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Abstract 
 

Semi-arid landscapes are heavily influenced by climate change and human activities. Sand dunes in 

the Mu Us region, China experienced rapid stabilization during the past few decades, which is 

postulated to be a response to recent climate change (Xu et al., 2015) and land use change (Mason 

et al., 2008). With the information extracted from high-resolution Google Earth imagery and ASTER 

GDEM data and machine-learning models, I evaluated the relative importance of multiple 

environmental and anthropogenic variables for the recent changes in dune activity and vegetation 

cover. Spatial variation in climate variables contributed little, while elevation, human activities and 

vegetation spatial distribution played significant roles in both dune migration rate and vegetation 

cover change rate. To further visualize dune morphodynamic response to external forcings over 

time, I modified a Cellular Automaton (CA) model (Werner, 1995) and fit it to the Mu Us dune field 

by tuning model parameters (downwind transport jump unit, slab thickness, deposition probability, 

and erosion probability) . The model produced realistic barchans dune forms with only wind 

processes included, while parabolic dune forms were simulated with a combination of wind and 

anchoring vegetation. Through adjusting erosion probability (pe), the model is capable of testing 

various wind and vegetation growth scenarios. With a linearly declining pe, the vegetation 

integrated CA model was used to simulate the increase in precipitation in the late 1990s, and it 

produced stabilized parabolic dune forms that closely resemble those observed in the field.  The 

successful simulation of realistic dune form changes also proves the CA model to be an effective 

research and educational tool for exploring interactions among climate, geomorphology and 

vegetation and predicting future trends of dune activity.     
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Introduction 

 

Aeolian landforms and dune fields are distributed extensively across Earth’s surface. Active 

(migrating) dunes pose challenges for infrastructure and farmland, and often serve as sand sources 

for dust storms (Qian et al., 2002). Arid ecosystems are particularly sensitive to global climate 

change (Schröter, D. et al, 2005), and past environmental change in dryland dune fields can often be 

linked to climate variation.  For example, most Holocene dune activity in the central Great Plains is 

reported to coincide with frequent and severe drought (Miao et al., 2007). Some present dune fields 

are still responding to climate shifts from the past few hundred years (e.g., Hugenholtz and Wolfe 

2005). GCM-based experiments suggest that significant dune reactivation driven by climate change 

can happen in three Kalahari dunefields by 2039 (Thomas et al., 2005). Understanding how dune 

activity responds to climate change can provide guidelines for socioeconomic adaptations. 

Human activities also significantly affect dune activity. For example, the adoption of improved 

agricultural practices played a crucial role in reducing wind erosion activity and dust emissions on 

the Southern High Plains from 1961 to 2001 (Stout and Lee, 2003). A significant decrease in wind 

power in three dune fields in northern China produced limited response in terms of changes in 

dune mobility, which can be explained by human activities such as intense grazing (Mason et al., 

2008). A bare, active sand dune in Israel was converted to a shrub-covered parabolic dune over the 

last 60 years due to changes in land use (Ardon et al., 2009). Historical dune activity in the Great 

Plains has been driven by a combined effect of both drought and land use practices (Muhs and Maat, 

1993; Muhs S. A. Wolfe, 1999).  

The availability of high-resolution remote sensing imagery has enhanced a range of geomorphic 

research, such as broad-scale analyses of dune patterns (Kocurek and Ewing, 2005) and migration 

rates (Yao et al., 2007). Availability of increasingly high-resolution elevation data, first through 
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sources such as ASTER GDEM and more recently through collection of LiDAR data, has improved 

three-dimensional analyses of the topographic variability of sand dunes (e.g. Hugenholtz and 

Barchyn, 2010). With information extracted from remote sensing images and DEM data, we can 

compare the relative importance of climate change and human forcings in recent dune activity, and 

identify the leading driver for changing activity in specific cases.  

Empirical studies have shown that dune activity is controlled by wind power and vegetation cover: 

wind power determines sand transport capacity, while vegetation protects the sand surface from 

direct wind erosion and traps sand particles, thereby reducing wind velocity and sand available for 

transport (Yizhaq et al., 2007). While the presence of vegetation effectively reduces sand available 

for transport, sand movement and dune topography also affect vegetation growth and distribution 

(Brown, 1997; Lancaster and Baas, 1998; Mahowald et al., 2008). The complex feedback and 

interplay between vegetation growth and sand transport can drive the dune system between active 

and stabilized states; therefore the investigation of dune forms must take biologic processes into 

consideration (Hugenholtz and Wolfe, 2005).  

Earlier quantitative studies of dunes focused on the movement of individual grains (e.g. Bagnold, 

1941), or concentrated on measurements of wind flow and sand flux across single dunes 

(summarized by Knott and Warren, 1981). However, Werner (1995) developed a cellular 

automaton (CA) model that successfully simulates the morphology of four types of sand dunes 

without reference to small-scale grain-level processes. Despite the flexibility and potential of the CA 

model to be expanded to incorporate additional processes and questions, few studies have used it 

to test dune responses to climate change and human activities. Following Werner (1995), a series of 

subsequent studies (e.g. Baas, 2002; Nield and Baas, 2007; Pelletier et al., 2009) simulate the 

transition from barchan to parabolic dunes with the presence of vegetation. However, challenges 

remain with these models in simulating dune morphology changes in an actual dune field, and 

particularly in realistically representing effects of climate change and vegetation growth.  
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In this research, I aim to answer these questions: 

1. What is the relative magnitude of dune field response to climate and human activities? 

Chapter 1 focuses on spatial patterns of vegetation in the Mu Us dune field. It starts with a 

description of the study areas through Google Earth images and ASTER GDEMS, followed by a 

correlation analysis between vegetation cover and elevation. I also explore how vegetation 

patchiness relates with dune activity and spatial autocorrelation of vegetation cover. Chapter 2 

builds on Chapter 1 and constructs machine learning models in order to predict the rates of recent 

(last 8-14 years) dune migration and vegetation cover change. The explanatory variables include 

climate, human and environmental aspects. Using machine learning models, the most important 

features in explaining response variables are selected: elevation, vegetation distribution, and 

human related variables. 

2. How do dune forms respond to climate change (especially wind strength)? 

In Chapter 3, I build a CA model following Werner (1995) and fit it to the Mu Us dune field. A range 

of model parameters are then modified to observe the response of dune morphology. Erosion 

probability is chosen to represent effects of changing wind speed.  

3. How do dune forms respond to vegetation growth? Can the recent stabilization and dune 

form changes in the Mu Us dune field be reproduced by a CA model? Can such a model be 

modified to test hypotheses on causes of recent dune stabilization? 

In Chapter 4, I propose a new model that adapts the Werner (1995) model and simulates the 

stabilization process of barchan dunes with the presence of vegetation. Verified by GE images and 

information presented in Chapter 1 and 2, the model produces realistic parabolic forms, and can be 

adjusted to simulate different scenarios, including the recent stabilization of the Mu Us dune field. 
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Background 

Climate, vegetation and sand dune activity 

Dune activity is often used as a “geo-indicator” of environmental changes. In southern Africa, for 

example, dune fields are likely to experience significant reactivation as a consequence of 21st 

century climate change (Thomas and Leason, 2005). Wind speed and precipitation are the main 

climate drivers for sediment transport and vegetation growth in dune stabilization and activation 

processes (Lancaster, 1988a; Hugenholtz and Wolfe, 2005a, 2005b; Tsoar, 2005; Yizhaq et al., 2007, 

2009). For example, Lancaster (1988a) found that sand transport capacity is proportional to wind 

power (function of velocity cubed), and sand availability for transport is inversely proportional to 

vegetation cover, which is sensitive to precipitation. Past episodes of dune activity in Nebraska 

Sand Hills in late Holocene is correlated with dry conditions (Mason et al., 2004). Hugenholtz and 

Wolfe (2005) suggested that recent dune stabilization in the Canadian prairies is significantly 

correlated with decadal variations in moisture level and annual wind speed.  

A popular index describing potential sand transport is Drift Potential (DP). DP is defined based on 

wind power above the threshold for entrainment (Fryberger and Dean, 1979): 

DP = U2(U-Ut)*t, 

where U is average wind velocity at 10m height, Ut is threshold wind velocity, and t is the 

percentage of time wind in a particular velocity blew, as tabulated in a wind summary or calculated 

from actual wind measurements. DP is a scalar calculated using winds from all directions, and its 

units are conventionally given as vector units (VU, terminology of Fryberger and Dean, 1979). The 

DP for each wind rose segment can also be calculated, and used to compute a total vector, the 

resultant drift potential (RDP), with a direction (RDD, resultant drift direction) that indicates the 

net trend of sand drift and a magnitude indicating potential net drift in that direction. RDP/DP 
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(ratio of the magnitudes) is often used as an index for the directional variability of the wind drift. 

DP is often integrated in models to predict dune activities. For example, Yizhaq et al. (2007) 

proposed a model in which DP is used as the predominant control of dune mobility.  

Vegetation also plays a critical rule in dune stabilization: it extracts momentum from the air flow, 

and increases the threshold shear velocity that is required to initiate and sustain transport (Wolfe 

and Nickling, 1993; Lancaster and Baas, 1998; Kuriyama et al., 2005), thereby reducing sand 

surface erosion.  Recent studies on coastal dunes show that while sand supply determines dune 

formation time, dune size is strongly influenced by vegetation (Durán and Moore, 2013). In fact, 

vegetation cover change resulting from different grazing practices can sometimes have even more 

significant effects on dune activities than climate (Wang et al., 2006; Mason et al., 2008). Despite 

their importance in understanding the dune activation and stabilization processes, however, the 

surface characteristics of partly vegetated dunes remain poorly parameterized (Hugenholtz et al., 

2012).   

The mobility index M (Lancaster, 1988a) integrates both wind and vegetation factors, and is often 

used to predict dune mobility change in response to climate variations: 

M = W/(P:PET) 

where W is the percent of time wind is above the threshold velocity for sand transport, and P:PET is 

the ratio of precipitation to potential evapotranspiration, an index of moisture availability for 

plants. Lancaster's index M has been successfully applied in a wide range of environments (e.g. 

Muhs and Maat, 1993; Lancaster and Helm, 2000). However, the active state of some sand dunes is 

not consistent with this index: either these dunes exhibit higher levels of activity than is predicted 

by Lancaster’s index M (Muhs S. A. Wolfe, 1999), or their activity responds to reduced M after a lag 

of years to centuries (Hugenholtz and Wolfe, 2005b; Mason et al., 2008). In particular, P:PET only 

explains a small portion of the decrease in active dune areas in Canadian prairies in the past several 
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decades; the dune response is actually superimposed on a longer-term trend towards stabilization 

since the 1700s. (Hugenholtz and Wolfe, 2005b).  It is also common to find both active and fully 

stabilized dunes coexisting in the same small area where M value is essentially the same (Yizhaq et 

al., 2007). Across several dune fields of Northern China, both activation and stabilization were 

observed in different areas, though all these areas were affected by a wind power decrease since 

the 1970s, while effective moisture remained approximately the same (Mason et al., 2008). 

The heterogeneity of dune field activity under the same climate regime suggests that non-climate 

related local factors, such as human activities, distance to ground water, etc. can also affect dune 

stabilization processes. These factors’ relative importance as controls of dune activity in 

comparison to climate and vegetation cover is still poorly understood for most dune fields.  

 

Cellular Automaton (CA) models and their application to aeolian systems 

Given the observational and computational limitations, it has been a longstanding challenge to 

quantitatively interpret and model processes of dune field evolution over space and time. Many 

dune fields exhibit regular patterns, indicating that they may have evolved through a process of 

self-organization (Werner, 1995; Kocurek and Ewing, 2005). As far as applications to natural 

systems are concerned, stochastic rules often provide a better analogy to the system than 

deterministic ones, given that nonlinear complexity is a characteristic of real-world landscapes 

(Phillips, 2003).  Moreover, compared with continuum models (representing flowing air and mobile 

sand as continuous materials, e.g. Duran and Herrmann, 2006; Yizhaq et al., 2007, 2009), discrete 

CA models (e.g. Werner, 1995; Baas, 2002; Nield and Baas, 2007)  can more easily incorporate 

ecological and geomorphological aspects (Fonstad, 2006). 

CA models have been developed to simulate self-organization of active (unvegetated) dunes 

(Werner, 1995) as well as vegetated ones (e.g. Baas, 2002; Nield and Baas, 2007). Through random 
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entrainment, the Werner (1995) model first generates local relief from a flat bed covered with a 

layer of sand, and randomly selects a cell where sand is to be picked up by wind (eroded). In the 

deposition step, the dune topography (dune height, spacing, slope, etc.) is enhanced by a feedback 

mechanism through shadow zones downwind of each developing dune and avalanching when dune 

slopes exceed the angle of repose (30°). Werner’s CA dune model (1995) is the foundation for a 

series of publications; for example, addition of vegetation (e.g., Nield and Baas, 2007; Pelletier, 

2009; Baas and Nield, 2010), shear stress parameterizations (e.g., Narteau et al., 2009), wind tunnel 

validation with ripples (Hatano et al., 2004), bedform dynamics models (e.g., Werner and Kocurek, 

1999), and exploration of dune field boundary conditions (Ewing and Kocurek, 2010), etc. The 

model is flexible and can represent any spatial or temporal dimension by redefinition of cell size 

and iteration duration (Nield and Baas, 2007).  

These models represent a major advance in understanding dune morphodynamics, allowing for 

exploration of more complex relationships between climate and dune activities than is assumed 

when simple indicators such as P:PET and M are used. These CA models do not require complex 

airflow or sediment transport dynamics, yet successfully reproduce barchan, crescent, and linear 

dune forms. However, more work is needed to test whether these models can be useful interpretive 

and predictive tools for real dune landscapes with the presence of vegetation. Baas (2002) 

employed ‘vegetation growth functions’ to simulate vegetation response to burial but such 

functions are created by trial and error; Pelletier et al. (2009) used elevation to characterize 

vegetation distribution on dunes, yet dune forms generated by their model are somewhat different 

from those observed in the field.   

Black and white aerial photographs have long been used to discriminate vegetation-covered and 

bare dune surfaces (e.g. Anthonsen et al., 1996; Gaylord and Stetler, 1994; Tsoar and Blumberg, 

2002). Researchers often convert these photos to grey scale digital images before classification and 

analysis (Xu et al., 2015). In this study, high resolution Google Earth imagery is obtained and 
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converted to gray scale to analyze dune form changes in the stabilization process. Relative 

brightness (digital numbers) can reflect the surface conditions: high and low Digital Number (DN) 

values correspond to bare sand and vegetation respectively. 

The increasing availability of high-resolution digital imagery and topographic data also enables 

efforts to characterize and quantify changes in dune morphology and verify numerical models. For 

example, Anthonsen et al. (1996) converted a series of hardcopy topographic maps (1887-1977) 

and aerial photos (1945-1992) into digital data to measure changes in vegetation cover as well as 

sand erosion and deposition on dunes. Xu et al. (2015) used high-resolution Google Earth images to 

examine trends and morphology changes of dune stabilization in the Mu Us dune field. Barchyn and 

Hugenholtz (2015) tested their hypothesis of dune field activity using multi-temporal topographic 

images, and estimated the relation between slipface deposition rates and vegetation deposition 

tolerance in stabilizing dunes. These advances in the application of imaging technologies make it 

possible not only to use actual dune field morphology to validate modeling efforts, but also to 

construct models using features extracted from these images. In this research, key non-climate 

related features (e.g. vegetation distribution, vegetation cover percentage, etc.) will be extracted 

from Google Earth satellite images for data analysis (Chapter 1 and 2) and for model validations 

(Chapter 3 and 4). 

 

Research area and study sites 

The Mu Us dune field is located in semi-arid north-central China.  On average, dunes moved 1.3-4.7 

meters per year in this region over the past few decades (Xu et al., 2015). Stations near the Mu Us 

dunes indicate a range of mean annual precipitation of 260-450mm, decreasing from southeast to 

northwest; and mean annual temperature of 6-9°C (Mason et al., 2008).  An elevation map of Mu Us 
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dune field was generated using ASTER GDEM data with a spatial resolution of 30m by 27m.  

Elevation is higher in the NW of the dune field than the SE (Figure 1).  

