
GRAPH-STRUCTURED NONLINEAR PROGRAMMING:

PROPERTIES AND ALGORITHMS

by

Sungho Shin

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Chemical Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2021

Date of final oral examination: May 21, 2021

The dissertation is approved by the following members of the Final Oral Committee:

Victor M. Zavala, Associate Professor, Chemical and Biological Engineering

Reid Van Lehn, Assistant Professor, Chemical and Biological Engineering

Ross Swaney, Associate Professor, Chemical and Biological Engineering

Xiangru Xu, Assistant Professor, Mechanical Engineering

© Copyright by Sungho Shin 2021

All Rights Reserved

i

To my dear wife Jungeun.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES . vi

NOMENCLATURE . viii

LIST OF SYMBOLS . x

ABSTRACT . xii

1 Introduction . 1

1.1 Graph-Structured Nonlinear Programming 4
1.1.1 Formulation . 4
1.1.2 Special Cases . 7

1.2 Outline . 10

I Properties 15

2 Exponential Decay of Sensitivity . 16

2.1 Graph-Structured Matrix Properties . 18
2.1.1 Distance and Bandwidth . 18
2.1.2 Inverse of Graph-Structured Matrix 20

2.2 Nonlinear Programming Sensitivity . 23
2.3 Nodal Sensitivity Result . 28

3 Uniform Regularity Conditions . 34

3.1 Uniform Regularity Conditions . 35
3.2 Sufficient Conditions for Uniformly Bounded Lagrangian Hessian 40
3.3 Sufficient Conditions for Uniform SSOSC and LICQ 42

iii
Page

4 Dynamic Optimization . 47

4.1 Exponential Decay of Sensitivity . 49
4.2 Uniform Regularity from System-Theoretic Properties 50
4.3 Time-Invariant Setting . 58

5 Numerical Experiments . 61

5.1 Methods . 62
5.2 Results . 62
5.3 Additional Results: Quadrotor Motion Planning 65

II Algorithms 67

6 Overlapping Schwarz Method . 68

6.1 Subproblem Formulation and Sensitivity . 71
6.1.1 Subproblem Formulation . 71
6.1.2 Consistency . 74
6.1.3 Inheritance of Uniform Regularity . 76
6.1.4 Subproblem Sensitivity . 78

6.2 Algorithm . 79
6.3 Convergence . 82

6.3.1 Characterization of Partitions . 82
6.3.2 Convergence in a Nutshell . 83
6.3.3 Convergence Analysis . 85

7 Quadratic Programming . 89

7.1 Global Regularity Conditions . 91
7.2 Subproblem Sensitivity . 93
7.3 Convergence . 94

8 Linear Systems . 96

8.1 Algorithm . 98
8.2 Convergence . 100

9 Implementation . 105

9.1 Modeling . 106
9.1.1 Algebraic Modeling Language . 106
9.1.2 Graph-Based Modeling Language . 108

iv
Appendix

Page
9.2 Solution . 108

9.2.1 Problem-Level Decomposition . 108
9.2.2 Subproblem-Level Decomposition . 114
9.2.3 Linear Algebra-Level Decomposition 114

10 Numerical Experiments . 117

10.1 Problem Level Decomposition . 117
10.1.1 Methods . 117
10.1.2 Results . 118
10.1.3 Additional Results: DC Power System State Estimtaion 124

10.2 Linear Algebra-Level Decomposition . 126
10.2.1 Methods . 128
10.2.2 Results . 128

11 Conclusions and Future Work . 131

LIST OF REFERENCES . 136

APPENDIX Benchmark Algorithms . 150

APPENDIX Problem Formulations . 154

v

LIST OF FIGURES

Figure Page

1.1 Illustration of graphs associated with gsNLPs. 2

1.2 Illustration of graphs associated with non-gsNLPs. 10

5.1 Spread of empirical sensitivity coefficients. 63

5.2 Scatter plots of sensitivity coefficients. 64

5.3 Base and perturbed solutions of the quadrotor motion planning problem. 66

6.1 Schematic of the overlapping Schwarz method 70

6.2 Non-overlapping and overlapping partitions. 81

6.3 Illustration of the convergence of overlapping Schwarz Method. 84

9.1 Schematics of graph-based modeling and solution (top) and conventional model-
ing and solution (bottom). 115

10.1 Convergence profiles (in iteration steps) of overlapipng Schwarz method for dif-
ferent sizes of overlap. 119

10.2 Convergence profiles (in wall times) of overlapipng Schwarz method for different
sizes of overlap. 120

10.3 Convergence profiles (in iteration steps) of overlapipng Schwarz method for dif-
ferent regularizations. 121

10.4 Convergence profiles (in wall times) of overlapipng Schwarz method for different
regularizations. 122

10.5 Convergence profiles (in iteration steps) of overlapipng Schwarz method for dif-
ferent penalty parameters. 123

vi
Appendix
Figure Page
10.6 Convergence profiles (in wall times) of overlapipng Schwarz method for different

penalty parameters. 124

10.7 Convergence profiles (in iteration steps) of overlapipng Schwarz method, ADMM,
and Ipopt. 125

10.8 Convergence profiles (in wall times) of overlapipng Schwarz method, ADMM,
and Ipopt. 126

10.9 Left: Residual over iteration steps (c = 0.1); Right: Residual over iteration steps
ω = 1. 127

10.10 Solution time (top), linear solver time (middle), function evaluation time (bot-
tom) for transient gas network (left) and multi-period AC optimal power flow
(right) problems. 130

Appendix
Figure

B.1 Schematic of quadrotor. 156

B.2 Schematics of stochastic programming. 157

vii

NOMENCLATURE

EDS Exponential Decay of Sensitivity

OSM Overalpping Schwarz Method

NLP Nonlinear Program

gsNLP Graph-Structured Nonlinear Program

QP Quadratic Program

gsQP Graph-Structured Quadratic Program

LS Linear System

gsLS Graph-Structured Linear System

BLH Bounded Lagrangian Hessian

uBLH Uniformly Bounded Lagrangian Hessian

gBLH Globally Bounded Lagrangian Hessian

LICQ Linear Independence Constraint Qualifications

uLICQ Uniform Linear Independence Constraint Qualifications

gLICQ Global Linear Independence Constraint Qualifications

(S)SOSC (Strong) Second Order Sufficiency Conditions

uSSOSC Uniform Strong Second Order Sufficiency Conditions

gSSOSC Global Strong Second Order Sufficiency Conditions

SC Strict Complementarity

KKT Karush-Kuhn-Tucker

GE Generalized Equations

viii

ODE Ordinary Differential Equations

DAE Differential nad Algebraic Equations

PDE Partial Differential Equations

MPC Model Predictive Control

MHE Moving Horizon Estimation

LQR Linear Quadratic Regulator

RAS Restricted Additive Schwarz

GMRES Generalized Minimal Residual

DC Direct Current

AC Alternating Current

OPF Optimal Power Flow

PSSE Power System State Estimation

ALM Augmented Lagrangian Method

SQP Sequential Quadratic Programming

IPM Interior Point Method

ADMM Alternating Direction Method of Multipliers

ALADIN Augmented Lagrangian-based Alternating Direction Inexact Newton method

ix

LIST OF SYMBOLS

R Set of real numbers

R≥0 Set of non-negative real numbers

R>0 Set of positive real numbers

I Set of integers

I≥0 Set of non-negative integers

I>0 Set of positive integers

I[a,b] I ∩ [a, b]

I Identity matrix

0 Zero matrix or vector

[M1; · · · ;Mn] [M>
1 · · · M>

n]>

{Mi}i∈I [Mi1 ; · · · ;Mim], where I := {i1 < · · · < im}

{Mi,j}i∈I,j∈J {{M>
i,j}>j∈J }i∈I , where I = {i1 < · · · < im} and J = {j1 < · · · < jn}

v[i] i-th component of v

M [i, j] (i, j)-th component of M

v[I] {v[i]}i∈I
M [I,J] {M [i, j]}i∈I,j∈J
‖ · ‖ vector 2-norms or induced 2-norm of matrix

A � (�)B A−B is positive (semi)-definite

A > (≥)B each component of A−B is greater than (or equal to) zero

A+ x {x′ + x : x′ ∈ A}

x

f(X) {f(x) ∈ Y : x ∈ X}

∇wϕ(x) { ∂
∂w[j]

ϕ(x)[i]}i∈I[1,m],j∈I[1,s] , where w ∈ Rs and ϕ : Rn → Rm

∇2
yzφ(x) { ∂2

∂y[i]∂z[j]
φ(x)}i∈I[1,p],j∈I[1,q] , where y ∈ Rp, z ∈ Rq, and φ : Rn → R

xi

ABSTRACT

This dissertation studies graph-structured nonlinear programs, nonlinear optimization
problems whose algebraic structures are induced by graphs. A graph-structured nonlinear
program is a generalized abstraction for dynamic optimization, stochastic optimization, op-
timization with embedded partial differential equations, and network system optimization.
This generalized abstraction allows studying properties these problems share in common and
creating tailored solution algorithms.

In the first part, we study the fundamental property of solutions of graph-structured
nonlinear programs. Specifically, we study how strongly a nodal parametric perturbation
influences the nodal solution of another node. Building upon existing nonlinear program-
ming sensitivity theory, we prove that solution sensitivity decays exponentially with the
distance from the perturbation point on the graph. Remarkably, this result, which we call
the exponential decay of sensitivity, holds under fairly standard assumptions used in classi-
cal nonlinear programming sensitivity theory: strong second-order sufficiency conditions and
linear independence constraint qualifications. In addition, we establish uniform regularity
conditions, the sufficient conditions under which the sensitivity decay rate remains uniformly
bounded (independent of the size of the problem). Such uniformity allows studying sensi-
tivity behaviors of problems with arbitrarily large graphs.

The exponential decay of sensitivity enables the creation of a specialized decomposition
method for graph-structured nonlinear programs, the overlapping Schwarz method. In the
second part, we study the convergence properties and implementation of this method. The
overlapping Schwarz method has been traditionally used for the solution of sparse linear
systems, which typically arise in discretized partial differential equations. In this work, we
generalize this algorithm for graph-structured nonlinear programs. The proposed overlap-
ping Schwarz algorithm partitions the original graph domain into a set of overlapping sub-
domains, which yields a set of coupled subproblems, and solves the subproblems in parallel
and iteratively with the exchange of solution information at the boundary. The overlap is a
crucial element in this method. Based on the exponential decay of sensitivity, we show that
the algorithm locally converges if the overlap is sufficiently large and that the convergence
rate improves exponentially with the size of overlap under certain conditions. We discuss
several different variations of implementing the overlapping Schwarz method (problem level,
subproblem level, and linear algebra level). Finally, with diverse numerical examples, we
demonstrate the effectiveness of the proposed method.

xii

ACKNOWLEDGMENTS

First and foremost, I’d like to express my sincere gratitude to my advisor Prof. Victor
Zavala for his tireless support throughout my Ph.D. studies. He always encouraged me to
come up with my own ideas, listened to my thoughts, and be excited when I make research
progress (sometimes even more than I was). This not only gave me the confidence in doing
research but also made doing research more enjoyable. In retrospect, I believe this positive
reinforcement provided me with the opportunities to grow as a better researcher.

I am also grateful for my defense committee: Prof. Reid Van Lehn, Prof. Ross Swaney,
and Prof. Xiangru Xu, and my preliminary exam committee: Prof. Jim Rawlings, Prof.
James Dumesic, and Prof. Daniel Klingenberg. Especially, I was very fortunate to attend
Prof. Rawlings’ advanced process control class. Even after many years, what I learned from
his lectures is inspiring my research.

I’d also like to thank my colleagues. The Zavala group has had an exceptionally warm
and welcoming group culture, and I believe three of the first batch of students–Jordan Jalv-
ing, Ranjeet Kumar, and Apoorva Sampat–take full credit for building such a wonderful
environment. Thanks to their warm and caring personalities, everyone in the group could
feel welcomed, and all the group members, myself especially, were beneficiaries of such a
great group culture. Moreover, I want to thank Joshua Pulsipher and Weiqi Zhang for care-
fully proofreading this dissertation. Also, I’d like to thank Yankai Cao, Qiugang Lu, Philip
Tominac, Yicheng Hu, Alex Smith, and all the other group members for being awesome col-
leagues. One of the things I missed the most during the COVID-19 pandemic was exploring
the great restaurants in every Friday lunch with them.

I’d like to acknowledge my first internship supervisor, and soon-to-be my postdoc mentor,
Prof. Mihai Anitescu. His great insight has led us to the topic of overlapping decomposition,
and it has become one of the central themes of my research. He always had brilliant research
ideas and stimulated my intellectual curiosity. My graduate research has been tremendously
benefited from the continued collaboration with him. I’d also like to thank my second
internship supervisors, Dr. Carleton Coffrin and Dr. Kaarthik Sundar for their great help
in developing my first Julia package MadNLP.jl and examining its capabilities with different
energy infrastructure models. I’d also like to thank all the other collaborators, including
Prof. Ophelia Venturelli, Prof. Timm Faulwasser, and Prof. Mario Zanon, and Sen Na.
Each collaborative project gave me valuable lessons.

xiii

I thank Prof. Jong Min Lee for guiding me to pursue graduate studies. He was the one
who made me excited about process control for the first time (with his inspiring undergrad-
uate control course) and decide to come to Wisconsin to study it further. He has been a
great mentor throughout my time in Wisconsin, even when he was 6000 miles away.

I also thank many open-source software developers around the world. Many of the nu-
merical studies and software development projects would not have been possible without the
open-source community. Especially, my research has been greatly benefited from using Julia
Language. Thanks to its simplicity (but surprisingly without performance compromise), I
was able to pick up the language quickly and generate cool results. My research has also
benefited from many excellent open-source packages within Julia community like JuMP.jl,
Plots.jl, LightGraphs.jl, and PowerModels.jl.

I’d also like to thank my great friends Alex Chew, Ho-jae Lee, Joonjae Ryu, and Hochan
Chang for making my time in Madison much more memorable.

Finally, and most importantly, I want to thank my wife Jungeun for her unwavering love
and caring. Her presence was absolutely the strongest emotional support and the motivation
for moving forward.

Sungho Shin
Milwaukee, WI
May, 2021

1

Chapter 1

Introduction

Many decision-making problems in science and engineering are formulated as structured

optimization problems whose algebraic structures are induced by graphs. Examples include

dynamic optimization (the graph is a time horizon; e.g., optimal control, long-term planning,

and state estimation) [18,20], multi-stage stochastic programs (the graph is a scenario tree)

[126, 143], optimization problems constrained by discretized partial differential equations

(the graph is a discretization mesh) [23], and network optimization (the graph is a physical

network; e.g., energy networks, supply chains) [38, 46, 97, 174]. The graphs associated with

these problems are depicted in Figure 1.1. This observation motivates us to create a unifying

abstraction for structured optimization based on graph theory. This graph-based, unifying

abstraction gives rise to the main topic of the current dissertation, graph-structured nonlinear

programming (gsNLP). This abstraction allows studying several seemingly different problem

classes under a unifying perspective and enables discovering fundamental properties that

these problems share in common. Furthermore, the study of such properties allows the

creation of specialized solution algorithms for gsNLPs. This dissertation aims to study such

properties and algorithms for gsNLPs.

In Part I, we study the sensitivity of gsNLPs; specifically, we establish a fundamental

property of gsNLPs that we call the exponential decay of sensitivity (EDS). Our result implies

that if a gsNLP satisfies the regularity conditions given by strong second-order sufficiency

(SSOSC) and linear independence constraint qualifications (LICQ), the impact of a nodal

data perturbation on the nodal solution on another node decays exponentially with respect

2

Dynamic Optimization Stochastic Optimization PDE Optimization Network Optimization

Figure 1.1 Illustration of graphs associated with various gsNLPs: dynamic optimization,
stochastic optimization, optimization with embedded PDE, and network optimization.

to the distance from the perturbation point. This property holds for any gsNLP regardless of

the topology of the graph. Furthermore, under the uniform regularity conditions, which are

obtained by strengthening the SSOSC and LICQ, the decay rate can be set independently of

the problem size. This allows us to establish EDS for gsNLPs whose size may be indefinitely

large.

The EDS result has a number of practical implications. First, it helps understand and

characterize the behavior of the solution with respect to variations in the data. For instance,

in the context of dynamic optimization, EDS implies that the data in the far future (e.g.,

changes in the set-point or the disturbance forecast) time stages do not have a strong impact

on the decisions in the current time step. This observation enables the creation of efficient

discretization/approximation schemes for model predictive control (MPC) [84,151,166] and

helps explain the empirical observation that the closed-loop performance loss of finite-horizon

receding horizon control decreases with respect to the prediction horizon length [171]. In the

context of energy network optimization, EDS indicates that the remote disturbance (e.g.,

changes in the energy demand or the generator capacity) does not have a strong impact

on the decisions for the close generators; this observation leads to the creation of efficient

decentralized control and estimation schemes, which in turn enables modular design and

operation [153]. Moreover, EDS enables the creation of on-line optimization algorithms [120]

as well as decomposition algorithms (the main topic of the second part) [121,145,147,153].

3

In Part II, we study decomposition algorithms for gsNLPs. Many real-world examples

of gsNLPs are formulated as large-scale optimization problems which may defy the scope

of centralized, off-the-shelf optimization solvers. To address such a challenge, diverse de-

composition schemes for large-scale NLPs have been proposed in the literature; the existing

methods include Lagrangian decomposition [96, 111, 128, 137, 147], the alternating direction

method of multipliers (ADMM) [27, 148], the augmented Lagrangian based alternating di-

rection inexact Newton method (ALADIN) [56], parallel Newton methods [36, 136], and

Jacobi/Gauss-Seidel methods [150]. The basic tenet behind such algorithms is to decom-

pose the original intractable problem into smaller tractable subproblems and to coordinate

subproblem solutions by exchanging the primal-dual solution information. However, a dis-

advantage of these schemes is that convergence can be rather slow; in most cases the con-

vergence is linear and the convergence rate may be arbitrarily close to one. Thus, obtaining

a high-precision solution can be challenging in practice (e.g., see [107] for a benchmark of

different decomposition techniques).

The Overlapping Schwarz method (OSM) was originally developed for the solution of

large, sparse linear systems, which typically arise in discretized partial differential equations

(PDEs) [69]. We have recently generalized this method for graph-structured optimization

and demonstrated that it can effectively solve large graph-structured optimization instances

[121, 145, 147, 153]. As its name suggests, the OSM decomposes the full problem into a set

of smaller subproblems that are defined over overlapping subdomains. Then the subproblems

are solved in parallel and iteratively, and the convergence is promoted by exchanging the

primal-dual solution information at the boundary. The OSM is designed to exploit the EDS

using overlap, and the overlap plays a crucial role in the convergence of the algorithm. In

particular, we show that for general gsNLPs satisfying the regularity conditions and the

polynomial growth condition on the underlying graph topology, the local convergence of

the OSM is guaranteed if the size of overlap is sufficiently large, and the convergence rate

improves exponentially with the size of overlap. This result generalizes the convergence result

of our previous work, which were under quadratic programming [145, 153] and nonlinear

4

optimal control settings [121, 144]. With diverse numerical examples, we demonstrate that

this decomposition method is highly effective in solving large-scale gsNLPs.

In the remainder of the current chapter, we formally introduce the formulation of gsNLP.

Then, the relationship with special cases (dynamic, stochastic, PDE, and network optimiza-

tion) are discussed. The chapter concludes with an outline of the dissertation.

1.1 Graph-Structured Nonlinear Programming

1.1.1 Formulation

Graph-structured nonlinear programs are formulated as follows:

min
{xi}i∈V

∑

i∈V
fi({xj}j∈NG [i]; {pj}j∈NG [i]) (1.1a)

s.t. cEi ({xj}j∈NG [i]; {pj}j∈NG [i]) = 0, i ∈ V , (yEi) (1.1b)

cIi ({xj}j∈NG [i]; {pj}j∈NG [i]) ≥ 0, i ∈ V , (yIi). (1.1c)

Here, G = (V , E) is an undirected graph with the nonempty, strictly ordered node set V and

the edge set E ⊆ {{i, j} ⊆ V : i 6= j}; NG[i] := {j ∈ V : {i, j} ∈ E} ∪ {i} denotes the

closed neighborhood of i ∈ V on G; for each node i ∈ V , xi ∈ Rnxi is the primal variable

vector; pi ∈ Rnpi is the data vector; fi :
∏

j∈NG [i] R
nxj ×∏j∈NG [i] R

npj → R is the objective

function; cEi :
∏

j∈NG [i] R
nxj ×∏j∈NG [i] R

npj → Rn
yE
i is the equality constraint vector function;

cIi :
∏

j∈NG [i] R
nxj ×∏j∈NG [i] R

npj → Rn
yI
i is the inequality constraint vector function; and

yEi ∈ Rn
yE
i and yIi ∈ Rn

yI
i are the dual variable vectors associated with (1.1b) and (1.1c),

respectively. To enable compact notation, we define: ci(·) := [cEi (·); cIi (·)]; yi := [yEi ; yIi];

zi := [xi; yi]; nyi = nyEi + nyIi ; and nzi = nxi + nyi . Furthermore, we define x := {xi}i∈V ;

yE := {yEi }i∈V ; yI := {yIi }i∈V ; y := {yi}i∈V , z := {zi}i∈V ; and p := {pi}i∈V .

The gsNLP is composed of a collection of nodes i ∈ V wherein each node i has its own

nodal variables xi, nodal data pi, nodal objective function fi(·), and nodal constraint func-

tions cEi (·), cIi (·). However, the problem is not separable for each node because there exists

inter-node coupling through the objective and constraint functions. The nodal objective and

constraint functions at node i depend on the variables {xj}j∈NG [i] and data {pj}j∈NG [i] in the

5

neighboring nodes NG[i]. In other words, node i is coupled algebraically to its neighbors, and

the topology of such connectivity is dictated by the graph G. Throughout the dissertation,

we assume that the variables in (1.1) are continuous variables (as opposed to discrete vari-

ables in the mixed integer programming context), and the functions in (1.1) are sufficiently

smooth (formal assumption will be introduced later), but potentially nonconvex. Thus, the

problem is cast as a nonconvex, equality and inequality-constraint nonlinear program (NLP).

Throughout the paper, when we refer to something as a solution, it means a local solution

in the sense of [124, Chapter 12].

Remark 1.1 (Generality of Problem (1.1)). In some applications (e.g., energy networks), we

might encounter variables, data, objectives, and constraints defined over edges (not explicitly

expressed in Problem (1.1)). Such information can be captured within “super-nodes” that

encapsulate edges (this is possible because the formulation allows for nodes with different

numbers of variables and constraints). Alternatively, one may treat edges in the graph as

nodes and rewrite the problem with a newly defined “lifted graph” G̃ = (Ṽ , Ẽ), where Ṽ :=

V ∪ E and Ẽ := {{i, e} : i ∈ V , i ∈ e, e ∈ E} (an order needs to be assigned for Ṽ). In

this way, one can reformulate the problem so that it fits into (1.1) form. Thus, the problem

under study (1.1) is adequately general to capture diverse settings in different applications.

Remark 1.2. The formulation in (1.1) assumes that the modeler is aware of the graph

structure. However, such intuition may not be readily available to the modeler. In such a

case, one may still model the problem as a graph-structured problem by viewing each primal

and dual variable as a node. One can construct the set of edges later by inspecting the

connectivity pattern in the objective and constraints.

Related Work: The exploitation of graph structure within optimization has received in-

creasing attention in the literature. The study of structured optimization problems traces

back to the early works of Dembo [7, 46]; therein, nonlinear network optimization models,

6

which generalize hydroelectric power system scheduling, financial planning, matrix estima-

tion, air traffic control problems, were studied. The authors also provide numerical ex-

periments demonstrating that a structure-exploiting solver can be significantly faster than

a general-purpose one. A similar type of network-constrained abstraction is utilized in a

number of other works [8]. The algebraic structure in the optimization problem is often ex-

ploited in the context of decomposition. Rantzer and coworkers studied the use of the dual

decomposition method for solving optimization problems in a distributed manner, where

the problem is decomposed for each subsystem [128]. The stability properties of such dis-

tributed controllers have been studied in subsequent works [74–76]. A similar (but often

more performant) method ADMM is also widely used for exploiting the block structure

within the optimization problems [59, 131, 136, 148]. Houska, Diehl, and coworkers have

developed an augmented Lagrangian-based alternating direction inexact Newton method,

which solves a structured optimization problem by exploiting structure in the subproblem

solution [91]. Although the authors did not explicitly make the connection with the graphs,

the separability in the objective and the inequality constraints implicitly assume that the

algebraic structure of the problem is induced by the sparsity of linear constraint mapping.

Such a method is applied for the distributed solution of structured optimization problems,

such as optimal power flow and optimal control [57, 106]. In subsequent work, nonlinear

optimization problems over tree graphs were studied and a specialized algorithm has been

developed [100]. Not only these, there exist myriads of works in the literature where the

problem’s algebraic structure is exploited to enable more efficient and scalable computa-

tions [36, 40, 58, 79, 94, 102, 137]. Tang, Allman, Daoutidis, and coworkers have studied the

community detection method that identifies the optimal decomposition of structured nonlin-

ear optimization problems [9,44,159]. The modeling aspect of graph-structured optimization

problems is studied in [97–99]; therein, the authors have posed an optimization problem of

which algebraic structure is induced by a graph. Then, the practical advantages of modeling

the problem in such a form are discussed; specifically, it facilitates modular construction of

the model and the use of decomposition strategies.

7

1.1.2 Special Cases

The gsNLP formulation (1.1) is a unifying abstraction for dynamic, stochastic, PDE, and

network optimization. We now discuss each of these examples and explain how they can be

abstracted as gsNLPs.

Dynamic optimization problems are the problems in which a series of decisions are made

over a specified time horizon [130]. Typically, the summation (integration in the case of a

continuous-time problem) of stage cost functions over a specified time horizon is minimized

while the dynamics of the system are enforced as constraints for the variables in the ad-

jacent time stages. Examples of dynamic optimization problems include model predictive

control [18, 20, 130], state estimation [129], multi-period optimal power flow [73, 105], tran-

sient gas network operations [174, 175]. The algebraic structure of dynamic optimization

problems can be represented as a chain of temporal dependencies (see Figure 1.1); here, the

time indices represent the nodes and the dynamic coupling produces the edges. The state and

input variables in each stage constitute the nodal decision variables, dynamic and state/input

constraints constitute the nodal constraints, the stage cost functions constitute the nodal ob-

jective function terms, and the set-points and disturbance forecasts constitute the nodal data.

Dynamic optimization problems are often formulated as a semi-infinite continuous-domain

optimization problem constrained by ordinary differential equations (ODEs) or differential

and algebraic equations (DAEs). Those problems can be converted into finite-dimensional

NLPs by applying discretization techniques [22]. For such cases, the temporal dependency

pattern makes discretized problems gsNLPs with linear graphs. We discuss dynamic opti-

mization problems further in Chapter 4 and study their sensitivity properties. The readers

are referred to Appendix B.1, B.2, B.8, B.9 for practical examples of dynamic optimization.

Decision-making problems under uncertainty over multiple time stages can be formulated

as multi-stage stochastic programs [93, 104, 114, 126]. Multi-stage stochastic programming

framework has been successfully adopted in energy system planning [126], capacity and pro-

duction planning [93, 104], water resources management [114], battery system control [108].

These problems seek to minimize the expected cost over the specified temporal horizon while

8

seeking to satisfy the dynamic coupling constraints and state/input constraints. In partic-

ular, they make decisions over an uncertainty scenario tree, wherein each node represents

a particular realization of the uncertain parameters up to a certain time stage. The dy-

namic and state/input constraints are enforced for each node, and the objective function

is expressed by a weighted sum of the nodal objectives (the weight is the probability of

the realization of the node). Such a multi-stage stochastic program can be considered as a

gsNLP whose graph is a scenario tree. The decision variables associated with each node in

the scenario tree can be considered as nodal decision variables, and the uncertain parameters

in each node can be considered as the nodal data, and so on. Oftentimes, the uncertainty

space is continuous (e.g., the uncertain parameter is normally distributed), and a certain

discretization method needs to be applied to construct a scenario tree. The readers are

referred to Appendix B.3 for a practical example of stochastic optimization.

Control and optimization problems for distributed systems are often cast as optimiza-

tion problems constrained by partial differential equations and boundary conditions. These

are often called PDE-based, or PDE-constrained optimization [22,23,45,88]. Typical PDE-

constrained optimization problems seek to minimize the integration of certain performance

metric functions over the domain of interest by making the best use of its flexibility (usually

by manipulating the controlled variables) while satisfying the PDEs and the boundary condi-

tions. Since the original problem is an infinite-dimensional continuous-domain optimization

problem, in most cases, analytically solving the problem is not possible, and an approxi-

mate solution is often sought. Such an approximate solution can be obtained by solving

a discretized PDE-constrained optimization problem [87]. These problems are formulated

as large-scale NLPs that directly embed the discretization of the PDEs over the domain of

interest. These problems can be considered as gsNLPs induced by its discretization mesh,

wherein the discretization points in the mesh become the node and the discretized differential

expressions produce the couplings between the nodes. The readers are referred to Appendix

B.4 for a practical example of PDE-based optimization.

9

Many optimization problems for network systems fall into the category of graph-structured

problems. For example, optimal power flow problems seek to determine the best-operating

levels for the power generators in the network that minimally use the operation cost while

meeting the given electricity demands throughout the network [39,67,95,156]. For this prob-

lem, the power network itself can be regarded as the graph for the problem. The decision

variables for each node (power generation and voltages) can be regarded as the nodal vari-

ables, the physical limits and power flow equations can be regarded as nodal constraints, the

nodal operation costs can be regarded as the nodal objective functions, and the electricity

demand at the nodes can be regarded as nodal data. Similarly, problems arising in power

system state estimation (PSSE) [6, 118, 141], natural gas network operations [174, 175], and

supply chains [79] can also be formulated as gsNLPs. Oftentimes, the problems are cast as

dynamic optimization problems over networks possibly with embedded partial differential

equations; one of such examples is the transient gas network operation/estimation prob-

lem [73,105,174,175]. The readers are referred to Appendix B.6, B.5 for practical examples

of network optimization.

Finally, we discuss what type of problems are not gsNLPs of interest. Trivially, any NLP

can be modeled as a single-node gsNLP in which all the variables, constraints, objective

terms, and data are located within a single node. However, such an abstraction makes

our subsequent theoretical analysis trivial. For example, our EDS results characterize the

interplay between multiple nodes and use the distance between the nodes to characterize the

decay in the sensitivity; in the single-node graph case, there are no inter-node interactions,

and the distance is always zero. Thus, in order for our analysis to be non-trivial, the graph

needs to be sparse and substantially large in its diameter (the longest distance between two

nodes on the graph). Alternatively, one can model the problem as a complete graph (as in

Figure 1.2, first panel), but this also makes the diameter of the graph one. There exists a

number of large-scale nonlinear programming instances that do not admit such sparse and

large graphs. First, any type of dense optimization problem does not admit such a graph.

Those dense models often arise from statistical model learning problems. This is because,

10

Statistical Learning
Two-stage Stocahstic Programming

Parameter Estimation

Figure 1.2 Illustration of graphs associated with non-gsNLPs: statistical learning,
two-stage stochastic programming and parameter estimation.

for typical statistical models, the structure of the model is dense; i.e., all the variables are

coupled with other variables [78, 162]. Also, even if the problem itself is sparse, there may

not exist a graph that has a sufficiently long diameter; two-stage stochastic optimization

problems [13,25] and parameter estimation problems [149,172] are such examples. For those

problems, there exists a set of variables that are coupled with all the other variables (those

could be first-stage variables in the two-stage stochastic program or the global parameters

in parameter estimation problems). Due to the existence of such variables, the distance

between any pair of nodes is not greater than 2; consequently, this makes our results trivial.

The graphs associated with these problems are depicted in Figure 1.2.

1.2 Outline

The rest of the dissertation is divided into two parts, followed by the conclusions. In

Part I, the results on the EDS are presented, and in Part II, the results on the OSM are

presented. The detailed outlines of each chapter are as follows.

Chapter 2: This chapter presents the main theoretical results on EDS. First, we study

the properties of graph-induced matrices. Our result states that the i, j-block of a graph-

structured matrix decays exponentially with the distance between i and j on the graph,

where i, j are the nodes in the graph. Then, this result is applied to classical NLP sensitivity

11

theory, yielding the main theorem: under the regularity conditions (SSOSC and LICQ), the

sensitivity of the nodal solution decays exponentially with respect to the distance from the

perturbation point.

Chapter 3: This chapter presents the uniform regularity conditions for gsNLPs. These

conditions are strengthened versions of the standard regularity conditions, used in Chapter

2. They enable uniformly bounding the sensitivity decay rates derived in Chapter 2 by

constants that are independent of the problem size. Thus, under uniform regularity, the sen-

sitivity decay rate remains unchanged even if the size of the problem is extended indefinitely.

However, analytically checking the satisfaction of uniform regularity for indefinitely growing

problems can be challenging. To address this issue, we also provide composability principles

for uniform regularity; with this, one can check the uniform regularity for the smaller blocks

and then compose these conditions to obtain the uniform regularity for the full problem.

Chapter 4: This chapter presents the application of the results in Chapter 2, 3 to dynamic

optimization problems. We apply the composability principles in Chapter 3 to show the

uniform regularity of the dynamic optimization problems for controllable and observable

dynamical systems. This showcases the capability of the composability principles presented

in Chapter 3. Our result reveals the relationship between controllability and LICQ and that

between observability and SSOSC.

Chapter 5: This chapter presents numerical demonstrations of the EDS using diverse

examples of gsNLPs, including dynamic, stochastic, PDE, and network optimization. Fur-

thermore, we illustrate how the satisfaction of regularity conditions affects the decay rate.

This concludes Part I.

Chapter 6: This chapter presents the OSM for solving gsNLPs and analyzes its local

convergence based on the EDS. The subproblem for the OSM is constructed by collecting

the variables, objective terms, and constraints over the associated subdomain and incorpo-

rating the coupled constraints as augmented Lagrangian. The coupled variables are fixed

to the current guess of the solution. We show that this subproblem formulation satisfies

the consistency (the full solution meets the first-order condition for the subproblems) and

12

inheritance of regularity (subproblems satisfy uniform regularity if the full problem satisfies

uniform regularity). This allows us to apply the results in Chapter 2, 3 to analyze the sen-

sitivity of the subproblems, and show that the impact of misspecification of the boundary

solutions decays exponentially. Using such a sensitivity result, we analyze the convergence

of the algorithm; specifically, we show the exponential improvement of the local convergence

rate with respect to the size of overlap.

Chapter 7: This chapter presents the specializations of the results in Chapter 6 for graph-

structured convex quadratic programs (gsQP). The QP setting allows establishing a stronger

convergence result. In particular, under the strengthened uniform regularity conditions,

which we call global regularity, we show the global EDS. With this global sensitivity result,

we show the global convergence of the OSM.

Chapter 8: This chapter presents the specializations of the results in Chapter 6 for graph-

structured linear systems (gsLS). We target indefinite and potentially non-symmetric matrix,

as the systems with definite matrices can be considered as QPs. Although any gsLS is a

gsQP whose objective is constant, we discuss a simpler algorithm than the direct application

of the result in Chapter 7; this method facilitates a flexible and efficient implementation.

We establish the global convergence of the proposed method, but this result should be

caveated, as one cannot guarantee the bounded conditioning of the subproblems. Here,

we also establish a formal connection with the OSM for sparse linear systems (commonly

referred to as restricted additive Schwarz).

Chapter 9: This chapter discusses the implementation of the OSM for solving gsNLPs.

Here, we discuss not only the implementation of solution algorithms but also the implemen-

tation of algebraic and graph-based modeling tools. This is because, for the implementation

of OSM, a flexible algebraic and graph-based modeling tool is required; thus, the modeling

interface is not a separate issue. We show that our implementation of algebraic and graph-

based modeling interface allows such flexible manipulation. For the solution algorithm, we

discuss applying overlapping Schwarz at three different levels: problem-level, subproblem-

level, and linear algebra-level. Problem-level decomposition applies overlapping Schwarz

13

directly to the problem, while subproblem and linear algebra-level decomposition apply the

OSM within a certain NLP solution algorithm (e.g., augmented Lagrangian method, sequen-

tial quadratic programming, interior point method).

Chapter 10: This chapter showcases the capability of overlapping Schwarz decomposi-

tion (in particular, problem-level decomposition and linear algebra-level decomposition) for

solving large-scale gsNLPs. We compare the performance with centralized solver Ipopt and

standard decomposition method ADMM. The results indicate that the OSM is certainly

much faster than ADMM, and also faster than the centralized solver for sufficiently large

instances. This chapter concludes Part II.

Chapter 11: This chapter concludes the dissertation with a summary of the contributions

and a brief overview of the future research plan.

How to Read: The dissertation can be read sequentially. However, if the reader is mainly

concerned about the theoretical development, the reader can only read Chapter 2, 3, 6,

and skip the rest of the chapters, as the main theoretical contributions are concentrated in

those chapters. Chapter 4, 7, 8 present the specialization of the main theoretical results

to more specialized settings; they do not simply present the corollaries, but they present

further insights one can obtain from a more specialized context. As such, if any of the

particular settings is of interest to the reader, it is recommended to read those chapters too.

If the reader is mainly concerned about the convergence result for linear systems, reading

Section 2.1 and Chapter 8 would be sufficient. If the reader is mainly interested in the

implementation of the OSM, the reader can directly read Chapter 9; however, to understand

the algorithm more deeply, it is recommended to also read Chapter 2, 3, 6, 7, 8.

Relationship with the Published Works: The results in Chapter 2, 3, 5 are recently sub-

mitted for publication in [146], and the results in Chapter 4 is submitted for publication

in [152]. The results in Chapter 6, 7, 8 are loosely based on [121,145,147,153], but they are

significantly modified from the published results, and many new results are added. A num-

ber of numerical studies in Chapter 10 are presented in the published works [145, 147, 153],

but many of them are first presented in this dissertation. The newly presented results in

14

Chapter 6, 7, 8, 9, 10 will be submitted for a journal publication after depositing the current

dissertation.

Part I

Properties

15

16

Chapter 2

Exponential Decay of Sensitivity

This chapter seeks to answer the following question:

How does the primal-dual solution at node i ∈ V change

when the data at node j ∈ V is perturbed?
(Q1)

We provide an answer to this question by identifying conditions under which we can find

nodal sensitivity coefficients {Cij ∈ R≥0}i,j∈V satisfying:

‖z†i (p)− z†i (p′)‖ ≤
∑

j∈V
Cij‖pj − p′j‖, i ∈ V , (2.1)

where z†(p) and z†(p′) are solutions of NLP (1.1) for data p and p′, respectively. Moreover, p

and p′ are perturbations of the base data p? (associated with base local primal-dual solution

z?).

Our main result in this chapter (Theorem 2.2) shows that if: (i) the strong second order

sufficiency condition (SSOSC) and the linear independence constraint qualification (LICQ)

hold at the base solution z?, and (ii) p and p′ are sufficiently close to p?, then (2.1) holds with

Cij = ΥρddG(i,j)/4−1e+ . Here, Υ > 0 and ρ ∈ (0, 1) are constants, dG(i, j) is the graph distance

between nodes i and j on G, and d·e+ denotes the smallest non-negative integer that is greater

than or equal to the argument. In other words, solution sensitivity decays exponentially with

respect to the distance to the perturbation point. We call this property exponential decay

of sensitivity (EDS). This result is a specialization of classical sensitivity results for general

NLPs [26,51,63,132,134] to a graph-structured setting. Specifically, classical results establish

an overall sensitivity coefficient C ∈ R≥0 satisfying ‖z†(p)−z†(p′)‖ ≤ C‖p−p′‖, while here

17

we establish nodal sensitivity coefficients {Cij}i,j∈V satisfying (2.1). Our results thus provide

intuition into how perturbations propagate through the structure of the NLP.

