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abstract

In recent decades, escalating healthcare costs have drawn the attention
of providers and policymakers. These increased expenditures are often
due to inefficiencies in patient care, a dilemma that has catalyzed new
approaches to healthcare. Key among these are new avenues for leverag-
ing electronic health record (EHR) data. In particular, applying machine
learning methods to biomedical and clinical needs has shown remark-
able promise. These techniques often present challenges that must be
addressed, however. This dissertation discusses certain guiding princi-
ples we have gleaned from our own work in applying predictive machine
learning models.

First, we demonstrate how neural toxins can be detected by means of a
linear support vector machine (SVM). Such an SVM can be trained based
on gene expression levels in neural constructs, interrogated by means
of RNA-Seq technology. In light of the fact that 60 compounds were
analyzed, we use a 60-fold leave-one-compound-out cross-validation strat-
egy, wherein all compounds except one are trained on per iteration. The
one remaining compound serves as the test point for that iteration. This
leave-one-compound-out process reduces overall variance in predictive
measures. In order to do this correctly, though, we observe how traditional
leave-one-out cross-validation must be tweaked to meet the needs of the
application. Since each compound has two replicates, these must both be
held out when the compound is used as a test point. Doing this produces a
model effective at discerning toxic from non-toxic compounds. In addition
to the modified leave-one-out technique, we also employ a blinded test
set, upon which the same trained model attains 90% accuracy. In both of
these cases, existing techniques were adapted to meet the needs of a current
scenario and increase model effectiveness, while at the same time ensuring
a fair evaluation.
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Next, we demonstrate how the at-home falls risk among elderly pa-
tients seen at UW Hospital’s emergency department (ED) can be mitigated
by machine learning-assisted risk stratification. In this case, six models
were trained on actual retrospective ED data, and they evinced strong per-
formance in terms of machine learning metrics. From the models’ output,
number needed to treat (NNT) (a measure of interest to clinicians) can be
projected based on how many patients per week must be referred. In this
way, we emphasize how model performance must be correctly interpreted
to best suit the needs at hand.

The models used in this study are currently being transitioned into pro-
duction at UW Hospital’s ED by our group in that department, along with
the predictive analysts at UW Health. During this transition, simplifying
steps have had to be made, leading us to conclude that translational con-
siderations must play a role in how a model is implemented. As a corollary
to this, what has also become clear is that for such models to be of practi-
cal use, the model choice must conform to the properties of both the data
and the end user expectations (i.e., physicians may prefer a model whose
choice of features is more transparent, like tree-based methods). Finally,
even a highly practical, well-chosen model will likely not see widespread
adoption if it fails to consider the day-to-day workflow into which it is
placed.

While these models trained on traditional metrics (e.g., hinge loss in
the case of SVMs) have performed well in their own right in use cases like
falls in the ED, the question has been raised as to whether a model that has
been directly trained on NNT (or a measure similar enough to it) would
perform better. In the final part of this dissertation, we demonstrate how
precision can be used as a proxy for NNT. Once this substitution is made,
it is possible to perform an optimization. In making this adaptation, we
uncover how performance in a specific segment of patients (namely the
top k at highest risk) surpasses the same measure in a more traditional
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machine learning model.
In aggregate, these principles of machine learning used in the biomed-

ical and healthcare domains can be taken as guiding principles for other
researchers seeking to design and implement similar models. Moving
forward, considering these observations and those gained from other ap-
plications will be an important tool in not only advancing strictly academic
work, but also in tackling the cost and efficiency concerns that currently
beset healthcare in the US.
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1 introduction

Recent years have seen elevated interest in the use of machine learning
methods in the biomedical and clinical fields. Machine learning method-
ologies have, in many cases, seen application in predicting phenotypic
characteristics like disease risk (Ban et al., 2010; Imielinski et al., 2009) or
drug dosing (IWPC, 2009). Healthcare organizations have also experienced
an increased use of machine learning algorithms for the improvement of
patient care. While the burgeoning use of machine learning techniques for
these two domains has received much attention, what has been given less
treatment is the intersection between machine learning and the biomedical
and clinical domains.

As has been pointed out in the literature, with the advent of non-
machine learning researchers using machine learning models, there has
been a tendency for some researchers to incorrectly apply techniques or
draw dubious conclusions (Luo et al., 2016). To mitigate such pitfalls, the
issue of machine learning accessibility is crucial.

From the machine learning standpoint, researchers have long empha-
sized the symbiotic relationship between pure academic research and
pure application. Pure research, in this case, can be thought of as the
conglomeration of theory, algorithms, and methodology. On the other side,
application tends to place high value on the end user and use cases. These
two paradigms need not be thought of as completely separate or even
opposing extremes set along a continuum. Rather, they should be consid-
ered as two entities mutually benefitting from one another. Viewed as a
dynamic process like this, applicatory fields benefit from new method-
ologies born out of pure research, while the machine learning research
is simultaneously driven by real-world data and end user needs (Provost
and Kohavi, 1998).

Our work has centered on three applications: one in the biomedical
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setting and two in the healthcare setting. The second of these settings,
in particular, has demonstrated an increasing need for the inclusion of
machine learning research. Thought of in terms of the work mentioned in
Provost and Kohavi (1998), healthcare becomes the application-focused
entity, or the “use case,” while the physicians and other clinical providers
are considered the “end user.” In recent years, work revolving around
these ideas has emerged in the form of what has been termed learning
health systems. The Institute of Medicine defines a learning health system
as:

A system that “learns,” or more concretely, as “one in which
knowledge generation is so embedded into the core practice
of medicine that it is a natural outgrowth and product of the
healthcare delivery process and leads to continual improve-
ment in care" (Olsen et al., 2007).

UW Health and its academic partners in the School of Medicine and
Public Health (SMPH) represent one example of a transition toward learn-
ing health systems. Recent work in our group at the Department of Emer-
gency Medicine at the UW Hospital has focused on at-home falls in elderly
patients visiting the Emergency Department. This work has culminated in
the first in-house models derived for the purpose of risk stratification at
UW Health; these models have been further transitioned into production.
As such, the partnership also constitutes a novel collaboration between
the academic side (SMPH) and the production side (UW Health) within
the context of learning health systems. Crucial to helping this process
along has been input from the Industrial Engineering Department as well,
using the SEIPS model (Carayon et al., 2006; Holden et al., 2013) to aid in
integrating models into workflow.

From this collaboration have emerged specific observations that will
be explored in depth in subsequent chapters. These take-away points can
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be distilled down to the following:

• Clinical context will influence model choice;

• Translational considerations must be taken into account, and the model
may need to be adjusted accordingly;

• Implementing models in a real clinical setting requires careful study
of existing workflow(s) in place and ensuring that model placement in
the workflow is done properly;

• Model results must be interpreted correctly; and

• Often, common models and traditional procedures for using them
must be adapted to suit the needs of clinicians.

The following five sections expand on these points further, and the
resulting thesis statement is given thereafter.

1.1 Model Choice

When attempting to apply machine learning techniques, the question of
how to select a model arises. The answer largely hinges on what one hopes
to achieve from the modeling process. A researcher totally unfamiliar
with all of the intricacies of machine learning, for instance, may choose a
tree-based methodology. As we discuss in Chapter 2, tree-based models
(e.g., random forests) have the benefit of being one of the more intuitive
models in terms of how features are iteratively split on until some notion
of “purity” in the leaves is satisfied. In our aforementioned falls project
(Patterson et al., 2019), we were interested in models that would perform
well “in the wild,” or upon being deployed into production. For this reason,
we evaluated six different models and discovered that tree-based methods
tended to outperform the others. As discussed in the background material
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of Chapter 2, this can likely be attributed to decision trees representing
collinear relationships in the data in ways that the other models cannot.

These results, while encouraging, were put to the test by the transition
from our academic environment to production, and we needed to take
some translational concerns into consideration.

1.2 Translational Considerations

As our work in Patterson et al. (2019) uncovered, models on the academic
(SMPH) end of the spectrum led to a strong final performance, particu-
larly with the tree-based methodologies. One challenge that arose when
attempting to translate the models into production (UW Health) was that
while the original dataset of patient visits was common to both SMPH and
UW Health, SMPH had employed an intermediate cleaning process before
making the dataset available for their researchers to use. Additionally,
new features derived from those in the parent dataset were included in
the released dataset. Neither the data cleaning nor the feature creating
processes were easily available. For this reason, features needed to be
reconstructed de novo on the production side using the following process:

1. Identify a feature in the original (i.e., SMPH side) model;

2. Locate Clarity (Epic’s back-end database) table(s) containing this
feature; and

3. Using SQL queries, bring the feature into the production side.

Only after this was it possible to build and test a final model based
on these features. In short, features could not be mapped en masse, but
instead they required manual translation. The original study included
725 features in all six of the models. Subsequent work, however, showed
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that similar results could be achieved with a “parsimonious,” or slimmed-
down, feature set of 15 features relating to demographic data, as well as
questionnaire data from the time of visit (Clegg et al.). For this reason,
the parsimonious model was selected for production. When this model
was translated to UW Health’s side, one difference was that the tree-based
algorithms now underperformed relative to the penalized regression ones.
In this case, adding more features to expand the parsimonious model
would require further hand-mapping of those features by the process
outlined above.

After translational considerations such as these are taken into account
and the models finalized, researchers still must take care that models
used in production adhere to existing protocols and workflow within the
organization.

1.3 Model Placement in the Workflow

The learning health system and its instantiation(s) at healthcare organiza-
tions determine in what stage of the workflow a predictive model should
be deployed. This placement should be done in accordance with existing
protocols and paradigms used. UW Health has formalized the workflow
into a six-module toolkit. In addition to UW Health, our work has also
involved a collaboration with the UW Industrial Engineering Department,
as mentioned above. These issues will be discussed later in Chapter 2.

1.4 Interpreting Machine Learning Models

In certain cases, existing machine learning techniques may be sufficient
to handle a scenario without intrinsically changing the model training or
testing phases. In essence, one need only use a straightforward applica-
tion of one or more models. While some tasks lend themselves to such
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application (Patterson et al., 2019), there still may be a need for discerning
how the model’s output can be used to answer the question at hand. In
the cited work, for instance, it was shown how modeling techniques have
been integrated into healthcare decisions, helping providers risk stratify
patients where resources are constrained. In this case, the fundamental
nature of the models was not changed, nor was the primary output metric
(i.e., area under the receiver operating characteristic curve, or AUROC).
Still, proper thresholding aided in constructing further metrics used to
assess patient risk.

1.5 Adapting Machine Learning Models

Increasingly, researchers in multidisciplinary fields would like to use
machine learning techniques. In some cases, however, these researchers
may find that AUROC is a less meaningful measure for treating patients
than others typically used. Still others may encounter research applications
that simply do not lend themselves to traditional model evaluation metrics.
In short, they are interested in a way to adapt modeling techniques to fit
their needs.

In cases like these, machine learning models can sometimes be altered
in straightforward ways. For instance, recent work has demonstrated that
traditional regression-based techniques overemphasize feature importance
in determining the penalty term, while downplaying or not considering
domain knowledge of these features. To address this, one approach has
been proposed to modify the penalty term in a lasso logistic regression
model to instead consider what a domain expert (in this case a clinician)
deems to be more or less relevant in predicting some condition (Wang
et al., 2018).

In other cases, however, researchers may be interested in adjusting
models to use metrics more traditionally aligned with their own field of
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study, in which case the objective functions in the learning process must be
adapted (Engstrom et al.).

1.6 Thesis Statement

The purpose of this thesis will be the exploration of the following state-
ment:

Machine learning research and application are two interdepen-
dent components in a greater dynamic process. Fully lever-
aging the interplay between these two components depends
on considering clinical context, translational considerations,
organizational workflow, as well as model interpretability and
adaptability.

1.7 Dissertation Organization

This dissertation is organized as follows.

Chapter 1 (the current chapter) introduces machine learning and dis-
cusses its role in the biomedical and clinical fields.

Chapter 2 discusses the machine learning and medical background upon
which the remainder of the dissertation builds.

Chapter 3 introduces an application of machine learning to discerning
neurotoxins.

Chapter 4 describes how a machine learning approach can be used to risk
stratify patients who may encounter a fall in the near future.

Chapter 5 outlines an approach to adapting traditional machine learning
models to suit specific needs in the medical domain.
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Chapter 6 lays out ideas to be pursued in future work.

Chapter 7 gives concluding remarks for the dissertation.
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2 background

In recent decades, machine learning techniques have gained traction in a
myriad of domains outside of computer science. In particular, the field of
medicine has seen a sharp increase in such techniques. With the advent of
electronic health record (EHR) data has come the recognition that the data
stemming from these records can aid in improving healthcare. In 2014, the
National Institute for Healthcare Management (NIHCM) noted that 5% of
patients in the US account for roughly half of all healthcare expenditure.
Such observations have led for calls to better allocate resources and more
efficiently administer healthcare (Schoenman and Chockley, 2012).

One potential solution known as precision medicine has garnered
attention among clinicians. Precision medicine can be broadly defined as
the process of tailoring medical care to fit individual patients’ needs, as
opposed to a one-size-fits-all approach. Central to realizing this targeted
care is the implementation of machine learning techniques.

While machine learning methods have seen successful application in
other scenarios like credit card fraud monitoring (Benson Edwin Raj and
Annie Portia, 2011), self-driving cars (Stilgoe, 2018), and film preferences
(Bennett et al., 2007), using them in the domain of medicine presents
unique challenges. Specifically, as discussed in Chapter 1, models and
techniques must be properly understood for there to be any hope of prop-
erly designing and executing the machine learning portion of a study.
Moreover, researchers must take care not to draw false or misleading
conclusions from the model’s output (Luo et al., 2016).

The challenges of models used, then, can be distilled into five central
issues. The first three of these issues relate to model choice, along with
translational considerations and constraints with a model’s placement in an
organization’s workflow.The fourth is the issue of interpretability, or making
certain that researchers who are not experts in machine learning do not
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misconstrue what models are saying. The final related challenge is that of
adaptability, or exploring new ways of making machine learning applicable
to the field of medicine in cases where desiderata specific to this domain
may not align with traditional approaches to machine learning.

The background information requisite for exploring these issues in
subsequent chapters will be given in the following two sections. Section 2.1
discusses the machine learning models and techniques employed in this
dissertation. Section 2.2 expands on this, delving into machine learning in
the medical domain and how challenges can lead to novel techniques that
intrinsically account for the needs of the medical community.

2.1 Machine Learning Models and Techniques

This section first outlines the machine learning models used in the sub-
sequent chapters. Related to this, it elaborates on the process of training,
tuning, and testing the models. Finally, it reviews methods and metrics
for interpreting the final output of said models.

