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Abstract

Pooling and multiperiod blending problems are common in many industrial sectors, from oil
refining to mining and wastewater management. Global optimization for such problems
remains challenging due to the presence of bilinear terms. Binary variables may also be

introduced to model certain operational constraints.

To address the computational challenges, we develop mixed-integer nonlinear optimization
methods for such problems. We first consider the multiperiod blending problem with
minimizing cost objective. We develop a novel preprocessing algorithm to calculate lower
bounds on stream flows. We define product dedicated flow variables to address product
specific features involved in multiperiod blending problem. The bounds on stream flows and

new product dedicated flow variables are then used to generate tightening constraints.

For multiperiod blending problem with maximizing profit objective, we first propose a
reformulation of the constraints involving bilinear terms using lifting. We introduce an
algorithm that returns tight bounds on the lifted variables calculated by aggregating multiple
constraints. We propose valid constraints derived from Reformulation-Linearization

Technique that utilize the bounds on the lifted variables to further tighten the formulation.

Finally, we develop tightening and solution methods based on nontrivial bounds on bilinear
terms. We derive a family of valid linear constraints and further show that, when one of the
nontrivial bounds is active, such constraints are tangent to one branch of the hyperbola that
represents the bilinear term. We propose different preprocessing methods for generating

strong constraints from the family and test them on the pooling problem.
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Chapter 1

Introduction

Optimization problems containing bilinear terms have a number of applications in different
industrial sectors, from refining (Wicaksono and Karimi 2008; Gounaris, Misener, and
Floudas 2009; Misener and Floudas 2012; S. P. Kolodziej, Castro, and Grossmann 2013;
Gupte et al. 2017) and wastewater treatment (Bagajewicz 2000; Jezowski 2010) to mining
(Blom et al. 2014; Blom, Pearce, and Stuckey 2016; Boland et al. 2016). Such problems are
important in terms of the potential economic benefits that can be achieved if solved

efficiently (DeWitt et al. 1989; J. D. Kelly and Mann 2003).

1.1 Pooling and multiperiod blending problems

One optimization problem containing bilinear terms that has been studied extensively is the
pooling problem, which is a nonconvex optimization problem. First studied by Harvey
(Haverly 1978), the pooling problem continues to be an active research topic (Misener and
Floudas 2009; Gupte et al. 2017). It can be briefly stated as follows: multiple streams with
different properties are blended in pools before sent to produce products. The combined

flows from pools to a product must meet the corresponding specifications.

Various formulations for the pooling problem have been proposed (Haverly 1978; Ben-Tal,
Eiger, and Gershovitz 1994; Tawarmalani and Sahinidis 2002; Audet et al. 2004; Alfaki and
Haugland 2013; Boland, Kalinowski, and Rigterink 2016), and a number of variants of the

pooling problem have been studied. For example, Meyer and Floudas (Meyer and Floudas



2006) studied the generalized pooling problem where there can be flows between pools.
Misener et al. (Misener, Gounaris, and Floudas 2010) studied the pooling problem containing
complex emission constraints. D’Ambrosio et al. (D’Ambrosio, Linderoth, and Luedtke 2011)

studied valid constraints for the pooling problem with binary variables.

While the pooling problem does not account for time varying supply of streams and demand
for products, in practice, such features are important. The aforementioned features give rise
to the multiperiod blending problem, where we not only make decisions on the proportion
of streams to be blended in the pools, but also when to send streams to pools, and when to
withdraw products from pools. In the multiperiod setting, binary variables are often
introduced to enforce additional operating rules, leading to a nonconvex Mixed-Integer

Nonlinear Program (MINLP).

1.2 Solution and tightening methods

Researchers have proposed novel ways to tackle the bilinear terms in the context of pooling
through discretization (Gupte et al. 2013; S. Kolodziej, Castro, and Grossmann 2013),
piecewise linear approximation (Meyer and Floudas 2006; Wicaksono and Karimi 2008;
Misener, Thompson, and Floudas 2011; Misener and Floudas 2012), as well as identifying
parametric structure (Ceccon, Kouyialis, and Misener 2016; Baltean-Lugojan and Misener
2017). A heuristic and two global optimization algorithms based on discretization of
variables involved in bilinear terms have been presented by Kolodziej et al. (S. P. Kolodziej
et al. 2013). An inventory pinch based algorithm for gasoline blending planning and
scheduling has been proposed by Castillo et al. (Castillo, Mahalec, and Kelly 2013; Castillo

and Mahalec 2014b; 2014a). A branch-and-bound algorithm for global optimization of crude



oil unloading and blending operations, based on refining the solution pool obtained from
piecewise linear approximation, has been proposed by Li et al. (Li, Misener, and Floudas
2012). Decomposition-based heuristics and algorithms for the scheduling of open-pit
networks, which includes blending of different grades of minerals, have been proposed by
Blom et al. (Blom et al. 2014; Blom, Pearce, and Stuckey 2016). A model based on floating
time slots for gasoline blend scheduling has been proposed by Cerda et al. (Cerdd, Pautasso,
and Cafaro 2016). Finally, a successive approximation method to handle intensive properties
in blending process, was proposed by Kelly et al. (Jeffrey D. Kelly, Menezes, and Grossmann

2018).

Tightening methods for nonconvex optimization problems with bilinear terms have been
studied extensively. For example, Gounaris et al. studied different piecewise linear relaxation
methods for bilinear terms and compared their computational performance (Gounaris,
Misener, and Floudas 2009), Castro proposed piecewise linear relaxations with variable
bounds tightening (Castro 2015a), Dey and Gupte analyzed mixed-integer linear
programming (MILP) techniques to address bilinear terms (Dey and Gupte 2015). Nonlinear
relaxations of such problem have also been studied. For example, Kimizuka et al. studied the
second order cone relaxation of such problem (Kimizuka, Kim, and Yamashita 2019) and
Luedtke et al. studied a strong convex nonlinear relaxation derived from extended

formulation (Luedtke et al. 2020).

Tightening methods based on strong valid inequalities and reformulations have been proven
to be effective in addressing industrial-scale chemical production scheduling instances
(Burkard and Hatzl 2005; Janak and Floudas 2008; Velez, Sundaramoorthy, and Maravelias

2013; Velez and Maravelias 2013a; 2013b; Merchan, Velez, and Maravelias 2013; Merchan,



Lee, and Maravelias 2016). Compared to the abundant studies focusing on formulations and
solution methods, valid inequalities for blending process have received less attention.
Papageorgiou et al. (Papageorgiou et al. 2012) studied the fixed-cost transportation problem
with product blending. The problem was formulated as a mixed-integer linear programming
(MILP) model considering one property, and facet-defining inequalities were introduced.
D’Ambrosio et al. (D’Ambrosio, Linderoth, and Luedtke 2011) studied the pooling problem
with binary variables and proposed four classes of valid inequalities derived from a mixed-

integer linear relaxation of the problem. Both works exploited product specification.

1.3 Variable bounds tightening methods

Global optimization of nonconvex optimization problem is performed using branch-and-
bound algorithms which involve solving convex relaxations of the original problem. The
tightness of the convex relaxation plays an important role in the performance of the

algorithms.

The tightness of the convex relaxation strongly depends on variable bounds. Various bounds
tightening methods have been proposed (Belotti et al. 2009; Puranik and Sahinidis 2017),
including, for example, methods based on reduced cost (Ryoo and Sahinidis 1996), which
utilizes the optimal solution to the relaxed problem. Bounds tightening techniques that do
notrequire such information have also been proposed. A well-known technique is Optimality
Based Bound Tightening (OBBT) which typically relies on solving linear programs (LP)
(Quesada and Grossmann 1995; Maranas and Floudas 1997; Shectman and Sahinidis 1998;
Smith and Pantelides 1999). OBBT can be computationally expensive, and methods aim to

increase its efficiency have been studied (Gleixner et al. 2017). Feasibility Based Bound



Tightening (FBBT), which considers a single constraint at a time and utilizes interval
arithmetic to infer variable bounds, has been employed in solving both MILP (Savelsbergh
1994; Achterberg et al. 2020) and MINLP (Achterberg 2007). FBBT has received
considerable attention in both mathematical programming and artificial intelligence
communities (Street 1989) Though computationally inexpensive, FBBT is known to be less

effective compared to OBBT in terms of the tightness of the bounds found.

Tightening methods that utilize information from multiple constraints at a time have also
been studied. For example, Achterberg et al. (Achterberg et al. 2020) studied presolve
methods for MILP that consider multiple constraints simultaneously. Specifically, for
variable bounds tightening purpose, their methods are based on special block structure in
the problem matrix. Domes and Neumaier (Domes and Neumaier 2016) proposed constraint
aggregation method for rigorous global optimization that utilizes information from local
solutions. Belotti (Belotti 2013) proposed a procedure that infers variable bounds using a
pair of constraints. Aggregating multiple constraints can lead to tighter variable bounds
compared to FBBT, while it is computationally inexpensive compared to OBBT. However,

which constraints to be aggregated and their weights require further investigation.

1.4 Thesis outline

This thesis focuses on solution methods, in particular tightening methods, for pooling and
multiperiod blending problem. In Chapter 2, we first consider the multiperiod blending
problem with minimizing cost objective and present tightening methods based on stream
properties, product demand and specifications (contents of this chapter are from our

published paper (Chen and Maravelias 2020)). In Chapter 3, we consider a variable bound



tightening method for multiperiod blending problem which incorporates the understanding
of the physical system (contents of this chapter are from our submitted manuscript that is
currently under revision (Chen and Maravelias 2021b)). In Chapter 4, we present tightening
methods based on nontrivial bounds on bilinear terms for the pooling problem (contents of
this chapter are from our submitted manuscript that is currently under review (Chen and
Maravelias 2021a)). In Chapter 5, we summarize the thesis. Throughout the thesis, unless
otherwise specified, we use Roman lowercase italic letters for indices, Roman uppercase
bold letters for sets, Greek lowercase letters for parameters, and Roman uppercase italics for

variables.



Chapter 2
Preprocessing algorithm and tightening
constraints for multiperiod blending: cost

minimization

Scheduling problems containing blending processes arise in many industries (Baker and
Lasdon 1985; Blom et al. 2014). The multiperiod blending problem considers time varying
stream availability and product demand. To some extent, multiperiod blending problem can
be viewed as the scheduling extension of the pooling problem (S. P. Kolodziej et al. 2013;
Lotero et al. 2016), or a time-indexed pooling problem (Gupte et al. 2017). In general,
multiperiod blending problem is formulated as a MINLP model, where binary variables are
used to enforce operating rules, and nonlinear constraints contain bilinear terms to model
property or composition. Several formulations for multiperiod blending problem have been
proposed, including a concentration-based model (S. P. Kolodziej et al. 2013) and source-

based models (Lotero et al. 2016; Castro 2015b).

The convex relaxation of bilinear terms using McCormick envelopes (McCormick 1976) has

been the basis of many global optimization techniques.

In this chapter we present solution methods for multiperiod blending problem focusing on
the cost minimization objective. We develop a novel preprocessing algorithm to calculate
lower bounds on stream flows. We define product dedicated flow variables to address
product specific features involved in multiperiod blending problem. The bounds on stream

flows and new product dedicated flow variables are then used to generate tightening



constraints which significantly improve the solution time of the MINLP models as well as

models based on linear approximations.

2.1 Problem statement

The problem we consider is defined in terms of the following sets:

i €I: Inputs (Streams)

j €]J: Blenders

k € K: Products

[ € L: Properties

t € T: Time points: {0,1, ..., |T|}/time periods: {1,2, ..., |T|}
And can be stated as follows:

Given are:

é Amount of product k due at time point ¢

pt:
it Supply for stream i at time point t

m; . Value of property [ for stream i

ny:  Upper bounding specification on property [ for product k

my;:  Lower bounding specification on property [ for product k

Our goal is to find a blend schedule with the lowest cost while satisfying product demand
and specifications. We assume that all product properties are the average of the properties
of the streams blended weighted by volume fraction. We also assume there is no initial

inventory in the blenders.



it —
~0 3
O Sxe

k € K: Products

i € I: Streams

J € J: Blenders

Figure 2-1. [llustrative graph showing flows for one period.

2.2 MINLP and MILP models

We define the following nonnegative continuous variables:

¢+ Flow from stream i to blender j at time point ¢

Flow from blender j to blender j’ at time point t

Fj jit

ijt: Flow from blender j to product k at time point ¢
L Inventory of stream i during time period t

L Inventory in blender j during time period t

I;:  Inventory of product p during time period ¢t

Eqns.(2-1) - (2-3) enforce material balances:

Litiq =I~it+fit_zlﬁijtr [t
j

]t+1_ +ZFl]t+z F’ Z_IFj,j’t_sz}'kt,

pt+1_1pt+z jpt ptr p't

We also define the following binary variables:

Xl-jt: =1 if stream i is fed into blender j at time point ¢

X

;e = lifblender j feeds blender j’at time point ¢

Jt

(2-1)

(2-2)

(2-3)
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Xjke: = 1ifblender j sends product k at time point ¢

The binary variables listed above allow us to model fixed costs, and are also used to enforce,
for example, the operating rule that blender feeding and withdrawing cannot occur

simultaneously. Eqns. (2-4) - (2-5) can be used to enforce such rule:

Fijr < MXij, Lj,t (2-4)
Rje<1-Kpo Lkt (2-5)

In the concentration-based model, we introduce a nonnegative continuous variable C;j; to

model value of property (concentration):

Cij¢e: Value of property [ of the inventory inside blender j during time period ¢

Eqn. (2-6) keeps track of the “amount” of property within a blender over time:
Lit41Cijee1 = Lie Cije +z T[llFth +Z CrjreFjr e — Z CijeFjjre Zk Cljtﬁjkt: Ljt (2-6)
When a product is withdrawn, we enforce the specifications using:

My =M1 —Xj) S Cje <my +M(1—Xje),  Lkjt (2-7)
Eqns. (2-1) - (2-7) comprise the concentration-based formulation, henceforth referred to as
ME.
In the source-based formulation the following nonnegative continous variables are defined:

FS

it Flow of stream i from blender j to blender j' at time point ¢

Fijkt: Flow of stream i from blender j to product k at time point ¢

IS

ije:  Inventory of stream i in blender j during time period ¢

The above variables should satisfy:
Fije= Z Foper B0t (2-8)
Fa= D B Jilot (2:9)
L = Z.Iisjt' Jt (2-10)
i
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We also enforce the material balance for each stream in each blender:

IlSJt+1 _Il]t+FUt+z ij'jt Z i,j,j't Zkﬁgkt' Lj,t (2-11)

When inventory is withdrawn from a blender, all streams are withdrawn at the same ratio:

Fijre=R Qi Jjt (2-12)

Fle =R I Gt (2-13)

Fiee = Rjielje,  Jikot (2-14)

Fixe = Rl LJ kot (2-15)

where Rj]] p € [0,1] and R} ip,e € [0,1] represent the ratio of flow over the starting inventory.

Eqn. (2-16) enforces product specifications:

T[kl Jkt < 2 T[llFl]kt < T[le ikt ll k:j: t (2‘16)
Eqgns. (2-1) - (2-5), (2-8) - (2-16) comprise the source-based formulation, henceforth

referred to as M®E. Eqns. (2-1) - (2-16) are all based on Lotero et al. (Lotero et al. 2016),

where more details about M© , MSB, as well as other alternative MINLP models, can be found.
In this work, we consider the cost minimization objective:
Z.(&fj)?i]t + &} Fije) + Z a i X; e+ @) ,F”,t)
B
S + Zk &ijjkt + &ij}'kt

with positive fixed and variable cost coefficints.

(2-17)

The MINLP models can be approximated using a radix based discretization. The resulting

MILP is guaranteed to return only feasible solutions to the original MINLP. Such MILP is
referred to as ; ;M in this work. A relaxation of | ; M, referred to as | ,M, is also a relaxation of

the original MINLP. More details about the ;M and ;,M can be found in the paper by
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Kolodziej et al. (S. P. Kolodziej et al. 2013), in which they are called MPBP’ and MPBPR,

respectively.
y 3
w = xy = constant
vl

® Feasible space for ;M

@Feasible space for [,M

0 xt £V x
Figure 2-2. [llustrative graph for the feasible space of MILP models based on Kolodziej et
al.(S. P. Kolodziej, Castro, and Grossmann 2013)

2.3 Motivating example

Consider the example with two streams (S1 and S2), one product (P1), one property (Q1)
and 1 period shown in Figure 2-3. We show the major constraints in M® for the motivating

example in Table 2-1.

