A Study of the NEXP vs. P/poly Problem and Its Variants
by
Baris Aydinhioglu

A dissertation submitted in partial fulfillment of

the requirements for the degree of
Doctor of Philosophy
(Computer Sciences)
at the
UNIVERSITY OF WISCONSIN-MADISON

2017

Date of final oral examination: August 15, 2017

This dissertation is approved by the following members of the Final Oral Committee:

Eric Bach, Professor, Computer Sciences
Jin-Yi Cai, Professor, Computer Sciences
Shuchi Chawla, Associate Professor, Computer Sciences
Loris D’Antoni, Asssistant Professor, Computer Sciences
Joseph S. Miller, Professor, Mathematics

© Copyright by Baris Aydmlioglu 2017
All Rights Reserved

To Azadeh

ii

ACKNOWLEDGMENTS

I am grateful to my advisor Eric Bach, for taking me on as his student, for being
a constant source of inspiration and guidance, for his patience, time, and for our
collaboration in [9].

I have a story to tell about that last one, the paper [9]. It was a late Monday
night, 9:46 PM to be exact, when I e-mailed Eric this:

Subject: question
Eric, I am attaching two lemmas. They seem simple enough. Do they

seem plausible to you? Do you see a proof/counterexample?
Five minutes past midnight, Eric responded,

Subject: one down, one to go.

I think the first result is just linear algebra.

and proceeded to give a proof from The Book. I was ecstatic, though only for
fifteen minutes because then he sent a counterexample refuting the other lemma.
But a third lemma, inspired by his counterexample, tied everything together. All
within three hours. On a Monday midnight.

I only wish that I had asked to work with him sooner. (And maybe that he
had taken a little longer to prove the lemma.)

My sincerest thanks to Jin-Yi Cai, for his support during a critical period in
my studies. Although I have made some rather unfortunate choices early on, it
was ultimately my good fortune to have (besides Eric) Jin-Yi there. I also thank
him for his expertise and his guidance.

Thanks to Dan Gutfreund and Akinori Kawachi, for our collaboration in [10],
and to my committee members Jin-Yi Cai, Shuchi Chawla, Loris D’Antoni, and
last but not least, Joseph Miller from the math department, for their time.

CONTENTS

Contents iii
List of Figures v
Abstract vi
1 Introduction 1

2 Related Work and Discussion of Contributions 16
2.1 First, Second, and Third Result 16
2.2 Fourth Result 18
2.3 Dispelling a few Myths 29

3 Preliminaries & Notation 39
4 Proof of First Result 50

5 Proof of Second Result 55

6 Proof of Third Result 77

7 Proof of Fourth Result 86
7.1 Definitions 86
7.2 Checkability of @SAT 93
7.3 Proof of Theorem 1.7-()108
7.4 Proof of Theorem 1.7-(ii)112
7.5 Proof of Theorem 1.7-(iii)119

8 Extensions to Fourth Result122
8.1 Affine Extensions and Disjoint Unions123
8.2 Renovating Classical Oracles124
8.3 Oracles That Render Brute Force Optimal137

References145

iv

LIST OF FIGURES

1.1 An Arthur-Merlin game

1.2 PH versus probabilistic classes.

2.1 Attempts at refining relativization

vi

ABSTRACT

A central question in computational complexity is NEXP CP /poly, which roughly
asks whether one can efficiently decide the satisfiability of a given Boolean for-
mula of low time-bounded Kolmogorov complexity.

This thesis describes the author’s work on and around the NEXP ¢ P/poly
question. The contributions are two-fold: (i) three conditional results that derive
conclusions akin to NEXP ¢ P/poly under certain plausible assumptions, and

(ii) a metamathematical result explaining why current techniques have not so far

?

been able to settle NEXP C P/poly.
For the sake of a streamlined presentation, only a select subset of author’s
results are included in this thesis. For an extensive development the reader is

referred to the original papers [9], [10], and [11].

1 INTRODUCTION

Given a Boolean circuit C(x) of size s, how hard is it to find an input x at which
C outputs 1, or at least to tell whether such an x exists?

The conjecture, widely held within the theoretical computer science commu-
nity, is that no efficient program exists for either task. Here (and throughout)
“efficient” means having a runtime bounded by a polynomial in s, for C of size
s. In notation, CircuitSAT ¢ P, or equivalently, NP ¢ P since CircuitSAT is
complete for the class NP.

In fact a stronger conjecture, also widely believed, is NP ¢ P/poly, meaning
not only efficient programs fail at solving CircuitSAT, but also small circuits.
Here “small” means, similar to “efficient” above, of size polynomial in the in-
put size. This is a stronger conjecture because every efficient program can be
realized by a family of small circuits — one circuit for each input size — by the
fundamental Cook-Levin theorem [25, 44]. (The notation ‘P/poly’ is not to be
interpreted as taking a quotient in any algebraic sense, or in any other sense for
that matter.)

Of course, circuits solving problems about circuits might seem like the sort of
thing only theoreticians would postulate a conjecture about, until one considers
what might happen if the conjecture is false: if CircuitSAT can be solved by

circuits of size s, say, then it is conceivable that a massive effort akin to the

Manhattan project would find such a circuit, e.g., one that solves the problem
for all C of some large enough size s, thereby attaining the ability to factor any
number of size about s/ log s bits, and bringing the demise of RSA cryptography.'

Compared to what is conjectured, however, little is currently known. Con-
sider the following variant of CircuitSAT. Instead of being given a circuit C

directly, we are given a size-s circuit D that describes C, such as

D(i) := type of the ith gate in C, and the indices of the gates connected to it

where 1 is in binary. The task now is at least as hard as the original because D
can describe not only all circuits of size roughly s, but also some much larger —
even exponentially large in s.?

Yet even this problem eludes classification. In notation, it is not even known
whether NEXP ¢ P/poly, where NEXP is the class for which this new problem

is complete.

* * *

'This is because factoring reduces to CircuitSAT with a logarithmic blowup in input size.
More generally, every public key cryptosystem would perish under a device solving CircuitSAT.

2For example, if ¢ is a circuit of size s, and if C is the circuit that computes, via brute-force,
the XOR of the truth table of ¢, i.e. if C = ®.P(x), then C can be exponentially larger than ¢
(depending on the number of inputs to ¢), but it is easy to see that a circuit for describing C is
essentially the same size as one for describing ¢ (which can be worked out as O(slog s)).

Although it is the NP ¢ P conjecture that gets most of the publicity outside
theoretical computer science, perhaps a more tantalizing one to the insiders is
NEXP ¢ P/poly, because there are results that come “close” to proving it. For

example:
Fact 1.1. NEXP ¢ P/poly or L,EXP ¢ NP/poly.

To put the “or” part of Fact 1.1 in context, and because it will be relevant
in the sequel, let us begin by recalling that NP, in the modern view, is the set
of those decision problems with efficiently verifiable solutions. I.e., it is the set
of functions f of the form f(x) := 3y € {0, 1}*'*) V(x,y), for some polynomial ¢
and “verifier” predicate V € P checking that y is a valid solution to the problem
instance x — e.g., if V interprets x as a circuit and evaluates it on y, then we get
CircuitSAT.

So the joke “P = NP is easy to solve — N = 1” has some intelligence in it
after all, since the ‘N’ in NP can be viewed as an operator acting on the class
P: take every V € P and put a bounded 3-quantifier up front; the resulting set
of functions of the form f(x) := Jy € {0,1}* V(x,y) is NP. It is as though the
‘N’ operator takes every efficient predicate and confers upon it the power of an
“existential prover”: if a solution exists, then the prover presents it, which the
predicate then checks. (‘N’ stands for nondeterminism.) The author would use ‘=’

for this operator if he were emperor of notation, and say 3P for NP; similarly he

would say VP for coNP (recall this is the set of g of the form g(x) := —f(x) for
some f € NP). But there is a tradition to abide by — and that is to use X,P and
IT;P for these classes, respectively, when they are viewed in this way.

But a couple of letters’ difference is nothing compared to the main idea,
which is to take all predicates comprising a given class € and prepend each with
a quantifier to get a new class; if C is coNP for example, then X,C becomes 3vP,
or as the tradition aptly calls it, X,P (short for X,TT;P); it is the set of all functions
of the form g(x) := FyVvzV(x,y,z) for some V € P. (A good example for g is the
function CircuitMIN: given a circuit x, decide if there is a smaller circuit y that
computes the same function as x over all inputs z.)

This idea naturally gives rise to a hierarchy, with P at the bottom level, NP
and coNP at the first level, £,P and coX,P (= T1,P) at the second, and so on ad
infinitum. This is called the polynomial-time hierarchy. If we do roughly the same
thing, but starting from exponential-time algorithms instead of polynomial, then
we get the so-called exponential-time hierarchy, with EXP at the bottom, then
NEXP and coNEXP, then L,EXP and TT,EXP and so on.

So Fact 1.1 says either NEXP ¢ P/poly is true, or it is true “one-level up”:

Fact 1.1 restated. X,EXP ¢ X ,P/poly or L,EXP ¢ X,P/poly.

Another way of coming “close” to NEXP ¢ P/poly is to show that plausible
improvements over certain trivial algorithms imply circuit lower bounds.

A seminal example of this is a result by Impagliazzo, Kabanets, Wigderson
[38] from early 00’s. It involves the class BPP — the probabilistic extension of P

— comprising functions of the form

f(x) = Ay € {0, 1**V(x,y) (t)

for some polynomial ¢ and some V € P, where {1 is the probabilistic quantifier [56]:
Ayd(y) is true (resp., false) if the set of y satisfying ¢ is at least twice (resp., at
most half) the size of the set of y not satisfying ¢; otherwise it is undefined.?
Obviously, a function of the form ({) above can be computed in exponential
time, by just cycling over all y to find how many satisfy the inner predicate
V and how many do not. What Impagliazzo et al. show is that even a slight

improvement over this brute-force simulation yields circuit lower bounds.

Fact 1.2 ([38]). If BPP C NP then NEXP ¢ P/poly. In fact, the same conclusion holds
even if BPP € NSUBEXP.

Here NSUBEXP is the subexponential analogue of NP; it is the set of functions

of the form f(x) = 3y € {0,1}**)V(x,y) for some V € P and a subexponential

3The traditional definition of BPP requires f to be a language, i.e., to be defined on all x. Here
and throughout, we relax that definition to include partial languages (cf. Section 3).

€ 2" (Just like NEXP is the exponential analogue of NP.)

The first contribution of this thesis is several results in the form of Fact 1.2,
showing circuit lower bounds assuming faster-than-trivial algorithms.

£ % %

In preparation for stating our first contribution, let us consider the ‘BP” in BPP
as an operator acting on the class P, similar to the ‘N’ operator that yields NP.
Again, if it were up to the author, then AP would be used for BPP, just as 3P
would be for NP, but tradition has made its pick.

Now, MA is the class IAP — the existential extension of BPP — comprising

functions of the form

1, if 3y €{0,1}*1*D Az € {0, 1}¢*(*)V(x,y, 2)
f(x) = (1)
0, if vy €{0,1}*Ddz ¢ {0,1}*(*V=v(x,y,z)

for some polynomial { and some V € P. It is as though we have an all-powerful
prover, say Merlin, who presents a proof y that f(x) = 1, which gets verified by
Arthur, who has access to random coin flips z. This, in fact, is where the name

MA comes from: Merlin-Arthur games [14].

f(x) =5z3yVix,y, z)

Figure 1.1: An Arthur-Merlin game

Similarly we have AM, the probabilistic extension of NP, i.e., the class A3P
where Arthur makes the first move and Merlin the second. A good example for
a problem in AM is ApproxLB [35]: given a circuit C and a number k, output 1
(0, resp.) if there are k or more (resp., k/2 or fewer) inputs satisfying C.*

It is believed that the A quantifier in general does not buy much power. In

particular,

AP =P C P = JAP = AdP

ie.,

BPP =P C NP = MA = AM

4As in BPP, the traditional definition of MA, AM require f be defined on all x; we do not.

are all believed to be true.” Current knowledge is relatively little, however; we
know how to express the {1 quantifier in the second level of the polynomial-time
hierarchy [43], and that is about it. We depict this in Figure 1.2, using dashes

for BPP, dots for MA, pluses for AM. (All protrusions are believed to be empty.)

T, P) 2P

t++ AM
eee MA
1V BPP

Figure 1.2: PH versus probabilistic classes.

We are ready to state the first contribution of this thesis:®
Theorem 1.3 (First Result). If AM C PN? then EXPN' ¢ P/ subexp.
Theorem 1.4 (Second Result). If AM C L,P then P2 ¢ NP/n* for all constants k.

Theorem 1.5 (Third Result). If AM C L,P then L,EXP ¢ NP/poly.

By BPP C P we mean every f € BPP can be extended to some L € P; similarly for € C D in
general when € is a class of partial languages and D of (total) languages.

®We can show stronger results in all three theorems, but we opt for readability here. (See
Section 2.1.) Also, see footnote 5 about the notation AM C D for a set D of languages.

In these theorems we think of circuits as “algorithms with advice” [40]. Such
an algorithm has, for each n, an advice string a,, that it can consult when pro-
cessing inputs of length n. For example, P/poly can be defined as the class
of functions f(x) for which there is a predicate V € P and a family {a,} with
a, €{0,1}*™) such that

f(x) = V(x, a([x]))
for every input x € domf, where { is some polynomial. Notice how */poly’
behaves as an operator on the class P, taking each predicate within and endowing
it with polynomially bounded advice. More generally, €/{ is obtained by taking
every V € C and giving it {(n) bits of advice for each input length n.
So Theorems 1.3-1.5 show, assuming AM can be “derandomized” into lower

levels of the polynomial-time hierarchy, that
o EXP™' contains a function of deterministic circuit complexity in o

e P>2F contains, for every k, a function of nondeterministic circuit complexity

in w(nk),
* %,EXP contains a function of nondeterministic circuit complexity in n®),

respectively. We compare these bounds to what is known unconditionally in

Chapter 2.

10

Given that we can prove some variants of NEXP ¢ P/poly, just how “difficult”
is it to prove the conjecture itself?

“Impossible,” of course, is one possible answer since the conjecture may be
false, or worse, it may be true but unprovable — thanks to Gédel who introduced
this possibility to human thought. But supposing neither of these is the case, is
there a scientific explanation for our failure to prove this conjecture thus far, one
that sheds light on the evident limitations of our techniques?

The second contribution of this thesis concerns this question.

One way to approach this question is to find a system of axioms, powerful
enough to derive the known results of complexity theory, and then to show
that NEXP ¢ P/poly is independent from those axioms. This is the proper way
perhaps, but also a tall order because of the balancing act required: it is one
thing to find an interesting theory unable to settle some conjecture — and there
is prior work of this type, in particular for the NP C P question [26] — but it
is another matter when “interesting” is taken to mean “able to derive known
theorems”. This type of work would fall in the area of reverse mathematics (e.g.,
[36]), and the author knows of no such prior work in complexity.

A second way is to take the attitude of a grossly fictional algebraist who,
in his quest to settle a conjecture about fields of characteristic 7, notices that
everything he has proven so far also holds for characteristic 3, and for 31 — in

fact for any prime. The natural thing to do then would be, of course, to ask if

11

the conjecture itself is insensitive to switching from 7 to any such number.

The second approach is in a sense the dual of the first: rather than looking
for a “weaker” version of mathematics as in the first approach, the idea is to
leave mathematics as is, and instead try to prove a “stronger” version of current
theorems — parameterize them as it were — in such a way that NEXP CP /poly
resolves contradictorily within the range of values for the parameter.

It is this second approach that has gained much traction in complexity theory,
and that is also taken in this thesis.

% %
In 1975, Bob Solovay, along with Theodore Baker and John Gill, published a
paper [15] that turned out to influence complexity theory for two solid decades
hence, and maybe even until today.

Consider broadening the definition of a program, from one that acts on bit-
strings via basic logical operations, to one that also does so via an unknown
Boolean function family O (for “oracle”). What Baker et al. found is that the
resulting theory of computational complexity would be too “crude” to settle the
NP C P question. For it is not that question such a theory would attempt to
resolve; it is the relativized version, denoted by NP & PO, That attempt would
be doomed to fail, however, because the answer depends on the choice of O,
as shown by Baker et al. Subsequent works have extended this finding to the

NEXP C P /poly question [54] (and to many other questions of complexity [31, 36,

12

etc.]).

What makes this signicant, even today, is that when reasoning about efficient
programs, the typical techniques one employs — simulation, diagonalization,
and more generally techniques borrowed from computability theory — are also
applicable to the above broader notion of a “program with oracle”. In fact many
fundamental results in complexity can be derived using solely such techniques,
i.e., they relativize. Four decades after its introduction by Baker et al., “relativized
complexity theory” remains a proxy framework for “almost all known proof
techniques” in dealing with efficient programs.

Hence we go, into the shoes of the fictional algebraist of the previous section.
In our quest to prove a conjecture about the class P— which can be used to define
NP and every class mentioned in this thesis — we find that almost everything
we have proven so far also holds for the broader class P9, relativized P. The
NEXP P/poly question, we find however, is sensitive to switching P with P°.

-
Suppose one day, suddenly our algebraist has a revelation. Floodgates creak,
and results start trickling in — new, peculiar results. They are correct results,
no doubt, and they do hold for characteristic 7, which is all he cares about; but
unlike his past results, these do not hold for any prime — they do not “primize”.
Naturally he wonders: can this breakthrough last all the way to his longstanding

conjecture?

13

Some years pass and our algebraist, now a bit weary, feels that progress has
been slow since his big discovery. Surely there had been some great results
since, including a weak version of his conjecture, but all of them seem to him
as corollaries somehow, of that major development years earlier. Naturally he
wonders: has he surmounted one barrier — the “primization” barrier — only to
find himself at the fringes of another one?

This is pretty much what happened to complexity theorists since the early
90’s when, in rapid succession, a seminal set of papers entered the scene [45,
48, 12, 28, 7]. Besides being interesting in their own right (one of them even got
coverage in New York Times [41]) these results all had the added significance of
not relativizing. Whatever it was that enabled these results, it was natural to ask
whether the same ingredient can be used towards NEXP ¢ P/poly; this question
became more pertinent when something “close” actually got proved, almost as

a corollary, again in the 90’s:
Fact 1.6 ([19]). MAEXP ¢ P/poly.

Here, MAEXP is the exponential version of MA; it sits between NEXP and
L,EXP, but is conjectured to equal NEXP (just like MA versus NP and Z,P).”
“We believe,” the authors of Fact 1.6 wrote [19, p. 5], “our techniques give us a

foot in the door that may open to many other exciting separations.”

"More precisely, it is believed that every function in MAEXP can be extended to one in NEXP;
see footnote 5 about the notation € C D for € a set of partial languages and D a set of languages.

14

Alas, such hopes did not come to pass. It took a decade of no major progress
until Scott Aaronson, together with Avi Wigderson, came up with an influential
paper [2] that gave conceptual evidence for a new barrier, blocking the path to
many conjectures of complexity, including NEXP ¢ P/poly.

Turning that conceptual evidence into a formal result is the second main

contribution of this thesis.

Theorem 1.7 (Fourth Result). Relative to every affine oracle, Fact 1.6 holds, but not
NEXP ¢ P/poly, nor does NEXP C P/poly.

It is as though our algebraist defines a subset of primes, say, all primes p
such that p = 3 (mod 4). This set contains his favorite, 7, but many others as
well, and for each member, all his post-breakthrough results hold. Yet his big
conjecture, regarding characteristic 7, resolves contradictorily if 7 is switched
with an arbitrary number in this set.

We shall see in due course what exactly an affine oracle is; it suffices to say in
this introduction that the set of such oracles is almost as large as the set of all or-
acles. We shall also see that besides Fact 1.6, many other results (e.g., Theorems
1.3-1.5) hold relative to such oracles — they relativize affinely. If relativized com-
plexity theory was a proxy framework for “known proof techniques” in dealing

with efficient programs before the 90’s, then affinely relativized complexity is

15

the same for after. What Theorem 1.7 shows then, is that current techniques are

doomed to fail at settling NEXP & P/poly.

16

2 RELATED WORK AND DISCUSSION OF CONTRIBUTIONS

2.1 First, Second, and Third Result

In Theorems 1.3-1.4, if we want to obtain the same circuit lower bounds uncon-
ditionally, then we need to go further up in the exponential-/polynomial-time

hierarchy. In particular, unconditionally,
¢ the lower bound of Theorem 1.3 holds “one level up”, for EXP>2" [39];
¢ the lower bound of Theorem 1.4 holds “half a level up”, for L,P [55];
¢ the lower bound of Theorem 1.5 holds “one level up”, for L,EXP [55].

If we take a closer look at the exponential-/polynomial-time hierarchy, then
we can say more. The class S,P [47] is defined as the set of all languages L

satisfying

L(x) =1 = 3JyVvzV(x,y)

L(x) =0 = JzVy—V(x,y)

for some V € P and polynomial {, where y,z are quantified over {0, 1}*!*). Tt is
easy to see that

PN* < S,P ¢ LPNTI,P

17

suggesting that S;P can be thought of as being a “quarter level up” from PN,

Interestingly, however,

S,P ¢ BP(PNF)

[21] so under the thesis that the BP operator (i.e., the {1 quantifier) in general
does not buy much power, S,P ought to equal PN'.

Now, as we did with BPP, NP and others, we can view the ‘S,” in S,P as an
operator, which can be applied just as well to other classes. In particular, the

class S,(PN?), located “one level up” from S,P, satisfies
P> ¢ S,(PN?) ¢ L,PNTI,P.

All of this is to say that, unconditionally, the lower bound of Theorem 1.4
holds for the class S,PNF [22], a class that might (but not known to) equal P>2".
Similarly, the lower bound of Theorem 1.5 holds for S, (EXPNF) [22], the expo-
nential analogue of S,(PNF).

