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abstract

A central question in computational complexity is NEXP
?
⊂ P/poly, which roughly

asks whether one can efficiently decide the satisfiability of a given Boolean for-

mula of low time-bounded Kolmogorov complexity.

This thesis describes the author’s work on and around the NEXP
?
⊂ P/poly

question. The contributions are two-fold: (i) three conditional results that derive

conclusions akin to NEXP 6⊂ P/poly under certain plausible assumptions, and

(ii) a metamathematical result explaining why current techniques have not so far

been able to settle NEXP
?
⊂ P/poly.

For the sake of a streamlined presentation, only a select subset of author’s

results are included in this thesis. For an extensive development the reader is

referred to the original papers [9], [10], and [11].
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1 introduction

Given a Boolean circuit C(x) of size s, how hard is it to find an input x at which

C outputs 1, or at least to tell whether such an x exists?

The conjecture, widely held within the theoretical computer science commu-

nity, is that no efficient program exists for either task. Here (and throughout)

“efficient” means having a runtime bounded by a polynomial in s, for C of size

s. In notation, CircuitSAT 6∈ P, or equivalently, NP 6⊂ P since CircuitSAT is

complete for the class NP.

In fact a stronger conjecture, also widely believed, is NP 6⊂ P/poly, meaning

not only efficient programs fail at solving CircuitSAT, but also small circuits.

Here “small” means, similar to “efficient” above, of size polynomial in the in-

put size. This is a stronger conjecture because every efficient program can be

realized by a family of small circuits — one circuit for each input size — by the

fundamental Cook-Levin theorem [25, 44]. (The notation ‘P/poly’ is not to be

interpreted as taking a quotient in any algebraic sense, or in any other sense for

that matter.)

Of course, circuits solving problems about circuits might seem like the sort of

thing only theoreticians would postulate a conjecture about, until one considers

what might happen if the conjecture is false: if CircuitSAT can be solved by

circuits of size s10, say, then it is conceivable that a massive effort akin to the
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Manhattan project would find such a circuit, e.g., one that solves the problem

for all C of some large enough size s, thereby attaining the ability to factor any

number of size about s/ log s bits, and bringing the demise of RSA cryptography.1

Compared to what is conjectured, however, little is currently known. Con-

sider the following variant of CircuitSAT. Instead of being given a circuit C

directly, we are given a size-s circuit D that describes C, such as

D(i) := type of the ith gate in C, and the indices of the gates connected to it

where i is in binary. The task now is at least as hard as the original because D

can describe not only all circuits of size roughly s, but also some much larger —

even exponentially large in s.2

Yet even this problem eludes classification. In notation, it is not even known

whether NEXP 6⊂ P/poly, where NEXP is the class for which this new problem

is complete.

* * *
1This is because factoring reduces to CircuitSAT with a logarithmic blowup in input size.

More generally, every public key cryptosystem would perish under a device solving CircuitSAT.
2For example, if φ is a circuit of size s, and if C is the circuit that computes, via brute-force,

the XOR of the truth table of φ, i.e. if C = �xφ(x), then C can be exponentially larger than φ

(depending on the number of inputs to φ), but it is easy to see that a circuit for describing C is
essentially the same size as one for describing φ (which can be worked out as O(s log s)).
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Although it is the NP 6⊂ P conjecture that gets most of the publicity outside

theoretical computer science, perhaps a more tantalizing one to the insiders is

NEXP 6⊂ P/poly, because there are results that come “close” to proving it. For

example:

Fact 1.1. NEXP 6⊂ P/poly or Σ2EXP 6⊂ NP/poly.

To put the “or” part of Fact 1.1 in context, and because it will be relevant

in the sequel, let us begin by recalling that NP, in the modern view, is the set

of those decision problems with efficiently verifiable solutions. I.e., it is the set

of functions f of the form f(x) := ∃y ∈ {0, 1}`(|x|) V(x, y), for some polynomial `

and “verifier” predicate V ∈ P checking that y is a valid solution to the problem

instance x — e.g., if V interprets x as a circuit and evaluates it on y, then we get

CircuitSAT.

So the joke “P = NP is easy to solve — N = 1” has some intelligence in it

after all, since the ‘N’ in NP can be viewed as an operator acting on the class

P: take every V ∈ P and put a bounded ∃-quantifier up front; the resulting set

of functions of the form f(x) := ∃y ∈ {0, 1}` V(x, y) is NP. It is as though the

‘N’ operator takes every efficient predicate and confers upon it the power of an

“existential prover”: if a solution exists, then the prover presents it, which the

predicate then checks. (‘N’ stands for nondeterminism.) The author would use ‘∃’

for this operator if he were emperor of notation, and say ∃P for NP; similarly he
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would say ∀P for coNP (recall this is the set of g of the form g(x) := ¬f(x) for

some f ∈ NP). But there is a tradition to abide by — and that is to use Σ1P and

Π1P for these classes, respectively, when they are viewed in this way.

But a couple of letters’ difference is nothing compared to the main idea,

which is to take all predicates comprising a given class C and prepend each with

a quantifier to get a new class; if C is coNP for example, then Σ1C becomes ∃∀P,

or as the tradition aptly calls it, Σ2P (short for Σ1Π1P); it is the set of all functions

of the form g(x) := ∃y∀zV(x, y, z) for some V ∈ P. (A good example for g is the

function CircuitMIN: given a circuit x, decide if there is a smaller circuit y that

computes the same function as x over all inputs z.)

This idea naturally gives rise to a hierarchy, with P at the bottom level, NP

and coNP at the first level, Σ2P and coΣ2P (= Π2P) at the second, and so on ad

infinitum. This is called the polynomial-time hierarchy. If we do roughly the same

thing, but starting from exponential-time algorithms instead of polynomial, then

we get the so-called exponential-time hierarchy, with EXP at the bottom, then

NEXP and coNEXP, then Σ2EXP and Π2EXP and so on.

So Fact 1.1 says either NEXP 6⊂ P/poly is true, or it is true “one-level up”:

Fact 1.1 restated. Σ1EXP 6⊂ Σ0P/poly or Σ2EXP 6⊂ Σ1P/poly.

* * *
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Another way of coming “close” to NEXP 6⊂ P/poly is to show that plausible

improvements over certain trivial algorithms imply circuit lower bounds.

A seminal example of this is a result by Impagliazzo, Kabanets, Wigderson

[38] from early 00’s. It involves the class BPP — the probabilistic extension of P

— comprising functions of the form

f(x) = Ry ∈ {0, 1}`(|x|)V(x, y) (†)

for some polynomial ` and some V ∈ P, where Ris the probabilistic quantifier [56]:

Ryφ(y) is true (resp., false) if the set of y satisfying φ is at least twice (resp., at

most half) the size of the set of y not satisfying φ; otherwise it is undefined.3

Obviously, a function of the form (†) above can be computed in exponential

time, by just cycling over all y to find how many satisfy the inner predicate

V and how many do not. What Impagliazzo et al. show is that even a slight

improvement over this brute-force simulation yields circuit lower bounds.

Fact 1.2 ([38]). If BPP ⊂ NP then NEXP 6⊂ P/poly. In fact, the same conclusion holds

even if BPP ⊂ NSUBEXP.

Here NSUBEXP is the subexponential analogue of NP; it is the set of functions

of the form f(x) = ∃y ∈ {0, 1}`(|x|)V(x, y) for some V ∈ P and a subexponential

3The traditional definition of BPP requires f to be a language, i.e., to be defined on all x. Here
and throughout, we relax that definition to include partial languages (cf. Section 3).
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` ∈ 2no(1)
. (Just like NEXP is the exponential analogue of NP.)

The first contribution of this thesis is several results in the form of Fact 1.2,

showing circuit lower bounds assuming faster-than-trivial algorithms.

* * *

In preparation for stating our first contribution, let us consider the ‘BP’ in BPP

as an operator acting on the class P, similar to the ‘N’ operator that yields NP.

Again, if it were up to the author, then RP would be used for BPP, just as ∃P

would be for NP, but tradition has made its pick.

Now, MA is the class ∃ RP — the existential extension of BPP — comprising

functions of the form

f(x) =






1, if ∃y ∈ {0, 1}`(|x|) Rz ∈ {0, 1}`(|x|)V(x, y, z)

0, if ∀y ∈ {0, 1}`(|x|) Rz ∈ {0, 1}`(|x|)¬V(x, y, z)

(‡)

for some polynomial ` and some V ∈ P. It is as though we have an all-powerful

prover, say Merlin, who presents a proof y that f(x) = 1, which gets verified by

Arthur, who has access to random coin flips z. This, in fact, is where the name

MA comes from: Merlin-Arthur games [14].
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Figure 1.1: An Arthur-Merlin game

Similarly we have AM, the probabilistic extension of NP, i.e., the class R∃P

where Arthur makes the first move and Merlin the second. A good example for

a problem in AM is ApproxLB [35]: given a circuit C and a number k, output 1

(0, resp.) if there are k or more (resp., k/2 or fewer) inputs satisfying C.4

It is believed that the Rquantifier in general does not buy much power. In

particular,

RP = P ( ∃P = ∃ RP = R∃P

i.e.,

BPP = P ( NP =MA = AM

4As in BPP, the traditional definition of MA, AM require f be defined on all x; we do not.
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are all believed to be true.5 Current knowledge is relatively little, however; we

know how to express the Rquantifier in the second level of the polynomial-time

hierarchy [43], and that is about it. We depict this in Figure 1.2, using dashes

for BPP, dots for MA, pluses for AM. (All protrusions are believed to be empty.)

Figure 1.2: PH versus probabilistic classes.

We are ready to state the first contribution of this thesis:6

Theorem 1.3 (First Result). If AM ⊂ PNP then EXPNP 6⊂ P/ subexp.

Theorem 1.4 (Second Result). If AM ⊂ Σ2P then PΣ2P 6⊂ NP/nk for all constants k.

Theorem 1.5 (Third Result). If AM ⊂ Σ2P then Σ2EXP 6⊂ NP/poly.

5By BPP ⊂ P we mean every f ∈ BPP can be extended to some L ∈ P; similarly for C ⊂ D in
general when C is a class of partial languages and D of (total) languages.

6We can show stronger results in all three theorems, but we opt for readability here. (See
Section 2.1.) Also, see footnote 5 about the notation AM ⊂ D for a set D of languages.
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In these theorems we think of circuits as “algorithms with advice” [40]. Such

an algorithm has, for each n, an advice string an that it can consult when pro-

cessing inputs of length n. For example, P/poly can be defined as the class

of functions f(x) for which there is a predicate V ∈ P and a family {an} with

an ∈ {0, 1}`(n) such that

f(x) = V(x, a(|x|))

for every input x ∈ dom f, where ` is some polynomial. Notice how ‘/poly’

behaves as an operator on the class P, taking each predicate within and endowing

it with polynomially bounded advice. More generally, C/` is obtained by taking

every V ∈ C and giving it `(n) bits of advice for each input length n.

So Theorems 1.3-1.5 show, assuming AM can be “derandomized” into lower

levels of the polynomial-time hierarchy, that

• EXPNP contains a function of deterministic circuit complexity in 2nΩ(1)
,

• PΣ2P contains, for every k, a function of nondeterministic circuit complexity

in ω(nk),

• Σ2EXP contains a function of nondeterministic circuit complexity in nω(1),

respectively. We compare these bounds to what is known unconditionally in

Chapter 2.

* * *
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Given that we can prove some variants of NEXP 6⊂ P/poly, just how “difficult”

is it to prove the conjecture itself?

“Impossible,” of course, is one possible answer since the conjecture may be

false, or worse, it may be true but unprovable — thanks to Gödel who introduced

this possibility to human thought. But supposing neither of these is the case, is

there a scientific explanation for our failure to prove this conjecture thus far, one

that sheds light on the evident limitations of our techniques?

The second contribution of this thesis concerns this question.

One way to approach this question is to find a system of axioms, powerful

enough to derive the known results of complexity theory, and then to show

that NEXP
?
⊂ P/poly is independent from those axioms. This is the proper way

perhaps, but also a tall order because of the balancing act required: it is one

thing to find an interesting theory unable to settle some conjecture — and there

is prior work of this type, in particular for the NP
?
⊂ P question [26] — but it

is another matter when “interesting” is taken to mean “able to derive known

theorems”. This type of work would fall in the area of reverse mathematics (e.g.,

[36]), and the author knows of no such prior work in complexity.

A second way is to take the attitude of a grossly fictional algebraist who,

in his quest to settle a conjecture about fields of characteristic 7, notices that

everything he has proven so far also holds for characteristic 3, and for 31 — in

fact for any prime. The natural thing to do then would be, of course, to ask if
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the conjecture itself is insensitive to switching from 7 to any such number.

The second approach is in a sense the dual of the first: rather than looking

for a “weaker” version of mathematics as in the first approach, the idea is to

leave mathematics as is, and instead try to prove a “stronger” version of current

theorems — parameterize them as it were — in such a way that NEXP
?
⊂ P/poly

resolves contradictorily within the range of values for the parameter.

It is this second approach that has gained much traction in complexity theory,

and that is also taken in this thesis.

* * *

In 1975, Bob Solovay, along with Theodore Baker and John Gill, published a

paper [15] that turned out to influence complexity theory for two solid decades

hence, and maybe even until today.

Consider broadening the definition of a program, from one that acts on bit-

strings via basic logical operations, to one that also does so via an unknown

Boolean function family O (for “oracle”). What Baker et al. found is that the

resulting theory of computational complexity would be too “crude” to settle the

NP
?
⊂ P question. For it is not that question such a theory would attempt to

resolve; it is the relativized version, denoted by NPO ?
⊂ PO. That attempt would

be doomed to fail, however, because the answer depends on the choice of O,

as shown by Baker et al. Subsequent works have extended this finding to the

NEXP
?
⊂ P/poly question [54] (and to many other questions of complexity [31, 36,
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etc.]).

What makes this signicant, even today, is that when reasoning about efficient

programs, the typical techniques one employs — simulation, diagonalization,

and more generally techniques borrowed from computability theory — are also

applicable to the above broader notion of a “program with oracle”. In fact many

fundamental results in complexity can be derived using solely such techniques,

i.e., they relativize. Four decades after its introduction by Baker et al., “relativized

complexity theory” remains a proxy framework for “almost all known proof

techniques” in dealing with efficient programs.

Hence we go, into the shoes of the fictional algebraist of the previous section.

In our quest to prove a conjecture about the class P — which can be used to define

NP and every class mentioned in this thesis — we find that almost everything

we have proven so far also holds for the broader class PO, relativized P. The

NEXP
?
⊂ P/poly question, we find however, is sensitive to switching P with PO.

* * *

Suppose one day, suddenly our algebraist has a revelation. Floodgates creak,

and results start trickling in — new, peculiar results. They are correct results,

no doubt, and they do hold for characteristic 7, which is all he cares about; but

unlike his past results, these do not hold for any prime — they do not “primize”.

Naturally he wonders: can this breakthrough last all the way to his longstanding

conjecture?
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Some years pass and our algebraist, now a bit weary, feels that progress has

been slow since his big discovery. Surely there had been some great results

since, including a weak version of his conjecture, but all of them seem to him

as corollaries somehow, of that major development years earlier. Naturally he

wonders: has he surmounted one barrier — the “primization” barrier — only to

find himself at the fringes of another one?

This is pretty much what happened to complexity theorists since the early

90’s when, in rapid succession, a seminal set of papers entered the scene [45,

48, 12, 28, 7]. Besides being interesting in their own right (one of them even got

coverage in New York Times [41]) these results all had the added significance of

not relativizing. Whatever it was that enabled these results, it was natural to ask

whether the same ingredient can be used towards NEXP 6⊂ P/poly; this question

became more pertinent when something “close” actually got proved, almost as

a corollary, again in the 90’s:

Fact 1.6 ([19]). MAEXP 6⊂ P/poly.

Here, MAEXP is the exponential version of MA; it sits between NEXP and

Σ2EXP, but is conjectured to equal NEXP (just like MA versus NP and Σ2P).7

“We believe,” the authors of Fact 1.6 wrote [19, p. 5], “our techniques give us a

foot in the door that may open to many other exciting separations.”
7More precisely, it is believed that every function in MAEXP can be extended to one in NEXP;

see footnote 5 about the notation C ⊂ D for C a set of partial languages and D a set of languages.
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Alas, such hopes did not come to pass. It took a decade of no major progress

until Scott Aaronson, together with Avi Wigderson, came up with an influential

paper [2] that gave conceptual evidence for a new barrier, blocking the path to

many conjectures of complexity, including NEXP 6⊂ P/poly.

Turning that conceptual evidence into a formal result is the second main

contribution of this thesis.

Theorem 1.7 (Fourth Result). Relative to every affine oracle, Fact 1.6 holds, but not

NEXP 6⊂ P/poly, nor does NEXP ⊂ P/poly.

It is as though our algebraist defines a subset of primes, say, all primes p

such that p ≡ 3 (mod 4). This set contains his favorite, 7, but many others as

well, and for each member, all his post-breakthrough results hold. Yet his big

conjecture, regarding characteristic 7, resolves contradictorily if 7 is switched

with an arbitrary number in this set.

We shall see in due course what exactly an affine oracle is; it suffices to say in

this introduction that the set of such oracles is almost as large as the set of all or-

acles. We shall also see that besides Fact 1.6, many other results (e.g., Theorems

1.3-1.5) hold relative to such oracles — they relativize affinely. If relativized com-

plexity theory was a proxy framework for “known proof techniques” in dealing

with efficient programs before the 90’s, then affinely relativized complexity is
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the same for after. What Theorem 1.7 shows then, is that current techniques are

doomed to fail at settling NEXP
?
⊂ P/poly.
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2 related work and discussion of contributions

2.1 First, Second, and Third Result

In Theorems 1.3-1.4, if we want to obtain the same circuit lower bounds uncon-

ditionally, then we need to go further up in the exponential-/polynomial-time

hierarchy. In particular, unconditionally,

• the lower bound of Theorem 1.3 holds “one level up”, for EXPΣ2P [39];

• the lower bound of Theorem 1.4 holds “half a level up”, for Σ3P [55];

• the lower bound of Theorem 1.5 holds “one level up”, for Σ3EXP [55].

If we take a closer look at the exponential-/polynomial-time hierarchy, then

we can say more. The class S2P [47] is defined as the set of all languages L

satisfying

L(x) = 1 =⇒ ∃y ∀z V(x, y)

L(x) = 0 =⇒ ∃z ∀y¬V(x, y)

for some V ∈ P and polynomial `, where y, z are quantified over {0, 1}`(|x|). It is

easy to see that

PNP ⊂ S2P ⊂ Σ2P ∩ Π2P
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suggesting that S2P can be thought of as being a “quarter level up” from PNP.

Interestingly, however,

S2P ⊂ BP(PNP)

[21] so under the thesis that the BP operator (i.e., the Rquantifier) in general

does not buy much power, S2P ought to equal PNP.

Now, as we did with BPP, NP and others, we can view the ‘S2’ in S2P as an

operator, which can be applied just as well to other classes. In particular, the

class S2(PNP), located “one level up” from S2P, satisfies

PΣ2P ⊂ S2(P
NP) ⊂ Σ3P ∩ Π3P .

All of this is to say that, unconditionally, the lower bound of Theorem 1.4

holds for the class S2PNP [22], a class that might (but not known to) equal PΣ2P.

Similarly, the lower bound of Theorem 1.5 holds for S2(EXPNP) [22], the expo-

nential analogue of S2(PNP).

Theorem 1.3 is published jointly with Gutfreund, Hitchcock, Kawachi [10].

Theorem 1.5 is published with Van Melkebeek [11], and Theorem 1.4 is implicit

in the same paper. In fact stronger variants of all three results are derived in

those papers.
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2.2 Fourth Result

How difficult is it to resolve NEXP
?
⊂ P/poly? Directly or indirectly, this question

has been the subject of many papers, but four among them stand out as having

a close relationship to this thesis.

Recall that Baker-Gill-Solovay’s framework of relativization (p. 11) already

answered this question — “NEXP
?
⊂ P/poly is beyond the reach of known tech-

niques” — but this answer must be updated in light of the nonrelativizing re-

sults of the 90s (p. 13), which undoubtedly expanded the notion of “known

techniques”.

In the four papers we survey here, the overarching goal is (or so will be

our view here) to propose some model for “known techniques”, which involves

meeting two competing objectives: (a) derive all relevant theorems in the model,

and (b) provably fail to derive in the model all relevant conjectures that are

apparently beyond current reach.

We will use Figure 2.1 to roughly illustrate how each proposal fares with

respect to these two objectives (a) and (b). The take-away message from this

survey is that although parts of (a), (b) have been attained by prior work, ours is

the first successful attempt that yields all the critical pieces under one framework.

Although the table is less precise than the discussion that follows, it does

illustrate some key differences among prior work. The vertical gap in the table
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is a caricature of the current state of the art; to the left of the chasm are facts,

and to the right are conjectures apparently out-of-reach. That gap would have

been one column to the left had this been the 80s; as mentioned in Section 1, the

90s result that MAEXP 6⊂ P/poly (Fact 1.6) does not relativize, which bridged

that chasm, or broke the relativization barrier — pick your metaphor.

We now survey each of the four proposals in turn.

1. AIV [6]: In a manuscript dating soon after the breakthrough nonrelativizing

results of the early 90s mentioned in Section 1 (p. 13), Arora, Impagliazzo, and

Vazirani (AIV) [6] propose what they call “local checkability” as the key principle

underlying those results.