Many parts of the Mu Us dune field experienced rapid stabilization during 1980-2000, in some 

cases since the 1970s, possibly because of the combined effect of climate change (especially 

decreased wind strength) and land use change (Mason et al., 2008; Xu et al., 2015). A long-term 

trend of stabilization started in some marginal regions since the 1950s, and the trend became more 

evident since the 1970s (Mason et al., 2008; Runnström, 2003; Wang et al., 2005; Wu and Ci, 2002; 

Xu et al., 2015).  Xu et al. (2015) described changes in vegetation cover and dune morphology in this 

area using high-resolution Google Earth images, and proposed conceptual models of vegetated dune 

morphodynamics during stabilization.  

The ongoing stabilization of the Mu Us dune field, especially rapid since 1990, provides an 

opportunity to test the machine learning methods and CA model approach in simulating changes in 

dune forms in response to climate change and human activities. Knowledge on how dunes respond 

to trajectories of climate variables and land use will be valuable in assessing environmental and 

socioeconomic impacts from global warming and human activities in arid regions.  
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Figure 1 DEM of Mu Us dune field; Inset: location of MU Us (labeled as '1') in the map (adapted from Mason et al., 2008)  

In summer 2014, I did reconnaissance field work in the Mu Us dune field to observe dune forms and 

vegetation species in different areas of the field. Seven sites were selected based on availability and 

quality of historical satellite images from Google Earth (Figure 1). Photos from the field work were 

combined with the satellite images to get a better understanding of vegetation cover and spatial 

distribution.  

 

Climate data 

Climate data for 1991 to 2012 from five weather stations was retrieved from the Global Summary 

of the Day dataset provided by the U.S. National Climatic Data Center (NCDC) 

( https://www.ncdc.noaa.gov/). Annual precipitation, mean temperature and potential 

evapotranspiration were calculated following Thornthwaite (1948). Smooth curves were fitted to 

data points using the LOESS method (Local Polynomial Regression Fitting) (Figure 2).  
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Dune migration follows the dominant wind direction, from northwest to southeast. Here I used 6 

m/s at 10 m (following Fryberger and Dean, 1979) as the threshold for sand movement, with the 

result expressed in Vector Units (VU). Through the last two decades, DP has been gradually 

decreasing in the Mu Us region (Figure 2).  A severe drought occurred in 1999 as reflected by low 

effective moisture (P:PET), accompanied by a low precipitation and high temperature (Figure 2).  

In the Mu Us dune field, while stabilization began earlier in some areas, the general trend toward 

greater stability only became apparent after the year 2000, well after most of the decrease in wind 

power during the 1980s (Xu et al., 2015). It is possible that a lag exists between the climate and 

dune response; and Mu Us desert is sooner to respond compared with other dune fields in northern 

China (Mason et al., 2008). Climate data is integrated into multivariate models simulating the 

spatial variation of dune migration rate and vegetation spatial cover change rate (Chapter 2).  To 

simulate the time required for dune stabilization and to understand how wind drift affects dune 

activities, a CA model will be developed and verified using data from Mu Us dune field (Chapter 3) 

and expanded to test vegetation effects (Chapter 4). 
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Figure 2 Climate of Mu Us Dune Field in the past 20 years 

Each climate data point is the average value over a year. The gray ribbons with blue lines in the middle are the 

smoothed curves for the actual values of climate variables to show the general trends with time 

 

Human activities 

According to Mason et al. (2008) and Xu et al. (2015), while reduced wind strength is likely the 

most significant contributor to the recent widespread stabilization in the Mu Us dune field, changes 

in land use could also have favored stabilization in some areas. In the past few decades, the Mu Us 

dune field saw one of the most extensive efforts in dune stabilization in the world. Dune fixation 

efforts usually take place in interdune areas near small villages or towns, places where dune 

migration can threaten nearby houses or structures.  Low flat interdune areas are preferred for 

artificial stabilization efforts because of their organic-rich soil, thick grass and easy-to-access 

shallow groundwater (Xu et al., 2015). “Checkerboards” of straw or sticks, or rows of vegetation 

(such as Caragana microphylla, Sabina vulgaris and Artemisia ordosica), are often used to stabilize 

the dunes through increasing surface roughness and decreasing sand transport (Xu et al., 2015). 
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These artificial stabilization methods proved to be very effective: some dunes were fixed 

immediately with their morphology “frozen” in-situ.  

Aside from artificial stabilization, livestock grazing is another major form of human activity in Mu 

Us dune field. It has been strictly regulated over the past few decades. Over-grazing is banned and 

heavily penalized, and nomadic pastoralism is encouraged with government incentives (based on 

personal discussion with local herders). Active grazing was only observed in the southwest area of 

the dune field based on observations made in summer 2014. Given that destruction of the 

vegetation canopy by grazing can result in a significant increase in the near-surface wind velocity 

(Wiggs et al., 1994), these vegetation preservation measures further help with dune stabilization.  

The grazing impact on dune stabilization can be at least partly reflected by distance to and size of 

nearby villages or farmland.  Together with density of artificial wind-breaking ‘grids’ of shrubs or 

vertical sticks, they are listed as ‘human’ factors in the machine learning model in Chapter 2. The 

location effect of these grids on barchan dunes will be tested using the CA model in Chapter 4.  
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Chapter 1. Vegetation spatial patterns  

 

Vegetation spatial patterns and how they change in response to environmental conditions provide 

important information for modeling dune activity. Past research showed that vegetation cover has 

more influence on dune activity than wind speed (Muhs and Maat, 1993; Muhs et al., 1995; 

Hugenholtz and Wolfe, 2005b). Dune responses to vegetation can also be very fast.  For example, 

the height of dunes at Jockey Ridge, North Carolina, went from increasing to decreasing soon after 

an increase in interdune vegetation density caused by human activities (Mitasova et al., 2005). 

Vegetation distribution on dunes is affected by multiple factors, amongst which climate and human 

disturbance are the most obvious. However, elevation often has an inverse relationship with 

vegetation cover (Pelletier et al., 2009; Xu et al., 2015), because lower areas are closer to water 

table, or experience less wind erosion compared with higher elevations. If this inverse relationship 

with elevation is present in the Mu Us dune field, it should be incorporated into modeling of dunes, 

if possible.  

Using a vegetation integrated CA model, Kéfi et al. (2007) found that vegetation patch sizes and 

their count can be indicative of dune activity. They follow an inverse power law relationship in a 

stable dune field, which can be explained by local positive interactions such as seed dispersal and 

local facilitation. Under disturbance such as overgrazing, Kéfi et al. found that vegetation patches 

and their count diverge from this relationship.  This kind of neighborhood effect also could be taken 

into consideration when constructing a dune morphology model with vegetation; however, it is 

important to test whether the patch size-count relationship identified by Kéfi is associated with 

dune stability in the Mu Us study area.  
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In this chapter, I aim to quantitatively describe current vegetation spatial patterns and dune activity 

and conduct simple univariate analysis, to lay the groundwork for modeling and predictions on 

change in vegetation distribution and dune activity with time in upcoming chapters. As part of this 

analysis, relationships between elevation and vegetation cover are investigated, along with 

vegetation patchiness. I used Google Earth images to quantitatively assess vegetation spatial 

patterns in the Mu Us dune field, and obtained data that will be used to assist these modeling 

efforts.  

This chapter starts with a description of vegetation cover and dune activity in each study area 

(Section 1.1). I sampled 1000 random sites in each area and modeled the relationship between 

vegetation cover and elevation using linear regression (Section 1.2). Relationships between size of 

vegetation patches and their count is explored in Section 1.3. Variograms are then generated to 

analyze vegetation spatial autocorrelation and its directional effect (Section 1.4).  This analysis was 

supplemented with field observations. 

 

Image processing 

To study the change in vegetation cover, I obtained pairs of Google Earth images for seven study 

sites, each pair ranging from 7 to 10 years apart. These images were taken in summer months, 

which eliminates the noise caused by snow. Due to the intermittent availability of cloudless satellite 

data, these areas are not of the same size; yet they are distributed across the entire Mu Us dune 

field. To prepare these images for analysis, I converted them to grayscale and adjusted their 

brightness, then performed georeferencing. 

These images were converted to grayscale through the ‘Luma’ method, which uses a linear function 

on RGB components to approximate luminance. Specifically, the new DN value is calculated by  
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DN = .3*Red + .59*Green +. 11*Blue 

Where ‘Red’, ‘Green’ and ‘Blue’ refer to values of corresponding bands. The brightness of a pair of 

images was then adjusted by setting their controlled point digital number to the same value using 

the curve tool in the GIMP software. Specifically, a new maximum DN value (DNmax) was calculated 

based on DN values of control points from a pair of images (B1 and B2) as below: 

DNmax = (256 * (B1 + 1))/(B2 + 1) – 1 

The new maximum DN value for image 2 was then reset as DNmax instead of 255.  

Georeferencing of each image was performed by referring to ground control points using Google 

Earth (fixed local features such as road intersections, houses, etc.).  

Misclassification of large dunes can be caused by varied spatial illumination on complex dune 

surfaces. As a result, it is difficult to decide whether the difference in brightness is caused by 

topography or illumination. Levin et al. (2004) showed that one can separate slope and aspect of 

sand dunes from shading using two Landsat images with different sun zenith and azimuth angles 

(one image acquired in winter and the other in summer, for example). Since Google Earth images 

used in the study are obtained from summer and with limited shadows, the spatial illumination 

problem is neglected, which may result in some misclassification of vegetation as shadows, or vice 

versa.  

 

1.1. Study areas 

Area I1 is located near the town of Uxin and has experienced significant vegetation growth from 

1999 to 2010 (negative change in DN predominates over positive change). Many dunes in this area 

have formed or are forming parabolic shapes and starting to stabilize (Figure 3a). Site I4 also went 

through significant re-vegetation and stabilization.  
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Area I1 

 

 

Area I4 
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Area I5 

 

Area I6 



19 
 

 

 

Area I7 

 

 

Area I8 
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Area I9 

Figure 3 Grey scale images from Google Earth, change in DN values, and DEM based on Aster GDEM data for each study area 

North is toward top. Image source: GoogleTM Earth, Aster GDEM 

Area I5 is located in the southwest corner of Mu Us dune field, close to the town Otoq Qianqi. In 

2002, vegetation was concentrated in the northeast corner of the study area, where elevation is 

lower compared with the southwest side. From the 2012 image, sand dunes expanded in the 

northeast corner of this region, which is close to the county road and can be heavily influenced by 

human activities such to sheep herding, as is observed in the field (Figure 4b). In fact, the straight 

line separating the unvegetated northeast corner and the rest of the area may be a fence line. Area 

I5 is the only study area found with an overall decrease in vegetation cover and reactivation of sand 

dunes. This can be correlated with a large increase in livestock numbers in this area from 2000 to 

2005 (Xu et al., 2017, unpublished). 

Vegetation growth occurred in most parts of area I6 between year 2001 and 2010 as shown in the 

histogram of DN value change. Vegetation pixels are found along SW-NE direction in the middle of 
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the plot, highly correlated with the elevation pattern of this area. This correlation will be further 

explored in section 2. 

Area I7 is close to the town of Tuke, where lush vegetation is observed in lower interdune areas. 

Tall bushes as high as 2m are found on lee side and the top of dunes. No signs of man-made grids 

were spotted.  

  

 

Figure 4 Field observations of some research areas (a-d: I1, I5, I7, I7) 

Area I8 is located on the northwest corner of Mu Us desert, where few man-made structures can be 

identified from satellite images. Image resolution is lower compared with other sites. Located in the 

center of Mu US, area I9 doesn’t have many man-made structures nearby either. Areas covered by 

vegetation (most of the southeast side and small portion of the southwest side) correspond to 

lower elevation on the map.  

a

 

b

 

c

 

d
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In summary, vegetation declined in the past two decades in local areas in the western Mu Us dune 

field, while most of the field experienced vegetation increase. This agrees with previous research 

that found dunes are stabilizing in the eastern Mu Us since the 1970s, while dune mobility 

increased in the west (Wang et al., 2005; Mason et al., 2008; Xu et al., 2017, unpublished).  

 

1.2. Vegetation cover and elevation  

Although an inverse correlation between elevation and vegetation exists in some areas of Mu Us 

dune field (Xu et al., 2015), vegetation cover does not show a clear trend with elevation across the 

entire Mu Us dune field (Figure 5). In fact, the correlation between vegetation cover and elevation is 

low for most study areas, with an absolute value ranging from 0.067 to 0.315 (Table 1).  

This low correlation may be related to the varying water table level of these study areas. To 

evaluate that possibility, relative elevation was used to approximate the height difference between 

a location and local water table level, using the elevation of a cell above or below its neighbors. 

 

Figure 5 Boxplot of vegetation cover with elevation for the whole Mu Us dune field 

Relative elevation (RE) of a focal cell i is calculated as: 
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REi = Zi – mindij<x(Zj) 

where Zi is the elevation value of the focal cell, mindij<x(Zj) is the minimum elevation of all adjacent 

cells Zj where the distance between the focal and adjacent cells (dij) is less than x. Here I used range 

values calculated from variogram (Table 2) as an estimate for larger areas (for example, 500m for 

area I1 and I8) and trial and error to estimate dij for smaller areas. The correlation coefficient 

between relative elevation and vegetation cover is calculated for each area (Corr_RE), and for sand 

dunes only (Corr_RE_sand, defined as areas of top 10% of DN values) respectively (Table 1). 

Relative elevation depicts local landscapes in more detail as dune crestlines are shown much more 

clearly in RE images than in the original maps of elevation (Figure 6). 

 

   

Area I6 

a

 

b

 

c

 



24 
 

 

   

Area I7 

Figure 6 Absolute (a, d) and relative elevation (or local relief, b, e) of Area I6 and Area I7 

North is toward top. Image source: GoogleTM Earth, Aster GDEM 

Using samples randomly selected from relative elevation maps (shown as red circles in Figure 7a.), 

correlation coefficients between elevation and DN are positive though low for all study areas (Table 

1). RE and RE sand are not significantly correlated with DN for most study areas; however, the 

correlation is stronger for area I4 (0.365, p value of 0.001, Table 1Table 1). In area I4 (Figure 7b and 

c), DN increases (i.e. vegetation cover decreases) as both absolute elevation and RE sand increase, 

and the correlation is stronger with RE sand. 

 

Table 1 Sizes and vegetation-elevation correlation coefficient for each study area in Mu Us dune field 

(Correlation coefficients are calculated using Pearson method and are unitless. Size of areas is measured directly on Google 

Earth using rectangular tool. I use * to suggest significant level: **: < 0.01; *: <0.1) 

d

 

e

 

f
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Area Size(km2) Corr_original Corr_RE Corr_RE_sand Corr_RE_sand_pval 

I1 350 0.149 -0.016 -0.044 0.822 

I4 78 0.194 0.047 0.365 0.001** 

I5 2.89 0.172 -0.010 -0.023 0.851 

I6 38.8 0.315 0.049 0.065 0.797 

I7 2.49 0.295 0.001 0.335 0.094* 

I8 326 0.067 0.031 -0.052 0.804 

I9 6.32 0.179 0.103 0.032 0.843 

 

 

  

a

 

b

 

c
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Figure 7 Correlation between relative elevation (x-axis) and DN value (y-axis) 

Vegetation cover map showing samples points (grey dots) and sand dune samples (red circles; upper 10% in pixel brightness 

of grey dots) for Area I4 (a); Correlation between elevation (b) and relative elevation (c) and DN value (y-axis) of Area 4 for 

sand pixels (DN value in the upper 10%); Linear regression shows fit between vegetation cover and elevation (d); Diagnostic 

plots (e) show that the data is normally distributed, as evidenced by the linear pattern in QQ plot; The scale-location plot 

shows no homoscedasticity within the dataset; No outliers are spotted in the leverage plot. Sample size: 200; p-value: 0.09 

 

1.3. Patchiness of vegetation 

Dune field vegetation is often found to be distributed in patches, due to availability of shade, water, 

nutrients and lower wind drift (Maestre and Cortina, 2005).  In the study areas of the Mu Us dune 

field Moran’s I (defined below) is close to 1, suggesting positive spatial correlations (Table 2).    

 

Where Zi is the difference between variable of interest and the mean, and Wij is the matrix of 

weights that is 3x3 ("Queen's case") with ‘0’ in the center surrounded by ‘1’s. Vegetation tends to 

expand from near existing patches rather than colonizing new sites randomly, because Moran’s I for 

the difference between two images is also close to 1 (Table 2). 

d

 

e
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Table 2  Moran’s I in Mu Us study areas 

Area Size(km2) Moran’s I 

(before) 

Moran’s I 

(after) 

Moran’s I (after - 

before) 

Range(m) 

I1 350 0.861 0.748 0.651 463.3663 

I4 78 0.873 0.855 0.611 158.9648 

I5 2.89 0.912 0.867 0.853 82.05746 

I6 38.8 0.915 0.902 0.862 371.667 

I7 2.49 0.923 0.914 0.633 400.0374 

I8 326 0.919 0.856 0.699 513.9414 

I9 6.32 0.889 0.921 0.755 199.9997 

 

To estimate patch sizes, I first randomly sampled latitudinal lines from each study area, then 

calculated length of vegetation pixels (defined as DN value < 0.0025) that intersect with these lines. 