2.1.1 Models Used

Support Vector Machines

Support vector machines (SVMs) are a type of machine learning method-
ology whose aim is to maximize a margin between two classes of training
instances (Cortes and Vapnik, 1995a). To see this, consider Figure 2.1.
Note that there are three labeled regions of interest. The first is the region
of positive training instances (denoted by the green ‘+’ symbols); these
represent one of the two classes. The third region, conversely, is the region
of negative training instances (denoted by the red ‘−’ symbols); these
represent the second of the two classes. Dividing these two classes is the
second region; this is known as the margin. In the center of the margin
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Figure 2.1: A simple linear support vector machine.

resides the hyperplane (represented by a red line in the figure). In the
linear case, the hyperplane is nothing more than a line. More generally,
any number of dimensions can be represented by SVMs. In cases where
a higher dimension is needed to differentiate between classes, the hyper-
plane is of dimension n− 1, where n is the number of dimensions in the
space to which the features are mapped.

In terms of the figure, “maximizing the margin," translates into ex-

panding region 2 (i.e., maximizing 1
||w||

) to the greatest extent possible,

without absorbing examples of either class. In the most basic formulation,
instances also should not fall on the wrong side of the hyperplane. In
practice, though, this is often not a realistic assumption. To loosen this
restriction, a further parameter, called the C-parameter, is introduced to
allow for some training instances to reside on the other side of the hyper-
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argminw,b
1
2
||w||2 + C

∑N
n=1 ξn

s.t.yn(wTxn + b) > 1 − ξn(n = 1, ...,N)

ξn > 0

Figure 2.2: SVM Primal Formulation

plane. This parameter can be tuned according to how much or how little
of a penalty there should be for misclassified instances. This is all summed
up in Figure 2.2, which shows the primal (or most basic) formulation of
the SVM objective function.

Note in the primal formulation that ξ, or the “slack variable,” accounts
for the magnitude of those instances falling on the wrong side of the
hyperplane, while C is the overall penalty on allowing those instances to
be placed among those of the opposite class. In certain cases, a higher-
dimension kernel may be necessary to more cleanly divide the two classes.

The complexity of fine-tuning the C-parameter as well as other kernel
choices is a known drawback to using SVMs. Additionally, discrete param-
eters must be normalized to have accurate training of SVMs. Even in cases
where both of these requirements are met, SVMs may underperform other
models in datasets where the number of training instances is dwarfed by
the number of features per instance (Burges, 1998).

In spite of these caveats, SVMs have shown predictive utility in medicine,
particularly in studies where sufficient data points exist. For instance, pre-
diction of diabetic and pre-diabetic patients has been achieved with SVMs
(Yu et al., 2010). They have also been used to successfully uncover cases of
heart disease (Maglogiannis et al., 2009). SVMs have also seen application
in the field of bioinformatics. In Chapter 3, we introduce an application
focused on predicting which compounds are neurotoxins using an SVM
model.
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Regression-Based

Regression-based models have been applied in scenarios ranging from
pediatric asthma (Patel et al., 2018), to sepsis (Taylor et al., 2016), to heart
failure (Mortazavi et al., 2016). Such applications have shown promise,
but certain preconditions must be satisfied in order for the models to per-
form as expected. For instance, there should not be a preponderance of
multicollinearity or strongly influential outliers. Should these criteria not
be met, regression-based models may underperform other methodolo-
gies (Stoltzfus, 2011). Below, the various types of regression learning are
discussed.

Linear Regression: Linear regression is also known as ordinary least
squares linear regression. Used within the context of machine learning,
linear regression is identical to that in traditional statistics: an algorithm
is generated to fit a line between one or more explanatory variables and a
dependent variable. Each explanatory variable value is multiplied by a
regression coefficient, and coefficients are varied to find the best fitting line.
The fit of this line is evaluated by calculating the sum of the squares of the
distances between predicted values and observed values from the data
(Marill, 2004a,b). This “sum of least squares” is referred to as the error
metric. During learning, the algorithm adjusts coefficients to minimize
the error metric, producing the best possible fit line.

Logistic Regression: In the context of machine learning, logistic regres-
sion is very similar in principle to linear regression; however, instead of
fitting a straight line between continuous data, the algorithm generates a
linear predictor function from the inputs and coefficients which is trans-
formed to create a logistic model bounded at 0 and 1 to suit the output
requirements for categorical data. Its formula is the sigmoid function:
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1
1 + e−y

where y = b0+b1X1+ ...+bnXn. Here, each of the X-values represents
one of the features (inputs), and the associated b-value is the coefficient.
Unlike linear regression, which has a closed-form solution, gradient de-
scent is required to find the optimal logistic regression parameters.

Ridge-Penalized Logistic Regression: Based on the structure of the er-
ror metric in linear and logistic regression, collinearity between predictor
variables may result in poor regression performance, with either under or
overfitting. Ridge regression introduces another term (the “L2 penalty”)
into the error metric. This penalty takes the form of a constant entered by
the user multiplied by the square of the coefficient. In machine learning,
such constants which are added by users are termed hyperparameters. In
order to find a best fit line during learning, the goal is not only minimiza-
tion of the original error term, but minimization of the combination of
error and penalty term. The structure of the penalty term in ridge regres-
sion is such that it has the effect of reducing the magnitude of individual
coefficients among multicollinear variables, improving performance of
the system (Hoerl and Kennard, 1970; Friedman et al., 2010). Again, this
can be solved by gradient descent.

Lasso-Penalized Logistic Regression: Lasso is an acronym for “least
absolute shrinkage selector operator.” Conceptually, it is very similar to
ridge regression, with the introduction of an L1 penalty (as opposed to
L2 penalty). The L1 penalty consists of a hyperparameter multiplied by
the absolute value of the regression coefficient. Including this term in the
error metric results in reducing some coefficients in the model to zero.
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This allows the learning algorithm to perform feature selection, leading
to a parsimonious model including only those features most important
to prediction (Tibshirani, 1996, 2011). This cannot be solved by standard
gradient descent since the penalty is not differentiable at 0, but it can be
solved by coordinate descent or various modified versions of gradient
descent to handle the undifferentiable places.

Tree-Based

In large datasets with anticipated but unknown variable interaction, de-
cision tree methodologies offer the ability to aggregate diverse types of
data to make accurate predictions, and they often compare favorably with
advanced regression techniques (Kingsford and Salzberg, 2008). To build
decision trees, data features are selected based on identifying the most
discriminative variable to form the nodes in a classification tree (Breiman
et al., 1984), with each terminal node being assigned to a class. Induc-
tive learning of decision trees is accomplished by sequentially adding
variables until the terminal nodes achieve sufficient predictive capability,
and then pruning the resulting trees to avoid overfitting (Colombet et al.,
2000; Lewis, 2000). Tree-based methods offer the ability to deal with com-
plex variable interactions and nonlinear effects in large datasets (Cairney
et al., 2014). The primary disadvantage of decision trees is a potential for
overfitting models to training data despite pruning techniques.

Random Forest: Random forest algorithms address potential overfitting
by iteratively sampling within a dataset to build trees from multiple sub-
populations, creating a “forest” of potential trees (Breiman, 2001) and
predicting for new cases by an unweighted vote of the predictions of all
the trees (Genuer et al., 2010).

Random forests have seen wide application in medicine for predicting
conditions like diabetes (Devi and Shyla, 2016), breast cancer (Hsu et al.,
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2015), and even the effect pharmaceutical molecular structures have on
biological activity (Svetnik et al., 2004). In tasks like these, the performance
of random forests tends to be competitive with other machine learning
methods. One caveat that has been pointed out is that careful selection of
features may be necessary for realizing optimal performance (Alam et al.,
2019; Kaur et al., 2019).

AdaBoost: AdaBoost (or “Adaptive Boosting”) is a machine learning
meta-algorithm, or a wrapper, that can be used with many types of ma-
chine learning models, including decision trees. AdaBoost works by using
a boosting procedure to subsample the training data and create many
“weak” learners (those with predictive accuracy slightly above guessing)
of the model type being used. These various weak classifiers ultimately
take a weighted vote on the final classification for an instance. AdaBoost
is said to be adaptive, because as more and more weak models are created,
it shifts focus to the instances that were misclassified by the previously
created weak models (Freund and Schapire, 1997).

Researchers have successfully applied AdaBoost in breast cancer pre-
diction and survival (Abuhasel et al., 2015). While successful in using this
type of adaptive approach, researchers in these studies have cautioned that
outliers in a noisy dataset may exert an outsized impact on the learning
process (Adegoke et al., 2017; Dietterich, 2000), particularly in the case of
class noise (McDonald et al., 2003).

XGBoost: XGBoost (short for “eXtreme Gradient Boosting”), as its name
implies, is a framework for accomplishing gradient boosting for machine
learning models (Chen and Guestrin, 2016). Generally speaking, gradient
boosting algorithms are built on top of “weak learners,” as was the case
with AdaBoost (Friedman et al., 2000). Unlike AdaBoost, however, gradi-
ent boosting techniques do not iteratively re-weight instances based on
predictive performance. Instead, they typically function by adding more
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weak learners in a greedy fashion in an attempt to reduce an overall loss
function (Chen and Guestrin, 2016).

XGBoost is unique in its approach to gradient boosting. Unlike other
similar methods, it strives for scalability in all scenarios. In pursuit of this,
XGBoost leverages sparsity-awareness, cache-awareness, as well as an ap-
proximate split-finding algorithm in cases where a full dataset does not fit
into memory (Chen and Guestrin, 2016). It also improves on existing short-
comings in traditional boosting methods. As detailed on AdaBoost, noise
in datasets may have an inordinately high impact on a boosted model’s
predictive power. XGBoost defies this tendency, though, demonstrating a
relatively high level of robustness to noise when compared to AdaBoost
and other traditional gradient boosting (Gómez-Ríos et al., 2017).

Due to XGBoost’s high performance and predictive capacity, it has
seen wide application, often meeting or exceeding accuracy levels of other
methodologies in competitions such the Kaggle competition (Mangal
and Kumar, 2016). In the medical domain, XGBoost and XGBoost-like
approaches have been employed in drug prediction for precision medicine
in fighting cancer (Janizek et al., 2018), predicting atrial fibrillation (Chen
et al., 2018), and also in pathway analysis (Dimitrakopoulos et al., 2018).

2.1.2 Training and Testing the Models

Central to using machine learning models are the training and testing pro-
cedures used to develop these models. In subsequent chapters, methods
pertaining to supervised learning are used. Supervised learning can be
defined as the following:

Given a training set ofM example input-output pairs
(x1,y1),(x2,y2),...,(xM, yM),
where each yj is generated by an unknown function y = f(x),
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find a function h(x) that approximates the true function (Rus-
sell and Norvig, 2016).

Implicit in this definition of supervised learning is that the function
h(x) (often called a hypothesis) is being drawn from some greater space
H (or hypothesis space) of other functions that would also potentially suit
the task of approximating f(x). From this arises the need to assess the
“goodness” of the chosen function f(x), and a held-aside test set is used to
accomplish this.

At the most basic level, if one considers a set of instances:

(x1,y1),(x2,y2),...,(xM, yM),

one would use only a portion of these instances for the training set:

(x1,y1),(x2,y2),...,(xm, ym),

while holding aside the remainder for the test set:

(xm+1,ym+1),(xm+2,ym+2),...,(xM, yM),

where m < M. This train-test split is shown in Figure 2.3. Note that
the test set can be further divided to incorporate a tuning set, which can
be used to set the model’s hyperparameters.

In most cases, the instances are randomly shuffled prior to breaking
into the training and test sets. One drawback to this division is that it
assumes a static underlying data distribution over time. In certain cases,
this assumption may not hold. Various medical studies, in particular, have
shown that a calibrated model, while showing good performance initially,
may deteriorate over time due to population traits shifting (Kukar, 2003;
Davis et al., 2017).
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Figure 2.3: A depiction of training-test split.

Chronological Splitting: To account for this drifting effect on models,
one strategy is to chronologically arrange a dataset taken from a large
time span. With this approach, then, older data points become training in-
stances, while newer ones serve as test points. As opposed to randomizing
the instances between the two datasets, this acts as a more conservative
way of testing the model, accounting for any drift the model may have
encountered for the duration of time measured in the dataset.

Figure 2.4: A depiction of 5-fold cross-validation.

Cross-Validation Another common approach of training and testing is
to use n-fold cross-validation, where n is typically 5 or 10. As shown
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in Figure 2.4, this approach uses n iterations with n partitions over the
dataset. In each of these iterations, one of the successive folds “takes its
turn” acting as the test fold. The remainder of the folds serve as training
data during this iteration. Using this approach as opposed to a single
train-test split reduces variability and also bolsters model generalization
by reducing overfitting (Kohavi et al., 1995).

Leave-One-Out Cross-Validation: A variant of then-fold cross-validation,
as its name implies, sets the number of folds (or n) to the number of in-
stances in the dataset. In each of the n iterations, one instance is held out
as a test instance. In cases where examples are not independent, such as
predicting protein structure or properties of web pages, one might group
examples and perform leave-one-group-out (King et al., 2000; Craven et al.,
1998). An example of this is seen in Chapter 3.

2.1.3 Interpreting Results

Another crucial factor in deciding which machine learning framework
to ultimately use is how that model performs. In this dissertation, the
following measures of performance are used.

Accuracy: Accuracy is simply the fraction of instances that the model
predicted correctly. That is:

NumberofCorrectPredictions

TotalNumberofPredictions

True Positive Rate (TPR): Also called sensitivity, the true positive rate
can be defined as the fraction of all positive instances the model actually
flags as being from the positive class:



21

TruePositives

TruePositives+ FalseNegatives

False Positive Rate (FPR): The false positive rate can be defined as the
fraction of all negative instances the model flags as being from the positive
class:

FalsePositives

FalsePositives+ TrueNegatives

Receiver Operating Characteristic (ROC) Curve: Taken together, TPR
and FPR can be plotted into what is called a receiver operating characteris-
tic (ROC) curve. The metric of interest that can be derived from this curve
is known as the area under the ROC curve, or AUROC for short. (Note
that this is often further shortened to AUC in contexts when it is clear that
the ROC curve is being used. Throughout this dissertation, this is often
the case.) For any given curve, an AUROC near 1.0 is optimal, while an
AUROC around 0.5 indicates a performance no better than guessing.

An example ROC curve is shown in Figure 2.5. Note that the dashed
diagonal line represents an ROC curve based purely on guessing. (I.e.,
it would have an AUROC of 0.5.) Conversely, an ROC curve with an
inflection point near the top left corner would have an AUROC near 1.0;
thus, curves that lean upward and to the left are preferable to those that
lean toward the dashed line.