The starting point of AIV is the classical idea, used by Cook to prove the

NP-completeness of CircuitSAT, that a computation running in time t can be

represented as a transcript of t rows, with each row corresponding to the state

Figure 2.1: Attempts at refining relativization

examples for goal (a) examples for goal (b)

(∃C:C⊂NEXP ∧ C 6⊂P/poly)
=⇒ NEXP 6⊂P/poly Σ2EXP 6⊂P/poly MAEXP 6⊂P/poly NEXP 6⊂P/poly

NP 6⊂P,
EXP 6⊂i.o.-P/poly,..

AIV X X X ? ?
For X X X ? Xrrr

AW ? X X X X
IKK X X X ? X

this work X X X X X
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of the computation at one time step. Cook observed that given a table of t

rows, we can verify that it is a valid transcript by inspecting all bits of the table

in parallel, where each bit depends on only O(log t) bits elsewhere. As AIV

observe, however, this property will not hold for computations with access to

an arbitrary oracle O: just consider the program that takes its input x1..xn and

outputs O(x1..xn) — the transcript of any execution of this program will have a

bit that depends on n bits. This property is called local checkability by AIV.

We can interpret AIV’s proposal as follows. Local checkability does not hold

for an arbitary oracle O, but it does if O itself can be computed by a locally

checkable process. So the AIV framework roughly is this: take the Baker-Gill-

Solovay framework of relativization, and then restrict the oracle O, from an

arbitrary function, to an arbitrary locally checkable function.

This framework derives many known nonrelativizing results, but as AIV point

out, whether it can settle questions such as P versus NP or NEXP versus P/poly

may be very hard to know. In fact, they observe that if P versus NP were shown

beyond reach of their framework in the manner of Baker, Gill, Solovay — by

giving contradictory relativizations, NPO ⊂ PO and NPO 6⊂ PO, using oracles

satisfying local checkability — then P would actually be separated from NP.

In this sense, the AIV framework is an unsatisfactory candidate for “known

techniques”. (Note that if all we want is a theory that can derive the current

theorems, then we can just let the oracle O be empty.)
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2. Fortnow [29]: In a response to the AIV proposal dated around the same time,

Fortnow [29] argues that the nonrelativizing ingredient in the famous results of

the 90s is not local checkability; rather, it is something of an algebraic nature.

We can interpret Fortnow’s key insight as follows. The 90s result MAEXP 6⊂

P/poly (Fact 1.6) does not relativize, but it does, if every oracle O is constrained

to have two properties:

(i). Algebraic redundancy. This means, roughly, that if we look at the truth table of

O on inputs of length N, for any N, then we must see a table whose information

content is significantly less than 2N, in much the same way that if we look at the

values of a function f(x) = ax+ b over an interval in R, say, then we would see

a list that can be condensed to merely two entries.

More specifically, O must encode a family of polynomials G = {Gn(x1, .., xn)}n

that interpolate a family of Boolean functions g = {gn(z1, .., zn)}n
such that

Gn(x) =
∑

z∈{0,1}n gn(z)Δz(x) (2.1)

where Δz(x) denotes the monomial that is 1 if x = z, and 0 if x 6= z, for all

Boolean x.

(ii). Closure. This roughly means that O is closed under adding redundancy. Just

as O is an algebraically redundant version of a family g by property (i) above,

there is an algebraically redundant version of O itself (after all O is a family
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just like g); the closure property dictates that the redundant version of O must

essentially be O itself — more precisely, it must be efficiently computable given

access to O.

We will discuss the motivation behind these two properties later, in conjunc-

tion with a related paper (p. 24, IKK).

The upshot is that Fortnow takes, like AIV essentially do, the Baker-Gill-

Solovay framework of relativization, and then restricts the oracle O to satisfy

some constraint; for lack of a better name we refer to this constraint as closed

algebraic redundancy.

Like AIV, Fortnow does not show any formal limits of his framework. How-

ever, we can use the contributions of this thesis to show that several major con-

jectures of complexity can provably not be settled within it (hence the Xrrr symbol

in the table) — alas, we do not know how to show this for NEXP vs. P/poly. In

this sense, Fortnow’s framework is (in hindsight given by this thesis) a superior

candidate for “known techniques” compared to AIV’s, but still an unsatisfactory

one in the context of NEXP vs. P/poly.8

3. AW [2]: A decade-and-half after the above two papers, Aaronson and Wigder-

son (AW) [2] come up with an influential paper that, for the first time after the

8The NEXP vs. P/poly problem is representative of a host of other open problems whose
provability is unknown in Fortnow’s framework; see “This work” later in this survey (p. 27).
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breakthrough results of the 90s, sheds some light on whether “known tech-

niques” — a notion that evidently has expanded during the 90s — can settle

questions such as NEXP vs. P/poly.

We can interpret the key insight of AW as follows. In Fortnow’s refinement of

relativization described just above, recall that any oracle O must satisfy two prop-

erties that we collectively referred to as “closed algebraic redundancy”. What

AW found is that if we drop the closure requirement from this, then the resulting

framework fails to settle many questions of complexity.9

This is a significant development because neither of the previous works, AIV

& Fortnow, show any such limitation of the framework they propose. However,

this progress by itself is not enough to yield a satisfactory framework for “known

techniques”, because such a framework must, as explained in the beginning of

this survey, meet two objectives: (a) derive known theorems and (b) fail to settle

conjectures. But all that is shown by this insight is that Fortnow’s framework,

which achieves goal (a), can be weakened to achieve goal (b) — albeit losing

goal (a) in the process. (Notice that if all we want is a theory that cannot settle

conjectures, then we can just take the empty theory.)

So what remains for AW is to figure out a way of doing what Fortnow did

(attain goal (a) using two properties) by using only one of his properties, namely

9Even the NEXP vs. P/poly question cannot be settled, AW found, if we go a step further
and broaden the definition of algebraic redundancy, by admitting any low-degree polynomial
that extends a Boolean function, and not just those of degree 1 (cf. (2.1)).
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algebraic redundancy.

Unfortunately, AW do not succeed in this. As a compromise they come up

with an ad hoc notion, called algebraic relativization — algebrization for short —

that can only partially meet goal (a) of deriving known theorems, by taking an

extremely limited view of “known theorems”. For example, the statement

(∃C : C ⊂ NEXP ∧ C 6⊂ P/poly) =⇒ NEXP 6⊂ P/poly (2.2)

is true no matter what NEXP or P/poly means — it is even true no matter what

“is an element of” means — hence is relativizing, but it cannot be declared as

algebraically relativizing in AW’s framework. Consequently we have the rather

questionable message: NEXP 6⊂ P/poly is not within reach of known techniques,

but nothing stops us from coming up with a class C, then showing C ⊂ NEXP

with known techniques, and then showing C 6⊂ P/poly with known techniques,

thus concluding NEXP 6⊂ P/poly!

So the AW framework fails to provide a viable candidate for “known tech-

niques”. That said, its key ideas — how to meet goal (b) of showing unprovabil-

ity results, using oracles with an algebraic property — influence all subsequent

work, including ours.
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4. IKK [37]: Motivated by the lack of basic closure properties in the AW frame-

work — of which the above pathology (2.2) is just an example — Impagliazzo,

Kabanets, and Kolokolova (IKK) [37] propose an alternative formulation soon

after the AW paper.

We can view the approach of IKK as being along the same line as Fortnow’s

(hence also of AW’s) by considering the following fact. Any Boolean formula ϕ

can be extended to non-Boolean values, by viewing each conjunction as multi-

plication and each negation as subtraction from 1; the resulting expression —

called the arithmetization of ϕ — is a low-degree polynomial that agrees with ϕ

on the Boolean values, and that can be efficiently evaluated on all small values

(here “low” and “small” means, as usual, polynomial in the size of ϕ).

Arithmetization of Boolean formulas appears to be the key technique in de-

riving results such as MAEXP 6⊂ P/poly (Fact 1.6); it is the one ingredient that

clearly stands out in all proofs of nonrelativizing results from the 90s. Invari-

ably, at some point in these proofs, some Boolean formula, used to model some

efficient computation, gets arithmetized; notice this step does not seem to go

through in the Baker-Gill-Solovay framework of relativization because such a

formula ϕ would involve non-standard gates — oracle gates — yielding subfor-

mulas of the form O(ϕ1, .., ϕm) for which there is no obvious way to proceed.

Now, in both Fortnow’s framework and in IKK’s, we can interpret the ap-

proach as being aimed at making this arithmetization step go through, for as
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large a class of oracles O as possible. In Fortnow’s case this is achieved by con-

straining all oracles O to have “closed algebraic redundancy”; to see how this

constraint helps, notice that in arithmetization, the act of replacing a conjunction

x ∧ y with a multiplication x ∙ y is nothing other than the act of extending the

Boolean function (x, y) 7→ x ∧ y to non-Boolean values via polynomial interpo-

lation, in other words by adding algebraic redundancy (similarly for ¬x versus

1 − x). Stated this way, arithmetization easily generalizes to Fortnow’s oracles:

simply replace each occurrence O in the formula with its algebraically redun-

dant version, which does no harm because the class of O’s under consideration

is closed under adding algebraic redundancy. (Without closure, however, the

resulting polynomial is not guaranteed to be efficiently computable, and this is

where the AW framework runs into trouble.)

In the framework of IKK, on the other hand, the strategy to enable arithme-

tization is more direct (or more indirect, depending on the perspective): they

allow O to be any oracle for which arithmetization, broadly construed, is possi-

ble. That is, O can be any family such that every Boolean formula, possibly with

O-gates besides the standard ones (∧, ¬, etc.), has a corresponding low-degree

polynomial that extends it to non-Boolean values, and that can be efficiently

evaluated given access to O.

With this definition, IKK obtain a framework that, for the first time, meets

both goal (a) of deriving known theorems, and (b) of failing to resolve conjectures
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— albeit not for NEXP
?
⊂ P/poly.10 In fact, the extent to which the IKK framework

meets goal (b) is identical to what we said we can show for Fortnow’s framework

using the results of this thesis (the Xrrr symbol in Figure 2.1). Thus the IKK

framework is not satisfactory for our purposes either.

This work. In this thesis, we introduce affine relativization, the first framework

that satisfactorily models “known techniques” in reasoning about efficient com-

putation, and that is unable to resolve NEXP
?
⊂ P/poly (see Figure 2.1).

Our contribution can be roughly viewed as achieving what AW aimed at

but fell short of: take Fortnow’s framework — relativization with oracles having

“closed algebraic redundancy” — and relax it somehow, so that it still meets goal

(a) of deriving known theorems, yet it also meets goal (b) of failing to resolve

conjectures.

Recall from earlier in this survey that AW did find a relaxation of Fortnow’s

framework that achieved goal (b), but lost goal (a) in the process — trading off

one good thing with another, where both is needed. In order to fix this situation,

the natural thing to try is to aim at a model between Fortnow’s and AW’s, in the

hope of obtaining the best of both worlds.

This is what we essentially manage to do. Our model is simple to state

10The NEXP vs. P/poly problem is representative of a host of other open problems whose
provability is unknown in IKK’s framework; see “This work” below.
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given previous work: relativization with respect to oracles satisfying algebraic

redundancy (closed or not). With this basic definition we succeed in (a) deriving

nonrelativizing theorems such as MAEXP 6⊂ P/poly (Fact 1.6), and (b) showing

that many conjectures are unresolvable, in particular NEXP
?
⊂ P/poly.

Notice that the improvement we achieve is two-fold, regardless of whether

we compare against Fortnow’s work or AW’s. Compared to Fortnow/AW, ours

is a relaxation/tightening (respectively) that

(1) maintains the property already attained,

(2) attains the property missed,

by either work. This balancing act requires a number of ideas to pull off, and as

far as we know, cannot be done by merely tweaking any of the frameworks sur-

veyed above. Theorem 1.7 constitutes the strongest evidence yet for the difficulty

of showing NEXP 6⊂ P/poly.

Theorem 1.7 is joint work with Eric Bach [9].

Remark: From a cursory inspection of Figure 2.1, it might seem as though

NEXP 6⊂ P/poly is the only place where our framework has an edge over Fort-

now’s and IKK’s — a nitpick of sorts. That is only the tip of the iceberg, however;

NEXP 6⊂ P/poly is a representative of a host of other statements whose unprov-

ability can be shown in our framework but is not known for Fortnow’s or IKK’s

— and in some cases even for AW’s. See “Myths 3 & 4” below in Section 2.3.
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2.3 Dispelling a few Myths

There are a few myths appearing occasionally — in blog posts, Q&A sites, lecture

notes, etc. (e.g., [29, 23, 34, 42, 3, 46, 30]) — regarding the relativization notion

and its extensions. Let us dispel the major ones here.

Myth 1. Dependence of relativization on the computer notion. By far the most

widespread myth out there on relativization goes as follows. In order to define

the complexity class P relative to an oracle O, one must have defined P, in the

first place, using some “computer” notion that extends naturally to a “computer

with oracle”. In short, as the myth goes, PO cannot be defined using P, i.e., there

is no relativization operator that acts on classes.

However, it is easy to show otherwise. Consider the “oracle operator”

(V , O, `) 7→ VO[`]

which, given functions V and O on binary strings {0, 1}∗, and given the function
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` on N, outputs the function VO[`] on binary strings, defined as

VO[`] : x 7→ V(x, a), where (§)

a1 = O(V(x, ε)),

a2 = O(V(x, a1),

...

ai = O(V(x, a1..ai−1),

|a| = `(|x|).

Now, the class FP, of efficiently computable functions (of which P is the subclass

of functions with range {0, 1} instead of {0, 1}∗) can be relativized simply as:

FPO := { VO[nc+c] : V ∈ FP, c ∈ N } (¶)

Proposition 2.1. FPO is exactly the set of all functions computable by a polynomial-time

Turing machine with oracle access to O.

Proof. Use FP(O) to denote the set for which we want to show FPO equals.

That FPO ⊂ FP(O) is easy. To compute a function of the form (§) with ` = nc+c

and V ∈ FP, a Turing machine with access to O can construct a1..a` bit by bit,

and then output V(x, a1..a`).
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The converse FPO ⊃ FP(O) is easy as well. If M is a Turing machine with

access to O, running in time at most |x|c + c on every input x, then there is an

equivalent machine M ′ that makes exactly |x|c + c queries to O, by repeating if

necessary the last query made by M; the running time of M ′ is at most |x|d + d

steps for some d. Also, there is a machine Q that on input (x, a1..ai) simulates

M ′(x), by interpreting a1..ai as the answers to the first i queries of M ′, and that

outputs the next query of M ′. If M ′ halts during the simulation, then Q outputs

whatever M ′ outputs. In case M ′ takes too long during simulation, longer than

|x|d + d steps, which could happen if a1..ai incorrectly lists the oracle answers,

then Q outputs something arbitrary, say 0. Notice Q does not need access to O.

Therefore, if V is the function computed by Q, then V ∈ FP. It follows by (§)

that VO[nc+c] is identical to the function computed by M; by (¶), this function is

in FPO.

Another way to dispel this myth, and a rather elegant one at that, is given by

Arora, Impagliazzo, and Vazirani in their paper surveyed earlier (AIV, [6]). They

use a variant of Cobham’s definition for polynomial-time computation [24], with

no reference to devices like Turing machines, to show that relativized P can be

obtained by very basic constraints on what the eligible functions are, e.g., that

they are closed under addition.

We caution that relativized versions of classes such as NP, P/poly, etc. must
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be understood as extensions of relativized P, just as in the unrelativized case.

For example, NPO is the class of functions f(x) = ∃y ∈ {0, 1}` V(x, y) for some

V ∈ PO, in other words, (NP)O is defined as N(PO). This way, of defining classes

in terms of P, helps us approach the subject in a disciplined way; it abstracts

away from machines and avoids asking what it means to have oracle access under

various computational models.

Myth 2. The naivetè of relativization. Often occurring in conjunction with the

first myth, this one goes as follows. Relativization is a naive concept with a

precarious foundation (oracle machines), sort of like the infinitesimals in 17th

century calculus — intuitive but prone to error. It can be made rigorous however,

the myth goes, via an independence result: by coming up with a set of axioms

A such that relativizing results are exactly those that follow from A, hence such

that contradictory-relativization results are those that are independent from A.

Several things are wrong here. First and foremost, relativization is already

a rigorous product of everyday mathematics. To illustrate, let us pick up the

algebraist analogy again. Being an everyday mathematician, our fictional alge-

braist would likely be working under the ZFC axioms for set theory.11 Then his

universe U would consist of sets, with ∈ as the only relation on this universe.

11ZFC might not be an active part of his daily thoughts but at least there would be an
awareness of it; for example, algebraists point out whenever they use the Axiom of Choice.
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To formalize his inquiry, our algebraist can take his big conjecture,

for every field of characteristic 7, … (ψ)

and restate it in more general terms as

for every field of characteristic p, … (ψp)

where p is a constant symbol that he adds to his universe U and the “. . . ” part

is identical in both statements.

Now, the scenario that (ψp) holds for some primes p but not others — that

(ψ) is beyond the “primization barrier” — can be expressed as

(ψp) is independent of ZFC ∪ {“p is a prime”}

which would be a startling thing for our algebraist to discover, if he also finds

that everything he has proven thus far on this topic — say theorems α,β,γ, of

the form (ψ), with different contents for “. . . ” — hold more generally as αp, βp,

γp of the form (ψp), for every prime p, i.e., if

αp,βp,γp are theorems of ZFC ∪ {“p is a prime”}
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or in short, if α,β,γ all “primize”.

Similar to our algebraist, we can introduce a constant symbol O and work

under ZFC∪ {“O is a language”}. We can define PO using Turing Machines with

oracle access to O — an entirely rigorous notion — or by first defining P whatever

way the reader prefers and then using the relativization operator mentioned

earlier (p. 29, “Myth 1”) to get PO. Then

NEXPO ?
⊂ PO/poly is independent of ZFC ∪ {“O is a language”} (†)

would be a corollary of the fact that NEXPO ⊂ PO/poly holds for some setting

of O and NEXPO 6⊂ PO/poly holds for another.

To recap: relativization is a concept of everyday mathematics. A lack of

confidence in relativization might well stem from a lack of confidence in the

process by which everyday mathematics can be embedded in set theory, which

is easily rectifiable by a good undergraduate book such as [27].

Another thing wrong about this myth is that an axiom set as stated is not

known to exist. To be sure, we can set A to ZFC ∪ {“O is a language”}, and call

a theorem relativizing iff it is derivable from A. But then it would be easy to

misread a statement such as (†), as though it says something about the axiomatic

complexity of the NEXP
?
⊂ P/poly question — it does not: we certainly believe

that ZFC, a sub-theory of A, proves either NEXP ⊂ P/poly or its negation!
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The confusion arises because there are two ways of expressing the same

question using the axiom set A: NEXPO ?
⊂ PO/poly and NEXP

?
⊂ P/poly. This

is inevitable when A is an extension of everyday mathematics instead of a re-

striction, as one can always ignore any additional axioms and stick to everyday

mathematics. For the myth to be accurate — for a genuine independence result

— A must be a subset of the axioms that govern the mathematical universe. But such

A is not known to exist.

If they are not independence results, then what are they, these current results

on relativization? They are crudeness results, if we must call them something:

they show that our proofs do not exploit any difference between P and an ar-

bitrarily relativized version of P, and that such differences are key to making

progress in the major questions of the field.

Myths 3 & 4. Algebraic oracles are messy; affine oracles are no different. One

of the objections to investigating restricted oracles is that they are much harder

to construct than unrestricted ones. It has taken a significant effort, spanning

many years, to create a large library of unrestricted oracles [16, 17, 20, 18, 1,

etc.], each one giving evidence that some conjecture is out of reach of “known

proof techniques”. On one hand, as the objection goes, these intricate oracle

constructions do not seem to carry through for algebraic oracles; on the other

hand, none of the conjectures addressed by these oracles have been settled since
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the breakthrough results of the 90s. Thus it seems a safe thesis that classical

relativization is still a proxy for “known techniques”.

From a cursory read of the above survey (Section 2.2), it might seem that

affine oracles are no different. Indeed, as far as Figure 2.1 shows, NEXP 6⊂ P/poly

seems to be the only place where our framework has an edge over Fortnow’s and

IKK’s — a nitpick of sorts.

That is only the tip of the iceberg, however. NEXP 6⊂ P/poly is a poster

child for a host of other statements whose unprovability can be shown in our

framework, but is not known for Fortnow’s or IKK’s — and sometimes even for

AW’s. The machinery we develop in Chapters 7 and 8 is powerful enough to

accommodate traditional approaches to constructing oracles, with minor tweaks.

For example, our construction of an affine oracle relative to which NEXP ⊂

P/poly (Theorem 1.7), is essentially a rephrasing of a construction by Heller [36],

who gave an unrestricted oracle for the same statement. As another example,

in Chapter 8 we take a fairly well-known construction, due to Beigel, Buhrman,

and Fortnow [16], of an oracle relative to which P = �P ( NP = EXP, and use it

almost verbatim to give an affine oracle for the same statement. While the former

construction is also done in AW’s framework (in fact ours closely follow theirs),

the latter does not seem doable in AW’s framework, or in any other framework

surveyed in Section 2.2 for that matter.

Of course, not every traditional oracle construction can yield an affine one,
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otherwise there would be no point in restricting oracles. But our results suggest

that it is worth revisiting the classical constructions to explore which ones can

be made affine. Perhaps those oracles that do not carry over correspond to

conjectures whose time has come in the 90s.

