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Abstract

This thesis aims to solve two problems in statistical genomics: (1) how to model agree-

ment among genome-wide RNA interference (RNAi) studies; and (2) how to integrate

experimentally derived genomic data with functional annotations. The problems are dis-

tinct in their specific elements but share two important features: (1) solutions could have

significant implications for the practice of statistical genomics, and (2) our approaches

to solve them use common model-based tools and techniques.

The RNAi analysis concerns four recent genome-wide studies of influenza virus repli-

cation. All studies identified genes whose inactivation alters a cell’s ability to produce

virus, and they all had a similar experimental design. In total 614 human genes were con-

firmed to have an affect on viral replication, however there were very limited agreement

between the studies. For instance, only one gene was confirmed by all four studies.

Under the guidance of Professor Michael A. Newton.
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The apparent lack of agreement raises questions about the rate of false positives and false

negatives in genome-wide RNAi. We develop a generative sampling model to describe

the RNAi data, and with likelihood methods we use this model to assess the relative

magnitude of false positive and false negative effects. The model accommodates many

aspects of RNAi, but it is sufficiently simple that closed form inference summaries are

available. Evidence points to a relatively high false negative rate.

In the second part of the thesis (Chapter 3), we investigate the problem of genomic

data integration, specifically, the problem of integrating experimentally derived data

with data on the known functional profiles of the annotated genes. Such functional cat-

egory analysis is important to data reduction and for weak-signal identification, though

state-of-the-art methodology does not adequately handle the complexity of growing sys-

tems of functional categories. We show that a leading model-based empirical Bayesian

approach suffers inconsistency and inefficiency, and we propose a new approach to con-

nect these problems.
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Chapter 1

Introduction

This thesis aims to solve two problems in statistical genomics, one a specific inference

task in the analysis of RNA interference (RNAi), and a second, more general inference

problem that arises when integrating experimentally derived data with functional anno-

tations. Although the problems are distinct, they are linked through shared aspects of

the statistical modeling approaches that are developed to solve them. It is anticipated

that the solutions to both will have relevance beyond the specific case studies explored

in this thesis.

The RNAi problem emerged from a collaborative project with Drs. P. Ahlquist,

L. Hao, M. Craven, and M. Newton to understand genes involved with influenza-virus

replication. The results of this collaborative effort are in a manuscript in preparation

(Hao et al. (2012)). Chapter 2 of this thesis fully develops one aspect of that project

concerning a model for agreements among replicated genome-wide RNAi studies. There

remains relatively little work on statistical analysis of genome-wide RNAi, though the

technology represents a powerful approach to understand gene function. Many sources

of variation affect the RNAi data and our effort was to estimate these sources in order
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to assess the relative size of false-positive and false-negative errors.

The second problem considered a generic data analysis task in genomics, namely the

integration of experimentally derived data with functional annotations on the measured

genes. We use the term functional category analysis to refer to all such methods of anal-

ysis. Various useful methods have already been developed, but limitations still remain

to be addressed. Chapter 3 introduces our model-based method called Simultaneous

Functional Category Analysis (SFCA). It is developed to solve the central model called

the role model, originally proposed by Bauer et al. (2010) and further developed in New-

ton et al. (2012). SFCA develops approximate solutions using MCMC methods but its

operating characteristics show advantages in comparison to Bauer et al.’s method.

This chapter is organized to briefly introduce each problem and related methodolo-

gies. We start with background of genome-wide RNA interference in Section 1.1. A

review on the existing methods of functional category analysis and the issues involved is

given In Section 1.2. In the end of this chapter is a summary our major contributions.

Model-based methods are proposed to deal with the two central problems respectively

in Chapter 2 and Chapter 3.

1.1 Genome-wide RNA interference

RNA interference (RNAi) is a gene-specific silencing process directed by short double

stranded RNAs or small interfering RNAs (siRNAs) that can knock down expression of
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a selected gene by inducing messenger RNA (mRNA) degradation in a sequence-specific

manner (Mohr et al. (2010)). This technique has been widely used to selectively and

robustly induce suppression and inhibit expression of targeted genes. By applying this

technique to large-scale screens, high-throughput RNAi analysis becomes a powerful

approach to study gene functions that support or modulate any biological process of

interest. Genome-wide RNAi analyses have been used to study many important biolog-

ical processes, for example, identifying host genes that are important for replication of

a certain virus, i.e. HIV and Influenza virus.

An emerging challenge with RNAi studies is the limited agreement in the lists of

identified genes from studies of the same cellular phenotype. This limited agreement

must be due to false positive factors, false negative factors or both. If it is primarily

due to false positive factors, then the majority of findings from RNAi studies would be

erroneous. On the other hand, if false negative factors are dominant, then either the

phenotype is extremely complex or the genetic causes extremely difficult to measure. In

fact, there is good evidence that both false positive and false negative factors contribute

to variations among studies. What is less well characterized is the relative magnitude

of these effects. It is an important task to figure out what causes the limited agreement

for better understanding of RNAi screening and its results.

False positive and false negative factors arise for various reasons, primarily from

technical and biological sources of variation that affect data generation. Major factors

causing false positives are (1) off-target effects, in which an siRNA leads to silencing one
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or more genes besides the targeted one, owing to incomplete sensitivity and specificity

of siRNAs; and (2) false positive errors that are intrinsic to the complex phenotypic

readouts used to measure the cells. Similarly, experimental issues contribute to false

negatives: (1) the cells under study may have redundancies that limit the accessibility

of certain functions to phenotypic manipulation by knocking down a single gene; (2)

genes with undetectable expression or whose knock down results in cytotoxicity can not

be interrogated with RNAi in certain cell type; and (3) inefficiencies in knocking down

targeted genes can also generate false negatives.

To better understand RNAi screening and assess effects of false positive and false

negative factors, useful statistical tools are needed to model RNAi data. By this work

we aim to contribute to this relatively new research area.

1.2 Functional category analysis

We define functional category analysis as the integration of experimental genomic data

with functional information. It is demanded in routine data analysis applications. Var-

ious forms of experimental data are suited to this data analysis, including lists of genes

identified by some genome-wide assay or quantitative gene-level scores on gene expres-

sion or differential expression. For our purposes the exogenous functional information

refers to all that has been recorded in relevant databases regarding biological properties

of the genes under study. A substantial amount of functional content is recorded in
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GO (The Gene Ontology Consortium, Ashburner et al. (2000)) and KEGG (The Kyoto

Encyclopedia of Genes and Genomes, Ogata et al. (1999)), and other systems hold other

important information. In this thesis we focus on functional content represented by sets:

specifically, where biological property p = set of genes having property p. The phrase

functional category refers to a set of genes having a specific biological property. Prop-

erties involving an ordered series of events lose something when forced into this system

(e.g., signaling or metabolic pathways), however substantial statistical challenges remain

to be addressed even within this class of set-defined functional properties.

Sometimes the analytical purpose is description and data reduction. The data analyst

is faced with interpreting experimental data from across the genome; this interpretation

is facilitated by summarizing data at the level of functional categories. For example,

a list of 100 lead genes may represent just a few known biological functions. In other

applications the functional information boosts the signal-to-noise ratio. For example,

the signal representing the difference of two experimental conditions at the gene level

might be very subtle and hard to detect, but it gets boosted at the category level when

contributions from genes in the category are consistent.

A number of useful statistical methods are available for integrating experimental

and functional data (Goeman and Bühlmann (2007), provides an early review). The

methods aim to either calibrate category-level differential expression or test the over-

representation (i.e. enrichment) of categories in a short list of genes. Most enrichment

methods adapt Fisher’s exact test (e.g. Draghici and Krawetz (2003), Beißbarth and
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Speed (2004), Grossmann et al. (2007), Jiang and Gentleman (2007), Newton et al.

(2007)). Other methods treat the gene-level data in a functional category as a multi-

variate observation, and then aim to assess affects of various covariates on the associated

joint distribution (e.g., Barry et al. (2005), Subramanian et al. (2005), Efron and Tib-

shirani (2007)). Methods differ in terms of how much experimental data needs to be

incorporated, what hypotheses are being tested, and how inferences are computed.

Almost all available methods develop inference for individual functional categories,

treating the multiplicity of categories as an afterthought. For instance GSEA, by Sub-

ramanian et al. (2005), computes set-level statistics for each category and calibrates

afterwards to target a false discovery rate. Other methods are similar in that respect.

One-at-a-time methods are inefficient at prioritizing categories because they fail to incor-

porate the complexity of the functional record, especially the large number of categories,

their varying size, and their extensive overlap. Variation in category size causes a power

imbalance across categories. Power is related to the size of both category and its effect.

Ranking categories by p-values tends to favor large categories, while ranking by a set

average statistics tends to favor small categories, since sample variation is higher in this

case. Although size of a category is not important to the scientific relevance, it has

an undue influence in the summary statistics. Overlap patterns in GO or KEGG also

complicate inference. For one-at-a-time methods, overlapping categories have positively

correlated summary statistics. One practical problem caused by the overlap is that a

summary list of significant functional categories can be very large, thus not facilitating
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a simple interpretation of functional content of experimental data.

GO is comprised of three directed acyclic graphs where nodes are categories and

directed edges link parent nodes to child nodes representing proper subsets of the parent

category. This hierarchical structure is used by some statistical methods (e.g. sequential

testing methods, Liang and Nettleton (2010)). Sequential testing methods are often dif-

ficult to interpret; further, the directed graphs do not express all of the overlap relations

among categories.

Statistical methods that address category differential expression assert that the cate-

gory on test is non-null if and only if any of the genes in that category is non-null. (note

on Barry’s method III, which is not this but essentially so). The trouble with this asser-

tion is that many genes are multi-functional, and this multi-functionality is expressed

as category overlap in the functional record. A gene has different roles depending on

what it is doing in the cell. For example, the NXF1 gene (nuclear RNA export factor 1)

is annotated to 20 different GO categories including nucleocytoplasmic transporter ac-

tivity and mRNA export from nucleus. When this gene is differentially expressed under

different experimental conditions, it might be due to one of its roles but not necessarily

all of them. Implicating all of NXF1’s roles leads to spurious inference (false positives).

Model-based gene-set analysis methods are promising because they can be con-

structed to incorporate the functional record simultaneously over all categories and

thereby can handle difficulties to do with category size and overlap (Lu et al. (2008),

Bauer et al. (2010), Newton et al. (2012)). In Bauer et al. (2010), the generative model
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has non-null behavior starting with the functional category rather than the genes; each

gene inherits non-null behavior from the non-null categories to which it is annotated.

This transformation means that the inference on a given category does not only de-

pend on activities of genes inside this category but is also related to behaviors of other

overlapping categories. The form of role model was originally proposed in Bauer et al.

(2010) and inference computations were made available in R package MGSA (Bauer et al.

(2011)). The work was investigated and developed further in Newton et al. (2012), and

techniques from probabilistic graphical modeling were invoked to approximate inference

computations. However, role-model inference computations via probabilistic graphical

models remain complicated. Analysis of the structure of role mode computations de-

ployed in MGSA shows a critical problem with inference, owing to a failure to respect

specific constraints of the parameter space. It is our goal to develop statistical methods

that overcome the limitations of existing procedures.

1.3 Summary of main contributions

Our contributions in the RNAi project include proposing a novel sampling model that

deals with multi-record observational data from RNA interference studies, and develop-

ing sophisticated computational schemes for likelihood inference. The design and struc-

ture of RNAi experiments forces us to propose a specification for multi-study, two-stage
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(detection/confirmation), genome-wide RNAi data. To deal with important experimen-

tal factors that lack observational data, hidden variables are introduced and carefully

chosen statistical distributions are assigned to them. The challenge of computation

comes from marginalizing these hidden variables in a non-linear model. We overcome

this challenge and precisely measure the contribution of false positives and false negatives

in Influenza RNAi.

For functional category analysis, we contribute to improve both modeling and com-

putations of the role model. An important condition called the activation hypothesis

is developed to establish equivalence between gene- and category-level activities. By

clarifying intrinsic constraints among role model parameters, we more accurately infer

categories that contribute to gene-level signals. For computations, we have considered

three directions but focus on one most promising one in this thesis. We had investigated

methods for exact computations and inferences via probabilistic graphical models. How-

ever, this remains challenging due to complexity of graphs for large-scale genome-wide

problems. A second approach was to relax the role model by embedding it in a larger

set of probability distributions, and then to fit the larger model and connect the re-

sults back to the original model. In preliminary work, we proposed two relaxations of

the role model that have different generalized-linear-model (GLM) representations of

gene-level data. Regularized regression and quadratic programming were developed to

fit the relaxed models and provide for the selection of the most significant functional

categories. The major difficulties in optimization of non-convex objective function and
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efficiently accommodating activation hypothesis by linear constraints did not allow us

to succeed in this direction. The third method, presented here in Chapter 3 applies

MCMC methods to approximate posterior inferences. With activation hypothesis the

chain is sampled on a highly restricted space that requires sophisticated updating rules.

Altogether we have established superiority of a method for category analysis in terms of

posterior consistency and efficiency compared to existing methods and also we have de-

veloped effective algorithm to implement posterior computations. Although unresolved,

the first two approaches remain to be valuable future work.
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Chapter 2

Sampling model for a meta analysis

of genome-wide RNAi studies

2.1 Overview

We are interested in four recent RNAi studies that all aimed to identify host genes in-

volved in influenza virus replication (Karlas et al. (2010), Hao et al. (2008), Brass et al.

(2009), König et al. (2009)). They followed similar experimental procedures but showed

limited overlap in their final gene findings. To provide reasoned inferences about fac-

tors affecting among-study gene-level agreement, we developed a statistical model and

corresponding likelihood-based analysis methods. The model formulates relationships

among: (1) system-level parameters that affect sensitivity and various error rates, (2)

gene-level and study-level latent variables that transduce information about the system

to information at the gene-level, and (3) gene-level, multi-study data on both detection

and confirmation by RNAi screening. In its generative form, the model specifies the

probability of observing any particular multi-study data set. In its inferential form, it
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indicates the likelihood assigned to any particular parameter setting in light of observed

data. In general, this work involves model development, mathematical analysis, likeli-

hood and Bayesian computation inference and diagnostic checking. Our sampling model

sufficiently fits the data and the results suggest that false negative factors contribute

more to the limited agreement than false positive factors. This chapter is organized to

introduce in turn the sampling model, computational methods, inferences, model checks

and an extended application.

2.2 Background

RNAi is a gene-specific silencing process that knocks down expression level of targeted

genes using dsRNA or siRNA. Genome-wide RNAi has become a powerful tool to study

gene functions in regulating biological processes. In our meta analysis, four studies

applied this technique to identify genes whose inactivation affects the cell’s ability to

reproduce Influenza virus.

Basic information of four studies is presented in Table 1, including RNAi libraries

and cell lines. Despite differences in detailed deployment, all four studies used a simi-

lar two-stage experimental design. All studies started with a high-throughput primary

screen to target each gene across the whole genome small interference RNAs (siRNA)

from an RNAi library and candidate genes are selected as detected genes by the primary
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screen.These genes then were re-tested for function in virus replication in repeated sec-

ondary validation assays with individual siRNAs. We call genes that are selected in the

end confirmed by the secondary screen. Numbers of genes detected and confirmed from

primary and secondary screens are collected from the 4 studies and listed in the last two

rows of Table 1. They serve as data of our sampling model.

There are in total 984 genes detected by the 4 RNAi studies jointly, and 641 of these

detected genes are further confirmed. Figure 1 gives a basic summary of these confirmed

genes in terms of their distribution. The bar plot in panel (A) is divided into 4 sections

by solid lines. That four high vertical bars are located in the first section means that

most of genes are confirmed by only one study but not the rest. There is only one gene

confirmed by all 4 studies. Panel (B) gives the number of overlapping genes confirmed

by any pair of studies and percentages relative to the total number of genes confirmed

by each study. These evidence all suggest that the four RNAi studies of interest present

limited agreement on their confirmed gene lists. It motivates us to develop a statistical

approach to model RNAi data and explain the low agreement.

2.3 Modeling approach

The assessment of agreements and disagreements among studies has long been a focus

of model-based statistical analysis, from seminal work by R.A. Fisher and colleagues on

species abundance estimation in ecology (Fisher et al. (1943)) to more recent and relevant
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Figure 1: Basic summary on 641 confirmed genes. (A) Distribution of genes confirmed
by the four RNAi studies designated as DL-1, U2OS, A549US and A549DE. Vertical bars
show numbers of genes confirmed by studies indicated by +. Note that most genes were
confirmed by only one study. (B) Pairwise overlap of confirmed genes. Number of genes
implicated by each study are on the diagonal line. In flanking cells are pairwise overlaps
between pairs of indicated studies. A percentage is calculated against the number of
genes confirmed in the study of the relevant column.
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precursors to our own calculations, including Raftery (1988), Craig et al. (1997), and

Basu and Ebrahimi (2001). The rationale for this general approach is that the specific

findings of any study are affected by numerous factors, some of which are systematic

and shared in some predictable way among studies, and some of which are idiosyncratic.

To capture the systematic effects we treat them as parameters in a stochastic process

presumed to have generated the observed data, and we infer the parameter values by

calculating the probability of observed data (the likelihood). The design and structure

of RNAi experiments forces us to go beyond previously described probability models and

propose a specification for multi-study, two-stage (detection/confirmation), genome-wide

RNAi data. In this section, we will in turn introduce data, latent variables, parameter,

the likelihood model and how to analytically develop likelihood calculation.

2.3.1 Data

For each study s in the set of four studies, and each gene g in the human genome, we

introduce Dg,s to indicate whether or not (1 or 0) gene g was detected in the primary

screen of study s, and similarly Cg,s to indicate whether or not g was confirmed in the

corresponding secondary screen.