Precision: The final metric of interest is precision, which can be thought
of as the fraction of positive instances a model correctly flags as positive
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Figure 2.5: A depiction of an ROC curve.

out of all those it flagged as positive:

TruePositives

TruePositives+ FalsePositives

2.2 Clinical Background

As alluded to in Chapter 1, healthcare systems suffer from issues relating
to safety, quality, and inefficiency (Carayon et al., 2006; Baker, 2001; Ball
and Balogh, 2016). Machine learning, in the context of the learning health
system, has been proposed as one strategy for improving health system
efficiency by focusing resources where they are most beneficial.

2.2.1 Learning Health Systems

Healthcare researchers have argued that, for too long, one factor contribut-
ing to concerns like efficiency and quality of patient care in academic



23

hospitals is that there has been a single-minded focus on discovery, often
to the detriment of scalable concrete solutions that put new knowledge
into practice. As one researcher encapsulated the problem, the tendency
is to favor "all breakthrough and no follow-through" (Grumbach et al.,
2014). How, then, should the challenges of inefficient and costly care be
addressed?

Figure 2.6: A depiction of the learning health cycle. Image courtesy of
Flynn et al. (2018).

The learning health system paradigm hopes to ameliorate these issues
and others by decreasing the time it takes to implement new techniques
and knowledge (i.e., to bring them directly to the patient). Recall that the
basic idea behind a learning health system is that it is simply a healthcare
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entity attempting to learn about itself. This can be seen in Figure 2.6. Note
that the self-learning process shown in the figure unfolds in three broad
steps, wherein:

1. Real-world practice generates data;

2. Data can be used to provide knowledge about some question; and

3. The knowledge gleaned influences the practice.

In this way, the health system is both learning about itself and putting
the knowledge into practice to improve its performance (Flynn et al., 2018).
To expedite the learning process, predictive models are often employed.

While machine learning can be used, one might reasonably wonder
about where in the learning health systems cycle such models should live.
As noted in Chapter 1, correct placement and functioning of a model in
an existing workflow is crucial to preventing the workflow from being
disrupted.

A central concern revolving around an organization’s workflow is how
it addresses quality assurance issues. One iterative process called PDCAs
(alternatively PDSAs), or Deming cycles, attempts to encapsulate quality
assurance in a process similar to the scientific method (Deming et al., 1986).
Like the scientific method, PDCA cycles explain how to solve a problem
(e.g., quality assurance issues that arise). This is done in four steps:

1. Plan: establish procedures and what must be accomplished from
them;

2. Do: execute the plan laid out in step 1;

3. Check: analyze results and data collected; and

4. Act: improve the initial process.
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Figure 2.7: The PDCA cycle. Diagram by Karn G. Bulsuk (http://www.
bulsuk.com/).

This procedure is depicted in Figure 2.7. Note the arrow between “Act”
and “Plan.” This indicates that the cycle may need to be repeated more
than once to achieve the set objective(s). If such is the case, the cycle
continues back at the “Plan” step, taking into account anything learned
from the prior iteration.

The PDCA cycle has been viewed as an essential part of the learning
health system in that it can be viewed as a means of addressing the ef-
ficiency and quality concerns mentioned above (Taylor et al., 2014). In
particular, this process has seen implementation at UW Health.

UW Health is a health system partnered with the UW School of Medicine
and Public Health (SMPH) that serves more than 600,000 patients every
year (UW Health, 2019). Treatment of such a vast number of patients is
accomplished through a close working relationship between these two
affiliates. Our work, in particular, has benefitted from this partnership,
embodying the PDCA process outlined above by translating a set of pre-

http://www.bulsuk.com/
http://www.bulsuk.com/
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dictive models from the academic (SMPH) side to the clinical (UW Health)
side. Crucial to helping achieve this translation is work that has been done
by researchers at UW Health focused on moving towards the goals of a
learning health system.

UW Health predictive analysts have developed a framework that closely
adapts the PDCA process outlined above. A toolkit that they have created
formalizes this, and it is available to help researchers at UW and elsewhere
implement their models in real-world contexts (Adelaine et al., 2019).
There are six modules to this toolkit, as shown in Figure 2.8. This toolkit
adapts the FOCUS-PDCA methodology, an extension of PDCAs that has
seen application in healthcare for improving patient care (Bader et al.,
2002).

The first module (“find”) aims to ensure that what the predictive model
is measuring aligns with organizational goals. In essence, it seeks to
find any facets of the model that must be made to conform to what the
organization hopes to accomplish. Our work focuses on machine learning
models designed for the purpose of more effectively using resources (e.g.,
referral slots for the UW Mobility and Falls Clinic), as is discussed in our
work in Chapter 4. This is of practical interest to UW Health from the
standpoint of the quality of care patients receive, so our model satisfies
the goals of this module.

The second module (“organize”) involves identifying and involving
the right people in the project at hand. The work we have engaged in
has, in fact, included researchers from many areas, both academic and
clinical. Challenges encountered have necessitated help from clinicians,
health communications researchers, and predictive analysts, among oth-
ers. Often, including such an array of researchers promotes a clearer
understanding of how to integrate the model into the existing workflow,
which is embodied by the third module (“clarify”). Indeed, deploying our
model has meant understanding where in the UW Hospital Emergency
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Figure 2.8: The learning health system embodied by a UW Health toolkit.

Department’s workflow the predictive model should be included.
A related concern revolves around ambiguity or variation in protocols

that must be addressed for a successful rollout of the model. This is
handled in the fourth module (“understand”).

After these considerations for workflow and usability have been taken
into consideration, there still may be a disconnect between academians
and clinicians in deciding what makes a model “good.” This challenge
is handled by the fifth module (“select”) . The impetus for this module
closely relates to two of our take-away points in Chapter 1: interpretability
and adaptability. As we discuss later in Chapters 4 and 5, an open area of
research in clinical informatics is how machine learning models must be
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properly interpreted or even changed to match the needs of a real-world
problem.

Finally, after all of these modules are executed, a researcher moves
into the sixth module (“Plan, Do, Check, Act”). Here, as its name implies,
planning, doing, checking, and acting are key to finishing the six-fold
implementation process. Often, the health system will need to learn more
about itself based on how the current project unfolds. Another common
issue that this stage draws attention to is data drift that may occur in the
underlying characteristics over time. Note that this last step is a direct
application of PDCA cycles.

Figure 2.9: The SEIPS model as a means of improving outcomes. Figure
courtesy of Carayon et al. (2006).

As alluded to in Chapter 1, our collaboration with the UW Industrial
Engineering Department has also guided model development. A corner-
stone to the work emerging from the partnership has centered on the
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SEIPS model (Holden et al., 2013; Carayon et al., 2006) and its concomitant
focus on human factors. These human factors include not only the impact
a healthcare system can have on patient safety, but other employee and
organizational outcomes as well (Holden et al., 2013).

The SEIPS model is shown in Figure 2.9. Notice that, when considering
the development of an intervention, all interactions between people and
their environment must be considered. These various interactions are
depicted under the first section of the SEIPS model in Figure 2.9 titled
“Work system.” The organizational structure of the work system, in turn,
affects the patient’s care and safety, which falls under the second section
titled “Process.” Finally, the processes which are taking place affect the
patient, employee, and organizational outcomes that emanate from the
process. This is shown in the “Outcomes” section. Note that both processes
and outcomes can feed back into the work system as well.

In our projects, we have taken these workflow paradigms into consid-
eration when designing the tools which communicate model results with
providers This is explored further in Chapters 4 and 5.

2.2.2 Machine Learning in the Healthcare Domain

Machine learning models have been used in medical tasks ranging from
predicting diabetes risk (Lai et al., 2019; Xie et al., 2019; Anand et al., 2018)
to forecasting the chances of mortality (Kim et al., 2019; Hill et al., 2019).
Crucial to the modeling process in studies such as these is understanding
how the models performed. As pointed out in Section 2.1, AUROC is
one of the primary metrics used to ascertain how well a model predicted
true positives relative to the number of false positives. While the AUROC
metric lends itself to many machine learning tasks, in the healthcare milieu,
AUROC may or may not be the most appropriate metric to use. Still, the
analysis of a screening test performance as it is understood in epidemiology
can be thought of in similar terms as machine learning methodology
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analysis. Like machine learning, one still must consider true positives and
false positives, along with true negatives and false negatives. From these, the
measures of sensitivity and specificity can be derived.

Sensitivity: Sensitivity can be defined as the number of true positives
relative to all positives (i.e., all patients with some condition). Mathemati-
cally, this can be expressed as:

TruePositives

TruePositives+ FalseNegatives

Notice that this is the same measure as true positive rate, as defined
above in Section 2.1. “Goodness” in terms of sensitivity, then, is a test
that captures as many true positives as possible without taking on false
negatives (Mausner and Kramer, 1985).

Specificity: Ideally, one would also like for a test to not capture false
positives. This is expressed as specificity. The mathematical definition of
specificity is:

TrueNegatives

TrueNegatives+ FalsePositives

That is, of all the patients without the condition in question, how many
were actually labeled as such (Mausner and Kramer, 1985).

These two measures can be better understood from Figure 2.10. In
this figure, the left half represents all instances that are actually negative,
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Figure 2.10: True/false positives and true/false negatives used to define
sensitivity and specificity.

while the right represents those that are positive. The innermost rectangles
both represent instances that were labeled as being from the positive class.
Graphically, then, sensitivity would be the light salmon region on the right
divided by the whole right side. Specificity, on the other hand, would be
the outer dark blue region on the left divided by the whole left side.

Positive Predictive Value (PPV): Another measure of interest to clini-
cians is positive predictive value (or PPV). It is the ratio of the number
of true positives to all patients flagged as positive. Alternatively, one can
express it as:

TruePositives

TruePositives+ FalsePositives

This is mathematically equivalent to precision, as defined in Section 2.1.
It is important to realize that this measure not only accounts for the quality
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of the test being used, it is also predicated on how prevalent the condition
is. The ideal value for this test is 1 or 100% (Fletcher et al., 2012).

Negative Predictive Value (NPV): Negative predictive value (or NPV)
gives the ratio of the number of true negatives to the number of patients
flagged as being negative, or:

TrueNegatives

TrueNegatives+ FalseNegatives

As with PPV, NPV’s ideal value is 1 or 100%. Its measure is also
dependent on how prevalent the condition being measured is (Fletcher
et al., 2012).

C-statistic: The C-statistic is another measure of a test’s efficacy. It is
found by determining the area under the ROC curve; thus, it is synony-
mous with AUROC in machine learning terminology.

NNT: The NNT (or number needed to treat) metric plays a crucial role
in ascertaining treatment effectiveness. It can also be of use in risk stratifi-
cation tasks. NNT can be thought of as the number of patients to which
a treatment must be applied before one patient sees the benefit. Thus, a
smaller NNT is desirable. Mathematically, NNT is expressed as:

1
RelativeRiskReduction ∗AbsoluteRisk
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Here, relative risk reduction is the fraction by which a treatment re-
duces some condition, while the absolute risk represents the initial portion
of some population afflicted by the condition of interest. Later, we show
that the absolute risk, as it is presented in the literature, is equivalent to
precision.

Figure 2.11: A depiction of an NNT curve.

The NNT metric is particularly useful, because it allows for exploring
different thresholds in assessing treatment effectiveness for a certain con-
dition. That is, if the relative risk reduction remains fixed, the absolute
risk (i.e., the number of patients exhibiting the trait) can be varied to see
the how various risk levels translate into effectiveness. To understand this,
refer to Figure 2.11. Note that in this example, the treatment being applied
is referring patients for follow-up care meant to reduce the likelihood of
a condition. Patients are assigned a risk score by an underlying model,
and the patients are ranked according to their respective risk. The cutoff
is then set to some point along the risk scale, and this determines which
patients are referred. As one moves further and further to the right on the
NNT graph, more and more patients are referred. Referring more patients
in this way results in a higher NNT, since more and more patients are
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included that are of lower and lower risk.
We later endeavor to show in Chapters 4 and 5 how NNT can be derived

from existing performance measures known to machine learning experts.
We further demonstrate how NNT can be shifted into the training phase of
the machine learning process, thereby making this alternate performance
metric an intrinsic part of a machine learning model being employed.
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3 predicting neural toxicity

One of the more rudimentary uses of machine learning in the biomedi-
cal context is that of genomic analysis. Often, modeling techniques can
be combined with other technologies to perform some type of analysis.
In the case of genomic analysis, a procedure called RNA-Seq allows for
DNA to be used in gene expression analysis, which can include machine
learning methods. This chapter explores the marriage of RNA-Seq data
with machine learning with an end goal of predicting compounds that are
neurotoxins.

The material in this chapter first appeared in Schwartz et al. (2015).
Authors Collin Engstrom, David Page, and Vitor Santos Costa provided
the machine learning analysis, which is the basis of this chapter. The work
pertaining to tissue generation and RNA-Seq analysis was done by the
remaining authors. A summary of this RNA-Seq work is interspersed
throughout the following sections to provide context for the machine
learning component of the project.

3.1 Introduction

In recent years, there has been a pressing need for improved methods to
assess the safety of drugs and other compounds (Fabre et al., 2014; Judson
et al., 2014; Crofton et al., 2011; Grandjean and Landrigan, 2014; Bal-Price
et al., 2015). Success rates for drug approval are declining despite higher
R&D spending (Hay et al., 2014), and clinical trials often fail due to toxic-
ities that were not identified through animal testing (Olson et al., 2000).
In addition, most of the chemicals in commerce have not been rigorously
assessed for safety, despite growing concerns over the potential impact of
industrial and environmental exposures on human health (Judson et al.,
2014; Crofton et al., 2011; Grandjean and Landrigan, 2014; Bal-Price et al.,
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2015). Animal models are costly, time-consuming, and do not recapitu-
late many aspects of human physiology, which motivated the National
Institutes of Health (NIH) and the U.S. Environmental Protection Agency
(EPA) to initiate programs that emphasize human cellular approaches
for assessing the safety of drugs (Fabre et al., 2014) and environmental
chemicals (Judson et al., 2014; Crofton et al., 2011). In vitro cellular models
that accurately reflect human physiology have the potential to improve the
prediction of drug toxicity early in the development pipeline (Fabre et al.,
2014) and would provide a cost effective approach for testing other sources
of chemical exposure, including food additives, cosmetics, pesticides, and
industrial chemicals (Judson et al., 2014; Crofton et al., 2011; Grandjean
and Landrigan, 2014; Bal-Price et al., 2015).

In this study, reproducible neural constructs with vascular and mi-
croglial components were fabricated for developmental neural toxicity
screening. Machine learning was used to build a predictive model from
RNA-Seq data for neural constructs exposed to a training set of 60 toxic
and non-toxic chemicals, which then correctly classified 9/10 blinded
compounds.

3.2 Background

In this chapter, RNA-Seq is the method used to interrogate gene expression
levels. This technique has been in existence since the mid-2000s and has
been used in many studies ranging from gene regulation (Trapnell et al.,
2013) to viral detection (Radford et al., 2012; Capobianchi et al., 2013;
Khoury et al., 2013).

