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Chapter 1

Introduction

1.1 Overview

This thesis investigates “algebraic set preserving mappings” with application to three rele-

vant but different topics in power engineering. These mappings convert the original problem to a

new problem while preserving the solution. With careful design, such mappings are able to alter

characteristics of the original problem without compromising the original solution. The problem

representation idea is applied to the power flow problem, the optimal power flow problem and the

multi-party optimal power flow problem respectively. It introduces favorable features that aid the

design of new tools for these problems.

The first application attempts to efficiently compute multiple real-valued power flow solutions.

Currently many mature routines and algorithms have been developed to solve the power flow prob-

lems for one particular solution, typically a “high-voltage” solution. However, it is important

in some cases to obtain other solutions, typically ”low-voltage” solutions, but may also include

other high voltage solutions. For example, the additional low-voltage solutions provide informa-

tion about stability margins for voltage and transient stability analyses. In theory, it is possible to

compute all complex-valued solutions and then sift out the real-valued solutions, however, the vast

number of complex solutions makes this approach impractical. In their 1993 paper, Ma and Thorp

observed that the number of real-valued solutions to the power flow problems occupies a small

fraction of the total number of complex solutions. They analyzed an efficient tracing algorithm on
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real manifolds that connects multiple solutions. In this thesis, an algebraic set preserving mapping

is carefully designed to preserve the affine algebraic set of the power flow problem while changing

the unbounded manifold of each power flow equation into a high-dimensional ellipsoid. Using

this model, the traces are guaranteed to be bounded and return the solution set of the power flow

problem. The revised tracing method proposed in this thesis is tested on all power flow problems

for which the entire real solution sets are known, and further provides solution sets to several more

benchmark systems which have never been completely solved. We further report two modified

systems for which the numbers of real solutions increases temporarily with the increase of bus

loads, and another modified system that has two “high-voltage” solutions.

The second application is directed to identify the global solution to the optimal power flow

(OPF) problem. Typical nonlinear OPF algorithms, when they converge, provide only one solution

for each initial point, and it is not guaranteed to be the global optimum due to the nonconvexity

of the OPF problems. Recently, techniques for convex relaxation, especially semi-definite pro-

gramming (SDP), have gained popularity because it can provide the global solutions to the OPF

problems under certain conditions. However, when the SDP relaxation fails, it doesn’t provide a

physically-meaningful solution. In this thesis, we introduce a new way to locate multiple local

extrema, in hope of enumerating the global solution. To our best knowledge, it is the only prin-

cipled deterministic method to identify multiple local solutions to the OPF problems without any

relaxations. Specifically, an algebraic set preserving mapping is carefully constructed to preserve

the affine algebraic set of the Fritz John conditions of the OPF problem. It converts the unbounded

manifold of each Fritz John equation into a high-dimensional ellipsoid. Then the branch tracing

method is applied to locate the solution set of the Fritz John conditions. To enhance the search-

ing efficiency, a monotone greedy search strategy enforces a non-increasing objective function at

each step. The proposed method is tested on several hard ACOPF cases for which the first-order

SDP relaxation fails to provide exact solutions. We also demonstrate that for a particular 39-bus

system our proposed method found four additional local minima to the three known local minima.

Finally, a small example shows that the proposed method is able to locate local minima which do

not satisfy the KKT conditions.
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The third application designs an encryption strategy to mask sensitive information in OPF data

for shared computing techniques in a multi-party scenario. The idea is that OPF problem may be

solved efficiently on a shared computing platform. However, power system data are confidential

for security concerns, and in the multi-party scenario the shared computing platform also has to

protect the commercial information for each participant while jointly solving multiple parties to-

gether. Traditional data encryption techniques require decryption before use, which may increase

the risk of privacy loss in the shared platforms. The current fully homomorphic encryption tech-

nique, which does not require decryption before use, increases the computing time tremendously.

To compromise both the security and the computational complexity, this thesis designs a strategy

that enables each participant to construct its own encryption mapping to mask their sensitive in-

formation. A computing procedure is developed based on the masked data to obtain a masked

solution. Finally, the solution is returned to each party for decryption by each participant.

Beyond the specific contributions to the above three topics, the basic idea should be empha-

sized: changing the original problem to a new one without compromising the solution can be

beneficial for both understanding the problem and solving it. This is specifically done by the al-

gebraic set preserving mappings in this thesis, but can be extended to a broader realm for other

applications, including homology group preserving, fundamental group preserving, etc.

1.2 Background: the Power Flow Problem

The power flow equations describe the relation between power injections and bus voltages.

Their derivations and mathematical descriptions in both polar coordinates and rectangular coor-

dinates can be found in Chapter 2. These equations are nonlinear and admit multiple real-valued

solutions [1, 2, 3, 4]. In practice a single solution (known as the high-voltage solution) is of

primary interest, however, there are certain types of problems for which it is necessary to find

multiple solutions. One example is the energy function method for angular stability analysis. The

stability boundary of a stable equilibrium point (SEP) is characterized by the union of the stable

manifolds of all the type-1 unstable equilibrium points (UEP) around that SEP. Thus, the appli-

cation of energy function relies on finding these closest and controlling type-1 UEP’s [5, 6, 7].
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Another example involves a measure of energy between a stable high-voltage equilibrium point

and a nearby unstable low-voltage equilibrium point as the voltage stability index [8, 9]. To ensure

the needed equilibriums are found, the complete solution set of power flow equations should be

provided. Another example focuses on the cascading stall of induction machines for fault-induced

delay voltage recovery studies. This problem can be analyzed using bifurcation diagrams that trace

every solution to a distribution network [10].

The study of multiple power flow solutions dates at least back to 1970’s, when Tavora and

Smith examined a 3-bus case which admits 0, 2, 4 or 6 real-valued solutions [11]. In their analysis,

under the assumptions of lossless lines and PV buses, the number of distinct real-valued solutions

to a power flow problem is determined by twice the number of the folds in its parameter range.

The upper bound of the number of real-valued solutions is twice the number of distinct singular

surfaces which is defined by the zero set of the determinant of the power flow Jacobian matrix.

In 1982 Baillieul and Byrnes derived a bound for the number of complex-valued solutions to

any N bus lossless network for all PV buses [12]. Their bound is sharper than the bound given by

Bezout’s theorem. Bezout’s bound is a general bound for any finite-degree polynomial systems,

and to obtain such bound for the power flow equations, one must first homogenize the power flow

equations. The degree of the homogenized equation is identical to the degree of the original power

flow equation. By Bezout’s theorem, the number of complex-valued solutions to the associated

homogenized polynomials is the product of degrees of all the homogeneous polynomials, provided

no continuum solution set. Thus, for power flow equations, the bound for the number of complex-

valued solutions is given by 22N−2. However, Baillieul and Byrnes pointed out that the actual

number of finite solutions to the power flow equations is less than Bezout’s bound because Bezout’s

bound includes the number of solutions at infinity. Moreover, there is a subtle difficulty in applying

Bezout’s theorem for larger systems because there could be non-trivial parameter subsets which

admit infinitely many solutions. To take out the solutions at infinity as well as to overcome the

difficulty of infinitely many solutions, Baillieul and Byrnes applied results from intersection theory

to reduce the bound to

 2N − 2

N − 1

.
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In 1989, Salam et al. applied a the probability-one homotopy method to find all the complex-

valued solutions provably [13, 14]. The basic idea of this method is to trace homotopy curves

defined by a homotopy function between two polynomial systems. Specifically, suppose polyno-

mial system F (x) is non-trivial. Design another polynomial system Q(x) the solution set of which

is trivial to compute and the number of solutions is identical to Bezout’s bound (or Baillieul and

Byrnes’ bound). Then construct the homotopy function by H(x, t) = tF (x) + (1 − t)Q(x) with

t ∈ [0, 1]. Starting at solutions of H(x, 0) = 0, continuously change t from 0 to 1 and keep trace

of every x, the solutions of F (x) = 0 will finally be reached at H(x, 1) = 0. The number of the

traces followed by this method is determined by the solution bound. For example, tracing a 30-bus

system with Baillieul and Byrnes’ bound requires about 3× 1016 homotopy curves. Unless a very

sharp bound appears, it is computationally very expensive to analyze a medium sized system using

existing bounds.

To efficiently locate all the real-valued power flow solutions, Ma and Thorp introduced a tracing

method, firstly appeared in [15], to connect real-valued solutions [16]. In this thesis, we will refer

this tracing approach to the “branch tracing method” [17], while people sometimes refer it to “path

following method” as well. Differing from tracing homotopy curves between two polynomial

systems, the branch tracing method follows the curves defined by N − 1 polynomials from total

N polynomials each time. The curves all intersect as solutions, or looking from the solutions, the

curves “branch” out from the solutions. An initial solution is required as a starting point which

usually can be obtained by Newton’s method. At each solution, trace every branch curve and

collect the new solutions until no more new solutions are found. Since each trace generically

admits more than one solutions (at least two), it only requires at most Nsolu × (2N − 1) many

traces, where Nsolu is the number of the real-valued solutions to the polynomial system. Given

that Nsolu is very small compared to the number of complex-valued solutions, this method is much

more efficient than the bound-limited homotopy continuation methods.

In Ma and Thorp’s original design, the power flow equations were cast in polar coordinates

and the voltage equations on PV buses were neglected. Although they claimed that the branch

tracing method found the complete real-valued solution set in their model, a counter-example was
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presented in [18] showing that their method can fail to return a complete solution set. Given this

counter-example, the only method that can provably find all the real-valued solutions is the bound-

based homotopy continuation method.

To provably locate all the real-valued solutions for any network configurations, Mehta et al. in

2014 applied a polyhedral homotopy continuation method (similar to probability-one homotopy

method) to a Bernstein-Khovanskii-Kushnirenko (BKK) bound. This bound is calculated by the

mixed volume of Newton polytopes of given polynomials. It can be reached by some certain

polynomial systems and it is sharper than Bezout’s bound [19]. For example, the Bezout’s bound

for IEEE 14-bus system is 67,108,864, while the BKK bound is 49,283,072. To further explore

a simpler bound, Chen and Mehta proposed the adjacency polytope (AP) bound in 2015, which

is given by the normalized volume of a symmetric adjacency polytope [20]. It may be greater

than the BKK bound, but more easily computable than BKK bound. Chen and Mehta’s work also

suggested that the topology of the network influences the number of the complex-valued solutions.

To investigate this characteristic, Molzahn et al. evaluated the possible number of real-valued

solutions to 4-bus systems and conjectured that the number of the real-valued solutions will be

strictly less than the number of the complex-valued solutions for power flow equations with more

than three buses [21]. That is, the number of real-valued solutions cannot equal the number of

complex-valued solutions for large systems.

Although progressive, the homotopy continuation methods based on solution bounds still face

several difficulties for large applications. The simple Bezout’s bound is easy to calculate and easy

to be implemented, but requires a huge number of traces to follow. The BKK bound and AP bound

are smaller, but not easy to calculate.

Considering the easy implementation and high efficiency of the branch tracing method, this

thesis applies it to solve all the real-valued solutions for all the existing cases in Chapter 4 Sec-

tion 4.3. Innovatively, we apply the ellipsoidal formulation to the original polynomial system. The

ellipsoidal formulation provides the boundedness for every 1-dimensional manifold, and includes

the voltage equations for the PV buses which were omitted in Ma and Thorp’s original design.

Though without theoretical guarantee, experimentally we report that the proposed method found



7

the complete real solution sets to all the cases of which the complete real solution sets are known,

and some real solution sets for several other benchmark systems.

1.3 Background: the Optimal Power Flow Problem

The optimal power flow (OPF) problem was first introduced in 1962 by Carpentier [22], and

has since acquired an extensive amount of attention. Typically an OPF problem minimizes an

economic cost function over a set of constraints which are derived from power balance relations

and engineering limits. The cost function is often quadratic or piecewise linear with respect to

the active power generation, and the power balance constraints are nonlinear with respect to bus

voltage magnitudes and angles. This complicated nonlinear model is usually referred to as the AC

optimal power flow (ACOPF) problem which is generally nonconvex [23, 24]. The nonconvexity

further induces multiple local solutions to the problem [25, 26].

To solve ACOPF problems, several nonlinear optimization algorithms have been explored in

the literature, including sequential linear programming, sequential quadratic programming, penalty

function method, interior point method, etc [27, 28, 29]. These methods are not the subjects of this

thesis because they are neither focused on the global solution nor focused on multiple solutions.

Most of the work for ACOPF problems was primarily on enhancing the reliability and the efficiency

of obtaining a local solution, leaving the global optimality elusive.

Recently, convex relaxation methods, especially semi-definite programming (SDP), succeeded

in obtaining the global solution for many ACOPF cases [30, 31]. It was first proposed as a second-

order cone programming (SOCP) problem in [32] and as an SDP problem in [31].

The SDP technique is derived from the equivalent relation as follow

xHMx = Trace(MW)

where x ∈ Cn; xH is the conjugate transpose of x; M is a n × n Hermitian matrix; W = xxH .

Note that W is a positive definite Hermitian rank-1 matrix.
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A quadratic programming problem in the following form

Minimize xHDx

Subject to : xHMix ≥ ri

can be cast in the SDP form as

Minimize Trace(DW)

Subject to : Trace(MiW) � ri

W � 0

rank(W) = 1

If we relax the rank-1 condition, the optimization problem in SDP form becomes convex. If this

convex optimization problem is solved with rank-1 solution, then the original nonconvex problem

is solved with global optimality (equivalently zero duality gap). However, Lesieutre et al. and

others reported that the SDP relaxation can fail to provide a physically meaningful solution to the

original nonconvex problem [33, 34, 35]. To ensure the SDP relaxation is exact, several sufficient

conditions have been proposed [36, 37, 38, 39, 40, 41, 42, 43, 44], all of which require some

certain graphic structures (tree, mesh with tunable phase shifters, etc). A review of recent progress

for convex relaxation techniques in ACOPF can be found in [45, 46].

To obtain a solution when SDP relaxation fails, Mozahn and Hiskens developed the moment-

based relaxations for ACOPF problems [47]. It is a generalized version of SDP with relaxations

on higher order polynomials based on the Lasserre hierarchy in approximation algorithms [48].

It increases the dimensions of the problem significantly but a sparsity structure can be retained

to reduce the computational complexity [47]. This approach is promising and research continues,

however, it is recognized that it scales very poorly with the order of the relaxation. Despite the

exciting breakthroughs in convex relaxation theories and applications, the algorithms are unable to

provide a physically meaningful solution when the relaxation is not exact.

Another method that is capable of achieving global optimality for nonlinear OPF problems is

the branch-and-bound method. This method was first proposed by Land and Doig in 1960 for

solving the integer programming problems [49]. However, it turned out to be a global solver not
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only for solving integer programming problems but also for solving continuous, discrete or mixed-

integer nonlinear optimization problems. The searching framework includes three basic subrou-

tines: branching, bounding and pruning [50]. At each step, the branching subroutine partitions the

current feasible space into several regions, the bounding routine calculates the upper bound and

the lower bound for each region, and the pruning routine prunes off the regions of which the lower

bounds are greater than the upper bound of some region. This procedure is executed recursively

until the difference between the upper bound and the lower bound of the remaining region is less

than a given tolerance. The central part of this method relies on how to efficiently estimate the

lower bound for each partitioned region. Several techniques have been proposed and are explained

in [51]. In 2012, Phan introduced the Lagrangian duality function for ACOPF problems to estimate

the lower bound on each partition [52]. Then Gopalakrishnan et al. applied the SDP relaxation to

obtain the lower bound for each partition and compared it to the Lagrangian duality bound [53].

Their results indicated that the SDP relaxation may have a more reliable performance than the

Lagrangian duality bound. Chen et al. in 2015 proposed a technique to tighten the bound of OPF

variables which enhanced the performance of the branch-and-bound method for OPF problems

[54]. Although the branch-and-bound method is promising to obtain the global solution for OPF

problems without any conditions, the number of recursive steps may, in the worst case, grow expo-

nentially with the growth of problem dimensions [55], despite that at each step a sub-optimization

problem should be solved.

Another way to achieve global optimality is to enumerate all the local solutions. This approach

seems less efficient than the convex relaxation, but does not require any relaxations, and can also

provide multiple local solutions. The enumeration strategy usually faces the challenge that there is

no deterministic way to identify all the local solutions. Many local solutions of ACOPF problems

were merely generated by random initiation: scattering a huge number of random initial points

and executing a standard nonlinear programming solver for every initial point [25]. This approach

requires a large amount of initializations and can miss out solutions for large systems as we will

demonstrate in Chapter 4.
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In Chapter 4 Section 4.4 we introduce a principled deterministic algorithm for finding multiple

OPF solutions, which has been modified to accommodate an efficient monotone search strategy to

seek non-increasing local minima. We further compare it to the simplex method in linear program-

ming and try to design more advanced search strategies to enhance efficiency. Such algorithm is

able to be extended to a family of quadratic constrained quadratic programming (QCQP) problems.

1.4 Background: Multi-Party ACOPF Problems for Cloud Computing

The electric power grid is a critical infrastructure that is vulnerable to physical and cyber attacks

[56, 57, 58, 59, 60, 61]. For security, it is important to minimize access to the actual power flow

models. For economic competitiveness, the market participants are not inclined to share their

sensitive information with other participants. It is a goal then to reveal as little as possible about

the OPF models and their solutions. At present, a multi-party structure already exists in power grid

managed by third-party Independent System Operators that manage transmission-coupled supply

and distribution companies. With the emerging smart grid trends including Distribution System

Operators (DSO) that will coordinate the operation of coupled micro-grids and interface with a

larger grid, the individual micro-grids will likewise value privacy and security. Thus the multi-party

encryption techniques are of interests to enable providers to preserve their sensitive information

while allowing joint optimal operation of coupled grids and micro-grids.

For this third application, we pause to observe that the objective and form differs from previous

two. Like those applications we will introduce a transformation that changes the form of the rep-

resentation while preserving the solution. However in this case, the objective of the transformation

is to mask the form of the original equations, and also to mask the actual value of the solution. The

latter is a mild departure from the other approaches in that the solutions are mapped back to the

original variables through a linear transformation.

There is extensive research on encryption techniques for exchanging information between two

parties that prevents an eavesdropping third-party from deciphering the information [62]. These

techniques require ”decryption-before-use”, i.e., the receiving party must first decrypt the en-

crypted information before it can make use of the information. These techniques are useful but
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not exactly suitable to our purpose because the providers may be reluctant to decrypt their individ-

ual ACOPFs before solving the optimization problem.

More recently, there has been considerable progress on homomorphic encryption schemes

where one can evaluate a function directly on the encrypted inputs to obtain encrypted results

[63, 64, 65]. These techniques are useful for offloading computations to a third-party without

revealing sensitive information; the offloading party encrypts the inputs and also decrypts the re-

sults. Although this work is inspired by this body of research, we do not apply any homomor-

phic encryption techniques from literature for the OPF because solving the optimization problem

on homomorphically encrypted data is computationally very expensive [66]. Furthermore, these

encryption schemes are not designed to hide sensitive electric grid information such as network

topology, power generator limits, and line limits.

Secure multi-party computation techniques permit multiple parties to jointly evaluate a function

without revealing each other’s inputs to the other parties [67, 68, 69, 70]. One commonly used

approach involves encrypting the function as a garbled logic circuit such that the output of the

garbled circuit on encrypted inputs from all the parties is the output of the function [71, 69]. The

approach in this thesis is a tailored realization of the secure multi-party computation for ACOPF

problem. We specifically tailor the multi-party computation to ensure desirable properties such as

preserving optimality and making efficient use of communication and storage resources.

There is also a body of research based on the notion of differential privacy. The idea was orig-

inally introduced in the context of databases where the objective is to prevent leakage of sensitive

information in query responses [72]. The solution approaches for differential privacy perturb the

database records to either ensure k-anonymity where an attacker can, at best, associate sensitive

information to one of k possible records or they are designed to provide approximate, but statis-

tically accurate, query results. In this thesis, we do not consider privacy approaches that provide

approximate but statistically accurate solutions. Instead, our goal is to preserve the optimality of

the solution, i.e., the power flow solution from the privacy-aware approach must be equivalent to

the solution from a traditional non-privacy aware ACOPF solver. Notions of k-anonymity may be
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useful in preserving the privacy of the grid topology. We take a different approach for preserving

privacy of grid topology.

There are privacy solutions in the context of distributed controls. For instance, in [73], differ-

ential privacy approach prevents leakage of sensitive input information based on observation of the

unencrypted outputs in a distributed control system. In contrast, in our approach, the outputs (i.e.,

solution of the optimization problem) remain obfuscated in such a way that each party can only

unmask its part of the overall solution. Preserving the privacy of the solutions of the optimization

is critical in the ACOPF context. Hence, we pursue solution approaches that preserve of the opti-

mization outputs in the sense that each provider can only de-obfuscate his/her part of the solution.

Furthermore, neither an eavesdropper nor the third-party that solved the optimization formulation

can knowingly recover the solution corresponding to any provider. As a tradeoff, the optimization

problem we solve does not retain the structure of ACOPF. Furthermore, there is also some degra-

dation in the level of sparsity; albeit the amount of degradation can be controlled to some extent.

As a result of these tradeoffs, the time required to solve the obfuscated optimization problem may

be larger than that required for standard ACOPF.

[74, 75] proposed a solution approach to hide sensitive structural information in the single party

DC Optimal Power Flow (DCOPF) problems. The DCOPF is usually formulated as an optimiza-

tion problem with linear constraints and either a linear or quadratic objective. In this approach,

the power system operator first obfuscates all the sensitive model information by applying a linear

transformation that preserves the sparsity of the underlying formulation. The transformed problem

is then sent to shared-computing platform such as a cloud computer for solving [76]. The authors

argue that only the power system operator has the ability to recover the sensitive information from

either the transformed problem and/or its solution. The solution is transferred back to power sys-

tem operator who then applies a decipher transformation to recover the optimal solution to the

original problem. They also showed that there is not much increase in the time required to solve

the optimization.
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In Chapter 5, as well as in [77], we focus on the nonlinear ACOPF problem with simultaneous

multi-party obfuscation. Unlike the DCOPF, the constraints and the objective in ACOPF are non-

linear and the feasible region in ACOPF is usually non-convex [44, 24]. The coupled multiparty

setting of our problem further motivates the need for third-party shared computing. In this setting

each party will mask their own system models and parameters, and the third party will combine

and solve the overall system model. To do this, we develop new methods to simultaneously accom-

modate the need for privacy of sensitive information while jointly solving the ACOPF problem. A

preliminary presentation of the masking technique is found in [78] which considered a single-party

model. Here we examine the more important multi-party problem, and apply different algorithmic

techniques to enhance computational performance. Then, we return to consider linear program-

ming (LP) models for another masking idea: embedding a small LP problem in a larger one for

hiding information, and illustrate the feasibility of this idea with a small example.

1.5 Problem Representation

A fundamental premise of this thesis is that mathematical representations of a problem matter.

It is possible for seemingly different problems to exhibit the same solutions, and one particular

form of a problem may be more desirable for findings solutions. While these assertions may be

obvious, it is useful to demonstrate with a simple example.

Consider the equations

x2 − y2 = −3

y2 = 4

with four solutions x = ±1, y = ±2.

A graphical solution is shown on the left hand side of Figure 1.1. The typical computational

approach to find all the solutions is to choose different initial conditions and solve using a Newton-

Raphson algorithm.
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Figure 1.1: Plot of Hyperbolics (Left) and Ellipses (Right)

Alternatively, if we know one of the solutions, we can attempt to find additional solutions by

tracing along one of the curves. For example, starting at point A, (-1,2), we can trace

(−1 + ∆x)2 − (2 + ∆y)2 = −3

. If we trace out values of ∆y as a function of ∆x, we may find solution B.

This tracing approach will only be guaranteed to find all solutions if they lie on connected

curves, and if the curves are bounded. Neither of the conditions is satisfied in the form above.

Next, consider a linear combination of previous equations:

x2 + y2 = 5

x2 + 2y2 = 9

These equations form two intersecting ellipses shown on the right hand side of Figure 1.1, which

will enable linking all the solutions on intersecting curves. The solution points at the intersections

are the same for both representations.

This single example shows that different equations can admit the same solution set but may

have different properties. In this case, all the real solutions are linked through intersecting ellipses.

In this thesis we will show that the power flow equations and the OPF’s first order conditions
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intrinsically inherit ellipsoidal representations under mild conditions. We will explore this bounded

structure to form intersecting curves for linking different real solutions.

A common phenomenon in problem solving is that the representation (description) of a prob-

lem can influence the complexity of solving it [79]. Such phenomenon has been recognized and

investigated by the artificial intelligence and cognitive science scholars for a long time. They

observed in reasoning systems that the alternative representations of a problem reveal different

properties of it; each representation conceals some properties and highlights others [80, 81, 82].

The exact definition of problem representation differs from researchers [83, 84, 85, 86, 87], but

one common intriguing feature is that as long as the solution to the problem retained, the repre-

sentation of it can be altered for convenience. This methodological point of view is not uniquely

beneficial for designing artificial intelligence, but can also be applied to many power engineering

problems. For example, one can consider the power flow models in polar coordinates and in rect-

angular coordinates as two representations of the power flow problem. The polar representation

may be superior to derive a DC approximation and have a better convergence performance [88],

but the rectangular representation is more convenient to reveal the ellipsoidal structure [89] and,

in the context of optimal power flow, more straightforward to derive the convex relaxations [45].

More interestingly, the ellipsoidal formulation of power flow equations is another alternative rep-

resentation of the power flow problem in rectangular coordinates. This representation will help us

eliminate unboundedness of the original power flow equations and enable a continuation method

for searching power flow solutions more reliably in Chapter 4 Section 4.3.

The success of ellipsoidal representation for the power flow problem further inspires us to apply

alternative representations to other problems in power engineering. A similar ellipsoidal formula-

tion is constructed for the first order conditions of the traditional optimal power flow (OPF) model,

and induces the first deterministic algorithm to efficiently identify multiple local solutions (and

hopefully the global optimality) to the OPF problems in Chapter 4 Section 4.4. It will be high-

lighted that this algorithm can bridge disconnected feasible regions for searching local solutions.
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1.6 Organization

The thesis is organized as follows. Chapter 2 introduces all the physical models and their

modifications to accommodate specific forms. Chapter 3 describes all the necessary mathematical

foundations. Chapter 4 firstly introduces the branch tracing method, then applies this method to

both the power flow problem and the optimal power flow problem. Chapter 5 applies the encryption

mapping to the multi-party ACOPF models to obfuscate the sensitive information for each party

while solving them jointly. Chapter 6 concludes the thesis with contributions, open questions and

proposed work.

1.7 Contributions

This thesis provides several theoretical and practical contributions that are worth of highlight-

ing in the front.

Theoretically, we find an appropriate mathematical language to describe a certain type of prob-

lem representations, and apply them to three different topics in power engineering. Specifically,

we rigorously define the concept of algebraic set preserving mapping for solution preserving rep-

resentations (transformations); show that the algebraic set preserving mappings are closed under

composition; show that two particular mappings, namely the induced affine mappings and the lin-

ear mappings, are algebraic set preserving mappings; prove (constructively) that the power flow

problem of a power system without shunt elements can always be cast in the ellipsoidal formula-

tion; derive a sufficient condition for the existence of the ellipsoidal formulation of the power flow

problem of a power system with shunt elements; prove (constructively) that the first order condi-

tions of the traditional ACOPF problem can always be cast in the ellipsoidal formulation; extend

the ellipsoidal formulation to the first order conditions of arbitrary bounded quadratic constrained

quadratic programming problems; prove that the set of ellipsoidal mappings is convex, and illus-

trate an equivalence between 1-dimensional curves defined by ellipsoidal representations and the

original form.
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Practically, we applied the branch tracing method to the ellipsoidal formulation of power flow

equations, and found the complete solution sets for all the test cases which had been completely

solved before. We further applied our proposed method for several more benchmark cases to

obtain their real solution sets. Then, we extended our proposed method to ACOPF problems. It

is the first principled deterministic algorithm to our best knowledge that can locate multiple local

solutions for ACOPF problems. We successfully located all the local minima, including the global

solutions, for a few test cases. Moreover, we identified four additional local minima to the three

known ones for a 39-bus system, and identified the global solution which does not satisfy the KKT

conditions for another particular test case with equality constrained model. Finally, we proposed

an encryption mapping for the multi-party ACOPF problems for cloud computing which does not

require decryption before use, and further discussed an embedding technique for masking linear

programming problems.
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Chapter 2

Algebraic Descriptions of Electric Power Grids

2.1 Overview

The detailed background for all the physical models treated in this thesis is presented in this

chapter. This includes the AC power flow model in polar coordinates, the DC power flow model,

the AC power flow model in rectangular coordinates, and a multi-party ACOPF model.

2.2 Power Flow Problem

The power flow problem describes the injected power at each node in terms of node voltages.

For the basic power flow problem there are three types of nodes, called buses. A node with fixed

complex power injection is called the PQ bus.

In practice, some nodes can adjust their reactive power injections to maintain the voltage mag-

nitudes. This is typical for those nodes connected to generators or voltage regulators. Then the

reactive power balancing equations on these nodes are replaced by the voltage magnitude equa-

tions. This kind of node is known as a PV bus.

A system angle reference needs to be assigned to some node. The reference node is called

the slack bus, and is typically assigned to a generator node whose active power injection can be

easily adjusted. Then the active power balancing equation on the slack bus is replaced by the angle

reference equation, and the voltage magnitude is fixed.

In summary, the power flow problem is to solve the bus voltages that satisfy all the equations

on PV buses, PQ buses and the slack bus.
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2.2.1 AC Power Flow Model in Polar Coordinates

Given a connected power system with Nbus buses and Ngen generators. Without loss of gen-

erality, let’s suppose that the 1-st bus is the slack bus, the 2-nd bus to the Ngen-th bus are the PV

buses, and the rest are the PQ buses. By Ohm’s law and the Kirchhoff’s current law, the node

current injections are related to bus voltage by

I = YbusV (2.1)

where I ∈ CNbus is the node complex current injection vector; Ybus ∈ CNbus×Nbus is the bus

admittance matrix of which the real part is the bus conductance matrix Gbus and the imaginary

part is the bus susceptance matrix Bbus; V ∈ CNbus is the node complex voltage vector. We omit

the derivation of the complex voltages from the sinusoidal waves, as well as the construction of the

bus admittance matrix from the network transmission line models. Interested readers can refer to

any power system textbook (such as [90]) for details.

The complex power injection is given by

S = V � conj(I) (2.2)

where S ∈ CNbus is the node complex power injection vector; � is the Hadamard product, and

conj(·) is the conjugate operator.

Combining Equation (2.1) and Equation (2.2) and then seperating the real part and the imagi-

nary part of S we obtain the power flow equations (polar coordinates):

Pgen,k − Pload,k = Vk
∑Nbus

n=1 Vn

(
Gn,kcos(δk − δn) +Bn,ksin(δk − δn)

)
(2.3a)

Qgen,k −Qload,k = Vk
∑Nbus

n=1 Vn

(
Gn,ksin(δk − δn)−Bn,kcos(δk − δn)

)
(2.3b)

where k = 1, . . . , Nbus; Pgen,k and Pload,k are the active power generation and the active power

demand at the k-th bus; Qgen,k andQload,k are the reactive power generation and the reactive power

demand at the k-th bus; Vk is the voltage magnitude at the k-th bus; Gn,k and Bn,k are the (n, k)-th

entry of Gbus and Bbus; δk is the k-th bus voltage angle referred to the slack bus.
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For the PV buses, namely k = 2, . . . , Ngen, Equation (2.3b) is replaced by the voltage magni-

tude relation

Vk = Vk,0 (2.4)

where Vk,0 is fixed.

For the slack bus, namely k = 1, the active and the reactive power equations are replaced by

V1 = V1,0 (2.5a)

δ1 = 0 (2.5b)

where V1,0 is fixed.

Equation (2.3), (2.4), and (2.5) depict the entire AC power flow model in polar coordinates.

2.2.2 DC Power Flow Model

The power flow model in polar coordinates is usually used in practice because it highlights

important P − δ, Q − V relations, and it enables some easy approximations for fast computing.

The DC power flow model is one common simplification to the AC power flow model.

First, suppose that the electric power network is a high voltage transmission system. This

assumption implies that the conductance is much smaller than the susceptance for the transmission

lines, which further indicates that the entries of Gbus are much smaller than the entries of Bbus. So

we boldly approximate Gbus by a zero matrix.

Second, suppose that the power grid is lightly loaded. Empirically, the angle difference between

two connected buses is usually small for light loading. Then, sin(δk − δn) is approximated by

δk − δn.

Finally, assume that each bus has enough reactive power sources to support the bus voltage

magnitude. This assumption eliminates all the reactive power balancing equations, and usually

sets every voltage magnitude to be 1 p.u.
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With the above approximations, the simplified AC power flow model, known as the DC power

flow, is described as

Pgen,k − Pload,k =

Nbus∑
n=1

Bn,k(δk − δn) (2.6)

Note that Equation (2.6) is a linear equation with respect to the bus voltage angles δk for

k = 2, . . . , Nbus, therefore can be solved easily.

2.2.3 AC Power Flow Model in Rectangular Coordinates

To investigate the geometric features of the AC power flow model, it is convenient and insight-

ful to reformulate it in rectangular coordinates. For the rest of the thesis, rectangular coordinates

are used unless specifically stated.

Let

V = Vd + jVq (2.7)

where Vd ∈ RNbus and Vq ∈ RNbus are the real part and the imaginary part of V; j =
√
−1.

Consider the k-th entry of Equation (2.2)

Sk = (Vd,k + jVq,k) conj
[
(Gk· + jBk·)(Vd + jVq)

]
(2.8)

where Sk is the k-th entry of S; Vd,k and Vq,k are the k-th entries of Vd and Vq respectively; Gk·

and Bk· are the k-th rows of Gbus and Bbus respectively.

Separating the real part and the imaginary part of Equation (2.8), we have

Pgen,k − Pload,k = Vd,k
∑Nbus

n=1

(
Gn,kVd,n −Bn,kVq,n

)
+

Vq,k
∑Nbus

n=1

(
Gn,kVq,n +Bn,kVd,n

)
(2.9a)

Qgen,k −Qload,k = Vq,k
∑Nbus

n=1

(
Gn,kVd,n −Bn,kVq,n

)
−

Vd,k
∑Nbus

n=1

(
Gn,kVq,n +Bn,kVd,n

)
(2.9b)
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To simplify, define

O(·) :=
1

2

 real(·) − imag(·)

imag(·) real(·)

 (2.10a)

U :=

 Vd

Vq

 (2.10b)

Mv,k := diag
[
eTk eTk

]
(2.10c)

Mp,k := Mv,kO(Ybus) +O(Ybus)
TMv,k (2.10d)

Mq,k := Mv,kO(jYbus) +O(jYbus)
TMv,k (2.10e)

where ek ∈ RNbus is a column vector with a single unity element at the k-th entry; diag[·] is the

diagonalization operator that add a vector to the diagonal of a corresponding zero matrix.

