

Mixed-Integer Nonlinear Optimization Methods for

Pooling and Multiperiod Blending Problems

By

Yifu Chen

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Chemical Engineering)

at the

UNIVERSITY OF WISCONSIN-MADISON

2021

Date of final oral examination: 01/25/2021

The dissertation is approved by the following members of the Final Oral Committee:

Christos Maravelias, Professor, Chemical and Biological Engineering

Jeffrey Linderoth, Professor, Industrial and Systems Engineering

James Luedtke, Professor, Industrial and Systems Engineering

Ross Swaney, Associate Professor, Chemical and Biological Engineering

i

Abstract

Pooling and multiperiod blending problems are common in many industrial sectors, from oil

refining to mining and wastewater management. Global optimization for such problems

remains challenging due to the presence of bilinear terms. Binary variables may also be

introduced to model certain operational constraints.

To address the computational challenges, we develop mixed-integer nonlinear optimization

methods for such problems. We first consider the multiperiod blending problem with

minimizing cost objective. We develop a novel preprocessing algorithm to calculate lower

bounds on stream flows. We define product dedicated flow variables to address product

specific features involved in multiperiod blending problem. The bounds on stream flows and

new product dedicated flow variables are then used to generate tightening constraints.

For multiperiod blending problem with maximizing profit objective, we first propose a

reformulation of the constraints involving bilinear terms using lifting. We introduce an

algorithm that returns tight bounds on the lifted variables calculated by aggregating multiple

constraints. We propose valid constraints derived from Reformulation-Linearization

Technique that utilize the bounds on the lifted variables to further tighten the formulation.

Finally, we develop tightening and solution methods based on nontrivial bounds on bilinear

terms. We derive a family of valid linear constraints and further show that, when one of the

nontrivial bounds is active, such constraints are tangent to one branch of the hyperbola that

represents the bilinear term. We propose different preprocessing methods for generating

strong constraints from the family and test them on the pooling problem.

ii

Acknowledgments

First, I would like to express my sincere gratitude to my advisor, Professor Christos

Maravelias, for his guidance over the years, especially on conducting research, presenting

results, and becoming a scholar.

I want to also thank my dissertation committee members, Professor Jeffrey Linderoth,

Professor James Luedtke, and Professor Ross Swaney, for their time reading my thesis,

attending meetings, and providing valuable feedbacks.

Many thanks to former and current members of the Maravelias Group for the friendly

atmosphere.

I enjoyed the time with my friends in Madison, as well as my internships with ExxonMobil

and Amazon, which inspired some of my research ideas. Finally, I really appreciate the

emotional support from my parents.

iii

Table of Contents

Abstract .. i

Acknowledgments... ii

List of Figures .. vi

List of Tables .. viii

List of Symbols .. ix

Chapter 1 Introduction .. 1

1.1 Pooling and multiperiod blending problems .. 1

1.2 Solution and tightening methods ... 2

1.3 Variable bounds tightening methods ... 4

1.4 Thesis outline .. 5

Chapter 2 Preprocessing algorithm and tightening constraints for multiperiod
blending: cost minimization .. 7

2.1 Problem statement .. 8

2.2 MINLP and MILP models ... 9

2.3 Motivating example .. 12

2.4 Preprocessing algorithm .. 15

2.4.1 Demand for “good” streams ... 16

2.4.2 Demand updating ... 17

2.4.3 Complete algorithm ... 20

2.5 Product dedicated flow ... 22

2.6 Valid constraints .. 23

2.6.1 Valid constraints with flow variables only ... 23

2.6.2 Valid constraints with binary variables... 24

2.6.3 Specifications for product dedicated flows .. 25

2.7 Computational results ... 26

2.7.1 Problem instances .. 27

2.7.2 Case study ... 27

2.7.3 Results for MINLP models .. 29

2.7.4 Results for MILP models .. 30

2.8 Conclusion ... 31

Chapter 3 Variable bound tightening and valid constraints for multiperiod blending
 ... 32

iv

3.1 Reformulation of bilinear terms.. 33

3.2 Preprocessing method for variable bounds tightening .. 33

3.2.1 Bounds tightening using a pair of constraints .. 35

3.2.2 Bounds updating... 38

3.2.3 Complete procedure for bound tightening ... 46

3.3 Valid constraints .. 47

3.4 Computational results ... 49

3.4.1 Case study ... 49

3.4.2 MINLP models ... 51

3.4.3 MILP models ... 52

3.4.4 Decomposition method .. 53

3.5 Conclusion ... 55

Chapter 4 Tightening methods based on nontrivial bounds on bilinear terms 56

4.1 Introduction .. 56

4.2 Background ... 58

4.2.1 Problem statement .. 58

4.2.2 Nonlinear models for the pooling problem .. 59

4.2.3 Nontrivial bounds on bilinear terms .. 62

4.2.4 Convex relaxation of bilinear terms .. 65

4.3 Valid constraints .. 66

4.3.1 A family of valid constraints .. 66

4.3.2 Generation of strong valid constraints .. 70

4.4 Solution methods .. 72

4.4.1 Methods for model with only continuous variables ... 72

4.4.2 Methods for model with semi-continuous variables .. 81

4.5 Computational results ... 85

4.5.1 Models with only continuous variables ... 85

4.5.2 Model with semi-continuous variables.. 89

4.6 Conclusion ... 90

Chapter 5 Summary .. 91

Appendix .. 93

A1 Explanations to Chapter 3 .. 93

A1.1 Solving LP3 .. 93

v

A1.2 Illustrative example ... 94

A2 Explanations to Chapter 4 .. 98

A2.1 Solving the minimum distance problem .. 98

A2.2 Details of B&C algorithm .. 101

A2.3 B&B algorithm .. 102

Bibliography .. 103

vi

List of Figures

Figure 2-1. Illustrative graph showing flows for one period. ... 9

Figure 2-2. Illustrative graph for the feasible space of MILP models based on Kolodziej et
al.(S. P. Kolodziej, Castro, and Grossmann 2013) .. 12

Figure 2-3. Motivating example with one period ... 13

Figure 2-4. Illustrative graph for lower bounding flow for S1 (Eqn. (2-18)) and enforcing
specification for flows (Eqn. (2-19)). ... 15

Figure 2-5. Illustrative example for demand updating via algebraic equations; pattern filled
bars indicate feasible property domains. ... 18

Figure 2-6. Illustrative example for demand updating via solving LP. .. 20

Figure 2-7. Flowchart of preprocessing algorithm for each product. .. 21

Figure 2-8. Illustrative example for the preprocessing algorithm with one product with
𝜔 = 1 (index 𝑘 is dropped for simplicity). ... 22

Figure 2-9. Illustrative graph for product dedicated flows. ... 23

Figure 2-10. (A). Network configuration for the case study (dashed lines indicate
connectivity between streams, blenders, and products). (B). Gantt chart for an optimal
solution. ... 27

Figure 2-11. Performance profiles for concentration-based model (A) and source-based
model (B). ... 30

Figure 2-12. Performance profiles for linear relaxation of the concentration-based model
(A) and source-based model (B). ... 31

Figure 3-1. An illustrative example for parameters .. 35

Figure 3-2. An optimal schedule for Instance 7. ... 50

Figure 3-3. Inventory profile for the schedule shown in Figure 3-2. ... 50

Figure 3-4. Performance profile for different MINLP models ... 52

Figure 3-5. Performance profile for two MILP models with 𝛿 = 0.01(left) and 𝛿 =
0.1(right) ... 53

Figure 4-1. Illustrative graph for bilinear terms 𝑥𝑦 with 𝑥 ∈ 1,3, 𝑦 ∈ 1/3,1 and its
relaxation when the nontrivial upper bound 𝑤 = 2 is active. .. 66

Figure 4-2. Illustrative graph for bilinear terms 𝑤 = 𝑥𝑦 with 𝑥 ∈ 1,3, 𝑦 ∈ 1/3,1 when one
of its nontrivial bounds 𝑤 = 2 or 𝑤 = 1 is active.. 69

Figure 4-3. The optimal solution to the illustrative example from solving the first
relaxation .. 75

Figure 4-4. Tightening constraint for the illustrative example... 76

vii

Figure 4-5. Flowchart of the customized B&C algorithm. ... 80

Figure 4-6. Illustrative graph for points of tangency on bilinear curve generated from Eqn.
(4-50) with seven intervals (indices 𝑗 and 𝑘 are dropped in the graph for simplicity).......... 81

Figure 4-7. Performance profile for model with only continuous variable and its variants
solved with BARON (left) and SCIP (right) .. 86

Figure 4-8. Performance profile for model based on pq-formulation and its variants solved
with BARON with maximizing profit objective. ... 88

Figure 4-9. Performance profile for model with semi-continuous variables and its variants
solved with BARON with maximizing profit objective. ... 89

Figure 4-10. Performance profile for model with semi-continuous variables and its
variants solved with BARON with minimizing cost objective. ... 90

viii

List of Tables

Table 2-1. Major constraints in the concentration model for the motivating example 13

Table 2-2. Relaxation of Eqn. (2-6) using McCormick envelopes for the motivating example
 ... 14

Table 2-3. Valid constraints for the example shown in Figure 2-8 (index 𝑘 is dropped)..... 26

Table 2-4. Size of tested instances ... 27

Table 2-5. Parameters for streams and products for the case study .. 28

Table 2-6. Model statistics for the case study.. 28

Table 2-7. Model description ... 29

Table 2-8. CPU time in seconds for the case study for concentration-based model 29

Table 2-9. CPU time in seconds for the case study for source-based model 29

Table 2-10. CPU time for the case study with different linear models .. 29

Table 2-11. Percentages of instances solved to global optimality in 2 hours 30

Table 3-1. Bounds calculated by aggregating pair of constraints .. 38

Table 3-2. Bounds calculated by different methods ... 46

Table 3-3. Model description ... 49

Table 3-4. Model and solution statistics for Instance 7 ... 50

Table 3-5. Size of tested instances and CPU time for different MINLP models 51

Table 3-6. Size of Instance 16 - 20 ... 53

Table 3-7. Size of tested instances and CPU time for MINLP and decomposition 54

Table 4-1. Parameters for the illustrative example .. 75

Table 4-2. Solution statistics for B&B and B&C algorithms over select instances 87

ix

List of Symbols

Indices/Sets

𝑖 ∈ 𝐈: Inputs (Streams)

𝑗 ∈ 𝐉: Pools/Blenders

𝑘 ∈ 𝐊: Products

𝑙 ∈ 𝐋: Properties

𝑡 ∈ 𝐓: Time points: {0,1, … , |𝐓|}/time periods: {1,2, … , |𝐓|}

Subsets

𝐒𝑘𝑙
U : Streams that satisfy the upper bound on property 𝑙 for product 𝑘

𝐒𝑘𝑙
L : Streams that satisfy the lower bound on property 𝑙 for product 𝑘

𝐋𝑖𝑘: Properties for product k whose specification is violated by stream 𝑖

𝐋𝑖𝑘
S : Properties for which stream 𝑖 is the only stream that satisfies the specification for

product 𝑘

𝐋𝑘
M: Properties for which multiple (but not all) streams satisfy the specification for

product 𝑘

𝐋L: Set of properties that have lower bounding specification

𝐋U: Set of properties that have upper bounding specification

Parameters for multiperiod blending problem

Problem data

𝛽𝑘: Price of product k

𝛾𝑖
I: Inventory capacity for stream 𝑖

𝛾𝑗: Inventory capacity for blender j

𝛾𝑘
K: Inventory capacity for product 𝑘

𝛿𝑝𝑡: Amount of product 𝑘 due at time point t

𝜉𝑖𝑡: Supply for stream 𝑖 at time point t

𝜋𝑖𝑙 : Value of property 𝑙 for stream 𝑖

𝜋𝑘𝑙
U : Upper bounding specification on property 𝑙 for product 𝑘

𝜋𝑘𝑙
L : Lower bounding specification on property 𝑙 for product 𝑘

𝜔𝑘 : Maximum(cumulative) demand for product 𝑘

Parameters calculated by preprocessing algorithm (for minimizing cost objective)

𝜋̂𝑘𝑙
U

 : Value of property 𝑙 that violates the upper bound on product 𝑘 by the least margin.

𝜋̂𝑘𝑙
L

 : Value of property 𝑙 that violates the lower bound on product 𝑘 by the least margin.

x

𝜃𝑘𝑙 : (Estimated) Value of property 𝑙 for product 𝑘

𝜔̂𝑖𝑘 : Demand for stream 𝑖 derived from product 𝑘

𝜔̅𝑖𝑘𝑙 : Demand for stream 𝑖 derived from property 𝑙 for product 𝑘

𝜔̅𝑖𝑘𝑙
′ : Updated demand for stream 𝑖 derived from property 𝑙 for product 𝑘

Parameters calculated by preprocessing algorithm (for maximizing profit objective)

𝛾𝑖𝑗𝑘𝑙: Tightened bound on inventory of stream 𝑖 in blender j when it is feeding product k

derived from property 𝑙

𝛾̅𝑖𝑗𝑘: Tightened bound on inventory of stream 𝑖 in blender j when it is feeding product k

𝜇𝑖𝑘𝑙: Violation of specification for property 𝑙 for product k from stream 𝑖

𝜇𝑙
∗: Value of property 𝑙 of the “best” stream for property 𝑙

𝜇𝑙
+: Value of property 𝑙 of the “second best” stream for property 𝑙

Parameters for pooling problem

𝛼𝑗𝑘
F : Fixed cost for flow between pool j and product k

𝛽𝑘
P : Unit penalty for unmet demand for product k

𝜄𝑗𝑘: Lower bound on positive flow between pool j and product k

𝜈𝑗𝑘: Capacity of the pipeline between pool j and product k

𝜑𝑘 : Minimum demand for product k

𝜔𝑘 : Maximum demand for product k

1

Chapter 1

Introduction

Optimization problems containing bilinear terms have a number of applications in different

industrial sectors, from refining (Wicaksono and Karimi 2008; Gounaris, Misener, and

Floudas 2009; Misener and Floudas 2012; S. P. Kolodziej, Castro, and Grossmann 2013;

Gupte et al. 2017) and wastewater treatment (Bagajewicz 2000; Jeżowski 2010) to mining

(Blom et al. 2014; Blom, Pearce, and Stuckey 2016; Boland et al. 2016). Such problems are

important in terms of the potential economic benefits that can be achieved if solved

efficiently (DeWitt et al. 1989; J. D. Kelly and Mann 2003).

1.1 Pooling and multiperiod blending problems

One optimization problem containing bilinear terms that has been studied extensively is the

pooling problem, which is a nonconvex optimization problem. First studied by Harvey

(Haverly 1978), the pooling problem continues to be an active research topic (Misener and

Floudas 2009; Gupte et al. 2017). It can be briefly stated as follows: multiple streams with

different properties are blended in pools before sent to produce products. The combined

flows from pools to a product must meet the corresponding specifications.

Various formulations for the pooling problem have been proposed (Haverly 1978; Ben-Tal,

Eiger, and Gershovitz 1994; Tawarmalani and Sahinidis 2002; Audet et al. 2004; Alfaki and

Haugland 2013; Boland, Kalinowski, and Rigterink 2016), and a number of variants of the

pooling problem have been studied. For example, Meyer and Floudas (Meyer and Floudas

2

2006) studied the generalized pooling problem where there can be flows between pools.

Misener et al. (Misener, Gounaris, and Floudas 2010) studied the pooling problem containing

complex emission constraints. D’Ambrosio et al. (D’Ambrosio, Linderoth, and Luedtke 2011)

studied valid constraints for the pooling problem with binary variables.

While the pooling problem does not account for time varying supply of streams and demand

for products, in practice, such features are important. The aforementioned features give rise

to the multiperiod blending problem, where we not only make decisions on the proportion

of streams to be blended in the pools, but also when to send streams to pools, and when to

withdraw products from pools. In the multiperiod setting, binary variables are often

introduced to enforce additional operating rules, leading to a nonconvex Mixed-Integer

Nonlinear Program (MINLP).

1.2 Solution and tightening methods

Researchers have proposed novel ways to tackle the bilinear terms in the context of pooling

through discretization (Gupte et al. 2013; S. Kolodziej, Castro, and Grossmann 2013),

piecewise linear approximation (Meyer and Floudas 2006; Wicaksono and Karimi 2008;

Misener, Thompson, and Floudas 2011; Misener and Floudas 2012), as well as identifying

parametric structure (Ceccon, Kouyialis, and Misener 2016; Baltean-Lugojan and Misener

2017). A heuristic and two global optimization algorithms based on discretization of

variables involved in bilinear terms have been presented by Kolodziej et al. (S. P. Kolodziej

et al. 2013). An inventory pinch based algorithm for gasoline blending planning and

scheduling has been proposed by Castillo et al. (Castillo, Mahalec, and Kelly 2013; Castillo

and Mahalec 2014b; 2014a). A branch-and-bound algorithm for global optimization of crude

3

oil unloading and blending operations, based on refining the solution pool obtained from

piecewise linear approximation, has been proposed by Li et al. (Li, Misener, and Floudas

2012). Decomposition-based heuristics and algorithms for the scheduling of open-pit

networks, which includes blending of different grades of minerals, have been proposed by

Blom et al. (Blom et al. 2014; Blom, Pearce, and Stuckey 2016). A model based on floating

time slots for gasoline blend scheduling has been proposed by Cerdá et al. (Cerdá, Pautasso,

and Cafaro 2016). Finally, a successive approximation method to handle intensive properties

in blending process, was proposed by Kelly et al. (Jeffrey D. Kelly, Menezes, and Grossmann

2018).

Tightening methods for nonconvex optimization problems with bilinear terms have been

studied extensively. For example, Gounaris et al. studied different piecewise linear relaxation

methods for bilinear terms and compared their computational performance (Gounaris,

Misener, and Floudas 2009), Castro proposed piecewise linear relaxations with variable

bounds tightening (Castro 2015a), Dey and Gupte analyzed mixed-integer linear

programming (MILP) techniques to address bilinear terms (Dey and Gupte 2015). Nonlinear

relaxations of such problem have also been studied. For example, Kimizuka et al. studied the

second order cone relaxation of such problem (Kimizuka, Kim, and Yamashita 2019) and

Luedtke et al. studied a strong convex nonlinear relaxation derived from extended

formulation (Luedtke et al. 2020).

Tightening methods based on strong valid inequalities and reformulations have been proven

to be effective in addressing industrial-scale chemical production scheduling instances

(Burkard and Hatzl 2005; Janak and Floudas 2008; Velez, Sundaramoorthy, and Maravelias

2013; Velez and Maravelias 2013a; 2013b; Merchan, Velez, and Maravelias 2013; Merchan,

4

Lee, and Maravelias 2016). Compared to the abundant studies focusing on formulations and

solution methods, valid inequalities for blending process have received less attention.

Papageorgiou et al. (Papageorgiou et al. 2012) studied the fixed-cost transportation problem

with product blending. The problem was formulated as a mixed-integer linear programming

(MILP) model considering one property, and facet-defining inequalities were introduced.

D’Ambrosio et al. (D’Ambrosio, Linderoth, and Luedtke 2011) studied the pooling problem

with binary variables and proposed four classes of valid inequalities derived from a mixed-

integer linear relaxation of the problem. Both works exploited product specification.

1.3 Variable bounds tightening methods

Global optimization of nonconvex optimization problem is performed using branch-and-

bound algorithms which involve solving convex relaxations of the original problem. The

tightness of the convex relaxation plays an important role in the performance of the

algorithms.

The tightness of the convex relaxation strongly depends on variable bounds. Various bounds

tightening methods have been proposed (Belotti et al. 2009; Puranik and Sahinidis 2017),

including, for example, methods based on reduced cost (Ryoo and Sahinidis 1996), which

utilizes the optimal solution to the relaxed problem. Bounds tightening techniques that do

not require such information have also been proposed. A well-known technique is Optimality

Based Bound Tightening (OBBT) which typically relies on solving linear programs (LP)

(Quesada and Grossmann 1995; Maranas and Floudas 1997; Shectman and Sahinidis 1998;

Smith and Pantelides 1999). OBBT can be computationally expensive, and methods aim to

increase its efficiency have been studied (Gleixner et al. 2017). Feasibility Based Bound

5

Tightening (FBBT), which considers a single constraint at a time and utilizes interval

arithmetic to infer variable bounds, has been employed in solving both MILP (Savelsbergh

1994; Achterberg et al. 2020) and MINLP (Achterberg 2007). FBBT has received

considerable attention in both mathematical programming and artificial intelligence

communities (Street 1989) Though computationally inexpensive, FBBT is known to be less

effective compared to OBBT in terms of the tightness of the bounds found.

Tightening methods that utilize information from multiple constraints at a time have also

been studied. For example, Achterberg et al. (Achterberg et al. 2020) studied presolve

methods for MILP that consider multiple constraints simultaneously. Specifically, for

variable bounds tightening purpose, their methods are based on special block structure in

the problem matrix. Domes and Neumaier (Domes and Neumaier 2016) proposed constraint

aggregation method for rigorous global optimization that utilizes information from local

solutions. Belotti (Belotti 2013) proposed a procedure that infers variable bounds using a

pair of constraints. Aggregating multiple constraints can lead to tighter variable bounds

compared to FBBT, while it is computationally inexpensive compared to OBBT. However,

which constraints to be aggregated and their weights require further investigation.

1.4 Thesis outline

This thesis focuses on solution methods, in particular tightening methods, for pooling and

multiperiod blending problem. In Chapter 2, we first consider the multiperiod blending

problem with minimizing cost objective and present tightening methods based on stream

properties, product demand and specifications (contents of this chapter are from our

published paper (Chen and Maravelias 2020)). In Chapter 3, we consider a variable bound

6

tightening method for multiperiod blending problem which incorporates the understanding

of the physical system (contents of this chapter are from our submitted manuscript that is

currently under revision (Chen and Maravelias 2021b)). In Chapter 4, we present tightening

methods based on nontrivial bounds on bilinear terms for the pooling problem (contents of

this chapter are from our submitted manuscript that is currently under review (Chen and

Maravelias 2021a)). In Chapter 5, we summarize the thesis. Throughout the thesis, unless

otherwise specified, we use Roman lowercase italic letters for indices, Roman uppercase

bold letters for sets, Greek lowercase letters for parameters, and Roman uppercase italics for

variables.

7

Chapter 2

Preprocessing algorithm and tightening

constraints for multiperiod blending: cost

minimization

Scheduling problems containing blending processes arise in many industries (Baker and

Lasdon 1985; Blom et al. 2014). The multiperiod blending problem considers time varying

stream availability and product demand. To some extent, multiperiod blending problem can

be viewed as the scheduling extension of the pooling problem (S. P. Kolodziej et al. 2013;

Lotero et al. 2016), or a time-indexed pooling problem (Gupte et al. 2017). In general,

multiperiod blending problem is formulated as a MINLP model, where binary variables are

used to enforce operating rules, and nonlinear constraints contain bilinear terms to model

property or composition. Several formulations for multiperiod blending problem have been

proposed, including a concentration-based model (S. P. Kolodziej et al. 2013) and source-

based models (Lotero et al. 2016; Castro 2015b).

The convex relaxation of bilinear terms using McCormick envelopes (McCormick 1976) has

been the basis of many global optimization techniques.

In this chapter we present solution methods for multiperiod blending problem focusing on

the cost minimization objective. We develop a novel preprocessing algorithm to calculate

lower bounds on stream flows. We define product dedicated flow variables to address

product specific features involved in multiperiod blending problem. The bounds on stream

flows and new product dedicated flow variables are then used to generate tightening

8

constraints which significantly improve the solution time of the MINLP models as well as

models based on linear approximations.

2.1 Problem statement

The problem we consider is defined in terms of the following sets:

𝑖 ∈ 𝐈: Inputs (Streams)

𝑗 ∈ 𝐉: Blenders

𝑘 ∈ 𝐊: Products

𝑙 ∈ 𝐋: Properties

𝑡 ∈ 𝐓: Time points: {0,1, … , |𝐓|}/time periods: {1,2, … , |𝐓|}

And can be stated as follows:

Given are:

𝛿𝑝𝑡: Amount of product 𝑘 due at time point t

𝜉𝑖𝑡: Supply for stream 𝑖 at time point t

𝜋𝑖𝑙 : Value of property 𝑙 for stream 𝑖

𝜋𝑘𝑙
U : Upper bounding specification on property 𝑙 for product 𝑘

𝜋𝑘𝑙
L : Lower bounding specification on property 𝑙 for product 𝑘

Our goal is to find a blend schedule with the lowest cost while satisfying product demand

and specifications. We assume that all product properties are the average of the properties

of the streams blended weighted by volume fraction. We also assume there is no initial

inventory in the blenders.

9

Figure 2-1. Illustrative graph showing flows for one period.

2.2 MINLP and MILP models

We define the following nonnegative continuous variables:

𝐹̃𝑖𝑗𝑡: Flow from stream 𝑖 to blender 𝑗 at time point t

𝐹𝑗,𝑗′,𝑡: Flow from blender 𝑗 to blender 𝑗′ at time point t

𝐹̅𝑗𝑘𝑡: Flow from blender 𝑗 to product 𝑘 at time point t

𝐼𝑖𝑡: Inventory of stream 𝑖 during time period t

𝐼𝑗𝑡: Inventory in blender j during time period t

𝐼𝑘̅𝑡: Inventory of product p during time period t

Eqns.(2-1) - (2-3) enforce material balances:

𝐼𝑖,𝑡+1 = 𝐼𝑖𝑡 + 𝜉𝑖𝑡 −∑ 𝐹̃𝑖𝑗𝑡
𝑗

, 𝑖, 𝑡 (2-1)

𝐼𝑗,𝑡+1 = 𝐼𝑗𝑡 +∑ 𝐹̃𝑖𝑗𝑡
𝑖

+∑ 𝐹𝑗′,𝑗,𝑡
𝑗′

−∑ 𝐹𝑗,𝑗′𝑡
𝑗′

−∑ 𝐹̅𝑗𝑘𝑡
𝑘

, 𝑗, 𝑡 (2-2)

𝐼𝑝̅,𝑡+1 = 𝐼𝑝̅,𝑡 +∑ 𝐹̅𝑗,𝑝,𝑡
𝑗

− 𝛿𝑝,𝑡, 𝑝, 𝑡
(2-3)

We also define the following binary variables:

𝑋̃𝑖𝑗𝑡: = 1 if stream 𝑖 is fed into blender j at time point t

𝑋𝑗,𝑗′,𝑡: = 1 if blender j feeds blender j’ at time point t

10

𝑋̅𝑗𝑘𝑡: = 1 if blender j sends product 𝑘 at time point t

The binary variables listed above allow us to model fixed costs, and are also used to enforce,

for example, the operating rule that blender feeding and withdrawing cannot occur

simultaneously. Eqns. (2-4) – (2-5) can be used to enforce such rule:

𝐹̃𝑖𝑗𝑡 ≤ 𝑀𝑋̃𝑖𝑗𝑡, 𝑖, 𝑗, 𝑡 (2-4)

𝑋̃𝑖𝑗𝑡 ≤ 1 − 𝑋̅𝑗𝑘𝑡, 𝑖, 𝑗, 𝑘, 𝑡 (2-5)

In the concentration-based model, we introduce a nonnegative continuous variable 𝐶𝑙𝑗𝑡 to

model value of property (concentration):

𝐶𝑙𝑗𝑡: Value of property 𝑙 of the inventory inside blender j during time period t

Eqn. (2-6) keeps track of the “amount” of property within a blender over time:

𝐼𝑗,𝑡+1𝐶𝑙𝑗,𝑡+1 = 𝐼𝑗𝑡𝐶𝑙𝑗𝑡 +∑ 𝜋𝑖𝑙𝐹̃𝑖𝑗𝑡
𝑖

+∑ 𝐶𝑙,𝑗′,𝑡𝐹𝑗′,𝑗,𝑡
𝑗′

−∑ 𝐶𝑙𝑗𝑡𝐹𝑗,𝑗′𝑡
𝑗′

−∑ 𝐶𝑙𝑗𝑡𝐹̅𝑗𝑘𝑡
𝑘

, 𝑙, 𝑗, 𝑡 (2-6)

When a product is withdrawn, we enforce the specifications using:

𝜋𝑘𝑙
L −𝑀(1 − 𝑋̅𝑗𝑘𝑡) ≤ 𝐶𝑙𝑗𝑡 ≤ 𝜋𝑘𝑙

U +𝑀(1 − 𝑋̅𝑗𝑘𝑡), 𝑙, 𝑘, 𝑗, 𝑡 (2-7)

Eqns. (2-1) - (2-7) comprise the concentration-based formulation, henceforth referred to as

MC .