Dg,s = 1 [gene g is detected by the primary screen of study s ] ,

Cg,s = 1 [gene g is confirmed by the secondary screen of study s ]
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for genes g = 1, 2, ..., G and studies s = 1, 2, 3, 4. We consider the genome to be the

union of genes that are covered by the siRNA libraries used in the four studies, and

assume the genome size G = 22000. According to the experimental design, we observe

detection indicators {Dg,s} for all g and s and confirmation indicators {Cg,s} only for

cases g and s where Dg,s = 1. That is, the primary screen of each study is viewed as

scanning the full genome; the secondary screen aims to confirm those primary findings.

It is technically convenient to allow Cg,s to be defined even when Dg,s = 0, though by the

study designs such Cg,s is unobserved and does not enter our computations. The four

studies differ in details of their secondary screens. To simplify our analysis we model

studies similarly, in terms of results Cg,s,k from further assays k = 1, 2, 3, 4, wherein the

kth assay entails the application of the kth siRNA from the pool of (typically) 4 siRNAs

that targets gene g. Then we have confirmation Cg,s = 1 if (and only if) at least two of

these assays indicates a phenotype; i.e. if
∑

k Cg,s,k ≥ 2. Several studies (e.g., U2OS)

have this precise structure, although we have not used any assay-level data Cg,k,s in

subsequent computations (these data are not complete; we use the summary calls Cg,s).

Not all studies have this structure (e.g., DL-1); the key consequence of modeling this

way is that the secondary validation is more stringent for filtering non-involved genes.

There are three observable states of (Dg,s, Cg,s) for a given gene g in a given study s:

{(0, 0), (1, 0), (1, 1)}.

The proposed model entails gene-specific latent random effects, and thus marginally
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the (Dg,s, Cg,s) is not independent from (Dg,s′ , Cg,s′) for any two studies s and s′. Our

model does entail independence among genes, and therefore the likelihood (probability

of observed data) can be expressed as the probability of the multinomial count vector

{Nπ} over the 34 = 81 possible multi-study observation states, or patterns, {π} (see

Table 3), where

Nπ =
G∑
g=1

1 [{(Dg,s, Cg,s)} has pattern π ] .

(On the independence among genes assumption, this is conditional on involvement (see

below) and expresses the fact that separate cells and assays are used for different genes

within a given study.) In these terms, the log-likelihood is

L = log Prob(data) =
∑
π

Nπ logPπ, (2.1)

where pattern probabilities {Pπ} are defined by a smaller number of parameters through

a stochastic model of genome-wide RNAi.

2.3.2 Latent variables and parameters

To calculate pattern probabilities, various experimental factors that contribute to false

positives and false negatives need to be modeled including (1) involvement, (2) acces-

sibility, (3) off target, (4) knockdown efficiency, (5) measurement errors including both

false positive and false negative errors. The first three factors are specified using latent

random effects, and the last two are calibrated with system-level parameters.
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Involvement

Whether or not the gene g is truly involved in influenza-virus replication is unknown a

priori, and this fact is expressed by the latent binary variable Ig.

Ig = 1[g is involved in influenza virus replication]

In some cell type, an error-free measurement of a true knockdown, in the absence of off-

target effects, would show a phenotype if and only if Ig = 1. Parameter θ is used as the

genome-wide rate of true involvement. Fixing the genome size at G, the number of truly

involved genes is N =
∑G

g=1 Ig, which has expected value Gθ. The distribution of gene-

level data depends on Ig through additional factors expressing sources of variation that

affect knockdown and phenotype. One could alternatively classify the {Ig} as a high-

dimensional parameter, but in doing Bayesian inference we would immediately cover it

with a prior, so we treat it as a vector of latent factors in the notation.

Accessibility

A variety of factors could block either the knockdown of a gene or the phenotype of a

knocked-down gene, for example, gene may not be expressed in the particular cell line,

siRNAs may induce cytotoxicity, or due to phenotypical masking. We introduce latent,

binary accessibility variables Ag,s to accommodate this general effect that contributes to

false negatives,

Ag,s = 1[g is accessible in study s ].
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If Ag,s = 1 we say that gene g is accessible to study s. if g is also involved and fully

knocked down, a phenotypic effect would show. In the absence of more specific knowledge

we treat the Ag,ss as independent Bernoulli-distributed variables. Analysis supports

allowing the accessibility rate to vary among studies, and we allow this flexibility to

better accommodate study-study heterogeneity.

Off targets

The pool of siRNAs that target gene g in study s may not be fully specific, and thus

may inadvertently knock down some number of influenza-involved off targets. These

off targets are a subset of the involved off-targets associated with all siRNAs used for

gene g across all studies, not accounting for inaccessible genes in any given study. By

modeling Tg,s as a subset of a total Tg, we allow potential dependencies between studies

attributable to use of the same siRNA in different studies. Further in kth individual

assay of the secondary screen, Vg,s,k is used as a subset of Tg,s. The three layers of latent

variables used to model numbers of involved off targets are:

Tg = number of involved off-targets for gene g, relative to a pool of siRNAs

that might be used to target gene g

Tg,s = size of the accessible subset of Tg in study s

Vg,s,k = size of the accessible subset of Tg,s in assay k of secondary screen in study s .

The number Tg counts involved off-targets from all siRNAs in play for a given gene:
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we consider it to have mean value Kθν, where K is the average number of distinct

siRNAs used per gene across all four studies, θ is the involvement rate, and ν is the

mean number of off-targets per siRNA. Evidence indicates that rates of phenotypic

response increase with Tg, but there remain little data on the distribution of it beyond

computational predictions based on sequence homology (Kulkarni et al. (2006)). From

first principles, we treat Tg as Poisson distributed though we investigate over-dispersed

alternatives in model diagnostics (Section 2.5). In study s, four (typically) siRNAs

are used and these carry a subset of Tg,s involved and accessible off-targets, having a

Binomial distribution on t trials with success probability 4γs/K given that Tg = t. (An

involved off-target that is not accessible in a given study cannot affect the phenotype

in that study.) Similarly, with given Tg,s = u, Vg,s,k is simplified to be a Binomial

distribution with size u and success probability 1/4. Numbers of off targets from the

4 individual assays are actually not independent but rather negatively correlated as

their sum
∑4

k=1 Vg,s,k equals Tg,s. Sensitivity analysis showed that ignoring this negative

correlation did not affect likelihood computaions.

mRNA Knockdown

We developed a model to have the following three basic features. First, the larger the

number of either on-target or off-target events, the higher the probability of a phenotypic

effect. Second, if there are multiple off-target events from a pool of siRNAs, then

distinct off-targeted genes are affected. Third, we suppose that multiple on-target hits
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(i.e., from multiple siRNAs targeting the same gene) deliver a higher probability of

phenotypic effect than do the same number of off-target hits. A mathematical device

to achieve this structure imagines that every targeting or off-targeting event (i.e. every

potential knock down of an involved gene) is associated with a uniform (0,1) random

variable representing the fraction of mRNA remaining after knock down by that event.

An error-free measurement then would show a phenotypic effect if any of the involved,

accessible genes had mRNA levels reduced below a threshold, parameterized by ω ∈

(0, 1). By assumption, off-target effects work in parallel. If Tg,s = t , the probability

that any of the off-targeted genes has mRNA knocked down below ω is 1 − (1 − ω)t.

The assumptions similarly form the on-target model as a series circuit: the probability

that the targeted mRNA is knocked down below ω after hits from a pool of 4 siRNAs

becomes 1 − G4,1(− log(ω)), where G4,1 is the cumulative distribution function of a

gamma distribution with shape 4. (Details provided in Section 2.3.3).

Measurement errors

Our meta-analysis analyzes summary gene-level data from four two-stage genome-wide

studies. Whether or not a gene is detected or confirmed in any study depends on

details of the quantitative assays used to assess the phenotypic effect, as well as on all

the intrinsic factors indicated above. These assays are subject to various sources of

measurement error that may create both false negative and false positive recordings.

We allow both types, and have found improved model fits by allowing the false negative
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rate to be study specific. Parameter α is for type I (false positives) and {βj}4j=1 are for

type II (false negatives).

Here we summarize the system-level parameters that are used to specify the proba-

bility structure of latent variables and observed data; they describe the basic system in

terms of rates governing the latent variables as well as quantities affecting false-positive

and false-negative detections and confirmations:

θ = proportion of genome involved in influenza virus replication

α = false positive measurement error

βs = false negative measurement error of study s

γs = rate at which genes are accessible in study s

ω = expression threshold in knockdown model

ν = average number of off-target genes per siRNA .
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2.3.3 Model specification

Based on previous descriptions, probability distributions are assigned to the latent vari-

ables.

Ig ∼ Bernoulli(θ) (2.2)

Ag,s ∼ Bernoulli(γs)

Tg ∼ Poisson(Kθν)

Tg,s |[Tg = t] ∼ Binomial

(
t,

4γs
K

)
Vg,s,k |[Tg,s = u] ∼ Binomial

(
u,

1

4

)
.

Finally, we have a model for observations Dg,s and Cg,s.

Dg,s|
[
Ig = i, Ag,s = a, Tg,s = t

]
∼ Bernoulli

[
1− βs + (α + βs − 1)

[
G4,1(− logω)

]ai
(1− ω)t

]
Cg,s,k|

[
Ig = i, Ag,s = a, Vg,s,k = v

]
∼ Bernoulli

[
1− βs + (α + βs − 1)(1− ω)ai+v

]
(2.3)

where G4,1(.) is the c.d.f. of a gamma distribution with shape parameter 4 and scale

parameter 1. The model allows heterogeneity across genes and studies. Targeted genes

that are involved (i = 1) need to be accessible (a = 1), otherwise they are detected

at the lower rate of non-involved genes. The constant 4 enters here because we have

modeled a typical study that targets a gene by pooling four different siRNAs (with each

additional siRNA improving the detection rate).

Figure 2 presents a probability model for detection Dg,s and confirmation Cg,s con-

ditional upon accessibility, involvement, and off-target count. For detections, each edge

in the circuit has a probability, and the fate of cells considered prior to experimentation
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(left) is a path through the circuit to some end state (right). For example, a phenotypic

effect (+) is possible if either (1) there is a successful knockdown of some involved gene

(either on or off target) and there is no (type II) measurement error, or (2) there is

neither on nor off target knockdown and there is a (type I) measurement error. Note

that confirmations are modeled similarly to detections, but we consider a typical study

in which the four individual siRNAs that had been pooled in the primary screen were

applied separately in four assays. Confirmation on assay k is indicated by Cg,s,k, and we

have Cg,s = 1 if and only if
∑4

k=1Cg,s,k ≥ 2 ; that is, if at least two of the single siRNA

assays also yielded a positive phenotype. Figure 2(B) breaks down contributions to the

conditional distribution of Cg,s,k. Detection probability and conditional confirmation

rate are assembled by adding along paths in this circuit.

Another system-level parameter we fix a priori and do not estimate from the data is

K = average number of siRNAs that target a gene.

Ideally if all 4 studies use the same siRNA library, we would expect K = 4 i.e. there are

exactly 4 siRNAs targeting every gene as designed; if each study uses a distinct library

and there is no chance of genes being targeted by siRNAs other than the designed ones,

then K = 16. K controls the correlation in numbers of off-targets between studies, i.e.

cor(Tg,s,Tg,s′)→ 0, as K →∞. In our case, we fix K = 12 since the 4 studies of interest

use 3 different libraries. Diagnostic computations showed little sensitivity to this setting.

A full specification of conditional independence assumptions is in Figure 3. The
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Figure 2: Circuit diagram providing a schematic for gene-specific outcomes and prob-
abilities for (A) primary screen and (B) secondary screen. (A) Cells are treated with
a pool of 4 siRNA’s and can traverse one of two main branches during an experiment:
the top branch involves some kind of knock down event, either on or off target (or
both), and the bottom branch involves neither on nor off target knock down. In either
case, measurement error could affect the final measured phenotype. An effect is either
observed (+), or unobserved (-). Along each path through the circuit are shown prob-
abilities associated with cells traversing that path. Similarly, (B) illustrates one of the
four individual assays where cells are treated with only 1 siRNA.
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various modeling elements have been introduced to address known features of genome-

wide siRNA screening. For example, every additional siRNA applied to an involved gene

increases the chance that the harboring cells exhibit a phenotype. The higher the rate

of involved genes, the higher the rate of an off-target phenotype. There is heterogeneity

among genes, owing to whether or not they are involved, and owing to varying amounts

of off-targets associated with their targeting pools of siRNAs, but there is among-gene

independence in terms of siRNA detection/confirmation. The studies are heterogeneous,

because they may entail different sets of accessible genes and these accessibility rates

(γs) are study specific, and also there may be different false negative measurement

errors (βs) involved in each study due to individual experimental environment. (We

had considered a single parameter γ and β, but saw substantial improvements when we

allow the extra flexibility.) From study to study the data are not independent, owing

to genetic factor and common targets among studies in RNAi libraries (i.e. Ig and Tg,

which get marginalized in our likelihood computation).

To further explain the model structure, the curious G4,1 term and related terms enter

because of our knockdown model. We suppose that each targeting or off-targeting event

is associated with a uniformly distributed variable on (0, 1). For on-targets, we suppose

that four hits reduce the expression of the target such that the amount left over equals

the product of the four uniforms, and if this amount is less than ω, we would see an effect,

in the absence of measurement error. This happens with probability G4,1(− logω). We

further assume that off-target events hit separate genes, and act in a parallel fashion,
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Figure 3: Plate diagram for dependence structure of the sampling model. Latent factors
Ig, Ag,s and Tg,s affect the distribution of observable detections Dg,s and confirmations
Cg,s. For example, the probability that a gene is detected in a given study depends
on whether it is truly involved in flu, whether it is accessible in the system used, and
the number of involved and accessible off-targets (3 arrows coming towards Dg,s.) Con-
veniently, we assume that Cg,s exists independently of detection, and is latent unless
Dg,s = 1.
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Figure 4: Knockdown model properties. Four on target hits are more effective at pro-
ducing an observed effect than four off-target hits. Shown is the case of no measurement
error, as a function of the threshold for an effect.

so that a phenotypic effect occurs if any of the mRNA levels is reduced below ω; this

happens with probability 1− (1−ω)t when there are t off-targeting events. By modeling

this way we allow that multiple on-target hits are more effective than the same number

of dispersed off-target hits (Figure 4).

The log-likelihood L in (2.1) is a function of these 12 parameters, which we collect

in a vector ψ = (θ, α, β, γ, ω, ν), where β = {βs}4s=1, γ = {γs}4s=1. Thus L = L(ψ).
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2.3.4 Calculation of pattern probabilities

The 81 multi-study pattern probabilities {Pπ} (and thus the log-likelihood L(ψ)) in (2.1)

are obtained as a function of the 12 system-level parameters ψ by summing out the

discrete-valued latent variables. Considering among-gene independence, we focus on a

single gene, and sum out values of the involvement indicator Ig, the four accessibility

indicators Ag,s, and the off-target counts Tg, the four Tg,s, and the {Vg,s,k}4k=1 for each

study. (We model Tg,s’s as subsets of a common Tg to reflect the possibility that different

studies share siRNAs.) All but the target counts are binary sums; more complicated is

the elimination of the off-target counts. To investigate this calculation, write the vector

a = {as} and the conditional probability of data pattern π as,

Pπ(i, a) = P (π| Ig = i, {Ag,s}4s=1 = a
)
.

Each multi-study pattern probability Pπ is computed as a summation of these Pπ(i, a)

over the 25 values of its arguments. The trickier computation is the evaluation of each

Pπ(i, a), which requires marginalization of the off-target counts.

To marginalize the off-target counts, first recognize that each pattern π is an inter-

section of four study-specific patterns π =
⋂
s πs. For example π = 3111 indicates that

the gene is confirmed and detected in the first study and neither detected nor confirmed
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in any of the remaining three studies. The modeling assumptions give

Pπ(i, a) =
∞∑
t=0

P (Tg = t) P
(
π|Ig = i, {Ag,s}4s=1 = a, Tg = t

)
=

∞∑
t=0

Pois(t)
4∏
s=1

P (πs|Ig = i, Ag,s = as, Tg = t)

=
∞∑
t=0

Pois(t)
4∏
s=1

t∑
u=0

Bs(t, u) P (πs|Ig = i, Ag,s = as, Tg,s = u)

=
∞∑
t=0

Pois(t)
4∏
s=1

t∑
u=0

Bs(t, u) Qs,i,as,u (2.4)

where Pois(t) = P (Tg = t) = exp{−Kθν}(Kθν)t/t! by the Poisson assumption, Bs(t, u)

is the Binomial mass function at u with t trials and success probability 4γs
K

, and where

each contributionQs,i,as,u = P (πs|Ig = i, Ag,s = as, Tg,s = u) is computed from the stochas-

tic model (2.3). Coming back to pattern π = 3111 for example, the four sub-pattern

probabilities are:

Q1,i,a1,u = P (Dg,1 = 1|Ig = i, Ag,1 = a1, Tg,1 = u) P (Cg,1 = 1|Ig = i, Ag,1 = a1, Tg,1 = u)

Q2,i,a2,u = P (Dg,2 = 0|Ig = i, Ag,2 = a2, Tg,2 = u) P (Cg,2 = 0|Ig = i, Ag,2 = a2, Tg,2 = u)

Q3,i,a3,u = P (Dg,3 = 0|Ig = i, Ag,3 = a3, Tg,3 = u) P (Cg,3 = 0|Ig = i, Ag,3 = a3, Tg,3 = u)

Q4,i,a4,u = P (Dg,4 = 0|Ig = i, Ag,4 = a4, Tg,4 = u) P (Cg,4 = 0|Ig = i, Ag,4 = a4, Tg,4 = u) .

where

P (Cg,s = 1|Ig = i, Ag,s = as, Tg,s = u) = P

(
4∑

k=1

Cg,s,k ≥ 2

∣∣∣∣∣ Ig = i, Ag,s = as, Tg,s = u

)

We make the simplifying approximation that Cg,s,k are conditionally independent (and

thus Cg,s is governed by Binomial masses), though in fact they have some negative
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dependence attributable to the divvying up the off-target count Tg,s among the four

separate assays.