Then Equation (2.9) can be reformulated as

Pgen,k − Pload,k = UTMp,kU (2.11a)

Qgen,k −Qload,k = UTMq,kU (2.11b)

For the PV buses, namely k = 2, . . . , Ngen, Equation (2.11b) is replaced by

UTMv,kU = V 2
k,0 (2.12)

where Vk,0 is fixed.

Finally, the slack bus equations are

UTMv,1U = V 2
1,0 (2.13a)

Vq,1 = 0 (2.13b)

where V1,0 is fixed. In practice, since Vq,1 = 0, we remove this variable and its associated columns

and rows in Mv,k, Mp,k, and Mq,k.

In summary, the AC power flow model in rectangular coordinates can be succinctly expressed

by Equation (2.11), (2.12) and (2.13).
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2.2.4 The ZIP Load Flow Model

Consider the active power power demand Pload,k and the reactive power demand Qload,k in

(2.11), they are usually constant terms for simplicity. However, the realistic load can change by

the variation of the load bus voltage magnitude. A commonly used load model is called the “ZIP”

model, where “Z” represents a constant load impedance, “I” represents a constant current load at

constant power factor, and “P” represents a constant load power. Specifically,

Pload,k = P0,k + P1,k|Vk|+ P2,k|Vk|2 (2.14a)

Qload,k = Q0,k +Q1,k|Vk|+Q2,k|Vk|2 (2.14b)

where P0,k and Q0,k are the constant power terms, P1,k and Q1,k are the constant current terms,

P2,k and Q2,k are the constant impedance terms, and |Vk| is the voltage magnitude at bus-k.

Therefore, (2.11) can be written as

Pgen,k − P0,k = UTMp,kU + P1,k|Vk|+ P2,k|Vk|2 (2.15a)

Qgen,k −Q0,k = UTMq,kU +Q1,k|Vk|+Q2,k|Vk|2 (2.15b)

|Vk|2 = V 2
d,k + V 2

q,k (2.15c)

2.3 Optimal Power Flow Problem

The optimal power flow (OPF) problem is described by optimizing an objective function over

a set of physical conditions and engineering limits of the power grid. It can be interpreted as a

slightly relaxed version of the power flow problem within certain engineering ranges to reach an

optimal operating state. Thus, the power flow model, as the core physical relations of the grid, is

included in the OPF problem.

Typically the engineering limits include the bus voltage magnitude upper and lower bounds,

the active and reactive power generation upper and lower bounds, and line flow upper bounds.

Some limits may serve as proxy limits. For example, the bus voltage angles may be bounded for
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dynamical concerns. Other kinds of constraints, continuous or discrete, can also be included in the

OPF problem for different purposes. For generality and simplicity, this thesis only considers the

most common engineering limits.

2.3.1 AC Optimal Power Flow Model

Again, let’s consider a connected power system with Nbus many buses, Ngen many generators

and Nline many transmission lines. Suppose that the 1-st bus is the slack bus, the 2-nd bus to the

Ngen-th bus are the PV buses, and the rest are the PQ buses. Let the objective function to be a

quadratic cost with respect to the active power generation. Then the OPF model is

Minimize
Ngen∑
i=1

diP
2
gen,i + ciPgen,i

Subject to:

Generation Balance: Pgen,i −UTMp,iU = Pload,i (2.16a)

Qgen,i −UTMq,iU = Qload,i (2.16b)

Load Balance: UTMp,mU = −Pload,m (2.16c)

UTMq,mU = −Qload,m (2.16d)

Voltage Limit: UTMv,kU ≤ V 2
max,k (2.16e)

−UTMv,kU ≤ −V 2
min,k

Angle Reference: Vq,1 = 0 (2.16f)

Generation Limit: Pgen,i ≤ Pmax,i (2.16g)

−Pgen,i ≤ −Pmin,i

Qgen,i ≤ Qmax,i (2.16h)

−Qgen,i ≤ −Qmin,i

Line Current Limit: |Iin,n|2 ≤ I2
max,n (2.16i)

|Iout,n|2 ≤ I2
max,n (2.16j)

Index: i = 1, . . . , Ngen
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m = Ngen + 1, . . . , Nbus

k = 1, . . . , Nbus

n = 1, . . . , Nline

where di and ci are constants; Vmin,k and Vmax,k are the lower bound and the upper bound of

the voltage magnitude for bus-k; Pmin,i and Pmax,i are the lower bound and the upper bound of the

active power generation for bus-i;Qmin,i andQmax,i are the lower bound and the upper bound of the

reactive power generation for bus-i; Iin,n and Iout,n are the complex currents entering and leaving

the n-th transmission line; Imax,n is the current magnitude upper bound for the n-th transmission

line.

First consider transmission line current limit model, define

MI,n := diag
[
tTn tTn

]
(2.17a)

MIin,n := O(Yf )
TMI,nO(Yf ) (2.17b)

MIout,n := O(Yt)
TMI,nO(Yt) (2.17c)

|Iin,n|2 = UTMIin,nU (2.17d)

|Iout,n|2 = UTMIout,nU (2.17e)

where tn ∈ RNline is a column vector with a single unity element at the n-th entry, Yf and

Yt are the current entering and leaving admittance matrices such that [Iin,n]n∈Nline = YfU and

[Iout,n]n∈Nline = YtU, MIin,n, MIout,n ∈ RNbus×Nbus are constant matrices.

Substitute Equation (2.17), (2.16f) and (2.16b) into Equation (2.16) we have

Minimize
Ngen∑
i=1

diP
2
gen,i + ciPgen,i

Subject to:

Generation Balance: Pgen,i −UTMp,iU = Pload,i (2.18a)

Load Balance: UTMp,mU = −Pload,m (2.18b)

UTMq,mU = −Qload,m (2.18c)
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Voltage Limit: UTMv,kU ≤ V 2
max,k (2.18d)

−UTMv,kU ≤ −V 2
min,k

Generation Limit: Pgen,i ≤ Pmax,i (2.18e)

−Pgen,i ≤ −Pmin,i

UTMq,iU ≤ Qmax,i (2.18f)

−UTMq,iU ≤ −Qmin,i

Line Current Limit: UTMIin,nU ≤ I2
max,n (2.18g)

UTMIout,nU ≤ I2
max,n (2.18h)

Index: i = 1, . . . , Ngen

m = Ngen + 1, . . . , Nbus

k = 1, . . . , Nbus

n = 1, . . . , Nline

where the unknowns in Equation (2.18) are Pgen,i and U . They appear only in linear and quadratic

forms.

One can also consider a transmission line apparent power limit model. Define connection

matrices Cf and Ct ∈ RNline×Nbus for lines and buses, respectively. The (n, k)-th entry of Cf is 1

if the n-th line is connected to the k-th “from” bus and the (n, r)-th entry of Ct is 1 if the n-th line

is connected to the r-th “to” bus.

Further, define

Tf,n := CT
f (n, :) conj(Yf (n, :)) (2.19a)

Tt,n := CT
t (n, :) conj(Yt(n, :)) (2.19b)

MPline,f,n := O(Tf,n + TT
f,n) (2.19c)

MQline,f,n := O(jTf,n + jTT
f,n) (2.19d)

MPline,t,n := O(Tt,n + TT
t,n) (2.19e)

MQline,t,n := O(jTt,n + jTT
t,n) (2.19f)
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where Cf (n, :) is the n-th row of Cf , Yf (n, :) is the n-th row of Yf , and conj (·) is the complex

conjugate.

Limits on apparent power flows are formulated as

Pline,f,n −UTMPline,f,nU = 0 (2.20a)

Qline,f,n −UTMQline,f,nU = 0 (2.20b)

P 2
line,f,n +Q2

line,f,n ≤ S2
max,n (2.20c)

Pline,t,n −UTMPline,t,nU = 0 (2.20d)

Qline,t,n −UTMQline,t,nU = 0 (2.20e)

P 2
line,t,n +Q2

line,t,n ≤ S2
max,n (2.20f)

where P denotes active power; Q denotes reactive power; S denotes apparent power; subscripts

“f” and “t” denote the “from” and “to” terminals, respectively; and subscript “n” indicates the line

index.

One can replace (2.18g) and (2.18h) with (2.20) to formulate the ACOPF problem with flow

limits in terms of apparent power, adding 4 × Nline constraints to the problem. Throughout this

thesis, we apply the line current model unless specifically remarked. There are several reasons that

we favor the line current model.

1. The line current model has 4×Nline less constraints to the problem.

2. The line current limits represent the transmission line thermal limits, which are more mean-

ingful in practice than apparent power limits.

3. The line current equations are purely quadratic with respect to the voltage variables U.

2.3.2 Equality Constrained AC Optimal Power Flow Model

The challenge of applying a linear mapping in Chapter 3 to the first order conditions of the

ACOPF model in Equation (2.18) is that the first order conditions include inequality relations.

A linear combination of inequalities can change their semi-algebraic set (intersection set), thus
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it is not an algebraic set preserving mapping. Hence, it is necessary to convert inequalities into

equalities. We achieve this by introducing free slack variables.

Consider the voltage limit inequalities in Equation (2.18d). They are reformulated as

UTMv,kU + s2
v,max,k = V 2

max,k (2.21a)

s2
v,min,k −UTMv,kU = −V 2

min,k (2.21b)

where sv,max,k and sv,min,k are the free slack variables.

The line current inequalities in Equation (2.18g) are reformulated as

UTMIin,nU + s2
I,max,in,n = I2

max,in (2.22a)

UTMIout,nU + s2
I,max,out,n = I2

max,out (2.22b)

where sI,max,in,n and sI,max,out,n are the free slack variables.

The reactive power inequalities in Equation (2.18f) are reformulated as

UTMq,iU + s2
q,max,i = Qmax,i (2.23a)

s2
q,min,i −UTMq,iU = −Qmin,i (2.23b)

where sq,max,i and sq,min,i are the free slack variables.

The active power inequalities in Equation (2.18e) are considered differently. Firstly, we assume

that the active power generation is non-negative. This is usually the situation for realistic power

plants since they are designed to deliver active power. If the cost function is linear, namely di = 0,

we treat the active power generation limits as below.

p2
gen,i + s2

p,max,i = Pmax,i (2.24a)

s2
p,min,i − p2

gen,i = −Pmin,i (2.24b)

where pgen,i :=
√
Pgen,i; sp,max,i and sp,min,i are the free slack variables.

If the objective function is quadratic, the active power generation limits are reformulated as

P 2
gen,i + s2

p,max,i = P 2
max,i (2.25a)

s2
p,min,i − P 2

i,gen = −P 2
min,i (2.25b)
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where sp,max,i and sp,min,i are the free slack variables.

If the active power lower bound is allowed to be negative, we can shift the active power variable

by its negative lower bound. Then the shifted active power retains non-negativity. Consider (2.18e)

with Pmin,i < 0. This is equivalent to

0 ≤ Pgen,i − Pmin,i ≤ Pmax,i − Pmin,i (2.26)

If the cost function is linear, then we let p2
gen,i := Pgen,i−Pmin,i. Hence, (2.18a) can be written

as

p2
gen,i −UTMP,iU = P̂load,i (2.27)

where P̂load,i = Pload,i − Pmin,i is a constant.

The linear cost function can be expressed as

J =

Ngen∑
i=1

cip
2
gen,i + C (2.28)

where C =
∑Ngen

i=1 ciPmin,i is a constant.

If the cost function is quadratic, we let P̂gen,i := Pgen,i − Pmin,i and p2
gen,i := P̂gen,i. Thus, the

cost function is

J =

Ngen∑
i=1

diP
2
gen,i + ciPgen,i (2.29a)

=

Ngen∑
i=1

di(P̂gen,i + Pmin,i)
2 + ci(P̂gen,i + Pmin,i) (2.29b)

=

Ngen∑
i=1

diP̂
2
gen,i + eiP̂gen,i + ai (2.29c)

=

Ngen∑
i=1

diP̂
2
gen,i + eip

2
gen,i + ai (2.29d)

where ei = 2diPmin,i + ci and ai = diP
2
min,i + ciPmin,i are constants.
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Therefore, the equality constrained ACOPF model with a linear objective function is described

by

Minimize
Ngen∑
i=1

ci(U
TMp,iU + Pload,i) + C

Subject to:

Load Balance: UTMp,mU = −Pload,m (2.30a)

UTMq,mU = −Qload,m (2.30b)

Volt. Limit: UTMv,kU + s2
v,max,k = V 2

max,k (2.30c)

s2
v,min,k −UTMv,kU = −V 2

min,k (2.30d)

Gen. Limit: (UTMp,iU + Pload,i) + s2
p,max,i = Pmax,i (2.30e)

s2
p,min,i − (UTMp,iU + Pload,i) = −Pmin,i (2.30f)

UTMq,iU + s2
q,max,i = Qmax,i (2.30g)

s2
q,min,i −UTMq,iU = −Qmin,i (2.30h)

Curr. Limit: UTMIin,nU + s2
I,max,in,n = I2

max,in (2.30i)

UTMIout,nU + s2
I,max,out,n = I2

max,out (2.30j)

Index: i = 1, . . . , Ngen

m = Ngen + 1, . . . , Nbus

k = 1, . . . , Nbus

n = 1, . . . , Nline

The equality constrained ACOPF model with a quadratic objective function is slightly different

than Equation (2.30), and is summarized below.

Minimize
Ngen∑
i=1

diP
2
gen,i + cip

2
gen,i + ai

Subject to:

Gen. Balance: p2
gen,i −UTMp,iU = Pload,i (2.31a)
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Load Balance: UTMp,mU = −Pload,m (2.31b)

UTMq,mU = −Qload,m (2.31c)

Volt. Limit: UTMv,kU + s2
v,max,k = V 2

max,k (2.31d)

s2
v,min,k −UTMv,kU = −V 2

min,k (2.31e)

Gen. Limit: P 2
gen,i + s2

p,max,i = P 2
max,i (2.31f)

s2
p,min,i − P 2

gen,i = −P 2
min,i (2.31g)

UTMq,iU + s2
q,max,i = Qmax,i (2.31h)

s2
q,min,i −UTMq,iU = −Qmin,i (2.31i)

Curr. Limit: UTMIin,nU + s2
I,max,in,n = I2

max,in (2.31j)

UTMIout,nU + s2
I,max,out,n = I2

max,out (2.31k)

New Relation: p2
gen,i − Pgen,i = 0 (2.31l)

Index: i = 1, . . . , Ngen

m = Ngen + 1, . . . , Nbus

k = 1, . . . , Nbus

n = 1, . . . , Nline

2.3.3 Multi-Party AC Optimal Power Flow Model

The modern power grid is operated by Independent System Operators (ISO) that manage

transmission-coupled supply and distribution companies. Each ISO supervises a part of the con-

tinental power grid while coordinating with others. The newly emerged smart grid trends will

include Distribution System Operators (DSO) whose duty is to coordinate the operation of the

micro-grids in sub-areas, and interface with a larger area. The individual grid participants value

their privacy in the multi-party scenario.

Suppose a power grid is operated by several independent parties. Each party is only in charge

of a sub-area. Some sub-areas are interconnected by a few transmission lines so that the entire
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Figure 2.1: 30-Bus System with Two Parties

grid is connected. To interface with the entire area, each party has to request the information of the

voltages on its adjacent buses from other parties, and needs to share the information of the voltages

on the buses that are adjacent to other parties.

To reduce the need of exchanging information between connected sub-areas, we introduce

two fictitious buses on each transmission line that connects two different sub-areas. For instance,

Figure 2.1 depicts a transmission line between Area-1 and Area-2. We introduce two fictitious

buses M ′ and N ′ on the shared transmission line K and divide it into three sub-lines a, b and c.

The new Area-1 includes bus M ′ and N ′ with sub-line a and b, while the new Area-2 includes

busesN ′ andM ′ with sub-line c and b. Although these fictitious buses and sub-lines are not needed

to model multi-party ACOPF, it is convenient for modeling purpose to include these fictitious buses

to eliminate sharing of any direct information between the two areas. Therefore, the compliance

between Area-1 and Area-2 is that the voltages in the intersection area, namely bus M ′, bus N ′

and sub-line b, should be in consistent for both area’s models.

Suppose a power grid is divided into Narea many areas. Let SBα,β denote the set of shared

(fictitious) buses between Area-α and Area-β. Let the voltage vector of Area-α be Uα. Define

a sharing matrix eTα,β of dimension |SBα,β| × |Uα| containing 0’s and 1’s. Each row of eTα,β has
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exactly two 1’s corresponding to a voltage’s real part and imaginary part on one of the shared

fictitious buses between Area-α and Area-β. Then the multi-party ACOPF model is described by

Minimize
Narea∑
α=1

Ngen∑
i=1

dα,iP
2
gen,α,i + cα,iPgen,α,i

Subject to:

Gen. Balance: Pgen,α,i −UT
αMp,α,iUα = Pload,α,i (2.32a)

Load Balance: UT
αMp,α,mUα = −Pload,α,m (2.32b)

UT
αMq,α,mUα = −Qload,α,m (2.32c)

Volt. Limit: V 2
min,α,k ≤ UT

αMv,α,kUα ≤ V 2
max,α,k (2.32d)

Gen. Limit: Pmin,α,i ≤ Pgen,α,i ≤ Pmax,α,i (2.32e)

Qmin,α,i ≤ UT
αMq,α,iUα ≤ Qmax,α,i (2.32f)

Curr. Limit: UT
αMIin,α,nUα ≤ I2

max,α,n (2.32g)

UT
αMIout,α,nUα ≤ I2

max,α,n (2.32h)

Compliance: eTα,βUα − eTβ,αUβ = 0 (2.32i)

Index: i = 1, . . . , Ngen

m = Ngen + 1, . . . , Nbus

k = 1, . . . , Nbus

n = 1, . . . , Nline

α = 1, . . . , Narea

where the subscript α indicates the α-th party’s quantity.

Note that the multi-party ACOPF model of Equation (2.32) can also be cast in an equality

constrained model:

Minimize
Narea∑
α=1

Ngen∑
i=1

dα,iP
2
gen,α,i + cα,ip

2
gen,α,i

Subject to:
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Gen. Balance: p2
gen,α,i −UT

αMp,α,iUα = Pload,α,i (2.33a)

Load Balance: UT
αMp,α,mUα = −Pload,α,m (2.33b)

UT
αMq,α,mUα = −Qload,α,m (2.33c)

Volt. Limit: UT
αMv,α,kUα + s2

v,max,α,k = V 2
max,α,k (2.33d)

s2
v,min,α,k −UT

αMv,α,kUα = −V 2
min,α,k (2.33e)

Gen. Limit: P 2
gen,α,i + s2

p,max,α,i = P 2
max,α,i (2.33f)

s2
p,min,α,i − P 2

gen,α,i = −P 2
min,α,i (2.33g)

UT
αMq,α,iUα + s2

q,max,α,i = Qmax,α,i (2.33h)

s2
q,min,α,i −UT

αMq,α,iUα = −Qmin,α,i (2.33i)

Curr. Limit: UT
αMIin,α,nUα + s2

I,max,in,α,n = I2
max,in (2.33j)

UT
αMIout,α,nUα + s2

I,max,out,α,n = I2
max,out (2.33k)

New Relation: p2
gen,α,i − Pgen,α,i = 0 (2.33l)

Compliance: eTα,βUα − eTβ,αUβ = 0 (2.33m)

Index: i = 1, . . . , Ngen

m = Ngen + 1, . . . , Nbus

k = 1, . . . , Nbus

n = 1, . . . , Nline

2.4 Conclusion

This Chapter introduced the power flow models used in this thesis with emphasis on the power

flow model in rectangular coordinates. This representation of the power flow model is described by

quadratic polynomials. The optimal power flow model in rectangular coordinates was discussed,

and was further reformulated as the equality constrained ACOPF model with free slack variables.

Finally, we introduced the multi-party optimal power flow model. The power flow and the optimal



35

power flow models in rectangular coordinates will be used throughout this thesis, and the quadratic

form will be specifically inspected in the next Chapter.
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Chapter 3

Affine Algebraic Set Preserving Mappings

3.1 Overview

This Chapter establishes the theoretical foundations for this thesis. It first recalls some basic

concepts and definitions in algebraic geometry. Then it elaborates the core idea of the thesis by

defining the affine algebraic set preserving mapping, or simply set mapping. Specifically, the in-

duced affine mapping and the linear mapping over polynomial rings are studied. They are shown

to be useful in the construction of the ellipsoidal formulation of the power flow model in rectan-

gular coordinates from Chapter 2, and is extended to the ellipsoidal formulation of the Fritz John

conditions of the optimal power flow model. Finally, an encryption mapping is designed for the

multi-party ACOPF model. Notations in Section 3.2 and 3.3 are distinct from the notations in the

rest of the thesis, allowing common variables used in the mathematical literatures. For example,

the variables U and V do not correspond to the voltage variables as in other parts of the thesis.

3.2 Background

Although an algebraically closed field is usually assumed in the context of algebraic geometry,

this thesis only considers the real closed field denoted by R.

Definition 3.2.1. Let R be a real closed field. A real affine n-space over R, denoted by An
R

, or

simply An, is the set of all n-tuples of elements in R. The element a ∈ An is called a point. If

a = (a1, . . . , an) for ai ∈ R, then ai’s are called the coordinates of a.
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Definition 3.2.2. LetR[x1, . . . , xn] be the polynomial ring in n variables overR. A subset S ⊂ An

is called a real algebraic set, or simply algebraic set throughout this thesis, if there exsits a subset

F ⊂ R[x1, . . . , xn] such that

S =
{

X ∈ An | f(X) = 0, ∀ f ∈ F
}
.

Denote the algebraic set of a subset F in the polynomial ring R[x1, . . . , xn] by Z(F).

Lemma 3.2.1. An algebraic set inAn given by a finite subset F of the polynomial ringR[x1, . . . , xn]

can always be defined by a single polynomial in R[x1, . . . , xn].

Proof. Consider F = {fi(X) ∈ R[x1, . . . , xn], i ∈ I}. The algebraic set of F is given by

Z(F) =
{

X ∈ An | fi(X) = 0, i ∈ I
}

Let

Z∗ =
{

X ∈ An |
∑
i∈I

f 2
i (X) = 0

}
It is easy to show that for any X∗ ∈ Z(F), X∗ ∈ Z∗, and vice versa. Therefore, Z(F) =

Z(
∑

i∈I f
2
i (X)).

Theorem 3.2.1. Given two algebraic sets S1 and S2 described by two finite subsets F1 and F2

respectively in the polynomial ring R[x1, . . . , xn], then

S1 ∩ S2 = Z(F1,F2)

S1 ∪ S2 = Z(F1F2)

where F1F2 denotes the set containing all the products of fi ∈ F1 and gj ∈ F2.

Proof. It is trivial for the intersection case. Let’s consider the union case. Suppose F1 = {fi(X), i ∈

I} and F2 = {gj(X), j ∈ J}, then S1 = Z(
∑

i∈I f
2
i (X)), and S2 = Z(

∑
j∈J g

2
j (X)). It is

trivial to show that S1 ∪ S2 = Z(
∑

i∈I f
2
i (X)

∑
j∈J g

2
j (X)). Since

∑
i∈I f

2
i (X)

∑
j∈J g

2
j (X) =∑

i∈I
∑

j∈J

(
fi(X)gj(X)

)2

, by Lemma 3.2.1 we are done.

Proposition 3.2.1. For any subsets F1 ⊆ F2 ⊂ R[x1, . . . , xn], Z(F1) ⊇ Z(F2).
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Proof. Ref. [91].

Proposition 3.2.2. The union of finitely many algebraic sets is an algebraic set. The intersection

of any family of algebraic sets is an algebraic set. The empty set ∅ and the whole space An are

algebraic sets.

Proof. By Theorem 3.2.1.

By Proposition 3.2.2, the collection of algebraic sets of An is closed under intersection opera-

tion, thus induces a topology on An.

Definition 3.2.3. The Zariski topology on An is defined by taking the closed set as the algebraic

set onAn generated by a finite subset of the polynomial ringR[x1, . . . , xn]. The open set is defined

by taking the complementary set of the closed set.

Definition 3.2.4. A nonempty subset U of a topological space Ω is said to be irreducible if U

cannot be expressed as the union of two proper subsets of U which are closed in U.

Definition 3.2.5. An affine algebraic variety, simply algebraic variety, is defined by an irreducible

closed subset of An with the Zariski topology.

Definition 3.2.6. Given a subset S ⊂ An, let

I (S) =
{
f ∈ R[x1, . . . , xn] | ∀X ∈ S, f(X) = 0

}
be the ideal of the polynomial ring R[x1, . . . , xn] vanishing on S.

Theorem 3.2.2. An algebraic set S ⊂ An is irreducible if and only if the ideal I (S) of the poly-

nomial ring R[x1, . . . , xn] vanishing on S is prime, i.e., if a, b ∈ R[x1, . . . , xn] and ab ∈ I (S) 6=

R[x1, . . . , xn], then a ∈ I (S) or b ∈ I (S).

Proof. Ref. [92]

Proposition 3.2.3. If S1 ⊆ S2 ⊂ An, then I (S1) ⊇ I (S2).

Proof. Ref. [91].

Proposition 3.2.4. If S1 and S2 ⊂ An, then I (S1

⋃
S2) = I (S1)

⋂
I (S2).

Proof. Ref. [91].
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3.3 Affine Algebraic Set Preserving Mappings

With the basic definitions and background stated, we can define a class of mappings for our

purposes, and explore their properties.

Definition 3.3.1. Consider a mapping φ : R[x1, . . . , xn]→ R[x1, . . . , xn]. If there exist two poly-

nomials f and g ∈ R[x1, . . . , xn] such that

1) φ(f) = g,

2) Z(f) and Z(g) are irreducible,

3) Z(f) and Z(g) are homeomorphic,

then φ is called the affine algebraic variety preserving mapping, or shortly variety mapping, be-

tween f and g.

The variety mapping is defined from one polynomial to another, however, it also includes the

situation that a finite set of polynomials is mapped to another finite set of polynomials because

Lemma 3.2.1 ensures a set of polynomials is equivalent to a single polynomial. The core idea

behind this definition, as well as the next definition of the affine algebraic set preserving mappings,

is that although the algebraic variety (set) is preserved by the homeomorphism, some other features

may be altered. Let’s first provide a few examples to show that such kinds of mapping exist.

Let f(x) = x − 1, consider M(f) = f 2. It is easy to show that M is an variety mapping

between x− 1 and x2 − 2x+ 1.

Consider h ∈ R[x1, . . . , xn] such that Z(h) = ∅. Let φ(f) = hf , then φ is a variety mapping

between f and hf with the corresponding homeomorphism being the identity map. Generally,

between any two elements of an arbitrary prime ideal of the polynomial ring R[x1, . . . , xn] there

exists a variety mapping.

Definition 3.3.2. Consider a mapping φ : R[x1, . . . , xn] → R[x1, . . . , xn]. If there exist two

polynomials f and g ∈ R[x1, . . . , xn] such that

1) φ(f) = g,

2) Z(g) =
⋃
k∈K

Vk with each Vk being an affine algebraic variety in Z(g),
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3) Z(f) is homeomorphic to
⋃
k∈L

Vk for some L ⊆ K,

then φ is called the affine algebraic set preserving mapping, or shortly set mapping, between f and

g.

It should be pointed out that the affine algebraic variety preserving mappings are also the affine

algebraic set preserving mappings when set K in Definition 3.3.2 is a singleton.

Theorem 3.3.1. Affine algebraic set preserving mappings are closed under composition.

Proof. Let φ1 be a set mapping from f1 to f2 with Z(f2) being the union of varieties
⋃
i∈I

Vi. Sup-

pose Z(f1) is homeomorphic to
⋃
i∈J

Vi for J ⊆ I. Similarly, φ2 is a set mapping from f2 to f3 with

Z(f3) being the union of varieties
⋃
n∈N

Un. Z(f2) is homeomorphic to
⋃
n∈M

Un for M ⊆ N. It

suffices to show that the composition of two set mappings is still a set mapping.

First, we have φ(f1) = φ2 ◦ φ1(f1) = φ2

(
φ1(f1)

)
= φ2(f2) = f3. Then we need to show that

there exists a subset H ⊆M such that
⋃
i∈J

Vi is homeomorphic to
⋃
n∈H

Un.

Since
⋃
i∈J

Vi is closed, its image under a homeomorphism should also be closed. Considering

Un’s are irreducible, the image of
⋃
i∈J

Vi should be
⋃
n∈H

Un for some H ⊆ N. Since
⋃
i∈J

Vi ⊆

Z(f2), H ⊆M.

Therefore, we have Z(f1) is homeomorphic to
⋃
i∈J

Vi, which is homeomorphic to
⋃
n∈H

Un with

H ⊆M ⊆ N. Thus, φ is a variety mapping.

Corollary 3.3.1. Affine algebraic variety preserving mappings are closed under composition.

Proof. By Theorem 3.3.1 it is trivial.

With the above results, we are going to discuss two specific mappings, and show that they

are set mappings. These two mappings, and their composition, will eventually be applied in this

chapter to our power flow models, ACOPF models and the multi-party ACOPF models.

3.3.1 Induced Affine Mapping over A Polynomial Ring

The first set mapping we are going to investigate is induced by the affine maps between affine

spaces. Geometrically, this kind of set mappings does not change any structures of the algebraic
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set, but defines a class of representations of the same algebraic set. An intuitive interpretation

could be describing the same object in different coordinate systems. It plays an important role in

masking the appearance of the original problem, and may relate symmetries to some algebraic set.

Definition 3.3.3. Let V and U be two vector spaces over a field F, a map L : V → U is called a

linear map if for any α and β ∈ F, v ∈ V and u ∈ U we have L(αv + βu) = αL(v) + βL(u).

Definition 3.3.4. Let A and B be two affine spaces, a map A : A → B is called an affine map if

there exists a linear map L such that for any a ∈ A and b ∈ B we have A(a)−A(b) = L(a−b).

Now let’s consider a special map A : An → An such that X 7→ TX+γ, where T ∈ An×n and

γ ∈ An are fixed. It is apparently an affine map. Applying it to the coordinates of the polynomial

ring R[x1, . . . , xn] we get an induced mapping over R[x1, . . . , xn].

Definition 3.3.5. Given an affine map A : An → An, X 7→ TX + γ, where T is nonsingular.

It induces an natural mapping A∗ : R[x1, . . . , xn] → R[x1, . . . , xn], called the induced affine

mapping, over the polynomial ring R[x1, . . . , xn] such that A∗
(
f(X)

)
= f(TX + γ) for any

f ∈ R[x1, . . . , xn].

Theorem 3.3.2. An induced affine mapping A∗ is an affine algebraic set preserving mapping for

any f and g in the polynomial ring R[x1, . . . , xn] such that g(X) = f(TX + γ).

Proof. First notice that A∗(f) = g for g(X) = f(TX + γ).

Next, consider A : Z(f) → Z(g). ∀Y ∈ Z(g), g(Y) = f(TY + γ) = f(A(Y)) = 0. So A

is surjective from Z(f) to Z(g). Since T is nonsingular, ∀Y1 and Y2 ∈ Z(g), A(Y1)− A(Y2) =

T(Y1 − Y2) = 0 implies Y1 = Y2. So A is injective. Thus, A is a bijection. Finally, by the

continuity of A and A−1, A is a homeomorphism between Z(f) and Z(g).

Proposition 3.3.1. Consider two subsets of polynomials F = {fi, i ∈ I} and G = {gi, i ∈ I}

in the polynomial ring R[x1, . . . , xn]. An induced affine mapping A∗ is an affine algebraic set

preserving mapping beween F and G if gi(X) = fi(TX + γ) for all i ∈ I.

Proof. By Lemma 3.2.1, F and G can be represented by two single polynomials respectively.

Then Theorem 3.3.2 concludes the proposition.
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Proposition 3.3.1 indicates that for an arbitrary polynomial subset F(X) ⊂ R[x1, . . . , xn], an

induced affine mapping A∗ serves as the affine algebraic set preserving mapping to a new polyno-

mial set F
(

A(X)
)

.

3.3.2 Linear Mapping over Polynomial Rings

Definition 3.3.6. Consider a vector space R[x1, . . . , xn]n given by n-tuples of polynomial ring

R[x1, . . . , xn] over the closed real field R. A map L∗ : R[x1, . . . , xn]n → R[x1, . . . , xn]n is called

a linear mapping over polynomial rings if

L∗(P) = RP

where P ∈ R[x1, . . . , xn]n and R ∈ Rn×n is invertible.

This class of mappings, as we will show below, is also an affine algebraic set preserving map-

ping.

Theorem 3.3.3. A linear mapping L∗ : R[x1, . . . , xn]n → R[x1, . . . , xn]n, P 7→ RP with R ∈

Rn×n invertible, is an affine algebraic set preserving mapping.

Proof. Since a finite linear combination of polynomials is still a polynomial, it suffices to show

that there exists a homeomorhpism between Z(P) and Z(RP).

For any X ∈ Z(P), P(X) = 0, so RP(X) = 0. Thus, ∀X ∈ Z(P), X ∈ Z(RP). On

the other hand, for any Y ∈ Z(RP), RP(Y) = 0. Since R is invertible, P(Y) = 0. Thus

∀Y ∈ Z(RP), Y ∈ Z(P). Therefore, Z(P) = Z(RP), hence homeomorphic to each other by

the identity map.

It is worth comparing the differences between the induced affine mapping and the linear map-

ping. Although they are different mappings, one intrinsic difference should be revealed, and it

turns out to be useful for the following sections.

Definition 3.3.7. Consider two polynomial sets F = {fi, i ∈ I} and G = {gj, j ∈ J}. If F ⊆ G,

then Z(F) is called a natural embedding of Z(G).
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Theorem 3.3.4. Consider two polynomial sets F and G, if Z(F) is a natural embedding of Z(G),

then Z(F) ⊇ Z(G).

Proof. For any X ∈ Z(G), we have G(X) = 0. Since F ⊆ G, F(X) = 0. Thus, Z(F) ⊇

Z(G).

Definition 3.3.8. Consider an affine algebraic set preserving mapping φ between two polynomial

sets F and G. If for any subset Fi ⊂ F, there exists a subset Gi ⊂ G such that φ is an affine

algebraic set preserving mapping between Fi and Gi, then φ is called the natural embedding

preserving mapping.

Theorem 3.3.5. The induced affine mapping is a natural embedding preserving mapping.

Proof. By Theorem 3.3.2 the induced affine mapping maps each element fi of F to an element gj

of G independently. Thus it maps any subset of F to the corresponding subset of G.

