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Near Infrared Technology applications in Agriculture

William Yamada

Abstract

Precision agriculture demands rapid, non-invasive tools to monitor crop quality and
minimize losses, especially during harvest. Traditional laboratory-based analyses, such
as wet chemistry and mechanical sieving, are accurate but slow, labor-intensive, and
impractical for in-field deployment. This dissertation presents machine learning frameworks
that integrate near-infrared (NIR) spectroscopy, self-supervised computer vision, and
multimodal data fusion to estimate forage quality and detect pre-harvest losses in real
time.

First, handheld NIR spectrometers were evaluated for their ability to estimate nutritional
traits in undried forage. Through spectral preprocessing and calibration transfer, the study
demonstrated that portable devices can yield accurate predictions of crude protein and
digestibility, offering viable alternatives to benchtop systems for on-farm use.

Second, the dissertation addresses grain loss monitoring in row crops by deploying deep
learning detectors (YOLO, DETR, YOLOv8) to identify uncollected grain from ground-
based RGB-D imagery. These models, trained and validated on wheat, oats, and soybean
datasets, demonstrated strong object-level performance and spatial loss quantification,
enabling automation of a process that traditionally relies on manual collection and counting.

Third, a late fusion framework was introduced to combine RGB-derived morphometrics
with NIR spectral features selected via Partial Least Squares Regression and Variable
Importance in Projection (VIP). This approach yielded a Random Forest model achieving
a Pearson correlation of r = 0.968 and RMSECV = 2.16%, outperforming previous
single-modality methods and enabling practical, edge-compatible deployment.

Finally, RGB images of corn silage were processed using self-supervised Vision Trans-
formers (DINOv2), enabling regression of the Corn Silage Processing Score (CSPS) without
manual annotation or kernel segmentation. Performance was further improved using a proxy
variable—the proportion of particles above the 4.75 mm sieve (FoG)—which enhanced
interpretability and predictive accuracy.

Collectively, this research advances the development of interpretable, deployable, and
multimodal sensing systems for agriculture. It demonstrates that computer vision and
spectroscopy can be fused to assess silage quality and crop losses accurately, bridging the
gap between lab-grade analytics and in-field decision-making for harvest optimization.
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Chapter 1

Introduction

Modern agriculture increasingly relies on rapid, accurate, and non-destructive sensing

to improve crop management, reduce input waste, and enhance feed quality. In this

context, Near-Infrared (NIR) spectroscopy has emerged as a promising tool for providing

real-time chemical analysis across various agricultural workflows—from forage harvest to

grain sorting. Its portability, speed, and minimal sample preparation requirements make it

especially appealing for in-field and on-machine deployment.

NIR spectroscopy is a form of vibrational spectroscopy that operates within the

wavelength range of 750 to 2500 nm, as seen in figure 1.1, which is located just beyond the

visible red region in the electromagnetic spectrum. This region is particularly sensitive to

molecular overtones and combination vibrations associated with chemical bonds involving

hydrogen atoms, such as O–H, N–H, and C–H. These bonds exhibit characteristic absorption

bands that can be detected and quantified, enabling the extraction of both qualitative and

quantitative information about the chemical and physical composition of a sample.

Although invisible to the human eye, NIR radiation was first discovered in 1800 by Sir

Frederick William Herschel, an English astronomer. While measuring temperature changes

in various regions of sunlight dispersed through a glass prism, Herschel noticed a distinct

thermal effect beyond the red edge of the visible spectrum. He referred to this invisible

radiation as “calorific rays,” what we now recognize as near-infrared light [15].
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Radio waves Microwaves Infrared Ultraviolet X-rays Gamma rays

30 mm 1 mm 10 nm 0.01 nmNear Infrared

Visible light

Figure 1.1: The electromagnetic spectrum with the visible light region zoomed in and
shown in color.

Despite this early discovery, it took more than a century for NIR to find widespread

scientific application. The turning point came in the 1960s, when Karl Norris introduced

the use of diffuse reflectance in NIR spectroscopy to evaluate agricultural commodities,

particularly for determining the moisture content in cereal grains [28]. Norris’s work

was groundbreaking: it demonstrated that accurate chemical analysis could be achieved

non-destructively, with little to no sample preparation, and directly from heterogeneous,

unprocessed samples.

Over subsequent decades, advancements in both instrumentation and computational

techniques have significantly expanded the capabilities of NIR spectroscopy. On the

hardware side, the development of diode-array detectors, microelectromechanical systems

(MEMS), Fabry–Pérot interferometers, and linear variable filters enabled faster acquisition

speeds, broader spectral coverage, and greater portability. The miniaturization of spec-

trometers led to a new generation of field-ready, low-cost NIR devices such as the Viavi

MicroNIR, Si-Ware NeoSpectra, and SCiO sensors. These tools allow real-time, in situ

measurements, making them suitable for on-farm applications and mobile robotics. NIR

devices vary widely in their optical configurations, including dispersive grating systems,

Fabry–Pérot interferometers, and MEMS-based filters. Portable devices like the NeoSpec-

tra, MicroNIR, and SCiO typically operate in a reduced wavelength range but maintain

enough resolution for applications such as forage and grain quality assessment (Table 1.1).

Simultaneously, the evolution of chemometric tools dramatically improved the inter-
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Name Parent Company Origin Min λ (nm) Max λ (nm)

AURORA GRAINIT Italy 950 1650

ALBA GRAINIT Italy 950 1650

NIR4 AuNIR / AB Vista England 950 1750

poliSpec ITPhotonics Italy 900 1700

SCiO VeriFood LTD Israel 740 1070

X-NIR Dinamica-Generale Italy 950 1800

EvoNIR 4.0 Dinamica-Generale Italy – –

ASD QualitySpec
Trek

Malvern Panalytical England 350 2500

Enterprise Scanner Tellspec Inc. Canada 900 1700

MicroPHAZIR RX
Analyzer

Thermo Fisher USA 1596 2396

CompactSpec -
Model EMB

Tec5 Germany 305 1700

FieldSpec Pro Analytical Spectral
Devices

USA 350 2500

NIRQuest 512 Ocean Optics USA – –

Harvest Lab Carl Zeiss Germany 950 1530

Labspec2500 Analytical Spectral
Devices

USA 350 1830

NIRSystem5000 Foss Electric A/S Denmark 1100 2498

FoodScan Foss Electric A/S Denmark 850 1048

AvaSpec-NIR256-2.5-
HSC-EVO

Avantes Netherlands 1100 2500

Table 1.1: List of common NIR spectrometers found in literature.

pretability and predictive power of NIR spectra. Classical methods like principal component

analysis (PCA) and Partial Least Squares Regression (PLSR) have long been the foun-

dation of quantitative NIR calibration [45]. However, more recently, a growing number

of studies have leveraged modern machine learning techniques—including support vector

machines, random forests, artificial neural networks, and gradient boosting algorithms—to

model nonlinear relationships and extract higher-level features from raw spectral data [21].

The integration of unsupervised and semi-supervised learning strategies is also gaining

popularity in applications where reference data is limited or expensive to collect.

NIR spectroscopy is thus distinguished by its core advantages: rapid data acquisition,

minimal sample preparation, portability, and non-destructive analysis. These attributes

define what is now commonly referred to as “Near-Infrared Technology”, encompassing
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not only the spectrometers themselves but also the analytical frameworks, models, and

deployment strategies used to interpret and operationalize spectral data in practical settings.

In agriculture, the adoption of NIR spectroscopy has expanded rapidly over the past

three decades. Applications span a wide range of domains, including soil nutrient profiling,

real-time forage and grain quality assessment, adulteration detection in food products,

and crop maturity estimation [5, 8]. On-the-go sensing systems integrated into harvesters

and mobile platforms have enabled high-throughput, spatially resolved data collection,

laying the groundwork for precision agriculture. The emergence of handheld NIR devices,

coupled with open-source chemometric libraries and cloud-based analytics, has further

democratized access to this technology among producers, agronomists, and researchers

alike.

Despite these advances, the practical deployment of NIR spectroscopy in field conditions

continues to face significant challenges. Environmental variability—such as fluctuations in

ambient light, temperature, and sample heterogeneity—can reduce model transferability

and affect prediction accuracy. Many agricultural decisions also require contextual or

structural information that NIR spectra alone cannot provide. For instance, estimating

particle size, spatial distribution of biomass, or kernel losses during harvesting requires

morphological insight that NIR cannot directly deliver. These limitations have led to

growing interest in fusing NIR data with other sensing modalities—such as RGB imaging,

depth sensors, or thermal imaging—to provide a more holistic view of plant and product

quality.

In this context, the integration of NIR spectroscopy with modern computer vision and

machine learning techniques presents a promising avenue for agricultural sensing. By lever-

aging the complementary strengths of chemical and structural data, and enabling flexible,

model-driven workflows, near-infrared technology is positioned to become a cornerstone of

smart agriculture and sustainable food systems.
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Role of Near-Infrared Spectroscopy in Agriculture

The adoption of Near-Infrared Spectroscopy (NIRS) has accelerated across agricultural

sectors due to its speed, non-destructive nature, and ability to capture biochemical infor-

mation without reagents or intensive sample preparation. NIRS is especially well-suited for

in-field analysis, enabling high-throughput, real-time measurements that support precision

farming decisions.

Applications in Forage, Grain, and Soil Assessment

In forage quality assessment, NIRS is routinely used to predict crude protein (CP), neutral

detergent fiber (NDF), and in-vitro true digestibility (IVTD) — essential indicators for

livestock nutrition. Numerous studies have validated its effectiveness on a wide variety of

forage types, including legumes, grasses, and silage [42, 29]. NIRS enables producers to

monitor feed quality across different harvests and microclimates with high accuracy, often

replacing traditional wet chemistry methods that are costly and time-consuming.

In grains, NIRS is employed to estimate moisture, starch, oil, and protein content,

facilitating post-harvest sorting, breeding decisions, and quality control [11, 17]. It also

supports phenotyping tasks such as identifying drought resistance in corn or characterizing

starch quality in sorghum [51, 32].

NIRS is equally impactful in soil science. It enables rapid estimation of organic carbon,

total nitrogen, pH, and texture classes—parameters traditionally analyzed using expensive

laboratory techniques. Data fusion approaches that combine NIRS with X-Ray Fluorescense

(XRF) or RGB imaging have further improved predictive power, particularly in mapping

soil fertility and moisture [43, 41]. Real-time, vehicle-mounted NIR systems are being used

to generate nutrient prescription maps based on in-situ sensing [44].

Key Advantages in Agricultural Practice

The advantages of NIRS extend across multiple agricultural workflows. Its non-invasive and

reagent-free design makes it environmentally safe and operator-friendly. Spectral data can
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be collected in seconds and processed using pre-calibrated models, allowing near-instant

decision-making. Compared to classical methods, NIRS enables decentralized and repeated

measurements, supporting dynamic monitoring throughout the growing season.

These strengths make NIRS ideal for use in decentralized environments, such as dairy

farms, grain elevators, and autonomous field robots. The versatility of the technique

has spurred applications ranging from forage quality control to soil remediation and crop

breeding.

Miniaturization and Handheld Devices

Miniaturized NIR devices have expanded the accessibility of this technology to non-

specialists. Handheld sensors such as the SCiO, NeoSpectra, and MicroNIR are now being

used directly in the field to measure moisture, fiber, and protein [1, 38, 7]. These devices

are lightweight, battery-operated, and capable of wireless data transmission. They enable

real-time forage quality analysis, pasture monitoring, and silage assessment at the point of

need. A few handheld NIR are present in figure 1.2.

However, several limitations remain. Many handheld devices have reduced spectral range

(typically 740–1700 nm) and lower spectral resolution compared to benchtop systems [4].

Environmental factors such as ambient light and temperature can also degrade prediction

accuracy. Moreover, device-specific calibrations may be required, and model transfer across

units often necessitates additional calibration transfer strategies [9]. Calibration transfer

methods such as Piecewise Direct Standardization (PDS) [2, 13], External Parameter

Orthogonalization (EPO) [40, 25, 23, 50], and Transfer Component Analysis (TCA) [54,

49, 52] are increasingly being explored to align spectral data between instruments. These

techniques aim to reduce the need for extensive recalibration by correcting for spectral

discrepancies caused by hardware differences, enabling more robust and scalable deployment

of predictive models across device types and conditions.
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Figure 1.2: Handheld NIR sensors evaluated in this study. From left to right: NeoSpectra
(1350–2550 nm, Si-ware Systems Inc., Cairo, Egypt) placed on a turntable; Trinamix
(1450–2450 nm, TrinamiX Inc., Ludwigshafen, Germany); and a SCiO Cup (740–1070 nm,
Consumer Physics Inc., Tel Aviv, Israel). Photo credit to Dr. Jerry Cherney.

Toward Real-Time, On-the-Go Sensing

The trend toward real-time agricultural sensing is driving the integration of NIR sensors

into tractors, harvesters, and robotic platforms. These systems can assess crop or soil

properties on the move, enabling continuous quality mapping and adaptive control [46, 30].

On-the-go systems using NIRS are already deployed in self-propelled forage harvesters to

estimate moisture content and yield [6]. Additionally, IoT-integrated systems using NIRS

have been proposed for pasture management and total mixed ration (TMR) analysis [35].

As machine learning and sensor fusion methods mature, NIR technology is expected

to become an even more integral part of digital agriculture. By combining compositional

information from NIRS with morphological insights from imaging systems, researchers

and producers can derive deeper agronomic insights, optimize input usage, and improve

traceability across the food supply chain. In parallel, the emergence of embedded GPU
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platforms—such as NVIDIA Jetson boards—has enabled real-time, on-device processing

of deep learning models. These edge computing solutions are particularly promising for

field-deployed systems, allowing for low-latency decision-making and enabling multimodal

data fusion directly on robotic or mobile sensing platforms. This development further

accelerates the transition toward autonomous, intelligent agricultural diagnostics.

Research Gaps and Challenges

Despite the proven utility of Near-Infrared (NIR) spectroscopy in agricultural applications,

several critical challenges limit its broader adoption, particularly in field-deployed, auto-

mated decision-making systems. While laboratory studies have shown high prediction

accuracy for compositional traits in forages, grains, and soils, these results often fail to

generalize to dynamic on-farm environments. Furthermore, many initial studies treated

NIR as a standalone solution, neglecting the potential benefits of integrating it with com-

plementary data modalities such as RGB imaging, depth sensing, or spatial information.

This section outlines key limitations and identifies underexplored opportunities in the

current literature.

Limitations of Single-Modality Sensing

NIR spectroscopy captures the chemical composition of a sample based on molecular

overtone and combination vibrations. However, it provides little information about physical

structure, morphology, or spatial distribution. This poses a significant limitation in

agricultural scenarios where both chemical and physical attributes affect decision-making.

For example, particle size distribution in processed forage or grain kernel separation in

pre-harvest loss estimation are primarily morphological properties that cannot be inferred

from spectra alone.

Additionally, many quality metrics used in agronomic assessments—such as corn

silage processing score (CSPS), effective fiber, or lodging severity—are influenced by a

combination of structure and chemistry [12]. Relying solely on spectral signatures may
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thus fail to capture the full variance necessary for robust prediction. In the specific case of

CSPS, most existing research relies solely on geometric distributions, kernel size counts,

or image-derived particle metrics to approximate processing quality, without integrating

chemical composition data [10, 34, 36]. This single-modality approach limits the ability

to generalize across environments or machine settings. This gap underscores the need

for multimodal approaches that fuse NIR data with visual or spatial features to improve

prediction robustness and interpretability.

Challenges in Field Deployment of NIR

The high performance of NIR models in laboratory settings does not always translate to

field applications. One primary issue is calibration transferability—models trained under

controlled conditions often degrade when applied to heterogeneous samples collected in

variable lighting, moisture, or temperature environments [4]. For instance, fresh forage

samples collected during harvest may vary significantly in moisture and particle uniformity,

leading to spectral shifts that exceed the tolerance of pre-calibrated models.

Spectral variability is another major challenge. Changes in particle orientation, sample

compaction, or background reflectance can introduce noise and nonlinearities into the

spectra [9, 1]. These sources of variance are difficult to account for using traditional

chemometric models, which are often linear or rely on global normalization. Domain

adaptation and calibration transfer techniques such as piecewise direct standardization

(PDS) [2, 47] and slope/bias correction [48, 22] exist, but their adoption remains limited in

portable or embedded systems due to computational constraints.

Additionally, many field applications demand real-time operation, yet most NIR models

are still optimized for offline analysis. In on-the-go sensing systems, predictions must be

made within milliseconds to support live feedback, which rules out complex or highly tuned

preprocessing pipelines.
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Opportunities in Multimodal Sensing and Machine Learning Integration

A promising direction to overcome the above limitations lies in multimodal data fusion,

particularly the integration of NIR spectroscopy with RGB imaging. RGB data provides

rich contextual information about spatial patterns, texture, and color, which can be

leveraged to complement the chemical insight offered by NIR. Despite its potential, this

approach remains underexplored in the context of forage processing quality and pre-

harvest loss detection. Recent work has shown that combining spectral and visual features

improves generalizability and robustness under field conditions, but comprehensive studies

on multimodal fusion pipelines are still scarce.

Another emerging opportunity is the application of self-supervised learning (SSL) to

agricultural sensing [26]. Most NIR calibration models rely on supervised learning with

expensive and time-consuming reference data [33]. SSL methods—such as contrastive

learning [14, 20, 24], masked reconstruction [31, 16], and cluster-based pretraining [3,

53]—can extract informative representations from unlabeled spectral or image data, re-

ducing dependency on large labeled datasets. These techniques have shown success in

other domains, such as medical imaging and material inspection, but their adoption in

agricultural NIR workflows remains limited.

Finally, agricultural decision systems increasingly require explainability and inter-

pretability, especially in high-stakes environments like nutrient application or harvest

management [39, 19, 27]. Classical linear models like PLSR offer interpretability via

regression coefficients and VIP scores, but they often lack flexibility. Deep models, while

more expressive, are often treated as black boxes. Research on explainable AI (XAI)

techniques for spectral and multimodal data is still nascent in this context [37, 18, 55, 56].

There is a pressing need for models that are not only accurate but also transparent and

trustworthy for domain experts.

Together, these gaps in sensor capability, model robustness, and data representation

reveal a fragmented landscape for deploying NIR in precision agriculture. This dissertation

addresses these challenges through a unified investigation of sensing, learning, and fusion
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strategies, with the ultimate goal of enabling more reliable, explainable, and field-ready

tools for crop quality assessment and harvest decision-making. This gap underscores the

need for multimodal approaches that fuse NIR data with visual or spatial features to

improve prediction robustness and interpretability.

Table 1.2 summarizes representative studies in this space and highlights the key

limitations that motivate the multimodal, self-supervised, and explainable sensing strategies

developed in this dissertation.

Study Modality Application Do-
main

Limitations / Gaps

Drewry et al. (2019) RGB-only Kernel detection in
silage

Uses hand-separated grains for vali-
dation; no field-calibrated CSPS ref-
erence; no chemical data

Rasmussen et al. (2019) RGB-only Forage particle detec-
tion

High-performance model (R-FCN)
but limited to lab images; no field
noise; no NIR or chemical correlation

Rocha et al. (2022) RGB + ML Kernel detection in
forage

Uses whole kernel percentage as a
proxy for CSPS; no spectral features;
relies on lab imagery

Digman et al. (2021) NIR-only Fresh corn silage qual-
ity

NIR device used in situ; strong mois-
ture prediction, but model generaliza-
tion across seasons not tested

Acosta et al. (2020) NIR-only Forage nutritive value Compares handheld NIR vs. bench-
top; does not evaluate multimodal
fusion or field deployment

This work RGB + NIR +
SSL

CSPS estimation, for-
age loss, undried qual-
ity

Combines morphology and chemistry;
uses self-supervised ViT features and
in-field images; interpretable, real-
time fusion models

Table 1.2: Summary of representative literature and corresponding research gaps related
to silage processing, forage quality, and grain loss sensing.

Research Objectives

This dissertation aims to address critical limitations in current agricultural sensing methods

by advancing the application of Near-Infrared (NIR) spectroscopy and integrating it with

complementary sensing modalities and machine learning techniques. The specific objectives

are:

• Evaluate the feasibility of using handheld NIR devices for undried forage
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analysis, with a focus on estimating nutritional traits such as crude protein (CP),

in-vitro true digestibility (IVTD), and fiber content under real-world sampling

conditions.

• Develop a computer vision pipeline to detect and quantify pre-harvest

grain loss in cereal crops, using RGB imagery and deep learning models trained

for fine object detection on in-field images.

• Integrate RGB-derived morphological features with NIR spectra to enhance

the estimation of forage processing quality, including silage particle distribution and

derived metrics such as Corn Silage Processing Score (CSPS).

• Investigate the use of self-supervised learning techniques for visual feature

extraction from RGB images of silage, and assess their fusion with NIR data for

robust and explainable CSPS prediction.

• Demonstrate late fusion strategies and field deployability for real-time

decision support, leveraging model generalization, multimodal robustness, and

explainability as guiding criteria for evaluation.

Organization of the Dissertation

This dissertation is composed of four standalone but thematically connected chapters, each

addressing a unique aspect of optical sensing for crop quality monitoring.

Chapter 2 presents a study on the use of handheld NIR spectroscopy to predict undried

forage quality. The study evaluates the performance of portable NIR devices under field-

relevant moisture and heterogeneity conditions, comparing calibration models against

laboratory references.

Chapter 3 explores pre-harvest loss quantification in small grain crops using high-

resolution RGB imagery. A deep learning-based object detection framework is proposed
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and evaluated for its ability to detect and localize grain losses from field robot-acquired

images.

Chapter 4 focuses on integrating RGB-derived morphometrics with NIR spectra to

estimate forage processing quality. The chapter demonstrates how combining morphological

and chemical data improves predictive performance for Corn Silage Processing Score (CSPS)

estimation.

Chapter 5 investigates the use of self-supervised learning (SSL) to extract semantic

features from silage images. These features are fused with spectral data in a late-fusion

framework to enable robust, real-time, and explainable estimation of CSPS.

Chapter 6 concludes the dissertation by summarizing the major findings, discussing

their implications for future agricultural sensing systems, and outlining possible directions

for future research, including multimodal edge deployment and unsupervised learning

methods for calibration transfer.

By building sensing systems that are robust, scalable, and explainable, this work

contributes toward the broader goal of developing intelligent agricultural platforms capable

of supporting sustainable, data-driven crop and feed management.
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Abstract: This study investigates the efficacy of handheld Near-Infrared Spectroscopy

(NIRS) devices for in-field estimation of forage quality using undried samples. The

objective is to assess the precision and accuracy of multiple handheld NIRS instruments—

NeoSpectra, TrinamiX, and AgroCares—when evaluating key forage quality metrics

such as Crude Protein (CP), Neutral Detergent Fiber (aNDF), Acid Detergent Fiber
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(ADF), Acid Detergent Lignin (ADL), in vitro Total Digestibility (IVTD)and Neutral

Detergent Fiber Digestibility (NDFD). Samples were collected from silage bunkers

across 111 farms in New York State and scanned using different methods (static, moving,

and turntable). The results demonstrate that dynamic scanning patterns (moving and

turntable) enhance the predictive accuracy of the models compared to static scans.