Related Work: Nonlinear programming sensitivity has been extensively studied in the

literature; early works include [63, 132, 176]. Those works study the sensitivity of nonlinear

programs under the twice continuous differentiability, SOSC, LICQ, and strict complemen-

tarity (SC) assumptions. The SC allows locally reducing the Karush-Kuhn-Tucker (KKT)

conditions to a set of nonlinear equations. Thus, the local sensitivity of the solutions of the

KKT conditions can be studied based on the standard implicit function theorem. Those

works show the Lipschitz continuity of the local solution mapping. Subsequently, the KKT

conditions for the nonlinear programs have been generalized into so-called generalized equa-

tions (GEs) [133, 135]. In [134], the sensitivity results of the solutions of GE have been

established based on the strong regularity assumptions, which are the regularity conditions

adopted in our analysis. The analysis based on GEs allows relaxing the SC assumption

but requires assuming strong second sufficiency (but certainly SSOSC+LICQ is weaker than

SSOSC+LICQ+SC). Subsequently, these results have been published as a part of a review

paper [64] and books [26,51]. Question (Q1) has been recently addressed in specific settings

such as nonlinear dynamic optimization [119, 121, 144, 165] and graph-structured quadratic

programs [145,153]. Our work generalizes such results for nonlinear settings.

Addressing (Q1) is crucial for understanding solution stability of a wide range of prob-

lem classes, for designing approximation schemes (often cast as parametric perturbations)

[21, 49, 120, 151, 165], and for designing solution algorithms [121, 144, 145]. For instance, it

has been recently shown that EDS plays a central role in assessing the impact of coarsen-

ing schemes [84, 151] for dynamic optimization and in establishing convergence of OSM for

graph-structured problems [121, 144, 145]. From an application standpoint, our results pro-

vide new insights on how perturbations propagate through graphs and on how the problem

formulation influences such propagation. Specifically, we provide empirical evidence that

positive objective curvature and constraint flexibility tend to dampen propagation (promote

sensitivity decay). Such insights can be used, for instance, to design systems that dampen

18

(or magnify) perturbations or to identify system elements that are sensitive (or insensitive)

to perturbations.

2.1 Graph-Structured Matrix Properties

2.1.1 Distance and Bandwidth

This section derives basic properties of graph-structured matrices. The results in this

section will be crucial in deriving the sensitivity results of interest. In particular, the study

of nodal sensitivity eventually boils down to the analysis of graph-structured matrices. This

is because the sensitivity of the solution of nonlinear programs can locally be evaluated

by that of quadratic programs, and the solution sensitivity of quadratic programs can be

expressed by a solution of linear systems. Thus, the results established in this section will

serve as an analytical tool for the subsequent analysis.

Properties of graph-structured positive definite matrices are reported in [47, 153]; here,

we establish properties for general (non-symmetric and indefinite) matrices. We begin by

introducing the notion of distance on graphs and establish basic properties for such distance.

Definition 2.1 (Graph Distance and Diameter). The distance dG(i, j) between nodes i, j ∈ V
on a finite, connected graph G = (V , E) is the number of edges in the shortest path connecting

them. If i = j, dG(i, j) = 0. If there does not exist a path that connects i, j, dG(i, j) = ∞.

Furthermore, the diameter DG of G is the largest distance between any pair of nodes in V.

Proposition 2.1. The distance dG : V × V → I≥0 ∪ {∞} is a metric on V; that is,

(a) dG(i, j) ≥ 0 for any i, j ∈ V;

(b) dG(i, j) = 0 if and only if i = j;

(c) dG(i, j) = dG(j, i) for any i, j ∈ V;

(d) dG(i, j) ≤ dG(i, k) + dG(k, j) for any i, j, k ∈ V.

The proof of this result is straightforward and is thus omitted. We now introduce the

concept of graph-structured matrix bandwidth.

19

Definition 2.2 (Graph-Structured Matrix Bandwidth). Consider a matrix X ∈ Rm×n, a

graph G = (V , E), and index sets I = {Ii}i∈V , J = {Ji}i∈V that partition1 I[1,m] and I[1,n],

respectively. Matrix X is said to have bandwidth B induced by an ordered triple (G, I,J), if

B is the smallest non-negative integer such that X[i][j] = 0 for any i, j ∈ V with dG(i, j) > B,

where X[i][j] := X[Ii, Jj].

We refer to X[i][j] as the [i][j]-block of matrix X. The bandwidth defined above is a

generalization of the standard notion of matrix bandwidth [77, Section 1.2.1]. If the matrix

X ∈ Rn×n is square, V = I[1,n], E = {{i, i + 1}}n−1
i=1 , and I = J = {{i}}ni=1, then the

graph-structured matrix bandwidth reduces to the standard definition of matrix bandwidth.

Definition 2.2 enables a formal definition of graph-structured matrices; specifically, a

graph-structured matrix is a matrix X that has a triple (G, I,J) such that the bandwidth

B ofX, induced by (G, I,J), is much smaller than the diameterDG of G (i.e., B � DG). This

corresponds to the notion of a block-banded matrix. Block-diagonal matrices whose blocks

are defined by I,J (including identity matrices and zero matrices) always have bandwidth

of zero (by Proposition 2.1(b)). We now state basic properties of the matrix bandwidth.

Lemma 2.1. Consider X ∈ Rm×n with bandwidth no greater than BX induced by (G, I,J);

we have that:

(a) X> has bandwidth not greater than BX induced by (G,J , I);

(b) if Y ∈ Rm×n has bandwidth not greater than BY induced by (G, I,J), then X + Y has

bandwidth not greater than max(BX , BY) induced by (G, I,J);

(c) if W ∈ Rn×k has bandwidth not greater than BW induced by (G,J ,K), then XW has

bandwidth not greater than BX +BW induced by (G, I,K).

Proof of (a). We have that (X>)[i][j] = (X>)[Ji][Ij] = (X[Ij][Ji])
> = (X[j][i])

>. From the

assumption that X has bandwidth not greater than BX and Proposition 2.1(c), (X>)[i][j] =

1In this paper, we call a family {X1, · · · , Xk} of subsets of X to be a partition if
⋃K

k=1 Xk = X and
X1, · · · , Xk are disjoint; here, we allow Xk to be empty sets. Note that this differs from the standard
definition of a partition, where the nonemptiness of Xk is enforced. This modification allows us to handle
nodes with empty variables, constraints, or data.

20

0 if dG(i, j) > BX ; therefore, X has bandwidth not greater than BX , and induced by

(G,J , I).

Proof of (b). We have that X[i][j] = 0 and Y[i][j] = 0 if dG(i, j) > max(BX , BY), which yields

(X + Y)[i][j] = 0 if dG(i, j) > max(BX , BY). Thus, X + Y has bandwidth not greater than

max(BX , BY), and induced by (G, I,J).

Proof of (c). If dG(i, j) > BX + BW , from Proposition 2.1(d) we have that for any k ∈ V ,

dG(i, k) > BX or dG(j, k) > BW . Thus, if dG(i, j) > BX + BW , we have (XW)[i][j] =
∑

k∈V X[i][k]W[k][j] = 0 (where the first equality comes from the block matrix multiplication

law and the second equality comes from observing that dG(i, k) > BX or dG(j, k) > BW).

Therefore, XW has bandwidth not greater than BX +BW , and induced by (G, I,K).

Lemma 2.1 implies that graph-structured properties of a matrix are preserved under

transposition, addition, and multiplication (as long as the associated index sets are compat-

ible). Using Lemma 2.1, we can establish properties for the inverse of a graph-structured

matrix (this is the main result of this section).

2.1.2 Inverse of Graph-Structured Matrix

Using the basic result in Section 2.1.1, we show the main result of this section. In

particular, we analyze the norm of the block [i][j] component of the inverse of a graph-

structured matrix (more precisely, a multiplication of the inverse a graph-structured matrix

with other graph-structured matrices). We show that such block [i][j] component decays

exponentially with respect to dG(i, j), and the decay becomes faster as the conditioning of

the matrix improves.

Theorem 2.1. Consider a nonsingular matrix X ∈ Rn×n with bandwidth not greater than

BX ≥ 1 induced by (G,K,P), Y ∈ Rn×m with bandwidth not greater than BY induced by

(G,K,J), and W ∈ R`×n with bandwidth not greater than BW induced by (G, I,P); for

constants σX ≥ σ(X), σY ≥ σ(Y), σW ≥ σ(W), and 0 < σX ≤ σ(X) (where σ(·) and σ(·)

21

denote the largest and smallest non-trivial singular values of the argument),2 the following

holds:

‖(WX−1Y)[i][j]‖ ≤
σXσY σW

σ2
X

(
σ2
X − σ2

X

σ2
X + σ2

X

)⌈
dG(i,j)−BX−BY −BW

2BX

⌉
+

, i, j ∈ V , (2.2)

where (WX−1Y)[i][j] := (WX−1Y)[Ii, Jj] and d·e+ is the smallest non-negative integer that

is greater than or equal to the argument.

Proof. By definition of singular values and the assumptions on σX , σY , σW , and σX , we

have

σ2
XI � σ(X)2I � XX> � σ(X)2I � σ2

XI.

From this, one can obtain:

σ2
X − σ2

X

σ2
X + σ2

X

I � I − 2

σ2
X + σ2

X

XX> � −σ
2
X + σ2

X

σ2
X + σ2

X

I. (2.3)

From the nonsingularity of X, XX> is nonsingular. This observation implies that:

WX−1Y =
2

σ2
X + σ2

X

WX>
(

2

σ2
X + σ2

X

XX>
)−1

Y (2.4a)

=
2

σ2
X + σ2

X

WX>
(
I − (I − 2

σ2
X + σ2

X

XX>)

)−1

Y (2.4b)

=
2

σ2
X + σ2

X

WX>
(∞∑

q=0

(
I − 2

σ2
X + σ2

X

XX>
)q)

Y, (2.4c)

=
2

σ2
X + σ2

X

∞∑

q=0

WX>
(
I − 2

σ2
X + σ2

X

XX>
)q

Y. (2.4d)

The second equality follows from a simple algebraic manipulation, the third equality follows

from [90, Corollary 5.6.16] and (2.3), and the last equality follows from the fact that the

series in (2.4d) converges (due to (2.3)). By Lemma 2.1(c), XX> has bandwidth not greater

than 2BX induced by (G,K,K). In addition, from Lemma 2.1, we see that

WX>
(
I − 2

σ2
X + σ2

X

XX>
)q

Y

2Non-trivial in the sense that we exclude the singular values that are trivially zero due to the nonsquare
size of the matrix.

22

has bandwidth not greater than (2q + 1)BX + BY + BW and induced by (G, I,J). By

extracting submatrices defined by the row index Ii and the column index Jj from (2.4), one

can obtain:

(WX−1Y)[i][j] =
2

σ2
X + σ2

X

∞∑

q=q0(i,j)

(
WX>

(
I − 2XX>

σ2
X + σ2

X

)q
Y

)

[i][j]

where

q0(i, j) :=

⌈
dG(i, j)−BX −BY −BW

2BX

⌉

+

;

the summation over q = 0, · · · , q0(i, j)− 1 is zero; because such q satisfy

(2q + 1)BX +BY +BW < dG(i, j).

Thus, (
WX>

(
I − 2

σ2
X + σ2

X

XX>
)q

Y

)

[i][j]

= 0.

Using the triangle inequality and the fact that the matrix norm of a submatrix is smaller

than that of the original matrix,

‖(WX−1Y)[i][j]‖ ≤
2

σ2
X + σ2

X

∞∑

q=q0(i,j)

∥∥∥∥WX>
(
I − 2XX>

σ2
X + σ2

X

)q
Y

∥∥∥∥ (2.5)

≤ 2

σ2
X + σ2

X

∞∑

q=q0(i,j)

σWσX

(
σ2
X − σ2

X

σ2
X + σ2

X

)q
σY

≤ σXσY σW
σ2
X

(
σ2
X − σ2

X

σ2
X + σ2

X

)⌈
dG(i,j)−BX−BY −BW

2BX

⌉
+

.

The second inequality follows from the submultiplicativity of the matrix norm and (2.3);

and the last inequality follows from the summation of the geometric series. Therefore, (2.2)

is obtained.

The result indicates that the norm of the [i][j]-block of WX−1Y decays exponentially

with respect to the distance between nodes i and j on G; the decay rate becomes faster

(smaller) as the condition number σ(X)/σ(X) of X decreases; and the decay rate becomes

faster as the bandwidths BX decrease. This property will be key in establishing EDS for the

23

gsNLP (1.1) and hints at the fact that EDS arises from connectivity induced by the graph

(at the linear algebra level).

Related Work: Theorem 2.1 is a generalization of [153, Theorem 1] (which assumes

positive definiteness of X and Y = W = I). We also note that [47] has studied exponential

decay of the components of the inverse of banded matrices. Specifically, in [47, Theorem 2.4],

exponential decay for indefinite banded matrices (with the standard definition of bandwidth)

is established. Furthermore, in [47, Proposition 5.1], a less general form of Theorem 2.1 is

presented; however, graph-structured matrices are not formally introduced, and only positive

definite matrices are considered. Theorem 2.1 generalizes these results by introducing the

notion of graph-structured matrices and by allowing non-symmetric and indefinite matrices.

2.2 Nonlinear Programming Sensitivity

We now aim to provide an answer to question (Q1). The sketch of our analysis is as

follows: we invoke classical results of NLP sensitivity theory [51, 134] to obtain an explicit

representation for the one-sided directional derivative of the primal-dual solution mapping

with respect to the data; the representation involves the inverse of a graph-structured ma-

trix. The results from the previous section are then applied to this representation to establish

bounds on the nodal sensitivity coefficients. Finally, the one-sided directional derivative is

integrated over the line segment between a pair of data points that are within the neigh-

borhood of the base data to obtain the result in the form of (2.1). This yields explicit

expressions for (Υ, ρ).

To enable compact notation, we introduce the following definitions:

f(x;p) :=
∑

i∈V
fi({xj}j∈NG [i]; {pj}j∈NG [i])

cE(x;p) := {cEi ({xj}j∈NG [i]; {pj}j∈NG [i])}i∈V
cI(x;p) := {cIi ({xj}j∈NG [i]; {pj}j∈NG [i])}i∈V
c(x;p) := {ci({xj}j∈NG [i]; {pj}j∈NG [i])}i∈V ,

24

nx :=
∑

i∈V nxi , nyE :=
∑

i∈V nyEi , nyI :=
∑

i∈V nyIi , ny :=
∑

i∈V nyi , nz :=
∑

i∈V nzi , and

np :=
∑

i∈V npi . Boldface symbols are used whenever a variable or a function is associated

with more than one node. Using these definitions, (1.1) can be expressed as a general

parametric NLP of the form:

P(p) : min
x
f(x;p)

s.t. cE(x;p) = 0, (yE)

cI(x;p) ≥ 0, (yI).

We denote this problem as P(p); its Lagrange function L : Rnz × Rnp → R is given by

L(z;p) := f(x;p)− y>c(x;p).

We use z? ∈ Rnz to denote the primal-dual base solution of P(p?). We denote the primal

and dual components of z? = {z?i }i∈V = {[x?i ; y?i]}i∈V as x? := {x?i }i∈V and y? = {y?i }i∈V ,

respectively. We say that z? is a primal-dual solution if x? satisfies the first-order optimality

conditions with Lagrange multiplier y? (see [124]).

We now make key assumptions that are necessary to establish our main sensitivity result.

Assumption 2.1 (Twice Continuous Differentiability of Functions). Given the base solution

z? and data p?, the functions f : Rnx × Rnp → R and c : Rnx × Rnp → Rny are twice

continuously differentiable in the neighborhood of [x?;p?].

Assumption 2.2 (Strong Second Order Sufficiency). Given the base solution z? and data

p?, the SSOSC for P(p?) are satisfied at z?.

Assumption 2.3 (Linear Independence Constraint Qualifications). Given the base solution

z? and data p?, the LICQ for P(p?) are satisfied at z?.

We recall that SSOSC requires positive definiteness of the reduced Hessian of the La-

grangian at z?. The reduced Hessian is the Hessian projected on the null space defined

by equality constraints and active inequality constraints with nonzero duals. LICQ requires

25

that the constraint Jacobian defined by equality and active inequality constraints are linearly

independent at z?. These requirements are stated formally as:

ReH(∇2
xxL(z?;p?),∇xc(x?;p?)[A0(p?), :]) � 0 (SSOSC)

σ(∇xc(x?;p?)[A1(p?), :]) > 0. (LICQ)

Here, ReH(H, J) := Z>HZ is the reduced Hessian, where Z is a null-space matrix of J , and

A0(p?) := AE ∪ {i ∈ AI : c(x?)[i] = 0, y?[i] 6= 0} (2.6)

A1(p?) := AE ∪ {i ∈ AI : c(x?)[i] = 0}, (2.7)

where AE and AI are the set of equality and inequality constraint indices within I[1,ny],

respectively.

SSOSC and LICQ are standard assumptions used in NLP sensitivity theory. For instance,

Assumption 2.2, 2.3 guarantees strong regularity of the GE representation of the first-order

optimality conditions of (1.1) at z? [134]. Strong regularity is then used to establish prop-

erties for the solution mapping for the parametric NLP P(p). In what follows, we refer to

p? as the base data and z? as the base solution.

Lemma 2.2. Under Assumption 2.1, 2.2, 2.3, there exist neighborhoods P ⊆ Rnp of p? and

Z ⊆ Rnz of z? and a continuous function z† : P → Z such that z†(p) is a primal-dual

solution of P(p) that satisfies SSOSC and LICQ. Moreover, for any q := {qi}i∈V ∈ Rnp, the

one-sided directional derivative of z†(·) is given by:

Dqz
†(p) := lim

h↘0

z†(p+ qh)− z†(p)

h
;

with Dqx
†(p) = ξ†i (p, q), Dqy

†(p, q) = η†(p, q). We also have that ξ†(p, q) and η†(p, q)[A1(p)]

is a primal-dual solution of the quadratic program:

QP(p, q) : min
ξ

1

2
ξ>G(p)ξ + ξ>E(p)q, (2.8a)

s.t. J(p)[i, :]>ξ +K(p)[i, :]q = 0, i ∈ A0(p), (η[i]) (2.8b)

J(p)[i, :]>ξ +K(p)[i, :]q ≥ 0, i ∈ A1(p) \ A0(p), (η[i]) (2.8c)

26

and η†(p, q)[I[1,ny] \ A1(p)] = 0 (i.e., the free dual variables are fixed to zero), where:

A0(p) := AE ∪ {i ∈ AI : c(x†(p))[i] = 0, y†(p)[i] 6= 0} (2.9a)

A1(p) := AE ∪ {i ∈ AI : c(x†(p))[i] = 0} (2.9b)

G(p) := ∇xxL(z†(p);p) (2.9c)

E(p) := ∇xpL(z†(p);p) (2.9d)

J(p) := ∇xc(x†(p);p) (2.9e)

K(p) := ∇pc(x†(p);p). (2.9f)

Moreover, a unique primal-dual solution of QP(p, q) exists for any p ∈ P and q ∈ Rnp;

thus, ξ†(·, ·) and η†(·, ·) are well-defined.

Note that the results in Lemma 2.2 are well-known. We provide the proof below to point

the readers to the relevant results in the literature.

Proof. The results in [51, Theorem 2G.8] ensure semidifferentiability (which guarantees con-

tinuity) of the solution of the first-order optimality conditions for P(p) over a certain neigh-

borhood of p?. This result is established by using the GE representation of the first-order

conditions. Furthermore, [51, Theorem 2G.9] establishes that over a certain neighborhood

P, the solution mapping of the GE satisfies SSOSC and LICQ; that is, within P, the so-

lution mapping for the GE is the solution mapping for P(p) at which SSOSC and LICQ

are satisfied. Moreover, by [51, Theorem 2G.8], the one-sided directional derivative of the

solution mapping for the GE (which exists for any direction q ∈ Rnp by semidifferentiabil-

ity [51, Theorem 2D.1]) can be evaluated by using the linearized GE. The linear GE are the

first-order optimality conditions for QP(p, q) (see [51, Equation (35)]); here, the first-order

conditions are necessary and sufficient conditions for the optimality due to the convexity

QP(p, q) (guaranteed by SSOSC and LICQ of z? for the original problem). As such, the

one-sided directional derivative of the solution mapping for P(p) can be evaluated by solv-

ing QP(p, q). Finally, the strong regularity of the GE at z? (obtained under SSOSC and

27

LICQ) guarantees that there exists a unique solution of the linearized GE [134], which in

turn guarantees the existence of a unique solution of QP(p, q).

Under Lemma 2.2, the rate of change Dqz
†(p) of the primal-dual solution of P(p) (for a

given direction q) can be quantified by using the solution of QP(p, q). For given p and q, the

parameters in QP(p, q) can be evaluated explicitly and thus its solution can be calculated;

as such, Lemma 2.2 provides a computational procedure to evaluate primal-dual solution

sensitivity.

The quadratic program QP(p, q) plays a central role in our analysis and we thus examine

its properties in more detail. The first-order conditions of this problem are:

G(p)ξ +E(p)q + J>η = 0 (2.10a)

J(p)[i, :]ξ +K(p)[i, :]q = 0, i ∈ A0(p) (2.10b)

J(p)[i, :]ξ +K(p)[i, :]q ≥ 0, i ∈ A1(p) \ A0(p) (2.10c)

η[i] ≥ 0, i ∈ A1(p) \ A0(p) (2.10d)

(J(p)[i, :]ξ +K(p)[i, :]q)η[i] = 0, i ∈ A1(p) \ A0(p). (2.10e)

Under SSOSC and LICQ for P(p?) at z?, these conditions are necessary and sufficient for

any solution of QP(p, q). From the complementarity condition (2.10e), one can observe that

there exists A0(p) ⊆ A′(p, q) ⊆ A1(p) such that:

J(p)[i, :]ξ +K(p)[i, :]q = 0, i ∈ A′(p, q) (2.11a)

η[i] = 0, i ∈ A1(p) \ A′(p, q). (2.11b)

are satisfied at ξ†(p, q), η†(p, q). Thus, from (A.8), (2.11), and η[i] = 0 for i ∈ I[1,ny]\A1(p)

(from Lemma 2.2), we have:


 G(p) J(p)[A′(p, q), :]>

J(p)[A′(p, q), :]




 ξ

η[A′(p, q)]


 = −


 E(p)

K(p)[A′(p, q), :]


 q

η[I[1,ny] \ A′(p, q)] = 0.

(2.12)

28

The linear equation (2.12) provides a relationship between [ξ†(p, q);η†(p, q)] and q; however,

it does not provide an explicit relationship because A′(p, q) depends on q.

By rearranging [ξ†(p, q);η†(p, q)] one can obtain ζ†(p) = {[ξ†i (p, q); η†i (p, q)]}i∈V , where

ξ†(p, q) = {ξ†i (p, q)}i∈V , η†(p, q) = {η†i (p, q)}i∈V . To perform such rearrangement, we

consider a permutation φ : I[1,n] → I[1,n] that achieves z[φ(i)] = [ξ;η][i]. This permutation

enables the following definition:

B0(p) := φ(I[1,nx] ∪ (A0(p) + nx)) (2.13a)

B1(p) := φ(I[1,nx] ∪ (A1(p) + nx)) (2.13b)

B′(p, q) := φ(I[1,nx] ∪ (A′(p, q) + nx)). (2.13c)

Finally, [ξ;η] can be rearranged in such a way that the relationship Dqz
†(p) = ζ†(p) (from

Lemma 2.2) can be used; this yields:

Dqz
†(p)[B′(p, q)] = − (H(p)[B′(p, q),B′(p, q)])

−1
F (p)[B′(p, q), :]q, (2.14a)

Dqz
†(p)[I[1,n] \ B′(p, q)] = 0, (2.14b)

where:

H(p) := ∇zzL(z†(p);p) (2.15a)

F (p) := ∇zpL(z†(p);p). (2.15b)

Here, the nonsingularity of H(p)[B′(p, q),B′(p, q)] is guaranteed by the fact that G(p) is

positive definite on the null-space of J(p)[A0(p), :]. This follows from the satisfaction of

LICQ and SSOSC (from Lemma 2.2) and [124, Lemma 16.1].

2.3 Nodal Sensitivity Result

We now are ready to establish the nodal sensitivity result.

Related Work: The nodal solution sensitivity was studied in a number of previous works in

the literature. The nodal sensitivity of dynamic programs has been studied in [119,165,166].

In particular, the work of [165] first established the decay of stage-wide solution sensitivity

29

under inequality-constrained linear-quadratic control setting, and [166] subsequently gener-

alized the inequality constraint setting. The study of sensitivity in the nonlinear dynamic

program was established in [119]. The sensitivity of graph-structured quadratic programs

has been studied in [145]. Finally, the nodal sensitivity result for the gsNLPs is established

in [146] (the basis of this chapter).

First, we observe that H(p) and F (p) are graph-structured matrices; these have band-

width not greater than two, induced by (G, I, I) and (G, I,K), and where for i ∈ V ,

Ii := I∑
j∈V,j<i npj+[1,nzi]

(2.16)

Ki := I∑
j∈V,j<i npj+[1,npi]

. (2.17)

Note that I := {Ii}i∈V and K := {Ki}i∈V partition I[1,nz] and I[1,np], respectively. We now

observe that:

Hij(p) := ∇2
zizj
L(z†(p);p) = (H(p))[i][j] (2.18a)

Fij(p) := ∇2
zipj
L(z†(p);p) = (F (p))[i][j]. (2.18b)

From this we can see see that, if dG(i, j) > 2 holds, then (H(p))[i][j] = 0 and (F (p))[i][j] = 0

hold. The reason that the bandwidth may be greater than one is as follows. Suppose

that V = {1, 2, 3} and E = {{1, 2}, {2, 3}}; then the constraints at node 2 can be coupled

with variables/data at node 1 and 3. This produces potential non-zero coupling between

variables/data at node 1 and node 3 (i.e., H13 6= 0); here, dG(i, j) = 2. Likewise, the

variables that are within distance 2 can have potential coupling.

The submatrices ofH(p) and F (p) are also graph-structured (induced by properly chosen

index sets). In particular, H(p)[B,B] and F [B, :] with B ⊆ I[1,n] have bandwidth not greater

than two induced by (G, IB, IB) and (G, IB,K), where IB := {Ii ∩ B}i∈V .

We thus see that (2.12) involves the inverse of a graph-structured matrix; as such, Theo-

rem 2.1 can be used for establishing the desired sensitivity bounds. By combining Theorem

2.1 and Lemma 2.2, one can establish the following result.

30

Lemma 2.3. Suppose Assumption 2.1, 2.2, 2.3 hold, and suppose that, for given p ∈ P

(defined in Lemma 2.2) and q := {qi}i∈V ∈ Rnp, we have σH(p, q), σF (p, q), and σH(p, q)

such that:

σH(p, q) ≥ σ(H(p)[B′(p, q),B′(p, q)]) (2.19a)

σF (p, q) ≥ σ(F (p)[B′(p, q), :]) (2.19b)

0 < σH(p, q) ≤ σ(H(p)[B′(p, q),B′(p, q)]), (2.19c)

where B′ is defined in (2.13c); then the following holds for any i ∈ V:

‖Dqz†i (p, q)‖ ≤
∑

j∈V

σH(p, q)σF (p, q)

σH(p, q)2

(
σH(p, q)2 − σH(p, q)2

σH(p, q)2 + σH(p, q)2

)⌈
dG(i,j)

4
−1

⌉
+ ‖qj‖. (2.20)

Proof. For simplicity, we denote B′(p, q) as B′. From the fact that H(p)[B′,B′] is always

nonsingular (as discussed after (2.15)) we have that σH(p, q) satisfying (2.19c) always exists.

By inspecting the block structure of (2.14) we can see that:

Dqz
†(p)[Ii ∩ B′] =

∑

j∈V
−((H(p)[B′,B′])−1F (p)[B′, :])[i][j]qj, (2.21)

where IB′ := {Ii ∩ B′}i∈V and K := {Ki}i∈V (defined in (2.16)) are used for index sets. We

have already established that H(p)[B′,B′] has bandwidth not greater than two, induced by

(G, IB′ , IB′) and that F (p)[B′, :] has bandwidth not greater than two, induced by (G, IB′ ,K).

By applying Theorem 2.1, we obtain:

‖((H(p)[B′,B′])−1F (p)[B′, :])[i][j]‖ ≤
σH(p, q)σF (p, q)

σH(p, q)2

(
σH(p, q)2 − σH(p, q)2

σH(p, q)2 + σH(p, q)2

)⌈
dG(i,j)

4
−1

⌉
+

.

(2.22)

Now note that ‖Dqz†i (p)‖ ≤ ‖Dqz†(p)[Ii ∩B′]‖+ ‖Dqz†(p)[Ii \ B′]‖, and recall from (2.14b)

that Dqz
†(p)[Ii \ B′] = 0. Hence, by applying (2.22) to (2.21), and applying triangle in-

equality, we obtain (2.20).

Lemma 2.3 establishes that the dependence of ‖Dqz†i (p)‖ on perturbation pj decays with

dG(i, j). However, the right-hand side of (2.22) still depends on p, q and this complicates

31

the use of Lemma 2.3 (needed to quantify sensitivity behavior). To express this result as

in (2.1), wherein the expressions on the right-hand side are independent of p, q, we exploit

the continuity of singular values [77, Corollary 8.6.2]. This gives us the main result of this

chapter.

Theorem 2.2 (Exponential Decay of Sensitivity (EDS)). Under Assumption 2.1, 2.2, 2.3,

for given ε > 0, σH ≥ σH(p?), σF ≥ σF (p?), and 0 < σH ≤ σ
H

(p?), where

σH(p) := max{σ(H(p)[B,B]) : B0(p?) ⊆ B ⊆ B1(p?)}

σF (p) := max{σ(F (p)[B, :]) : B0(p?) ⊆ B ⊆ B1(p?)}

σ
H

(p) := min{σ(H(p)[B,B]) : B0(p?) ⊆ B ⊆ B1(p?)},

there exists a neighborhood Pε of p? such that the following holds for any p,p′ ∈ Pε:

‖z†i (p)− z†i (p′)‖ ≤
∑

j∈V
Υρ

⌈
dG(i,j)

4
−1

⌉
+‖pj − p′j‖, i ∈ V , (2.23)

with Υ :=
σHσF
σ2
H

+ ε and ρ :=
σ2
H − σ2

H

σ2
H + σ2

H

+ ε.

Proof. From the continuity of z†(·) in the neighborhood of p? and the continuity of c(·, ·) in

the neighborhood of [z?;p?], there exists a neighborhood P̃ ⊆ P of p? such that, for p ∈ P̃

and i ∈ I[1,ny],

c(x?)[i] > 0 ⇒ c(x†(p))[i] > 0,

y?[i] 6= 0 ⇒ y†(p)[i] 6= 0.

These conditions and complementarity slackness imply that for p ∈ P̃, we have A0(p?) ⊆
A0(p) and A1(p) ⊆ A1(p?); that is, B0(p?) ⊆ B0(p) and B1(p) ⊆ B1(p?). From this result

and the fact that B0(p) ⊆ B′(p, q) ⊆ B1(p), we have that:

σ(H(p)[B′(p, q),B′(p, q)]) ≤ σH(p) (2.24a)

σ(F (p)[B′(p, q), :]) ≤ σF (p) (2.24b)

σ(H(p)[B′(p, q),B′(p, q)]) ≥ σ
H

(p). (2.24c)

32

By the twice-continuous differentiability of L(·, ·) and the continuity of z†(·), we have that

H(·) is continuous. The same holds true for its submatrices: H(·)[B,B] with B0(p?) ⊆ B ⊆
B1(p?). From the continuity of singular values with respect to its entries [77, Corollary 8.6.2],

we have that σ(H(·)[B,B]) and σ(H(·)[B,B]) are continuous for any B0(p?) ⊆ B ⊆ B1(p?);

accordingly, since a maximum and a minimum of a fixed and finite number of continuous

functions is continuous, we have that σH(p), σF (p), σ
H

(p) are continuous with respect to

p in P̃. Thus, there exists a convex neighborhood Pε ⊆ P̃ of p? wherein the following are

satisfied:

σH(p)σF (p)

σ
H

(p)2
≤ σH(p?)σF (p?)

σ
H

(p?)2
+ ε (2.25a)

σH(p)2 − σ
H

(p)2

σH(p)2 + σ
H

(p)2
≤
σH(p?)2 − σ

H
(p?)2

σH(p?)2 + σ
H

(p?)2
+ ε. (2.25b)

Here, note that σ
H

(p?) > 0 because σ(H [B,B]) > 0 holds for any B0(p?) ⊆ B ⊆ B1(p?)

(as discussed in the proof of Lemma 2.3). By applying (2.24) and (2.25) to Lemma 2.3, we

obtain:

‖Dqz†i (p)‖ ≤
∑

j∈V

(
σH(p?)σF (p?)

σ
H

(p?)2
+ ε

)(
σH(p?)2 − σ

H
(p?)2

σH(p?)2 + σ
H

(p?)2
+ ε

)⌈
dG(i,j)

4
−1

⌉
+

‖qj‖

≤
∑

j∈V

(
σHσF
σ2
H

+ ε

)(
σ2
H − σ2

H

σ2
H + σ2

H

+ ε

)⌈
dG(i,j)

4
−1

⌉
+ ‖qj‖

≤
∑

j∈V
Υρ

⌈
dG(i,j)

4
−1

⌉
+‖qj‖, (2.26)

for any p ∈ Pε and q ∈ Rnp . Finally, since we have chosen Pε to be convex, for any p,p′ ∈ Pε,

the line segment between p,p′ is within Pε. Thus, we have:

‖z†i (p)− z†i (p′)‖ ≤
∥∥∥∥
∫ 1

0

Dp′−pz
†
i ((1− t)p+ tp′)dt

∥∥∥∥

≤
∫ 1

0

‖Dp′−pz†i ((1− t)p+ tp′)‖dt

≤
∑

j∈V
Υρ

⌈
dG(i,j)

4
−1

⌉
+‖pj − p′j‖,

33

where the first inequality is from Newton-Leibniz, the second inequality follows from triangle

inequality for integrals, and the last inequality follows from (2.26).

Theorem 2.2 establishes the sensitivity bounds {Cij = ΥρddG(i,j)/4−1e+}i,j∈V that appeared

in Question (Q1). One can observe that Υ > 0 and ρ ∈ (0, 1) hold; consequently, we have

that the upper bound of the nodal sensitivity decays exponentially as dG(i, j) increases. We

can also see that (Υ, ρ) depend on the singular values of the submatrices of H(p?), F (p?),

which are submatrices of the full Hessian matrix ∇2L(z?;p?). Therefore, the singular values

of the submatrices of H(p?) and F (p?) play important roles in sensitivity behavior.

Remark 2.3. One can establish EDS for a more general version of gsNLPs, in which cou-

pling is allowed within the expanded neighborhood:

NB
G [i] := {j ∈ V : dG(i, j) ≤ B}, (2.27)

with B > 1. Such an NLP arises when algebraic coupling between nodes extends beyond

immediate neighbors. In such a case, the matrices H(p) and F (p) (and their submatrices)

have bandwidths not greater than 2B. For this more general setting, the corresponding results

for Theorem 2.2 can be established; in particular, if the rest of the assumptions in Theorem

2.2 remain the same, the following holds:

‖z†i (p)− z†i (p′)‖ ≤
∑

j∈V
Υρ

⌈
dG(i,j)

4B
−1

⌉
+‖pj − p′j‖. (2.28)

We can observe that the exponential decay rate increases (the decay becomes slower) as the

constant B increases. This implies that we require a small coupling radius B in order to

have fast decay of sensitivity (which makes intuitive sense).

34

Chapter 3

Uniform Regularity Conditions

An interesting class of gsNLPs is that in which the underlying graph is a subgraph of an

infinite-dimensional graph. Examples include time-dependent problems (in which we might

want to extend the horizon) and discretized PDE optimization (in which we might want to

expand the domain). To analyze this setting, we consider a family of problems {P(k)(·)}k∈K
with a potentially infinite problem index set K. The associated quantities are introduced

accordingly; {G(k) = (V(k), E(k))}k∈K, {f (k)(·)}k∈K, {c(k)(·)}k∈K. Also, a set of data {p?(k)}k∈K
and the associated base solutions {z?(k)}k∈K are considered. The submatrices {H(k)(p

?)}k∈K,

{F (k)(p
?)}k∈K of the full Hessian matrix can be defined as in (2.15) for each k.

This chapter aims to establish sufficient conditions for:

sup
k∈K

σH,(k)(p
?
(k)) < +∞; (3.1a)

sup
k∈K

σF ,(k)(p
?
(k)) < +∞; (3.1b)

inf
k∈K

σ
H,(k)

(p?(k)) > 0, (3.1c)

where σH,(k)(p
?
(k)), σF ,(k)(p

?
(k)), and σ

H,(k)
(p?(k)) are defined in Theorem 2.2, but the problem

index k is added. One can observe that, if (3.1) is violated, Υ(k) may become indefinitely

large and ρ(k) may approach one (thus making the bounds derived in Theorem 2.2 not

particularly useful). Hence, ensuring (3.1) is crucial for guaranteeing a moderately bounded

base sensitivity magnitude Υ(k) and a fast sensitivity decay rate ρ(k).

We call (3.1) uniform boundedness conditions; in addition, we call a quantity to be

uniform in k if the quantity is independent of the index k. Note that (3.1) holds trivially if

35

K is finite and Assumption 2.1, 2.2, 2.3 hold for each k ∈ K. However, even if K is finite,

it is necessary for Theorem 2.2 to be practically useful that infk∈K σH,(k)
(p?(k)) is sufficiently

bounded away from zero and that supk∈K σH,(k)(p
?
(k)) and supk∈K σF ,(k)(p

?
(k)) are bounded

above by a moderately large number. As such, the results in this section provide useful

information even if K is finite (and even if K is a singleton). Hereafter, we will drop the

notation for the dependency on k as well as p (e.g., H ← H(k)(p
?)). This is because (i)

even if we assume that there might be multiple problem of interest, we study the condition

that applies uniformly to each problem; thus, we do not need to specify the problem index

k each time; and (ii) p is fixed to p? for the rest of the discussion in this section.

3.1 Uniform Regularity Conditions

We now state key uniform regularity assumptions that enable uniform boundedness (3.1).

These assumptions provide basic uniform parameters from which we can establish explicit

bounds for the quantities in (3.1).

Assumption 3.4 (L-Uniformly Bounded Lagrangian Hessian). There exists L ≥ 0 such

that the following holds:

‖∇2
zzL(z?;p?)‖, ‖∇2

zpL(z?;p?)‖ ≤ L. (3.2)

Assumption 3.5 (γ-Uniform SSOSC). There exists γ > 0 such that

ReH(G,J0) � γI, (3.3)

where J0 := J [A0, :]; here, A0, G, and J are defined in (2.9).

Assumption 3.6 (β-Uniform LICQ). There exists β > 0 such that

J1(J1)> � βI, (3.4)

where J1 := J [A1, :]; here, A1 and J are defined in (2.9).