A key to simplifying the computation further is to recognize that with respect to

the count variable u, each P (Dg,s|Ig, Ag,s, Tg,s) is a polynomial of ξ1 = 1− ω, and each

P (Cg,s|Ig, Ag,s, Tg,s) is a polynomial of ξ2 = 1 − ω
4
. Thus, each Qs,i,as,u is a bivariate

polynomial in ξ1 and ξ2, of degree at most u and 4u respectively. By careful book-

keeping, we identify coefficients {bs,p,q} (depending on system parameters ψ and the

pattern π) such that

Qs,i,as,u =
1∑
p=0

4∑
q=0

bs,p,q (ξp1 ξ
q
2)u

Thus the inner factor of (2.4)

t∑
u=0

Bs(t, u) Qs,i,as,u =
t∑

u=0

Bs(t, u)
8∑
j=0

bs,j ξ
uj

=
1∑
p=0

4∑
q=0

bs,p,q

t∑
u=0

(ξp1 ξ
q
2)uBs(t, u)

=
1∑
p=0

4∑
q=0

bs,p,q

(
1− 4γs

K
+

4γs
K
ξp1 ξ

q
2

)t

=
1∑
p=0

4∑
q=0

bs,p,qes,p,q
t,

with the second-last line obtained from the moment generating function of a Binomial

variable, and with es,p,q = 1− 4γs
K

+ 4γs
K
ξp1 ξ

q
2. Incorporating this back into (2.4), we obtain
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for the conditional probability of a pattern given accessibility and involvement:

Pπ(i, a) =
∞∑
t=0

Pois(t)
4∏
s=1

1∑
p=0

4∑
q=0

bs,p,qes,p,q
t

=
∞∑
t=0

Pois(t)
1∑

p1=0

1∑
p2=0

1∑
p3=0

1∑
p4=0

4∑
q1=0

4∑
q2=0

4∑
q3=0

4∑
q4=0

(
4∏
s=1

bs,ps,qs

)(
4∏
s=1

es,ps,qs

)t

=
1∑

p1=0

1∑
p2=0

1∑
p3=0

1∑
p4=0

4∑
q1=0

4∑
q2=0

4∑
q3=0

4∑
q4=0

(
4∏
s=1

bs,ps,qs

)
∞∑
t=0

Pois(t)

(
4∏
s=1

es,ps,qs

)t

=
1∑

p1=0

1∑
p2=0

1∑
p3=0

1∑
p4=0

4∑
q1=0

4∑
q2=0

4∑
q3=0

4∑
q4=0

(
4∏
s=1

bs,ps,qs

)
exp

{
Kθν

[(
4∏
s=1

es,ps,qs

)
− 1

]}
.

where the last line comes from the moment generating function of a Poisson distribution.

Finally, the pattern probability Pπ is obtained by summing over the 25 states of i and a,

as indicated previously. This provides a route to computing all 81 multi-study pattern

probabilities required for likelihood evaluation. R program is developed to implement

this calculation.

2.4 Inference computations

Here we describe our computational approach to likelihood-based inference via numerical

optimization and Markov chain Monte Carlo (MCMC). The methods were implemented

in code and tested extensively to assure the fidelity of reported numerical findings. Some

computational tests are discussed in Section 2.5.
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2.4.1 Likelihood evaluation and maximization

Based on formulas for pattern probabilities {Pπ} the log-likelihood (2.1) was available

numerically. We used some convenient facilities in the R system to organize the rather

complex sums (R Core Development Team, 2011, version 2.13.1). To maximize the

log-likelihood, we used the R function nlminb. Working on the log scale for ν and the

logit scale for all probabilities, the optimization code was initiated at the zero vector

to compute maximum likelihood estimates (MLEs). Numerical experiments showed

insensitivity to a range of starting configurations. To go beyond point estimates, we

develop Bayesian inference under a flat prior for the system parameters in ψ.

2.4.2 Posterior computation

The Metropolis-Hastings method was used to construct a Markov chain to simulate the

joint posterior density

P (ψ|data) ∝ expL(ψ)

(i.e., flat prior). Importantly, we did not run MCMC over the high-dimensional space

including latent variables, because we were able to solve these analytically. Chains were

initiated at the MLE values, run for length 250000 scans, and subsampled every 100

scans for final output. Our sampler produced a sequence ψ1, ψ2, . . . , ψB of parameter

vectors according to standard Metropolis-Hastings updating rules (e.g., Robert and Cas-

sella, 1999, page 231.) We systematically scanned the 12 parameter values, and used
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a base set of proposal distributions that modified one parameter at a time. The base

proposal distribution for ν was exponential, with mean at the fixed value 1/50. All other

parameters resided in (0, 1), and for each we used a uniform window proposal; window

length 0.025 gave acceptance rates in the range 28% to 70%. Concerned about possible

poor mixing caused by posterior correlation between θ and ν, we included a joint update

involving (θ, ν) −→ (θc, ν/c) for a Gamma-distributed multiplier c (shape, rate both 50,

so mean 1). Starting positions of parameters were the MLE’s from the numerical op-

timization. Trace plots (Figure 5) and autocorrelation plots (Figure 6) indicate good

mixing properties.

We used marginal posterior means to estimate the parameters and the equi-tail per-

centile method to obtain confidence (equivalently credible) intervals. Marginal posterior

means and MLE’s gave comparable results; the sampling approach lead more directly

to confidence intervals, and so we report only results from the MCMC output.

2.4.3 Posterior distribution of N

The total number of influenza-involved genes is N =
∑
Ig. By our approach we have

marginalized the involvement indicators, and so the posterior of N needs to be obtained

through further post-processing of the MCMC output. We estimate N by G · θ̂ where θ̂

is the mean of posterior distribution of θ from MCMC. The posterior distribution of N
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Figure 5: Trace plots parameter values from MCMC output.
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Figure 6: Autocorrelation plots of MCMC output.
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is approximated as follows. For n = 0, 1, . . . , G,

P (N = n|data) =

∫
P (N = n|ψ, data)p(ψ|data) dψ

≈ 1

B

B∑
b=1

P (N = n|ψb, data) (2.5)

where {ψb} constitute the MCMC output. A priori, N given ψ is distributed Binomial(G, θ),

but in conditioning on the data we have a different distribution for N , even with ψ in

hand. Being a sum of independent but differently-distributed Bernoulli trials, N has a

Poisson Binomial distribution (Thomas and Taub, 1982). For example, the one gene that

is confirmed by all 4 studies is more likely to be truly involved than a gene confirmed just

once. Thomas and Taub’s recursion method is applied to evaluate the probability mass

of N at each sampled parameter setting ψb. Estimated distribution of N is illustrated

in Figure 7.

2.4.4 Error rate inference

Depending on the reference set of genes, there are different ways to measure false positive

and false negative error rate. In any case, we are thinking of errors in a single study, s,

and define four rates

FDR(ψ) = P (Ig = 0|Dg,s = Cg,s = 1)

FNDR(ψ) = P (Ig = 1|Dg,s × Cg,s = 0)

FP(ψ) = P (Dg,s = Cg,s = 1| Ig = 0)

FN(ψ) = P (Dg,s × Cg,s = 0| Ig = 1) .
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Posterior Distribution on Number of Involved Genes (N)

Mean = 2766; 95% C.I.=(2306, 3342)
Number of involved genes

1500 2306 2766 3342 4000

Figure 7: Posterior distribution of number N of involved genes
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Respectively, these are rates of false discovery (FDR), false nondiscovery (FDNR), false

positive (FP), and false negative (FN), and they all depend on the vector of system-

level parameters ψ. These rates depend on probabilities in the proposed models, and are

marginal to latent variables recording accessibility and off-target counts. Specifically,

P (Cg,s = c,Dg,1 = d|Ig = i) is a summation of Qs,i,as,u over values of Ag,s and Tg,s, as

presented in Section 2.3.4 of this supplement. That covers FP and FN; for FDR and

FNDR, observe that

FDR(ψ) =
P (Dg,s = Cg,s = 1|Ig = 0)P (Ig = 0)

P (Dg,s = Cg,s = 1|Ig = 0)P (Ig = 0) + P (Dg,s = Cg,s = 1|Ig = 1)P (Ig = 1)

=
FP(ψ) (1− θ)

FP(ψ) (1− θ) + (1− FN(ψ)) θ

FNDR(ψ) =
[1− P (Dg,s = Cg,s = 1|Ig = 1)]P (Ig = 1)

[1− P (Dg,s = Cg,s = 1|Ig = 1)]P (Ig = 1) + [1− P (Dg,s = Cg,s = 1|Ig = 0)]P (Ig = 0)

=
FN(ψ) θ

FN(ψ) θ + (1− FP(ψ)) (1− θ)
.

Point estimates of error rates were obtained by plugging in an estimate ψ̂ of system

parameters, using the DL-1 study as a reference. Bayesian confidence sets were obtained

by percentile error rate values computed across MCMC samples {ψb}. Density plots of

error rates (Figure 8) show that false negative errors are higher their false positive

counter parts. Point estimates and credible intervals are summarized in Table 2.

2.5 Diagnostics

This section provides details on model validation. We employed a variety of computer

experiments for related purposes: (1) to test that our code was calculating what we

intended it to calculate, (2) to assess goodness-of-fit of the proposed model, (3) to obtain



41

Error rate

Density of False Discovery Rate (FDR) and False Non−Discovery Rate (FNDR)
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Figure 8: Posterior density of error rates. Upper: false discovery rate (FDR) versus
false non-discovery rate (FNDR). Lower: false positive (FP) versus false negative (FN).
Estimations are based on posterior samples. The false negative rates are higher than
false positive rates.
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Table 2: Point estimates of parameters, number of involved genes and error rates and
their 95% credible intervals, multi-study influenza data.

Parameter Point Estimate 95% C.I.
MLE Posterior Mean

θ̂ 0.128 0.126 (0.101, 0.158)
α̂ 0.003 0.003 (0.002, 0.004)

β̂ : DL− 1 0.112 0.159 (0.011, 0.338)

β̂ : U2OS 0.360 0.398 (0.267, 0.502)

β̂ : A549DE 0.333 0.372 (0.246, 0.470)

β̂ : A549US 0.067 0.122 (0.010, 0.264)
γ̂ : DL− 1 0.065 0.072 (0.050, 0.103)
γ̂ : U2OS 0.097 0.107 (0.075, 0.145)
γ̂ : A549DE 0.116 0.127 (0.091, 0.169)
γ̂ : A549US 0.086 0.095 (0.069, 0.126)
ω̂ 0.834 0.900 (0.754, 0.996)
ν̂ < 0.001 0.009 (< 0.001, 0.032)
Number of Involved Genes MLE Posterior Mean 95% C.I.
N 2821 2766 (2306, 3342)
Error Rate of DL-1 Study MLE Posterior Mean 95% C.I.
FDR < 0.001 0.005 ( 0.000, 0.017 )
FNDR 0.122 0.120 (0.095, 0.152 )
FP < 0.001 < 0.001 (0, < 0.001)
FN 0.945 0.944 ( 0.927, 0.958 )
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and evaluate model-based predictions, and to (4) check the robustness of conclusions to

various model assumptions,

2.5.1 Consistency checks

The code base was relatively complex and required substantial testing. Among the basic

checks was a useful consistency check. In parametric models, the MLE is known to be

consistent. Hence, if we simulated sufficiently many draws from the 81-cell multinomial

(i.e., sufficiently many genes), the computed MLE would need to be close to the gener-

ating parameter vector. In one test, we increased the genome size from 22000 to 106,

generated the 81-pattern counts from various parameter settings, and ran the optimiza-

tion code to estimate the underlying parameters. Parameters values were accurately

recovered in all cases.

2.5.2 Predictive checks

Model development was characterized by a series of tests of the model’s ability to reca-

pitulate features in the data, as well as to represent presumed structures in RNAi data.

(i.e. we did not start with a model as complex as the one finally presented here!) We

employed forward simulation to generate synthetic multi-study data: i.e., we repeatedly

simulated latent involvement indicators, accessibility indicators, and off-target counts,

followed by detection and confirmation indicators, after fixing the system-level parame-

ters at certain values. based on various predictive checks. Table 3 shows observed counts
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compared to estimates from 1000 multi-study simulations at the fitted parameter values.

Discrepancies in the generally good fit are attributable to Monte Carlo error and also

the approximation error originating in our treatment of the confirmation-screen data.

Figure 9 is a marginal histogram, from this same simulation, showing the number of

confirmed genes from across the multiple studies (we observed 614 and the fitted pre-

dictive distribution covers this value well.) Figure 10 reveals another characteristic of

the observed data that is well approximated by the fitted model; namely, the overall

numbers of detected and confirmed genes per study. These three basic checks indicate

a good model fit for the statistics considered. We note that a version of the model

which did not allow parameter heterogeneity among studies showed lack of fit in the

detection/confirmation plot.

2.5.3 Leave-one-study-out diagnostics

As further validation of our model-based approach, we checked how well it estimated pa-

rameters when data from three studies were used to fit the model. This cross-validation

exercise provides some assessment of the stability of inference. With four studies there

are four leave-one-out cases; for each we developed inference computations for model

fitting. Some care was required to reduce from the table of 81 (34) four-study patterns

to tables of 27 (33) three-study detection/confirmation patterns.

Following the posterior prediction strategy described below (Section 4), we simulated

counts of how many novel genes would be confirmed by a fourth study given data from
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Table 3: Multi-study data in count format. Column ”observation” shows the number of genes
Nπ having detection and confirmation pattern π. For each study, code 0 means not detected in
the primary screen, 1 means detected in the primary screen but not confirmed in the secondary
screen, and 2 means detected and confirmed in both screens. Assume a full genome is of size
G=22000. For the observed 81-pattern counts, the last two columns list their estimated values
from the fitted model and the empirical estimates from 1000 simulations.

Observation Model Fit Simulation
DL-1 U2OS A549DE A549US Pattern π Nπ Mean Std

0 0 0 0 0000 21016 20999.02 20799.02 34.35
0 0 0 1 0001 71 75.8 98.84 9.87
0 0 0 2 0002 179 180.96 165.38 12.27
0 0 1 0 0010 106 109.12 185.22 13.8
0 0 1 1 0011 0 0.61 2.66 1.63
0 0 1 2 0012 6 4.06 10.62 3.2
0 0 2 0 0020 126 138.24 130.39 11.51
0 0 2 1 0021 2 0.86 2.44 1.6
0 0 2 2 0022 18 12.16 11.77 3.53
0 1 0 0 0100 113 104.34 168.22 13.07
0 1 0 1 0101 0 0.56 2.32 1.53
0 1 0 2 0102 1 3.71 9.4 3.13
0 1 1 0 0110 0 1.24 7.29 2.78
0 1 1 1 0111 0 0.01 0.13 0.36
0 1 1 2 0112 0 0.08 0.62 0.78
0 1 2 0 0120 2 2.83 7.37 2.68
0 1 2 1 0121 0 0.02 0.13 0.36
0 1 2 2 0122 0 0.25 0.67 0.82
0 2 0 0 0200 111 105.26 99.19 9.88
0 2 0 1 0201 1 0.65 1.96 1.39
0 2 0 2 0202 3 9.26 8.93 3.03
0 2 1 0 0210 2 2.36 6.41 2.56
0 2 1 1 0211 0 0.02 0.1 0.32
0 2 1 2 0212 0 0.21 0.6 0.8
0 2 2 0 0220 3 7.09 6.91 2.5
0 2 2 1 0221 0 0.04 0.13 0.36
0 2 2 2 0222 3 0.63 0.62 0.84
1 0 0 0 1000 80 74.85 96.79 10.16
1 0 0 1 1001 0 0.37 0.98 1.01
1 0 0 2 1002 2 1.15 2.97 1.68
1 0 1 0 1010 0 0.58 2.47 1.61
1 0 1 1 1011 0 0.01 0.04 0.2
1 0 1 2 1012 0 0.03 0.18 0.44
1 0 2 0 1020 1 0.88 2.42 1.59
1 0 2 1 1021 0 0.01 0.04 0.2
1 0 2 2 1022 0 0.08 0.21 0.47
1 1 0 0 1100 0 0.54 2.15 1.49
1 1 0 1 1101 0 0 0.04 0.18
1 1 0 2 1102 0 0.02 0.17 0.44
1 1 1 0 1110 0 0.01 0.12 0.33
1 1 1 1 1111 0 0 0 0.04
1 1 1 2 1112 0 0 0.01 0.1
1 1 2 0 1120 0 0.02 0.14 0.36
1 1 2 1 1121 0 0 0.01 0.09
1 1 2 2 1122 0 0 0.01 0.11
1 2 0 0 1200 0 0.67 1.83 1.34
1 2 0 1 1201 0 0 0.04 0.18
1 2 0 2 1202 0 0.06 0.17 0.42
1 2 1 0 1210 0 0.02 0.1 0.32
1 2 1 1 1211 0 0 0.01 0.08
1 2 1 2 1212 0 0 0.01 0.09
1 2 2 0 1220 0 0.04 0.12 0.35
1 2 2 1 1221 0 0 0 0.07
1 2 2 2 1222 0 0 0.01 0.09
2 0 0 0 2000 127 126.22 116 10.51
2 0 0 1 2001 1 0.79 2.1 1.45
2 0 0 2 2002 2 11.09 10.34 3.16
2 0 1 0 2010 4 2.83 7.45 2.69
2 0 1 1 2011 0 0.02 0.13 0.37
2 0 1 2 2012 0 0.25 0.64 0.79
2 0 2 0 2020 6 8.49 8.12 2.88
2 0 2 1 2021 0 0.05 0.14 0.37
2 0 2 2 2022 3 0.75 0.72 0.83
2 1 0 0 2100 4 2.59 6.66 2.57
2 1 0 1 2101 0 0.02 0.12 0.35
2 1 0 2 2102 0 0.23 0.55 0.73
2 1 1 0 2110 0 0.06 0.42 0.64
2 1 1 1 2111 0 0 0.01 0.08
2 1 1 2 2112 0 0.01 0.03 0.17
2 1 2 0 2120 1 0.17 0.46 0.69
2 1 2 1 2121 0 0 0.01 0.08
2 1 2 2 2122 0 0.02 0.04 0.2
2 2 0 0 2200 2 6.46 6.16 2.56
2 2 0 1 2201 0 0.04 0.12 0.34
2 2 0 2 2202 0 0.57 0.56 0.75
2 2 1 0 2210 0 0.14 0.34 0.56
2 2 1 1 2211 0 0 0.01 0.09
2 2 1 2 2212 1 0.01 0.04 0.19
2 2 2 0 2220 2 0.44 0.43 0.67
2 2 2 1 2221 0 0 0.01 0.08
2 2 2 2 2222 1 0.04 0.05 0.22
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Distribution on predicted number of confirmed genes by 4 similar studies

Mean: 634   Std: 24.45
Number of confirmed genes

588 600 614 634 650 681 700

95% C.I.=(588,681)

Figure 9: Goodness-of-fit simulations. Histogram of number of genes confirmed jointly
by all 4 studies from 1000 simulations based on the fitted model.

three studies, and we compared these predictions to available data (Table 4). In all four

cases, the count predicted from triple-study training data matched well to the observed

test data that had been left out.