Myth 5. Recent circuit lower bounds obviate relativization-based barriers. In

2011, Williams proved NEXP 6⊂ ACC0 [53], a significant result both in its state-

ment and its proof. Here ACC corresponds to “shallow circuits that can count”:

ACd[m] is the class of functions computable by polynomial-size O(logd
n)-depth

circuits that have, besides the standard gates ∧, ∨, ¬, also MODm gates. Such

gates output 1 iff ` of their inputs are set to 1 for some ` ≡ 0 (mod m). Finally,

ACCd := ∪m∈NACd[m]. (All gates have unbounded fan-in.)

Now the myth is this: as mentioned in the survey earlier (Section 2.2), a

major result of ours, and of Aaronson-Wigderson for their framework, is that

NEXP 6⊂ P/poly does not hold for all affine (or in case of AW, algebraic) oracles,

i.e., NEXPO ⊂ PO/poly for some eligible O. In fact, something stronger is implied

in either work: NEXPO ⊂ ACCO
0 for the same O. Hence, as the myth goes,

Williams’ result shatters the affine/algebraic relativization barriers, just as the

90’s results such as MAEXP 6⊂ P/poly did to the relativization barrier.

Several things are wrong here. First, it follows by the logic of this myth

that these barriers were already shattered in the 80’s, long before they were
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even conceived of (and long before Williams’ result). This is because in both

our work and AW’s, something even stronger than NEXPO ⊂ ACCO
0 is implied,

namely NEXPO ⊂ ACO
0 , and because Furst, Saxe, Sipser [33] and Ajtai [4] already

showed in the 80’s that P 6⊂ AC0. So by the logic of this myth, even the original

relativization barrier was shattered in the 80’s and not the 90’s!

Maybe it did but nobody noticed — we have to accept this if we consider

Williams’ result as nonrelativizing affinely/algebraically.

Even if we do, not all is lost. Be it in P 6⊂ AC0, or in NEXP 6⊂ ACC0, or in any

other result on bounded-depth circuits, the techniques used clearly break down

when the depth restriction is lifted. In this sense, the very nature of bounded

depth constitutes a barrier.

Another defect of this myth is its ignorance of the following fact. In Williams’

result, NEXP 6⊂ ACC0, the key ingredient is a better-than-brute-force algorithm

for deciding ACC0SAT, the restriction of CircuitSAT to ACC0-circuits. For Williams’

strategy to scale to NEXP 6⊂ P/poly, one must find such an algorithm for the

unrestricted CircuitSAT problem. But as we show in Section 8.3, such a result

must not affinely relativize. So Williams’ program would succeed in proving

NEXP 6⊂ P/poly, if it can find an ingredient that does not affinely relativize,

which is to say that it will pass the barrier if it can pass the barrier.
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3 preliminaries & notation

We use A ⊂ B to mean A is a subset of B; we never use ‘⊆’. By poly(n) we

mean the set of polynomials {nd + d : d ∈ N}. By nω(1) we mean the class of

superpolynomial functions {(f : N → N) : ∀d ∈ N ∀∞n f(n) > nd}. By dom f we

mean the domain of f.

Basic complexity classes. FP is the set of all f : {0, 1}∗ → {0, 1}∗ that are effi-

ciently computable. We do not rely on a particular implementation of efficient

computability; for concreteness the reader can take the standard definition based

on random access Turing machines. We rely on FP being enumerable.

A language is a function from {0, 1}∗ to {0, 1}. A partial language is a func-

tion that can be extended to (or already is) a language. We confuse {0, 1} with

{False, True}.

In a slight abuse of notation, given sets C, D of partial languages, we write

C ⊂ D to mean that every element of C can be extended to (or already is) an

element of D.

P is obtained by taking each function in FP and projecting its output to its

first coordinate.

NP is the set of languages in ∃ ∙ P, where ∃ ∙ C denotes, for a set C of partial
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languages, the set of all partial languages L such that

L(x) = 1 =⇒ ∃y ∈ {0, 1}`(|x|) : (x, y) ∈ dom V and V(x, y)

L(x) = 0 =⇒ ∀y ∈ {0, 1}`(|x|) : (x, y) ∈ dom V and ¬V(x, y)

for some ` ∈ poly(n) and V ∈ C.

co ∙ C denotes, for a set C of partial languages, the set of all partial languages

of the form L(x) = ¬M(x) for some M ∈ C. It is customary to write coC for co ∙C.

∀ ∙ C denotes co ∙ ∃ ∙ C. In particular, coNP = ∀ ∙ P.

Define Σ0P = Π0P = P, and inductively define ΣkP = ∃ ∙ Πk−1P and ΠkP =

∀ ∙ Σk−1P. The set
⋃

k∈N ΣkP is called the polynomial-time hierarchy. Note that

NP = Σ1P and coNP = Π1P.

PSPACE, or Σ∞P, is the set of languages of the form

L(x) = ∀y1∃z1 ∙ ∙ ∙ ∀yt(|x|)∃zt(|x|)V(x, y, z)

for some V ∈ P and t(n) ∈ poly(n), where yi, zi are quantified over {0, 1}. (We

could quantify yi, zi over {0, 1}`(|x|) for some ` ∈ poly(n); the definition would

be equivalent to the one given.) The justification for this definition of PSPACE

comes from the well-known result of Stockmeyer and Meyer [50, Theorem 4.3]

that functions computable by a polynomial-space Turing machine are contained
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in Σ∞P (the reverse containment is clear).

We define BPP as R∙P, where R∙C denotes, for a set C of partial languages,

the set of all partial languages L such that

L(x) = 1 =⇒ Pry∈{0,1}`(|x|) [(x, y) ∈ dom V and V(x, y)] > 2/3

L(x) = 0 =⇒ Pry∈{0,1}`(|x|) [(x, y) ∈ dom V and ¬V(x, y)] > 2/3

for some ` ∈ poly(n) and V ∈ C. Traditionally BPP would be defined as the set

of languages in R∙P, and R∙P would be called prBPP, but we will not need to

refer explicitly to the languages in R∙P.

Interactive Proofs. Let Axϕ(x) denote Ex[ϕ(x)], the expected value of ϕ(x), and

let Mxϕ(x) denote maxx ϕ(x).

AM is the set of all partial languages L such that

L(x) = 1 =⇒ Ay Mz V(x, y, z) > 2/3

L(x) = 0 =⇒ Ay Mz V(x, y, z) < 1/3
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and MA is the set of all partial languages L such that

L(x) = 1 =⇒ Mz Ay V(x, y, z) > 2/3

L(x) = 0 =⇒ Mz Ay V(x, y, z) < 1/3

for some V ∈ P and ` ∈ poly(n), where y, z are quantified over {0, 1}`(|x|).

Notice that AM is the set R∙∃ ∙ P and that MA is the set ∃∙ R∙P. As in

the case with BPP, traditionally AM would be defined as the set of languages in

R∙∃ ∙ P, and MA as those in ∃∙ R∙P, but we will not need to refer explicitly to

the languages in either set.

IP is the set of languages L such that

L(x) = 1 =⇒ Ay1 Mz1 ∙ ∙ ∙Ayt(|x|)Mzt(|x|)V(x, y, z) > 2/3

L(x) = 0 =⇒ Ay1 Mz1 ∙ ∙ ∙Ayt(|x|)Mzt(|x|)V(x, y, z) < 1/3

for some V ∈ P and t ∈ poly(n), where yi, zi are quantified over {0, 1}. (We

could quantify yi, zi over {0, 1}`(|x|) for some ` ∈ poly(n); the definition would

be equivalent to the one given.)

The A-quantifier in these definitions can be thought of as providing the coin

tosses of a probabilistic verifier Arthur, who interacts with an all-powerful prover

Merlin corresponding to the M-quantifier. Merlin’s goal is to make Arthur accept,
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which Arthur does iff the “verdict” predicate V , given the input x and transcript

(y, z) of the interaction, returns 1. The criteria by which V returns 0 or 1 is

typically described as a protocol between Merlin and Arthur. The quantity t(|x|)

is referred to as the number of rounds taken by — or the round complexity of —

the protocol in computing inputs of length |x|.

Power of the Honest Prover. Consider the following subclass of IP. It contains

languages L such that whenever L(x) = 1, Merlin can just compute a language

Π ∈ C instead of using the M-quantifier. That is, there is a language Π ∈ C such

that for all x, if L(x) = 1, then

Prz[V(x, y, z)] = Ay1 Ay2 ∙ ∙ ∙Ayt(|x|)V(x, y, z) > 2/3, where (¶)

z1 = Π(x, y1)

z2 = Π(x, y1y2)

...

zt = Π(x, y1..yt(|x|)),

and the case for L(x) = 0 remains as before. Any L in this class is said to have

interactive proofs where the power of the honest prover is in C.

Checkable. We call a language L checkable if it has an interactive protocol where

the power of the honest prover reduces to L itself. I.e., in (¶), Π reduces to L via
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a Karp reduction (as defined below).

Perfect completeness. Replacing the condition “> 2/3” in the above definitions of

interactive proofs, with the condition “= 1” yields equivalent definitions [32].

Reductions. As in the previous section (Interactive Proofs), let Axϕ(x) denote

Ex[ϕ(x)], and let Mxϕ(x) denote maxx ϕ(x).

Let F and G be functions into {0, 1}∗ such that dom F, dom G ⊂ {0, 1}∗. We

write

F→ G

and say that F reduces to G via an interactive protocol, iff there exists R ∈ FP,

t ∈ poly(n), and ε ∈ 1/nω(1), such that for every x ∈ dom F:

Ay1 Mz1 ∙ ∙ ∙Ayt(n)Mzt(n)[ F(x) = G(R(x, y, z)) ∨ F(x) = R(x, y, z) ] > 1− ε(n)

Ay1 Mz1 ∙ ∙ ∙Ayt(n)Mzt(n)[ F(x) 6= G(R(x, y, z)) ∧ R(x, y, z) 6= ‘fail’ ] 6 ε(n)

where n = |x|, and yi, zi are quantified over {0, 1}. (Notice that v = G(u) implies

u ∈ dom G.)

We call R an interactive reduction from F to G with round complexity t(n). We

caution that the word “reduction” refers to a function in FP, not to the notion

that some F reduces to some G.
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Intuitively, as in the previous section (Interactive Proofs), the A-quantifiers in

this definition can thought of as Arthur and the M-quantifiers as Merlin. Given

x, after sending random coin tosses yi to Merlin and receiving responses zi,

Arthur uses the predicate R to obtain a string r. Arthur wants either r or G(r) to

equal F(x). Merlin can, with high probability over Arthur’s coin tosses, ensure

that Arthur obtains a desired r. If Merlin is devious, then he has negligible

chance in making Arthur obtain a string r 6= ‘fail’ that is not desired.

We believe this definition to be new. There are three special cases of R being

an interactive reduction that capture some classical definitions:

• in a randomized reduction, we have R(x, y, z) = R(x, y). Intuitively, Arthur

does not need to interact with Merlin to do the reduction.

• in a Karp reduction, we have R(x, y, z) = R(x). Notice that ε(n) = 0 in this

case. Intuitively, Arthur does not need Merlin’s help to do the reduction,

nor does he need to flip any coins.

• in a Cook reduction, we have R(x, y, z) = R(x, z). Further, for every extension

of G to a function G ′ on {0, 1}∗, and for every z satisfying

zi = G ′(R(x, z1..zi−1))

we have F(x) = R(x, z).

Notice that ε(n) = 0 in this case. Intuitively, Arthur does not need to flip
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any coins to do the reduction, and the power of the honest prover is G

itself.

We call R a strong Cook reduction from F to G, if R is a Cook reduction from

F to G and the range of R is contained in dom G. (This would be the case, for

example, when G is a language.)

By default, all Cook reductions are strong. By default, all reductions are

Karp.

The “reduces to via an interactive reduction” relation is transitive: F → G

together with G → H imply F → H. Further, “reduces to via a Karp reduc-

tion”, “reduces to via a randomized reduction”, “reduces to via a strong Cook

reduction”, are all transitive relations.

General time classes. Let T ⊂ nω(1) be a set of functions such that each element

is computable in FP. Suppose that T is closed under taking polynomials in the

following sense: for every t ∈ T and d ∈ N, there is some t ′ ∈ T such that

td(n) < t ′(n) for every n.

Define DTIME(T) as the set of languages L for which there exists K ∈ P and

t ∈ T such that L(x) = K(x, 1t(|x|)) for every x.

Define NTIME(T), Σ2TIME(T), MATIME(T), etc., in the same way, except by

picking K respectively from NP, Σ2P, MA, etc.
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Use E, NE, Σ2E, MAE, etc., to denote respectively DTIME(linexp(n)), NTIME(linexp(n)),

Σ2TIME(linexp(n)), MATIME(linexp(n)), etc., where linexp(n) is the set {2cn :

c ∈ N}.

Use EXP, NEXP, Σ2EXP, MAEXP, etc., to denote respectively DTIME(exp(n)),

NTIME(exp(n)), Σ2TIME(exp(n)), MATIME(exp(n)), etc., where exp(n) is the

set {2cnd

: c, d ∈ N}.

Circuits, Formulas, Advice. A circuit over the basis B is a directed acyclic graph

where each internal node — nodes that can be reached from and can reach to

other nodes — are labeled by a reference to some element in B. The number

of incoming (and respectively, outgoing) neighbors of a node is called the fan-in

(respectively, fan-out) of that node. Nodes of fan-in zero are the input nodes of

the circuit, and of fan-out zero are the output nodes.

By default, circuits are over the standard Boolean basis Bstd := {0, 1, ∧,�}, where

0 is the all-zeroes language and 1 is the all-ones, ∧ maps x to ∧ixi and � maps

x to �ixi.

A formula is a circuit where the fan-out of each node is at most 1. There are

no output nodes in a formula, because a formula with two output nodes is really

two different formulas.

The size of a circuit is the number of its edges. We say that the partial

language F has circuits of size s(n), if there is a family {Cn}n∈N of circuits such
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that Cn has n input nodes, is of size s(n), and for every x ∈ dom F, F(x) = C|x|(x).

For ` : N→ N and C a set of languages, C/` denotes the set of languages L for

which there is a language V ∈ C and a family {an}n∈N with an ∈ {0, 1}`(n) such

that

L(x) = V(x, a(|x|)).

P/poly denotes ∪c∈N P/nc. P/ subexp denotes ∩c∈N P/2n1/c

.

Fact 3.1 ([40]). P/poly is exactly the set of languages that have polynomial-size circuits.

Relativized classes. For every language O, we define the class FPO — “FP

relative to O,” or “FP with oracle access to O” — as the set of all functions from

{0, 1}∗ to {0, 1}∗ that Cook-reduce to O.

All definitions built on FP above naturally generalize to their relativized ver-

sions: NP to NPO, IP to IPO, MAEXP to MAEXPO, etc. When we say “L is

checkable with oracle access to O”, for example, we mean to replace FP with

FPO in the definition for a language to be checkable, and then declare L as

checkable.

The languages �SAT and ΣkSAT. Define �SAT as the language mapping

φ(x) 7→ �α∈{0,1}n φ(α)
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where φ is a formula with n inputs x1..xn.

Define ΣkSAT as the language mapping

φ(X1, .., Xk) 7→ ∃α1 ∈ {0, 1}n1 ∀α2 ∈ {0, 1}n2 . . . Qαk ∈ {0, 1}nk φ(α1..αk)

where Q is ∃/∀ depending on k being odd/even, and where φ is a formula with

k sets of inputs: the X1 inputs X1,1..X1,n1 , the X2 inputs X2,1..X2,n2 , and so on.

Approximate counting. The following fact is used in Chapters 4 and 5.

Fact 3.2 ([35]). Let V(x, y) ∈ NP. The function that approximates the size of the set

V−1(x, ∙) := {y : V(x, y) = 1},

more precisely, the function

A(x, a, m) =






1, if
∣
∣V−1(x, ∙)

∣
∣ > a

0, if
∣
∣V−1(x, ∙)

∣
∣ < a(1− 1/m)

where m > 0 is an integer encoded in unary, is in AM.
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4 proof of first result

In this chapter we prove Theorem 1.3 (p. 8), which we recall here in a stronger

form:

Theorem 1.3, Stronger Form. If AM ⊂ PNP then EXPNP contains a function of

circuit complexity in 2Ω(n).

This is a stronger statement than the original (p. 8) because there the circuit

complexity is stated as 2nΩ(1)
.

The idea in proving Theorem 1.3 is what might be called “fast diagonalization

via approximate counting”. Consider the collection of all Boolean circuits, taking

n bits to a single bit, of size s(n) for a sufficiently small s(n) ∈ 2Ω(n). Interpreting

n bits as encoding an integer in the interval [0, 2n), we can quickly diagonalize

against this collection with a function L : {0, 1}n → {0, 1} defined as follows. Set

L(0) to the minority vote among all circuits in the collection regarding input 0.

That is, L(0) := b if the circuits that output b on input 0 comprise a subcollection

smaller than those that output ¬b. (Break a tie arbitrarily, say as L(0) := 0.)

Inductively, set L(i) to the minority vote among the subcollection of circuits that

agree with L on the interval [0, i). When this process ends after 2n steps, the

function L thus obtained is guaranteed to be uncomputable by any circuit in the

collection, provided the collection is of size at most 22n

, which it is since every
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size-s(n) circuit can be encoded by a string of length O(s(n) log s(n)).

This process would work just as well if, instead of exactly counting the votes

in each step so as to pick the minority vote, we can approximately count so as to

avoid picking the overwhelming majority vote if there is one. More precisely, in

setting L(i) := b, if we can ensure that among the collection of circuits considered

at the ith step, those that output b on input i do not outnumber those that output

¬b by a factor of k or more, for any constant k > 1, then the resulting function

L would still be hard for all size-s(n) circuits.

We now fill in the details and show that this diagonalization via approximate

counting can be performed, under the assumptions of Theorem 1.3, in EXPNP.

Proof of Theorem 1.3. Let s(n) = 2n/2. Under the assumption of Theorem 1.3, we

construct a language L ∈ EXPNP such that for all but finitely many n, no circuit

of size s(n) computes L correctly on every x ∈ {0, 1}n.

Consider the following function V . On input (n, τ, i, C), where τ ∈ {0, 1}2n

represents the truth table of a Boolean function on n inputs, and C represents a

size-s(n) Boolean circuit on n inputs,

V(n, τ, i, C) = 1 iff C agrees with τ in the interval [0, i),

where [0, i) denotes the first i strings in {0, 1}n in lex order.
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Clearly, V ∈ P. Thus, by Fact 3.2, the function A(X, a) that approximately

lower bounds the size of the set V−1(X, ∙) := {C : V(X, C) = 1}, more precisely,

the function

A(X, a) =






1, if
∣
∣V−1(X, ∙)

∣
∣ > a

0, if
∣
∣V−1(X, ∙)

∣
∣ < a/2

where X is shorthand for (n, τ, i), is in AM. By the assumption of the theorem

that AM ⊂ PNP, there is a language B ∈ PNP that agrees with A on its domain.

We are ready to describe L. For every large enough n, construct Ln, the

restriction of L to {0, 1}n, as follows. Initially set Ln to be the all zeroes function.

For i ∈ [0, 2n), in order to decide whether to change the value of L(i), let Si

denote the set of all size-s(n) circuits on n inputs that agree with L on the

interval [0, i]. Use B to do a binary search for some a such that

B(n, τ, i, a) = 1 and B(n, τ, i, a+ 1) = 0,

where τ represents the truth table of Ln. The specification of A above guarantees

|Si| 6 a 6 2|Si|, (†)

so we have a factor-2 approximation on |Si| from above, when L(i) = 0.

Now tentatively flip the value of L(i) from 0 to 1, and repeat the binary search
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(by flipping the ith bit of τ) to obtain a new estimate a ′. If a ′ < a, then keep

L(i) at value 1; otherwise, flip it back to 0. This completes the construction of L.

To show that L has the desired circuit complexity, it suffices to argue that the

set Si above eventually becomes empty as i ∈ [0, 2n) increases. So let S−1 be the

set of all size-s(n) circuits on n inputs, and let Si be as defined earlier, i.e., as

those circuits in S−1 that agree with L in the interval [0, i], or equivalently, as

those circuits in Si−1 that agree with L on i. Let Si denote the complement of Si

in Si−1. Finally, let a be the estimate obtained for |Si| during the construction,

and let a be the one for |Si|.

By construction, a 6 a, hence by (†), |Si| 6 2|Si|. Since Si−1 is the disjoint

union of Si and Si, we have that |Si| + |Si| = |Si−1| and putting together, that

|Si| 6 2|Si−1|/3. Therefore, |Si| is indeed empty when

i > 2+ log3/2 |S−1|,

and what remains is to show that the right hand side in this inequality falls in

the interval [0, 2n). Since every circuit of size s(n) can be represented by some

string of length O(s(n) log s(n)), we have |S−1| < 23s(n)/2 for n large enough.

Hence the last inequality is implied by

i > 2+
3s(n)

2 log 3− 2
.
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Using log 3 > 1.5, we can clean up the right hand side to arrive at

i > 4s(n)

as a sufficient condition for Si to be empty. By the setting of s(n), the last

quantity is less than 2n for large enough n, as we wanted to show.