Assumption 3.4 is an extension of Assumption 2.1; in particular, it assumes that the

second order derivative not only exists, but also is uniformly bounded. Assumption 3.5,

36

3.6 are extensions of Assumption 2.2, 2.3, respectively; in particular, the assumptions are

strengthened by introducing additional uniform paramters, γ, β > 0. With parameters

L, γ, β, we can establish the uniform bounds in (3.1). First, the upper bounds (3.1a)-(3.1b)

are trivially obtained.

Lemma 3.4. Under Assumption 3.4,

σ(H), σ(F) ≤ L.

Proof. Follows from thatH , L are the submatrices of the full Lagrangian Hessian∇zzL(z?;p?)

and ∇zpL(z?;p?), respectively.

To establish a lower bound for σ
H

, we prove the following lemmas.

Lemma 3.5. Under Assumption 3.4, 3.5, 3.6, we have that:

σ
H
≥
(

2

γ
+

8µL2

γ3β
+

4L

γ2β

)−1

(1 + µL)−1 , (3.5)

where µ := (2L2/γ + γ + L)/β.

We first prove that G+µ(J0)>J0 is uniformly positive definite (recall that SSOSC does

not necessarily guarantee positive definiteness of G).

Lemma 3.6. Under Assumption 3.4, 3.5, 3.6,

G + µ(J0)>J0 � (γ/2)I.

Proof. From Lemma 3.7, ‖H‖ ≤ L; this implies that its submatricesG,J0 satisfy σ(G), σ(J0) ≤
L. The smallest eigenvalue of G+ µ(J0)>J0 is obtained from:

min
w

w>(G+ µ(J0)>J0)w (3.6a)

s.t. ‖w‖ = 1. (3.6b)

37

By fundamental theorem of linear algebra, any w ∈ Rnx can be expressed as w = ZwZ+Y wY ,

where the columns of Z form an orthonormal basis for the null space of J0 and the columns

of Y form an orthonormal basis for the row space of J0. We have that

‖wZ‖2 + ‖wY ‖2 = 1 (3.7)

‖ZwZ‖ = ‖wZ‖ (3.8)

‖Y wY ‖ = ‖wY ‖, (3.9)

which follows from (3.6b) and orthogonality of Z and Y . The objective (3.6a) satisfies:

w>(G+ µ(J0)>J0)w (3.10)

= w>ZZ
>GZwZ + 2w>Y Y

>GZwZ + w>Y Y
>GY wY + µw>Y Y

>(J0)>J0Y wY

≥ γ‖wZ‖2 − 2‖G‖‖ZwZ‖‖Y wY ‖ − ‖G‖‖Y wY ‖2 + µλ(Y >(J0)>J0Y)‖wY ‖2

≥ γ(1− ‖wY ‖2)− 2σ(G)‖wZ‖‖wY ‖ − σ(G)‖wY ‖2 + µλ(J0Y Y >(J0)>)‖wY ‖2

≥ γ(1− ‖wY ‖2)− 2L‖wY ‖ − L‖wY ‖2 + µλ(J0(J0)>)‖wY ‖2

≥ γ − 2L‖wY ‖+ (µβ − γ − L)‖wY ‖2,

where λ(·) denotes the smallest eigenvalue of the symmetric matrix argument. The equality

follows from J0Z = 0; the first inequality follows from (i) Assumption 3.5, (ii) submultiplica-

tivity of matrix norms, and (iii) the fact that w>Mw ≥ λ(M)‖w‖2 for positive definite M ;

the second inequality comes from (i) Equation (3.7), (ii) the fact that the induced 2-norm

is equal to the largest singular value, and (iii) the equality λ(MM>) = λ(M>M) for square

M ; the third inequality follows from (i) Lemma 3.7 and (ii) J0Y Y > = J0 since Y is an

orthogonal matrix whose columns span the row space of J0; and the last inequality follows

from Assumption 3.6.

Since V is nonempty, we have that D > 0; furthermore, we have that M 6= 0 from

SSOSC and MICQ and thus L 6= 0 holds. This implies that µβ − γ − L = 2L2/γ > 0.

Accordingly, the quadratic expression on the right-hand side of the last inequality of (3.10)

is lower-bounded by:

w>(G+ µ(J0)>J0)w ≥ γ − L2

µβ − γ − L =
γ

2
.

38

Proof of Lemma 3.5. It suffices to show that σ(H [B,B]) for any B0 ⊆ B ⊆ B1 is lower

bounded by the right-hand-side of (3.5). Moreover, we know that H [B,B] is a permutation

of:

G (J ′)>

J ′,


 (3.11)

where J ′ := J [A, :], and A := (φ−1(B) \ I[1,nx])−nx; here, φ : I[1,n] → I[1,n] is a permutation

that achieves z[φ(i)] = [ξ;η][i]. It thus suffices to show that the lowest singular value of the

matrix in (3.11) with A0 ⊆ A ⊆ A1 is lower bounded by the right-hand side of (3.5).

We now make the following observation:

(J ′)>J ′ � (J0)>J0; (3.12a)

λ(J ′(J ′)>) ≥ λ(J1(J1)>); (3.12b)

here, the first inequality results from

(J ′)>J ′ − (J0)>J0 = J [A \ A0, :]>J [A \ A0, :] � 0

. To establish the second inequality, we consider a unit vector w ∈ Rm such that w[A] is

the eigenvector of J ′(J ′)> associated with the smallest eigenvalue and w[I[1,m] \A] = 0. We

can see that:

λ(J1(J1)>) ≤ w[A1]>J1(J1)>w[A1] = λ(J ′(J ′)>); (3.13)

here, the first inequality follows from the fact that λ(J1(J1)>) is the smallest eigenvalue, and

the equality follows from the fact that w[A1 \A] = 0. This establishes the second inequality

in (3.12).

We now study the inverse of the matrix in (3.11); note that σ(H) = ‖H−1‖ and


G (J ′)>

J ′



−1

=


G+ µ(J ′)>J ′ (J ′)>

J ′



−1 
I µ(J ′)>

I


 (3.14a)

39

=


T + µT (J ′)>SJ ′T T (J ′)>S

SJ ′T




I µ(J ′)>

I


 , (3.14b)

where T := (G+ µ(J ′)>J ′)−1, and S := (J ′(G+ µ(J ′)>J ′)(J ′)>)−1; here, the first equality

can be easily verified; and the second equality follows from [15, Proposition 2.8.7]. Now

observe that:

λ(G+ µ(J ′)>J ′) ≥ λ(G+ µ(J0)>J0) (3.15a)

≥ γ/2; (3.15b)

here, the first inequality follows from (3.12) and the second inequality follows from Lemma

3.6. Furthermore,

λ(J ′(G+ µ(J ′)>J ′)(J ′)>) ≥ λ(G+ µ(J ′)>J ′)λ(J ′(J ′)>)

≥ γβ/2;

here, the first inequality follows from

min
‖w‖≤1

w>(J ′(G+ µ(J ′)>J ′)(J ′)>)w ≥ min
‖w‖≤1

λ(G+ µ(J ′)>J ′)‖(J ′)>w‖2

≥ λ(G+ µ(J ′)>J ′)λ(J ′(J ′)>),

and the second inequality follows from (3.15) and (3.12). Thus, ‖T‖ ≤ 2/γ and ‖S‖ ≤ 2/γβ.

By using Lemma 3.8 (will be introduced later), the triangle inequality, the submultiplicativity

of matrix norms, and the fact that G, J ′ are submatrices of H , we have:
∥∥∥∥∥∥


T + µT (J ′)>SJ ′T T (J ′)>S

SJ ′T



∥∥∥∥∥∥
≤ 2

γ
+

8µL2

γ3β
+

4L

γ2β
(3.16a)

∥∥∥∥∥∥


I µ(J ′)>

I



∥∥∥∥∥∥
≤ 1 + µL. (3.16b)

Therefore, from (3.14) and (3.16), we obtain:
∥∥∥∥∥∥


G (J ′)>

J ′



−1∥∥∥∥∥∥
≤
(

2

γ
+

8µL2

γ3β
+

4L

γ2β

)
(1 + µL) . (3.17)

40

Because (3.17) holds for any A0 ⊂ A ⊂ A1, the desired condition is obtained; the proof is

complete.

We have established in Lemma 3.5 that Assumption 3.4, 3.5, 3.6 guarantee the uniform

regularity conditions (3.1). The result is summarized as follows.

Theorem 3.3. Under Assumption 3.4, 3.5, 3.6, we have that:

σH ≤ L (3.18a)

σF ≤ L (3.18b)

σ
H
≥
(

2

γ
+

8µL2

γ3β
+

4L

γ2β

)−1

(1 + µL)−1 , (3.18c)

where µ is defined in Lemma 3.5 and σH , σF , σH are defined in (2.2).

Proof. The result follows directly from Lemma 3.4, 3.5.

Now that we have the uniform upper and lower bounds of σH , σF , σH , all the quantities

in Theorem 2.2 can be expressed using uniform parameters: L, γ, and β. We additionally

have the ε > 0, but that can be chosen arbitrarily; e.g., one can choose it as ρ/10. Therefore,

we can uniformly bound the exponential decay parameters (Υ, ρ) using Theorem 3.3.

3.2 Sufficient Conditions for Uniformly Bounded Lagrangian Hes-
sian

We now show that the uBLH (3.2) can be established from the composable conditions.

In particular, we assume the boundedness conditions for each node and the boundedness in

the graph degree to establish the uniform boundedness condition for the full problem. The

key assumptions are stated as follows.

Assumption 3.7 (Uniformly Bounded Degree of Graphs). There exists a uniform upper

bound D ∈ I>0 of the degrees of nodes in G. That is, for any i ∈ V,

|NG[i]| ≤ D.

41

Assumption 3.8 (Uniformly Bounded Second Derivatives). There exists C ≥ 0 such that

‖Hij‖, ‖Fij‖ ≤ C

for any i, j ∈ V, where Hij and Fij are defined in (2.18).

Lemma 3.7. Under Assumption 3.7, 3.8, we have that

σH , σF ≤ CD2.

In order to prove this lemma, we first need to establish a general inequality for matrix

norms. The following lemma is a generalization of inequality ‖M‖ ≤ (‖M‖1‖M‖∞)1/2 [77,

Corollary 2.3.2].

Lemma 3.8. Consider M ∈ Rm×n with index set families I and J that partition I[1,m] and

I[1,n], respectively. The following holds:

σ(M) ≤
((

max
i∈V

∑

j∈V
‖M[i][j]‖

)(
max
j∈V

∑

i∈V
‖M[i][j]‖

))1/2

, (3.19)

where M is a graph-structured matrix induced by (G, I,J).

Proof. The inequality holds trivially if M = 0; we thus assume M 6= 0. Consider the left

singular vector v ∈ Rn of M with singular value σ(M). We have that σ(M)2v = MM>v.

We let u = M>v, which yields σ(M)2v = Mu; accordingly,

σ(M)2
∑

i∈V
‖v[i]‖ =

∑

i∈V

∥∥∥∥∥
∑

j∈V
M[i][j]u[j]

∥∥∥∥∥ (3.20a)

≤
∑

j∈V
(
∑

i∈V
‖M[i][j]‖)‖u[j]‖ (3.20b)

≤
(

max
j∈V

∑

i∈V
‖M[i][j]‖

)(∑

j∈V
‖u[j]‖

)
, (3.20c)

where the first inequality is obtained by applying the triangle inequality and the submul-

tiplicativity of the matrix norm, and by switching the order of summation; the second

inequality is obtained from

∑

i∈V
‖M[i][j]‖ ≤ max

j∈V

∑

i∈V
‖M[i][j]‖.

42

Using the same logic, we obtain:

∑

j∈V
‖u[j]‖ ≤

(
max
i∈V

∑

j∈V
‖M[i][j]‖

)(∑

i∈V
‖v[i]‖

)
.

From these results, (3.20), and the fact that v 6= 0 (by M 6= 0), we obtain (3.19).

Proof of Lemma 3.7. Since B1 ⊆ I[1,n], σ(H) ≥ σH and σ(F) ≥ σF . Thus, it suffices to

show that σ(H), σ(F) ≤ CD2. As observed in Section 2.3, H and F have bandwidth not

greater than two since Hij and Fij equal zero if dG(i, j) > 2. Hence, the number of nonzero

blocks on one-block rows or on one-block columns of H and F is at most D2, since

|N 2
G [i]| ≤ 1︸︷︷︸

i itself

+ (D − 1)︸ ︷︷ ︸
nodes with distance 1

+ (D − 1)2

︸ ︷︷ ︸
nodes with distance 2

≤ D2

for any i ∈ V (i.e., for any node, there exist at most D2 nodes within distance two); here,

the second inequality follows from D ≥ 1 (the graph is nonempty). As such, we have:

max
i∈V

∑

j∈V
‖Hij‖ ∨max

j∈V

∑

i∈V
‖Hij‖ ≤ CD2;

max
i∈V

∑

j∈V
‖Fij‖ ∨max

j∈V

∑

i∈V
‖Fij‖ ≤ CD2.

By Lemma 3.8, σ(H) ≤ CD2 and σ(F) ≤ CD2.

3.3 Sufficient Conditions for Uniform SSOSC and LICQ

Verifying Assumption 3.5, 3.6 can be challenging if the size of G and J grows indefi-

nitely. Thus, in this section, we provide a composability principles for uSSOSC and uLICQ;

in particular, we establish the sufficient conditions for uSSOSC and uLICQ that do not re-

quire checking singular values of indefinitely large matrices. The problems of interest can

have arbitrarily large graphs (e.g., dynamic optimization with infinite horizons and PDE

optimization with an unbounded domains). A key characteristic of such problems is that

there exists a recurrent structure (as depicted in Figure 1.1). As such, we can construct

sufficient conditions based on uSSOSC and uLICQ over blocks of the Hessian and Jacobian

43

matrices, defined by a partition J := {J(m)}m∈M of the primal variable index set I[1,nx]. To

state these assumptions, we define the following submatrices of G and J for each m ∈M:

G(m) := G[J(m), J(m)]

G(−m) := G[J(m), I[1,nx] \ J(m)];

J−(m) := J [A−(m), J(m)]

J+
(m) := J [A+

(m), J(m)],

where:

A−(m) := {i ∈ A0 : J [i, I[1,nx] \ J(m)] = 0};

A+
(m) := {i ∈ A1 : J [i, J(m)] 6= 0}.

In words, A−(m) denotes the set of constraint indices that are exclusively coupled with the

variables in J(m), and A+
(m) denotes the set of constraint indices that have nonempty coupling

with the variables in J(m). Based on these, we now present the key assumptions.

Assumption 3.9 (Block Diagonal G). G(−m) = 0 for m ∈M.

Assumption 3.10 (Nonzero Rows of J). J [i, :] 6= 0 for i ∈ A1.

Assumption 3.11 (Block SSOSC). There exists γ > 0 such that for any m ∈M:

ReH(G(m),J
−
(m)) � γI.

Assumption 3.12 (Block LICQ). There exists β > 0 such that for any m ∈M:

J+
(m)(J

+
(m))

> � βI.

We emphasize that Assumption 3.9 does not assume separability of the problem; a block-

diagonal structure in G is obtained when coupling across blocks exists only via linear con-

straints. This is not a restrictive assumption since any problem of the form (1.1) can be

reformulated into a form with linear coupling by introducing auxiliary variables (i.e., via a

lifting procedure). Assumption 3.10 is not difficult to satisfy.

44

In the following lemmas, we show that the above assumptions guarantee uSSOSC and

uLICQ for the original NLP (1.1).

Lemma 3.9. Under Assumption 3.9, 3.11 we have

ReH(G,J0) � γI.

Proof. From the block diagonal structure of G (Assumption 3.9),

x>Gx =
∑

m∈M
x[J(m)]

>G(m)x[J(m)].

If J0x = 0, J−(m)x[J(m)] = 0 holds for m ∈M; therefore, by Assumption 3.11, the following

can be obtained: if J0x = 0,

∑

m∈M
x[J(m)]

>G(m)x[J(m)] ≥
∑

m∈M
γ‖x[J(m)]‖2 = γ‖x‖2. (3.21)

Here, the last equality follows from the fact that {J(m)}m∈M partitions I[1,nx]. From (3.21),

we obtain the result.

Lemma 3.10. Under Assumption 3.10, 3.12 we have

J1(J1)> � βI.

Proof. We have that for any y ∈ I[1,m],

y[A1]>J1(J1)>y[A1] = y[A1]>(
∑

m∈M
J [A1, J(m)](J [A1, J(m)])

>)y[A1]

=
∑

m∈M
(y[A+

(m)])
>J+

(m)(J
+
(m))

>y[A+
(m)].

Here the first equality follows from block multiplication formula and the second equality

follows from the fact that J [A1 \ A+
(m), J(m)] = 0. By Assumption 3.12,

y[A1]>J1(J1)>y[A1] ≥
∑

m∈M
β‖y[A+

(m)]‖2 (3.22a)

≥ β‖y[A1]‖2. (3.22b)

where the second inequality follows from the fact that
⋃
m∈MA+

(m) = A1, which follows from

Assumption 3.10. Inequality (3.22) implies the desired result.

45

We now summarize the developments in Section 3.2, 3.3 in the following theorem.

Theorem 3.4. Under Assumption 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, we have

σH ≤ CD2; (3.23a)

σR ≤ CD2; (3.23b)

σ
H
≥
(

2

γ
+

8µC2D4

γ3β
+

4CD2

γ2β

)−1 (
1 + µCD2

)−1
, (3.23c)

where µ is defined in Lemma 3.5, and σH , σF , σH are defined in (2.2).

Proof. The result follows from Theorem 3.3 and Lemma 3.7, 3.9, 3.10.

The results in Section 3.1-3.3 are useful for different problems of interest but might

not be applicable to certain problem classes. For instance, it is difficult to derive uniform

regularity conditions for multi-stage stochastic programs with a fixed number of children per

node because the probability of a given stage decays asymptotically over time (this prevents

Assumption 3.11 to hold). This indicates that these types of problems might exhibit parasitic

behavior that might manifest as extreme sensitivity (associated with non-uniqueness of the

solution). We will leave specialized treatment for those problems as a topic of future work.

Also, we have not discussed how the sensitivity behavior changes when the discretization

resolution changes; such behavior can be used to understand the sensitivity behavior of the

continuous-time (infinite-dimensional) optimization problems studied in [82–84]. This is also

left as a topic of future work.

The above results also provide qualitative conditions under which quantities in (3.1) are

likely to be moderately bounded (and thus the problem exhibits EDS). The first is having

sufficient positive curvature in the objective function (related to Assumption 3.5, 3.11), and

the second is having a sufficient flexibility in the constraints (related to Assumption 3.6, 3.12).

Indeed, in the absence of nonlinear constraints, the SSOSC implies the strong convexity of

the objective function on the null space. In addition, in many practical domains, flexibility

is defined as the ability to endure and adjust to the variations in conditions [37, 80, 110,

125,158,158]. In the context of sensitivity analysis, this can be interpreted as the ability to

46

remain feasible without changing the solution too aggressively when the system is subject

to data perturbations. The justification is that the big jump in the solution may force the

system to violate the constraints. Thus, this notion of flexibility is related to the smallest

non-trivial singular value of the active constraint Jacobian. Intuitively, the first qualitative

condition helps the decay of sensitivity because positive curvature produces a direction to

which the solution tends and the second qualitative condition helps the decay of sensitivity

as it enables the solutions to dampen the impact of perturbations. These conditions can

be related to specific properties of particular problem classes; for example, for the dynamic

optimization problems analyzed in [119, 152], it can be seen that uniform LICQ is related

to uniform controllability; similarly, the observability is directly related to SSOSC for state

and parameter estimation problems [152,169]; we will formalize this in the next chapter.

47

Chapter 4

Dynamic Optimization

In this chapter, we discuss the specialization of the results in Chapter 2-3 for dynamic

optimization problems. In particular, we showcase how the composability principles estab-

lished in Section 3.3 can be applied in the context of dynamic optimization. This allows

us to make a formal connection between the system theoretic properties (controllability and

observability) with the uniform regularity conditions. Eventually, this allows us to show

the EDS with uniformly bounded parameters from the assumptions on the system theoretic

properties.

Related Work: Recently, EDS has been established for MPC problems under the inequality-

constrained linear-quadratic control setting with the convex objective and controllability as-

sumptions [165, 166] and under nonlinear setting with uSSOSC and uniform controllability

assumptions [119]; however, their proof technique is different from ours (they are based on

a Riccati recursion). EDS for continuous-time, linear-quadratic MPC problems has been re-

ported in [82–84]. Recently, it has also been shown that EDS is an important property in that

that it can be used to construct efficient time-coarsening or discretization schemes [84, 151]

and to establish convergence of decomposition algorithms [120, 121]. Furthermore, as re-

vealed in [84] there could be connections between the asymptotic stability of MPC and

turnpike properties with EDS and establishing closed-loop stability of MPC [60, 61, 81].

Lastly, there has been recent interest in analyzing the closed-loop regret (performance loss)

of finite-horizon MPC policy [112, 113, 173]. We expect that the study of sensitivity may

allow a similar regret analysis for nonlinear MPC settings.

48

We formally define the dynamic optimization (DO) problems of interest:

P0:N(p−1:N) : min
s0:N
u0:N−1

N−1∑

i=0

hi(si, ui; pi) + hN(sN ; pN) (4.1a)

s.t. Ts0 = p−1 (y−1) (4.1b)

si+1 = gi(si, ui; pi), i ∈ I[0,N−1] (yi). (4.1c)

Here, N ∈ I>0 is the horizon length; for each stage (time) i, si ∈ Rnx are the states, ui ∈ Rnu

are the controls, pi ∈ Rnp are the data (parameters), yi ∈ Rnx are the dual variables, hi :

Rnx×Rnu×Rnp → R are the stage cost functions, gi : Rnx×Rnu×Rnp → Rnx are the dynamic

mapping functions, hN : Rnx×Rnp → R is the final cost function. The initial state constraint

(4.1b) is enforced with the initial state mapping T ∈ Rny−1×nx and parameter p−1 ∈ Rnp−1 .

We let s−1, u−1, uN , yN be empty vectors (for convenience), and define xi := [si, ui], zi :=

[xi; yi] for i ∈ I[−1,N], and we use the syntax va:b := [va; va+1; · · · ; vb] for v = s, u, y, d, x, z.

Problem (4.1) is a parametric nonlinear program that we denote as P0:N(p−1:N). We assume

that all functions are twice continuously differentiable and potentially nonconvex. Typical

MPC problems are formulated with T = I and typical moving horizon estimation (MHE)

problems are formulated with an empty matrix T ∈ R0×nx (i.e., initial constraint is not

enforced). State-output mappings encountered in such problem formulations are assumed to

be embedded within the stage costs.

The main result of this chapter is a specialization of the EDS result in Chapter 2, 3 to

DO problems. Specifically, one can easily see that the DO problem in (4.1) is a gsNLP. First,

we state the corollary of Theorem 2.2 for the DO setting in (4.1). Then, we establish the

formal connection between the uniform regularity conditions (uBLH, uSSOSC, and uLICQ)

and the system theoretic properties (controllability and observability).

49

4.1 Exponential Decay of Sensitivity

Consider a base data p?−1:N and the associated base solution z?−1:N . We can see from

Lemma 2.2 that there exists a well-defined solution mapping z†−1:N(·) around the neighbor-

hood of p?−1:N . We now study stage-wise solution sensitivity by characterizing the dependence

of z†i (·) on the data p−1:N . First, we define the Lagrangian function for P0:N(p−1:N) as follows:

L0:N(z−1:N ; d−1:N) :=
N∑

i=0

Li(xi, yi−1:i; di), (4.2)

where:

Li(xi, yi−1:i; di) := `i(xi; di)− y>i−1si + y>i gi(xi; di) (4.3a)

LN(sN , yN−1; dN) := `N(sN ; dN)− y>N−1sN . (4.3b)

The following is a corollary of Theorem 2.2 applied for the dynamic optimization problem

in (4.1).

Corollary 4.1 (EDS in Dynamic Optimization). Under Assumption 2.1, 3.4, 3.5, 3.6,

neighborhoods P−1:N of p?−1:N and Z−1:N of z?−1:N and a continuous z†−1:N : P−1:N → Z−1:N

such that for any p−1:N ∈ P−1:N , z†−1:N(p−1:N) is a local solution of P0:N(p−1:N), and

‖z†i (p−1:N)− z†i (p′−1:N)‖ ≤
∑

j∈V
Υρ|i−j|‖pj − p′j‖ (4.4)

holds for any p−1:N , p
′
−1:N ∈ P−1:N and i ∈ I[−1,N], where, Υ and ρ are defined in Theorem

2.2, σH , σF , σH are defined in Theorem 3.3 (in particular, in the right hand sides of (3.18)).

Proof. The existence of the neighborhood and the solution mapping follows from Lemma

2.2. We observe that P0:N(·) is graph-structured (induced by GN = (VN , EN), where VN =

{−1, 0, · · · , N} and EN = {{−1, 0}, {0, 1}, · · · , {N − 1, N}). From uBLH, uLICQ, and

uSSOSC, one can see that assumptions in Theorem 3.3 are satisfied. This implies that

the singular values of ∇2
z−1:Nz−1:N

L0:N(z?−1:N ; p?−1:N) are uniformly upper and lower bounded

and those of ∇2
z−1:Np−1:N

L0:N(z?−1:N ; p?−1:N) are uniformly upper bounded (uniform constants

50

given by functions of L, β, γ; see (3.18)). We then apply Theorem 2.2 to obtain Υ > 0 and

ρ ∈ (0, 1) as functions of the upper and lower bounds of the singular values (here, we may

choose ε > 0 to be sufficiently small). This allows expressing Υ, ρ as functions of L, β, γ as

above.

Corollary 4.1 establishes EDS under the regularity conditions of Assumption 3.4, 3.5, 3.6.

It is important that Υ, ρ can be determined solely in terms of L, γ, β (and do not depend on

the horizon length N). Practical DO problems typically have additional equality/inequality

constraints that are not considered in (4.1). Thus, Corollary 4.1 may not be directly applica-

ble to those problems. However, the results in Theorem 2.2 are applicable to such problems

as long as the DO problem is a gsNLP. Specifically, under uniform strong SOSC and uLICQ,

we can establish EDS using Theorem 2.2, 3.3.

4.2 Uniform Regularity from System-Theoretic Properties

Although uBLH, uSSOSC, and uLICQ are standard notions of NLP solution regularity,

they are not intuitive notions from a system-theoretic perspective. However, we now show

that uBLH, uSSOSC, and uLICQ can be obtained from system theoretic properties: uni-

formly bounded system matrices and uniform controllability and observability. We begin by

defining the system matrices:

Qi := ∇2
sisi
Li(x?i , y?i−1:i; p

?
i)

Ri := ∇2
uiui
Li(x?i , y?i−1:i; p

?
i)

Si := ∇2
siui
Li(x?i , y?i−1:i; p

?
i)

Ei := ∇2
sipi
Li(x?i , y?i−1:i; p

?
i)

Fi := ∇2
uipi
Li(x?i , y?i−1:i; p

?
i)

Ai := ∇sigi(x
?
i ; p

?
i)

Bi := ∇uigi(x
?
i ; p

?
i)

Oi := ∇pigi(x
?
i ; p

?
i),

51

and

Aa:b :=




AbAb−1 · · ·Aa+1Aa, if a ≤ b

AbAb+1 · · ·Aa−1Aa, otherwise.

First, we show that the uniform boundedness of system matrices implies uBLH.

Definition 4.3 (Uniformly Bounded System Matrices). The system matrices {Qi}Ni=0, {Ri}N−1
i=0 ,

{Si}N−1
i=0 , {Ai}N−1

i=0 , {Bi}N−1
i=0 , {Ei}N−1

i=0 , {Fi}N−1
i=0 , {Oi}N−1

i=0 is C-uniformly bounded if:

‖T‖, ‖Qi‖, ‖Ri‖, ‖Si‖, ‖Ai‖, ‖Bi‖, ‖Ei‖, ‖Fi‖, ‖Oi‖ ≤ C.

Lemma 4.11. If the system matrices are C-uniformly bounded, (3C + 1)-uBLH holds.

Proof. First we observe that:

∇2
zizi
L0:N(z?−1:N ; p?−1:N) =




Qi S>i −A>i
Si Ri −B>i
−Ai −Bi




∇2
zi−1zi

L0:N(z?−1:N ; p?−1:N) =




0 0 I

0 0 0

I 0 0




∇2
zipi
L0:N(z?−1:N ; p?−1:N) =




Ei

Fi

Oi




∇2
zipj
L0:N(z?−1:N ; p?−1:N) = 0, ∀j 6= i

∇2
zizj
L0:N(z?−1:N ; p?−1:N) = 0, ∀j /∈ {i, i− 1}.

Uniform boundedness of the system matrices and by Lemma 3.8, we have that:

‖∇2
zzL0:N(z?−1:N ; p?−1:N)‖ ≤ 3C + 1 (4.5)

‖∇2
zpL0:N(z?−1:N ; p?−1:N)‖ ≤ 3C. (4.6)

This proves the desired result.

52

We define the uniform controllability and uniform observability as follows.

Definition 4.4 (Uniform Controllability). ({Ai}N−1
i=1 , {Bi}N−1

i=0) is (Nc, βc)-uniformly control-

lable with Nc ∈ I≥0 and βc > 0 (independent of N) if, for any i, j ∈ I[0,N−1] with |i− j| ≥ Nc,

Ci:jC>i:j � βcI holds, where

Ci:j :=
[
Ai+1:jBi · · · AjBj−1 Bj

]
.

Definition 4.5 (Uniform Observability). ({Ai}N−1
i=0 , {Qi}Ni=0) is (No, γo)-uniformly observ-

able with No ∈ I≥0 and γo > 0 (independent of N) if for any i, j ∈ I[0,N−1] with |i− j| ≥ No,

O>i:jOi:j � γoI holds, where

Oi:j :=




QjAi:j−1

. . .

Qi+1Ai

Qi



.

Note that uniform controllability and observability are stronger versions of their standard

counterparts; typically, the controllability and observability are defined for time-invariant

systems [34]. One can establish the following duality between uniform controllability and

observability.

Proposition 4.2. ({Ai}Ni=1, {Bi}Ni=0) is (N0, α0)-uniformly controllable if and only if

({A>i }1
i=N , {B>i }0

i=N) is (N0, α0)-uniformly observable.

Note that the orders of sequences {A>i }1
i=N , {B>i }0

i=N are inverted.

Proof. For i, j ∈ I[0,N−1] with |i− j| ≥ N0:

Ci:j =
[
Ai+1:jBi · · · AjBj−1 Bj

]
=




B>i A
>
j:i+1

...

B>j−1A
>
j

B>j




>

= O>j:i.

Duality follows from O>j:iOj:i = Ci:jC>i:j.

53

We now aim to construct the uniform regularity conditions from the above system-

theoretic properties. First, we introduce a few notation. The primal Hessian G0:N of the

Lagrangian and the constraint Jacobian J0:N are:

G0:N := ∇2
x0:N ,x0:N

L0:N(z?−1:N ; p?−1:N) (4.7a)

J0:N := ∇x0:N c−1:N−1(x?0:N ; p?−1:N), (4.7b)

where c−1:N−1(·) is the constraint function for P0:N(·). The following technical lemma is

needed to show that uniform controllability implies uLICQ.

Lemma 4.12. Consider a block row/column operator U with block V such that ‖V ‖ ≤ C of

the form:

U :=




I

V I
. . .

I



,




I V

I
. . .

I



.

We have that U,U−1 are (C + 1)-uniformly bounded above.

Proof. Observe that:

U−1 =




I

−V I
. . .

I



,




I −V
I

. . .

I




One can easily see that ‖U‖, ‖U−1‖ ≤ 1 + ‖V ‖ ≤ 1 +C. Thus, U,U−1 are (C + 1)-uniformly

bounded above.

We now show one of the main results of the current section: the relationship between

uniform controllability and uLICQ.

Lemma 4.13. C-uniformly bounded system matrices, TT> � δI for δ > 0, and (Nc, βc)-

uniform controllability of ({Ai}N−1
i=1 , {Bi}N−1

i=0) implies (3.4), where β > 0 is a function of

C, δ,Nc, βc and independent of N .

54

Proof. The Jacobian J0:N has the following form:

J0:N =




T

−A0 −B0 I
. . .

−AN−2 −BN−2 I

−AN−1 −BN−1 I




By inspecting the block structure of J0:N and Lemma 3.10, one can see that it suffices to

show that the smallest non-trivial singular value of



S

−Ai −Bi I
. . .

−Aj−1 −Bj−1 I

−Aj −Bj




(4.8)

is β1/2-uniformly bounded below for S = T or I and for any i, j ∈ I[0,N−1] with Nc ≤ |i−j| ≤
2Nc, where 0 < β ≤ 1 is a function of C, δ,Nc, βc. This follows from the observation that

one can always partition I[0,N−1] into a family of blocks with size between Nc and 2Nc. For

now, we assume S = I. By applying a set of suitable block row and column operations (in

particular, first apply block row operations to eliminate Ai, · · · , Aj, and then apply block

column operations to eliminate −Bi, · · · ,−Ai:j−1Bj−2) and permutations, one can obtain

the following:

I

−Ai+1:jBi · · · −AjBj−1 −Bj


 . (4.9)

The lower-right blocks constitute the controllability matrix Ci:j; from uniform controllability,

the smallest non-trivial singular value of the matrix in (4.9) is uniformly lower bounded by

min(1, β
1/2
c). Here, we have applied block-row and block-column operations as the ones that

appear in Lemma 4.12 (each multiplied block is uniformly bounded above due to C-uniform

boundedness of {Ai}N−1
i=0 and {Bi}N−1

i=0). Also, we have applied such operations only uniformly

55

bounded many times (the number of operations is independent of N since the number of

blocks in the matrix in (4.8) is bounded by 4(2Nc + 1)(Nc + 1), which is uniformly bounded

above). We thus have that the smallest non-trivial singular value of the matrix in (4.8) is

uniformly lower bounded with uniform constant β0
1/2, and β0 > 0 is given by a function of

C,Nc, βc. We now consider the S = T case. One can observe that the smallest non-trivial

singular value of the matrix in (4.8) with S = T is lower bounded by that with S = [T̃ ;T]

(here, T̃> is a null space matrix of T); and again, it is lower bounded by δ1/2 times that

with S = I. We thus have that the smallest non-trivial singular value of the matrix in (4.8)

with S = T is uniformly lower bounded by β
1/2
0 δ1/2. Therefore, we have that the smallest

non-trivial singular values of the matrices in (4.8) with S = I or T are β1/2-uniformly lower

bounded for any i, j ∈ I[0,N−1] with Nc ≤ |i − j| ≤ 2Nc, where β := min(β0, δβ0, 1). Thus,

by Lemma 3.10, we have (3.4).

If T ∈ R0×nx , the assumption TT> � δI holds for an arbitrary δ > 0. We now show that

uniform observability implies uSSOSC.

Lemma 4.14. C-uniformly bounded system matrices, Qi � 0, Si = 0, Ri � rI for r > 0,

and (No, γo)-uniform observability of ({Ai}N−1
i=0 , {Qi}Ni=0) implies (3.3), where γ > 0 is a

function of C,No, γo, r and independent of N .

Proof. The primal Hessian G0:N has the following form:

G0:N =




Q0

R0

. . .

QN−1

RN−1

QN




.

56

By inspecting the block structure of G0:N and J0:N and Lemma 3.9, one can observe that it

suffices to show that: first,

ReH




Qi:j

Ri:j−1


 ,
[
Ai:j Bi:j−1

]

 (4.10)

has γ-uniformly lower bounded smallest eigenvalue with γ > 0 for any i, j ∈ I[0,N−1] with

No ≤ |i− j| ≤ 2No, where:

Ai:j :=




−Ai I
.

−Aj−1 I


 ,Bi:j−1 :=




−Bi

. . .

−Bj−1




Qi:j :=




Qi

Qi+1

. . .

Qj



,Ri:j−1 :=




Ri

Ri+1

. . .

Rj−1



,

and second, Ri � γI for any i ∈ I[0,N−1]. This follows from the observation that one can

always partition I[0,N−1] into a family of blocks with size between Nc and 2Nc. We consider

si:j,ui:j−1 such that Ai:jsi:j + Bi:j−1ui:j−1 = 0 holds. By uniform positive definiteness of

{Ri}N−1
i=0 and uniform boundedness of {Bi}N−1

i=0 , for κ := r/2C2, we have

1

2
u>i:j−1Ri:j−1ui:j−1 ≥ κu>i:j−1B

>
i:j−1Bi:j−1ui:j−1

= κs>i:jA
>
i:jAi:jsi:j,

where the equality follows from Ai:jsi:j +Bi:j−1ui:j−1 = 0. In addition, from Qi:j � 0, we

have that:

s>i:jQ
2
i:jsi:j = (Q

1/2
i:j si:j)

>Qi:j(Q
1/2
i:j si:j) ≤ Cs>i:jQi:jsi:j,

where the inequality follows from that the largest eigenvalue of Qi:j is bounded by C. Thus,

s>i:jQi:jsi:j + u>i:j−1Ri:j−1ui:j−1 is not less than:

min(1/C, κ)s>i:j

[
Qi:j A>i:j

]

Qi:j

Ai:j


 si:j +

r

2
‖ui:j−1‖2.

57

Observe that
[
Qi:j A>i:j

]
can be permuted to:




Qj I

−Aj−1 Qj−1 I
. . .

−A>i+1 Qi+1 I

−A>i Qi




. (4.11)

We apply block row and column operations uniformly bounded many times to obtain:


I

A>j−1:iQj · · · A>i Qi+1 Qi


 . (4.12)

From Proposition 4.2 and the (No, γo)-uniform observability of ({Ai}N−1
i=0 , {Qi}Ni=0), we have

that ({A>i }0
i=N−1, {Qi}0

i=N) is (No, γo)-uniformly controllable. We thus have that the matrix

in (4.12) has min(1, γo)-uniformly lower bounded smallest non-trivial singular value. This

implies that the smallest non-trivial singular value of the matrix in (4.11) is uniformly lower

bounded by γ′, where γ′ is given by a function of C, No, γo. Therefore, we have that:

s>i:jQi:jsi:j + u>i:j−1F i:j−1ui:j−1 ≥ γ(‖si:j‖2 + ‖ui:j−1‖2),

where γ := min(γ′/C, κγ′, r/2). One can observe that Ri � γI for any i ∈ I[0,N−1].

Consequently, the smallest eigenvalues of the matrix in (4.10) for any i, j ∈ I[0,N−1] with

No ≤ |i− j| ≤ 2No and Ri are γ-uniformly lower bounded. Thus, by Lemma 3.9, (3.3) holds.

One can confirm that γ is a function of C,No, γo, r and independent of N .

The results in Corollary 4.1 and Lemma 4.13, 4.14, 4.11 allow establishing EDS based on

system-theoretic properties. We now state the main result of this chapter: EDS in terms of

uniformly bounded system matrices and uniform controllability and observability.

Corollary 4.2. Suppose that Assumption 2.1, C-uniformly bounded system matrices, Qi �
0, Si = 0, Ri � rI for r > 0, TT> � δI for δ > 0, (Nc, βc)-uniform controllability

of ({Ai}N−1
i=1 , {Bi}N−1

i=0), and (No, γo)-uniform observability of ({Ai}N−1
i=0 , {Qi}Ni=0) hold; then

58

there exist uniform constants Υ > 0 and ρ ∈ (0, 1) (functions of C, r, Nc, βc, No, γo, δ

and independent of N) and neighborhoods P−1:N of p?−1:N and Z−1:N of z?−1:N such that (4.4)

holds for any p−1:N , p
′
−1:N ∈ P−1:N and i ∈ I[−1,N].