Fiber constituents (ADF, aNDF) and Crude Protein (CP) show higher robustness

and minimal impact from water interference, maintaining similar R2 values as dried

samples. Conversely, IVTD, NDFD, and ADL are adversely affected by water content,

resulting in lower R2 values. This study underscores the importance of understanding

the water effects on undried forage, as water’s high absorption bands at 1400 and

1900 nm introduce significant spectral interference. Further investigation into the

PLSR loading factors is necessary to mitigate these effects. The findings suggest that,

while handheld NIRS devices hold promise for rapid, on-site forage quality assessment,

careful consideration of scanning methodology is crucial for accurate prediction models.

This research contributes valuable insights for optimizing the use of portable NIRS

technology in forage analysis, enhancing feed utilization efficiency, and supporting

sustainable dairy farming practices.

2.1 Introduction

Understanding and managing the nutritional variability of forages is crucial for opti-

mizing dairy farm management and enhancing animal health. The nutritive value of

forages, including alfalfa-grass haylage and corn silage, exhibits considerable variability,

which can influence milk production efficiency and environmental sustainability [12]. Re-

cent advancements have leveraged handheld near-infrared (NIR) spectroscopy devices,

such as the NeoSpectra (1350–2550 nm, Si-ware Systems Inc., Cairo, Egypt), TrinamiX

(1450–2450 nm, TrinamiX Inc., Ludwigshafen, Germany), and Agrocares Scanners F-Series

(1300–2550 nm, AgroCares, Wageningen, the Netherlands). These tools offer rapid on-site

prediction of forage quality, enabling nutritional management by detecting variations in
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forage nutritive values, including dry matter (DM) [19, 8, 10, 9], Crude Protein (CP) [1, 19,

8, 10, 11, 6, 9, 2, 20], and fiber contents and properties, such as actual Neutral Detergent

Fiber (aNDF) [1, 19, 11, 6, 2, 20], Neutral Detergent Fiber Digestibility (NDFD) [10, 11,

6], Acid Detergent Fiber (ADF) [1, 19, 8, 10, 11, 6, 2, 20], Acid Detergent Lignin (ADL)

[19, 10, 11, 6], and in vitro Total Digestibility (IVTD) [1, 10, 11, 6, 20]. By facilitating

daily adjustments to animal diets based on accurate, real-time forage analysis, handheld

NIR devices can significantly enhance the efficiency of feed utilization, reduce environ-

mental impact, and improve the overall profitability and sustainability of dairy farming

operations [8, 4, 17].

The interest in compact, handheld spectrometers for analyses conducted directly on

farms is gaining momentum [3, 19, 25]. These NIR devices have proven to have good

performance on pre-treated samples of dried and ground forage [1]. These portable

spectrometers are becoming more common on machinery used for forage harvesting and

have also been modified for use with other agricultural implements like liquid manure

spreaders [5, 7]. In a study [13], it was found that a portable device (HarvestLabTM

3000, Deere & Company, Moline, IL, USA) could approximate the quality of a mix of

undried forage species, albeit with systematic errors that could be adjusted for accuracy.

An essential element for the effectiveness of NIR technology in these applications is the

development of a reliable calibration.

The utilization of handheld Near-Infrared Spectroscopy (NIRS) devices in forage

assessment aims to permit direct sample analysis without the need for prior sample

processing. This is enabled by calibrations developed for wet, unprocessed forage. However,

deploying these devices faces several obstacles, notably the influence of the moisture

absorption band and sample heterogeneity [16, 21]. Additional operational challenges

of handheld NIRS technology include managing the signal-to-noise ratio, ensuring a

consistent power supply in a portable format, and maintaining functionality amid diverse

and potentially adverse environmental conditions [8, 11].

These studies underscore the practical considerations and performance of handheld
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NIRS instruments in the field. For instance, [11] describes the development of predictive

models for various forage types, highlighting the significant influence of the scanning

methodology on the accuracy of the constituent prediction. Similarly, [8] provides an

assessment of multiple handheld NIR devices, examining their precision and accuracy in on-

farm forage evaluation, with a focus on dry matter content compared to traditional moisture

meters and the robustness of available calibrations for nutritive value determination.

The ongoing development of NIRS technology for forage quality prediction indicates

that miniaturized instruments have similar predictive power as benchtop instruments.

As this technology is increasing in popularity, it is essential to understand if different

portable instruments and scanning patterns affect the quality of the prediction. Thus,

the objectives of this research are as follows:

• To assess the precision and accuracy of multiple handheld Near-Infrared Spectroscopy

(NIRS) devices when used for on-farm forage evaluation, particularly focusing on the

robustness of calibrations for nutritive value determination;

• To examine if different portable instruments and scanning patterns influence the

quality of prediction;

• To evaluate the effects of using dried unground samples for forage quality prediction.

2.2 Materials and Method

2.2.1 Samples and Reference Analysis

Predictive NIRS models were developed using NIRS spectra and laboratory reference

values for 600 silage samples of mixed haylage. Silage samples were collected between

2021 and 2023 from silage bunkers on 111 farms around New York State. After collection,

the samples were vacuum-packed in oxygen-limiting polyethylene bags using a commercial

vacuum packing machine for scanning at a later date.

The acquisition of NIR spectroscopic measurement data was achieved using three

scanners: NeoSpectra (1350–2550 nm, Si-ware Systems Inc., Cairo, Egypt), TrinamiX
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(1450–2450 nm, TrinamiX Inc., Ludwigshafen, Germany), and AgroCares (1300–2550

nm, AgroCares, Wageningen, the Netherlands). The data collected with TrinamiX and

AgroCares reported spectra from 1454 to 2446 nm at a fixed step of 4 nm, while the

NeoSpectra scanner reported spectra from 1350 to 2550 nm at a variable step between 2.5

and 8.8 nm and a wavelength resolution of 16 nm. Each scanner used different detector

types as shown in Table 2.1.

Table 2.1: Instruments and their characteristics.

Property AgroCares F-series TrinamiX NEO Spectra

Detector Type MEMS Linear Variable Filter MEMS-FT-NIR
Spectral Range (nm) 1,450–2,450 1,450–2,450 1,350–2,500
Sample Scanning Contact Contact Contact

Before the scanning process began, all samples were thoroughly mixed in a large plastic

container to ensure homogeneity. All samples were scanned in a controlled laboratory

environment to avoid any interference of humidity or temperature on the scans. Two

primary methods were employed to capture spectra, alongside a third specialized technique.

The first method involved placing the scanner’s lens in direct contact with the sample,

where it remained stationary. The second method required the scanner to be moved

across the sample surface during the scanning period, maintaining continuous contact.

After each scan conducted with the second method, the samples were mixed again to

ensure consistency; this method was tested with the AgroCares and NEOSpectra scanners.

The third technique utilized a rotating dish accessory (Si-ware Systems Inc., Cairo, Egypt)

for the NEOSpectra instrument, allowing the sample to be scanned continuously. These

methods were sequentially applied to each forage sample, with five replicate scans being

collected to ensure accuracy and repeatability.

Post-acquisition, the samples were desiccated using forced-air ovens until a consistent

mass was achieved at 60 °C, subsequently ground with a Wiley mill (Thomas Scientific,

Swedesboro, NJ, USA) through a 1 mm mesh screen, and then stored in plastic containers.

The forage constituents appraised included Neutral Detergent Fiber (aNDF), in vitro Total
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Digestibility (IVTD), Neutral Detergent Fiber Digestibility (NDFD), Acid Detergent Lignin

(ADL), Acid Detergent Fiber (ADF), ash, and Crude Protein (CP), which served as reference

variables for the calibration of Near-Infrared Spectroscopy (NIRS) predictive models.

2.2.2 Wet Chemistry

For the chemical analysis, the methodologies aligned with those delineated in the lit-

erature [22]. Concisely, forage samples were apportioned into ANKOM F57 filter bags

(ANKOM Technology, Macedon, New York, NY, USA) to quantify NDF, ADF, ADL,

and 48-hour IVTD. To alleviate gaseous pressure, the filter bags were intermittently removed

from their respective containers on both the initial and subsequent days. The digestibility

of the Neutral Detergent Fiber was quantified in terms of the percentage of fiber hydrolyzed,

with the values expressed on an NDF basis.

The nitrogen (N) content was measured through a combustion technique using a

LECO CN628 analyzer (DairyOne, Ithaca, NY, USA), with Crude Protein (CP) being

inferred from nitrogen values using the conversion factor of 6.25 as per AOAC guidelines

(1995). Duplicate analyses were performed for all constituents, with nitrogen content being

quantified in duplicate on a select sample subset to establish the Standard Error for the CP

measurement. The laboratory’s Standard Error (SEL) pertinent to these determinations

has been documented in prior studies that used the same samples but with different

instruments and scanning analysis [8, 11].

2.2.3 Model Calibration

To ensure methodological consistency and mitigate the risk of overfitting, uniform data

preprocessing and training protocols were employed across all instrument models. Spectral

data from the NEOSpectra device were interpolated to achieve a consistent interval of 4 nm.

All spectral data were converted to absorbance by employing the logarithmic transformation

of the reciprocal reflectance, denoted as log(1/R). Data preprocessing was standardized

using a Savitzky–Golay filter with a window length of four, a polynomial order of three,
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and a derivation order of one. The algorithm of choice for the modeling was Partial Least

Squares Regression (PLSR), using Python 3.10.12 and the packages scipy (to preprocess

the data) and scikit-learn (to calibrate the PLSR model). In order to have a baseline

model for each predicted variable, we opted to work with PLS-1 to understand how the

scans affected the individual performance of the models. The selection of the optimal

number of latent variables within the range of 1 to 20 was systematically determined using

a grid search.

The dataset was divided into 90%/10% for training with five-fold cross-validation (CV)

and a separate validation dataset, respectively. We randomly selected bunkers to split the

dataset, ensuring that the training and test sets were independent. This approach uses 540

samples for calibration (432 for training and 108 for CV) and 60 samples for testing the

final model, providing a robust evaluation of the model’s generalizability. By having an

external dataset for validation, created as described, we can effectively verify the overfitting

of our model [18]. Overfitting can be identified by comparing performance metrics between

the training and validation datasets. If the model performs significantly better on the

training data than on the validation data or the validation performance deteriorates while

the calibration improves, it is likely overfitting. In our study, we adopt a robust outlier

detection method utilizing Partial Least Squares (PLS) regression tailored for Near-Infrared

(NIR) spectroscopy data analysis. This approach leverages Q-residuals and Hotelling’s

T-squared statistics to identify deviations, ensuring outliers that could skew the model’s

predictive accuracy are effectively recognized, using a 95% confidence level [15]. This

technique provides a systematic way to refine datasets for better analytical outcomes.

2.2.4 Evaluation

The calibration models were evaluated using the standards set forth by Malley et al. [14] and

Williams et al. [24] as shown in Table 2.2. This section details the predictive performance

of the models using a suite of metrics, including root mean square error (RMSE), Bias,

Standard Error (SE), Cross-Validation Standard Error (SECV ), Coefficient of Deter-
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mination (R2), Cross-Validated R2 (R2
CV ), Ratio of Performance to Deviation (RPD),

Cross-Validated RPD (RPDCV ), and the number of latent variables (LV s) employed on

the PLS calibration.

Table 2.2: Calibration classification and level of success according to [14, 24].

Level of Success [14] R2 [14] RPD value [24] Classification [24] Application [24]

Not useful <0.80 <2.0 Very poor Not recommended

Moderately Successful 0.80 to 0.90
2.0 to 2.5 Poor Rough screening
2.5 to 3.0 Fair Screening

Successful 0.90 to 0.95
3.0 to 3.5 Good Quality control
3.5 to 4.0 Very good Process control

Excelent >0.95 >4.0 Excellent Any application

RPD - Ratio of Perfomance to Deviation

We will compare our results with those obtained from various handheld NIRS devices

reported in the literature. Specifically, we will reference studies that utilized different

instruments on both dried and undried materials. For undried and unground material, we

will compare our findings with those from the Aurora device as reported by Cherney et al.

(2021) [8] and the NEOSpectra device as reported by Feng et al. (2023) [11]. For dried and

ground material, comparisons will be made with results obtained using the MicroPHAZIR

(1600–2400 nm, ThermoFisher Scientific, Waltham, MA, USA) and DLP NIRscan Nano

EVM (900–1700 nm, Texas Instruments, Dallas, TX, USA) devices as described by

Acosta et al. (2020) [1], the NEOSpectra device as reported by Digman et al. (2022) [10],

the ASD QualitySpec (350–2500 nm, Malvern Panalytical, Cambridge, UK) and Tellspec

(900–1700 nm, Tellspec Inc., Toronto, ON, Canada) devices as detailed by Rukundo et al.

(2021) [19], and the Aurora (950–1650 nm, GraiNit S.r.l., Padua, Italy), NIR-S-G1 (950–

1650 nm, InnoSpectra, Hsinchu, Taiwan), and SCiO (740–1070 nm, Consumer Physics, Hod

Hasharon, Israel) devices as discussed by Berzaghi et al. (2021) [6]. This comprehensive

comparison will provide a robust context for evaluating the performance and accuracy of

our results and evaluating the impact of using undried materials. In addition, to evaluate

the effects of water absorption, we will analyze the major PLS loading components in
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relation to the water absorption bands as described by Williams [23]. The primary water

absorption bands are detailed in Table 2.3.

Table 2.3: Positions of main absorption bands in water.

Wavelength (nm) 1460 1778 1904 2208 2384
Relative Intensity Large Very Small Very Large Very Small Very Small

2.3 Results and Discussion

2.3.1 Spectral data

The average spectra and range of the 600 samples scanned are shown in figure 2.1, which

presents the mean spectral signatures captured by each instrument. In accordance with

the observations reported by Feng et al. [11], overtone bands attributable to O-H bonds

are discernible at approximately 1,400 and 1,900 nm, which is consistent with the presence

of moisture in the un-dried forage samples. The statistical information of the laboratory

measurements of the constituents is provided in table 2.4.

Table 2.4: Laboratory reference values statistics.

IVTD aNDF NDFD ADF ADL CP

Unit %DM
Count 600
Mean 79.22 50.13 58.84 37.18 7.35 17.62
SD 7.31 10.42 9.39 5.80 2.18 4.43
Min 38.13 28.81 11.40 24.22 3.12 6.12
Median 80.73 48.75 58.50 36.50 7.06 18.04
Max 92.92 81.60 80.87 59.06 20.60 27.72

IVTD - in-vitro Total Digestibility, aNDF - actual Neutral Detergent fiber, NDFD - Neutral
Detergent Fiber Digestibility, ADF - Acid Detergent Fiber, ADL - Acid Detergent Lignin,
CP - Crude Protein, DM - Dry Matter, SD - Standard Deviation
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Figure 2.1: Comparative Analysis of Forage Sample Spectra: This graph illustrates the
mean spectral signatures of forage samples (n = 600) as measured by three different
scanners-TrinamiX (red line - static scan), AgroCares (green line - static scan; blue line
- moving scan), and NEOSpectra (yellow - static scan; cyan - moving scan; magenta -
turntable scan)-utilizing varying methods. Each line represents the average log(1/R) value
across a range of wavelengths from 1400 to 2600 nm. The hue of each line represents the
range between the maximum and minimum measured for each instrument.
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2.3.2 Calibration Results

The calibration outcomes are summarized in Table 2.5. The NEOSpectra device in turntable

mode yielded superior fit models for the calibration set variables ADF, ADL, CP, and aNDF.

With respect to IVTD and NDFD, this device also demonstrated superior performance in

certain metrics while remaining competitive in others. An observation is that both the

moving and turntable scanning modes achieved the best calibration results when utilizing

a greater number of latent variables, suggesting that dynamic scanning captures more

relevant data for model calibration.

Figure 2.2 illustrates the relationship between the number of latent variables (LVs) and

the root mean square error (RMSE) for various instruments and target variables. The

analysis reveals that dynamic scans, represented by moving and turntable configurations,

exhibit less sensitivity to larger number of latent variables. In contrast, static scans

demonstrate signs of overfitting when more than 10 latent variables are used, as indicated

by the deterioration in CV performance, evidenced by increasing the RMSE, despite

improvements in calibration RMSE. This observation underscores the importance of scan

dynamics in mitigating overfitting and enhancing the predictive accuracy of models across

different latent variable configurations. The Explained Variability of the LVs can be found

in Figure A.1 in the appendix. Overall, the improvement using more latent variables are

not that significant for more than 10 LVs, achieving less than one percent improvement in

RMSE.

2.3.3 Validation Results

The validation results are reported in Table 2.6 and summarized in Table 2.7, the perfor-

mance of the NEOSpectra and Trinamix instruments across various modes and variables

is quantified through metrics such as RMSE, SE, R2, and RPD. For the NEOSpectra

instrument, when operating in ’Moving’ mode, CP predictions were moderately success-

ful (R2 = 0.892) with a corresponding RPD of 3.042, leading to a ’Good’ classification.

However, the same instrument’s performance predicting IVTD in the same mode was not
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Table 2.5: Statistical performance metrics for calibration models using 540 samples undried and
unground alfalfa samples across different instruments and modes. The table lists the RMSE, Bias, SE,
SECV , R

2, R2
CV , RPD, RPDCV , and the number of Latent Variables (LVs) for the variables ADF,

ADL, CP, IVTD, and NDFD.

Instrument Mode Variable RMSE Bias SE SECV R2 R2
CV RPD RPDCV LVs

AgroCares
Static ADF 2.754 0.000 2.756 3.379 0.771 0.655 2.090 1.703 10
Moving ADF 1.959 0.000 1.961 2.608 0.884 0.795 2.937 2.208 15

NEOSpectra
Static ADF 2.463 0.000 2.465 2.885 0.817 0.749 2.336 1.996 12
Moving ADF 2.122 0.000 2.124 2.544 0.864 0.805 2.711 2.264 20
Turntable ADF 1.861 0.000 1.862 2.198 0.895 0.854 3.093 2.620 19

Trinamix Static ADF 2.261 0.000 2.263 2.662 0.846 0.786 2.545 2.163 13

AgroCares
Static ADL 1.365 0.000 1.367 1.674 0.591 0.386 1.564 1.277 11
Moving ADL 1.293 0.000 1.294 1.559 0.633 0.468 1.651 1.371 10

NEOSpectra
Static ADL 1.369 0.000 1.371 1.592 0.589 0.445 1.559 1.342 11
Moving ADL 1.242 0.000 1.244 1.460 0.661 0.533 1.718 1.464 18
Turntable ADL 1.175 0.000 1.176 1.450 0.697 0.539 1.817 1.473 20

Trinamix Static ADL 1.405 0.000 1.406 1.608 0.567 0.434 1.520 1.329 10

AgroCares
Static CP 2.010 0.000 2.012 2.306 0.792 0.727 2.195 1.915 9
Moving CP 1.670 0.000 1.672 1.872 0.857 0.820 2.641 2.358 8

NEOSpectra
Static CP 1.843 0.000 1.845 2.140 0.825 0.765 2.393 2.063 11
Moving CP 1.513 0.000 1.514 1.799 0.882 0.834 2.916 2.454 20
Turntable CP 1.328 0.000 1.329 1.601 0.909 0.869 3.322 2.758 20

Trinamix Static CP 1.643 0.000 1.645 1.900 0.861 0.815 2.684 2.324 12

AgroCares
Static IVTD 4.279 0.000 4.283 5.016 0.660 0.533 1.714 1.463 9
Moving IVTD 3.465 0.000 3.469 4.177 0.777 0.677 2.117 1.758 10

NEOSpectra
Static IVTD 4.114 0.000 4.118 4.632 0.686 0.602 1.783 1.585 10
Moving IVTD 3.665 0.000 3.668 4.455 0.750 0.632 2.002 1.648 19
Turntable IVTD 3.409 0.000 3.412 4.195 0.784 0.674 2.152 1.750 20

Trinamix Static IVTD 3.757 0.000 3.760 4.372 0.738 0.645 1.953 1.679 12

AgroCares
Static NDFD 6.534 0.000 6.540 7.744 0.524 0.333 1.450 1.224 10
Moving NDFD 5.653 0.000 5.658 6.862 0.644 0.476 1.676 1.382 10

NEOSpectra
Static NDFD 6.317 0.000 6.323 7.173 0.555 0.428 1.500 1.322 11
Moving NDFD 5.730 0.000 5.735 6.980 0.634 0.458 1.653 1.358 19
Turntable NDFD 5.485 0.000 5.490 6.508 0.665 0.529 1.727 1.457 19

Trinamix Static NDFD 5.390 0.000 5.395 7.081 0.676 0.442 1.757 1.339 20

AgroCares
Static aNDF 3.811 0.000 3.814 4.370 0.863 0.820 2.700 2.356 10
Moving aNDF 3.256 0.000 3.259 3.829 0.900 0.862 3.159 2.689 8

NEOSpectra
Static aNDF 3.243 0.000 3.246 3.752 0.901 0.867 3.172 2.744 15
Moving aNDF 3.007 0.000 3.010 3.573 0.915 0.880 3.421 2.881 20
Turntable aNDF 2.605 0.000 2.608 3.031 0.936 0.913 3.949 3.397 20

Trinamix Static aNDF 2.905 0.000 2.908 3.828 0.920 0.862 3.541 2.689 20

SE - Standard Error, RPD - Ratio of Performance to Deviation, CV - Cross-Validated, LVs - Latent
Variables, ADF - Acid Detergent Fiber, ADL - Acid Detergent Lignin, CP - Crude Protein, IVTD
- in-vitro Total Digestibility, NDFD - Neutral Detergent Fiber Digestibility, aNDF - actual Neutral
Detergent Fiber
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Figure 2.2: RMSE vs Latent Variables for each Variable. This figure shows the root mean squared
error (RMSE) values for different numbers of latent variables across various instruments and
target variables. The RMSE values for both calibration and cross-validation (CV) are plotted for
each instrument, differentiated by color (purple - AgroCares Static, orange - Agrocares Moving,
blue - NEOSpectra Static, green - NEOSpectra Moving, red - NEOSpectra Turntable, brown -
Trinamix Static) and line style (continuous - callibration, dashed - CV).
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useful, with a lower R2 of 0.743 and an RPD of 1.974, reflecting a ’Very poor’ classification.

