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Abstract 

Recombination is a fundamental evolutionary force. It introduces genetic diversity into 

populations by joining alleles in novel haplotypic combinations. Variation in rates of 

recombination pervades despite its conserved role in meiosis. The propensity for recombination 

differs across stretches of the genome within individuals, and differs between the genomes of 

individuals. Genetic investigation has successfully uncovered some of the patterns, loci, and 

architecture underlying differences in recombination rate. This dissertation examines 

recombination rate evolution within the house mouse species (Mus musculus). By focusing 

within species, the earliest forms of divergence and the connections between genomic scales are 

most easily explored. The ability to isolate genetic effects through experimental crosses in this 

model system is repeatedly leveraged. Mice derived from the Gough Island (GI) population, an 

isolated mouse population of recent colonists, are used throughout as closely-diverged wild 

representatives of the M. m. domesticus subspecies. Comparison of genetic maps from crosses 

with GI mice revealed pervasive polymorphism in recombination across the genome. 

Immunofluorescent cytology, a technique to visualize individual meiotic cells, was applied in 

two chapters to characterize recombination phenotypes in individual mice. This individual 

characterization enabled the detection of multiple quantitative trait loci (QTL) responsible for the 

evolution of genome-wide recombination rate within mouse subspecies. Cytological images were 

also processed by an innovative computational technique that calculated synaptonemal complex 

(SC) length, a meiotic phenotype closely associated with recombination rates. The high-

throughput characterization of SC length enabled its genetic mapping, leading to the detection of 

the first QTL discovered for this trait. These results uncover new aspects of the genetics of 

recombination rate differences and provide a closely diverged, within species context for its 

evolution. 
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Chapter 1 

Introduction 
 

 

 

 

For cells destined to become a sperm or egg, one of the first steps in the meiotic process 

of division is a program of massive self-inflicted DNA damage. Hundreds of double-strand 

breaks shatter the genome, initiating an extraordinary choreography of repair. In any other 

context, double-strand breaks are detrimental to cellular survival – the kind of molecular damage 

induced by ionizing radiation. In this context, meiosis cannot successfully proceed without it. A 

small fraction of these double-strand breaks are reassembled such that the original DNA 

molecules no longer have the same ends. They will have been recombined with their homolog, a 

copy of the chromosome inherited from the other parent. The outcome of recombination can 

hardly be characterized as a shortcoming of the repair process. This Rube Goldberg-esque 

program for germ cells and their chromosomes is pervasive among complex organisms. 

Recombination during meiosis is one of the defining features of sexual reproduction, a 

fundamental mechanic of genetic transmission in most eukaryotes. This mechanic has enormous 

consequences for evolution. 

The reassembly of chromosomes from recombination creates new haplotypes, allelic 

combinations that did not previously exist on the same chromosome. Recombination is blind to 

the effects these alleles may have on an organism’s fitness, producing permutations of both 

selectively advantageous and deleterious alleles. Some early theoretical investigations of 

recombination rate evolution predicted the decline of loci that would positively modify 

recombination rate, a result coined ―the reduction principle‖ (Nei 1967; Lewontin 1971; Feldman 
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1972; reviewed in Feldman et al. 1996). This can be explained by the potential for recombination 

to break down selectively advantageous parental haplotypes. However, the production of 

haplotypic variation is also theorized to improve the efficacy of selection, explaining the 

persistence and pervasiveness of recombination (Weismann 1889; Kondrashov 1993; Burt 2000). 

At the crux of most models explaining this advantage is recombination’s ability to break down 

deleterious allelic combinations in a population, known as ―negative linkage disequilibrium‖ 

(Hill and Robertson 1966; Felsenstein 1974; Feldman et al. 1980; Otto and Barton 1997). 

In contrast to theoretical models focusing on the indirect effects of recombination, that is 

by its consequences to allelic combinations in a population, the proper execution of 

recombination has direct and immediate consequences for cells undergoing meiosis. The 

formation of chromosomal crossovers from meiotic recombination creates physical tension 

between homolog pairs. This force stabilizes the interactions between microtubules and the 

centromere, promoting the proper disjunction of chromosomes (Roeder 1997; Hassold and Hunt 

2001; Watanabe 2012). The failure of proper disjunction leads to aneuploidy, the presence of 

abnormal chromosome number and the leading genetic cause of miscarriage and congenital birth 

defects (Hassold et al. 2007). A minimum rate of recombination may be enforced by this 

requirement (Mather 1936; Villena and Sapienza 2001; Fledel-Alon et al. 2009). Though it has 

also been suggested that too many recombination events can be a risk factor for chromosomal 

rearrangements (Inoue and Lupski 2002; Coop and Przeworski 2007). 

Continued discussion on recombination rates would be served by clarifying the 

dimensions of this metric. As a biological phenomenon, the characterization of recombination 

predates proof of DNA as the heritable material. The theory that crossovers, recognized as 

chiasmata through cytology (Janssens 1909), broke down linkage between alleles (Sturtevant 



3 
 

1913; Morgan 1916) led to the first metric, the centiMorgan (Haldane 1919). Quantities in this 

unit give the expected number of crossovers between two markers in 100 meioses. Without a 

physical atlas for positioning genes, the centiMorgan (cM) was mapped onto the ontology of 

distance despite its origin as a rate. With a better understanding of the underlying material of 

inheritance, the frequency of recombination became quantified across stretches of DNA rather 

than between a set of observable markers, giving rise to units such as cM per megabase. Finally, 

recombination characterized cytologically, by counting chiasmata or their proxies, is often 

quantified by mean counts. This can be given as the expected number of crossovers across a set 

of chromosomes, e.g. across autosomes, or the total number expected in a meiocyte. To be clear, 

all of these metrics for recombination rate quantify a kind of bulk property. Meiotic cells can be 

recombinant and have a discrete number of crossovers, but no single spermatocyte or oocyte has 

a recombination rate. Recombination rates measure the tendency to recombine from sampling a 

population. 

Recombination rates vary between individuals, populations, and species (True et al. 1996; 

Kong et al. 2004; Coop et al. 2008; Smukowski and Noor 2011; Comeron et al. 2012). It is 

important to point out that variation in recombination rate can refer to two distinct phenomena. 

Firstly, it can refer to variation in the propensity for recombination in different segments of the 

genome, e.g. proximal versus distal regions of a chromosome. Characterization of this variation 

in recombination rate within genomes often implicitly assumes the absence of important genetic 

or environmental differences between samples. The study of this variation has revealed a number 

of correlated genomic parameters, including GC content, nucleotide diversity, repetitive 

elements, and chromosome position (Begun and Aquadro 1992; Eyre-Walker 1993; Fullerton et 

al. 2001; Rizzon et al. 2002; Jensen-Seamen et al. 2004). Secondly, variation in recombination 
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rate can refer to different propensities for recombining in the same segments of the genome. 

These comparisons are between samples that have known genetic or environmental differences. 

Further, differences in patterns of within-genome variation can exist between samples from 

different genetic or environmental backgrounds. Experiments focusing on variation between 

individuals can be useful for uncovering the genetic basis of recombination rate evolution. 

Understanding the evolution of recombination rate is further complicated by the different 

genomic scales on which recombination rates are measured. Patterns of variation depend on the 

resolution at which recombination is characterized; different resolutions are also a product of the 

sundry collection of techniques in the geneticist’s toolbox for quantifying recombination rate. At 

the genome-wide scale, patterns of variation between species appear dominated by karyotype, 

with a lower limit seemingly set by the number of chromosomes and the meiotic requirements 

for proper disjunction (Villena and Sapienza 2001; Fledel-Alon et al. 2009; Segura et al. 2013). 

Across chromosomes, megabase-sized intervals vary in different genetic backgrounds (Broman 

et al. 1998; Thomsen et al. 2001; Kong et al. 2002; Dumont et al. 2011; Comeron et al. 2012). 

And on the finest scales, ―recombination hotspots‖ in kilobase regions are thought to evolve 

rapidly in some species (McVean et al. 2004; Winckler et al. 2005; Brunshcwig et al. 2012). 

Evidence from these many scales paints a rough portrait of recombination rate evolution. 

It is clear that variation in recombination rate within and between species has a genetic basis and 

the ability to respond to evolutionary forces (Chinnici 1971; Kidwell and Kidwell 1976; 

Charlesworth and Charlesworth 1985). How evolution of recombination rate at one genomic 

scale contributes to evolution is less clear. Patterns of variation at different scales suggest that 

different factors may be controlling evolution at different scales (Paigen et al. 2008). 
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The identity of the evolutionary forces on recombination rate, and their contributions to its 

patterns of variation remain elusive. Furthermore, much of our understanding of the genetic basis 

of recombination rate evolution comes from studies of humans or laboratory strains. The genetic 

basis of natural variation in recombination rate has not been thoroughly described. The identity 

of loci responsible for recombination rate variation, and the architecture of their action, may be 

completely different between wild populations. 

This dissertation uses the powerful techniques developed in the mouse model system 

(Mus musculus) to describe natural variation in recombination rate and investigate the genetics of 

its evolution. Using crosses in wild-derived mouse strains, this dissertation extends and compares 

existing knowledge from studies on laboratory strains. Experimental crosses have the advantage 

of separating out genetic effects by raising individuals in a common environment. One of the 

strains of mice used in the experimental crosses comes from Gough Island (GI). This unusual 

population of wild house mouse has an exceptionally large body size and is thought to have 

diverged from mainland populations by less than 200 years (Gray et al. 2014). The short 

divergence times between strains in these crosses contrasts with existing studies, providing a 

view of recombination rate evolution within subspecies of mice. The distinction between 

understanding the genetics and variation from laboratory strains and wild-derived populations 

should be highlighted here. Wild house mice are a species complex that diverged less than 

500,000 years ago (Geraldes et al. 2011) with three main subspecies, M. m. musculus, M. m. 

domesticus, and M. m. castaneus. While laboratory strains are mostly derived from M. m. 

domesticus, they contain large nonrandomly distributed regions of intersubspecific origin (Yang 

et al. 2007). These relationships with other subspecies confound evolutionary interpretations 

from laboratory strains. 
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Each of the chapters in the dissertation addresses distinct aspects of the evolution of 

recombination rate in the house mouse. In Chapter 2, a comparison of genetic maps constructed 

from over 1,200 meioses reveals pervasive variation among mice from GI. This polymorphism 

exists despite the absence genome-wide recombination rate differences among these mice. In 

Chapter 3, cytological characterization of recombination rates in mice from an intercross reveals 

quantitative trait loci (QTL) responsible for its evolution in GI mice. A surprising result from this 

chapter is the presence of antagonistic alleles for recombination rate. In Chapter 4, the 

synaptonemal complex, a proteinaceous structure closely linked to the recombination process, 

and its relationship with recombination rate is examined. This chapter combines cytological 

techniques with computer vision algorithms to map QTL for variation in synaptonemal complex 

length. Finally, some additional conclusions and future directions are presented in Chapter 5. 
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Chapter 2 

Recombination rate evolution in mice from an isolated island1 
 

 

 

 

Abstract 

Recombination rate is a heritable trait that varies among individuals. Despite the major impact of 

recombination rate on patterns of genetic diversity and the efficacy of selection, natural variation 

in this phenotype remains poorly characterized. We present a comparison of genetic maps, 

sampling 1,212 meioses, from a unique population of wild house mice (Mus musculus 

domesticus) that recently colonized remote Gough Island. Crosses to a mainland reference strain 

(WSB/EiJ) reveal pervasive variation in recombination rate among Gough Island mice, including 

sub-chromosomal intervals spanning up to 28% of the genome. In spite of this high level of 

polymorphism, the genome-wide recombination rate does not significantly vary. In general, we 

find that recombination rate varies more when measured in smaller genomic intervals. Using the 

current standard genetic map of the laboratory mouse to polarize intervals with divergent 

recombination rates, we infer that the majority of evolutionary change occurred in one of the two 

tested lines of Gough Island mice. Our results confirm that natural populations harbor a high 

level of recombination rate polymorphism and highlight the disparities in recombination rate 

evolution across genomic scales.   

  

                                                           
1
 Chapter published as peer-reviewed article: Wang, R. J., Gray, M. M., Parmenter, M. D., Broman, K. W., & 

 

Contributions were as follows: RJW and BAP designed the study. MMG and MDP performed crosses and collected 

data. RJW and KWB conducted analyses. RJW and BAP wrote the manuscript. 
 



8 
 

Introduction  

Recombination ensures the fidelity of chromosome pairing and segregation during 

meiosis (Tsubouchi and Roeder 2003; Hassold 2007; Lao et al. 2013). Recombination also 

shapes evolution by shuffling alleles across genetic backgrounds, increasing the efficacy of 

selection and muddling a population’s genealogical history (Felsenstein 1974; Otto and 

Lenormand 2002; Griffiths and Marjoram 1996; Schierup and Hein 2000). Despite 

recombination’s conserved functional roles, its rate varies among individuals, within and 

between species (True et al. 1996; Graffelman et al. 2007; Coop et al. 2008; Dumont and 

Payseur 2011a; Smukowski and Noor 2011; Comeron et al. 2012). Recombination rate shows 

resemblance among relatives (Kong et al. 2004; Coop et al. 2008; Fledel-Alon et al. 2011), 

maintains strain differences in a common environment (Koehler et al. 2002; Dumont and Payseur 

2011b; Baier et al. 2014), and responds to artificial selection (Chinnici 1971; Kidwell and 

Kidwell 1976; Charlesworth and Charlesworth 1985), revealing a genetic component to 

individual variation. Multiple loci, including specific genes, that confer recombination rate 

differences have been identified (Kong et al. 2008; Murdoch et al. 2010; Dumont and Payseur 

2011b; Parvanov et al. 2010; Sandor et al. 2012; Ma et al. 2015; Johnston et al. 2016; Hunter et 

al. 2016).  

Patterns of individual variation in recombination rate depend on the genomic scale of 

measurement. Cytological techniques, which visualize and enumerate crossovers in meiocytes 

(Anderson et al. 1999; Koehler et al. 2002; Baier et al. 2014), offer direct estimates of the 

genome-wide recombination rate. At this scale, individual recombination rates are constrained by 

the requirement that each chromosome (or chromosome arm) has at least one crossover for 

proper chromosome segregation (Mather 1936; Villena and Sapienza 2001; Fledel-Alon et al. 
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2009). The connection between recombination rate and karyotype is perhaps most visible in the 

elevated recombination rates of bird species with genomes that are rich in micro-chromosomes 

(Burt et al. 2002; Groenen et al. 2009; Backstrom et al. 2010). Beyond this karyotypic pattern, 

the genome-wide recombination rate shows a phylogenetic signal across mammals (Dumont and 

Payseur 2008; Segura et al. 2013; Froehlich et al. 2015), suggesting that evolution proceeds at a 

slow to moderate pace. 

Genetic linkage maps reveal heterogeneity in recombination rate on the chromosomal 

scale. Along a chromosome, recombination is often suppressed near the centromere and elevated 

in distal regions (Beadle 1932; Mahtani and Willard 1998; Lynn et al. 2004; Talbert and 

Henikoff 2010). Sex appears to be a major determinant of these stereotypical patterns: elevated 

recombination near telomeres predominates in males from a variety of species (Broman et al. 

1998; Kochakpour and Moens 2008; Giraut et al. 2011; Liu et al. 2014; Ma et al. 2015; Smeds et 

al. 2016). Several genomic parameters correlate with recombination rate across the genome, 

including gene density, GC content, nucleotide diversity, repetitive elements, chromosome 

position, and certain sequence motifs (Begun and Aquadro 1992; Eyre-Walker 1993; Fullerton et 

al. 2001; Rizzon et al. 2002; Kong et al. 2002; Jensen-Seaman et al. 2004; Winckler et al. 2005; 

de Massy 2013). A subset of megabase-sized intervals also exhibit significant differences in 

recombination rate among individuals (Broman et al. 1998; Kong et al. 2002; Dumont et al. 