Proof. From Corollary 4.1 and Lemma 4.13, 4.14, 4.11.

4.3 Time-Invariant Setting

Assume now that the system is time-invariant and focuses on a region around a steady

state. A special case of Corollary 4.1 for such a setting is derived. We present this result

since this setting is of particular interest in the MPC and MHE literature.

Consider a time-invariant system with a stage-cost function h(·), initial regularization

function hb(·), terminal cost function hf (·), and dynamic mapping g(·). The DO problem

is given by (4.1) with gi(·) = g(·) for i ∈ I[0,N−1], hi(·) = h(·) for i ∈ I[1,N−1], h0(s, u; p) =

h(s, u; p) + hb(s, u; p), and hN(s; p) = hf (s; p). With these, we can write the problem (4.1)

as follows:

min
s0:N
u0:N−1

hb(s0, u0; p0) +
N−1∑

i=0

h(si, ui; pi) + hf (sN ; pN) (4.13a)

s.t. Ts0 = p−1 (y−1) (4.13b)

si+1 = g(si, ui; pi), i ∈ I[0,N−1] (yi). (4.13c)

In addition, steady-state optimization problems are of interest. This problem is typically used

for selecting the target for the MPC controller [130] or tuning the terminal cost gradients

[62,168]. The steady-state optimization problem for (4.1) can be written as:

min
s,u

h(s, u; d) s.t. s = g(s, u; d) (y). (4.14)

For given ps and an associated primal-dual solution zs := [ss;us; ys] of (4.14), we define:

Q := ∇2
ssLs(zs; ps)

S := ∇2
suLs(zs; ps)

59

R := ∇2
uuLs(zs; ps)

A := ∇sg(xs; ps)

B := ∇ug(xs; ps),

where Ls(z; d) := h(z; d) − y>s + y>g(z; d); for the initial and terminal cost functions hb(·)
and hf (·), we define:

yb := ∇shb(x
s; ps)

Qb := ∇2
sshb(x

s; ps)

yf := ∇shf (s
s; ps)

Qf := ∇2
sshf (s

s; ps).

The quantities defined above (Q, R, etc.) are independent of N since zs can be determined

independently of N .

Corollary 4.3. Given twice continuously differentiable h(·), hb(·), hf (·), f(·), and data ps,

suppose that there exists a steady-state solution zs, at which Qf � Q � 0, Qb � 0, S = 0,

R � 0, (A,B) controllable, (A,Q) observable, TT> � 0, yb + ys ∈ Range(T>) and yf = ys

hold; then there exist uniform constants Υ > 0 and ρ ∈ (0, 1) such that the following holds:

for any N ∈ I≥0, there exist neighborhoods Ps−1:N of ps−1:N := [Tss; ps; · · · ; ps] and Zs−1:N of

zs−1:N := [ys−1; zs; · · · ; zs; ss] such that (4.4) holds for any p−1:N , p
′
−1:N ∈ Ps−1:N , where ys−1 is

the solution of T>ys−1 = yb + ys.

Proof. From the existence (follows from hb +hs ∈ Range(T>)) and uniqueness (follows from

TT> � 0) of the solution of T>ys−1 = yb+y
s, we have well-defined ys−1. From T>ys−1 = yb+y

s

and the optimality of zs for (4.14), zs−1:N satisfies the first-order optimality conditions for

P0:N(ps−1:N). Moreover, all the assumptions in Lemma 4.11 are satisfied with some uniform

constant C because h(·), hb(·), hf (·), f(·), T , zs, and ps are independent of N ; thus, by

Lemma 4.11, we have (3.2) for a uniform constant L < ∞. Moreover, TT> � δI holds

for some uniform constant δ > 0, and Ri � rI for i ∈ I[0,N−1] with some uniform constant

60

r > 0, since h(·), zs, ps, T are independent of N . Similarly, (A,B) controllability implies

(Nc, βc)-uniform controllability of ({Ai}N−1
i=1 , {Bi}N−1

i=0) with some uniform constant Nc, βc,

and (A,Q) observability implies (No, γo)-uniform observability of ({Ai}N−1
i=0 , {Qi}Ni=0) for some

uniform constants No, γo (for now, we assume that Qb = 0 and Qf = Q). From Lemma

4.13, 4.14, we have (3.3) and (3.4) for uniform β, γ > 0. Now, observe that (3.3) for

Qb = 0 and Qf = Q implies (3.3) for any Qb � 0 and Qf � Q; thus, we have (3.3) with

uniform γ > 0 for any Qb, Qf . Since the first and second order conditions of optimality and

constraint qualifications are satisfied, zs−1:N is a strict minimizer for P0:N(p−1:N). Since we

have (3.2), (3.3), and (3.4) with uniform L, γ, β, we have uBLH, uLICQ, and uSSOSC at

(zs−1:N , p
s
−1:N). By applying Corollary 4.1, we can obtain (4.4). Lastly, since the parameters

C, r,Nc, βc, No, γo are independent of N , so do Υ and ρ.

Initial and terminal cost functions that satisfy the assumptions in Corollary 4.3 can be

constructed as:

hb(s, u; p) := −((I − T+T)ys)>s

hf (s; p) := (s− ss)>Q(s− ss) + (ys)>s,

where (·)+ is the pseudoinverse of the argument. In particular, one can verify that

yb + ys = ∇shb(x
s; ps) + ys = T+Tys = T>(TT>)−1Tys ∈ Range(T>)

Qb = ∇2
sshb(x

s; ps) = 0 � 0

yf = ∇shf (s
s; ps) = ys

Qf = ∇2
sshf (s

s; ps) = Q � 0.

One can observe that hb(·) can be set to constantly zero if T = I.

61

Chapter 5

Numerical Experiments

In this chapter, we illustrate the theoretical developments with different classes of graph-

structured problems. We conduct numerical experiments for four different classes of graph-

structured optimization problems: dynamic optimization (storage control; Appendix B.1),

stochastic optimization (stochastic storage control; Appendix B.3), PDE-constrained op-

timization (thin plate temperature control with Neumann boundary condition; Appendix

B.4), and network optimization (alternating current optimal power flow (AC OPF); Ap-

pendix B.6). The specific problem formulations can be found in the appendix. We are

particularly interested in exploring the effect of conditioning on the EDS. We note that

when one of the regularity conditions (uBLH, uSSOSC, and uLICQ) are close to be vio-

lated, the conditioning may become bad (i.e., may have a large condition number). As we

discussed in Section 3.3, uSSOSC is related to positive objective curvature and uLICQ is

related to flexibility. Throughout the case study instances, η and b are parameters that con-

trol positive objective curvature and flexibility, respectively. In particular, η is the coefficient

of regularization on the decision variables, and b is either the coefficient of the manipulate

variables that appear in the constraints or the upper bound of the slack variable. We varied

the values of η, b to see the effect of the satisfaction of regularity on the decay of sensitivity.

Moreover, j represents the node where the data perturbation will be introduced. We point

the readers to our previous publications for more numerical results on the exponential decay

of sensitivity [121,144].

62

Table 5.1 Variation of (η, b) in numerical studies.

Case 1 Case 2 Case 3 Case 4

Dynamic Optimization (1, 1) (10−2, 1) (1, 10−2) (10−2, 10−2)

Stochastic Optimization (1, 1) (10−2, 1) (1, 10−2) (10−2, 10−2)

PDE Optimization (1, 1) (10−2, 1) (1, 10−2) (10−2, 10−2)

Network Optimization (106, 10) (0, 10) (106, 0) (0, 0)

5.1 Methods

We conduct the following numerical study for each problem instance. We consider a

problem P(p?) with the base data p?. Then, we consider perturbed problems {P(p
(m)

)}m∈M
in which the data are perturbed as p(m) = p? + ∆p(m), where ∆p(m) are i.i.d samples drawn

from ∆pj ∼ U([−σ, σ]lj), and ∆pi = 0 if i 6= j. Here, j ∈ V is a selected perturbation point

and U(Ω) denotes the multivariate uniform distribution on Ω. We choose σ = 10−3 and

|M| = 30 for all instances. Then, the empirical sensitivity coefficients:

Cij = max
m∈M

‖z‡i (p(m))‖/‖∆p(m)‖, i ∈ V

are computed and visualized. The empirical sensitivity Cij converges to ‖∇pjz
†
i (p

?)‖ as

σ → 0 and the number of samples tends to infinity; thus, these empirical sensitivities are

suitable quantities for the study of sensitivity coefficients. We recall that (η, b) are the key

parameters that control the positive curvature and flexibility. We vary these parameters as

shown in Table 5.1, and see how they affect the decay (spread) of the sensitivity coefficients.

Here, Case 1 has sufficiently large (η, b); Case 2 has low η; Case 3 has low b; and Case 4 has

low (η, b). The results can be reproduced using the scripts provided in https://github.

com/zavalab/JuliaBox/tree/master/SensitivityNLP.

5.2 Results

The sensitivity results are illustrated as heat maps of the empirical coefficients (Figure

5.1) and as scatter plots of the coefficients against distance dG(i, j) (Figure 5.2). From Figure

https://github.com/zavalab/JuliaBox/tree/master/SensitivityNLP
https://github.com/zavalab/JuliaBox/tree/master/SensitivityNLP

63

Case 1 Case 2 Case 3 Case 4

Figure 5.1 Spread of empirical sensitivity coefficients Cij/Cjj on G for dynamic
optimization (top), stochastic optimization (second row), PDE optimization (third row),

and network optimization (bottom) problem for different values of (η, b). Red circles
denote perturbation point, dark blue approaches one, and white approaches zero.

64

Case 1 Case 2 Case 3 Case 4

0 1 2 3 4 5
10−2

10−1

100

101

0 1 2 3 4 5
10−2

10−1

100

101

0 1 2 3 4 5
10−2

10−1

100

101

0 1 2 3 4 5
10−2

10−1

100

101

0 1 2 3 4 5 6
10−3

10−2

10−1

100

101

0 1 2 3 4 5 6
10−3

10−2

10−1

100

101

0 1 2 3 4 5 6
10−3

10−2

10−1

100

101

0 1 2 3 4 5 6
10−3

10−2

10−1

100

101

0 2 4 6 8
10−3

10−2

10−1

100

101

0 2 4 6 8
10−3

10−2

10−1

100

101

0 2 4 6 8
10−3

10−2

10−1

100

101

0 2 4 6 8
10−3

10−2

10−1

100

101

0 5 10 15
10−5

10−4

10−3

10−2

10−1

100

101

0 5 10 15
10−5

10−4

10−3

10−2

10−1

100

101

0 5 10 15
10−5

10−4

10−3

10−2

10−1

100

101

0 5 10 15
10−5

10−4

10−3

10−2

10−1

100

101

C
ij
/C

jj

dG(i, j)

Figure 5.2 Scatter plots of sensitivity coefficients Cij/Cjj versus dG(i, j) for dynamic
optimization (top), stochastic optimization (second row), PDE optimization (third row),

and network optimization (bottom) for different values of (η, b).

65

5.1 we see that, with sufficiently large (η, b) (Case 1), the empirical sensitivity coefficients

decay as they move away from the perturbation location. Furthermore, from Figure 5.2, one

can confirm that the sensitivity coefficients decay exponentially with distance (i.e., logCij ∝
dG(i, j)). This verifies the theoretical results in Chapter 2. If either one or both of (η, b)

are not sufficiently large (Case 2, 3, 4), the decay of sensitivity is weaker or not observed

(except for the PDE optimization problem). This is because, without strong curvature

or flexibility, σ(H(k)) may be close to zero, and the coefficients in Theorem 2.2 do not

exhibit sufficient decay. The reason that the PDE optimization problem exhibits decay of

sensitivity even in the absence of positive curvature and flexibility is that the system itself

has a strong dissipative property (temperature naturally tends towards ambient temperature

via convection and radiation). From these results, we can confirm that it is sufficient for

problems to have strong positive curvature and flexibility in the constraints to exhibit decay

of sensitivity (this confirms the theoretical results in Chapter 3). Notably, even though

we cannot guarantee uniform boundedness of the multi-stage stochastic programs for the

T →∞ limit, we can observe EDS for sufficiently large (η, b).

5.3 Additional Results: Quadrotor Motion Planning

Additionally, we demonstrate the results in Chapter 4 with the quadrotor motion planning

problem in Appendix B.2. Figure 5.3 demonstrate the result. We have empirically tested the

sensitivity behavior for η = b = 1 (Case 1) and η = b = 0 (Case 2). One can see that some of

the assumptions (e.g., Si = 0 in Corollary 4.2) may be violated, but qualitatively, the system

is more observable and controllable in Case 1 than in Case 2. The base trajectories are shown

as dashed lines, the perturbed trajectories are shown as solid gray lines, and the perturbed

stages are highlighted using vertical lines. We can see that, for Case 1 ((η, b) = (1, 1)), the

differences between the base and perturbed solutions become small as moving away from the

perturbation point (EDS holds). On the other hand, for Case 2 ((η, b) = (0, 0)) one cannot

observe EDS; this confirms that observability and controllability induce EDS.

66

0 20 40 60 80 100

−0.075
−0.050
−0.025
0.000
0.025
0.050
0.075

i

x
i[
3]

0 20 40 60 80 100

−0.004
−0.002
0.000

0.002

0.004

i

x
i[
3]

0 20 40 60 80 100

−0.010
−0.005
0.000

0.005

0.010

i

u
i[
3]

0 20 40 60 80 100
−0.1

0.0

0.1

0.2

i

u
i[
3]

0 20 40 60 80 100

−0.06
−0.03
0.00

0.03

0.06

i

λ
i[
4
]

0 20 40 60 80 100

−1.0
−0.5
0.0
0.5
1.0
1.5

i

λ
i[
7]

Figure 5.3 Base and perturbed solutions of the quadrotor motion planning problem.
Left: Case 1 ((η, b) = (1, 1)). Right: Case 2 ((η, b) = (0, 0)).

Part II

Algorithms

67

68

Chapter 6

Overlapping Schwarz Method

This chapter presents an overlapping Schwarz method (OSM) for solving general gsNLPs.

As its name suggests, OSM decomposes the full problem into subproblems that are defined

over overlapping subdomains. Solutions for the subproblems are computed in parallel and

convergence is enforced by updating primal-dual information in the overlapping regions.

With this method, we can solve large-scale gsNLPs that are difficult to be solved with

centralized solution algorithms.

Related Work: Diverse decomposition schemes that exploit the problem structure have

been proposed in the literature to overcome scalability limits of centralized schemes [41,56,96,

128,148]. A wide range of decomposition schemes have been proposed in the literature such

as Lagrangian decomposition and its variant [111], the alternating direction method of mul-

tipliers (ADMM) [27], Jacobi/Gauss-Seidel methods [150], and augmented Lagrangian based

alternating direction inexact Newton method (ALADIN) [91]. The decomposition allows not

directly formulating/solving the intractably large full problem. Thus, with decomposition,

one can solve the large-scale gsNLP instances that cannot be solved using the off-the-shelf

NLP solvers. However, due to the limited communication between the distributed agents,

typically decomposition methods tend to have slow linear convergence (e.g., see [107] for a

benchmark of different decomposition techniques). One exception is ALADIN, but it requires

the solution of coupled quadratic programs; thus, it has scalability limitations. Schwarz al-

gorithms were originally developed for the parallel solution of linear algebra systems arising

69

in PDEs, but such schemes can also be used to handle general linear systems and optimiza-

tion problems by exploiting their underlying algebraic topology [30,69]. In our recent works,

we have generalized OSM for graph-structured optimization problems [145,153]. Like other

decomposition methods, OSM has linear convergence, but one can improve the convergence

rate by using the size of overlap; this enables faster convergence in practice.

The procedure of OSM can be roughly described as follows.

1. User provides a gsNLP (full problem), an overlapping partition of the node set, the

associated non-overlapping partition, and the initial guess of the primal-dual solution.

2. Formulate subproblem for each overlapping subdomain.

3. The coupled variables are fixed to the current guess of the solution.

4. Solve each subproblem in parallel to obtain the primal-dual solution over the associated

overlapping subdomain.

5. For each subproblem, retain the piece of the primal-dual solutions associated with the

non-overlapping subdomain and discard the rest of the solution.

6. Assemble the solution from each subproblem to make the next guess of the solution.

7. Repeat 3-6 until converged to the solution (one can check the KKT residuals to monitor

the convergence).

The subproblem formulation and the algorithm will be described in more detail in the follow-

ing sections. Non-overlapping partitions can be obtained by first creating a non-overlapping

partition (e.g., by using a graph partitioning tool), and the overlapping partition can be

obtained by expanding each non-overlapping subdomain by progressively incorporating the

neighboring nodes. The restriction step 5 is necessary since the subdomains associated with

the subproblems overlap; to uniquely specify the next guess of the solution, one needs to

discard certain parts of the obtained subproblem solutions. We will see later that this re-

striction step is designed to exploit the EDS. Properly formulating the subproblem is the key

70

| |

Full Problem

| | | | | | | | | | | |

Subproblem 1 ω

| | | | | | | | | | | | | |

Subproblem 2ω ω

| | | | | | | | | | | |

Subproblem 3ω

z
(`)
V2z

(`)
V1 z

(`)
V3z

(`)
V2

Figure 6.1 Schematic of the overlapping Schwarz method

to guaranteeing the convergence, and the improper formulation of the subproblems may lead

to convergence issues. This algorithm can be implemented in a fully decentralized manner,

and different updating schemes can be used (e.g., Gauss-Seidel or asynchronous) [153]. Over-

lapping Schwarz schemes provide a bridge between fully decentralized Jacobi/Gauss-Seidel

algorithms (no overlap) and centralized algorithms (the overlap is the entire domain). A

schematic of the algorithm is depicted in Figure 6.1.

In this chapter, we analyze the convergence properties of the algorithm and derive an

explicit relationship between its convergence rate and the size of overlap. This result ex-

tends existing convergence results reported for unconstrained/constrained QPs [145,153]. In

particular, we show that the algorithm locally converges with a sufficiently large overlap and

that the convergence rate improves exponentially with the size of overlap. This convergence

result relies on EDS, discussed in Part I.

The rest of the chapter is organized as follows. In Section 6.1, we present the subproblem

formulation for the OSM. We show that the proposed subproblem is consistent with the full

problem and inherits the uniform regularity of the full problem. That is, the full problem

satisfies the first-order optimality conditions for the subproblems, and the uniform regularity

of the subproblems can be obtained from the uniform regularity of the subproblems. With

these results on the subproblems and building upon the results in the previous chapter, we

71

establish the EDS for the subproblem solutions with respect to the primal-dual solution

guess (i.e., the effect of misspecification of the primal-dual solution decays exponentially).

The remainder of the chapter is organized as follows. In Section 6.1, we establish the

subproblem sensitivity result. In Section 6.2, the OSM is formally defined. In Section 6.3,

we show the local convergence of the algorithm based on the sensitivity result.

6.1 Subproblem Formulation and Sensitivity

For the rest of the chapter, we will study the following modified gsNLP:

P : min
{xi}i∈V

∑

i∈V
fi({xj}j∈NG [i]) (6.1a)

s.t. cEi ({xj}j∈NG [i]) = 0, i ∈ V , (yEi) (6.1b)

cIi (xi) ≥ 0, i ∈ V , (yIi). (6.1c)

Since we study a problem without perturbations, we do not express the problem in the

perturbed form as in (1.1) (i.e., we do not explicitly express the dependence on data).

Another notable difference is that the the inequality constraint function is only dependent

on the associated nodal variable. Any problem in (1.1) form can be reformulated as the one

in (6.1) by introducing slack variables:

cIi ({xj}j∈NG [i]) ≥ 0 ⇐⇒ cIi ({xj}j∈NG [i]) = si, si ≥ 0. (6.2)

Thus, this reformulation does not deteriorate the generality in the formulation. We denote

the problem in (6.1) by P .

6.1.1 Subproblem Formulation

In this section, we discuss how to formulate the subproblems for the OSM. Properly

formulating the subproblem is important because otherwise, the algorithm does not converge

to the solution. To enable local convergence, the subproblem needs to

(i) be consistent with the full problem.

72

(ii) inherits the uniform regularity of the full problem.

To be more specific, first, the subproblems should be consistent with the full problem in

the sense that the appropriate piece of the solution of the full problem should satisfy the

first-order optimality conditions for each subproblem as long as the boundary data (the fixed

coupled variables) are accurately specified. Second, if the full problem satisfies the uniform

regularity conditions (uBLH, uSOSC, and uLICQ), it is desired that the subproblems also

satisfy those uniform regularity conditions. This eventually enables guaranteeing the EDS

in the subproblems. Ensuring the consistency and the inheritance of regularity requires a

careful subproblem definition. Below we show that by properly incorporating the partial

augmented Lagrangian, one can satisfy such consistency and inheritance requirements.

To facilitate the later discussions, we introduce a few notations. For a subset V ′ ⊆ V of

the node set V , we define the variables associated with node subset V ′:

xV ′ := {xi}i∈V ′ (6.3a)

yV ′ := {yi}i∈V ′ (6.3b)

zV ′ := {zi}i∈V ′ (6.3c)

cV ′(x) := {ci(x)}i∈V ′ (6.3d)

cEV ′(x) := {cEi (x)}i∈V ′ (6.3e)

cIV ′(x) := {cIi (x)}i∈V ′ (6.3f)

fV ′(x) :=
∑

i∈V ′
fi(x). (6.3g)

Moreover, for a pair of subsets (V ′,V ′′), we define zV ′,V ′′ := (xV ′ ,yEV ′′ ,y
I
V ′). In addition, we

introduce the following generalized notions of distance and neighborhood:

dG(V ′,V ′′) := min{dG(i, j) : i ∈ V ′, j ∈ V ′′}

dG(i,V ′′) := dG({i},V ′′)

dG(V ′, j) := dG(V ′, {j})

NB
G [V ′] := {j ∈ V : dG(j,V ′) ≤ B}

73

NB
G (V ′) := NB

G [V ′] \ V ′

NG[V ′] := N 1
G [V ′]

NG(V ′) := N 1
G (V ′).

Now consider subsets V ′′,V ′ ⊆ V of the vertex set such that satisfy NG[V ′′] ⊆ V ′; we

define the subproblem for P and a subset pair (V ′,V ′′) as follows:

PµV ′,V ′′(z) : min
xV′

fNG [V ′](xV ′ ;xN 2
G(V ′))− (yENG [V ′]\V ′′)

>cENG [V ′]\V ′′(xV ′ ;xN 2
G(V ′)) (6.4a)

+ (µ/2)‖cENG [V ′]\V ′′(xV ′ ;xN 2
G(V ′))‖2

s.t. cEV ′′(xV ′) = 0, (yEV ′′) (6.4b)

cIV ′(xV ′) ≥ 0, (yIV ′). (6.4c)

where xN 2
G(V ′) and yENG [V ′]\V ′′ are fixed data; µ is the penalty parameter. The problem in

(6.4) is denoted as a parametric optimization problem: PµV ′,V ′′(z). Note that PµV ′,V ′′(z)

reduces to the full problem P if V ′ = V ′′ = V . We denote the solution of (6.4) as z?V ′,V ′′ =

(x?V ′ ,y
E,?
V ′′ ,x

I,?
V ′).

Problem PµV ′,V ′′(z) is created by modifying the full problem P . It allows the primal vari-

ables in V ′ to vary while fixing the rest of primal variables; it enforces inequality constraints

associated with V ′ and equality constraints associated with V ′′ (i.e., allow the associated

dual variables to vary), while relaxing others (i.e., fix the associated dual variables). Since

NG[V ′′] ⊆ V ′, the equality constraints are only dependent on the variables in V ′ and not

dependent on the variables in V \V ′; this allows us to write the equality constraints in (6.4b)

form. Since the objective terms in V \NG[V ′] do not depend on the variables in V ′, it suffices

to only include the objective terms associated with NG[V ′] as in (6.4a). Recall from (6.1) that

variables in V ′ are also dependent on the equality constraints in NG[V ′] \ V ′′. Rather than

enforcing them as costraints, we use partial augmented Lagrangian to incorporate them in

the objective function as in (6.4a). Also, note that since this subproblem is still coupled with

the neigbhoring nodes, the primal variables in N 2
G (V ′) and the dual variables in NG[V ′] \ V ′′

(in particular, those associated with equality constraints) still appear in the problem. These

74

coupled variables are assumed to be fixed, and incorporated as data xN 2
G(V ′) and yENG [V ′]\V ′′ .

To mitigate the notational complexity, we express the data dependency simply as z (i.e., we

assume that we have primal-dual guess of the solution over the entire node set V); this is

allowed since z includes xN 2
G(V ′) and yENG [V ′]\V ′′ .

Remark 6.4. Our subproblem formulation in (6.4) is different from the ones that appear in

our previous works [145]. When we were working on those papers, we were not concerned

about the inheritance of the uniform regularity and only cared about the consistency. Due to

this, we were not able to rigorously construct the uniform regularity of the subproblems and

our convergence analysis had to rely on conjectures [145, Assumption 4]. In fact, in order

to guarantee the inheritance of uniform regularity, we needed to treat the coupled equality

constraints separately when constructing the subproblem. Otherwise, one cannot write the

equality constraints in (6.4b) form; instead, the equality constraints may have fixed variables

in them. This can potentially cause the violation of uLICQ in the subproblem. Thus, we

need two kinds of overlapping partitions V ′ and V ′′; the equality constraints in V ′′ are directly

enforced, the constraints coupled with V ′ but not in V ′′ are relaxed and incorporated into

objective function as partial augmented Lagrangian form. Our treatment of coupled equality

constraints as partial augmented Lagrangian in (6.4) allows preventing the potential violation

of the uLICQ conditions.

6.1.2 Consistency

We now show that PµV ′,V ′′(z) is a consistent subproblem formulation; that is, we show

that for the solution z? of P , the restriction z?V ′,V ′′ of the solution z? on V ′,V ′′ always satisfy

the first-order optimality condition for the subproblem P µ
V ′,V ′′(z

?) (the subproblem with fixed

data z = z?).

Lemma 6.15. Let z? be the primal-dual solution of P; then for any µ ≥ 0, V ′,V ′′ ⊆ V, and

N [V ′′] ⊆ V ′, z?V ′,V ′′ satisfies the first-order optimality conditions for PµV ′,V ′′(z?).

75

Proof. From the first-order optimality conditions for P at z?, we have that the following

holds for i ∈ V :

∇xiL(z?) = 0, (6.5a)

cEi (x?) = 0 (6.5b)

cIi (x
?) ≥ 0 (6.5c)

yI,?i ≥ 0 (6.5d)

diag(yI,?i)cIi (x) = 0. (6.5e)

We denote the Lagrangian function of (6.4) as

LV ′,V ′′(zV ′,V ′′ ; z?V\V ′,V\V ′′) = fNG [V ′](xV ′ ;x
?
N 2
G(V ′))− (yE,?NG [V ′]\V ′′)

>cENG [V ′]\V ′′(xV ′ ;x
?
N 2
G(V ′))

+ (µ/2)‖cENG [V ′]\V ′′(xV ′ ;x
?
N 2
G(V ′))‖2 (6.6)

− (yEV ′′)
>cEV ′′(xV ′)− (yIV ′)

>cIV ′(xV ′).

By inspecting (6.6), we can see that for any µ ≥ 0 and i ∈ V ′,

∇xiL(z?) =
∑

j∈NG [i]

∇xifj(x
?)−

∑

j∈NG [i]

(∇xic
E
j (x?))>yE,?j − (∇xic

I
i (x

?))>yI,?i (6.7a)

= ∇xifNG [V ′]\V ′′(x
?)− (∇xic

E
NG [V ′]\V ′′(x

?))>yE,?NG [V ′]\V ′′ (6.7b)

− (∇xic
E
V ′′(x

?))>yE,?V ′′ − (∇xic
I
V ′(x

?))>yI,?V ′

= ∇xiLV ′,V ′′(z?V ′,V ′′ ; z?V\V ′,V\V ′′), (6.7c)

where the second equality follows from the definitions in (6.3) and the observation that the

constraints in V \ NG[i] are not dependent on xi, and the last equality follows from the

observation that the derivatives associated with the quadratic penalty term disappears due

to Equation (6.5b). This and (6.5) imply that:

∇xiLV ′,V ′′(z?V ′,V ′′ ; z?V\V ′,V\V ′′) = 0, i ∈ V ′ (6.8a)

cEi (x?) = 0, i ∈ V ′′ (6.8b)

cIi (x
?) ≥ 0, i ∈ V ′ (6.8c)

76

yI,?i ≥ 0, i ∈ V ′ (6.8d)

diag(yI,?i)cIi (x) = 0, i ∈ V ′. (6.8e)

Thus, the first-order conditions for PµV ′,V ′′(z?) are satisfied at z?V ′,V ′′ .

Lemma 6.15 establishes the desired consistency result. This result reveals the importance

of incorporating the dual variable in the subproblem specification. In particular, in (6.7),

the dualized coupled equality constraints allow the satisfaction of the first-order optimality

conditions for the subproblem. The incorporation of the dualized constraints in the context

of Jacobi/Gauss-Seidel type decomposition methods for constrained optimization problems

has been studied in [144,145,150,170].

6.1.3 Inheritance of Uniform Regularity

We now aim to show the inheritance of uniform regularity; that is, if the full problem

P satisfies uniform regularity conditions, the subproblem PµV ′,V ′′(z?) inherits the uniform

regularity conditions. The following theorem establishes such a result.

Lemma 6.16. Under Assumption 2.1, 3.4, 3.5, 3.6 for P at z?, for any µ ≥ µ (defined in

(3.5)) and V ′,V ′′ ⊆ V such that NG[V ′′] ⊆ V ′, (L+µL2)-BLH, β-uLICQ, and (γ/2)-uSSOSC

for PµV ′,V ′′(z?) hold at z?V ′,V ′′.

Proof of L+ µL2-BLH. By inspecting (6.6), one can see that the primal Hessian of La-

grangian LV ′,V ′′(zV ′,V ′′ ; z?V\V ′,V\V ′′) of the subproblem PµV ′,V ′′(z?) can be expressed by:

∇2
xV′xV′

LµV ′,V ′′(z?V ′,V ′′ ; z?V\V ′,V\V ′′) (6.9a)

= ∇2
xV′xV′

L(z?) + µ(∇xV′cENG [V ′]\V ′′(x
?))>(∇xV′cENG [V ′]\V ′′(x

?)).

∇2
xV′xV\V′

LµV ′,V ′′(z?V ′,V ′′ ; z?V\V ′,V\V ′′) (6.9b)

= ∇2
xV′xV\V′

L(z?) + µ(∇xV′cENG [V ′]\V ′′(x
?))>(∇xV\V′cENG [V ′]\V ′′(x

?)).

Here, note that the terms that contain the second derivatives of cENG [V ′]\V ′′(·) disappears due

to cENG [V ′]\V ′′(x
?) = 0. Furthermore, by inspecting (6.4), we can observe that:

∇2
zV′,V′′y

E
V′′
LµV ′,V ′′(z?V ′,V ′′ ; z?V\V ′,V\V ′′) = ∇2

xV′y
E
V′′
L(z?) (6.10a)

77

∇2
zV′,V′′y

I
V′
LµV ′,V ′′(z?V ′,V ′′ ; z?V\V ′,V\V ′′) = ∇2

xV′y
I
V′′
L(z?) (6.10b)

∇2
zV\V′,V\V′′y

E
V′′
LµV ′,V ′′(z?V ′,V ′′ ; z?V\V ′,V\V ′′) = ∇2

zV\V′,V\V′′y
E
V′′
L(z?) (6.10c)

∇2
zV\V′,V\V′′y

I
V′
LµV ′,V ′′(z?V ′,V ′′ ; z?V\V ′,V\V ′′) = ∇2

zV\V′,V\V′′y
I
V′
L(z?) (6.10d)

Moreover, we have from the L-uBLH of P and the fact that the constraint Jacobian matrices

∇xV′cENG [V ′]\V ′′(x
?) and ∇xV\V′cENG [V ′]\V ′′(x

?) are the submatrices of ∇zzL(z?), we have:

‖∇xV′cENG [V ′]\V ′′(x
?)‖ ≤ L (6.11a)

‖∇xV\V′cENG [V ′]\V ′′(x
?)‖ ≤ L. (6.11b)

From (6.9), (6.10), and (6.11), we have ‖∇2
zV′,V′′zV′,V′′

LµV ′,V ′′(z?V ′,V ′′ ; z?V\V ′,V\V ′′)‖ ≤ L + µL2.

Proof of β-uLICQ. By inspecting the problem formulation, one can see that the constraint

Jacobian of PµV ′,V ′′(z?) is a submatrix of the constraint Jacobian for the full problem P ,

and the associated block row in the constraint Jacobian of P is zero. This implies that the

smallest non-trivial singular value of the constraint Jacobian of PµV ′,V ′′(z?) is bounded below

by that of P . This and β-uLICQ of P at z? imply β-uLICQ of PµV ′,V ′′(z?) at z?V ′,V ′′ .

Proof of (γ/2)-uSSOSC. From γ-uSSOSC of P and Lemma 3.6, we have:

∇2
xxL(z?) + µ(∇xc1(x?))>∇xc1(x?) � (γ/2)I, (6.12)

where c1(x) = c(x)[A1], and A1 is the set of constraint indices that are either equalities or

inequalities with nonzero dual at the solution x?. This implies:

∇2
xxL(z?) + µ(∇xc1(x?))>∇xc1(x?) � (γ/2)I.

for any µ ≥ µ. From this we can obtain:

∇2
xV′xV′

L(z?) + µ(∇xV′c1(x?))>∇xV′c1(x?) � (γ/2)I,

78

since the smallest eigenvalue of the diagonal submatrix of a positive definite matrix is always

greater than or equal to that of the original postidive definite matrix. Next, we observe that:

ReH
(
∇2
xV′xV′

L(z?) + µ(∇xV′c1(x?))>∇xV′c1(x?), [cEV ′′(x
?); cI1V ′(x

?)]
)

= ReH
(
∇2
xV′xV′

L(z?) + µ(∇xV′cENG [V ′]\V ′′(x
?))>∇xV′cENG [V ′]\V ′′(x

?), [cEV ′′(x
?); cI1V ′(x

?)]
)
,

where cI1V ′(·) denotes the constraints in cI(·) with non-zero active duals at yI,?. This follows

from the fact that

ReH(G+ J>1 J1, [J1; J2]) = ReH(G, [J1; J2]).

Moreover, (6.9) implies:

ReH
(
∇2
xV′xV′

L(z?) + µ(∇xV′cENG [V ′]\V ′′(x
?))>∇xV′cENG [V ′]\V ′′(x

?), [cEV ′′(x
?); cI1V ′(x

?)]
)

= ReH
(
∇2
xV′xV′

LµV ′,V ′′(z?V ′,V ′′ ; z?V\V ′,V\V ′′), [cEV ′′(x?); cI1V ′(x?)]
)
,

This implies that the smallest eigenvalue of the reduced Hessian of PµV ′,V ′′(z?) at z?V ′,V ′′ is

lower bounded by the smallest eigenvalue of the left-hand-side of (6.12). Therefore, we have

(γ/2)-uSSOSC.

6.1.4 Subproblem Sensitivity

Now that we know the subproblems of the form (6.4) satisfy the uniform regularity

conditions, we can establish the EDS for the subproblems with respect to the fixed solution

data. First, the uniform regularity of the subproblems, established in Lemma 6.16, allows

establishing the uniform boundedness conditions (3.1) for the regularized subproblems.

Lemma 6.17. Under Assumption 2.1, 3.4, 3.5, 3.6 for P at z?, for any µ ≥ µ (defined

in (6.16)) and hypergraph V ′,V ′′ ⊆ V, the following holds for the subproblem PµV ′,V ′′(z?) at

solution z?V ′,V ′′:

σHV′,V′′ (z
?) ≤ L+ µL2, (6.13a)

σFV′,V′′ (z
?) ≤ L+ µL2 (6.13b)

σ
HV′,V′′

(z?) ≥
(

4

γ
+

64µ(L+ µL2)2

γ3β
+

16(L+ µL2)

γ2β

)−1 (
1 + µ(L+ µL2)

)−1
. (6.13c)

79

Proof. The result follows from Theorem 3.3 and Lemma 6.15, 6.16.

We now are ready to state the EDS for subproblems.

Lemma 6.18. Under Assumption 2.1, 3.4, 3.5, 3.6 for P at z?, for any µ ≥ µ (defined

in (3.5)), V ′,V ′′ ⊆ V such that NG[V ′] ⊆ V ′, and ε > 0, there exist neighborhoods ZV ′,V ′′ of

z?V ′,V ′′ and Z of z? and a continuous function z†V ′,V ′′ : Z→ ZV ′,V ′′, such that for any z ∈ Z,

z†V ′,V ′′(z) is a primal-dual solution of PµV ′,V ′′(z). Furthermore, for any z, z′ ∈ Z and i ∈ V ′,
∥∥∥Ri←V ′,V ′′z

†
V ′,V ′′(z)−Ri←V ′,V ′′z

†
V ′,V ′′(z

′)
∥∥∥ ≤

∑

j∈N 2
G [V ′]\V ′′

Υρ

⌈
dG(i,j)

4
−1

⌉
+‖zj − z′j‖, (6.14)

where Υ and ρ are defined in Theorem 2.2, σH , σF , σH are defined in the right-hand-side

of (6.13), and Ri←V ′,V ′′ is the restriction of zV ′,V ′′ to zi.

Proof. From Lemma 6.15, 6.16, z?V ′,V ′′ is a solution of PµV ′,V ′′(z?) at which (L+ µL2)-uBLH,

β-uLICQ, (γ/2)-uSSOSC are satisifed. This observation and Theorem 2.2 and Lemma 6.17

indicates (6.14); here, one can observe that the data in V \ N 2
G [V ′] has no impact on the

problem; thus, it suffices to only express the sensitivity against the data in N 2
G [V ′] \ V ′′.

6.2 Algorithm

The analysis in the previous section shows that the subproblem in (6.4) is consistent

with the full problem and it inherits the desired uniform regularity conditions. We now use

this subproblem formulation to formally define the OSM and analyze the convergence of the

algorithm.

To define the algorithm, we first need to define a set of subdomains (in particular, V ′ and

V ′′ that appear in (6.4)). We consider a partition {Vk}k∈K of V : for any k ∈ K and k′ 6= k,

Vk ⊆ V
⋃̇

k∈K
Vk = V ,

80

where
⋃̇

denotes the disjoint union. Furthermore, we consider an overlapping partition

{V ′k}k∈K and {V ′′k}k∈K such that:

Vk ⊆ V ′k,V ′′k ⊆ V (6.15a)

NG[V ′′k] ⊆ V ′k. (6.15b)

We call {Vk}k∈K a partition of V and {V ′k}k∈K and {V ′′k}k∈K overlapping partitions of V .