Broadly speaking, RNA-Seq is concerned with the movement of genetic
information from the DNA stage to final protein products. For this reason,
it has become one of the dominant techniques used to ascertain gene
expression levels. This is achieved in a series of steps (Griffith et al., 2015),
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which are as follows:

1. Identifying biological sample(s) that should be used for a study;

2. Isolating the RNA in the sample(s);

3. Enriching the RNA;

4. Converting the RNA to cDNA fragments;

5. Aggregating the cDNA fragments into a single library;

6. Sequencing the fragments;

7. Generating a single read from the fragments;

8. Assembling all the reads; and finally

9. Performing a final analysis using the reads.

This process is summarized in Figure 3.1. In this chapter, we focus on
the final step, as it is these final reads that yield the gene expression levels
that can be used as input features to an SVM model.

3.3 Methods

In this study, RNA-Seq and linear support vector machines were used to
build a predictive model for neurotoxicity based on changes in global gene
expression by neural constructs exposed to known toxins and non-toxic
controls. Neurotoxicity was evaluated using a set of 31 control compounds
and 39 toxins with previous literature support for neurotoxicity. Control
chemicals included pharmaceuticals with no known neurotoxicity or com-
mon food additives. Pluripotent stem cells were used to construct a model
for developing brain tissue including seven cell types and vascularization
(Schwartz et al., 2015). This process started on day 0. For each compound
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Figure 3.1: A visual depiction of the RNA-Seq process. Figure courtesy of
Griffith et al. (2015).

(control or neurotoxin), two replicates were done. For each replicate,
day 14 neural constructs were exposed continuously to test compounds
through day 16 (two day exposure) or day 21 (seven day exposure), and
then harvested for RNA-Seq and machine learning analysis.

The overall machine learning process is summed up by the algorithm
below.

Algorithm 3.1 Neural Toxicity Classification
Given: RNA-Seq gene expression measurements for roughly 19K genes on one
day or on several different days following exposure to various drugs, together
with a neural toxicity label on each drug.

Do: Construct a model based on gene expression data from training set drugs
to predict if future drugs are neural toxic.

To better understand this process, one might consider each drug as
being a row in a table, with each column representing one of the 19,000
genes (feature inputs to the machine learning model). The last column,
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then, would be the predicted status of the test compound; in this case,
that would be either “toxic” or “control.” This rendering of the problem is
shown in Figure 3.2.

Figure 3.2: Compounds labeled by SVM procedure.

SVMs: As mentioned above, linear SVMs were used for the predictive
model. Recall from Chapter 2 that SVMs use a hyperplane to subdivide
the two classes of interest. The margin that parallels this hyperplane is
maximized on either side so that the buffer between the two classes is as
great as possible. A two-dimensional linear support vector machine (SVM)
is illustrated in Figure 3.3, where the hyperplane reduces to a line that sep-
arates examples (circles) of the two classes (filled or open) and maximizes
the margin, or distance between the closest points of different classes (the
support vectors are the examples that fix the position and orientation of
the hyperplane). The xis are the examples (circles; gene expression for the
current study), the yis are their labels (filled or open; toxic or non-toxic
for the current study), and w is the weight vector, or vector of coefficients
on the features (the dimensions). We use soft margin SVMs (Cortes and
Vapnik, 1995b) that allow for errors in the training set. The effect of a mis-
classified example xj is measured through its distance to the hyperplane,
ξj. The red portions in the equation are the additions required to support
the soft margin SVM (Cortes and Vapnik, 1995b). The SVM is trained to
minimize the sum of the margin and errors (weighted by parameter C).
The parameter C is tuned with an inner loop of cross-validation, repeated
on every fold of the outer, evaluative cross-validation procedure, using
only the training data for each fold. As noted in other studies (Struyf
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et al., 2008; Hardin et al., 2004), tuning parameters in this way usually
yields better results than arbitrarily choosing a single default parameter
value, and it gives a much fairer estimate of future performance than
does another approach sometimes seen, of performing cross-validation
with multiple values of a parameter and “cherry picking” the value that
yields the best result. The linear SVM’s output is the weight vector w
and the other coefficient, b. To make a prediction, the SVM outputs the
number w′xi −b, and outputs the label 0 (non-toxic, for our application)
if this number is less than 0, and 1 otherwise. While the numerical output
does not have a probabilistic interpretation as does the output of logistic
regression, it is common to build a logistic regression model with one
input variable (the SVM’s output) from the same training set to output a
probability (probability of toxic), which we do here.

Figure 3.3: Linear SVM depiction.

We employed two standard holdout testing methods for evaluation to
avoid overly-optimistic prediction of accuracy (Struyf et al., 2008; Hardin
et al., 2004; Golub et al., 1999):

1. A nearly unbiased (slightly pessimistic) leave-one-out cross-validation
and

2. An unbiased blinded trial with a single hold-out set.
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Leave-one-out cross-validation: For leave-one-out cross-validation, there
areN data points (compounds) in a training set, and the method proceeds
in N steps. In each step, a different data point is held out of the training
set, the SVM is trained on the remaining data points, and then it makes
its prediction on the held-aside data point. Hence, every data point is a
test case exactly once–for a model trained without that data point. Results
are aggregated over all the folds, or test cases, to estimate how well the
SVM model trained on all the data will perform on a new data point (com-
pound). Because we had two replicates for each compound, on each fold
we in fact held out both replicates of a given compound for testing. To do
otherwise, leaving one replicate in the training set and the other in the
test set, again could give overly-optimistic estimates of future predictive
accuracy. So, in effect, we performed “leave one compound out” cross-
validation, taking the average of the two output probabilities, from the
two replicates, as the probability for the compound being toxic. Finally,
we also averaged predictions for each compound from both days 16 and
21 to produce a further improved prediction of toxicity. Again, evaluation
of this approach proceeded in the “leave one compound out” fashion.

Using the cross-validation methodology, we can compute the numbers
of true positive (toxic) predictions (TP), as well as false positive (FP), true
negative (non-toxic, TN), and false negative predictions (FN). From these
we can compute accuracy (fraction of predictions that are correct) as well
as the following: Sensitivity (true positive rate, or recall; TP/(TP+FN)),
specificity (TN/(TN+FP)), and precision (or positive predictive value;
TP/(TP+FP)), as well as other metrics such as F-measure and negative
predictive value. Nevertheless, all of these metrics depend on not only
the model that produces probabilistic predictions for toxicity but also the
probability threshold at which we make positive predictions, such as 0.5.
Hence, it is common in machine learning and statistical classification to
report “thresholdless” curves and or metrics, the most popular being the
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receiver operating characteristic (ROC) curve and the area under this curve
(AUC). The ROC curve plots true positive rate on the y-axis against the
false positive rate (1− specificity) on the x-axis as the threshold is varied.
Random uniform guessing produces a diagonal from lower left to upper
right corner and AUC of 0.5, while perfect prediction produces a graph that
goes up to the upper left corner and then across and AUC of 1.0. The ROC
curve is produced by ranking the examples by their predicted probability
of being toxic and then varying the threshold. After aggregating over all
the folds, the performance estimates were summarized in the form of such
an ROC curve.

Blinded trial: In addition to constructing an SVM model, we also aimed
to estimate how well the model predicts the developmental neural toxici-
ties of other compounds. Merely reporting its accuracy on the training set
would be overly-optimistic. An unbiased method was employed by collect-
ing RNA-Seq data for a set of 10 compounds that were not in the training
set but whose neural toxicities were known, and then testing the predictive
model on the unknown samples after the model had been constructed
and optimized using the training set. This is the blinded trial, so called
because the researchers running the SVM do not know the identity of the
chemicals, their ground truth labels, or the number of toxic compounds
within the blinded set. Predictions were made using a probability thresh-
old of 0.5; while 0.5 is the most common threshold to use, alternatively a
threshold could have been chosen based on the training data, using the
threshold that would maximize accuracy in the ROC curve above. The
toxicity assignment was revealed for the blinded chemicals only after the
SVM’s predictions with the 0.5 threshold were made.

This unbiased blinded trial uses the predictive model generated from
the training set to make predictions on a separate hold-out set, including
estimates of accuracy and area under the ROC curve (AUC). The leave-one-
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out cross-validation method has lower variance than a single train/test
split because it tests on all the compounds of the training set, but is a
slightly pessimistic estimate of future performance because each training
set is slightly smaller (one less) than the actual training set.

3.4 Results

Leave-one-out cross-validation was used to evaluate neural constructs
exposed to a training set of 34 toxins and 26 non-toxic controls. The
area under the ROC curves for the training compounds were 0.86 on day
16, 0.88 on day 21, and 0.91 for data averaged from both days. Thus,
the SVM produced an estimate for future data of > 0.86 for each day
individually and 0.91 using data from two developmental time points.
This is graphically depicted in Figure 3.4.

After the testing phase, an unbiased hold-out testing was then used to
predict toxicity for a set of ten blinded compounds that were not in the
initial training set (5 toxins, 5 non-toxic controls) and were unknown to
researchers generating the support vector machine model until after the
predictions were made. The averaged days 16 and 21 data was chosen to
make predictions using the training set, which produced probabilities for
ranking the blinded compounds from most likely to least likely toxic. In
addition, we used a threshold of 0.5 to make definitive predictions, labeling
every chemical with probability 6 0.5 as non-toxic and all others toxic. The
area under the ROC curve generated for the ranking of the blinded set was
0.92, which is in agreement with the training experiment. Importantly, all
compounds except oleic acid (a false positive) were properly assigned as
toxic or non-toxic. Therefore, the accuracy of the prediction on the blinded
compound set was 0.9 (9/10 compounds correctly classified).
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Figure 3.4: ROC for average performance of days 16 and 21.

3.5 Discussion

The high dynamic range for RNA-Seq provides sensitive detection of
gene expression changes for cells within the neural constructs, even for
relatively rare cell subpopulations, while linear support vector machines
have previously been shown to perform well using gene expression data
(Struyf et al., 2008; Hardin et al., 2004). The machine learning model
correctly identified 9/10 blinded chemicals as toxic or non-toxic (with one
false positive), which compares favorably to the expected accuracy when
using animal testing to predict human neurotoxicity (Olson et al., 2000).

While it has been demonstrated that accurate machine learning algo-
rithms can be constructed with significantly fewer examples (data points,
or training compounds here) than features (variables, or genes here) (Furey
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et al., 2000; Struyf et al., 2008; Hardin et al., 2004), 60 compounds is still an
exceptionally small dataset given roughly 19,000 genes. Therefore, it is a
reasonable expectation that predictive accuracy can be improved further
by adding more toxins and controls to the training set. For example, our
day 16 model correctly predicts the training compound cadmium to be
toxic, but our day 21 model does not. Nevertheless, there are alternative
linear separators for day 21 data (with nearly as large margins) that would
correctly classify cadmium. Such an alternative linear separator is con-
structed for the full training set that includes cadmium, such as that used
to make predictions for the blinded compounds; this observation supports
the assumption that the model would be improved with additional train-
ing data. By expanding the training set to include additional compounds
with characteristics similar to cadmium, the learning algorithm would con-
struct such an alternative linear separator even if cadmium were held out.
Similar improvements might be expected by including other compounds
to account for distinct toxic effects that are either underrepresented or not
represented at all with the current training set, and incorporation of such
information to improve the predictive model is a particular advantage of
the machine learning approach.

Machine learning algorithms are also dependent on training com-
pounds that can be definitively assigned. Therefore, initial misclassifica-
tion of a compound would result in an incorrect prediction even if the
machine learning algorithm makes an accurate assessment, such as if a
control compound was dosed at a toxic concentration. For example, oleic
acid was chosen as a non-toxic control for the blinded set and was dosed
at a lower concentration than values reported for human serum (Teubert
et al., 2013), but was predicted to be toxic by the machine learning algo-
rithm. It was previously reported that free oleic acid content transiently
increases in the brains of postnatal day 1 rats, which was correlated to
a neurotrophic role during axonogenesis (Polo-Hernández et al., 2010).
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Thus, a potential toxic outcome for oleic acid might be envisioned if the
neurotrophic effect is tightly regulated, since elevated expression could
disrupt normal developmental timing.

3.6 Conclusion

This chapter has presented an application for machine learning methods in
the biomedical setting. As observed in Section 3.1, neural toxic compounds
can have a devastating impact on human health, particularly on neural
tissue. In this study, RNA-Seq data was harvested from neural constructs
exposed to several compounds, some of which were known to be neural
toxins and others that are thought to be safe. From this RNA-Seq data,
gene expression levels were derived in response to each compound, and
an SVM was built on top of these gene expression levels for 19,000 genes.

Our models were able to achieve a final AUROC of 0.91 when ex-
pression levels from two days were combined. In this particular study,
the end results were in part due to modifications to traditional machine
learning approaches. Specifically, we modified the typical leave-one-out
cross-validation as presented in Chapter 1 to accommodate for duplicates
of each compound, effectively creating a leave-one-compound-out cross-
validation strategy. This served to make the model more robust in terms
of predicting future compounds. Additionally, an unbiased blind testing
phase was included to validate final model performance. Both of these
variations exemplify how machine learning techniques must sometimes
be adapted to suit the needs of a specific application, often in a multi-
disciplinary setting.
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4 falls in the ed

As we saw in Chapter 3, machine learning techniques often find a place
in predicting characteristics relating to gene expression. In that case,
the objective was classifying compounds as toxic or non-toxic to neural
constructs. Applications such as these often lead to discoveries that are
beneficial to public health.

Another area of exploration with respect to solutions to public health
concerns is within the clinical setting. In this chapter, we discuss how
machine learning algorithms can aid in predicting at-home falls among
the elderly. These models are not only of academic interest. They are
currently being transitioned into production, aiming to proactively address
at-home falls among elderly patients seen at the UW Hospital Emergency
Department (ED).

The work in this chapter is based on research in Patterson et al. (2019).
Machine learning analysis was done by authors Collin Engstrom, Varun
Sah, David Page, and Brian Patterson. The remaining authors were in-
volved in other aspects of the project relating to dataset curation, back-
ground material, etc.

4.1 Introduction

Falls among older adults are a major public health concern, with signif-
icant morbidity and mortality (Genuer et al., 2010; Sterling et al., 2001).
Despite guidelines (Panel on Prevention of Falls in Older Persons et al.,
2011) and quality measures (Centers for Medicare & Medicaid Services and
others, 2016), screening for fall risk remains inconsistent in the primary
care setting (Phelan et al., 2015; Landis and Galvin, 2014). ED patients
are generally at higher risk of outpatient falls than the general population
(Carpenter et al., 2009, 2014; Tiedemann et al., 2013), making the ED an im-
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portant additional setting to identify high risk patients. While guidelines
recommend screening for fall risk in the ED (Weigand and Gerson, 2001;
Panel on Prevention of Falls in Older Persons et al., 2011; American Geri-
atrics Society et al., 2014), this practice has not been widely implemented
for many reasons, including the burden of screening in the high-intensity,
high-volume ED setting and limited availability of referrals for interven-
tion (Carpenter et al., 2011). Despite previous efforts, no existing screening
tools have satisfied the need for a scalable, adaptable, and measurable
instrument suitable for widespread implementation (Carpenter and Lo,
2015).