Theorem 1.3 is published jointly with Gutfreund, Hitchcock, Kawachi [10].
Theorem 1.5 is published with Van Melkebeek [11], and Theorem 1.4 is implicit
in the same paper. In fact stronger variants of all three results are derived in

those papers.

18
2.2 Fourth Result

How difficult is it to resolve NEXP ¢ P/poly? Directly or indirectly, this question
has been the subject of many papers, but four among them stand out as having
a close relationship to this thesis.

Recall that Baker-Gill-Solovay’s framework of relativization (p. 11) already
answered this question — “NEXP ¢ P/poly is beyond the reach of known tech-
niques” — but this answer must be updated in light of the nonrelativizing re-
sults of the 90s (p. 13), which undoubtedly expanded the notion of “known
techniques”.

In the four papers we survey here, the overarching goal is (or so will be
our view here) to propose some model for “known techniques”, which involves
meeting two competing objectives: (a) derive all relevant theorems in the model,
and (b) provably fail to derive in the model all relevant conjectures that are
apparently beyond current reach.

We will use Figure 2.1 to roughly illustrate how each proposal fares with
respect to these two objectives (a) and (b). The take-away message from this
survey is that although parts of (a), (b) have been attained by prior work, ours is
the first successful attempt that yields all the critical pieces under one framework.

Although the table is less precise than the discussion that follows, it does

illustrate some key differences among prior work. The vertical gap in the table

19

is a caricature of the current state of the art; to the left of the chasm are facts,
and to the right are conjectures apparently out-of-reach. That gap would have
been one column to the left had this been the 80s; as mentioned in Section 1, the
90s result that MAEXP ¢ P/poly (Fact 1.6) does not relativize, which bridged
that chasm, or broke the relativization barrier — pick your metaphor.

We now survey each of the four proposals in turn.

1. AIV [6]: In a manuscript dating soon after the breakthrough nonrelativizing
results of the early 90s mentioned in Section 1 (p. 13), Arora, Impagliazzo, and
Vazirani (AIV) [6] propose what they call “local checkability” as the key principle
underlying those results.

The starting point of AIV is the classical idea, used by Cook to prove the
NP-completeness of CircuitSAT, that a computation running in time t can be

represented as a transcript of t rows, with each row corresponding to the state

Figure 2.1: Attempts at refining relativization

examples for goal (a) examples for goal (b
p g p g

)

(3C:@CNEXP A €¢P/poly)

NPz
— NEXPZP/poly 2,EXPZP/poly MAEXPZP/poly NEXPZP/poly EXP¢i.0.-P

P,
/poly,..

AIV v v v ? ?
For v v v ? N
AW ? v v v v
IKK v v v ? v
this work v v v v v

20

of the computation at one time step. Cook observed that given a table of t
rows, we can verify that it is a valid transcript by inspecting all bits of the table
in parallel, where each bit depends on only O(logt) bits elsewhere. As AIV
observe, however, this property will not hold for computations with access to
an arbitrary oracle O: just consider the program that takes its input x;..x,, and
outputs O(x;..x) — the transcript of any execution of this program will have a
bit that depends on n bits. This property is called local checkability by AIV.

We can interpret AIV’s proposal as follows. Local checkability does not hold
for an arbitary oracle O, but it does if O itself can be computed by a locally
checkable process. So the AIV framework roughly is this: take the Baker-Gill-
Solovay framework of relativization, and then restrict the oracle O, from an
arbitrary function, to an arbitrary locally checkable function.

This framework derives many known nonrelativizing results, but as AIV point
out, whether it can settle questions such as P versus NP or NEXP versus P /poly
may be very hard to know. In fact, they observe that if P versus NP were shown
beyond reach of their framework in the manner of Baker, Gill, Solovay — by
giving contradictory relativizations, NP° C P and NP° ¢ P, using oracles
satisfying local checkability — then P would actually be separated from NP.
In this sense, the AIV framework is an unsatisfactory candidate for “known
techniques”. (Note that if all we want is a theory that can derive the current

theorems, then we can just let the oracle O be empty.)

21

2. Fortnow [29]: In aresponse to the AIV proposal dated around the same time,
Fortnow [29] argues that the nonrelativizing ingredient in the famous results of
the 90s is not local checkability; rather, it is something of an algebraic nature.
We can interpret Fortnow’s key insight as follows. The 90s result MAEXP ¢
P/poly (Fact 1.6) does not relativize, but it does, if every oracle O is constrained

to have two properties:

(i). Algebraic redundancy. This means, roughly, that if we look at the truth table of
O on inputs of length N, for any N, then we must see a table whose information
content is significantly less than 2V, in much the same way that if we look at the
values of a function f(x) = ax + b over an interval in R, say, then we would see
a list that can be condensed to merely two entries.

More specifically, O must encode a family of polynomials G = {Gy (x1, .., Xn)},

that interpolate a family of Boolean functions g = {gn(zi,..,zn)}, such that

Gn(x) - Zze{O,l}” gn(Z)AZ(X) (21)

where A,(x) denotes the monomial that is 1 if x = z, and 0 if x # z, for all

Boolean x.

(ii). Closure. This roughly means that O is closed under adding redundancy. Just
as O is an algebraically redundant version of a family g by property (i) above,

there is an algebraically redundant version of O itself (after all O is a family

22

just like g); the closure property dictates that the redundant version of O must
essentially be O itself — more precisely, it must be efficiently computable given

access to O.

We will discuss the motivation behind these two properties later, in conjunc-
tion with a related paper (p. 24, IKK).

The upshot is that Fortnow takes, like AIV essentially do, the Baker-Gill-
Solovay framework of relativization, and then restricts the oracle O to satisfy
some constraint; for lack of a better name we refer to this constraint as closed
algebraic redundancy.

Like AIV, Fortnow does not show any formal limits of his framework. How-
ever, we can use the contributions of this thesis to show that several major con-
jectures of complexity can provably not be settled within it (hence the v symbol
in the table) — alas, we do not know how to show this for NEXP vs. P /poly. In
this sense, Fortnow’s framework is (in hindsight given by this thesis) a superior
candidate for “known techniques” compared to AIV’s, but still an unsatisfactory

one in the context of NEXP vs. P/poly.®

3. AW [2]: A decade-and-half after the above two papers, Aaronson and Wigder-

son (AW) [2] come up with an influential paper that, for the first time after the

8The NEXP vs. P/poly problem is representative of a host of other open problems whose
provability is unknown in Fortnow’s framework; see “This work” later in this survey (p. 27).

23

breakthrough results of the 90s, sheds some light on whether “known tech-
niques” — a notion that evidently has expanded during the 90s — can settle
questions such as NEXP vs. P/poly.

We can interpret the key insight of AW as follows. In Fortnow’s refinement of
relativization described just above, recall that any oracle O must satisfy two prop-
erties that we collectively referred to as “closed algebraic redundancy”. What
AW found is that if we drop the closure requirement from this, then the resulting
framework fails to settle many questions of complexity.’

This is a significant development because neither of the previous works, AIV
& Fortnow, show any such limitation of the framework they propose. However,
this progress by itself is not enough to yield a satisfactory framework for “known
techniques”, because such a framework must, as explained in the beginning of
this survey, meet two objectives: (a) derive known theorems and (b) fail to settle
conjectures. But all that is shown by this insight is that Fortnow’s framework,
which achieves goal (a), can be weakened to achieve goal (b) — albeit losing
goal (a) in the process. (Notice that if all we want is a theory that cannot settle
conjectures, then we can just take the empty theory.)

So what remains for AW is to figure out a way of doing what Fortnow did

(attain goal (a) using two properties) by using only one of his properties, namely

9Even the NEXP vs. P/poly question cannot be settled, AW found, if we go a step further
and broaden the definition of algebraic redundancy, by admitting any low-degree polynomial
that extends a Boolean function, and not just those of degree 1 (cf. (2.1)).

24

algebraic redundancy.

Unfortunately, AW do not succeed in this. As a compromise they come up
with an ad hoc notion, called algebraic relativization — algebrization for short —
that can only partially meet goal (a) of deriving known theorems, by taking an

extremely limited view of “known theorems”. For example, the statement

(3€: € C NEXP A € ¢ P/poly) = NEXP ¢ P/poly (2.2)

is true no matter what NEXP or P/poly means — it is even true no matter what
“is an element of” means — hence is relativizing, but it cannot be declared as
algebraically relativizing in AW’s framework. Consequently we have the rather
questionable message: NEXP ¢ P/poly is not within reach of known techniques,
but nothing stops us from coming up with a class €, then showing € C NEXP
with known techniques, and then showing € ¢ P/poly with known techniques,
thus concluding NEXP ¢ P/poly!

So the AW framework fails to provide a viable candidate for “known tech-
niques”. That said, its key ideas — how to meet goal (b) of showing unprovabil-
ity results, using oracles with an algebraic property — influence all subsequent

work, including ours.

25

4. IKK [37]: Motivated by the lack of basic closure properties in the AW frame-
work — of which the above pathology (2.2) is just an example — Impagliazzo,
Kabanets, and Kolokolova (IKK) [37] propose an alternative formulation soon
after the AW paper.

We can view the approach of IKK as being along the same line as Fortnow’s
(hence also of AW’s) by considering the following fact. Any Boolean formula ¢
can be extended to non-Boolean values, by viewing each conjunction as multi-
plication and each negation as subtraction from 1; the resulting expression —
called the arithmetization of ¢ — is a low-degree polynomial that agrees with ¢
on the Boolean values, and that can be efficiently evaluated on all small values
(here “low” and “small” means, as usual, polynomial in the size of @).

Arithmetization of Boolean formulas appears to be the key technique in de-
riving results such as MAEXP ¢ P/poly (Fact 1.6); it is the one ingredient that
clearly stands out in all proofs of nonrelativizing results from the 90s. Invari-
ably, at some point in these proofs, some Boolean formula, used to model some
efficient computation, gets arithmetized; notice this step does not seem to go
through in the Baker-Gill-Solovay framework of relativization because such a
formula ¢ would involve non-standard gates — oracle gates — yielding subfor-
mulas of the form O(gy, .., @) for which there is no obvious way to proceed.

Now, in both Fortnow’s framework and in IKK’s, we can interpret the ap-

proach as being aimed at making this arithmetization step go through, for as

26

large a class of oracles O as possible. In Fortnow’s case this is achieved by con-
straining all oracles O to have “closed algebraic redundancy”; to see how this
constraint helps, notice that in arithmetization, the act of replacing a conjunction
x /Ay with a multiplication x -y is nothing other than the act of extending the
Boolean function (x,y) — x /Ay to non-Boolean values via polynomial interpo-
lation, in other words by adding algebraic redundancy (similarly for —x versus
1 —x). Stated this way, arithmetization easily generalizes to Fortnow’s oracles:
simply replace each occurrence O in the formula with its algebraically redun-
dant version, which does no harm because the class of O’s under consideration
is closed under adding algebraic redundancy. (Without closure, however, the
resulting polynomial is not guaranteed to be efficiently computable, and this is
where the AW framework runs into trouble.)

In the framework of IKK, on the other hand, the strategy to enable arithme-
tization is more direct (or more indirect, depending on the perspective): they
allow O to be any oracle for which arithmetization, broadly construed, is possi-
ble. That is, O can be any family such that every Boolean formula, possibly with
O-gates besides the standard ones (A, —, etc.), has a corresponding low-degree
polynomial that extends it to non-Boolean values, and that can be efficiently
evaluated given access to O.

With this definition, IKK obtain a framework that, for the first time, meets

both goal (a) of deriving known theorems, and (b) of failing to resolve conjectures

27

— albeit not for NEXP C P /poly." In fact, the extent to which the IKK framework
meets goal (b) is identical to what we said we can show for Fortnow’s framework
using the results of this thesis (the « symbol in Figure 2.1). Thus the IKK

framework is not satisfactory for our purposes either.

This work. In this thesis, we introduce affine relativization, the first framework
that satisfactorily models “known techniques” in reasoning about efficient com-
putation, and that is unable to resolve NEXP - P/poly (see Figure 2.1).

Our contribution can be roughly viewed as achieving what AW aimed at
but fell short of: take Fortnow’s framework — relativization with oracles having
“closed algebraic redundancy” — and relax it somehow, so that it still meets goal
(a) of deriving known theorems, yet it also meets goal (b) of failing to resolve
conjectures.

Recall from earlier in this survey that AW did find a relaxation of Fortnow’s
framework that achieved goal (b), but lost goal (a) in the process — trading off
one good thing with another, where both is needed. In order to fix this situation,
the natural thing to try is to aim at a model between Fortnow’s and AW’s, in the
hope of obtaining the best of both worlds.

This is what we essentially manage to do. Our model is simple to state

19The NEXP vs. P/poly problem is representative of a host of other open problems whose
provability is unknown in IKK’s framework; see “This work” below.

28

given previous work: relativization with respect to oracles satisfying algebraic
redundancy (closed or not). With this basic definition we succeed in (a) deriving
nonrelativizing theorems such as MAEXP ¢ P/poly (Fact 1.6), and (b) showing
that many conjectures are unresolvable, in particular NEXP & P/poly.

Notice that the improvement we achieve is two-fold, regardless of whether
we compare against Fortnow’s work or AW’s. Compared to Fortnow /AW, ours

is a relaxation/tightening (respectively) that
(1) maintains the property already attained,
(2) attains the property missed,

by either work. This balancing act requires a number of ideas to pull off, and as
far as we know, cannot be done by merely tweaking any of the frameworks sur-
veyed above. Theorem 1.7 constitutes the strongest evidence yet for the difficulty
of showing NEXP ¢ P/poly.

Theorem 1.7 is joint work with Eric Bach [9].

Remark: From a cursory inspection of Figure 2.1, it might seem as though
NEXP ¢ P/poly is the only place where our framework has an edge over Fort-
now’s and IKK’s — a nitpick of sorts. That is only the tip of the iceberg, however;
NEXP ¢ P/poly is a representative of a host of other statements whose unprov-
ability can be shown in our framework but is not known for Fortnow’s or IKK’s

— and in some cases even for AW’s. See “Myths 3 & 4” below in Section 2.3.

29
2.3 Dispelling a few Myths

There are a few myths appearing occasionally — in blog posts, Q&A sites, lecture
notes, etc. (e.g., [29, 23, 34, 42, 3, 46, 30]) — regarding the relativization notion

and its extensions. Let us dispel the major ones here.

Myth 1. Dependence of relativization on the computer notion. By far the most
widespread myth out there on relativization goes as follows. In order to define
the complexity class P relative to an oracle O, one must have defined P, in the
first place, using some “computer” notion that extends naturally to a “computer
with oracle”. In short, as the myth goes, P° cannot be defined using P, i.e., there
is no relativization operator that acts on classes.

However, it is easy to show otherwise. Consider the “oracle operator”
(V,0,8) — VOl

which, given functions V and O on binary strings {0, 1}*, and given the function

30

¢ on N, outputs the function VO on binary strings, defined as

VO x— V(x,a), where ()
a; = 0(V(x, ¢)),

a, = 0(V(x,a1),

a; = 0(V(x, ar..ai—1),

lal = £([x]).

Now, the class FP, of efficiently computable functions (of which P is the subclass

of functions with range {0, 1} instead of {0,1}*) can be relativized simply as:
FP? .= { vO**cl .V ¢ FP,c e N} (1)

Proposition 2.1. FP? is exactly the set of all functions computable by a polynomial-time

Turing machine with oracle access to O.

Proof. Use FP'°) to denote the set for which we want to show FP® equals.
That FP® FP'?) is easy. To compute a function of the form (§) with ¢ = n°+c
and V € FP, a Turing machine with access to O can construct a;..a, bit by bit,

and then output V(x, a;..a,).

31

The converse FP® O FP'?) is easy as well. If M is a Turing machine with
access to O, running in time at most [x|° + ¢ on every input x, then there is an
equivalent machine M’ that makes exactly [x|® 4 ¢ queries to O, by repeating if
necessary the last query made by M; the running time of M’ is at most x| + d
steps for some d. Also, there is a machine Q that on input (x, a;..a;) simulates
M’(x), by interpreting a;..a; as the answers to the first i queries of M’, and that
outputs the next query of M’. If M’ halts during the simulation, then Q outputs
whatever M’ outputs. In case M’ takes too long during simulation, longer than
x| + d steps, which could happen if a;..a; incorrectly lists the oracle answers,
then Q outputs something arbitrary, say 0. Notice Q does not need access to O.
Therefore, if V is the function computed by Q, then V € FP. It follows by (§)
that VOm“+¢l is identical to the function computed by M; by (), this function is

in FP°. O

Another way to dispel this myth, and a rather elegant one at that, is given by
Arora, Impagliazzo, and Vazirani in their paper surveyed earlier (AIV, [6]). They
use a variant of Cobham’s definition for polynomial-time computation [24], with
no reference to devices like Turing machines, to show that relativized P can be
obtained by very basic constraints on what the eligible functions are, e.g., that
they are closed under addition.

We caution that relativized versions of classes such as NP, P /poly, etc. must

32

be understood as extensions of relativized P, just as in the unrelativized case.
For example, NP? is the class of functions f(x) = 3y € {0,1}* V(x,y) for some
V € PY, in other words, (NP)? is defined as N(P?). This way, of defining classes
in terms of P, helps us approach the subject in a disciplined way; it abstracts
away from machines and avoids asking what it means to have oracle access under

various computational models.

Myth 2. The naiveté of relativization. Often occurring in conjunction with the
first myth, this one goes as follows. Relativization is a naive concept with a
precarious foundation (oracle machines), sort of like the infinitesimals in 17th
century calculus — intuitive but prone to error. It can be made rigorous however,
the myth goes, via an independence result: by coming up with a set of axioms
A such that relativizing results are exactly those that follow from A, hence such
that contradictory-relativization results are those that are independent from A.

Several things are wrong here. First and foremost, relativization is already
a rigorous product of everyday mathematics. To illustrate, let us pick up the
algebraist analogy again. Being an everyday mathematician, our fictional alge-
braist would likely be working under the ZFC axioms for set theory.!! Then his

universe U would consist of sets, with € as the only relation on this universe.

1ZFC might not be an active part of his daily thoughts but at least there would be an
awareness of it; for example, algebraists point out whenever they use the Axiom of Choice.

33

To formalize his inquiry, our algebraist can take his big conjecture,

for every field of characteristic 7, ... W)

and restate it in more general terms as

for every field of characteristic p, ... (YP)

where p is a constant symbol that he adds to his universe U and the “...” part
is identical in both statements.
Now, the scenario that (1?) holds for some primes p but not others — that

() is beyond the “primization barrier” — can be expressed as

(YP) is independent of ZFC U {“p is a prime”}

which would be a startling thing for our algebraist to discover, if he also finds
that everything he has proven thus far on this topic — say theorems «,3,y, of
the form (), with different contents for “...” — hold more generally as «?, 3¥,

vYP of the form (YP), for every prime p, i.e., if

o ,BP,yP are theorems of ZFC U {“p is a prime”}

34

or in short, if ,3,y all “primize”.

Similar to our algebraist, we can introduce a constant symbol O and work
under ZFC U{”0 is a language”}. We can define P® using Turing Machines with
oracle access to O — an entirely rigorous notion — or by first defining P whatever
way the reader prefers and then using the relativization operator mentioned

earlier (p. 29, “Myth 1”) to get P°. Then
NEXP® ¢ P? /poly is independent of ZFC U {“O is a language”} (1)

would be a corollary of the fact that NEXP® C P /poly holds for some setting
of O and NEXP® ¢ P® /poly holds for another.

To recap: relativization is a concept of everyday mathematics. A lack of
confidence in relativization might well stem from a lack of confidence in the
process by which everyday mathematics can be embedded in set theory, which
is easily rectifiable by a good undergraduate book such as [27].

Another thing wrong about this myth is that an axiom set as stated is not
known to exist. To be sure, we can set A to ZFC U {”0 is a language”}, and call
a theorem relativizing iff it is derivable from A. But then it would be easy to
misread a statement such as (), as though it says something about the axiomatic
complexity of the NEXP & P/poly question — it does not: we certainly believe

that ZFC, a sub-theory of A, proves either NEXP C P/poly or its negation!

35

The confusion arises because there are two ways of expressing the same
question using the axiom set A: NEXP® & PO /poly and NEXP & P/poly. This
is inevitable when A is an extension of everyday mathematics instead of a re-
striction, as one can always ignore any additional axioms and stick to everyday
mathematics. For the myth to be accurate — for a genuine independence result
— A must be a subset of the axioms that govern the mathematical universe. But such
A is not known to exist.

If they are not independence results, then what are they, these current results
on relativization? They are crudeness results, if we must call them something:
they show that our proofs do not exploit any difference between P and an ar-
bitrarily relativized version of P, and that such differences are key to making

progress in the major questions of the field.

Myths 3 & 4. Algebraic oracles are messy; affine oracles are no different. One
of the objections to investigating restricted oracles is that they are much harder
to construct than unrestricted ones. It has taken a significant effort, spanning
many years, to create a large library of unrestricted oracles [16, 17, 20, 18, 1,
etc.], each one giving evidence that some conjecture is out of reach of “known
proof techniques”. On one hand, as the objection goes, these intricate oracle
constructions do not seem to carry through for algebraic oracles; on the other

hand, none of the conjectures addressed by these oracles have been settled since

36

the breakthrough results of the 90s. Thus it seems a safe thesis that classical
relativization is still a proxy for “known techniques”.

From a cursory read of the above survey (Section 2.2), it might seem that
affine oracles are no different. Indeed, as far as Figure 2.1 shows, NEXP ¢ P/poly
seems to be the only place where our framework has an edge over Fortnow’s and
IKK’s — a nitpick of sorts.