With the overlapping partitions {V ′k}k∈K and {V ′′k}k∈K, one can formualte a set of subprob-

lems {PµV ′k,V ′′k (·)}k∈K. The non-overlapping and overlapping partitions {Vk}k∈K, {V ′k}k∈K, and

{V ′′k}k∈K are depicted in Figure 6.2

Constructing a set of overlapping and non-overlapping partition can be performed in

a straightforward manner. First, one obtains the non-overlapping partition of the graph

{Vk}k∈K. This can be done by the intuition of the modeler (e.g., in dynamic optimization,

one can partition the graph by dividing the time horizon into intervals of equal lengths) or

by using generic graph partitioning tools (e.g., METIS [103]). Then, each non-overlapping

subdomains can be expanded to obtain the overlapping partitions. The expansion procedure

is performed by progressively incorporating adjacent nodes. For example, each subdomains

in the overlapping partitions can be obtained by:

V ′′k = N ω[Vk] (6.16a)

V ′k = N ω+1[Vk]. (6.16b)

Here, note that a prescribed parameter ω is used to control the size of overlap; we will see

later that the size of overlap becomes an important algorithmic parameter. The method in

(6.16) is just one way of creating the overlapping partition, and different methods can be

used as long as the requirements in (6.15) are satisfied.

We now are ready to formally define the OSM; the algorithm can be defined as:

z
(`+1)
Vk = RVk←V ′k,V ′′k z

†
V ′k,V ′′k

(z(`)), k ∈ K, ` = 0, 1, · · · , (6.17)

81

V1
V ′′
1

V ′
1

V2
V ′′
2

V ′
2

| | | | | | | | | | | | | | | | | | | |

Figure 6.2 Non-overlapping and overlapping partitions

where we follow the notation in Lemma 6.18 and we denote the primal-dual solution at

iteration ` as z(`). Note that yet one cannot guarantee that the recursion in (6.17) is well-

defined for ` = 0, 1, · · · . This is because we do not know yet that z(`) is in the domain of

the local solution mapping z†(·). We will show later that under a certain condition this

requirement can be satisfied for any ` = 0, 1, · · · .
Each iterate of the algorithm consists of two steps: subproblem solution and solution

restriction. In the first step, one formulates the subproblem for the k-th subdomain as

PµV ′k,V ′′k (z(`)). The subproblem incorporates the primal-dual solution of the previous iteration

step. Then, the subproblem is solved to obtain its solution z†V ′′k ,V ′′k
(z(`)). Here, we observe

that solution multiplicity exists at the overlapping region. In particular, if a certain node is

associated with more than one subdomains in {V ′k}k∈K, different subproblems may produce

the solution for the same node, but they are not necessarily the same. To remove such

multiplicity, we restrict the solution.1 Specifically, we discard the primal solutions associated

with V \ V ′k and the dual solutions associated with V \ V ′′k and take only those solutions

associated with Vk. This procedure is represented by the restriction operator RVk←V ′k,V ′′k .

After restriction, the solutions are assembled over k ∈ K to make the next guess of the

solution z(`+1). This concludes one iterate of overlapping Schwarz, and the algorithm is

repeated until certain stopping criteria are met. One can implement stopping criteria based

on the residuals to the KKT conditions.

1The term restriciton is originated from the restricted additive/multiplicative Schwarz method for sparse
linear algebra [29]

82

6.3 Convergence

We now analyze the convergence of OSM (6.17). Our convergence analysis derives an

explicit upper bound of the linear convergence rate. The convergence rate is expressed in

terms of two parameters that characterize the overlapping/non-overlapping partitions. In

particular, those parameters are the size of overlap and the size of boundary. We will see that

the convergence rate improves exponentially with the size of overlap and deteriorates linearly

with the size of boundaries. However, we will see that for mesh-like graphs, the exponential

effect of the size of overlap dominates the linear effect of the size of boundaries. In what

follows, we first formally define the parameters that characterize the partitions (the size of

overlap and the size of boundary); then, we explain the convergence without mathematical

details but with an illustrative example; finally, we formally prove the convergence.

6.3.1 Characterization of Partitions

We now define two parameters that characterize the given overlapping and non-overlapping

partition, which will be crucial for the convergence analysis.

Definition 6.6. The size of overlap ω for a pair of overlapping partition {Vk}k∈K and the

non-overlapping partition {V ′′k}k∈K is defined by:

ω := min
k∈K

dG(Vk,V \ V ′′k)− 1.

Observe that if V ′′k = Vk for all Vk, the size of overlap is zero. Also, note that the expansion

approach in (6.16) indeed constructs overlapping partitions with the size of overlap ω.

We now define the second parameter, size of boundary.

Definition 6.7. The size of boundary ψ for non-overlapping partitions {V ′′k}k∈K and {V ′k}k∈K
is defined by:

ψ := max
k∈K
|N 2
G [V ′k] \ V ′′k |.

83

Note that if the overlapping partitions are obtained based on the approach in (6.16), the

size of boundary is equal to:

ψ = max
k∈K
|N ω+3
G [Vk] \ N ω

G [Vk]| (6.18)

6.3.2 Convergence in a Nutshell

Before we formally prove the convergence of the algorithm, we first provide high-level

intuition on the convergence behavior. Figure 6.3 illustrates how EDS enables and accelerates

the convergence. Here, we consider a 20-node dynamic optimization problem. For the

example on the left, we apply OSM and for the example on the right, we apply a non-

overlapping decomposition (block Jacobi method). The optimal solution is represented as a

black dashed line, and the subproblem solutions are plotted as colored lines.

In the first iteration, both overlapping and non-overlapping decomposition needs to start

the iteration with some arbitrary starting point. Due to this arbitrariness, there are signifi-

cant errors in the subproblem solutions. However, one interesting observation is that as we

move into the inner part of each subdomain, the solution accuracy improves. Specifically,

the difference between the optimal solution and the subproblem solutions becomes small as

moving towards the interior of each subdomain. This observation can be accounted for by

the EDS; the solution from the neighboring subproblem enters into each subproblem as para-

metric perturbations, and the impact of such perturbation decays exponentially as moving

away from the perturbation point. The magic of OSM is happening during the next phase:

restriction. In particular, during this phase, the low-quality boundary part is discarded, and

the high-quality inner parts are taken to the next iteration. So, this restriction procedure is

designed to exploit the EDS. On the other hand, for non-overlapping decomposition, due to

the absence of overlap, the low-quality boundary part still remains in the solution, and this

adversely affects the solution quality in the next iteration step. In the next iteration, in OSM,

thanks to the availability of the high-quality solution guess, the solutions can quickly close

the gap from the optimal solution. But non-overlapping decomposition cannot make much

progress due to the absence of such a high-quality solution guess. If we repeat this procedure

84

5 10 15 20

−0.50

−0.25

0.00

0.25

0.50

i

x
i

Optimal
Subproblem 1
Subproblem 2

5 10 15 20

−0.50

−0.25

0.00

0.25

0.50

i

x
i

Optimal
Subproblem 1
Subproblem 2

5 10 15 20

−0.50

−0.25

0.00

0.25

0.50

i

x
i

Optimal
Subproblem 1
Subproblem 2

5 10 15 20

−0.50

−0.25

0.00

0.25

0.50

i
x
i

Optimal
Subproblem 1
Subproblem 2

5 10 15 20

−0.50

−0.25

0.00

0.25

0.50

i

x
i

Optimal
Subproblem 1
Subproblem 2

5 10 15 20

−0.50

−0.25

0.00

0.25

0.50

i

x
i

Optimal
Subproblem 1
Subproblem 2

5 10 15 20

−0.50

−0.25

0.00

0.25

0.50

i

x
i

Optimal
Subproblem 1
Subproblem 2

5 10 15 20

−0.50

−0.25

0.00

0.25

0.50

i

x
i

Optimal
Subproblem 1
Subproblem 2

Figure 6.3 Illustration of the convergence of overlapping Schwarz method. Overlapping
Schwarz method (left) and block Jacobi method (right). The solutions from the first iterate
(top); the solutions from the first iterate, after the restriction (second); the solutions from

the second iterate (third); The solutions from the third iterate (bottom).

once more, OSM converges to almost a perfect solution, while the non-overlapping method

barely makes progress. This example illustrates how overlap enables fast convergence by

exploiting the EDS.

85

6.3.3 Convergence Analysis

We now formally prove the convergence of the Schwarz algorithm. We will see that

parametric sensitivity plays a central role in convergence behavior. In particular, by using

the sensitivity result obtained in Lemma 6.18, we establish the convergence of OSM (6.17).

Theorem 6.5 (Convergence). Under Assumption 2.1, 3.4, 3.5, 3.6, given any non-overlppinag

partition {Vk}k∈K and overlapping partitions {V ′k}k∈K and {V ′′k}k∈K satisfying (6.15), µ ≥ µ

(defined in (3.5)), and ε > 0, there exists a neighbhorhood Z of z? such that the OSM (6.17)

is well-defined if ω ≥ 4(1 + log1/ρ(ψΥ)) and z(0) ∈ Z. Furthermore, the sequence {z(`)}∞`=0

generated by OSM in (6.17) satisfies:

max
i∈V
‖z(`)

i − z?i ‖ ≤ α` max
i∈V
‖z(0)

i − z?i ‖, (6.19)

where α := ψΥρdω/4−1e+, Υ and ρ are defined in Lemma 6.18, ω is the size of overlap, and

ψ is the size of boundary.

Proof. One can show that there exists r > 0 such that if z ∈ Z for

Z := {z : ‖zi − z?i ‖ ≤ r for any i ∈ V},

we always have z ∈ Zk for any k ∈ K, where Zk is the Z in Lemma 6.18 for the subproblem

index k. By the definition of the size of overlap and boundary, one can see that for any

i ∈ Vk and j ∈ N 2
G [V ′k] \ V ′k,

dG(i, j) ≥ ω + 1.

Therefore, from Lemma 6.18 we have that for any k ∈ K and i ∈ Vk,
∥∥∥Ri←V ′k,V ′′k z

†
V ′k,V ′′k

(z)−Ri←V ′k,V ′′k z
†
V ′k,V ′′k

(z′)
∥∥∥ ≤ ψΥρdω/4−1e+ max

j∈N 2[V ′k]\V ′′k
‖zj − z′j‖. (6.20)

We can observe that for ω ≥ 4(1 + log1/ρ(ψΥ)), we have that

∥∥∥Ri←V ′k,V ′′k z
†
V ′k,V ′′k

(z)−Ri←V ′k,V ′′k z
†
V ′k,V ′′k

(z′)
∥∥∥ ≤ max

j∈N 2[V ′k]\V ′′k
‖zj − z′j‖. (6.21)

86

Thus, by (6.21) and the fact that:

z†V ′k,V ′′k
(z?) = z?V ′k,V ′′k ,

if z(`) ∈ Z, we have z(`+1) ∈ Z. Therefore, the sequence {z(`)}∞`=0 is well-defined. Now that

we know z(0), z(1), · · · ∈ Z, we can apply (6.20) to each iterate, each k ∈ K, and each i ∈ Vk.
This yields:

max
i∈V
‖z(`+1)

i − z?i ‖ ≤ αmax
i∈V
‖z(`)

i − z?i ‖. (6.22)

The convergence result (6.19) can be obtained from (6.22).

Theorem 6.5 indicates that the rate of convergence improves exponentially with the size

of overlap ω and deteriorates linearly with the size of boundary ψ. Thus, the relationship

between ψ and ω plays an important role in guaranteeing the convergence of the algorithm.

Based on the topology of the graph, one can roughly estimate how fast the size of boundary

grows with respect to the size of overlap (assuming that the overlapping partitions are

constructed by (6.16); thus, the size of boundary is ψ = maxk∈K |N ω+3
G [Vk] \ N ω

G [Vk]|). For

example, if the graph is linear (e.g., dynamic optimization or PDE-based optimization on

1-D space), the size of boundary is always less than or equal to 6 even when the size of

overlap grows. When the graph is an N-dimensional mesh, the size of boundaries grows

polynomially with the size of overlap. When the graph is a tree, the size of boundaries grows

exponentially with the size of overlap.

Therefore, we can say that when the graph topology is similar to a mesh in a finite-

dimensional space, if the problem satisfies uniform regularity condition, the rate of con-

vergence improves exponentially with the size of overlap. This is because even if ψ grows

polynomially, the exponential decay of ρω/4 eventually outweighs the polynomial growth. On

the other hand, if the graph is a tree, the convergence rate may not decay with ω as ψ also

grows exponentially in ω.

In many practical instances, however, such analysis of the limiting behavior may not be

relevant because the size of the graph may not be sufficiently large to allow observing such

87

a limiting behavior. In such a case, even for a moderate size of overlap ω, each subproblem

may become the full problem. If each subproblem becomes the full problem, the algorithm

will trivially converge to the solution in one iteration step. In other words, the results in

Theorem 6.5 become nontrivial only if the gsNLPs are sufficiently large (in diameter).

The key observation in the proof is that after applying the restriction operator RV←V ′,V ′′ ,

the solution can always enjoy the exponential decrease in the error introduced by the error

in the solution guess. Equation (6.20) reveals such an observation. In other words, this

restriction step discards the “bad” part of the solution, which is strongly affected by the

error in the solution guess, and only takes the good part of the solution, where such adverse

effect is adequately damped out. This indicates that the restriction step is designed to exploit

the EDS.

While Theorem 6.5 implies that the convergence rate of the algorithm improves expo-

nentially with the size of overlap for a certain class of graphs, it does not mean that the

solution time decreases as the size of overlap is increased. In practice, the solution time is

affected both by the convergence rate and the solution time for each subproblem. We can

observe that as we increase the size of overlap, the subproblem size also increases (assuming

that the overlapping partitions are constructed by (6.16)). Thus, as we increase ω, each

iteration may take a longer time. Thus, there exists a trade-off between the size of overlap

and subproblem complexity. In practice, one needs to tune the size of overlap to achieve

the best performance. If one has a complexity model for the subproblems, one can use the

result in Theorem 6.5 to compute the optimal size of overlap. However, such a complexity

model can be vastly different from problem to problem, so here we do not study finding the

optimal overlap size.

The global convergence of the OSM might be of interest; unfortunately, studying the

global convergence of the OSM is very challenging under nonconvex settings because our local

convergence analysis entirely relies on the local sensitivity of the solution, and there is no

global convergence metric such as merit functions. Thus, to enforce the global convergence,

88

the algorithm may need to be supplemented with a certain line-search or trust-region-based

strategy.

Alternatively, one may consider a strategy where we use globally-convergent nonlinear

optimization algorithms (e.g., augmented Lagrangian method (ALM), sequential quadratic

programming (SQP) method, and interior point method (IPM) with line-search or trust-

region strategies [124]) and apply OSM to solve the subproblems (e.g., QP subproblems or

linear systems) that appears within such globally convergent methods. This motivates us to

study the convergence of OSM under simpler settings, in particular, quadratic programming

and linear systems, and seek to establish global convergence. In the next two chapters, we

will discuss the specialization of OSM (6.17) for quadratic programming and linear systems

and study the global convergence properties.

89

Chapter 7

Quadratic Programming

In this chapter, we discuss OSM for graph-structured quadratic programs (gsQPs). Since

quadratic programs are nonlinear programs, the local convergence results in Section 6.3 holds

for gsQPs. However, by exploiting the nature of quadratic programs, one can establish a

stronger convergence result. In particular, in this section, we aim to establish the global

convergence of the OSM under stronger regularity assumptions: global SSOSC and global

LICQ. Note that linear systems are also quadratic programs in that they can be treated as

QPs; for example, positive definite systems can be regarded as unconstrained QPs and non-

symmetric systems can be regarded as an equality-constrained QPs with constant objective

functions. We discuss the OSM for linear systems further in the next chapter.

Related Work: The convergence of OSM for solving quadratic programs has been studied

in our previous works [145, 153]. In particular, we have studied the convergence behavior

under unconstrained QP setting in [153] and that under constrained QP setting in [145].

However, as in [145], our subproblem definition did not take into account the inheritance of

uniform regularity; as such, we needed to rely on a conjecture on the uniform boundedness

of the singular value of the KKT matrix [145, Assumption 4]. Furthermore, we could only

establish the local convergence based on such a conjecture. The result in the current disser-

tation extends this result in that we deal with constrained QPs and we do not make such an

ad-hoc conjecture. Furthermore, we establish global convergence.

In the context of (6.1), we consider the following quadratic programming setting:

fi({xj}j∈NG [i]) :=
∑

j∈NG [i]

1

2
x>i Gi,jxj − g>i xi, i ∈ V (7.1a)

90

cEi ({xj}j∈NG [i]) :=
∑

j∈NG [i]

1

2
JEi,jxj − hEi , i ∈ V (7.1b)

cIi ({xj}j∈NG [i]) :=


 J Ii,i

−J Ii,i


xi −


 hLi

−hUi


 , i ∈ V , (7.1c)

Here, Gi,j ∈ Rnxi×nxj , JEi,j ∈ Rn
yE
i
×nxj , J Ii,j ∈ Rn

yI
i
×nxj , gi ∈ Rnxi , hEi ∈ Rn

yE
i , and hLi , h

U
i ∈

Rn
yI
i . We assume that :

Gi,j = G>j,i, i, j ∈ V (7.2a)

hUi > hLi , i ∈ V . (7.2b)

With the definitions in (7.1), the gsQP can be formulated as follows:

Q : min
{xi}i∈V

∑

i∈V

∑

j∈NG [i]

1

2
x>i Gi,jxj −

∑

i∈V
g>i xi (7.3a)

s.t.
∑

j∈NG [i]

JEi,jxj = hEi , (yEi), i ∈ V (7.3b)

hLi ≤ J Ii,ixi ≤ hUi , (yIi), i ∈ V . (7.3c)

We define Ji,j := [JEi,j; J
I
i,j], Hi,j := [Gi,j J

>
i,j; Ji,j 0], yi := [yEi ; yIi], zi := [xi; yi], nyi :=

nyEi + nyIi , and nzi := nxi + nyi ; here, we assume J Ii,j = 0 if i 6= j for convenience. We denote

the problem in (7.3) as Q, and the subproblems (6.4) associated with subdomains V ′,V ′′,
data z, and the penalty parameter µ is denoted by QµV ′,V ′′(z). Note that it suffices to define

one dual variable for each two-sided inequality in (7.3c); this is because if (7.2b) holds, due

to the complemenatarity slackness, one of the dual variables is always zero. Thus, one can

represent the duals for the upper and lower bound constraint in a single scalar value.

We define the following additional notation: for subsets V ′,V ′′ ⊆ V , JEV ′,V ′′ := {JEi,j}i∈V ′,j∈V ′′ ,
J IV ′,V ′′ := {J Ii,j}i∈V ′,j∈V ′′ , JV ′,V ′′ := {Ji,j}i∈V ′,j∈V ′′ , GV ′,V ′′ := {Gi,j}i∈V ′,j∈V ′′ , HV ′,V ′′ :=

{Hi,j}i∈V ′,j∈V ′′ , gV ′ := {gi}i∈V ′ , hEV ′ := {hEi }i∈V ′ , hLV ′ := {hLi }i∈V ′ , and hUV ′ := {hUi }i∈V ′ ,
where we assume that GE

i,j = 0 and JEi,j = 0 if dG(i, j) > 2 and J Ii,j = 0 if i 6= j. Also,

JE := JEV,V ,J
I := J IV,V ,J := JV,V ,G := GV,V ,H := HV,V ,h := hV ,h

L := hLV , and

hU := hUV .

91

7.1 Global Regularity Conditions

To establish the global convergence, we strengthen the uniform regularity assumptions

(Assumption 3.4, 3.5, 3.6). These strengthened regularity conditions are only relevant to

gsQP settings and cannot be generalized to gsNLPs because they are only relevant if the La-

grangian Hessian and constraint Jacobian are constant. Thus, the subsequent result exploits

the particular structure in gsQP. In what follows, we define globally bounded Lagrangian

Hessian (gBLH), global strong second-order sufficiency conditions (gSSOSC), and global

linear independence constraint qualifications (gLICQ).

Assumption 7.13 (L-gBLH). ‖H‖ ≤ L.

Assumption 7.14 (γ-gSSOSC). ReH(G,JE) � γI for γ > 0.

Assumption 7.15 (β-gLICQ). JJ> � βI for β > 0.

One can see that the global regularity conditions are certainly more restrictive than the

uniform regularity conditions. This is because we enforce that the reduced Hessian is posi-

tive definite with a uniformly bounded smallest eigenvalue in the absence of active inequality

constraints, and we enforce that the constraint Jacobian is linearly independent with a uni-

formly bounded smallest singular value even when all the inequality constraints are active.

This is different from uniform regularity setting, which only enforce those conditions for par-

ticular inequality sets (recall Assumption 3.5, 3.6). In the absence of inequality constraints,

the global regularity condition reduces to the normal uniform regularity condition.

Note that we can apply Lemma 6.15 (consitency of the subproblems) to the subproblems

of Q; thus, we do not need to prove it again. We now show that under Assumption 7.13, 7.14,

7.15, any subproblem QµV ′,V ′′(·) of Q has a solution at which uniform regularity conditions are

satisified (thus the solution is unique) with the common uniform parameters. This replaces

Lemma 6.16 (inheritance of uniform regularity).

92

Lemma 7.19. Under Assumption 7.13, 7.14, 7.15 for a feasible Q satisfying (7.2), for any

µ ≥ µ (defined in (3.5)), V ′,V ′′ ⊆ V satisfying NG[V ′′] ⊆ V ′, and any z, there exists a

solution of QµV ′,V ′′(z) at which L+ µL2-uBLH, (γ/2)-uSSOSC, and β-uLICQ holds.

Proof. The feasibility, γ-gSSOSC, and β-gLICQ implies that the full problem has a unique

primal-dual solution at which L-uBLH and γ-uSSOSC holds. Furthermore, the Jacobian

of constraints with nonzero dual is a submatrix of J constructed by collecting a subset of

the rows of J . Thus, we also have β-uLICQ. Since the original problem is feasible, the

subproblem QµV ′,V ′′(z) is also feasible; this is because the set of constraints in QµV ′,V ′′(z) is

only a subset of the set of constraints in Q; thus, if x is feasible for Q, we have:

JEV ′′,V ′xV ′ = hEV ′′

hLV ′,V ′ ≤ J IV ′,V ′xV ′ ≤ hUV ′ .

By Lemma 3.6, we have that G + µ(JE)>JE � (γ/2)I. By extracting the submatrix

associated with V ′ and noting that JEV ′,V\NG [V ′] = 0, we obtain:

GV ′,V ′ + µ(JENG [V ′],V ′)
>JENG [V ′],V ′ � (γ/2)I;

and finally we have

ReH(GV ′,V ′ + µ(JEN [V ′]\V ′′,V ′)
>JEN [V ′]\V ′′,V ′ ,J

E
V ′′,V ′) � (γ/2)I.

Therefore, the subproblem is strongly convex, and there exists a unique solution. This implies

that (γ/2)-uSSOSC holds at the soluiton. Moreover, L-gBLH implies L+ µL2-uBLH at the

soluiton (here, µL2 term comes from the quadratic penalty). For such a unique solution, the

constraint Jacobian is a submatrix of J whose associated block row is zero. Thus, β-uLICQ

holds at the solution.

The subproblems of globally regular gsQPs always satisfy the uniform regularity at the

solution with common uniform constants, L+µL2, γ/2, and β. Comparing Lemma 7.19 with

Lemma 6.16, we observe that the twice continuous differentiability assumption (Assumption

2.1) is dropped since QPs always satisfy such an assumption.

93

7.2 Subproblem Sensitivity

We now establish the EDS for the subproblems of Q. Here, since uBLH, uSSOSC, and

uLICQ hold with uniform parameters that do not depend on the data z, one can establish

global EDS. That is, as opposed to the local results in Theorem 7.6, the sensitivity result

applies to any z ∈ Rnz , and the decay parameters Υ, ρ do not depend on the value of z.

The theorem is stated as follows.

Theorem 7.6 (EDS in Subproblems of Q). Under Assumption 7.13, 7.14, 7.15 for Q satis-

fying (7.2), for any µ ≥ µ (defined in 3.5), V ′,V ′′ ⊆ V satisfying NG[V ′′] ⊆ V ′, there exists a

continuous function z†V ′,V ′′ : Rnz → RnzV′,V′′ , such that for any z, z†V ′,V ′′(z) is a primal-dual

solution of QµV ′,V ′′(z). Furthermore, for any z, z′ ∈ Z,

∥∥∥Ri←V ′,V ′′z
†
V ′,V ′′(z)−Ri←V ′,V ′′z

†
V ′,V ′′(z

′)
∥∥∥ ≤

∑

j∈N 2
G [V ′]\V ′′

Υρ

⌈
dG(i,j)

4
−1

⌉
+‖zj − z′j‖, (7.4)

where Υ :=
σHσF
σ2
H

, ρ :=
σ2
H − σ2

H

σ2
H + σ2

H

, and

σH := L+ µL2

σF := L+ µL2

σH :=

(
4

γ
+

64µ(L+ µL2)2

γ3β
+

16(L+ µL2)

γ2β

)−1 (
1 + µ(L+ µL2)

)−1
.

Proof. The existence of the solution mapping follows from Lemma 7.19, and its continuity

can be obtained by applying Lemma 2.2 to each point z ∈ Rnz . By applying Lemma 2.3, one

can show that the directional derivative of the solution with respect to the data perturbation

satisfies (2.20). By using (L+ µL2)-gBLH, (γ/2)-gSSOSC, β-gLICQ, establisehd in Lemma

7.19 and Lemma 6.17, one can show that for any data p = z and direction q, we have:

σH(p, q) ≤ L+ µL2 (7.5a)

σF (p, q) ≤ L+ µL2 (7.5b)

σH(p, q) ≥
(

4

γ
+

64µ(L+ µL2)2

γ3β
+

16(L+ µL2)

γ2β

)−1 (
1 + µ(L+ µL2)

)−1
. (7.5c)

94

Thus, we can rewrite (2.20) as follows:

‖Ri←V ′k,V ′′kDqz
†
V ′k,V ′′k

(p, q)‖ ≤
∑

j∈V

σHσF
σ2
H

(
σ2
H − σ2

H

σ2
H + σ2

H

)⌈
dG(i,j)

4
−1

⌉
+ ‖qj‖.

Finally, from

‖Ri←V ′k,V ′′k z
†
V ′k,V ′′k

(p)−Ri←V ′k,V ′′k z
†
V ′k,V ′′k

(p′)‖ ≤
∥∥∥∥
∫ 1

0

Ri←V ′k,V ′′kDp′−pz
†
V ′k,V ′′k

((1− t)p+ tp′)dt

∥∥∥∥

≤
∫ 1

0

‖Ri←V ′k,V ′′kDp′−pz
†
V ′k,V ′′k

((1− t)p+ tp′)‖dt

≤
∑

j∈V
Υρ

⌈
dG(i,j)

4
−1

⌉
+‖pj − p′j‖,

one can obtain (7.4).

Note that the ε term in Theorem 2.2 does not appear in Theorem 7.6. This is because

the ε term originates from the error in singular values of the Hessian matrix, but for QPs,

such singular values do not change by the perturbation; thus, we do not need to rely on the

argument based on continuity of singular values, and thus, the ε term does not appear.

7.3 Convergence

Now that we have the global EDS, we can apply the same proof technique used in Theorem

6.5 to prove the global convergence of the OSM (6.17). The convergence theorem is stated

as follows.

Theorem 7.7 (Global Convergence for QP). Under Assumption 7.13, 7.14, 7.15 for Q satis-

fying (7.2), given any non-overlppinag partition {Vk}k∈K and overlapping partitions {V ′k}k∈K
and {V ′′k}k∈K satisfying (6.15), µ ≥ µ (defined in (3.5)), and any z(0), the sequence {z(`)}∞`=0

generated by OSM in (6.17) satisfies (6.19), where α := ψΥρdω/4−1e+, Υ and ρ are defined

in Theorem 7.6, ω is the size of overlap, and ψ is the size of boundary.

Proof. The sequence is well-defined for any z(0) since by Lemma 7.19 each subproblem has a

unique solution regardless of the data. By Lemma 6.15, the uniqueness of the solution, and

95

the definition of the size of overlap and boundary, we have

∥∥∥Ri←V ′k,V ′′k z
†
V ′k,V ′′k

(z)−Ri←V ′k,V ′′k z
†
V ′k,V ′′k

(z′)
∥∥∥ ≤ ψΥρdω/4−1e+ max

j∈N 2[V ′k]\V ′′k
‖zj − z′j‖, (7.6)

for each i ∈ Vk and k ∈ K. The recursion in (7.6) and the fact that:

z†V ′k,V ′′k
(z?) = z?V ′k,V ′′k

yields:

max
i∈V
‖z(`+1)

i − z?i ‖ ≤ αmax
i∈V
‖z(`)

i − z?i ‖. (7.7)

The convergence result (6.19) can be obtained from (7.7).

Theorem 7.7 indicates that the OSM has stronger convergence properties when the gsNLP

is actually a convex quadratic program. This motivates us to hypothesize that OSM can

be used for solving gsQPs that appear within the SQP method. When the SQP method

is applied for solving gsNLPs, each QP subproblem reduces to a gsQP. Thus, one may use

OSM to speed up the subproblem solution within the SQP algorithm. In Chapter 9, we

will discuss the possible implementation of OSM within the SQP method. Comparing with

the convergence theorem for gsNLPs (Theorem 6.5), in Theorem 7.7, it was not necessary to

prove the well-definedness of the sequence generated by OSM (6.17) because the subproblems

are always feasible and have a unique solution. Thus, regardless of its convergence, the

sequence generated by (6.17) is always well-defined.

96

Chapter 8

Linear Systems

In this chapter we analyze the convergence of the OSM for solving graph-structued linear

systems (gsLSs):

∑

j∈NG [i]

Ji,jxj = hi, i ∈ V , (8.1)

where G = (V , E) is a graph, xi ∈ Rnxi is the nodal variable at node i and Ji,j ∈ Rnxi×nxj for

i, j ∈ V . Note that we have assumed that the diagonal blocks Ji,i are square. The problem

can be written in a compact form:

Jx = h, (8.2)

where J := {J i,j}i∈V,j∈V and x := {xi}i∈V . Note that J is a square matrix because its

diagonal blocks are square. As before, we define:

JV ′,V ′′ := {Ji,j}i∈V ′,j∈V ′′

hV ′ := {hi}i∈V ′ .

The OSM for QP studied in Chapter 7 can be certainly applied to solve (8.2). For

example, if J is positive definite, one can view J as G and apply the OSM for unconstrained

QPs; if J has a KKT-matrix-like structure, one can apply the OSM for equality-constrained

QPs. However, neither of those stucture may exist in the problem. Still, the linear systems

can be considered as the constraints in QPs; however, when they are treated as QPs, one

97

needs to solve the augmented system:

 J>

J




x
y


 =


0

h


 ,

which may not be desireable from the numerical stand point (the dimension of the problem

doubles).

As such, instead of attempting to apply the QP-based algorithm, in this chapter, we dis-

cuss how to solve (8.2) from a purely linear algebra perspective. The algorithm is equivalent

to the OSM for QPs if J is positive definite and we view the problem as a minimization

problem: minx (1/2)x>Jx−h>x. Moreover, the presented algorithm actually is equivalent

to the restricted additive Schwarz (RAS) method, which has been extensively studied in the

literature. Our graph-structured matrix analysis in Theorem 2.1 and the convergence proof

technique based on EDS (Theorem 6.5) allows the characterization of the convergence rate.

In particular, we show that the convergence rate improves exponentially with the size of over-

lap. However, it should be caveated that the inheritance of regularity cannot be guaranteed

under this method; that is, even if the full problem (8.2) is well-conditioned, the subproblem

may become arbitrarily ill-conditioned. This method can be used for solving linear systems

that arise within optimization algorithms (e.g., interior point method). In the rest of the

chapter, we will present the algorithm and study its global convergence property.

Related Work: Overlapping Schwarz method, also called overlapping domain decom-

position or additive/multiplicative Schwarz method, has been widely studied in the con-

text of PDEs [31, 53, 116, 127, 160]. Compared to non-overlapping versions (block Jacobi or

Gauss-Seidel), convergence can be accelerated with this scheme by incorporating the over-

lap [52, 116, 140]. Classical works on overlapping Schwarz have focused on linear systems

that arise from the discretized PDEs. Subsequently, the OSM has been generalized so as to

be applicable to general sparse linear systems [33]. Finally, the restricted additive Schwarz

method (we will see that this algorithm is equivalent to ours) is proposed [30] and demon-

strated to outperform its non-restricted counterpart [55]. One sweep of RAS iteration can be

interpreted as applying a preconditioner; this interpretation is beneficial since sophisticated

98

iterative solution methods (e.g., generalized minimal residual algorithm; GMRES) can be

used along with Schwarz preconditioner [138,139]. A number of works in the literature have

used such overlapping Schwarz-based preconditioning strategies [28, 30, 154]. The OSM for

general linear algebra systems are available in powerful scientific computing packages such

as PETSc [12]. Most works reported on general linear systems, however, have only analyzed

empirical convergence behavior [29, 30, 32, 71]. The work in [68, 69, 101] provides theoretical

convergence analysis for general linear systems but does not establish a relationship between

the convergence rate and the size of the overlap. In this context, the contribution of the con-

tents in this chapter can be summarized as follows: (i) We provide a theoretical convergence

analysis for the OSM for general (graph-structured) linear systems. (ii) We establish an

explicit dependence between the convergence rate and the size of the overlap (in particular,

exponential improvement). A similar form of the bound of convergence rate (exponential

improvement with respect to the size of overlap) is also observed in the PDE literature [50],

but our result is more generally applicable.

8.1 Algorithm

We now describe the OSM to solve (8.2). Note that this algorithm is different from (6.17),

where the partial augmented Lagrangian strategy is used. For each subdomain k ∈ K, we

consider a non-overlapping partitiong {Vk}k∈K and an overlapping partition {V ′}k∈K. Note

that we only have one overlapping partition, as oppose to the algorithms for gsNLPs and

gsQPs, where a pair of overlapping partitions ({V ′k}k∈K, {V ′′k}k∈K) are used. The OSM for

solving (8.2) is defined as follows:

x
(`+1)
Vk = RVk←V ′k(JV ′k,V ′k)

−1(hV ′k − JV ′k,V\V ′kx
(`)

V\V ′k
), k ∈ K, ` = 0, 1, · · · , (8.3)

where the solution at iteration ` is denoted by x(`) ∈ Rn. After solving the subsystem for V ′k,
the solution is restricted to Vk to obtain the next iterate. Note that (8.3) for each subsystem

k can be solved in parallel. By solving (8.3) for each index k ∈ K, one can construct the

entire iterate vector x(`+1). When ω = 0, the overlapping Schwarz scheme reduces to a

99

block-Jacobi scheme (decentralized) while, when ω is maximal (V ′k = V), the overlapping

Schwarz scheme becomes a direct solution method (centralized). In this sense, overlapping

Schwarz provides a bridge between fully decentralized and fully centralized schemes (thus

providing flexibility).

The iteartive algorithm in (8.3) can be rewritten as:

x(`+1) = Sx(`) + s, (8.4)

where the blocks of S and s are defined as follows: for k ∈ K,

SV ′k,V ′k = 0 (8.5a)

SV ′k,V\V ′k = RVk←V ′kJ
−1
V ′k,V ′k

JV ′k,V\V ′k (8.5b)

sV ′k = RVk←V ′k(JV ′k,V ′k)
−1hV ′k . (8.5c)

Therefore, the OSM can be interpreted as a typical iterative solution scheme for a linear

system.

The iteration scheme in (8.3) can alternatively expressed in the following form:

x(`+1) =
∑

k∈K
RV←Vk←V ′k(JV ′k,V ′k)

−1(hV ′k − JV ′k,V\V ′kx
(`)

V\V ′k
)

=
∑

k∈K
RV←Vk←V ′k(JV ′k,V ′k)

−1(hV ′k − JV ′k,V\V ′kx
(`)

V\V ′k
− JV ′k,V ′kx

(`)

V ′k
+ JV ′k,V ′kx

(`)

V ′k
)

=
∑

k∈K
RV←Vk←V ′k

(
x

(`)

V ′k
+ (JV ′k,V ′k)

−1(hV ′k − JV ′k,Vx
(`))
)

= x(`) +
∑

k∈K
RV←Vk←V ′k(JV ′k,V ′k)

−1(hV ′k − JV ′k,Vx
(`)),

were, RV←Vk←V ′k := R>Vk←VRVk←V ′k . Finally, one can write:

x(`+1) = x(`) +

(∑

k∈K
RV←Vk←V ′kJ

−1
V ′k,V ′k

RV ′k←V

︸ ︷︷ ︸
P−1

)
(h− Jx(`)). (8.6)

The RAS method for linear systems is typically expressed in (8.6) form. Thus, we can see the

equivalence of (8.3) with the standard RAS method, which shows the connection between

100

overlapping Schwarz for gsNLPs and the standard RAS scheme. In addition, in this way, we

can consider P as a preconditioner of an iterative linear solver. Algorithm (8.6) uses a simple

static iteration (also called a Richardson iteration [139]), but more sophisticated iterative

methods (e.g., GMRES) can also be used by treating P as a preconditioner. Although

(8.3) and (8.6) are mathematically equivalent, there can be a difference from the numerical

standpoint due to the finite precision of the computers.

8.2 Convergence

We now study the convergence of the algorithm in (8.3). For the analysis, we mainly

use the form (8.3) and (8.4), but the same result also applies to Algorithm (8.6) as they are

mathematically equivalent. First, we state a well-known convergence condition for iterative

linear solvers.

Lemma 8.20. Consider nonsingular J with nonsingular {JV ′k,V ′k}k∈K. The following are

equivalent.

(a) I − S is nonsingular, and the sequence generated by (8.3) converges to the solution of

(8.2) as `→∞ (for any x(0)).

(b) SR(S) < 1.

Here, SR(·) denotes the spectral radius of the argument.

Proof. It is well known (see [17, Proposition 6.1, p144]) that SR(S) < 1 if and only if I −S
is nonsingular and the iteration of the form (8.3) converges to its fixed point. That is, the

iteration converges to the solution of

x = Sx+ s. (8.7)

By the assumption that J is nonsingular, (8.2) has a unique solution. For both conditions

(a) and (b), I −S is nonsingular, and thus (8.7) has a unique solution. Hence, we need only

to show that the solution of (8.2) is the solution of (8.7). Let x? be the solution of (8.2).

101

Then we have

JV ′k,V ′kx
?
V ′k = −JV ′k,V\V ′kx

?
V\V ′k + hV ′k (8.8)

for k ∈ K. Since JV ′k,V ′k is nonsingular, we can obtain:

x?Vk = RVk←V ′kJ
−1
V ′k,V ′k

(
hV ′k − JV ′k,V\V ′kx

?
V\V ′k

)
(8.9)

Equation (8.9) takes the same form with the fixed-point equation for (8.7). Therefore, x?

solves (8.7). This proves that the unique solutions of (8.2) and (8.7) are equal.

Now, we analyze the convergence of OSM (8.3) to solve (8.2). First we need to prove the

following technical lemma:

Lemma 8.21. We define ‖x‖{Vk}k∈K := maxk∈K ‖xVk‖. The following holds.

(a) ‖ · ‖{Vk}k∈K is a vector norm.

(b) The matrix norm induced by ‖ · ‖{Vk}k∈K satisfies:

‖A‖{Vk}k∈K ≤ max
k∈K
‖AVk,V‖. (8.10)

Proof of (a). Subadditivity: For any x,x′, we have that:

‖x+ x′‖{Vk}k∈K = max
k∈K
‖xVk + x′Vk‖

≤ max
k∈K

(‖xVk‖+ ‖x′Vk‖)

≤ max
k∈K
‖xVk‖+ max

k∈K
‖x′Vk‖

≤ ‖x‖{Vk}k∈K + ‖x′‖{Vk}k∈K ,

where the first equality and last inequality follows from the definition of ‖ · ‖{Vk}k∈K , the first

inequality follows from the triangle inequality and the second inequality follows from the

property of max operator.