Parameter estimates from the four leave-one-out cases are shown in Table 5. Re-

flecting inferential stability, these estimates are very similar to results based on all four

studies. Sizes of detection and confirmation patterns influence the results. For exam-

ple, A549DE has the most overlap with other studies in confirmed genes, when it is

excluded, the estimated θ value is most affected.
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Figure 10: Observed numbers of detections/confirmations over four studies (black dots)
compared to simulated values (colored symbols) from fitted model.

Table 4: Predicted number of extra genes confirmed by a 4th study based on modeling
the other three studies.

Leave Out Predicted Additional 95% Prediction Interval Observed Additional
DL-1 139 (56, 253) 136
U2OS 143 (67, 253) 114

A549DE 156 (57, 330) 131
A549US 131 (55, 240) 188
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Table 5: Estimated parameters by four ways of leaving out one study.

Leave out θ̂ ω̂ γ̂
DL-1 U2OS A549DE A549US

DL-1 0.106 0.896 - 0.367 0.350 0.111
U2OS 0.102 0.885 0.190 - 0.368 0.127

A549DE 0.192 0.892 0.203 0.422 - 0.129
A549US 0.115 0.890 0.121 0.380 0.337 -

Leave out α̂ ν̂ β̂
DL-1 U2OS A549DE A549US

DL-1 0.003 0.010 - 0.118 0.144 0.112
U2OS 0.003 0.010 0.096 - 0.159 0.120

A549DE 0.003 0.013 0.054 0.079 - 0.066
A549US 0.003 0.013 0.075 0.113 0.129 -

2.5.4 Robustness checks

In developing model-based inference for factors affecting multi-study RNAi data, we

had formulated a range of models prior to the final model presented here. We settled

on the final model because it exhibited a goodness of fit, it made plausible predictions,

and it captured what we could formulate about the key systematic sources of variation.

Earlier models (not shown) failed on one or more of these criteria. We report here one

additional test of the final model assumptions.

Our main computations treated the number Tg of influenza-involved off-targets of

each first-round siRNA pool as Poisson distributed (with mean of Kθν to account for

the pool size, the involvement rate, and the overall rate of off targeting). A first-

principles argument supports this assumption, and experience suggests that the impact

of violations in this assumption on other inferences is probably minimal. However, the
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limited data on off-target rates suggests variation in Tg that is more extensive than

the Poisson (Kulkarni, et al. 2006). To check the robustness of our Poisson-based

approach, we investigated replacing the Poisson distribution with the Negative Binomial

distribution to allow potential overdispersion. Specifically, for a Gamma distributed

random variable C, with both shape and rate parameters equal to κ (and thus mean 1),

we considered:

Tg|[C = c] ∼ Poisson(Kθνc),

which implies

Tg ∼ Negative Binomial

(
κ,

Kθν

Kθν + κ

)

and parameterized so the mean continues to be Kθν. Small κ > 0 corresponds to sub-

stantial overdispersion, while κ −→ ∞ recapitulates the Poisson model. Complexity

of the multi-study pattern probabilities put a full analysis of the Negative Binomial

model beyond our reach, though we were able to obtain pattern probabilities in sev-

eral boundary cases. As the siRNA pool size K gets large, off-target counts Tg,s from

different studies become independent, and thus data from the separate studies become

conditionally independent given the involvement indicators. In this limiting case,

Tg,s ∼ Negative Binomial

(
κ,

4θνγs
4θνγs + κ

)

and the simplifications arising from independent studies enabled us to compute all pat-

tern probabilities for likelihood analysis. In this independent-study case, we recomputed
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the maximum likelihood parameter values over a grid of κ values in (0, 1000). We found

very little dependendence of estimates on the value of κ. To link back to the actual

case (among-study dependence, and small K), we retained the Poisson model but varied

K over the range (4, 1000). Again we saw very little dependence of the MLEs on the

value of K. This lack of sensitivity to K and κ may be due to the data favoring very

small mean off-target rate ν; with small ν, the likelihood surface is relatively flat over

the domains of K and κ.

As a further investigation of the off-target rate, we considered a range of values ν

(on a grid) and at each one profiled the remaining parameters by maximum (profile)

likelihood. Results shown in the main text show that increasing ν does not explain the

data well (decreasing likelihood fit), and further that a reason for this is the constrained

model’s inability to explain the relatively high confirmation rate. Figure 11 presents

another view of this lack-of-fit, in the spirit of the goodness-of-fit plot in Figure 10.

2.6 Predicting outcomes in future siRNA studies

The model-based approach provides a mechanism for predicting outcomes of further

siRNA studies. We pursued posterior predictive simulation in which parameter draws

from the MCMC output were used to seed forward simulation of further siRNA studies

(we mixed over the four posteriors for study-specific error rates to incorporate parameter

settings for these hypothetical future studies.) Specifically, for each of 2000 posterior
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Figure 11: Lack-of-fit consequence of raising off-target rate ν. In profile computations,
we fixed ν at a moderately large value, and estimated other parameters by maximum
likelihood. Shown is a scatterplot revealing the constrained model’s inability to explain
the high confirmation rate. Simulation data points go astray further from observations
as ν increases. (Compare to Figure 10.)
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draws, we simulated a future trajectory of up to 50 future studies. Each trajectory repre-

sented a state of nature, and so corresponded to a single draw of involvement indicators

{Ig} and off-target numbers {Tg}. Along each trajectory, we sampled accessibilities and

study-specific off-target numbers Tg,s at each step, and we generated detections and

confirmations. We kept track of how many novel genes were confirmed along the way.

A subtlety of the computation was making it posterior predictive. There were up to 81

different kinds of trajectories, depending on the four-study data on a given gene from

the existing data; and each kind corresponded to different involvement and off-target

inferences. Predictions are shown in Figure 12.

2.7 Application to HIV studies

As a further validation exercise we checked how the model-based approach worked on

an independent collection of three RNAi experiments from the study of HIV (Brass et

al. 2008; Zhou et al. 2008; Konig et al. 2008). These studies used similar two-stage

designs and experimental procedures to the four influenza studies, and so we organized

the mult-HIV-study data into a table holding patterns of detection/confirmation across

the three studies and we fit the proposed model to these data.

Because only one of the three HIV studies reported data on both primary and sec-

ondary screens, we did not have access to all 33 = 27 counts, and were forced to use a

reduced set of 12 pattern counts (see Table 6). Recall that in original patterns, digits
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Figure 12: Predictions from 2000 simulated study sequences, with each sequence deter-
mined by a parameter setting obtained by Markov chain Monte Carlo and subsequently
with future-study counts simulated prospectively from the specified multinomial model.
The number of confirmed genes increases and stabilizes after 40 studies to a range con-
sistent with the inferred number of influenza-involved genes (indicated in red number,
as CI 95%). Grey and blue bands express different levels of confidence.
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0, 1, 2 refer to respectively detection and confirmation status {Dg,s = Cg,s = 0}, {Dg,s =

1, Cg,s = 0}, {Dg,s = Cg,s = 1}. For instance, that a gene has pattern 201 means that

it is detected and confirmed by study 1, not detected nor confirmed by study 2, and

detected but not confirmed by study 3. Suppose we only have detection and confirma-

tion data from study 3 in HIV meta analysis, then we are able to identify detection and

confirmation status 0, 1, or 2 for only study 3. For the other 2 studies, we are only able

to identity if the status is 2 or not, but not able to differentiate 0 from 1. Therefore,

what have previously been patterns 201 and 211 need to be collapsed into one single

pattern which is collapsed pattern 9 in Table 6. Because of the limited available pattern

information, we used a common false negative error β instead of 4 study specific ones

for a better model fit.

Table 6: HIV analysis: relation between collapsed patterns and original patterns.

Collapsed Patterns Original Patterns
1 222
2 221
3 220
4 202 212
5 022 122
6 200 210
7 020 120
8 021 121
9 201 211
10 002 012 102 112
11 000 010 100 110
12 001 011 101 111

Estimated parameters, number of involved genes, error rates and their 95% credible
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intervals are summarized in Table 7. We use acronyms to refer to the 3 studies (SCI:

Brass et al. 2008; CHM: Zhou et al. 2008; CEL: Konig et al. 2008). Error rates are

calculated based on accessibility rate estimated for CHM study.

Table 7: Estimated parameters, number of involved genes and error rates and their 95%
credible intervals in HIV studies.

Parameter Point Estimate 95% C.I.

θ̂ 0.285 (0.209, 0.390)
α̂ 0.002 (0.000, 0.003)

β̂ 0.078 (0.009, 0.154)
γ̂ : SCI 0.051 (0.036, 0.070)
γ̂ : CEL 0.055 (0.038, 0.074)
γ̂ : CHM 0.043 (0.030, 0.058)
ω̂ 0.833 (0.651, 0.990)
ν̂ 0.017 (0.000, 0.061)
Number of Involved Genes Point Estimate 95% C.I.
N 6277 (4591, 8620)
Error Rate of CHM Study Point Estimate 95% C.I.
FDR 0.008 ( 0.000, 0.032 )
FNDR 0.278 (0.201, 0.384 )
TP 0.037 ( 0.026, 0.051 )
TN 1.000 ( 1.000, 1.000 )

2.8 Concluding remarks

This part of thesis concerns modeling agreement among replicated genome-wide RNAi

studies, more specifically, estimating sources that cause variations in data and assessing

the relative size of false-positive and false-negative errors.

Our contributions in the RNAi project include proposing a novel sampling model
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that deals with multi-record observational data from RNAi studies, and developing so-

phisticated computational schemes for likelihood inference. In its generative form, the

model specifies the probability of observing any particular multi-study data set. In its

inferential form, it indicates the likelihood assigned to any particular parameter setting

in light of observed data. We generated likelihood-based inference via both numerical

optimization and Markov chain Monte Carlo (MCMC), and confirmed that the point

estimates are consistent. The posterior inference of error rates point to false negative

factors to account for more of the limited agreement.

To be more confident of the whole modeling approach, we conducted various model

diagnostics including (1) consistency checks to test whether our code was calculating

what we intended it to calculate, (2) predictive checks to evaluate goodness-of-fit, (3)

leave-one-out studies to test stability of the inference and (4) robustness checks of con-

clusions to various model assumptions. The results show that our sampling model passed

all the tests.

The numbers of genes that would be confirmed by future studies of the similar system

were predicted from posterior predictive simulation. The trend suggests that the total

number of confirmed genes will increase notably and stabilizes after 40 studies to a

range consist with the inferred number of influenza-involved genes. Our method was

also applied to model agreement from outcomes of 3 RNAi studies for HIV.
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Chapter 3

Simultaneous functional category

analysis (SFCA)

3.1 Overview

Integrating experimental genomic data with exogenous functional information is impor-

tant in statistical genomics for the purposes of effective data reduction and boosting

weak gene-level signals. Most available functional category analysis methods, intro-

duced in Section 1.2, can be categorized into three classes: (1) one-at-a-time methods

(e.g. Subramanian et al. (2005), Newton et al. (2007)) which ignore complexity of the

functional record; (2) sequential methods (e.g. Liang and Nettleton (2010)) that fail to

incorporate the overlapping structure of categories and are hard to interpret; (3) model-

based methods which either oversimplify the model assumption (e.g. Bauer et al. (2010))

or are unduly challenging in computations (e.g. Newton et al. (2012)). Our goal is to

develop a methodology that addresses these limits. In particular, we are most interested

in answering the following questions: (1) Can we propose a model that incorporates
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the overlapping and hierarchical structure of functional categories and generates infer-

ences that respect this structure? (2) Compared to existing model-based methods, does

our model perform better in detecting subtle signals? (3) Can we develop an efficient

algorithm to apply the proposed method to large-scale category analysis problems?

This chapter is organized to provide evidence in response to these questions. Our

method, called SFCA, is described in Section 3.3. It relies on a model originally pro-

posed in model-based gene set analysis (MGSA) by Bauer et al. (2010), followed by an

important model assumption called activation hypothesis based on which our model is

developed to assure identifiability of the model. In Section 3.4 we demonstrate advan-

tages of SFCA over MGSA in terms of consistency and efficiency based on analytically

developed posterior summaries in different scenarios. Section 3.5 introduces Markov

Chain Monte Carlo algorithm we have developed for computations. SFCA is applied

to genome-wide data from the meta analysis of Influenza virus replication in the pre-

vious chapter with its finding being compared with MGSA in Section 3.6 . Two other

approaches to address role model posterior inferences that we have investigated are

presented at the end of this chapter.

3.2 Data structure

First, let us introduce the data structure and some notation that will be used through-

out this chapter. Two forms of data are being integrated in the proposed analysis:
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genome-wide experimental gene-level data and functional information about the genes

as recorded in a bioinformatics resource such as GO or KEGG. With respect to func-

tional information, each gene has annotation profile, which is a vector holding binary

indicators of whether or not this gene is annotated to each functional category. Often

genes have distinct profiles, but there can be ties. An atom is defined to be a maximal

set of genes sharing a common profile, following Boca et al. (2010). Thus each atom i

corresponds to a profile xi, and these profiles are usefully arranged as the rows of an

incidence matrix X of dimension N × C, where N is the number of atoms (collapsed

from G genes, and N ≤ G) and C is the number of categories recorded in the resource.

Element xi,j = 1 if and only if genes in atom i are in category j, otherwise xi,j = 0. For

example, consider a simple system made of the first 4 KEGG pathways by ID order, as

summarized below. The gene level incidence matrix to present the functional profiles

has dimensions 145× 4, where 145 is the total number of genes and 4 is the number of

categories.

ID Functional Category Number of genes

00010 Glycolysis/Gluconeogenesis 62

00020 Citrate cycle (TCA cycle) 32

00030 Pentose phosphate pathway 26

00040 Pentose and glucuronate interconversions 25

By collapsing the identical rows the new incidence matrix is of dimension 7×4, where 7 is

the number of atoms. Each atom is a distinctive row representing an annotation profile.
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For example, the first 4 atoms contain genes that are annotated to only 1 pathway; there

are 7 genes involved in both Glycolysis/Gluconeogenesis and Citrate cycle (TCA cycle)

(the first two pathways) and not involved in the other two.

Atom i Number of genes (ni)

1000 44

0100 25

0010 14

0001 24

1100 7

1010 11

0011 1

Observed genomic data can take various forms, depending on the nature of the exper-

imental system. We focus here on the simplest case in which gene-level data are binary

indicators, for example representing which genes show significant differential expression

in a microarray study. The initial methods development is for binary gene-level data.

The binary case covers a large number of applications where gene lists are reported from

experimental data. We later extend the methods to multinomial outcomes. For the

binary case, we collapse gene-level data to the atom level by simple counting, and thus

denote Yi to be the number of positive genes at atom i, from among the ni genes at that

atom.
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For modeling purposes we treat genes sharing the same annotation profile as pro-

ducing independent and identical distributed data. Also notice that atoms are mutually

exclusive and any category can be decomposed into a certain number of atoms. Thus,

this meaningful parameterization does not only reduce dimensionality of the incidence

matrix but also assists computations and inferences of gene- and category level activities,

as we will see in later sections. Boca et al. (2010) introduced atoms in a decision-theoretic

analysis of the same basic data-integration problem. They used atoms differently from

us, in that they sought a subset of atoms (rather than functional categories) whose

activation could explain gene-level data.

3.3 Modeling approach

3.3.1 The role model

Our study is based on the following observation model. For all atoms i, i ∈ {1, 2, ..., N}

Yi|pi ∼ Binomial{ni, pi}

pi = p(xi) (3.1)

where Yi records atom level data, xi is the annotation profile of atom i ad pi is a success

probability. Simply, atoms deliver binomial data where the success probability depends

in some way on the annotation profile xi. We further assume that the Yi are mutually
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conditionally independent given {pi}. Thus the joint distribution of observations is:

P (Yi = yi, ∀i|{pi}) =
N∏
i=1

pyii (1− pi)ni−yi (3.2)

In particular, the role model asserts that pi depends on profile xi through latent

binary activation variable Ai:

pi = pRM(xi) =


α if Ai = 0

γ if Ai = 1

(3.3)

where

α = false positive measurement error

γ = 1− false negative measurement error.