In the source-based formulation the following nonnegative continous variables are defined:

𝐹𝑖,𝑗,𝑗′,𝑡
𝑆 : Flow of stream 𝑖 from blender 𝑗 to blender 𝑗′ at time point t

𝐹̅𝑖𝑗𝑘𝑡
𝑆 : Flow of stream 𝑖 from blender 𝑗 to product 𝑘 at time point t

𝐼𝑖𝑗𝑡
𝑆 : Inventory of stream 𝑖 in blender j during time period t

The above variables should satisfy:

𝐹𝑗,𝑗′,𝑡 =∑ 𝐹𝑖,𝑗,𝑗′,𝑡
S

𝑖
, 𝑗, 𝑗′, 𝑡 (2-8)

𝐹̅𝑗𝑘𝑡 =∑ 𝐹̅𝑖,𝑗,𝑝,𝑡
S

𝑖
, 𝑗, 𝑘, 𝑡 (2-9)

𝐼𝑗,𝑡 =∑ 𝐼𝑖𝑗𝑡
S

𝑖
, 𝑗, 𝑡

(2-10)

11

We also enforce the material balance for each stream in each blender:

𝐼𝑖,𝑗,𝑡+1
S = 𝐼𝑖𝑗𝑡

S + 𝐹̃𝑖𝑗𝑡 +∑ 𝐹𝑖,𝑗′,𝑗,𝑡
S

𝑗′
−∑ 𝐹𝑖,𝑗,𝑗′,𝑡

S

𝑗′
−∑ 𝐹̅𝑖𝑗𝑘𝑡

S

𝑘
, 𝑖, 𝑗, 𝑡 (2-11)

When inventory is withdrawn from a blender, all streams are withdrawn at the same ratio:

𝐹𝑗,𝑗′,𝑡 = 𝑅
𝑗,𝑗′,𝑡

J
𝐼𝑗𝑡 , 𝑗, 𝑗

′, 𝑡 (2-12)

𝐹𝑖,𝑗,𝑗′,𝑡
𝑆 = 𝑅

𝑗,𝑗′,𝑡

J
𝐼𝑖𝑗𝑡
𝑆 , 𝑖, 𝑗, 𝑗′, 𝑡 (2-13)

𝐹̅𝑗𝑘𝑡 = 𝑅𝑗𝑘𝑡
P 𝐼𝑗𝑡 , 𝑗, 𝑘, 𝑡 (2-14)

𝐹̅𝑖𝑗𝑘𝑡
𝑆 = 𝑅𝑗𝑘𝑡

P 𝐼𝑖𝑗𝑡
𝑆 , 𝑖, 𝑗, 𝑘, 𝑡 (2-15)

where 𝑅
𝑗,𝑗′,𝑡

J
∈ [0,1] and 𝑅𝑗,𝑝,𝑡

P ∈ [0,1] represent the ratio of flow over the starting inventory.

Eqn. (2-16) enforces product specifications:

𝜋𝑘𝑙
L 𝐹̅𝑗𝑘𝑡 ≤∑ 𝜋𝑖𝑙𝐹̅𝑖𝑗𝑘𝑡

S

𝑖
≤ 𝜋𝑘𝑙

U 𝐹̅𝑗𝑘𝑡, 𝑙, 𝑘, 𝑗, 𝑡 (2-16)

Eqns. (2-1) - (2-5), (2-8) - (2-16) comprise the source-based formulation, henceforth

referred to as MSB. Eqns. (2-1) - (2-16) are all based on Lotero et al. (Lotero et al. 2016),

where more details about MC , MSB, as well as other alternative MINLP models, can be found.

In this work, we consider the cost minimization objective:

min ∑ ∑ [

∑ (𝛼̃𝑖𝑗
F 𝑋̃𝑖𝑗𝑡 + 𝛼̃𝑖𝑗

V 𝐹̃𝑖𝑗𝑡)
𝑖

+∑ (𝛼𝑗,𝑗′
F 𝑋𝑗,𝑗′,𝑡 + 𝛼𝑗,𝑗′

V 𝐹𝑗,𝑗′,𝑡)
𝑗′

+∑ 𝛼̅𝑗𝑘
F 𝑋̅𝑗𝑘𝑡 + 𝛼̅𝑗𝑘

V 𝐹̅𝑗𝑘𝑡
𝑘

]
𝑡𝑗

 (2-17)

with positive fixed and variable cost coefficints.

The MINLP models can be approximated using a radix based discretization. The resulting

MILP is guaranteed to return only feasible solutions to the original MINLP. Such MILP is

referred to as ML1 in this work. A relaxation of ML1 , referred to as ML2 , is also a relaxation of

the original MINLP. More details about the ML1 and ML2 can be found in the paper by

12

Kolodziej et al. (S. P. Kolodziej et al. 2013), in which they are called MPBP’ and MPBPR,

respectively.

Figure 2-2. Illustrative graph for the feasible space of MILP models based on Kolodziej et
al.(S. P. Kolodziej, Castro, and Grossmann 2013)

2.3 Motivating example

Consider the example with two streams (S1 and S2), one product (P1), one property (Q1)

and 1 period shown in Figure 2-3. We show the major constraints in MC for the motivating

example in Table 2-1.

When we use MC to solve the motivating example we obtain an optimal solution with 𝑍∗ =

7.5, 𝐹̃S1,J1,0
∗ = 0.5, 𝐹̃S2,J1,0

∗ = 0.5. We use McCormick envelopes to relax the bilinear terms in

Eqn. (2-6). Let 𝑈1 = 𝐼J1,1𝐶Q1,J1,1 , 𝑈2 = 𝐼J1,2𝐶Q1,J1,2 , and 𝑊1 = 𝐹̅J1,P1,1𝐶Q1,J1,1 . We use the

following upper and lower variable bounds: 𝐼𝑗𝑡 ∈ [0, 2], 𝐶𝑙𝑗𝑡 ∈ [0.8, 1], and 𝐹̅𝑗𝑘𝑡 ∈ [0, 2]. The

resulting MILP model is referred to as MMc .

13

When we use MMc to solve the motivating example we obtain an optimal solution with 𝑍∗ =

5, 𝐹̃S1,J1,1
∗ = 0, 𝐹̃S2,J1,1

∗ = 1.

Figure 2-3. Motivating example with one period

Table 2-1. Major constraints in the concentration model for the motivating example

Objective and constraints in MC Description

min 𝑍 = 10𝐹̃S1,J1,0 + 10𝐹̃S1,J1,1 + 5𝐹̃S2,J1,0 + 5𝐹̃S2,J1,1 Objective

Eqn. (2-1)

Eqn. (2-2)

Eqn. (2-3)

Eqn. (2-6)

Eqn. (2-7)

s.t 𝐼J1,1 = 𝐹̃S1,J1,0 + 𝐹̃S2,J1,0 − 𝐹̅J1,P1,0

𝐼J1,2 = 𝐼J1,1 + 𝐹̃S1,J1,1 + 𝐹̃S2,J1,1 − 𝐹̅J1,P1,1

𝐼S1,1 = 1 − 𝐹̃S1,J1,0

𝐼S1,2 = 𝐼S1,1 − 𝐹̃S1,J1,1

𝐼S2,1 = 1 − 𝐹̃S2,J1,0

𝐼S2,2 = 𝐼S2,1 − 𝐹̃S2,J1,1

𝐼P̅1,1 = 𝐹̅J1,P1,0

𝐼P̅1,2 = 𝐼P̅1,1 + 𝐹̅J1,P1,2 − 1

𝐼J1,1𝐶Q1,J1,1 = 𝐹̃S1,J1,0 + 0.8𝐹̃S2,J1,0

𝐼J1,2𝐶Q1,J1,2 = 𝐼J1,1𝐶Q1,J1,1 + 𝐹̃S1,J1,1 + 0.8𝐹̃S2,J1,1 − 𝐹̅J1,P1,1𝐶Q1,J1,1

𝐶Q1,J1,1 ≥ 0.9 −𝑀(1 − 𝑋̅J1,P1,1)

14

Table 2-2. Relaxation of Eqn. (2-6) using McCormick envelopes for the motivating example

Constraints Description

𝑈1 = 𝐹̃S1,J1,0 + 0.8𝐹̃S2,J1,0

𝑈2 = 𝑈1 + 𝐹̃S1,J1,1 + 0.8𝐹̃S2,J1,1 −𝑊1

𝑈1 ≥ 0.8𝐼J1,1
𝑈1 ≥ 2𝐶Q1,J1,1 + 𝐼J1,1 − 2
𝑈1 ≤ 2𝐶Q1,J1,1 + 0.8𝐼J1,1 − 1.6
𝑈1 ≤ 𝐼J1,1

𝑈2 ≥ 0.8𝐼J1,2

𝑈2 ≥ 2𝐶Q1,J1,2 + 𝐼J1,2 − 2

𝑈2 ≤ 2𝐶Q1,J1,2 + 0.8𝐼J1,2 − 1.6

𝑈2 ≤ 𝐼J1,2

𝑊1 ≥ 0.8𝐹̅J1,P1,1
𝑊1 ≥ 2𝐶Q1,J1,1 + 𝐹̅J1,P1,1 − 2
𝑊1 ≤ 2𝐶Q1,J1,1 + 0.8𝐹̅J1,P1,1 − 1.6
𝑊1 ≤ 𝐹̅J1,P1,1

Replacing bilinear terms in Eqn. (2-6)
with reformulated variables

McCormick envelope for 𝑈1

McCormick envelope for 𝑈2

McCormick envelope for 𝑊1

We next tighten MMc using valid inequalities based on product demand and specifications.

One observation is that S1 is required to produce P1, since S1 is the only stream satisfying

the specification. To produce 1 unit of P1, we need at least 0.5 unit of S1 (since the blend

contains 0.5 unit of S1 and 0.5 unit of S2 will satisfy the specification exactly). Thus, we have:

𝐹̃S1,J1,0 + 𝐹̃S1,J1,1 ≥ 0.5 (2-18)

which, when added to MMc , yields an optimal solution with 𝑍∗ = 7.5, 𝐹̃S1,J1,1
∗ = 0.5, 𝐹̃S2,J1,1

∗ =

0.5.

Another idea is to enforce the specification for P1 on the streams fed into the blenders. If we

assume, for now, that all streams fed into blenders will be transferred into P1, we can write:

𝐹̃S1,J1,0 + 𝐹̃S1,J1,1 + 0.8(𝐹̃S2,J1,0 + 𝐹̃S2,J1,1) ≥ 0.9(𝐹̅J1,P1,0 + 𝐹̅J1,P1,1) (2-19)

which, when added to MMc , yields an optimal solution with 𝑍∗ = 6, 𝐹̃S1,J1,1
∗ = 0.1, 𝐹̃S2,J1,1

∗ = 1.

15

Both Eqn. (2-18) and Eqn. (2-19) cut off the solution obtained from MMc . The effectiveness

of those two constraints is illustrated in Figure 2-4, which shows the feasible space for 𝐹̃S1,J1,0

and 𝐹̃S2,J1,0 when 𝑋̃S1,J1,0 = 1, 𝑋̃S2,J1,0 = 1, 𝑋̃S1,J1,1 = 0, 𝑋̃S2,J1,1 = 0, 𝑋̅J1,P1,0 = 0, 𝑋̅J1,P1,1 =

1, 𝐹̅J1,P1,1 = 1.

Figure 2-4. Illustrative graph for lower bounding flow for S1 (Eqn. (2-18)) and enforcing
specification for flows (Eqn. (2-19)).

2.4 Preprocessing algorithm

We develop a preprocessing algorithm to calculate lower bounds on stream flows based on

product demand and specifications. Given a product p and its specification 𝜋𝑘𝑙
U /𝜋𝑘𝑙

L , the total

flow of streams that satisfy the specification (henceforth referred to as “good” streams)

should be positive, as discussed by Greenburg (Greenberg 1995) and Papageorgiou et al.

(Papageorgiou et al. 2012). The preprocessing algorithm systematically calculates lower

bounds on stream flows, which are then used to generate tightening constraints. We first

focus on the case in which we have only one specification.

16

2.4.1 Demand for “good” streams

Given a product 𝑘, a property 𝑙, and a lower bounding specification 𝜋𝑘𝑙
L , let 𝐒𝑘𝑙

L denote the set

of streams that satisfy such specification: 𝐒𝑘𝑙
L = {𝑖 ∈ 𝐈| 𝜋𝑖𝑙 ≥ 𝜋𝑘𝑙

L }. We define parameter 𝜋̂𝑘𝑙
L

as: 𝜋̂𝑘𝑙
L = max𝑖∉𝐒𝑘𝑙

L {𝜋𝑖𝑙}. The lower bounds on the “good” stream flows can be obtained by

considering the blend that contains those “good” streams and the stream that violates the

specification by the least margin. Such blend should satisfy the specification exactly. Let 𝜔𝑘

denote the demand for product 𝑘, 𝜔̅𝑖𝑘𝑙 denote the demand for stream 𝑖 derived from 𝜔𝑘 and

𝜋𝑘𝑙
L . We have:

∑ 𝜋𝑖𝑙𝜔̅𝑖𝑘𝑙
𝑖∈𝐒𝑘𝑙

L
+ 𝜋̂𝑘𝑙

L (𝜔𝑘 −∑ 𝜔̅𝑖𝑘𝑙
𝑖∈𝐒𝑘𝑙

L
) = 𝜋𝑘𝑙

L 𝜔𝑘, 𝑘, 𝑙 (2-20)

In general, we cannot directly propose nonzero demand for individual “good” stream.

However, in the special case of one “good” stream, by considering the binary blend of the

only “good” stream and the stream that violates the specification by the least margin, we

have:

𝜔̅𝑖𝑘𝑙 =
(𝜋𝑘𝑙

L − 𝜋̂𝑘𝑙
L)𝜔𝑘

(𝜋𝑖𝑙 − 𝜋̂𝑘𝑙
L)

, 𝑖, 𝑘, 𝑙 ∈ 𝐋𝑖𝑘
S (2-21)

where 𝐋𝑖𝑘
S denotes the set of properties for which stream 𝑖 is the only stream that satisfies

the specification for product 𝑘.

Similarly, for upper bounding specification 𝜋𝑘𝑙
U , the set for “good” streams is 𝐒𝑘𝑙

U =

{𝑖 ∈ 𝐈| 𝜋𝑖𝑙 ≤ 𝜋𝑘𝑙
U }, and 𝜋̂𝑘𝑙

U = min𝑖∉𝐒𝑘𝑙
U {𝜋𝑖𝑙}. We use the following equation, which is similar to

Eqn. (2-21), to calculate demand for the only “good” stream:

𝜔̅𝑖𝑘𝑙 =
(𝜋̂𝑘𝑙

U − 𝜋𝑘𝑙
U)𝜔𝑘

(𝜋̂𝑘𝑙
U − 𝜋𝑖𝑙)

, 𝑖, 𝑘, 𝑙 ∈ 𝐋𝑖𝑘
U (2-22)

17

We have derived demand for a “good” stream from one specification. In many multiperiod

blending instances, there are multiple specifications that we need to consider. We introduce

a procedure to update the demand obtained from one specification using other specifications.

2.4.2 Demand updating

Assume that we already have valid 𝜔̅𝑖𝑘𝑙 > 0, and let 𝜔̂𝑖𝑘 denote the demand for stream 𝑖 for

product 𝑘. If there is only one specification for product 𝑘, then it is clear that 𝜔̂𝑖𝑘 = 𝜔̅𝑖𝑘𝑙 . Now,

assume there is another property 𝑙′. From the specification for property 𝑙′, we aim to update

𝜔̂𝑖𝑘 to make it greater than 𝜔̅𝑖𝑘𝑙. In general, we can initialize 𝜔̂𝑖𝑘 using 𝜔̂𝑖𝑘 = max𝑙𝜔̅𝑖𝑘𝑙. We

will briefly go through several cases where we are able to update 𝜔̂𝑖𝑘.

2.4.2.1. Specifications for different properties

When there are multiple specifications, it is important to note that a “good” stream for one

specification may not be a “good” stream for other specifications. Also, in Eqn. (2-21), we

obtain the demand for one “good” stream by assuming a certain binary blend. However, such

blend may violate other specifications. Our preprocessing algorithm can identify the

aforementioned cases and update the previously obtained 𝜔̂𝑖𝑘 accordingly, through

algebraic equations and/or solving linear programming (LP) problems.

2.4.2.2. Demand updating via algebraic equations

We first consider an example with three streams (S1 to S3), two properties (Q1 and Q2), and

one product (P1) shown in Figure 2-5. Since 𝜋S1,Q1 > 𝜋P1,Q1
L > 𝜋S2,Q1 > 𝜋S3,Q1, S1 is the only

“good” stream for Q1and its demand can be obtained from Eqn. (2-21) by considering the

binary blend of S1 and S2: 𝜔̅S1,P1,Q1 = 0.25. Similarly, S3 is the only “good” stream for Q2,

and by considering the binary blend of S3 and S2, we calculate: 𝜔̅S3,P1,Q2 = 0.15. However,

18

since S3 is required, the binary blend of S1 and S2 violates the specification for Q2. In other

words, we have to use S3, which is a lower quality stream for Q1 compared to S2, and thus

will lead to a higher demand for S1. Such demand updating can be done by an algebraic

equation which is a modification of Eqn. (2-21). Instead of the binary blend, we now consider

the blend that contains all streams with 𝜔̂𝑖𝑘 > 0. If 𝜔̅𝑖𝑘𝑙
′ denotes the updated demand, Eqn.

(2-21) becomes:

𝜔̅𝑖𝑘𝑙
′ =

[(𝜋𝑘𝑙
L − 𝜋̂𝑘𝑙

L)𝜔𝑘 + ∑ (𝜋̂𝑘𝑙
L − 𝜋𝑖′,𝑙)𝜔̂𝑖′,𝑙𝑖′∉𝐒𝑘𝑙

L]

(𝜋𝑖𝑙 − 𝜋̂𝑘𝑙
L)

, 𝑖, 𝑘, 𝑙 (2-23)

Once we finish updating the demand for one stream, we update the demand for another

stream. We iterate until no further improvement can be achieved.

Figure 2-5. Illustrative example for demand updating via algebraic equations; pattern filled
bars indicate feasible property domains.

2.4.2.3. Demand updating via solving LP

In Figure 2-6, we show an example with three streams (S1 to S3), two properties (Q1 and

Q2), and one product (P1). Stream S1 is the only “good” stream for Q1 and its demand is

again obtained from Eqn. (2-21) by considering the binary blend of S1 and S2: 𝜔̅S1,P1,Q1 =

19

0.25. From Q2, we cannot propose nonzero demand for a single stream, since both S1 and S3

satisfy the specification.

However, based on specification for Q2 we can update demand for S1. Note that the binary

blend with 0.25 units of S1 and 0.75 units of S2, which we used to obtain the demand for S1,

violates the specification for Q2. Thus, we either increase the fraction of S1 in the binary

blend, or introduce S3 into the blend, which is a lower quality stream for Q1 compared to S2.

In both cases, we will end up with more S1.

Unlike the previous case, instead of updating the demand for S1 through an algebraic

equation, we solve the following LP:

min 𝜔̂S1,P1

s. t 𝜔̂S1,P1 + 𝜔̂S2,P1 + 𝜔̂S3,P1 ≥ 1

𝜔̂S1,P1 + 0.8𝜔̂S2,P1 + 0.75𝜔̂S3,P1 ≥ 0.85(𝜔̂S1,P1 + 𝜔̂S2,P1 + 𝜔̂S3,P1)

0.8𝜔̂S1,P1 + 0.7𝜔̂S2,P1 + 𝜔̂S3,P1 ≥ 0.75(𝜔̂S1,P1 + 𝜔̂S2,P1 + 𝜔̂S3,P1)

(LP1)

which returns an optimal objective function value of 0.269.

In general, given a product 𝑘 , we can obtain the demand for a stream 𝑖′ by solving the

following LP:

min 𝜔̂𝑖′,𝑘

s. t ∑ 𝜔̂𝑖𝑘
𝑖

≥ 𝜔𝑘

𝜋𝑘𝑙
L ∑ 𝜔̂𝑖𝑘

𝑖
≤∑ 𝜋𝑖𝑘𝜔̂𝑖𝑘

𝑖
≤ 𝜋𝑘𝑙

U ∑ 𝜔̂𝑖𝑘
𝑖

, 𝑙

(LP2)

20

Figure 2-6. Illustrative example for demand updating via solving LP.

2.4.3 Complete algorithm

Figure 2-7 shows the flow chart of the complete algorithm for the calculation of demand for

streams based on product demand and specifications. We introduce subsets 𝐋L/𝐋U for

properties that have lower/upper bounding specification. The structure of the algorithm,

assuming lower bounding specifications only, is as follows. For each product and

specification, we check if there exists exactly one stream that satisfies the specification. If

this is the case, we calculate its demand using Eqn. (2-21). After checking all specifications,

we evaluate Eqn. (2-23) to see if a higher demand is obtained. If this is the case, we update

demands by iteratively using Eqn. (2-23) until no improvements can be achieved; otherwise,

we proceed to the next step. We then estimate the value of property 𝑙 of the blend (denoted

by 𝜃𝑘𝑙), by considering all nonzero 𝜔̂𝑖𝑘 and the stream that violates 𝜋𝑘𝑙
L by the least margin.

If 𝜋𝑘𝑙
L ≤ 𝜃𝑘𝑙 ∀𝑙, the algorithm terminates; otherwise, we solve LP2 to update all nonzero 𝜔̂𝑖𝑘,

one at a time. In all instances we tested, the algorithm runs in less than 3 seconds, which is

negligible compared to the solution time of the MINLP models for the same instance.

21

Figure 2-7. Flowchart of preprocessing algorithm for each product.

We illustrate the computing sequence of the preprocessing algorithm using the example

shown in Figure 2-8 with four streams (S1 to S4), three properties (Q1 to Q3), and one

product.

22

Figure 2-8. Illustrative example for the preprocessing algorithm with one product with 𝜔 =
1 (index 𝑘 is dropped for simplicity).

2.5 Product dedicated flow

We introduce a new nonnegative continuous variable 𝐹̂𝑖𝑘 to model the flow from a stream 𝑖

dedicated to a product 𝑘. We first consider the overall flow balance:

∑ ∑ ∑ 𝐹̃𝑖𝑗𝑡
𝑡𝑗𝑖

=∑ ∑ ∑ 𝐹̅𝑗𝑘𝑡
𝑡𝑗𝑘

+∑ 𝐼𝑗
F

𝑗
 (2-24)

where 𝐼𝑗
F denotes the inventory in blender j at the end of the scheduling horizon.

One observation is that the RHS contains one term for production and another term for final

inventory. We partition the LHS into two parts similar to the RHS: flows that are dedicated

to certain products and flows that will remain in the blenders. After the partition, we write

valid constraints for the flows that are dedicated to products using demand for streams we

obtained from the preprocessing algorithm.

Let 𝐹𝑖
R denote the final inventory of stream 𝑖 in blenders. We have:

∑ ∑ 𝐹̃𝑖𝑗𝑡
𝑡𝑗

=∑ 𝐹̂𝑖𝑘
𝑘

+ 𝐹𝑖
R, 𝑖 (2-25)

We match 𝐹̂𝑖𝑘 with the production of product 𝑘.

∑ 𝐹̂𝑖𝑘
𝑖

=∑ ∑ 𝐹̅𝑗𝑘𝑡
𝑡𝑗

, 𝑘 (2-26)

23

Product dedicated flow variables introduced in Eqns. (2-25) - (2-26) can be easily defined

for different blend scheduling models.

Figure 2-9. Illustrative graph for product dedicated flows.

2.6 Valid constraints

We present three types of valid constraints based on demand for streams and product

dedicated flow variables.

2.6.1 Valid constraints with flow variables only

We first enforce demand satisfaction for each stream:

𝐹̂𝑖𝑘 ≥ 𝜔̂𝑖𝑘, 𝑖, 𝑘 (2-27)

More generally, for each specification for a product, the combined demand for “good”

streams should be nonzero. Different from the demand for each “good” stream, we enforce:

∑(𝜋̂𝑘𝑙
U − 𝜋𝑖𝑙)𝐹̂𝑖𝑘

𝑖∈𝐒𝑘𝑙
U

≥ (𝜋̂𝑘𝑙
U − 𝜋𝑘𝑙

U)𝜔𝑘 + ∑(𝜋𝑖𝑙 − 𝜋̂𝑘𝑙
U)𝜔̂𝑖𝑘

𝑖∉𝐒𝑘𝑙
U

, 𝑘, 𝑙 ∈ 𝐋𝑘
M (2-28)

∑(𝜋𝑖𝑙 − 𝜋̂𝑘𝑙
L)𝐹̂𝑖𝑘

𝑖∈𝐒𝑘𝑙
L

≥ (𝜋𝑘𝑙
L − 𝜋̂𝑘𝑙

L)𝜔𝑘 + ∑(𝜋̂𝑘𝑙
L − 𝜋𝑖𝑙)𝜔̂𝑖𝑘

𝑖∉𝐒𝑘𝑙
L

, 𝑘, 𝑙 ∈ 𝐋𝑘
M (2-29)

Eqns. (2-28) – (2-29) are written for every product, and every property with specification

satisfied by at least two streams (denoted by 𝐋𝑘
M). We enforce the combined demand

24

satisfaction for the “good” streams for such specification by considering the blend that may

contain: (1) every “good” stream for that specification, (2) streams violate that specification

with 𝜔̂𝑖𝑘 > 0, and (3) the stream violates that specification by the least margin.

Eqns. (2-27) - (2-29) employ parameter 𝜔̂𝑖𝑘 obtained from the preprocessing algorithm. If

𝜔̂𝑖𝑘 = 0, Eqn. (27) will be trivially satisfied, while Eqns. (2-28) – (2-29) may still lead to a

tighter relaxation.

When there are multiple due times for orders and backlogging is not allowed, we introduce

the parameter 𝜔̂𝑖𝑘𝑡, which is time indexed, to denote the cumulative demand for streams

until time point t. The preprocessing algorithm calculates the cumulative demand at different

time points accordingly. Variable 𝐹̂𝑖𝑘𝑡 includes a time index t to denote the cumulative

product dedicated flow until time point t, and Eqns. (2-27) - (2-29) are written at every time

point when an order is due.

2.6.2 Valid constraints with binary variables

We can also express tightening constraints using binary variables by recognizing that for

each product, “good” streams are required:

𝑋̅𝑗𝑘𝑡 ≤∑ ∑ ∑ 𝑋̃𝑖,𝑗′ ,𝑡′
𝑡′≤𝑡𝑗′𝑖∈𝐒𝒌𝒍

U
, 𝑗, 𝑘, 𝑙, 𝑡 (2-30)

𝑋̅𝑗𝑘𝑡 ≤∑ ∑ ∑ 𝑋̃𝑖,𝑗′ ,𝑡′
𝑡′≤𝑡𝑗′𝑖∈𝐒𝒌𝒍

L
, 𝑗, 𝑘, 𝑙, 𝑡 (2-31)

We can also incorporate demand for streams and binary variables 𝑋̃𝑠,𝑗,𝑡. We have:

∑ (𝜋̂𝑘𝑙
U − 𝜋𝑖𝑙)𝐹̂𝑖𝑘

𝑖∈𝐒𝐤𝐥
U\{𝒊′}

≥

(1 −∑ ∑ 𝑋̃𝑖′,𝑗,𝑡
𝑡𝑗

) [𝜋̂𝑘𝑙
U − 𝜋𝑘𝑙

U)𝜔𝑘 +∑ (𝜋𝑖𝑙 − 𝜋̂𝑘𝑙
U)𝜔̂𝑖𝑘

𝑖∉𝐒𝒌𝒍
U

] , 𝑘, 𝑙 ∈ 𝐋𝑘
M, 𝑖′ ∈ 𝐒𝒌𝒍

U

(2-32)

25

∑ (𝜋𝑖𝑙 − 𝜋̂𝑘𝑙
L)𝐹̂𝑖𝑘

𝑖∈𝐒𝐤𝐥
L \{𝒊′}

≥

(1 −∑ ∑ 𝑋̃𝑖′,𝑗,𝑡
𝑡𝑗

) [(𝜋𝑘𝑙
L − 𝜋̂𝑘𝑙

L)𝜔𝑘 +∑ (𝜋̂𝑘𝑙
L − 𝜋𝑖𝑙)𝜔̂𝑖𝑘

𝑖∉𝐒𝐤𝐥
L

] , 𝑘, 𝑙 ∈ 𝐋𝑘
M, 𝑖′ ∈ 𝐒𝒌𝒍

L

(2-33)

Eqns. (2-32) – (2-33) enforce lower bound for a subset of “good” streams when one “good”

stream, denoted as 𝑖′, has zero cumulative flow (since ∑ ∑ 𝑋̃𝑖′,𝑗,𝑡𝑡𝑗 = 0).

Similar to Eqns. (2-28) – (2-29), when there are multiple due times for orders and

backlogging is not allowed, Eqns. (2-32) - (2-33) can be written at every time point when an

order is due, with the previously mentioned modifications. We also note that Eqns. (2-30) -

(2-33) are inspired by the facet-defining inequalities proposed by Papageorgiou et al.

(Papageorgiou et al. 2012) for the fixed-charge transportation problem with product

blending, in which they are called “lifted blending facets”.

2.6.3 Specifications for product dedicated flows

Finally, we write the following constraints that enforce the specifications based on product

dedicated flow variables:

𝜋𝑘𝑙
L ∑ ∑ 𝐹̅𝑗𝑘𝑡

𝑡𝑗
≤∑ 𝜋𝑖𝑙𝐹̂𝑖𝑘

𝑖
≤ 𝜋𝑘𝑙

U ∑ ∑ 𝐹̅𝑗𝑘𝑡
𝑡𝑗

, 𝑘, 𝑙 (2-34)

Note that unlike Eqns. (2-27) - (2-29), Eqn. (2-34) is written for the entire scheduling horizon.

If stream 𝑖 has initial inventory in the blender j, then we consider it as a separate stream in

the preprocessing algorithm. The corresponding 𝑋̃𝑖𝑗𝑡 will be fixed to 1 (Eqn. (2-5) will not be

enforced for such (𝑗, 𝑡) combination), and 𝐹̃𝑖𝑗𝑡 will be fixed to the initial inventory.

In Table 2-3, we list the valid inequalities for the example shown in Figure 2-8.