Absolute homogeneity: For any a ∈ R and x,

‖ax‖{Vk}k∈K = max
k∈K
‖axVk‖

102

= max
k∈K
|a|‖xVk‖

= |a|max
k∈K
‖xVk‖

= |a|‖x‖{Vk}k∈K ,

where the first and last equality follows from the definition of ‖·‖{Vk}k∈K , the second equality

follows from the absolute homogeneity of 2-norm, and the third equality follows from the

property of max operator.

Positive definiteness: If x = 0, each xVk = 0. Thus, ‖x‖{Vk}k∈K = 0. Conversely, if

‖x‖{Vk}k∈K = 0, we have that ‖xVk‖ = 0, which comes from the positive definiteneess of ‖ · ‖.
Thus, we have x = 0.

Proof of (b). The desired result follows from:

‖Ax‖{Vk}k∈K = max
k∈K
‖AVk,Vx‖

≤ max
k∈K
‖AVk,V‖ ,

where the equality follows from the definition of ‖ · ‖{Vk}k∈K , and the inequality follows from

the definition of induced matrix norm.

We now define the paramters that characterzie the overlapping partition {V ′k}k∈K. For

the linear systems, the size of overlap ω is defined as follows:

ω := min
k∈K

dG(Vk,V \ V ′k)− 1. (8.11)

Note that there is some difference compared to Definition 6.6; this difference comes from the

fact that we only have one overlapping subdomain Vk for each k (we do not have V ′′k). We

now are in the position to state the main result of the current chapter.

Theorem 8.8. Consider nonsingular J with nonsingular {JV ′k,}k∈K. We have that

SR(S) ≤ α :=
σJσF
σJ

(
σ2
J − σ2

J

σ2
J + σ2

J

)dω/4−1e+
(8.12)

103

where σJ := maxk σ(JV ′k,V ′k), σF := maxk σ(JV ′k,,NG(V ′k)), σJ := mink σ(JV ′k,V ′k), and ω is the

size of overlapdefined in (8.11). Moreover, the sequence generated by (8.3) satisfies:

∥∥x(`) − x?
∥∥
{Vk}k∈K ≤ α`

∥∥x(0) − x?
∥∥
{Vk}k∈K . (8.13)

Proof. From Lemma 8.21 and [90, Theorem 5.6.9], the spectral radius SR(S) satisfies:

SR(S) ≤ max
k∈K
‖SVk,V‖. (8.14)

Thus, it suffices to show ‖SVk,V‖ ≤ α. From (8.5), we have that for any k ∈ K,

‖SVk,V‖ ≤ ‖RVk←V ′kJ
−1
V ′k,V ′k

JV ′k,NG(V ′k)‖ (8.15)

≤
σ(JV ′k,V ′k)σ(JV ′k,NG(V ′k))

σ(JV ′k,V ′k)
2

(
σ(JV ′k,V ′k)

2 − σ(JV ′k,V ′k)
2

σ(JV ′k,V ′k)
2 + σ(JV ′k,V ′k)

2

)dω/4−1e+

≤ σJσF
σ2
J

(
σ2
J − σ2

J

σ2
J + σ2

J

)dω/4−1e+
,

Here the first inequality follows from (8.5b) and the fact that JV ′k,V\NG [V ′k] = 0, the second

inequality follows from Theorem 2.1 and the observation that dG(Vk,NG(V ′k)) ≥ ω + 1 and

the bandwidth of J is less than or equal to 2; when applying Theorem 2.1, we aggregate

the nodes in Vk and NG(V ′k) and apply the theorem on the aggregated graph; and the third

inequality follows from the definitions of σJ , σF , and σJ . This yields (8.12). We now analyze

the convergence rate of the algorithm. We note, from (8.3), that

x(`) − x? = (S)`
(
x(0) − x?

)
. (8.16)

By taking ‖ · ‖{Vk}k∈K on the both side of (8.16), we have:

max
k∈K

∥∥∥x(`)
Vk − x

?
Vk

∥∥∥ ≤
∥∥S`(x(0) − x?)

∥∥
{Vk}k∈K (8.17a)

≤ ‖S‖`{Vk}k∈K
∥∥x(0) − x?

∥∥
{Vk}k∈K (8.17b)

≤
(

max
k∈K
‖SVk,V‖

)`
max
k∈K

∥∥∥x(0)
Vk − x

?
Vk

∥∥∥ (8.17c)

≤ α` max
k∈K

∥∥∥x(0)
Vk − x

?
Vk

∥∥∥ , (8.17d)

104

where the second inequality follows from the definition and submultiplicativity of induced

matrix norm, and the third inequality follows from (8.21)(b), and the last inequality follows

(8.15). This proves the convergence.

The theorem suggests that the convergence rate decreases (improves) exponentially with

the size of overlap ω. This coincides with the results for gsNLPs and gsQPs (Theorem

6.5, 7.7). This result formally proves the empirical observation that the convergence of the

RAS algorithm improves as the size of overlap ω increases and as the conditioning of M

improves [29].

However, the result in Theorem 8.8 is weaker than Theorem 6.5, 7.7 in that the non-

singularity of the smaller blocks {JV ′k,V ′k}k∈K is not guaranteed from the non-singularity of

the original matrix J . Thus, the conditioning of the subproblem may become arbitrarily bad,

and σJ/σJ may become arbitrarily large; this eventually makes ρ arbitrarily close to one.

This is different from the previous theorems where the subproblems inherit the regularity

conditions from the original problem.

105

Chapter 9

Implementation

In this chapter, we discuss the implementation of modeling and the solution of gsNLPs.

First, we discuss modeling platforms for gsNLPs. In the context of gsNLPs, modeling and

solution are not separate issues because of the following reasons. First, in OSM, the subprob-

lems are created by reformulating the original problem into a set of subproblems, requiring

a flexible algebraic modeling language that allows manipulating the algebraic expressions in

constraints and objectives (e.g., see (6.4)). In addition, the graph structure of the model

should be communicated with the solution algorithms to obtain the overlapping and non-

overlapping partition structures. For example, when constructing the partitions {Vk}k∈K,

{V ′k}k∈K, and {V ′′k}k∈K, it is necessary to have the structural information of the problem.

Thus, the implementation of OSM can benefit from a specialized algebraic, graph-based

modeling interface. To allow implementing OSM as a generic nonlinear programming solver,

we have implemented algebraic modeling language in SimpleNL.jl [4]. It has algebraic

modeling and basic graph-based modeling capabilities. In addition, we have implemented

graph-based modeling tool Plasmo.jl [2], which uses JuMP.jl [54] as an algebraic modeling

backend. The abstraction in Plasmo.jl naturally exposes problem structure to algorithms

and provides a modular approach to construct models.

Second, we discuss various implementations of OSM. In particular, OSM can be applied at

three different levels: problem-level, subproblem-level, and linear algebra-level. We introduce

the implementation of problem-level decomposition with SimpleSchwarz.jl [5]. This package

is interfaced with flexible algebraic modeling language SimpleNL.jl and applies OSM at the

106

problem level. We introduce the implementation of linear algebra-level decomposition with

MadNLP.jl [1]. MadNLP.jl is interfaced with graph-based modeling language Plasmo.jl and

is capable of applying the OSM at the linear algebra level within the interior point method.

We currently do not have a working example of subproblem level decomposition, but we

discuss several possibilities.

9.1 Modeling

In this section, we introduce the algebraic and graph-based modeling interface that fa-

cilitates the implementation of OSM at different levels. As the main focus of the current

dissertation is on the solution algorithms for gsNLPs, we focus on high-level ideas and show-

case some of the basic syntaxes of those platforms, rather than explaining the full details of

the implementation. For the details of the implementation of the modeling interfaces, the

readers are referred to [97,98] and the repositories [2, 4].

9.1.1 Algebraic Modeling Language

Algebraic modeling languages allow for creating optimization models that can later be

interfaced with optimization solvers. Many modern algebraic modeling platforms, such as

JuMP [54], CasADi [10], AMPL [66], GAMS [42], and Pyomo [85], provide convenient sym-

bolic modeling interface for the user and are equipped with (either internal or external)

automatic differentiation (AD) capabilities, so that it can communicate model functions

and derivatives with the optimization solvers. Algebraic modeling languages streamline the

modeling process and facilitate the implementation of advanced decomposition algorithms.

In the context of graph-structured optimization, the algebraic modeling language is particu-

larly useful because (i) the problems of interest have highly complicated algebraic structures,

so hand-coding model functions and derivatives are practically difficult and prone to error,

and (ii) the stored algebraic expressions allow further manipulations for flexible subproblem

formulation.

107

1 using SimpleNL , Ipopt

2

3 m = SimpleNL.Model(Ipopt.Optimizer; print_level =5)

4

5 x = [variable(m; start=mod(i,2)==1 ? -1.2 : 1.) for i=1:1000]

6 objective(m, sum (100(x[i-1]^2 -x[i])^2+(x[i-1]-1)^2 for i=2:1000))

7 for i=1:998

8 constraint(m, 3x[i+1]^3+2*x[i+2]-5+sin(x[i+1]-x[i+2]) sin(x[i+1]+x[i

+2])+4x[i+1]-x[i]exp(x[i]-x[i+1]) -3 == 0)

9 end

10

11 optimize !(m)

Code 9.1 Algebraic modeling using SimpleNL.jl.

We have implemented a new algebraic modeling language SimpleNL.jl [4], to facilitate

the modeling of gsNLPs and the implementation of OSM. Like other algebraic modeling

languages such as JuMP.jl and CasADi, SimpelNL.jl has a symbolic user interface and

automatic differentiation backend, which communicates with the user-specified nonlinear

optimization solver. Compared to JuMP.jl, an algebraic modeling language implemented in

the same programming language Julia [19], SimpleNL.jl allows more flexible manipulation of

the algebraic expressions (as of JuMP v0.21.6 and SimpleNL v0.1.0). Thus, it is more suitable

for implementing OSM, which requires the manipulation of various nonlinear expressions.

Furthermore, there is no performance compromise of using SimpleNL.jl instead of the other

popular packages. SimpleNL.jl implements efficient reusable computational graph-based

reverse-mode automatic differentiation; this method accelerates the derivative evaluation by

reducing the overhead of repeatedly creating the computational graph. For the problems

that we used for the case study in Chapter 10, it was found that SimpleNL.jl is as fast

as JuMP.jl and AMPL if not faster. A code snippet of modeling syntax of SimpleNL.jl is

provided in Code 9.1.

108

9.1.2 Graph-Based Modeling Language

gsNLPs can be conveniently modeled using specialized modeling platforms such as

Plasmo.jl [97, 98]. Plasmo.jl represents any optimization model as a hierarchical graph

wherein the nodes contain optimization models with corresponding objectives, variables,

constraints, and data, and the edges contain the linking constraints across different nodes.

This implementation allows handling hundreds of thousands to millions of nodes and edges.

The structural information stored in Plasmo.jl can be communicated with the optimization

solvers to enable structure-exploiting algorithms such as OSM and others [27,36,136,145]. In

addition, Plasmo.jl enables the modular construction and analysis of highly complex mod-

els; this platform also leverages the algebraic modeling capabilities of JuMP.jl [54] and fa-

cilitates access to infrastructure modeling tools such as GasModels.jl and PowerModels.jl

[14, 38]. A code snippet of Plasmo.jl modeling syntax is provided in Code 9.2

9.2 Solution

In this section, we discuss the implementation of OSM at different levels. In particular,

we discuss problem-level, subproblem-level, and linear algebra-level decomposition.

9.2.1 Problem-Level Decomposition

In this section, we discuss the implementation of OSM as a problem-level decomposition

method. This method directly applies OSM to solve gsNLPs. As the convergence of OSM

for gsNLP is only local (Theorem 6.5), it should be caveated that the convergence issue can

be faced due to the nonlinearity. Below we explain the details of implementing the scheme

(6.17); in particular, the implementation in SimpleSchwarz.jl is explained.

Obtaining Problem Graph: First, for a given nonlinear optimization problem modeled

in an algebraic modeling platform, we construct a graph associated with the model. We

assume that from the algebraic model, we have access to the objective terms {fi(·)} and

constraints {ci(·)}, each of which is a scalar function that is dependent on the decision

variable vector x. We assume that a high-level graph implementation (e.g., LightGraphs.jl

109

1 using Plasmo , MadNLP , GasModels

2

3 # Construct OptiGraph objects using Plasmo

4 graph = Plasmo.OptiGraph ()

5 nodes = [add_node !(graph) for k=1:24]

6 edges = [add_edge !(graph ,nodes[k],nodes[k+1])

7 for k=1:23]

8

9 # Construct node/edge models using GasModels

10 data = GasModels.parse("data.m")

11 build_model(nodes [1], data)

12 for node in nodes

13 build_node_model(node , data)

14 end

15 for edge in edges

16 build_edge_model(edge , data)

17 end

18

19 # Solve OptiGraph model using MadNLP

20 MadNLP.optimize !(graph , linear_solver="schwarz")

Code 9.2 Graph-based modeling using Plasmo.jl.

[142]) is available. The graph construction procedure is performed with Algorithm 1. Here,

the function getobjectives(·) and getconstraints(·) return the collection of objective terms

and constraint functions; numvariables(·) function returns the number of variables in the

model. Note that the graph G produced by Algorithm 1 considers each variable as a node;

thus, the number of nodes is equal to the number of variables. The function sparsity(·)
returns the index of variables that are associated with the argument. For example, if f(x) =

x[1]+x[4], sparsity(f) = [1; 4]. By inspecting the sparsity patterns of {fi} and {ci} (as done

in Algorithm 1), one can obtain the graph for the entire problem. With the constructed

graph, we now can consider the algebraic model as a gsNLP induced by the graph G.

110

Algorithm 1 Obtaining Problem Graph

Require: model

{fi(·)}nfi=1 ←getobjectives(model)

{ci(·)}nci=1 ←getconstraints(model)

Create a graph G with numvariables(model) nodes.

for i = 1, · · · , nf do

js← spartisty(fi(·))
for j in js do

add edge {i, j} to G
end for

end for

for i = 1, · · · , nc do

js← spartisty(ci(·))
for j in js do

add edge {i, j} to G
end for

end for

Ensure: G

Obtaining Subproblems: To apply (6.17), we need to construct the overlapping partitions

{V ′k}k∈K and {V ′′k}k∈K. We assume that the non-overlapping partition {Vk}k is available

from the user; the user can manually provide this by using a graph-based modeling interface

(SimpleNL.jl has a basic graph-based modeling capability where the user can specify the

subdomain for each variable) or use graph partitioning tool to obtain the partition. Fur-

thermore, a relative size of overlap (defined in (9.1)) ω̃ is provided by the user. Note that in

practice, the relative size of overlap might be more useful than the absolute size of overlap

defined in Definition 6.6. The overall conditioning of the problem varies with the size of

discretization mesh size (in the case of dynamic and PDE optimization). Thus, the proper

size of overlap also varies with the discretization mesh size. Adopting the notion of the

111

relative size of overlap can handle such dependence on the discretization mesh size, and thus

requires less amount of tuning efforts in practice. The relative size of the overlap is defined

as:

ω̃ = max
k
|V ′k \ Vk|/|Vk| − 1. (9.1)

For each k ∈ K, one can obtain the overlapping partition V ′k and V ′′k using Algorithm 2.

Here, the function neighbors(·, ·) returns the set of node indices that are neighbored by

the second argument on the graph given by the first argument. Also, the syntax bool ?

A : B is used as a control flow statement that returns A if bool is true and B otherwise.

Note that V ′k includes one extra layer of the neighborhoods compared to V ′′. As such, we

have the desired conditions in (6.15). Note that the function objective(·) adds an objective

term and constraint(·) adds a constraints to model. The algebraic model model contains all

the objective and constraint information. Note that the variables for i /∈ V ′k are declared

as parameters rather than decision variables. These parameters will be updated in each

iteration of OSM.

Solution Algorihtm: Finally, we describe the implementation of the overall solution algo-

rithm (6.17). We take model, {Vk}k∈K, {Wk}k∈K, ω̃, µ, and tol (tolerance of KKT residual)

as inputs. Here, Wk is the partition of constraint index sets; one way of constructing this is

to assign each constraint to the block of the first associated variable. Algorithm 3 describes

the overall procedure. Here, graph(·) and subproblem(·) denotes the function described in

Algorithms 1 and 2; KKTError(·) is the function that evaluates the KKT residual of the

problem; and setvalue(·, ·) sets the value of the first argument to the value of the second

argument. We first call Algorithm 1, 2 to obtain the graph and the subproblems. Then,

we apply the iterative procedure (6.17) to solve the problem with the updates of the infor-

mation. Then, in each iteration step, we (i) set the parameter values for the subproblem

to the solution values from the full problem, (ii) solve the subproblem, and (iii) update the

solution of the full problem with the solution of the subproblem. The solution of the sub-

problem is performed by using off-the-shelf nonlinear optimization solvers (e.g., Ipopt [161]

112

Algorithm 2 Obtaining Subproblem

Require: model, G, Vk, ω̃, µ

{fi(·)}nfi=1 ←getobjectives(model)

{ci(·)}nci=1 ←getconstraints(model)

while |V ′k| ≤ (1 + ω̃)|Vk| do

V ′′k ← V ′k
V ′k ← V ′k∪ neighbors(G,Vk)

end while

initialize submodelk

xk = [i ∈ V ′k ? variable(submodelk) : parameter(submodelk) for i = 1, · · · , nx]

yk = [parameter(submodelk) for i = 1, · · · , ny]

for i = 1, · · · , nf do

if sparsity(fi) ∩ V ′k 6= ∅ then

objective(submodelk, fi(xk))

end if

end for

for i = 1, · · · , nc do

if sparsity(ci) ⊆ V ′′k then

constraint(submodelk, ci(xk))

else if sparsity(ci) ∩ V ′k 6= ∅ then

objective(submodelk,−yici(xk) + µci(xk)
2)

end if

end for

Ensure: submodelk

or MadNLP.jl [1] with HSL linear solvers [92]). The parallelization in SimpleNL.jl is per-

formed using multi-thread parallelism. The iteration is repeated until the KKT error is

within the user-provided tolerance.

113

Algorithm 3 Problem-Level Decomposition Algorithm

Require: model, {Vk}k∈K, {Wk}k∈K, ω̃, µ, tol.

G ←graph(model)

for k ∈ K (in parallel) do

submodelk ← subproblem(model,G,Vk, ω̃, µ)

end for

while KKTError(model)≤ tol do

for k ∈ K (in parallel) do

for i ∈ V \ V ′k do

setvalue(submodelk.x[i],model.x[i])

end for

for i ∈ V \ V ′′k do

setvalue(submodelk.y[i],model.y[i])

end for

solve(submodelk)

for i ∈ Vk do

setvalue(model.x[i],submodelk.x[i])

end for

for i ∈ Wk do

setvalue(model.y[i],submodelk.y[i])

end for

end for

end while

Ensure: model.x,model.y.

114

9.2.2 Subproblem-Level Decomposition

This section discusses the implementation of OSM at the subproblem level. Currently,

we do not have a working implementation of the subproblem level decomposition. Thus, we

only discuss some of the high-level ideas.

The augmented Lagrangian method (ALM) solves NLPs by using an iterative procedure.

In this procedure, the augmented Lagrangian subproblems are formulated first. Then in

each iteration, the augmented Lagrangian problem is solved, and a dual update is performed

based on the constraint violations on the relaxed constraints. Typically the solution of the

augmented Lagrangian problem is the most time-consuming step. If the original problem

is graph-structured, then the subproblem also preserves such a graph structure. Thus, the

OSM (6.17) can be used for solving the augmented Lagrangian subproblem. However, if

the original problem is nonlinear, the augmented Lagrangian subproblem is also nonlinear.

Thus, with this method, we cannot obtain global convergence.

The sequential quadratic programming (SQP) method solves NLPs by solving a sequence

of QP subproblems. QP subproblems are used to find the step direction, and the line-search

or trust-region-based strategy is used to find the step size. Solving the QP subproblem is

typically the most expensive step within the algorithm. As in the previous case, we can

apply OSM to solve the QP subproblems. Since the OSM for QPs is globally convergent

if the global regularity is satisfied and the overlap size is sufficiently large, one can enjoy

stronger convergence property compared to the problem level decomposition or augmented

Lagrangian-based subproblem-level decomposition.

9.2.3 Linear Algebra-Level Decomposition

We now discuss the implementation of OSM at the linear algebra level. In particular, we

apply the decomposition within IPM. See Appendix A.2 for a brief introduction of the interior

point method. Typically, the solution of the linear system (A.11) is the most computationally

intensive step in the IP method. We propose to apply OSM for linear system (8.3) to solve

115

Plasmo.OptiGraph MadNLP.Solver Schwarz.Solver
JuMP.Model Ma57.Solver

JuMP.Model Ma57.Solver...
...

{x?k,λ?k, z?k} x?,λ?, z? d? {d?k}

{fk(·), gk(·)} f(·), g(·) M ,p {Mk, r
(`)
k }

JuMP.Model MadNLP.Solver Ma57.Solver
x?,λ?, z? d?

f(·), g(·) M ,p

Figure 9.1 Schematics of graph-based modeling and solution (top) and conventional
modeling and solution (bottom).

the system (A.11); in particular, this method is implemented in the Schwarz submodule of

MadNLP.jl.

Related Work: Parallelization of nonlinear programs at linear algebra level, within nonlin-

ear optimization method, has been widely studied in the literature. In typical off-the-shelf

solvers, the system in (A.11) is solved using direct linear solvers that are based on block

LDL> factorization (e.g., HSL routines [92]). Decomposition strategies based on Schur com-

plements [36] and ADMM [136] have been proposed in the literature to parallelize the step

computation based on decomposition. Hübner and coworkers have developed a specialized

algorithm for the solution of tree-structured KKT system within quasi-Newton method [94].

For dynamic optimization, there has been a wide range of specialized parallelization tech-

niques [48, 109, 122, 123, 164]. The use of iterative solver for general nonlinear optimization

problems have been studied in [43]. To the best of our knowledge, the OSM-based decom-

position of linear systems within nonlinear optimization method has been first proposed in

the work of Gerstner and coworkers [72]; therein, the OSM is used for solving KKT systems

that appear within multi-period OPF problems. The solution of (A.11) based on direct block

LDL> factorization reveals the inertia (the number of positive, zero, negative eigenvalues) of

M . This inertia information is crucial in determining the acceptability of the computed step

and in triggering the regularization of the linear system. However, inertia is not available

when using iterative solution algorithms (as proposed in this work). In MadNLP.jl, we use

116

an inertia-free regularization strategy to determine the acceptability of the step [35]. This

method performs a simple negative curvature test to trigger regularization.

The Solver object of MadNLP.jl is created from the OptiGraph object of Plasmo.jl. The

Solver object of MadNLP.jl uses a line-search filter IP method [161] to solve the problem.

The step computation is performed by the linear solver specified by the user. The linear

solver can be specified either as a direct solver or as the OSM solver. When the OSM solver

is chosen, multiple subproblem solver objects are created by using standard direct solvers

(e.g., by using Ma57 of HSL routines). These subproblem solvers are used for factorization

and backsolve for M k blocks. The OSM (8.6) exploits multi-thread parallelism available

within Julia. After termination of the IP solution procedure, the primal-dual solutions are

sent back to the OptiGraph object and Model objects from JuMP.jl so that the user can

query the solution via the interface provided by Plasmo.jl and JuMP.jl. See Figure 9.1 for

a comparison with a conventional implementation. In the Schwarz submodule of MadNLP.jl,

ω is set automatically based on the relative size of Vk, and adaptively adjusted whenever a

convergence issue is faced.

117

Chapter 10

Numerical Experiments

This chapter presents the numerical results that demonstrate OSM. In particular, we

demonstrate the implementation of OSM at the problem level and the linear algebra level.

10.1 Problem Level Decomposition

We use four different bechmark problems to demonstrate the OSM; (i) quadrotor mo-

tion planning problem (dynamic optimization; Appendix B.2), (ii) stochastic storage control

problem (stochastic optimization; Appendix B.3), (iii) thin plate temperature control prob-

lem (PDE optimizaiton with Dirichlet boundary condition; Appendix B.4), and (iv) AC

PSSE (network optimization; Appendix B.6).

10.1.1 Methods

We conduct the following numerical study for each problem instance. For each problem,

we apply Algorithm 3 to solve the given problem, while varying the problem or algorithm

parameter. The varied parameters are as follows: the relative size of overlap ω̃, the condi-

tioning parameter (η, b), the penalty parameter µ. While we vary one parameter, the other

parameters are fixed to the base case, described in the associated appendix sections. Lastly,

we compare the performance of OSM with ADMM and Ipopt. A brief introduction of ADMM

and a description of our implementation in SimpleADMM.jl [3] is provided in Appendix A.1.

A brief introduction of IPM (the algorithm of Ipopt) and the implementation in Ipopt [161]

and MadNLP.jl [1] is described in A.2. The code was run on a server computer equipped with

118

2 CPUs of Intel Xeon CPU E5-2698 v4 running 2.20GHz (20 core for each), and 34 threads

are used for the computation. The results can be reproduced using the scripts provided in

https://github.com/zavalab/JuliaBox/tree/master/ShinThesis.

10.1.2 Results

The convergence profiles of OSM with different sizes of overlap are shown in Figure 10.1,

10.2. For all the tested problem instances, we could see that OSM converges faster with

larger overlaps. This demonstrates our theoretical development in Theorem 6.5. We do

observe the trade-off between the convergence rate and the subproblem complexity. One

can see that increasing the size of overlap increases the solution time per iteration; this is

due to the increase in the subproblem complexity. However, for the range of the size of

overlap we used within this case study, the solution time is always decreased when the size

of overlap is increased. Note that convergence issues can be faced when the size of overlap

is not adequate, as observed in the stochastic programming case.

The convergence profiles of OSM for different regularization parameters are shown in

Figure 10.3, 10.4. Similarly to the case study in Chapter 5, we use the regularization param-

eter (η, b) to control the regularity of the problem. Note that increasing η strengthens the

SSOSC and increasing b strengthens the LICQ. One can see from Figure 10.3 that except

for the PDE optimization case, the convergence rate is indeed the fastest when both η and

b are sufficiently large. The PDE-based optimization has an almost constant convergence

rate for different (η, b) values because the heat diffusion equation itself has a strong dissi-

pative property (thus, the effect of additional regularization is negligible). This verifies our

uniform regularity results in Chapter 3 that it is necessary for the smallest eigenvalue of the

reduced Hessian and the smallest singular value of the constraint Jacobian to be sufficiently

bounded away from zero in order for EDS to be strong enough; due to the inheritance of

regularities, the subproblems inherits such regularity, and stronger EDS eventually enables

faster convergence of OSM.

https://github.com/zavalab/JuliaBox/tree/master/ShinThesis

119

Figure 10.1 Convergence profiles (in iteration steps) of overlapipng Schwarz method for
different sizes of overlap. Quadrotor motion planning (top left); stochastic storage control

problem (top right); thin plate temperature control problem (bottom left); tracking
optimal power flow problem (bottom right).

In Figure 10.5, 10.6 the convergence profiles of OSM for different penalty parameters are

represented. Recall from Theorem 6.5 that it is necessary for the penalty parameter µ to

be sufficiently large in order to guarantee the uSSOSC in the subproblems, but its impact

on the convergence rate is not strong (it only linearly increases the upper bound of uBLH).

From the results in 10.5, we can see that indeed the effect of the penalty parameter on the

convergence rate is not strong.

Finally, in Figure 10.7, 10.8, we present the benchmark of OSM with ADMM and Ipopt.

First, in Figure 10.7, we can compare the convergence speed of OSM and ADMM in iteration

steps. Here, the size of overlap is tuned with appropriate size of overlap (ω̃ = 1 for dynamic

optimization, ω̃ = 1.2 for stochastic optimization, ω̃ = 2 for PDE-optimization, ω̃ = 1 for

120

Figure 10.2 Convergence profiles (in wall times) of overlapipng Schwarz method for
different sizes of overlap. Quadrotor motion planning (top left); stochastic storage control

problem (top right); thin plate temperature control problem (bottom left); tracking
optimal power flow problem (bottom right).

network optimization). One can see that OSM converges significantly faster than ADMM.

This is because OSM enjoys exponential improvement in the convergence rate while ADMM

has a fixed convergence rate. One can make a similar observation from Figure 10.8, but

the benefit of overlap becomes smaller. This is because increasing the size of overlap also

increases the subproblem complexity. Thus, each subproblem in OSM is more difficult to

solve than the subproblems in ADMM since it contains more variables and constraints. This

is manifested when the time per iteration is compared. However, even if they are compared

in wall time, one can see that overlapping Schwarz has a much faster convergence speed for

all four examples.

121

Figure 10.3 Convergence profiles (in iteration steps) of overlapipng Schwarz method for
different regularizations. Quadrotor motion planning (top left); stochastic storage control

problem (top right); thin plate temperature control problem (bottom left); tracking
optimal power flow problem (bottom right).

In Figure 10.8, we also have represented the solution time for Ipopt to solve the full

problem, so that we can compare the performance with the centralized method. We observe

that both OSM and ADMM are not as fast as solving the centralized problems except for

the PDE optimization case. However, we can see that for OSM, most of the time is spent in

the first iteration. This is because of the absence of a good initial guess. One can see that

after the first iteration step, the convergence of OSM is very fast, and it is comparable to

the centralized solver. Thus, if a good initial guess is available (e.g, as in receding horizon

control/estimation problems), the OSM can be indeed effective.

We also emphasize that the advantage of decomposition is expected to be greater for

larger problems. One can see from Table 10.1 that the numbers of variables in the tested

122

Figure 10.4 Convergence profiles (in wall times) of overlapipng Schwarz method for
different regularizations. Quadrotor motion planning (top left); stochastic storage control

problem (top right); thin plate temperature control problem (bottom left); tracking
optimal power flow problem (bottom right).

problems are around 105. As the solution time of the centralized solvers stiffly increase when

the number of variables is greater than 105, we may see more benefits of decomposition

when the problem size is larger. For such large-scale problems, even storing the problem

data in a single computer can be challenging. However, our current implementation of

OSM uses multi-thread parallelism. Thus, our implementation of OSM also suffers from

such limitations in the memory. However, we emphasize that OSM can in principle, be

implemented for distributed memories and run on clusters (see [153, Section V]). Some of

these capabilities will be demonstrated in the next section. Therefore, with our current

implementation, it was difficult to see that overlapping Schwarz is clearly faster than the

123

Figure 10.5 Convergence profiles (in iteration steps) of overlapipng Schwarz method for
different penalty parameters. Quadrotor motion planning (top left); stochastic storage

control problem (top right); thin plate temperature control problem (bottom left); tracking
optimal power flow problem (bottom right).

Table 10.1 Statistics for the problems

Problem # Variables # Constraints # Nonzeros in Jac. # Nonzeros in Hess.

Dynamic Opt. 156,009 108,009 516,009 276,009

Stochastic Opt. 531,440 265,720 797,158 531,440

PDE Opt. 320,400 160,000 958,800 320,000

Network Opt. 120,000 60,000 461,864 290,932

centralized methods, but we have seen that if we have a reasonably good initial guess, the

OSM can indeed be effective.

124

Figure 10.6 Convergence profiles (in wall times) of overlapipng Schwarz method for
different penalty parameters. Quadrotor motion planning (top left); stochastic storage

control problem (top right); thin plate temperature control problem (bottom left); tracking
optimal power flow problem (bottom right).

10.1.3 Additional Results: DC Power System State Estimtaion

Methods: In this case study, we apply the OSM to solve a DC PSSE problem (Appendix

B.5), which is formulated as an unconstrained quadratic program (i.e., the solution of the

positive definite linear system). OSM (8.3) is used as a spatial decomposition method for

solving such a problem. In this implementation, the inverse of the block is explicitly com-

puted and used for the subproblem solution. Our implementation of overlapping Schwarz

uses the popular MPICH MPI library and the basic linear algebra subprograms package for

matrix computation. The program was run on a cluster (four nodes and one CPU core Intel

Xeon Processor E5-2695v4 per node). Compared to the multi-thread implementation in the

125

Figure 10.7 Convergence Profiles (in iteration steps) of overlapipng Schwarz Method and
ADMM. Quadrotor motion planning (top left); stochastic storage control problem (top

right); thin plate temperature control problem (bottom left); tracking optimal power flow
problem (bottom right).

previous section, the MPI-based implementation may cause more communication time, but

it can run flexibly on any distributed architecture.

Results: In Figure 10.9, the residual is plotted with different sizes of the overlap and

the regularization parameter. The results confirm that the solution converges linearly to the

solution and that it converges faster as the size of overlap increases and as the conditioning of

the problem improves. We also observe that the increase in the overlap reduces the number

of iterations but not necessarily the solution time. The reason is that the increase in the

overlap also increases the computation and communication cost. The overall computing cost

increases with the size of the block (i.e., |V ′k|), and the communication cost also tends to

increase with the size of boundary (i.e., |N [V ′k] \ V ′k|). We can also observe that the size

126

Figure 10.8 Convergence profiles (in wall times) of overlapipng Schwarz method and
ADMM. Quadrotor motion planning (top left); stochastic storage control problem (top

right); thin plate temperature control problem (bottom left); tracking optimal power flow
problem (bottom right).

of overlapping blocks and the size of boundary increase with ω (Table 10.2). Such effects

ultimately are manifested in the overall CPU time per iteration: 0.0963 sec/iter when ω = 1,

0.140 sec/iter when ω = 2, and 0.256 sec/iter when ω = 3. These results again illustrate

the trade-offs in convergence and computational performance. This case study demonstrates

that overlapping Schwarz can be implemented for distributed memory settings, and can run

on clusters.

10.2 Linear Algebra-Level Decomposition

In this section, we demonstrate the linear algebra-level decomposition method with two

energy system optimization problems: transient gas network operation (Appendix (B.9)) and

127

0 20 40 60 80 100

10
-5

10
0

0 20 40 60 80

10
-5

10
0

Figure 10.9 Left: Residual over iteration steps (c = 0.1); Right: Residual over iteration
steps ω = 1.

Table 10.2 Statistics for the subsystems

k 1 2 3 4 total.

|Vk| 2,324 2,366 2,278 2,273 9,241

|N 1
G [Vk]| 2,361 2,398 2,291 2,304 9,354

|N 2
G [Vk]| 2,452 2,469 2,322 2,376 9,619

|N 3
G [Vk]| 2,570 2,558 2,380 2,506 10,014

|N 4
G [Vk]| 2,744 2,680 2,485 2,727 10,636

|N 1
G [Vk] \ Vk| 37 32 13 31 113

|N 2
G [Vk] \ N 1

G [Vk]| 91 71 31 72 265

|N 3
G [Vk] \ N 2

G [Vk]| 118 89 58 130 395

|N 4
G [Vk] \ N 3

G [Vk]| 174 122 105 221 622

multi-period AC OPF (Appendix (B.8). Both of the problems are formulated as a network

optimization problem over a time period (dynamic optimization). We use our graph-based

modeling interface Plasmo.jl, interior point nonlinear optimization solver MadNLP.jl, and

the OSM linear solver Schwarz submodule within MadNLP.jl to demonstrate the method.

128

10.2.1 Methods

We compare the proposed method (MadNLP.jl interfaced with Plasmo.jl and Schwarz

linear solver), with the conventional method (MadNLP.jl interfaced with serial/parallel

direct solvers Ma57 or MKL-Pardiso along with non-graph based algebraic modeling lan-

guage JuMP.jl). The conventional methods are referred to as JuMP-Ma57 and JuMP-

PardisoMKL, and the proposed method is referred to as Plasmo-Schwarz/Ma57. Further-

more, the mix of proposed/conventional approaches (JuMP-Schwarz/Ma57, Plasmo-Ma57,

and Plasmo-PardisoMKL) is also tested together. For JuMP-Schwarz/Ma57, the graph par-

titioning tool METIS was used to partition the primal-dual coupling graph (discussed in

Remark 1.2). A Richardson scheme was used as an iterator for the RAS scheme. When

the solver is interfaced with Plasmo.jl, the NLP function evaluations (derivatives, Ja-

cobians, Hessians) are also parallelized. The study was performed by solving the gas

(B.12) and power (B.11) problems while varying the size of the problems (by increasing

the length of the prediction horizon). The code was run on a server computer equipped

with 2 CPUs of Intel Xeon CPU E5-2698 v4 running 2.20GHz (20 core for each), and

20 threads are used for the computation. Code to reproduce the results can be found in

https://github.com/zavalab/JuliaBox/tree/master/AdchemCaseStudy

10.2.2 Results

For both problems, we found that the graph-based approach can significantly acceler-

ate the solution (see Figure 10.10). In particular, comparing JuMP-Ma57 and Plasmo-

Schwarz/Ma57, Plasmo-Schwarz/Ma57 becomes faster than JuMP-Ma57 when the predic-

tion horizon is 3 days or more. Function evaluations are always faster in Plasmo.jl compared

to JuMP.jl because the computational savings from function evaluations directly reduce the

total solution time (parallelizing the function evaluation itself has no impact on the other

part of the algorithm). On the other hand, one can see that the speed-up from parallel linear

algebra is only observed when the problem size is sufficiently large (3 days in the gas network

and 60 days in the power network) because the reduction in the problem size also reduces

https://github.com/zavalab/JuliaBox/tree/master/AdchemCaseStudy

129

the overlap size. In our implementation, we set the size of overlap using the relative size of

the block (the size of overlap is reduced if the overall problem size is reduced). As a result,

the OSM scheme (8.6) may become slow, and the number of required factorization/backsolve

steps increases. This indicates that the use of OSM is beneficial only when the problem size

is sufficiently large. For the gas problems, the acceleration of linear algebra computations

was more pronounced. In contrast, for the power problems, the acceleration of function

evaluations was more pronounced because the AC power flow formulation has a large num-

ber of nonlinear expressions. By comparing the linear solver time for JuMP-Schwarz/Ma57

and Plasmo-Schwarz/Ma57, we see the advantage of using a graph-based modeling language

for obtaining the partitions. We recall that for JuMP-Schwarz/Ma57, the Metis graph

partitioning routine is directly applied to the primal-dual connectivity graph while Plasmo-

Schwarz/Ma57 uses the user-provided problem graph. One can observe that, in general,

the linear solver time is shorter for PlasmoNLP-Schwarz/Ma57. This indicates that the

user-provided graph information can be leveraged for obtaining high-quality partitions.

From the results in this section, we can see that OSM can indeed be computationally

effective than centralized solvers because the OSM at the linear algebra level enjoys global

convergence. We could see that problem-level decompositions can also be effective for certain

cases, but it needs to be used with cautions since the nonlinearity in the problem can cause

convergence issues.

130

Function Evaluation Wall Time (sec) Function Evaluation Wall Time (sec)

Linear Solver Wall Time (sec) Linear Solver Wall Time (sec)

Solution Wall Time (sec) Solution Wall Time (sec)

N
u

m
b

er
o
f

V
ar

ia
b

le
s

Plasmo-Ma57
Plasmo-PardisoMKL
Plasmo-Schwarz/Ma57

JuMP-Ma57
JuMP-PardisoMKL
JuMP-Schwarz/Ma57

Figure 10.10 Solution time (top), linear solver time (middle), function evaluation time
(bottom) for transient gas network (left) and multi-period AC optimal power flow (right)

problems.

