

Evaluation of denitrification systems for improving groundwater quality from on-site waste disposal systems. [DNR-094] 1993

Shaw, Byron H.; Osesek, Steven Madison, Wisconsin: Wisconsin Department of Natural Resources, 1993

https://digital.library.wisc.edu/1711.dl/DYETE36DIW6EP8O

http://rightsstatements.org/vocab/InC/1.0/

For information on re-use see: http://digital.library.wisc.edu/1711.dl/Copyright

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

051199

Evaluation of Denitrification Systems for Improving Groundwater Quality from On-Site Waste Disposal Systems

EVALUATION OF DENITRIFICATION SYSTEMS FOR IMPROVING GROUNDWATER QUALITY FROM ON-SITE WASTE DISPOSAL SYSTEMS

·

BYRON SHAW STEVEN OSESEK

FEBRUARY 1993

PROJECT MID REPORT TO DNR

Water Resources Center University of Wisconsin - MSN 1975 Willow Drive Madison, WI 53706

45<u>1</u>11

TABLE OF CONTENTS

• **

ي ک

TABLE OF CONTENTS	PAGE ii
LIST OF FIGURES	iii
INTRODUCTION AND JUSTIFICATION	1
Introduction	1
Project Justification and Goals	2
LITERATURE REVIEW On-Site Waste Disposal Systems Nitrification and Denitrification Processes Nitrogen Removal Systems for On-Site Waste Disposal Systems	4 4 8 12
METHODS	19
Study Sites	19
Monitoring Well Installation and Design	20
Denitrification System Installation and Design	28
Denitrification System Monitoring	30
PRELIMINARY RESULTS	34
Site 1	34
Site 2	38
LITERATURE CITED	43
APPENDICES	46
Groundwater Chemistry for Site 1	47
Groundwater Chemistry for Site 2	61
RSF Chemistry for Site 1	65
RSF Chemistry for Site 2	67

and the second second

LIST OF FIGURES

•

		PAGE
Figure 2.1	Typical Recirculating Intermittent Filter System.	16
Figure 3.1	Monitoring Well Locations at Site 1.	23
Figure 3.2	REC and REW Well Design at Site 1.	24
Figure 3.3	Multiport Well Design at Site 1.	25
Figure 3.4	Cross sectional view of multiport wells at Site 1.	26
Figure 3.5	Monitoring Well Locations at Site 2.	27
Figure 3.6	Temperature Probe locations in the recirculating sand filter at Site 1.	31
Figure 4.1	Ammonia and TKN concentrations for the septic tank at Site 1.	36
Figure 4.2	Nitrate/Nitrite, Ammonia, and TKN concentrations for the pump chamber in the recirculating sand filter at Site 1.	36
Figure 4.3	Temperature readings for the septic tank and the pump chamber at Site 1.	37
Figure 4.4	Nitrate/Nitrite, Ammonia, and TKN concentrations for effluent from the septic tank at Site 2.	41
Figure 4.5	Nitrate/Nitrite, Ammonia, and TKN concentrations for the pump chamber in the recirculating sand filter at Site 2.	41
Figure 4.6	Nitrate/Nitrite, Ammonia, TKN, and Total Nitrogen concentrations for the Dosing Chamber at Site 2.	41
Figure 4.7	Temperature readings for the sewage ejector pit and the pump chamber in the recirculating sand filter at Site 2.	42

iii

INTRODUCTION AND JUSTIFICATION

1.1 Introduction

The Central Wisconsin Sand Plains region contains some of the largest and most productive aquifers in the state of Wisconsin. The sandy glacial outwash soils of the area are highly permeable and the terrain is relatively flat. These factors combined with a relatively shallow unconfined aquifer make this region particularly susceptible to contamination from various land use practices.

One of the land use practices which is increasingly becoming a concern involves the residential development of unsewered areas. Trends in the 1970's and 1980's saw population increases in suburban areas. As a result, suburban expansion quickly exceeded beyond the reaches of municipal water and sewage and thus private sewage systems became common.

The primary purposes of current private sewage systems are the disposal of wastewater and the removal of bacteria. Only recently has consideration been given to the level of chemical treatment which can be expected from private sewage systems and their potential for groundwater pollution.

Soil absorption systems are designed to receive wastewater from a septic tank and dispose of it below ground where it is hopefully treated before it reaches the groundwater. It is generally recognized that three feet of unsaturated soil is required to properly treat sewage effluent to allow adequate removal of disease causing bacteria, viruses, suspended solids, and some organic materials.

Treatment efficiency in private sewage systems for other chemical constituents may be less than ideal or simply unknown in the present. Because nitrate, a breakdown of organic nitrogen compounds, is very soluble and does not adsorb to soil, it often reaches groundwater from what are considered well functioning septic systems. When used on sandy soils, many properly functioning septic systems have been shown to result in significant nitrate-N concentrations in groundwater.

1.2 Project Justification and Goals

This project was initiated due to increasing concern regarding the impact private on-site waste disposal systems have on groundwater quality. The major quantifiable contaminant that has been shown to impact groundwater from private sewage systems is nitrate-N. This concern has led to a number of ordinances restricting lot sizes to two or more acres to allow for adequate dilution of septic system waste. Increased lot size cause a number of problems related to urban sprawl. Interest in alternative or improved waste disposal systems has increased with a number of innovative systems being used in many areas.

This project was designed to evaluate a denitrification system's ability to reduce nitrogen loading to groundwater from onsite sewage disposal systems. This will be done by installing two systems in the sand plain areas of central Wisconsin. The systems used have been installed on sites where we already had groundwater monitoring wells in place and contaminant plumes well identified.

The goals of the project are to install and evaluate low-cost denitrification systems to determine their suitability for reducing nitrogen loading to groundwater from on-site waste disposal systems, to monitor groundwater to determine the extent of improvement that occurs from the use of these systems and to compare treatment system effluent concentration to worst case groundwater concentrations to evaluate additional treatment that may be occurring in the soil absorption system.

LITERATURE REVIEW

2.1 On-Site Waste Disposal Systems

Most on-site waste disposal systems consist of a septic tank followed by a subsurface soil absorption system. Results vary relative to the treatment efficiency of wastewater by septic tanks. Lawrence (1973) reported Suspended Solid removals of 35 to 45%, and BOD removals of 15% or less. However, Viraraghaven (1976) reported Total Suspended Solids removal of 25% with BOD and COD removals on the order of 50%. Typical effluent concentrations from septic tanks for Suspended Solids, BOD_5 , COD, Total Nitrogen and Total Phosphorous are 75 mg/l, 140 mg/l, 300 mg/l, 40 mg/l, and 15 mg/l respectively (Canter and Knox, 1986).

The quantities of indicator bacteria such as fecal coliform, whose presence suggests that other enteric organisms are also possibly present, are usually high in septic tank effluent with pathogenic bacteria such as <u>Pseudomonas aeruginosa</u> commonly being isolated. When infections have occurred, viruses are also found in septic tank effluent in high concentrations (Canter and Knox, 1986). Because of the limited wastewater treatment provided by septic tanks, their effluent must be purified further prior to release to either surface of groundwater. The primary mechanism for providing this treatment is through on-site soil absorption systems.

Soil Absorption Systems are essential components of septic systems. Soil Absorption Systems, which may be trenches, beds, pits or mounds, hydraulically receive septic tank effluent and

discharge it below ground where it is absorbed and treated by the soil as is percolates towards groundwater.

Soil Absorption Systems are capable of treating organic materials, some inorganic substances and pathogens present in the wastewater through physical, chemical and biological processes. By acting as a filter, exchanger, adsorber, and providing a surface on which many chemical and biological processes may occur, Soil Adsorption Systems are capable of enhancing treatment of wastewater from septic tanks (U.S. EPA, 1980).

Wastewater microbes can be effectively treated through 1.2 m of soil if the soil is unsaturated. Unsaturated conditions enhance the removals of pathogenic organisms and other pollutants from the wastewater by increasing their chances to react with soil particles. Furthermore, under unsaturated conditions the larger pore volumes often contain air which allows for the efficient aerobic decomposition of many suspended and dissolved organic substances present in the wastewater. These processes tend to work much better under unsaturated conditions because the wastewater movement is primarily through only the smaller pore volumes of the soil which increases both the retention and liquid-solid contact time. When saturated conditions exist, the water flows through the larger pores and receives minimal treatment.

For instance, Romero (1970) cited a number of studies in which the effluent intersected or was close to the water table. Elevated bacteria levels were temporarily detected up to 24.4 m horizontally away from the source. USEPA (1980), on the other hand, reports

that under unsaturated flow conditions, bacteria can be removed within .9 to 1.2 m of effluent flow through the soil.

Present site criteria that must be met for a septic tank system approval include a specified percolation test, and a minimum of 1.2 m separation between the bottom of the seepage system and the maximum seasonal elevation of groundwater (Canter and Knox, 1984). This is required so the unsaturated soil has a high ability to remove Total Suspended Solids, BOD, COD, and soluble organic carbon with a 75-95% reduction occurring in these concentrations typically within the first five feet of soil.

Unfortunately, the unsaturated flow of septic tank effluent increases the chance of nitrate contamination of groundwater. The principal sources of nitrogen in wastewater are feces and urine which contain urea, uric acid, ammonia, undigested proteinaceous materials and bacterial cells. Typically, 75% of the nitrogen in septic tank effluent exists in the ammonium form and 25% exists in the organic form (Canter and Knox, 1986). Most of the ammonium is biologically converted to nitrate as the wastewater moves through the unsaturated soil beneath the crust of the soil absorption system. Walker et. al. (1973) studied five subsurface seepage beds in which the subcrust contained 19.6% oxygen. They concluded that nitrification of ammonium to nitrate was essentially complete and commenced in the unsaturated subcrust soil within about 2 cm of the crust. The ammonium levels were relatively high beneath the seepage beds but decreased to low levels within a few centimeters. The general increase in NO₃-N with depth concurrent with the

decrease in NH_4-N suggests that nitrification was the major mechanism of NH_4-N removal.

The high solubility of the nitrate anion allows it to move freely with groundwater. If the nitrates enter an anaerobic environment in which organic material is available, denitrification, the reduction of nitrate to nitrogen gas, may occur. However, significant denitrification is unlikely to occur in a well-aerated sandy subsoil or in a carbon-deficient groundwater (Walker et al., 1973).

Nitrate-nitrogen leaching from on-site sewage disposal systems has been shown to threaten both surface and groundwater quality in unsewered areas of the United States (Lamb et. al., 1989). Nitrates may contribute to the eutrophication of surface waters and they have also been linked to cases of methemoglobinemia in infants (U.S. EPA, 1975). Consequently, the U.S. Environmental Protection Agency and World Health Organization drinking water standard for nitrate is 10 mg/l as nitrate-nitrogen (45 mg/l as nitrate) (Kaplan, 1987).

Nitrate contamination of groundwater from septic tanks has been documented. Walker et. al. (1973) found that soil disposal systems of septic tank effluents in sands added significant quantities of nitrate to the underlying ground water. Concentrations as high as 40 mg/l of nitrate-nitrogen were found in the upper 30 cm of aquifer adjacent to the systems. Relatively large areas of .2 ha (0.5 acre) down gradient were needed before concentrations were lower than the standard 10 mg/l.

In conditions of high groundwater or very slowly permeable soils, anaerobic soil conditions may exist. Under these conditions, nitrification will not occur and the nitrogen will remain in the form of ammonium. Ammonium is readily adsorbed by soil materials of high clay content and hence migrates much more slowly (U.S. EPA, 1978). As adsorption sites for ammonium are exhausted on the soil particles, the ammonium will migrate farther and farther from the septic system. Most of the ammonium is later subjected to nitrification and leaching if aerobic conditions become reestablished (Lance, 1972).

Because denitrification is unlikely to occur beneath soil absorption systems and adsorption of ammonium to soil particles is limited, dilution has been the primary mechanism for nitrate reduction. Because groundwater flow patterns are difficult to predict and because many residential areas have high densities of homes, dilution is an unacceptable part of the wastewater treatment system. Wastewater treatment should incorporate a denitrification system into it because this process provides the most feasible means to reduce the nitrogen content of the effluent (Walker et. al., 1973).

2.2 Nitrification and Denitrification Processes

Nitrogen entering a conventional septic system is in the organic-N and ammonium-N forms. A properly functioning septic tank will remove approximately 10% of the influent organic nitrogen which is stored in the sludge (Laak et. al., 1981). In the septic tank, settlement and ammonification occur, resulting in effluent

containing primarily ammonium-N (USEPA, 1980; Canter and Knox, 1985). One of the most effective means of ammonium removal is through biological nitrification and denitrification. Ammonium is converted to nitrate (nitrification) and the nitrate is then converted to nitrogen gas (denitrification) which is released to the atmosphere. . •

The nitrification and denitrification processes require a variety of bacteria and environmental conditions. In order for these processes to be successful, an understanding of the conditions necessary for each process is essential.

Nitrification is commonly defined as the biological oxidation of ammonium to nitrate with nitrite as an intermediate. Autotrophic microorganisms are largely, if not entirely, responsible for nitrification in natural systems. These nitrifying autotrophs require oxygen and derive the carbon for cell synthesis largely from CO₂, carbonates, or bicarbonates (Delwiche, 1981).

Oxidation of ammonium to nitrite by Nitrosomonas and the subsequent oxidation of nitrite to nitrate by Nitrobacter is usually represented by the following equations:

> $NH_4^+ + 1.5 O_2 + 2 HCO_3^- ---> NO_2^- + 2 H_2CO_3 + H_2O$ $NO_2^- + .5 O_2 ---> NO_3^-$

Nitrosomonas obtain energy from the oxidation of ammonium to nitrite while Nitrobacter obtain energy from the further oxidation of nitrite to nitrate.

The overall reduction of ammonium to nitrate can be shown as (EPA , 1975):

 $NH_4^+ + 2 O_2 + 2 HCO_3^- ---> NO_3^- + 2 H_2CO_3 + H_2O$

The above equation shows that alkalinity is destroyed by the oxidation of ammonia and that carbon dioxide (H2CO3 in the aqueous phase) is produced. Past studies have shown that 6.3 to 7.4 mg of alkalinity are destroyed for every mg of NH_4^+-N oxidized in attached growth systems (EPA, 1975). Thus the process of nitrification tends to lower the pH. The significance of this pH depression is that nitrification rates can be rapidly depressed. Almost all nitrifying bacteria have an optimum pH in the alkaline range, usually near 8.0, and grow only slowly at pH values much below neutral (Gaudy & Gaudy, 1980). Lamb et. al. (1990) reported that alkalinity in the septic tank effluent appeared to limit the nitrification process in a sand filter during warm weather. If sufficient alkalinity is not available, the pH of the system can drop below 5.5 at which point nitrification could be inhibited (Loudon et. al., 1989). Thus, it is recommended that the level of alkalinity as CaCO₃ be maintained above 40 mg/l (Sandy, 1987).

The above equation also shows that dissolved oxygen is required for the nitrification process. An oxygen requirement of 4.6 mg of O_2 for every mg NH₄⁺ oxidized has been theorized to be sufficient for aeration requirements (EPA, 1975). Several investigations have provided indirect evidence of the importance of the effect of DO on nitrification rates (EPA, 1975). Low DO levels can inhibit nitrification and thus it is recommended that DO levels should be maintained above 2 mg/l for nitrification systems (Grady and Lim, 1980).

Temperature also plays an important role in the nitrification The optimum temperature range for nitrification has been reported as 18 to 35°C with nitrification ceasing at 5°C and below process. (Shammas, 1986). Lamb et. al. (1989) reported nitrification rates as low as 25% at temperatures lower than 10°C and a number of other studies also suggests that below 15°C, temperature has a significant impact on nitrification rates.

for Postal Inspection

Open if Nece

Madison, WI

53713

ход

1921

JOTIPAN ATTOW

.

involves the The biological process of denitrification conversion of nitrate nitrogen to a gaseous nitrogen species. The gaseous product is primarily nitrogen gas but also may be nitrous oxide or nitric oxide. Denitrification can be accomplished by a relatively broad range of facultative heterotrophic bacteria including Psuedomonas, Micrococcus, Archromobacter and Bacillus

(EPA, 1975).

Because denitrifying bacteria are facultative anaerobes, a sufficiently high concentration of dissolved oxygen can prevent the use of NO_3^- as the terminal electron acceptor. In general, cells exposed to more than 0.1 to 0.2 mg/l of O_2 do not denitrify (Rittman and Langeland, 1985).

Denitrification is also a two-step process in which the first step is a conversion of nitrate to nitrite. The second step converts the nitrite to nitrogen gas: NO_3^- + 0.33 CH₃OH ---> NO_2^- + 0.33 H₂O + 0.33 H₂CO₃ NO_2^- + 0.5 CH₃OH + 0.5 H₂CO₃ ---> 0.5 N₂ + HCO₃⁻ + H₂O The overall denitrification reaction can be written as (EPA,

1975):

 $NO_3^- + 0.833 CH_3OH + 0.167 H_2CO_3 ---> 0.5 N_2 + 1.33 H_2O + HCO_3^-$

The above equation shows that bicarbonate is produced and carbonic acid concentration is reduced whenever nitrate or nitrite is denitrified to nitrogen gas. Experiments have shown that approximately 3.0 mg alkalinity as CaCO₃ are produced for every mg of nitrogen reduced. Thus, the tendency of denitrification is to at least partially reverse the effects of nitrification and raise the pH of the wastewater.

 CH_3OH (methanol) is shown in the above equation to indicate the an adequate carbon source is needed for the denitrifying bacteria as a source of energy and carbon. In general, 3 mg of methanol for every mg of NO_3 -N will enable "complete" denitrification (95% removal of nitrate) (EPA, 1975).

Denitrification is also influenced by temperature. Bremner and Shaw (1958) reported denitrification rates increased with temperature over a $2-25^{\circ}$ C temperature range. Crites et. al. (1981) reported the minimum temperature for denitrification in land treatment systems is $2-5^{\circ}$ C.

pH also affects denitrification rates. Denitrification rates are depressed below pH 6.0 and above pH 8.0. The highest rates of denitrification occur within the range of pH 7.0 to 7.5 (EPA, 1975).

2.3 Nitrogen Removal Systems for On-Site Waste Disposal Systems

Intermittent sand filters have been shown to produce effluents of very high quality and are presently used throughout the United States. They are well suited to onsite wastewater treatment and

disposal because the process is highly efficient, yet requires a minimum of operation and maintenance.

The quality of effluent from intermittent sand filters was documented in Oregon by the Department of Environmental Quality (Ronayne et al. 1982). Biological oxygen demand (BOD_5) and suspended solid (TSS) were consistently less than 5 mg/l, ammonia less than 1 mg/l, nitrates between 20 and 40 mg/l and fecal coliform bacterial averaged a little more than 400 organisms/100 ml.

Sand filtration of septic tank effluent was also studied by Sauer and Boyle (1977). They found that while the unit was efficient for nitrification of the septic tank effluent; no change in nitrogen concentration was found to occur. Only after the filters remained continuously ponded for over three weeks did ammonia appear in the effluent. The BOD concentrations for all the sand filter effluent were less than 10 mg/l. The same conclusion was reached by Kristiansen (1981a, 1981b), who reported on the operation of sand filter trenches. Due to aerobic conditions and lack of an available energy source, denitrification was not found.

Because sand filters accomplish excellent BOD₅ and suspended solids removal, denitrification will not occur without the addition of a suitable energy source. Sikoro and Keeney (1974) stated that in a septic tank adsorption field, the energy source is the most difficult problem in promoting denitrification.

A nitrogen reducing on-site wastewater disposal system for individual homes may be practical if the organic matter in

wastewater could be used as the carbon source for denitrification. Laak et al. (1981) and Laak (1981) reported on a different modification of a conventional septic tank system. Laak developed the RUCK system in which the organic matter in greywater (kitchen and laundry wastewater) is used as the carbon source for denitrification of nitrified blackwater (bathroom wastewater). They concluded that organic carbon in the greywater was as efficient as methanol in supporting denitrification and that an overall nitrogen removal level of 70% could be achieved using the passive RUCK system.

۰.

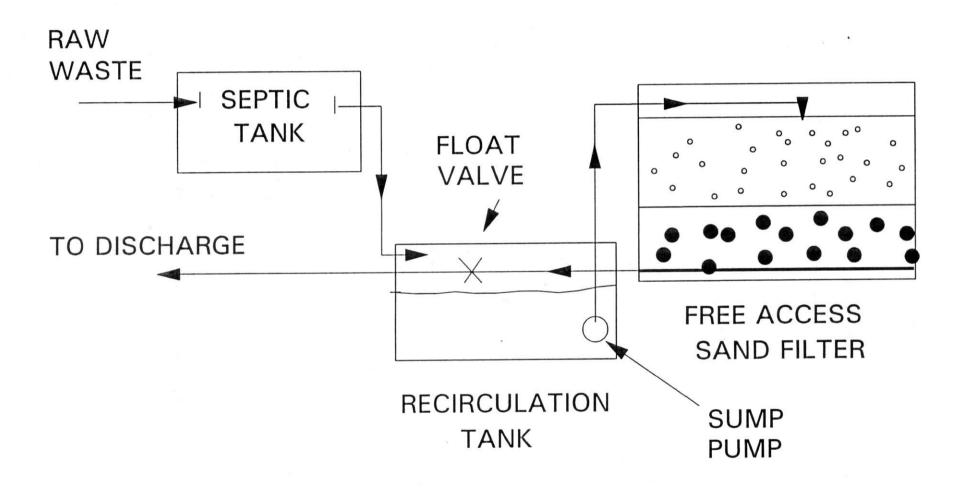
Warnock and Biswas (1981) used effluent from a kitchen garbage grinder as an energy source for denitrification in columns. A C:N ratio of 4:1 was found to be optimal to produce satisfactory denitrification.