System-wide parameters α and γ > α are both in (0, 1). The latent binary variable

Ai ∈ {0, 1} indicates atom activity, i.e. Ai = 1 means that atom i is active, or all

genes sharing the same annotation profile are active, and Ai = 0 otherwise. In this

paper, ”on/off” are also used to describe states of atoms or categories, as equivalence to

”active/inactive”. The model says that Yi has rate of γ if atom i is active, otherwise it

has rate α. Simply, active atoms have a higher success probability for observations than

do inactive atoms. We also call it ”Hot-cold” model to refer to the dichotomous success

rates delivered (Newton et al. (2012)).

Bauer et al. (2010) introduced this model for functional category analysis, and devel-

oped a method called model-based gene set analysis (MSGA). A key contribution was
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to relate latent atom activities {Ai} to activities {Zj} which are associated with the

functional categories in view. Specifically, the model asserts that an atom is active if

and only if at least one of the categories it is annotated to is active, or equivalently

Ai = max
j:xi,j=1

Zj = 1−
∏

j:xi,j=1

Zj. (3.4)

To each category j latent binary variable Zj ∈ {0, 1} indicates category’s activity, i.e.

Zj = 1 means that category j is active, and Zj = 0 otherwise. Active is just another

way to say non-null, and our inference seeks to identify non-null categories.

Bauer et al. (2010) used a Bayesian network to model gene response with category

activities. An important aspect of the model is that it starts with category activities.

Atom activities and observed data follow then, as opposed to almost all the other ap-

proaches. In Figure 13, from left to right there are different layers of dependency. First

of all, category level activities follow i.i.d. Bernoulli prior distributions with success rate

of π, where π means the proportion of active categories. It is another system parameter

that needs to be specified or estimated. Secondly, atom level activities are determined

by categories to which they are annotated. For instance, A1 is decided by Z1 and Z2

together. Finally, observations depend on both systematic factors which are atom activi-

ties and experimental factors which are false positive and false negative errors involved in

the process. For inferences, they proposed to rank categories by MCMC-approximated

marginal posterior probability P (Zj = 1|Y ).

Compared to one-at-a-time and sequential methods, MGSA is compelling in that (1)
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Figure 13: A Bayesian network to model gene response with category activities originally
proposed by Bauer et al. (2010). Here is a simple case with 3 categories and 3 atoms.

the role model conveniently incorporates complexity of the category structure and (2)

it utilizes structural information for posterior inference of category activities. MGSA is

made available in R package (Bauer et al. (2011)).

3.3.2 Activation hypothesis

A curious aspect of MGSA is its use of an i.i.d. Bernoulli prior for the category activities

{Zj}. Considering the possibly extensive overlap among categories, it seems plausible

that the activity variables ought to be related. Consider a category c that is fully

obtained in another category c′. We call c′ a parent set of c and c a child set of c′. This

parent-child relationship means that the child set has more specific biological function

than the parent set while the parent set has more general function. It routinely occurs

in GO. For category activities to have an observationally verifiable meaning, they ought
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to respect some basic logical constraints.

In category analysis, to say that ”biological property p is activated” is equivalent to

say that ”genes having property p are activated”. If parent category c′ is active, then all

genes with property c’ are active. It means that any subset of c’ is active, thus all genes

with property c are active, which leads to the activation of child category c. Notice that

the implication is not symmetric. If a subset is active it does not follow that a containing

set is active. On the other hand, if the child category c is inactive, meaning not all the

genes in c are active, it can be inferred that the parent c′ must also be inactive, as it

contains the inactive genes as well. This basic idea is conveyed in Bauer’s model, in

that a gene is active if and only if any of the categories to which it is assigned is active.

However, the constraint is not respected in the i.i.d. prior or the sampled posteriors

used in MGSA. For example, in a system with only two categories c and c′, MGSA’s

prior would falsely assign positive probability to the joint outcome (Zc, Zc′) = (0, 1). To

make progress, we require a clear definition of activation. The following assumption is

key.

Activation hypothesis: A category is active if and only if all atoms(genes) in the

category are active.

The activation hypothesis is equivalent to asserting that any subset of an active

category is itself active. It also implies that a set is active only if all its subsets are
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active. Since categories could be decomposed into a collection of atoms, the activation

hypothesis conveniently applies to atom activities by replacing ’genes’ with ’atoms’.

Also, the hypothesis is related to the true path rule used in GO, which conveys logical

constraints on collections of related categories. One might object to the activation

hypothesis for being too strict because it does not allow categories to be activated by a

subset of their genes. However, a rich collection of categories, for example in an extreme

case all categories constituting a power set of all genes in the system, the active categories

we ought to detect are the one with only all active genes and its child sets, rather than

any larger category. Furthermore, our language could get unduly complicated if we allow

active categories to contain inactive genes.

The collection of functional categories, through the incidence matrix X, thus imposes

a possibly large number of constrains on category activation states {Zj} under the

activation hypothesis. To proceed, denote space containing all conceivable combinations

of category activation states by Z0, i.e. Z0 = {Z = (Z1, Z2, ..., ZC) ∈ {0, 1}}, where C

is the number of categories. Then |Z0| = 2C . We define its subspace Z to include only

valid joint states, i.e.

Z = {Z ∈ Z0 : Z satisfies the activation hypothesis.}

Constraints from activation hypothesis are explicitly described below.
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• Denote by c ⊂ c′ that category c is a child of category c′, then

Zc = 0→ Zc′ = 0

Zc′ = 1→ Zc = 1;

• Let {c1, c2, ..., cm} be a group of active categories, i.e. Zcj = 1, j = 1, ...,m, and

∪mj=1cj the union of all genes annotated to these categories, then

Zc = 1, for ∀c ⊂ ∪mj=1cj.

Depending on category structure and true activations, sometimes Z = Z0. For

example, in an extreme case where all categories are mutually exclusive, each joint

state Z ∈ Z0 activates a unique subset of atoms. Thus, all states on Z0 respect the

activation hypothesis, i.e. Z = Z0. More generally, a sufficient condition for Z = Z0

is that for every j ∈ {1, 2, ..., C} there exists an ’singleton’ atom which is annotated to

only category j. This condition is obviously satisfied when there is no overlap between

categories. Compared to Z0, Z is typically smaller and its magnitude can be greatly

reduced when categories are heavily overlapping and form hierarchies (examples shown

later).

The original role model (Bauer et al. (2010)) gives mapping only from category level

to atom level activation states (3.4). The activation hypothesis is helpful because it

allows us to invert this mapping. First, consider the range of mapping (3.4)

A = {a = (a1, a2, ..., aN) : a = a(z), z ∈ Z.}
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where N is the number of atoms. We proved in Newton et al. (2012),

Proposition 3.1. Under the activation hypothesis, atom and category activations are

in one-to-one correspondence. For ∀Z ∈ Z, ∃A ∈ A, s.t.

Zj = min
i:xi,j=1

Ai =
∏

i:xi,j=1

Ai (3.5)

Ai = max
j:xi,j=1

Zj = 1−
∏

j:xi,j=1

Zj

and vice versa.

This property allows identifiability of category activations from atom activations,

hence consistency in a scenario when information of atoms goes up (Section 3.4.2). It is

also important to develop our computation methods (Section 3.5).

3.3.3 Priors over activation states

Denote by P0 the i.i.d. Bernoulli prior used in Bauer et al. (2010), i.e.

P0(Zj = 1) = π,∀j

where π ∈ (0, 1) is the success probability.

Let Z = (Z1, Z2, ..., ZC). The first prior we consider is, for z ∈ Z,

P1(Z = z) =
P0(Z = z)

P0(Z ∈ Z)

A similar approach is possible from the perspective of atom activations. Let A =

(A1, A2, ..., AN), for a ∈ A,

P2(A = a) =
P2′(A = a)

P2′(A ∈ A)
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where P2′ is the i.i.d. Bernoulli prior over A, i.e. P2′(Ai = 1) = π,∀i. We still use P2

for the corresponding marginalized distribution associated with categories.

Both priors P1 and P2 are conditional priors supported on activities that satisfy

the activation hypothesis. They are usually non-uniform and different from each other.

When π = 0.5, all joint states on discrete spaces Z and A are uniformly distributed

and their marginalized distribution associated with categories P1 and P2 are equivalent,

because of the one-to-one mapping between Z andA. In practice, choice of π is discussed

in Section 3.4.1.

With a prior distribution P (Z), the posterior distribution of category level activation

states given binary observational data in the role model is:

P (Z|Y ) ∝ P (Z)P (Y |Z) (3.6)

= P (Z)
N∏
i=1

P (Yi| max
j:xi,j=1

Zj)

= P (Z)
N∏
i=1

[
αyi(1− α)1−yi

]1−maxj:xi,j=1 Zj [γyi(1− γ)1−yi
]maxj:xi,j=1 Zj

where P (Y |Z) is from (3.2). In numerical examples, we consider both priors P1 and P2

and denote by SFCA1 and SFCA2 posterior inference using role model and these two

priors respectively.

3.3.4 Extending the role model

The basic setting of the role model may be limited by its restriction to binary gene-level

data and by an assumed homogeneity of responses within the activated and inactivated
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classes. Though the focus of this thesis is still dealing with binomial data, we show that

it could be conveniently extended in two different ways. The first extension is to allow

extra-binomial variations in the observation component and the second is to address

multinomial gene-level data.

Beta-binomial model

Currently in the role model, all inactivated states deliver conditionally independent

responses with success probability γ > β. This constrains the atom level counts Yi to be

Binomially distributed given the activation states. A more flexible and simple extension

within the general framework allows each gene to have its own Beta distributed success

probability, then atom level counts yi are more broadly distributed as Beta-binomial

counts. For this extension, we only need to add one more parameter c ∈ (0,+∞) to

control the variation of Beta distribution while remaining its mean at either α or γ give

the true category activation states.

pi = pBB(xi) ∼


Beta (cα, c(1− α)) if maxj:xi,j=1 Zj = 0

Beta (cγ, c(1− γ)) if maxj:xi,j=1 Zj = 1

(3.7)

When c = +∞, the Beta distribution reduces to constant and (3.7) is equivalent to (3.3);

when c→ 0, var(Yi) increases and reaches its maximum at c = 0. Posterior computations

may benefit from flattening out of the posterior distribution over activation states.
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Fitting multinomial data

When binary gene-level data from multiple studies are combined, we demonstrate how

the role model is extended to utilize gene-level multinomial record for category level

inferences. Take the meta-analysis data analyzed in Chapter 2 as an example, there

are in total 81 patterns in the observational Multinomial distribution. For each atom i,

record Yi becomes a vector of length 81 counting the number of genes falling into each

pattern. For each pattern m, there is a pair of parameter γm and αm to calibrate the

hot and cold delivery of success probabilities given the category activation states.

Let Yi = {Yim}, γ = {γm}, α = {αm}, m = 1, 2, ...,M .

Yi ∼ Multinomial(ni, pi1, pi2, ..., piM) (3.8)

pim = pMul
m (xi) =


αm if maxj:xi,j=1 Zj = 0

γm if maxj:xi,j=1 Zj = 1

3.4 Operating characteristics of posterior inference

3.4.1 Setup

Compared to MGSA, our proposed SFCA restricts computations to a smaller but highly

constrained space. It requires more sophisticated computational methods to deploy pos-

terior inference. An important question to ask is what would be the benefits from taking

this extra effort? In this section, operational characteristics of both SFCA and MGSA
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are compared via simulation studies in relatively simple systems enabling exact poste-

rior computations. We find that for overlapping and hierarchical category structures (1)

SFCA generates consistent posterior inference while MGSA fails in some situations; (2)

SFCA is more efficient in detecting weak signals in the data; (3) SFCA provides useful

inferences on joint category activation states.

First we consider two artificial examples that display properties relevant to more

realistic scenarios. Example I presents a hierarchical structure where all categories have

parent-child relationship with others. It is used to show that MGSA can be inconsistent

in the sense that posterior distributions do not converge to true states. Example II

resembles a system with highly overlapping categories, where SFCA detects weak sig-

nal more efficiently than MGSA. The third system is constructed with GO categories

and represents overlapping and hierarchical categories more typical of practice. Similar

operating characteristics are seen in this more realistic case.

In each example, true activation states {Ztrue, Atrue} and parameters {α, γ} are fixed.

Size of each atom ni is gradually increased to a large number in each scenario. By the

Law of large numbers, when ni → +∞, ∀i,

Yi
ni
→


α if Atrue,i = 0

γ if Atrue,i = 1

It means that the level of signal in the data increases accordingly and truly on/off atoms

are to be identified. We will go over this point and provide proof at the end of this

section. We set parameters α = 0.45, and γ = 0.55 in most cases to represent the
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situation where both false positive and false negative errors are as high as 0.45 and

renders the true signal weak at small atom size. In the first two examples, atom sizes

are equal and changed from 10 to 1000 in different scenarios. In the third example, true

sizes of GO terms are amplified proportionally from 1 to 1000 times.

Data sets are simulated under each scenario by following the role model (3.3). First,

activation state Ai of atom i is decided by the fixed category level states and the incidence

matrix. Then, data point Yi is sampled from Binomial distribution with size being size

of the atom ni and success probability being either γ if the atom is on or α if the atom

is off. As the examples are stylized, we are able to calculate all prior and posterior

probabilities numerically. We denote by SFCA1, SFCA2 and MGSA analysis under

prior P1, P2 or P0 respectively.

On choice of parameter π

Under P0 prior probability for each category being active is π, while under P1 and P2 the

prior probabilities are not constant over categories. In order to make MGSA and SFCA

comparable, π needs to be carefully chosen for each prior. Denote by πk the parameter

value chosen for prior Pk, k = 0, 1, 2. In MGSA, π0 is chosen to be the proportion of

on categories in the true joint state Ztrue, which is also the MLE of π knowing the true

states. Following this idea, we could simply let π1 = π0 and π2 equal the proportion of

on atoms in Atrue. However, they are not controlled under some common criteria to be

comparable. Instead, the following adjustment is adopted. Note that given incidence
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matrix X the mean of prior probabilities Pk(Zj = 1) is a function of only πk. Let

Fk(π) = 1
C

∑C
j=1 Pk(Zj = 1), k = 0, 1, 2. It is easy to see that F0 of MGSA is an identity

function, i.e. F0(π0) = π0. For SFCA, πk is chosen so that the mean of prior probabilities

is also π0, i.e.

πk = F−1k (π0) (3.9)

Note that this is not the only way to choose π for priors, but it is useful to help compare

the operating characteristics of posterior inference generated by them. We apply this

method in all following examples.

Maximum active set

One direct conclusion from activation hypothesis is that if a category j is on, all its

children i.e. categories that are proper subsets of j are on. If there is a large category

being active in a joint state, presenting this category and all its children being on is just

equivalent to knowing this large category is on. We call a category a maximum active

set in a joint state if it is on and does not have any active parent. Any valid joint state

with at least one category on has at least one maximum active set. Maximum active sets

can be overlapping and altogether present information that can not be contained by any

single category. If all the active categories are mutually exclusive then all of them are

maximum active sets. Marginal probability of each category being a maximum active

set is useful in addition to marginal probability of being active.
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For small-scale examples, we can derive prior and posterior probability of each cate-

gory being a maximum active set analytically. Let

Wj = I(category j is a maximum active set)

= I(Zj = 1 and category j does not have any active parent category)

Then prior and posterior probability of each category being a maximum active set are:

P (Wj = 1) =
S∑
s=1

W s
j P (Zs)

P (Wj = 1|Y ) =
S∑
s=1

W s
j P (Zs|Y )

where W s
j indicates if category j is a maximum active sets in joint state Zs, and S = |Z|.

Bayes factor

Due to overlapping and hierarchical structure, P1 and P2 in most cases are non-flat.

Therefore, it is important to consider statistics that take into account both prior and

posterior information when prioritizing categories, for example, the Bayes factor. Bayes

factor of category j being active is as follows.

BFZj =
P (Zj = 1|Y )

P (Zj = 1)
(3.10)

P0 is flat regardless of the category structure, so ranking by Bayes factor is the same as

ranking by marginal posteriors. Similarly, Bayes factor of category j being a maximum

active set is

BFWj
=
P (Wj = 1|Y )

P (Wj = 1)
.



76

Performances of different priors are compared in terms of the statistics introduced

above.

3.4.2 Posterior consistency

Example I (Table 8) shows an incidence matrix that represents a hierarchical structure.

There are 15 categories each containing a subset of the 4 atoms. Category 15 is the

largest and also a parent of the rest. Due of the hierarchical structure, only 16 out of

215 combinations of category activation states respect activation hypothesis, i.e. S =

|Z| = |A| = 16 while |Z0| = 215. Consider true category level joint state be Ztrue =

(1, ..., 1︸ ︷︷ ︸
7

, 0, ..., 0︸ ︷︷ ︸
8

) and corresponding atom level Atrue = (1, 1, 1, 0). Essentially, the first 7

categories activate the first 3 atoms.

Table 8: Incidence matrix representing a hierarchical category structure in Example I.

atom/category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
2 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
3 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
4 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Figure 14 shows functions Fk, k = 0, 1, 2 with settings of Example I. Given Ztrue, π0

is estimated as 7/15 ≈ 0.47. π1 and π2 are solved from equations Fk(π) = π0, k = 1, 2.

In order to keep the mean prior probabilities at the same level, π1 is slightly boosted

from 0.47 to 0.54; and π2 is pressed from the proportion of on atoms which is 3/4 = 0.75

to 0.68.
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Figure 14: Example I: Mean prior probability Fk(π) as a function of π. π1 and π2 solved
to achieve mean prior probability at π0.
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Consistency in posterior probability of each category being active

With π taking the chosen value as described above, the other two parameters are fixed

at α = 0.45, and γ = 0.55 to represent high level of noise. We change the size of

atom ni from 10, 100 to 1000 to increase the level of signal in the data and compare

performances of methods at each signal level. At each ni, 1000 data sets are simulated.

Marginal posterior probability P (Zj = 1|Y ) are calculated under all 3 priors.