Size of a patch is represented by the distance on a transecting line that is completely covered by 

vegetation. The patch count histograms are generated based on patch size, which is then used to 

create patch count – patch size graph on log scales (Figure 8).   

Model simulations (Kéfi et al., 2007) show that areas with low grazing pressure, characterized by 

strong local positive interactions and a large proportion of local seed dispersal, often have an 

inverse power law relationship in patch-size distribution. When the strength of local positive 

interactions is decreased, as with heavier grazing, this distribution would deviate from a straight 

line on power law plot. In the Mu Us Dune field, size and number of vegetation patches follow an 

inverse power-law correlation relationship (Figure 8), suggesting that grazing pressure is low 

according to Kéfi et al. (2007). However, vegetation cover of Area I5 decreased, possibly because of 

grazing pressure, while it increased in I9 (Section 1.1). This suggests that the patch size-number 

relationship emphasized by Kéfi et al. may have limited predictive power in identifying areas where 
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the dune field is becoming more active because of disturbance such as grazing pressure. Instead, 

there is a need for a multivariate analysis relating dune activity and vegetation cover to factors 

including human disturbance, as described in Chapter 2.   

 

Figure 8 Vegetation patch size distribution using Area I9 (left) and Area I5 (right) as examples 

 

1.4. Nearest neighbor effect (Spatial autocorrelations) 

To further quantify vegetation spatial autocorrelations, I calculated semi-variance values and 

plotted variograms for pairs of vegetation sample points. Semi-variance values usually increase 

with distance between pairs of points, since sites that are closer are more similar in a variable or 

process (Zx) than those that are further apart. Semi-variance is calculated as half the average 

squared difference between points Z(xi) and Z(xi+h): 

 

where N denotes the number of pairs of observations Z(xi) and Z(xi+h) with location xi and xi+h; h is 

the distance between these two points (Matheron, 1963). 

A variogram is characterized by the range, sill and nugget. The distances between data pairs at 

which semi-variance values are calculated are called lags. Range is the lag value at which variogram 

starts to level off. It represents the distance over which data are no longer correlated. Sill is the 
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variogram value corresponding to the range and represents the total variation. The nugget, the y 

intercept of the variogram, shows the extent of random, unexplained variation within the data. 

Range value is of particular interest to the study, since it reflects the distance within which spatial 

autocorrelation is maintained, and sample points within range distance are therefore considered 

nearest neighbors.  

Geostatistical methods require data to be normally distributed and stationary (mean and standard 

deviation values do not change with location). Most research areas in Mu Us Dune field have DN 

value distributions roughly following a normal distribution based on their bell-shaped histogram 

and linear QQ plot (e.g. Area I4, Figure 7).   

 

Figure 9 Vegetation variograms of study areas 

Range values for all study areas were estimated after fitting these semi-variograms to a distribution 

(e.g. spherical, exponential, etc.) (Table 2). Vegetation variograms calculated along E-W direction 

are presented in Figure 9. The larger study areas (I1, I8) have a range value of about 500m (Figure 9, 

Table 2), which will be used as the ‘nearest neighbor’ distance for these areas in later chapters. Area 

I7 does not show a clear semi-variogram pattern, possibly because of its small size.  
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Figure 10 Analysis of the anisotropy of spatial autocorrelation for vegetation cover and elevation in Area I6 (a-d) and Area I11 

(e-h). Panels a, b, e, and f are variogram maps, explained in the text. Panels c and g are grayscale images portraying vegetation 

coverage (dark = vegetation); panels d and h show elevation (m above sea level). For area I6 (a-d), vegetation (a and c) and 

a b 

c d 

e f 

g

 

h
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elevation (b and d) both demonstrate anisotropy. A transect along 145°N shows high spatial continuity along that direction 

(with the longest range) in both vegetation and elevation for Area I6. Vegetation in Area I1 (e to h) shows isotropy while 

elevation demonstrates anisotropy with the largest range along x-axis.  North is toward top. Image source: GoogleTM Earth, 

Aster GDEM 

Directional dependence of vegetation distribution can provide further insights on its controlling 

factors. Anisotropy or isotropy can be demonstrated by variogram maps (or “Anisotropic 

Semivariance Surfaces”), portraying the semivariance contribution of each pair of points with h 

distance apart along all directions (each map cell represents a specific distance and direction, 

plotted relative to the map center) (Figure 10). A transect line in any direction from the center to the 

margins of the variogram map is equivalent to the variogram in that direction. Less variation in 

color along a certain direction suggests that the range value in that direction is large (e.g. NW-SE 

direction in Figure 10 a and b), which is a sign of anisotropy; otherwise the range value is roughly 

the same along all directions and data would be characterized by isotropy. From the variogram 

maps of area I6 (Figure 10 a-d), vegetation is anisotropic and has the largest range along NW-SE. 

Elevation is anisotropic too with the largest range in the same direction, suggesting the correlation 

between vegetation and elevation in this area. In addition, the RDD (i.e. resultant direction of 

potential sand transport) for the Mu Us dune field is also generally NW-SE, consistent with the dune 

migration direction (Mason et al., 2008); therefore the pattern of anisotropy in I6 suggests a link 

with the direction of sand transport and the resulting dune forms. For area I1 (Figure 10 e to h), 

however, vegetation has no directional effect while elevation shows anisotropy, another piece of 

evidence that elevation alone cannot always explain vegetation distribution patterns.  
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Conclusions and Discussion 

In general, the study areas display the increase of vegetation cover previously reported for the Mu 

Us dune field (Xu et al., 2015), though to varying degrees. Area I5, in the western part of the dune 

field, is a exception, with bare sand clearly increasing.  

Simple correlation analysis provides only very limited evidence for the relationship between 

vegetation cover and elevation (or more local, relative elevation) that was proposed in earlier 

research on dune fields. The conditions that have been proposed to explain this relationship—

greater wind exposure on high points of the landscape and a shallow water table in low areas—

should apply in the Mu Us dune field, but possibly other controls on vegetation distribution are also 

important. It is unclear why a correlation between vegetation cover and relative elevation of sand 

emerges in study area I4, but not the others.  

 In contrast, the analyses in this chapter do indicate patchiness and spatial autocorrelation of 

vegetation that may reflect effects of seed dispersal and local facilitation of plant growth through 

sheltering and greater nutrient availability. This information quantitatively confirms earlier 

speculation about vegetation patchiness and spatial autocorrelation in this dune field (Xu et al., 

2015), and should be incorporated into modeling of vegetated dune behavior, if possible. The range 

value typical for variograms of the larger study areas (~500 m) is also useful as an indicator of the 

scale of neighbor effects to consider in modeling.  The analysis demonstrates that elevation can be 

an influential factor in vegetation spatial patterns, but it is not the sole deciding factor. The 

relationship between vegetation patch size and number, suggested by Kéfi et al. (2007) as an 

indicator for distinguishing stable dune field landscapes with low grazing pressure from those 

affected by higher disturbance levels, does not appear to be useful for this purpose in the Mu Us 

dune field. The anisotropy of spatial autocorrelation suggests effects of wind and sand transport 

directions in some study areas, but not others, also a new observation worth further study. 
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In the next chapter, I will take a multivariate approach and build models to relate recent dune 

migration and vegetation cover changes over time with multiple factors (including climatic 

variables, elevation, and variables representing human impacts). 
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Chapter 2. Dune activity and regional vegetation change in response 

to environmental variables 

 

As discussed in the Introduction and Chapter 1, a range of factors can affect dune activity. Their 

relative importance in the dune stabilization process, however, has rarely been analyzed 

quantitatively. Bullard et al. (1995) carried out a detailed statistical analysis of dune patterns, 

mapping and classifying linear dune patterns using aerial photographs. However, they did not study 

their response to environmental variables. Wang et al. (2005) performed principal component 

analysis (PCA) to compare human and climate influence on dune activity; yet they only used survey 

data from cities on the fringe of the dune field in their model while leaving the vast area in the 

middle of dune field unstudied. Baas and Nield (2010, 2007) employed PCA on blowout forms using 

state variables derived from simulation results of their Discrete Ecogeomorphic Aeolian 

Landscapes (DECAL) model. They then constructed a phase graph demonstrating 11 dune 

categories. However, their model simulates blowouts rather than the stabilization process of 

barchan dunes. Moreover, these generated dune types are based on model simulations instead of 

actual dune fields.  

The inherent complexity of the sand dune stabilization process and the availability of high 

resolution satellite images have led to the use of machine learning methods as a viable alternative 

to physical modeling approaches. Decadal-scale morphology changes (such as dune migration and 

size changes) can be observed and measured from high resolution, multi-temporal imagery freely 

available from Google™ Earth (Hugenholtz et al., 2012). Though limited by the availability of a long-

term, historic (over 100 years) record of satellite images, we can use segments of the long-term 

dune stabilization process from satellite images to build and test models, thereby reconciling the 

scale discrepancies between model and observations. 
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In this chapter, I use features measured directly from Google Earth (GE) satellite images as 

explanatory variables to model rates of dune migration (Section 2.2) and vegetation cover change 

(Section 2.3). These features are described and grouped into categories using PCA in Section 2.1. 

Dune migration rate and rate of vegetation cover change rate calculated for each sample (a pair of 

images), and the explanatory variables represent conditions at the time of the first image of each 

pair (except for Moran’s I, where both initial and final values were considered as explanatory 

variables).  As a consequence, the analyses in this chapter deal with spatial variation of dune 

migration rate and vegetation cover change across the dune field, in response to spatially varying 

environmental factors. 

Two patches of sand dunes are selected from each of the seven study areas in the Mu Us dune field 

based on image quality and availability. A pair of images of each patch were obtained from two 

years (ranging from 8 to 14 years apart). From each patch, five dunes were randomly selected, and 

features were extracted from the earlier image. Dune migration rate was estimated by the position 

change of each individual sand dune crest line averaged by number of years between the pair of 

images. Using the same imaging processing approach as described in Chapter 1, pixel brightness 

(DN value) was used to represent vegetation cover, after adjusting the brightness of the images to 

match control point DN values.  Vegetation cover change rate was calculated at patch level by 

dividing average pixel brightness (DN value) change with number of years between the pair of 

images.  All analysis was conducted in R. 
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1. Feature description and PCA analysis 

Feature description 

Climate factors such as temperature and precipitation can clearly influence vegetation growth, and 

ratio of precipitation to potential evapotranspiration (P:PET) is often used to estimate effective 

moisture, i.e., moisture available to dune-stabilizing plants (Lancaster, 1988a). Wind data from 

1991 to 2012 obtained from the NCDC was used to calculate DP (see Background for methods), 

which affects the  susceptibility of vegetation to disturbance (Yizhaq et al., 2007). Climate variables 

of a sand patch of a certain year were approximated using data from the closest weather station. 

Bagnold (1941) indicated that migration speed of dunes is inversely correlated with their height. In 

the model by Duran and Herrmann (2006), dune size is essential in determining fixation index: 

θ = Q / (V1/3Vv) 

where Q is sediment flux, V is barchan volume, and Vv is vertical vegetation growth rate. If θ > 0.5 

then barchan dunes remain mobile because vegetation growth does not keep up with sediment flux, 

otherwise they are stabilized by vegetation. The equation used implies that larger dunes will 

stabilize at lower vegetation growth rates and/or higher sediment fluxes.  

Barchyn and Hugenholtz (2012) also pointed out that larger transverse dunes stabilize more 

quickly than smaller, wider spaced barchan dunes because of their lower speed. To estimate dune 

size (or volume) from satellite images, researchers have used Lee Face Length (LFL) since the lee 

face has a narrow range of slope angles and thus this length is closely related to maximum dune 

height (Xu et al., 2015). Here I used largest length in the wind-parallel direction (dune width) 

instead of LFL as a closer estimate for dune sizes, since the latter represents a very small distance 

that is difficult to measure accurately from some of the satellite images used for this analysis.   
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Xu et al. (2015) found that vegetation growth decreases with the increase in elevation in Mu Us 

dune field, possibly due to the influence of increasing depth to the water table. In their numeric 

model of dune activities, Pelletier et al. (2009) used elevation to approximate surface roughness, 

which is inversely correlated with sediment flux.   

Human activities, such as farming, herding, and planting wind-breaking grids can also change 

vegetation cover and surface roughness. These activities can be observed in the field, such as 

planted trees (Figure 11a), embedded wind-breaking grids of sticks or shrubs, and fences (Figure 

11b) to prevent animals from grazing in certain areas. The buried poles from fences (Figure 11b) 

suggest dune migration. These wind-breaking grids are evident as straight, dotted lines on sand 

dunes in satellite images (Figure 11c).  

In this chapter, as in Chapter 1, elevation is obtained from Aster GDEM; note that this is not local, 

relative elevation related to height on a dune, but instead reflects broader variation in elevation 

across the dune field that is mainly related to topography of the sub-dune surface.  Vegetation 

related features (such as distance to nearest vegetation patch) are measured directly from GE 

images for use as explanatory variables.  

The grid density is estimated from satellite images with a value between 0 and 1.  Other human 

activity metrics such as distance to closest man-made structures (water body, villages, etc.) can also 

be measured directly from satellite images. 

 

a b 
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Figure 11  Human activities observed in the field and from satellite images (Area I1) 

Human planted trees (a), observed fence and grids from the field (b) and parabolic dunes and grids observed from Google 

Earth (c) North is toward top. Image source: GoogleTM Earth 

 

All features that are included in the analysis are summarized in Table 3.  

Table 3 Explanatory variable description for dune migration speed (range of variation: 0-7.3m/year) 

Category Explanatory variables Values description Range of variation 

Non-

human 

Elevation/ESL Retrieved from Aster DEM data 1282-1482m 

 Dune size (dune width) Measured using Ruler tool on GE 20.9-176.0m 

 Drift Potential  Value from nearby station, NCDC 15-111(knot) 

 Average temperature  Value from nearby station, NCDC 7.72-9.96(°C) 

 Effective moisture (P/PET)  Value from nearby station, NCDC 0.38-1.12 

 DN value of pixels (up and down 

wind direction) 

Value measured on grey scale images 33-215 

 Size of closest vegetation patch up 

and down wind direction 

Measured using Polygon tool on GE 0-29070m2 

 Size of nearest vegetation patches  Measured using Polygon tool on GE 5580 -1.2*106m2 

 distance of vegetation patches 

nearby 

Measured using Ruler tool on GE 0-2213m 

 Initial Moran’s I Measured from GE images 0.803-0.973 

c

c 
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 End Moran’s I Measured from GE images 0.850-0.963 

Human Distance to nearest 

village/city/farmland 

Measured using Ruler tool on GE 562-7447m 

 Size of nearest village/city/farmland Measured using Polygon tool on GE 760-1.5*107m2 

 Distance to nearest waterbody <2km Measured using Ruler tool on GE 0, 1 

 Grid density on a sand dune DN value measured on GE 0-0.93 

 

PCA analysis 

To further group the two categories of features listed in Table 3 into several subcategories (such as 

climate or vegetation), and gain a better understanding of the amount of variation for each 

subcategory, I used PCA to convert these variables into uncorrelated Principal Components (PCs). 

Each PC can be characterized by its leading variables. PCs are also used in place of actual features in 

the models in section 2.2 and 2.3 to identify the leading dimension (climate, vegetation, or human) 

contributing to dune migration rate and vegetation cover changes.   

Using R packages FactoMineR and factoextra, I created a scree plot (Figure 12a) that shows the 

importance of PCs, where the first 6 PCs explain 80.8% of the variation.  
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Figure 12 Scree plot (a); Variable factor map showing variable contributions (cos2) to the first two dimensions (b); Bar graph 

showing variable contribution to PC1 (red dashed line suggests expected contribution: 6.67% = 100%/15 variables, where 

variables with values above the line are considered major contributor to PC1 (c); Correlation (‘normalized’ variance ranging 

between -1 to 1) between variables (d)  

Each variable can be plotted in the component space using their loadings (correlation between a 

variable and a PC) as coordinates. An ordination plot (Figure 12b) projects all variables onto the 

first two PCs. Variables that are close to each other in the graph are more correlated to each other, 

such as P/PET and precipitation. Vector length indicates the correlation between variable and the 

first two principal components. The most important variables that explain the first PC are P/PET, 

a 

b 

c 
d 
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Precipitation, and DP (Figure 12c and Table 4); size of nearest town and elevation are leading 

variables for the second PC (Table 4). 