When we use M€ to solve the motivating example we obtain an optimal solution with Z* =
7.5, Fs*1,]1,0 =0.5, ﬁs*z,u,o = 0.5. We use McCormick envelopes to relax the bilinear terms in
Eqn. (2-6). Let U; = Ij11Cq1j11, Uz = Ij12Cq1512, and Wy = Fj3p11Cq1511- We use the
following upper and lower variable bounds: I;; € [0, 2], C;;; € [0.8,1], and Fj; € [0,2]. The

resulting MILP model is referred to as y; M.
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When we use M to solve the motivating example we obtain an optimal solution with Z* =

5, Fs*1,]1,1 =0, ﬁs*z,]l,l =1

551’0 =_1 cS‘P1,1 =1

Figure 2-3. Motivating example with one period

Table 2-1. Major constraints in the concentration model for the motivating example

Objective and constraints in M© Description
min  Z = 10Fs; 510 + 10Fsq 511 + 5Fsz510 + 5Fs2511 Objective
st Iy1 = Fsipio + Fszy10 - Fip10 ~ Eqn. (2-1)

Ij12 = i1 + Fsiji1 + Fsapi1 — Fjupia

{51,1 =1- ﬁ5111,o Eqn. (2-2)
I~s1,2 = 151,1 - Fs1,]1,1

Isz0=1=Fsz510

Isz,z =lIs31 — Fsz,]1,1

I_P1,1 = F]l,Pl,O

Ipyz =Ipy1 + Fjpp12— 1 Eqn. (2-3)
I ,C = F, + 0.8F

j1,10Q1J1,1 $1,J1,0 $2,J1,0 Eqn. (2-6)

12Cq1512 = h1,1Cqug11 + Fsjia + 0.8Fs2511 — Fjip1,1Cqugin

Coy11 2 0.9 - M(1 - X]l,Pl,l)

Eqn. (2-7)
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Table 2-2. Relaxation of Eqn. (2-6) using McCormick envelopes for the motivating example

Constraints Description
Uy = Fsyj10 + 0.8Fs2510 Replacing bilinear terms in Eqn. (2-6)
UZ = Ul + F'Sl,ll,l + O'BFSZ,]I,I - W1 with reformulated variables
U, = 0.8l .
Uy = 2Cq1511 + lo1 — 2 McCormick envelope for U;
Uy < 2Cq151,1 + 08I, — 1.6
U1 < 111,1
UZ 2 08]]1,2

McCormick envelope for U,
Uy =2 2Cq1 512 + Ij12 — 2

Uy < 2Cquy12 + 0.8l — 1.6
UZ < 111,2

Wy = 0.8F1p14 McCormick envelope for W,
Wy 2 2Cqup11 + Fupia — 2

Wy < 2Cqu 11 + 08F1pr1 — 16

Wi < Flapia

We next tighten .M using valid inequalities based on product demand and specifications.
One observation is that S1 is required to produce P1, since S1 is the only stream satisfying
the specification. To produce 1 unit of P1, we need at least 0.5 unit of S1 (since the blend
contains 0.5 unit of S1 and 0.5 unit of S2 will satisfy the specification exactly). Thus, we have:

Fsyy1,0 + Fs11,1 2 05 (2-18)
which, when added to M, yields an optimal solution with Z* = 7.5, F§; ;1 = 0.5,Fsy ), , =

0.5.

Another idea is to enforce the specification for P1 on the streams fed into the blenders. If we

assume, for now, that all streams fed into blenders will be transferred into P1, we can write:

Fs1,]1,0 + FSl,]l,l + 0-8(Fsz,]1,0 + Fsz,]m) = 0-9(F]1,P1,o + F]l,Pl,l) (2-19)

which, when added to M, yields an optimal solution with Z* = 6, Fg; j,; = 0.1, Fg,5,; = 1.
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Both Eqn. (2-18) and Eqn. (2-19) cut off the solution obtained from .M. The effectiveness

of those two constraints is illustrated in Figure 2-4, which shows the feasible space for 1351,]1,0

and Fs251,0 when Xs1j10 = L, Xs2510 = L, Xs1j1,1 = 0, Xs251,1 = 0, X]l,Pl,O = O'Xll,Pl,l =

1»F}1,P1,1 = 1.
— Equations from ;.M
—-—- Eqn.(2-18)
~ 1 ——— Eqn.(2-19)
Fsz 51,0
1 A C
\\\ I l
\\ I
< —
N
Bj
N
BN
!
I A —
0 0.5 0.9 1 FSL]LO

Figure 2-4. Illustrative graph for lower bounding flow for S1 (Eqn. (2-18)) and enforcing
specification for flows (Eqn. (2-19)).

2.4 Preprocessing algorithm

We develop a preprocessing algorithm to calculate lower bounds on stream flows based on
product demand and specifications. Given a product p and its specification 7y, /m};, the total
flow of streams that satisfy the specification (henceforth referred to as “good” streams)
should be positive, as discussed by Greenburg (Greenberg 1995) and Papageorgiou et al.
(Papageorgiou et al. 2012). The preprocessing algorithm systematically calculates lower
bounds on stream flows, which are then used to generate tightening constraints. We first

focus on the case in which we have only one specification.
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2.4.1 Demand for “good” streams

Given a product k, a property [, and a lower bounding specification rk;, let Sk; denote the set
of streams that satisfy such specification: Sf, = {i € I| m;, = nf;}. We define parameter fif,

as: fib, = maxies};l{”il}- The lower bounds on the “good” stream flows can be obtained by

considering the blend that contains those “good” streams and the stream that violates the
specification by the least margin. Such blend should satisfy the specification exactly. Let w
denote the demand for product k, w;;; denote the demand for stream i derived from w; and
mk. We have:

zies,’;l Ty @ik + R (wk - Zies,‘;l 5ikz> =g, Kl (2-20)
In general, we cannot directly propose nonzero demand for individual “good” stream.
However, in the special case of one “good” stream, by considering the binary blend of the
only “good” stream and the stream that violates the specification by the least margin, we
have:

_ (”kz - ﬁllgl)wk

Dip] = —~— i klel? (2-21)
l (i — .

where L3, denotes the set of properties for which stream i is the only stream that satisfies
the specification for product k.

Similarly, for upper bounding specification ), , the set for “good” streams is Sy, =

{ielmy <my} and /)y, = miniesgl{”il}' We use the following equation, which is similar to

Eqn. (2-21), to calculate demand for the only “good” stream:

_ (ﬁllcjl — T[IIch)wk ;
Wig = m, i,k,l e Llijk (2-22)
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We have derived demand for a “good” stream from one specification. In many multiperiod
blending instances, there are multiple specifications that we need to consider. We introduce

a procedure to update the demand obtained from one specification using other specifications.

2.4.2 Demand updating

Assume that we already have valid w;;; > 0, and let &;;, denote the demand for stream i for
product k. If there is only one specification for product k, then itis clear that @;; = @;;. Now,
assume there is another property l'. From the specification for property [’, we aim to update
@, to make it greater than w;y;. In general, we can initialize @;; using @;;, = max;w;;. We

will briefly go through several cases where we are able to update @;y.
2.4.2.1. Specifications for different properties

When there are multiple specifications, it is important to note that a “good” stream for one
specification may not be a “good” stream for other specifications. Also, in Eqn. (2-21), we
obtain the demand for one “good” stream by assuming a certain binary blend. However, such
blend may violate other specifications. Our preprocessing algorithm can identify the
aforementioned cases and update the previously obtained @;, accordingly, through

algebraic equations and/or solving linear programming (LP) problems.
2.4.2.2. Demand updating via algebraic equations

We first consider an example with three streams (S1 to S3), two properties (Q1 and Q2), and
one product (P1) shown in Figure 2-5. Since g o1 > 7T]151,Q1 > Tsp 1 > Ts3,q1, S11is the only
“good” stream for Qland its demand can be obtained from Eqn. (2-21) by considering the
binary blend of S1 and S2: wgy p1,g1 = 0.25. Similarly, S3 is the only “good” stream for Q2,

and by considering the binary blend of S3 and S2, we calculate: wg3p;,g, = 0.15. However,
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since S3 is required, the binary blend of S1 and S2 violates the specification for Q2. In other
words, we have to use S3, which is a lower quality stream for Q1 compared to S2, and thus
will lead to a higher demand for S1. Such demand updating can be done by an algebraic
equation which is a modification of Eqn. (2-21). Instead of the binary blend, we now consider
the blend that contains all streams with @;;, > 0. If ®;;,; denotes the updated demand, Eqn.
(2-21) becomes:

L [(771]51 — i )wi + Zifes,gl(ﬁzlél - T[i’,l)@i’,l]

(U . =
et (i — 7ty)

Once we finish updating the demand for one stream, we update the demand for another

’ ik 1 (2-23)

stream. We iterate until no further improvement can be achieved.

s1 Q1 1 st Q2 1 — — — Stream demand after 15t iteration
- Stream demand after 2" iteration
—-— Stream demand after future iterations
S2 0.95 _
Ws3 p1,Q2
e 1 I
| —
1
Pl
L I
T 0.85 | | L
| .
o e R
S208 02125 __________:_J____
0.15 I
$3 4075 S$34<075 : !
|
I .
;|

0.25 02875 gy pro1

Figure 2-5. [llustrative example for demand updating via algebraic equations; pattern filled
bars indicate feasible property domains.

2.4.2.3. Demand updating via solving LP

In Figure 2-6, we show an example with three streams (S1 to S3), two properties (Q1 and
Q2), and one product (P1). Stream S1 is the only “good” stream for Q1 and its demand is

again obtained from Eqn. (2-21) by considering the binary blend of S1 and S2: Wgyp1,q1 =
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0.25. From Q2, we cannot propose nonzero demand for a single stream, since both S1 and S3

satisfy the specification.

However, based on specification for Q2 we can update demand for S1. Note that the binary
blend with 0.25 units of S1 and 0.75 units of S2, which we used to obtain the demand for S1,
violates the specification for Q2. Thus, we either increase the fraction of S1 in the binary
blend, or introduce S3 into the blend, which is a lower quality stream for Q1 compared to S2.

In both cases, we will end up with more S1.

Unlike the previous case, instead of updating the demand for S1 through an algebraic

equation, we solve the following LP:

min aSl‘pl
S.t &)\SI,Pl + 6)\52,1::1 + agg'pl >1 (LPl)
Wsq,p1 + 0.8Wszp1 + 0.750s3p1 = 0.85(Wsqp1 + Wszp1 + Ws3p1)

0-8ws1,P1 + 0-70052,P1 + Wszp1 = 0-75(0051,P1 + Wszp1 + (US3,P1)

which returns an optimal objective function value of 0.269.

In general, given a product k, we can obtain the demand for a stream i’ by solving the

following LP:

min @1y

5.t Z@ik > o, (LP2)
l
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"""""""" Demand for S1 before solving LP1
""" Demand for S1 after solving LP1

Property specification

Ws3 p1

AU OO o)
AU AR R Y

0.7

S2

025 0.269 Ds1p1

Figure 2-6. [llustrative example for demand updating via solving LP.

2.4.3 Complete algorithm

Figure 2-7 shows the flow chart of the complete algorithm for the calculation of demand for
streams based on product demand and specifications. We introduce subsets L“/LY for
properties that have lower/upper bounding specification. The structure of the algorithm,
assuming lower bounding specifications only, is as follows. For each product and
specification, we check if there exists exactly one stream that satisfies the specification. If
this is the case, we calculate its demand using Eqn. (2-21). After checking all specifications,
we evaluate Eqn. (2-23) to see if a higher demand is obtained. If this is the case, we update
demands by iteratively using Eqn. (2-23) until no improvements can be achieved; otherwise,
we proceed to the next step. We then estimate the value of property [ of the blend (denoted
by 8y,), by considering all nonzero &, and the stream that violates m}; by the least margin.
If Tk, < ), VI, the algorithm terminates; otherwise, we solve LP2 to update all nonzero @,
one at a time. In all instances we tested, the algorithm runs in less than 3 seconds, which is

negligible compared to the solution time of the MINLP models for the same instance.
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By = (?Tkz — sz)wk
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(i, 1) s.t @5 > Op?
6. — [ (@ — 2 Dige) + X T3y Dy e
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k= o

l

3lells.t O, <myOR AL LVs.th, > np)?

YES l

Vi s.t &, > 0: Solve LP2

!

—»| Return @j,

Figure 2-7. Flowchart of preprocessing algorithm for each product.

We illustrate the computing sequence of the preprocessing algorithm using the example

shown in Figure 2-8 with four streams (S1 to S4), three properties (Q1 to Q3), and one

product.
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Q1 Qz Q3 Step 1: &gy g1 = 0.1428, @5y, = 0.25
54571 Sippr 1 sippp 1 Loop for Step 2 - 4:
E Iter.  Step
1 2 Bsy = 0.1428,@g, = 0.25

3 gy q1 = 0.2147,@5; o, = 0.2857
sz 409 4 @yqn = 0.2147, 8, g, = 0.2857

2 2 Bgy = 0.2147,8g, = 0.2857

_ —r

7k Ao as 53 W oas 3 @hyq1 = 0.2245,@l g, = 0.3036
4 Bgyqr = 0.2245,@g, g = 0.3036

L s2tos nb4s
g3 Exit loop at Iteration 6 with:

gy
§3-1-0.3 gy = 0.2307,dg, = 0.3076
54 4-0.75 g1 = 0.4,6q; = 0.85,6q3 = 0.7923 < 0.8
§2-1-0.2 L
Solve LP2 minimizing g,
s101 s3 @y = 0.2727

--=0.7 S4==0.7 -
Solve LP2 minimizing &g,

w=1 @, = 0.3225

Figure 2-8. [llustrative example for the preprocessing algorithm with one product with w =
1 (index k is dropped for simplicity).

2.5 Product dedicated flow

We introduce a new nonnegative continuous variable £, to model the flow from a stream i

dedicated to a product k. We first consider the overall flow balance:

szztﬁiﬂ - Zkzjztﬁfkt + ZjIJ'F (2-24)

where IjF denotes the inventory in blender j at the end of the scheduling horizon.

One observation is that the RHS contains one term for production and another term for final
inventory. We partition the LHS into two parts similar to the RHS: flows that are dedicated
to certain products and flows that will remain in the blenders. After the partition, we write
valid constraints for the flows that are dedicated to products using demand for streams we

obtained from the preprocessing algorithm.
Let F} denote the final inventory of stream i in blenders. We have:

Z Z Fije = Z Fy +FR, i (2-25)
jlat k

We match F;;, with the production of product k.

Z.ﬁik = ZZ Fie, Kk (2-26)
i j t
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Product dedicated flow variables introduced in Eqns. (2-25) - (2-26) can be easily defined

for different blend scheduling models.

Figure 2-9. [llustrative graph for product dedicated flows.

2.6 Valid constraints

We present three types of valid constraints based on demand for streams and product

dedicated flow variables.

2.6.1 Valid constraints with flow variables only

We first enforce demand satisfaction for each stream:
Fye = @y, ik (2-27)

More generally, for each specification for a product, the combined demand for “good”

streams should be nonzero. Different from the demand for each “good” stream, we enforce:

D @ —mfucz @ -+ ) (mu—t)du, kel o
iesy, igsy,
Z (my — R Fae = (M — Rk )wie + Z (g — ma) Dy, kL €LY (2-29)
iesk, igsk,

Eqns. (2-28) - (2-29) are written for every product, and every property with specification

satisfied by at least two streams (denoted by LY). We enforce the combined demand
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satisfaction for the “good” streams for such specification by considering the blend that may
contain: (1) every “good” stream for that specification, (2) streams violate that specification

with @;; > 0, and (3) the stream violates that specification by the least margin.

Eqns. (2-27) - (2-29) employ parameter &;; obtained from the preprocessing algorithm. If
@ = 0, Eqn. (27) will be trivially satisfied, while Eqns. (2-28) - (2-29) may still lead to a

tighter relaxation.

When there are multiple due times for orders and backlogging is not allowed, we introduce
the parameter @;;;, which is time indexed, to denote the cumulative demand for streams
until time point t. The preprocessing algorithm calculates the cumulative demand at different
time points accordingly. Variable Fj;, includes a time index t to denote the cumulative
product dedicated flow until time point ¢, and Eqns. (2-27) - (2-29) are written at every time

point when an order is due.

2.6.2 Valid constraints with binary variables

We can also express tightening constraints using binary variables by recognizing that for

each product, “good” streams are required:

X, sz Z Xijer kLt :
jkt iES}‘JI jr et i,j,t ] (2 30)

)?. Sz z )? il ¢!, ',k,l,t 2-31
Tkt iesk Ly Laprge ' g ( )

We can also incorporate demand for streams and binary variables )?S,j,t. We have:

Z u (ﬁllcjl - T[il)ﬁik =
iesY\(ir}

(2-32)

(1 - 2 ,Ztgi’,j,t> lﬁllcjl — M)Wy + Z'esU (701 — ﬁllcjl)&)\ikl’ k,leLM i esp
J LESy
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(2-33)
(1 Sy x jt> [(n,‘;l Skt Y (h-m)ow|,  klelliesy
jet iesk
Eqns. (2-32) - (2-33) enforce lower bound for a subset of “good” streams when one “good”

stream, denoted as i', has zero cumulative flow (since ;¥ X;7 ;. = 0).