Marginal posterior calculations for all 3 methods are illustrated in Figure 15. Atom

size increases from 10 to 1000 from top to bottom panel. Red blocks represent ’sig-

nal’, posterior probabilities of the 7 truly on categories being active, and green blocks

represent ’noise’, posterior probabilities that falsely call the 8 truly off categories to be

active. We see that when atom size is 10 and 100, SFCA1 and SFCA2 always perform

better than MGSA to separate signal and noise. When atom size becomes 1000, noise

converges to 0 in all methods but signal converges to 1 only in SFCA methods but not

MGSA. It suggests that MGSA estimator for posterior probability P (Zj = 1|Y ) is not

consistent. Table 9 lists mean posterior probability for the 7 truly on categories from

1000 simulations and atom size is 1000. The inconsistency is due to the hierarchical

structure of these categories as illustrated in Figure 16. Recall that Atrue = (1, 1, 1, 0).

Without activation hypothesis there are multiple invalid configurations of joint states

on Z0 that activate the first 3 atoms, for example, any joint state with category 7 and

one of its children on. With all these invalid states sparing probabilities, MGSA fails

in identifying truly on categories. We find that with truly active categories forming
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Figure 15: Example I: Box plot of posterior probability of each category being active
by atom size and method. Red blocks represent truly on categories and green blocks
represent off categories. ”x” marks mean of the distribution.
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parent-child relationship with other sets, MGSA is not consistent in estimating poste-

rior probability P (Zj = 1|Y ). Our demonstration is based on numerical evaluation of

posterior inference on simulated data in a very simple system. However, further analysis

supports a general claim.

Table 9: Mean posterior probability of the 7 truly on categories being active from 1000
simulations of Example I. Each atom is of size 1000.

category # of atoms mean posterior
SFCA1 SFCA2 MGSA

1 1 1.00 1.00 0.49
2 1 1.00 1.00 0.49
3 2 1.00 1.00 0.53
4 1 1.00 1.00 0.49
5 2 1.00 1.00 0.53
6 2 1.00 1.00 0.53
7 3 1.00 1.00 0.57

Figure 16: Hierarchical structure of category 1-7 of Example I. Arrows start from parent
categories to direct children categories (no children in between).



81

Consistency in posterior probability of each category being a maximum active

set

According to definition of maximum active set, in Ztrue of Example I, category 7 is the

only maximum active set since its only parent category 16 is inactive. Figure 17 shows

box plot of posterior of each category being a maximum active set from 1000 simulations.

The simulation results unsurprisingly show that MGSA fails to identify category 7

as the only maximum active set with posterior of 1 when atom size is big enough. In

Figure 17, P (W7 = 1|Y ) = 1 in the top two panels representing SFCA methods, while

in the bottom penal P (W7 = 1|Y ) = 0.57 and stabilizes at this value when atom size is

increased further (not shown when atom size increases). Also, P (Wj = 1|Y ) is supposed

to be 0 for all other categories, which is violated by MGSA. Thus, with existence of

parent-child relationship between categories MGSA might not able to provide consistent

inference to posterior probability of each category being a maximum active set.

Proof of consistency

In the end, we provide a simple proof of consistency for SFCA and explain why it fails in

MGSA. Given true category activation states Ztrue ∈ Z, it maps to a unique true atom

activation states Atrue ∈ A by Proposition 3.1. Suppose parameters {α, γ} are known.

The role model (3.3) can be written as

pi = α(1− Atrue,i) + γAtrue,i.
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Figure 17: Box plot of posterior of each category being a maximum active set from 1000
simulations in Example I. Each atom is of size 1000. Each panel represents a method.
”x” marks the mean of the distribution.
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Since for ∀i, Yi/ni is the MLE of pi,
Yi/ni−α
γ−α is the MLE and also an consistent estimator

of Atrue,i. By finiteness of the system of atoms, we become confident in the true atom

level activations under all priors Pk, k = 0, 1, 2,

Pk (A = Atrue|Y )→ 1, as min(ni)→ +∞

where Y = {Yi}, by posterior consistency in finite spaces (Schervish (1997)). For SFCA,

because of the one-to-one mapping between category and atom level activation states,

we also have k = 1, 2,

Pk (Z = Ztrue|Y )→ 1, as min(ni)→ +∞

However, for MGSA there maybe no unique inverse of Atrue, depending on the particular

overlapping structure of categories and the true state. In such cases, denote by Z∗ the

set of joint category level joint states that Atrue maps to,

Z∗ =

{
Z = (Z1, Z2, ..., ZC) ∈ Z0 : Zj = min

i:xi,j=1
Atrue,i

}
⊂ Z0

then Ztrue ∈ Z∗, but there are also other Z ∈ Z∗ and Z 6= Ztrue. For MGSA,

P0 (Z ∈ Z∗|Y )→ 1, as min(ni)→ +∞.

but different states in Z∗ cannot be distinguished. Curiously, this carries over to

marginal posterior summaries on activated categories {j} in such a way that for some

sets j,

P0 (Zj = 1|Y )→ φ, as min(ni)→ +∞

where φ ∈ (0, 1).
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3.4.3 Efficiency

Other than consistency, SFCA is more efficient in detecting subtle signals in the data

compared to MGSA. We demonstrate this point in the case when consistency issue does

not occur. Thus, at a fairly small atom size, method that performs better in separating

signals from noise is claimed to be more efficient.

Table 10 presents incidence matrix for Example II. There are 11 atoms constituting

7 highly overlapping categories. The relatively high rate of pairwise overlap among

categories is intended to model redundancies in GO. Only 30 out of 27 = 128 category-

level joint states are valid, i.e. S = |Z| = 30. Category 1 and 7 are set to be truly

on and activate all atoms except for atom 6, i.e. Ztrue = (1, 0, ..., 0︸ ︷︷ ︸
5

, 1) and Atrue =

(1, ..., 1︸ ︷︷ ︸
5

, 0, 1, ..., 1︸ ︷︷ ︸
5

).

Table 10: Incidence matrix of a highly overlapping category structure of Example II.

atom/category 1 2 3 4 5 6 7
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 1
3 0 0 0 0 1 1 1
4 0 0 0 1 1 1 1
5 0 0 1 1 1 1 1
6 0 1 1 1 1 1 0
7 1 1 1 1 1 0 0
8 1 1 1 1 0 0 0
9 1 1 1 0 0 0 0
10 1 1 0 0 0 0 0
11 1 0 0 0 0 0 0

Prior probability of each category being active with π at chosen values are illustrated
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in Figure 18. Due to the structure, category 4 which has the most overlap with other

categories has the highest prior probability, while active category 1 and 7 have the

smallest priors. We know that prior is most influential to posterior inference when true

signal in the data is vague compared to noise. This effect of prior becomes weak when

signal gets stronger. Thus, it is useful to compare Bayes factor which accounts for both

prior and posterior.

To provide a thorough comparison, we show box plots of both posterior and Bayes

factor at different atom size in Figure 19. The left column illustrates posterior of each

category being active by method and at three different atom sizes. On the right are

corresponding plots for Bayes factors. If a method provides consistent inference of

marginal posteriors, when the atom size is big enough, we should observe (1) on the

left the red and green bar converges to 1 and 0 respectively, (2) on the right the blue

bar converges to 0 and the orange bar converges to some positive value (1/P (Z1 = 1)).

We see that it is confirmed by the two plots at bottom, which means all three priors

compared in this setting are consistent.

The top two plots represent the case where signal is weakest. As expected, in both

SFCA methods truly on categories have smaller mean posterior probabilities than truly

off categories due to the structure, but Bayes factor is able to recover the true ordering.

Mean of all Bayes factors are above 1, meaning averaged posteriors are boosted from

corresponding priors. In general all priors perform similarly, and SFCA1 shows a slightly

wider gap between mean Bayes factors of on and off categories.
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and π2 solved to achieve mean prior probability at π0. Lower: prior probability of each
category being active with π at chosen values.
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The efficiency gain of SFCA1 compared to MGSA is demonstrated in the middle

panels where atom size increases. Note that despite the small prior probabilities of the

truly on categories, SFCA1 performs best in separating mean posterior probabilities and

Bayes factors of the on and off groups. Also, both mean and median Bayes factor of

truly off categories start to drop below 1 only in SFCA1. When the atom size is 100,

SFCA1 shows absolute advantages in differentiating signal from noise and SFCA2 starts

to perform better than MGSA.

3.4.4 Inference on joint activation states

In Bauer et al. (2010), it is suggested that 0.5 be used as a cutoff value. Categories with

marginal posterior probability higher than 0.5 are selected as final results, meaning they

have more chance to be on than off. A question to ask is that whether a list of categories

with highest marginal posteriors is the best combination to explain the data. We will

show in this section that relying on only marginal posterior inference has limitations.

For this reason, inference on joint activation states is very useful in addition to marginal

inference.

Incidence matrix of Example II is used again here with artificial data in the last two

columns of Table 11. ni is the size of atom i, and data point yi is the number of genes

observed as active. The bottom two rows give a category level summary on size and

number of active genes. Suppose we don’t know the true activation states and study
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Figure 19: Example II. Left column: box plots of posterior of each category being active
by method, at different atom sizes. Right column: box plots of marginal Bayes factor
by method, at different atom sizes. Red and orange bars represent categories 1 and 7
which are truly active.
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this example with the following parameters to roughly match the observations.

α = 0.5, γ = 0.75;

π0 = π1 = π2 = 0.5.

Table 11: Example II: incidence matrix and basic data.

atom/category 1 2 3 4 5 6 7 yi ni
1 0 0 0 0 0 0 1 1 2
2 0 0 0 0 0 1 1 1 2
3 0 0 0 0 1 1 1 1 2
4 0 0 0 1 1 1 1 2 2
5 0 0 1 1 1 1 1 2 2
6 0 1 1 1 1 1 0 2 2
7 1 1 1 1 1 0 0 2 2
8 1 1 1 1 0 0 0 2 2
9 1 1 1 0 0 0 0 1 2
10 1 1 0 0 0 0 0 1 2
11 1 0 0 0 0 0 0 1 2

# active genes 7 8 9 10 9 8 7
size 10 10 10 10 10 10 10

Note that when π1 = π2 = 0.5, SFCA1 and SFCA2 are equivalent. Marginal prior

and posterior probabilities are summarized in Table 12. From posterior estimations we

see that three categories {3,4,5} would be named on a short list of categories targeting

no more than 50% posterior false discovery rate. In fact, the gene-level activity data

are well explained using only the activation of category 4. Actually the joint state with

only Z4 = 1 is the maximum a posteriori (MAP) estimate of the joint state as shown in

Table 13. Each joint state is presented as a vector of individual category states. Out of

30 valid joint states, we list the top 10 with highest marginal posterior probabilities (as
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well as Bayes factors) in SFCA. We know that the MAP estimate is the Bayes estimate

under 0 -1 loss, while a Hamming-loss delivers the estimate {3,4,5} (e.g., Carvalho

and Lawrence (2008)). It is not a major issue to decide which one is better, but having

access to all sorts of posterior summaries will surely give us a better understanding of the

high-dimensional parameter space. With one-to-one correspondence between atom and

category level joint states, SFCA is able to generate meaningful inferences on category

level joint states from atom level input, which is not available from MGSA.

Table 12: Example II: Marginal prior and posterior probability of each category being
active at fixed parameters α = 0.5, γ = 0.75, π0 = π1 = 0.5.

MGSA SFCA
category # on genes/size P0(Zj = 1) P0(Zj = 1|Y ) P1(Zj = 1) P1(Zj = 1|Y )

1 0.7 0.5 0.39 0.27 0.16
2 0.8 0.5 0.46 0.40 0.35
3 0.9 0.5 0.52 0.50 0.58
4 1.0 0.5 0.58 0.53 0.78
5 0.9 0.5 0.52 0.50 0.58
6 0.8 0.5 0.46 0.40 0.35
7 0.7 0.5 0.39 0.27 0.16

3.4.5 An example in GO

Last but not least let us look at a more realistic example. GO presents a complex

structure that makes it difficult to detect subtle signals. In this part, Example III is

constructed by GO categories of interest and represents a typical overlapping and hier-

archical GO structure. MGSA and both SFCA priors are applied to analyze simulation
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Table 13: Example II: prior and posterior probability of joint states with highest poste-
riors in SFCA at fixed parameters α = 0.5, γ = 0.75, π0 = π1 = 0.5.

rank joint state prior posterior
1 0001000 0.033 0.104
2 0011000 0.033 0.078
3 0001100 0.033 0.078
4 0111000 0.033 0.059
5 0011100 0.033 0.059
6 0001110 0.033 0.059
7 1111000 0.033 0.044
8 0111100 0.033 0.044
9 0011110 0.033 0.044

10 0001111 0.033 0.044

data sets and their performances are compared in terms of consistency, efficiency and

sufficiency in recovering the truth.

Category structure

In the meta-analysis presented in Chapter 2, there are 614 genes jointly confirmed by

4 studies of interest. By applying one-at-a-time gene set enrichment analysis method

allez (Newton et al. (2007)), 19 GO terms are reported (Hao et al. (2012)) as most

enriched (p value < 10−6) with the confirmed genes. Annotation profiles of these 19

GO terms are extracted from Bioconductor database org.Hs.eg.db (version 2.7.1 up to

Sep 9, 2012) and collapsed to create an atom level incidence matrix to be used by our

analysis. Identical columns indicating the same atom content are collapsed to one. In the

end, there are 17 categories left in the system containing 28 atoms. When dealing with

overlapping structure, one-at-a-time category analysis methods tend to select a list of
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correlated categories with related functions, which is the case in this example. GO terms

listed in Table 14 show that they are involved in majorly two functions: intracellular

transportation and endocytosis. The GO are accordingly separated into two mutually

exclusive groups A and B, each relates to only one of the two functions. As illustrated

in Figure 20, hierarchical structures are formed within each group with arrows pointing

from parent categories to their direct children categories. Category 11 does not have

any children or parent in this system but overlaps with every other category in group

A. It is connected to the bottom category in each hierarchy by a dashed line.

Figure 20: Hierarchical and overlapping category structure formed by 17 GO terms
(labeled by indices in Table 14) in Example III. Arrows point from parent categories
to direct children categories. Dashed lines connect overlapping categories. Categories
of group A all are involved in intracellular transportation and group B is related to
endocytosis. They are mutually exclusive.
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Table 14: Information on 17 GO terms studied in Example III.

Index ID term # atoms # genes group

1 GO:0006900 membrane budding 11 32 A
2 GO:0006901 vesicle coating 10 31 A
3 GO:0048194 Golgi vesicle budding 7 14
4 GO:0048199 vesicle targeting, to, from 9 25 A

or within Golgi
5 GO:0048200 Golgi transport vesicle coating 6 13 A
6 GO:0030137 COPI-coated vesicle 7 20 A
7 GO:0030660 Golgi-associated vesicle membrane 8 35 A
8 GO:0030663 COPI coated vesicle membrane 5 16 A
9 GO:0030120 vesicle coat 7 42 A
10 GO:0030126 COPI vesicle coat 3 14 A
11 GO:0006890 retrograde vesicle-mediated transport, 6 24 A

Golgi to ER
12 GO:0006818 hydrogen transport 7 79 B
13 GO:0015992 proton transport 6 77 B
14 GO:0016469 proton-transporting two-sector 5 45 B

ATPase complex
15 GO:0015985 energy coupled proton transport, 2 18 B

down electrochemical gradient
16 GO:0033176 proton-transporting V-type 2 21 B

ATPase complex
17 GO:0033179 proton-transporting V-type ATPase, 1 6 B

V0 domain
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Simulation studies

Similarly to previous examples we fix α = 0.45 and γ = 0.55 to set high false positive

and false negative errors in the system. An amplification index a is adopted to propor-

tionally increase atom size and accordingly the level of signal in the data. For example

when a = 1 atoms are at their original sizes; when a = 1000, all atom sizes are increased

by 1000 times. At each index a, 500 data sets are simulated and analyzed by SFCA

and MGSA. Two scenarios are designed. The first one demonstrates MGSA’s inconsis-

tency in posterior inference. The second case is to show SFCA’s efficiency in detecting

subtle signals compared to MGSA. Instead of analytically developed calculations we use

MGSA’s R package (Bauer et al. (2011)) to generate its results. By default MGSA

samples 5 chains of length 106, and reports the average marginal posterior probabilities

over 5 chains as the final. We find that results from MGSA’s R program are always very

close to analytical calculations (marginal deviance in this example is controlled under

10−3).

Categories 6 and 7 are set to be active in the first scenario. According to activation

hypothesis, their children sets 8 and 10 are also active. For MGSA, π0 = 4/17 = 0.24. By

setting mean prior probability of categories being active to 0.24, we solve that π1 = 0.33

and π2 = 0.41. Both categories 6 and 7 are maximum active sets of the true joint state.

Figure 21 illustrates marginal posterior calculations when atom size is amplified by 1000

times. We see that MGSA is able to identify only categories 6 and 7 as active with

marginal posterior probability 1, but misses the two active children sets 8 and 10. It
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confirms that with truly active categories involved in parent-child relationships, MGSA

suffers from identifiability issue and generates inconsistent posterior inference.

Another interesting finding is that when signal is weak MGSA might point to irrel-

evant category as being important. Let atoms stay at their original sizes to represent

the case with weak signal in the data. Figure 22 shows box plots of Bayes factors

for categories being a maximum active set from 500 simulations. Each panel repre-

sents results from one prior. Because the prior for each category to be a maximum

active set is not flat due to the structure, we rank categories by averaged Bayes fac-

tor P (Wj = 1|Y )/P (Wj = 1) over simulated data sets. We see that both SFCA1 and

SFCA2 are able to rank categories 6 and 7 at the top with barely any other category’s

Bayes factor exceeding 1. For MGSA, category 7 is at the second place. Categories 15,

16 and 17 which belong to group B are ranked higher than category 6. Since categories

in group A and B are mutually exclusive and each gourd is related to a different function,

prioritizing irrelevant categories as important might be even worse.