131

Chapter 11

Conclusions and Future Work

In this work, we have studied the properties and algorithms for graph-structured nonlinear

programs. We have introduced the notion of graph-structured nonlinear programming, which

is a generalized abstraction for a diverse class of structured optimization problems (dynamic

optimization, stochastic optimization, PDE optimization, and network optimization). The

formulation of graph-structured nonlinear programming is highly flexible, so a variety of

practical optimization problems can be perceived as graph-structured nonlinear programs

and studied under this unifying abstraction. Studying the problem under this abstraction is

advantageous in that it allows elucidating the fundamental properties that graph-structured

nonlinear programs share in common.

We have established a fundamental property of graph-structured nonlinear programs that

we call exponential decay of sensitivity. This property states that under the regularity con-

dition given by the strong second sufficiency condition and linear independence constraint

qualifications, the impact of nodal parametric perturbation on the nodal solution decay

exponentially with the distance from the perturbation point on the graph. This property

explains how the impact of data perturbation propagates along with the graph and ad-

dresses lots of practical questions on the solution stability. Furthermore, we observe that

the sensitivity decay rate is governed by the singular values of the primal-dual Lagrangian

Hessian matrix (also commonly referred to as the KKT matrix). Moreover, we have found

that those singular values can be uniformly bounded under the uniform regularity, which

consists of uniformly bounded Lagrangian Hessian, uniform second-order sufficiency, linear

132

independence constraint qualifications. With numerical examples on dynamic, stochastic,

PDE, and network optimization problems, we have demonstrated our theoretical results on

the exponential decay of sensitivity.

We have found that the uniformly regular graph-structured nonlinear programs can be

efficiently solved with the overlapping Schwarz decomposition method, which exploits the

exponential decay of sensitivity by design. The overlapping Schwarz method has been tradi-

tionally used for solving discretized partial differential equations and sparse linear systems.

We have generalized the overlapping Schwarz method so that it can be used for the dis-

tributed solution of graph-structured nonlinear programs. We have shown that the overlap-

ping Schwarz method is locally convergent and the convergence rate exponentially improves

with the size of overlap for mesh-like graph-structured nonlinear programs. Furthermore,

for quadratic programming and linear system settings, we have shown global convergence

under strengthened regularity conditions. We have discussed various levels at which the

overlapping Schwarz method can be implemented: problem-level, sub-problem-level (within

Augmented Lagrangian method and sequential quadratic programming method), and linear

algebra level (within interior point method). We have numerically demonstrated that for

a number of instances, the overlapping Schwarz method at the problem level can solve the

problem faster than the existing decomposition method ADMM. Furthermore, the overlap-

ping Schwarz decomposition at the linear algebra level can solve problems significantly faster

than the state-of-the-art nonlinear programming solver, Ipopt. We expect that the benefit

of the decomposition will be even greater for larger problem instances.

We believe this dissertation has shed light on a small portion of the science concerning

graph-structured nonlinear programming, and there remains a wide range of unaddressed

important research questions that might have theoretical and practical significance. In what

follows, a few high-level, open research questions and future research plans are discussed.

EDS in Multi-Stage Stochastic Programs: Our EDS result is based on the assumption

that the smallest eigenvalue of the reduced Hessian is uniformly bounded away from zero

(uSSOSC). In the context of multi-stage stochastic optimization, this assumption may be

133

violated if the width (the number of nodes per stage) of the scenario tree is unbounded.

The reason is that the probability is multiplied by the nodal objective function term, and

the probability decays to zero as we move down the tree. Thus, our method in Chapter 2-3

is not directly applicable to multistage stochastic optimization problems with unbounded

width (in particular, the uniform regularity condition cannot be established based on the

composability principles in the current form). In future work, we will address this issue

and establish the EDS for multistage stochastic programs. Specifically, we will first formally

investigate whether multistage stochastic optimization problems with bounded width (but

unbounded depth) exhibit EDS. Such problems arise from stochastic control problems with

robust horizon assumptions [115]. To prove this, we first partition the problem by a non-

growing part (where branching occurs) and multiple growing parts (where branching does

not occur). One can observe that each growing part reduces to a deterministic dynamic

optimization trajectory. The uniform regularity conditions for the growing parts can be

proved by using the results in Chapter 4 (controllability and observability imply uSSOSC

and uLICQ [152]). One can then use the composability argument to show the uniform

regularity conditions for the full problem. We will try to generalize this result to show

the EDS for trees with unbounded width. We expect that showing LICQ from our existing

composability principles will be straightforward, but we need a more sophisticated technique

to show uSSOSC (or a comparable regularity condition).

EDS in Infinite Graph-Structured Nonlinear Programs: Extending the current EDS re-

sults to infinite-graph problems is of interest. Note that we have shown EDS for problems

with arbitrarily large graphs, but the graph itself was always finite. One of the particu-

larly interesting examples is infinite-horizon dynamic optimization problems. Showing EDS

for infinite-horizon problems will allow characterizing the closed-loop regret of finite-horizon

dynamic programs and analyzing the infinite horizon value function. For instance, it has

been recently shown that the regret (the difference between the closed-loop objective cost

of finite-horizon control policies and the infinite horizon objective) of finite-horizon linear-

quadratic problems decays exponentially with the horizon length [173]; with the EDS result

134

for infinite-horizon dynamic programs, we may establish a comparable result for nonlinear

systems. For LQR, we expect that extending our result will be straightforward since the

effect of truncation can be easily cast as a bounded parametric perturbation (e.g., by speci-

fying terminal cost as the adjoint solution of the infinite-horizon problem). For the nonlinear

case, however, the extension may not be straightforward. The reason is that for nonlinear

cases, the sensitivity result [146] holds only within the neighborhood of the reference data,

but the size of such neighborhood is not theoretically characterized. In particular, to es-

tablish the desired result, one must show that the radius of the neighborhood is uniformly

bounded below. We hypothesize that we can show the uniform boundedness in the size of the

neighborhood and use this result to show the EDS for infinite-horizon dynamic programs.

EDS in Continuous-Domain Optimization Problems: Many graph-structured optimiza-

tion problems are obtained as a result of the discretization of continuous-domain optimization

problems; examples include DAE and PDE-constrained optimization problems. Recently,

the exponential decay of sensitivity was studied in the context of continuous-time (infinite-

dimensional) optimization problems [82–84]. In the future, it is of interest to connect this

result with our notion of EDS for gsNLPs. We will first investigate if there is a limiting

behavior of EDS under the mesh refinement setting. This will require properly redefining

the EDS and the magnitudes of the perturbations. From such a limiting behavior, we will

make connections with the continuous-time optimization problems.

Overlapping Schwarz within ALM and SQP methods: In Chapter 9, we have briefly

discussed the possibility of applying the overlapping Schwarz method within the sequential

quadratic programming method. However, we have not presented any numerical results.

In the future, it is of interest to numerically demonstrate this idea and compare it against

problem-level and linear algebra-level decomposition methods.

Implementation of Distributed Overlapping Schwarz: The numerical results in Section

10.2 reveals that in order to solve the huge nonlinear programs, where decomposition is

computationally more favorable than centralized method, the implementation of overlapping

Schwarz based on distributed parallelism is necessary. This can be implemented via either

135

MPI (the one we used for the DC PSSE problem) or native distributed parallelism in Julia

(Distributed.jl). In the future, we will implement the distributed overlapping Schwarz

solver to facilitate solving such large-scale problems.

Regularity Maximization: The discussion in Chapter 3 reveals that the singular value

of the constraint Jacobian of the gsNLP plays a key role in determining flexibility of the

system. In particular, we have shown that if the smallest singular value of the constraint

Jacobian is close to zero, the system may exhibit extreme sensitivity to disturbances, and

the disturbances may have a far-reaching impact within the network. Thus, it is important

to design the system in a way that the smallest singular value in the constraint Jacobian is

sufficiently bounded away from zero. This motivates studying the optimal design problem

that maximizes the smallest singular value of the constraint Jacobian while jointly consid-

ering the cost of installations. In such a design problem, multiple candidates of actuators

are considered (in the context of energy infrastructure, these can either be energy storages

or generators); and the problem seeks for an optimal combination of such actuators that

maximizes the flexibility (to be more specific, the smallest singular value of the constraint

Jacobian is maximized). Our preliminary result suggests that this problem reduces to a

standard mixed-integer semidefinite program [70] if the system is linear. On the other hand,

for nonlinear cases, we expect that more sophisticated algorithms and relaxation techniques

are required [155]. In the future, we will study the formulations and algorithms for these

problems and apply the developed methods to critical infrastructure design problems.

136

LIST OF REFERENCES

[1] MadNLP.jl. https://github.com/zavalab/madnlp.jl, 2021.

[2] Plasmo.jl. https://github.com/zavalab/plasmo.jl, 2021.

[3] SimpleADMM.jl. https://github.com/sshin23/simpleadmm.jl, 2021.

[4] SimpleNL.jl. https://github.com/sshin23/simplenl.jl, 2021.

[5] SimpleSchwarz.jl. https://github.com/sshin23/simpleschwarz.jl, 2021.

[6] Ali Abur and Antonio Gomez Exposito. Power system state estimation: theory and
implementation. CRC press, 2004.

[7] David P Ahlfeld, John M Mulvey, Ron S Dembo, and Stavros A Zenios. Nonlinear
programming on generalized networks. ACM Transactions on Mathematical Software
(TOMS), 13(4):350–367, 1987.

[8] Ravindra K Ahuja, Thomas L Magnanti, James B Orlin, and MR Reddy. Applications
of network optimization. Handbooks in Operations Research and Management Science,
7:1–83, 1995.

[9] Andrew Allman, Wentao Tang, and Prodromos Daoutidis. DeCODe: a community-
based algorithm for generating high-quality decompositions of optimization problems.
Optimization and Engineering, 20(4):1067–1084, 2019.

[10] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl.
CasADi – A software framework for nonlinear optimization and optimal control. Math-
ematical Programming Computation, 11(1):1–36, 2019.

[11] Sogol Babaeinejadsarookolaee, Adam Birchfield, Richard D Christie, Carleton Coffrin,
Christopher DeMarco, Ruisheng Diao, Michael Ferris, Stephane Fliscounakis, Scott
Greene, Renke Huang, et al. The power grid library for benchmarking AC optimal
power flow algorithms. arXiv preprint arXiv:1908.02788, 2019.

https://github.com/zavalab/madnlp.jl
https://github.com/zavalab/plasmo.jl
https://github.com/sshin23/simpleadmm.jl
https://github.com/sshin23/simplenl.jl
https://github.com/sshin23/simpleschwarz.jl

137

[12] Satish Balay, Shrirang Abhyankar, Mark Adams, Jed Brown, Peter Brune, Kris
Buschelman, Lisandro Dalcin, Alp Dener, Victor Eijkhout, W Gropp, et al. PETSc
users manual. 2019.

[13] Gulay Barbarosoǧlu and Yasemin Arda. A two-stage stochastic programming frame-
work for transportation planning in disaster response. Journal of the operational re-
search society, 55(1):43–53, 2004.

[14] Russell Bent, Kaarthik Sundar, and David Fobes. GasModels.jl. https://github.

com/lanl-ansi/GasModels.jl, 2020.

[15] Dennis S Bernstein. Matrix mathematics: theory, facts, and formulas. Princeton
university press, 2009.

[16] Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Aca-
demic press, 2014.

[17] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation: nu-
merical methods, volume 23. Prentice hall Englewood Cliffs, NJ, 1989.

[18] John T Betts. Practical methods for optimal control and estimation using nonlinear
programming, volume 19. Siam, 2010.

[19] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A Fresh
Approach to Numerical Computing. SIAM Review, 59(1):65–98, 2017.

[20] Lorenz T Biegler. Nonlinear programming: concepts, algorithms, and applications to
chemical processes, volume 10. Siam, 2010.

[21] Lorenz T Biegler. A survey on sensitivity-based nonlinear model predictive control.
IFAC Proceedings Volumes, 46(32):499–510, 2013.

[22] Lorenz T Biegler, Omar Ghattas, Matthias Heinkenschloss, David Keyes, and Bart
van Bloemen Waanders. Real-time PDE-constrained Optimization. SIAM, 2007.

[23] Lorenz T Biegler, Omar Ghattas, Matthias Heinkenschloss, and Bart van Bloe-
men Waanders. Large-scale PDE-constrained optimization: an introduction. In Large-
Scale PDE-Constrained Optimization, pages 3–13. Springer, 2003.

[24] Adam B Birchfield, Ti Xu, Kathleen M Gegner, Komal S Shetye, and Thomas J
Overbye. Grid structural characteristics as validation criteria for synthetic networks.
IEEE Transactions on power systems, 32(4):3258–3265, 2016.

[25] John R Birge and Francois V Louveaux. A multicut algorithm for two-stage stochastic
linear programs. European Journal of Operational Research, 34(3):384–392, 1988.

https://github.com/lanl-ansi/GasModels.jl
https://github.com/lanl-ansi/GasModels.jl

138

[26] J Frédéric Bonnans and Alexander Shapiro. Perturbation analysis of optimization
problems. Springer Science & Business Media, 2013.

[27] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Now Publishers Inc, 2011.

[28] Xiao-Chuan Cai, Charbel Farhat, and Marcus Sarkis. A minimum overlap restricted
additive schwarz preconditioner and applications in 3D flow simulations. Contemporary
mathematics, 218:479–485, 1998.

[29] Xiao-Chuan Cai and Yousef Saad. Overlapping domain decomposition algorithms for
general sparse matrices. Numerical linear algebra with applications, 3(3):221–237, 1996.

[30] Xiao-Chuan Cai and Marcus Sarkis. A restricted additive schwarz preconditioner for
general sparse linear systems. SIAM Journal on Scientific Computing, 21(2):792–797,
1999.

[31] Xiao-Chuan Cai and Olof B Widlund. Domain decomposition algorithms for indefinite
elliptic problems. SIAM Journal on Scientific and Statistical Computing, 13(1):243–
258, 1992.

[32] Tony F Chan and Barry F Smith. Domain decomposition and multigrid algorithms
for elliptic problems on unstructured meshes. Electronic Transactions on Numerical
Analysis, 2:171–182, 1994.

[33] Tony F Chan and Jun Zou. Additive schwarz domain decomposition methods for
elliptic problems on unstructured meshes. Numerical Algorithms, 8(2):329–346, 1994.

[34] Chi-Tsong Chen and Chi-Tsong Chen. Linear system theory and design, volume 301.
Holt, Rinehart and Winston New York, 1984.

[35] Nai-Yuan Chiang and Victor M Zavala. An inertia-free filter line-search algorithm
for large-scale nonlinear programming. Computational Optimization and Applications,
64(2):327–354, 2016.

[36] Naiyuan Chiang, Cosmin G Petra, and Victor M Zavala. Structured nonconvex op-
timization of large-scale energy systems using PIPS-NLP. In 2014 Power Systems
Computation Conference, pages 1–7. IEEE, 2014.

[37] Jaquelin Cochran, Mackay Miller, Owen Zinaman, Michael Milligan, Doug Arent,
Bryan Palmintier, Mark O’Malley, Simon Mueller, Eamonn Lannoye, Aidan Tuohy,
et al. Flexibility in 21st century power systems. Technical report, National Renewable
Energy Lab.(NREL), Golden, CO (United States), 2014.

[38] Carleton Coffrin, Russell Bent, Kaarthik Sundar, Yeesian Ng, and Miles Lubin. Power-
Models. jl: An open-source framework for exploring power flow formulations. In 2018
Power Systems Computation Conference (PSCC), pages 1–8. IEEE, 2018.

139

[39] Carleton Coffrin, Hassan L Hijazi, and Pascal Van Hentenryck. The qc relaxation: A
theoretical and computational study on optimal power flow. IEEE Transactions on
Power Systems, 31(4):3008–3018, 2015.

[40] Antonio J. Conejo, Enrique Castillo, Roberto Mı́nguez, and Raquel Garćıa-Bertrand.
Decomposition techniques in mathematical programming: Engineering and science ap-
plications. 2006.

[41] Christian Conte, Tyler Summers, Melanie N Zeilinger, Manfred Morari, and Colin N
Jones. Computational aspects of distributed optimization in model predictive control.
In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pages 6819–
6824. IEEE, 2012.

[42] GAMS Development Corporation. General Algebraic Modeling System (GAMS) Re-
lease 24.2.1. Washington, DC, USA, 2013.

[43] Frank E Curtis, Johannes Huber, Olaf Schenk, and Andreas Wächter. A note on the
implementation of an interior-point algorithm for nonlinear optimization with inexact
step computations. Mathematical programming, 136(1):209–227, 2012.

[44] Prodromos Daoutidis, Wentao Tang, and Sujit S Jogwar. Decomposing complex plants
for distributed control: Perspectives from network theory. Computers & Chemical
Engineering, 114:43–51, 2018.

[45] Juan Carlos De los Reyes. Numerical PDE-constrained optimization. Springer, 2015.

[46] Ron S Dembo, John M Mulvey, and Stavros A Zenios. OR practice-large-scale nonlin-
ear network models and their application. Operations Research, 37(3):353–372, 1989.

[47] Stephen Demko, William F Moss, and Philip W Smith. Decay rates for inverses of
band matrices. Mathematics of computation, 43(168):491–499, 1984.

[48] Haoyang Deng and Toshiyuki Ohtsuka. A parallel newton-type method for nonlinear
model predictive control. Automatica, 109:108560, 2019.

[49] Moritz Diehl, H Georg Bock, Johannes P Schlöder, Rolf Findeisen, Zoltan Nagy, and
Frank Allgöwer. Real-time optimization and nonlinear model predictive control of
processes governed by differential-algebraic equations. Journal of Process Control,
12(4):577–585, 2002.

[50] Victorita Dolean, Pierre Jolivet, and Frâdâric Nataf. An introduction to domain de-
composition methods: algorithms, theory, and parallel implementation, volume 144.
SIAM, 2015.

[51] Asen L Dontchev and R Tyrrell Rockafellar. Implicit functions and solution mappings,
volume 543. Springer, 2009.

140

[52] Maksymilian Dryja and Olof Widlund. An additive variant of the Schwarz alternating
method for the case of many subregions. Ultracomputer Research Laboratory, Univ.,
Courant Inst. of Mathematical Sciences, Division of Computer Science, 1987.

[53] Maksymilian Dryja and Olof B Widlund. Domain decomposition algorithms with small
overlap. SIAM Journal on Scientific Computing, 15(3):604–620, 1994.

[54] Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A modeling language for
mathematical optimization. SIAM Review, 59(2):295–320, 2017.

[55] Evridiki Efstathiou and Martin J Gander. Why restricted additive schwarz converges
faster than additive schwarz. BIT Numerical Mathematics, 43(5):945–959, 2003.

[56] Alexander Engelmann, Yuning Jiang, Boris Houska, and Timm Faulwasser. Decompo-
sition of non-convex optimization via bi-level distributed ALADIN. IEEE Transactions
on Control of Network Systems, 2020.

[57] Alexander Engelmann, Yuning Jiang, Tillmann Mühlpfordt, Boris Houska, and Timm
Faulwasser. Toward distributed opf using ALADIN. IEEE Transactions on Power
Systems, 34(1):584–594, 2018.

[58] Tomaso Erseghe. Distributed optimal power flow using ADMM. IEEE transactions
on power systems, 29(5):2370–2380, 2014.

[59] Alessandro Falsone, Ivano Notarnicola, Giuseppe Notarstefano, and Maria Pran-
dini. Tracking-ADMM for distributed constraint-coupled optimization. Automatica,
117:108962, 2020.

[60] Timm Faulwasser, Lars Grüne, Matthias A Müller, et al. Economic nonlinear model
predictive control. Now Foundations and Trends, 2018.

[61] Timm Faulwasser, Milan Korda, Colin N Jones, and Dominique Bonvin. On turnpike
and dissipativity properties of continuous-time optimal control problems. Automatica,
81:297–304, 2017.

[62] Timm Faulwasser and Mario Zanon. Asymptotic stability of economic NMPC: The
importance of adjoints. IFAC-PapersOnLine, 51(20):157–168, 2018.

[63] Anthony V Fiacco. Sensitivity analysis for nonlinear programming using penalty meth-
ods. Mathematical programming, 10(1):287–311, 1976.

[64] Anthony V Fiacco and Yo Ishizuka. Sensitivity and stability analysis for nonlinear
programming. Annals of Operations Research, 27(1):215–235, 1990.

141

[65] Stéphane Fliscounakis, Patrick Panciatici, Florin Capitanescu, and Louis Wehenkel.
Contingency ranking with respect to overloads in very large power systems taking into
account uncertainty, preventive, and corrective actions. IEEE Transactions on Power
Systems, 28(4):4909–4917, 2013.

[66] Robert Fourer, David M Gay, and Brian W Kernighan. AMPL: A mathematical pro-
gramming language. AT & T Bell Laboratories Murray Hill, NJ, 1987.

[67] Stephen Frank, Ingrida Steponavice, and Steffen Rebennack. Optimal power flow: a
bibliographic survey I. Energy Systems, 3(3):221–258, 2012.

[68] Andreas Frommer and Daniel B Szyld. Weighted max norms, splittings, and overlap-
ping additive schwarz iterations. Numerische Mathematik, 83(2):259–278, 1999.

[69] Andreas Frommer and Daniel B Szyld. An algebraic convergence theory for restricted
additive schwarz methods using weighted max norms. SIAM journal on numerical
analysis, 39(2):463–479, 2001.

[70] Tristan Gally, Marc E Pfetsch, and Stefan Ulbrich. A framework for solving mixed-
integer semidefinite programs. Optimization Methods and Software, 33(3):594–632,.

[71] Martin J Gander and Soheil Hajian. Block jacobi for discontinuous galerkin discretiza-
tions: no ordinary schwarz methods. In Domain Decomposition Methods in Science
and Engineering XXI, pages 305–313. Springer, 2014.

[72] Philipp Gerstner, Michael Schick, Vincent Heuveline, Nico Meyer-Hübner, Michael
Suriyah, Thomas Leibfried, Viktor Slednev, Wolf Fichtner, and Valentin Valentin
Bertsch. A domain decomposition approach for solving dynamic optimal power flow
problems in parallel with application to the german transmission grid. Preprint Series
of the Engineering Mathematics and Computing Lab, (1), 2016.

[73] Frederik Geth, Carleton Coffrin, and David M Fobes. A flexible storage model for
power network optimization. arXiv preprint arXiv:2004.14768, 2020.

[74] Pontus Giselsson and Anders Rantzer. Distributed model predictive control with sub-
optimality and stability guarantees. In 49th IEEE Conference on Decision and Control
(CDC), pages 7272–7277. IEEE, 2010.

[75] Pontus Giselsson and Anders Rantzer. On feasibility, stability and performance
in distributed model predictive control. IEEE Transactions on Automatic Control,
59(4):1031–1036, 2013.

[76] Pontus Giselsson and Anders Rantzer. Generalized accelerated gradient methods for
distributed MPC based on dual decomposition. In Distributed Model Predictive Control
Made Easy, pages 309–325. Springer, 2014.

142

[77] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU press,
2012.

[78] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

[79] Ignacio E. Grossmann. Advances in mathematical programming models for enterprise-
wide optimization. Computers and Chemical Engineering, 47:2–18, 2012.

[80] Ignacio E Grossmann and M Morari. Operability, resiliency, and flexibility: Process
design objectives for a changing world. 1983.

[81] Lars Grüne and Matthias A Müller. On the relation between strict dissipativity and
turnpike properties. Systems & Control Letters, 90:45–53, 2016.

[82] Lars Grüne, Manuel Schaller, and Anton Schiela. Sensitivity analysis of optimal control
for a class of parabolic PDEs motivated by model predictive control. SIAM Journal
on Control and Optimization, 57(4):2753–2774, 2019.

[83] Lars Grüne, Manuel Schaller, and Anton Schiela. Abstract nonlinear sensitivity and
turnpike analysis and an application to semilinear parabolic PDEs. arXiv preprint
arXiv:2008.13001, 2020.

[84] Lars Grüne, Manuel Schaller, and Anton Schiela. Exponential sensitivity and turnpike
analysis for linear quadratic optimal control of general evolution equations. Journal of
Differential Equations, 268(12):7311–7341, 2020.

[85] William E. Hart, Carl D. Laird, Jean-Paul Watson, David L. Woodruff, Gabriel A.
Hackebeil, Bethany L. Nicholson, and John D. Siirola. Pyomo–optimization modeling
in python, volume 67. Springer Science & Business Media, second edition, 2017.

[86] Markus Hehn and Raffaello D’Andrea. A flying inverted pendulum. In 2011 IEEE
International Conference on Robotics and Automation, pages 763–770. IEEE, 2011.

[87] Roland Herzog and Karl Kunisch. Algorithms for PDE-constrained optimization.
GAMM-Mitteilungen, 33(2):163–176, 2010.

[88] Michael Hinze, René Pinnau, Michael Ulbrich, and Stefan Ulbrich. Optimization with
PDE constraints, volume 23. Springer Science & Business Media, 2008.

[89] Mingyi Hong, Zhi-Quan Luo, and Meisam Razaviyayn. Convergence analysis of al-
ternating direction method of multipliers for a family of nonconvex problems. SIAM
Journal on Optimization, 26(1):337–364, 2016.

[90] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press,
2012.

143

[91] Boris Houska, Janick Frasch, and Moritz Diehl. An augmented lagrangian based
algorithm for distributed nonconvex optimization. SIAM Journal on Optimization,
26(2):1101–1127, 2016.

[92] A HSL. collection of fortran codes for large-scale scientific computation. See
http://www. hsl. rl. ac. uk, 2007.

[93] Kai Huang and Shabbir Ahmed. The value of multistage stochastic programming in
capacity planning under uncertainty. Operations Research, 57(4):893–904, 2009.

[94] Jens Hübner, Martin Schmidt, and Marc C Steinbach. Optimization techniques for
tree-structured nonlinear problems. Computational Management Science, 17(3):409–
436, 2020.

[95] M Huneault and FD Galiana. A survey of the optimal power flow literature. IEEE
transactions on Power Systems, 6(2):762–770, 1991.

[96] Jennifer R Jackson and Ignacio E Grossmann. Temporal decomposition scheme for
nonlinear multisite production planning and distribution models. Industrial & engi-
neering chemistry research, 42(13):3045–3055, 2003.

[97] Jordan Jalving, Yankai Cao, and Victor M Zavala. Graph-based modeling and simu-
lation of complex systems. Computers & Chemical Engineering, 125:134–154, 2019.

[98] Jordan Jalving, Sungho Shin, and Victor M Zavala. A graph-based modeling ab-
straction for optimization: Concepts and implementation in Plasmo.jl. arXiv preprint
arXiv:2006.05378, 2020.

[99] Jordan H Jalving. Graph-Based Modeling and Simulation of Cyber-Physical Systems.
The University of Wisconsin-Madison, 2020.

[100] Yuning Jiang, Dimitris Kouzoupis, Haoyu Yin, Moritz Diehl, and Boris Houska. De-
centralized optimization over tree graphs. Journal of Optimization Theory and Appli-
cations, pages 1–24, 2021.

[101] Mark T Jones and Daniel B Szyld. Two-stage multisplitting methods with overlapping
blocks. Numerical linear algebra with applications, 3(2):113–124, 1996.

[102] Jia Kang, Yankai Cao, Daniel P. Word, and C. D. Laird. An interior-point method
for efficient solution of block-structured NLP problems using an implicit Schur-
complement decomposition. Computers and Chemical Engineering, 2014.

[103] George Karypis and Vipin Kumar. METIS–unstructured graph partitioning and sparse
matrix ordering system, version 2.0. 1995.

144

[104] Masoumeh Kazemi Zanjani, Mustapha Nourelfath, and Daoud Ait-Kadi. A multi-
stage stochastic programming approach for production planning with uncertainty in the
quality of raw materials and demand. International Journal of Production Research,
48(16):4701–4723, 2010.

[105] Youngdae Kim and Mihai Anitescu. A real-time optimization with warm-start of
multiperiod AC optimal power flows. Electric Power Systems Research, 189:106721,
2020.

[106] Dimitris Kouzoupis, Rien Quirynen, Boris Houska, and Moritz Diehl. A block based
ALADIN scheme for highly parallelizable direct optimal control. In 2016 American
Control Conference (ACC), pages 1124–1129. IEEE, 2016.

[107] Attila Kozma, Christian Conte, and Moritz Diehl. Benchmarking large-scale dis-
tributed convex quadratic programming algorithms. Optimization Methods and Soft-
ware, 30(1):191–214, 2015.

[108] Ranjeet Kumar, Michael J Wenzel, Matthew J Ellis, Mohammad N ElBsat, Kirk H
Drees, and Victor M Zavala. A stochastic model predictive control framework for
stationary battery systems. IEEE Transactions on Power Systems, 33(4):4397–4406,
2018.

[109] Forrest Laine and Claire Tomlin. Parallelizing lqr computation through endpoint-
explicit riccati recursion. In 2019 IEEE 58th Conference on Decision and Control
(CDC), pages 1395–1402. IEEE, 2019.

[110] Eamonn Lannoye, Damian Flynn, and Mark O’Malley. Evaluation of power system
flexibility. IEEE Transactions on Power Systems, 27(2):922–931, 2012.

[111] Claude Lemaréchal. Lagrangian relaxation. In Computational combinatorial optimiza-
tion, pages 112–156. Springer, 2001.

[112] Yingying Li, Xin Chen, and Na Li. Online optimal control with linear dynamics
and predictions: Algorithms and regret analysis. In Advances in Neural Information
Processing Systems, pages 14887–14899, 2019.

[113] Yingying Li and Na Li. Online learning for markov decision processes in nonstation-
ary environments: A dynamic regret analysis. In 2019 American Control Conference
(ACC), pages 1232–1237. IEEE, 2019.

[114] YP Li, GH Huang, and SL Nie. An interval-parameter multi-stage stochastic program-
ming model for water resources management under uncertainty. Advances in Water
Resources, 29(5):776–789, 2006.

145

[115] Sergio Lucia, Tiago Finkler, and Sebastian Engell. Multi-stage nonlinear model predic-
tive control applied to a semi-batch polymerization reactor under uncertainty. Journal
of process control, 23(9):1306–1319, 2013.

[116] Tarek Mathew. Domain decomposition methods for the numerical solution of partial
differential equations, volume 61. Springer Science & Business Media, 2008.

[117] MathWorks. Nonlinear heat transfer in thin plate.
https://www.mathworks.com/help/pde/ug/nonlinear-heat-transfer-in-a-thin-
plate.html.

[118] Alcir Monticelli. Electric power system state estimation. Proceedings of the IEEE,
88(2):262–282, 2000.

[119] Sen Na and Mihai Anitescu. Exponential decay in the sensitivity analysis of nonlinear
dynamic programming. To appear in SIAM Journal on Optimization, 2019.

[120] Sen Na and Mihai Anitescu. Superconvergence of online optimization for model pre-
dictive control. arXiv preprint arXiv:2001.03707, 2020.

[121] Sen Na, Sungho Shin, Mihai Anitescu, and Victor M. Zavala. Overlapping schwarz
decomposition for nonlinear optimal control. 2020. Under Review.

[122] Isak Nielsen and Daniel Axehill. An O(logN) parallel algorithm for newton step
computation in model predictive control. IFAC Proceedings Volumes, 47(3):10505–
10511, 2014.

[123] Isak Nielsen and Daniel Axehill. A parallel structure exploiting factorization algo-
rithm with applications to model predictive control. In 2015 54th IEEE Conference
on Decision and Control (CDC), pages 3932–3938. IEEE, 2015.

[124] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Busi-
ness Media, 2006.

[125] Hussam Nosair and Franois Bouffard. Flexibility envelopes for power system opera-
tional planning. IEEE Transactions on Sustainable Energy, 6(3):800–809, 2015.

[126] Mario VF Pereira and Leontina MVG Pinto. Multi-stage stochastic optimization ap-
plied to energy planning. Mathematical programming, 52(1-3):359–375, 1991.

[127] Alfio Quarteroni and Alberto Valli. Domain decomposition methods for partial dif-
ferential equations numerical mathematics and scientific computation. Quarteroni, A.
Valli–New York: Oxford University Press.–1999, 1999.

[128] Anders Rantzer. Dynamic dual decomposition for distributed control. In 2009 Amer-
ican Control Conference, pages 884–888. IEEE, 2009.

146

[129] Christopher V Rao, James B Rawlings, and Jay H Lee. Constrained linear state
estimation—a moving horizon approach. Automatica, 37(10):1619–1628, 2001.

[130] James Blake Rawlings, David Q Mayne, and Moritz Diehl. Model predictive control:
theory, computation, and design, volume 2. Nob Hill Publishing Madison, WI, 2017.

[131] Felix Rey, Peter Hokayem, and John Lygeros. ADMM for exploiting structure in MPC
problems. IEEE Transactions on Automatic Control, 2020.

[132] Stephen M Robinson. Perturbed Kuhn-Tucker points and rates of convergence for
a class of nonlinear-programming algorithms. Mathematical programming, 7(1):1–16,
1974.

[133] Stephen M Robinson. Generalized equations and their solutions, Part I: Basic theory.
In Point-to-Set Maps and Mathematical Programming, pages 128–141. Springer, 1979.

[134] Stephen M Robinson. Strongly regular generalized equations. Mathematics of Opera-
tions Research, 5(1):43–62, 1980.

[135] Stephen M Robinson. Generalized equations and their solutions, Part II: Applications
to nonlinear programming. In Optimality and Stability in Mathematical Programming,
pages 200–221. Springer, 1982.

[136] Jose S Rodriguez, Carl D Laird, and Victor M Zavala. Scalable preconditioning of
block-structured linear algebra systems using ADMM. Computers & Chemical Engi-
neering, 133:106478, 2020.

[137] Jose S Rodriguez, Bethany Nicholson, Carl Laird, and Victor M Zavala. Benchmarking
ADMM in nonconvex NLPs. Computers & Chemical Engineering, 119:315–325, 2018.

[138] Youcef Saad and Martin H Schultz. GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical
computing, 7(3):856–869, 1986.

[139] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[140] Hermann Amandus Schwarz. Ueber einen Grenzübergang durch alternirendes Ver-
fahren. Zürcher u. Furrer, 1870.

[141] Fred C Schweppe and J Wildes. Power system static-state estimation, Part I: Exact
model. IEEE Transactions on Power Apparatus and systems, (1):120–125, 1970.

[142] James Fairbanks Seth Bromberger and other contributors. JuliaGraphs/Light-
Graphs.jl: an optimized graphs package for the Julia programming language, 2017.

[143] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on stochas-
tic programming: modeling and theory. SIAM, 2014.

147

[144] S. Shin, T. Faulwasser, M. Zanon, and V. M. Zavala. A parallel decomposition scheme
for solving long-horizon optimal control problems. In 2019 IEEE 58th Conference on
Decision and Control (CDC), pages 5264–5271, 2019.

[145] Sungho Shin, Mihai Anitescu, and Victor M Zavala. Overlapping schwarz decomposi-
tion for constrained quadratic programs. arXiv preprint arXiv:2003.07502, 2020.

[146] Sungho Shin, Mihai Anitescu, and Victor M. Zavala. Exponential decay of sensitivity
in graph-structured nonlinear programs. arXiv preprint arXiv:2101.03067v1, 2021.

[147] Sungho Shin, Carleton Coffrin, Kaarthik Sundar, and Victor M Zavala. Graph-
based modeling and decomposition of energy infrastructures. arXiv preprint
arXiv:2010.02404, 2020.

[148] Sungho Shin, Philip Hart, Thomas Jahns, and Victor M Zavala. A hierarchical opti-
mization architecture for large-scale power networks. IEEE Transactions on Control
of Network Systems, 2019.

[149] Sungho Shin, Ophelia S Venturelli, and Victor M Zavala. Scalable nonlinear program-
ming framework for parameter estimation in dynamic biological system models. PLoS
computational biology, 15(3):e1006828, 2019.

[150] Sungho Shin and Victor M Zavala. Multi-grid schemes for multi-scale coordination of
energy systems. In Energy Markets and Responsive Grids, pages 195–222. Springer,
2018.

[151] Sungho Shin and Victor M Zavala. Diffusing-horizon model predictive control. arXiv
preprint arXiv:2002.08556, 2020.

[152] Sungho Shin and Victor M Zavala. Controllability and observability imply exponential
decay of sensitivity in dynamic optimization. arXiv preprint arXiv:2101.06350, 2021.

[153] Sungho Shin, Victor M Zavala, and Mihai Anitescu. Decentralized schemes with over-
lap for solving graph-structured optimization problems. IEEE Transactions on Control
of Network Systems, 2020.

[154] Amik St-Cyr, Martin J Gander, and Stephen J Thomas. Optimized multiplicative,
additive, and restricted additive schwarz preconditioning. SIAM Journal on Scientific
Computing, 29(6):2402–2425, 2007.

[155] Defeng Sun, Jie Sun, and Liwei Zhang. The rate of convergence of the augmented La-
grangian method for nonlinear semidefinite programming. Mathematical Programming,
114(2):349–391, 2008.

[156] Junjie Sun and Leigh Tesfatsion. DC optimal power flow formulation and solution
using quadprogj. 2010.

148

[157] Kaarthik Sundar and Anatoly Zlotnik. State and parameter estimation for natural gas
pipeline networks using transient state data. IEEE Transactions on Control Systems
Technology, 27(5):2110–2124, 2018.

[158] Ross Edward Swaney and Ignacio E Grossmann. An index for operational flexibility in
chemical process design. Part I: Formulation and theory. AIChE Journal, 31(4):621–
630, 1985.

[159] Wentao Tang, Andrew Allman, Davood Babaei Pourkargar, and Prodromos Daoutidis.
Optimal decomposition for distributed optimization in nonlinear model predictive con-
trol through community detection. Computers & Chemical Engineering, 111:43–54,
2018.

[160] Andrea Toselli and Olof Widlund. Domain decomposition methods-algorithms and
theory, volume 34. Springer Science & Business Media, 2006.

[161] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical pro-
gramming, 106(1):25–57, 2006.

[162] Lipo Wang. Support vector machines: theory and applications, volume 177. Springer
Science & Business Media, 2005.

[163] Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of ADMM in nonconvex
nonsmooth optimization. Journal of Scientific Computing, 78(1):29–63, 2019.

[164] Stephen J Wright. Solution of discrete-time optimal control problems on parallel com-
puters. Parallel Computing, 16(2-3):221–237, 1990.

[165] Wanting Xu and Mihai Anitescu. Exponentially accurate temporal decomposition for
long-horizon linear-quadratic dynamic optimization. SIAM Journal on Optimization,
28(3):2541–2573, 2018.

[166] Wanting Xu and Mihai Anitescu. Exponentially convergent receding horizon strat-
egy for constrained optimal control. Vietnam Journal of Mathematics, 47(4):897–929,
2019.

[167] Zheng Xu, Soham De, Mario Figueiredo, Christoph Studer, and Tom Goldstein. An
empirical study of ADMM for nonconvex problems, 2016.

[168] Mario Zanon and Timm Faulwasser. Economic MPC without terminal constraints:
Gradient-correcting end penalties enforce asymptotic stability. Journal of Process
Control, 63:1–14, 2018.

[169] Victor M Zavala. Stability analysis of an approximate scheme for moving horizon
estimation. Computers & Chemical Engineering, 34(10):1662–1670, 2010.

149

[170] Victor M Zavala. New architectures for hierarchical predictive control. IFAC-
PapersOnLine, 49(7):43–48, 2016.

[171] Victor M Zavala, Mihai Anitescu, and Theodore Krause. On the optimal on-line
management of photovoltaic-hydrogen hybrid energy systems. In Computer Aided
Chemical Engineering, volume 27, pages 1953–1958. Elsevier, 2009.