When utilizing the ’Turntable’ mode, predictions of ADF and ADL yielded a ’Fair’ and

’Very poor’ classification, respectively, indicating a varied efficacy based on the forage

constituent analyzed. In contrast, the Trinamix instrument in ’Static’ mode demonstrated

’Successful’ prediction for aNDF with an R2 of 0.916 and an RPD of 3.452, garnering a

’Very good’ classification. These results reflect the nuanced capabilities of each instrument

and mode combination, emphasizing the importance of selecting the appropriate setup for

specific analytical needs in forage assessment. Figure 2.3 makes it clear that the calibrated

models did not perform well in predicting NDFD, ADL, and IVTD on the validation set

for undried haylage samples.

When calibrated exclusively with static scans, TrinamiX had a better RMSE, SE

and RPD than the NEOSpectra for predicting CP and ADL. These findings concur with

the insights of Feng et al. [11], highlighting the enhanced spectral quality afforded by

moving scans due to their capacity to encapsulate a more generalized and homogeneous

representation of the samples. A closer examination of the calibration data delineated

in table 2.5 reveals a performance hierarchy within the same instrument, with the order

of efficacy being Turntable > Moving > Static. This sequence also correlates with the

increasing number of latent variables that can be utilized in the NEOSpectra scanning

process, thereby suggesting that sliding scans not only improve the spectral quality but

also allow for a better model calibration.

Utilizing the same scanning pattern—whether static, moving, or turntable—tends to

yield comparable calibration performance across different devices, as evidenced by the

minimal variation in the R2 and the RPD values, usually within the same class range of

success, according to table 2.2. This is consistent across most variables, with the notable

exception of Neutral Detergent Fiber (aNDF), where the Trinamix instrument in static

mode achieved an RPD of 3.453, surpassing those of AgroCares at 2.506 and NEOSpectra

at 2.864. The findings thus suggest that the methodology of spectral data acquisition is

more important than the choice of handheld instrument.
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Table 2.6: Validation performance metrics for different instruments operating in Static, Moving,
and Turntable modes. The metrics include RMSE, Bias, SE, R2, Slope, Intercept, and RPD for
the validation of variables ADF, ADL, CP, IVTD, NDFD, and aNDF using a set of 60 samples.
This table facilitates the comparison of model precision and prediction accuracy across diverse
instruments and scanning configurations for the validation dataset.

Instrument Mode Variable RMSE Bias SE R2 Slope Intercept RPD

AgroCares
Static ADF 2.949 -0.150 2.970 0.761 0.973 1.191 2.047
Moving ADF 3.015 -0.654 2.968 0.751 0.928 3.386 2.003

NEOSpectra
Static ADF 2.490 -0.203 2.502 0.830 1.026 -0.805 2.425
Moving ADF 2.283 -0.446 2.258 0.857 0.923 3.374 2.645
Turntable ADF 2.207 -0.193 2.217 0.866 0.946 2.269 2.736

Trinamix Static ADF 2.536 -0.332 2.536 0.824 1.090 -3.124 2.381

AgroCares
Static ADL 2.400 -0.040 2.420 0.109 0.644 2.705 1.059
Moving ADL 2.247 -0.251 2.252 0.219 0.835 1.450 1.132

NEOSpectra
Static ADL 2.050 -0.079 2.066 0.350 0.963 0.356 1.240
Moving ADL 2.013 -0.321 2.004 0.373 1.018 0.194 1.263
Turntable ADL 1.794 -0.178 1.800 0.502 1.040 -0.115 1.417

Trinamix Static ADL 1.961 -0.307 1.953 0.405 1.257 -1.550 1.297

AgroCares
Static CP 2.003 0.356 1.988 0.783 0.893 1.408 2.144
Moving CP 1.729 0.329 1.712 0.838 0.937 0.700 2.484

NEOSpectra
Static CP 1.977 0.333 1.965 0.788 0.997 -0.288 2.172
Moving CP 1.412 0.074 1.422 0.892 0.986 0.150 3.042
Turntable CP 1.517 0.140 1.524 0.875 0.935 0.911 2.831

Trinamix Static CP 1.712 0.101 1.723 0.841 0.925 1.112 2.509

AgroCares
Static IVTD 4.558 -0.709 4.540 0.577 0.862 11.412 1.537
Moving IVTD 4.141 0.010 4.176 0.651 0.857 11.125 1.692

NEOSpectra
Static IVTD 4.040 -0.315 4.061 0.668 0.911 7.270 1.735
Moving IVTD 3.549 -0.262 3.570 0.743 0.927 5.942 1.974
Turntable IVTD 3.550 -0.277 3.569 0.743 0.854 11.650 1.974

Trinamix Static IVTD 4.142 -0.180 4.173 0.651 0.912 7.068 1.692

AgroCares
Static NDFD 8.355 -1.046 8.360 -0.019 0.497 30.314 0.991
Moving NDFD 7.406 -0.232 7.465 0.200 0.645 21.191 1.118

NEOSpectra
Static NDFD 6.515 -0.590 6.543 0.381 0.838 10.082 1.271
Moving NDFD 5.943 -0.164 5.991 0.485 0.952 3.016 1.393
Turntable NDFD 5.544 -0.348 5.579 0.552 0.816 11.202 1.493

Trinamix Static NDFD 7.295 -0.515 7.338 0.223 0.649 21.140 1.135

AgroCares
Static aNDF 4.380 -0.501 4.388 0.841 1.018 -0.462 2.506
Moving aNDF 3.808 -0.865 3.739 0.880 1.020 -0.186 2.883

NEOSpectra
Static aNDF 3.832 -0.713 3.797 0.878 1.050 -1.935 2.864
Moving aNDF 3.494 -0.174 3.519 0.899 0.991 0.666 3.141
Turntable aNDF 3.304 -0.404 3.307 0.909 0.991 0.872 3.322

Trinamix Static aNDF 3.180 0.189 3.201 0.916 1.010 -0.705 3.452

SE - Standard Error, RPD - Ratio of Performance to Deviation, ADF - Acid Detergent Fiber, ADL
- Acid Detergent Lignin, CP - Crude Protein, IVTD - in-vitro Total Digestibility, NDFD - Neutral
Detergent Fiber Digestibility, aNDF - actual Neutral Detergent Fiber
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Figure 2.3: Comparative evaluation of three handheld spectrometers and methods used to
predict nutritional content in feed samples. The different colors and shapes represent readings
from moving, static, or turntable methods of using the AgroCares, NEO Spectra, and TrinamiX
instruments. Each dot represents the pair of reference data and the prediction using the calibrated
PLSR model from the validation set (n = 60). The regression lines for each method showcase the
accuracy and precision in predicting the content of Crude Protein (CP), Neutral Detergent Fiber
(aNDF), Acid Detergent Fiber (ADF), Acid Detergent Lignin (ADL), Neutral Detergent Fiber
Digestibility (NDFD), and In Vitro True Digestibility (IVTD). The dashed black line represents
a 1:1 agreement between the reference and predicted values.
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Table 2.7: Performance of the best model for each predicted variable on the validation set.

Variable RMSE SE R2 RPD Success Classification
Instrument Mode (R2[14]) (RPD [24])

NEOSpectra

Moving CP 1.412 1.422 0.892 3.042 Moderately Successful Good
Moving IVTD 3.549 3.570 0.743 1.974 Not Useful Very poor
Turntable ADF 2.207 2.217 0.866 2.736 Moderately Successful Fair
Turntable ADL 1.794 1.800 0.502 1.417 Not Useful Very poor
Turntable NDFD 5.544 5.579 0.552 1.493 Not Useful Very poor

Trinamix Static aNDF 3.180 3.201 0.916 3.452 Successful Very good

RMSE - Root Mean Squared Error, SE - Standard Error, RPD - Ratio of Performance to Deviation,
ADF - Acid Detergent Fiber, ADL - Acid Detergent Lignin, CP - Crude Protein, IVTD - in-vitro
Total Digestibility, NDFD - Neutral Detergent Fiber Digestibility, aNDF - actual Neutral Detergent
Fiber

Figure 2.4 presents normalized boxplots of prediction errors, facilitating a more nuanced

comparison of calibration performance. Notably, CP, ADF, and aNDF demonstrate the

most favorable results, characterized by minimal bias and RMSE, with most prediction

errors falling within one standard deviation. Conversely, ADL predictions were less accurate,

exhibiting a multitude of outliers, as reflected in Table 2.7, indicating a disparity between

the predicted and observed values.

The standard error of laboratory (SEL) values reported by Cherney et al. (2021) [8]

for the wet chemistry of the same samples indicated errors that are an order of magnitude

lower than the root mean square error (RMSE) values from our results presented in

Table 2.7 (SELaNDF ≤ 0.66, SELADF ≤ 0.70, SELADL ≤ 0.30, SELIV TD ≤ 0.76,

SELNDFD ≤ 2.36, and SELCP ≤ 0.44).

Compared to existing literature, our calibration results are compatible with previously

reported findings. For undried samples, [8] evaluated the Aurora instrument for haylage,

corn silage, and Total Mixed Ration, while[11] assessed the NEOSpectra for corn silage,

alfalfa, grass, and mixed alfalfa and grass silage. Both studies utilized moving scans. As

shown in Figure 2.5, our results with haylage samples exhibit similar characteristics to the

best metrics from the literature, further supporting the notion that dynamic scans often

outperform other methods. Additionally, our findings indicate that ADF, aNDF, and CP

achieve moderately successful to excellent calibrations, whereas IVTD, NDFD, and ADL
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Figure 2.4: The chart presents the normalized distribution of prediction errors on the
validation set for six forage quality variables—CP, NDFD, aNDF, ADL, IVTD, and
ADF—obtained using different spectral scanning instruments and methods. Each boxplot
shows the median, quartiles, and outliers for the prediction error standard deviation (SD)
of each method.

do not yield useful models according to [14] R2 criteria.

As one of the goals of portable NIRS is to be used for in-field forage quality estimation,

it is important to understand how the prediction model performance is affected when

using undried samples. Since water has high absorption bands at 1400 and 1900 nm, it

creates interference in the raw spectrum of the material in the NIR region [23]. Figure 2.6

illustrates how our model performance compares to models calibrated on dried samples.

It is evident that the water content of the samples affects the performance of the models

to varying degrees for all forage quality metrics studied. ADF, aNDF, and CP are less

impacted by water, exhibiting similar R2 values to those of dried materials. In contrast,

IVTD, NDFD, and ADL are severely affected by the water content, resulting in lower

R2 values. Further investigation into how water influences the PLSR loading factors is

necessary to better understand whether these effects can be mitigated.

Figures 2.7 and 2.8 display the first two latent variables that contain most of the

explained variance of the PLS models (Appendix A.1). It is evident that the main absorption
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Figure 2.5: Undried data R2 comparison with Aurora [8], calibrated for haylage, corn
silage, and total mixed ration,and NEOSpectra [11] calibrated for grass, alfalfa, and mixed
silage forages. Both references were sampled using moving scans. The dots represents the
metrics obtained by the references and the stars represents the metrics obtained by our
best model.
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Figure 2.6: Comparison of R2 values from models calibrated on dried samples (literature)
versus our model calibrated on undried samples. Tellspec and ASD QualitySpec [19] were
calibrated for grass. NEOSpectra [10] was calibrated for grass, alfalfa, and mixed silage
forages. Nano and MicroPHAZIR [1] were calibrated for grass forages. NIR-S-G1, SCiO,
and Aurora [6] were calibrated for alfalfa and grass forages. The dots represent the metrics
obtained from the references, and the stars represent the metrics obtained by our best
model.
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bands of water play a role in the loading factors of the latent variables, particularly at the

1904 nm band, where water has a significant absorption peak. These effects arise from the

interactions of water with the O-H groups present in carbohydrates, fats, and proteins,

which can form hydrogen bonds with most types of fiber. These results are consistent with

findings obtained from studies on small grains [23].

Collectively, these analyses underscore the significance of the scanning pattern over the

specific technology or instrument used. The consistency in data acquisition methodology

emerges as a critical factor in the calibration performance, influencing the robustness of

predictive models more substantially than the hardware utilized. Furthermore, the lower

performance of certain variables is likely due to the water’s electromagnetic absorption

and interaction with the undried sample material.

2.4 Conclusions

This study systematically explores the influence of scanning methodology and instrument

design on the efficacy of spectroscopic models in forage analysis. Our findings are derived

from a set of 600 ensiled forage samples collected across New York state. As detailed in

tables 2.5 and 2.6, and summarized in Table 2.7, highlight the importance of the spectral

acquisition technique plays over the specific technical features of handheld NIRS devices.

The consistency observed across the instruments when identical scanning patterns

were employed underscores the methodological influence over technology. Specifically, the

NEOSpectra instrument, when employed in a dynamic mode, demonstrates a significant

advantage in the predictive accuracy for all variables. This suggests that the precision and

reliability of predictions are more heavily contingent upon applying robust and consistent

scanning protocols.

Based on the analysis of Figure 2.2 and Table A.1, we recommend limiting the number of

latent variables to 7-10 to avoid overfitting and ensure future model performance. Although

our results points that 11-20 LVs can have a small improvement in the unseen validation

set, the explained variance of these variables does not improve significantly the results to
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Figure 2.7: Loading values of the first latent variable of the spectrum (first derivative). Instru-
ments are divided by color (AgroCares - blue, NEOSpectra - red, Trinamix - green). The scan
mode are divided by the line style (continuous - static, dashed - moving, dotted - turntable). The
vertical lines are the water absorption bands. Very small absorption bands (1778, 2208, and 2384
nm) in green. Large absorption band (1460 nm) is illustrated in cyan. Very large absorption
band (1904 nm) in purple.
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Figure 2.8: Loading values of the second latent variable of the spectrum (first
derivative). Instruments are divided by color (AgroCares - blue, NEOSpectra - red,
Trinamix - green). The scan mode are divided by the line style (continuous - static,
dashed - moving, dotted - turntable). The vertical lines are the water absorption
bands. Very small absorption bands (1778, 2208, and 2384 nm) in green. Large
absorption band (1460 nm) is illustrated in cyan. Very large absorption band (1904
nm) in purple.
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justify using them. Therefore, a careful balance must be struck between model complexity

and predictive stability.

Comparative analyses, particularly for undried forage, have aligned with findings from

previous literature, confirming the validity of our models within the expected performance

parameters. Moreover, the results have revealed that scanning modes incorporating

movement tend to enhance the homogeneity of the sample representation, which is critical

in achieving high-quality spectral data. When comparing dried and grounded material

calibrations, we can see that fiber constituents and protein are less impacted by water

absorption. However, there remains a knowledge gap in understanding the water interactions

of the undried and unground forage constituents, specifically how water interaction affects

their NIR spectral characteristics. The loadings obtained through partial least squares

regression of the NIR spectra highlight the critical role of variance at wavelengths associated

with O-H absorptions in constructing models for these materials. The behavior of water

within complex agricultural substances is expected to differ from that of liquid water.

Figure 2.3 and Figure 2.4 provide visual confirmation of the comparative and error

distribution analyses, respectively, illustrating the nuanced performance across different

forage constituents and underscoring the models that exhibit both high accuracy and those

with room for improvement

In summary, this research affirms the importance of the scanning pattern in developing

robust near-infrared spectroscopic models. It contributes valuable insights that may guide

practitioners in selecting the most suitable instruments and modes for forage quality

assessment. As the field advances, future studies should further refine these methodologies,

optimizing the balance between technological innovation and practical application for

enhanced forage analysis. Evaluation of embedded NIR sensors in agricultural machinery

to predict forage quality and properties is one of the path forward to undried forage

research.
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Abstract: Traditional methods for measuring pre-harvest loss, such as using quadrats,

are labor-intensive and provide sparse data coverage.This study proposes an automated

approach that leverages computer vision to replace and enhance the current method,

using advanced imaging technologies and deep learning methodologies to detect and

quantify pre-harvest losses in grain crops. Specifically, the methodology employs a

camera mounted on the front snout of a ground vehicle, allowing continuous image

capture along the crop rows. By automating image collection and analysis, this

approach provides denser spatial coverage across the field, reduces errors associated
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with manual sampling and human judgment, and significantly accelerates the process

compared to traditional quadrat sampling. In addition, this approach offers the

potential to segregate different types of pre-harvest loss, such as natural shattering

versus losses caused by mechanical disturbance, providing a level of granularity not

achievable with conventional quadrat methods. By leveraging state-of-the-art object

detection architectures the system is designed to handle the complex visual environment

of the field floor, where grains may be obscured by crop residue, shadows, and similarly-

colored objects such as stones. This capability represents a significant advancement

over traditional methods, which cannot distinguish between these different loss sources.

The images were annotated using the Segment Anything Model (SAM) to ensure

consistency and accuracy across the dataset.

Several state-of-the-art models were trained and evaluated on the collected data,

including Mask RCNN, YOLOX, DETR, and a modified YOLOv8-p2. The modi-

fied YOLOv8-p2 model, which incorporated a p2 head to improve the detection of

smaller objects, outperformed the others, yielding the highest Precision, Recall, and

F1 scores on both the soybean (Precision=0.727, Recall=0.694, F1=0.710) and wheat

(Precision=0.709, Recall=0.688, F1=0.698) datasets. Integrating the 850 nm NIR

image channel did not produce a meaningful boost in performance, as evidenced by

the soybean (Precision=0.741, Recall=0.689, F1=0.715) and wheat (Precision=0.729,

Recall=0.690, F1=0.709) results.

This research demonstrates that it is possible to integrate a vision system on the header

of a combine and identify the initial shedding loss in the field. Future work will focus

on refining the models further, exploring their applicability to other crop types, and

integrating real-time processing and automation in data collection and analysis.

3.1 Introduction

Small grain crops, such as wheat, soybeans, and oats, are crucial to global food security

[2]. Pre-harvest loss can result from various factors, including climatic conditions, pest

infestations, diseases, and inadequate agricultural practices (e.g., improper fertilization

schedules, poorly timed pesticide applications, or inadequate crop rotation practices). In
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2018, an estimated 26-30% of the soybean and wheat total possible biological product was

lost due to pre-harvest factors [30]. Developing better methods for quantifying these losses

across the supply chain is essential for designing effective mitigation strategies, optimizing

resource allocation, and reducing economic losses for farmers while improving food security.

The current standard for measuring pre-harvest loss from shedding involves using a

quadrat of 1 m2 and manually counting the loss within this area [20]. This method results

in sparse measurements across the field and is labor-intensive. Additionally, in some crops,

such as wheat, the physical presence of the observer in the field can cause additional losses

due to plant disturbance, leading to measurement bias. In some crops, such as wheat, it

is difficult to walk over the crop and measure the loss with a quadrat without causing

additional losses.

Measurement of field pre-harvest shedding loss in conjunction with post-harvest loss

provides an understanding of its contribution to total crop loss, which is essential to

determine harvest machine loss (viz. header, threshing, and separating) [30]. Quantifying

the loss before and after harvesting makes it possible to isolate the specific contribution of

machine losses to the overall loss of the crop. This approach is crucial because post-harvest

field loss has already been demonstrated to be measurable, as indicated by previous studies

[32]. However, post-harvest assessments often rely on combine yield loss monitors, which

estimate losses through impact sensors mounted on straw walkers and sieves. These

systems provide real-time feedback to operators but are limited by sensor accuracy, field

variability, and challenges in detecting unthreshed grain loss [3, 7]. Integrating pre-harvest

loss measurements with post-harvest assessments allows for identifying inefficiencies and

areas for improvement in harvesting technology, ultimately leading to reduced losses and

increased efficiency in agricultural practices.

Despite its importance, there is a lack of standardized, efficient, and accurate methods

for quantifying pre-harvest loss in small grain crops. The existing method is too labor-

intensive and does not represent the variability across the field [20]. Additionally, the

observer can cause measurable losses as they interact with the crop. Furthermore, current
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loss estimation methods, including combine yield loss monitors, do not account for pre-

harvest loss, leading to potential underestimation of total yield loss. This methodology

gap hinders agricultural manufacturers’ ability to optimize the harvester and for farmers

to understand how their management practices affect shedding losses.

Recent advancements in machine learning and computer vision in agriculture could be

leveraged for predicting pre-harvest losses in small grains. Previous studies have explored

the use of remote sensing and machine learning to monitor crop health [36, 44] and detect

stress factors [37, 14]. Other works have demonstrated the effectiveness of deep learning

models in identifying specific crop diseases [21, 25, 43] and pests[48, 12], contributing to

more efficient management practices. Additionally, the integration of UAVs or ground-

based systems for comprehensive field analysis has been increasingly adopted, showing

promising results in precision agriculture [17, 4, 35, 38, 9]. For object detection, the fusion

of RGB-NIR images has been used to increase the deep learning model’s performance [10,

52, 29, 54].

This study explores the strengths and limitations of aerial and ground-based imaging

for pre-harvest loss detection. Aerial imaging provides broader spatial coverage and efficient

large-scale data collection, while ground-based imaging offers higher resolution at the soil

surface, essential for detecting small grains obscured by crop residue or soil texture. By

comparing these approaches, the study evaluates their practical feasibility, accuracy, and

operational trade-offs for pre-harvest loss quantification. This directly addresses the lack

of consensus in prior work [17, 4, 35, 38, 9] regarding the optimal sensing platform for

field-level crop monitoring, particularly for detecting fallen grains.

Beyond these, recent advances in object detection architectures offer further potential

for enhancing pre-harvest loss detection. Roy and Bhaduri [40] proposed a real-time

growth stage detection model based on DenseNet-fused YOLOv4, designed to handle high

degrees of crop occultation, which is particularly relevant for field-based imaging under

natural occlusion. In a related work, Roy et al. [41] developed a fine-grain object detection

model by modifying YOLOv4, integrating DenseNet for improved feature transfer and
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reuse, demonstrating superior accuracy in detecting plant diseases. Further refinement

of this approach led to DenseSPH-YOLOv5, which combines DenseNet with a Swin-

Transformer prediction head, incorporating attention mechanisms to enhance damage

detection in complex environments [39]. Jiang et al. [23] introduced a novel multiple graph

learning neural network (MGLNN), capable of learning from multiple graph structures

simultaneously, highlighting the potential of graph-based approaches for handling multi-

view or multi-sensor data in agricultural monitoring. These technological advancements

present an opportunity to develop automated pre-harvest loss detection systems that can

complement or surpass existing loss monitoring techniques.

In the context of grain detection, deep learning research has shown significant advance-

ments in recent years. Sun et al. [46] successfully counted rice grains from panicles using

YOLOv7, while Geng et al. [16] developed a U-Net-based model to count grains from wheat

spikes. James et al. [22] introduced GrainPointNet, a method designed to predict grain

counts from high-resolution point clouds. Lin and Guo [28] and Mosley [33] applied aerial

imaging to count sorghum panicles directly from plants, demonstrating the effectiveness of

computer vision for above-canopy detection.