One potential solution to increase screening rates without requiring
significant additional resources in the ED is through the development
and implementation of an algorithm to screen patients using information
present in the electronic health record (EHR) at the time of an ED visit.
Recently, healthcare has seen a sharp rise in the implementation of machine
learning-derived algorithms for predicting risk across a broad range of
clinical scenarios (Goldstein et al., 2017; Churpek et al., 2016; Ting et al.,
2017; Li et al., 2016). Often, performance of these algorithms is evaluated
by comparing the area under a receiver operating characteristic (ROC)
curve, using the terms area under the curve (AUC) or C-statistic, with the
concept that algorithms offering superior classification based on AUC are
suitable for implementation (Wu et al., 2010; Weng et al., 2017). AUC as a
single number may do a poor job of conveying an algorithm’s performance
for a predictive task in a clinical context which may require a particular
balance of sensitivity and specificity (Lobo et al., 2008; Kruppa et al., 2012).
Clinicians are generally interested in applying an algorithm to aid in risk
stratification for a particular scenario, such as ruling out a rare disease,
confirming a particular diagnosis, or reducing population risk via an
intervention–in this case, referral for a fall risk reduction intervention.

Such an intervention already exists at our institution in the form of
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a multidisciplinary falls clinic. Based on prior literature, we estimate a
relative risk reduction of 38% for future falls for patients enrolled in such a
program (Close et al., 1999). Currently, very few referrals are made to the
falls clinic from the ED. Prior to initiating an automated referral program,
decision makers must understand both the anticipated number of refer-
rals generated and the effectiveness of such referrals in preventing future
falls. To do so, decision makers may be better served by extrapolations
of a model’s performance in a given population than by test characteris-
tics such as AUC. This information would allow a clinical site to select
the most appropriate risk stratification algorithm, and most appropriate
threshold point, to maximize patient benefit within the constraints of avail-
able resources and acceptable effectiveness. In this study, we developed
several machine learning models to predict six month fall risk after an
ED visit. We evaluated these models both using AUC analysis and by
interpreting model performance to describe potential clinical trade-offs
more concretely in terms of referrals per day and numbers needed to treat
(NNT) for prevention of a fall.

4.2 Methods

4.2.1 Study Design and Setting

We performed a retrospective observational study using patient EHR
data at a single academic medical center ED with level 1 trauma center
accreditation and approximately 60,000 patient visits per year. The goal
of developing the models was to create an alert at the time of an ED visit
suggesting referral of patients who are at heightened risk of a fall for
an existing multidisciplinary falls intervention. In our case, based on
discussions with our falls clinic, an estimated 10 referrals per week was
seen as operationally feasible. Using the available EHR data, we created
risk stratification models for fall revisits to the ED. Our outcome of interest
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was a fall visit to the same ED in the 6 months after an index visit (i.e.,
the first time the patient came to the ED). While this chapter focuses on
predicting fall revisits, the methodology we describe is robust and lends
itself to any clinical risk stratified prediction task.

4.2.2 Data Selection and Retrieval

EHR data for patients aged 65 years and older who visited the study ED
were acquired for a duration of 43 months starting January 2013, with
an additional six months of followup data collected for outcome deter-
mination. Available EHR features were evaluated for inclusion under
the conceptual framework of the Andersen Behavioral Model of Health
Services Use, a well-established model which provides a context for char-
acterizing the many factors which lead to healthcare utilization (Aday and
Andersen, 1974; Andersen, 1995; Ricketts and Goldsmith, 2005; Andersen
et al., 2011). This model has been used to frame numerous prior studies
involving ED use and falls among older adults (Stephens et al., 2011; Chat-
terjee et al., 2012). For each visit, discrete data available within the EHR at
the time of the ED visit were collected to create data features including
patient demographics, historical visits and visit patterns and diagnoses,
as well as visit-specific information including timing, lab tests performed
and results thereof, vital signs, chief complaint, and discharge diagnoses.
Features were selected based on their availability, clinical relevance, and
potential to provide predictive value for fall-revisit risk estimation. An-
other important criteria for feature selection was to exclude attributes that
contained information obtained after an index visit.

The data were organized and analyzed at the level of an ED visit (as
opposed to patient level) since our objective was to stratify risk for a
fall-revisit based on index visit data alone. Visits by patients who were
transferred from other healthcare facilities were rejected as part of our
primary exclusion criteria. We excluded visits that resulted in hospital
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admissions, as our algorithm would only be implemented for patients
who were discharged from the ED. Finally, we excluded patients who did
not have a primary care provider (PCP) in our network, as our intervention
was specifically aimed towards referring in-network patients. At the end
of the exclusion procedures, we were left with 10,030 records.

4.2.3 Feature Preparation

The encoding process for features depended on whether they were nu-
merical or categorical in nature. Numerical features such as age, vital
signs during the index ED visit, duration of the index visit, and number
of primary care or hospital visits in the six months prior to the index
visit were treated as continuous values. For each of the vital signs (e.g.,
blood pressure, heart rate, respiration rate, and temperature), three fea-
tures were created: one for the first measurement of the vital sign taken
during the visit, one for the last measurement taken, and one final feature
for an average of all measurements taken for the sign during the visit.
Attributes related to Elixhauser comorbidity index, Hendrich II score,
patients’ demographics, medications, and lab results were treated as cate-
gorical variables. The Elixhauser and Hendrich scores were based on the
necessary diagnoses being made either once during an inpatient visit or
twice in a six-month period for outpatient visits. In the case of numerical
features, we dropped records that had missing values due to the relatively
small number of records that were incomplete in this regard, which left
us with 9,687 records. However, for categorical variables, missing values
were considered as a separate category; in general, the absence of most
categorical features could be potentially informative for decision making
by the predictive models. At the end of the feature engineering process,
we obtained our final dataset which was comprised of 725 features. The
feature preparation phase was completely independent of outcome status.
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4.2.4 Model Development

Once our features were selected and prepared, we created predictive mod-
els from the data. We tested several regression-based methodologies,
including thresholded linear regression and logistic regression, both un-
regularized and including lasso (Tibshirani, 1996) and ridge (Hoerl and
Kennard, 1970) penalties. We also included two tree-based methodolo-
gies: random forests (Breiman, 2001) and AdaBoost (Schapire and Freund,
1995). Models were generated using the Scikit-learn package in Python
(Pedregosa et al., 2011). The dataset created at the end of feature prepa-
ration was split into training and test sets in a 3:1 ratio. We split data
chronologically, with the final 25% of visits kept as a holdout test set, and
the earliest 75% of data retained as a training set. The training set was
further split, again chronologically in a 2:1 ratio, to create a tuning set for
interim validation.

Models were initially trained on the smaller training set, where tunable
parameters were varied using a grid search pattern to achieve best results
within the tuning set. Finally, we picked the six models that performed
best on the tuning set, and trained one model of each type on the entire
training set. These models were then evaluated on the test data that had
been held out during the previous phase. Since our dataset was skewed,
with more patients who did not fall than those who did, we up-sampled
the positive class records while training models to provide a weighting
effect to incentivize correct classification of fall cases. This was achieved by
randomly duplicating positive cases in the training set until their frequency
equaled that of negative cases. Up-sampling was carried out only after the
training set had been split into a tuning set, to ensure that no duplicate
records created as a result of up-sampling on the entire training set were
members of both the training and tuning set. Further, the tuning validation
set was not subjected to any up-sampling, to maintain the true population
distribution in the evaluation set to simulate performance assessment on
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future data.

4.2.5 Model Evaluation

Our initial evaluation of the trained models involved comparing the AUC.
95% confidence intervals were generated in STATA (College Station, TX)
using a nonparametric bootstrapping with the Rocreg command and 1,000
iterations (Janes et al., 2009). We then generated classification statistics for
each model at each potential threshold value, consisting of performance
within the evaluation set in terms of true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN). We were able to use these
data to extrapolate both referrals per week and NNT (Cook and Sackett,
1995). Estimated referrals per week were calculated by taking the total
percentage of TP and FP results (all patients flagged “positive”) at a given
threshold from each model and multiplying by the weekly visit volume.
NNT was estimated by assuming that the falls reduction clinic would
provide a relative risk reduction of 38% (95%CI 21%-52%) based on the
results of the PROFET randomized clinical trial which studied a similar
intervention in practice and found the percentage of fallers decreased
from 52% to 32% in a high risk cohort of patients discharged from the ED
(Close et al., 1999). Relative risk reduction and confidence intervals were
generated from the reported PROFET data using STATA. The absolute fall
risk for a population of patients above a given risk threshold in our models
was calculated as the ratio of true positives (patients we predicted would
fall who did go on to fall) as compared to all model-identified positives for
all patients at or above the risk threshold in the test dataset (TP/TP+FP).
This absolute risk was multiplied by the relative risk reduction of 0.38 to
estimate an absolute risk reduction, and the inverse of the absolute risk
reduction was taken to generate the number needed to treat (Cook and
Sackett, 1995). For instance, if the absolute fall risk in the flagged positive
group was 60%, the estimated NNT was 1/(0.38* 0.6) = 4.4 referrals per
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fall prevented. These projected performance measures were used to create
plots that visually described the trade-off between risk reduction gained
per referral and number of referrals expected per day.

4.3 Results

We had 32,531 visits to the ED during the study period by adults aged
65 and older, of which 9,687 were both discharged and had a PCP in our
network and full numerical data, making up our study population, as
shown in Figure 4.1. Within this population, 857 patients returned within
6 months for a fall-related visit; the overall return rate for fall within 6
months was 8.8%. Demographics of patients by outcome are presented
in Table 4.1. As compared to patients who did not return for falls, those
with falls were similar with regards to gender and insurance status, but
were older, more likely to have fallen on their index visit, and more likely
to have been brought to the ED by an ambulance.

All Analyzed Visits without Visits with
Visits 180-Day Return 180-Day Return

for Fall for Fall
N (%) 9687 8830 857
Mean Age (sd) 76.0 (8.4) 75.7 (8.3) 79.3 (8.9)
Female (%) 5863 (60.5%) 5286(59.9%) 577 (67.3%)
White Race (%) 8980 (92.7%) 8187 (92.7%) 793 (92.5%)
Insurance Status

Medicare 8444 (87.2%) 7705 (87.3%) 739 (86.2%)
Commercial/ 1210 (12.5%) 1095 (12.4%) 115 (13.4%)
Worker’s Comp
Other/Self Pay 26 (0.3%) 23 (0.3%) 3(0.4%)

Mode of Arrival
Family or Self 6641 (68.6%) 6263 (70.9%) 378 (44.1%)
EMS or Police 30 (31.4%) 2567 (29.1%) 479 (55.9%)

Fall at Index Visit 1543 (15.9%) 1267 (14.4%) 272 (31.7%)

Table 4.1: Characteristics of analyzed visits.
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Figure 4.1: Patient allocation.

When comparing models based on AUC, the random forest model
achieved an AUC of 0.78 (95%CI 0.74-0.81), and AdaBoost also had an
AUC of 0.78 (95%CI 0.74-0.81). These tree-based models were the highest
performers, followed by ridge-penalized logistic regression at 0.77 (95%CI
0.73-0.80), lasso-penalized logistic regression at 0.76 (95%CI 0.73-0.80),
unpenalized linear regression at 0.74 (95%CI 0.71-0.78), and unpenalized
logistic regression at 0.72 (95%CI 0.68-0.76). Figure 4.2 shows AUC plots
for all tested machine learning models.

Models were further characterized by estimating both number of refer-
rals per week from the study ED, and NNT of referred patients. Figure 4.3
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Figure 4.2: Area under Receiver Operating Characteristic Curves (AUC)
for models used.

shows these plots. In this analysis, we present the relationship between in-
creasing the number of patients referred, and the decrease in effectiveness
per referral as the threshold for defining “high risk” is lowered. The plots
additionally contain two fixed points for reference: a “refer all patients”
scenario in which all patients are marked as high risk, and a “perfect
model” scenario, in which the model predicts with 100% accuracy which
patients would go on to fall without the intervention and refers only these
patients. In our case, the maximum achievable NNT is 2.6, in the case
where a 38% relative risk reduction is applied to a population at 100% risk
of falling. Table 4.2 illustrates model performance in terms of predicted
NNT at various referrals per week. At the predefined threshold of 10
referrals per week (setting a high risk threshold), the random forest model
outperformed the other models, generating an NNT of 12.4. At other
thresholds, ridge regression and AdaBoost outperformed the Random
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Forest model. The lasso and non-penalized regression models had poorer
performance across the spectrum of anticipated referrals.

Referrals Random AdaBoost Ridge Lasso Linear Logit.
per Week Forest Logit. Logit. Reg.
Threshold
5 12.74 11.94 10.03* 10.70 10.70 11.08
10 12.41* 13.82 13.13 13.13 13.70 14.01
15 15.36 15.49 15.24* 15.75 17.18 17.50
20 18.65 17.40* 18.52 18.38 18.79 20.15
25 21.28 20.76 21.27* 21.71 22.32 22.97
30 23.60* 24.00 24.68 24.52 25.52 26.22
35 26.96* 27.21 27.19 27.02 28.06 28.79
40 29.91 29.44* 29.79 30.14 30.51 31.27

Table 4.2: Model performance at various referrals per week thresholds.
Asterisks indicate the best performing model (lowest NNT) at each referral
per week threshold.

4.4 Discussion

The various machine learning models tested in this study differed in
their ability to predict falls, with the random forest and AdaBoost models
offering the best overall performance with an AUC of 0.78. Based on
AUC alone, penalized regression-based models including ridge-penalized
logistic regression offered similar performance with an AUC of 0.77. This
result is consistent with other studies evaluating the performance of tree-
based algorithms alongside regression-based methodologies (Kalscheur
et al., 2018; Karnik et al., 2012; Philip et al., 2014; Churpek et al., 2016; Li
et al., 2016). As opposed to traditional methods, tree-based methodologies
have an improved ability to deal with complex variable interactions and
nonlinear effects in large databases, which may explain their advantage in
these instances (Cairney et al., 2014).
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Figure 4.3: NNT vs. Anticipated Referrals per week.

