and thousand dollars)

Fluxs		stone	Ripi	Riprap		Railroad ballast		Other uses		tal¹
Quar	ntity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
	360	1,100	983	3,908	w	w	494	3,564	19,159	72,62
		•		•				-,	3,022	15,98 18,94 18,88
	$1\overline{5}\overline{1}$	$\overline{625}$	17	83			2,140 -	9,950	4,520	18.94
	w	w	325	1,028	426	1,331	922	3,676	6,116	18,88
	70	364	69	175		2,002	1.451	14,540	16,108	58,96
	394	w	· www	w			217	2,533	4,090	13.86
	w	ŵ	•••				W	W	W	V
	••	•••	256	687			6,385	19,545	63,394	222.04
			75	220	w	w	2,102	8,809	5,618	24,27
					••	•••	2,10 <u>2</u>	w	, W	-1,-W
			23	61			318	831	379	1,000
	619	2,869	388	1,403	$9\overline{43}$	4,768	1,914	15,754	44,159	165,218
	W	2,005 W	985	1,067	738	2,304	406	2,744	25,343	79,89
	w	ẅ	285 232	1.221	639	2,231	437	4,425	22,424	82,89
		**	136	394	46	208	331	838	13,783	43,93
	47	$1\overline{64}$	2,263	6,809	482	1,631	1,759	6,756	31,900	105,40
	41	104	2,203 W	0,003 W	W	1,051 W	733	2,867	944	3.62
			155	760	95	295	627	14,976	10,801	49,440
	w	$\bar{\mathbf{w}}$	W	W	ออ	230	553	9,123	681	10,692
		25,055	w	w	378	1.081	829	2,815	29,568	92,90
ю,	537	25,055	257	681	w	1,061 W	270	772	4,918	13.29
		-,-	139	397	w	w	714	1,161	1,984	5,45
	$\bar{\mathbf{w}}$	$\bar{\mathbf{w}}$	2,948	7,672	163	389	1.183	6,175	38,618	111,217
	w	W	2,948 3		163	389	1,188	3,826	38,018	
	38	W		8	$\bar{\mathbf{w}}$	w	1,077	3,820	1,118	3,834
	16	81	115	686	W	w	976	3,417 4,351	3,138 1,043	14,023 4,35
		w	67	$\bar{279}$	w	w	1,043 705	4,551	1,043	4,55
	28 W	w		2/9				3,635		6,35
	w	W	454	2,215	229	628	1,371	5,331	27,942	102,986 17,941
1			w	W	w	w	1,144	4,707	4,276	17,94.
1,	911	5,784	448	1,573	1,084	3,302	1,795	8,732 3,830 11,785	36,667	124,004
_	.==		729	2,067	1,216	5,039	516	3,830	28,591	79,673
2,	157	11,615	411	1,677	859	3,165	1,486	11,785	42,226	167,00
			w	` W	w	, W	160	471	2,676	10,196
		57	w	W	56	135	679	1,291 9,726	2,048	5,278
	58	290	495	1,648	215	723 2,818	1,655	9,726	32,497	113,729
	635	2,105	237	1,064	823	2,818	1,976	11,312	69,965	206,913
	W	w	W	w	W	· W	1,368	5,984	2,653	11,828
			w	W	w	W	247	1,006	1,093	4,230
	73	226	67	289	384	1,135	874	5,663	16,387	62,197
			w	w			1,245	2,992	1,398	3,583
			37	175	480	1,346	1,678	4,189	6,782	24,563
	w	w	346	1,877 W	w	W	89	371	12,148	30,759
			w	W	w	W	790	3,492	1,750	5,924
13.	095	50,278	11,960	40,124	9,256	32,529	44.656	227,965	643,655	2.209.94
	777	6,881	855	2,529	1,371	4,476	1,221	10,700	2,510	17,528
	• • •	5,001	3	_,020	_,011	_,110	12	28	332	TI,SX
			w	wi			w	w	w	Ü

Table 18.—Crushed granite sold or used by producers in the United States, by use (Thousand short tons and thousand dollars)

Use	198	30	198	31
· · · · · · · · · · · · · · · · · · ·	Quantity	Value	Quantity	Value
Poultry grit and mineral food	36	422	16	160
Concrete aggregate	18,144	70,435	18,777	81,43
Bituminous aggregate	16,694	66,583	14,424	61,13
Macadam aggregate	1,863	7,564	1.076	4,27
Dense-graded road base stone	32,228	109,432	26,909	99,99
Surface treatment aggregate	3,422	12,408	2,612	10,79
Other construction aggregate and road stone	22,718	77,636	16,160	61,23
Riprap and jetty stone	2,836	11,074	2,011	8,46
	12,278	35,231	13,003	36,91
Filter stone	1,458	5,574	396	1,33
Manufactured fine aggregate (stone sand)	3,026	10,101	2,985	10,77
Terrazzo and exposed aggregate	206	1,393	107	569
Asphalt filler	144	810	134	83
Roofing granules	322	630	231	479
Other ¹	1,599	4,594	1,636	5,25
Onier	975	4,097	595	2,659
Total ²	117,949	417,985	101,073	386,322

Table 19.—Crushed traprock sold or used by producers in the United States, by use (Thousand short tons and thousand dollars)

	Use		198	30	198	31
	· ·		Quantity	Value	Quantity	Value
			7,685	35,144	6,950	35,750
Bituminous aggregate 🔔			11,633	52,384	12,622	56,661
Macadam aggregate 💶			2,579	9,429	1.957	8,044
Dense graded road base s			20,222	69,769	17,556	66,342
Surface treatment aggre	gate		3,925	11,729	1,903	6,923
Other construction aggre	gate and road ston	ie	25,074	82,106	20,479	68,206
Riprap and jetty stone _			3,665	11.577	2,699	11,927
Kailroad ballast			3,397	13,041	3,271	13,060
Filter stone			409	1,479	227	970
Manufactured fine aggre	gate (stone sand) _		986	7,041	839	6,088
Terrazzo and exposed ag	gregate		10	56	2	13
Mine dusting			24	63	28	79
Other filler			22	117	w	w
Building products			2	4	2	''
Deduning materials			w	19	-	•
Drain fields			ï	2		
			Ŵ	w	79	170
Roofing granules			1,526	5.138	1,548	5.105
Other1			285	1.099	417	3,026
			200	1,000	411	3,020
Total ²			81,396	300,198	70,577	282,367

W Withheld to avoid disclosing company proprietary data; included with "Other."
¹Includes asphalt filler and other uses.

²Data may not add to totals shown because of independent rounding.

¹Includes bedding material (1980), and other uses.

²Data may not add to totals shown because of independent rounding.

Table 20.—Crushed sandstone sold or used by producers in the United States, by use

(Thousand short tons and thousand dollars)

TT	198	30	198	31
Use	Quantity	Value	Quantity	Value
Concrete aggregate	2,393	10,096	2,141	9,580
Bituminous aggregate	3,699	13,332	3,475	13,883
Macadam aggregate	228	1,084	112	371
Dense-graded road base stone	7,123	21,062	4,826	15,553
Surface treatment aggregate	1,219	5,101	880	3,636
Other construction aggregate and road stone	7,373	22,986	5,399	17,390
Riprap and jetty stone	1,143	4,371	731	3,042
Railroad ballast	1,448	4,075	1,320	3,593
Filter stone	227	971	198	904
Manufactured fine aggregate (stone sand)	934	3,815	772	3,134
Terrazzo and exposed aggregate	100	1,446	15	265
Cement manufacture	669	2,382	611	2,191
Ferrosilicon	87	848	143	1,016
Flux stone	810	4.248	680	4,420
Refractory stone	133	2,749	27	230
Abrasives	18	155	W	w
Drain fields	67	131	W	w
Fill	205	261	391	719
Roofing granules	751	1.876	697	1,868
Other ¹	247	1,508	393	2,222
Total	28,874	102,497	22,811	84,016

W Withheld to avoid disclosing company proprietary data; included with "Other." ¹Includes poultry grit, other fillers or extenders, and other uses.

Table 21.—Crushed shell sold or used by producers in the United States, by use

(Thousand short tons and thousand dollars)

•	198	30	1981		
Use	Quantity	Value	Quantity	Value	
Agricultural marl and other soil conditioners			9	20	
Poultry grit and mineral food	228	547	145	743	
Dense-graded road base stone	2,652	13.871	3,515	16.641	
Surface treatment aggregate	_,	,	369	2,352	
Other construction aggregate and road stone	5,001	16,881	4,235	18,403	
Cement manufacture	1,200	3,751	1.133	4,588	
Fill	w W	1.039	77	180	
Other ¹	1,834	3,969	1,286	6,613	
Total ²	10,914	40,060	10,769	49,541	

W Withheld to avoid disclosing company proprietary data; included with "Other."
¹Includes bituminous aggregate, riprap, lime manufacture, and other uses.

²Data may not add to totals shown because of independent rounding.

Table 22.—Volcanic cinder and scoria sold or used by producers in the United States, by use

(Thousand short tons and thousand dollars)

TI	198	80	1981		
Use	Quantity	Value	Quantity	Value	
Concrete admixture and aggregate ¹ Landscaping Railroad ballast Road construction and maintenance Other ²	514 209 140 *2,292 82	3,316 2,513 377 r4,628 426	534 184 31 2,856 63	4,020 2,568 50 6,230 532	
Total ³	r _{3,236}	11,258	3,667	13,400	

rRevised.

¹Includes cinder block.

²Includes asphalt mix, horticultural uses, roofing granules, drain fill, fill, and miscellaneous uses.

³Data may not add to totals shown because of independent rounding.

Table 23.—Crushed marble sold or used by producers in the United States, by use

(Thousand short tons and thousand dollars)

TT .	198	30	1981		
Use	Quantity	Value	Quantity	Value	
Poultry grit and mineral foodSurface treatment aggregate	15	166	13 39	177 167	
Manufactured fine aggregate (stone sand)	14	267	9	229	
Terrazzo and exposed aggregate	169	3,840	91	2,345	
Whiting or whiting substitute	w	W	233	5,753	
Roofing granules	\mathbf{w}	W.	4	96	
Other ¹	1,150	19,459	682	13,752	
Total	1,348	23,732	1,071	22,519	

W Withheld to avoid disclosing company proprietary data; included with "Other." $^1\mathrm{Includes}$ concrete aggregate, riprap, and other fillers or extenders (1980).

Table 24.—Crushed miscellaneous stone sold or used by producers in the United States, by use

(Thousand short tons and thousand dollars)

••	198	30	1981	
Use	Quantity	Value	Quantity	Value
Concrete aggregate	372	995	144	411
Bituminous aggregate	579	2,132	575	2,417
Macadam aggregate	563	1,719	- 14	47
Dense-graded road base stone	5.074	16,133	4,451	14,990
Surface treatment aggregate	283	808	141	407
Other construction aggregate and road stone	3,529	9.477	6.017	22,252
Riprap and jetty stone	592	1,395	735	1,865
Railroad ballast	90	308	99	401
Terrazzo and exposed aggregate	70	180	32	194
Other fillers	5	30	59	W
Fill	556	1,113	94	339
Roofing granules	W	W	26	140
Other ¹	168	384	181	1,647
Total	²11,882	34,674	12,568	45,110

W Withheld to avoid disclosing company proprietary data; included with "Other."

¹Includes filter stone, manufactured fine aggregate (stone sand), cement manufacture (1981), and other uses.

²Data do not add to total shown because of independent rounding.

Table 25.—Exports of crushed stone, by destination

(Thousand short tons)

Destination	Qua	artzite	Lim	estone ¹	· 0	ther		Fotal
Destination	1980	1981	1980	1981	1980	1981	1980	1981
North America: Bahamas				4				10
Bahamas Canada		4	(2) 2.647	(2) 3,273	57 123	12 3166	57 r _{2,774}	12 3,443
Mexico		(²)		3,213	10	32	10	
Other		(²)		2	7	4		
Total	4	4	2,655	3,276	^r 197	214	2,856	3,494
South America:								
Venezuela		(²)		31	23	1	91	32
Other	- <u>(²)</u>		18	1	5	1	23	2
Total	_ <u>(²)</u>	(²)	86	32	. 28	2	114	34
Europe:								
France		3			18	15	. 18	18
Netherlands		_3				(²)	1	. 3
Other	- 4 3	⁵ 1	2	1	11	13	16	15
Total	4	7	2	1	r ₂₉	28	35	36
Asia:								
Japan		1			r ₅₈	2	60	3
Other	- (²)	1	(²)	(²)	8	1	8	2
Total	2	2	(²)	(²)	^r 66	3	68	5
Oceania		(²)	1	1	9	22	10	23
Middle East and Africa		(²)	(²)	1	1	5	1	6
Grand total		13	2,744	3,311	r330	274	3,084	3,598
Total value (thousands)	\$1,707	\$2,494	\$13,699	\$15,982	\$5,833	\$7,473	\$21,239	\$25,949

rRevised.

Table 26.—U.S. imports of crushed stone and stone fines, by type

		.980		1981
Туре	Quantity	Customs value (thousands)	Quantity	Customs value (thousands
Crushed stone and chips:				
Limestone thousand short tons	2,375	\$6,966	2.092	\$5,166
Marble, breccia, onyxshort tons_	2,109	113	8,838	482
Quartzite thousand short tons	r ₁₅	r ₂₁₁	71	761
Slateshort tons		- FEE	541	4
Other thousand short tons	1,198	3,286	1,183	2,887
Totaldo	^r 3,590	^r 10,576	¹3,355	9,300
Calcium carbonate fines:	•••			
Chalk, natural crude	280	369	244	344
Chalk, whitingdodo	- 8	858	16	1,694
Precipitateddo	6	2,021	10	2,539
Totaldo	294	3,248	² 270	4,577
Grand totaldo	r3,884	r _{13,824}	3,625	13,877

Revised.

¹Includes ground limestone.

²Less than 1/2 unit.

^{*}Less than 1/2 unit.

Includes an estimated 7,000 tons of slate waste and powder exported to Canada.

Includes the Federal Republic of Germany and Belgium in order of volume.

Includes the Federal Republic of Germany, Switzerland, and the United Kingdom in order of volume.

Includes Libya.

Includes Canada, 95%, and the Dominican Republic (limestone), 5%.
Includes the Bahamas (natural crude chalk), 90%; France (chalk whiting and precipitated calcium carbonate), 7%; the United Kingdom (mostly precipitated calcium carbonate), 2%; and Japan (precipitated calcium carbonate), 1%.

DIMENSION STONE¹⁶

DOMESTIC PRODUCTION

Dimension stone was produced by 254 companies at 437 quarries in 38 States. Leading States, in order of tonnage, were Georgia, Vermont, and Indiana, producing, together, 47% of the Nation's total. Notable in 1981 was a 16% increase in output from Georgia and a 22% increase from Vermont. Of the total U.S. production; 51% was granite, 21% was limestone, 13% was sandstone, 9% was slate, and 4% was marble. A 33% increase in slate production occurred in 1981. Leading companies were, in 1981, Rock of Ages Corp. in Vermont and Cold Spring Granite Co., principally in California, Minnesota, South Dakota, and Texas.

Granite.—Compared with that of 1980, 1981 output of dimension granite increased 3% in tonnage and 4% in value to 681,550 tons and \$82.9 million. Dimension granite was produced by 85 companies at 119 quarries in 20 States. Georgia continued to be the leading State producing 37% of the U.S. total, followed by Vermont and New Hampshire. These three States together produced 63% of the U.S. total. Notable were a 25% production increase in Georgia and a 14% decrease in New Hampshire. Leading companies were Rock of Ages Corp. and Cold Spring Granite Co. It was estimated that the three leading companies produced 31% of U.S. output.

Limestone.—Compared with that of 1980, 1981 output of dimension limestone decreased 5% in tonnage and increased 3% in value to 279,700 tons and \$22.0 million. Dimension limestone was produced by 58 companies at 68 quarries in 18 States. Indiana continued to be the leading State, followed by Wisconsin. The top two producers, in order of value, were Indiana Limestone Co. and Elliott Stone Corp., Inc., both in Indiana.

Sandstone.—Compared with that of 1980, 1981 output of dimension sandstone increased 5% in tonnage and 53% in value to 178,300 tons and \$11.8 million. Dimension sandstone was produced by 65 companies at 184 quarries in 24 States. Leading States continued to be, in order of volume, Ohio, Pennsylvania, and New York; these three States accounted for 52% of U.S. output. Notable were a 43% increase in production in Ohio and a 19% decrease in Pennsylvania. Leading producers were, in order of tonnage, Delaware Quarries Inc. in Pennsylvania.

sylvania and Standard Slag Co. in Ohio. The top three producers accounted for 28% of U.S. production, compared with 32% (revised) in 1980.

Slate.—Compared with that of 1980, 1981 output of dimension slate increased 33% to 120,000 tons valued at \$19.6 million. Dimension slate was produced by 28 companies at 37 quarries in 6 States. The two leading States, Vermont and Pennsylvania, in order of volume, accounted for 93% of U.S. output. The top three producers accounted for an estimated 65% of U.S. output.

Marble.—Dimension marble included crystalline marble, certain hard limestones, and any other calcareous stone capable of accepting a polish. Output of dimension marble decreased 3% to 58,500 tons valued at \$13.8 million. Total value did not change significantly compared with that of 1980. Dimension marble was produced by 11 companies at 18 quarries in 12 States. Vermont, Georgia, and Texas, in order of tonnage, were the three leading States, accounting for almost three-quarters of U.S. output. Leading producers were, in order of tonnage, Georgia Marble Co. and Vermont Marble Co. The top three companies accounted for 81% of U.S. output.

Traprock.—Compared with that of 1980, 1981 output of dimension traprock decreased 91% to 1,355 tons valued at \$38,000. Washington was the leading State, producing 620 tons valued at \$29,500, with Hawaii and Oregon accounting for the balance.

Miscellaneous Stone.—Compared with that of 1980, 1981 output of miscellaneous dimension stone decreased 47% to 11,700 tons valued at \$433,000.

CONSUMPTION AND USES

Dimension stone was marketed over wide areas. Stockpiles were not monitored and output during the year was assumed to equal consumption.

Compared with that of 1980, 1981 consumption of dimension stone increased slightly to 1.33 million tons valued at \$150.5 million. Consumption of stone for monuments decreased 11% to 279,000 tons, 21% of total dimension stone tonnage and 34% of total value. Notable during 1981 was a 62% increase in flooring slate to 45,500 tons valued at \$9.5 million.

Industry sources indicated that dimension stone is displacing other materials as building facing.

Granite.-Notable during 1981 was a 142% increase in rubble. Use of granite in monuments showed an 11% decrease in tonnage. The use breakdown in 1981 was monumental, 39%; rubble, 16%; and other construction the balance.

Limestone.—Notable during 1981 were a 442% increase in irregular shapes to 43,300 tons valued at \$1.0 million; and a 36% decrease in sawed stone to 34,000 tons

valued at \$3.9 million.

Sandstone.—Notable during 1981 were a 57% decrease in house stone veneer to 6,234 tons valued at \$378,000 and a 109% increase in dressed flagging to 9,387 tons valued at \$960,000. The large increase in other dressed stone reflects production from an operation that was idle in 1980.

Slate.—Notable during 1981 was a 64% increase in flagging to 60,042 tons valued at \$2.8 million and a 62% increase in flooring slate to 45,490 tons valued at \$9.5 million. The large decrease in tonnage of other slate reflects a major decrease in production of unprocessed blocks.

Marble.-No significant change in the end-use pattern was apparent during 1981.

Traprock.—Flagging accounted for somewhat under one-half of dimension traprock use in 1981; rubble accounted for almost all of the remainder.

Stone.—Miscellaneous Miscellaneous types of dimension stone were used in 1981 primarily as irregular shapes (66%).

PRICES

Compared with that of 1980, the average 1981 price of dimension stone increased 7% to \$113.04 per ton. The price of dimension sandstone increased 46% to \$66 per ton, accompanied by a 5% increase in tonnage sales.

The 62% increase in flooring slate tonnage was accompanied by a 10% increase in

The prices of imported stone increased significantly.

FOREIGN TRADE

Exports.-Exports of dimension stone in 1981, mostly granite and limestone, increased 29% in quantity to 227,000 tons, and 18% in value to \$17.9 million. Most of the increase was in rough limestone blocks sent to Venezuela and Canada. Exports to Canada increased 8% and accounted for 46% of total exports in 1981. Exports of rough granite blocks to Japan increased by 67% to 35,000 tons valued at \$4.5 million.

Imports.—Value of imports of dimension stone increased 48% in 1981 to \$131 million; of this, 71% came from Italy, 10% came from Canada, and 3% came from Mexico. On a value basis, marble accounted for 38% of imports (76% from Italy) followed by granite, 35% (59% from Italy and 28% from Canada); travertine, 14% (91% from Italy), and slate, 8% (87% from Italy). Notable was a doubling of the total value of imported granite. On a value basis, imports accounted for 50% of U.S. consumption.

WORLD REVIEW

World production of dimension stone in 1981 was about the same as in 1980. Italy probably produced about one-half of the world total. Imports from Italy accounted for about 40% of U.S. dimension stone supply in 1981.

Canada.—Annual domestic supply of dimension stone in 1980-81, including stone later exported, was about 320,000 tons, of which 80% was limestone, 15% was granite, and the balance was sandstone. In terms of use, 85% of the total was rough building stone, 7% was monumental and ornamental stone, and the balance was other (flagstone, curbstone, paving blocks, etc.). The limestone was almost all used as rough building stone and the granite was mostly used as monumental and ornamental stone. Ontario supplied most of the limestone and Quebec supplied almost all of the granite. The industry operated at a little better than one-half capacity.

India.—Tamil Nadu Minerals Ltd. planned to purchase equipment for a new cutting and polishing unit that would be capable of contour cutting and polishing, in addition to the more conventional stone dressing techniques. The dimension stone produced was to be black granite and gray granite destined for export markets. The facility was expected to be located near Madras and to cost \$1.7 million, part of which might be provided by some Japanese

companies.17

Mysore Minerals Ltd. planned to construct an export-oriented plant for finishing and polishing a local black granite, for an estimated plant cost of \$1.1 million. The company had received a few trial orders from Europe and Japan.18

¹Physical scientist, Division of Industrial Minerals

²Mining Safety and Health Administration and Occupa-tional Safety and Health Administration. A Comparative Analysis. Stone News, July 1981, pp. 8-10.

SPrepared by Valentin V. Tepordei.

^{*}Prepared by Valentin V. Tepordei.

*Volcanic cinder and scoria is included in the crushed stone chapter in 1981 for the first time.

*Herod, S. Productivity is Theme of NCSA Convention.

Pit & Quarry, March 1981, pp. 69-70, 101, 117.

Stearn, E. W. Highlights of NCSA Meeting. Rock Prod., March 1981, pp. 89-94.

Herod, S. NLI's 1981 Convention Covers Key Problem Areas. Pit & Quarry, March 1981, pp. 78-80, 138.
 Huhta, R. S. The Sights & Sounds of ConExpo 81. Rock Prod., March 1981, pp. 76-78.
 ConExpo Product Review. Rock Prod., March 1981, pp. 91 92

81-86.

⁹Japan Chemical Week. July 1981, p. 6.

⁹Chemical Marketing Reporter. November 1981, p. 41.

¹⁰Robertson, J. L. Dream Plant Designed for Less Labor,
Easy Upkeep. Rock Prod., May 1981, pp. 53-56.

Schultz, G. Aggregate Plant Design: The Planned
Approach. Rock Prod., February 1981, pp. 62-67.

¹¹Kuennen, T. Crushed Stone Plant Literally Runs
Itself. Rock Prod., November 1981, pp. 48-49.

Robertson, J. L. Sophisticated Control Panel Runs
Swords Creek Plant. Rock Prod., June 1981, pp. 66-69.

Winsky, J. A. Operations Monitoring by Simple Aerial
Photography. Rock Prod., May 1981, pp. 69-73.

¹²Rock Products. Energy Briefs. August 1981, pp. 40-60. ¹³Marek, C. R. Look Hard at Recycling Before Discarding the Idea. Rock Prod., February 1981, pp. 42-45.

Rock Products. Good Plant Design Aids Rubble Recv-

Control. Pit & Quarry, April 1981, pp. 77-80.

Pit & Quarry. Upgraded Blast Design Improves Frag-mentation. April 1981, pp. 64-66.

¹⁵Robertson, J. L. Expansion Doubles Capacity With No Loss in Production. Rock Prod., September 1981, pp. 42-45. 16Prepared by Harold A. Taylor, Jr.

¹⁷Industrial Minerals (London). New Dimension Stone Capacity Slated. No. 166, July 1981, p. 12.

-Mysore Plans Polishing Units. No. 171, December 1981, p. 14.

Table 27.—Dimension stone sold or used by producers in the United States, by State

		1980			1981	
State	Short tons	Cubic feet (thousands)	Value (thousands)	Short tons	Cubic feet (thousands)	Value (thousands)
Alabama	10,812	133	\$2,259	7,425	94	\$2,130
Arizona	W	w	. 45	W	W	578
Arkansas	8,104	101	355	6,770	85	411
California	36,103	443	1,967	29,431	359	1.909
Colorado	6,124	78	259	761	9	64
Connecticut	15,397	175	723	19,440	225	910
Georgia	-231,496	2.374	17,466	267,871	2,773	17.894
Hawaii	· W	W	11	432	5	11,001
Illinois	2.238	26	103	1.712	20	85
Indiana	160,791	2,173	14.046	144.876	1.965	13,672
Iowa	9,645	113	509	W	w	W
Kansas	18,435	248	937	14,067	187	605
Maryland	14,659	183	612	33,894	415	1.002
Massachusetts	51,458	616	7.018	49,659	710	8,616
Michigan	6,805	85	144	6.064	75	129
Minnesota	44,464	534	14,189	41,196	494	14,298
New Hampshire	103,039	1,216	7,167	88,902	1.050	6.889
New Mexico	17,750	244	91	26,230	361	173
New York	25,022	294	2.414	21,457	251	2,291
North Carolina	55,365	682	4.536	29,906	365	2,773
Ohio	34.809	476	1,558	25,500 W	W	2,113 W
Oklahoma	15,984	221	678	18,233	220	738
Oregon	14,556	171	231	327		
Pennsylvania	65,399	780	6.397	50.830	4	5 100
South Carolina	11,660	141	703		607	7,193
South Dakota	42.315	489		17,550	213	1,109
Cennessee	10.318	125	15,035	50,188	557	17,543
Texas	36,887	454	883 7.095	10,921	130	1,063
Utah	3,450	454		41,883	529	5,543
Vermont	169.276	1.782	272	3,116	40	280
Virginia	27.439		23,649	206,819	2,209	30,756
Washington		327	2,287	4,201	58	1,130
Wisconsin	5,686	70	248	14,663	183	2,378
	45,431	559	4,501	40,343	498	4,259
Other	13,615	165	521	81,940	1,081	4,030
Total ²	1,314,532	15,523	138,907	1,331,107	15,773	150,463
Puerto Rico	129,288	1,724	2,271	104,628	1,395	2,040

W Withheld to avoid disclosing company proprietary data; included with "Other."

Tincludes discouring company proprietary data; included vincluded and the discouring the discour

Table 28.—Dimension granite sold or used by producers in the United States, by State

		1980			1981	
State	Short tons	Cubic feet (thousands)	Value (thousands)	Short tons	Cubic feet (thousands)	Value (thousands)
California	9,670	119	\$1,180	8,133	99	\$1,045
Connecticut	8,480	87	413	10,234	107	438
Georgia	199,249	1,987	9,646	249,192	2,514	11,217
Maryland			´	28,997	354	779
Massachusetts	49,719	598	W	48,557	699	8,504
Minnesota	32,359	384	11.917	29,450	347	11,540
New Hampshire	103,039	1,216	7,167	88,902	1,050	6,889
North Carolina	49,169	608	3,849	24,233	297	2,130
Oklahoma	7.292	84	559	5,954	67	569
South Carolina	11,660	141	703	17,550	213	1,109
South Dakota	42,315	489	15,035	50,188	557	17,543
Texas	21,521	259	6,399	17,458	209	3,796
Vermont	94,565	958	11,780	91,371	925	13,420
Other ¹	32,521	372	11,283	11,331	117	3,893
 Total ²	661,559	7,303	79,930	681,550	7,557	82,870

Table 29.—Dimension limestone sold or used by producers in the United States, by State

		1980			1981	
State	Short tons	Cubic feet (thousands)	Value (thousands)	Short tons	Cubic feet (thousands)	Value (thousands)
Alabama	7,596	101	\$970	4,250	57	\$665
California	15,800	198	492	12,331	154	552
Illinois	2,238	26	103	1,712	20	85
Indiana	158,135	2,133	· W	· W	W	w
Iowa	9,645	113	509	. W	W	W
Kansas	18,435	248	937	14,067	187	605
Maryland	,			420	5	21
Michigan	442	5	30	w	w	W
Minnesota	10,339	128	2,239	9,976	124	2,721
Ohio	1,646	19	79	W	W	W
Texas	6,926	96	240	16,115	222	1,268
Virginia	1.213	15	W	1,481	28	W
Wisconsin	40,677	510	1,464	35,867	450	1,528
Other ¹	22,293	327	14,218	183,492	2,465	14,525
Total ²	295,385	3,920	21,281	279,711	3,712	21,971
Puerto Rico	129,288	1,724	2,271	104,628	1,395	2,040

W Withheld to avoid disclosing company proprietary data; included with "Other."

Includes Colorado, New York, Pennsylvania, Rhode Island, Virginia, Washington, and Wisconsin.

Data may not add to totals shown because of independent rounding.

W Withheld to avoid disclosing company proprietary data; included with "Other." ¹Includes Colorado, Oklahoma, New Mexico, Rhode Island, Utah (1980), and Washington. ²Data may not add to totals shown because of independent rounding.

Table 30.—Dimension sandstone sold or used by producers in the United States, by State

		1980	¥ [1981	-
State	Short tons	Cubic feet (thousands)	Value (thousands)	Short tons	Cubic feet (thousands)	Value (thousands)
Arizona	w	w	(¹)	w	w	\$557
Arkansas	8.085	101	\$353	6,770	85	411
Colorado	5.629	72	182	370	5	10
Connecticut	6,917	89	310	9,206	118	472
Indiana	2,656	40	148	W	W	W
Maryland	5,767	72	242	4,477	56	203
Michigan	6,363	80	114	W	w	W
Minnesota	1,766	22	34	1,770	22	36
Missouri	200	3	w	210	-3	w
New York	19.378	231	1.768	16.538	197	1.647
North Carolina	4,133	52	206	3,473	43	132
Ohio	33,163	456	1,479	47,447	654	2,980
Oregon	1.450	17	42	23	(1)	1
Pennsylvania	34,809	446	1,107	28,099	360	1,259
Utah	3,320	43	266	3,116	40	280
Virginia	192	2	8	0,110	. 20	200
Washington	864	11	40	$12,\overline{7}\overline{1}\overline{3}$	159	2,295
Other ²	35,266	451	1,382	44,089	576	1,468
Total ³	169,958	2,187	7,681	178,301	2,318	11,752

Table 31.—Dimension marble sold or used by producers in the United States, by State

		1980		1981			
State	Short tons	Cubic feet (thousands)	Value (thousands)	Short tons	Cubic feet (thousands)	Value (thousands)	
Alabama	3,216	32	\$1,288	w	w	w	
Arizona	2,544	30	45	W	W	\$20	
Massachusetts	1,739	17	W	1,102	- 11	112	
North Carolina	Ŵ	W	W	200	2	109	
Texas	8,440	99	456	8,310	98	479	
Vermont	18,055	201	4.111	17.941	211	4,503	
Other ¹	26,417	299	8,283	30,967	391	8,581	
Total ²	60,411	679	14,184	58,520	713	13,804	

W Withheld to avoid disclosing company proprietary data; included with "Other."

Less than 1/2 unit.

**Includes Alabama (1981), California, Georgia, Idaho, New Jersey, Oklahoma, Tennessee, and Wisconsin.

**Data may not add to totals shown because of independent rounding.

W Withheld to avoid disclosing company proprietary data; included with "Other."

¹Includes Georgia, Idaho, Missouri, Montana, New Mexico, Tennessee, and Washington (1980).

²Data may not add to totals shown because of independent rounding.

Table 32.—Dimension stone sold or used by producers in the United States, by use

		1980		1981			
Use	Short tons	Cubic feet (thousands)	Value (thousands)	Short tons	Cubic feet (thousands)	Value (thousands	
Rough stone:							
Rough blocks	198,708	2,439	\$7,871	207,033	2,530	\$9,509	
Irregular-shaped stone	112,108	1,386	4,234	155,660	1,948	5,148	
Rubble	114,989	1,375	2,052	157,153	1,725	5,242	
Monumental	246,521	2,504	20,912	216,146	2,203	21,624	
Flagging	53,220	662	2,229	37,732	518	2,087	
Other rough stone	2,276	28	58	2,751	33	81	
Dressed stone:	2,2.0			-,			
Cut stone	144,565	1,817	30,026	129,225	1.648	31,032	
Sawed stone	71,820	949	8,690	61,196	803	7,580	
	62,147	792	3,795	39,980	514	2,723	
House stone veneer	19,103	230	2,186	12,187	147	1,592	
Construction	66.022	767	29,117	62,491	714	28,791	
Monumental			10,519	96,667	1,257	10,388	
Curbing Flagging	116,859	1,393	2,399	71.881	816	3,884	
Flagging	42,712	477	336	3,293	40	373	
Paving block	3,232	39			66	2,942	
Roofing slate, standard	7,478	82	3,447	5,962	. 00	47	
Roofing slate, architectural	140	2	60	99	Ţ	3.883	
Structural shapes	8,736	96	3,421	6,310	69		
Flooring slate	28,114	309	5,345	45,490	500	9,502	
Other dressed stone1	15,782	176	2,208	19,851	240	4,036	
Total ²	1,314,532	15,523	138,907	1,331,107	15,773	150,463	

Table 33.—Dimension granite sold or used by producers in the United States, by use

		1980			1981		
Use	Short tons	Cubic feet (thousands)	Value (thousands)	Short tons	Cubic feet (thousands)	Value (thousands	
Rough stone:						04.000	
Rough blocks	84,591	948	\$3,504	84,110	925	\$4,628	
Irregular-shaped stone	26.464	303	1,002	40,573	476	1,273	
Rubble	45,091	469	782	108,979	1,105	3,653	
Monumental	245,406	2,492	20,832	214,990	2,189	21,535	
Flagging	154	-,2	9	456	6	21	
Other rough stone	350	<u> </u>	17	209	2	12	
Other rough stone	. 000	•	-				
Dressed stone:	65,214	785	16,740	58,144	704	16,306	
Cut stone		14	217	9,927	118	767	
Sawed stone	1,172	66	220	4,627	56	169	
House stone veneer	5,425			4,021	47	673	
Construction	8,398	103	1,265	3,871			
Monumental	56,215	653	23,639	52,650	599	22,468	
Curbing	116,340	1,386	10,473	96,117	1,250	10,336	
Flagging	61	1	3	1,338	17	92	
Paving block	3,232	39	336	3,293	40	373	
Other	3,446	38	890	2,266	25	566	
Total ¹	661,559	7,303	79,930	681,550	7,557	82,870	

¹Data may not add to totals shown because of independent rounding.

¹Includes blackboards, billiard table tops, and other uses. ²Data may not add to totals shown because of independent rounding.

Table 34.—Dimension limestone sold or used by producers in the United States, by use

		1980			1981	
Use	Short tons	Cubic feet (thousands)	Value (thousands)	Short tons	Cubic feet (thousands)	Value (thousands)
Rough stone:						
Rough blocks	89,477	1.179	\$3,483	92,919	1,229	\$3,786
Irregular-shaped stone	7.987	128	335	43,278	573	981
Rubble	37,845	492	587	18,160	233	418
Flagging	18.667	249	358	16,697	222	338
Other rough stone	56	1	2	34	(1)	1
Dressed stone:			- · · · · · · · · · · · · · · · · · · ·	•••	()	. •
Cut stone	42.074	564	8,302	42,155	573	10,441
Sawed stone	52,955	719	5,317	33,955	466	3,908
House stone veneer	38,851	498	2,432	26.818	347	1,755
Construction	5,493	66	223	4.254	51	173
Curbing	196	2	12	W	w	W
Flagging	1,510	19	106	1.064	13	78
Other2	274	3	125	377	5	92
Total	295,385	3,920	321,281	279,711	3,712	21,971

W Withheld to avoid disclosing company proprietary data; included with "Other." $^1\text{Less}$ than 1/2 unit.

Table 35.—Dimension sandstone sold or used by producers in the United States, by use

		1980		1981			
Use	Short tons	Cubic feet (thousands)	Value (thousands)	Short tons	Cubic feet (thousands)	Value (thousands)	
Rough stone:							
Rough blocks	17.343	232	\$424	18.447	249	\$614	
Irregular-shaped stone	43,600	556	1.344	47,176	612	1,599	
Rubble	26,590	348	552	28,692	372	1,141	
Flagging	20,104	244	1.610	18,738	228	1,678	
Other rough stone	1,776	22	34	1,770	22	36	
Dressed stone:	-,		-	2,			
Cut stone	30,339	389	1,972	24,455	320	2,326	
Sawed stone	8,120	112	488	8,676	120	559	
House stone veneer	14,560	191	713	6,234	85	378	
Construction	2,226	28	61	1,313	16	26	
Flagging	4.488	55	335	9,387	126	960	
Other dressed stone ¹	812	11	148	13,413	168	2,433	
Total ²	169,958	2,187	7,681	178,301	2,318	11,752	

Table 36.—Dimension slate sold or used by producers in the United States, by use (Thousand short tons and thousand dollars)

Use	198	30	1981		
	Quantity	Value	Quantity	Value	
Flagging	36,599 7,478 140 8,736 28,114 9,295	1,953 3,447 60 3,421 5,345 593	60,042 5,962 99 6,310 45,490 2,049	2,752 2,942 47 3,883 9,502 469	
Total	90,362	²14,820	119,952	19,595	

¹Includes house stone veneer, blackboards, bulletin boards, school slates, billiard table tops, and other uses. ²Data do not add to total shown because of independent rounding.

²Includes Other uses

³Data do not add to total shown because of independent rounding.

¹Includes monumental, curbing, and other uses. ²Data may not add to totals shown because of independent rounding.

Table 37.—Dimension marble sold or used by producers in the United States, by use

		1980		1981			
Use	Short tons	Cubic feet (thousands)	Value (thousands)	Short tons	Cubic feet (thousands)	Value (thousands	
Rough stone:							
Rough blocks	5,765	61	\$4 13	11,525	127	\$47 8	
Irregular-shaped stone	20,390	235	1,066	16,868	196	1,032	
Monumental stone	1,115	12	80	1,156	14	90	
Dressed stone:							
Cut stone	6,083	69	2,961	3,686	42	1,911	
Sawed stone	9,573	104	2,668	8,638	100	2,345	
House stone veneer	3,198	36	426	W	w	· w	
Construction stone	1,286	13	562	W	w	w	
Monumental stone	9,801	113	5.477	9,835	115	6,322	
Other dressed stone ¹	3,200	36	531	6,812	119	1,625	
Total	60,411	679	14,184	58,520	713	² 13,804	

W Withheld to avoid disclosing company proprietary data; included with "Other."
¹Includes flagging and other uses.

²Data do not add to total shown because of independent rounding.

Table 38.—Miscellaneous dimension stone sold or used by producers in the United States, by use

		1980		1981			
Use	Short Cubic feet tons (thousands)		Value (thousands)	Short tons	Cubic feet (thousands)	Value (thousands)	
Rough stone:						-	
Rough blocks	1,500	19	\$44				
Irregular-shaped stone	13,658	164	487	7,749	91	\$262	
Rubble	3,756	46	106	764	9	23	
Flagging	610	7	21				
Dressed stone:							
House stone veneer	31	(1)	1				
Flagging	50	`í	ī	50	1	1	
Other ²	2,555	30	125	3,155	37	147	
Total ³	22,160	268	786	11,718	138	433	

Table 39.—Unit values of domestic and imported dimension stone

(Dollars per ton)

	19	80	1981	
Stone	Domes- tic	Import- ed	Domes- tic	Import- ed
GraniteLimestone	121 72	350 144	122 79	478
Marble	235	e270	236	257 e300
SandstoneSlate	45 164		.66 163	

eEstimated.

 $^{^1}Less$ than 1/2 unit. 2Includes other rough stone (1981), cut stone, and dressed construction stone. 3Data may not add to totals shown because of independent rounding.

Table 40.—Exports of dimension stone, by type¹

(Thousand short tons and thousand dollars)

Туре	Can	ada	Japan Other		her	Total quantity		Total value		
	1980	1981	1980	1981	1980	1981	1980	1981	1980	1981
Granite:										3.3
Rough blocks	42	38	21	35	16	4	79	77	4,759	6,365
Other ²	4	5	(³)	1	5	5	9	11	1,169	1,515
Total	46	43	21	36	21	9	88	4 88	5,928	7,880
Limestone:										
Rough blocks	6	11			1	542	7	53	360	719
Other	16	22	(3)		1	3	17	25	333	463
Total	22	33	(³)		2	45	24	78	693	1,182
Marble ²	r ₁₂	12	`í	(3)	r ₁₁	68	r ₂₄	21	3,038	2,673
Slate ²	5	6	(3)	(3)	8	75	13	11	2,303	2,180
Other:										
Rough blocks Other including	7	8	5	7	5	85	17	20	1,601	1,788
alabaster ²	4	2	1	1	5	96	10	9	1,606	2,164
Total ⁷	11	10	6	8	10	11	27	29	3,207	3,952
Grand total ¹⁰	r96	104	28	45	r ₅₂	78	r ₁₇₆	227	15,170	17,867

PRevised.

Partly estimated from reported values.

Tonnage data estimated from value data.

Tonnage lata estimated from value data.

Less than 1/2 unit.

Includes Italy, the United Kingdom, and Mexico in order of volume.

Venezuela accounted for 99%.

Includes Saudi Arabia, the Bahamas, and Mexico in order of volume.

Includes Saudi Arabia and the Bahamas in order of volume.

Includes Switzerland.

Includes Switzerland, Saudi Arabia, France, and Taiwan in order of volume.

Includes Switzerland, Saudi Arabia, France, and Taiwan in order of volume.

805

Table 41.—U.S. imports of dimension stone, by type

	19	980	1981		
Туре	Quantity	Customs value (thousands)	Quantity	Customs value (thousands	
Granite:				100 000	
Rough blocksthousand cubic feet	260	\$2,958	334	1\$6,696 233,522	
Dressed including monumentaldo	456	18,383	691	-88,522 45,333	
Other, n.s.p.f	(3)	1,427	(³)	-5,555	
Total	XX	22,768	XX	45,551	
Marble, breccia, onyx:		040	01	6285	
In block, rough, or squared thousand cubic feet	16	346	21	⁷ 30,971	
Slabs and tilesthousand square reet	9,332	23,725	11,912 (³)	819,243	
Other, n.s.p.f	(3)	15,504	(-)	15,240	
Total	XX	39,575	XX	50,499	
Travertine stone: Rough, unmanufacturedthousand cubic feet	36	164	11	69	
Dressed, suitable for monumental and other uses					
short tons	29,997	12,206	46,453	17,541	
Other, n.s.p.f	(³)	1,133	(³)	1,334	
Total	XX	13,503	XX	918.944	
Alabaster and jet		2,009	(³)	¹⁰ 1,169	
Limestone:					
Rough blocks thousand cubic feet	16	29	12	28	
Dressed manufactured short tons	471	214	626	385	
Other, n.s.p.f	(³)	129	(³)	39	
Total	XX	372	XX	¹¹ 452	
Slate:				10	
Roofingthousand square feet	80	38	140	¹² 116	
Other, n.s.p.f	(3)	7,484	(3)	10,665	
Total	XX	7,522	XX	¹³ 10,781	
= 1 41 6 4 m = - 6					
Stone and articles of stone, n.s.p.f.: Statuary and sculptures	(3)	384	(3)	14705	
Rough, unmanufacturedshort_tons_	r _{11.585}	r267	17,889	15297	
Building stone, dresseddodo	1,030	183	664	16278	
Other, n.s.p.f	(³)	2,365	(³)	¹⁷ 2,735	
Total	XX	^r 3,199	XX	4,015	
Grand total =	XX	88,948	XX	¹⁸ 131,416	

Revised. XX Not applicable.

^{*}Revised. AA Not applicable. 'Includes Canada, 64%; the Republic of South Africa, 17%; Italy, 14%; and other, 5%. 'Includes Italy, 74%; Canada, 14; Brazil, 4%; the Republic of South Africa, 2%; and other, 6%.

Includes Italy, 14%; Canada, 14; Brazil, 4%; the Republic of South Africa, 2%; and other, 6%.

Quantity not reported.

**Includes Canada, 70%; Italy, 18%; Ireland, 7%; and other, 5%.

**Includes Sawed or dressed, over 2-inches thick.

**Includes Mexico, 42%; Italy, 24%; and other, 13%.

**Includes Italy, 84%; Portugal, 5%; Spain, 3%; the Philippines, 2%; Mexico, 1%; and other, 5%.

**Includes Italy, 64%; Taiwan, 14%; Mexico, 9%; and other, 13%.

**Includes Italy, 91%; Mexico, 7%; Canada, 14; and other, 13%.

**Includes Italy, 90%; Spain, 16%; Taiwan, 9%; and other 5%.

**Includes Italy, 90%; Spain, 16%; Taiwan, 9%; and other 5%.

**Includes Italy, 42%; Mexico, 20%; the Federal Republic of Germany, 19%; Canada, 5%; the Republic of South Africa, 11ncludes Italy, 42%; Mexico, 20%; the Republic of South Africa, 18%; the United Kingdom, 11%; and other, 2%.

**Includes Spain, 47%; France, 22%; the Republic of South Africa, 18%; the United Kingdom, 11%; and other, 2%.

**Includes Preu, 46%; Italy, 37%; and other, 17%.

**Includes Peru, 46%; Italy, 37%; and other, 17%.

**Includes Mexico, 67%; Canada, 13%; the Republic of South Africa, 11%; and other, 9%.

**Includes Mexico, 22%; India, 16%; China, 11%; Italy, 9%; Taiwan, 7%; the Federal Republic of Germany, 6%; the United Kingdom, 6%; and other, 23%.

**Includes Mexico, 22%; India, 16%; China, 11%; Italy, 9%; Taiwan, 7%; the Federal Republic of Germany, 6%; the United Kingdom, 6%; and other, 23%.

Sulfur

By David E. Morse and John E. Shelton¹

The net shipment value, f.o.b. mine or plant, for elemental sulfur was \$1.3 billion in 1981, up 14% more than that of 1980. In 1981, production and stocks of elemental sulfur increased. Shipments, apparent consumption, and exports decreased in 1981. Imports were essentially the same as those of 1980. The average net shipment value, f.o.b. mine or plant, for Frasch and recovered elemental sulfur increased from \$89.06 per metric ton in 1980 to \$111.48 per metric ton in 1981. The 1981 yearend quoted price for Frasch sulfur was \$138.77 per metric ton, Texas and Louisiana gulf ports, and \$145.17 per metric ton, exterminal Tampa, Fla.

Production of sulfur in all forms was up 2% in 1981. For the sixth year, domestic production was less than apparent domestic consumption. Production of elemental sulfur was concentrated in Texas and Louisiana. Together, these two States accounted for 64% of the total output in 1981. Shipments of sulfur in all forms by U.S. produc-

Table 1.—Salient sulfur statistics (Thousand metric tons, sulfur content, and thousand dollars unless otherwise specified)

		1978	1979	1980	1981
United States:					
Production:		F 040	0.055	0.000	6.348
Frasch	5,915	5,648	6,357	6,390	
Recovered elemental	3,624	4,062	4,070	4,073	4,259
Other forms	1,188	1,465	1,674	1,403	1,538
Total	10,727	11,175	12,101	^r 11,866	12,145
Shipments:					
Frasch	6.030	5,736	7.507	7.400	5,910
Recovered elemental	3,627	4.088	4.108	r4.115	4.207
Other forms	1,188	1,465	1,674	1,403	1,538
m. 4.1	10.045	11.289	13,289	r12,918	11.655
Total	10,845 2,009	2,177	2,494	2,523	2,522
Imports, elemental and pyrites		827	1,963	1,673	1,392
Exports, crude and refined	1,088			r _{13,659}	12,785
Consumption, apparent, all forms ²	11,657	12,600	13,739	-13,009	12,100
Stocks, Dec. 31: Producer, Frasch and	5,557	5,345	4,239	r3,094	3,634
recovered elemental	0,001	0,040	4,200	0,004	0,001
Value:					
Shipments, f.o.b. mine or plant:					
Frasch	\$294,733	\$279,918	\$449,433	\$ 720,511	\$715,683
Recovered elemental	133,849	163,799	198,137	r305,046	412,115
Other forms	57,304	68,295	89,643	84,332	140,618
Total	485,886	512,012	737.213	r _{1,109,889}	1,268,416
	\$65,154	\$75,671	\$94,147	\$138,852	\$209,766
Imports, elemental ³ Exports, crude and refined ^{3 4}	\$52,111	\$34,667	\$142,966	\$185,866	\$187,407
Price, elemental, dollars per metric ton,	40-9-11	40.2,001		,,	,,
f.o.b. mine or plant	\$44.38	\$45.17	\$55.75	r\$89.06	\$111.48
World: Production, all forms (including pyrites)	r52,341	r53,687	F54,745	P56,635	e55,669

^eEstimated. ^pPreliminary. ^rRevised. ¹Excludes exports from the Virgin Islands to foreign countries, except for 1981.

²Measured by shipments, plus imports, minus exports.
³Declared customs valuation.

^{*}Excludes value of exports from the Virgin Islands to foreign countries, except for 1981.

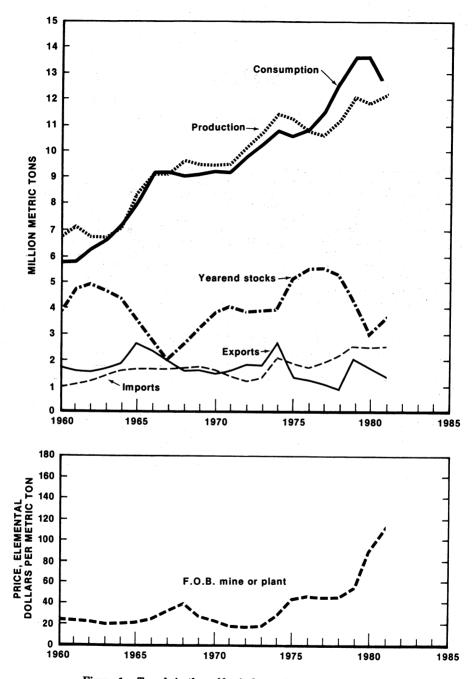


Figure 1.—Trends in the sulfur industry in the United States.

ers to domestic and export markets were 11.7 million metric tons, a decrease of 10% compared with that of 1980. The total value of shipments, f.o.b. mine or plant, was

\$1.3 billion in 1981, up from \$1.1 billion in 1980. The apparent domestic consumption of sulfur in all forms declined to 12.8 million tons in 1981; the United States was a net

SULFUR 809

importer again in 1981.

Pro-Government Legislation and grams.—A report, in four volumes, evaluating the sources of sulfur and the impact of byproduct sulfur on the Frasch mining industry of Texas and Louisiana was prepared by the University of Arizona under contract with the Federal Bureau of Mines. The reports OFR 94(1)-(4)-81 are available for reading at the Bureau of Mines facilities at Tuscaloosa, Ala.; Denver, Colo.; Boulder City, Nev.; Pittsburgh, Pa.; and Spokane, Wash.; and at the Bureau of Mines and the Department of the Interior libraries in Washington, D.C. The reports are available

for purchase from the National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161. Order numbers for the four volumes are PB 81-222796, PB 81-222804, PB 81-222812, and PB 81-222820, or, as a set. PB 81-222788.

An administrative review of imports of sulfur from Mexico resulted in a determination that shipments of sulfur to the United States by Azufrera Panamericana, S.A., and Compañia Exploradora del Istmo, S.A., would require no cash deposit, whereas shipments by Agrico Centro, S.A., would require a cash deposit of 33% of entered value.²

DOMESTIC PRODUCTION

Frasch.-In 1981, there were 10 Frasch mines, all in Louisiana and Texas. Mines in Louisiana were Freeport Minerals Co. at Garden Island Bay, Grand Isle, and Caillou Island. Producers' mines in Texas were Farmland Industries, Inc., at Fort Stockton; Duval Corp. at Culberson and Phillips Ranch; Jefferson Lake Sulfur Co. at Long Point Dome; and Texasgulf, Inc., at Boling Dome, Moss Bluff Dome, and Comanche Creek. The eight mines operated by Duval, Freeport Minerals, and Texasgulf accounted for most of the Frasch sulfur production. A relatively small portion of the output was from the other two producers operating one mine each.

Of producers' shipments of Frasch sulfur, about 24% were for export. The value of Frasch sulfur shipments in 1981 declined to \$716 million. Reported stocks after inventory adjustments increased by 488,000 tons to 3.4 million metric tons.

Recovered.—Production in 1981 of recovered elemental sulfur, a nondiscretionary byproduct from natural gas and petroleum refinery operations, electric utilities, and coking plants, increased to 4.3 million

tons. This type of sulfur was produced by 61 companies at 165 plants in 29 States, 2 plants in Puerto Rico, and 1 plant in the Virgin Islands. Most of the plants were of relatively small size, with only six reporting an annual production exceeding 100,000 tons. The 10 largest plants accounted for 42% of the output. By source, 54% was produced by 45 companies at 92 refineries or satellite plants treating refinery gases, 3 coking operations, and 1 utility plant, and 46% was produced by 27 companies at 69 natural gas treatment plants. The five largest recovered elemental sulfur producers were Chevron U.S.A., Inc.; Exxon Co., U.S.A.: Pursue Gas Processing and Petrochemical Co.; Shell Oil Co.; and Standard Oil Co. (Indiana). Together, their 41 plants accounted for 57% of recovered elemental sulfur production in 1981.

The leading States in production of recovered elemental sulfur were Texas, Mississippi, California, Alabama, and Florida. Together these States contributed 70% of the total 1981 output. The total value of shipments of recovered elemental sulfur in 1981 was an alltime high of \$412 million.

Table 2.—Production of sulfur and sulfur-containing raw materials in the United States

(Thousand metric tons)

	19	980	1981	
·	Gross weight	Sulfur content	Gross weight	Sulfur content
Frasch sulfur	6,390	6,390	6,348	6,348
Recovered elemental sulfur	r4,073	r4.073	4,259	4,259
Byproduct sulfuric acid (100% basis) produced at copper,	-,			•
lead, molybdenum, and zinc plants	3,069	1,003	3,546 797	1,159
Pyrites	847	322	797	307
Other forms ¹	124	78	119	72
Total	XX	^r 11,866	XX	12,145

Revised. XX Not applicable.

¹Hydrogen sulfide and liquid sulfur dioxide.

Table 3.—Sulfur produced and shipped from Frasch mines in the United States

(Thousand metric tons and thousand dollars)

	Year		Production	Shipments		
	rear	Texas	Texas Louisiana Total	Quantity	Value ¹	
1977		3,454	2,461	5.915	6,030	294,733
1978		3,720	1,928		5,736	279,918
1979		3,897	2,460	5,648 6,357	7,507	449,433
1980		4,081	2,309	6,390	7.400	720,511
1981		3,908	2,440	6,348	5,910	715,683

¹F.o.b. mine.

Table 4.—Recovered sulfur produced and shipped in the United States

(Thousand metric tons and thousand dollars)

	Production			Shipments	
Year	Natural gas plants	Petroleum refineries ¹	Total	Quantity	Value ²
1977	1,426 1,753 1,760 1,757 1,971	2,198 ³ 2,309 ³ 2,310 ³ 2,316 ³ 2,288	3,624 4,062 4,070 •4,073 4,259	3,627 4,088 4,108 4,115 4,207	133,849 163,799 198,137 r305,046 412,115

^rRevised.

Table 5.—Recovered sulfur produced and shipped in the United States, by State

(Thousand metric tons and thousand dollars)

		1980			1981	
State	Production	Shipr	nents	Production	Shipr	nents
	(quantity)	Quantity	Value	(quantity)	Quantity	Value
Alabama	376	374	32,010	403	404	41.224
California	480	480	17,616	477	465	31,393
Florida	303	304	W	243	243	W
Illinois	207	208	r _{13.031}	216	216	19,739
Indiana	68	68	2,089	w	w	W
Kansas	21	21	1,337	20	20	1,716
Louisiana	209	209	17,382	239	239	26,606
Michigan and Minnesota	79	81	3,085	77	77	5,600
Mississippi	534	r ₅₉₃	r60,404	698	677	78,871
New Jersey	120	118	7.273	119	120	13,581
New Mexico	61	62	4.264	69	69	5,991
Ohio	21	21	1,377	31	31	2,155
Oklahoma	-8	-8	586	w	w	2,155 W
Pennsylvania	58	57	3,403	56	56	4.654
Texas	1.111	1,104	87,986	1,144	1.136	115,252
Wisconsin	-,	1,101	23	(1)	(1)	110,202
Wyoming	47	46	1,506	46	47	2,568
Other ²	*373	361	51,676			
	010	901	91,010	418	405	62,745
Total ³	r _{4,073}	^r 4,115	r305,046	4,259	4,207	412,115

Revised. W Withheld to avoid disclosing company proprietary data; included with "Other."

Byproduct Sulfuric Acid.—Production of byproduct sulfuric acid at copper, lead, molybdenum, and zinc smelters and roasters was by 11 companies at 26 plants in 14 States. Twelve acid plants operated in conjunction with copper smelters and 14 plants were accessories to lead, molybdenum, and zinc roasting and smelting operations. The five largest acid plants accounted for 52% of the output, and production in five States was 81% of the total. The five largest producers of byproduct sulfuric acid were

¹Includes a small quantity from a coking operation.

F.o.b. plant.

³Includes a small quantity from utility plants.

Less than 1/2 unit.

²Arkansas, Colorado, Delaware, Kentucky, Missouri, Montana, New York, North Dakota, Utah, Virginia, Washington, the Virgin Islands, and Puerto Rico combined to avoid disclosing company proprietary data and data indicated by symbol w

W.

**Bata may not add to totals shown because of independent rounding.

ASARCO Incorporated, Magma Copper Co., Kennecott Copper Corp., Phelps Dodge Corp., and AMAX Inc., whose 18 plants produced 79% of the byproduct sulfuric acid in 1981.

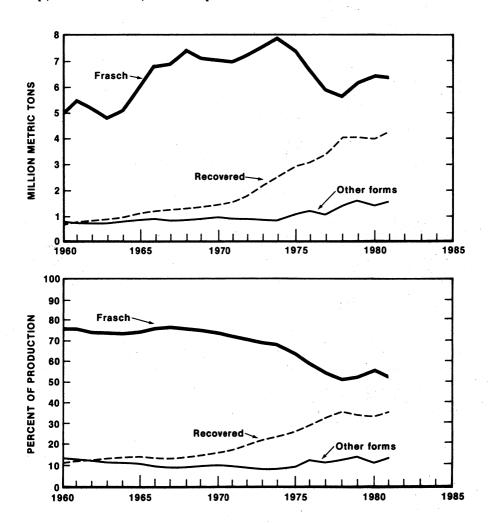


Figure 2.—Trends in the production of sulfur in the United States.

Table 6.—Byproduct sulfuric acid1 (sulfur content) shipments in the United States (Thousand metric tons and thousand dollars)

Year	Copper plants ²	Lead and zinc plants ³	Zinc plants ³	Lead and molyb- denum plants ³	Total	Value
1977	699	261			960	46,236
1978	812	291			1,103	49,848
1979	821	346			1,167	51.815
1980	686		183	134	1,003	55,897
1981	848		179	132	1,159	75,657

¹Includes acid from foreign materials. ²Excludes acid made from pyrites concentrates. ³Excludes acid made from native sulfur.

Pyrites, Hydrogen Sulfide, and Sulfur Dioxide.—Pyrites was produced by three companies at three mines in three States; hydrogen sulfide by three companies at four plants in three States; and sulfur dioxide by three companies at five plants in five States. The three largest producers of these products were Cities Service Co. (pyrites and sulfur dioxide). Stauffer Chemical Co. (sulfur dioxide), and Tosco Corp. (hydrogen sulfide). These companies combined, at one mine and five plants, accounted for 92% of the contained sulfur produced in the form of these products. Total contained sulfur produced in the form of these three products represented 3% of all sulfur produced domestically.

Table 7.—Pyrites, hydrogen sulfide, and sulfur dioxide sold or used in the United States

(Thousand metric tons, sulfur content, and thousand dollars)

Year	Pyrites	Hydrogen sulfide	Sulfur dioxide	Total	Value
1977 _	169	59	(¹)	228	11,068
1978 _	301	61	(1)	362	18,447
1979 _	400	35	72	507	37,828
1980 _	322	36	42	400	28,435
1981 _	307	28	44	379	64,961

¹Included with "Hydrogen sulfide."

CONSUMPTION AND USES

In 1981, apparent domestic consumption of sulfur in all forms was nearly 12.8 million tons, a 6% decrease from that of 1980. Eighty percent of the sulfur for domestic consumption was obtained from domestic sources compared with 82% in 1980. The supply sources of sulfur were domestic Frasch sulfur, 35%; domestic recovered elemental sulfur, 33%; and combined domestic byproduct sulfuric acid, pyrites, hydrogen sulfide, and sulfur dioxide, 12%. The remaining 20% of the sulfur was from imports of Frasch and recovered elemental sulfur.

The Bureau of Mines collected data on the end uses of sulfur and sulfuric acid by Standard Industrial Classification of industrial activities. Shipments by end use of elemental sulfur were reported by 67 companies, and shipments by end use of sulfuric acid were reported by 69 companies. Sixteen companies reported shipments of both elemental sulfur and sulfuric acid.

Companies responding to the canvass reported shipments of 11.7 million metric tons of sulfur in 1981. Of these reported shipments, 856,000 tons was for export. The largest sulfur use, sulfuric acid production, represented 85% of shipments for domestic consumption. Some identified end uses were tabulated in unidentified uses because data were proprietary. Data collected from some companies that did not identify shipments by end use were also tabulated as unidentified.

Reported shipments of 100% sulfuric acid totaled 37.6 million metric tons in 1981, a 7% decrease from shipments reported in 1980. Shipments of sulfuric acid for phos-

phatic fertilizers, the largest end use, declined 9% to 23.7 million tons in 1981 from 26.0 million tons in 1980. Shipments of sulfuric acid for petroleum refining and other petroleum and coal products, the second largest end use of sulfuric acid, were 3.2 million tons.

Usage of sulfuric acid for copper ore leaching decreased from 1.4 million tons in 1980 to 942,000 tons in 1981; shipments of sulfuric acid for copper ore leaching were 2.1 million tons in 1979. Shipments of sulfuric acid for other end-use categories are shown in table 10.

According to the reports received, receipts of spent sulfuric acid for reclaiming totaled 1.97 million metric tons in 1981. The largest source of spent acid was from petroleum refining and petroleum and coal products, which accounted for 72% of the spent acid returned. The petroleum refining industry was a net user of about 1.75 million tons of sulfuric acid.

According to the reports received, about 373,000 tons or 19% of the spent acid was returned for reclaiming from the organic chemical industry. The remaining reclaimed acid was returned from phosphatic fertilizers, soap and detergents, explosives, steel pickling, paints and pigments, inorganic chemicals, and some unidentified sources.

Table 11 shows the domestic uses of sulfur including the sulfur contained in sulfuric acid. The largest identified end use for sulfur (as sulfuric acid) was for phosphatic fertilizers, which accounted for 56% of the total use of sulfur in 1981.

Table 8.—Apparent consumption of sulfur in the United States1

(Thousand metric tons)

	1977	1978	1979	1980	1981
Frasch:				7 400	5.010
Shipments	6,030	5,736	7,507	7,400 990	5,910 856
Imports	781	993	1,229		
Exports	1,088	827	1,963	1,673	² 1,392
Total	5,723	5,902	6,773	6,717	5,374
Recovered:	0.007	4.000	4.100	F4 11F	4 007
Shipments	3,627	4,088	4,108	r4,115	4,207 1,666
Imports	1,228	1,185 39	1,265 81	1,533 109	1,000
Exports from the Virgin Islands	109	39	- 01	103	
. Total	4,746	5,234	5,292	r _{5,539}	5,873
Pyrites, shipments	169	301	400	322	307
Byproduct sulfuric acid, shipments	960	1.103	1.167	1,003	1,159
Other forms, shipments ³	59	61	107	78	72
Total, all forms	11,657	4 12,600	13,739	r _{13,659}	12,785

Table 9.—Elemental sulfur sold or used in the United States, by end use

(Thousand metric tons)

SIC	Use	1980	1981
20	Food and kindred products	w	w
26, 261	Pulp and paper products	94	30
282, 2822	Synthetic rubber and other plastic products	w	w
287	Agricultural chemicals		348
28, 285, 286	Paints and allied products, industrial organic chemicals,		
20, 200, 200	and other chemical products	125	77
00. 901	Petroleum refining and petroleum and coal products		193
29, 291	Paying and roofing materials		3
295 281	Other industrial inorganic chemicals		157
281 30	Rubber and miscellaneous plastic products		w
	Sulfuria acid: Domestic sulfur	8,741	7,733
	Imported sulfur	1,516	1,460
	Total Unidentified		9,193 820
	Total domestic usesExports		10,821 856
	Grand total	13,283	11,677

W Withheld to avoid disclosing company proprietary data; included with "Unidentified."

^{*}Revised.

¹Crude sulfur or sulfur content.

²Total exports, includes exports from the Virgin Islands.

³Includes consumption of hydrogen sulfide and liquid sulfur dioxide.

⁴Data do not add to total shown because of independent rounding.

Table 10.—Sulfuric acid sold or used in the United States, by end use

(Thousand metric tons of 100% H2SO4)

SIC	Use	Qua	ntity
	Use	1980	1981
102	Copper ores	1.352	942
1094	Uranium and vanadium ores	616	
10	Other ores	40	16
261	Pulpmills	510	739
26		266	94
285, 2816	Inorganic pigments and paints and allied products	693	449
281	Unier inorganic chemicals	1,059	839
282, 2822	Synthetic rubber and other plastic materials and synthetics	616	590
2823	Cellulosic fibers including rayon	311	198
283	Drugs	94	54
284	Soaps and detergents	397	392
286	Industrial organic chemicals	978	1,725
2873	Nitrogenous fertilizers	668	634
2874	Phosphatic fertilizers	25,999	23,700
2879	Pesticides	138	118
287	Other agricultural chemicals	277	204
2892	Explosives	40	42
2899	Water-treating compounds	299	461
28	Other chemical products	673	199
29, 291	Petroleum refining and other petroleum and coal products	2,644	3.171
30	Rubber and miscellaneous plastic products	2,044 W	29
331	Steel pickling	316	268
333	Nonferrous metals	64	75
33	Other primary metals	31	81
3691	Storage batteries/acid	105	173
	Unidentified		
		1,905	1,418
	Total domestic	40.091	37,402
	Exports	248	210
	Grand total	40.339	37,612

W Withheld to avoid disclosing company proprietary data; included with "Unidentified."

Table 11.—Sulfur and sulfuric acid sold or used in the United States, by end use (Thousand metric tons, sulfur content)

SIC	Use	Elem suli	ental fur ¹	(sulfur	ric acid equiva- nt)	Total	
		1980	1981	1980	1981	1980	1981
102	Copper ores Uranium and vanadium ores			442	308	442	308
1094	Uranium and vanadium ores			201	213	201	213
10	Other ores			13	54	13	54
20	Food and kindred products	w	w		٠.	w	w
261, 26	Pulpmills and paper products	94	30	254	$2\overline{7}\overline{2}$	348	302
2816, 285, 28, 286	Inorganic pigments, paints and allied products, industrial organic chemicals.			201	212	040	302
	and other chemical products	125	77	227	146	352	223
281	Other inorganic chemicals	181	157	346	274	527	431
2822, 2823,	Synthetic rubber, cellulosic fibers,			0.10	212	021	401
282	other plastic materials and synthetics	w	w	303	255	303	255
283	Drugs		••	31	18	31	18
284	Soans and detergents			130	128	130	128
286	Industrial organic chemicals			320	564	320	564
2873	Nitrogenous fertilizers			218	207	218	207
2874	Phosphatic fertilizers			8,499	7.748	8,499	
2879	Pesticides			45	37		7,748
287	Other agricultural chemicals	280	348	91	67	45	.37
2892	Explosives		040	13		371	415
2899	Water-treating compounds				14	13	14
28	Other chemical products			98	151	98	151
291, 29	Petroleum refining and other			220	65	220	65
	petroleum and coal products	159	193	864	1.037	1.023	1,230
295	Paving and roofing materials	w	3	001	1,001	W	3
30	Rubber and miscellaneous plastic products	ŵ	w	w	- <u>9</u>	ẅ	9
331	Steel pickling		**	103	88	103	90
333	Nonferrous metals			21	25	21	88 25
33	Other primary metals			10	26 26	10	25 26
3691	Storage batteries/acid			34			
	Exported sulfuric acid				57	34	57
				81	68	81	68
	Total identified	839	808	10 564	11 001	10 400	10.000
	Unidentified	910		12,564	11,831	13,403	12,639
		910	820	623	464	1,533	1,284
	Grand total	1,749	1,628	13,187	12,295	14,936	13,923

W Withheld to avoid disclosing company proprietary data; included with "Unidentified."
**Does not include elemental sulfur used for production of sulfuric acid.