Similar to Eqns. (2-28) - (2-29), when there are multiple due times for orders and
backlogging is not allowed, Eqns. (2-32) - (2-33) can be written at every time point when an
order is due, with the previously mentioned modifications. We also note that Eqns. (2-30) -
(2-33) are inspired by the facet-defining inequalities proposed by Papageorgiou et al.
(Papageorgiou et al. 2012) for the fixed-charge transportation problem with product

blending, in which they are called “lifted blending facets”.

2.6.3 Specifications for product dedicated flows

Finally, we write the following constraints that enforce the specifications based on product

dedicated flow variables:
ﬂkzz z Fje < Z'T[ilﬁik < ﬂz‘éz Z Fre, k1l (2-34)
J t i Jj t
Note that unlike Eqns. (2-27) - (2-29), Eqn. (2-34) is written for the entire scheduling horizon.

If stream i has initial inventory in the blender j, then we consider it as a separate stream in
the preprocessing algorithm. The corresponding )?l-jt will be fixed to 1 (Eqn. (2-5) will not be

enforced for such (j, t) combination), and F; ;¢ will be fixed to the initial inventory.

In Table 2-3, we list the valid inequalities for the example shown in Figure 2-8.
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Table 2-3. Valid constraints for the example shown in Figure 2-8 (index k is dropped)

Constraints Description
Z Fs;, > 0.3225 Eqn. (2-27)
t
0.2 Z Fs1. +0.1 Z Fop o + o.osz Fs3:>01x1+0.1x%0.2727 Eqn. (2-29)
t t t
Eqn. (2-31)
Xjr < Z Z Xspjrers it
jr t'st

Bes) X Fos
jr t'st

Xje = Z Z o Xsyjrer T Xspjrer + Xszjrer), It
jr b ¢! <t

0.22 Fap o + 0.12 Fpe > (1- z Z Rs5;)(0.1x 1+01%02727)  Eqn. (2-33)
t ¢ jl—t
0.12 Fsp o + 0.052 Fo30,>(1— Z Z Xs1,)(0.1x 14 0.1x0.2727)
t ¢ jlt
0.22 Fape + 0.052 Fase > (1- Z z Rs2;0)(0.1x 1+ 0.1 x 0.2727)
t ¢ jlt

0.1 Z Fs1:+0.2 Z Fs,:+0.3 Z Fssp + Z Foyr = 0.42 Z F. Eqn. (2-34)
t t t t j&—t
Z Fap, + 0.82 Fay, + 0.72 Fase + 0.752 Fayp > 0.852 z F,
t ¢ t t jldt
Z P, + 0.92 Faye + 0.852 P, + 0.72 Foye > 0.82 Z F.
t t t t j&=t

2.7 Computational results

We test our methods using 20 instances. Computational experiments are conducted on a
cluster running CentosOS Linux 7 with Intel Xeon (E5520) processors at 2.27 GHz and 16 GB
of RAM. The instances are coded in GAMS 24.7. We use 2 different MINLP solvers: BARON
16.3.4 and SCIP 3.2, and CPLEX 12.6 is used for solving the MILP models. Default options are

used for all solvers.
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2.7.1 Problem instances

Stream properties, product specifications, and blender network configurations are taken

from published literature. Table 2-4 summarizes some key characteristics of the instances

Table 2-4. Size of tested instances

Instance |S| 1] |P| Q| IT| Property source

1-5 7 2 3 7 6 Castillo and Mahalec (2014a)

6-12 9 3 4 9 6 Reddy, Karimi and Srinivasan (2004)
13-15 8 4 4 1 6 Castro and Grossmann (2014)

16-20 2 8 2 1 6 Lotero et al. (2016)

2.7.2 Case study

We consider an instance (Instance 17) with two streams, eight blenders, two products, one
property and six periods, with the corresponding parameters given in Table 2-5, and the

network configuration shown in Figure 2-10(A).

Inlet flow Qutlet flow
(A) (B) 51(15 TJS(IU).IB(SJ * T
J1 15 f i
16(20), 7310 -
_____ s20m) f ) s2015) T'ﬁ(w) 1”(5) Nonzero inventory
P “\. “ P P {' ™ N ]2 30 15 5
77 NS /, \
2t WS W erJ mea
S1 ’ e . P1 I3 10
Es,t ’ / ,("\ ’, ~ AYIRN L |
,ﬂ W L - H—;{ - LN S1E) 18(5) 51(5) 176
R S A7 SN J4 5 5
\‘I) -, AT S A 5
W"> > ”n /;t A 4 ?’\ 123 TL(L0) P2(10)
AN - 7’ ]5
. £ NN ¢ o
N /s -
v Y- - V4 W - 7 4 12(20) Ar2ci0) 2o P2(10)  AP2(10)
§2 A M o, N\ - ¢ P2 + T + f
Y I(I v¢ !y J6 20 10 20 [ 10
\\\\ I;, :< \\\ ,:1 12(10.)3(10) 4rplcgg] 12(5),J4(5) -‘rPl(lﬂj
W U AR b ]7 20 |
_____ J1(5).J4(5) + TPl(ll]j
I8 0 ]
0 1 2 3 4 5 6

Figure 2-10. (A). Network configuration for the case study (dashed lines indicate
connectivity between streams, blenders, and products). (B). Gantt chart for an optimal
solution.
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Table 2-5. Parameters for streams and products for the case study

$i0 $i1 $i2 Sks  Oka  Oks  Oke  Tiqr Mor @}
S1 10 10 10 - - - - 0.06 - 1
S2 30 30 30 - - - - 0.26 - 2
P1 - - - 10 10 10 10 - 0.16 -
P2 - - - 10 10 10 10 - 1 -

Since S1 is the only stream that satisfies the specification for P1, demand for S1 is nonzero.
The preprocessing algorithm calculates the demand for S1 for t = {3,4,5,6} as 5, 10, 15, and
20, respectively. Eqn. (2-30) yields four constraints, Eqn. (2-32) leads to 24 constraints, and
Eqn. (2-33) leads to four constraints. Model statistics for the case study are given in Table

2-6. An optimal solution is shown in Figure 2-10(B) with an objective function value of 100.

Table 2-6. Model statistics for the case study

MC MSB
Linear constraints 5580 7562
Continous variables 1118 2490
Nonlinear constraints 48 72
Discrete variables 192 192

The proposed tightening constraints are tested using different models as shown in Table 2-7.
The CPU time for the concentration-model and source-based models can be found in Table
2-8 and Table 2-9, respectively. For the concentration-based model, with the addition of the
proposed constraints, the solvers find feasible solutions and solve the case study in less than
3 minutes for most models and combinations of added constraints. The addition of the

tightening constraints enhances the solution of the source-based model as well.

We further test our methods on MILP models ;M and ;,M. Computational results for
selected models are given in Table 2-10. Notably, the proposed methods bring improvement
to MILP models, with the addition of some constraints leading to one order of magnitude

improvement in CPU time.
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Table 2-7. Model description

Models Description
M* Original MINLP, x = {C, SB}
My M* + Eqns. (2-27) - (2-29)
M M* + Eqns. (2-30) - (2-33)
M3 M* +Eqns. (2-14) - (2-15), (2-34)
Mi' MY + Eqns. (2-30) - (2-33)
M{p M{ + Eqns. (2-14) - (2-15), (2-34)
Mii p M{ + Eqns. (2-14) - (2-15), (2-34)
M p Mj';1+ Eqns. (2-14) - (2-15), (2-34)
Table 2-8. CPU time in seconds for the case study for concentration-based model
M* M{ Mii Mp M{ M{'p Miip  Mipp
BARON - 3991 4555.89 10844 135.07 101.35 86.35 137.15
SCIP - (20%)* (20%)* 3093 (20%)* 30.86 193.99 194.03

Note: “-” indicates no solution found after 2 hours. “*” indicates instance not solved to global
optimality, with optimality gap after 2 hours shown in brackets.

Table 2-9. CPU time in seconds for the case study for source-based model
MP M M MR® Myp Mip My MiGe
BARON 572.23 482.18 674.25 534.78 583.89 24996 627.02 382.45

Ratio (1) (0.84) (1.18) (093) (1.02) (0.44) (1.09) (0.67)
SCIP 2363 632 6.66 3007 634 3031 851 5.49
Ratio (1) (0.27)  (0.28) (1.27) (0.27) (1.28) (0.36) (0.23)

Note: Numbers in the brackets are the ratio of CPU time of the corresponding model over
CPU time of M>®.

Table 2-10. CPU time for the case study with different linear models

C C C SB SB SB
X M ng «Mji p «Mip M legB «Mii p Mi1p
L1 >7200(20%) 6623.49 6584.02 1958.10 57872 226.20 230.96 569.68
L2 246.05 37.80 38.05 10.76 54.14 29.33 29.93 303.46

2.7.3 Results for MINLP models

Computational results for all 20 instances, using BARON, are shown in Figure 2-11 using
performance profiles. The profiles for Mp , My; p and My j; p, three models that have the best

performance overall, are shown along with the original formulation. For the concentration-
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based model, adding constraints on continuous variables brings significant improvement,
while for the source-based model, adding constraints associated with binary variables

improves the performance the most.

One observation is that adding the proposed constraints brings more significant
improvements to M® compared to M®5. One explanation is that M>B is a tighter formulation
compared to M®; thus the benefits of adding the proposed constraints appears to be limited.

Table 2-11 gives the percentage of instances solved to global optimality in 2 hours.
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Figure 2-11. Performance profiles for concentration-based model (A) and source-based
model (B).

Table 2-11. Percentages of instances solved to global optimality in 2 hours

X M* Mf i Mg M{ Mi'p M p Mi p
C 29.4% 29.4% 17.6% 82.3% 35.3% 82.3% 82.3% 76.5%
SB 64.7% 64.7% 58.8% 70.6% 76.5% 64.7% 88.2% 70.6%

2.7.4 Results for MILP models

The performance profiles for | ,M for the same 20 instances are presented in Figure 2-12. As

in the case of the MINLP models, the addition of constraints on continuous variables brings

significant improvement to the solution of [,M®, while the addition of the constraints
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expressed using binary variables enhance the solution of LZMSB. It is worth noting that many
studies aim to solve the MINLP models for multiperiod blending problem by solving MILPs.

Our method is applicable to those MILPs as well.

w— (B)

0.2

Figure 2-12. Performance profiles for linear relaxation of the concentration-based model (A)
and source-based model (B).

2.8 Conclusion

We developed solution methods for multiperiod blending problem focusing on cost
minimization problems. We first developed a preprocessing algorithm to calculate lower
bounds on stream flows. The bounds obtained from this algorithm, along with the newly
introduce product dedicated flow variables, are then used to generate tightening constraints.
The proposed methods lead to significant improvement in the solution time of MINLP
models for multiperiod blending problem as well as models based on linear approximations

of these model.
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Chapter 3
Variable bound tightening and valid constraints for

multiperiod blending

In this chapter we focus on variable bound tightening methods as well as valid constraints
derived from the tightened bounds for multiperiod blending problem. We assume no flows
between blenders in this chapter, and without loss of generality, we only consider upper
bounding specifications. To simplify notation, we reintroduce the following variables in the

source-based model, with new symbols:

Fij¢:  Flow of stream i to blender j at time point ¢
lij;:  Inventory of stream i in blender j during time period t

Rjxe: Split fraction for inventory in blender j to product k at time point ¢

PN

Fijie:  Flow of stream i from blender j to product k at time point ¢
We also define the following binary variable:

Xjke: =1 when blender j feeds product k at time point ¢

We focus on the following constraints in the source-based model:

PN

Fijke = LijeRjke,  LJ, kot (3-1)
z_”izlijt < 1 Z.Iijt +yma(1=Xiee), kLt (3-2)
L l

We introduce a reformulation of the source-based model using lifting, and a preprocessing

method to calculate tight bounds.
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3.1 Reformulation of bilinear terms

We lift [;;;, and partition it into nonnegative continuous variables U; . and V.

Lije = Uijke + Vijkes Ljkt (3-3)
Z_ Ujie < vi(1=Xe), Skt (3-4)
L
Z,Vijkt <ViXjke,» kit (3-5)
L

where Uy, represents the inventory of stream i in blender j during time period ¢t when there
is no flow from blender j to product k (X, = 0), and Vi, represents such inventory when

Xjkt - 1

Eqn. (3-1) now becomes:

-~

Fijke = VijieRijke, L, kot (3-6)

and Eqn. (3-2) can be re-written as:

Z.ﬂilvijkt < ”Bzz,Vijkt, Jk Lt (3-7)
l l

The reformulated model, with variables U jx; and V;jx;, henceforth referred to as MYV, In
MYV, the variables involved in a bilinear term are V; jke and Rj.. We aim to tighten bounds

on Vijkt'
3.2 Preprocessing method for variable bounds tightening

A relaxation of Eqn. (3-5) is:
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Z_ Vijke vy Ikt (3-8)
l

The right hand side (RHS) parameter y; can be tightened. We first rewrite Eqn. (3-7) as:

zi(nil - 7-[IICJZ)Vijkt <0, J kLt (3-9)

We define a parameter p;,; to represent the margin by which stream i violates the
specification for property [ for product k: p;; = my; — my; (note that i, can be positive or

negative). Eqn. (3-9) can thus be written as:
Z_llileijkt <0, Jjklt (3-10)
l

We aim to calculate a tighter upper bound on V; ., using Eqn. (3-8) and (3-10). For simplicity,

we drop indices j, k, and t for now, thus y;,, becomes u; = m;; — mp . We consider the

following:

Z'Vi <y (3-11)

Z.ﬂiz"i <0, I (3-12)
L

We define a parameter y; = min;{y;;} and a set function b(l) = arg min;{y;;} that returns
the “best” stream for property [. It is possible that, for a property [, there are multiple
streams with u;; = y; (i.e., multiple “best” streams). In that case, we consider b(l) being the
stream with the smallest index among all such streams. We assume y; < 0 because (1) if
y; > 0then p;; > 0,Viandsince V; > 0, Eqn. (3-12) can be satisfied only if V; = 0, Vi; and (2)

if u; = 0, then Eqn. (3-12) can be satisfied only if V; = 0, Vi: u;; # 0).
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We define subset L; = {l: u; > 0}, that is, the set of properties with specification violated by
stream i. Similarly, we define subset I; = {i: u;; > 0}, that contains streams that violate the

specification for property (.

To illustrate, we consider an illustrative example with I = {1,2,3}, L = {L1, L2}. Parameters

m;, P and y;; calculated from them are given in Figure 3-1.

. i u
Properties 1 =2 =3 h
=11 1 4 3 2
=12 5 1 6 4
I L1 i | I L2 151
2 T 4 x 1 3 T 6 e
1
I T
: 1 T 5 Marz =2
H211 = 2§ Uz =1 l
3 1T 3 ,
_T_ ; TEII..JZ 4 4 _L =
HzL1 = :
l i
T X : Mo12 = —3
f .
M= —1 i
1
| .
1+ 1— P2 4+ 1—
(L) =1 | wy=-1 h(L2) = 2| nip=-3

Figure 3-1. An illustrative example for parameters

3.2.1 Bounds tightening using a pair of constraints

From Eqn. (3-11) it is clear that y is a valid upper bound on V;. To tighten such upper bound,
we combine Eqn. (3-11) with one constraint in Eqn.(3-12). For V; with positive coefficient in
at least one constraint in Eqn. (3-12) (i.e., streams that violates at least one specification),

bounds derived from such pairs of constraints will be tighter than y.
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To calculate bounds using aforementioned pairs of constraints, we first multiply all

inequalities in Eqn. (3-12) by — ui (recall that y; < 0) to obtain:
l
Wi
——)V; <0, l
2. v
Next, we combine Eqn. (3-11), with a weight equal to 1, with each individual constraint above,
Ui
Z (1- —l)Vl <y, I (3-13)

Each constraint in Eqn. (3-13) is obtained by combing a pair of constraints: Eqn. (3-11) and

one constraint in Eqn. (3-12). Next, we derive bounds on V; from Eqn. (3-13).