2011; Smukowski and Noor 2011; Comeron et al. 2012). 

On the finer scale, recombination rates across the genome can span orders of magnitude. 

In humans, mice, and yeast, crossovers are concentrated in kilobase-sized regions termed 

―recombination hotspots‖ (Gerton et al. 2000; Jeffreys et al. 2001; Paigen et al. 2008). Sperm 

genotyping demonstrates variation in the intensity and position of recombination hotspots among 
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men (Cullen et al. 2002; Neumann and Jeffreys 2006; Tiemann-Boege et al. 2006; Webb et al. 

2008). Comparisons of linkage disequilibrium suggest rapid evolution of hotspots among human 

populations (McVean et al. 2004; Evans and Cardon 2005) and other primates (Ptak et al. 2005; 

Winckler et al. 2005; Brunschwig et al. 2012), but evolutionary stasis among finches (Singhal et 

al. 2015).  

The collection of techniques for quantifying recombination rate currently forms a 

disjointed picture of how recombination evolves. Estimating recombination rate from the 

transmission of markers among relatives offers key advantages for characterizing recombination 

rate evolution. In contrast to other approaches, genetic linkage maps measure current 

recombination rates across the entire genome and traverse the many genomic scales on which 

recombination rate varies. High-resolution genetic maps exist for a growing number of species 

(Kong et al. 2002; Cox et al. 2009; Rockman and Kruglyak 2009; Comeron et al. 2012; 

Kawakami et al. 2014). Despite this progress, statistical comparisons among genetic maps with 

the purpose of quantifying recombination rate evolution remain rare (Poissant et al. 2010; 

Dumont et al. 2011; Comeron et al. 2012; Ross et al. 2015). Genomic scans for specific intervals 

that show heritable variation in recombination rate among individuals from a single natural 

population are even less common (but see Comeron et al. 2012).  

Recombination has been studied more extensively in laboratory mice (Mus musculus) 

than in any other vertebrate, combining dense genetic maps (Shifman et al. 2006; Cox et al. 

2009; Liu et al. 2011) with mechanistic studies (Holloway et al. 2008; Paigen and Petkov 2010; 

Bolcun-Filas and Schimenti 2012; Cole et al. 2014; Hunter et al. 2015). This work provides a 

rich context for understanding the evolution of recombination in wild mice. At the same time, 

distinct histories and environments raise the prospect that recombination experiences contrasting 
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evolutionary dynamics in wild mice and laboratory mice. Although studies of human pedigrees 

have detected individual differences in recombination rate (Broman et al. 1998; Kong et al. 

2002), mice provide additional advantages as a model system. First, genetic and non-genetic 

contributions to recombination rate can be separated – a challenging task in humans – by raising 

mice in a common environment. This possibility is important in light of the evidence that 

recombination rate is shaped by an array of environmental factors (Bomblies et al. 2015). 

Second, inbred mice can be used to generate large recombinant families, providing statistical 

power to identify recombination rate differences among strains in sub-chromosomal intervals.  

Here we take advantage of an unusual population of wild mice to understand how recombination 

rate evolves in nature. Gough Island is a remote, South Atlantic island that was colonized by 

house mice, probably only a few hundred generations ago (Gray et al. 2014). By comparing 

genetic maps, we find substantial variation in the recombination rate on multiple genomic scales 

between two lineages of mice from this isolated island. In contrast to most previous 

examinations of recombination rate variation, we identify specific genomic intervals with 

heritable differences in rate within a single natural population.  

 

 

Materials and Methods 

Mice, crosses, and genotyping 

Intercrosses involved mice derived from Gough Island and the wild-derived inbred strain 

WSB/EiJ (Jackson Laboratory, Bar Harbor, ME), which is descended from mainland North 

America. Gough Island is a remote volcanic island in the South Atlantic Ocean, part of a 

protected wildlife refuge that has been designated a UNESCO World Heritage Site. Mice from 
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Gough Island (GI) were live-trapped and transported to the Charmany Instructional Facility at 

the University of Wisconsin – Madison. A breeding colony consisting of 25 mature females and 

21 mature males was established. All mice were housed in microisolator cages separated by sex 

in a temperature-controlled room (68-72º) set to a 12-hour light/dark cycle. Food (Teklad 6% fat 

mouse/rat diet; Harlan Laboratories, Madison, WI) and water were provided ad libitum, corn 

cobs ground to 1/8th inch were provided for bedding (Waldschmidt and Sons, Madison, WI), and 

irradiated sunflower seeds (Harlan Laboratories) and nesting material were provided weekly for 

enrichment. For identification, pups were toe tattooed with sterile lancets and tattoo paste 

starting at 1 week, while ears were punched at weaning (3-4 weeks) to identify adults. Additional 

details on the transport, housing, and establishment of the breeding colony of GI mice can be 

found in Gray et al. (2015). 

 We began the intercrosses with a full-sib male and female chosen from each of two 

partially inbred lines in our breeding colony of GI mice, denoted Line A and Line B. These lines 

were created from four generations of full-sib mating among the laboratory-born offspring of 

wild GI mice. The four mice, one male and one female from each of Line A and Line B, were 

each crossed with WSB/EiJ to generate four independent sets of F1s and four F2 intercrosses 

(Figure 2.1). We generated 497 F2 mice from the Line A cross and 877 F2s mice from the Line B 

cross, for a total of 1374 F2s. Among these mice, 419 from the Line A cross and 793 from the 

Line B cross were incorporated into subsequent analyses after removing mice that were not 

genotyped or contained obvious genotyping errors. 

 Mice were genotyped on the Mega Mouse Universal Genotyping Array (MegaMUGA; 

Morgan et al. 2016), an Illumina Infinium array containing 77,808 markers. The vast majority of 

markers on the array are single nucleotide polymorphisms (SNPs), though a few structural and 
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transgenic markers are also present. Markers cover the autosomes, sex chromosomes, and 

mitochondria with an average spacing of ~33 kb across the genome. Liver tissue from F2 

individuals, as well as controls, was sent to GeneSeek (NeoGene, Lincoln, Nebraska) for DNA 

extraction and genotyping. Samples were divided among 16 96-well plates and several steps 

were taken to identify and control for errors. WSB samples were placed on each plate to account 

for plate extraction effects, parental GI samples were replicated across plates, and the sample 

from the first well of each plate was replicated across plates. Markers with high rates of missing 

data were omitted, as were mice with high rates of missing genotypes. We removed a small 

number of individuals that showed many Mendelian inconsistencies or mismatched genotypic 

and phenotypic sex. 

 
Figure 2.1. Cross Design 
Partially inbred lines of Gough Island mice were crossed with the wild-derived inbred 
strain WSB/EiJ. Four independent F2 intercrosses were generated from these crosses. 

 

Construction and comparison of genetic maps 

To construct and compare genetic maps, we selected a subset of 11,833 informative SNPs 

from our genotype data. These SNPs were invariant among the GI mice we genotyped and 
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displayed the segregation patterns expected for a standard F2 intercross between inbred lines. 

Mapping distances for each cross were estimated from these SNPs using the Lander-Green 

hidden Markov model (Lander and Green 1987) implemented in the R/qtl est.map function 

(Broman et al. 2003). We assumed a genotyping error rate of 0.2% and converted recombination 

fractions to map distances with the Carter-Falconer map function (Carter and Falconer 1951). To 

determine thresholds for statistical significance in map length comparisons, we permuted line 

labels across mice and reconstructed genetic maps. We performed 2000 permutations, retaining 

the numbers of mice labeled as Line A or Line B in each permutation. The map length of a 

chromosome was determined to be significantly different between GI lines if the observed 

difference was at least as extreme as 5% of differences for that chromosome among 

permutations. We used the same approach to test for significant differences in overall map 

length. 

 To compare recombination rates among GI lines on a finer scale, we examined map 

lengths in sliding windows across the genome. Windows spanned 10 Mb, 25 Mb, and 50 Mb 

with a step size of 250 kb. We calculated a p-value for the observed difference in map length of 

each window as the proportion of replicates that produced a difference greater than or equal to 

the observed value. Each window had a respective set of 2000 permutations from which we 

calculated the p-value. To control for false positives arising from multiple testing in these 

overlapping windows, we used a false discovery rate approach (Storey and Tibshirani 2002). We 

calculated a q-value for each window using the full set of p-values across all windows and 

rejected the null hypothesis of no difference in map length at q < 0.1. The distributions of p-

values across windows were not independent, but our use of an empirical null should be 

conservative (Leek and Storey 2011). We combined overlapping windows showing significant 



15 
 

differences to generate a final list of divergent intervals. We checked the performance of the 

multiple testing correction by looking for windows with significantly different map lengths in an 

additional set of 100 permuted maps. After controlling for false discovery using our larger set of 

2000 permutations, each set of 100 permuted maps had an average of less than 10 significant 

windows at the q < 0.1 level. This is the number of significant windows we should expect in the 

absence of true differences in recombination rate. Finally, it is possible that the difference in 

sample size between the two GI line crosses could contribute to observed variation in 

recombination rate. To account for this effect, we repeated the search for significantly different 

windows with an equivalent number of mice from the two lines. Specifically, we randomly 

selected a subset of 419 F2 individuals from Line B to match the number in Line A, constructed 

maps from this subset, and created 1,000 sets of permuted maps from this subset to calculate p-

values. 

 To provide perspective for the differences in recombination rate between GI lines, we 

conducted additional comparisons with the mouse reference genetic map (downloaded from 

http://cgd.jax.org/mousemapconverter/). The mouse reference genetic map features data from a 

heterogeneous stock (HS) mouse population derived from crosses involving eight classically 

inbred strains (Shifman et al. 2006; Cox et al. 2009). The HS map, which sampled 3,546 

meioses, was constructed from genotypes at 10,195 SNPs. For comparison to GI maps, we 

converted the HS map positions from the Kosambi map function to the Carter-Falconer map 

function, and anchored the proximal markers of the GI maps using interpolated recombination 

rates, following the practice in Cox et al. (2009). We re-estimated recombination rates for the HS 

map in sliding windows using the approach as described above. We computed correlations in 

recombination rate by comparing the same windows in the HS and GI maps. 
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Genomic features, sequencing, and motif search 

To identify potential determinants of recombination rate variation, we calculated 

correlations between genomic features known to be associated with recombination and 

differences in recombination rate among GI lines. Positions of genomic features were 

downloaded from the UCSC annotation database for NCBI Build 37/mm9. For chromatin state, 

annotations by ChromHMM (Ernst and Kellis 2012) on mouse testis – the only annotated 

germline tissue – were downloaded from the Mouse Encode Consortium (Mouse ENCODE 

Consortium 2012; Yue et al. 2014). To evaluate the influence of evolutionary breakpoint regions 

(Farré et al. 2013; Ullastres et al. 2014), we identified 364 such regions in a synteny analysis 

between the mouse and human reference genomes with Cassis (Lemaitre et al 2008; Baudet et al. 

2010). 

To minimize autocorrelation, we estimated recombination rate in non-overlapping 

windows for these analyses, again sized at 10 Mb, 25 Mb, and 50 Mb. We also compared 

recombination rate differences among GI lines to rates estimated in corresponding non-

overlapping windows for the HS map. 

The PRDM9 protein is a major determinant of crossover position in the mouse genome 

(Baudat et al. 2010; Parvanov et al. 2010; Grey et al. 2011). We used new genome sequences to 

test the prediction that windows with divergent recombination rates are enriched for polymorphic 

binding sites for PRDM9. We sequenced the genomes of the four GI parents of our intercrosses 

at an average 10X coverage using 100 bp paired-end reads on an Illumina HiSeq 2500. Reads 

were mapped to the C57BL/6 mouse reference genome using the Burrows-Wheeler Aligner (Li 

and Durbin 2009) and SNPs were called with SAMtools 1.0 (Li et al. 2009). Using these 

sequences, we identified fixed differences between GI Lines A and B and constructed a 50 bp 
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window centered on each fixed difference. We used this set of windows to query against the 

consensus PRDM9 binding motif using its position weight matrix (Brick et al. 2012) and FIMO 

from the MEME Suite of bioinformatics tools (Grant et al. 2011). Additionally, we performed a 

signed test in intervals with divergent recombination rates to determine whether the number of 

variable motifs correlated with the direction of divergence. Finally, we used PCR primers 

fl1500U20, mZPrdm9-R1, Meis284L23, and mZPrdm9-F1 (Buard et al. 2014) to amplify the last 

exon of PRDM9 in the GI lines. We ran the PCR products on 1% agarose gels to determine 

whether their sizes matched alleles known to confer recombination rate differences within M. m. 

domesticus (Buard et al. 2014).  

 

 

Results 

We documented recombination rate variation between two lines of Gough Island (GI) 

mice (Lines A and B) by comparing genetic maps built from two sets of F2 intercrosses with a 

common reference strain (WSB/EiJ). The genome-wide recombination rate, represented by total 

map length, was similar, at 1347 cM (Line A) and 1340 cM (Line B). Despite similarity in the 

genome-wide rate, five chromosomes (2, 5, 8, 9, and 18) showed statistically significant 

differences in map length (Table 2.1). Notably, chromosome 8 was 16% longer in Line B. This 

disparity among five chromosomes represents a significant departure from the expectation that 

no difference exists between the two GI Lines (P < 0.002; Fisher’s combined p-value test). 

To measure variation in recombination rate on a sub-chromosomal scale, we tiled the genome 

with overlapping windows of fixed physical size and compared map lengths across pairs of 

corresponding windows for the two lines. We repeated the analysis with three window sizes – 50 
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Mb, 25 Mb, and 10 Mb – to capture differences in recombination rate on multiple scales. We 

found 500 (50 Mb windows), 483 (25 Mb), and 165 (10 Mb) windows with significant 

recombination rate differences. These numbers exceed null expectations generated by analyses of 

permuted datasets (see Methods). On all three scales, windows that exhibited significantly 

different map lengths were typically adjacent to other significant windows (Figure 2.2). We 

combined significant windows that overlapped into discrete intervals for further analysis. 

Fourteen chromosomes harbored intervals with divergent recombination rate on at least one scale 

(Table 2.2); these intervals often displayed divergence across multiple window sizes (Figure 

2.2). It is notable that no divergent intervals were identified on the X chromosome. Similar 

comparisons of recombination rate made between strains from different subspecies (Mus 

musculus castaneus and Mus musculus musculus) identified a disproportionately large number of 

divergent intervals on the X chromosome (Dumont et al. 2011). 

The magnitude of variation in recombination rate was inversely correlated with interval 

size (p < 5 x 10
-5

). The greatest differences in recombination rate, as percentages of the mean 

(109% on chromosome 1) and as absolute differences (0.61 vs 0.96 cM/Mb on chromosome 18), 

were visible in the 10 Mb window analysis. In many cases, intervals discovered while scanning 

with smaller windows localized differences found in scans with larger windows. For example, 

among the differences in map length found on chromosome 15, which were identified at all three 

scales, the majority localized to a single 12.5 Mb interval. 

Patterns of variation in recombination rate from these sub-chromosomal intervals 

generally matched patterns at the chromosome and genome level. Chromosomes with 

significantly different map lengths (Table 2.1) contained intervals with consistent differences. 

Total differences in map length, as a sum of the divergence in all intervals, were not statistically 



19 
 

significant on any window size – mirroring the absence of a significant difference in the whole 

genome recombination rate. These observations suggest that coarse variation in recombination 

rate is due to the clustering of differences at finer scales. Chromosomes 8 and 9 showed a 

contrasting pattern: most of the differences in recombination rate on these chromosomes were 

only significant when surveyed at the 50 Mb or whole chromosome level. However, differences 

in statistical power are a challenge when comparing rates across chromosomes. Longer 

chromosomes have many fewer crossovers per Mb, reducing our ability to detect differences at 

finer scales.