One of the most recent on-site wastewater disposal system with nitrogen reducing potential is a recirculation sand filter, which utilizes the organic matter in septic tank effluent as the carbon source for denitrification.

The recirculating sand filter is a simple, compact method of providing improved treatment of wastewater with a low level of maintenance. Recirculating sand filters provide secondary treatment beyond a septic tank prior to surface or subsurface disposal (Loudon et. al., 19).

A typical recirculating sand filter consists of a septic tank, a free access sand filter, and a recirculation tank as shown in figure 2.1. The recirculation tank is typically 1/4 to 1/2 the

size of the septic tank (or a volume equivalent to at least one day's volume of raw wastewater flow) and receives both the effluent from the septic tank and a portion of the sand filter effluent. When the recirculation tank is full, the sand filter effluent bypasses the tank and is discharged (USEPA, 1980).


Since nitrified sand filter effluent mixes with septic tank effluent in the recirculation tank, it is possible that denitrification of the nitrified sand filter effluent can take place through utilization of the carbon source provided by the septic tank effluent.

Recirculating sand filters were not originally designed for nitrogen removal and thus little data on the effectiveness of the nitrogen removal capabilities of recirculating sand filters is a available from literature. Two recirculating sand filters which were installed in Michigan generally showed nitrogen removal rates of 40 - 60% (Louden et. al., 19).

Another study of a recirculating sand filter was conducted in which the recirculation tank was replaced with a tank filled with rock. The carbon source was added directly to the rock tank. When septic tank effluent was used as a carbon source, an average of only 25% denitrification was observed in the rock tank with the whole system achieving a total nitrogen removal of 36%. The low amount of denitrification was assumed to be the result of the low C:N ratio found in the rock tank. A C:N ration of 0.7:1 was maintained while past studies generally suggest a C:N ratio of 1:1 to 3:1 is needed. Thus the amount and availability of

Figure 2.1 Typical Recirculating Intermittent Filter System

(EPA, 1980)

carbon in the septic tank effluent was probably the limiting factor to greater denitrification (Lamb et. al., 1990).

Swanson and Dix modified the traditional recirculating sand filter. Instead of using a recirculation tank, they put gravel in the bottom of the sand filter which served as the recirculation tank. They also used bottom ash, a waste product of coal-fired power plants, instead of sand as the filter media. The filter plus the gravel storage is referred to as a batch recirculating bottom ash filter (BRBAF).

The system includes a septic tank, a BRBAF, and an ultraviolet disinfection unit. The 2.4 m x 4.5 m x 1.4 m BRBAF is filled with 80 cm of screened bottom ash overlying 15 cm of peagravel atop 40 cm of washed gravel. These layers are enclosed within treated plywood walls and posts and sealed with three layers of 6-mil plastic.

They concluded that the bottom ash recirculating sand filter system produced a good quality effluent consistent with effluent from other RSF's in terms of pH, BOD_5 , SS, and TKN. However, nitrates and nitrites were not monitored and thus they were unable to determine the nitrogen removal of the system.

Sandy (1987) modified the BRBAF system and monitored its potential for nitrogen reduction. The main modification was that a provision was made to recycle the highly nitrified filter effluent back to the septic tank. Since the amount of organic carbon is often a limiting factor in achieving nitrogen removal, it was felt that the "sink of carbon" in the septic tank could be

tapped for this purpose.

The study was divided into eight runs starting in August, 1986 and ending in February, 1987. During the first three runs, no effluent from the filter was recycled to the septic tank. Nitrification was sought in the bottom ash filter and denitrification in the rock filter. Nitrification worked reasonably well in the bottom ash filter as could be seen by the reduced ammonia-N levels of 3.4 to 14.9 mg/l (Average 9.6). Ammonia-N levels in the septic tank on the other hand were 33.3 to 51.5 mg/l (Average 43.6) However, denitrification in the rock filter was incomplete allowing effluent nitrate-N concentrations from 9.4 to 14.6 mg/l (Average 11.9).

In runs 4 to 8, a portion of the BRBAF effluent was recirculated to the septic tank. Total nitrogen removal of the system was much better during these runs. For runs 4 - 8 the average TN values for the system effluent was 7.2 to 9.6 mg/l (Average 8.4) as compared to runs 1 - 3 in which the values ranged from 15.8 to 25.7 mg/l (Average 22.1). Apparently the anoxic conditions and organic carbon in the septic tank provided suitable conditions for denitrification to occur. A modification of this design has been utilized for this research.

METHODS

3.1 Study Sites

This project was designed to evaluate a denitrification systems ability to reduce nitrogen loading to groundwater from onsite sewage disposal systems. Two single-family homes north of the Stevens Point area were selected for the installation of an experimental denitrification system in the summer of 1992. The two homes were chosen because they already had groundwater monitoring wells in place, contaminant plumes well identified, high nitrate levels in the groundwater contaminant plumes, and homeowner cooperation.

One of the sites chosen, site 1, was William and Barbara Reed's residence located at 5371 Echo Court, Lot 15, Blk 1, Jordan Acres Estates Subdivision, NW 1/4, NW 1/4, Sec. 14, T24N, R8E, Township Hull, Portage County Wisconsin. The denitrification system at this location has been retrofitted onto an existing conventional septic system which has a one chambered, 1000 gallon septic tank which was installed in the summer of 1982. The septic system serves a three bedroom home which currently has two people living in it.

The other site chosen, site 2, was Frank Sniadajewski's residence located at 3328 Jordan Road. SE 1/4, NE 1/4, Sec. 9, T24N, R8E, Hull Township, Portage County, Wisconsin. The denitrification system at this site has been retrofitted onto an existing pressurized mound system which has a 1000 gallon septic tank and a 1000 gallon dosing chamber which were installed in the

people presently living in it.

3.2 Monitoring Well Installation and Design

Although the author was not directly involved with the installation of the monitoring wells, the following is a description of the methods, techniques, and procedures employed in the construction, installation, and sampling of groundwater monitoring wells. The information for these descriptions is based on documentation provided in William Van Ryswyek's MS Thesis and "A Comparative Study of Nitrate-N Loading to Groundwater from Mound, In Ground Pressure and At Grade Septic Systems", Shaw and Turyk, 1992.

At Site 1, originally one up-gradient and one down-gradient well were installed in the summer of 1988. These monitoring wells were constructed of 3.18 cm (1 $^{1}/_{4}$ in) PVC (polyvinyl chloride) and were fitted with 91.44 cm (36 in) slotted, 0.0254 cm (.01 in) slot size, PVC screens.

The original down-gradient well showed no significant difference in water quality from the up-gradient well. Thus, in the summer of 1989, two nested wells (REC and REW) were also installed down-gradient of the drainfield. These two wells were installed in an east-west transect with the existing down-gradient well, 4.9 m (16 ft) away from and parallel to the down-gradient edge of the drainfield as shown in figure 3.1. It was believed that these wells would show whether or not preferential percolation was occurring out of this system or if strong vertical flow components were transporting contamination deeper into the aquifer

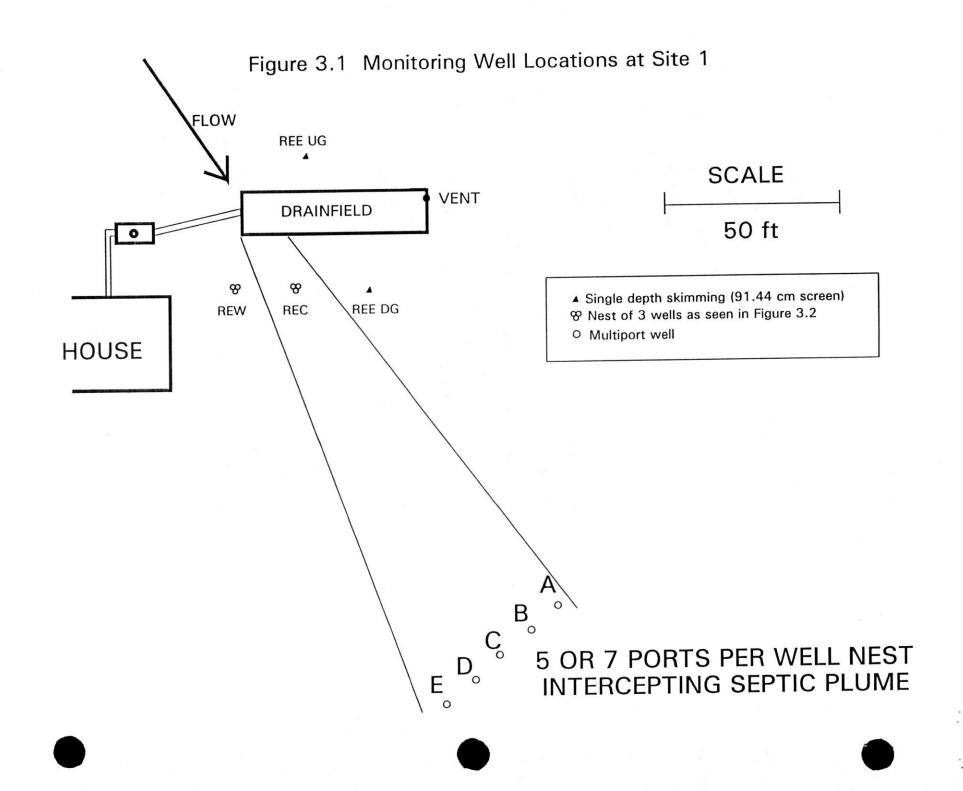
and below the existing monitoring well.

These two well nests consisted of three 1.91 cm (3/4 in) PVC pipes taped together with nylon reinforced tape. The threaded joint pipes were screened with 30.48 cm (1 ft), 0.0254 cm (0.10 in) slotted, PVC points. The screens were positioned at 15.24 cm (6 in) intervals with the lower portion of the uppermost screen being placed at the watertable, as shown in figure 3.2.

During the summer of 1990 five more multilevel monitoring wells were installed at this location. These wells were installed in a transect perpendicular to groundwater flow with well "B" being positioned 33.5 meters (110 ft) downgradient of well REC, with 3.05 M (10 ft) of separation between each of the five wells as shown in figure 3.1.

These wells were constructed based on a design by Bradbury and Bahr (1987). The wells consisted of a 1.91 cm (3/4 in) PVC spine which was screened over its last foot interval with a 30.48 cm (1 ft) slotted point with 0.0254 cm openings. Surrounding the spine are up to 6, 0.635 cm inside diameter polypropylene tubes which were attached to the PVC center spine with nylon reinforced tape. The polypropylene tubes were perforated with 0.32 cm (1/8 in) holes and screened with TYPAR over the last 25.4 cm (10 in) section at the bottom of each tube. Each tube extends to a different depth in the aquifer to allow discrete samples to be taken from various depths as shown in figure 3.3.

Four of the wells (A,C,D,E) have 5 sampling ports, including the spine, at 30.48 cm (1 ft) intervals with the upper most


screened interval at or just below the watertable. Thus, the five wells were capable of sampling the upper 1.5 m (5 ft) of the aquifer at 30.48 cm (1 ft) intervals over a 12.2 meter wide transect as shown in figures 3.1 and 3.4. Well "B" had two additional poly sampling ports as shown in figure 3.4.

٠.

At Site 2, monitoring wells were installed downgradient of the mound system in the fall of 1990 as shown in figure 3.5. The downgradient monitoring wells were multilevel well nests consisting of four 1.9 cm (3/4 in.) PVC wells with 45 cm (1 $^{1/2}$ in) slotted screens with 46 cm screen intervals. The shallowest well in the well nest was placed with half of the screen above the water table to allow for the annual fluctuations of the water table.

All monitoring wells were sampled using a 0.5 l/min peristaltic pump powered by a twelve volt battery. Samples were extracted through polypropylene sampling tubes and field filtered through an in line 0.45 micron membrane filter. The samples were then collected into 250 ml polypropylene bottles with polyethylene caps both of which where double rinsed with sample water after several well volumes had been purged from the well. Samples were then placed in coolers containing ice packs and transported to the Environmental Task Force Laboratory (Lab State ID No. 750040280) at the University of Wisconsin-Stevens Point for analysis and storage at 4^{0} C.

Groundwater samples were collected at the two locations prior to the initiation of the denitrification project. The two sites were each used previously for different projects and thus the

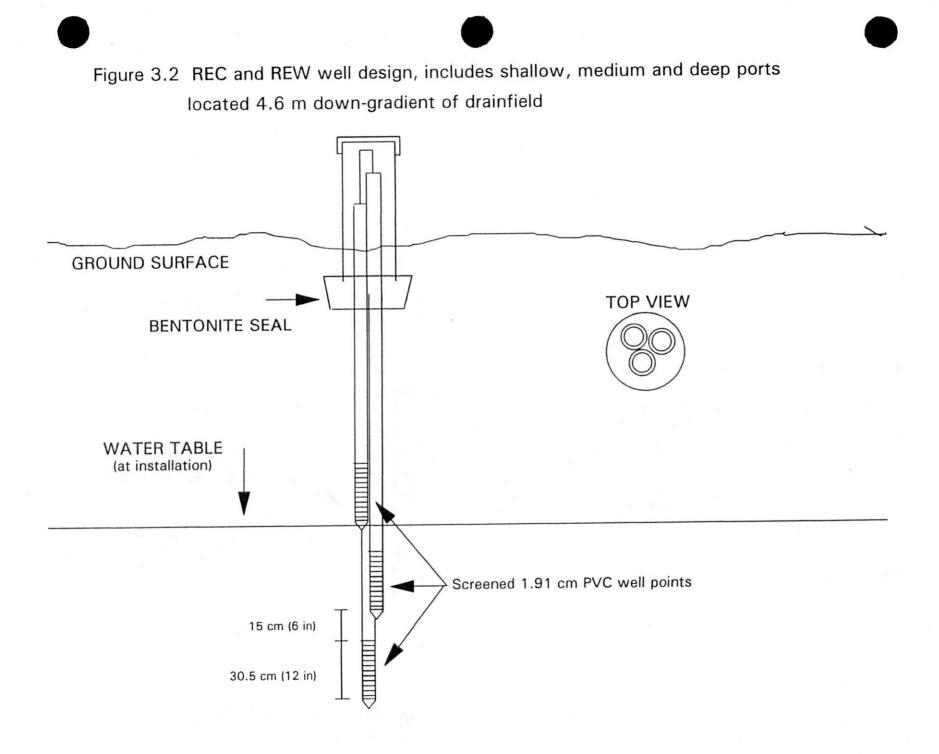


Figure 3.3 Multiport Well Design at Site 1.

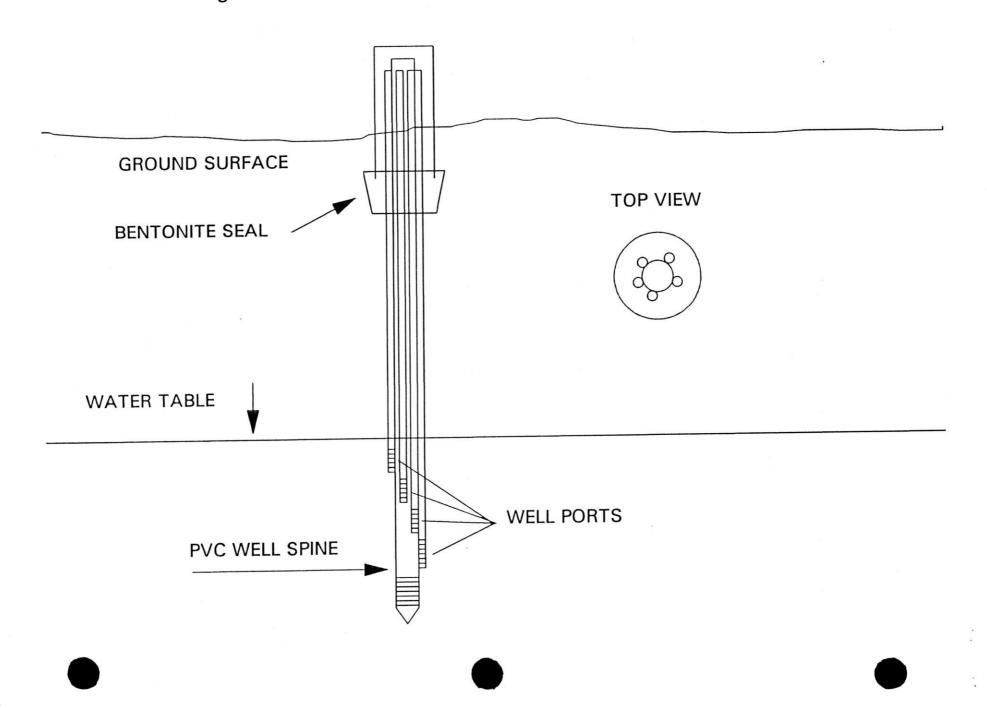


Figure 3.4 Cross sectional view of multiport wells at Site 1 looking from up to down-gradient. Wells are located 38 meter down-gradient of drainfield. Hash marks represent the center of the 30.5 cm sampling interval.

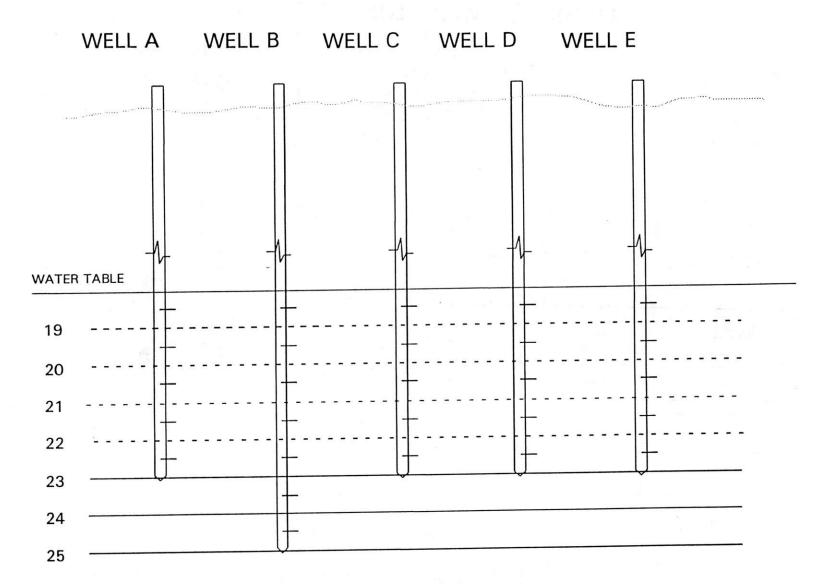



Figure 3.5 Location of down-gradient monitoring wells at Site 2.

....

previous sampling schedule and chemical analyses of the samples varied from one site to the other. Since the beginning of the denitrification project in the summer of 1991, groundwater samples have been taken from both sites on at least a bimonthly basis with samples typically analyzed for nine different water quality indicators. These include pH, electrical conductance, alkalinity, total hardness, ammonium-N, Nitrate + Nitrite-N, sodium, chloride, and fluorescence.

3.3 Denitrification System Design and Installation

The Denitrification systems retrofitted onto the two existing septic systems are quite similar. The systems involve using a recirculating sand filter with a built in rock storage area similar to that described by Swanson and Dix (1986). A 2000 gallon septic tank has been used to house the various components of the sand filter system. The major components include a collection system at the bottom, 15.5 inches of 1.5 inch diameter limestone, 3 inches of pea gravel, 23 inches of a 1.8 mm effective size sand with a uniformity coefficient of 1.4, a pump chamber, and a distribution system on the top of the sand filter. A more complete description of the various parts can be seen with the attached designs.

The systems were designed to remove nitrogen via denitrification in the septic tank following nitrification in the sand filter. Effluent from the RSF will be recirculated to the septic tank where an adequate carbon source and anaerobic conditions should enable bacteria to denitrify most of the nitrogen to nitrogen gas.

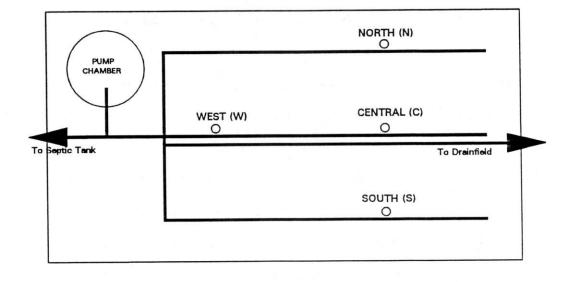
Originally, it was hoped that through the use of solenoid valves and a timing system it would be possible to pump effluent from the sand filter to either the top of the sand filter, back to the septic tank, or out to the drainfield or dosing chamber. Unfortunately, we could find no reliable solenoid valves and thus we could not pump the effluent to one place at a time.

Gate values located along the three destination lines allow us to change the flow rate for the three destinations. By pumping to all three locations at once and varying the flow rate to each location, we have been able to accomplish our original goal of pumping various amounts to each destination. This concept proved to be much simpler and cheaper than the original plan and still allows us the opportunity to change the amounts pumped to each location at one time.

The Denitrification System at Site 1 was retrofitted onto a conventional septic system in July 16, 1992. Septic tank effluent flows from the septic tank by gravity to the bottom of the sand filter. Once there, with the help of floats and timers, it is pumped to the top of the sand filter, the septic tank, and the drainfield at different rates.

The Denitrification System at Site 2 was retrofitted onto the existing pressurized mound system in August 13, 1992. A few differences between this system and the other system can be noted. Due to the depth of the existing system, effluent from the septic tank flows by gravity to a sewage ejector pit which was placed in the dosing chamber. Through the use of floats, the effluent from

this pit is pumped up to the top, rather than the bottom, of the sand filter. The effluent is pumped to the top of the sand filter in this system because we felt that since we have to pump it up to the sand filter we may as well allow it to run through the filter rather than pumping it directly to the bottom. The effluent from the sand filter is then pumped to the top of the sand filter, the septic tank, and the dosing chamber which in turn pumps it to the mound system.