After using i’ instead of i, we obtain:

Z :ul l < v, I
i,

Foreach !l € L, we consider streams in the set I;, and isolate such streams, one at a time, from

the summation on the left hand side (LHS):

(1—@)1/ +z (1—@)1/,3)/, Liel,

We examine the second term on the LHS of the above equation. By the definition of y; we

have p;/; = p;. Thus, if u;;; < 0 then % € [0,1] and therefore 1 — £ > 0; and if i =0,
l

My

then —% > 0 and therefore 1 —% > 1> 0. Given that Vs is nonnegative, we have
l l

Yir=i(1— %)Vir > 0. Thus, the following inequality, obtained by dropping the summation

on the LHS of the above equation, is valid:
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Piyy <4, ilel, (3-14)
l

(1-

and since 1 — % > 0Vi,l €L; wehave:
l

v, <y/(1 —%), il €L
l

Or

A my
Visvu=-—

—_— *

i,l EL; 3-15
Ui — I ' ( )

Note that y;; is smaller than y and serves as an upper bound on V; derived from property I.

The physical interpretation of y;; is as follows. Suppose we have to meet demand for volume
y for a product. Parameter y;; represents the maximum volume of stream i that can be used
towards volume y based on property [ € L;. In other words, 7;;/y is the maximum fraction of
stream i that can be used for such product. This stream-specific volume, ¥;;, is derived by
considering the binary mixture of streams i and b(l) that satisfies the specification for

property [ exactly.

Once we calculated 7;; from Eqn. (3-15), the upper bound on V;, denoted as y;, is set to the
smallest 7;;, considering all properties that stream i violates (i.e,, all [ € L;), y; = miney, {7}
For illustration purpose, we introduce a set function m(i) that returns the property [ from

which y; is derived (i.e, m(i) = arg min;e {7::})-

Consider the illustrative example shown in Figure 3-1 with y = 1. Based on the calculated

parameter y;; shown in Figure 3-1, we have the following constraints for Eqn. (3-11) - (3-12):
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Vi+ Vo +Vs<1

—V,+ 2V, + V<0

V1_3V2+2V3S0

The calculations described above lead to bounds on V; given in Table 3-1.

Table 3-1. Bounds calculated by aggregating pair of constraints

i=1 i=2 [ =3
Pin - 1/3 1/2
Piva 3/4 - 3/5
Vi 3/4 1/3 1/2

Note: “-” indicates the corresponding 7;; is not calculated since L1 € L, and L2 & L,.

3.2.2 Bounds updating

In this subsection, we discuss how we can further tighten 7;;. Recall that bounds on V; are
derived using pairs of constraints. For each such pair, we can derive bounds tighter than 7;

by considering one additional constraint in Eqn. (3-12) that is not included in such pair.

We elaborate the aforementioned idea in the context of blending. Recall that j;; is based on
the binary mixture of streams i and b(l) with volume y, which satisfies the specification for
property [ and contains (y — 7;;) volume of stream b(l). It is possible that stream b(l)
violates specifications for other properties, and its maximum volume in y volume of product
is less than (y — 7). For all (i,1 € L;, b(1)) combinations, we check if the following holds:
Yoy <V — Vi

If ¥pay <y — Vi1, then there exists a property m[b(1)] (the property from which y, is
derived) whose specification is violated by the binary mixture of stream i and b(l) that

satisfies specification for property [ exactly(i.e., wimp @)V + o@mp@)¥ — Yi) > 0). Note
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that property m[b(l)] is not considered when deriving 7;;; when taking it into account, the
binary mixture of stream i and b(l) will not be able to satisfy the specifications for property
[ and property m[b(l)] simultaneously. In such case, we include one additional stream to the
binary mixture. Note that by including one additional stream, y;; will be tightened since it is
previously obtained from the binary mixture of streams i and b(l) that satisfies specification

for property [ exactly.

Specifically, we update ¥;; by considering the “second best” stream for property [. We define
ut = min; .,y {u;} - Let b*(l) be a set function that returns the “second best”
stream: b* (1) = arg ming ., {u;7;}, which implies ;" = mp+ ), — npy. If there are multiple
“second best” streams, we proceed as follows: for the specific (i,l €L, b(l)) combination

being considered, if y;; = u; (i.e., stream i is one of the “second best” streams), then b* (1) =

i; else, b* (1) is the stream with the smallest index among all such streams.

To tighten 7;;, we prove three propositions. In Proposition 1, we consider a special case
where b* (1) = i, while in Propositions 2 and Propositions 3 we consider the more general
case where b* (1) # i. For Propositions 2 and Propositions 3, we consider a mixture with
volume y that contains stream i, b(1), and b* (1), and satisfies the specification for property
l. Note that for volume y of such mixture, the (current) upper bound on volume of stream
b(l) is ¥p(;). Assume we have volume 7;; for stream i and volume (y — ¥y — 7;;) for stream

b*(1). Then, for property [ we have:
v + taPa + 1w v — ¥y — i) <0, il EeL;

which is equivalent to:



40

(i — )P < uf oy — ¥) — V), LleL;
For Propositions 2 and Propositions 3, since b* () # i, by the definition of ;' it follows that

wi; — i > 0. Thus, we have:

o < ut (Foy —v) — W70

TS , i,l eL;
" (llil—llf) '

Note that the RHS of the above equation can be nonpositive. Proposition 2 shows that in
such case zero is a valid upper bound on V;. If the RHS is positive, Proposition 3 shows that

itis a valid upper bound on V.

Proposition 1 For (i,l € Ly, b(])) with 7y <y — Py and b* (1) = i, if Ly, Vi < 0, then
Yu<0.

Proof (by contradiction).

Since b* (1) = i and [l € L;, it follows that the “second best” stream violates the specification

for property [, thus u;” = p;; > 0.

From Eqn. (3-15) we have 7;; = — ﬂff”;*, which leads to (i — ;)7 = —u;y. If we move all
1 H

terms to the LHS, we have u §;; — u;9; + 1y = 0, and thus, uj ¥; + i;(y — 9) =0

To simplify notation, we introduce € = 7;;, which means that above equation can be written

as,
pue+u(y—e)=0 (3-16)

Next, to prove the result using contradiction, we assume that y; = € > 0.
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Recall that y, () <y — ¥;; = ¥ — &, and thus if we multiply both sides of the inequality with

u; < 0 we obtain ¥,y > p; (¥ — €), and thus, from Eqn. (3-16), we have:

pie+ pivpe >0 (3-17)
We also have
z. pinVir = ugVi + Z My Vyr (3-18)
i'el i'#i
If Vi = ?il =g then
Z, winVir = ui € + Z My Vyr (3-19)
i’el i'#i
Note that
2_ iV = Vpy + Z Vi (3-20)
i'#i i'¢{b(1),i}

with y; < 0and Vyy < Vp)-

Since the “second best” stream, in this case stream i, violates the specification for property [
(i.e, u;; > 0), it follows that y;;; > 0,Vi' € {b(l), i}, while u; < 0. Since V;s is nonnegative,
the RHS of Eqn. (3-20) decreases as the value of V},(;) increases. With V,,;) upper bounded by

Yb(), we have:

2. iV = wype + Z WiV (3-21)
i'#i i'g{b(1),i}

Combing Eqn. (3-19) and (3-21) we have:

z winVy = e+ Z winVir = Wi e + pivpe + Z wirVyr (3-22)
el i i'¢(b(1),i}
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with Yirem@,n i Vir = 0 (since pyry > 0,Vi' & {b(1), i} and V;r is nonnegative) and p; ¢ +

UV > 0 (see Eqn. (3-17)).
Thus, from Eqn. (3-22) it follows that },;/¢; u;7,Vir > 0, which leads to a contradiction. |

Before presenting Proposition 2 and Proposition 3, we introduce some prerequisites. For
(i, € Ly, b(D)) with ¥,y <y — P and b* (1) # i, to derive a valid upper bound on V;, we
again consider volume y for a product (i.e,, Y;;s¢; V;r = y), where we assume V; = ¥;;. Such

assumptions imply (1) Y;7+; V;r =y — ¥;; and (2)

Z_ winlVir = ta¥u +Z. M Vi (3-23)
i'el i'#i

The LHS of Eqn. (3-23) should be nonpositive (see Eqn. (3-12)). To prove Proposition 2 and
Proposition 3 by contradiction, we are going to show that under certain conditions, the RHS
of Eqn. (3-23) is positive. Here, we investigate the RHS of Eqn. (3-23). In particular, we are
interested in the lower bound on };7; p;7,V;r subjectto Y1 Vir =y — 95 and Vi) < V(). In

other words, we are interested in the solution of the following LP (LP3):

min wir Vir
i'#i
CVesy—vu
U #1
st. —) Vesva—vy
i'#i ~
Vo) = Vo
Vi’ 2 O

The objective function value for LP3 provides a lower bound on }};r.; ;7;V;’. LP3 contains
(JI] = 1) variables and three inequality constraints. Here, we note that the optimal solution

toLP3is Vp+qy = v —Vu — Vb, Vo) = Vb, and all other variables being zero. When ut <
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0, the corresponding dual variables for the three constraints are 0, y;", and (u; — y;); when
ui > 0, the corresponding dual variables for the three constraints are —u;", 0, and (u; — uj").
One can verify the optimality of such solution with strong duality. We show the optimal

tableau for LP3 in Appendix A1.1.

The optimal solution mentioned above leads to the objective function value of u;f (§;; — y) +

(1] — u)¥p- Thus, from LP3 we have Yo i, Vir = pf Fu —v) + (W — 1) 7v)-

We now revisit Eqn. (3-23). From LP3, we have a lower bound on the second term of its RHS,

thus:
2_ lﬂi’zV" > uabu + W Gu—v) + W — e (3-24)
i'e
if Xirei Vir = v — Yu and V) < ¥p(p hold.
We next present Proposition 2 and Proposition 3.

Proposition 2 For (i,1 € L, b(1)) with 7,y <v — P4, b* (D # i, Zea Vi =7, Vo) < 7o)

ui Foy—v)—Hi7b() <

and
(mi—uf

0,if Yyrer i, Vyr < 0, then 9 < 0.

Proof (by contradiction)

IfV; = 9;;, and since Y.;ig Vyr =y, then };1.; Vi = y — ;. We also have V) < ¥p(p. Thus

from Eqn. (3-24) we have:

leﬂi’zV" > py Vi + u Ga —v) + W — u)vs
' (3-25)

= WV + 1 (V - Vb(l)) + (ua — u)7a
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We examine the signs of y; V) + 14 (y — Vb(l)) and (u;; — uj )7, on the RHS of Eqn. (3-25)

separately.

For ui7pqy + 1 (¥ — Vb)) : with L € L; and b* (1) # i, it follows that py > uf, thus py —

1 Foy—v) -1V
(Ha—ui)

uf > 0. Since < 0 and the denominator is positive, it follows that the

numerator ;" ()7,,(1) — y) — W 7p@ < 0, which is equivalent to pj vy + 1 (y - Vb(l)) = 0.

For (uy; — uf )7u: we have u; —u > 0. To prove Proposition 2 using contradiction, we

assume that ;; > 0, so it follows that (u; — u )7 > 0.
Thus, from Eqn. (3-25) we have Y;s y;;V;» > 0, which leads to a contradiction. [

Proposition 3 For (i,l € Li,b(l)) with Yy <v =7, b)) # 6, ZiaVi =V, oy < Vo)

# (To=Y)-Hi7b)
(-1

1 (Toy=Y) =K Vb

and (ma—ui)

>0,if XyerpyVy <0, thenyy <

Proof (by contradiction)

IfV; = 7;;, and since Y;ig Vyr =y, then };1.; Vi = y — ¥3. We also have V,,;) < ¥p(p. Thus

from Eqn. (3-24) we have:

Z_,.ui’lv" > py Vi + u Ga —v) + W — 1)¥e
' (3-26)

= Wy + 4 (v — Vo) + (a — 1P
_u b —Y)-1 b0

To prove Proposition 3 using contradiction, we assume that 7;; = (i) + ¢ with
il—H

€ > 0. From Eqn. (3-25) we have:

IThy (Vb(l) — V) — WYbQ
(i — 1)

z.,.ui’lv" > 1 7pay + 1 (v — 7o) + (ua — 1( + &)
L
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or
Zi,ﬂi’lVi’ > wvpw + 1 (v = Vo) + 1 (Fow —v) = i¥sw + (a — w)e
After rearranging terms, we obtain,
Zi,ﬂi’lV" > uivem — m7ew + 15 (Y = Vo) + 1 (o — v) + (g — wi)e
which leads to
Zi,.ui’lvi’ > (ug — 1 )e

Since | € L; and b* (1) # i, it follows that u; > p;, thus u; — u; > 0. With € > 0 we have

i’ i1V > 0, which leads to a contradiction. ]

From Proposition 2 and 3, it follows that for (i,l €L, b(l)) with 7,y <y — Py and b* (1) #

1 (Toy=Y) =K 7b@)
(i~

i,7; = max {O, } is a valid upper bound on V;.

Utilizing the above results, we update bounds as follows: for i € I and [ € L;, we first check
ifypy <y — i (Vi is calculated from Eqn. (3-15)); if that is the case, we have:
0, ifb*(D) =i

ut oy —v) — WV
(ta — 1)

A

Yii =

max {0, } , otherwise

To illustrate, we consider the same example in Figure 3-1. Note that we have b(L2) =

2,b*(L2) = 1, and from Table 3-1 we have ¥,z =¥, = 1/3, and 1/3 <y — ¥31, = 2/5.

Thus, we update 3 ,. Since b*(L2) # 3, and [uf, (2 —v) — liltzfz]/(lis,Lz - .Ufz) =1/3>

0, we have 731, = 1/3, and y3 is updated to 1/3.
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The bounds calculated by our method are given in Table 3-2. For comparison, we also show
the bounds which would have been obtained by FBBT and OBBT for the same example. We
note that for this example, bounds on all V; obtained by our method is tighter than bounds
obtained from FBBT. For V; and V,, bounds obtained by our method is as tight as bounds
obtained from OBBT.

Table 3-2. Bounds calculated by different methods

Vi i=1 i=2 i=3
FBBT 1 1/2  3/4
OBBT 3/4 1/3 1/11
Our method 3/4 1/3 1/3

Note: Calculation performed by FBBT and OBBT can be found in Appendix A1.2.
3.2.3 Complete procedure for bound tightening
The complete procedure, which combines the calculations described in the previous sections,

is summarized below. The pseudocode, where we bring back indices j, k, t and thus L;;, =

{l: wix; > 03}, is as follows:



Complete procedure for bound tightening

Fork € Kdo
Forj €]Jdo
Fori €eldo
Yijk = Vj
Forl € Lik do
Ly
Vit Hikt — 1y
Yijie = min{¥Vyjx, Vijii}
End
End
Fori €eldo

For!l € L;;, do

Vb, <V — Vijr then
Ifb*(l) =i then
Vijlt =0

Else

. -
= ], Ao
End
Yijk = mMin{¥;jx, Vijir}
End
End
End
End
End
Output: ]7ijk

3.3 Valid constraints

Since Rj: <€ [0,1], (1 — Rjy¢) € [0,1], so multiplying V;jx: < ¥;jk by (1 — Rji¢) yields:
(1= Rier)Vijie < (1 = Riee)ijies Ljkt

and then:
Viike = VijieRiee < (1 = Rige )Vijno Lj Kkt

Note that ﬁi}'kt = Vl'jktRjktr thus:
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Viiee = Eijie < (1= Rixe)Vijior iL,j,k,t

If we reintroduce indices j, k, and t, Eqn. (3-13) can be written as:
Hiki
Z (1 - L_*)Vijkt < yj; k' l' t
i M
Multiplying both sides with (1 — Rjkt) leads to:
Hiki :
2. A=Wy~ Bpe) < (= Bply, JikLt
i l
or
Hiki .
a- 7) (Vijee = VijeRje) < (1= Rie)v;,  Jok Lt
i l
Since I:"ijkt = VijkeRjke, Eqn. (3-28) can be written as follows:

Hiki A ;
Z_a ~= Ve =P < (L= Rpe)yy, kLt
2 l

Both Eqn. (3-27) and (3-29) are RLT constraints. Finally, we also have:

Vijke < Vijo Uikt
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(3-27)

(3-28)

(3-29)

(3-30)

Eqn. (3-30) enforces upper bounds on V;;,; which may be tighter than the bounds obtained

through general purpose bound tightening techniques such as FBBT.