Table 4 Contribution of variables to each PC 

 
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

elev 0.1099 0.4569 0.0018 0.0024 0.2473 

grids 0.0126 0.2407 0.0699 0.0038 0.3929 

interdune_adj_up 0.1180 0.1536 0.0977 0.1575 0.0394 

interdune_up_size 0.2378 0.2445 0.0232 0.0030 0.0390 

interdune_adj_down 0.2008 0.0497 0.0107 0.1702 0.0203 

interdune_size_down 0.1077 0.0104 0.0056 0.1206 0.2122 

dist_large_veg_patch 0.0995 0.2034 0.2269 0.2285 0.0370 

large_veg_size 0.0177 0.2230 0.4146 0.1717 0.0319 

Dist_water_2km 0.3099 0.0545 0.2884 0.1932 0.0405 

dist_town 0.0265 0.1770 0.4633 0.0096 0.1848 

size_town 0.0183 0.5922 0.1865 0.0305 0.0034 

dune_size 0.2527 0.0090 0.4769 0.0306 0.0198 

DP_knot 0.7462 0.0602 0.0020 0.0322 0.0430 

P_PET 0.8721 0.0256 0.0001 0.0014 0.0171 

Precp_cm 0.7456 0.0556 0.0442 0.0384 0.0002 

Temp_C 0.3139 0.0450 0.0001 0.1439 0.1003 

moran1 0.0124 0.0369 0.0053 0.5979 0.0098 

 

PC3 is heavily influenced by dune size and distance to large human establishments (Table 4). PC4 is 

mainly affected by vegetation distribution (Moran’s I). PC5 is led by man-made wind breaking grids 

and elevation. In all, the climate component (PC1) has the largest variation amongst all PCs. Most 

other PCs have mixed effects from vegetation and human activities.  
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2. Regression on dune down-wind migration rate  

In this section, I will investigate the factors controlling the rates of dunes’ down-wind migration in 

the study areas, during the short periods of time represented by the paired images. To quantify 

dune movement, researchers have measured the distance between two lines representing the 

position of dunes successively in time (Gay, 1999; Bailey and Bristow, 2004). Edges of slipfaces and 

brink lines are often used as representations of dune positions (e.g., coastal dunes of Oregon, 

Hunter et al., 1983, coastal dunes of Brazil, Jimenez et al., 1999 and Levin et al., 2009). In this 

research, I adopted the same method and used the average value of multiple measurements 

between crest lines as dune migration distance. The migration rates and all features are 

standardized by subtracting the mean value from them and dividing the remainder with the 

standard deviation.  

Environmental and human activity related features (Table 4) are employed as explanatory variables 

for modeling dune migration rates. Due to the high dimensional component of the data set as well 

as the multi-collinearity of the variables (Figure 12d), I compared three models: Random Forest, 

Multivariate least squares and Support Vector Machines (SVM), and evaluated their goodness of fit 

using Mean Squared Error (MSE). 

 

Random Forest 

Random Forest (RF) is a non-parametric, decision tree-based classification or regression model 

first proposed by Breiman (2001). RF constructs an ensemble of trees using a bagging method, 

while randomizing the growth of each tree; it then computes mean prediction of all individual trees. 

Random Forest overcomes the overfitting problem of the plain decision tree method (Breiman, 
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2001). It has been applied in the prediction of tree species distributions under current and future 

climate scenarios (Prasad et al., 2006), the prediction of soil organic matter in Inner Mongolia of 

north China (Wiesmeier et al., 2011), and land cover classifications (Rodriguez-Galiano et al., 2012).   

The importance of a variable in RF regression is measured by the ‘Gini index’, the residual sum of 

squares (suggesting ‘node impurities’) from splitting on this variable, which is then averaged over 

all trees. This importance ranking can be used to filter out irrelevant features or to identify top 

contributors. Using RF, for example, Wiesmeier et al. (2011) showed that land use, RSG and geology 

are the most important variables influencing SOC storage. Given that some of these variables are 

correlated (especially climate related variables; Figure 12d), I used a conditional permutation 

importance measure as suggested by (Strobl et al., 2008), which is implemented in the R ‘party’ 

package. RF models were built on training data set that is composed of a random sample of 70% of 

original dataset with randomization seed set at 1000 for reproducibility. The number of trees 

(ntree) is set at 25 when MSE is lowest for ntree from 1 to 100 (Figure 13a). Using the test dataset 

(the remaining 30% of original data), the model predictions shows good predictability in the actual 

migration rate values, with an MSE = 0.376 (m/y)2 (Figure 13b).  

Stability in variable importance increases with increasing dimension and decreasing samples in the 

dataset (Wang et al., 2016). To cope with the variation in Gini index and MSE each time the model is 

run, I ran the RF model 20 times and calculated the average Gini value. From Figure 13c, elevation is 

the most significant feature based on Gini index, followed by size of nearest town. The most 

important signals did not change when the randomization seed was set at different values, echoing 
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previous research which found that the most important features are more stable than the less 

significant ones in model iterations (Wang et al., 2016). 

  

 

Figure 13 Results from RF analyses of dune migration rates:  change in MSE with number of trees (a), Linear correlation between 

Random Forest prediction and the standardized dune migration rate (b), Variable Importance with features (c), Variable 

importance with PCs (d) 

a b 

c 

d 

(m/y)2 
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Using the top eight PCs as explanatory variables for dune migration rate, PC5 (the elevation and 

grid component) is shown to be the most significant component (Figure 13d), agreeing with the 

result reported by the RF model using the original features (Figure 13c). Despite its large influence 

on the PCA ordination (Section 2.1), the climate component (PC1) is not very influential on dune 

migration rates. 

 

SVM 

Support Vector Machine (SVM) is also a popular model used for both regression and classification 

problems. It has robust performance on sparse and noisy data, and has been applied in remote 

sensing research (Mountrakis et al., 2011), land cover and land use analysis (e.g., classification 

based on ASTER image of Koh Tao in Thailand,  Szuster et al., 2011), or even extraterrestrial image 

analysis (e.g., the detection of Martian sand dunes, Bandeira et al., 2011). SVM is implemented by 

constructing a hyperplane in a high-dimensional space. For classification, the best hyperplane is 

selected when data points of its nearest classes have the largest distance from it. SVM can also be 

used to solve regression problems through the introduction of loss functions. For non-linear 

classification, hyperplanes need to be projected to higher dimensions for better fit, where non-

linear kernels can be used, such as Polynomial and Exponential Radial Basis Function (RBF).  

After tuning the parameters through a bootstrap resampling method, I selected the optimal model 

with the smallest RMSE. These parameters used in the model were: degree = 3, scale = 0.1 and C = 

0.25. I chose the Polynomial Kernel, which had best performance when compared with other 

popular kernels such as Linear and RBF. MSE is calculated as 0.219 (m/y)2, smaller than MSE of 

Random Forest model (Figure 14). The most important variables suggested by SVM method are 

similar to the ones identified by Random Forest, with elevation still being the top contributor to 

changes in dune migration rate. 

a 
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Figure 14 Linear correlation between SVM prediction and the standardized dune migration rate (a); Variable importance with all 

features 

To explore the direction and scale of dune migration rate change with variations in the most 

important variables generated from SVM, I built a Multivariate Linear Regression model (MLR) 

model using these variables (elevation, downwind interdune vegetation patch size, initial Moran’s I 

value, and largest vegetation patch size and size of town): 

migration_rate ~ elev + interdune_size_down + moran1 + large_veg_size + size_town  

The diagnostic plots (Figure 15) show that the data are roughly normally distributed, characterized 

by homoscedasticity and without highly influential outliers.  

b 

a 
(m/y)2 
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Figure 15 The fit and diagnostic of Multivariate Linear Model 

Using a stepwise method, a new model was selected based on the lowest AIC (103.63) with a MSE of 

0.605(m/y)2, with a power of 0.7 at significant level of 0.1. In this model, elevation has the highest 

contribution (Table 5a), agreeing with variable importance rankings generated from RF and SVM 

models. The coefficient column suggests that the higher the elevation is, and the smaller vegetation 

patches are, the faster dunes migrate in the Mu Us study areas.  

 

Table 5 ANOVA on factors related with dune migration rate 

a. Starting with selected features (elev, interdune_size_down, moran1, large_veg_size, size_town) 

 
Estimate Standard 

Error 

t value Pr(>|t|) 
 

(Intercept) -0.01871m/y 0.13839 -0.135 0.89322 
 

elev 0.61885y-1 0.14818 4.176 0.00018 *** 

large_veg_size -0.36217 (m*y)-1 0.15517 -2.334 0.02529 * 
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b. Starting with all features 

 Estimate Standard 

Error 

t value Pr(>|t|)  

(Intercept) 0.005236m/y 0.122508 0.043 0.96621 
 

interdune_adj_up -0.60626(m*y)-1 0.164389 -3.688 0.000964 *** 

large_veg_size -0.98239(m*y)-1 0.195216 -5.032 2.54E-05 *** 

Dist_water_2km -6.50361(y)-1 1.522014 -4.273 0.000201 *** 

dist_town -0.39031(y)-1 0.287685 -1.357 0.185704 
 

size_town 0.433145(m*y)-1 0.323924 1.337 0.191926 
 

dune_size 0.363133(y)-1 0.225235 1.612 0.118125 
 

DP_knot -12.2998m/(y*knot) 3.116032 -3.947 0.000484 *** 

P_PET -32.9779m/y 7.624521 -4.325 0.000175 *** 

Precp_cm 19.39062(y/100)-1 4.241998 4.571 8.95E-05 *** 

moran1 0.679949m/y 0.267091 2.546 0.016694 * 

Significance level: 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 

 

For comparison, I also built a model that starts with all 17 features and is trimmed down to 10 

using AIC through stepwise selection. The result in Table 5b is very different from Table 5a. For 

example, elevation is no longer amongst the most significant features. This can be attributed to the 

small sample size of the dataset, since the power of the current 17-feature model is only 0.5 at 

significant level of 0.1. To increase the power to 0.8 at the same significant level, at least 104 

samples will be required.  

In summary, models generally agree that elevation is the leading factor in determining dune 

migration speed. This can be related with locally greater exposure to strong winds at higher 

elevations, not reflected by the DP from weather stations used in these models. Nearby vegetation 

patch size also plays important roles (Table 5a), since larger vegetation patches are likely more 
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effective than smaller ones in trapping sand and limiting supply to downwind dunes. SVM had the 

best performance of all three models while MLR had the worst, which can potentially be improved 

by adding more sample points.   

 

3. Regression on vegetation cover change rate 

To predict vegetation cover change rate, Yizhaq et al. (2007) proposed a continuum model that is 

comprised of three parts, which are respectively: vegetation growth (including resource 

competition and growth), sand movement effect on vegetation, and wind drag on vegetation: 

 

where v is the vegetation cover; vmax = 1, representing completely vegetated dunes; θ is a random 

vegetation growth factor; vc is a critical vegetation cover above which sand transport decreases; 

θ(vc-v) =1 when v<vc, and 0 otherwise; DP2/3 represents wind drag on vegetation. However, the 

model neglects local features (such as local patches of vegetation) and moisture.  

As a viable alternative, statistical models have been developed to predict vegetation cover types 

using environmental variables as well as vegetation spatial distribution information (Franklin, 

1995; Miller and Franklin, 2002). Miller and Franklin (2002) built GLM and tree-based classification 

models to predict the presence of vegetation species using predictors such as precipitation, 

elevation, etc. However, studies on predicting vegetation cover change rate in dune fields are 

scarce.  

In this section, the spatial variation of yearly vegetation cover change of dune patches is treated as 

the response variable.  A positive, rapid increase in vegetation cover suggests fast stabilization, 

while a negative value represents land degradation or dune activation. Explanatory variables are 
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slightly different than those used in Chapter 2.2, with values averaged over the area of each 

vegetation patch (Table 6). These variables still cover climate, human and environmental aspects. 

To simplify the model, I assumed that vegetation is in temporary equilibrium with the environment 

following Guisan and Theurillat (2000). 

Table 6 Explanatory variables for vegetation cover change rate (range: -7*10-5 – 6*10-5/year) 

Category X- variables Values description Range of variation 

Non-

human 

Elevation Retrieved from Aster DEM data 1283-1407m 

 Drift Potential  Value from nearby station, NCDC 15-111knot 

 Average temperature  Value from nearby station, NCDC 7.72-9.96°C 

 Effective moisture (P/PET)  Value from nearby station, NCDC 0.38-1.12 

 Size of largest vegetation 

patches nearby 

Measured using Polygon tool on GE 1398-7.2*107m2 

 distance of largest vegetation 

patches nearby 

Measured using Ruler tool on GE 0-6404m 

 Initial Moran’s I  Initial spatial pattern of vegetation 

distribution 

0.80-0.97 

 Distance to nearest 

village/city/farmland 

Measured using Ruler tool on GE 550-7447m 

Human Distance to nearest waterbody 

<2km 

Measured using Ruler tool on GE 0, 1 

 Size of nearest 

village/city/farmland 

Measured using Polygon tool on GE 760-3.2*107m2 

 Grid density on dune DN value measured on GE 0-0.616 
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Similarly as in Section 2.1, I decomposed the variables using PCA. PC1, PC2 and PC3 are related to 

climate, human and vegetation spatial distribution respectively (Table 7). The first five PCs explain 

81.6% of the total variation (Figure 16a). From the variable factor map, drift potential and 

precipitation are major factors explaining the climate component (Figure 16b).  

Table 7 Principal Components of variables explaining vegetation cover change rate 

 

With these top five principal components as inputs, I used Random Forest methods to identify the 

major contributor to vegetation cover change rate. The random forest regression on vegetation 

cover change rate using these five PCs shows that the human dimension (PC2) is the most 

important factor, while the climate dimension (PC1) only ranks 4th amongst all PCs (Figure 16c).  

 
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

elev 0.424 10.332 26.722 6.916 3.649 

grids 3.894 15.497 12.655 1.448 8.578 

dist_large_veg 21.038 2.616 13.169 3.011 8.111 

size_large_veg 8.613 12.464 10.249 6.248 0.465 

dist_town 4.186 0.006 1.439 20.124 42.655 

size_town 3.510 24.541 0.060 8.897 8.440 

DP 21.929 15.588 2.373 4.738 7.132 

prec 28.323 5.948 14.055 0.073 0.046 

temp 7.861 10.833 6.463 21.178 3.275 

moran1 0.222 2.175 12.814 27.368 17.649 
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Figure 16 Scree plot (a) and variable factor map (b) of variables explaining vegetation cover change rate after PCA; PC variable 

importance in explaining vegetation cover change rate (c) 

Random Forest and Multivariate Regression are not suitable for this analysis. Instability in variable 

importance generated by Random Forest models increases with decreasing sample size, and the 

power of Multivariate Regression would be only 0.3 for significant level = 0.1 with our dataset, 

much smaller than 0.7 in the Multivariate Regression model in Chapter 2.2 (Table 5a). With that 

background, I chose SVM model to predict vegetation growth rate. 

a b 

c 
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Figure 17 Variable importance in explaining vegetation cover change in patches 

The prediction using SVM yields an MSE of 0.965 (m/y)2. Comparing these ten features, distance to 

largest vegetation patch, grid density, elevation and size to nearest town play the most significant 

roles in determining vegetation cover change rate (Figure 17). This is coherent with the importance 

ranking of PCs, where the largest contribution comes from the human dimension.  

To understand how vegetation cover change responds to the four most important variables, I 

performed sensitivity analysis. Specifically, I adjusted values of these variables in the test data by 

adding 1 standard deviation, 2 standard deviation, substracting 1 standard deviation, 2 standard 

deviation to their original values, and predicting their corresponding vegetation cover change rates 

using the SVM model trained with original data. From Figure 18, the vegetation cover change is most 

sensitive to grid density and elevation.  
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Figure 18 Sensitivity analysis on top features generated by SVM 

X axis refers to sample points in the test dataset 

To sum up, size of nearest vegetation patch, grid density, elevation, and size of nearest town are the 

most important factors in determining vegetation cover change rate based on SVM simulations. 