3.4 Denitrification System Monitoring

In addition to the original design of the denitrification systems, temperature probes have been placed in the two systems. The temperature probes are made out of type T thermocouple wire which have been soldered together at the bottom end and sealed with a Silicone Rubber Adhesive Sealant. An omega HH21 hand held microprocessor digital thermometer is used to record the temperatures from these thermocouple wires.

At Site 1, four groups of these thermocouples were placed in the sand filter as shown in figure 3.6. Each group consists of four thermocouple wires with the wires extending about 2.2 ft, 1.2 ft, 0.2 ft, and 0.0 ft below the surface of the sand in the sand filter.

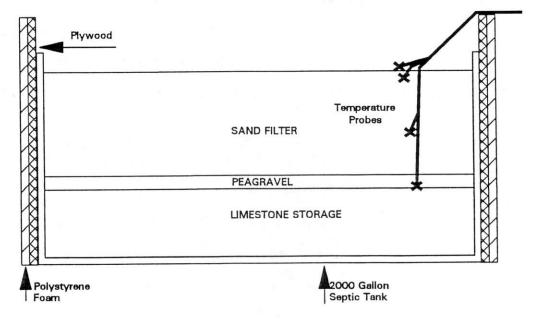

At Site 2, only one group of four thermocouples was placed in the sand filter at the same depths. We only placed one group in this system because the sand filter is deeper in the ground than the sand filter at Site 1 and thus we felt that temperature may not play as important a role on the nitrification and denitrification

Figure 3.6 Temperature probe locations in the recirculating sand filter at Site 1.

Top view of location of temperature probes in the recirculating sand filter.

Cross sectional view of location of temperature probes in the recirculating sand filter.

processes at this site as it may at the other. Temperature readings are taken on a weekly basis from all of the thermocouples within the sand filters. At Site 1, temperature readings are also taken weekly from the septic tank and from the pump chamber in the sand filter by lowering a thermocouple into the wastewater within them. At Site 2, additional temperature readings are taken from the sewage ejector pit, from the pump chamber within the sand filter, and from the dosing chamber by the same method.

Wastewater samples are taken from the denitrification systems on a weekly basis. At Site 1, samples are collected from the septic tank, from the pump chamber in the recirculating sand filter, and occasionally from the monitoring well in the sand At Site 2, samples are collected from the sewage ejector filter. in the dosing chamber, from the pump chamber in the pit the dosing chamber, recirculating sand filter, from and occasionally from the monitoring well in the sand filter.

The samples are collected by lowering a polypropylene bottle into the wastewater with a string. The sample bottle is rinsed four times with the wastewater before a sample is collected into a 125 ml polypropylene bottle with a polyethylene cap. 1 ml of concentrated H_2SO_4 is placed within the bottles before the sample is collected to preserve the various nitrogen forms. The samples are then placed within a cooler with ice packs and transported to the Environmental Task Force Laboratory at the University of Wisconsin-Stevens Point for analysis and storage at $4^{\circ}C$. These weekly samples are analyzed for nitrate+nitrite-N, Ammonia-N, TKN (Total Keldjhal

Nitrogen), and chlorides.

On a monthly basis, samples are taken from the same places by the same method and collected in 500 ml polypropylene bottles with polyethylene caps. These samples have no preservatives in them and are analyzed for pH, electrical conductance, alkalinity, total hardness, sodium, total phosphorous, Biological Oxygen Demand₅, Chemical Oxygen Demand, and fluorescence.

Flow rates to the various places are measured through the use of a quick disconnect value located on each of the three destination lines. The lines are disconnected beyond the gate valves and a regular garden hose is then connected to it. A bucket is then filled up for a minute from each of the three destination lines and the total volume is measured in gallons giving us a flow rate in gallons/minute.

PRELIMINARY RESULTS

4.1 Site 1

At Site 1, the Recirculating Sand Filter was installed in July of 1992. Unfortunately, the electrician who designed and constructed our timing system encountered many problems debugging the controls. Thus, we could not begin pumping the effluent from the sand filter to the top of the sand filter, to the septic tank, and to the drainfield until early October.

Once, the pump was started, it took approximately one month before the nitrifying bacteria became adequately established to begin nitrifying the effluent. As can be seen in Figure 4.2, nitrate levels in the pump chamber of the sand filter did not reach detectable levels until mid November. As the nitrate levels increased, ammonia levels showed a corresponding decrease which indicates that the nitrifying bacteria were indeed converting the ammonia to nitrate.

As of December, no detectable amounts of nitrate have been found in the septic tank. This indicates that denitrifying bacteria are present in the septic tank and are able to convert any nitrate-N entering the septic tank to nitrogen gas.


Furthermore, as can be seen in Figure 4.1, as of early November, TKN concentrations, which is a measure of both ammonia-N and organic-N, have begun to drop significantly in the septic tank. Since no appreciable amounts of nitrates have been found in the septic tank, the TKN concentration is a very accurate measure of the Total Nitrogen concentration of the septic tank. As of late

December, TKN concentrations in the septic tank are lower than any concentrations from the past which indicates that the recirculating sand filter is indeed lowering the concentration of nitrogen in the septic tank.

As is shown in figure 4.2, Total Nitrogen concentrations, a measure of nitrate-N, ammonia-N, and organic-N, within the pump chamber of the recirculating sand filter have also been decreasingly steadily since mid-November. By comparing figures 4.1 and 4.2, it becomes apparent that the Total amount of Nitrogen present in both the septic tank and recirculating sand filter at Site 1 has decreased significantly since the pump has been started. Total Nitrogen concentrations of approximately 20 - 25 mg/l N are being pumped to the drainfield for disposal as compared to concentrations of approximately 70 mg/l N before the system was installed.

However, as can be seen in Figure 4.3, the temperatures of the effluent in both the septic tank and the pump chamber of the sand filter have steadily declined since the pump was originally started. As of mid-January 1993, temperatures of the effluent in both the sand filter and the septic tank are approximately 5_0 C, which is near the reported minimum temperature for both nitrification and denitrification processes.

As can be seen in Figure 4.2, the level of nitrates present in the pump chamber of the recirculating sand filter have begun to decline since mid-November. However, this may not be a result of the temperature limiting the nitrification process as much as it

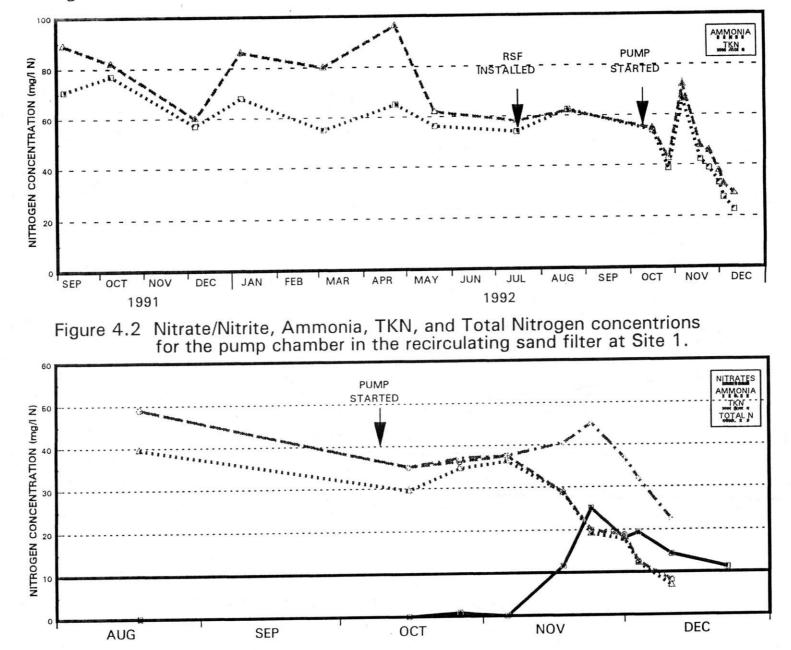
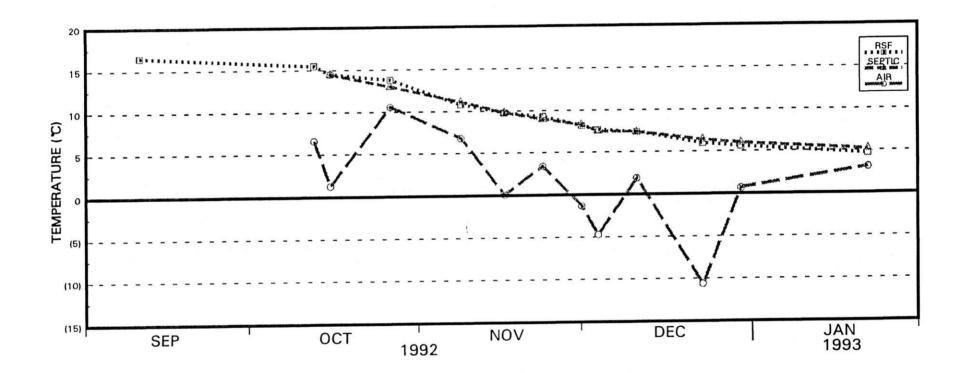



Figure 4.3 Temperature readings for the pump chamber in the recirculating sand filter and the septic tank at Site 1.

may be a result of a lower concentration of Total Nitrogen within the whole system. As the lab analyses become available for the mid-winter period we will see if the lower temperature is indeed limiting the nitrification and denitrification processes.

4.2 Site 2

At Site 2, the recirculating sand filter was installed in August of 1992 and the pump was started in early November. As can be seen in Figure 4.5, the nitrate levels in the pump chamber of the recirculating sand filter began to rise appreciably within a couple of weeks. This coupled with a corresponding decrease in ammonia levels again indicates that the nitrifying bacteria had become adequately established to nitrify the ammonia-N to nitrate-N.

We feel that the nitrate levels rose faster in this system than the other system because although the pump in the sand filter was not started until early November, effluent from the septic tank was being applied to the top of the sand filter since the system was first installed. This would allow the nitrifying bacteria to have become somewhat established within the sand filter before the pump within the sand filter was originally started.

By comparison, no effluent was applied to the top of the sand filter at Site 1 until early October when the pump within the sand filter was originally started. This meant that the nitrifying bacteria had no chance at becoming established in the sand filter until the pump began pumping effluent to the top of the sand filter.

Once the pump in the recirculating sand filer was started, TKN concentrations within the septic tank, again a reliable indication of Total Nitrogen concentration, declined almost immediately as can be seen in Figure 4.4. As in Site 1, no detectable amounts of nitrates were found leaving the septic tank which indicates that denitrifying bacteria are able to convert any nitrate entering the septic tank to nitrogen gas.

Figure 4.6 shows that the as of mid-December, approximately 12 mg/l of Total Nitrogen is exiting the denitrification system to the mound system. Conversely, Figure 4.4 shows that before the recirculating sand filter was installed an average of 43 mg/l of Total Nitrogen was being pumped to the mound system. This amounts to a 72% decrease in Total Nitrogen leaving the system.

As can be seen in Figure 4.7, as of mid-January the temperature of the septic tank and pump chamber of the sand filter is around 14°C. This is much higher than the temperatures at Site 1 which we feel is due primarily to the facts that the recirculating sand filter at this site is located deeper in the ground and that this site presently has a much higher water usage than the other site. While these temperatures are higher than the temperatures at Site 1, they are still on the low range of temperatures reported for nitrification rates and thus may have an impact on the nitrification process before the winter is over.

Groundwater samples have been taken at both sites a few times since the systems have been installed and started. Presently, we are beginning to increase the monitoring schedule of groundwater

samples to document any changes which may be occurring due to these systems.

• . •

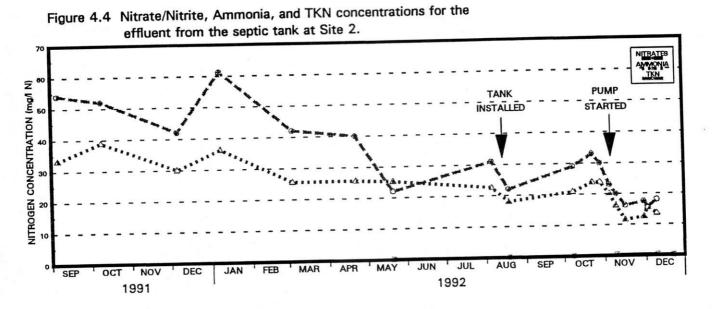
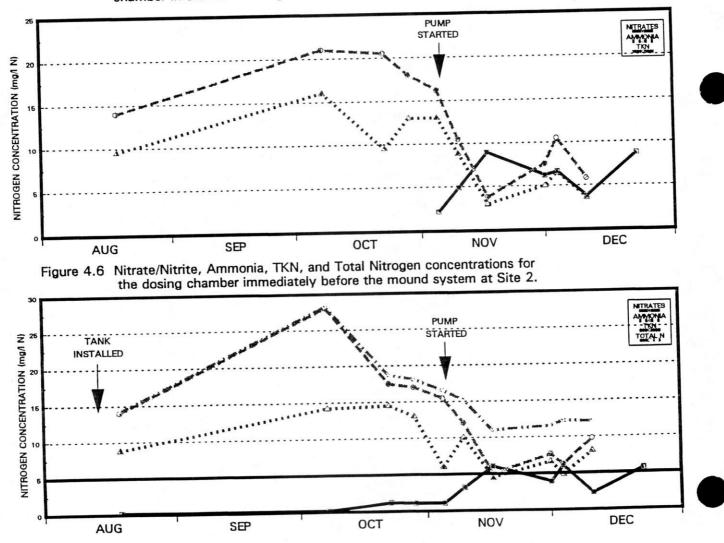
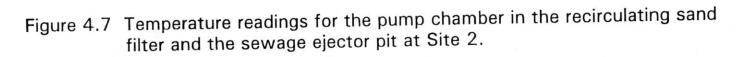
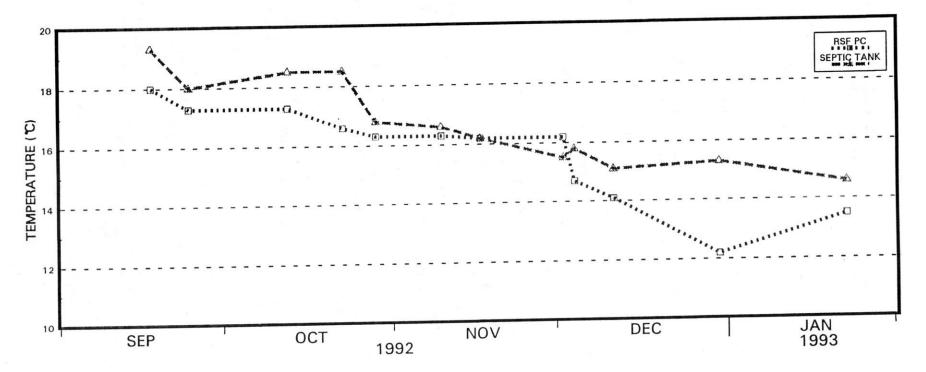





Figure 4.5 Nitrate/Nitrite, Ammonia, and TKN concentrations for the pump chamber in the recirculating sand filter at Site 2.

LITERATURE CITED

Canter, L. W. and Knox, R. C. (1986). <u>Septic Tank System Effects</u> on Ground Water Quality, Lewis Publishers, Inc., Chelsea, Michigan.

Crites, R. W., Meyer, E. L., and Smith, R. G. (1981). <u>Process</u> <u>Design Manual for Land Treatment of Municipal Wastewater</u>. EPA 625/1/81/013.

Gaudy, A. F. and Gaudy, E. T. (1980). <u>Microbiology for</u> <u>Environmental Scientists and Engineers</u>. McGraw-Hill Book Co., New York, N.Y.

Grady, C. P. L., and Lim, H. C. (1980). <u>Biological Wastewater</u> <u>Treatment</u>. Marcel Dekker, Inc., New York, N.Y.

Kaplan, B. O. (1987). <u>Septic Systems Handbook</u>. Lewis Publishers Inc., Chelsea, Michigan.

Kristiansen, R. (1981a). "Sand-filter trenches for purification of septic tank effluent: I. The clogging mechanism and soil physical environment". <u>J. Environ. Qual.</u> 10:353-357.

Kristiansen, R. (1981b). "Sand-filter trenches for purification of septic taml effluent: II. The fate of nitrogen". J. Environ. Qual. 10:358-360.

Laak, R. (1981). "A passive denitrification system for on-site systems". <u>Proceedings of Third National Symposium on Individual</u> and Samll Community Sewage Treatment. ASAE Pub. 1-82. pp. 108-115.

Laak, R., Parese, M. A., and Costello, R. (1981). "Denitrification of Blackwater with Greywater". <u>J. Environ. Eng.</u> <u>Div.</u>, ASCE. 107:581-590.

Lamb, B. E., Gold, A. J., Loomis, G. W., and McKiel, C. G. (1990). "Nitrogen Removal for On-Site Sewage Disposal: A Recirculating Sand Filter/Rock Tank Design". <u>Transactions of the ASAE</u>, 33(2), pp. 525-531.

Lance, J. C. (1972). "Nitrogen Removal by Soil Mechanisms". J. Water Poll. Control Fed., 44:1352-1351.

Lawrence, C. H., (1973). "Septic tank Performance". Journal of Environmental Health, Vol. 36, No. 3, pp. 226-228.

Rittman, B. F. and Langeland, W. E. (1985). "Simultaneous denitrification with nitrification in single-channel oxidation ditches". J. Water Poll. Control Fed. 57:300-308.

Romero, J. C., (1970). "The movement of bacteria and viruses through porous media". <u>Groundwater</u>. 8:37-48.

Ronayne, M. P., Paeth, R. C., and Wilson, S. A. (1982). <u>Final</u> <u>Report: Oregon On-Site Experimental Systems Program</u>. State of Oregon Department of Environmental Quality.

Sandy, A. T. (1987). "Nitrogen removal using a batch recirculating bottom ash filter", presented at <u>Fifth Nat. Symp.</u> <u>on Individual and Small Community Sewage Systems</u>, ASAE, Chicago, Illinois.

Sauer, D. K. and Boyle, W. C. (1977). "Intermittent sand filtration and disinfection of small wastewater flows". <u>Proc.</u> <u>Second Nat. Home Sewage Treatment Symp.</u>, ASAE Pub. 05-77, pp. 164-174.

Shammas, N. K. (1986). "Interactions of temperature, pH, and biomass on the nitrification process", <u>J. Water Pollution Control</u> Fed., 58(1), pp. 52-59.

Sikora, L. J., and Keeney, D. R. (1974). "Laboratory studies on simulation of biological denitrification". <u>Proceedings of the</u> <u>National Home Sewage Disposal Symposium</u>. ASAE Pub. PROC-175. pp. 64-73.

U. S. Environmental Protection Agency, (1980). <u>Design Manual--</u> <u>Onsite Wastewater Treatment and Disposal Systems</u>. EPA 625/1-80-012, Cincinnati, Ohio.

U. S. Environmental Protection Agency. (1978). <u>Management of</u> <u>Small Wastes Flows</u>. EPA-600/2-78-173, Cincinnati, Ohio.

U. S. Environmental Protection Agency. (1975). Process Design Manual for Nitrogen Control. Office of Technology Transfer of the U.S. EPA

Viraraghavan, T., (1976). "Septic Tank Efficiency". <u>ASCS</u> <u>Journal Environmental Engineering Division</u>, Vol. 102, No. EE2, pp. 505-508.

Walker, W. G., Bouma, J., Keeney, D. R., and Magdoff, F. R. (1973). "Nitrogen Transformations During Subsurface Disposal of Septic Tank Effluents in Sands: I. Soil Transformations". J. Environ. Quality, 2(4), pp. 475-480.

Walker, W. G., Bouma, J., Keeney, D. R., and Olcott, P. G. (1973). "Nitrogen Transformations During Subsurface Disposal of Septic Tank Effluents in Sands: II. Groundwater Quality". J. Environ. Quality, 2(4), pp. 521-525.

Warnock, R. G., and Biswas, N. (1981). "Study of columnar

denitrification for application in an on-site system". <u>Proceedings of the Third National Sysmposium on Individual and</u> <u>Samll Community Sewage Treatment.</u> ASAE Pub. 1-82. . .

. .