Beyond these studies, several other works have further advanced grain and spike

detection in more complex field conditions. Wen et al. [49] introduced SpikeRetinaNet,

an optimized version of RetinaNet tailored for detecting and counting wheat spikes,

incorporating a weighted bidirectional feature pyramid network (BiFPN) and focal loss

to enhance performance in real-world field environments. Hasan et al. [18] leveraged

region-based convolutional neural networks (R-CNNs) trained on the SPIKE dataset to

detect and quantify wheat spikes, achieving detection accuracies between 88% and 94%

across various growth stages. Zhao et al. [53] further refined the YOLOv5 framework to

enable fast and precise identification of wheat grain flaws, demonstrating its potential for

real-time quality assessment. For soybean quality evaluation, Momin et al. [31] employed

machine vision algorithms based on hue-saturation-intensity (HSI) color models to segment

images and detect dockage fractions, achieving defect identification accuracies of up to
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98%. Wu et al. [50] also applied deep learning to enumerate wheat grains under varying

scenarios and scales, further emphasizing the role of deep learning in yield estimation.

While these studies illustrate the potential of deep learning and computer vision to

automate labor-intensive processes and improve grain detection and quality analysis, they

predominantly focus on controlled environments or on grains and spikes that remain

attached to the plant, where aerial imagery offers a clear visual advantage. In contrast,

pre-harvest loss detection introduces unique challenges, including crop shadowing, canopy

occlusion, and the presence of visually similar objects (e.g., stones and shades), all of which

complicate the reliable identification of fallen grains on the soil surface. These additional

complexities highlight the need for specialized approaches tailored to ground-level imaging

in post-lodging or pre-harvest contexts.

Our proposed solution uses imaging technologies and deep learning to detect and quantify

pre-harvest losses. This approach integrates high-resolution RGB and NIR imaging, and we

compared the data quality of aerial and ground data collection platforms. By leveraging a

multi-modal approach, combining uncrewed aerial vehicle (UAV) or uncrewed ground vehicle

(UGV)-based imaging, the system aims to provide a more comprehensive and scalable

alternative to traditional loss monitoring methods, providing more accurate pre-harvest

loss estimations. Additionally, by distinguishing between different types of pre-harvest

losses — such as natural shattering versus losses caused by mechanical disturbance — this

method offers a level of granularity that is not possible with the current quadrat-based

technology. When aggregated with post-harvest loss measurements, this segregation of

pre-harvest loss sources may lead to more accurate estimations of total machine yield loss

and a better understanding of the contributing factors.

The objectives of this study are:

1. Develop a computer vision-based method to replace the traditional quadrat-based

approach for measuring pre-harvest loss, enabling automated, scalable, and more

precise loss estimation.

2. Introduce the ability to segregate pre-harvest loss sources, providing additional
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insights into the origins of grain loss that are currently not captured by existing

methods.

3. Evaluate different methods for pre-harvest shedding loss data acquisition.

4. Develop a robust dataset comprising RGB and NIR images of wheat and soybean

crops.

5. Implement state-of-the-art deep learning models for the detection and quantification

of pre-harvest losses.

6. Validate the models in real-world conditions using an action camera mounted on a

harvester.

3.2 Materials and Methods

3.2.1 Platforms and Equipment

Aerial Images

To capture overviews of the crop fields, we utilized a DJI Inspire 2 drone equipped with a

Zenmuse camera (DJI-X5, DJI, Shenzhen, Guangdong, China). This setup enabled the

collection of a dataset comprising 5145 images of soybean images (5145 images). The

images were taken at three different heights— 1.52, 3.05, 4.57, and 6.10 meters above the

ground—to ensure diverse perspectives and coverage of the fields. The primary objective

of using aerial images was to obtain a broad view of the crop conditions and evaluate the

feasibility of detecting pre-harvest loss at different heights.

Handheld Cameras

Handheld cameras were employed to capture both Near-Infrared (NIR) and RGB images.

Images were taken at a height of 0.3 m, focusing on the details of grain shedding. This

method allowed the collection of high-resolution data essential for identifying minute details
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not visible in aerial images. The handheld cameras used were XNite Canon ELPH180

(Canon Inc., Tokyo, Japan), with one modified to produce BG-NIR images (680-800 nm).

Rover-based System

A UGV (Husky, Clearpath Robotics, Kitchener, Ontario, Canada) equipped with a stereo

camera (RealSense D435i, Intel, Santa Clara, California, USA) adapted to collect ground-

level data (Figure 3.1). This rover-based system captured both RGB and IR images at

heights of 15 cm and 20 cm. The primary purpose of this setup was to navigate between

rows of crops, providing a ground-level view that could reveal additional insights into

pre-harvest loss and generate the raw dataset for training a deep learning model for object

detection and recognition. The UGV also had an adjustable track width from 0.40 to 0.80

m, allowing it to be adapted to different crop row spacings.

A snout was fabricated to protect the camera and provide artificial light using a 15 cm

LED light bar (VEHICODE 6, VEHICODE, California, USA) and an IR Illuminator (850

nm, (Univivi, Hong Kong, China)) (Figure 3.2). Images were also collected at different times

of day during summer (Morning, Afternoon, Night) to assess the system’s performance

under various lighting conditions.

Figure 3.1: Left Image: UGV (front) and a row-crop tractor (Back). Right image: UGV
(left) and a row-crop tractor (right). The UGV is equipped with a RealSense D435i
camera and fabricated snout for protection and lighting, which is used for ground-level
data collection. The John Deere Tractor provides a reference for the scale and utility of
agricultural machinery.
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Figure 3.2: Fabricated UGV snout equipped with a RealSense D435i camera, a 15 cm LED
Light Bar, and an IR Illuminator (850 nm). The snout provides protection for the camera
and artificial lighting for improved image quality under various lighting conditions.

Action camera on Harvester

To validate the trained models in real-time, an action camera (Hero 11, GoPro Inc., San

Mateo, California, USA) was mounted on a header (Model 3020-30, Case-IH, Racine,

Wisconsin, USA) between the two center sickle sections the camera located with a metal

bracket orienting it parallel to the direction of travel and 0.15 m above the ground (Figure

3.3). This setup was used to record videos during the harvesting process, which were later

used to assess the model’s performance in actual field conditions. The video data provided

a dynamic evaluation of the model’s utility to detect pre-harvest loss.
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Figure 3.3: Action camera mounted on the harvester capturing video during the harvesting
process. The video data is used to validate the trained models’ performance in detecting
pre-harvest loss in real-time field conditions.

3.2.2 Data Collection Procedures

Aerial Survey

Aerial images were systematically captured by flying the DJI Inspire 2 drone over the

designated soybean fields at heights of 1.52, 3.05, 4.57, and 6.10 meters in October of 2021,

on the harvest week at West Madison Agricultural Station (Madison, Wisconsin, USA,

43.061°N, 89.533°W). The flights were conducted in a grid pattern to ensure comprehensive

coverage and minimize any gaps in the data having 70% overlap.

Manual Survey

Handheld cameras were used to take close-up images of the soybean crops at a height of

0.30 m in the same time period at Arlington Research Station (Arlington, Wisconsin, USA,

43.303°N, 89.346°W). This process involved manually navigating through the fields and

capturing images whenever losses were observed to ensure a representative sample of the

objects to be detected.
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UGV Survey

The UGV, equipped with a RealSense D435i camera, was deployed to navigate between

rows of crops. The images were captured at heights of 15 and 20 cm above the ground,

providing a ground-level perspective that complemented the aerial and handheld images.

The rover logged images at a rate of 30 frames per second at a resolution of 640 by 480

pixels, along with the robot’s odometry data, which allowed us to estimate the navigated

distance. This setup enabled the extraction of images from the log at intervals of every 1

meter, avoiding overlapped images.

The UGV was used to collect data for wheat and soybean in the Summer and Fall of

2023, at Arlington Research Station (Arlington, Wisconsin, USA). Data was collected by

systematically navigating between crop rows at predetermined intervals, capturing both

RGB and IR images at ground-level heights as described previously. The rover’s adjustable

track width ensured compatibility with varying row spacings, and the onboard lighting

system, including LED bars and IR illuminators, enabled consistent image acquisition

under diverse ambient lighting conditions. Images were recorded continuously as the UGV

traversed the field, and location data (odometry and GPS) facilitated the spatial mapping

of collected images. To minimize redundant data and ensure balanced coverage of the

study area, images were extracted from the video logs at fixed spatial intervals. Data

collection extended from the period immediately before the fields were scheduled for harvest

and continued for two subsequent weeks to capture conditions representative of a late

harvest scenario. This approach allowed for a comprehensive and high-resolution dataset

encompassing different growth stages, lighting scenarios (morning, afternoon, and night),

and environmental conditions encountered throughout the summer and fall seasons.

Illumination Survey

We curated a UGV-based dataset of wheat images captured under both natural daylight

and artificial illumination conditions during the Summer of 2023. Natural daylight images

were recorded at various times throughout the day. In contrast, artificial illumination
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images were collected by enclosing the camera’s field of view within a box, thereby isolating

it from ambient light. This setup yielded three distinct datasets designed to assess how

daylight and shadows influence model performance:

• Wheat Noon Dataset: Acquired around midday under natural daylight supple-

mented by the artificial lighting system.

• Wheat Controlled Dataset: Captured concurrently with the Wheat Noon dataset

but with the camera enclosed in a box to block ambient light, resulting in a set of

images paired with Wheat Noon.

• Wheat Night Dataset: Collected after 6 PM under naturally reduced daylight

conditions in combination with artificial illumination.

To assess the influence of environmental conditions on model performance, we will

compute per-image performance metrics (True Positives, False Positives, False Negatives,

Precision, Recall, and F1-score) for each dataset. After evaluating the normality of these

distributions, we will apply appropriate statistical tests: a paired comparison (Wilcoxon

signed-rank) between the Noon and Controlled datasets, and independent comparisons

(Mann–Whitney U) involving the Night dataset. To control for Type I error across multiple

comparisons, we will adjust p-values using the Bonferroni correction.

On-board Survey

For the validation phase, a GoPro camera was mounted on the front of the harvester at 20

cm above the ground. The camera recorded videos during the harvesting process with the

combine at a speed of 2.25 km/h at a wheat plot in Arlington Research Station, capturing

real-time data that was later used to validate the model’s predictions.
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3.2.3 Data Annotation

Annotation Tools and Process

The Segment Anything Model (SAM) [24] was utilized for data annotation due to its

efficiency in creating standardized masks. Annotators labeled the following:

• Wheat Crops: Spikes, grains, and husks (palea, glume, lemma) found on the ground.

• Soybean Crops: Grains and pods present on the ground.

Three annotators participated, with one overseeing and verifying the final annotations

to ensure consistency and quality. All annotators and overseers have biological systems

engineering background. The limited bumber of overseers who review the annotations may

create a labeling bias.

Consistency, Quality Control, and Challenges

Consistency was achieved using SAM to create uniform masks and a supervision mechanism

to verify all final annotations. The main challenges included ensuring annotation uniformity

across multiple annotators and minimizing the impact of natural light variations. To address

these, we employed SAM for standardization, designated a supervisor for quality checks,

and designed the snout to reduce external light effects. Testing under varying daylight

conditions further optimized image quality.

3.2.4 Detection and Localization

This section describes the training process for the models used in detecting and localizing

pre-harvest loss. The training was conducted on the following hardware:

• Processor: AMD Ryzen 9 7950X 16-Core Processor

• Operating System: Ubuntu 20.04.6 LTS

• Memory: 64 GB DDR4 RAM
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Figure 3.4: YOLOv8 Backbone - custom CSPDarknet53 with cross-stage partial connec-
tions.

• Graphics Card: NVidia RTX 4090 24GB

• NVidia Driver: 520.61.05

• CUDA Version: 11.8

The models trained for this study included Mask RCNN [19], YOLOX [15], DETR

[8], and a modified YOLOv8-p2, which incorporates the P2 layer detection from YOLOv8

backbone (Figure 3.4) to enhance the detection of smaller objects [13]. These models

were selected due to their status as state-of-the-art in object detection, providing robust

capabilities for accurately identifying and localizing pre-harvest losses in various crop

images. The training process involved fine-tuning each model to optimize performance

on the dataset, ensuring that even minor instances of pre-harvest loss were accurately

detected. In addition, the NIR channel was included to evaluate if there are improvements

to the detection.

Each model was trained using pre-trained models on the COCO dataset [27] (118,000

images) and fine-tuned on our training dataset for 30 epochs. The batch size was set

to 1. Data augmentation techniques included saturation adjustments between -25% and

+25%, blurring up to 1.5 pixels, and mosaic augmentation. These augmentation strategies

were employed to enhance the models’ utility to generalize across different lighting and
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environmental conditions in the dataset. All models re-scaled images to 640×640 prior to

inference.

The training process involved fine-tuning each model to optimize performance on the

dataset, ensuring that even minor instances of pre-harvest loss were accurately detected.

Data were split into 70% for training, 20% for validation, and 10% for testing.

BoT-SORT was utilized to track and count pre-harvest losses in the validation videos

obtained from the GoPro [1]. This method was selected for its efficiency and accuracy

in object tracking with easy integration with deep learning models for object detection,

making it suitable for evaluating the model with the best performance.

3.3 Metrics

In this study, the performance of our models using Precision, Recall, and F1-score was

evaluated. These metrics are widely used in object detection and classification tasks to

provide a comprehensive assessment of model performance.

3.3.1 Precision

Precision is defined as the ratio of true positive detections to the total number of positive

detections (true positives and false positives). It measures the accuracy of the model in

identifying only relevant instances.

Precision =
True Positives

True Positives + False Positives
(3.1)

3.3.2 Recall

Recall, also known as sensitivity, is the ratio of true positive detections to the total number

of actual positives (true positives and false negatives). It evaluates the model’s ability to

identify all relevant instances.

Recall =
True Positives

True Positives + False Negatives
(3.2)
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3.3.3 F1-score

The F1-score is the harmonic mean of Precision and Recall. It provides a single metric

that balances both Precision and Recall, it is particularly useful when there is an uneven

class distribution.

F1-score = 2× Precision× Recall

Precision + Recall
(3.3)

3.4 Results and Discussion

3.4.1 Collected Data

The collected data for soybean and wheat datasets are summarized in Tables 3.1 and

3.2, respectively. For soybean, images were captured at various heights using manual and

automated navigation methods. The wheat dataset was collected using a modified snout

on the UGV, capturing images at two different heights.

Table 3.1: Soybean 2022 Fall Data Collection

Crop Height Navigation NIR Images RGB Images

Soybean 5 ft Manual 1784 1136
Soybean 10 ft Manual - 75
Soybean 16 ft Auto - 1002
Soybean 20 ft Auto - 209
Soybean 1 ft Handheld 400 538

Table 3.2: Wheat Data Collection

Crop Mode Navigation NIR Images RGB Images

Wheat Snout 6” UGV 4714 2357
Wheat Snout 10” UGV 3746 1873

Figures 3.5a and 3.5b provide visualizations of the datasets. These figures illustrate

the distribution of instances, bounding box sizes, and spatial distribution of bounding

box centers for the soybean and wheat datasets, respectively. As we can have some false
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detections of losses of spikes or pods that are still attached to the plant, we can create

filters based on the area of the objects and the location of the bounding boxes, ensuring

the detections will occur mainly at middle of the rows. for size distributions, we removed

any detection that has more than one standard deviation apart from the mean.

(a) Soybean Dataset. Classes: Grain and
Pod.

(b) Wheat Dataset. Classes: Grain, Husk
and Spike.

Figure 3.5: Visualization of the datasets. Top-left: Number of instances for each class. Top-
right: Distribution of bounding box sizes. Bottom-left: Spatial distribution of bounding
box centers (x, y). Bottom-right: Distribution of bounding box widths and heights.

3.4.2 Aerial versus Ground data

Figure 3.6: Comparison between images acquired by UAV (left) and UGV (right). Back:
NDVI and NIR images. Front: RGB images.
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The images acquired from the UAV at a 1.5 m altitude (Figure 3.6) lacked sufficient

resolution to clearly distinguish grains, debris, or subtle shading variations on the ground.

Additionally, the downwash generated by the UAV caused significant disturbance to the

crop, potentially dislodging pods or grains. In contrast, the imagery captured by the UGV

provided a clearer and more detailed view of the ground, making it possible to annotate

losses accurately. Therefore, for pre-harvest loss detection, we opted to use UGV imagery.

3.4.3 Performance Metrics

The performance of the detection models was evaluated using Precision, Recall, and F1-

score. Table 3.3 summarizes these metrics for each model on the soybean and wheat

datasets.

Table 3.3: Performance Metrics of Models on Soybean and Wheat Datasets

Dataset Model Precision Recall F1-score

Soybean Mask RCNN 0.676 0.674 0.675
Soybean Mask RCNN + NIR 0.677 0.692 0.684
Soybean YOLOX 0.579 0.207 0.305
Soybean YOLOX + NIR 0.575 0.210 0.307
Soybean YOLOv8 0.707 0.512 0.594
Soybean YOLOv8 + NIR 0.723 0.531 0.613
Soybean YOLOv8-p2 0.727 0.694 0.710
Soybean YOLOv8-p2 + NIR 0.741 0.689 0.715
Soybean DETR 0.299 0.592 0.396
Soybean DETR + NIR 0.292 0.612 0.396

Wheat Mask RCNN 0.405 0.315 0.355
Wheat Mask RCNN + NIR 0.418 0.335 0.372
Wheat YOLOX 0.337 0.182 0.237
Wheat YOLOX + NIR 0.327 0.190 0.240
Wheat YOLOv8 0.697 0.566 0.624
Wheat YOLOv8 + NIR 0.712 0.584 0.642
Wheat YOLOv8-p2 0.709 0.688 0.698
Wheat YOLOv8-p2 + NIR 0.729 0.690 0.709
Wheat DETR 0.178 0.165 0.171
Wheat DETR + NIR 0.191 0.158 0.173

The results indicate that the modified YOLOv8-p2 model outperformed the other models

in both the soybean and wheat datasets, achieving the highest F1 scores. This suggests
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that incorporating the p2 head significantly enhances the detection of smaller objects,

especially for the recall, indicating fewer false negatives will occur. The performance of the

models did not show a significant improvement when introducing the NIR imagery (850

nm), indicating that this NIR frequency does not provide enough additional information

to the RGB images.

Figure 3.7: Detection of soybean pods on the ground using the modified YOLOv8-p2
model. The detected pods are highlighted with bounding boxes and labeled with confidence
scores. The color of the bounding boxes indicates different detected instances, aiding in
distinguishing between multiple objects in the image.

The integration of BoT-SORT with YOLOv8-p2 for tracking and counting objects

improved the results using the validation videos obtained from the on-harvester Go Pro

camera. The inference speed of YOLOv8-p2 was 30ms, meaning it is capable to process 33

frames per second. The precision of the header-mounted camera was 80% and recall of

85%, resulting in a F1 score of 82.42%.
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Illumination Results

We assembled three distinct datasets, each containing 117 paired RGB and NIR wheat

images captured under both natural daylight (Summer 2023) and artificial illumination

(Figure 3.8). These datasets, not included in the training process, were used to assess

the performance of the YOLOv8-p2+NIR model. As shown in Table 3.4, we examined

the models’ ability to detect wheat-related objects under varying illumination conditions,

thereby providing insights into their robustness and generalization capabilities.

(a) Wheat Noon Dataset image under day-
light illumination. Image taken at a noon of
Summer 2023.

(b) Wheat Controlled Dataset image under
artificial illumination. Image taken at a noon
of Summer 2023.

(c) Wheat Night Dataset sample acquired
under natural illumination during late har-
vesting conditions. Image taken after 6 PM
of Summer 2023.

Figure 3.8: Representative images from the curated wheat dataset. These examples
illustrate various illumination conditions—daylight and artificial lighting—captured during
Summer 2023 and late harvesting periods. Such diversity supports robust object detection
and recognition tasks.
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Table 3.4: Performance Metrics of Models Wheat Dataset for Illumination

Dataset Model Precision Recall F1-score

Wheat Noon YOLOv8-p2 + NIR 0.560 0.551 0.524
Wheat Controlled YOLOv8-p2 + NIR 0.628 0.591 0.582
Wheat Night YOLOv8-p2 + NIR 0.640 0.598 0.594

For each image in each dataset, we determined the True Positives, False Positives, and

False Negatives, and subsequently calculated individual Precision, Recall, and F1-scores.

A Shapiro-Wilk normality test analysis indicated that the metric distributions were non-

normal (p-value< 0.05). To evaluate whether there were statistically significant differences

in mean F1-scores across the various illumination conditions, we conducted a Wilcoxon

signed-rank test (paired) for the Noon vs. Controlled comparison, and Mann–Whitney

U tests (unpaired) for Night vs. Noon and Night vs. Controlled. Due to the multiple

comparisons, we applied a Bonferroni correction to adjust the p-values, ensuring a more

rigorous control of the overall Type I error rate. The results are summarized in table 3.5.

From the results, a statistical difference was not observed in performance between the

dataset taken after 6 PM with presence of natural light and artificial light and the dataset

taken using a controlled environment with only artificial lights. However, daylight (as in

the Noon dataset) had a statistically significant impact on precision, suggesting that the

model may generate more false positives under bright and shadow-heavy conditions, which

in turn affects its F1-score. The recall does not provide a statistical difference, meaning

that the number of false negatives are not statistically different between all datasets.

3.4.4 Discussion

The results demonstrate that the modified YOLOv8-p2 model provides better performance

in detecting pre-harvest losses in small grain crops compared to other state-of-the-art

models. The utility to accurately detect and quantify these losses can significantly aid in

understanding the impact the harvester has on field losses. The proposed methodology

of using on-harvester imaging and deep learning models presents a scalable and reliable
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Table 3.5: Statistical test results for Precision, Recall, and F1-score across Wheat datasets
(Noon, Controlled, Night). Normality p-values (Shapiro–Wilk) are provided for each
dataset, followed by adjusted p-values (Bonferroni correction) for the paired (Wilcoxon)
and independent (Mann–Whitney U) tests.

Normality p-values Adjusted p-values (Bonferroni)

Metric Noon Controlled Night
Noon vs
Controlled

Night vs
Noon

Night vs
Controlled

Precision 0.0289 0.0199 0.0128 0.0030 0.0033 0.9981
Recall 0.0084 0.0418 0.0391 0.1213 0.2239 0.8201
F1-Score 0.0447 0.0082 0.0066 0.0011 0.0023 0.9054

solution for pre-harvest loss detection. Future work may focus on refining these models

further and exploring their applicability to other crop types.