This change rate is most sensitive to the density of wind breaking grids and elevation among these 

top factors. SVM model on original features and RF model on PCs both suggest that human activities 

have stronger influence on vegetation growth than spatial climate variation in Mu Us dune field. 

Constructing grids is an effective practice in encouraging vegetation growth. The location effect of 

these man-made grids will be explored in Chapter 4 using vegetation integrated CA model.  
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Conclusions and Discussion 

The analyses presented here provide interesting and potentially important insights on current 

environmental changes in the Mu Us dune field. These insights represent a new contribution 

resulting from the application of machine learning methods to data retrieved from Google Earth 

images, an approach rarely undertaken in past research on dune field geomorphology. The good fit 

as demonstrated by low MSE values shows that the models developed here can be effective tools in 

evaluating the importance of factors contributing to spatial variations of environmental variables.   

The importance of elevation and variables related to vegetation patterns and human activity as 

predictors of current rates of dune migration and vegetation change is especially noteworthy. These 

results may at first appear to conflict with previous interpretations of recent change in the dune 

field, in which expanding vegetation cover and stabilization has been related mainly to decreased 

DP since the 1970s, and possibly also to higher temperature and a longer growing season (Xu et al., 

2015).  

The analyses in this chapter do not actually test that hypotheses, however. The major drop in DP at 

stations in and around the dune field occurred prior to 2000, and DP has been at relatively low 

levels since then, although with interannual variation (see Introduction). Xu et al. (2015) emphasize 

that if the current stabilization of the dune field is driven by reduced DP, it must be a lagged 

response, since only limited stabilization was found by Mason et al. (2008) using imagery up to 

about 2003.  The significant upward trend of temperature before 2000 is also not evident in the 

years covered by this chapter’s analyses. The climate variables used as predictors here are those of 

the first images, so they would not reflect current trends even if they were present. Instead, the 

climate variables in this analysis largely represent spatial variation across the dune field, which is 

substantial but apparently is not an important factor in determining spatial variation of dune 

migration rates and vegetation change. 
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With that background, the results presented here can be interpreted as follows: In the present 

environment of generally stable dune fields (with some local exceptions), elevation emerges as one 

of the most important factors influencing the migration rate of still active dunes and the local rate of 

vegetation change.  As noted earlier, this can be explained as an effect of greater wind exposure at 

higher elevations, although greater depth to the water table may also play a role. The importance of 

variables representing vegetation patchiness (Moran’s I), adjacent interdune sizes, and vegetation 

patch size in prediction of migration rate suggest that local vegetation distribution represents 

limitations on overall sand flux across the landscape that influence dune migration. For vegetation 

change, both elevation and the presence of grids are important factors, not surprisingly. The size of 

nearby towns is important for both dune migration and vegetation change, probably because of 

greater human disturbance of many kinds near towns. 

Overall, these results emphasize the importance of non-climatic factors as controls of local dune 

activity and vegetation change in the Mu Us dune field, even if overall stabilization is occurring in 

response to climate change.  These factors include more or less permanent topographic effects as 

well as dynamic effects of human activity and the expansion of vegetation from existing patches.  

Admittedly, the methodology presented in this chapter is not without limitations. Satellite images 

provide an intuitive way for studying environmental changes of dune fields. However, data 

accuracy can be affected by several factors in the process of data collection and image processing. 

First, defining dune boundaries can be highly subjective. The task of assigning points, lines or 

polygons to represent dune features is often up to the decision of observers, making results difficult 

to reproduce (Hugenholtz and Barchyn, 2010; Hugenholtz et al., 2012). The GeoVisual tool launched 

by Descartes lab1 uses neural networks to recognize objects (such as airport runways, wind 

turbines and sand dunes) and detect similarities on maps based on Landsat 8 or NAIP Aerial 

                                                           
1 search.descarteslabs.com 
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Images. However, their visual search tool is not applicable to this research since it lacks historical 

images. In addition, dune forms can change significantly through time; therefore the task of 

identifying the same sand dune in a later image can only be completed with the knowledge of both 

its position and shape. This can make automatic detection using machine learning very challenging.  

As a result, the number of sample points is limited since the human sampling and classification 

process is slow. Second, the selection of study areas is subject to the availability of clear and 

cloudless images, therefore dune patches are not randomly distributed. However, these areas cover 

most of central, west and north of Mu Us dune field, where the variation in vegetation cover, 

climate, elevation, etc. is sufficiently large.  Third, there are issues related to the use of DN to 

estimate vegetation change. After the conversion from RGB to gray scale, I adjusted the brightness 

of about half the images since the light varies between images taken at different times.  In this 

study, I selected control points on bare sand (that is not in the shade) from a pair of images, and 

assigned these control points the same DN value, thereby aligning the brightness of both images to 

the same scale. However, other reasons can potentially explain the difference in brightness of the 

control points, such as early vegetation colonization that might appear slightly darker than bare 

sand.   
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Chapter 3. Cellular Automaton (CA) dune formation model 

 

Wind is the primary discriminator in dune pattern formation. Lancaster (1995) found broad 

agreement between theoretical and observed relationships of wind regime and dune forms. Wind 

speed and direction are the two aspects of its effect on dune forms. For example, barchan dunes are 

formed under unidirectional wind, and linear dunes are often shaped by two wind streams at a high 

angle to each other. The complexity of dune forms reflects in part the complexity of wind regimes: 

dune dynamics respond not only to regional wind patterns, but also to interactions between dune 

morphology and secondary local flow regimes (Livingstone et al., 2007). In addition, dune patterns 

formed can be complicated due to the time required for dunes to respond to rapid climate change 

(Kocurek and Ewing, 2005).  

Despite the well-documented complexity of the processes influencing dune morphology, Werner 

(1995) successfully produced barchan, linear and star dune forms using a CA model of sand 

transport, without directly addressing the internal dynamics and nonlinear feedback mechanisms 

in sand dune formation process.  To simulate sand transport by winds from varying directions, the 

Werner model defines a slab displacement along varying directions. Nield and Baas (2007) pointed 

out that this method is restricted by overall length of displacement and proposed a simple 

alternative of rotating the cell grid, but their method is restricted by edge effects. Modeling 

transport and dune form evolution resulting from bimodal or multimodal wind directions remains 

a challenge to be solved (Nield and Baas, 2007). In this research, I focus on dunes formed under 

unidirectional winds. Unidirectional winds not only dominate the Mu Us dune field, but also many 

other parts of the world. For example, in North American Great Plains, unidirectional wind regimes 

dominates over 180,000 km2 of dune fields (Halfen and Johnson, 2013). Researchers estimated that 
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migrating crescent dunes formed under unidirectional wind occupy about half of the total area of 

desert dune fields (Wasson and Hyde, 1983).  

The goal of this chapter was to construct a dune morphology model to simulate major changes in 

wind strength, such as the decrease that occurred in northern China since the 1970s. I first built a 

generic model simulating the formation of barchan dunes following Werner (1995). Then I set the 

model space to reflect the temporal and spatial scales appropriate to the study areas, and adjusted 

different model parameters to observe how they affect the output dune forms. The parameter that 

best describes the effect of wind strength changes was then selected.  

 

1. Model description   

The Werner (1995) model emulates a closed system with no external sediment source, and the 

initial state consists of randomly generated patches of sand. The sand initially in those patches 

represents the maximum volume of sand within the model space that is available to supply 

transport and dune construction. Sand transport is represented by movement of sand “slabs”. One 

or more slabs sit on a non-erodible flat base. Sand movement involves selection of each grid cell in 

random order; if slabs are present at the selected cell, the top slab is removed and transported 

downwind a certain distance. Deposition of this sand slab is subject to a random process. If a 

random number (between 0 and 1) generated is smaller than deposition probability (pd), then the 

height of the sand at such location will increase by one slab thickness. If not deposited, the slab will 

move downwind and the process is repeated. Bare destination cells are assigned lower pd values, to 

reflect the increased saltation distance on rock or other hard surfaces (Bagnold, 1941). In most 

models, the pd value is 0.6 for sand-covered surfaces, and 0.4 for bare surfaces (e.g. Werner, 1995; 

Barchyn and Hugenholtz, 2012). If the destination cell is in a shadow zone, however, the slab will be 

automatically deposited (pd =1). Shadow zone refers to the areas on the lee side of the dune that are 
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shielded from wind erosion, defined by a line from the dune crest to the ground surface at an angle 

of 15° from horizontal (Figure 19a). The angle in surface elevation constructed between a center cell 

and its adjacent cells cannot exceed 30°2 (angle of repose), otherwise a sand slab is brought from 

the neighbor to the center cell (‘avalanching’). If there is more than one slope that exceeds the angle 

of repose, the model picks the direction with steepest angle and performs the avalanche routine. 

The process repeats until the angle is below 30° (Figure 19a). The model implemented in this paper 

can be reflected by the flow chart in Figure 19b. 

The model I constructed starts with one layer of sand evenly distributed on the lattice. In each 

iteration, a function going through each cell and decide whether erode or not randomly: if a 

randomly generated value is smaller than the preset erosion probability (pe), then the top slab in 

that cell is picked up; otherwise the function moves on to the next cell. The difference between this 

setting and the original Werner (1995) one is that a cell will not be selected multiple times in one 

iteration in this model, which more realistically reflects the actual wind-sand interactions. Once a 

sand slab is picked up, it goes through the erosion – transport – deposition process as described 

above.   

Cellular automata (CA) are discrete in time, space and state. In this section, a cellular automaton (A) 

is defined by a lattice (L) of 100m by 100m, a state space (Q) for sand, a neighborhood window (d) 

in Rook’s case, where four closest cells in N, S, E, W directions surrounding a center cell are 

considered its ’neighbors’, and a local transition function (f) (Adamatzky, 1994).   

A = <L, Q, d, f>  

 

                                                           
2 30° is a low estimate of the angle of repose, which is typically 33° or 34° 
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Figure 19 Side view of Werner’s dune transport model (a, Werner, 1995); Flow chart of the model in the current research (b) 

Yellow color in the flow chart indicates processes that happen to one sand slab 

                  

2. Model parameters  

The parameters and concepts that are key to the CA model are briefly described below:  

a 

b 
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Deposition (settlement) probability: Deposition probability for sandy surfaces (ps) is usually set 

at higher values than that for bedrock (pn) to reflect differences in momentum absorption (Bagnold, 

1941). Most workers have set ps = 0.6 and pn = 0.4 following Werner (1995). Both ps and pn are set 

to 1 in shadow zones. Slabs move along the wind direction unless they are transported by 

avalanching to enforce angle of repose. 

Erosion probability: pe was first introduced to the original Werner (1995) model by Baas (2002) 

to reflect the interaction between vegetation and sand transport.    

Deposition jump unit: Number of cells that a sand slab moves downwind each time it is picked up 

or deflected. Most workers used d=1m (length of the side of a cell), which is more realistic distance 

at the dune scale than at ripple scale (Eastwood et al., 2011). Nield and Baas (2007) pointed out 

that increasing d has a similar effect as diluting the model space along the wind direction.   

Shadow zone: Sand slabs that are transported downwind into a shadow zone will be deposited 

immediately. The shadow zone angle is set at 15° following most studies (Werner, 1995; Baas, 

2002; Nield and Baas, 2007). Barchyn and Hugenholtz (2012b) found that this value affects 

maximum height of formed dunes.  

Slab thickness: Number of slabs (h) picked up by wind in each iteration. It represents the amount 

of sediment available for transport; increasing h can increase the size of resultant dunes and change 

their shapes (Nield and Baas, 2007). 

Dynamic/Periodic boundary: The 100m by 100m model space in this research has periodic 

boundaries along the y axis. That is, slabs that fall off the boundary (x=101m) are brought back to 

x=0m. This ensures that the model space does not have external sand sources; that is, no sand 

enters or leaves the system during model runs.  
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Avalanche: Avalanching refers to the procedure of moving neighboring slabs downhill to ensure 

that the angle of repose remains less than 30°. The algorithm assesses angle of repose between the 

4 nearest neighbors of a given cell (N, S, E, and W; Rook’s case). If there is more than one slope that 

exceeds the angle of repose, the model picks the directions with the steepest angle to perform the 

avalanche routine. Researchers believe that avalanching is one of the key controlling factors on the 

forms of dunes, regardless of their scales (Vandewalle and Galam, 1999; Werner, 1995). Avalanche 

frequency has been used to measure dune mobility in an iteration as an indicator for dune form 

stability (Nield and Baas, 2007).  

Number of iterations: The number of iterations taken to stabilize dunes. This parameter can be 

associated with number of years according to time and distance measured from remote sensing 

images or other local records. 

EST (Equivalent Sediment Thickness): The parameter that represents EST in the model is initial 

thickness (h0) if the sand is distributed as a sheet of uniform thickness, or average initial thickness 

if the model starts with sand distributed in patches. Dune fields with greater EST typically form 

transverse dunes (high RDP/DP, that is, unimodal winds) or star dunes (low RDP/DP, multimodal 

winds), while sand sheets with thinner EST eventually converge into barchan dunes (high RDP/DP) 

or longitudinal dunes (low RDP/DP, bimodal winds) (Wasson and Hyde, 1983).  Because of the 

dynamic boundary setting in the model, EST remains the same throughout all iterations.  

 

3. Sand flux   

Sand flux (m3/s) q is defined as 

q = Q/t, 
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where Q is the volume of sand transported along x direction within time t. In essence, Q is number 

of slabs times the volume of each slab (1*1*h, where h is the slab thickness). A fraction (pd) of all 

slabs will travel one unit distance (d); another fraction of sand slabs ((1- pd)* pd) will travel 2d; and 

so on. The expected distance (D) that any sand slab travels is   

E(D) = d*(1+2(1- pd) + 3(1- pd)2 + … n(1- pd)n-1)  —>  d/ pd 2, as n—> ∞  

Since I have a large number (10,000) of sand slabs to start with, this approximation is reasonable. 

For a vertical window of length L and height h perpendicular to wind direction, the expected sand 

volume transported is:  

E(Q)= L*h* pe * pd *d / p2d = L*h* pe *d/ pd 

Where h is the thickness of each sand slab; L is the length of each slab, which is defined as 1m here. 

pe is the erosion probability at the start of a transportation cycle. Pd is the deposition probability at 

the destination cell. Both Pe and Pd can vary depending on the condition of this cell (bare sand, 

vegetated, ground). The expected (average) sand flux is therefore  

E(q) = E(Q/t) = L*h* pe *d/( pd *t) = (L*h)*( pe / pd)*d/t               (1)  

This is consistent with the form of volumetric flow rate defined as q = A * v where A is the area of 

plane cross-section, and v is the sand transport velocity. From equation (1), average sand flux is 

directly related with number of units a slab is transported downwind in each jump (d); thickness of 

sand slabs (h); deposition probability (pd); erosion probability (pe). These variables will be 

adjusted independently in Section 3.4 to assess their effects on dune forms produced by the CA 

model. Equation (1) also shows that q has nothing to do with the initial thickness of sand sheet (h0).     
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4. Experiments and Results 

In this section, a simulated Mu Us dune form is created from a flat bed based on a modified CA 

model, where some model parameters are adjusted according to information extracted from Google 

Earth Images to reflect local conditions. This Mu Us dune model is then used to test hypothetical 

scenarios, such as the drop of wind speed sufficient to lower DP by about 150 VU between 1980 

and1995 in this area (Xu et al., 2015). 

Researchers have tuned parameters in Werner (1995) model to fit it to their research area. For 

example, Pelletier et al., (2009) adjusted d and ps to 5 pixels and 0.5 respectively to emulate dune 

forms at Jockey’s Ridge, NC. However, very few researchers have thoroughly tested effects of 

varying model parameters and used the results to justify selection of particular values for 

simulating dune processes in a given area. In this section, I will test six model parameters from 

equation (1) and examine their effects on dune forms and sand transport by adjusting their values. 

These parameters are: number of units a slab is transported downwind in each jump (d); thickness 

of sand slabs (h); deposition probability (pd); erosion probability (pe), and initial thickness of sand 

slabs (h0).   

Dune size and spacing increase with wind speed and sand transport rates (Wilson, 1972); the 

relation between dune height and spacing can be approximated by a power function (Lancaster, 

1988b).  It is difficult to quantitatively compare fully active dune forms in the Mu Us dune field 

before the large change of DP that occurred since the 1970s; older Landsat images have low 

resolution and US spy satellite photos provide limited coverage and are difficult to georeference. 