APPENDIX 1 GROUNDWATER CHEMISTRY FOR SITE 1

•••

Well	ID	Date	GW Dep	рН	Cond. mhos	Alk. mg/l	T. Hard mg/l	PO4 mg/l	NH4-N mg/l	NO2+NO3-N mg/l	Cl mg/l	Na mg/l	K mg/l	Fluor. mg/l	
REE	LU	30-Jun-88		8.14	232	100	128		0.03	0.5	7	2.0		5.0	
REE	LU	03-Aug-88	78.32	8.17	239	84	124	<0.002	0.02	0.5	6	0.8			
REE	SD	04-Oct-88		8.02	206	84	104	<0.002	<0.01	0.5	5	1.5 1.5			
REE	SU	04-Oct-88		7.96	178	72	100	< 0.002	<0.01 0.02	<0.2 0.8	3 7	1.5		8.0	
REE	LU	20-Oct-88	78.10	8.07	226	96 88	124 100	<0.002 <0.002	0.02	0.8	5	1.3		8.3	
REE	SD	20-Oct-88 20-Oct-88	78.63 78.77	8.17 8.14	195 195	88	100	<0.002	< 0.01	0.5	4	1.0		6.3	
REE REE	SU LU	20-001-88 18-Jan-89	77.90	8.15	275	124	132	0.002	<0.02	0.8	5	2.5		5.0	
REE	SD	18-Jan-89	78.43	8.31	251	104	116	0.005	<0.02	1.8	7	2.0		6.0	
REE	SU	18-Jan-89	78.58	8.31	255	112	128	0.005	<0.02	1.2	6	2.0		5.0	
REE	LU	31-Mar-89	78.33	8.09	169	60	80	0.005		1.0	7 5	1.0 1.5		7.0 7.0	
REE	SD	31-Mar-89	78.86	8.15	248	112	124 132	0.005 0.005		1.5 1.0	5	1.6		7.0	
REE	SU	31-Mar-89	79.99	8.06 8.03	262 242	116 120	132	< 0.003	0.05	1.2	6	1.6		6.0	
REE REE	LU SD	26-May-89 13-Jun-89	78.27 80.21	8.21	269	112	144	< 0.002		3.0	6	2.2		6.0	
REE	SU	13-Jun-89	80.35	8.20	251	116	140	<0.002		1.0	5	1.6		5.5	
REE	LU	08-Aug-89	19.22	8.34	208	92	108	<0.002	<0.02	1.5	3	1.0		7.0	
REE	SD	08-Aug-89	19.28	8.36	280	116	140	<0.002	< 0.02	3.0	5 3	2.0 1.0		10.0 9.0	
REE	SU	08-Aug-89	19.40	8.37	250	116	140	< 0.002	<0.02	1.8 9.8	10	6.5		14.0	
REC	SDD	08-Sep-89	19.07	7.71	364 685	114 120	176 268	<0.002 <0.002		38.0	45	27.5		47.0	
REC	SDM	08-Sep-89 08-Sep-89	19.07 19.39	7.50 8.09	232	110	132	< 0.002		0.8	5	1.5		4.0	
REE REE	LU SD	08-Sep-89	19.33	8.02	238	102	132	< 0.002		2.5	5	1.5		6.0	
REE	SU	08-Sep-89	19.54	8.10	237	112	136	<0.002		0.8	5	1.5		5.0	
REW	SDD	08-Sep-89		8.00	274	126	168	0.002		1.6	5	2.0		5.0 6.0	
REW	SDM	08-Sep-89	19.42	7.78	336	132	180	< 0.002		6.2	7 2	2.5 2.0		0.0 12.0	
REC	SDD	26-Oct-89	19.46	7.71	361	124 136	168 260	<0.002 <0.002		7.0 25.5	36	19.5		36.0	
REC	SDM	26-Oct-89 26-Oct-89	19.46 19.75	7.44 8.06	685 230	96	116	<0.002		1.2	<1	1.5		5.0	
REE REE	LU SD	26-Oct-89 26-Oct-89	19.75	8.16	232	100	116	< 0.002		1.0	4	1.5		4.0	
REE	SU	26-Oct-89	19.92	8.05	215	104	112	<0.002		0.2	<1	1.0		4.0	
REW		26-Oct-89	19.80	8.08	233	104	116	<0.002		0.5	2	1.0		4.0 4.0	
REW		26-Oct-89	19.80	7.78	343	144	168	< 0.002		2.2 23.2	2 18	2.0 10.0		10.0	
REC	SDD	05-Jan-90		7.65	515	112 88	232 288	0.005 0.005		47.0	40	32.5		20.0	
REC	SDM	05-Jan-90 05-Jan-90		7.50 8.11	767 234		124	0.005		1.5	7	1.0		3.0	
REC REE	SD SU	05-Jan-90 05-Jan-90		8.01	203	96	116	< 0.002		0.5	З	1.0)	2.0	
REW		05-Jan-90		8.01	245	108	132	0.005		0.5	5	1.0		2.0	
REW		05-Jan-90		7.80	342	144		0.002		4.8	4	1.5		2.0	
REE	LU	08-Jan-90		8.17	224	100		0.005		1.0	3	1.5 8.4		3.0	
REC		14-Feb-90		7.73	318	116		< 0.002		8.5 44.5	8 46	36.0			
REC		14-Feb-90	00.40	7.63 8.12	698 250	88 120		<0.002 0.002		0.5	- 3	1.4			
REE		14-Feb-90 14-Feb-90	20.40	8.01	230	108		0.005		1.2	6	1.5			
REE REW		14-Feb-90		8.04	246	124		<0.002		0.5	5	1.3			
REW		14-Feb-90		7.86	287	140	156	<0.002		1.2	. 3	1.4		40.0	
REC		17-May-90		7.51	598			< 0.002			24	15.0		13.0 14.0	
REC		17-May-90		7.56				<0.002 <0.002			39 4	21. ⁻ 1.0		2.0	
REE		17-May-90		8.08				< 0.002			7			2.0	
REE		17-May-90		7.97 7.74				< 0.002			5			2.0	1
REE REV		17-May-90 17-May-90		7.92				< 0.002		2 5.2	8	1.	4	2.0	
REV		17-May-90		7.73				<0.002			15			3.0	
RSE		20-Jun-90		7.99	341	136		0.002		7.5		, 7. 15		5.0 6.0	
RSE	3 20	20-Jun-90		7.98		156		< 0.002		15.5 21.5	26 18			7.0	
RSE		20-Jun-90		8.00		128	3 248	<0.002 <0.002		18.5	16			7.0	
RSE		20-Jun-90		8.15 8.26		110	6 184	< 0.002		10.8	12			6	
RSE		20-Jun-90 20-Jun-90		8.26 8.30				< 0.002		3.5	10	3.	.5		
RSE RSE		20-Jun-90		8.33				< 0.002		2.5	11		.5	5.0	
RSA		25-Jun-90		7.85				<0.002		6.8	6	2	.5	4.0	J

. •

· .

	Well	ID	Date	GW Dep	рН	Cond. mhos	Alk. mg/l	T. Ha mg/		PO4 mg/l	NH4-N mg/l	NO2+NO3-N mg/l	Cl mg/l	Na mg/l	K mg/l	Fluor. mg/l
	RSA	20	25-Jun-90		7.99	340				<0.002		10.2	7	2.0		4.0 4.0
		21	25-Jun-90		8.19	256			•	<0.002		3.0	7	1.5 1.5		4.0 4.0
		22	25-Jun-90		8.27	253				0.002		2.2 1.8	7	2.0		5.0
	RSA	23	25-Jun-90		8.31	247				< 0.002		12.5	11	6.5		5.0
	RSC	19	25-Jun-90		7.94	359				<0.002 <0.002		33.8	29	17.5		9.0
	RSC	20	25-Jun-90		7.76 7.74	618 639				<0.002		35.2	32	19.0		12.0
	RSC	21	25-Jun-90		7.93	375				< 0.002		11.5	15	10.0		7.0
	RSC	22	25-Jun-90 25-Jun-90		7.89	473				<0.002		21.0	22	13.0		9.0
	RSC REC	23 SDD	29-Jul-90		7.48	749				<0.002		47.2	43	22.0		34.0
	REC	SDM	09-Jul-90		7.47	822				<0.002		59.0	43	26.0		30.0
	REC	SDS	09-Jul-90		7.56	876				<0.002		70.0	32	12.0 2.5		21.0 5.0
	REE	SD	09-Jul-90		7.91	290				< 0.002		5.5	8 8	2.5 1.5		5.0
	REW	SDD	09-Jul-90 '		7.89	280				< 0.002		1.5 24.5	21	5.0		6.0
	REW	SDM	09-Jul-90		7.69	485				<0.002 <0.002		47.0	40	22.0		10.0
	REW	SDS	09-Jul-90		7.55	744				< 0.002		10.0	8	2.0		5.0
	RSA	19	09-Jul-90		7.86	324 301				< 0.002		9.2	7	1.5		4.0
	RSA	20	09-Jul-90		7.97 8.06	301				< 0.002		9.5	8	2.0		5.0
	RSA	21	09-Jul-90 09-Jul-90		8.00	290				< 0.002		7.8	8	2.0		5.0
	RSA	22	09-Jul-90 09-Jul-90		8.12	255				<0.002		4.0	8	1.5		5.0
	RSA RSB	23 19	09-Jul-90		7.90	358				<0.002		11.5	10	3.0		5.0
	RSB	20	09-Jul-90		7.94	457				<0.002		19.8	14	7.5		7.0 6.0
	RSB	21	09-Jul-90		8.01	406				< 0.002		14.0	11	8.0 5.5		6.0 6.0
	RSB	22	09-Jul-90		8.13	364				< 0.002		11.8	11 8	5.5 1.5		5.0
	RSB	23	09-Jul-90		8.23	257				< 0.002		2.0 2.0	9	1.5		5.0
	RSB	24	09-Jul-90		8.19	265				<0.002 <0.002		2.5	11	2.0		6.0
	RSB	25	09-Jul-90		8.12	270 338				< 0.002		12.8	11	5.5		6.0
	RSC	19	09-Jul-90		7.85 7.80	436				0.002		18.5	17	13.0		10.0
	RSC	20	09-Jul-90 09-Jul-90		7.80	422				0.002		15.5	16	14.0		11.0
	RSC RSC	21 22	09-Jul-90 09-Jul-90		7.81	550				<0.002	1	26.0	25	17.5		15.0
	RSC	23	09-Jul-90		7.89	438				<0.002	Ľ	17.2	18	13.0		12.0
	RSD	19	09-Jul-90		7.96	244				<0.002		4.5	11	1.5		4.0 5.0
	RSD	20	09-Jul-90		7.42	315				< 0.002		7.2	11	5.0 15.5		11.0
	RSD	21	09-Jul-90		7.80	573				< 0.002		30.8	26 26	12.5		9.0
	RSD	22	09-Jul-90		7.80	567				< 0.002		31.2 19.2	20 17	5.5		7.0
	RSD	23	09-Jul-90		7.83	434				<0.002 <0.002		9.2	17	1.5		3.0
	RSE	19	09-Jul-90		7.98	295 322				< 0.002		9.2	17	1.5		3.0
	RSE		09-Jul-90		7.98 7.96	322 290				< 0.002		4.2	8	2.5		5.0
	RSE		09-Jul-90 09-Jul-90		8.06	263				< 0.002		2.5	12	2.0		5.0
	RSE RSE		09-Jul-90 09-Jul-90		8.03	266				<0.002		2.8	14	2.0		7.0
	REC		13-Aug-90	18.46	7.83	319	12	24	164	<0.002			5	1.7		10.0
	REC		13-Aug-90		7.49	778		48	336	<0.002			28	17.0		51.0 29.0
	REC		13-Aug-90		7.58	895		12	364	<0.00			40	24.3 2.0		4.0
	REE		13-Aug-90		8.16	262		12	148	< 0.00			6 4	2.		5.0
	REE	SU	13-Aug-90		8.14			12	140	< 0.00		2 1.2 1.5	7	1.		6.0
	REV		13-Aug-90		8.03			20	164 172	<0.00 <0.00		1.9	4	2.		4.0
	REV		13-Aug-90		7.88			40 16	308	<0.00		43.6	30	8.		9.0
	REV		13-Aug-90		7.73 7.91			10	000	<0.00		7.3	7	2.		4.0
	RSA		13-Aug-90 13-Aug-90		7.99					<0.00		13.1	10	2.		6.0
	RSA		13-Aug-90 13-Aug-90		8.20			08	144	<0.00		1.8	5			6.0
	RSA RSA		13-Aug-90		8.21			12	148	<0.00		4.4	6			6.0
	RSA		13-Aug-90		8.26		i 1	08	144	<0.00		3.4	8			6.0
	RSE		13-Aug-90		8.01			16	180	<0.00		11.6	11			5.0 9.0
	RSE		13-Aug-90	18.60	8.03			20	248	< 0.00		27.1	19 17		.8 .0	9.0
-	RSE	3 21	13-Aug-90		8.00			36	248	< 0.00		24.4 30.6	21		.0 .5	10.0
	RSE	322	13-Aug-90		8.06			44	288 164	<0.00 <0.00		4.9	9		.0	6.0
	RSE	3 23	13-Aug-9	0 18.60	8.30	313	וכ	20	104	<0.0C	~_	ч. ч		-		

. .

•

Well	ID	Date	GW Dep	рН	Cond. mhos	Alk. mg/l	T. Hard mg/l	PO4 mg/l	NH4-N mg/l	NO2+NO3-N mg/l	Cl mg/l	Na mg/l	K mg/l	Fluor. mg/l
RSB	24	13-Aug-90	18.60	8.30	290	116	156	<0.002		2.4	10	1.7		6.0
RSB	25	13-Aug-90	18.60	8.30	292	116	160	<0.002		2.8	11	2.0		6.0 9.0
RSC	19	13-Aug-90	18.64	7.91	497	128	228	< 0.002		22.9 50.8	21 40	5.8 16.0		9.0 21.0
RSC	20	13-Aug-90	18.64	7.82	787	120	344	<0.002 <0.002		50.8 53.3	40	21.8		26.0
RSC	21	13-Aug-90	18.64	7.83	827	124 128	344 304	<0.002		40.3	35	19.7		24.0
RSC	22	13-Aug-90	18.64 18.64	7.90 7.98	701 431	116	204	< 0.002		14.9	17	5. 9		13.0
RSC RSD	23 19	13-Aug-90 13-Aug-90	18.41	8.07	253	112	132	< 0.002		3.6	11	1.7		3.0
RSD	20	13-Aug-90	18.41	7.98	374	120	176	<0.002		11.0	15	7.2		5.0
RSD	21	13-Aug-90	18.41	7.78	652	136	292	<0.002		36.4	30	14.0		13.0
RSD	22	13-Aug-90	18.41	7.90	415	124	200	< 0.002		14.3	15	6.9 9.4		8.0 9.0
RSD	23	13-Aug-90	18.41	7.98	458	128	220	< 0.002		18.1 10.3	18 13	9.4 2.0		4.0
RSE	19	13-Aug-90	18.35	8.07	335	112	176 200	<0.002 <0.002		9.7	13	3.0		4.0
RSE	20	13-Aug-90	18.35	8.00 7.98	375 379	132 124	200	< 0.002		10.6	14	4.0		5.0
RSE	21	13-Aug-90 13-Aug-90	18.35 18.35	7.90 8.10	286	116	152	< 0.002		2.0	10	1.9		5.0
RSE RSE	22 23	13-Aug-90	18.35	8.17	287	116	152	<0.002		2.3	12	2.0		6.0
REC	SDD	27-Aug-90		6.93	281			<0.002		11.1	12	4.5		14.0
REC	SDM	27-Aug-90		6.80	599			0.005		54.9	42	27.0		68.0 37.0
REC	SDS	27-Aug-90		6.73	623			< 0.002		59.0	39 4	23.0 1.0		5.0
REE	LU	27-Aug-90		6.81	177			<0.002 0.025		0.5 1.9	9	1.5		5.0
REE	SD	27-Aug-90		6.89	190			<0.025		11.1	12	4.5		6.0
REW		27-Aug-90		6.95 6.89	210 236			< 0.002		0.9	5	1.5		7.0
REW		27-Aug-90 27-Aug-90		6.91	434			< 0.002		34.8	25	6.5		8.0
REW RSA	SDS 19	27-Aug-90 27-Aug-90		6.82	235			<0.002		6.0	8	1.5		4.0
RSA	20	27-Aug-90		7.02	246			<0.002		10.0	9	1.5		5.0
RSA	21	27-Aug-90		7.02	259			<0.002		12.1	11	1.5		6.0 6.0
RSA	22	27-Aug-90		7.06	262	•		< 0.002		13.0	12 10	2.0 2.0		6.0
RSA	23	27-Aug-90		7.03	204			<0.002 <0.002		2.6 7.9	12	2.5		4.0
RSB	19	27-Aug-90		7.10	241 334			<0.002		16.8	15	6.5		8.0
RSB	20	27-Aug-90		7.22 7.20	300			< 0.002		11.0	12	6.0		7.0
RSB RSB	21 22	27-Aug-90 27-Aug-90		7.00	325			< 0.002		14.6	14	8.5		7.0
RSB	22	27-Aug-90		6.61	303			<0.002	!	11.9	14	2.0		6.0
RSB	24	27-Aug-90		6.81	216			<0.002		2.6	12	1.5		6.0
RSB	25	27-Aug-90		7.08	221			< 0.002		2.9	13	1.5 5.0		8.0 7.0
RSC	19	27-Aug-90		7.30	337			< 0.002		14.8 46.4	19 37	5.5		20.0
RSC		27-Aug-90		7.20	565			<0.002		29.2	27	17.0		17.0
RSC		27-Aug-90		7.01	465 455			< 0.002		28.2	27	17.0		16.0
RSC		27-Aug-90 27-Aug-90		7.06 7.11	293			< 0.002		9.6	13	13.0		11.0
RSC RSC		27-Aug-90 27-Aug-90		6.94				<0.002		12.5	16	8.0		11.0
RSD		27-Aug-90		7.13				< 0.002		2.0	13	1.5		4.0
RSC		27-Aug-90		6.88				<0.002		2.4	13	1.5		4.0 6.0
RSD		27-Aug-90)	6.88				< 0.002		16.9	22 30	2.5 9.0		11.0
RSD		27-Aug-90		7.10				<0.002 <0.002		34.2 10.1	14	3.0		6.0
RSD		27-Aug-90		7.00 7.22				<0.00		13.7	17	5.5		8.0
RSD		27-Aug-90 27-Aug-90		7.17				< 0.00		2.7	20	1.5		3.0
RSE RSE		27-Aug-90		7.36				<0.00		11.0	19	3.0		4.0
RSE		27-Aug-90		7.26				<0.00	2	8.7	15	3.5		5.0
RSE		27-Aug-90		7.01	241			<0.00		1.7	12	1.		5.0 6.0
RSE		27-Aug-90	. .	7.08				<0.00		2.0	13 5	0.9 1 <i>.</i> 9		5.0
REC	C SDD	25-Sep-90						< 0.00		1.6 34.1	5 28	18.0		38.0
RE								<0.00 <0.00		61.6	42			24.0
RE		25-Sep-90						<0.00		1.3	5			4
RE		25-Sep-90 25-Sep-90						<0.00		0.9	7	2.	0	
RE								<0.00)2	0.4	5			5.0
RE								<0.00)2	30.3	24	9.	0	6.0

• •

	Well	ID	Date	GW Dep	рН	Cond. mhos	Alk. mg/l	T. Hard mg/l	PO4 mg/l	NH4-N mg/l	NO2+NO3-N mg/l	Cl mg/l	Na mg/l	K mg/l	Fluor. mg/l	
		40	25-Sep-90	18.63	7.73	453			<0.002		23.4	18	2.5		5.0	
	RSA RSA	19 20	25-Sep-90 25-Sep-90	18.63	7.92	413			<0.002		20.2	16	2.8		5.0	
	RSA	20	25-Sep-90	18.63	8.05	263			<0.002		1.2	10	1.7		4.0	
	RSA	22	25-Sep-90	18.63	8.16	271			0.005		2.1	11	1.7		4.0	
	RSA	23	25-Sep-90	18.63	8.20	336			<0.002		9.5	14	2.2		5.0 5.0	
	RSB	19	25-Sep-90	18.45	7.89	457			<0.002		19.3	17	5.0 4.6		5.0 4.0	
	RSB	20	25-Sep-90	18.45	7.97	318			0.002		4.7	8 8	4.0 3.0		4.0	
	RSB	21	25-Sep-90	18.45	8.00	279			0.002		2.4	10	3.0		4.0	
	RSB	22	25-Sep-90	18.45	8.07	282			0.002		3.0 2.6	12	1.7		4.0	
	RSB	23	25-Sep-90	18.45	7.85	261			< 0.002		2.8	13	2.0		4.0	
	RSB	24	25-Sep-90	18.45	8.00	265			< 0.002		3.2	14	2.2		5.0	
	RSB	25	25-Sep-90	18.45	8.06	266			0.002 <0.002		24.2	29	5.0		6.0	
	RSC	19	25-Sep-90	18.50	7.73	527			0.002		31.7	25	11.0		11.0	
	RSC	20	25-Sep-90	18.50	7.70	608			< 0.002		40.3	26	13.5		13.0	
	RSC	21	25-Sep-90	18.50	7.62	673 768			< 0.002		51.2	33	16.5		14.0	
	RSC	22	25-Sep-90	18.50	7.62 7.80	768 520			< 0.002		24.6	23	8.4		10.0	
	RSC	23	25-Sep-90	18.50	7.80	319			< 0.002		4.1	18	2.2		3.0	
	RSD	19	25-Sep-90	18.26 18.26	7.82	464			< 0.002		19.7	24	8.0		5.0	
	RSD	20	25-Sep-90	18.26	7.77	413			<0.002		14.6	20	8.4		6.0	
	RSD	21	25-Sep-90 25-Sep-90	18.26	7.73	688			<0.002		41.3	34	12.6		9.0	
	RSD	22 23	25-Sep-90 25-Sep-90	18.26	7.78	578			<0.002		29.7	28	8.1		7.0	
	RSD RSE	23 19	25-Sep-90	18.21	7.80	323			<0.002		4.6	15	1.5		3.0	
	RSE	20	25-Sep-90	18.21	7.82	424			<0.002		17.9	22	4.5		4.0	
	RSE	20	25-Sep-90	18.21	7.84	369			<0.002		9.4	17	5.0		4.0 4.0	
	RSE	22	25-Sep-90	18.21	7.98	283			<0.002		2.2	15	2.5		4.0 5.0	
	RSE	23	25-Sep-90	18.21	8.14	278			<0.002		2.7	16	1.5 1.5		4.0	
	REE		13-Oct-90		7.97	236			<0.002		0.7	· 4 4	1.5		5.0	
	REC		06-Nov-90	18.53	8.55	249			< 0.002		0.6 2.1	2	2.0		23.0	
	REC		06-Nov-90	18.53	7.94	342			< 0.002		14.1	11	10.2		45.0	
	REC		06-Nov-90	18.53	7.73	602			<0.002 <0.002		1.7	7	3.6		5.0	
	REE	SD	06-Nov-90	18.88	8.43	264			< 0.002		1.2	8	3.8		6.0	
	REW		06-Nov-90	18.87	8.28	295 296			< 0.002		0.6	2	1.8		5.0	
	REW		06-Nov-90	18.87	8.18	296 480			< 0.002		9.6	8	2.2		6.0	
	REW		06-Nov-90	18.87	8.06 7.58	400 516			< 0.002		24.2	16	4.5		7.0	
	RSA		06-Nov-90	18.83	7.80	524			0.002		25.6	16	5.0		9.0	
	RSA		06-Nov-90	18.83 18.83	8.09	330			0.005		12.0	10	2.6		7.0	
	RSA		06-Nov-90 06-Nov-90	18.83	8.16	275			0.002		2.4	8	2.5		6.0	
	RSA		06-Nov-90	18.83	8.33	282			<0.002	2	2.1	10	2.6		6.0	
	RSA		06-Nov-90	18.66	8.02	448			<0.00	2	15.4	10	6.2		8.0	
	RSE		06-Nov-90		8.04				<0.00	2	13.5	9	5.8		9.0	
	RSE		06-Nov-90		8.09				<0.00		2.3	4	2.5		5.0	
	RSE		06-Nov-90		8.12	290			<0.00		1.6	6	2.2		5.0 6.0	
	RSE		06-Nov-90		8.24	276			<0.00		2.0	9	2.5 2.6		6.0	
	RSE		06-Nov-90		8.24	271			0.00		2.5	11			8.0	
	RSE		06-Nov-90	18.66	8.22	272			<0.00		3.1	12 21	2.8 6.0		13.0	
	RSC		06-Nov-90		7.83				< 0.00		37.9 39.0	22	10.4		18.0	
	RSC		06-Nov-90		7.80				< 0.00		41.6	25	13.2		25.0	
	RSC	C 21	06-Nov-90		7.79				< 0.00		20.2	17	-		16.0	
	RSC		06-Nov-90		7.87				<0.00 <0.00		26.4	22			23.0	
	RSC		06-Nov-90		8.00				<0.00		24.1	22			7.0	
	RSI		06-Nov-90		7.95				< 0.00		17.0	15			9.0	
	RS		06-Nov-90		7.98				<0.00		13.9	13	-		10.0	
-	RS		06-Nov-90		8.03				<0.00		7.1	10			7.0	
	RS		06-Nov-90		8.22 8.31	_			< 0.00		2.4	10	-	5	7.0	
	RS		06-Nov-90		8.0				<0.00		15.9	20			4.0	
-	RS		06-Nov-90						< 0.00		19.9	22			6.0	
	RS		06-Nov-90 06-Nov-90						<0.00		1.6	10			5.0	
	RS	E 21 E 22	06-Nov-90						<0.0		1.9	11	2.	5	7.0	
	42		00-1404-30		0.0											

۰.