These findings are consistent with previous studies. Feng et al. (2024) [13] similarly

reported that merging the P2 and P3 heads enhanced the detection of small objects

using the YOLOv8 architecture on satellite imagery. Likewise, Badgujar et al. (2024)

[5], through a bibliometric and systematic review of YOLO-based object detection in

agricultural contexts, identified YOLO as one of the most successful models for this task,

though it often struggles when objects are small, densely clustered, or affected by dynamic

environmental factors such as shadows [6, 34]. Our results confirm that the P2 head bolsters

the detection of small objects in crop scenarios, yet emphasize the persistent challenge

of illumination. Adequate lighting, whether achieved by timing image capture or using

artificial sources, is pivotal for achieving more reliable detection outcomes.

The Vision Transformer (ViT) did not outperform the convolutional neural network

(CNN) models, likely due to the limited size of our training dataset compared to the larger

datasets typically used for transformer-based architectures. While our results indicate that

YOLOv8-p2 achieved the highest performance, it is noteworthy that DETR operates at 86

Giga Floating Operations per Second (GFLOPS) with a frame rate of 28 FPS and has

41 million trainable parameters, whereas YOLOv8-p2 requires 260.6 GFLOPS, operates

at 130 FPS, and includes 66.6 million trainable parameters. Given hardware constraints,

DETR may still present a viable alternative due to its relatively lower computational
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requirements.

The high computational demands of deep learning models and the reliance on high-

resolution imaging present challenges for real-world deployment, particularly in low-resource

or edge computing environments. While we successfully implemented YOLOv8 on a

Raspberry Pi 3 (Raspberry Pi Foundation, Cambridge, UK) CPU achieving approximately

2 FPS and optimized inference using the OAK-1 (Luxonis, CO, USA) camera’s Myriad

VPU, achieving approximately 3 FPS, these solutions still require hardware with sufficient

processing capabilities. Additionally, the need for high-resolution cameras may increase

equipment costs, limiting accessibility for small-scale farmers compared to traditional

manual pre-harvest loss estimation methods. Future work should explore cost-effective

alternatives, such as model compression, lower-resolution imaging, or cloud-based inference,

to enhance financial feasibility and enable broader adoption of automated pre-harvest loss

detection.

Integrating a tracking algorithm such as BoT-SORT leverages the redundancy of

sequential frames in a video, each potentially containing the same object. This redundancy

ensures that objects missed in one frame may still be detected in subsequent frames,

thus reducing false negatives and improving overall detection and counting accuracy.

BoT-SORT’s robust association mechanism also preserves object identities across frames,

providing more consistent data for subsequent analysis. In addition, it lowers computational

overhead by efficiently linking detections across frames, making it practical for real-time

applications. By using BoT-SORT in our study, we comprehensively evaluated tracked

instances of crop losses under real-world conditions, thereby validating the method’s

effectiveness.

Similar enhancements in object detection and tracking have been reported for a range

of agricultural applications, including grapes in vineyards [42], sweetpotatoes [51], chickens

[45], and pigs [47]. Saraceni et al. (2024) [42] demonstrated that tracking algorithms

significantly improve grape detection in robotic systems, while Xu et al. (2024) [51] and

Tu et al. (2024) [47] showed that tracking strategies enhance robustness under varying
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illumination conditions by detecting objects in different frames and perspectives. Our

results align with these findings, indicating that tracking likewise increases the reliability

of detecting very small objects.

The experimental settings, which varied light conditions and camera heights, provided

insights into optimizing image quality for measuring pre-harvest loss:

• Camera height: For a camera with a focal length of 1.93 mm, the optimal height

is between 15 to 25 cm above the ground.

• Exposure: For on-board cameras, a high shutter speed of 90 fps is recommended to

capture sharp images during motion.

• Controlled illumination: Using diffuse lighting or a shaded environment can

reduce harsh shadows and ensure consistent image quality under varying outdoor

conditions.

Our results showed that the near-infrared (NIR, 850 nm) channel did not show sig-

nificant improvements for detection models at a speed of 2.4 km/h and wavelength of

850. However, there remains a need to validate the use of multispectral and hyperspectral

imaging. Combining different wavelengths can yield multiple indices, such as the Nor-

malized Difference Vegetation Index (NDVI) and Soil-Adjusted Vegetation Index (SAVI),

which can assist in segmenting grains from the background. Additionally, NIR reflectance

characteristics can provide insights into the quality of grain losses [11].

From Figure 3.5a, it appears that under the specific harvest conditions observed in

this study, the soybean crop experienced minimal pre-harvest shattering losses. However,

post-harvest observations revealed a significant number of grains on the ground, suggesting

that under these conditions, the majority of losses were attributable to the harvesting

machinery.

By integrating pre-harvest and post-harvest loss measurements, it becomes possible

to isolate the specific contributions of harvesting machinery to overall crop loss, thereby
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enabling targeted improvements in harvesting technology and practices. This integrated

approach is crucial for enhancing agricultural efficiency and sustainability.

3.5 Conclusion

The results demonstrated that the modified YOLOv8-p2 model, which incorporates the p2

head for enhanced detection of smaller objects, outperformed other models in both soybean

and wheat datasets. This model achieved the highest Precision, Recall, and F1-scores,

highlighting its effectiveness in identifying pre-harvest losses. On more restricted hardware

scenarios, DETR could still be an option with the use of Shifted Patch Tokenization (SPT)

and Locality Self-Attention (LSA), that can improve the results of the model on smaller

datasets [26]. This study did not aim to optimize the models to embedded computers,

therefore further trade-off analysis from optimizing, pruning and quantizing the models to

run on constrained devices would necessary.

The NIR channel provided very low performance improvement. This indicates that

the selected wavelength of 850 nm did not provide more information than using only the

RGB channels. The limited NIR wavelength may not have captured significant spectral

differences between target and background materials, suggesting that either a broader NIR

range or a different wavelength selection could enhance feature discrimination. Additionally,

the low impact of the NIR channel may be due to the specific crop and environmental

conditions during data collection, where the 850 nm reflectance did not introduce sufficient

contrast for improved classification.

This study also addressed the limitations of traditional methods for measuring pre-

harvest losses, such as the use of quadrats, which are labor-intensive and sparse in coverage.

The proposed methodology offers a scalable, efficient, and accurate alternative, minimizing

disturbances to the crop while collecting comprehensive data. By combining pre-harvest

and post-harvest loss measurements, it is possible to identify inefficiencies and areas for

improvement in harvesting technology, ultimately leading to reduced losses and increased

agricultural efficiency.
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Future work should focus on further refining these models and exploring their applicabil-

ity to other crop types. Additionally, the integration of real-time processing and automation

in data collection and analysis can further enhance the practicality and efficiency of this

approach.
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Forage Processing Quality
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Jung, Troy Runge and Matthew Digman

Publication Note: This chapter presents original research that is intended for submission

to Computers and Electronics in Agriculture. The author of this dissertation led the exper-

imental design, multimodal data fusion methodology, statistical analysis, and manuscript

preparation.

Abstract: Accurate assessment of Corn Silage Processing Score (CSPS) is critical for

evaluating forage quality and optimizing livestock nutrition. Traditional laboratory

methods, though reliable, are time-consuming, destructive, and incompatible with real-

time field applications. This study proposes a multimodal machine learning framework

to predict CSPS using both RGB image-derived particle metrics and near-infrared

(NIR) spectral features. A dataset comprising laboratory CSPS measurements, image-
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based kernel fragmentation statistics, and on-harvester NIR estimates was collected

from 54 silage plots under varying harvester settings. We evaluated unimodal and

multimodal fusion strategies, including early and late fusion, proxy modeling using the

Fragment of Grain (FoG) approach, and various regression techniques such as Random

Forest, XGBoost, Gaussian Process Regression, and Bayesian Neural Networks.

Results show that RGB-based models perform best when predicting FoG as an interme-

diate variable (R2 = 0.727, RMSE = 2.61%), while NIR models are more effective for

direct CSPS estimation (R2 = 0.911, RMSE = 2.69%). Although early fusion underper-

formed relative to unimodal models, late fusion strategies that combine RGB and NIR

predictions yielded the highest accuracy (R2 = 0.949, RMSE = 1.68%) using Random

Forest regression. These findings demonstrate the potential of integrating multimodal

sensing and interpretable machine learning for scalable, non-invasive evaluation of

forage processing quality in precision agriculture.

4.1 Introduction

Corn silage is a foundational component of livestock rations, supplying both fiber and a

major source of energy through starch. The degree to which starch is available to ruminants

depends heavily on the effectiveness of kernel processing during harvest. To quantify this,

the Corn Silage Processing Score (CSPS) has been established as a key indicator, defined

as the proportion of starch passing through a 4.75 mm sieve [10]. This measurement

captures the extent of kernel fragmentation, which influences both starch digestibility and

subsequent animal performance [9].

Despite its importance, CSPS assessment is constrained by its dependence on post-

harvest laboratory methods, including sieving [27] and wet chemistry protocols [10]. These

approaches are time-consuming, labor-intensive, and inherently limited in their ability to

support in-field, real-time adjustments to harvester settings.
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4.1.1 Related Works

The initial attempts to predict CSPS from images focused on traditional computer vision

techniques. Drewry et al. [7] separated corn silage particles from the background and used

contour-based features to estimate kernel fragmentation, reporting high correlations with

laboratory CSPS, particularly when the number of large particles was low. Building on

that, Luck et al. [20] applied image analysis to predict the in situ dry matter disappearance

of chopped kernels, linking visual metrics with digestibility estimates.

More recent approaches have shifted toward data-driven methods using machine learning.

Rocha et al. [7] implemented real-time RGB imaging on harvesters to assess CSPS through

kernel detection and regression modeling. Rasmussen and Moeslund [24, 23] employed

deep convolutional networks, such as R-FCN, to identify kernel fragments directly in

non-separated silage samples. However, their work acknowledged the challenges of precise

annotation and stressed the need for robust evaluation beyond bounding-box metrics. This

concern was further explored in [22], where they highlighted how annotation variability

and occlusion affect the reliability of deep learning models, especially when comparing

optical estimates to reference CSPS values.

This work is the first to systematically compare early and late fusion strategies that

integrate RGB-derived morphological features and near-infrared (NIR) spectral features

for the prediction of Corn Silage Processing Score (CSPS). By evaluating both proxy-based

models—using the Fragment of Grain (FoG) as an intermediate estimator—and direct

prediction approaches, we highlight the relative strengths of each sensing modality and

modeling pipeline. Moreover, this study introduces a comprehensive analysis of feature

selection methods, dimensionality reduction techniques, and regression model calibration in

the context of whole-silage image datasets—an area previously unexplored in the literature.

Importantly, we also examine the correlation between predicted and laboratory-reference

CSPS values and quantify model uncertainty through cross-validation. These contributions

lay the groundwork for robust, field-deployable, multimodal systems for non-destructive

silage quality assessment.
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4.1.2 Objectives

The primary objective of this study was to develop and evaluate models for optical CSPS

estimation using image-derived features and spectral data. Specifically, we aim to:

• Quantify the predictive power of RGB image features that reflect particle size, shape,

and spatial distribution;

• Evaluate the added benefit of near-infrared (NIR) spectroscopy for capturing compo-

sitional properties associated with kernel breakage;

• Compare early fusion (joint feature modeling) and late fusion (independent modeling

with combined outputs) strategies for multimodal prediction;

• Investigate signal-to-noise ratios and inter-laboratory variability to understand fun-

damental limitations in CSPS prediction.

This work builds on prior image-based and sensor-based methods but uniquely combines

multiple data sources under a unified framework, advancing the feasibility of scalable,

real-time assessment of forage processing effectiveness.

4.2 Materials and Methods

4.2.1 Image collection

The image dataset was acquired during the 2021 harvest season in Arlington, Wisconsin.

Sampling was conducted on 30 plots across two distinct dates: early and late harvest, with

a five-day interval between them. To simulate real-world variability, the forage harvester’s

machine settings were randomized, encompassing three Theoretical Length of Cut (TLOC)

levels (7, 19, and 25 mm), three hybrids, and three Roll Gap levels (1, 2, and 3 mm).

For each plot, a minimum of 30 high-speed images was captured as the corn silage

exited the spout of the forage harvester. These images were obtained using a John Deere

FQ Camera (4.1), known for its capability to deliver high-resolution imaging at rapid frame
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rates, which is critical for capturing the dynamic flow of silage particles. This approach

provided a detailed visual dataset reflective of diverse field conditions.

Figure 4.1: Setup of sensing devices on the forage harvester spout. The green device
is the FQ camera, which was used to capture high-speed RGB imagery of corn silage
material during harvesting for optical feature extraction. The yellow box corresponds to
the HarvestLab near-infrared (NIR) sensor, which performs real-time chemical composition
estimations such as starch, crude protein, and fiber contents. Both systems were installed
upstream of the material discharge, allowing synchronized acquisition of physical and
compositional properties for Corn Silage Processing Score (CSPS) estimation.

To prepare the images for further analysis, each one was cropped to isolate the region

of interest (ROI) by segmenting the region that is within the glass view, generating images

of size 1836 px × 468 px. This preprocessing step enhanced the precision of subsequent

data annotation and feature extraction, ensuring the dataset’s reliability for modeling and

statistical analysis.
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4.2.2 Data annotation

Each image underwent annotation using the Segment Anything Model (SAM) [17], a

segmentation tool designed for efficient object annotation. Five trained labelers manually

annotated images to ensure consistent segmentation of silage particles. Each annotator

followed a standardized training process, and two reviewers validated the annotations

for quality control. All annotators had agricultural or biological systems engineering

backgrounds. Only particles that the annotators were confident was a kernel fragment

were annotated, thus leaving some some kernel particles unannotated.

A total of 30 images from each of the 60 plots (30 plots × 2 collection dates) were

annotated. For each annotated image, the following metrics were extracted:

• Maximum Inscribed Diameter [20, 7]: The diameter of the largest circle that can fit

within the segmented particle, providing a measure of particle size.

• Major and Minor Axes [24, 23]: The lengths of the primary and secondary axes of

an ellipse fitted to the segmented particle, capturing its overall shape.

• Area: The total number of pixels within the segmented region, representing the

particle’s projected area.

In addition to these primary metrics, statistical measures were computed for a more

granular analysis:

• Quantiles: The 25th, 50th (median), and 75th percentiles for each metric, denoted as

MetricQ25, MetricQ50, and MetricQ75 (e.g., AreaQ25, AreaQ50, AreaQ75).

• Counts of Kernels Below Quantiles: The number of particles smaller than

each quantile, calculated for each metric (e.g., CountArea<Q25, CountArea<Q50,

CountArea<Q75).

• Relative Area Under Quantiles: The proportion of the total segmented area occupied

by particles below each quantile (e.g., AreaMetric<Qxx), expressed as a ratio (e.g.,

AreaArea<Q25/TotalArea).
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Table 4.1: Statistical summary of the Corn Silage Processing Score (CSPS) values obtained
from two laboratories and their average. The table includes the number of samples (N),
mean, standard deviation, minimum, median, and maximum CSPS values, highlighting
consistency between the two laboratory measurements and their aggregated average.

Source N Mean Standard Deviation Minimum Median Maximum

Laboratory 1 60 74.68 8.13 56.67 75.77 87.57
Laboratory 2 60 75.81 8.29 52.90 76.98 88.42

Average 60 75.24 8.18 54.78 76.53 88.09

4.2.3 On-Board Near Infrared Spectrometer and Machine Settings Data

During the harvest, we utilized a HarvestLab spectrometer (Model 3000, John Deere) to

measure the near-infrared (NIR) spectrum (950 - 1650 nm, 256 diodes) of corn silage as

it exited the spout. At least 5 spectra were obtained from each plot and averaged. The

system enabled the collection of on-board estimations for key compositional attributes

of the corn silage, including Moisture Content, Starch, Protein, Neutral Detergent Fiber

(NDF), Acid Detergent Fiber (ADF), and Ash. Along with the NIR quality estimations,

we also annotated the machine’s theoretical length-of-cut (TLOC) and the roll gap settings

for each plot.

4.2.4 Algorithm Development

Optical CSPS Estimation

To derive the Corn Silage Processing Score (CSPS) from images, we estimated it based on

the area-weighted cumulative undersize percent of 4.75 mm, a threshold commonly used in

particle size analysis. While several studies have investigated optical methods for particle

size measurement, different metrics have been proposed in the literature to quantify kernel

size and fragmentation.

For defining the size threshold of particles under 4.75 mm, we measured:

• Maximum Inscribed Circle Diameter (MICD)

• Rotated Bounding Box Large Axis
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• Rotated Bounding Box Small Axis

• Bounding Ellipsoid Major Axis

• Bounding Ellipsoid Minor Axis

• Area compared to the area of a circle with 4.75 mm diameter (17.72 mm2)

For estimating starch content, we evaluated:

• Segmented Area

• Bounding Ellipsoid Volume

• Enhanced Volume

The bounding ellipsoid volume method approximates kernels as 3D ellipsoids, leveraging

the geometric properties of ellipsoids to estimate volume. This approach uses the formula:

V = π · a · b2

6
(4.1)

where a represents the major axis and b the minor axis of the fitted ellipse. This method

assumes that the depth of the kernel is equivalent to the minor axis, which simplifies the

calculation but may not accurately capture the true volumetric characteristics of the kernel,

especially when the kernel’s shape deviates from a perfect ellipsoid.

In contrast, the enhanced volume method refines this approximation by incorporating

the MICD to estimate the depth dimension. The formula used is:

V = π · a · b · rMICD

3
(4.2)

where rMICD is the diameter of the largest circle that can be inscribed within the kernel’s

cross-section. This approach provides a more nuanced representation of kernel thickness,

accounting for variations in kernel shape that the bounding ellipsoid method might overlook.

By using MICD, the enhanced volume method captures additional structural information,
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leading to improved volumetric estimation and a closer alignment with the actual physical

properties of the kernels. This refinement is particularly beneficial in scenarios where

kernels are partially visible or irregularly shaped, as it mitigates the limitations of assuming

uniform depth based solely on the minor axis.

Since kernels can be partially visible due to obstructions in the images, their measured

dimensions may not always reflect their true size. To account for this potential bias, we

also calculated CSPS using different thresholds beyond the standard 4.75 mm, considering

the 25th, 50th, and 75th quantiles of the kernel size distribution. This approach allowed us

to assess the impact of partial kernel views on CSPS estimation and determine whether

alternative thresholding strategies could improve the robustness of optical measurements.

This multi-metric approach ensured a comprehensive evaluation of optical CSPS esti-

mation, capturing both particle size and starch content while addressing challenges related

to kernel visibility and obstruction in the imaging process.

Figure 4.2 illustrates the pipeline for RGB-based optical CSPS estimation. The figure

begins with a raw corn silage image from which kernel segmentation was completed.

Individual kernels are identified using image segmentation techniques and then analyzed

to extract a set of morphological descriptors. These include shape (e.g., major/minor

axis lengths), size (e.g., area, volume), and distribution statistics (e.g., counts of large

fragments exceeding a specific quantile). These descriptors are then used in two branches:

(1) to calculate the Fragment of Grain (FoG) score, which serves as a proxy for CSPS, and

(2) as input features in machine learning models that directly estimate CSPS. This dual

pathway highlights how RGB imagery provides both indirect and direct routes to infer

kernel processing quality.

Feature Selection

Feature selection plays a critical role in developing accurate and interpretable predictive

models, particularly when combining image-derived metrics and spectral data. Identifying

the most relevant predictors reduces the risk of overfitting, improves interpretability, and
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Figure 4.2: Schematic representation of the optical CSPS estimation process. Features
extracted from RGB images are used to derive CSPS estimates using the morphological
features from the corn kernels.

reduces computational complexity.

Given the established importance of Partial Least Squares (PLS) regression in near-

infrared (NIR) spectroscopy analysis, PLS served as the baseline method for selecting

relevant wavelengths from the average spectrum of each plot. The data was preprocessed

using Standard Normal Variate (SNV) followed by a Savitzky-Golay filter with a window

size of 11, polynomial order of 2, and first derivative. In addition to PLS, we applied

complementary wavelength selection techniques, including:

• Partial Least Squares Regression - Variable Importance in Projection (PLSR-VIP)

[21, 8], using a 5-fold cross-validation and a consensus selection where wavelengths

were selected if at least 3 of the 5 folds were agreed on.
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• Competitive Adaptive Reweighted Sampling (CARS) [14, 13].

• Successive Projections Algorithm (SPA) [28, 15].

• Uninformative Variable Elimination (UVE) [18, 15].

• Stepwise Selection (SS) [33, 16].

• Principal Component Analysis (PCA) [11, 19].

These wavelength selection methods were applied to the average NIR spectrum per

plot, ensuring that only the most relevant spectral features were included in the predictive

models. Figure 4.3 presents the NIR-based feature extraction and selection process. It

starts with the average NIR reflectance spectra acquired from each silage plot. The raw

spectra are subjected to preprocessing steps including Standard Normal Variate (SNV)

correction and Savitzky-Golay filtering to reduce baseline shifts and noise. The cleaned

spectra were then passed through various wavelength selection algorithms—CARS, UVE,

SPA, VIP, and stepwise selection (SS)—to isolate the most informative spectral bands. The

selected wavelengths served as predictors in machine learning models trained to estimate

CSPS.

To further assess the relative importance of all features, including image metrics,

spectral features, and machine parameters (TLOC, roll gap), we applied the following

techniques, as described in [4, 30]:

• Pearson correlation, to capture linear relationships with CSPS.

• Spearman correlation, to capture monotonic but potentially nonlinear relationships.

• Mutual Information (MI), to quantify both linear and nonlinear dependency between

each feature and CSPS.

• Recursive Feature Elimination (RFE), to iteratively remove less relevant features

based on model performance.
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Figure 4.3: Schematic representation of NIR-based feature selection. The NIR spectrum
undergoes preprocessing (SNV and Savitzky-Golay filtering) before wavelength selection
using multiple techniques (CARS, UVE, SPA, SS, VIP). The selected spectral features
contribute to CSPS estimation.

• Random Forest importance ranking, where each feature’s contribution to prediction

accuracy is estimated based on its frequency and effectiveness in tree-based splits.

• Variance Inflation Factor (VIF), to identify and remove collinear features that could

introduce redundancy and noise in the model. A threshold of VIF ¿ 10 was used to
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eliminate highly correlated predictors. If no features were returned from this process,

VIF is skipped.

This combined approach enabled the identification of the most informative predictors,

balancing both linear and nonlinear associations with CSPS.

Feature selection was evaluated at different scales, retaining the top 5, 10, and 15

features. To address potential collinearity, Principal Component Analysis (PCA) was

optionally applied to these reduced feature sets, transforming them into 2, 3, or 5 orthogonal

components before model training.

Model Selection and Calibration

To optimize the performance of our predictive models, we conducted an extensive hyperpa-

rameter tuning process using grid search cross-validation. The goal was to identify the

best hyperparameters for each machine learning model—Ordinary Least Squares (OLS)

[26], Random Forest (RF) [3], Support Vector Machine (SVM) [12], XGBoost (XGB) [5],

and Gaussian Process Regression (GPR) [32]—based on their predictive accuracy and

generalizability.