26

Table 2-3. Valid constraints for the example shown in Figure 2-8 (index 𝑘 is dropped)

Constraints Description

∑ 𝐹̂S1,𝑡
𝑡

≥ 0.3225

0.2∑ 𝐹̂S1,𝑡
𝑡

+ 0.1∑ 𝐹̂S2,𝑡
𝑡

+ 0.05∑ 𝐹̂S3,𝑡
𝑡

≥ 0.1 × 1 + 0.1 × 0.2727

𝑋̅𝑗,𝑡 ≤∑ ∑ 𝑋̃S1,𝑗′,𝑡′
𝑡′≤𝑡𝑗′

, 𝑗, 𝑡

𝑋̅𝑗,𝑡 ≤∑ ∑ 𝑋̃S4,𝑗′,𝑡′
𝑡′≤𝑡𝑗′

, 𝑗, 𝑡

𝑋̅𝑗,𝑡 ≤∑ ∑ (𝑋̃S1,𝑗′,𝑡′ + 𝑋̃S2,𝑗′,𝑡′ + 𝑋̃S3,𝑗′,𝑡′)
𝑡′≤𝑡𝑗′

, 𝑗, 𝑡

0.2∑ 𝐹̂S1,𝑡
𝑡

+ 0.1∑ 𝐹̂S2,𝑡
𝑡

≥ (1 −∑ ∑ 𝑋̃S3,𝑗,𝑡
𝑡𝑗

)(0.1 × 1 + 0.1 × 0.2727)

0.1∑ 𝐹̂S2,𝑡
𝑡

+ 0.05∑ 𝐹̂S3,𝑡
𝑡

≥ (1 −∑ ∑ 𝑋̃S1,𝑗,𝑡
𝑡𝑗

)(0.1 × 1 + 0.1 × 0.2727)

0.2∑ 𝐹̂S1,𝑡
𝑡

+ 0.05∑ 𝐹̂S3,𝑡
𝑡

≥ (1 −∑ ∑ 𝑋̃S2,𝑗,𝑡
𝑡𝑗

)(0.1 × 1 + 0.1 × 0.2727)

0.1∑ 𝐹̂S1,𝑡
𝑡

+ 0.2∑ 𝐹̂S2,𝑡
𝑡

+ 0.3∑ 𝐹̂S3,𝑡
𝑡

+∑ 𝐹̂S4,𝑡
𝑡

≥ 0.4∑ ∑ 𝐹̅𝑗,𝑡
𝑡𝑗

∑ 𝐹̂S1,𝑡
𝑡

+ 0.8∑ 𝐹̂S2,𝑡
𝑡

+ 0.7∑ 𝐹̂S3,𝑡
𝑡

+ 0.75∑ 𝐹̂S4,𝑡
𝑡

≥ 0.85∑ ∑ 𝐹̅𝑗,𝑡
𝑡𝑗

∑ 𝐹̂S1,𝑡
𝑡

+ 0.9∑ 𝐹̂S2,𝑡
𝑡

+ 0.85∑ 𝐹̂S3,𝑡
𝑡

+ 0.7∑ 𝐹̂S4,𝑡
𝑡

≥ 0.8∑ ∑ 𝐹̅𝑗,𝑡
𝑡𝑗

Eqn. (2-27)

Eqn. (2-29)

Eqn. (2-31)

Eqn. (2-33)

Eqn. (2-34)

2.7 Computational results

We test our methods using 20 instances. Computational experiments are conducted on a

cluster running CentosOS Linux 7 with Intel Xeon (E5520) processors at 2.27 GHz and 16 GB

of RAM. The instances are coded in GAMS 24.7. We use 2 different MINLP solvers: BARON

16.3.4 and SCIP 3.2, and CPLEX 12.6 is used for solving the MILP models. Default options are

used for all solvers.

27

2.7.1 Problem instances

Stream properties, product specifications, and blender network configurations are taken

from published literature. Table 2-4 summarizes some key characteristics of the instances

Table 2-4. Size of tested instances

Instance |𝐒| |𝐉| |𝐏| |𝐐| |𝐓| Property source

1-5 7 2 3 7 6 Castillo and Mahalec (2014a)

6-12 9 3 4 9 6 Reddy, Karimi and Srinivasan (2004)

13-15 8 4 4 1 6 Castro and Grossmann (2014)

16-20 2 8 2 1 6 Lotero et al. (2016)

2.7.2 Case study

We consider an instance (Instance 17) with two streams, eight blenders, two products, one

property and six periods, with the corresponding parameters given in Table 2-5, and the

network configuration shown in Figure 2-10(A).

Figure 2-10. (A). Network configuration for the case study (dashed lines indicate
connectivity between streams, blenders, and products). (B). Gantt chart for an optimal
solution.

28

Table 2-5. Parameters for streams and products for the case study

 𝜉𝑖,0 𝜉𝑖,1 𝜉𝑖,2 𝛿𝒌,3 𝛿𝒌,4 𝛿𝒌,5 𝛿𝒌,6 𝜋𝑖,Q1 𝜋𝑖,Q1
U 𝛼̃𝑖,𝑗

V

S1 10 10 10 - - - - 0.06 - 1

S2 30 30 30 - - - - 0.26 - 2

P1 - - - 10 10 10 10 - 0.16 -

P2 - - - 10 10 10 10 - 1 -

Since S1 is the only stream that satisfies the specification for P1, demand for S1 is nonzero.

The preprocessing algorithm calculates the demand for S1 for 𝑡 = {3,4,5,6} as 5, 10, 15, and

20, respectively. Eqn. (2-30) yields four constraints, Eqn. (2-32) leads to 24 constraints, and

Eqn. (2-33) leads to four constraints. Model statistics for the case study are given in Table

2-6. An optimal solution is shown in Figure 2-10(B) with an objective function value of 100.

Table 2-6. Model statistics for the case study
 MC MSB

Linear constraints 5580 7562

Continous variables 1118 2490

Nonlinear constraints 48 72

Discrete variables 192 192

The proposed tightening constraints are tested using different models as shown in Table 2-7.

The CPU time for the concentration-model and source-based models can be found in Table

2-8 and Table 2-9, respectively. For the concentration-based model, with the addition of the

proposed constraints, the solvers find feasible solutions and solve the case study in less than

3 minutes for most models and combinations of added constraints. The addition of the

tightening constraints enhances the solution of the source-based model as well.

We further test our methods on MILP models ML1 and ML2 . Computational results for

selected models are given in Table 2-10. Notably, the proposed methods bring improvement

to MILP models, with the addition of some constraints leading to one order of magnitude

improvement in CPU time.

29

Table 2-7. Model description

Models Description

M𝑥 Original MINLP, 𝑥 = {C, SB}
MI
𝑥 M𝑥 + Eqns. (2-27) - (2-29)

MII
𝑥 M𝑥 + Eqns. (2-30) - (2-33)

MP
𝑥 M𝑥 + Eqns. (2-14) - (2-15), (2-34)

MI_II
𝑥 MI

𝑥 + Eqns. (2-30) - (2-33)
MI_P
𝑥 MI

𝑥 + Eqns. (2-14) - (2-15), (2-34)
MII_P
𝑥 MII

𝑥 + Eqns. (2-14) - (2-15), (2-34)
MI_II_P
𝑥 MI_II

𝑥 + Eqns. (2-14) - (2-15), (2-34)

Table 2-8. CPU time in seconds for the case study for concentration-based model

 MC MI
C MII

C MP
C MI_II

C MI_P
C MII_P

C MI_II_P
C

BARON - 39.91 4555.89 108.44 135.07 101.35 86.35 137.15

SCIP - (20%)* (20%)* 30.93 (20%)* 30.86 193.99 194.03

Note: “-” indicates no solution found after 2 hours. “*” indicates instance not solved to global
optimality, with optimality gap after 2 hours shown in brackets.

Table 2-9. CPU time in seconds for the case study for source-based model

 MSB MI
SB MII

SB MP
SB MI_II

SB MI_P
SB MII_P

SB MI_II_P
SB

BARON 572.23 482.18 674.25 534.78 583.89 249.96 627.02 382.45
Ratio (1) (0.84) (1.18) (0.93) (1.02) (0.44) (1.09) (0.67)
SCIP 23.63 6.32 6.66 30.07 6.34 30.31 8.51 5.49
Ratio (1) (0.27) (0.28) (1.27) (0.27) (1.28) (0.36) (0.23)

Note: Numbers in the brackets are the ratio of CPU time of the corresponding model over

CPU time of MSB.

Table 2-10. CPU time for the case study with different linear models

𝑥 M𝑥
C M𝑥 P

C M𝑥 II_P
C M𝑥 I_II_P

C M𝑥
SB M𝑥 P

SB M𝑥 II_P
SB M𝑥 I_II_P

SB

L1 >7200(20%) 6623.49 6584.02 1958.10 578.72 226.20 230.96 569.68

L2 246.05 37.80 38.05 10.76 54.14 29.33 29.93 303.46

2.7.3 Results for MINLP models

Computational results for all 20 instances, using BARON, are shown in Figure 2-11 using

performance profiles. The profiles for MP , MII_P and MI_II_P, three models that have the best

performance overall, are shown along with the original formulation. For the concentration-

30

based model, adding constraints on continuous variables brings significant improvement,

while for the source-based model, adding constraints associated with binary variables

improves the performance the most.

One observation is that adding the proposed constraints brings more significant

improvements to MC compared to MSB. One explanation is that MSB is a tighter formulation

compared to MC ; thus the benefits of adding the proposed constraints appears to be limited.

Table 2-11 gives the percentage of instances solved to global optimality in 2 hours.

Figure 2-11. Performance profiles for concentration-based model (A) and source-based
model (B).

Table 2-11. Percentages of instances solved to global optimality in 2 hours

𝑥 M𝑥 MI
𝑥 MII

𝑥 MP
𝑥 MI_II

𝑥 MI_P
𝑥 MII_P

𝑥 MI_II_P
𝑥

C 29.4% 29.4% 17.6% 82.3% 35.3% 82.3% 82.3% 76.5%
SB 64.7% 64.7% 58.8% 70.6% 76.5% 64.7% 88.2% 70.6%

2.7.4 Results for MILP models

The performance profiles for ML2 for the same 20 instances are presented in Figure 2-12. As

in the case of the MINLP models, the addition of constraints on continuous variables brings

significant improvement to the solution of MC
L2 , while the addition of the constraints

31

expressed using binary variables enhance the solution of MSB
L2 . It is worth noting that many

studies aim to solve the MINLP models for multiperiod blending problem by solving MILPs.

Our method is applicable to those MILPs as well.

Figure 2-12. Performance profiles for linear relaxation of the concentration-based model (A)
and source-based model (B).

2.8 Conclusion

We developed solution methods for multiperiod blending problem focusing on cost

minimization problems. We first developed a preprocessing algorithm to calculate lower

bounds on stream flows. The bounds obtained from this algorithm, along with the newly

introduce product dedicated flow variables, are then used to generate tightening constraints.

The proposed methods lead to significant improvement in the solution time of MINLP

models for multiperiod blending problem as well as models based on linear approximations

of these model.

32

Chapter 3

Variable bound tightening and valid constraints for

multiperiod blending

In this chapter we focus on variable bound tightening methods as well as valid constraints

derived from the tightened bounds for multiperiod blending problem. We assume no flows

between blenders in this chapter, and without loss of generality, we only consider upper

bounding specifications. To simplify notation, we reintroduce the following variables in the

source-based model, with new symbols:

𝐹𝑖𝑗𝑡: Flow of stream 𝑖 to blender j at time point t

𝐼𝑖𝑗𝑡: Inventory of stream 𝑖 in blender j during time period t

𝑅𝑗𝑘𝑡: Split fraction for inventory in blender j to product k at time point t

𝐹̂𝑖𝑗𝑘𝑡: Flow of stream 𝑖 from blender j to product k at time point t

We also define the following binary variable:

𝑋𝑗𝑘𝑡: = 1 when blender j feeds product k at time point t

We focus on the following constraints in the source-based model:

𝐹̂𝑖𝑗𝑘𝑡 = 𝐼𝑖𝑗𝑡𝑅𝑗𝑘𝑡 , 𝑖, 𝑗, 𝑘,t (3-1)

∑ 𝜋𝑖𝑙𝐼𝑖𝑗𝑡
𝑖

≤ 𝜋𝑘𝑙
U ∑ 𝐼𝑖𝑗𝑡

𝑖
+ 𝛾𝑗𝜋𝑘𝑙

U (1 − 𝑋𝑗𝑘𝑡), 𝑗, 𝑘, 𝑙, 𝑡 (3-2)

We introduce a reformulation of the source-based model using lifting, and a preprocessing

method to calculate tight bounds.

33

3.1 Reformulation of bilinear terms

We lift 𝐼𝑖𝑗𝑡, and partition it into nonnegative continuous variables 𝑈𝑖𝑗𝑘𝑡 and 𝑉𝑖𝑗𝑘𝑡:

𝐼𝑖𝑗𝑡 = 𝑈𝑖𝑗𝑘𝑡 + 𝑉𝑖𝑗𝑘𝑡, 𝑖, 𝑗, 𝑘, 𝑡 (3-3)

∑ 𝑈𝑖𝑗𝑘𝑡
𝑖

≤ 𝛾𝑗(1 − 𝑋𝑗𝑘𝑡), 𝑗, 𝑘, 𝑡 (3-4)

∑ 𝑉𝑖𝑗𝑘𝑡
𝑖

≤ 𝛾𝑗𝑋𝑗𝑘𝑡, 𝑗, 𝑘, 𝑡 (3-5)

where 𝑈𝑖𝑗𝑘𝑡 represents the inventory of stream 𝑖 in blender j during time period t when there

is no flow from blender j to product k (𝑋𝑗𝑘𝑡 = 0), and 𝑉𝑖𝑗𝑘𝑡 represents such inventory when

𝑋𝑗𝑘𝑡 = 1.

Eqn. (3-1) now becomes:

𝐹̂𝑖𝑗𝑘𝑡 = 𝑉𝑖𝑗𝑘𝑡𝑅𝑗𝑘𝑡, 𝑖, 𝑗, 𝑘,t (3-6)

and Eqn. (3-2) can be re-written as:

∑ 𝜋𝑖𝑙𝑉𝑖𝑗𝑘𝑡
𝑖

≤ 𝜋𝑘𝑙
U ∑ 𝑉𝑖𝑗𝑘𝑡

𝑖
, 𝑗, 𝑘, 𝑙, 𝑡 (3-7)

The reformulated model, with variables 𝑈𝑖𝑗𝑘𝑡 and 𝑉𝑖𝑗𝑘𝑡 , henceforth referred to as MUV . In

MUV, the variables involved in a bilinear term are 𝑉𝑖𝑗𝑘𝑡 and 𝑅𝑗𝑘𝑡 . We aim to tighten bounds

on 𝑉𝑖𝑗𝑘𝑡.

3.2 Preprocessing method for variable bounds tightening

A relaxation of Eqn. (3-5) is:

34

∑ 𝑉𝑖𝑗𝑘𝑡
𝑖

≤ 𝛾𝑗 , 𝑗, 𝑘, 𝑡 (3-8)

The right hand side (RHS) parameter 𝛾𝑗 can be tightened. We first rewrite Eqn. (3-7) as:

∑ (𝜋𝑖𝑙 − 𝜋𝑘𝑙
U)𝑉𝑖𝑗𝑘𝑡

𝑖
≤ 0, 𝑗, 𝑘, 𝑙, 𝑡 (3-9)

We define a parameter 𝜇𝑖𝑘𝑙 to represent the margin by which stream 𝑖 violates the

specification for property 𝑙 for product k: 𝜇𝑖𝑘𝑙 = 𝜋𝑖𝑙 − 𝜋𝑘𝑙
U (note that 𝜇𝑖𝑘𝑙 can be positive or

negative). Eqn. (3-9) can thus be written as:

∑ 𝜇𝑖𝑘𝑙𝑉𝑖𝑗𝑘𝑡
𝑖

≤ 0, 𝑗, 𝑘, 𝑙, 𝑡 (3-10)

We aim to calculate a tighter upper bound on 𝑉𝑖𝑗𝑘𝑡 using Eqn. (3-8) and (3-10). For simplicity,

we drop indices j, k, and t for now, thus 𝜇𝑖𝑘𝑙 becomes 𝜇𝑖𝑙 = 𝜋𝑖𝑙 − 𝜋𝑙
U . We consider the

following:

∑𝑉𝑖
𝑖
≤ 𝛾 (3-11)

∑𝜇𝑖𝑙𝑉𝑖
𝑖

≤ 0, 𝑙 (3-12)

We define a parameter 𝜇𝑙
∗ = min𝑖{𝜇𝑖𝑙} and a set function 𝑏(𝑙) = arg min𝑖{𝜇𝑖𝑙} that returns

the “best” stream for property 𝑙 . It is possible that, for a property 𝑙 , there are multiple

streams with 𝜇𝑖𝑙 = 𝜇𝑙
∗ (i.e., multiple “best” streams). In that case, we consider 𝑏(𝑙) being the

stream with the smallest index among all such streams. We assume 𝜇𝑙
∗ < 0 because (1) if

𝜇𝑙
∗ > 0 then 𝜇𝑖𝑙 > 0, ∀𝑖 and since 𝑉𝑖 ≥ 0, Eqn. (3-12) can be satisfied only if 𝑉𝑖 = 0, ∀𝑖; and (2)

if 𝜇𝑙
∗ = 0, then Eqn. (3-12) can be satisfied only if 𝑉𝑖 = 0, ∀𝑖: 𝜇𝑖𝑙 ≠ 0).

35

We define subset 𝐋𝑖 = {𝑙: 𝜇𝑖𝑙 > 0}, that is, the set of properties with specification violated by

stream 𝑖. Similarly, we define subset 𝐈𝑙 = {𝑖: 𝜇𝑖𝑙 > 0}, that contains streams that violate the

specification for property 𝑙.

To illustrate, we consider an illustrative example with 𝐈 = {1,2,3}, 𝐋 = {L1, L2}. Parameters

𝜋𝑖𝑙 , 𝜋𝑙
U and 𝜇𝑖𝑙 calculated from them are given in Figure 3-1.

Figure 3-1. An illustrative example for parameters

3.2.1 Bounds tightening using a pair of constraints

From Eqn. (3-11) it is clear that 𝛾 is a valid upper bound on 𝑉𝑖. To tighten such upper bound,

we combine Eqn. (3-11) with one constraint in Eqn.(3-12). For 𝑉𝑖 with positive coefficient in

at least one constraint in Eqn. (3-12) (i.e., streams that violates at least one specification),

bounds derived from such pairs of constraints will be tighter than 𝛾.

36

To calculate bounds using aforementioned pairs of constraints, we first multiply all

inequalities in Eqn. (3-12) by −
1

𝜇𝑙
∗ (recall that 𝜇𝑙

∗ < 0) to obtain:

∑ (−
𝜇𝑖𝑙
𝜇𝑙
∗)𝑉𝑖

𝑖
≤ 0, 𝑙

Next, we combine Eqn. (3-11), with a weight equal to 1, with each individual constraint above,

∑ (1−
𝜇𝑖𝑙
𝜇𝑙
∗)𝑉𝑖

𝑖
≤ 𝛾, 𝑙 (3-13)

Each constraint in Eqn. (3-13) is obtained by combing a pair of constraints: Eqn. (3-11) and

one constraint in Eqn. (3-12). Next, we derive bounds on 𝑉𝑖 from Eqn. (3-13).

After using 𝑖′ instead of 𝑖, we obtain:

∑ (1−
𝜇𝑖′𝑙
𝜇𝑙
∗)𝑉𝑖′

𝑖′
≤ 𝛾, 𝑙

For each 𝑙 ∈ 𝐋, we consider streams in the set 𝐈𝑙 , and isolate such streams, one at a time, from

the summation on the left hand side (LHS):

(1 −
𝜇𝑖𝑙
𝜇𝑙
∗)𝑉𝑖 +∑ (1 −

𝜇𝑖′𝑙
𝜇𝑙
∗)𝑉𝑖′

𝑖′≠𝑖
≤ 𝛾, 𝑙, 𝑖 ∈ 𝐈𝑙

We examine the second term on the LHS of the above equation. By the definition of 𝜇𝑙
∗ we

have 𝜇𝑖′𝑙 ≥ 𝜇𝑙
∗ . Thus, if 𝜇𝑖′𝑙 < 0 then

𝜇
𝑖′𝑙

𝜇𝑙
∗ ∈ [0,1] and therefore 1 −

𝜇
𝑖′𝑙

𝜇𝑙
∗ ≥ 0; and if 𝜇𝑖′𝑙 ≥ 0,

then −
𝜇
𝑖′𝑙

𝜇𝑙
∗ ≥ 0 and therefore 1 −

𝜇
𝑖′𝑙

𝜇𝑙
∗ > 1 > 0 . Given that 𝑉𝑖′ is nonnegative, we have

∑ (1 −
𝜇
𝑖′𝑙

𝜇𝑙
∗)𝑉𝑖′𝑖′≠𝑖 ≥ 0. Thus, the following inequality, obtained by dropping the summation

on the LHS of the above equation, is valid:

37

(1 −
𝜇𝑖𝑙
𝜇𝑙
∗)𝑉𝑖 ≤ 𝛾, 𝑖, 𝑙 ∈ 𝐋𝑖 (3-14)

and since 1 −
𝜇𝑖𝑙

𝜇𝑙
∗ > 0 ∀𝑖, 𝑙 ∈ 𝐋𝑖 we have:

𝑉𝑖 ≤ 𝛾/(1 −
𝜇𝑖𝑙
𝜇𝑙
∗), 𝑖, 𝑙 ∈ 𝐋𝑖

Or

𝑉𝑖 ≤ 𝛾𝑖𝑙 = −
𝜇𝑙
∗𝛾

𝜇𝑖𝑙 − 𝜇𝑙
∗ , 𝑖, 𝑙 ∈ 𝐋𝑖 (3-15)

Note that 𝛾𝑖𝑙 is smaller than 𝛾 and serves as an upper bound on 𝑉𝑖 derived from property 𝑙.

The physical interpretation of 𝛾𝑖𝑙 is as follows. Suppose we have to meet demand for volume

𝛾 for a product. Parameter 𝛾𝑖𝑙 represents the maximum volume of stream 𝑖 that can be used

towards volume 𝛾 based on property 𝑙 ∈ 𝐋𝑖 . In other words, 𝛾𝑖𝑙/𝛾 is the maximum fraction of

stream 𝑖 that can be used for such product. This stream-specific volume, 𝛾𝑖𝑙 , is derived by

considering the binary mixture of streams 𝑖 and 𝑏(𝑙) that satisfies the specification for

property 𝑙 exactly.

Once we calculated 𝛾𝑖𝑙 from Eqn. (3-15), the upper bound on 𝑉𝑖, denoted as 𝛾̅𝑖, is set to the

smallest 𝛾𝑖𝑙, considering all properties that stream 𝑖 violates (i.e., all 𝑙 ∈ 𝐋𝑖), 𝛾̅𝑖 = min𝑙∈𝐋𝑖{𝛾𝑖𝑙}.

For illustration purpose, we introduce a set function 𝑚(𝑖) that returns the property 𝑙 from

which 𝛾̅𝑖 is derived (i.e., 𝑚(𝑖) = argmin𝑙∈𝐋𝑖{𝛾𝑖𝑙}).

Consider the illustrative example shown in Figure 3-1 with 𝛾 = 1. Based on the calculated

parameter 𝜇𝑖𝑙 shown in Figure 3-1, we have the following constraints for Eqn. (3-11) – (3-12):

38

𝑉1 + 𝑉2 + 𝑉3 ≤ 1

−𝑉1 + 2𝑉2 + 𝑉3 ≤ 0

𝑉1 − 3𝑉2 + 2𝑉3 ≤ 0

The calculations described above lead to bounds on 𝑉𝑖 given in Table 3-1.

Table 3-1. Bounds calculated by aggregating pair of constraints
 𝑖 = 1 𝑖 = 2 𝑖 = 3

𝛾𝑖,L1 − 1/3 1/2

𝛾𝑖,L2 3/4 − 3/5
𝛾̅𝑖 3/4 1/3 1/2

Note: “-” indicates the corresponding 𝛾𝑖𝑙 is not calculated since L1 ∉ 𝐋1 and L2 ∉ 𝐋2.

3.2.2 Bounds updating

In this subsection, we discuss how we can further tighten 𝛾𝑖𝑙. Recall that bounds on 𝑉𝑖 are

derived using pairs of constraints. For each such pair, we can derive bounds tighter than 𝛾𝑖𝑙

by considering one additional constraint in Eqn. (3-12) that is not included in such pair.

We elaborate the aforementioned idea in the context of blending. Recall that 𝛾𝑖𝑙 is based on

the binary mixture of streams 𝑖 and 𝑏(𝑙) with volume 𝛾, which satisfies the specification for

property 𝑙 and contains (𝛾 − 𝛾𝑖𝑙) volume of stream 𝑏(𝑙) . It is possible that stream 𝑏(𝑙)

violates specifications for other properties, and its maximum volume in 𝛾 volume of product

is less than (𝛾 − 𝛾𝑖𝑙). For all (𝑖, 𝑙 ∈ 𝐋𝑖, 𝑏(𝑙)) combinations, we check if the following holds:

𝛾̅𝑏(𝑙) < 𝛾 − 𝛾𝑖𝑙.

If 𝛾̅𝑏(𝑙) < 𝛾 − 𝛾𝑖𝑙 , then there exists a property 𝑚[𝑏(𝑙)] (the property from which 𝛾̅𝑏(𝑙) is

derived) whose specification is violated by the binary mixture of stream 𝑖 and 𝑏(𝑙) that

satisfies specification for property 𝑙 exactly(i.e., 𝜇𝑖,𝑚[𝑏(𝑙)]𝛾𝑖𝑙 + 𝜇𝑏(𝑙),𝑚[𝑏(𝑙)](𝛾 − 𝛾𝑖𝑙) > 0). Note

39

that property 𝑚[𝑏(𝑙)] is not considered when deriving 𝛾𝑖𝑙; when taking it into account, the

binary mixture of stream 𝑖 and 𝑏(𝑙) will not be able to satisfy the specifications for property

𝑙 and property 𝑚[𝑏(𝑙)] simultaneously. In such case, we include one additional stream to the

binary mixture. Note that by including one additional stream, 𝛾𝑖𝑙 will be tightened since it is

previously obtained from the binary mixture of streams 𝑖 and 𝑏(𝑙) that satisfies specification

for property 𝑙 exactly.

Specifically, we update 𝛾𝑖𝑙 by considering the “second best” stream for property 𝑙. We define

𝜇𝑙
+ = min𝑖′≠𝑏(𝑙){𝜇𝑖′𝑙} . Let 𝑏+(𝑙) be a set function that returns the “second best”

stream: 𝑏+(𝑙) = arg min𝑖′≠𝑏(𝑙){𝜇𝑖′𝑙}, which implies 𝜇𝑙
+ = 𝜋𝑏+(𝑙),𝑙 − 𝜋𝑘𝑙

U . If there are multiple

“second best” streams, we proceed as follows: for the specific (𝑖, 𝑙 ∈ 𝐋𝑖, 𝑏(𝑙)) combination

being considered, if 𝜇𝑖𝑙 = 𝜇𝑙
+ (i.e., stream 𝑖 is one of the “second best” streams), then 𝑏+(𝑙) =

𝑖; else, 𝑏+(𝑙) is the stream with the smallest index among all such streams.

To tighten 𝛾𝑖𝑙 , we prove three propositions. In Proposition 1, we consider a special case

where 𝑏+(𝑙) = 𝑖, while in Propositions 2 and Propositions 3 we consider the more general

case where 𝑏+(𝑙) ≠ 𝑖. For Propositions 2 and Propositions 3, we consider a mixture with

volume 𝛾 that contains stream 𝑖, 𝑏(𝑙), and 𝑏+(𝑙), and satisfies the specification for property

𝑙. Note that for volume 𝛾 of such mixture, the (current) upper bound on volume of stream

𝑏(𝑙) is 𝛾̅𝑏(𝑙). Assume we have volume 𝛾𝑖𝑙 for stream 𝑖 and volume (𝛾 − 𝛾̅𝑏(𝑙) − 𝛾𝑖𝑙) for stream

𝑏+(𝑙). Then, for property 𝑙 we have:

𝜇𝑙
∗𝛾̅𝑏(𝑙) + 𝜇𝑖𝑙𝛾𝑖𝑙 + 𝜇𝑙

+(𝛾 − 𝛾̅𝑏(𝑙) − 𝛾𝑖𝑙) ≤ 0, 𝑖, 𝑙 ∈ 𝐋𝑖

which is equivalent to:

40

(𝜇𝑖𝑙 − 𝜇𝑙
+)𝛾̂𝑖𝑙 ≤ 𝜇𝑙

+(𝛾̅𝑏(𝑙) − 𝛾) − 𝜇𝑙
∗𝛾̅𝑏(𝑙), 𝑖, 𝑙 ∈ 𝐋𝑖

For Propositions 2 and Propositions 3, since 𝑏+(𝑙) ≠ 𝑖, by the definition of 𝜇𝑙
+ it follows that

𝜇𝑖𝑙 − 𝜇𝑙
+ > 0. Thus, we have:

𝛾𝑖𝑙 ≤
𝜇𝑙
+(𝛾̅𝑏(𝑙) − 𝛾) − 𝜇𝑙

∗𝛾̅𝑏(𝑙)

(𝜇𝑖𝑙 − 𝜇𝑙
+)

, 𝑖, 𝑙 ∈ 𝐋𝑖

Note that the RHS of the above equation can be nonpositive. Proposition 2 shows that in

such case zero is a valid upper bound on 𝑉𝑖. If the RHS is positive, Proposition 3 shows that

it is a valid upper bound on 𝑉𝑖.

Proposition 1 For (𝑖, 𝑙 ∈ 𝐋𝑖, 𝑏(𝑙)) with 𝛾̅𝑏(𝑙) < 𝛾 − 𝛾𝑖𝑙 and 𝑏+(𝑙) = 𝑖, if ∑ 𝜇𝑖′𝑙𝑉𝑖′𝑖′∈𝐈 ≤ 0, then

𝛾𝑖𝑙 ≤ 0.

 Proof (by contradiction).

Since 𝑏+(𝑙) = 𝑖 and 𝑙 ∈ 𝐋𝑖, it follows that the “second best” stream violates the specification

for property 𝑙, thus 𝜇𝑙
+ = 𝜇𝑖𝑙 > 0.