														_	
Well	ID	Date	GW Dep	pН	Cond.	Alk.	T. Hard	PO4	NH4-N	NO2+NO3-N	Cl	Na	ĸ	Fluor.	
			•	-	mhos	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	
										0.3	13	3.0		6.0	
RSE	23	06-Nov-90	18.40	8.33	304			< 0.002		2.3 1.4	3	2.6		3.0	
REC	SDD	12-Jan-91	19.03	7.81	252			< 0.002		20.5	38	21.0		17.0	
REC	SDM	12-Jan-91	19.03	7.66	531			< 0.002		20.5	47	26.5		25.0	
REC	SDS	12-Jan-91	19.03	7.79	564			<0.002 <0.002		1.6	7	2.0		3.0	
REE	SD	12-Jan-91	19.36	8.12	232			0.002		0.3	<1	1.2		2.0	
REE	SU	12-Jan-91	19.48	8.05	189 265			0.002		1.0	7	2.0		3.0	
REW	SDD	12-Jan-91	19.36	8.01 7.76	263			< 0.002		0.5	3	1.6		2.0	
REW	SDM	12-Jan-91	19.36 19.32	7.77	400			0.005		14.5	10	4.0		4.0	
RSA	19	12-Jan-91 12-Jan-91	19.32	7.96	341			0.002		8.9	7	2.8		3.0	
RSA RSA	20 21	12-Jan-91	19.32	8.17	228			0.008		0.7	4	1.6		2.0	
RSA	21	12-Jan-91	19.32	8.27	238			0.002		1.3	6	2.2		2.0	
RSA	22	12-Jan-91	19.32	8.33	263			0.002		1.8	8	2.6		3.0	
RSB	19	12-Jan-91	19.15	7.82	550			<0.002		25.6	16	6.4		5.0	
RSB	20	12-Jan-91	19.15	7.91	370			<0.002		9.1	7	3.2		4.0	
RSB	21	12-Jan-91	19.15	8.08	244			<0.002		0.8	4	1.8		2.0	
RSB	22	12-Jan-91	19.15	8.13	246			<0.002		1.2	6	2.4		3.0	
RSB	23	12-Jan-91	19.15	8.26	260			<0.002		1.8	8	2.8		3.0	
RSB	24	12-Jan-91	19.15	8.28	268			0.008		2.6	12	3.2		3.0	
RSB	25	12-Jan-91	19.15	8.30	269			0.002		3.1	13	3.8		3.0	
RSC	19	12-Jan-91	19.19	7.65	347			0.005		6.1	5	11.8		4.0 6.0	
RSC	20	12-Jan-91	19.19	7.80	428			<0.002		12.5	8	7.8 9.2		9.0	
RSC	21	12-Jan-91	19.19	7.85	534			0.002		21.0	12	3.5		3.0 3.0	
RSC	22	12-Jan-91	19.19	7.94	283			0.002		3.4	6 7	2.5		3.0	
RSC	23	12-Jan-91	19.19	8.06	250			< 0.002		1.2	24	6.6		4.0	
RSD	19	12-Jan-91	18.95	7.76	542			0.028		27.3 34.4	24 27	14.5		8.0	
RSD	20	12-Jan-91	18.95	7.75	668			0.002		19.6	17	12.0		8.0	
RSD	21	12-Jan-91	18.95	7.78	522			<0.002 <0.002	<i>w</i>	4.6	9	4.4		4.0	
RSD	22	12-Jan-91	18.95	8.00	313			< 0.002		1.4	9	2.5		3.0	-
RSD	23	12-Jan-91	18.95	8.17	256			< 0.002		20.8	19	5.8		3.0	
RSE	19	12-Jan-91	18.90	7.86	474			< 0.002		17.2	16	7.2		3.0	
RSE	20	12-Jan-91	18.90	7.82	472 272			< 0.002		1.4	8	2.4		3.0	
RSE	21	12-Jan-91	18.90 18.90	7.96 8.08	272			< 0.002		1.8	11	2.6		3.0	
RSE		12-Jan-91	18.90	8.09	273			0.002		2.2	13	3.4		3.0	
RSE		12-Jan-91 07-Feb-91	10.50	7.68	220			< 0.002		<0.2	2	1.5		4.0	
REC		07-Feb-91 07-Feb-91		7.59	498			< 0.002		21.3	24	18.6		26.0	
REC REE		07-Feb-91		8.19	207			0.005		0.7	2	1.3		4.0	
REW		07-Feb-91		7.90	271			0.005		1.2	8	1.5		4.0	
REW		07-Feb-91		7.63	275			<0.002	2	0.6	3	1.3		3.0	
RSA		07-Feb-91		7.72				<0.002	2	5.9	4	2.8		6.0	
RSA		07-Feb-91		7.94				0.008		0.3	3	1.3		3.0	
RSA		07-Feb-91		8.12	195			0.005		0.5	3	1.3		4.0	
RSA		07-Feb-91		8.13				0.002		0.9	5	1.7		4.0 5.0	
RSA		07-Feb-91		8.29				<0.002		1.7	8	2.1		8.0	
RSE	3 19	07-Feb-91		7.85				0.00		21.8	13	7.2 2.4		4.0	
RSE	3 20	07-Feb-91		7.93				< 0.00		3.4 0.8	4 5	2		3.0	
RSE	3 21	07-Feb-91		8.07				0.00		1.2	7	1.9		4.0	
RSE		07-Feb-91		8.14				0.00		1.8	, 9	2.0		5.0	
RSE		07-Feb-91		8.31				0.00		2.7	12	3.0		5.0	
RSE		07-Feb-91		8.33				0.00		3.4	14	3.		6.0	
RSE		07-Feb-91		8.32				0.00 <0.00		3.2	3	2.		6.0	
RSC		07-Feb-91		7.89				<0.00		5.1	4	2.		7.0	
RSC		07-Feb-91		7.88				<0.00		7.3	6	2.		8.0)
RS		07-Feb-91		7.87				<0.00		0.8	6			4.0)
RS		07-Feb-91		8.0				0.00		1.2	7			4.0)
RS		07-Feb-91 07-Feb-91		7.8				< 0.00		31.3	28	8.	6	11	
RSI		07-Feb-91 07-Feb-91		7.5				< 0.00		35.2	28			16	
RS		07-Feb-9 07-Feb-9		7.7				< 0.00		18.8	16			14.0	
RS RS		07-Feb-9 07-Feb-9		8.0				<0.00		2.4	6	2.	6	5.0	ָ
n9	U 22	07-1 60-3	•	0.0											

. •

•••

Well	ID	Date	GW Dep	рH	Cond. mhos	Alk. mg/l	T. Hard mg/l	PO4 mg/l	NH4-N mg/l	NO2+NO3-N mg/l	Cl mg/l	Na mg/l	K mg/l	Fluor. mg/l
RSD	23	07-Feb-91		8.11	256			<0.002		1.0	6	1.9		5.0
RSE	23 19	07-Feb-91		7.85	440			0.002		19.3	16	5.7		5.0
RSE	20	07-Feb-91		7.94	356			<0.002		7.5	8	5.2		4.0 4.0
RSE	21	07-Feb-91		8.06	261			<0.002		0.9	7 10	1.9 2.1		5.0
RSE	22	07-Feb-91		8.21	262			0.002		1.6 2.0	13	2.6		5.0
RSE	23	07-Feb-91		8.28	260			0.005 <0.002		0.2	2	1.0		2.0
REC	SDD	27-Mar-91		8.02	186			<0.002		21.7	13	13.2		9.0
REC	SDM	27-Mar-91		7.44	467 244			< 0.002		0.4	3	1.6		2.0
REE	LU	27-Mar-91		8.15 8.20	244 225			< 0.002		1.0	6	1.6		2.0
REE	SD SU	27-Mar-91 27-Mar-91		8.16	191			< 0.002		0.5	3	1.0		2.0
REE REW	SDD	27-Mar-91		8.11	248			0.002		1.4	8	1.8		3.0
REW	SDM	27-Mar-91		7.81	271			<0.002		0.8	3	1.2		2.0 2.0
RSA	19	27-Mar-91		7.82	262			<0.002		3.6	4	1.5 1.0		2.0
RSA	20	27-Mar-91		8.18	193			0.002		0.3	2	1.0		2.0
RSA	21	27-Mar-91		8.03	211			< 0.002		1.4 0.7	4	1.4		2.0
RSA	22	27-Mar-91		8.26	205			<0.002 <0.002		1.5	6	2.0		3.0
RSA	23	27-Mar-91		8.34 7.92	229 368			< 0.002		11.4	8	4.4		4.0
RSB	19	27-Mar-91		7.92	243			< 0.002		1.4	3	1.5		2.0
RSB	20	27-Mar-91 27-Mar-91		8.17	230			<0.002		1.3	5	1.5		3.0
RSB RSB	21 22	27-Mar-91		8.15	236			<0.002		1.6	7	1.8		2.0
RSB	23	27-Mar-91		8.21	246			<0.002		2.2	9	2.4		3.0
RSB	24	27-Mar-91		8.29	264			<0.002		3.0	12	2.8		3.0 4.0
RSB	25	27-Mar-91		8.28	271			< 0.002		3.5	15 11	3.4 4.5		6.0
RSC	19	27-Mar-91		7.83	435			< 0.002		15.8	8	2.8		5.0
RSC		27-Mar-91		7.87	321			< 0.002		7.9 8.5	10	4.2		6.0
RSC		27-Mar-91		7.93	322			<0.002 <0.002		0.9	5	1.4		3.0
RSC		27-Mar-91		8.07	194 205			< 0.002		1.3	7	1.8		3.0
RSC		27-Mar-91		8.12 7.77	205 553			< 0.002		29.3	32	13.4		8.0
RSD		27-Mar-91 27-Mar-91		7.81	587			< 0.002		26.7	29	15.0		11.0
RSD RSD		27-Mar-91		7.79	354			< 0.002	2	7.8	- 8	5.5		5.0
RSD		27-Mar-91		8.04	259			<0.002		1.7	5	1.8		3.0
RSD		27-Mar-91		8.02	247			<0.002		1.6	5	2.0		2.0 3.0
RSE		27-Mar-91		7.87				0.005		4.6	5 8	1.2 1.8		3.0
RSE		27-Mar-91		8.00				< 0.002		2.4	12	2.0		3.0
RSE		27-Mar-91		8.15				<0.002 <0.002		2.4	14	2.6		4.0
RSE		27-Mar-91		8.20 7.88				< 0.002		0.7	2	1.0		7.0
REC		26-Apr-91		7.00				< 0.002		63.0	36	27.0)	47.0
REC		26-Apr-91 26-Apr-91		7.25				<0.002		81.6	53	28.0		50.0
REC		26-Apr-91		8.02				0.00		1.7	8	1.5		8.0
REV		26-Apr-91		7.96				0.00		1.2	8	1.5		7.0 10.0
REV		26-Apr-91		7.71				<0.00		21.1	17	7.5 21.0		14.0
REV		26-Apr-91		7.36				< 0.00		55.0 2.5	42 3	1.0		5.0
RSA		26-Apr-91		7.77				0.00 0.01		0.4	2	1.0		6.0
RSA		26-Apr-91		7.93				<0.00		0.7	4	1.0		6.0
RSA		26-Apr-91		8.08 8.23				<0.00		0.9	5	1.0	כ	5.0
RS/		26-Apr-91 26-Apr-91		8.29				0.00		1.3	7	1.		6.0
RS/		26-Apr-91		8.00				<0.00		2.8	4	2.0		7.0
RSI RSI		26-Apr-91		8.06				<0.00	2	1.7	2	1.		4.0
RSI		26-Apr-91		8.0				<0.00		1.4	4	1.		5.0 7.0
RSI		26-Apr-91		8.23				0.00		1.9	8	1. 2.		7.0
RS		26-Apr-91		8.2				< 0.00		2.8	11 14	2.		10.0
RS		26-Apr-91		8.2				< 0.00		3.6 3.9	14	2. 3.		9.0
RS	B 25	26-Apr-91		8.3				0.00 <0.00		3.9 8.3	9	4.		11.0
RS		26-Apr-9		8.1				<0.00		5.7	6	2.		10.0
RS		26-Apr-9		7.9 7.9				<0.00		4.8	8			10.0
RS	IC 21	26-Apr-9	I	7.9	J 2J	-			-					

Well	ID	Date	GW Dep	pН	Cond. mhos	Alk. mg/l	T. Hard mg/l	PO4 mg/l	NH4-N mg/l	NO2+NO3-N mg/l	Cl mg/l	Na mg/l	K mg/l	Fluor. mg/l
				8.12	206			<0.002		1.9	7	1.5		8.0
RSC	22	26-Apr-91		8.12	200			< 0.002		1.9	10	1.5		8.0
RSC	23	26-Apr-91		7.89	504			< 0.002		27.0	28	12.0		17.0
RSD	19	26-Apr-91		7.85	519			< 0.002		24.5	22	10.0		18.0
RSD	20	26-Apr-91		7.89	262			0.005		1.8	4	2.0		9.0
RSD	21	26-Apr-91			240			0.008		1.2	-5	1.5		7.0
RSD	22	26-Apr-91		7.93	240			0.002		1.2	7	1.5		11.0
RSD	23	26-Apr-91		8.13 7.85	441			0.002		28.6	16	4.0		7.0
RSE	19	26-Apr-91			378			0.002		10.6	11	3.5		9.0
RSE	20	26-Apr-91		7.98	315			< 0.002		4.5	8	1.5		8.0
RSE	21	26-Apr-91		8.09	268			< 0.002		1.9	12	2.0		9.0
RSE	22	26-Apr-91		8.13				0.002		2.8	16	2.5		10.0
RSE	23	26-Apr-91		8.32	269			< 0.002		6.6	6	1.5		9.0
REC	SDD	02-May-91		7.89	290			<0.002		59.2	42	30.0		30.0
REC	SDM	02-May-91		7.45	842			< 0.002		74.9	50	27.0		50.0
REC	SDS	02-May-91		7.52	921			< 0.002		0.8	5	1.0		9.0
REC	SDD	03-Jun-91		7.94	193					21.5	16	10.0		50.0
REC	SDM	03-Jun-91		7.24	526			< 0.002		66.8	40	28.0		63.0
REC	SDS	03-Jun-91		7.17	933			< 0.002		1.7	9	2.0		9.0
REE	SD	03-Jun-91		8.11	241			0.002		2.9	16	3.0		12.0
REW	SDD	03-Jun-91		7.96	277			0.045			6	1.5		8.0
REW		03-Jun-91		7.81	260	•		0.002		0.7	34	10.0		15.0
REW		03-Jun-91		7.64	634			0.005		44.4		2.0		10.0
RSA	19	03-Jun-91		7.82	309			0.002		6.1	6	2.0 1.0		9.0
RSA	20	03-Jun-91		8.02	264			0.002		2.5	3			9.0
RSA	21	03-Jun-91		8.22	232			0.002		0.8	5	1.0		9.0
RSA	22	03-Jun-91		8.28	244			0.005		1.5	9	2.0		9.0 9.0
RSA	23	03-Jun-91		8.34	253			0.002		1.5	9	2.0		9.0 11.0
RSB	19	03-Jun-91		7.95	255			0.002		4.6	5	2.5		
RSB	20	03-Jun-91		7.95	353			<0.002		10.2	9	3.0		13.0
RSB		03-Jun-91		8.01	262			<0.002	2	3.2	5	2.0		10.0
		03-Jun-91		8.07	235			0.002	2	1.5	5	2.0		10.0
RSB		03-Jun-91		8.12	247			0.00	5	2.2	9	2.5		11.0
RSB		03-Jun-91		8.04	272			0.00	5	3.3	13	3.0		10.0
RSB		03-Jun-91		8.13	281			0.00	5	4.2	16	4.0		11.0
RSB		03-Jun-91		7.78	453			<0.00		19.2	17	8.5		19.0
RSC				7.83	397			<0.00		15.8	12	13.0		17.0
RSC		03-Jun-91		7.90	418			<0.00		19.6	13	7.0		17.0
RSC		03-Jun-91		7.90 8.00	251			<0.00		4.9	8	2.5		10.0
RSC		03-Jun-91			230			0.00		1.9	10	2.5		9.0
RSC		03-Jun-91		.8.03	230			0.00		4.5	9	5.0)	7.0
RSD		03-Jun-91		7.91				< 0.00		19.4	20	13.0)	19.0
RSD		03-Jun-91		7.77				<0.00		19.7	20	9.0		19.0
RSE		03-Jun-91		7.82				< 0.00		5.1	9	3.0		10.0
RSE		03-Jun-91		7.96				< 0.00		1.2	8	2.0		9.
RSD		03-Jun-91		8.04				<0.00 0.00		3.8	5	3.0		6.
RSE	E 19	03-Jun-91		7.96						8.1	8	4.5		8.
RSE	E 20	03-Jun-91		7.89				<0.00		2.3	8	2.5		8.
RSE	E 21	03-Jun-91	ļ	7.94				<0.00		2.3	13	3.0		11.
RS		03-Jun-91	I	8.07				<0.00		3.0	17	3.9		13.
RSI		03-Jun-9	1	8.13				0.00			3	1.3		7.
RE		01-Jul-91		7.81				0.0		0.8	21	9.		32.
RE		01-Jul-91		7.42				<0.0		21.5	42			54.
RE		01-Jul-91						0.0		35.1				6.
RE		01-Jui-91		8.11				0.0		0.4	3			6
RE		01-Jul-91				8		0.0		1.5	8			6
RE		01-Jul-91				5		0.0		0.9	6			8
RE				7.8		0		0.0		2.1	11			o 8
RE				7.7		4		0.0		0.3	2			
								<0.0		50.0	37			11
RE		01-Jul-91		7.6	-			0.0	02	8.7	8		.1	9
RS	A 19 A 20	01-Jul-91 01-Jul-91		7.7				0.0		11.0	10		.7	6
											11		.7	

. •

. .