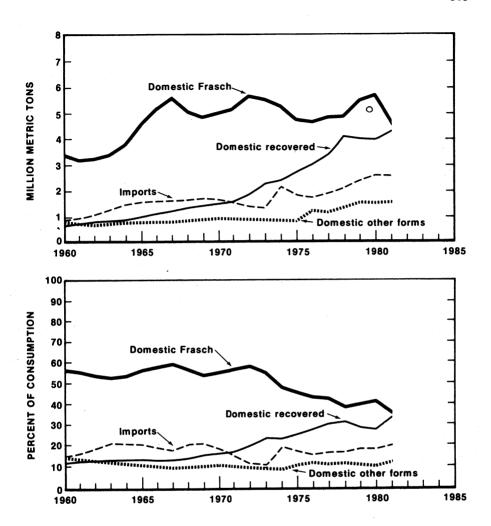


Figure 3.—Trends in the consumption of sulfur in the United States.

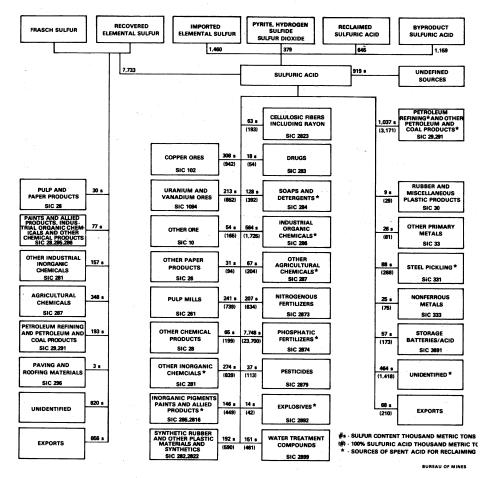


Figure 4.—Sulfur-sulfuric acid supply and end-use relationship in 1981.

STOCKS

Yearend 1981 producers' inventory of Frasch sulfur increased 17% as Frasch producers began rebuilding stocks that were drawn down in 1979 and 1980 to supply domestic needs and world markets. Combined yearend stocks amounted to approximately 4 months' supply based on 1981 domestic and export demands for domestically produced Frasch and recovered elemental sulfur.

Table 12.—Producers' yearend stocks

(Thousand metric tons)

Year	Frasch	Recovered	Total
1977	5,288	269	5,557
1978	5,123	222	5,345
1979	4,058	181	4,239
1980	2,954	^r 140	r3,094
1981	3,442	192	3,634

Revised.

PRICES

The quoted price for liquid sulfur was \$138.77 per metric ton, Texas and Louisiana gulf ports, and \$145.17 per metric ton,

exterminal Tampa, Fla., at yearend 1981.

On the basis of shipments and total value reported to the Bureau of Mines, the aver-

SULFUR 817

age value of shipments of Frasch sulfur. f.o.b. mine, for combined domestic consumption and exports during 1981 rose sharply to \$121.11 per metric ton from \$97.36 per ton in 1980. Shipment values for recovered elemental sulfur varied widely in different regions: Lowest in the West, somewhat higher in the midcontinent, and near the values for Frasch sulfur in the East and South. Overall, the reported unit shipment sulfur value for recovered elemental sulfur, f.o.b. plant, in 1981 was \$97.97 per metric ton compared with \$74.13 per ton in 1980. In 1981, the average price per ton of sulfur contained in byproduct sulfuric acid increased from \$56 in 1980 to \$65. The average unit value for sulfur contained in pyrites, hydrogen sulfide, and sulfur dioxide, combined, increased to \$171 per ton.

Table 13.—Reported sales values of shipments of elemental sulfur, f.o.b. mine or plant

(Dollars per metric ton)

Year	Frasch	Recovered	Total	
1977	48.88	36.91	44.38	
1978	48.80	40.07	45.17	
1979	59.87	48.23	55.75	
1980	97.36	r74.13	r89.06	
1981	121.11	97.97	111.48	

Revised.

FOREIGN TRADE

The United States was a net importer of sulfur in 1981 for the seventh year. Exports from the United States, including the Virgin Islands in 1981, were down 22% from those of 1980 to about 1.4 million tons. Imports in the form of elemental sulfur were 2.5 million tons in 1981, the same as in 1980.

Exports from the United States were almost entirely in the form of Frasch sulfur. The total value of exports, including the Virgin Islands, in 1981 decreased 6% from that of 1980. The reported average export

value was \$134.64 per ton in 1981. Exports to Belgium-Luxembourg and the Netherlands were 52% of the total in 1981.

Imports of Frasch sulfur from Mexico were 856,000 tons in 1981. Imports of recovered elemental sulfur, mostly from Canada, totaled 1.7 million tons in 1981. The unit value of imports of sulfur from Canada increased from \$34.20 in 1980 to \$60.94 in 1981, and the value of imports from Mexico increased from \$86.18 in 1980 to \$126.43 in 1981.

Table 14.—U.S. exports of crude and refined sulfur, by country

(Thousand metric tons and thousand dollars)

· · · · · · · · · · · · · · · · · · ·				
Country	1980¹		1981	
	Quantity	Value	Quantity	Value
Argentina	23	3,040	7	1,063
Australia	33	4,415	1	500
Belgium-Luxembourg	604	58,888	453	67.028
Brazil	124	15,825	51	7,267
Bulgaria		10,020	14	1,775
Canada	- 3	447	ii	796
Chile	50	5,810	16	1,699
Colombia	15	1,942		
	51		<u> (?)</u>	173
Egypt	91	7,214	√ 54	7,400
Finland			29	4,061
France	24	2,552	(2)	18
Greece	(²)	25	15	1,962
India	49	7.061	161	20,726
Mexico	33	2,187	56	3,235
Morocco	128	16,372		-,
Netherlands	251	22,479	261	29,820
Nigeria		22,110	16	1,438
Romania	59	7,156	169	22,069
South Africa, Republic of	92	10,519	16	1,710
Ot	4	452	6	630
er · ·	35		0	030
	39	4,127	7.7	
Turkey		=	14	1,778
United Kingdom	62	6,645	1	- 28
Uruguay	20	2,523	9	1,171
Other	14	6,189	36	11,060
Total ³	1,673	185,866	1,392	187,407

¹In 1980, excluded exports from the Virgin Islands to foreign countries which totaled 108,802 metric tons (\$12,887,185). ²Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

Table 15.-U.S. imports of elemental sulfur, by country

(Thousand metric tons and thousand dollars)

Country	1980		1981	
	Quantity	Value	Quantity	Value
Canada	1,517	51,875	1,666	101,518
Germany, Federal Republic of	(¹) 990	40 85,316	856	27 108,221
Trinidad	16	1,620		
Other ³	(1)	1	(1)	1
Total	2,523	138,852	2,522	3209,766

¹Less than 1/2 unit.

WORLD REVIEW

Although shipments of sulfur from Iran, Iraq, and Poland continued to be curtailed, Western World demand for sulfur in 1981 was met by shipments of newly produced sulfur and withdrawal from producer inventories. Demand was high during the first half of the year, but was lower in the last half of the year as demand for agricultural purposes declined.

Canada.—Shipments of sulfur in all forms were about 9.0 million tons in 1981. Recovered elemental, which represents about 90% of total output, was produced at 60 sour natural gas plants: 57 in Alberta and 3 in British Columbia. Production of byproduct sulfur from smelter gases was about 720,000 tons in 1981. Canadian sulfur exports were a record high 7.3 million tons, most of which were shipped through the Port of Vancouver.³

In Alberta, production of sulfur in 1981 was about 5.7 million tons. About 250,000 tons of the 1981 total was from tar sands. Of the total shipments from Alberta of 7.7 million tons, 5.33 million tons was exported to overseas markets, 1.53 million tons was exported to the United States, and 840,000 tons was for consumption in Canada. Producers' stocks declined from 18.9 million tons at the end of 1980 to 16.7 million tons at the end of 1981. The overall average market value for shipments of sulfur, f.o.b. plant, in December 1981 was \$64.03 per metric ton-\$53.31 for North American deliveries and \$69.17* for offshore deliveries compared with the overall average of \$60.77 per metric ton in December 1980.5

Facilities are adequate for overseas ex-

port of sulfur from natural gas production operations in Alberta. Two railroad lines and two deepwater ports can move the volume of sulfur exported in 1981.

Iraq.—Production of sulfur in Iraq is expected to be 700,000 to 800,000 metric tons until 1985 when it is expected to rise to 900,000 tons.

Italy.—The Campiano Boccheggiano pyrite mine with reserves of 30 million metric tons was opened. Current output of 800,000 metric tons per year is expected to rise to 1 million tons by 1983.*

Japan.—Recovery of sulfur at petroleum refineries in 1981 was about 1.0 million tons.

Mexico.—Frasch sulfur production in 1981 was about 1.7 million tons, essentially the same as in 1980. Sulfur reserves have been estimated at 80 million tons. Production of recovered elemental sulfur was about 350,000 tons. Exports of Frasch and recovered elemental sulfur totaled 1.2 million tons. Domestic sales were almost 900,000 tons.

Poland.—Plans are being developed to open a new mine at Skopanie, adjacent to the Jeziorko Mine, using Frasch mining methods. Exports of sulfur were about 3.8 million tons.

Saudi Arabia.—Three sulfur recovery plants are currently in operation. The plant at Berri is producing about 800 tons per day. The Shedgum has four modules with total design capacity of 1,700 tons per day. The first of three modules with total design capacity of 1,100 tons per day was started in the last half of 1981 at Uthmaniyah.

²1980—Japan; 1981—United Kingdom.

³Data do not add to total shown because of independent rounding.

Table 16.—Sulfur: World production in all forms, by country and source¹

(Thousand metric tons)

0 77 80 88 81 1 1 1 0 85 57	15 18 20 38 93 *140 10 *243	20 20 29 e140 11 180	14 NA NA 29 140 11	15 NA NA NA 30
80 97 98 81 11 90	93 **140 10 **243	29 e140 11	NA 29 140	NA 30 140
80 97 98 81 11 90	93 **140 10 **243	29 e140 11	NA 29 140	NA 30 140
98 21 11 10 8	93 r ₁₄₀ 10 r ₂₄₃	29 *140 11	29 140	30 140
21 1 10 8 25	r ₁₄₀ 10 r ₂₄₃	^e 140 11	140	140
21 1 10 8 25	r ₁₄₀ 10 r ₂₄₃	^e 140 11	140	
8 25	10 r ₂₄₃	11		
8		180		11
5			180	181
5				
5	9	10	9	9
	22	24	19	19
_	27	27	23	24
5	58 e ₅	61 e ₅	51 e ₅	52 5
7	26	25	33	36
7	267	270	270	270
6	⁸ 14 57	⁸ 15 92	11 131	11 150
			101	
)5	310	315	300	300
55	70	75	70	70
70	380	390	370	370
2	5	12	12	12
	676	667	903	720
		5,935 200	6,000 190	5,700 160
	118	213	300	250
33	7,247	7,027	7,405	6,842
5	14	12	14	15
27	18 20	65 27		75 35
	52	104	121	125
20	200	200	200	200
	1,605	1,682	1,700	1,700
	350	400	400	400
52	2,155	2,282	2,300	2,300
	r35	16	26	30 2
29	r38	18	27	32
	99	19	99	. 2
94		8	8	8
34 8				
	27 29 61 000 52 000 52 27 2 2 29	75 6,248 60 200 118 83 7,247 5 14 27 18 29 20 61 52 00 200 552 1,605 00 350 552 2,155 27 3 29 738 34 23	75 6,248 5,935 60 200 200 000 118 213 83 7,247 7,027 5 14 12 27 18 65 29 20 27 61 52 104 00 200 200 552 1,605 1,685 00 350 400 552 2,155 2,282 27 35 16 2 73 2 29 738 18 34 23 12	75 6,248 5,935 6,000 100 200 200 190 83 7,247 7,027 7,405 5 14 12 14 27 18 65 74 29 20 27 33 61 52 104 121 00 200 200 200 200 552 1,605 1,682 1,700 00 350 400 400 552 2,155 2,282 2,300 27 33 16 26 2 73 16 26 2 73 2 1 29 738 18 27 34 23 12 22

See footnotes at end of table.

Table 16.—Sulfur: World production in all forms, by country and source¹—Continued (Thousand metric tons)

Country ² and source ³	1977	1978	1979	1980 ^p	1981 ^e
Cyprus: ¹⁰ Pyrites	r ₆₉	°55	21	25	20
Czechoslovakia:					
Native Pyrites	5 55	.5	5	5	E
Pyrites Byproduct, all sources	55	60 10	60 10	60 10	60 10
Total	69 11	75 14	75 8	75 6	75 6
Ecuador:			<u>_</u>		
Nativee Byproduct:	15	5	5	5	4
Natural gas ^e Petroleum ^e		5	5	5	. 5
		5	5	5	5
Total ^e Egypt: ⁹ Byproduct, petroleum and natural gas	13 5	15 3	15 3	15 3	14 20
Finland:					
PyritesByproduct:	130	87	151	144	150
Metallurgy Petroleum ^e	280 25	232 30	263 30	247 30	250 30
Total ^e	435	349	444	421	430
France:					
Byproduct: Natural gas ¹¹	1 011	1 000	1.040	1.041	1 000
Petroleum ¹¹		1,900 161	1,940 184	1,841 222	1,800 206
Unspecified ¹²	e160	e160	e160	150	150
Total	^r 2,217	r _{2,221}	2,284	2,213	2,156
German Democratic Republic:					
Pyrites ^e Byproduct, all sources ^e	10 340	10 350	10 350	10 350	10 350
Total ^e	350	360	360	360	360
Germany, Federal Republic of:					
PyritesByproduct:	235	221	203	198	200
Metallurgy ¹³		r 380	450	450	440
Natural gas ¹¹ Petroleum ¹¹	^r 631	r ₆₅₀	690	814	¹⁴ 834
Petroleum ¹¹ Unspecified ¹²	186 165	190 r160	214 93	220 e ₉₃	14191 30
Total	r _{1,602}	r _{1,601}	1,650	1,775	1,695
Greece:					
Pyrites Byproduct, petroleum ^e	54 3	$^{61}_3$	63 3	61 4	60 4
Total ^e	57	64	66	65	64
Hungary:					==
Pyrites ^e	3 8	3 9	3 9	3 9	3 9
Total ^e		12	12	12	12
india: ⁴		12	14	12	12
Pyrites	14	26	29	34	31
Metallurgy ^e Petroleum	117	115	115	115	115
	7	7	7	5	4
	138	148	151	154	150
See footnotes at end of table.					

SULFUR 821

Table 16.—Sulfur: World production in all forms, by country and source¹ —Continued (Thousand metric tons)

Country ² and source ³	1977	1978	1979	1980 ^p	1981 ^e
Indonesia:10 Native	2	(¹⁵)	(¹⁵)	(¹⁵)	(¹⁵)
Iran: Native ^e	188	150	75	70	50
Byproduct, petroleum and natural gas	400	. 300	200	150	100
Total ^e	588	450	275	220	150
Iraq: Frasch Byproduct, petroleum and natural gas ^e	620 40	600 40	550 70	700 70	700 70
Total Total	660 F21	640 19	620	770	770 11
Ireland: Pyrites	10	10	13 10	11 10	10
Italy: Native	36	*104	19	23	22
PyritesByproduct, all sources ^{e 16}	371 259	330 ² 50	302 250	331 250	310 235
Total	666	^r 684	571	604	567
Japan: Pyrites	389	327	300	311	293
Byproduct: Metallurgy ¹⁷ Petroleum ¹⁸	1,336 1,100	1,296 1,105	1,350 1,241	1,300 1,173	1,200 1,000
Total	2,825	2,728	2,891	2,784	2,493
Korea, North:					
Pyrites ^e Byproduct, metallurgy ^e	250 12	255 10	255 10	255 10	255 10
Total ^e	262	265	265	265	265
Korea, Republic of: Pyrites			(15)	(15)	(¹⁵)
Byproduct: Metallurgy ^e Petroleum ^e	33 31	47 34	54 36	54 36	54 36
Total ^e Kuwait: Byproduct, petroleum and natural gas Libya: Byproduct, petroleum and natural gas ^e	64 79 17	81 100 19	90 100 20	90 120 22	90 110 16
Mexico:	1 500	F1 050	1.770	1.500	1.000
Frasch Byproduct: Metallurgy ^e	1,723 _ 80	^r 1,650 100	1,773 100	1,700 150	1,652 150
Petroleum and natural gas	^r 133	168	252	402	400
Total ^e	^r 1,936 45 4	^r 1,918 61 3	2,125 63 4	2,252 36 4	2,202 38 8
Netherlands:					
Byproduct: Metallurgy ^e Petroleum ^e	64 ¹ 30	60 ¹ 24	60 18	60 52	60 45
Total ^e	r ₉₄ 94 1	^r 84 95 1	78 91 1	112 91 7	105 90 7
Norway: Pyrites	^r 154	r ₁₅₀	119	193	190
Byproduct: Metallurgy ^e	38 7	36 7	40	40 6	40 6
Petroleum ^e	r ₁₉₉	r ₁₉₃	165	239	236

Table 16.—Sulfur: World production in all forms, by country and source¹—Continued (Thousand metric tons)

Country ² and source ³	1977	1978	1979	1980 ^p	1981 ^e
Pakistan:					
Native		1	1	1	(15
Byproduct, all sources ^e		14	14	14	15
Total	13	15	15	15	15
Peru:	r ₍₁₅₎	(¹⁵)	45		
Native Byproduct, all sources		18	(15) e ₂₀	e_20	20
Total		18	20	20	20
Philippines: Pyrites	50	52	41	54	50
Poland:19					
Frasch ^e	4,321	4,546	4,310	4,667	4,250
Byproduct:	450	505	520	518	472
Metallurgy ^{e 20}	314	315	310	300	300
Petroleum ^e 20 Gypsum ^e	35 30	35 20	35 20	30 20	30 20
Total ^e		5,421	5,195	5,535	5,072
Portugal:					
PyritesByproduct, all sources	156 2	^r 136 1	151 1	155 2	130 2
Total					
10tat	158	r ₁₃₇	152	157	132
Romania: Pyrites ^e	20.5	400	400		
Pyrites*Byproduct, all sources ^e	395 110	400 120	400 130	400 140	400 150
Total ^e	505	520	530	540	-
		320	350	040	550
Saudi Arabia: Native ^e	1	1	1	1	NA
Byproduct: Petroleum and natural gase	12	14	125	460	600
Total	13	15	126	461	600
TotalSingapore: Byproduct, petroleum		25	26	25	25
South Africa, Republic of:					
PyritesByproduct:	332	^r 219	243	493	502
Metallurgy	105	e100	e ₁₀₀	e100)	
Petroleum	28	e ₂₅	e 25	e ₂₅ }	127
Total	465	^r 344	368	618	629
Spain: Pyrites	F1 000	T1 040			
Byproduct:	2,000	^r 1,046	1,091	1,096	1,100
MetallurgyPetroleum		117 10	120	125	135
Coal (lignite) gasification	2	3	10 3	12 3	12 3
Total ^e	r _{1,235}	r _{1,176}	1,224	1,236	1,250
Sweden:		-,1.0	-,	2,200	1,200
Pyrites	204	233	282	249	249
Byproduct: Metallurgy	195	130	130		
Unspecified ²¹	¹³⁵	e ₁₈	36	130 e ₄₀	130 40
m-4 1		381	448	419	419
Total Switzerland: Byproduct, petroleum Syria: Byproduct, petroleum and natural gas	2	3	3	3	3
Syria. Dyproduct, petroleum and natural gas	4	e ₆	e 6	e ₅	8

SULFUR 823

Table 16.—Sulfur: World production in all forms, by country and source¹ —Continued (Thousand metric tons)

Country ² and source ³	1977	1978	1979	1980 ^p	1981 ^e
Taiwan:					
Pyrites	3	(¹⁵)	(¹⁵)	(¹⁵)	(¹⁵)
Byproduct, all sources	r ₈	10	9	. 8	9
Trinidad and Tobago: Byproduct, petroleum	^r 11 34	10 54	9 77	8 80	9
Trinidad and Tobago: Byproduct, petroleum	34	54	- 77	80	80
Turkey: Native	20	28	e30	_ 30	30
Pyrites	18	e14	e ₁₄	21	30 24
Byproduct, all sources ^e	80	80	70	70	65
Total ^e	118	122	114	121	119
U.S.S.R.:					
Frasch ^e	500	800	800	900	925
Native ^e	2,400	2,700	2,700	2,800	2,850
Pyrites ^e	3,500	3,500	3,500	3,550	3,600
Byproduct:					
Coal	40	40	40	40	40
Metallurgy	2,180	2,210	2,210	2,310	2,350
Natural gas Petroleum	920 200	1,100 200	1,100 200	1,200 200	1,250 200
Total ^e	9,740	10,550	10,550	11,000	11,215
United Kingdom:					
Byproduct:					
Metallurgy	61	52	50	e ₅₀	50
Spent oxides	5	5	5	_ ^e 6	8
Of petroleum refinery	60	70	70	^e 70	70
Total	126	127	125	^e 126	128
United States:					:-
Frasch	5,915	5,648	6,357	6,390	146,348
Pyrites	169	301	400	322	14307
Byproduct: Metallurgy	960	1 100	1 107	1 000	¹⁴ 1,159
Natural gas	1,426	1,103 1,753	1,167 1,760	1,003 1,757	141,971
Petroleum	2,198	2,309	2,310	2,316	142,288
Unspecified	59	61	107	78	1472
Total	10,727	11,175	12,101	11,866	¹⁴ 12,145
Uruguay: Byproduct, petroleum	2	2	12,101 e ₂	11,000	2
Venezuela: Byproduct, petroleum and natural gas	95	95	85	85	85
Vugoslavia:					
Yugoslavia: Pyrites	166	r ₁₇₁	190	e ₁₈₉	190
Byproduct:					
Metallurgy ^e Petroleum ^e	200	200	200	200	200
Petroleum	5	r ₅	5	5	4
Total	371	r376	395	^e 394	394
Zaire: Byproduct, metallurgy	31	e30	e30	e30	e30
Zambia:					
Pyrites	8	r 1	1	(¹⁵)	(¹⁵)
Byproduct, all sources	87	109	74	`9 ź	<u>`9ó</u>
Total	95	r110	75	92	90
Zimbabwe:					
Pyrites	r ₂₂	r ₂₄	28	29	25
Byproduct, all sources ^e	5	5	5	5	5
Total ^e	^r 27	r ₂₉	33	34	30
Grand total	TEO 041		EARAF	EC 205	EF 000
Grand Matt	^r 52,341	^r 53,687	54,745	56,635	55,669

Table 16.—Sulfur: World production in all forms, by country and source1—Continued

(Thousand metric tons)

Country ² and source ³	1977	1978	1979	1980 ^p	1981 ^e
Grand total—Continued					
Of which:	100				
Frasch	r _{13.079}	^r 13,244	13,790	14,357	13,875
Native	r _{3,400}	r _{3.798}	3,664	3,778	3,764
Pyrites	r9,637	r9,801	9,987	10.297	10,260
Byproduct:	0,001	, 0,001	0,001	10,20	10,200
Coal and coal gasification	42	43	43	43	43
Metallurgy	r7,354	r7,378	7,603	7,759	7,704
Natural gas	r _{11,368}	r _{11,656}	11,430	11,617	11,560
Petroleum	¹ 4,472	¹ 4,722	4,949	4,997	4,709
Tar sands	100	118	213	300	250
Petroleum and natural gas, undifferentiated	r830	792	910	1.360	
~	090	192	910		1,453
Unspecified sources	F1 007	To 000	0.104	6	1 000
	r _{1,997}	¹ 2,083	2,104	2,078	1,999
Gypsum	57	47	47	43	44

^rRevised. NA Not available. Preliminary.

¹Table includes data available through May 14, 1982.

²In addition to the countries listed, a number of nations may produce limited quantities of either elemental sulfur or

²In addition to the countries listed, a number of nations may produce limited quantities of either elemental sulfur or compounds (chiefly H₂S or SO₂) as a byproduct of petroleum, natural gas, and/or metallurgical operations, but output, if any, is not quantitatively reported, and no basis is available for the formulation of reliable estimates of output. Countries not listed in this table that may recover byproduct sulfur from oil refining include Albania, Bangladesh, Brunei, Burma, Costa Rica, Guatemala, Honduras, Jamaica, Malaysia, Nicaragua, Paraguay, and the People's Democratic Republic of Yemen. Albania and Burma may also produce byproduct sulfur from crude oil and natural gas extraction. No complete listing of other nations that may produce byproduct sulfur from metallurgical operations (including processing of coal for inetallurgical use) can be compiled, but the total of such output is considered as small. Nations listed in this table that may have production from sources other than those listed are identified by individual footnotes.

³The term "source" reflects both the means of collecting sulfur and the type of raw material. Sources listed include the following: (1) Frasch recovery; (2) native, comprising all production of elemental sulfur by traditional mining methods (thereby excluding Frasch); (3) pyrites (whether or not the sulfur is recovered in the elemental form or as acidy, (4) byproduct recovery, either as elemental sulfur or as sulfur compounds from coal gasification, metallurgical operations including associated coal processing, crude oil and natural gas extraction, petroleum refining, tar sand cleaning, and processing of spent oxide from stack-gas scrubbers; and (5) recovery from the processing of mined gypsum. Recovery of sulfur in the form of sulfuric acid from artificial gypsum produced as a byproduct of phosphatic fertilizer production is exclude because to include it would result in double counting. It should be noted that production of crude oil and sulfur, other nature sulfu rative sulfur, pyrites-derived sulfur, mined gypsum-derived sulfur, byproducts sulfur from extraction of crude oil and natural gas, and recovery from tar sands are all credited to the country of origin of the extracted raw material; in contrast, byproduct recovery from metallurgical operations, petroleum refineries, and spent oxides is credited to the nation where the recovery takes place, which in some instances is not the original source country of the crude product from which the sulfur is extracted.

In addition, may produce limited quantities of byproduct sulfur from natural gas.

Excluding sulfur content of auriferous pyrites, for which data are not available.

Excluding sulfur recovered, if any, from processing copper concentrates.

In addition, may produce limited quantities of byproduct sulfur from crude oil and natural gas and/or from petroleum refining.

Exports; regarded as tantamount to production owing to minimal domestic consumption levels.

In addition, may produce limited quantities of byproduct sulfur from metallurgical operations and/or coal processing.

In addition, may produce limited quantities of byproduct sulfur from oil refining.

It Elemental byproduct recovered sulfur only; sulfur recovered as SO₂, H₂S, and/or other compounds is included under

Unspecified.

"Unspecified."

12 Comprises all byproduct sulfur recovered in the form of compounds including that, if any, recovered from petroleum and natural gas operations, as well as total recovery from metallurgical operations.

13 Includes only the elemental sulfur equivalent of sulfuric acid produced as a byproduct from metallurgical furnaces; additional output may be included under "Unspecified."

14 Reported figure.

15 Less than 1/2 unit.

15 Less than 1/2 unit.
16 Includes recovery from gypsum, if any.
17 Presumably includes sulfur recovered from coal processed to coke at metallurgical facilities, and excludes sulfur, if any, recovered by metallurgical facilities in elemental form.

18 Includes sulfur recovered in the form of acid from coal, heavy oil, and other unspecified sources as well as sulfur, if any, recovered by metallurgical facilities in elemental form.

19 Official Polish sources report total mined elemental sulfur output annually; this figure has been divided between Frasch and other native sulfur on the basis of information obtained from supplementary sources. Therefore, although both numbers are estimates, the total is not an estimate. Estimates for production of byproduct and gypsum-derived sulfur are based on officially published data on sulfuric acid production and additional information from unofficial sources.

²⁰Estimates reported under "Metallurgy" represent byproduct recovery in the form of compounds (principally sulfuric acid) from all sources (including coal and fertilizer plants); estimates reported under "Petroleum" represent only elemental sulfur recovery from petroleum, with any recovery in the form of compounds included under "Metallurgy."

²¹Elemental sulfur only.

825 SULFUR

TECHNOLOGY

At an international conference, presentation of 63 papers included a review of worldwide and regional supply and markets for sulfur; descriptions of sulfur forming, handling, and transportation; uses of sulfur in asphalt paving; sulfur concretes; and new uses for sulfur.10

Capacity, reserves, water ratios, and general information about Frasch sulfur mines in the United States were discussed.11 Sulfur recovery from petroleum refineries began in the early 1950's. As new capacity came onstream, production rose to 4 million metric tons by 1980.12 Sulfur recovered from sour natural gas production in the Utah-Wyoming Overthrust Belt is expected to be 2,200 to 2,500 tons per day by 1983.13

Sulfur-forming methods were developed to meet environmental requirements for shipping sulfur through the Port of Vancouver, Canada. Prills or pellets are one of the most acceptable forms.14 A sulfur-grinding plant was installed in Egypt to produce ground sulfur as a protective spray for fruits and vegetables.15

Processes to treat and upgrade spent sulfuric acid from a variety of sources were discussed.16

Cyclone-type furnaces have been tested to produce sulfur dioxide from pyrites.17 A number of developments in the technology of flue gas desulfurization (FGD) and sulfur emission control were examined.18

Sulfur requirements will be increased by 335,000 tons per year at the Lee Creek, N.C., phosphate operations with the completion in 1982 of the third sulfuric acid plant.19

The change to high-analysis fertilizers has resulted in lower or no additions of sulfur to the soil. As the sulfur deficiencies have become apparent, direct application has been required.20

Chemical thermodynamic properties of elemental sulfur in crystal, liquid, and ideal gaseous states were evaluated using experimental data reported in the literature.21

Sulfur asphalt road paving is being tested on about 75 roads in 35 States in the United States and 150 roads in 15 countries worldwide. Applications of sulfur to hot-mix asphalt and sulfur binders were evaluated.22

Sulfur concrete production and performance were reviewed.23

¹Physical scientist, Division of Industrial Minerals. ²International Trade Administration, Department of Commerce. Elemental Sulfur From Mexico; Final Results of Administrative Review and Revocation in Part of Antidumping Findings. Fed. Regis., v. 6, No. 131, July 9, 1981, pp. 35539-35540.

1981, pp. 35539-35540.

*Boyd, B. W. Sulphur. Can. Min. J., v. 103, No. 2, February 1982, pp. 125-126.

*Values have been converted from Canadian dollars (Can\$) to U.S. dollars at the rate of Can\$1.186=US\$1.00, the average exchange rate for December 1981.

*Values have been converted from Canadian Jobaton 1981. (Can\$) to U.S. dollars at the rate of Can\$1.195=US\$1.00, the average exchange rate for December 1980.

⁶Doyle, K. B. Canadian Sulphur—The Transport Situation. Pres. at 8th Phosphate-Sulphur Symp., Tampa, Fla., Jan. 19-21, 1981. Sulphur Inst., Washington, D.C., 1981, 15

pp. Sulphur (London). The Power of the Canadian Sulphur Export Machine. No. 153, March-April 1981, pp. 32-33.

'Almed, S. A. K. Report on the Present Situation and future Output. Prespects of Iraqi Sulphur Extracted by Frasch Process and Derived From Petroleum Gases. Arab Federation of Chemical Fertilizer Producers. Quart. J., v. No. 1 March 1981, pp. 39-46. 3, No. 1, March 1981, pp. 39-46.

⁸Sulphur (London). Italy. No. 152, January-February

Rahaimi, M. A. Prospects for Sulphur Production in Saudi Arabia. Arab Federation of Chemical Fertilizer Producers. Quart. J., v. 3, No. 1, March 1981.

Producers. Quart. J., v. 3, No. 1, March 1981.

19 The Sulphur Development Institute of Canada. Proceedings of Sulphur-81, An International Conference on Sulphur, Calgary, Alberta, Canada, May 25-28, 1981. Aug.

14, 1981, 731 pp.

15 Sulphur (London). The U.S. Frasch Industry. No. 153, March-April 1981, pp. 22-27.

12 ——. Recovered Sulphur Production in the United States—The Role of the Refineries. No. 155, July-August 1981, pp. 24-27.

¹³Roney, A. M. The Development, Significance, Future Potential for Oil, Gas, and Sulfur in the Overthrust Belt. Pres. at 8th Phosphate-Sulfur Symp., Tampa, Fla., Jan. 19-20, 1981. Sulphur Inst., Washington, D.C., 1981, 7

pp. 14Sulphur (London). Sulphur Pellets and Prills—Their Development in Canada. No. 155, July-August 1981, pp. 18-

15_____. Klockner INA Installs Sulphur Grinding Equipment in Egypt. No. 152, January-February 1981, pp. 32-33.

Concentration of Spent Sulfuric Acid. No. 152,
 January-February 1981, pp. 37-40.
 Tasior A., and W. Cieslik. A New Process for Producing Sulphur Dioxide From Pyrites in a Cyclone-Type Furnace With Recovery of Non-Ferrous Metals. Sulphur (Markey), No. 156 Section 1992 in 2016 165

Furnace With Recovery of Non-Ferrous Metals. Sulphur (London), No. 156, September-October 1981, pp. 40-45.

¹⁹Daniele, R. A., and J. G. Selmerzi. Selection of SO₂ Control for Non-Steady-State Operating Conditions. J. Metals, v. 33, No. 3, March 1981, pp. 51-56.

Dorenfield, A. C., N. W. Sheldon, and R. C. Sheldon. American Copper Smelting—Cost Versus Sulfur Emission. J. Metals, v. 33, No. 2, February 1981, pp. 47-51.

Friedman, L. J. SO₂ Emission Control: The Problem and Solutions. J. Metals, v. 33, No. 3, March 1981, pp. 44-50.

Hidzins, R. R. and P. L. Silveston. Reduction of SO₂

Hidgins, R. R., and P. L. Silveston. Reduction of SO₂ Emissions From a H₂SO₄ Plant by Means of Feed Modulation. Environ. Sci. and Technol., v. 15, No. 4, April 1981, рр. 419-422.

Konada, T., and J. Nagao. Application of the Dorva Process to Smelter Gases. J. Metals, v. 33, No. 3, March 1981, pp. 57-60.

1981, pp. 57-60.

Noguchi, M., and H. Idemura. Chiyoda SO₂ Removal Processes. J. Metals, v. 33, No. 3, March 1981, pp. 61-63.

Roa, R. Air Quality Control—A Major Challenge in Coal-Fired Plants. Pres. at 52d Ann. Executive Conf., Palm Springs, Calif., Oct. 19-21, 1981. Ebasco Services Inc., New York, 1981, 20 pp.

Stern, J. L. Dry Scrubbing for Flue Gas Desulfurization. Chem. Eng. Prog., v. 77, No. 4, April 1981, pp. 37-42.

Sulphur (London). Developments in the Flue Gas Desulphurization Technology. No. 153, March-April 1981, pp. 41-45.

——. Treating Tail Gas From Claus Sulphur Recovery Plants. No. 154, May-June 1981, pp. 36-41.

19—— Sulphur Intake at Lee Creek to Approach One Million t.p.a. No. 153, March-April 1981, pp. 34-35.

20——. Sulphur—Vital Nutrient for Tropical Agriculture. No. 153, March-April 1981, pp. 37-39.

21 Chao, J. Properties of Elemental Sulfur. Hydrocarbon Process, v. 59, No. 11, November 1980, pp. 217-223.

22 Highway and Heavy Construction. Sulfur vs. Asphalt in the Hot Mix Plant. V. 124, No. 2, February 1981, pp. 72-76.

La Hue. S. P. and F. V. Bettle, G. 2000.

La Hue, S. P., and F. V. Botelho. Sulfur Extended

Asphalt. Chem. Eng., May 1981, pp. 57-59.
Lentz, H. J., and E. T. Harrigan. Laboratory Evaluation of Sulphlex-233 Binder Properties and Mix Design. Fed. Highw. Admin. Rept. No. FHWA/RD-80/146, January 1981, 66 pp.
Muir, D. R. New Markets for Tomorrow's Sulphur. Paper in Preprints of the Division of Petroleum Chemistry, American Chemical Society. Am. Chem. Soc., Washington, D.C., v. 26, No. 1, 1981, pp. 231-235.

23U.S. Bureau of Mines. High Performance Corrosion Resistant Sulfur Concrete. BuMines Technol. News, No. 87, January 1981, 2 pp.

Talc and Pyrophyllite

By Robert A. Clifton¹

Total domestic production of talc and pyrophyllite combined increased 8% in tonnage and 21% in value in 1981. Decreasing demand caused decreased sales and a 13% decrease in apparent domestic consumption. Exports increased significantly to a near record level. The value of exported talc, however, was not significantly different from that of 1980.

Legislation and Government Programs.—The national stockpile inventory of steatite, block or lump, was a reported 1,092 short tons at the end of 1981. This still far exceeded the goal of 28 tons. The inventory

of steatite, with a goal of zero, was 1,089 tons.

The allowable depletion rates established under the Tax Reform Act of 1969 remained at 22% for domestic block steatite and 14% for foreign steatite through 1981.

Tariff rates on imported talc minerals follow: Crude and unground, 0.02 cent per pound; ground, washed, powdered and/or pulverized, 6% ad valorem; cut, sawed, or in blanks, crayons, cubes, disks, or other forms, 0.2 cent per pound; other not specifically provided for, 12% ad valorem.

Table 1.—Salient talc and pyrophyllite statistics

(Thousand short tons and thousand dollars)

	1977	1978	1979	1980	1981
United States: Mine production, crude:	i in			N. A.	
TalcPyrophyllite		1,268 116	1,268 185	^r 1,127 ^r 113	1,236 107
Total	1,205	1,384	1,453	r _{1,240}	1,343
Value: Talc Pyrophyllite	\$12,524 561	\$14,956 811	\$19,365 998	r\$25,247 r837	\$30,660 837
Total	13,085	15,767	¹ 20,364	r26,084	31,497
Sold by producers, crude and processed: Talc Pyrophyllite	996 118	1,155 116	1,119 195	1,173 158	1,115 106
Total	1,114	1,271	1,314	1,331	1,221
Value: Talc Pyrophyllite	\$50,647 1,708	\$68,781 2,804	\$80,529 4,413	\$84,523 4,254	\$95,354 3,454
Total Exports ² Value Imports for consumption	52,355 322 \$9,166 22	71,585 267 \$12,359 19	84,942 316 \$15,210 22	88,777 275 \$14,963 21	98,808 311 \$15,095 327
Value Apparent consumption World: Production	\$2,094 814 ¹ 6,717	\$1,946 1,023 ¹ 7,051	\$2,822 1,020 7,547	\$3,720 1,077 P7,428	3\$4,562 937 67,292

^eEstimated. ^pPreliminary. ^rRevised.

²Excludes powders—talcum (in package), face, and compact.

³Does not include imported pyrophyllite.

¹Data do not add to total shown because of independent rounding.

DOMESTIC PRODUCTION

Talc.—Production of crude talc increased 10% in tonnage and 21% in value from that of 1980. Talc, including soapstone, was produced at 35 mines in 11 States in 1981. California's 12 mines were by far the largest number for any State. Mines in four States produced about 90% of the tonnage and value of talc in 1981. These States were, in decreasing order of tonnage produced, Montana, Texas, New York, and Vermont. Montana significantly led all States in the value of talc produced. Of the talc-producing States, only Nevada had no milling facilities.

The seven largest domestic producers of talc in 1981, listed alphabetically, were Cyprus Industrial Minerals Co., with mines in California, Montana, and Texas; Eastern Magnesia Talc Co. in Vermont; Pfizer Inc., Minerals, Pigments & Metals Div., in California and Montana; Southern Clay Products, Inc., in Texas; R. T. Vanderbilt Co., Inc., in New York; Westex Minerals, Inc., in Texas; and Windsor Minerals, Inc., in Vermont.

Pyrophyllite.—The pyrophyllite-producing mines were in North Carolina and California in 1981. Total production decreased to near the 1977 level. Four companies operated seven mines during the year.

Table 2.—Crude talc and pyrophyllite produced in the United States, by State

(Thousand short tons and thousand dollars)

AREA FOR THE F	1	980	1981		
State	Quan- tity	Value	Quan- tity	Value	
California ¹	r ₉₈	r3.759	111	5,867	
Georgia (talc)	25	116	26	182	
Montana (talc)	r ₃₃₅	¹ 11,798	324	13,383	
North Carolina ²	114	ŕ862	104	825	
Texas (talc)	r313	r4,649	282	4.127	
Other ³ (talc)	r ₃₅₅	r _{4,900}	496	7,113	
Total	r _{1,240}	r26,084	1,343	31,497	

Revised.

¹Talc and pyrophyllite produced, only talc reported.

²Talc and pyrophyllite produced, only pyrophyllite reported.

ported.

³Includes Arkansas, California (pyrophyllite), Nevada, New York, North Carolina, Oregon, Vermont, and Virginia.

CONSUMPTION AND USES

Apparent domestic consumption of crude and processed talc and pyrophyllite decreased in 1981. Sales of talc and pyrophyllite declined in tonnage but increased in value.

The 1981 end-use distribution showed 38% of the ground talc used in ceramics, 21% in paint, 11% in plastics, 9% in paper, 8% in cosmetics, 4% in rubber, 3% in roofing, 1% in insecticides, with the remain-

der going to other uses.

The largest portion, 36%, of domestically produced ground pyrophyllite was used in refractories, 27% was used in insecticides, 11% in ceramics, 8% in roofing, and the remainder in other uses. A significant amount of pyrophyllite was imported and ground for use in the ceramics industry.

Table 3.—End uses for ground talc and pyrophyllite

(Thousand short tons)

		1980		1981			
Use	Talc	Pyrophyl- lite	Total ¹	Talc	Pyrophyl- lite	Total	
CeramicsCosmetics ²	282 59	13	295 59	375 75	12	387 75	
InsecticidesPaint	11 197	28 1	39 198	13 206	29 1	42 207	
PaperPlastics	102 110	- - 1	102 111	88 111		88 111	
RefractoriesRoofing	2 20	69 10	71 30	2 26	39 9	41 35	
RubberOther ³	37 83	1 19	38 102	36 50	17	36 67	
Total ¹	903	141	1,045	982	107	1,089	

¹Data may not add to totals shown because of independent rounding. ²Incomplete data. Some cosmetic talc known to be included in "Other."

³Includes art sculpture, asphalt filler, crayons, floor tile, foundry facings, rice polishing, stucco, and other uses not specified.

PRICES

Talc prices varied over a wide range depending on the quality and degree and method of processing. In general, prices rose during 1981. Engineering and Mining Journal, December 1981, quoted prices for domestic talc, ground, in carload lots, f.o.b. mine or mill, containers included per short ton, as follows:

New Jersey:	4 -
Mineral pulp, bags extra	\$18.50- \$20.50
Vermont:	
98% through 325 mesh, bulk	64.00
99.99% through 325 mesh, bags:	
Dry processed	136.00
Water beneficiated	213.00-228.00
New York:	
96% through 200 mesh	52.00- 58.00
98% to 99.25% through 325 mesh	66.00- 68.00
100% through 325 mesh,	
fluid-energy ground	136.00
California:	100
Standard	69.50
Standard Fractionated	37.00- 71.00
Micronized	62.00-104.00
Cosmetic steatite	44.00- 65.00
Georgia:	ell with the e
98% through 200 mesh	40.00
99% through 325 mesh	50.00
100% through 325 mesh,	3.1 5 50
fluid-energy ground	100.00

American Paint & Coatings Journal, December 14, 1981, listed the following

prices per ton for paint-grade talcs in carload lots:

C 110	
California:	
Bags, mill:	
White, Hegman No. 3-3-1/2	\$103.00
Hegman No. 4-5	129.00
Montana: Ultrafine grind, f.o.b. mill	145.00
New York:	
Nonfibrous, bags, mill:	
98% through 325 mesh	78.00
99.6% through 325 mesh	91.00
Trace retained on 325 mesh	146.00
Fine micrometer talcs (Canadian,	1 V
Hegman 6, Timmons, Ontario)	176.00

The approximate equivalents, in dollars per short ton, of the price ranges quoted in Industrial Minerals (London), December 1981, for steatite talc, c.i.f. main European ports, were as follows:

	6 - C C C
Australian, cosmetic (ex store)	\$200-\$300
Norwegian:	tere
Ground (ex store)	120- 150
Micronized (ex store)	170- 240
French, fine-ground	158- 228
Italian, cosmetic-grade	300
Chinese, normal (ex store):	
TTIZ BOO	220- 230
UK 300 mesh	230- 240

FOREIGN TRADE

Exports.—Talc exports increased 13% during 1981 to near record levels. The total value of exported talc changed very little and averaged less than \$49 per ton. The value received for talc exported in 1981 varied between \$26 per ton to Mexico and a reported \$415 per ton to the Republic of Korea.

Mexico remained the major importer of U.S. talc, accounting for 53% of the tonnage in 1981, followed by Canada with 25%.

A total of 64 countries imported U.S. talc in 1981. Canada, however, continued to lead in value with 31% of the total compared with Mexico's 28%.

Imports.—U.S. imports of talc increased 29% in 1981. The average value of these imports was \$169 per ton. The cosmetic grades accounted for the high prices. Italy, with 38% of the total, was the leading source of imported talc, followed by Canada and France.

Table 4.—U.S. exports of talc¹
(Thousand short tons and thousand dollars)

		ium- nbourg	Canada		Japan		Mexico		Other		Total	
Year	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value
1977	21 20 18 24 17	744 1,106 1,043 1,412 1,364	132 55 60 68 79	2,842 3,734 4,485 4,960 4,632	19 19 19 13 9	870 1,304 1,145 957 500	124 133 164 161 164	1,808 2,274 3,539 3,648 4,256	26 40 55 9 42	2,902 3,941 4,998 3,986 4,343	322 267 316 275 311	9,166 12,359 15,210 14,963 15,095

¹Excludes powders—talcum (in package), face, and compact.

Table 5.—U.S. imports for consumption of talc, by class and country

	Crude ungro		Ground, powder pulve	red, or	Cut saw		To unmanu	tal factured
Year and country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short . tons)	Value ¹ (thou- sands)
1979	17,908	\$1,655	3,565	\$4 03	901	\$764	22,374	\$2,822
1980:				1,1414				
Canada		100	3,759	385	142	90	3,901	475
France	3,968	$\bar{319}$	384	71	****	30	4.352	390
Italy	9,425	1,443	289	86	:		9,714	1,529
Japan	-,	-,	26	14	571	831	597	845
Korea, Republic of	577	47	876	153	269	122	1,722	322
Other ²	75	9	49	8	190	142	314	159
Total	14,045	1,818	5,383	717	1,172	1,185	20,600	3,720
1981:								
Canada		114 11 11 11	6,922	882	87	96	7,009	978
France	5,678	472	403	73	0,	<i>3</i> 0	6.081	545
Italy	2,921	543	7.393	728			10,314	1,271
Japan			19	17	693	899	712	916
Korea, Republic of	1,718	216	326	62	189	109	2,233	387
Other ³	76	23	91	56	487	386	654	465
Total	10,393	1,254	15,154	1,818	1,456	1,490	427,003	44,562

Does not include talc, n.s.p.f.; 1979—\$1,291,043; 1980—\$1,292,902; 1981—\$1,271,884.

Includes Brazil, China, Hong Kong, India, Peru, Saudi Arabia, the Republic of South Africa, Taiwan, and the United Kingdom.

³Includes Austria, China, Costa Rica, the Federal Republic of Germany, Hong Kong, India, Kenya, and Taiwan.

⁴Does not include imported pyrophyllite.

WORLD REVIEW

The United States remained the world's largest talc producer and Japan remained the largest pyrophyllite producer during 1981. They shared 42% of the world's talc and pyrophyllite production.

Japan.—Imported talc has been replacing domestically produced pyrophyllite (roseki and roseki concentrate) in the Japanese paper filler industry. Pyrophyllite production had decreased 30% between 1970 and 1975 and was about the same in 1980 as it was in 1975. Talc imports showed a large upswing during the 1975-80 period. Demand for pyrophyllite refractories decreased during this period.

Kenya.—A talc operation of sufficient size to end Kenya's import reliance on Indian talc for its Pan-African Paper Mills was expected to be onstream late in 1981. A hilltop mine and a mill near Webuye in eastern Kenya produced a flotation product of better than 90% purity, with 0.4% free iron and sufficient whiteness for the paper. The domestically owned operation was to be called Octagon Minerals and have a design capacity of 20 tons per day.

Zimbabwe.—The erratic talc production in Zimbabwe has been centered at two mines. The Tritan, Ltd., claims near Que Que, and the Hawkshead Mine near Umtali reportedly produced 1,200 short tons of talc in 1979 and 500 short tons in 1980. G. & W. Industrial Minerals, Ltd., of Salisbury ground the dark green ores to white powders in three grades and sold lump talc for carving.

Table 6.—Talc and pyrophyllite: World production, by country¹

(Short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
North America: Canada (shipments) Mexico United States	79,807	67,970	99,572	95,901	98,100
	180	2,909	2,756	3,000	3,000
	1,204,835	1,383,752	1,452,733	1,240,427	31,342,916

Table 6.—Talc and pyrophyllite: World production, by country1 —Continued (Short tons)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
2 4 4					
South America: Argentina (talc, steatite, pyrophyllite)	r60,304	F51.601	38.390	36.080	36.397
Brazil (talc and pyrophyllite) ⁴	279,857	287.174	402.870	e480.000	501,000
Chile	471	476	937	1.256	1,100
Colombia	r3.726	r4.762	6,708	e6.700	6,700
	143	176	231	276	290
Paraguay Peru (talc and pyrophyllite)	r _{12.605}	r9.820	17,604	e16,200	16,200
Uruguay	1.829	1,900	e1,980	e1.980	1.870
Europe:	1,020	2,000	2,000	_,	-,
Austria (unground talc)	114.357	117,780	128,860	128,648	126,800
Finland	172,604	215,126	294,515	350,425	330,700
France (ground tale)	315,812	322,646	333,416	331,881	340,600
France (ground talc) Germany, Federal Republic of (marketable)	17,605	17.026	16.519	^e 16,500	16,500
Greece (steatite)	,	1,188		1,609	1,540
Hungary ^e	17,600	r ₁₉ ,300	19.300	19,300	19,300
Italy (talc and steatite)	r _{182,274}	r _{184,901}	173,484	182,879	220,500
Norway	108,122	106,611	96,435	93,696	27,600
Portugal	1,775	r _{1.884}	3,006	2,864	2,870
Romania	r66,100	r72,800	66,100	66,100	66,100
Spain (steatite)	r66,216	68,224	78,316	81,515	82,700
Sweden	23,384	23,503	19,562	3,307	4,400
Sweden	500,000	520,000	530,000	540,000	550,000
U.S.S.R. ^e United Kingdom	16,535	19.842	18,298	e19,800	19,800
	10,000	10,042	10,200	10,000	20,000
Africa: Botswana	317	345	115	86	75
Egypt	7.708	6,509	4.857	4,417	4,410
South Africa, Republic of	14,555	13,940	16,806	15.836	16,674
Zambia	e110	e110		284	275
Zimbabwe	r _{1.560}	r836	1.179	503	500
Asia:	1,000	000	_,		
Asia: Afghanistan ⁶	6.295	1.957	551		
Burma	222	431	434	367	330
China	165,000	165,000	165,000	165,000	165,000
	310,431	r371.349	426.272	381.523	381,400
India	r _{1,983,058}	r _{1.868,333}	1,883,698	1,927,718	1,705,300
Japan	145,000	r165,000	175,000	185,000	185,000
Korea, Republic of (talc and pyrophyllite)	r678,174	733,128	857,825	792,752	770,000
	85	562	358	1,609	1,650
Nepal ⁸	10.118	27,877	29,983	33,069	29,200
Pakistan (pyrophyllite)Philippines	1,323	4.476	3,935	951	990
Thinppines	r _{11,199}	10.964	12,339	10.925	27.600
Taiwan	11,199	16,411	14.927	12,926	12.500
Thailand (talc and pyrophyllite)	r _{124,473}	161,989	152,412	174,532	174,160
Oceania: Australia	144,410	101,000	102,112	1.1,000	2.1,100

eEstimated. Preliminary. Revised.

⁵Includes talc and wonderstone.

⁸Data based on Nepalese fiscal year, beginning mid-July of year stated.

TECHNOLOGY

According to a chemical industry magazine, the paint industry needs and is finding ways to reduce raw material costs.3 Silica and synthetic silicates are projected as partial replacements for titanium dioxide (TiO2) and even the more traditional extenders including talc. At 20 cents per pound, these materials are less costly than TiO2 but may not be competitive with talc. One company offers the silica in microspherical form (down to 4 micrometers in diameter), which improves the paint flow characteris-

A paint trade publication describes a new talc product for that industry.4 The stir-in product can be added at the end of batch manufacture to adjust viscosity and sheen.

¹Table includes data available through May 5, 1982.

²In addition to the countries listed, Czechoslovakia produces talc, but available information is inadequate to make reliable estimates or output levels.

³Reported figure. ⁴Total of beneficiated and salable direct shipping production of talc and pyrophyllite.

^{**}Obata are for calendar year beginning March 20 of that stated.

**Thickness tale and pyrophyllite; in addition, pyrophyllite clay is produced; output was as follows in short tons: 1977—485,248; 1978—468,566 (revised); 1979—449,233 (estimated); 1980—413,046; 1981—318,616.

¹Physical scientist, Division of Industrial Minerals.

²Fuiii. N. The Industrial Minerals of Japan. Ind. Miner.

⁽London), No. 170, November 1981, pp. 21-51.

3Chemical Week. Silicates Buck Up Flattened Paint Makers. V. 129, No. 5, Dec. 16, 1981, p. 44.

⁴American Paint & Coatings Journal. Miscellaneous Materials. V. 66, No. 27, Dec. 14, 1981, p. 32.

Thorium

By William S. Kirk¹

Monazite, the principal source of thorium, continued to be recovered as a byproduct at a mineral sands mine in Florida in 1981. Most of the thorium compounds used by the domestic industry during the year, however, came from imports, Government sales, or existing company stocks.

No major developments occurred in the nonenergy uses of thorium, which include refractories, mantles for incandescent lamps, hardeners in magnesium alloys, welding rods, and electronics.

The only commercial thorium-fueled nuclear reactor in the United States, located at Fort St. Vrain, Colo., continued to run at 70% of its electrical power capacity in 1981. The experimental thorium-fueled, lightwater breeder reactor (LWBR) at Shipping-port, Pa., continued to operate in 1981.

DOMESTIC PRODUCTION

Exploration.—Thorium resources in the Powderhorn district, Gunnison County, Colorado were assessed in a U.S. Geological Survey report.² The economic potential of thorium in the Powderhorn district was related, in part, to other minerals. Because

of their small size or low grade, only a few of the 261 domestic thorium deposits contributed to total U.S. resources. Indicated and inferred reserves of ThO₂ totaled about 10,000 short tons in rock greater than 0.1% ThO₂ in grade.

Table 1.—Companies with thorium processing and fabricating capacity

Company	Plant location	Operations and products
Atomergic Chemetals Corp	Plainview, N.Y	Processes oxide, fluoride, and metal.
Babcock & Wilcox Co	Lynchburg, Va West Mifflin, Pa	Nuclear fuels. Nuclear fuels,
		Government research and development.
Cerac, Inc	Milwaukee, Wis Santa Anna, Calif	Processes compounds. Processes oxide.
Chicago Magnesium Casting Corp	Blue Island, Ill	Magnesium-thorium alloys.
Consolidated Aluminum Corp	Madison, Ill	Magnesium-thorium alloy.
Controlled Castings Corp	Plainview, N.Y	Do.
General Atomic Co	San Diego, Calif	Nuclear fuels.
W. R. Grace & Co	Chattanooga, Tenn	Processes domestic and imported monazite; stocks thorium-containing residues.
Hitchcock Industries, Inc	South Bloomington, Minn _	Magnesium-thorium alloys.

Table 1.—Companies with thorium processing and fabricating capacity —Continued

Company	Plant location	Operations and products
Teledyne Cast Products	Pomona, Calif	Magnesium-thorium alloys.
Union Carbide Corp., Nuclear Div	Oak Ridge, Tenn	Nuclear fuels, test quantities.
Wellman Dynamics Corp	Creston, Iowa	Magnesium-thorium alloys.
Westinghouse Electric Corp	Bloomfield, N.J	Processes compounds; produces metallic thorium.

Mine Production.—Associated Minerals (USA) Ltd. Inc. (AMC), an Australian-owned firm, produced monazite from a dredging operation in Green Cove Springs, Fla. It was the only company in the United States to produce monazite in 1981.

Refinery Production.—The only domestic firm, in 1981, with facilities for processing large tonnages of monazite was W. R. Grace & Co., Davison Chemical Div., at Chattanooga, Tenn. Although W. R. Grace did not produce for sale any thorium compounds, thorium was extracted from mona-

zite and stored during the refining of rareearth elements. W. R. Grace had about 4,700 tons of thorium residues stored at its plant site at the end of 1981.

Rhône-Poulenc Co., a French firm, completed the construction of its new rare-earth separation plant in 1981 and began operations. The Freeport, Tex., facility was to be capable of processing 7,000 tons of monazite per year. Approximately 400 tons per year of thorium residues that will be generated are expected to be stored.

CONSUMPTION AND USES

Based on imports, sales from the national stockpile, and other data, the estimated domestic consumption of thorium (in ThO₂ equivalence) was about 39 tons in 1981. The major nonenergy uses were refractories (14 tons) and mantles for Welsbach incandescent lamps (9 tons). Other nonenergy uses included hardeners in magnesium-thorium alloys (3 tons); thoriated tungsten welding rods (3 tons); and electronic, electro-optical, chemicals, and other applications and research (5 tons).

The Department of Energy's (DOE) experimental LWBR at Shippingport, Pa., continued producing electrical power for the Duquesne Light Co. power distribution grid during 1981. By the end of the year, the reactor had passed 24,000 effective full-power hours of operation with the LWBR core, having produced nearly twice the

energy originally predicted. Initial loading of about 46 tons of thorium took place in 1977. At the end of its life, the spent core will be removed from Shippingport and sent to DOE's National Engineering Laboratory in Idaho for detailed examination and determination of breeding performance.

The Fort St. Vrain high-temperature, gascooled reactor continued to run at 70% of its electrical power capacity in 1981. The Public Service Co. of Colorado tested the reactor up to 100% of its power capacity. The core of the reactor contained about 22 tons of thorium and was the Nation's first commercial reactor to use a prestressed concrete reactor vessel, helium coolant, steam turbine drive, and a fully ceramic core utilizing the uranium-thorium fuel cycle.

STOCKS

On December 31, 1981, the stockpile of the General Services Administration contained 7,131,812 pounds of thorium nitrate (1,705 short tons of ThO₂ equivalent). The thorium nitrate goal was 600,000 pounds (143 tons of ThO₂ equivalent). The DOE inventory as of December 31, 1981, was 1,410 tons of thorium contained in various compounds.

PRICES

The average declared value of imported monazite at U.S. ports was \$380 per short ton in 1981. The price per short ton of Australian monazite quoted in the Metal Bulletin (London) was A\$345 to A\$390 (US\$389 to US\$440) at the end of 1981.

Prices for thorium compounds, in U.S.

dollars, varied depending on the quality. Thorium oxide, 99% pure, was quoted at \$9.63 per pound at the end of 1981, and thorium oxide, 99.99% pure, was \$17.27. Catalyst and lamp-grade thorium oxide were \$17.95 and \$21.14, respectively, at the end of the year.

FOREIGN TRADE

The United States exported thorium ores and concentrates in 1981 for the second consecutive year. Export data for thorium in other forms were combined with those for uranium. Although these two elements were not statistically differentiated, it was believed that the quantity of thorium in

other forms was minor.

Monazite containing about 6% thorium oxide was imported from Australia. Imports of monazite and thorium nitrate rose above 1980 levels, and imports of thorium oxide nearly doubled.

Table 2.—U.S. foreign trade in thorium and thorium-bearing materials.

(Quantity in pounds unless otherwise specified)

	1979	6	1980	2	9	1001	
	Quantity	Value	Quantity	Volue		- 1	Principal
EXPORTS				, anne	Quantity	Value	
Ore and concentrate Metals and alloys MPORTS Ore and concentrate:	10,651	\$216,630	6,898 2,652	\$17,226 61,321	285,285 429	\$146,421 10,639	France 285, 285. Australie 216; New Zealand 186; Saudi Arabia 77.
Monazite (short tons) Th0s content Compounds: Nitrate	6,931 831,720	1,676,939 XX	5,674 680,880	1,849,767 XX	8,307 996,796	3,158,767 XX	Australia 8,307.
Oxide Oxide equivalent, in gas mantles 3 Oxide equivalent, in gas mantles 9 Oxide equivalent, in gas mantles 9 Oxide equivalent in gas experient 47,415 31,509 2,867 7,607 181	162,837 160,490 476,842 342,315 33,688	59,962 20,557 3,713 4,695 501	210,219 144,038 677,642 248,835 65,478	62,152 40,450 2,646 4,706	258,327 377,164 556,894 225,888	France 53,886; Canada 7,986; United Kingdom 380. France 58,431; Netherlands 4,008; Canada 11. Malta 2,069; Brazil 311; Others 266. United Kingdom 4,706.	
e Batimatad VV Nat					600	100,538	United Kingdom 455; West Germany 108, Others

eBstimated. XX Not applicable. I/No thorium ore and concentrates were exported in 1979. Includes uranium; thorium and uranium are undifferentiated in official statistics. Spased on the manufacture of 1,000 gas mantles per pound ThO₂.

WORLD REVIEW

The chief source of the world's thorium is monazite, a byproduct of mineral sands mining for titanium and zirconium in many countries and for tin in Malaysia. Australia, India, Brazil, and Malaysia were the leading monazite producers among marketeconomy countries in 1981. Of those countries, Malaysia was the only source of monazite without various types of government export restrictions. Australia and Malaysia had little or no domestic processing capabilities beyond the monazite concentrating stage at the mine. Production quantities do not reflect world demand for thorium because monazite is processed almost entirely for its rare-earth element content.

Australia.—In Southern Goldfield Ltd.'s offshore exploration program for monazite-bearing mineral sands, a number of samples were analyzed.³ The analyses showed that the assemblages of heavy minerals present indicate the possibility of economic grades if sufficient quantities of heavy minerals can be found in the area.

Allied Eneabba Ltd. announced that it had reached an agreement to acquire all the heavy mineral leases in the Eneabba area held by Westralian Sands Ltd. and its subsidiary, Ilmenite Pty. According to the terms of the agreement, Allied was to form a new, wholly owned subsidiary to hold the leases. A total of 103 leases were involved. and in return, Westralian was to receive 27,500 tons of zircon from Allied over the following 3 years. It was estimated that the probable reserves were in excess of 5 million tons of heavy minerals. E. I. du Pont de Nemours & Co., a U.S. company, increased its percentage of ownership in Eneabba in 1981 to a reported 59%.5

Western Australia was reportedly planning to raise royalties on minerals sands mining from 2% to 2.5%. This should have no significant effect on mineral sands prices.

Shareholders of Consolidated Goldfields Australia Ltd., Associated Minerals Consolidated Ltd., Renison Ltd., and the Mount Lyell Mining and Railway Co. Ltd. approved plans for the merging of the four companies. The companies were to become wholly owned subsidiaries of a newly incorporated public company to be called Renison Goldfields Consolidated Ltd. (RGC). The new company was to be 51% owned by

the Australian public. This would mean RGC would not need Government approval for most company actions, including investing in AMC's Florida heavy minerals operations.

The Queensland Government decided to allow mineral sands mining on Moreton Island off the coast of Brisbane. The decision, however, allowed mining of an area of less than 7% of the island.

Mineral sands mines were reportedly being forced out of business by the expansion of national parks and other state actions. The development of about 45% of Australia's reserves of mineral sand on the east coast was frozen for environmental reasons. According to a Mineral Sands Producers Association symposium, this restriction was excessive especially in view of improved environmental controls by mineral sands producers.

Egypt.—The most economically important mineral sands deposit in Egypt was reported to be in the Rosetta area.¹² The deposit contained an estimated 1.9 million tons of heavy minerals, of which 0.5% was monazite.

France.—The French thorium producer, Rhône-Poulenc S.A., was nationalized by the new Government in 1981. The nationalization, including the appointment of a company president by the Government, was expected to be completed in the first quarter of 1982. The company did not anticipate that any operational changes would occur as a result of the takeover.

India.—Completion of the \$100 million Orissa mineral sands complex was rescheduled for the end of 1982. The complex at Chatrapur, Orissa, on the east coast, originally had been scheduled for completion in June 1981. The plant was designed to produce 4,400 tons of monazite per year.

As part of the research program for the utilization of thorium, experiments on fast-breeder reactors were being planned and an experimental fast-breeder reactor was being built in 1981. The reactor, at Kalpakkam Reactor Research Center near Madras, was supposed to become functional by 1983.

South Africa, Republic of.—Byproduct thorium sulfate was being recovered from the mining operations at the Palabora Complex in 1981.¹⁵

Elsewhere, the General Mining Union

Corp. was to commission, in 1981, a new plant for the production of 2,700 to 3,000 tons per year of monazite.16 This level of monazite production would put South Africa among the world leaders.

Table 3.—Monazite concentrate: World production, by country! (Metric tons)

		Country	2		1977	1978	1979	1980 ^p	1981 ^e
Australia					 r9,379	*14,992	16,340	13,748	13,500
Brazil India ³					 r2,440	r2,540	1,890	1,205	1,500
Malaysia ⁴					 r2,734 r1.977	r _{3,303} r _{1,263}	3,254 669	e4,210 400	4,300 350
Sri Lanka					 5	⁷ 213	213	63	60
Thailand United States					 w	(⁵)	32 W	152 W	150 W
Zaire				77777	 r ₉₆	177	90	51	- M
Total	30 Fe	14 4	100		r16,631	r22,388	22,488	19,829	19,910

Estimated. Preliminary. Revised. W Withheld to avoid disclosing company proprietary data; not included in

Data are for years beginning Apr. 1 of that stated.

⁴Exports.

TECHNOLOGY

As part of its program to investigate the substitution of domestic resources for expensive and domestically scarce catalytic materials, the U.S. Bureau of Mines investigated the effectiveness of a thorium-copper catalyst for use in methanol production.17 The thorium-copper catalyst was found to be many times more effective than commercially used catalysts.

A report published in 1981 describes the immobilization of thorium in mine wastes.18

¹Physical scientist, Division of Nonferrous Metals.
²Olson, J. C., and D. C. Hedlund. Alkalic Rocks and Resources of Thorium and Associated Elements in the Powderhorn District, Gunnison County, Colo. U.S. Geol. Survey Prof. Paper 1049-C, 1981, 34 pp.

³Industrial Minerals. Company News and Mineral Notes. No. 168, September 1981, p. 84. -... World of Minerals. No. 162, March 1981, p. 9. -. Fillers and Extenders. No. 161, February 1981,

³Table includes data available through Apr. 15, 1982.

³In addition to the countries listed, China, Indonesia, Nigeria, North Korea, and the Republic of Korea produce monazite, but output, if any, is not reported quantitatively, and available general information is inadequate for formulation of reliable estimates of output levels.

⁴Exports.
⁵Revised to zero; figure previously reported (845 short tons) was the 1978 export, and apparently was possible because of production in 1975 and before that had not been shipped when mined. Exports were not permitted in 1976 and 1977.

⁶Metal Bulletin. Light Metals. No. 6632, Oct. 20, 1981,

⁶Metal Bulletin. Light Metals. No. 6632, Oct. 20, 1961, p. 15.
⁷Industrial Minerals. Australia: A Restructured CGFA. No. 167, August 1981, p. 9.
⁸——— World of Minerals. No. 163, April 1981, p. 9.
⁹Mining Journal. Sales & Contracts. V. 237, No. 7611, July 3, 1981, pp. 11-12.
¹⁰U.S. Embassy, Canberra, Australia. State Department Airgram A-149, Nov. 5, 1981, pp. 2-3.
¹¹Metal Bulletin. Ores, Ferroalloys. No. 6604, July 10, 1881, p. 19.

^{1981,} p. 19.

192 S. Embassy, Cairo, Egypt. State Department Airgram A-34, April 1981, pp. 26-27.

New Delhi, India. State Department Airgram A-49, July 1981, p. 43.

14 Department Airgram A-49, July 1981, p. 43.

A-49, July 1901, p. 40.

*Dipak, C. Mox Fuels New Hope for Tarapur N-Plant.

Petroleum News, v. 12, No. 6, September 1981, pp. 16-17.

15Clarke, G. The Palabora Complex-Triumph Over LowGrade Ores. Ind. Miner., No. 169, October 1981, pp. 45-62.

15 Industrial Minerals. World of Minerals. No. 166, July 1981, pp. 13-14.

^{1981,} pp. 13-14.
17Baglin, E. G., G. B. Atkinson, and L. J. Nicks. Methanol Synthesis Catalysts From Thorium-Copper Intermetallics. Preparation and Evaluation. I & EC Prod. Res. and Develop., v. 20, No. 1, 1981, pp. 87-90.
18Brown, J. R., W. S. Fyfe, F. Murray, and B. I. Kronberg. Immobilization of U-Th-Ra in Mine Wastes. Can. Min. J., v. 102, No. 3, March 1981, pp. 71-76.

Tin

By James F. Carlin, Jr.1

World tin mine production increased slightly in spite of a world economic slowdown and generally declining prices. The 1981 average Metals Week composite price of Straits (Malaysian) tin was \$7.33 per pound, a decline of more than \$1 from the average price of the prior year. The economic slowdown caused a significant decrease in tin consumption that contributed to a substantial imbalance of tin metal supply and demand. Price patterns throughout the year did not fully reflect the consumption decline owing to a large amount of price support purchasing, allegedly made by one or more major tin mining countries during the last half of the year.