Each model was trained using three feature sets: RGB-Only, NIR-Only, and Fused

Features (RGB + NIR), as described in Section 4.2.4. This approach allowed us to evaluate

whether multimodal data fusion improved CSPS estimation compared to unimodal models.

Prior to training, we removed outliers that deviated more than two standard deviations

from the mean for each of the laboratories; more information from the labs can be found at

[6]. Furthermore, we removed samples that were outside the limits of agreements between

the laboratories from a Bland-Altmann plot.

OLS regression is a fundamental statistical method used for modeling the relationship

between independent variables and the dependent variable. Unlike other models, OLS does

not require hyperparameter tuning but serves as a baseline to compare the performance of

more complex models.

Random Forest models require tuning of parameters such as the number of trees, tree
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depth, and the number of features considered for each split. The results of our grid search

cross-validation for RF are presented in Table 4.2.

Table 4.2: Random Forest grid search parameters used for hyperparameter tuning. The
table outlines the tested values for key parameters, including the number of estimators,
maximum depth, minimum samples split, minimum samples leaf, and maximum features.
These combinations were explored to optimize the model’s performance.

Values

Parameter 1 2 3

Number of Estimators 100 200 -
Maximum Depth None 10 20
Minimum Samples Split 2 5 10
Minimum Samples Leaf 1 2 4
Maximum Features sqrt log2 None

For SVM models, critical hyperparameters include the kernel type, regularization

parameter, and kernel coefficient (gamma) when using RBF kernels. The grid search results

for SVM optimization are summarized in Table 4.3.

Table 4.3: Support Vector Machine (SVM) grid search parameters used for hyperparameter
tuning. The table lists the values tested for key parameters, including the regularization
parameter, kernel type, gamma value, and epsilon. These parameter combinations were
evaluated to achieve optimal SVM model performance.

Values

Parameter 1 2 3

Regularization Parameter 0.1 1 10
Kernel Linear RBF -
Gamma Scale Auto -
Epsilon 0.1 0.2 0.5

XGBoost, a gradient boosting framework, was tuned by adjusting parameters such as

the learning rate, maximum tree depth, and the number of boosting rounds. The results

from the hyperparameter search for XGBoost are provided in Table 4.4.

Gaussian Process Regression (GPR) was also evaluated due to its probabilistic formula-

tion, which naturally models prediction uncertainty—a desirable property for biological

systems with noisy measurements. GPR models were optimized by testing combinations of
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Table 4.4: XGBoost grid search parameters used for hyperparameter tuning. The table
details the range of values tested for key parameters, including the number of estimators,
learning rate, maximum depth, subsample ratio, feature selection percentage, Lasso and
Ridge regularization strengths, and minimum loss reduction. These combinations were
evaluated to optimize the model’s performance.

Values

Parameter 1 2 3

Number of Estimators 100 200 -
Learning Rate 0.1 0.01 -
Maximum Depth None 10 20
Subsample 0.6 0.8 1.0
Feature Selection Percentage 0.6 0.8 1.0
Lasso Regularization 0 0.1 1.0
Ridge Regularization 1 5 10
Minimum Loss Reduction 0.0 0.1 1.0

kernel functions, including Dot Product, Radial Basis Function (RBF), and White Noise

kernels.

These tuning results guided the selection of the best model configurations, which were

subsequently used for final model evaluation and comparison.

Model Evaluation Strategy

To evaluate model performance, we implemented a nested 5-fold cross-validation (CV)

framework, where the inner loop performed hyperparameter tuning while the outer loop

assessed the model’s generalizability. This approach mitigates data leakage and ensures an

unbiased estimate of predictive performance. To evaluate we concatenated the test results

of each fold and evaluated the R2 to measure the variance explainability of the model and

with a maximum value of 1.0, indicating perfect explainability. We also measured the

correlation of the predicted CSPS with the laboratory estimate.

Data Fusion Strategy

To improve CSPS prediction, we explored two data fusion approaches that integrate features

from RGB image analysis and near-infrared (NIR) spectroscopy. The motivation behind
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data fusion is that image-based features capture physical kernel size distributions, while

NIR spectroscopy provides chemical composition data (starch, fiber, protein), allowing for

a more comprehensive assessment of silage processing.

We implemented two fusion strategies to integrate NIR and image-derived features for

CSPS prediction: feature-level fusion (early fusion) and decision-level fusion (late fusion).

• RGB-Only Features

• NIR-Only Features

• Early Fusion (RGB + NIR Features)

• Late Fusion (RGB + NIR Predictions)

The RGB-Only Features approach relies on image-based particle size metrics extracted

from RGB images, including Maximum Inscribed Circle Diameter (MICD), area, shape

descriptors, and CSPS values estimated using a previously established equation. The

NIR-Only Features strategy utilizes wavelength-selected spectral data obtained through

various feature selection techniques such as PLSR-VIP, CARS, SPA, UVE, and PCA. For

the Early Fusion method, selected RGB and NIR features were concatenated into a unified

feature vector, which was then used to train a single regression model for CSPS prediction.

In contrast, the Late Fusion approach involves training separate regression models on RGB

and NIR features independently; their respective predictions are then combined through a

secondary regression model to generate the final CSPS estimation.

Early Fusion In early fusion, feature selection was performed jointly on the combined

dataset of RGB and NIR features, and the selected features were used to train a single

regression model. This approach assumes that both data modalities are complementary

and that their integration at the feature level enhances predictive accuracy.

Late Fusion In late fusion, separate models were trained using RGB and NIR features

independently. The predictions from these models were then used as inputs to a second-

stage regression model that produced the final CSPS prediction. This approach allows
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Figure 4.4: Early fusion strategy: RGB and NIR features are combined before feature
selection and fed into a single regression model for CSPS prediction.

each modality to contribute separately, capturing distinct patterns before merging their

outputs.

Figure 4.5: Late fusion strategy: RGB and NIR features are used independently to train
separate models, and their predictions are later combined to estimate CSPS.

To assess the effectiveness of these fusion strategies, models were trained using RGB-

only features, NIR-only features, early fusion, and late fusion. Performance was evaluated
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based on cross validated RMSE - RMSECV - and R2. RMSECV quantifies the average

prediction error across cross-validation folds, offering a robust estimate of how well the

model generalizes to unseen data. A lower RMSECV indicates greater accuracy and

reliability in CSPS prediction. Meanwhile, R2 measures the proportion of variance in the

reference CSPS values explained by the model, with values closer to 1 denoting better

explanatory power. Together, these metrics enable a comprehensive comparison of unimodal

and multimodal strategies, helping to identify which fusion method yields the most accurate

and informative CSPS estimates.

4.2.5 Reference Laboratory and Optical CSPS Analysis

Details regarding laboratory CSPS measurement protocols, reference values, and inter-

laboratory agreement analyses can be found in [6]. The removal of the outliers followed

two distinct criteria: First, three plots were excluded due to excessive disagreement

between the two reference laboratories, where the difference in CSPS exceeded 13.04,

corresponding to the 95% limit of agreement determined by Bland-Altman analysis. This

level of disagreement suggests potential measurement inconsistencies or sampling errors.

The second criterion removed three additional plots with CSPS values that fell outside

two standard deviations of the mean, ensuring that extreme observations with limited

biological or practical relevance did not distort model training.

To better understand the reliability of CSPS measurements and their impact on model

performance, we evaluated the signal-to-noise ratio using a comparison between laboratories.

For this analysis, three paired plots with identical machine settings were measured by

both laboratories to estimate the standard error of the laboratory (SEL). The SEL was be

compared to the observed sample standard deviation to quantify measurement uncertainty

and assess its influence on CSPS predictions.

In parallel, we evaluated the signal-to-noise ratio for particle sizing metrics, including

the geometric mean particle size of the grain (GMPS) and the fraction of the grain (FoG),

both of which are known to correlate strongly with the CSPS. For this analysis, duplicate
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measurements were performed on 59 plots, enabling SEL estimation for both GMPS

and FoG. A lower ratio of SEL to sample standard deviation would indicate reduced

measurement noise and, consequently, more reliable inputs for model development. Given

their biological relevance and correlation with CSPS, improved signal quality in FoG and

GMPS may contribute to models with higher predictive power and lower unexplained

variance. Moreover, morphological features extracted from RGB data might have better

correlation to FoG, meanwhile, chemical signatures captured by NIR might have better

correlation with CSPS.

Finally, to evaluate the predictive accuracy of the developed models, we calculated

the Pearson’s correlation coefficient between the predicted Optical CSPS scores and the

laboratory-measured CSPS values. This correlation assess the strength of association

between model estimates and reference standards.

4.3 Results and Discussion

This section presents the results obtained from the image analysis, feature selection, and

predictive modeling processes. It begins with an overview of the CSPS distribution across

all plots, followed by an analysis of the impact of feature selection strategies on model

performance. Particular attention is given to the role of machine settings, specifically Roll

Gap, and the ability of models to generalize when these settings are unavailable. Finally,

the performance of the best-performing models is summarized, highlighting the influence of

image-derived metrics, spectral features, and machine parameters on predictive accuracy.

4.3.1 Dataset

Figure 4.6 shows the images with most values corn kernels in the plots with lowest and

highest CSPS. Figure 4.7 illustrates the distribution of CSPS values across all plots after

the removal of six outliers.

The final dataset exhibits a relatively symmetric distribution, with a mean CSPS of

75.24 and a median of 76.53, indicating minimal skewness. Approximately 68% of plots
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(a) Sample from the plot with lowest CSPS (59.9%)

(b) Sample from the plot with highest CSPS (89.3%)

Figure 4.6: Representative images from plots with contrasting corn silage processing scores
(CSPS). Panel (a) corresponds to the lowest CSPS sample, characterized by larger and
more intact kernel fragments. Panel (b) shows the highest CSPS sample, exhibiting finer
particle fragmentation and fewer whole kernels. These images highlight the morphological
differences associated with processing quality.

fall within one standard deviation of the mean (67.06 to 83.42), and 95% fall within two

standard deviations (58.88 to 91.60). This dispersion reflects the expected variability

introduced by differences in harvest date, forage harvester settings, and field conditions.

The 25th percentile (70.21) and 75th percentile (81.55) define the interquartile range,

emphasizing the diversity of CSPS outcomes observed in the field.

Following particle segmentation and annotation, the quantiles of particle size across all

samples were: Q25 = 1.27 mm, Q50 = 1.90 mm, Q75 = 2.90 mm, Q90 = 3.96 mm, Q95 =

4.75 mm, Q97 = 5.24 mm, and Q99 = 5.88 mm. Notably, the Q95 value aligns with the

industry-standard sieve threshold used in CSPS lab protocols, reinforcing its predictive

value for regression models. Accordingly, particle counts and cumulative area fractions

above the Q95 threshold were prioritized as features in the image-based CSPS estimation.

To assess the reliability of the laboratory reference CSPS, inter-laboratory comparison
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Figure 4.7: Distribution of Corn Silage Processing Scores (CSPS) after outlier removal.
The red dashed line represents the mean (75.24), the green solid line denotes the median
(76.53), yellow dashed lines indicate one standard deviation (67.06, 83.42), and purple
dotted lines indicate two standard deviations (58.88, 91.60). The blue solid curve represents
a smoothed density estimate. Vertical markers for the 25th percentile (70.21) and 75th
percentile (81.55) further characterize the distribution.

was conducted using 30 plots measured by two independent laboratories. The Standard

Error of Laboratory (SEL) for Lab 1 was 6.7%, and for Lab 2 it was 6.9%. Given the

overall standard deviation of CSPS was 6.76%, the noise-to-signal ratio was high, suggesting

that regression models trained on this reference may face limitations in capturing true

processing performance. The Concordance Correlation Coefficient (CCC) between labs

was 0.689, reflecting moderate agreement. Bland-Altman analysis (Figure 4.8) indicates

better inter-lab agreement for highly processed samples and smaller roll gap clearances,

where particle fragmentation is more uniform and sampling error is reduced.

In contrast, the Fraction of Grain (FoG) greater than 4.75 mm, derived from image

analysis, exhibited a standard deviation of 8.51% and an SEL of 2.52% based on duplicate

measurements from 59 plots. This suggests a more favorable signal-to-noise ratio compared

to CSPS. Given FoG’s high correlation with CSPS, its stability supports its utility as a

proxy in optical assessments.
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Figure 4.8: Bland-Altman plot of CSPS measurements from two independent laboratories.
Colors show Roll Gap levels (green = 1, red = 2, blue = 3); shapes indicate TLOC (square
= 7 mm, circle = 19 mm, triangle = 25 mm). Blue dashed line indicates mean bias, red
dashed lines indicate limits of agreement (LoA). Agreement improves in highly processed
samples, suggesting more homogeneous fragmentation reduces sampling error.

4.3.2 Optical CSPS Correlation

This section evaluates the potential of using image-derived features as proxies for laboratory

CSPS by analyzing their correlation with reference scores. The focus is on particle size

metrics that reflect kernel fragmentation, particularly those capturing area, volume, and

shape characteristics of large particles.

Figure 4.9 demonstrates the strong negative relationship between the fraction of grain

particles larger than 4.75 mm and the laboratory CSPS. The regression line indicates

that increases in large, unprocessed particles are consistently associated with lower CSPS

values. The fitted linear model yielded an R2 of 0.853, Pearson’s r of −0.923, and a highly
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significant p-value (≪ 0.05), confirming the robustness of the association.

Figure 4.9: Linear regression between the laboratory CSPS and the fraction of grain
particles larger than 4.75 mm. Each point’s color represents the Roll Gap (green = 1.0,
red = 2.0, blue = 3.0), and shape represents the Theoretical Length of Cut (TLOC: square
= 7 mm, circle = 19 mm, triangle = 25 mm). The solid blue line is the fitted regression
line, and the shaded blue area indicates the 95% confidence interval. A strong inverse
relationship is observed, with R2 = 0.853, r(p ≪ 0.05) = −0.923.

Drewry et al. (2019) [7] utilized the maximum inscribed circle diameter (MICD) as a

key particle size metric, whereas Rasmussen et al. (2019) [24] employed the shortest axis

length to characterize kernel dimensions to apply to calculate the CSPS through equation

4.3 [10]. Drewry’s study was conducted in a controlled environment using hydrodynamically

separated corn kernels on a black background, while Rasmussen analyzed static harvested

silage, making the latter’s imaging conditions more comparable to our dataset. However,

Rasmussen’s study lacks a direct comparison between their optical CSPS estimates and

Ro-Tap/laboratory reference values, whereas Drewry provides such an evaluation. This
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gap highlights the need to investigate which kernel size metric for particles under 4.75 mm

best correlates with laboratory-measured CSPS in corn silage images.

CSPS = 100− %Starch>4.75

%Starchtotal
(4.3)

Additionally, to estimate starch content, Drewry et al. (2019) [7] used an area-to-weight

conversion, but alternative metrics, such as volume-based estimations, could provide a

more accurate assessment. Thus, to explore optical CSPS estimation, we systematically

evaluated multiple metric combinations.

To further assess the predictive value of individual optical features, we computed

Pearson’s correlation between CSPS and each image-derived metric. Table 4.5 summarizes

the five most strongly correlated features with laboratory CSPS.

Table 4.5: Top five image-derived metrics most correlated with laboratory CSPS

Optical Metric Pearson’s r

CSPS Area < Q97 0.588
CSPS Area < Q90 0.542
CSPS MICD < Q95 0.540
CSPS Area < Q95 0.537
CSPS Volume < Q95 0.524

Among these, cumulative particle area below the 97th percentile (5.24 mm) showed the

strongest correlation, reinforcing its relevance for optical CSPS estimation. Metrics using

thresholds near the Q95 sieve cut-off (4.75 mm), such as CSPS Area ¡ Q95 and MICD ¡

Q95, also exhibited strong performance, consistent with expectations from standard CSPS

lab definitions. It is also relevant to mention that all of the metrics in Table 4.5 are highly

correlated (r > 0.95)

Figures 4.10 and 4.11 show the predicted versus observed CSPS and the residuals of the

best univariate model based on CSPS Area < Q97. Although this single feature captures

relevant size information, a moderate residual spread remains, highlighting the need for

multivariate models to fully account for variance in processing scores.

These findings are consistent with those reported by Drewry et al. [7], who demonstrated



102

Figure 4.10: Observed CSPS versus optical estimates based on CSPS Area < Q97. Colors
show Roll Gap levels (green = 1, red = 2, blue = 3); shapes indicate TLOC (square = 7
mm, circle = 19 mm, triangle = 25 mm). The blue line shows the regression fit with a
shaded 95% confidence band. The red dashed line denotes the 1:1 ideal prediction.

that image-derived kernel size metrics such as cumulative undersize percent below 4.75 mm

were highly correlated with laboratory-based CSPS values. In their study, a Pearson

correlation of r = 0.8 was observed across 28 corn silage samples using cross-sectional

area-based segmentation. Our results corroborate the utility of area-based thresholds and

extend their applicability to a larger dataset with high-speed imagery. The inclusion of

multivariate optical models further strengthens the case for using vision-based proxies as

scalable alternatives to labor-intensive laboratory measurements.
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Figure 4.11: Residual plot of the regression using CSPS Area < Q97. Colors show Roll
Gap levels (green = 1, red = 2, blue = 3); shapes indicate TLOC (square = 7 mm, circle
= 19 mm, triangle = 25 mm). The blue line shows the regression fit with a shaded 95%
confidence band. The red dashed line denotes the 1:1 ideal prediction. The dashed red line
is the 45° reference line representing perfect prediction.

4.3.3 Machine Learning CSPS

RGB Features Regression

The best-performing RGB-based regression model predicted the CSPS using Fragment of

Grain (FoG) as a proxy (R2 = 0.727, Pearson’s r = 0.856, RMSECV = 2.61%) compared

to direct CSPS estimation (R2 = 0.290, Pearson’s r = 0.551, RMSECV = 6.21%). This

model leveraged features selected via Pearson correlation, retaining the top 15 features.

Dimensionality was further reduced using Principal Component Analysis (PCA), retaining

3 components. The model itself was an XGBoost regressor, tuned with the following

key hyperparameters: 50 estimators, a learning rate of 0.1, maximum tree depth of 3,
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subsample and column sample ratios both set to 0.8, and regularization parameters α = 0

and λ = 1.

This RGB-based approach showed competitive performance by effectively capturing

visual cues related to fragment of grain above 4.75 mm, which strongly correlates with

CSPS. However, as shown in Figure 4.12, direct NIR-based estimation ultimately yielded

better accuracy due to its chemical specificity, as discussed in the following section.

Figure 4.12: RGB-derived features were first used to predict Fragment of Grain (FoG),
which was then mapped to CSPS using a calibrated regression. Colors show Roll Gap
levels (green = 1, red = 2, blue = 3); shapes indicate TLOC (square = 7 mm, circle =
19 mm, triangle = 25 mm). The blue line shows the regression fit with a shaded 95%
confidence band. The red dashed line denotes the 1:1 ideal prediction. Fit statistics include
the regression equation, R2, Pearson’s r, and RMSECV .

The top five most influential features for the RGB-based model were: (1) the mean par-

ticle area, (2) the count of particles with area greater than the 97th quantile (corresponding

to approximately 5.24 mm), (3) the standard deviation of the major axis length, (4) the
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computed CSPS using a volume-based starch estimation, and (5) the starch volume from

particles with major axis lengths below the 97th quantile threshold. As anticipated, metrics

capturing particle size distribution—particularly mean and standard deviation—played

a dominant role in prediction performance. Consistent with findings from Rocha et al.

[25], the number of large particles had a significant impact on CSPS. However, we found a

5.24 mm threshold to yield stronger predictive relevance than the conventional 4.75 mm

cutoff. This suggests that under more complex image-derived quantification scenarios,

using FoG as proxy might introduce a systematic bias, potentially necessitating threshold

reevaluation.

NIR Features Regression

The best-performing NIR-based regression model directly estimated the Corn Silage

Processing Score (CSPS) (R2 = 0.911, Pearson’s r = 0.902, RMSECV = 2.69%) compared

with relying on proxy indicators (R2 = 0.001, Pearson’s r = -0.154, RMSECV = 7.40%).

Recursive Feature Elimination (RFE) was used to select the 15 most informative NIR

features, and no VIF-based collinearity filtering was applied. To reduce dimensionality,

Principal Component Analysis (PCA) was performed, retaining 5 principal components.

The regression model used was a Random Forest Regressor with 50 estimators, unrestricted

tree depth, a minimum of 2 samples required to split an internal node, and a minimum of

1 sample per leaf.

As shown in Figure 4.13, this approach achieved robust predictive accuracy, capitalizing

on the chemical signatures captured by the NIR spectrum to estimate CSPS more precisely

than image-derived proxies. The absence of a proxy (FoG) features makes this pipeline

more directly interpretable for applications targeting physical quality measures of forage

processing.

The NIR-based model derived its predictions from a diverse combination of spectral

features selected using Recursive Feature Elimination (RFE). The top contributors, as

identified by SHAP analysis, included wavelengths selected by methods such as VIP
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Figure 4.13: CSPS prediction using direct regression from NIR spectral estimations. Colors
show Roll Gap levels (green = 1, red = 2, blue = 3); shapes indicate TLOC (square = 7
mm, circle = 19 mm, triangle = 25 mm). The blue line shows the regression fit with a
shaded 95% confidence band. The red dashed line denotes the 1:1 ideal prediction. Fit
metrics including R2, Pearson r, and RMSECV are shown in the annotation box.

(Variable Importance in Projection), CARS (Competitive Adaptive Reweighted Sampling),

SPA (Successive Projection Algorithm), and SS (Stepwise Selection). In particular, features

such as VIP1202.0, CARS1182.0, and CARS1060.0 had the strongest impact on the model

output. This consistent trend suggests that absorbance at these wavelengths is positively

correlated with well-processed silage.

Other influential wavelengths included those near 1062 nm, 1156 nm, and 1370 nm,

regions often associated with chemical bonds related to fiber, starch, and protein absorption

in NIR spectroscopy reflectance. The dominance of VIP-selected features across several

bands underscores the importance of chemically meaningful regions in modeling CSPS.
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Early Fusion Regression

For the early fusion strategy, all RGB and NIR features were concatenated into a unified

feature set and used to directly predict the laboratory-measured CSPS (R2 = 0.568,

Pearson’s r = 0.759, RMSECV = 5.90%), bypassing the use of any intermediate proxy

(R2 = 0.549, Pearson’s r = 0.745, RMSECV = 5.32%). The top 15 features were selected

using Mutual Information-based ranking, and no collinearity filtering (VIF) or PCA

dimensionality reduction was applied. The best performance was achieved using a Gaussian

Process Regressor (GPR) with a Dot Product kernel and a White noise kernel component,

specifically defined as DotProduct+WhiteKernel(noise level = 5.0, noise level bounds =

(1.0, 25.0)).