Well	ID	Date	GW Dep	рН	Cond. mhos	Alk. mg/l	T. Hard mg/l	PO4 mg/l	NH4-N mg/l	NO2+NO3-N mg/l	Cl mg/l	Na mg/l	K mg/l	Fluor. mg/l	
		or 1-1-01		7.97	246	-		0.008		1.8	9	1.9		5.0	
RSA	22	01-Jul-91	18.06	8.04	264			0.005		2.1	12	2.2		7.0	
RSA	23	01-Jul-91 01-Jul-91	18.00	7.81	421			0.002		17.9	17	2.9		8.0	
RSB	19	01-Jul-91 01-Jul-91		7.77	431			<0.002		14.5	15	3.9		9.0	
RSB	20 21	01-Jul-91 01-Jul-91		7.88	301			0.002		3.6	10	1.9		8.0	
RSB	22	01-Jul-91		7.95	290			0.005		3.0	12	1.9		8.0	
RSB RSB	22	01-Jul-91		8.03	288			0.005		3.0	13	2.2		8.0	
RSB	24	01-Jul-91		8.07	298			0.005		3.6	15	2.7		8.0	
RSB	25	01-Jul-91	17.89	8.10	309			0.005		4.3	17	3.4		10.0	
RSC	19	01-Jul-91		7.83	422			0.002		13.7	12	7.8		11.0 9.0	
RSC	20	01-Jul-91		7.87	332			0.002		10.8	10	5.2 4.6		9.0 11.0	
RSC	21	01-Jul-91		7.85	392			0.002		15.0	13	4.0 3.9		13.0	
RSC	22	01-Jul-91		7.86	519			0.032		24.2	18 16	2.7		12.0	
RSC	23	01-Jul-91	17.93	7.91	465			< 0.002		19.2 3.4	8	2.2		6.0	
RSD	19	01-Jul-91		7.97	247			< 0.002		3.4 15.6	17	9.5		12.0	
RSD	20	01-Jul-91		7.76	456			< 0.002		31.2	25	6.6		14.0	
RSD	21	01-Jul-91		7.68	616			0.002		10.8	13	2.4		8.0	
RSD	22	01-Jul-91		7.82	362			0.002 0.002		5.3	11	2.5		8.0	
RSD	23	01-Jul-91	17.70	7.90	313			< 0.002		8.2	8	2.2		6.0	
RSE	19	01-Jul-91		7.89	294			0.002		9.4	10	3.2		6.0	
RSE	20	01-Jul-91		7.85	366			0.003		12.1	12	2.4		7.0	
RSE	21	01-Jul-91		7.82	412 400			0.002		12.6	14	2.7		8.0	
RSE	22	01-Jul-91		7.90	400 380			0.005		11.7	18	3.4		9.0	
RSE	23	01-Jul-91	17.65	8.02	240			0.000	<0.02	0.7	3			3.0	
REC	SDD	05-Aug-91	18.08	7.86 7.49	651				<0.02	33.4	29			17.0	
REC	SDM	05-Aug-91	18.08 18.08	7.36	849				<0.02	55.2	41			17.0	
REC	SDS	05-Aug-91	18.37	8.09	261				<0.02	1.8	6			2.0	
REE	SD	05-Aug-91 05-Aug-91	18.49	8.10	234				<0.02	0.6	3			2.0	
REE	SU SDD	05-Aug-91	18.39	7.95	292				< 0.02	1.7	8			2.0	
REW REW		05-Aug-91	18.39	7.84	300				<0.02		3			3.0	
REW		05-Aug-91	18.39	7.71	367				<0.02		8			3.0	
RSA	19	05-Aug-91	18.34	7.77	349				<0.02		11			2.0 3.0	
RSA		05-Aug-91	18.34	7.79	325				<0.02		12			2.0	
RSA		05-Aug-91	18.34	7.94	241				<0.02		7			2.0	
RSA		05-Aug-91	18.34	8.02	252				<0.02		9			2.0	
RSA		05-Aug-91	18.34	8.12	267				<0.02		12			3.0	
RSB		05-Aug-91	18.18	7.89	434				0.02		16			3.0	
RSB		05-Aug-91	18.18	7.95	388				< 0.02		14 8			2.0	
RSB		05-Aug-91		8.12	259				<0.02 <0.02		8			2.0	
RSB	22	05-Aug-91		8.19	255				< 0.02		15			3.0	
RSB	3 23	05-Aug-91		7.40	291				< 0.02		17			3.0	
RSB		05-Aug-91		7.60	304				< 0.02		18			3.0	
RSB		05-Aug-91		7.94					< 0.02		25			5.0	
RSC		05-Aug-91		7.70					< 0.02		29			9.0	
RSC		05-Aug-91		7.75 7.81	656				< 0.02		26			10.0	
RSC		05-Aug-91		7.95					< 0.02		17			6.0	
RSC		05-Aug-91		8.10					<0.02		15			4.0	
RSC		05-Aug-91		7.78					<0.02	2 5.1	10			3.0	
RSD		05-Aug-91 05-Aug-91		7.71					<0.0		19			5.0	
RSD		05-Aug-91		7.78					<0.0	2 12.6	14			4.0	
RSI RSI		05-Aug-9		7.84					<0.0		18			5.0	
RSI		05-Aug-9		7.84					<0.0		28			5.0	
RSI		05-Aug-9		7.52					<0.0		10			3.0	
RSI		05-Aug-9		7.54					<0.0		22			3.0 3.0	
RSI		05-Aug-9		7.52		3			<0.0		21			3.0 4.0	
RSI		05-Aug-9		7.56	5 47!	5			<0.0		23			4.0 5.0	
RSI		05-Aug-9		7.74	4 380				< 0.0		20			8.0	
RS		05-Sep-9		7.91					<0.0		19			6.0	
RS		05-Sep-9		.8.00	30	6			<0.0	9.8	10	,		0.0	

۰.

•

.

Well	ID	Date	GW Dep	рH	Cond. mhos	Alk. mg/l	T. Hard mg/l	PO4 mg/l	NH4-N mg/l	NO2+NO3-N mg/l	Cl mg/l	Na mg/l	K mg/l	Fluor. mg/l
	21	05-Sep-91	18.70	8.06	230 243				<0.02 <0.02	0.8 1.3	5 7			5.0 5.0
	22	05-Sep-91	18.70 18.70	8.08 8.13	253				<0.02	1.6	9			5.0
RSA	23	05-Sep-91 05-Sep-91	18.52	8.00	407				<0.02	17.2	12			9.0
RSB RSB	19 20	05-Sep-91	18.52	7.89	419				<0.02	18.4	15			10.0 7.0
RSB	21	05-Sep-91	18.52	7.98	275				< 0.02	3.5	10			8.0
RSB	22	05-Sep-91	18.52	8.04	285				< 0.02	3.4	12 14			7.0
RSB	23	05-Sep-91	18.52	8.09	291				<0.02 <0.02	4.4 4.7	16			7.0
RSB	24	05-Sep-91	18.52	8.13	289				<0.02	5.0	17			7.0
RSB	25	05-Sep-91	18.52	8.15 7.82	295 549				< 0.02	31.2	23			13.0
RSC	19	05-Sep-91 05-Sep-91	18.56 18.56	7.81	364				<0.02	10.7	13			12.0
RSC RSC	20 21	05-Sep-91	18.56	7.78	388				<0.02	13.6	14			12.0
RSC	22	05-Sep-91	18.56	7.85	330				<0.02	8.8	14			9.0 8.0
RSC	23	05-Sep-91	18.56	7.92	288				<0.02	4.1	14			
RSD	19	05-Sep-91	18.33	7.80	404				<0.02	18.5	17			7.0 13.0
RSD	20	05-Sep-91	18.33	7.69	652				<0.02	40.1	29			13.0
RSD	21	05-Sep-91	18.33	7.75	508				<0.02	22.7	17			8.0
RSD	22	05-Sep-91	18.33	8.04	326				<0.02	6.9	11 12			7.0
RSD	23	05-Sep-91	18.33	7.91	288				<0.02 <0.02		18			6.0
RSE	19	05-Sep-91	18.28	7.78	462				< 0.02		22			6.0
RSE	20	05-Sep-91	18.28	7.77	532				< 0.02		18			6.0
RSE	21	05-Sep-91	18.28	7.77	473				< 0.02		18			6.0
RSE	22	05-Sep-91	18.28	7.88	435 352				< 0.02	-	16			7.0
RSE	23	05-Sep-91	18.28	8.02 7.94	204				<0.02		4			6.0
REC		09-Sep-91		7.66					<0.02	2 6.9	6			23.0
REC		09-Sep-91 09-Sep-91		8.29					<0.02	2 1.2	5			5.0
REE				7.96					<0.0	2 <0.2	2			4.0
REE		09-Sep-91 09-Sep-91		8.01					<0.0		6			5.0
REV REV		09-Sep-91		7.81					<0.0		3			4.0 8.0
REV		09-Sep-91		7.73	329				<0.0		4 26			4.0
RSE		04-Oct-9		7.81					0.0		13			27.0
RSE		04-Oct-9		7.90					0.0 <.0		9			31.0
RSE		04-Oct-9		8.07					<.0		12			4.0
RSE		04-Oct-9		8.14 8.23					0.0		14			4.0
RSE RSE		04-Oct-9 04-Oct-9		8.12					0.0		15			4.0
RSE		04-Oct-9		8.1					0.1		16			4.0 7.0
RSC		04-Oct-9		7.7					0.0		19 12			7.0
RS		04-Oct-9	91 18.78	7.7					0.0 0.1		12			6.0
RS	C 21	04-Oct-9		7.9					0.		10			4.0
RS		04-Oct-		7.9					0.1		11			4.0
RS		04-Oct-							0.1	10 45.1	36			6.0
RS		04-Oct- 04-Oct-							0.	12 31.8	27			5.0
RS RS		04-Oct-							0.		10			4.0 5.0
RS		04-Oct-			9 25					08 1.5 05 1.9	8 10			5.0
RS		04-Oct-								05 1.9 20 28.8	25			5,200
RS	E 19	04-Oct-								10 22.0	19			
RS		04-Oct								15 8.1	11			11
RS RS		04-Oct 04-Oct								.10 16.9	16	i		10.0

. -

۰.

Well	ID	Date	GW Dep	рН	Cond. mhos	Alk. mg/l	T. Hard mg/l	PO4 mg/l	NH4-N mg/l	NO2+NO3-N mg/l	Ci mg/l	Na mg/l	K mg/l	Fluor. mg/l
505		04-Oct-91	18.51	8.05	474				0.02	21.2	18			11.0
RSE REC	23 SDD	07-Oct-91	18.70	7.98	201				<0.02	<0.2	3			5.0 5.0
REC	SDM	07-Oct-91	18.69	8.26	525				0.02	29.3	18			5.0 11.0
REC	SDS	07-Oct-91	18.70	7.38	801				0.12	61.9 0.4	41 2			7.0
REE	SD	07-Oct-91	18.99	8.20	199				<0.02 <0.02	0.4	1			7.0
REE	SU	07-Oct-91	19.11	8.18	180				<0.02	1.0	5			6.0
REW	SDD	07-Oct-91	19.00	8.07	254				<0.02	0.2	2			5.0
REW	SDM	07-Oct-91	19.00	7.89	227 238				0.02	3.1	4			5.0
RSA	19	07-Oct-91	18.95 18.95	7.83 8.08	238 214				< 0.02	1.1	3			6.0
RSA	20	07-Oct-91 07-Oct-91	18.95	8.13	256				<0.02	4.4	6			5.0
RSA RSA	21 22	07-Oct-91	18.95	8.24	242				<0.02	2.0	6			5.0 6.0
RSA	23	07-Oct-91	18.95	8.17	251				0.02	1.6	8 2	1.1		8.0
REC	SDD	20-Nov-91	19.02	8.08	197	100	104		< 0.02	0.3 40.4	37	18.6		49.0
REC	SDM	20-Nov-91	19.02	7.77	614	104	268		<0.02 <0.02	0.8	3	1.4		51.0
REE	SD	20-Nov-91	19.31	8.14	194	100 84	112 116		0.02	0.9	4	1.2		8.0
REE	SU	20-Nov-91	19.44	8.09	172 241	04 124			< 0.02	0.5	3	1.7		6.0
REW		20-Nov-91	19.32 19.32	8.06 8.01	241	120			<0.02	0.6	2	1.2		8.0
REW		20-Nov-91 20-Nov-91	19.32	8.21	250	88			<0.02	4.0	17	6.0		9.0
RHO RSA	19	20-Nov-91	19.27	7.94	376	116	192		<0.02	15.7	12	2.9		15.0 9.0
RSA	20	20-Nov-91	19.27	7.90	314	120	164		<0.02	11.0	8	2.2 1.3		9.0 10.0
RSA	21	20-Nov-91	19.27	8.09	214	100			< 0.02	3.0 0.5	2 2	1.5		7.0
RSA	22	20-Nov-91	19.27	8.03	188	100			<0.02 <0.02	0.5	4	1.7		6.0
RSA	23	20-Nov-91	19.27	8.11	210	108			<0.02		4	2.7		7.0
RSB	19	20-Nov-91	19.09	8.09	257 220	116 112			<0.02		3	1.5		8.0
RSB	20	20-Nov-91	19.09	8.12 8.14	220	112			< 0.02		5	2.0		8.0
RSB	21	20-Nov-91	19.09 19.09	8.14	255	116			<0.02	2.3	8	2.7		7.0
RSB		20-Nov-91 20-Nov-91	19.09	8.23	272	116			<0.02		12	3.4		8.0
RSB RSB		20-Nov-91	19.09	7.91	279	120	148		<0.02		14	3.9		8.0 9.0
RSB		20-Nov-91	19.09	7.53	283	112			< 0.02		16 12	4.2 8.4		11.0
RSC		20-Nov-91	19.14	7.90	387	130			<0.02 <0.02		6	5.1		25.0
RSC	; 20	20-Nov-91	19.14	7.97	275	120			<0.02		5	2.2		8.0
RSC		20-Nov-91	19.14	8.12	236 254	110			<0.02		8	2.2		12.0
RSC		20-Nov-91	19.14 19.14	8.07 8.16	261	12			< 0.02		10	2.6		7.0
RSC		20-Nov-91 20-Nov-91	18.90	8.00	700	15			<0.02		27	15.8		7.0
RSC RSC		20-Nov-91		7.91	681	14			<0.02		27	18.8		20.0 9.0
RSI		20-Nov-91		7.88	652	14	0 288		<0.02		27	18.6 3.4		9.0
RSI		20-Nov-91		8.05					< 0.02		8 8	3.4 1.8		9.0
RSI		20-Nov-91	18.90	7.99					<0.02 <0.02		20	8.0		9.0
RSE		20-Nov-91		7.95					<0.0		18	6.2		7.0
RSI		20-Nov-91		7.98					< 0.0		7			10.0
RSI		20-Nov-91		8.07 8.10					<0.0		10			10.0
RSI RSI		20-Nov-91 20-Nov-91		8.19					<0.0		13			8.0
RE		07-Dec-91		8.02			92 100		<0.0		<1			10.0 10.0
RE		07-Dec-91		7.60) 586		00 228		<0.0		34			41.0
RE		07-Dec-91		7.74			96 248		0.0		50 1			67.0
RE		07-Dec-91		8.15		-	00 104		<0.0 <0.0		1			7.0
RE		07-Dec-91		8.11			76 84 20 133		<0.0		<1			8.0
RE				8.02			20 133 32 125		<0.0		3			7.0
RE				7.90 7.70			16 22		<0.0		17			8.0
RS		07-Dec-9					04 20		<0.0		14			8.0
RS		07-Dec-9 07-Dec-9				-	00 18		<0.0		19		.8	7.0
RS RS		07-Dec-9					96 10		<0.0		<1		.5	8.0 8.0
RS		07-Dec-9					00 11		<0.0		1		.8 2	8.0 7.0
RS		07-Dec-9	1 19.00			-	28 20		<0.0		12		.3 .2	6.0
RS		07-Dec-9	1 19.00) 7.9	3 31	U 1	12 16	U III	<0.0	JE 3.3				

. .

Well	ID	Date	GW Dep	рН	Cond. mhos	Alk. mg/l	T. Hard mg/l	PO4 mg/l	NH4-N mg/l	NO2+NO3-N mg/l	Cl mg/l	Na mg/l	K mg/l	Fluor. mg/l	
	•	07-Dec-91	19.00	8.12	219	108	280		<0.02	1.1	4	1.7		14.0	
	21 22	07-Dec-91 07-Dec-91	19.00	8.18	226	116	124		<0.02	1.6	6	2.5 3.2		38.0 5.0	
	23	07-Dec-91	19.00	8.23	255	112	132		< 0.02	2.7	9 11	3.9		6.0	
	24	07-Dec-91	19.00	8.25	269	116	132		<0.02 <0.02	3.7 5.3	15	4.2		7.0	
• •	25	07-Dec-91	19.00	8.22	284	108	136		<0.02 <0.02	13.3	11	7.7		6.0	
RSC	19	07-Dec-91	19.05	7.75	387	128	180 176		<0.02	14.3	10	3.8		12.0	
RSC	20	07-Dec-91	19.05	7.78 7.85	361 387	120 120	196		< 0.02	16.8	12	2.8		6.0	
RSC	21	07-Dec-91	19.05 19.05	7.85 8.04	246	120	136		<0.02	1.8	6	2.0		7.0	
RSC	22 23	07-Dec-91 07-Dec-91	19.05	8.11	247	124	132		<0.02	1.6	7	2.6		5.0 6.0	
RSC RSD	23 19	07-Dec-91	18.81	7.81	563	144	264		< 0.02	28.5	21	14.3 7.0		6.0	
RSD	20	07-Dec-91	18.81	7.82	298	116	144		< 0.02	5.5 6.9	6 8	5.3		5.0	
RSD	21	07-Dec-91	18.81	7.84	298	116	144		<0.02 <0.02	4.4	7	2.9		5.0	
RSD	22	07-Dec-91	18.81	7.94	272	120	140 136		<0.02	1.8	8	1.8		5.0	
RSD	23	07-Dec-91	18.81	8.07	247 467	112 144	232		0.02	21.7	19´	7.3		7.0	
RSE	19	07-Dec-91	18.77	7.78 7.79	487 497	140			<0.02	24.5	21	7.2		7.0	
RSE	20	07-Dec-91 07-Dec-91	18.77 18.77	7.93	311	124			<0.02	7.0	10	2.6		8.0	
RSE	21 22	07-Dec-91 07-Dec-91	18.77	8.06	276	122			0.22	2.8	11	3.4		8.0 9.0	
RSE RSE	23	07-Dec-91	18.77	8.14	285	120			<0.02	3.7	12 3	4.3 2.4		9.0 7.0	
REC	SDD	07-Jan-92	18.79	8.07	207	92			< 0.02	2.2 34.7	40	27.7		14.0	
REC	SDM	07-Jan-92	18.79	7.78	589	80			<0.02 <0.02	54.7	40	28.4		11.0	
REC	SDS	07-Jan-92	18.79	7.61	777	108			<0.02		6	1.5		5.0	
REE	SD	07-Jan-92	19.05	8.23	212	96 84			0.02		5	1.2		5.0	
REE	SU	07-Jan-92	19.18	8.19 8.07	183 230	116			0.02		4	2.0		8.0	
REW	SDD	07-Jan-92	19.08 19.08	7.88	369	136			0.02	11.2	8	3.4		8.0	-
REW	SDM SDS	07-Jan-92 07-Jan-92	19.08	7.83	692	112			<0.02		34	14.3		6.0 6.0	
REW RSA	19	07-Jan-92	19.01	7.95	326	112	2 164		<0.02		7	2.5 1.7		5.0	
RSA	20	07-Jan-92	19.01	8.11	278	100			< 0.02		6 2	1.4		6.0	
RSA	21	07-Jan-92	19.01	8.17	197	100			<0.02 <0.02		4	1.7		5.0	
RSA	22	07-Jan-92	19.01	8.11	212	10- 10			<0.02	-	4	1.9		6.0	
RSA	23	07-Jan-92	19.01	8.29 7.99	215 231	10			< 0.02		3	2.7		8.0	
RSB	19	07-Jan-92 07-Jan-92	18.86 18.86	8.02	256	10			<0.02		5	1.6		4.	
RSB	20	07-Jan-92 07-Jan-92	18.86	8.17	260	10			<0.02		5	2.0		30.	
RSB RSB		07-Jan-92	18.86	8.26	247	12	4 140		<0.02		5	2.5		4. 4.	
RSB		07-Jan-92		8.28	258	12			< 0.02		6 9	3.0 3.8		4.	
RSB		07-Jan-92	18.86	8.25		11			<0.02 <0.02		12	4.3		4.	
RSB		07-Jan-92		8.31	278	11			<0.0		18	11.		6.	0
RSC		07-Jan-92		7.86		13 11			<0.0		10				.0
RSC		07-Jan-92		7.95 7.97					<0.0		6	4.		6.	
RSC		07-Jan-92 07-Jan-92							<0.0		4				.0
RSC RSC		07-Jan-92 07-Jan-92					08 124	l .	<0.0		5				.0 .0
RSE		07-Jan-92					40 204		<0.0		12 4				.0
RSC		07-Jan-92	2 18.65				20 140		<0.0 <0.0	-	4				.0
RSC		07-Jan-92					12 128 12 128		<0.0	_	5			6	.0
RSI	22	07-Jan-92					12 128 16 136		<0.0		6				0.0
RSI		07-Jan-92					16 216		<0.0		17				0.0
RSI		07-Jan-92					44 22		<0.0	19.2	18	-	.9).0
RSI		07-Jan-92 07-Jan-92					28 18-	4	<0.0		10		.7).0 9.0
RSI RSI		07-Jan-92		-	-	2 1	20 15		<0.0		٤ ١٥		.0 .0		3.0
RS		07-Jan-9			2 283		24 15		<0.0		<'		.0 .3		0.0
RE			2 18.77				84 10		0.1	05 28.7	1		.2		B.0
RE			2 18.70				08 22 84 30			05 <u>20.7</u> 08 65.0	4				9.0
RE								6		05 1.4	<	1 1	.0	1	
RE		24-Mar-9						2		05 1.7	<		.0	2	
RE		24-Mar-9					108 12		0.	05 3.1		1 1	.9	3	1.0
RE	W SD	D 24-Mar-9	19.0	J 7.3		-	. –								

. •

۰.