Eqn. (3-27) and (3-29) - (3-30) are added to model MUV,resulting in model MH}’F. We show

an illustrative graph for our tightening methods using the example introduced in Figure 3-1

in Appendix A1.2. We also introduce model My, which has the same constraints as MH}, but

without tightened bounds on V;j; (i.e, ¥ijx =v; in Eqn. (3-27), (3-29) - (3-30)). We

summarize the models we consider in Table 3-3.
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Table 3-3. Model description

Models Description

MSB Original source-based model

MYV Source-based model reformulated
with Uk and Vi

MYV MY + Eqn. (3-27), (3-29) - (3-30)
Yijk = Vj

MR MYV + Eqn. (3-27), (3-29) - (3-30)
Yijkx obtained from our method

3.4 Computational results

We test our methods using 15 instances. Computational experiments are conducted on a
Windows 10 machine with Intel Core i7 at 2.80 GHz and 8 GB of RAM. Models are coded in
GAMS 28.2. We use BARON 19.7.13 with default options. Instances have five to eight streams,
two to three blenders, four products, and four to six properties. Stream properties and

product specifications are taken from Adhya et al. (Adhya, Tawarmalani, and Sahinidis 1999).

3.4.1 Case study

We first show the results for Instance 7 as a case study. It has eight streams, three blenders,
four products, six properties and five time periods. An optimal schedule, with an objective
function value of 3448.7, is shown in Figure 3-2 and the corresponding inventory profile in
Figure 3-3. The model and solution statistics for different models for Instance 7 are given in
Table 3-4. After 300 seconds M®® has an optimality gap of 2.43% while MJY is solved to
optimality in less than 50 seconds, indicating the effectiveness of the tighter bounds and RLT

constraints.
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Figure 3-2. An optimal schedule for Instance 7.
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Figure 3-3. Inventory profile for the schedule shown in Figure 3-2.

Table 3-4. Model and solution statistics for Instance 7

MSB MUV MHV MH‘%
Con. Var. 1009 2161 2161 2161
Bin. Var. 72 72 72 72

Constraints 1921 2641 3649 2161
CPU Time (s) >300 109.8 >300 47.7
Opt. Gap 2.4% 0 2.4% 0
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3.4.2 MINLP models

We give the main characteristics of all 15 instances and the CPU time in Table 3-5. The CPU
time for MEX includes run time for bound tightening method. Percentage in the parentheses
indicates optimality gap.

Overall, we observe that Mg} performs the best over the tested instances, with substantial
improvement over the performance of M>® for most instances. Further, the comparison of
the CPU times between M}{‘% and MYV suggests that the proposed methods result in

substantial computational improvement.

Table 3-5. Size of tested instances and CPU time for different MINLP models

Inst Size CPU Time (in seconds)

el O T MUY Mg Mgy
1 5 2 4 4 3 59 22 28 25

2 5 2 4 4 5 30.5 21.8 66.12 15.2
3 5 2 4 4 7 2166 82.86 >300(0.18%) 71.66
4 5 2 4 6 7 211.4 287.46 >300(0.01%) 136.51
5 8 3 4 6 5 169.48 >300(0.01%) 282.83 137.63
6 5 2 4 6 3 35.4 55.76 118.71 34.95
7 8 3 4 6 5 >300(243%) 109.78 >300(2.41%) 47.72
8 5 2 4 6 3 57.55 83.43 43.6 50.72
9 8 3 4 6 3 7.89 70 27.72 11.68
10 8 3 4 6 5 17.56 95.16 231.19 74.77
11 5 2 4 4 7 41.88 8.1 9.8 9.1
12 5 2 4 4 7 38.8 7.8 20.3 8.8
13 5 2 4 4 9 69.02 15.83 14.2 14.97
14 5 2 4 4 9 56.35 21.2 13.95 21.49
15 5 2 4 4 3 104.08 19.53 26.21 22.78

We show a performance profile generated by the data above in Figure 3-4.
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0.2L

Figure 3-4. Performance profile for different MINLP models

3.4.3 MILP models

Mixed-integer linear models that approximate the MINLP models can be developed through
discretization. In addition to providing approximate solutions, MILP models can also be used
in solution methods (S. P. Kolodziej, Castro, and Grossmann 2013; S. P. Kolodziej et al. 2013;
Gupte et al. 2017). Here, we allow the split fraction, R;y;, to take values only from a discrete
set DR, thereby linearizing nonlinear constraints Eqn. (3-1) and/or Eqn. (3-6). Specifically,
we have DR =1{0,6,,6,,...,8,,1} with §; =6, -6, = =6,—6,.,=1—6,=65. The
MILP obtained from such discretization, referred to as ;;M, is guaranteed to return only
feasible solutions to the original MINLP. A relaxation of M, referred to as |,M, is obtained
by introducing additional continuous variables to allow R, to take any values in [0,1]. The
resulting bilinear terms with two continuous variables are then relaxed using linear
constraints. We test MILP models (both with and without our methods) over 20 instances
including Instances 1 - 15, and five additional instances (Instances 16 - 20) modified from

D’Ambrosio et al. (D’Ambrosio, Linderoth, and Luedtke 2011) with more streams, blenders
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and products. The characteristics of Instances 16 - 20 are given in Table 3-6. Performance

profiles for the MILP models are shown in Figure 3-5.

Table 3-6. Size of Instance 16 - 20

Instance |I| ] |K] |L| |T|
16 15 10 10 1 1
17 15 10 10 2 1
18 15 8 10 4 1
19 15 8 10 4 1
20 15 10 10 1 1
(@) .l
o8r e UMSB
= 'LvMUV
“'06» L1Mg?lr
o= - SIITIII

(b) .|

08

0.6

04}

02f

Figure 3-5. Performance profile for two MILP models with § = 0.01(left) and § = 0.1(right)

Overall we observe that LIME"{ and LZME“{ perform best over the tested instances, indicating

the effectiveness of our method. For ;,M, we see substantial improvement from the

reformulation (;,M"") and bound tightening (;,M} %) compared to the original model.

3.4.4 Decomposition method

We further test our methods on an MILP-MINLP decomposition method for multiperiod

blending proposed by (Lotero et al. 2016). We briefly describe the method below: (1). A new

binary variable Y} is introduced, which equals to 1 if blender j feeds products at time point

t. (2). A relaxed problem (MILP) is solved in which Eqn. (3-6), the constraint that contains
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bilinear term, is replaced using McCormick envelopes with tightened bounds. (3). Binary Y};
is fixed to the value obtained from the solution to the relaxed problem, and a reduced
problem (MINLP) containing all constraints in Mg Y. is solved (“reduced” in the sense that
after fixing Y;;, some Xj;; are also fixed, resulting in a reduced feasible space compared to
MH}’F). Solving one relaxed problem and one reduced problem completes one iteration, from
which an upper bound and a lower bound (if the reduced problem is feasible) are obtained.
A feasibility or optimality cut is added to the relaxed problem after solving the reduced

problem in each iteration. More details about the decomposition method can be found in

(Lotero et al. 2016).

We show computational results for 5 instances (Instance 21 - 25) modified from
(D’Ambrosio, Linderoth, and Luedtke 2011) in Table 3-7. We set the maximum number of
iterations to five, and time limits for the relaxed problem and reduced problem are set at 10
seconds and 30 seconds, respectively. We use CPLEX 12.9 to solve the relaxed problem.

Table 3-7. Size of tested instances and CPU time for MINLP and decomposition

Inst. _Size MINLP (Mg% Decomposition
1] [J] IK| |L] |T Opt.Gap CPU Time(s) # oflter. Opt.Gap CPU Time(s)
21 15 10 10 1 3 1.58% 300 2 0 50.8
22 15 10 10 2 3 11.79% 300 2 0 42.6
23 15 8 10 4 3 4.06% 300 5 0.1% 200
24 15 8 10 4 3 0.01% 300 1 0 16.23
25 15 10 10 1 3 0.23% 300 1 0 18.6

Model M}{,‘{ does not solve Instances 21 - 25 to global optimality in 300 seconds, while the
decomposition method solves four of them to global optimality in less than 60 seconds. For
Instance 23, the decomposition method does not close the optimality gap after five iterations
at 200 seconds. However, the optimality gap is smaller compared to the MINLP model after

300 seconds. We also note that decomposition method using MH,YF outperforms the same
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method based on MSB (data not shown). We observe that, with the addition of the RLT
constraints with tightened variable bounds, decomposition method using ME}{ typically

closes the optimality gap within fewer iterations.

3.5 Conclusion

We developed variable bound tightening methods, based on multiple constraints, for
multiperiod blending. We first proposed a reformulation of the constraints involving bilinear
terms using lifting. We introduced a preprocessing method to tighten the bounds on the lifted
variables using multiple constraints. The reformulation and the selection of constraints to be
considered for bound tightening are based on the understanding of the physical system. We
proposed valid constraints derived from Reformulation-Linearization Technique (RLT) that
utilize the bounds on the lifted variables to further tighten the formulation. Computational
results indicate the effectiveness of our methods in reducing the computational
requirements. Finally, the proposed methods can be coupled with other solution strategies

for multiperiod blending problem.
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Chapter 4
Tightening methods based on nontrivial bounds on

bilinear terms

4.1 Introduction

To effectively solve optimization problems containing bilinear terms, one common approach
is to construct convex relaxations of bilinear terms at each node in a branch-and-bound (B&B)

algorithm. Consider the bilinear term xy with nonnegative variables x € [5, E] andy € [y,y]

and the set S = {(W, xY) ERLw=xy,x<x<x,y<y< ?}. Using the method proposed
by McCormick (McCormick 1976) leads to four linear inequalities containing x, x, y, and y

which describe the convex hull of S.

If w is also lower bounded by a positive parameter w > xy, then w is said to be a nontrivial

lower bound on xy. Similarly, if w is upper bounded by a positive parameter w < xy, then
w is said to be a nontrivial upper bound on xy. For bilinear term with nontrivial bounds,
consider the set ST = {(W,x,y) € ]Ri:w =XYWSWSWXSXSX,y<Sy< ?} , whose
convex hull has been studied by Belotti et al. (Belotti, Miller, and Namazifar 2010; 2011).
Specifically, they showed that the convex hull of S{ can be described with infinitely many
linear inequalities, some of which belong to a family of inequalities called “lifted tangent
inequalities”. More recently, Anstreicher et al. studied the convex hull representations for
bilinear terms with bounds on the product, and derived closed-form representations

containing second-order cone constraints (Anstreicher, Burer, and Park 2020).
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In this chapter, we study the following set:

S, ={wxy,2) eRIx {01} xZ<x<X%yZ<y<YZwZ<w<WZw =y}

which can be viewed as a generalization of ST (S; becomes S when Z = 1). we derive a family
of valid linear constraints for S, and further show that, in the presence of nontrivial bounds,
such constraints tighten the convex relaxation of the bilinear term obtained using the
McCormick inequalities. We note that when Z = 1 the constraints proposed in this chapter
coincide with a subset of the “lifted tangent inequalities”. However, compared to previous
work by Belotti et al., the constraints proposed here are given in a different, parameterized
form, which enables straightforward optimization-based generation for such constraints.
We apply our methods to the pooling problem that (1) contains only continuous variables,

and (2) contains binary and semi-continuous variables.

We note that semi-continuous variables are common in models for network flow problems.
Papageorgiou et al. (Papageorgiou et al. 2012) studied the transportation problem with
product blending containing fixed costs. Such problem leads to a mixed-integer program
(MILP), and facet-defining constraints have been proposed. Pooling problem with binary
variables has also been studied; for example, D’Ambrosio et al. studied tho pooling problem
with binary variables that model the on/off of the flow from stream to pool and proposed
valid constraints for such problem (D’Ambrosio, Linderoth, and Luedtke 2011). Previous
works focus on utilizing stream properties and product specifications to derive valid
constraints. Here, we propose constraints that are based on nontrivial bounds on the bilinear

terms.
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4.2 Background

We present the problem statement and nonlinear models for the pooling problem. We
introduce nontrivial bounds on bilinear terms and the convex relaxation of bilinear terms in

the presence of such bounds.

4.2.1 Problem statement

In the standard setting, the pooling problem is defined in terms of the following:

Given are:

a;: Unit cost of stream i
Br: Price of product k

4% Capacity of pool j

va;(: Lower bound on positive flow between pool j and product k
vj[,J(: Capacity of the pipeline between pool j and product k

m;; « Value of property [ for stream i
g :  Upper bounding specification for property [ for product k

Wy :  Maximum demand for product k

For any product, the combined flows from all pools to that product must satisfy the
corresponding specification. We aim to find flows (from streams to pools and from pools to
products) that maximize profit. We assume that there are no flows between pools, no stream
flow accumulation in pools, and all product properties are the average of the properties of

the streams blended weighted by volume fraction.
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4.2.2 Nonlinear models for the pooling problem

Various models have been proposed for the pooling problem (Haverly 1978; Ben-Tal, Eiger,
and Gershovitz 1994; Tawarmalani and Sahinidis 2002; Audet et al. 2004; Alfaki and
Haugland 2013; Boland, Kalinowski, and Rigterink 2016). Here, we study models similar to
the one proposed by Alfaki and Haugland (Alfaki and Haugland 2013). We define the

following nonnegative continuous variables:

Fij:  Flow of stream i to pool j

Rj,:  Split fraction for total inlet flows for pool j to product k (Rj, € [0,1])

-~

Fiji: Flow of stream i from pool j to product k

We have the following constraints:

Pool capacity:

Z,Fij <v, J (4-1)
L

Product demand:

LT (4-2)
[

Product specifications:

Z.Z'T[ilﬁijk < nIIchZ.Z,Fijk: k,1 (4-3)
i Jj 12 ]

Upper bound on the flows from pools to products:

Z.Fijk <V, ok (4-4)
l
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Stream splitting:
Fiji = FyR, 1),k (4-5)
Note that Eqn. (4-5) is an equality constraint with a bilinear term.

For split fraction Rj, we have:

D Ri=1 (4-6)

Eqns. (4-5) and (4-6) enforce that there is no flow accumulation in pools.

Reformulation-Linearization Technique (RLT) constraints can be added to strengthen the

formulation. Summing over index k on both sides of Eqn.(4-5), we have:

Zkﬁijk = Fy; ZkRjk' Lj
which, combined with Eqn. (4-6), leads to:
Zkﬁijk =Fy L (4-7)

Another RLT constraint can be obtained by multiplying both sides of Eqn. (2-1) with Ry (a

nonnegative variable):

z R]k < Y] ko j'k

which, combined with Eqn. (4-5), leads to:
Z_Fijk <YjRjx, Jk (4-8)
l

The objective function is profit maximization:
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maxzi Zj (Zkﬁkﬁijk - aiFij) (4-9)

Eqns. (4-1)- (4-9) comprise a nonlinear model for the pooling problem which contains only
continuous variables and is henceforth referred to as M°N. In practice, in addition to the
pipeline capacity modeled in Eqn. (4-4), there may exist a lower bound on }}; F‘ijk for each
(j, k) pair when }}; F"ijk is nonzero. In other words, when the flow from pool j to product k is
nonzero, it must be greater or equal to a given parameter. Let vj[;( denote such parameter

(vji. < Vjx)- We define the following semi-continuous variable:

ij: Flow from poolj to product k

and the following binary variable:

Zj: = lifthereis positive flow from pool j to product k
We have the following constraints:
Fy = ziﬁijk' Jjk (4-10)
ViZix < Fe < vipZp, ok (4-11)
Eqn. (4-11) ensures that when Zj, = 0, Fj, = 0; when Z, = 1, Fj € [V}, vji]-

Note that for split fraction R;; we now have:

Vi .
7 ik < R]k < ij, 1 k (4'12)
J



62

When Zj; = 0, we have ij = 0, and thus Rj; = 0 for the corresponding split fraction. When
Zjx =1, then ij = v]-I;c so the lower bound on Rj in this case should be v};c/)/j and by

definition Rj, < 1. Thus, R is now also a semi-continuous variable.

We again consider profit maximization with additional fixed cost terms:

maxzizj (zkﬁkﬁ’ijk — aiFij) - ijk a}:ijk (4-13)

Eqns. (4-1) - (4-3), (4-5) and (4-7) - (4-13) comprise a mixed-integer nonlinear model for
the pooling problem with semi-continuous flow, henceforth referred to as M3¢. We note that
M3¢ and MCON define the same feasible space for variables F;

j» Rk, and F"l-jk whenv};{ = 0and

Zj = 1for each ( j, k) pair.

For M5C we also consider the objective of minimizing cost considering penalty for unmet
demand. Let ¢, denote the minimum demand for product k and define a nonnegative

continuous variable U, for unmet demand for product k, we have:
P 2¢R_Z'F}k; k (4-14)
J

and the objective function is:

minz Z a;Fyj +Z z aﬁczjk +Z B Uk (4-15)
i Jj Jj k k

where F is the unit penalty for unmet demand for product k.