When translating the models into potential deliverable performance at
individual thresholds, the random forest-based approach offers the best
performance in terms of NNT versus Referrals in the proposed operational
scenario, offering the ability to refer 10 patients per week at an NNT of
12.4 referrals to reduce the risk of an ED revisit for fall. While these data
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are technically inferable based on the shape of the ROC curves, the degree
of distinction between the models would likely not be apparent based on
visual inspection alone to a reader not already expert in machine learning
or statistics.

Algorithms derived by machine learning have become increasingly
common in medicine, with significant excitement surrounding their po-
tential to improve the ability to risk stratify patients (Chen and Asch,
2017; Deo, 2015). Unfortunately, gaps still exist between the ability to
predict a potentially avoidable event and specific actionable interventions
(Bates et al., 2014). In the majority of studies evaluating machine learning
techniques, model performance is reported based on AUC or test char-
acteristics such as sensitivity and specificity (Alanazi et al., 2017). These
test characteristics may be useful for establishing predictive performance
generally, but may be misleading when not set into clinical context (Lobo
et al., 2008). Once AUC curves have been generated for a given risk strati-
fication model in test data, calculating additional information including
NNT and anticipated referrals requires only an algebraic transformation of
the data, as long as a proposed intervention has been identified along with
an estimated effectiveness. The curves generated for this study communi-
cate this trade-off to policymakers, and provide a basis for comparison of
anticipated real-world effects of model performance.

For any particular harm-reduction intervention, there is a trade-off
when choosing a risk cutoff for referral. The most total harm-reduction
would be accomplished by simply referring all patients in a given pop-
ulation; however, such nonspecific referral would be costly in terms of
time and resource use, and inefficient as many low risk patients would
receive minimal benefit, or potentially be exposed to risks of an interven-
tion. At the same time, selecting only those patients who are at extremely
high risk of harm reduces the overall potential benefit of a risk-reduction
strategy by not offering it to a large proportion of patients who will go
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on to have the outcome of interest. In our example, where a set number
of referral slots per week was available, and the task was to select the
highest risk patients to fill those slots, the random forest algorithm was the
best performer. If there had been only 5 referral spots available, however,
the ridge penalized logistic regression model would have been the top
performer, despite an overall slightly lower AUC, had better performance
in selecting those 5 patients at highest risk, achieving an NNT of roughly
10 vs. roughly 12 for the tree-based models. If the intervention tied to the
algorithm were a referral to a less resource-intensive community-based
falls prevention program with more availability, policymakers may be
looking in a region of higher referrals per week and higher NNT; in this
region, model performance was generally similar between the various
models.

The projections of performance generated in this study were based
on model performance on a set of test data which immediately followed
the training data chronologically. While these projections are expected
to help policymakers envision potential operational performance, they
are not intended to replace evaluation of performance during and after
implementation. Machine learning models are tuned to specific popu-
lation parameters, and subject to calibration drift as patient and data
characteristics change over time (Davis et al., 2017), necessitating con-
tinued post-implementation monitoring to ensure effective results. To
our knowledge, three ED-specific fall screening instruments have been
examined: Carpenter et al examined a number of factors for association
with future falls, proposing a screen of 4 independent factors, reporting a
4% probability of falling in their lowest risk group and 42% among the
highest (Carpenter et al., 2009). Tiedemann et al developed and externally
validated a screening instrument with an AUC of 0.70 (Tiedemann et al.,
2013), and Greenberg et al utilized a modified CAGE criteria but did not
report fall outcomes in their pilot (Greenberg et al., 2013). As compared
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to these prior efforts, the machine learning-derived algorithms here offer
improved performance in terms of test characteristics, and the advantage
of not requiring the devotion of scant ED resources to in-person screening
(Bates et al., 2014).

4.4.1 Limitations

When generating our NNT, we assumed that the relative risk reduction
generated by our proposed intervention would remain constant across
varying absolute risks. This assumption, while broadly made in medical
decision making literature, is a simplification that is often, but not always,
true (Furukawa et al., 2002; Barratt et al., 2004). Furthermore, for the sake
of simplifying our calculations, we assumed that all patients referred for
fall intervention would attend the required intervention. If an estimate
of likelihood of completed referral were available, it could be taken into
account in the NNT calculation.

We presented our NNT vs. Anticipated referrals per week curves
with error bars based on the effectiveness estimate from the PROFET trial.
PROFET measured the effectiveness of an intervention similar to our own
falls clinic, but on a somewhat different outcome (any reported fall vs. ED
visit for fall) and with somewhat different inclusion criteria (only selected
older adults reporting to the ED for fall as opposed to all older adults).
Given the relatively wide confidence interval of the PROFET results, we
feel the included error bars provide a reasonable estimate of uncertainty;
however, these could be widened to incorporate estimated impact of other
sources of potential variation in predicted effectiveness.

During model development, we chose to censor visits which were miss-
ing data features encoded as continuous variables. (Categorical variables
were encoded to allow a “missing” category.) While the inclusion of only
complete records has the potential to introduce bias (Rusanov et al., 2014),
only 343 (3%) of records were dropped for incompleteness, suggesting
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minimal potential for change in algorithm performance if this data were
imputed.

Our approach was based on a per-visit basis. Since many patients
visited the ED more than once, there were multiple visits per patient.
Since our data was split chronologically into training, tuning, and test sets,
there is, therefore, a possibility that the same patient appeared in both
the training and testing phases of our study. As discussed in Chapter 3,
having two replicates of the same (or very similar, in this case) instance in
both a training and test set may introduce overly-optimistic results. We
recognize this as one drawback to our per-visit approach that could be
mitigated by transitioning to a per-patient method.

Our model was trained on an outcome of return visits to our emer-
gency department for falls. Patients who fell may in some instances have
presented to other emergency departments, in which case they were not
captured by our definition. We limited our analysis to patients with a PCP
in our system, and only analyzed patients who presented to our emergency
department in an index visit in an attempt to minimize this risk.

4.5 Conclusion

In this analysis, we developed an algorithm which had an AUC of 0.78 for
prediction of return visit to the ED for fall within 6 months of an index
visit. Placed in the clinical context of harm reduction, this offered the
ability to refer 10 patients per week to our fall clinic with a predicted NNT
of 12 referrals to reduce the risk of a single fall. Our ability to translate the
results of our analysis to the potential trade-off between referral numbers
and NNT offers decision makers the ability to envision the effects of a
proposed intervention prior to implementation.

For this reason, this study exemplifies the concept of interpretation given
in Chapter 1. Here, all models performed well in terms of AUC, with a
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slight advantage going to the random forest and AdaBoost models. In
terms of clinical utility, however, the answer of which model is “best”
depends on what is desired. Since the number of referrals per week this
study focused on was 10, the random forest’s performance once again
comes out on top in terms of NNT. On the other hand, if the scenario had
dictated a number referred per week value of anything other than 10, 30,
or 35, random forests would have been surpassed by one or more of the
other models when considering NNT as the objective.

This is not the only take-away point this study illustrates. The models
discussed in this chapter are currently being transitioned into production
at UW Health. In the course of this transition, the complexity of dealing
with models in production has entailed making simplifications to these
models. Of particular note is that the set of features was reduced from 725
to 15. This was to alleviate the burden of manually mapping all features
between datasets. The real-world concern paired with the simplification
made underpins another observation made in Chapter 1: the need to
adhere to translational considerations when handling models in production.

Finally, transferring these models to production in a healthcare orga-
nization has involved collaborating with researchers on the clinical and
organizational side to ensure a smooth instantiation of these models (i.e.,
to ensure that there are no deleterious effects on day-to-day operations of
the Emergency Department at the UW Hospital). This is embodied in the
principle of observing workflow when implementing models.
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5 optimizing on nnt

Chapter 4 discussed the need for an automatic approach to risk stratifying
patients for referral to the UW Mobility and Falls Clinic. Of particular
interest was how model performance could be understood in terms of
NNT, along with the traditional AUROC metric. With NNT as the per-
formance metric, referring patients among varying risk thresholds is a
straightforward task. At the same time, the models themselves were not
optimized directly on NNT, but rather on traditional metrics (e.g., hinge
loss for SVMs). Ideally, then, what is desired is a means of having an
NNT-centric optimization directly “baked in” to the machine learning
training process.

This chapter explores one approach to doing this, demonstrating that
the precision metric as a focus for optimization simultaneously optimizes
NNT. This work is being prepared for submission to JAMIA. As with Chap-
ter 4, machine learning analysis was done by authors Collin Engstrom,
Varun Sah, David Page, and Brian Patterson. The remaining authors were
involved in other aspects of the project relating to dataset curation, back-
ground material, etc.

5.1 Introduction

Recently, healthcare has seen elevated interest in the use of machine learn-
ing techniques for the development of algorithms aimed at interpreting
existing data from the electronic health record (EHR) for clinical risk pre-
diction tasks. Such machine learning models have been applied in diverse
applications, including patient falls (Patterson et al., 2019) and sepsis
prediction (Seymour et al., 2019).

In the emergency department, return visits have been utilized as a
quality metric in several studies (McCusker et al., 2000; Hu et al., 2012; Pat-
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terson et al., 2015, 2016; Jorgensen et al., 2018; Rising et al., 2014). Several
interventions have been proposed to reduce return risk among high risk
patients (Seaberg et al., 2017; Barksdale et al., 2014). This application is
typical of risk stratification for many medical scenarios–a fixed number
of resources are available for reducing patient risk of return, and patients
must be risk stratified to match these resources to the highest risk patients.
In such cases as these, ideally machine learning models will flag those pa-
tients who would benefit most from the intervention in question. Typically,
these machine learning models used in risk stratification are optimized
on some objective function (e.g., hinge loss in the case of support vector
machines (SVMs)) (Cortes and Vapnik, 1995a).

While such machine learning modeling techniques have shown great
predictive value, significant hurdles exist in bridging the gap between the-
oretically operant models and clinically effective interventions (Chen and
Asch, 2017). Optimization and analysis of machine learning algorithms
have, in most cases, focused on traditional metrics of error rate and area
under receiver operating curve (AUROC). In many cases, optimizing on
alternative metrics may produce results better suited to specific scenarios
in which operational and clinical constraints need to be taken into account
in addition to overall classification performance.

Number needed to treat (or NNT) (Porta, 2016) is one such metric,
and is often used by physicians to communicate the efficacy of a given
treatment. NNT can be intuitively thought of as the number of patients
to which some intervention must be applied before a positive response is
elicited in a single patient. As discussed in Chapter 1, NNT is calculated
by the formula:
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NNT =
1

AbsoluteRiskReduction

=
1

RelativeRiskReduction ∗AbsoluteRisk

where the relative risk reduction factor is the fraction of patients for
which an intervention improves on some condition, and the absolute risk is
the initial fraction of patients affected by this condition in some population.

From a medical and operational standpoint, characterizing an algo-
rithm’s performance based on NNT at a given number of referrals repre-
sents an easily understandable projection of interventional effectiveness.
Past work has shown that a projected NNT for a clinical intervention can
be derived from a model’s performance in test data (Patterson et al., 2019).
A shortcoming of the models developed in this approach, however, is that
the underlying models are optimized on an error function, as machine
learning models typically are. While this optimization maximizes overall
effectiveness across a range of potential referral thresholds, the metric of
interest (NNT at a particular number of referrals per week), is not directly
optimized. Ideally, one would optimize directly on NNT. In practice, di-
rect optimization can be achieved by making a slight modification to the
modeling process. If we treat the above relative risk reduction for a given
intervention as a fixed constant, we need only optimize on absolute risk
to optimize on NNT. This absolute risk is calculated based on precision
(Patterson et al., 2019). More specifically, since k patients are referred
during some time period for some intervention following an initial ED
visit, optimizing on precision over k for NNT would be ideal.

In fact, prior research has been done on this metric, called precision@k
(or pre@k for short) and, more generally, optimizing on ranking for in-
formation retrieval and related tasks (Burges et al., 2007; Xu and Li, 2007;
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Järvelin et al., 2000; Taylor et al., 2008; Qin et al., 2010; Joachims, 2005;
Boyd et al., 2012; Le et al., 2010; Xu et al., 2008). Much of this work has
focused on an SVM approach.

In this study, we assume a theoretical intervention exists to reduce
return visits to the emergency department for a set number of high risk
patients per month, and we train three models with varying optimization
thresholds (precision at 5 predictions, overall precision, and hinge loss)
on actual emergency department data to predict patient risk of return. We
then compare the performance of models optimized traditionally with
those explicitly optimized on precision in a hold out test set at prespecified
patient referral thresholds using NNT.

5.2 Methods

5.2.1 Setting and Population

We performed a retrospective observational study using patient electronic
health records (EHR) data at a single academic medical center ED with
level 1 trauma center accreditation and approximately 60,000 patient visits
per year. Patient visits were included in this study if they visited the UW
Hospital ED between 1/1/2017 and 1/1/2019 and were 65 years of age or
older.

5.2.2 Modeling

Instances in the machine learning model were based on patient visits
encountered by those included in the study. A visit was considered to be
a case if that patient had a return visit within 60 days of an index visit
for any reason. Overall, there were 4050 of these patient visits flagged as
being return cases, while 11,079 patients were determined to be controls
(i.e., no return visit). Since the outcome of interest was return status
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after 60 days, the last 60 days of the data were dropped from the set
after all instances were labeled. After labeling, the feature vector used for
prediction consisted of 15 fields from the patients’ medical records. These
included demographic data (e.g., age, sex, and race), as well as information
about the visit (e.g., insurance status and mode of arrival). To prevent
high-magnitude features from skewing results, continuous features were
normalized.

The final patient set was ultimately divided into training and test sets.
To ensure results were as resistant as possible to data drift over time, our
patient population was chronologically divided into a 75/25 train/test
split, with the training set being the older 75% of the patient visits and the
test set being the newer 25%. All models were first trained on the same
training set before testing on the same held-aside test set. Tuning was also
performed on the last 25% of the test set, held aside for parameter tuning.

For all of our models, we assumed a theoretical treatment program that
has a relative risk reduction factor of 0.2, and we tested these models at a
specific level of k (in this case 5), corresponding to the number of patients
on a weekly basis to which our theoretical treatment program could be
applied in the ED. We also tested the models over the whole test set.

Since SVMs are one of the best studied examples outside of the medical
literature, we used SVM-perf (Joachims, 2005), a variant of the SVM-light
package (Joachims, 1999, 2006; Joachims and Yu, 2009), as our experimen-
tal model. As opposed to traditional SVMs, SVM-perf can optimize on
various metrics like AUROC, precision@k, and others. Since SVM-perf
has the ability to optimize on precision@k, it is well suited for the task
of simultaneously optimizing NNT. For the baseline approach, we used
SVM-light, a package designed to use traditional SVM modeling, based
on hinge loss.