That is only the tip of the iceberg, however. NEXP ¢ P/poly is a poster
child for a host of other statements whose unprovability can be shown in our
framework, but is not known for Fortnow’s or IKK’s — and sometimes even for
AW’s. The machinery we develop in Chapters 7 and 8 is powerful enough to
accommodate traditional approaches to constructing oracles, with minor tweaks.

For example, our construction of an affine oracle relative to which NEXP C
P/poly (Theorem 1.7), is essentially a rephrasing of a construction by Heller [36],
who gave an unrestricted oracle for the same statement. As another example,
in Chapter 8 we take a fairly well-known construction, due to Beigel, Buhrman,
and Fortnow [16], of an oracle relative to which P = &P C NP = EXP, and use it
almost verbatim to give an affine oracle for the same statement. While the former
construction is also done in AW'’s framework (in fact ours closely follow theirs),
the latter does not seem doable in AW’s framework, or in any other framework
surveyed in Section 2.2 for that matter.

Of course, not every traditional oracle construction can yield an affine one,

37

otherwise there would be no point in restricting oracles. But our results suggest
that it is worth revisiting the classical constructions to explore which ones can
be made affine. Perhaps those oracles that do not carry over correspond to

conjectures whose time has come in the 90s.

Myth 5. Recent circuit lower bounds obviate relativization-based barriers. In
2011, Williams proved NEXP ¢ ACC, [53], a significant result both in its state-
ment and its proof. Here ACC corresponds to “shallow circuits that can count”:
AC,4[m] is the class of functions computable by polynomial-size O(log® n)-depth
circuits that have, besides the standard gates /\, V, —, also MOD,,, gates. Such
gates output 1 iff { of their inputs are set to 1 for some { =0 (mod m). Finally,
ACC4 := UnenACq[m]. (All gates have unbounded fan-in.)

Now the myth is this: as mentioned in the survey earlier (Section 2.2), a
major result of ours, and of Aaronson-Wigderson for their framework, is that
NEXP ¢ P/poly does not hold for all affine (or in case of AW, algebraic) oracles,
i.e., NEXP® c P9/ poly for some eligible O. In fact, something stronger is implied
in either work: NEXP® C ACC{ for the same O. Hence, as the myth goes,
Williams” result shatters the affine/algebraic relativization barriers, just as the
90’s results such as MAEXP ¢ P/poly did to the relativization barrier.

Several things are wrong here. First, it follows by the logic of this myth

that these barriers were already shattered in the 80’s, long before they were

38

even conceived of (and long before Williams” result). This is because in both
our work and AW’s, something even stronger than NEXP® c ACCY is implied,
namely NEXP® C AC{, and because Furst, Saxe, Sipser [33] and Ajtai [4] already
showed in the 80’s that P ¢ AC,. So by the logic of this myth, even the original
relativization barrier was shattered in the 80’s and not the 90s!

Maybe it did but nobody noticed — we have to accept this if we consider
Williams’ result as nonrelativizing affinely/algebraically.

Even if we do, not all is lost. Be it in P ¢ AC, or in NEXP ¢ ACC,, or in any
other result on bounded-depth circuits, the techniques used clearly break down
when the depth restriction is lifted. In this sense, the very nature of bounded
depth constitutes a barrier.

Another defect of this myth is its ignorance of the following fact. In Williams’
result, NEXP ¢ ACC,, the key ingredient is a better-than-brute-force algorithm
for deciding ACC(SAT, the restriction of CircuitSAT to ACC,-circuits. For Williams’
strategy to scale to NEXP ¢ P/poly, one must find such an algorithm for the
unrestricted CircuitSAT problem. But as we show in Section 8.3, such a result
must not affinely relativize. So Williams” program would succeed in proving
NEXP ¢ P/poly, if it can find an ingredient that does not affinely relativize,

which is to say that it will pass the barrier if it can pass the barrier.

39

3 PRELIMINARIES & NOTATION

We use A C B to mean A is a subset of B; we never use ‘C’. By poly(n) we
mean the set of polynomials {n? +d : d € N}. By n“!) we mean the class of
superpolynomial functions {(f : N — N) : ¥d € N V*n f(n) > n?}. By domf we

mean the domain of f.

Basic complexity classes. FP is the set of all f : {0,1}* — {0,1}* that are effi-
ciently computable. We do not rely on a particular implementation of efficient
computability; for concreteness the reader can take the standard definition based
on random access Turing machines. We rely on FP being enumerable.

A language is a function from {0,1}* to {0,1}. A partial language is a func-
tion that can be extended to (or already is) a language. We confuse {0,1} with
{False, True}.

In a slight abuse of notation, given sets €, D of partial languages, we write
€ C D to mean that every element of € can be extended to (or already is) an
element of D.

P is obtained by taking each function in FP and projecting its output to its
first coordinate.

NP is the set of languages in 3 - P, where 3 - € denotes, for a set C of partial

40

languages, the set of all partial languages L such that

Lix)=1 = Jy {0, 1}**: (x,y) e domV and V(x,y)

Lix)=0 = Wy {0, 1}**V: (x,y) € domV and —V(x,y)

for some { € poly(n) and V € C.

co - € denotes, for a set C of partial languages, the set of all partial languages
of the form L(x) = —~M(x) for some M € C. It is customary to write coC for co-C.

V- € denotes co - 3 - C. In particular, coNP =V - P.

Define Y,P = T|,P = P, and inductively define L,P = 3 -TI, ;P and TI,P =
V- X, P. The set JyonZiP is called the polynomial-time hierarchy. Note that
NP = X,P and coNP =TI,P.

PSPACE, or X P, is the set of languages of the form

L(x) =Yy13z1 - - - VYe(x) Fzexn V(X Y, 2)

for some V € P and t(n) € poly(n), where y;,z; are quantified over {0,1}. (We
could quantify yi,z; over {0, 1}*!*!) for some ¢ € poly(n); the definition would
be equivalent to the one given.) The justification for this definition of PSPACE
comes from the well-known result of Stockmeyer and Meyer [50, Theorem 4.3]

that functions computable by a polynomial-space Turing machine are contained

41

in £_P (the reverse containment is clear).
We define BPP as A-P, where f-C denotes, for a set C of partial languages,

the set of all partial languages L such that

L(x) =1 = Prycuml(x,y) € domV and V(x,y)| > 2/3

L(x) =0 = Pryciumnl(x,y) € domV and —V(x,y)] >2/3

for some { € poly(n) and V € C. Traditionally BPP would be defined as the set
of languages in A -P, and A -P would be called prBPP, but we will not need to

refer explicitly to the languages in A-P.

Interactive Proofs. Let Ax@(x) denote E,[@(x)], the expected value of ¢(x), and
let Mx@(x) denote max, ¢(x).

AM is the set of all partial languages L such that

L(x)=1 = AyMz V(x,y,z) >2/3

L(x) =0 = AyMzV(x,y,z)<1/3

42

and MA is the set of all partial languages L such that

L(x) =1 =— MzAy V(x,y,z) >2/3

L(x) =0 = MzAy V(x,y,z) <1/3

for some V € P and (€ poly(n), where y, z are quantified over {0, 1}*(*].

Notice that AM is the set 1 -3- P and that MA is the set 3- 1 -P. As in
the case with BPP, traditionally AM would be defined as the set of languages in
A -3-P, and MA as those in 3- {1 -P, but we will not need to refer explicitly to
the languages in either set.

IP is the set of languages L such that

L(X) =1 — Ay1 MZl s Ayt(\x\) MthX‘)V(x,y,Z) > 2/3

L(X) =0 = Ay1 MZl s Ayt(\x\) Mzt“X‘)V(x,y,z) < 1/3

for some V € P and t € poly(n), where y;i,z; are quantified over {0,1}. (We
could quantify y;,z; over {0, 1}**!) for some ¢ € poly(n); the definition would
be equivalent to the one given.)

The A-quantifier in these definitions can be thought of as providing the coin
tosses of a probabilistic verifier Arthur, who interacts with an all-powerful prover

Merlin corresponding to the M-quantifier. Merlin’s goal is to make Arthur accept,

43

which Arthur does iff the “verdict” predicate V, given the input x and transcript
(y,z) of the interaction, returns 1. The criteria by which V returns 0 or 1 is
typically described as a protocol between Merlin and Arthur. The quantity t(|x|)
is referred to as the number of rounds taken by — or the round complexity of —

the protocol in computing inputs of length [x|.

Power of the Honest Prover. Consider the following subclass of IP. It contains
languages L such that whenever L(x) = 1, Merlin can just compute a language
IT € € instead of using the M-quantifier. That is, there is a language IT € C such

that for all x, if L(x) =1, then

Pr.[V(x,y,z)] = Ay1 Ays - - - Ayyx) V(x,Y,2) >2/3, where (1
z1 = T1(x, Y1)

zp =TI(x, y1Y2)

ze = T1(%, Y1-Ye(x))

and the case for L(x) = 0 remains as before. Any L in this class is said to have

interactive proofs where the power of the honest prover is in C.

Checkable. We call a language L checkable if it has an interactive protocol where

the power of the honest prover reduces to L itself. Le., in (), IT reduces to L via

44

a Karp reduction (as defined below).

Perfect completeness. Replacing the condition “>2/3" in the above definitions of

interactive proofs, with the condition “=1" yields equivalent definitions [32].

Reductions. As in the previous section (Interactive Proofs), let Ax@(x) denote
E.[@p(x)], and let Mx@(x) denote max, @(x).

Let F and G be functions into {0,1}* such that domF,dom G C {0,1}*. We
write

F—G

and say that F reduces to G wvia an interactive protocol, iff there exists R € FP,

t € poly(n), and ¢ € 1/n®, such that for every x € dom F:

Ay] le T Ayt(n) Mzt(n)[F(X) = G(R(X/y/ Z’)) \% F(X) - R(X,y,Z)] Z 1— S(n)

Ayi Mz; - - - Ayin) Mz [F(X) # G(R(x,y,2)) A\ R(x,y,z) # ‘fail’ | < ¢(n)

where n = |x|, and vy, z; are quantified over {0,1}. (Notice that v = G(u) implies
u € dom G.)

We call R an interactive reduction from F to G with round complexity t(n). We
caution that the word “reduction” refers to a function in FP, not to the notion

that some F reduces to some G.

45

Intuitively, as in the previous section (Interactive Proofs), the A-quantifiers in
this definition can thought of as Arthur and the M-quantifiers as Merlin. Given
x, after sending random coin tosses y; to Merlin and receiving responses z;,
Arthur uses the predicate R to obtain a string r. Arthur wants either r or G(r) to
equal F(x). Merlin can, with high probability over Arthur’s coin tosses, ensure
that Arthur obtains a desired r. If Merlin is devious, then he has negligible
chance in making Arthur obtain a string r # ‘fail” that is not desired.

We believe this definition to be new. There are three special cases of R being

an interactive reduction that capture some classical definitions:

e in a randomized reduction, we have R(x,y,z) = R(x,y). Intuitively, Arthur
does not need to interact with Merlin to do the reduction.

* in a Karp reduction, we have R(x,y,z) = R(x). Notice that ¢(n) = 0 in this
case. Intuitively, Arthur does not need Merlin’s help to do the reduction,
nor does he need to flip any coins.

e in a Cook reduction, we have R(x,y, z) = R(x, z). Further, for every extension

of G to a function G’ on {0,1}*, and for every z satisfying

zi = G'(R(x, 21..2i-1))

we have F(x) = R(x, z).

Notice that ¢(n) = 0 in this case. Intuitively, Arthur does not need to flip

46

any coins to do the reduction, and the power of the honest prover is G

itself.

We call R a strong Cook reduction from F to G, if R is a Cook reduction from
F to G and the range of R is contained in dom G. (This would be the case, for
example, when G is a language.)

By default, all Cook reductions are strong. By default, all reductions are
Karp.

The “reduces to via an interactive reduction” relation is transitive: F — G
together with G — H imply F — H. Further, “reduces to via a Karp reduc-

4 1"

tion”,

7”7 "

reduces to via a randomized reduction”, “reduces to via a strong Cook

reduction”, are all transitive relations.

General time classes. Let T C n®! be a set of functions such that each element
is computable in FP. Suppose that T is closed under taking polynomials in the
following sense: for every t € T and d € N, there is some t’ € T such that
t4(n) < t’(n) for every n.

Define DTIME(T) as the set of languages L for which there exists K € P and
t € T such that L(x) = K(x, 1*(*D) for every x.

Define NTIME(T), L,TIME(T), MATIME(T), etc., in the same way, except by

picking K respectively from NP, L,P, MA, etc.

47

Use E, NE, L,E, MAE, etc., to denote respectively DTIME (linexp(n)), NTIME(linexp(n)),
L, TIME(linexp(n)), MATIME(linexp(n)), etc., where linexp(n) is the set {2°™ :
c € NL

Use EXP, NEXP, L,EXP, MAEXP, etc., to denote respectively DTIME (exp(n)),
NTIME(exp(n)), L, TIME(exp(n)), MATIME(exp(n)), etc., where exp(n) is the
set {2“‘d :c,d € N}

Circuits, Formulas, Advice. A circuit over the basis B is a directed acyclic graph
where each internal node — nodes that can be reached from and can reach to
other nodes — are labeled by a reference to some element in B. The number
of incoming (and respectively, outgoing) neighbors of a node is called the fan-in
(respectively, fan-out) of that node. Nodes of fan-in zero are the input nodes of
the circuit, and of fan-out zero are the output nodes.

By default, circuits are over the standard Boolean basis Bgg :=1{0,1, \, ®}, where
0 is the all-zeroes language and 1 is the all-ones, /A maps x to Aix; and © maps
x to ®ix;.

A formula is a circuit where the fan-out of each node is at most 1. There are
no output nodes in a formula, because a formula with two output nodes is really
two different formulas.

The size of a circuit is the number of its edges. We say that the partial

language F has circuits of size s(n), if there is a family {C,, Jnen of circuits such

48

that C,, has n input nodes, is of size s(n), and for every x € domF, F(x) = Cjy(x).

For £ : N — N and C a set of languages, €/{ denotes the set of languages L for
which there is a language V € € and a family {a, }ney with a, € {0, 1}*(™) such
that

L(x) = V(x, a(lx])).
P/poly denotes U.cny P/nC. P/ subexp denotes Ncen p/2ne.

Fact 3.1 ([40]). P/poly is exactly the set of languages that have polynomial-size circuits.

Relativized classes. For every language O, we define the class FP® — “FP
relative to O,” or “FP with oracle access to O” — as the set of all functions from
{0,1}* to {0,1}* that Cook-reduce to O.

All definitions built on FP above naturally generalize to their relativized ver-
sions: NP to NP?, IP to IP®, MAEXP to MAEXP®, etc. When we say “L is
checkable with oracle access to O”, for example, we mean to replace FP with

FP® in the definition for a language to be checkable, and then declare L as

checkable.

The languages ®SAT and X,SAT. Define @SAT as the language mapping

d(x) — Duefom P(x)

49

where ¢ is a formula with n inputs x;..x,,.

Define L,SAT as the language mapping
¢ (X1, .., Xi) = Fog € {0, 11" Vo € {0,1}™2... Qo € {0, 1™ d(ot..0c)

where Q is 3/V depending on k being odd/even, and where ¢ is a formula with

k sets of inputs: the X; inputs X;1..Xj n,, the X, inputs X,1..X,,, and so on.

Approximate counting. The following fact is used in Chapters 4 and 5.

Fact 3.2 ([35]). Let V(x,y) € NP. The function that approximates the size of the set
Vix,) ={y: Vix,y) =1,
more precisely, the function

1/ Zf ’vil(xl')‘ > a
A(x,a,m) =

0, if [V (x,)| < a(l—1/m)

where m > 0 is an integer encoded in unary, is in AM.

50

4 PROOF OF FIRST RESULT

In this chapter we prove Theorem 1.3 (p. 8), which we recall here in a stronger

form:

Theorem 1.3, Stronger Form. If AM C PNP then EXPN' contains a function of

circuit complexity in 29,

This is a stronger statement than the original (p. 8) because there the circuit
complexity is stated as 2™

The idea in proving Theorem 1.3 is what might be called “fast diagonalization
via approximate counting”. Consider the collection of all Boolean circuits, taking
n bits to a single bit, of size s(n) for a sufficiently small s(n) € 22", Interpreting
n bits as encoding an integer in the interval [0,2™), we can quickly diagonalize
against this collection with a function L : {0, 1}™ — {0,1} defined as follows. Set
L(0) to the minority vote among all circuits in the collection regarding input 0.
That is, L(0) := b if the circuits that output b on input 0 comprise a subcollection
smaller than those that output —b. (Break a tie arbitrarily, say as L(0) := 0.)
Inductively, set L(i) to the minority vote among the subcollection of circuits that
agree with L on the interval [0,1). When this process ends after 2™ steps, the
function L thus obtained is guaranteed to be uncomputable by any circuit in the

collection, provided the collection is of size at most 22" which it is since every

51

size-s(n) circuit can be encoded by a string of length O(s(n)logs(n)).

This process would work just as well if, instead of exactly counting the votes
in each step so as to pick the minority vote, we can approximately count so as to
avoid picking the overwhelming majority vote if there is one. More precisely, in
setting L(1) := b, if we can ensure that among the collection of circuits considered
at the i step, those that output b on input i do not outnumber those that output
—b by a factor of k or more, for any constant k > 1, then the resulting function
L would still be hard for all size-s(n) circuits.

We now fill in the details and show that this diagonalization via approximate

counting can be performed, under the assumptions of Theorem 1.3, in EXP"",

Proof of Theorem 1.3. Let s(n) = 2™/2. Under the assumption of Theorem 1.3, we

construct a language L € EXP™"

such that for all but finitely many n, no circuit
of size s(n) computes L correctly on every x € {0,1}™.
Consider the following function V. On input (n,T,1,C), where T € {0,1*"

represents the truth table of a Boolean function on n inputs, and C represents a

size-s(n) Boolean circuit on n inputs,

V(n,1,i,C) =1 iff C agrees with 7 in the interval [0, 1),

where [0,1) denotes the first i strings in {0, 1}™ in lex order.

52

Clearly, V € P. Thus, by Fact 3.2, the function A(X, a) that approximately
lower bounds the size of the set V71(X,-) := {C : V(X,C) = 1}, more precisely,

the function

L if [VI(X,)| >a
A(X, a)=

0, if [V71(X,)| < a/2
where X is shorthand for (n,T,1), is in AM. By the assumption of the theorem
that AM C PNF, there is a language B € PN!' that agrees with A on its domain.
We are ready to describe L. For every large enough n, construct L, the
restriction of L to {0,1}", as follows. Initially set L,, to be the all zeroes function.
For i € [0,2"), in order to decide whether to change the value of L(i), let S;
denote the set of all size-s(n) circuits on n inputs that agree with L on the

interval [0,1]. Use B to do a binary search for some a such that
B(n,t,i,a)=1 and B(n,t,i,a+1)=0,
where T represents the truth table of L,,. The specification of A above guarantees
Sil < a <2[S4, (1)

so we have a factor-2 approximation on |S;| from above, when L(i) = 0.

Now tentatively flip the value of L(i) from 0 to 1, and repeat the binary search

53

(by flipping the ith bit of T) to obtain a new estimate a’. If a’ < a, then keep
L(i) at value 1; otherwise, flip it back to 0. This completes the construction of L.

To show that L has the desired circuit complexity, it suffices to argue that the
set S; above eventually becomes empty as i € [0,2™) increases. So let S_; be the
set of all size-s(n) circuits on n inputs, and let S; be as defined earlier, i.e., as
those circuits in S_; that agree with L in the interval [0,1], or equivalently, as
those circuits in S;_; that agree with L on i. Let S; denote the complement of S;
in S;_;. Finally, let a be the estimate obtained for |S;| during the construction,
and let @ be the one for [S;|.

By construction, a < @, hence by (), 1Si| < 2[Si|. Since S;_; is the disjoint
union of S; and S;, we have that [S;| + [Si| = |Si_;| and putting together, that

Si|] < 2[Si_1]/3. Therefore, |S;| is indeed empty when
i122+1og;,,[5-1],

and what remains is to show that the right hand side in this inequality falls in
the interval [0,2"). Since every circuit of size s(n) can be represented by some
string of length O(s(n)logs(n)), we have [S ;| < 23¢(")/2 for n large enough.
Hence the last inequality is implied by

) 3s(n)
> _—
L2 2H iog3—2

54

Using log 3 > 1.5, we can clean up the right hand side to arrive at
i1>4s(n)

as a sufficient condition for S; to be empty. By the setting of s(n), the last
quantity is less than 2™ for large enough n, as we wanted to show.

To prove that L € EXP"', notice that the above construction for L starts
with the all-zeroes string T of length 2™, and modifies it bit by bit, with each
modification involving an oracle call to the language B, which takes time O(2")

to prepare. Hence L € E® ¢ E™ ¢ EN?, and the proof is done. O

55

5 PROOF OF SECOND RESULT

In this chapter we prove Theorem 1.4 (p. 8), which we recall here:

Theorem 1.4, Restated. If AM C Z,P then for all constants k, P¥2F contains a

function of nondeterministic circuit complexity in w(n*).

Combinatorially, a nondeterministic Boolean circuit C is an ordinary Boolean
circuit C’ with two sets of inputs x and y. We refer to the second set of inputs
as choice inputs — evocative of nondeterministic choice. We say that the circuit
accepts input x, or C(x) =1 in short, if 3yC’(x,y) = 1; otherwise we say C rejects
x, or C(x) = 0 in short.