However, it appears that there have not been major changes in the basic form of the active 

crescentic dunes in this area. Therefore a parameter that adequately represents wind speed will be 

one that, when changed, allows dunes to change their height and spacing but does not alter their 

basic form. 
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a. Original settings  

The original settings generally follow Werner (1995), but start with a flat sheet of sand of 1m 

thickness over the 100m by 100m field. The model forms dunes that merge and grow in size until a 

steady state is reached. Baas (2002), Pelletier et al. (2009) and Barchyn and Hugenholtz (2012) 

initiated their models with similar settings. After dune forms are established, they migrate 

downwind steadily while maintaining their forms.  

Three parameters are generated during the model runtime to quantitatively describe the process: 

maximum height of dunes, avalanche frequency (number of avalanches in each iteration), and 

number of slabs crossing the border in each iteration. Maximum height of dunes is an indicator of 

largest dune size: for a given height, the size of dune is restricted because of angle of repose. It also 

reflects dune migration rate, which is inversely proportional to dune height (assuming sand 

transport rates are independent of dune height) (Bagnold, 1941). Frequency of avalanches is used 

as a measure of dune mobility (Nield and Baas, 2007). The number of sand slabs crossing the 

border approximates sand flux q. All these parameters are recorded every cycle, which is composed 

of 100 iterations in the original setting; each iteration is an erosion-deposition process for each 

randomly picked cell. All these parameters can potentially indicate the ‘steady state’ of active 

dunes.   

From the model output, dune migration rate stabilizes after about 30 cycles when both maximum 

dune height and avalanche frequency start to flatten out (Figure 20).  The maximum number of slabs 

crossing the model border occurs in the beginning of the simulation when the model is ‘tuning up’. 

The cyclic pattern after about 20 cycles reflects the alternation between formed dune hills and 

inter-dune plains that are crossing the border (Figure 20d).  
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Since dune migration speed is inversely related with dune size (Werner, 1995), smaller barchan 

dunes eventually catch up with larger ones (Figure 20 cycle 30 to cycle 40). In this case maximum 

height started to level off after about 30 cycles, when crescentic dunes collided and merged into 

two major crescentic ridges. These crescentic ridges did not break into barchan dunes after they 

formed, consistent with Werner (1995). This suggests that the ‘attractor’ of the CA model can be the 

number of dune-crest terminations (Werner, 1995), and the final stage of all simulations could be 

some form of crescentic ridges. Later experiments in this chapter will focus on the process that 

leads to a stable dune form (i.e., little change in form or size, not stabilized by vegetation), with a 

stable avalanching frequency.  

 

 

a 

b 

c 

d 
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Figure 20 Simulation results using CA model with original settings 

Slab thickness (h) = 0.1m, slab transport jump (d) = 1m, deposition probability on sandy surface (ps) of 0.6, on non-sand 

surface (pn) = 0.4, erosion probability = 1. One cycle is defined as 100 iterations.  a: dune forms; b: maximum height with 

time; c. avalanche frequency with time; d. number of slabs crossing border with time 

To fit the model space to the actual dune field, I used the average dune migration speed calculated 

from satellite images, 3m/y (Chapter 2.2), which is close to the estimate of Xu et al. (2015). The 

actual value depends on a range of factors such as size of dune and vegetation growth rate (Duran 

and Herrmann, 2006; Xu et al., 2015). In the current simulation, dunes migrate at about 8m per 100 

iterations after dunes are formed. Therefore 100 iterations represent 2.67 years, i.e.  one year’s 

time equates to approximately 38 iterations for Mu Us dune field. This is comparable to other 

research areas, such as a coastal dune field in Brazil where a yearly cycle of 50 iterations is applied 

(Baas and Nield, 2010).  This calibration can be used to estimate the time scale of dune form 

evolution, for example in Figure 20b, the dune forms become stable at around 30 *100/38 = 78 

years. However, at this the stable stage, the dunes are 20 - 50m in length along the migration 

direction (Figure 20a), which is about one third the size of most active dunes in the Mu Us study 

areas (50-150m) based on the measurements from Google Earth images (Chapter 2). The stable 

maximum height reached after 30 cycles (Figure 20b) also implies a lee face length at the low end of 

those reported by Xu et al. (2015). This discrepancy needs further investigation. It may be 

resolvable by simply changing the assumed spatial scale so that one grid cell is 3 by 3 m, in which 

case one year = 12.5 iterations, which is considerably fewer than estimated for other dune fields 

with similar models. The original spatial scale (1 by 1 m grid) and estimated time scale (38 

iterations per year) is used below in this chapter and Chapter 4; using the adjusted scale would not 

change most conclusions other than those on the timescale of changing dune forms.   
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b. Test model parameters 

To simulate dropping wind speed in Mu Us dune field, I will modify parameters in this model and 

examine how dune forms will respond. Though decreasing time span of transport (t) or increasing 

slab length (L) can both increase q based on equation (1), these values will not be modified since 

they set the temporal and spatial scales of the model: 38 iterations corresponds to one year, and the 

model space is equivalent to a 100m by 100m field with a unit size of 1m by 1m.  

 

1. Downwind transport jump unit (d) 

This section investigates how increasing sand slab downwind migration jump unit (d) may affect 

dune forms. This value cannot be decreased below d=1m, used in the initial settings, but higher 

values were tested to see if changing d can be used to represent wind speed changes in general. 

Using (d) to 2m while keeping everything else the same, barchan dunes still formed, though much 

larger in size (Fig. 3b); when d=3m (not shown), 4m or 8m, dune forms become obscured with 

reduced slopes on the slip faces. In fact, in order for realistic barchan dunes to form, the value of d 

cannot be larger than 2m. The number of slabs crossing the border is roughly proportional to the 

value of d. In addition, the size of the dunes decreases as d increases.  

 

a 
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Figure 21 Dune forms with modified downwind transport jump unit 

a. (first row: after 20 years; second row: after 50 years) adjusting d; b. statistics of model results 

In a word, d cannot be used to simulate wind effect since its value can only be set at 1m or 2m, 

because realistic dunes are not formed with larger values.   

 

2. Slab thickness (h) 

Baas (2002) and Nield and Baas (2007) simulated changes in wind power through modifying the 

number of slabs that are picked up in each cycle. Based on equation (1), h*L is the volumetric 

component in q. L is not a parameter to be modified, since the model is built on 1m by 1m grids and 

increasing L is equivalent to enlarging the field size that the model lattice represents. However, slab 

thickness h does not have such restrictions and can be any value.  

Test results (Figure 22) show that compared with the original settings, it takes longer for dunes to 

reach a stable form when slab thickness decreases. For h = 0.08m and 0.11m, barchan dunes still 

b 



71 
 

emerged after 30-40 years. Average number of avalanches is close to the value with the original 

settings, and maximum height of dunes is close as well. No dune structure can be observed, 

however, when h is as high as 0.13m.  

 

 

Figure 22 Dune forms with modified slab thickness h 

a: first row: after 20 years; second row: after 50 years; b. statistics of model results 

 

a 

b 



72 
 

From the simulations, no dune forms can be observed when slab thickness is set to be larger than 

0.12m or smaller than 0.06m (not shown). Even when starting from established dune forms, the 

landscape can be obscured after 1 or 2 years if h is outside of the 0.06 - 0.12m range. The figure on 

number of slabs crossing the border shows a cyclic pattern with an increasing period, suggesting 

that large dunes are formed with expanding space in between.  

Nield and Baas (2007) reported the relationship between dune speed and shear velocity using 

Sharp’s ripple speed equation (1963). Assuming a roughness length of 0.2mm, speed c follows: 

C = 1.96*10-3U* - 7.78*10-4            (2) 

Where U* is the shear velocity.  

Bagnold’s transport equation (1941) links transport rate q to a range of shear velocities u*: 

                (3) 

The velocity component of equation (1) u can be written as 

u = q/h                (4) 

Where u is the slab transport velocity. C/q should be in proportion to u/q. Assuming a sediment 

grain size of d =0.3 and sand bulk density of 1600kg/m3, with (2), (3), (4), and the fact that c/q ~ 

u/q = 1/h, h should range from 0.077 to 0.13m (after Nield and Baas, 2007), which is consistent 

with the present model simulation (0.06 - 0.12m).  

Overall, one can adjust h as long as its value falls within the range of 0.06-0.12m (these 

experiments) or 0.077 - 0.13m (based on the analysis of Nield and Baas, 2007). The barchan dunes 

generated by different h values converge in maximum height, instead of having various sizes 

according to wind speed, however. In addition, this appropriate range of variation of h is relatively 

small, limiting its utility in representing large changes in wind speed.  
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3. Deposition probability (ps and pn) 

Deposition probability at sites without sand slabs is often set to be lower than at those covered by 

sand, because of lower rebound saltation possibility on sandy surfaces (Bagnold, 1941; Werner, 

1995; Nield and Baas, 2007).  However, dune shapes still form when ps and pn are the same value 

(Fig. 4a). With a lower pd (0.4/0.2), it takes less time (55 years) than the original settings for dune 

forms to stabilize (78 years). When pd is set to higher values (0.8/0.6), formed dunes have smaller 

slopes on the lee side and demonstrate a different form compared with pd with lower values. With 

deposition probability increasing, avalanching frequency decreases.  

 

a 
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Figure 23 Dune forms with adjusted deposition probability pd 

a. first row: after 20 years; second row: after 50 years; b. statistics of model results 

 

Based on the model output, pd is not an ideal candidate for the simulation of wind effect, since 

similar changes in dune forms (Figure 23; especially when pd is larger) have not been observed in 

the Mu Us dune field following a large drop in DP.  

4. Erosion probability (pe)  

In general, the higher pe is, the larger the size of the dunes that will form. Dune spacing also 

becomes larger.  However, the basic form of the dunes does not change as much as when pd is 

changed. It takes longer for the dunes to form in the small pe setting (pe = 0.2), which is reasonable 

since the chance that slabs will be picked up is smaller than in a high pe setting.   

The response of the three parameters (maximum height, number of avalanches, and number of 

slabs crossing the border) is similar to that from the test on deposition probability (Figure 23). 

b 
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b 

a 
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Figure 24 Dune forms with adjusted erosion probability pe 

a. first row: after 20 years; second row: after 50 years; b. statistics of model results; c.  linear relationship between number of 

sand slabs passing a cross section per unit time and value of pe used in tests (0.15, 0.2, 0.35, 0.5, 0.65, 0.8, 1) 

 

pe and number of sand slabs transport rate roughly follow a linear relationship:  N = -111.33 + 

3333.41* pe, with R2 = 0.99, p-value <0.001 (Figure 24). 

The experiments above show that the number of avalanches can serve as an indicator of the ‘steady 

state’ of dunes (Nield and Baas, 2007); dune height however, often reaches a stable state well after 

the number of avalanches (Pelletier et al., 2009). 

 

5. Increase initial sand supply (EST, h0) 

Directly linked with sand supply, EST is not an option for simulating effects of increased wind speed 

because sand supply can vary independently of wind speed (e.g. greater exposure of a sand source 

because of vegetation or geomorphic processes). However, one can verify the effect of additional 

sand supply on the resultant dune forms. Typically, dune fields with greater EST form transverse 

dunes, while those with smaller EST become dominate barchan dunes in a unidirectional wind 

regime (Wasson and Hyde, 1983; Bishop et al., 2002). With an EST of h0, the average sand flux for a 

random 100m by 100m plot in Mu Us dune field is: 

c 
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q = 100m* h0 * c * pe 

Therefore increasing h0 contributes to an increase in sand flux.  

Barchan dunes are formed with 1m as initial sand sheet thickness (Figure 20a). As shown in Figure 

25 top panel, crescentic ridges are formed with a larger initial sand sheet thickness (2m and 5m). 

With a rising EST, dune size increases while interdune distance decreases. This observation agrees 

with findings of (Barchyn and Hugenholtz, (2012). In addition, with an initial sand layer less than 

1m, barchan dunes are still formed (Figure 25 bottom panel).  

 

Figure 25 Sand dune development starting from flat surface after 2, 8, 14, and 20 years 

(Top panel: Initial sand thickness= 2m, 5m; Bottom panel: initial sand thickness= 0.5m, 0.75m) 
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c. Modeling wind speed change in the Mu Us dune field 

Following Fryberger and Dean (1979), I used wind velocity at 10m above ground for estimating 

rate of sand transport q:   

   

Where V is the wind velocity at 10m height, and Vt is the impact threshold wind velocity at 10m.  Q 

= q*t refers to DP.  

The threshold wind velocity Vt can be determined using the following equation (Bagnold, 1941)   

   

Where the surface roughness factor Z' is 0.3048cm. The threshold wind velocity at height Z' is 

2.74m/s (Vt'), and Vt* is 0.16m/s. Using these values, V(10m) is estimated to be 11.6 knots.   

An accurate estimate of the recent change in wind transport capacity in the Mu Us dune field should 

be based on hourly wind data. However, a rough estimate can be based on change in average wind 

speeds. Around 1980, average wind speed in Mu Us dune field measured at 10m was as high as 

14.41knot (v1). This value dropped down to 12.63 knot (v2) in 1995 and remained relatively stable 

afterwards. 

 q1/q2 = [14.412*(14.41 - 11.6)]/[12.632*(12.63-11.6)] = 3.55    

This value can be compared to DP values for individual stations shown by Mason et al. (2008) and 

Xu et al. (2015), in which DP around 1980 is four times or more greater than around 1995.  

Given that the sand flux of a field can be calculated as the sum of sand flux of each sand slab, we 

have:    

q = n * q0     
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Where n is the average number of sand slabs that pass a cross section in one simulation, and q0 is 

the average slab transport flux that are the same value in these two different wind schemes.    

From Section 3.4.b, number of sand slabs that cross the border (n) can be predicted by pe using a 

linear model:  

N = -111.33 + 3333.41* pe 

Assuming pe1 = 1 as the erosion probability during when average wind speed was 14.41 in 1980s, 

 (-111.33 + 3333.41*pe1)/(-111.33 + 3333.41*pe2) = 3.55  

 then pe2 = 0.305  

pe is chosen as the parameter for modeling wind speed drop, because of its linear correlation with 

resultant sand transport rate.  

The Mu Us dunes formed around 1995 after most of the decrease in wind power can be simulated 

using the following setup: 

pe = 0.305; ps / pn = 0.6/0.4; h0 = 1; d = 1 

Starting with an established barchan dune field (101 year) developed with the original settings (pe 

= 1), I ran 60 simulations with pe = 0.305. As results show (Figure 26), dunes migrate much slower 

when pe = 0.305 compared with when pe = 1. Moreover, dune forms remain the same after 60 years' 

simulation. In comparison, small barchan dunes merged into one single transverse dune after 60 

years in the original pe = 1 scenario. Using this, we can control wind effects in the CA model and 

compare it with vegetation influences on dune forms and migration speed.  
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Figure 26 Simulation showing the effect of dropped wind speed (top panel, pe = 0.305) in comparison to original setting (bottom 

panel, pe = 1) 

5. Web application 

Improving the access and availability of geomorphology models is beneficial to the earth surface 

science community (Murray et al., 2009).  Previous dune models were built in Turbo 2.0 (Baas, 

2002), Python (Barchyn and Hugenholtz, 2012b) or Matlab (Nield and Baas, 2007).  In this work, a 

web based application of dune CA model is developed through Rshiny. It provides an intuitive way 

of exploring dune form changes under different scenarios for both researchers and educators. I also 

released an R package for dune geomorphology modeling, which not only improves the accessibility 

of the model, but also allows for easy distribution and reproduction of research results. Through 

the interactive web interface and the R package, users can test hypothesis by modifying parameters 

and visualizing resultant dune forms. The web app can be found at: 

https://feima.shinyapps.io/dune/ 
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The advantage of using R for simulation and analysis is that R is equipped with numerous packages 

allowing for satellite image analysis (e.g. package ‘raster’), visualization (e.g. package ‘ggplot2’, 

‘plotly’) as well as numerical modeling. On the other hand, the web application can be limited by its 

slow processing speed since R is a single-thread computing language. Some R packages (such as 

‘parallel’) allows the computation to be done at multi-CPU or multi-Core level, but these packages 

are not applicable in this research since they require the paralleled computation blocks to be 

unrelated. 3 That is, each iteration is dependent upon the surface formed in the previous iteration, 

and therefore cannot be computed simultaneously through multi-cores or CPUs.  