Legislation and Government Programs.—The General Services Administration (GSA) continued its daily fixed-price tin sale program throughout the year, increasing the tempo of sales in the last half of the

year. Starting December 14, GSA allowed stockpile tin to be sold to foreign users, and this change resulted in significantly increased sales volume. A total of 5,920 metric tons was sold in 1981. The GSA sales program generated considerable opposition from major tin mining countries who claimed the sales were harming their economies by depressing the tin price during a year of slack demand. On June 10, Associated Metals and Minerals Corp. (Asoma), the operator of the only domestic tin smelter, filed a lawsuit against GSA alleging that stockpile tin sales caused serious financial damage to the company; a subsequent judicial decision upheld the GSA position.

The United States continued as a member of the Fifth International Tin Agreement (ITA). The Fifth ITA had been scheduled to expire on July 1, 1981, but because key issues remained unresolved in talks for the

Table 1.—Salient tin statistics
(Metric tons unless otherwise specified)

	1977	1978	1979	1980	1981
United States:					
Production:					
Mine	W	w	w	w	w
Smelter	6,724	5,900	4,600	3,000	2.000
Secondary	18,503	21,100	21,493	18,638	15,438
Exports (including reexports)	5,480	4,692	3,417	4.294	6,080
	0,400	4,032	0,411	4,204	0,000
Imports for consumption:	40.004	40 000	40.055	45 000	45 054
Metal Ore (tin content)	47,774	46,776	48,355	45,982	45,874
Ore (tin content)	6,724	3,873	4,529	840	232
Consumption:					
Primary	47,596	48,403	49,496	44,342	40,229
Secondary	13,136	13,128	12,969	12,020	14,144
U.S. industry yearend stocks	21,366	17.217	r16.567	r _{15,745}	11.675
Prices, average cents per pound:	21,000	11,211	10,001	10,110	11,010
New York market	499.38	587.03	711.45	773.44	648.40
	534.60	629.58	753.89	846.00	733.05
New York composite					
London	486.92	583.83	700.93	761.99	649.53
Penang	485.96	567.65	672.33	745.56	637.85
World production:					
Mine	^r 230.694	r241,082	245,948	P246,493	e252,509
Smelter	r228,451	r244,108	r249,167	P250,099	e242,097

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data.

Sixth ITA, it was decided to extend the provisions of the Fifth ITA one extra year, until July 1, 1982. On October 9, the office of the U.S. Trade Representative announced that the United States would not be joining

the Sixth ITA.

The depletion allowances for tin remained 22% for domestic deposits and 14% for foreign deposits.

DOMESTIC PRODUCTION

PRIMARY TIN

Mine Production.—Some tin ore was produced as a byproduct of molybdenum mining in Colorado and some tin concentrates were produced in placer mining in Alaska. Domestic mine production of tin was withheld to avoid disclosing company proprietary data but amounted to only a small fraction of domestic tin requirements.

Smelter Production.—The lone domestic tin smelter, Gulf Chemical & Metallurgical Corp. (GCMC), a subsidiary of Asoma, located in Texas City, Tex., continued to operate without substantial amounts of imported tin concentrates.

The feed for the smelter was primarily

domestic tin concentrates, secondary tinbearing materials, and GCMC's stockpile of tin residues and slags. Tin smelter production was estimated at 2,000 tons.

SECONDARY TIN

The United States continued to be the world's largest producer of secondary tin. Secondary tin production declined as consumption requirements decreased. During the year four domestic detinning plants ceased operation: the Deming, N. Mex., the East Chicago, Ind., and the Baltimore, Md., plants of MRI Corp., a subsidiary of American Can Co.; and the Milwaukee, Wisc., plant of the Wisconsin Metal Chemical Corp.

Table 2.—Secondary tin recovered from scrap processed at detinning plants in the United States

	1980	1981 ^e
Tinplate scrap treatedmetric tons	766,940	667,952
Tin recovered in the form of: Metal	1,457 321	1,328 265
Total¹do Weight of tin compounds produced do	1,778 1,533 2.32 \$89.39	1,593 1,220 2.38 \$102.42

eEstimated; four detinning plants closed during 1981.

Table 3.—Tin recovered from scrap processed in the United States, by form of recovery

Form of recovery	1980	1981
Tin metal: At detinning plants At other plants	1,677 26	1,569 18
Total	1,703	1,587
Bronze and brass: From copper-base scrap From lead- and tin-base scrap	10,352 e ₅₀	8,864 30
Total	10,402	8,894

Recovery from tinplate scrap treated only. In addition, detinners recovered 241 metric tons (220 metric tons in 1980) of tin as metal and in compounds from tin-base scrap and residues in 1981.

Table 3.—Tin recovered from scrap processed in the United States, by form of recovery —Continued

	Form of recovery	1980	1981
BabbittAntimonial leadChemical compounds		4,423 525 378 856 321 •30	3,035 576 261 791 265 29
Total		6,533	4,957
Grand total Value (thousands)	- 	18,638 \$317,625	15,438 \$220,547

Table 4.—Stocks, receipts, and consumption of new and old scrap and tin recovered in the United States in 1981

(Metric tons)

		<u> </u>	Gross wei	ght of scra	р		TV:	n recove	e
Type of scrap and class of consumer	Stocks	Receipts		Consumpt	ion	Stocks	- 11	n recove	rea
of Augusta of San San San Of San San San San	Jan. 1		New	Old	Total	Dec. 31	New	Old	Tota
Copper-base scrap:				· · · · · · · · · · · · · · · · · · ·					
Secondary smelters: Auto radiators									
(unsweated) Brass, composition	3,749	59,717		61,243	61,243	2,223		1,775	1,77
or red Brass, low (silicon	3,653	55,579	10,657	44,499	55,156	4,076	340	1,475	1,81
bronze)	528	2,772	893	1,958	2,851	449		15	1
Brass, yellow	3,445	42,503	7,586	34,339	41,925	4,023	10	315	32
Bronze Low-grade scrap and	1,678	17,133	2,836	14,266	17,102	1,709	210	985	1,19
residues	10,675	202,000	155,568	44,156	199,724	12,951	20		2
Nickel silver	544	2,763	315	2,308	2,623	684	3	18	2
Railroad-car boxes	254	1,750		1,768	1,768	236	<u> </u>	60	6
Total	24,526	384,217	177,855	204,537	382,392	26,351	583	4,643	5,22
Brass mills:1					7. 7.				
Brass, low (silicon						- 1 turk			
_ bronze)	3,724	57,305	57,305	'	57,305	2,142			
Brass, yellow	19,864	241,163	241,163		241,163	17,788	125		12
Bronze Nickel silver	775 3,756	3,903 19,746	3,903 19,746		3,903	543 3,020	170		17
Total	28,119	322,117	322,117		19,746 322,117	23,493	295		
	20,110	022,111	022,111		922,111	20,490	295		29
Foundries and other plants: ²	•								40
Auto radiators	450	F 051		0.00#					
(unsweated) Brass, composition	456	5,271	1,528	2,287	3,815	1,912		115	11
or red	680	14,431	2.636	11,770	14,406	705	15	435	45
Brass, low (silicon		•	•	•	,		10	100	10
bronze)	51	1,449	1,140	320	1,460	40		2	:
Brass, yellow Bronze	349 869	11,661 695	6,395	4,673	11,068	942	20	45	6
Low-grade scrap and	009	699	396	307	703	861	40	25	6
residues		1		1	1				
Nickel silver	14	385	16	371	387	12			
Railroad-car boxes	851	6,069		5,840	5,840	1,080		350	35
Total	3,270	39,962	12,111	25,569	37,680	5,552	75	972	1,04
Total tin from									
copper-base	vv	vv	vv	***	7/31	3737	0.50		
scrap	XX	XX	XX	XX	XX	XX	953	5,615	6,56

^eEstimated. ¹Includes foil and terne metal.

Table 4.—Stocks, receipts, and consumption of new and old scrap and tin recovered in the United States in 1981 —Continued

		Gross weight of scrap						Tin recovered ^e		
Type of scrap and class of consumer	Stocks	Receipts	(Consumpt	ion	Stocks	T	in recove	red	
	Jan. 1	Necerpus	New	Old	Total	Dec. 31	New	Old	Total	
*			:							
Lead-base scrap: Smelters, refiners, and others:										
Babbitt Battery lead plates _ Drosses and residues Solder and tinny	167 34,724 12,484	6,656 735,029 83,900	·	6,729 731,255 84,799	6,729 731,255 84,799	94 38,498 11,585	 2,226	595 1,514	595 1,514 2,226	
lead	1,931 1,908	11,605 13,795		11,829 14,041	11,829 14,041	1,707 1,662		1,893 601	1,893 601	
Total	51,214	850,985		848,653	848,653	53,546	2,226	4,603	6,829	
Tin-base scrap: Smelters, refiners, and others:			. 21							
Block-tin pipe Blocks and residues Pewter	13 3 54	92 71 447 5	 471	94 69 -5	94 69 471 5	11 5 30	 55	79 68 - <u>5</u>	79 68 55	
Total	70	615	471	168	639	46	55	152	207	
Tinplate and other scrap: Detinning plants			667,952		667,952		1,834		1,834	
Grand total	XX	XX	XX	XX	XX	XX	5,068	10,370	15,438	

^eEstimated; tin recovered new and old from copper-base scrap, brass mills, and foundries. XX Not applicable.

²Omits "machine-shop scrap."

CONSUMPTION AND USES

Tin consumption declined owing to the general economic slowdown that impacted most usage categories. The tinplate category remained the largest use of primary tin. The solder category, which uses substantial quantities of secondary tin as well as primary tin, was the largest total use of tin.

Tinplate continued to lose ground to aluminum in its traditional container markets. Out of a total of 88.3 billion metal cans shipped, steel (tinplate and tin-free steel) accounted for 45% and aluminum accounted for 55%; this compared with a total of 87.9 billion metal can shipments in 1980,

with steel accounting for 52% and aluminum 48%. Two-piece cans—both tinplate and aluminum—increased their penetration of the beverage markets, accounting for 98% of metal can shipments compared with 92% in 1980.

Overall, two-piece cans represented 66% of total metal can shipments compared with 60% in 1980.²

Brass mills consumed 815 tons of primary tin and 500 tons of secondary tin, compared with 715 tons of primary tin and 385 tons of secondary tin in 1980.

¹Brass-mill stocks include home scrap, and purchased-scrap consumption is assumed equal to receipts; therefore, lines and total in brass-mill section do not balance.

Table 5.—Consumption of primary and secondary tin in the United States

	1977	1978	1979	1980	1981
Stocks Jan. 1 ¹	16,894	16,858	13,584	*12,938	9,456
Net receipts during year: Primary Secondary Scrap	48,215 4,025 10,604	46,821 2,541 10,499	r50,126 2,636 r10,659	r43,545 2,461 r7,709	41,162 5,692 8,050
Total receipts	62,844	59,861	^r 63,421	^r 53,715	54,904
Total available	79,738	76,719	^r 77,005	r66,653	64,360
Tin consumed in manufactured products: Primary Secondary		48,403 13,128	49,496 12,969	44,342 12,020	40,229 14,144
Total Intercompany transactions in scrap		61,531 1,604	62,465 1,602	56,362 835	54,373 726
Total processed	62,880	63,135	64,067	57,197	55,099
Stocks Dec. 31 (total available less total processed)	16,858	13,584	r _{12,938}	r9,456	9,261

Revised.

Table 6.—Tin content of tinplate produced in the United States

3.	1.0	A	Tinplate waste Tin		Tinplate (all forms)		
	Year		(waste, strips, cobbles, etc., gross weight)	Gross weight	Tin content ¹	Tin per metric ton of plate (kilograms)	
1977 1978			355,841 338,351	4,228,325 4,022,524	18,539 17,280	4.4 4.3	
1979			360,852 311,770 284,505	4,236,578 3,699,920 3,288,662	17,929 16,346 13,306	4.2 4.4 4.0	

¹Includes small tonnage of secondary tin and tin acquired in chemicals.

Table 7.—Consumption of tin in the United States, by finished product

(Metric tons of contained tin)

Product		1980	1981			
Product	Primary	Secondary	Total	Primary	Secondary	Total
Alloys (miscellaneous)	w	134	134	1.900	535	2,435
Babbitt	1,537	843	2,380	1,412	2,432	3,844
Bar tin	486	W	486	455	W	455
Bronze and brass	2,147	5,331	7,478	2,205	4.836	7,041
Chemicals	w	w	· w	4,417	W	4,417
Collapsible tubes and foil	526	w	526	561	w	561
Solder	11,653	3,965	15,618	11,210	4,589	15,799
Terne metal	(¹)	(¹)	(¹)	(¹)	(¹)	(1)
Tinning	2,531	46	2,577	2,491	W	2,491
Tinplate ²	16,346		16.346	13,306		13,306
Tin powder	1,098	·5 <u>11</u>	1,109	983	w	983
Type metal	· w	W	w	19	33	52
White metal ³	914	w	914	1.027	174	1.201
Other	7,104	1,690	8,794	243	1,545	1,788
Total	44,342	12,020	56,362	40,229	14,144	54,373

W Withheld to avoid disclosing company proprietary data; included with "Other."

*Included with "Alloys (miscellaneous."

*Includes secondary pig tin and tin acquired in chemicals.

*Includes pewter, britannia metal, and jewelers' metal.

¹Includes tin in transit in the United States.

Table 8.—U.S. industry yearend tin stocks

	1977	1978	1979	1980	1981
Plant raw materials: Pig tin:				1.64	Si versi
Virgin ¹ Secondary In process ²	 6,173 645 10,040	4,129 694 8,761	r _{4,073} r ₂₁₉ r _{8,646}	r _{10,423} r ₂₆₈ r _{1,788}	7,034 447 1,780
Total	 16,858	13,584	r _{12,938}	r _{12,479}	9,261
Additional pig tin: Jobbers-importers Afloat to United States	 1,436 3,072	275 3,358	258 3,371	564 2,702	1,948 471
Total	 4,508	3,633	3,629	3,266	2,414
Grand total	 21,366	17,217	r _{16,567}	r _{15,745}	11,675

Revised.

PRICES

The price of tin metal declined during the first half of the year, then rose sharply during the second half, ending the year at a higher price than at the beginning of the year. The average price for the year was more than \$1 per pound lower than in 1980. Prices were influenced by the significant

world oversupply of tin relative to demand, which tended to depress the price, and the massive price support buying program during the last half of the year that was allegedly undertaken by one or more major tin mining countries, which tended to increase the price.

Table 9.—Monthly composite price of Straits tin for delivery in New York

(Cents per pound)

Month		1980				
	High	Low	Average	High	Löw	Average
January	863.92	817.46	837.36	785.46	719.15	748.76
February	921.37	835.29	868.73	723.15	700.73	713.49
March	959.93	867.26	898.60	718.65	688.79	700.26
April	907.75	854.55	876.66	708.56	652.37	683.58
May	894.39	851.80	868.50	666.60	643.82	658.06
June	868,23	843.60	853.46	666.76	645.80	658.39
July	853.36	833.79	843.16	742.99	650.15	689.81
11uBust	845.59	832.85	839.22	786.81	731.08	753.39
September	884.10	849.02	868.98	792.95	769.53	780.22
October	852.67	821.00	840.00	810.63	786.04	795.61
November	819.93	772.13	797.79	832.28	803.27	821.47
December	776.47	745.02	759.56	809.56	778.18	793.52
Average	XX	XX	846.00	XX	XX	733.05

XX Not applicable.

Source: Metals Week.

FOREIGN TRADE

Imports of tin concentrates declined sharply as the world's tin mining countries increased their smelter capacity, thus leaving less concentrates available for export.

Imports of tin metal from China became a significant item for the first time in several

years. Malaysia, Thailand, Bolivia, and Indonesia remained the major sources for tin metal.

Imports of tin in all forms, ore and concentrate, metal, and waste and scrap, remained free of duty to all nations.

¹Includes tin in transit in the United States. In 1979, the figure represents scrap purchased only.

²Tin content, including scrap. In 1980, data represents scrap only.

Table 10.—U.S. exports and imports for consumption of tin, tinplate, and terneplate in various forms

NA Not available. Included with exports of tinplate and terneplate.

Table 11.—U.S. imports for consumption and exports of miscellaneous tin, tin manufactures, and tin compounds

		Miscellaneous tin and manufa			ıres	Tin compounds		
			Imports		Exports	Imp	orts	
	Year	Tinfoil, tin powder, flitters, metallics, tin and manufac- tures, n.s.p.f.	Dross, sk scrap, r and tin all		Tin scrap and other tin-bearing material, except tinplate scrap	Quantity (metric tons)	Value (thousands)	
		Value (thousands)	Quantity (metric tons)	Value (thousands)	Value (thousands)			
1979 1980 1981		\$16,732 9,154 8,666	1,350 1,312 2,583	\$11,011 4,215 3,387	\$12,513 13,819 16,357	202 171 170	\$2,473 2,285 2,098	

Table 12.—U.S. imports for consumption of tin, by country

	19	80	1981		
Country	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands	
Concentrates (tin content):		-			
Bolivia	528	\$7,505		100	
Canada	13	85			
Indonesia	27	376	1 T		
Mexico	i	2			
Peru			$\bar{232}$	en 075	
South Africa, Republic of	125	1.536	202	\$2,975	
Thailand	146	1,585			
Thananu	140	1,080			
Total	840	11,089	232	2,975	
Metal: ¹					
Australia	145	2,400	552	8,121	
Belgium-Luxembourg	190	3,365		0,121	
Bolivia	5,597	90,730	8.277	110.520	
Brazil	2,031	34,211	1.129		
Canada	113	1,939	22	15,463	
Chile	110	1,555	44	384	
China	858	19.055	0.000	59	
Germany, Federal Republic of	000	13,855	2,033	22,263	
Hong Kong					
India			50	631	
Indonesia	0.55	404.000	1	16	
Toole Toole	6,477	104,383	7,096	99,791	
Japan Korea, Republic of	10	158			
Morea, Republic of	20	350			
Macao	20	332			
Malaysia	15,548	265,819	13,163	193,432	
Mexico			70	666	
Nigeria	770	13,092	520	6,935	
Peru	260	3,496	99	1,490	
Rhodesia	63	1,092		-,	
Singapore	864	14,685	656	$9.\bar{516}$	
South Africa, Republic of	181	3,113	34	466	
Switzerland	5	85	0.	100	
Thailand	12,414	205,515	11,967	163,331	
United Kingdom	416	7,562	46	665	
Zimbabwe			154	2,131	
Total	45,982	766,182	45,874	635,880	

¹Bars, blocks, pigs, or granulated.

WORLD REVIEW

International Tin Agreement.—Negotiations for the Sixth ITA, originally due to take effect on July 1, 1891, continued throughout the year. Since the differences between consumer country and producer

country positions on such central issues as the International Tin Council's (ITC) buffer stock and export controls proved to be considerable, it was decided to extend the provisions of the Fifth ITA an additional year, to July 1, 1982, to allow more time for discussions.

On October 9, the U.S. Government announced it had decided not to join the Sixth ITA. Reportedly the U.S. was concerned that the new ITA would not provide for a sufficiently large tin buffer stock.

On October 17, 1981, the ITC revised upward by 6.85% the buffer stock price range (table 13). Throughout the year criticism was expressed by producer countries about the sale of GSA stockpile tin by the U.S. Government.

Table 13.—Changes in ITC buffer stock range

	Effective Oct. 17, 1981	Previous range
	M\$ per kilogram ¹	M\$ per kilogram ¹
Floor price	29.15 29.15-32.06	27.29 27.29-30.01
Lower sector	32.06-34.98	30.01-32.74
Upper sector Ceiling price	34.98-37.89 37.89	32.74-35.47 35.47

¹M\$ Malaysian dollar.

Three major tin conferences were held in 1981: The International Lead-Zinc-Tin '80 Symposium, at the American Institute of Mining, Metallurgical, and Petroleum Engineers annual meeting, Las Vegas, Nev., in February; a conference on complex tin ores, sponsored by the Southeast Asia Tin Research and Development Center and The Indonesian State Tin Corp., in Bandung, Indonesia, in April; and a conference covering the mining and marketing of tin metal, sponsored by the ITC, held in Kuala Lumpur, Malaysia, in October.

Australia.—Renison Ltd., 51% owned by Consolidated Gold Fields Australia Ltd., was the leading producer, accounting for about one-half of the total Australian mine production. Renison continued studying the possibility of installing a tin fuming plant that would be based on a process developed in the German Democratic Republic. An acid leaching plant was commissioned to remove the acid-soluble iron carbonate and increase the tin grade of concentrates.

Aberfoyle Ltd., in which Cominco Ltd. has an interest, sold its tin mines in northeastern Tasmania to Forestwood Australia Ltd. and Gold Copper Exploration Ltd. The new partners announced intentions of revising current mining and processing operations, including the reprocessing of tailings.

A sulfide tin deposit was discovered near Bourke, New South Wales, on the Doradilla Prospect owned by Eastmet Ltd. and Aberfoyle Ltd. Reports indicated tin deposits grading at 1.2%.

Pacific Copper Mines Ltd. of Edmonton, Canada, reported positive results from an exploration program on its wholly owned tin-tungsten property at Jingellic, New South Wales, Australia. Preliminary assays indicated a combined average tin-tungsten grade of over 1%.

Tin mineralization was reported by Comstaff Pty. Ltd., a subsidiary of Anglo American Corp., on Apollo International Minerals N.L.'s Godkin Ridge Prospect in Tasmania. Additional drillings were planned.

Greenbushes Tin N.L. continued its drilling program at its mine site in Western Australia and reported probable reserves of 28.1 million tons, with an average grade of 0.114% tin, 0.043% tantalum pentoxide, and 0.031% columbium pentoxide. The firm reported that continuing exploration results were sufficiently encouraging, therefore, it was evaluating plans to develop a mine and also construct a refinery at nearby Kwinana.

The joint venture, which owns the Taronga Tin project near Emmaville, New South Wales, reported continued study and evaluation of the large tonnage, low-grade deposit. The partners were Newmont Holdings Pty. Ltd., ICI Australia Ltd., Endeavour Resources Ltd., and Pelsart Resources N.L. They announced proven reserves of 25 million tons of tin ore grading 0.2%, and silver byproduct estimated at 0.14 ounce of silver per ton.

Two smelters operated in 1981: The Associated Tin Smelter, Ltd., in Sydney on the east coast, and the Greenbushes smelter near Perth on the west coast.

Table 14.—Tin: World mine production, by country

Country	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Canada	328	360	337	264	24
Mexico	220	73	23	60	10
United States	W	w	w	w	- v
South America:					
Argentina	_ ² 537	² 362	386	351	34
Bolivia		30.881	27.648	27.272	29.80
Brazil	- r _{6.287}	F6.341	7,005	6,930	9.00
Peru	r ₃₂₉	r ₄₅₈	870	1,077	1.51
Europe:	_ 329	400	: 010	1,077	1,51
Czechoslovakia ^e	_ ² 180	² 180	² 180	180	18
German Democratic Republic	_ 180				
		1,600	1,600	1,800	1,90
Portugal	267	[†] 282	225	274	38
SpainU.S.S.R. ^e	_ ^r 641	r711	496	437	47
U.S.S.R. ^e	33,000	34,000	35,000	36,000	36,00
United Kingdom	_ r 4,100	r _{3,132}	2,708	3,291	33,89
Africa:		•			
Burundi	_ ^e 20	e ₂₀	8	(4)	
Cameroon		14	8	ìó	ī
Niger		125	73	78	7
Namibia		1.250	1.042	1.000	1.00
Nigeria		2,935	2,750	2,527	
Rwanda		1.502	1,910	2.069	1.80
South Africa, Republic of	2,864	2,886	2,697	2,913	2.81
Swaziland	_ 2,004	2,000	2,031	2,010	2,01
Swaziland Tanzania			10	$\bar{1}\bar{2}$	1
Uganda ^e	2 ₁₂₀	2 ₁₂₀	60	30	3
Zaire	5,073	4,390	3,879	3,000	2,20
Zambia ^e	_ 3	(⁵)	· 1	(5)	
Zimbabwe	_ 1,280	r _{1,310}	1,340	1,300	1,60
Asia:	100	9.7	RV SEED	1 01 44622	1 az-11 - 15 C.
Burma	_ 362	757	1,233	1,290	1,31
Chinae		14,000	14,000		15,00
` Indonesia		27,411		32,5 2 7	34,86
Japan	_ 605	603	660	549	56
JapanKorea, Republic of	_ 15	19	31	38	1
Laos ^e .	² 600	2400	300	350	40
Malaysia		62,650	62,995	361,404	59.93
Thailand	24,205	30,186	33,962	333.685	32.00
Vietnam		e ₂₅₀	e200	3370	
Oceania: Australia	10.634	11,864	12,871		55
Oceana Australia	10,034	11,864	12,871	10,835	12,00
Total	r _{230,694}	r241,082	245,948	246,493	252,509

Preliminary. Revised. Estimated. W Withheld to avoid disclosing company proprietary data. Contained tin basis. Data derived in part from the Monthly Statistical Bulletin of the International Tin Council, London, England. Table includes data available through June 9, 1982.

²Estimate by the International Tin Council.

Bolivia.—Tin production was hampered by strikes, plant operational problems, and declining ore grades. Workers at the tin mines of Corporación Minera de Bolivia struck for several weeks, reducing output at the Huanuni Mine.

The new La Palca volatilization plant, installed near Potosí by Machinoexport of the U.S.S.R. and under construction since 1971, began production in April but had to be closed by December owing to pollution problems. The plant was designed to process 4,000 tons per year of a preconcentrate assaying about 4% tin. The tin dust produced would supplement the concentrate feed for the Vinto low-grade tin smelter located about 300 kilometers away.

Brazil.—The largest tin ore producer, Paranapanema S.A. Mineração, reportedly expected to double its 1981 production of 3,500 tons within 2 years by developing a 60,000-ton deposit near Manaus in the Amazon River valley. Mineração Oriente Novo S.A. (Brumadinho Group), the second leading tin ore producer, announced two expansion projects, a dredging operation in Rondônia, and a project in Goiás State. The firm was a joint venture between the Canadian-based Brascan Ltd. and British Petroleum Ltd.

³Reported figure. ⁴Revised to zero. ⁵Less than 1/2 unit.

Table 15.—Tin: World smelter production, by country¹

Country	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Mexico ²	1,000	1,000	1,268	1,642	1,600
United States ³	6,724	5,900	4,600	3,000	2,000
South America:					
Argentina	r ₁₀₀	r ₁₀₀	100	200	150
Bolivia		16,254	14,950	18,191	20,00
Brazil		9,309	10,133	8,642	7,600
Curope:	*	•	•	•	
Belgium		3,295	2,165	3,000	2,500
German Democratic Republice	r _{1.750}	r _{1.750}	2,000	2,200	2,300
Germany, Federal Republic of	r _{3,940}	r ₄ ,767	4.096	2,257	1.81
Netherlands		r _{1.600}	1,445	1.370	1,35
Portugal	r _{1.016}	ŕ854	1.121	938	1.00
		4.575	4,412	4.100	3,40
Spain U.S.S.R. ^e	33,000	34,000	35,000	36,000	36,00
United Kingdom	10,458	8,445	8,025	5,829	43,39
frica:		0,110	0,020	0,020	0,00
Nigeria	3,315	2.984	2.858	2,678	2,70
South Africa, Republic of		637	819	1,100	2,05
Zaire		496	458	458	550
Zimbabwe		945	967	934	1,130
Asia:					
China	13,000	14,000	14,000	14,600	15,000
Indonesia	24,005	25,829	27,790	30,465	32,00
Japan	1,280	1,141	1,251	1,319	41,31
Malaysia ⁵	66,304	71.953	73.068	71.318	68,50
Thailand		28,945	33,058	34,689	31,00
Vietnam		^é 200	^é 160	350	500
Ceania: Australia		5,129	5,423	4,819	4,23
Total	r 228,451	r244,108	249,167	250,099	242,097

^eEstimated. ^pPreliminary. ^rRevised.

⁴Reported figure.

Brascan sold 50% of its holdings in Brascan Recursos Natural (BRN), the Brazilian tin mining and smelting group, to British Petroleum. (In 1980, Brascan bought Companhia Estanífera do Brasil (CESBRA), which was then merged with two smaller Brascan tin-mining subsidiaries to form BRN). BRN operated mines in the Rondônia District and operated the tin smelter at Volta Redonda in Rio de Janeiro State, which produced about 40% of the total Brazilian tin metal output. BRN announced plans for major tin exploration in the Rondônia District.

The 10 tin smelters in Brazil possessed total nominal capacity of approximately 20,000 tons per year of tin metal, almost double the Brazilian concentrate output. The principal smelter operators were: CES-BRA (the Brascan Group in Volta Redonda); Mamorá Mineração e Metalurgica Ltd. (Paranapenema Group in São Paulo); Com-

panhia Industrial Amazonese S.A. (Best Group in Manaus); and Bera do Brasil S.A. (Brumadinho Enterprises in São Paulo).

Canada.—Construction proceeded on the Mount Pleasant Mine in New Brunswick. Billiton Canada Ltd. was the operator of the joint venture with Brunswick Tin Mines Ltd. Mining of tungsten and molybdenum was expected to start in 1982. Although lowgrade tin ore was present, it was expected that no tin would be mined for several years.

Springpoint Resources Ltd. reported a tin find grading 0.3% during initial drilling at its Jackass Prospect near Nelson, British Columbia.

Shell Canada Resources Ltd. reported that it was nearing a decision about proceeding with mine construction at its tin prospect in East Kemptville, Nova Scotia.

China.—A major high-grade tin prospect was announced in Yunnan Province in

¹Data derived in part from the Monthly Statistical Bulletin of the International Tin Council, London, England. Output reported throughout is primary tin only unless otherwise specified. This includes data available through June 6, 1982.

²Smelter output from domestic ores is as follows, in metric tons: 1976—481; 1977—220; 1978—73; 1979—23; and 1980—20 (estimated).

³Includes tin content of alloys made directly from ores.

⁵Includes small production of tin from smelter in Singapore.

southwest China. In the southern Province of Guangxi, it was reported that the new Changyingling ore dressing plant started up, with capacity to produce 900 tons per year of tin concentrate.

Seven tin smelters were in production, and an eighth was planned to be started in Liepen County in Guangxi Province by 1985. The largest is the Kokiu smelter in Yunnan Province, with a capacity of 10,000 tons of tin metal per year. The second largest is the Liuchow smelter in Guangxi Province, with a 2,000-ton annual capacity.

Indonesia.—Tin mine production continued the pattern of steady rises over recent years. The dominant tin miner was Perusahaan Terbatas Tambang Timah (P. T. Timah), the national mining organization. P. T. Timah took delivery of the Belitung 1, a new offshore tin mining dredge constructed from a British design, at its mining site near Pulan Belitung. The dredge has 0.62-cubic-meter meter buckets and can dig to a depth of 46 meters.

P. T. Koba Tin, the second largest tin producer, has compiled a record of considerable growth in recent years. The firm operated 13 gravel pump units and 1 strip mine in addition to the 2 small dredges that were being phased out. The reasons for the growth in output of this organization reportedly are the excellent tin grades of the exploited ground and the favorable energy costs that Indonesia enjoys compared with other tin producing countries.

The gravel pump mining sector in Indonesia consists of about 230 units.

A deposit of about 1 million tons of tin ore was discovered off the coast of Bangka Island. Tin ore reserves were also found off the coast of Singkep Island. The Ministry of Mines and Metallurgy reported the discovery of tin mineralization in mainland Sumatra to the west of the presently exploited tin belt.

Malaysia.—Tin mine production declined slightly, but Malaysia maintained its longheld position as the world's leading tin producer. At yearend 1981, there were 60 tin dredges, 593 gravel pump mines, and 57 opencast, underground, and other miscellaneous mines in operation, about 150 less than the number of total active mines at yearend 1980. The labor force decreased significantly to 35,198. The main decline in the number of mines occurred in the gravel pump sector.

The Malaysian mining industry has reportedly suffered severly from increased costs, especially fuel and labor expenses. This has been especially true in the gravel pump mining sector, which reportedly accounted for 56% of Malaysia's total production.

The world's largest tin mining company was formed when Malayan Tin Dredging Berhad merged with Malaysia Mining Corp. to form a new organization called Malaysia Mining Corp. Berhad (MMC). The new firm operated 40 of the 60 tin dredges in Malaysia and accounted for about 22% of Malaysia's total output of tin concentrates. The new firm had capital estimated at \$1.1 billion. The major shareholder was Permodalan Nasional Berhad, the Malaysian Government's equity corporation, with 56.6% ownership (14.5% was held by Charter Consolidated Ltd., 3.8% was held by Datuk Keramat Holdings, and 25.1% was held by the public).

MMC was expected to commission two large new dredges in early 1982, the Berjuntai No. 9 and the dredge of Timah Dermawan. The Osborne & Chappell Group expected to commission a new dredge, the Petaling No. 9, in 1982.

MMC announced a joint venture to establish an international trading company, Nastra Sdn. Bhd., due to commence operation in early 1982. MMC's partners are: Petronas, the state oil development agency; the Federal Land Development Authority; and Kuok Bros. Sdn. Bhd., a Kuala Lumpur trading firm.

Singapore-based Straits Trading Co. Ltd. sold 42% of its ownership of the tin smelter at Penang (Butterworth) to MMC. Malaysia's only other tin smelter, also located in Penang, was owned by Datuk Keramat Smelting and processed both native tin concentrates and considerable quantities from Australia, Burma, and Brazil.

Perusahaan Sadur Timah Malaysia Sdn. Bhd. (Perstima), a joint venture tinplate plant, started operation in Pasir Gudang. Perstima was owned by a Malaysian canning firm, MMC, three Singapore canners, and two Japanese firms. The plant was expected to produce 90,000 tons of tinplate per year, using Japanese steel.

Spain.—Metalurgica de Nordeste de España, S.A. (MENSA) began construction of a 12,000-ton-per-year tin smelter at its Valga works in Galicia; it was expected to start production by 1983. MENSA's other smelter at Villagarcia de Arosa, with a capacity of 7,000 tons annually, could only treat tin concentrates with a minimum of 45% tin

TIN 851

content; the new plant was being built to process low-grade concentrates from Spain and abroad. The firm also announced expansion of its Ayos Mine in Galicia. Spain had seven smelters and more than 50 tin mines, primarily along the western border.

Thailand.—Tin production declined slightly. The Board of Trade of Thailand attributed the decline primarily to depletion of tin ore. No major efforts have been made in recent years to survey for new deposits. Also cited were higher production costs that resulted in the shutdown of some mining operations and continued smuggling to Singapore.

The Industry Ministry granted a mining permit to Tongkha Harbour Ltd., a firm partially owned by Tongkha Harbour Tin Dredging Berhad of Malaysia, for mining in the island Province of Phuket.

The Thai Government reduced royalties on tin by about 10% to help miners lower production costs.

The newly formed Thai Tantalum Industries Corp., based in Bankok, announced plans for a \$20 million tin slag smelter and tantalite processing complex that with adequate financing could begin production by late 1983.

Thailand's second major tin smelter, Thai Pioneer Enterprise Ltd., was commissioned with a startup capacity of 3,600 tons annually, and is situated in Pathum Thani near Bangkok. The West German-based Metallgesellschaft AG contracted to purchase the total production.

U.S.S.R.—Tin output continued to be inadequate to meet domestic needs, and imports accounted for about 20% of requirements. The major Soviet tin producing areas were the Soviet Far East, Yakut Autonomous Soviet Socialist Republic (A.S.S.R.), and Transbaykal, and the average content of tin ores reportedly ranged from 0.6% to 1% tin.

The largest tin producing district was the Maritime Kray in the Soviet Far East. The major producer in this region was the Khrustal'nyy complex, which operated both lode and placer deposits. The Khrustal'nyy complex operated the Khrustal'nyy, Ege-Khaya, Imeni Lazlo, Kholodnyy, and Alyas-kavityy Mines.

The largest single tin producer in the U.S.S.R. was the Khingan complex at Birobidzhan (Jewish Autonomous Oblast'), Khabarovsk Kray of the Soviet Far East. At Khingan, the concentrator was renovated in 1979 and the Berezovyy Mine and a mine near Obluchye were being developed. The Solnechnyy complex in Khabarovsk Kray operated the Solnechyy, Molodezhnyy, and Pereval'nyy Mines.

There were three known tin smelters in the U.S.S.R., situated in the cities of Novosibirsk, Ryazan, and Podol'sk (near Moscow). Concentrates from Siberia and the Soviet Far East were sent to the largest smelter, at Novosibirsk.

Construction of a tin complex on the Sary-Dzhar River near Inulchek, Kirgiz Soviet Socialist Republic (S.S.R.), was scheduled to begin in the 1981-85 period. Intensive exploration programs were carried out. Positive results were reported in Magadan Oblast', Khabarovsk Kray, the Yakut A.S.S.R., and the Kirgiz S.S.R.³

United Kingdom.—The Williams, Harvey Ltd. tin smelter in Liverpool, with 8,000 tons annual capacity, closed down. The smelter had been under the control of a liquidator since 1973 and had been treating residues and low-grade concentrates.

Carnon Consolidated Tin Mines Ltd. announced a program to spend \$6 million over 18 months to deepen the Clemows shaft at its Wheal Jane Mine.

South West Consolidated Minerals Ltd. was granted permission to redevelop the Redmoor Mine near Callington in Cornwall.

Amax Exploration of U.K., Inc., and its joint partner Hemerdon Mining & Smelting Ltd. sought permission to mine tungsten and tin at Hemerdon, near Plymouth. This action followed completion of a feasibility study initiated in 1978. Mineralization containing 42 million tons with an overall tin grade of 0.03% was identified.

TECHNOLOGY

Sirosmelt, a new method of smelting that increases metal yields and lowers energy consumption, was tested at the Associated Tin Smelter Ltd. in Sydney, Australia. Associated installed a prototype Sirosmelt unit to improve tin recovery from slag (the residue left after the main smelting process). Sirosmelt, developed by John Floyd

at the Commonwealth Scientific and Industrial Research Organization, uses a cappucino-type method to reduce the time, energy, and expense of conventional smelting. While most smelting involves the reduction of tin concentrate in a sizable furnace with the solid charge being heated from above the surface by radiation from a

flame, Sirosmelt delivers heat directly to the concentrate through a special lance. The lance comprises two tubes, one carrying the fuel, such as natural gas, and the other air. The mixture burns and bubbles beneath the molten slag's surface producing intense heat and rapidly melting the concentrate. The prototype at Associated was not yet being used in the main tin smelting stage, but in the recovery of tin from slag, which contains up to 18% tin. The Sirosmelt unit permits the molten slag to be treated immediately. Because it operates independently of the main smelter, both smelting and slag retreatment can proceed uninterrupted. Sirosmelt reportedly could smelt a concentrate containing only 20% to 30% tin, and its greater efficiency means the extra

slag produced could be handled relatively inexpensively.4

Various advances were made in techniques of wave soldering, a new form of mass soldering that enables users to solve the problem of maintaining a clean, oxidefree solder surface for the processing of printed circuit boards. Circuit boards pass through the crest of a standing solder wave so that only the boards' lower surface makes contact with the wave.5

¹Physical scientist, Division of Nonferrous Metals.

²Can Manufacturers Institute. Metal Can Shipments

Report 1981. Washington, D.C., 1982, p. 5.

³U.S. Bureau of Mines Yearbook, V. 3. The Mineral Industry of the U.S.S.R. 1981. ⁴American Metal Market. V. 89, No. 191, Oct. 2, 1981,

^{-.} V. 89, No. 34, Feb. 20, 1981, p. 5.

Titanium

By Langtry E. Lynd¹ and Ruth A. Hough²

Titanium mill product shipments in 1981 were about 25,500 tons, down 6% from the record level of 27,000 tons set in 1980. Demand for titanium metal was dropping sharply toward the end of 1981, mainly because of a slowdown in commercial aircraft production. Domestic production and consumption of titanium dioxide pigments increased in 1981, but consumption was still 5% below the level reached in 1979. U.S. production of ilmenite decreased 7% in 1981 to 509,000 tons, the lowest since 1950, owing to reduced production in Florida. Production of natural rutile increased slightly, and the production rate of the only domestic

synthetic rutile plant reached its design capacity of 110,000 tons per year. Price quotations for ilmenite and titanium slag in U.S. markets increased 32% and 17%, respectively, while prices of ilmenite f.o.b. Australia remained in the range from \$25 to \$27 per long ton. Domestic spot prices for rutile, increased 6%, but prices of rutile, f.o.b. Australia, dropped 9% for bulk concentrates and 26% for bagged material during the year. Titanium sponge metal prices rose 9% to \$7.65 per pound, and pigment prices increased about 20% to \$0.75 per pound for rutile and \$0.69 per pound for anatase.

Table 1.—Salient titanium statistics

tu i de la la la la la la la la la la la la la	y, aray -	1977	1978	1979	1980	1981
United States:						
Ilmenite concentrate:						
Mine shipments	short tons	542,333	580,878	646,399	593,704	523,681
Value		\$25,201	\$25,628	\$32,965	\$32,041	\$37,013
Imports for consumption		334,990	308,671	184,478	357,488	236,217
Consumption	do do	866,504	792,289	791,063	r848,607	856,116
Titanium slag:		000,004	102,200	131,000	040,001	000,110
Imports for consumption	do	150,564	149.172	111,210	194,994	268,825
Consumption	do	149,454	128,826	144,708	181,582	252,826
Rutile concentrate, natural and s		140,404	120,020	144,100	101,002	202,020
Imports for consumption	do	123,800	289,617	283,479	281,605	202,373
Imports for consumption Consumption	do	185,419	263,184	313,761	r297,582	285,371
Sponge metal:		100,410	200,104	010,101	201,002	200,011
Imports for consumption	do	2,387	1,476	2,488	4,777	6,490
Consumption	do	16,236	19,854	23,937	26,943	e31,599
Price, Dec. 31, per pound		\$2.98	\$3.28	\$3.98	\$7.02	\$7.65
TCA		\$2.5 0	φυ.20	φυ.υο	φ1.02	φ1.00
Production	short tons	687,103	700,755	r742.081	r727,245	750,141
Imports for consumption		114,810	117,708	104,968	97,590	124,906
Apparent consumption	do	785,003	801.728	*837,042	¹ 753,480	794,991
Price, Dec. 31, cents per poun		100,000	001,728	651,042	100,400	194,991
		43.5	46.0	53.0	57.0	69.0
Anatase Rutile		48.5	51.0	59.0	63.0	75.0
World production:		40.0	31.0	. 35.0	00.0	10.0
Ilmenite concentrate	short tons	r3,652,870	r3,874,659	9 010 000	P4 010 010	60 070 £14
Titaniferous slag		¹ 764,529		3,919,966	P4,018,919	e3,978,614
Rutile concentrate, natural			1,037,193	842,044	P1,343,210	e1,248,000
Authe concentrate, natural	ao	¹ 1380,833	r 1332,690	¹ 391,726	^p ¹ 459,634	e 1398,447

^eEstimated. ^pPreliminary. ^rRevised

¹Excludes U.S. production data to avoid disclosing company proprietary data.

Legislation and Government Programs.—The Government stockpile goal for titanium sponge metal remained at 195,000 tons in 1981. The Government stockpile in December 1981 contained 21,465 tons of specification sponge metal and 10,866 tons of nonspecification material.

The Government stockpile goal for rutile was unchanged at 106,000 tons in 1981. The total rutile stockpile inventory in December

1981 was 39,186 tons.

Congress approved a program for construction of 100 B-1 bombers in the 1981-88 period. Each B-1 aircraft reportedly will

cost about \$180 million and will require up to 250,000 pounds of titanium mill products. Industry sources indicated that the U.S. supply of titanium in the next few years, augmented by additions to U.S. sponge capacity and imports from expanded Japanese facilities, will be ample for anticipated demand, including the B-1 program. The prime contractor for building the B-1 is Rockwell International Corp.4

A summary of trade and tariff information on titanium dioxide pigments was published by the U.S. International Trade

Commission.5

DOMESTIC PRODUCTION

Concentrates.—Production of ilmenite in 1981 was the lowest since 1950. This low U.S. output was caused mainly by reduced production by the two Florida heavy mineral sand mining and milling operations of E. I. du Pont de Nemours & Co., Inc., at Starke and Highland, and that of Associated Minerals (U.S.A.) Inc., Ltd. (AMU), at Green Cove Springs. Production totals at the heavy mineral sand facility of ASARCO Incorporated at Manchester, N.J., and at the hardrock mining and milling operations of NL Industries, Inc., at Tahawus, N.Y., were about the same as in 1980. AMU was the only U.S. producer of natural rutile concentrate in 1981.

Kerr-McGee Chemical Corp., the only U.S. producer of synthetic rutile, increased the production rate of its plant at Mobile, Ala., to the design capacity of 110,000 tons per year. Feed for this plant has been mainly Australian ilmenite, but Florida ilmenite has also been used.

In November 1981, Asarco announced it would shut down its Manchester ilmenite mine near Lakehurst, N.J., in March 1982, because its sole customer, Du Pont, had decided to exercise an option to end a 10-year purchase agreement 1 year early. The reasons cited for this decision were the prospect of a long-term oversupply situation and escalating costs. Closure of the Manchester Mine, which began production in 1973, will reduce U.S. ilmenite annual production capacity by about 185,000 tons.

Ferrotitanium.—Ferrotitanium was produced by Shieldalloy Corp. at Newfield, N.J.; The Pesses Co. at Solon, Ohio; Reactive Metals and Alloys Corp., West Pittsburg, Pa.; and A. Johnson & Co., Inc., Lionville, Pa. Most of the production of ferrotitanium consisted of the 70% titanium grades.

Metal.—Production of titanium sponge metal in 1981 was 11% higher than that of 1980. Total U.S. sponge capacity reached about 30,600 tons in 1981, up 9% from that of 1980.

Sponge-producing companies during 1981 and their approximate annual capacities were TIMET (a division of Titanium Metals Corp. of America, at Henderson, Nev., jointly owned by NL Industries and Allegheny International, Inc.), 15,000 tons; RMI Co., Ashtabula, Ohio (owned by National Distillers and Chemical Corp. and United States Steel Corp.), 9,500 tons; Oregon Metallurgical Corp. (publicly owned with Armco Steel Corp. and Ladish Corp. as major stockholders), 4,500 tons; Teledyne Wah Chang Albany, Albany, Oreg., 1,500 tons; and D-H Titanium Co. (a joint venture of Dow Chemical Co. and Howmet Turbine Components Corp. at a demonstration electrolytic process plant at Freeport, Tex.), 100 tons.

The nine U.S. companies that produced titanium ingot in 1981 are listed in table 2. Total domestic titanium ingot capacity in 1981 was about 50 000 tans.

1981 was about 50,000 tons.

Table 2.—Companies producing titanium ingot in 1981

Company	Plant location
Crucible, Inc., Colt Industries	Midland, Pa.
Howmet Corp., Alloy Div	Whitehall, Mich.
Lawrence Aviation Industries, Inc	Port Jefferson, N.Y
Martin Marietta Aluminum, Inc	Torrance, Calif.
Oregon Metallurgical Corp	Albany, Oreg.
RMI Co	Niles, Ohio.
Teledyne Allvac	Monroe, N.C.
Teledyne Wah Chang Albany	Albany, Oreg.
Nitanium Metals Corp. of America	Henderson, Nev.

Table 3.—Production and mine shipments of ilmenite concentrates¹ from domestic ores in the United States

		Production		Shipments	·-
Year	Year	gross weight (short tons)	Gross weight (short tons)	TiO ₂ content (short tons)	Value (thousands)
1977 1978 1979 1980		638,503 589,751 639,292 548,882 509,342	542,333 580,878 646,399 593,704 523,681	331,139 352,842 389,535 358,181 310,854	\$25,201 25,628 32,965 32,041 37,013

¹Includes a mixed product containing rutile, leucoxene, and altered ilmenite.

Table 4.—Components of U.S. titanium metal supply and demand (Short tons)

Component		1978	1979	1980	1981
Production:					
Ingot		31,385	37,414	r42,864	e45,923
Exports:					
Sponge	NA	97	180	113	58
Other unwrought	NA	210	155	344	257
Scrap	3,394	5,453	4,967	3,300	3,280
Ingot, slab, sheet bar, etc	1,050	1,340	1,984	3,278	4,203
Other wrought	<u>- : :</u>	689	1,316	1,845	1,846
Total	4,444	7,789	8,602	8,880	9,644
Imports:		. ,			
Sponge	2,387	1,476	2,488	4,777	6,490
Scrap	4,494	3,789	6,140	4,138	3,787
Ingot and billet	354	561	338	191	244
Mill products	<u>"</u>	1,125	942	946	1,116
Total Stocks, end of period:	7,235	6,951	9,908	10,052	11,637
Government: Sponge (total inventory)	32,331	32,331	32,331	32,331	32,331
Industry:			-		
Sponge	3.546	2,642	2,155	2.381	e3,720
Scrap	6,770	6,447	6,733	8,641	e10,484
Ingot		r _{2.569}	2.366	r _{1.860}	3,592
Other		73	200	2	7
Total industry	12,256	r _{11,731}	11,454	r _{12,884}	e17,803
Reported consumption: Sponge	10 000	10.054	00.007	00 040	e31.599
		19,854	23,937	26,943	
Scrap		12,318	13,986	15,406	e14,795
Ingot		30,746	r37,868	r43,360	e43,525
Mill products (net shipments)1		17,648	23,113	^r 27,133	25,492
Castings (shipments)		180	ř186	191	209

^eEstimated. ^rRevised. NA Not available.

 $^{^1}$ Source: U.S. Bureau of the Census, Current Industrial Reports, Ser. DIB-991 and ITA-991.

In April 1981, International Titanium, Inc., owned by Ishizuka Research Institute of Japan and other Japanese and U.S. investors, announced it would build a \$25 million, 5,000-ton-per-year titanium sponge plant at Moses Lake, Wash. The new plant was to make titanium tetrachloride (TiCl₄) from Australian rutile and to use magnesium reduction of the TiCl₄, with vacuum distillation to remove magnesium and magnesium chloride from the sponge. Construction was well advanced by the end of 1981, and sponge production was expected to begin early in 1982.

In September 1981, Albany Titanium Co. announced it would build a titanium sponge plant at Albany, Oreg., to be in production in 1982. The facility was to have an initial annual capacity of about 250 tons, expanding later to 500 tons, and was to use purchased TiCl₄, magnesium reduction, and vacuum distillation treatment of the sponge. The company planned to produce a very high grade of titanium sponge, for sale mainly to ingot producers that use titanium scrap.⁸

TIMET was carrying out a \$50 million modernization program, to be completed in 1983, which will increase efficiency and raise titanium sponge capacity to 16,000 tons per year, with potential for increasing capacity to 20,000 tons per year by reactivating some of the facilities scheduled for shutdown. The heart of the project is a new magnesium recycling plant, additional chlorinating capacity, improved reduction facilities, and new ingot-melting furnaces.

RMI Co. was conducting a \$50 million program to modernize and expand its titanium-producing facilities, raising their capacity to over 10,000 tons of mill products per year. The program was to include a \$20 million melt shop with two new vacuum arc melting furnaces, raising ingot capacity to an estimated 12,000 tons per year, a 3,000-ton press to increase the capacity of forging ingots into billets and slabs, and other facilities.¹⁰

Oregon Metallurgical Corp. (Oremet) completed a 50% expansion of sponge production capacity to 4,500 tons per year in mid-1981 and announced plans to increase ingot capacity by late 1982 to about 8,000

tons per year from its current level of about 5,500 tons at a cost of about \$9 million.

In late 1981, Armco increased its ownership of Oremet to about 76% by purchasing the Ladish Co., which had been the second largest stockholder with 14% of the shares. Armco reportedly was intending to purchase additional stock to increase its ownership of Oremet to 80%.

Wyman-Gordon Co. was reportedly committing up to \$30 million in 1981 for facilities to produce forging shapes close to final dimensions (near-net shape) by powder metallurgy. Included would be a new \$17 million, 8,000-ton isothermal forge. The company already operates two other isothermal forges rated at 1,800 and 3,000 tons.¹¹

In April, Suisman and Blumenthal, Inc., Hartford, Conn., announced the formation of a subsidiary, the Suisman Titanium Corp. The new subsidiary will produce titanium turnings of high quality for use in producing rotating parts of jet engines. Development of Suisman Titanium's rotor-grade titanium turnings, to be known as ST-2001, involved 3 years of research on a process to remove particles of tungsten carbide tool bits. Such particles have been the chief inhibiting factor in the use of titanium turnings for ingot melting.¹²

Pigment.—Titanium dioxide pigment production increased about 5% in 1981, on a titanium dioxide content basis. Rutile pigment accounted for 73% of total output and was produced by five manufacturers. Five companies produced anatase pigment. Companies producing titanium dioxide pigment in 1981, with plant locations and estimated yearend capacity, are listed in table 5.

American Cyanamid Co. began a 10,000ton-per-year expansion of its titanium dioxide plant in Savannah, Ga., to be completed in the third quarter of 1982. The expansion involves both chloride and sulfate processes.

NL Industries completed its Sayreville, N.J., sulfate process plant conversion to a continuous process modification that the company calls liquid phase digestion. The new process reportedly greatly reduces air emissions, recycles a large proportion of plant spent acid, and increases potential plant capacity.

857

Table 5.—Capacities of U.S. titanium dioxide pigment plants in 1981

Common and plant location	Pigment capacit	ty (tons per year)
Company and plant location	Sulfate process	Chloride process
American Cyanamid Co., Savannah, Ga E. I. du Pont de Nemours & Co., Inc.:	55,000	45,000
Antioch Calif		35,000 150,000
De Lisle, Miss Edge Moor, Del New Johnsonville, Tenn	==	110,000 228,000
Gulf + Western Natural Resources Group, Chemicals Div. (formerly New Jersey Zinc Co.):		220,000
Ashtabula, Ohio	44.000	30,000
Kerr-McGee Chemical Corp., Hamilton, Miss		56,000
NL Industries, Inc., Sayreville, N.JSCM Corp., Glidden Pigments Group:	100,000	
Ashtabula, Ohio Baltimore, Md	66,000	42,000 42,000
Total	265,000	738,000

Table 6.—Components of U.S. titanium dioxide pigment supply and demand

(Short tons)

	Component 1977 1978 1979 Component (gross (gross (gross weight) weight) weight	1978	1978 1979		1980		981 ^p
Component		(gross weight)	Gross weight	TiO ₂ content	Gross weight	TiO ₂ content	
Production	687,103	700,755	r742,081	r727,245	665,209	750,141	700,648
Shipments:1	696,552	714,547	F756.941	731,546	681.264	778.116	727,854
Value (thousands)	\$602,383	\$621,909	\$720,265	\$795,734	\$795,734	\$947.881	\$947,881
Imports for consumption	114,810	117,708	104,968	97,590	e90,915	124,906	e117,412
Exports	16,336	37,812	49,369	42,126	41,992	61,104	57,440
Stocks, end of period	114,447	93,370	54,008	r83,237	r e77.518	102,189	e96,058
Apparent consumption ²	785,003	801,728	r837,042	r753,480	r e686,911	794,991	e742,080

^eEstimated. ^pPreliminary. ^rRevised.

Sources: U.S. Bureau of the Census and U.S. Bureau of Mines. 1980 is the first year for which actual TiO2 content data are available for total production.

CONSUMPTION AND USES

Concentrates.—The total amount of titanium dioxide (TiO₂) consumed domestically in concentrates increased in 1981, along with the increase in TiO₂ pigment production. Nearly all of the increase in consumption was in the form of titanium slag.

Metal.—The titanium shortage, which limited consumption in 1979-80, eased considerably as new sponge metal capacity was brought into production in the United States and Japan, and demand slackened because of a slowdown in the commercial aircraft production rate.

By mid-1981, the decline in commercial aircraft orders was being reflected in a reduction in titanium producers' incoming orders and backlogs as customers delayed or

canceled orders. Despite the anticipation of an increase in military spending, purchases for titanium-intensive programs, McDonnell Douglas Corp.'s F-15 and Grumman Aircraft Engineering Corp.'s F-14, were reduced. By the end of the year, it was apparent that abnormally high inventories had been accumulated by both producers and consumers. The Government's decision to proceed with the 100-aircraft B-1 bomber program was expected to increase titanium demand, with Rockwell International planning to order material for nine B-1 aircraft in 1982. Shipments of titanium to the nonaerospace industrial market continued strong despite adverse market conditions in the nuclear power and chemical industries.

¹Includes interplant transfers.

²Apparent consumption = production plus imports minus exports minus stock increase.

Export demand for mill products, particularly commercially pure strip and welded tubing, was also strong.13

In 1981, mill product shipments were 50% in the form of billet; 33% sheet, strip, plate, tubing, pipe, and extrusions: 14% rod and bar; and 2% fastener stock and wire. Castings amounted to about 1% of mill product shipments. As in 1980, bar and billet were the major forms used for aerospace gas turbine engines and airframe forgings, while the other forms were used mainly for nonaerospace industrial applications. Mill product usage in 1981, as in 1980, was estimated to be about 75% for aerospace and 25% for other industrial uses. Allowing for the portion of titanium scrap that was used in steel and other alloys, overall consumption of titanium was estimated at about 62% for aerospace, 20% for other industrial uses, and 18% for alloving pur-

Table 7.—Consumption of titanium concentrates in the United States. by year and product

(Short tons)

	Ilme	Ilmenite ¹		ım slag	Rutile (natural and synthetic)	
Year and product	Gross weight	TiO ₂ content ^e	Gross weight	TiO ₂ content ^e	Gross weight	TiO ₂ content ^e
1977 1978 1979	² 866,504 792,289 791,063	² 521,194 475,448 487,228	149,454 128,826 144,708	106,201 91,490 106,346	³ 185,419 263,184 313,761	³ 173,840 245,184 292,912
1980: Alloys and carbide Pigments Miscellaneous ⁷	(4) ^r 834,141 (4) ^r 14,466	(4) r502,108 (4) r11,207	(⁵) 181,582 	(⁵) 133,993 	(4) r 6226,506 7,253 63,823	r ⁶ 211,599 6,876 59,407
Total	r848,607	^r 513,315	181,582	133,993	r 6297,582	r 6277,882
1981: Alloys and carbide Pigments Welding-rod coatings and fluxes Miscellaneous ⁷	(⁴) 843,055 (⁴) 13,061	(4) 501,301 (4) 9,721	252,826 	(⁵) 186,020 	(4) ⁶ 206,257 7,389 71,725	(4) 6192,779 6,944 66,873
Total	856,116	511,022	252,826	186,020	⁶ 285,371	⁶ 266,596

Revised.

Table 8.—Distribution of titanium-pigment shipments, titanium dioxide content, by industry

(Percent)

Industry	1977	1978	1979	1980	1981
Paints, varnishes, lacquers	52.0	47.9	47.4	44.1	43.4
Paper	20.7	20.8	21.8	24.3	23.8
Plastics (except floor covering and vinyl-coated fabrics and textiles)	11.7	11.6	11.8	10.6	11.4
Rubber	3.1	2.8	2.9	2.1	2.2
Printing ink	2.0	2.0	1.9	2.8	1.3
Ceramics	1.9	2.1	1.9	1.7	1.4
Other	6.2	6.7	7.1	8.2	8.6
Exports	2.4	6.1	5.2	6.2	7.9
Total	100.0	100.0	100.0	100.0	100.0

Includes a mixed product containing rutile, leucoxene, and altered ilmenite

²Includes estimate of imported ilmenite used to make synthetic rutile in the United States.

³Includes imported synthetic rutile, but excludes synthetic rutile made in the United States from imported ilmenite.

Includes imported synthetic rutile, but excludes synthetic rutile made in a life find in the find that it is f

⁷Includes ceramics, chemicals, glass fibers, and titanium metal.

Table 9.—Consumption of titanium products¹ in steel and other alloys
(Short tons)

	1977	1978	1979	1980	1981
Carbon steel	780	601	529	423	641
Stainless and heat-resisting steel	2,049	2,394	2,368	1,620	1,552
Other alloy steel (includes HSLA)	859	936	959 W	848	903 W
Tool steel	3,688	3.931	3.856	2,891	3,096
Total steel ² Cast irons	92	144	129	102	63
Superalloys	482	743	1,197	1,053	645
Alloys, other than above	537	255	234	272	254
Miscellaneous and unspecified	16	9	9	13	
Total consumption	4,815	5,082	5,425	4,331	4,084

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and unspecified."

The largest use of titanium is for compressor blades and wheels, stator blades, rotors, and other parts in aircraft gas turbine engines. The second largest use is in airframe structures of both military and commercial aircraft, such as wing-carrythrough structures, landing gears, ducting, weight-and-space-critical forgings. structures where resistance to heat is required. The most rapid growth in titanium use has been for those industrial uses requiring superior resistance to corrosion, such as surface condensers in powerplants, heat exchangers, and chemical industry equipment. The industrial market for the market economy countries in 1981 was estimated at 12,500 tons: 4,000 tons for chemical equipment (mainly anodes for sodium chloride and sodium chlorate production, tanks, vessels, mixers, and heat exchangers); 2,400 tons for powerplant heat exchangers; 1,350 tons in pulp and paper manufacture; 1,700 tons for metal coatings and recovery; 1,500 tons for oil refining, marine uses, and desalination; and 1,550 tons for other applications, including environmental and prosthetic devices.¹⁴

Pigment.—Consumption of titanium dioxide in pigments increased 8% in 1981, despite the continued slump in the home building industry and the general economic recession.

Ferrotitanium.—Consumption of ferrotitanium and titanium metal scrap in steel and other alloys decreased 6% in 1981, probably because of lower steel production.

STOCKS

Stocks of titanium materials in the United States are shown in table 10. The total TiO₂ content of stocks of concentrates

dropped 4% in 1981, although stocks of slag and rutile increased 18% and 8%, respectively.

¹Includes ferrotitanium containing 20% to 70% titanium and titanium metal scrap. ²Excludes data withheld and unspecified included under "Miscellaneous and unspecified."

Table 10.—Stocks of titanium concentrates and pigment in the United States, December 31

(Short tons)

	Gross weight	TiO ₂ content ^e	
Ilmenite:	4 4		
1979	728,874	462.415	
1980	r931,541	r _{584,280}	
Titanium slag:	812,647	516,135	
1979	75,089	56,917	
1980	171,898	127,981	
1981Rutile:	203,692	150,706	
1979	e127,443	110.047	
1980	r e156,888	119,947 r147,670	
1981	169,893	159,687	
Titanium pigment:1			
1979	NA NA	r _{54,008}	
1981	NA NA	83,237	
1001	. NA	102,189	

^eEstimated. ^rRevised. NA Not available.

PRICES

Concentrates.—Price quotations of ilmenite in domestic markets rose from \$55 per long ton to \$65-\$70 in January 1981 and further increased to \$70-\$75 in April, while ilmenite prices in Australia remained at \$25-\$27 per long ton throughout the year. At yearend, ilmenite, bulk lots, f.o.b. Titen, Fla., was quoted at \$39 per long ton.

Rutile concentrate spot prices, f.o.b. Atlantic, Gulf, and Great Lakes ports, rose from \$425-\$450 per short ton to \$450-\$475 per short ton in the first quarter of 1981. where they remained through the end of the year. Australian rutile, bulk, f.o.b. Australian ports, was quoted at \$310-\$321 per short ton in the first quarter of 1981, decreased to \$303-\$313 during the second quarter, and ended the year at \$276-\$297 per short ton. Australian rutile, bagged, f.o.b. Australian ports, began the year at \$371-\$425 per short ton, decreasing to \$321-\$343 during the first quarter, \$313-\$334 during the second quarter, and \$307-\$327 at the end of 1981. Rutile, bulk lots, f.o.b. Titen, Fla., was quoted at \$350 per short ton at yearend. Domestic synthetic rutile, f.o.b. Mobile, Ala., increased in April 1981 from \$310 to \$340 per short ton, where it remained through the end of 1981.

The price of titanium slag, 70% to 72% TiO₂, f.o.b. Sorel, Quebec, increased in March 1981 from \$115 to \$135 per long ton, while the price of titanium slag, 85% TiO₂, f.o.b. Richards Bay, Republic of South Africa, was estimated to be \$170 to \$180 per long ton throughout the year.

Metal.—The published price of domestic titanium sponge, f.o.b. plant, rose in January 1981 from \$7.02-\$7.22 per pound, and to \$7.65 per pound in June 1981, remaining at that level for the rest of the year. Japanese sponge, c.i.f. U.S. ports, climbed from \$7.50-\$8.70 per pound to \$8.85-\$10.03 per pound in April, where it remained through yearend. Prices for mill products, per pound, increased during the year as follows: Bar, from \$8.17-\$10.73 to \$18; billet, from \$5.24-\$7.13 to \$15; plate, from \$7.38-\$9.04 to \$17; sheet and strip, from \$12.07-\$14.10 to \$20.

Pigment.—Prices of titanium dioxide pigment in January 1981 were 63 cents per pound for rutile and 57 cents per pound for anatase and rose during the year to the following levels for rutile and anatase, respectively: First quarter, 69 cents and 64 cents per pound; third quarter, 75 cents and 69 cents per pound.

FOREIGN TRADE

Exports and imports of titanium materials are shown in tables 11 through 14. The major change in 1981 was the 36% increase

in titanium sponge metal imports, mainly from Japan, to 6,490 tons.

¹Source: U.S. Bureau of the Census.

Table 11.—U.S. exports of titanium products, by class

	19'	79	19	80	19	81
Class	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Concentrates: Ilmenite Rutile	NA 9,903	NA \$2,057	NA 17,830	NA \$3,444	NA 7,297	NA \$2,099
Total	9,903	2,057	17,830	3,444	7,297	2,099
Metal: Sponge Other unwrought Scrap Ingots, billets, slabs, etc Other wrought	155 4,967 1,984	1,019 1,125 18,265 26,456 25,912	113 344 3,300 3,278 1,845	1,088 2,891 12,681 61,962 51,589	58 257 3,280 4,203 1,846	451 2,244 6,811 105,647 53,807
Total	8,602	72,777	8,880	130,211	9,644	168,960
Pigment and oxides: Titanium dioxide pigments Titanium compounds, except pigment-grade	49,369 2,087	43,940 4,211	42,126 3,669	43,352 6,005	61,104 1,328	63,398 3,004
Total	51,456	48,151	45,795	49,357	62,432	66,402

NA Not available.

Table 12.—U.S. imports for consumption of titanium concentrates, by country¹

	197	9	198	0	198	81
Concentrate and country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Ilmenite:						
Australia	184,478	\$2,846	338,676	\$5,84 3	210,820	\$5,202
Finland			27	. 1		
India			18,739	829		·
Netherlands ²			46	2		
Norway South Africa, Republic of			·		1,656	_96
South Africa, Republic of					23,741	589
Total ³	184,478	2,846	357,488	6,674	236,217	5,887
Titanium slag:						
Canada	81,289	7,814	145,475	14,299	246,137	27,326
South Africa, Republic of	29,921	3,286	49,519	6,115	22,685	3,001
Other					3	2
Total ³	111,210	11,100	194,994	20,414	268,825	30,328
Rutile, natural:		1.5.00				
Australia	140,291	25,357	143,038	30,379	88,345	28,887
Malaysia	´		267	2,451	- 11	187
Sierra Leone	7,980	1,484	40,900	9,515	25,236	6,983
South Africa, Republic of	10,819	2,068	18,907	4,806	47,406	11,723
South Africa, Republic of Sri Lanka	6,305	1,432				
Thailand			197	1,643		- 9
Other	18	113	33	951	25	. 9
Total ³	165,413	30,454	203,342	49,745	161,022	47,790
Rutile, synthetic:						
Australia	72,218	11,799	60,962	9,050	39,708	8,854
Germany, Federal Republic of	´	·	2	. 4	:	
India	22,134	3,190	10,471	1,675	440	1,886
Japan	1,243	278	6,590	2,077	1,200	492
Taiwan	22,471	3,838	238	69	-3	- <u>-</u> <u>-</u>
Other					3	2
Total ³	118,066	19,105	78,263	12,874	41,351	11,234
Titaniferous iron ore:4 Canada	153,714	4,880	10,185	423	12,271	509

Adjusted by the U.S. Bureau of Mines.
 Country of transshipment rather than country of production.
 Data may not add to totals shown because of independent rounding.
 Includes materials consumed for purposes other than production of titanium commodities, principally heavy aggregate and steel furnace flux.

Table 13.—U.S. imports for consumption of titanium dioxide pigments, by country

	197	79	1980		1981	
Country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands
Australia	6,119	\$4,146	6,678	\$5,830	5,341	\$5,129
Belgium-Luxembourg	2,620	1.893	422	385	4.860	4.525
Canada Canada Canada Canada Canada Canada _ Canada	19,808	16.948	10.325	10.445	15,710	17,288
Finland	5,791	4.533	4.392	4.018	5,196	5,262
France	5,564	4.816	12,771	12,470	22,663	24.029
Germany, Federal Republic of	34,961	32,025	27,126	25,921	38,482	39,229
India	80	46	240	163	00,402	00,220
ltalyitaly	688	496	152	133	56	57
Japan Mexico	4.736	4,362	4,471	4.741	4,724	4.936
Mexico	2,.00	1,002	60	46	4,124	4,500
Netherlands Norway	20	17	323	318	2.635	1.893
Norway	2,395	1.970	4.217	3,716	4,992	4,583
South Africa, Republic of	599	351	1,110	878	4,552	4,565
South Africa, Republic ofSpain	9,630	7,383	7.579	6.595	13.017	19 001
Sweden	5,000	1,000	116	104	21	13,061
United Kingdom	$11.3\overline{48}$	8,781	17.608	16,220		22
Yugoslavia	461	416	11,000	10,220	7,011	7,200
Other	148	127			112	106
	140	121			85	74
Total ¹	104,968	88,310	97,590	91,986	124,906	127,396

¹Data may not add to totals shown because of independent rounding.