Despite leveraging both imaging and spectroscopic data, the early fusion model did

not outperform the best individual RGB and NIR models. As shown in Figure 4.14, its

predictive performance was lower in both R2 and RMSECV metrics. This suggests that

combining heterogeneous feature sets may introduce redundancy or noise, and highlights

the importance of tailored modeling strategies or late fusion methods to fully exploit the

complementary nature of RGB and NIR data.

The Early Fusion model combined both RGB-derived morphological features and NIR

spectral data to predict the Corn Silage Processing Score (CSPS). While the integration

of these modalities aimed to leverage complementary information—structural indicators

from images and compositional cues from NIR—the fused model did not outperform the

best unimodal approaches. This suggests that simply concatenating features from different

sensors may not be sufficient to boost predictive performance and could even introduce

redundancy or conflict when not appropriately calibrated.

Among the most influential features in the early fusion model were several NIR wave-

lengths associated with fiber and starch absorption, particularly in the 980–1344 nm

range [1, 2, 29]. Moreover, particle metrics, such as the proportion of areas or minor axes

below or above high quantiles (e.g., 97th), also had noticeable effects on predictions. This is

consistent with established domain knowledge, wherein the physical mechanisms of particle
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Figure 4.14: Predicted vs. reference CSPS using early fusion of RGB and NIR features.
Colors show Roll Gap levels (green = 1, red = 2, blue = 3); shapes indicate TLOC (square
= 7 mm, circle = 19 mm, triangle = 25 mm). The blue line shows the regression fit
with a shaded 95% confidence band. The red dashed line denotes the 1:1 ideal prediction.
Regression equation, R2, Pearson’s r, and RMSECV are displayed.

fragmentation and kernel breakage are directly correlated with CSPS values.

The moderate performance of the fusion model relative to unimodal models highlights

the importance of thoughtful data integration. Notably, recent studies have identified

specific challenges associated with early fusion strategies, especially when dealing with small

datasets. For instance, early fusion can lead to overfitting due to the increased complexity

from combining heterogeneous data sources, and the potential for one modality to dominate

the learning process, thereby diminishing the benefits of multimodal integration [31, 34].

These findings underscore the need for more sophisticated fusion techniques or alternative

strategies, such as late fusion, which can better manage the unique characteristics and

contributions of each modality.
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Late Fusion Regression

Late fusion was evaluated by combining predictions from the best-performing RGB and NIR

models. In this study, the RGB model was trained to predict a proxy variable—the Fragment

of Grain (FoG)—while the NIR model directly predicted the Corn Silage Processing Score

(CSPS). The combined predictions were fused using several techniques, including weighted

averaging, support vector regression (SVR), linear regression, and random forest regression.

To find the optimal weight α for the weighted fusion method, a linear search was

performed between 0 and 1, with step of 0.01. As shown in Figure 4.15, the optimal fusion

minimizing the RMSECV occurred near α = 0.33, giving more weight to the NIR model.

Figure 4.15: RMSECV curve from tuning the late fusion weight α assigned to the RGB
model output. The x-axis represents the RGB weight α (ranging from 0 to 1), while the
NIR model weight is 1− α. The y-axis shows the Root Mean Squared Error (RMSECV )
between the fused prediction and the reference CSPS. The optimal weight minimizing
RMSECV lies around α ≈ 0.3, indicating a stronger contribution from the NIR model.
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The results of the four late fusion strategies are illustrated in Figure 4.16. Overall, our

findings show that combining NIR spectroscopy and RGB-derived image features through

late fusion provides the most accurate prediction of laboratory CSPS, achieving a test

R2 of 0.949, RMSECV of 1.68%, and Pearson’s r of 0.976. This performance surpasses

unimodal models (RGB-only: R2 = 0.713, RMSECV = 3.69%; NIR-only: R2 = 0.718,

RMSECV = 3.77%) and early fusion (R2 = 0.568, RMSECV = 5.90%), highlighting the

limitations of early feature concatenation and the advantage of preserving modality-specific

structure.

Compared to previous studies, our model yields significantly improved predictive

accuracy. Drewry et al. [7] achieved r = 0.80 when estimating CSPS from images of

hand-separated kernels photographed under controlled conditions; in contrast, our best

univariate proxy (FoG ¿ 4.75 mm) achieved r = −0.92 and R2 = 0.85 under realistic field

imaging conditions, and achieving r = 0.856 and R2 = 0727 while estimating the CSPS.

Rocha et al. [25], using RGB features and machine learning, reported R2 values between

0.64 and 0.79 for predicting CSPS categories, though their models explored mostly whole

kernel count to predict CSPS and lacked chemical information from NIR. Rasmussen and

Moeslund [24] estimated kernel fragmentation in silage using object detection and reported

classification F1-scores between 0.70 and 0.84; however, their pipeline did not estimate

CSPS directly, and their dataset lacked ground truth from lab measurements.

Our study provides the first comprehensive integration of NIR and RGB data for CSPS

regression validated against dual-lab measurements, showing higher precision and lower

error than prior works. Additionally, our protocol explicitly quantifies signal-to-noise ratios

for CSPS and FoG, and leverages robust modeling strategies to handle field variability and

imaging noise.

4.4 Conclusion

This study presents a comprehensive framework for estimating the Corn Silage Processing

Score (CSPS) using image-derived morphological features, near-infrared (NIR) spectral data,
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Figure 4.16: Performance of four late fusion strategies for CSPS prediction using combined
RGB (FoG-based) and NIR (direct CSPS) predictions: Top-left: Linear Regression Fusion,
Top-right: Random Forest Fusion, Bottom-left: SVR Fusion, Bottom-right: Weighted
Fusion with α = 0.33. Each plot compares predicted and reference CSPS values. Colors
show Roll Gap levels (green = 1, red = 2, blue = 3); shapes indicate TLOC (square = 7
mm, circle = 19 mm, triangle = 25 mm). The blue line shows the regression fit with a
shaded 95% confidence band. The red dashed line denotes the 1:1 ideal prediction. Random
forest fusion achieved the best performance with R2 = 0.949 and RMSECV = 1.68%, while
weighted fusion underperformed with RMSECV = 2.98%.

and multimodal fusion strategies. Our results show that RGB-based models are effective

when using the Fragment of Grain (FoG) as a proxy, yielding a predictive performance of
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R2 = 0.727 and RMSE = 2.61%. In contrast, NIR models performed best when directly

predicting the laboratory-measured CSPS, achieving an R2 = 0.911 and RMSE = 2.69%.

These findings highlight a key distinction in the value of each modality: RGB imaging excels

in estimating structural proxies like kernel fragmentation, while NIR captures chemical

composition more relevant to digestibility and processing effectiveness.

Fusion approaches were explored to leverage complementary information from both

modalities. The early fusion model, which concatenates RGB and NIR features, achieved

moderate performance (R2 = 0.568, RMSE = 5.90%), underperforming both unimodal

models. This result suggests that naive concatenation can introduce feature redundancy or

noise, limiting its effectiveness.

Late fusion strategies, on the other hand, produced superior results by modeling

each modality independently and combining their outputs through regression or weighted

averaging. The best late fusion model, using Random Forest regression on RGB-derived FoG

and NIR-based CSPS predictions, achieved R2 = 0.949 and RMSE = 1.68%, outperforming

all individual models and fusion baselines. These results confirm that late fusion better

captures the unique strengths of each sensor type and provides a scalable pathway for

accurate CSPS prediction.

Overall, this study demonstrates that combining machine learning with multimodal

sensing enables scalable and interpretable estimation of corn silage processing quality.

The findings support real-time, non-destructive field assessment of forage processing and

highlight opportunities for improved harvester calibration, quality monitoring, and decision

support in precision agriculture.

Future work on machine learning may explore deep multimodal architectures or field

validation of these models in real-time harvester environments. Also exploring mixed fusion

would be another possibility that may be more efficient than early fusion, as we can use

intermediate predictions such as FoG from RGB models to predict the CSPS.
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conception, implementation of self-supervised learning pipelines, feature fusion strategy,

and manuscript preparation.

Abstract: Accurate estimation of the Corn Silage Processing Score (CSPS) during

harvest is critical for ensuring forage quality and improving livestock feed efficiency.

Traditional assessment methods are labor-intensive, require laboratory processing, and

cannot provide real-time feedback. Optical approaches have emerged as alternatives,

but many require extensive manual annotation, which introduces subjectivity and

limits scalability. This study presents a multimodal learning framework that fuses RGB
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and Near-Infrared (NIR) data for CSPS prediction without the need for manual particle

segmentation. RGB images were processed using self-supervised DINOv2 features,

while NIR spectra were analyzed via Partial Least Squares Regression (PLSR) with

Variable Importance in Projection (VIP) feature selection. We evaluated unimodal and

late fusion strategies using 5-fold cross-validation across 60 field plots. The late fusion

approach achieved the highest regression performance with R2 = 0.922 and RMSE =

2.16%. For classification into ”Good” and ”Optimal” categories, late fusion achieved

a F1 score of 0.966. Our results demonstrate that morphological and compositional

features provide complementary information, and that late fusion improves predictive

accuracy over unimodal models. Furthermore, the proposed method eliminates the need

for manual annotations, reducing labeling errors commonly reported in the literature.

Computational analysis indicates that the system can feasibly operate in near real-time

on edge devices, supporting deployment during forage harvest. This work highlights

the potential of self-supervised features and multimodal fusion for robust, scalable,

and automated CSPS monitoring.

5.1 Introduction

Corn Silage Processing Score (CSPS) is a critical metric used to evaluate the effectiveness

of kernel fragmentation during forage harvest [6]. Higher CSPS values are associated with

improved digestibility, better feed efficiency, and increased milk production, making it a

key target for researchers and industry practitioners [5]. Traditional laboratory methods

for determining CSPS are accurate, but inherently slow, labor-intensive, and impractical

for providing real-time feedback during harvesting operations. Therefore, there is growing

interest in optical and machine learning-based approaches that can offer faster on-the-go

quality assessments, allowing dynamic optimization of harvester settings and improving

overall forage quality [4, 17, 19].

However, capturing the complexity of kernel fragmentation from optical data remains

challenging due to the heterogeneous nature of silage material [16]. Variations in lighting,
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occlusion, and particle size distribution complicate robust and scalable assessments. These

challenges have led to the exploration of computer vision and machine learning techniques

to automate silage quality evaluation in field conditions.

Initial attempts to automate CSPS estimation focused on image processing techniques.

For example, Drewry et al. [4] developed an algorithm to measure particle size distributions

from images, achieving moderate correlation with laboratory-derived Kernel Processing

Score (KPS) values. Rocha et al. [19] advanced this work by deploying a real-time imaging

system on forage harvesters and using machine learning to predict KPS with high correlation

to lab references.

More recent studies have explored deep learning methods for kernel detection without

requiring physical separation of kernels and stover. Rasmussen and Moeslund [17] demon-

strated promising results using these techniques, yet most approaches still rely heavily on

large, manually annotated datasets. As noted by Rasmussen et al. [16], manual annotation

in silage images is highly laborious, error-prone, and inconsistent—particularly when occlu-

sions and small particles obscure kernel boundaries. These issues hinder scalability and

reduce model generalizability.

To alleviate the annotation bottleneck, self-supervised learning (SSL) has gained

attention for its ability to learn representations from unlabeled data. In agriculture, SSL

has been shown to improve performance in classification tasks with minimal annotations.

Kar et al. [8] reported significant improvements in classifying agriculturally important

insect pests using SSL, and Güldenring and Nalpantidis [7] demonstrated superior plant

classification performance from contrastive SSL pre-training.

Building on these developments, Sornapudi and Singh [20] proposed a lightweight

SimCLR-based framework for agricultural vision tasks, while Marszalek et al. [12] high-

lighted SSL’s potential in precision agriculture for reducing annotation effort. Surveys and

frameworks by Li [9], Pinto-da-Silva [15], and Wang [21] further reinforce the utility of

foundation models and SSL for handling label scarcity, domain shifts, and multimodal

sensing.
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In light of these trends, this study aims to develop an optical CSPS estimation framework

that:

• avoids the need for manual segmentation annotations by leveraging self-supervised

features extracted from DINOv2, a vision transformer pretrained with self-distillation;

• combines RGB-derived morphological information with NIR-derived compositional

information through late fusion to improve prediction accuracy and robustness;

• evaluates regression performance for CSPS estimation as well as classification per-

formance to distinguish between “Good” (50–70%) and “Optimal” (¿70%) CSPS

quality classes;

• and assesses the feasibility of deploying the resulting models on resource-constrained,

edge-computing platforms suitable for real-time, in-field operation.

By addressing the dual challenges of annotation cost and generalization, this work

contributes toward scalable, deployable solutions for real-time silage quality monitoring in

modern agricultural systems.

5.2 Materials and Methods

This study explores unimodal and multimodal approaches to estimate the Corn Silage

Processing Score (CSPS), a key indicator of forage quality. The goal was to evaluate

predictive performance when using either RGB images or near-infrared (NIR) spectra

independently, and to assess whether a late-fusion strategy combining both modalities

could yield improved CSPS estimation and classification results.

Field data were collected during the fall of 2021 at the Arlington Research Station in

Wisconsin, USA (43.303°N, 89.346°W). For each plot, a John Deere FQ Camera captured

high-resolution RGB images at 0.068 mm/pixel, generating 30 images per plot. Each

image was divided into three non-overlapping crops of 468×468 pixels, promoting diversity

while maintaining complete spatial coverage. Concurrently, a John Deere HarvestLab 3000
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spectrometer acquired NIR reflectance spectra from 950 to 1650nm using 256 diodes. At

least five NIR scans were collected per plot to ensure robustness.

Ground truth CSPS values were obtained via laboratory analysis following standard

protocols Ferreira2005-fz. In addition, the fraction of material retained above a 4.75 mm

sieve—denoted as FoG ¿ 4.75%—was recorded as a proxy for kernel processing efficiency,

allowing for interpretable modeling.

For RGB-based modeling, image features were extracted using DINOv2 oquab2023dinov2,

a self-supervised Vision Transformer (ViT) model developed by Meta AI. DINOv2 achieves

state-of-the-art performance across a wide range of computer vision tasks without requiring

manual labels, making it particularly suitable for applications where data annotation is

difficult or impractical [2, 14]. Its architecture is well suited for capturing complex visual

patterns, which is essential when analyzing the heterogeneous and cluttered appearance

of silage images. Additionally, Darcet et al. [3] demonstrated that incorporating explicit

register tokens in ViTs improves both the interpretability of attention maps and down-

stream task performance. For each image crop, the latent representations of all patches

were extracted and averaged to obtain a plot-level feature vector.

Two regression strategies were tested using these features: one directly predicted CSPS

using a Random Forest regressor, while the other first predicted the percentage of coarse

particles retained on the 4.75 mm sieve (FoG) and transformed the predicted value into

CSPS via:

ĈSPSRGB = 99.24− 0.93 · F̂oG (5.1)

This equation was derived empirically and demonstrated strong predictive validity (R2 =

0.853, p ≪ 0.05).

For NIR-based modeling, spectra were first preprocessed using Standard Normal Variate

(SNV) normalization, followed by a Savitzky–Golay filter (window size of 11, polynomial

order 2, first derivative). Variable Importance in Projection (VIP) scores were used to

select relevant wavelengths, and Partial Least Squares Regression (PLSR) was trained to
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estimate CSPS.

A late fusion framework was developed to combine predictions from the RGB and NIR

pipelines. Linear regression and Random Forest regression were evaluated as meta-models.

Each base model was trained under a five-fold cross-validation protocol, and predictions

from held-out folds were used as inputs to the fusion model. An overview of this multimodal

workflow is provided in Figure 5.1.

Figure 5.1: Overview of the RGB and NIR unimodal pipelines and late fusion strategy.
RGB features are extracted using DINOv2 and evaluated via Random Forest. NIR spectra
undergo VIP-based wavelength selection followed by PLSR. A meta-model combines 5-fold
predictions from both pipelines.

Both regression and binary classification tasks were investigated for each modality and

their fusion. For classification, CSPS values were thresholded into two quality classes: Good

(50–70%) and Optimal (¿70%). Models were evaluated using 5-fold stratified cross-validation

to maintain balanced class distributions and prevent plot-level data leakage.

Regression performance was assessed using Root Mean Squared Error (RMSECV ),

Coefficient of Determination (R2), and Pearson correlation coefficient (r). Together, these

metrics provide complementary insights into model accuracy, variance capture, and trend

alignment.

Classification performance was evaluated using Accuracy, F1-score, ROC AUC, and

confusion matrix components (TP, FP, TN, FN), enabling both threshold-dependent and

threshold-independent assessments of model behavior.

All analyses were implemented in Python 3.10.12 using scikit-learn, scipy, numpy,

and matplotlib. Feature extraction from DINOv2 was conducted using PyTorch and the
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Hugging Face Transformers library.

5.3 Results and Discussion

5.3.1 DINOv2 Attention Head Analysis

Before proceeding to the dataset feature extraction, we performed a preliminary evaluation

of the DINOv2 feature extractor to assess whether the foundational model captured salient

information related to kernel structures in whole-plant corn silage images. Specifically, we

inspected the outputs from all 16 attention heads of the final DINOv2 transformer block

across a sample dataset.

As illustrated in Figure 5.2, some attention heads appeared capable of highlighting

kernel fragments and coarse material without any supervised fine-tuning. Notably, one

head consistently responded to regions resembling corn kernels, even under the challenging

imaging conditions characterized by occlusion, clutter, and varying particle sizes. This

observation reinforced the suitability of DINOv2 as the RGB feature extractor, suggesting

that self-supervised representations from a generalist model could capture biologically

relevant structures for downstream tasks.

5.3.2 Regression Performance

To evaluate the regression performance of each modality and fusion strategy for CSPS

prediction, we conducted 5-fold cross-validation and report R2, Pearson correlation, and

RMSECV across models. Both unimodal and multimodal approaches are compared.

Table 5.1: Summary of regression performance across models.

Model R2 Pearson’s r RMSECV

RGB → CSPS (direct) 0.423 0.676 5.85 %
RGB → FoG → CSPS 0.444 0.717 5.75 %
NIR → CSPS (direct) 0.425 0.695 5.84 %
NIR → FoG → CSPS 0.353 0.662 6.79 %
Late Fusion (Linear) 0.604 0.777 4.85 %
Late Fusion (RF) 0.922 0.968 2.16 %
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(a) Original RGB sample image (b) Highlighted attention regions (from one DI-
NOv2 head)

Figure 5.2: Preliminary assessment of DINOv2 attention heads. Several heads captured
features resembling kernel fragments without supervised training.

As shown in Table 5.1 and Figure 5.3, late fusion using Random Forest outperformed all

other models with an R2 of 0.922 and RMSECV of 2.16 %. This suggests that RGB and

NIR modalities provide complementary information for predicting CSPS. The unimodal NIR

model and RGB-based proxy also performed reasonably well (R2 around 0.44), indicating

that morphological or spectral cues alone can partially explain CSPS variability, but not

to the same extent as fused models.

The intermediate use of FoG (fraction of particles > 4.75 mm) as a proxy for estimating

CSPS proved beneficial, particularly when derived from RGB features. Although indirect,

the FoG-based pipeline improved prediction metrics compared to direct RGB-CSPS regres-

sion, supporting the relevance of FoG as a proxy variable. This proxy may be especially

useful in practical applications where direct CSPS ground truth is unavailable.

The best fusion results were achieved by training on predicted CSPS values from RGB

features using the FoG proxy, combined with direct CSPS estimates from NIR spectra

selected by PLSR-VIP. The optimal linear combination was achieved using a fusion weight

of α = 0.61, giving slightly more influence to the RGB-derived proxy.
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(a) RGB → CSPS (direct regression) (b) RGB → FoG → CSPS

(c) NIR→ CSPS (direct regression) (d) NIR→ FoG → CSPS

(e) Late Fusion (Linear Regression) (f) Late Fusion (Random Forest)

Figure 5.3: Comparison of regression results across all models for CSPS prediction. Each
point represents a plot-level prediction using 5-fold cross-validation. Colors indicate Roll
Gap (green = 1, red = 2, blue = 3), and shapes represent TLOC (square = 7 mm, circle =
19 mm, triangle = 25 mm). The solid gray line shows the regression fit with 95% confidence
band; the dashed red line denotes the 1:1 ideal reference.
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Most prediction errors occurred in plots with extreme CSPS values, particularly those

close to the decision boundary between good and suboptimal CSPS values. These errors

suggest that the models are sensitive to moderate processing quality levels but less accurate

under conditions of excessive processing or grain retention. To fully evaluate this observation,

more data with lower processing quality will be required.

The predictive accuracy of the fused model, especially using Random Forests, suggests

the feasibility of deploying this system for real-time CSPS monitoring during harvest. Given

the use of compact RGB imaging and miniaturized NIR sensors, the models presented

here could be implemented onboard forage harvesters, enabling precision adjustments to

processing equipment. Additionally, the DINO feature extractor for RGB imagery, despite

its large size for training, can be distilled or frozen for lightweight inference pipelines.

Combined with the low inference time and robustness of Random Forest regressors, this

approach would allow onboard computation without requiring cloud-based processing,

thereby supporting real-time decision-making in the field.

When comparing the results of this study to prior literature, it is evident that the

proposed fusion approach offers significant advancements. Drewry et al. [4] developed

an image processing algorithm using particle size metrics to predict Kernel Processing

Score (KPS), achieving a Pearson correlation of r = 0.80 relative to mechanical sieving.

Their method relied solely on 2D imaging within a controlled environment and did not

incorporate spectral information. Rocha et al. [19] improved upon this by introducing a

high-speed imaging system combined with machine learning kernel detection, achieving

a very high correlation (r = 0.977) and a standard error of 2.71% for KPS estimation,

although their pipeline included counting whole kernels, which might be a rare occasion on

well calibrated processors.

Rasmussen and Moeslund [17] explored deep learning-based kernel detection without

kernel/stover separation, reporting a strong correlation (r = 0.88) between model-derived

and optical KPS values, although the segmentation precision remained moderate (average

precision ≈ 34–36%). Their work highlights the challenges of achieving accurate kernel
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estimation in field conditions without separation steps. The missing link between Optical

CSPS and laboratory reference CSPS was the main gap in this study.

In contrast, our late fusion model achieved a Pearson’s r = 0.968 and RMSECV of 2.16

when predicting CSPS while relying on combined RGB morphological features and NIR

compositional data. Moreover, the proposed pipeline uses compact and feasible components

for field deployment, with the DINO feature extractor providing strong generalization from

RGB images and Random Forest regressors offering low-latency inference. Therefore, this

study presents a practical, lightweight alternative capable of operating in real-time onboard

harvesters, expanding the possibilities for in situ quality assessment of corn silage beyond

kernel-centric metrics alone.