The second scenario only has one truly active category which is category 11, and it is

also the only maximum active set. Parameters π for each prior are π0 = 0.06, π1 = 0.14,

and π2 = 0.31. Although parent-child relationship exists in the system, under this

structure MGSA is able to identify category 11 being active and also the only maximum

active set as shown in the bottom panel of Figure 23. With consistency of posterior

inference guaranteed, we are able to compare efficiency of methods in detecting signal

from noise. Starting from the top panel, SFCA1 converges fastest to the truth (bottom
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Figure 21: Marginal posterior probabilities by true state and method. Upper: probabil-
ity on each category being active. Lower: probability on each category being a maximum
active set. Red and orange bars all represent categories 6 and 7.
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panel) in terms of both marginal posterior probability and Bayes factor. SFCA2 does

not perform well in this case. Posteriors of both truly on and off groups converge slower

to their limiting probabilities compared to SFCA1 and MGSA.

In the end let us compare characteristics of prior calibrations of SFCA1 and SFCA2

indicated by this example. Figure 24 illustrates prior probabilities of the 17 categories

in each method. Compared to MGSA’s flat distribution, both SFCA methods separate

priors in two distinct groups. The average prior probabilities of all three methods equal

0.06 here. For SFCA1, categories {5, 10, 11, 15, 17} have priors above average. Figure

20 shows that they are the ones at bottom of each hierarchy (categories 5, 10, 15, 17) or

does not belong to any hierarchy but overlaps most of its content with bottom categories

of hierarchies (category 11). Sitting at the bottom of a hierarchy means this category

certainly has fewer atoms than its parents but not necessarily compared to others. For

instance, category 5 has 6 atoms which ranks in the middle of the 17 categories. Since

one direct conclusion of activation hypothesis is that if a category is on then all its

children are on, the lower level a category is located in a hierarchy the more likely it is

active a priori.

SFCA2 assigns higher prior probabilities to categories {10, 15, 16, 17} which have the

smallest numbers of atoms (Table 14). Each atom is a group of genes sharing a common

annotation profile, the more categories an atom is annotated to the less specific this

atom is in terms of functions. Activation hypothesis can also be interpreted in terms

of atoms: if an atom is on and denote by C all categories it is annotated to, then less
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Figure 23: Example III. Left column: box plots of posterior of each category being
active by method. Right column: box plots of marginal Bayes factor by method. Red
and orange bars represent category 11 which is the only truly active set. Atom size is
proportionally amplified by up to 50 times.
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specific atoms that are also annotated to C are on. It suggests that another hierarchical

system can be constructed to illustrate atom activities. In such a hierarchical graph,

each node is an atom and a parent atom is annotated to more categories and less specific

in functions than its children. This perspective is discussed with more details in Newton

et al. (2012) and skipped here.

The purpose of listing both interpretations of activation hypothesis is that they relate

to respectively SFCA1 and SFCA2 . We are not at a position to conclude which prior

is better, because they are literally equivalent and the differences come from structure

of specific examples and the choice of parameter π. Since P1 used for SFCA1 has more

straightforward definition and is similar to MGSA’s prior P0, in further demonstrations

we present results from only SFCA1 to compare with MGSA.

3.5 Computation via Markov Chain Monte Carlo

method

3.5.1 General description

Category analysis is developed eventually to deal with large scale genome-wide prob-

lems where posterior inferences can not be derived analytically. MGSA (Bauer et al.

(2010)) has developed a Metropolis-Hasting algorithm for marginal posterior inferences.

However, this method is not able deal with the activation hypothesis and generates only
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π1 = 0.14, and π2 = 0.31. Category 11 is set to be the only active set.
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marginal posterior summaries. Thus, it is our task to develop a computational scheme to

account for activation hypothesis and generate different kinds of posteriors summaries.

We also adopt Metropolis-Hasting (M-H) algorithm to draw samples from the target

distribution P (Z|Y ). MGSA derives posterior inferences for parameters ζ = (π, α, γ)

along with the random walk over configurations of joint states. For SFCA, we fix ζ first

and generate posterior inference of joint states. We think that these parameters should

not be conjectured along with category analysis, but estimated from external sources

of information and assist category analysis. If the observational data is a list of gene

labeled as interesting, α means the false positive rate existing in the gene lists and 1−γ

is the false negative error measurement. They should be controlled at a certain level

when the gene list is generated. The choice of π is more arbitrary but it should reflect

how concise we want the final category list that represents the genomic data to be.

Given the current joint state Z = {Zj}Cj=1, the M-H algorithm proposes a neigh-

bor state Z∗ according to a proposal distribution Q(·|Z). Accept the proposal with

probability Paccept which is defined as:

Paccept = min(1, r)

where r =
P (Z∗|Y )Q(Z|Z∗)
P (Z|Y )Q(Z∗|Z)

=
P (Z∗)P (Y |Z∗)Q(Z|Z∗)
P (Z)P (Y |Z)Q(Z∗|Z)

, (3.11)

where P (Z) is the prior, and P (Y |Z) is the probability of data given category activities.

Formula (3.6) gives an explicit expression of P (Y |Z) with data being binary records. It
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could be conveniently extended to beta-binomial model with (3.7) or to fit in multinomial

data with (3.8). In practice, randomly generate u ∼ Unif(0, 1), and accept Z∗ if r > u.

This procedure is iteratively applied to collect samples. A burn-in period consisting a

certain number of iterations is used to initialize the chain.

If we replace P (Y |·) by 1 in (3.11), the ratio r becomes:

r =
P (Z∗)Q(Z|Z∗)
P (Z)Q(Z∗|Z)

(3.12)

hence M-H algorithm can be applied to sample from P (Z) as a target distribution. It is

trivial for prior is P0, but it is useful to estimate P1 and P2 which are not easy to derive

analytically, especially when dimensionality is large and even the magnitude of Z is not

accessible. We will use this method to study different priors in simulations and real data

analysis.

3.5.2 Proposal

MGSA proposes a new joint state by either toggling the ”on/off” state of one category

or switching a pair of states with one on and one off. This proposal is straightforward

and easy to apply, however, with constraints imposed by the activation hypothesis, it

generates invalid states. Possible ways to fix it include following this proposal and (1)

reject all invalid states and keep only valid ones, (2) convert invalid states to valid ones,

and (3) develop new proposal to directly generate valid states. We claim that the first

two solutions are inefficient or unrealistic given the dimensionality of category analysis.
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When C is big and there are a large number of overlapping categories, most combinations

of binary states are invalid. Thus, it would be extremely inefficient for method (1) to

move to valid states. Method (2) requires the mapping between 2C possible joint states

and all valid states in Z to calculate the jumping probabilities, which is also intractable

when C is big. Thus, we resort to method (3) to directly propose valid states that is

local to the current state.

Updating rules

Before describing the proposal, we need to introduce an operation that corrects an invalid

joint state to valid. Any given configuration of a joint activation state has two equivalent

presentations: category level joint state and atom level joint state denoted by Z and A

respectively. If this state is invalid, i.e. Z /∈ Z or A /∈ A, correction can be operated in

two ways. First we could start with Z, map it to A by (3.4) to obtain a joint atom level

activation state A∗, then map A∗ back to Z by (3.5) to get a new category level joint

state Z∗. Finally, update Z to Z∗ and A to A∗. We call this operation a max-min rule as

we obtain atom level joint state by performing maximization followed by a minimization

to get an updated category level joint state. Similarly, we could define a min-max rule

by starting with A: map it to Z by (3.5) to get Z∗, then map Z∗ to A by (3.4) to obtain

A∗. Since the mapping between Z and A is one-to-one, either max-min or min-max

rule guarantees to generate valid states. Whether new states generated by these two

rules are the same or not is decided by incidence matrix X which presents the structural
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information. These operations can be mathematically expressed as follows.

Max-min rule:

1. Start with Z = {Z1, Z2, ..., ZC} and A = {A1, A2, ..., AN};

2. max step: A∗i = maxj:xi,j=1 Zj, i = 1, 2, ..., N .

3. min step: Z∗j = mini:xi,j=1A
∗
i , j = 1, 2, ..., C.

4. Update joint states to Z∗ = {Z∗1 , Z∗2 , ..., Z∗C} and A∗ = {A∗1, A∗2, ..., A∗N}.

Min-max rule:

1. Start with Z = {Z1, Z2, ..., ZC} and A = {A1, A2, ..., AN};

2. min step: Z∗j = mini:xi,j=1Ai, j = 1, 2, ..., C.

3. max step: A∗i = maxj:xi,j=1 Z
∗
j , i = 1, 2, ..., N .

4. Update joint states to Z∗ = {Z∗1 , Z∗2 , ..., Z∗C} and A∗ = {A∗1, A∗2, ..., A∗N}.

Detailed proposal

First let us introduce some notation. Combine Z and its corresponding A and denote

by S = (Z,A) category and atom activities. Given incidence matrix X, let K be the

number of 1’s in X. Then there are K index pairs where each consists of a category

index j and one of its atoms’ index i(j). If the kth pair is (j, i(j)), define Sk =
(
Zj, Ai(j)

)
to be the current states of category j and one of its atom, and S/Sk to be current states
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of all other categories and atoms. We see that Sk is uniquely decided by the current

state S, ∀k = 1, 2, ..., K.

Now consider a mixture of individual proposals where each is associated with a

particular pair of category and atom. For example, the kth proposal is designed to

operate on Sk. It is easy to see that Sk can only take value from {(0, 0), (0, 1), (1, 1)}.

It can not be (1, 0) because according to activation hypothesis, when Zj = 1 all atoms

annotated to category j are on, hence Ai(j) = 1. Define σk to be the set of possible

values for the pair other than its current value and denote by

σk = {(0, 0), (0, 1), (1, 1)}/ (Sk))

= {s1, s2}.

The proposal associated with index pair k is described as follows.

1. Replace Sk with s1, and remain Z/Zk to make a temporary joint state S ′ = (Z ′, A′)

where S ′k = s1.

2. Apply one of the updating rules (either min-max or max-min) to S ′ to generate a

valid joint state S ′′ = (Z ′′, A′′) and extract S ′′k .

3. If S ′′k = s1, let S∗1 = S ′′. Otherwise, S∗1 = S.

4. Apply steps (1)-(3) to s2. Denote by S∗2 the resulting joint state.

5. New state S∗ is sampled from proposal distribution Qk(·|S) given the current state

S.
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• If S∗1 6= S and S∗2 6= S, (in this case, S∗1 6= S∗2 since s1 6= s2)

Qk(S
∗|S) =



1
2

if S∗ = S∗1

1
2

if S∗ = S∗2

0 otherwise.

• If S∗1 6= S, S∗2 = S (or S∗2 6= S, S∗1 = S),

Qk(S
∗|S) =


1 if S∗ = S∗1 (or S∗2)

0 otherwise.

• If S∗1 = S∗2 = S,

Qk(S
∗|S) =


1 if S∗ = S

0 otherwise.

Similarly we can obtain Qk(·|S∗) by repeating these steps and calculating jumping prob-

ability from S∗ to exactly the original state S. At each iteration of this algorithm, an

index k is sampled from {1, 2, ..., K} with probability 1/K, and then a new state S∗ is

proposed from Qk(·|S). Calculate Paccept by replacing Q(·|·) with Qk(·|·) in (3.11) and

(3.12).

The rules regarding whether to apply min-max or max-min to generate new valid

joint state are shown in Figure 25. It depends on both current Sk and proposed value

s1 (or s2). For example, if (0, 1) is proposed to update Sk = (0, 0). Since Zj remains

at 0, applying max-min rule will not move the current state. Instead we should replace

Ai(j) by 1 and apply min-max. When transition is between (0, 0) and (1, 1), and both



108

Zj and Ai(j) are subject to change, either min-max or max-min has potential to update

current state. We decide to adopt the rules as shown in Figure 25 because by doing so

each rule has to be applied once to update Sk to s1 and s2, hence every current state is

to be updated in two different ways.

Figure 25: Updating rules regarding usage of min-max and max-min.

3.5.3 Presentation via factor graph

We use a bipartite graph called factor graph to demonstrate how this proposal moves

the current state locally. For simplicity, Example IV only has 4 atoms and 3 categories.

Category 2 is overlapping with the other two categories. The incidence matrix X is of

dimension 4× 3.

X =



1 0 0

1 1 0

0 1 1

0 0 1
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There are 7 valid states with respect to activation hypothesis as listed in Table 15. Space

of valid joint states has magnitude: |Z| = |A| = 7.

Table 15: Example IV: 7 valid joint states presented in category level (middle column)
and atom level (right column).

No. Z A
1 000 0000
2 100 1100
3 010 0110
4 001 0011
5 110 1110
6 011 0111
7 111 1111

The annotation profiles presented by X and current states of categories and atoms

can be illustrated uniquely by a bipartite factor graph as shown in Figure 26. Each

square represents a category and each circle represents an atom. An edge connecting

a category and an atom indicates the atom is annotated to the category. The graph is

bipartite in that any pair of squares or circles can not be connected directly by an edge.

The number of edges in the graph equals the number of 1’s in the incidence matrix X.

We use shading to indicate the activation state is on. For example, in Figure 26 category

2 is on and it activates atoms 2 and 3 that are annotated to it. The current joint state

represented by the graph is state 3 in Table 15.

Suppose we are currently at state 3 with Z = (0, 1, 0), A = (0, 1, 1, 0), and propose to

update S1 = (Z1, A2). Since S1 = (0, 1), the set of proposal values is σ1 = {(0, 0), (1, 1)}.

Figure 27 shows the procedure of proposing new valid states following our description. In
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Figure 26: A bipartite factor graph presenting annotation profiles and category/atom
level joint states.

both upper and lower panels, factor graphs on the left show temporary states generated

by directly replacing S1 with proposed values. These states whether being valid or not

will be corrected by either min-max or max-min rule to generate valid states S∗. Both

panels show that after correction, updated S1 match the proposed values, i.e. in the

upper panel S∗1 = (0, 0) and S∗ correspond to state 1; in the lower panel S∗1 = (1, 1)

and S∗ correspond to state 6. Either state 1 or state 6 will be proposed next with equal

probabilities.

3.5.4 Posterior summaries

As we see from earlier examples, it is useful to access all sorts of posterior summaries

to characterize the high dimensional space of activation states. Here we show how to

calculate 4 major summary statistics from samples collected by the MCMC algorithm.

Let Zt = {Zt
1, Z

t
2, ..., Z

t
C} be the joint state sampled at tth iteration and T be the total
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Figure 27: Upper: replace current value of S1 = (Z1, A2) with (0, 0) and apply min-max
rule to generate state 1; lower: replace current value of S1 with (1, 1) and apply max-min
rule to reach state 6.
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number of samples collected excluding those from burn-in period.

• Marginal posterior probability of each category being active P (Zj = 1|Y ), j =

1, 2, ..., C is the most direct result from MCMC to show how likely a category is

active given observational data, category structure and system parameters.

P (Zj = 1|Y ) ≈
∑T

t=1 Z
t
j

T
(3.13)

• Marginal posterior probability of each category being a maximum active set gives

concise presentation of active categories. It is useful in addition to the previous

summary.

Let W t
j = I(Zt

j = 1 and category j is a maximum active set)

P (Wj = 1|Y ) ≈
∑T

t=1W
t
j

T
. (3.14)

• Bayes factors for both Zj and Wj:

BFZj =
P (Zj = 1|Y )

P (Zj = 1)

BFWj
=

P (Wj = 1|Y )

P (Wj = 1)

• We know that it is ideal to have posterior distribution on joint states across Z,

however, it is not realistic for large scaled problems. Instead of getting a distribu-

tion of joint states, we could calculate the probability of data given the joint state

at different MCMC samples P (Y |Zt) and find which state yields the maximum

results, i.e.

Find Zmax such that P (Y |Zmax) = max
t=1,2,...,T

{
P (Y |Zt)

}
(3.15)
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3.5.5 Convergence issues

In this section we discuss issues regarding convergence of the proposed Metropolis-

Hasting algorithm. Most importantly, we need to show that the sequence of MCMC

samples generated by the algorithm converges to the target distribution, i.e. the poste-

rior distribution of joint state.

To prove the validity of our algorithm we need two conditions: (1) the simulated

sequence is a Markov chain with a unique stationary distribution; (2) the stationary

distribution equals the target distribution. Condition (2) is guaranteed by the design

of M-H algorithm if the stationary distribution exists. Regarding condition (1), it is

sufficient to show that the chain is ergodic and irreducible. First, the chain is aperiodic

in that given any current state, it is always possible to reject the proposal and stay

at the same state. Since there are finite states (|Z| ≤ 2C), the chain is ergodic. A

markov chain is irreducible means that any pair of states can transit to each other, or

they communicate. Irreducibility is obvious when all categories are mutually exclusive.

Since switching on/off any individual category does not affect states of others, transition

between any pair of states is to simply switch individual categories that make the joint

states different one at a time. It can be realized by max-min or min-max rule at each

step. For overlapping and hierarchical cases, we have not developed theoretical proof

for irreducibility yet. However, from various artificial examples we have checked we find

that in a plot where nodes are valid joint states and edges connect communicating states,

transition paths are formed to connect all-zero state to all-one state via the other joint
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states, and all states belong to at least one of these paths. That is to say, any pair of

joint states can communicate by following certain paths via either all-zero state or all-

one state. Thus, the chain is irreducible. Figure 28 shows transition paths of Example

IV representing overlapping structure.

Figure 28: Transition paths of Example IV. Nodes represent valid joint states (presented
by category level states). Edges connect pairs of states that communicate with each
other.