Table 14.—U.S. imports for consumption of titanium metal, by class and country

	19	79	19	80	. 198	81
Class and country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Unwrought: Sponge						
China	. 99	\$1,533	861	\$17,474	633	\$9,947
Japan	2.058	10,777	3.720	39,546	5.747	81.822
U.S.S.R	330	2,260	165	2,741	110	1.746
United Kingdom	1	10	(1)	2,141		1,740
Other			31	452		
Total	2,488	14,580	4,777	60,214	6,490	93,515
ingot and billet:						
Austria					50	700
Canada	$-\frac{1}{2}$	49	(1)		58	792
China		43	45	2	(1) ·	2.2
France	$-\bar{2}$	38	40	1,625	80	2,150
Germany, Federal Republic of	(1)	(1)				
Japan	13		24	812	48	988
U.S.S.R	313	154	61	1,459	38	678
United Kingdom	919	2,473	48	613	5.5	
Other	(¹)	140 5	13 1	333 10	20	526
Total ²	338	2,859	191	4,854	244	5,139
Waste and scrap:						0,100
Austria	59	000				
Canada	332	286	57	702	30	83
China	. 332	1,319	284	1,792	1,483	5,43€
Finland	93	160	454	4,842	74	812
France			181	792	127	511
Germany, Federal Republic of	$\frac{41}{321}$	244	144	1,874	103	1,054
-lanan	469	1,706	568	3,722	213	1,267
South Africa, Republic of		2,706	211	2,227	251	1,820
Sweden	170	1,762	10	136		
Switzerland	425 59	1,322	42	328	98	599
U.S.S.R		264	. 36	170		
U.S.RUnited Kingdom	3,313	8,422	1,411	4,619	406	1,053
Other	726 132	3,552	668	6,472	876	6,128
	132	523	72	764	125	811
Total ²	6,140	22,267	4,138	28,440	3,787	19,574

Table 14.—U.S. imports for consumption of titanium metal, by class and country —Continued

	1979 1980			1980		81
Class and country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Wrought titanium: Canada China	470	\$3,799	486 66	\$4,203 2,308	610	\$4,617
Germany, Federal Republic of	29	434	28	486 7,576	55 377	1,863 11,810
Japan United Kingdom Other	393 28 22	5,081 312 518	344 10 12	343 352	55 19	2,708 575
	942	10,144	946	15,269	1,116	21,573

¹Less than 1/2 unit.

WORLD REVIEW

Australia.—Although Australia was still the dominant producer of titanium minerals in 1981, the Australian share of world rutile production dropped from 70% in 1980 to 63% in 1981, considerably less than the 96% level that prevailed in 1976 before the present titanium mineral operations got underway in Sierra Leone and the Republic of South Africa. The Australian share of ilmenite production, however, was 37% in 1981, about the same as in 1980, and significantly higher than the 1976 level of 31%. In addition to increased competition from other natural rutile producers, Australian rutile was also facing increased competition from alternative concentrates such as synthetic rutile and high-TiO2 slag. A position of oversupply in titanium minerals developed in the latter part of 1981 because of increasing availability from all of the above sources and to an easing of world demand for titanium dioxide pigment.

Australian exports of rutile were mainly to the United States, the United Kingdom, and Japan; exports of ilmenite were mainly to the United States, the United Kingdom, Spain, and the U.S.S.R.¹⁵

Allied Eneabba Pty. Ltd. reportedly was to acquire all the heavy mineral leases in the Eneabba area currently held by Westralian Sands Ltd. and its subsidiary, Ilmenite Pty. Ltd. Allied Eneabba was to supply 30,000 tons of zircon to Westralian Sands over the next 3 years. The acquisition was expected to extend the life of the Allied Eneabba Mine about 10 years, to beyond the year 2000.16

The McDonnell Douglas F/A-18 Hornet was selected as the new fighter plane for the Australian Air Force. The Australian Government agreed to buy 75 planes at a

price equivalent to \$2.79 billion. A key element of the agreement is an "offset" feature that includes a United States-Australian project to build in Australia a 10,000-ton-per-year titanium sponge plant, at a probable cost of about \$115 million, and facilities for titanium fabrication. McDonnell Douglas and General Electric Corphave reportedly held talks with three Australian mining firms—Metals Exploration Ltd., CSR Ltd., and Associated Minerals Consolidated Ltd.—about building the sponge plant.¹⁷

Belgium.—TiTech International, a U.S. aerospace manufacturer, was building a \$13 million titanium casting plant at Charleroi. The plant was to go onstream in mid-1982 and to be owned 80% by the southern Belgium Province of Wallonia. The plant's furnace was to have a 1,200-pound pouring capacity.¹⁸

Canada.—In 1981, QIT-Fer et Titane Inc. shipped 2.08 million tons of ilmenite ore originating at QIT's Lac Tio Mine to its smelting plant in Sorel, Quebec. In addition, about 220,000 tons of ilmenite ore was exported, mainly to the Netherlands and the Federal Republic of Germany, predominantly for use as a metallurgical flux in electric furnaces.

China.—The largest titanium deposit in China is reportedly the 1.1-billion-ton Panzihua titaniferous magnetite deposit containing about 7% titanium in the form of ilmenite, near Dukou, Sichuan Province. The next largest titanium deposits are those in the Guangdong-Guangxi coastal sands, including Hainan Island, containing ilmenite in association with zircon and other heavy minerals. Chinese sponge-producing capacity in 1981 was probably about 3,000

²Data may not add to totals shown because of independent rounding.

tons per year, with production reportedly about 2,000 tons. The largest sponge plant, with a 1,000-ton-per-year capacity, was reportedly located in Chengdu and used Panzihua raw material. Other sponge plants have been reported in or near Fushun and

Jinzhou in Liaoning Province, Shanghai, and Wuhan.19 The estimated 1981 ilmenite production of 150,000 tons (table 15) indicates a potential TiO2 pigment production of about 50,000 tons, after allowing for ilmenite required for metal production.

Table 15.—Titanium: World production of concentrates (ilmenite, leucoxene, rutile, and titaniferous slag), by concentrate type and country¹

(Short tons)

Concentrate type and country	1977	1978	1979	1980 ^p	1981 ^e
Ilmenite and leucoxene:2				*	yr a se
Australia:				100	
Ilmenite	r1,138,687	r1,383,400	1,301,829	1 440 005	31 450 000
Leucoxene		17,750	24.769	1,442,925 29,539	³ 1,452,033
Brazil		22,131	24,769		³ 21,657
China	_ 14,025 _ NA	22,131 NA	24,915 NA	18,562 NA	19,000
Finland	137,458	145,395	131,947	175,267	150,000
India	- 4151,402	4178.063			175,000
Malaysia ⁵			4161,867	185,078	³ 208,147
Norway		205,929	220,262	208,470	160,000
		845,461	r903,690	912,508	³ 724,907
Portugal		^r 358	e300	258	330
Sri Lanka		36,421	61,035	37,430	388,197
U.S.S.R.e		450,000	450,000	460,000	470,000
United States ⁶	638,503	589,751	639,292	548,882	509,343
Total	r3,652,870	r3,874,659	3,919,966	4,018,919	3,978,614
Rutile:	· · · · · · · · · · · · · · · · · · ·				
Australia	358,561	283,376	302,621	323,801	3252,706
Brazil	141	402	484	472	202,100
India	46.059	r _{6,239}	45,445	45.908	39,647
Sierra Leone ^e	0,000	0,200	11,000	52,356	355,992
South Africa, Republic of	5,000	r20,000	46,000	53,000	
Sri Lanka	1.078	12,673			55,000
U.S.S.R.e	1,010		16,176	14,097	314,662
United States	10,000 W	10,000 W	10,000 W	10,000 W	10,000 W
Total ⁶	r _{380,833}	r _{332,690}	391,726	459,634	398,447
Titaniferous slag:					
Canada ⁷	r763,175	937,000	525.846	964.210	040.000
Japan ⁷		193	198	504,210	840,000
South Africa, Republic of 8		100,000		050 000	400 000
• •		100,000	316,000	379,000	408,000
Total	^r 764,529	1,037,193	842,044	1,343,210	1,248,000

^eEstimated. ^PPreliminary. ^rRevised. NA Not available. W Withheld to avoid disclosing company proprietary data. Table excludes production of anatase ore in Brazil (4,298,731 tons produced prior to 1979 and apparently largely mined in 1978; 7,373,074 tons mined during 1979; and unreported quantities mined in 1980 and 1981), all of which was stockpiled without beneficiation. This material reportedly contains 20% TiO₂. The table includes data available through June 10,

⁸Contains 85% TiO₂.

Egypt.—An ilmenite deposit with about 45 million tons of ore containing about 35% TiO₂ was reported. The deposit is located at Aby Ghalaga, about 62 miles south of Mersa Alam and about 19 miles west of the Red Sea, and occurs as a large lens in altered titaniferous gabbroic rocks. A black sand deposit east of Rosetta was reported to contain 4.28% of economic minerals, totaling about 1.9 million tons, including 50% ilmenite (45% TiO₂), 15% magnetite, 5% zircon, 0.5% rutile, and 0.5% monazite.20

India.—Completion of the \$100 million first phase of the Orissa Minerals Sands Complex was set for yearend 1982. The plant's design provides for annual production of 240,000 tons of ilmenite (50% TiO₂) to be processed into 110,000 tons of synthet-

Filmenite is also produced in Canada and in the Republic of South Africa, but this output is not included here because it is almost entirely duplicative of output reported under "Titaniferous slag."

3 Reported figure.

⁴Data are for fiscal year beginning Apr. 1 of year stated. ⁵Exports.

⁶Includes a mixed product containing ilmenite, leucoxene, and rutile.

⁷Contains 70% to 72% TiO₂.

ic rutile (90% TiO₂), 33,000 tons of sillimanite, 11,000 tons of natural rutile (95% to 97% TiO₂), 4,000 tons of monazite, and 2,000 tons of zircon. Based on this output, Indian Rare Earths Ltd. was reportedly willing to enter into long-term supply commitments to foreign firms willing to assist in setting up a titanium sponge-pigment plant. ²¹

Japan.—Osaka Titanium Co. Ltd. was building a new 5,500-ton-per-year titanium sponge plant adjacent to its 14,300-ton-peryear headquarters plant at Amagasaki,22 and reportedly planned to add another 7,700 tons per year of capacity by early 1983. Toho Titanium Co. Ltd. increased its annual sponge production capacity to 13,200 tons in 1981 and was reportedly expanding further to 15,900 tons, to be completed in 1983. Ishizuka Research Institute was to complete construction of a 1,400-ton-peryear sponge plant at Hiratsuka in late 1981. Total Japanese sponge production capacity at yearend 1981, excluding Osaka's newest addition, was therefore about 31,300 tons, including the 2,400-ton-per-year plant of Nippon Soda Co. Ltd.

Japanese titanium sponge metal production in 1981 was about 27,500 tons, com-

pared with 21,257 tons in 1980.

Kobe Steel, Ltd., reportedly doubled its ingot-melting capacity to 6,600 tons per year since March 1980 and hoped to increase capacity to 7,900 tons per year by yearend 1981.

Sierra Leone.—Planned annual production capacity of the Sierra Rutile Ltd. Mine and mill was 110,000 tons of rutile per year, although 1981 production was only about 56,000 tons. At its full capacity rate, Sierra Rutile will supply a very significant part of the world's natural rutile. A comprehensive article describing the history, geology, mining, processing, and other factors involved in the Sierra Rutile project was published in 1981.**

South Africa, Republic of.—In 1981, Richards Bay Minerals (RBM) achieved a production level of over 90% of its titanium slag and rutile capacity. With about 700,000

tons of ilmenite (50% TiO₂) mined to produce 408,000 tons of slag, RBM was believed to be the world's largest heavy mineral sand mining company.

U.S.S.R.—Revised estimates of titanium sponge metal production in the U.S.S.R., based on a recently published figure of a 19% increase in titanium production during the 10th 5-year plan (1976-80),24 were as follows in short tons: 1975-34,000; 1976-35,000; 1977-37,000; 1978-39,000; 1979-40,000; 1980-41,000; and 1981-42,000. The U.S.S.R. was reportedly planning to double the capacity of its 27,500-ton-per-year titanium sponge plant at Ust-Kamenogorsk. Future annual requirements are uncertain, but speculation was still strong that the U.S.S.R. may be using large amounts of titanium to build titanium-hulled submarines.25 Reports of imports of ilmenite from Australia in 1979-81 suggest that availability of high-grade titanium concentrates in the U.S.S.R. may be limited.

United Kingdom.—A 10% slump in world demand for TiO₂ pigment in 1980 and the strength of the British pound were said to be major factors in the closing in early 1981 of two sulfate-process pigment plants: BTP Tioxide, Ltd., a 35,000-ton-per-year plant at Billingham²⁶ and Laporte Industries, Ltd., a 35,000-ton-per-year plant at Stallingborough. Laporte later announced plans to expand the annual capacity of its chloride-process pigment plant from 44,000 tons to 50,000-55,000 tons. The expansion was to be completed by 1982.²⁷

IMI Titanium Ltd., the largest European producer of titanium mill products, opened a U.S. sales office in Denver, Colo., and planned to increase its melting capacity 25% to about 7,000 tons per year in 1982 or 1983 at an estimated cost of over \$15 million. IMI will also have a 17.5% interest in the 5,500-ton-per-year titanium granule plant of Deeside Titanium Ltd., being built at Deeside, North Wales, to be completed in 1983. Billiton (U.K.) Ltd. owns 62.5% and Rolls Royce Ltd. owns 20% of Deeside Titanium.²⁸

TECHNOLOGY

The Bureau of Mines conducted laboratory and larger scale studies on samples of domestic perovskite and ilmenite ore to devise a procedure for producing titanium carbide (TiC) from these ores. Carbiding of perovskite or calcium titanate slag made from ilmenite was done in an arc-melting

furnace, using charge temperatures of about 4,350° F for 3 hours. The resulting mixture of TiC and calcium carbide (CaC₂) was ground and treated with water to decompose the CaC₂ to hydrated lime and acetylene, freeing the TiC. In fluid-bed-chlorination tests on the purified TiC, 98%

of the titanium was extracted at 840° F.29 In other Bureau studies on electric arc furnace smelting of domestic titaniferous materials. fluid slags containing up to 79%, 70%, and 54% TiO₂ were obtained from east coast sand ilmenite, a rock ilmenite, and a titaniferous magnetite, respectively.30 The Bureau also investigated a new technique for treating titanium slags with mixtures of sulfur dioxide and oxygen followed by leaching to remove calcium, magnesium, and manganese, which cause major problems if present during fluid-bed chlorination. By this technique, a slag sample having a combined level of 5% of these impurities was upgraded to a product containing about 80% TiO2, with a combined impurity level of less than 0.4%.31

The Bureau also developed a new investment mold for titanium casting, made through an adaptation of the lost-wax process, using calcia-stabilized zirconium dioxide and a zirconium dioxide-forming binder. The castings formed in these molds were equal in chemical and mechanical performance to commercial-grade castings made from pressed graphite or other conventional mold materials.32 Other Bureau work included demonstration of a fume-free process for producing commercial grade titanium castings that used bentonite-bonded olivine or zircon sand molds, as an alternative to the industrially used rammed-graphite process;33 studies on the recovery of byproduct heavy minerals from sand and gravel operations in Oregon and Washington:34 and a newly developed chemical conditioning technique, which greatly simplifies the preparation of plating baths for the electrodeposition of titanium diboride coatings.35

A National Materials Advisory Board (NMAB) panel study on the availability of titanium was sponsored by the U.S. Departments of Commerce, Defense, and Interior, and the Federal Emergency Management Agency. This contract study was to assess the production capability of the United States to meet current and future needs for titanium and its alloys. The NMAB panel's report was expected to be issued in August 1982.

A materials needs case study of the U.S. aerospace industry was made by the Department of Commerce under the National Materials and Minerals Policy, Research and Development Act of 1980. The materials cobalt, chromium, titanium, and tantalum, and the advanced technologies of rapid

solidification and composites were selected for indepth study. One conclusion reached was that planned increases in domestic processing capacity should eliminate much of the difficulty experienced in obtaining timely delivery of titanium parts and materials.³⁶

A U.S. Air Force development program was underway directed toward cutting costs of titanium fabrication by cold-forming structural components from 15-3 titanium, a beta phase alloy that contains 15% vanadium and 3% each of aluminum, chromium. and tin. The beta phase structure of 15-3 titanium makes it more amenable to coldforming techniques than the widely used 6-4 titanium, with 6% aluminum and 4% vanadium. In the first phase of the program, TIMET demonstrated commercial manufacturing methods for producing 15-3 sheet. In the second phase, Fairchild-Republic Co., Farmingdale, N.Y., was working on the cold forming of prototype components.37

Efforts to cut the cost of titanium aircraft components emphasized the need for improving the ratio of buy weight to fly weight, using various near-net-shape technologies (forming directly to near the desired shape) such as casting, powder metallurgy,38 isothermal rolling and forging,39 superplastic forming-diffusion bonding,40 and hot isostatic pressing. 41 A new powdermaking facility was installed by Nuclear Metals Inc., Concord, Mass., that produces titanium and other metal powders by the company's plasma rotating electrode process (PREP). Design improvements in the PREP equipment have minimized or eliminated tungsten contamination in the powder.42

A new cutting tool geometry was developed that allows the machining of titanium at speeds as high as five times faster than conventional tools. The new ledge tool was described as a restricted clearance face tool—a tool insert in which a ledge or step has been cut into the flat rectangular cutting face.⁴³

Process metallurgical problems that have held back usage of TiC powder as a wear surfacing powder have reportedly been solved. In standard American Society for Testing Materials (ASTM) wear tests and in field tests, TiC showed better abrasive and erosive wear properties than conventional carbide powder. TiC also had a cost advantage.⁴⁴

Hard coatings of TiC are also applied by the chemical vapor deposition (CVD) process. Coating procedures, the types of materials suitable for such coatings, and the advantages of using CVD coatings, including titanium nitride, were described.45

The Metallurgical Society of AIME published a volume of papers on the use of titanium for energy and industrial applications.46 The proceedings of a 1979 ASTM symposium on industrial applications of titanium and zirconium were published in 1981.47 A more recent paper described the characteristics of titanium, such as availability, relative price stability, and physical properties, that make it a cost-effective material for equipment used in the chemical and metallurgical industries.48

¹Physical scientist, Division of Nonferrous Metals.

²Statistical assistant, Division of Nonferrous Metals. ³Weight units used in this chapter are short tons unless

^{*}Weight units used in this chapter are short only unless otherwise specified.

*Kingston, J. Titanium Execs Awaiting B-1 Schedule. Am. Metal Market, v. 89, No. 196, Oct. 9, 1981, p. 6.

*Johnson, J. L. Summary of Trade and Tariff Information—Titanium Dioxide Pigments. USITC Pub. 841, Control No. 4-9-5, U.S. Internat. Trade Commission, April

 ^{1881.} Kingston, J. International Titanium's Sponge Plant Expected To Cost \$25 Million. Am. Metal Market, v. 89, No. 68, Apr. 9, 1981, p. 8.
 Tidrick, R. Basin Titanium Plant Preparing for Production. The Wenatchee (Washington) World, Nov. 12, 1981,

^{1981,} p. 9.

 ¹⁰ Reiss, G. R. RMI Expands Facilities in \$30 Million
 Program. Youngstown (Ohio) Vindicator, June 28, 1981,

pp. I, A-6.

11 Purst, A. Titanium Supply-Demand Balance a Year
Off: Wyman-Gordon Chief. Am. Metal Market, v. 89, No.

Off: Wyman-Gordon Chief. Åm. Metal Market, v. 89, No. 46, Mar. 9, 1981, pp. 5, 26.

¹²Titanium News. Rotor Grade Titanium Turnings To Be Produced in Hartford. Suisman & Blumenthal, Hartford, Conn., v. 12, No. 4, Spring 1980, pp. 1-2.

¹³Minkler, W. W. Titanium. Eng. and Min. J., v. 183, No. 3, March 1982, pp. 108, 109, 111.

¹⁴Chemical Week. Titanium: No More Boom-and Bust Cycles? V. 129, No. 9, Aug. 26, 1981, pp. 42-46.

¹⁵Bureau of Mineral Resources, Geology and Geophysics. Titanium. A chapter in Australian Mineral Industry Annual Review. Preliminary Summary 1981. Canberra, Australia. February 1982. 2 pp. Australia, February 1982, 2 pp.

Austrains, February 1302, 2 pp.

1⁵Mcllwraith, J. Allied Eneabba Takes Over Westralian
Sands Leases, Financial Rev., Jan. 28, 1981, p. 39.

1⁷Brooks, R. F-18 Pact Gives Aussies 30% of Work on the
Plane. Am. Metal Market, v. 89, No. 207, pp. 1, 29.

¹⁸Metals Week. Elsewhere in Light Metals. V. 52, No. 26,

Netals Week. Elsewhere in Light Metals. V. 52, No. 20, June 29, 1981, p. 8.

Parady, E. S. China's Strategic Minerals & Metals—Titanium. The China Business Rev., v. 8, No. 5, September-October 1981, pp. 62-65.

Zataout, M., S. Afia, and G. Atwa. Development and Utilization of Mineral Resources in A.R.E. Pres. at Regional Conf. on Dev. and Utilization of Minera Res. in Africa, Arusha, Tanzania, Feb. 2-6, 1981. The Arab Republic of Egypt, Ministry of Ind. and Miner. Wealth, The

Egyptian Geol. Survey and Min. Authority., pp. 2, 23, 24.

²¹U.S. Embassy, New Delhi, India. State Department
Airgram A-49, July 1981, pp. 41-44.

²²Furukawa, T. Osaka's Titanium Plans Firm. Am.
Metal Market, v. 89, No. 225, Nov. 19, 1981, pp. 1, 16.

²³Mining Magazine. Sierra Rutile. V. 44, No. 6, June

^{1981,} pp. 468-465 ²⁴Tsvetnye Metally (Nonferrous Metals). Moscow, No. 1,

January 1982, p. 5.

²⁵Wilson, G. C. Soviets Launch Huge New Attack Submarine. Washington Post, v. 104, No. 8, Jan. 9, 1981,

pp. 1, 10.

26 European Chemical News. Tioxide Closes Pigments Plant at Billingham. V. 36, No. 966, Jan. 26, 1981, p.

²⁷Chemical Marketing Reporter. Laporte Plans Expansion of Titanium Dioxide Unit. V. 220, No. 14, Oct. 5, 1981,

p. 46.

28 Metals Week. IMI Titanium Opens Denver Office, Is
Expanding Capacity in U.K. V. 52, No. 31, Aug. 3, 1981,

^{**}Metals Week. IM: 1 Itanium Opens Denver Office, is Expanding Capacity in U.K. V. 52, No. 31, Aug. 3, 1981, p. 7.

**Pelger, G. W., W. L. Hunter, and J. E. Mauser. Preparation and Chlorination of Titanium Carbide From Domestic Titaniferous Ores. BuMines RI 8497, 1980, 20 pp. 3°Nafziger, R. H., R. R. Jordan, and W. L. Hunter. Electric Arc Furnace Processing of Domestic Titaniferous Materials. BuMines RI 8511, 1981, 35 pp. 3¹Elger, G. W., J. E. Tress, and R. R. Jordan. Domestic Low-Grade Titaniferous Materials For Producing Titanium Tetrachloride. Light Metals 1982, The Met. Society of AIME, pp. 1135-1147.

**2Calvert, E. D. An Investment Mold for Titanium Casting. BuMines RI 8541, 1981, 35 pp.

**3*Koch, R. K., and J. M. Burrus. Bentonite-Bonded Rammed Olivine and Zircon Molds for Titanium Casting. BuMines RI 8587, 1981, 40 pp.

**4Martinez, G. M., J. M. Gomes, and M. M. Wong. Recovery of Byproduct Heavy Minerals From Sand and Gravel Operations in Oregon and Washington. BuMines RI 8563, 1981, 14 pp.

**3*Filinn, D. R., J. A. Kirk, M. J. Lynch, and B. G. Van Stratum. Wear Properties of Electrodeposited Titanium Diboride Coatings. BuMines RI 8537, 1981, 30 pp.

**3*CU.S. Department of Commerce. Critical Materials Promisers of the U.S. Acceptage. Industry. October

³⁶U.S. Department of Commerce. Critical Materials Requirements of the U.S. Aerospace Industry. October

^{1981, 310} pp.

37 Brooks, R. Titanium Alloys Developed That Can Be
Cold-Formed. Am. Metal Market, v. 89, No. 32, pp. 9, 12.

38 Furst, A. Powder Metallurgy: Effect of Impurities on
Titanium Studied. Am. Metal Market, v. 89, No. 2, Jan. 5,

^{1981,} p. 8.

39Post, C. T. Has Metalworking Overlooked the Virtues

of Titanium? Iron Age, v. 224, No. 5, Feb. 11, 1981, pp. 58-

of Titanium? Iron Age, v. 224, No. 5, Feb. 11, 1951, pp. oc-60.

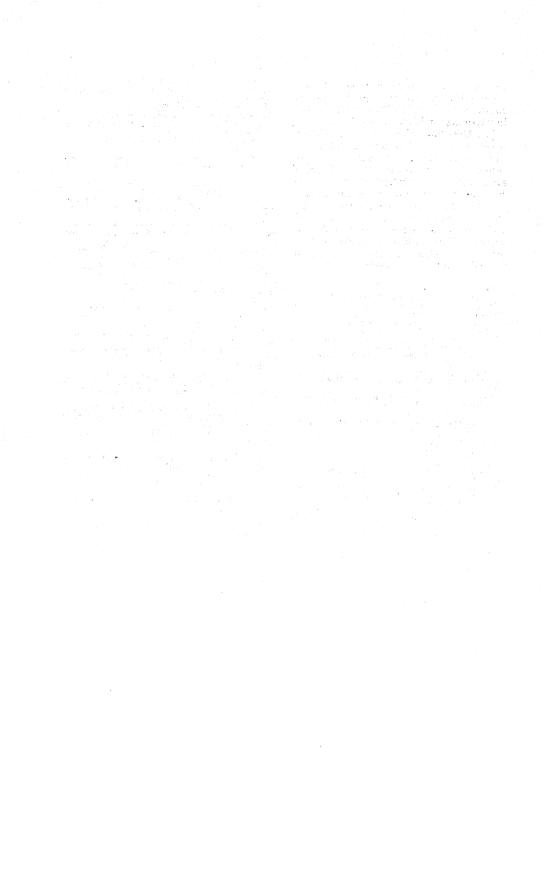
**OCollins, J. F., and W. T. Highberger. Superplastic Forming/Diffusion Bonding: An Update. Metal Prog., v. 119, No. 4, March 1981, pp. 79, 81, 83.

**Irving, R. R. Hipping: A Good Way To Improve Properties Iron Age, v. 224, No. 6, Feb. 23, 1981, pp. 77-81.

**Furst, A. Nuclear Metals Opens New Powder Facilities. Am. Metal Market, v. 89, No. 2, Jan. 5, 1981, p. 6.

**3Ashley, S. New Tool Geometry Speeds Titanium Cutting, Am. Metal Market, v. 89, No. 148, Aug. 3, 1981, p. 10.

**Aufderhaar, B. Now Available: Tic Wear Surfacing Powders. Metal Prog., v. 119, No. 7, June 1981, pp. 30-33.


**Bonetti, R. Hard Coatings for Improved Tool Life. Metal Prog., v. 119, No. 7, June 1981, pp. 44-47.

**Eylon, D. (Ed.). Titanium for Energy and Industrial Applications. The Met. Society of AIME, 1981, 420 pp.

**Kleefisch, E. W. (Ed.). Industrial Applications of Titanium and Zirconium. Proc. of ASTM symposium, New Orleans, La., Oct. 15-17, 1979. ASTM Special Tech. Pub. 282, March 1981.

Orleans, Ed., Oct. 1311, 1943. ASTM Special Tech. 140. 728, March 1981.

48(Orr., N. H. Industrial Application of Titanium in the Metallurgical and Chemical Industries. Light Metals 1982. The Met. Society of AIME, pp. 1149-1156.

Tungsten

By Philip T. Stafford¹

Consumption and imports of tungsten rose to record levels in 1981. Mine production increased 31% compared with that of 1980. Generally, tungsten prices remained within a narrow range except during the last quarter when they fell 10%.

During 1981, more than 95% of domestic production came from four mining operations; two were in California, and one each in Nevada and Colorado. One major new mine in Nevada was completed and ready to begin production in 1982. One large new ammonium paratungstate (APT) plant in Iowa began production in mid-1981.

The 18-year deadlock between tungsten producing and consuming countries continued, as no agreement was reached during 1981 at the Geneva conference on stabilization of the world tungsten market.

and Government Legislation grams.—The General Services Administration Office of Stockpile Transactions continued to sell excess stockpiled tungsten concentrate on the basis of monthly sealed bids. Regular offerings of excess concentrate were made at the disposal rate of 600,000 pounds of contained tungsten per month, of which 450,000 pounds was for domestic use and 150,000 pounds was for export. Additionally, supplemental offerings were made at the rate of 400,000 pounds per month, of which 300,000 pounds was for domestic use and 100,000 pounds for export. As a result of the regular and supplemental offerings, concentrate sales totaled 1,576,402 pounds of tungsten, of which 1,525,869 pounds was for domestic use and 50,533 pounds was for export. Actual shipments of excess con-

Table 1.—Salient tungsten statistics
(Thousand pounds of contained tungsten and thousand dollars)

	1977	1978	1979	1980	1981
United States:					
Concentrate:					
Mine production	6.008	6.896	6,643	6,072	7,948
Mine shipments	6,022	6.901	6,646	6.036	7,815
Value	\$55,073	\$56,691	\$55,785	\$50,575	\$62,231
	17,100	18,806	21.589	20,432	21,692
Consumption	17,100		5,183	3,755	2.111
Shipments from Government stocks		5,399			175
Exports	1,283	1,853	1,929	2,029	
Imports for consumption	6,919	9,138	11,352	11,372	11,752
Stocks, Dec. 31:					
Producer	124	87	84	106	239
Consumer	826	1.424	1.538	1.325	1,480
	0_0	-,	_,	_,	
Ammonium paratungstate:	14.940	16,062	17,758	16.897	19.522
Production		17,572	18,720	18,585	20,200
Consumption			879	966	1.54
Stocks, Dec. 31: Producer and consumer	1,975	1,037	819	900	1,54
Primary products:					
Production	19,005	19,028	21,178	20,138	21,959
Consumption	16.905	18,296	20,433	20,200	21,192
Steeles Dec 21.					
Droducer	3,139	3,349	3,385	3,524	3,24
Producer Consumer	2,581	2,376	2,543	2,370	2,06
	2,001	2,010	2,010	2,010	2,000
World: Concentrate:	T00 F41	T100 740	T107 007	D114050	e108.35
Production	F90,541	F102,742	r _{107,287}	P114,059	
Consumption	^r 87,852	F100,442	^r 103,566	p _{108,923}	e _{107,29} 2

^eEstimated. ^pPreliminary. ^rRevised.

centrate from the stockpile totaled 2,110,548 pounds of contained tungsten in concentrate.

Stockpile goals in effect during 1981 re-

mained as established in May 1980 by the Federal Emergency Management Agency and are shown in table 2.

Table 2.—U.S. Government tungsten stockpile material inventories and goals

(Thousand pounds of contained tungsten)

		Name of the Control	- 1.5		Inventory by	y program,	Dec. 31, 1981
Mater	Material	Material	Goals	National stockpile	DPA ¹ inventory	Total	
Tungsten concentrate: Stockpile grade Nonstockpile grade				55,450 	56,624 30,121	158 195	56,782 30,316
Total				55,450	86,745	353	87,098
Ferrotungsten: Stockpile grade Nonstockpile grade					841 1,185		841 1,185
Total ²				· -+.	2,025		2,025
Tungsten metal powder: Stockpile grade Nonstockpile grade				1,600	1,567 332	: (e : 1 ; : : : : = = :	1,567 332
Total				1,600	1,899		1,899
Tungsten carbide powder: Stockpile grade Nonstockpile grade			: 	2,000	1,921 112	1	1,921 112
Total				2,000	2,033	·	2,033
		 					

¹Defense Production Act (DPA) of 1950.

DOMESTIC PRODUCTION

Mine production rose 31% compared with that of 1980 and totaled 7.9 million pounds of contained tungsten in 1981, the largest amount since 1972. Mine shipments increased 29% to 7.8 million pounds. Although 29 mines in Alaska and 8 Western States reported production, 4 mines provided more than 95% of the 1981 domestic tungsten production. Only three mines operated continuously: the Pine Creek Mine and mill of the Metals Div., Union Carbide Corp. (UCC), located near Bishop, Calif., in Inyo County; the Climax Mine and mill of Climax Molybdenum Co., a division of AMAX Inc., at Climax, Colo., in Lake County; and the Emerson Mine and mill of the Metals Div., UCC, at Tempiute, Nev., in Lincoln County. The principal metal mined and concentrated at Pine Creek continued to be tungsten with minor amounts of byproduct copper, gold, molybdenum, and silver. UCC processed ore to produce APT, an intermediate form of tungsten suitable for ready conversion to tungsten metal powder.

The principal metal mined and concentrated at Climax was molybdenum. Concentrates of tungsten, tin, and pyrite were recovered as byproducts.

Scheelite ore was processed at Tempiute to a low-grade tungsten concentrate and shipped to the UCC Pine Creek facility, where it was converted to APT.

The Strawberry Mine and mill of Teledyne Tungsten, a subsidiary of Teledyne, Inc., near North Fork, Calif., in Madera County, produced tungsten concentrate except during the winter when it was closed owing to weather conditions.

Intermittent tungsten concentrate production and shipments were reported from Southeastern Region, Alaska; Pima and Pinal Counties, Ariz.; Los Angeles, Mono, San Bernadino, San Diego, and Tulare Counties, Calif.; Valley County, Idaho; Broadwater County, Mont.; Churchill, Elko, Mineral, and White Pine Counties, Nev.; Tooele County, Utah; and Stevens County, Wash.

²Data may not add to totals shown because of independent rounding.

Utah International Inc., a subsidiary of General Electric Co., completed construction of the Springer Mine, mill, and APT plant in the vicinity of the abandoned Sutton Mine near Imlay in Pershing County, Nev. The facility is expected to begin production of APT in early 1982 at its rated capacity of 1.6 million pounds of tungsten

per year.

AMAX began APT production in mid-1981 at its Fort Madison, Iowa, plant, which has a capacity of 2.4 million pounds per year of tungsten contained in APT.

The major domestic companies engaged in tungsten operations during 1981 are listed in table 4.

Table 3.—Tungsten concentrate shipped from mines in the United States

		Quantity		Reported value, f.o.b. mine ¹		
Year	Short tons, 60% WO ₃ basis ²	Short ton units of WO ₃ ³	Tungsten content (thousand pounds)	Total (thou- sands)	Average per unit of WO ₃	Average per pound of tungsten
1977	6,331 7,252 6,984 6,343 8,213	379,729 435,117 419,040 380,561 492,764	6,022 6,901 6,646 6,036 7,815	\$55,073 56,691 55,785 50,575 62,231	\$145.03 130.29 133.13 132.90 126.29	\$9.15 8.22 8.40 8.38 7.96

¹Values apply to finished concentrate and are in some instances f.o.b. custom mill.

Table 4.—Major producers of tungsten concentrate and principal tungsten processors in 1981

Company	Location of mine, mill, or processing plant
Producers of tungsten concentrate: Climax Molybdenum Co., a division of AMAX Inc Teledyne Tungsten. Union Carbide Corp., Metals Div.¹ Processors of tungsten: AMAX Inc., AMAX Tungsten Div. Adamas Carbide Corp Fansteel Inc General Electric Co GTE Products Corp Kennametal Inc Li Tungsten Corp. Teledyne Firth Stirling Teledyne Wah Chang Huntsville Union Carbide Corp, Metals Div Westinghouse Electric Corp.	Bishop, Calif., and Tempiute, Nev. Fort Madison, Iowa. Kenilworth, N.J. North Chicago, Ill. Euclid, Ohio, and Detroit, Mich. Towanda, Pa. Latrobe, Pa., and Fallon, Nev. Glen Cove, N.Y. McKeesport, Pa. Huntsville, Ala. Niagara Falls, N.Y.

¹At its Pine Creek Mine and mill in California, UCC processes ore "straight through" to APT.

CONSUMPTION AND USES

Domestic consumption of tungsten in primary products rose 6% in 1981 to a record level. The major end use, 65% of the total, continued to be in cutting and wear-resistant materials, primarily as tungsten carbide. Other end uses were mill products, 18%; specialty steels, 5%; chemicals, 4%;

superalloys, 2%; and hard-facing rods and materials, 2%.

Consumption of major intermediate tungsten products used to make end-use items was distributed as follows: tungsten carbide, 58%; tungsten metal powder, 28%; and ferrotungsten, 2%.

 $^{^2}A$ short ton of 60% tungsten trioxide (WO₃) contains 951.6 pounds of tungsten. 3A short ton unit equals 20 pounds of tungsten trioxide (WO₃) and contains 15.86 pounds of tungsten.

Table 5.—Production, disposition, and stocks of tungsten products in the United States (Thousand pounds of contained tungsten)

	and		n carbide vder			
	carbon- reduced metal powder	Made from metal powder	Crushed and crystal- line	Chemicals	Other ¹	Total
1980						7.73.7
Gross production during year Used to make other products listed here Net production Disposition: To other processors To end-use consumers To make products not listed in this table	18,116 11,937 6,179 338 8,968	11,693 237 11,456 2,931 7,238	2,042 370 1,672 443 438	6,480 5,887 593 117 505	238 238 102 150	38,569 18,431 20,138 3,931 17,299
Producer stocks, Dec. 31	1,440 1,947	1,858 719	1,394 644	10 155	58	4,702 23,524
Gross production during yearUsed to make other products listed here Net production Disposition:	19,754 11,485 8,269	11,146 282 10,864	2,532 526 2,006	7,606 7,075 531	383 94 289	41,421 19,462 21,959
To other processors To end-use consumers To make products not listed in this table Producer stocks, Dec. 31	569 10,043 1,854 1,721	2,916 6,553 2,058 684	602 521 1,592 626	42 548 13 121	41 201 -93	4,170 17,866 5,517 3,245

¹Includes ferrotungsten, scheelite (produced from scrap), nickel-tungsten, and self-reducing oxide pellets. ²Data do not add to total shown because of independent rounding.

Table 6.—Consumption and stocks of tungsten products in the United States, by end use in 1981

(Thousand pounds of contained tungsten)

End use	Ferro- tungsten	Tung- sten metal powder ¹	Tung- sten carbide powder	Scheelite (natural, synthetic)	Tung- sten scrap ²	Other tungsten materi- als ³	Total
Steel: Stainless and heat-resisting Alloy Tool Cast irons Superalloys Alloys (excludes steels and superalloys): Cutting and wear-resistant	50 65 260 W W	 53	 w	40 W 623 W	8 W W 312	$\frac{3}{1}$ 64 74	101 66 947 W 439
materials	11 32	1,745 241 3,854 2	11,979 217 W 158	 104	W 25 410	8 3 1 849	13,732 497 3,855 849 706
Total Consumer stocks, Dec. 31, 1981	418 96	5,895 79	12,354 1,353	767 183	755 153	1,003 199	21,192 2,063

W Withheld to avoid disclosing company proprietary data; included in "Miscellaneous and unspecified."

¹Includes both carbon-reduced and hydrogen-reduced tungsten metal powder.

²Does not include that used in making primary tungsten products.

³Includes melting base, self-reducing tungsten, tungsten chemicals, and others.

⁴Includes welding and hard-facing rods and materials and nonferrous alloys.

PRICES

In 1981, the average value of tungsten concentrate shipped from domestic mines and mills, as reported to the Bureau of Mines, decreased 5% to \$126.29 per short ton unit of WO3, when compared with the 1980 value. Excess tungsten concentrate for domestic use was purchased from GSA during the year at prices ranging from \$120.26 to \$139.26 per short ton unit. The price of tungsten concentrate purchased for export was \$129.74 per short ton unit.

The European prices of tungsten concentrate, as reported in Metal Bulletin of London, the U.S. spot quotations, and the International Tungsten Indicator, showed similar trends and monthly and annual averages during 1981. The price of concentrates has been unusually stable since 1978 and remained within a narrow price range in 1981, except for a drop of 10% during the last quarter.

The reported price of APT delivered to large-volume contract customers was \$168 per short ton unit at the beginning of 1981. It rose to \$174.50 on April 1, fell to \$165 on October 1, and fell further to \$159.25 on December 1, remaining at that level for the remainder of 1981.

The price of hydrogen-reduced tungsten metal powder, 99.9% pure, f.o.b. shipping point, as quoted in Metals Week, remained stable throughout 1981 in the price range of \$13.90 to \$15.50 per pound. Within this range, the price was primarily dependent upon the particle size of the tungsten powder.

Table 7.—Monthly price quotations of tungsten concentrate in 1981

		etal Bulleti uropean m					s Week, U.	International Tungsten Indicator,		
Month	metr	rs per ic ton f WO ₃	dolĺa	ivalent pr rs per sho init of WO	rt ton	quotations, dollars per short ton unit of WO ₃ 65% basis, c.i.f. U.S. ports ²		weighted average price, ³ 60% to 79% WO ₃		
	Low	High	Low	High	Aver- age	Low	High	Aver- age	Dollars per metric ton unit	Dollars per short ton unit
January	143.50	150.00	130.18	136.08	132.85	127.30	133.50	130.56	144.34	130.94
February	148.00	154.50	134.26	140.16	136.87	135.50	137.00	136.25	144.71	131.28
March	147.50	154.50	133.81	140.16	137.74	135.50	139.00	136.75	147.64	133.94
April	144.00	150.00	130.63	136.08	132.90	130.00	135.50	132.75	147.31	133.64
May	142.00	146.00	128.82	132.45	130.28	129.00	131.00	130.20	144.24	130.85
June	144.00	150.00	130.63	136.08	133.41	131.00	133.00	132.00	144.63	131.21
July	146.00	152.00	132.45	137.89	135.88	132.00	135.00	133.80	144.46	131.05
August	144.00	150.00	130.63	136.08	132.90	128.00	135.00	132.88	145.92	132.38
September	138.00	148.00	125.19	134.26	130.58	126.00	131.00	128.50	144.17	130.78
October	132.00	143.00	119.75	129.73	124.23	118.00	129.00	122.70	142.31	129.10
November	129.00	137.00	117.03	124.28	120.09	115.00	123.00	119.13	137.81	125.02
December	120.00	132.00	108.86	119.75	114.08	110.00	121.00	115.25	132.01	119.76

Low and high prices are reported semiweekly. Monthly equivalent averages are arithmetic averages of semiweekly LOW and mgn prices are reported semiweekly. Monthly equivalent averages are arithmetic averages of semiweekly equivalent low and high prices. The equivalent average price per short ton unit of WO₃, which is an average of all semiweekly low and high prices, excluding duty, was \$130.25 for 1981.

*Low and high prices are reported weekly. Monthly averages are arithmetic averages of weekly low and high prices. The average price per short ton unit of WO₃, which is an average of all weekly low and high prices, excluding duty, was \$129.16 for 1981.

Weighted average price per short ton unit of WO₃, excluding duty, was \$130.16 for 1981.

FOREIGN TRADE

Exports of tungsten in concentrate and primary products decreased 13% from 6 million pounds in 1980 to 5.2 million pounds in 1981. Imports increased 7% from 13.7 million pounds in 1980 to 14.6 million

pounds in 1981.

Tariff rates for tungsten materials in effect January 1, 1982, as published in the Tariff Schedules of the United States, Annotated (1982), are shown in table 17.

Table 8.—U.S. exports of tungsten ore and concentrate, by country

(Thousand pounds and thousand dollars)

			1980)	198	1
	Country		Tungsten content	Value	Tungsten content	Value
Brazil Canada		 _==	55	551	7.7	
Germany, Federal Repu Guatemala	blic of	<u></u>	$\substack{1,\overline{263}\\2}$	$10,\overline{064} \\ 13$	10 93	60 482
Japan Netherlands Sweden		12	89 91	542 620		
United Kingdom		=======================================	466 63	3,147 517	72 	608
Total		 	2,029	15,454	175	1,150

Table 9.—U.S. exports of ammonium paratungstate, by country

(Thousand pounds and thousand dollars)

	1980			1981			
	Gross weight	Tungsten content ¹	Value	Gross weight	Tungsten content ¹	Value	
Australia France Germany, Federal Republic of	1 3	(2) 2	1 8	1 3	(2) 2	27	
JapanUnited Kingdom	$\frac{\overline{(2)}}{4}$	(²)	$\frac{-1}{32}$	1 ====================================	(2)	5	
Total ³	8	6	42	4	3	14	

 $^{^1\}mathrm{Tungsten}$ content estimated by multiplying gross weight by 0.7066. $^2\mathrm{Less}$ than 1/2 unit.

Table 10.—U.S. exports of tungsten carbide powders, by country

(Thousand pounds and thousand dollars)

			198	30	198	31
	Country		Tungsten content	Value	Tungsten content	Value
Argentina		 	36	402	11	182
Austrana		 	6	36	- 8	132
Austria		 	27	295	39	255
Belgium-Luxembourg		 	21	355	12	349
3.0011		 	31	917	35	836
Canada		 	260	4,030	311	5,033
Chile		 	4	21		0,000
Denmark		 	100	1,123		
Finland France		 	32	315		
rance		 	144	1,577	11	78
Germany, Federal Republic o	t	 	217	3,333	216	3,056
liula		 	2	49	3	74
		 	8	137	4	94
		 	98	999	128	908
taly apan			74	1,784	13	332
		 	88	1,107	66	992
Corea, Republic of Mexico			8	186	1	39
Netherlands		 	109	2,404	155	2,613
) _~		 	31	734	92	1,036
		 	1	1	6	74
		 	3	79	(¹)	10
outh Africa, Republic of		 	1	27	3	45
			2	60		
			55	828	(¹)	4
witzerland		 	13	280	30	404

³Data may not add to totals shown because of independent rounding.

Table 10.—U.S. exports of tungsten carbide powders, by country —Continued

(Thousand pounds and thousand dollars)

	198	30	1981		
Country	Tungsten content	Value	Tungsten content	Value	
Thailand	(¹)	14	1	24	
United Kingdom	60	1,452	65	1,538	
Venezuela	(¹)	7	1	23	
Other	r ₁₀	^r 165	1	26	
Total ²	1,440	22,716	1,213	18,158	

^rRevised.

Table 11.-U.S. exports of tungsten and tungsten alloy powder, by country

(Thousand pounds and thousand dollars)

		1980			1981	
Country	Gross weight	Tungsten content ¹	Value	Gross weight	Tungsten content ¹	Value
Australia	(²)	(²)	8	68	54	815
Austria	38	30	478			
Belgium-Luxembourg				· (2)	(2)	1
Brazil	3	3	50	13	10	178
Bulgaria	21	16	297			A
Canada	67	54	1,035	67	53	. 875
Finland	31	25	406	18	14	205
France	6	- 5	71	7	5	80
Germany, Federal Republic of	170	136	3,767	135	108	2,491
Israel	1,051	841	.11,647	1,900	1,520	21,571
Italy	1	1 1 1	22	1 1	- 1	_30
Japan	. 3	3	41	62	50	721
Mexico	11	9	151	24	19	299
Netherlands	1-	1	10	366	293	4,677
Sweden	3	2	18			
Switzerland	4	3	66	. 1	1	16
Turkey	- =		100	ē	4	119
United Kingdom	,	. 5	106	9	. 4	113
Other	9	7	135	1	1	10
Total ³	1,425	1,140	18,308	2,672	2,138	32,207

¹Tungsten content estimated by multiplying gross weight by 0.80. ²Less than 1/2 unit.

Table 12.—U.S. exports of miscellaneous tungsten-bearing materials

(Thousand pounds and thousand dollars)

	1980		1981	
Product and country	Gross weight	Value	Gross weight	Value
Fungsten and tungsten alloy wire:				
Brazil	21	1,067	22	1,705
Canada	50	2,788	37	2,019
Japan	14	1,100	16	1,289
Mexico	23	1,597	14	1,289 1,697
United Kingdom	15	r _{1,155}	4	528
	31	1.078	21	807

Less than 1/2 unit.

²Data may not add to totals shown because of independent rounding.

³Data may not add to totals shown because of independent rounding.

Table 12.—U.S. exports of miscellaneous tungsten-bearing materials —Continued (Thousand pounds and thousand dollars)

	19	80	1981	
Product and country	Gross weight	Value	Gross weight	Value
Tungsten and tungsten alloy wire —Continued				
Other	_ r 57	r _{6,088}	52	5,244
Total ¹	_ 211	14,872	166	13,288
Unwrought tungsten and alloy in crude form, waste, and scrap: Canada	- 223 - 325 - 141 - 79 - 52 100	1,805 2,656 1,560 953 608 557 1,765	179 224 2 7 156 58 107	1,553 1,322 15 95 1,216 151 321 625
Total	1,070	9,904	827	5,298
Other tungsten metal: Austria	- 57 - 300 - 96	80 2,302 6,773 2,701 ^r 3,037	29 42 255 63 77	88 1,634 5,342 2,025 3,314
Total	_ 552	14,893	1467	12.403

Revised.

Table 13.—U.S. imports for consumption of tungsten ore and concentrate, by country

(Thousand pounds and thousand dollars)

	198	30	198	31
Country	Tungsten content	Value	Tungsten content	Value
Australia	235	1,762	304	2.364
Bolivia	2,794	21,730	2.511	19.724
Brazil	63	503	444	3,546
Burma			272	2,080
Canada	2,914	22,943	2,005	15,222
China	2,025	16,130	2,532	20,674
France	154	995	228	1.796
Germany, Federal Republic of			i	18
Guatemala	25	45	$ar{2}$	- 5
nong Kong	21	171	_	
Norea, Republic of	. 19	147	156	1,257
walaysia	67	550	62	483
wiexico	515	2,548	616	3,655
Netherlands	19	149		0,000
Peru	526	4.047	652	4,787
Portugal	576	4,322	1.028	8,159
twaliua	46	356	19	154
Salvador			11	34
Singapore Spain	23	194		•
opani	94	754	49	396
Taiwan	36	242		5.00
Chailand	1,046	8,223	$7\overline{0}\overline{6}$	5.543
Turkey	60	452	52	393
United Kingdom	27	192	14	103
Zaire	87	674	89	802
Total	11,372	87,129	¹11,752	91,195

¹Data do not add to total shown because of independent rounding.

¹Data may not add to totals shown because of independent rounding.

TUNGSTEN

Table 14.—U.S. imports for consumption of ammonium paratungstate, by country

(Thousand pounds and thousand dollars)

	198	30	1981	
Country	Tungsten content	Value	Tungsten content	Value
			16	141
Australia	23	$2\overline{13}$	743	6,585
China	95	851		
FranceGermany, Federal Republic of	153	1,584	49	444
	100	-,	23	228
JapanKorea, Republic of	133	1.312	215	1,960
Netherlands	19	181		
Taiwan	(¹)	1		
United Kingdom	23	236		
United Kingdom				
Total	446	4,378	1,046	9,358

¹Less than 1/2 unit.

Table 15.—U.S. imports for consumption of ferrotungsten, by country

(Thousand pounds and thousand dollars)

	198	30	1981		
Country	Tungsten content	Value	Tungsten content	Value	
Argentina Austria Brazil Canada France Germany, Federal Republic of Sweden	17 68 24 8 10 17 125 177	160 583 224 72 101 168 1,138 1,593	92 16 17 26 155 19	814 144 167 259 1,462 174	
Total	446	4,039	325	3,020	

Table 16.—U.S. imports for consumption of miscellaneous tungsten-bearing materials

(Thousand pounds and thousand dollars)

	198	30	198	31
Product and country	Tungsten content	Value	Tungsten content	Value
Other metal-bearing materials in chief value of tungsten: Chile United Kingdom Other	102 9 r ₁	1,405 76 ^r 12	19 (1)	129 3
Total	112	1,493	19	132
Waste and scrap containing not over 50% tungsten: South Africa, Republic of United Kingdom	22 4	66 26	364 1 6	217 18 46
Total	26	92	371	281
Waste and scrap containing over 50% tungsten: Belgium Canada France Germany, Federal Republic of Israel Japan Korea, Republic of Netherlands Poland	31 72 20 10 73 38 4	198 648 153 101 579 342 46	36 83 72 251 445 109 28 70 28	320 691 569 2,049 3,220 1,002 201 598 257

 ${\bf Table~16.-U.S.~imports~for~consumption~of~miscellaneous~tungsten-bearing~materials~-Continued}$

(Thousand pounds and thousand dollars)

Product and country	198	U			
Product and country	Tungsten content	Value	Tungsten content	Value	
Waste and scrap containing over 50% tungsten —Continued					
Singapore	47	571	78	1.078	
Sweden	4	10	22	19	
United Kingdom	_42	327	241	1,812	
Other	^r 35	r ₂₀	23	169	
Total ²	375	2,995	1,488	12,162	
Unwrought tungsten, except alloys, in lumps, grains, and powders:					
France	13	189			
Germany, Federal Republic of	69	786	91	1,158	
Korea, Republic of	361	3,948	271	3,127	
Other	25	^r 320	9	111	
Total	468	5,243	371	4,391	
Total	(¹)	1	(¹)	1,001	
Unwrought tungsten, other:3					
Canada	1	8			
Japan	8	117			
Singapore	15	244			
Other			- 3	48	
Total	24	369	3	48	
Unwrought tungsten, alloys	17	421	2	92	
Wrought tungsten: ³					
Austria	. 05	T1 000			
Canada	25 105	r _{1,099}	17	584	
Japan	105	1,171 1,190	75	901	
United Kingdom	8	212	15 36	1,393 306	
Other	11	192	43	905	
Total ²	161	3,862	186	4.089	
Calcium tungstate:	101	0,002	100	4,000	
Germany, Federal Republic of	24	640	27	610	
Sodium tungstate:			(¹)	3	
Tungsten carbide:					
Belgium	8	169	15	272	
China	i	103	66	708	
China Germany, Federal Republic of	385	6,459	536	7.587	
Korea, Republic of	72	791	110	1,302	
Mexico	- 37	974	18	356	
Other	^r 12	^r 123	12	149	
Total	515	8,517	757	10,374	
Other tungsten compounds:					
China Germany, Federal Republic of			90	644	
Germany, Federal Republic of	65	648	(¹)	9	
Other	1	19	1	3	
M-4-1	66	667	91	656	
Total					
Mixtures, organic compounds, chief value in tungsten					
Mixtures, organic compounds, chief value in tungsten	19	975	1	1.7	
Mixtures, organic compounds, chief value in tungsten: Canada Germany, Federal Republic of	13	275	1	17	
10tai	13 5 (1)	79	1 4	17 66	
Mixtures, organic compounds, chief value in tungsten: Canada Germany, Federal Republic of	5				

Revised.

1Less than 1/2 unit.

2Data may not add to totals shown because of independent rounding.

Estimated from reported gross weight.

TUNGSTEN

Table 17.—U.S. import duties on all forms of tungsten

Tariff		Rate of duty effecti	ve Jan. 1, 1982
classifi- cation	Article	Most favored nation (MFN)	Non-MFN
601.54	Tungsten ore	17 cents per pound on tungsten content.	50 cents per pound on tungsten content.
603.45	Other metal-bearing materials in chief value of tungsten.	10 cents per pound on tungsten content and 4.8% ad valorem.	60 cents per pound on tungsten content and 40% ad valorem.
606.48 629.25	Ferrotungsten and ferrosilicon tungsten Waste and scrap containing by weight not over 50% tungsten.	8.8% ad valorem 6.6% ad valorem	35% ad valorem. 50% ad valorem.
629.26	Waste and scrap containing by weight over 50% tungsten.	4.2% ad valorem	Do.
629.28	Unwrought tungsten, except alloys, in lumps, grains, and powders.	15 cents per pound on tungsten content and 12.5% ad valorem.	58% ad valorem.
629.29	Unwrought tungsten, ingots, and shot	9.8% ad valorem	50% ad valorem.
629.30	Unwrought tungsten, other	11.5% ad valorem	60% ad valorem.
629.32	Unwrought tungsten, alloys, containing by weight not over 50% tungsten.	6.1% ad valorem	35.5% ad valorem.
629.33	Unwrought tungsten, alloys, containing by weight over 50% tungsten.	11.5% ad valorem	60% ad valorem.
629.35	Wrought tungsten	10.3% ad valorem	Do.
416.40	Tungstic acid	13.3% ad valorem	55% ad valorem.
417.40	Tungstic acidAmmonium tungstate	12.1% ad valorem	49.5% ad valorem.
418.30	Calcium tungstate	10.8% ad valorem	43.5% ad valorem.
420.32	Potassium tungstate	19.4% ad valorem	50.5% ad valorem.
421.56	Sodium tungstate	11.7% ad valorem	46.5% ad valorem.
422.40	Tungsten carbide	5 cents per pound on tungsten content and 12.5% ad valorem.	55.5% ad valorem.
422.42	Other tungsten compounds	11.2% ad valorem	45.5% ad valorem.
423.92	Mixtures of two or more inorganic compounds in chief value of tungsten.	do	Do.

WORLD REVIEW

A meeting was held in Geneva, Switzerland, during December by the Committee on Tungsten (COT) of the United Nations Conference on Trade and Development (UNCTAD) in an effort to resolve an 18-year deadlock between producing and consuming countries concerning the stabilization of the world tungsten market. No agreement was reached by COT, but it recommended that another meeting be convened in 1982 and requested the UNCTAD Secretariat to prepare market and price studies for the session.

Canada.—The mine and mill operated by Canada Tungsten Mining Corp. Ltd. at Tungsten, Northwest Territories, accounted for all Canadian concentrate production, totaling 4.4 million pounds of tungsten, a decrease of 37% from that of 1980. The drop

was the result of a 6-month strike that was settled in May. Recovery was 84.5% from 234,000 tons of ore at a grade of 1.4% WO₃. Ore reserves were reported by the company to contain 85 million pounds of tungsten at yearend.²

Development of the Mount Pleasant tungsten-molybdenum mine, in Charlotte County, New Brunswick, continued, and it is expected to begin producing in late 1982. The joint venture between Billiton Canada Ltd. and Brunswick Tin Mines Ltd. is expected to produce concentrate containing 3.2 million pounds of tungsten and 1.3 million pounds of molybdenite (MoS₂) from a 2,200-ton-per-day mill. Minable ore reserves are placed at 57 million pounds of tungsten in ore grading 0.393% WO₃ and 0.204% MoS₂.

Table 18.—Tungsten: World concentrate production, by continent and country¹ (Thousand pounds of contained tungsten)2

Continent and country	1977	1978	1979	1980 ^p	1981 ^e
North and Central America:					· · · · · · · · · · · · · · · · · · ·
Canada	- 3,995	E 040	F #00		•
Mexico		5,046	5,726	7,010	34,398
United States	- 101	516	556	586	3439
South America:	- 6,008	6,896	6,643	6,072	37,948
Argentina	_ 154	014			
Bolivia	- 104	214	130	77	111
Brazil	- ^r 5,355	r _{5,373}	5,445	5,873	36,031
Peru		2,568	2,595	2,504	2,646
Europe:	- 1,160	1,283	1,243	1,210	31,149
Austria	0.400	0.500			
Czechoslovakia ^e	_ 2,460	2,599	3,298	3,296	3,197
France		175	175	175	175
Portugal	_ 1,440	1,340	1,102	1,270	1,210
Portugal Spain Spain	2,216	2,433	3,036	3,457	3,090
Sweden	- 677	789	868	983	750
U.S.S.R.e	439	r699	703	721	3818
	18,100	18,700	19,200	19.200	19.500
United Kingdom	172	143	146	e150	150
Africa:				100	100
Burundi	- ^e 4	e ₄			
Namibia ^{e 4}	. 330	330	360	330	
Rwanda	r860	^r 750	1.113	990	31 150
Uganda ^e	240	240	120		31,150
Zaire	. 375	326	120 247	110	. 88
Zimbabwe	^r 265	r ₂₈₇		159	300
Asia:	- 200	-281	243	198	200
Burma	613	1 000	1 500		
China ^e	r _{19.800}	1,038	1,526	1,814	1,796
India		r25,400	28,900	33,100	29,800
Japan	1 700	46	44	49	. 84
77	1,702	1,709	1,645	1,473	1,470
Korea, Republic of	4,740	_4,740	4,740	4,850	4,850
Mologgio		r 5,910	5,981	6,034	35.824
MalaysiaThailand	218	159	117	82	148
Turkey	4,859	7,026	4,026	3,560	2,870
Turkey	r ₂₂	^r 15	287	805	816
4 1					. 010
	5,198	^r 5,968	7.039	7,881	7,315
New Zealand	13	20	33	40	33
Total	r90,541	r _{102,742}	107,287	114,059	108,351

^eEstimated. Preliminary. Revised.

Table includes data available through June 29, 1982.

⁴Production of Brandberg West Mine of South Africa Company, Ltd., only.

A feasibility study was made of the MacTung tungsten deposit near MacMillan Pass along the Yukon-Northwest Territories boundary by AMAX through its subsidiary, AMAX of Canada Ltd. The target date for production from a 1,000-ton-per-day mine-mill complex is late 1986. Reserves are placed at 63 million tons of ore at the grade of 0.95% WO₃ or 950 million pounds of tungsten, which is the largest known deposit in the market economy countries.

China.-In Hunan Province in Chen County, the Shizhuyuan Mine is being developed for tungsten production. Initial annual production of concentrate is estimated at 5.3 million pounds of tungsten from a 3,000-ton-per-day mill. Ore reserves are reported to be 190 million tons at 0.30% to 0.35% WO₃ or 1,100 million pounds of tungsten.

Thailand.—Concentrate production continued to decrease annually from the record level of 7 million pounds of tungsten in 1978 to 2.9 million pounds in 1981, a decrease of 59% in 4 years. During 1981, the drop in production from that of 1980 was 19%, which was caused by a combination of guerrilla activity in the Khao Soon area, depletion of the highly productive deposits of the Phrae area, and a poor spot market.

²Conversion factors: WO₃ to W, multiply by 0.7931; 60% WO₃ to W, multiply by 0.4758.

TUNGSTEN

Table 19.—Tungsten: World concentrate consumption, by country¹

(Thousand pounds of contained tungsten)

Country ²	1978	1979	1980 ^p	1981 ^e ³
Reported consumption:				
Australia	88	93	168	150
Austria	5,240	5,725	5,117	4,000
Canada	679	e660	660	600
France	3,611	2,112	1,354	1,600
Japan	4,489	5,712	6,462	5,050
Korea, Republic of	3,042	3,219	3,161	4,100
Mexico	1 688	€ 88	e88	90
Portugal	388	e441	470	600
Sweden	3,494	4,049	4,751	4,500
United Kingdom	4,383	3,446	3,228	2,200
United States	18,806	21,589	20,432	21,692
Apparent consumption:4				
Argentina	r 132	192	42	50
Belgium-Luxembourg		^e 220	^e 220	220
Brazil	r _{1,285}	1,892	2,046	2,000
China ^{e 3}	5,300	5,500	10,000	10,500
Czechoslovakia ^{e 3}	2,900	2,900	2,900	2,900
Czechoslovakia ^{e 3} German Democratic Republic ^e	600	600	600	600
Germany, Federal Republic of	3,585	4.354	3,305	3,300
Hungary ^e		1,320	1,320	1,320
		600	600	600
India ^e		155	200	170
Italy ^e Korea, North ^{e 3}		3,500	3,500	3,500
		e437	500	500
Netherlands	4.000	3.395	1.947	1,200
Poland		550	550	550
South Africa, Republic of	350 320	317	302	300
Spain		30,500	35.000	35,000
U.S.S.R. e 3		50,500	55,000	55,000
Total	r100,442	r _{103,566}	108,923	107,292

Preliminary. rRevised. ^eEstimated.

United Kingdom.—AMAX Exploration of U.K. Inc. and Hemerdon Mining and Smelting (U.K.) Ltd. plan to construct a tungsten-tin mine and mill near Plymouth, Devon County. The expected annual capacity is 4.4 million pounds of tungsten in concentrate and 450 tons of tin. The goal for opening is 1985, but this is dependent on Government approval and favorable economic conditions at that time. Minable ore reserves are placed at 130 million pounds of tungsten.

[&]quot;Estimated. "Preliminary. 'Revised. 'Source, unless otherwise specified, is the Quarterly Bulletin of the UNCTAD Committee on Tungsten: Tungsten Statistics. V. 16, No. 1, January 1982, 54 pp.

"In addition to the countries listed, Bulgaria, Denmark, Finland, Israel, Norway, Romania, Switzerland, and Yugoslavia may consume tungsten concentrate, but consumption levels are not reported, and available general information is inadequate to permit formulation of reliable estimates of consumption levels.

³Estimated by U.S. Bureau of Mines ⁴Production plus imports minus exports. For a few countries where data were available, variations in stocks were used in determining consumption.

¹Physical scientist, Division of Ferrous Metals. ²Canada Tungsten Mining Corp. Ltd. (Toronto, Canada). 1981 Annual Report, 16 pp.

Vanadium

By Peter H. Kuck¹

In 1981, demand for vanadium increased in the United States, Western Europe, and Japan despite weakening conditions in the international steel industry. This increase in demand resulted primarily from a sharp rise in the sale of oil country tubular goods and the growing use of ferrovanadium in the production of high-strength low-alloy pipe and sheet. In the United States, steel mills and foundries maintained their stocks of ferrovanadium and other vanadium additives at minimal levels because of the recession and persistent high interest rates. Imports of ferrovanadium rose 274% to a record 984 short tons of contained vanadium. As a result, domestic ferroalloy producers saw their own vanadium stocks climb and were forced to make a series of production cutbacks in the last quarter of the year.

The Republic of South Africa remained the world's largest producer of vanadium ores and slags. However, large purchases of Chinese vanadium pentoxide and slags by Japanese and European ferroalloy producers in a buyer's market forced South African mining companies to operate well below capacity. In the United States, uranium-vanadium operations on the Colorado Plateau were hurt by the competitive market for pentoxide overseas, and by the continuing drop in the spot price of yellowcake (U₃O₃). Domestic processors increased their reliance on foreign vanadium-bearing iron slags and petroleum ashes. Imports of these

byproduct materials were 36% higher than in 1980 and totaled 2,435 tons of contained vanadium.

Legislation and Government Programs.—The National Defense Stockpile goals of 1,000 tons of vanadium contained in ferrovanadium and 7,700 tons of vanadium contained in vanadium pentoxide remained in effect throughout the year. These goals were established by the General Services Administration (GSA) on May 1, 1980. As of December 31, 1981, U.S. Government inventory consisted of 541 tons of contained vanadium in the form of pentoxide and 2 tons of vanadium metal.

During the second half of 1981, GSA tried unsuccessfully to acquire 900 tons (gross weight) of vanadium pentoxide in exchange for surplus pig tin and tungsten concentrate held in the stockpile. On June 25, the U.S. Department of Commerce issued revised stockpile purchase specifications for pentoxide. The new specifications covered two grades of fused flake suitable for production of ferrovanadium and nonferrous master alloys. A vanadium barter transaction with Continental Resources Inc. of New York City was canceled in December because of the vagaries of the international tin market and related legal complications.

Bureau of Mines research included investigations to improve the recovery of vanadium from low-grade uranium ores and a study of the environmental effects of burning high-vanadium fossil fuels.

Table 1.—Salient vanadium statistics
(Short tons of contained vanadium unless otherwise specified)

	1977	1978	1979	1980	1981
United States:					
Production:					
Ore and concentrate:		• ,			
Recoverable vanadium ¹	6,504	4,272	5,520	4.806	5.126
Valuethousands_	\$74,488	\$56,776	\$73,892	\$64,370	\$71,496
Vanadium oxides recovered from ore ²					
	5,208	5,204	5,758	5,506	6,368
Vanadium oxides recovered from petroleum residue3	912	1,097	1,617	1,520	1,900
Consumption	5,261	6,630	6,719	6.139	6,863
Fernete:	2 5			•	•
Ferrovanadium (gross weight)	658	1,309	880	803	435
Ore and concentrate		(191	101	46	56
Vanadium pentoxide, anhydride (gross weight)	192	1,239	630	724	346
Other compounds (gross weight)	102	291	316	190	61
		(201	910	190	01
Imports (general):		FOF	700	000	1.000
Ferrovanadium (gross weight)	558	535	738	328	1,236
Ores, slags, residues	2,812	2,234	2,442	1,786	2,435
Vanadium pentoxide, anhydride	444	656	907	856	354
World: Production from ores, concentrates, and slags	r32.813	r33.719	r37.311	P38.281	e38,933

^eEstimated. ^pPreliminary. ^rRevised.

³Includes vanadium recovered from ashes and spent catalysts.

DOMESTIC PRODUCTION

Mine production of vanadium increased in 1981 because of growing demand for ferrovanadium by the steel industry. Colorado was the leading producing State, followed by Utah. In both States the vanadium was obtained as a coproduct from the mining of uraniferous sandstones on the Colorado Plateau. The companies mining these carnotite-tyuyamunite montroseiteor uraninite ores were hurt when domestic utilities began selling surplus inventories of uranium concentrate in the aftermath of the Three Mile Island nuclear power mishap. These sales, combined with the nationwide recession, high interest rates, and a downturn in nuclear powerplant construction, caused the price of uranium concentrate (represented by Nuexco's Exchange value) to plummet from \$40.75 per pound U₃O₈ in early 1980 to \$23.50 in mid-1981.

In March 1981, Union Carbide Corp. resumed production of vanadium oxides at its Hot Springs Mine and mill complex in central Arkansas. The Hot Springs mill, which has an annual capacity of approximately 7,500 tons of V_2O_5 equivalent, had been closed during most of the second half of 1980. In the same month, Union Carbide closed its uranium and vanadium processing mill at Uravan, Colo., because of surplus stocks of U_3O_5 and environmental problems. The Uravan mill was reopened on September 18. Underground operations continued at the company's Deremo-Snyder and Sun-

day Group Mines in San Miguel County during the 6-month closure. Ore was also shipped to Uravan from the King Solomon and several smaller mines in Montrose County.