However, the linear mapping is not an natural embedding preserving mapping. We show this

by an example. Consider

F =
{
f1 = y2 − 1

4
x2 − 1, f2 = x2 − 1

4
y2 − 1

}
Let

R =

 1 1

1
2

1


Then

G = RF =
{
g1 =

3

4
y2 +

3

4
x2 − 2, g2 =

7

8
x2 +

1

4
y2 − 3

2

}
Although Z(F) = Z(G) =

{
(2
√

3
3
, 2
√

3
3

), (−2
√

3
3
, 2
√

3
3

), (2
√

3
3
,−2

√
3

3
), (−2

√
3

3
,−2

√
3

3
)
}

, Z(f1) can-

not be homeomorphic to Z(g1) or Z(g2), because Z(f1) is unbounded but Z(g1) and Z(g2) are both

bounded. The following figure depicts both of them in pairs. It shows that the blue curves on the

left hand side are unbounded, but the red curves on the right hand side are bounded.

Now let’s make a stage conclusion that the induced affine mapping preserves every natural

embedding of the algebraic set. However, the linear mapping only preserves the algebraic set,



44

−5 0 5
−5

0

5

Z(f
1
)

x

y

−5 0 5
−5

0

5

Z(f
2
)

x

y

−5 0 5
−5

0

5

Z(g
1
)

x

y

−5 0 5
−5

0

5

Z(g
2
)

x

y

Figure 3.1: Plots of Individual Natural Embeddings

changing all its natural embeddings when necessary. The flexibility of the linear mapping to mod-

ify the natural embeddings of an algebraic set is crucial in the next discussions. It enables the

ellipsoidal formulation of the power flow equations as well as of the Fritz John conditions for

the ACOPF problem. Consequently, it enables the reliable and efficient application of the branch

tracing method for both of them. Afterwards, the induced affine mappings will be applied to the

multi-party ACOPF data encryption, and will be revisited towards another view of how to identify

multiple solutions to these ellipsoidal formulations.

3.4 Ellipsoidal Formulation of Power Flow Equations

In the previous section we have shown that the linear mapping over the polynomial rings can

change the natural embeddings of a certain algebraic set, converting the unbounded manifolds to

bounded ones. This particular aim is achieved and proved to be feasible under mild assumptions
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in this section, as well as in the next section, by the careful designs of the R matrix. Before that,

some preliminary properties of the power flow equations should be stated.

Definition 3.4.1. Consider a quadratic polynomial in n variables given by XTMX + BTX − 1,

where X ∈ Rn for n ≥ 1; M ∈ SRn×n and B ∈ Rn are constant matrix and vector. If M is

positive definite, then Z(XTMX + BTX − 1) is called a real (n − 1)-dimensional ellipsoid, or

shortly, an ellipsoid.

Theorem 3.4.1. A n-dimensional ellipsoid is homeomorphic to an n-dimensional sphere.

Proof. Without loss of generality, let the center point of an ellipsoid be the origin. Consider an

affine map A(X) = V−TΛ−
1
2 X where Λ is the diagonal eigenvalue matrix of M, V are the

eigenvectors of M. Its induced affine mapping A∗ sends XTMX− 1 to XTX− 1 whose algebraic

set is a sphere.

Proposition 3.4.1. A n-dimensional ellipsoid is a connected compact manifold.

Proof. Since a sphere is a connected compact manifold, by the homeomorphism we are done.

Lemma 3.4.1. Suppose C = A + jB with A and B ∈ Rn×n, A = AT , and B = −BT . Then

there is a one-to-one map f such that

f(C) = Ĉ =

 A −B

B A

 .
Furthermore, if C has an eigenvalue λ with the corresponding eigenvector v = vd + jvq, where

vd and vq ∈ Rn, then

 vd

vq

 and

 −vq

vd

 are the eigenvectors of Ĉ with the corresponding

repeated eigenvalue λ.

Proof. Ref. [93].

Theorem 3.4.2. Consider C = A+jB with A and B ∈ Rn×n. Let H = conj(CT )eke
T
k +eke

T
kC,

where ek is a column vecter only has the unity on its k-th entry, then H only has two non-zero
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eigenvalues

λ± = Ak,k ±
√
A2
k,k +

∑
i 6=k

|Ck,i|2

where Ak,k is the (k, k)-th entry of A, Ck,i is the (k, i)-th entry of C. λ+ is non-negative, λ− is

non-positive. Their corresponding eigenvectors are

v± = conj(CT
·,k) + (λ± − conj(Ck,k))ek

where CT
·,k is the k-th column of CT .

Proof. Ref. [93].

Proposition 3.4.2. The quadratic matrix Mp,k, as well as Mq,k, in Equation (2.11) only has four

non-zero eigenvalues: two repeated positive ones and two repeated negative ones.

Proof. According to Theorem 3.4.2, let C = Ybus, then H = (Gbus−jBbus)
Teke

T
k +eke

T
k (Gbus+

jBbus) has two eigenvalues, one is positive, the other is negative. By Lemma 3.4.1, H can be one-

to-one mapped to Ĥ. Thus for each eigenvalue of H, it becomes two repeated eigenvalues of Ĥ.

Therefore, Ĥ has four eigenvalues, two repeated positive ones and two repeated negative ones.

Finally, Ĥ coincides with the quadratic matrix Mp,k in Equation (2.11). The argument is similar

for Mq,k.

Corollary 3.4.1. A power balancing equation defines an unbounded manifold.

Proof. By Proposition 3.4.2, the algebraic set of any power balancing equation is homeomorphic

to the algebraic set of x2
1 + x2

2 − x2
3 − x2

4 − 1, which defines an unbounded manifold.

3.4.1 Network Model without Shunt Elastance

We have seen from Corollary 3.4.1 that in the power flow model, the power balancing equations

are unbounded. Although the algebraic set of the power flow model is bounded, it is very likely that

its natural embeddings are unbounded, which may cause difficulty when applying branch tracing

method. To address this difficulty, we apply the linear mapping to the power flow model, changing

each unbounded manifold into a bounded one. To show the existence of such linear mapping, we
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need some mild assumptions and a lemma which is stated below. Throughout this chapter, we

assume that the transmission line is modeled in Π equivalent circuit.

Lemma 3.4.2. Consider a connected electric power grid with Nbus buses. Assume there are no

phase shifting transformers and no shunt elastance on the transmission lines. Then the bus suscep-

tance matrix Bbus ∈ SRn×n is negative semi-definite. Furthermore, it has a single zero eigenvalue

with the corresponding eigenvector vT = [1 1 · · · 1]T .

Proof. By Ref. [94] the bus admittance matrix is given by Ybus = ATdiag(y)A where A is the

bus incidence matrix, y is the line admittance vector. Thus we have Bbus = ATdiag(b)A where

b is the line susceptance vector.

Since the value of line susceptance is typically negative (due to the inductive transmission line

design), then diag(y) must be negative definite.

Since the incidence matrix A only has one zero eigenvalue with the corresponding eigenvector

[1 1 · · · 1]T , then Bbus[1 1 · · · 1]T = 0. Thus Bbus has a single zero eigenvalue with the same

eigenvector.

The next theorem claims that for a power grid with no shunt elastance, the power flow model

has an ellipsoidal formulation.

Theorem 3.4.3 (A Sufficient Condition for Ellipsoidal Formulation of Power Flow Model without

Shunt Elements). Consider a connected electric power grid with Nbus buses and Ngen generators.

Without loss of generality, suppose the 1-st bus is the slack bus, the 2-nd bus to the Ngen-th bus

are PV buses, and the rest are PQ buses. Let n = 2Nbus. Assume further that there are no phase

shifting transformers and no shunt elastance on the transmission lines. The power flow model

FPF in quadratic form has an ellipsoidal formulation. That is, there exists a linear mapping

L∗ : R[x1, . . . , xn]n → R[x1, . . . , xn]n, FPF 7→ FE = RFPF , where each element in FE defines

a (n− 1)-dimensional ellipsoid.

To show the theorem is equivalent to show that there exists a constant matrix R such that each

polynomial in FE = RFPF has a positive definite quadratic matrix, which will be sufficed by
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showing that there exists a linear combination of power flow equations that represents an ellipsoid.

This is done by the following lemma.

Lemma 3.4.3. Under the assumptions of Theorem 3.4.3, there exists a constant γ ∈ R such that

γ

Ngen∑
i=1

Mv,i −
Nbus∑

j=Ngen+1

Mq,j � 0 (3.1)

γ

Ngen∑
i=1

V 2
i,0 +

Nbus∑
j=Ngen+1

Qload,j > 0 (3.2)

Proof. Since V 2
i,0 > 0 for high voltage magnitude, condition (3.2) is trivial. Let’s show condi-

tion (3.1) by induction.

Firstly, consider Ngen = 1. The quadratic matrix is given by

γ

Ngen∑
i=1

Mv,i −
Nbus∑

j=Ngen+1

Mq,j = γMv,1 + Mq,1 −
Nbus∑
j=1

Mq,j

= γMv,1 + Mq,1 +
1

2

 −Bbus 0

0 −Bbus

 (3.3)

Let B̂bus := 1
2

 −Bbus 0

0 −Bbus

. According to Lemma 3.4.2, B̂bus � 0 with two repeated

zero eigenvalues and their corresponding eigenvectors [0, · · · , 0, 1, · · · , 1]T and [1, · · · , 1, 0, · · · , 0]T .

Since γMv,1 + Mq,1 only has the 1-st and the (Nbus + 1)-th rows and columns nonzero, its

eigenvalues can be dominated by the 1-st and the (Nbus + 1)-th entries on the diagonal. Since

Mv,1 only has nonzero (specifically positive) elements at the the 1-st and the (Nbus + 1)-th entries,

γMv,1 will dominate the eigenvalues by some large γ. So γMv,1 + Mq,1 is positive semi-definite.

Thus, Equation (3.3) is at least positive semi-definite for some large γ. Next, we are going to show

it is strictly potive definite.

Note that the zero eigenvector of B̂bus takes the form of

v = a[0, · · · , 0, 1, · · · , 1]T + b[1, · · · , 1, 0, · · · , 0]T
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where a2 + b2 6= 0. Choose any zero eigenvector v such that |v| = 1, we have vT
(
γMv,1 +

Mq,1

)
v = γ(a2 + b2) + vTMq,1v. Since vTMq,1v is bounded, then a large γ will dominate

vT
(
γMv,1 + Mq,1

)
v and makes it positive. Hence, it is impossible to coincide the zero eigen-

vectors of γMv,1 + Mq,1 and B̂bus, which means Equation (3.3) is positive definite for some large

γ.

Secondly, suppose for Ngen = n the positive definiteness holds. Let’s consider Ngen = n+ 1.

The quadratic matrix for Ngen = n+ 1 is given by

γ
n+1∑
i=1

Mv,i −
Nbus∑

j=(n+1)+1

Mq,j = γ
n∑
i=1

Mv,i −
Nbus∑
j=n+1

Mq,j + γMv,n+1 −Mq,n+1 (3.4)

By the assumption, γ
∑n

i=1 Mv,i −
∑Nbus

j=n+1 Mq,j � 0. With the similar arguments we made for

Ngen = 1, γMv,n+1 −Mq,n+1 � 0 for some γ. Therefore, γ
∑n+1

i=1 Mv,i −
∑Nbus

j=(n+1)+1 Mq,j � 0

for some large γ, which concludes the lemma.

Lemma 3.4.3 implies that for a connected electric power grid without shunt elastance a linear

combination of the voltage equations for the PV buses and the reactive power equations for the PQ

buses can always provide us a (2Nbus−1)-dimensional ellipsoid, which is called the base ellipsoid.

Adding the scaled base ellipsoid to other polynomials in the power flow model FPF , we can make

all of them to be ellipsoids, which concludes Theorem 3.4.3.

3.4.2 Network Model with Shunt Elastance

Theorem 3.4.3 guarantees the ellipsoidal formulation of the quadratic power flow model for

power grids without shunt elastance. However, to describe a power grid more accurately, shunt

elastance matrix is usually considered for the bus admittance matrix, which will weaken the above

result.

In this subsection, we will obtain a sufficient condition to guarantee the ellipsoidal formulation

with shunt elastance. Although one can intentionally design a power grid that fails our sufficient

condition, in practice however, real power system models are very likely to satisfy it. On the other
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hand, even though the sufficient condition fails, one may still construct an ellipsoidal formulation

for the power flow problem.

Theorem 3.4.4 (A Sufficient Condition for Ellipsoidal Formulation of Power Flow Model with

Shunt Elastance). Consider a connected electric power grid with Nbus buses and Ngen generators.

Suppose the 1-st bus is the slack bus, the 2-nd bus to the Ngen-th bus are PV buses, and the rest

are PQ buses. Assume that there are no phase shifting transformers. Let the bus shunt elastance

matrix be Sshunt, where Sshunt � 0 is a diagonal matrix. Define the imaginary part of the bus

admittance matrix Ybus to be Bbus := B0 + Sshunt, where B0 is the bus susceptance matrix of the

grid without shunt elastance. Separate B0 and Sshunt ∈ RNbus×Nbus into sub-matrices

B0 =

 B1,1 B1,2

B2,1 B2,2



Sshunt =

 S1,1 0

0 S2,2


where B1,1, S1,1 ∈ RNgen×Ngen , B1,2 ∈ RNgen×Nload , B2,1 ∈ RNload×Ngen and B2,2, S2,2 ∈

RNload×Nload for Nload = Nbus −Ngen.

The power flow model FPF in quadratic form has a base ellipsoid formulation described by

UT
(
γ

Ngen∑
i=1

Mv,i −
Nbus∑

j=Ngen+1

Mq,j

)
U = γ

Ngen∑
i=1

V 2
i,0 +

Nbus∑
j=Ngen+1

Qload,j > 0 (3.5)

provided that −B2,2 − S2,2 � 0.

To prove Theorem 3.4.5, a few preliminary lemmas and propositions are needed.

Lemma 3.4.4. Every principal submatrix of B0 (not include B0 itself) is negative definite.

Proof. By Lemma 3.4.2, B0 is negative semi-definite with a single zero eigenvalue and the cor-

responding eigenvector [1, · · · , 1]T . So every strict principal submatrix of B0 is also negative

semi-definite. Since adding all the columns of B0 results in a zero vector, then take out at least one

column and one row of B0 will make it non-singular. Thus, every principal submatrix of B0 (not

include B0 itself) is negative definite.
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Lemma 3.4.5. Consider a connected power grid without phase shifting transformers and shunt

elastance. Denote the quadratic matrix of the reactive power balancing equation in Equation (2.11b)

by M0
q,j . Let T0(γ) := γ

∑Ngen
i=1 Mv,i −

∑Nbus
j=Ngen+1 M0

q,j . Then the minimum eigenvalue of T0(γ),

denoted by λmin(T0(γ)), is a non-decreasing function with respect to γ.

Proof. Consider z := vTT0(γ)v for |v|2 = 1. Then z is bounded below by λmin(T0(γ)), and

z can achieve λmin(T0(γ)) when v is the eigenvector of T0(γ) associated with λmin(T0(γ)).

For any fixed vector v, vTT0(γ)v = vT (γ
∑

Mv,i)v − vT (
∑

M0
q,j)v with

∑
Mv,i � 0, then

vT (γ
∑

Mv,i)v is non-decreasing with respect to γ at v. Now let’s show the Lemma by contra-

diction.

Suppose there exist γ1 < γ2 ∈ R such that λmin(T0(γ1)) > λmin(T0(γ2)). Then, vT1 T0(γ1)v1 >

vT2 T0(γ2)v2, where v1 is the eigenvector associated with λmin(T0(γ1)) and v2 is the eigenvec-

tor associated with λmin(T0(γ2)). Since γ1 < γ2, we have vT2 T0(γ2)v2 ≥ vT2 T0(γ1)v2 by the

non-decreasing property at fixed v2. Therefore, vT1 T0(γ1)v1 > vT2 T0(γ1)v2. However, since

vT1 T0(γ1)v1 = λmin(T0(γ1)) which is the minimal value for all |v|2 = 1, we have the contradic-

tion from vT1 T0(γ1)v1 ≤ vT2 T0(γ1)v2.

Therefore, for any γ1 < γ2 ∈ R we have λmin(T0(γ1)) ≤ λmin(T0(γ2)).

Proposition 3.4.3. 0 < lim
γ→∞

λmin(T0(γ)) <∞.

Proof. By the bus ordering in Theorem 3.4.5, the structure of T0(γ) ∈ R2Ngen×2Ngen is

T0(γ) =



γI T1,2 T1,3 T1,4

T2,1 −B2,2 T2,3 T2,4

T3,1 T3,2 γI T3,4

T4,1 T4,2 T4,3 −B2,2


where I ∈ RNgen×Ngen is the identity matrix.

As γ → ∞, γI will dominate the corresponding rows and columns. Thus, λmin(T0(γ)) =

λmin(−B2,2) <∞. Since B2,2 is a leading principal sub-matrix of B0, by Lemma 3.4.4, −B2,2 is

positive definite. Hence, λmin(T0(γ)) > 0.
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Corollary 3.4.2. max(λmin(T0(γ)))→ λmin(−B2,2) as γ →∞.

Proof. By the proof of Proposition 3.4.3.

Proof. (for Theorem 3.4.5) According to Corollary 3.4.2 and Lemma 3.4.5, the maximum value of

the minimum eigenvalue of T0(γ) is the minimum eigenvalue of the sub-matrix −B2,2. Now let’s

consider a power grid with shunt elastance. Let T(γ) := γ
∑Ngen

i=1 Mv,i −
∑Nbus

j=Ngen+1 Mq,j . Then

T(γ) = T0(γ)−

 0 0

0 S2,2

 (3.6)

Since S2,2 is fixed, we have max(λmin(T(γ))) → λmin(−B2,2 − S2,2) as γ → ∞. Therefore,

if −B2,2 − S2,2 � 0, there exists some γ < ∞ such that λmin(T(γ)) > 0, which indicates that

T(γ) � 0.

3.4.3 Network Model with Shunt Conductance and Elastance

Theorem 3.4.4 claims a sufficient condition to guarantee an ellipsoidal formulation of a power

flow problem with shunt elastance. However, when the sufficient condition fails, one can still have

a chance to construct an ellipsoidal formulation for the power flow problem.

This subsection presents a more general condition to ensure an ellipsoidal formulation of a

power grid with both shunt conductance and elastance. Theorem 3.4.3 and Theorem 3.4.4 can be

considered as two special cases in this general condition. Again, one can artificially design a power

grid that fails such condition, nevertheless, real power system models are very likely to satisfy it.

On the other hand, even though the sufficient condition fails, one may still construct an ellipsoidal

formulation for the power flow problem.

Theorem 3.4.5 (A Sufficient Condition for Ellipsoidal Formulation of Power Flow Model with

Shunt Conductance and Elastance). Consider a connected electric power grid with Nbus buses

and Ngen generators. Suppose the 1-st bus is the slack bus, the 2-nd bus to the Ngen-th bus are

PV buses, and the rest are PQ buses. Assume that there are no phase shifting transformers. Let

the bus shunt conductance matrix be Cshunt, where Cshunt � 0 is diagonal. Let the bus shunt
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elastance matrix be Sshunt, where Sshunt � 0 is diagonal. Consider the bus admittance matrix

Ybus = Gbus + jBbus, where Gbus := G0 + Cshunt and Bbus := B0 + Sshunt, G0 is the bus

conductance matrix without shunt conductance, B0 is the bus susceptance matrix without shunt

elastance. Separate G0, Cshunt, B0 and Sshunt ∈ RNbus×Nbus into sub-matrices

G0 =

 G1,1 G1,2

G2,1 G2,2



Cshunt =

 C1,1 0

0 C2,2



B0 =

 B1,1 B1,2

B2,1 B2,2



Sshunt =

 S1,1 0

0 S2,2


where G1,1, C1,1, B1,1 and S1,1 ∈ RNgen×Ngen , G1,2 and B1,2 ∈ RNgen×Nload , G2,1 and B2,1 ∈

RNload×Ngen , G2,2, C2,2, B2,2 and S2,2 ∈ RNload×Nload for Nload = Nbus − Ngen. If one of the

following conditions is true,

1. G2,2 + C2,2 � 0,

2. −B2,2 − S2,2 � 0,

then the power flow problem has an ellipsoidal formulation.

Proof. The proof of Theorem 3.4.4 ensures the second condition.

To prove the first condition, we let

T(γ) := γ

Ngen∑
i=1

Mv,i +

Nbus∑
j=Ngen+1

Mp,j (3.7)

and follow the similar arguments for the proof of Theorem 3.4.4. Here we provide a sketch for the

proof.
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Firstly, show that any principal submatrix of Gbus is positive semi-definite. Secondly, show

that max(λmin(T(γ))) → λmin(G2,2 + C2,2) as γ → ∞. Finally, show that the constant term

γ
∑Ngen

i=1 V 2
i,0 −

∑Nbus
j=Ngen+1 Pload,j > 0 for some large γ.

Then, condition 1 will induce an ellipsoidal formulation.

Note that if Sshunt = 0, Theorem 3.4.5 is reduced to Theorem 3.4.3.

3.4.4 Ellipsoidal Formulation for The ZIP Load Flow Model

Consider the “ZIP” load flow model in (2.15), we regard the voltage magnitude |Vk| as new

a variable. Since in (2.15a) and (2.15b) the voltage magnitude |Vk| is independent to U, we can

construct the ellipsoidal formulation in the same way as (3.5) or (3.7), provided the constant coef-

ficients P2,k and Q2,k are non-negative.

However, one should be cautious about applying the “ZIP” model to the power flow problem

for solving low-voltage solutions because the “ZIP” model is a simplified load response designated

to accommodate the change of the high-voltage magnitude. Hence, the low voltage solutions to

the “ZIP” model may not be physically meaningful. For example, if a load bus voltage is zero, the

load power should also be zero. This can be true only when the constant power terms P0,k and Q0,k

are zeros in (2.15).

3.4.5 Boundedness of PV and QV Curves

The PV and QV curves are examined to identify the total transfer capability (TTC) at a certain

bus, or the maximum loadability of a power grid, and to locate voltage static stability boundary

points. These curves are usually calculated by continuation power flow algorithms which follow

some paths defined by continuously increasing active power or reactive power at certain buses.

Typical PV and QV curves are given in Figure 3.2.

However, for some power grid models, the PV and QV curves can be unbounded. We illustrate

this unboundedness via a small example which is modified from the “case5Salam” test case [14].

Specifically, we reduce the line resistance of “case5Salam” to zero, and follow QV curves by
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Figure 3.2: PV Curve (Left) and QV Curve (Right)

continuously increasing the reactive power at all the PQ buses. The QV curves are shown in

Figure 3.3.
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Figure 3.3: Unbounded QV Curves on Bus 2 (Left), Bus 3 (Middle), and Bus 4 (Right)

To ensure bounded PV and QV curves, we provide a sufficient condition as follow.
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Theorem 3.4.6. Consider a power flow model FPF ∈ R[x1, . . . , xn]n. Let FPF,i ∈ R[x1, . . . , xn]n−1

be a subset of FPF withouth the i-th element. The real solution set Z(FPF,i) is bounded if FPF,i

has an ellipsoidal formulation.

Proof. If FPF,i has an ellipsoidal formulation, there exists an invertible mapping Mi : R[x1, . . . , xn]n−1 →

R[x1, . . . , xn]n−1 such that Mi(FPF,i) = EPF,i, where each element of EPF,i represents a (n− 1)-

dimensional ellipsoid. Since any ellipsoid is bounded, the intersection of (n − 1) of them is still

bounded.

Corollary 3.4.3. QV curves are bounded if the network is lossy everywhere.

Proof. If the network is lossy everywhere, Condition 1 in Theorem 3.4.5 is satisfied. Thus, by

Theorem 3.4.5 we can construct a base ellipsoid independent of reactive power balance equations,

which further suggests that any QV curve can be represented by an intersection of a bunch of

ellipsoids.

Corollary 3.4.3 is somehow counter-intuitive because reactive power is directly related to the

transmission line susceptance. However, our analysis indicates that the upper bound of reactive

power injection can be influenced by the transmission line conductance. Specifically, if a power

grid is lossy everywhere, then bus reactive power injection must be bounded.

Corollary 3.4.4. PV curves are bounded if Condition 2 in Theorem 3.4.5 is satisfied.

Proof. If Condition 2 in Theorem 3.4.5 is true, there exists a base ellipsoid which is independent

of active power balance equations. Therefore, a PV curve can be formulated as an intersection of

a bunch of ellipsoids.

Corollary 3.4.4 states that the upper bound of bus active power injection can be influenced

by the transmission line susceptance and shunt capacitance. This result is also counter-intuitive

since the active power loss is determined by the conductance on transmission lines. However,

Condition 2 in Theorem 3.4.5 provides a sufficient condition for the boundedness of bus active

power injection which only relates to the susceptance. It suggests that as long as we have at least
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one PV bus (or the slack bus), the active power injection of a power grid must be bounded under

Condition 2, even without line conductance.

3.5 Ellipsoidal Formulation of the First Order Conditions of ACOPF

This section applies our linear mapping to the first order conditions of the equality constrained

ACOPF model, turning all the unbounded manifolds into bounded ones, namely the high dimen-

sional ellipsoids. Then the ellipsoidal formulation enables the reliable implementation of the

branch tracing method for the next chapter to identify multiple local solutions to the ACOPF prob-

lem. We briefly introduce the KKT conditions of the equality constrained ACOPF and discuss the

difficulties for an ellipsoidal formulation. Thus, the Fritz John conditions are elaborated with one

extra constraint to eventually reach its ellipsoidal formulation.

3.5.1 Karush-Kuhn-Tucker Conditions for Equality Constrained ACOPF

Recall the equality constrained ACOPF model with quadratic objective function in Equa-

tion (2.31), the objective function and the constraints are all in quadratic form without linear terms

except the New Relation in Equation (2.31l). Particularly, if we only consider the linear objective

function model in Equation (2.30), then every polynomial in the model is quadratic without linear

terms. Without loss of generality, let’s consider the quadratic objective function model for this

section, then Equation (2.31) can be concisely written as

Minimize XTDX

Subject to : XTMjX − rj = 0

XTMiX + BT
i X − ri = 0

j = 1, ..., 3Ngen + 4Nbus + 2Nline

i = 1, ..., Ngen

(3.8)

where X ∈ R6Ngen+4Nbus+2Nline is the variable vector by stacking Pgen,i, pgen,i, U, sp,max,k, sp,min,k,

sq,max,k, sq,min,k, sv,max,k, sv,min,k, sI,max,in,n and sI,max,out,n into a column.
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The Lagrange function of this optimization problem in Equation (3.8) is

L(X, λ, µ) = XTDX −
∑3Ngen+4Nbus+2Nline

j=1 λj

(
XTMjX − rj

)
−
∑Ngen

i=1 µi

(
XTMiX + BT

i X − ri
) (3.9)

where λ and µ are the Lagrangian multiplier vectors to the constraints; λj is the j-th entry of λ; µi

is the i-th entry of µ.

Suppose X∗ is a local solution to problem (3.8), and the linear independent constraint qualifi-

cation (LICQ) holds. By the Karush-Kuhn-Tucker (KKT) Conditions there exist λ∗ and µ∗ such

that the following conditions are satisfied

5
X
L(X∗, λ∗, µ∗) = 0 (3.10a)

XT
∗MjX∗ − rj = 0 (3.10b)

XT
∗MiX∗ + BT

i X∗ − ri = 0 (3.10c)

Note that conditions (3.10) are not equivalent to the KKT conditions of the original problem

(2.18) because the original problem has “less-or-equal-to” inequality constraints for which the

multipliers should be non-positive:

λ∗k ≤ 0 (3.11)

where k is in the index set of the active inequality constraints of problem (2.18). However, the com-

plementarity conditions for problem (2.18) are intrinsically included in the conditions of (3.10a).

Specifically, they are equivalent to the partial derivatives of L(X, λ, µ) with respect to the slack

variables. Thus, conditions (3.10) with (3.11) are equivalent to the KKT conditions of prob-

lem (2.18). This relation implies that solutions to (3.10) should include solutions of the KKT

conditions for problem (2.18). To distinguish different solutions and models, we refer “KKT con-

ditions” to the KKT conditions for the original problem (2.18), and refer “KKT solutions (points)”

to the solutions that satisfy the KKT conditions for the original problem (2.18). Also, we use

“eq-KKT conditions” to represent the KKT conditions for the equality constrained problem (2.31)

or (2.30), and use “eq-KKT solutions (points)” to represent the solutions that satisfy the eq-KKT

conditions (3.10) for those equality constrained problems.
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The eq-KKT conditions comprise only equalities which are more favorable than inequalities

for constructing ellipsoidal formulations and applying the branch tracing method. Hence, we use

eq-KKT conditions throughout our algorithm design and leave condition (3.11) to be checked after

obtaining multiple eq-KKT solutions.

Even with the help of equalities in the eq-KKT conditions, however, we still lack an important

feature to construct an ellipsoidal formulation; and the dependence on the constraint qualifications

for both the KKT and the eq-KKT conditions can cause potential difficulties for branch tracing

methods. To illustrate these restrictions, let’s examine Equation (3.10a) for details.

5
X
L(X, λ, µ) = 2DX −

∑
j 2λjMjX −

∑
i µi

(
2MiX + Bi

)
= 0 (3.12)

Since λ and µ are also unknowns when we unsolve the first order conditions, Equation (3.12)

is quadratic with respect to X, λ and µ, with some linear terms DX and µiBi. However, since λ

and µ only appear in the cross-product terms with X, there are no univariate quadratic terms of λ

or µ in Equation (3.12). It implies a difficulty of designing a positive-definite quadratic polynomial

with respect to X, λ and µ that retains the eq-KKT solutions.

Another issue occurs from the strong reliance on the constraint qualifications. It is possible

that an optimization problem has a local solution that does not satisfy the constraint qualifications,

which may result in no eq-KKT and KKT solutions. For example, try to minimize x subject to

x2 = 0. The solution is trivial but neither eq-KKT nor KKT solutions exist. For our branch

tracing method, it traces the first order conditions by continuously changing some parameters. It is

possible that there are some particular parameter values that fail the constraint qualifications, and

hence cause numerical issues.
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3.5.2 Sphere Confined Fritz John Conditions and Its Ellipsoidal Formulation

To deal with the above two difficulties in the KKT conditions, we employ the Fritz John (FJ)

conditions and restrict them on a sphere. The detailed comparison between the Fritz John condi-

tions and the KKT conditions can be found in [95]. Briefly, the Fritz John conditions are a general-

ized version of the KKT conditions, which do not require any constraint qualifications. However,

it could in return induce ’fake’ local solutions [95], but this issue can be easily addressed.

First let’s define a scalar function F(X, λ, µ, δ) by

F(X, λ, µ, δ) = δXTDX −
∑3Ngen+4Nbus+2Nline

j=1 λj

(
XTMjX − rj

)
−
∑Ngen

i=1 µi

(
XTMiX + BT

i X − ri
) (3.13)

where δ is a scalar multiplier to the objective function; λ and µ are the multiplier vectors to the

constraints; λj is the j-th entry of λ; µi is the i-th entry of µ.

Suppose X∗ is a local solution to problem (3.8), by the Fritz John Conditions there exist δ∗, λ∗

and µ∗ such that the following conditions are satisfied

5
X
F(X∗, λ∗, µ∗, δ∗) = 0 (3.14a)

XT
∗MjX∗ − rj = 0 (3.14b)

XT
∗MiX∗ + BT

i X∗ − ri = 0 (3.14c)

(δ∗, λ∗, µ∗) 6= (0,0,0) (3.14d)

Note that if LICQ holds, then δ∗ 6= 0 and the strict complementary condition holds.

Again, the FJ conditions (3.14) for problem (3.8) are not equivalent to the FJ conditions for

the original problem (2.18) because the multipliers for active inequalities of (2.18) are further

constrained by their signs:

λ∗k ≤ 0, if δ∗ ≥ 0

λ∗k ≥ 0, if δ∗ ≤ 0 (3.15)

where k is in the index set of the active inequality constraints of Equation (2.18).
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Conditions (3.14) with (3.15) are equivalent to the FJ conditions of the original problem (2.18).

This relation implies that solutions to (3.14) should include solutions of the FJ conditions for

problem (2.18). To distinguish different solutions and models, we refer “FJ conditions” to the

FJ conditions for the original problem (2.18), and refer “FJ solutions (points)” to the solutions

that satisfy the FJ conditions for the original problem (2.18). Also, we use “eq-FJ conditions”

to represent the FJ conditions for the equality constrained problem (2.31) or (2.30), and use “eq-

FJ solutions (points)” to represent the solutions that satisfy the eq-FJ conditions (3.14) for those

equality constrained problems.

Consider Equation (3.14a) for details.

5
X
F(X, λ, µ, δ) = 2δDX −

∑
j 2λjMjX −

∑
i µi

(
2MiX + Bi

)
= 0 (3.16)

If X∗, δ∗, λ∗ and µ∗ is a solution to Equation (3.16), then X∗, Kδ∗, Kλ∗ and Kµ∗ is also a solution

for any K 6= 0. To avoid such a situation, we set a spherical constraint to the multipliers.

δ2 + λTλ+ µTµ = 1 (3.17)

This extra condition eliminates the nonzero conditions of Equation (3.14d) and provides us the uni-

variate quadratic terms of all the multipliers, enabling us to construct the ellipsoidal formulation.

Thus, the sphere confined eq-FJ conditions are

5
X
F(X∗, λ∗, µ∗, δ∗) = 0 (3.18a)

XT
∗MjX∗ − rj = 0 (3.18b)

XT
∗MiX∗ + BT

i X∗ − ri = 0 (3.18c)

δ2 + λTλ+ µTµ = 1 (3.18d)
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For conditions (3.18), a base ellipsoid can be constructed as∑Ngen
i

[
(P 2

gen,i + s2
p,max,i − P 2

max,i) + 1
2
(s2
p,min,i − P 2

gen,i + P 2
min,i)

+(UTMq,iU + s2
q,max,i −Qmax,i) + (s2

q,min,i −UTMq,iU +Qmin,i)

+(p2
gen,i − Pload,i −UTMp,iU)

]
+
∑Nline

n

[
(UTMIin,nU + s2

I,max,in,n − I2
max,in)

+(UTMIout,nU + s2
I,max,out,n − I2

max,out)
]

+ γ0

∑Nbus
k

[
(UTMv,kU + s2

v,max,k − V 2
max,k)

+1
2
(s2
v,min,k −UTMv,kU + V 2

min,k)
]

+ (δ2 + λTλ+ µTµ− 1) = 0

(3.19)

where γ0 ∈ R is a constant.

Theorem 3.5.1. As γ0 large enough, the algebraic set of Equation (3.19) is an ellipsoid.