4.2.3 Nontrivial bounds on bilinear terms

Summing over index i for the constraints in Eqn. (4-5), we obtain:
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D Pye=Ru ) Fy, ik (4-16)
l l

If we define F; as follows:

f= Zi”w' J (4-17)

From Eqn. (4-7) and Eqn. (4-17), we can re-write Eqn. (4-16) as:

F}'k = F}'Rjk' Jk (4-18)
Eqn.(4-18) is an equality constraint with a bilinear term; it is implied from constraints in
both M® and M® . Note that F"] is upper bounded by y; since }; F;; < y; (see Eqn. (4-1)) and
Rji is upper bounded by 1. Thus, from the right-hand-side (RHS) of Eqn. (4-18) we know that
ij is upper bounded by y;. However, ij is also upper bounded by vj[,{ since Ziﬁijk < v},’c
(see Eqn. (4-4)), which is typically smaller than y; since, in general, the pipeline capacity

from pool to product is significantly smaller than the pool capacity. We note that above

analysis holds for both M¢°N and M5,

We next examine the lower bounds on both sides of Eqn. (4-18) for model M when Zix =

1. We note that in M® , 17“] is also semi-continuous since we have:
- L )
F2vjiZy,  jk (4-19)

which is implied by Eqn. (4-11) and Eqn. (4-18). In this case, from Eqn. (4-11) we have ij >

Lix; we also have F] > vjljc, and from Eqn. (4-12) we have R = v};(/yj. We note that from the

RHS of Eqn. (4-18) with bounds on F; and R;; mentioned above, one can only derive the
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lower bound on Fj as (v]%()z /vj,» which is smaller (thus less tight) than v};( since typically we
have v}jc <Y;j.
Definition 1 Consider a bilinear term w = xy with x > x,y = y,and w > w. w is said to be a

nontrivial lower bound on w if w > xy.

Definition 2 Consider a bilinear term w = xy with x < x,y < w, and w < w. w is said to be

a nontrivial upper bound on w if w < xy.

From Definition 1 and Definition 2, le,]( can be nontrivial upper bound on ij and when Zj;, =

1, va;C can be nontrivial lower bound on ij in M€,

Here we are interested in the set defined as follow:
S, ={wxy,2) eRIx {01} xZ<x<X%yZ<y<YZwZ<w<Wiw =y

with w > xy, w < xy, and w < w. Set S; contains structures in MSC: for a (j, k) pair one can

consider F}-k asw, F; asx, Rj as y, Zj, as Z, and Eqns. (4-5), (4-11), (4-12), and (4-18) are

similar to constraints that define S;.

When Z = 1, S, becomes:
SH = {(W,x,y) ER}: x<x<xy<y<yw<ws<ww-= xy} (4-20)

with w and W being nontrivial lower and upper bounds on w. When w = 0, S§ represents

the feasible space of a bilinear term with nontrivial upper bound, which arises in M¢°N, We
next discuss the implication of nontrivial bounds on the convex relaxation of the bilinear

terms.
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4.2.4 Convex relaxation of bilinear terms

Global optimization for nonconvex problems involves solving convex relaxations of the
original problem. Using McCormick inequalities (McCormick 1976) to relax w = xy with

bounds on x and y defined in S§ we have:

w2 yx+ xy—xy (4-21)
w=yx+Xxy—Xxy (4-22)
w<yx+Xy —Xy (4-23)
w<yx+ xy —xy (4-24)

We define set S5, which is a relaxation of S, as follows:
Sy ={w,x,y)eR}: x<x<X,y<y<yw<w<wEqns. (4-21) — (4-24)}

and set S; = {w € R,:w = w}. The feasible space defined by S N S; and SJ N S; are
shown in Figure 4-1. The intersection of S and S; is the solid curve xy = w, and the
intersection of S§ and S; is the triangular region defined by the three dashed lines. Note that
while we have x € [2,3],y € [2/3,1] when xy = W, Eqns. (4-21) - (4-24)that define S are

generated with x = 1,x = 3,y = 1/3, andy = 1. In the next section, we derive a family of

valid constraints for S; (thus valid for S§ as well) that tightens S3.
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Figure 4-1. Illustrative graph for bilinear terms xy with x € [1,3],y € [1/3,1] and its
relaxation when the nontrivial upper bound w = 2 is active.

4.3 Valid constraints

We first present a family of valid constraints for a bilinear term with nontrivial upper and
lower bounds, show that such constraints are tangent to the hyperbolas that represent the
bilinear term when one of such bounds is active, and discuss the connections with previous

works. We then propose methods to generate strong tightening constraints from the family.

4.3.1 A family of valid constraints

We present a family of valid constraints for S; in Proposition 1.

Proposition 1 p*x +wy + 2p(oyw + 0,Z) >0 with g, = (\/E_W -w)/(w—-w), o, =
w(w — @)/(W —w), and parameter p > 0 is valid for S;.

Proof.

Since Z is binary, we first consider the case where Z = 0. In this case, S; becomes:

S°={(w,x,y,Z)e]R{i><{0}: x'0<x< ,)_I-O_ysy-o,m-oSWSW~0,W=xy}

which is equivalent to:
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S{={w,x,y)eR3: 0<x<xYy=0w=0,0=x-0}

One can verify p?x + Wy + 2p(o;w + 6,Z) = 0 is valid for S{ by inspection since p2x is

nonnegative and all other terms are zero.
We then consider the case where Z = 1. In this case, S; becomes S} in Eqn. (4-20):
ST :{(W,x,y) € R3: ngSE,;_ISySimSWSW,W:xy}
and the proposed constraint becomes:
p%x + Wy + 2p(oyw + 7,) = 0 (4-25)

Assume (w, x,y) € Sf, we first examine the terms p?x + wy. Consider the valid inequality

(pVx — Jwy)? = 0, which, after expanding the left-hand-side (LHS), we obtain

pix — 2p\Jwxy + wy =0

and thus

p’x +wy = 2py/wxy (4-26)

Since (w, x,y) € S, we have w = xy. Thus, Eqn. (4-26) can be re-written as
p%x +wy = 2p/ww (4-27)
With Eqn. (4-27), we know that the LHS of Eqn. (4-25) is lower bounded by the following:

p’x + wy + 2p(oyw + 0,) = 2pww + 2p(oyw + 03)

Re-write the RHS of the above equation in a compact form we have:

pix + wy + 2p(oyw + 03) = 2p(Vww + oyw + 03) (4-28)
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We next show that the RHS of Eqn. (4-28) is nonnegative by showing vww + oyw + g, > 0

(recall that we have p > 0). We first examine the zeros of the following quadratic function

w.r.tVw:

o (Ww)2+Vww+ o0, =Jww+ow+0, =0 (4-29)

We note that ,/w is one zero for such function, since

+ m(\/WmTWW-W) 4 Poww) _ Jww(wow)tWw(wow)twwww

w-w w-w

JWw + ow + 0, = \Jww

and Vw is the other zero for such function, since

\/ﬁ+01W+UZ=W+W('_EW_W)+W(E__ 'mW):W(W—w_)+W(g—W):0
w—w w—Ww w—w

We further note that the coefficient of the quadratic term, oy, in Eqn. (4-29), is negative since

w < w (see Proposition 1 for the definition of o7). Thus, we have

Jww +aw+a, >0 (4-30)
for /w <+Vw < Vw, which is equivalent to w < w < w. Combining Eqn. (4-28) and (4-30),
we have:
pix +wy + 2p(oyw + ) = Zp(\/ﬂ +ow+0,) =0 (4-31)
is valid for (w, x,y) € S7.
Combining both cases for Z = 0 and Z = 1, we have
pix +wy + 2p(oyw + 0,2) = 0 (4-32)

is valid for S;. ]
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The family of constraints in Eqn. (4-32) can lead to some strong inequalities, particularly
when w =w or w = w (i.e.,, when one of the nontrivial bounds is active). We show an
illustrative graph in Figure 4-2 for bilinear terms w = xy when one of its nontrivial bounds
w = 2 orw = 1is active. Blue curve represents xy = 2 and black curve represents xy = 1.
Dashed blue and black lines represent the intersection of Eqn. (4-25) andw = 2andw =1,
respectively, with p = 1. Dotted blue and black lines represent the intersection of Eqn. (4-25)
and w = 2 and w = 1, respectively, with p = 2/3. Coordinates for points of tangency are

shown in parentheses.

1.0
0.91
0.8 1
v 0.7 4
0.6
0.51

0.4 1

0.34

1.00 125 150 1.75 200 225 250 275 3.00
X

Figure 4-2. Illustrative graph for bilinear terms w = xy with x € [1,3],y € [1/3,1] when
one of its nontrivial bounds w = 2 or w = 1 is active.

Remark 1 Whenw = w, Eqn. (4-32) becomes p?x + wy — 2pw > 0. When p > 0, one can
easily verify that for the branch of the xy = w hyperbola with both x and y positive, line
p?x + wy — 2pw = 0 is tangent to such hyperbola at point (wW/p,p) (the slope for the

tangent line at such point is (—p?/w)).

Remark 2 Whenw = w, Eqn. (4-32) becomes p?x + wy — 2p,/ ww = 0. When p > 0, one

can easily verify that for the branch of the xy = w hyperbola with both x and y positive, line

p%x +wy — 2p,/ ww = 0 is tangent to such hyperbola at point (;/ ww/p, py/ w/w).
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Remark 3 As will be shown later, for the pooling problem studied here, we can identify

bounds on variables involved in S; as follows:

ST={w,x,y)eR}: wsx<ww/w<y<lw<w<ww=xy}
withy > w > w. Thus, when w = w we have x € [w,y],y € [W/y, 1]; when w = w we have
x € [w,y],¥ € [w/y,1]. If we have a p with the corresponding px + wy — 2pw = 0 being
tangentto xy = w atpoint (W/p, p) € [w,y] X [W/y, 1], then the line p?x + wy — Zp\/@ =
0 is tangent to xy = w at (y/ww/p, p\/w/w) € [w,y] x [w/y, 1] since Jw/w < 1.
Remark 4 By settingw = 0 and Z = 1, from Proposition 1 we have

pix+wy—2pw =0 (4-33)

which is valid for

SC={w,x,y)eR}: x<xV,y<yYw<ww=uxy} (4-34)

4.3.2 Generation of strong valid constraints

Eqn. (4-32) contains infinitely many constraints. We propose methods to generate strong
tightening constraints. Specifically, given a point (w*, x*,y*,Z*) ¢ S; obtained from solving
an optimization problem over a relaxation of S;, we determine the value of p to obtain a

constraint that cuts off such a point.
4.3.2.1 Generation based on constraint violation maximization
We consider the following optimization problem:

min, p?x* + wy* + 2p(oyw* + 6,Z%) (4-35)
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which has a closed form solution p = —(gyw* + 0,Z*)/x" if x* > 0. Such p may lead to a
constraint in Eqn. (4-32) that is violated by (w*, x*, y*,Z*), and the violation, measured by
the value of p?x* + wy* + 2p(o,w* + 0,Z*), is the greatest. We note that the optimal
objective function value to the optimization problem (4-35) can be nonnegative. If that is the
case, Eqn. (4-32) will not be able to cut off (W*, x*, y*, Z*). To address this issue, we first check
the sign of [4(o,w* + 0,Z*)? — 4x*wy*]; if positive, the optimal objective function value to
the above optimization problem is guaranteed be negative, and we proceed to generate a

constraint (otherwise, no constraint will be generated).
4.3.2.2 Generation based on solving the minimum distance problem

The minimum distance problem for constraint generation has been studied (Stubbs and
Mehrotra 1999; Sawaya and Grossmann 2005). Here, we focus on the case where
(w*,x*,y",Z*) € S3 ={w € R,: w = w}, thatis, the nontrivial upper bound is active, w* =
w (in this case Z* = 1). Of particular interest is the point (w*, x*,y*,Z*) € S5 with x*y* < w.
Note that such a point is not in S; N S5. To find a constraint that cuts off (w*, x*, y*, Z*), we
first find a point (x,y) on the curve xy =w that has the minimum distance to

(w*,x*,y*,Z*) by considering the following optimization problem:

1 — —
lx — x7] +ﬂ|y—y*|:xy =v,x € [xX],y € [x, Y]}

min, ,, {E —

which can be viewed as minimizing the weighted 1-norm distance between (x*,y*) and
(x,v). Note that points on the curve xy = w can be represented using (W/p, p) with p being
a variable; furthermore, consider bounds on x and y when xy = w, we havey € [w/x, W],

thus p € [w/x,y] and the above optimization problem can be re-written as:



72

w *
——x
p

. 1
min,{ =

1
T —x ﬁlp—y*h(W/f) <p=Yy} (4-36)

We claim that the solution to the above problem is the following (see proofin Appendix A2.1):

UHU”SJW@—Xvﬁ—x)SWNVJan=JW@—XV@—z)

(QHJW@—XV@—£)<f¢an=f-

(3) If\/W(? — X)/(E —x)>w/x* thenp = w/x".

After obtaining p, we have the point (W/p, p) on the curve xy = w that has the minimum
distance to (w*,x*,y*,Z"). We then generate Eqn. (4-32) with such p. Recall that when the

nontrivial upper bound w is active, Eqn. (4-32) is tangent to the curve xy = w at point

w/p,p).
4.4 Solution methods

In this section we present different methods for generating the proposed constraints for

MCON

model with only continuous variables, , and model with semi-continuous variables,

M>C,
4.4.1 Methods for model with only continuous variables

For model M“°N, we consider the following constraint obtained from summing over index

[ € I" € I for the constraints in Eqn. (4-5):

Z' ﬁijk :R] Z Fij' ],k (4"37)
iel* iel*
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We note that )¢+ F"ijk < v},’c and Y;¢- Fij < v, thus from Remark 4 we have the following

valid constraint for M¢ON:

pzz. Fij + VR — ZpZ_ Pl 20 (4-38)
iel* iel*

We next present two constraint generation methods for M ON that determine the value of p

and the selection of set I* for Eqn. (4-38).
4.4.1.1 Generation at the root node

Eqn. (4-38) can be generated at the root node in multiple rounds. At each round, we solve a
linear relaxation of M“°N, and generate constraints based on the solution to the relaxed
problem. We then resolve the relaxed problem with the generated constraints and perform
another round of constraint generation.

Let m denote the rounds of constraint generation. Model M$PN~L contains all constraints in

M ON except that the nonlinear constraint Eqn. (4-5) is replaced by:

FjzviRx + Fij—vj,  Ljk (4-39)
Fijx <viRp  Ljk (4-40)
Fju < Fy, L)k (4-41)
MSON-L also contains the following constraint:
Pjiem’ ziel’f ,Fij + Vi Rjk = 2P jiem! Zieﬁ ,Fijk 20, (O km)ECy (4-42)
jiem jiem

where C,, contains (j, k,m") combinations that lead to Eqn. (4-42) in all previous rounds,

CON-L
Mz,

and the set I3, is defined as follows: At each round, we solve and, for each (j, k) pair,
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R N2
define set I, = {i: Fjj, > 0}. We check the sign of [4 (Ziel}km F{}k) - 41/},](R}‘k Zie'}km F; if

positive, that means there exist a parameter p that leads to a constraint in Eqn. (4-42)

violated by the current solution to M$°N~L. We then calculate p = Zie‘}km Fi/ Ziel}fkm F};
(such p will lead to a constraint that is violated by the current solution to M(ON=L by the
greatest margin). We also update set C,,,;, which contains index for Eqn. (4-42). We then
solve MSON~L which contains Eqn. (4-42) that are generated in previous rounds. We repeat
until no new constraints are generated or we reach the maximum number of constraint

generation rounds (oV). The pseudocode of the aforementioned method is given in

Algorithm 1.