In April, Cotter Corp., a subsidiary of Commonwealth Edison Co., suspended vanadium extraction operations at its Canon City mill southwest of Colorado Springs, Colo. The mill was still being fed vanadium-poor uraninite ore from the company's Schwartzwalder Mine in Jefferson County. Cotter also halted development work at its new C-JD-7 open pit mine in the Paradox Valley west of Naturita, Colo. The new mine had been designed to produce 500 tons of ore per day, averaging 1.25% V₂O₅ and 0.25% U₃O₈.

At yearend, Atlas Corp. cut back operations at its uranium-vanadium mines and mill in southeastern Utah because of the depressed uranium market. The Snow and Probe Mines, 12 miles southwest of Green River in Emery County, and the Calliham Mine, 20 miles east of Monticello in San Juan County, were all placed on standby. The Pandora Mine, near LaSal in San Juan County, was being operated at a reduced rate. The company shut down the uranium alkaline leach circuit at its Moab mill but continued processing carnotite ores for vanadium and uranium through the more economical strong-acid-leach circuit. Shipments of high-grade ore to Moab from

¹Becoverable vanadium contained in uranium and vanadium ores and concentrates received at mills, plus vanadium recovered from ferrophosphorus derived from domestic phosphate rock.

²Produced directly from all domestic ores and ferrophosphorus; includes metavanadates.

Atlas's new Velvet Mine in the Sage Plains area helped offset any declines in the company's earnings brought on by declining uranium prices.

Energy Fuels Nuclear, Inc., brought its new White Mesa mill near Blanding, Utah, into full production. The mill has been using an acid leach and solvent extraction process to recover vanadium and uranium from carnotite ores mined at several locations on the Colorado Plateau. In this process the uranium is extracted first. The vanadium-rich raffinates are then fed through a second solvent extraction circuit. The dissolved vanadium is stripped with soda ash, precipitated as ammonium metavanadate, dried, and converted to fused pentoxide.

Kerr-McGee Chemical Corp. continued to produce vanadium pentoxide from ferrophosphorus at Soda Springs, Idaho. The vanadium-bearing ferrophosphorus was a byproduct of nearby elemental phosphorus

plants.

The pentoxide recovered from imported vanadium-bearing materials and vanadium recovered directly as ferrovanadium from slags and residues, regardless of source, are not included in tables 2 or 3. Feed materials of foreign origin in these two categories include iron slags from Chile, China, and the Republic of South Africa as well as utility ashes, spent catalysts from refineries, and a variety of petroleum residues. U.S. production from petroliferous materials in 1981 totaled 1,900 tons of contained vanadium, 25% more than the 1,520 tons for 1980.

Pentoxide concentrates were produced as a byproduct of the burning of Venezue'an and other Caribbean residual oils at a number of power-generating stations in the Eastern United States. Long Island Lighting Co. recovered high-grade ash containing 681 tons of pentoxide in 1981, compared with 686 tons in 1980. In addition, the New York utility recovered a significant amount of low-grade vanadium ash from furnace wash waste. New waste water treatment systems were installed at both the Northport and Port Jefferson power stations to improve recovery of the low-grade ash.

In May, Engelhard Minerals & Chemicals Corp. split ...to two publicly held companies, Phibro Corp. and Engelhard Corp. Phibro Corp. acquired the vanadium extraction plant at Bartlesville, Okla., while Engelhard Corp. retained the ferrovanadium plant at Strasburg, Va. The Bartlesville plant became fully operational in 1981 and was processing a variety of stockpiled oil residues and ashes of Caribbean origin.

Gulf Chemical & Metallurgical Co. announced plans to increase the capacity of its catalyst processing facility near Freeport, Tex., by approximately 400%. The expansion was to take place in three stages and was scheduled to be completed by January 1983. Gulf Chemical extracts vanadium from spent catalysts supplied by oil refineries and petrochemical plants and converts the metal into fused pentoxide.

On July 1. Union Carbide sold its ferroalloys plant at Marietta, Ohio, to a group led by Elkem AS of Norway. Elkem Metals Co., the U.S. subsidiary of the group, continued to produce Carvan and Nitrovan in the eight vacuum furnaces at Marietta for Union Carbide on a toll basis. Also in July, Cabot Corp. completed construction of a \$13 million aluminum master alloy plant in Henderson County, Ky. One of the products from the new Henderson plant was aluminum waffle ingot containing 3% zirconium and 2% vanadium. After intense and pro-Newmont Mining longed negotiations. Corp. agreed on October 21 to let Consolidated Gold Fields Ltd. of London increase its holdings of Newmont stock from 16.2% to 26%. The Federal Trade Commission was investigating the complicated acquisition but decided not to seek an injunction blocking the immediate transaction. Newmont, an international gold, copper, and coal mining company, owns 83% of Foote Mineral Co., a major U.S. producer of both vanadium chemicals and ferrovanadium. Newmont also has a significant interest in the Highveld Steel and Vanadium Corp. of South Africa.

Producers of primary vanadium chemicals included Foote Mineral Co., Cambridge, Ohio; Stauffer Chemical Co., Weston, Mich.; and Union Carbide Corp., Niagara Falls, N.Y. Vanadium oxytrichloride and vanadium tetrachloride were the two ranking chemicals after pentoxide.

Table 2.—Mine production and recoverable vanadium of domestic origin produced in the United States

(Short tons of contained vanadium)

Year	Mine produc- tion ¹	Recover- able vanadium ²
1977	7,565 4,446 5,841 5,832 5,852	6,504 4,272 5,520 4,806 5,126

¹Measured by receipts of uranium and vanadium ores and concentrates at mills, vanadium content.

Recoverable vanadium contained in uranium and vana-dium ores and concentrates received at mills, plus vana-dium recovered from ferrophosphorus derived from domestic phosphate rock.

Table 3.—Production of vanadium oxides in the United States¹

(Short tons)

	Year	Gross weight	Oxide content ²
1977		9,341	9,297
1978		9,785	9,290
1979		10,338	10,279
1980		10,048	9,829
1981		11,366	11,367

¹Produced directly from all domestic ores and ferrophos phorus; includes metavanadat

²Expressed as equivalent V₂O₅.

CONSUMPTION, USES, STOCKS

Reported domestic consumption of vanadium increased 12% in 1981. Approximately 86% of the vanadium was consumed by the iron and steel industry as ferrovanadium or related vanadium-carbon ferroalloys. Strong demand for petroleum industry tubular goods produced a significant increase in consumption of ferrovanadium for Ni-Cr-Mo-V, Cr-Mo-V, and other full alloy steels. Consumption of ferrovanadium by producers of high-strength low-alloy steels increased 7% despite weak demand for steel overall by the automotive, machinery, and construction industries. Demand for vanadium in titanium alloys by the aerospace industry

also increased significantly despite cutbacks in commercial aircraft production. Consumption of ammonium metavanadate. granular pentoxide, and other vanadium chemicals for catalysts declined 5% because of cutbacks in the production of sulfuric acid and the continuing weak demand for adipic acid.

In addition to the consumers' stocks shown in table 5, producers' stocks of vanadium as fused oxide, precipitated oxide, metavanadates, metal, alloys, and chemicals totaled 4,030 tons of contained vanadium at yearend 1981, compared with 3,390 tons (revised) at yearend 1980.

Table 4.—Producers of vanadium alloys or metal in the United States in 1981

Producer	Plant location	Product ¹		
Cabot Corp., Engineered Products Group Do Do Engelhard Corp., Minerals & Chemicals Div Foote Mineral Co., Ferroalloys Div Metallurg, Inc., Shieldalloy Corp Pesses Co., The Reading Alloys, Inc Feledyne, Inc., Teledyne Wah Chang, Albany Div Union Carbide Corp., Metals Div Do	Boyertown, Pa Henderson, Ky Wenatchee, Wash Strasburg, Va Cambridge, Ohio Newfield, NJ Pulaski, Pa Robesonia, Pa Albany, Oreg Marietta, Ohio ³ Niagara Falls, NY	VAl and ZrVAl. FeV. FeV and Ferovan. ² FeV. FeV and VAl. Do. V. Carvan ² and Nitrovan. ² FeV and VAl.		

 ¹FeV, ferrovanadium; V, vanadium metal; VAl, vanadium aluminum; ZrVAl, zirconium vanadium aluminum.
 ²Registered trade marks for proprietary products.
 ³Plant sold to a group led by Elkem AS of Norway on July 1, 1981.

Table 5.—Consumption and consumer stocks of vanadium materials in the United States
(Short tons of contained vanadium)

	198	30	1981		
Type of material	Consump-	Ending	Consump-	Ending	
	tion	stocks	tion	stocks	
Ferrovanadium¹ Oxide Ammonium metavanadate	5,338	770	5,941	548	
	41	20	40	10	
	22	16	21	7	
	738	73	861	118	
Total	6,139	879	6,863	683	

¹Includes other vanadium-iron-carbon alloys.

Table 6.—Consumption of vanadium in the United States, by end use

(Short tons of contained vanadium)

	End use			1981
teel:				
Carbon		 		1,27
Stainless and heat resisting		 . <u>-</u>		
Full alloy		 		1,8
High-strength low-alloy				2,1
Tool		 		5
Unspecified		 . 	·	-
Total steel				5,8
Iotal steel		 		0,0
peralloys lloys (excluding steels and superalloys):		 		
Cutting and wear-resistant materials				
Welding and alloy hard-facing rods and m	aterials	 		
Nonferrous alloys	accida	 		8
Other alloys ¹				-
nemical and ceramic uses:				
Catalysts		 		
Other ²		 		
liscellaneous and unspecified				:
			-	
Total consumption				6.8

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and unspecified."

²Includes pigments.

PRICES

The Metals Week price quotation for domestic 98% fused vanadium pentoxide (metallurgical grade) at the beginning of 1981 was \$3.05 to \$4.04 per pound V₂O₅, f.o.b. mill. On May 15, this price spread narrowed to \$3.35 to \$3.65 per pound V₂O₅, and remained in effect for the remainder of the year. At the same time, the spread for technical air-dried vanadium pentoxide (chemical grade) narrowed from \$3.35-\$4.57 to \$4.10-\$4.57.

On January 2, 1981, domestic producers and processors increased prices for selected vanadium alloys. Carvan (82% to 86% V) and Ferovan (40% V minimum) went from \$7.05 to \$7.75 per pound of contained vanadium. The U.S. price quotation for the 80% V grade of ferrovanadium made by Engelhard, Shieldalloy Corp., and Union Carbide went from \$7.75 per pound of contained vanadium to \$8.50 per pound. In April, Reading Alloys, Inc., and Union Carbide increased prices on their vanadium-aluminum alloys. The new price of the 65% vanadium-35% aluminum alloy was \$12.75 per pound of contained vanadium, up from \$11.30. The price for the 50-50 alloy rose from \$12.20 to \$14.50 per pound of contained vanadium.

²Consists principally of vanadium-aluminum alloy, plus relatively small quantities of other vanadium alloys and vanadium metal.

¹Includes magnetic alloys.

FOREIGN TRADE

A strong dollar combined with a recession in the European coal and steel community caused U.S. exports of both ferrovanadium and pentoxide to plummet in 1981. Exports of ferrovanadium totaled 435 tons (gross weight), 46% less than the 803 tons for 1980. The average declared value for the ferrovanadium was \$5.06 per pound of alloy, compared with \$4.36 for 1980. Exports of vanadium pentoxide (anhydride) totaled 346 tons (gross weight), a 52% decrease from the 724 tons of 1980.

At the same time, the strong dollar and depressed steel industry in Europe produced a sharp increase in imports of ferrovanadium. Canada lost a significant part of its market share to the European market economy countries but still accounted for 44% of the imported alloy in terms of contained weight. Imports of vanadium pentoxide (anhydride) decreased dramatically. The Republic of South Africa remained the principal source of imported pentoxide, but China replaced Finland as the second leading source.

Imports of vanadium contained in slags,

residues, and ashes totaled 2,435 tons, a 36% increase from 1980 imports. The bulk of this material was slag produced in the Republic of South Africa from Bushveld titaniferous magnetite ores. Shipments of vanadium-bearing slag from Chile resumed after a 25-month hiatus during which Compañia de Acero del Pacífico S.A. switched from open-hearth to basic oxygen furnaces at its Huachipato steelworks. No slags were received from either China or the U.S.S.R. Italy, Venezuela, and the Netherlands Antilles provided domestic processors with vanadium-bearing petroleum residues.

Ammonium vanadate imports amounted to 14 tons (gross weight), of which 13 tons came from the United Kingdom and 1 ton from Japan. In addition, 45 tons of potassium vanadate were received from the United Kingdom. Imports classified as "Other vanadium compounds" totaled 88 tons (gross weight), of which 87 tons came from the United Kingdom. Imports of vanadium carbide and unwrought vanadium metal were relatively minor and totaled less than 1 ton each.

Table 7.—U.S. exports of vanadium in 1981, by country
(Thousand pounds and thousand dollars)

	Ferrovanadium (gross weight)		Vanadium ore and concentrate (vanadium content)		Vanadium compounds (gross weight)				
Country					Pentoxide (anhydride)		Other ¹		
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	
							quantity	·····	
Algeria					1	11			
Argentina	61	347							
Australia	27	90							
Belgium-Luxembourg					-1	$-\tilde{4}$			
Brazil					52	165	- 6	19	
Canada	764	3,861			16	54	39	163	
Chile		0,001			. 10	04	(²)		
Dominican Republic								9	
France							(2)		
					(2)	3	63	234	
Germany, Federal Republic of					103	265	. 8	7	
Indonesia			·		8	50			
Italy							2	1	
Japan		4-	34	157	107	302			
Korea, Republic of	2	12							
Malaysia	1	5					2	8	
Mexico	14	83	77	417	271	888	1	2	
Pakistan					7	35	-		
South Africa, Republic of					109	170		- 8	
Sweden					(2)	2	()	·	
Taiwan					14	49			
United Kingdom					(2)	49			
Venezuela					(-)	1			
Yugoslavia						35	(2)	3	
- ugvalavia					2	13			
Total ³	869	4,397	411	575	692	2,012	121	455	

¹Excludes vanadates.

Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

Table 8.—U.S. imports of ferrovanadium, by country

(Thousand pounds and thousand dollars)

		1980				1981			
Count	Country	Gross weight	Vanadium content	Value	Gross weight	Vanadium content	Value		
General imports:	<u> </u>	37	30	189	169	137	913		
Canada	ourg	559	450	2,999	441 1,114 11	356 873 9	2,299 6,072 55		
Germany, Federa	Republic of	60	44	303	664 38 35	534 30 28	3,555 199 194		
-	<u>-</u>	656	524	3,491	2,472	1,968	13,288		
Imports for consump		35	32	174	169	137	918		
Belgium-Luxemb	ourg	559	450	2,999	441 1,114 11	356 873 9	2,299 6,072 58		
Germany, Federa Sweden	Republic of	60	44	303	664 38 35	534 30 28	3,555 199 194		
		654	525	3,477	2,472	1,968	13,288		

¹Data may not add to totals shown because of independent rounding.

Table 9.—U.S. imports of vanadium pentoxide (anhydride), by country

		1980				
Country	Gross weight (pounds)	Vanadium content (pounds)	Value	Gross weight (pounds)	Vanadium content (pounds)	Value
General imports: China Finland Germany, Federal Republic of Japan South Africa, Republic of United Kingdom	44,092 1,945,020 1,066,103 4	24,699 1,089,534 597,195 2	\$127,716 5,489,711 2,744,149 2,155	298,173 119,049 3,594 551 842,658	167,026 66,687 2,013 309 472,028	\$804,317 352,183 16,707 2,744 2,345,447 5,839
Total	3,055,219	1,711,430	8,363,731	1,264,044	708,074	3,527,237
Imports for consumption: China Finland Germany, Federal Republic of Japan South Africa, Republic of United Kinsdom	44,092 1,945,020 1,066,097 4	24,699 1,089,534 597,191 2	127,716 5,489,711 2,744,149 2,155	227,625 119,049 3,594 551 842,658 19	127,508 66,687 2,013 809 472,028	621,020 352,183 16,707 2,744 2,345,447 5,839
Total	3,055,213	1,711,426	8,363,731	1,193,496	668,556	3,343,940

WORLD REVIEW

Growing demand for full-alloy and highstrength low-alloy steels caused world consumption of vanadium to increase in 1981 despite little or no increase in raw steel production. World capacity to produce pentoxide also grew and was more than adquate to meet demand. Exports of pentoxide from China and Australia offset attempts by traditional producers to limit supply. The existing imbalance between supply and demand widened during the year, forcing some producers to cancel mine expansion projects and cut back milling operations.

Australia.—Agnew Clough Ltd. began shipping fused pentoxide flake from its new plant at Wundowie in Western Australia. The first shipment went to Nissho-Iwai Co., Ltd., a Japanese trading company supporting the project with a 7-year supply contract. Japan received a total of 121 tons of Australian pentoxide during calendar year 1981. The Wundowie plant has a design capacity of 1,790 tons of fused flake per year. Magnetite-rich lateritic ore, averaging

 $1.2\%~V_2O_5$, from the nearby Coates layered gabbro intrusion is used as feed. The laterite ore is ground, mixed with soda ash, and then calcined in a multistage fluid-bed roaster to form sodium vanadate.³

Western Mining Corp., Ltd., announced that it expected to bring the Yeelirrie project, located 240 miles northwest of Kalgoorlie, into production by the end of 1985. The principal ore mineral is carnotite, which has been precipitated onto the carbonate cemented clays and sands of a Tertiary river channel. A pilot plant has been in operation at Kalgoorlie for more than a year, using a pressurized sodium carbonate leach process to extract vanadium and uranium from the ground calcrete.

Austria.—Treibacher Chemische Werke AG has installed a new Herreshoff multiple-hearth furnace with a capacity of 2,200 tons per year at its ferroalloys plant in Carinthia. The new furnace was being used to roast vanadium-bearing slags from Highveld's smelting operations in the Republic of South Africa. The vanadium, which is converted to soluble sodium vanadate during the roasting process, can then be leached with water and later precipitated as ammonium polyvanadate. An old 1,000-ton-per-year Herreshoff furnace was being kept on standby.⁵

Belgium-Luxembourg.—The Société Anonyme d' Applications de Chemie Industrielle continued to produce 80% V ferrovanadium at its Langerbruggekaai ferroalloys plant near Ghent.6 The plant has a capacity of 1,100 tons per year of ferrovanadium and can make nine pours in 24 hours. Continental Alloys S.A., a subsidiary of Aciéries Réunies de Burbach-Eich-Dudelange S.A. (the Arbed Steel Group), produced ferrovanadium at Dommeldange in Luxembourg. This second ferroalloys plant has a capacity of 1,300 tons per year and has been in operation since 1969. Pentoxide was being produced at Dommeldange from Highveld slag and then converted to the ferroalloy by an aluminothermic process. U.S. imports of ferrovanadium from the Belgium-Luxembourg Economic Union totaled 221 tons (gross weight) in 1981.

Canada.—Masterloy Products Ltd., a subsidiary of International Minerals & Chemical Corp., has been importing vanadium pentoxide from both the Republic of South Africa and the United States to make ferrovanadium. The company has a ferroalloys plant in Gloucester Township near Ottawa that has been producing about 1,000 short tons per year of the 80% V grade by alu-

minothermic reduction.7

Chile.—The iron ores of the El Laco deposit in the Province of Antofagasta contain significant vanadium, according to a report from the University of Santiago.8 Exploration work carried out by the defunct Compañía Minera Santa Fé between 1962 and 1966 showed that the seven ore bodies comprising the deposit contain at least 400 million tons of high-grade magnetite, hematite, and martite ore averaging 64% to 69% Fe. The mineralization is related to Plio-Pleistocene andesitic volcanism. Mining El Laco will present a challenge because of its remote location in the high Andes, at altitudes ranging from 14,000 to 16,000 feet above sea level.

China.—The Central Iron and Steel Research Institute (a unit of the Ministry of Metallurgical Industry) has been investigating ways of improving the recovery of vanadium from iron smelting operations in Sichuan, Hebei, and Anhui Provinces. The Institute has been able to produce $23\%~V_2O_8$ slag by blowing hot metal containing only 0.355% atomic vanadium in an oxygen bottom-blown converter. The vanadium bearing slags exported by the China Metallurgical Import and Export Corp. in 1980 contained only $11\%~to~21\%~V_2O_8$.

India.—Production of ferrovanadium totaled 125 tons in 1981, an increase of 33% from the 94 tons reported for 1980. Electric Control Gear Pte. Ltd. of Ahmedabad was the principal ferrovanadium producer, but Industrial Development Corp. of Orissa, Ltd., was reportedly constructing a 530-ton-per-year facility at Rairangpur in Orissa under a joint agreement with Norway and the U.S.S.R.¹⁰

Japan.—According to the Japan Ferroalloys Association, 4,479 tons of ferrovanadium was produced in 1981, a 15% increase over the 3.887 tons (revised) produced in 1980.11 Imports of ferrovanadium increased from 337 tons in 1980 to 913 tons in 1981.12 Austria, Brazil, China, and the Federal Republic of Germany (FRG) were the principal suppliers of the alloy. Japan also imported 4,346 tons of vanadium pentoxide during the year. The Republic of South Africa was the principal pentoxide supplier and accounted for 72% of the total gross weight. The Republic of South Africa, however, lost a significant part of its market share to China. Imports of Chinese pentoxide totaled 945 tons, a tenfold increase from 1980 imports, making China the second largest supplier of pentoxide to Japan.

Table 10.—Vanadium: World production from ores and concentrates, by country

(Short tons of contained vanadium)

Country	1977	1978	1979	1980 ^p	1981 ^e
Production from ores, concentrates, and slags: ²					
Australia (in vanadium pentoxide product)		100			95
Chile 8	950	760	510	300	140
Chile Comment of the comment of the	NA	2,200	4.000	5,000	5,000
China (in vanadiferous slag product)	2,055	3,092	3,051	3,135	43,432
Finland (in vanadium pentoxide product)			9,091	0,100	0,402
Namibia (in lead vanadate concentrate) ⁵	826	485			
Norway ^e	590	510	630	540	540
South Africa, Republic of: ⁶					
Content of pentoxide and vanadate product	4,059	4.023	4.300	4,500	4.200
Content of pentoxide and variatize product	8,329	8.377	9,300	9,500	9,900
Content of variable rous stag product	0,020	0,011	0,000	2,000	
Subtotale	612,388	12,400	13,600	14,000	14,100
U.S.S.R. e	r9,500	r10,000	r10,000	10,500	10,500
United States (recoverable vanadium)	6,504	4,272	5,520	4,806	45,126
Omited States (recoverable valiautum)	0,004	7,212	0,020	3,000	0,120
	r32,813	^r 33,719	^r 37,311	38,281	38,933
Production from petroleum residues, ashes, and spent catalysts:7			500		
Japan (in vanadium pentoxide product) ^e	. W	600	720	775	800
United States (in vanadium pentoxide and ferrovanadium product)	912	1,097	1,617	1,520	41,900
Total	912	1,697	2,337	2,295	2,700
Grand total	33,725	35,416	39,648	40,576	41,633

Estimated. Preliminary. Revised. NA Not available. W Withheld to avoid disclosing company proprietary data. Table expanded to include output derived from petroleum residues, ashes, and spent catalysts for countries for which such data is available; in addition to countries listed, vanadium is also recovered from petroleum residues in the Federal Republic of Germany, the U.S.S.R., and several other European countries, but available information is insufficient to make reliable estimates. Table includes data available through June 23, 1982.

²Production in this section is credited to the country that was the origin of the vanadiferous raw material.

³Based on U.S. imports of vanadium-bearing slag for the years 1977-79.

⁴Reported figure.

⁷Production in this section is credited to the country where the vanadiferous product is extracted; available information is inadequate to permit crediting this output back to the country of origin of the vanadiferous raw material.

Norway.-In June, the corporate assembly of Elkem decided to terminate vanadiferous pig iron production at its Bremanger Works and close the Raudsand Mine.13 The iron mining and smelting operation had been running a deficit for several years. Underground mining was scheduled to halt at the end of 1981 after 104 years of operation, but sufficient concentrates were on hand to permit smelting to continue until June 1982. The 10-megavolt-ampere (MVA) pig iron furnace will eventually be rebuilt to produce ferrosilicon. In 1980, Raudsand produced 152,664 tons of vanadiferous magnetite concentrates and 3,483 tons of ilmenite concentrates.14

South Africa, Republic of.-Highveld Steel and Vanadium Corp. Ltd. produced 67,816 tons (gross weight) of slag containing about 25% V2Os in the fiscal year ending June 30, 1981.15 Slag production at Highveld's Witbank iron and steel works in the Transvaal has more than quadrupled since 1969, the first year of operation. Slag production in fiscal years 1979 and 1980 totaled 58,388 and 63,215 tons, respectively. In November 1980, funds were approved for a second pig iron and slag plant at Witbank. Mannesmann Demag Metallgewinnung of Duisburg, FRG, will supply a 63-MVA submerged arc electric reduction furnace for the new facility.16 Lurgi Chemie und Huettentechnik GmbH of Frankfurt, FRG, was awarded a contract for three rotary kilns.17 The 275,000-ton-per-year kilns will be used at the new iron plant to prereduce vanadium-bearing titaniferous magnetite ore from the Mapochs Mine, north of Roossenekal. Lurgi built all 10 of the prereduction kilns already in operation at the existing iron plant. Weakening sales of South African pentoxide in Japan, the United States, and some European countries forced Highveld to further reduce fused flake production at its Vantra division. Only one of the eight Vantra roasting units was in operation at the end of the 1981 fiscal year.

^{*}Reported figure.

*Data represent output of South West Africa Co. Ltd. for the years ending June 30 of that stated.

*Data represent output of South Africa officially reported the undistributed total production of vanadium in pentoxide and vanadate products as well as in vanadium-bearing slags. Data on vanadium content of vanadium slag are estimated on the basis of a reported tonnage of vanadium-bearing slag (gross weight) multiplied by an assumed grade of 14% vanadium. Vanadium content of pentoxide and vanadate products represents the difference between the reported total and the calculated estimate for vanadium in slag.

In March, Ucar Minerals Corp. Ltd. shut down its 3,500-ton-per-year pentoxide production plant at Brits, 37 miles northwest of Pretoria, for extended maintenance.18 The Ucar plant at Bon Accord, which previously produced both fused pentoxide and Carvan, has been closed since October 1980.

Sweden.—AB Statsgruvor has applied to the Swedish Government for permission to open a vanadium mine in the Kramsta area, near the village of Jarvsjo, about 175 miles north-northwest of Stockholm. The Kramsta deposit contains an estimated 14 million tons of titaniferous iron ore with an average content of 24% Fe, 3.4% Ti, and 0.15% V, and could yield as much as 2,800 tons of V₂O₅ per year. 19 Statsgruvor, a subsidiary of Luossavaara-Kiirunavaara AB, plans to beneficiate the ore by a process similar to that used at the Mustavaara Mine in Finland.

U.S.S.R.—The U.S.S.R. Ministry of Ferrous Metals has been expanding vanadiferous iron ore production at the Kachkanar open pit complex in the central Ural Mountains, as part of the eleventh 5-year plan (1981-85). Titaniferous magnetite, averaging 0.35% V, was being extracted from segregations in two gabbro-pyroxenite massifs. After concentration, the magnetite was being shipped to either the Nizhniy Tagil or the Chusovoy metallurgical plants for smelting into pig iron. The Nizhniy Tagil converter slag has typically averaged 21% V₂O₅; the Chusovoy slag, 17%.

The Soviet news agency Tass announced the discovery of vanadium- and nickel-rich

bituminous deposits in western Kazakhstan.20 The carbonaceous shales of the Balasauskandyk deposit in Kazakhstan apparently contain significant sulvanite (3 Cu₂S-V₂S₅) and roscoelite (vanadium mica). The Soviet newspaper, Socialist Industry, also reported that a pilot system was being operated at the oil-burning Kostromskoye Municipal Power Station to recover vanadium from stack gases and boiler ashes.21

¹Physical scientist, Division of Ferrous Metals.

Japan Tariff Association. Japan Exports and Imports. V. 12, 1981, pp. 125, 319.

Metal Bulletin Monthly. No. 130, October 1981, pp. 121-

The Northern Miner. V. 67, No. 28, Sept. 17, 1981, p.

⁵Metal Bulletin Monthly. No. 131, November 1981, pp.

^{47-53.}Metal Bulletin Monthly Supplement. No. 136, April

^{1982,} p. 57.

**TDepartment of Energy, Mines and Resources (Canada).

Vanadium—An Imported Mineral Commodity. Miner.

Bull. MR 188, December 1980, pp. 8-11.

*Metal Bulletin. No. 6605, July 14, 1981, p. 35.

*Yuan, Z., and K. Deng. Blowing Vanadium-Bearing Hot Metal in an Oxygen Bottom-Blown Converter. Gangtie (Iron and Steel) (Beijing), v. 15, No. 8, November 1980, pp. 19-22.

¹⁰Metal Bulletin Monthly. No. 130, October 1981, pp.

^{132-133.} ¹¹Japan Metal Journal. V. 12, No. 14, Apr. 5, 1982, p. 6.

¹²Work cited in footnote 2 ¹³Elkem AS. 2nd Tertial Report. 1981, p. 4.

 ¹⁸Elkem AS. 2nd Tertial Report. 1981, p. 4.
 ¹⁴Bergverks-Nytt. No. 1, January 1981, pp. 7-8.
 ¹⁶Highveld Steel and Vanadium Corp. Ltd. Annual Report 1981, pp. 3-11.
 ¹⁶33 Metal Producing. V. 19, No. 5, May 1981, p. 9.
 ¹⁷Mining Journal (London). V. 297, No. 7622, Sept. 18, 1981, p. 207.
 ¹⁸American Metal Market. V. 89, No. 57, Mar. 25, 1981, p. 2

p. 8.

18 Nilsson, D. Vanadium in Sweden. Skillings' Min. Rev., v. 70, No. 23, June 6, 1981, pp. 6-8.

28 Mining Journal (London). V. 297, No. 7632, Nov. 27,

^{1981,} p. 41.

21Babak, E. How a "Golden Vein" Was Found and Lost.

Sotsialisticheskaya Industriya (Socialist Industry) (Moscow), July 3, 1981, p. 2.

Vermiculite

By A. C. Meisinger¹

Domestic production of vermiculite concentrate in 1981 declined 5% in quantity sold and used to 320,000 tons but increased 11% in value to \$26 million compared with those of 1980.

Vermiculite was mined and beneficiated from deposits in Montana, South Carolina, and Virginia, with W. R. Grace & Co. accounting for most of the production.

Exfoliated vermiculite was produced at 48 plants in 31 States and, although output

was slightly lower than that of 1980, value of sales increased 8% to \$59 million.

The average value, f.o.b. plant, increased 17% for concentrate sold and used and 10% for exfoliated vermiculite, compared with those of 1980.

The principal uses of exfoliated vermiculite in 1981 were for concrete aggregate, 22%; premixes, 20%; fertilizer carriers, 14%; block insulation, 13%; and loose-fill insulation, 12%.

Table 1.—Salient vermiculite statistics
(Thousand short tons and thousand dollars unless otherwise specified)

	1977	1978	1979	1980	1981
United States: Sold and used by producers: Concentrate Value Average value Exfoliated Value Average value Exports to Canada Exports to Canada Emports from the Republic of South Africa World: Production ²	359	337	346	337	320
	\$18,600	\$19,700	\$22,000	\$23,500	\$26,200
	\$51.81	\$58.46	\$63.58	\$69,73	\$81.88
	321	270	278	281	274
	\$50,500	\$49,000	\$51,300	\$54,500	\$58,600
	\$157.32	\$181.48	\$184.53	\$193,95	\$213.87
	e45	35	33	38	NA
	e40	*28	*27	*32	NA
	574	*598	595	*588	*576

Estimated. Preliminary. Revised. NA Not available.

DOMESTIC PRODUCTION

U.S. production of vermiculite concentrate in 1981 was 320,000 tons valued at \$26.2 million, a decrease of 5% in quantity sold and used but an increase of 11% in value over that of 1980.

The principal vermiculite mining and beneficiating operations were those of W. R.

Grace & Co. at Libby, Mont., and Enoree, S.C. Vermiculite was also mined and processed in 1981 by Patterson Vermiculite Co. near Enoree, S.C., and by Virginia Vermiculite, Ltd., in Louisa County, Va.

Exfoliated vermiculite sold and used in 1981 was 274,000 tons valued at \$58.6 mil-

¹Based on rounded data. ²Excludes production by centrally planned economy countries.

lion, a slight decrease in quantity but an increase of 8% in value. Production came from 48 plants in 31 states compared with 47 plants in 30 states in 1980. Producers and plant locations are shown in table 3. An unknown quantity of vermiculite imported from the Republic of South Africa during

the year was also exfoliated in domestic plants.

The principal producing States were, in order of decreasing exfoliated vermiculite output, Ohio, California, Texas, Florida, South Carolina, New Jersey, and Illinois.

Table 2.—Exfoliated vermiculite sold and used, by end use

771	19	1980		81
End use	Short	Percent	Short	Percen
	tons	of total	tons	of total
Aggregates: Concrete Plaster Premixes ¹	66,700	24	61,200	2;
	2,900	1	4,000	2
	40,100	14	55,700	20
Total	109,700	39	120,900	44
Insulation: Lose-fill Block Other ²	38,200	14	32,500	12
	37,200	13	36,600	13
	2,700	1	3,800	2
Total	78,100	28	72,900	27
Agricultural: Horticultural Soil conditioning Fertilizer carrier	20,600	7	20,500	8
	24,100	9	17,500	6
	45,000	16	39,600	14
Total	89,700	32	77,600	28
Dther ³	3,100	1	2,400	
Grand total ⁴	281,000	100	274.000	100

Table 3.—Active vermiculite exfoliating plants in the United States in 1981

Company	County	State	
A-Tops Corp Brouk Co Iceveland Gypsum Co., Div. of Cleveland Builders Supply Co International Vermiculite Co Koos, Inc Jica Pellets, Inc J. M. Scott & Sons A H Inc Patterson Vermiculite Co Robinson Insulation Co Discountier Co Helter Shield Products, Div. of Insulation Sales Co Hertrong-Lite Products Corp Ferlite Co Fermiculite-Intermountain, Inc Fermiculite of Hawaii, Inc Fermiculite Products, Inc J. R. Grace & Co., Construction Products Div	Beaver_St. Louis. Cuyahoga Macoupin Kenosha Dekalb. Union Hennepin Laurens Cascade Ward Middlesex Franklin Jefferson Hillsborough Salt Lake Honolulu Harris Irondale Maricopa Pulaski Alameda Orange Denver	Pennsylvania. Missouri. Ohio. Illinois. Wisconsin. Illinois. Ohio. Minnesota. South Carolina Montana. North Dakota. New Jersey. Kansas. Arkansas. Florida. Utah. Hawaii. Texas. Alabama. Arizona. Arkansas. California. Do. Colorado.	

¹Includes acoustic, fireproofing, and texturizing uses.

²Includes high-temperature and packing insulation and sealants.

³Includes various industrial uses not specified.

⁴Data do not add to totals shown because of independent rounding.

Table 3.—Active vermiculite exfoliating plants in the United States in 1981 —Continued

Company	County	State	
W. R. Grace & Co., Construction Products Div.	Continued	Broward Duval Hillsborough Du Page Campbell Orleans Prince Georges Hampshire Wayne Hennepin St. Louis Douglas Mercer Cayuga Guilford Oklahoma Multnomah Lawrence Greenville¹ Davidson Bexar Dallas Milwaukee	Florida. Do. Do. Illinois. Kentucky. Louisiana. Maryland. Massachusetts. Michigan. Minnesota. Missouri. Nebraska. New Jersey. Now York. North Carolina. Oklahoma. Oregon. Pennsylvania. South Carolina. Tennessee. Texas. Do. Wisconsin.

¹Two plants in county.

CONSUMPTION AND USES

Exfoliated vermiculite sold and used by producers in 1981 totaled 274,000 tons, a small decline from that of 1980. Total use for concrete aggregates, plaster aggregates, and premixes increased 10% to 120,900

tons, or 44% of domestic consumption. Use in premixes increased 39%, whereas insulation uses declined slightly, and agricultural uses declined 13%.

PRICES

The average value of vermiculite concentrate sold and used by U.S. producers in 1981 was \$81.88 per ton, f.o.b. plant, an increase of 17% over that reported in 1980. The average value for exfoliated vermiculite sold and used was \$213.87 per ton, f.o.b. plant, an increase of 10% over that of 1980.

Engineering and Mining Journal quoted

1981 yearend prices for unexfoliated vermiculite as follows: Per short ton, f.o.b. mine, Montana and South Carolina, domestic, \$78 to \$106; and the Republic of South Africa, c.i.f. Atlantic ports, \$100 to \$160. For comparison, 1980 yearend quoted prices per ton were \$64 to \$98 for domestic ore and \$100 to \$160 for South African ore.

FOREIGN TRADE

The United States annually imports significant quantities of vermiculite from the Republic of South Africa and exports vermiculite to Canada; tonnages have equaled about one-tenth of domestic sales.

WORLD REVIEW

Estimated world vermiculite production in 1981 was 576,000 tons, a small decrease from that of 1980. The United States and the Republic of South Africa, together,

accounted for 92% of world production.

¹Industry economist, Division of Industrial Minerals.

Table 4.—Vermiculite: World production, by country¹

(Short tons)

Country	1977	1978	1979	1980 ^p	1981 ^e
ArgentinaBrazil	5,319 3,987	^r 4,878 4,443 654	6,478 8,137 770	10,920 8,818 800	² 8,054 11,000 800
India Japan ^e Kenya	3,172 15,000 4,762	2,079 16,000	3,376 17,000	3,779 19,000	4,000 19,000
South Africa, Republic of	4,762 182,343 20	2,054 230,485 20	2,491 211,173 20	2,819 204,698 20	2,900 2210,101 20
United States (sold and used by producers)	359,000	337,000	346,000	337,000	² 320,000
Total	573,603	r597,613	595,445	587,854	575,875

^eEstimated. ^pPreliminary. ^rRevised. ¹Excludes production by centrally planned economy countries. Table includes data available through June 30, 1982. ²Reported figure.

Zinc

By James H. Jolly1

The trends of the U.S. zinc industry followed those of the overall economy in 1981. Zinc consumption was relatively strong in the first half of the year but weakened in the second half with the onset of economic recession. Zinc prices followed the same trend, rising through August, but falling in the last 3 months. Smelter production was up 6% over that of 1980, but capacity utilization fell in the latter half of the year. A major primary smelter closed down in November. Mine production, affect-

ed by midyear strikes and mine closures late in the year, decreased marginally in 1981. Imports of concentrate for consumption rose substantially as smelters withdrew large quantities of concentrate from bonded warehouses during the year. Slab zinc imports were up 49% over those of 1980. In the latter half of the year, slab zinc imports did not contract with decreasing consumption, and producer, consumer, and merchant stocks increased substantially.

Table 1.—Salient zinc statistics

				,		
	1977	1978	1979	1980	1981	
United States:						
Production:						
Domestic ores, recoverable content						
metric tons	407,889	302,669	267,341	^r 317,103	312,418	
Valuethousands	\$309,338	\$206,854	\$219,841	r\$261,671	\$306,879	
Slab zinc:						
From domestic ores metric tons	322,208	267,350	255,344	231,850	256,934	
From foreign oresdo	86,156	139,348	217,137	108,606	86,728	
From foreign oresdo	45,914	34,774	53,212	29,396	49,322	
From scrapdo	40,014	02,112	00,212			
man and an analysis of the same and an analysis of the sam	454,278	441,472	525,693	369,852	392,984	
Totaldo		304,047	316,818	274,967	291,528	
Secondary zinc ¹ do	284,065		279	302	323	
Exports of slab zincdodo	215	723	219	302	020	
Imports (general):		100.000	204.050	100.000	117 796	
Ores and concentrates (zinc content)do	111,410	188,003	224,952	129,923	117,736	
Slab zinc	523,206	617,840	527,212	410,642	602,694	
Stocks of slab zinc. Dec. 31:						
Producer and consumerdo	170,237	137,253	151,661	92,151	126,581	
Merchantdo	ΝA	NA	NA	33,650	68,773	
Government stockpile do	347,828	345,872	345,684	342,380	340,581	
O	,		•			
Slab zincdodo	999,505	1,050,585	1,000,606	811,146	834,199	
All alasses	1,367,704	1,441,810	1,394,314	1,142,409	1,183,563	
Price: Prime Western, cents per pound (delivered)	34.39	30.97	37.30	237.43	² 44.56	
	04.00	30.31	01.00	01.10	11.00	
World:						
Production:	Tr 000	Er oac	r5,870	P5,779	^e 5,844	
Mine thousand metric tons	^r 5,920	^F 5,846				
Smelterdodo	r _{5,812}	⁷ 5,884	^r 6,269	P6,057	e6,140	
Price: Prime Western, London, cents per pound	26.71	26.88	33.59	34.47	38.34	
1100: 11mo obtiling come per permitted						

Estimated. PPreliminary. Revised. NA Not available.

¹Excludes redistilled slab zinc.

²Based on U.S. High Grade, cents per pound.

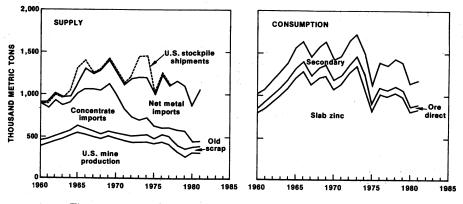


Figure 1.—Trends in supply and consumption in the United States.

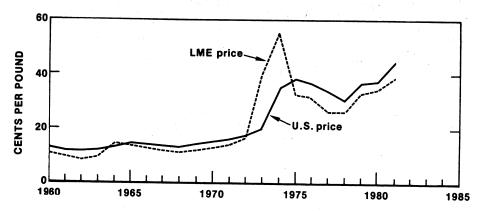


Figure 2.—Trends in average London Metal Exchange (LME) and domestic zinc prices.

Legislation and Government Programs.—The National Defense Stockpile goal for zinc was 1,292,739 tons, unchanged from that of May 1980. The total zinc inventory at yearend 1981 was 343,206 tons, including 2,625 tons of zinc in stockpiled brass.

Early in 1981, the U.S. Bureau of the Mint announced its intention to change the composition of the traditional copper penny to one composed largely of zinc. The new penny, to be circulated in early 1982, was expected to save the Government about \$50 million per year, mainly because of the lower cost of zinc compared with that of copper.

The State of Wisconsin amended its controversial 1977 mining tax law in November improving the development prospects of two large zinc-copper deposits, Crandon and Flambeau. The amended law significantly

reduced net proceeds taxes and provided additional tax deductions for mining companies

The Comprehensive Environmental Response, Compensation, and Liability Act of 1980, Public Law 96-510, also known as Superfund, went into effect on April 1. A major provision of the law was to establish a 5-year, \$1.6 billion fund to clean up disposal sites and spills of hazardous substances. The taxes on the production of two zinc compounds included in the law were \$2.22 per short ton for zinc chloride and \$1.90 per short ton for zinc sulfate.

At its annual session in Geneva, Switzerland, in October, the International Lead and Zinc Study Group projected that both production and consumption of zinc would increase in 1982 but consumption would probably not recover to the 1979 level.

ZINC 899

DOMESTIC PRODUCTION

MINE PRODUCTION

U.S. mine production of recoverable zinc from 16 States was slightly less in 1981 than that produced in 1980. Most of the decrease in output occurred in Missouri, New Jersey, and Virginia. The 25 leading U.S. zinc-producing mines accounted for almost 98% of the recoverable zinc mined in 1981, unchanged from that of 1980. The remaining 2% of production was recovered mainly as a byproduct from silver, copper, and gold mines in the Western States and two fluorspar mines in Illinois. The 10 leading mines accounted for 65% of the total mine production in 1981 compared with 70% in 1980.

Tennessee was the principal zinc-producing State in 1981, a position the State has held 22 times in the last 25 years. Zinc was produced from zinc ore at eight underground mines and from copper-zinc ore at three underground operations and one open pit at the Copperhill deposit.

ASARCO incorporated increased zinc output by 10% over that of 1980 at its four Tennessee mines—Young, New Market, Immel, and Coy. Asarco milled 2.6 million tons of ore at these mines in 1981, producing 62,600 tons of zinc in concentrate. Asarco's Tennessee mines had ore reserves of 7.2 million tons grading 3.36% zinc at yearend.

In September, Jersey Miniere Zinc Co. resumed development of its Gordonsville, Tenn., mine, which is adjacent to the company's operating Elmwood Mine. Jersey Miniere planned to start milling Gordonsville ore in April 1982 attaining a milling rate of 2,700 tons per day by July. The zinc concentrates will be processed at the company's Clarksville, Tenn., refinery. Combined ore reserves at the Elmwood and Gordonsville Mines were about 28 million tons grading 3.7% zinc.

The New Jersey Zinc Co., owned by Gulf + Western Industries, Inc., operated four mines in Tennessee in 1981; however, two mines, Lost Creek and Idol, were closed during the year because of high labor and environmental costs and diminished or ereserves. Production at the company's two Jefferson City mines was increased to make up for production losses from the mine closings.

Zinc production as a coproduct came from seven lead mines in Missouri. Output of zinc at the Buick Mine, owned jointly by AMAX Inc. and Homestake Mining Co., fell 44% to 20.345 tons in 1981 owing mainly to a 78-day strike. The mine expansion program at Buick initiated in 1976 was largely completed in 1981. Another development program was underway to open a satellite ore body, which will allow increased ore production rates in 1982. At yearend, ore reserves at the Buick Mine were 40 million tons averaging 5.9% lead and 1.6% zinc. Production of zinc from the Magmont Mine, a joint venture of Cominco American Inc. and Dresser Industries, Inc., increased 20% to 14,400 tons in 1981, although lead output fell, owing to changes in ore grade mined. The Magmont East extension was brought into production in 1981; the development of the Magmont West ore body was expected to be completed in 1982. These ore bodies, although lower grade than the original Magmont ore body, are expected to extend the life of the mine to about 1990. Magmont's ore reserves were 5 million tons grading 7.8% lead, 1.1% zinc, and 9.3 grams of silver per ton. In nonproducing areas, an additional 3.4 million tons of ore reserves grading 3.4% lead and 1.6% zinc have been blocked out. Asarco continued development of its new \$77 million lead-zinc mine and mill near West Fork, Mo. The company planned to achieve the full production rate of 3,450 tons of ore per day by mid-1984. Annual production is projected to be about 46,000 tons of lead and 6,800 tons of zinc.

In New York, St. Joe Minerals Corp., a subsidiary of Fluor Corp. since August 1981, was developing its Pierrepont Mine 28 miles from St. Joe's zinc mine and mill complex in Balmat. Ore reserves are 2.3 million tons grading about 15% zinc. The company planned to process the ore at its Balmat mill at a rate of 450 tons per day beginning in April 1982.

Production of zinc in Idaho was reported from 20 mines, but about one-half produced less than 100 tons each as a byproduct. The two principal zinc mines were the Bunker Hill Mine, The Bunker Hill Co. (BH), a subsidiary of Gulf Resources and Chemical Corp., and Star Unit, equally owned by Hecla Mining Co. and BH. Gulf Resources announced in August that it was closing the Bunker Hill Mine, mill, and smelter operation because of unprofitability, lack of adequate supplies of ore concentrates, and environmental problems. Layoffs began in November and were three-fourths complet-

ed by the end of December. Zinc production at the Star Unit increased slightly to about 14,650 tons in 1981. Ore mined increased but the zinc grade declined. Ore reserves of the Star Unit were about 1.0 million tons at yearend representing a modest reduction due primarily to lower metal prices. Production at Idaho's third largest zinc producer, the Lucky Friday silver mine, was 1,089 tons, down about 25% from that of 1980 owing mainly to a mine strike early in the year. The new silver shaft was at a depth of 4,900 feet at yearend and was expected to reach an ultimate depth of 7,500 feet. When completed to the 6,100-foot level, the production capacity of the Lucky Friday is expected to increase by 35%.

In Colorado, zinc was produced at 14 mining operations in 1981. The principal producer was the Leadville Mine, managed by Asarco but jointly owned with Resurrection Mining Co. Zinc output at the Leadville Mine in 1981 was up 6% to 11,900 tons despite lower production of lead and gold and only a marginal increase in silver output. Leadville ore reserves at yearend totaled 1.6 million tons grading 9.33% zinc, 4.28% lead, 0.22% copper, 2.3 ounces of silver per ton, and some gold.

New Jersey Zinc closed its Austinville, Va., mines and mill in December, putting 300 miners out of work. Company officials cited increased labor costs, poor zinc market, and environmental regulations as the major reasons for the shutdown.

New Jersey Zinc's Sterling zinc mine in Ogdensburg, N.J., was sold along with its Palmerton, Pa., and Depue, Ill., zinc plants to a group of private investors who formed a new company, New Jersey Zinc Co., Inc. (JZI). New Jersey Zinc's other mines and its 60% participation in Jersey Miniere were not affected by the divestiture.

Noranda Mines Ltd. planned to develop its Green Creek claims on Admiralty Island, 10 miles southwest of Juneau, Alaska, by 1985 if all the necessary State and Federal permits can be obtained. Noranda has identified about 3.5 million tons of ore averaging 8% to 10% zinc, 2.5% lead, 0.5% copper, 310 grams of silver per ton, and some gold.

U.S. Minerals Co. and Placer Amex Inc. planned to jointly spend \$25 million to explore and develop the Montana Tunnels zinc-lead-silver deposit near Helena, Mont. Reserves were estimated to be 23 million tons grading about 8.4% zinc, 3.4% lead, 0.5 ounce of silver per ton, and some gold. The deposit is open both laterally and at depth. The deposit reportedly could be brought

into production for an additional \$50 million

Exxon Minerals Co., U.S.A., continued feasibility studies at its Pinos Altos zinccopper mine, but reportedly would not make a decision to proceed with commercial development until 1984. Estimated reserves were 7 million tons averaging 3% zinc, 2% copper, plus recoverable quantities of silver and gold.

SMELTER AND REFINERY PRODUCTION

U.S. slab zinc production at 6 primary plants and 12 secondary plants increased 6% over that of 1980. The U.S. zinc smelting and refining industry changed considerably in 1981. The large primary zinc plant of Bunker Hill in Idaho was closed down; the Palmerton, Pa., smelter changed ownership and was scheduled to produce only zinc oxide, dust, and powder; two new secondary slab zinc plants and one zinc oxide plant came onstream in Michigan; the zinc dust production facilities at the Monaca, Pa., smelter were reactivated and smelter capacity was increased; a new secondary zinc plant was nearing completion in Tennessee; and several expansions of primary smelters were underway.

The Sauget, Ill., electrolytic zinc plant jointly owned by AMAX and Homestake treated record levels of zinc concentrates in 1981. Sources of concentrate were the Buick Mine, AMAX's share of production from Newfoundland Zinc Co., and purchased zinc material. The plant produced 67,680 tons of refined zinc in 1981 as well as 422 tons of cadmium and 108,000 tons of byproduct sulfuric acid.

Zinc production at Asarco's Corpus Christi zinc plant in Texas was 46,900 tons in 1981, up 10% from that of 1980. A \$42 million modernization program was expected to be completed in April 1982. The improvements will enable the plant to process a broad range of zinc concentrates and to reduce operating costs.

St. Joe increased the capacity of its Monaca, Pa., zinc plant from 45,000 to 68,000 tons per year in 1981. The plant could be used to produce either oxide or metal. In June, St. Joe reactivated its dust production facilities at Monaca and was capable of making about 3,600 tons per year in at least three major dust grades. The zinc dust-making equipment was modified to permit the use of any grade of zinc scrap, including drosses, concentrates, and diecasting scrap.

National Zinc Co. brought its \$2.3 million secondary zinc recovery plant in Bartles-

ZINC 901

ville, Okla., onstream in June. The plant was designed to separate about 900 tons of zinc skimmings per month into zinc oxide and zinc metal by a hydrometallurgy process. Recovered metal, expected to be 3,600 to 4,500 tons per year, is remelted and blended with High Grade to make Controlled Lead Grade. The oxide is processed at the company's primary zinc refinery also in Bartlesville. The use of secondary material in the refinery, which reportedly was having roaster problems, permitted National Zinc to produce at the refinery's rated capacity, 51,000 tons per year.

In September, Huron Valley Steel Corp. opened its new secondary zinc refinery in Belleville, Mich., and a zinc oxide plant in Trenton, Mich. The refinery, which uses a vertical column distillation process, was expected to attain in early 1982 a capacity to produce 32,600 tons per year of Special High Grade zinc metal. The zinc oxide plant, which uses a proprietary process, has a rated capacity of 22,000 tons of zinc oxide per year. In early December, Interamerican Zinc Co. began operating its secondary zinc facility in Adrian, Mich. The new 15,000ton-per-year plant was in addition to its 7,000-ton-per-year plant built in 1977. Interamerican was producing both Prime Western and Continuous Galvanizing Grade metal.

Pacific Smelting Co., a subsidiary of Australian Mining & Smelting Ltd. (AM&S), planned to complete the construction of its new, secondary zinc plant in Memphis, Tenn., by March 1982. Together with Pacific Smelting's zinc facilities in California, the company will have a total capacity to produce 36,000 tons per year of zinc oxide and/or galvanizing grades of zinc metal. Initial plans called for production of zinc oxide at the new plant, principally for the rubber industry.

Zinc Oxide.—The source of domestic zinc oxide production was about one-half from ores and concentrates, about one-fifth from slab zinc, and about one-third from secondary material. Total French process zinc oxide was about 40% of the total produced in 1981. Lead-free zinc oxide was produced at 14 plants and leaded zinc oxide was produced at 1 plant.

In 1981, Asarco's production of zinc oxide was up 54% to 51,000 tons at its zinc oxide plants in Columbus, Ohio, and Hillsboro, Ill. Preduction was significantly lower in 1980 owing mainly to a 3-month strike at the Columbus plant. JZI produced both American and French process zinc oxide and had the largest capacity. The annual zinc oxide capacity of JZI's Palmerton plant was estimated at 87,000 tons at yearend. Zinc concentrates used in the production of American process zinc oxide were from the company's Sterling Mine at Ogdensburg, N.J., and foreign sources.

Zinc Salts.—Zinc sulfate was produced by about 14 companies from secondary material and from ore. Zinc chloride production from five companies was derived entirely

from secondary material.

Slag-Fuming Plants.—Slag-fuming plants blast furnace slags processed lead and residues to produce zinc oxide fume. The fume was either sold or used as oxide or sent to smelters and refineries for processing into metallic zinc. Three plants operated in 1981-Asarco in El Paso, Tex., and East Helena, Mont.; and Bunker Hill in Kellogg, Idaho. Asarco recovered 27,400 tons of zinc in fume operations in 1981 compared with 14,150 tons in 1980. The fume was shipped to Asarco's Corpus Christi zinc refinery for processing.

Byproduct Sulfuric Acid.—Production of byproduct sulfuric acid from six zinc plants

was 545,890 tons in 1981.

CONSUMPTION AND USES

Zinc consumption improved marginally in 1981 despite reduced construction activity and the lowest level of automobile production in the United States in 20 years. Consumption in most product uses was static or declined, but usage in galvanizing, especially for sheet and strip, and in some brass products increased. Galvanizing continued to be the principal use of slab zinc, consuming 49%; followed by zinc-base alloys, 29%; brass and bronze, 14%; and other, 8%. Special High Grade constituted

43% of slab zinc consumption and was used mainly in diecasting alloys. Prime Western accounted for 33% of the slab zinc consumption and was largely used in galvanizing.

A survey on shipments of hot-dip galvanized steel by end use conducted by the Zinc Institute Inc. and the American Hot Dip Galvanizers Association indicated the largest end-use industry was electric utilities, 27%; followed by fabricated wire products, 19%; heavy construction, which was mainly industrial plants, 14%; transportation,

12%; agriculture, 8%; light construction, which was mainly nonresidential building, 7%: and other. 13%.

The United States Steel Corp. and a number of hot-dip galvanizers switched to High Grade zinc from Prime Western and Controlled Lead grades to feed their galvanizing lines in 1981 because of premium pricing for the leaded metal grades. The price differentials reportedly made it worthwhile for galvanizers to prepare their galvanizing alloys in-house. Galvalume-a 55% aluminum, 43.4% zinc, and 1.6% silcon alloy-continued to make inroads on the consumption of traditional galvanizing alloys in the steel sheet and coil industry. Jones & Laughlin Steel Corp., National Steel Corp., and two foreign steel companies added galvalume lines in 1981. A strong switch from galvanized coating to galvalume, such as occurred in Australia where about 80% of the coated steel roofing and siding market has been captured by galvalume, could significantly affect zinc consumption and growth.

Another Zinc Institute, study reported that the weight of zinc diecastings, including optional equipment, used in the average U.S. automobile for the 1981 model year was 24.14 pounds. Averages for the major U.S. automobile manufacturers were General Motors Corp., 25.3 pounds; Chrysler Corp., 22.9 pounds; Ford Motor Co., 20.9 pounds; and American Motors Corp., 31.5 pounds. For the 1982 model year, an average of 22.7 pounds per car was projected.

Fabrication of the new zinc penny, a copper-plated zinc coin, began late in the year, but distribution was not expected until January 1982. The new coin, which is similar in all respects to the current copper coin except that it is 19% lighter in weight. is composed of 97.6% zinc and 2.4% copper compared with the current penny's composition, 5% zinc and 95% copper. When at full production in 1983, The Bureau of the Mint expected to consume about 45,000 tons per year of Special High Grade zinc to make pennies. The shift to the high zinc composition penny was expected to reduce Government costs because zinc prices are lower than those of copper and because more pennies can be made per given weight of new alloy versus the old alloy.

The apparent consumption of zinc oxide was about 177,000 tons, down from about 182,000 tons in 1980. Reported shipments to user industries increased more than 9% in 1981. All end-use categories, except miscellaneous, received increased shipments. The rubber and chemicals industries had the largest tonnage increases. Among miscellaneous uses, zinc oxide was used in floor coverings, fabrics, lubricants, plastics, and rayon manufacturing. The use of zinc sulfate in agriculture continued to increase in 1981 with lesser amounts used for rayon, flotation reagents, and chemicals. Leaded zinc oxide was used in rubber, and lithopone was used mainly in paints. Zinc chloride was used mainly in wood preserving, soldering fluxes, and batteries.

STOCKS

Annual data collected by the Bureau of Mines indicated that primary and secondary producer stocks of slab zinc at yearend were 98% higher compared with the start of the year. Monthly data as reported by the American Bureau of Metal Statistics showed that producer stocks at plants and elsewhere declined through May but thereafter, except for September, increased for the rest of the year.

Inventories of slab zinc at consumer

plants generally trended downward during the first half of the year and trended upward in the last half. Consumer stocks were 18% higher at the end of 1981 than at the end of 1980.

Merchant stocks began the year at 33,650 tons, declined to 22,220 tons by the end of April, increased and firmed at about 36,000 tons in the summer months, and rose sharply to 68,773 tons in the last 3 months of the year.

PRICES

High Grade slab zinc was 41.25 cents per pound at the beginning of the year. On March 20, Bunker Hill raised its High Grade price 2 cents to 43.25 cents per pound; all other producers raised their

prices to this level by the end of March. In late April, Hudson Bay Mining and Smelting Co. Ltd., Bunker Hill, and others raised their High Grade prices to 45.25 cents. National Zinc adjusted its premium pricing

903

structure owing to increased debasing costs on April 27, raising its premiums by 0.5 cent per pound to 0.75 cent above the High Grade base for Controlled Lead Grade and to 1.25 cents per pound for Continuous Galvanizing Grade. By early May, all North American producers were selling High Grade for 46.25 cents per pound and most had adopted premium pricing for leaded grades. On July 30, Hudson Bay Mining, followed by all North American producers, raised its High Grade price 3 cents to 49.25 cents per pound. In the last 4 months of the year, demand weakened and stocks increased dramatically. On October 1, Asarco cut its High Grade price 4.25 cents per pound to 45 cents; within a week other producers were at 46.25 cents per pound for High Grade. Asarco again lowered its price for High Grade on December 1 to 44 cents per pound and on December 4 to 42 cents. At yearend, producer's list prices for High Grade ranged from 42 to 46.25 cents per pound. Special High Grade list prices were 0.5 cent per pound higher than High Grade throughout the year.

The list price for zinc oxide at the start of the year was 47.25 cents per pound for American process, lead-free pigment grade; 48.75 cents per pound for French process, regular; and 50 to 51 cents per pound for photoconductive grade. The price for 12% leaded zinc oxide was 42.75 cents per pound for 50-short-ton railcar quantities. In April, zinc oxide prices were raised 2 cents per pound in line with increases in zinc metal prices. In August, list prices were 53.25 cents per pound for American process, leadfree pigment-grade zinc oxide; 54.75 cents per pound for French process regular grade; 56 to 58 cents per pound for photoconductive grade; and 44.75 to 47.5 cents per pound for 12% leaded grade. Zinc oxide prices declined during the last 4 months of the year paralleling the decrease in zinc metal prices. American and French process lead-free zinc oxide ended the year at 50 to 52 cents and 51.5 to 53.5 cents per pound, respectively.

The price for zinc sulfate, granular monohydrate industrial, 36% zinc in 100-pound bags in carload lots, remained at \$26.50 to \$29.00 throughout 1981. Technical-grade zinc chloride, 50% solution, was quoted at \$10 to \$17 per 100 pounds in tanks until the middle of August when the quote was raised. The high quote remained steady at \$18.20 per 100 pounds to the end of the year; the low quote ranged from \$12.25 to \$16, ending the year at \$12.25 per 100 pounds.

FOREIGN TRADE

Exports of zinc ores and concentrates remained at the relatively high level established in 1980, partially because tightness in the world concentrate supply brought higher prices. Some additional concentrates became available for export in the latter half of the year because of the closing of the Bunker Hill smelter.

General imports of zinc in ores and concentrates continued to decrease in 1981, whereas imports for consumption increased by 63,340 tons. Duties on imported zinc ores and concentrates were suspended in late 1980; consequently, substantial withdrawals of zinc concentrates from bonded warehouses occurred in 1981. Of the general imports, 9,281 tons entered bonded warehouses in 1981 compared with 51,636 tons in 1980. Of the imports for consumption, 137,254 tons was withdrawn from bonded warehouses in 1981 compared with 104,084 tons in 1980 and 4,497 tons in 1979.

Table 2.—U.S. import duties for zinc materials, January 1, 1981

Item	TSUS No.	Most favored nation (MFN)	Non-MFN
Ores and concentrates	602.20	0.58 cent per pound on zinc content.	1.67 cents per pound on zinc content.
Fume	603.50	0.58 cent per pound on zinc content.	1.67 cents per pound on zinc content.
Unwrought, other than alloys Alloys Waste and scrap	626.02 626.04 626.10	1.9% ad valorem 19% ad valorem 4.4% ad valorem	1.75 cents per pound. 45% ad valorem. 11% ad valorem.

Slab zinc imports for consumption increased 49% over those imported in 1980. Canada was by far the principal exporter of

slab zinc to the United States, supplying slightly more than one-half in 1981. Peru, formerly a minor import source, was the second principal supplier in 1981 and could remain a major import source because of significant additions to slab zinc production capacity in 1981.

In December, the U.S. Department of Commerce decided to retroactively lower the penalty import duties of unwrought zinc from Spain for 1980 from 2.65% to 2.05% ad valorem and not impose any penalty duty for 1981. If the decision is upheld, the penalty duties for 1980-81 will be refunded. The penalty duty was imposed on April 7, 1977, to offset the Spanish Government's indirect aid to its zinc industry.

WORLD REVIEW

World consumption of zinc in 1981 continued to reflect weakness in the world economy. Zinc usage was especially affected by the general world slowdown in construction activity and the low level of automobile production. According to the World Bureau of Metal Statistics (WBMS),2 slab zinc consumption in the market economy countries was about 4.24 million tons in 1981 compared with 4.38 million tons in 1980. Consumption on a regional basis was about the same in all areas except in Western Europe where consumption was down by 123,700 tons from that of 1980. Of the major consuming countries, Belgium, Brazil, France, the Federal Republic of Germany, Italy, and Japan used less slab zinc in 1981, and Canada, Mexico, Spain, the United Kingdom, and the United States used more. WBMS reported that commercial slab zinc stocks fell during the first half of the year but increased significantly in the second half of the year, ending the year at about 856,000 tons or 19% more than at the end of 1980. Producer stocks worldwide increased 10% during 1981 to 544,000 tons by yearend; consumer stocks were 163,000 tons, up 2,000 tons from that of 1980; and merchant stocks were 75,000 tons, up from 40,000 tons 1 year earlier. London Metal Exchange stocks decreased about 12,000 tons, ending 1981 at 74,000 tons. The United States, Canada, and the Organization for Economic Cooperation and Development (OECD) countries, excluding the Federal Republic of Germany, had large stock increases. Japanese producer stocks declined and the Japanese Government released 26,000 tons of zinc from its stockpile in 1981.

World mine output, according to the Bureau of Mines, rose marginally in 1981, despite mine closures, production cutbacks late in the year, and strikes. The potential reduction in output was compensated for by new mines coming onstream or higher production levels at certain mines. Of the major producers, mine production increased in Australia, Canada, Japan, Peru, and Sweden, and decreased in Ireland, Mexico,

Poland, and the United States. Ireland's production was especially affected by a strike in the last half of 1981 that cut the country's output by about 50% for the year. Polish zinc production was affected mainly by decreasing ore grades and political problems.

Primary smelter production also rose slightly with decreases in production in Japan, Poland, Italy, and Mexico being offset by increases in Canada, the United Peru, Spain, the Netherlands, France, and Brazil. The availability of zinc concentrates tightened in 1981, and custom smelters experienced supply problems and higher than normal costs for concentrates. Some European smelters were particularly affected by the strike at the Tara Mine in Ireland because concentrate from the mine was a principal source for their smelter feed. A new smelter came onstream in Peru. and one smelter in the United States and one in Belgium closed down for economic reasons. Japanese smelter production continued to fall owing to reduced automobile production and to a general decrease in exports.

After a 3-year investigation, the European Commission on Competition of the European Economic Community (EEC) reached a preliminary finding that a group of European zinc producers have conspired to fix zinc production, prices, and markets. An EEC decision on whether to impose penalties was pending.

Australia.—Mine production increased marginally from that of 1980, despite reduced production at several major mines early in the year owing mainly to labor problems.

Aberfoyle Ltd., 49% owned by Cominco Ltd., officially opened its Que River zincsilver-lead mine in Tasmania in February. Que River ores were processed at the Rosebery mill of EZ Industries Ltd. (EZI); however, because of construction delays in expanding the mill's capacity, ore deliveries from the Que River Mine did not reach the scheduled rate of 200,000 tons per year until **ZINC** 905

late in the year. The Que River deposit has 2.5 million tons of ore reserves grading 13.3% zinc, 7.7% lead, 6 ounces of silver per ton, and some gold. An additional 2.7 million tons of inferred ore of lesser grade also has been identified.

MIM Holdings Ltd. (40%) and Western Selcast Ltd. (60%) began production at their Teutonic Bore copper-zinc-silver mine in Western Australia in February and shipped the first zinc concentrate at midyear to its marketing agent, Mount Isa International Pty. Ltd. An estimated 25,500 tons of 53% zinc concentrate was produced from milling 145,000 tons of ore in fiscal year 1981. Annual zinc output is expected to be about 27,000 tons per year. Recoverable ore reserves at Teutonic Bore were 1.4 million tons grading 4.1% copper, 11.1% zinc, and 4.7 ounces of silver per ton.

Construction of EZI's Elura Mine and mill proceeded on schedule with production to start in late 1982. Design capacity is 130,000 tons per year of zinc concentrate and 100,000 tons per year of silver-lead concentrate from 1.1 million tons of ore. Reserves were 27 million tons grading 8.3% zinc, 5.6% lead, and 4.5 ounces of silver per ton.

MIM continued its Mount Isa expansion program to increase output of lead, zinc, and silver by 20%. In 1981, the mill modernization and much of the mine development work was completed. The program was scheduled for completion in mid-1982 at an estimated cost of \$60 million. MIM produced 193,800 tons of zinc concentrate in 1981, down from 201,400 tons produced in 1980.

AM&S's production of zinc in 1981 decreased slightly to about 235,000 tons owing to lower output at its Broken Hill operation. Zinc production increased at AM&S's Cobar Mine because higher lead grades offset reduced mill throughput and at its Woodlawn Mine because high milling rates and improved zinc recovery offset milling of lower grade oves

Australian slab zinc production decreased in 1981 despite the near capacity operation of the Cockle Creek and Port Pirie zinc plants. EZI's Risdon smelter was affected early in the year by strikes at Broken Hill mines. EZI was increasing the capacity of the Risdon zinc plant by 4,000 to 214,000 tons per year. The expansion was scheduled for completion in 1982. AM&S was planning the construction of a 75,000-ton-capacity electrolytic zinc refinery adjacent to its Cockle Creek zinc smelter. Employment of

the new pressure leach technology of Sherritt Gordon Mines Ltd. was under consideration for the new refinery.

Belgium.—The Société de Prayon S.A. closed its 70,000-ton-per-year electrolytic zinc plant at Ehein in May reportedly because of financial difficulties. Metallurgie Hoboken-Overpelt S.A. commissioned a new plant at its Overpelt zinc refinery capable of producing 25,000 tons of zinc oxide annually from zinc- and copper-bearing scrap extracted from car hulks. The new plant employs proprietary technology developed by Huron Valley.