From Eqn. (3-15) we have 𝛾𝑖𝑙 = −
𝜇𝑙
∗𝛾

𝜇𝑙
+−𝜇𝑙

∗, which leads to (𝜇𝑙
+ − 𝜇𝑙

∗)𝛾𝑖𝑙 = −𝜇𝑙
∗𝛾. If we move all

terms to the LHS, we have 𝜇𝑙
+𝛾̂𝑖𝑙 − 𝜇𝑙

∗𝛾𝑖𝑙 + 𝜇𝑙
∗𝛾 = 0, and thus, 𝜇𝑙

+𝛾̂𝑖𝑙 + 𝜇𝑙
∗(𝛾 − 𝛾𝑖𝑙) = 0

To simplify notation, we introduce 𝜀 = 𝛾𝑖𝑙, which means that above equation can be written

as,

𝜇𝑙
+𝜀 + 𝜇𝑙

∗(𝛾 − 𝜀) = 0 (3-16)

Next, to prove the result using contradiction, we assume that 𝛾𝑖𝑙 = 𝜀 > 0.

41

Recall that 𝛾̅𝑏(𝑙) < 𝛾 − 𝛾𝑖𝑙 = 𝛾 − 𝜀, and thus if we multiply both sides of the inequality with

𝜇𝑙
∗ < 0 we obtain 𝜇𝑙

∗𝛾̅𝑏(𝑙) > 𝜇𝑙
∗(𝛾 − 𝜀), and thus, from Eqn. (3-16), we have:

𝜇𝑙
+𝜀 + 𝜇𝑙

∗𝛾̅𝑏(𝑙) > 0 (3-17)

We also have

∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′∈𝐈

= 𝜇𝑖𝑙𝑉𝑖 +∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′≠𝑖

 (3-18)

If 𝑉𝑖 = 𝛾𝑖𝑙 = 𝜀, then

∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′∈𝐈

= 𝜇𝑙
+ 𝜀 +∑ 𝜇𝑖′𝑙𝑉𝑖′

𝑖′≠𝑖
 (3-19)

Note that

∑ 𝜇𝑖′𝑙𝑉𝑖′ =
𝑖′≠𝑖

𝜇𝑙
∗𝑉𝑏(𝑙) +∑ 𝜇𝑖′𝑙𝑉𝑖′

𝑖′∉{𝑏(𝑙),𝑖}
 (3-20)

with 𝜇𝑙
∗ < 0 and 𝑉𝑏(𝑙) ≤ 𝛾̅𝑏(𝑙).

Since the “second best” stream, in this case stream 𝑖, violates the specification for property 𝑙

(i.e., 𝜇𝑖𝑙 > 0), it follows that 𝜇𝑖′𝑙 > 0, ∀𝑖′ ∉ {𝑏(𝑙), 𝑖}, while 𝜇𝑙
∗ < 0. Since 𝑉𝑖′ is nonnegative,

the RHS of Eqn. (3-20) decreases as the value of 𝑉𝑏(𝑙) increases. With 𝑉𝑏(𝑙) upper bounded by

𝛾̅𝑏(𝑙), we have:

∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′≠𝑖

≥ 𝜇𝑙
∗𝛾̅𝑏(𝑙) +∑ 𝜇𝑖′𝑙𝑉𝑖′

𝑖′∉{𝑏(𝑙),𝑖}
 (3-21)

Combing Eqn. (3-19) and (3-21) we have:

∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′∈𝐈

= 𝜇𝑙
+ 𝜀 +∑ 𝜇𝑖′𝑙𝑉𝑖′

𝑖′≠𝑖
≥ 𝜇𝑙

+𝜀 + 𝜇𝑙
∗𝛾̅𝑏(𝑙) +∑ 𝜇𝑖′𝑙𝑉𝑖′

𝑖′∉{𝑏(𝑙),𝑖}
 (3-22)

42

with ∑ 𝜇𝑖′𝑙𝑉𝑖′𝑖′∉{𝑏(𝑙),𝑖} ≥ 0 (since 𝜇𝑖′𝑙 > 0, ∀𝑖′ ∉ {𝑏(𝑙), 𝑖} and 𝑉𝑖′ is nonnegative) and 𝜇𝑙
+𝜀 +

𝜇𝑙
∗𝛾̅𝑏(𝑙) > 0 (see Eqn. (3-17)).

Thus, from Eqn. (3-22) it follows that ∑ 𝜇𝑖′𝑙𝑉𝑖′𝑖′∈𝐈 > 0, which leads to a contradiction. ∎

Before presenting Proposition 2 and Proposition 3, we introduce some prerequisites. For

(𝑖, 𝑙 ∈ 𝐋𝑖, 𝑏(𝑙)) with 𝛾̅𝑏(𝑙) < 𝛾 − 𝛾𝑖𝑙 and 𝑏+(𝑙) ≠ 𝑖 , to derive a valid upper bound on 𝑉𝑖, we

again consider volume 𝛾 for a product (i.e., ∑ 𝑉𝑖′𝑖′∈𝐈 = 𝛾), where we assume 𝑉𝑖 = 𝛾𝑖𝑙 . Such

assumptions imply (1) ∑ 𝑉𝑖′𝑖′≠𝑖 = 𝛾 − 𝛾𝑖𝑙 and (2)

∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′∈𝐈

= 𝜇𝑖𝑙𝛾𝑖𝑙 +∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′≠𝑖

 (3-23)

The LHS of Eqn. (3-23) should be nonpositive (see Eqn. (3-12)). To prove Proposition 2 and

Proposition 3 by contradiction, we are going to show that under certain conditions, the RHS

of Eqn. (3-23) is positive. Here, we investigate the RHS of Eqn. (3-23). In particular, we are

interested in the lower bound on ∑ 𝜇𝑖′𝑙𝑉𝑖′𝑖′≠𝑖 subject to ∑ 𝑉𝑖′𝑖′≠𝑖 = 𝛾 − 𝛾𝑖𝑙 and 𝑉𝑏(𝑙) ≤ 𝛾̅𝑏(𝑙). In

other words, we are interested in the solution of the following LP (LP3):

min ∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′≠𝑖

s. t.

∑ 𝑉𝑖′
𝑖′≠𝑖

≤ 𝛾 − 𝛾𝑖𝑙

−∑ 𝑉𝑖′
𝑖′≠𝑖

≤ 𝛾𝑖𝑙 − 𝛾

𝑉𝑏(𝑙) ≤ 𝛾̅𝑏(𝑙)
𝑉𝑖′ ≥ 0

The objective function value for LP3 provides a lower bound on ∑ 𝜇𝑖′𝑙𝑉𝑖′𝑖′≠𝑖 . LP3 contains

(|𝐈| − 1) variables and three inequality constraints. Here, we note that the optimal solution

to LP3 is 𝑉𝑏+(𝑙) = 𝛾 − 𝛾𝑖𝑙 − 𝛾̅𝑏(𝑙), 𝑉𝑏(𝑙) = 𝛾̅𝑏(𝑙), and all other variables being zero. When 𝜇𝑙
+ ≤

43

0, the corresponding dual variables for the three constraints are 0, 𝜇𝑙
+, and (𝜇𝑙

∗ − 𝜇𝑙
+); when

𝜇𝑙
+ > 0, the corresponding dual variables for the three constraints are −𝜇𝑙

+, 0, and (𝜇𝑙
∗ − 𝜇𝑙

+).

One can verify the optimality of such solution with strong duality. We show the optimal

tableau for LP3 in Appendix A1.1.

The optimal solution mentioned above leads to the objective function value of 𝜇𝑙
+(𝛾̂𝑖𝑙 − 𝛾) +

(𝜇𝑙
∗ − 𝜇𝑙

+)𝛾̅𝑏(𝑙). Thus, from LP3 we have ∑ 𝜇𝑖′𝑙𝑉𝑖′𝑖′≠𝑖 ≥ 𝜇𝑙
+(𝛾̂𝑖𝑙 − 𝛾) + (𝜇𝑙

∗ − 𝜇𝑙
+)𝛾̅𝑏(𝑙).

We now revisit Eqn. (3-23). From LP3, we have a lower bound on the second term of its RHS,

thus:

∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′∈𝐈

≥ 𝜇𝑖𝑙𝛾𝑖𝑙 + 𝜇𝑙
+(𝛾𝑖𝑙 − 𝛾) + (𝜇𝑙

∗ − 𝜇𝑙
+)𝛾̅𝑏(𝑙) (3-24)

if ∑ 𝑉𝑖′𝑖′≠𝑖 = 𝛾 − 𝛾𝑖𝑙 and 𝑉𝑏(𝑙) ≤ 𝛾̅𝑏(𝑙) hold.

We next present Proposition 2 and Proposition 3.

Proposition 2 For (𝑖, 𝑙 ∈ 𝐋𝑖, 𝑏(𝑙)) with 𝛾̅𝑏(𝑙) < 𝛾 − 𝛾𝑖𝑙 , 𝑏
+(𝑙) ≠ 𝑖 , ∑ 𝑉𝑖′𝑖′∈𝐈 = 𝛾 , 𝑉𝑏(𝑙) ≤ 𝛾̅𝑏(𝑙) ,

and
𝜇𝑙
+(𝛾̅𝑏(𝑙)−𝛾)−𝜇𝑙

∗𝛾̅𝑏(𝑙)

(𝜇𝑖𝑙−𝜇𝑙
+)

≤ 0, if ∑ 𝜇𝑖′𝑙𝑉𝑖′𝑖′∈𝐈 ≤ 0, then 𝛾𝑖𝑙 ≤ 0.

Proof (by contradiction)

If 𝑉𝑖 = 𝛾𝑖𝑙 , and since ∑ 𝑉𝑖′𝑖′∈𝐈 = 𝛾 , then ∑ 𝑉𝑖′𝑖′≠𝑖 = 𝛾 − 𝛾𝑖𝑙. We also have 𝑉𝑏(𝑙) ≤ 𝛾̅𝑏(𝑙) . Thus

from Eqn. (3-24) we have:

∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′

≥ 𝜇𝑖𝑙 𝛾𝑖𝑙 + 𝜇𝑙
+(𝛾̂𝑖𝑙 − 𝛾) + (𝜇𝑙

∗ − 𝜇𝑙
+)𝛾̅𝑏(𝑙)

= 𝜇𝑙
∗𝛾̅𝑏(𝑙) + 𝜇𝑙

+(𝛾 − 𝛾̅𝑏(𝑙)) + (𝜇𝑖𝑙 − 𝜇𝑙
+)𝛾̂𝑖𝑙

(3-25)

44

We examine the signs of 𝜇𝑙
∗𝛾̅𝑏(𝑙) + 𝜇𝑙

+(𝛾 − 𝛾̅𝑏(𝑙)) and (𝜇𝑖𝑙 − 𝜇𝑙
+)𝛾𝑖𝑙 on the RHS of Eqn. (3-25)

separately.

For 𝜇𝑙
∗𝛾̅𝑏(𝑙) + 𝜇𝑙

+(𝛾 − 𝛾̅𝑏(𝑙)) : with 𝑙 ∈ 𝐋𝑖 and 𝑏+(𝑙) ≠ 𝑖 , it follows that 𝜇𝑖𝑙 > 𝜇𝑙
+ , thus 𝜇𝑖𝑙 −

𝜇𝑙
+ > 0 . Since

𝜇𝑙
+(𝛾̅𝑏(𝑙)−𝛾)−𝜇𝑙

∗𝛾̅𝑏(𝑙)

(𝜇𝑖𝑙−𝜇𝑙
+)

≤ 0 and the denominator is positive, it follows that the

numerator 𝜇𝑙
+(𝛾̅𝑏(𝑙) − 𝛾) − 𝜇𝑙

∗𝛾̅𝑏(𝑙) ≤ 0, which is equivalent to 𝜇𝑙
∗𝛾̅𝑏(𝑙) + 𝜇𝑙

+(𝛾 − 𝛾̅𝑏(𝑙)) ≥ 0.

For (𝜇𝑖𝑙 − 𝜇𝑙
+)𝛾̂𝑖𝑙 : we have 𝜇𝑖𝑙 − 𝜇𝑙

+ > 0 . To prove Proposition 2 using contradiction, we

assume that 𝛾𝑖𝑙 > 0, so it follows that (𝜇𝑖𝑙 − 𝜇𝑙
+)𝛾̂𝑖𝑙 > 0.

Thus, from Eqn. (3-25) we have ∑ 𝜇𝑖′𝑙𝑉𝑖′𝑖′ > 0, which leads to a contradiction. ∎

Proposition 3 For (𝑖, 𝑙 ∈ 𝐋𝑖, 𝑏(𝑙)) with 𝛾̅𝑏(𝑙) < 𝛾 − 𝛾𝑖𝑙 , 𝑏
+(𝑙) ≠ 𝑖 , ∑ 𝑉𝑖′𝑖′∈𝐈 = 𝛾 , 𝑉𝑏(𝑙) ≤ 𝛾̅𝑏(𝑙) ,

and
𝜇𝑙
+(𝛾̅𝑏(𝑙)−𝛾)−𝜇𝑙

∗𝛾̅𝑏(𝑙)

(𝜇𝑖𝑙−𝜇𝑙
+)

> 0, if ∑ 𝜇𝑖′𝑙𝑉𝑖′𝑖′∈𝐈 ≤ 0, then 𝛾𝑖𝑙 ≤
𝜇𝑙
+(𝛾̅𝑏(𝑙)−𝛾)−𝜇𝑙

∗𝛾̅𝑏(𝑙)

(𝜇𝑖𝑙−𝜇𝑙
+)

.

Proof (by contradiction)

If 𝑉𝑖 = 𝛾𝑖𝑙 , and since ∑ 𝑉𝑖′𝑖′∈𝐈 = 𝛾 , then ∑ 𝑉𝑖′𝑖′≠𝑖 = 𝛾 − 𝛾𝑖𝑙. We also have 𝑉𝑏(𝑙) ≤ 𝛾̅𝑏(𝑙) . Thus

from Eqn. (3-24) we have:

∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′

≥ 𝜇𝑖𝑙 𝛾𝑖𝑙 + 𝜇𝑙
+(𝛾̂𝑖𝑙 − 𝛾) + (𝜇𝑙

∗ − 𝜇𝑙
+)𝛾̅𝑏(𝑙)

= 𝜇𝑙
∗𝛾̅𝑏(𝑙) + 𝜇𝑙

+(𝛾 − 𝛾̅𝑏(𝑙)) + (𝜇𝑖𝑙 − 𝜇𝑙
+)𝛾̂𝑖𝑙

(3-26)

To prove Proposition 3 using contradiction, we assume that 𝛾𝑖𝑙 =
𝜇𝑙
+(𝛾̅𝑏(𝑙)−𝛾)−𝜇𝑙

∗𝛾̅𝑏(𝑙)

(𝜇𝑖𝑙−𝜇𝑙
+)

+ 𝜀 with

𝜀 > 0. From Eqn. (3-25) we have:

∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′

≥ 𝜇𝑙
∗𝛾̅𝑏(𝑙) + 𝜇𝑙

+(𝛾 − 𝛾̅𝑏(𝑙)) + (𝜇𝑖𝑙 − 𝜇𝑙
+)(

𝜇𝑙
+(𝛾̅𝑏(𝑙) − 𝛾) − 𝜇𝑙

∗𝛾̅𝑏(𝑙)

(𝜇𝑖𝑙 − 𝜇𝑙
+)

+ 𝜀)

45

or

∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′

≥ 𝜇𝑙
∗𝛾̅𝑏(𝑙) + 𝜇𝑙

+(𝛾 − 𝛾̅𝑏(𝑙)) + 𝜇𝑙
+(𝛾̅𝑏(𝑙) − 𝛾) − 𝜇𝑙

∗𝛾̅𝑏(𝑙) + (𝜇𝑖𝑙 − 𝜇𝑙
+)𝜀

After rearranging terms, we obtain,

∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′

≥ 𝜇𝑙
∗𝛾̅𝑏(𝑙) − 𝜇𝑙

∗𝛾̅𝑏(𝑙) + 𝜇𝑙
+(𝛾 − 𝛾̅𝑏(𝑙)) + 𝜇𝑙

+(𝛾̅𝑏(𝑙) − 𝛾) + (𝜇𝑖𝑙 − 𝜇𝑙
+)𝜀

which leads to

∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′

≥ (𝜇𝑖𝑙 − 𝜇𝑙
+)𝜀

Since 𝑙 ∈ 𝐋𝑖 and 𝑏+(𝑙) ≠ 𝑖 , it follows that 𝜇𝑖𝑙 > 𝜇𝑙
+ , thus 𝜇𝑖𝑙 − 𝜇𝑙

+ > 0. With 𝜀 > 0 we have

∑ 𝜇𝑖′𝑙𝑉𝑖′𝑖′ > 0, which leads to a contradiction. ∎

From Proposition 2 and 3, it follows that for (𝑖, 𝑙 ∈ 𝐋𝑖, 𝑏(𝑙)) with 𝛾̅𝑏(𝑙) < 𝛾 − 𝛾𝑖𝑙 and 𝑏+(𝑙) ≠

𝑖, 𝛾𝑖𝑙 = max {0,
𝜇𝑙
+(𝛾̅𝑏(𝑙)−𝛾)−𝜇𝑙

∗𝛾̅𝑏(𝑙)

(𝜇𝑖𝑙−𝜇𝑙
+)

} is a valid upper bound on 𝑉𝑖.

Utilizing the above results, we update bounds as follows: for 𝑖 ∈ 𝐈 and 𝑙 ∈ 𝐋𝑖 , we first check

if 𝛾̅𝑏(𝑙) < 𝛾 − 𝛾𝑖𝑙 (𝛾𝑖𝑙 is calculated from Eqn. (3-15)); if that is the case, we have:

 𝛾𝑖𝑙 = {

0, if 𝑏+(𝑙) = 𝑖

max {0,
𝜇𝑙
+(𝛾̅𝑏(𝑙) − 𝛾) − 𝜇𝑙

∗𝛾̅𝑏(𝑙)

(𝜇𝑖𝑙 − 𝜇𝑙
+)

} , otherwise

To illustrate, we consider the same example in Figure 3-1. Note that we have 𝑏(L2) =

2, 𝑏+(L2) = 1, and from Table 3-1 we have 𝛾̅𝑏(L2) = 𝛾̅2 = 1/3, and 1/3 < 𝛾 − 𝛾3,L2 = 2/5.

Thus, we update 𝛾3,L2 . Since 𝑏+(L2) ≠ 3, and [𝜇L2
+ (𝛾̅2 − 𝛾) − 𝜇L2

∗ 𝛾̅2]/(𝜇3,L2 − 𝜇L2
+) = 1/3 >

0, we have 𝛾3,L2 = 1/3, and 𝛾̅3 is updated to 1/3.

46

The bounds calculated by our method are given in Table 3-2. For comparison, we also show

the bounds which would have been obtained by FBBT and OBBT for the same example. We

note that for this example, bounds on all 𝑉𝑖 obtained by our method is tighter than bounds

obtained from FBBT. For 𝑉1 and 𝑉2, bounds obtained by our method is as tight as bounds

obtained from OBBT.

Table 3-2. Bounds calculated by different methods

𝛾̅𝑖 𝑖 = 1 𝑖 = 2 𝑖 = 3

FBBT 1 1/2 3/4
OBBT 3/4 1/3 1/11
Our method 3/4 1/3 1/3

Note: Calculation performed by FBBT and OBBT can be found in Appendix A1.2.

3.2.3 Complete procedure for bound tightening

The complete procedure, which combines the calculations described in the previous sections,

is summarized below. The pseudocode, where we bring back indices j, k, t and thus 𝐋𝑖𝑘 =

{𝑙: 𝜇𝑖𝑘𝑙 > 0}, is as follows:

47

Complete procedure for bound tightening

For 𝑘 ∈ 𝐊 do
 For 𝑗 ∈ 𝐉 do
 For 𝑖 ∈ 𝐈 do
 𝛾̅𝑖𝑗𝑘 = 𝛾𝑗

 For 𝑙 ∈ 𝐋𝑖𝑘 do

 𝛾𝑖𝑗𝑘𝑙 = −
𝜇𝑙
∗𝛾𝑗

𝜇𝑖𝑘𝑙 − 𝜇𝑙
∗

 𝛾̅𝑖𝑗𝑘 = min{𝛾̅𝑖𝑗𝑘, 𝛾𝑖𝑗𝑘𝑙}

 End
 End
For 𝑖 ∈ 𝐈 do
 For 𝑙 ∈ 𝐋𝑖𝑘 do
 If 𝛾̅𝑏(𝑙),𝑗𝑘 < 𝛾 − 𝛾𝑖𝑗𝑘𝑙 then

 If 𝑏+(𝑙) = 𝑖 then
 𝛾𝑖𝑗𝑘𝑙 = 0

 Else

 𝛾𝑖𝑗𝑘𝑙 = max {0,
𝜇𝑘𝑙
+ (𝛾̅𝑏(𝑙),𝑗𝑘−𝛾)−𝜇𝑙

∗𝛾̅𝑏(𝑙),𝑗𝑘

(𝜇𝑖𝑙𝑘−𝜇𝑙𝑘
+)

}

 End
 𝛾̅𝑖𝑗𝑘 = min{𝛾̅𝑖𝑗𝑘, 𝛾𝑖𝑗𝑘𝑙}

 End
 End
 End
 End
End
Output: 𝛾̅𝑖𝑗𝑘

 3.3 Valid constraints

Since 𝑅𝑗𝑘𝑡 ≤∈ [0,1], (1 − 𝑅𝑗𝑘𝑡) ∈ [0,1], so multiplying 𝑉𝑖𝑗𝑘𝑡 ≤ 𝛾̅𝑖𝑗𝑘 by (1 − 𝑅𝑗𝑘𝑡) yields:

(1 − 𝑅𝑗𝑘𝑡)𝑉𝑖𝑗𝑘𝑡 ≤ (1 − 𝑅𝑗𝑘𝑡)𝛾̅𝑖𝑗𝑘 , 𝑖, 𝑗, 𝑘, 𝑡

and then:

𝑉𝑖𝑗𝑘𝑡 − 𝑉𝑖𝑗𝑘𝑡𝑅𝑗𝑘𝑡 ≤ (1 − 𝑅𝑗𝑘𝑡)𝛾̅𝑖𝑗𝑘 , 𝑖, 𝑗, 𝑘, 𝑡

Note that 𝐹̂𝑖𝑗𝑘𝑡 = 𝑉𝑖𝑗𝑘𝑡𝑅𝑗𝑘𝑡, thus:

48

𝑉𝑖𝑗𝑘𝑡 − 𝐹̂𝑖𝑗𝑘𝑡 ≤ (1 − 𝑅𝑗𝑘𝑡)𝛾̅𝑖𝑗𝑘, 𝑖, 𝑗, 𝑘, 𝑡 (3-27)

If we reintroduce indices 𝑗, 𝑘, and 𝑡, Eqn. (3-13) can be written as:

∑ (1 −
𝜇𝑖𝑘𝑙
𝜇𝑙
∗)𝑉𝑖𝑗𝑘𝑡

𝑖
≤ 𝛾𝑗 , 𝑘, 𝑙, 𝑡

Multiplying both sides with (1 − 𝑅𝑗𝑘𝑡) leads to:

∑ (1−
𝜇𝑖𝑘𝑙
𝜇𝑙
∗)𝑉𝑖𝑗𝑘𝑡(1 − 𝑅𝑗𝑘𝑡)

𝑖
≤ (1 − 𝑅𝑗𝑘𝑡)𝛾𝑗, 𝑗, 𝑘, 𝑙, 𝑡

or

∑ (1 −
𝜇𝑖𝑘𝑙
𝜇𝑙
∗)(𝑉𝑖𝑗𝑘𝑡 − 𝑉𝑖𝑗𝑘𝑡𝑅𝑗𝑘𝑡)

𝑖
≤ (1 − 𝑅𝑗𝑘𝑡)𝛾𝑗 , 𝑗, 𝑘, 𝑙, 𝑡 (3-28)

Since 𝐹̂𝑖𝑗𝑘𝑡 = 𝑉𝑖𝑗𝑘𝑡𝑅𝑗𝑘𝑡, Eqn. (3-28) can be written as follows:

∑ (1−
𝜇𝑖𝑘𝑙
𝜇𝑙
∗)(𝑉𝑖𝑗𝑘𝑡 − 𝐹̂𝑖𝑗𝑘𝑡)

𝑖
≤ (1 − 𝑅𝑗𝑘𝑡)𝛾𝑗 , 𝑗, 𝑘, 𝑙, 𝑡 (3-29)

Both Eqn. (3-27) and (3-29) are RLT constraints. Finally, we also have:

𝑉𝑖𝑗𝑘𝑡 ≤ 𝛾̅𝑖𝑗𝑘, 𝑖, 𝑗, 𝑘, 𝑡 (3-30)

Eqn. (3-30) enforces upper bounds on 𝑉𝑖𝑗𝑘𝑡 which may be tighter than the bounds obtained

through general purpose bound tightening techniques such as FBBT.

Eqn. (3-27) and (3-29) - (3-30) are added to model MUV,resulting in model MR,T
UV . We show

an illustrative graph for our tightening methods using the example introduced in Figure 3-1

in Appendix A1.2. We also introduce model MR
UV, which has the same constraints as MR,T

UV , but

without tightened bounds on 𝑉𝑖𝑗𝑘𝑡 (i.e., 𝛾̅𝑖𝑗𝑘 = 𝛾𝑗 in Eqn. (3-27), (3-29) - (3-30)). We

summarize the models we consider in Table 3-3.

49

Table 3-3. Model description

Models Description

MSB Original source-based model

MUV Source-based model reformulated
with 𝑈𝑖𝑗𝑘𝑡 and 𝑉𝑖𝑗𝑘𝑡

MR
UV MUV + Eqn. (3-27), (3-29) - (3-30)

𝛾̅𝑖𝑗𝑘 = 𝛾𝑗

MR,T
UV MUV + Eqn. (3-27), (3-29) - (3-30)

𝛾̅𝑖𝑗𝑘 obtained from our method

3.4 Computational results

We test our methods using 15 instances. Computational experiments are conducted on a

Windows 10 machine with Intel Core i7 at 2.80 GHz and 8 GB of RAM. Models are coded in

GAMS 28.2. We use BARON 19.7.13 with default options. Instances have five to eight streams,

two to three blenders, four products, and four to six properties. Stream properties and

product specifications are taken from Adhya et al. (Adhya, Tawarmalani, and Sahinidis 1999).

3.4.1 Case study

We first show the results for Instance 7 as a case study. It has eight streams, three blenders,

four products, six properties and five time periods. An optimal schedule, with an objective

function value of 3448.7, is shown in Figure 3-2 and the corresponding inventory profile in

Figure 3-3. The model and solution statistics for different models for Instance 7 are given in

Table 3-4. After 300 seconds MSB has an optimality gap of 2.43% while MR,T
UV is solved to

optimality in less than 50 seconds, indicating the effectiveness of the tighter bounds and RLT

constraints.

50

Figure 3-2. An optimal schedule for Instance 7.

Figure 3-3. Inventory profile for the schedule shown in Figure 3-2.

Table 3-4. Model and solution statistics for Instance 7

 MSB MUV MR
UV MR,T

UV

Con. Var. 1009 2161 2161 2161
Bin. Var. 72 72 72 72
Constraints 1921 2641 3649 2161
CPU Time (s) >300 109.8 >300 47.7
Opt. Gap 2.4% 0 2.4% 0

51

3.4.2 MINLP models

We give the main characteristics of all 15 instances and the CPU time in Table 3-5. The CPU

time for MR,T
UV includes run time for bound tightening method. Percentage in the parentheses

indicates optimality gap.

Overall, we observe that MR,T
UV performs the best over the tested instances, with substantial

improvement over the performance of MSB for most instances. Further, the comparison of

the CPU times between MR,T
UV and MUV suggests that the proposed methods result in

substantial computational improvement.

Table 3-5. Size of tested instances and CPU time for different MINLP models

Instance
Size CPU Time (in seconds)

|𝐈| |𝐉| |𝐊| |𝐋| |𝐓| MSB MUV MR
UV MR,T

UV

1 5 2 4 4 3 59 22 28 25
2 5 2 4 4 5 30.5 21.8 66.12 15.2
3 5 2 4 4 7 21.66 82.86 >300(0.18%) 71.66
4 5 2 4 6 7 211.4 287.46 >300(0.01%) 136.51
5 8 3 4 6 5 169.48 >300(0.01%) 282.83 137.63
6 5 2 4 6 3 35.4 55.76 118.71 34.95
7 8 3 4 6 5 >300(2.43%) 109.78 >300(2.41%) 47.72
8 5 2 4 6 3 57.55 83.43 43.6 50.72
9 8 3 4 6 3 7.89 70 27.72 11.68
10 8 3 4 6 5 17.56 95.16 231.19 74.77
11 5 2 4 4 7 41.88 8.1 9.8 9.1
12 5 2 4 4 7 38.8 7.8 20.3 8.8
13 5 2 4 4 9 69.02 15.83 14.2 14.97
14 5 2 4 4 9 56.35 21.2 13.95 21.49
15 5 2 4 4 3 104.08 19.53 26.21 22.78

We show a performance profile generated by the data above in Figure 3-4.

52

Figure 3-4. Performance profile for different MINLP models

3.4.3 MILP models

Mixed-integer linear models that approximate the MINLP models can be developed through

discretization. In addition to providing approximate solutions, MILP models can also be used

in solution methods (S. P. Kolodziej, Castro, and Grossmann 2013; S. P. Kolodziej et al. 2013;

Gupte et al. 2017). Here, we allow the split fraction, 𝑅𝑗𝑘𝑡 , to take values only from a discrete

set 𝐃R, thereby linearizing nonlinear constraints Eqn. (3-1) and/or Eqn. (3-6). Specifically,

we have 𝐃R = {0, 𝛿1, 𝛿2, … , 𝛿𝑛, 1} with 𝛿1 = 𝛿2 − 𝛿1 = ⋯ = 𝛿𝑛 − 𝛿𝑛−1 = 1 − 𝛿𝑛 = 𝛿 . The

MILP obtained from such discretization, referred to as ML1 , is guaranteed to return only

feasible solutions to the original MINLP. A relaxation of ML1 , referred to as ML2 , is obtained

by introducing additional continuous variables to allow 𝑅𝑗𝑘𝑡 to take any values in [0,1]. The

resulting bilinear terms with two continuous variables are then relaxed using linear

constraints. We test MILP models (both with and without our methods) over 20 instances

including Instances 1 – 15, and five additional instances (Instances 16 - 20) modified from

D’Ambrosio et al. (D’Ambrosio, Linderoth, and Luedtke 2011) with more streams, blenders

53

and products. The characteristics of Instances 16 – 20 are given in Table 3-6. Performance

profiles for the MILP models are shown in Figure 3-5.