 
 

 

2
0 

 

Figure 2.2. Recombination rate differences between two lines of Gough Island Mice 

Differences in recombination rate between two lines of Gough Island mice visualized as a gradient along chromosomes. 

Intensity of gradient from yellow to purple indicates greater relative recombination rate in Line A and Line B respectively. Plot 

markers with whiskers show center and range of 10, 25, and 50 Mb windows where recombination rates differ significantly 

(10% FDR).  
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Table 2.1. Genetic map lengths for each chromosome in two lines of Gough Island mice. 
Asterisks highlight chromosomes with significantly different map lengths at the p < 0.05 level. P-
values are calculated from two-tailed tests using 2000 permutations. Percent difference 
calculated as (LengthLineA – LengthLineB) / Mean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Chr 
Line A 

(cM) 
Line B 

(cM) 
Diff. 
(cM) 

% diff. p-value  

1 94.35 92.01 2.34 2.5% 0.444  

2 89.18 96.15 -6.97 -7.5% 0.019 * 
3 72.90 73.39 -0.49 -0.7% 0.897  

4 76.83 76.40 0.43 0.6% 0.852  

5 77.88 84.09 -6.21 -7.7% 0.041 * 
6 70.61 69.21 1.40 2.0% 0.627  

7 75.89 78.64 -2.75 -3.6% 0.338  

8 60.10 70.24 -10.14 -15.6% 0.001 * 
9 59.85 65.24 -5.39 -8.6% 0.032 * 

10 67.17 67.73 -0.56 -0.8% 0.839  

11 81.01 76.22 4.79 6.1% 0.092  

12 58.00 57.27 0.73 1.3% 0.744  

13 55.21 56.25 -1.04 -1.9% 0.675  

14 60.29 57.96 2.33 3.9% 0.340  

15 52.18 54.82 -2.64 -4.9% 0.291  

16 54.22 52.83 1.39 2.6% 0.509  

17 55.12 53.17 1.95 3.6% 0.427  

18 56.52 50.59 5.93 11.1% 0.006 * 
19 51.99 49.39 2.60 5.1% 0.231  

X 70.25 65.64 4.60 6.8% 0.221  
      

Total 1339.55 1347.24 -7.69 -0.6% 0.562  
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Table 2.2. Regions of divergent recombination between Gough Island lines 

Recombination rate was estimated in 10 Mb, 25 Mb, and 50 Mb sliding windows across the 

genome. Windows with significantly divergent recombination between Gough Island lines were 

identified by permutation. The recombination rate in these genomic regions as measured in the 

heterogeneous stock (HS) is also shown for comparison. 

 

  
50 Mb windows 

Line A 
rate 

    

 
Physical position (Mb) 

 

Line B 
rate  

% diff.  
HS rate % diff. with: 

chr begin end size 
 

(cM/Mb) (cM/Mb) 
 

(cM/Mb) Line A Line B 

1 68.7 156.9 88.25  0.291 0.354 -20%  0.365 -20% -3% 
1 143.7 193.7 50  0.717 0.617 15%  0.692 4% -11% 
2 3.3 56.1 52.75  0.500 0.582 -15%  0.563 -11% 3% 
5 3.4 69.9 66.5  0.426 0.535 -23%  0.527 -19% 2% 
6 95.4 148.4 53  0.692 0.587 16%  0.638 9% -8% 
7 69.9 134.4 64.5  0.408 0.502 -21%  0.542 -25% -7% 
8 5.1 98.6 93.5  0.370 0.460 -22%  0.493 -25% -7% 
9 27.8 77.8 50  0.480 0.574 -18%  0.583 -18% -2% 

11 31.5 92.3 60.75  0.620 0.527 16%  0.631 -2% -17% 
15 19.1 89.4 70.25  0.430 0.497 -14%  0.523 -18% -5% 
17 39.3 94.6 55.25  0.814 0.711 14%  0.754 8% -6% 
18 22.2 88.5 66.25  0.748 0.638 16%  0.704 6% -9% 

            
      Total: 0.8%  Total: -2.9% -2.0% 

25 Mb windows 
Line A 

rate 
(cM/Mb) 

      

 
Physical position (Mb) 

 

Line B 
rate  

 
HS rate 
(cM/Mb) 

% diff. with: 
chr begin end size 

 
(cM/Mb) % diff. 

 
Line A Line B 

1 3.9 30.2 26.3  0.603 0.456 28%  0.370 63% 23% 
1 81.9 130.4 48.5  0.179 0.291 -48%  0.294 -39% -1% 
1 166.4 191.9 25.5  0.929 0.743 22%  0.940 -1% -21% 
2 5.8 44.6 38.8  0.456 0.607 -28%  0.611 -25% -1% 
2 139.1 171.3 32.3  0.557 0.732 -27%  0.793 -30% -8% 
4 58.5 84.3 25.8  0.432 0.310 33%  0.295 47% 5% 
5 3.4 49.2 45.8  0.366 0.543 -39%  0.532 -31% 2% 
6 122.2 148.9 26.8  0.892 0.740 19%  0.790 13% -6% 
7 97.9 129.9 32.0  0.294 0.406 -32%  0.503 -42% -19% 
8 5.1 32.4 27.3  0.410 0.537 -27%  0.594 -31% -10% 

11 29.0 67.3 38.3  0.718 0.599 18%  0.645 11% -7% 
14 98.9 124.7 25.8  0.762 0.597 24%  0.678 12% -12% 
15 41.1 81.1 40.0  0.408 0.554 -30%  0.556 -27% 0% 
17 7.8 42.6 34.8  0.251 0.365 -37%  0.429 -41% -15% 
17 66.1 94.1 28.0  1.063 0.878 19%  0.908 17% -3% 
18 38.2 64.5 26.3  0.708 0.543 26%  0.661 7% -18% 
18 54.2 86.5 32.3  1.013 0.818 21%  0.907 12% -10% 

            
      Total: 0.1%  Total: -1.8% -1.7% 

10 Mb windows 
         

 
Physical position (Mb) 

 

Line A 
rate 

Line B 
rate  

 
HS rate % diff. with: 

chr begin end size 
 

(cM/Mb) (cM/Mb) % diff. 
 

(cM/Mb) Line A Line B 

1 97.9 123.2 25.3  0.064 0.218 -109%  0.203 -68% 7% 
2 148.8 159.6 10.8  0.259 0.487 -61%  0.611 -58% -20% 
3 102.2 114.2 12.0  0.205 0.386 -61%  0.356 -43% 8% 
4 73.5 84.3 10.8  0.502 0.272 59%  0.351 43% -23% 
5 11.2 30.9 19.8  0.336 0.606 -57%  0.652 -48% -7% 
7 97.9 114.9 17.0  0.172 0.277 -47%  0.370 -54% -25% 
8 18.9 28.9 10.0  0.203 0.395 -64%  0.588 -65% -33% 

11 45.5 60.0 14.5  0.754 0.476 45%  0.719 5% -34% 
14 108.4 119.4 11.0  0.686 0.385 56%  0.568 21% -32% 
15 48.6 61.1 12.5  0.340 0.584 -53%  0.571 -41% 2% 
18 53.5 64.2 10.8  0.958 0.605 45%  0.756 27% -20% 

            
      Total: 0.5%  Total: -1.5% -1.0%. 
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Comparison to the standard mouse genetic map 

Variation in the genetic maps described thus far represents an estimate of recombination 

rate polymorphism between two GI mice. To place this variation in a broader perspective, we 

compared the two genetic maps from crossing GI mice to WSB/EiJ with the standard genetic 

map of the laboratory mouse (the HS map). On the genome-wide level, the GI maps, at 1388 cM 

(averaged and converted to match the HS analysis), were shorter than the 1457 cM of the HS 

map. Local recombination rates in both GI lines were highly correlated with those in the HS 

(Table 2.3). Overall, the GI maps showed higher correlation with each other than with the HS 

map, with the degree of correlation decreasing as resolution increased. 

We further investigated the relationship between the GI maps and HS map by focusing on 

windows for which recombination was significantly divergent between GI lines. Following the 

pattern observed in the comparison between GI lines, rate differences between the GI and HS 

maps were more pronounced in smaller windows (Table 2.2). By assuming that the two GI lines 

are more closely related to each other than either is to the collection of strains that comprise the 

HS (i.e. HS is the outgroup), we could polarize the changes in recombination rate in the GI lines. 

We observed a consistent bias: most GI-divergent intervals showed greater rate differences 

between Line A and the HS than between Line B and the HS (paired t-test, intervals from 

windows 50 Mb: p = 0.093, 25 Mb: p = 0.004, 10 Mb: p = 0.037) (Table 2.2). This bias was also 

seen in the collection of significantly different sliding windows, for which Line A rates showed 

substantially greater dispersion from HS rates (Levene’s test, p < 1 x 10
-15

 for all three window 

sizes). Figure 2.3 illustrates this for 25 Mb windows; the greater squared residual deviation of 

rates from Line A relative to HS can be seen in the third panel. We repeated this analysis using a 

random subset of individuals from Line B, matching the number of individuals in Line A to 
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account for the possibility that the smaller sample size in Line A was responsible for its higher 

divergence from HS. This power-matched comparison detected 71% as many significant 

windows as did the analysis with the full sample, but these significant windows continued to 

show higher dispersion from HS in Line A vs. Line B (Levene’s test, p < 5 x 10
-5

 for all three 

window sizes). This pattern suggests that evolution in Line A was disproportionately responsible 

for differences between GI lines. For example, the 109% difference between GI lines in a region 

of chromosome 1 mostly reflects an evolutionary reduction in recombination rate in Line A. 

 

 

 
Table 2.3. Correlation of recombination rates between Gough Island lines and 
heterogeneous stock (HS) 
Pearson correlation coefficients calculated for corresponding 10, 25, and 50 Mb sliding windows 
across the genome with respective 95% confidence intervals. Correlation coefficients were 
highly significant for all comparisons. 
 

Correlation between 50 Mb 25 Mb 10 Mb 

  95% CI  95% CI  95% CI 

Line A and Line B 0.909 0.905 - 0.914 0.913  0.909 - 0.916 0.882 0.877 - 0.886 

Line A and HS 0.897  0.893 - 0.901 0.855  0.850 - 0.860 0.764 0.755 - 0.772 

Line B and HS 0.925 0.922 - 0.927 0.891  0.887 - 0.895 0.798 0.791 - 0.805 

 

 

Correlates of recombination rate polymorphism 

Within-genome variation in recombination rate has been associated with a variety of 

genomic characteristics, including GC content, classes of repetitive elements, chromatin 

structure, gene density, evolutionary breakpoint regions, and distance from the centromere 

(Fullerton et al. 2001; Rizzon et al. 2002; Jensen-Seaman et al. 2004; Freudenberg et al. 2009; 

Paigen et al. 2008; Paape et al. 2012; Farré et al. 2013; Kawakami et al. 2014; Liu et al. 2014). 

We examined whether these genomic features were also associated with recombination rate 
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differences among individuals, i.e. between the two lines of GI mice. We estimated 

recombination rates in non-overlapping windows of 10 Mb, 25 Mb, and 50 Mb in the two GI 

lines and calculated the difference (RateLineA - RateLineB) between corresponding windows. 

Among the genomic features we evaluated, only the number of long terminal repeats (LTRs) was 

significantly correlated (p < 0.05) with the difference in recombination rate among GI lines at all 

three scales (Table 2.4). At the intermediate 25 Mb scale, we also detected a significant 

correlation between gene density and recombination rate difference. Structural rearrangements 

are one of the genomic features highly correlated with recombination rate variation that is absent 

from this analysis. The difficulty of detecting small rearrangements means that we cannot rule 

out the role they may be playing in recombination rate polymorphism among GI lines. 

 To determine whether regions of high or low recombination are enriched for 

recombination rate divergence, we computed correlations between the relative recombination 

rate differences among GI lines, | RateLineA – RateLineB | / Mean Rate, and recombination rate in 

HS mice (in non-overlapping windows). We observed a significant negative correlation (p < 

0.05) at the 10 Mb and 50 Mb scale (Table 2.4), corresponding to higher relative variation in 

recombination rates in regions that experience less recombination. 

 

PRDM9 and motifs 

 A portion of the kilobase-scale variation in recombination rate observed in mice is 

explained by specific sequence motifs (Winckler et al. 2005; Myers et al. 2008; Steiner et al. 

2009). One of the best-studied motifs is the 13-bp consensus sequence bound by PRDM9, a 

H3K4 trimethyltransferase with a zinc finger DNA-binding domain (Hayashi et al. 2005) that 

regulates the location and intensity of recombination hotspots (Myers et al. 2010; Baudat et al. 
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2010; Parvanov et al. 2010). Variation in recombination at this fine scale depends on both allelic 

variation in PRDM9 – found in different subspecies and strains of mice (Baudat et al. 2010; 

Kono et al. 2014; Smagulova et al. 2016) – and polymorphisms in or near DNA binding sites 

(Baker et al. 2015). We investigated whether these determinants of hotspot variation relate to 

recombination rate variation between GI lines. First, we found that the two GI lines do not harbor  

allelic differences in PRDM9 that have been previously associated with variation in 

recombination rate. Next, we tested another straightforward hypothesis: the difference in the 

number of predicted PRDM9 binding sites among GI lines is correlated with the difference in 

recombination rate across genomic intervals; Stevison et al. 2016 tested a similar hypothesis 

across different species. Using whole-genome sequences from the parents of both crosses, we 

counted predicted PRDM9 binding sites in intervals of divergent recombination, and compared 

these values between the GI lines (see Methods). We found no evidence for an association of 

PRDM9 binding site number with either the direction or intensity of variation in recombination 

rate. While we lack the resolution to detect among-line differences in recombination rate at the 

kb scale, our results argue against an important contribution of PRDM9 to differences at the ≥ 10 

Mb scale.  
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Table 2.4. Correlation with variation in recombination rate between Gough Island lines 
Correlation of recombination rate differences between Gough Island lines in 10 Mb, 25 Mb, and 
50 Mb non-overlapping windows with selected genomic features. Pearson correlation coefficient 
and p-value presented for GC content, CpG islands, gene density, long interspersed elements 
(LINE), long terminal repeats (LTR), and satellite DNA from mouse reference annotations. For 
chromatin state, the most prevalent state in each window was used as a categorical variable 
and p-values reported are from an analysis of variance. Evolutionary breakpoint regions were 
identified by an analysis of synteny between human and mouse reference genomes using 
Cassis (see Methods). For correlation to recombination rate itself, absolute differences in rate 
between the Gough lines divided by their mean rate were compared to rates from the HS map. 
 

 

Genomic feature 50 Mb  25 Mb  10 Mb  

  p-value   p-value   p-value  

GC content 0.019 0.82  -0.049 0.49  -0.053 0.44  

CpG Islands -0.116 0.53  -0.055 0.63  -0.100 0.14  

Gene Density -0.010 0.90  -0.168 0.02  -0.112 0.10  

Chromatin State     - 0.11      - 0.99      - 0.99  

          

LINE 0.046 0.57  0.094 0.18  0.068 0.32  

LTR -0.222 < 0.01  -0.172 0.01  -0.141 0.04  

Satellite -0.041 0.62  0.000 0.99  0.000 0.99  

Breakpoint Regions 0.014 0.94  -0.046 0.68  -0.096 0.16  

  
        

Distance to Centromere 0.037 0.64  0.084 0.23  0.032 0.64  

Recombination Rate -0.308  0.03  -0.142 0.15  -0.233 < 0.01  
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Figure 2.3. Comparisons of recombination rates in Gough Island lines and the heterogeneous stock (HS)  

A comparison of recombination rates using 25 Mb sliding windows in (A) the HS mice and Gough Line A, and (B) the HS 

mice and Gough Line B. Each point represents a single 25 Mb window with respective recombination rates along the x and y-

axis. Windows that were significantly different between Gough Island Line A and Line B are highlighted in bold on these plots. 