Canada.—Canada continued to lead the world in zinc mine production accounting for about one-fifth of world production in 1981. Production in 1981 was up 23% compared with that of 1980 when output was down because of strikes and production problems at some of the major producers. Principal producers were Noranda, Cominco, and Kidd Creek Mines Ltd., formerly Texasgulf Metals Co. Late in 1981, Texasgulf Metals, the Canadian assets of Texasgulf Inc., were sold to the Government's Canadian Development Corp. for \$450 million. Several new zinc mines came onstream during the year and several were under development.

Cominco completed construction and development work at its Polaris Mine on Little Cornwallis Island. The Polaris Mine is the northernmost mine in the world. Ore was first fed to the mill on November 4. When fully in operation, expected in January 1982, the annual production of the mine, constructed at a cost of \$135 million, was planned to be 187,000 tons of zinc concentrate and 42,000 tons of lead concentrate. Ore reserves were 2.3 million tons grading 14.1% zinc and 4.3% lead.

In November, Les Mines Gallen Limitee, owned by Noranda (51%) and McDonald Mines Ltd. (49%), began production at its zinc-silver-gold open pit mining operation in northern Quebec. The ore was milled at Noranda's Horne facilities 10 miles away. The planned production rate of 1,360 tons of ore per day was expected to be reached in early March 1982. The mine, which has ore reserves of 1.6 million tons averaging 5.4% zinc, was developed for \$4 million.

Cyprus Anvil Mining Corp. continued its long-term Vangorda Plateau development program in the Yukon. Modifications to the Anvil concentrator, completed at a cost of \$59 million in 1981, were necessary to handle the ores from the Vangorda and Grum deposits that are planned for produc-

tion in the next few years. Cyprus Anvil's Cirque deposit in British Columbia was being explored. The company reportedly has delineated 27 million tons of ore averaging 7.8% zinc, 2.2% lead, and 48 grams of silver per ton.

In New Brunswick, Brunswick Mining & Smelting Corp. Ltd. (BMS), controlled by Noranda, mined 3.4 million tons of ore compared with 1.85 million tons in 1980 when production was affected by a 4-month strike. Zinc output totaled about 235,600 tons or 21% of Canadian production in 1981. BMS completed expansion of its No. 12 Mine near Bathurst early in the year and increased ore production by 1,000 tons per day to about 9,100 tons per day. Proven and probable ore reserves at the end of 1981 were 100 million tons grading about 9.1% zinc, 3.7% lead, and 2.8 ounces of silver per ton.

BMS announced plans to build a \$300 million zinc reduction plant at Belledune, New Brunswick, in cooperation with Heath Steele Mines Ltd., also a Noranda subsidiary. Construction on the 100,000-ton-peryear zinc plant was scheduled to start in May 1982 and be completed in late 1984.

Cominco's principal sources of zinc and lead concentrate for its Trail, British Columbia, integrated smelter and refining complex continued to be the Sullivan Mine at Kimberley, British Columbia, and the Pine Point Mine in the Northwest Territories. Ore production in 1981 was the highest since 1964 at the Sullivan Mine where zinc concentrate output improved 15% to 119,000 tons owing in part to improved ore grades. Ore reserves at the Sullivan Mine were 46 million tons grading 6% zinc and 4.5% lead at yearend. Zinc concentrate output at the Pine Point Mine declined 9% to 249,000 tons in 1981 because lower grade zinc ores were mined. Significantly higher strip ratios, longer hauling distance, and increased energy and labor costs caused a sharp rise in the cost of production. At yearend, ore reserves at the Pine Point Mine were 37 million tons grading 5.4% zinc and 1.9% lead.

Cominco continued modernization and expansion of its Trail zinc plant. The world's first zinc pressure leaching plant was under construction and was expected to be operational in 1982. It will add 24,000 tons per year to the plant's capacity. The new pressure leaching plant separates sulfur by hydrometallurgical means rather than by roasting, producing elemental sulfur instead of sulfur dioxide.

Canadian Electrolytic Zinc Ltd. was adding 8,000 tons to its current 218,000-ton annual zinc smelter capacity by 1984, and Kidd Creek was expanding its zinc facilities at Timmins, Ontario, by 17,000 tons by 1983.

Asarco's zinc production at its Buchans Mine in Newfoundland continued to drop because the ore reserves in developed areas were decreasing. Efforts were underway to develop new ore zones. Esso Resources Canada, Ltd., closed down the Gays River zinc mine in Nova Scotia in August because of problems with water seepage and low ore quality. The Yava Mine of Yava Mines Ltd. also closed reportedly because exploration results failed to confirm the ore tonnage needed to justify moving a mill to the mine site.

Germany, Federal Republic of.—Preussag AG Metall announced plans to cut the capacity of its 100,000-ton-per-year Harlingerode zinc refinery by 30% and convert it to a secondary plant in 1982.

Ireland.—Tara Mines Ltd. was struck by trade unions in early July. The strike was not resolved by yearend at which time the mine was placed on a care and maintenance basis. For the first 6 months of the year, Tara treated a total of 1.1 million tons of ore, producing about 205,000 tons of lead and zinc concentrate, about the same as in the comparable period in 1980. At yearend, ore reserves at Tara totaled 53.3 million tons grading 9.6% zinc and 2.7% lead.

In May, the Irish Planning Board rejected Bula Ltd.'s application for the development of an open pit mine near Navan because it would be too close to residential properties and pose pollution problems. Bula was planning to apply for permission to develop an underground mine, although about 40% of the ore body reportedly would be inaccessible if mined in this manner. Estimated ore reserves in the ore body were 20 million tons averaging about 6.7% zinc and 1.3% lead.

Plans to build a state-run zinc smelter at Ballylongford, County Kerry, were scrapped early in the year by the Irish Government because of low zinc prices and rising energy costs. Abandonment of the Government plan revived consideration of a long-pending U.S.S.R. offer to build a smelter in Ireland.

Mexico.—Mine and smelter production were both lower in 1981 owing mainly to strikes at three of the country's largest zinc-producing mines—the Santa Barbara and Santa Eulalia Mines owned by Industrial Minera México S.A. (IMM) and the San

ZINC 907

Francisco Mine of Compañía Frisco, S.A. In March, Mexico Desarrollo Industrial Minero, S.A., the major shareholder in IMM, signed a \$250 million loan agreement with a consortium of banks to finance the completion of several major expansion and construction projects. Mine capacity expansions were completed at the Velardena and Taxco Mines in 1981. Programs at the Santa Barbara Mine, scheduled to be completed in January 1982, will double mine output to about 5,000 tons per day. The new \$175 million electrolytic zinc refinery, which IMM is building at San Luis Potosí, was expected to be onstream in 1982. The new refinery has a design capacity of 113,000 tons of zinc annually.

The \$170 million Real de Angeles silverlead-zinc mine—owned by Frisco, S.A. de C.V., 33%; Comisión de Fomento Minero, 33%; and Placer Development Ltd., 34% was expected to come onstream in mid-1982. The mine was expected to be one of the world's largest silver mines. Production of ore by open pit methods was planned at a rate of 10,000 tons per day, resulting in an annual output of 7 million ounces of silver, 31,000 tons of lead, 26,000 tons of zinc, and 415 tons of cadmium. Ore reserves were estimated at 59 million tons averaging about 1.0% lead, 0.92% zinc, and 2.3 ounces of silver per ton.

Peru.—Refined zinc production in 1981 was almost double that produced in 1980 owing to completion of Empresa Minera del Perú's Cajamarquilla zinc refinery near Lima early in the year. The new 100,000-ton-per-year electrolytic refinery produced 49,553 tons of zinc metal in 1981.

Mine production increased in 1981 despite a number of strikes at mines during the year. Centromín Peru S.A. was the principal zinc producer with a production of about 180,500 tons of zinc in concentrate. Centromín's Cerro de Pasco Mine was the largest producing mine. The San Vicente Mine at San Ramon, operated by San Ignacio de Morococha S.A., was the largest producer in the private sector in 1981 with an output of zinc in concentrate of 35.925 tons. Morococha continued its expansion program at the mine to increase annual zinc production capacity from 39,000 to 52,000 tons. The capacity increase was expected to be onstream in 1982.

Extracciones y Tratamiento de Minerales, S.A. (EXTRAMIN), owned one-third by Cía. Minera Huaron, S.A., and two-thirds by the Société Minière et Metallurgique de Penarroya, planned to process 90,000 tons of ore per year produced by small miners in the Province of Recuay and the surrounding area. For this purpose, EXTRAMIN bought a 300-ton-per-day portable plant that will annually produce 10,000 tons of zinc-lead-copper-silver bulk concentrates. The plant was expected to be in operation in the first half of 1982.

Thailand.—Government officials from Thailand and Belgium signed accords in November guaranteeing the financing and construction of a \$144 million, 60,000-ton-per-year zinc refinery in Tak Province. The refinery, expected to be completed in 1984, was projected to have a life of 11 years based on the 3.7 million tons of zinc ore reserves covered in the agreement.

TECHNOLOGY

Oxidation pressure leaching of zinc concentrates was expected to play a prominent role in future zinc plant design, replacing the roast-leach section that is currently standard in the industry. The one-pressure process step, developed by Sherritt Gordon Mines Ltd., was described. The process reportedly eliminates the need for residue treatments and produces elemental sulfur, rather than sulfur dioxide; acid plants and smokestacks are not required, and air pollution and workplace hygiene are greatly improved.

A new process for leaching zinc sulfide concentrates with gaseous mixtures of sulfur dioxide and oxygen in aqueous solution was described.⁵ The direct leaching of zinc concentrates by this approach was seen as one method of expanding the present Risdon, Australia, zinc plant without the need for additional roasting and acidmaking capacity.

The material, casting, and cost advantages and applications of gravity cast zinc alloys compared with competitive alloys was reviewed.⁶

The Bureau of Mines continued investigations to recover zinc and other metals from byproduct and waste materials. Zinc was successfully recovered from sludge generated from electroplating and metal finishing operations by a roast, leach-purification, electrowinning process.⁷ The electrowon zinc, however, required more extensive pu-

rification procedures than in commercial operations because greater than normal amounts of impurities were extracted with the zinc. A hydrometallurgical method was developed to extract zinc and other metals from copper filter cake, a product produced during one of the process steps designed to remove impurities from zinc electrolyte in electrolytic zinc plants.8 Greater than 97% of the zinc and other principal metals in the cake were selectively recovered by the process developed.

Comprehensive coverage of zinc-related investigations and an extensive review of current world literature on the extraction and uses of zinc and its products are contained in quarterly issues of Zinc Abstracts published by the Zinc Development Association, London, England.

Progress reports of the projects supported by the International Lead and Zinc Research Organization, Inc. (ILZRO), are released annually in the ILZRO Research Digest. A new galvanizing alloy developed by ILZRO reportedly exceeded the performance capabilities of conventional galvanizing in corrosion resistance, ductility, weldability, paintability, and other criteria.9 The new alloy, which is called Galfan, short for galvanizing fantastique, is composed of 95% zinc and 5% aluminum with some mischmetal.

³Where necessary, values have been converted from Canadian dollars (C\$) to U.S. dollars at the rate of C\$1.199 = US\$1.00.

Engineering and Mining Journal. Sherritt Commercializes Zinc Pressure Leaching. V. 182, No. 12, December 1981, pp. 76-79.

Parker, E. G. Oxidative Pressure Leaching of Zinc Concentrates. CIM Bull., v. 74, No. 829, May 1981, pp. 145-

Adams, R. W., and I. G. Matthew Leaching of Metal Sulfide Concentrates at Atmospheric Pressure Using SO₂/O₂ Mixtures. Proc. Australas. Inst. Min. Metal., No. 280, December 1981, pp. 41-53.
 Apelian, D., M. Paliwal, and D. C. Herrschaft. Casting With Zinc Alloys. J. Met., v. 33, No. 11, November 1981, pp. 1313

'Stephenson, J. B., E. R. Cole, and D. L. Paulson. Recovery of Zinc From Wastewater Treatment Sludge. Resource Recovery and Conservation, v. 6, No. 3-4, November 1981, pp. 203-210.

ber 1981, pp. 202-210.

*Hebble, T. L., V. R. Miller, and D. L. Paulson. Recovery
of Principal Metal Values From Electrolytic Zinc Waste.

BuMines RI 8582, 1981, 12 pp.

*American Metal Market. Galvanizing Alloy Tests Called Successful by ILZRO. V. 89, No. 159, July 31, 1981, p. 8.

Table 3.—Mine production of recoverable zinc in the United States, by month

(Metric tons)

	**		
Month	1980 ^r	1981	
January	28,674	25,476	
February	26,815	25,663	
March	28,582	28,503	
March	27,221	26,343	
May	25,877	25,602	
June	27,419	23,883	
July	24.913	24,174	
Angust	25,504	25,218	
Sentember	24,386	28,937	
AugustSeptemberOctober	28,558	28,698	
November	24,327	25,972	
December	24,827	23,949	
Total	317,103	312,418	

rRevised.

Table 4.—Mine production of recoverable zinc in the United States, by State

(Metric tons)

State	1977	1978	1979	1980	1981
Arizona	3.973	w	w	w	138
California	2	Ŵ	ŵ	• • • • • • • • • • • • • • • • • • • •	w
Colorado	36.530	22,208	9.910	13.823	ŵ
Idaho	28,121	32,353	29,660	27,722	w
Kentucky	20,121	52	20,000	21,122	w
Maine	6.594				
Missouri	74,107	59,038	61.682	r62.886	52,904
Montana	72	79	104	71	25
Nevada	1.517	1.371	w	'5	w
New Jersey	30,358	28.915	31.118	28,859	16,198
New York	64,264	26,463	12,133	33,629	36.889
Pennsylvania	20,706	19.099	21,447	22,556	24,732
Tennessee	82.044	87.906	85.119	r _{111,754}	117,684
Utah				111,154 PW	
· · · · · · · · · · · · · · · · · · ·	16,111	3,509	W		1,576
Virginia	12,040	10,974	11,406	12,038	9,731
Washington	5,055	w			
Other	26,395	10,703	4,762	r3,763	52,541
Total	407,889	¹302,669	267,341	r317,103	312,418

W Withheld to avoid disclosing company proprietary data; included with "Other." ¹Data do not add to total shown because of independent rounding.

¹Physical scientist, Division of Nonferrous Metals. ²World Bureau of Metal Statistics (London). World Metal Statistics, v. 35, No. 5, May 1981, p. 17.

909 ZINC

Table 5.—Production of zinc and lead in the United States in 1981, by State and class of ore, from old tailings, etc., in terms of recoverable metals

(Metric tons unless otherwise specified)

		Zinc ore]	ead ore		Zi	nc-lead or	е
State	Gross weight (dry basis)	Zinc	Lead	Gross weight (dry basis)	Zinc	Lead	Gross weight (dry basis)	Zinc	Lead
1980: Total	r _{5,861,248}	^r 205,142	2,439	9,144,127	^r 62,886	497,928	1,052,771	26,097	33,329
1981:									
Arizona Colorado				(1)	(¹)	(1)	(1)	$\bar{\mathbf{w}}$	(1)
Idaho Missouri	(1) 	w	(1)	7,729,301	W 52,904	389,721	845,579	W	26,821
Montana				549	4	21			
New Jersey	89,037	16,198			1 1				
New York	509,799	36,889	968						
Pennsylvania _	491,543	24,732					· ——		
Tennessee	4,511,557	115,369					33,160	1.575	1,660
Utah Virginia	398.291	9,731	1.607						
Other ²	11,431	149		7		4	11	43,260	3
Total Percent of	6,011,658	203,068	2,575	7,729,857	52,908	389,746	878,750	44,835	28,484
total recover-									
able zinc and lead _	XX	65	1	XX	17	87	xx	14	6
	Copper-zinc, copper-lead, copper-zinc-lead ores		All other sources ³			Total			
	Gross weight (dry basis)	Zinc	Lead	Gross weight (dry basis)	Zinc	Lead	Gross weight (dry basis)	Zinc	Lead
1980: Total	1,901,533	3,694	(¹)	r38,752,055	^r 19,284	r16,670	r56,711,734	r317,103	r550,366
1981:									
Arizona				164,180,556	¹ 138	1993	64,180,556	138	993
Colorado				i826,211	w	¹ 11,431	826,211	w	11,431
Idaho				¹ 869,640	W	¹ 11,576	1,715,219	W	38,397
Missouri				·			7,729,301	52,904	389,721
Montana				559,064	21	173	559,613	25	194
New Jersey							89,037	16,198	968
New York							509,799 491,543	36,889 24,732	
Pennsylvania _	1 500 505	$2.\overline{315}$					6,295,162	117,684	
Tennessee	1,783,605	_,		4,082	- ₁	- <u>-</u> 2	37,242	1.576	1.662
Utah Virginia				2,002			398,291	9,731	1,607
Other ²				2,398,598	9,132	555	2,410,047	52,541	562
Total Percent of total	1,783,605	2,315		68,838,151	9,292	24,730	85,242,021	312,418	445,535
recover- able zinc and lead	xx	1		XX	3	6	xx	100	100

^{*}Revised. W Withheld to avoid disclosing company proprietary data; included with "Other." XX Not applicable.

1Zinc ore, lead ore, zinc-lead ore, copper-lead ore, and ore from "All other sources" combined to avoid disclosing company proprietary data.

2Includes Alaska, California, Illinois, Kentucky, Nevada, New Mexico, and Oregon. Zinc and lead recovered from tailings not distinguishable as to State origin.

3Zinc and lead recovered from copper, gold, silver, and fluorspar ores, and from mill tailings and miscellaneous cleanurs.

cleanups.

Table 6.—Twenty-five leading zinc-producing mines in the United States in 1981 in order of output

Rank	Mine	County and State	Operator	Source of zinc
1 .	Balmat	St. Lawrence, N.Y_	St. Joe Minerals Corp	Zinc ore.
2	Freidensville	Lehigh, Pa	The New Jersey Zinc Co	Do.
3	Elmwood	Smith, Tenn	do	Do.
Į.	YoungBuick	Jefferson, Tenn	ASARCO Incorporated	Do.
<u>1</u>	Buick	Iron, Mo	AMAX Lead Co. of Missouri	Lead ore.
3	Zinc Mine Works	Jefferson, Tenn	United States Steel Corp	Zinc ore.
	Bunker Hill	Shoshone, Idaho	The Bunker Hill Co	Lead-zinc ore.
3	New Market	Jefferson, Tenn	ASARCO Incorporated	
)	Sterling	Sussex, N.J	The New Jersey Zinc Co.,	Zinc ore.
		Dubbea, 11.0	Inc.	Do.
)	Immel	Knox, Tenn	ASARCO Incorporated	Do.
1	Star Unit Area	Shoshone, Idaho	Hecla Mining Co	
	Jefferson City and Beaver	Jefferson, Tenn	The New Jersey Zinc Co	Lead-zinc ore.
	Creek:	ocherson, remi	The New Sersey Zinc Co	Zinc ore.
3	Leadville	Lake, Colo	ASARCO Incorporated	Lead-zinc ore.
Į.	Milliken	Reynolds, Mo	Ozark Lead Co	Lead-zinc ore.
;	Austinville and Ivanhoe	Wythe, Va	The New Jersey Zinc Co	
;	Magmont	Iron, Mo	Cominco American, Inc	Zinc ore.
	Coy	Jefferson, Tenn	ASARCO Incorporated	Lead ore.
	Idol	Grainger, Tenn	The New Jersey Zinc Co	Zinc ore.
	Fletcher	Reynolds, Mo	St. Ica Minarala Communication	Do.
	Brushy Creek	do	St. Joe Minerals Corp	Lead ore.
	Brushy Creek Viburnum No. 29	Washington, Mo	do	Do.
	Viburnum No. 28	Iron, Mo	do	Do.
	Sunnyside		do	Do.
	Copperhill Plant	San Juan, Colo Polk, Tenn	Standard Metals Co	Gold ore.
	Iverness	Lordin 111	Cities Service Co	Copper-zinc ore.
	TACT II C99	Handin, Ill	Iveraess Mining Co	Fluorspar ore.

CAUC-IN-Rock

Inverness

Table 7.—Primary and redistilled secondary slab zinc produced in the United States (Metric tons)

	1977	1978	1979	1980	1981
Primary: From domestic ores From foreign ores	322,208 86,156	267,350 139,348	255,344 217,137	231,850 108,606	256,934 86,728
Total	408,364	406,698	472,481	340,456	343,662
Redistilled secondary: At primary smeltersAt secondary smelters	26,448 19,465	24,085 10,689	40,343 12,868	13,113 16,283	13,568 35,754
Total	^r 45,913	34,774	¹ 53,212	29,396	49,322
Grand total (excludes zinc recovered by remelting)	¹ 454,278	441,472	525,693	369,852	392,984

Table 8.—Distilled and electrolytic zinc, primary and secondary, produced in the United States, by grade

(Metric tons)

Grade	1977	1978	1979	1980	1981
Special High High Continuous Galvanizing Controlled Lead Prime Western Intermediate	151,214 38,494 256,238 8,332	179,812 32,830 41,250 25,422 162,158	173,082 39,247 62,683 40,319 210,362	148,384 24,552 45,275 18,650 132,991	133,439 51,990 55,008 38,660 113,887
Total	454,278	441,472	525,693	369,852	392,984

[†]Revised.

¹Data do not add to total shown because of independent rounding.

Table 9.—Annual slab zinc capacity of primary zinc plants in the United States, by type of plant

Type of plant	Plant location	Slab zinc capacity (metric tons)		
		1980	1981	
Electrolytic:	* * *			
AMAX Zinc Co., Inc	Sauget, Ill	76,000	76,000	
ASARCO Incorporated	Corpus Christi, Tex	98,000	104,000	
The Bunker Hill Co	Kellogg, Idaho	103,000	(1)	
Jersey Miniere Zinc Co	Clarksville, Tenn	82,000	82,000	
National Zinc Co	Bartlesville, Okla	51,000	51,000	
Vertical-retort:	***	•		
The New Jersey Zinc Co	Palmerton, Pa	109,000	(²)	
St. Joe Zinc Co	Monaca, Pa	50,000	68,0ÒÓ	

Table 10.—Secondary slab zinc plant capacity in the United States

(Metric tons)

	D14141	Capacity		
Company	Plant location —	1980	1981	
Arco Alloys Corp Belmont Smelting & Refining Works W. J. Bullock, Inc T. L. Diamond & Co., Inc Huron Valley Steel Corp Illinois Smelting & Refining Co Interamerican Zinc Co New England Smelting Works, Inc The New Jersey Zinc Co Prolerized Schiabo Neu Co Do. Pacific Smelting Co SG Metals Industries Inc	Detroit, Mich Brooklyn, N.Y Fairfield, Ala Spelter, W. Va Belleville, Mich Chicago, Ill Adrian, Mich West Springfield, Mass Depue, Ill Jersey City, N.J Los Angeles, Calif Kansas City, Kans	. 46,000	90,000	

Table 11.—Stocks and consumption of new and old zinc scrap in the United States in 1981, by class of consumer and type of scrap

(Metric tons, zinc content)

Class of consumer and	041		Consumption			
type of scrap	Stocks, Jan. 1	Receipts	New scrap	Old scrap	Total	Stocks, Dec. 31
Smelters and distillers:						
New clippings	42	460	487		487	15
Old zinc	582	8,801		8,649	8,649	734
Remelt zinc	217	96		307	307	6
Engravers' plates	54	574		571	571	57
Rod and die scrap	2,166	4,396		5,512	5,512	1,050
Diecastings	1,179	11,967		11,741	11,741	1,405
Fragmentized diecastings	1,156	20,528		19,236	19,236	2,448
Remelt die-cast slab	2,047	16,487		17,823	17,823	711
Skimmings and ashes	17,185	26,352	28,574		28,574	14,963
Sal skimmings	148	296	416		416	28
Die-cast skimmings	3,709	5,001	6,531		6,531	2,179
Galvanizers' dross	10,931	46,649	51,312		51,312	6,268
Flue dust	3,209	3,270	3,325		3,325	3,154
Chemical residues	295	2,304	2,304		2,304	295
Other	9	1,505	1,450		1,450	64
Total	42,929	148,686	94,399	63,839	158,238	33,377
Chemical plant, foundries, and other manufacturers:						
Old zinc	10	23		23	23	10
Rod and die scrap	10	131		131	131	10
Diecastings	18	268		268	268	18
Skimmings and ashes	2,580	4,510	5,279		5,279	1,811
Sal skimmings	1,720	4,278	4,020		4,020	1,978
Die-cast skimmings	161	264	264		264	161
Galvanizers' dross	2	8,861	6,749		6,749	2,114

¹Zinc plant closed in December 1981. ²Slab production discontinued; plant produces zinc oxides, dusts, and powders.

Table 11.—Stocks and consumption of new and old zinc scrap in the United States in 1981, by class of consumer and type of scrap —Continued

(Metric tons, zinc content)

Class of consumer and type of scrap	C41		. (Consumption			
	Stocks, Jan. 1	Receipts	New scrap	Old scrap	Total	Stocks, Dec. 31	
Chemical plant, foundries, and other manufacturers —Continued							
Flue dust Chemical residues Other	756 3,835 821	12,641 7,727 7,674	12,641 7,796 7,674	 	12,641 7,796 7,674	756 3,766 821	
Total	9,913	46,377	44,423	422	44,845	11,445	
All classes of consumers: New clippings Old zinc Remelt zinc Engravers' plates Rod and die scrap Diecastings Fragmentized diecastings Remelt die-cast slab Skimmings and ashes Sal skimmings Die-cast skimmings Calvanizers' dross Flue dust Chemical residues Other	42 592 217 54 2,176 1,156 2,047 19,765 1,868 3,870 10,933 3,965 4,130	460 8,824 96 574 4,527 12,235 20,528 16,487 30,862 4,574 5,265 55,510 15,911 10,031 9,179	487 	8,672 307 571 5,643 12,009 19,236 17,828	8,672 307 571 5,643 12,009 19,236 17,823 33,853 4,436 6,795 58,061 15,966 10,100 9,124	15 744 6 57 1,060 1,423 2,448 711 16,774 2,006 2,340 8,382 3,910 4,061 4,861	
Total	52,842	195,063	138,822	64,261	203,083	44,822	

Table 12.—Production of zinc products from zinc-base scrap in the United States

(Metric tons)

Product	1977	1978	1979	1980	1981
Redistilled slab zinc Zinc dust Remelt zinc Remelt die-cast slab Zinc die and diecasting alloys Galvanizing stocks Secondary zinc in chemical products	45,913 35,992 268 3,535 7,560 2,088 55,312	34,774 33,346 94 3,775 6,024 2,686 58,650	53,212 34,141 89 3,911 6,328 2,731 59,148	29,396 35,557 229 3,568 4,146 2,461 55,890	49,322 39,626 195 6,722 6,902 2,612 62,557

Table 13.—Zinc recovered from scrap processed in the United States, by kind of scrap and form of recovery

(Metric tons)

	1980	1981
KIND OF SCRAP		
New scrap: Zinc-base Copper-base Magnesium-base	122,654 115,909 268	138,515 116,681 143
Total	238,831	255,339
Old scrap: Zinc-base Copper-base Aluminum-base Magnesium-base	42,424 22,300 591 217	62,891 22,014 376 230
Total	65,532	85,511
Grand total	304,363	340,850
FORM OF RECOVERY		
As metal: By distillation: Slab zinc ¹	29,396	49,322

Table 13.—Zinc recovered from scrap processed in the United States, by kind of scrap and form of recovery —Continued

(Metric tons)

		 1000	1001
		 1980	1981
	FORM OF RECOVERY —Continued		
As metal —Continued By distillation —Contin	ued		*
Zinc dust By remelting	- <u></u>	 35,557 2,690	39,626 2,807
Total	······································	 67,643	91,755
In magnesium-base alloys .		 7,714 172,040 591 485	13,624 172,165 376 378
Zinc sulfate Zinc chloride		 31,306 13,195 10,944 445	36,236 14,313 11,572 436
Total		 236,720	249,095
Grand total		 304,363	340,850

 $^{^{1}\}mathrm{Includes}$ zinc content of redistilled slab made from remelt die-cast slab.

Table 14.—Zinc dust produced in the United States

	0	Value			
Year	Quantity - (metric tons)	Total (thou- sands)	Average per pound		
1977	43,177	\$45,414	\$0.477		
1978	38,487	37,427	.441		
1979	36,186	36,075	.452		
1980	42,640	41,202	.438		
1981	43,734	53,871	.554		

Table 15.—Consumption of zinc in the United States

(Metric tons)

	1977	1978	1979	1980	1981
Slab zinc Ores and concentrates (zinc content) ¹ Secondary (zinc content) ²	999,505 86,490 281,709	1,050,585 89,959 301,266	1,000,606 79,710 313,998	811,146 58,986 272,277	834,199 60,643 288,721
Total	1,367,704	1,441,810	1,394,314	1,142,409	1,183,563

¹Includes ore used directly in galvanizing. ²Excludes redistilled slab and remelt zinc.

Table 16.—Slab zinc consumption in the United States, by industry and product (Metric tons)

Industry and product	1977	1978	1979	1980	1981
Galvanizing:					
Sheet and strip	236 025	268,687	267.825	220,744	248.006
Wire and wire rope	21,459	22,801	23,557	22,748	22,119
Tubes and pipe	42.657	47,379	45,643	37.075	39,418
Fittings (for tubes and pipe)	5,820	6,926	8.231	7.394	6.369
Tanks and containers	3,057	2,896	4.081	3,297	5,78
Structural shapes	26,623	33,264	33,875	33,376	33,667
Fasteners	3,891	4,839	4.993	3,189	3,698
Pole-line hardware	4.475	4,869	4.839	4.078	3,788
Fencing, wire cloth, netting	20.371	24,997	21,920	16.022	17.722
Other and unspecified uses	32,060	37,356	37,839	31,304	30,484
Total	396,438	454,014	452,803	379,227	411,047
Brass products:					
Sheet, strip, plate	70.168	70.181	64.222	37.730	42.006
Rod and wire	39,525	46,284	51,130	32,554	36,639
Tube	5.542	6,779	6.690	4,702	6,440
Castings and billets	4.076	4,427	3,634	2,808	2,880
Copper-base ingots	7.544	6,581	6,800	17,190	20,167
Other copper-base products	1,455	7,236	8,928	3,842	4,854
Total	128,310	141,488	141,404	98,826	112,986
Zinc-base alloys:					
Zinc base alloys: Diecasting alloys	359,744	345,968	308,722	248,024	234,957
Dies and rod allovs	557	544	68	240,024	202,001
Slush and sand-casting alloys	6,829	7,622	5,266	6,203	8,408
Total	367,130	354,134	314.056	254,227	243,365
Rolled zinc	27.406	24.869	22,044	21,100	¹ 23,156
Zinc oxide	38,514	37,202	35,513	27,047	18,981
Other uses:				<u> </u>	-
Light-metal alloys	5,585	11,030	12.850	11.137	8,183
Miscellaneous ²	36,122	27.848	21.936	19,582	
		21,040	21,500	19,562	16,481
Total	41,707	38,878	34,786	30,719	24,664
Grand total	999,505	1,050,585	1,000,606	811,146	834,199

Table 17.—Slab zinc consumption in the United States in 1981, by industry (Metric tons)

Industry	Special High Grade	High Grade	Continuous Galvanizing Grade	Controlled Lead Grade	Prime Western	Remelt	Total
Galvanizing	26,168	39,336	18,171	65,392	261,139	841	411,047
Brass and bronze Zinc-base alloys	43,564 242,579	56,367 612	29	2,407	10,235	384	112,986
Rolled zinc	10,618	012		12,538	174		243,365 23,156
Zinc oxide	17,996				985		18,981
Other	20,555	1,327			2,782		24,664
Total	361,480	97,642	18,200	80,337	275,315	1,225	834,199

¹Includes zinc used in penny production.

²Includes zinc used in making zinc dust, wet batteries, desilverizing lead, powder, alloys, chemicals, castings, and miscellaneous uses not elsewhere mentioned.

Table 18.—Slab zinc consumption in the United States in 1981, by State

ZINC

State	Galva- nizers	Brass mills ¹	Die- casters ²	Other ³	Total
Alabama	27,390	w		w	29,960
Arizona				W	w
Arkansas	w				w
California	28,149	3.044	7.956	1,053	40,202
Colorado	-c, w	-,	W	W	w
Connecticut	2.028	16.297	w	W	24,663
Delaware	., w	W		W	W
Florida	4,004	••			4,004
Georgia	w		w		w
Hawaii	w				w
Idaho	**		w	w	Ŵ
Illinois	55,580	21,738	42,176	8.659	128,153
	54,352	21,100 W	3,439	W	72,261
Indiana	63	**	W.W	w. w	1,878
owa		W	ŵ	ŵ	ı,ötç
Kansas	· w	***	**	•	ŵ
Kentucky	2.821		w	w	3.916
Louisiana			w	w	3,310 W
Maine	w			w	15,604
Maryland	w	-=			
Massachusetts	W	w	40 000	w	4,525
Michigan	1,070	13,926	42,323	329	57,648
Minnesota	590		San		590
Mississippi	1,012			w	1,012
Missouri	5,653	W	w		7,229
Nebraska	6,592	w		w	7,147
New Jersev	2,034	5,601	W	w	13,530
New York	15,181	W	56,584	w	92,051
North Carolina	· W		W	w	W
Ohio	58,158	W	35,756	w	102,727
Oklahoma	W			W	4,157
Oregon	1.227	W		W	1,234
Pennsylvania	48,481	6,149	W	W	89,508
Rhode Island	W	w	W	W	w
South Carolina	ŵ				Ŵ
Fennessee	w		w	$\bar{\mathbf{w}}$	Ŵ
	16,584	w	ŵ	w	29,112
Texas	W	w		•••	W
Utah	ẅ	w	w	w	585
Virginia	₩	**	**	w	1,578
Washington	w			w	23,473
West Virginia		w	4.584	w	6.941
Wisconsin	739			56,760	69,286
Undistributed	78,498	45,847	50,547	20,700	09,200
				66,801	832,974

W Withheld to avoid disclosing company proprietary data; included with "Undistributed."

*Includes brass mills, brass ingot makers, and brass foundries.

*Includes producers of zinc-base alloy for diecastings, stamping dies, and rods.

*Includes alab zinc used in rolled zinc products and in zinc oxide.

Table 19.—Rolled zinc produced and quantity available for consumption in the United States

		1980			1981	
- -		Va	lue		Va	lue
	Metric tons	Total (thou- sands)	Average per pound	Metric tons	Total (thou- sands)	Average per pound
Production: ¹ Photoengraving plate Strip and foil	W 16,453	W \$20,511	\$0.660	w	w w	w
Total rolled zinc ² Exports Imports Available for consumption	20,545 2,103 1,341 20,614	27,415 3,810 1,041 XX	.605 .821 .352 XX	22,414 1,500 332 19,355	\$32,738 3,226 472 XX	\$0.663 .976 .645 XX

Excludes remelt zinc.

W Withheld to avoid disclosing company proprietary data; included with "Total rolled zinc." XX Not applicable.

¹Figures represent net production. In addition, 19,421 tons in 1980 and 19,892 tons in 1981 were rerolled from scrap originating in fabricating plants operating in connection with zinc-rolling mills.

¹Includes other plate over 0.875 inch thick, sheet zinc less than 0.875 inch thick, and rod and wire. Bureau of Mines not at liberty to publish separately.

Table 20.—Production and shipments of zinc pigments and compounds1 in the United States

(Metric tons)

	1	980	19	981
Mark the second of the second	Produc- tion	Shipments	Produc- tion	Shipments
Zinc oxide Zinc sulfate Zinc chloride, 50° Baumé ²	_ 145,509 _ 35,159 _ 24,632	135,776 35,696 18,400	145,304 38,682 26,678	148,951 37,879 19,597

¹Excludes leaded zinc oxide and lithopone.

Table 21.—Zinc content of zinc pigments1 and compounds produced by domestic manufacturers

(Metric tons)

			1980				1981	
			ts and com- ced from-	M-4-1			ts and com- ced from-	
* · · · · · · · · · · · · · · · · · · ·	Ore	Slab zinc	Secondary material	Total	Ore	Slab zinc	Secondary material	Total
Zinc oxide Zinc sulfate Zinc chloride ²	54,081 1,045	28,161 	31,306 13,195 5,666	113,548 14,240 5,666	54,569 1,353	25,657 	36,236 14,313 6,043	116,462 15,666 6,043

¹Excludes leaded zinc oxide, zino sulfide, and lithopone.

Table 22.—Distribution of zinc oxide shipments, by industry

(Metric tons)

	Industry	•	1977	1978	1979	1980	1981
Rubber			 101,729	97,989	93.075	61,796	69,364
Paints			 12,519	13,237	12,503	12,165	12,346
Ceramics			 7,354	9,245	9,236	5,702	7.822
Chemicals			26,327	27,057	27,710	17,551	7,822 20,561
Agriculture			 5,499	4,847	4,397	6,930	7,328
Photocopying			 21,352	19,096	16,148	9,604	10,308
Other			 15,322	9,981	16,700	22,028	21,222
Total			 190,102	181,452	179,769	135,776	148,951

Table 23.—Distribution of zinc sulfate shipments

(Metric tons)

Year	Agriculture	Other	Total
1978. 1979. 1980.	12,778 18,512 27,768 30,928	9,045 7,363 7,928 6,951	21,823 25,875 35,696 37,879

Table 24.—Stocks of slab zinc in the United States, December 31

(Metric tons)

	1977	1978	1979	1980	1981
Primary producersSecondary producers	76,637 7,123 86,477 NA	34,570 3,358 99,325 NA	56,971 2,095 92,595 ¹ NA	18,190 4,362 69,599 33,650	41,124 3,540 81,917 68,773
Total	170,237	137,253	151,661	125,801	195,354

²Includes zinc content of zinc ammonium chloride and chromated zinc chloride.

Includes zinc content of zinc ammonium chloride and chromated zinc chloride.

NA Not available.

Stocks on Jan. 1, 1980, were 63,637 tons, which can be considered identical to stocks at yearend 1979.

Table 25.—Consumer stocks of slab zinc at plants, December 31, by grade (Metric tons)

Year	Special High Grade	High Grade	Continuous Galvinizing Grade	Controlled Lead Grade	Prime Western	Remelt	Total
1980	25,459	7,541	934	3,098	32,504	63	69,599
1981	32,467	9,423	2,153	3,805	33,957	112	81,917

Table 26.—Average monthly U.S., LME,¹ and European producer prices for Prime Western zinc and equivalent

(Metallic zinc, cents per pound)

		1980			1981	
Month	United States	LME cash	European producer	United States	LME cash	Europear producer
January	37.44	35.03	35.38	41.19	35.22	37.42
February	37.50	39.39	36.35	41.25	33.11	37.42
March	38.00	33.64	37.42	41.30	34.33	37.42
April	38.01	32.04	36.35	42.56	37.31	38.19
May	37.50	31.31	35.38	45.20	38.56	40.14
June	36.44	30.71	35.38	46.12	38.06	41.96
'uly	35.50	32.32	35.38	46.25	39.21	41.96
August	35.73	34.83	35.38	47.47	43.28	41.96
September	236.63	36.07	35.38	48.72	42.57	45.36
October	237.27	36.49	36.31	45.87	40.41	45.36
November	² 38.58	36.33	37.43	46.15	39.74	45.36
December	² 40.59	35.50	37.43	42.59	38.31	43.09
Average	37.43	34.47	36.13	44.56	38.34	41.30

Source: Metals Week.

Table 27.—U.S. exports of zinc and zinc alloys, by country

	197	79	198	30	198	31
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
Unwrought zinc and zinc						
allovs:						
Argentina	42	\$77	1	\$1		·
Australia	5	25	1	6	1	. \$1
Bahrain			1	1		
Belgium-Luxembourg	-3	16			9	25
Canada	QŘ	277	232	456	320	760
Chile	29 2 2 2	47	97	98	6	17
Colombia	29	- i	•••	•••	Ă	7
Costa Rica	5	5	-6	11	26	44
Dominican Republic	90	76	98	41	26 26	25
Dominican Republic	1	5	38 2	**	Ž	Ē
Ecuador	27	56	20	61	14	- 26
Egypt		23	20	01	1	1
Germany, Federal Republic of	14		63	112	1	Ġ
Guatemala	1	3			1	
Honduras		7.7	2 3 2	.5	- 5	
Israel	20	36	8	81	ð	20
Italy	2 9	2	2	.5	7.7	
Japan		22	21	69	29	88
Korea, Republic of	(¹)	5			16	50
Leeward and Windward Islands _			13	33	15	100
Liberia	- <u>-</u> 2	- 5				
Mexico	98	242	73	544	21	193
Netherlands	19	25	20	45		•
Netherlands Antilles	10	-2				
New Zealand	(1)	2			-1	-7
	(1)	2	1	2 2	1	2
Nicaragua	-5			าร์	10	18
Nigeria	7		3	11	25	64
Panama	7	13	4		20	
Philippines	7	. 9	y	10	2	100
Saudi Arabia	60	100	4	14	28	120

¹London Metal Exchange. ²Based on High Grade zinc.

Table 27.—U.S. exports of zinc and zinc alloys, by country —Continued

e e e e e e e e e e e e e e e e e e e	19'		198	0	19	81
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
nwrought zinc and zinc alloys —Continued						
Singapore			64	\$119	. 1	\$.5
South Africa, Republic of	31	\$47	1	2	30	\$\$ 51
Spain Switzerland	(¹) 3	3 7	9	20	12	22
Taiwan	11	41	45	57	3 7	10
United Arab Emirates	3	4			5	- 19
United Kingdom Venezuela	9 31	115	27	92	57	27
Yugoslavia	91	43	1 9	3 21	14	28
Other	17	45	12	37	⁻ 7	77
Total	645	1,385	787	1,976	701	2,070
rought zinc and zinc alloys:						
AlgeriaArgentina	86	142	25 67	47	2	
Australia	86 9	142 12	67 15	125 37	$\begin{array}{c} 7\overline{4} \\ 32 \end{array}$	145 69
Austria	19	46			9	26
Belgium-Luxembourg Bermuda	110	64	11	20	1	. (
Canada	897	1.601	(1) 63 1	994	909	1,50
Chile	13	18	15	27	13	24
Colombia	33	55	56	125	75	137
Denmark Dominican Republic	- 3 70	6 106	6 704	14	4	12
Ecuador	552	522	21	585 52	10 14	11
Egypt	22	33	20	32	2	38
El Salvador Finland			3	.5	4	11
France		19	72	11 200	9 .	20 20
Germany, Federal Republic of			ĭ	200	4	34
Greece	- 8	12		7.7		
GuatemalaGuyana	5 4	9	- <u>-</u> 9 5	18 12	10	26
Hong Kong	33	49	38	65	4 69	14 80
India	33 28 54	45	24	48	60	124
Israel Italy	54 90	90 173	42 92	76	27	50 99
Japan	18	38	92	241	45 28	99
Japan Korea, Republic of	2	6	31	55	~ 8	65 34
Kuwait	.1	2	1	2	8 5	26
Lebanon Malaysia	15 50	25 84	26 26	51	3	. 8
Mexico	164	376	26 144	78 30 1	6 393	10 786
Netherlands			(¹)	2	6	11
New Zealand Pakistan	18	28	10	16	9	18
Panama	14 3	24 7	14 1	27 2	19	38
Peru	62	136	22	40	7 50	11 109
Philippines	61	105	101	161	37	93
Portugal Saudi Arabia	38 33	67 59	35	67	3	7
Singapore	38	31	11 51	51 59	172 24	378
South Africa, Republic of	100	170	77	137	116	48 197
Spain	69	115	71	126	23 22	46
Sri Lanka	38 4	65 9	22 1	42	22	44
Switzerland			2	6 6	-3	- ₅
Syna	10	18	27	59		
TaiwanThailand	241 12	336 17	127	195	33	85
I urkev	7	12	13 14	25 26	$\bar{1}\bar{2}$	26
United Arab Emirates			4	-8	2	26 7
United Kingdom Uniguay	79 27	187	125	596	128	314
Venezuela	27 49	49 80	6 21	10	8	13
				49	21	61
Other	87	167	63	138	143	315

¹Less than 1/2 unit.

Table 28.—U.S. exports of zinc

			Blo	3locks, pigs,	anodes, etc		Wron	Wrought zinc 8	c and zinc all	оув			4	
Үеаг	Ores	and trates	Unwrought	ught	Unwro allo		Sheets, p	_	Angles, pipes, ro	bars, ds, etc.	Waste and scrai	nd scrap ntent)	Du (blue p	st owder)
	Quantity Value (metric (thoutons) sands)	Value (thou-	Quantity (metric tons)	Value (thou-	Quantity Value (metric (thoutons) sands)	•	Quantity Valu (metric (tho tons) sand	日子子画	Quantity Value (metric (thou- tons) sands)	Value (thou-	Quantity (metric tons)	Value (thou-sands)	Quantity Value (metric (thou tons) sands	Value (thou-
1979 1980	20,095 54,457 54,232	\$7,317 29,473 29,280	279 302 323	\$558 664 812	366 485 378	\$832 1,312 1,258	1,824 2,103 1,500	\$3,385 3,810 3,226	1,461 804 1,160	\$1,839 1,268 1,972	28,149 29,542 30,046	\$14,142 14,121 17,611	966 4,512 5,003	\$1,450 7,491 7,841

Table 29.—U.S. exports of zinc ores and concentrates, by country

(Zinc content)

	19	80	19	1981		
Country	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)		
Algeria	3,469	\$2,592	5.173	\$4,156		
Belgium-Luxembourg	13,512	8,463	10.868	4,079		
Bulgaria	10,012	0,400				
	26,367	11 005	6,565	4,992		
	20,301	11,095	21,748	9,587		
Dominican Republic	4	. 8	1	1		
Ecuador			5	2		
Finland	6,447	4,298	57	13		
France	654	1.764				
Germany, Federal Republic of	3,693	1.100	6,240	3,493		
Italy	0,000	1,100	1,860	1,457		
Korea, Republic of			1,000	1,401		
Leeward and Windward Islands		·	1	_ T		
			82	36		
Mexico	15	17	2	2		
Netherlands			165	271		
Philippines			10	6		
Saudi Arabia	52	38	48	56		
Singapore	. 3	1				
	241	102	- - -			
	241	102	1 40			
United Kingdom			1,401	1,123		
Total	54,457	29,473	54,232	29,280		

Table 30.—U.S. general imports of zinc, by country

	19	79	198	30	198	31
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
ORES AND CONCENTRATES						
(zinc content)					*	
Argentina	3	\$3				
Australia	708	94	1.473	\$195	903	\$20
Belgium	ıńo	34	1,410	\$130	497	24
Bolivia	11.935	5.157			431	24
Canada	143,957	57,938	63,017	25,631	53,673	22,60
Chile	1,240	683	14	20,001	432	22,00
Colombia	16	2			6	20
Germany, Federal Republic of	7.802	4.101	2,422	$1,\bar{271}$	8.687	5,30
Honduras	13,383	5,112	7,031	2,558	4.167	2,62
Mexico	16,207	5,007	15,790	4.053	20.045	10,96
Nicaragua	4	3	20,100	2,000	20,010	10,00
Peru	29,697	14,419	40,176	19,879	29,326	20,34
Total	224,952	92,519	129,923	53,589	117,736	62,58
BLOCKS, PIGS, OR SLABS ¹ Algeria	5,317 33 721	4,250 25,634	6,005	4,497	721	
Algeria Australia	5,317 33,721	4,250 25,634	24,798	18,046	721 25,830	
Algeria Australia	33,721	25,634	24,798 629	18,046 556	25,830	22,04
Algeria Australia Austria Selgium-Luxembourg			24,798	18,046	25,830 14,018	22,04 12,15
Algeria ustralia Justria — — — — — — — — — — — — — — — — — — —	33,721	25,634 8,153	24,798 629 2,310	18,046 556 2,336	25,830 14,018 1,493	22,04 12,15 1,15
Algeria Austriaia Austria Selgium-Luxembourg Srazil Canada	33,721 11,228	25,634 8,153 197,270	24,798 629	18,046 556	25,830 14,018 1,493 308,647	22,04 12,15 1,15 285,64
Algeria Australia Austria Selgium-Luxembourg Brazil Janada Jhile	33,721 11,228	25,634 8,153	24,798 629 2,310 280,075	18,046 556 2,336 222,411	25,830 14,018 1,493 308,647 1,450	22,04 12,15 1,15 285,64 1,21
Algeria Justralia Austria Belgium-Luxembourg Frazil Janada Jhile Jhina	33,721 11,228 259,543	25,634 8,153 197,270	24,798 629 2,310	18,046 556 2,336	25,830 14,018 1,493 308,647	22,04 12,15 1,15 285,64 1,21 1,14
Algeria Australia Austria Belgium-Luxembourg Frazi Canada Chile Chile Sinian Cinland	33,721 11,228 259,543 208 26,410 13,445	25,634 8,153 197,270 -90	24,798 629 2,310 280,075 1,220	18,046 556 2,336 222,411 886	25,830 14,018 1,493 308,647 1,450 1,492	22,04 12,15 1,15 285,64 1,21 1,14 25,23
Algeria Austrialia Austrialia Selgium-Luxembourg Brazil Anada Anile Ahile Ahile Finland France France	33,721 11,228 259,543 208 26,410	25,634 8,153 197,270 	24,798 629 2,310 280,075 1,220 18,128	18,046 556 2,336 222,411 886 12,998	25,830 14,018 1,493 308,647 1,450 1,492 29,156	22,04 12,15 1,15 285,64 1,21 1,14 25,23 16,49
Algeria Australia Australia Selgium-Luxembourg Frazi Anada Alile Alile Alile Alina France France Jermany, Federal Republic of	33,721 11,228 259,543 208 26,410 13,445 19,110	25,634 8,153 197,270 90 21,361 10,608 14,813	24,798 629 2,310 280,075 1,220 18,128 6,835	18,046 556 2,336 222,411 886 12,998 5,619	25,830 14,018 1,493 308,647 1,450 1,492 29,156 17,882	22,04 12,15 1,15 285,64 1,21 1,14 25,23 16,49 24,22
Algeria Australia Austria Belgium-Luxembourg Brazil Lanada Lhile Lhina France Jernand Jernand Jernand Jernand Jernany, Federal Republic of	33,721 11,228 259,543 208 26,410 13,445 19,110 105	25,634 8,153 197,270 90 21,361 10,608 14,813 79	24,798 629 2,310 280,075 1,220 18,128 6,835 12,056	18,046 556 2,336 222,411 886 12,998 5,619 8,939	25,830 14,018 1,493 308,647 1,450 1,492 29,156 17,882 22,817 65	22,04 12,15 1,15 285,64 1,21 1,14 25,23 16,49 24,22
Algeria Austrialia Austrial Belgium-Luxembourg Brazil Lanada Lhile Lhile China Finland France Bermany, Federal Republic of Jana Janada Janada Janada Janada Janada Janada Janada Janada Janada	33,721 11,228 259,543 208 26,410 13,445 19,110 105 5,492	25,634 8,153 197,270 90 21,361 10,608 14,813 79 3,880	24,798 629 2,310 280,075 1,220 18,128 6,835	18,046 556 2,336 222,411 886 12,998 5,619	25,830 14,018 1,493 308,647 1,450 1,492 29,156 17,882 22,817 65 7,625	22,04 12,15 1,15 285,64 1,21 1,14 25,23 16,49 24,22 2 7,29
Algeria Justralia Austria Belgium-Luxembourg Frazil Anada Lhile Lhile China Finland France Jermany, Federal Republic of Jernan Jong Kong Laiv Laiv Laiv Luxembourg Laiv Laiv Laiv Laiv Laiv Laiv Laiv Laiv	33,721 11,228 259,543 208 26,410 13,445 19,110 105 5,492 10,118	25,634 8,153 197,270 90 21,361 10,608 14,813 79 3,880 7,971	24,798 629 2,810 280,075 1,220 18,128 6,835 12,056 1,999	18,046 556 2,336 222,411 886 12,998 5,619 8,939 1,514	25,830 14,018 1,493 308,647 1,450 1,492 29,156 17,882 22,817 65 7,625 7,090	22,04 12,15 1,15 285,64 1,21 1,14 25,23 16,49 24,22 7,29 6,20
Algeria Australia Austria Selgium-Luxembourg Brazil Janada Anile Anile Anina Finland France Jermany, Federal Republic of Jong Kong Laly Japan Japan Jorea, Corea, Republic of	33,721 11,228 259,543 208 26,410 13,445 19,110 105 5,492 10,118 2,300	25,634 8,153 197,270 90 21,361 10,608 14,813 79 3,880 7,971 1,721	24,798 629 2,810 280,075 1,220 18,128 6,835 12,056 1,999	18,046 556 2,336 222,411 886 12,998 5,619 8,939 1,514 1,047	25,830 14,018 1,493 308,647 1,450 1,492 29,156 17,882 22,817 65 7,625 7,090 1,500	22,04 12,15 1,15 285,64 1,21 1,14 25,23 16,49 24,22 7,29 6,20 1,24
Algeria Justralia Justralia Justria Jelgium-Luxembourg Jerazi Janada Jihile Jihile Jihile Jihila Jinland Jirance Jermany, Federal Republic of Jihana Jong Kong Jaly Japan Jorea, Republic of Jerazi Je	33,721 11,228 259,543 208 26,410 13,445 19,110 105 5,492 10,118	25,634 8,153 197,270 90 21,361 10,608 14,813 79 3,880 7,971	24,798 629 2,810 280,075 1,220 18,128 6,835 12,056 1,999	18,046 556 2,336 222,411 886 12,998 5,619 8,939 1,514	25,830 14,018 1,493 308,647 1,450 1,492 29,156 17,882 22,817 65 7,625 7,090 1,500 15,091	22,04 12,15 1,15 285,64 1,21 1,14 25,25 16,49 24,22 7,29 6,20 1,24
Algeria Justralia Justralia Justria Jelgium-Luxembourg Jerazi Janada Janada Janida Jinland Jerance Jermany, Federal Republic of Jermany, Federal Republic of Jermany J	33,721 11,228 259,543 208 26,410 13,445 19,110 105 5,492 10,118 2,300	25,634 8,153 197,270 90 21,361 10,608 14,813 79 3,880 7,971 1,721	24,798 629 2,810 280,075 1,220 18,128 6,835 12,056 1,999	18,046 556 2,336 222,411 886 12,998 5,619 8,939 1,514 1,047	25,830 14,018 1,493 308,647 1,450 1,492 29,156 17,882 22,817 65 7,625 7,090 1,500 15,091 994 20,216	22,04 12,15 1,15 285,64 1,21 1,14 25,23 16,49 24,22 2 7,29 6,20 1,24 13,45 83 17,57
Algeria Australia Australia Selgium-Luxembourg Srazi Sanada Shile Shina Sinland Sirance Sermany, Federal Republic of Jhana Gong Kong taly Sapan Korea, Republic of Mexico Namibia Vetherlands Norway Seru	33,721 11,228 259,543 208 26,410 13,445 19,110 105 5,492 10,112 2,300 39,832	25,634 8,153 197,270 90 21,361 10,608 14,813 79 3,880 7,971 1,721 28,873 2,314 5,488	24,798 629 2,310 280,075 1,220 18,128 6,835 12,056 1,999 1,400 23,859	18,046 556 2,336 222,411 886 12,998 5,619 8,939 1,514 1,047 17,881	25,830 14,018 1,493 308,647 1,450 1,492 29,156 17,882 22,817 65 7,625 7,090 15,091 20,216 10,801 43,339	22,04 12,15 1,15 285,64 1,21 1,14 25,23 16,49 24,22 2 7,29 6,200 1,24 13,45 8,35 17,57 9,20 37,83
Algeria Australia Australia Selgium-Luxembourg Srazil Canada Chile Chile China Cinland Cirance Germany, Federal Republic of Chang Kong taly Sapan Corea, Republic of Mexico Vermio	33,721 11,228 259,543 208 26,410 13,445 19,110 105 5,492 10,118 2,200 39,332 3,180 7,394	25,634 8,153 197,270 90 21,361 10,608 14,813 79 3,880 7,971 1,721 28,873 2,314	24,798 629 2,310 280,075 1,220 18,128 6,835 12,056 1,999 1,400 23,859 6,508	18,046 556 2,336 222,411 886 12,998 5,619 8,939 1,514 1,047 17,881 5,183	25,830 14,018 1,493 308,647 1,450 1,492 29,156 617,882 22,817 65 7,625 7,625 7,625 7,690 1,500 15,091 994 20,216 10,801	577 22,04 12,15 285,64 1,21 1,21 1,21 25,23 16,49 24,22 2,7,29 6,200 1,24 13,45 8,35 17,57 9,20 37,83 57,7 23,54

Table 30.—U.S. general imports of zinc, by country —Continued

	197	9	198	0	198	31
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
BLOCKS, PIGS, OR SLABS ¹ — Continued			1			
United Kingdom Yugoslavia	2,383	\$1,315	4,112	\$3,142	13,280 999	\$11,012 867
ZaireZambia	14,880 4,904	11,812 2,277	5,002	3,4 43	28,540 377	22,778 296
Total	527,212	392,551	410,642	319,619	602,694	542,618

¹In addition, in 1981, 165 tons of zinc anodes were imported from Canada, Denmark, the Federal Republic of Germany, Japan, the Netherlands, Norway, Sweden, and Taiwan.

Table 31.—U.S. imports for consumption of zinc, by country

	197	79	19	30	199	81
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
ORES AND CONCENTRATES						
(zinc content)	8 - 5 -					
Argentina	3	\$ 3				
Australia	50	`7	8,782	\$4,590	1,964	\$305
Belgium		·			497	249
Bolivia	11,935	5,157				
Canada	9,912	3,277	110,285	42,093	179,566	70,037
Chile	1,240	683	14		432	29
Colombia Germany, Federal Republic of	7.802	4.101	2.422	1,271	8.687	5.30
Honduras	13,383	5,112	7,031	2,558	4,363	2,677
Mexico	13,457	4,340	13,660	3,640	21,120	11,16
Nicaragua	4	3		0,010		
Peru	29,697	14,419	40,176	19,879	29,075	20,230
Total	87,499	37,104	182,370	74,033	245,710	110,258
BLOCKS, PIGS, OR SLABS ¹						
Algeria	4.276	3.415	6,005	4,497	721	579
Angola	989	793	0,000	2,20		
Australia	33,721	25,634	24,798	18,046	25,830	22,043
Austria	·		629	556	·	·
Belgium-Luxembourg Brazil	12,327	9,061	2,310	2,336	14,018 1,493	12,151 1,159
Canada	259,543	197,270	280,075	222,411	308,647	285,642
Chile	200,010	101,210	200,010	man, art	1,450	1,212
China	236	93	1.327	934	1,492	1,140
Finland	25,160	20,298	18,128	12,998	29,156	25,23
rance	13,792	10,873	7,799	6,486	18,135	16,38
France Germany, Federal Republic of	19,110	14,813	12,056	8,939	22,727	24,159
Jhana	1,003	589	=	7.7	65	20
long Kong	- 405	0.000	105	62	a a55	0.537
taly	5,492	3,880 7,971	1,999	1,514	6,626 15,003	6,518 12,456
Japan Korea, Republic of	10,118 2,300	1.721	1.400	1.047	1.500	1.240
Mexico	36,833	27,385	23,652	17,728	15,146	13,491
Namibia	00,000	21,000	20,002	11,120	994	836
Netherlands	3,180	2.314	6,508	5,183	20.915	18.010
Norway	-,		·		9,934	8,389
Peru	7,394	5,488	3,951	2,798	43,339	37,836
Poland	100	75	==	_ ===	600	578
Spain Switzerland	66,738	43,703	10,727	7,592	28,671	23,545
Switzerland	104	,1				
Faiwan	104 1.200	16 848	1,028	731		
Tanzania United Kingdom	2,383	1,315	2,064	1.607	15,630	12,770
Yugoslavia	2,000	1,010	2,004	1,007	15,650	867
Zaire	14.829	11,767			28,540	22,778
Zambia	3,301	1,276	5,602	3,823	376	296
Total	524,130	390,599	410,163	319,288	612,007	549,326

¹In addition, in 1981, 165 tons of zinc anodes were imported from Canada, Denmark, the Federal Republic of Germany, Japan, the Netherlands, Norway, Sweden, and Taiwan.

Table 32.—U.S. imports for consumption of zinc

	Ores and co		Blocks sla		Sheets, pla other		Wast	
	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
1979 1980 1981	87,499 182,370 245,710	\$37,104 74,033 110,253	524,130 410,163 612,007	\$390,599 319,288 549,326	244 1,342 332	\$267 1,041 472	3,259 3,470 5,782	\$1,530 1,361 2,578
	Dross and s		Zinc fume (zinc content)			Dust, powder, flakes		Fotal .
	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou sands	(the	alue ² ousands)
1979 1980 1981	4,454 4,062 7,629	\$1,735 1,732 4,090	28 25 184	\$2 7 61	3,586 3,928 7,993	3,6	72	\$484,677 401,134 676,299

 $^{^1\}text{Unwrought alloys of zinc were imported as follows: } 1979-78 \text{ metric tons ($72,725); } 1980-41 \text{ metric tons ($37,846); and } 1981-102 \text{ metric tons ($40,713).}$ $^2\text{In addition, manufactures of zinc were imported as follows: } 1979-\$213,699; 1980-\$254,317; \text{ and } 1981-\$437,930.$

Table 33.—U.S. imports for consumption of zinc pigments and compounds

		1980		1981		
	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)		
Zinc oxide		29,843	\$23,727	29,109	\$25,333 689	
Zinc sulfide		409	401	661	689	
Lithopone	^	1.189	598	1.594	692	
Zinc chloride		1,008	726	1,434	880	
		3,871	1,350	2,857	1.186	
		20	37	41	-,-86	
		337	371	221	340	
Zinc compounds, n.s.p.f		1.951	2,852	2,698	4,295	

Table 34.—Zinc: World mine production (content of ore), by continent and country¹

Continent and country	1977	1978	1979	1980 ^p	1981 ^e
North America:					
Canada ²	1.070.5	1.066.9	1.099.9	894.6	31,097.
Guatemala	1.0	1.0	e _{1.0}	e _{1.0}	_,
Honduras	26.5	24.3	22.0	19.6	18.
Mexico ²	265.5	244.9	245.5	238.2	3211.
Nicaragua	11.2	3.6			
United States ²	407.9	302.7	267.3	317.1	3312.
South America:					
Argentina	39.2	36.6	37.5	33.7	30.
Bolivia	61.4	53.9	51.6	50.3	347.
Brazil	*57.6	r _{58.7}	89.9	101.0	103.
Chile ²	3.9	1.8	1.8	1.1	1.
Colombia					-
Ecuador	2.0	1.3	e1.6	e1.6	1.
Peru ²	r405.3	r402.6	432.0	487.6	3496.
Curope:				20110	
Austria	19.7	22.5	20.5	19.1	318.
Bulgaria ^e	87.0	88.0	85.0	87.0	90
Czechoslovakia	9.4	8.8	8.8	7.2	7.
Finland	62.9	52.9	51.6	58.4	353.
France	41.8	39.9	36.6	36.8	337
Germany, Federal Republic of	111.4	97.4	96.9	99.7	391.
Greece	18.0	25.6	23.2	25.9	³26.
Greenland	76.6	82.4	87.3	86.8	386
Hungary	r _{3.0}	r _{2.8}	2.6	2.8	2
Ireland	116.3	176.0	212.3	228.7	120
Italy	79.3	74.0	66.3	58.4	341
Norway	30.3	28.9	29.1	28.2	331.
Poland ²	188.0	194.0	182.7	187.8	3146.

Table 34.—Zinc: World mine production (content of ore), by continent and country¹—Continued

Continent and country	1977	1978	1979	1980 ^p	1981 ^e
Europe —Continued			55 . 54		
Romania	e62.0	60.0	60.0	60.0	55.0
Spain	98.3	146.8	142.7	183.1	180.0
Sweden	140.2	162.8	169.9	167.4	3180.9
U.S.S.R. ^{e 2}		770.0	770.0	785.0	790.0
United Kingdom		2.7	6	4.4	9.6
Yugoslavia		103.8	101.7	e94.3	117.9
Africa:		100.0	202	V 2.10	
Algeria	2.7	4.8	4.9	8.2	6.2
Congo (Brazzaville)		4.8	e4.0	e3.5	e3.0
Morocco		4.3	4.5	6.1	6.8
Namibia	38.3	36.6	29.0	31.9	339.6
Nigeria		90.0	25.0	91.5	.1
South Africa, Republic of	69.6	65.2	53.8	79.1	86.6
Tunisia		7.4	8.7	7.6	37.8
	73.0	73.7	68.0	67.0	76.0
		50.0	46.6	35.5	22.2
Zampia	45.0	90.0	40.0	30.0	22.2
Asia:	1.8	2.6	3.0	4.1	4.5
Burma				160.0	
China ²		160.0	160.0	100.0	160.0
Cyprus		Too. 0	o= =	00 F	301.0
India		r36.3	39.5	26.5	³ 31.6
Iran		^e 45.0	^e 25.0	20.0	15.0
Japan ²	275.7	274.6	243.4	238.1	242.0
Korea, North ^{e 2}	150.0	145.0	145.0	140.0	140.0
Korea, Republic of	68.4	66.4	62.5	56.8	356.5
Philippines		9.5	9.7	6.8	6.9
Thailand ⁴					
Turkove		40.7	27.1	20.4	20.4
Vietnam ^e		8.0	6.0	6.5	6.0
Oceania:		0.0	5.5	0.0	0.0
Australia	491.6	473.3	531.8	493.7	3508.4
New Zealand	1	e.1	e.1	**e.i	.1
Total	r _{5,919.6}	r _{5,845.9}	5,870.5	5,778.7	5,844.2

Table 35.—Zinc: World smelter production, by country¹

(Thousand metric tons)

Countr	y	1977	1978	1979	1980 ^p	1981 ^e
North America:						
Canada, primary		494.9	495.4	580.4	591.6	² 618.6
Mexico, primary		174.4	173.1	161.7	143.9	² 126.5
United States:						
Primary		408.4	406.7	472.5	340.5	² 343.7
Secondary		45.9	34.8	53.2	29.4	² 49.3
Total South America:		454.3	441.5	525.7	369.9	² 393.0
Argentina, primary	· 	29.0	23.9	36.7	25.4	23.0
Brazil:						
Primary		47.0	56.1	63.5	78.3	2 91.9
Secondary	<u>-</u>	8.5	12.2	12.7	17.7	² 19.0
Total		55.5	68.3	76.2	96.0	² 110.9
Peru, primary		66.9	^r 62.9	68.2	63.8	² 125.0
Europe: Austria, primary and seconds	ary	16.7	21.7	23.2	22.1	23.2
Belgium:	_					_
Primary		247.6	233.9	256.7	239.0	2 247.2
Secondary		10.6	^r 7.6	9.1	10.2	10.2
Total		258.2	^r 241.5	265.8	249.2	257.4
10vdi		200.2	241.0	200.0	₩13.E	201.

^{*}Estimated. *Preliminary. *Revised.

1 Table includes data available through July 7, 1982.

2 Recoverable content of concentrates.

3 Reported figure.

*Content of zinc concentrates; additional quantities of zinc may be contained in lead concentrates produced, but information is inadequate to make reliable estimates of such production.

Table 35.—Zinc: World smelter production, by country 1 —Continued

Country	1977	1978	1979	1980 ^p	1981 ^e
Europe —Continued					
Bulgaria, primary and secondary	90.0	91.0	89.0	90.0	90.0
Czechoslovakia, primary and secondary	e11.5	e _{11.5}	11.5	9.6	9.6
Finland, primary	138.0	132.9	147.1	146.7	² 139.8
France:		1-1			Para San
Primary ^e	223.3	216.2	229.0	232.8	246.8
Secondary ^e	15.0	15.0	20.0	20.0	25.0
Total ^e	238.3	231.2	249.0	252.8	² 271.8
German Democratic Republic,					
primary and secondary	15.5	16.0	17.0	17.5	17.5
Germany, Federal Republic of:					
Primary	335.1	288.7	333.7	² 342.8	² 331.2
Secondary	19.7	18.1	21.8	27.8	² 35.4
Total	354.8	306.8	355.5	370.6	² 366.6
Greece, secondary	(3)	r(4)	NA	.3	NA
Hungary, secondary	`. 6	€ .6	e.6	e.6	.6
Italy, primary and secondary	169.4	177.6	202.8	206.4	² 180.9
Netherlands, primary and secondary	109.4	135.4	154.0	169.5	² 182.6
Norway, primary	69.8	71.6	77.8	79.4	² 80.3
Poland, primary and secondary	228.0	222.0	209.0	215.3	² 167.1
Portugal, primary		45.5	45.5	2.0	9.0
Romania, primary and secondary Spain, primary	51.9 156.6	49.8 177.0	46.5 182.7	45.9 151.8	40.0 184.0
U.S.S.R.: Primary	735.0	770.0	770.0	785.0	790.0
Secondary	80.0	80.0	80.0	80.0	80.0
	815.0	850.0	850.0	865.0	870.0
United Kingdom, primary and secondary	81.5	73.6	76.7	86.7	81.7
Yugoslavia:					
Primary	89.2	e85.2	e87.9	e77.5	86.4
Secondary	9.6	e10.0	e11.0	e7.0	10.0
Total	98.8	95.2	98.9	84.5	² 96.4
Africa:		90.2	30.3	64.5	-90.4
Algeria, primary	^r 16.0	25.7	27.3	30.0	33.2
South Africa, Republic of, primary ⁵	76.0	79.1	75.4	81.4	287.2
Zaire, primary	51.0	43.5	43.5	43.8	² 57.5
Zambia, primaryAsia:	40.1	42.4	38.2	32.7	² 33.2
China, primary and secondary	155.0	160.0	160.0	160.0	160.0
India:					
Primary	36.0	59.4	63.3	43.6	² 57.4
Secondary	NA.	NA	NA	.3	2.2
Total	36.0	59.4	63.3	43.9	² 57.6
=	30.0	00.4	00.0	40.5	51.0
Japan: Primary	770 4	707.0	700.4	707 O	2000 0
Secondary	778.4 26.6	767.9 24.8	789.4 27.0	735.2 49.9	² 670.2 ² 49.9
_ •					
	805.0	792.7	816.4	785.1	² 720.1
Total	195 0				
Korea, North, primary ⁵	135.0	130.0	120.0	120.0	120.0
Korea, North, primary ⁵ Korea, Republic of, primary	32.8	59.0	83.0	120.0 79.1	² 83.9
Korea, North, primary ⁵					

Table 35.—Zinc: World smelter production, by country¹ —Continued

Country	1977	1978	1979	1980 ^p	1981 ^e
Oceania: Australia: Primary Secondary ^e	249.7 6.7	290.1 4.7	305.1 5.0	301.0 5.0	² 295.9 5.0
	256.4	294.8	310.1	306.0	² 300.9
Grand total	r5,812.2	r5,884.3	6,268.6	6,057.1	6,139.6
Of which: PrimarySecondaryUndifferentiated	^r 4,660.1 223.2 ^r 928.9	^r 4,717.9 ^r 207.8 ^r 958.6	5,038.5 240.4 989.7	4,785.9 248.2 1,023.0	4,902.4 284.6 952.6

^{*}Estimated. *Preliminary. *Revised. NA Not available.