Algorithm 1. Constraint generation at root node
Inputs: ¢ = True,m = 0, 0", I}, = ®,and C,, = @
While ¢ = True AND m < oV do

¢ = False
Solve MGON-L,

Read solution Fj, Ry, and F;;
L = {i: Fjy > 0}
Cn+1 = Cp
Forj €e]Jdo
Fork € Kdo

2
. U .
If 4 (ZiE[;km Fi}'k) — 4vji Rjy. Ziex;km F; > 0 then

Pjkm = Ziety,,, Fiji / Liery,, Fij
Cm+1 = Cm+1 U {(]' k' m)}
¢ = True
End
End
End
m=m+1
End

Outputs: pjxm, Ly, and Cp,yq
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We discuss an example to illustrate the procedure of generating the aforementioned
constraint and its effectiveness. We have I = {I1,12},] = {J1}, K = {K1,K2}, L = {L1}, yj; =
3, and the parameters given in Table 4-1

Table 4-1. Parameters for the illustrative example
a; P Vll{.k T 11 ﬂ}c{u Wy

11 2 - — 0.5 - -
[2 1 — — 1 — —
K1 - 10 2 - 0.75 3
K2 — 5 1 — 1 3

Solving the illustrative example with nonlinear model M ON Jeads to a solution with optimal
objective function value of 20.5. Solving the illustrative example with M{N"L leads to a

MS§ON-L js shown

solution that has an objective function value of 21. The optimal solution to

in Figure 4-3 (where we drop index j for simplicity).

o i
Fugki =g =1

K1

Products
K2

Figure 4-3. The optimal solution to the illustrative example from solving the first
relaxation

We examine the optimal solution for flow to product K2. We have Ig,, = {I2}. Since

4(17“1*2,1(2)2 — 4V Ry, (F) =4—8/3>0, we calculate pyyo = Fyx,/F> =1/2 , and

generate the following constraint:
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(1/4)F; + Rk, — FIZ,KZ =0 (4-43)

In the next round, we solve M{™! again after adding Eqn. (4-43). The optimal objective

function value now becomes 20.78, which is closer to the objective function value obtained
from solving the nonlinear model M ON (which is 20.5). We show the feasible space for Fy,
and Ry, intersects with the plane FIZ,KZ = 1 for this example, together with the constraint
added, in Figure 4-4 where solid curve represents Fj,Rg, = FIZ,KZ in M®°N intersects with
Fi;x2 = 1; dashed lines represent the intersection of Eqn. (4-39) - (4-41) in MSON"L with
Fi;x2 = 1; point A represents (Fj3, Ry, ) obtained from solving M§®N~"; dot-dashed line

represents Eqn. (4-43) intersects with i, g, = 1.

1.01

0.91

0.8 1

0.7 1

0.51

B e e EE L)

0.4 1 A(2,1/3)

b ———— G ——————————

0.3

1.00 125 150 175 200 225 250 275 3.00

F
12
Figure 4-4. Tightening constraint for the illustrative example.

4.4.1.2 Generation using a branch-and-cut framework

Letn € N = {0,1, ... } denote nodes in the B&B tree with n = 0 being the root node. At each
node, we solve MS™" which contains all constraints in M®®N, except that the nonlinear

constraint Eqn. (4-5) is replaced by:
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Fijie = FluRjx + RjinFij — FliuR}, (4-44)

ijn j ijn

Fijk = Fl]‘I‘LR k + R]knF FLL]]nR (4_45)

Fijk = Fl]‘I‘LR kT R]knF FLL]]nR (4_46)

Fijk S FL]nR R]kTLF FLI]‘nR (4_47)

where F]n/ ijn and R,m/ ikn are lower/upper bound on Fj; and Rj, for node n,
respectively. For the root node, we have Fl-];, =0, Vi,j, FU0 Yj Vi j, RkO =0Vj,k,
and R},JC,O = 1,Vj, k. The values of Un/Fll]Jn and R]kn/ ikn Will be updated when new nodes

are generated.

In addition, M$ON~L also contains the following constraint:

2 U
Pjkn’ z . By F ViR = 2P z :
el el

jkn' jkn'

Fj =0, U, k,n') € C, (4-48)

where C,, contains (j, k,n’") combinations that lead to Eqn. (4-48) in all previous nodes, and

MgON_L

subsets I}, [ikn is defined as follows: At each node, we solve and, for each (j, k) pair,

define Iy, = {i: F; ]k > 0}.

Mr(iON_L

We generate Eqn. (4-48) using Algorithm 2, with the optimal solution to used as

MCON are satisfied; if not, we

inputs. In Algorithm 2 we check if the nonlinear constraints in
aim to generate constraints that cut off the current optimal solution to M$ON-L | For

constraint generation, for each (j,k) pair we define the set Lj,, and check the sign of

[4 (Zlel Uk) - 4VJ%R}‘R Zie‘}kn Fj;]; if positive, that means there exist a parameter p that
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leads to a constraint in Eqn. (4-48) violated by the current solution to M$°N=L and we
calculate parameter pjy, = Zie'}flm Fij /ZiEI}kn Fjj.

We note that Eqn. (4-48) is globally valid, since different variable bounds at different nodes

will only affect the possible value of pji,, and from Proposition 1, constraints in the form of
Eqn. (4-48) are valid for bilinear term Zielfk ,Fijk = Rjk Zielfk , Fij with nontrivial upper
Jkn jkn

bound v},lc regardless of the value of pj,.

Algorithm 2. Generating constraints at nodes
Inputs: n, vy, F{j, Ry, I:"i’;-k, and C,,
c; = True, ¢, = False
Forj €]Jdo
For k € Kdo
c; = False
Fori €ldo
If £y # FjRj; then
c; = False
c3 = True
Break
End
End
Ijtkkn = {i: Fij’k > 0}

% 2 * *
If c; = True AND 4 (Zier;, . F; W) — LR, Sierr,, Fij > 0 then

Pjin = iets,, Fiji / Ziey,,, Fij
C\n = Cn U {(]' k, n)}
c, = True
End
End
End

Outputs: pjyy, ¢1, ¢z, L, and €,

We present a customized branch-and-cut (B&C) algorithm that integrates Algorithm 2

within a B&C framework in Figure 4-5. We start with the solution to the relaxation at the
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root node (M$°N~1) with objective function value Z;. The list of open nodes (node list)
contains only the root node, and set C,, is empty. Z; is the initial upper bound on the objective
function value (UB), and the initial lower bound on the objective function value (LB) is set to
zero since a trivial feasible solution exists with all variables being zero. We select a node n
in the node list, read its solution and run Algorithm 2. After running Algorithm 2, if all
nonlinear constraints in M®ON are satisfied (i.e., c; = True), then such solution is a feasible
solution to MON; if new constraints are generated in Algorithm 2 (i.e., c, = True), then we
add them to MSON-L and solve it again. Note that set C,, for Eqn. (4-48) is updated in
Algorithm 2, and constraints in Eqn. (4-48), once generated, will be included in all later nodes.

M%ON—L

After updating the solution to , we perform local search to find a feasible solution by

MCON MCON—L
n

solving using a local solver with the solution to as the initial point. After the
local search, we update LB (if applicable) and then perform branching. Two child nodes are
generated through branching, and the relaxations associated with them are solved right after
branching. Such relaxations contain all constraints in the parent node (including Eqn. (4-48)).
The details for the implemented node selection rule, local search, prune rule, and branching
strategy can be found in Appendix A2.2. The algorithm terminates when (1) the optimality

gap, defined as (1 — LB/UB), is within a chosen tolerance (¢), or (2) the maximum number

of processed nodes (8) has been reached.

Finally, while the B&C algorithm introduced above can be used to solve the pooling problem,
we note that, since the constraints in Eqn. (4-48) are globally valid, it can also be utilized as
a preprocessing algorithm to generate valid constraints whose indices are stored in set C,,

with n being, essentially, the last node that has been processed.
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Initialize with: Solution to MEON_L, tolerance &, node count § =
0 max node count Y, N = {0}, C,=0, UB=Z}, LB=0

Y

| 1— LB/UB <¢?

|UB — maXnENZ;l
F Y

| Select a node n € N, read its solutionand C,, |

—»Prune (detail in Appendix) |
yY

[ Run Algorithm 2 |

cy = True?

LB = max(LB,Z;;)
N = N\{n}

ie., all nonlinear constraints satisfied?

c; = True?
i.e., new constraints generated?

[ Solve MEON-L aoain with the updated set C,,, then update solution |

v

Perform local search with solution toM$®NLas initial point; let |,
Z* denote the optimal obj. function value from local search

LB = max(LB,Z,)
N=N\{n}L,d=d6+1

Branch to generate two new nodes. For each generated node n’, set
€, = €, and solve MS?N L if feasible, N = N U {n’}

n'

Figure 4-5. Flowchart of the customized B&C algorithm.

4.4.1.3 Generation using predefined parameters

Since for a given parameter p we have one valid constraint, we can generate constraints with
a predefined set of values of p. Specifically, we have the following:

7 = , 4-49
pjzkoF)' + vleJchk - ijkoF}'k =0, J,k,o€eO ( )

where O = {0,1, .... } is the index of constraints for a given (j, k) pair, and pjy, is a predefined

parameter. Eqn. (4-49) is generated without solving any optimization problem. Recall that
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for a given (j, k) pair, when ij = v},’c, Eqn. (4-49) is tangent to FjRjk = v},{ at the point
corresponding to F} = v},{/p, Rji = p. Note that when ﬁjRjk = vﬁc, we have Rj;, € [vﬁc/yj, 1],
thus one straightforward way to define pjy, is the following:

. 4-50
pive = VS/v; +0(1=vY/yn/l0l ik (4-50)

Eqn. (4-50) generates a set of p;;, whose values are evenly distributed in [vjl,J{/)/j, 1]. We

show an illustrative graph for the points of tangency on bilinear curve generated from such

Pjko in Figure 4-6.

vy

Figure 4-6. [llustrative graph for points of tangency on bilinear curve generated from Eqn.
(4-50) with seven intervals (indices j and k are dropped in the graph for simplicity).

4.4.2 Methods for model with semi-continuous variables

For model M®¢, we generate the following constraint at the root node:

Prem' B + ViR + 20jemt (G e + 0jr2Z) 2 0, (jk,m') € Cpp (4-51)

_ U U L _ .U/ L U L
where gj 1 = ( V]'Licvjlllc - ij)/(ij - ij)» Ojk,2 = Vjk (ij - vjlicvjlljc)/(vjk - ij)-
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We consider model M3~ which contains all constraints in model M®¢, except that the
nonlinear constraint Eqn. (4-5) is replaced by Eqn. (4-39) - (4-41). M5¢~L also contains Eqn.

(4-51).

We first present Algorithm 3 that generates constraints based on maximizing constraint
violation. At each round of constraint generation, we solve the continuous relaxation of
M5 " (in which Zj;, € [0,1]), and, similar to Algorithm 1, for each (j, k) pair, we check the
sign of [4(oj1Fji + ajk,sz*k)z — 4V iR ] if positive, we calculate parameter pjp,, =
—(ajk,lﬁ}-} + ajk,sz*k)/I:"'j* and generate Eqn. (4-51). We repeat until no new constraints are

generated or we reach the maximum number of constraint generation rounds.

Algorithm 3. Constraint generation from maximizing violation
Inputs: c = True,m = 0,0Y,and C,,, = @
While ¢ = True ANDm < oY do
¢ = False
Solve the continuous relaxation of My; L.
Read solution I:"}-*, R Fiion Zix
Cns1 = Cpy
Forj €]do
For k € Kdo
If 4(0ju 1 Fjy + 012 Z5)° — 4L F7 Ry, > 0 then
Cn+1 = Gy U_{(i' k,m)} B
Pjkm = —(Oji1Fji + ik 2253 [ Ff'
¢ = True
End
End
End
m=m-+1
End
Outputs: pjy,, and Cp, 44

Similarly, Algorithm 4 generates constraints by solving the continuous relaxation of M5¢~L

iteratively but based on solving the minimum distance problem. After solving the continuous
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relaxation of M5C~%, for each (j, k) pair we check the following two conditions: (1) F]’;( = },’C,

and (2) F, TR < Fk If both conditions hold, that means the nontrivial upper bound is active
and nonlinear constraint is violated. We calculate pjxy, by solving the minimum distance
problem discussed previously. Note that when FRj, = vj; we have F; € [vj,v;|, Rix €

J

vy /i, 1]. Thus, we calculate p 4, as follows:
Jk/F] J

(DIER], < Jv},i(l — VY /Gy =) = Jv,-‘,i/y,- <V/F}  then prim = [ViL/Y;

(2) If R}, > ’v},{/yj, then pj, = Rjj.
3)If /v},{/yj > v /F}, then pjym = Vi /.



Algorithm 4. Constraint generation from minimizing distance

Inputs: c = True,m = 0,0Y,and C,,, = @
While ¢ = True AND m < ¢V do
¢ = False
Solve the continuous relaxation of My, L.
Read solution F', R}y, Fiy, Z3,
Crnt1 =Cpy
Forj €]Jdo
For k € Kdo
If F, = v;x AND F/ R}, < Fjj then
Crns1 =Cpyq U {(]' k, m)}

IER; < [v8./y; < vl/F; then

Pjkm = ijI;Jc/Yj
Else If R}, > fv},’c /v; then

Pjtm = R;k
Else
Piiem = Vir/F
End
End
End
End
m=m+1
End

Outputs: pjy,, and C, 44

84

We can also generate the proposed constraint for M3¢ using predefined parameters.

Specifically, we have:
2oFi + VIR + 200 (G 1 Fixe + 03221 ) = 0
Pjkol'j T Vi Nk Pjko\Ojk,1l'jk T Ojk24jk ) = VU,

with pj, calculated from Eqn. (4-50).

j,k,o€eO

(4-52)
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4.5 Computational results

In this section, we present computational results for models employing the proposed
constraint generation methods. Computational experiments are conducted on a Windows 10
machine with Intel Core i5 at 2.70 GHz and 8 GB of RAM. Models are coded in GAMS 30.3. For
all runs, CPU time limit is set at 300 seconds and the tolerance for relative optimality gap is
set at 0.01%. Instances are modified from the randomly generated instances in D’Ambrosio
et al. (D’Ambrosio, Linderoth, and Luedtke 2011), which are included in QPLIB, a library of

quadratic programming instances (Furini et al. 2019).

4.5.1 Models with only continuous variables

4.5.1.1 Model MCON

We test the proposed constraints generated using different methods, as discussed in the

previous section. Specifically, we consider the following variants of M®ON:

1) MSON:model MCON with Eqn. (4-42) generated iteratively at the root node; C,,, in Eqn.

(4-42) is obtained by running Algorithm 1 with ¢V = 10.

2) MSON: model MCON with Eqn. (4-48) generated using the B&C algorithm; C,, in Eqn.

(4-48) is obtained by running the algorithm shown in Figure 4-5 with 6V = 10.

3) MEON: model MEON with Eqn. (4-42) and Eqn. (4-48) generated from a hybrid
approach; we first obtain C,, generating Eqn. (4-42) by running Algorithm 1 with
oV = 5 and then obtain C,, for generating Eqn. (4-48) by running the B&C algorithm

with 6Y = 5 (all M$°N~L include previously generated Eqn. (4-42)).
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4) MEON: MEON with Eqn. (4-49) expressed for predefined parameter pj, generated

from Eqn. (4-50) with |O| = 10.

We show the performance profiles for BARON 19.12.7 and SCIP 6.0 in Figure 4-7. Both
profiles are generated over 60 instances, and for each profile we exclude instances that can
be solved by all models within 10 seconds with the corresponding solver. We note that
certain proposed methods, notably M$°N, bring computational improvements to both
solvers. As a side note, the two solvers have similar performance for solving M°N for the 60

instances mentioned above.

0.8 r r r T T T T 0.8

0.7 1 0.7

Figure 4-7. Performance profile for model with only continuous variable and its variants
solved with BARON (left) and SCIP (right)

There are 21 instances that are not solved by BARON in 300 seconds with the original model
MCON We solve the first seven instances within those with the B&C algorithm shown in
Figure 4-5 with 6V = 100. To demonstrate the effectiveness of the proposed constraints, we
also solve the same seven instances with a B&B algorithm which is similar to the B&C

algorithm but does not include the constraint generation part (flowchart can be found in
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Appendix A2.3). Table 4-2 shows CPU time and optimality gap (1 — LB /UB) after 100 nodes
have been processed for both B&B and B&C algorithms. We also show the optimality gap
calculated from the upper and lower bounds on the objective function value reported by
BARON after 300 seconds.

Table 4-2. Solution statistics for B&B and B&C algorithms over select instances

Inst. B&B B&C BARON
Time(s) Gap Time(s) Gap Gap
1* 75.5 0 30.2 0 1.98%
2 136.6 0.53% 167.5 0.33%  2.34%
3 128.6 1.08%  149.6 1.03% 2.13%
4 132.5 1.63%  142.6 1.12% 1.82%
5 205.5 094%  210.2 0.66% 1.60%
6 205.9 2.37%  206.5 1.94% 2.80%

7 200.8 3.16%  200.3 0.52%  0.69%
* Instance 1 is solved by both B&B and B&C algorithm within 100 nodes and we show its
solution time.

We note that for all seven instances after 100 nodes, we obtain smaller optimality gap from

B&C algorithm compared to B&B algorithm.
4.5.1.2 Other formulation

We also test our methods on models based on another pooling formulation, known as the
pg-formulation (Tawarmalani and Sahinidis 2002), in which we have a nonnegative
continuous variable g;; € [0,1] for the proportion of stream i within the total outlet flow
from pool j, and the following nonlinear constraint:

~ - .. 4-53
Fijk = qijFjk, Lj,k ( )

Summing over index k for Eqn. (4-53), we obtain:
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~ - ., 4-54
ZkFijk = qij Zijk, Ljk (4-54)

Note that the LHS of Eqn. (4-54) is upper bounded by the pipeline capacity between stream
i and pool j, which can be a nontrivial upper bound since the RHS of Eqn. (4-54) is bounded
by the capacity of pool j. The model based on pq-formulation contains only continuous

variables, and it is referred to as M¢~PQ, We consider the following variants of M¢~FQ:

1) Mg "% model MC~PQ with constraints similar to those in Eqn.(4-42), generated at the

root node iteratively through a procedure similar to Algorithm 1 with 8 = 10.