Table 3-6. Size of Instance 16 - 20

Instance |𝐈| |𝐉| |𝐊| |𝐋| |𝐓|
16 15 10 10 1 1
17 15 10 10 2 1
18 15 8 10 4 1
19 15 8 10 4 1
20 15 10 10 1 1

Figure 3-5. Performance profile for two MILP models with 𝛿 = 0.01(left) and 𝛿 = 0.1(right)

Overall we observe that MR,T
UV

L1 and MR,T
UV

L2 perform best over the tested instances, indicating

the effectiveness of our method. For ML2 , we see substantial improvement from the

reformulation (MUV
L2) and bound tightening (MR,T

UV
L2) compared to the original model.

3.4.4 Decomposition method

We further test our methods on an MILP-MINLP decomposition method for multiperiod

blending proposed by (Lotero et al. 2016). We briefly describe the method below: (1). A new

binary variable 𝑌𝑗𝑡 is introduced, which equals to 1 if blender 𝑗 feeds products at time point

𝑡. (2). A relaxed problem (MILP) is solved in which Eqn. (3-6), the constraint that contains

54

bilinear term, is replaced using McCormick envelopes with tightened bounds. (3). Binary 𝑌𝑗𝑡

is fixed to the value obtained from the solution to the relaxed problem, and a reduced

problem (MINLP) containing all constraints in MR,T
UV is solved (“reduced” in the sense that

after fixing 𝑌𝑗𝑡 , some 𝑋𝑗𝑘𝑡 are also fixed, resulting in a reduced feasible space compared to

MR,T
UV). Solving one relaxed problem and one reduced problem completes one iteration, from

which an upper bound and a lower bound (if the reduced problem is feasible) are obtained.

A feasibility or optimality cut is added to the relaxed problem after solving the reduced

problem in each iteration. More details about the decomposition method can be found in

(Lotero et al. 2016).

We show computational results for 5 instances (Instance 21 – 25) modified from

(D’Ambrosio, Linderoth, and Luedtke 2011) in Table 3-7. We set the maximum number of

iterations to five, and time limits for the relaxed problem and reduced problem are set at 10

seconds and 30 seconds, respectively. We use CPLEX 12.9 to solve the relaxed problem.

Table 3-7. Size of tested instances and CPU time for MINLP and decomposition

Inst.
Size MINLP (MR,T

UV) Decomposition
|𝐈| |𝐉| |𝐊| |𝐋| |𝐓| Opt. Gap CPU Time(s) # of Iter. Opt. Gap CPU Time(s)

21 15 10 10 1 3 1.58% 300 2 0 50.8
22 15 10 10 2 3 11.79% 300 2 0 42.6
23 15 8 10 4 3 4.06% 300 5 0.1% 200
24 15 8 10 4 3 0.01% 300 1 0 16.23
25 15 10 10 1 3 0.23% 300 1 0 18.6

Model MR,T
UV does not solve Instances 21 – 25 to global optimality in 300 seconds, while the

decomposition method solves four of them to global optimality in less than 60 seconds. For

Instance 23, the decomposition method does not close the optimality gap after five iterations

at 200 seconds. However, the optimality gap is smaller compared to the MINLP model after

300 seconds. We also note that decomposition method using MR,T
UV outperforms the same

55

method based on MSB (data not shown). We observe that, with the addition of the RLT

constraints with tightened variable bounds, decomposition method using MR,T
UV typically

closes the optimality gap within fewer iterations.

3.5 Conclusion

We developed variable bound tightening methods, based on multiple constraints, for

multiperiod blending. We first proposed a reformulation of the constraints involving bilinear

terms using lifting. We introduced a preprocessing method to tighten the bounds on the lifted

variables using multiple constraints. The reformulation and the selection of constraints to be

considered for bound tightening are based on the understanding of the physical system. We

proposed valid constraints derived from Reformulation-Linearization Technique (RLT) that

utilize the bounds on the lifted variables to further tighten the formulation. Computational

results indicate the effectiveness of our methods in reducing the computational

requirements. Finally, the proposed methods can be coupled with other solution strategies

for multiperiod blending problem.

56

Chapter 4

Tightening methods based on nontrivial bounds on

bilinear terms

4.1 Introduction

To effectively solve optimization problems containing bilinear terms, one common approach

is to construct convex relaxations of bilinear terms at each node in a branch-and-bound (B&B)

algorithm. Consider the bilinear term 𝑥𝑦 with nonnegative variables 𝑥 ∈ [𝑥, 𝑥] and 𝑦 ∈ [𝑦, 𝑦]

and the set 𝐒 = {(𝑤, 𝑥, 𝑦) ∈ ℝ+
3 : 𝑤 = 𝑥𝑦, 𝑥 ≤ 𝑥 ≤ 𝑥 , 𝑦 ≤ 𝑦 ≤ 𝑦}. Using the method proposed

by McCormick (McCormick 1976) leads to four linear inequalities containing 𝑥, 𝑥, 𝑦, and 𝑦

which describe the convex hull of 𝐒.

If 𝑤 is also lower bounded by a positive parameter 𝑤 > 𝑥𝑦 , then 𝑤 is said to be a nontrivial

lower bound on 𝑥𝑦. Similarly, if 𝑤 is upper bounded by a positive parameter 𝑤 < 𝑥𝑦, then

𝑤 is said to be a nontrivial upper bound on 𝑥𝑦. For bilinear term with nontrivial bounds,

consider the set 𝐒1
+ = {(𝑤, 𝑥, 𝑦) ∈ ℝ+

3 : 𝑤 = 𝑥𝑦,𝑤 ≤ 𝑤 ≤ 𝑤,𝑥 ≤ 𝑥 ≤ 𝑥 , 𝑦 ≤ 𝑦 ≤ 𝑦} , whose

convex hull has been studied by Belotti et al. (Belotti, Miller, and Namazifar 2010; 2011).

Specifically, they showed that the convex hull of 𝐒1
+ can be described with infinitely many

linear inequalities, some of which belong to a family of inequalities called “lifted tangent

inequalities”. More recently, Anstreicher et al. studied the convex hull representations for

bilinear terms with bounds on the product, and derived closed-form representations

containing second-order cone constraints (Anstreicher, Burer, and Park 2020).

57

In this chapter, we study the following set:

𝐒1 = {(𝑤, 𝑥, 𝑦, 𝑍) ∈ ℝ+
3 × {0,1}: 𝑥𝑍 ≤ 𝑥 ≤ 𝑥, 𝑦𝑍 ≤ 𝑦 ≤ 𝑦𝑍, 𝑤𝑍 ≤ 𝑤 ≤ 𝑤𝑍,𝑤 = 𝑥𝑦}

which can be viewed as a generalization of 𝐒1
+ (𝐒1 becomes 𝐒1

+ when 𝑍 = 1). we derive a family

of valid linear constraints for 𝐒1, and further show that, in the presence of nontrivial bounds,

such constraints tighten the convex relaxation of the bilinear term obtained using the

McCormick inequalities. We note that when 𝑍 = 1 the constraints proposed in this chapter

coincide with a subset of the “lifted tangent inequalities”. However, compared to previous

work by Belotti et al., the constraints proposed here are given in a different, parameterized

form, which enables straightforward optimization-based generation for such constraints.

We apply our methods to the pooling problem that (1) contains only continuous variables,

and (2) contains binary and semi-continuous variables.

We note that semi-continuous variables are common in models for network flow problems.

Papageorgiou et al. (Papageorgiou et al. 2012) studied the transportation problem with

product blending containing fixed costs. Such problem leads to a mixed-integer program

(MILP), and facet-defining constraints have been proposed. Pooling problem with binary

variables has also been studied; for example, D’Ambrosio et al. studied tho pooling problem

with binary variables that model the on/off of the flow from stream to pool and proposed

valid constraints for such problem (D’Ambrosio, Linderoth, and Luedtke 2011). Previous

works focus on utilizing stream properties and product specifications to derive valid

constraints. Here, we propose constraints that are based on nontrivial bounds on the bilinear

terms.

58

4.2 Background

We present the problem statement and nonlinear models for the pooling problem. We

introduce nontrivial bounds on bilinear terms and the convex relaxation of bilinear terms in

the presence of such bounds.

4.2.1 Problem statement

In the standard setting, the pooling problem is defined in terms of the following:

Given are:

𝛼𝑖: Unit cost of stream 𝑖

𝛽𝑘: Price of product k

𝛾𝑗: Capacity of pool j

𝜈𝑗𝑘
L : Lower bound on positive flow between pool j and product k

𝜈𝑗𝑘
U : Capacity of the pipeline between pool j and product k

𝜋𝑖𝑙 : Value of property 𝑙 for stream 𝑖

𝜋𝑘𝑙
U : Upper bounding specification for property 𝑙 for product k

𝜔𝑘 : Maximum demand for product k

For any product, the combined flows from all pools to that product must satisfy the

corresponding specification. We aim to find flows (from streams to pools and from pools to

products) that maximize profit. We assume that there are no flows between pools, no stream

flow accumulation in pools, and all product properties are the average of the properties of

the streams blended weighted by volume fraction.

59

4.2.2 Nonlinear models for the pooling problem

Various models have been proposed for the pooling problem (Haverly 1978; Ben-Tal, Eiger,

and Gershovitz 1994; Tawarmalani and Sahinidis 2002; Audet et al. 2004; Alfaki and

Haugland 2013; Boland, Kalinowski, and Rigterink 2016). Here, we study models similar to

the one proposed by Alfaki and Haugland (Alfaki and Haugland 2013). We define the

following nonnegative continuous variables:

𝐹𝑖𝑗: Flow of stream 𝑖 to pool j

𝑅𝑗𝑘: Split fraction for total inlet flows for pool j to product k (𝑅𝑗𝑘 ∈ [0,1])

𝐹̂𝑖𝑗𝑘: Flow of stream 𝑖 from pool j to product k

We have the following constraints:

Pool capacity:

∑ 𝐹𝑖𝑗
𝑖

≤ 𝛾𝑗 , 𝑗 (4-1)

Product demand:

∑ ∑ 𝐹̂𝑖𝑗𝑘
𝑗𝑖

≤ 𝜔𝑘, 𝑘 (4-2)

Product specifications:

∑ ∑ 𝜋𝑖𝑙𝐹̂𝑖𝑗𝑘
𝑗𝑖

≤ 𝜋𝑘𝑙
U ∑ ∑ 𝐹̂𝑖𝑗𝑘

𝑗𝑖
, 𝑘, 𝑙 (4-3)

Upper bound on the flows from pools to products:

∑ 𝐹̂𝑖𝑗𝑘
𝑖

≤ 𝜈𝑗𝑘
U , 𝑗, 𝑘 (4-4)

60

Stream splitting:

𝐹̂𝑖𝑗𝑘 = 𝐹𝑖𝑗𝑅𝑗𝑘 , 𝑖, 𝑗, 𝑘 (4-5)

Note that Eqn. (4-5) is an equality constraint with a bilinear term.

For split fraction 𝑅𝑗𝑘 we have:

∑ 𝑅𝑗𝑘
𝑘

= 1, 𝑗 (4-6)

Eqns. (4-5) and (4-6) enforce that there is no flow accumulation in pools.

Reformulation–Linearization Technique (RLT) constraints can be added to strengthen the

formulation. Summing over index 𝑘 on both sides of Eqn.(4-5), we have:

∑ 𝐹̂𝑖𝑗𝑘
𝑘

= 𝐹𝑖𝑗∑ 𝑅𝑗𝑘
𝑘

, 𝑖, 𝑗

which, combined with Eqn. (4-6), leads to:

∑ 𝐹̂𝑖𝑗𝑘
𝑘

= 𝐹𝑖𝑗 , 𝑖, 𝑗 (4-7)

Another RLT constraint can be obtained by multiplying both sides of Eqn. (2-1) with 𝑅𝑗𝑘 (a

nonnegative variable):

∑ 𝐹𝑖𝑗𝑅𝑗𝑘
𝑖

≤ 𝛾𝑗𝑅𝑗𝑘 , 𝑗, 𝑘

which, combined with Eqn. (4-5), leads to:

∑ 𝐹̂𝑖𝑗𝑘
𝑖

≤ 𝛾𝑗𝑅𝑗𝑘 , 𝑗, 𝑘 (4-8)

The objective function is profit maximization:

61

max∑ ∑ (∑ 𝛽𝑘𝐹̂𝑖𝑗𝑘
𝑘

− 𝛼𝑖𝐹𝑖𝑗)
𝑗𝑖

 (4-9)

Eqns. (4-1)- (4-9) comprise a nonlinear model for the pooling problem which contains only

continuous variables and is henceforth referred to as MCON. In practice, in addition to the

pipeline capacity modeled in Eqn. (4-4), there may exist a lower bound on ∑ 𝐹̂𝑖𝑗𝑘𝑖 for each

(𝑗, 𝑘) pair when ∑ 𝐹̂𝑖𝑗𝑘𝑖 is nonzero. In other words, when the flow from pool 𝑗 to product 𝑘 is

nonzero, it must be greater or equal to a given parameter. Let 𝜈𝑗𝑘
L denote such parameter

(𝜈𝑗𝑘
L < 𝜈𝑗𝑘

U). We define the following semi-continuous variable:

𝐹̅𝑗𝑘: Flow from pool j to product k

and the following binary variable:

𝑍𝑗𝑘: = 1 if there is positive flow from pool j to product k

We have the following constraints:

𝐹̅𝑗𝑘 =∑ 𝐹̂𝑖𝑗𝑘
𝑖

, 𝑗, 𝑘 (4-10)

𝜈𝑗𝑘
L 𝑍𝑗𝑘 ≤ 𝐹̅𝑗𝑘 ≤ 𝜈𝑗𝑘

U𝑍𝑗𝑘 , 𝑗, 𝑘 (4-11)

Eqn. (4-11) ensures that when 𝑍𝑗𝑘 = 0, 𝐹̅𝑗𝑘 = 0; when 𝑍𝑗𝑘 = 1, 𝐹̅𝑗𝑘 ∈ [𝜈𝑗𝑘
L , 𝜈𝑗𝑘

U].

Note that for split fraction 𝑅𝑗𝑘 we now have:

𝜈𝑗𝑘
L

𝛾𝑗
𝑍𝑗𝑘 ≤ 𝑅𝑗𝑘 ≤ 𝑍𝑗𝑘 , 𝑗, 𝑘 (4-12)

62

When 𝑍𝑗𝑘 = 0, we have 𝐹̅𝑗𝑘 = 0, and thus 𝑅𝑗𝑘 = 0 for the corresponding split fraction. When

𝑍𝑗𝑘 = 1, then 𝐹̅𝑗𝑘 ≥ 𝜈𝑗𝑘
L so the lower bound on 𝑅𝑗𝑘 in this case should be 𝜈𝑗𝑘

L /𝛾𝑗 and by

definition 𝑅𝑗𝑘 ≤ 1. Thus, 𝑅𝑗𝑘 is now also a semi-continuous variable.

We again consider profit maximization with additional fixed cost terms:

max∑ ∑ (∑ 𝛽𝑘𝐹̂𝑖𝑗𝑘
𝑘

− 𝛼𝑖𝐹𝑖𝑗)
𝑗𝑖

−∑ ∑ 𝛼𝑗𝑘
F 𝑍𝑗𝑘

𝑘𝑗
 (4-13)

Eqns. (4-1) - (4-3), (4-5) and (4-7) - (4-13) comprise a mixed-integer nonlinear model for

the pooling problem with semi-continuous flow, henceforth referred to as MSC. We note that

MSC and MCON define the same feasible space for variables 𝐹𝑖𝑗 , 𝑅𝑗𝑘 , and 𝐹̂𝑖𝑗𝑘 when𝜈𝑗𝑘
L = 0 and

𝑍𝑗𝑘 = 1 for each (𝑗, 𝑘) pair.

For MSC we also consider the objective of minimizing cost considering penalty for unmet

demand. Let 𝜑𝑘 denote the minimum demand for product 𝑘 and define a nonnegative

continuous variable 𝑈𝑘 for unmet demand for product 𝑘, we have:

𝑈𝑘 ≥ 𝜑𝑘 −∑ 𝐹̅𝑗𝑘
𝑗

, 𝑘 (4-14)

and the objective function is:

min∑ ∑ 𝛼𝑖𝐹𝑖𝑗
𝑗𝑖

+∑ ∑ 𝛼𝑗𝑘
F 𝑍𝑗𝑘

𝑘𝑗
+∑ 𝛽𝑘

P𝑈𝑘
𝑘

 (4-15)

where 𝛽𝑘
P is the unit penalty for unmet demand for product 𝑘.

4.2.3 Nontrivial bounds on bilinear terms

Summing over index 𝑖 for the constraints in Eqn. (4-5), we obtain:

63

∑ 𝐹̂𝑖𝑗𝑘
𝑖

= 𝑅𝑗𝑘∑ 𝐹𝑖𝑗
𝑖

, 𝑗, 𝑘 (4-16)

If we define 𝐹̃𝑗 as follows:

𝐹̃𝑗 =∑ 𝐹𝑖𝑗
𝑖

, 𝑗
(4-17)

From Eqn. (4-7) and Eqn. (4-17), we can re-write Eqn. (4-16) as:

𝐹̅𝑗𝑘 = 𝐹̃𝑗𝑅𝑗𝑘 , 𝑗, 𝑘
(4-18)

Eqn.(4-18) is an equality constraint with a bilinear term; it is implied from constraints in

both MC and MS . Note that 𝐹̃𝑗 is upper bounded by 𝛾𝑗 since ∑ 𝐹𝑖𝑗𝑖 ≤ 𝛾𝑗 (see Eqn. (4-1)) and

𝑅𝑗𝑘 is upper bounded by 1. Thus, from the right-hand-side (RHS) of Eqn. (4-18) we know that

𝐹̅𝑗𝑘 is upper bounded by 𝛾𝑗 . However, 𝐹̅𝑗𝑘 is also upper bounded by 𝜈𝑗𝑘
U since ∑ 𝐹̂𝑖𝑗𝑘𝑖 ≤ 𝜈𝑗𝑘

U

(see Eqn. (4-4)), which is typically smaller than 𝛾𝑗 since, in general, the pipeline capacity

from pool to product is significantly smaller than the pool capacity. We note that above

analysis holds for both MCON and MSC.

 We next examine the lower bounds on both sides of Eqn. (4-18) for model MS when 𝑍𝑗𝑘 =

1. We note that in MS , 𝐹̃𝑗 is also semi-continuous since we have:

𝐹̃𝑗 ≥ 𝜈𝑗𝑘
L 𝑍𝑗𝑘 , 𝑗, 𝑘 (4-19)

which is implied by Eqn. (4-11) and Eqn. (4-18). In this case, from Eqn. (4-11) we have 𝐹̅𝑗𝑘 ≥

𝜄𝑗𝑘; we also have 𝐹̃𝑗 ≥ 𝜈𝑗𝑘
L , and from Eqn. (4-12) we have 𝑅𝑗𝑘 ≥ 𝜈𝑗𝑘

L /𝛾𝑗 . We note that from the

RHS of Eqn. (4-18) with bounds on 𝐹̃𝑗 and 𝑅𝑗𝑘 mentioned above, one can only derive the

64

lower bound on 𝐹̅𝑗𝑘 as (𝜈𝑗𝑘
L)2/𝛾𝑗 , which is smaller (thus less tight) than 𝜈𝑗𝑘

L since typically we

have 𝜈𝑗𝑘
L < 𝛾𝑗 .

Definition 1 Consider a bilinear term 𝑤 = 𝑥𝑦 with 𝑥 ≥ 𝑥, 𝑦 ≥ 𝑦, and 𝑤 ≥ 𝑤. 𝑤 is said to be a

nontrivial lower bound on 𝑤 if 𝑤 > 𝑥𝑦.

Definition 2 Consider a bilinear term 𝑤 = 𝑥𝑦 with 𝑥 ≤ 𝑥, 𝑦 ≤ 𝑤, and 𝑤 ≤ 𝑤. 𝑤 is said to be

a nontrivial upper bound on 𝑤 if 𝑤 < 𝑥𝑦.

From Definition 1 and Definition 2, 𝜈𝑗𝑘
U can be nontrivial upper bound on 𝐹̅𝑗𝑘 and when 𝑍𝑗𝑘 =

1, 𝜈𝑗𝑘
L can be nontrivial lower bound on 𝐹̅𝑗𝑘 in MSC.

Here we are interested in the set defined as follow:

𝐒1 = {(𝑤, 𝑥, 𝑦, 𝑍) ∈ ℝ+
3 × {0,1}: 𝑥𝑍 ≤ 𝑥 ≤ 𝑥, 𝑦𝑍 ≤ 𝑦 ≤ 𝑦𝑍, 𝑤𝑍 ≤ 𝑤 ≤ 𝑤𝑍,𝑤 = 𝑥𝑦}

with 𝑤 > 𝑥𝑦, 𝑤 < 𝑥𝑦, and 𝑤 < 𝑤. Set 𝐒1 contains structures in MSC; for a (𝑗, 𝑘) pair one can

consider 𝐹̅𝑗𝑘 as 𝑤, 𝐹̃𝑗 as 𝑥, 𝑅𝑗𝑘 as 𝑦, 𝑍𝑗𝑘 as 𝑍, and Eqns. (4-5), (4-11), (4-12), and (4-18) are

similar to constraints that define 𝐒1.

When 𝑍 = 1, 𝐒1 becomes:

𝐒1
+ = {(𝑤, 𝑥, 𝑦) ∈ ℝ+

3 : 𝑥 ≤ 𝑥 ≤ 𝑥, 𝑦 ≤ 𝑦 ≤ 𝑦,𝑤 ≤ 𝑤 ≤ 𝑤,𝑤 = 𝑥𝑦} (4-20)

with 𝑤 and 𝑤 being nontrivial lower and upper bounds on 𝑤. When 𝑤 = 0, 𝐒1
+ represents

the feasible space of a bilinear term with nontrivial upper bound, which arises in MCON. We

next discuss the implication of nontrivial bounds on the convex relaxation of the bilinear

terms.

65

4.2.4 Convex relaxation of bilinear terms

Global optimization for nonconvex problems involves solving convex relaxations of the

original problem. Using McCormick inequalities (McCormick 1976) to relax 𝑤 = 𝑥𝑦 with

bounds on 𝑥 and 𝑦 defined in 𝐒1
+ we have:

𝑤 ≥ 𝑦𝑥 + 𝑥𝑦 − 𝑥𝑦 (4-21)

𝑤 ≥ 𝑦𝑥 + 𝑥𝑦 − 𝑥𝑦
(4-22)

𝑤 ≤ 𝑦𝑥 + 𝑥𝑦 − 𝑥𝑦
(4-23)

𝑤 ≤ 𝑦𝑥 + 𝑥𝑦 − 𝑥𝑦
(4-24)

We define set 𝐒2
+, which is a relaxation of 𝐒1

+, as follows:

𝐒2
+ = {(𝑤, 𝑥, 𝑦) ∈ ℝ+

3 : 𝑥 ≤ 𝑥 ≤ 𝑥, 𝑦 ≤ 𝑦 ≤ 𝑦,𝑤 ≤ 𝑤 ≤ 𝑤, Eqns. (4-21) − (4-24)}

and set 𝐒3 = {𝑤 ∈ ℝ+: 𝑤 = 𝑤} . The feasible space defined by 𝐒1
+ ∩ 𝐒3 and 𝐒2

+ ∩ 𝐒3 are

shown in Figure 4-1. The intersection of 𝐒1
+ and 𝐒3 is the solid curve 𝑥𝑦 = 𝑤 , and the

intersection of 𝐒2
+ and 𝐒3 is the triangular region defined by the three dashed lines. Note that

while we have 𝑥 ∈ [2,3], 𝑦 ∈ [2/3,1] when 𝑥𝑦 = 𝑤, Eqns. (4-21) - (4-24)that define 𝐒2
+ are

generated with 𝑥 = 1, 𝑥 = 3, 𝑦 = 1/3, and 𝑦 = 1. In the next section, we derive a family of

valid constraints for 𝐒1 (thus valid for 𝐒1
+ as well) that tightens 𝐒2

+.

66

Figure 4-1. Illustrative graph for bilinear terms 𝑥𝑦 with 𝑥 ∈ [1,3], 𝑦 ∈ [1/3,1] and its
relaxation when the nontrivial upper bound 𝑤 = 2 is active.

4.3 Valid constraints

We first present a family of valid constraints for a bilinear term with nontrivial upper and

lower bounds, show that such constraints are tangent to the hyperbolas that represent the

bilinear term when one of such bounds is active, and discuss the connections with previous

works. We then propose methods to generate strong tightening constraints from the family.

4.3.1 A family of valid constraints

We present a family of valid constraints for 𝐒1 in Proposition 1.

Proposition 1 𝜌2𝑥 + 𝑤𝑦 + 2𝜌(𝜎1𝑤 + 𝜎2𝑍) ≥ 0 with 𝜎1 = (√𝑤𝑤 − 𝑤)/(𝑤 − 𝑤) , 𝜎2 =

𝑤(𝑤 − √𝑤𝑤)/(𝑤 − 𝑤), and parameter 𝜌 > 0 is valid for 𝐒1.

Proof.

Since 𝑍 is binary, we first consider the case where 𝑍 = 0. In this case, 𝐒1 becomes:

𝐒1
0 = {(𝑤, 𝑥, 𝑦, 𝑍) ∈ ℝ+

3 × {0}: 𝑥 ∙ 0 ≤ 𝑥 ≤ 𝑥, 𝑦 ∙ 0 ≤ 𝑦 ≤ 𝑦 ∙ 0,𝑤 ∙ 0 ≤ 𝑤 ≤ 𝑤 ∙ 0, 𝑤 = 𝑥𝑦}

which is equivalent to:

67

𝐒1
0 = {(𝑤, 𝑥, 𝑦) ∈ ℝ+

3 : 0 ≤ 𝑥 ≤ 𝑥U, 𝑦 = 0,𝑤 = 0, 0 = 𝑥 ∙ 0}

One can verify 𝜌2𝑥 + 𝑤𝑦 + 2𝜌(𝜎1𝑤 + 𝜎2𝑍) ≥ 0 is valid for 𝐒1
0 by inspection since 𝜌2𝑥 is

nonnegative and all other terms are zero.

We then consider the case where 𝑍 = 1. In this case, 𝐒1 becomes 𝐒1
+ in Eqn. (4-20):

𝐒1
+ = {(𝑤, 𝑥, 𝑦) ∈ ℝ+

3 : 𝑥 ≤ 𝑥 ≤ 𝑥, 𝑦 ≤ 𝑦 ≤ 𝑦,𝑤 ≤ 𝑤 ≤ 𝑤,𝑤 = 𝑥𝑦}

and the proposed constraint becomes:

𝜌2𝑥 + 𝑤𝑦 + 2𝜌(𝜎1𝑤 + 𝜎2) ≥ 0 (4-25)

Assume (𝑤, 𝑥, 𝑦) ∈ 𝐒1
+, we first examine the terms 𝜌2𝑥 + 𝑤𝑦. Consider the valid inequality

(𝜌√𝑥 − √𝑤𝑦)2 ≥ 0, which, after expanding the left-hand-side (LHS), we obtain

𝜌2𝑥 − 2𝜌√𝑤𝑥𝑦 + 𝑤𝑦 ≥ 0

and thus

𝜌2𝑥 + 𝑤𝑦 ≥ 2𝜌√𝑤𝑥𝑦 (4-26)

Since (𝑤, 𝑥, 𝑦) ∈ 𝐒1
+, we have 𝑤 = 𝑥𝑦. Thus, Eqn. (4-26) can be re-written as

𝜌2𝑥 + 𝑤𝑦 ≥ 2𝜌√𝑤𝑤 (4-27)

With Eqn. (4-27), we know that the LHS of Eqn. (4-25) is lower bounded by the following:

𝜌2𝑥 + 𝑤𝑦 + 2𝜌(𝜎1𝑤 + 𝜎2) ≥ 2𝜌√𝑤𝑤 + 2𝜌(𝜎1𝑤 + 𝜎2)

Re-write the RHS of the above equation in a compact form we have:

𝜌2𝑥 + 𝑤𝑦 + 2𝜌(𝜎1𝑤 + 𝜎2) ≥ 2𝜌(√𝑤𝑤 + 𝜎1𝑤 + 𝜎2) (4-28)

68

We next show that the RHS of Eqn. (4-28) is nonnegative by showing √𝑤𝑤 + 𝜎1𝑤 + 𝜎2 ≥ 0

(recall that we have 𝜌 > 0). We first examine the zeros of the following quadratic function

w.r.t √𝑤:

𝜎1(√𝑤)
2 +√𝑤𝑤 + 𝜎2 = √𝑤𝑤 + 𝜎1𝑤 + 𝜎2 = 0 (4-29)

We note that √𝑤 is one zero for such function, since

√𝑤𝑤 + 𝜎1𝑤 + 𝜎2 = √𝑤𝑤 +
𝑤(√𝑤𝑤−𝑤)

𝑤−𝑤
+
𝑤(𝑤−√𝑤𝑤)

𝑤−𝑤
=

√𝑤𝑤(𝑤−𝑤)+√𝑤𝑤(𝑤−𝑤)+𝑤𝑤−𝑤𝑤

𝑤−𝑤
= 0

and √𝑤 is the other zero for such function, since

√𝑤𝑤 + 𝜎1𝑤 + 𝜎2 = 𝑤 +
𝑤(√𝑤𝑤 −𝑤)

𝑤 − 𝑤
+
𝑤(𝑤 − √𝑤𝑤)

𝑤 − 𝑤
=
𝑤(𝑤 − 𝑤) + 𝑤(𝑤 − 𝑤)

𝑤 − 𝑤
= 0

We further note that the coefficient of the quadratic term, 𝜎1, in Eqn. (4-29), is negative since

𝑤 < 𝑤 (see Proposition 1 for the definition of 𝜎1). Thus, we have

√𝑤𝑤 + 𝜎1𝑤 + 𝜎2 ≥ 0 (4-30)

for √𝑤 ≤ √𝑤 ≤ √𝑤, which is equivalent to 𝑤 ≤ 𝑤 ≤ 𝑤. Combining Eqn. (4-28) and (4-30),

we have:

𝜌2𝑥 + 𝑤𝑦 + 2𝜌(𝜎1𝑤 + 𝜎2) ≥ 2𝜌(√𝑤𝑤 + 𝜎1𝑤 + 𝜎2) ≥ 0 (4-31)

 is valid for (𝑤, 𝑥, 𝑦) ∈ 𝐒1
+.