[172] Victor M Zavala, Carl D Laird, and Lorenz T Biegler. Interior-point decomposition
approaches for parallel solution of large-scale nonlinear parameter estimation problems.
Chemical Engineering Science, 63(19):4834–4845, 2008.

[173] Runyu Zhang, Yingying Li, and Na Li. On the regret analysis of online LQR control
with predictions. arXiv preprint arXiv:2102.01309, 2021.

[174] Anatoly Zlotnik, Michael Chertkov, and Scott Backhaus. Optimal control of transient
flow in natural gas networks. In 2015 54th IEEE conference on decision and control
(CDC), pages 4563–4570. IEEE, 2015.

[175] Anatoly Zlotnik, Line Roald, Scott Backhaus, Michael Chertkov, and Göran Anders-
son. Coordinated scheduling for interdependent electric power and natural gas infras-
tructures. IEEE Transactions on Power Systems, 32(1):600–610, 2016.

[176] T Zolezzi. On stability analysis in mathematical programming. In Sensitivity, Stability
and Parametric Analysis, pages 227–242. Springer, 1984.

150

APPENDIX

Benchmark Algorithms

In this appendix, we briefly discuss two standard optimization algorithms: ADMM and

IPM. Here, we do not intend to provide a comprehensive review of these methods. Rather,

these will provide high-level, introductory explanations, which facilitate our discussion in the

main text. The interested readers are referred to the following articles: [27, ADMM]; [124,

IPM].

A.1 Alternating Direction Method of Multipliers

Consider a nonlinear program of the following form:

min
x
f(x) (A.1)

s.t. c(x) = 0 (A.2)

x ≥ 0. (A.3)

Typically, ADMM has been used for solving convex problems, and the convergence proof

also relies on the convexity assumptions. However, for a number of instances, it has been

demonstrated that ADMM converges reasonably well for nonconvex problems (nonconvex

f(·) and nonlinear c(·)) [136, 167], and the convergence is analyzed under a few particular

nonconvex settings [89,163].

First, we assume that problem (A.1) has a certain decomposable structure (e.g., as in

(1.1)), and thus one can reformulate the problem as follows:

min
{xk}k∈K,z

∑

k∈K
fk(xk) (A.4a)

151

s.t. ck(xk) = 0 (A.4b)

xk ≥ 0 (A.4c)

Akxk +Bkz = 0 (A.4d)

This can be done as follows. First, we introduce duplicate variables for coupled variables for

each k (they are contained in xk), and also introduce the global coupled variables z. Then,

we enforce the equality constraint (A.4d). This procedure is often called lifting. Now, one

can observe that if we fix variable z, then the problem becomes separable for each k ∈ K.

We now are ready to define the algorithm. ADMM algorithm is essentially an inexact

variation of method of multipliers [16,124]. Instead of exactly solving the primal minimiza-

tion problem, it performs one sweep of Gauss-Seidel iteration on the augmented Lagrangian,

and then perform the dual update. The ADMM algorithm can be stated as follows: for each

iteration ` = 0, 1, · · · ,

x
(`+1)
k = argmin

xk

fk(xk) + (y
(`)
k)>(Akxk +Bkz

(`)) + (µ/2)‖Akxk +Bkz
(`)‖2

s.t. ck(xk) = 0

xk ≥ 0

, k ∈ K (A.5a)

z(`+1) = argmin
z

∑

k∈K
(y

(`)
k)>(Akx

(`+1)
k +Bkz) + (µ/2)‖Akx(`+1)

k +Bkz‖2 (A.5b)

y
(`+1)
k = y

(`)
k + µ(Akx

(`+1)
k +Bkz

(`+1)
k), k ∈ K. (A.5c)

Here, the partial augmented Lagrangian is minimized for each xk for k ∈ K and z (sequen-

tially). Then the dual for the relaxed constraints are updated as in standard method of

multipliers. This iterative scheme allows exploiting the parallel computaions. Note that the

most expensive step (A.5a) is parallelizable for each k ∈ K. Other parts are not computa-

tionally expensive; one can see that solving (A.5b) is just solving an unconstrained QP and

(A.5c) only involves a matrix-vector multiplications and vector additions. Thus, the compu-

tation in (A.5b)-(A.5c) is much cheaper than (A.5a). We have implemented multi-threading

parallelism-based ADMM in SimpleADMM.jl [3]

152

A.2 Interior Point Method

We consider a nonlinear program of the form in (A.1). The IPM finds the solution of

NLPs by solving a sequence of barrier subproblems:

min ϕ(x) := f(x)− µ eT log(x) (A.6)

s.t. c(x) = 0. (A.7)

with a decreasing sequence for parameter µ. Here, e is a vector of ones. Note that the

inequality constraint in (A.1) is replaced by a smooth log-barrier function. Treating the

inequalities as log-barrier function allows eliminating the combinatorial complexity of the

inequality constrained NLPs.

The KKT conditions for (A.6) give rise to the nonlinear equations:

∇f(x) + A>y − z = 0 (A.8)

c(x) = 0 (A.9)

XZe− µ e = 0, (A.10)

where A := ∇c(x), X := diag(x), and Z := diag(z); note that one can obtain the standard

form KKT conditions upon the elimination of z. A solution of KKT system (A.8) can be

obtained by computing primal-dual Newton steps d? from:


W + Σ + δwI A>

A −δcI




︸ ︷︷ ︸
M


d

x

dy




︸ ︷︷ ︸
d

= −


∇xϕ(x) + A>y

c(x).




︸ ︷︷ ︸
p

, (A.11)

where W := ∇2
xxL(x,y, z), Σ := X−1Z, and δw, δc > 0 are regularization parameters. The

regularization parameter is selected typically based on the intertia information obtained from

block LDL> factorization. The step d? computed from (A.11) is safeguarded by a line-search

filter procedure to induce global convergence [161]. The decrease in the penalty parameter

is triggered by checking the residual to the KKT conditions (A.11) for the barrier problem.

The algorithm is also typically safeguarded by the so-called restoration phase, which tries to

153

minimize the constraint violation when a convergence issue is faced. The readers are referred

to [161] for more details of the implementation.

154

APPENDIX

Problem Formulations

B.1 Storage Control

Consider a dynamic optimization problem for energy storage:

min
{si,ui,vi}ki=1

k∑

i=1

1

2
η(si)

2 +
1

2
(ui)

2 + πiui (B.1a)

s.t. s1 = s (B.1b)

si = si−1 + bui−1 + wi, i ∈ I[2,k]. (B.1c)

Here, si ∈ R is the stored energy (state) at time i; ui ∈ R is the charge/discharge of energy

(control); vi ∈ R are the transactions with the grid; s = w1 is the initial storage; πi ∈ R

is the energy price forecast; di is the energy demand forecast; and wi is the disturbance

forecast. We consider G = (V , E) as a linear graph that represents time domain, V := I[1,N]

and E := {{i, i + 1}}n−1
i=1 . Practical problems have inequality constraints for si, ui, but here

we neglect them for simplicity, and incorporate the regularizations in the objective function

as in (B.1b).

B.2 Quadrotor Motion Planning

We consider a quadrotor motion planning problem [86]:

min
x(·),u(·)

∫ T

0

(
1

2
(s(t)− s(t))>Q(s(t)− s(t)) +

1

2
u(t)>Ru(t)

)
dt (B.2a)

+
1

2
(x(T)− s(T))>Qf (x(T)− s(T))

s.t.
d2X

dt2
= a(cos γ sin β cosα + sin γ sinα), t ∈ [0, T] (B.2b)

155

d2Y

dt2
= a(cos γ sin β sinα− sin γ cosα), t ∈ [0, T] (B.2c)

d2Z

dt2
= a cos γ cos β − g, t ∈ [0, T] (B.2d)

dγ

dt
= (bωX cos γ + ωY sin γ)/ cos β, t ∈ [0, T] (B.2e)

dβ

dt
= −bωX sin γ + ωY cos γ, t ∈ [0, T] (B.2f)

dα

dt
= bωX cos γ tan β + ωY sin γ tan β + ωZ , t ∈ [0, T], (B.2g)

where X, Y, Z are the coordinates in the 3-D space; α, β, γ are the yaw, pitch, and roll angles;

a is the thrust; ωX , ωY , ωZ are the rotational rates; g is the gravitational acceleration; T is

the prediction horizon length; Q := diag(1, 1, 1, η, η, η, 1, 1, 1), R,Qf := I; s(·) is the state

variables, defined as: x := (X, Ẋ, Y, Ẏ , Z, Ż, γ, β, α); u(·) is the control variable, defined

as (a, ωX , ωY , ωZ); and s(·) is the set point trajectory. The problem is formulated as a

tracking model predictive control (MPC) problem that seeks to minimize the deviation of

the predicted trajectory from the given reference trajectory while minimally using the input,

over the specified prediction horizon [0, T]. See Figure B.1 for the schematic illustration of

the physical system. While the problem in (B.2) is formulated as a continuos time ODE-

constrained optimization problem, it can be reformulated as a finite dimensional NLP by

applying the discretization techniques. The discretization can be performed either by directly

embedding the discretized ODE as algebraic equations or by interfacing the numerical ODE

solvers with the problem [18,20]. For either case, the discretized problem reduces to a gsNLP.

We use the explicit Euler scheme to formulate the problem as a gsNLP. For testing OSM,

we used the following as the base parameter sets: ω̃ = 1, µ = 1, η = 1, and b = 1. For OSM,

we decomposed the problem into 20 subproblems.

156

Ry (β) =




cos β 0 sin β
0 1 0

− sin β 0 cos β


 , (3)

Rz (α) =




cos α − sin α 0
sin α cos α 0

0 0 1


 . (4)

The translational acceleration of the vehicle is dictated by
the attitude of the vehicle and the total thrust produced by
the four propellers. With a representing the mass-normalized
collective thrust, the translational acceleration in the inertial
frame is




ẍ
ÿ
z̈


 = O

V R(α, β, γ)




0
0
a


 +




0
0

−g


 . (5)

The vehicle attitude is not directly controllable, but it
is subject to dynamics. The control inputs are the desired
rotational rates about the vehicle body axes, (ωx, ωy , ωz),
and the mass-normalized collective thrust, a, as shown in
Figure 2. High-bandwidth controllers on the vehicle track the
desired rates using feedback from gyroscopes. The quadrotor
has very low rotational inertia, and can produce high torques
due to the outward mounting of the propellers, resulting in
very high achievable rotational accelerations on the order of
200 rad/s2. The vehicle has a fast response time to changes in
the desired rotational rate (experimental results have shown
time constants on the order of 20 ms). We will therefore
assume that we can directly control the vehicle body rates
and ignore rotational acceleration dynamics. As with the
vehicle body rates, we assume that the thrust can be changed
instantaneously. Experimental results have shown that the
true thrust dynamics are about as fast as the rotational
dynamics, with propeller spin-up being noticeably faster than
spin-down.

The rates of the Euler angles are converted to the vehicle
body coordinate system V through their respective transfor-
mations:



ωx

ωy

ωz


 =




γ̇
0
0


 + R−1

x (γ)




0

β̇
0


 + R−1

x (γ) R−1
y (β)




0
0
α̇


 .

(6)

The above can be written more compactly by combining
the Euler rates into a single vector, calculating the relevant
rows of the rotation matrices, and solving for the Euler angle
rates:




γ̇

β̇
α̇


 =




cos β cos γ − sin γ 0
cos β sin γ cos γ 0
− sin β 0 1




−1 


ωx

ωy

ωz


 . (7)

B. Inverted Pendulum

The pendulum has two degrees of freedom, which we
describe by the translational position of the pendulum center
of mass relative to its base in O (r along the x-axis, s along

the y-axis). For notational simplicity, we describe the relative
position of the pendulum along the z-axis as

ζ :=
√

L2 − r2 − s2 , (8)

where L to denotes the length from the base of the pendulum
to its center of mass. We model the pendulum as an iner-
tialess point mass that is rigidly attached to the mass center
of the quadrotor, such that rotations of the vehicle do not
cause a motion of the pendulum base. In the experimental
setup, the point that the pendulum is attached to is mounted
off-center by about 10% of the length of the pendulum.
While this assumption causes modeling errors, it simplifies
the dynamics to such a great extent that the problem becomes
much more tractable. The Lagrangian [9] of the pendulum
can be written as

L =
1

2

(
(ẋ + ṙ)2 + (ẏ + ṡ)2 + (ż − rṙ + sṡ

ζ
)2

)

− g (z + ζ) ,

(9)

where we assume unit pendulum mass without loss of
generality. The first term represents the kinetic energy of
the pendulum, and the second the potential energy. The full,
nonlinear dynamic equations can be derived from L using
conventional Lagrangian mechanics:

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0 (10)

d

dt

(
∂L

∂ṡ

)
− ∂L

∂s
= 0 , (11)

resulting in a system of equations of the form
[
r̈
s̈

]
= f (r, s, ṙ, ṡ, ẍ, ÿ, z̈) , (12)

where f are the nonlinear equations (13) and (14).

C. Combined dynamics

The full dynamics of the combined system are described
entirely by Equations (5), (7), and (12). The three body
rate control inputs (ωx, ωy, ωz) control the attitude V of
the vehicle in a nonlinear fashion. This attitude, combined

ωx

ωy ωz

a

Fig. 2. The control inputs of the quadrotor: The rotational rates ωx, ωy ,
and ωz are tracked by an on-board controller, using gyroscope feedback.

764

Authorized licensed use limited to: UCLA Library. Downloaded on April 07,2021 at 21:18:11 UTC from IEEE Xplore. Restrictions apply.

Figure B.1 Schematic of quadrotor.

B.3 Stochastic Storage Control

Consider a stochastic program for the energy storage control problem:

min
s(0),u(0)

1

2
ηs(0)2 +

1

2
u(0)2 + π(0)u(0) + E

[
min

s(1),u(1)

1

2
s(1)2 +

1

2
u(1)2 + π(1)u(1) + E [· · ·]

]

(B.3a)

s.t. s(0) = s (B.3b)

s(t+ 1) = s(t) + bu(t) + w(t), t ∈ I[0,N], (B.3c)

where t denotes the time stages, s(t) is the state of charge, u(t) is the charge/discharge rate,

w(t) and π(t) are the time-varying uncertain system load and the electricity price, s is the

initial state of the charge, and E[·] detnotes the expected value. The battery system serves

the electricity loads of the buildings while transacting with the power grid by reponding

to the frequency regulation price signals. The operational decision of the battery is made

by solving the optimization problem in (B.3) in real-time. The problem aims to maximize

the expected profit of battery system operation by exploiting the time-varying nature of

electricity price and demand. The control decision is implemented in a receding-horizon

fashion. A schematic of the battery system is illustrated in Figure B.2.

The problem in (B.3) can be reformulated as a multi-stage stochastic program:

min
{si,ui}i∈V

∑

i∈V
pi · (

1

2
ηs2

i +
1

2
u2
i + πiui) (B.4a)

1574398 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 33, NO. 4, JULY 2018

multi-scale in nature. This is because one must simultaneously
consider short-term (hourly) FR commitment decisions and
long-term (monthly) demand charge costs. The multi-scale
nature of the problem leads to two fundamental issues that are
addressed in this paper: tractability of the stochastic program-
ming problem and the need for uncertainty characterizations
for the load and price forecasts that capture short-term and
long-term time correlations. The first challenge is addressed
by proposing a receding-horizon stochastic MPC strategy that
uses a discounting factor for long-term demand charges. This
approach solves a short-term and tractable stochastic program
while capturing long-term effects more effectively than standard
MPC formulations that ignore long-term effects. In particular,
when a discounting factor is not used, a standard MPC controller
becomes highly conservative and sacrifices economic perfor-
mance. The construction of uncertainty characterizations also
leads to computational tractability and data requirement issues.
In particular, forecasting loads and prices using time series
models and computing associated uncertainty characterizations
over long time horizons (e.g., to capture time correlations and
weekly periodicities) is computationally expensive. To address
this issue, it is proposed to model signals directly as multivariate
Gaussian variables by using historical data. Estimating the
covariance matrix under this approach, however, requires large
amounts of data. For instance, a sample covariance matrix
for weekly loads with one hour resolution has a dimension of
168× 168; consequently, data for 168 historical weekly profiles
is needed to obtain a non-singular covariance matrix that one
can sample from (this represents over 3 years of data). Creating
a non-singular covariance matrix for monthly loads with one
hour resolution requires data for 720 monthly profiles and
60 years of data. A Ledoit-Wolf covariance estimator is proposed
to address this issue and it is shown that this approach can ob-
tain consistent uncertainty characterizations with significantly
less data.

The proposed framework is used to study the flexibility and
economic benefits provided by a battery system attached to a
collection of buildings. The benefits of stochastic MPC poli-
cies are compared to those obtained with deterministic MPC
and perfect information MPC strategies. The effect of the pre-
diction horizon length and demand charge discounting on the
performance of MPC is also evaluated. Using real load data
for a typical university campus, it is found that stochastic MPC
can recover 83% of the ideal value of the battery (obtained by
operating the battery under perfect information) while determin-
istic MPC can only recover 73%. It is also found that operating
the battery under stochastic MPC improves the battery payback
period by 12.1% while operating it under perfect information
improves it by 27.9%.

II. DECISION-MAKING SETTING

The combined battery and load system is illustrated in Fig. 1.
This illustrates the interaction between the battery system, the
ISO, and the utility. The goal is to determine optimal participa-
tion strategies for the battery in energy and FR markets oper-
ated by ISO (this work focuses on PJM Interconnection, which

Fig. 1. Interactions between battery system, ISO, and utility.

Fig. 2. FR signal (real-time and hourly average) from PJM.

is a one of the major ISOs in the U.S.) while simultaneously
mitigating demand charges from a utility company. All transac-
tions considered are conducted on an hourly basis. The various
cost and revenue components that are considered are:! Energy Transactions (hourly): The battery system pur-

chases energy to recharge and discharges to provide energy
for the building and for the FR signal. The energy transac-
tions are charged at a time-varying real-time energy price.! Frequency Regulation Capacity (hourly): The ISO com-
pensates the battery for providing an operational band
(compensated based on time-varying market FR capacity
prices) around a charge/discharge level (charged at market
energy prices). The ISO can request the battery to dis-
patch a fraction of the committed capacity based on the
grid requirements in real-time (every 2 seconds in PJM).
The real-time FR signal from the ISO is zero mean with
a bounded range of [−1, +1] as shown in the top panel
of Fig. 2. An hourly average FR signal is considered in
this setting, which only captures capacity payments. The
hourly-averaged FR dispatch signal is also a zero-mean
signal with a smaller variance (the variance is reduced due
to averaging) shown in the bottom panel of Fig. 2. Con-
sidering performance-based compensation from FR mar-
kets [32], [33] would require us to consider the 2-second
FR signal directly, which poses significant computational
tractability challenges, as discussed in the next section.
Our simplification is motivated by the observation that FR
capacity payments are more lucrative than performance
(milage) payments [34].

Authorized licensed use limited to: UCLA Library. Downloaded on April 08,2021 at 02:16:36 UTC from IEEE Xplore. Restrictions apply.

4400 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 33, NO. 4, JULY 2018

Here, the expectation is computed using a scenario subset
Ξ̄ ⊆ Ξ. The net residual demand is dk (ξ) = Lk (ξ)− Pk (ξ) +
αk (ξ)Fk (ξ). The first term is the revenue obtained from the
provision of FR capacity, the second term is the cost of pur-
chasing power from the ISO, and the third term is the de-
mand charge. The parameter σt is a discounting factor for the
monthly demand charge price πD , which can be used to ad-
just the demand charge when a prediction horizon of less than
a month is used (i.e., N < M). When such a discounting fac-
tor is not used, the MPC scheme can operate conservatively
because it will try to prevent the peak demand charge over
the next immediate horizon Nt . It is highlighted that the terms
πe

k (ξ)Lk (ξ) in the total net profit are constant quantities and thus
do not affect the solution of the optimization problem. Conse-
quently, the term πf

k (ξ)Fk (ξ)− πe
k (ξ)dk (ξ) can be simplified

as πe
k (ξ)(Pk (ξ)− αk (ξ)Fk (ξ)) + πf

k (ξ)Fk (ξ)).

B. Constraints

The net charged/discharged battery power plus the FR ca-
pacity provided must be within the maximum discharging and
charging rates P and P :

Pk (ξ) + Fk (ξ) ≤ P , k ∈ Nt , ξ ∈ Ξ̄ (III.2a)

Pk (ξ)− Fk (ξ) ≥ −P , k ∈ Nt , ξ ∈ Ξ̄ (III.2b)

These constraints make allowable battery charge/discharge
limits a function of the committed FR capacity. The larger the
FR commitment, the less capacity available to charge/discharge
the battery. The storage dynamics are given by:

Ek (ξ) = Ek−1(ξ)− Pk (ξ) + αk (ξ)Fk (ξ), k ∈ Nt , ξ ∈ Ξ̄
(III.3)

The following constraint is used to ensure that a certain amount
of energy is reserved for the committed FR capacity over the
interval (k − 1, k):

ρFk (ξ) ≤ Ek−1(ξ) ≤ E − ρFk (ξ), k ∈ Nt , ξ ∈ Ξ̄ (III.4a)

ρFk (ξ) ≤ Ek (ξ) ≤ E − ρFk (ξ), k ∈ Nt , ξ ∈ Ξ̄ (III.4b)

These constraints impose a safety margin to account for the
fact that the variability of the 2-second FR signal is not captured.
The ramping limits on the net power are given by:

−∆P ≤ Pk (ξ)− Pk−1(ξ) ≤ ∆P , k ∈ Nt , ξ ∈ Ξ̄ (III.5)

where the allowable ramp ∆P is often tuned to prevent prema-
ture damage to the battery. The residual demand dk requested
from the utility is:

dk (ξ) = Lk (ξ)− Pk (ξ) + αk (ξ)Fk (ξ), k ∈ Nt , ξ ∈ Ξ̄
(III.6)

It is assumed that the ISO does not allow the battery to sell back
electricity. This is modeled by using the constraint:

Pk (ξ) + Fk (ξ) ≤ Lk (ξ), k ∈ Nt , ξ ∈ Ξ̄ (III.7)

This constraint can also be written as Lk (ξ)− Pk (ξ)− Fk (ξ) ≥
0. Consequently, the fact that the ISO fully uses the FR capac-
ity implies that αk (ξ) = −1 and the above constraint implies

Fig. 3. Sketch of stochastic MPC scheme.

that dk (ξ) ≥ 0 because dk (ξ) = Lk (ξ)− Pk (ξ)− αk (ξ)Fk (ξ).
The constraint guarantees that the battery does not sell excess
power (as per ISO rules). The following peak demand carryover
constraint is used:

max
k∈Nt

dk (ξ) ≥ D̂t , ξ ∈ Ξ̄ (III.8)

The bounds on the variables are given by:

0 ≤ Ek (ξ) ≤ E, k ∈ Nt , ξ ∈ Ξ̄ (III.9a)

−P ≤ Pk (ξ) ≤ P , k ∈ Nt , ξ ∈ Ξ̄ (III.9b)

0 ≤ Fk (ξ) ≤ P , k ∈ Nt , ξ ∈ Ξ̄ (III.9c)

The fact that Pt+1 and Ft+1 are first-stage variables is en-
forced by using the non-anticipativity constraints:

Pt+1(ξ) = E [Pt+1(ξ)] , ξ ∈ Ξ̄ (III.10a)

Ft+1(ξ) = E [Ft+1(ξ)] , ξ ∈ Ξ̄ (III.10b)

Fig. 3 sketches the implementation of the stochastic RH
scheme. The problem at time t uses realizations for the
uncertain variables that are denoted as LNt

(ξ), αNt
(ξ),

πf
Nt

(ξ), and πe
Nt

(ξ). The problem solved at time t is denoted

as Pt(LNt
(ξ),αNt

(ξ),πf
Nt

(ξ),πe
Nt

(ξ), Et , Pt , D̂t). For conve-

nience, the notation is simplified to Pt(Et, Pt , D̂t). The solution
of this problem yields the commitments Pt+1 and Ft+1 . The ac-
tual (true) residual demand depends on the actual load and is
given by dt+1 = Lt+1 − Pt+1 − αt+1Ft+1 , where Lt+1 and
αt+1 are actual values.

The stochastic MPC scheme run over a month period M is
summarized as follows:! START at t = 0 with E0 and D̂0 = 0 given. REPEAT for

t ∈M:! Solve Pt

(
Et, Pt , D̂t

)
by using the forecast realizations

πNt
(ξ), loads LNt

(ξ), and FR signals αNt
(ξ) to obtain

commitments Pt+1 and Ft+1 . Implement these decisions
over (t, t + 1) and update SOC Et+1 = Et − Pt+1 +
αt+1Ft+1 using a random realized FR signal αt+1(ξ).! Using the actual realized load Lt+1 and FR signal αt+1

compute the actual net demand dt+1 = Lt+1 − Pt+1 +

αt+1Ft+1 . Update peak carryover demand as D̂t+1 =

max{D̂t , dt+1}.

Authorized licensed use limited to: UCLA Library. Downloaded on April 08,2021 at 02:16:36 UTC from IEEE Xplore. Restrictions apply.

Figure B.2 Schematic of battery system under study (left) and the scenario tree (right).

s.t. s1 = s, (B.4b)

si = san(i) + buan(i) + wan(i), i ∈ V \ {1}. (B.4c)

Here G = (V , E) represents the scenario tree (see Figure B.2); 1 ∈ V is the root node;

an(i) ∈ NG[i] denotes the parent node; pi ∈ R≥0 denotes the probability of node i; si ∈ R is

the stored energy at node i; ui ∈ R is the charge/discharge of energy at node i; s = w1 is the

initial energy storage; πi ∈ R is the forecasted energy price at node i; wi is the disturbance

forecast at node i. One can observe that the problem is formulated as a gsNLP, and the

problem is structured by the scenario tree G. For testing OSM, we used the following as

the base parameter sets: ω̃ = 1.2, µ = 1, η = 1, and b = 1. For OSM, we decomposed the

problem into 28 subproblems.

B.4 Thin Plate Temperature Control

We consider a steady-state temperature control problem over 2D space [117]:

min
s(·),u(·)

∫

w∈Ω

1

2
η(s(w)− s(w))2 +

1

2
u(w)2dw (B.5a)

s.t. ∆s(w) =
2hc
κtz

(s(w)− T) +
2εσ

κtz
(s(w)4 − T 4

)− 1

κtz
(bu(w) + d(w)), w ∈ Ω (B.5b)

∇s(w) · n̂(w) = 0, w ∈ ∂Ω(k), (B.5c)

where Ω = [0, L]× [0, L] ⊆ R2 is the 2-dimensional domain of interest; ∂Ω is the boundary of

Ω; s : Ω→ R is the temperature; u : Ω→ R is the control; d : Ω→ R is the disturbance; ∆ is

158

the Laplacian operator; n̂ is the unit normal vector; · is the inner product; (B.5b) is the heat

equation whose right-hand-side consists of convection, radiation, and forcing terms by control

and disturbance; (B.5c) is the Neumann boundary condition (i.e., insulated); s : Ω → R is

the desired temperature; κ = 400, tz = .01, hc = 1, ε = .5, σ = 5.67× 10−8, and T = 300 are

the constant parameters. A variant problem can be formulated by replacing the Neumann

boundary condition to the Dirichlet boudnary condition (the boundary temperature is fixed):

s(w) = Ta, w ∈ ∂Ω.

For testing OSM, we used the following as the base parameter sets: ω̃ = 2, µ = 1, η = 1,

and b = 0.1. For OSM, we decomposed the problem into 25 subproblems.

B.5 DC Power System State Estimation

We consider a DC power system state estimation problem. We assume that the network is

primarily inductive, the voltage amplitudes are fixed to one, and the voltage angle differences

between the neighboring nodes are small enough to apply a DC approximation. The power

flow Pij on edge {i, j} ∈ E can be expressed by Pij = yij(δi − δj) (assume that a direction is

assigned to each edge). We assume that the power flow is measured and the measurement

is performed based on a statistical model Pm
ij = Pij + ξPij , where ξPij is a random variable

whose distribution is ξPij ∼ N(0, σ2
Pij

). By incorporating the prior on δi ∼ N(δmi , σ
2
δi

) for

i ∈ V , one can derive the following maximum a posteriori problem.

min
δ,P

∑

i∈V

(
δi − δmi
σδi

)2

+
∑

{i,j}∈E

(
Pij − Pm

ij

σPij

)2

(B.6a)

s.t. Pij = yij(δi − δj), {i, j} ∈ E (B.6b)

In our estimation setting, we assume that only a subset of flows can be measured and the

rest need to be inferred from data.

Accordingly, we assume σPij = yij for the measured flows (about half of the edges are

randomly selected) and assume much weaker prior for the rest of the edges by σPij =
√

10yij.

159

The prior weight c ∈ R>0 on the unmeasured voltage angles is assumed to be uniform, that

is, σδi = 1
c
,∀i ∈ V . The estimation problem can be written in vector form as

min
δ,P

(δ − δm)TΣδ(δ − δm) + (P − Pm)TΣP (P − Pm) (B.7a)

s.t. P = Y δ, (B.7b)

where Y ∈ R|E|×|V| and Σδ,ΣP ∈ R|V|×|V|. This problem can be reduced to an unconstrained

QP:

min
δ

δT
(
Σδ + Y TΣPY

)
δ − 2(Y TΣPP

m + Σδδ
m)T δ. (B.8)

where H := Σδ + Y TΣPY , and f := Y TΣPP
m + Σδδ

m.

We used data from the Pegase project [65] to derive the power system model (available

at pglib-opf v18.08 [11, 24]). We apply graph partitioning based on a multilevel k-way

partitioning method using METIS [103] to identify the partition {Vk}k∈K.

B.6 AC Optimal Power Flow

We consider the alternating current (AC) optimal power flow problem:

min
{vi∈C}i∈V
{sgk∈C}k∈W
{sij∈C}i,j∈V

η
(∑

i∈V
(|vi| − vref)

2 +
∑

{i,j}∈E
(∠viv

∗
j)

2
)

+
∑

k∈W
c1

(k)<(sg(k)) + c2
(k)<(sg(k))

2 (B.9a)

s.t. ∠vi = 0, i ∈ Vref (B.9b)

sgL(k) − b(1 +
√
−1) ≤ sg(k) ≤ sgU(k) + b(1 +

√
−1), k ∈ W (B.9c)

∑

k∈Wi

sgk − sdi =
∑

j∈NG [i]

sij, v
L
i ≤ |vi| ≤ vUi , i ∈ V (B.9d)

sij = (Yij + Y c
ij)
∗ |vi|2
|Tij|

v∗i − Yij
viv
∗
j

Tij
, |sij| ≤ sUij, i, j ∈ V (B.9e)

θ∆L
ij ≤ ∠viv

∗
j ≤ θ∆U

ij , {i, j} ∈ E . (B.9f)

Here, G = (V , E) represents the power network, C denotes the set of complex numbers; <(·)
and =(·) denotes the real and imaginary part of the argument; (·)∗ denotes the complex

160

conjugate of the argument; p ≥ q ⇐⇒ <(p) ≥ <(q) and =(p) ≥ =(q) for p, q ∈ C; Wi is the

set of generators connected to node i;W :=
⋃
i∈VWi; Vref is the set of reference nodes; vi ∈ C

is the voltage at node i; sg(k) ∈ C is the power generation at generator k; {vLi , vUi , sdi ∈ C}i∈V
,{θ∆,L

ij , θ∆,U
ij ∈ R}{i,j}∈E , {sUij, Yij, Y c

ij, Tij ∈ C}i,j∈V , {c1
(k), c

2
(k) ∈ R, sgL(k), s

gU
(k) ∈ C}k∈W are the

data. The readers are pointed to the documentation of PowerModels.jl [38] for the details

of Problem (B.9). Here we modified the problem by adding the regularization term (the

first term in (B.9a)) and by introducing the additional terms in constraint (B.9c) to examine

the effect of positive curvature and flexibility in the constraints; the problem reduces to the

original problem when (η, b) = 0. We treat the edge variables, constraints, and the objective

terms by treating them as node terms for one of the connected node (in particular, the one

with lower node index), as explained in Remark 1.1; note that this manipulation only alters

indexing and does not change the problem. We set zi as all the primal/dual variable that

are associated with node i ∈ V (including generator and edge variables/constraints), and we

set pi = [<(sdi),=(sdi)]. We use test case pglib opf case500 tamu available at pglib-opf

v18.08 [11, 24] (the problem data c1
(k), c

2
(k), V

L
i , etc are available therein). The problem is

modeled using modeling library PowerModels.jl.

B.7 AC Power System State Estimation

We consider an AC PSSE problem [118]:

min
{vi∈C}i∈V
{sgk∈C}k∈W

∑

i∈V

(
η|vi − vmi |2 +

∑

k∈Wi

|sgk − sg,mk |2
)

(B.10a)

s.t.
∑

j∈NG [i]

(Yij + Y c
ij)
∗ |vi|2
|Tij|

v∗i − Yij
viv
∗
j

Tij
=
∑

k∈Wi

bsgk − sdi (B.10b)

The problem form is similar to the standard AC OPF problem (B.9), but there is a key differ-

ence that the objective function is formulated as the quadratic penalty of the deviation from

the measurement. The measurement consists of the voltage and the active/reactive power

injections. The power flow equation is enforced as equality constraints. As discussed in [118],

other types of measurement (e.g., voltage angle difference, active/reactive power flow, current

161

magnitude) can be incorporated, and other types of constraints (maximum/minimum power

generation) can be included in the problem. We use test case pglib opf case30000 goc

available at pglib-opf v20.07 [11, 24] to formulate the problem. Randomly generated data

are used for the measurement. The graph partitioning technique based on a multilevel k-

way partitioning method in METIS [103] is used to identify the partition {Vk}k∈K. For testing

OSM, we used the following as the base parameter sets: ω̃ = 1, µ = 1, η = 106, and b = 1.

For OSM, we decomposed the problem into 20 subproblems.

B.8 Multi-Period AC OPF

We consider a multi-period AC power flow problem with storage [73] of the form:

min
v,s,sg ,ss∈C
e,sc,sd,sqc∈R

∑

t∈T

∑

k∈G
c0
kt + c1

kt<(sgkt) + c2
kt<(sgkt)

2 (B.11a)

s.t. vLi ≤ |vit| ≤ vUi , i ∈ N , t ∈ T (B.11b)
∑

k∈Gi
sgkt −

∑

k∈Li
sdkt +

∑

k∈Si
sskt =

∑

j∈NG [i]

sijt, i ∈ N , t ∈ T (B.11c)

sijt = (Yij + Y c
ij)
∗ |vit|2
|Tij|2

− Y ∗ij
vitv

∗
jt

Tij
, (i, j) ∈ E , t ∈ T

sijt = (Yij + Y c
ji)
∗|vjt|2 − Y ∗ij

v∗itvjt
T ∗ij

, (i, j) ∈ ER, t ∈ T
(B.11d)

|sijt| ≤ sUij, (i, j) ∈ E ∪ ER, t ∈ T (B.11e)

θ∆L
ij ≤ ∠(vitv

∗
jt) ≤ θ∆U

ij , (i, j) ∈ E , t ∈ T (B.11f)

sgLk ≤ sgkt ≤ sgUk , k ∈ G, t ∈ T (B.11g)

ekt − ekt−1 = (ηcsct − sdt/ηd)∆t, k ∈ S, t ∈ T \ {T} (B.11h)

sskt + (sckt − sdkt) =
√
−1sqckt + sloss

k , k ∈ S, t ∈ T (B.11i)

|sskt| ≤ suk , 0 ≤ ekt ≤ euk k ∈ S, t ∈ T (B.11j)

0 ≤ sckt ≤ scuk , 0 ≤ sdkt ≤ scuk , k ∈ S, t ∈ T , (B.11k)

Here, G is the set of generators; N is the set of buses; E is the set of (directed) branches; ER

is the set of branches with inverted directions; S is the set of storage; T is the time index

162

set; v ∈ C is the voltage; e ∈ R is the state of charge; s ∈ C is the power flow; sg ∈ C is the

power generation; ss ∈ C is the complex power injected by the storage; sc ∈ R is the charging

rate; sd ∈ R is the discharging rate; sqc ∈ R is the reactive power slack; c0, c1, c2 ∈ R are

the generation costs; sd ∈ C is the power demand; Y is the admittance; T is the branch

complex transformation parameter; η is the charging efficiency; sloss is the storage energy

loss; ∆t is the time interval. Note that (B.11) can be reformulated as an NLP with real

variables by separately treating the real and imaginary part of the variables and equations

(a polar formulation is used here). The power network under study is a variant of IEEE 14

bus test system; this comprises 14 buses, 5 generators, 1 storage, 1 shunt, and 20 branches.

The detailed model is constructed with PowerModels.jl [38].

B.9 Transient Gas Network Operation

We consider a transient gas network problem [157] of the form:

min
ρ,ϕµ,ϕ−,
α,s,d∈R

∑

t∈T


 ∑

(i,j)∈C
γPµijt +

∑

i∈R
citsit −

∑

i∈D
citdit


 (B.12a)

s.t.
∑

j∈N (i)

fµijt =
∑

j∈R(i)

sjt −
∑

j∈D(i)

djt, i ∈ N , t ∈ T (B.12b)

ρmin
i ≤ ρit ≤ ρmax

i , i ∈ N , t ∈ T (B.12c)

ρ2
it − ρ2

jt = −λL
D
ϕaijt|ϕaijt|, (i, j) ∈ P , t ∈ T (B.12d)

L̂(ρ̇jt + ρ̇it) = −4ϕ−ijt, (i, j) ∈ P , t ∈ T (B.12e)

fµijt(ρit − ρjt) ≤ 0, (i, j) ∈ C, t ∈ T (B.12f)

ρjt = αijtρit, (i, j) ∈ C, t ∈ T (B.12g)

Pµijt ≤ Pmax
ij , (i, j) ∈ C, t ∈ T (B.12h)

− fµij ≤ fµijt ≤ fµij, (i, j) ∈ C, t ∈ T , (B.12i)

where ρ̇it = ρit−ρit−1

∆t
, Pµijt = WaJij, and fµijt = Jijϕ

µ
ijt. Here, N is the set of junctions; P

is the set of pipelines; C is the set of compressors; R is the set of receipts; D is the set of

163

demands; R(i) is the set of receipts at junction i ∈ N ; D(i) is the set of demands at junction

i ∈ N ; T is the time index set; ρ is the densitiy; ϕµ is the average mass flux; ϕ− is the

negative mass flux; α is the compression ratio; s is the supply; d is the demand; ρ̇ is the time

derivative of density; Pµ is the power consumption of compressor; f is the mass flow; c is the

gas price; γ is the economic factor; λ, L̂, L,D,A,∆t, and Wa are physical parameters. To

implicitly enforce the periodicity, we let ρi0 = ρiT , where T is the end time index. The gas

network under study consists of 2 compressors, 6 junctions (35 junctions after discretization),

4 pipelines (32 pipelines after discretization), 1 receiving points and 5 transfer points (which

work either as receipt or delivery). The model is constructed using GasModels.jl [14].

	LIST OF FIGURES
	NOMENCLATURE
	LIST OF SYMBOLS
	ABSTRACT
	 Introduction
	I Properties
	 Exponential Decay of Sensitivity
	 Uniform Regularity Conditions
	 Dynamic Optimization
	 Numerical Experiments

	II Algorithms
	 Overlapping Schwarz Method
	 Quadratic Programming
	 Linear Systems
	 Implementation
	 Numerical Experiments

	 Conclusions and Future Work
	LIST OF REFERENCES
	 Benchmark Algorithms
	 Problem Formulations