Proof. The quadratic matrix of Equation (3.19) has most of its nonzero (positive) elements on

the diagonal except for Mq,i, Mp,i, MIin,n and MIout,n. These types of matrices only related to

the voltage vector U, thus can be dominated by the matrices γ0Mv,k’s. Since Mv,k has nonzero

(positive) elements on the diagonal, a large γ0 guarantees the positive definiteness of the entire

quadratic matrix.

With the base ellipsoid constructed, the entire sphere confined Fritz John conditions can be

mapped to ellipsoids under linear mappings. Note that there are multiple ways to construct a base

ellipsoid. Equation (3.19) is one particular construction.

3.5.3 Ellipsoidal Formulations for Bounded Quadratic Constrained Quadratic
Programming Problems

Through the discussion of previous subsections one may note that the existence of ellipsoidal

formulation of eq-FJ conditions is mildly dependent on problem formulations. It is possible that

any bounded quadratic constrained quadratic programming (BQCQP) problems can have ellip-

soidal formulations for their eq-FJ conditions. This subsection will provide a positive answer.
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Without loss of generality, consider a QCQP problem

Minimize xTDx + cTx

Subject to : xTMjx + bTj x− rj ≤ 0

xTHkx + pTk x− vk = 0

j = 1, ..., s

k = 1, ..., t

(3.20)

where x ∈ Rn is the decision variable vector, D, Mj and Hk ∈ Rn×n, c, bj and pk ∈ Rn, rj and

vk ∈ R.

We apply our square term trick from subsection 2.3.2 to make (3.20) completely equality con-

strained.
Minimize xTDx + cTx

Subject to : xTMjx + bTj x + τ 2
j − rj = 0

xTHkx + pTk x− vk = 0

j = 1, ..., s

k = 1, ..., t

(3.21)

where τj ∈ R is the free slack variable. To recover the first order solutions to the original prob-

lem (3.20), one only needs to check the sign conditions on the multipliers associated with the

binding inequality constraints.

Let’s first construct the scalar function for the sphere confined eq-FJ conditions of (3.21):

F(x, τ, λ, µ, δ) = δ(xTDx + cTx)−
∑s

j=1 λj

(
xMjx + bTj x + τ 2

j − rj
)

−
∑t

k=1 µk(x
THkx + pTk x− vk)

(3.22)

The sphere confined eq-FJ conditions are presented as

5x,τF(x∗, τ∗, λ∗, µ∗, δ∗) = 0 (3.23a)

x∗Mjx∗ + bTj x∗ + τ 2
j,∗ − rj = 0 (3.23b)

xT∗Hkx∗ + pTk x∗ − vk = 0 (3.23c)

δ2
∗ + λT∗ λ∗ + µT∗ µ∗ = 1 (3.23d)
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One should note that the boundedness of the feasible space of (3.20) may not induce a trivial

construction of a base ellipsoid for (3.23). To overcome this difficulty, we introduce artificial

constraints to (3.20) as follow.

Minimize xTDx + cTx

Subject to : xTMjx + bTj x− rj ≤ 0

xTHkx + pTk x− vk = 0

X2
α ≤ ζ2

α

j = 1, ..., s

k = 1, ..., t

α = 1, ..., n

(3.24)

where ζα ∈ R.

As long as (3.20) is bounded, we can always choose some large ζα such that X2
α ≤ ζ2

α will

never be binding for all α. This indicates that (3.24) should retain the same feasible space of (3.20)

and the same first order solutions as well. Therefore, the equality constrained QCQP problem is

written

Minimize xTDx + cTx

Subject to : xTMjx + bTj x + τ 2
j − rj = 0

xTHkx + pTk x− vk = 0

X2
α + η2

α = ζ2
α

α = 1, ..., n

(3.25)

where ηα is the free slack variable at index α.

The scalar function for the sphere confined eq-FJ conditions of (3.25) is

F(X, λ, µ, δ) = δ(xTDx + cTx)−
∑s

j=1 λj

(
xMjx + bTj x + τ 2

j − rj
)

−
∑t

k=1 µk(x
THkx + pTk x− vk)−

∑n
α=1 θα(X2

α + η2
α − ζ2

α)
(3.26)
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The sphere confined eq-FJ conditions with artificial constraints are presented as

5x,τF(x∗, τ∗, λ∗, µ∗, θ∗, δ∗) = 0 (3.27a)

x∗Mjx∗ + bTj x∗ + τ 2
j,∗ − rj = 0 (3.27b)

xT∗Hkx∗ + pTk x∗ − vk = 0 (3.27c)

X2
α,∗ + η2

α,∗ − ζ2
α = 0 (3.27d)

δ2
∗ + λT∗ λ∗ + µT∗ µ∗ + θT∗ θ∗ = 1 (3.27e)

With the help of (3.27d) we can construct an ellipsoidal formulation for problem (3.21).

Theorem 3.5.2. The first order solutions to (3.21) can be represented by the intersection of a set

of high-dimensional ellipsoids, provided the feasible space of (3.20) is bounded.

Proof. It suffices to show that there exists a base ellipsoid as a linear combination of (3.27).

Let’s consider

γ0

∑n
α=1(X2

α + η2
α − ζ2

α) +
∑s

j=1(xMjx + bTj x + τ 2
j − rj)

+(δ2 + λTλ+ µTµ+ θT θ − 1) = 0
(3.28)

Note that (3.28) includes all the decision variables, slack variables and multipliers. As long

as γ0 is large enough, the square terms of each decision variable Xα in the first summation will

dominate the second summation, henceforth, providing a positive definite quadratic matrix. On

the other hand, since the constant term ζ2
α is positive (we can make it not equal to 0), a large γ0

will ensure a positive constant term. In summary, as γ0 large enough, (3.28) represents a high-

dimensional ellipsoid.

3.6 Ellipsoidal Mappings and Its First Order Embedding Mappings

Previous subsections have discussed a few linear mappings that can construct ellipsoidal for-

mulations for some power flow problems, optimal power flow problems, and BQCQP problems.

Generally, they map a set of quadratic polynomials to another set of quadratic polynomials in
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which each individual polynomial represents a high dimensional ellipsoid. Such mappings have

special geometric structures which will be discussed in this subsection.

Definition 3.6.1. Consider n quadratic polynomials in n variavles given by B(X) ∈ R[x1, . . . , xn]n,

where X ∈ Rn for n ≥ 1. If there exists a constant vector p ∈ Rn such that {X ∈ Rn|pTB(X) =

0} represents a real (n− 1)-dimensional ellipsoid, then B(X) is called an ellipsoidal base.

Corollary 3.6.1. Theorem 3.4.3, 3.4.4, and 3.4.5 indicate that power flow equations under certain

conditions form an ellipsoidal base.

Corollary 3.6.2. Theorem 3.5.1 indicates that the sphere confined eq-FJ conditions of optimal

power flow problems form an ellipsoidal base.

Corollary 3.6.3. Theorem 3.5.2 indicates that the sphere confined eq-FJ conditions of BQCQP

problems form an ellipsoidal base.

Definition 3.6.2. Given an ellipsoidal base B(X) ∈ R[x1, . . . , xn]n, if there exists a linear map-

ping E : R[x1, . . . , xn]n → R[x1, . . . , xn]n such that EB(X) = E(X), and each element of E(X)

represents a (n−1)-dimensional ellipsoid, then E is called an ellipsoidal mapping associated with

B(X).

Lemma 3.6.1. The set of ellipsoidal mappings associated with the same ellipsoidal base are closed

under addition.

Proof. Given two ellipsoidal mappings E1 and E2 associated with the ellipsoidal base B(X). Let

E1B(X) = E1(X) and E2B(X) = E2(X), then (E1 + E2)B(X) = E1(X) + E2(X). Since

each entry of E1(X) or E2(X) is an ellipsoid, its quadratic matrix must be positive definite, and

the constant scalar must be positive. Adding two positive definite matrix together will result in a

positive definite matrix, so is for positive scalars. Therefore, each entry of E1(X) + E2(X) has a

positive definite quadratic matrix and a positive constant scalar. Thus, E1 +E2 is also an ellipsoidal

mapping.

Theorem 3.6.1. The set of ellipsoidal mappings ΘB := {E | EB(X) = E(X) ellipsoids} for a

fixed ellipsoidal base B(X) is convex.
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Proof. Let E1 and E2 ∈ ΘB. For 0 ≤ λ ≤ 1, consider Eλ := (1− λ)E1 + λE2, we have

EλB(X) =
(

(1− λ)E1 + λE2

)
B(X) (3.29a)

= (1− λ)E1B(X) + λE2B(X) (3.29b)

= (1− λ)E1(X) + λE2(X) (3.29c)

where E1(X) and E2(X) are the images of B(X) under E1 and E1, respectively.

By Lamma 3.6.1, (1 − λ)E1(X) + λE2(X) is a vector for which each entry represents an

ellipsoid. Therefore, Eλ is also an ellipsoidal mapping at B(X), which concludes the proof.

Definition 3.6.3. Consider an ellipsoidal base B(X) and its associated ellipsoidal mapping E .

Let E−k be a mapping given by E without the k-th row. We call E−k the first order embedding

mapping at k. Denote the image of B(X) under E−k as E−k(X).

Corollary 3.6.4. The zero set of E−k(X), denoted by Z(E−k), is a natural embedding of the zero

set of E(X), denoted by Z(E), namely, Z(E−k) ⊇ Z(E).

Proof. Since E−k(X) ⊂ E(X), by definition 3.3.7 we are done.

Note that E−k(X) includes n − 1 polynomials in Rn. The zero set Z(E−k) is comprised by

1-dimensional smooth curves generically.

Theorem 3.6.2. Z(E−k) is identical to the set Z(B; E−k) := {X ∈ Rn | B(X) = Null(E−k) ×

α, ∀α ∈ R}.

Proof. Firstly, for any X∗ ∈ Z(E−k), we have

E−kB(X∗) = E−k(X
∗) = 0 (3.30)

Thus, Z(E−k) ⊆ Z(B; E−k).

Secondly, for any X∗ ∈ Z(B; E−k), we have

E−k(X
∗) = E−kB(X∗) = 0 (3.31)

Hence, Z(B; E−k) ⊆ Z(E−k). Therefore, Z(B; E−k) = Z(E−k).
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Theorem 3.6.2 indicates that the 1-dimensional curves defined by the zero set of E−k(X) is

identical to the relaxation of the zero set of original B(X) at a certain direction. This direction is

provided by the null space of the first order embedding mapping E−k.

3.7 Encryption Mapping for Multi-Party ACOPF

Recall Theorem 3.3.1 that the set mappings are closed under compositions, thus we can de-

fine an encryption mapping which is the composition of affine mapping and linear mapping, for

instance Γ∗ := L∗ ◦ A∗, and Γ∗ is still an affine algebraic set preserving mapping. In this section,

we are going to apply this kind of mappings for each party of the power grid, and show that, al-

though privately obfuscated by each party’s encryption mapping Γ∗α, the overall encrypted problem

is equivalent to the unmasked problem.

Consider the equality constrained multi-party ACOPF model in Equation (2.33). The model

can be concisely written as

Minimize
Narea∑
α=1

Jα(Xα)

Subject to:

Non-sharing: Fα(Xα) = 0 (3.32a)

Compliance: Gα,β(Xα)−Gβ,α(Xβ) = 0 (3.32b)

α = 1, . . . , Narea

β (6= α) = 1, . . . , Narea

where the subscript α indicates the α-th party, β indicates the β-th party; Jα(Xα) is the objective

function; Fα(Xα) is the constraint set which is not shared with any other parties; Gα,β(Xα) −

Gβ,α(Xβ) = 0 is the intersection area compliance relation between the α-th party and the β-th

party.

Now let’s encrypt each party’s model by its own mapping Γ∗α:

Γ∗α

(
Jα(Xα)

)
= Jα(TαYα + γα) (3.33a)



69

Γ∗α

(
Fα(Xα)

)
= RαFα(TαYα + γα) (3.33b)

Γ∗α

(
Gα(Xα)

)
= Gα(TαYα + γα) (3.33c)

where Xα = TαYα + γα is a random invertible affine map; Rα is a random invertible linear

combination.

We are supposed to show that these random encryption mappings Γ∗α work together, keeping

the algebraic set of the original problem unaltered.

From the global view of the entire power grid let’s define the variable vector

Z := (XT
1 , XT

2 , · · · , XT
Narea)

T (3.34)

Then Equation (3.32) can be written in terms of Z

Minimize
Narea∑
α=1

Jα(Z)

Subject to:



F1(Z)

...

FNarea(Z)

G1(Z)−Gi(Z)

...

GNarea(Z)−Gj(Z)


= 0 (3.35)

Let’s define an affine map A as follows:

A : Z = TW + γ (3.36)

where W := (YT
1 , YT

2 , · · · , YT
Narea

)T ; T and γ are specified by

T =


T1

. . .

TNarea

 (3.37)

γ =
[
γ1, · · · , γNarea

]T
(3.38)
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Also define a linear mapping L with its matrix R by

R =



1

R1

. . .

RNarea

IG


(3.39)

where IG is the identity matrix with its dimension being the total number of the compliance equa-

tions.

Let Γ∗ := L∗ ◦ A∗, and apply Γ∗ to all the polynomials in Equation (3.35) we will have



1

R1

. . .

RNarea

IG





∑Narea
α=1 Jα(TW + γ)

F1(TW + γ)

...

FNarea(TW + γ)
G1(TW + γ)−Gi(TW + γ)

...

GNarea(TW + γ)−Gj(TW + γ)





=



∑Narea
α=1 Jα(TαYα + γα)

R1F1(T1Y1 + γ1)

...

RNareaFNarea(TNareaYNarea + γNarea)

G1(T1Y1 + γ1)−Gi(TiYi + γi)

...

GNarea(TNareaYNarea + γNarea)−Gj(TjYj + γj)



(3.40)

Since the right hand side of Equation (3.40) coincides with the corresponding equation of

Equation (3.33) and the compliance relations retain, it indicates that applying Γ∗ to the overall
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problem is equivalent to applying each party’s encryption to its own part. Since Γ∗ is a composition

of a linear mapping and an induced affine mapping, it is an affine algebraic set preserving mapping.

Consequently, every party’s encryption works together will preserve the affine algebraic set of the

overall problem.

3.8 Conclusion

In this chapter we first reviewed some basic definitions in algebraic geometry, defined “affine

algebraic set preserving mapping”, and showed that the affine mappings and linear mappings are

both affine algebraic preserving mappings. We proved that there exists a linear mapping that can

convert the power flow equations into ellipsoids for power grids without shunt elastance and phase

shifting transformers, and also showed a sufficient condition for the ellipsoidal formulation of

power grids with shunt elements. For the ACOPF problem, two kinds of first order conditions,

the KKT conditions and the Fritz John conditions, were discussed, and an ellipsoidal formulation

for the sphere confined Fritz John conditions was introduced. We further discussed an ellipsoidal

formulation for a general bounded quadratic constrained quadratic programming problem. Then,

we defined ellipsoidal mappings and its convexity. We also examined an equivalent relation be-

tween two different 1-dimensional embeddings. Finally, we designed an encryption mapping by

the composition of affine mappings and linear mappings for the multi-party ACOPF models, which

was shown equivalent to the unmasked problem.
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Chapter 4

Branch Tracing Method in Identifying Multiple Solutions for the
Power Flow Problem and for the Optimal Power Flow Problem

4.1 Overview

This chapter discusses how to implement the branch tracing method in detail. It introduces

core techniques for following curves including the predictor-corrector algorithm, initialization,

step length control, bad conditioning control, solution identification and termination criteria. We

also discuss how to accelerate the branch tracing method by exploiting the sparse structure of the

Jacobian matrix for ACOPF problems. Then, the branch tracing method is applied to the ellipsoidal

formulation of the power flow problem to identify multiple real-valued solutions. We report the

performance on all the existing cases for which the complete real-valued solution sets are known,

and several more examples which have never been completely solved before. After that, the branch

tracing method is applied to the ellipsoidal formulation of the eq-FJ conditions of optimal power

flow problems to locate multiple local solutions. Two basic searching strategies are introduced, and

their performances are compared. We also lead a discussion on how to design advanced tracing

strategies to enhance the search performance. A few known numerical examples which fail the

SDP relaxation are solved using this method, and a special modified example is presented to show

some advantageous features of our proposed method.
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4.2 Branch Tracing Method

The branch tracing method [15, 16] can be regarded as one type of continuation method [17]

as it applies a parameterization to continuously follow 1-dimensional curves. It differs from the

common homotopy continuation method [19, 14] since there is no homotopy construct to trace.

Let’s consider a real polynomial system F (X) with N polynomials and N unknowns.

F (X) :=


f1(X)

...

fN(X)

 (4.1)

where X ∈ RN .

Define a polynomial sub-systemFi(X) by removing the i-th polynomial fi(X) of Equation (4.1).

Fi(X) ⊂ F (X). By Theorem 3.3.4, the algebraic set of F (X), denoted by Z(F ), is embedded in

the algebraic set of Fi(X), denoted by Z(Fi).

Generically, suppose Z(F ) consists of finitely many isolated points (0-dimensional) and Z(Fi)

consists of finitely many curves (1-dimensional). The central idea of branch tracing method is

to continuously follow those curves in Z(Fi) for all the i’s and enumerate Z(F ). There are two

obstacles in this strategy:

1. Some components of Z(Fi) can be unbounded,

2.
N⋃
i=1

Z(Fi) can be disconected.

The boundedness is guaranteed in our ellipsoidal formulation from Chapter 3, however, the con-

nectedness is still under investigation. In this chapter we only assume every Z(Fi) is bounded but

make no assumptions on the connectedness of the union of Z(Fi)’s. The connectedness will not

affect the algorithm. It only provides a theoretical guarantee for enumerating every point in Z(F ).

4.2.1 Predictor-Corrector Algorithm

Let’s consider Z(F1) for illustration. Instead of removing f1(X) in Equation (4.1) to obtain

subset F1, we parameterize it by a free parameter α.
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F1(X, α) :=



f1(X)− α

f2(X)

...

fN(X)


(4.2)

Since α is free to change, pick any point X∗ ∈ Z(F1), there always exists an α∗ ∈ R such that

F1(X∗, α∗) = 0. On the other hand, choose any point (X∗, α∗) with F1(X∗, α∗) = 0, X∗ must be

in the set of Z(F1). Therefore, the 1-dimensional curve Z(F1) is geometrically equivalent to the

zero set of parameterized polynomial sub-system F1(X, α).

4.2.1.1 Initiate the First Step

To initiate the very first step, one must obtain a first known root X0 to Equation (4.1). This

is typically done using routine algorithms, i.e., the Newton’s method. Then, it is trivial that

F1(X0, 0) = 0.

Given the starting point X0, the first step X1 is attained by setting α to a small nonzero value

α1 and solve F1(X1, α1) = 0. This is also executed by the Newton’s method.

4.2.1.2 Linear Predictor

Based on local information at X0 and X1, one can predict the next point X̃2 by the secant slope

(X1 −X0)/(α1 − 0). This is called the linear predictor.

Suppose at the k-th step Xk, Xk−1, αk and αk−1 are provided. Then the linear predictor is

obtained by

Algorithm 1 Linear Prediction
1: procedure PREDICTE NEXT STEP BY LINEAR FUNCTIONS

2: ∆sk ← ||[XT
k αk]− [XT

k−1 αk−1]|| . Update arc length ∆s

3: X̃k+1 ← Xk + (Xk −Xk−1) ∆r
∆sk

. Update X

4: α̃k+1 ← αk + (αk − αk−1) ∆r
∆sk

. Update α
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In our simulation, the linear predictor is only applied for predicting the second step X̃2, and

the rest steps are predicted by the quadratic predictor which will be introduced next.

4.2.1.3 Quadratic Predictor

Once the second step X2 is linearly predicted and corrected (the correction part will be dis-

cussed after this subsection), one can implement the quadratic predictor for all the future steps. It

typically performs better than the linear predictor because the quadratic predictor function at each

entry of Xk captures the curvature of a curve within a certain range.

Suppose at the k-th step Xk, Xk−1, Xk−2, αk, αk−1 and αk−2 are provided. Then, we apply

quadratic function to predict future steps

Algorithm 2 Quadratic Predictor
1: procedure PREDICT NEXT STEP BY QUADRATIC FUNCTIONS

2: ∆sk ← ||[XT
k αk]− [XT

k−1 αk−1]|| . Compute arc length ∆sk

3: ∆sk−1 ← ||[XT
k−1 αk−1]− [XT

k−2 αk−2]|| . Compute arc length ∆sk−1

4: ∆sk+1 ← hk+1∆r . Compute arc length ∆sk+1

5: for i = 1, 2, · · · , N do

6: c← Xk,i . Update the coefficients c, b and a

7:

 b

a

←
 ∆sk ∆s2

k

∆sk + ∆sk−1 (∆sk + ∆sk−1)2

−1  Xk−1,i − c

Xk−2,i − c


8: X̃k+1,i ← a∆s2

k+1 + b∆sk+1 + c . Predict the i-th entry of Xk+1

9: c← αk . Update the coefficients c, b and a

10:

 b

a

←
 ∆sk ∆s2

k

∆sk + ∆sk−1 (∆sk + ∆sk−1)2

−1  αk−1 − c

αk−2 − c


11: α̃k+1 ← a∆s2

k+1 + b∆sk+1 + c . Predict αk+1

Note that hk+1 is the step length ratio for controlling the step size. It will be fully discussed in

the subsection 4.2.3 of step length control.
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4.2.1.4 Corrector

After implementing predictor at each step, a corrector step is applied to force our sequence

back on the 1-dimensional curve that we follow. This corrector step is commonly undertaken by

the Newton’s method, and we refer to it as the “Phase I” corrector. A typical implementation at

step k + 1 would consider solving

F1(Xk+1, αk+1) = 0 (4.3)

where Xk+1 is unknown but αk+1 is given.

Assume that F1(·, αk+1) is non-degenerate at Xk+1, by Taylor’s expansion we have

F1(Xk+1, αk+1) = F1(X̃k+1, αk+1) +5
X
F1(X̃k+1, αk+1)∆Xk+1 +O(∆XT

k+1∆Xk+1) (4.4)

Neglecting higher order terms O(∆XT
k+1∆Xk+1) and substituting (4.3) in (4.4) we have

0 = F1(X̃k+1, αk+1) +5
X
F1(X̃k+1, αk+1)∆Xk+1 (4.5)

Therefore

∆Xk+1 = −5
X
F1(X̃k+1, αk+1)−1F1(X̃k+1, αk+1) (4.6)

and

Xk+1 = X̃k+1 + ∆Xk+1 (4.7)

Note that it may take a few Newton’s iterations to make X̃k+1 converge to a certain tolerance. The

number of Newton’s iterations can serve as an important index for adjusting the step size which

will be discussed in subsection 4.2.3.

To ensure searching efficiency of our branch tracing method and to allow α go backwards

automatically, we add one extra equation to Equation (4.2) and thus regard α as an unknown as

well.

G1(X, α) :=

 F1(X, α)

(X −Xp)
T (X −Xp) + (α− αp)2 −∆r2

 (4.8)
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where ∆r is a constant.

Note that Equation (4.8) has N + 1 unknowns and polynomials. The newly added polynomial

can be interpreted as an analog to a trust region. Instead of setting an inequality region, we set

a sphere surface centered at a previous step (Xp, αp) with adjustable radius ∆r. It can also be

interpreted as setting the arc length step size for the curve trace.

Let’s consider the Taylor’s expansion of (4.8) at step k + 1:

G1(Xk+1, αk+1) = G1(X̃k+1, α̃k+1)

+

 5X
F1(X̃k+1, α̃k+1) 5αF1(X̃k+1, α̃k+1)

2(X̃k+1 −Xk)
T 2(α̃k+1 − αk)

 ∆Xk+1

∆αk+1

 (4.9a)

+ O(∆XT
k+1∆Xk+1 + ∆α2

k+1) (4.9b)

By neglecting the higher-order terms O(∆XT
k+1∆Xk+1 + ∆α2

k+1) we have ∆Xk+1

∆αk+1

 = −

 5X
F1(X̃k+1, α̃k+1) 5αF1(X̃k+1, α̃k+1)

2(X̃k+1 −Xk)
T 2(α̃k+1 − αk)

−1

G1(X̃k+1, α̃k+1) (4.10)

Thus,  Xk+1

αk+1

 =

 X̃k+1

α̃k+1

+

 ∆Xk+1

∆αk+1

 (4.11)

A typical implementation algorithm is provided below, where τF and τx ∈ R are small con-

stants given for tolerance.

4.2.2 Sparse Structure in Jacobian Matrix for ACOPF

The corrector step is the most computationally intensive part in our tracing method because

solving the incremental ∆Xk+1 and ∆αk+1 requires solving a set of linear equations, which in

general is expensive. For example, if apply the LU factorization to solve a linear system with a

dense n× n matrix, the computational complexity is O(n3). However, a special technique can be

applied to the ellipsoidal formulation, retaining the sparsity of the Jacobian matrix. Furthermore,

a sparse pattern in the Jacobian matrix of the ACOPF problem is observed, and it can be used for

accelerating the LU factorization.
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Algorithm 3 Phase I Corrector
1: procedure NEWTON’S STEP

2: [L,U,P]← lu(−Jk) . LU factorization of Jk

3: ∆Xk ← L\U\P F(Xk) . Compute incremental ∆Xk

4: Xk+1 ← Xk + ∆Xk . Compute Xk+1

5: procedure CHECK CONVERGENCE

6: if |F(Xk+1)| < τF and |∆Xk| < τx then . Check convergence

7: Break!

4.2.2.1 Retaining Sparsity

First, recall that in Chapter 3 we constructed a base ellipsoid in Equation (3.19) and added the

scaled base ellipsoid to all the other equations for the eq-FJ conditions. Therefore, the Jacobian

matrix J of the ellipsoidal formulation of the eq-FJ conditions can be expressed as

J = J0 + abT (4.12)

where J0 is the Jacobian matrix of the original FJ conditions; b is the gradient of the base ellipsoid;

a is the vector of scaling factors of the base ellipsoid for each equation.

Note that J0 is sparse due to low degrees of power network at each bus. But abT is usually a

dense matrix because the base ellipsoid is constructed by adding constraints together. Therefore,

solving ∆X for the following equation is expensive.

J∆X = (J0 + abT )∆X = −F (4.13)

To retain the sparsity of the Jacobian matrix, let’s consider an augmented linear system: J0 a

bT −1

 ∆X

r

 = −

 F

0

 (4.14)

When substituting the second row of (4.14) into the first row, we will recover (4.13). The ben-

efit of (4.14) is that J0 is sparse. The left plot of Figure 4.1 shows a dense Jacobian matrix for a
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39-bus system, while the right plot shows the corresponding augmented sparse Jacobian matrix.

Although (4.14) and (4.13) are equivalent, their computational complexity is quite different. Fig-

ure 4.2 demonstrates a time report for solving one Newton’s step for the dense Jacobian matrix

and the corresponding sparse matrix. The linear solver is the Matlab backslash “\” specified with

“umfpack” package [96]. One can see that as a system size increases, solving a dense linear system

requires increasingly more time than solving a sparse linear system.

Figure 4.1: Plot of Dense Jacobian Matrix (Left) and Augmented Sparse Jacobian Matrix (Right)

4.2.2.2 Exploring Sparse Structure

One may notice that the sparse Jacobian matrix in the right plot of Figure 4.1 demonstrates a

few patterns. Some sub-matrices are very likely to be diagonal; other “dense” parts are very limited

and concentrated. A natural thought would be to rearrange the sparse Jacobian matrix to make the

nonzero patterns more favorable for solving linear equations. One specific idea is to make the

Jacobian matrix as diagonal as possible. A diagonal centralized matrix is very favorable for the
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Figure 4.2: Computation Time for Solving One Newton’s Step with Dense and Sparse Jacobian

Matrices

LU factorization since one can use the diagonal elements to trianglize the matrix by subtracting off-

diagonal elements. Base on this particular idea, we rearrange the sphere confined eq-FJ conditions

in (3.18) for the linear cost case with line current model.

(UTMp,iU + Pload,i) + s2
p,max,i = Pmax,i (4.15a)

s2
p,min,i − (UTMp,iU + Pload,i) = −Pmin,i (4.15b)

UTMq,iU + s2
q,max,i = Qmax,i (4.15c)

s2
q,min,i −UTMq,iU = −Qmin,i (4.15d)

UTMv,kU + s2
v,max,k = V 2

max,k (4.15e)

s2
v,min,k −UTMv,kU = −V 2

min,k (4.15f)

UTMIin,nU + s2
I,max,in,n = I2

max,in (4.15g)

UTMIout,nU + s2
I,max,out,n = I2

max,out (4.15h)

5
S
F(U,S, λ, δ) = 0 (4.15i)

UTMp,mU = −Pload,m (4.15j)
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UTMq,mU = −Qload,m (4.15k)

5
U
F(U,S, λ, δ) = 0 (4.15l)

δ2 + λTλ = 1 (4.15m)

where S represents the slack variable vector.

We also rearrange the decision variables as follow

X := [ST λTPmax λ
T
Pmin λ

T
Qmax λ

T
Qmin λ

T
V max λ

T
V min λTIf λTIt λ

T
P λTQ UT δ]T (4.16)

where λ·’s are multipliers associated with subscript-corresponding constraints, subscript Pmax

represents active power upper bound, Pmin represents active power lower bound, Qmax repre-

sents reactive power upper bound,Qmin represents reactive power lower bound, V max represents

voltage magnitude upper bound, V min represents voltage magnitude lower bound, If represents

line current upper bound at “from” side, It represents line current upper bound at “to” side, P

represents PQ bus active power balance, and Q represents PQ bus reactive power balance.

After the rearrangements of (4.15) and (4.16), the Jacobian matrix is more favorable for the

LU factorization. The left plot of Figure 4.3 is the original Jacobian matrix for the 39-bus system,

while the right plot is the corresponding permutated Jacobian matrix.

Solving a Newton’s step with permutated Jacobian matrix is approximately two times faster

than that with the original Jacobian matrix. Figure 4.4 illustrates a time report for solving one

Newton’s step for the original sparse Jacobian matrix and the corresponding permutated Jacobian

matrix. The linear solver for the original sparse Jacobian matrix is the Matlab backslash “\”

specified with “umfpack” package [96], while for the permutated Jacobian we use the Matlab LU

factorization routine “[U,L, P ] = lu(J, thresh)” with thresh = 0.01. The execution time for

the permutated Jacobian shown pink in Figure 4.4 includes both the LU factorization time and the

backward substitution time.

From the dense Jacobian matrix to the permutated sparse Jacobian matrix, the acceleration rate

for solving a single Newton’s step is depicted in Figure 4.5, where the rate is calculated by the time

ratio Tdense/Tperm.
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Figure 4.3: Plot of Original Jacobian Matrix (Left) and Permutated Jacobian Matrix (Right)

4.2.3 Step Length Control

In Algorithm 2 we introduced the step ratio hk+1. This section will explain the details.

The purpose of the step length ratio hk+1 is to control the step size such that our prediction

is reliable as well as progressive. The reliability is characterized by the number of the Newton’s

iterations for each correction step. Specifically, a target number of convergent iterations is set for

reference. If at a certain step the Newton’s method takes more iterations than the target number,

we reduce the step ratio. If the Newton’s method takes less iterations than the target number, we

increase the step ratio until the iteration number equals the target number. This process is proposed

in Algorithm 4.

Given the target number t0 (we usually use t0 = 3) the minimal ratio hmin and the maximal

ratio hmax, the step length control algorithm is
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4.2.4 Bad Conditioning Control

Recall (4.2) that our 1-dimensional curves are tracing using free variable α. As α continu-

ously changes, the curve we are following may encounter singular or near singular points. For a
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Algorithm 4 Step Length Control
1: procedure CONTROL STEP LENGTH

2: Execute corrector step, terminates at iteration i . Obtain the iteration number i

3: hk+1 ← hk(1 + (t0 − i)/100) . Update h

4: hk+1 ← min{hk+1, hmax} . Upper bound h

5: hk+1 ← max{hk+1, hmin} . Lower bound h

linearly independent polynomial vector F1(X, α), its singular set is generically finite. Thus, the

predictor-corrector algorithm can almost always skip over such singular points. A more trouble-

some difficulty comes from a possible bad conditioning neighborhood around a singular point, or

just a long arc of badly conditioned curve. For example, Figure 4.6 shows two sample curves we

obtained from our simulation on a 39-bus system. On the left is the multiplier associated with

the active power balance equation at bus 1; on the right is the multiplier associated with the re-

active power balance equation at bus 1. It is common for multipliers to have sharp changes and

steep arcs in their 1-dimensional curves. One may mistakenly regard the steep arcs in Figure 4.6

as non-smooth pulses, but they are actually smooth curves. Figure 4.7 zooms in these pulse-like

arcs and shows that each of them represents two smooth but steep peaks. Their slopes are around

3× 109. If not treated properly, such long arcs with bad conditioning will make the Newton’s step

inaccurate which further results in a tiny step size that makes the tracing progress slowly, or even

fails to converge within a given tolerance.

To overcome this numerical difficulty, we introduce “Phase II” algorithm aiming at dealing with

badly conditioned situations. The basic idea behind this algorithm is to rescale decision variables

for Newton’s iterations. An appropriate rescaling of variables can draw the very steep slopes back

to a given range, which will enhance the numerical stability for solving Newton’s steps.

In Algorithm 5 condn ∈ R is a given threshold for assessing good conditioning1, B0 ∈ R is a

given constant for assessing bad conditioning2.

1In our simulations we usually take condn = 2× 105.
2In our simulations we usually take B0 = 0.022× length(X).
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Algorithm 5 Phase II Corrector for Bad Conditioning
1: procedure COMPUTE CONDITIONING

2: rY ← abs(Xk−Xk−1

αk−αk−1
) . Compute secant slope for each entry of X with respect to α

3: Hd← rY > condn . Identify the index of slope greater than condn

4: Bad← HdT log10(rY/condn) . Compute bad scaling values in log

5: if phase2 = 0 then . Check starting iteration

6: T← diag
(
Hd� rY/condn+ (1−Hd)

)
. Compute rescaling matrix

7: phase2← phase2 + 1 . Count Phase II numbers

8: procedure RESCALE DECISION VARIABLES AND JACOBIAN MATRIX

9: X̂k ← T\Xk . Rescale decision variables

10: Ĵk ← JkT . Rescale Jacobian matrix

11: procedure NEWTON’S STEP

12: [L̂, Û, P̂]← lu(−Ĵk) . LU factorization of Ĵk

13: ∆X̂k ← L̂\Û\P̂ F(Xk) . Compute incremental ∆X̂k

14: Xk+1 ← T(X̂k + ∆X̂k) . Compute Xk+1

15: procedure CHECK CONVERGENCE AND CONDITIONING

16: if |F(Xk+1)| < τF and |∆X̂k| < τx then . Check convergence

17: if Bad ≤ B0 then . Check conditioning

18: phase2← 0

19: Break!
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Figure 4.6: Multipliers for Active Power Balance Constraint (Left) and for Reactive Power Balance

Constraint (Right) at Bus 1

4.2.5 Solution Identification and Termination Criteria

Recall Equation (4.2) that we add one parameter α to the original polynomial system Equa-

tion (4.1). Along with our trace, each time α across 0 indicates we find a solution to Equation (4.1).