To prove that L ∈ EXPNP, notice that the above construction for L starts

with the all-zeroes string τ of length 2n, and modifies it bit by bit, with each

modification involving an oracle call to the language B, which takes time O(2n)

to prepare. Hence L ∈ EB ⊂ EPNP
⊂ ENP, and the proof is done.
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5 proof of second result

In this chapter we prove Theorem 1.4 (p. 8), which we recall here:

Theorem 1.4, Restated. If AM ⊂ Σ2P then for all constants k, PΣ2P contains a

function of nondeterministic circuit complexity in ω(nk).

Combinatorially, a nondeterministic Boolean circuit C is an ordinary Boolean

circuit C ′ with two sets of inputs x and y. We refer to the second set of inputs

as choice inputs — evocative of nondeterministic choice. We say that the circuit

accepts input x, or C(x) = 1 in short, if ∃yC ′(x, y) = 1; otherwise we say C rejects

x, or C(x) = 0 in short.

The idea behind proving Theorem 1.4 is, at a very high level, identical to that

of Theorem 1.3, namely “fast diagonalization via approximate counting”. Recall

this refers to mimicking the process that successively sets the next bit of the

truth table of a function Ln to the minority vote of the circuits of size s(n) that

are consistent with the table constructed thus far. Whereas this ideal process

would reduce the number of consistent circuits by at least half in each step, the

mimicking process eliminates at least an α-fraction, for a value of α depending

on the error rate of the approximate counting procedure. When α is a constant,

we are guaranteed that after t steps, for some t ∈ O(s(n) log s(n)) large enough,

Ln is uncomputable by any size-s(n) circuit, because every such circuit can be
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represented by a string of size O(s(n) log s(n)).

There is a significant difference here, however, and it has to do with the type

of circuits involved. For a deterministic circuit, whether it outputs 1 is no harder

a question than whether it outputs 0, but for a nondeterministic circuit, there is

an asymmetry due to the choice inputs — this is essentially the NP versus coNP

problem. Consequently, it is a more delicate task to calculate the minority vote

among nondeterministic circuits, and hence to mimic that task via approximate

counting. Of course, anything can be done given enough computational power;

the goal here is to limit that power to PΣ2P.

To be more specific, consider what would happen if we try to imitate the

argument of the proof of Theorem 1.3 in order to prove Theorem 1.4. Right at

the very first step, when we want to estimate how many circuits accept the input

0 and how many reject it, we run into a problem. While the set of accepting

circuits has a membership predicate in NP — therefore, by Fact 3.2, its size can

be estimated in AM, and hence in Σ2P by the assumption of the theorem — the

set of rejecting circuits correspond to a coNP predicate. Fact 3.2 says nothing

about estimating the size of a coNP set. We need to find a way of breaking this

asymmetry, and do so within PΣ2P.

Our idea here is as follows. We may assume that every language in coNP

has nondeterministic circuits of polynomial size, for otherwise there is nothing

to prove. In particular, this holds for ¬CircuitSAT, the negation of the language
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CircuitSAT. So there is k ∈ N such that for all m ∈ N, there is a nondeterministic

circuit C¬CircuitSAT of size O(mk) that receives as input an m-bit description of a

deterministic circuit C, and accepts iff C is unsatisfiable.

Now suppose we could somehow get a hold of C¬CircuitSAT at any input length

we want. Then to decide whether a given nondeterministic circuit C rejects its

input x, i.e., whether

∀yC ′(x, y) = 0

where C ′ is the deterministic circuit underlying C and y represents the choice

inputs of C, we could instead decide whether

C¬CircuitSAT(C
′(x, ∙)) = 1.

Since the latter is an NP predicate, we would thus get around the asymmetry

problem mentioned above, and carry out the argument from Theorem 1.3 to

derive Theorem 1.4 as well.

Alas, we do not have a circuit for ¬CircuitSAT, and the main contribution

here is to show, using similar ideas to above — approximate counting and us-

ing circuits at a large enough input length to express coNP predicates as NP

predicates — how to construct such a circuit in FPΣ2P. Details follow.

Proof of Theorem 1.4. Let s(n) = nk for an arbitrary k ∈ N. Under the assumption
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that AM ⊂ Σ2P, we construct a language L ∈ PΣ2P such that for infinitely many n,

no nondeterministic circuit of size s(n) computes L correctly on every x ∈ {0, 1}n.

If setting L := ¬CircuitSAT does the job, then we are done. Hence we may

assume that ¬CircuitSAT is computable at every large enough length m by some

nondeterministic circuit C¬CircuitSATm
of size s(m).

A crucial piece of the proof is the following claim, whose proof we defer to

after the proof of the theorem:

Lemma 5.1. Suppose that ¬CircuitSAT is computable at every length m by some

nondeterministic circuit of size s(m) ∈ O(mk), for some fixed k ∈ N. Suppose further

that AM ⊂ Σ2P.

Then there is a function C¬CircuitSAT ∈ FPΣ2P that on input 1m, outputs a nondeter-

ministic circuit (not necessarily of size s(m)) for ¬CircuitSAT at length m, for every

m.

With Lemma 5.1 in hand, we now follow the proof of Theorem 1.3, adjusting

as necessary to the nondeterministic setting as outlined earlier in this section.

First, a bit of notation: Let m ∈ O(s(n) log s(n)) be a function such that every

nondeterministic circuit of size s(n) can be represented by a string of length

m(n). Use m as a shorthand for m(n). Also let t ∈ poly(m) be a function such

that the C¬CircuitSAT function claimed to exist in Lemma 5.1 has output length at

most t(m) given input 1m.
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Consider the function

V(n, τ, i, C) := 1 iff C agrees with τ in the interval [0, i),

where: (a) τ ∈ {0, 1}2m represents the first 2m entries of the truth table of a

Boolean function on n inputs, (b) i 6 2m, (c) C represents a size-s(n) nondeter-

ministic circuit on n inputs, and (d) [0, i) denotes the first i strings in {0, 1}n in

lex order. (In case 2m > 2n, which can only happen on finitely many n since

m ∈ O(nk+1) by definition, let V consider the first 2n bits of τ only.)

If we could say that V ∈ NP, then we would proceed just as in the proof

Theorem 1.3 — V is almost identical to a function in that proof by the same

name — but we cannot quite say that. Instead, we define a related function

W ∈ NP that serves as well as V when used with Lemma 5.1.

So let W be the following function. On input (D, n, τ, i, C), where D ∈

{0, 1}t(m) represents a nondeterministic circuit with m inputs, and the rest of

the parameters are as in V above,

W(D, n, τ, i, C) := 1 iff C seems, with respect to D, to agree with τ in the interval [0, i),
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where the condition on the right means the following. For every j ∈ [0, i),

τ(j) = 1 =⇒ C(j) = 1

τ(j) = 0 =⇒ D(C ′(j, ∙)) = 1

where τ(j) denotes the jth bit of τ, and C ′ is the deterministic circuit underlying

C and C(j) = 1 is shorthand for ∃zC ′(j, z) = 1, i.e., for C ′(j, ∙) being a satisfiable

circuit. The following observation needs no proof.

Lemma 5.2. Whenever D is a circuit for ¬CircuitSAT, C agrees with τ in the interval

[0, i) iff C seems, with respect to D, to agree with τ in the interval [0, i).

Clearly, W ∈ NP. By Fact 3.2, the function A(Y, a) that approximately lower

bounds the size of the set W−1(Y, ∙) := {C : W(Y, C) = 1}, more precisely, the

function

A(Y, a) :=






1, if
∣
∣W−1(Y, ∙)

∣
∣ > a

0, if
∣
∣W−1(Y, ∙)

∣
∣ < a/2

where Y is shorthand for (D, n, τ, i), is in AM. Further, by Lemma 5.1 and Lemma

5.2, A satisfies

A(C¬CircuitSAT(1
m), X, a) =






1, if
∣
∣V−1(X, ∙)

∣
∣ > a

0, if
∣
∣V−1(X, ∙)

∣
∣ < a/2

(§)
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where X is shorthand for (n, τ, i).

We are ready to describe L. For every large enough n, construct Ln, the

restriction of L to {0, 1}n, as follows. Initially set Ln to be the all zeroes function.

For i ∈ [0, 2m), in order to decide whether to change the value of L(i), let Si

denote the set of all size-s(n) circuits on n inputs that agree with L on the

interval [0, i].

By the assumption of the theorem that AM ⊂ Σ2P, there is a language B ∈ Σ2P

that agrees with A on its domain. Use B, and the function C¬CircuitSAT from

Lemma 5.1, to do a binary search for some a ∈ [0, 2m] such that

B(C¬CircuitSAT(1
m), n, τ, i, a) = 1 and B(C¬CircuitSAT(1

m), n, τ, i, a+ 1) = 0,

where τ represents the first 2m entries of the truth table of Ln. (2m 6 2n for n

large enough.) The observation (§) above regarding A guarantees that

|Si| 6 a 6 2|Si|, (†)

so we have a factor-2 approximation on |Si| from above, when L(i) = 0.

Now tentatively flip the value of L(i) from 0 to 1, and repeat the binary search

(by flipping the ith bit of τ) to obtain a new estimate a ′. If a ′ < a, then keep

L(i) at value 1; otherwise, flip it back to 0. This completes the construction of L.
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To show that L has the desired circuit complexity, it suffices to argue that the

set Si above eventually becomes empty as i ∈ [0, 2m) increases. So let S−1 be

the set of all size-s(n) circuits on n inputs, and let Si be as defined earlier, i.e.,

as those circuits in S−1 that agree with L in the interval [0, i], or equivalently, as

those circuits in Si−1 that agree with L on i. Let Si denote the complement of Si

in Si−1. Finally, let a be the estimate obtained for |Si| during the construction,

and let a be the one for |Si|.

By construction, a 6 a, hence by (†), |Si| 6 2|Si|. Since Si−1 is the disjoint

union of Si and Si, we have that |Si| + |Si| = |Si−1| and putting together, that

|Si| 6 2|Si−1|/3. Therefore, |Si| is indeed empty when

i > 2+ log3/2 |S−1|,

and what remains is to show that the right hand side in this inequality falls in

the interval [0, 2m). Since every circuit of size s(n) can be represented by some

string of length m, we have |S−1| 6 2m . Hence the last inequality is implied by

i > 2+
m

(log 3) − 1
,

and since log 3 > 1.5, by

i > 2m− 1
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for all large enough n, as we wanted to show. (Recall m is a function of n.)

To prove that L ∈ PΣ2P, notice that the above construction for L starts with the

all-zeroes string τ of length 2m, and modifies it bit by bit, with each modification

involving 6 m oracle calls to the language B while doing the binary search. Each

call to B takes time t(m) + poly(m) ⊂ poly(n) to prepare, provided the function

C¬CircuitSAT(1m) of Lemma 5.1 is already computed, once, ahead of time. By

Lemma 5.1, the latter can be done in time poly(m) with oracle access to a Σ2P

function. Since the language B itself is in Σ2P, it follows that L ∈ PΣ2P, and the

proof is complete modulo the proof of Lemma 5.1.

(Theorem 1.4, mod Lemma 5.1)

We now turn to the proof of Lemma 5.1. When viewed the right way, our

approach here will not be much different from the high level idea of Theorem

1.4 above, which recall is the same as in Theorem 1.3. To bring out the similarity,

let us abstract the idea of Theorem 1.3 a bit.

In the proof of Theorem 1.3 (and of Theorem 1.4) the process of constructing

a truth table of high circuit complexity can be viewed as a prefix search for a

high quality string, where quality is measured as the fraction of circuits that

disagree with the string.
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More precisely, let γ ∈ (0, 1), and let

q : {0, 1}∗ → [0, 1− γ] ∪ {1}

be a function satisfying, for every x ∈ {0, 1}∗

max(q(x0), q(x1)) > q(x) +
1
2
(1− q(x)).

Starting with the empty string and appending one bit at each step, we can con-

struct a string x with q(x) = 1 in roughly log(1/γ) steps, provided we have a

selector function that helps us avoid a bad choice:

SELq(x) = b whenever q(xb) − q(xb) >
1
3
(1− q(x)) (])

where b ∈ {0, 1} and b denotes ¬b.

To make the connection to Theorem 1.3, given τ ∈ {0, 1}∗, let

qThm 1.3
n (τ) := fraction of size-s(n) circuits on n inputs that disagree with τ

and write

q(xb) − q(xb) = (q(xb) − q(x)) − (q(xb) − q(x))
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to see that when q = qThm 1.3
n , the inequality in (]) is equivalent to

β− β >
1
3
(β+ β)

where

β := number of size-s(n) circuits that agree with x but disagree with xb

and β is the same definition except for xb instead of xb.

Thus, to compute the selector function SELqThm1.3
n

, it suffices to detect the case

β > 2β. One way to do this is to compute the approximations a ∈ [β, 2β] and

a ∈ [β, 2β], and then to return b or b depending on which of a or a is greater

— this works because β > 2β implies a > a, and because a > a implies β 6 2β.

The tasks to compute a and a both Cook reduce to some function in AM. This

is what the proof of Theorem 1.3 shows.

Now we turn to Lemma 5.1 with the same approach. We want to show an

algorithm that constructs a small circuit for ¬CircuitSAT under certain assump-

tions. Following the approach above, the algorithm we show performs a prefix

search for a high quality string, namely the string that describes a circuit for

¬CircuitSAT.

Before we proceed with the algorithm, we need to generalize the above ap-
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proach a bit. As before, let γ ∈ (0, 1). Call

q : {0, 1}∗ → [0, 1− γ] ∪ {1}

a quality measure if it satisfies two properties:

i. the maintain property: for every x ∈ {0, 1}∗,

max(q(x0), q(x1)) > q(x)

ii. the gain property: for some integer p > 0, for every x ∈ {0, 1}0 mod p,

max(q(x0), q(x1)) > q(x) +
1− q(x)

1+ 1/p
.

By setting p = 1, we obtain the previous treatment where a significant gain

in quality was possible at every step. In contrast, here such a gain is possible

once every p steps only, and the maintain property makes it possible to preserve

the quality in other steps. Call p the plateau length of q.

Call a function a selector for q, if for every x ∈ {0, 1}0 mod p and y ∈ {0, 1}<p,

SELq(xy, ε) = b whenever q(xyb) − q(xyb) > ε(1− q(x))

where b ∈ {0, 1}, b denotes ¬b, and ε = 1/d for some integer d > 0 encoded as
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1d. Then we can use SELq as an oracle to come up with a string of maximum

quality 1 in about log(1/γ) steps. More precisely:

Lemma 5.3. Let {qn}n∈N be a family of quality measures, and {SELqn
}n∈N of corre-

sponding selector functions. Let pn be the plateau length of qn. The task to produce,

given 1n, a string x ∈ {0, 1}0 mod pn with qn(x) = 1, lies in

FTIMES(poly(n, pn, log
1
γn

))

for every extension S of the function (1n, x, ε) 7→ SELqn
(x, ε) to a language.

Proof. Given 1n, consider the process that initializes x to the empty string, and

then for m steps, appends S(1n, x, ε) to x, and finally returns x. With foresight,

set m = pndlog 1
γn
e and ε = 1

6pn
.

At each step of this process, the current value of x gets appended a bit b ∈

{0, 1} satisfying S(1n, x, ε) = b, hence satisfying SELqn
(x, ε) 6= b. Therefore, since

SELqn
is a selector for qn,

qn(xyb) − qn(xyb) 6 ε(1− qn(x)). (†)

At steps 1, pn + 1, 2pn + 1, . . . of the process, the string x in (†) is of length 0
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mod pn and y is empty, so

qn(xb) > qn(xb) − ε(1− qn(x))

at those steps. Putting together with the gain property, we get that even if the

process does not make the best choice at such a step, i.e., even if qn(xb) > qn(xb),

qn(xb) > qn(x) + (
1

1+ 1/pn

− ε)(1− qn(x))

> qn(x) + (
1
2
− ε)(1− qn(x)).

Since ε 6 1/6, it follows that at steps 1, pn + 1, 2pn + 1, . . . , the process closes

at least a third of the remaining gap between the quality value qn(x) at the

beginning of the step and the maximum possible value 1.

During other steps, even if the process does not make the better choice, i.e.,

even if qn(xyb) > qn(xyb), the maintain property applied to (†) gives

qn(xyb) > qn(xy) − ε(1− qn(x))

which implies, since ε 6 1
6pn

, that during steps 2 . . . pn, the quality lost is

bounded by 1/6 of the gap between the initial quality (of the empty string) and

the maximum possible quality 1. More generally, during steps jpn+2 . . . jpn, the
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quality lost is bounded by 1/6 of the gap between the quality at the beginning

of step jpn + 1 and the maximum possible quality 1.

Putting together, at every block of pn steps, the process closes at least a 1
6-

fraction of the remaining gap between the quality at the beginning of the block

and the maximum possible value 1. It follows, because qn takes no value in the

interval (γn, 1), that after dlog1/6 γne blocks, hence certainly after pndlog 1/γne

steps, the quality reached is guaranteed to be 1.

We are ready to prove Lemma 5.1 and thus finish the proof of Theorem 1.4.

Proof of Lemma 5.1. We want to show that given 1n, a nondeterministic circuit

for ¬CircuitSAT at length n can be constructed in FPΣ2P, assuming: a) such a

circuit of size s(n) ∈ O(nk) exists for all n, for some fixed k, and, b) AM ⊂ Σ2P.

First, some notation: Let ñ ∈ O(n log n) be such that every nondeterministic

circuit of size n can be represented by a string of size ñ. Use s̃(n) for s̃(n). Given

a language L and a circuit, call that circuit sound with respect to L iff L(x) = 1 for

every input x accepted by the circuit.

For n ∈ N, consider the quality measure qLem5.1
n that interprets its input as

C1C2 . . . CtD, where each Ci ∈ {0, 1}s̃(n) represents a nondeterministic circuit of

size s(n) on n inputs, and D ∈ {0, 1}<s̃(n) is the prefix of such a representation.
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Define qLem5.1
n as follows.

qLem5.1
n (C1C2 . . . CtD) :=






0, if Ci is not sound w.r.t. ¬CircuitSAT for some i
∣
∣
∣(
∨

i Ci)
−1
(1)
∣
∣
∣

∣
∣¬CircuitSATn

−1(1)
∣
∣ , if D is the empty string

max
D∗∈ SuffixD

∣
∣
∣(
∨

i Ci ∨ D∗)
−1
(1)
∣
∣
∣

∣
∣¬CircuitSATn

−1(1)
∣
∣ , else

where ¬CircuitSATn is the restriction of CircuitSAT to length-n inputs, and

SuffixD := {D∗ ∈ {0, 1}s̃(n) : D∗ is sound w.r.t. ¬CircuitSAT

and D is a prefix of D∗} .

We claim that qLem5.1
n is a quality measure, with γn = 1/2n and pn = s̃(n).

The gain property follows from the assumption that there does exist a size-s(n)

circuit for ¬CircuitSATn, hence a length-s̃(n) representation of that circuit, so

that on inputs of the form C1C2 . . . Ct ∈ {0, 1}0 mod pn , one always has the option

of appending the first bit of that representation, thereby getting a string of quality

1 (albeit not of length 0 mod pn). The maintain property is clear.

By Lemma 5.3, the task to produce, given 1n, a circuit for ¬CircuitSATn is in

FTIMES(poly(n, pn, log
1
γn

)) = FPS
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for every extension S of the function

SELqLem5.1 : (1n, x, ε) 7→ SELqLem5.1
n
(x, ε)

to a total function. Therefore, the proof is complete once we show:

Lemma 5.4. Under the assumptions of Lemma 5.1, SELqLem5.1 can be extended to some

S ∈ PΣ2P.

which we will do in the rest of this section.

(Lemma 5.1, mod Lemma 5.4)

Proof of Lemma 5.4. First, let us unwind definitions to see what SELqLem5.1 does.

Since it is a selector function for qLem5.1,

SELqLem5.1(1n, xy, ε) = b if qLem5.1
n (xyb) − qLem5.1

n (xyb) > ε(1− qLem5.1
n (x)).

Letting q denote qLem5.1, we can rewrite the last inequality as

(qn(xyb) − qn(x)) − (qn(xyb) − qn(x)) > ε(1− qn(x)).

Recalling how qn behaves — it interprets its input xy, where |x| ≡ 0 mod s̃(n)

and |y| < s̃(n), as C1C2 . . . CtD where Ci ∈ {0, 1}s̃(n) represents a nondeterministic

circuit of size s(n) on n inputs, and D ∈ {0, 1}<s̃(n) is the prefix of such a
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representation — we can write the first term in the last inequality as

(qn(C1..tDb) − qn(C1..t)) = max
D∗b∈SuffixDb

|(D∗b)
−1
(1) \ (

∨
i Ci)

−1
(1)|

|¬CircuitSATn
−1(1)|

.

provided that each Ci is sound with respect to CircuitSAT.

Repeating this for the other two terms in that inequality, we get

SELqLem5.1(1n, C1..tD, ε) = b if max
D∗b∈SuffixDb

∣
∣
∣(D∗b)

−1
(1) \ (∨iCi)

−1
(1)
∣
∣
∣

− max
D∗

b
∈SuffixDb

∣
∣
∣(D∗b)

−1
(1) \ (∨iCi)

−1
(1)
∣
∣
∣

> ε

∣
∣
∣¬CircuitSATn

−1(1) \ (∨iCi)
−1
(1)
∣
∣
∣

provided that each Ci is sound with respect to ¬CircuitSAT.

What if some Ci is not sound? Then the quality measure qLem5.1
n gives 0 no

matter what, and SELqLem5.1 would be correct no matter what it returns. Thus from

here onwards we do assume that each Ci is sound with respect to ¬CircuitSAT.