The idea behind proving Theorem 1.4 is, at a very high level, identical to that
of Theorem 1.3, namely “fast diagonalization via approximate counting”. Recall
this refers to mimicking the process that successively sets the next bit of the
truth table of a function L,, to the minority vote of the circuits of size s(n) that
are consistent with the table constructed thus far. Whereas this ideal process
would reduce the number of consistent circuits by at least half in each step, the
mimicking process eliminates at least an «-fraction, for a value of x depending
on the error rate of the approximate counting procedure. When « is a constant,
we are guaranteed that after t steps, for some t € O(s(n)logs(n)) large enough,

L, is uncomputable by any size-s(n) circuit, because every such circuit can be

56

represented by a string of size O(s(n)logs(n)).

There is a significant difference here, however, and it has to do with the type
of circuits involved. For a deterministic circuit, whether it outputs 1 is no harder
a question than whether it outputs 0, but for a nondeterministic circuit, there is
an asymmetry due to the choice inputs — this is essentially the NP versus coNP
problem. Consequently, it is a more delicate task to calculate the minority vote
among nondeterministic circuits, and hence to mimic that task via approximate
counting. Of course, anything can be done given enough computational power;
the goal here is to limit that power to P*2".

To be more specific, consider what would happen if we try to imitate the
argument of the proof of Theorem 1.3 in order to prove Theorem 1.4. Right at
the very first step, when we want to estimate how many circuits accept the input
0 and how many reject it, we run into a problem. While the set of accepting
circuits has a membership predicate in NP — therefore, by Fact 3.2, its size can
be estimated in AM, and hence in X,P by the assumption of the theorem — the
set of rejecting circuits correspond to a coNP predicate. Fact 3.2 says nothing
about estimating the size of a coNP set. We need to find a way of breaking this
asymmetry, and do so within P>2.

Our idea here is as follows. We may assume that every language in coNP
has nondeterministic circuits of polynomial size, for otherwise there is nothing

to prove. In particular, this holds for —CircuitSAT, the negation of the language

57

CircuitSAT. So there is k € N such that for all m € N, there is a nondeterministic
circuit C—circuitsat Of size O(mk*) that receives as input an m-bit description of a
deterministic circuit C, and accepts iff C is unsatisfiable.

Now suppose we could somehow get a hold of C—circuitsar at any input length
we want. Then to decide whether a given nondeterministic circuit C rejects its
input x, i.e., whether

YyC'(x,y) =0

where C’ is the deterministic circuit underlying C and y represents the choice

inputs of C, we could instead decide whether

C*CircuitSAT(C/(X;)) =1

Since the latter is an NP predicate, we would thus get around the asymmetry
problem mentioned above, and carry out the argument from Theorem 1.3 to
derive Theorem 1.4 as well.

Alas, we do not have a circuit for —CircuitSAT, and the main contribution
here is to show, using similar ideas to above — approximate counting and us-
ing circuits at a large enough input length to express coNP predicates as NP

predicates — how to construct such a circuit in FP*?". Details follow.

Proof of Theorem 1.4. Let s(n) = n* for an arbitrary k € N. Under the assumption

58

that AM C Z,P, we construct a language L € P>?" such that for infinitely many n,
no nondeterministic circuit of size s(n) computes L correctly on every x € {0,1}™.
If setting L := —CircuitSAT does the job, then we are done. Hence we may
assume that —CircuitSAT is computable at every large enough length m by some
nondeterministic circuit C-circuitsat,, Of size s(m).
A crucial piece of the proof is the following claim, whose proof we defer to

after the proof of the theorem:

Lemma 5.1. Suppose that —CircuitSAT is computable at every length m by some
nondeterministic circuit of size s(m) € O(mX), for some fixed k € N. Suppose further
that AM C XL,P.

Then there is a function C—circuitsaT € FP>Y that on input 1™, outputs a nondeter-
ministic circuit (not necessarily of size s(m)) for —CircuitSAT at length m, for every

m.

With Lemma 5.1 in hand, we now follow the proof of Theorem 1.3, adjusting
as necessary to the nondeterministic setting as outlined earlier in this section.

First, a bit of notation: Let m € O(s(n)logs(n)) be a function such that every
nondeterministic circuit of size s(n) can be represented by a string of length
m(n). Use m as a shorthand for m(n). Also let t € poly(m) be a function such
that the C—circuitsar function claimed to exist in Lemma 5.1 has output length at

most t(m) given input 1™.

59

Consider the function

V(n,1,1,C) ;=1 iff C agrees with T in the interval [0, 1),

where: (a) T € {0,1}*™ represents the first 2m entries of the truth table of a
Boolean function on n inputs, (b) i < 2m, (c) C represents a size-s(n) nondeter-
ministic circuit on n inputs, and (d) [0,1) denotes the first i strings in {0, 1}™ in
lex order. (In case 2m > 2", which can only happen on finitely many n since
m € O(n*™) by definition, let V consider the first 2™ bits of T only.)

If we could say that V € NP, then we would proceed just as in the proof
Theorem 1.3 — V is almost identical to a function in that proof by the same
name — but we cannot quite say that. Instead, we define a related function
W € NP that serves as well as V when used with Lemma 5.1.

So let W be the following function. On input (D,n,t,1,C), where D €
{0,1)t(m) represents a nondeterministic circuit with m inputs, and the rest of

the parameters are as in V above,

W(D,n,1,1i,C) =1 iff C seems, with respect to D, to agree with T in the interval [0, 1),

60

where the condition on the right means the following. For every j € [0,1),

() =1 = C(j) =1

t(j) =0 = D(C'(j,")) =1

where 1(j) denotes the jth bit of T, and C’ is the deterministic circuit underlying
C and C(j) =1 is shorthand for 3zC’(j, z) =1, i.e., for C'(j,) being a satisfiable

circuit. The following observation needs no proof.

Lemma 5.2. Whenever D is a circuit for —CircuitSAT, C agrees with T in the interval

[0,1) iff C seems, with respect to D, to agree with T in the interval [0,1).

Clearly, W € NP. By Fact 3.2, the function A(Y, a) that approximately lower
bounds the size of the set W1(Y,:) := {C : W(Y,C) = 1}, more precisely, the

function

L if (WY,)| >a
A(Y,a) =

0, if [W(Y,")| <a/2
where Y is shorthand for (D, n, 7,1), is in AM. Further, by Lemma 5.1 and Lemma

5.2, A satisfies

Lif [VIX,)| >a
A(CﬁCircuitSAT(lm)/ X/ (1) = (§)
0, if [V71(X,)| < a/2

61

where X is shorthand for (n,T,1).

We are ready to describe L. For every large enough n, construct L,,, the
restriction of L to {0,1}", as follows. Initially set L,, to be the all zeroes function.
For i € [0,2m), in order to decide whether to change the value of L(i), let S;
denote the set of all size-s(n) circuits on n inputs that agree with L on the
interval [0,1].

By the assumption of the theorem that AM C L,P, there is a language B € L,P
that agrees with A on its domain. Use B, and the function C-_circuitsar from

Lemma 5.1, to do a binary search for some a € [0,2™] such that

B(CﬂCircuitSAT(lm)/ n,T, 1.'/ (l) =1 and B(C—‘CircuitSAT(]-m)/ n,T, i/ a+ 1) - O/

where T represents the first 2m entries of the truth table of L,,. 2m < 2" for n

large enough.) The observation (§) above regarding A guarantees that

1Sil < a < 2[Si, (1)

so we have a factor-2 approximation on |S;| from above, when L(i) = 0.
Now tentatively flip the value of L(i) from 0 to 1, and repeat the binary search
(by flipping the ith bit of T) to obtain a new estimate a’. If a’ < a, then keep

L(i) at value 1; otherwise, flip it back to 0. This completes the construction of L.

62

To show that L has the desired circuit complexity, it suffices to argue that the
set S; above eventually becomes empty as i € [0,2m) increases. So let S_; be
the set of all size-s(n) circuits on n inputs, and let S; be as defined earlier, i.e.,
as those circuits in S_; that agree with L in the interval [0, i], or equivalently, as
those circuits in S;_; that agree with L on i. Let S; denote the complement of S;
in S;_;. Finally, let a be the estimate obtained for |S;| during the construction,
and let @ be the one for [S;|.

By construction, a < @, hence by (f), ISi| < 2|S;|. Since S;_; is the disjoint
union of S; and S;, we have that |S;| + [Si| = |Si_1| and putting together, that

Si| < 2[Si_1]/3. Therefore, |S;| is indeed empty when
i 2 2 + 10g3/2 ‘S—1|/

and what remains is to show that the right hand side in this inequality falls in
the interval [0,2m). Since every circuit of size s(n) can be represented by some

string of length m, we have [S_;| < 2™ . Hence the last inequality is implied by

m

1224 —F
' +(log3)—1

and since log3 > 1.5, by

i>22m—1

63

for all large enough n, as we wanted to show. (Recall m is a function of n.)

To prove that L € P>2", notice that the above construction for L starts with the
all-zeroes string T of length 2m, and modifies it bit by bit, with each modification
involving < m oracle calls to the language B while doing the binary search. Each
call to B takes time t(m) + poly(m) C poly(n) to prepare, provided the function
C—cCircuitsar(1™) of Lemma 5.1 is already computed, once, ahead of time. By
Lemma 5.1, the latter can be done in time poly(m) with oracle access to a X,P
function. Since the language B itself is in L,P, it follows that L € P>2", and the
proof is complete modulo the proof of Lemma 5.1.

(Theorem 1.4, mod Lemma 5.1) [J

We now turn to the proof of Lemma 5.1. When viewed the right way, our
approach here will not be much different from the high level idea of Theorem
1.4 above, which recall is the same as in Theorem 1.3. To bring out the similarity,
let us abstract the idea of Theorem 1.3 a bit.

In the proof of Theorem 1.3 (and of Theorem 1.4) the process of constructing
a truth table of high circuit complexity can be viewed as a prefix search for a
high quality string, where quality is measured as the fraction of circuits that

disagree with the string.

64

More precisely, let y € (0,1), and let
q:{0,1}* = 0,1 =yl U{1}
be a function satisfying, for every x € {0, 1}*
1
max(q(x0), a(x1)) = q(x) + 5 (1 —a(x)).

Starting with the empty string and appending one bit at each step, we can con-
struct a string x with g(x) = 1 in roughly log(1/v) steps, provided we have a

selector function that helps us avoid a bad choice:

SEL4(x) =b whenever ¢(xb)— q(xb) > %(1 —q(x)) 1)

where b € {0,1} and b denotes —b.

To make the connection to Theorem 1.3, given T € {0, 1}*, let

qILhm 13(1) := fraction of size-s(n) circuits on n inputs that disagree with T

and write

d(xb) —q(xb) = (a(xb) — q(x)) — (a(xb) — q(x))

65

to see that when q = q'™ 13, the inequality in (f) is equivalent to

where

B := number of size-s(n) circuits that agree with x but disagree with xb

and B is the same definition except for xb instead of xb.

Thus, to compute the selector function SEL jmms, it suffices to detect the case
B > 2B. One way to do this is to compute the approximations a € [f,2p] and
a € [B,2B], and then to return b or b depending on which of a or @ is greater
— this works because > 2@ implies a > @, and because a > @ implies B < 2.
The tasks to compute a and a both Cook reduce to some function in AM. This
is what the proof of Theorem 1.3 shows.

Now we turn to Lemma 5.1 with the same approach. We want to show an
algorithm that constructs a small circuit for —~CircuitSAT under certain assump-
tions. Following the approach above, the algorithm we show performs a prefix
search for a high quality string, namely the string that describes a circuit for
—CircuitSAT.

Before we proceed with the algorithm, we need to generalize the above ap-

66

proach a bit. As before, let y € (0,1). Call

q:{0,1)" = [0,1 —vJ U{1}

a quality measure if it satisfies two properties:

i. the maintain property: for every x € {0,1}*,

max(q(x0), q(x1)) > q(x)

ii. the gain property: for some integer p > 0, for every x € {0,1}°™od P,

1—q(x)

max(q(x0), q(x1)) > q(x) + T+i/p

By setting p = 1, we obtain the previous treatment where a significant gain
in quality was possible at every step. In contrast, here such a gain is possible
once every p steps only, and the maintain property makes it possible to preserve
the quality in other steps. Call p the plateau length of q.

Call a function a selector for q, if for every x € {0,1)° mod P and y € {0,1}<P,

SEL4(xy,e) =b whenever q(xyb) — q(xyb) > ¢(1 — q(x))

where b € {0,1}, b denotes —b, and ¢ = 1/d for some integer d > 0 encoded as

67

14. Then we can use SEL, as an oracle to come up with a string of maximum

quality 1 in about log(1/y) steps. More precisely:

Lemma 5.3. Let {qnlnen be a family of quality measures, and {SELq, jnen of corre-
sponding selector functions. Let p,, be the plateau length of q.. The task to produce,

given 1™, a string x € {0,1)° ™4 Pn with q,,(x) = 1, lies in

FTIME? (poly(n, p,, log %)

for every extension S of the function (1™,x, e) — SELq, (X, €) to a language.

Proof. Given 1™, consider the process that initializes x to the empty string, and
then for m steps, appends S(1™,x, ¢) to x, and finally returns x. With foresight,
set m =py[log -] and e = .

At each step of this process, the current value of x gets appended a bit b &
{0,1} satistying S(1™,x, ¢) = b, hence satisfying SEL,, (x, €) # b. Therefore, since

SEL,, is a selector for g,

dn(xyb) — dn(xyb) < e(1 — qn(x)). (t)

At steps 1,pn +1,2pn +1,... of the process, the string x in () is of length 0

68

mod p,, and y is empty, so

qn(Xb) 2 qn(XB) - 5(1 — qn(x))

at those steps. Putting together with the gain property, we get that even if the

process does not make the best choice at such a step, i.e., even if q, (xb) > qn(xb),

anlxb) > anlx) + (7577 — o)1= an(x)
> qu(x) + (5 — &)(1— anlx)).

2

Since ¢ < 1/6, it follows that at steps 1,pn +1,2pn, +1,... , the process closes
at least a third of the remaining gap between the quality value qn.(x) at the
beginning of the step and the maximum possible value 1.

During other steps, even if the process does not make the better choice, i.e.,

even if q,(xyb) > q.(xyb), the maintain property applied to (}) gives

dn(xyb) = gn(xy) — e(1 — gn(x))

which implies, since ¢ < 6%“, that during steps 2...p,, the quality lost is
bounded by 1/6 of the gap between the initial quality (of the empty string) and

the maximum possible quality 1. More generally, during steps jpn +2...jpn, the

69

quality lost is bounded by 1/6 of the gap between the quality at the beginning
of step jpn + 1 and the maximum possible quality 1.

Putting together, at every block of p,, steps, the process closes at least a ¢-
fraction of the remaining gap between the quality at the beginning of the block
and the maximum possible value 1. It follows, because g, takes no value in the
interval (yn,1), that after [log, /6 Y« | blocks, hence certainly after p,, [log1/vynx |

steps, the quality reached is guaranteed to be 1. O
We are ready to prove Lemma 5.1 and thus finish the proof of Theorem 1.4.

Proof of Lemma 5.1. We want to show that given 1™, a nondeterministic circuit
for —CircuitSAT at length n can be constructed in FP*?", assuming: a) such a
circuit of size s(n) € O(n*) exists for all n, for some fixed k, and, b) AM C L,P.

First, some notation: Let i € O(nlogn) be such that every nondeterministic
circuit of size n can be represented by a string of size fi. Use §(n) for sT{). Given

a language L and a circuit, call that circuit sound with respect to L iff L(x) =1 for

every input x accepted by the circuit.

Lemb5.1
n

For n € N, consider the quality measure ¢ that interprets its input as
C1C,...C(D, where each C; € {0,1}3(™) represents a nondeterministic circuit of

size s(n) on n inputs, and D € {0,1}=%(") is the prefix of such a representation.

70

Define qLem>! as follows.

;

0, if C; is not sound w.r.t. —=CircuitSAT for some i

Lem5.1 ’(Vl Ci)il(l)‘ f D is th
emb5. — | is the empty strin
dn (C1C2CtD) : |ﬁCircuit85Tn*1(1) pty g

(Vi v)
max

| D€ Suffixp ‘ﬂCircuitSATn_l(l)

, else

where —CircuitSAT,, is the restriction of CircuitSAT to length-n inputs, and

Suffixp = {D* € {0,1¥™ : D* is sound w.r.t. =CircuitSAT

and D is a prefix of D*} .

We claim that k™! is a quality measure, with y, = 1/2" and p,, = 3(n).
The gain property follows from the assumption that there does exist a size-s(n)
circuit for —~CircuitSAT,,, hence a length-3(n) representation of that circuit, so
that on inputs of the form C;C,...C, €{0,1} mod Pn one always has the option
of appending the first bit of that representation, thereby getting a string of quality
1 (albeit not of length 0 mod p,). The maintain property is clear.

By Lemma 5.3, the task to produce, given 1™, a circuit for ~CircuitSAT,, is in

FTIME?® (poly(n,pn,log%)) = FP®

n

71

for every extension S of the function
SELqLem5.1 : (1“, X, E) = SELqTLIem&l (X, 8)

to a total function. Therefore, the proof is complete once we show:

Lemma 5.4. Under the assumptions of Lemma 5.1, SEL jiems1 can be extended to some

S € PP,

which we will do in the rest of this section.

(Lemma 5.1, mod Lemma 5.4) [

Proof of Lemma 5.4. First, let us unwind definitions to see what SEL jiems1 does.

Since it is a selector function for q-™>!,

SEL jrems1 (1™, xy, &) = b if gkl (xyb) — gk (xyb) > e(1 — g™ (x)).

n

Lemb.1

Letting q denote ¢ , we can rewrite the last inequality as

(dn(xyb) — dn(x)) — (an(xyb) — dn(x)) > e(1 — qn(x)).

Recalling how q,, behaves — it interprets its input xy, where x| = 0 mod §(n)
and [y| < §(n), as C;1C,...C{D where C; € {0,1}3(™) represents a nondeterministic

circuit of size s(n) on n inputs, and D € {0,1}<%5(™ is the prefix of such a

72

representation — we can write the first term in the last inequality as

(D) (N (Vi CO (1)1

n(C1.¢Db) —gn(Ci¢)) = ma
(dn(C1.4DB) = dn(Cot)) DieSuffixpy |[-CircuitSAT,, (1)

provided that each C; is sound with respect to CircuitSAT.

Repeating this for the other two terms in that inequality, we get

SEL jrems1 (1™, Cy 4D, €e) = b if max

(D) D\ (ViCo) (1)

Dy eSuffixpy
x\—1 -1
o (D5 N (VG ()

> e ‘ﬁCircuitSATn_l(l) \ (vici)*lu)‘

provided that each C; is sound with respect to —~CircuitSAT.

Lemb5.1

What if some C; is not sound? Then the quality measure q;;

gives 0 no
matter what, and SEL ;151 would be correct no matter what it returns. Thus from
here onwards we do assume that each C; is sound with respect to ~CircuitSAT.

At this point, it is becoming clearer what we are to do. Letting

Bi= . max |(Dy) (DN (Vi€ (1],
Bi=_ max |(Dy) 1\ (ViC) ()

73

and observing that

B,B < |~CircuitSAT, '(1) \ (ViCi) (1)
we see that the function R defined as

RO, C1iD,e) =b if B—B>(B+B)

extends SEL jiems1. Therefore it suffices to show:
Lemma 5.5. Under the assumptions of Lemma 5.1, R can be extended to some S € P>,

which we will do in the rest of this section.

(Lemma 5.4, mod Lemma 5.5) [

Proof of Lemma 5.5. We want to show how to detect the condition

(14+¢/2) —

P>0=¢p)

(1)

in P>, One way to detect this is to compute the approximations « and & such
that

B<a<(l—e/2)7'B, P<a<(1—-¢/27'B ()

and then to return b or b depending on which of « or « is greater — this works

74

because (1) implies o« > & (think of the contrapositive) and because o > & implies
the negation of (i), where (1) is the same as (I) except 3 and 3 are swapped.

So it suffices to show that under the assumptions of the lemma, the following
task is in FP™': given (1™, Cy D, ¢), output the approximations « and « satis-
fying (2(). Actually it suffices to do this for o only; the case for & follows by
symmetry.

Let the length of the input (1™, C;. D, ¢) be N. Recall that each C; € {0, 1}5(™)
represents a nondeterministic circuit of size s(n) on n inputs, and D € {0,1}<5(™)
is the prefix of such a representation. Let r(n) be the size of the circuit \/; C;,
and let ¥(n) be the length of the string representing that circuit. Notice that since
each C; is nondeterministic, so is \/; C;.

By the assumption that —CircuitSAT has a nondeterministic circuit of size

s(n) for every n, we know that for every input x € {0,1}",
\VCix) =0 iff M(\/Ci(x)) =1

for some nondeterministic circuit M computing —~CircuitSAT at input length ¥(n).

M is of size s(¥(n)). Recalling that s € poly(n) C poly(N), the size of M is in
poly(N).

75

Consider the function

1, if AM,D*: M, D* are sound w.r.t. =CircuitSAT
and
(MViC)AD) ()] > a
Q(1",Cq..C{D, a,¢) :=
0, if YM,D*: M, D* are sound w.r.t. ~CircuitSAT

implies

‘(M(\/iCi) /\D*)*m‘ <a(l—e¢)

\

where M is quantified over {0,1}*("(™)), i.e., over circuits of size s(¥(n)) on ¥(n)
inputs, and D* is quantified over {D} x {0,1}3(™~IP! j.e., over circuits of size s(n)
whose descriptions start as D.