To assess deployment feasibility, we estimate that the late fusion system can achieve real-

time performance on modern edge devices. Optimized DINO variants, such as Grounding

DINO 1.5 Edge, have demonstrated over 10 FPS on the NVIDIA Orin NX using TensorRT

optimization [18]. Random Forest regressors also offer low inference overhead, with

approaches like Bolt achieving 2× faster predictions compared to previous methods [13].

Together, these components enable CSPS estimation within 100 milliseconds per sample on

platforms like the NVIDIA Jetson series, supporting onboard, real-time operation during

forage harvesting. However, given the limited dataset of 60 plots from a single season,

future work should address generalization across years and locations.

5.3.3 Classification Performance

Classification analysis was conducted to categorize CSPS values into “Good” (50–70%)

and “Optimal” (>70%) classes using RGB-only, NIR-only, and Late Fusion strategies. Key

metrics, confusion matrices, and ROC/PR curves were evaluated.

Table 5.2 highlights the classification performance for each modeling strategy. And

each model will be explored individually:

RGB-only Classification: The RGB-based classifier achieved an AUC of 0.911,

precision of 0.860, and recall of 0.977 at the optimal threshold (0.40). As shown in
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Table 5.2: Classification metrics summary for RGB-only, NIR-only, and Late Fusion models.
The P column stand for Precision, the R column stand for recall.

Model P R F1 ROC AUC

RGB-only 0.860 0.977 0.915 0.911
NIR-only 0.530 1.000 0.696 0.559
Late Fusion 0.977 0.955 0.966 0.994

Figure 5.4, the feature space exhibited clear clustering between the two classes. The

confusion matrix reveals a strong ability to correctly classify Optimal samples, with

minimal false negatives. However, some Good samples were misclassified as Optimal,

suggesting a slight overprediction bias likely linked to the proxy estimation step (FoG →

CSPS). The F1 score peaked at 0.915, indicating robust overall performance.

NIR-only Classification: The NIR-based classifier performed substantially worse,

achieving an AUC of 0.559 and F1 score of 0.696 at the best threshold (0.17). Figure 5.5

shows that the classifier had difficulty separating Good and Optimal classes, with many

false positives for Optimal samples. Precision was high (1.0) for Good samples but recall

was very low (0.12), suggesting that the NIR model struggled to identify Good-quality

processing. The PR curve was flat and ROC close to the diagonal, confirming the limited

discriminative ability when using spectral features alone for this task.

Late Fusion Classification: Late fusion greatly improved classification performance

across all metrics. As shown in Figure 5.6, the model achieved an AUC of 0.994, a precision

of 0.977, recall of 0.955, and F1 score of 0.966. The feature space exhibited almost perfect

linear separability. The confusion matrix confirmed high classification accuracy, with very

few false positives and false negatives. The PR curve was nearly ideal (AP = 0.998), and

the ROC curve showed a steep ascent with minimal area under the diagonal. The fusion

leveraged complementary strengths from both RGB (morphology) and NIR (compositional

quality), overcoming the individual weaknesses of the unimodal approaches.

Overall, the classification results mirror the regression findings: while RGB-only and

NIR-only models provide partial predictive power, combining modalities through late fusion

substantially improves reliability. These results reinforce the growing evidence that late
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(a) Feature space for RGB-based CSPS clas-
sification. Each point represents a sample
colored by the ground truth class (Good =
blue, Optimal = red). A clear horizontal
separation can be observed, indicating that
RGB-derived features (FoG-based) were in-
formative for distinguishing processing qual-
ity classes.

(b) Confusion matrix for RGB-based classi-
fication at threshold 0.40. The model ex-
hibited high true positive rates for Optimal
class predictions, with a few Good samples
misclassified as Optimal, indicating a slight
tendency toward overestimation.

(c) F1 score as a function of threshold
for RGB-based classification. The optimal
threshold maximizing the F1 score was iden-
tified at 0.40, balancing precision and recall
effectively for the two-class prediction task.

(d) Receiver Operating Characteristic (ROC)
curve for RGB-based classification, achiev-
ing an AUC of 0.911. The curve indicates
strong discriminatory ability, although some
sensitivity loss is observed at very low false
positive rates.

Figure 5.4: Classification results using only RGB-derived features for CSPS threshold
prediction. Despite good separability, minor misclassifications suggest limitations when
relying solely on RGB morphology-based proxies.

fusion is preferable for small-to-medium datasets where early feature-level fusion may

overfit or fail to properly align heterogeneous signals [1, 10].
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(a) NIR Confusion Matrix (b) NIR F1 vs Threshold

(c) NIR Precision-Recall Curve (d) NIR ROC Curve

Figure 5.5: NIR-only classification results for CSPS thresholding.

5.4 Comparison with Existing Literature

Prior studies have explored a variety of techniques for estimating kernel processing scores

(KPS) and corn silage processing score (CSPS), ranging from traditional image processing

pipelines to deep learning and real-time machine-integrated systems. Table 5.3 summarizes

key findings and compares them with the current work.

Compared to earlier image-only methods [4, 11], the proposed multimodal approach

benefits from integrating both morphological (RGB) and compositional (NIR) information.

Whereas previous works relied on geometric proxies or kernel counting, this study eliminates

the need for manual annotation or explicit object detection by leveraging self-supervised

features extracted from DINOv2.

Rocha et al. [19] achieved excellent correlation (r = 0.977) using high-speed imagery
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(a) Late Fusion Feature Space (b) Late Fusion Confusion Matrix

(c) Late Fusion F1 vs Threshold (d) Late Fusion ROC Curve

(e) Late Fusion Precision-Recall Curve

Figure 5.6: Late fusion classification results combining RGB and NIR.

and kernel counting, but their method requires detecting whole kernels—a rare condition

in properly calibrated harvesters. Rasmussen and Moeslund [17] explored deep object

recognition for kernels but reported only moderate segmentation precision (AP ≈ 34–36%)

and relied heavily on detailed labels.

This study improves upon prior work by:



131

Table 5.3: Comparison of prior CSPS/KPS estimation methods with the proposed multi-
modal approach.

Study Method Highlights Best r or
R2

Limitations

Drewry
et al.
(2019) [4]

Image processing
of kernel particles

Estimated KPS using
geometric features (e.g.,
MICD, area); r = 0.80
with sieving reference

r = 0.80 Lab-based, no
NIR

Luck et al.
(2020) [11]

Smartphone im-
age processing
(SilageSnap)

Correlated image-based
particle size to in-situ
digestibility; field-ready
app

r = 0.77 No spectral
data, indirect
validation

Rocha et al.
(2022) [19]

ML + image
kernel counting
(spout camera)

High-speed image acquisi-
tion + ML kernel counting;
offline linear regression for
KPS

r = 0.977 Kernel count-
ing limits
generalization;
image-only

Rasmussen
and Moes-
lund
(2019) [17]

Deep learning ob-
ject detection

Segmentation of kernels in
RGB; AP ≈ 34–36%; r =
0.88 KPS correlation

r = 0.88 Relied on
pixel-wise la-
bels, moderate
precision

This study
(2025)

RGB+DINOv2
+ NIR+VIP +
late fusion

No manual segmenta-
tion; self-supervised fea-
tures + spectral data;
deployed fusion model

r = 0.968,
R2 = 0.922

Limited to sin-
gle season, 60
plots

• Utilizing self-supervised RGB features (DINOv2) that require no labeled images;

• Combining RGB and NIR modalities via late fusion to enhance robustness;

• Achieving high predictive accuracy (r = 0.968, R2 = 0.922, RMSECV = 2.16%)

without kernel segmentation;

• Designing a pipeline suitable for real-time deployment using edge computing.

These advances suggest that multimodal learning provides a scalable, interpretable, and

high-performing alternative to traditional image-only or handcrafted methods for silage

processing quality estimation.
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5.5 Study Limitations

Despite the strong performance of the proposed multimodal framework, several limitations

should be acknowledged:

• Dataset size and diversity: The dataset used in this study consisted of only 60

plots, all collected during a single harvest season at a single location. While stratified

cross-validation was used to improve generalizability, this limited sample size restricts

the external validity of the model. Future work should incorporate multi-season,

multi-location datasets to ensure robustness across varying agronomic conditions,

hybrid varieties, and environmental factors.

• Range of CSPS values: The dataset was skewed toward well-processed silage,

with relatively few samples exhibiting very low CSPS values. As a result, model

performance may degrade under suboptimal or edge-case processing conditions. More

balanced sampling across the entire spectrum of processing quality is required to

build models capable of robust predictions in operational extremes.

• Dependence on proxy variables: While the use of the Fragment of Grain (FoG) as

an intermediate variable improved performance, it also introduces an additional layer

of approximation. The effectiveness of this proxy may vary depending on the crop,

harvest equipment, or particle visibility in images, potentially limiting generalization.

• Sensor alignment and synchronization: Although RGB and NIR data were

collected in close proximity on the harvester spout, perfect spatial and temporal

alignment between modalities was not guaranteed. Small mismatches could introduce

noise into the fusion process. Integrated multi-sensor calibration and alignment

strategies could improve data fusion fidelity.

• Edge deployment trade-offs: While Random Forests were chosen for their favor-

able inference speed and DINOv2 features were extracted offline, deploying the entire

pipeline in real-time on embedded systems may require additional optimization such
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as model quantization or distillation. Real-world validation on edge hardware was

estimated but not executed in this study.

• Lack of external validation: Model evaluation was limited to internal cross-

validation folds. Although this approach reduces overfitting risk, an independent

hold-out dataset or external test site validation is essential for rigorous benchmarking

before field deployment.

These limitations highlight important considerations for future work and motivate

continued development toward generalizable, scalable, and interpretable systems for real-

time silage quality monitoring.

5.6 Conclusion

This study demonstrated the effectiveness of combining morphological (RGB) and com-

positional (NIR) features for predicting corn silage processing scores (CSPS). Through a

comprehensive comparison of unimodal and multimodal approaches, we showed that late

fusion strategies significantly outperformed single-modality models, achieving an R2 of

0.922 for regression and an F1 score of 0.966 for classification.

Regression results indicated that while both RGB-derived FoG proxies and NIR-

derived spectral features provided moderate predictive ability individually, fusing their

complementary information through a Random Forest model yielded the most accurate

CSPS estimations. The optimal fusion strategy placed greater weight on RGB-based

morphological cues (α = 0.61), while still leveraging the spectral sensitivity of NIR data.

Classification results further reinforced the benefits of multimodal fusion. The late

fusion model exhibited the highest precision, recall, and F1-score among the tested ap-

proaches, substantially reducing false positives and false negatives compared to unimodal

models. These outcomes highlight the potential of integrating both RGB imaging and NIR

spectroscopy for real-time silage quality assessment.

A key advantage of the proposed system is that it did not require manual segmentation
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annotations of kernels or particles. Instead, feature extraction relied on self-supervised

learning and regression targets based on laboratory-measured CSPS values, avoiding the

inconsistencies and labeling errors often associated with manual annotation processes [16].

This makes the approach substantially more scalable and reproducible compared to prior

deep learning-based methods that depend heavily on detailed pixel-level annotations.

From a deployment perspective, the combination of frozen DINO feature extractors,

lightweight Random Forest models, and embedded NIR analysis suggests a feasible path

toward implementing these systems onboard forage harvesters. Real-time inference, without

reliance on cloud computing, could enable farmers to monitor and adjust kernel processing

quality dynamically during harvest operations.

Future work should validate the approach across broader environments, including

different seasons, hybrid varieties, and harvest conditions. Additionally, interpretability

analyses could provide insights into the most influential morphological and spectral features,

paving the way for more explainable precision agriculture systems.
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Chapter 6

Conclusion and Future Work

Conclusion

Near-Infrared (NIR) spectroscopy is rapidly becoming a cornerstone technology in the

digital transformation of agriculture. Its ability to non-destructively estimate the chemical

composition of biological materials—such as moisture, protein, fiber, starch, and lignin—has

positioned it as a valuable tool for monitoring crop and forage quality, assessing soil health,

and verifying food integrity. What once required lab-based wet chemistry and time-

consuming sampling can now be achieved in seconds with portable NIR devices deployed

directly in the field, on machinery, or even integrated into autonomous platforms. This

evolution enables real-time, spatially resolved decisions across the production pipeline—from

planting and fertilization to harvest and storage.

The practical impact of NIR is seen in its versatility: it supports ration formulation for

livestock by evaluating forage digestibility, helps detect grain adulteration and contamina-

tion, and provides insights into soil nutrient dynamics—all without altering the sample.

As the technology becomes more compact and affordable, its potential for democratization

expands. Producers, agronomists, and food processors can now access lab-grade analytics

in the field, enabling more precise and sustainable practices. While machine learning

and AI have enhanced the modeling and interpretation of complex spectral data, the

strength of NIR lies in its direct linkage to physical and chemical properties, providing a
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scientifically grounded signal that bridges traditional agronomy and modern data science.

Looking ahead, the continued fusion of NIR with emerging technologies—including imaging,

edge computing, and cloud-based analytics—promises to deliver scalable, explainable, and

high-impact tools for the next generation of agriculture.

This dissertation has advanced the integration of spectroscopic and image-based sensing

for real-time assessment of forage processing quality and crop loss in agricultural systems.

Across four distinct but interconnected studies, the work demonstrated the feasibility,

accuracy, and adaptability of multimodal machine learning frameworks under practical,

in-field constraints.

First, handheld NIR spectrometers were evaluated for estimating nutritional traits in

undried forage. Despite challenges posed by water absorption and field variability, the

study showed that appropriate preprocessing and calibration methods can yield robust

models for crude protein, fiber, and digestibility. This affirms the viability of portable NIR

systems for in situ forage quality screening.

Second, pre-harvest loss quantification was explored using deep learning-based object

detectors applied to field images of soybean, oat, and wheat losses. These models effectively

localized and quantified uncollected grain, paving the way for visual feedback loops in

harvest optimization.

Third, a late-fusion strategy was proposed that integrated RGB-derived morphological

features with NIR spectra. This approach significantly outperformed unimodal baselines,

achieving a Pearson correlation of 0.968 and RMSECV of 2.16% for CSPS prediction, and

a binary classifier AUC of 0.994. The findings underscore the potential of synergistic data

fusion to capture both structural and compositional traits.

Finally, self-supervised learning was applied to extract semantic features from silage

images using DINOv2 Vision Transformers. These models performed strongly in estimating

CSPS without requiring manual annotation or kernel segmentation, reinforcing the value of

foundation models and weak supervision in agricultural machine vision. The use of a proxy

variable—fraction of grain retained over 4.75 mm (FoG)—further improved explainability



139

and interpretability.

Together, these contributions provide a scalable, interpretable framework for deploying

intelligent, multimodal sensing systems in precision agriculture. The results advocate

for a shift from isolated sensor modalities to unified perception architectures capable of

generalizing across dynamic agricultural environments.

Beyond academic contributions, the practical applications of the systems developed in

this dissertation are far-reaching. When deployed on harvesting implements, these multi-

modal sensing systems could enable automated control of harvest settings—dynamically

adjusting roll gap or kernel processor speeds to optimize forage digestibility and minimize

grain loss in real-time. Such adaptability has the potential to enhance feed efficiency,

reduce input waste, and improve economic returns for producers.

Moreover, the fusion of visual and spectral data opens pathways for automated in-

field phenotyping, supporting timely agronomic decisions. By identifying traits such as

biomass, kernel fragmentation, or nutritional value during key growth stages, these tools

can guide in-season adjustments to nutrient applications or pest management. This not

only reduces the environmental footprint of farming practices but also supports data-driven

yield optimization.

Importantly, the adoption of compact, affordable sensors—paired with interpretable

machine learning—offers a low-cost upgrade path for existing farm equipment. By trans-

forming tractors, harvesters, or UAVs into mobile crop laboratories, producers can routinely

monitor crop quality and loss metrics without the delays and costs associated with labo-

ratory testing. This democratization of analytics has the potential to increase access to

precision agriculture technologies for small and mid-sized operations.

As agriculture continues to evolve under the pressures of sustainability, climate variabil-

ity, and global food demand, the ability to generalize sensing models across crops, seasons,

and geographies will be essential. The scalable framework presented in this work lays the

foundation for such adaptability—blending physical insight, machine learning, and edge

deployability into a unified system ready for the next generation of intelligent farming.
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Future Work

While this research has addressed critical gaps, several avenues remain open for continued

exploration:

• Cross-Site and Temporal Generalization: The current models were validated

using single-season, single-site datasets. Extending to multi-year and multi-location

trials is essential to evaluate model stability under varying environmental, genetic,

and operational conditions.

• Model Interpretability and Uncertainty Quantification: Attention maps and

VIP scores provided initial insight into feature relevance. Future work should explore

SHAP values, Bayesian neural networks, or ensemble-based uncertainty measures to

improve interpretability and trust in model outputs.

• Embedded Deployment and Real-Time Processing: Implementation on em-

bedded devices such as NVIDIA Jetson modules should be pursued. This includes

profiling inference latency, leveraging TensorRT acceleration, and ensuring sensor

synchronization for truly on-the-go deployment.

• Pre-Harvest Trait Prediction: While this work focused on harvested material,

the same sensing framework could be extended to early-season or mid-season traits,

such as grain fill, biomass accumulation, lodging risk, or stress detection, enabling

earlier intervention strategies.

• User-Facing Interfaces and Decision Tools: Future systems should integrate

visualization dashboards and feedback loops, allowing end-users (farmers, agronomists,

nutritionists) to monitor quality metrics, receive real-time alerts, and fine-tune

decisions based on model outputs.

• Advanced Domain Adaptation: Domain adaptation techniques (e.g., adversarial

training, contrastive alignment, style transfer) could enhance model robustness to

unseen environments or sensor shifts—critical for low-cost or widely deployed systems.
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• Data-Centric Approaches and Label Efficiency: Leveraging self-supervised

learning and active learning strategies can reduce dependency on expensive labeled

data, especially for spectral calibration or segmentation-intensive tasks in novel crops

or regions.



142

Appendix A

Appendix

A.1 Explained Variance for Handheld NIR
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Table A.1: Explained variance (%) by each latent variable (LV) for different instruments and
target variables. The values represent the individual contribution of each LV to the total explained
variance.

Instrument Variable LV1 LV2 LV3 LV4 LV5 LV6 LV7 LV8 LV9 LV10

AgroCares Static

ADF 69.64 9.99 1.89 5.29 2.66 2.74 1.73 2.22 0.50 0.80
ADL 75.36 3.10 3.93 1.58 4.79 2.72 1.73 3.06 0.49 0.36
CP 34.57 40.04 3.19 4.97 5.35 2.54 2.17 1.89 0.99 0.91

IVTD 66.68 12.45 1.59 4.12 3.94 3.21 1.77 1.49 1.28 0.83
NDFD 75.40 4.20 3.90 1.83 2.45 2.76 2.93 2.62 0.80 0.68
aNDF 38.45 35.27 3.75 5.49 4.13 3.71 2.43 2.03 0.56 0.75

AgroCares Moving

ADF 72.73 11.85 1.76 5.23 2.02 1.75 0.52 1.52 0.26 0.26
ADL 79.69 3.66 4.60 1.87 2.07 3.65 0.94 1.01 0.17 0.29
CP 37.47 42.25 2.13 7.73 1.68 3.31 1.06 1.09 0.51 0.21

IVTD 67.76 15.55 1.78 6.10 1.02 1.57 1.75 1.66 0.29 0.25
NDFD 78.51 2.07 4.56 2.58 1.23 6.11 1.23 1.18 0.18 0.33
aNDF 42.04 38.25 2.75 5.86 3.70 1.75 0.70 1.75 0.49 0.21

NEOSpectra Static

ADF 67.24 13.98 7.18 3.96 2.41 0.70 1.23 0.42 0.53 0.32
ADL 74.43 5.09 6.78 5.11 3.41 0.64 1.10 0.63 0.44 0.31
CP 36.26 42.49 6.67 5.75 1.79 1.20 0.63 1.28 1.00 0.45

IVTD 62.96 17.68 5.75 5.34 1.61 1.39 1.68 0.50 0.59 0.34
NDFD 73.31 2.32 9.77 6.12 1.84 1.48 1.91 0.47 0.43 0.35
aNDF 36.99 38.83 10.39 4.16 3.23 0.52 1.70 0.45 0.90 0.40

NEOSpectra Moving

ADF 67.69 12.72 4.56 7.72 1.77 1.13 1.12 0.46 0.55 0.28
ADL 73.90 4.19 8.23 5.41 2.66 0.82 0.45 0.84 1.19 0.28
CP 35.14 39.27 3.32 13.64 2.10 0.80 1.78 0.98 0.46 0.40

IVTD 60.10 15.80 2.24 13.97 1.72 1.27 1.47 0.54 0.60 0.28
NDFD 72.91 1.90 7.88 9.07 2.23 0.87 1.05 1.08 0.73 0.25
aNDF 38.82 34.14 3.75 15.01 2.22 1.30 0.78 0.85 0.33 0.59

NEOSpectra TurnTable

ADF 65.80 16.21 4.45 6.11 2.14 1.01 0.48 0.87 0.46 0.26
ADL 72.69 6.89 6.00 3.80 5.30 1.02 0.49 0.31 1.06 0.19
CP 30.11 50.20 6.68 3.97 2.36 1.91 0.48 1.09 0.58 0.32

IVTD 59.73 20.88 2.94 7.73 2.67 1.44 0.48 1.05 0.46 0.29
NDFD 75.94 2.90 7.23 2.55 4.24 3.00 0.50 0.75 0.55 0.19
aNDF 33.29 45.87 8.35 3.29 2.71 1.56 0.31 1.25 0.46 0.41

Trinamix Static

ADF 74.94 10.20 2.82 2.63 1.33 2.96 1.53 0.70 0.27 0.59
ADL 79.72 5.00 2.72 1.96 1.78 3.62 1.22 1.35 0.65 0.30
CP 42.12 37.73 5.05 1.99 2.13 2.41 1.72 3.17 0.45 1.02

IVTD 70.04 13.63 2.41 3.13 1.39 2.30 0.73 3.34 0.57 0.55
NDFD 80.21 3.67 3.60 1.17 2.53 2.12 2.01 1.96 0.25 0.54
aNDF 45.70 33.24 5.78 2.67 1.75 4.03 2.68 0.53 0.70 0.81

ADF - Acid Detergent Fiber, ADL - Acid Detergent Lignin, CP - Crude Protein, IVTD - in-vitro
Total Digestibility, NDFD - Neutral Detergent Fiber Digestibility, aNDF - actual Neutral Detergent
Fiber