At this point, it is becoming clearer what we are to do. Letting

β := max
D∗b∈SuffixDb

∣
∣
∣(D∗b)

−1
(1) \ (∨iCi)

−1
(1)
∣
∣
∣ ,

β := max
D∗

b
∈SuffixDb

∣
∣
∣(D∗b)

−1
(1) \ (∨iCi)

−1
(1)
∣
∣
∣
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and observing that

β, β 6
∣
∣
∣¬CircuitSATn

−1(1) \ (∨iCi)
−1
(1)
∣
∣
∣

we see that the function R defined as

R(1n, C1..tD, ε) = b if β− β >
ε

2
(β+ β)

extends SELqLem5.1 . Therefore it suffices to show:

Lemma 5.5. Under the assumptions of Lemma 5.1, R can be extended to some S ∈ PΣ2P.

which we will do in the rest of this section.

(Lemma 5.4, mod Lemma 5.5)

Proof of Lemma 5.5. We want to show how to detect the condition

β >
(1+ ε/2)
(1− ε/2)

β (‡)

in PΣ2P. One way to detect this is to compute the approximations α and α such

that

β 6 α 6 (1− ε/2)−1
β, β 6 α 6 (1− ε/2)−1

β (A)

and then to return b or b depending on which of α or α is greater — this works
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because (‡) implies α > α (think of the contrapositive) and because α > α implies

the negation of (‡), where (‡) is the same as (‡) except β and β are swapped.

So it suffices to show that under the assumptions of the lemma, the following

task is in FPΣ2P: given (1n, C1..tD, ε), output the approximations α and α satis-

fying (A). Actually it suffices to do this for α only; the case for α follows by

symmetry.

Let the length of the input (1n, C1..tD, ε) be N. Recall that each Ci ∈ {0, 1}s̃(n)

represents a nondeterministic circuit of size s(n) on n inputs, and D ∈ {0, 1}<s̃(n)

is the prefix of such a representation. Let r(n) be the size of the circuit
∨

i Ci,

and let r̃(n) be the length of the string representing that circuit. Notice that since

each Ci is nondeterministic, so is
∨

i Ci.

By the assumption that ¬CircuitSAT has a nondeterministic circuit of size

s(n) for every n, we know that for every input x ∈ {0, 1}n,

∨

i

Ci(x) = 0 iff M(
∨

i

Ci(x)) = 1

for some nondeterministic circuit M computing ¬CircuitSAT at input length r̃(n).

M is of size s(r̃(n)). Recalling that s ∈ poly(n) ⊂ poly(N), the size of M is in

poly(N).
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Consider the function

Q(1n, C1..CtD, a, ε) :=






1, if ∃M, D∗: M, D∗ are sound w.r.t. ¬CircuitSAT

and
∣
∣
∣(M(∨iCi)∧ D∗)

−1
(1)
∣
∣
∣ > a

0, if ∀M, D∗: M, D∗ are sound w.r.t. ¬CircuitSAT

implies
∣
∣
∣(M(∨iCi)∧ D∗)

−1
(1)
∣
∣
∣ < a(1− ε)

where M is quantified over {0, 1}s̃(r̃(n)), i.e., over circuits of size s(r̃(n)) on r̃(n)

inputs, and D∗ is quantified over {D}× {0, 1}s̃(n)−|D|, i.e., over circuits of size s(n)

whose descriptions start as D.

We claim that Q can be extended to some L ∈ Σ2P. Once we show this, the

proof will be done because it is guaranteed, by the specification of Q and by the

existence of a circuit M for ¬CircuitSAT at an appropriate length, that a binary

search for α ∈ [0, 2n] satisfying

L(1n, C1..CtDb, α, ε/2) = 1 and L(1n, C1..CtDb, α+ 1, ε/2) = 0

yields an α satisfying (A), as desired.
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By the assumption that AM ⊂ Σ2P and by Fact 3.2, there is a language A ∈ Σ2P

such that

A(1n, C, a, ε) =






1, if
∣
∣C−1(1)

∣
∣ > a

0, if
∣
∣C−1(1)

∣
∣ < a(1− ε)

where C denotes a nondeterministic circuit on n inputs. Therefore, the language

L defined as

L(1n, Cb1..CtD, a, ε) := ∃M, D∗ :M, D∗ are sound w.r.t. ¬CircuitSAT

and A(1n, M(∨iCi)∧ D∗, a, ε)

extends Q. Here M and D∗ are quantified in the same way as in Q.

Since the predicate for checking soundness of a circuit with respect to ¬CircuitSAT

is in coNP — for every satisfiable nondeterministic circuit x, does M reject x? —

L is in Σ2P as claimed. This finishes the proof.
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6 proof of third result

In this chapter we prove Theorem 1.5 (p. 8), which we recall here:

Theorem 1.5, Restated. If AM ⊂ Σ2P then Σ2EXP contains a function of nondeter-

ministic circuit complexity in nω(1).

The proof uses two main ingredients. The first is a variant of Theorem 1.4.

Lemma 6.1. If AM ⊂ Σ2P then EXPΣ2P contains a function of nondeterministic circuit

complexity in nω(1).

Lemma 6.1 is proved the same way as Theorem 1.4, with straightforward

adjustments to some parameters. We defer its proof to after the proof of Theorem

1.5.

The second ingredient is quite involved. It says that assuming AM ⊂ Σ2P,

if the language �SAT (Section 3) has small nondeterministic circuits, then the

exponential-time hierarchy collapses to the second level.

Lemma 6.2. Suppose AM ⊂ Σ2P. If �SAT has nondeterministic circuits of polynomial

size, then EXPΣ2P ⊂ Σ2EXP.

We defer the proof of Lemma 6.2 to later in this chapter, barring one result

from Chapter 7 needed in the proof.

We now proceed with the proof of Theorem 1.5.
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Proof of Theorem 1.5. We may assume that the language �SAT has nondetermin-

istic circuits of polynomial size, for otherwise there is nothing to prove since

�SAT ∈ EXP ⊂ Σ2EXP. The theorem now follows from Lemmas 6.1-6.2.

(Theorem 1.5, mod Lemmas 6.1-6.2)

Proof of Lemma 6.1. The proof is the same as that of Theorem 1.4, with minor

adjustments to the parameters.

For notational convenience, let P̃ denote DTIME(2poly log(n)). Similarly, let FP̃

denote FTIME(2poly log(n)), Σ2P̃ denote Σ2TIME(2poly log n), etc.

Let s(n) = 2logk n for an arbitrarily large k ∈ N. Under the assumption that

AM ⊂ Σ2P, we construct a language L ∈ EXPΣ2P such that for infinitely many n,

no nondeterministic circuit of size s(n) computes L correctly on every x ∈ {0, 1}n.

If setting L := ¬CircuitSAT does the job, then we are done. Hence we may

assume that ¬CircuitSAT is computable at every large enough length m by some

nondeterministic circuit C¬CircuitSATm
of size s(m).

A crucial piece of the proof is the following lemma, which is a variant of

Lemma 5.1 used crucially in Theorem 1.4.

Lemma 6.3. Suppose that ¬CircuitSAT is computable at every length m by a nonde-

terministic circuit of size s(m) ∈ O(2logk m), for some fixed k ∈ N. Suppose further

that AM ⊂ Σ2P.
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Then there is a function C¬CircuitSAT ∈ FP̃Σ2P that on input 1m, outputs a nondeter-

ministic circuit (not necessarily of size s(m)) for ¬CircuitSAT at length m, for every

m.

Given Lemma 6.3, the rest of the proof proceeds identical to that of Theorem

1.4, provided we put 2poly log(n) in place of poly(n) whenever it occurs (and it

occurs only once, in the analysis at the end).

(Lemma 6.1, mod Lemma 6.3)

Proof Sketch for Lemma 6.3. The proof is almost identical to that of Lemma 5.1;

the only adjustments needed are: (a) replacing s ∈ O(nk) with s ∈ O(2logk n),

and (b) replacing occurrences of Σ2P with Σ2P̃ whenever it has to do with the

complexity of the selector function.

With these adjustments, the complexity of the function C¬CircuitSAT becomes

FP̃S for some language S in PΣ2P̃, where we use, as above, FP̃ (and respectively, P̃)

to denote FTIME(2poly log n) (respectively, DTIME(2poly log n)). Simplifying, we get

FP̃Σ2P̃. Finally, because the time complexity of oracle queries can be absorbed into

the queries themselves by padding, and because functions of the form 2poly log n

are closed under composition, we get C¬CircuitSAT ∈ FP̃Σ2P as claimed.

We now turn to Lemma 6.2. Actually we prove something stronger:
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Lemma 6.4. Suppose AM ⊂ Σ2P. If �SAT has nondeterministic circuits of polynomial

size, then PΣ2P ⊂ Σ2P.

Lemma 6.2 follows from Lemma 6.4 by a so-called padding argument:

Proof of Lemma 6.2. For L ∈ EXPΣ2P, let L ′ be the language mapping input pairs

of the form (x, y) to L(x) whenever |y| > 2|x|c , where c is the smallest integer

such that L ∈ DTIMEΣ2P(2O(nc)). On the rest of input pairs let L ′ behave trivially,

say by mapping to zero. Then L ′ ∈ PΣ2P.

Suppose that AM ⊂ Σ2P. Suppose further that �SAT has nondeterministic

circuits of polynomial size. Then by Lemma 6.4, L ′ ∈ Σ2P. Hence the language

K mapping x to L ′(x, 12|x|c

) is in Σ2EXP. But K is identical to L.

(Lemma 6.2, mod Lemma 6.4)

To prove Lemma 6.4, the first ingredient we will use is a technical augmen-

tation of Arthur-Merlin protocols.

Definition 6.5 (Augmented Arthur-Merlin protocol). The class MAH consists of

all functions Π(x) for which there exists ` ∈ poly(n), a function Γ(x, y) ∈ AM, and a

function V(x, y) ∈ coNP such that

Π(x) =






1, if ∃y : ((x, y) ∈ dom Γ ∧ Γ(x, y))∧ V(x, y)

0, if ∀y : ((x, y) ∈ dom Γ ∧ ¬Γ(x, y))∨ ¬V(x, y)
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where y ranges over {0, 1}`(|x|).

Similar to the class AM, underlying each function in MAH there is a protocol

between an all-powerful prover, Merlin, and — in this case — two verifiers,

Arthur and Henry, who cannot communicate with each other. Arthur is the

usual randomized polynomial-time verifier for the AM-function Γ ; Henry is the

coNP-verifier deciding V . Merlin goes first and sends a common message to

both verifiers. At this point, Henry has to make a decision to accept/reject,

whereas Arthur can interact with Merlin as in the Arthur-Merlin protocol for Γ

before making a decision. The input is accepted by the protocol iff both verifiers

accept. (Since the word “verifier” connotes restricted computational power, it

may be helpful to think of Henry as having private access to a second all-powerful

prover who competes with Merlin by providing a certificate that is to serve as a

counter-certificate to Merlin’s initial message.)

The class MAH is useful because the assumption of Lemma 6.4, that AM ⊂

Σ2P, can be equivalently stated using MAH instead:

Lemma 6.6. AM ⊂ Σ2P iff MAH ⊂ Σ2P.

Proof. One direction is trivial. As for the other, replacing Γ in Definition 6.5 by

a Σ2P-predicate turns Π into a Σ2P-predicate.

The second ingredient in proving Lemma 6.4 is a substantial result from
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Chapter 7, showing that the language �SAT is checkable (as defined in Section

3).

Theorem 7.1, Pre-stated. �SAT is checkable.

The third and final ingredient is a famous result of Toda [51].

Fact 6.7 ([51]). Σ3SAT→ �SAT via a randomized reduction.

We are ready to derive Lemma 6.4, thus finish the proof of Theorem 1.5.

Proof of Lemma 6.4. Suppose AM ⊂ Σ2P. Suppose that �SAT has nondeterminis-

tic circuits of polynomial size.

For warmup, suppose further that �SAT has deterministic circuits of polyno-

mial size. Under this additional assumption, there is an MA-protocol for Σ3SAT

that proceeds roughly as follows. Given input ϕ ∈ {0, 1}n to Σ3SAT, Arthur per-

forms the reduction in Fact 6.7, thereby obtaining an input ψ ∈ {0, 1}m to �SAT

such that

Pr[Σ3SAT(ϕ) = �SAT(ψ)] > 1− ε

for some m ∈ poly(n) and some negligible ε ∈ (1/n)ω(1). Merlin sends Arthur

a circuit for �SAT on `-bit inputs, for a sufficiently large ` ∈ poly(m) ⊂ poly(n).

Arthur then uses that circuit as the prover in an interactive protocol for the �SAT

instance ψ.
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Since MA ⊂ Σ2P and PΣ2P ⊂ Σ3P, it follows that under the additional assump-

tion, PΣ2P ⊂ Σ2P as desired.

Now we remove the additional assumption and try to mimic the same argu-

ment, this time using an MAH protocol instead of MA. By assumption, there

is a nondeterministic circuit C such that for every ψ ∈ {0, 1}`, C accepts ψ iff

�SAT(ψ) = 1. In fact, because �SAT is closed under complement, there is an-

other nondeterministic circuit that accepts ψ iff �SAT(ψ) = 0. Putting together,

there is a nondeterministic circuit D such that for every ψ ∈ {0, 1}` and b ∈ {0, 1},

D accepts (b, ψ) iff �SAT(ψ) = b. Say that D two-sidedly decides �SAT.

Now, the MAH protocol for �SAT starts the same way as in the above MA-

protocol, with Arthur doing the reduction ϕ 7→ ψ and Merlin sending a circuit D

that (in this case is nondeterministic and two-sidedly) decides �SAT. In contrast

to the above protocol, here Henry, the second verifier, also receives the circuit

D; his role is to check that D is consistent in the following sense: D should never

accept both (0, x) and (1, x) for any x. If this check fails, the protocol rejects.

If the consistency check passes, then Arthur and Merlin continue with the

protocol as follows. Arthur initiates a simulation of the interactive protocol for

�SAT on ψ, by picking a random string y1 . . . yt and sending it to Merlin. Merlin

responds with the string z1 . . . zt, purported to be the responses of the honest

prover in the interactive protocol for �SAT on ψ where the messages of the

verifier are y1 . . . yt. Merlin also sends a sequence of strings s1 . . . st; these are for
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Arthur to use as the choice inputs when evaluating D during the simulation.

Arthur then performs the simulation as follows. Since �SAT is checkable,

there is a reduction R ∈ FP such that each message zi of the honest prover — if

it is indeed from the honest prover — must satisfy

zi = �SAT(R(ψ, y1, . . . , yi)),

or, in terms of the circuit D that two-sidedly decides �SAT — if it indeed two-

sidedly decides �SAT — each zi must satisfy

D(zi, R(ψ, y1, . . . , yi)) = 1.

Arthur checks this last condition for each zi, by using the string si as the choice

inputs in evaluating D. If this check passes, the protocol accepts. Otherwise it

rejects.

Notice that in a regular interactive protocol, the soundness error probability

(i.e., the probability that the verifier rejects the input, if the input is to be rejected)

would be compromised if the verifier sends his random choices y all at once to

the prover. However, here we have a circuit D that acts as a prior commitment

by the prover, who cannot adapt his responses z to the values sent by the verifier.

More specifically, suppose Σ3SAT(ϕ) = 1. Then Merlin can just send the
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circuit for �SAT at the appropriate input length. That circuit passes the coNP-

verifier Henry, and also passes Arthur’s verification with high probability.

As for the case Σ3SAT(ϕ) = 0, suppose that Merlin sends a circuit D ′ that

passes Henry’s test. This means that D ′ is consistent, and corresponds to a fixed

prover strategy. Then Arthur rejects with high probability by the soundness of

the original interactive proof system for �SAT. This finishes the proof.
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7 proof of fourth result

In this chapter we prove Theorem 1.7 (p. 14), which we recall here:

Thm 1.7, Restated.

i. MAEXP 6⊂ P/poly holds relative to every affine oracle.

ii. NEXP 6⊂ P/poly does not hold relative to every affine oracle.

iii. NEXP ⊂ P/poly does not hold relative to every affine oracle.

The first order of business is to state what affine oracles are, and what it means

for something to hold relative to an oracle. Hence we start with definitions. After

that we prove a useful property of �SAT, namely that it is checkable (p. 43). After

that we turn to Theorem 1.7 and prove each part in a separate section.

7.1 Definitions

Oracle access capability. Given r ∈ poly(n) and f ∈ FP, consider the function

f∗ : (O, x) 7→ fO(x)

that takes as input any language O and string x, and outputs g(x), where f is a

Cook reduction of round complexity r from the language g to O. We call the set
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of all such f∗, over all f ∈ FP and all r ∈ poly(n), the class FP∗ — “FP with oracle

access capability”.

For readability, we always use the notation in the previous paragraph: a

starred symbol such as f∗ denotes a member of FP∗, and its un-starred version

f denotes the member of FP on which f∗ is based.

For each f∗ ∈ FP∗, we say f∗ has oracle access capability. We use fO to denote

f∗(O, ∙), the restriction of f∗ obtained by setting its first argument to O, and refer

to fO as f∗ when given access to O.

All definitions built on FP above naturally generalize to their oracle-access-

capable versions. For example,

NP := {L : ∃V ∈ P, ∃` ∈ poly(n), ∀x string

L(x) = 1 ⇐⇒ ∃y ∈ {0, 1}`(|x|) V(x, y) }

generalizes to

NP∗ := {L∗ : ∃V∗ ∈ P∗, ∃` ∈ poly(n), ∀x string, ∀O language,

L∗(O, x) = 1 ⇐⇒ ∃y ∈ {0, 1}`(|x|) V∗(O, x, y) }.
(7.1)

Similarly IP generalizes to IP∗, etc. When we say “there is an interactive protocol

where the verifier has oracle access capability”, for example, we are merely

referring to a function in IP∗.



88

Enumeration. We take it as a fact that FP is enumerable. It follows that every

class defined above is enumerable. For example, to find an enumeration of NP∗,

by (7.1) it suffices to find an enumeration of P∗ and cross with N. To find an

enumeration of P∗, it suffices to find an enumeration of FP∗ since P∗ is obtained

by taking every function in FP∗ and projecting its output to the first coordinate.

Finally, to find an enumeration of FP∗, it suffices to take an enumeration for FP

and cross it with N, because by definitions above, underlying every f∗ ∈ FP are

some f ∈ FP and some r ∈ poly(n).

Query complexity. Let f∗ ∈ FP∗. By definition, underlying f∗ are some r ∈

poly(n) and f ∈ FP, where f is a Cook reduction of round complexity r. We

refer to r as the query complexity of f∗.

Well-behaved resource bound. Call a function s : N→ N a well-behaved resource

bound if it is increasing, satisfies O(s(n)) ⊂ s(O(n)) ⊂ s(n)O(1) ⊂ s(nO(1)) and

n 6 s(n), and if the function that maps the binary encoding of n to the binary

encoding of s(n) is in FP. Functions of the form nd, (nd log n)d
′
, 2(log n)d , 2dn are

well-behaved resource bounds.

This generalizes to s : N2 → N if fixing either of the inputs yields a well-

behaved resource bound.
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Languages as families. In this chapter we specify languages as families of

Boolean functions {Ln : {0, 1}n → {0, 1}}n∈N. Sometimes we also specify them as
{
fm : {0, 1}s(m) → {0, 1}

}
n∈N

or as
{
fm,k : {0, 1}s(m,k) → {0, 1}

}
m,k∈N

for some well-

behaved resource bound s that is bounded by a polynomial (respectively, in m

or in mk).

It is an elementary fact that a family of the form {fm} or {fm,k} as above can

be efficiently viewed as a language of the form {Ln} as above, and vice versa.

For concreteness, let m � k denote the Cantor pairing of m and k. Then given

{fm,k}, define {Ln} as Ln(x) := fm,k(x1..s(m,k)) for the largest m � k such that

s(m � k, m � k) 6 n. Conversely, given {Ln}, define {fm,k} as fm,k(x) := Ln(x0p),

where p is set so that the input to L is of length exactly n = s(m � k, m � k).

Representing F2k . We represent each element of F2k by a k-bit Boolean string,

forming the coefficients of a polynomial in the ring F2[x] mod some irreducible

pk(x) of degree k. We fix a uniform collection {pk}
k∈N of such irreducibles, i.e.,

there is a function in FP that outputs pk given k in unary [49].

The Boolean version of a function q : Fm
2k → F2k is, for concreteness, the

function bool(q)mapping (x, y) to the yth bit of q(x). (Our results do not depend

on this definition; any other equivalent function under Cook reductions would

work.)
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Affine extensions / oracles. (This definition uses all the definitions above.)

Given fm : {0, 1}m → {0, 1}, we define its affine extension polynomial as the

unique m-variate polynomial over F2, with individual degree 6 1, that agrees

with fm over F2k for all k, i.e., as

f̂m(x) :=
∑

b∈{0,1}m fm(b) ∙
∏m

i=1(1+ xi + bi)

By the affine extension of fm : {0, 1}m → {0, 1}, we mean the family

f̃m :=
{

f̃
k

m

}

k∈N

where f̂
k

m denotes the function that evaluates f̂m over F2k , and f̃
k

m denotes the

Boolean version of f̂
k

m.