We claim that Q can be extended to some L € X,P. Once we show this, the
proof will be done because it is guaranteed, by the specification of Q and by the
existence of a circuit M for —CircuitSAT at an appropriate length, that a binary

search for « € [0,2"] satisfying
L(1",Ci..CtDb,x,e/2) =1 and L(1", C:..CiDb,x+1,¢/2) =0

yields an « satistying (), as desired.

76

By the assumption that AM C L,P and by Fact 3.2, there is a language A € L,P

such that

1, if|[C'1)]|>a
A(1",C,a,¢) =

0, if [C(1)| < a(l—¢)

where C denotes a nondeterministic circuit on n inputs. Therefore, the language

L defined as

L(1™, Cby..C(D, q,¢) :=3dM,D*: M, D" are sound w.r.t. —CircuitSAT

and A(1™, M(V;C;) AD* q,c¢)

extends Q. Here M and D* are quantified in the same way as in Q.
Since the predicate for checking soundness of a circuit with respect to ~CircuitSAT
is in coNP — for every satisfiable nondeterministic circuit x, does M reject x? —

L is in X,P as claimed. This finishes the proof. 1

77

6 PROOF OF THIRD RESULT

In this chapter we prove Theorem 1.5 (p. 8), which we recall here:

Theorem 1.5, Restated. If AM C L,P then X,EXP contains a function of nondeter-

ministic circuit complexity in n®W.

The proof uses two main ingredients. The first is a variant of Theorem 1.4.

Lemma 6.1. If AM C L,P then EXP™*" contains a function of nondeterministic circuit

complexity in n®W.

Lemma 6.1 is proved the same way as Theorem 1.4, with straightforward
adjustments to some parameters. We defer its proof to after the proof of Theorem
1.5.

The second ingredient is quite involved. It says that assuming AM C L,P,
if the language @SAT (Section 3) has small nondeterministic circuits, then the

exponential-time hierarchy collapses to the second level.

Lemma 6.2. Suppose AM C L,P. If ®SAT has nondeterministic circuits of polynomial
size, then EXP™" C L,EXP.

We defer the proof of Lemma 6.2 to later in this chapter, barring one result
from Chapter 7 needed in the proof.

We now proceed with the proof of Theorem 1.5.

78

Proof of Theorem 1.5. We may assume that the language @SAT has nondetermin-

istic circuits of polynomial size, for otherwise there is nothing to prove since

@SAT € EXP ¢ L,EXP. The theorem now follows from Lemmas 6.1-6.2.
(Theorem 1.5, mod Lemmas 6.1-6.2) [

Proof of Lemma 6.1. The proof is the same as that of Theorem 1.4, with minor
adjustments to the parameters.

For notational convenience, let P denote DTIME(2P°¥8(n)) Similarly, let FP
denote FTIME(2F°Y108(n)) 5 P denote £,TIME(2POY108™) etc.

Let s(n) = 28" " for an arbitrarily large k € N. Under the assumption that
AM C Z,P, we construct a language L € EXP*?" such that for infinitely many n,
no nondeterministic circuit of size s(n) computes L correctly on every x € {0,1}™.

If setting L := —CircuitSAT does the job, then we are done. Hence we may
assume that —CircuitSAT is computable at every large enough length m by some
nondeterministic circuit C—circuitsat,, Of size s(m).

A crucial piece of the proof is the following lemma, which is a variant of

Lemma 5.1 used crucially in Theorem 1.4.

Lemma 6.3. Suppose that —CircuitSAT is computable at every length m by a nonde-
terministic circuit of size s(m) € O(2los" m), for some fixed k € N. Suppose further

that AM C L,P.

79

Then there is a function C_circuitsaT € FPZP that on input 1™, outputs a nondeter-
ministic circuit (not necessarily of size s(m)) for ~CircuitSAT at length m, for every

m.

Given Lemma 6.3, the rest of the proof proceeds identical to that of Theorem
1.4, provided we put 2P°18(") in place of poly(n) whenever it occurs (and it

occurs only once, in the analysis at the end).

(Lemma 6.1, mod Lemma 6.3) [

Proof Sketch for Lemma 6.3. The proof is almost identical to that of Lemma 5.1;
the only adjustments needed are: (a) replacing s € O(n*) with s € O(2ls"),
and (b) replacing occurrences of X,P with ~,P whenever it has to do with the
complexity of the selector function.

With these adjustments, the complexity of the function C-circuitsar becomes
FPS for some language S in PP where we use, as above, FP (and respectively, P)
to denote FTIME (2P 108 1) (respectively, DTIME(2P°Y108™)) - Simplifying, we get
FPZ2F, Finally, because the time complexity of oracle queries can be absorbed into
the queries themselves by padding, and because functions of the form 2plylosm

are closed under composition, we get C—circuisar € FP*2" as claimed.

We now turn to Lemma 6.2. Actually we prove something stronger:

80

Lemma 6.4. Suppose AM C L,P. If ®SAT has nondeterministic circuits of polynomial

size, then P™2F C L,P.
Lemma 6.2 follows from Lemma 6.4 by a so-called padding argument:

Proof of Lemma 6.2. For L € EXP*?", let L’ be the language mapping input pairs
of the form (x,y) to L(x) whenever [y| > 2, where c is the smallest integer
such that L € DTIME*"(2°("“)). On the rest of input pairs let L’ behave trivially,
say by mapping to zero. Then L’ € P>2F,

Suppose that AM C X,P. Suppose further that @SAT has nondeterministic
circuits of polynomial size. Then by Lemma 6.4, L’ € £,P. Hence the language
K mapping x to L'(x, 12" is in Z,EXP. But K is identical to L.

(Lemma 6.2, mod Lemma 6.4) [l

To prove Lemma 6.4, the first ingredient we will use is a technical augmen-

tation of Arthur-Merlin protocols.

Definition 6.5 (Augmented Arthur-Merlin protocol). The class MAH consists of
all functions TI(x) for which there exists { € poly(n), a function T'(x,y) € AM, and a

function V(x,y) € coNP such that

1, if3y:((x,y) edoml' A T(x,y)) AV(x,y)
M(x) =

0, ifVy:((x,y) edoml A-T(x,y))V —~V(x,y)

81
where y ranges over {0, 1}*xD.

Similar to the class AM, underlying each function in MAH there is a protocol
between an all-powerful prover, Merlin, and — in this case — two verifiers,
Arthur and Henry, who cannot communicate with each other. Arthur is the
usual randomized polynomial-time verifier for the AM-function I'; Henry is the
coNP-verifier deciding V. Merlin goes first and sends a common message to
both verifiers. At this point, Henry has to make a decision to accept/reject,
whereas Arthur can interact with Merlin as in the Arthur-Merlin protocol for T
before making a decision. The input is accepted by the protocol iff both verifiers
accept. (Since the word “verifier” connotes restricted computational power, it
may be helpful to think of Henry as having private access to a second all-powerful
prover who competes with Merlin by providing a certificate that is to serve as a
counter-certificate to Merlin’s initial message.)

The class MAH is useful because the assumption of Lemma 6.4, that AM C

L,P, can be equivalently stated using MAH instead:
Lemma 6.6. AM C L,P iff MAH C L,P.

Proof. One direction is trivial. As for the other, replacing I" in Definition 6.5 by

a X,P-predicate turns IT into a X,P-predicate. O

The second ingredient in proving Lemma 6.4 is a substantial result from

82

Chapter 7, showing that the language @SAT is checkable (as defined in Section
3).

Theorem 7.1, Pre-stated. @®SAT is checkable.
The third and final ingredient is a famous result of Toda [51].
Fact 6.7 ([51]). L,SAT — ®SAT via a randomized reduction.
We are ready to derive Lemma 6.4, thus finish the proof of Theorem 1.5.

Proof of Lemma 6.4. Suppose AM C L,P. Suppose that @SAT has nondeterminis-
tic circuits of polynomial size.

For warmup, suppose further that ®SAT has deterministic circuits of polyno-
mial size. Under this additional assumption, there is an MA-protocol for X,SAT
that proceeds roughly as follows. Given input ¢ € {0,1}" to L,SAT, Arthur per-
forms the reduction in Fact 6.7, thereby obtaining an input) € {0,1}™ to @SAT
such that

Pr(Z.SAT(¢@) = ®SAT(Y)] > 1—¢

for some m € poly(n) and some negligible ¢ € (1 /n)*M Merlin sends Arthur
a circuit for ®SAT on (-bit inputs, for a sufficiently large { € poly(m) C poly(n).
Arthur then uses that circuit as the prover in an interactive protocol for the ®@SAT

instance .

83

Since MA C L,P and P*?" C %,P, it follows that under the additional assump-
tion, P>2F ¢ Z,P as desired.

Now we remove the additional assumption and try to mimic the same argu-
ment, this time using an MAH protocol instead of MA. By assumption, there
is a nondeterministic circuit C such that for every ¥ € {0,1}*, C accepts iff
®SAT () = 1. In fact, because @SAT is closed under complement, there is an-
other nondeterministic circuit that accepts iff ®SAT(1p) = 0. Putting together,
there is a nondeterministic circuit D such that for every ¥ € {0,1}* and b € {0, 1},
D accepts (b,) iff ®SAT(p) = b. Say that D two-sidedly decides ©SAT.

Now, the MAH protocol for @SAT starts the same way as in the above MA-
protocol, with Arthur doing the reduction ¢ — 1 and Merlin sending a circuit D
that (in this case is nondeterministic and two-sidedly) decides @SAT. In contrast
to the above protocol, here Henry, the second verifier, also receives the circuit
D; his role is to check that D is consistent in the following sense: D should never
accept both (0,x) and (1,x) for any x. If this check fails, the protocol rejects.

If the consistency check passes, then Arthur and Merlin continue with the
protocol as follows. Arthur initiates a simulation of the interactive protocol for
@SAT on , by picking a random string y; ...y, and sending it to Merlin. Merlin
responds with the string z; ...z, purported to be the responses of the honest
prover in the interactive protocol for @SAT on { where the messages of the

verifier are y;...y.. Merlin also sends a sequence of strings s; ... s; these are for

84

Arthur to use as the choice inputs when evaluating D during the simulation.
Arthur then performs the simulation as follows. Since ©SAT is checkable,
there is a reduction R € FP such that each message z; of the honest prover — if

it is indeed from the honest prover — must satisfy

Zi = @SAT(RN’/UL .. '/yi))/

or, in terms of the circuit D that two-sidedly decides @SAT — if it indeed two-

sidedly decides @SAT — each z; must satisfy

D(Zi/R(q)/yl/- . -/yi)) =1

Arthur checks this last condition for each z;, by using the string s; as the choice
inputs in evaluating D. If this check passes, the protocol accepts. Otherwise it
rejects.

Notice that in a regular interactive protocol, the soundness error probability
(i.e., the probability that the verifier rejects the input, if the input is to be rejected)
would be compromised if the verifier sends his random choices y all at once to
the prover. However, here we have a circuit D that acts as a prior commitment
by the prover, who cannot adapt his responses z to the values sent by the verifier.

More specifically, suppose X,SAT(¢) = 1. Then Merlin can just send the

85

circuit for @SAT at the appropriate input length. That circuit passes the coNP-
verifier Henry, and also passes Arthur’s verification with high probability.

As for the case L,SAT(¢) = 0, suppose that Merlin sends a circuit D’ that
passes Henry’s test. This means that D’ is consistent, and corresponds to a fixed
prover strategy. Then Arthur rejects with high probability by the soundness of

the original interactive proof system for @SAT. This finishes the proof. O

86

'/ PROOF OF FOURTH RESULT

In this chapter we prove Theorem 1.7 (p. 14), which we recall here:
Thm 1.7, Restated.

i. MAEXP ¢ P/poly holds relative to every affine oracle.
ii. NEXP ¢ P/poly does not hold relative to every affine oracle.

iii. NEXP C P/poly does not hold relative to every affine oracle.

The first order of business is to state what affine oracles are, and what it means
for something to hold relative to an oracle. Hence we start with definitions. After
that we prove a useful property of @SAT, namely that it is checkable (p. 43). After

that we turn to Theorem 1.7 and prove each part in a separate section.

7.1 Definitions

Oracle access capability. Given r € poly(n) and f € FP, consider the function

f*:(0,x) — f9(x)

that takes as input any language O and string x, and outputs g(x), where f is a

Cook reduction of round complexity r from the language g to O. We call the set

87

of all such f*, over all f € FP and all r € poly(n), the class FP* — “FP with oracle
access capability” .

For readability, we always use the notation in the previous paragraph: a
starred symbol such as f* denotes a member of FP”*, and its un-starred version
f denotes the member of FP on which f* is based.

For each f* € FP*, we say f* has oracle access capability. We use f° to denote
(0, -), the restriction of f obtained by setting its first argument to O, and refer
to 9 as f* when given access to O.

All definitions built on FP above naturally generalize to their oracle-access-

capable versions. For example,

NP :={L:3V € P, 3(€ poly(n), Vx string

Lix)=1 < Jy {0, 11" Vv(x,y) }

generalizes to

NP* :={L*:3V* € P*, 3C € poly(n), Vx string, VO language,
(7.1)

L*(0,x) =1 < 3Jy {0, 11*™ v*(9,x,y) }.

Similarly IP generalizes to IP*, etc. When we say “there is an interactive protocol
where the verifier has oracle access capability”, for example, we are merely

referring to a function in IP".

88

Enumeration. We take it as a fact that FP is enumerable. It follows that every
class defined above is enumerable. For example, to find an enumeration of NP~,
by (7.1) it suffices to find an enumeration of P* and cross with N. To find an
enumeration of P*, it suffices to find an enumeration of FP* since P* is obtained
by taking every function in FP* and projecting its output to the first coordinate.
Finally, to find an enumeration of FP”, it suffices to take an enumeration for FP
and cross it with N, because by definitions above, underlying every f* € FP are

some f € FP and some r € poly(n).

Query complexity. Let f* € FP*. By definition, underlying f* are some r €
poly(n) and f € FP, where f is a Cook reduction of round complexity r. We

refer to v as the query complexity of f*.

Well-behaved resource bound. Call a function s : N — N a well-behaved resource

OM) and

bound if it is increasing, satisfies O(s(n)) C s(O(n)) C s(n)°® c s(n
n < s(n), and if the function that maps the binary encoding of n to the binary
encoding of s(n) is in FP. Functions of the form n4, (ndlogn)4’,2(le™* 2dn are
well-behaved resource bounds.

This generalizes to s : N> — N if fixing either of the inputs yields a well-

behaved resource bound.

89

Languages as families. In this chapter we specify languages as families of

Boolean functions {L,, : {0,1}" — {0,1}} Sometimes we also specify them as

nen-
{fm :{0, 1™ — {0, 1}}TLEN or as {fmx :{0,1}5(™* — {0, 1}}m,k€N for some well-
behaved resource bound s that is bounded by a polynomial (respectively, in m
or in mk).

It is an elementary fact that a family of the form {f,,} or {f.,x} as above can
be efficiently viewed as a language of the form {L,,} as above, and vice versa.
For concreteness, let m ¢ k denote the Cantor pairing of m and k. Then given
{fmx), define {L,} as L,(x) = fik(X1.s(mx)) for the largest m ¢ k such that

s(mok,mok) <n. Conversely, given {L,}, define {f,, ik} as fm k(x) := L, (x0P),

where p is set so that the input to L is of length exactly n = s(m ok, mok).

Representing F,x. We represent each element of Fy« by a k-bit Boolean string,
forming the coefficients of a polynomial in the ring [F,[x] mod some irreducible
Pr(x) of degree k. We fix a uniform collection {py},_, of such irreducibles, i.e.,
there is a function in FP that outputs py given k in unary [49].

The Boolean version of a function q : Ft — [y is, for concreteness, the
function bool(q) mapping (x,y) to the y bit of q(x). (Our results do not depend
on this definition; any other equivalent function under Cook reductions would

work.)

90

Affine extensions / oracles. (This definition uses all the definitions above.)
Given f,, : {0,1}™ — {0,1}, we define its affine extension polynomial as the
unique m-variate polynomial over F,, with individual degree <1, that agrees

with f,,, over Fy for all k, i.e., as

~

fm(x) == 2 peponpm fm(b) - [TE, (1 +xi+by)

By the affine extension of f,, :{0,1}™ — {0, 1}, we mean the family

fin = {%V:l}kEN

where 1?; denotes the function that evaluates ?m over [Fox, and 17; denotes the
Boolean version of fATl;

Given a family f := {f,;,} we define its affine extension f (or its affine extension
polynomial f) as the family obtained by applying the above definitions to each
member. In particular, for the language

0 ={0m :{0,1}™ —{0,1}}

meN

91

its affine extension 6, which we denote here by A, is

A= {-Am,k :{0, 1ymHrles kT — {0, 1}}k,m€N

A (U1-Ymz) — 2 bit of O (Y1, .., Unm)

where each y; is interpreted as a member of F,«. (By the previous definitions,
A can be efficiently viewed as a family of the form {A, : {0,1}™ — {0, 1}},en, and
vice versa.)

By an affine oracle, we mean the affine extension of a language.

Boolean bases. Recall from Chapter 3 that the standard Boolean basis is Bgg =
{0,1,®,/\}. More generally, we define a Boolean basis inductively, as either the
standard Boolean basis, or the set B U {f} where B is a Boolean basis and f is a
language. We refer to B U {f} as the basis B extended with f, and when B is the
standard basis, as the f-extended basis.

For representing circuits (hence formulas) over extended bases B D Bgyq, we
assume a generic labeling of gates — using labels such as ‘the i nonstandard

element’” — so that a given circuit can be interpreted over different bases.

The language ®SAT'. We extend the definition of @SAT given in Chapter 3.

For every Boolean basis B and language f, define ®SAT as the language

92

mapping ¢(X) to the evaluation of the mod-2 sum @5$(&), where ¢ denotes a
formula over the basis B extended with f. By default B is the standard basis
and f is an element of the standard basis, say the all-zeroes language 0. (So the
default case is @SAT from Chapter 3.)

We index @SAT by n, any upper bound on the number of nodes of the
formula ¢. That is, we view @SAT as {GBSATH}REN, where @SAT,, is defined
on length-s(n) strings for some fixed s(n) € poly(n), with each such string
representing a formula ¢ of at most n nodes.

Since (®SAT")9 is equivalent to (®SAT?)" under Karp reductions, we write

®SAT"9 to mean either.

Relativization. We say that a statement 1 holds relative to the language O, iff
1 can be proven when two things are done: (a) the standard Boolean basis is
extended with O, and (b) FP is redefined as FP®. (See Section 3 for the definition
of FP?))

Cook-Levin Theorem. For every function F € FP, there is a function Descy € FP
satisfying the following. For every n € N, Desc¢(1™) outputs a circuit C¢, such
that for every x € {0,1}™, F(x) = C¢,(x). This holds relative to every oracle.

We refer to this fact as the Cook-Levin theorem.

93
7.2 Checkability of @SAT

The main result of this section is the following.
Theorem 7.1. ©SAT is checkable. This holds relative to every affine oracle.

Proving Theorem 7.1 requires a fair amount of machinery to be developed.

We start by defining an arithmetic analogue of ©SAT.

Definition 7.1 (Arithmetic basis). For every Boolean basis B, define the arithmetic
basis B as the set comprising all constants in Fyx for each k, and f for each f € B. By

the standard arithmetic basis we mean ﬁstd where Bgy is the standard Boolean basis.

Definition 7.2 (+ASAT"). For every Boolean basis B and language f, define +ASAT'
as the Boolean version (as defined in Section 7.1) of the map Y(X) — L gz¥(&) where ¥
denotes a formula over the arithmetic basis corresponding to B U{f}. By default B is the
standard basis and f is an element of the standard basis, say the all-zeroes language 0.

We index +ASAT by n and k, and write the corresponding member as +ASAT,,;
here n upper bounds the number of nodes in formula ®, and k denotes the field F,x
where the constants of @ reside.

For our purposes (to become clear in the proof of Lemma 7.6) we require k > log”n.

Five lemmas regarding ©@SAT and +ASAT are used to prove Theorem 7.1:

94

Lemma 7.2. ®SAT" — @SAT? for every language f and g such that f Cook-reduces to
g. The reduction works over any Boolean basis for formulas, and depends only on the

reduction from f to g.

Lemma 7.3. ®SAT' — @SAT' for every language f. The reduction works over any

Boolean basis for formulas.

Lemma 7.4. ®SAT — +ASAT. The reduction works over any Boolean basis for for-

mulas and its corresponding arithmetic basis.

Lemma 7.5. +ASAT — @®SAT. The reduction works over any Boolean basis for for-

mulas and its corresponding arithmetic basis.

Lemma 7.6. +ASAT is checkable. In fact, for every language O, +ASAT? is checkable

with oracle access (as defined in Section 3) to 0.
We defer the proof of these lemmas to after the proof of Theorem 7.1.

Proof of Theorem 7.1. Let O be an arbitrary language and A its affine extension.
We want to show that @SAT* is checkable with oracle access to A. (To recall
what it means for a language to be checkable with oracle access, see Section 3.)

To begin with, we claim that

®SAT? — +ASAT® 1)

95

and that
+ASAT® — @SATH. 1)

To see the first claim, use Lemma 7.3 to get ®SAT — ®SATY, and then use
Lemma 7.4 with the O-extended Boolean basis to get ®SAT® — +ASAT®.

For the second claim, use Lemma 7.5 with the O-extended Boolean basis to
get +ASAT® — @SAT®, and then use Lemma 7.2, together with the fact that O
Karp-reduces, hence Cook-reduces, to A, to get ®SAT® — GSAT.

Now, by Lemma 7.6, we know that +ASATY is checkable with oracle access
to A. But then ®@SAT" is also checkable: On input x, use the reduction (}) to get
an input x’ for +ASAT®, and then simulate the checking protocol for +ASAT®,

by using the reduction () to translate each query for +ASAT? to one for ®SAT#.