(C) Squared difference in recombination rate between each Gough Island line and HS for these significantly different 

windows, showing substantially more dispersion from HS in Line A. 
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Discussion 

Our results reveal substantial polymorphism in the recombination rate within an isolated 

island population. Because the mice for this study were raised in a common environment, we 

interpret this polymorphism as being caused by genetic variation. Up to 28% of the genome is 

included within sub-chromosomal intervals that show divergent rates among Gough Island mice, 

and five chromosomes exhibit different map lengths. In contrast, the total genome-wide rate does 

not significantly vary. Two hypotheses could explain this disparity among genomic scales. First, 

stabilizing selection could maintain a genome-wide recombination rate even as variation 

accumulates at the sub-chromosomal level. This type of selection would mirror the molecular 

homeostasis that buffers against perturbations to the total crossover number in individual cells 

(Martini et al. 2006; Rosu et al. 2011; Cole et al. 2012; Lao et al. 2013). The meiotic requirement 

of at least one crossover per chromosome (or per chromosome arm) places a lower limit on the 

genome-wide recombination rate. However, our discovery of polymorphism in the chromosomal 

recombination rate in the absence of significant differences for total number of crossovers 

suggests that factors beyond proper disjunction constrain the evolution of the genome-wide rate. 

Indeed, experiments promoting an excess number of crossovers, with mutants that disable 

crossover-suppressing proteins, indicate a controlled upper bound that is independent of a 

biochemical maximum (Youds et al. 2010; De Muyt et al. 2012; Crismani et al. 2012). Other 

evidence for direct or indirect selection on overall crossover number includes the observation 

that mothers with higher genome-wide recombination rates are more fecund (Kong et al. 2004; 

Stefansson et al. 2005; Fledel-Alon et al. 2009). Perhaps recombination rate at the sub-

chromosomal level has little or no effect on fitness, thereby allowing polymorphism to 

accumulate. An alternative explanation for the disparity in variation among genomic scales is 
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that selective constraints on recombination rate do not operate on the genome-wide rate. If the 

lower limit, set by meiotic requirements, is truly dictated by karyotype, the focus of selection 

should fall on recombination rates at finer (chromosomal) scales. Under this scenario, 

evolutionary changes to recombination rate on finer scales since the common ancestor of the two 

GI lines have incidentally balanced such that the overall rate remains unchanged. In this model, 

the genome-wide rate between these lines would presumably begin to diverge after more time 

passes. 

We discovered that on the sub-chromosomal scale, recombination rate differences 

between GI lines and HS mice are asymmetric, with Line A showing more divergence. Perhaps 

this bias indicates a closer phylogenetic relationship between Line B and the HS mice. This 

seems unlikely given the history of the HS as an amalgam of classical inbred strains and the 

geographically singular origin of the GI mice. Alternatively, this bias might reflect the random 

sampling of recombination polymorphism from the GI population. Perhaps a small number of 

mutations modifying recombination rate are segregating in the population. Further genetic 

studies will be required to test this hypothesis. 

Our identification of genomic correlates of recombination rate polymorphism provides 

additional clues into the dynamics of recombination rate evolution. Relative differences in 

recombination rate between GI lines were negatively correlated with the rate in the HS mice. 

This suggests that recombinationally cold regions are more likely to experience greater relative 

changes in recombination rate. We also found LTR density to be negatively correlated with 

differences in recombination rate between GI lines, suggesting that the evolution of 

recombination rate may be slower in these regions. LTR density has been strongly associated 

with regions of lower recombination in other organisms (Rizzon et al. 2002; Groenen et al. 
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2009), and LTR retrotransposons have been shown to influence double-strand break formation in 

meiosis (Sasaki et al. 2013).  

A similar study of recombination rate variation in house mice (Dumont et al. 2011) 

provides an unusual opportunity to compare the evolutionary tempo of recombination rate on 

two timescales. Dumont et al. (2011) statistically compared genetic maps from representatives of 

two house mouse subspecies, M. m. musculus and M. m. castaneus. Like us, these authors 

constructed genetic maps from F2 intercrosses to the WSB/EiJ reference strain, using sample 

sizes (580 and 554 F2s in the two crosses) similar to ours. Thirty-one divergent windows were 

detected, differing on average by 4.5 cM between the M. m. musculus and M. m. castaneus maps. 

Divergent windows between the two GI lines are fewer and show smaller differences in 

recombination rate, consistent with the more recent divergence of these lines compared to M. m. 

musculus and M. m. castaneus. Eight of the divergent intervals we identified overlap with 

genomic windows that significantly differ between strains of M. m. musculus and M. m. 

castaneus. This is approximately consistent with the amount of overlap expected by chance 

given the size of the divergent intervals. However, the absence of divergent intervals on the X 

chromosome in the GI lines is notable given their disproportionate localization to this 

chromosome in the intersubspecific comparison. Our experimental design has reduced power to 

detect differences on the X chromosome, since the X does not recombine in F1 males, but this is 

an issue shared with the previous study. 

 We temper our conclusions about recombination rate evolution by noting a few 

challenges with our experimental design. First, F2 genetic maps reveal average recombination 

rates in F1 females and F1 males. In mice, sex is a key determinant of recombination rate on 

multiple genomic scales (Lynn et al. 2005; Paigen et al, 2008; Cox et al. 2009; Liu et al. 2014), 
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raising the prospect that females and males could differ in patterns of polymorphism. Our study 

is blind to this axis of variation. Second, although we detected differences among GI lines on the 

Mb scale, many more meioses would be required to find variation on the scale of recombination 

hotspots. A parallel issue is our inability to detect minor structural changes in the mouse genome. 

Some differences in mapping distance between GI lines could reflect inversions and other 

structural rearrangements segregating within the GI population. Third, the statistical power to 

detect differences in recombination rate depends on the total number of crossovers observed. 

Contrasting patterns across chromosomes, like the absence of differences at finer scales on some 

chromosomes, may be due to these differences in power. Finally, our interpretation of genetic 

map differences as polymorphism among GI lines assumes that crossing to the common 

reference strain (WSB/EiJ) had similar effects on recombination for both lines. Although there is 

no obvious reason to question this assumption, it is important to remember that the 

recombination we profiled occurred in F1s and not in the GI lines. Immunocytology suggests that 

the genome-wide recombination rate is higher in GI mice than in WSB/EiJ (Dumont and Payseur 

2011a). 

 The observation of substantial differences in recombination rate among a few mice drawn 

from an isolated population suggests that genetic variation in recombination rate is likely to be 

pervasive among wild house mice.  The balance of evolutionary factors that govern 

recombination rate in nature remains unclear. A coherent model for the evolution of 

recombination rate will need to integrate and explain patterns of variation found on each 

genomic scale. 
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Chapter 3 

Genetics of genome-wide recombination rate evolution in mice 

from an isolated island 
 

 

 

Abstract 

Recombination rate is a heritable quantitative trait that evolves despite the fundamentally 

conserved roles that recombination plays in meiosis. Differences in recombination rate can alter 

the landscape of the genome and the genetic diversity of populations. Yet our understanding of 

the genetics of recombination rate variation in natural populations remains limited. Here, we 

address the evolution of genome-wide recombination rate by the genetic study of its variation in 

Gough Island (GI) mice. GI mice are an isolated population of wild house mouse (Mus musculus 

domesticus), recently diverged from their mainland counterparts. We crossed GI-derived mice 

with a mainland representative and quantified genome-wide recombination rates by 

immunofluorescent cytology in 240 F2s. We identified 4 QTL responsible for variation in this 

trait, the strongest of which had effects that opposed the direction of the parental trait 

differences. Candidate genes and mutations for these QTL were identified by overlapping the 

detected intervals with whole-genome sequencing data and publicly available transcriptomic data 

in spermatocytes. We also identified a QTL responsible for variance in genome-wide 

recombination rate among spermatocytes, suggesting a possible role for consistency in the 

evolution of recombination rates. Combined with existing studies, our findings suggest that 

genome-wide recombination rate divergence is not directional and its evolution within and 

between subspecies proceeds from different genetic loci. 
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Introduction 

Meiotic recombination is a fundamental part of genetic transmission in most eukaryotes. 

The sets of chromosomes gametes receive have undergone an exchange of genetic material 

through a process known as crossing over. Crossovers, long recognized cytologically as 

chiasmata (Janssens 1909), fuse alleles into new haplotypic combinations. Recombination thus 

forms a knob that tunes the speed with which haplotypic diversity enters a population. The 

settings on this knob - recombination rates - are heritable, and they vary between individuals, 

populations and species (True et al. 1996; Kong et al. 2004; Coop et al. 2008; Smukowski and 

Noor 2011; Comeron et al. 2012). 

The production of genetic variation among offspring by meiotic recombination is 

theorized to provide an advantage to organismal fitness by improving the efficacy of selection 

(Weismann 1889; Kondrashov 1993; Burt 2000). Many models attribute the evolutionary 

advantage of recombination to its ability to dispel negative, non-random allelic combinations in a 

population (―negative linkage disequilibrium‖), produced by epistatic interactions (Feldman et al. 

1980; Barton 1995) or by genetic drift (Hill and Robertson 1966; Felsenstein 1974; Otto and 

Barton 1997). In this theoretical framing, the advantages of eliminating negative linkage 

disequilibrium lead to indirect selection favoring recombination. Increased recombination rate in 

response to artificial selection on a variety of phenotypes (Flexon and Rodell 1982; Burt and Bell 

1987; Gorlov et al. 1992; Korol and Iliadi 1994) provides corroborating evidence for this 

hypothesis, though some studies reveal no such increase (Bourguet et al. 2003; Fuentes et al. 

2015). In nature, indirect selection on recombination rate is likely to be strongest in populations 

subject to directional selection, including those populations experiencing new environments 

(Otto and Barton 2001).  
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Another possibility is that recombination rate itself is targeted by selection. Human 

mothers with higher average rates of crossing over have more children (Kong et al. 2004; Coop 

et al. 2008). Chiasmata generate physical tension between homologous chromosome pairs in 

meiosis, a necessity for proper chromosome disjunction (Roeder 1997; Hassold and Hunt 2001). 

This process leads to the constraint that each chromosome, or chromosome arm, harbor at least 

one crossover (Villena and Sapienza 2001; Fledel-Alon et al. 2009). It has also been suggested 

that the number of recombination events is limited to reduce the chances of aberrant exchange, 

which can lead to deleterious chromosomal rearrangements (Inoue and Lupski 2002; Coop and 

Przeworski 2007).  Furthermore, in the lab, artificial selection targeting recombination rate often 

generates a response (Chinnici 1971; Kidwell and Kidwell 1976; Charlesworth and Charlesworth 

1985).  

Understanding how recombination rate differences are inherited illuminates the evolution 

of this key genomic parameter. Multiple loci that shape recombination rate variation have been 

identified (Murdoch et al. 2010; Parvanov et al. 2010; Dumont and Payseur 2011; Hunter et al. 

2016), including variants in specific genes (Kong et al. 2008; Kong et al. 2014; Sandor et al. 

2012; Ma et al. 2015; Johnston et al. 2016). In addition to confirming that recombination rate is a 

genetically complex trait with the capacity to respond to evolutionary forces, these findings 

provide a window into the evolutionary history of recombination rate. Current recombination 

rates capture only a single moment in evolutionary time, but each allele that increases or 

decreases recombination rate documents a genetic change in an ancestral population.  

Despite this progress, the existing picture of the genetics of recombination rate variation 

suffers from important biases. First, loci have either been identified through genome-wide 

association studies within populations (Kong et al. 2008; Kong et al. 2014; Sandor et al. 2012; 
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Ma et al. 2015; Hunter et al. 2016; Johnston et al. 2016) or in crosses between divergent strains 

(Murdoch et al. 2010; Dumont and Payseur 2011). Second, work has focused on humans and 

domesticated animals. As a result, the genetic basis of evolutionary differences in recombination 

rate between wild populations remains unprofiled. 

In this study, we use an unusual population of wild house mice (Mus musculus 

domesticus) from the isolated Gough Island to address this challenge. Organisms that colonize 

islands often evolve extreme phenotypes in response to the substantial environmental changes 

they experience (Foster 1964; Case 1978; Grant and Grant 2002; Lomolino et al. 2005). Gough 

Island mice are exceptionally large – at approximately twice the weight of their mainland 

counterparts, they are the largest wild house mouse in the world (Rowe-Rowe and Crafford 

1992; Jones et al. 2003). This remarkable phenotypic change likely occurred over the short time 

span of 130 to 200 years (Gray et al. 2014), and directional selection was probably responsible 

for this case of rapid evolution (Gray et al. 2015). This context provides a special opportunity to 

examine the indirect effects of selection on the genetic architecture of recombination rate 

evolution in a natural population. 

Extensive knowledge about recombination also positions the house mouse as an 

especially powerful system for understanding its evolution. Genome-wide recombination rates 

are known to vary among inbred mouse strains (Koehler et al. 2002; Dumont and Payseur 2011), 

and dense genetic maps are available (Cox et al. 2009; Liu et al. 2014). Molecular and genetic 

mechanisms of recombination, including the regulation of crossover hotspots (Baudat et al. 2010; 

Parvanov et al. 2010; Grey et al. 2011), have been elucidated in the mouse (Paigen and Petkov 

2010; Bolcun-Filas and Schimenti 2012; Cole et al. 2014; Hunter 2015). Finally, an 

immunofluorescent cytology technique developed in the mouse enables the total number of 
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crossovers during meiosis to be measured in individuals. Collectively, these resources and tools 

make it possible to characterize the genetic architecture of recombination rate evolution in 

nature. 

 

 

Materials and Methods 

Mice and crosses 

Gough Island is an uninhabited volcanic island in the South Atlantic Ocean, more than 

2500 km away from the nearest continental landmass. Mice were live-trapped from Gough Island 

(GI) and brought to the Charmany Instructional Facility at the University of Wisconsin – 

Madison. A breeding colony was established from 25 mature females and 21 mature males. 

Details on the transportation, housing, and establishment of this colony can be found in Gray et 

al. (2015). Mice derived from Gough Island were crossed with WSB/EiJ, a North American 

wild-derived inbred strain purchased from the Jackson Laboratory (Bar Harbor, ME). All mice 

were housed in micro-isolator cages, separated by sex, and kept in a temperature-controlled room 

(68-72º F) with a 12-hour light/dark cycle. Food and water were provided ad libitum. Animals 

were cared for according to protocols approved by the University of Wisconsin School of 

Veterinary Medicine Animal Care and Use Committee. 

Several partially inbred lines were created by brother-sister mating in our breeding 

colony. We selected a pair of full siblings from one of these lines (Line B; Chapter 2) to cross 

with WSB/EiJ. This brother-sister pair was separated from wild GI mice by four generations of 

full-sib mating in the laboratory. From this pair, we produced two independent sets of F1s and 

two independent F2 intercrosses. We generated 877 F2 mice, 494 with the GI grandmother and 
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383 with the WSB grandmother. We omitted mice with no genotype data or with obvious 

genotyping errors, leaving 793 F2 individuals (♀GI x ♂WSB: 341 and ♀WSB x ♂GI: 452) for 

subsequent analyses.  