By comparing the solution found to the starting point we can determine if our trace returns to the

starting point.

Note that ε is a given small number.

4.2.6 Summary

This section explained how to implement the branch tracing method in detail. It addressed

several important techniques:

1. How to initiate tracing,
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Figure 4.7: Zoom of Multipliers for Active Power Balance Constraint (Left) and for Reactive

Power Balance Constraint (Right) at Bus 1

Algorithm 6 Obtain Solutions and Check Termination
1: procedure OBAIN SOLUTIONS

2: if αkαk−1 ≤ 0 then . Indicates solution crossing

3: αk ← 0 . Update αk at the solution

4: Correct Xk . Find the solution

5: procedure CHECK TERMINATION

6: if |Xk −X0| ≤ ε then . Stopping Criteria

7: Break! . Terminate current trace

2. How to predict the next step and correct prediction,

3. How to retain sparsity of Jacobian matrix,

4. How to explore specific sparse structure for further accelerating tracing,
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5. How to control step length,

6. How to control bad conditioning,

7. How to identify new solutions and when to terminate tracing.

Equipped with the above algorithms and techniques, the overall tracing procedure is summa-

rized in Algorithm 7. It will serve as a technical support for the following sections to identify

Algorithm 7 Overall Branch Tracing Procedure
1: procedure OBAIN THE STARTING POINT

2: Run routine algorithm to obtain a starting point X0 . Obtain the starting point

3: procedure INITIATE THE FIRST STEP

4: Send α to α1 and correct X1 . Compute the first step

5: procedure INITIATE THE SECOND STEP

6: Algorithm 1 . Linearly predict the second step

7: Algorithm 2 . Quadratically predict the next step

8: if Numerically Stable then

9: Algorithm 3 . Call Phase I Corrector for Newton’s method

10: else

11: Algorithm 5 . Call Phase II Corrector for rescaling and Newton’s method

12: procedure COMPUTE THE NEXT STEP

13: Algorithm 2 . Quadratically predict the next step

14: if Numerically Stable then

15: Algorithm 3 . Call Phase I Corrector for Newton’s method

16: else

17: Algorithm 5 . Call Phase II Corrector for rescaling and Newton’s method

18: Algorithm 4 . Control the step length

19: Algorithm 6 . Obain solutions and check termination criteria
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multiple real-valued solutions to the power flow problems and to locate multiple local solutions to

the optimal power flow problems.

4.3 Identify Multiple Real-Valued Solutions to the Power Flow Problem

The first application of our algebraic set preserving mapping relates to finding multiple real-

valued solutions of the power flow problem. Though without theoretical guarantee at present, our

simulation currently identified the complete solutions sets to all the existing test cases for which

the entire solution sets are known. We also report on solution sets of several other standard test

cases which have never been completely solved before. Finally, we introduce three modified power

flow examples to show that

1. The number of real solutions to the power flow problem can increase temporarily with an

increasing active power load,

2. The number of real solutions to the power flow problem can increase temporarily with an

increasing reactive power load,

3. A power flow model with PQ buses can also have multiple high-voltage solutions.

This section is organized as follows. First, we introduce how to construct the ellipsoidal for-

mulation for the power flow equations. Then, an enumeration search strategy is explained. Finally,

we report simulation results on a lot of benchmark systems.

4.3.1 Computation Procedure and Algorithms

The computation procedure for identifying multiple solutions to the power flow problem con-

sists of three sub-blocks: finding a starting point, constructing ellipsoids and searching for multiple

solutions.

The first sub-block calls Newton’s method (or similar) to provide a starting solution to the

power flow problem. In this thesis we use the Matpower 5.0 package under default settings to

return an initial solution. The second sub-block is for constructing an ellipsoidal formulation of
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Algorithm 8 Overall Procedure for Solving Power Flow Solutions
1: procedure SUB-BLOCKS

2: Finding A Starting Solution . Newton’s method or the similar

3: Constructing Ellipsoids . Check and construct ellipsoidal formulation

4: Searching Solutions . Follow 1-d curves

the power flow equations. The third sub-block is implemented by the branch tracing method from

Section 4.2.

4.3.1.1 Constructing an Ellipsoidal Formulation

Chapter 3 addressed an existence condition for a particular type of base ellipsoid. If a base

ellipsoid exists, we continue to construct the ellipsoidal formulation for the power flow problem;

otherwise we cease the program. (The base ellipsoids exist for all standard cases we examined.)

Given a power grid withNbus buses andNgen generators. Without loss of generality, let the first

bus be the slack bus, and the second bus to the Ngen-th bus be the generator buses. If Condition 1

of Theorem 3.4.5 is satisfied, let

Mbase(γ) := γ

Ngen∑
i=1

Mv,i −
Nbus∑

j=Ngen+1

Mq,j. (4.17)

If Condition 2 of Theorem 3.4.5 is satisfied, let

Mbase(γ) := γ

Ngen∑
i=1

Mv,i +

Nbus∑
j=Ngen+1

Mp,j (4.18)

.

The procedure to construct the ellipsoidal formulation is summarized in Algorithm 9. The

constant γ can be chosen in different ways, but will not affect the construction of ellipsoids. To

control bad conditioning, we start to try a small value of γ0. If it fails to provide an base ellipsoid,

we gradually increase γ0 until reaching a base ellipsoid. However, if γ is beyond a certain large

value, we stop the program and print “No base ellipsoid generated within a certain range.” If a

base ellipsoid is successfully generated, we may choose to revise the base ellipsoid by combining
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other power flow equations into the base ellipsoid. This procedure proves particularly useful when

solving hard power flow problems such as “Molzahn Lesieutre 5-bus” [18]. It helps 1-dimensional

curves link with each other and returns a complete real solution set for “Molzahn Lesieutre 5-

bus”. It indicates that the construction of base ellipsoid can influence the connectivity of our

1-dimensional curves. How to design an ellipsoidal formulation to ensure connectedness of these

curves is still elusive, and requires further investigation.

Once the base ellipsoid is generated, one can scale it and add it to each power flow equation to

make an ellipsoidal formulation. The constructing algorithm is provided in Algorithm 9.

4.3.1.2 Enumeration Search Strategy

Starting with an initial solution, we apply the branch tracing method in Algorithm 7 to follow

every 1-dimensional curve defined by Nbus − 1 ellipsoids out of total Nbus ellipsoids. We will set

newly found solutions as different starting points and follow the curves again until no more new

solutions are found. This recursive enumeration search strategy is shown in Algorithm 10.

4.3.2 Numerical Examples

In this subsection we first apply Algorithm 10 to all the cases for which the entire solution sets

are known. The results demonstrate that the proposed algorithm finds all the real solutions for all

these test cases [89]. Next, we test the proposed algorithm on a few more benchmark systems, the

solution sets of which have never been reported. Then, we introduce a particular 7-bus example to

show how the number of real solutions increases as load increases. Finally, we use a 5-bus example

with PQ buses to illustrate that there can exist multiple high-voltage solutions.

4.3.2.1 Existing Solved Power Flow Test Cases

The existing cases for which the solution sets are known include the Tavara and Smith’s 3-bus

system [11], Bailleuil and Brynes’s 4-bus system [12], Molzahn and Lesieutre’s 5-bus system [18],

Salam’s 5-bus and 7-bus systems [14] and the IEEE 14-bus system [97].
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Algorithm 9 Constructing Ellipsoids For Power Flow Equations
1: Check existence of base ellipsoid . Check Theorem 3.4.5

2: if Yes then

3: procedure CONSTRUCTING BASE ELLIPSOID

4: γ ← 1 . Initialize the scaling number

5: Mbase ←Mbase(γ) . Initialize the base ellipsoid matrix

6: λmin ← −1 . Initialize the smallest eigenvalue

7: while λmin ≤ 0 or bbase ≤ 0 do

8: γ ← 2γ . Update the scaling factor

9: Mbase ←Mbase(γ) . Update the base ellipsoid matrix

10: bbase ← bbase(γ) . Update the base ellipsoid constant

11: λmin . Compute the minimum eigenvalue of Mbase

12: procedure REVISE BASE ELLIPSOID

13: λmin ← −1 . Initialize the smallest eigenvalue

14: k ← 0 . Initialize the scaling factor

15: while λmin ≤ 0 or bbase ≤ 0 do

16: k ← k + 1 . Update the scaling factor

17: Mbase ← kMbase +
∑Nbus

i=1 Mi . Update the base ellipsoid matrix

18: bbase ← kbbase +
∑Nbus

i=1 bi . Update the base ellipsoid constant

19: λmin . Compute the minimum eigenvalue of Mbase

20: procedure CONSTRUCTING ELLIPSOIDS

21: for i = 1, 2, · · · , Nbus do

22: λi,min = −1 . Initialize the smallest eigenvalue

23: while λi,min ≤ 0 or bi ≤ 0 do

24: Mi ←Mi + Mbase . Update the i-th equation matrix

25: bi ← bi + bbase . Update the i-th ellipsoid constant

26: λi,min . Compute the minimum eigenvalue of Mi

27: else

28: Stop!



93

Algorithm 10 Enumeration Search For Power Flow Problems
1: procedure SEARCH POWER FLOW SOLUTIONS

2: S ← x1 . Initialize the solution set

3: Nsolu ← Count(S) . Initialize the number of solutions

4: k ← 1 . Initialize counting number

5: while k 6= Nsolu do

6: k ← k + 1 . Update counting number

7: x0 ← xk . Update starting solution

8: for i = 1, 2, · · · , Nbus do

9: Algorithm 7 . Trace the curve defined by relaxing the i-th equation

10: return Snew . Return the newly found solutions

11: S ← S ∪ Snew . Update the solution set

12: Nsolu ← Count(S) . Update the number of the solutions

The simulation results are listed in the Table 4.1. We highlight the efficiency of our proposed

method by comparing the number of traces we ran to the number of traces needed for solution-

bound-based homotopy continuation methods. It can be seen from Table 4.1 that the number of

traces required for solution-bound-based homotopy method is tremendous. Unless an extreme

sharp bound can be found, solution-bound-based methods are less practical than the branch tracing

method to calculate multiple solutions for large scale power systems. Figure 4.8 presents all the so-

lutions and their linking curves for the “Molzahn Lesieutre 5-bus” projected onto a 3-dimensional

subspace. The equation-solution relations for this test case is provided in Table 4.2.

4.3.2.2 Newly Solved Power Flow Test Cases

Here we provide a few more power systems most of which have never been completely solved

before: case3, case4gs [98], case6ww [99], case9, IEEE 30-bus system [100], case33bw [101],



94

Table 4.1: Summary of Existing Solved Power Flow Test Cases

Cases # Solutions # Traces Bailleuil Brynes’s Bound Bezout’s Bound

Tavara Smith 3-bus 6 8 6 16

Bailleuil Brynes 4-bus 12 18 20 64

Molzahn Lesieutre 5-bus 10 35 70 256

Salam 5-bus 10 28 70 256

Salam 7-bus 4 21 924 4096

IEEE 14-bus 30 297 10400600 67108864

−2

−1

0

1

2

−1.5−1−0.500.511.5

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
 

Vy at Bus 3Vx at Bus 2

 

V
y 

at
 B

us
 5

Solutions
Trace 1
Trace 12
Trace 22

Figure 4.8: Solutions and Linking Curves for Molzahn Lesieutre 5-bus System

IEEE 39-bus system [102] and IEEE 118-bus system3 [103]. A comparison of the number of real

solution, number of traces and complex solution bounds is presented in Figure 4.9.

3This case hasn’t been completely enumerated, but only partly followed for its curves.
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Table 4.2: Equation-Solution Relation for Molzahn Lesieutre 5-bus Example

Traces by Equations

Solution # Eqn 1 Eqn 2 Eqn 3 Eqn 4 Eqn 5 Eqn 6 Eqn 7 Eqn 8 Eqn 9

1 1 2 3 4 5 6 7 8 9

2 1 2 3 4 5 6 7 8 9

3 1 10 11 12 13 14 15 16 17

4 1 10 11 12 13 14 15 16 17

5 18 19 20 12 21 22 23 24 25

6 18 19 20 12 21 26 27 24 25

7 18 19 20 12 28 26 27 24 25

8 18 19 20 12 28 22 23 24 25

9 29 19 30 31 32 22 33 34 35

10 29 19 30 31 32 22 33 34 35

Table 4.3: Summary of Newly Solved Power Flow Test Cases

Cases # Solutions # Traces Bailleuil Brynes’s Bound Bezout’s Bound

case3 6 8 6 16

case4gs 6 12 20 64

case6ww 6 25 252 1024

case9 8 51 12870 65536

IEEE 30-bus 472 9780 5.9× 1016 2.88× 1017

case33bw 16 365 1.83× 1018 1.84× 1019

IEEE 39-bus 176 5270 6.89× 1021 7.56× 1022

IEEE 57-bus 606 29142 3.91× 1032 5.19× 1033

IEEE 118-bus 20000+ ? 1.44× 1069 2.76× 1070
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Figure 4.9: Comparison of Number of Real Solutions, Number of Traces, Bailleuil Brynes’s Bound

and Bezout’s Bound in Logarithm

For small test cases such as “case3”, “case4gs”, “case6ww”, and “case9”, a traditional homo-

topy continuation method or a Grobner bases method can solve them completely with a tolerable

execution time. Figure 4.10 makes a comparison of execution time required to a few small sys-

tems for both the proposed method and the homotopy continuation method. The proposed method

was coded in Matlab and executed on a PC with 2-core i7 2800M Hz CPU and 4Gb RAM. The

homotopy continuation method was implemented by the existing solver “PHCpack” [104] on the

same PC. The “PHCpack” ran over 16,000 seconds to solve “case9” system, and required more

than several days for IEEE 14-bus system. For a larger test case, say, 30-bus system, it becomes

difficult to solve with limited computation resources. For example, consider the 30-bus system.

We report 472 real-valued solutions by tracing only 9780 curves, however, the homotopy continu-

ation method requires as many as 1016 many traces to enumerate all the complex-valued solutions.

For the 39-bus system we find 176 real-valued solutions by tracing 5270 curves, but the number

of complex solutions is as many as 1021. It is worth of mentioning that the real-valued solutions
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Figure 4.10: Comparison of Execution Time for Proposed Method and Homotopy Continuation

Method

seem to occupy a very small proportion of the complex-valued solutions. Power system special

structures may play an important role in limiting the number of real solutions. However, no vali-

dated theoretical results can be found at present to explain this phenomenon. Figure 4.11 depicts

the ratio between the number of real solutions and the number of complex solutions. It empirically

indicates that the ratio asymptotically goes to zero as the number of buses goes to infinity.

4.3.3 Number of Real Solutions by Change of Load

According to the PV-curves and QV-curves, one may observe that beyond a certain load level a

power grid can lose its solution. On the other hand, the “Tavara Smith 3-bus” case shows that with

PV buses, zero load and lossless transmission lines a power grid can have multiple high-voltage

solutions. So a natural question would be, whether the number of real solutions to the power

flow problem decreases monotonically4 with the increase of load. In this subsection we provide a

negative answer to this question by two counter examples. These examples are solved both by the

proposed method and by homotopy continuation methods from PHCpack [104] and Bertini [105].

4For “decrease monotonically” we mean decrease but not strictly decrease.
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Figure 4.11: Ratio between Number of Real Solutions and Number of Complex Solutions

Consider a 7-bus power grid case called “case7Salam Mod1” which is modified from “case7Salam”.

See Appendix A for detailed data. Its power flow equations admit two real solutions in Table A.2.

We first increase the active power load of “case7Salam Mod1” at Bus 3 by 50 MW, and call

it “case7Salam Mod2”. By solving the power flow equations we report four real solutions of

“case7Salam Mod2” in Table B.1, i.e. two more real solutions to “case7Salam Mod1”. It suggests

that the number of real solutions can be non-monotonic with respect to the increase of active power

load. Figure 4.12 shows PV curves at bus 3 for “case7Salam Mod1” and “case7Salam Mod2”. In-

tersections of α = 0 and the curve are different real solutions. We can see that “case7Salam Mod1”

only has two real solutions, while “case7Salam Mod2” has four.

Next, we increase the reacitive power load of “case7Salam Mod1” at Bus 4 by 60 MVar, and

call it “case7Salam Mod3”. The power flow equations admit four real solutions for “case7Salam

Mod3” in Table B.2, i.e. two more real solutions to “case7Salam Mod1”. It indicates that the

number of real solutions can be non-monotonic with respect to the increase of reactive power

load. Figure 4.13 shows QV curves at bus 4 for “case7Salam Mod1” and “case7Salam Mod3”.
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Figure 4.12: PV Curves at Bus 3 for case7Salam Mod1 (Left) and case7Salam Mod2 (Right)

Intersections of α = 0 and the curve are different real solutions. We can see that “case7Salam

Mod1” only has two real solutions, while “case7Salam Mod3” has four.

4.3.4 Multiple High-Voltage Solutions for a Particular Power System

It is well known that power systems with PV buses and loop structures can admit multiple

high-voltage solutions [106, 11]. A recent investigation also reveals that a radial network with

PQ buses can admit multiple high-voltage solutions [107]. In this subsection, we introduce a new

power system called “case5Salam Mod” which has meshed network topology with both PV and PQ

buses, and admits multiple high voltage solutions. This example is generated from “case5Salam”

test case by reducing the reactive power to −585 MVar at bus 2. We report twelve real solutions

to “case5Salam Mod” in Appendix C in which two of them are high voltage solutions, namely, the

first one and the last one in Table C.1. Further investigation shows that the power flow problem at

the first high voltage has a positive-definite Jacobian matrix in polar coordinates, while the power

flow problem at the second high voltage has an eigenvalue with negative real part for its Jacobian
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Figure 4.13: QV Curves at Bus 4 for case7Salam Mod1 (Left) and case7Salam Mod3 (Right)

matrix. Figure 4.14 illustrates low voltage solutions (green diamond), high voltage solutions (pink

square) and a linking curve (blue curve) obtained from our proposed method.

4.3.5 Summary

In this section we specifically explained how to construct an ellipsoidal formulation for the

power flow problem, and then applied the branch tracing method to search for multiple power flow

solutions. The proposed method was verified by all the cases which had been completely solved

before. Then, the proposed method was further applied to other benchmark test systems, some of

which are too large to compute with existing methods. We highlight the efficiency of our proposed

method comparing to traditional homotopy continuation method. Finally, we showed by examples

that the number of real solutions for a power flow problem can change non-monotonically with the

increase of load; and designed a new system that admits multiple high-voltage solutions.
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Figure 4.14: Solutions and Linking Curves for Case5Salam Mod

4.4 Identify Multiple Local Solutions to the Optimal Power Flow Problem

This section serves as the second application of our algebraic set preserving mappings to the

AC optimal power flow problem. We specifically design an ellipsoidal formulation for the sphere

confined eq-FJ conditions and apply the branch tracing method to the ellipsoidal formulation to

locate multiple local solutions to the ACOPF problem. We first introduce two search strategies

to locate multiple solutions: enumeration search and monotone search, and apply both of them to

a few hard5 numerical examples for illustration. Then, we apply an enumeration search strategy

to find four additional local solutions for a published 39-bus system which has been known for

admitting at least three local solutions. We also report that the proposed method can identify local

solutions which do not satisfy the KKT conditions under equality constrained ACOPF model by a

specific 5-bus example. Finally, we lead a discussion on designing more advanced search strategies

5These examples are hard for semi-definite programming relaxation to locate exact global solutions.
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based on the proposed method. We would like to emphasize important capabilities of our proposed

method for bridging disconnected feasible spaces to explore new solutions, and for locating local

solutions which do not satisfy the KKT conditions.

4.4.1 Computation Procedure and Algorithms

The procedure for identifying multiple local solutions to the ACOPF problem can be partitioned

into three sub-blocks, including finding a starting point, constructing an ellipsoidal formulation for

the sphere confined eq-FJ conditions and searching for multiple solutions.

Algorithm 11 Overall Procedure for Solving Multiple Solutions of ACOPF
1: procedure SUB-BLOCKS

2: Finding A Starting Solution . Call a standard nonlinear solver

3: Constructing Ellipsoids . Add base ellipsoid to all the equations

4: Searching Solutions . Apply enumeration search or monotone search

The first sub-block calls some standard nonlinear programming solver to provide a starting

solution for the first order conditions. In this thesis we use the Matpower 5.0 package which, by

default, applies the “MIPS” primal-dual interior point solver in the Matlab environment to return

a first order solution. The second sub-block is developed to construct an ellipsoidal formulation of

the sphere confined eq-FJ conditions to the ACOPF problem. The third sub-block can be imple-

mented by one of two different strategies: enumeration search and monotone search, both of which

apply the branch tracing method described in Section 4.2. Numerical examples demonstrate that

the monotone search could be more efficient than the enumeration search for finding a sequence of

lower-cost solutions in our examples.

4.4.1.1 Constructing an Ellipsoidal Formulation

In Chapter 3 we have shown that a base ellipsoid of the sphere confiend eq-FJ conditions can

be constructed by Equation (3.19), where γ0 has to be some large number. Equation (3.19) can be
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succinctly written as

XTMcX + bc + γ0(XTM0X + b0) = 0 (4.19)

where Mc and bc are the sums of matrices and scalars independent of γ0 in Equation (3.19), M0

and b0 are the sums of matrices and scalars associated with γ0.

The procedure to construct the ellipsoidal formulation is summarized in Algorithm 12. The

constant γ0 can be chosen in different ways, but will not affect the construction of ellipsoids as

long as γ0 is greater than some particular value. To control bad conditioning, we start to try a small

value of γ0. If it fails to provide a base ellipsoid, we gradually increase γ0 until reaching a base

ellipsoid. According to Theorem 3.5.2, a base ellipsoid always exists as long as the problem is

bounded. When a base ellipsoid is generated, we scale it and add it to all other equations to form

an ellipsoidal formulation.

Once all the equations in the sphere confined eq-FJ conditions have been converted into el-

lipsoids, we come to the last sub-block of Algorithm 11: searching solutions. We first introduce

the enumeration search strategy, and modify it to accommodate a more efficient monotone search

strategy.

4.4.1.2 Enumeration Search Strategy

The enumeration search strategy in this section is similar to the enumeration search strategy for

the power flow problem. That is, starting at a solution point, following every 1-dimensional curve

defined by n − 1 ellipsoids out of total n ellipsoids, recording new solutions found along these

curves and setting them as new starting points for next round tracing. The enumeration terminates

when every found solution has been set as a starting point and traced all the corresponding curves,

and no more solutions appear. A pseudo-code is provided in Algorithm 13.

Once the enumeration terminates, it returns the solution set S including all the connected solu-

tions to the sphere confined eq-FJ conditions. Note that each solution to the sphere confined eq-FJ

conditions is not uniquely determined because flipping the signs of slack variables will not alter

the solution. We call these solutions “non-distinguishable solutions”. To identify multiple local

extrema, we first remove the non-distinguishable solutions from S, then check the inequalities of
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Algorithm 12 Constructing Ellipsoids For Fritz John Conditions
1: procedure CONSTRUCTING BASE ELLIPSOID

2: k ← 0 . Initialize the count number

3: γ0 ← 1 . Initialize the scaling number

4: M←Mc + γ0M0 . Initialize the base ellipsoid matrix

5: b← bc + γ0b0 . Initialize the base ellipsoid constant

6: λmin ← −1 . Initialize the smallest eigenvalue

7: while λmin ≤ 0 or b ≤ 0 do

8: k ← k + 1 . Update the count number

9: γ0 ← 3k . Update the scaling factor

10: M←Mc + γ0M0 . Update the base ellipsoid matrix

11: b← bc + γ0b0 . Update the base ellipsoid constant

12: λmin . Compute the minimum eigenvalue of M

13: procedure REVISE BASE ELLIPSOID

14: λmin ← −1 . Initialize the smallest eigenvalue

15: k ← 0 . Initialize the scaling factor

16: while λmin ≤ 0 or b ≤ 0 do

17: k ← k + 1 . Update the scaling factor

18: M← kM +
∑Neqn

i=1 Mi . Update the base ellipsoid matrix

19: b← kb+
∑Neqn

i=1 bi . Update the base ellipsoid constant

20: λmin . Compute the minimum eigenvalue of M

21: procedure CONSTRUCTING ELLIPSOIDS

22: for i = 1, 2, · · · , Neqn do

23: λi,min = −1 . Initialize the smallest eigenvalue

24: while λi,min ≤ 0 or bi ≤ 0 do

25: bi ← bi + b . Update the i-th ellipsoid constant

26: Mi ←Mi + M . Update the i-th ellipsoid matrix

27: λi,min . Compute the minimum eigenvalue of Mi
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Algorithm 13 Enumeration Search for ACOPF
1: procedure ENUMERATE ACOPF SOLUTIONS

2: S ← x1 . Initialize the solution set

3: Nsolu ← Count(S) . Initialize the number of solutions

4: k ← 1 . Initialize counting number

5: while k 6= Nsolu do

6: k ← k + 1 . Update counting number

7: x0 ← xk . Update starting solution

8: for i = 1, 2, · · · , Nbus do

9: Algorithm 7 . Trace the curve defined by relaxing the i-th equation

10: return Snew . Return the newly found solutions

11: S ← S ∪ Snew . Update the solution set

12: Nsolu ← Count(S) . Update the number of the solutions

multipliers associated with active inequality constraints. Finally, the second order sufficient con-

dition [108] is applied to classify these solutions and to distinguish local extrema. To capture the

best solution (can be the global one), we substitute these solutions to the objective function and

compare their corresponding objective values.

4.4.1.3 Monotone Search Strategy

The enumeration search strategy described in Algorithm 13 can be time consuming because

the problem size increases with the number of equations. This means the number of curves also

increases with the problem size. However, the enumeration search strategy is completely suitable

for parallel computing since each curve is independent to other curves. Later in subsection 4.4.2.3,

we implemented the enumeration search for a 39-bus system in parallel for searching additional

local solutions. On the other hand, if we are only interested in identifying the best (global) solution,

a more efficient search strategy called “monotone search” can be designed. It is modified from
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the enumeration search strategy by maintaining a non-increasing6 objective function value while

following the curves from the sphere confined eq-FJ conditions. This is done by introducing one

extra constraint to the ACOPF problem in Equation (2.31) or (2.30).

Suppose we have a known solution (Pgen,∗, U∗) to the sphere confined eq-FJ conditions of

Equation (2.31). At current solution the objective function value is J∗ =
∑Ngen

i=1 diP
2
gen,i,∗ +

cip
2
gen,i,∗. We use this value to set a threshold for the objective function:

Ngen∑
i=1

diP
2
gen,i + cip

2
gen,i + t2 = J∗ + ε2 (4.20)

where t is a free slack variable, ε is a small constant.

Since t2 ≥ 0, the objective function is restricted to be less than J∗+ ε2. The value of J∗ will be

updated each time when we find a better solution (has a lower objective value) until we reach the

best solution. The pseudo-code for the monotone search strategy is provided in Algorithm 14.

Algorithm 14 Monotone Search
1: procedure MONOTONE SEARCH STRATEGY

2: x0 ← x1 . Set a starting solution

3: J∗ = J(x1) + ε2 . Set current threshold

4: for i = 1, 2, · · · , Neqn do

5: Algorithm 7 . Follow curves by relaxing the i-th ellipsoid

6: return xnew . Return new solutions

7: if tnew ∈ xnew such that |tnew| > ε then

8: x1 ← xnew . Update starting solution

9: go to 2

10: else

11: return xnew . The best (global) solution

Note that we usually set ε2 = 0.1J∗ in case a better solution can only be reached by a solution

that has a higher objective value than current objective value. As the objective value decreases, the

6In practice we allow the objective value to be not strictly non-increasing to accommodate various situations.
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threshold value for the objective function cut the feasible space more and more, which is possible

to induce more severe bad conditioning.

Another issue occurs when we introduce the threshold Equation (4.20) for each starting point.

Since our method cannot distinguish different types of first order solutions, the threshold will

introduce additional eq-FJ points which are fictitious for the original problem. This issue can be

solved by discarding solutions binding at the objective threshold.

4.4.2 Numerical Examples

This section provides several examples for which the proposed approach yields multiple local

minima and the global optima but the SDP relaxation of [44] is not exact. The first three examples,

i.e. WB5, case9mod and case39mod4, were proposed and studied in [25] with random initial

points to locate multiple local solutions. See [26] for the test case data and the results from the

approach of [25]. The feasible spaces of the 5-bus (WB5) and the 9-bus (case9mod) examples

were investigated in [109] and shown to be disconnected. While many local algorithms cannot

bridge disconnected feasible spaces to search for multiple solutions, our proposed approach finds

all local minima and the global optima for these two problems. Moreover, we also report seven

local minima (including the global minimum) to the 39-bus (case39mod4) example, which include

four new local minima in addition to the three reported in [25, 26]. Finally, we modified the 5-

bus (WB5) system and showed that our method successfully identified the global solution for this

example which does not satisfy the eq-KKT conditions under equality constrained ACOPF model

(2.31). Numerical experiments showed that some off-shelf commercial solvers (IPOPT, KNITRO,

CONOPT, SNOPT and BARON) failed to locate the global solution for this example.

Our tracing program was coded in Matlab and executed on a PC with a 2.8GHz Intel i-7 CPU

and 4GB RAM for the 5- and 9-bus systems. The initial conditions are solved by MATPOWER 5.0 [110]

with the MIPS solver under default settings. An incomplete enumeration for the 39-bus system

was performed in parallel using the computing resources and assistance of the Center for High



108

Throughput Computing (CHTC) 7 at the University of Wisconsin–Madison Department of Com-

puter Sciences. Each trace was assigned to an autonomous computer with one CPU, 2 GB of

memory, and 4 GB of disk space.

4.4.2.1 9-Bus System with Quadratic Cost Function

Our first example is the ”case9mod” case in [26]. It has nine buses, nine transmission lines

and three generators. The objective function of this example is a quadratic function. The specific

data can be found in [26] as well as in Appendix D. The network one-line diagram is shown

in Figure 4.15. [109] shows that the feasible space of this case consists of three disconnected

components.

Figure 4.15: Case9mod 9-Bus Example One-Line Diagram

We first applied the enumeration search strategy to find multiple eq-FJ points for this problem.

The enumeration search strategy terminates after 2489 traces and returns 27 stationary solutions,

among which four are verified to be local minima, five are local maxima, and the rest are saddle

7The CHTC is supported by UW-Madison, the Advanced Computing Initiative, the Wisconsin Alumni Research
Foundation, the Wisconsin Institutes for Discovery, and the National Science Foundation, and is an active member of
the Open Science Grid, which is supported by the National Science Foundation and the U.S. Department of Energy’s
Office of Science.
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points [111]. These four local minima, which are listed in Table D.3, match those in [26]. Solu-

tion 4 in the last column of Table D.3 is the global optimum as verified both by exhaustive search of

the feasible space [109] and by the second-order moment relaxation [112].These four local minima

are identical to the four local solutions found in [26], and they are listed in Table D.3. The overall

execution time is 2.78 × 104 seconds (7.7 hours) with mean and median times for each trace of

11.2 seconds and 4.3 seconds, respectively. A histogram plot of the execution times for each trace

(on a log scale) is shown in Figure 4.16. Although the traces were computed sequentially, parallel

computing techniques could be used to reduce the computation time. Note that most of the traces

terminated within a few seconds, but a small fraction of the traces were much slower. Reasons for

the slow traces include

1. Many sharp corners on a trace resulting in a small step size.

2. Many portions of the trace with poor numeric conditioning.

3. Many solutions are indistinguishable except for a change in sign of the slack variables.

The monotone search strategy is next applied to the same problem. Projections of the monotone

search traces and solutions are depicted in Fig. 4.17. The gray regions in the Figure 4.17 illustrate

a projection of the disconnected feasible space generated using the method described in [109].

Starting at an initial local solution (black dot) obtained by MATPOWER 5.0 [110], the monotone

search strategy locates a second eq-FJ point (light blue dot labeled 2) via the fifth trace (light

blue curve). The fourth trace (green curve) starting from the second eq-FJ point yields the global

optimum (the green star labeled 3). The monotone search approach uses 9 traces to locate the

global solution, which is significantly fewer than the 2489 traces used in the enumeration strategy.

The overall execution time was 214.6 seconds with mean and median times for each trace of

23.8 seconds and 11.6 seconds, respectively. The overall execution time is thus 130 times faster

than the full enumeration [111]. The non-increasing solutions are listed in Appendix D.

We can see from Table D.4 that the objective function value decreased at each solutions. Note

that the intermediate none-increasing solutions obtained by the monotone search are not necessar-

ily the local minima. For instance, the second solution in Table D.4 is a saddle point.
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Figure 4.16: Case9mod 9-Bus Execution Time

4.4.2.2 5-Bus System with Linear Cost Function

The second example, “WB5”, has five buses, six transmission lines, and two generators [26].

Its one-line diagram is depicted in Figure 4.18. As shown in Fig. 4.20, which was created using

the approach in [109], the feasible space for this problem has two disconnected regions. The enu-

meration search strategy computes 628 traces to yield 12 eq-FJ points, among which two are local

minima matching those reported in [25]. The overall execution time was 1959 seconds with mean

and median times for each trace of 3.1 seconds and 2.5 seconds, respectively, with the distribu-

tion shown in Fig. 4.19. The monotone search strategy locates the global solution in the eleventh

trace from the initial starting point. Fig. 4.20 depicts all the stationary solutions identified by the

enumeration strategy as well as one of the traces in the enumeration strategy that connects to the
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Figure 4.17: Selected Monotone Search Traces for case9mod

global solution.8 The overall execution time was 44 seconds (a factor of 44 faster than the full enu-

meration) with mean and median times for each trace of 4.0 seconds and 3.0 seconds, respectively

[111].

The black dot is the initial FJ solution given by MATPOWER, the blue diamonds denote all the

stationary points identified by enumeration, and the green star is the best solution identified by the

enumeration approach. As verified both by exhaustive search of the feasible space [109] and by

the second-order moment relaxation [112], the green star is the global optimum.