To keep training consistent, all hyperparameters in these packages
were kept constant, converting them, where necessary, to their equivalent
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between packages (Arana-Daniel et al., 2016). Within SVM-perf, we tested
on two experimental approaches: precison@5 (i.e., the top 5 highest risk
patients per week) and precision@max (or precision on all cases).

For evaluation, ROC curves were constructed and area under the ROC
curve (AUROC) was examined on the whole test set for each of these
models to show how the models performed on all patients in the test
set. For each of the three models, the NNT values were also calculated at
varying thresholds (i.e., values of k) for all these models.

5.2.3 Statistical Analysis

ROC: Each of the techniques discussed yielded a list of prediction confi-
dences that revealed how confident the model was that the instance was a
case. Ranking these predictions produced a list of most confident to least
confident of the instances being positive. We used this list to construct our
ROC curves for the whole test set.

NNT: NNT was calculated by selecting the top subset of instances in
question and calculating the precision on these flagged instances. The
resulting NNT can be calculated from the above formula. This was done
for k-values ranging from 4 to 50.

Statistical significance: To test for statistical significance, we sought to
calculate an empirical confidence interval. This was done by bootstrapping
the dataset 1000 times, each time selecting instances with replacement.
After this process was repeated, the NNT and AUC measures from each
of the 1000 bootstrap samples were ranked in a list. From this list, the
top 2.5% and bottom 2.5% were dropped, leaving the middle 95% for our
confidence intervals.
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5.3 Results

Visits: Visit data for patients are presented in Table 5.1.

All Analyzed Visits without Visits with
Visits 60-Day Return 60-Day Return

N (%) 15129 11079 4050
Mean Age (sd) 75.99 (8.43) 75.6 (8.35) 77.04 (8.56)
Sex

Female 8997 6631 2366
Other 6132 4448 1684

Race
White 13943 10254 3689
Other 1186 825 361

Insurance Status
Medicare/Medicaid 13482 9815 3667
Commercial/ 1647 1264 383
Worker’s Comp/
Other

Mode of Arrival
Family or Self 10341 7896 2445
EMS or Police 4752 3155 1597
Police 36 28 8

Table 5.1: Characteristics of analyzed visits.

NNT: Table 5.2 describes NNT at various thresholds by model. When
comparing models based on NNT, the precision@5 model outperformed
all other models at the specified threshold of 5 patients per week, as well
as for k-values of 6 and 7. At higher values of k (8 - 50), the precision@max
model offered the highest precision, with all three models having similar
precision in the highest k ranges. Standard hinge loss only beat the other
two models at the threshold k = 4.

AUROC: Over the whole test set, precision@5 had an AUROC of 0.52
(95%CI 0.38-0.66), hinge loss had an AUROC of 0.59 (95%CI 0.3-0.64), and
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k-val pre@5 pre@max hinge loss
4 13.59 (95%CI 9.19-24.17) 14.03 (95%CI 9.6-30.35) 13.18* (95%CI 8.42-37.29)
5 11.28* (95%CI 9.51-23.7) 15.42 (95%CI 9.62-30.85) 13.19 (95%CI 9.29-38.02)
6 11.2* (95%CI 9.7-22.53) 13.07 (95%CI 10.0-28.0) 13.42 (95%CI 9.66-36.98)
7 11.74* (95%CI 10.18-21.4) 11.93 (95%CI 10.0-27.59) 13.63 (95%CI 9.96-34.7)
8 12.33 (95%CI 10.1-22.35) 12.0* (95%CI 10.18-28.12) 13.48 (95%CI 9.76-35.82)
9 12.62 (95%CI 10.31-22.27) 11.76* (95%CI 10.46-27.48) 13.61 (95%CI 9.74-34.59)
10 13.08 (95%CI 10.51-22.09) 11.93* (95%CI 10.62-27.25) 13.63(95%CI 10.38-33.37)
11 13.57 (95%CI 10.76-22.47) 12.31* (95%CI 10.93-26.83) 13.41(95%CI 10.67-32.39)
12 14.05 (95%CI 10.8-22.15) 12.44* (95%CI 11.01-27.03) 13.47(95%CI 10.68-32.94)
13 14.55 (95%CI 10.98-22.49) 12.14* (95%CI 11.1-26.07) 13.41(95%CI 10.81-32.95)
14 15.15 (95%CI 11.05-22.54) 12.01* (95%CI 11.21-25.85) 13.82(95%CI 10.76-32.45)
15 15.26 (95%CI 11.21-22.37) 12.1* (95%CI 11.26-26.2) 13.76(95%CI 10.89-32.45)
16 15.61 (95%CI 11.3-22.74) 12.0* (95%CI 11.32-26.02) 13.91 (95%CI 10.94-30.95)
20 16.63 (95%CI 11.55-21.78) 12.26* (95%CI 11.53-25.53) 14.72 (95%CI 11.29-28.92)
25 16.99 (95%CI 12.05-21.44) 12.61* (95%CI 12.1-24.39) 14.81 (95%CI 11.64-27.79)
29 17.45 (95%CI 12.58-21.1) 13.07* (95%CI 12.52-23.28) 14.47 (95%CI 12.24-26.1)
35 16.44 (95%CI 13.43-20.04) 13.64* (95%CI 13.36-21.3) 14.25 (95%CI 13.24-23.35)
40 16.8 (95%CI 14.19-18.93) 14.36* (95%CI 14.21-20.78) 15.13 (95%CI 14.25-21.64)
45 17.42 (95%CI 14.84-18.93) 15.35* (95%CI 14.93-19.63) 15.9 (95%CI 14.9-20.09)
50 17.09 (95%CI 15.59-18.67) 16.11* (95%CI 15.49-18.85) 16.32 (95%CI 15.52-18.93)
all test set 17.18 (95%CI 16.39-18.08) 17.18* (95%CI 16.39-18.08) 17.18 (95%CI 16.39-18.08)

Table 5.2: Model performance at various referrals per week thresholds.
Asterisks indicate the best performing model (lowest NNT) at each referral
per week threshold.

the precision@max followed with an AUROC of 0.63 (95%CI 0.36-0.63).
These results are graphically shown in Figure 5.1.

5.4 Discussion

As outlined above, the process of tailoring machine learning models to
clinically relevant scenarios hinges on the ability to use some alternate
objective function in the training phase. In our case, NNT and, by exten-
sion, precision was the measure of interest. By incorporating this into the
training phase, we endeavored to have the training algorithms intrinsically
consider NNT when selecting the best parameters for the model. This,
ultimately, should theoretically allow for greater performance within a spe-
cific clinical scenario. In our hypothetical scenario, 5 slots were assumed
to be available for intervention on a weekly basis. As Table 5.2 underlines,



72

Figure 5.1: Comparison of hinge loss, precision@max (precision over whole
test set), and precision@5.

pre@5 outperforms the standard SVM with hinge loss approach and preci-
sion@max in NNT at this threshold. Intuitively, this makes sense, because
the model was trained to focus on those top 5 most at-risk patients. Since
the precision of the model is the primary concern in training, one might
reasonably expect a hit in AUROC when compared to the other models.
When the models are tested on the whole test set, precision@5 does, in
fact, show a lower AUROC than hinge loss and precision@max.

In short, as anticipated, the machine learning models that were op-
timized on precision demonstrated better performance in NNT values
than the traditional machine learning approach on certain intervals of
interest. In particular, the precision@5 model did better relative to the
other two models in terms of NNT in and around the threshold of k = 5,
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the number of patients on which it was optimized. Outside of this range,
precision@max beat both precision@5 and the traditional SVM model op-
timized on hinge loss (with the exception of at k = 4), illustrating that
optimizing on precision, in general, boosted the NNT for our models.
When taking the confidence intervals into consideration, one can see that
the lower bounds for the standard SVM with hinge loss model tended to
be slightly lower than the precision@5 and precision@max counterparts.
On the other hand, though, the upper bounds for hinge loss tended to be
much higher than those for the precision models, revealing a much larger
variance in hinge loss NNT values.

While machine learning tasks like those cited have been explored in
the medical literature for other prediction tasks (Patterson et al., 2019; Sey-
mour et al., 2019; Weng et al., 2017; Deo, 2015; Li et al., 2016; Obermeyer
and Emanuel, 2016; Kruppa et al., 2012; Ting et al., 2017), less has been
done to adapt machine learning techniques to clinical scenarios as we
have done. One case we are aware of where a traditional machine learn-
ing algorithm was adapted to a medical context focused on optimizing
differential prediction, or cases where one must optimize differently on
distinct subgroups in a population (Kuusisto et al., 2014). Additionally, as
noted in Chapter 1, another study explored modifications to lasso logistic
regression models to consider domain expertise in regularization (Wang
et al., 2018). As with the other works, however, NNT was not the target
for optimization in either of these two studies. NNT is an attractive target,
as it allows clinicians to grasp the utility of the combination of a screening
algorithm paired with a resultant intervention (Liu et al., 2019). Optimiz-
ing directly on precision@k (which is directly linked to NNT at a given
threshold) offers the opportunity to better align the machine learning
science with the clinical prediction tasks.

Aiding in this pursuit are techniques that have been developed for
optimizing on ranking measures (e.g., precision, precision@k, AUC, etc.).
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Historically, this has typically been in the context of search engine queries
(Xu and Li, 2007; Järvelin et al., 2000; Taylor et al., 2008; Qin et al., 2010;
Boyd et al., 2012; Le et al., 2010; Xu et al., 2008), but they can be adapted to
other domains. In our case, results suggest that by varying nothing but
the optimization targets, these existing techniques can be extended into
the medical domain for risk stratification tasks.

5.4.1 Limitations:

While the precision@5 model tended to outperform the other two on the
region for which it was optimized, the overall performance in terms of
AUROC was not on par with the other two methods, clocking in at 0.52.
The other limitation of our methods are the confidence intervals, which
reveal great variance in the performance measures. This could be due to
the low AUROC performance on the precision@5 or, potentially, the small
number of data points with which the models were trained.

5.5 Conclusion

The application of machine learning models to clinical tasks like risk strat-
ification has seen a sharp increase in recent years. Tasks like anticipating
falls among elderly ED patients (Patterson et al., 2019) and sepsis (Sey-
mour et al., 2019) are two instances that have demonstrated promise in
automatically flagging patients for further intervention where necessary.

This elevated interested in machine learning models, though, comes
with one caveat: the metrics the models have historically been trained on
may be less meaningful in a clinical setting. Other metrics like NNT are
more readily understood in scenarios where machine learning can aid
clinical interventions. In an effort to make the output of machine learning
models more accessible, then, one possibility is to change the metric on
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which the models are trained (e.g., NNT or precision), thereby unifying
what the model returns with what a physician might reasonably expect.

We have shown that one approach to doing so is to use a package
that natively supports alternative optimization measures. By training on
precision@k, we illustrate how NNT can also be improved in the output.

Ultimately, what this process exemplifies is the need for real-world
considerations in modeling. Often, traditional approaches to doing so
can be of use, as we saw in Chapter 4. Still other times, however, typical
machine learning techniques fall short. In this case, the training phase
of machine learning usually does not involve NNT. In actual scenarios,
however, it may be desirable to have NNT as objective in optimization. We
demonstrate in this chapter how the principle of adaptation allows for this.
By choosing precision as the metric of interest, NNT is also optimized.
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6 discussion

6.1 Background

In Chapter 4, we were interested in reducing patient falls following visits
to the emergency department (ED) for older adults (i.e., 65 years and
older). In this scenario, the ED has a set number of potential referral slots
for a falls risk reduction clinic. We endeavored to risk stratify patients
such that those most at risk would be flagged for intervention. The study
was conducted on retrospective data from the UW Health ED, and we
trained and optimized six machine learning models to predict fall risk.
The performance of the models ranged from an area under the receiver
operator characteristic curve (AUROC) of 0.72 for logistic regression to
0.78 for random forests. As was further discussed, models are now being
implemented in the ED.

While such machine learning modeling techniques have shown great
predictive value, significant hurdles still exist in bridging the gap between
theoretically operant models and clinically effective interventions (Chen
and Asch, 2017). Moving forward, we plan to investigate open issues
relating to contextual challenges and needs, dataset limitations, model choice,
and other general domain challenges. We discuss these in the following
sections.

6.2 Contextual Challenges and Needs

A key question when applying machine learning algorithms to any domain
is what the challenges and needs are for the context in which the model
will be used. The work presented in Chapters 4 and 5 was focused on the
healthcare domain. In this case, clinical needs must drive the machine
learning process.
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Traditionally, optimization and analysis of machine learning algo-
rithms has tended to focus on metrics of error rate and area under receiver
operating curve (AUROC). In many cases, however, optimizing on alter-
native metrics may produce results better suited to specific scenarios in
which operational and clinical constraints need to be taken into account in
addition to overall classification performance.

From a medical and operational standpoint, characterizing an algo-
rithm’s performance based on NNT at a given number of referrals repre-
sents an easily understandable projection of interventional effectiveness.
In Chapter 4, we developed methodologies for translating the output of
traditionally optimized models into NNTs at given referral thresholds
(Patterson et al., 2019). A shortcoming of the models developed in this
approach is that they are optimized on traditional objective functions, as
machine learning models typically are. While this optimization maximizes
overall effectiveness across a range of potential referral thresholds, the
metric of interest (NNT at a particular number of referrals per week), is
not directly optimized. Ideally, we would optimize directly on NNT, as
discussed in Chapter 5. This can be accomplished by treating the rela-
tive risk reduction for a given intervention as a fixed constant; then, to
optimize on NNT, one need only optimize on absolute risk, which is cal-
culated based on precision (Patterson et al., 2019). More specifically, since
k patients are referred per week for intervention following their initial ED
visit, optimizing on precision over the k most at-risk patients would be
ideal.

In fact, prior research has been done on this metric, called precision@k
(or pre@k for short) and, more generally, optimizing on ranking for in-
formation retrieval and related tasks (Burges et al., 2007; Xu and Li, 2007;
Järvelin et al., 2000; Taylor et al., 2008; Qin et al., 2010; Joachims, 2005; Boyd
et al., 2012; Le et al., 2010; Xu et al., 2008). Much of this work has focused
on an SVM approach (Joachims, 2005). To encompass other models, we
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endeavor to use previous methodologies for precision@k with our fall
risk sample. We will start with an SVM approach and further expand
the precision@k optimization for other machine learning methods like
penalized regression and tree-based methodologies. These latter models
are more commonly used and generally better performing based on prior
literature in EHR-based risk stratification, as well as our own work in
Chapter 4. One way this can be achieved is by modifying the objective
function used to optimize a model. Some of these alternative objective
functions are summarized in Figure 6.1.

Figure 6.1: Comparison of objective functions.