 

Chromosome spreads and immunostaining 

Spermatocyte spreads were prepared from a subset of F2 males to characterize individual 

recombination rates (following Peters et al. 1997; Dumont and Payseur 2011). Mice were 

euthanized at approximately 16 weeks of age and the left testis from each individual was 

collected and processed as follows. The collected testis was rinsed with sterile 1x Phosphate-

buffered saline (PBS) and the tunica was punctured to obtain a small fraction of the seminiferous 

tubules. Extracted tubules were incubated in 1.5 mL of hypotonic buffer (50 mM sucrose, 30 

mM Tris, 17 mM citric acid, 5 mM EDTA, 2.5 mM dithiothreitol, 0.5 mM phenylmethane 

sulfonyl fluoride) at room temperature for approximately 45 minutes. The tubules were then 

removed from the buffer and finely shredded in 20 L of 100 mM sucrose solution with fine-

gauge forceps. Any remaining tissue was removed from the cellular mixture and another 20 L 

of sucrose solution was mixed in by pipetting. The macerated cellular slurry was then mixed into 

100 L of 1% paraformaldehyde solution, with 0.15% TritonX-100. Approximately 15 L of 

this suspension was added to each of 4 standard glass slides (25 mm x 75 mm), and spread 

evenly by gentle tilting. Slides were allowed to dry overnight in a humid chamber at room 

temperature. After drying, slides were rinsed in 0.4% solution of Kodak PhotoFlo and allowed to 

air dry. Prepared spreads were either immediately stained or stored at -20 ºC. 

We adapted the immunostaining protocol from Anderson et al. (1999), De Boer et al. 

(2009), and Dumont and Payseur (2011). Antibody dilutions and the blocking of slides were all 
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performed with 1x antibody dilution buffer (ADB), prepared by diluting a 10x solution (22.5 mL 

1x sterile PBS; 2.5 mL normal donkey serum, Jackson ImmunoResearch; 0.75 g bovine serum 

albumin, Fraction V, Fisher Scientific; 12.5 L TritonX-100) with 1x sterile PBS. Primary 

antibodies against MLH1 (rabbit polyclonal; Calbiochem) and SYCP3 (goat polyclonal; Santa 

Cruz Biotechnology) were diluted 1:50. The primary antibody against centromeres (purified 

from CREST patient serum; Antibodies Incorporated) was diluted 1:200. For secondary 

antibodies, Alexa 488 donkey anti-rabbit (Molecular Probes) and Alexa 568 donkey anti-goat 

(Molecular Probes) were diluted 1:100, and A350/A280 donkey anti-human (Jackson 

ImmunoResearch) was diluted 1:200. All incubations were carried out at 37 ºC in an enclosed 

humid chamber. 

Slides to be stained were first blocked in a Coplin jar with 1x ADB for 30 minutes. Once 

removed from the jar, excess buffer was drained from the slide by placing the long edge 

perpendicular to a dry paper towel. Slides received 60L of diluted primary antibodies before 

being sealed with a coverslip and rubber cement. Sealed slides were incubated for 48 hours. The 

rubber cement was then gently removed and the slides were allowed to soak in 1x ADB until the 

coverslip was freed. Slides were then washed twice for 30 minutes each by being placed on a 

rocker with fresh 1x ADB. As before, excess buffer was drained and 60L of diluted secondary 

antibodies (donkey anti-rabbit and donkey anti-human) was applied to each slide. After sealing 

with coverslips and rubber cement, the slides were incubated overnight. The rubber cement and 

coverslips were removed as before and 60L of diluted secondary antibody (donkey anti-goat) 

was applied to each slide. Parafilm cut to size was used to seal the slides for this incubation step, 

which lasted only 2 hours. The stained slides were then washed three times, for one hour each, in 
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1x PBS with 0.05% TritonX-100 and allowed to air dry. Finally, slides were fixed using Prolong 

Gold antifade reagent (Invitrogen). 

 

Microscopy and scoring 

All slides were imaged on a Zeiss Axioplan 2 microscope with an AxioCam HR3 camera 

and AxioVision 4.8.2 software. Images were captured with a 100x objective and stored as 

1030x1300 or 1388x1040 tiff files at 150 pixels per inch. 

Cells were selected for scoring based on the morphology of the synaptonemal complex 

and the robustness of the MLH1 signal. We included cells for which the full set of 20 

chromosomes were clearly condensed and indicative of the pachytene stage. Cells were omitted 

if defects in synapsis or damage from handling were obvious. We counted only MLH1 foci that 

appeared on autosomes, as recombination on the XY chromosome pair is not synchronous with 

the autosomes (Kauppi et al. 2012). We also omitted cells for which an MLH1 focus could not 

be detected on each autosome. The absence of a crossover from an autosome is rare and this 

omission ensures that staining artifacts do not influence the count. For each cell counted, we also 

recorded an image quality value based on the robustness of the MLH1 signal and the difficulty of 

scoring. This quality value ranged from 1 (weak MLH1 signal and difficult to score) to 6 (strong 

MLH1 signal and easy to score). For subsequent analyses, we included only cells with quality 

values of 2 or higher. 

 

Genotyping and recombination in F1s 

All mice were genotyped with the Mega Mouse Universal Genotyping Array 

(MegaMUGA; Morgan et al. 2016). This Illumina Infinium array contains 77,808 markers 
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covering the autosomes, sex chromosomes, and mitochondria. Liver tissue from euthanized mice 

was extracted and sent to GeneSeek (Neogene, Lincoln, Nebraska) for genotyping. Several steps 

were taken to control for errors and ensure data quality. This included the replication of parental 

WSB and GI samples as well as the omission of markers and mice with either missing genotypes 

or Mendelian inconsistencies. We retained 11,833 informative single nucleotide polymorphisms 

(SNPs) that were invariant among GI mice, and whose segregation patterns were consistent with 

a standard F2 intercross.  

Genetic distances were estimated from this marker information using the Lander-Green 

hidden Markov model (Lander and Green 1987) as implemented in the R/qtl est.map() function 

(Broman et al. 2003). We assumed a genotyping error rate of 0.2% and converted recombination 

fractions to map distances with the Carter-Falconer function (Carter and Falconer 1951). We also 

estimated the number of crossovers in F1 individuals by fitting this marker data to a hidden 

Markov model. This model removes implausibly close crossovers by including the probability of 

genotyping errors. Crossovers were counted on the underlying genotype, imputed with the 

Viterbi algorithm and assuming a genotyping error rate of 0.2%. 

 

QTL analysis 

We calculated the mean number of MLH1 foci among spermatocytes for each individual. 

The average individual was represented by more than 20 counts and we omitted individuals with 

fewer than 5 counts. We performed Haley-Knott regression to identify QTL for mean MLH1 foci 

using 240 F2 individuals. Thresholds for significance were derived via permutation (Churchill 

and Doerge 1994), permuting phenotype data relative to genotype data. Thresholds for genome-

wide significance,  = 0.05, were established from 1000 permutation replicates. 
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We investigated the effects of cross direction by adding it as an interactive covariate and 

by performing separate analyses on each cross direction. The addition of cross direction as an 

interactive covariate is similar to performing the QTL analysis separately in each direction, but 

with constraints on residual variation based on the combined data (Broman and Sen 2009). We 

established significance thresholds for the former by performing two sets of permutations. Using 

the same random seed, we performed 1000 permutations treating cross direction as an additive 

covariate and 1000 permutations treating cross direction as an interactive covariate. When the 

analysis was split by cross direction, (♀GI x ♂WSB: 86 and ♀WSB x ♂GI: 154), we performed 

two separate sets of 1000 permutation replicates. 

We fit several multiple QTL models to look for additional QTL and to test for 

interactions between them. We tested for pointwise interactions between detected QTL, 

calculating a p-value under the null hypothesis that LOD scores follow a 
2
 distribution. We also 

applied a forward/backward stepwise search algorithm with penalized LOD scores (Manichaikul 

et al. 2009). Penalties for additional QTL and interactions in this search were derived from 1000 

permutations of a two-dimensional, two-QTL scan over the genome. Because of the 

computational costs of two-dimensional scans, the stepwise search and the permutation replicates 

were performed on a fixed 0.5 cM grid of pseudomarkers. 

In addition to the analysis on mean number of crossovers, we estimated and mapped QTL 

for variance in the number of MLH1 foci among spermatocytes from the same individual. The 

identification of QTL affecting phenotypic variation, or vQTL, in multicellular organisms 

typically requires a comparison of variance between different genotypic groupings of 

individuals. This is often achieved by measuring the variance among individuals from different 

inbred lines (Mackay and Lyman 2005; Shen et al. 2012; Ayroles et al. 2015). Unlike most 
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quantitative traits, biological replicates for the number of crossovers per spermatocyte can be 

collected from the same individual. This unique aspect of our study allowed us to estimate 

variance in crossover number from single individuals. Because of the greater difficulty in 

estimating variance, we omitted individuals with fewer than 15 counts for this analysis, leaving 

214 F2 individuals. As with the mean, we performed Haley-Knott regression and established 

thresholds from 1000 permutation replicates. However, mapping the estimated variance is likely 

insufficient to characterize variance QTL because of confounding between the mean and 

variance (Rönnegård and Valdar 2011; Geiler-Samerotte et al. 2013). For example, if crossover 

number were Poisson-like, variance in crossover number would be linearly proportional to its 

mean. An analysis that tries to identify QTL from raw values of variance will capture this mean-

variance relationship. To decouple this relationship, we transformed the raw counts with a 

generalized linear model (GLM), fitting an appropriate power variance function. This 

transformation preserves the mean for each individual, but removes the mean-variance 

relationship by explicitly parameterizing it. We sought a variance function of the form, 

V(Yi) =  [E(Yi)]



where E(Yi) and V(Yi) are the mean and variance for individual Yi,  is a constant dispersion 

parameter, and  is the power parameter that characterizes the mean-variance relationship. We 

employed the eql() function from the R/EQL package to numerically fit a power-variance 

function with a  value that maximized the extended quasi-likelihood (Nelder and Pregibon 

1987). The error variance from this model, estimated by the mean square residuals, represents 

each individual’s departure from the modeled mean-dependent variance. We performed Haley-

Knott regression to map error variance and established genome-wide significance thresholds 

with 1000 permutation replicates. 
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Candidate genes and parental sequences 

We narrowed down candidate genes under QTL for recombination rate variation from a 

list of transcripts expressed in mouse spermatocytes. We incorporated data from RNA-seq 

experiments that characterized transcription temporally through meiosis. From Cruz et al. (2016), 

where RNA-seq was performed on spermatocytes sorted by flow cytometry, we included 

transcripts that were expressed in pachytene or leptotene/zygotene at a higher level than in 

secondary spermatocytes. From Ball et al. (2016), where RNA-seq and cytological data were 

integrated to stage transcripts, we included transcripts that were concordant with preleptotene, 

early leptotene, late leptotene/zygotene, and early pachytene. We omitted non-coding RNAs due 

to their poor annotation across databases. Transcription start and end sites were assigned from 

UCSC annotations on the GRCm38/mm10 build.  

Variants in the GI parents were identified by whole-genome sequencing at an average 

depth of 10X. Sequencing was performed on an Illumina HiSeq 2500 with 100-bp paired-end 

reads. These reads were mapped with the Burrows-Wheeler Aligner (Li and Durbin 2009) to the 

C57BL/6 mouse reference genome. Variants were called with SAMtools 1.0 (Li et al. 2009) and 

compared to those found in the WSB/EiJ whole-genome sequence (Keane et al. 2011). For each 

candidate gene, we included variants that were 1kb upstream and downstream of the 

transcription start and end sites. To prioritize candidates, we employed the Ensembl Variant 

Effect Predictor (McLaren et al. 2016) and examined the predicted consequence of each variant. 

We also prioritized candidate mutations in genes that were associated with any Gene Ontology 

(GO) terms containing ―recombination‖ (MouseMine; Motenko et al. 2015).  
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Results 

Genome-wide recombination rates 

We used fluorescent immunocytology to measure recombination rates in individual mice 

from GI, WSB, and our F2 intercross. We focused on spermatocytes in pachytene, the third stage 

of meiotic prophase during which crossovers become apparent and antibodies against the MLH1 

protein localize to sites of crossover, forming punctate foci against the condensed chromosomes 

(Figure 3.1). By counting the number of MLH1 foci in multiple spermatocytes from each 

individual, we estimated the mean autosomal recombination rate in each of 240 F2 animals. 

 While outbred GI mice were previously shown to have an average of 2 more crossovers 

per spermatocyte than WSB/EiJ (Dumont and Payseur 2011), the derived GI line featured in our 

intercross exhibits only a modest elevation in recombination rate (GI mean = 22.63 foci, SE = 

0.14; WSB/EiJ mean = 22.29, SE = 0.16; t-test p = 0.11). Notably, the distribution of F2 

crossover numbers contains a large number of individuals with recombination rates that lie 

outside the range of both parental means (Figure 3.2). This pattern of transgressive segregation is 

consistent with the presence of QTL alleles that have opposing effects within lines (Lynch and 

Walsh 1998; Rieseberg et al. 1999). We also detected a significant difference in F2 

recombination rates between cross directions. F2s with a GI grandmother produce spermatocytes 

with more crossovers (mean = 22.76, SE = 0.09) than F2s with a WSB/EiJ grandmother (mean = 

22.47, SE: 0.06) (t-test p = 0.01).  

In addition to cytological characterization of recombination rates in the gametes of F2s, 

we tracked recombination events by analyzing F2 genotypes at diagnostic SNPs. The resulting 

estimates of recombination rate differ in two important ways from our cytological estimates. 

First, F2 genotypes track crossovers that occurred during gametogenesis in F1s. Since crossovers 
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were realized in the cellular and genetic environment of F1s, these estimated rates are sex-

averaged, including contributions from females as well as males. Second, interference-

independent crossovers, a small proportion of crossovers that do not rely on the MLH1 pathway 

(Hollingsworth and Brill 2004; Holloway et al. 2008), are detected in the genotypic analysis. We 

estimated a mean of 25.79 (SE: 0.15) crossovers per F1 individual from the genotypes of 793 F2s. 

We again noticed a significant difference in crossover number between cross directions. F1s with 

GI mothers produce spermatocytes with more crossovers (mean = 26.24; SE = 0.23) than F1s 

with WSB/EiJ mothers (mean = 25.46; SE = 0.19) (t-test p < 0.01). 

 

 

 

Figure 3.1 Representative image of pachytene spermatocyte. In red, the synaptonemal 
complex is visualized by anti-SYCP3. In green, MLH1 foci show sites of meiotic crossover. 
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Figure 3.2 Distribution of crossovers in F2 animals characterized by MLH1 foci. Error bars 

show +/- 1 S.E. Parental means with +/- 1 SE also shown in red, for GI mice, and gray, for 

WSB/EiJ.  
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QTL for genome-wide recombination rate evolution 

We detected three genomic regions linked to variation in mean MLH1 count (Figure 3.3). 

The strongest of these QTL, in terms of effect size and LOD score, localizes to the proximal end 

of chromosome 14. Genomic regions on chromosomes 5 and 6 also contribute to mean MLH1 

count (Table 3.1). We repeated the scan for QTL with image quality (see Methods) and cross 

direction as additive covariates, but did not find a substantial difference in the results. 

Given the elevated crossover number detected in F1 individuals with GI mothers from the 

genotypic analysis, we added cross direction as an interactive covariate in our QTL mapping 

analysis. We found evidence for an additional QTL on chromosome 10, whose effects 

significantly differ between the two cross directions. These results suggest a QTL on 

chromosome 10 for mean crossover number that is either segregating within the GI line, 

interacting with loci segregating within the GI line, or interacting with a maternal effect. 

Model-based multiple QTL mapping (Broman and Speed 2002) did not identify new QTL or 

interactions between QTL, though QTL positions were refined (Table 3.1).  

As predicted from the transgressive distribution of mean crossover number, we found a 

QTL with phenotypic effects opposite of the parental trait difference. The GI allele at the QTL 

on chromosome 14 confers a reduction in mean crossover number. In contrast, GI alleles at the 

QTL on chromosomes 5, 6, and 10 are associated with increases in mean crossover number. 

Alleles at three QTL act additively; the QTL on chromosome 10 shows signs of overdominance 

(Table 3.1). 

Together, detected QTL explain an estimated 33% of the variance in mean crossover 

number among F2s. While this percentage is almost certainly inflated by the Beavis effect 

(Beavis 1994; Xu 2003), it is possible that the detected QTL explain a majority of the genetic 
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variance. The narrow-sense heritability of recombination rate has been estimated at 0.46 for mice 

(Dumont et al. 2009). 