8The trace shown in Fig. 4.20 connects the initial solution to the global solution, but does not connect all the eq-FJ
points found by other traces.
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Figure 4.18: Executing Time of Enumeration Strategy for WB5
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Figure 4.19: Executing Time of Enumeration Strategy for WB5

4.4.2.3 case39mod4 39-Bus System

The third example is a 39-bus system called “case39mod4” with 46 transmission lines and 10

generators. Three local minima have been reported for this system [26]. The proposed tracing
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Figure 4.20: Selected Enumeration Search Trace for WB5

method finds at least seven local minima (including the known three). The newly found additional

four local minima are listed in Appendix F.

To make an exact comparison to [26], we first enforced apparent power flow limits on transmis-

sion lines, which induces 924 many decision variables. Starting at the three known local minima,

we computed a single trace of the paths associated with each constraint. This incomplete enu-

meration followed a total of 2772 paths to yield 10238 different eq-FJ points, including 150 KKT

points for minimization, 204 KKT points for maximization, 7 local minima (the three known local

minima and four new ones) and 6 local maxima. These KKT points and local extrema are shown

separately in Figure 4.21, and shown integrally in Figure 4.22. All the eq-FJ solutions as well

as KKT points are shown together in Figure 4.23. Note that starting the enumeration search from

the second known local minimum yields 6 out of 7 minima (two known local minima and four
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Figure 4.21: case39mod4 Line Apparent Power Model KKT Points for Local Minima (Left) and

KKT Points for Local Maxima (Right)

new ones) using only 924 traces. Further investigation indicates that there exist over 3000 differ-

ent concatenated paths9 that connect every local minimum to the global minimum. The solutions

found along some (but not all) of these concatenated paths have objective function values that are

monotonically decreasing. Also note that despite the large number of eq-FJ points, a concatenated

path starting from a known local solution to the global solution can be simple. For example, a

concatenated monotone path starting at a local minimum with cost 1068.30$/hr passes through an

eq-FJ point with a lower cost of 866.80$/hr, which then passes through another eq-FJ point with a

lower cost 567.64$/hr and eventually reaches the global minimum with the lowest cost 557.14$/hr.

This monotonically decreasing path only passed through two additional intermediate eq-FJ points

to reach the global solution [111].

9We use the phrase “concatenated path” to refer to the sequence of several individual paths concatenated at common
solution points.



115

0.92
0.94

0.96
0.98

1
1.02

−0.4

−0.2

0

0.2

0.4

5

6

7

8

9

10

11

12

 

Vy at Bus 34

Vx at Bus 19

 

O
bj

ec
tiv

e 
V

al
ue

KKT for max
KKT for min
local min
local max

Figure 4.22: case39mod4 Line Apparent Power Model KKT Points and Local Extrema

Next, we consider “case39mod4” case with line current limits. As discussed in Chapter 2,

line current model is superior in dimensionality to line apparent power model, which in this case

reduces the number of decision variables to 556. An incomplete enumeration search yields 16677

different eq-FJ solutions, among which 85 of them are KKT points for minimization, 202 of them

are KKT points for maximization, 6 of them are local minima, and 14 of them are local maxima.

These KKT points are depicted separately in Figure 4.24, and presented integrally in Figure 4.25.

We then applied monotone search strategy for this example to generate decreasing sequences of eq-

FJ solutions. Figure 4.26 presents two different monotone search sequences based on two different

ellipsoidal formulations. The green sequence approaches to the vicinity of the global solution with

31 intermediate eq-FJ points, while the blue sequence needs more intermediate eq-FJ points to

approach the vicinity of the global solution.
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Figure 4.23: case39mod4 Line Apparent Power Model 10238 eq-FJ Solutions

4.4.2.4 WB5mod 5-Bus System

We present a modified version of “WB5” system called “WB5mod”. In contrast to some com-

mercial solvers, the proposed tracing algorithm finds the global optimum for this problem. The

test case “WB5mod” has the following variations from “WB5” in Appendix E:

• Bus voltage magnitude limits are [0.9, 1.1],

• The generator at bus 1 has active power limits of [2, 15] per unit and reactive power limits of

[0.4, 18] per unit,

• The generator at bus 5 has active power limits of [0, 20] per unit and reactive power limits of

[−0.5, 8] per unit,

• The cost function is J = P 2
gen,1 + 2Pgen,1 + 12P 2

gen,5 + 1200Pgen,5.
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Figure 4.24: case39mod4 Line Current Model KKT Points for Local Minima (Left) and KKT

Points for Local Maxima (Right)

This example can lead to failure of recognizing the global solution for some local solvers based

on the interior point method. It also causes a trouble for the equality constrained ACOPF model

(2.31) because the LICQ fails at the global solution in this model. Thus, the global solution doesn’t

satisfy the eq-KKT conditions under equality constrained ACOPF model (2.31). However, our

tracing method is based on more general Fritz John conditions which do not require any constraint

qualifications. Hence, the proposed method can locate the global solution for this example.

Fig. 4.27 shows four disconnected feasible regions for this example as well as eq-FJ points,

local extrema, and selected paths that connect the starting point to the global solution. When

initialized from a flat start, Matlab interior point solver “MIPS” converged to a local solution rep-

resented by a blue diamond with cost 161921.15 $/hr. A trace initialized from this point connects

to an intermediate eq-FJ point depicted by yellow square, which is not a local minimum. An-

other trace connects this intermediate eq-FJ point to the global solution at the green pentagram

with a cost of 139875.00 $/hr. (See Table G.1 in Appendix G.) Note that the angle differences
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Figure 4.25: case39mod4 Line Current Model KKT Points and Extrema

between adjacent buses are less than 30◦ for both solutions, despite the fact that these solutions are

in different disconnected regions of the feasible space.

To further verify our results, higher order moment-based SDP relaxations have been applied

[112] to confirm the global solution. Several local solvers, i.e. “KNITRO”, “IPOPTH”, “CONOPT”,

“SNOPT”, and a global solver “BARON” from “GAMS”, are also implemented to this example.

The results are provided in Table G.2 in Appendix G. The 2nd order moment relaxation provided

a solution close to our global solution with inexactness. The 3rd order moment relaxation found

an almost exact solution which coincides with the global solution we found. However, all other

local solvers except “CONOPT” converged to a different local solution which has a much higher

objective value initiated from a flat start. The solver “CONOPF” reported locally infeasibility.
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Figure 4.26: case39mod4 Line Current Model Monotone Search Sequence

4.4.3 Advanced Search Design

From previous simulation results we noticed that the proposed method has the following fea-

tures:

• The enumeration search strategy can identify a lot of eq-FJ points, which is suitable to enu-

merate multiple local extrema. For example in “case39mod4” case, our incomplete enumer-

ation identified over 10000 eq-FJ points, among which seven are local minima including four

new local minima.

• The monotone search strategy is more efficient than the enumeration search strategy for find-

ing solutions with lower objective values. For instance in Figure 4.26, the second monotone
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Figure 4.27: WB5mod 5-Bus Local Extrema, Global Optimum, and Linking Curves

sequence located only 31 intermediate eq-FJ solutions before reaching the vicinity of the

global solution.

• The number of eq-FJ points can sometimes be much larger than the number of local extrema.

For instance, “case39mod4” with either line apparent power model or line current model

possesses over 10000 eq-FJ points but only dozens of local extrema.

• Despite a huge number of eq-FJ points for an ACOPF problem, the number of intermediate

points required for linking the starting point to the global solution can be very few. For

example, “case39mod4” only needs two intermediate eq-FJ points to connect any pair of the

known local minima; “case9mod” only needs one; and “WB5” doesn’t need any intermediate

point.
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Figure 4.28: Bridge Two Disconnected Feasible Regions by Tracing A Circular Constraint: Start

Tracing (Left), Pass Through Singularity (Middle), and Reach Another Feasible Region (Right)

According to these features, a more advanced search strategy may be designed to enhance the

search efficiency for locating a better solution. An ideal situation would be choosing an appropriate

curve to follow and pick an appropriate intermediate point as next starting point such that the

number of curves to be followed before finding the global solution is minimal. For example,

the minimal number of curves to be followed for “case9mod” is two, according to Figure 4.17.

However, in practice, we followed at least nine curves to reach the global solution. In “WB5” case

the ideal number of curves to be followed is just one, however, we followed at least eight curves

to reach the global solution. The reason why the proposed methods are less efficient than the ideal

case is that we didn’t follow those curves in an informative order but treated them equally. To

understand why the order of tracing matters, let’s illustrate it through a toy example in Figure 4.28

and Figure 4.29.

Figure 4.28 shows how we can reach another feasible region by continuously following an ap-

propriate constraint. The left plot of Figure 4.28 depicts an initial state of our tracing. The blue

areas are two disconnected feasible regions which are comprised of an intersection of a polytope

and a circular “hole”. Our starting solution is at green pentagram labeled “A”. When we contin-

uously shrink the radius of the circular hole, our starting solution “A” will follow the secant line

“AD” at the blue arrow direction. However, at a particular radius, the circular hole is tangent to

“AD”, which means constraint qualifications fail at this point. If we impose the KKT conditions to
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Figure 4.29: Fail to Bridge Two Disconnected Feasible Regions by Tracing An Affine Constraint:

Start Tracing (Left), Reach Bound (Middle), and Return to Initial State (Right)

follow this curve, we will get stuck at this singular point. Fortunately, we instead apply the FJ con-

ditions which can smoothly pass through this point by sending the multiplier associated with the

objective function to zero. After passing through this singular point, the radius of the circular hole

begins to increase continuously, which further drives our solution to reach point “D” in another

feasible region on the right plot of Figure 4.28.

However, if we do not follow the path defined by continuously changing the radius of the

circular hole but rather follow the path defined by continuously shifting the affine constraint “AD”

to the right, we cannot reach another feasible region. In Figure 4.29, an initial state is depicted on

the left. After a continuous shifting of constraint “AD”, we reach an upper bound in the middle

plot of Figure 4.29 such that any further shifting to the right will result in infeasibility. Thus, we

shift “AD” back to return the initial state as shown on the right plot of Figure 4.29. Through this

particular tracing, we never have a chance to reach another feasible region.

By this toy example we demonstrate that the order of tracing curves influences the search

efficiency for disconnected feasible regions and better solutions. How to order those curves to

improve search efficiency is still an ongoing research topic. We list a few heuristic rules that might

be useful:
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• If a starting point is an eq-FJ point but not an FJ point, one may choose to relax the active

inequality constraint which has the largest positive multiplier (based on the models of (3.20)

and (3.22)).

• If a starting point is an FJ point but not a local minimum, one may choose to relax a constraint

whose gradient at the starting point has a non-zero direction which lies in the subspace

spanned by the eigenvectors of negative eigenvalues of the projected Hessian at the starting

point.

• If a starting point is a local minimum, one may choose to relax active constraints first.

• When finishing a trace, choose the solution associated with the lowest objective value, if

lower than current objective value, as the next starting point.

• If no solutions have lower objective values than current objective value, choose the solution

that has fewest positive multipliers associated with inequality active constraints (based on

the models of (3.20) and (3.22)).

In practice, however, the situation is much more complicated because we convert the original prob-

lem into its equality constrained model, and map the eq-FJ conditions into an ellipsoidal formula-

tion by an ellipsoidal mapping. We, then, trace the curves defined by the ellipsoidal formulation.

Geometrically, this procedure firstly lifts the original feasible space to an intersection of higher

dimensional hypersurfaces such that the original feasible space is a projection of the intersection

of these hypersurfaces. Secondly, the ellipsoidal formulation maps each hypersurface into an ellip-

soidal hypersurface but retaining their intersection. Finally, we follow the curves defined by these

ellipsoidal hypersurface to reach multiple eq-FJ solutions. Hence, the behaviors of the curves we

follow can be very sophisticated in higher dimensional space.

Finally, we would like to compare the proposed method to the simplex method for linear pro-

gramming [108]. A geometric interpretation of simplex method is searching for a nearby vertex

(called basic feasible point) which has a lower objective value than the objective value of current

vertex, provided the problem is feasible and bounded. In a feasible linear programming problem,
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any vertex of the feasible space satisfies the eq-KKT conditions which are the KKT conditions

except the inequality conditions of multipliers associated with the inequality constraints. On the

other hand, since the feasible space of a linear programming problem is a polytope, any point that

satisfies the eq-KKT conditions is a vertex, provided the problem is non-degenerate. Therefore,

the simplex method can be regarded as a strategy that seeks for non-increasing eq-KKT points by

pivoting active constraints. An analogue interpretation for our proposed monotone search strategy

is that the proposed tracing method seeks for non-increasing eq-FJ points by tracing curves. Al-

though the simplex method and our proposed tracing methods are seemingly quite different, we

will explain below that the simplex method for linear programming can be regarded as a special

case in the tracing methods.

A major difference is that our proposed method is designed to follow curves to search for new

solutions, while the simplex method seems never follow curves to reach next basic feasible point.

However, the pivoting procedure intrinsically includes a path following process when selecting

entering and leaving indices. Geometrically, it follows an edge of the feasible polytope to attain

a new decreasing vertex [108]. The specialty for linear programming is that since everything

is affine, the next decreasing vertex can be solved directly from linear algebra. Thus, the path

following process is skipped in practice. For nonlinear programming problems, however, we no

longer have a linear specialty to solve the next point algebraically, thus a numerical path following

process is required.

The second difference is that the simplex method only searches among vertices, while our

proposed methods can search other points besides vertices10. This is due to the special geometry

in linear programming that any eq-KKT point is a vertex and vice versa, provided non-degenerate

problems. However, this is not true in general for nonlinear case. Therefore, our proposed methods

also search for other non-vertex eq-FJ points.

10The word “vertex” in nonlinear case is defined to be a point at where the tangent space is the whole space.



125

4.4.4 Summary

In this section we first showed that the proposed method found all the local minima for two

numerical examples ‘case9mod‘” and “WB5” which had been studied in [25, 26, 109]. Then,

we located four additional local minima to the three known local minima for “case39mod4” 39-

bus system from [26]. Furthermore, we modified ”WB5” 5-bus system to demonstrate that our

proposed method can identify a global solution which is not a eq-KKT point under equality con-

strained ACOPF model (2.31). Finally, we discussed advanced search design ideas, and argued

that the simplex method for linear programming is a special case in our tracing methods.

4.5 Conclusion

This chapter starts with a detailed explanation of how to implement the branch tracing algo-

rithm. Specifically, it introduces a predictor-corrector algorithm, explores sparse structures of Ja-

cobian matrices for solving Newton’s steps, explains step length control, bad conditioning control,

and solution identification criteria. Next, this chapter applies the branch tracing method to identify

multiple real solutions to the power flow problems. It reports all the solved examples as well as

a bunch of other benchmark systems that have never been completely solved before. It includes

two examples to illustrate the number of power flow solutions can increase with the increment of

load, and another example to show a non-trivial power flow problem can admit multiple high volt-

age solutions. Then, this chapter introduces enumeration search and monotone search strategies

for solving ACOPF problems. The proposed methods successfully located multiple local extrema

for several hard problems, and reports new local minima that have never been reported before. It

also includes a special example to illustrate the capability of the proposed method for finding a

non-KKT global solution. A final discussion of advanced search design with an analog of simplex

method concludes this chapter.

One should note that the ellipsoidal formulation guarantees the boundedness of our 1-dimensional

curves in this thesis. But at present we do not have a rigorous proof for the connectivity of these

1-dimensional curves defined by the ellipsoidal formulation. The simulation results in this chapter
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showed that the ellipsoidal formulation can help us connect all the 1-dimensional curves for these

specific examples including the 5-bus counter example for Ma-Thorp’s design. It is promising to

guarantee the completeness of the real solution set under the ellipsoidal formulation.
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Chapter 5

Privacy Preserving Mappings of Multi-Party OPF Problems for
Cloud Computing

5.1 Overview

In this chapter we consider a different application of our mappings for privacy preserving pur-

poses in a multi-party OPF scenario in the shared computing platforms. Recall that in Chapter 2

we showed that the encryption mapping designed individually by each party is equivalent to a sub-

block encryption mapping for all the parties, provided an intersection area compliance relation.

This feature allows us to share a small amount of limited information between adjacent parties

while solving the optimization problem simultaneously for all parties. The encrypted data in the

shared computing platforms is processed directly without any decryption, which can prevent eaves-

dropping from a third party. This design provides two major data security advantages: enhancing

security of sensitive information for the entire electric power grid, and maintaining privacy for

each commercial participant of the power grid. The first advantage is achieved by representing the

ACOPF problem in a structurally non-sensitive formulation with the help of each party’s encryp-

tion mapping. The second advantage comes from the consequence that the solution returned to

each party can only be deciphered privately by each party, hence it preserves privacy. However,

this approach has drawbacks with the price of increasing computational complexity and data stor-

age demand. Due to the loss of a sparse data structure, we trade off security and complexity. A

rank-reduced data storage technique will be introduced for reducing the data storage demand, and

it will be applied to our example for illustration.
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5.2 Encryption Mappings for Multi-Party ACOPF Problems

In this section we revisit the encryption mapping from Chapter 2 to mask multi-party ACOPF

problems. We relax the requirement of invertibility on the affine mappings of Equation (3.33) to

enhance security and privacy. It is discussed in detail and simulated in our numerical example.

5.2.1 Design of Encryption Mapping

Suppose there are Narea regional parties jointly operating a power grid. These parties are com-

mercial competitors seeking an optimized state for the entire power grid. To preserve privacy of

each party and to enhance computational performance of this joint optimization problem, a shared

computing platform can serve as a third-party operator to accomplish these purposes. Solving

multi-party ACOPF problems in a shared computing platform has two major parts: an encryption

part processed by each party, and an optimization part that is executed by the computing platform.

Let’s first consider the encryption part.

Consider the α-th party of the equality constrained multi-party ACOPF model in Equation (2.33).

We normalize each constraint by its constant term if it is nonzero. Then the objective function,

non-sharing constraints and compliance relation parts can be succinctly written in quadratic form

as

Objective: XT
αDαXα (5.1a)

Non-sharing:
[
XT
αMα,iXα − Φα,i

]
i∈[Nc,α]

= 0 (5.1b)

Compliance: eTαXα (5.1c)

where Nc,α is the number of the non-sharing constraints for party-α; Xα is the variable vector

with its dimension Nx,α; Φα,i is either 1 or 0 according to the constant term of the i-constraint.

To obfuscate the sensitive information from those matrices Dα and Mα,i, party-α first generates

a random matrix Tα, which is called the encryption matrix, and a random vactor γα, which is called

the encryption vector, such that

Xα = TαYα + γα (5.2)
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where Yα is the new variable vector with its dimension Ny,α; Tα ∈ RNx,α×Ny,α and γα ∈ RNx,α .

To ensure that every feasible point Xα is accessible, Tα must be full row rank, which further

requires that Ny,α ≥ Nx,α. If Ny,α = Nx,α, we have an invertible encryption mappings. How-

ever, it is possible that we can relax the invertibility requirement and still have solutions, provided

rank(Tα) = Nx,α. Hence in this context we let Ny,α > Nx,α and substitute Equation (5.2) to

Equation (5.1).

Party-α generates its own linear combination matrix Rα, which is required to be invertible, and

apply it to the non-sharing constraints in Equation (5.1) as well. Equation (5.1) is re-written as

Objective: (TαYα + γα)TDα(TαYα + γα) (5.3a)

Non-sharing: Rα

[
(TαYα + γα)TMα,i(TαYα + γα)− Φα,i

]
i∈[Nc,α]

= 0 (5.3b)

Compliance: eTα(TαYα + γα) (5.3c)

Once each party has encrypted its model, the shared computing platform gathers the data from

all the parties and, conceptually, solves the following optimization problem.

Minimize
Narea∑
α=1

(TαYα + γα)TDα(TαYα + γα)

Subject to:

Non-sharing: Rα

[
(TαYα + γα)TMα,i(TαYα + γα)− Φα,i

]
i∈[Nc,α]

= 0 (5.4a)

Compliance: eTα,β(TαYα + γα)− eTβ,α(TβYβ + γβ) = 0 (5.4b)

α = 1, . . . , Narea

β (6= α) = 1, . . . , Narea

This is done by solving the first order conditions of Equation (5.4) as

TT
α

(
2Dα(TαYα + γα)−

Nc,α∑
k=1

2λα,k[Mα,i(TαYα + γα)]i∈[Nc,α]R
T
α,k −

Narea∑
j=1

eα,j µα,j

)
= 0 (5.5)
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where α ∈ [Narea]; λα,k’s are the Lagrangian multipliers associated with the non-sharing con-

straints, and the corresponding column vector is denoted as λα; µα,j contains the Lagrangian mul-

tipliers associated with the compliance relations, and the corresponding column vector is denoted

as µα; Rα,k is the k-th row of the combination matrix Rα.

Note that the unknowns in Equation (5.5) for party-α are Yα, λα and µα. Stacking these unkn-

wons into a column vector and stacking over all the parties, define ζ := [· · · ,YT
α , λ

T
α , µ

T
α , · · · ]T ,

and denote its dimension by Nζ . We can stack all the equations from Equation (5.4a), (5.4b) and

(5.5) in a column, denoted by h(ζ), over all the areas. Denote the dimension of h(ζ) as Nh. Since

these equations are quadratic polynomials with respect to ζ, they can be expressed generally in the

form of

h(ζ) =

[
ζTHkζ + Bkζ + rk

]
k∈[Nh]

= 0 (5.6)

where Hk ∈ RNζ×Nζ represents a quadratic matrix, Bk ∈ RNζ is a linear vector and rk ∈ R is a

constant scalar.

Generally, these Hk, Bk and rk are the information needed for shared computing and will be

sent to the computing platform conceptually.

5.2.2 Least Square Formulation

Note that Equation (5.6) is over-determined due to the design that Ny,α > Nx,α. Thus, we sum

up the squares of all the equations from Equation (5.6) and reformulate it as an unconstrained least

square problem.

Minimize R(ζ) =
1

2
h(ζ)Th(ζ) (5.7)

The Jacobian matrix of h(ζ) is

J(ζ) =
[
2ζTHk + Bk

]
k∈[Nζ ]

(5.8)

The gradient of R(ζ) is given by

5R(ζ) = J(ζ)Th(ζ) (5.9)
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and the Hessian of R(ζ) after dropping the residue term [108] is

52R(ζ) = J(ζ)TJ(ζ) (5.10)

With the gradient and the Hessian of R(ζ), the least square problem can be solved by any

Hessian dependent optimization algorithms. The overall procedure is demonstrated in Figure 5.1.

Figure 5.1: Multi-party ACOPF Encryption and Solving Procedure (Conceptual)

5.2.3 Improving Data Storage and Computation Efficiency

The formulation presented in Equation (5.4) masks an ACOPF problem by the encryption

matrix Tα, encryption vector γα and the linear combination matrix Rα. However, it suffers from

computational challenges because the sparse structure of the original matrices is likely lost during

the encryption. Particularyly for the least square formulation, each party must communicate Hk,

a large, dense matrix for every constraint. The amount of data describing the overall model is
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immense, and needs to be simplified. To this end, we return to the original problem to exploit the

low-rank properties of the matrices in the constraint equations.

Recall Proposition 3.4.2 in Chapter 3, the rank of power flow equations does not exceed four.

Thus, in the equality constrained ACOPF model the rank of each quadratic matrix does not exceed

six including the slack variables. This low rank structure is invariant to encryption. Although the

linear combination matrix Rα could potentially increase the rank of each matrix, it can be easily

controlled by the sparsity of Rα while keeping a certain security level. This will be seen in the

next section.

Let’s consider the original quadratic matrix Mα,i. It can be written as

Mα,i = VR,α,iΛR,α,iV
T
R,α,i = V+,α,iV

T
−,α,i (5.11)

where the subscript ’R’ indicated reduced, i.e., VR,α,i only contains eigenvectors associated with

nonzero eigenvalues. On the right hand side of Equation (5.11) we incorporate the values of the

eigenvectors via multiplying the eigenvectors by the square root of the associated eigenvalues.

To accommodate negative eigenvalues, we negate one of the vectors. For those eigenvalues that

are positive, v− = v+ =
√
λv. For those eigenvalues that are negative, v− = −v+ = −

√
λv.

The matrices V+,α,i and V−,α,i may not be sparse, but they are very low rank, and one of their

dimensions will be equal to the rank. We describe these matrices as ”rank-dimensioned” matrices.

This very low rank property is preserved by the encryption matrix Tα.

Before presenting the form of the relevant transformed equations, it is necessary to emphasize

that we do not perform a computational eigenvalue decomposition for each constraint to obtain the

eigenvectors and eigenvalues in Equation (5.4). Instead there is a simple closed-form description

of the eigenvalues and eigenvectors for these matrices which has been discussed in Theorem 3.4.2

in Chapter 3.

Finally, we can reformulate Equation (5.4a), (5.4b) and (5.5) in terms of the rank-dimensioned

matrices, dramatically reducing the size of the system representation.

The non-sharing equation in Equation (5.4a) are re-written as

YT
αU+,α,iU

T
−,α,iYα + 2LT

α,iU+,α,iYα + rα,i = 0 (5.12)
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where rα,i is a scalar, Lα,i is a vector, and U+,α,i and U−,α,i are rank-dimensioned matrices that

we will define shortly below.

The compliance relation in Equation (5.4b) is expressed as

tα,βYα − tβ,αYβ + rα,β,s − rβ,α,s = 0 (5.13)

where tα,β , tβ,α, rα,β,s and rβ,α,s are low-dimensional matrices and vectors depending on the num-

ber of the transmission lines in the intersection area between party-α and party-β, and are defined

below.

The first-order conditions in Equation (5.5) can be written as

rα,g + dTαdαYα −
Nc,α∑
i=1

λα,iU
T
+,α,iLα,i −

Nc,α∑
i=1

λα,iU
T
+,α,iU−,α,iYα −

Narea∑
β=α+1

tα,βµα,β = 0 (5.14)

The rank-dimensioned matrices vectors, and scalars in Equations (5.12), (5.13), and (5.14) are

listed below. Using

Mα,i = V−,α,iV
T
+,α,i

Dα = dα,ud
T
α,u

we define

Γ+,α,i :=
[ √

Rα(i, j)VT
+,α,j

]
∀j∈Zi

(5.15)

Γ−,α,i :=
[ √

Rα(i, j)VT
−,α,j

]
∀j∈Zi

U+,α,i := uα,iΓ+,α,i Tα

U−,α,i := uα,iΓ−,α,i Tα

Lα,i := uα,iΓ−,α,i γα

dα := uα,dd
T
α,u Tα

tα,β := eTα,β Tα

rα,i :=
∑
j∈Zi

Rα(i, j)
(
γTαMα,jγα − Φα,j

)
rα,g := TαDαγα

rβ,α,s := eTα,βγα,
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where Rα(i, j) is the (i, j)-th entry of the linear combination matrix Rα; Zi is the index set of the

nonzero entries of the i-th row of Rα; uα,i and uα,d are arbitrary unitary matrices.

Therefore, the practical procedure of solving the rank-demensioned multi-party ACOPF in the

shared platform is demonstrated in Figure 5.2.

Figure 5.2: Multi-party ACOPF Encryption and Solving Procedure (Practical)

It’s useful to compare how system models scale with the number of buses, generators, and

lines, and we can estimate the memory required for the matrices of the dense system model in

Equation (5.6) and the rank-dimensioned matrices in Equation (5.16). We can also estimate the

memory required for the original model in Equation (2.33) for reference, however for that system

the sparse representation will be best and nearly negligible in size.

Let Nr,α be the total rank of all the constraints, Ωmasked,full be the total number of the elements

in the matrices used in Equation (5.6), and Ωmasked,reduced be the total number of the elements in

the rank-dimensioned matrices presented in this section. Ωmasked,full appears to be O(N3) while
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Ωmasked,reduced is comparably O(N2). For example, let Rα be a monomial matrix, then

Ωmasked,full ≈ (Ny,α +Nc,α)3 (5.16)

The total number of the elements in the rank-dimensioned matrices is much smaller and approxi-

mated by

Ωmasked,reduced ≈ 2(Ny,α +Nc,α)Nr,α (5.17)

where Nr,α ≈ 3Nc,α.

By the comparison it shows that the rank-dimensioned representation reduces the data storage

demand drastically compared to the encrypted full model. This result will be further illustrated in

the numerical example later in this chapter.

5.2.4 Privacy Analysis

This section will discuss security issues at three different levels. A preliminary question should

be addressed to clarify what kind of information need to be obfuscated.

The first and foremost security concern comes from protecting power grids against malicious

attacks. If the topology of a network and some actual values of operating units are revealed, an ad-

versary may be capable of identifying the most vulnerable parts of the grid [113]. This can further

enable the adversary to design malicious controls and attacks to the actual systems, causing power

blackout and equipment damage. Thus, the network topology and its parameter values should be

kept confidential. Another concern originates from competitive commercial activities. The power

market participants are unwilling to share their commercial information to each other. Hence, the

solution to each participant should be hidden from others. In summary, the network topology, the

power grid parameter values and the solution for each participant should be obfuscated.

To illustrate security validity, we consider three different levels of information leakage in the

cloud. At the beginning level we analyze particular information of encrypted data under an as-

sumption that an adversary is educated with general ACOPF models but has no specific knowledge

about the area he is attacking. We call this situation the ”blind attack”. Beyond “blind attack” we



136

assume that the attacker not only is educated with the general model but also applies the correct

topology information of the area in his attack to identify the parameter values of the original sys-

tem. We call this situation the ”knowledgeable attack”. Finally we assume that the attacker has

acquired the topology and the parameter values of the grid, but little knowledge of linear combi-

nation matrices. We are interested in whether he can recover the ACOPF solution from the shared

computing platform. It is called the ”solution attack”. Each level is more severe than the previous

one as the attacker is assumed to be more knowledgeable about the grid. Our analysis shows that

our encryption design makes it extremely hard for an adversary to retrieve any more information

than what he already knows.

5.2.4.1 Security Analysis of Blind Attacks

Suppose an adversary has full authority to access all the uploaded data of party-α from the

shared computing platform, i.e., U+,α,i, U−,α,i, Lα,i, dα, tα,β , rα,i, rα,g and rα,β,s. And suppose he

is well-educated with the general ACOPF models but has no specific knowledge about the grid of

party-α, for example, no knowledge of the topology and the parameter values. The first concern is

whether the rank information of the original constraints in Equation (5.4a) of party-α is deducible

from the uploaded data. If this information is revealed, then through a combinatorial search the

topology may be identified.

Recall in Equation (5.4a) that the linear combination matrix Rα changes every single constraint

in Equation (5.1b). The purpose of this refinement is to obscure the special rank information of

each original constraint. The exact rank information can be revealed if and only if the original

uncombined matrices in Equation (5.1b) are known, which requires the exact knowledge of Rα.

Since Rα is kept privately by party-α, the rank information is also kept private. The difficulty in

recovering Rα comes from the following observations:

1. The number of the choices of the nonzero structures of Rα is huge. For example, suppose Rα

has a certain structure that each row only has three nonzero elements including one of them

on the diagonal, then the total number of the possible choices of Rα is
( Nc,α − 1

2

)Nc,α
.
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2. There is no other information to check if a guess of the structure of Rα is correct in the blind

attacks.

3. Even with the correct guess of the structure of Rα, the value of each nonzero element in Rα

also needs to be identified. This is shown to be hard in the discussion of solution attacks.

On the other hand, the adversary can try to break up U+,α,i and U−,α,i into its components, i.e.,

uα,i, Γ+,α,i, Γ−,α,i and Tα. The difficulty of recovering these matrices follows from the observation

that there are uncountably many choices of uα,i, Γ+,α,i, Γ−,α,i and Tα that satisfy

U+,α,i = uα,iΓ+,α,i Tα (5.18)

U−,α,i = uα,iΓ−,α,i Tα

To see this, let’s suppose that u∗α,i, Γ∗+,α,i, Γ∗−,α,i and T∗α satisfy Equation (5.18). Choose any

arbitrary unitary matrix u and any arbitrary invertible matrix A we have

U+,α,i = (u∗α,iu
T )(uΓ∗+,α,iA

−1)(AT∗α) (5.19)

U−,α,i = (u∗α,iu
T )(uΓ∗−,α,iA

−1)(AT∗α)

It indicates that one specific solution induces a family of uncountably many solutions which ob-

scures the correct one. Therefore, in the blind attack scenario, even with the complete obfuscated

data of an area, the essential information will be safe.

5.2.4.2 Security Analysis of Knowledgeable Attacks

Suppose an adversary has full authority to access all the uploaded data of party-α, i.e., U+,α,i,

U−,α,i, Lα,i, dα, tα,β , rα,i, rα,g and rα,β,s. And suppose he is well-educated with general ACOPF

models. Furthermore, he knows the exact topology of the grid in party-α, and has successfully de-

coupled the linear combination matrix for each constraint, however he achieves it. Can he decrypt

the parameter values of the original model?
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First of all, to apply the topological information in the attack, the adversary has to recover the

quadratic matrices Hα,i for party-α

Hα,i = UT
−,α,i U+,α,i =

∑
j∈Zj

Rα(i, j)TT
αMα,jTα (5.20)

where Hα,i ∈ RNy,α×Ny,α; i = 1, · · · , Nc,α.

Since U+,α,i and U−,α,i are known, Hα,i is known. Suppose all the Rα(i, j)’s are known, the

correct grid topology information can reveal the structure of the nonzero elements of Mα,j , but the

values of them are kept unknown. Tα is unknown as well.

Solving the cubic matrix Equation (5.20) is equivalently to solve a set of cubic equations for

every entry in Hα,i.

Hα,i(m,n) = τi,m,n(δ) (5.21)

where Hα,i(m,n) is the (m,n)-th entry of Hα,i; δ is the unknown entries of Tα and Mα,j; and

τi,m,n(δ) is the corresponding cubic equation.

Note that Equation (5.21) is generally over-determined, which has to be formulated as a least

square problem by summing up all the squares of the cubic equations into a sixth-order multivari-

able polynomial.

Minimize L(δ) =

Nc,α∑
i=1

Ny,α∑
m=1

Ny,α∑
n=m+1

(τi,m,n(δ)−Hα,i(m,n))2 (5.22)

We claim that under the assumption of correct topology guess, the actual values of the original

power grid can be decrypted only if Equation (5.22) reaches its global optimum.

Note that plugging the actual values of the grid in Equation (5.22) will drive it to zero, which

is the global optimum. Hence, the necessary condition holds. However, since Equation (5.22) is a

sixth-order multivariable polynomial, it is generically non-convex. Hence solving Equation (5.22)

is NP-hard [114, 115] even without the global optimality requirement. Furthermore, the dimension

of Equation (5.22) is Nx,α × Ny,α + K × Nc,α, where K is a scalar depending on the network

topology. The dimension increases quadratically with the increase of the power grid scale, which
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will quickly blow up for practical solvers. For example, in our 30-bus simulation case the first

party consists of 18 buses and 26 transmission lines. The dimension of Equation (5.22) to this

single party is over 44,000. When consider the 30-bus system as a whole, the dimension increases

to over 156,000.