(Theorem 7.1, mod Lemmas 7.2-7.6)
O

In the rest of this section we prove Lemmas 7.2-7.6. To do so, first we extend
®SAT and +ASAT to expressions involving summations within the formula (not
just in front). We call the extensions &*SAT and +*ASAT, respectively. After that,
we derive certain facts relating @*SAT, @SAT, +*ASAT, and +ASAT. Finally, we

put these together to prove Lemmas 7.2-7.6.

96

7.2.1 Extending ®©SAT to &'SAT and +ASAT to +*ASAT

We give four definitions, two for extending @SAT and two for +ASAT.

Definition 7.3 (bbs). For every Boolean basis B, consider the set of expressions obtained
inductively, by letting in: (i) every variable; (ii) f(\1..) for every U1, .., by already
let in, for every element f in the basis, for every m € N; (iii) @, \p for every \p already let
in, for every free variable y of \p. Call this the set of Boolean expressions involving

binary sums (bbs) over the basis B.

Definition 7.4 (EB*SATf). Define ®*SAT' over the basis B as the map P (X) — Sz (K)
where \p is a bbs over B U{f}, with input variables X. By default B is the standard basis

and f is the all-zeroes language 0.

Definition 7.5 (abs). For every arithmetic basis A, consider the set of expressions
obtained inductively, by letting in: (i) every variable; (ii) f(W1.. W) for every Wq,.., Wi
already let in, for every element in A, for every m € N; (iii) 3 ., ¥ for every ¥
already let in, for every free variable y of V. Call this the set of arithmetic expressions

involving binary sums (abs) over the basis A.

Definition 7.6 (+*ASAT"). Define +*ASAT" over the basis A as the Boolean version
(as defined in Section 3) of the map Y(X) — LzV¥(&), where ¥ is an abs over A U {1?}
with input variables X, and each o ranges over {0,1}. By default, A is the standard

arithmetic basis and f is the all-zeroes language 0.

97

7.2.2 Relating ®SAT, &'SAT, +ASAT and + ASAT
We show six relationships in this subsection:

Lemma 7.7. ®SAT" — &*SAT? whenever f Cook-reduces to g. The reduction works

over any Boolean basis for formulas, and depends only on the reduction from f to g.

Lemma 7.8. @SAT®*T — @*SAT. The reduction works over any Boolean basis for

formulas.

Lemma 7.9. ®SAT — +"ASAT. The reduction works over any Boolean basis for

formulas and its corresponding arithmetic basis.

Lemma 7.10. +*ASAT — +ASAT. The reduction works over any arithmetic basis for

formulas.

Lemma 7.11. +ASAT — ©SAT. The reduction works over any Boolean basis for

formulas and its corresponding arithmetic basis.

Corollary 7.12. & SAT — @®SAT. The reduction works over any Boolean basis for

formulas.

We prove each of these in turn. Before we begin, we derive an auxiliary fact

that will be useful in proving Lemma 7.7 and Lemma 7.8.

98

Lemma 7.13. For every function R € FP there is a function R’ € FP such that the
following holds. If R is a Cook reduction from some language f to some language g, then

for every m, R’(1™) gives a formula &(x,y) over the g-extended Boolean basis such that
f(x) = ®y&(x,v)
for every x € {0,1}™.
This holds relative to every language.

Proof. Let O be an arbitrary language, and let R € FP° be a Cook reduction from
some language f to some language g. That is, there is some { € poly(n) such

that for every x,

f(x) = R(x,z), where z; = g(R(x,z1..zi_1)) and |z| = £(|x]).

By the Cook-Levin theorem (Section 7.1) applied to R, it follows that there is

¢ € poly(n), and there are circuits C, .., C¢(n), each over the O-extended Boolean

basis, such that for every x,

f(X) = Ce(n)(xl Z)/ where zZi = g(Ci/_l(X/ Zl'-zi—l)) and |Z| - €(|X|)I

99

and where

Cly) = (C (W) rey)1

the idea being to calculate the output length of R(y) and trim the excess output
bits of C;(y) before making any use of it. Notice that the function that calculates
the output length of R is in FP?, because R is. Hence by the Cook-Levin theorem
again, each C{ can be implemented by a circuit; moreover, each such circuit can
be produced by a function in FP® given 1™.

It follows that the restriction of f to {0, 1}™ satisfies

fx)= @ Cilx,2) A ALy oz = 9(CL (X, 211 1)
z€{0,1)¢
where { denotes {(|x|); further, the righthand side is produced by some function
in FPY given input 1™.

The expression inside the sum is a circuit E(x,z) over the g-extended basis,
and can be equivalently written as the sum @,&(x, z,v) where &(a,v) checks that
v describes the computation of E(a), and v ranges over {0,1}° for an appropriate
s € poly(n).

It follows that there is a function in R’ € FP? that, given input 1™, outputs a

100

formula & over the g- and O-extended basis satisfying

f(x) = @D, &(x, z,V)

for every x € {0,1}". R’ depends only on R. This was to be shown. O

Proof of Lemma 7.7. Let B be a Boolean basis for formulas. Suppose f Cook-
reduces to g. By Lemma 7.13, there is a function in FP that, given a formula ¢
over the basis B U{f}, takes each subformula of the form f(¢;..¢,,) and performs

the replacement

f(d)ld)n) = @y a(d)l--(bn/y)

where & is a formula over the basis B U{g}. This proves ®SAT" — @*SATS. By

Lemma 7.13 again, this reduction depends only on the reduction from f to g. [

Proof of Lemma 7.8. Let B be a Boolean basis for formulas. Given a formula ¢(x)
over the basis B U {®SAT®}, we want a reduction from the task of computing
D« Pp(x) to that of computing @,\(z), for some bbs \(z) over B. We want the
reduction to work for every choice of B.

Intuitively, replacing each occurrence of ®SAT® in ¢(x) with the actual sum
to be computed, would constitute a reduction as desired. More precisely, let
FormulaEval® be the partial language that, on input (t,u), interprets t as a

formula T over the basis B, and outputs t(u), the evaluation of T on u. (In case

101

T has fewer inputs than [u|, let FormulaEval® output T(1t) only if the extra bits
in u are set to zero, else let it output zero.)

Each subformula in ¢(x) of the form
BSAT® (b1..¢m) (7.2)
can be viewed as the sum
EBuE{O,l}mFormulaEvalB (b1..Ppm,u) (7.3)

for each setting of x, since the subformulas ¢1(x), .., (x) collectively describe
a Boolean formula 1, with <m input variables.

Now, FormulaEval® Cook-reduces to the basis B, more precisely, to the func-
tion

[IB : (i,x) — Bi(x)

where B; is the ith element of the basis B. Notice that this reduction does not
depend on what the basis B is, provided we have a reasonable representation
of formulas that uses generic labels for gates — ‘the i nonstandard element’
etc. — which is the case by the way we set things up in Section 7.1 (subsection
“Boolean bases”).

It follows by Lemma 7.13 that there is a function in FP that, given input 1™,

102

outputs a formula &"B over the basis 11B satisfying
FormulaEval® (a) = @B, £"(a,vy) (7.4)

for every input a € {0,1}™. If the basis B contains d elements, then IIB can be

written as
IB(i,x) = ((i=1DABi(x)) & @ ((i=d) ABa(x)) (7.5)

where ‘i =j’ is shorthand for the formula checks that i is the binary encoding
of the number j. The righthand side of (7.5) is a formula over the basis B.
Combining with (7.4), we get a function in FP that, given input 1™, outputs a

formula &P over the basis B satisfying
FormulaEval® (a) = B, & (a,v) (7.6)

for every input a € {0,1}™.
It follows, from (7.3) and (7.6), that there is a function in FP that takes each

subformula of the form (7.2), and performs the replacement

BSAT® (P1..pm) — By, EB (G1..Gm, 1w, Y)

103

proving ®@SAT®**T — @&*SAT. The reduction works over any choice of a basis for

formulas. O

Proof of Lemma 7.9. Given a bbs ¢ over any Boolean basis B, let ® be its “arith-
metization”, obtained by replacing each non-input gate f in ¢ with its affine
extension polynomial f, and by replacing each mod-2 sum with a generic sum
so that a subexpression of ¢ of the form @ ¢(o1,$’ becomes X (o1, D’
Because ?agrees with f on Boolean settings of its inputs by definition (Section
7.1), it follows that ¢ agrees with @ on every Boolean input. And because
we represent [y« as k-bit vectors (Section 7.1), computing ©z¢d (&) reduces to
computing the least significant bit of Xz ® (&) over o« for any k, where each o
ranges over {0, 1} in both sums. The reduction works over any choice of a basis

for formulas. [

Proof of Lemma 7.10. Given an abs ¥ over any arithmetic basis A, we give a re-

duction that produces a (summation-free) formula ® over A satisfying
Y(x) =L,0(x,y)

for every setting of inputs x of ¥ over [y, for every k. Here y ranges over {0, 1}™
for some m depending on V.

There is nothing to do if ¥ is just a variable or constant, so suppose not.

104

If ¥(x) is of the form ¥, - ¥, and if by recursion ¥, is already brought to the
desired form X, ®;(x,y), and ¥, to X ,D,(x,z), then the rest is easy: just make
sure y and z refer to disjoint sets of variables by renaming as needed, and write
Y(x) =2y 01(x,y) - D2(x,2).

In case ¥ =¥ + V¥,, after recursing and renaming as before, write
Y(x) =3, . (@10¢y) - b-Thizi + Os(x,2z)- (1—b)-TLy;),

where b is a single variable.

In case V¥ is of the form f(¥,,..,¥..), where f is a nonstandard basis element,

use the definition of fo, (Section 7.1) to rewrite ¥ as

~

Y(x) = Y o f(b1,e o) - Ty (14 Wilx) + by), (7.7)

then recurse into the product on the right side, and then finish by going to the
first case, ¥ =V¥; - ¥,.
The reduction works over any choice of a Boolean basis for formulas and its

corresponding arithmetic basis. O

Proof of Lemma 7.11. Given an arithmetic formula @(x) and given {, we give a
reduction from finding the {" bit of ¥, ®(x), to evaluating the mod-2 sum &, ¢(z)

for some Boolean formula ¢.

105

To begin with, let us assume that there are no nonstandard fA-gates in @, in
other words, that @ is a Fyc-polynomial for some k. By the way we represent
Fyx (Section 7.1), there is a Boolean circuit C(X) that takes as input a k-bit vector
X; corresponding to each input x; of ®(x), and outputs k bits representing the
value @(x). C can be produced by an FP-function given ©.

Because the original task is to find the {™ bit of the sum ¥, ®(x), and because
addition in F,« corresponds to componentwise addition in F¥, we can ignore all

¢ one. Further, because the summation variables x;

output bits of C except the
range over binary values, we can fix in each X; all the bits to 0 except the least
significant bit, which we can call x;. So we now have a circuit C(x) returning
the (™ bit of @ (x) for every x from the Boolean domain.

It follows that the (" bit =, ®(x) equals @, ,$(x,y), where ¢ is the formula
verifying that y describes the computation of the circuit C on input x. This
proves the lemma when ®(x) is a polynomial.

Now suppose that @ contains ?—gates for an arbitrary f. Mimicking the above
reasoning for the standard basis, we want to express the evaluation of @ as a
Boolean circuit C over the f-extended Boolean basis. Once this is done, the rest
follows as in the earlier case with no ?—gates.

Perform the process, explained in the proof of Lemma 7.10 just above, of

bringing @ to prenex form — a seemingly useless thing to do as ® does not

involve sums. But notice from (7.7) that as a side effect, the process transforms

106

the summation-free ®(x) into the sum Xz ®’(x,B), where each fA-gate in @,
say the i" one, is “isolated” in the sense that its inputs now come from some
Bi1, .., Bim, among the variables B, which all range over Boolean values. Since f
agrees with f on Boolean inputs, now the ?—gates can be replaced with f-gates.
It thus follows, with the same reasoning as earlier, that the " bit of ¥, ®(x)
— which is the same as the " bit of ¥, ®'(x,B) — equals ®, 5y’ (x,B,y),
where ¢’ is a formula over the Boolean basis corresponding to the basis of ©.
¢’ can be produced by an FP-function given ®@; this function works over any

choice of a basis for ©. O

Proof of Corollary 7.12. Immediate by chaining together Lemmas 7.9, 7.10, and
7.11. O

7.2.3 Proof of Lemmas 7.2-7.5

We are ready to derive the first four of the five lemmas used in proving Theorem

7.1.
Proof of Lemma 7.2. Immediate by combining Lemma 7.7 and Corollary 7.12. [

Proof of Lemma 7.3. Being the affine extension of f, by the definitions in Section
7.1, on input x, f gives the z™ bit of the value f takes at y, where y and z are

computable in polynomial-time out of x. In other words, f gives the +ASAT'

107

instance (®,z) where @ is the formula ’fA(y)’. Thus f — +ASAT'. Combining

with Lemma 7.5 gives f — ®SAT". Therefore,
®SAT" — BSAT®AT' —, &*SAT' — @SAT'

by Lemma 7.2, Lemma 7.8, and Corollary 7.12, respectively. O
Proof of Lemma 7.4. Immediate by combining Lemma 7.9 and Lemma 7.10.]

Proof of Lemma 7.5. This is just Lemma 7.11. O

7.24 Proof of Lemma 7.6
We finish the proof of Theorem 7.1 by proving Lemma 7.6.

Proof of Lemma 7.6. We want to show an interactive protocol for +ASAT in which
the power of the honest prover is +ASAT itself. The verifier in this protocol, V,
is given (@, {, b), and must check that the ¢t bit of X, D(x) equals b. Here O® has
all its constants in 5« for some k, hence the sum is over F,x. V works as follows:

First, it obtains the claimed values for the rest of the k bits for X, ®(x), so
that the claim becomes ‘L, ®(x) = u” for some u € Fy.

Second, it performs the sumcheck protocol [12, Section 3.2] over Fyx to get
rid of the sum and update the claim to ‘®(y) = v’ for some y, v over the same

field as that of x,u.

108

At this point, V obtains the value of each gate in the evaluation of ®(y) —
i.e., the value of each subformula of ®, when evaluating ® on y — and checks
all of them.

The analysis of the protocol is standard: if the original claim, that the (%

bit of ~,®(x) equals b, is false, where @ has < n nodes, then the sumcheck

erroneously yields a true claim with probability at most
of rounds - deg @ / size of the field

which grows slower than 1/n¢ for any d, due to the requirement k > log”>n in

the definition of +ASAT (Definition 7.2). This finishes the proof. [

7.3 Proof of Theorem 1.7-(i)

In this section we prove the first part of Theorem 1.7, which we recall here:

Theorem 1.7-(i), Restated. MAEXP contains a function of circuit complexity n®®).

This holds relative to every affine oracle.

The proof uses two main ingredients. First is a result of Kannan [39] akin to

Theorem 1.3.

109

Fact 7.14 ([39]). EXP*?" contains a function of circuit complexity 2™, This holds

relative to every oracle.

Although Kannan gave a different proof of it, Fact 7.14 can be derived sim-
ilarly to the proof of Theorem 1.3 (p. 50). Recall the idea there was to do “fast
diagonalization by approximate counting”, by mimicking the process that suc-
cessively sets the next bit of a truth table to the minority vote of the circuits that
are consistent with the table constructed thus far. Whereas this ideal process
would eliminate at least half of the circuits at each step, the mimicking process
eliminates at least an (1/2 — ¢)-fraction for an arbitrarily small constant ¢ > 0, as
the minority count can be estimated to within any constant factor, via a function
in AM. Now, since every function in AM can be extended to a language in TT,P
[14], and since EXP*?" = EXP"", the first part of Fact 7.14 follows.

To see why this argument relativizes, notice that it makes no particular as-
sumption regarding what basis the circuits are on, as long as they can be eval-
uated. So if we extend the standard Boolean basis by an arbitrary language O,
then the same argument carries through, provided we replace FP by FP°, and
hence AM by AM®, etc. So the second part of Fact 7.14 also follows.

The second ingredient in the proof of Theorem 1.7-(i) says that if the lan-
guage ©SAT has small circuits, then the exponential-time hierarchy collapses to

MAEXP.

110

Lemma 7.15. If ®SAT has circuits of polynomial size, then EXP>" ¢ MAEXP. This

holds relative to every affine oracle.
We prove Lemma 7.15 after proving Theorem 1.7-(i):

Proof of Theorem 1.7-(i). Let A be an affine oracle. If ®SAT” does not have polyno-
mial size circuits, then neither does MAEXP* since ®SAT* € EXP* ¢ MAEXP*.
The theorem now follows from Fact 7.14 and Lemma 7.15.

(Theorem 1.7-(i), mod Lemma 7.15) [

We now turn to Lemma 7.15. The proof will be very similar to that of Lemma
6.2 which, recall, says that under a derandomization assumption, if @SAT has
small nondeterministic circuits, then the exponential-time hierarchy collapses to
the second level. Here we want to deepen that collapse to MAEXP, under the
stronger assumption that @SAT has deterministic circuits. (While we don’t have
a derandomization assumption here, the task is still doable because the class to
which we want the collapse to occur involves randomness by itself.)

Just as was the case for Lemma 6.2, we prove a stronger version of Lemma

7.15:

Lemma 7.16. If ®SAT has circuits of polynomial size, then P=¥ C MA. This holds

relative to every affine oracle.

111

Lemma 7.15 follows from Lemma 7.16 by a padding argument identical to

that in the proof of Lemma 6.2. So all that remains is the proof of Lemma 7.16.

Proof of Lemma 7.16. The proof is already implicit in the proof of Lemma 6.4. Let
A be an affine oracle. Extend the standard Boolean basis with A, and use FP for
FP*, MA for MA*, etc.

Suppose that @SAT has circuits of polynomial size. Then there is an MA-
protocol for L,SAT that proceeds as follows.

Given input ¢ € {0,1}™ to L,SAT, Arthur performs the randomized reduction
from X,SAT to @SAT (Fact 6.7), thereby obtaining an input { € {0,1}™ to @SAT
such that

Pr[LSAT (@) = @SAT(P)] > 1—¢ (t)

for some negligible ¢ € (1/n)*® and m € poly(n). After this, Merlin sends
Arthur a circuit for @SAT on {-bit inputs, for a sufficiently large ¢ € poly(m) C
poly(n). Arthur then uses that circuit as the prover in an interactive protocol
for the ®SAT instance 1, which he can do because ®SAT is checkable (Theorem
7.1).

If ,SAT(¢@) = 1, then by the definition of an interactive protocol, and by
(1), Merlin can send the actual circuit for @SAT and make Arthur accept with
probability greater than (2/3 — ¢), where ¢ € (1/n)* ().

If £.SAT(¢@) = 0, then again by the definition of an interactive protocol, and

112

by (t), no matter what Merlin sends, the probability that Arthur accepts is less
than (1/3 + ¢), where ¢ € (1/n)*W,

By running the checker twice, these probabilities can be polarized to (8/9 —
¢) >2/3and (1/9+¢) < 1/3 respectively. Therefore Z,SAT € MA, and the proof

is complete. O

7.4 Proof of Theorem 1.7-(ii)

In this section we prove the second part of Theorem 1.7, which we recall here:
Theorem 1.7-(ii), Restated. Relative to some affine oracle, NEXP C P/poly.

If we wanted to show NEXP C P/poly relative to some oracle O, affine or
not, or more generally, to show C° C DY for classes € and D, then there is a
simple approach to this, due to Heller [36]: at iteration n € N, take the first n
algorithms underlying C®, and partially fix O so as to force the behavior of these
algorithms on {0, 1}™. Assuming € is not too powerful, this forcing can be done
without having to fix O on all of {0, 1}*", for some constant k, even considering
prior iterations. The free inputs of {0, 1}*™ on which O is yet undefined can then
be used to store information on how the forced algorithms behave, in such a

way that some algorithm in DY can retrieve that information.

113

When it comes the affine oracles, however, we face a difficulty in making this
strategy work. An affine oracle O, being the algebraically redundant version (see
(2.1)) of the oracle O, is less “dense” in its information content then O. So how
do we guarantee that partially fixing O, as done in the above paragraph, still
leaves sufficiently many free inputs on which we can do encoding?

The following two results provide that guarantee. The first one states that
knowing t bits of a binary codeword exposes at most t bits of its information

word, and the second scales this result to affine extensions.

Lemma 7.17 (Interpolation). Let & : Fx — FY be linear and injective. Given a
“dataword” u € IF§ and a set of indices A C [N], consider the collection U of all
datawords w' € FX such that €(u) and E(u’) agree on A.

There is a set of indices B C [K], no larger than A, such that projecting U onto
G := [K] \ B gives all of FS.

Proof. The claim of the lemma on U is true iff it is true on U* := U +u. So it
suffices to show that U™ is a subspace of FX with dimension at least K — |A].
Now, y € U" iff y +u € U, which is iff £(y +u) and €(u) agree on A, which
is iff £(y) vanishes on A. Therefore U™" is identical to the space of all datawords
whose encodings vanish on A.
All that is left is to bound dim U™, or equivalently, to bound dim &(U*) since

€ is injective. The latter quantity is the dimension of the space €N Z, where €

114

is the image of €, and Z is the space of all N-bit vectors that vanish on A. But

then by the theorem on the dimension of a sum of subspaces (e.g. [8, Thm 1.4])

dim(U") =dim(2Z) + dim(€) —dim(Z + €)

=(N—JA)) + K —dim(Z+C)

which is at least K — |A| because Z + € C F). This finishes the proof. O

Theorem 7.18 (Interpolation). Given a language f and a finite set A of inputs, consider
the collection F of all languages g such that f and § agree on A.