Combining both cases for 𝑍 = 0 and 𝑍 = 1, we have

𝜌2𝑥 + 𝑤𝑦 + 2𝜌(𝜎1𝑤 + 𝜎2𝑍) ≥ 0 (4-32)

is valid for 𝐒1. ∎

69

The family of constraints in Eqn. (4-32) can lead to some strong inequalities, particularly

when 𝑤 = 𝑤 or 𝑤 = 𝑤 (i.e., when one of the nontrivial bounds is active). We show an

illustrative graph in Figure 4-2 for bilinear terms 𝑤 = 𝑥𝑦 when one of its nontrivial bounds

𝑤 = 2 or 𝑤 = 1 is active. Blue curve represents 𝑥𝑦 = 2 and black curve represents 𝑥𝑦 = 1.

Dashed blue and black lines represent the intersection of Eqn. (4-25) and 𝑤 = 2 and 𝑤 = 1,

respectively, with 𝜌 = 1. Dotted blue and black lines represent the intersection of Eqn. (4-25)

and 𝑤 = 2 and 𝑤 = 1, respectively, with 𝜌 = 2/3. Coordinates for points of tangency are

shown in parentheses.

Figure 4-2. Illustrative graph for bilinear terms 𝑤 = 𝑥𝑦 with 𝑥 ∈ [1,3], 𝑦 ∈ [1/3,1] when
one of its nontrivial bounds 𝑤 = 2 or 𝑤 = 1 is active.

Remark 1 When 𝑤 = 𝑤, Eqn. (4-32) becomes 𝜌2𝑥 + 𝑤𝑦 − 2𝜌𝑤 ≥ 0. When 𝜌 > 0, one can

easily verify that for the branch of the 𝑥𝑦 = 𝑤 hyperbola with both 𝑥 and 𝑦 positive, line

𝜌2𝑥 + 𝑤𝑦 − 2𝜌𝑤 = 0 is tangent to such hyperbola at point (𝑤/𝜌, 𝜌) (the slope for the

tangent line at such point is (−𝜌2/𝑤)).

Remark 2 When 𝑤 = 𝑤, Eqn. (4-32) becomes 𝜌2𝑥 + 𝑤𝑦 − 2𝜌√ 𝑤𝑤 ≥ 0. When 𝜌 > 0, one

can easily verify that for the branch of the 𝑥𝑦 = 𝑤 hyperbola with both 𝑥 and 𝑦 positive, line

𝜌2𝑥 + 𝑤𝑦 − 2𝜌√ 𝑤𝑤 = 0 is tangent to such hyperbola at point (√ 𝑤𝑤/𝜌, 𝜌√ 𝑤/𝑤).

70

Remark 3 As will be shown later, for the pooling problem studied here, we can identify

bounds on variables involved in 𝐒1
+ as follows:

𝐒1
+ = {(𝑤, 𝑥, 𝑦) ∈ ℝ+

3 : 𝑤 ≤ 𝑥 ≤ 𝑤, 𝑤/𝑤 ≤ 𝑦 ≤ 1,𝑤 ≤ 𝑤 ≤ 𝑤,𝑤 = 𝑥𝑦}

with 𝛾 > 𝑤 > 𝑤. Thus, when 𝑤 = 𝑤 we have 𝑥 ∈ [𝑤, 𝛾], 𝑦 ∈ [𝑤/𝛾, 1]; when 𝑤 = 𝑤 we have

𝑥 ∈ [𝑤, 𝛾], 𝑦 ∈ [𝑤/𝛾, 1]. If we have a 𝜌 with the corresponding 𝜌2𝑥 + 𝑤𝑦 − 2𝜌𝑤 = 0 being

tangent to 𝑥𝑦 = 𝑤 at point (𝑤/𝜌, 𝜌) ∈ [𝑤, 𝛾] × [𝑤/𝛾, 1], then the line 𝜌2𝑥 + 𝑤𝑦 − 2𝜌√𝑤𝑤 =

0 is tangent to 𝑥𝑦 = 𝑤 at (√𝑤𝑤/𝜌, 𝜌√𝑤/𝑤) ∈ [𝑤, 𝛾] × [𝑤/𝛾, 1] since √𝑤/𝑤 < 1.

Remark 4 By setting 𝑤 = 0 and 𝑍 = 1, from Proposition 1 we have

𝜌2𝑥 + 𝑤𝑦 − 2𝜌𝑤 ≥ 0 (4-33)

which is valid for

𝐒1
C = {(𝑤, 𝑥, 𝑦) ∈ ℝ+

3 : 𝑥 ≤ 𝑥U, 𝑦 ≤ 𝑦U, 𝑤 ≤ 𝑤,𝑤 = 𝑥𝑦} (4-34)

4.3.2 Generation of strong valid constraints

Eqn. (4-32) contains infinitely many constraints. We propose methods to generate strong

tightening constraints. Specifically, given a point (𝑤∗, 𝑥∗, 𝑦∗, 𝑍∗) ∉ 𝐒1 obtained from solving

an optimization problem over a relaxation of 𝐒1 , we determine the value of 𝜌 to obtain a

constraint that cuts off such a point.

4.3.2.1 Generation based on constraint violation maximization

We consider the following optimization problem:

min𝜌 𝜌
2𝑥∗ + 𝑤𝑦∗ + 2𝜌(𝜎1𝑤

∗ + 𝜎2𝑍
∗) (4-35)

71

which has a closed form solution 𝜌 = −(𝜎1𝑤
∗ + 𝜎2𝑍

∗)/𝑥∗ if 𝑥∗ > 0. Such 𝜌 may lead to a

constraint in Eqn. (4-32) that is violated by (𝑤∗, 𝑥∗, 𝑦∗, 𝑍∗), and the violation, measured by

the value of 𝜌2𝑥∗ + 𝑤𝑦∗ + 2𝜌(𝜎1𝑤
∗ + 𝜎2𝑍

∗) , is the greatest. We note that the optimal

objective function value to the optimization problem (4-35) can be nonnegative. If that is the

case, Eqn. (4-32) will not be able to cut off (𝑤∗, 𝑥∗, 𝑦∗, 𝑍∗). To address this issue, we first check

the sign of [4(𝜎1𝑤
∗ + 𝜎2𝑍

∗)2 − 4𝑥∗𝑤𝑦∗]; if positive, the optimal objective function value to

the above optimization problem is guaranteed be negative, and we proceed to generate a

constraint (otherwise, no constraint will be generated).

4.3.2.2 Generation based on solving the minimum distance problem

The minimum distance problem for constraint generation has been studied (Stubbs and

Mehrotra 1999; Sawaya and Grossmann 2005). Here, we focus on the case where

(𝑤∗, 𝑥∗, 𝑦∗, 𝑍∗) ∈ 𝐒3 = {𝑤 ∈ ℝ+: 𝑤 = 𝑤}, that is, the nontrivial upper bound is active, 𝑤∗ =

𝑤 (in this case 𝑍∗ = 1). Of particular interest is the point (𝑤∗, 𝑥∗, 𝑦∗, 𝑍∗) ∈ 𝐒3 with 𝑥∗𝑦∗ < 𝑤.

Note that such a point is not in 𝐒1 ∩ 𝐒3. To find a constraint that cuts off (𝑤∗, 𝑥∗, 𝑦∗, 𝑍∗), we

first find a point (𝑥, 𝑦) on the curve 𝑥𝑦 = 𝑤 that has the minimum distance to

(𝑤∗, 𝑥∗, 𝑦∗, 𝑍∗) by considering the following optimization problem:

min𝑥,𝑦 {
1

𝑥 − 𝑥
|𝑥 − 𝑥∗| +

1

𝑦 − 𝑦
|𝑦 − 𝑦∗|: 𝑥𝑦 = 𝜈, 𝑥 ∈ [𝑥, 𝑥], 𝑦 ∈ [𝑥, 𝑦]}

which can be viewed as minimizing the weighted 1-norm distance between (𝑥∗, 𝑦∗) and

(𝑥, 𝑦). Note that points on the curve 𝑥𝑦 = 𝑤 can be represented using (𝑤/𝜌, 𝜌) with 𝜌 being

a variable; furthermore, consider bounds on 𝑥 and 𝑦 when 𝑥𝑦 = 𝑤, we have 𝑦 ∈ [𝑤/𝑥, 𝑤],

thus 𝜌 ∈ [𝑤/𝑥, 𝑦] and the above optimization problem can be re-written as:

72

min𝜌{
1

𝑥 − 𝑥
|
𝑤

𝜌
− 𝑥∗| +

1

𝑦 − 𝑦
|𝜌 − 𝑦∗|: (𝑤/𝑥) ≤ 𝜌 ≤ 𝑦} (4-36)

We claim that the solution to the above problem is the following (see proof in Appendix A2.1):

(1) If 𝑦∗ ≤ √𝑤(𝑦 − 𝑦)/(𝑥 − 𝑥) ≤ 𝑤/𝑥∗ , then 𝜌 = √𝑤(𝑦 − 𝑦)/(𝑥 − 𝑥).

(2) If √𝑤(𝑦 − 𝑦)/(𝑥 − 𝑥) < 𝑦∗, then 𝜌 = 𝑦∗.

(3) If √𝑤(𝑦 − 𝑦)/(𝑥 − 𝑥) > 𝑤/𝑥∗, then 𝜌 = 𝑤/𝑥∗.

After obtaining 𝜌, we have the point (𝑤/𝜌, 𝜌) on the curve 𝑥𝑦 = 𝑤 that has the minimum

distance to (𝑤∗, 𝑥∗, 𝑦∗, 𝑍∗). We then generate Eqn. (4-32) with such 𝜌. Recall that when the

nontrivial upper bound 𝑤 is active, Eqn. (4-32) is tangent to the curve 𝑥𝑦 = 𝑤 at point

(𝑤/𝜌, 𝜌).

4.4 Solution methods

In this section we present different methods for generating the proposed constraints for

model with only continuous variables, MCON , and model with semi-continuous variables,

MSC.

4.4.1 Methods for model with only continuous variables

For model MCON, we consider the following constraint obtained from summing over index

𝑖 ∈ 𝐈∗ ⊆ 𝐈 for the constraints in Eqn. (4-5):

∑ 𝐹̂𝑖𝑗𝑘
𝑖∈𝐈∗

= 𝑅𝑗𝑘∑ 𝐹𝑖𝑗
𝑖∈𝐈∗

, 𝑗, 𝑘 (4-37)

73

We note that ∑ 𝐹̂𝑖𝑗𝑘𝑖∈𝐈∗ ≤ 𝜈𝑗𝑘
U and ∑ 𝐹𝑖𝑗𝑖∈𝐈∗ ≤ 𝛾𝑗 , thus from Remark 4 we have the following

valid constraint for MCON:

𝜌2∑ 𝐹𝑖𝑗
𝑖∈𝐈∗

+ 𝜈𝑗𝑘
U𝑅𝑗𝑘 − 2𝜌∑ 𝐹̂𝑖𝑗𝑘

𝑖∈𝐈∗
≥ 0 (4-38)

We next present two constraint generation methods for MCON that determine the value of 𝜌

and the selection of set 𝐈∗ for Eqn. (4-38).

4.4.1.1 Generation at the root node

Eqn. (4-38) can be generated at the root node in multiple rounds. At each round, we solve a

linear relaxation of MCON , and generate constraints based on the solution to the relaxed

problem. We then resolve the relaxed problem with the generated constraints and perform

another round of constraint generation.

Let 𝑚 denote the rounds of constraint generation. Model M𝑚
CON−L contains all constraints in

MCON, except that the nonlinear constraint Eqn. (4-5) is replaced by:

𝐹̂𝑖𝑗𝑘 ≥ 𝛾𝑗𝑅𝑗𝑘 + 𝐹𝑖𝑗 − 𝛾𝑗, 𝑖, 𝑗, 𝑘 (4-39)

𝐹̂𝑖𝑗𝑘 ≤ 𝛾𝑗𝑅𝑗𝑘, 𝑖, 𝑗, 𝑘 (4-40)

𝐹̂𝑖𝑗𝑘 ≤ 𝐹𝑖𝑗 , 𝑖, 𝑗, 𝑘 (4-41)

M𝑚
CON−L also contains the following constraint:

𝜌𝑗𝑘𝑚′
2 ∑ 𝐹𝑖𝑗

𝑖∈𝐈
𝑗𝑘𝑚′
∗

+ 𝜈𝑗𝑘
U𝑅𝑗𝑘 − 2𝜌𝑗𝑘𝑚′∑ 𝐹̂𝑖𝑗𝑘

𝑖∈𝐈
𝑗𝑘𝑚′
∗

≥ 0, (𝑗, 𝑘,𝑚′) ∈ 𝐂𝑚 (4-42)

where 𝐂𝑚 contains (𝑗, 𝑘,𝑚′) combinations that lead to Eqn. (4-42) in all previous rounds,

and the set 𝐈𝑗𝑘𝑚
∗ is defined as follows: At each round, we solve M𝑚

CON−L and, for each (𝑗, 𝑘) pair,

74

define set 𝐈𝑗𝑘𝑚
∗ = {𝑖: 𝐹̂𝑖𝑗𝑘

∗ > 0}. We check the sign of [4 (∑ 𝐹̂𝑖𝑗𝑘
∗

𝑖∈𝐈𝑗𝑘𝑚
∗)

2

− 4𝜈𝑗𝑘
U𝑅𝑗𝑘

∗ ∑ 𝐹𝑖𝑗
∗

𝑖∈𝐈𝑗𝑘𝑚
∗]; if

positive, that means there exist a parameter 𝜌 that leads to a constraint in Eqn. (4-42)

violated by the current solution to M𝑚
CON−L. We then calculate 𝜌 = ∑ 𝐹̂𝑖𝑗𝑘

∗
𝑖∈𝐈𝑗𝑘𝑚

∗ /∑ 𝐹𝑖𝑗
∗

𝑖∈𝐈𝑗𝑘𝑚
∗

(such 𝜌 will lead to a constraint that is violated by the current solution to M𝑚
CON−L by the

greatest margin). We also update set 𝐂𝑚+1, which contains index for Eqn. (4-42). We then

solve M𝑚+1
CON−L, which contains Eqn. (4-42) that are generated in previous rounds. We repeat

until no new constraints are generated or we reach the maximum number of constraint

generation rounds (𝜎U). The pseudocode of the aforementioned method is given in

Algorithm 1.

Algorithm 1. Constraint generation at root node

Inputs: 𝑐 = True,𝑚 = 0, 𝜎U, 𝐈𝑗𝑘𝑚
∗ = ∅, and 𝐂𝑚 = ∅

While 𝑐 = True AND 𝑚 < 𝜎U do
 𝑐 = False
 Solve M𝑚

CON−L.
 Read solution 𝐹̂𝑖𝑗𝑘

∗ , 𝑅𝑗𝑘
∗ , and 𝐹𝑖𝑗

∗

 𝐈𝑗𝑘𝑚
∗ = {𝑖: 𝐹̂𝑖𝑗𝑘

∗ > 0}

 𝐂𝑚+1 = 𝐂𝑚
 For 𝑗 ∈ 𝐉 do
 For 𝑘 ∈ 𝐊 do

 If 4 (∑ 𝐹̂𝑖𝑗𝑘
∗

𝑖∈𝐈𝑗𝑘𝑚
∗)

2
− 4𝜈𝑗𝑘

U𝑅𝑗𝑘
∗ ∑ 𝐹𝑖𝑗

∗
𝑖∈𝐈𝑗𝑘𝑚

∗ > 0 then

 𝜌𝑗𝑘𝑚 = ∑ 𝐹̂𝑖𝑗𝑘
∗

𝑖∈𝐈𝑗𝑘𝑚
∗ /∑ 𝐹𝑖𝑗

∗
𝑖∈𝐈𝑗𝑘𝑚

∗

 𝐂𝑚+1 = 𝐂𝑚+1 ∪ {(𝑗, 𝑘,𝑚)}
 𝑐 = True
 End
 End
 End
 𝑚 = 𝑚 + 1
End
Outputs: 𝜌𝑗𝑘𝑚, 𝐈𝑗𝑘𝑚

∗ , and 𝐂𝑚+1

75

We discuss an example to illustrate the procedure of generating the aforementioned

constraint and its effectiveness. We have 𝐈 = {I1, I2}, 𝐉 = {J1}, 𝐊 = {K1, K2}, 𝐋 = {L1}, 𝛾J1 =

3, and the parameters given in Table 4-1

Table 4-1. Parameters for the illustrative example

 𝛼𝑖 𝛽𝑘 𝜈J1,𝑘
U 𝜋𝑖,L1 𝜋𝑘,L1

U 𝜔𝑘

I1 2 − − 0.5 − −
I2 1 − − 1 − −
K1 − 10 2 − 0.75 3
K2 − 5 1 − 1 3

Solving the illustrative example with nonlinear model MCON leads to a solution with optimal

objective function value of 20.5. Solving the illustrative example with M0
CON−L leads to a

solution that has an objective function value of 21. The optimal solution to M0
CON−L is shown

in Figure 4-3 (where we drop index 𝑗 for simplicity).

Figure 4-3. The optimal solution to the illustrative example from solving the first
relaxation

We examine the optimal solution for flow to product K2. We have 𝐈K2,0
∗ = {I2}. Since

4(𝐹̂I2,K2
∗)

2
− 4𝜈K2

U 𝑅K2
∗ (𝐹I2

∗) = 4 − 8/3 > 0 , we calculate 𝜌K2,0 = 𝐹̂I2,K2
∗ /𝐹I2

∗ = 1/2 , and

generate the following constraint:

76

(1/4)𝐹I2 + 𝑅K2 − 𝐹̂I2,K2 ≥ 0 (4-43)

In the next round, we solve M1
C−L again after adding Eqn. (4-43). The optimal objective

function value now becomes 20.78, which is closer to the objective function value obtained

from solving the nonlinear model MCON (which is 20.5). We show the feasible space for 𝐹I2

and 𝑅K2 intersects with the plane 𝐹̂I2,K2 = 1 for this example, together with the constraint

added, in Figure 4-4 where solid curve represents 𝐹I2𝑅K2 = 𝐹̂I2,K2 in MCON intersects with

𝐹̂I2,K2 = 1; dashed lines represent the intersection of Eqn. (4-39) - (4-41) in M𝑚
CON−L with

𝐹̂I2,K2 = 1 ; point A represents (𝐹I2
∗ , 𝑅K2

∗) obtained from solving M0
CON−L ; dot-dashed line

represents Eqn. (4-43) intersects with 𝐹̂I2,K2 = 1.

Figure 4-4. Tightening constraint for the illustrative example.

4.4.1.2 Generation using a branch-and-cut framework

Let 𝑛 ∈ 𝐍 = {0,1, … } denote nodes in the B&B tree with 𝑛 = 0 being the root node. At each

node, we solve M𝑛
C−L which contains all constraints in MCON , except that the nonlinear

constraint Eqn. (4-5) is replaced by:

77

𝐹̂𝑖𝑗𝑘 ≥ 𝐹𝑖𝑗𝑛
L 𝑅𝑗𝑘 + 𝑅𝑗𝑘𝑛

L 𝐹𝑖𝑗 − 𝐹𝑖𝑗𝑛
L 𝑅𝑗𝑘𝑛

L (4-44)

𝐹̂𝑖𝑗𝑘 ≥ 𝐹𝑖𝑗𝑛
U 𝑅𝑗𝑘 + 𝑅𝑗𝑘𝑛

U 𝐹𝑖𝑗 − 𝐹𝑖𝑗𝑛
U 𝑅𝑗𝑘𝑛

U
(4-45)

𝐹̂𝑖𝑗𝑘 ≤ 𝐹𝑖𝑗𝑛
U 𝑅𝑗𝑘 + 𝑅𝑗𝑘𝑛

L 𝐹𝑖𝑗 − 𝐹𝑖𝑗𝑛
U 𝑅𝑗𝑘𝑛

L
(4-46)

𝐹̂𝑖𝑗𝑘 ≤ 𝐹𝑖𝑗𝑛
L 𝑅𝑗𝑘 + 𝑅𝑗𝑘𝑛

U 𝐹𝑖𝑗 − 𝐹𝑖𝑗𝑛
L 𝑅𝑗𝑘𝑛

U
(4-47)

where 𝐹𝑖𝑗𝑛
L /𝐹𝑖𝑗𝑛

U and 𝑅𝑗𝑘𝑛
L /𝑅𝑗𝑘𝑛

U are lower/upper bound on 𝐹𝑖𝑗 and 𝑅𝑗𝑘 for node 𝑛 ,

respectively. For the root node, we have 𝐹𝑖𝑗,0
L = 0, ∀𝑖, 𝑗, 𝐹𝑖𝑗,0

U = 𝛾𝑗 , ∀𝑖, 𝑗 , 𝑅𝑗𝑘,0
L = 0 ∀𝑗, 𝑘,

and 𝑅𝑗𝑘,0
U = 1, ∀𝑗, 𝑘. The values of 𝐹𝑖𝑗𝑛

L /𝐹𝑖𝑗𝑛
U and 𝑅𝑗𝑘𝑛

L /𝑅𝑗𝑘𝑛
U will be updated when new nodes

are generated.

In addition, M𝑛
CON−L also contains the following constraint:

𝜌𝑗𝑘𝑛′
2 ∑ 𝐹𝑖𝑗

𝑖∈𝐈
𝑗𝑘𝑛′
∗

+ 𝜈𝑗𝑘
U𝑅𝑗𝑘 − 2𝜌𝑗𝑘𝑛′∑ 𝐹̂𝑖𝑗𝑘

𝑖∈𝐈
𝑗𝑘𝑛′
∗

≥ 0, (𝑗, 𝑘, 𝑛′) ∈ 𝐂̂𝑛 (4-48)

where 𝐂̂𝑛 contains (𝑗, 𝑘, 𝑛′) combinations that lead to Eqn. (4-48) in all previous nodes, and

subsets 𝐈𝑗𝑘𝑛
∗ is defined as follows: At each node, we solve M𝑛

CON−L and, for each (𝑗, 𝑘) pair,

define 𝐈𝑗𝑘𝑛
∗ = {𝑖: 𝐹̂𝑖𝑗𝑘

∗ > 0}.

We generate Eqn. (4-48) using Algorithm 2, with the optimal solution to M𝑛
CON−L used as

inputs. In Algorithm 2 we check if the nonlinear constraints in MCON are satisfied; if not, we

aim to generate constraints that cut off the current optimal solution to M𝑛
CON−L . For

constraint generation, for each (𝑗, 𝑘) pair we define the set 𝐈𝑗𝑘𝑛
∗ and check the sign of

[4 (∑ 𝐹̂𝑖𝑗𝑘
∗

𝑖∈𝐈𝑗𝑘𝑛
∗)

2

− 4𝜈𝑗𝑘
U𝑅𝑗𝑘

∗ ∑ 𝐹𝑖𝑗
∗

𝑖∈𝐈𝑗𝑘𝑛
∗]; if positive, that means there exist a parameter 𝜌 that

78

leads to a constraint in Eqn. (4-48) violated by the current solution to M𝑛
CON−L , and we

calculate parameter 𝜌𝑗𝑘𝑛 = ∑ 𝐹̂𝑖𝑗𝑘
∗

𝑖∈𝐈𝑗𝑘𝑛
∗ /∑ 𝐹𝑖𝑗

∗
𝑖∈𝐈𝑗𝑘𝑛

∗ .

We note that Eqn. (4-48) is globally valid, since different variable bounds at different nodes

will only affect the possible value of 𝜌𝑗𝑘𝑛, and from Proposition 1, constraints in the form of

Eqn. (4-48) are valid for bilinear term ∑ 𝐹̂𝑖𝑗𝑘𝑖∈𝐈
𝑗𝑘𝑛′
∗ = 𝑅𝑗𝑘 ∑ 𝐹𝑖𝑗𝑖∈𝐈

𝑗𝑘𝑛′
∗ with nontrivial upper

bound 𝜈𝑗𝑘
U regardless of the value of 𝜌𝑗𝑘𝑛.

Algorithm 2. Generating constraints at nodes

Inputs: 𝑛, 𝜈𝑗𝑘, 𝐹𝑖𝑗
∗ , 𝑅𝑗𝑘

∗ , 𝐹̂𝑖𝑗𝑘
∗ , and 𝐂̂𝑛

𝑐1 = True, 𝑐2 = False
For 𝑗 ∈ 𝐉 do
 For 𝑘 ∈ 𝐊 do
 𝑐3 = False

For 𝑖 ∈ 𝐈 do
 If 𝐹̂𝑖𝑗𝑘

∗ ≠ 𝐹𝑖𝑗
∗𝑅𝑗𝑘

∗ then

 𝑐1 = False
 𝑐3 = True
 Break
 End
End

 𝐈𝑗𝑘𝑛
∗ = {𝑖: 𝐹̂𝑖𝑗𝑘

∗ > 0}

If 𝑐3 = True AND 4 (∑ 𝐹̂𝑖𝑗𝑘
∗

𝑖∈𝐈𝑗𝑘𝑛
∗)

2

− 4𝜈𝑗𝑘
U𝑅𝑗𝑘

∗ ∑ 𝐹𝑖𝑗
∗

𝑖∈𝐈𝑗𝑘𝑛
∗ > 0 then

 𝜌𝑗𝑘𝑛 = ∑ 𝐹̂𝑖𝑗𝑘
∗

𝑖∈𝐈𝑗𝑘𝑛
∗ /∑ 𝐹𝑖𝑗

∗
𝑖∈𝐈𝑗𝑘𝑛

∗

 𝐂̂𝑛 = 𝐂̂𝑛 ∪ {(𝑗, 𝑘, 𝑛)}
 𝑐2 = True
 End
 End
End
Outputs: 𝜌𝑗𝑘𝑛, 𝑐1, 𝑐2, 𝐈𝑗𝑘𝑛

∗ , and 𝐂̂𝑛

We present a customized branch-and-cut (B&C) algorithm that integrates Algorithm 2

within a B&C framework in Figure 4-5. We start with the solution to the relaxation at the

79

root node (M0
CON−L) with objective function value 𝑍0

∗ . The list of open nodes (node list)

contains only the root node, and set 𝐂̂0 is empty. 𝑍0
∗ is the initial upper bound on the objective

function value (UB), and the initial lower bound on the objective function value (LB) is set to

zero since a trivial feasible solution exists with all variables being zero. We select a node 𝑛

in the node list, read its solution and run Algorithm 2. After running Algorithm 2, if all

nonlinear constraints in MCON are satisfied (i.e., 𝑐1 = True), then such solution is a feasible

solution to MCON; if new constraints are generated in Algorithm 2 (i.e., 𝑐2 = True), then we

add them to M𝑛
CON−L and solve it again. Note that set 𝐂̂𝑛 for Eqn. (4-48) is updated in

Algorithm 2, and constraints in Eqn. (4-48), once generated, will be included in all later nodes.

After updating the solution to M𝑛
CON−L, we perform local search to find a feasible solution by

solving MCON using a local solver with the solution to M𝑛
CON−L as the initial point. After the

local search, we update LB (if applicable) and then perform branching. Two child nodes are

generated through branching, and the relaxations associated with them are solved right after

branching. Such relaxations contain all constraints in the parent node (including Eqn. (4-48)).

The details for the implemented node selection rule, local search, prune rule, and branching

strategy can be found in Appendix A2.2. The algorithm terminates when (1) the optimality

gap, defined as (1 − 𝐿𝐵/𝑈𝐵), is within a chosen tolerance (𝜀), or (2) the maximum number

of processed nodes (𝜃) has been reached.

Finally, while the B&C algorithm introduced above can be used to solve the pooling problem,

we note that, since the constraints in Eqn. (4-48) are globally valid, it can also be utilized as

a preprocessing algorithm to generate valid constraints whose indices are stored in set 𝐂̂𝑛

with 𝑛 being, essentially, the last node that has been processed.

80

Figure 4-5. Flowchart of the customized B&C algorithm.