In the knowledgeable attack scenario, with the help of correct topological information, it is the-

oretically possible to decrypt the sensitive information from the uploaded data but computationally

difficult, especially for a large system.

5.2.4.3 Security Analysis of Solution Attacks

Suppose an adversary has obtained the original data of party-α, i.e., the topology and the

parameter values. We also provide him with the nonzero structure of the linear combination matrix

Rα. Can he recover the solution to the original ACOPF problem?

Recall the affine map in Equation (5.2) we have

X∗α = TαY
∗
α + γα (5.23)

To obtain X∗α the adversary needs the exact information for both the vector X∗α,0 := TαY
∗
α and the

encryption vector γα. Let’s further suppose that vector X∗α,0 is already known, then the only part

remains to be decrypted is the encryption vector γα. With all the assumptions hold, we claim that

the encryption vector γα can be solved only if the following equations are solved

LT
α,iLα,i = γTαΓT

−,α,iΓ−,α,i γα (5.24)

rα,i =
∑
j∈Zj

Rα(i, j)
(
γTαMα,jγα − Φα,j

)
where Rα(i, j) and γα are the unknowns.

Note that the actual Rα(i, j) and γα are one particular solution to Equation (5.24), so the

necessary condition holds. However, solving Equation (5.24) does not necessarily identify the

actual value of γα because (5.24) is under-determined.

Suppose the linear combination matrix Rα has a minimal number of nonzero elements that

keeps it nonsingular, then the number of Rα(i, j)’s is Nc,α. So the cardinality of the unknowns
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is Nc,α + Nx,α, greater than the number of the equations which is 2Nc,α. It implies that if Equa-

tion (5.24) is solvable, it has infinitely many solutions which obscure the actual one. So without

the exact knowledge of the encryption vector γα, the original solution X∗α remains private.

The analysis of the above three security levels is summarized below.

Table 5.1: A summary of three security levels

Known Information Difficulty of Decryption

Combinatorially many choices

Blind Encrypted data of Rα structures, infinitely

Attack many values of parameters

Encrypted data, Requirement of global solution

Knowledgeable topology of party-α, to NP-hard optimizations, scales

Attack Rα quadratically with system size

Original data, Infinitely many solutions

Solution structure of Rα, depending on encryption

Attack X∗α,0 vectors

5.2.5 Numerical Example

Here we provide a 30-bus system with two parties in Figure 5.3. Its data can be found in

Appendix H. The circles with G’s inside represent the buses with generators; the triangles represent

the buses with loads; and the heavy dots represent the buses with neither generators nor load. This

system is operated by two parties, shown in different colors. Party-1 in purple contains sixteen

buses from Bus-1 to Bus-16 and twenty-two transmission lines; Party-2 in green contains fourteen

buses from Bus-21 to Bus-34 and eighteen transmission lines. These two areas are connected by

two interconnection transmission lines in orange, one of which links Bus-3 to Bus-32, and another

links Bus-16 to Bus-21. To further separate two areas, we add fictitious Bus-17, Bus-18, Bus-19
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Figure 5.3: 30-Bus System with Two Parties

and Bus-20 on the interconnection transmission lines and divide each of them into three sub-lines.

Note that the fictitious buses have neither generators nor loads.

Suppose Party-1 with fictitious Bus-17 and Bus-18 are operated by Party-1, while Party-2 with

fictitious Bus-19 and Bus-20 are operated by Party-2. We follow our previous discussion to obtain

the private encryption data, then convert the ACOPF model to the least square formulation, and

finally solve all of them jointly. For easy demonstration, we choose the linear combination matrices

R1 and R2 to be monomial matrices.

To mimic the loads changing, we increase the load demands on Bus-4, Bus-5, Bus-6, Bus-23

and Bus-29 simultaneously for seventy-five different cases. In each case, we choose the starting

point to be the solution of the previous case and run the dog-leg algorithm to solve the least square

problem. These results are verified using Matpower 5.0 [110] with the maximun error below

0.3%. The convergence performance is shown in Figure 5.4. We can see that the first few steps

are profoundly efficient, converging from 104 to 10−6 within three iterations. However, as the

load demands increase, it becomes difficult to reduce the least square function value to below

10−7. This is attributed to a large condition number of T1 and T2 matrices. In our example, the
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Figure 5.4: Convergence Rate for Seven Load Configurations.

condition numbers of T1 and T2 are around 100. There are several possible ways to reduce this

condition number. Exploring these options is part of our ongoing research.

Next we compare the memory requirements for the example represented in the unmasked form

of Equation (2.33), the masked system with full, dense matrices of Equation (5.6), and the rank-

dimensioned matrices of Equation (5.16). The memory needs are estimated by counting the total

number entries in the matrices and vectors and multiplying by 64 bits (i.e. 8 bytes) for double

precision. In practice a certain amount of additional reduction may be possible with efficient

compression and coding. The results are shown below in Table 5.2. The unmasked, sparse system

Table 5.2: A comparison of memory requirements for Multi-Party ACOPF Representation

Sparse Full Rank-d

Unmasked (Equation (2.33)) 23 kB 37 MB 0.9 MB

Masked (Equation (5.6)) – 1.5 GB –

Rank-dimensioned (Equation (5.16)) – – 4.6 MB



143

uses negligible memory for this example. We also calculate the size required if the matrices were

full and dense, and using the rank-dimension representation for comparison. Sparsity is clearly

lost in the transformation. The rank-dimensioned representation is roughly 40 times larger than

the sparse representation for the unmasked model, and the masking increases the size by roughly

a factor of 5. This rank-dimension representation is dramatically lower than the full, dense matrix

representation. Further research on transformations that offer sparsity in the rank-dimensioned

representation is warranted.

5.3 Advanced Encryption: Embedding Technique for Linear Programming

The encryption techniques discussed in this thesis are built on a different idea than common

encryption techniques. A common encryption usually focuses on how to hide information from

a plain text. For example, if we want to solve an OPF problem in a cloud, the data of our OPF

problem is the plain text. To avoid eavesdropping along the data transmission channel, the OPF

data should be ciphered before sending to the cloud. For common encryption, it is usually the data

that has been masked, not the problem. Thus, to solve the problem, the cloud should know how

to decipher the data, and recover the original OPF problem. This process can successfully prevent

most of the data leakage during transmission, however, it may fail to keep data secure if the cloud

is not trustworthy. There are plenty of techniques that can improve the security of a cloud, but on

the customer side the most confident way is not revealing the original problem to the cloud. Then,

it comes to a dilemma that the cloud cannot know our problem but attempt to solve it. This is

where our encryption mappings make a difference.

We change the problem representation to obfuscate the original data and keep the cloud blind

of our original problem. The reformulated problem, nevertheless, admits the solution set of the

original problem which can be recovered easily and privately by us.

In section 5.2 we have applied an encryption mapping defined in Chapter 3 to nonlinear multi-

party ACOPF problems. The encryption mapping didn’t change redundancy of an ACOPF prob-

lem, but masked all the variables and constraints. To achieve better security, in this section we
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will return to the linear programming scenario and discuss an advanced idea that can increase the

problem redundancy for obfuscation.

5.3.1 Embedding Technique

The basic idea of embedding technique is to embed the original problem in a larger problem,

and mask the larger problem by the techniques in [74, 75]. Two key steps need to be specifically

investigated: how to design a larger problem that embeds the original problem while preserving the

solution, and how to make the original problem obscure in the larger problem. These two questions

are basically related with each other.

5.3.1.1 Problem Integration

Consider a linear programming problem LP(F1)

Minimize pT1 x1 (5.25a)

Subject to: A1x1 ≤ a1 (5.25b)

B1x1 = b1 (5.25c)

where x1 ∈ Rn1 is the decision variable vector, p1 ∈ Rn1 is the cost function coefficient vector,

A1 ∈ Rm11×n1 and B1 ∈ Rm12×n1 are the constant matrices for inequality and equality constraints,

a1 ∈ Rm11 and b1 ∈ Rm12 are the corresponding constant vectors.

To construct a larger problem, let’s first introduce a feasible synthetic problem LP(F2)

Minimize pT2 x2 (5.26a)

Subject to: A2x2 ≤ a2 (5.26b)

B2x2 = b2 (5.26c)

where x2 ∈ Rn2 is the decision variable vector, p2 ∈ Rn2 is the cost function coefficient vector,

A2 ∈ Rm21×n2 and B2 ∈ Rm22×n2 are the constant matrices for inequality and equality constraints,

a2 ∈ Rm21 and b2 ∈ Rm22 are the corresponding constant vectors.
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We require that (5.26) is feasible, and has a similar structure as (5.25). Problem (5.26) is

artificial for the purpose of introducing redundant constraints and variables.

A larger problem LP(F) that embeds (5.25) and retains its solution can be simply constructed

by direct integration of (5.25) and (5.26)

Minimize pTx (5.27a)

Subject to: Ax ≤ a (5.27b)

Bx = b (5.27c)

where

x :=

 x1

x2

 ∈ Rn1+n2 (5.28a)

p :=

 p1

p2

 ∈ Rn1+n2 (5.28b)

A :=

 A1 0

0 A2

 ∈ R(m11+m21)×(n1+n2) (5.28c)

B :=

 B1 0

0 B2

 ∈ R(m12+m22)×(n1+n2) (5.28d)

a :=

 a1

a2

 ∈ Rm11+m21 (5.28e)

p :=

 b1

b2

 ∈ Rm12+m22 (5.28f)

Since (5.26) and (5.25) are decoupled in (5.27), their solutions comprise the solution of (5.27),

and (5.27) preserves the solution of (5.25). Geometrically, the overall feasible space of (5.27) is a

direct product of each individual feasible space of (5.25) and (5.26).

DirectFeasible Space (5.27) = Feasible Space (5.25)× Feasible Space (5.26) (5.29)

where “×” represents the direct product operation.
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5.3.1.2 Obscure Coupling

Although (5.27) simultaneously introduces redundant information and preserves solution of

(5.25), it, nevertheless, provides a sub-diagonal structure in A and B which can be utilized by ad-

versaries to break up the embedding. To overcome this drawback, one must obscure the structural

information in A and B.

Since B is associated with equality constraints, a linear mapping will destroy its special struc-

ture while preserving its solution set. Specifically, we apply an invertible matrix Tb on the left

hand side of (5.27c)

[TbB]x = Tbb (5.30)

However, this technique cannot be applied to inequality constraints (5.27b) because it changes

the feasible set of inequalities. To eliminate the special structure in A, one has to replace the off-

diagonal zero sub-matrices by some nonzero entries. Geometrically, this process will couple two

sub-problems together, and is called the coupled product of feasible spaces.

CoupledFeasible Space (5.27) = Feasible Space (5.25)⊗ Feasible Space (5.26) (5.31)

where “⊗” represents the coupled product operation.

Once the zero sub-matrices have been replaced, the originally decoupled sub-problems (5.25)

and (5.26) become coupled together. This coupling process, if designed carelessly, will completely

alter the problem and lose the track of the original solution. We demonstrate this behavior by a

2-dimensional example in Figure 5.5.

First consider the left plot in Figure 5.5. It illustrates a direct product “×” of two feasible

regions F1 and F2 in R2. The facets defined by F1 are perpendicular to the facets defined by F2

and vice versa, which is the geometric interpretation of the decoupled problem in (5.27). Suppose

the vertex labeled “A” is the optimal solution on F1×F2, then it also includes the optimal solutions

for both sub-problems F1 and F2.

If we replace the off-diagonal zero sub-matrices with nonzero entries, the overall feasible space

is coupled in the sense that the facets defined by F1 are no longer perpendicular to the facets

defined by F2. The right plot of Figure 5.5 depicts the coupled case. Note that in Figure 5.5
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Figure 5.5: Direct Product of Two Feasible Regions (Left) and Coupled Product of Two Feasible

Regions (Right)

all the facets and vertices are altered, and the original optimal point “A”, which alters to “A′”, is

no longer the optimal solution for the coupled problem. The optimal solution becomes a totally

different point “B′” after coupling. To avoid the loss of the original optimal solution, we have to

carefully design the coupling sub-matrices such that the active constraints preserve after coupling.

To achieve this goal, a focus point (x∗1,x
∗
2) is introduced for LP(F1).

Let’s consider the set defined by

{
x1 ∈ Rn1 , x2 ∈ Rn2

∣∣∣ [ A1 C1

] x1

x2

 ≤ a1

}
(5.32)

where the coupling sub-matrix C1 is determined (not necessarily unique) by

[
A1 C1

] x∗1

x∗2

 = a1 (5.33)

Note that (5.32) determines a conic object inRn1+n2 for which the cross section with any fixed

x2 has the same shape of the feasible space of LP(F1). Similarly, one can pick another focus point

for LP(F2) and calculate the coupling sub-matrix C2.
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The purposes of introducing focus points for sub-problems LP(F1) and LP(F2) are for main-

taining the shape of feasible space for each individual sub-problem and coupling the big problem

LP(F). However, keeping the shape of individual feasible space may not necessarily preserve the

active constraints when solving the overall coupled problem. The positions of selected focus points

play a crucial role in determining which constraints are active for the coupled problem. A simple

rule can be applied to choose a good focus point.

Non-negativity rule for choosing a focus point for LP(F1): Given a feasible point (x1,0,x2,0) for

LP(F), choose a point (x∗1,x
∗
2) such that

1. (x∗1,x
∗
2) is not feasible for LP(F);

2. 〈(x∗1 − x1,0,x
∗
2 − x2,0),p〉 ≥ 0.

If such a point (x∗1,x
∗
2) exists, it is regarded as a good candidate for serving a focus point.

Figure 5.6: Direct Product of Two Feasible Regions (Left) and Coupled Product of Two Feasible

Regions with Selected Focus Points (Right)

Geometrically, this rule attempts to select a point which, if serving as a focus point, forces the

optimal point to be more “peaky” after coupling. The plot on the right of Figure 5.6 illustrates how

the selected focus points force the optimal solution becoming more “peaky”.
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Once we have chosen a focus point for the original problem LP(F1), we can obtain an obscure

sub-matrix C1 by solving (5.33). Note that C1 is not uniquely determined. Then, we can further

select a focus point for the synthetic problem LP(F2).

Non-negativity rule for choosing a focus point for LP(F2): Choose a point (y∗1,y
∗
2) such that

1. (y∗1,y
∗
2) is not in the cone of

{
x1 ∈ Rn1 , x2 ∈ Rn2

∣∣∣ [ A1 C1

] x1 − x∗1

x2 − x∗2

 ≤ 0
}

;

2. (y∗1,y
∗
2) is not feasible for LP(F);

3. 〈(y∗1 − x1,0,y
∗
2 − x2,0),p〉 ≥ 0.

Then, the obscure sub-matrix for LP(F2) can be determined by solving
[

C2 A2

] y∗1

y∗2

 = 0

Finally, we have to justify that (x∗1,x
∗
2) is a good candidate.

Justification of the focus point for LP(F1): (x∗1,x
∗
2) is not in the cone of

{
x1 ∈ Rn1 , x2 ∈

Rn2

∣∣∣ [ C2 A2

] x1 − y∗1

x2 − y∗2

 ≤ 0
}

.

Although the non-negativity rule provides us a rough method to select potential focus points,

it can still produce bad candidates. For example, the coupled problem under selected focus points

becomes unbounded. Future investigation is needed to guarantee the preservation of feasibility and

the active constraints at optimum.

5.3.2 An Illustrative Example

In this subsection we will demonstrate how to apply the embedding technique via an illustrative

example.

Consider a linear programming problem LP(F1) as follow.

Minimize − x1 + x2 (5.34a)
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Subject to:


0.5 0.5

−2 −1

0 −1


 x1

x2

 ≤


1

−2

0

 (5.34b)

To embed LP(F1) in a larger problem, let’s introduce a synthetic problem LP(F2) for redun-

dancy.

Minimize y (5.35a)

Subject to:

 1

−1

 y ≤
 1

0

 (5.35b)

Then, a larger problem LP(F) is constructed from a direct integration of LP(F1) and LP(F2).

Minimize − x1 + x2 + y (5.36a)

Subject to:



0.5 0.5 0

−2 −1 0

0 −1 0

0 0 1

0 0 −1




x1

x2

y

 ≤



1

−2

0

1

0


(5.36b)

Now consider a coupled problem LP(F̂)

Minimize − x1 + x2 + y (5.37a)

Subject to:



0.5 0.5 a

−2 −1 b

0 −1 c

d e 1

f g −1




x1

x2

y

 ≤



1

−2

0

1

0


(5.37b)

where a, b, c, d, e, f and g are to be determined by our coupling process.

Choose a feasible point (1, 0, 0) for LP(F), and select (−2, 3, 3) as a candidate of focus point

for LP(F1), we have
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1. (−2, 3, 3) is infeasible for LP(F);

2. 〈(−2, 3, 3)− (1, 0, 0), (−1, 1, 1)〉 > 0.

Substituting this focus point in (5.37b) with inequalities being equalities, the non-unique parame-

ters are calculated: a = 0.167, b = −0.167 and c = 0.5.

Select a new point (−5, 5, 1) as a candidate of focus point for LP(F2), we have

1. (−5, 5, 1) is infeasible for LP(F);

2. 〈(−5, 5, 1)− (1, 0, 0), (−1, 1, 1)〉 > 0.

Substituting this focus point in (5.37b) with inequalities being equalities, the non-unique parame-

ters are calculated: d = 0.2, e = 0.2, f = −0.1 and g = 0.1.

Therefore, LP(F̂) is determined as

Minimize − x1 + x2 + y (5.38a)

Subject to:



0.5 0.5 0.167

−2 −1 −0.167

0 −1 0.5

0.2 0.2 1

−0.1 0.1 −1




x1

x2

y

 ≤



1

−2

0

1

0


(5.38b)

Solving the coupled problem LP(F̂) and the decoupled problem LP(F) we observe that they

share the same active constraints (constraint 1, 3, and 5) at optimal solutions.

One should note that this is an illustrative example that works with this approach. We currently

do not have a set of rules that is ensured to work on every LP problem. Future research is needed

to provide more rules for embedding techniques.
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5.4 Conclusion

This chapter discusses how to obfuscate sensitive information for multi-party ACOPF prob-

lems. At first, an encryption mapping is introduced by each individual party. During the encryp-

tion, a rank-reduced data is generated instead of full-dense data. A cloud computes directly on

the encrypted data for solving a least square formulation. The security and privacy are analyzed

at three different levels, and a numerical example is presented. Then, this chapter describes an

advanced encryption technique for obfuscating linear programming problems. This method inte-

grates the original linear programming problem with a synthetic linear programming problem to

form a larger problem. To further mask information, a coupling strategy is discussed, and a rule is

introduced for selecting potential candidates of focus points. Finally, the feasibility of this method

is demonstrated by an example.
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Chapter 6

Conclusion and Future Work

This chapter summarizes important results and contributions of this thesis, and outlines open

questions and research topics for future work in power system engineering.

6.1 Conclusion

This thesis is motivated by three different power engineering topics, the power flow problem,

the optimal power flow problem, and the data security of cloud computing for multi-party optimal

power flow problem. Each individual topic has been studied extensively over years but still leaves

many open questions that are worth of in-depth investigation. In attempt to address some questions

for these topics, a universal perspective appears and is the methodological core of this thesis. As

introduced in Chapter 1, this perspective is called “problem representation (or reformulation)”.

Many non-trivial features arise with different problem representations which help us design novel

tools to analyze these problems. There are many other problems beyond power system engineering

that can also benefit from this methodology.

This thesis first introduces backgrounds of the three power system engineering topics in Chap-

ter 2. It starts with a trigonometric description of the power flow problem in polar coordinates.

The polar coordinates representation is commonly considered in both academia and industry for

its physical meanings and a good performance in calculation. Chapter 2 briefly derives a DC

approximation of the full AC power flow problem in polar coordinates. Then, it provides an alge-

braic representation of the power flow problem in rectangular coordinates. The rectangular coor-

dinates representation has recently acquired more attention in academia because the semi-definite
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programming favors this algebraic form rather than the trigonometric form. Next, Chapter 2 ex-

tends the algebraic representation to the optimal power flow (OPF) problem, and discusses how

to convert inequality constraints into equalities. This equality-constrained OPF model is essential

throughout this thesis because it enables some mappings to recast the problem while preserving the

solution. Geometrically, the conversion from OPF to equality-constrained OPF lifts the feasible

space of OPF to an intersection of some hypersurfaces in a higher dimensional space. To ensure

the equality-constrained OPF model is quadratic, different treatments for linear and quadratic ob-

jective functions are discussed. Different models for transmission line current limits and apparent

power limits are also provided. In the end, Chapter 2 details the multi-party ACOPF model which

introduces fictitious buses in intersection areas to better separate adjacent parties. The information

of intersection areas is required to be shared between adjacent parties for jointly optimizing op-

eration cost, thus compliance between adjacent parties is articulated for maintaining information

consistency.

Chapter 3 builds the theoretical foundations for the entire thesis. It starts with a background of

real algebraic geometry with basic definitions and results. The most important concept in Chapter 3

is the “affine algebraic set preserving mapping (set mapping in short)” which maps one polynomial

ring to another. It defines a class of mapping that changes the formulation of a problem but pre-

serves an equivalent class of solution. The equivalence is specified by homeomorphisms among

solutions of different problem representations. The space of set mapping is shown to be closed

under map composition. This topological property becomes useful for the design of encryption

mappings in multi-party ACOPF scenario.

The first set mapping detailed in Chapter 3 is called the “induced affine mapping (affine map-

ping in short)”. It is induced by an invertible affine map from one rectangular coordinate system

to another. Geometrically, an affine mapping alters nothing of an object, but rather rotates and

rescales the coordinate system. This type of mapping proves useful for obfuscating the informa-

tion of an object in the original coordinate system. The second set mapping articulated in Chapter 3

is called the “linear mapping” which is induced by a linear invertible map from an n-tuple of poly-

nomial rings to another n-tuple of polynomial rings. This mapping preserves the algebraic set
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of n-tuple polynomials, and can completely alter the algebraic set of each entry of the original

n-tuple polynomials. It plays a crucial role in all three topics of this thesis by changing n-tuple

polynomials to satisfy certain properties.

Chapter 3 continues with the construction of an ellipsoidal formulation of power flow equa-

tions. An ellipsoidal formulation is defined by a set of quadratic polynomials for which each

polynomial represents a high-dimensional ellipsoid. The algebraic set of an ellipsoidal formula-

tion is bounded and is almost everywhere smooth, given a positive dimensionality of the algebraic

set. These properties benefit the branch tracing method in Chapter 4 for searching multiple real-

valued solutions to power flow problems and OPF problems. Chapter 3 proves three different

sufficient conditions to ensure the existence and construction of an ellipsoidal formulation. The

first condition claims that if the network has no shunt elastance, its power flow problem admits

an ellipsoidal formulation (not unique). A more detailed transmission model can have shunt elas-

tance, thus another sufficient condition is proposed for an ellipsoidal formulation (not unique). The

second condition only requires a particular principal sub-matrix of the bus susceptance matrix to

be positive definite, which is usually true in practice. Finally, if the transmission model includes

both shunt conductance and shunt elastance, a third sufficient condition, similar to the second con-

dition, guarantees an ellipsoidal formulation of the power flow problem. An interesting proposition

from the third condition indicates that the power flow problem of a lossy network always admits

an ellipsoidal formulation, which further induces a byproduct of the boundedness of QV curves.

Another important result presented in Chapter 3 is the ellipsoidal formulation of the first or-

der conditions for the ACOPF problem. While the Karush-Kuhn-Tucker (KKT) conditions are

the most frequently used first order conditions for nonlinear optimization, the KKT conditions for

ACOPF cannot be successfully represented in an ellipsoidal formulation. The Lagrangian multi-

pliers in the KKT conditions only appear in cross-product terms, no univariate quadratic terms for

constructing ellipsoids. To address this difficulty, Chapter 3 involves the Fritz John (FJ) conditions

to introduce one extra multiplier for the objective function. The original FJ conditions requires that
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all the multipliers shouldn’t be zero simultaneously, leaving uncountably many choices of multipli-

ers. To collapse the uncountable multiplier set to a finite set, a sum of squares for all the multipli-

ers replaces the nonzero condition in the FJ conditions. The modified FJ conditions are called the

sphere confined FJ conditions in this thesis. This modification enables an ellipsoidal formulation

for ACOPF problems because the square terms of multipliers can be scaled to enforce a positive

definite matrix. Another benefit of the sphere confined FJ conditions comes from independence

of constraint qualifications. In the KKT conditions, a constraint qualification is the prerequisite

for the validity of the KKT conditions. However, it is known that in nonlinear optimization prob-

lems a local solution can fail constraint qualifications, thus can fail the KKT conditions. Since

the sphere confined FJ conditions do not require any constraint qualifications, they will not miss

out such special solutions. The superiority of the sphere confined FJ conditions is presented in

Chapter 4 by a numerical example. Chapter 3 further investigates the possibility of constructing

ellipsoidal formulations for a class of quadratic constrained quadratic programming (QCQP) prob-

lem. An analysis shows constructively that any bounded QCQP problem can admit an ellipsoidal

formulation for its sphere confined FJ conditions. The constructions of ellipsoidal formulations for

both the power flow problem and the ACOPF problem are proved to be linear mappings, and are

specifically referred as “ellipsoidal mappings”. These ellipsoidal mappings send each polynomial

in these problems to a high-dimensional ellipsoid but preserve their intersections. A further inves-

tigation explores the topological properties of ellipsoidal mappings and suggests that the space of

ellipsoidal mapping at an ellipsoidal base is convex and closed under addition.

Finally, Chapter 3 proposes an encryption mapping for multi-party ACOPF problems. This

kind of mapping is a composition of an affine mapping and an linear mapping. The affine mapping

is described to mask the information of the ACOPF problem in the original coordinate system,

while the linear mapping is designed to obfuscate the network topology information. A proof of

equivalence ensures that the solution to the original ACOPF problem can be recovered from the

solution of the obfuscated problem.

This thesis next explores innovative search strategies for identifying multiple real-valued so-

lutions for both the power flow problem and the ACOPF problem in Chapter 4. It starts with a
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detailed description of the branch tracing method which is the basic routine for the designs of

efficient search strategies. Multiple real roots to the target polynomial system are then collected

through the path following process.

Chapter 4 spends great efforts to improve the computational efficiency and reliability of the

branch tracing method. Computationally, the most intensive part for the branch tracing method

comes from the corrector step which requires solving a system of linear equations. A general dense

LU factorization for solving these equations has a complexity of O(n3), which is very expensive

in practice for large applications. To enhance the efficiency, Chapter 4 explores sparse structures

of Jacobian matrices for ACOPF problems, which gives a nonzero diagonal sparse structure for

Jacobian matrices. Such structure is favored by LU factorization because the nonzero diagonal el-

ements can be used to eliminate off-diagonal elements, henceforth, largely accelerates the solving

speed. Another issue that has been addressed for the branch tracing method is the bad conditioning

of some 1-dimensional curves. Numerical error inflates rapidly through bad conditioning arcs, re-

sulting in the failure of corrector step, and makes it hard to continue following the curve. Chapter 4

introduces a “phase II” corrector which is triggered by numerical instability. It then rescales deci-

sion variables to bring bad conditioning entries back to tolerable ranges. Once the tracing process

leaves the bad conditioning arc, phase II returns to normal. Such bad conditioning control helps

the branch tracing method successfully follow certain arcs with curve gradient entries around 109,

and makes the branch tracing method much more reliable.

Next, Chapter 4 applies the branch tracing method to identify multiple real solutions of power

flow problems. While previous work [16] applied the branch tracing method to the power flow

problem and claimed that this approach could reliably identify all the real solutions, recent work

[18] disproved it by a counter example. To enhance the chance of finding more solutions, Chap-

ter 4 instead applies the branch tracing method to ellipsoidal formulations of power flow equations

rather than directly to power flow equations. This modification helps the branch tracing method

follow every curve and empirically locate the entire real solution set for every known power flow

test case (including the counter example in [18]) for which the entire real solution set has been

known. Chapter 4 further provides several more real solution sets solved by the proposed method
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for much larger test cases which cannot be completely solved via any other existing methods within

reasonable time with current computing capabilities. Chapter 4 also provides two numerical exam-

ples to show that the number of real solutions for a power flow problem can be non-monotonic with

respect to the increase of load demand. The first example illustrates that by increasing the active

power demand at a certain bus the number of real solutions to the power flow problem increases

temporarily. The second example demonstrates that the number of real solutions can also increase

with the increase of reactive power demand at some bus. Another interesting example provided

in Chapter 4 admits twelve real solutions including two “high-voltage solutions”. Although it is

well known that a lossless mesh power grid with all PV buses and zero active power demand can

admit multiple high-voltage solutions [11], the example presented in Chapter 4 has resistance on

transmission lines, and non-zero active power demands at PQ buses.

Chapter 4 continues by designing a deterministic method to identify multiple local solutions

to ACOPF problems. Although it has been known that ACOPF problems can be nonconvex and

can admit multiple local solutions, no existing literatures except this thesis have proposed a deter-

ministic method to reliably locate multiple local solutions. Chapter 4 introduces two deterministic

search strategies to achieve this goal. The first search strategy, which is called the “enumeration

search”, applies the same algorithm as in the procedure of searching for multiple real solutions to

the power flow problem. Specifically, it implements the branch tracing method to follow curves

defined by the ellipsoidal formulation of the sphere confined FJ conditions of ACOPF problems.

The ellipsoidal formulation guarantees that every curve is bounded and forms a closed loop. Thus,

the enumeration search strategy can reliably return many first order solutions to the ACOPF prob-

lem, among which local minima and local maxima are identified by the second order sufficient

condition. The enumeration search strategy is capable of searching for many interesting points,

nevertheless, it is not an efficient strategy if a better local solution (or the global solution) is of

primary interest. Thus, a more efficient search strategy, which is called the “monotone search”,

is introduced in Chapter 4 as well. The monotone search strategy adds one extra constraint to the

original ACOPF problem, forcing the objective function values on curves to be below the objective

function value at the starting solution. If a first order solution is encountered with a lower objective
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function value, it abandons tracing the rest and set the new solution as a starting point. Both the

enumeration search and the monotone search are testified on a few hard numerical examples which

have multiple disconnected feasible regions and are inexact for their first order SDP relaxations.

The enumeration search successfully identifies all the local minima for a 5-bus system and a 9-

bus system. More interestingly, it locates seven local minima for a 39-bus system, among which

three are known and the rest four have never been reported before. The monotone search works

on the same examples and successfully identifies all the global solutions to these examples. Then,

Chapter 4 presents a special example, for which the global solution does not satisfy the LICQ

and the eq-KKT conditions under equality constrained ACOPF model (2.31). The global solution

is verified by the third order SDP relaxation. To make a comparison, some local solvers from

“GAMS” are testified on this example, none of them can identify the global solution initiated from

a flat start. However, both the enumeration search and the monotone search successfully locate the

global solution for this particular example.

Finally, Chapter 4 explains how the branch tracing method smoothly crosses singular points

with the help of the FJ conditions, and how it bridges disconnected feasible regions to search for

better solutions. Chapter 4 further shows that the tracing order of curves can significantly influence

the search efficiency. Therefore, some rules for advanced search strategies are discussed. Chapter 4

concludes with a discussion of the relation between the simplex method for linear programming

and the proposed methods. It claims that the simplex method is a special case of the proposed

method.

Investigations regarding jointly solving multi-party ACOPF problems in the cloud are then

addressed in Chapter 5. This chapter first recalls the design of encryption mapping from Chapter 3

to obfuscate the ACOPF model for each party. The cloud should gather the masked information

from all the parties to generate a least square problem and solve it, conceptually. However, since

the obfuscated model is very likely to lose its sparse structure during the encryption, the storage

demand for masked full matrices is much larger at O(n3) than the original data demand at O(n).

To reduce huge data storage demand, Chapter 5 explores the eigen-structure of ACOPF problems

and utilizes the low rank property (rank ≤ 6, independent of system size n) of matrices to improve
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the data storage demand. Instead of storing the masked full matrices, each party only needs to store

the masked eigenvectors of these matrices, which decrease the data storage from O(n3) to O(n2).

Although O(n2) is still larger than O(n), it is the price to pay for privacy and security. Therefore,

each party first generates the eigen information of their ACOPF data (the eigen-decomposition for

ACOPF matrices has closed form, thus is computationally neglectable), then obfuscate the eigen-

information by an encryption mapping as discussed before. The cloud gathers the masked eigen-

information from all the parties, solves a least square problem based on the encrypted information,

and sends the solution to each party. During the whole process, the cloud never decryptes data,

but only manipulates data for solving problems. Thus, competitive power market participants can

take advantage of cloud resources without eavesdropping concerns to jointly solve the ACOPF

problem for the entire area. An analysis of three different levels of security concerns is presented

in Chapter 5. The first level requires no specific information leakage from a party, and claims

that an adversary will find it near impossible to break down the sensitive information. The second

level allows an adversary to be informed with the network topology of a party and its combination

matrix. It has been shown that the original data of this party can be revealed theoretically, but

computationally it could be very expensive in practice. The third level provides an adversary with

the original data of a party, the structure of combination matrix, and the solution obtained from

cloud. Even with so much information, the original solution of the attacked party can still remain

private.

Chapter 5 then discusses an advanced encryption technique by embedding the original linear

programming problem into a larger problem to further enhance security and increase the difficulty

in recognizing structures in the original problem. The premise of this technique is to ensure that

the solution of the original problem is easily recoverable. To construct such a larger problem,

Chapter 5 first generates a synthetic problem which has similar data structures as the original

problem. This synthetic problem serves as an “camouflage” for the original problem only if all the

encryptions have been deciphered by an adversary. Then, the original problem and the synthetic

problem are integrated directly into a larger problem which completely preserves the solutions for

both problems. However, the direct integration can be easily separated since these two problems
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are not entangled with each other. To couple these two problems, Chapter 5 discusses a method

to preserve the binding constraints of the original problem at the optimal solution. It introduces a

focus point for each problem, computes coupling matrices to force every constraint going through

the focus point, and lifts the feasible space of a problem into a conic object with its cross section

being the same shape of the original feasible space. Chapter 5 also introduces a rule that can

help choose a good candidate of a focus point. This method couples the original problem with

the synthetic problem, making them hard to be distinguished, thus enhances security. Finally,

Chapter 5 demonstrate the feasibility of the embedding technique with a small illustrative example.
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revisited,” in 2015 53rd Annual Allerton Conference on Communication, Control, and Com-

puting (Allerton). IEEE, 2015.

Work from Section 3.5 and Section 4.4 is submitted for publication as

[111] Dan Wu, Daniel Molzhan, Bernard Lesieutre, and Krishnamurthy Dvijotham, “A Determin-

istic Method to Identify Multiple Local Extrema of the AC Optimal Power Flow Problem,”

to appear in IEEE Transactions on Power Systems.