There is a set B of inputs, no larger than A, such that every partial Boolean function
g’ defined outside B can be extended to some g € J.

Further, in extending g’ to g, the values of g at length-n inputs depend only on

those of g’ at length n.

Proof. To begin with, consider the special case where A C dom(f)) for some
fixed k and m. For the purpose of invoking Lemma 7.17, let € be the map that
takes as input the truth table of a Boolean function g,, on m bits, and outputs
the truth table of gf,. So & : FX — F), where K = 2™ and N = k2*™ (to see
the value of N, recall that g}, (y,z) gives the z™ bit of gk (y), where g¥ is the
extension of g, to F}).

Clearly € is injective; it is also linear because g}, is additive and because we

115

represent o« with Fy where addition is componentwise (Section 7.1). So & fulfils
the conditions of Lemma 7.17, which yields a set B C {0,1}™ that is no larger
than A, such that every partial Boolean function on {0,1}™ \ B can be extended
to a language in J. This proves the theorem in the special case.

To handle the general case, partition A into A,k = AN dom(fN:l), and use
the above special case as a building block to create a bigger code. In detail, for

every m involved in the partition, define £,, as the map sending the truth table

kq
m/

of gn to the list comprising the truth tables of g.',g,2,... for every Amy,; in
the partition. Now, take each &,, thus obtained, and let € be their product. In
other words, let € take as input a list T,,,, Ty, .. where T,,,, is the truth table of

some Boolean function g,,, on m; bits, and outputs €, (Tm,), Em,(Tm,), .. . The

theorem now follows from Lemma 7.17. O

With Lemma 7.17 and Theorem 7.18 in hand, we are ready to implement
Heller’s approach described in the beginning of this section, and prove Theorem

1.7-(i).

Proof of Theorem 1.7-(ii). It is a basic fact that NEXP has polynomial-size circuits
iff NE (Section 3), the linear-exponential version of NEXP, has circuits of size a

fixed polynomial, and that this relativizes. In notation, for every language O,

NEXP® ¢ PY/poly <= 3d € N:NE° c PY/n¢

116

Therefore, to prove the theorem it suffices to show a language O satisfying
NE® ¢ P9/n4, (7.8)

for some constant d because O reduces to 0.
Take an enumeration Nj, Nj,.. of the class NE*. Such an enumeration can be

obtained from one for NP* (Section 7.1), since by definition (Section 3),
NE* = {L* : (3¢ € N,K* € NP*)(vx, 0) L*(0,x) = K*(0,x,1>)}.

We want to talk about the query complexity of each N} in the enumeration.
Underlying each N} is a constant ¢ € N and a function K* € NP*. Underlying
K* is some { € poly(n), and some g* € P*. Underlying g* is some f* € FP*, of
query complexity (Section 7.1) q¢, say. Define the query complexity q4 of g* be
that of f*. Define the query complexity qx of K* as q4(n + {(n)). Define the
query complexity q; of Nj as qx(n +2°™).

The point of query complexity here is this: if N} (O,x) =1, then this equality
can be maintained by fixing only q;(|x|) bits of O and changing the rest arbitrarily.

Now, modify the list Ny, Ny,.. into a list My, M;,.. (repetitions allowed) such
that if M; has query complexity q;, then gi(n) < 2™'8™ for all n > 1.

Initialize O to the all-zeroes language. The plan is to modify O in such a way

117

that for every n > 1, a size-n9 circuit with access to O, say CT?, can compute the

function

L, : {0, 1}s™ x {0, 1})™ — {0, 1}

L, : (i,%) — MO(x). (7.9)

This yields (7.8), hence the theorem, because each language K & NE° corre-
sponds to some M?, and in order to compute K(x) on all but finitely many
inputs x (in particular for x € {0,1}>?') we can just provide (i,x) to the circuit

CO

&, implying K € P?/nd.

We modify O iteratively; in iteration n > 1 we finalize O on all inputs in
{0, 1}<“d, plus some additional 2*" logn inputs at most. Let f,, denote the finalized
portion of O at the end of iteration n, i.e., f,, is the restriction of O to those inputs
on which it is finalized by the end of iteration n.

In iteration 1 we do nothing, so f; : {A,0,1} — {0} where A is the empty string.

At iteration n > 1, consider all possible ways of extending f,,_; to a language f.

Out of all such f, pick one such that when O = f, the collection
S¢:={(i,x): Lp(i,x) =1} (7.10)

is maximal. Set O = f.

118

Now we want to “open up space” in f by un-defining it at some inputs, the
idea being then to encode the function L, in the freed space so that a small
circuit can look it up. In doing so, of course, we do not want to disturb (7.10),
which, by the way we picked f, is equivalent to wanting that 8¢ does not shrink
— i.e., as we restrict f to some f’/, no matter how we extend f’ back to some
language g, we want 84 = 8s.

Consider a pair (i,x) in 8¢. Because M; has query complexity less than 2™ 108"
on input x € {0,1}", the membership of (i,x) in 8¢ can be preserved by fixing
f on at most 2™°8™ inputs only. There are at most n2" pairs in 8;. Thus if we
want 8¢ not to shrink, it suffices to fix f at 2°™1°6™ inputs. By the Interpolation
theorem, this means we only need to reserve a small set of “bad” inputs B, of
size < 2™"1°8™ beyond those already reserved in previous iterations, i.e., beyond
dom f,,_1, such that on B we have no control as to how f behaves, but on the
“good” inputs {0,1}* \ (B Udomf,,_1), we can change f arbitrarily. So let f,, be
the restriction of f to BUdom f,,_;.

Now that we opened up space in f, we are ready to store the information in
(7.9) so that a small circuit can look it up. That information is the truth table of a
function on n + log n bits, so it suffices to have 22™1°8™ bits available in dom f,, for
this purpose. Since there are at most 2°™!°6™ bad inputs in f,, by the previous
paragraph, and since there are at most 24"~V 1¢(n=1) inputs in domf, ; that

are outside {0, 1}S("1* by induction, we know there are at most 2*"°8™ inputs

119

currently in dom f,, that are outside {0, 1)S(m=1% Gg there is sufficient space in

{0,1}™" for storage when d is large enough.

As for how to actually store the information, initially consider each input
(i,x) to L,, as prepended with zeroes until it becomes a string Y(;) of length
n4, and then set f,(Y(ix)) := La(i,x). Of course this may not work as some
bad inputs may coincide with some Y(;), but this can be handled simply by
changing the encoding of (i,x) to Y(ix) ® Z for a suitably picked Z € {0,1}";
such Z exists because it can be picked at random with non-zero probability (by
a union bound on the event that some bad input coincides with Y x) @& Z for

4 as we wanted

some (i,x)). This Z can then be hardwired to a circuit of size n
to do.

To finish, let f,, behave arbitrarily on the rest of the good inputs in {0, 1},
and then accordingly adjust f,, on the bad inputs in {0,1}<"™" — recall from the

Interpolation theorem that on a bad input, f,, is a function of how it behaves on

non-bad inputs of same length. We have thus constructed f,, as desired. O

7.5 Proof of Theorem 1.7-(iii)

In this section we prove the last part of Theorem 1.7, which we recall here:

Theorem 1.7-(iii), Restated. Relative to some affine oracle, NEXP ¢ P/poly.

120

Proof. We construct O such that some L € NEXP® does not have polynomial size

circuits over the O-extended basis; in notation,

L ¢ PY/poly. (1)

Since O reduces to O, this will prove NEXP? ¢ PO /poly.

Initialize O arbitrarily. Extend the standard Boolean basis with 0. Let s(n) =
nlos™ and let §(n) € O(s(n)logs(n)) be such that every size-s(n) circuit can be
represented by a string of size §(n).

By a counting argument (or by the “fast diagonalization via minority vote”
trick from the proof of Theorem 1.3) it follows that for all but finitely many
n € N, say for all n > ny, there is a string T,, of length [§(n)] such that, when
extended arbitrarily to length 2™, 1., becomes the truth table of a function that
is uncomputable by any size-s(n) circuit on n inputs.

So modify O as follows. For n:=ng,ng+1,..., pick a string T,, as above, and
modify O at length 2™ so that its truth table starts as T,.

Finally, define L simply as
L(x) = 0(0*").

Clearly, L € NEXP®. To show that (1) holds for L, let d € N arbitrary, and

121

consider a circuit family C 0 .= CT‘?} of size t € O(n4) (over the O-extended basis).
Eventually, t(n) < nlosn say for all n > ny; > ny. In the above construction, at the
end of iteration n > n;, we have that Cg cannot compute L. This situation does
not change in a later iteration because the behavior of CT‘?, a size-t(n) circuit, does

not depend on the values of O, hence of O, at length > 2™. So L ¢ P°/poly. [

122

8 EXTENSIONS TO FOURTH RESULT

Chapter 1 proclaimed: in dealing with efficient programs, i.e., in studying FP
and classes built from FP (Chapter 3), if relativization is a proxy for “known
proof techniques” for pre-90s, then affine relativization is one for post-90s. To
support this claim, in Chapter 7 we gave two kinds of results. First, we showed
that a famously nonrelativizing result from the 90’s, namely MAEXP ¢ P/poly
(Fact 1.6), relativizes affinely. Second, we showed that NEXP ¢ P/poly does not
relativize affinely, nor does NEXP C P/poly. This second result gives support to
our claimed status of affine relativization because any model for “known proof
techniques” must also explain our inability to settle conjectures.

In this chapter we give more results such as these. Our focus will be on the
latter kind, showing certain conjectures to not relativize affinely. For results of
the first type, we merely point out that the first three contributions of this thesis
— Theorems 1.3, 1.4, and 1.5 — all relativize affinely. (In fact Theorems 1.3 and
1.4 both relativize, period.)

We split the remainder of the chapter into three sections. In the first section
we derive a small technical ingredient that will be useful in the rest of the chapter.

In the second section, we demonstrate the strength of the machinery devel-
oped in Chapter 7 and here, by taking an existing oracle construction in the

sense of Baker-Gill-Solovay, and importing it to our framework to make it an

123

affine oracle. This result ties into the discussion in Section 2.3 — Myths 3 & 4.
In the last section we show, among other things, that a better-than-brute-
force algorithm for CircuitSAT must be affinely nonrelativizing. This ties into

the discussion in Section 2.3 — Myth 5.

8.1 Affine Extensions and Disjoint Unions

The disjoint union of languages Oy and O, is the language mapping (b,x) to
Op(x). This is a frequently occurring element of unrestricted oracle constructions.
In order to import such constructions to our setting (as in Section 8.2), as well as
to construct new affine oracles from ground up (as in Section 8.3), we will need

that disjoint unions and affine extensions are compatible in the following sense.

Proposition 8.1. Let A, A, be the affine extension of the languages Oy, O, respectively.
Then the disjoint union A [A1 : bx — Ay(x) is equivalent, under Cook reductions,

to the affine extension of the disjoint union O[] O1 : bx — Op(x).

Proof. Let O := Og [[0;1. By definition, the affine extension of O is the Boolean

version of the function that evaluates, given B,Xj,.,X,, € Fyx for any k, the

polynomial

OBX)= > 0(bx) [T;(1+ (BX); + (bx);)

b,x1,..xn€{0,1}

— Z Oo(x) - TT; (1 + (BX); + (0x))

X1,.Xn€{0,1}
+ Z O1(x) - TTi (1 + (BX)¢ + (1x)1)
X1,.Xn€{0,1}

— (1+B)-0p(X) +B-01(X) .

124

It follows that O € P9 1101 and (50 c PO and 61 € P6, implying the claim. [

So Proposition 8.1 says, essentially, that we can use the disjoint union operator

as though it maintains the property of being affine.

8.2 Renovating Classical Oracles

Recall Myths 3 & 4 (p. 35): (i) affine oracles are much harder to construct than

traditional oracles, and (ii) the NEXP & P/poly question is the only place where

our framework seems to have an edge over the competition. We now debunk

both (i) and (ii). We do this by showcasing how the machinery we developed, in

Chapter 7 and here, can be used to import traditional oracle constructions and

turn them into affine oracles.

125

The particular construction we showcase is due to Beigel, Buhrman, and Fort-
now [16], of an oracle relative to which P = &P C NP = EXP. Here ®P is
basically the class for which @SAT is complete; in other words, given a set C of

languages, if @ - C denotes the set of all languages of the form

= @ Vi) (8.1)
ye{0,1}34(xD
for some { € poly(n) and V € C, then @P is defined as & - P.

The Beigel et al. oracle is an interesting one because it shows, among other
things, that ®P = PSPACE cannot be derived via relativizing techniques. From
the definitions (Section 3) it is clear that PSPACE (= X_P) is sandwiched between
NP and EXP. It is also not hard to see that ®P C PSPACE: think of an interactive
proof for ®SAT where the error probability is allowed to be < 1 instead of < 1/3.
The opposite containment, however, is wide open.

We now show that affinely relativizing techniques cannot derive this contain-

ment, hence ®P = PSPACE, either.
Theorem 8.2. Relative to some affine oracle, P = ®P C NP = EXP.
In order to prove Theorem 8.2 we use two facts regarding EXP.

Definition 8.1 (SCE). Let SCE (short for SuccinctCircuitEval) be the language that,

given (D, x,1%), decides if C(x) =1, where C is a circuit of size < 2% described by the

126
circuit D via a function such as
D(1,j) :== type of the ith gate in C, and the index of the jth neighbor of it.
Let SCE® denote, given the language O, the extension of SCE to circuits over the
O-extended Boolean basis.
Fact 8.3. SCE is complete for EXP. This holds relative to every oracle.

Fact 8.4. EXP D P. This holds relative to every oracle.

Both facts are well-known in the classical study of complexity classes based
on Turing machines. If we do not want to rely on Turing machines, as we said
we wouldn't (Chapter 3), then it suffices for FP to be efficiently enumerable in
the following sense: there is an enumeration of FP, say enum, and there is a

function exec € FP, such that for every i € N, there is t; € poly(n) such that

enum(x) = exec(i, x, 1t(*)

for every x € {0,1}* and t(|x]) > ti(|x]).

We are ready to prove Theorem 8.2 and finish this section.

Proof of Theorem 8.2. By Fact 8.4, and because P C ®P and NP C EXP relative to

127

every oracle by definition, it suffices to show an affine oracle A such that
®P* c P* and EXP* c NPA. (8.2)

In fact, by Proposition 8.1, instead of an affine oracle, it suffices for A to be
the disjoint union of two affine oracles Ay := E‘)vo and A, := E)Vl

We claim:

Lemma 8.5. There exists a language A such that A = o) I 0, for some Oy, O1 and

BSAT (1) = Op(u, 1) (8.3)
SCE*(w) = \/ Oilwz) (8.4)
z€{0,1}1w?

for every u € {0,1}*.
Such an A satisfies (8.2), hence the theorem, because:

o ®SAT" is complete for ®P* (see (8.1)), so that the condition (8.3) guarantees
that ®P* C P%, hence that ®P* C P# because Oy Karp-reduces to O

(= Ap) which in turn Karp-reduces to Ay [[A1 (= A),

e SCE” is complete for EXP” (Fact 8.3), so that the condition (8.4) guarantees

that EXP"* C NP?", hence that EXP* ¢ NP* similarly to the previous item.

So all that remains is to prove Lemma 8.5.

128

(Theorem 8.2, mod Lemma 8.5) [

Proof of Lemma 8.5. Initialize Oy and O, to the all-zeroes language. Update O, to

the output of the following procedure.

Ensure-Condition-(8.3)
input: Op, O1; output: Of such that 63 11 (‘)vl satisfies condition (8.3)
initialize O} := Oy
for every v € {0,1}* in lex order,
A=0116:
04 (v, 1) == @SATA (v)

return O

Let A == E)VO I (,9: Note that at this point A satisfies condition (8.3). Now

perform the following procedure:

Ensure-Condition-(8.4)
for every v € {0,1}* in lex order,
if SCE* (v) = 1 then
for every S C {0, 1}“"2

let Of be the same as O; except Ols(v, z):=1forallze$S
let Og := Ensure-Condition-(8.3)(0Oy, Of)
let AS == 6§ 11 61§

129

pick a nonempty S C {0, 1)V such that
SCE*® (1) = SCEA (u) for all u < v (in lex order)

A:=AS

We claim that after this second procedure, A satisfies both conditions (8.3)
and (8.4), proving the lemma.

That A satisfies condition (8.3) is clear: it initially satisfies the condition, and
whenever it is updated, it is updated to some A° satisfying the condition.

As for condition (8.4), we proceed by induction on {0, 1}* to argue the follow-
ing claim: for every v € {0,1}*, at the beginning of iteration v, condition (8.4) is
satisfied for every u < v, and A is of the form @vo I Z‘)Vl where O;(u,-) = 0 for
every u = v.

The claim is true for the smallest string v, because at the beginning of the
procedure, A is of the form 66 I 6; where O, is the all-zeroes language.

Suppose the claim is true for some fixed v € {0, 1}, and consider iteration v.

If SCE” (v) = 0, then without anything done, condition (8.4) is already satis-
fied for u = v. So the right thing to do in this case is to do nothing, which the
procedure does. The inductive step follows in this case.

In case SCE*(v) = 1, suppose for a moment that a nonempty set S c {0,1}"
as stated in the procedure does exist. Then the procedure updates A = o) I 0,

to some A° = 6§ 11 615 where O; and 07 are identical on inputs of the form (u, -)

130

for u < v and for u > v. Further, SCE*® (u) is identical to SCE*(u) for u < v.
The inductive step follows.

All that remains is to prove that a set S C {0, 1)V as stated does exist:

Lemma 8.6. Let v € {0, 1}*. Let A be a language of the form 91104 for some O, O
such that O1(v,z) = 0 for every z € {0, 1}

Suppose that A satisfies condition (8.3) for all u, and condition (8.4) for all uw < v.
Suppose further that SCE* (v) = 1.

There is a nonempty S C {0,1)" such that SCE™" (1) = SCE* (u) for all uw < v,

where A> is defined in procedure Ensure-Condition-(8.4) above.

(Theorem 8.2, mod Lemma 8.6) [J

Proof of Lemma 8.6. Given v € {0,1}", for each z € {0,1}", consider replacing the
value of O;(v,z) with a variable o,. Call the resulting function Of.
Using Of, define Of in the same way that the procedure Ensure-Condition-

(8.4) defines O3 using OF. That is, let
Og := Ensure-Condition-(8.3)(0o, O1)

Use OF and Of to define A% in the same way that using OF and O7, the

131
procedure Ensure-Condition-(8.4) defines A°. That is, let
A% = OF] OF

Notice that A% = A when we put & := 0. (In particular, notice that since
A = ONg]_[E)vl satisfies condition (8.3) for every u € {0,1}*, Ensure-Condition-

(8.3)(0Qy, -) returns just Oy.) Therefore, the expression

\/ SCE*(u) & SCE™" (u), (A)

ugv

which is a function A(&) on the variables «,, gives 0 when & = 0.

Suppose towards a contradiction that the claim of the lemma is false. Then
A(0) =0, and A(&@) =1 for every a # 0

implying that A = OR,,, the OR function on 2" variables. But this is impossible
because the affine extension polynomial (Section 7.1) of OR,,, for any m € N,

satisfies
ORwm(x) =1+ [T (1+x)

hence has total degree m, whereas:

132

Lemma 8.7. A has total degree < 24n+1,

All that remains is to prove Lemma 8.7.

(Lemma 8.6, mod Lemma 8.7) [

Proof of Lemma 8.7. Since x* = x for binary x, it suffices to show that there is some
F,-polynomial of total degree < 2*™*! that agrees with A on the Boolean values.
In fact since A is, by definition, the OR function applied to < 2™*! terms of

the form

SCE”(v) @ SCE™*" (v),

for various v € {0,1}S™, and because 6§m has total degree m for all m, it suffices

to show:

Lemma 8.8. SCE™" (v) can be expressed as a Fo-polynomial (in «, variables) of total

degree < 231V, for every v € {0, 1}*.

(Lemma 8.7, mod Lemma 8.8) [

Proof of Lemma 8.8. Given v, by definition SCE”" (v) views v as a triple (D, x, 1t),
where D is a circuit that describes a circuit C of size < 2t < 2 over the A%-

extended basis, and

SCE™" (v) = C(x).

133

Take each gate of C, say the ith gate, and assign a variable b; so that it can

be expressed as

meaning that the i gate is of type f (an element of the basis), and has its inputs

coming from gates 1ij,..., 1, in that order. Then

Cx)= @ Ald@biefib,...by,)) (S)
bel01)m i=1
where m denotes the number of gates in C. So m < (size of C) <2t < 2.
If the i" gate of C is an input node, say x;, then the f;(---) term in the sum
(§) is to be replaced with x;. Notice that the only place where «, variables arise
in (§) is the term f;(---), and that no such variable arises when the i™" gate is an
input gate x;, or a standard gate A, &, etc.

On the other hand, if the i gate is of type A%, then the fi(---) term is

which equals, since A% = EYJVO I (/9\1&, either

Oo(bs, ... by,) (1)

134

or

O (b, ... by,) &)

depending on whether b;, equals 0 or 1 respectively.

Since {; < (number of gates) = m < 2I/, the proof is done once we show:

Lemma 8.9. For every w € {0, 1}*,

—~

* Of(w) can be expressed as a Fp-polynomial (in o, variables) of total degree 1,

* O%(w) can be expressed as a Fo-polynomial (in «, variables) of total degree < [wl?.

(Lemma 8.8, mod Lemma 8.9) [

Proof of Lemma 8.9. By definition (Section 7.1), f(w) interprets its input w as a
pair (X,y), where X € FJt (for some m and k encoded in X), and outputs the
yth bit of the sum

D (b)Y (14 Xi +by)

belo1)m
The only place where o, variables can arise in this sum is the f(b) term.