1 Table combines data provided in tables 39-40 of the 1977 edition of this chapter. Wherever possible, detailed information on raw material source of output (primary—directly from ores, and secondary—from scrap) has been provided. In cases where raw material source is unreported and insufficient data are available to estimate the distribution of the total, that total has been left undistributed (primary and secondary). To the extent possible, this table reflects metal production at the first measurable stage of metal output. Table includes data available through July 7, 1982.

2 Reported figure.

3 Revised to zero.

4 Less than 50 metric tons.

5 May include small quantities of secondary.

Zirconium and Hafnium

By William S. Kirk¹

Zircon production by domestic mining companies increased by 15% in 1981. Zircon exports increased while imports decreased. Domestic consumption increased over that of 1980. Production and shipments of zirconium mill products fell slightly in 1981 owing to the continued weak demand in nuclear powerplant construction. Demand for hafnium in superalloys dropped owing to the decline in production of jet aircraft engines.

Zircon use was largely in foundry sands, refractories, abrasives, ceramics, and as a source of zirconium metal. Zirconium metal was used mostly in nuclear reactors, corrosion-resistant equipment for industrial plants, and refractory alloys. Hafnium was used in nuclear reactors, refractory alloys,

and cutting-tool alloys.

The second domestic hafnium supplier came online in 1981. The first shipment of hafnium control rods was made to a modern commercial nuclear powerplant. A company in France brought online a new zirconium-hafnium separation process.

Legislation and Government Programs.—There were no stockpile goals for zirconium or hafnium materials. The U.S. Department of Energy had an inventory as of December 31, 1981, of approximately 150 short tons of zirconium sponge, 1,000 tons of zirconium ingots and shapes, 1 ton of zirconium crystal bar, 2 tons of zirconium scrap, 27 tons of hafnium ingots and shapes, 12 tons of hafnium crystal bar, 5 tons of hafnium oxide, and 1 ton of hafnium scrap.

Table 1.—Salient zirconium statistics in the United States

(Short tons)

	1977	1978	1979	1980	1981
Zircon:					
Production	· W	w	W.	w	W
Exports	14.364	7.671	8,856	7,727	11,630
Imports	65,204	91,009	110,842		91,108
Consumption ^{e 1}	162,000	164,000		r140,000	150,000
Stocks, yearend, dealers' and consumers'	26,052	38,307		r69,473	50,310
Stocks, yearend, dealers and consumers	20,002	90,901	31,400	00,410	30,510
Zirconium oxide:					
Production ³	7,414	8,605	11,130	10,218	8,251
Producers' stocks, yearend ³	718	931	975	r _{1.216}	1,470
110440010 5000110, your old		,		,	

eEstimated. Revised. W Withheld to avoid disclosing company proprietary data.

¹Includes insignificant amounts of baddeleyite.

²Excludes foundries.

³Excludes oxide produced by zirconium metal producers.

Table 2.—Producers of zirconium and hafnium materials in 1981

Company	Company Location	
ZIRCONIUM MATERIALS		
Associated Minerals (USA) Ltd., Inc	Bow, N.H	Oxide.
Do	Green Cove Springs, Fla	Zircon
The Carborundum Co	Falconer, N.Y	Refractories and oxide.
C-E Cast Industrial Products	Long Beach, Calif	Milled zircon.
C-E Refractories, Div. of Combustion Engineering, Inc	St. Louis, Mo	Refractories.
Do	Camden, N.J	Refractories and zircon.
Do	Vandalia, Mo	Do.
Do CIBA-GEIGY Corp., Drakenfeld Colors	Washington, Pa	Ceramic colors and milled zir-
Continental Mineral Processing Corp	Sharonville, Ohio	con. Milled zircon.
Corhart Refractories Co	Buckhannon, W. Va	Refractories.
Do	Corning, N.Y	
Do	Louisville, Kv	Do.
Didion Torrion Defendance Com-		Do.
Didier-Taylor Refractories Corp	Cincinnati, Ohio	Do.
T 10	South Shore, Ky	Do.
E. I. du Pont de Nemours & Co	Wilmington, Del	Zircon and foundry mixes.
Elkem Metals Co	Alloy, W. Va	Alloys.
Ferro Corp	Cleveland, Ohio	Ceramics and ceramic colors.
Foote Mineral Co	Cambridge, Ohio	Alloys.
A. P. Green Refractories Co., Remmey Div	Philadelphia, Pa	Refractories.
Harbison-Walker Refractories Co	Mount Union, Pa	Do.
Lincoln Electric Co., Inc	Cleveland, Ohio	Welding rods.
M & T Chemicals, Inc.	Andrews, S.C	Milled zircon.
Magnesium Elektron, Inc	Flemington, N.J	Alloys, chemicals, oxide.
Norton Co	Huntsville, Ala	Oxide.
Reading Allovs	Robesonia, Pa	Allovs.
Ronson Metals Corn	Newark, N.J	Baddelevite (oxide).
Sherwood Refractories Co	Cleveland, Ohio	Zircon cores.
Shieldellow Corn	Newfield, N.J	
Shieldalloy CorpSola Basic Industries, Engineered Ceramics Div		Welding rods and alloys.
TAM Ceramics	Gilberts, Ill	Ceramics.
	Hightstown, N.J	Milled zircon, oxide, alloys, chloride.
Teledyne Wah Chang Albany	Albany, Oreg	Oxide, chloride, sponge, ingot, powder, crystal bar, mill products.
Thiokol Corp., Ventron Chemicals Div	Beverly, Mass	Alloys and powder.
Transalco Inc	Dresden, N.Y	Chemicals, ceramics, oxide.
Western Zirconium Co	Ogden, Útah	Oxide, sponge, ingot, mill products.
Zedmark, Inc.	Butler, Pa	Refractories.
ZIRCOA Products	Cleveland, Ohio	Oxide and ceramics.
HAFNIUM MATERIALS	Cicromiu, Onto	Oxide and Cerailles.
Teledyne Wah Chang Albany	Albany, Oreg	Oxide, sponge, ingot, crystal bar.
Western Zirconium Co	Ogden, Utah	Oxide, sponge, crystal bar, ingot.

DOMESTIC PRODUCTION

Zircon was recovered as a coproduct of titanium mineral concentrates from mineral sands at the dredging and milling facilities owned and operated by E. I. du Pont de Nemours & Co. at Starke and Highland, Fla., and Associated Minerals (USA) Ltd. Inc. (AMC) at Green Cove Springs, Fla. Production data were withheld from publication to avoid disclosing company proprietary data. The combined zircon capacity at these plants was estimated to be 100,000 tons per year.

Four firms produced 47,527 tons of milled (ground) zircon in 1981 from domestic and imported concentrates. Four companies, excluding those that produce metal, produced 8,251 tons of zirconium dioxide.

The production of alloys containing 3% to

70% zirconium increased 17% over that of 1980. Hafnium crystal bar production was estimated at 50 tons in 1981.

Teledyne Wah Chang Albany (TWCA) was reportedly working at less than 50% of its production capacity in 1981 because of reduced demand for zirconium resulting from the continued slowdown in commercial nuclear powerplant construction. About one-half of the approximately 180 TWCA employees laid off in 1980 were rehired in 1981. In August 1981, TWCA restarted its sand-chlorination and separation departments which had been closed in 1980.

A new hafnium supplier came online in 1981. Western Zirconium Co., of Ogden, Utah, completed its \$3 million expansion to recover hafnium as a byproduct of its zirconium operation. Also during the year, Western Zirconium neared the end of its material qualification phase, a qualitycontrol process required by its customers using zirconium in nuclear reactors.

Toward the end of the year, the company began converting 500,000 pounds of its unused zirconium production capacity to titanium production capacity.

CONSUMPTION AND USES

Zirconium compounds. natural and manufactured, were used in refractories, ceramics, polishes, glazes, enamels, welding rods, chemicals, and sandblasting. Zirconium chemicals were finding increased application in the paint, textile, and pharmaceutical industries.

Foundries used about 50% of domestic zircon consumption in 1981. The remainder was consumed by refractory, abrasive, ceramic, metal, and other industries. Domestic zircon was marketed in proprietary mixtures as foundry sand; in refractory sand blends with kyanite, sillimanite, and staurolite; in weighting agents; in zircon-TiO2 blends for welding-rod coatings: and for sandblasting applications.

Zircon had largely replaced tin oxide as the major opacifying agent in ceramics because of its low price and its ability to combine well with the majority of colors used.2

In 1981, baddeleyite from the Republic of South Africa was used mainly in the manufacture of alumina-zirconia abrasives and also for ceramic colors, refractories, and

The use of yttria-stabilized zirconia in ceramic coatings in aircraft engines continued to grow in 1981, but quantities of zirconia consumed remained small.

Zirconia-based solids were among the materials being developed for solar collectors.3 Another new market for zirconia ceramics was expected to open up in the automobile industry, where they would be the working components in oxygen sensors that are a part of microprocessor control of engines.4

The nuclear power industry accounted for 90% of the consumption of zirconium metal with the remainder being used primarily for corrosion-resistant applications in the chemical industry and for superalloys and

electronics. Shipments of zirconium mill products declined for the fourth consecutive year in 1981.5 The decline in demand was a result of the continued cancellations and delays in the construction of commercial nuclear powerplants. There were no new orders for commercial nuclear powerplants for the third consecutive year in 1981, and during the year, orders for six units were canceled.

Hafnium metal consumption for nuclear reactor control rods rose during the year. In 1981, the first sale of hafnium control rods to be used in a modern commercial nuclear power reactor was made: approximately 8.000 pounds of hafnium control rods. manufactured by Western Zirconium, a subsidiary of Westinghouse Electric Corp., was sold to Texas Utilities Co. for use in its Commanche Peak reactor.

Table 3.—Estimated consumption of zircon in the United States, by end use

(Short tons)

Use	1980	1981
Zircon refractories ²	r25,000	25,000
AZS refractories ³	8,000	5,000
Zirconia and AZ abrasives	18,000	13,000
Allovs6	2,000	5,000
Foundry applications	55,000	75,000
Other ⁷	32,000	27,000
Total	r140,000	150,000

Revised.

¹Based on incomplete reported data.

²Dense and pressed zircon brick and shapes.

³Fused cast and bonded alumina-zirconia-silica-based

⁴Excludes oxide produced by zirconium metal producers. ⁵Alumina-zirconia-based abrasives ⁶Excludes alloys above 90% zirconium.

⁷Includes chemicals, metallurgical-grade zirconium te-trachloride, sandblasting, welding rods, and miscellaneous

Table 4.—Estimated¹ consumption of zirconium oxide² in the United States, by end use

(Short tons)

Use	1980	1981	
AZ abrasives	4,500	4,500	
AZS refractories ³	r2,000	1,000	
Other refractories	2,000	2,000	
Chemicals	700	600	
Glazes, opacifiers, colors	900	500	
Total	r _{10,100}	8,600	

Table 5.—Yearend stocks of zirconium and hafnium materials

(Short tons)

Item	1980	1981
Zircon concentrate held by dealers and consumers, excluding foundriesMilled zircon held by dealers and consumers, excluding foundries	^r 64,960 ^r 4,513	44,532 5,778
Zirconium.¹ OxideSponge, ingot, scrap, alloys	r _{1,216} 469	1,470 594
Refractories Hafnium: Sponge and crystal bare	^r 6,434 35	6,786 35

Table 6.—Published prices of Australian zircon

(U.S. dollars per ton)

	Standard	Intermediate	Premium
	grade	grade	grade
December 1980	75- 80	80- 91	91-102
	80- 85	85- 91	91-102
	94- 99	99-104	104-110
	102-107	107-113	113-123

^rRevised.

¹Based on incomplete reported data.

²Excludes oxide produced by zirconium metal producers.
Includes baddeleyite.

³Fused cast and bonded.

^eEstimated. ^rRevised. ¹Excludes material held by zirconium sponge metal producers.

ZIRCONIUM AND HAFNIUM

Table 7.—Published prices of zirconium and hafnium materials

Specification of material	1980	1981
Zircon:		
Domestic, standard grade, f.o.b. Starke, Fla., bulk, per short ton ¹	\$165.00	\$165.00
	99.00	99.00
Starke, Fla., bulk, per short ton ¹ Imported sand, containing 65% ZrO ₂ , f.o.b., bulk, per metric ton ²	\$83.00- 89.00	\$113.00-118.00
Domestic, granular, bags, bulk rail, from works, per short ton	165.00-177.00	165.00-177.00
Domestic, milled, 200- and 325-mesh, rail, from works, bags, per short ton ³	225.00	225.00
Baddeleyite, imported concentrate:4		1.1
96% to 98% ZrO ₂ , minus 100-mesh, c.i.f. Atlantic ports, per pound	.3350	
99% + ZrO ₂ , minus 325-mesh, c.i.f. Atlantic ports, per pound	.85- 1.00	.85- 1.00
Zirconium oxide: ³	4.05	475
Chemically pure, white, ground, barrels or bags, works, per pound	4.75 NA	4.75 NA
Lump-electric fused, bags, 500- to 1,999-pound lots, from works, per pound Lump-electric fused, bags, smaller lots, from works, per pound	NA NA	NA NA
Milled, bags, carlots, from works, per pound	ŇA	ŇA
Glass-polishing grade, ton lots, bags, 94% to 97% ZrO ₂ , from works, per pound	1:11	1.11
Opacifier grade, 3,300-pound lots, 85% to 90% ZrO ₂ , bags, per pound	.81	.81
Stabilized oxide, 100-pound bags, 91% ZrO ₂ , milled, per pound	1.57	1.57
Zirconium oxychloride: Crystal, cartons, 5-ton lots, from works, per pound ³	.515	.87
Zirconium acetate solution: ³		
25% ZrO ₂ , drums, carlots, 15-ton minimum, from works, per pound	.97	.97
22% ZrO ₂ , same basis, per pound	.78	.78
Zirconium hydride: Electronic grade, powder, drums,	01.77	01.77
100-pound lots, from works, per pound ³	31.75	31.75
Zirconium: ⁵ Powder, per pound	75.00-125.00	50.00-137.50
Sponge, per pound	10.00-125.00	12.00-17.00
Sheets, strip, bars, per pound	20.00- 35.00	18.00- 40.00
Hafnium: Sponge, per pound	55.00-110.00	70.00-125.00

Table 8.—U.S. exports of zirconium ore and concentrate, by country

Country -	1980)	1981		
	Pounds	Value	Pounds	Value	
Argentina	62,675	\$11,217	462,601	\$73,559	
ArgentinaBelgium-Luxembourg	118,400	29,808			
Brazil	1,645,001	385,623	2,897,162	541,605	
Canada	3,143,409	357,123	2,445,021	504,117	
Colombia	2,123,060	492,962	2,086,724	486,367	
Dominican Republic	2,120,000	202,002	123,157	30,252	
Proper	57.095	11.813	107,300	26,279	
FranceGermany, Federal Republic of	3,532,411	725,790	2.876.866	600,897	
India	61.398	13,822	293,844	67,882	
India	643,463	126,692	200,011	0.,002	
Italy Leeward and Windward Islands	040,400	120,002	221.600	25,986	
	3,348,996	355.512	10,370,083	1,068,233	
Mexico	3,340,330	300,312	80,000	1,770	
Suriname	499.649	134.605	1.048.834	305,195	
Venezuela					
Other	r219,112	F87,022	247,211	106,168	
Total	15,454,669	2,731,989	23,260,403	3,838,310	

Revised.

NA Not available.

1E. I. du Pont de Nemours & Co. price list December 1980 (effective Jan. 1, 1981) and December 1981 (effective Jan. 1, 1982).

2Industrial Minerals (London). No. 159, December 1980, p. 89; and No. 171, December 1981, p. 93.

3Chemical Marketing Reporter. V. 218, No. 26, Dec. 29, 1980 (effective Dec. 26, 1980), p. 37; and v. 221, No. 1, Jan. 4, 1982 (effective Dec. 31, 1981), p. 52.

4Ronson Metals Corp. Baddeleyite price lists. Jan. 1, 1981, and Jan. 1, 1982.

5American Metal Market. V. 88, No. 251, Dec. 31, 1980, p. 8; and v. 89, No. 250, Dec. 29, 1981, p. 16.

Table 9.—U.S. exports of zirconium, by class and country

Ø1	19	980	1981		
Class and country	Pounds	Value	Pounds	Value	
Zirconium and zirconium alloys, wrought:				4 4 4	
Belgium-Luxembourg	14.610	\$528,550	98.100	\$4,798,002	
Canada	429,394	9,859,018	312,446	8,649,143	
France	11,024	403,969	5,753	178,256	
Germany, Federal Republic of	28,155	603,429	73,067	1,746,642	
Japan	483,353	12,301,055	551,147	13,327,468	
Sweden	25,700	418,787	4,303		
Switzerland	76	2.081	17,701	650,713	
United Kingdom	6,576	165,366	28,950	481,469	
Other	r _{25,075}	r540,771	4,996	179,164	
Total	1,023,963	24,823,026	1,096,463	30,157,953	
Zirconium and zirconium alloys, unwrought		· · · · · · · · · · · · · · · · · · ·			
and waste and scrap:					
Belgium-Luxembourg	9,650	27,633			
Canada	4,721	104,730	21,404	455,389	
Germany, Federal Republic of	37,154	149,237	8,838	31,259	
Italy	2,955	15,368			
Japan	92,401	1,368,953	128,577	2,781,204	
Netherlands	11,638	94,904	2,454	10,010	
United Kingdom	198,558	2,646,492	100,996	1,539,640	
Other	^r 6,937	f177,720	2,505	39,359	
Total	364,014	4,585,037	264,774	4,856,861	

rRevised.

Table 10.—U.S. exports of zirconium oxide, by country

G	19	980	1981	
Country	Pounds	Value	Pounds	Value
Argentina	2,047	\$3,207	11.025	\$21,995
Belgium-Luxembourg	59,108	24.894	,	7,
Brazil	17.033	53,793	51,992	136.354
Canada	3,355,702	1,031,755	222,284	158,318
France	298,357	1,034,908	84,405	272,827
Germany, Federal Republic of	60,063	175,331	43,476	90,608
Hong Kong	2,879	4.511	29,191	45,742
Hungary	36,000	39,192	72,600	90,750
India	1.978	3.099	59,021	36,898
Italy Japan	66,405	70,519	83,108	99,257
Japan	347,803	406,311	171.140	290,753
Mexico		73.592	133,730	38,279
Netherlands	140,087	266,959	36,998	47,184
Sweden	26,845	38,161	69,177	103.816
Taiwan	15,411	30,545	17.082	45,232
Thailand	9,076	14.857	40,000	4.000
United Kingdom	223,775	315,970	405,741	710,107
Other	r _{23,809}	r92,099	33,908	61,551
Total	4,778,172	r3,679,703	1,564,878	2,253,661

^rRevised.

ZIRCONIUM AND HAFNIUM

Table 11.—U.S. imports for consumption of zirconium ores, by country

	1979		1980		1981	
Country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Australia Austria¹ Canada¹ Malaysia	101,144 124 2,312	\$15,605 15 564	97,968 20 1,082	\$8,888 3 165	71,852 2,444 72	\$6,930 305
South Africa, Republic of	7,262	779	14,714	1,539	16,740	1,138
Total	110,842	16,963	113,784	10,595	91,108	8,378

 $^{^1\!}B$ elieved to be country of shipment rather than country of origin. $^2\!In$ addition, very small quantities of baddeleyite were imported.

Table 12.—U.S. imports for consumption of zirconium and hafnium in 1981, by class and country

Class and country	Pounds	Value
Zirconium, wrought:		
France Germany, Federal Republic of Language Grant Germany (1997)	1,023,045	\$19,413,81
Germany, Federal Republic of	2,729	10.33
Japan	28	5.76
vapau		
Total	1,025,802	19,429,90
Zirconium, unwrought and waste and scrap:		
Belgium-Luxembourg	437	8,75
Canada	31.111	74.04
Denmark Denmark		1.00
Germany, Federal Republic of	10.664	42.57
Japan		28,46
United Kingdom		11.32
Total		166,166
Zirconium alloys, unwrought:		
Janan	17,178	29,25
Japan United Kingdom	10,911	42,71
Total	28,089	71,96
Zirconium oxide:		
Canada	15.966	5,39
France		23,92
Germany, Federal Republic of		51,99
Japan	2,207	23,88
Switzerland		20,65
U.S.S.R	38.006	97.00
U.S.S.R		1.188,70
United Kingdom		1,188,70
Total	470,335	1,411,56
Zirconium compounds:	-	
France	132,276	136,15
Germany, Federal Republic of	5,292	114,27
Japan		95
Singapore		43
Switzerland		4.14
South Africa, Republic of	733,833	312,78
U.S.R		42
United Kingdom		473,72
		1,042,89
Total	1 704 907	
Total Hafnium, unwrought and waste and scrap: France	1,704,907 5,310	1,042,89

WORLD REVIEW

The world zircon market in 1981 edged toward tight supply. Although prices rose gradually toward the last of the year, demand remained strong. The tightening of supply was primarily owing to developments in Australia, the most important of which were a drop in the price of and demand for rutile, a titanium mineral found in heavy mineral sands together with zircon. This caused a decline in the production of rutile and a corresponding decline in zircon production. The other developments were a drop in production on the east coast owing to environmental constraints and a temporary suspension of production in one area of the west coast because of storm damage.

Australia leads the world in the produc-

tion of zircon, although with the rise of mineral sands mining at Richards Bay in the Republic of South Africa, it no longer dominates the world market.

Zircon is also produced in Brazil, China, India, Malaysia, the Republic of South Africa, Sri Lanka, Thailand, the U.S.S.R., and the United States.

Baddeleyite is produced in the Republic of South Africa and Brazil, and is also found in eastern Africa, Sri Lanka, and the U.S.S.R.

It was estimated that worldwide refractory, ceramic, and foundry uses in 1981 accounted for 91% of zircon consumption. The Western European steel industry was reportedly starting to use substantial quantities of zircon for ladle refractory linings.

Table 13.—Zirconium concentrate: World production, by country¹

(Short tons)

Country	1977	1978	1979	1980 ^p	1981 ^e
Australia	438,972	431,671	490,500	541,837	² 468,552
Brazil	5,125	4,741	3,973	4,335	4,400
China ^e	10,000	10,000	12,000	14,000	15,000
India ³	r e11,800	12,309	13,426	16,300	16,500
Malaysia ⁴	r _{1,995}	1,022	1,401	500	660
South Africa, Republic of	18,546	e40,000	e90,000	e88,000	110,000
Sri Lanka	^e 11	3,634	1.664	3,341	3,530
Thailand	r334	28	128	67	55
U.S.S.R.e	70,000	75,000	80,000	80,000	80,000
United States	w	W	W	W	W
Total	r556,783	r578,405	693,092	748,380	698,697

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data; excluded from total.

In 1981, consumption in market economy countries of reactor-grade zirconium ingot for commercial nuclear powerplants totaled about 6.5 million pounds.* Another 1.5 million pounds was used for other applications.

Australia.—Australia produced 468,552 tons of zircon in 1981, down 13% from that of 1980. Exports to the United States decreased 27%, and exports to Japan and Italy were also down. Exports to Western Europe (other than Italy) remained close to 1980 levels. Australian zircon is recovered as a coproduct of titanium sand mining along the eastern coast (37%) and in Western Australia (63%). The productive momentum continued to swing toward the west coast owing to environmental legisla-

tion as well as the depletion of reserves.

In Southern Goldfield Ltd.'s offshore exploration program for mineral sands, a number of samples were analyzed." The analyses indicated the possibility of economic grades if sufficient quantities of heavy minerals could be found in the area.

Murphyores Holdings Ltd. was planning exploration and development at several of its mineral sands sites. The main thrust of the development was to be at its Gladstone site. Murphyores has estimated reserves at 150,000 tons of zircon.

Allied Eneabba Pty. Ltd. announced that it reached agreement to acquire all the heavy mineral leases in the Eneabba Area held by Westralian Sands Ltd. and its sub-

¹Includes data available through May 5, 1982.

²Reported figure

³Data are for fiscal year beginning April 1 of that stated.

Exports (production not officially reported; exports believed to closely approximate total output).

sidiary Ilmenite Pty. According to the terms of the agreement, Allied Eneabba was to form a new, wholly owned subsidiary to hold the leases. A total of 103 leases was involved, and in return Westralian was to receive 27,500 tons of zircon from Allied Eneabba over the following 3 years. It was estimated that the probable reserves were in excess of 5 million tons of heavy minerals. Du Pont, a United States company, reportedly increased its percentage of ownership in Allied Eneabba in 1981 to 59%. 12

Shareholders of Consolidated Goldfields Australia Ltd., Associated Minerals Consolidated Ltd., Renison Ltd., and the Mount Lyell Mining and Railway Co. Ltd. approved plans for the merging of the four companies.13 The companies were to become wholly owned subsidiaries of a newly incorporated public company called Renison Goldfields Consolidated (RGC).14 changes would create the Goldfields groups' only publicly listed Australian company; the public would own 51% of RGC. This would mean the company would not need Government approval for most company actions, including investing in the AMC Florida operation.

Consolidated Rutile Ltd., as of June 30, 1981, had calculated reserves (proven plus probable) of 719,000 tons of zircon. ¹⁵ Consolidated also had a 75% beneficial interest in areas that had calculated reserves of 789,000 tons of zircon.

Mineral sands mines in New South Wales were reportedly being forced out of business by the expansion of national parks and other state actions. Mining of about 45% of Australian reserves of mineral sands on the east coast was prohibited for environmental reasons. According to a Mineral Sands Producers Association symposium, this restriction was excessive, especially in view of improved environmental controls by mineral sands producers.

Western Australia was reportedly planning to raise royalties on mineral sands mining from 2% to 2.5%. 18 This would reportedly have no significant effect on mineral sands prices.

The Queensland government decided to allow mineral sands mining on Moreton Island off the coast of Brisbane.¹⁹ The decision, however, allowed mining of an area of less than 7% of the island.

Brazil.—Empresas Nucleares Brasileiras decided to investigate the possibility of extracting zirconium from uranium ore taken

from the Osamu Utsumi mine.20

Rutilo e Ilmenita do Brasil S.A. was planning to begin mining zircon in 1983 in Mataraca in the State of Pernambuco.²¹ Production was expected to be 16,500 tons per year and was earmarked for internal consumption.

Centro Tecnico Aeroespacial was conducting a study for Cía. de Mineracoes, Industria e Comerico to determine the feasibility of obtaining zirconia from caldasite.²²

Canada.—The Norton Co.'s abrasives plant in Niagara Falls, Ontario, was planning a \$3 million expansion of its zirconiacrushing facilities.²²

Egypt.—A paper presented to the Regional Conference on Development and Utilization of Mineral Resources in Africa in February 1981 stated that the most important mineral sands localities occurred in the Rosetta area.²⁴ The deposit contains an estimated 1.9 million tons of heavy minerals, of which 5% is zircon.

France.—Cie. Européeanne du Zirconium Ugine Sandvik, a Péchiney Ugine Kuhlmann subsidiary, brought online its molten salt process for separating zirconium and hafnium. This was the first time the process had been used at production scale.

India.—Completion of the \$100 million Orissa mineral sands complex was rescheduled for the end of 1982.²⁵ The complex at Chatrapur, Orissa, on the east coast was originally scheduled for completion in June 1981. The plant was designed to produce 2,200 tons of zircon per year.

Japan.—Zirconium Industry Co., owned by TWCA, Ishizuka Research Institute Ltd., and Mitsui and Co., was planning to begin building a zirconium production plant by the end of 1982. The plant was to employ a process developed by Ishizuka that could produce zirconium at a lower cost than was possible previously. The plant was expected to have an annual production capacity of 2.2 million pounds of zirconium by 1985.

The Japanese Government moved closer to approval of a new national stockpile of rare and strategic metals.²⁶ The stockpile, which was to include zirconium, reportedly was to insure supplies for certain high-technology industries, including electronics, aerospace, and nuclear power.

Japan was reported to be substantially reducing its long-range nuclear energy capacity goals.²⁷ This could have an adverse effect on future zirconium demand.

Sierra Leone.-Zircon was found in the

Mogbwemo deposit on the southwestern coast of Sierra Leone.28 The zircon, however, did not occur in economic quantities and was not being exploited. The deposit was being mined for rutile by Sierra Rutile Ltd.

South Africa, Republic of.—The Palabora complex was producing baddelevite and zirconium sulfate in 1981.29

Richards Bay Minerals, the mineral sands mining operation on the northern Natal coast, was planning an expansion that would increase its output of zircon 30% by 1982.30

TECHNOLOGY

The Bureau of Mines conducted research using zirconia as an alternative mold material for titanium investment casting.31 The research demonstrated that molds prepared from calcia-stabilized zirconia with zirconiaforming binders can be used to prepare precision investment castings of titanium with minimal brittle case formation and cast metal contamination. The significance of this is that zirconia, which is readily available, nontoxic in character, and relatively inexpensive, can be successfully substituted for molds that are presently used in the titanium-casting industry, but that are produced from materials not meeting all these criteria.

The Bureau of Mines also published a report on investigations to recover byproduct heavy minerals from sand and gravel operations in Oregon and Washington.32 Samples from more than 40 locations were concentrated and evaluated.

Ultraviolet (UV) photographic images can be stored in lead lanthanum zirconate titanate (PLZT) ceramics.33 The results of studies published in 1981 indicate that ion implantation can extend the absorption spectrum from the near-UV to the visible. Ion implantation also resulted in increasing photosensitivity by four orders of magnitude over unimplanted PLZT.34 Implanted ferroelectric-phase PLZT was the most sensitive, nonvolatile, selectively erasable storage medium known.

High-resolution, pressurized ion change was used to separate zirconium and hafnium sulfate complexes from Dowex resin by chromatographic elution with sulfuric acid solutions.35

A pressurized continuous annular chromatograph (CAC) was developed for truly zirconium-hafnium continuous tions.36 Zirconium containing less than 0.01% hafnium, and hafnium containing less than 1% zirconium were produced in this way. The CAC, because of its continuous feed and product withdrawal and its

adaptability to large-scale operations, could make chromatography a more competitive process in the industrial sector.

A report was published on the separation of zirconium tetrachloride (ZrCl4) from hafnium tetrachloride (HfCl4) by the selective reactivity of HfCl4 vapor with solid or molten alkali chlorides and their mixtures.37

A progress report was presented on the design and construction of a small pilot plant for the separation of ZrCl4 from HfCl4 by means of an extractive distillation operation.38 Results of the research indicated that ZrCl, and HfCl, could be separated in a suitably designed fractional distillation column at close to atmospheric pressure if fused salts such as sodium chloride were used to provide solutions of the tetrachlorides so that an extractive distillation operation could be conducted.

The results were published of research conducted on the fused salt electrolytic process for reclamation of zirconium and titanium scrap.39

Ceramic coatings improve the performance and durability of gas-turbine engines.40 To date, the use of ceramic coatings on the moving parts of the engines has not been possible because of thermal straininduced spalling during engine operation. Recent work has resulted in plasma-sprayed zirconia coatings with much greater spall resistance.

¹Physical scientist, Division of Nonferrous Metals. Physical scientist, Division of Nonierrous metalis.

Watson, I. Minerals for Frits and Glazes—Value in Variety. Ind. Miner., No. 165, June 1981, pp. 23-35.

3Chemical Week. Research: Looking for Answers in Ceramics. V. 129, No. 1, July 1, 1981, pp. 26-30.

4Work cited in footnote 3.

5D. Deit V. D. Zimanium: Despension Despension U.S.

De Poix, V. P. Zirconium; Depression Deepens in U.S. Nuclear Markets. Eng. and Min. J., v. 183, No. 3, March

p. 89. ⁸Work cited in footnote 5.

⁹Industrial Minerals (London). Company News & Miner-

al Notes. No. 168, September 1981, p. 85.

10 Metal Bulletin. Ores, Ferro Alloys. No. 6553, Jan. 6, 1981, p. 19.

¹¹Industrial Minerals (London). World of Minerals. No. 162, March 1981, p. 9.

Fillers and Extenders. No. 161, February 1981,

p. 81. -. World of Minerals. No. 167, August 1981, p. 9. -. World of Minerals. No. 163, April 1981, p. 9. -. World of Minerals. No. 170, November 1981, 14

15

pp. 9-10.

16U.S. Embassy, Canberra, Australia. State Department Airgram A-149, Nov. 5, 1981, pp. 2-3.

17Metal Bulletin. Ores, Ferro Alloys. No. 6604, July 10,

Light Metals. No. 6632, Oct. 20, 1981, p. 15.
 Mining Journal. Sales and Contracts. V. 297, No. 7611, July 3, 1981, pp. 11-12.
 Annual Review—1981. Countries, Central and

South America, p. 379.

21 Oliviera e Silva, L. G. Zirconio. Sumario Mineral 1981. Departamento Nacional Da Produção Mineral, pp. 88-89.

Work cited in footnote 21.

Work cited in footnote 21.
 Foundry Management & Technology. News Brief. V.
 109, No. 11, November 1981, p. 10.
 Li S. Embassy, Cairo, Egypt. State Department Airgram A-34, April 1981, pp. 26-27.
 Li S. Embassy, New Delhi, India. State Department Airgram A-49, July 1981, p. 43.
 Metal Bulletin. Minor, Precious Metals. No. 6626, Sant 20, 1981, p. 15.

Sept. 29, 1981, p. 15.

27 Chemical Week. International Newsletter. V. 129, No.

"Chemical Week. International Newsletter. V. 122, No. 18, Oct. 28, 1981, p. 25.

28 Mining Magazine. Sierra Rutile. V. 144, No. 6, June 1981, pp. 458-465.

28 Clarke, G. The Palabora Complex—Triumph Over Low-Grade Ores. Ind. Miner., No. 169, October 1981, pp. 45-

62.
³⁰Industrial Minerals (London). Company News & Mineral Notes. No. 165, June 1981, p. 61.
³¹Calvert, E. D. An Investment Mold for Titanium Casting. BuMines RI 8541, 1981, 35 pp.
³²Martinez, G. M., J. M. Gomes, and M. M. Wong. Recovery of Byproduct Heavy Minerals From Sand and Gravel Operations in Oregon and Washington. BuMines RI 8563, 1981, 14 pp.

33 Land, C. E., and P. S. Peercy. The Effects of Ion Implantation on the Photoferroelectric Properties of Lead Lanthanum Zirconate Titanate Ceramics. Ferroelectrics, v. 38, 1981, pp. 947-950.

34Peercy, P. S., and C. E. Land. Ion-Implanted PLZT Ceramics: A New High-Sensitivity Image Storage Medium. IEEE Trans. on Electron Devices, v. ED-28, June 6, 1981,

pp. 756-762.

35Hurst, F. J. Separation of Hafnium From Zirconium In Sulfuric Acid Solutions Using Pressurized Ion Exchange. TMS Paper Selection, The Metallurgical Society of AIME, A81-12, 11 pp.

³⁶Begorieh, J. M., and W. G. Sisson. Continuous Ion Exchange Separation of Zirconium and Hafnium. TMS Paper Selection, The Metallurgical Society of AIME, A81-

36, 13 pp.

37 Pickles, C. A., and S. N. Flengas. The Separation of HfCl₄ From ZrCl₄ by the Selective Reactivity of HfCl₄ Vapour With Solid or Molten Alkali Chlorides and Their Mixtures. Paper in Extractive Metallurgy of Refractory Metals, ed. by H. Y. Sohn, O.N. Carlson, and J. T. Smith (Proc. Symp. at the 110th AIME Ann. Meeting, Chicago, Ill., Feb. 22-26, 1981). The Metallurgical Society of AIME, Warrendale, Pa., 1980, pp. 315-339.

³⁸Spink, D. R., and K. A. Jonasson. Separation of HfCl₄ and ZrCl4 by Fractional Distillation. Paper in Extractive Metallurgy of Refractory Metals, ed. by H. Y. Sohn, O. N. Carlson, and J. T. Smith (Proc. Symp. at the 110th AIME Ann. Meeting, Chicago, Ill., Feb. 22-26, 1981). The Metallurgical Society of AIME, Warrendale, Pa., 1980, pp. 297-

39Vijay, P. L., J. C. Sehra, and C. V. Sundarum. Fused Salt Electrolytic Process for Reclamation of Zirconium and Salt Electrolytic Process for Reclamation of Zirconium and Titanium Scrap. Paper in Extractive Metallurgy of Refractory Metals, ed. by H. Y. Sohn, O. N. Carlson, and J. T. Smith (Proc. Symp. at the 110th AIME Ann. Meeting, Chicago, Ill., Feb. 22-26, 1981). The Metallurgical Society of AIME, Warrendale, Pa., 1980, pp. 361-371.

40Grot, A. S., and J. K. Martyn. Behavior of Plasma-Sprayed Ceramic Thermal-Barrier Coatings for Gas Turbine Applications. Ceramic Bull., v. 60, No. 8, 1981, pp. 807-811

Other Metals

By Staff, Division of Nonferrous Metals

CONTENTS

	Page		Page
Arsenic	939	Selenium	948
Cesium and Rubidium		Tellurium	
Germanium	944	Thallium	952
Indium	946		2.1

ARSENIC1

Demand for arsenic exceeded supply, and major domestic and foreign producers allocated available supplies to customers for the fourth consecutive year. Major demand for arsenic was about evenly divided between industrial chemicals and agricultural chemicals.

Legislation and Government Programs.-Effective April 1, 1981, taxes were collected from companies producing and importing 42 chemicals and petroleum products designated as hazardous. The revenue was used to begin funding of the 5-year, \$1.6 billion "superfund" being established under Public Law 96-510, the Comprehensive Environmental Response, Compensation, and Liability Act, designed to help clean up spills of hazardous substances throughout the United States. As hazardous chemicals, arsenic metal and arsenic trioxide were taxed at the rate of \$4.45 and \$3.41 per short ton, respectively.

In 1978, the Occupational Safety and Health Administration (OSHA) lowered the maximum worker exposure to arsenic from the previous ceiling of 500 micrograms per cubic meter of air to 10 micrograms per cubic meter over an 8-hour time period. The decision was challenged in court by U.S. nonferrous metal producers. In April 1981, the U.S. Court of Appeals ordered OSHA to make a risk assessment of the nature of the health problem caused by arsenic. In Octo-

ber 1981, OSHA organized a group of engineers from the United Steelworkers of America, OSHA, and ASARCO Incorporated to begin a 2-year study of conditions in U.S. nonferrous metal smelters.²

DOMESTIC PRODUCTION

Arsenic trixoide and arsenic metal were produced at the Tacoma, Wash., copper smelter of Asarco. Asarco processed arsenic residues and high-arsenic copper concentrates from both imported and domestic sources, but primarily from imported sources. Production data cannot be published.

Koppers Co., Inc., produced arsenic trioxide for internal consumption at its newly built arsenic acid plant near Atlanta, Ga. The company was a net purchaser and major consumer of arsenic trioxide. Arsenic trioxide is used to produce arsenic acid, an intermediate chemical used to produce arsenical wood preservatives for pressure treating lumber.

The Tacoma smelter has been operating at a production rate of about 70,000 tons of copper per year, or about two-thirds capacity, in order to better comply with local and Federal air pollution regulations. Even with reduced production, the Tacoma smelter frequently has had trouble complying with Federal regulations that require capture of 90% sulfur dioxide emissions. At present,

about 45% of sulfur dioxide emissions are captured. In order to reduce emissions, Asarco announced a program costing \$4.5 million to install secondary hoods on converters and \$1.1 million for opacity control at Tacoma. The secondary hood installation should allow the Tacoma smelter to capture up to 400 tons per year of arsenic currently lost through air emissions. In addition, more sulfur dioxide will be recovered than at present.

In addition to the smelter retrofitting measures being taken, the Puget Sound Air Pollution Control Authority (PSAPCA) ordered Asarco to study arsenic emissions from the smelter's slag; market conditions for sulfuric acid, liquid SO2, and gypsum; the feasibility of scrubbers; and the feasibility of eliminating scrubber waste. PSAPCA granted the Tacoma smelter a variance to continue operating through the end of 1982.3 However, as a condition for the variance, PSAPCA required the smelter to remove 90% of its sulfur dioxide emissions by 1987. An Asarco spokesperson said that to do so would require the company to spend about \$100 million, an amount beyond the current financial capability of the company.

CONSUMPTION AND USES

Estimated distribution of arsenic in 1981 was 45% in industrial chemicals (wood preservatives and mineral flotation reagents), 45% in agricultural chemicals (herbicides

and plant desiccants), 5% in glass and ceramics, 3% in nonferrous alloys (added in metallic form), and 2% in other uses (animal feed additives and pharmaceuticals).

Consumption of arsenical wood preservatives increased in 1980, the latest year for which data were available. Consumption, in short tons, was as follows:

	1978	1979	1980
Chromated copper arsenate			
(CCA)Ammoniacal copper arsenate	12,494	16,882	18,082
(ACA)Fluor chrome arsenate phenol	w	532	537
(FCAP)	112	w	w

W Withheld to avoid disclosing company proprietary data.

Source: American Wood-Preservers' Association.

PRICES AND GRADES

The price of domestically produced arsenic trioxide (95% minimum) was increased from 31.75 cents per pound to 34.25 cents per pound in March, to 35.00 cents per pound in June, and to 40.00 cents per pound in September, according to Metals Week. The price of domestically produced metal in 1-ton lots, delivered, was increased from \$3.00 per pound to \$3.25 per pound in June, decreased to \$3.15 per pound in July, and again decreased to \$2.75 per pound in September.

Table 1.—Arsenic price quotations

(Cents per pound, yearend)

	1979	1980	1981
Trioxide, domestic, 95% As ₂ O ₃ , f.o.b. Tacoma, Wash Trioxide, Mexican, 99.13% As ₂ O ₃ , f.o.b. Laredo, Tex Trioxide, imports Metal, domestic, 99% As	24	32	40
	30	46	78
	32	35	45
	190	300	275

FOREIGN TRADE

Imports of arsenic trioxide increased over 50% to nearly 19,000 tons in 1981, valued in excess of \$13 million. For the first time, Canada was the largest source of imports, followed by Sweden and Mexico. The trioxide imported from Canada was very low grade, valued at an average price of only 8

cents per pound. Most of the Canadian trioxide was further refined by the Koppers Co. and used in producing arsenical wood preservatives.

Imports of arsenic acid in 1981 were six times the level imported in the previous year. The major source was the United Kingdom.

Table 2.—U.S. imports for consumption of arsenic trioxide content, by country

	1979		1980		1981	
Country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Belgium-Luxembourg	184	\$50	388	\$142	1,379 41	\$708 77
Bolivia Canada	 277	80	486	110	6,152 475	965 585
ChinaFranceGermany, Federal Republic of	 3,242	1,376 15	2,780 116	1,597 92	826 146	1,093 226
apan Xorea, Republic of		==	58 18	79 26	$\bar{218}$	389
fexico letherlands	 3,125	1,799	3,720 57	2,681 26	3,931 	5,261
Peru Portugal	 477	148	===		55 73	57 142
outh Africa, Republic of	 		135	170	19 159	17 198
Sweden J.S.S.R	5,014	2,086	4,770	2,429	5,403 44	3,259 91
Jnited Kingdom	 (1)	8	(1)	(1)	37	59
Total	 12,325	5,562	12,528	7,352	18,958	213,126

Table 3.—U.S. imports for consumption of arsenicals, by class

	19	1979		1980		81
Class	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Arsenic trioxide (As ₂ O ₃) Metallic arsenic Sulfide Sodium arsenate	12,325 405 39 1 176	\$5,562 1,881 112 3 94	12,528 266 11 (¹) 271	\$7,352 1,524 2 2 197	18,958 323 (1) 1,666	\$13,126 2,079 3 2,400
Arsenic compounds, n.e.c	1	76	ī	113	5	133

¹Less than 1/2 unit.

Table 4.—U.S. imports for consumption of arsenicals, by country¹

(Short tons)

Country	Metal (TSUS 632.04)		Acid (TSUS 416.05)		Lead arsenate (TSUS 419.00)	
Country	1980	1981	1980	1981	1980	1981
Canada	13	12				
China Mexico		33 	$2\overline{51}$	$\overline{605}$	 20	99
Peru Sweden United Kingdom	252	273 	 20	20 1,041	 	
Total	² 266	323	271	1,666	20	99

Table 5.—U.S. import duties for arsenicals

	TSUS	Mo	Most favored nation (MFN)				
Item	No.	Jan. 1, 1981	Jan. 1, 1982	Jan. 1, 1987	Jan. 1, 1982		
Arsenic metal	632.04	1.5 cents per pound.	1.3 cents per pound.	Free	6.0 cents per pound.		
Trioxide and sulfide	417.62, 417.60	Free	Free	do	Free.		
Other compounds _	417.64	4.7% ad valorem.	4.5% ad valorem.	3.7% ad valorem.	25% ad valorem.		

¹Less than 1/2 unit.
²Data do not add to total shown because of independent rounding.

¹Figures of less than 1/2 unit are not indicated in this table.

²Data do not add to total shown because of independent rounding.

WORLD REVIEW

An arsenic symposium sponsored by the Chemical Manufacturers Association and the National Bureau of Standards was held at the National Bureau of Standards in Gaithersburg, Md., November 4-6, 1981. Speakers presented papers describing the production, use, and biomedical and environmental aspects of arsenic.

At the symposium, a spokesperson from Asarco mentioned that world production of arsenic trioxide peaked at just under 70,000 tons in 1970. Ten years later, world production had decreased to less than one-half the 1970 level. A growing public awareness of the need to protect workers and the environment from excessive exposure to arsenic was one contributing factor to the decline in arsenic demand and, hence, production in the developed countries.

Canada.—Cominco Ltd.'s new gallium arsenide production plant opened June 18 in Vancouver, British Columbia. 4 High-purity

arsenic and gallium metal are combined at high pressure and temperature. In a period of about 36 hours, a gallium arsenide crystal is grown from the melt. The crystals are cut, polished, and sold in the form of wafers. The electronics industry uses the wafers for manufacturing semiconductor chips.

Chile.—The St. Joe Minerals Co.'s mine at El Indio, about 300 miles north of Santiago, Chile, was officially dedicated in December 1981. In addition to producing gold, silver, and copper, the mine will produce an estimated 5,000 to 8,000 tons of arsenic trioxide to be shipped to Leonard J. Buck Co. in the United States for direct sale. Shipments were scheduled to begin sometime in 1982.5

Sweden.—Supplies of arsenic to the United States were temporarily curtailed in 1981 when shipments from Sweden were halted for 6 weeks in May and the first half of June as a result of a work stoppage owing to a labor-management disagreement.

Table 6.—White arsenic (arsenic trioxide):1 World production, by country2 (Short tons)

Country ³	1977	1978	1979	1980 ^p	1981 ^e
France Germany, Federal Republic of Japan Korea, Republic of Mexico Namibia Peru Portugal Sweden U.S.S.R. U.S.S.R. United States	6,661 400 131 718 6,332 2,882 1,507 245 r6,613 8,300 W	e6,500 400 100 604 6,884 2,647 1,386 *279 r e6,700 8,400 W	e6,100 201 e650 7,206 2,448 3,552 380 e5,600 8,500 W	e5,800 400 313 NA 6,980 1,420 3,533 220 e4,500 8,500 W	5,700 400 331 NA 7,100 1,500 3,500 220 4,400 8,500 W
Total	r33,784	r33,900	34,637	31,666	31,651

^eEstimated. Preliminary. Revised. NA Not available. W Withheld to avoid disclosing company proprietary data.

Output of white arsenic for sale plus the white arsenic equivalent of the output of metallic arsenic for sale.

TECHNOLOGY

The Environmental Protection Agency investigated methods for safe disposal of arsenic-bearing flue dusts.6 Flue dusts containing arsenic and other metals were dissolved in water, sulfuric acid, ferric sulfate, ferric chloride, aqueous ammonia, and

sodium hydroxide, in various combinations. Arsenic was fixed in a number of matrix materials including clay, cement, slag, and concrete. Leaching of arsenic to the environment was minimal when calcium or iron arsenate was incorporated in any of the above matrix materials.

Includes calculated arsenic trioxide equivalent of output of elemental arsenic and arsenic compounds other than white arsenic, where inclusion of such materials would not duplicate reported white arsenic production.

Table includes data available through June 2, 1982.

^{*}Table includes data available through June 2, 1902.

*In addition to the countries listed, Austria, Belgium, China, Czechoslovakia, Finland, the German Democratic Republic, Hungary, Spain, the United Kingdom, Yugoslavia, and Zimbabwe have produced arsenic and/or arsenic compounds in previous years, but information is inadequate to make reliable estimates of output levels.

*Output of Tsumeb Corp. Ltd. only.

CESIUM AND RUBIDIUM⁷

DOMESTIC PRODUCTION

There was no known domestic production of cesium- or rubidium-bearing minerals during 1981. Cesium compounds and small quantities of cesium metal were produced from imported cesium ore (pollucite). Rubidium compounds and metal were produced from imported lepidolite ores. Production of both cesium and rubidium compounds remained virtually unchanged through 1981 compared with that of the previous year, and a major producer indicated that no significant change was imminent.

Cabot Corp. (KBI Div.) was the major producer of cesium and rubidium products from its plant at Revere, Pa.; other potential suppliers included Callery Chemical Co., Callery, Pa., and Kerr-McGee Chemical Corp., Trona, Calif.

CONSUMPTION AND USES

Data concerning specific end-use and consumption patterns for cesium and rubidium and their compounds were not available. Cesium and rubidium and their respective compounds were interchangeable in most applications, although cesium compounds were the most widely accepted because of their availability and price advantage. Commercial consumption included uses for highvoltage rectifying tubes, which change alternating current to direct current, and for infrared lighting where cesium vapor emits light with a wavelength that is invisible. In photoelectric cells, cesium chloride was used because its color sensitivity is higher than that of other alkali salts. An increased use of cesium compounds in catalysts for production of organic compounds was announced. The process is proprietary and no further information was forthcoming.

PRICES

The yearend 1981 market quotations for cesium and rubidium metal and their respective compounds remained unchanged from prices in 1980. Cesium metal was \$225 per pound, and rubidium metal was priced at \$661.40 per kilogram for technical grade and \$826.75 per kilogram for high-purity metal, according to industry sources.

Table 7.—Prices of selected cesium and rubidium compounds in 1981

	Base price per pound1				
Compound	Technical grade	High- purity grade			
Cesium bromide	\$29	\$67			
Cesium carbonate	29	67			
Cesium chloride	31	70			
Cesium fluoride	37	77			
Cesium hydroxide	35	75			
Rubidium carbonate	65	104			
Rubidium chloride	66	105			
Rubidium fluoride	71	110			
Rubidium hydroxide	71	110			

¹Price is for quantities of less than 100 pounds, f.o.b. Revere, Pa., excluding packaging costs.

Source: Cabot Corp. (KBI Div.)

FOREIGN TRADE

Imports of cesium compounds, including cesium chloride, during 1981 doubled over those of 1980. Most of the increase was attributed to receipts from the Federal Republic of Germany, which rose sharply as compared with levels previously reached in 1979. Trade data on raw materials and metal were not available. Tariff schedules, established by the Tokyo Round of trade negotiations, are shown in table 9.

WORLD REVIEW

The Tantalum Mining Corp. of Canada Ltd.—owned jointly by Cabot, 37.5%; Hudson Bay Mining & Smelting Co., Ltd., 37.5%; and the Manitoba Provincial Government, 25%-continued operations at its Bernic Lake property near Lac du Bonnet in Manitoba, Canada.

Bikita Minerals (Pvt.) Ltd., which operates several mines in the Victoria district of Zimbabwe, increased its production schedules in an attempt to regain its position as a major producer following the removal of sanctions that had been imposed by the United Nations.

		1980				1981			
Country Cesium Quantity (pounds)	Cesium chloride		Cesium compounds, n.s.p.f.		Cesium chloride		Cesium compounds, n.s.p.f.		
	Value	Quantity (pounds)	Value	Quantity (pounds)	Value	Quantity (pounds)	Value		
Canada					22	\$808	226 15,833	\$12,117	
Germany, Federal Republic of_ United Kingdom	5,303 1,134	\$274,716 52,473	5,383 2	\$291,579 699	8,570 264	363,375 14,355		658,567	
Total	6.437	327.189	5.385	292.278	8.856	378.538	15.559	670.684	

Table 8.—U.S. imports for consumption of cesium compounds, by country

Table 9.—U.S. import duties for cesium and rubidium

74	TSUS	Most favored	Non-MFN,	
Item	No.	Jan. 1, 1982	Jan. 1, 1987	Jan. 1, 1982
Ore and concentrate	601.66	Free	Free	Free.
Cesium	415.10	7.3% ad valorem _	5.3% ad valorem _	25% ad valorem.
Cesium chloride	418.50	5.3% ad valorem $_$	4% ad valorem	Do.
Other cesium compounds	418.52	4.6% ad valorem _	do	Do.
Rubidium	415.40	4.5% ad valorem _	3.7% ad valorem _	Do.
Rubidium compounds	423.00	do	do	Do.

TECHNOLOGY

A group of companies involved in electric power equipment, energy technology, and energy engineering have joined to form a new trade association to promote magneto-hydrodynamics (MHD). The group will be called the MHD Industrial Forum. Elected to the group's board of directors were representatives of Avco Corp., Westinghouse Electric Corp., Babcock and Wilcox, TRW, Lipsen and Hamberger, Gilbert Associates, General Electric Co., Burns and Roe, Inc., and Brown and Co.

A process to treat pathogens in sewage sludge by irradiating them with cesium-137

to make the sludge safe for use as animal feed or as a soil conditioner has been developed by researchers at Sandia Laboratory. At a \$350,000 pilot facility near Albuquerque, N. Mex., the researchers treated 8 tons per day of sewage with the isotope, a byproduct of nuclear reactors. Experiments using the treated sludge as a food supplement for sheep and cattle and as a fertilizersoil conditioner for desert soils showed that the material had significant nutrient value and produced no abnormalities attributable to the treatment process or to pathogens in animals that eat it. It was estimated that the process could produce treated sludge at \$25 per dry ton.8

GERMANIUM⁹

Published prices for domestic and imported germanium rose during 1981 with spot market prices for the metal commanding premiums over the published prices. Estimated domestic production also increased slightly in 1981 despite raw material shortages and increased imports. Demand for the metal was up especially in infrared and fiber optic applications.

DOMESTIC PRODUCTION

Production by both primary and secondary manufacturers was limited by the availability of raw materials in 1981. As a result, producers reportedly could not accept orders from new customers and had to operate an informal allocation system for regular customers.

Eagle-Picher Industries, Inc., Quapaw,

Okla., was the sole domestic producer of primary germanium. Kawecki Berylco Industries, Inc., Revere, Pa.; and Atomergic Chemetals Co., Plainview, N.Y., produced germanium products using imported metal, oxide, and scrap, and domestic waste and new scrap. During 1981, a number of companies investigated the possibility of recovering and producing germanium. Potential sources of raw material included flue dusts and residues from primary metal-processing streams. None of these companies, however, were known to have begun production in 1981.

The principal source of raw material for primary production continued to be residues from zinc processing in the Kansas-Missouri-Oklahoma zinc district. Central Tennessee was an additional source of germanium-rich residues; however, these residues were exported.

Domestic primary and secondary production was estimated to be approximately 28,000 kilograms. Based on the U.S. producer price for refined germanium, the approximate value of this production was \$26 million.

CONSUMPTION AND USES

The estimated consumption pattern for various end uses of germanium in 1981 was infrared systems, 40%; fiber optics, 15%; semiconductors, 23%; detectors, 10%; and other uses, 12%.

Germanium added to glass increases its refractive index. Such glass was used in 1981 to produce wide-angle camera lenses, microscope objectives, and infrared and laser devices. Especially important among these applications were infrared systems because germanium-containing lenses and windows transmit thermal radiation in a manner similar to visible light transmission by optical glass. As a result, infrared systems were finding increased use in military guidance and weapon-sighting systems. Other important uses for germanium glass included nonmilitary surveillance and monitoring systems in fields such as satellite mapping and fire alarms.

Although not used in all fiber optic systems, germanium was an important constituent in many applications of this technology. Fiber optics can be used as replacements for conventional wire telecommunication systems. In these applications, germanium dioxide was used in the high-index optical core reducing the need for signal amplifiers. Fiber optic systems offer a compact, short-circuit-free transmission medium that is not susceptible to electromagnetic distortion or tapping using existing technology.

Germanium was used as a substrate upon which gallium arsenide phosphide was deposited to form an essential part of light-emitting diodes. Germanium was also used in the manufacture of other semiconductor electronics; to improve the hardness of copper, aluminum, and magnesium alloys; and as a catalyst in the production of polyester fibers in some foreign countries. There was also interest in the use of certain organogermanium compounds in the treatment of some kinds of cancer and in the prevention of various animal diseases.

PRICES

The U.S. producer price for germanium

metal was \$784 per kilogram at the beginning of 1981. In early March, the price was raised to \$923 per kilogram. It remained at this level until early December when it was raised to \$1,060 per kilogram, where it stayed until yearend. The U.S. producer price for germanium dioxide of \$487 per kilogram in January was raised to \$575 per kilogram in early March. The price remained at this level until early December when it was raised to its yearend price of \$660 per kilogram.

The New York dealer price for germanium metal was \$753.50 per kilogram at the beginning of the year and was raised to \$945 per kilogram on April 1, 1981. A month later the price was reduced to \$884 per kilogram, reportedly owing to strengthening of the U.S. dollar against the Belgian franc. In early September, the price was raised to \$950 per kilogram, where it remained until vearend. The January dealer dioxide price was \$444 per kilogram. On April 1, it was raised to \$556 per kilogram, and in early May it was reduced to \$519.75, reportedly for the same reason as the metal price reduction. The yearend price of \$570 per kilogram was established on September 1, 1981.

Significantly, although many nonferrous metals were being discounted from published prices on the spot market, quotes for germanium metal and germanium dioxide generally commanded premiums above the published price throughout the year. These premiums ranged from \$100 to \$350 per kilogram for both products.

FOREIGN TRADE

U.S. imports of germanium metal (unwrought and waste and scrap) in 1981 were extremely high compared with those of previous years. However, with the higher 1981 prices, the lower average value per kilogram for the imports indicated that much of the material was low-grade waste and scrap. The U.S.S.R., after a year of not exporting germanium metal, supplied some material to the United States in 1981 although the amount was significantly less than in some previous years. Wrought germanium metal imports were also significantly higher than the 1.801 kilograms and 168 kilograms imported in 1980 and 1979, respectively.

The U.S. import duties for germanium metal and germanium dioxide were reduced in 1981 in accordance with the multilateral trade agreements made in Tokyo in 1979.

Table 10.—U.S. imports for consumption of germanium, by country

	19	980	1981		
Country	Quantity (kilograms)	Value	Quantity (kilograms)	Value	
Unwrought and waste and scrap:					
Relgium-Luvembourg	247	\$1,041,094	9,560	\$1,792,340	
Belgium-LuxembourgChina	61	44,840	3,380	2,588,859	
France		,	40	39,999	
Germany, Federal Republic of	89	38.072	899	316,768	
Japan	299	154,425	60	42,187	
Switzerland	(1)	377	1,093	71,689	
U.S.S.R			163	159,544	
United Kingdom		258,412	1,476	916,100	
Total		1,537,220	16,671	5,927,486	
Wrought:					
Belgium-Luxembourg	1,801	1,464,838	3,025	4.120.440	
China			405	103,842	
Germany, Federal Republic of			1,957	1,922,906	
Japan	(¹)	1,738	101	88,583	
Netherlands		-,	191	164,513	
United Kingdom		· · · · · · · · · · · · · · · · · · ·	(¹)	268	
Total	1,801	1,466,576	5,679	6,400,552	

¹Less than 1/2 unit

Table 11.—U.S. import duties for germanium metal and germanium dioxide

	Item	TSUS	Most favored	Non-MFN,	
	Item	No.	Jan. 1, 1981	Jan. 1, 1982	Jan. 1, 1981- Jan. 1, 1982
Germaniu Metal, unv Metal, wro	vrought and waste and scrap ¹ _	423.00 628.25 628.30	4.7% ad valorem do 8.1% ad valorem	4.5% ad valorem do 7.7% ad valorem	25% ad valorem. Do. 45% ad valorem.

¹Duty on waste and scrap suspended until June 30, 1981, as provided by Public Law 95-508.

WORLD REVIEW

The dependence of certain industries in Japan, such as the electronics, aerospace, and nuclear power industries, on metal imports prompted the Primary Product Committee, a Ministry of International Trade and Industry advisory body, and Keidanren, a federation of economic associations, to propose increasing Japan's national stockpile of rare and strategic metals. Germanium was among the metals to be included in the expanded stockpile. Japan had an existing modest stockpile of some metals; however, it was reported that stocks of some of these metals were equivalent to

only 1 week's supply. Among the proposals of these groups were increases in the stockpile to a 3-month minimum supply and diversification of Japan's sources of these metals. Final action had not been taken by vearend.

The growing demand for fiber optics prompted a number of companies to consider expansion of their existing plants and/or construction of new plants. The increased capacity was expected to be available in 2 to 4 years.

In late 1981, Zaire decided to restart germanium production, citing new uses for the metal as the reason.

INDIUM¹⁰

Indium was produced by three firms: Indium Corp. of America in Utica, N.Y.; NJZ Alloys, Inc., Palmerton, Pa., a joint venture of The New Jersey Zinc Co. and Indium Corp.; and Nedlog Technology Inc., Laramie, Wyo., which started operations this year. Both NJZ and Nedlog sent their indium product to Indium Corp. for further refining and marketing. Asarco, a

company with a long history of indium production, continued to keep its indium facility idled this year. Data on domestic production, which declined slightly, were withheld to avoid disclosing company proprietary information. Small quantities of secondary indium were available from specialty metal recycling firms.

CONSUMPTION AND USES

Indium consumption generally declined in 1981 in all usage categories. Consumption for nuclear control rods remained low. Research studies continued on several new uses, especially for solar cells. Estimated consumption patterns for indium metal were electrical and electronic components, 40%; solders, alloys, and coatings, 40%; and research and other uses, 20%.

PRICES

The price of indium declined steadily during 1981. The price was \$10.75 per troy ounce at the start of the year and was lowered in five stages to end the year at \$5.90 per troy ounce. The price decreases were attributed to lower demand, the need to meet competitive European prices, and a worldwide oversupply situation.

FOREIGN TRADE

Imports of indium rose sharply. Japan was the leading supplier, followed by Belgium-Luxembourg, Peru, and the United Kingdom. The 1981 value of indium imports, at \$3 million, was lower than that of recent years, reflecting declining indium prices.

The duty on unwrought and waste and scrap indium (TSUS 628.45) was 1.7% ad valorem for the most favored nations (MFN) and 25% ad valorem for the non-MFN; the duty on waste and scrap was suspended until June 30, 1981, by Public Law 95-508, and then reestablished. The duty on wrought indium (TSUS 628.50) was 7.7% ad valorem for MFN and 45% ad valorem for mon-MFN. For compounds (TSUS 423.96), the duty was 3.8% ad valorem for MFN and 25% ad valorem for non-MFN.

Table 12.—U.S. imports for consumption of indium, by country

(Thousand troy ounces and thousand dollars)

	19'	79	198	30 19		981	
Country	Quantity	Value	Quantity	Value	Quantity	Value	
Unwrought and waste and scrap:							
Belgium-Luxembourg	124	1.504	148	2,349	91	579	
Canada	36	458	36	690	14	159	
China					5	30	
France					59	307	
Germany, Federal Republic of	16	176	3	50	(¹)		
Italy		1.0			`4	17	
Japan	- 3	24	10	167	105	60	
Mexico	3	4	10	101	100		
	3	36	(1)	- 8	13	- 8	
Netherlands	90		84	1.318	85	619	
Peru	90	1,172					
Switzerland			(¹)	(1)	(¹)		
United Kingdom	7	219	14	404	65	580	
Zaire					5	42	
Total	282	3,593	295	4,986	446	3,02	
Wrought:							
Belgium-Luxembourg	1	13					
Canada	(¹)	6	(¹)	1			
Germany, Federal Republic of	`í	. 7		-	(1)		
Ireland	-	•			(1)	3	
					\{\frac{1}{4}}	;	
Japan	715		(1)	-7	•		
Netherlands	(1)	107	(-)	80	10	-66	
Peru	9	137	4				
United Kingdom	1	22	(1)	32	4	5:	
Total	12	186	4	117	15	12	

 $^{^{1}}$ Less than 1/2 unit.

WORLD REVIEW

In response to declining indium prices, world production decreased in 1981. Major refiners included Metallurgie Hoboken-Overpelt S.A. in Belgium, Cominco in Canada, Preussag AG in the Federal Republic of Germany, Penarroya S.A. in France, Nippon Mining Co., Ltd., in Japan, and Mining and Chemical Products Ltd. in the United Kingdom.

SELENIUM11

Consumption in 1981 of selenium for photocopying increased, but glass, chemical, and pigment applications remained essentially unchanged from those of the previous year.

Table 13.—Salient selenium statistics

(Pounds of contained selenium unless otherwise specified)

	1977	1978	1979	1980	1981
United States:					
Production, primary	499,475	508,636	587.118	310,588	555,454
Shipments to consumers	353,098	324,378	467,338	310,764	458,240
Imports for consumption	585,673	799,853	683,903	625,472	686,887
Exports, metal, waste and scrap	67.610	227,449	333,282	180,269	133,430
Apparent consumption	871.161	896,782	817.959	755,967	1.011.697
Stocks, yearend, producer	323,119	507.377	627,157	626,981	644,980
Producers' price, average per pound,	020,110	001,011	021,101	010,001	011,000
commercial and high-purity grades	\$17.12-\$20.86	\$15.00-\$18.00	\$13.65-\$15.31	\$10.95-\$12.66	1\$4.38
World: Refinery production	r3,051,850	r3,132,985	r3,572,302	P3,018,200	e2,953,944

^eEstimated. ^pPreliminary. ^rRevised.

Legislation and Government Programs.—Controversy continued on the toxic effects versus beneficial effects of selenium. Effective August 28, 1981, the Food and Drug Administration (FDA) ruled to allow the addition of limited quantities of selenium to the feed of laying chickens. As a result of this action, selenium may now be added in limited quantities to the complete feed for all food animals. However, FDA denied a request by the American Feed Manufacturers Association to grant selenium the status of generally recognized as safe.12

DOMESTIC PRODUCTION

During 1981, primary selenium was recovered at three copper refineries: AMAX Copper Inc., at Carteret, N.J.; Asarco at Amarillo, Tex.; and Kennecott Corp. at Magna, Utah. The selenium was recovered from copper refinery anode slimes along with gold, silver, and tellurium, and from residues of pollution abatement plants at domestic and foreign nonferrous smelters and refineries. Two domestic companies that shipped selenium-containing materials to these refineries were Phelps Dodge Refining Corp. and The Anaconda Company. High-purity selenium metal and various selenium compounds were produced from commercial-grade metal by the three copper refineries and other processors.

Secondary selenium was recovered from used xerographic drums by the Xerox Corp., in Webster, N.Y., and by Selenium Inc. (a

division of Refinement International), in Mapleville, R.I. Selenium Inc. also recovered selenium from used selenium rectifiers. The two U.S. companies recovered a total of about 100,000 pounds of secondary selenium in 1980 and an additional 100,000 pounds in 1981, considerably more than the estimated 10,000 pounds of selenium recovered in 1979.

CONSUMPTION AND USES

Consumption of selenium exceeded 1 million pounds and was the highest level since 1975. The increase in consumption was caused by an increase in demand for selenium in xerography. Apparent consumption of selenium was calculated by adding selenium shipments to imports and subtracting exports.

The following are estimates of selenium consumption by end-use categories in 1981: Electronic and photocopier components, 50%; glass manufacturing, 22%; chemicals and pigments, 20%; and other, 8%. About 500,000 pounds of selenium was consumed for electronic and photocopier end uses in 1981, about half of which was primary selenium and the other half was old scrap recovered from used xerographic drums and rectifiers by domestic and foreign refiners.

STOCKS

U.S. producer stocks in 1981 increased slightly over the 1980 level and represented about 8 months' supply at the 1981 rate of apparent consumption. Stocks included

¹Represents average dealer price of commercial grade; other prices are average producer prices. In 1981, all producers ceased listing published prices.

granular selenium, a semirefined form of selenium.

PRICES AND GRADES

Selenium is usually sold as a commercialgrade (99.5% minimum) powder available in several mesh sizes. Pellets and sticks are also sold.