Work from Section 3.7 and Section 5.2 are published as

[78] Dan Wu, Bernard C. Lesieutre, and Parmesh Ramanathan, “Feasibility of power system

structure preserving linear transformations for the AC optimal power flow problem,” in 2014

52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

IEEE, 2014.
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[77] Dan Wu, Bernard Lesieutre, Parmesh Ramanathan, and Bhuvana Kakunoori, “Preserving

Privacy of AC Optimal Power Flow Models in Multi-Party Electric Grids,” IEEE Transac-

tions on Smart Grid, vol. 7, no. 4, pp. 2050-2060, June 2016.

6.3 Future Work

This work has made certain progress for three problems in power system engineering: locating

multiple real roots for the power flow problem, identifying multiple local extrema for the nonlinear

ACOPF problem, and preserving privacy for the multi-party ACOPF problem in cloud computing.

This work also provides several promising avenues and insights for further research.

The power flow problem plays a central role in power system engineering. Although having

been studied for several decades, we still lack a complete understanding of it. For example, how

many real roots does a specific power flow problem have? How many of these roots are stable?

How can we efficiently identify all the real roots? What is the relation between the load demand

and the roots? How does the network topology influence the number of real roots? Answering

these questions requires both new tools from real algebraic geometry and a deeper understanding

of the structure of the power flow problem itself. This work firstly reveals a hidden geometric

structure, which has never been reported before, for most power flow problems: an ellipsoidal

formulation. Section 3.4 provides a few sufficient conditions to guarantee an ellipsoidal formu-

lation of the power flow problem. These conditions are very mild and easy to be satisfied for

most realistic power system cases, however, a power flow problem can still have an ellipsoidal

formulation if all these conditions fail. One research topic for better understanding the geometry

of power flow equations in algebraic ways is to derive a sufficient and necessary condition for an

ellipsoidal formulation of the power flow problem. The ellipsoidal formulation of the power flow

problem promises to provide new geometric insights for analyzing power flow real roots because

high-dimensional ellipsoids are simpler than general high-dimensional surfaces determined by the

original power flow quadratic equations.

Another important open question is whether the ellipsoidal formulation of the power flow prob-

lem can ensure the branch tracing method is able to locate all the real roots. An example in [24]
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shows that the original power flow equations can fail the branch tracing method for enumerating all

the real roots, but the proposed method with ellipsoidal formulation in Section 4.3 has successfully

identified the entire real solution sets for all the existing test cases for which the real solution sets

are known, including the example in [24]. Although the ellipsoidal formulation works well em-

pirically, a theoretical guarantee is still elusive. Considering the search efficiency of the proposed

method, a statement of completeness under ellipsoidal formulation would set it apart from all other

existing methods for solving all the real roots of the power flow problem.

This work also provides novel tools and insights to better analyze and understand the nonlinear

ACOPF problem. The ACOPF problem is studied for power system economic operation and de-

signs, thus it is very important for modern power system engineering. Any efforts to reduce the op-

erational cost of a wide area power grid will save a huge amount of capital. Recently, semi-definite

programming (SDP) techniques have been successfully implemented in some ACOPF problems

to achieve global optimality. While promising, a lot of power system models can induce non-zero

duality gap, which makes the SDP relaxation inexact and results in an infeasible solution. To

overcome this inexactness, [112] introduces the moment-based relaxation which can sequentially

reduce the duality gap by higher order relaxations. The problem dimension of this method expands

dramatically and research continues.

Section 4.4 provides another way to search for global optimality: enumerating local solutions.

While existing work has attempted to enumerate multiple local solutions to look for global opti-

mality, it is not a principled deterministic method but rather a random search with many random

initial guesses. However, the proposed method in Section 4.4 is a deterministic method1 that can

search orderly for multiple local solutions, or a sequence of monotonic first order feasible solu-

tions. To ensure the full capability of the proposed method, one important open question should

be addressed: under what condition the proposed method can locate all the local extrema for the

ACOPF problem. A future research direction is to provide a sufficient condition for the connected-

ness of all the 1-dimensional curves defined by an ellipsoidal formulation of the eq-FJ conditions

1It is the first deterministic method to our best knowledge for solving multiple local solutions of ACOPF problem.
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of ACOPF problem. Such condition will induce the completeness of the local extremum set by the

proposed method in Section 4.4, hence, can ensure global optimality.

On the other hand, identifying multiple first order points and local solutions has its own re-

search interest. As suggested in [116], the difficulty of an optimization problem can be caused by

a huge number of saddle points instead of multiple local extrema. Understanding the clustering

patterns of these saddle points or first order solutions may reveal important geometric properties

of the feasible space of a class of problem, and may help us design more efficient solvers. Specifi-

cally in power system engineering, the global solution of an ACOPF problem may not be the best

choice for a reliable operation point. Recall the feasible space of “WB5” system in Figure 4.20, the

global solution to this example lies in a tiny piece of feasible region. Such global solution should

be avoided when choosing an economic and reliable operation point because the ACOPF model

cannot exactly reflect the realistic situation and the parameters are varying with the change of load

and other environmental factors. Thus, that tiny feasible region could disappear when the physical

model varies, leaving the system operating at an infeasible state. No existing work addresses this

potential jeopardy at present, and few works deal with estimating the area of a feasible region.

However, by analyzing the clustering patterns of first order solutions and local extrema, this issue

may be addressed. For example, given a continuous objection function and a bounded feasible re-

gion, there must exist at least one local minimum and one local maximum on it by Weierstrass. A

small feasible region will enforce all the first order solutions and local extrema on it to be clustered

closely. Therefore, if several first order solutions as well as at least one local minimum and one

local maximum cluster closely with each other, it may provide information about the existence of

a small feasible region. If the global solution happens to be among these first order solutions, one

should pay particular attention to such a situation. A future research topic should address cluster-

ing patterns of the first order solutions provided by the proposed method and design informative

index for testing the reliability of ACOPF solutions.

Another insight of this work comes from the observation that the proposed method is not exclu-

sively suitable for solving ACOPF problems. As discussed in Section 4.4, any bounded quadratic

constrained quadratic programming (BQCQP) problem always admit an ellipsoidal formulation.
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This result leads a natural extension of the proposed method to arbitrary BQCQP problems, for ex-

ample, the maximum loadability problem. Typical methods for solving the maximum loadability

problem are either by continuation power flow methods at a chosen direction or by formulating it

in QCQP form and applying local or global solvers. These continuation power flow methods only

determine a maximal load changing in a certain loading direction, suffering from limited infor-

mation about the critical load changing direction at current operation state. Other work has been

done to solve the global solution of QCQP representation of the maximum loadability problem

by convex relaxation techniques. It faces the difficulty that many non-radial networks are inexact

and provide no physically meaningful solution. Assuming the QCQP representation of the max-

imum loadability problem is bounded2, its sphere confined eq-FJ conditions can be reformulated

in an ellipsoidal form, which favors the proposed method. A specific application for future in-

vestigation is to apply the proposed method for solving multiple local solutions of the maximum

loadability problem. It will provide power grid operators with detailed information about different

maximum loading profiles at current operation state. Another specific BQCQP model in power

system engineering is the unit commitment problem which includes binary variables for choosing

different generator configurations. These binary variables are bounded and can be cast in quadratic

form as b(b − 1) = 0. So the unit commitment problem also has an ellipsoidal formulation for

its sphere confined eq-FJ conditions. Therefore, another promising application is to solve the unit

commitment problem by the proposed method.

To improve the search efficiency of the proposed method of Section 4.4, an advanced search de-

sign will also be a future research topic. As discussed in Section 4.4.3, the number of intermediate

eq-FJ solutions bridging a local solution to the global solution can be very few if selected appropri-

ately. Thus, choosing the right curve to follow and selecting the right eq-FJ point as next starting

point will dramatically improve the search efficiency of the proposed method. Some ideas have

been suggested in Section 4.4.3, but more principles are required to deal with different situations.

A comparison between the proposed method and the simplex method for linear programming is

2It is bounded because a realistic power system is always constrained by all kinds of physical and engineering
limits.
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also presented, which further indicates that the simplex method is a very special case for the pro-

posed method. Therefore, developing the proposed method as a generalized “simplex method”

for smooth nonlinear programming can be a total new optimization tool to study hard nonlinear

optimization problems.

Another potential research direction to better enhance security of cloud computing for multi-

party power system optimization problems is development of an embedding technique. In Chap-

ter 5 we successfully design an encryption mapping which transforms the original problem to

another problem while preserving the solution. Although such an encryption transformation ob-

fuscates information of the original problem, it is not theoretically impossible to recover it. To

increase recovery difficulty, Section 5.3 discusses a new idea that embeds the original problem

into a larger problem for deep camouflage. It has been shown feasible for linear programming

problems. Future research will investigate a systematic way to generate such embedding without

loss of binding constraint information. An extension of this technique to nonlinear programming

problems is also anticipated.
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Appendix A: Case7Salam Mod1 Data and Solutions

The paramethers in per unit are listed below. The base power is 100MVA.

Table A.1: Case7Salam Mod1 Data

Bus P Load Q Load From To r x b Gen No. P gen Q gen V gen

1 -0.9 -0.3 1 2 0.082 0.192 0

2 0.478 0.039 2 3 0.067 0.171 0

3 0.942 0.19 2 5 0.058 0.176 0 3 0.4 0 1

4 0.135 0.058 2 6 0.013 0.042 0

5 0.183 0.127 3 4 0.024 0.100 0

6 0.076 0.016 4 5 0.024 0.100 0

7 0 0 5 6 0.057 0.174 0 7∗ 0.8 0 1

5 7 0.019 0.059 0

6 7 0.054 0.223 0

∗ indicates the slack bus.

Table A.2: Case7Salam Mod1 Power Flow Solu-

tions

Solu 1 Solu 2

V1 1.118 ∠5.904◦ 0.236 ∠109.143◦

V2 1.009 ∠− 1.647◦ 0.704 ∠− 7.863◦

V3 1.0000 ∠− 5.204◦ 1.0000 ∠− 16.432◦

V4 0.992 ∠− 3.799◦ 0.938 ∠− 11.505◦

V5 0.994 ∠− 1.681◦ 0.896 ∠− 5.171◦

V6 1.004 ∠− 1.552◦ 0.774 ∠− 6.299◦

V7 1.0000 ∠0◦ 1.0000 ∠0◦
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Appendix B: Case7Salam Mod2 and Mod3 Solutions

Table B.1: Case7Salam Mod2 Power Flow Solutions

Solu 1 Solu 2 Solu 3 Solu4

V1 1.116 ∠3.642◦ 0.521 ∠− 5.533◦ 0.435 ∠17.282◦ 0.238 ∠105.791◦

V2 1.007 ∠− 3.933◦ 0.391 ∠− 52.262◦ 0.366 ∠− 51.339◦ 0.697 ∠− 10.964◦

V3 1.000 ∠− 10.166◦ 1.000 ∠− 129.855◦ 1.000 ∠− 125.572◦ 1.000 ∠− 23.204◦

V4 0.989 ∠− 7.020◦ 0.480 ∠− 100.163◦ 0.500 ∠− 96.059◦ 0.929 ∠− 15.994◦

V5 0.991 ∠− 3.136◦ 0.532 ∠− 22.116◦ 0.538 ∠− 22.015◦ 0.887 ∠− 7.011◦

V6 1.003 ∠− 3.396◦ 0.459 ∠− 33.998◦ 0.459 ∠− 32.768◦ 0.767 ∠− 8.617◦

V7 1.000 ∠0◦ 1.000 ∠0◦ 1.000 ∠0◦ 1.000 ∠0◦

Table B.2: Case7Salam Mod3 Power Flow Solutions

Solu 1 Solu 2 Solu 3 Solu4

V1 1.112 ∠6.030◦ 0.514 ∠− 1.566◦ 0.450 ∠14.425◦ 0.238 ∠108.815◦

V2 1.003 ∠− 1.606◦ 0.386 ∠− 50.282◦ 0.365 ∠− 49.840◦ 0.698 ∠− 7.988◦

V3 1.000 ∠− 5.368◦ 1.000 ∠− 128.817◦ 1.000 ∠− 126.091◦ 1.000 ∠− 17.021◦

V4 0.954 ∠− 3.388◦ 0.394 ∠− 96.835◦ 0.410 ∠− 94.414◦ 0.898 ∠− 11.321◦

V5 0.982 ∠− 1.513◦ 0.536 ∠− 19.165◦ 0.537 ∠− 19.195◦ 0.884 ∠− 5.032◦

V6 0.998 ∠− 1.499◦ 0.458 ∠− 32.170◦ 0.446 ∠− 31.391◦ 0.768 ∠− 6.354◦

V7 1.000 ∠0◦ 1.000 ∠0◦ 1.000 ∠0◦ 1.000 ∠0◦
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Appendix C: Case5Salam Mod Solutions

Table C.1: Case5Salam Mod Power Flow Solutions

V1 V2 V3 V4 V5

Sol 1 1∠− 2.824◦ 1.268∠− 10.008◦ 1.207∠− 9.395◦ 1.044∠− 7.629◦ 1.06∠0◦

Sol 2 1∠− 12.714◦ 1.105∠− 19.395◦ 0.983∠− 19.294◦ 0.053∠− 74.276◦ 1.06∠0◦

Sol 3 1∠− 130.629◦ 0.805∠− 132.134◦ 0.749∠− 133.139◦ 0.58∠169.780◦ 1.06∠0◦

Sol 4 1∠− 100.672◦ 0.403∠148.642◦ 0.283∠167.578◦ 0.082∠− 164.680◦ 1.06∠0◦

Sol 5 1∠− 36.496◦ 0.341∠− 166.659◦ 0.183∠− 149.805◦ 0.085∠− 96.871◦ 1.06∠0◦

Sol 6 1∠− 32.135◦ 0.322∠− 140.781◦ 0.044∠− 164.968◦ 0.084∠− 88.709◦ 1.06∠0◦

Sol 7 1∠− 24.395◦ 0.473∠− 48.947◦ 0.020∠− 105.494◦ 0.082∠− 80.843◦ 1.06∠0◦

Sol 8 1∠− 18.423◦ 0.476∠− 44.550◦ 0.018∠− 99.168◦ 0.625∠− 25.173◦ 1.06∠0◦

Sol 9 1∠− 25.332◦ 0.317∠− 140.656◦ 0.045∠− 150.415◦ 0.615∠− 32.818◦ 1.06∠0◦

Sol 10 1∠− 28.491◦ 0.321∠− 163.983◦ 0.145∠− 134.645◦ 0.611∠− 39.069◦ 1.06∠0◦

Sol 11 1∠− 107.936◦ 0.386∠133.766◦ 0.263∠164.826◦ 0.635∠− 121.428◦ 1.06∠0◦

Sol 12 1∠− 140.282◦ 0.902∠− 142.445◦ 0.914∠− 142.897◦ 0.945∠− 143.936◦ 1.06∠0◦
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Appendix D: ACOPF Data and Solutions of Case9mod 9-Bus
System

The paramethers in per unit are listed below. The base power is 100MVA.

Table D.1: Case9mod 9-Bus System Bus Data and Line Data

Bus No. P Load Q Load Vmax Vmin From To r x b Imax

1 0 0 1.1 0.9 1 4 0 0.0576 0 2.5

2 0 0 1.1 0.9 4 5 0.017 0.092 0.158 2.5

3 0 0 1.1 0.9 5 6 0.039 0.17 0.358 1.5

4 0 0 1.1 0.9 3 6 0 0.0586 0 3

5 0.54 0.18 1.1 0.9 6 7 0.0119 0.1008 0.209 1.5

6 0 0 1.1 0.9 7 8 0.0085 0.072 0.149 2.5

7 0.6 0.21 1.1 0.9 8 2 0 0.0625 0 2.5

8 0 0 1.1 0.9 8 9 0.032 0.161 0.306 2.5

9 0.75 0.3 1.1 0.9 9 4 0.01 0.085 0.176 2.5

Table D.2: Case9mod 9-Bus System Generator Data

Gen. Pmax Pmin Qmax Qmin d c e

1∗ 2.5 0.1 3 -0.05 0.11 0.05 0.015

2 3 0.1 3 -0.05 0.085 0.012 0.06

3 2.7 0.1 3 -0.05 0.1225 0.01 0.0335

∗ indicates the slack bus. d is the coefficient for the quadratic term in the

objective function. c is the coefficient for the linear term. e is the constant

term.
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Table D.3: Case9mod 9-Bus System Local Minima Obained by

Enumeration Strategy

Solu 1 Solu 2 Solu 3 Solu 4

V1 0.9020 0.9027 0.9064 0.9095

V2 0.9175 0.9169 0.9255 0.9218

V3 0.9247 0.9272 0.9326 0.9388

V4 0.9098 0.9104 0.9096 0.9127

V5 0.9104 0.9120 0.9109 0.9160

V6 0.9279 0.9307 0.9387 0.9426

V7 0.9177 0.9182 0.9271 0.9284

V8 0.9213 0.9204 0.9299 0.9291

V9 0.9000 0.9000 0.9000 0.9000

α1 0◦ 0◦ 0◦ 0◦

α2 −9.304◦ −11.555◦ 7.245◦ 12.367◦

α3 −11.150◦ −8.619◦ 12.115◦ 7.006◦

α4 −5.770◦ −5.722◦ −0.400◦ −0.398◦

α5 −10.044◦ −9.507◦ 0.219◦ −0.732◦

α6 −11.542◦ −10.128◦ 7.592◦ 4.842◦

α7 −12.855◦ −12.884◦ 4.173◦ 4.516◦

α8 −10.906◦ −11.980◦ 4.548◦ 7.118◦

α9 −10.383◦ −10.722◦ −1.511◦ −0.631◦

S1 1.432 -j0.05 1.422 -j0.05 0.1 -j0.05 0.1 -j0.05

S2 0.378 -j0.05 0.100 -j0.05 0.648 -j0.05 1.254 -j0.05

S3 0.1 -j0.05 0.388 -j0.05 1.178 -j0.05 0.570 -j0.05

Cost 0.424655 0.426504 0.339797 0.308789

Vi is the voltage magnitude on the i-th bus. αi is the voltage angle on

the i-th bus. Si is complex power generated by the i-th generator. The

base power is 100MVA.
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Table D.4: FJ Solutions for case9mod from the

Monotone Search

FJ Sol. 1 FJ Sol. 2 FJ Sol. 3

|V1| 0.9020 0.9075 0.9095

|V2| 0.9175 0.9178 0.9218

|V3| 0.9247 0.9251 0.9388

|V4| 0.9098 0.9107 0.9127

|V5| 0.9104 0.9101 0.9160

|V6| 0.9279 0.9304 0.9426

|V7| 0.9177 0.9174 0.9284

|V8| 0.9213 0.9211 0.9291

|V9| 0.9000 0.9000 0.9000

θ1 0◦ 0◦ 0◦

θ2 −9.304◦ −1.982◦ 12.367◦

θ3 −11.150◦ 8.511◦ 7.006◦

θ4 −5.770◦ −2.151◦ −0.398◦

θ5 −10.044◦ −2.383◦ −0.732◦

θ6 −11.542◦ −3.506◦ 4.842◦

θ7 −12.855◦ −1.614◦ 4.516◦

θ8 −10.906◦ −2.409◦ 7.118◦

θ9 −10.383◦ −5.080◦ −0.631◦

S1 1.432−j0.05 0.538−j0.05 0.1−j0.05

S2 0.378−j0.05 0.100−j0.05 1.254−j0.05

S3 0.1−j0.05 1.281−j0.05 0.570−j0.05

Cost 4246.55 3829.84 3087.89

|Vi|∠θi and Si denote the voltage and power injection at

bus i in per unit. Costs are given in $/hr.



173

Appendix E: ACOPF Data and Solutions of WB5 5-Bus System

The paramethers in per unit are listed below. The base power is 100MVA.

Table E.1: WB5 5-Bus System Bus Data and Line Data

Bus No. P Load Q Load Vmax Vmin From To r x b Imax

1 0 0 1.05 0.95 1 2 0.04 0.09 0 25

2 1.3 0.2 1.05 0.95 1 3 0.05 0.1 0 25

3 1.3 0.2 1.05 0.95 2 4 0.55 0.9 0.45 25

4 0.65 0.1 1.05 0.95 3 5 0.55 0.9 0.45 25

5 0 0 1.05 0.95 4 5 0.06 0.1 0 25

2 3 0.07 0.09 0 25

Table E.2: WB5 5-Bus System Generator Data

Gen. Pmax Pmin Qmax Qmin d c e

1∗ 50 0 18 -0.3 0 0.04 0

5 50 0 18 -0.3 0 0.01 0

∗ indicates the slack bus. d is the coefficient for the

quadratic term in the objective function. c is the coefficient

for the linear term. e is the constant term.
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Table E.3: WB5 5-Bus System Local Minima Obained by Enumeration (Left) and

Monotone Search (Right) Strategy

Solu 1 Solu 2 Solu 1 Solu 2

V1 1.0137 1.0467 1.0137 1.0467

V2 0.9540 0.9567 0.9540 0.9567

V3 0.9500 0.9500 0.9500 0.9500

V4 1.0143 0.9840 1.0143 0.9840

V5 1.0500 1.0500 1.0500 1.0500

α1 0◦ 0◦ 0◦ 0◦

α2 −6.5245◦ −3.4619◦ −6.5245◦ −3.4619◦

α3 −6.5734◦ −3.2143◦ −6.5734◦ −3.2143◦

α4 −1.3415◦ 37.6505◦ −1.3415◦ 37.6505◦

α5 3.1073◦ 45.4797◦ 3.1073◦ 45.4797◦

S1 2.4605 +j0.2927 1.8143 +j1.2409 2.4605 +j0.2927 1.8143 +j1.2409

S5 0.9815 -j0.3 2.2087 -j0.3 0.9815 -j0.3 2.2087 -j0.3

Cost 0.108235 0.094659 0.108235 0.094659

Vi is the voltage magnitude on the i-th bus. αi is the voltage angle on the i-th bus. Si is

complex power generated by the i-th generator. The base power is 100MVA.
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Appendix F: Case39mod4 39-Bus Additional Local Minima

Table F.1: New Local Minima to case39mod4: Bus Voltage Part I

Sol. # 1 Sol. # 2 Sol. # 3 Sol. # 4

Bus # |V1| δ◦ |V1| δ◦ |V1| δ◦ |V1| δ◦

1 1.0381 -7.7180 1.0407 -8.8822 1.0381 -8.3789 1.0414 -9.7286

2 10500 -13.6302 1.0500 -13.9056 1.0500 -14.5736 1.0500 -14.8025

3 1.0311 -14.3376 1.0301 -14.2221 1.0318 -14.7228 1.0308 -14.5328

4 1.0164 -12.9683 1.0158 -12.8135 1.0176 -12.9721 1.0172 -12.7766

5 1.0171 -10.7174 1.0171 -10.7211 1.0182 -10.7163 1.0184 -10.7173

6 1.0178 -10.2212 1.0178 -10.2211 1.0189 -10.2100 1.0191 -10.2076

7 1.0141 -10.8564 1.0145 -10.9631 1.0152 -10.8776 1.0159 -11.0022

8 1.0141 -10.8809 1.0146 -11.0416 1.0152 -10.9191 1.0160 -11.1080

9 1.0338 -6.4855 1.0364 -7.5748 1.0348 -6.7911 1.0379 -8.0887

10 1.0269 -11.3978 1.0264 -11.2401 1.0283 -11.2899 1.0281 -11.1044

11 1.0234 -11.0195 1.0231 -10.9123 1.0247 -10.9427 1.0247 -10.8160

12 1.0203 -11.4129 1.0198 -11.2552 1.0217 -11.3049 1.0215 -11.1195

13 1.0239 -11.7426 1.0233 -11.5344 1.0255 -11.6035 1.0251 -11.3594

14 1.0182 -12.6373 1.0171 -12.2983 1.0200 -12.4170 1.0192 -12.0209

15 1.0027 -14.0066 0.9996 -13.0677 1.0058 -13.2255 1.0032 -12.1547

16 1.0020 -13.7728 0.9981 -12.5641 1.0056 -12.7498 1.0024 -11.3771

17 1.0148 -14.4987 1.0117 -13.8149 1.0157 -14.4508 1.0127 -13.6434

18 1.0208 -14.6582 1.0185 -14.2112 1.0217 -14.7768 1.0193 -14.2087

19 1.0080 -17.6118 1.0068 -16.4359 1.0108 -10.9482 1.0099 -9.5788

20 0.9500 -20.5983 0.9500 -19.4292 0.9500 -9.4907 0.9500 -8.1227
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Table F.2: New Local Minima to case39mod4: Bus Voltage Part II

Sol. # 1 Sol. # 2 Sol. # 3 Sol. # 4

Bus # |V1| δ◦ |V1| δ◦ |V1| δ◦ |V1| δ◦

21 0.9836 -10.1557 0.9781 -8.0968 0.9894 -10.5188 0.9853 -8.2832

22 0.9760 -5.1747 0.9713 -2.1926 0.9807 -7.0300 0.9776 -3.8677

23 0.9720 -4.7886 0.9664 -2.1269 0.9777 -6.1090 0.9738 -3.2773

24 0.9989 -12.9764 0.9942 -11.5725 1.0036 -12.2741 0.9998 -10.7015

25 1.0383 -14.3653 1.0375 -14.6704 1.0332 -15.6994 1.0325 -15.9161

26 1.0312 -15.2774 1.0294 -15.7300 1.0263 -18.0348 1.0238 -18.2826

27 1.0221 -15.5262 1.0196 -15.4763 1.0196 -17.0044 1.0166 -16.7739

28 1.0147 -14.8419 1.0131 -16.2208 1.0079 -20.7534 1.0060 -21.8038

29 1.0052 -13.7943 1.0036 -15.4733 0.9980 -20.7266 0.9966 -22.0356

30 1.0486 -13.6302 1.0486 -13.9056 1.0486 -14.5736 1.0486 -14.8025

31 0.9500 0 0.9500 0 0.9500 0 0.9500 0

32 0.9900 -11.3978 0.9896 -11.2401 0.9913 -11.2899 0.9911 -11.1044

33 0.9500 -17.6357 0.9500 -16.4630 0.9500 -10.9642 0.9500 -9.5974

34 0.9552 -20.6398 0.9566 -19.4751 0.9552 -3.6968 0.9563 -2.3393

35 0.9500 -0.3855 0.9500 4.0725 0.9500 -4.6879 0.9500 -0.0062

36 0.9611 4.9342 0.9552 7.7125 0.9670 3.4967 0.9630 6.4074

37 1.0130 -14.2653 1.0122 -14.6704 1.0080 -15.6994 1.0074 -15.9161

38 0.9575 -10.8805 0.9558 -13.2279 0.9500 -20.0854 0.9500 -21.9683

39 1.0213 -3.3572 1.02442 -5.0848 1.0217 -3.8438 1.0253 -5.9033



177

Table F.3: New Local Minima to case39mod4: Power Generation

Sol. # 1 Sol. # 2 Sol. # 3 Sol. # 4

Gen. # P Q P Q P Q P Q

1 0 1.4000 0 1.4000 0 1.4000 0 1.4000

2 6.46 0.5511 6.46 0.5507 6.4600 0.5113 6.4600 0.5027

3 0 1.5000 0 1.5000 0 1.5000 0 1.5000

4 0 0.5339 0 0.6054 0 0.3568 0 0.4153

5 0 0.7243 0 0.8012 5.0800 0.7255 5.0800 0.7868

6 5.2816 0.0734 6.8700 0.5351 2.5976 -0.3985 4.2670 -0.1056

7 5.8000 0 5.800 0 5.8000 0 5.8000 0

8 0 0 0 0 0 0 0 0

9 2.9827 -1.5000 2.2734 -1.5000 0.5882 -1.4680 0 -1.3570

10 11.0000 -1.0000 10.1394 -1.0000 11.0000 -1.0000 9.9438 -1.0000

Cost $/hr 841.74066 848.92950 842.81718 847.54988

Bus power injections are in per unit with a base power of 100 MVA.
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Appendix G: Solutions of WB5mod 5-Bus System

Table G.1: MIPS Solution, Intermediate Stationary Point and Global Solution for WB5mod

MIPS Sol. Intermediate Sol. Global Sol.

|V1| 1.1000 0.9881 1.0892

|V2| 1.03202 0.9053 1.0098

|V3| 1.0255 0.9000 1.0045

|V4| 0.9000 0.9000 0.9000

|V5| 0.9232 0.9461 0.9358

θ1 0◦ 0◦ 0◦

θ2 −6.8867◦ −10.1765◦ −8.6595◦

θ3 −7.0106◦ −10.5328◦ −8.9542◦

θ4 −15.3728◦ −38.0141◦ −36.5139◦

θ5 −11.5972◦ −36.1330◦ −34.9495◦

S1 3.074+j0.4 3.5709+j0.4047 3.73+j0.4

S5 0.3982−j0.299 0.1651+j0.2840 0+j0.1785

Cost 161921.15 151310.41 139875.00

|Vi|∠θi and Si denote the voltage and power injection at bus i in per unit. Costs are given in $/hr.

Table G.2: Summary of Solutions Obtained from KNITRO, IPOPTH, BARON, 2nd Order SDP,

3rd Order SDP, and Proposed Tracing Method for WB5mod

KNITRO IPOPTH SNOPT BARON 2nd SDP 3rd SDP Tracing

P1 (p.u.) 3.074 3.074 3.074 3.73 3.7239 3.7297 3.73

P5 (p.u.) 0.398 0.398 0.398 0 4e-4 6.3e-5 0

Cost ($/hr) 161925 161925 161925 139875

Lower Bd 139873 139467 139870
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Appendix H: 30-bus Multi-party ACOPF System Data

Table H.1: Party-2 Bus and Transmission Line Data

Bus No. P Load Q Load Vmax Vmin From To r x b Imax

21 0.112 0.043 1.05 0.95 21 19 0.0315 0.0662 0 1.05

22 0 0 1.05 0.95 32 20 0.03 0.06 0 1.05

23 0.192 0.052 1.05 0.95 22 21 0.0662 0.1304 0 1.05

24 0.024 0.012 1.03 0.95 25 33 0.0192 0.0575 0.0528 1.05

25 0.076 0.016 1.05 0.95 26 31 0.0452 0.1652 0.0408 1.05

26 0 0 1.05 0.95 23 25 0.057 0.1737 0.0368 1.05

27 0.392 0.13 1.03 0.95 24 25 0.0132 0.0379 0.0084 1.05

28 0 0 1.03 0.95 23 26 0.0472 0.1983 0.0418 1.05

29 0.225 0.105 1.03 0.95 23 27 0.0581 0.1763 0.0374 1.05

30 0 0 1.03 0.95 25 27 0.0119 0.0414 0.009 1.05

31 0.058 0.02 1.03 0.95 26 28 0.046 0.116 0.0204 1.05

32 0.328 0.0645 1.03 0.95 27 30 0.267 0.082 0.017 1.05

33 0.112 0.075 1.05 0.95 27 29 0.012 0.042 0.009 1.05

34 0 0 1.03 0.95 27 28 0 0.208 0 1.05

20 0 0 1.05 0.95 22 24 0 0.556 0 1.05

19 0 0 1.05 0.95 30 32 0 0.208 0 1.05

18 0 0 1.05 0.95 30 31 0 0.11 0 1.05

17 0 0 1.05 0.95 22 23 0 0.256 0 1.05

33 34 0 0.14 0 1.05

33 21 0.1231 0.2559 0 1.05

18 20 0.03 0.06 0 1.05

17 19 0.0315 0.0662 0 1.05
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Table H.2: Party-1 Bus and Transmission Line Data

Bus No. P Load Q Load Vmax Vmin From To r x b Imax

1 0.085 0.018 1.05 0.95 1 16 0.091 0.1997 0.03 1.05

2 0.09 0.058 1.03 0.95 1 2 0.0524 0.1923 0.04 1.05

3 0.082 0.039 1.05 0.95 16 3 0.073 0.2185 0.05 1.05

4 0.495 0.084 1.03 0.95 3 4 0.0639 0.1292 0.01 1.05

5 0.122 0.047 1.03 0.95 4 5 0.034 0.068 0 1.05

6 0.175 0.112 1.05 0.95 6 5 0.0936 0.209 0.04 1.05

7 0 0 1.05 0.95 5 2 0.0324 0.0845 0 1.05

8 0.082 0.036 1.05 0.95 14 15 0.0348 0.0749 0 1.05

9 0.137 0.082 1.03 0.95 11 10 0.0727 0.1499 0.03 1.05

10 0 0 1.05 0.95 6 7 0.0116 0.0236 0 1.05

11 0.335 0.0765 1.03 0.95 14 13 0.1 0.202 0 1.05

12 0 0 1.03 0.95 7 9 0.115 0.179 0 1.05

13 0 0 1.03 0.95 12 14 0.132 0.27 0 1.05

14 0.034 0.009 1.03 0.95 9 10 0.1885 0.3292 0 1.05

15 0.076 0.016 1.03 0.95 7 11 0.2544 0.38 0 1.05

16 0.052 0.035 1.05 0.95 10 12 0.1093 0.2087 0 1.05

17 0 0 1.05 0.95 13 12 0 0.396 0 1.05

18 0 0 1.05 0.95 12 5 0.2198 0.4153 0 1.05

19 0 0 1.05 0.95 16 8 0.202 0.6027 0 1.05

20 0 0 1.05 0.95 6 11 0.2399 0.4533 0 1.05

15 12 0.0636 0.2 0 1.05

8 9 0.0169 0.0599 0 1.05

16 17 0.0315 0.0662 0 1.05

3 18 0.03 0.06 0 1.05

17 19 0.0315 0.0662 0 1.05

18 20 0.03 0.06 0 1.05



181

Table H.3: Party-2 Generator Data

Gen. Pmax Pmin Qmax Qmin d c e

22 1.3 0.2 0.4 0.01 0 0.2512 0

23 1.4 0.4 0.35 -0.4 0 0.2372 0

26 0.9 0.1 0.4 -0.4 0 0.2452 0

d is the coefficient for the quadratic term in the objective func-

tion. c is the coefficient for the linear term. e is the constant

term.

Table H.4: Party-1 Generator Data

Gen. Pmax Pmin Qmax Qmin d c e

3 1.11 0.1 0.4 -0.1 0 0.2522 0

7 2.6 0.11 0.24 -0.06 0 0.2392 0

10 1.35 0.15 0.24 -0.06 0 0.2352 0

d is the coefficient for the quadratic term in the objective func-

tion. c is the coefficient for the linear term. e is the constant

term.

Table H.5: Intersection Area

Compliance

Party-1 Party-2

Bus Match 17 18

Bus Match 18 17

Bus Match 19 16

Bus Match 20 15
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