Putting f := Of and f := Of, we see that it suffices to show:
Lemma 8.10. For every w € {0,1}*,

* Of(w) can be expressed as a Fp-polynomial (in o, variables) of total degree 1,

e O%(w) can be expressed as a Fa-polynomial (in «, variables) of total degree < [wl?.

135

(Lemma 8.9, mod Lemma 8.10) [

Proof of Lemma 8.10. The claim regarding Of is trivial: by definition, O{(w) is
either some constant 0/1, or is some variable «,.
As for OF, by definition, OF(w) is some constant 0/1, or is ®SAT*"(v) for

some v € {0,1}<"I. So it suffices to show:

Lemma 8.11. ®SAT" (v) can be expressed as a Fa-polynomial (in ., variables) of total

degree < |V[?, for every v € {0,1}*.

(Lemma 8.10, mod Lemma 8.11) [

Proof of Lemma 8.11. By induction on |v|. The base case, [v| =0, is trivial.
Suppose the claim is true for all v € {0,1}=* for some s € N*. Givenv € {0,1}°,
B®SATH” interprets v as a formula ¢ over the A*-extended basis with m < s

variables, and satisfies

BSAT (V)= P o).

xe{0,1}™

Replacing each subformula in ¢ of the form

A*(@1..0n)

136

where each ¢; is a subformula, with

P ADIA (@@ A Alpn@br@1)

be{0,1}

we get, assuming there are { such subformulas to be replaced,

e(x)= P A*BI)A--- AA%B) A(x,B)

Bi€{0,1}1

Be{0,1)1

where 1 is a formula over the standard basis (hence can contribute no «,-
variables). Viewing the i" occurrence of A*(-) inside the sum as a ®SATH"
instance of size s;, where s;+---+s; < s, we can apply the induction hypothesis
that it can be expressed as a polynomial of degree < s?. The claim then follows

by induction. O

137
8.3 Oracles That Render Brute Force Optimal

Recall Myth 5 (p. 37): the connection recently discovered by Williams [52], from
better-than-brute-force algorithms for CircuitSAT to circuit lower bounds NEXP,

more precisely, the result:

Fact 8.12 ([52]). For £ € poly(n), let CircuitSAT, denote the restriction of CircuitSAT
to circuits of size < {(n), if n is the number of inputs to the circuit.

If CircuitSAT,« € DTIME(O(2"/n®W)) for every constant d, then NEXP ¢

P/poly.

obviates relativization-based barriers.

We now counter this myth by showing that the very existence of such an
algorithm constitutes a theorem that is affinely nonrelativizing. So Williams’
program would succeed in proving NEXP ¢ P/poly, if it can find an ingredient
that does not affinely relativize, which is to say that it will pass the barrier if it
can pass the barrier.

To proceed, we need to make some definitions. Recall from Section 3 that
we defined DTIME(T), the extension of P to time complexity T, where T is any
class of functions closed under polynomials in the following sense: if t € T then
for all constants d, t¢ < t’ for some t’ C T. In this section we will need a finer

definition that allows T to be closed under quasi-linear functions only: if t € T then

138

then for all constants d, tlog®t < t’ for some t’ C T. One way to do this is to

change our notion of efficient computability, from FP to FQLIN.

Definition 8.13 (FQLIN). Define FQLIN as the set of all f : {0,1}* — {0,1}* com-

putable in quasi-linear time.

As was the case for FP, we do not rely on a particular implementation of
quasi-linear time computability; for concreteness the reader can take the stan-
dard definition based on Turing machines running in time O(nlog®n) for some
constant d.

Hence, FP is the set of all F such that F(x) = f(x, 1!} for some polynomial
t and f € FQLIN. More generally, the same idea gives FTIME(T), DTIME(T),
etc., for any class T closed under quasi-linear functions.

We will also need a finer definition of nondeterminism in this section:

Definition 8.14 (N,P). For every function { : N — N, define N P as the set of all
languages of the form
L(x) =3y € {0, 1} : V(x,y)

for some V € P.

Hence, NP = Ugcpoly(n) N¢P. The motivation for Definition 8.14 is the follow-

ing relationship to CircuitSAT:

139

Proposition 8.15. For { € poly(n), let CircuitSAT, denote the restriction of CircuitSAT
to circuits of size < £(n), if 0 is the number of inputs to the circuit. Let T(n) C n®W) pe
a class of functions eligible for defining DTIME(T(n)) (c.f. Definition 8.13 and remarks).

Suppose that for every { € poly(n), CircuitSAT, € DTIME(T(n)). Then NP C
DTIME(T(n)). This holds relative to every oracle.

Proof. Let O be an arbitrary oracle. Extend the standard Boolean basis with O.
Let L € N,,P? so that
L(x) =3y € {0, 1" : V(x,y)

for some V € PY. By the Cook-Levin theorem (Section 7.1), there exists Descy €
FP® that outputs, given input 1™, a circuit Cy,_ of size {(n) for some { € poly(n)
such that

V(x,y) = Cy,, (x,)

for every x,y € {0,1}™. Therefore, if CircuitSAT, € DTIME® (t(n)), then N,P° C
DTIME® (O(t(n) +p(n))) for some p € poly(n). The result follows because t € T

for some class T D n®(!) closed under quasi-linear functions. O

Thus, to show that the existence of a deterministic time-T(n) algorithm for
CircuitSAT would be affinely nonrelativizing, it suffices to show an oracle relative
to which N, P is not contained in deterministic time T(n). This is what we do

in the proof of the next theorem.

140

Theorem 8.16. Relative to some affine oracle, CircuitSAT .« ¢ DTIME(O(2™/n* (1))

for some constant d.

To prove Theorem 8.16, we follow a strategy invented by Aaronson and
Wigderson [2]. The idea is to import existing lower bounds from communi-
cation complexity to the setting of oracles. To get more specific, we need to
make some definitions.

In order to avoid lengthy technicalities, in the rest of this section we will

embrace the Turing machine based jargon — running time, algorithm, etc.

Definition 8.2 (cc, ticc). Define DTIME(t(n))ue as the class of families f := {f,}
satisfying the following. (i) Each f, is a Boolean function on pairs of 2"-bit strings,
(ii) There is a protocol involving two algorithms My, My such that for all n and all
(X,Y) € dom(f), the two parties M (1™), MY (1™) compute £, (X,Y) in time O(t(n)).

Let DTIME(t(n)). denote the relaxation of DTIME(t(n))u.. where My, My are al-
lowed to be non-uniform, and where only the communication between My, M is counted
towards time elapsed.

Define Pyee := DTIME.(n©M). Use Py to define NPy, BPPyc., etc., similar
to how we define NP,BPP, etc., from P.*> Similarly define P.. from DTIME,, and
NP, BPP,, etc. from P..

12Recall that definitions of BPP,NP, etc. involve some counting of the witnesses w of a P-
predicate L(x,w). Here, that predicate would be of the form f((X,w), (Y,w)) where |[w] is
polynomially bounded in n for f, i.e., polylogarithmic in |X|.

141

The notation Cy. is meant to indicate that time is measured on equal grounds
with communication. A function in D, according to the classical definition [13]
is defined on strings of every even length, whereas Definition 8.2 requires length
a power of two; our convention causes nothing but convenience in this section.

We formalize the high-level idea of Aaronson and Wigderson with the fol-

lowing generic theorem in our framework:

Theorem 8.3. Let C and D be any two complexity classes defined in Chapter 3 or in
this section (Section 8.3), such that P C C,D C EXP.
If Ciice & Do, then relative to some affine oracle, C ¢ D.

Proof. Supposing there is some f := {f,,} in Cyc \ D, We want to show an affine
oracle A relative to which € ¢ D. For concreteness, the reader may take C to be
NP, say, and D to be BPP.

By Proposition 8.1, instead of an affine oracle, it suffices for A to be the
disjoint union of two affine oracles Ay := 6;) and A; = EDVl In fact, since every

language reduces to its affine extension, it suffices to show Op, O; such that

O L0 7% @5(5]_[@)

For every n € N, pick an arbitrary pair (X,,Yn) € domf, C {0,1*" x {0,1}*".

Initialize Oy to have the same truth table as X,, for every n, and similarly for O,

142

versus Yy. Because f € Gy, the language L := {L,,} defined as
L(1™) :=f(Oom,O01n), L(#1™):=0

is in @Y1 to see this just consider using Oy [[O; to simulate a Cy-protocol
for f. Our objective is to modify 0,0, so that L remains in €% 191 and becomes
out of DO 1101,

To that end, for any pair of strings (X,Y) € {0,1}*" x{0,1}*", let Oy « X denote
the result of updating Oy so that at length-n inputs, it has the same truth table
as X; similarly use O; < Y to denote the result of updating O; with Y.

Now let Ny, N,, ... be an enumeration of D-algorithms endowed with an ora-
cle access mechanism. (To be precise, we need to consider the class D*, defined
using the class FP* from Section 7.1 in the same way that D would be defined
from FP. As stated earlier, however, for convenience in this section we embrace
the Turing Machine based jargon.) For each algorithm in the enumeration, say

for N;, define g :={g} } as

—_—

gL (X, Y) = N{Oo O OV gm) (8.5)

where (X,Y) ranges over dom f,,. In case N;’s output is not well-defined on 1™

— due to N; computing a partial language which 1™ is outside the domain of

143

— just let g}, take the value ‘1.

We claim that g' differs from f on infinitely many inputs. Indeed, the right-
hand-side of (8.5) can be computed by a protocol where one party is given access
to X and knows Oy (up to a finite length, beyond which Nj; is guaranteed not to
access when run on 1m), the other party is given Y and knows O; (again finitely
bounded), and the two parties simulate N; by using each other as an oracle for
the missing side of the disjoint union. So g' € D.. Since f ¢ D, the claim
follows.

Now, for i = 1..00, find a pair (X,,,, Yn,) in dom f,,, = dom g}li on which f and
g' differ, for some n; arbitrarily large. Update O to Oy < X,,, and O to O; « Yy,
so that L(1™t) differs from NE(%;/X) (01 (1™). Since n; is arbitrarily large, this
update does not disturb the previous iterations — e.g., n; > 22" suffices since

D C EXP. O
We are finally ready to prove Theorem 8.16.

Proof of Theorem 8.16. By Proposition 8.15, it suffices to show an affine oracle
relative to which N,P ¢ DTIME(O(2"/n® 1)),
Let
—Disj(X,Y) =3 (X(1) AY(i))

be the non-disjointness predicate. It is clear that —Disj € NPy... On the other

144

hand, it is well-known (e.g., [5, Example 13.6]) that 2™ bits of communication
is needed to compute —Disj, implying Disj ¢ DTIME.(0(2")). The claim now

follows from Theorem 8.3. O]

145

REFERENCES

[1]

2]

[3]

[6]

[7]

Aaronson, Scott. 2006. Oracles are subtle but not malicious. In Proceedings
of the IEEE Conference on Computational Complexity, 340-354.

Aaronson, Scott, and Avi Wigderson. 2009. Algebrization: A new barrier in
complexity theory. ACM Transactions on Computation Theory 1(1).

Aaronson, Scott (https://cstheory.stackexchange.com/users/1575/
scott-aaronson). Can relativization results be used to prove sentences
formally independent? = Theoretical Computer Science Stack Exchange.
URL: https://cstheory.stackexchange.com/q/3207 (version: 2010-11-20).

Ajtai, Miklés. 1983. Zi-formulae on finite structures. Annals of Pure and
Applied Logic 24(1):1-48.

Arora, Sanjeev, and Boaz Barak. 2009. Computational Complexity: A Modern
Approach. Cambridge University Press.

Arora, Sanjeev, Russell Impagliazzo, and Umesh Vazirani. 1992. Relativizing
versus nonrelativizing techniques: the role of local checkability. Manuscript

retrieved from http://cseweb.ucsd.edu/~russell/ias.ps.

Arora, Sanjeev, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. 1998. Proof verification and the hardness of approximation prob-
lems. Journal of the ACM 45(3):501-555.

Artin, Emil. 1957. Geometric Algebra. John Wiley & Sons.

Aydimlioglu, Baris, and Eric Bach. Affine relativization: Unifying the rela-

tivization and algebrization barriers. ACM Transactions on Computation The-

http://cseweb.ucsd.edu/~russell/ias.ps

[10]

[11]

[15]

[16]

146

ory. Under revision. Available at https://eccc.weizmann.ac.il/report/
2016/040/.

Aydmlioglu, Baris, Dan Gutfreund, John M. Hitchcock, and Akinori
Kawachi. 2011. Derandomizing Arthur-Merlin games and approximate

counting implies exponential-size lower bounds. Computational Complexity
20(2):329-366.

Aydimlhoglu, Barig, and Dieter van Melkebeek. 2017. Nondeterministic cir-
cuit lower bounds from mildly derandomizing Arthur-Merlin games. Com-
putational Complexity 26(1):79-118.

Babai, Laszlo, Lance Fortnow, and Carsten Lund. 1991. Nondeterministic
exponential time has two-prover interactive protocols. Computational Com-
plexity 1:3-40.

Babai, Laszl6, Peter Frankl, and Janos Simon. 1986. Complexity classes in
communication complexity theory (preliminary version). In Proceedings of
the IEEE Symposium on Foundations of Computer Science (FOCS), 337-347.

Babai, Laszl6, and Shlomo Moran. 1988. Arthur-Merlin games: A random-
ized proof system, and a hierarchy of complexity classes. Journal of Computer
and System Sciences 36(2):254-276.

Baker, Theodore P, John Gill, and Robert Solovay. 1975. Relativizations of
the P =? NP question. SIAM Journal on Computing 4(4):431-442.

Beigel, Richard, Harry Buhrman, and Lance Fortnow. 1998. NP might not be
as easy as detecting unique solutions. In Proceedings of the ACM Symposium
on Theory of Computing (STOC), 203-208.

147

[17] Beigel, Richard, and Alexis Maciel. 1999. Circuit lower bounds collapse
relativized complexity classes. In Proceedings of the IEEE Conference on Com-
putational Complexity, 222-226.

[18] Buhrman, Harry, Stephen A. Fenner, Lance Fortnow, and Leen Torenvliet.
2001. Two oracles that force a big crunch. Computational Complexity 10(2):
93-116.

[19] Buhrman, Harry, Lance Fortnow, and Thomas Thierauf. 1998. Nonrela-
tivizing separations. In Proceedings of the IEEE Conference on Computational
Complexity, 8-12.

[20] Buhrman, Harry, and Leen Torenvliet. 2000. Randomness is hard. SIAM
Journal on Computing 30(5):1485-1501.

[21] Cai, Jin-Yi. 2007. S5 C ZPP™'. Journal of Computer and System Sciences 73(1):
25-35.

[22] Cai, Jin-Yi, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and Mit-
sunori Ogihara. 2005. Competing provers yield improved Karp-Lipton col-
lapse results. Information and Computation 198(1):1-23.

[23] Chow, Timothy (http://mathoverflow.net/users/3106/timothy-chow).
Definition of relativization of complexity class. MathOverflow. URL:
http://mathoverflow.net/q/76021 (version: 2011-09-21).

[24] Cobham, Alan. 1964. The intrinsic computational difficulty of functions. In
Proceedings of the International Congress for Logic, Methodology, and Philosophy
of Science 11, 24-30.

[25] Cook, Stephen A. 1971. The complexity of theorem-proving procedures. In
Proceedings of the ACM Symposium on Theory of Computing (STOC), 151-158.

http://mathoverflow.net/q/76021
http://mathoverflow.net/users/3106/timothy-chow

148

[26] DeMillo, Richard A., and Richard J. Lipton. 1980. The consistency of "P =
NP" and related problems with fragments of number theory. In Proceedings
of the ACM Symposium on Theory of Computing (STOC), 45-57.

[27] Enderton, Herbert B. 1977. Elements of Set Theory. Academic Press.

[28] Feige, Uriel, Shafi Goldwasser, Laszl6 Lovasz, Shmuel Safra, and Mario
Szegedy. 1996. Interactive proofs and the hardness of approximating cliques.
Journal of the ACM 43(2):268-292.

[29] Fortnow, Lance. 1994. The role of relativization in complexity theory. Bulletin
of the EATCS 52:229-243.

[30]

. 2016. [Blog post: The great oracle debate of 1993]. Re-
trieved from http://blog.computationalcomplexity.org/2009/06/
great-oracle-debate-of-1993 . html.

[31] Fortnow, Lance, and Michael Sipser. 1988. Are there interactive protocols
for coNP languages? Information Processing Letters 28(5):249-251.

[32] Furer, Martin, Oded Goldreich, Yishay Mansour, Michael Sipser, and Statis
Zachos. 1989. On completeness and soundness in interactive proof systems.
Advances in Computing Research: A Research Annual, vol. 5 (Randomness and
Computation, S. Micali, ed.).

[33] Furst, Merrick L., James B. Saxe, and Michael Sipser. 1984. Parity, circuits,
and the polynomial-time hierarchy. Mathematical Systems Theory 17(1):13-27.

[34] Goldreich, Oded. 1999. Lecture 26: Relativization. Introduction to Com-
plexity Theory — Lecture Notes for a Two-Semester Course. Retrieved from

http://www.wisdom.weizmann.ac.il/~oded/cc99.html.

http://www.wisdom.weizmann.ac.il/~oded/cc99.html
http://blog.computationalcomplexity.org/2009/06/great-oracle-debate-of-1993.html
http://blog.computationalcomplexity.org/2009/06/great-oracle-debate-of-1993.html

149

[35] Goldwasser, Shafi, and Michael Sipser. 1986. Private coins versus public
coins in interactive proof systems. In Proceedings of the ACM Symposium on
Theory of Computing (STOC), 59-68.

[36] Heller, Hans. 1986. On relativized exponential and probabilistic complexity
classes. Information and Control 71(3):231-243.

[37] Impagliazzo, Russell, Valentine Kabanets, and Antonina Kolokolova. 2009.
An axiomatic approach to algebrization. In Proceedings of the ACM Sympo-
sium on Theory of Computing (STOC), 695-704.

[38] Impagliazzo, Russell, Valentine Kabanets, and Avi Wigderson. 2002. In
search of an easy witness: exponential time vs. probabilistic polynomial
time. Journal of Computer and System Sciences 65(4):672—-694.

[39] Kannan, Ravi. 1982. Circuit-size lower bounds and nonreducibility to sparse
sets. Information and Control 55(1):40-56.

[40] Karp, Richard M., and Richard J. Lipton. 1982. Turing machines that take
advice. L'Enseignement Mathématique 28(2):191-209.

[41] Kolata, Gina. “New shortcut found for long math proofs”. New York Times
4 April 1992.

[42] Kothari, Robin (cstheory.stackexchange.com/users/206/robin-kothari).
Is relativization well-defined? Theoretical Computer Science Stack
Exchange. URL: http://cstheory.stackexchange.com/q/21606 (version:
2014-03-18).

[43] Lautemann, Clemens. 1983. BPP and the polynomial hierarchy. Information
Processing Letters 17(4):215-217.

http://cstheory.stackexchange.com/q/21606

150

[44] Levin, Leonid. 1973. Universal sequential search problems. Problemy
Peredachi Informatsii 9(3):265-266.

[45] Lund, Carsten, Lance Fortnow, Howard J. Karloff, and Noam Nisan. 1992.
Algebraic methods for interactive proof systems. Journal of the ACM 39(4):
859-868.

[46] Nikolov, Sasho (https://cstheory.stackexchange.com/users/4896/
sasho-nikolov). What are natural examples of non-relativizable
proofs? Theoretical Computer Science Stack Exchange. URL:

https://cstheory.stackexchange.com/q/20515 (version: 2014-01-27).

[47] Russell, Alexander, and Ravi Sundaram. 1998. Symmetric alternation cap-

tures bpp. Computational Complexity 7(2):152-162.
[48] Shamir, Adi. 1992. IP = PSPACE. Journal of the ACM 39(4):869-877.

[49] Shoup, Victor. 1990. New algorithms for finding irreducible polynomials
over finite fields. Mathematics of Computation 54(189):435-447.

[50] Stockmeyer, Larry J., and Albert R. Meyer. 1973. Word problems requiring
exponential time: Preliminary report. In Proceedings of the ACM Symposium
on Theory of Computing (STOC), 1-9.

[51] Toda, Seinosuke. 1989. On the computational power of PP and +P. In
Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS),
514-519.

[52] Williams, Ryan. 2010. Improving exhaustive search implies superpolynomial
lower bounds. In Proceedings of the ACM Symposium on Theory of Computing
(STOC), 231-240.

151

[53]

. 2014. Nonuniform ACC circuit lower bounds. Journal of the ACM
61(1):2:1-2:32.

[54] Wilson, Christopher B. 1985. Relativized circuit complexity. Journal of Com-
puter and System Sciences 31(2):169-181.

[55] Yap, Chee-Keng. 1983. Some consequences of non-uniform conditions on
uniform classes. Theoretical Computer Science 26:287-300.

[56] Zachos, Stathis. 1988. Probabilistic quantifiers and games. Journal of Com-
puter and System Sciences 36(3):433—451.

	Contents
	List of Figures
	Abstract
	Introduction
	Related Work and Discussion of Contributions
	First, Second, and Third Result
	Fourth Result
	Dispelling a few Myths

	Preliminaries & Notation
	Proof of First Result
	Proof of Second Result
	Proof of Third Result
	Proof of Fourth Result
	Definitions
	Checkability of SAT
	Proof of Theorem 1.7-(i)
	Proof of Theorem 1.7-(ii)
	Proof of Theorem 1.7-(iii)

	Extensions to Fourth Result
	Affine Extensions and Disjoint Unions
	Renovating Classical Oracles
	Oracles That Render Brute Force Optimal

	References