2) M$"% model MC~PQ with constraints similar to those in Eqn. (4-49) generated using
pre-determined parameter p values calculated from an equation similar to Eqn. (4-50)

with |0] = 10.

We show a performance profile containing 33 instances in Figure 4-8. For model M¢~PQ we
observe improvement with adding the proposed constraints. The number of constraints

generated and the time needed to generate them are similar to previous models.

5 10 15 20 25 30
R

Figure 4-8. Performance profile for model based on pg-formulation and its variants solved
with BARON with maximizing profit objective.
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4.5.2 Model with semi-continuous variables

We consider the following variants of M5¢:
1) M$C: model MSC with Eqn. (4-51) using Algorithm 3 with ¢V = 10.
2) M;3C: model MS¢ with Eqn. (4-51) using Algorithm 4 with ¢V = 10.
3) Mp¢: MS€ with Eqn. (4-52) expressed for predefined parameter pjy, generated from
Eqn. (4-50) with |O| = 10.

We show performance profile for another set of 30 instances in Figure 4-9 with maximizing
profit objective. Models are solved with BARON Similarly, M{¢ and M3C typically contain
additional constraints in the order of hundreds generated in around 10 seconds. Overall, our

methods improve the performance of BARON.

Figure 4-9. Performance profile for model with semi-continuous variables and its variants
solved with BARON with maximizing profit objective.

We also test our methods for M5¢ using an objective where we minimize cost and penalty for

unmet demand, defined in (4-15). We show the performance profile in Figure 4-10 over
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another set of 30 instances. Similarly, our methods reduce the computational requirement

and optimality gap.

0.9

0.8

Figure 4-10. Performance profile for model with semi-continuous variables and its variants
solved with BARON with minimizing cost objective.

4.6 Conclusion

We derived a family of strong valid constraints for bilinear terms with nontrivial bounds.
The proposed constraints are valid for the case where binary and semi-continuous variables
are involved. We proposed different methods for generating strong constraints from the
family, including generation based on maximizing constraint violation and solving the
minimum distance problem. We tested the generated constraints on the pooling problem.
Computational results demonstrate the effectiveness of our methods in terms of reducing

the optimality gap and computational time.
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Chapter 5

Summary

In this thesis we presented solution methods for pooling and multiperiod blending problems.
We first consider the multiperiod blending problem with minimizing cost objective. We
develop a novel preprocessing algorithm to calculate lower bounds on stream flows. We
define product dedicated flow variables to address product specific features involved in
multiperiod blending problem. The bounds on stream flows and new product dedicated flow
variables are then used to generate tightening constraints which significantly improve the
solution time of the mixed-integer nonlinear programming models as well as models based

on linear approximations.

For multiperiod blending problem with maximizing profit objective, we first propose a
reformulation of the constraints involving bilinear terms using lifting. We introduce a
procedure to calculate tight bounds on the lifted variables calculated by aggregating multiple
constraints. We propose valid constraints derived from Reformulation-Linearization
Technique that utilize the bounds on the lifted variables to further tighten the formulation.

Computational results indicate our method can substantially reduce the solution time and
optimality gap.

Finally, we develop tightening and solution methods based on nontrivial bounds on bilinear
terms. We derive a family of valid linear constraints and further show that, when one of the

nontrivial bounds is active, such constraints are tangent to one branch of hyperbola that

represents the bilinear term. We propose different preprocessing methods for generating
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strong constraints from the family and test them on the pooling problem. Computational
results demonstrate the effectiveness of our methods in terms of reducing optimality gap

and computational time.

Future research directions on related topics include: (1) Strong valid constraints for the
multiperiod blending problem that exploit the combinatorial structure in it. (2).
Implementation of the variable bound tightening methods introduced in Chapter 3 in B&B
algorithm, with automatic detection for the specific structure we study in general problem.
(3). Implementation of the valid constraints for bilinear terms with nontrivial bounds in B&C

algorithm that can be applied to general nonlinear program with such bounds.
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Appendix

A1 Explanations to Chapter 3
A1.1 Solving LP3

After introducing slack variables S;, S,, and S5, LP3 is written as follows:

i'#i

Z_, Vi+Si=y—7u
1" #1
st. =) VutS=vu—v
i'#i ~
Vo +S3 = Vb
Vi’ 2 0,51,52,S3 2 O

By inspection, we have Vy+y =y — 73, Vir = 0Vi' € {i,b* (1)}, S; = S, = 0,andS; = ¥, as

initial feasible solution. Let Sy, V},+(;), and S3 be basic variables, we have the following tableau:

BaSiC var. Vb(l) Vb+(1 [Vi/, Vl, € {l, b(l), b+(l)}] Sl SZ 53
S, 0 0 [0, ... ..,0] 1 1 0 0
Vb+(l) 1 1 [1, ...... ,1] 0 —1 O y - )’/\il
S 1 0 [0, ...... ,0] 0 0 1 Yb)
z = 0 [ —p Vi€ b, b 0w 0 | W Fu-v)
where [. ] denotes a row vector of dimension (|I| — 3).
When pf < 0, we have the following optimal tableau:
Basic oy Vprqy [V, Vi' € {i,b(D,b*(D}] S, S, S5
var.
S, 0 0 [0, ... ...,0] 1 1 0 0
Vb+(l) 0 1 [1,..... 1] 0 -1 0 Y =Y — Vb
Vo) 1 0 [0, ... ...,0] 0 0 1 7o)
+
0 0 [ —p Ve @b ON 0 ub - | M)
z (" — i, Vi € {5, b(D), b™ (D] R A
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When u;” > 0, we have the following optimal tableau:

Basic oy Vprqy [Vir,Vi' € {i, b(D), bt (D}] S1 S, Ss
var.
Sy 0 0 [0, ...... ,0] 1 1 0 0
Vor 1 1 [1,..... 1] 0 -1 0 Y — Vi~ Vo
Vo) 1 0 [0, ... ... ,0] 0 0 1 1270
o
z 0 0 [ —ppvi" €{i,bD),b* D} —w 0w —uf ’f (%fl_ J})M(l)

A1.2 Illustrative example

A1.2.1. Feasibility Based Bound Tightening
Recall that for the illustrative example we have:
Vi+V,+V; <1
=Vi+2V,+V3 <0
Vi—=3V,+2V; <0
Assume we use 0 and 1 as the initial lower and upper bound, that is, V;,V,, V5 € [0,1]. FBBT

uses the following inequality to find tighter upper bounds (note that 0 is the tightest lower

bound on V;):

1 . —_—
Vi< —— [ﬁm* — Z min (am*’iryir,O)] A > 0 (A-1)
i'#i

A i

where a,,+; is the coefficient of V; for inequality m*, B,,,~ is the RHS of inequality m*, and y; is
the upper bound on V;. In FBBT we choose an inequality with positive coefficient for V;, to

evaluate the RHS of Eqn. (A-1) to find its upper bound:
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[1 —min(1,0) — min(1,0)] =1

<:
HlH

v, < %[O min(—3,0) — min(2,0)] =

V, < %[1 — min(1,0) — min(1,0)] =
v, < %[0 min(—1,0) — min(1,0)] = 1/2

Note that we now have a tighter upper bound on V,, so we update y,: y, = 1/2.

V; < %[1 —min(1,0) — min(1/2,0)] =
1
V; < T[O min(—1,0) —min(1,0)] =1
V; < %[O min(1,0) — min(—3/2,0)] = 3/4

Note that we now have a tighter upper bound on V3, so we update y;3: y3 = 3/4.

In FBBT we typically start another round of evaluation using the tightened bounds. For the
illustrative example, no further improvement can be obtained. FBBT thus returns: y; =

1,)72 = 1/2,}73 = 3/4‘
A1.2.2. OBBT for the illustrative example
OBBT is based on the solution of the following LP:

max vV (i=123)
Vi+V,+V; <1
s.t =V +21L+V3<50
Vi =3V, +2V; <0
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The value of y; is equal to the objective function value of the i-th LP. After solving three LPs,
OBBT returns: y; = 3/4,y, = 1/3,y; = 1/11.

A1.2.3. llustrative graph for our tightening methods

Consider the following nonlinear set:

( Vi+V,+V3<1

—V, +2V,+ V<0
V1_3V2+2V3S0

S, =% (FL,F, F3, RV, V,,V3) € RY: 5
1 =3 (P B, By, R VLV, V) E,=V,R (
F'2=V2R
\ F'2=V3R J

which contains three linear constraints that are identical to the constraints in the illustrative

example in section 3, along with three nonlinear equality constraints to model the flows.

We introduce a hyperplane:

R=1/2
v, =2/3

— +. 1
S; = RV V) ERY: N1
V3=0

The intersection of S; and S, is shown in Figure A1-1. It is point 4 on the (F;, F,) plane.

We consider a linear relaxation of S;, denoted as S%"C, using McCormick envelopes without

bound tightening. Since V;,V,, V5 € [0,1], we have:

F, <R, i=1{1,23} (A-2)
Fo<v, i={123} (A-3)
FF>R+V,—1, i ={1,23) (A-4)

F,>0, i={123} (A-5)
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We also have the following RLT constraints:

FL+E+F <R (A-6)
—F +2F+F <0 (A-7)
F,—-3F,+2F<0 (A-8)
The set SMC is thus defined as:
( I;/l +V,+V; <1 ]
—Vi+2V,+V3<0

SYC =S (FL B B RV, V,, V) €eRY: V=3V, +2V53<0
Eqns.(A—2)—(A-5)
Eqns.(A—6) — (A—8)

The intersection of SM¢ and S, is the quadrilateral ABCD.

We consider a linear relaxation of S;, denoted as S'f, using McCormick envelopes with
tightened bounds. Our methods lead to: V; € [0,3/4],V, € [0,1/3], V5 € [0,1/3]. McCormick

envelopes constructed using such bounds are:

- 3
1 < ZR (A-9)
~ 1
2 < §R (A-10)
~ 1
= (A-11)
~ 3 3
FizlR+Vi—3 (A-12)

1 1
F2ZR+V,—3 (A-13)
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L 1 1

together with Eqn. (A-3) and Eqn.(A-5). Note that Eqn. (A-12)- (A-14) are identical to Eqn.

(3-27) for the illustrative example.
The set ST is thus defined as:

Vi+V,+V3<1
—Vi+2V,+ V3 <0
ST =< (F, F,, F3, RV, V,, V) € RY: Vi—3V,+2V53 <0
Eqns.(A—3),(A—5),(A—9) — (A—14) |
Eqns. (A —6) — (A— 8) )

The intersection of ST and S, is also point A, which coincides with the intersection of the

nonlinear set S; and S,.

Eqn. (A-6) - (A-8)
_____ Eqn. (A-4),i =1
.............. Eqn. (A-13)

S, NS, = {4}
SMCns, = conv(4,B,C,D)
ST NS, = {4}

IC -~
0 /6 1/2

Figure A1-1. lllustrative graph for tightening constraints

A2 Explanations to Chapter 4
A2.1 Solving the minimum distance problem
Consider the following optimization problem:

*

——Xx

. 1
min,{ =

1
T —x ﬁlp—y*lr(w/i) <p<Yy} (4-36)
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where x*y* < w. Note that the above optimization problem is solved when the nontrivial
upper bound is active, in such case we have x* € [w/y,x] and y* € [w/x,y]. We claim that

the solution to the above problem is the following:

W y* < JW@—X)/@—@SW/x*,thenp= \/W(i—z)/(f—z)-

(2)If JW— W/E—x) <y, thenp = y".

3) If \/W@ — X)/(E —x)>w/x", thenp = w/x".

Proof We discuss the above three cases separately.

(1) When y* <p = \/W(?—X)/(E—g) <w/x*, it follows that p—y* >0 and w/p >

w/(w/x*) = x*, thus the optimization problem in (4-36) is equivalent to:

min,, { ! (E—x*> L( —-y):(w/x) < p <y}
= y_XP y): =p=Yy

Dropping the constant terms, we have:

min,, {= 1w +_;-p: wW/x)<p<y} (A-15)
X—x p y—y

Furthermore, since p > 0 we have the following valid inequality:

> s

+;' > 2 w A-16
y—y P2 [ G-06 - (4-16)

=I
I
=



100

The equal sign in (A-16) holds when p = \/W(? - X)/(E — x ) and by construction such p is

in the range of [w/x,y] (since w/x" < y* < p, and p <w/x* <w/(W/y) <y). Thus, p =

\/W@ —y)/(% - x) i the solution to (4-36) when y* < \/W(y —y)/E-x) <W/x".

(2) We first assume the optimal solution p < y*. If that is the case, we also have w/p >
w/y* > x* since x*y* < w. It follows that such p is not an optimal solution to (4-36) since

there exists € > 0 such that (p + ¢) leads to smaller value for both [w/p — x*| and |p — y*|.

We next assume the optimal solution p > y*. If that is the case, we first note that w/p > x*

should hold since otherwise there exists € > 0 such that (p — ) leads to the objective

. 1 (., W 1 . 1 (., w 1 . .
function Valuef—_z(x —E)+a(p—y —e)<ﬂ(x —;)+a(p—y). Now, since

p>y*andw/p > x*, we again have the optimization problem defined in (A-15) with p =

\/W@ — X)/(E —x ) < y*, which contradicts with p > y*. Thus, the optmizal solution can
only be p = y*.

(3) We first assume the optimal solution p > w/x*. If that is the case, we also have p > y*
since x*y* < w. It follows that such p is not an optimal solution to (4-36) since there exists

€ > 0 such that (p + €) leads to smaller value for both [w/p — x*| and |p — y*|.

We next assume the optimal solution p < w/x". If that is the case, we first note that p > y*

should hold since otherwise there exists € > 0 such that (p + ¢) leads to the objective

. 1 (w U S L (w_ L s .
function value ﬂ(ﬁ - X ) + - yr—p—9o)< T (p X ) + e (y* — p). Now, since

p <w/x*and p > y*, we again have the optimization problem defined in (A-15) with p =
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\/W@ — X)/(E —x ) > w/x*, which contradicts with p < w/x". Thus, the optmizal solution

canonly be p = w/x™. [

A2.2 Details of B&C algorithm

Node selection: we select the node n with the maximum objective function value: n =
argmax, Z,,. If there are multiple nodes with the same maximum objective function value,

we select the node with the smallest index.

Local search at node n: we solve M®°N using CONOPT, with the initial point being the

solution to M§™L,
Prune rule: we remove all nodes with Z,; < LB from the node list.

Branching strategy at node n: we branch on variable R;;, only (note that for MCON, branching
only on either Rj, or F;; can guarantee & — optimality, see Epperly and Pistikopoulos
(Epperly and Pistikopoulos 1997) for details). We first identify the (i, j, k) combination that

corresponds to the most violated nonlinear constraint: (i,j, k) = argmax;s ;s |F'L.*,j,k, -
* * x * * . . CON-L ]
Fi,j,Rj,k,L where Fi,j,k,, Fi,j,, and Rj,k, are obtained from solving M . Once the specific

A RY.,—RY
(i,j, k) is identified, we evaluate the following equation: d;, = (R}, — M . Parameter

P

dj) aims to quantify the distance between R;;, and the midpoint for its range. We branch on

Rj) corresponds to the smallest 5jk. For branching, the break point is at the variable value in

the solution to M,CLON‘L; in other words, at node n, the range for Rjj in the two resulting

nodes are [R]!jm, Rji] and [R},, R}fm], respectively.
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A2.3 B&B algorithm

Initialize with: Solution to MEON_L, tolerance &, node count § =
0 max node count Y, N = {0}, C,=0, UB=Z}, LB=0

1— LB/UB <¢?

Y

|UB — maXnENZ; |

| rune (demll‘in Appendix) | | Select a node n € N, read its solutionand C,, |

LB = max(LB,Z;) YES
N = N\{n}

—All nonlinear constraints satisfied?

Perform local search with solution to MSPN~! as initial point; let
7 denote the optimal obj. function value from local search

v

LB = max(LB,Z,)
N=N\{n}L,d=d6+1

Branch to generate two new nodes. For each generated node n’, set
€, = €, and solve MS?N " ; if feasible, N = N U {n’}

n'

Figure A2-1. Flowchart for a customized B&B algorithm.
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