4.4.1.3 Generation using predefined parameters

Since for a given parameter 𝜌 we have one valid constraint, we can generate constraints with

a predefined set of values of 𝜌. Specifically, we have the following:

𝜌𝑗𝑘𝑜
2 𝐹̃𝑗 + 𝜈𝑗𝑘

U𝑅𝑗𝑘 − 2𝜌𝑗𝑘𝑜𝐹̅𝑗𝑘 ≥ 0, 𝑗, 𝑘, 𝑜 ∈ 𝐎
(4-49)

where 𝐎 = {0,1, … . } is the index of constraints for a given (𝑗, 𝑘) pair, and 𝜌𝑗𝑘𝑜 is a predefined

parameter. Eqn. (4-49) is generated without solving any optimization problem. Recall that

81

for a given (𝑗, 𝑘) pair, when 𝐹̅𝑗𝑘 = 𝜈𝑗𝑘
U , Eqn. (4-49) is tangent to 𝐹̃𝑗𝑅𝑗𝑘 = 𝜈𝑗𝑘

U at the point

corresponding to 𝐹̃𝑗 = 𝜈𝑗𝑘
U /𝜌, 𝑅𝑗𝑘 = 𝜌. Note that when 𝐹̃𝑗𝑅𝑗𝑘 = 𝜈𝑗𝑘

U , we have 𝑅𝑗𝑘 ∈ [𝜈𝑗𝑘
U/𝛾𝑗 , 1],

thus one straightforward way to define 𝜌𝑗𝑘𝑜 is the following:

𝜌𝑗𝑘𝑜 = 𝜈𝑗𝑘
U /𝛾𝑗 + 𝑜(1 − 𝜈𝑗𝑘

U /𝛾𝑗)/|𝐎|, 𝑗, 𝑘
(4-50)

Eqn. (4-50) generates a set of 𝜌𝑗𝑘𝑜 whose values are evenly distributed in [𝜈𝑗𝑘
U/𝛾𝑗 , 1]. We

show an illustrative graph for the points of tangency on bilinear curve generated from such

𝜌𝑗𝑘𝑜 in Figure 4-6.

Figure 4-6. Illustrative graph for points of tangency on bilinear curve generated from Eqn.
(4-50) with seven intervals (indices 𝑗 and 𝑘 are dropped in the graph for simplicity).

4.4.2 Methods for model with semi-continuous variables

For model MSC, we generate the following constraint at the root node:

𝜌𝑗𝑘𝑚′
2 𝐹̃𝑗 + 𝜈𝑗𝑘

U𝑅𝑗𝑘 + 2𝜌𝑗𝑘𝑚′(𝜎𝑗𝑘,1𝐹̅𝑗𝑘 + 𝜎𝑗𝑘,2𝑍𝑗𝑘) ≥ 0, (𝑗, 𝑘,𝑚′) ∈ 𝐂𝑚 (4-51)

where 𝜎𝑗𝑘,1 = (√𝜈𝑗𝑘
L 𝜈𝑗𝑘

U − 𝜈𝑗𝑘
U)/(𝜈𝑗𝑘

U − 𝜈𝑗𝑘
L), 𝜎𝑗𝑘,2 = 𝜈𝑗𝑘

U (𝜈𝑗𝑘
L −√𝜈𝑗𝑘

L 𝜈𝑗𝑘
U)/(𝜈𝑗𝑘

U − 𝜈𝑗𝑘
L).

82

We consider model M𝑚
SC−L which contains all constraints in model MSC , except that the

nonlinear constraint Eqn. (4-5) is replaced by Eqn. (4-39) - (4-41). M𝑚
SC−L also contains Eqn.

(4-51).

We first present Algorithm 3 that generates constraints based on maximizing constraint

violation. At each round of constraint generation, we solve the continuous relaxation of

M𝑚
SC−L (in which 𝑍𝑗𝑘 ∈ [0,1]), and, similar to Algorithm 1, for each (𝑗, 𝑘) pair, we check the

sign of [4(𝜎𝑗𝑘,1𝐹̅𝑗𝑘
∗ + 𝜎𝑗𝑘,2𝑍𝑗𝑘

∗)
2
− 4𝜈𝑗𝑘

U 𝐹̃𝑗
∗𝑅𝑗𝑘

∗] ; if positive, we calculate parameter 𝜌𝑗𝑘𝑚 =

−(𝜎𝑗𝑘,1𝐹̅𝑗𝑘
∗ + 𝜎𝑗𝑘,2𝑍𝑗𝑘

∗)/𝐹̃𝑗
∗ and generate Eqn. (4-51). We repeat until no new constraints are

generated or we reach the maximum number of constraint generation rounds.

Algorithm 3. Constraint generation from maximizing violation

Inputs: 𝑐 = True,𝑚 = 0, 𝜎U, and 𝐂𝑚 = ∅
While 𝑐 = True AND 𝑚 < 𝜎U do
 𝑐 = False
 Solve the continuous relaxation of M𝑚

S−L.
 Read solution 𝐹̃𝑗

∗, 𝑅𝑗𝑘
∗ , 𝐹̅𝑗𝑘

∗ , 𝑍𝑗𝑘
∗

 𝐂𝑚+1 = 𝐂𝑚
 For 𝑗 ∈ 𝐉 do
 For 𝑘 ∈ 𝐊 do

 If 4(𝜎𝑗𝑘,1𝐹̅𝑗𝑘
∗ + 𝜎𝑗𝑘,2𝑍𝑗𝑘

∗)
2
− 4𝜈𝑗𝑘

U 𝐹̃𝑗
∗𝑅𝑗𝑘

∗ > 0 then

 𝐂𝑚+1 = 𝐂𝑚+1 ∪ {(𝑗, 𝑘,𝑚)}
 𝜌𝑗𝑘𝑚 = −(𝜎𝑗𝑘,1𝐹̅𝑗𝑘

∗ + 𝜎𝑗𝑘,2𝑍𝑗𝑘
∗)/𝐹̃𝑗

∗

 𝑐 = True
 End
 End
 End
 𝑚 = 𝑚 + 1
End
Outputs: 𝜌𝑗𝑘𝑚 and 𝐂𝑚+1

Similarly, Algorithm 4 generates constraints by solving the continuous relaxation of M𝑚
SC−L

iteratively but based on solving the minimum distance problem. After solving the continuous

83

relaxation of M𝑚
SC−L, for each (𝑗, 𝑘) pair we check the following two conditions: (1) 𝐹̅𝑗𝑘

∗ = 𝜈𝑗𝑘
U ,

and (2) 𝐹̃𝑗
∗𝑅𝑗𝑘

∗ < 𝐹̅𝑗𝑘
∗ . If both conditions hold, that means the nontrivial upper bound is active

and nonlinear constraint is violated. We calculate 𝜌𝑗𝑘𝑚 by solving the minimum distance

problem discussed previously. Note that when 𝐹̃𝑗𝑅𝑗𝑘 = 𝜈𝑗𝑘
U we have 𝐹̃𝑗 ∈ [𝜈𝑗𝑘

U , 𝛾𝑗], 𝑅𝑗𝑘 ∈

[𝜈𝑗𝑘
U /𝛾𝑗, 1]. Thus, we calculate 𝜌𝑗𝑘𝑚 as follows:

(1) If 𝑅𝑗𝑘
∗ ≤ √𝜈𝑗𝑘

U (1 − 𝜈𝑗𝑘
U /𝛾𝑗)/(𝛾𝑗 − 𝜈𝑗𝑘

U) = √𝜈𝑗𝑘
U /𝛾𝑗 ≤ 𝜈𝑗𝑘

U /𝐹̃𝑗
∗ , then 𝜌𝑗𝑘𝑚 = √𝜈𝑗𝑘

U/𝛾𝑗 .

(2) If 𝑅𝑗𝑘
∗ > √𝜈𝑗𝑘

U/𝛾𝑗 , then 𝜌𝑗𝑘𝑚 = 𝑅𝑗𝑘
∗ .

(3) If √𝜈𝑗𝑘
U/𝛾𝑗 > 𝜈𝑗𝑘/𝐹̃𝑗

∗, then 𝜌𝑗𝑘𝑚 = 𝜈𝑗𝑘
U /𝐹̃𝑗

∗.

84

Algorithm 4. Constraint generation from minimizing distance

Inputs: 𝑐 = True,𝑚 = 0, 𝜎U, and 𝐂𝑚 = ∅
While 𝑐 = True AND 𝑚 < 𝜎U do
 𝑐 = False
 Solve the continuous relaxation of M𝑚

S−L.
 Read solution 𝐹̃𝑗

∗, 𝑅𝑗𝑘
∗ , 𝐹̅𝑗𝑘

∗ , 𝑍𝑗𝑘
∗

 𝐂𝑚+1 = 𝐂𝑚
 For 𝑗 ∈ 𝐉 do
 For 𝑘 ∈ 𝐊 do

 If 𝐹̅𝑗𝑘
∗ = 𝜈𝑗𝑘 AND 𝐹̃𝑗

∗𝑅𝑗𝑘
∗ < 𝐹̅𝑗𝑘

∗ then

 𝐂𝑚+1 = 𝐂𝑚+1 ∪ {(𝑗, 𝑘,𝑚)}

 If 𝑅𝑗𝑘
∗ ≤ √𝜈𝑗𝑘

U /𝛾𝑗 ≤ 𝜈𝑗𝑘
U/𝐹̃𝑗

∗ then

 𝜌𝑗𝑘𝑚 = √𝜈𝑗𝑘
U/𝛾𝑗

 Else If 𝑅𝑗𝑘
∗ > √𝜈𝑗𝑘

U/𝛾𝑗 then

 𝜌𝑗𝑘𝑚 = 𝑅𝑗𝑘
∗

 Else
 𝜌𝑗𝑘𝑚 = 𝜈𝑗𝑘

U/𝐹̃𝑗
∗

 End
 End
 End
 End
 𝑚 = 𝑚 + 1
End
Outputs: 𝜌𝑗𝑘𝑚 and 𝐂𝑚+1

We can also generate the proposed constraint for MSC using predefined parameters.

Specifically, we have:

𝜌𝑗𝑘𝑜
2 𝐹̃𝑗 + 𝜈𝑗𝑘

U𝑅𝑗𝑘 + 2𝜌𝑗𝑘𝑜(𝜎𝑗𝑘,1𝐹̅𝑗𝑘 + 𝜎𝑗𝑘,2𝑍𝑗𝑘) ≥ 0, 𝑗, 𝑘, 𝑜 ∈ 𝐎
(4-52)

with 𝜌𝑗𝑘𝑜 calculated from Eqn. (4-50).

85

4.5 Computational results

In this section, we present computational results for models employing the proposed

constraint generation methods. Computational experiments are conducted on a Windows 10

machine with Intel Core i5 at 2.70 GHz and 8 GB of RAM. Models are coded in GAMS 30.3. For

all runs, CPU time limit is set at 300 seconds and the tolerance for relative optimality gap is

set at 0.01%. Instances are modified from the randomly generated instances in D’Ambrosio

et al. (D’Ambrosio, Linderoth, and Luedtke 2011), which are included in QPLIB, a library of

quadratic programming instances (Furini et al. 2019).

4.5.1 Models with only continuous variables

4.5.1.1 Model MCON

We test the proposed constraints generated using different methods, as discussed in the

previous section. Specifically, we consider the following variants of MCON:

1) MR
CON: model MCON with Eqn. (4-42) generated iteratively at the root node; 𝐂𝑚 in Eqn.

(4-42) is obtained by running Algorithm 1 with 𝜎U = 10.

2) MB&C
CON: model MCON with Eqn. (4-48) generated using the B&C algorithm; 𝐂̂𝑛 in Eqn.

(4-48) is obtained by running the algorithm shown in Figure 4-5 with 𝜎̂U = 10.

3) MH
CON : model MCON with Eqn. (4-42) and Eqn. (4-48) generated from a hybrid

approach; we first obtain 𝐂𝑚 generating Eqn. (4-42) by running Algorithm 1 with

𝜎U = 5 and then obtain 𝐂̂𝑛 for generating Eqn. (4-48) by running the B&C algorithm

with 𝜎̂U = 5 (all M𝑛
CON−L include previously generated Eqn. (4-42)).

86

4) MP
CON : MCON with Eqn. (4-49) expressed for predefined parameter 𝜌𝑗𝑘𝑜 generated

from Eqn. (4-50) with |𝐎| = 10.

We show the performance profiles for BARON 19.12.7 and SCIP 6.0 in Figure 4-7. Both

profiles are generated over 60 instances, and for each profile we exclude instances that can

be solved by all models within 10 seconds with the corresponding solver. We note that

certain proposed methods, notably MR
CON , bring computational improvements to both

solvers. As a side note, the two solvers have similar performance for solving MCON for the 60

instances mentioned above.

Figure 4-7. Performance profile for model with only continuous variable and its variants
solved with BARON (left) and SCIP (right)

There are 21 instances that are not solved by BARON in 300 seconds with the original model

MCON . We solve the first seven instances within those with the B&C algorithm shown in

Figure 4-5 with 𝜎̂U = 100. To demonstrate the effectiveness of the proposed constraints, we

also solve the same seven instances with a B&B algorithm which is similar to the B&C

algorithm but does not include the constraint generation part (flowchart can be found in

87

Appendix A2.3). Table 4-2 shows CPU time and optimality gap (1 − 𝐿𝐵/𝑈𝐵) after 100 nodes

have been processed for both B&B and B&C algorithms. We also show the optimality gap

calculated from the upper and lower bounds on the objective function value reported by

BARON after 300 seconds.

Table 4-2. Solution statistics for B&B and B&C algorithms over select instances
Inst. B&B B&C BARON
 Time(s) Gap Time(s) Gap Gap
1* 75.5 0 30.2 0 1.98%
2 136.6 0.53% 167.5 0.33% 2.34%
3 128.6 1.08% 149.6 1.03% 2.13%
4 132.5 1.63% 142.6 1.12% 1.82%
5 205.5 0.94% 210.2 0.66% 1.60%
6 205.9 2.37% 206.5 1.94% 2.80%
7 200.8 3.16% 200.3 0.52% 0.69%

* Instance 1 is solved by both B&B and B&C algorithm within 100 nodes and we show its
solution time.

We note that for all seven instances after 100 nodes, we obtain smaller optimality gap from

B&C algorithm compared to B&B algorithm.

4.5.1.2 Other formulation

We also test our methods on models based on another pooling formulation, known as the

pq-formulation (Tawarmalani and Sahinidis 2002), in which we have a nonnegative

continuous variable 𝑞𝑖𝑗 ∈ [0,1] for the proportion of stream 𝑖 within the total outlet flow

from pool 𝑗, and the following nonlinear constraint:

𝐹̂𝑖𝑗𝑘 = 𝑞𝑖𝑗𝐹̅𝑗𝑘, 𝑖, 𝑗, 𝑘
(4-53)

Summing over index 𝑘 for Eqn. (4-53), we obtain:

88

∑ 𝐹̂𝑖𝑗𝑘
𝑘

= 𝑞𝑖𝑗∑ 𝐹̅𝑗𝑘
𝑘

, 𝑖, 𝑗, 𝑘
(4-54)

Note that the LHS of Eqn. (4-54) is upper bounded by the pipeline capacity between stream

𝑖 and pool 𝑗, which can be a nontrivial upper bound since the RHS of Eqn. (4-54) is bounded

by the capacity of pool 𝑗 . The model based on pq-formulation contains only continuous

variables, and it is referred to as MC−PQ. We consider the following variants of MC−PQ:

1) MR
C−PQ

: model MC−PQ with constraints similar to those in Eqn.(4-42), generated at the

root node iteratively through a procedure similar to Algorithm 1 with 𝜃 = 10.

2) MP
C−PQ: model MC−PQ with constraints similar to those in Eqn. (4-49) generated using

pre-determined parameter 𝜌 values calculated from an equation similar to Eqn. (4-50)

with |𝐎| = 10.

We show a performance profile containing 33 instances in Figure 4-8. For model MC−PQ we

observe improvement with adding the proposed constraints. The number of constraints

generated and the time needed to generate them are similar to previous models.

Figure 4-8. Performance profile for model based on pq-formulation and its variants solved
with BARON with maximizing profit objective.

89

4.5.2 Model with semi-continuous variables

We consider the following variants of MSC:

1) MV
SC: model MSC with Eqn. (4-51) using Algorithm 3 with 𝜎U = 10.

2) MD
SC: model MSC with Eqn. (4-51) using Algorithm 4 with 𝜎U = 10.

3) MP
SC: MSC with Eqn. (4-52) expressed for predefined parameter 𝜌𝑗𝑘𝑜 generated from

Eqn. (4-50) with |𝐎| = 10.

We show performance profile for another set of 30 instances in Figure 4-9 with maximizing

profit objective. Models are solved with BARON Similarly, MV
SC and MD

SC typically contain

additional constraints in the order of hundreds generated in around 10 seconds. Overall, our

methods improve the performance of BARON.

Figure 4-9. Performance profile for model with semi-continuous variables and its variants
solved with BARON with maximizing profit objective.

We also test our methods for MSC using an objective where we minimize cost and penalty for

unmet demand, defined in (4-15). We show the performance profile in Figure 4-10 over

90

another set of 30 instances. Similarly, our methods reduce the computational requirement

and optimality gap.

Figure 4-10. Performance profile for model with semi-continuous variables and its variants
solved with BARON with minimizing cost objective.

4.6 Conclusion

We derived a family of strong valid constraints for bilinear terms with nontrivial bounds.

The proposed constraints are valid for the case where binary and semi-continuous variables

are involved. We proposed different methods for generating strong constraints from the

family, including generation based on maximizing constraint violation and solving the

minimum distance problem. We tested the generated constraints on the pooling problem.

Computational results demonstrate the effectiveness of our methods in terms of reducing

the optimality gap and computational time.

91

Chapter 5

Summary

In this thesis we presented solution methods for pooling and multiperiod blending problems.

We first consider the multiperiod blending problem with minimizing cost objective. We

develop a novel preprocessing algorithm to calculate lower bounds on stream flows. We

define product dedicated flow variables to address product specific features involved in

multiperiod blending problem. The bounds on stream flows and new product dedicated flow

variables are then used to generate tightening constraints which significantly improve the

solution time of the mixed-integer nonlinear programming models as well as models based

on linear approximations.

For multiperiod blending problem with maximizing profit objective, we first propose a

reformulation of the constraints involving bilinear terms using lifting. We introduce a

procedure to calculate tight bounds on the lifted variables calculated by aggregating multiple

constraints. We propose valid constraints derived from Reformulation-Linearization

Technique that utilize the bounds on the lifted variables to further tighten the formulation.

Computational results indicate our method can substantially reduce the solution time and

optimality gap.

Finally, we develop tightening and solution methods based on nontrivial bounds on bilinear

terms. We derive a family of valid linear constraints and further show that, when one of the

nontrivial bounds is active, such constraints are tangent to one branch of hyperbola that

represents the bilinear term. We propose different preprocessing methods for generating

92

strong constraints from the family and test them on the pooling problem. Computational

results demonstrate the effectiveness of our methods in terms of reducing optimality gap

and computational time.

Future research directions on related topics include: (1) Strong valid constraints for the

multiperiod blending problem that exploit the combinatorial structure in it. (2).

Implementation of the variable bound tightening methods introduced in Chapter 3 in B&B

algorithm, with automatic detection for the specific structure we study in general problem.

(3). Implementation of the valid constraints for bilinear terms with nontrivial bounds in B&C

algorithm that can be applied to general nonlinear program with such bounds.

93

Appendix

A1 Explanations to Chapter 3

A1.1 Solving LP3

After introducing slack variables 𝑆1, 𝑆2, and 𝑆3, LP3 is written as follows:

min ∑ 𝜇𝑖′𝑙𝑉𝑖′
𝑖′≠𝑖

s. t.

∑ 𝑉𝑖′
𝑖′≠𝑖

+ 𝑆1 = 𝛾 − 𝛾𝑖𝑙

−∑ 𝑉𝑖′
𝑖′≠𝑖

+ 𝑆2 = 𝛾𝑖𝑙 − 𝛾

𝑉𝑏(𝑙) + 𝑆3 = 𝛾̅𝑏(𝑙)
𝑉𝑖′ ≥ 0, 𝑆1, 𝑆2, 𝑆3 ≥ 0

By inspection, we have 𝑉𝑏+(𝑙) = 𝛾 − 𝛾𝑖𝑙, 𝑉𝑖′ = 0 ∀𝑖
′ ∉ {𝑖, 𝑏+(𝑙)}, 𝑆1 = 𝑆2 = 0, and𝑆3 = 𝛾̅𝑏(𝑙) as

initial feasible solution. Let 𝑆1, 𝑉𝑏+(𝑙), and 𝑆3 be basic variables, we have the following tableau:

Basic var. 𝑉𝑏(𝑙) 𝑉𝑏+(𝑙) [𝑉𝑖′ , ∀𝑖
′ ∉ {𝑖, 𝑏(𝑙), 𝑏+(𝑙)}] 𝑆1 𝑆2 𝑆3

𝑆1 0 0 [0,…… ,0] 1 1 0 0

𝑉𝑏+(𝑙) 1 1 [1,…… ,1] 0 −1 0 𝛾 − 𝛾𝑖𝑙

𝑆3 1 0 [0,…… ,0] 0 0 1 𝛾̅𝑏(𝑙)

𝑧 𝜇𝑙
+ − 𝜇𝑙

∗ 0 [𝜇𝑙
+ − 𝜇𝑖′𝑙 , ∀𝑖

′ ∉ {𝑖, 𝑏(𝑙), 𝑏+(𝑙)}] 0 𝜇𝑙
+ 0 𝜇𝑙

+(𝛾̂𝑖𝑙 − 𝛾)

where [.] denotes a row vector of dimension (|𝐈| − 3).

When 𝜇𝑙
+ ≤ 0, we have the following optimal tableau:

Basic
var.

𝑉𝑏(𝑙) 𝑉𝑏+(𝑙) [𝑉𝑖′ , ∀𝑖
′ ∉ {𝑖, 𝑏(𝑙), 𝑏+(𝑙)}] 𝑆1 𝑆2 𝑆3

𝑆1 0 0 [0, …… ,0] 1 1 0 0

𝑉𝑏+(𝑙) 0 1 [1, …… ,1] 0 −1 0 𝛾 − 𝛾𝑖𝑙 − 𝛾̅𝑏(𝑙)

𝑉𝑏(𝑙) 1 0 [0, …… ,0] 0 0 1 𝛾̅𝑏(𝑙)

𝑧 0 0 [𝜇𝑙
+ − 𝜇𝑖′𝑙 , ∀𝑖

′ ∉ {𝑖, 𝑏(𝑙), 𝑏+(𝑙)}] 0 𝜇𝑙
+ 𝜇𝑙

∗ − 𝜇𝑙
+

𝜇𝑙
+(𝛾𝑖𝑙 − 𝛾)
+ (𝜇𝑙

∗ − 𝜇𝑙
+)𝛾̅𝑏(𝑙)

94

When 𝜇𝑙
+ > 0, we have the following optimal tableau:

Basic
var.

𝑉𝑏(𝑙) 𝑉𝑏+(𝑙) [𝑉𝑖′ , ∀𝑖
′ ∉ {𝑖, 𝑏(𝑙), 𝑏+(𝑙)}] 𝑆1 𝑆2 𝑆3

𝑆1 0 0 [0, …… ,0] 1 1 0 0

𝑉𝑏+(𝑙) 1 1 [1, …… ,1] 0 −1 0 𝛾 − 𝛾𝑖𝑙 − 𝛾̅𝑏(𝑙)

𝑉𝑏(𝑙) 1 0 [0, …… ,0] 0 0 1 𝛾̅𝑏(𝑙)

𝑧 0 0 [𝜇𝑙
+ − 𝜇𝑖′𝑙 , ∀𝑖

′ ∉ {𝑖, 𝑏(𝑙), 𝑏+(𝑙)}] −𝜇𝑙
+ 0 𝜇𝑙

∗ − 𝜇𝑙
+

𝜇𝑙
+(𝛾𝑖𝑙 − 𝛾)
+ (𝜇𝑙

∗ − 𝜇𝑙
+)𝛾̅𝑏(𝑙)

A1.2 Illustrative example

A1.2.1. Feasibility Based Bound Tightening

Recall that for the illustrative example we have:

𝑉1 + 𝑉2 + 𝑉3 ≤ 1

−𝑉1 + 2𝑉2 + 𝑉3 ≤ 0

𝑉1 − 3𝑉2 + 2𝑉3 ≤ 0

Assume we use 0 and 1 as the initial lower and upper bound, that is, 𝑉1, 𝑉2, 𝑉3 ∈ [0,1]. FBBT

uses the following inequality to find tighter upper bounds (note that 0 is the tightest lower

bound on 𝑉𝑖):

𝑉𝑖 ≤
1

𝛼𝑚∗,𝑖
[𝛽𝑚∗ −∑ min

𝑖′≠𝑖
(𝑎𝑚∗,𝑖′ 𝛾̅𝑖′ , 0)] 𝑎𝑚∗,𝑖 > 0 (A-1)

where 𝛼𝑚∗,𝑖 is the coefficient of 𝑉𝑖 for inequality 𝑚∗, 𝛽𝑚∗ is the RHS of inequality 𝑚∗, and 𝛾̅𝑖 is

the upper bound on 𝑉𝑖. In FBBT we choose an inequality with positive coefficient for 𝑉𝑖, to

evaluate the RHS of Eqn. (A-1) to find its upper bound:

95

𝑉1 ≤
1

1
[1 − min(1,0) − min(1,0)] = 1

𝑉1 ≤
1

1
[0 − min(−3,0) − min(2,0)] = 3

𝑉2 ≤
1

1
[1 − min(1,0) − min(1,0)] = 1

𝑉2 ≤
1

2
[0 − min(−1,0) − min(1,0)] = 1/2

Note that we now have a tighter upper bound on 𝑉2, so we update 𝛾̅2: 𝛾̅2 = 1/2.

𝑉3 ≤
1

1
[1 −min(1,0) − min(1/2,0)] = 1

𝑉3 ≤
1

1
[0 − min(−1,0) − min(1,0)] = 1

𝑉3 ≤
1

2
[0 − min(1,0) − min(−3/2,0)] = 3/4

Note that we now have a tighter upper bound on 𝑉3, so we update 𝛾̅3: 𝛾̅3 = 3/4.

In FBBT we typically start another round of evaluation using the tightened bounds. For the

illustrative example, no further improvement can be obtained. FBBT thus returns: 𝛾̅1 =

1, 𝛾̅2 = 1/2, 𝛾̅3 = 3/4.

A1.2.2. OBBT for the illustrative example

OBBT is based on the solution of the following LP:

max 𝑉𝑖 (𝑖 = 1,2,3)

s. t
𝑉1 + 𝑉2 + 𝑉3 ≤ 1
−𝑉1 + 2𝑉2 + 𝑉3 ≤ 0
𝑉1 − 3𝑉2 + 2𝑉3 ≤ 0

96

The value of 𝛾̅𝑖 is equal to the objective function value of the 𝑖-th LP. After solving three LPs,

OBBT returns: 𝛾̅1 = 3/4, 𝛾̅2 = 1/3, 𝛾̅3 = 1/11.

A1.2.3. Illustrative graph for our tightening methods

Consider the following nonlinear set:

𝐒1 =

{

(𝐹̂1, 𝐹̂2, 𝐹̂3, 𝑅, 𝑉1, 𝑉2, 𝑉3) ∈ ℝ
+:

𝑉1 + 𝑉2 + 𝑉3 ≤ 1
−𝑉1 + 2𝑉2 + 𝑉3 ≤ 0
𝑉1 − 3𝑉2 + 2𝑉3 ≤ 0

𝐹̂1 = 𝑉1𝑅

𝐹̂2 = 𝑉2𝑅

𝐹̂2 = 𝑉3𝑅 }

which contains three linear constraints that are identical to the constraints in the illustrative

example in section 3, along with three nonlinear equality constraints to model the flows.

We introduce a hyperplane:

𝐒2 = {(𝑅, 𝑉1, 𝑉2, 𝑉3) ∈ ℝ
+:

𝑅 = 1/2
𝑉1 = 2/3
𝑉2 = 1/3
𝑉3 = 0

}

The intersection of 𝐒1 and 𝐒2 is shown in Figure A1-1. It is point 𝐴 on the (𝐹̂1, 𝐹̂2) plane.

We consider a linear relaxation of 𝐒1, denoted as 𝐒1
MC, using McCormick envelopes without

bound tightening. Since 𝑉1, 𝑉2, 𝑉3 ∈ [0,1], we have:

𝐹̂𝑖 ≤ 𝑅, 𝑖 = {1,2,3} (A-2)

𝐹̂𝑖 ≤ 𝑉𝑖, 𝑖 = {1,2,3} (A-3)

𝐹̂𝑖 ≥ 𝑅 + 𝑉𝑖 − 1, 𝑖 = {1,2,3} (A-4)

𝐹̂𝑖 ≥ 0, 𝑖 = {1,2,3} (A-5)

97

We also have the following RLT constraints:

𝐹̂1 + 𝐹̂2 + 𝐹̂3 ≤ 𝑅 (A-6)

−𝐹̂1 + 2𝐹̂2 + 𝐹̂3 ≤ 0 (A-7)

𝐹̂1 − 3𝐹̂2 + 2𝐹̂3 ≤ 0 (A-8)

The set 𝐒1
MC is thus defined as:

𝐒1
MC =

{

(𝐹̂1, 𝐹̂2, 𝐹̂3, 𝑅, 𝑉1, 𝑉2, 𝑉3) ∈ ℝ
+:

𝑉1 + 𝑉2 + 𝑉3 ≤ 1
−𝑉1 + 2𝑉2 + 𝑉3 ≤ 0
𝑉1 − 3𝑉2 + 2𝑉3 ≤ 0

Eqns. (A − 2) − (A − 5)
Eqns. (A − 6) − (A − 8)}

The intersection of 𝐒1
MC and 𝐒2 is the quadrilateral 𝐴𝐵𝐶𝐷.

We consider a linear relaxation of 𝐒1 , denoted as 𝐒1
T , using McCormick envelopes with

tightened bounds. Our methods lead to: 𝑉1 ∈ [0, 3/4], 𝑉2 ∈ [0, 1/3], 𝑉3 ∈ [0, 1/3]. McCormick

envelopes constructed using such bounds are:

𝐹̂1 ≤
3

4
𝑅 (A-9)

𝐹̂2 ≤
1

3
𝑅 (A-10)

𝐹̂3 ≤
1

3
𝑅 (A-11)

𝐹̂1 ≥
3

4
𝑅 + 𝑉1 −

3

4
 (A-12)

𝐹̂2 ≥
1

3
𝑅 + 𝑉2 −

1

3
 (A-13)

98

𝐹̂3 ≥
1

3
𝑅 + 𝑉3 −

1

3
 (A-14)

together with Eqn. (A-3) and Eqn.(A-5). Note that Eqn. (A-12)– (A-14) are identical to Eqn.