 

 

 

Table 3.1. QTL for the genome-wide recombination rate 

 

Single QTL 
Model 

Multiple QTL 
Model 

  

Estimated phenotypic means (SE)
d
 

Chr. 
Pos. 
(cM) 

LOD 
Pos. 
(cM) 

LOD 
Pos

a
 

(Mb) 
1.5 LOD 

Interval
b
 (Mb) 

% 
var

c
 

GG GW WW 

5 53.5 4.39 36.9 4.61 83.8 74.3 - 132.5 6.1 22.91 (0.11) 22.58 (0.07) 22.30 (0.10) 

6 50.3 5.12 29.8 4.50 81.4 73.5 - 134.7 5.9 22.88 (0.10) 22.55 (0.07) 22.23 (0.11) 

14 12.5 6.66 20.0 7.57 56.5 28.2 - 60.9 10.4 22.12 (0.11) 22.55 (0.07) 22.90 (0.09) 

 10
e
 55.1 4.54 58.0 5.12 122.8 114.5 - 123.8 6.9 22.68 (0.19) 23.06 (0.12) 22.21 (0.16) 

      
  

22.33 (0.13) 22.45 (0.09) 22.62 (0.12) 

 
 a Estimated from position of LOD peak in a multiple QTL model. 
 b Estimated from single QTL model (a more conservative estimate). 
 c Percentage of phenotypic variance among F2s explained. 
 d G = Gough; W = WSB/EiJ. 
 e Single QTL model position and LOD from GxW cross alone; estimated phenotypic means for the GxW cross (first row) and WxG cross 

(second row). 
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Figure 3.3. LOD plot of QTL for genome-wide recombination rate. In red, the QTL on 

chromosome 10 appears only after taking into account cross direction. Dashed lines show 

genome-wide ( = 0.05) threshold for the respective scans.  
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QTL for within-animal variance in the genome-wide recombination rate 

The distribution of within-animal variances in crossover number is shown in Figure 3.4. 

GI mice display significantly lower variance in crossover number among spermatocytes than 

WSB/EiJ (Levene’s test, p < 0.005), and the center of the F2 distribution is closer to the GI value. 

We detected a single region on chromosome 14 that confers differences in within-animal 

variance (peak = 34.1 Mb, LOD = 5.83). The 1.5 LOD interval of this QTL (29.1 Mb to 69.1 

Mb) overlaps substantially with the previously identified QTL on this chromosome for mean 

crossover number. 

The distribution of crossover number among F2 individuals is highly heteroscedastic:  

variance is positively correlated with the mean (Pearson’s r = 0.50). Using two separate 

approaches to deconvolve the mean-variance relationship (see Methods), the LOD score for the 

QTL on chromosome 14 dropped but remained suggestive, reaching the  = 0.20 level for 

genome-wide significance (Figure 3.5a). Coupled with the absence of other suggestive peaks, 

particularly from chromosomes with QTL affecting mean crossover number, we conclude that 

the QTL on chromosome 14 likely contributes to variance in crossover number. The GI allele at 

this locus dominantly reduces within-animal variance in crossover number (Figure 3.5b), an 

effect that could partially account for the shift in the F2 distribution toward the GI parent. This 

QTL explains 4-5% of the variance in within-animal crossover number variance. 
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Figure 3.4. Variance in MLH1 count. Lines show variance in Gough (red) and WSB (black) 

parentals. 

 

Figure 3.5. LOD plot for variance QTL (left) and estimated effects by genotype (right). 

LOD plot is for raw variance (black) with  = 0.05 threshold for genome-wide significance 

(dashed lines), and transformed variance (red) with  = 0.20 threshold.  
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Candidate genes for genome-wide recombination rate evolution 

We overlapped multiple types of data to identify candidate genes under QTL peaks 

responsible for recombination rate variation. Studies of gene expression in mouse spermatocytes 

suggest that most transcripts involved in meiotic recombination are expressed before mid-

pachytene, whereupon transcription switches to spermiogenesis-related genes (Fallahi et al. 

2010; Margolin et al. 2014; Cruz et al. 2016; Ball et al. 2016). We merged two RNA-seq datasets 

that characterized temporal patterns of gene expression in mouse spermatocytes (Cruz et al. 

2016; Ball et al. 2016). Our initial set of candidate genes was established by taking transcripts 

expressed in early meiotic prophase. After including genes with GO terms associated with 

meiotic recombination, our list included 8501 genes. From this list, we selected candidates that 

were within the 1.5 LOD intervals of our QTL peaks. 

Using knowledge of temporal expression patterns and gene ontology terms (see 

Methods), we identified a total of 590 candidate genes under the detected QTL peaks on 

chromosomes 5, 6, 10, and 14. To prioritize this list, we examined the SNP and short indel 

differences between the GI and WSB/EiJ lines for the candidate genes. Here, we focus on the 

most compelling candidates: those genes with a recombination-associated GO term that contain a 

variant conferring a change to either a nonsynonymous site or a transcription factor binding site. 

We identify strong candidate genes for QTL on chromosomes 5, 6, and 14 (Table 3.2), including 

DNA helicases that mediate homologous recombination (Bugreev et al. 2007; De Muyt et al. 

2012) and E3 ligases thought to regulate the crossover/non-crossover decision (Reynolds et al. 

2013; Qiao et al. 2014). 
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Table 3.2. Candidate genes and mutations for QTL. 

Gene 
Name 

Chr. Position
a
 

Base 
Change 

AA 
change 

Zygosity in GI 
parents 

Variant Effect
b
 

Rnf212 5 108770595 C -> T V -> I Homo; Het SIFT: 0.05  

Rnf212 5 108729476 T -> C I -> V Homo; Homo SIFT: 0.49 

Rnf212 5 108744012 T -> C -- Homo; Het Low Info TF site 

Helq 5 100794483 Indel -- Homo; Homo Low Info TF site 

Hfm1 5 106871789 G -> T S -> Y Homo; Homo SIFT: 0.04 

Hfm1 5 106904814 C -> T A -> T Homo; Homo SIFT: 0.74 

Hfm1 5 106911653 A -> G C -> R Homo; Homo SIFT: 0.08 

Hfm1 5 106853422 C -> T -- Homo; Homo Low Info TF site 

Rad18 6 112649678 G -> A S -> L Homo; Homo SIFT: 0.02-0.1 

Rad18 6 112649714 G -> A S -> L Homo; Homo SIFT: 0.07-0.11 

Rad18 6 112664108 A -> G W -> R Homo; Homo SIFT: 0.01-0.03 

Rad51ap1 6 126928176 T -> C H -> R Homo; Homo SIFT: 0.79-0.84 

Rad51ap1 6 126928188 C -> T G -> D Homo; Homo SIFT: 0.6-0.62 

Rad51ap1 6 126928206 T -> C E -> G Homo; Homo SIFT: 0.22 

Rad51ap1 6 126939497 A -> G I -> T Homo; Homo SIFT: 0.17-0.22 

Apex1 14 50925294 G -> A A -> T Het; Het SIFT: 0.14-0.6 

Ccnb1ip1 14 50791413 T -> C -- Het; Het Low Info TF site 

Rec8 14 55625075 C -> T A -> V Het; Het SIFT: 0.31 

Tep1 14 50824758 T -> G N -> H Het; Het SIFT: 0.2 

Tep1 14 50837421 G -> A R -> C Het; Het SIFT: 0.16 

Tep1 14 50839000 T -> C D -> G Homo; Het SIFT: 0.4 

Tep1 14 50853017 C -> T G -> D Homo; Homo SIFT: 0.09 

Tep1 14 50855613 C -> T V -> I Homo; Homo SIFT: 1 

Tep1 14 50860668 C -> T G -> S Homo; Homo SIFT: 0.02 

Tep1 14 50863639 G -> T L -> I Homo; Homo SIFT: 0 

Tep1 14 50868186 G -> A P -> S Homo; Homo SIFT: 0.29 

Tep1 14 50868261 G -> T H -> N Homo; Homo SIFT: 0.05 

Tep1 14 50824479 G -> A -- Het; Het High Info TF site 

Tep1 14 50837421 G -> A -- Het; Het Low Info TF site 
 
a
 Position in GRCm38/mm10 

b
 Predicted variant effect for nonsynonymous changes as SIFT score 0.0 (deleterious) – 1.0 (tolerated), (Kumar et al. 
2009); for variants at predicted transcription factor (TF) binding sites, variants are classified as being in high or low 
information regions. 
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Discussion 

While most genetic mapping studies feature parental lines with notable differences 

between trait means, the absence of large differences does not obviate a history of divergence nor 

the potential to reconstruct it. In this study, the genome-wide recombination rate showed 

transgressive segregation and was linked to multiple QTL. Not only were QTL alleles with 

antagonistic effects harbored in the same line, but the allele with the strongest effect opposed the 

phenotypic pattern seen in the parents. Transgressive segregation may be a relatively common 

phenomenon, especially in crosses where the difference between parental trait means is small 

(Lynch and Walsh 1998; Rieseberg et al. 2003). What is remarkable is the observation of 

transgressive segregation and complementary QTL effects in all three studies that mapped QTL 

for genome-wide recombination rate variation in mice (Murdoch et al. 2010; Dumont and 

Payseur 2011). Furthermore, in both cases in which only wild-derived mice were used (this study 

and Dumont and Payseur 2011), the leading QTL displayed antagonistic effects. This finding 

suggests that an antagonistic genetic architecture may be a common feature of genome-wide 

recombination rate evolution.  

 The distribution of QTL effects can be used to draw inferences about the role of natural 

selection (True et al. 1997; Orr 1998). When the direction of QTL effects consistently matches 

the direction of parental phenotypic differences, a history of directional selection may be 

hypothesized. The repeated finding of antagonistic loci therefore argues against scenarios that 

invoke consistent directional selection on the genome-wide recombination rate. 

The proposal that recombination rate may evolve in response to rapid shifts in the selective 

optima of multiple traits, as in the case of domestication (Burt and Bell 1987; Ross-Ibarra 2004), 

has previously been challenged by examples from mammals and insects (Wilfert et al. 2007; 
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Munoz-Fuentes et al. 2015). Alternative explanations include genetic drift, stabilizing selection, 

or fluctuating selection. From a molecular genetics standpoint, the case for stabilizing selection 

on genome-wide recombination rate seems strongest. Meiotic requirements appear to set 

boundaries based on the increased risk of aneuploidy in crossover-deficient meiotic cells (Roeder 

1997; Hassold and Hunt 2001) and the presumed risks to genome integrity from an excess of 

crossovers (Inoue and Lupski 2002; Coop and Przeworski 2007). Another possibility is that the 

evolution of recombination rate is governed by drift (with no optimum value) within these 

boundaries (Dumont and Payseur 2008). The possibility that the direction of selection on 

recombination rate has shifted over time is intriguing and less explored. Meiotic constraints may 

evolve as chromosome structure changes, shifting the bounds imposed on genome-wide 

recombination rate (Borodin et al. 2008; Dumont 2017). Whether episodic shifts in selection 

could explain the preponderance of antagonistic loci for recombination rate in mice would 

depend on their timing and frequency. 

Our sample size was similar to those in other genetic mapping studies of genome-wide 

recombination rate variation in mice (Murdoch et al. 2010; Dumont and Payseur 2011), enabling 

straightforward comparisons between the results. We detected fewer QTL, an outcome 

potentially explained by the much higher phenotypic divergence between the lines used in the 

other studies (both of which involved inter-subspecific crosses). The absence of X-linked QTL in 

GI x WSB/EiJ is notable because the X chromosome has been repeatedly linked to genome-wide 

recombination rate divergence between lines from different mouse subspecies (Murdoch et al. 

2010; Dumont and Payseur 2011; Balcova et al. 2016). The QTL we discovered on chromosome 

14 lies near a QTL found in the C57BL/6J x CAST/EiJ cross (Murdoch et al. 2010). Intriguingly, 

this QTL showed antagonistic effects in both crosses. This coincidence raises the tantalizing 
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possibility that a shared variant, in GI and C57BL/6J, reduces recombination rates. A dearth of 

overlapping QTL with the wild-derived M. m. musculus x M. m. castaneus cross in Dumont and 

Payseur (2011) suggests that different loci are responsible for recombination rate evolution 

within and between subspecies. Nevertheless, our list of candidate genes supports the notion that 

the number of loci contributing to natural variation in recombination rate is limited. Our most 

promising candidates include Rnf212, Rec8, and Ccnb1ip1 (HEI10), genes that have been linked 

to variation in recombination rate within multiple mammalian species (Sandor et al. 2012; Kong 

et al. 2014; Qiao et al. 2014; Johnston et al. 2016). 

Our observation of significantly more crossovers among F2 mice from the cross direction 

with GI mothers can mostly be explained by the QTL on chromosome 10. Since the GI parents 

were not completely inbred, our observation that this QTL confers direction-specific effects 

suggests it segregates within the GI line. The antagonistic allele on chromosome 14 may actually 

be polymorphic within GI mice as well, since higher genome-wide recombination rates were 

observed in outbred mice from the island (Dumont and Payseur 2011).  

Our experimental design provided a rare opportunity to characterize the genetics of 

differences in within-animal recombination rate variance. Genetically controlled reduction of 

phenotypic variability may increase developmental consistency and robustness to environmental 

fluctuations (Waddington 1942; Rutherford and Lindquist 1998; Mackay and Lyman 2005; Levy 

and Siegal 2008). Alternatively, increased phenotypic variability can be advantageous and may 

contribute to adaptation (Losick and Desplan 2008; Beaumont et al. 2009; Eldar and Elowitz 

2010). Not only did we find significantly lower variation in genome-wide recombination rate in 

GI compared to WSB/EiJ, but we discovered a GI QTL allele (on chromosome 14) that reduces 

both the variance and the mean crossover number. Although QTL that control variance have 
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been previously identified for several traits (Shen et al. 2012; Hulse and Cai 2013; Mulder et al. 

2016), ours is the first report of such a QTL for recombination rate. The causative variant(s) 

underlying this QTL might act by modulating the stringency of meiotic checkpoints, which 

ensure consistency among gametes (Hochwagen and Amon 2006; Li and Schimenti 2007; 

Jaramillo-Lambert 2010; Kauppi et al. 2013). However, patterns of natural variation in the 

consistency of recombination rate among gametes are poorly understood. Our results, along with 

the abundance of meiotic surveillance mechanisms, raise the intriguing prospect that gamete 

consistency plays an important role in the evolution of recombination rate. 
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Chapter 4 

Genetics of synaptonemal complex length evolution in mice2 
 

 

 

Abstract 

During meiosis, chromosomes pair for genetic exchange in the process of recombination. 

Recombination is crucial for the proper segregation of chromosomes during meiosis and also has 

the evolutionary effect of introducing haplotypic variation into a population. To study the genetic 

mechanisms underlying variation in recombination rate, we examined the synaptonemal 

complex. The synaptonemal complex (SC) is a proteinaceous scaffold essential to the process of 

chromosome synapsis and subsequent recombination. The length of the SC axis is strongly 

correlated with rates of genome-wide recombination. Using the house mouse as a model system, 

we quantified SC length in single spermatocytes by immunofluorescent cytology. We developed 

a high-throughput method to accurately measure SC lengths from cytological images. This 

method was applied to images of spermatocytes from two F2 intercrosses to genetically map loci 

responsible for SC length variation. These two intercrosses, (1) between strains representative of 

M. m. musculus and M. m. castaneus and (2) between two representatives of M. m. domesticus, 

exhibit different levels of both trait and phylogenetic divergence. We identified 3 QTL in the 

first cross and 2 QTL in the second cross for SC length variation. The absence of overlapping 

QTL between these crosses suggests different loci are responsible for the evolution of SC length 

within and between mouse subspecies. Using covariate analysis, we discovered many of the QTL 

for SC length were pleiotropic, also controlling variation in the genome-wide recombination rate. 