 

Conclusions and Discussion 

The CA model developed for this research, based on the work on Werner (1995), successfully 

reproduces the form and behavior of crescentic dunes formed by unidirectional winds. Dunes in the 

model evolve toward a stable form over a timescale of decades. Plots of maximum dune height, 

avalanche frequency, and number of slabs crossing the model domain boundary over time are 

useful in analyzing this evolution. A timescale can be estimated for the model to calibrate it to an 

actual dune field, although there are unresolved problems in doing this with the Mu Us dune field. 

To use this type of model to help understand and predict change in dune fields affected by 

environmental change, I extended previous work to identify the best approach for representing 

changes in wind strength, the most important new contribution of this chapter. While a few 

parameters can potentially be adjusted for this purpose, most of them lead to model behavior that 

appears to be unrealistic, based on previous research and on observed response to a decrease in 

wind strength in the Mu Us dune field. 

                                                           
3 https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf 
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The downwind jump unit (d) cannot be increased above 2m without causing unrealistic flattening 

of the dunes, so it is effectively limited to two values (1m or 2m). The slab thickness (h) is also 

constrained to a narrow range of 0.06 to 0.13m, otherwise dunes do not form. This is consistent 

with the theoretical argument by Nield and Baas (2007) that h should fall in the range 0.077-0.13m. 

When deposition probability (ps and pn) is reduced (representing high wind strength), dunes take 

longer to stabilize than with the original settings. When ps and pn are increased to 0.8 and 0.6, 

representing weaker winds, dune forms undergo change that appears to be unrealistic; therefore 

deposition probability is not an ideal parameter for simulating response to changed wind strength. 

On the other hand, when erosion probability (pe) is adjusted to higher or lower values, the size and 

spacing of dunes changes, but not their basic form. This is the most realistic response based on 

prior research, so adjustment of pe is the best approach in simulating effects of changed wind 

strength. While many of the same factors influence both sediment erosion and deposition in actual 

dune fields, in this modeling approach, pe and pd are apparently not interchangeable as parameters 

that can be adjusted to represent changed environmental conditions. 

Changing equivalent sand thickness (EST) cannot be used to represent lower or higher wind speed 

but can represent variation in sand supply. Higher EST results in larger and more closely spaced 

dunes, as expected for increased sand supply. 

A change of pe from the initial value of 1 to 0.305, representing the decline in DP in the Mu Us dune 

field in recent decades, produces somewhat different dune forms and behavior. With the lower 

value of pe, barchans that initially formed do not merge into higher crescentic ridges as they do with 

the original setting. The dunes also migrate slower with a smaller pe value as are expected from 

lower wind speed. The research in this chapter demonstrates that through modifying the value of pe 

we can effectively map the model space to real world wind scenarios, and use the model to predict 

how dune forms evolve with time. As the next step, this link between pe and wind speed can be built 

into the web app for testing dune response to varied wind speed in different fields of the world.  
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Chapter 4. Vegetation integrated dune stabilization model  

 

The degree of dune activity or stability can be framed as the competition between sediment 

transport and vegetation growth. While sand dunes can merge and grow in size with increasing 

sand supply and wind drift, the threshold shear velocity of wind can be lowered by vegetation. 

Vegetation provides a positive feedback to dune stabilization: once a pioneer species is established, 

it protects the sand surface from further wind erosion and provides nutrient and shade for 

underlying plants, which contributes to vegetation growth and dune stabilization (Reynolds et al., 

1999; Maestre and Cortina, 2005). While sand erosion and deposition are affected by vegetation 

cover, vegetation growth is also affected by both sand burial and erosion. Shallow burial is 

advantageous to plant growth and reproduction through increased water use efficiency, chlorophyll 

content, transpiration rate and net photosynthetic rates; deeper burial, however, can be harmful to 

plants (Qu et al., 2014). Erosion causes stress includes water and nutrition loss and elevated 

temperatures in the root system after exposure (Maun, 1998). Severe denudation can threaten 

most desert plants. The complex relationship between surface roughness and sediment flux makes 

numerical models challenging.  

The vegetation that stabilizes the Mu Us dune field consists mainly of two types of shrubs 

(Artemisia ordosica and Caragana microphylla, Figure 27a), small trees such as willows (Salix spp., 

Figure 27b), sedges (Carex spp.), and tall grasses. Artemisia ordosica is the primary vegetation 

species in Mu Us dune field. Its reproduction is realized mainly through seed (sexual reproduction), 

and it can also split into clonal fragments occasionally (Schenk, 1999). Growth and reproduction of 

Artemisia ordosica are not affected by moderate denudation or burial, but severe denudation can 

reduce both its reproduction and growth due to water and nutrition stress (Li et al., 2010). 
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Figure 27 Typical dune vegetation a. Artemisia ordosica in interdune area; b. Willows (Salix spp.) on top of a large barchan 

dune 

In this chapter, I aim to develop a CA model that simulates the stabilization process of barchan 

dunes with the presence of vegetation. I will first review current vegetation-integrated dune CA 

models and evaluate their capabilities in producing realistic dune forms, by implementing the same 

modeling approaches within the model framework I initially developed for bare dunes (Chapter 3). 

I then tune parameters to fit the model to Mu Us dune field and use it to test hypotheses. 

Each simulation described in this chapter followed the modeling approach described in Chapter 3, 

but starting with a single barchan dune that developed from a single sand patch. That dune was 

then used to initialize a simulation using one of the vegetation models discussed here, with 

parameters the same as in the initial bare sand model except where they are modified to account 

for vegetation effects. 

Due to the lack of long-term high-resolution data allowing reconstruction of dune-scale vegetation 

patterns and topography over the past few decades, these model results on dune form changes 

cannot be directly validated. In addition, the dune forms produced by models are not definitive. 

That is, random factors can cause model output to vary between runs. To cope with these challenge, 

I used features (such as dune shapes, dune migration speed, vegetation cover change rate, etc.) 

extracted from satellite images of the study areas (Chapter 1) to verify model outputs. 

a b 
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1. Current and proposed vegetation-integrated CA models 

a. Elevation-based vegetation model 

Chapter 1 and 2 showed that elevation can strongly influence the distribution of vegetation cover in 

some areas, possibly related with wind exposure or surface distance to water table. Vegetation 

cover can decrease with increasing dune height because of the lower probability of entrainment 

found in inter-dune areas (Pelletier et al., 2009). Pelletier et al. (2009) further proposed a power-

law relationship between erosion probability, pe, and elevation above the lowest interdune areas 

(relative elevation) to model vegetation effects on sediment flux.  

In evaluating the possibility of incorporating elevation effects, I used height above base level 

(height = 0m) as a proxy for vegetation density in Mu Us dune field. Specifically, pe is modified 

linearly according to the height of the cell: 

pe = (h1/hmax)*p0 

Where hmax is the maximum height of the barchan dune (typically 5 to 6m for the study area), and p0 

is set at 1. The form changes of the barchan dune are shown in Figure 28. 
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Figure 28 Barchan dune stabilized using vegetation elevation model 

Wind direction is indicated by the red arrow 

The experiment surface is initialized with one barchan dune. As shown in Figure 28, the barchan 

dune is gradually transformed into a parabolic shape, with the lower 'arms' pointing towards 

down-wind direction; the overall dune form is flattened as expected (Pelletier et al., 2009). This 

matches with field observations that on barchan dunes, vegetation typically anchors the lower 

‘horns’ that are pointing downwind first; with the rest of the dune continue moving forward, 

barchan dune morphology transforms into parabolic forms, with ‘arms’ trailing upwind (Barchyn 

and Hugenholtz, 2015; Xu et al., 2015). However, unlike most actual parabolic dunes in this region, 

the dunes formed by the model did not develop distinctive ‘arms’ in the end. 

 

b. Growth function model 

Sand transport varies with height, roughness, species and density of plants (e.g. Wolfe and Nickling, 

1993).  To simulate the dune stabilization process with the presence of vegetation, Baas (2002) 

proposed a vegetation growth function model that extends the original Werner (1998) model. It 
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simulates parabolic dunes that develop from barchan dunes under the effect of two types of 

vegetation, a pioneer grass and a woody shrub. A pioneer species such as marram grass 

(Ammophila) requires sediment input for optimum vitality (Chadwick and Dalke, 1965; Moore, 

1996; Van der Stoel et al., 2002), while neutral or negative balances lead to decline due to the 

impact of soil pathogens and parasites (Maun, 1998). Shrubs, on the other hand, reach their peak 

growth rate when sediment input and erosion are roughly balanced.  

In the vegetation growth function model (Baas, 2002; Baas and Nield, 2007), erosion and deposition 

probability are modified to reflect vegetation stabilizing effects: 

pe(veg) = pe(bare) - p0 

pd(veg) = pd(bare) + p0(1-pd(bare)) 

Where p0 is vegetation effectiveness that ranges between 0 and 1, and its value varies depending on 

the vegetation species and sediment balance (Baas, 2002; Nield and Baas, 2007). If a randomly 

generated value between zero and one is less than entrainment probability (pe) then the chosen 

sand unit will be entrained; otherwise the entrainment does not happen. 

I tested this approach, in the full form proposed by Baas (2002), and with various modifications. In 

the full form, where vegetation exists, the deposition probability tends to be higher. However, a 

comparison between the results using pd(veg) and pd(bare) showed that deposition probability has 

minimal effect on the formed sand dunes: dune forms developed under these two deposition 

probabilities are very similar, with more small dunes formed with pd(bare) (Figure 29). This is 

possibly due to the accumulation of sand on locations with a lower height (such as the end of 

‘arms’), where new parabolic forms start to develop with time. This result suggests that the 

modification of entrainment probability is more significant in driving the formation of parabolic 

shapes in the growth function method, echoing with Chapter 3 where modification of erosion 

probability was found to be an effective way to reflect wind regime changes.  
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Figure 29 Parabolic dunes formed using pd(bare) and pd(veg)  

Parabolic dune forms shaped by vegetation growth after 200 iterations (top: without vegetation modification on pd; bottom: 

with vegetation modification on pd). Green color represents vegetation, and yellow represents sand. Wind direction is 

indicated by the red arrow 

I also considered the effects of including both plant types (pioneer species and shrubs), or only one 

of them. Model simulations with both vegetation types show that after 50 model years, the 

parabolic shape eventually emerges (Figure 30c). With the presence of only pioneer species (Figure 

30a) or only shrub (Figure 30b) however, the parabolic shape doesn't develop in the end.  

  

Figure 30 Dune forms after 50 years of model run with different vegetation cover 

a b c 
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Starting with one barchan dune in the middle of model space (a: pioneer species only; b: shrub species only; c: with both 

species present); Wind direction is indicated by the red arrow 

More specifically: 

a. When only pioneer species is present, the original barchan dune extends along its crest 

and eventually develops a ridge of connected parabolic forms (Figure 31). 

 

  Figure 31 Dune form change with only pioneer species present 

b. With shrub species alone, the original barchan dune extends its arms which then break 

down into smaller irregular forms. Clearly identifiable parabolic dunes do not develop. The dunes 

also move faster than the first scenario (Figure 32). 
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Figure 32 Dune form change with only shrubs present 

c. When both species exist, the barchan dune first extends along its crest, then the lower 

portions break away from the main body of the original dune to form parabolic shapes, with arms 

pointing towards the upwind direction. The original barchan dune transforms into smaller 

parabolic dunes, which eventually merge into large, connected parabolic dunes. After 90 model 

years, two distinctive parabolic dunes are formed (Figure 33). This result is consistent with findings 

by Baas and Nield (2007) that both pioneer species and shrubs need to be present in the model in 

order for parabolic dune forms to develop. 
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Figure 33 Dune form change with both pioneer species and shrubs present 

The growth function method appears to have captured the different responses to sediment balance 

of various vegetation types and the transition from barchan to parabolic shapes, but in fact it does 

not.  The drawbacks to this method are summarized below:  

1) Vegetation growth function is derived through trial and error, making it difficult to apply the 

model to actual dune fields (Baas and Nield, 2010; Nield and Baas, 2007). 

2) The physical process of parabolic dune formation generated by the model is different from other 

model simulations (Duran and Herrmann, 2006; Barchyn and Hugenholtz, 2015) or field 

observations, where the ‘arms’ get stabilized first while the central part keeps migrating down 

wind, thereby changing the shape from barchan to parabolic. In this model, the morphological 

change of barchan dunes starts with arms breaking from the main body while taking on parabolic 

shapes directly. 
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3) A closer look at vegetation growth shows that with time, vegetation cover first increases while 

the dune form stays the same, then it decreases as parabolic shapes develop (Figure 34). This is 

opposite to field observations that vegetation cover increases as parabolic dunes form.  

 

Figure 34 Change in vegetation cover with the increase in number of iterations 

Using scenario c as example 

4) The verification of such models requires multi-spectral satellite images. While different 

vegetation types can sometimes be distinguished using infrared bands, they often appear the same 

in optical imagery (Hugenholtz et al., 2012) . Multi-spectral imagery has enabled investigation on 

vegetation density, structure and species using spectral reflectance curves (Pinker and Karnieli, 

1995). The infrared bands can be used to identify trees and certain shrub species (Nield and Baas, 

2007). With only optical images, therefore, we cannot distinguish vegetation structure and obtain 

species information that is necessary for constructing growth curves. 

 

c. Dune slice-height model 

Barchyn and Hugenholtz (2015) predicted whether a sand dune will host vegetation and be 

immobilized using a dune slice (wind-parallel segment) analysis. Their work involved 

interpretation of actual vegetated and active dunes, rather than a CA model. They calculated 
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slipface deposition rate (δh/δt) on many dunes in several study areas, using DTMs developed from 

LiDAR images and estimates or measurements of sand flux. That deposition rate is then compared 

to vegetation growth tolerance (vpeak) of the study area. If their ratio is larger than 1, then it is 

predicted that the dune will continue to advance downwind; otherwise primary (pioneer) species 

start to colonize the dune crest. After this process, secondary species will grow and lead the dune to 

full stabilization. This criterion for stabilization successfully distinguished active and stable dunes 

in several study areas. Barchyn and Hugenholtz made two important assumptions: (i) 

environmental conditions (such as vpeak and wind direction) remained the same throughout the 

period of study; and (ii) the basic geometry of the slipface has remained relatively constant through 

stabilization.  

The identification of the slipface is key to the analysis by Barchyn and Hugenholtz (2015). The 

slipfaces they identified closely resemble areas identified by the top 25% most deposited cells using 

Werner’s model (1995) (Figure 35). In this section, I will adopt the dune slice concept of Barchyn 

and Hugenholtz (2015) as well as an elevation effect to construct a vegetation-integrated CA model. 

This dune slice-height CA model does not directly simulate the interaction of vegetation and 

deposition on the slipface, which would require information on vegetation tolerance and 

assumptions on environmental conditions or slipface geometry. Instead, it makes assumptions 

about the likelihood of stabilization of dune slices of various size and position within the dune in an 

environment generally favoring vegetation expansion.  
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Figure 35 Areas of slipface 

Slipfaces are identified by blue area in a and b (Barchan and Hugenholtz, 2015) and yellow/green area in c, which generated 

using Werner 1998 model, characterized by sand deposition. Wind direction is indicated by the red arrow 

 

  

Figure 36 Dune slices in a barchan dune (a) and parabolic dune (b) 

The conceptual basis of this modeling approach is as follows: Without vegetation, the rate at which 

the dune advances is controlled by the rate of sand deposition on the slipface, which is related to 

the sand flux from upwind but also to the height of the slipface. For the same sand flux, a lower 

slipface will advance faster because deposition is spread over a smaller area. Sand flux per unit 

width of the dune crest is greatest across a slipface that is perpendicular to the wind, and lower 

a 

b 

c 

a 
b 
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where the slipface is oblique to the wind. As a barchan dune develops without the presence of 

vegetation, it will have a slipface that is higher in the middle (position of slice a in Figure 36a). This 

middle slice of the slipface will advance more slowly than the slice labeled b in Figure 36a), with a 

lower slipface. That is, the lower ‘arms’ of the dune move faster and migrate downwind to form the 

characteristic crescent shape of barchan dunes. Eventually, the oblique angle of the arms reduces 

sand flux per unit width of the crest, and the advance of the arms slows down to the same rate as 

the center of the dune, creating a stable form. 

With the presence of expanding vegetation, migration speed again differs between locations on the 

dune. Assuming vegetation spreads onto the slipface from the interdune, and also assuming effects 

like those discussed in Chapter 2, such as a greater depth to the water table and greater wind 

exposure higher on the dune, vegetation will cover the lowest slipfaces of the barchan arms and 

reach the crests there first. When vegetation reaches the crest of a particular dune slice, burial of 

vegetation on the slipface of that slice will cease and it will no longer advance. At the same time, 

sand moving up the stoss (windward) slope is trapped and the whole slice is quickly vegetated and 

immobilized.  Meanwhile, the higher dune slices closer to the center (a in Figure 36a) still 

experience active deposition and burial by avalanching, slowing advance of vegetation up the dune. 