(3-27) for the illustrative example.

The set 𝐒1
T is thus defined as:

𝐒1
T =

{

(𝐹̂1, 𝐹̂2, 𝐹̂3, 𝑅, 𝑉1, 𝑉2, 𝑉3) ∈ ℝ
+:

𝑉1 + 𝑉2 + 𝑉3 ≤ 1
−𝑉1 + 2𝑉2 + 𝑉3 ≤ 0
𝑉1 − 3𝑉2 + 2𝑉3 ≤ 0

Eqns. (A − 3), (A − 5), (A − 9) − (A − 14)
Eqns. (A − 6) − (A − 8) }

The intersection of 𝐒1
T and 𝐒2 is also point 𝐴, which coincides with the intersection of the

nonlinear set 𝐒1 and 𝐒2.

Figure A1-1. Illustrative graph for tightening constraints

A2 Explanations to Chapter 4

A2.1 Solving the minimum distance problem

Consider the following optimization problem:

min𝜌{
1

𝑥 − 𝑥
|
𝑤

𝜌
− 𝑥∗| +

1

𝑦 − 𝑦
|𝜌 − 𝑦∗|: (𝑤/𝑥) ≤ 𝜌 ≤ 𝑦} (4-36)

99

 where 𝑥∗𝑦∗ < 𝑤. Note that the above optimization problem is solved when the nontrivial

upper bound is active, in such case we have 𝑥∗ ∈ [𝑤/𝑦, 𝑥] and 𝑦∗ ∈ [𝑤/𝑥, 𝑦]. We claim that

the solution to the above problem is the following:

(1) If 𝑦∗ ≤ √𝑤(𝑦 − 𝑦)/(𝑥 − 𝑥) ≤ 𝑤/𝑥∗ , then 𝜌 = √𝑤(𝑦 − 𝑦)/(𝑥 − 𝑥).

(2) If √𝑤(𝑦 − 𝑦)/(𝑥 − 𝑥) < 𝑦∗, then 𝜌 = 𝑦∗.

(3) If √𝑤(𝑦 − 𝑦)/(𝑥 − 𝑥) > 𝑤/𝑥∗, then 𝜌 = 𝑤/𝑥∗.

Proof We discuss the above three cases separately.

(1) When 𝑦∗ ≤ 𝜌 = √𝑤(𝑦 − 𝑦)/(𝑥 − 𝑥) ≤ 𝑤/𝑥∗ , it follows that 𝜌 − 𝑦∗ ≥ 0 and 𝑤/𝜌 ≥

𝑤/(𝑤/𝑥∗) ≥ 𝑥∗, thus the optimization problem in (4-36) is equivalent to:

min𝜌 {
1

𝑥 − 𝑥
(
𝑤

𝜌
− 𝑥∗) +

1

𝑦 − 𝑦
(𝜌 − 𝑦∗): (𝑤/𝑥) ≤ 𝜌 ≤ 𝑦}

Dropping the constant terms, we have:

min𝜌 {
1

𝑥 − 𝑥
∙
𝑤

𝜌
+

1

𝑦 − 𝑦
∙ 𝜌: (𝑤/𝑥) ≤ 𝜌 ≤ 𝑦} (A-15)

Furthermore, since 𝜌 > 0 we have the following valid inequality:

1

𝑥 − 𝑥
∙
𝑤

𝜌
+

1

𝑦 − 𝑦
∙ 𝜌 ≥ 2√

𝑤

(𝑥 − 𝑥)(𝑦 − 𝑦)
 (A-16)

100

The equal sign in (A-16) holds when 𝜌 = √𝑤(𝑦 − 𝑦)/(𝑥 − 𝑥) and by construction such 𝜌 is

in the range of [𝑤/𝑥, 𝑦] (since 𝑤/𝑥U ≤ 𝑦∗ ≤ 𝜌 , and 𝜌 ≤ 𝑤/𝑥∗ ≤ 𝑤/(𝑤/𝑦) ≤ 𝑦). Thus, 𝜌 =

√𝑤(𝑦 − 𝑦)/(𝑥 − 𝑥) is the solution to (4-36) when 𝑦∗ ≤ √𝑤(𝑦 − 𝑦)/(𝑥 − 𝑥) ≤ 𝑤/𝑥∗.

(2) We first assume the optimal solution 𝜌 < 𝑦∗ . If that is the case, we also have 𝑤/𝜌 >

𝑤/𝑦∗ > 𝑥∗ since 𝑥∗𝑦∗ < 𝑤. It follows that such 𝜌 is not an optimal solution to (4-36) since

there exists 𝜀 > 0 such that (𝜌 + 𝜀) leads to smaller value for both |𝑤/𝜌 − 𝑥∗| and |𝜌 − 𝑦∗|.

We next assume the optimal solution 𝜌 > 𝑦∗. If that is the case, we first note that 𝑤/𝜌 > 𝑥∗

should hold since otherwise there exists 𝜀 > 0 such that (𝜌 − 𝜀) leads to the objective

function value
1

𝑥−𝑥
(𝑥∗ −

𝑤

𝜌−𝜀
) +

1

𝑥−𝑥
(𝜌 − 𝑦∗ − 𝜀) <

1

𝑥−𝑥
(𝑥∗ −

𝑤

𝜌
) +

1

𝑥−𝑥
(𝜌 − 𝑦∗) . Now, since

𝜌 > 𝑦∗ and 𝑤/𝜌 > 𝑥∗, we again have the optimization problem defined in (A-15) with 𝜌 =

√𝑤(𝑦 − 𝑦)/(𝑥 − 𝑥) < 𝑦∗ , which contradicts with 𝜌 > 𝑦∗. Thus, the optmizal solution can

only be 𝜌 = 𝑦∗.

(3) We first assume the optimal solution 𝜌 > 𝑤/𝑥∗. If that is the case, we also have 𝜌 > 𝑦∗

since 𝑥∗𝑦∗ < 𝑤. It follows that such 𝜌 is not an optimal solution to (4-36) since there exists

𝜀 > 0 such that (𝜌 + 𝜀) leads to smaller value for both |𝑤/𝜌 − 𝑥∗| and |𝜌 − 𝑦∗|.

We next assume the optimal solution 𝜌 < 𝑤/𝑥∗. If that is the case, we first note that 𝜌 > 𝑦∗

should hold since otherwise there exists 𝜀 > 0 such that (𝜌 + 𝜀) leads to the objective

function value
1

𝑥−𝑥
(
𝑤

𝜌+𝜀
− 𝑥∗) +

1

𝑥−𝑥
(𝑦∗ − 𝜌 − 𝜀) <

1

𝑥−𝑥
(
𝑤

𝜌
− 𝑥∗) +

1

𝑥−𝑥
(𝑦∗ − 𝜌) . Now, since

𝜌 < 𝑤/𝑥∗ and 𝜌 > 𝑦∗, we again have the optimization problem defined in (A-15) with 𝜌 =

101

√𝑤(𝑦 − 𝑦)/(𝑥 − 𝑥) > 𝑤/𝑥∗, which contradicts with 𝜌 < 𝑤/𝑥∗. Thus, the optmizal solution

can only be 𝜌 = 𝑤/𝑥∗. ∎

A2.2 Details of B&C algorithm

Node selection: we select the node 𝑛 with the maximum objective function value: 𝑛 =

argmax𝑛′ 𝑍𝑛′
∗ . If there are multiple nodes with the same maximum objective function value,

we select the node with the smallest index.

Local search at node 𝑛 : we solve MCON using CONOPT, with the initial point being the

solution to M𝑛
C−L.

Prune rule: we remove all nodes with 𝑍𝑛
∗ < 𝐿𝐵 from the node list.

Branching strategy at node 𝑛: we branch on variable 𝑅𝑗𝑘 only (note that for MCON, branching

only on either 𝑅𝑗𝑘 or 𝐹𝑖𝑗 can guarantee 𝜀 − optimality, see Epperly and Pistikopoulos

(Epperly and Pistikopoulos 1997) for details). We first identify the (𝑖, 𝑗, 𝑘) combination that

corresponds to the most violated nonlinear constraint: (𝑖, 𝑗, 𝑘) = argmax𝑖′𝑗′𝑘′ |𝐹̂𝑖′𝑗′𝑘′
∗ −

𝐹𝑖′𝑗′
∗ 𝑅𝑗′𝑘′

∗ |, where 𝐹̂𝑖′𝑗′𝑘′
∗ , 𝐹𝑖′𝑗′

∗ , and 𝑅𝑗′𝑘′
∗ are obtained from solving M𝑛

CON−L. Once the specific

(𝑖, 𝑗, 𝑘) is identified, we evaluate the following equation: 𝛿𝑗𝑘 = |𝑅𝑗𝑘
∗ −

𝑅𝑗𝑘𝑛
U −𝑅𝑗𝑘𝑛

L

2
|. Parameter

𝛿𝑗𝑘 aims to quantify the distance between 𝑅𝑗𝑘
∗ and the midpoint for its range. We branch on

𝑅𝑗𝑘 corresponds to the smallest 𝛿𝑗𝑘. For branching, the break point is at the variable value in

the solution to M𝑛
CON−L; in other words, at node 𝑛, the range for 𝑅𝑗𝑘 in the two resulting

nodes are [𝑅𝑗𝑘𝑛
L , 𝑅𝑗𝑘

∗] and [𝑅𝑗𝑘
∗ , 𝑅𝑗𝑘𝑛

U], respectively.

102

A2.3 B&B algorithm

Figure A2-1. Flowchart for a customized B&B algorithm.

103

Bibliography

Achterberg, Tobias. 2007. “Constraint Integer Programming.” Technische Universität Berlin,
Fakultät II - Mathematik und Naturwissenschaften. https://depositonce.tu-
berlin.de/handle/11303/1931.

Achterberg, Tobias, Robert E. Bixby, Zonghao Gu, Edward Rothberg, and Dieter Weninger.
2020. “Presolve Reductions in Mixed Integer Programming.” INFORMS Journal on
Computing 32 (2): 473–506. https://doi.org/10.1287/ijoc.2018.0857.

Adhya, Nilanjan, Mohit Tawarmalani, and Nikolaos V. Sahinidis. 1999. “A Lagrangian
Approach to the Pooling Problem.” Industrial and Engineering Chemistry Research 38 (5):
1956–72. https://doi.org/10.1021/ie980666q.

Alfaki, Mohammed, and Dag Haugland. 2013. “Strong Formulations for the Pooling Problem.”
In Journal of Global Optimization, 56:897–916. Springer.
https://doi.org/10.1007/s10898-012-9875-6.

Anstreicher, Kurt M., Samuel Burer, and Kyungchan Park. 2020. “Convex Hull
Representations for Bounded Products of Variables.” ArXiv, April.
http://arxiv.org/abs/2004.07233.

Audet, Charles, Jack Brimberg, Pierre Hansen, Sébastien Le Digabel, and Nenad Mladenović.
2004. “Pooling Problem: Alternate Formulations and Solution Methods.” Management
Science 50 (6): 761–76. https://doi.org/10.1287/mnsc.1030.0207.

Bagajewicz, Miguel. 2000. “A Review of Recent Design Procedures for Water Networks in
Refineries and Process Plants.” Computers & Chemical Engineering 24 (9–10): 2093–
2113. https://doi.org/10.1016/S0098-1354(00)00579-2.

Baker, Thomas E., and Leon S. Lasdon. 1985. “Successive Linear Programming at Exxon.”
Management Science 31 (3): 264–74. https://doi.org/10.1287/mnsc.31.3.264.

Baltean-Lugojan, Radu, and Ruth Misener. 2017. “Piecewise Parametric Structure in the
Pooling Problem: From Sparse Strongly-Polynomial Solutions to NP-Hardness.” Journal
of Global Optimization, October, 1–36. https://doi.org/10.1007/s10898-017-0577-y.

Belotti, Pietro. 2013. “Bound Reduction Using Pairs of Linear Inequalities.” Journal of Global
Optimization 56 (3): 787–819. https://doi.org/10.1007/s10898-012-9848-9.

Belotti, Pietro, Jon Lee, Leo Liberti, François Margot, and Andreas Wächter. 2009. “Branching
and Bounds Tighteningtechniques for Non-Convex MINLP.” Optimization Methods and
Software 24 (4–5): 597–634. https://doi.org/10.1080/10556780903087124.

Belotti, Pietro, Andrew J. Miller, and Mahdi Namazifar. 2010. “Valid Inequalities and Convex
Hulls for Multilinear Functions.” Electronic Notes in Discrete Mathematics 36 (C): 805–
12. https://doi.org/10.1016/j.endm.2010.05.102.

Belotti, Pietro, Andrew J Miller, and Mahdi Namazifar. 2011. “Linear Inequalities for Bounded

104

Products of Variables.” SIAG/OPT Views-and-News 22 (1): 1–8.

Ben-Tal, Aharon, Gideon Eiger, and Vladimir Gershovitz. 1994. “Global Minimization by
Reducing the Duality Gap.” Mathematical Programming 63 (1–3): 193–212.
https://doi.org/10.1007/BF01582066.

Blom, Michelle L., Christina N. Burt, Adrian R. Pearce, and Peter J. Stuckey. 2014. “A
Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit
Mines.” INFORMS Journal on Computing 26 (4): 658–76.
https://doi.org/10.1287/ijoc.2013.0590.

Blom, Michelle L., Adrian R. Pearce, and Peter J. Stuckey. 2016. “A Decomposition-Based
Algorithm for the Scheduling of Open-Pit Networks Over Multiple Time Periods.”
Management Science 62 (10): 3059–84. https://doi.org/10.1287/mnsc.2015.2284.

Boland, Natashia, Thomas Kalinowski, and Fabian Rigterink. 2016. “New Multi-Commodity
Flow Formulations for the Pooling Problem.” Journal of Global Optimization 66 (4): 669–
710. https://doi.org/10.1007/s10898-016-0404-x.

Boland, Natashia, Thomas Kalinowski, Fabian Rigterink, and Martin Savelsbergh. 2016. “A
Special Case of the Generalized Pooling Problem Arising in the Mining Industry.”
http://www.optimization-online.org/DB_FILE/2015/07/5025.pdf.

Burkard, R.E., and J. Hatzl. 2005. “Review, Extensions and Computational Comparison of
MILP Formulations for Scheduling of Batch Processes.” Computers & Chemical
Engineering 29 (8): 1752–69. https://doi.org/10.1016/J.COMPCHEMENG.2005.02.037.

Castillo, Pedro A Castillo, and Vladimir Mahalec. 2014a. “Inventory Pinch Based, Multiscale
Models for Integrated Planning and Scheduling-Part I: Gasoline Blend Planning.” AIChE
Journal. https://doi.org/10.1002/aic.14423.

———. 2014b. “Inventory Pinch Based, Multiscale Models for Integrated Planning and
Scheduling-Part II: Gasoline Blend Scheduling.” AIChE Journal.
https://doi.org/10.1002/aic.14444.

Castillo, Pedro A Castillo, Vladimir Mahalec, and Jeffrey D. Kelly. 2013. “Inventory Pinch
Algorithm for Gasoline Blend Planning.” AIChE Journal 59 (10): 3748–66.
https://doi.org/10.1002/aic.14113.

Castro, Pedro M. 2015a. “Tightening Piecewise McCormick Relaxations for Bilinear
Problems.” Computers and Chemical Engineering 72 (January): 300–311.
https://doi.org/10.1016/j.compchemeng.2014.03.025.

———. 2015b. “New MINLP Formulation for the Multiperiod Pooling Problem.” AIChE
Journal 61 (11): 3728–38. https://doi.org/10.1002/aic.15018.

Ceccon, Francesco, Georgia Kouyialis, and Ruth Misener. 2016. “Using Functional
Programming to Recognize Named Structure in an Optimization Problem: Application
to Pooling.” AIChE Journal 62 (9): 3085–95. https://doi.org/10.1002/aic.15308.

Cerdá, Jaime, Pedro C. Pautasso, and Diego C. Cafaro. 2016. “A Cost-Effective Model for the
Gasoline Blend Optimization Problem.” AIChE Journal 62 (9): 3002–19.
https://doi.org/10.1002/aic.15208.

105

Chen, Yifu, and Christos T. Maravelias. 2020. “Preprocessing Algorithm and Tightening
Constraints for Multiperiod Blend Scheduling: Cost Minimization.” Journal of Global
Optimization 77 (3): 603–25. https://doi.org/10.1007/s10898-020-00882-3.

———. 2021a. “Tightening Methods Based on Nontrivial Bounds on Bilinear Terms.”
Manuscript under Review.

———. 2021b. “Variable Bound Tightening and Valid Constraints for Multiperiod Blending.”
Manuscript under Revision.

D’Ambrosio, Claudia, Jeff Linderoth, and James Luedtke. 2011. “Valid Inequalities for the
Pooling Problem with Binary Variables.” In Integer Programming and Combinatoral
Optimization, edited by Oktay Günlük and Gerhard J Woeginger, 117–29. Berlin,
Heidelberg: Springer Berlin Heidelberg.

DeWitt, Calvin W., Leon S. Lasdon, Allan D. Waren, Donald A. Brenner, and Simon A. Melhem.
1989. “OMEGA: An Improved Gasoline Blending System for Texaco.” Interfaces.
INFORMS. https://doi.org/10.2307/25061187.

Dey, Santanu S., and Akshay Gupte. 2015. “Analysis of MILP Techniques for the Pooling
Problem.” Operations Research 63 (2): 412–27.
https://doi.org/10.1287/opre.2015.1357.

Domes, Ferenc, and Arnold Neumaier. 2016. “Constraint Aggregation for Rigorous Global
Optimization.” Mathematical Programming 155 (1–2): 375–401.
https://doi.org/10.1007/s10107-014-0851-4.

Epperly, Thomas G.W., and Efstratios N. Pistikopoulos. 1997. “A Reduced Space Branch and
Bound Algorithm for Global Optimization.” Journal of Global Optimization 11 (3): 287–
311. https://doi.org/10.1023/A:1008212418949.

Furini, Fabio, Emiliano Traversi, Pietro Belotti, Antonio Frangioni, Ambros Gleixner, Nick
Gould, Leo Liberti, et al. 2019. “QPLIB: A Library of Quadratic Programming Instances.”
Mathematical Programming Computation 11 (2): 237–65.
https://doi.org/10.1007/s12532-018-0147-4.

Gleixner, Ambros M., Timo Berthold, Benjamin Müller, and Stefan Weltge. 2017. “Three
Enhancements for Optimization-Based Bound Tightening.” Journal of Global
Optimization 67 (4): 731–57. https://doi.org/10.1007/s10898-016-0450-4.

Gounaris, Chrysanthos E., Ruth Misener, and Christodoulos A. Floudas. 2009. “Computational
Comparison of Piecewise−Linear Relaxations for Pooling Problems.” Industrial &
Engineering Chemistry Research 48 (12): 5742–66. https://doi.org/10.1021/ie8016048.

Greenberg, Harvey J. 1995. “Analyzing the Pooling Problem.” ORSA Journal on Computing 7
(2): 205–17. https://doi.org/10.1287/ijoc.7.2.205.

Gupte, Akshay, Shabbir Ahmed, Myun Seok Cheon, and Santanu Dey. 2013. “Solving Mixed
Integer Bilinear Problems Using MILP Formulations.” SIAM Journal on Optimization 23
(2): 721–44. https://doi.org/10.1137/110836183.

Gupte, Akshay, Shabbir Ahmed, Santanu S. Dey, and Myun Seok Cheon. 2017. “Relaxations
and Discretizations for the Pooling Problem.” Journal of Global Optimization 67 (3): 631–

106

69. https://doi.org/10.1007/s10898-016-0434-4.

Haverly, C. A. 1978. “Studies of the Behavior of Recursion for the Pooling Problem.” ACM
SIGMAP Bulletin, no. 25 (December): 19–28.
https://doi.org/10.1145/1111237.1111238.

Janak, Stacy L., and Christodoulos A. Floudas. 2008. “Improving Unit-Specific Event Based
Continuous-Time Approaches for Batch Processes: Integrality Gap and Task Splitting.”
Computers & Chemical Engineering 32 (4–5): 913–55.
https://doi.org/10.1016/J.COMPCHEMENG.2007.03.019.

Jeżowski, Jacek. 2010. “Review of Water Network Design Methods with Literature
Annotations.” Industrial & Engineering Chemistry Research 49 (10): 4475–4516.
https://doi.org/10.1021/ie901632w.

Kelly, J. D., and J. L. Mann. 2003. “Crude Oil Blend Scheduling Optimization: An Application
with Multimillion Dollar Benefits - Part 2.” Hydrocarbon Processing.

Kelly, Jeffrey D., Brenno C. Menezes, and Ignacio E. Grossmann. 2018. “Successive LP
Approximation for Nonconvex Blending in MILP Scheduling Optimization Using Factors
for Qualities in the Process Industry.” Industrial & Engineering Chemistry Research 57
(32): 11076–93. https://doi.org/10.1021/acs.iecr.8b01093.

Kimizuka, Masaki, Sunyoung Kim, and Makoto Yamashita. 2019. “Solving Pooling Problems
with Time Discretization by LP and SOCP Relaxations and Rescheduling Methods.”
Journal of Global Optimization 75 (3): 631–54. https://doi.org/10.1007/s10898-019-
00795-w.

Kolodziej, Scott, Pedro M. Castro, and Ignacio E. Grossmann. 2013. “Global Optimization of
Bilinear Programs with a Multiparametric Disaggregation Technique.” Journal of Global
Optimization. https://doi.org/10.1007/s10898-012-0022-1.

Kolodziej, Scott P., Pedro M. Castro, and Ignacio E. Grossmann. 2013. “Global Optimization of
Bilinear Programs with a Multiparametric Disaggregation Technique.” Journal of Global
Optimization 57 (4): 1039–63. https://doi.org/10.1007/s10898-012-0022-1.

Kolodziej, Scott P., Ignacio E. Grossmann, Kevin C. Furman, and Nicolas W. Sawaya. 2013. “A
Discretization-Based Approach for the Optimization of the Multiperiod Blend
Scheduling Problem.” Computers and Chemical Engineering 53: 122–42.
https://doi.org/10.1016/j.compchemeng.2013.01.016.

Li, Jie, Ruth Misener, and Christodoulos A. Floudas. 2012. “Continuous-Time Modeling and
Global Optimization Approach for Scheduling of Crude Oil Operations.” AIChE Journal 58
(1): 205–26. https://doi.org/10.1002/aic.12623.

Lotero, Irene, Francisco Trespalacios, Ignacio E. Grossmann, Dimitri J. Papageorgiou, and
Myun Seok Cheon. 2016. “An MILP-MINLP Decomposition Method for the Global
Optimization of a Source Based Model of the Multiperiod Blending Problem.” Computers
and Chemical Engineering. https://doi.org/10.1016/j.compchemeng.2015.12.017.

Luedtke, James, Claudia D’Ambrosio, Jeff Linderoth, and Jonas Schweiger. 2020. “Strong
Convex Nonlinear Relaxations of the Pooling Problem.” SIAM Journal on Optimization 30

107

(2): 1582–1609. https://doi.org/10.1137/18M1174374.

Maranas, Costas D., and Christodoulos A. Floudas. 1997. “Global Optimization in Generalized
Geometric Programming.” Computers & Chemical Engineering 21 (4): 351–69.
https://doi.org/10.1016/S0098-1354(96)00282-7.

McCormick, Garth P. 1976. “Computability of Global Solutions to Factorable Nonconvex
Programs: Part I — Convex Underestimating Problems.” Mathematical Programming 10
(1): 147–75. https://doi.org/10.1007/BF01580665.

Merchan, Andres F., Hojae Lee, and Christos T. Maravelias. 2016. “Discrete-Time Mixed-
Integer Programming Models and Solution Methods for Production Scheduling in
Multistage Facilities.” Computers & Chemical Engineering 94 (November): 387–410.
https://doi.org/10.1016/J.COMPCHEMENG.2016.04.034.

Merchan, Andres F., Sara Velez, and Christos T. Maravelias. 2013. “Tightening Methods for
Continuous-Time Mixed-Integer Programming Models for Chemical Production
Scheduling.” AIChE Journal 59 (12): 4461–67. https://doi.org/10.1002/aic.14249.

Meyer, Clifford A., and Christodoulos A. Floudas. 2006. “Global Optimization of a
Combinatorially Complex Generalized Pooling Problem.” AIChE Journal 52 (3): 1027–37.
https://doi.org/10.1002/aic.10717.

Misener, Ruth, and Christodoulos A. Floudas. 2012. “Global Optimization of Mixed-Integer
Quadratically-Constrained Quadratic Programs (MIQCQP) through Piecewise-Linear
and Edge-Concave Relaxations.” Mathematical Programming 136 (1): 155–82.
https://doi.org/10.1007/s10107-012-0555-6.

Misener, Ruth, and Christodoulos A Floudas. 2009. “Advances for the Pooling Problem:
Modeling, Global Optimization, and Computational Studies.” Appl. Comput. Math 8 (1):
3–22.
https://www.researchgate.net/profile/Ruth_Misener/publication/242290955_Advan
ces_for_the_pooling_problem_Modeling_global_optimization_and_computational_studi
es_Survey/links/0046352e7d1dfeb40f000000/Advances-for-the-pooling-problem-
Modeling-global-optimiza.

Misener, Ruth, Chrysanthos E. Gounaris, and Christodoulos A. Floudas. 2010. “Mathematical
Modeling and Global Optimization of Large-Scale Extended Pooling Problems with the
(EPA) Complex Emissions Constraints.” Computers & Chemical Engineering 34 (9):
1432–56. https://doi.org/10.1016/J.COMPCHEMENG.2010.02.014.

Misener, Ruth, Jeffrey P. Thompson, and Christodoulos A. Floudas. 2011. “APOGEE: Global
Optimization of Standard, Generalized, and Extended Pooling Problems via Linear and
Logarithmic Partitioning Schemes.” Computers & Chemical Engineering 35 (5): 876–92.
https://doi.org/10.1016/J.COMPCHEMENG.2011.01.026.

Papageorgiou, Dimitri J., Alejandro Toriello, George L. Nemhauser, and Martin W. P.
Savelsbergh. 2012. “Fixed-Charge Transportation with Product Blending.”
Transportation Science 46 (2): 281–95. https://doi.org/10.1287/trsc.1110.0381.

Puranik, Yash, and Nikolaos V. Sahinidis. 2017. “Domain Reduction Techniques for Global
NLP and MINLP Optimization.” Constraints 22 (3): 338–76.

108

https://doi.org/10.1007/s10601-016-9267-5.

Quesada, I., and I.E. Grossmann. 1995. “Global Optimization of Bilinear Process Networks
with Multicomponent Flows.” Computers & Chemical Engineering 19 (12): 1219–42.
https://doi.org/10.1016/0098-1354(94)00123-5.

Ryoo, Hong S., and Nikolaos V. Sahinidis. 1996. “A Branch-and-Reduce Approach to Global
Optimization.” Journal of Global Optimization 8 (2): 107–38.
https://doi.org/10.1007/BF00138689.

Savelsbergh, M. W. P. 1994. “Preprocessing and Probing Techniques for Mixed Integer
Programming Problems.” ORSA Journal on Computing 6 (4): 445–54.
https://doi.org/10.1287/ijoc.6.4.445.

Sawaya, Nicolas W., and Ignacio E. Grossmann. 2005. “A Cutting Plane Method for Solving
Linear Generalized Disjunctive Programming Problems.” Computers and Chemical
Engineering 29 (9): 1891–1913. https://doi.org/10.1016/j.compchemeng.2005.04.004.

Shectman, J. Parker, and Nikolaos V. Sahinidis. 1998. “A Finite Algorithm for Global
Minimization of Separable Concave Programs.” Journal of Global Optimization 12 (1): 1–
36. https://doi.org/10.1023/A:1008241411395.

Smith, E.M.B., and C.C. Pantelides. 1999. “A Symbolic Reformulation/Spatial Branch-and-
Bound Algorithm for the Global Optimisation of Nonconvex MINLPs.” Computers &
Chemical Engineering 23 (4–5): 457–78. https://doi.org/10.1016/S0098-
1354(98)00286-5.

Street, Larimer. 1989. “Constraint Propagation, Relational Arithmetic in AI Systems and
Mathematical Programs.” Annals of Operations Research 21: 143–48.

Stubbs, Robert A., and Sanjay Mehrotra. 1999. “A Branch-and-Cut Method for 0-1 Mixed
Convex Programming.” Mathematical Programming, Series B 86 (3): 515–32.
https://doi.org/10.1007/s101070050103.

Tawarmalani, Mohit., and Nikolaos V. Sahinidis. 2002. Convexification and Global
Optimization in Continuous and Mixed-Integer Nonlinear Programming : Theory,
Algorithms, Software, and Applications. Kluwer Academic Publishers.

Velez, Sara, and Christos T. Maravelias. 2013a. “Mixed-Integer Programming Model and
Tightening Methods for Scheduling in General Chemical Production Environments.”
Industrial & Engineering Chemistry Research 52 (9): 3407–23.
https://doi.org/10.1021/ie302741b.

———. 2013b. “Reformulations and Branching Methods for Mixed-Integer Programming
Chemical Production Scheduling Models.” Industrial & Engineering Chemistry Research
52 (10): 3832–41. https://doi.org/10.1021/ie303421h.

Velez, Sara, Arul Sundaramoorthy, and Christos T. Maravelias. 2013. “Valid Inequalities
Based on Demand Propagation for Chemical Production Scheduling MIP Models.” AIChE
Journal 59 (3): 872–87. https://doi.org/10.1002/aic.14021.

Wicaksono, Danan Suryo, and I. A. Karimi. 2008. “Piecewise MILP Under- and Overestimators
for Global Optimization of Bilinear Programs.” AIChE Journal 54 (4): 991–1008.

109

https://doi.org/10.1002/aic.11425.