The oversupply of selenium in the United States in recent years continued, and prices continued to decline in 1981. Because of falling prices, all producers ceased listing published prices, and are now quoting prices on a daily basis. The last complete list of prices was published on January 4, 1981. At that time, the price of commercial-grade selenium was \$8.50 to \$12.00 per pound and the price of high-purity selenium was \$11.50 per pound. Dealer prices for commercial-grade selenium declined from \$5.\$6 per pound in January to \$3.\$4 per pound in December.

FOREIGN TRADE

Exports of selenium decreased for the second consecutive year, and the United

Kingdom continued to be the largest recipient of exports. Imports of selenium increased in 1981, and Canada continued to be the largest source of imports. A large percentage of selenium imported from Canada was refined from old scrap.

The U.S. import duties for selenium were changed as shown in table 16.

Table 14.—U.S. exports of selenium metal, waste and scrap in 1981, by country

=	· -	-
Country	Quantity (pounds of contained selenium)	Value
Australia Belgium Bermuda Canada Chile India Japan Mexico Philippines Singapore South Africa, Republic of Sweden Taiwan	9,292 17,454 150 8,052 383 420 5,969 24,923 664 920 2,205 1,709	\$27,361 91,155 1,088 56,731 2,777 4,263 23,777 126,719 9,234 6,668 7,165 42,715 1,598
United Kingdom	61,069	266,527
Total	133,430	667,778

Table 15.—U.S. imports for consumption of selenium in 1981, by country

	Country		Quantity (pounds of contained selenium)	Value
Unwrought and waste and scrap:		*		
Belgium-Luxembourg			27,537	\$423,403
Canada			375,059	4.708.526
Chile			10.782	54,120
Germany, Federal Republic of			42,785	280,857
Japan			47,732	807,136
Peru			44,001	170,705
Sweden				332,429
United Kingdom			60,423	347,698
Yugoslavia			4,400	19,400
				15,400
Total			626,728	7,144,274
Selenium dioxide:				
Canada			1.409	7:043
Germany, Federal Republic of			11,718	96,356
Sweden				424
United Kingdom			i	354
Total			13,137	104,177
Selenium salts:				
Germany, Federal Republic of		•	173	338
				342
Korea, Republic of			2,902	8.900
United Kingdom			165	4,500
_				4,000
Total			3,686	14,080
Sodium selenite:				
Canada			5,277	72,090
Germany, Federal Republic of			18,952	216,869
Japan			507	6,013
Netherlands			507	5,169
Switzerland			243	2,425
United Kingdom			6,465	102,773
Total			31,951	405,339

Table 15.—U.S. imports for consumption of selenium in 1981, by country —Continued

Country		Quantity (pounds of contained selenium)	Value
Other selenium compounds:			
Canada Germany, Federal Republic of Japan	 	10,236 3 31	\$76,850 322 4,583
United Kingdom	 	1,115 11,385	16,764 98,519
Grand total	 	686,887	7,766,389

Table 16.—U.S. import duties for selenium

Thomas	TSUS	Most	Non-MFN.		
Item	No.	Jan. 1, 1981	Jan. 1, 1982	Jan. 1, 1987	Jan. 1, 1982
Selenium metal Selenium dioxide and salts	632.40 420.50, 420.52	Free	Free	Free	Free. Do.
Sodium selenite and other selenium compounds	421.625, 420.54	4.7% ad valorem.	4.5% ad valorem.	3.7% ad valorem.	25% ad valorem.

WORLD REVIEW

World production of selenium in 1981 was virtually the same as that of 1980. The largest producers were Japan, Canada, and the United States.

Metal Bulletin Ltd. and the Minor Metals Traders' Association sponsored a 2-day seminar May 20-21, 1981, in Rotterdam, Netherlands, on marketing minor metals. Topics covered included future demand and consumption, pricing, warehousing and distribution, scrap and recycling, and substitution. The proceedings will be available from Metal Bulletin Ltd.

Canada.-Noranda Mines Ltd. in Canada is estimated to recover 100,000 to 200,000 pounds of selenium per year from secondary sources. The Canadian plant recovered selenium from scrap imported from Europe, Japan, and the United States.

Table 17.—Selenium: World refinery production, by country¹

(Pounds)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Belgium ^e	130,000	130,000	130.000	130,000	130,000
Canada ³	905,111	865,924	1,128,113	1.000,015	925,940
Chile	18,291	18,001	62,369	37,699	33,070
Finland	25,693	37,104	38,671	38,030	37,920
Japan	1,005,306	1,060,422	1,124,356	1.038,376	948,000
Mexico	110,231	176,369	165,346	101,413	19,800
Peru	r _{35,132}	28,499	40.389	60,704	52,910
Sweden	176,370	123,459	149,914	149,914	150,000
United States	499,475	r508.634	587,117	310.582	4555,454
Yugoslavia	111,024	116,492	101,979	101,413	99,200
Zambia	35,217	68,081	44,048	50,054	1,650
Total	r3,051,850	r _{3,132,985}	3,572,302	3,018,200	2,953,944

Insofar as possible, data relate to refinery output only; thus, countries that produce selenium contained in copper ores, copper concentrates, blister copper, and/or refinery residues, but do not recover refined selenium from these materials indigenously, are excluded to avoid double counting. Table includes data available through May 19, 1982.

indigenously, are excluded to avoid double counting. Table includes data available through may 13, 1302.

In addition to the countries listed, Australia, the Federal Republic of Germany, and the U.S.S.R. produce refined selenium, but output is not reported, and available information is inadequate for formulation of reliable estimates of output levels. Australia is known to produce selenium in intermediate metallurgical products (Peko Wallsend Ltd. at June and Warrego Mines, Tennant Creek) and has facilities to produce elemental selenium (Port Kembla refinery of the Electrolytic Refining and Smelting Co. of Australia Pty. Ltd.); output by Peko Wallsend is not reported in order to avoid double counting, and output, if any, by the Port Kembla refinery is unreported.

³Refinery output from all sources, including imported materials and secondary sources.

⁴Reported figure.

TECHNOLOGY

tional Symposium on Selenium in Biology and Medicine held in 1980 were published.¹³

The proceedings of the Second Interna-

TELLURIUM14

U.S. tellurium data, with the exception of imports and apparent consumption, have

been withheld in this publication to avoid disclosing company proprietary data.

Table 18.—Salient tellurium statistics1 in the United States

(Pounds of contained tellurium unless otherwise specified)

	1977	1978	1979	1980	1981
Refinery production Shipments to consumers. Imports for consumption Apparent consumption Stocks, yearend, producer Producers' price, average per pound, commercial grade	W W 171,291 393,479 W \$17.15	W W 173,989 402,232 W \$20.00	W W 167,760 494,010 W \$20.00	W 64,860 177,880 W \$19.77	W W 83,671 187,887 W ² NA

NA Not available. W Withheld to avoid disclosing company proprietary data.

DOMESTIC PRODUCTION

Tellurium and tellurium dioxide were recovered domestically as byproducts of electrolytic copper refining by AMAX Copper Inc. at Carteret, N.J., and by Asarco at Amarillo, Tex. One domestic company that shipped tellurium-containing materials to AMAX was Phelps Dodge Refining. Highpurity tellurium, tellurium master alloys, and tellurium compounds were produced by primary and intermediate processors from commercial-grade metal and tellurium dioxide.

CONSUMPTION AND USES

Consumption of tellurium increased slightly in 1981 compared with the level of the previous year but was significantly below the nearly 500,000 pounds consumed in 1979. The closure of Oxirane Corp.'s ethylene glycol plant late in 1979 sharply reduced the quantity of tellurium catalysts used, and the continued decline in domestic automobile sales caused less tellurium-alloyed steel to be used. Tellurium con-

sumption by end use in 1981 was estimated as follows: Iron and steel products, 65%; nonferrous metals, 20%; chemicals, 10%; and other uses including rubber manufacturing, 5%.

PRICES AND GRADES

Producers ceased listing published prices of tellurium on January 5, 1981; after January 5, they quoted prices to customers on a daily basis. In September 1981, one producer quoted a price of \$14 per pound. Tellurium metal is usually marketed in the form of minus 200-mesh powder, or as slabs, tablets, or sticks. Normal commercial grades contain a minimum 99% or 99.5% tellurium. Tellurium dioxide is sold in the form of minus 40- to minus 200-mesh powder containing a minimum 75% tellurium.

FOREIGN TRADE

Canada and Peru were the leading suppliers of imports. Data on tellurium exports were not available. U.S. import duties for tellurium in 1981 are shown in table 19, with scheduled changes.

Table 19.—U.S. import duties for tellurium

	TSUS	M	Non-MFN,		
Item	No.	Jan . 1, 1981	Jan. 1, 1981 Jan. 1, 1982		Jan. 1, 1982
Tellurium		3.0% ad valorem $_$	2.5% ad valorem _	Free	25% ad valorem.
metal Compounds _	632.48 421.90 4.7% ad valorem	4.7% ad valorem $_$	4.5% ad valorem $_{-}$	3.7% ad valorem $_{-}$	Do.

World refinery production for selected countries given in table 21.
The published list price of tellurium was suspended Jan. 5, 1981. From Oct. 7, 1980, until Jan. 4, 1981, the producer price was \$18 to \$20 per pound.

Table 20.—U.S. imports for consumption of tellurium in 1981, by country

	Country			Quantity (pounds of contained tellurium)	Value
Unamought and waste and source		Residence of the second			
Unwrought and waste and scrap: Canada Germany, Federal Republic of Hong Kong Japan Peru US.S.R United Kingdom	1			35,738 56 7,921 6,668 16,390 3,376 2,256	\$1,172,156 6,041 154,497 72,500 178,800 44,08- 28,821
Total	<u> </u>			72,405	1,656,91
Compounds: Canada Germany, Federal Republic of Hong Kong Japan United Kingdom				8,160 450 2,425 80 151	94,380 6,530 41,77 3,370 7,893
Total		· · · · · · · · · · · · · · · · · · ·		11,266	153,95
Grand total			=	83,671	1,810,87

WORLD REVIEW

Metal Bulletin Ltd. and the Minor Metals Traders' Association sponsored a 2-day seminar May 20-21, 1981, in Rotterdam, Netherlands, on marketing minor metals. Topics covered included future demand and consumption, pricing, warehousing and distribution, scrap and recycling, and substitution. The proceedings were expected to be available from Metal Bulletin Ltd.

TECHNOLOGY

Ametek Corp. of Philadelphia, Pa., developed a new cadmium telluride photovoltaic solar cell. Laboratory reports indicated that the solar cell could be as much as seven times less expensive to produce than a comparable silicon cell. Ametek reported that commercial production would not begin for at least 1 year.15

Table 21.—Tellurium: World refinery production, by country¹

	(Founds)				
Country ²	1977	1978	1979	1980 ^p	1981 ^e
Canada ³	81,617 e27,000	99,867	104,067	99,208	98,800
Hong Kong	-21,000	^e 50,000 (⁴)	^e 50,000 (⁴)	25,022 (⁴) ⁵ 440	
Japan Peru	r _{143,300} 40,499	r _{152,119} 33,911	123,459 46,742	152,119 44.322	500 132,300 47,840
United States	W	W	W	W.	¥1,040

Preliminary. rRevised. *Estimated. *Preliminary. *Revised. W Withheld to avoid disclosing company proprietary data.
*Insofar as possible, data relate to refinery output only; thus, countries that produce tellurium contained in copper ores, copper concentrates, blister copper, and/or refinery residues, but do not recover refined tellurium, are excluded to avoid double counting. Table is not totaled because of the exclusion of data from major world producers, notably the U.S.S.R. and the United States. Table includes data available through June 2, 1982.

*In addition to the countries listed, Australia, Belgium, the Federal Republic of Germany, and the U.S.S.R. are known to produce refined tellurium, but output is not reported, and available information is inadequate for formulation of reliable estimates of output levels. Moreover, other major copper-refining nations such as Chile, Zaire, and Zambia may produce refined tellurium, but output in these nations is conjectural.

*Revised to zero. W Withheld to avoid disclosing company proprietary data.

⁴Revised to zero. ⁵Pilot plant production.

THALLIUM16

DOMESTIC PRODUCTION

Asarco, the only domestic producer of thallium and thallium compounds, announced that it was discontinuing the sale of these products. The company also reported that it will continue to recover thallium at the Globe plant in Denver, Colo., and that the metal will be stockpiled. Trace amounts of thallium are contained in certain zinc-bearing ores and are concentrated in smelter flue dusts and residues that provide the commercial source for production of thallium.

USES

The uses of thallium included electronic components, gamma radiation detection equipment, additives for changing the refractive index and density of glass, lowtemperature mercury switches, photosensitive devices, and radioactive isotopes for cardiovascular diagnostic procedures. Future domestic requirements of thallium were expected to be met by imports and withdrawals from stocks.

The domestic producer price of thallium in 25-pound lots was \$7.50 per pound during 1981. Metal traders reported that the price of imported thallium metal ranged from \$40 to \$45 per pound.

WORLD REVIEW

World production data for thallium were not available. The U.S. reserves in zinc ores were estimated at 75,000 pounds. Rest-ofworld reserves were estimated to be 725,000 pounds of thallium.

¹Prepared by J. Roger Loebenstein, physical scientist. ²American Metal Market. Joint Effort Planned on Arsenic Problem. V. 89, No. 208, Oct. 27, 1981, p. 7. 3——. Asarco Gets Tacoma Smelter Variance. V. 89, No. 223, Nov. 17, 1981, p. 2.

⁴The Northern Miner. Cominco's New Gallium Arsenide Plant. V. 67, No. 19, July 16, 1981, p. A-22. ⁵Metal Bulletin (Monthly). El Indio Dedicated. January

*Metal Bulletin. Arsenic Attracted by U.S. Production Squeeze. No. 6573, Mar. 17, 1981, p. 17.

*Metal Bulletin. Arsenic Attracted by U.S. Production Squeeze. No. 6573, Mar. 17, 1981, p. 17.

*Mehta, A. K. Investigation of New Techniques for Control of Smelter Arsenic Bearing Wastes. EPA-600/S2-81-049, September 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem of No. 1981, 6 pp.

*Theorem

⁸U.S. Department of the Interior. Compendex Review (Library). V. 8, No. 29, accession number 79-27531A. ⁹Prepared by Robert G. Reese, physical scientist.

¹⁰Prepared by James F. Carlin, Jr., physical scientist. ¹¹Prepared by J. Roger Loebenstein, physical scientist ¹²Bulletin of the Selenium-Tellurium Development A

Selenium Tellurium Development Association, Inc. Selenium Now Approved for Addition to All Animal Feeds. No. 21, p. 1.

13Spallholz, J. E., J. L. Martin, and H. E. Ganther (ed). Selenium in Biology and Medicine (Proceedings of the Second International Symposium on Selenium in Biology and Medicine, at Texas Tech. University, Lubbock, Tex., May 12-16, 1980). Avi Publishing Co., Westport, Conn., 1981, 573 pp.

¹⁴Prepared by J. Roger Loebenstein, physical scientist. 18 Chemical Week. Cadmium Telluride Provides Low-Cost Solar Cells. Apr. 15, 1981, p. 54. Bulletin of the Selenium Tellurium Development Asso-

ciation, Inc. Ametek's Research Into Solar Energy Begins to Pay Off. No. 21, pp. 2, 18.

¹⁶Prepared by Patricia A. Plunkert, physical scientist.

Table 22.—U.S. imports for consumption of thallium in 1981, by country

Country	Compounds			Unwrought and waste and scrap		
	Gross weight (pounds)	Content ^e (pounds)	Value	Gross weight (pounds)	Value	
Belgium-Luxembourg	47	38	\$1,848	25	\$967	
Canada			1.000	3	1,456	
Germany, Federal Republic of	373	298	1,633 21,402	$\bar{221}$	7,486	
Japan United Kingdom¹	164 48	131 38	6,615 45,546			
	633	506	77,044	249	9,909	

Estimated.

Table 23.—U.S. import duties for thallium

Item	nation (MFN)	Non-MFN,		
	No.	Jan. 1, 1981	Jan. 1, 1982	Jan. 1, 1981- Jan. 1, 1982
Unwrought metalCompounds	632.50 422.00	3.8% ad valorem _ 4.7% ad valorem _	3.1% ad valorem _ 4.5% ad valorem _	25% ad valorem. Do.

¹Includes 1 pound of extremely pure material with a value of \$42,219.

Other Nonmetals

By Staff, Division of Industrial Minerals

CONTENTS

en en en en en en en en en en en en en e	Page		Page
Asphalt	955	Staurolite	962
Greensand		Strontium	
Iodine	955	Wollastonite	965
Meerschaum		Zeolites	
Quartz Crystal			•

ASPHALT (NATIVE)1

Native asphalt was produced in 1981 by five companies in three States, Alabama, Texas, and Utah. Texas was the leading State in production of native asphalt. Total production increased in 1981 to 1.26 million tons, while value increased 10.5% to \$27.7 million.

Bituminous limestone, used primarily for street and road repair, was produced by Whites Uvalde Mines and Uvalde Rock Asphalt Co., both in Uvalde County, Tex., and Southern Stone Co., Colbert County,

Gilsonite was produced by American Gilsonite Co., Uinta County, Utah, and Ziegler Chemical and Mineral Corp., Weber County, Utah. This material was used for purposes other than road repair.

GREENSAND²

Greensand (glauconite) was produced in 1981 only by Inversand Co., a subsidiary of Hungerford and Terry, Inc., near Clayton, N.J. Production and sales information is withheld to avoid disclosing company proprietary data. A newspaper article reported that about 10,000 tons is mined each year.³

Raw greensand was resold by Zook and Ranch, Inc., as a soil conditioner and source of slowly released potash to organic farmers. Processed greensand was sold as a filter media for the removal of manganese and iron from drinking water supply systems.

IODINE⁴

Apparent consumption of iodine in the United States increased slightly during 1981 along with the price of crude iodine. The two U.S. producers of crude iodine increased production of iodine for sale on the open market. A joint venture project between two Japanese companies and a U.S. company announced a new plant for the production of iodine from oilfield brines.

The General Services Administration (GSA) received authorization from Congress to sell excess iodine from the stockpile.

Legislation and Government Programs.—The U.S. Government strategic stockpile contained 7,971,977 pounds of crude iodine at yearend 1981. The iodine, packed in 25-pound glass jars, was acquired by barter after Congressional authorization

in 1948. The stockpile goal remained at 5,800,000 pounds. Authorization was given by Congress for GSA to sell 2,213,000 pounds of the excess iodine for domestic use only. Approximately 500,000 pounds of iodine was available for sale during November and December 1981 and January 1982. The authorization allowed the sale of 1 million pounds in fiscal year 1982-83 and 213,000 pounds in fiscal year 1984. The first bid opening was November 10, 1981. Five firms bid on the entire 200,000 pounds authorized for disposal. Only 900 pounds was sold for \$6.20 per pound. During December, 35,000 pounds of crude iodine was sold for \$5.90 per pound and 1,000 pounds at \$5.87 per pound. By yearend, 36,900 pounds of stockpile excess had been sold for \$217,879.20.

The Food and Drug Administration (FDA) planned to require that medical uses of ethylenediamine dihydriodide (EDDI) have an approved new drug application. There was no action, however, during 1981.5 EDDI was recommended for use as an aid in removal of mucus from the upper respiratory tract of chickens, turkeys, and swine, and as a preventative for soft tissue lumpy jaw in sheep and cattle. Four companies reported EDDI production during 1981 to the Bureau of Mines. Production of animal feed material decreased in 1980-81 as a result of voluntary efforts on the part of EDDIproducing companies to lower the consumption of iodine in animals, especially lactating dairy cattle.

The depletion allowance for iodine remained at 14% of gross income but may not exceed 50% of net income without the depletion deduction.

DOMESTIC PRODUCTION

Two companies supplied approximately 25% of U.S. consumption during 1981. The companies, located in Michigan and Oklahoma, produce iodine from subsurface brines.

The Dow Chemical Co. recovered iodine from mineral-rich brines of the Detroit River Group of Devonian Age at Midland, Mich. Dow's iodine production was reported to have increased during 1981 because of the strong demand for iodine compounds. Döw announced during 1980 plans to build a world-scale iodine plant. No further details were released concerning the plant in 1981.

Woodward Iodine Operations of Woodward, Okla., increased output. Woodward

Iodine is a joint venture between Amoco Production Co. (49%) and PPG Industries, Inc. (51%). Iodine of greater than 99.9% purity is recovered by a conventional process with proprietary refinements from brine of the Morrowan Formation of Pennsylvanian Age associated with natural gas. Production was less than the 2-million-pound design capacity. Maintenance problems with the pumps, which are required to reinject stripped brine, have been solved.

Calabrian International Co., the largest U.S. importer of iodine, announced during 1980 that it would build a 3-million-pound-per-year iodine facility. No further information was available.

During 1981, North American Brine Resources (NABR) announced plans for a \$2.3 million investment in a plant in Kingfisher County, Okla., to produce crude iodine. NABR is composed of Beard Oil Co. (40%): Godoe, USA, Inc., a wholly owned subsidiary of United Resources Industry Co. (50%); and Inorgchem Development Inc., a wholly owned subsidiary of Mitsui & Co. (USA) (10%). The plant was scheduled to begin production of 265,000 to 353,000 pounds per year starting in 1982. NABR operated a pilot plant during 1980 to perfect the technology to recover iodine from the high strontium brine. The technology was reported to be an absorption process. The brine being used is reported to contain 150 to 1,200 parts per million of iodine.

CONSUMPTION AND USES

The Bureau of Mines consumption canvass for iodine received responses from 32 plants in 14 States. The 1981 canvass indicated a 17% increase in gross weight of crude iodine consumed. The increase was primarily the result of a tenfold increase in the use of iodine for sanitation.

The major downstream uses of iodine for 1981 were estimated as follows: Animal feed supplements (mainly for cattle), 20%; catalysts (for synthetic rubber, stabilized rosin, tall oil, and other uses), 20%; pharmaceuticals, 18%; sanitary and industrial disinfectants, 14%; stabilizers (as in nylon precursors), 11%; inks and colorants, 6%; photographic equipment, 5%; and other uses, 6%. Other uses included the making of highpurity metals, motor fuels, iodized salt, smog inhibitors, and lubricants. Iodine also has application in cloud seeding and radiopaque diagnosis in medicine. The major changes in demand were an increase in

usage for sanitary preparations and catalysts.

West Chemical Products, Inc., granted a nonexclusive, royalty-free license to use certain trademarks for the sale of certain iodine-based product trademarks to Ciba-Geigy of Basel, Switzerland. This replaced the license agreement that had been in effect since 1975 and was terminated on June 5, 1981. The new agreement does not include the low-iodine technology covered by U.S. Patent 4,271,149.

Two companies that consume iodine were merged with other companies during 1981. Fischer Scientific Co. was acquired by Allied Corp. in November for \$330 million. Allied acquired 46% of Fischer's common stock. National Distillers and Chemicals bought 9% of Mallinckrodt, Inc.'s outstanding shares and showed an interest in acquiring Mallinckrodt. Mallinckrodt uses large amounts of iodine to produce pharmaceuticals and catalysts at its plant in St. Louis, Mo., and X-ray contrast media at its plant in Raleigh, N.C. In 1982, a 15-year trust representing 17% of the company's stock was to change into the hands of Washington University in Missouri and Harvard University in Massachusetts. In December, Mallinckrodt announced an agreement to sell 32% of the company's common shares

to Avon Products, Inc. Avon also planned to buy the 17% interest held by Harvard and Washington Universities.

Concern over excessive intakes of iodine in the human diet uncovered some unexpected sources. Dairy products were reported to contribute up to 38% of the iodine intake. One source of iodine in dairy products is iodophors, complexes of iodine with organic carriers, which are used to clean. sanitize, and disinfect dairy cattle and equipment. The major sources of the overuse of iodine in dairy products were salt licks and feed supplements for cows which contributed iodine levels above those recommended by the FDA. Red food dye contains up to 50% iodine (erthrosine, red dye No. 3), and algae or kelp food additives contain high amounts of iodine.6

Establishing an accurate pattern of demand by end use is difficult because iodine is frequently converted into intermediate compounds and marketed as such before reaching its ultimate end use. Moreover, iodine and iodides used in catalytic and other dissipative processes are not well covered. This situation has been revealed consistently in recent years by import figures that exceeded reported consumption figures.

Table 1.—Crude iodine consumed in the United States, by product

		1980			1981	
Product	Consum		mption	NT	Consumption	
	Number - of plants	Thou- sand pounds	Percent of total	Number - of plants	Thou- sand pounds	Percent of total
Reported consumption:						
Resublimed iodine	9	427	9	9	697	13
Potassium iodide	9	976	21	٥	931 691	13
Sodium iodide	10	414	9 20	10	1,163	21
Other inorganic compounds	10	933 588	20 12	10	1,163 562	10
Ethylenediamine dihydriodide	4			.4		
Organic compounds	16	^r 1,347	r ₂₉	17	1,421	26
Total	¹31	4,685	100	132	² 5,466	100
Apparent consumption	XX	8,700	XX	XX	8,800	XX

^rRevised. XX Not applicable.

PRICES

At the beginning of the year, demand for crude iodine prompted U.S. importers of the Japanese and Chilean product to raise the discounted selling price from \$6.35 to \$6.53 per pound. The list price remained at \$7.26 per pound. PPG Industries, Inc., listed

crude iodine at \$6.35 per pound for quantities greater than 4,700 pounds.

In March, prices of U.S. Pharmacopeia (U.S.P.) and food chemical potassium iodide (KI) increased to a range between \$8.80 and \$9.54 per pound. Analytical reagent-grade KI listed at \$10.27 per pound for truckloads. Resublimed crystals of U.S.P. increased to

¹Nonadditive total because some plants produce more than one product.

²Data do not add to total shown because of independent rounding.

\$12.94 per pound for orders of 2,000 pounds. Sodium iodide was selling at \$12.95 per pound for truckloads.

By June, the price increases had caused decreased demand. Consumers used stocks of iodine that had been built up during the previous months in anticipation of a continuing tight market. Importers of Japanese and Chilean crude posted a price of \$7.26 per pound. PPG listed prices of \$8.00 per pound for orders less than 4,700 pounds and \$7.00 per pound for shipments greater than 4,700 pounds.

Feed-grade material, which listed at \$7.95 per pound for orders over 500 pounds and \$8.20 per pound for orders less than 500 pounds, was discounted in August. The quoted yearend U.S. prices for iodine and its primary compounds were as follows:

	Per pound ¹
Iodine, crude, drums Resublimed iodine, U.S.P., granular,	\$7.00-\$7.26
100-pound drums, works	12.16-12.94
Calcium iodate, drums, delivered	7.38
Calcium iodide, 35-pound drums, works Iodoform, N.F., 300-pound drums, f.o.b.	5.98
works Potassium iodide, U.S.P., granular, crystals,	21.50-21.75
Sodium iodide, U.S.P., crystals, 300- to 500-	9.32- 9.54
pound lots, drums, freight equalized	9.10-11.85

¹Conditions of final preparation, transportation, quantities, and qualities not stated are subject to negotiation and/or somewhat different price quotations.

Source: Chemical Marketing Reporter, v. 220, No. 26, Dec. 28, 1981, pp. 30-37.

FOREIGN TRADE

The United States continued to be dependent on imports primarily from Japan and Chile to supplement domestic production. Imports of crude iodine decreased from 6,234,000 pounds in 1980 to 6,099,000 pounds in 1981. U.S. exports are not available because they are grouped in many different categories with other halogens, but when last reported were small. Imports are approximately 75% of domestic consumption. Imports of crude iodine during 1981 were from the following countries: Japan, 81%: Chile, 17%; New Zealand, 1%; and Canada, 1%. Imports from Japan and Chile decreased between 1980 and 1981. The value declared for U.S. Customs increased from \$4.63 per pound in 1980 to \$5.94 per pound in 1981, a value growth rate of 28% during 1981.

Table 2.—U.S. imports for consumption of resublimed iodine in 1981, by country

(Thousand pounds and thousand dollars)

Country	Quantity	Value
Canada Germany, Federal Republic of Japan Netherlands Sweden	(¹) (¹) 32 (¹) 3	1 238 (¹) 23
Total	35	263

Less than 1/2 unit.

Source: U.S. Department of Commerce, Bureau of the Census.

Table 3.—U.S. imports for consumption of crude iodine, by country

(Thousand pounds and thousand dollars)

Country	1979		1980		1981	
	Quantity	Value	Quantity	Value	Quantity	Value
CanadaChileGermany, Federal Republic of	1,342	4,314	1,124	5,669	68 1,014	291 6,239
Indonesia Japan	13 4,838	$\begin{array}{c} -\overline{40} \\ 14,073 \end{array}$	(1) 5,062	(1) 22,894	4,929	29,153
Mexico New Zealand	- <u>ī</u>	- 2	42	253		
United Kingdom	7	25		31	88	548
Total	6,201	18,454	6,234	² 28,848	6,099	36,231

Less than 1/2 unit.

Source: U.S. Department of Commerce, Bureau of the Census.

WORLD REVIEW

Chile.—Sociedad Química y Minera de Chile operated two nitrate mines, Pedro de Valdivia and Maria Elena, which produced crude iodine (99.6%). Production of iodine as a coproduct of nitrates increased as improved recovery techniques were applied and the iodine plant was expanded.¹⁰

²Data do not add to total shown because of independent rounding.

Borax is recovered before iodine as a byproduct because it can interfere with the purification of the iodine. Recovery of the borax was being tested by pilot projects using solvent reaction.

The Maria Elena plant uses a modified Guggenheim process with a brine wash on the tailings and concentrating the weak solution by solar evaporation. The tailings solution contained 0.3 to 0.6 gram per liter of iodine. The process provided flexibility and increased iodine recovery.

The Pedro de Valdivia plant operates at a rate of 3.7 million pounds of iodine per year. The feed from the mine averages 0.04% iodine. Pedro de Valdivia (which started production of iodine in 1931) uses the Gug-

genhein process.

Reserves were estimated to total between 1.8 and 3.5 million pounds. Reserves of iodine in overburden and wastedumps could contain close to 300 million pounds of iodine. Total iodine reserves in solid minerals could be as high as 9 million pounds of which about 2 million pounds is proven. 2

A paper on the geology and origin of the nitrate deposits discussed the formation of the iodine. It is believed that local sources including the spray and evaporation from the Pacific Ocean and volcanic emission in the nearby Andes Mountains may have been a major source of iodine. The existence of the iodine is due to favorable accumulations and preservation of the deposit.¹³

France.—Pechiney Ugine Kuhlmann confirmed negotiations to sell its chemical division. One of the two consistently profitable parts of the company were the halide (including iodides) portion.¹⁴

Indonesia.—Ise Chemical Industries Co., Ltd., continued to be a producer of iodine in Indonesia. The primary problem with marketing was the low quality of the iodine. The iodine is produced in East Java at a plant located at Mojokerto. Iodine-bearing brines averaging 100 to 150 milligrams per liter have been found at many places in the oil belt of Neocene to Pleistocene Age sediments in East Java.

Japan.—Production of crude iodine in Japan, which produces approximately 55% of the world iodine requirements, continued to be affected by environmental and economic difficulties. Output in 1981 remained well below the 1972 record of 16.5 million pounds. Japan had a nameplate capacity of over 19 million pounds. During 1981, 83% of the world's iodine production came from the Southern Kanto Gasfield of the Chiba Prefecture. Ise Chemical has become Japan's leading iodine producer with a capacity of approximately 9 million pounds.

Five Japanese companies operated 17 plants to produce iodine. Six of the plants produced iodine by an ion-exchange process. The remaining plants used the air-blowout

process.

The iodine produced in Japan is dissolved in brine accompanied by natural gas. The brine is believed to be derived from seawater and contains a maximum of 160 milligrams per liter of iodine. All of the iodine produced in Japan occurs in dry-type gases, natural gas associated with water. 15

In 1981, exports of Japanese iodine declined to 12 million pounds. Export values increased to an average \$5.40 per pound. Japan exported to 36 countries, of which the European Economic Community accounted for 47%; the United States, 38%; India, 4%; and Canada, 3%.18

United Resources announced an investment in Okinawa Natural Gas Development Co. (tentative name) to manufacture iodine. Plans were to produce 441,000 to 551,000 pounds per year of iodine by 1983.

Table 4.—Crude iodine: World production, by country¹

(Thousand pounds)

Country ²	1977	1978	1979	1980 ^p	1981 ^e
Chile	4,092 800 26 13,448 r4,400 W	4,237 1,000 r ₁₅ 13,228 r ₄ ,400 W	5,313 1,000 55 13,779 4,400 W	5,734 1,000 55 14,332 4,400 W	5,926 1,000 55 15,136 4,400 W
Total	^r 22,766	r22,880	24,547	25,521	26,517

Estimated. PPreliminary. Revised. W Withheld to avoid disclosing company proprietary data.

¹Table includes data available through June 9, 1982.

²In addition to the countries listed, the Federal Republic of Germany is known to have produced elemental iodine in 1976 and may have continued to do so during 1977-81, but output is not officially reported and available information is inadequate for formulations of reliable estimates of output levels. New Zealand also produces elemental iodine, but production data are not available.

The iodine occurs in brines in gas reservoirs of Upper Miocene Age. Tests of the brines show iodine concentration between 40 and 110 parts per million. One test well had iodine concentrations between 76 and 91 parts per million over 350 feet of strata.¹⁷

New Zealand.—The largest iodine reserves in the world are in New Zealand. There is an extensive distribution of similar sediments to those producing iodine in Ja-

pan (post Middle Miocene).18

U.S.S.R.—Substantial deposits of salts were reported in the Inder salt dome of Western Kazakhstan. The dome is 6 miles deep and contains rock salt, potassium, magnesium, iodine, nitrates, and borates.

TECHNOLOGY

West Chemical Products, Inc., announced a major advance in using iodine as a microbiocide. The patented biocide permits smaller quantities of costly iodine in germicides, sanitizers, and disinfectants. Besides a reduction in cost, the lower quantities of iodine will reduce potential absorption of iodine by the skin of animals and humans. West Chemical has patented the low-iodine technology and intends to market the iodine product worldwide. The low-iodine product is now being marketed in hand-wash compositions and topical solutions. West Chemical expects to introduce other products by yearend. 19

Tennessee Eastman Co. continued plans to produce acetic anhydride from coal using a new process that will bypass the formation of acetic acid. The plant was to be completed in 1982 and be onstream in 1983. The process makes methanol from syngas by the Lurgi process. The methanol reacts with acetic acid to produce methyl acetate. The methyl acetate is carbonylated to acetic anhydride. The catalyst, which was not identified, is modified by a picaline (group

VIII metal) and is promoted by methyl iodide.20

The FDA requested submission of a new drug application for KI in oral form for use as a thyroid-blocking agent. The request was seriously considered after the release of radioactive iodine (I¹³¹) on March 28, 1979, became the most severe nuclear accident in the Nation's history at Three Mile Island, Pa. Health problems which could be expected from the radioactive iodine release were investigated. The potential use of KI is to reduce the uptake of radioiodides. To be effective, it would be necessary to administer KI within 2 hours of exposure.²¹

Studies have shown that the iodine that escapes from light-water reactor accidents is not the elemental form but a metal iodide, probably cesium iodide.²² Oxidation of the iodide can occur to yield the iodate ion, which is nonvolative. It is significant that the issuance of thyroid-blocking agents

is not required.23

Other studies and research were conducted on iodine during 1981. Studies on iodine-125 showed selective concentration of triiodothyronine with excess triiodothyronine. Thyroid hormones may affect behavior and activity of the automatic nervous system.24 Sodium iodide scintillation crystals on photomultiplier tubes can detect gamma rays, neutrons, and charged particles. A 72-tube unit was built for Oak Ridge National Laboratory.25 Radiochemical damage from decaying iodine-125 occurred within 15 to 20 angstroms of the site. Deoxyribonucleic acid strand damage was detectable up to 70 angstroms from the decay site.26 Sodium iodide-thalium doped crystals are used to change gamma rays to light in open or cased drill holes. The crystals usually last 2 to 3 years. The doped crystals are used to detect induced radiation to help in lithological interpretations in exploration of ore bodies.27

MEERSCHAUM²⁸

Crude or block meerschaum was not imported in 1981. Imports of crude or block meerschaum in 1980, all from the United Kingdom, totaled 3,793 pounds with a customs declared value of \$17,720. The unit value of this imported material was \$4.67 per pound. Somalia and the Federal Republic of Germany have been the previous major suppliers to the United States. Crude

or block meerschaum is mined chiefly in Somalia, Tanzania, and Turkey.

Although Turkey is a major producer of crude or block meerschaum, State laws have prohibited exports of uncarved material since 1975. The block material was used by companies in New York and Ohio for manufacturing of smokers' pipes.

QUARTZ CRYSTAL²⁹

Production of natural quartz crystal in 1981 was estimated to be 175,000 pounds. Reported cultured quartz crystal production decreased from 757,000 pounds in 1980 to 660,000 pounds in 1981. Consumption of both natural and cultured electronic- and optical-grade quartz crystal decreased significantly in 1981 and totaled 296,000 pounds compared with 410,000 pounds in 1980. Imports of natural quartz crystal dropped to 389,000 pounds in 1981 compared with 816,000 pounds in 1980. Exports of natural quartz increased to 127,000 pounds

compared with 91,000 pounds exported in 1980, while exports of cultured quartz decreased from 219,000 pounds in 1980 to 125,000 pounds in 1981.

Legislation and Government Programs.—At yearend 1981, the total defense materials inventory of natural electronic-grade quartz crystal was 2.1 million pounds, of which 1.49 million pounds of stockpile grade was excess to the stockpile goal. Sales of natural quartz crystal by GSA during 1981 totaled 48,000 pounds.

Table 5.—Salient electronic- and optical-grade quartz crystal statistics in the United States

	1977	1978	1979	1980	1981
Production:					
Mine ¹	_ 606	317	314	e400	e175
Cultured quartz	_ 583	329	575	757	660
Imports of natural quartz crystal:2	005	105	400	010	900
Quantity	_ 265	165	428 \$216	816 \$402	389 \$233
Value	\$394	\$459	\$210	ቅ 40∠	\$400
Exports of electronic- and optical-grade quartz crystal:	-				
Natural:	070	37.4	BTA	91	107
Quantity	_ 370	NA NA	NA NA	\$366	127 \$490
Value	_ \$1,371	INA	IVA	\$ 000	φ 4 30
Cultured: Quantity	_ 133	NA	NA	219	125
Value Value	***	NA	NA	\$3,209	\$4,600
7 4140				,	
Total:					****
Quantity	_ ³ 502	NA	NA	310	\$252
Value		NA	NA	\$3,575	\$5,090
Consumption of quartz crystal		261	284	F410	296
Natural (electronic and optical grade)	_ 56	24	15	r ₁₇	14
Cultured	_ 224	237	269	.393	282

Estimated. Revised. NA Not available.

DOMESTIC PRODUCTION

In 1981, various grades of natural quartz were produced in Arkansas by Coleman Crystal, Inc., Jessieville, Ark., and Burrows Mining Co. and Ocus Stanley, both in Mount Ida, Ark. Total natural quartz production was estimated to be 175,000 pounds in 1981, down significantly from the 1980 estimated production of 400,000 pounds.

In 1981, U.S. production of cultured quartz crystal, for use in the quartz-cutting industry, totaled 660,000 pounds from seven companies in five States, a decrease of 12.8% compared with 757,000 pounds produced by seven companies in 1980. The

producers were Motorola, Inc., Chicago, Ill.; Electro Dynamics Corp. and Thermo Dynamics Corp., both in Shawnee-Mission, Kans.; Western Electric Co., Inc., North Andover, Mass.; Sawyer Research Products, Inc., Eastlake, Ohio; Bliley Electric Co., Cortland, Ohio (plant in Pennsylvania); and P. R. Hoffman Co., Carlisle, Pa.

CONSUMPTION AND USES

U.S. consumption of lasca (a grade of nonelectric natural quartz primarily used as a feedstock for growing cultured quartz crystal) by seven crystal growers in 1981 was 852,000 pounds, a 17% decrease from

¹Includes lasca and some specimen and jewelry material.

Includes electronic grade, optical grade, and lasca (a feedstock for growing cultured quartz).

³Data do not add to total shown because of independent rounding.

1,026,000 pounds reported in 1980.

Reported consumption of both natural and cultured electronic and optical-grade quartz crystal in 1981 totaled 296,000 pounds, 27.8% less than the 410,000 pounds consumed in the previous year. Of the total 1981 consumption, natural quartz was 14,000 pounds compared with 17,000 pounds in 1980, and cultured quartz was 282,000 pounds compared with 393,000 pounds in 1980.

In 1981, 37 companies in 15 States reported consumption of quartz crystal. Of the 1981 total, 33 companies consumed only cultured quartz crystal, 1 consumed natural quartz crystal only, and 3 consumed both natural and cultured material.

STOCKS

Reported industry stocks of quartz crystal (cultured and natural electronic and optical-grade) totaled approximately 125,000 pounds at yearend 1981. Of this total, 61,000 pounds was natural and 64,000 pounds was cultured. Compared with yearend 1980 stocks, natural quartz crystal stocks had decreased by 9,000 pounds and cultured quartz had decreased by 18,000 pounds.

PRICES

The average reported value of lasca consumed for production of cultured quartz crystal in 1981 was \$0.61 per pound. The average value for cultured quartz crystal, based on reported sales of 199,297 pounds in 1981, was \$43.34 per pound. Of the total 1981 sales, the value of "as grown" crystal was \$38.15 per pound, and that for "lumbered" crystal was \$44.68 per pound.

FOREIGN TRADE

U.S. exports of cultured (electronic- and optical-grade) quartz crystal in 1981 totaled 125,000 pounds, a decrease of 43% from that of 1980. U.S. Customs value of the 1981 exports was \$4.6 million or \$36.80 per pound. Japan and the Federal Republic of Germany remained the principal recipients of high-quality cultured quartz crystal exports receiving 58,000 and 49,000 pounds respectively. Approximately 36,000 pounds at an average value of \$3.73 per pound was also exported under the cultured crystal classification.

U.S. exports of natural (electronic- and optical-grade) quartz crystal in 1981 were estimated to be 127,000 pounds, an increase of 40% over that of 1980. U.S. Customs value of the 1981 exports was \$490,000 or \$3.86 per pound. Approximately 65,000 pounds was valued at an average of \$4.64 per pound. Leading countries receiving natural quartz crystal valued at over \$4.00 per pound were, in descending order, Hong Kong, Japan, Switzerland, and the Federal Republic of Germany. Approximately 849,000 pounds at an average custom value of \$2.57 per pound was also exported in 1981 under the classification of natural quartz crystal.

U.S. imports of natural quartz, all of which was designated as "Crude Brazilian Pebble" in 1981, totaled 389,000 pounds, a decrease of 52% from that of 1980. U.S. Customs value of the 1981 imports was \$233,000 or \$0.60 per pound. Brazil was the only principal source of imported natural quartz crystal. Canada was the only other source of imports providing 124 pounds valued at \$1,700.

STAUROLITE30

Staurolite is a naturally occurring, complex, hydrated aluminosilicate of iron having a variable but uncertain composition. Its formula can be generalized as Fe₂Al₂Si₄O₂₂(OH)₂. The mineral most commonly occurs as opaque reddish-brown to black crystals with specific gravity ranging from 3.74 to 3.83 and Mohs' hardness between 7 and 8.

A limited rock-shop trade in cruciform twinned staurolite crystals (fairy crosses) exists, notably from deposits in Georgia, North Carolina, and Virginia. Staurolite was produced in the United States commercially in 1981 by E. I. du Pont de Nemours & Co. and by Associated Minerals (U.S.A.) Ltd., Inc.

Staurolite is a byproduct of heavy-mineral concentrates recovered from a glacial-age beach sand in Clay County, north-central Florida. The staurolite is removed by electrical and magnetic separation after the concentrates have been scrubbed and chemically washed with caustic, rinsed, and dried. The resulting fraction produced is comprised of about 77% clean, rounded, and uniformly sized grains of staurolite, with minor proportions of tourmaline, ilmen-

ite and other titanium minerals, kyanite, zircon, and quartz. A nominal composition of this staurolite sand is 45% Al₂O₃ (minimum), 18% Fe₂O₃ (maximum), 3% ZrO₃ (maximum), 5% TiO₂ (maximum), and 5% SiO₃.

Although originally marketed only as an ingredient in some portland cement formulations, staurolite is now marketed as a specialty sand under the trade name "Biasill" for use as a molding material in iron and nonferrous foundries, owing to its low rate of thermal expansion, high-thermal conductivity, and high-melting point. It is also used as an abrasive for impact finish-

ing metallic shapes and sandblasting buildings under the trade names "Starblast" (80 mesh) and "Biasill" (90 mesh), as well as a coarser grade (55 mesh).

Quantitative production data are withheld to avoid disclosing company proprietary data, but the 1981 output of staurolite decreased 9% from that of 1980; shipments decreased 39% in tonnage and increased 1% in price per ton from those of 1980. Domestic productive capacity was 135,000 tons to 160,000 tons per year in 1981.

Staurolite was also produced in India in small quantities and had been produced sporadically by other nations.

STRONTIUM31

Domestic consumption of primary strontium on a carbonate basis was 28,188 short tons in 1981 compared with 23,940 short tons in 1980. Imports of strontium minerals were 49,699 tons in 1981 and 38,646 tons in 1980. Imports of various strontium compounds were 4,644 tons in 1981.

Legislation and Government Programs.—Government stockpiles contained 13,415 tons of nonstockpile-grade celestite (strontium sulfate) at yearend 1981, un-

changed from that of 1980. This material was available for disposal throughout the year, but no sales were made.

DOMESTIC PRODUCTION

Strontium minerals have not been produced commercially in the United States since 1959. However, a number of firms produced strontium compounds from imported celestite.

Table 6.—Major producers of strontium compounds in 1981

Company	Location	Compounds
Barium and Chemicals, Inc Chemical Products Corp FMC Corp M & T Chemicals, Inc Mallinckrodt, Inc Milwhite Co., Inc Mineral Pigments Corp	Steubenville, Ohio Cartersville, Ga Modesto, Calif Baltimore, Md St. Louis, Mo Houston, Tex Beltsville, Md	Various. Carbonate. Carbonate and nitrate. Various. Do. Sulfate. Chromate.

CONSUMPTION AND USES

Domestic consumption of strontium in the manufacture of various primary strontium compounds increased to 28,188 short tons in 1981 on a strontium carbonate basis. of which 75% was consumed as strontium sulfate or processed celestite. Distribution of primary strontium compounds by end use is shown in table 7. In terms of end use in 1981, 65% of the total was consumed in television picture tubes, 15% in pyrotechnics, 5% in ferrites, 4% in purifying electrolytic zinc, and 4% in pigments. Additional amounts were consumed directly as crude celestite in all 3 years (1979-81), usually in pigments (white filler) or in purifying electrolytic zinc. Miscellaneous uses included plastics, toothpaste, pharmaceuticals, paint, florescent lights, electronic components, drilling mud, welding fluxes, and the making of electrolytic zinc metal. Small quantities of strontium metal were produced by research companies.

Table 7.—Distribution of primary strontium compounds, by end use

(Percent)

End use	1979	1980	1981
Ferrite ceramic magnets Pigments and fillers Purifying electrolytic zinc Pyrotechnics and signals Television picture tube faceplates Other	10 4 7 16 57 6	5 4 5 12 67 7	5 4 4 15 65 7
Total	100	100	100

PRICES

Yearend prices for 1981 quoted in the Chemical Marketing Reporters were as follows: Strontium carbonate—glass grade, bags, truckloads, works, 28 to 28.75 cents per pound; and strontium nitrate—bags, carlots, works, \$24 per 100 pounds. Prices for strontium minerals are usually determined by direct negotiations between buyer and seller and are seldom published. The average value of imported strontium minerals at foreign ports was \$64.51 per ton in 1981, up \$8.95 from that of 1980.

FOREIGN TRADE

Imports of strontium minerals in 1981 increased from 38,646 tons in 1980 to 49,699 tons in 1981. Almost all of the material was imported from Mexico in both years. Imports of various strontium compounds increased to 4,644 tons in 1981. The Federal Republic of Germany was again the principal source of compounds, providing 2.775

tons to the United States in 1981, compared with 2,100 tons in 1980. Quantitative data on U.S. exports of strontium compounds were not available. During June 1981, the U.S. International Trade Commission made a final determination that an industry in the United States was being materially injured by reason of strontium nitrate imports from Italy, which were being sold at less than fair value (dumped).³³

Table 8.—U.S. imports for consumption of strontium minerals, by country

Country	19	80	1981		
	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	
Mexico Spain U.S.S.R	37,817 829 (²)	\$2,086 60 1	48,046 1,653	\$2,937 269	
Total	38,646	2,147	49,699	3,206	

¹Strontianite (strontium carbonate) and celestite (strontium sulfate).

Less than 1/2 unit.

Table 9.—U.S. imports for consumption of strontium compounds and metal, by country

Country	198	80	1981	
Country	Pounds	Value	Pounds	Value
Strontium carbonate, not precipitated: Germany, Federal Republic of United Kingdom	· · · · · · · · · · · · · · · · · · ·		11,023 58	\$2,571
Total			11.081	2,275 4,846
Strontium carbonate, precipitated:	317.462	\$70,560		.,010
France Germany, Federal Republic of Netherlands	4,118,201	920,465	1,596,117 4,485,345 39,682	365,442 1,117,482
United Kingdom		364	35,062	9,826 886
Total	4,435,665	991,389	6,121,147	1,493,636
Strontium chromate: ¹ Canada France	483,525	525,411	867,750 6.070	1,041,755 7,939
Total	483,525	525,411	873,820	1,049,694
Strontium nitrate: Germany, Federal Republic of Ireland Italy United Kingdom	29 816,363	628 269,100	2,334 2,124,681 5	7,920 766,236 886
Total		269,728	2,127,020	775,042
Strontium compounds, n.s.p.f.: Germany, Federal Republic of Japan United Kingdom	82,460 45,205 577	66,421 32,922 1,783	51,749 68,342 1,705	16,501 49,475 10,484
Total Strontium metal, unwrought: Canada	128,242 38,651	101,126 334,653	121,796 33,382	76,460 330,571
Grand total	r _{5,902,475}	r2,222,307	9,288,246	3,730,249

Revised.

¹Imported as strontium chromate pigment (TSUS 473.19).

WORLD REVIEW

Deposits of strontium minerals are numerous throughout the world, but over three-quarters of known world production is usually from five major producing countries. In the 1977-81 time period, Canada dropped from the ranks of major producers and Iran rose into the ranks. Mexico, Spain, Turkey, and Algeria have continued as major producers.

On a worldwide basis, it has been estimated that strontium compounds are used in the following percentages: 80% as carbonate, 15% as nitrate, and 5% for all other strontium compounds including chromate, phosphate, chloride, and many others in

smaller quantities.34

Worldwide consumption of strontium compounds has also been estimated with the United States taking about 45%, Japan about 30%, Europe about 20%, and others about 5%. Distribution of strontium compounds by end use has been reported as color televisions about 50%, ferrite magnets about 20%, pyrotechnics about 15%, and other uses the remaining 15%.35

Japan.—It has been reported that Japanese demand for strontium compounds increased markedly from 16,645 short tons in 1976 to 36,210 short tons in 1980.36 Ninetvnine percent of this increase in demand was accounted for by strontium carbonate, primarily for use in television tubes and ferrite magnets.

Qatar.—The Qatar Industrial Development Centre (QIDC) announced the discovery of a large celestite deposit in Qatar. According to QIDC, the discovery followed a comprehensive geological survey of the area.37

Table 10.—Strontium minerals: World production, by country¹

(Short tons)

1977	1978	1979	1980 ^p	1981 ^e	
5,622	6,418	e _{6,000}	6,000	6,000 295	
925	1,317	134	295		
11,000	16,535	8,818	5,516	5,520	
e770		1.866	1,160	1,100	
				40,785	
				40,785 330	
			20.945	22,000	
				16,535	
5,622	4,740	6,615	1,100	1,100	
105,063	r102,096	107,355	94,560	93,665	
	5,622 925 11,000 6770 50,302 402 12,120 618,300 5,622	5,622 6,418 925 1,317 11,000 16,535 6770 402 50,302 737,725 402 239 12,120 15,430 618,300 719,290 5,622 4,740	5,622 6,418 e6,000 925 1,317 134 11,000 16,535 8,318 e770 402 1,866 50,302 *37,725 45,662 402 239 680 12,120 15,430 19,840 e18,300 *19,290 e19,840 5,622 4,740 6,615	5,622 6,418 6,000 6,000 925 1,317 134 295 11,000 16,535 8,818 5,516 6,770 402 1,866 1,160 50,302 73,725 43,562 41,356 402 239 680 551 12,120 15,430 19,840 20,945 618,300 719,290 619,840 17,637 5,622 4,740 6,615 1,100	

Preliminary. Revised. eEstimated.

TECHNOLOGY

In some applications, alloys are being used instead of steel to reduce the weight of the final product. A strontium additive is now being used in Japan to improve the casting properties of an aluminum-silicon allov.38 Strontium increases the strength and heat resistance of the final material. Japan Metals and Chemicals are marketing this alloy under the name of Sutoal. The new alloy was developed using techniques that Union Carbide Corp. first used in 1972. The alloy composition is approximately 10% Sr, 18% Si, 65% to 70% Al, and less than 3% Fe. This alloy was developed for vehicle wheels, but may have many other applications.

WOLLASTONITE³⁹

Wollastonite is a natural calcium metasilicate, usually white or light-colored, and has a theoretical composition of CaO-SiO₂, equivalent to 48.3% lime combined with 51.7% silica. Over the years, wollastonite has become a useful filler in ceramics,

Table includes data available through June 2, 1982.

Table includes data available through June 2, 1982.

The addition to the countries listed, China, the Federal Republic of Germany, Poland, and the U.S.S.R. produce strontium minerals, but output is not reported quantitatively and available information is inadequate for formulation of reliable estimates of output levels.

3Year beginning March 21 of that stated.

⁴Reported figure.

plastics, paints, and various other applications.

U.S. wollastonite shipments in 1981 were 14% higher in tonnage than in the previous year. Actual data are withheld to avoid disclosing company proprietary data. The two continuing producers were NYCO, a division of Processed Minerals, Inc., Essex County, N.Y.; and R. T. Vanderbilt Co., Inc., Lewis County, N.Y. In 1981, Pfizer, Inc., reported wollastonite production in southern California after a lull in activity.

Silicas and silicates, such as wollastonite, received increased attention in house paint in 1981, as they reduce the need of more costly ingredients such as titanium dioxide. Also, they are more versatile than more traditional extenders and improve flowability and hiding power of the paint.40

A survey by C. H. Kline & Co., an industrial market-research company, reported a continuing shift to compounded plastic materials in place of all-resin systems. Growth for wollastonite as a filler in polypropylene was forecast at 10% or more per year. Growth for other minerals and fiberglass was forecast at from 5% to 8.5%.41

A journal article discussed production of wollastonite in Finland, India, Mexico, and the United States. Also discussed were its uses in ceramics, sanitary ware, tile bodies. plastics, paints, etc.; synthetic wollastonite production; the wollastonite market in the

United States and Western Europe; and the future of wollastonite 42

In Lappeenranta, Finland, at the open pit mine of Paraisten Kalkki Oy, a model 16 photometric sorting machine had been separating wollastonite from limestone and amphibolite since August 1978. The machine had been handling material in the size range of 45 to 85 millimeters. Two new machines, which were to enable the companv to treat all run-of-mine ore in the 20- to 140-millimeter size, were on order from Ore Sorters (Canada) Ltd., a subsidiary of the RTZ Ore Sorters Group.43

A \$21,000 grant to study the feasibility of using wollastonite in the manufacture of whitewares was awarded to Alfred University by the New York State Science and Technology Foundation. The study will attempt to determine if wollastonite can be used, instead of quartz, to improve the properties of whitewares.44

Chemical Marketing Reporter, December 21, 1981, quoted the price of paint-grade wollastonite, 400-mesh, bagged, in carload lots, f.o.b. works, as \$106 per ton, and 325mesh material as \$90 per ton. The American Paint & Coatings Journal, December 28. 1981, quoted the price of paint-grade wollastonite, 400-mesh, in carload lots, f.o.b. plant, as \$116 per ton, and 325-mesh material as \$90 to \$100 per ton.

ZEOLITES45

Production of natural zeolites in the United States in 1981 was estimated to have approximately doubled the 5,000 tons of 1980. The 4,000 tons produced and processed by newcomer Teague Minerals Co. of Adrian, Oreg., was the large reason for the surge. There were other indications of continued growth including the Anaconda Co.'s conversion of a copper facility in Weed Heights, Nev., to a zeolite-processing plant.

A national business publication wrote about zeolites for the first time. 46 It described the present \$400 million market, mostly synthetic zeolites, projected to \$2 billion within 10 years, and cited the natural zeolite producers as expecting one-half of that market for their less pure and less costly products. It stated that Anaconda had identified 170 potential applications for the natural zeolites and that Occidental Minerals Corp. has an extensive test program underway exploring the use of zeolites as soil amendments. Occidental wants to prevent the loss to the atmosphere or water of plant nutrients, especially ammonia. They are also exploring the utility of zeolites as a pesticide carrier that would extend the effective use time after application.

The article also indicated that Pfizer had obtained permission from the FDA to use a synthetic zeolite as an antibiotic carrier in animal feeds. The industry feels that this probably presages permission for other uses of synthetic and possibly natural zeolites. Apparently, synthetics sold for \$500 to \$6,000 per ton and natural zeolites were being priced at \$300 to \$400 per ton. The lower priced synthetic zeolites (\$500 per ton) were being used to replace some of the phosphates in detergents, at a 30% savings over the phosphates. Proctor & Gamble Co. is using them in Tide, Oxydol, and Bold detergents.

A Canadian periodical reported the immi-

nent startup of two different manufacturing companies using zeolites as an integral part of their products.47 The previously reported Zeopower Co. is finalizing plans for a joint venture solar collector plant with Toyo Sash Co., a major Japanese aluminum product manufacturer. The plant would be situated in the Phoenix, Ariz., area. Woods Solar Systems, Ltd., of Calgary, Alberta, Canada, was to start the manufacturing in October 1981 of zeolite heat-storage systems reportedly able to store solar or other heat at efficiencies greater than current systems. The company was designing mobile systems that can capture waste industrial energy and transport it to such use sites as greenhouses, lumber kilns, schools, and other light industry or commercial plants. They predict that the system can be used to store off-peak electricity.

The largest of the "methane from landfill" companies objected strenuously to the U.S. Department of Energy (DOE) grants for research on its already proven technology. The Getty Oil Co., through its subsidiary, Getty Synthetic Fuels, operates three of the nine functional methane recovery units using zeolites. A potential of 55 billion cubic feet per year of gas is available from just the 200 largest U.S. landfills.

The market for synthetic zeolites continues to grow. The newest U.S. producer, PQ Corp., broke ground in Kansas City, Kans., for its 65,000-ton-per-year facility aimed at the merchant market for replacing phosphates in detergent. PQ estimated the domestic market will be at 125,000 to 135,000 tons per year within the next 10 years. Large-scale production of the detergent zeolites had reduced the price to \$500 per ton, making them cost effective with reference to the replaced sodium tripolyphosphate at \$700 to \$710 per ton.

Italy had the highest concentration of new plant activity based on the belief that legislation would be forthcoming requiring reduction in the phosphate content of detergents. Published market estimates varied widely, with three reports citing respectively a 40,000- to 60,000-metric-ton market, a 20,000-ton market, and a 1,000-ton market. Regardless of market size, Degussa GmbH of the Federal Republic of Germany planned to construct a new plant of initial capacity of 30,000 tons per year with expansion capability to 60,000 tons per year. Montedison announced plans to construct a

\$15 million plant, and Caffaro announced plans to import zeolites from France's Produits Chimique Ugine Kuhlmann while actively considering plant construction.

Several research projects were underway to improve the Fischer-Tropsch reaction that is used by South African Coal, Oil, and Gas Corp., Ltd. (SASOL), the energy company owned by the Government of the Republic of South Africa, to make gasoline from synthesis gas produced from coal. Mobil Oil Co. proposed to use Fischer-Tropsch chemistry to produce the feedstock for its ZSM-5 zeolite catalyst route to gasoline. Mobil postulated that 65% of its product would be 90-octane gasoline; the SASOL process produces a product containing 42% of 55octane gasoline. A mining magazine reported that DOE had entered into a cooperative agreement with Mobil for 50-50 sharing of the cost of a plant to use the technology.50

Use of zeolites for hydrogen storage has been postulated.⁵¹ The article indicated that at elevated temperature and pressure the hydrogen molecules can be forced into the beta cages of zeolites and that they will remain there under ambient conditions. Some advantages over the metal-hydride storage method were detailed.

Zeolites played a large part in the radioactive materials clean up at Three Mile Island.⁵² The main water contaminants were cesium 134, cesium 137, and strontium 90. The consensus was that, using a homogenous mixture of 4.8 cubic feet per vessel of Union Carbide's IONSIV IE 96 and 3.2 cubic feet of their Linde A, a workable unit was made. Operating reports by the Nuclear Regulatory Commission during decontamination showed effective removal of 99.999% of cesium (both isotopes) and 99.59% of the strontium 90.

An engineering magazine article detailed the use of molecular sieves to separate paraffin isomers from a light naphtha feed.⁵³ This technique allows refinery upgrading of the gasoline octane number in an economical manner.

The zeolite literature continued to proliferate at a high rate. Chemical Abstracts Service has a selective pick on zeolite related publications and patents and has been producing several hundred abstracts per year. The October 1981 issue of Clays and Clay Minerals was devoted exclusively to zeolite papers. A quarterly on zeolites appeared.⁵⁴

¹Prepared by Wilton Johnson, mineral specialist

Prepared by James P. Searls, physical scientist.

³Conlow, P. In the Good Earth of New Jersey Lie Beds of Marl, Layers of Greensand. Philadelphia Inquirer, Feb. 14, 1982, p. J-10.

Prepared by Phyllis A. Lyday, physical scientist

*Prepared by Phyllis A. Lyday, physical scientist.

*Graber, G. Private communication, Nov. 20, 1981.

Available upon request from Phyllis A. Lyday, Bureau of Mines, Washington, D.C.

*Taylor, F. Iodine—Going From Hypo to Hyper. FDA

Consumer, April 1981, pp. 15-18.

*Chemical Marketing Reporter. Drugs and Fine Chemicals. V. 219, No. 4, Jan. 26, 1981, p. 24.

. Drugs and Fine Chemicals. V. 219, No. 8, Feb.

23, 1981, p. 24. Drugs and Fine Chemicals. V. 219, No. 11, Mar.

16, 1982, p. 25. . Drugs and Fine Chemicals. V. 219, No. 25, June

22, 1981, p. 16.

22, 1981, p. 16.

1ºCozier, R. D. .Chilean Nitrate Mining. Min. Mag. (London), v. 145, No. 3, September 1981, pp. 160-173.

1¹Ericksen, G. E. Geology of the Salt Deposits and the Salt Industry of Northern Chile. United Nations Special Fund—Chile Mineral Survey Project, April 1963, 164 pp.

1²Crozier, R. D. Iodine: Its Markets and Availability. Min. Mag. (London), v. 146, No. 4, April 1982, pp. 282-290.

1³Ericksen, G. E. Geology and Origin of the Chilean Nitrate Deposits. U.S. Geol. Survey Professional Paper 1188, 1981, 37 pp.

1⁴European Chemical News. Newsdesk. V. 36, No. 975, Mar. 30, 1981, p. 4.

1⁵Fukuta, O., and N. Fujii. Japanese Iodine—Production, Geology, and Geochemistry. Ind. Miner. (London), No. 175, April 1982, pp. 101-115.

16 Japan Tariff Association. Japan Exports and Imports, Commodity by Country. December 1981, p. 111.

Commodity by Country. December 1981, p. 111.

17Work cited in footnote 15.

18 Work cited in footnote 15.

18Work cited in footnote 15.

19 Chemical Marketing Reporter. Iodine Breakthrough is Claimed. V. 219, No. 24, June 15, 1981, p. 5.

20 Chemical Week. The Big Switch at Kingsport. V. 129, No. 7, Aug. 12, 1981, pp. 14-15.

21 Food and Drug Administration. Background Material for the Development of the Food and Drug's Recommendation on Thyroid-Blocking With Potassium Iodide. Dept. of Health and Human Services Report No. FDA-81-8158, March 1981, 17 pp.

22 Morewitz, H. A. Fission Product and Aerosol Behavior Following Degraded Core Accidents. Nuclear Technol., v. 53, May 1981, pp. 120-134.

23 Campbell, D. O., A. P. Malinauska, and W. R. Stratton. The Chemical Behavior of Fission Product Iodine in Light Water Reactor Accidents. Nuclear Technol., v. 53, May 1981, pp. 111-119.

24 Dratman, M. B., Y. Futaesaku, F. L. Crutchfield, N.

²⁴Dratman, M. B., Y. Futaesaku, F. L. Crutchfield, N. Berman, B. Payne, M. Sar, and W. E. Stumpf. Iodine-125 Labeled Triiodothyronine in Rat Brain Evidence for Local-Labeled Triiodothyronine in Rat Brain Evidence for Labeled Triiodothyronine in Rat Brai ization in Discrete Neural System. Sci., v. 215, No. 4530, Jan. 15, 1982, pp. 309-312.

 Chemical and Engineering News. Technology. V. 59,
 No. 34, Aug. 24, 1981, p. 22.
 Science. Range of Radiochemical Damage to DNA
 With Decay of Iodine-125. V. 213, No. 4510, Aug. 21, 1981, pp. 896-901.

²⁷Plonffe, R. D. Geophysical Logging for Mineral Exploration and Development. CIM Bull., v. 74, No. 828, April

1981, p. 86.

²⁸Prepared by Sarkis G. Ampian, physical scientist.

²⁹Prepared by Wilton Johnson, mineral specialist. ³⁰Prepared by Harold A. Taylor, physical scientist.

³Prepared by John E. Ferrell and Harold A. Taylor, Jr., physical scientists. ³²Chemical Marketing Reporter. Current Prices of Chemicals and Related Materials. V. 221, No. 1, Jan. 4,

Chemicals and Related Materials. V. 221, No. 1, Jan. 4, 1982, p. 50.

**SEninger, R., W. Timberlake, L. Johnson, W. Fullerton, W. Perry, J. Simmons, and L. Featherstone. Strontium Nitrate From Italy. Determination of the Commission in Investigation No. 731-TA-33 (Final) Under the Tariff Act of 1930 With the Information Obtained in the Investigation. U.S. Internat. Trade Comm. Pub. No. 1155, June 1981, p. 1.

**SFuno, H. Strontium and Demand. Proc. 4th Ind. Miner. Internat. Cong., Atlanta, Ga., May 28-30, 1980, pp. 175-177.

**SWoods sixted in Section S. Cong. 1980, pp. 1880, pp.

Work cited in footnote 34.

Seindustrial Rare Metals. 1981 Annual Review. Arumu Pub. Co., Tokyo, Japan, No. 75, 1981, p. 56. ———. Roskill's Letter From Japan. RLJ Mo. 51, July

1980, pp. 5-6.

³⁷Industrial Minerals (London). Company News. No. 172, January 1982, p. 50.

38 Work cited in footnote 37.

38Work cited in footnote 37.
 38Prepared by Michael J. Potter, physical scientist.
 40Chemical Week. Silicates Buck up Flattened Paint Makers. V. 129, No. 25, Dec. 16, 1981, p. 44.
 41Industrial Minerals (London). Minerals for Plastics—Mica to Lead Growth. No. 161, February 1981, p. 19.
 42Smith, M. Wollastonite—Production and Consumption Continue to Climb. Ind. Miner. (London), No. 167, August 1981, pp. 25-33.
 43Industrial Minerals (London). Mineral Sorters. No. 160. January 1981, p. 11.

 Industrial Minerals (London). Mineral Sorters. No. 160, January 1981, p. 11.
 American Ceramic Society Bulletin. Alfred to Study Wollastonite. V. 60, No. 12, December 1981, p. 1320.
 Prepared by Robert A. Clifton, physical scientist.
 Business Week. Research—How Zeolites Are Zeroing in New Markets. No. 2718, Dec. 14, 1981. pp. 122L, 122P.
 Ton New Markets. No. 2718, Dec. 14, 1981. pp. 122L, 122P.
 Sozotak, J. Canadian Firm and U.S.-Japan Team Market Zeolite. Canadian Renewable Energy News, v. 4, No. 8, October 1981. No. 8, October 1981.

48The Wall Street Journal. Feb. 25, 1981.

⁴⁸Chemical Age. Italian Zeolites Battle for Detergents Market. V. 122, No. 3216, May 22, 1981, p. 4. Industrial Minerals (London). Italy—Zeolites in Vogue.

No. 166, July 1981, p. 13.
European Chemical News. Montedison Zeolites Plan. V. 36, No. 986, June 15, 1981, p. 6.

50 Mining Congress Journal. V. 67, No. 3, March 1981, p.

 $^{51}\mbox{Fraenkel},$ D. Encapsulate Hydrogen. Chemtech, v. 11,

 Fraenkel, D. Encapsulate Hydrogen. Chemech, v. 11, No. 1, January 1981, pp. 60-65.
 Science News. "Hot" Water Cleanup Begins at TMI. V. 120, No. 16, Oct. 17, 1981, p. 247.
 Separating Paraffin Isomers Using Chromotography. Chem. Eng., v. 88, No. 10, May 18, 1981, pp. 92-95.
 Separating Paraffin Isomers Using Chromotography. Chem. Eng., v. 88, No. 10, May 18, 1981, pp. 92-95. Chem. Eng., v. 88, No. 10, may 10, 1902, pp. 54Zeolites. V. 1, No. 1, Apr. 1, 1982, 152 pp.