Since SVMs are one of the best studied examples outside of the medi-
cal literature, we have used SVM-perf (Joachims, 2005), a variant of the
SVM-light package (Joachims, 1999, 2006; Joachims and Yu, 2009), in our
work thus far. As opposed to traditional SVMs, SVM-perf can optimize on
various metrics like AUROC, precision, pre@k, and others. Since SVM-perf
has the ability to optimize on pre@k, it is well suited for the task of simul-
taneously optimizing NNT. Optimizing on different objective functions
for a logistic regression model would entail modifying an existing logistic
regression package to use a ranking objective function to accommodate
NNT or any other metric of interest.

This approach, however, is specific to SVMs and logistic regression.
Ideally, we would like a more general approach that can be used for any
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other model (in our case, penalized regression and tree-based method-
ologies). To accomplish this, we propose creating a wrapper similar to
AdaBoost (Schapire and Freund, 1995). As with AdaBoost, we will use
a family of weak learners. The difference, however, is that since we are
trying to optimize on precision, we specifically want to penalize false
positives, instead of prediction error. This is graphically shown in Figure
6.2 in a series of iterations that gradually place more emphasis on incor-
rectly classified instances. One potential caveat to this approach is that
it drives down the number of true positives. To account for this, another
constraint like recall must be included to ensure the algorithm does not
simply classify as many instances negative as possible.

Figure 6.2: AdaBoost visual. Image courtesy of http://www.vinsol.com.

http://www.vinsol.com


80

6.3 Dataset Limitations

A corollary to Section 6.2 is that with unique domains of applications come
unique datasets that must handled appropriately. Often, even within an
institution, there may not be a unified view of an underlying dataset.
For this reason, feature translation between the differing views may be
necessary.

Broadly, this concern of translating models into real-world scenar-
ios has been discussed in the literature (Chen and Asch, 2017; Sendak
et al., 2019). This existing work has served to motivate and guide our
own research as we move into the production phase. We have obtained
operational approval to pilot our work from Chapter 4 within the UW
Emergency Department (ED), and are working with operational leadership
in the hospital to translate our algorithms from retrospective data to real
time operation within our EHR environment. Partnering with the geriatric
falls clinic, we aim to operationalize and pilot a screening program incor-
porating a version of the approach we previously developed (Patterson
et al., 2019). This will allow us the opportunity to further investigate the
process of translating these algorithms from retrospective data to real time
operational functionality, an area with considerable technical challenges
not widely explored in the literature.

On the issue of model portability, other groups like the Observational
Outcomes Medical Partnership (OMOP) (Stang et al., 2010) and, subse-
quently, Observational Health Data Sciences (OHDSI) (Hripcsak et al.,
2015) have sought to create a common data model (CDM) that lays out a
set of standards and best practices across institutions to facilitate the trans-
fer and analysis of EHR-related data. Our approach, however, will focus
on model adaptation within the UW Health system between retrospective
data warehouses and the transactional database used in real time by the
EHR.

As a first step in this, one must determine how features map from
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our retrospective dataset derived from EPIC Clarity and stored at the
Health Innovation Program (HIP) (i.e., the academic dataset) to those in the
“online” environment at UW Hospital, since the variables in these sets differ
in nomenclature. This is shown in Figure 6.3. Some variables may also
be a mapping derived from some underlying function (e.g., comorbidity
scores such as the Center for Medicare & Medicaid Services Hierarchical
Condition Category score (Anumula and Sanelli, 2011), which is calculated
based on ICD codes in patient charts). We seek a semi-automated process
that aids in discovering such mappings. With respect to variable mapping,
a technique from databases called schema mapping will likely be useful.
In this domain, various metrics of similarity can be used (Bilenko, 2006;
Bigi, 2003) to ascertain the likelihood two variables from different datasets
are related. We will employ one or more of these as our first step in moving
our model to the real time ED environment. (See Figure 6.4.) After these
variable mappings have been established, the models can be trained and
tested on the online dataset.

Figure 6.3: HIP features mapped to Clarity.

As a second comparative step, we would like to determine how well
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Figure 6.4: Schema mapping used for model translation.

simply retraining models on the new dataset works. This approach is
agnostic of any variable mappings and will allow for a de novo selection
of features for use in modeling. After training and testing on the (non-
restricted set of) variables is done, the end results can be compared to the
first approach of a mapped feature set. In the end, this will demonstrate if
there is, in fact, any merit in re-selecting variables for model training.

6.4 Model Choice

As mentioned in Section 6.2, the issue of model selection was addressed
in that a wrapper-based approach to optimizing NNT would allow for
the ability to use any model. One particular advantage of this is that it
facilitates using a more transparent model than SVMs–one that may be
more appropriate based on the scenario and end users.

When the scenario is of a clinical nature, as discussed in Chapter 2,
there are certain models that serve clinicians best. In particular, regression-
and tree-based ones have typically seen widespread medical application
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due to the issue of model transparency, or the ability to intuit how and why
features are chosen. We seek to investigate other factors relating to model
trustworthiness by clinicians and what role this may play moving forward
when less intuitive models (e.g., deep learning) must be employed.

6.5 General Domain Challenges

In this section, other general domain challenges are explored.

6.5.1 Model Drift

In Chapter 4, the issue of model (or concept) drift was alluded to in our
choice of how to divide the dataset. To understand this, we note that when
models are used over a long period of time, shifts in the population char-
acteristics of the underlying distribution may be observed (Klinkenberg
and Joachims, 2000; Klinkenberg, 2003). To account for this, we used a
chronological split in our dataset in Chapter 4. This is graphically depicted
in Figure 6.5. In this arrangement, the earliest visits fall into the training
set (January 2013), while the most recent ones belong to the test set (July
2016). The goal of a chronological split is to capture population shifts that
have occurred in a dataset over the time period measured.

Figure 6.5: Chronological train/tune/test split to account for model drift.
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One should observe that, even after drift has been accounted for in the
model, the model may still need to be updated, or “refreshed,” from time
to time as the population changes. In addition to using the chronological
split, an open question is with what frequency the models should be
updated. These matters can be explored in a production environment like
the one at UW Health.

6.5.2 Workflow

Another consideration is that even after models have been trained and
optimized, they must be transitioned into production. This process is
currently underway for the models described in Chapter 4. As was pointed
out, this transition process has included a collaboration between the UW
Emergency Department, the Industrial Engineering Department, and the
Enterprise Analytics team at UW Health. As part of this, the SEIPS model
and PDCA process have been critical to ensuring the day-to-day operations
are not disrupted upon model deployment.

In the future, we will endeavor to include the techniques from Sections
6.2 and 6.3 in production as well. This will likely necessitate further PDCA
iterations, along with additional consideration of the SEIPS model.

6.6 Conclusion

These issues of contextual challenges and needs, dataset limitations, model
choice, and other general domain challenges are central concerns to bring-
ing our methodologies to fruition. Moving forward in others’ work, along
with our own, they will ultimately play a huge role in successful applica-
tion of machine learning methods.
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7 conclusion

This dissertation has explored the practical side of machine learning meth-
ods with respect to biomedical and clinical applications. In terms of the
former, this has translated into a need for new ways to run established
machine learning methodologies; that is, adapting old techniques to new
scenarios. In terms of clinical applications, we have demonstrated that
real-world needs drive machine learning methodologies. Each of these has
provided take-away lessons to help guide future work in the healthcare
setting.

7.1 Predicting Neurotoxins

In Chapter 3, we explored a biomedical application for linear support
vector machines (SVMs): delineating neural toxic compounds from non-
toxic ones. The features used for the model were gene expression levels
generated by RNA-Seq technology applied to stem cell-derived neural con-
structs. The machine learning portion of this project focused on achieving
high predictive accuracy not only on a held-aside test set, but also on a
blinded set of compounds, the identities of which were not known to the
machine learning researchers.

Ultimately, the AUROC values for days 16 and 21 were 0.86 and 0.88,
respectively. When the data were averaged together for both days, this rose
to 0.91. The high predictive accuracy also carried over to the held-aside
blind test set, where 90% of the compounds were predicted correctly.

In this study, the modeling process was bolstered by modifying the
traditional leave-one-out cross-validation strategy to one that held out both
replicates for each compound. Since there were 60 compounds, this trans-
lated into 60 iterations of training and testing, where each compound was
tested once. In this case, doing so may have resulted in more conservative
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results, but ultimately, this allowed for greater predictive ability.

7.2 Risk Stratifying ED Patients for Falls

Chapter 4 examined the use case of falls among elderly patients in the UW
Hospital’s emergency department (ED). As noted in that chapter, falls are
of significant public health interest. UW Hospital has a Mobility and Falls
Clinic that offers interventions to reduce the likelihood of such a fall event.
The limiting step in referring patients is ascertaining which patients are at
high risk and should be referred. In Chapter 4, we provided an automated
means by which elderly patients can be risk stratified for potential referral
to the Mobility and Falls Clinic.

From this study, results ranged from an AUROC measure of 0.72 for
non-regularized logistic regression to 0.78 for random forests and Ad-
aBoost. Of particular interest to physicians, the number needed to treat
(NNT) values were all in the range of 12-14 for the referral region of interest
(i.e., 10 patients referred per week). One benefit to using NNT to prioritize
referrals is that it allows end users to examine model performance at a
given threshold determined by the number of referral slots available. For
this reason, should another 5 slots per week become available, one would
need only consider an NNT threshold of 15 for the number of referrals.

7.3 Optimizing on NNT

A consequence of using alternate measures like the NNT mentioned in
Section 7.2 has been a new push in the medical field toward modifying
existing machine learning methodologies to intrinsically consider some
alternate optimization target, as opposed to traditional metrics like hinge
loss. As demonstrated in Chapter 5, this is entirely achievable. By con-
sidering the mathematical expression for NNT, one will see that once the
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relative risk reduction is fixed as a constant, the only other parameter to
be varied is the absolute risk. The relative risk reduction factor can be
found in the literature based on how effective an intervention is; once
determined for a given scenario, it becomes a fixed constant. In the case of
our hypothetical intervention, this was 0.2. With this fixed, the absolute
risk was shown to be TP / (TP + FP), which is congruent to the mathemat-
ical formulation for precision. Thus, optimizing on precision was shown
to optimize NNT.

Upon implementation, this theory matched empirical results, with the
precision-based model outperforming the other methodologies (namely
a traditional SVM optimized on hinge loss). This demonstrates that al-
ternative metrics used in medicine can lead to novel ways of performing
machine learning.

7.4 Summary of Take-Aways

This dissertation has endeavored to show how machine learning methods
and models can be used in the biomedical and clinical environments. Do-
ing so is often advantageous for researchers in these fields, but it raises
unique challenges that must be overcome for successful results. As sum-
marized in the three sections above, we have explored machine learning
in the context of neurotoxin prediction, risk stratification for patient falls
in the Emergency Department at UW Health, and finally in optimizing on
NNT as an objective. In this section, we summarize the lessons learned
from these applications.

7.4.1 Model Choice

One of the most important decisions a researcher must make is what model
to use for the given problem. While many factors must be considered in
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this choice, a model must ultimately be selected based on the nature of
research-related desiderata.

As discussed in Chapter 2, tree-based methods carry the benefit of
better capturing non-linear relationships in the data than other models.
Another benefit of this type of model is the ease of interpretation. These
properties make tree-based methods an attractive choice for a physician
who is interested in the transparency of what features a model is selecting
and how it is selecting them. In the end, our results in Chapter 4 showed
the top performing models to be AdaBoost and random forests, both
tree-based methodologies.

Chapter 5 also touches on the concept of model choice. In this case,
the trend toward clinical use of machine learning models has raised the
issue of how existing machine learning techniques may be modified to
incorporate metrics from outside of machine learning. For this project,
SVMs and modified SVMs were chosen, because SVMs constitute a family
of models that have a solid basis in the literature and tend to do well in
prediction tasks like this one.

7.4.2 Translational Considerations

While real-world needs drive initial model choice, an important part of
using machine learning models is knowing what the translational consider-
ations are. This was epitomized by the work in Chapter 4.

In this chapter, we noted that the feature set used in our study of at-
home falls risk was prepared by researchers on the academic end of the UW
Health–SMPH partnership. (I.e., they came from a dataset that had been
cleaned, and the cleaning steps were not readily available.) The academic
dataset could not be used at UW Health, due to the production data not
matching the academic data. For these reasons, the implementation of
our models proceeded by generating features de novo at UW Health’s
end. Aiding us was the discovery that using a pared-down model (i.e.,
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15 features) did not cause a dramatic hit to performance, at least on the
academic side. While we found similar AUC performance measures for
these “parsimonious” models in production, the top-performing methods
were now the regression-based ones.

In this way, the process of model translation demonstrates that even
within the same institution, there may be disparate datasets and results.
Often, to get a working final model, simplifications must be made. In short,
this illustrates how central translational considerations are to the machine
learning application process.

7.4.3 Model Placement in the Workflow

Our first two principles deal with model design and implementation. Once
a final version of a model has been constructed, the issue arises as to how
the model will be situated in the organization’s operations.

The models developed in Chapter 4 are now in the process of being
pushed into production. As we have begun to implement the models at
UW Health, we have been aware of the role they will play in the workflow.
This role can be better understood if contextualized by the PDCA cycle
discussed in Chapter 2. The placement and results of these models, if
properly understood and used, should lead to an improved quality of care
for patients.

7.4.4 Interpreting Machine Learning Models

Of paramount importance to the workflow step (expounded on in the last
section) is that researchers do not draw incorrect conclusions from models.
In order to observe this caveat, clinicians may also need to expand on
metrics traditionally used by machine learning.

This was the case in Chapter 4, where the objective was to predict
patient falls following a visit to the UW Hospital Emergency Department.
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In this scenario, machine learning models were used to first assign a risk
score to each patient. As discussed in Section 7.2, NNT (a clinical measure)
was ultimately used for the final risk stratification. For this task, using
AUC would not have made as much sense from the standpoint of trying
to refer patients for follow-up care. This shows how crucial a role correct
metric choice and model interpretation play in applying machine learning
models.

7.4.5 Adapting Machine Learning Models

Correct interpretation and understanding of models is of paramount im-
portance, but what about instances where existing methodologies do not
suffice? In these cases, one must be prepared to adapt machine learning
models and methodologies.

One incarnation of this principle was noted from work in Chapter 4 and
became the impetus behind Chapter 5. As we demonstrated, traditional
error functions (like hinge loss for SVMs) need not be the only objective.
Instead, one can optimize on precision to generate final results that bolster
other metrics like NNT.

The concept of adaptation was also explored in Chapter 3 in modifying
the typical leave-one-out cross-validation strategy to leave-one-compound-
out. For this application, to leave out only one of the two replicates of a
compound would produce overly optimistic results.

In both of these cases, we see a need to exercise flexibility when leverag-
ing existing techniques. One must carefully think through the problem be-
ing explored and determine how best to proceed. Often, well-established
methodologies can serve as a starting point for further adaptations that
better suit the needs of the research being done.
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