                                                           
2
 Immunofluorescent images from the muculuss x castaneus cross were collected by Beth L. Dumont. 
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Our results help elucidate the genetic architecture behind genome-wide recombination rate 

evolution.  
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Introduction 

Homologous chromosomes are paired early in meiosis in a process known as synapsis. In 

most sexually reproducing organisms, synapsis is essential to the formation of meiotic crossovers 

and the proper segregation of chromosomes in gametogenesis (Page and Hawley 2004; Yang and 

Wang 2008; Nagaoka et al. 2012; Cahoon and Hawley 2016). The synaptonemal complex (SC) 

is a meiosis-specific protein structure that holds together the four chromatids of a chromosome to 

achieve synapsis. This supramolecular structure, whose assembly is completed by the pachytene 

stage, keeps homologs tightly aligned along their entire length. As a canonical structure of 

meiosis, the structure and function of the SC are conserved across eukaryotes, though its 

constituent proteins show substantial variation (Grishaeva and Bogdanov 2014; Hemmer and 

Blumenstiel 2016). 

The process of synapsis is intimately linked with the formation of crossovers. The 

formation of the SC begins at sites of meiotically programmed DNA double-strand breaks 

(Zickler et al. 1992; Hunter 2003; Henderson and Keeney 2005). These sites of DSBs mediate 

the homology search that precedes chromosome pairing, and a small subset of these DSBs 

become the sites of reciprocal exchange. At synapsis, chromatin is organized into an array of 

loops along a central proteinaceous axis. The size of these loops and the length of this axis, but 

not the spacing between loops, have been shown to vary based on the genomic contents in 

different organisms (Novak et al. 2008; Kleckner 2006; Zickler and Kleckner 2015). Variation in 

the length of this axis thus reflects both differences in the degree of compaction and interaction 

between homologs. 

The length of this central axis of the SC can be observed by microscopy, and a positive 

correlation between this length and the number of meiotic crossovers has long been observed. An 
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early finding from electron microscopy on human meiocytes was the presence of approximately 

twice as many crossovers as well as twice the SC length in oocytes relative to spermatocytes 

(Rasmussen and Holm 1978; Bojko 1985). More recent techniques involving immunofluorescent 

cytology have found the total length of the autosomal SC to be correlated with the number of 

crossovers in individual meiotic cells from humans and mice (Lynn et al. 2002; Tease and Hulten 

2004; Pan et al. 2012; Baier et al. 2014). However, the ratio of crossovers to SC length appears 

to vary substantially among individual humans. Among different strains of mice, this ratio 

appears relatively consistent, at ~7 m of SC/crossover (Lynn et al. 2002). The tight relationship 

between these two traits appears to extend across species of mice, with evidence suggesting that 

crossover number and SC length may have co-evolved (Dumont and Payseur 2011). However, 

this relationship may not be universal among mammals; in cattle, sheep, and goats, no 

correlation was found between the number of crossovers and total SC length within or between 

species, despite significant correlation within individual cells (Froehlich et al. 2015). 

The evolution of recombination rate has received substantial consideration and study, 

partly due to the many consequences that recombination has on molecular evolution (Begun and 

Aquadro 1992; Charlesworth et al. 1993; Duret and Ardnt 2008). Structural changes in the 

genome, including rearrangements and altered chromosome number, have been implicated in the 

evolution of recombination rate (Fledel-Alon et al. 2009; Smukowski and Noor 2011; Segura et 

al. 2013; Tiley and Burleigh 2015). Evolution of the SC represents direct change to the physical 

structure of the genome exactly when recombination occurs. Despite its prominence in the 

meiotic program, and this link to recombination rate, variation in the SC has not garnered as 

much attention as recombination rate. While the SC has been studied extensively from a 

molecular and mechanistic perspective (Page and Hawley 2004; Fraune et al. 2012; Zickler and 
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Kleckner 2015), the genetic basis of its variation has not been established (but see Vranis et al. 

2010). In contrast, variation in recombination rate has been shown to have a genetic basis, and 

significant progress has been made in identifying specific loci that control this variation (Kong et 

al. 2008; Murdoch et al. 2010; Dumont and Payseur 2011; Parvanov et al. 2010; Johnston et al. 

2016). 

Genetic analysis of variation in SC length will improve our understanding of its evolution 

along with recombination rate. The covariation of SC length and recombination frequency 

suggests a shared genetic basis. In this study, we genetically map variation in SC length from 

two intercrosses between wild-derived strains of house mice (Mus musculus). Mice are an ideal 

system for studying SC length, informed by a rich context of molecular and genetic studies on 

meiosis and recombination rate (Hunt and Hassold 2002; Koehler et al. 2002; Paigen and Petkov 

2010; Handel and Schimenti 2010; Cole et al. 2012; Keeney et al. 2014). More importantly, the 

ability to perform immunofluorescent cytology in mouse spermatocytes allows SC length to be 

characterized in a large number of samples. Existing studies of SC length have focused mostly 

on humans and laboratory strains of mice. Variation in SC length, and the extent to which 

recombination rate is connected to this variation, have not been characterized in natural 

populations. 

Manual measurement of SC lengths in thousands of spermatocytes, needed for genetic 

mapping, is a laborious task. We developed a computer vision technique to automate this 

process. This technique was applied to images from immunofluorescent cytology originally 

collected to characterize variation in crossover frequency in two separate intercrosses. Loci 

responsible for recombination frequency were detected in these two crosses, enabling a powerful 

comparison between the genetics of SC length and recombination frequency in the same set of 
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animals. Further, these two crosses represent two different levels of divergence within house 

mice – between subspecies and within subspecies. Comparison between these two levels of 

divergence provides a model for how SC length may evolve. 

 

  

Materials and Methods 

Crosses 

Data presented in this study was gathered using images of spermatocytes from F2 males 

from two separate intercrosses. The first of these was a cross between PWD/PhJ, a representative 

of the Mus musculus musculus subspecies (herein referred to as mus), and CAST/EiJ, a 

representative of Mus musculus castaneus (herein referred to as cast). A total of 315 F2 males 

were sacrificed from this cross at approximately 10 weeks of age, of which 289 were included in 

the final analysis. The second of these crosses was between Gough Island (GI) mice and 

WSB/EiJ, both from the Mus musculus domesticus subspecies. A total of 618 F2 males were 

sacrificed from this cross at approximately 16 weeks of age, of which 229 were included in the 

final analysis. Additional details on cross design and animal husbandry can be found in Dumont 

and Payseur (2011) and Gray et al. (2015) respectively. In all cases, animal care and 

experimental protocols were approved by the University of Wisconsin Animal Care and Use 

Committee. 
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Tissue collection, immunostaining, and microscopy 

Details on the preparation of spermatocyte spreads and immunostaining can be found in 

Chapter 3 and Dumont and Payseur (2011). Here, we very briefly summarize the shared steps 

taken to arrive at stained spermatocyte images. 

Seminiferous tubules were extracted from the testis of sacrificed males and incubated in 

hypotonic buffer. The macerated tubules were then ripped apart to liberate spermatocytes. The 

cellular slurry was fixed onto a glass slide with a paraformaldehyde solution and allowed to dry. 

These prepared slides were incubated with primary antibodies against MLH1, a mismatch repair 

protein that localizes to sites of meiotic crossover, and SYCP3, an essential structural element 

spanning the synaptonemal complex. After several wash steps, the slides were then incubated 

with a set of secondary antibodies tagged with fluorophores, at 488 nm and 568 nm for MLH1 

and SYCP3 respectively, and then mounted for visualization. 

Slides from the mus x cast cross were imaged on a Zeiss Axioskop microscope with an 

AxioCam HRc camera. Images from this cross were stored as .tiff files with a resolution of 

1030x1300 pixels and 150 pixels per inch. Slides from the GI x WSB cross were imaged on a 

Zeiss Axioplan 2 microscope with an AxioCam HR3 camera. Images from this cross were stored 

as .tiff files at either 1030x1300 or 1388x1040 at 150 pixels per inch. In both cases, images were 

captured with a 100x objective lens. 

 

Measuring SC length 

All images were manually curated and only cells with a clearly condensed, full set of 20 

chromosomes were included. Images of cells with obvious defects or damage from handling 

were omitted. 
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We utilized techniques from computer vision to determine the total length of the SC in 

each spermatocyte from captured immunofluorescent images. We applied algorithms for image 

processing and analysis as implemented in the scikit-image package for Python 3 (van der Walt 

et al. 2014; scikit-image.org). For each image, we first isolated the red channel, which contains 

information from the fluorescence of secondary antibodies against anti-SYCP3 at 568 nm. The 

image gradient on the isolated channel was then taken with a 3 pixel-wide disk structuring 

element. This creates an image where regions of contrast, or edges, are enhanced. Otsu’s method 

was applied to the image gradient (Otsu 1979), a clustering technique on pixels that reduces the 

grayscale gradient image to a binary image. Spurious pixels were removed by applying a 

morphological opening operator, followed by a morphological closing, with a 4 pixel-wide 

square structuring element (Serra 1983). Finally, the cleaned binary image was reduced to a 

single-pixel wide representation with the skeletonize algorithm as implemented in scikit-image. 

The total number of pixels in this single-pixel wide representation was taken as the total SC 

length for a spermatocyte. 

The reliability of this technique was assessed by comparison to measurements made by manual 

tracing. Performance was evaluated in a test set of 217 spermatocyte images, from 5 mus x cast 

F2s and 5 GI x WSB F2s. 

 

Genotyping and QTL analysis  

Mice from the mus x cast cross were genotyped at 295 SNPs using the Sequenom iPLEX 

MassARRAY system (Gabriel et al. 2009). Of these, 222 SNPs with Mendelian segregation 

patterns were retained for the QTL analysis. Mice from the GI x WSB cross were genotyped at 

77,808 markers on the Mega Mouse Universal Genotyping Array (MegaMUGA; Morgan et al. 



67 
 

 

2016). Of these, 11,833 SNPs with Mendelian segregation patterns were retained for the QTL 

analysis. 

Representative total SC length for spermatocytes from an individual was calculated by 

taking the mean SC length among its imaged spermatocytes. Individuals represented by fewer 

than 5 spermatocytes were omitted from the analysis. Haley-Knott regression (Haley and Knott 

1992) was performed on data from both crosses to identify QTL for variation in mean SC length. 

Individuals were weighted by the number of spermatocyte observations, and we included cross 

direction as an additive covariate. Thresholds for significance were determined by permutation 

(Churchill and Doerge 1994), with genome-wide  = 0.05, and established from 1000 replicates 

for each cross. We tested multiple QTL models by applying a forward/backwards stepwise 

search algorithm with penalized LOD scores (Manichaikul et al. 2009), as implemented as 

stepwise() in R/qtl (Broman et al. 2003). Conditional analyses were performed with MLH1 count 

and SC length as additive covariates. Separate sets of permutations, 1000 replicates each, were 

performed for each of the conditional scans to establish genome-wide significance levels.  

 

 

Results 

SC lengths were collected from images of spermatocytes subject to immunofluorescent 

cytology. We included only spermatocytes that were in pachytene, the stage at which the SC is 

fully mature. Computer vision techniques were applied to collect total SC length, including the 

XY pair, from images of individual spermatocytes. Figure 4.1 illustrates a typical spermatocyte 

and intermediates in the image processing steps that yield the SC length. These techniques 

reliably reproduced lengths obtained in a test set of manually traced images from spermatocytes 
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of both intercrosses (R
2
 = 0.74, mus x cast cross; R

2
 = 0.81, GI x WSB cross). When the total SC 

lengths of multiple spermatocytes from the same individuals in this test set were averaged, the 

goodness of fit was even higher (R
2
 = 0.94, mus x cast cross; R

2
 = 0.90 GI x WSB cross). 

From the mus x cast cross, we analyzed total SC lengths from 5893 spermatocytes, 

representing 289 F2 individuals. Total SC length in spermatocytes from the musculus parent was 

significantly greater than from the castaneus parent (mus mean = 174.2 m, SE: 0.7 m; cast 

mean = 150.4 m, SE: 0.4 m; t-test p < 0.05). The distribution of SC lengths from F2 

individuals and their relation to the parental values is shown in Figure 4.2a. The difference in SC 

length between the parental strains and the distribution of their F2s closely matches patterns 

observed in mean crossover number among spermatocytes (Dumont and Payseur 2011): a 

continuous distribution of the trait among F2s, with a mean value that is close to the mid-parent 

value. 

From the GI x WSB cross, we analyzed total SC lengths from 3639 spermatocytes, 

representing 229 F2 individuals. SC lengths were modestly, but significantly, greater in 

spermatocytes from the GI parent compared to WSB (GI mean = 139.6 m, SE: 1.6 m; WSB 

mean = 131.8 m, SE: 1.4 m; t-test p < 0.05). Approximately half of the F2 individuals from 

this cross have mean SC length outside the parental means, Figure 4.2b. This type of distribution 

was also observed for mean crossover number among spermatocytes, wherein a large number of 

individuals had trait values that fell outside the range of the parental means (Chapter 3). 

However, the level of transgressive segregation for SC length is not as severe as observed for 

crossover number, with a smaller fraction of F2 individuals falling outside the range of the 

parental means. Nevertheless, it may indicate the presence of QTL alleles with opposing effects 

within the lines (Lynch and Walsh 1998; Rieseberg et al. 1999).  
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Figure 4.1. Typical immunofluorescent image from spermatocyte and its progression through image analysis. 
The original image (left), isolated red channel (middle), and single pixel-wide skeletonized representation (right). 

  



70 
 

 

Correlation with recombination frequency 

The total length of the SC and the number of crossovers in a meiocyte are known to 

strongly covary. We examined this relationship in spermatocytes from F2 individuals of both 

intercrosses, comparing total SC length to the number of MLH1 foci per spermatocyte. While the 

correlation between these two traits was significant among spermatocytes from both intercrosses, 

the correlation was substantially stronger in the mus x cast cross (mus x cast: Pearson’s r = 0.38, 

95% CI [0.36, 0.40]; GI x WSB: Pearson’s r = 0.15, 95% CI [0.12, 0.18]). Further, we examined 

the covariation between these two traits among individuals, i.e. the correlation between mean SC 

length and mean number of MLH1 foci in spermatocytes from each F2 individual. Figure 4.3 

shows the relationship between these two traits in the two intercrosses. In both cases, the 

correlation coefficient was higher for trait values representative of individuals rather than 

individual spermatocytes (mus x cast: Pearson’s r = 0.52, 95% CI [0.42, 0.60]; GI x WSB: 

Pearson’s r = 0.16, 95% CI [0.04, 0.28]). Previous studies note variation in the ratio of SC length 

to total crossover number among spermatocytes from different individuals, particularly in 

humans (Lynn et al. 2002; Pan et al. 2012). We performed a linear regression to examine the 

ratio between SC length and total crossover number among individuals of both intercrosses 

(regression line pictured in Figure 4.3). We found similar coefficients for this relationship in both 

cases (mus x cast  = 2.03, SE = 0.21; GI x WSB  = 1.58, SE = 0.55).  
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Figure 4.2. Distribution of mean SC length in spermatocytes from F2 individuals. 

Parental means shown as dashed lines. Error bars show +/- 1 S.E. in F2 individuals. 
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Figure 4.3. Relationship between mean SC length and mean number of MLH1 foci in spermatocytes from F2 individuals. 

Regression lines in red.  
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QTL for total synaptonemal complex length 

In the intersubspecific cross between representatives of M. m. musculus and M. m. 

castaneus, we identified three QTL responsible for variation in mean SC length among 

spermatocytes from an individual. The QTL with the greatest effect localized to the X 

chromosome (Figure 4.4a). Intriguingly, the X chromosome also harbors the QTL with the 

greatest effect on mean MLH1 count in this cross (Dumont and Payseur 2011). In addition to this 

QTL, genomic regions on chromosomes 3 and 4 were found to contribute to mean SC length 

(Table 4.1). Both of these chromosomes also harbor QTL for mean MLH1 counts in this cross. 