Given a family f := {fm} we define its affine extension f̃ (or its affine extension

polynomial f̂) as the family obtained by applying the above definitions to each

member. In particular, for the language

O = {Om : {0, 1}m → {0, 1}}m∈N
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its affine extension Õ, which we denote here by A, is

A :=
{
Am,k : {0, 1}mk+dlog ke → {0, 1}

}
k,m∈N

Am,k : (y1..ymz) 7→ zth bit of Ôm(y1, .., ym)

where each yi is interpreted as a member of F2k . (By the previous definitions,

A can be efficiently viewed as a family of the form {An : {0, 1}n → {0, 1}}n∈N, and

vice versa. )

By an affine oracle, we mean the affine extension of a language.

Boolean bases. Recall from Chapter 3 that the standard Boolean basis is Bstd =

{0, 1,⊕, ∧}. More generally, we define a Boolean basis inductively, as either the

standard Boolean basis, or the set B ∪ {f} where B is a Boolean basis and f is a

language. We refer to B ∪ {f} as the basis B extended with f, and when B is the

standard basis, as the f-extended basis.

For representing circuits (hence formulas) over extended bases B ) Bstd, we

assume a generic labeling of gates — using labels such as ‘the ith nonstandard

element’ — so that a given circuit can be interpreted over different bases.

The language �SATf. We extend the definition of �SAT given in Chapter 3.

For every Boolean basis B and language f, define �SATf as the language
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mapping φ(~x) to the evaluation of the mod-2 sum �~αφ(~α), where φ denotes a

formula over the basis B extended with f. By default B is the standard basis

and f is an element of the standard basis, say the all-zeroes language 0. (So the

default case is �SAT from Chapter 3.)

We index �SAT by n, any upper bound on the number of nodes of the

formula φ. That is, we view �SAT as {�SATn}
n∈N

, where �SATn is defined

on length-s(n) strings for some fixed s(n) ∈ poly(n), with each such string

representing a formula φ of at most n nodes.

Since (�SATf)g is equivalent to (�SATg)f under Karp reductions, we write

�SATf,g to mean either.

Relativization. We say that a statement ψ holds relative to the language O, iff

ψ can be proven when two things are done: (a) the standard Boolean basis is

extended with O, and (b) FP is redefined as FPO. (See Section 3 for the definition

of FPO.)

Cook-Levin Theorem. For every function F ∈ FP, there is a function DescF ∈ FP

satisfying the following. For every n ∈ N, DescF(1n) outputs a circuit CFn
such

that for every x ∈ {0, 1}n, F(x) = CFn
(x). This holds relative to every oracle.

We refer to this fact as the Cook-Levin theorem.
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7.2 Checkability of �SAT

The main result of this section is the following.

Theorem 7.1. �SAT is checkable. This holds relative to every affine oracle.

Proving Theorem 7.1 requires a fair amount of machinery to be developed.

We start by defining an arithmetic analogue of �SAT.

Definition 7.1 (Arithmetic basis). For every Boolean basis B, define the arithmetic

basis B̂ as the set comprising all constants in F2k for each k, and f̂ for each f ∈ B. By

the standard arithmetic basis we mean B̂std where Bstd is the standard Boolean basis.

Definition 7.2 (+ASATf). For every Boolean basis B and language f, define +ASATf

as the Boolean version (as defined in Section 7.1) of the map Ψ(~x) 7→
∑

~αΨ(~α) where Ψ

denotes a formula over the arithmetic basis corresponding to B∪ {f}. By default B is the

standard basis and f is an element of the standard basis, say the all-zeroes language 0.

We index +ASAT by n and k, and write the corresponding member as +kASATn;

here n upper bounds the number of nodes in formula Φ, and k denotes the field F2k

where the constants of Φ reside.

For our purposes (to become clear in the proof of Lemma 7.6) we require k > log2
n.

Five lemmas regarding �SAT and +ASAT are used to prove Theorem 7.1:
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Lemma 7.2. �SATf → �SATg for every language f and g such that f Cook-reduces to

g. The reduction works over any Boolean basis for formulas, and depends only on the

reduction from f to g.

Lemma 7.3. �SATf̃ → �SATf for every language f. The reduction works over any

Boolean basis for formulas.

Lemma 7.4. �SAT → +ASAT. The reduction works over any Boolean basis for for-

mulas and its corresponding arithmetic basis.

Lemma 7.5. +ASAT → �SAT. The reduction works over any Boolean basis for for-

mulas and its corresponding arithmetic basis.

Lemma 7.6. +ASAT is checkable. In fact, for every language O, +ASATO is checkable

with oracle access (as defined in Section 3) to Õ.

We defer the proof of these lemmas to after the proof of Theorem 7.1.

Proof of Theorem 7.1. Let O be an arbitrary language and A its affine extension.

We want to show that �SATA is checkable with oracle access to A. (To recall

what it means for a language to be checkable with oracle access, see Section 3.)

To begin with, we claim that

�SATA → +ASATO (†)
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and that

+ASATO → �SATA. (‡)

To see the first claim, use Lemma 7.3 to get �SATA → �SATO, and then use

Lemma 7.4 with the O-extended Boolean basis to get �SATO → +ASATO.

For the second claim, use Lemma 7.5 with the O-extended Boolean basis to

get +ASATO → �SATO, and then use Lemma 7.2, together with the fact that O

Karp-reduces, hence Cook-reduces, to A, to get �SATO → �SATA.

Now, by Lemma 7.6, we know that +ASATO is checkable with oracle access

to A. But then �SATA is also checkable: On input x, use the reduction (†) to get

an input x ′ for +ASATO, and then simulate the checking protocol for +ASATO,

by using the reduction (‡) to translate each query for +ASATO to one for �SATA.

(Theorem 7.1, mod Lemmas 7.2-7.6)

In the rest of this section we prove Lemmas 7.2-7.6. To do so, first we extend

�SAT and +ASAT to expressions involving summations within the formula (not

just in front). We call the extensions �∗SAT and +∗ASAT, respectively. After that,

we derive certain facts relating �∗SAT, �SAT, +∗ASAT, and +ASAT. Finally, we

put these together to prove Lemmas 7.2-7.6.
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7.2.1 Extending �SAT to �∗SAT and +ASAT to +∗ASAT

We give four definitions, two for extending �SAT and two for +ASAT.

Definition 7.3 (bbs). For every Boolean basis B, consider the set of expressions obtained

inductively, by letting in: (i) every variable; (ii) f(ψ1..ψm) for every ψ1, ..,ψm already

let in, for every element f in the basis, for every m ∈ N; (iii) �yψ for every ψ already let

in, for every free variable y of ψ. Call this the set of Boolean expressions involving

binary sums (bbs) over the basis B.

Definition 7.4 (�∗SATf). Define �∗SATf over the basis B as the map ψ(~x) 7→ �~αψ(~α)

where ψ is a bbs over B∪ {f}, with input variables ~x. By default B is the standard basis

and f is the all-zeroes language 0.

Definition 7.5 (abs). For every arithmetic basis A, consider the set of expressions

obtained inductively, by letting in: (i) every variable; (ii) f(Ψ1..Ψm) for every Ψ1, ..,Ψm

already let in, for every element in A, for every m ∈ N; (iii)
∑

y∈{0,1} Ψ for every Ψ

already let in, for every free variable y of Ψ. Call this the set of arithmetic expressions

involving binary sums (abs) over the basis A.

Definition 7.6 (+∗ASATf). Define +∗ASATf over the basis A as the Boolean version

(as defined in Section 3) of the map Ψ(~x) 7→
∑

~αΨ(~α), where Ψ is an abs over A ∪ {f̂}

with input variables ~x, and each αi ranges over {0, 1}. By default, A is the standard

arithmetic basis and f is the all-zeroes language 0.
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7.2.2 Relating �SAT, �∗SAT, +ASAT and +∗ASAT

We show six relationships in this subsection:

Lemma 7.7. �SATf → �∗SATg whenever f Cook-reduces to g. The reduction works

over any Boolean basis for formulas, and depends only on the reduction from f to g.

Lemma 7.8. �SAT�SAT → �∗SAT. The reduction works over any Boolean basis for

formulas.

Lemma 7.9. �∗SAT → +∗ASAT. The reduction works over any Boolean basis for

formulas and its corresponding arithmetic basis.

Lemma 7.10. +∗ASAT→ +ASAT. The reduction works over any arithmetic basis for

formulas.

Lemma 7.11. +ASAT → �SAT. The reduction works over any Boolean basis for

formulas and its corresponding arithmetic basis.

Corollary 7.12. �∗SAT → �SAT. The reduction works over any Boolean basis for

formulas.

We prove each of these in turn. Before we begin, we derive an auxiliary fact

that will be useful in proving Lemma 7.7 and Lemma 7.8.
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Lemma 7.13. For every function R ∈ FP there is a function R ′ ∈ FP such that the

following holds. If R is a Cook reduction from some language f to some language g, then

for every n, R ′(1n) gives a formula ξ(x, y) over the g-extended Boolean basis such that

f(x) = �yξ(x, y)

for every x ∈ {0, 1}n.

This holds relative to every language.

Proof. Let O be an arbitrary language, and let R ∈ FPO be a Cook reduction from

some language f to some language g. That is, there is some ` ∈ poly(n) such

that for every x,

f(x) = R(x, z), where zi = g(R(x, z1..zi−1)) and |z| = `(|x|).

By the Cook-Levin theorem (Section 7.1) applied to R, it follows that there is

` ∈ poly(n), and there are circuits C0, .., C`(n), each over the O-extended Boolean

basis, such that for every x,

f(x) = C`(n)(x, z), where zi = g(C ′i−1(x, z1..zi−1)) and |z| = `(|x|),
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and where

C ′i(y) := (Ci(y))1..|R(y)|,

the idea being to calculate the output length of R(y) and trim the excess output

bits of Ci(y) before making any use of it. Notice that the function that calculates

the output length of R is in FPO, because R is. Hence by the Cook-Levin theorem

again, each C ′i can be implemented by a circuit; moreover, each such circuit can

be produced by a function in FPO given 1n.

It follows that the restriction of f to {0, 1}n satisfies

f(x) =
⊕

z∈{0,1}`

C`(x, z)∧
∧

i=1..`(zi ≡ g(C ′i−1(x, z1..i−1))

where ` denotes `(|x|); further, the righthand side is produced by some function

in FPO given input 1n.

The expression inside the sum is a circuit E(x, z) over the g-extended basis,

and can be equivalently written as the sum �vξ(x, z, v) where ξ(a, v) checks that

v describes the computation of E(a), and v ranges over {0, 1}s for an appropriate

s ∈ poly(n).

It follows that there is a function in R ′ ∈ FPO that, given input 1n, outputs a
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formula ξ over the g- and O-extended basis satisfying

f(x) =
⊕

z,v ξ(x, z, v)

for every x ∈ {0, 1}n. R ′ depends only on R. This was to be shown.

Proof of Lemma 7.7. Let B be a Boolean basis for formulas. Suppose f Cook-

reduces to g. By Lemma 7.13, there is a function in FP that, given a formula φ

over the basis B∪ {f}, takes each subformula of the form f(φ1..φn) and performs

the replacement

f(φ1..φn) 7→
⊕

y ξ(φ1..φn, y)

where ξ is a formula over the basis B ∪ {g}. This proves �SATf → �∗SATg. By

Lemma 7.13 again, this reduction depends only on the reduction from f to g.

Proof of Lemma 7.8. Let B be a Boolean basis for formulas. Given a formula φ(x)

over the basis B ∪ {�SATB}, we want a reduction from the task of computing

�xφ(x) to that of computing �zψ(z), for some bbs ψ(z) over B. We want the

reduction to work for every choice of B.

Intuitively, replacing each occurrence of �SATB in φ(x) with the actual sum

to be computed, would constitute a reduction as desired. More precisely, let

FormulaEvalB be the partial language that, on input (t, u), interprets t as a

formula τ over the basis B, and outputs τ(u), the evaluation of τ on u. (In case
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τ has fewer inputs than |u|, let FormulaEvalB output τ(u) only if the extra bits

in u are set to zero, else let it output zero.)

Each subformula in φ(x) of the form

�SATB(φ1..φm) (7.2)

can be viewed as the sum

�u∈{0,1}mFormulaEvalB(φ1..φm, u) (7.3)

for each setting of x, since the subformulas φ1(x), .., φm(x) collectively describe

a Boolean formula τx with 6m input variables.

Now, FormulaEvalB Cook-reduces to the basis B, more precisely, to the func-

tion
∐

B : (i, x) 7→ Bi(x)

where Bi is the ith element of the basis B. Notice that this reduction does not

depend on what the basis B is, provided we have a reasonable representation

of formulas that uses generic labels for gates — ‘the ith nonstandard element’

etc. — which is the case by the way we set things up in Section 7.1 (subsection

“Boolean bases”).

It follows by Lemma 7.13 that there is a function in FP that, given input 1m,
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outputs a formula ξ
∐

B over the basis
∐

B satisfying

FormulaEvalB(a) =
⊕

y ξ
∐

B(a, y) (7.4)

for every input a ∈ {0, 1}m. If the basis B contains d elements, then
∐

B can be

written as

∐
B(i, x) = ((i ≡ 1)∧ B1(x))⊕ ∙ ∙ ∙ ⊕ ((i ≡ d)∧ Bd(x)) (7.5)

where ‘i ≡ j’ is shorthand for the formula checks that i is the binary encoding

of the number j. The righthand side of (7.5) is a formula over the basis B.

Combining with (7.4), we get a function in FP that, given input 1m, outputs a

formula ξB over the basis B satisfying

FormulaEvalB(a) =
⊕

y ξB(a, y) (7.6)

for every input a ∈ {0, 1}m.

It follows, from (7.3) and (7.6), that there is a function in FP that takes each

subformula of the form (7.2), and performs the replacement

�SATB(φ1..φm) 7→
⊕

u,y ξB(φ1..φm, u, y)
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proving �SAT�SAT → �∗SAT. The reduction works over any choice of a basis for

formulas.

Proof of Lemma 7.9. Given a bbs φ over any Boolean basis B, let Φ be its “arith-

metization”, obtained by replacing each non-input gate f in φ with its affine

extension polynomial f̂, and by replacing each mod-2 sum with a generic sum

so that a subexpression of φ of the form �y∈{0,1}φ
′ becomes

∑
y∈{0,1}Φ

′.

Because f̂ agrees with f on Boolean settings of its inputs by definition (Section

7.1), it follows that φ agrees with Φ on every Boolean input. And because

we represent F2k as k-bit vectors (Section 7.1), computing ⊕~αφ(~α) reduces to

computing the least significant bit of
∑

~αΦ(~α) over F2k for any k, where each αi

ranges over {0, 1} in both sums. The reduction works over any choice of a basis

for formulas.

Proof of Lemma 7.10. Given an abs Ψ over any arithmetic basis A, we give a re-

duction that produces a (summation-free) formula Φ over A satisfying

Ψ(x) =
∑

yΦ(x, y)

for every setting of inputs x of Ψ over F2k , for every k. Here y ranges over {0, 1}m

for some m depending on Ψ.

There is nothing to do if Ψ is just a variable or constant, so suppose not.
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If Ψ(x) is of the form Ψ1 ∙Ψ2, and if by recursion Ψ1 is already brought to the

desired form
∑

yΦ1(x, y), and Ψ2 to
∑

zΦ2(x, z), then the rest is easy: just make

sure y and z refer to disjoint sets of variables by renaming as needed, and write

Ψ(x) =
∑

y,zΦ1(x, y) ∙Φ2(x, z).

In case Ψ = Ψ1 + Ψ2, after recursing and renaming as before, write

Ψ(x) =
∑

b,y,z

(
Φ1(x, y) ∙ b ∙

∏
izi + Φ2(x, z) ∙ (1− b) ∙

∏
iyi

)
,

where b is a single variable.

In case Ψ is of the form f̂(Ψ1,.., Ψm), where f is a nonstandard basis element,

use the definition of f̂m (Section 7.1) to rewrite Ψ as

Ψ(x) =
∑

b1..bm
f̂(b1,.., bm) ∙

∏
i=1..m(1+ Ψi(x) + bi), (7.7)

then recurse into the product on the right side, and then finish by going to the

first case, Ψ = Ψ1 ∙ Ψ2.

The reduction works over any choice of a Boolean basis for formulas and its

corresponding arithmetic basis.

Proof of Lemma 7.11. Given an arithmetic formula Φ(x) and given `, we give a

reduction from finding the `th bit of
∑

xΦ(x), to evaluating the mod-2 sum �zφ(z)

for some Boolean formula φ.
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To begin with, let us assume that there are no nonstandard f̂-gates in Φ, in

other words, that Φ is a F2k-polynomial for some k. By the way we represent

F2k (Section 7.1), there is a Boolean circuit C(X) that takes as input a k-bit vector

Xj corresponding to each input xj of Φ(x), and outputs k bits representing the

value Φ(x). C can be produced by an FP-function given Φ.

Because the original task is to find the `th bit of the sum
∑

xΦ(x), and because

addition in F2k corresponds to componentwise addition in Fk
2 , we can ignore all

output bits of C except the `th one. Further, because the summation variables xi

range over binary values, we can fix in each Xi all the bits to 0 except the least

significant bit, which we can call xi. So we now have a circuit C(x) returning

the `th bit of Φ(x) for every x from the Boolean domain.

It follows that the `th bit
∑

xΦ(x) equals �x,yφ(x, y), where φ is the formula

verifying that y describes the computation of the circuit C on input x. This

proves the lemma when Φ(x) is a polynomial.

Now suppose that Φ contains f̂-gates for an arbitrary f. Mimicking the above

reasoning for the standard basis, we want to express the evaluation of Φ as a

Boolean circuit C over the f-extended Boolean basis. Once this is done, the rest

follows as in the earlier case with no f̂-gates.

Perform the process, explained in the proof of Lemma 7.10 just above, of

bringing Φ to prenex form — a seemingly useless thing to do as Φ does not

involve sums. But notice from (7.7) that as a side effect, the process transforms
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the summation-free Φ(x) into the sum
∑

B Φ ′(x, B), where each f̂-gate in Φ ′,

say the ith one, is “isolated” in the sense that its inputs now come from some

Bi1, .., Bimi
among the variables B, which all range over Boolean values. Since f̂

agrees with f on Boolean inputs, now the f̂-gates can be replaced with f-gates.

It thus follows, with the same reasoning as earlier, that the `th bit of
∑

xΦ(x)

— which is the same as the `th bit of
∑

x,B Φ ′(x, B) — equals �x,B,yφ ′(x, B, y),

where φ ′ is a formula over the Boolean basis corresponding to the basis of Φ.

φ ′ can be produced by an FP-function given Φ; this function works over any

choice of a basis for Φ.

Proof of Corollary 7.12. Immediate by chaining together Lemmas 7.9, 7.10, and

7.11.

7.2.3 Proof of Lemmas 7.2-7.5

We are ready to derive the first four of the five lemmas used in proving Theorem

7.1.

Proof of Lemma 7.2. Immediate by combining Lemma 7.7 and Corollary 7.12.

Proof of Lemma 7.3. Being the affine extension of f, by the definitions in Section

7.1, on input x, f̃ gives the zth bit of the value f̂ takes at y, where y and z are

computable in polynomial-time out of x. In other words, f̃ gives the +ASATf
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instance (Φ, z) where Φ is the formula ‘f̂(y)’. Thus f̃ → +ASATf. Combining

with Lemma 7.5 gives f̃→ �SATf. Therefore,

�SATf̃ → �SAT�SATf

→ �∗SATf → �SATf

by Lemma 7.2, Lemma 7.8, and Corollary 7.12, respectively.

Proof of Lemma 7.4. Immediate by combining Lemma 7.9 and Lemma 7.10.

Proof of Lemma 7.5. This is just Lemma 7.11.

7.2.4 Proof of Lemma 7.6

We finish the proof of Theorem 7.1 by proving Lemma 7.6.

Proof of Lemma 7.6. We want to show an interactive protocol for +ASAT in which

the power of the honest prover is +ASAT itself. The verifier in this protocol, V ,

is given (Φ, `, b), and must check that the `th bit of
∑

xΦ(x) equals b. Here Φ has

all its constants in F2k for some k, hence the sum is over F2k . V works as follows:

First, it obtains the claimed values for the rest of the k bits for
∑

xΦ(x), so

that the claim becomes ‘
∑

xΦ(x) = u’ for some u ∈ F2k .

Second, it performs the sumcheck protocol [12, Section 3.2] over F2k to get

rid of the sum and update the claim to ‘Φ(y) = v’ for some y, v over the same

field as that of x, u.
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At this point, V obtains the value of each gate in the evaluation of Φ(y) —

i.e., the value of each subformula of Φ, when evaluating Φ on y — and checks

all of them.

The analysis of the protocol is standard: if the original claim, that the `th

bit of
∑

xΦ(x) equals b, is false, where Φ has 6 n nodes, then the sumcheck

erroneously yields a true claim with probability at most

# of rounds ∙ deg Φ / size of the field

which grows slower than 1/nd for any d, due to the requirement k > log2
n in

the definition of +ASAT (Definition 7.2). This finishes the proof.

7.3 Proof of Theorem 1.7-(i)

In this section we prove the first part of Theorem 1.7, which we recall here:

Theorem 1.7-(i), Restated. MAEXP contains a function of circuit complexity nω(1).

This holds relative to every affine oracle.

The proof uses two main ingredients. First is a result of Kannan [39] akin to

Theorem 1.3.
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Fact 7.14 ([39]). EXPΣ2P contains a function of circuit complexity 2Ω(n). This holds

relative to every oracle.