Well	ID	Date	GW Dep	рН	Cond. mhos	Alk. mg/l	T. Hard mg/l	PO4 mg/l	NH4-N mg/l	NO2+NO3-N mg/l	Cl mg/l	Na mg/l	K mg/l	Fluor. mg/l	
REW	SDM	24-Mar-92	19.05	7.88	261	128	140		0.02	1.1	<1	1.4 8.7		10.0 8.0	
REW	SDS	24-Mar-92	19.05	7.77	544	132	240		0.02	27.6	14 3	2.1		10.0	
RSA	19	24-Mar-92	18.99	7.92	280	92	136		0.05 0.02	10.1 9.0	2	1.4		9.0	
RSA	20	24-Mar-92	18.99	7.98	270	84	124		0.02	9.0 1.9	1	1.1		9.0	
RSA	21	24-Mar-92	18.99	8.18	202	88	100 116		0.02	2.8	4	1.4		9.0	
RSA	22	24-Mar-92	18.99	8.23	227 229	94 96	124		0.05	2.8	3	1.5		9.0	
RSA	23	24-Mar-92	18.99 18.82	8.26 7.97	229 240	96	112		0.02	4.2	<1	2.8		7.0	
RSB RSB	19 20	24-Mar-92 24-Mar-92	18.82	8.02	204	94	100		0.12	1.4	<1	1.8		23.0	
RSB	20	24-Mar-92	18.82	8.16	217	98	112		0.18	2.1	<1	1.6		36.0	
RSB	22	24-Mar-92	18.82	8.18	235	102	128		0.02	3.7	2	1.8		6.0	
RSB	23	24-Mar-92	18.82	8.24	242	104	128		0.08	4.3	4	2.0 2.6		11.0 7.0	
RSB	24	24-Mar-92	18.82	8.24	265	104	136		0.02	5.2 6.3	5 7	2.0 3.0		8.0	
RSB	25	24-Mar-92	18.82	8.23	282	108	140		0.10 0.02	0.3 21.5	13	9.5		14.0	
RSC	19	24-Mar-92	18.85	7.73	436	104	176		0.02	15.3	10	7.9		5.0	
RSC	20	24-Mar-92	18.85	7.88	379	100 94	160 124		0.05	6.3	3	2.4		8.0	
RSC	21	24-Mar-92	18.85	7.97 7.98	259 469	106	216		0.05	26.7	16	6.5		6.0	
RSC	22	24-Mar-92 24-Mar-92	18.85 18.85	7.98 8.01	409 517	108	240		0.05	31.0	18	8.1		6.0	
RSC RSD	23 19	24-Mar-92 24-Mar-92	18.62	7.81	344	104	156		0.02	12.5	17	5.7		6.0	
RSD	20	24-Mar-92	18.62	7.88	280	104	124		0.02	7.2	2	4.2		6.0	
RSD	21	24-Mar-92	18.62	7.95	267	100	128		<0.02	7.0	2	2.7		5.0 6.0	
RSD	22	24-Mar-92	18.62	7.97	393	104	184		0.05	18.4	10	3.5 2.7		7.0	
RSD	23	24-Mar-92	18.62	8.04	266	98	128		0.18	6.4 9.5	2 11	3.3		8.0	
RSE	19	24-Mar-92	18.59	7.86	297	100			0.08 0.05	9.5 20.2	13	4.4		7.0	
RSE	20	24-Mar-92	18.59	7.69	419	116			0.03	14.9	9	3.6		8.0	
RSE	21	24-Mar-92	18.59	7.89	377 257	116 92			0.02	4.1	4	3.0		20.0	
RSE	22	24-Mar-92	18.59 18.59	7. 94 8.02	257	88			0.05	4.9	5	3.4		18.0	
RSE	23	24-Mar-92 23-Apr-92	18.39	8.10	200	88			0.12	1.8	4	1.4		17.0	
REC REC	SDD SDM	23-Apr-92	18.34	7.55	527	112			<0.02	27.3	27	17.5		9.0	
REC	SDS	23-Apr-92	18.34	7.40	886	92			<0.02		47	31.2		13.0 7.0	
REE		23-Apr-92	18.59	8.25	219	96			<0.02		7	2.1 1.7		8.0	
REE		23-Apr-92	18.72	8.30	218	84			< 0.02		8	2.1		7.0	
REW	SDD	23-Apr-92	18.62	8.02	260	108			0.08 0.02>		8	3.1		6.0	
REW	SDM	•	18.63	7.89	339	128			< 0.02		24	12.6		7.0	
REW		23-Apr-92	18.63	7.68	531	84 96			0.02		5	2.0		6.0	
RSA		23-Apr-92	18.57	7.96 8.00	243 317	104			< 0.02		10	2.0		7.0	
RSA		23-Apr-92 23-Apr-92	18.57 18.57	8.15	247	9			0.02		8	1.4		7.0	
RSA RSA		23-Apr-92 23-Apr-92	18.57	8.28	220	9			<0.02		8	1.7		6.0	
RSA		23-Apr-92		8.31	236	10	0 120		0.02		10	2.0		8.0	
RSB		23-Apr-92		8.11	229	10	4 116		<0.02		3	2.9		3.0 9.0	
RSB		23-Apr-92		8.10		10			< 0.02		3	1.7		9.0 30.5	
RSB		23-Apr-92		8.17		10			< 0.02		4 6	1.7 1.9		3.0	
RSE		23-Apr-92		8.23		10			<0.02 <0.02		9	2.1		5.0	
RSE		23-Apr-92		8.27		10 10			< 0.02		11	2.5		5.0	
RSE		23-Apr-92		8.27 8.27		11			<0.02		13	3.3		2.5	
RSE		23-Apr-92 23-Apr-92		7.76		11			<0.02		34	15.9)	8.0	
RSC RSC		23-Apr-92		7.83					<0.02		30			4.0	
RSC		23-Apr-92		7.90					<0.0		23			2.0	
RSC		23-Apr-92		8.03	361	10			0.0		14			3.0 3.0	
RSC		23-Apr-92		8.03	448				<0.0		20			3.0 3.5	
RS		23-Apr-92		7.95					0.0		17 12			2.0	
RSI	D 20	23-Apr-92		7.97)4 160		< 0.0		5			4.0	
RSI	D 21	23-Apr-92		8.06			0 116		0.0> 0.0		6			2.0	
RSI		23-Apr-92		8.08			00 124 04 124		0.0 <0.0		8			4.0	
RSI		23-Apr-92					04 124 96 160		<0.0		14			3.0	
RSI		23-Apr-92					16 224		<0.0		20			5.0	
RSI	E 20	23-Apr-92	2 18.17	1.0											

• •

Well	ID	Date	GW Dep	F • • •		Alk. mg/l	T. Hard mg/l	PO4 mg/l	NH4-N mg/l	NO2+NO3-N mg/l	Cl mg/l	Na mg/l	K mg/l	Fluor. mg/l	
DOC	01	23-Apr-92	18.17	7.96	283	116	156		<0.02	7.4	8 8	3.4 3.1		5.0 9.5	
RSE	21 22	23-Apr-92	18.17	8.15	247	112	128		< 0.02	4.4		3.1		11.0	
RSE RSE	23	23-Apr-92	18.17	8.21	267	108	144		< 0.02	5.5	10 6	1.2		5.0	
REC	SDD	20-May-92	17.56	7. 9 8	380	96	116		< 0.02	3.0 6.2	9	7.6		9.0	
REC	SDM	20-May-92	17.56	7.53	322	120	144		< 0.02	6.2 34.8	42	30.5		11.0	
REC	SDS	20-May-92	17.56	7.27	698	128	276		<0.02	2.4	6	2.3		4.0	
REE	SD	20-May-92	17.82	8.11	221	96	124		<0.02 <0.02	2.2	7	2.5		4.5	
REE	SU	20-May-92	17.94	8.10	207	92	112		<0.02	4.6	8	2.3		4.0	
REW	SDD	20-May-92	17.84	7.91	259	104	140		<0.02	2.0	4	1.5		8.0	
REW	SDM	20-May-92	17.84	7.85	254	120	140				4.4	7.3		4.0	
REW	SDS	20-May-92	17.84	7.69	390	96	168		0.15	18.1 6.2	14 6	1.9		3.0	
RSA	19	20-May-92	17.80	7.66	270	104	140		< 0.02	6.2 7.0	12	1.7		4.5	
RSA	20	20-May-92	17.80	7. 9 4	267	96	132		< 0.02	3.8	6	1.7		3.5	
RSA	21	20-May-92	17.80	8.14	218	88	116		< 0.02	3.3	8	1.5		3.5	
RSA	22	20-May-92	17.80	8.24	221	92	116		<0.02 <0.02	4.1	10	1.7		5.0	
RSA	23	20-May-92	17.80	8.23	234	92	120		< 0.02		7	3.4		13	
RSB	19	20-May-92	17.64	7.87	247	108	132		<0.02		5	1.9		8	
RSB	20	20-May-92	17.64	8.02	252	104	140		<0.02		4	1.5		6	
RSB	21	20-May-92	17.64	8.12	229	100			<0.02		5	1.7		7	
RSB	22	20-May-92	17.64	8.07	235	100			<0.02		9	2.1		6	
RSB	23	20-May-92	17.64	8.13	252	104			< 0.02		11	2.8		7	
RSB	24	20-May-92	17.64	8.09	295	108			< 0.02		13	3.2		7	
RSB	25	20-May-92	17.64	8.15	304	112			< 0.02	-	-1	8.2		12	
RSC	19	20-May-92	17.68	7.87	364	112			< 0.02	-	15	8.2		11	
RSC	20	20-May-92	17.68	7.76	275	96 92			< 0.02	-	8	6.7		10	
RSC	21	20-May-92	17.68	7.89	260	112	-		< 0.02		25	10.0)	e	
RSC	22	20-May-92	17.68	8.01	263	108	-		< 0.02		19	6.7	,		5
RSC		20-May-92	17.68	7.95	483 300	. 72			< 0.02		8	2.5		1:	
RSD	19	20-May-92	17.45	8.06	201	104	-		< 0.02		10	5.5		14	
RSD		20-May-92	17.45	7.98 7.87	325				<0.0	2 7.2	8	2.5			9
RSD		20-May-92	17.45	7.98	257	9			<0.0		7	2.1			6
RSD		20-May-92		8.00	272	10	-		<0.0		8	2.1			6
RSC		20-May-92		7.68	266	8			<0.0	2 6.1	16	2.			6
RSE		20-May-92		7.64	404	11	2 168		<0.0		16	5.			6 6
RSE		20-May-92 20-May-92		7.82	284	10	4 128	5	<0.0		6	2.			8
RSE		20-May-92		8.08	287	10	4 132	2	<0.0		8				8
RSE		20-May-92		8.03	303	10	8 136	5	<0.0		10				7
RSE				8.10	228	10			<.0		4			4	14
REG				8.11	271	11			0.2		18				17
RE		-		7.01	563	10			0.4		5		.2		6
RE		, 15-Jul-9		8.10	250	10			<.(e		.0		11
RE		15-Jul-9		8.13	214		92 10		0.0		e		.8		7
RE				8.21	266		16 13		<.(.0		7
RE				8.07	268		32 13		<. <.				.0		6
RE				7.91	274		96 12			02 0.0	1	-	.1		12
RS		28-Aug-9	92 18.24	8.24			04 19			02 8.1			.8		10
RS		28-Aug-9	92 18.24	7.98			08 15			02 1.4			.0		9
RS		28-Aug-9	92 18.24	8.17			00 12			.02 2.0			.1		8
RS		28-Aug-		8.17			96 11			.02 2.6			.5		7
RS		28-Aug-	92 18.24	8.21			96 12 08 16			.02 11.8		8 3	3.5		12
RS		28-Aug-		8.02						.02 2.5			1.5		19
RS		28-Aug-		8.07			04 13 08 12			.02 1.8		2 .	1.5		15
R	SB 21	28-Aug-						28		.02 1.7		3	1.8		7
	SB 22	28-Aug-			-			24		.02 - 3.0			1.9		7
	SB 23	28-Aug						40		.02 5.4			2.2		15
	SB 24	28-Aug						96		.02 6.5			2.6		
	SB 25	•						00	<	.02 20.9			1.5		
	SC 19	•						44	<	02 11.7			7.5		0
	SC 20							80	<	.02 14.4	, .	10 1	1.0		8
R	SC 21	28-Aug	-92 18.11	1.5		-									

. •

۰.

	Weli	ID	Date	GW Dep	P · · ·	Cond. mhos	Alk. mg/l	T. Hard mg/l	PO4 mg/l	NH4-N mg/l	NO2+NO3-N mg/l	Cl mg/l	Na mg/l	K mg/l	Fluor. mg/l
			00 4.45 02	18.11	7.96	316	104	136		<.02	10.9	7	7.5 4.2		10 10
		22	28-Aug-92	18.11	8.13	238	104	116		<.02	3.4	5			8
		23	28-Aug-92 28-Aug-92	17.88	8.06	536	92	264		<.02	31.1	24	4.0 15.0		6
		19	28-Aug-92 28-Aug-92	17.88	7.92	694	108	308		<.02	40.3	34	15.0		6
	RSD	20	28-Aug-92 28-Aug-92	17.88	7.98	456	120	200		<.02	18.0	16 4	1.9		9
	RSD	21 22	28-Aug-92	17.88	8.09	234	108	128		<.02	2.6	4	1.5		9
	rsd RSD	23	28-Aug-92	17.88	8.11	481	108	120		<.02	2.6	14	5.0		16
	RSE	19	28-Aug-92	17.85	7.92	398	104	200		<.02	18.3 8.4	8	4.5		12
	RSE	20	28-Aug-92	17.85	8.08	323	124	164		<.02	1.9	4	1.9		7
	RSE	21	28-Aug-92	17.85	8.19	246	120	132		<.02 <.02		6	2.0		6
	RSE	22	28-Aug-92	17.85	8.22	251	112	136		<.02		8	2.5		6
	RSE	23	28-Aug-92	17.85	8.26	265	112	136		<.02		3	1.3		8
	REC	SDD	16-Oct-92	17.73	8.03	191	88	100		<.02		<1	1.3		10
	REC	SDM	16-Oct-92	17.73	7.90	178	88	96 212		<.02		14	13.6	i	10
	REC	SDS	16-Oct-92	17.73	7.46	471	118	100		0.02		5	1.8		7
	REE	SD	16-Oct-92	17.99	8.22	200	89 79			0.02	-	3	1.0)	8
	REE	SU	16-Oct-92	18.11	8.12	159	79 98			<.02		3	1.6		14
	REW	SDD	16-Oct-92	18.02	8.00	216	90 74			0.02		2	1.1		18
	REW	SDM	16-Oct-92	18.02	8.02	161 360	102			0.02		13	4.3		8
	REW	SDS	16-Oct-92	18.02	7.87	342	74			<.02		11	4.7		9
	RSA	19	16-Oct-92	17.96	7.93 7.99	269	86			<.0	2 9.4	6	3.9		8
	RSA	20	16-Oct-92	17.96	8.11	186	88			ິ <.0		3	1.		24
	RSA	21	16-Oct-92	17.96	8.19	206	89			0.0		6	1.		17 10
	RSA	22	16-Oct-92		8.23	222	91			<.0		7	1.		9
	RSA	23	16-Oct-92		7.80	278	98	3 13	6	<.0		5	4.		9 7
	RSB	19	16-Oct-92		7.85	202	99	9 10	4	<.0		2	1.		10
	RSB	20	16-Oct-92 16-Oct-92		7.95	207	10	2 10)4.	<.0		2	1.		6
$\mathbf{}$	RSB	21	16-Oct-92		7.96	222	10	1 12	20	<.0		4	1.		8
	RSB	22	16-Oct-92		8.02	235	10	4 12	20	<.0		6 8	2		6
	RSB RSB	23 24	16-Oct-92		8.05	244	9	8 12	20	<.0		9	2		7
	RSB	25	16-Oct-92		8.16	257	10	_	24	<.0		19			8
	RSC		16-Oct-92	-	7.63	543	10		24	0.0		2		.6	9
	RSC		16-Oct-92		7.70	295	11	-	32	<.(4		.7	15
	RSC		16-Oct-92		7.81	251	10		20	0.0 <.0		5		.7	12
	RSC		16-Oct-9	2 17.82	7.82	229			24	<.		7		.9	6
	RSC		16-Oct-9	2 17.82	7.90	240			20	<.		18		.6	6
	RSD		16-Oct-9	2 17.60	7.55	450	10		08	<.		19	_	8.9	7
	RSD		16-Oct-9	2 17.60	7.62	476	11		12	<.				2.7	7
	RSD		16-Oct-9		7.67	239	10		20		02 4.1			2.3	45
	RSD		16-Oct-9	2 17.60	7.74	244			24 32		02 4.7	ļ	5.	1.8	11
	RSC		16-Oct-9		7.85	258			56		02 10.8	10	כ כ	3.3	6
	RSE	E 19	16-Oct-9		7.62				56		.02 14.9	1:		7.7	14
	RSE		16-Oct-9		7.60				36		.02 3.1			2.7	7
	RSI		16-Oct-9		7.66 7.82				132	<	.02 2.6			2.0	10
	RSI		16-Oct-9		7.83				140		.02 3.8			2.4	5
	RS		16-Oct-9		7.03 8.05			88	88		.05 1.5			1.0	7
	RE		04-Jan-9		7.82				100	<	.02 0.9			2.0	10
	RE		04-Jan-9		7.46				204	a	.45 27.9			2.0	7
	RE		04-Jan-9		8.14			92	92		.02 0.6	<		1.0	9 8
	RE		04-Jan-9 04-Jan-9		8.16			80	88	<	.02 1.8			1.3	11
	RE		04-Jan-		7.99				108).05 3.1		4	1.6	8
	RE				8.00				100).12 1.3		2	1.2	5
	RE		04-Jan- 04-Jan-			-			120				4	3.5 23	6
	RE		04-Jan- 04-Jan-			-			156		.02 18.4		11	2.3 2.3	7
	RS		04-Jan-					100	120		.02 6.3		4	2.3 1.0	, 19
	RS		04-Jan-				9	100	108		.02 0.8		1	1.5	18
	R		04-Jan-				8	96	104		<.02 1.6		3 4	1.5	11
	RS		04-Jan-				4	92	104		<.02 2.2		1	1.5	7
		SB 19	04-Jan				2	92	92	•	<.02 1.3	,	1		

•

. .

Well	ID	Date	GW Dep	рН	Cond. mhos	Alk. mg/l	T. Hard mg/l	PO4 mg/l	NH4-N mg/l	NO2+NO3-N mg/l	Cl mg/l	Na mg/l	K mg/l	Fluor. mg/l	
	~	04-Jan-93	17.56	7.99	176	92	92		<.02	0.7	1	1.0 1.2		6 6	
RSB	20	04-Jan-93	17.56	8.05	182	92	92		0.02	1.0	2	1.5		4	
RSB	21	04-Jan-93	17.56	8.09	193	96	100		<.02	1.6	2 4	2.0		5	
RSB	22 23	04-Jan-93	17.56	8.17	209	96	104		0.08	2.5	6	2.2		5	
RSB RSB	23 24	04-Jan-93	17.56	8.19	222	96	108		<.02	3.9 5.1	8	2.5		5	
RSB	24 25	04-Jan-93	17.56	8.22	244	100	120		<.02	20.5	14	6.5		6	
RSC	19	04-Jan-93	17.59	7.62	457	112	192		<.02 <.02	10.0	6	6.8		7	
RSC	20	04-Jan-93	17.59	7.77	344	116	148		<.02	8.3	6	4.0		12	
RSC	21	04-Jan-93	17.59	7.88	295	104	132		<.02	2.8	4	1.8		8	
RSC	22	04-Jan-93	17.59	8.01	218	96	104		<.02	3.8	5	1.5		5	
RSC	23	04-Jan-93	17.59	8.04	225	96	108 152		<.02	10.4	8	7.8		5	
RSD	19	04-Jan-93	17.36	7.82	342	108	152		<.02	3.6	3	3.0		6	
RSD	20	04-Jan-93	17.36	7.85	253	104 104			<.02	1.8	2	1.5		4	
RSD	21	04-Jan-93		7.90	224	104			<.02	3.1	4	1.8		41	
RSD	22	04-Jan-93		7.93	237 255	108			<.02	4.6	7	2.3		11	
RSD	23	04-Jan-93		8.05 7.77	328	112			0.02		10	4.8		5	
RSE	19	04-Jan-93		7.86	326	112			0.02		8	5.0		7 5	
RSE	20	04-Jan-93		7.80	248	104			0.05		5	1.8		56	
RSE	21	04-Jan-93		7.71	272	100			0.10		16	2.3		6	
RSE RSE	22 23	04-Jan-93 04-Jan-93		7.97	270	104			<.02	5.5	10	2.3	1	0	

..

APPENDIX 2 GROUNDWATER CHEMISTRY FOR SITE 2

• .