These QTL explain an estimated 28.5% of the variance in mean SC length among the 

mus x cast F2s. The effects of the alleles at QTL on chromosomes 3 and 4 were additive, with the 

musculus allele conferring greater mean SC length. The QTL on the X chromosome, however, 

had phenotypic effects that opposed the parental trait differences. The musculus allele at this 

locus confers a reduction to mean SC length. This pattern of effects, including the antagonistic 

effect of the musculus allele on the X, is consistent with the effects of QTL found on the same 

chromosomes for mean MLH1 counts, raising the prospect that the same loci are responsible for 

variation in both SC lengths and MLH1 counts. 

In the intrasubspecific cross between GI mice and WSB, we identified two QTL 

responsible for variation in mean SC length, on chromosomes 5 and X (Figure 4.4b; Table 4.1). 

Together, they explain 12.8% of the variance in mean SC length among the GI x WSB F2s. 

Chromosome 5 also harbors a QTL affecting mean MLH1 count in this cross, but the QTL on the 

X appears to be unique for SC length. The effect of alleles at the QTL on the X chromosome 

matches the direction of the parental differences, with the GI allele conferring greater mean SC 
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length. In contrast, the QTL on chromosome 5 appears to be underdominant, with a reduction in 

SC length specifically among heterozygotes. 

We applied model-based multiple QTL mapping and evaluated the potential for epistasis 

between detected QTL in both intercrosses (Broman and Speed 2002; Manichaikul et al. 2009), 

but did not find any evidence for additional QTL or interactions between detected QTL. 

  

 

Table 4.1. QTL for synaptonemal complex length 

 

mus x cast cross     

Chr. 
Pos. 
(cM) 

LOD 
Pos. 
(Mb) 

1.5 LOD 
Interval (Mb) 

% var.
a
 

Estimated phenotypic means (SE)
b
 

MM / MY MC CC / CY 

3 38.0 4.12 103.5 68.0 - 128.6 6.4 165.7 (1.3) 162.7 (0.9) 157.8 (1.4) 

4 44.0 5.10 112.3 65.8 - 146.5 6.7 167.6 (1.7) 162.0 (0.9) 158.5 (1.3) 

X 31.9 9.51 71.7 52.9 - 90.7 14.6 158.3 (0.8) -- 166.1 (0.8) 

       

GI x WSB cross 
   

GG / GY GW WW / WY 

5 44.8 4.97 106.3 102.9 - 115.4 6.8 139.2 (0.9) 136.5 (0.6) 140.8 (0.8) 

X 54.0 3.78 138.1 123.0 - 153.8 4.9 140.1 (0.6) -- 136.8 (0.6) 
 

a
 Percentage of phenotypic variance among F2s explained 

b 
M – Musculus, C – Castaneus; MY and CY genotypes for QTL on X 

 

 

Causality and pleiotropy 

The known relationship between total SC length and crossover frequency motivated us to 

examine evidence for causal relationships between the two traits and the detected QTL. We 

performed conditioned genomic scans for QTL, using one trait as a covariate in the analysis of 

the other trait. Differences in the LOD score at detected QTL, between conditioned and 

unconditioned scans, provide evidence for a causal relationship between the locus and the  



 
 

 

7
5 

 

 

Figure 4.4. LOD plots of single QTL scans for SC length. 

Dashed lines show  = 0.05 genome-wide significance threshold. 

  



76 
 

 

conditioning trait (Li et al. 2006; Rosa et al. 2011). A decrease in the LOD score at the locus 

upon conditioning suggests pleiotropy, as variation in the conditioning variable explains the 

effects of the locus. An increase in the LOD score upon conditioning suggests the locus is 

upstream or downstream of the causal relationship between the traits, as effects of the locus are 

masked in the unconditioned scan. 

We performed conditioned genomic scans in both intercrosses, looking for changes in 

LOD score at QTL detected for mean SC length and mean MLH1 count (Dumont and Payseur 

2011; Chapter 3). We identified three QTL with significant differences in LOD score upon 

conditioning in the mus x cast cross (Table 4.2). This included a dramatic reduction in the LOD 

score for the QTL on the X chromosome, strongly suggesting its pleiotropic effect on both SC 

length and recombination frequency. A significant decrease in LOD score was similarly detected 

for the QTL on chromosome 4. In contrast, the LOD score for the MLH1 count QTL on 

chromosome 7 significantly increased upon conditioning. 

For the GI x WSB cross, none of the QTL had significant changes to their LOD score 

upon conditioning. The only QTL for both traits that co-localized to the same chromosome, on 

chromosome 5, had an increase in LOD score upon conditioning. The absence of a reduction in 

LOD score, combined with the underdominance effects of this locus on SC lengths, which 

contrasts with the additive effects of alleles at this locus for the number of MLH1 foci, suggests 

two causative loci may underlie this QTL. 
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Table 4.2. Changes to LOD scores of QTL when correlated traits are used as covariates 

 

QTL for mean MLH1 foci 
(SC length as covariate)  

QTL for mean SC length 
(MLH1 foci as covariate) 

 
mus x cast cross 

 





   

Chr. Pos. (cM) LOD 
 

Chr. Pos. (cM) LOD 

3 30.0 0.96  3 30.0 0.97 

4 32.0 -2.22 *  4 32.0 -2.44 * 

7 6.0 2.65 *  -- 

11 5.5 -0.70  -- 

15 36.8 -0.74  -- 

17 32.0 -1.84  -- 

X 31.9 -8.95 *  X 31.9 -9.27 * 

  
 

     

GI x WSB cross 
 

    

Chr. Pos. (cM) LOD  Chr. Pos. (cM) LOD 

5 47.8 1.15  5 46.7 1.35 

6 31.1 -0.37  -- 

10 29.1 0.26  -- 

14 58.5 -0.30  -- 

--  X 55.6 -0.61 

 

 

  

  



78 
 

 

Discussion 

In this study, we developed a novel computational approach to characterize SC length 

from immunofluorescent images in a large number of spermatocytes. This enabled mapping of 

the trait in two separate intercrosses, linking variation in SC length to multiple QTL. To our 

knowledge, these are the first QTL to be reported for SC length. Our results establish a strong 

genetic basis for natural variation in total SC length, within and between subspecies of house 

mice. The absence of overlapping QTL within and between subspecies for SC length suggests 

different loci are responsible for its evolution within and between subspecies. Different loci 

within and between subspecies are also suggested to be responsible for the evolution of genome-

wide recombination rate in these crosses (Chapter 3). 

Previous genetic mapping studies on recombination frequency in the same two crosses 

(Dumont and Payseur 2011; Chapter 3) provided a unique opportunity to examine its genetic 

relationship with SC length. As we may have expected, a greater number of QTL were detected 

in the mus x cast cross, where greater divergence exists between the parents. This mirrors the 

greater number of QTL found for mean MLH1 count in this intersubspecific cross. Surprisingly, 

the QTL with the greatest effect in the GI x WSB cross for crossover frequency had no effect on 

SC length. Transgressive segregation of MLH1 count in the GI x WSB cross was explained by 

the presence of such a QTL on chromosome 14 (Chapter 3). Based on the distribution of SC 

lengths and the parental trait values in GI and WSB, we may have expected to identify just such 

an antagonistic QTL. Nevertheless, antagonistic architecture for SC length persists in the mus x 

cast cross, paralleling patterns found for MLH1 count. 

Our conditional mapping analyses provide evidence for a causal genetic relationship 

between SC length and crossover frequency in the mus x cast cross. The greater correlation 
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between the two traits when values from spermatocytes are averaged by individual is consistent 

with such a relationship. The strongest evidence for pleiotropy is from the reduction in LOD 

score for the QTL on the X chromosome in the conditional analysis. Similar patterns of allelic 

effects further argue for pleiotropy at this locus. Evidence for genetic control of crossover 

frequency independent of control on SC length comes from the significantly increased LOD 

score of the QTL on chromosome 7 in the conditional analysis, and its absence from explaining 

variation in SC length. Similarly, the presence of a unique QTL on the X in the GI x WSB cross 

for SC length suggests that its genetic control can be independent of loci influencing crossover 

frequency. If this complex genetic relationship between SC length and crossover frequency also 

exists in humans, segregation of loci responsible for independent variation of the two traits may 

explain differences in the ratio of SC length and MLH1 counts among different individuals 

(Lynn et al. 2002; Pan et al. 2012). 

Conditional analyses in the GI x WSB cross indicated no significant differences in LOD 

score at any of the QTL. The absence of causally linked QTL in this cross is consistent with 

lower levels of correlation between SC length and crossover frequency among its F2s, relative to 

the mus x cast cross. This suggests a different architecture linking the two traits may exist in the 

two crosses. Perhaps the evolution of the two traits is constrained by the meiotic pathway such 

that QTL with large effect on one trait must affect the other, e.g. the QTL on the X in the mus x 

cast cross. However, the absence of significant changes to the LOD score of QTL in conditional 

analyses from the GI x WSB cross is not evidence for the absence of a causal relationship. 

Differences in measurement error between traits frustrates conclusions about causality in QTL 

studies (Broman and Sen 2009). There is reduced power to detect QTL for traits measured with 

greater error, and conditioning on such traits may not produce significant differences in LOD 



80 
 

 

score despite a causal relationship. Between the two traits in our analysis, SC length likely 

suffers from more technical as well as biological noise. While more QTL were detected for mean 

MLH1 foci than mean SC length, greater measurement error for the latter also undermines 

inferences this may provide about the relative complexity of the traits.  
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Chapter 5 

Conclusions 
 

 

 

This dissertation examined patterns of variation and the genetics underlying this variation 

to better understand the evolution of recombination rate. By examining differences in 

recombination rate within subspecies, we sought to find the origins of divergence and perhaps 

the environment in which divergence arises. This work demonstrated the indispensability of the 

mouse model system, which armed us with the powerful genetic and cytological techniques 

needed to answer evolutionary questions. Using classical genetic techniques, we examined 

intrasubspecific variation of recombination rate in Chapter 2. With the short divergence times 

between strains, the variation we observed here may be more aptly classified as polymorphism 

within a population. Chapters 3 and 4 focus more heavily on understanding the genetics of 

recombination rate evolution. Additional context from genetic studies of recombination rate 

evolution between subspecies of the mouse particularly enriches the conclusions of these 

chapters. A repeated theme from these two chapters is the treatment of genome-wide 

recombination rate, and its surrogates, as quantitative traits. This treatment made ready the tools 

of quantitative genetics, providing tremendous genetic insight into how recombination rates 

evolve. 

From comparisons of genetic maps, pervasive variation in recombination rate between 

two lines of GI mice was discovered. If this level of variation is representative of natural 

variation in mice, only the broadest patterns of recombination documented by genetic maps of 

laboratory mice are applicable to wild populations. This finding is similar to the pattern 
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described by Comeron et al. (2012), where wild-derived lines of fruit flies, Drosophila 

melanogaster, were found to have distinct landscapes of recombination. That regions of 

recombination rate divergence within the GI population, as described in Chapter 2, would not be 

shared with regions of divergence found in comparisons between mouse subspecies (Dumont et 

al. 2011) may not be surprising. If differences are pervasive from samples within a population, 

we may not expect the same patterns to persist over the time of subspecies divergence. While 

some genomic regions may be more prone to recombination rate divergence, enough of the 

genome shows variation that these regions are not predictive of broader patterns. The absence of 

a significant difference in the genome-wide rate in the face of pervasive variation across the 

genome argues that different evolutionary forces may be acting at different genomic scales. 

Whether this supports the view that genome-wide rates are under some form of stabilizing 

selection is debatable. 

One of the goals of Chapter 2 was to connect different scales of recombination rate 

evolution. Discovering polymorphism within the genome in the absence of genome-wide rate 

differences highlights the importance of this goal. Currently, no model of recombination rate 

evolution truly connects patterns of variation from the kilobase scale of hotspots, through the 

patterns on chromosomes, to the genome-wide rate. Though some notable attempts, e.g. Ubeda 

and Wilkins (2011), have been made to explicitly model connections between some of these 

scales. This problem may be exacerbated by empirical data that focuses on divergence between 

species. If the dynamics between the different genomic scales are themselves evolving between 

species, observed patterns of divergence across genomic scales may be confounded by a 

changing relationship between them. If so, continued efforts probing intraspecific variation may 

be more illuminating than trying to connect the many findings across disparate taxa. 
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The genetic mapping of genome-wide recombination rate between GI and WSB mice 

uncovered multiple QTL responsible for a small amount of divergence in the trait. This was 

explained by the large transgressive effects of alleles at one of the loci. While antagonistic alleles 

may not be that rare, they are present with strong effects in all three crosses mapping genome-

wide recombination rates in mice. There are many evolutionary modes by which this pattern 

could have emerged, but this finding strongly argues against directional selection on 

recombination rate. While this form of selection seems unlikely to exist on genome-wide rates 

across taxa, evidence for selection on recombination rate in artificial selection experiments and 

the rapid evolution of body size in GI mice raised its possibility in this study. 

Fine mapping of detected loci is one possibility to further characterize the genetics of 

recombination rate evolution. While useful for understanding the mechanism of action, the 

understanding of recombination rate evolution would likely be better served by sampling from 

more wild populations. This includes characterizing genome-wide as well as fine-scale rates 

from a variety of wild populations. Genetic dissection in a variety of populations may be 

prohibitive, but crosses with a common strain to sample the distribution of effects among 

offspring may be illuminating even without genetic mapping. The suggestion of variance QTL 

for genome-wide recombination rate provides another avenue for further research. The 

introduction of automated techniques, like the ones in Chapter 4, may allow for increases to 

sample size so that variance can be better characterized in future studies. An important pattern in 

genome-wide recombination rates that Chapters 3 and 4 do not address is the difference in 

recombination rates between the sexes. In mice, and many other species, oocytes have a greater 

number of crossovers as well as longer synaptonemal complex lengths. Large differences in the 

meiotic program exist between spermatocytes and oocytes, providing many opportunities for 
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genetic and evolutionary divergence to arise. However, the technical challenges of 

immunofluorescent cytology on oocytes prevented us from characterizing genome-wide 

recombination rates in females. The findings presented in this dissertation would be substantially 

enhanced by similar experiments in oocytes.  

Genetic mapping for synaptonemal complex length revealed the first such QTL for this 

phenotype. As a trait strongly correlated with genome-wide recombination rate, we may have 

expected many of the QTL for SC length to appear shared with QTL for MLH1 count. However, 

the existence of QTL that are unique to each trait, suggests genetic control of each independent 

of the other. This need not have been the case; imperfect correlation with crossover number 

could have been due to non-genetic differences. These differences in genetic control call into 

question the focus on recombination rates when discussing meiotic requirements. It may be 

possible that evolutionary forces are acting on other meiotic phenotypes to ensure proper 

chromosome segregation, and the evolution of recombination rate is a side effect rather than the 

underlying target. 

To put our results on SC length into perspective, a phylogenetic comparison of this trait 

across populations and species of mice would be very useful. One of the unstated motivations for 

examining the synaptonemal complex was the idea that counting only MLH1 foci from 

immunofluorescent images was squandering the rich image data. Measurement of SC lengths 

extracts additional data from these images. However, immunofluorescent cytology techniques 

can offer further views into variation along the meiotic pathway. Variation in recombination 

associated proteins, such as Dmc1 and Rad51, can be observed by cytology and QTL mapped in 

a similar way. Guided by an understanding of the mechanisms in meiosis, genetic analysis of 

variation in selected meiotic phenotypes can partition variation in recombination rate to variation 
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in elements of the pathway. Computer vision techniques may be able to mitigate the amount of 

labor needed to process these additional phenotypes. 
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