Although Kannan gave a different proof of it, Fact 7.14 can be derived sim-

ilarly to the proof of Theorem 1.3 (p. 50). Recall the idea there was to do “fast

diagonalization by approximate counting”, by mimicking the process that suc-

cessively sets the next bit of a truth table to the minority vote of the circuits that

are consistent with the table constructed thus far. Whereas this ideal process

would eliminate at least half of the circuits at each step, the mimicking process

eliminates at least an (1/2− ε)-fraction for an arbitrarily small constant ε > 0, as

the minority count can be estimated to within any constant factor, via a function

in AM. Now, since every function in AM can be extended to a language in Π2P

[14], and since EXPΣ2P = EXPΠ2P, the first part of Fact 7.14 follows.

To see why this argument relativizes, notice that it makes no particular as-

sumption regarding what basis the circuits are on, as long as they can be eval-

uated. So if we extend the standard Boolean basis by an arbitrary language O,

then the same argument carries through, provided we replace FP by FPO, and

hence AM by AMO, etc. So the second part of Fact 7.14 also follows.

The second ingredient in the proof of Theorem 1.7-(i) says that if the lan-

guage �SAT has small circuits, then the exponential-time hierarchy collapses to

MAEXP.
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Lemma 7.15. If �SAT has circuits of polynomial size, then EXPΣ2P ⊂ MAEXP. This

holds relative to every affine oracle.

We prove Lemma 7.15 after proving Theorem 1.7-(i):

Proof of Theorem 1.7-(i). Let A be an affine oracle. If �SATA does not have polyno-

mial size circuits, then neither does MAEXPA since �SATA ∈ EXPA ⊂MAEXPA.

The theorem now follows from Fact 7.14 and Lemma 7.15.

(Theorem 1.7-(i), mod Lemma 7.15)

We now turn to Lemma 7.15. The proof will be very similar to that of Lemma

6.2 which, recall, says that under a derandomization assumption, if �SAT has

small nondeterministic circuits, then the exponential-time hierarchy collapses to

the second level. Here we want to deepen that collapse to MAEXP, under the

stronger assumption that �SAT has deterministic circuits. (While we don’t have

a derandomization assumption here, the task is still doable because the class to

which we want the collapse to occur involves randomness by itself.)

Just as was the case for Lemma 6.2, we prove a stronger version of Lemma

7.15:

Lemma 7.16. If �SAT has circuits of polynomial size, then PΣ2P ⊂ MA. This holds

relative to every affine oracle.
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Lemma 7.15 follows from Lemma 7.16 by a padding argument identical to

that in the proof of Lemma 6.2. So all that remains is the proof of Lemma 7.16.

Proof of Lemma 7.16. The proof is already implicit in the proof of Lemma 6.4. Let

A be an affine oracle. Extend the standard Boolean basis with A, and use FP for

FPA, MA for MAA, etc.

Suppose that �SAT has circuits of polynomial size. Then there is an MA-

protocol for Σ3SAT that proceeds as follows.

Given input ϕ ∈ {0, 1}n to Σ3SAT, Arthur performs the randomized reduction

from Σ3SAT to �SAT (Fact 6.7), thereby obtaining an input ψ ∈ {0, 1}m to �SAT

such that

Pr[Σ3SAT(ϕ) = �SAT(ψ)] > 1− ε (†)

for some negligible ε ∈ (1/n)ω(1) and m ∈ poly(n). After this, Merlin sends

Arthur a circuit for �SAT on `-bit inputs, for a sufficiently large ` ∈ poly(m) ⊂

poly(n). Arthur then uses that circuit as the prover in an interactive protocol

for the �SAT instance ψ, which he can do because �SAT is checkable (Theorem

7.1).

If Σ3SAT(ϕ) = 1, then by the definition of an interactive protocol, and by

(†), Merlin can send the actual circuit for �SAT and make Arthur accept with

probability greater than (2/3− ε), where ε ∈ (1/n)ω(1).

If Σ3SAT(ϕ) = 0, then again by the definition of an interactive protocol, and
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by (†), no matter what Merlin sends, the probability that Arthur accepts is less

than (1/3+ ε), where ε ∈ (1/n)ω(1).

By running the checker twice, these probabilities can be polarized to (8/9 −

ε) > 2/3 and (1/9+ ε) 6 1/3 respectively. Therefore Σ3SAT ∈MA, and the proof

is complete.

7.4 Proof of Theorem 1.7-(ii)

In this section we prove the second part of Theorem 1.7, which we recall here:

Theorem 1.7-(ii), Restated. Relative to some affine oracle, NEXP ⊂ P/poly.

If we wanted to show NEXP ⊂ P/poly relative to some oracle O, affine or

not, or more generally, to show CO ⊂ DO for classes C and D, then there is a

simple approach to this, due to Heller [36]: at iteration n ∈ N, take the first n

algorithms underlying CO, and partially fix O so as to force the behavior of these

algorithms on {0, 1}n. Assuming C is not too powerful, this forcing can be done

without having to fix O on all of {0, 1}kn, for some constant k, even considering

prior iterations. The free inputs of {0, 1}kn on which O is yet undefined can then

be used to store information on how the forced algorithms behave, in such a

way that some algorithm in DO can retrieve that information.
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When it comes the affine oracles, however, we face a difficulty in making this

strategy work. An affine oracle Õ, being the algebraically redundant version (see

(2.1)) of the oracle O, is less “dense” in its information content then O. So how

do we guarantee that partially fixing Õ, as done in the above paragraph, still

leaves sufficiently many free inputs on which we can do encoding?

The following two results provide that guarantee. The first one states that

knowing t bits of a binary codeword exposes at most t bits of its information

word, and the second scales this result to affine extensions.

Lemma 7.17 (Interpolation). Let E : FK
2 → FN

2 be linear and injective. Given a

“dataword” u ∈ FK
2 and a set of indices A ⊆ [N], consider the collection U of all

datawords u ′ ∈ FK
2 such that E(u) and E(u ′) agree on A.

There is a set of indices B ⊆ [K], no larger than A, such that projecting U onto

G := [K] \ B gives all of FG
2 .

Proof. The claim of the lemma on U is true iff it is true on U+ := U + u. So it

suffices to show that U+ is a subspace of FK
2 with dimension at least K− |A|.

Now, y ∈ U+ iff y+ u ∈ U, which is iff E(y+ u) and E(u) agree on A, which

is iff E(y) vanishes on A. Therefore U+ is identical to the space of all datawords

whose encodings vanish on A.

All that is left is to bound dim U+, or equivalently, to bound dim E(U+) since

E is injective. The latter quantity is the dimension of the space C ∩ Z, where C
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is the image of E, and Z is the space of all N-bit vectors that vanish on A. But

then by the theorem on the dimension of a sum of subspaces (e.g. [8, Thm 1.4])

dim(U+) = dim(Z) + dim(C) − dim(Z+ C)

= (N− |A|) + K − dim(Z+ C)

which is at least K− |A| because Z+ C ⊆ FN
2 . This finishes the proof.

Theorem 7.18 (Interpolation). Given a language f and a finite set A of inputs, consider

the collection F of all languages g such that f̃ and g̃ agree on A.

There is a set B of inputs, no larger than A, such that every partial Boolean function

g ′ defined outside B can be extended to some g ∈ F.

Further, in extending g ′ to g, the values of g at length-n inputs depend only on

those of g ′ at length n.

Proof. To begin with, consider the special case where A ⊆ dom(f̃
k

m) for some

fixed k and m. For the purpose of invoking Lemma 7.17, let E be the map that

takes as input the truth table of a Boolean function gm on m bits, and outputs

the truth table of g̃ k

m. So E : FK
2 → FN

2 , where K = 2m and N = k2km (to see

the value of N, recall that g̃ k

m(y, z) gives the zth bit of ĝk

m(y), where ĝk

m is the

extension of gm to Fm
2k).

Clearly E is injective; it is also linear because ĝk

m is additive and because we
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represent F2k with Fk
2 where addition is componentwise (Section 7.1). So E fulfils

the conditions of Lemma 7.17, which yields a set B ⊆ {0, 1}m that is no larger

than A, such that every partial Boolean function on {0, 1}m \ B can be extended

to a language in F. This proves the theorem in the special case.

To handle the general case, partition A into Am,k := A ∩ dom(f̃
k

m), and use

the above special case as a building block to create a bigger code. In detail, for

every m involved in the partition, define Em as the map sending the truth table

of gm to the list comprising the truth tables of g̃
k1
m , g̃

k2
m , . . . for every Am,kj

in

the partition. Now, take each Em thus obtained, and let E be their product. In

other words, let E take as input a list Tm1 , Tm2 , .. where Tmi
is the truth table of

some Boolean function gmi
on mi bits, and outputs Em1(Tm1), Em2(Tm2), .. . The

theorem now follows from Lemma 7.17.

With Lemma 7.17 and Theorem 7.18 in hand, we are ready to implement

Heller’s approach described in the beginning of this section, and prove Theorem

1.7-(ii).

Proof of Theorem 1.7-(ii). It is a basic fact that NEXP has polynomial-size circuits

iff NE (Section 3), the linear-exponential version of NEXP, has circuits of size a

fixed polynomial, and that this relativizes. In notation, for every language O,

NEXPO ⊂ PO/poly ⇐⇒ ∃d ∈ N : NEO ⊂ PO/nd
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Therefore, to prove the theorem it suffices to show a language O satisfying

NEÕ ⊂ PO/nd, (7.8)

for some constant d because O reduces to Õ.

Take an enumeration N∗0 , N∗1 ,.. of the class NE∗. Such an enumeration can be

obtained from one for NP∗ (Section 7.1), since by definition (Section 3),

NE∗ = {L∗ : (∃c ∈ N, K∗ ∈ NP∗)(∀x, O) L∗(O, x) = K∗(O, x, 12c|x|

)}.

We want to talk about the query complexity of each N∗i in the enumeration.

Underlying each N∗i is a constant c ∈ N and a function K∗ ∈ NP∗. Underlying

K∗ is some ` ∈ poly(n), and some g∗ ∈ P∗. Underlying g∗ is some f∗ ∈ FP∗, of

query complexity (Section 7.1) qf, say. Define the query complexity qg of g∗ be

that of f∗. Define the query complexity qK of K∗ as qg(n + `(n)). Define the

query complexity qi of Ni as qK(n+ 2cn).

The point of query complexity here is this: if N∗i (O, x) = 1, then this equality

can be maintained by fixing only qi(|x|) bits of O and changing the rest arbitrarily.

Now, modify the list N0, N1,.. into a list M0, M1,.. (repetitions allowed) such

that if Mi has query complexity qi, then qi(n) 6 2n log n for all n > i.

Initialize O to the all-zeroes language. The plan is to modify O in such a way
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that for every n > 1, a size-nd circuit with access to O, say CO
n , can compute the

function

Ln : {0, 1}blog nc × {0, 1}n → {0, 1}

Ln : (i, x) 7→MÕ
i (x). (7.9)

This yields (7.8), hence the theorem, because each language K ∈ NEÕ corre-

sponds to some MÕ
i , and in order to compute K(x) on all but finitely many

inputs x (in particular for x ∈ {0, 1}>2i) we can just provide (i, x) to the circuit

CO
|x|, implying K ∈ PO/nd.

We modify O iteratively; in iteration n > 1 we finalize O on all inputs in

{0, 1}6nd

, plus some additional 24n log n inputs at most. Let fn denote the finalized

portion of O at the end of iteration n, i.e., fn is the restriction of O to those inputs

on which it is finalized by the end of iteration n.

In iteration 1 we do nothing, so f1 : {λ, 0, 1}→ {0} where λ is the empty string.

At iteration n > 1, consider all possible ways of extending fn−1 to a language f.

Out of all such f, pick one such that when O = f, the collection

Sf := {(i, x) : Ln(i, x) = 1} (7.10)

is maximal. Set O = f.
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Now we want to “open up space” in f by un-defining it at some inputs, the

idea being then to encode the function Ln in the freed space so that a small

circuit can look it up. In doing so, of course, we do not want to disturb (7.10),

which, by the way we picked f, is equivalent to wanting that Sf does not shrink

— i.e., as we restrict f to some f ′, no matter how we extend f ′ back to some

language g, we want Sg = Sf.

Consider a pair (i, x) in Sf. Because Mi has query complexity less than 2n log n

on input x ∈ {0, 1}n, the membership of (i, x) in Sf can be preserved by fixing

f̃ on at most 2n log n inputs only. There are at most n2n pairs in Sf. Thus if we

want Sf not to shrink, it suffices to fix f̃ at 23n log n inputs. By the Interpolation

theorem, this means we only need to reserve a small set of “bad” inputs B, of

size 6 23n log n, beyond those already reserved in previous iterations, i.e., beyond

dom fn−1, such that on B we have no control as to how f behaves, but on the

“good” inputs {0, 1}∗ \ (B ∪ dom fn−1), we can change f arbitrarily. So let fn be

the restriction of f to B ∪ dom fn−1.

Now that we opened up space in f, we are ready to store the information in

(7.9) so that a small circuit can look it up. That information is the truth table of a

function on n+ log n bits, so it suffices to have 22n log n bits available in dom fn for

this purpose. Since there are at most 23n log n bad inputs in fn by the previous

paragraph, and since there are at most 24(n−1) log(n−1) inputs in dom fn−1 that

are outside {0, 1}6(n−1)d by induction, we know there are at most 24n log n inputs
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currently in dom fn that are outside {0, 1}6(n−1)d . So there is sufficient space in

{0, 1}n
d

for storage when d is large enough.

As for how to actually store the information, initially consider each input

(i, x) to Ln as prepended with zeroes until it becomes a string Y(i,x) of length

nd, and then set fn(Y(i,x)) := Ln(i, x). Of course this may not work as some

bad inputs may coincide with some Y(i,x), but this can be handled simply by

changing the encoding of (i, x) to Y(i,x) ⊕ Z for a suitably picked Z ∈ {0, 1}n
d

;

such Z exists because it can be picked at random with non-zero probability (by

a union bound on the event that some bad input coincides with Y(i,x) ⊕ Z for

some (i, x)). This Z can then be hardwired to a circuit of size nd, as we wanted

to do.

To finish, let fn behave arbitrarily on the rest of the good inputs in {0, 1}6nd

,

and then accordingly adjust fn on the bad inputs in {0, 1}6nd

— recall from the

Interpolation theorem that on a bad input, fn is a function of how it behaves on

non-bad inputs of same length. We have thus constructed fn as desired.

7.5 Proof of Theorem 1.7-(iii)

In this section we prove the last part of Theorem 1.7, which we recall here:

Theorem 1.7-(iii), Restated. Relative to some affine oracle, NEXP 6⊂ P/poly.
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Proof. We construct O such that some L ∈ NEXPO does not have polynomial size

circuits over the Õ-extended basis; in notation,

L /∈ PÕ/poly. (†)

Since O reduces to Õ, this will prove NEXPÕ 6⊂ PÕ/poly.

Initialize O arbitrarily. Extend the standard Boolean basis with Õ. Let s(n) =

nlog n and let s̃(n) ∈ O(s(n) log s(n)) be such that every size-s(n) circuit can be

represented by a string of size s̃(n).

By a counting argument (or by the “fast diagonalization via minority vote”

trick from the proof of Theorem 1.3) it follows that for all but finitely many

n ∈ N, say for all n > n0, there is a string τn of length ds̃(n)e such that, when

extended arbitrarily to length 2n, τn becomes the truth table of a function that

is uncomputable by any size-s(n) circuit on n inputs.

So modify O as follows. For n := n0, n0+1, . . . , pick a string τn as above, and

modify O at length 2n so that its truth table starts as τn.

Finally, define L simply as

L(x) := O(02|x|−|x|x).

Clearly, L ∈ NEXPO. To show that (†) holds for L, let d ∈ N arbitrary, and
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consider a circuit family CÕ := {CÕ
n} of size t ∈ O(nd) (over the Õ-extended basis).

Eventually, t(n) < nlog n, say for all n > n1 > n0. In the above construction, at the

end of iteration n > n1, we have that CÕ
n cannot compute L. This situation does

not change in a later iteration because the behavior of CÕ
n , a size-t(n) circuit, does

not depend on the values of Õ, hence of O, at length > 2n. So L /∈ PO/poly.
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8 extensions to fourth result

Chapter 1 proclaimed: in dealing with efficient programs, i.e., in studying FP

and classes built from FP (Chapter 3), if relativization is a proxy for “known

proof techniques” for pre-90s, then affine relativization is one for post-90s. To

support this claim, in Chapter 7 we gave two kinds of results. First, we showed

that a famously nonrelativizing result from the 90’s, namely MAEXP 6⊂ P/poly

(Fact 1.6), relativizes affinely. Second, we showed that NEXP 6⊂ P/poly does not

relativize affinely, nor does NEXP ⊂ P/poly. This second result gives support to

our claimed status of affine relativization because any model for “known proof

techniques” must also explain our inability to settle conjectures.

In this chapter we give more results such as these. Our focus will be on the

latter kind, showing certain conjectures to not relativize affinely. For results of

the first type, we merely point out that the first three contributions of this thesis

— Theorems 1.3, 1.4, and 1.5 — all relativize affinely. (In fact Theorems 1.3 and

1.4 both relativize, period.)

We split the remainder of the chapter into three sections. In the first section

we derive a small technical ingredient that will be useful in the rest of the chapter.

In the second section, we demonstrate the strength of the machinery devel-

oped in Chapter 7 and here, by taking an existing oracle construction in the

sense of Baker-Gill-Solovay, and importing it to our framework to make it an
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affine oracle. This result ties into the discussion in Section 2.3 – Myths 3 & 4.

In the last section we show, among other things, that a better-than-brute-

force algorithm for CircuitSAT must be affinely nonrelativizing. This ties into

the discussion in Section 2.3 – Myth 5.

8.1 Affine Extensions and Disjoint Unions

The disjoint union of languages O0 and O1 is the language mapping (b, x) to

Ob(x). This is a frequently occurring element of unrestricted oracle constructions.

In order to import such constructions to our setting (as in Section 8.2), as well as

to construct new affine oracles from ground up (as in Section 8.3), we will need

that disjoint unions and affine extensions are compatible in the following sense.

Proposition 8.1. Let A0, A1 be the affine extension of the languages O0, O1 respectively.

Then the disjoint union A0
∐

A1 : bx 7→ Ab(x) is equivalent, under Cook reductions,

to the affine extension of the disjoint union O0
∐

O1 : bx 7→ Ob(x).

Proof. Let O := O0
∐

O1. By definition, the affine extension of O is the Boolean

version of the function that evaluates, given B, X1, .., Xn ∈ F2k for any k, the
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polynomial

Ô(BX) =
∑

b,x1,..,xn∈{0,1}

O(bx) ∙
∏

i(1+ (BX)i + (bx)i)

=
∑

x1,..,xn∈{0,1}

O0(x) ∙
∏

i(1+ (BX)i + (0x)i)

+
∑

x1,..,xn∈{0,1}

O1(x) ∙
∏

i(1+ (BX)i + (1x)i)

= (1+ B) ∙ Ô0(X) + B ∙ Ô1(X) .

It follows that Õ ∈ PÕ0
∐

Õ1 and Õ0 ∈ PÕ and Õ1 ∈ PÕ, implying the claim.

So Proposition 8.1 says, essentially, that we can use the disjoint union operator

as though it maintains the property of being affine.

8.2 Renovating Classical Oracles

Recall Myths 3 & 4 (p. 35): (i) affine oracles are much harder to construct than

traditional oracles, and (ii) the NEXP
?
⊂ P/poly question is the only place where

our framework seems to have an edge over the competition. We now debunk

both (i) and (ii). We do this by showcasing how the machinery we developed, in

Chapter 7 and here, can be used to import traditional oracle constructions and

turn them into affine oracles.
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The particular construction we showcase is due to Beigel, Buhrman, and Fort-

now [16], of an oracle relative to which P = �P ( NP = EXP. Here �P is

basically the class for which �SAT is complete; in other words, given a set C of

languages, if � ∙ C denotes the set of all languages of the form

L(x) =
⊕

y∈{0,1}`(|x|)

V(x, y) (8.1)

for some ` ∈ poly(n) and V ∈ C, then �P is defined as � ∙ P.

The Beigel et al. oracle is an interesting one because it shows, among other

things, that �P = PSPACE cannot be derived via relativizing techniques. From

the definitions (Section 3) it is clear that PSPACE(= Σ∞P) is sandwiched between

NP and EXP. It is also not hard to see that �P ⊂ PSPACE: think of an interactive

proof for �SAT where the error probability is allowed to be < 1 instead of < 1/3.

The opposite containment, however, is wide open.

We now show that affinely relativizing techniques cannot derive this contain-

ment, hence �P = PSPACE, either.

Theorem 8.2. Relative to some affine oracle, P = �P ( NP = EXP.

In order to prove Theorem 8.2 we use two facts regarding EXP.

Definition 8.1 (SCE). Let SCE (short for SuccinctCircuitEval) be the language that,

given (D, x, 1t), decides if C(x) = 1, where C is a circuit of size 6 2t described by the
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circuit D via a function such as

D(i, j) := type of the ith gate in C, and the index of the jth neighbor of it.

Let SCEO denote, given the language O, the extension of SCE to circuits over the

O-extended Boolean basis.

Fact 8.3. SCE is complete for EXP. This holds relative to every oracle.

Fact 8.4. EXP ) P. This holds relative to every oracle.