We have developed R program to implement the proposed M-H algorithm and applied

it to various scenarios to assess convergence of the generated chains. All the examples

tested are of small scales with fixed parameters so that we could analytically develop the

posterior inferences and compare with results from MCMC. Depending on complexity of

the data structure, different chain lengths are required to control the deviance of prior

and posterior estimation from the truth which is developed analytically. For instance,

for Example II a chain length of 106 is required to control the deviance of prior and
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posterior probability of any joint state under 10−3. With 30 joint states in total Monte

Carlo error is estimated as
√

1
30

29
30

1
106
≈ 2×10−4 which is slightly smaller. Since marginal

probabilities are calculated by collapsing involved joint states probabilities, deviances

are cumulated. For this chain, deviances of all prior and posterior probabilities from

analytical results are below 5 × 10−3. In terms of computational speed, the current

program could be improved in the future by implementing major calculations in funda-

mental languages like C. In practice, instead of depending on one extremely long chain

we could generate multiple chains from dispersed starting states and develop inferences

based on all samples collected.

3.5.6 Algorithm

Input:

• incidence matrix XN×C , atom size {ni}Ni=1, number of observed on genes per atom

Y = {yi}Ni=1;

• parameters ζ = (π, α, γ);

• chain length T.

Result:

• prior of each category being active: P (Zj = 1) =
∑T
t=1 Z

t
j

T
, j = 1, 2, ..., C by speci-

fying P (Y |·) = 1 in ratio r;
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Algorithm 1 A Metropolis-Hasting algorithm to generate posterior inferences

Zt ⇐ {0, 0, ..., 0}1×C , At ⇐ {0, 0, ..., 0}1×N , and St = (Zt, At)
for t = 1→ T do

Sample k ∈ {1, 2, ..., K}
Generate S∗ ∼ Qk(·|St)

r ← P (Z∗)P (Y |Z∗)Qk(S
t|S∗)

P (Zt)P (Y |Zt)Qk(S∗|St)

u ∼ Unif(0, 1)

if u < r then
St ← S∗

end if

W t ← {0, 0, ..., 0}
W t
j = I(Zt

j = 1 and category j is a maximum active set)

end for
return {S1, S2, ..., ST} and {W 1,W 2, ...,W T}

• marginal posterior of each category being active: P (Zj = 1|Y ) =
∑T
t=1 Z

t
j

T
;

• Bayes factor: BFZj =
P (Zj=1|Y )

P (Zj=1)
;

• prior/posterior/Bayes factor of each category being a maximum active set: P (Wj =

1) =
∑T
t=1W

t
j

T
, P (Wj) =

∑T
t=1W

t
j

T
, and BFWj

=
P (Wj=1|Y )

P (Wj=1)
;

• joint state Zmax such that P (Y |Zmax) = maxt=1,2,...,T {P (Y |Zt)}.
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3.6 Case study

3.6.1 Data and method

In Chapter 2 we present a meta analysis of RNAi studies in influenza virus replication.

The 4 studies of interest have confirmed a total number of 614 genes after two screens.

A gene set enrichment analysis has been conducted in GO by applying allez (Newton

et al. (2007)) and finds 19 categories most significantly enriched with the confirmed

genes. With 2 redundant ones being removed, 17 unique GO categories are listed in

Table 14). As expected they are overlapping and present similar biological functions,

since allez belongs to one-at-a-time functional category analysis methods that ignore GO

structure and treat categories independently. In this section we apply two model-based

category analysis methods MGSA (mgsa version 1.4.0) and SFCA in R (version 2.15.1)

to this confirmed gene list (”flu data”) in both KEGG and GO system and compare

their findings.

For convenience of calculation, KEGG and GO system are first trimmed to include

only categories that have no more than 50 genes and overlap with the list of 641 genes.

Then atom level incidence matrices are created by collapsing common annotation profiles

and keeping only unique columns. The most updated Bioconductor database KEGG.db

2.7.1 and org.Hs.eg.db 2.7.1 are used to extract annotation information. Information

of data used for analysis are listed in Table 16. The numbers of categories and atoms

of trimmed data are dimensions of corresponding incidence matrix X. The last column
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refers to the total number of confirmed genes in each study set. They are reported to be

the active genes but subject to the false negative error. The numbers are always below

614 as some genes are not annotated by KEGG/GO yet or they are annotated only to

big categories that are trimmed.

Table 16: Basic information of GO and KEGG system used to analyze flu data. For
each system, original data on annotation profiles are trimmed to include only categories
that have no more than 50 genes and overlap with the list of 614 confirmed genes in flu
data.

# categories # genes # atoms # confirmed
genes

KEGG original 3152 75100 - 390
trimmed 61 1460 172 130

GO original 15492 14572 - 535
trimmed 2682 8284 5770 442

3.6.2 Data analysis in KEGG

After trimming there are 61 categories left in KEGG. Every category has overlap with

some others but they do not form any parent-child relationship. It means that marginal

inferences from SFCA and MGSA should be very similar if not the same. For both

SFCA and MGSA, parameters are fixed at {α = 0.05, γ = 0.5, π0 = 0.1}. The choice of

parameter values are reasonable for the following reasons: (1) A list of important genes

from the first step analysis, i.e. differential expression analysis are usually selected with

false discovery rate (FDR) controlled under 5%; (2) a marginal enrichment rate of 50%

is considered as fairly high for a category; (3) π0 = 0.1 for MGSA means that we expect
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about 10% of categories to be truly active. For SFCA the parameter π will be adjusted

if the estimated mean prior from MCMC suggests that it deviates far from input value

0.1. Five chains are generated where each has a length of 2 × 106 with no data input

to generate the prior distribution of SFCA, and the same procedure is followed with

input of the flu data for posterior inference. For each chain, the first 104 samples are

excluded as burning period. The mean acceptance rate for prior and posterior chains

are respectively 18.4% and 2.2%. Chains of the same lengths are also collected from

MGSA, but the acceptance rate is not accessible.

Table 17 reports information and marginal inferences on categories that have pos-

terior probabilities above 0.01 when rounded to 2 decimal places. We see that MCMC

results from MGSA and SFCA are very close, as expected. The estimated mean prior

from SFCA is 0.100 if rounded to 3 decimal places, so there is no need to adjust π. Prior

and posterior inferences on categories being maximum actives sets are skipped as Wj is

equivalent to Zj with no hierarchy in the structure.

By MGSA’s criteria, the top 3 categories will be reported since their marginal pos-

terior probabilities exceed 0.5. Since the prior is flat over all categories, ranking by

marginal posterior is the same as by Bayes factor. In addition to marginal inferences,

SFCA’s MCMC results suggests that joint state with categories {hsa03050, hsa04966,

hsa05219, hsa03060, hsa04977} being active has the largest P (Y |Z), which means that

this joint state is most likely to generate the observational data.
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3.6.3 Data analysis in GO

Data structure for GO remains complicated with overlaps and hierarchies after trimming.

The incidence matrix X is of dimension 5770 × 2682. There are 42922 1’s in X which

means there are a large number of individual proposals to sample from when moving the

chain forward. With possibly low acceptance rate, the chain length of MCMC should be

fairly large to achieve stable results. For a system of this complexity, the Monte Carlo

error has not been well controlled. Experiments on more restricted cases need to be

conducted.

3.7 Computation via graphical probabilistic models

Our major solution for role model posterior inferences is MCMC. So far this approach

can only access marginal posterior probabilities and develop very limited summary on

posteriors of joint states, which may not be sufficiently informative due to the high

dimension of the parameter space. Also in any event, MCMC error is very difficult to

assess, with the real prospect of poorly mixing chains. In Newton et al. (2012), we

have considered possible non-MCMC computations via message-passing algorithms and

techniques from probabilistic graphical models. In particular, 2 kinds of graphs are

introduced to facilitate posterior calculation.

The first graph is called intersection graph where nodes are categories, and edges

connect categories that share common genes. Figure 3.7 gives a simple example of the



122

category intersection graph.

Figure 29: Category intersection graph for 5 KEGG pathways. Each node represents a
category and every edge connects a pair of overlapping categories.

In Newton et al. (2012), we prove the following proposition and show that the joint

posterior of category activation states factorizes into local functions over the intersection

graph, and category intersection s graph can be used in principle to support various

inference computations implied by the role model.

Proposition 3.2. The role model posterior (3.6) satisfies: P (Z|Y ) ∝
∏C

j=1 Ψj

[
Zj, Znb(j)

]
,

where Ψj is a data-dependent function of both Zj and neighboring states Znb(j) = {Zj′ :

j ∩ j′ 6= ∅}.

Ideally, one would like to utilize the entirety of GO or KEGG. However the associ-

ated intersection graphs are highly complex and prohibit exact numerical methods as

illustrated by Figure 3.7.
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Figure 30: Degree distribution of intersection graph of GO (categories holding between
1 and 500 human genes) from Bioconductor database org.Hs.eg.db 2.6). It is somewhat
remarkable that so many overlaps are possible. The most extreme case is the category
cell motility (GO:0048870), which annotates 495 human genes and shares genes with
6160 other categories among the 13026 GO categories that annotate between 1 and 500
human genes. These 13026 categories annotate 14047 genes. The median number of
other cate- gory assignments per cell-motility gene is 64, and one gene happens to be in
631 other categories.
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With one-to-one mapping between spaces of joint category- and atom level activation

states (3.1), we consider reparameterization of joint posterior from category to atom

level to approximate inference and reduce computational complexity. With proper prior

distribution P (A) on valid space of atom level activation states A chosen, joint posterior

3.6 can be expressed as P (A|Y ) ∝ P (A)
∏N

i=1 P (yi|Ai). Just as the intersection graph

of the categories is the data structure supporting posterior inference in the original

parameterization, we develop another graph called function profile graph that supports

atom level computations. Its nodes are the atoms. There is a directed edge we from ν

and ν ′ if: (1) the assignments at ν ′ are a proper subset of the assignments at ν, and

also (2) there is no other atom ν ′′ with assignments that are a subset of assignments at

ν and a superset of assignments at ν ′. We say ν is a parent of ν ′ and ν ′ is a child of ν.

An example is shown in Figure 3.7.

To support inference we need an undirected version of the function profile graph,

which we obtain by a form of moralization used in graphical models analysis. Specifically,

we include an undirected edge between any two nodes ν and ν ′ that are both parents of a

common child. We also include an undirected edge between any two nodes ν and ν ′ that

are children of a common parent. This two-way moralization comes from the fact that

information flows both ways along a given directed edge. Finally we make all remaining

directed edges undirected.The resulting graph is the undirected function profile graph.

An example is given in Figure 3.7.

Similarly we prove the following proposition dealing with posterior on atom level
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Figure 31: Reparameterizing the role model with a function profile graph: The nodes in
each panel represent 5 atoms. Each atom shows a profile of assignments (1) or not (0)
to 4 categories. A directed edge goes from ν to ν ′ if the assignments at ν include those
at ν ′ (except we omit redundant edges e.g., no edge from 1110 to 0100.) The middle and
right panels show logical dependencies on activity variables. E.g., in the middle panel,
knowing Aν = 0 implies Aν′ = 00 for all downstream atoms, and knowing Aν′ = 1 on
the right panel implies Aν = 1 for all upstream atoms.

Figure 32: Function profile graphs for the small KEGG example shown in Figure 3.7,
with 11 atoms as listed.
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activation states.

Proposition 3.3. For suitable prior P (A) over A, the posterior distribution on atom

level activation states is the product of functions Ψ̃i that are local in the undirected

function profile graph: P (A|Y ) ∝
∏N

i=1 Ψ̃i

[
Ai, Anb(i)

]
, where Ψ̃i is a data-dependent

function of both Ai and neighboring states Anb(i).

Coupled with mapping between A and Z (Proposition 3.1), the above result indicates

that we can perform inference computations on the function profile graph, and then

transform back as needed to get inference on category level activation states.

In GO, for example, the transformation provides a much simpler graph (Figure 33).

Unfortunately even this simpler graph is still too complicated for exact numerical meth-

ods. Approximation methods remain under investigation.

3.8 Relaxation of the role model

In addition to exact calculations via graphical model and approximation by MCMC

methods, we have also considered a third option for role model computations. We

proposed two relaxations of the role model that give different generalized-linear-model

(GLM) representations of gene-level data. Regularized regression and quadratic pro-

gramming were developed to fit the relaxed models and provide selection of the most

significant functional categories. In this section, we introduced this two relaxed models

and the major difficulties we have encountered. With more sophisticated optimization
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Figure 33: Degree distribution of the undirected function profile graph of GO (categories
holding between 1 and 500 human genes). The maximal degree is 2464; the graph itself
has 10366 nodes (atoms). The corresponding results for the category intersection graph
(from Figure 3.7) are repeated here in grey. Not shown are results for the directed
function profile graph, which is much simpler, having maximal degree 268.
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and computational techniques, we think it valuable for future work.

We are guided by work on generalized linear models (GLMs), and express the success

rate pi in the central model (3.1) as a function of a linear predictor. Specifically, assume

we have parameters α, γ ∈ (0, 1), with α < γ as before, and also that we have extended-

real-valued parameters βj, for j = 1, 2, . . . , C, such that βj ≥ 0. Let β denote the column

vector (β1, β2, . . . , βC)T and consider the linear predictor ηi = xTi β. In model GLM I,

we assume

pi = pI(xi) = γ − (γ − α)e−ηi

Note that pI(xi) ∈ [α, γ] for any parameter settings. Further, we can prove that the role

model is a sub-model of GLM I, i.e. if βj = − log(1−Zj) for all j and for Zj’s in {0, 1},

then pI(xi) = pRM(xi), for all annotation profiles xi.

pi = pI(xi) = γ − (γ − α)e−ηi

where ηi = xTi β, β ≥ 0, γ > α

In the GLMs described above, the coefficients in β are contributions of categories on

the gene-level data. Instead of evaluating contributions from each and every category,

we are interested in selecting a list of most representative ones that jointly explain the

observed data. Thus, we need to apply effective model selection schemes to generate

sparse solutions. An immediate thought is to adopt the LASSO penalty due to its

nice property of forcing some coefficients to exactly 0. If without taking into account

activation hypothesis, to fit L1-regularized GLM I at fixed α and γ is to minimize the
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negative log likelihood function lI(β) with the LASSO penalty:

min
β≥0
−lI(β) + ‖β‖1

where lI(β) =
∑N

i=1 yi log [γ − (γ − α)e−ηi ] + (ni − yi) log [1− γ + (γ − α)e−ηi ].

We find that the objective function is not convex as the Heissian matrix d2lI(β)
dβdβt

is

not positive semidefinite. That is to say it is not guaranteed to have a global optimal,

and local minimum solutions are intractable. Not to mention adding constraints for

activation hypothesis. For this reason, we consider model GLM II whose link function is

the logit function used for logistic regression to ensure convexity. The success probability

is expressed as:

pi = pII(xi) =
expηi

1 + expηi

ηi ∈
[
log

(
α

1− α

)
, log

(
γ

1− γ

)]
(3.16)

Linear constraint (3.16) ensures pi ∈ [α, γ]. By adding an intercept β0 = log
(

α
1−α

)
to ηi

the constraint becomes

ηi ∈
[
0, log

(
γ(1− α)

α(1− γ)

)]
.

Now we can add non-negative constraints on βj. The objective function is:

min
β
− lII(β)

s.t.
∑

(βj) < t

ηi ∈
[
0, log

(
γ(1− α)

α(1− γ)

)]
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To take into account activation hypothesis, more constraints on β are needed. For

example, if category 1 is a parent of category 2 meaning the latter contains a subset of

gene in the former, according to activation hypothesis we must have β1 ≤ β2 to guarantee

that if category 1 appears in the final selection all its children must be selected as well.

This condition adds a system of linear constrains whose size equals the number of parent-

child relationships, or the number of 1’s in the incidence matrix. Other than the large

number of constraints to deal with, another computational challenge is that the objective

function needs to be quadratic approximated to fit in quadratic programming. Even if

a global minimum at each iteration is reached, it is not guaranteed that they converge

to the optimal solution of the original problem.

Last but not least we recognize that expressing activity of atoms as linear combi-

nations of category level coefficients is inconsistent with the role model. In the role

model, atom is activated if any one of the categories it is annotated to is active. Thus

more categories being on does not increase the chance that this atom is on. We see that

categories’ joint effect is not cumulative as in a linear combination. Thus, regression

approach is very limited in providing the role model solution.

3.9 Concluding remarks

Functional category analysis deals with integration of experimentally derived data with

functional annotation data. It is very important in statistical genomics as it serves to
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describe observational data more concisely and detects weak gene-level data more effec-

tively. Most available methods derive category-level inference based on only activities

of genes annotated to them. Model-based category analysis methods take a different

approach that non-null behavior start with functional categories and gene activities are

modeled by taking into account activities of all categories involved. The complex cate-

gory structure is therefore conveniently incorporated into the model and inferences on

category activities are derived simultaneously.

Our model-based category analysis method SFCA is developed based on an exist-

ing method MGSA (Bauer et al. (2010)) and our previous investigation(Newton et al.

(2012)). Our first contribution is that an important condition called the activation hy-

pothesis is developed to establish one-to-one correspondence between gene- and category-

level activities. By clarifying intrinsic constraints among role model parameters, we are

able to infer categories more accurately to explain gene-level signals. For computa-

tions, we developed MCMC methods to approximate posterior inference, especially a

sophisticated algorithm which is able to sample the chain on a highly restricted space.

We have shown that MGSA suffers inconsistency in posterior inference from our

empirical simulation studies, and also less efficient compared to SFCA in dealing with

overlapping and hierarchical category structures, which is often the case in reality. In

addition to marginal posterior inference on categories being active, SFCA is able to

generate other useful posterior summaries including inference on joint activation states

and on maximum active sets.
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Other than observations being Binomial distributed, SFCA is also flexible enough

to accommodate different types of variations and data. Two other approaches for role

model posterior computations including exact calculations via probabilistic graphical

models and relaxed modeling have also been investigated.
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