• •

	Well ID	Date	GW Dep	pН	Cond. mhos	Alk. mg/l	T. Hard mg/l	NO2+NO3-N mg/l	NH4-N mg/l	Na mg/l	Cl mg/l	Fluor. mg/l
			0.07	c 70	396.0	96.0	136	15.2	<.02	24.5	24	43.0
	SNIDGE1	04-Jan-93	8.97	6.70	530.0	92.0	184	26.2	<.02	23.3	27	62.0
	SNIDGE1	20-Oct-92	9.89	6.85 6.91	572.0	112.0	196	27.2	<.02	25.0	29	51.0
	SNIDGE1	06-Aug-92	11.07	6.88	420.0	64.0	140	12.5	<.02	21.0	13	39.0
	SNIDGE1	21-May-92	8.88 9.16	6.69	463.0	58.0	152	17.8	<.02	21.5	19	39.0
	SNIDGE1	22-Apr-92	9.16	6.88	489.0	76.0	180	32.0	0.12	23.8	24	43.0
	SNIDGE1	27-Mar-92	10.22	7.41	510.0	56.0	176	36.4	0.05	24.4	23	61.0
	SNIDGE1	08-Jan-92 13-May-91	8.99	6.61	530.0	57.0	164	36.2			29	
	SNIDGE1 SNIDGE1	15-Nov-90	10.50	6.78	720.0	88.0	264	44.8			30	
	SNIDGE2	04-Jan-93	8.98	6.69	406.0	100.0	136	14.4	<.02	24.8	24	43.0
	SNIDGE2	20-Oct-92	9.89	6.65	536.0	100.0	192	25.7	<.02	22.6	28	58.0
	SNIDGE2	06-Aug-92	11.07	6.78	570.0	124.0	208	26.9	<.02	26.5	29	51.0
•	SNIDGE2	21-May-92	8.88	7.08	545.0	88.0	180	22.8	<.02	27.7	28	43.0
	SNIDGE2	22-Apr-92	9.16	6.74	560.0	77.6	180	31.4	<.02	27.3	32	43.0
	SNIDGE2	27-Mar-92	10.22	6.73	534.0	76.0	192	34.4	0.08	26.6	27	40.0
	SNIDGE2	08-Jan-92	10.66	6.93	550.0	64.0	192	36.9	0.02	26.6	30	52.0 33.0
	SNIDGE2	20-Dec-91	10.88	7.16	600.0	48.0	188	39.8	<.02	25.9	28	
	SNIDGE2	13-Nov-91	11.69	7.24	649.0	80.0	224	49.3	<.02	33.0	42 22	
	SNIDGE2	07-Oct-91	11.67	7.18	539.0			28.4	<.02		22	55.0
	SNIDGE2	09-Sep-91	11.34	7.00	495.0			24.9	<.02		30	
	SNIDGE2	13-Aug-91	10.83	6.91	599.0			37.1			34	
	SNIDGE2	13-May-91	8.99	6.69	610.0	83.0	204	41.5	<.02	25.0	31	
	SNIDGE2	05-Mar-91	11.48	7.14	553.0	80.0	204	36.8	<.02	20.0	26	
	SNIDGE2	15-Nov-90	10.49	6.81	718.0	106.0	272	44.8			20	
	SNIDGE3	04-Jan-93	9.02	6.67	414.0	104.0	140		<.02	25.0	23	
	SNIDGE3	20-Oct-92		6.65	548.0	99.0	192		<.02	23.3	27	
	SNIDGE3	06-Aug-92		6.86	566.0	120.0	212		<.02	24.5	29 24	
	SNIDGE3	21-May-92	8.91	6.94	529.0	88.0			<.02	27.7 26.8	32	
	SNIDGE3	22-Apr-92		6.75	557.0	104.8			<.02	26.8	28	
	SNIDGE3	27-Mar-92	10.24	6.79	533.0	80.0			0.05 0.02	27.0	30	
	SNIDGE3	08-Jan-92	10.68	7.00	561.0	64.0			<.02	26.8	2	
	SNIDGE3	20-Dec-91		7.03	587.0	52.0			<.02	32.8	3	
	SNIDGE3	13-Nov-91	11.71	7.03	653.0	80.0	224	45.9 30.8	<.02	52.0	2	
	SNIDGE3	07-Oct-91		6.93	561.0			29.5	<.02		2	
	SNIDGE3	09-Sep-91		6.78	544.0			36.4	2.0L		3	
	SNIDGE3	13-Aug-9		6.88	606.0	04.0) 208				3	
	SNIDGE3	13-May-9		6.69	623.0	84.0 76.0			<.02	25.5		
	SNIDGE3	05-Mar-9		6.84	552.0 731.0	108.0						8
	SNIDGE3	15-Nov-9	0 10.54	6.84	731.0	100.0						42.0
	SNIDGE4	04-Jan-9	3 9.03	6.85	407.0	100.0			<.02			23 43.0 28 56.0
	SNIDGE4			6.69	545.0				<.02			28 56.0 29 53.0
	SNIDGE4		2 11.12	6.95		124.			<.02			35 47.0
	SNIDGE4	-	2 8.92	7.15					<.02			32 42.0
	SNIDGE4		9.16	6.89					<.02			28 39.0
	SNIDGE4		2 10.25	6.84					0.02			31 55.0
	SNIDGE4		10.69	7.04					0.02 <.02			27 33.0
	SNIDGE4	20-Dec-9		7.30					<.02			39 36.0
	SNIDGE4			6.97			.0 21		<.02 <.02		-	22 68.0
	SNIDGE4	07-Oct-9		7.27				27.5	<.02 <.02			25 55.0
	SNIDGE4	1 09-Sep-9		6.85				29.1 36.3	~ .02	-		30 58.0
	SNIDGE4						.0 20					33
	SNIDGE								<.0	2 25.		30
	SNIDGE							72 44.9				27
	SNIDGE	4 15-Nov-9	90 10.54	6.9	6 714.0	5 104	21	_ ,				

. •

٠.

Well ID	Date (GW Dep	P · · ·	Cond.	Alk. mg/l	T. Hard mg/l	NO2+NO3-N mg/l	NH4-N mg/l	Na mg/l	Cl mg/l	Flu mç	
				mhos	mg/i	ing/i		-				
SNIDGW1	04-Jan-93	9.01	6.58	225.0	60.0	76	7.3	<.02	13.0 17.9	12 20	39 45	
SNIDGW1	20-Oct-92	9.92	6.42	405.0	67.0	136	20.1	0.10 <.02	17.9	24	39	
	06-Aug-92	11.12	6.65	455.0	96.0	164	21.4 3.0	<.02	6.1	4	31	
SNIDGW1	21-May-92	8.89	6.69	124.0	28.0	40 48	3.0 2.1	<.02	7.0	3		0.0
SNIDGW1	22-Apr-92	9.13	6.41	145.0	31.6 52.0	40 84	11.7	0.08	12.5	7	30	0.0
SNIDGW1	27-Mar-92	10.23	6.60	245.0 251.0	52.0 40.0	84	12.2	<.02	13.2	10	52	2.0
SNIDGW1	08-Jan-92	10.71	7.32 6.46	231.0	32.0	80	14.0			11		
SNIDGW1	13-May-91	8.99 10.51	6.84 6.84	239.0 625.0	74.0	220	40.3			28		
SNIDGW1	15-Nov-90	10.51	0.04	020.0	• •••							
SNIDGW2	04-Jan-93	9.01	6.61	410.0	100.0	136	15.7	<.02	27.2	24		1.0 1.0
SNIDGW2	20-Oct-92	9.92	6.53	519.0	91.0	168	25.7	<.02	21.8	27 28		8.0
SNIDGW2	06-Aug-92	11.12	6.68	602.0	128.0	216	28.2	<.02	26.5 7.0	13		2.0
SNIDGW2	21-May-92	8.90	6.99	289.0	48.0	104	13.6	<.02 <.02	12.7	7		5.0
SNIDGW2	22-Apr-92	9.13	6.74	320.0	62.4	112	7.6 32.3	0.02	24.9	26		7.0
SNIDGW2	27-Mar-92	10.23	6.63	485.0	60.0	172 144	21.4	<.02	15.4	15		4.0
SNIDGW2	08-Jan-92	10.69	6.80	373.0	40.0 44.0	144	27.9	<.02	13.5	20) 3	3.0
SNIDGW2	20-Dec-91	10.85	7.00	417.0 610.0	60.0	208	44.9	<.02	31.4	38	3 3	6.0
SNIDGW2	13-Nov-91	11.72	6.93 6.48	638.0	00.0	200	41.1	<.02		31		54.0
SNIDGW2	09-Sep-91	11.41 10.95	6.75	478.0			27.5			22	-	52.0
SNIDGW2	13-Aug-91	9.00	6.63	539.0	87.0	188	32.3			27		
SNIDGW2	13-May-91 05-Mar-91	11.51	6. 9 4	448.0	68.0		28.0	<.02	19.2	2		
SNIDGW2 SNIDGW2	15-Nov-90	10.51	6.67	722.0	104.0	276	45.9			3	3	
SNIDGWZ	10-1101 00								00.0	2		40.0
SNIDGW3	04-Jan-93	9.01	6.59	430.0	96.0			<.02	26.2 22.3	2		49.0 49.0
SNIDGW3	20-Oct-92	9.92	6.53	522.0	90.0			<.02 <.02	22.3			46.0
SNIDGW3	06-Aug-92	11.12	6.69	589.0	112.0			<.02	11.4			41.0
SNIDGW3	21-May-92	8.90	6.96	333.0	52.0			<.02				43.0
SNIDGW3	22-Apr-92	9.13	6.69	354.0	64.0			0.02				36.0
SNIDGW3		10.23	6.59	464.0 425.0	64.0 64.0			<.02			9	62.0
SNIDGW3		10.69	6.69	425.0 565.0	44.0			<.02		. 2		31.0
SNIDGW3		10.85	6.80 6.74	643.0	80.0			<.02	32.4			36.0
SNIDGW3		11.72 11.74	6.49	679.0	00.0		44.0	<.02			30	61.0
SNIDGW3 SNIDGW3		11.41	6.53	654.0			40.6	.<.02			31	55.0
SNIDGW3	•	_	6.61	500.0			30.0				24	52.0
SNIDGW3	-		6.64	554.0	84.0						28 26	
SNIDGW3			6.71	512.0	76.0			<.02	2 22.0		20 32	
SNIDGW			6.84	732.0	102.0	0 27	6 46.1			•	52	
						~ **	8 16.6	<.02	2 27.2	2	23	40.0
SNIDGW4	4 04-Jan-93		6.61	425.0				<.02	_		26	49.0
SNIDGW			6.51	518.0		-		<.0			28	45.0
SNIDGW			6.65	564.0 320.0				<.0			14	41.0
SNIDGW	4 21-May-92		6.95 6.73					<.0	2 15.	9	11	43.0
SNIDGW			6.61					0.0		-	22	37.0
SNIDGW			6.76					0.0			19	63.0
SNIDGW SNIDGW							60 31.8	<.0			23	32.0
SNIDGW	-) 80	.0 22		<.0			36	35.0
SNIDGW								<.0	2 23.	.2	28 32	
SNIDGW				731.0) 109	0.0 27	72 45.5				32	
							8 <0.2	<.0	2 58	.8	31	51.0
SNIUG3	04-Jan-9							<.0			39	78.0
SNIUG3	20-Oct-9						16 <0.2 36 0.2	<.0			198	26.0
SNIUG3	06-Aug-9).0 ÷	8 0.2	<.0			51	43.0
SNIUG3							12 0.2	0.0			70	43.0
SNIUG3							24 < 0.2	0.3			59	36.0
SNIUG3							20 <0.2	0.0	05 65		90	47.0
SNIUG3							12 <0.2			2.6	36	30.0
SNIUG3							28 <0.2				128	15.0
SNIUG3 SNIUG3							0.7	0.0	02		512	15.0
0,1000												

• ,

• •

Well ID	Date	GW Dep	рН	Cond. mhos	Alk. mg/l	T. Hard mg/l	NO2+NO3-N mg/l	NH4-N mg/l	Na mg/l	Cl mg/l	Fluor. mg/l
	17-Sep-90		5.81	89.0	4.0	28	4.7		1.7	З	
SNIUG	20-Oct-92	9.02	5.23	218.0	5.0	48	18.7	<.02	2.2	7	18.0
SNIUG1 SNIUG1	06-Aug-92	10.19	6.05	80.0	8.0	32	3.8	<.02	1.5	2	16.0
SNIUG1	21-May-92	7.91	5.85	87.0	<4	28	4.0	<.02	1.5	2	16.0
SNIUG1	21-Way-92 22-Apr-92	8.09	5.53	88.5	4.8	44	4.5	<.02	2.0	3	17.0
SNIUG1	27-Mar-92	9.23	5.62	93.0	8.0	36	4.1	0.05	2.5	<1	17.0
SNIUG1	08-Jan-92	9.70	6.78	430.0	4.0	40	4.6	0.02	1.9	8	24.0
SNIUG1	20-Dec-91	9.78	5.91	111.0	4.0	40	4.9	<.02	1.5	5	16.0
SNIUG1	13-May-91	8.01	5.46	96.0	4.0	32	5.6			3	
SNIUG1	15-Nov-90	9.55	6.18	95.0	6.0	24	1.9			2	
SNIUGT	10-1101-00	0.00	••••							-	05.0
SNIUG2	20-Oct-92	9.15	5.64	124.0	9.0	36	8.0	<.02	2.1	2	25.0
SNIUG2	06-Aug-92	10.36	5.90	93.0	16.0	28	3.4	<.02	1.8	3	25.0
SNIUG2	21-May-92	8.05	6.10	111.0	8.0	36	5.4	<.02	2.5	3	22.0
SNIUG2	22-Apr-92	8.10	5.82	105.0	7.6	40	4.9	<.02	2.5	4	22.0
SNIUG2	27-Mar-92	9.33	5.80	104.0	8.0	40	5.4	0.02	2.2	<1	22.0
SNIUG2	08-Jan-92		5.97	114.0	12.0	44	6.7	<.02	1.9	2	31.0
SNIUG2	20-Dec-91	9.89	6.00	122.0	1.2	40	7.1	<.02	1.7	2	
SNIUG2	13-Nov-91	10.76	6.11	115.4	12.0	36	5.5	0.05	1.9	3	
SNIUG2	07-Oct-91	10.91	5.81	121.0			5.8	<.02		5	
SNIUG2	09-Sep-91	10.65	5.97	118.0			6.9	<.02		2	
SNIUG2	13-Aug-91		6.91	106.0			5.1			2	
SNIUG2	13-May-91		5.86	109.0	10.0	32	5.0			3	
SNIUG2	05-Mar-91		5.91	104.0	16.0	24	3.4	<.02		23	
SNIUG2	15-Nov-90		6.06	100.0	9.0	28	2.7			3	i

APPENDIX 3 RECIRCULATING SAND FILTER CHEMISTRY FOR SITE 1

• .

• •

	Location	Date	pН	Cond. mhos	Alk. mg/l	T. Hard mg/l	BOD mg/l	Na mg/l	Cl mg/l	Fluor mg/l	COD mg/l	NO2+NO3-N mg/l	NH4-N mg/l	TKN mg/i	TOTAL P mg/l
			7 50	761	300	108	70	35.0	35	132	252.5	<0.2	39.5	49.0	2.4
	REEDPU	19-Aug-92	7.53	738	300	100	16	40.0	21	126	135.0	<0.2	29.5	35.0	1.7
	REEDPU	16-Oct-92	7.68	729	293	172	11	45.0	34	129	260.0	0.9	34.5	36.2	1.5
	REEDPU	27-Oct-92	7.50	820	329	196	17	33.0	38	75	44.0	<0.2	36.2	37.5	2.5
	REEDPU	06-Nov-92	7.62	820	328	100			37			11.7	28.8	28.8	
	REEDPU	18-Nov-92							34			25.1	19.2	20.0	
	REEDPU	24-Nov-92							37			18.1	17.8	18.8	
	REEDPU	01-Dec-92							35			19.4	12.2	12.5	
	REEDPU	04-Dec-92							30			14.3	6.9	8.2	
	REEDPU	11-Dec-92													
					432	180	330	35.5	53	350	344.0	<0.2	70.8	89.0	13.0
	REEDSEP	06-Sep-91	7.21 7.38	1005	404	176	272	32.2	<1	380	357.0	<0.2	77.0	82.0	13.8 7.5
	REEDSEP	09-Oct-91		1005	348	124	218	31.1	48	250	486.0	<0.2	57.0	60.0	
	REEDSEP	06-Dec-91	7.23		388	160	203	34.2	57	340	420.0	<0.2	68.0	86.0	6.8
	REEDSEP	07-Jan-92	8.21		376	140	337	33.5	56	420	519.5	<0.2	55.0	80.0	7.0
	REEDSEP	04-Mar-92	7.80		395.2	172	325	35.3	59	280	402.5	<0.2	65.0	96.0	11.2
	REEDSEP	23-Apr-92	7.59		340	144	232	40.1	47	350	585.0	<0.2	56.2	62.0	6.8
	REEDSEP		7.77		368	140	248	32.0	60	222	465.9	<0.2	53.8	58.0	6.2
	REEDSEP	15-Jul-92	7.13	936	388	144		45.0	53	177	265.0	0.2	62.5	62.0	5.6
	REEDSEP		7.25		368	40	125	40.0	22	213	235.0	<0.2	53.8	54.5	6.1
	REEDSEP		7.56	946 731	306	164	80	38.0	36	195	160.0	<0.2	38.8	42.5	3.8
	REEDSEP		7.67		409	176	130	41.0	60	111	125.2		66.2	72.0	6.1
•	REEDSEP		7.59	1047	403	170	100		38			<0.2	42.2	47.5	
	REEDSEP								36			<0.2	38.8	45.5	
	REEDSEP								38			0.3	33.0	37.5	
	REEDSEP								35			<0.2	27.2	32.5	
	REEDSEP								31			0.3	22.5	28.8	
	REEDSEP	9 11-Dec-92													
											96.0	2.4	14.0	16.2	0.5
	RRSFL	16-Oct-92							34			29.5	14.2	15.0	
	RRSFL	24-Nov-92							35			27.0	9.5	10.5	
	RRSFL	01-Dec-92													
			7.05	692	292	128	7	34.2	33	132	120.0		29.0	35.5	1.6
	RRSFM	16-Oct-92	7.65	692 741	292	180	. 8	37.4	34	126	100.0) 1.7	33.0	36.2	1.2
	RRSFM	27-Oct-92	7.41	741	290	100	•								

, •

e #

APPENDIX 4 RECIRCULATING SAND FILTER CHEMSITRY FOR SITE 2 *

۰.

• •

Location	Date	pН	Cond. mhos	Alk. mg/l	T. Hard mg/l	BOD mg/l	Na mg/l	Cl mg/l	Fluor mg/i	COD mg/l	NO2+NO3-N mg/l	NH4-N mg/l	TKN mg/l	TOTAL P mg/l
				-					195	252.5	0.2	18.0	22.0	5.0
SNIDC1	19-Aug-92	6.62	373	108	60	148	26.0	29	410	480.0	0.2	20.8	29.0	4.1
	08-Oct-92	6.87	413	128	52	110	34.0	22		400.0 240.0	< 0.2	23.8	33.0	5.6
SNIDC1		6.84	402	144	40	179	28.0	24	680		<0.2	23.8	30.0	3.6
SNIDC1	23-Oct-92		361	136	44	149	30.0	20	660	266.0		20.0	23.0	2.8
SNIDC1	29-Oct-92	6.67	389	147	72	68	28.0	24	273	410.0	<0.2	11.5	16.2	
SNIDC1	05-Nov-92	6.89	369	141	•=			18			<0.2		17.5	
SNIDC1	17-Nov-92							18			<0.2	12.5	15.5	
SNIDC1	01-Dec-92							18			<0.2	15.5		
SNIDC1	04-Dec-92							18			0.3	13.5	18.0	
SNIDC1	11-Dec-92													
														1.4
					96	92	40.0	33	150	202.5	0.2	8.8	14.0	
SNIDC2	19-Aug-92	7.25	794	316	90 80	30	38.0	24	105	147.5	0.2	14.2	28.0	4.7
SNIDC2	08-Oct-92	7.20	491	172	108	12	33.0	19	123	110.0	1.2	14.5	17.5	3.3
SNIDC2	23-Oct-92	7.06	421	176		11	30.0	19	156	54.4	1.1	13.0	17.0	3.1
SNIDC2	29-Oct-92	6.99	410	160	100	10	26.0	23	219	70.0	1.1	6.0	15.5	2.1
SNIDC2	05-Nov-92	7.09	427	150	96	10	20.0	18			6.0	4.5	5.0	
SNIDC2	17-Nov-92							18			3.9	6.6	7.6	
SNIDC2	01-Dec-92							16			6.0	4.8	6.2	
SNIDC2	04-Dec-92							19			2.3	8.0	9.8	
SNIDC2	11-Dec-92							18						
011002														
								30	138	165.0	<0.2	9.5	14.0	1.1
SNIRSF	19-Aug-92	6.88	432	136	112	71	21.0		98	185.0	< 0.2	16.0	21.0	4.8
SNIRSF	08-Oct-92	7.02	489	176	88	50	33.0	25	98	130.0	< 0.2	9.5	20.5	4.1
SNIRSF	23-Oct-92	6.88	440	164	88	32	30.0	21	105	74.4	< 0.2	13.0	18.0	4.0
SNIRSF	29-Oct-92	6.77	402	164	112	24	25.0	19		74.4	2.2	13.0	16.2	1.5
	05-Nov-92	6.87	403	149	96	13	23.0	21	174	12.0	8.9	3.0	3.8	
SNIRSF	17-Nov-92	0.07						19			6.2	5.0	7.5	
SNIRSF	01-Dec-92							18			6.6	6.5	10.5	
SNIRSF								18			3.8	3.6	5.8	
SNIRSF	04-Dec-92							18			3.0	0.0		
SNIRSF	11-Dec-92													
											20.5	3.5	6.8	2.6
	08-Oct-92							10				15.5	24.5	3.6
SNIRSFL										24.5	2.9	9.8	11.1	
SNIRSFL	23-Oct-92							17			2.5	5.0		
SNIRSFL	01-Dec-92													
											5 < 0.2	15.5	28.0	4.5
	09-Oct-92	7.39	413	180	. 100	55	35.0	24	87	172.5		13.8	17.0	3.1
SNIRSF		6.78	430	176	112	17	. 27:0	20	99	56.4	0.5	10.0		
SNIRSF	A 29-001-82	0.70												
				·. · · ·								33.2	54.0	5.9
	00.007.01	6.94		192	70	.150	30.4		195	187.		38.8	52.0	6.0
SNISEP	06-Sep-91		589	208		145	39.9	29	160	144.		30.0	42.0	
SNISEP	09-Oct-91		009	212		225	25.6	32	190	745.		36.2	61.2	
SNISEP	06-Dec-91			280		278	28.4	36	130	543.		25.5	42.0	
SNISEP	08-Jan-92			172		160	27.4	37	156	98.0			40.0	
SNISEP	04-Mar-92			158.	-	292	25.9	37	153	383.		25.6	22.0	
SNISEP	22-Apr-92			136	-	237	30.6	78	189	482.		25.2	31.0	
SNISEP				160	-	130	29.0	35	141	300	.7 <0.2	22.5	31.0	, 4.0
SNISEP	06-Aug-92	2 6.70		100	, JE									
													17.5	
		_						20			<0.2	13.2		
SNIST	17-Nov-9							21			<0.2			
SNIST	01-Dec-9							20			<0.2	13.5	15.2	2
SNIST	04-Dec-9	2												

. ز

....

051199 Evaluation of Denitrification Systems for Improving Groundwater Quality

ISSUED TO

Water Resources Center University of Wisconsin - MSN 1975 Willow Drive Madison, WI 53706

DATE

DEMCO