Both facts are well-known in the classical study of complexity classes based

on Turing machines. If we do not want to rely on Turing machines, as we said

we wouldn’t (Chapter 3), then it suffices for FP to be efficiently enumerable in

the following sense: there is an enumeration of FP, say enum, and there is a

function exec ∈ FP, such that for every i ∈ N, there is ti ∈ poly(n) such that

enumi(x) = exec(i, x, 1t(|x|))

for every x ∈ {0, 1}∗ and t(|x|) > ti(|x|).

We are ready to prove Theorem 8.2 and finish this section.

Proof of Theorem 8.2. By Fact 8.4, and because P ⊂ �P and NP ⊂ EXP relative to
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every oracle by definition, it suffices to show an affine oracle A such that

�PA ⊂ PA and EXPA ⊂ NPA. (8.2)

In fact, by Proposition 8.1, instead of an affine oracle, it suffices for A to be

the disjoint union of two affine oracles A0 := Õ0 and A1 := Õ1.

We claim:

Lemma 8.5. There exists a language A such that A = Õ0
∐

Õ1 for some O0, O1 and

�SATA(u) = O0(u, 1|u|2) (8.3)

SCEA(u) =
∨

z∈{0,1}|u|2

O1(u, z) (8.4)

for every u ∈ {0, 1}∗.

Such an A satisfies (8.2), hence the theorem, because:

• �SATA is complete for �PA (see (8.1)), so that the condition (8.3) guarantees

that �PA ⊂ PO0 , hence that �PA ⊂ PA because O0 Karp-reduces to Õ0

(= A0) which in turn Karp-reduces to A0
∐

A1 (= A),

• SCEA is complete for EXPA (Fact 8.3), so that the condition (8.4) guarantees

that EXPA ⊂ NPO1 , hence that EXPA ⊂ NPA similarly to the previous item.

So all that remains is to prove Lemma 8.5.
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(Theorem 8.2, mod Lemma 8.5)

Proof of Lemma 8.5. Initialize O0 and O1 to the all-zeroes language. Update O0 to

the output of the following procedure.

Ensure-Condition-(8.3)

input: O0, O1; output: O ′0 such that Õ ′0
∐

Õ1 satisfies condition (8.3)

initialize O ′0 := O0

for every v ∈ {0, 1}∗ in lex order,

A := Õ ′0
∐

Õ1

O ′0(v, 1|v|2) := �SATA(v)

return O ′0

Let A := Õ0
∐

Õ1. Note that at this point A satisfies condition (8.3). Now

perform the following procedure:

Ensure-Condition-(8.4)

for every v ∈ {0, 1}∗ in lex order,

if SCEA(v) = 1 then

for every S ⊂ {0, 1}|v|2

let OS
1 be the same as O1 except OS

1 (v, z) := 1 for all z ∈ S

let OS
0 := Ensure-Condition-(8.3)(O0, OS

1 )

let AS := ÕS
0

∐
ÕS

1
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pick a nonempty S ⊂ {0, 1}|v|2 such that

SCEAS

(u) = SCEA(u) for all u 6 v (in lex order)

A := AS

We claim that after this second procedure, A satisfies both conditions (8.3)

and (8.4), proving the lemma.

That A satisfies condition (8.3) is clear: it initially satisfies the condition, and

whenever it is updated, it is updated to some AS satisfying the condition.

As for condition (8.4), we proceed by induction on {0, 1}∗ to argue the follow-

ing claim: for every v ∈ {0, 1}∗, at the beginning of iteration v, condition (8.4) is

satisfied for every u < v, and A is of the form Õ0
∐

Õ1 where O1(u, ∙) = 0 for

every u > v.

The claim is true for the smallest string v, because at the beginning of the

procedure, A is of the form Õ0
∐

Õ1 where O1 is the all-zeroes language.

Suppose the claim is true for some fixed v ∈ {0, 1}n, and consider iteration v.

If SCEA(v) = 0, then without anything done, condition (8.4) is already satis-

fied for u = v. So the right thing to do in this case is to do nothing, which the

procedure does. The inductive step follows in this case.

In case SCEA(v) = 1, suppose for a moment that a nonempty set S ⊂ {0, 1}|v|2

as stated in the procedure does exist. Then the procedure updates A = Õ0
∐

Õ1

to some AS = ÕS
0

∐
ÕS

1 where O1 and OS
1 are identical on inputs of the form (u, ∙)
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for u < v and for u > v. Further, SCEAS

(u) is identical to SCEA(u) for u 6 v.

The inductive step follows.

All that remains is to prove that a set S ⊂ {0, 1}|v|2 as stated does exist:

Lemma 8.6. Let v ∈ {0, 1}∗. Let A be a language of the form Õ0
∐

Õ1 for some O0, O1

such that O1(v, z) = 0 for every z ∈ {0, 1}|v|2 .

Suppose that A satisfies condition (8.3) for all u, and condition (8.4) for all u < v.

Suppose further that SCEA(v) = 1.

There is a nonempty S ⊂ {0, 1}|v|2 such that SCEAS

(u) = SCEA(u) for all u 6 v,

where AS is defined in procedure Ensure-Condition-(8.4) above.

(Theorem 8.2, mod Lemma 8.6)

Proof of Lemma 8.6. Given v ∈ {0, 1}n, for each z ∈ {0, 1}n
2
, consider replacing the

value of O1(v, z) with a variable αz. Call the resulting function Oα
1 .

Using Oα
1 , define Oα

0 in the same way that the procedure Ensure-Condition-

(8.4) defines OS
0 using OS

1 . That is, let

Oα
0 := Ensure-Condition-(8.3)(O0, Oα

1 )

Use Oα
0 and Oα

1 to define Aα in the same way that using OS
0 and OS

1 , the
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procedure Ensure-Condition-(8.4) defines AS. That is, let

Aα := Õα
0

∐
Õα

1

Notice that Aα = A when we put ~α := ~0. (In particular, notice that since

A = Õ0
∐

Õ1 satisfies condition (8.3) for every u ∈ {0, 1}∗, Ensure-Condition-

(8.3)(O0, ∙) returns just O0.) Therefore, the expression

∨

u6v

SCEA(u)⊕ SCEAα

(u), (Δ)

which is a function Δ(~α) on the variables αz, gives 0 when ~α = ~0.

Suppose towards a contradiction that the claim of the lemma is false. Then

Δ(~0) = 0, and Δ(~a) = 1 for every ~a 6= ~0

implying that Δ = OR2n2 , the OR function on 2n2
variables. But this is impossible

because the affine extension polynomial (Section 7.1) of ORm, for any m ∈ N,

satisfies

ÔRm(x) = 1+
∏m

i=1
(1+ xi)

hence has total degree m, whereas:
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Lemma 8.7. Δ̂ has total degree 6 24n+1.

All that remains is to prove Lemma 8.7.

(Lemma 8.6, mod Lemma 8.7)

Proof of Lemma 8.7. Since x2 = x for binary x, it suffices to show that there is some

F2-polynomial of total degree 6 24n+1 that agrees with Δ on the Boolean values.

In fact since Δ is, by definition, the OR function applied to 6 2n+1 terms of

the form

SCEA(v)⊕ SCEAα

(v),

for various v ∈ {0, 1}6n, and because ÔRm has total degree m for all m, it suffices

to show:

Lemma 8.8. SCEAα

(v) can be expressed as a F2-polynomial (in αz variables) of total

degree 6 23|v|, for every v ∈ {0, 1}∗.

(Lemma 8.7, mod Lemma 8.8 )

Proof of Lemma 8.8. Given v, by definition SCEAα

(v) views v as a triple (D, x, 1t),

where D is a circuit that describes a circuit C of size 6 2t < 2|v| over the Aα-

extended basis, and

SCEAα

(v) = C(x).
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Take each gate of C, say the ith gate, and assign a variable bi so that it can

be expressed as

bi = f(bi1 . . . bi`i
)

meaning that the ith gate is of type f (an element of the basis), and has its inputs

coming from gates i1, . . . , i`1 in that order. Then

C(x) =
⊕

b∈{0,1}m

m∧

i=1

(1⊕ bi ⊕ fi(bi1 . . . bi`i
)) (§)

where m denotes the number of gates in C. So m 6 (size of C) 6 2t < 2|v|.

If the ith gate of C is an input node, say xj, then the fi(∙ ∙ ∙ ) term in the sum

(§) is to be replaced with xj. Notice that the only place where αz variables arise

in (§) is the term fi(∙ ∙ ∙ ), and that no such variable arises when the ith gate is an

input gate xj, or a standard gate ∧, ⊕, etc.

On the other hand, if the ith gate is of type Aα, then the fi(∙ ∙ ∙ ) term is

Aα(bi1 . . . bi`i
)

which equals, since Aα = Õ0
∐

Õα
1 , either

Õ0(bi2 . . . bi`i
) (†)
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or

Õα
1 (bi2 . . . bi`i

) (‡)

depending on whether bi1 equals 0 or 1 respectively.

Since `i 6 (number of gates) = m < 2|v|, the proof is done once we show:

Lemma 8.9. For every w ∈ {0, 1}∗,

• Õα
1 (w) can be expressed as a F2-polynomial (in αz variables) of total degree 1,

• Õα
0 (w) can be expressed as a F2-polynomial (in αz variables) of total degree 6 |w|2.

(Lemma 8.8, mod Lemma 8.9 )

Proof of Lemma 8.9. By definition (Section 7.1), f̃(w) interprets its input w as a

pair (X, y), where X ∈ Fm
2k (for some m and k encoded in X), and outputs the

yth bit of the sum
∑

b∈{0,1}m

f(b) ∙
∏m

i=1(1+ Xi + bi)

The only place where αz variables can arise in this sum is the f(b) term.

Putting f := Oα
0 and f := Oα

1 , we see that it suffices to show:

Lemma 8.10. For every w ∈ {0, 1}∗,

• Oα
1 (w) can be expressed as a F2-polynomial (in αz variables) of total degree 1,

• Oα
0 (w) can be expressed as a F2-polynomial (in αz variables) of total degree 6 |w|2.
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(Lemma 8.9, mod Lemma 8.10 )

Proof of Lemma 8.10. The claim regarding Oα
1 is trivial: by definition, Oα

1 (w) is

either some constant 0/1, or is some variable αz.

As for Oα
0 , by definition, Oα

0 (w) is some constant 0/1, or is �SATAα

(v) for

some v ∈ {0, 1}<|w|. So it suffices to show:

Lemma 8.11. �SATAα

(v) can be expressed as a F2-polynomial (in αz variables) of total

degree 6 |v|2, for every v ∈ {0, 1}∗.

(Lemma 8.10, mod Lemma 8.11 )

Proof of Lemma 8.11. By induction on |v|. The base case, |v| = 0, is trivial.

Suppose the claim is true for all v ∈ {0, 1}<s for some s ∈ N+. Given v ∈ {0, 1}s,

�SATAα

interprets v as a formula ϕ over the Aα-extended basis with m 6 s

variables, and satisfies

�SATAα

(v) =
⊕

x∈{0,1}m

ϕ(x).

Replacing each subformula in ϕ of the form

Aα(ϕ1..ϕh)
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where each ϕi is a subformula, with

⊕

b∈{0,1}h

Aα(b)∧ (ϕ1 ⊕ b1 ⊕ 1)∧ ∙ ∙ ∙∧ (ϕh ⊕ bh ⊕ 1)

we get, assuming there are ` such subformulas to be replaced,

ϕ(x) =
⊕

B1∈{0,1}h1

...
B`∈{0,1}h`

Aα(B1)∧ ∙ ∙ ∙∧ Aα(B`)∧ ψ(x, B)

where ψ is a formula over the standard basis (hence can contribute no αz-

variables). Viewing the ith occurrence of Aα(∙) inside the sum as a �SATAα

instance of size si, where s1+ ∙ ∙ ∙+s` 6 s, we can apply the induction hypothesis

that it can be expressed as a polynomial of degree 6 s2
i. The claim then follows

by induction.
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8.3 Oracles That Render Brute Force Optimal

Recall Myth 5 (p. 37): the connection recently discovered by Williams [52], from

better-than-brute-force algorithms for CircuitSAT to circuit lower bounds NEXP,

more precisely, the result:

Fact 8.12 ([52]). For ` ∈ poly(n), let CircuitSAT` denote the restriction of CircuitSAT

to circuits of size 6 `(n), if n is the number of inputs to the circuit.

If CircuitSATnd ∈ DTIME(O(2n/nω(1))) for every constant d, then NEXP 6⊂

P/poly.

obviates relativization-based barriers.

We now counter this myth by showing that the very existence of such an

algorithm constitutes a theorem that is affinely nonrelativizing. So Williams’

program would succeed in proving NEXP 6⊂ P/poly, if it can find an ingredient

that does not affinely relativize, which is to say that it will pass the barrier if it

can pass the barrier.

To proceed, we need to make some definitions. Recall from Section 3 that

we defined DTIME(T), the extension of P to time complexity T , where T is any

class of functions closed under polynomials in the following sense: if t ∈ T then

for all constants d, td < t ′ for some t ′ ⊂ T . In this section we will need a finer

definition that allows T to be closed under quasi-linear functions only: if t ∈ T then
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then for all constants d, t logd
t < t ′ for some t ′ ⊂ T . One way to do this is to

change our notion of efficient computability, from FP to FQLIN.

Definition 8.13 (FQLIN). Define FQLIN as the set of all f : {0, 1}∗ → {0, 1}∗ com-

putable in quasi-linear time.

As was the case for FP, we do not rely on a particular implementation of

quasi-linear time computability; for concreteness the reader can take the stan-

dard definition based on Turing machines running in time O(n logd
n) for some

constant d.

Hence, FP is the set of all F such that F(x) = f(x, 1t(|x|)) for some polynomial

t and f ∈ FQLIN. More generally, the same idea gives FTIME(T), DTIME(T),

etc., for any class T closed under quasi-linear functions.

We will also need a finer definition of nondeterminism in this section:

Definition 8.14 (N`P). For every function ` : N → N, define N`P as the set of all

languages of the form

L(x) = ∃y ∈ {0, 1}`(|x|) : V(x, y)

for some V ∈ P.

Hence, NP = ∪`∈poly(n) N`P. The motivation for Definition 8.14 is the follow-

ing relationship to CircuitSAT:
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Proposition 8.15. For ` ∈ poly(n), let CircuitSAT` denote the restriction of CircuitSAT

to circuits of size 6 `(n), if n is the number of inputs to the circuit. Let T(n) ⊂ nω(1) be

a class of functions eligible for defining DTIME(T(n)) (c.f. Definition 8.13 and remarks).

Suppose that for every ` ∈ poly(n), CircuitSAT` ∈ DTIME(T(n)). Then NnP ⊂

DTIME(T(n)). This holds relative to every oracle.

Proof. Let O be an arbitrary oracle. Extend the standard Boolean basis with O.

Let L ∈ NnPO so that

L(x) = ∃y ∈ {0, 1}|x| : V(x, y)

for some V ∈ PO. By the Cook-Levin theorem (Section 7.1), there exists DescV ∈

FPO that outputs, given input 1n, a circuit CV2n
of size `(n) for some ` ∈ poly(n)

such that

V(x, y) = CV2n
(x, y)

for every x, y ∈ {0, 1}n. Therefore, if CircuitSAT` ∈ DTIMEO(t(n)), then NnPO ⊂

DTIMEO(O(t(n)+p(n))) for some p ∈ poly(n). The result follows because t ∈ T

for some class T ⊃ nω(1) closed under quasi-linear functions.

Thus, to show that the existence of a deterministic time-T(n) algorithm for

CircuitSAT would be affinely nonrelativizing, it suffices to show an oracle relative

to which NnP is not contained in deterministic time T(n). This is what we do

in the proof of the next theorem.
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Theorem 8.16. Relative to some affine oracle, CircuitSATnd /∈ DTIME(O(2n/nω(1)))

for some constant d.

To prove Theorem 8.16, we follow a strategy invented by Aaronson and

Wigderson [2]. The idea is to import existing lower bounds from communi-

cation complexity to the setting of oracles. To get more specific, we need to

make some definitions.

In order to avoid lengthy technicalities, in the rest of this section we will

embrace the Turing machine based jargon — running time, algorithm, etc.

Definition 8.2 (cc, ticc). Define DTIME(t(n))ticc as the class of families f := {fn}

satisfying the following. (i) Each fn is a Boolean function on pairs of 2n-bit strings,

(ii) There is a protocol involving two algorithms M0, M1 such that for all n and all

(X, Y) ∈ dom(fn), the two parties MX
0 (1

n), MY
1 (1

n) compute fn(X, Y) in time O(t(n)).

Let DTIME(t(n))cc denote the relaxation of DTIME(t(n))ticc where M0, M1 are al-

lowed to be non-uniform, and where only the communication between M0, M1 is counted

towards time elapsed.

Define Pticc := DTIMEticc(n
O(1)). Use Pticc to define NPticc, BPPticc, etc., similar

to how we define NP, BPP, etc., from P.12 Similarly define Pcc from DTIMEcc, and

NPcc, BPPcc, etc. from Pcc.

12Recall that definitions of BPP, NP, etc. involve some counting of the witnesses w of a P-
predicate L(x, w). Here, that predicate would be of the form f( (X, w) , (Y, w) ) where |w| is
polynomially bounded in n for fn, i.e., polylogarithmic in |X|.
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The notation Cticc is meant to indicate that time is measured on equal grounds

with communication. A function in Dcc according to the classical definition [13]

is defined on strings of every even length, whereas Definition 8.2 requires length

a power of two; our convention causes nothing but convenience in this section.

We formalize the high-level idea of Aaronson and Wigderson with the fol-

lowing generic theorem in our framework:

Theorem 8.3. Let C and D be any two complexity classes defined in Chapter 3 or in

this section (Section 8.3), such that P ⊂ C, D ⊂ EXP.

If Cticc 6⊂ Dcc, then relative to some affine oracle, C 6⊂ D.

Proof. Supposing there is some f := {fn} in Cticc \ Dcc, we want to show an affine

oracle A relative to which C 6⊂ D. For concreteness, the reader may take C to be

NP, say, and D to be BPP.

By Proposition 8.1, instead of an affine oracle, it suffices for A to be the

disjoint union of two affine oracles A0 := Õ0 and A1 := Õ1. In fact, since every

language reduces to its affine extension, it suffices to show O0, O1 such that

CO0
∐

O1 6⊂ DÕ0
∐

Õ1 .

For every n ∈ N, pick an arbitrary pair (Xn, Yn) ∈ dom fn ⊂ {0, 1}2n

× {0, 1}2n

.

Initialize O0 to have the same truth table as Xn for every n, and similarly for O1
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versus Yn. Because f ∈ Cticc, the language L := {Ln} defined as

L(1n) := f(O0,n, O1,n), L( 6= 1n) := 0

is in CO0
∐

O1 ; to see this just consider using O0
∐

O1 to simulate a Cticc-protocol

for f. Our objective is to modify O0,O1 so that L remains in CO0
∐

O1 and becomes

out of DÕ0
∐

Õ1 .

To that end, for any pair of strings (X, Y) ∈ {0, 1}2n

× {0, 1}2n

, let O0 ← X denote

the result of updating O0 so that at length-n inputs, it has the same truth table

as X; similarly use O1 ← Y to denote the result of updating O1 with Y.

Now let N1, N2, ... be an enumeration of D-algorithms endowed with an ora-

cle access mechanism. (To be precise, we need to consider the class D∗, defined

using the class FP∗ from Section 7.1 in the same way that D would be defined

from FP. As stated earlier, however, for convenience in this section we embrace

the Turing Machine based jargon.) For each algorithm in the enumeration, say

for Ni, define gi := {gi
n} as

gi
n(X, Y) := N

˜(O0←X)
∐ ˜(O1←Y)

i (1n) (8.5)

where (X, Y) ranges over dom fn. In case Ni’s output is not well-defined on 1n

— due to Ni computing a partial language which 1n is outside the domain of
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— just let gi
n take the value ‘⊥’.

We claim that gi differs from f on infinitely many inputs. Indeed, the right-

hand-side of (8.5) can be computed by a protocol where one party is given access

to X and knows O0 (up to a finite length, beyond which Ni is guaranteed not to

access when run on 1n), the other party is given Y and knows O1 (again finitely

bounded), and the two parties simulate Ni by using each other as an oracle for

the missing side of the disjoint union. So gi ∈ Dcc. Since f /∈ Dcc, the claim

follows.

Now, for i = 1..∞, find a pair (Xni
, Yni
) in dom fni

= dom gi
ni

on which f and

gi differ, for some ni arbitrarily large. Update O0 to O0 ← Xni
and O1 to O1 ← Yni

,

so that L(1ni) differs from N
˜(O0←X)

∐ ˜(O1←Y)
i (1ni). Since ni is arbitrarily large, this

update does not disturb the previous iterations — e.g., ni > 22ni−1 suffices since

D ⊂ EXP.

We are finally ready to prove Theorem 8.16.

Proof of Theorem 8.16. By Proposition 8.15, it suffices to show an affine oracle

relative to which NnP 6⊂ DTIME(O(2n/nω(1))).

Let

¬Disj(X, Y) := ∃i (X(i)∧ Y(i))

be the non-disjointness predicate. It is clear that ¬Disj ∈ NPticc. On the other
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hand, it is well-known (e.g., [5, Example 13.6]) that 2n bits of communication

is needed to compute ¬Disj, implying Disj /∈ DTIMEcc(o(2n)). The claim now

follows from Theorem 8.3.
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