As a result, the arms are progressively immobilized and the center of the dune advances past them, 

forming a parabolic dune form. As the center advances, the curvature of the part of the dune that is 

still active makes the crest more oblique to the wind on either side of the center of the parabola, 

reducing sand flux and enhancing stabilization of the arms (Figure 36b). 

These effects can be integrated into a dune slice-height CA model in a simple way: slices that are 

closer to the maximum height are assigned a larger pe value, and vice versa. The pe of a dune slice is 

defined as: 

pe = pe0*maxheight0/maxheight 
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where pe0 = 1, maxheight is the maximum height of the entire model space, and maxheight0 is maximum 

height of a given dune slice. In effect, the lower, smaller dune slices are assumed to be more likely to 

have been fully stabilized by vegetation (i.e. vegetation growth has exceeded slipface deposition 

and has reached the dune crest) in an environment favoring vegetation expansion. Therefore, the 

probability of erosion on the stoss slope and crest of that slice is lower. This slows down deposition 

on the slipface and therefore slows the advance of the lower, smaller slices.  This effect involving 

the entire dune slice is not addressed in the original dune height model (Chapter 4.1.a; Pelletier et 

al., 2009), which simply varies erosion probability by elevation, regardless of position on the dune. 

This can explain the unformed ‘arms’ of parabolic dunes using the original dune height model 

(Figure 28). 

Although it represents vegetation effects in a much simpler manner than a growth function model, 

the dune slice-height model better reflects the physical changes observed during actual dune 

stabilization (Figure 37a), because the output closely resembles parabolic dune forms observed in 

the field (Figure 37b).  

 

a 
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Figure 37 Stabilization of a barchan dune with slice-height model (a) and actual parabolic dunes in Area I6 (b) 

North is toward top. Image source: GoogleTM Earth 

Different stabilization scenarios can also be simulated by modifying model parameters. For 

example, when pe varies, the maximum height of formed parabolic dunes also changes: the higher 

pe is, the lower formed dunes are (Figure 38a). As shown in Figure 38a, parabolic dunes reach a 

stable height at around year 65 when pe = 1, and afterwards they kept migrating downwind since pe 

is not 0 (Figure 37a). It also takes longer for dunes to reach a stable height when pe decreases (Figure 

38a); for example, maximum height of dunes is still decreasing at year 100 when pe is 0.5.  

Figure 37a also shows that small sand piles that drift apart from the main dunes formed parabolic 

shapes, which is coherent with observations from the field (Figure 38b; Fig 3 in Duran and 

Herrmann, 2006). These smaller sand dunes migrate more slowly than bigger ones.  

b 
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Figure 38 Experiment on pe (a) and parabolic dunes forming near large, continuous dune field in Mu Us (b) 

North is toward top. Image source: GoogleTM Earth 

Figure 38b also reflects that the proximity to vegetation patches can be an important factor 

contributing to dune stabilization speed, echoing with the findings in Chapter 2.  

 

Fitting model to dune field 

 

Dune stabilization often happens on a time scale that is longer than most remote sensing or 

scientific records, so numerical modeling is used to simulate the partially unobservable process of 

dune stabilization (Duran and Herrmann, 2006; Nield and Baas, 2007). As a result, model 

a 

b 
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simulations on dune dynamics are advancing ahead of available observational evidence, posing a 

challenge for model validation efforts (Hugenholtz et al., 2012).  

The model by Baas (2002) is governed by ‘growth curves’ that are developed through ‘trial-and-

error’ and lack real-world validation. Pelletier et al. (2009) directly applied their model to Jockey’s 

Ridge, but their study subject is a small single dune (about 70m by 30m in size) instead of an actual 

dune field. The model of Barchyn and Hugenholtz (2015) can predict the potential for stabilization 

of various parts of actual dune fields, but it requires high resolution dune surface measurements.  

 

Figure 39 Sample dunes in Area I7.1 in 2010.8 

(A: contour of a barchan dune in 2002.8; B and C: contour of stabilized dunes in 2010) North is toward top. Image source: 

GoogleTM Earth 

With the dune slice-height model, we can use dune migration speed and change in vegetation cover 

obtained from satellite images of an actual dune field to simulate different scenarios. Similar to 

Chapter 3, dune migration speed is used for setting spatial and time scales. Users of the model can 

manually set the area-average erosion probability that declines with time (reflecting vegetation 

cover increase) and observe dune form changes. Taking dune A in Area I7 (Figure 39) as an example, 

bare sand dunes migrate at 3m/year according to Chapter 3.1. In the late 1990s, precipitation 
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reversed its declining trend and started to increase (Figure 2), while drift potential stayed roughly 

the same since then. In 8 years, vegetation cover increased by 20%; therefore we can make the 

somewhat simplistic assumption that vegetation will expand to cover the entire dune area by year 

40. That is, erosion probability is set to decline linearly to 0 in 40 years starting from the year 2002. 

And in year i, 

pe(i) = 1- i/40 

Surface bareness is calculated by averaging pe value of a year over the whole area (Figure 40d). 

Instead of keeping pe the same value (Figure 37), pe is set to be linearly declining, which slows down 

the dune migration with time (Figure 40e). As vegetation cover reaches 86% by year 28, dunes are 

migrating sufficiently slow that they can be considered stabilized (Figure 40 a and e). Vegetation 

growth was fast enough that parabolic dunes like the ones in Figure 37b did not form in the end. 

However, the resultant dune forms closely resemble that of stabilized dunes found in the field 

(Figure 39 dune B and C), with horns starting to shift to point upwind direction and the stoss face 

still discernible. 

  

a b

b 

c d 
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Figure 40 Parameters (a-d) and dune form change (e) with linearly increasing vegetation cover for Area I7 

The above scenario reflects dune stabilization in this study area since the 1990s, when precipitation 

started increasing and DP (and therefore, sand drift) has been stable since its significant drop in the 

early 1990s. The modification in pe only reflects the increased moisture level that caused vegetation 

cover to increase. A more complex adjustment in pe is necessary for areas that experienced changes 

in wind drift or human activities in addition to vegetation growth. 

 

2. Testing hypotheses on factors influencing vegetation stabilization of the dunes 

a. Nearest neighbor effect 

Research in the Mu Us dune field has suggested that plants often sprawl from nearby patches 

instead of establishing new colonies (Xu et al., 2015). Vegetation expansion and reproduction are 

heavily influenced not only by dune activities, but also by spatial interactions between plants. In 

active dune fields with A. ordosica, the spatial associations of the seedlings with the adults are 

mostly positive when they are at close distances (0-5m) with a clustered distribution (Zhang et al., 

2015). The clustering pattern reflects the sheltering effect of adult plants on seedlings on active 

dunes, reducing wind erosion and forming a positive feedback loop favoring plant growth. This 

e 
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spatial association declines with distance, and is weak or even neutral in semi-fixed dunes. In fixed 

dunes, water and nutrient stress resulting from competition between individual plants can exceed 

the advantages of sheltering, which then reduces the growth of seedlings (Zhang et al., 2015).  

Using the dune slice model, we can test the nearest neighbor effect. Specifically, I assigned cells 

closer to a vegetation patch (a 3 by 3 grid with low pe values) a smaller pe value, and those that are 

farther the original value as defined in the dune slice-height model. The simulation starts with a 

number of barchan dunes generated using Werner’s CA model (1995) on a lattice covered by one 

sand layer. This way we can test how vegetation distribution affects a dune field instead of a single 

dune. If vegetation nearest neighbor effect exists, parabolic dunes should form more quickly than 

the original setup without such effect. However, the resultant landscape demonstrates that the 

expected parabolic dunes did not form (Figure 41). In fact, the final ‘dunes’ have sharp edges and 

maintained their barchan forms, which is not observed in the field.  

 

Figure 41 Output of dune slice-height model integrated with nearest neighbor effect 
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b. Effectiveness of windbreaking grids on top of dunes 

Planting windbreaking grids of shrubs on dunes has been a common practice in Mu Us area as an 

effort to prevent farmlands or roads from being encroached by sand (Figure 42 a and b). As shown 

in Chapter 2, grid density is one of the leading factors in vegetation cover increase. In some areas, 

grids are implemented on a slope, while in others they are found on the crest of dunes. Researchers 

have shown that the vegetation feedback on dune crests is critical in dune stabilization process 

(Barchyn and Hugenholtz, 2015). Using the dune slice CA model we can test whether dunes can be 

stabilized by windbreaking grids planted on top of dunes. 

To simulate this scenario, I assigned cells at dune crests with pe = 0.8 without presence of 

vegetation. The model space starts with three barchan dunes generated using Werner’s CA model 

(1995).  

 

a b 
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Figure 42 Wind breaking grids (a-b) and simulation results using dune slice-height model integrated with vegetation on dune 

crests (c) 

As seen from the results (Figure 42c), colonizing only the top of dunes does not stabilize them or 

slow them down. Instead, the dune forms simply get flattened without forming parabolic shape. In 

fact, wind-breaking grids are often planted on slipfaces in Mu Us dune field where vegetation 

naturally occurs, which is more effective than grids set up at other locations. In addition, vegetation 

growth is not implemented in the test, which could explain the continued fast migration of the 

dunes. 

 

Conclusions and Discussion 

Field studies have shown that vegetation growth is the key process of dune stabilization (Maestre 

and Cortina, 2005), but previous work on integrating vegetation into the original CA model 

(Werner, 1995) proved to be ineffective or unrealistic. For example, Pelletier et al. (2009) proposed 

using a power law relationship between pe and elevation above interdune area (relative elevation) 

to simulate vegetation effect, but ‘arms’ did not develop in the generated dune forms; the growth 

function method proposed by Baas (2002) is capable of creating parabolic forms, but the transition 

c 
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process from barchan dunes does not match with field observations. For example, in their model 

arms of barchan dunes break off from the main body while taking on parabolic shapes directly; also, 

vegetation cover decreases as parabolic shapes develop. 

In this chapter, I propose and test a new approach to representing effects of vegetation growth on 

dune forms, adapting the dune slice-height model proposed by Barchyn and Hugenholtz, (2015) 

and modifying pe to reflect vegetation growth. Specifically, pe of a cell is set to be proportional to its 

relative elevation as well as the maximum height of the dune slice the cell is located. Lower dune 

slices are stabilized faster than center, taller slices. As the center slices advance, the 'arms' portion 

of the dune are fixed and positioned towards upwind, thereby forming parabolic shapes. The model 

result and parabolic dune forming process are consistent with field observations, and represent 

improvements on previous vegetation integrated CA models (e.g. Baas, 2002; Pelletier et al., 2009). 

By setting pe value to change with time, we can simulate actual dune stabilization process where 

vegetation cover increases or decreases. For example, when pe is set to linearly decrease to 0 in 40 

years, the model generates dune forms (in a 'transition' phase between barchan and parabolic 

form) that match with the actual stabilized dunes found in the study areas of Mu Us dune field. This 

observation suggests that this dune slice-height model can be an effective and simple tool for 

simulating dune morphodynamics without needing detailed information on dune geometry, 

vegetation growth and vegetation tolerance to sand burial, which is required in Barchyn and 

Hugenholtz (2015). However, more research is needed on characteristics of dune field plants and 

how they affect dune stabilization process in order to create realistic models.  

Researchers suggested that plants are found to sprawl from nearby patches more often than 

establishing new colonies (nearest neighbor effect) (Zhang et al., 2015). I used the dune slice-height 

model to test this effect by assigning cells closer vegetation patches a smaller pe value. Parabolic 

dunes did not form as expected, however, probably because of the size discrepancy: vegetation 

nearest neighbor effect can take place at scales smaller than 1/5 to 1/3 of the dune size as in the 
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simulation. To improve the test, cell size needs to be adjusted to smaller values; but then the size of 

formed dunes would also decrease. As such, this particular vegetation effect is probably untestable 

by the CA model.   

Barchyn and Hugenholtz (2015) showed that vegetation feedback on dune crests is critical in dune 

stabilization processes. Therefore I tested the hypothesis that implanting windbreaking grids on 

top of dunes is effective for stabilizing barchan dunes. However, fast stabilization did not happen as 

expected; instead, formed dunes were flattened and continued migrating. This can be attributed to 

the absence of vegetation, which could start colonizing the slipface and stoss slope of the dune 

because of the reduced wind drift on the crest by the grids. In addition, we can test the effect of 

implementing grids at other locations, such as slipfaces or stoss slopes.   
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Conclusions 

Dune field systems are subject to 21st century changes in atmospheric circulation and vegetation 

cover due to global warming, as well as human activities ranging from grazing to planting wind 

breaking grids. Research on identifying the leading drivers in dune activity among the many 

possible climatic and anthropogenic factors has been the focus of many workers studying multiple 

dune fields (e.g. Great Plains, US: Muhs and Maat, 1993; North-central China: Lu et al., 2005). I 

approached this problem through both simple correlation analysis and machine learning methods, 

utilizing information from satellite images, DEMs, and weather observations in Mu Us dune field of 

northern China, where there is a general trend toward greater vegetation cover and dune 

stabilization in recent years. A preliminary univariate analysis shows some correlation between 

vegetation cover and relative elevation for one study area, but only very weak relationships in 

others. Analyses of vegetation spatial patterns reveal evidence of patchiness and spatial 

autocorrelation, probably related to processes such as seed dispersal and more favorable 

environments for plant establishment near existing vegetation.  

Through machine learning models (Random Forest, Support Vector Machine, Multivariate 

Regression) I evaluated the relative importance of climate, environmental and human-related 

variables as predictors of dune migration rate, and concluded that elevation is the most important 

of the 17 features considered. Size of nearest town and variables representing vegetation 

distribution near the dunes are also important in some cases. Similarly, elevation and wind-

breaking grid density are identified to be the most important variables amongst a total of 15 

features considered as predictors of vegetation cover change rate. Climate features are not found to 

be important in contributing to these two response variables. The importance of elevation as a 

factor in both dune migration rate and vegetation change is an interesting and potentially 

important finding, and may be explained by greater wind exposure and/or greater distance above 
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the water table at higher elevations. Other important predictor variables are related to vegetation 

dynamics and human activity. Apparently, the variation of climate across the dune field is not a 

significant factor in the varying rates of current dune migration and vegetation change observed in 

the study areas. The models simulate the spatial aspects of climate variables, but this analysis can 

potentially provide insight on response to climate change over time as well. The small range of 

spatial variation in these variables, however, limits the applicability of the model in simulating 

significant climate changes, such as the drop in DP in the 1990s. Despite the limitations in the 

methodology presented in Chapter 2 (e.g. the subjective factors in the process of data collection), 

the combination of machine learning methods and Google Earth images represents a new direction 

in exploring environmental variables in desert environments.  

To investigate dune morphodynamics in response to external forcings (climate, vegetation, human 

activities, etc.), I modified the well-known Werner (1995) CA model and fit it to the Mu Us dune 

field using information obtained from satellite images. Barchan dunes formed with realistic shape 

and size without the presence of vegetation. As an extension of previous work with the Werner 

modelling approach, I demonstrated that the effect of changing wind speed and potential sand 

transport, as observed in the Mu Us dune field in recent decades, can be most effectively simulated 

by changing erosion probabilities. The link between wind speed and the CA model as demonstrated 

in Chapter 3 can be applied to the simulation of dune activities in response to various wind 

scenarios. 

To better understand the linkage between dune form evolution and vegetation cover changes, I 

adapted the Werner (1995) model to account for the stabilizing effects of vegetation. Previously 

proposed approaches for doing this (e.g. Baas, 2002; Pelletier et al., 2009) were tested but found to 

produce results that are unrealistic in comparison to actual changes observed in dune fields, 

including the Mu Us. More realistic simulation of dune form change in response to increasing 

vegetation cover was produced using a dune slice-height model. Specifically, the erosion probability 
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of a cell is tuned to reflect its relative height to base level as well as the location of the dune slice it 

is located on.  This model successfully produced a transition from barchan to parabolic dune forms 

as seen in the Mu Us dune field. The erosion probability can be further adjusted to reflect response 

of sand dunes to climate- or human-related vegetation change. More broadly, this modeling 

approach may be useful in simulating changes caused by other growth regime shifting factors, such 

as fire or invasive species introduction or removal (e.g., Zarnetske et al., 2012). 
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