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ABSTRACT

Heterogeneous patient data offers both unique opportunities and chal-
lenges in biomedical research. Effectively integrating this information
while addressing the complexities it introduces is a crucial area of study.
My research focuses on two scenarios where heterogeneous patient data
are encountered, with the goal to develop methods that improve the relia-
bility and efficiency of the statistical analysis. The first scenario is about
incorporating patients’ natural ordering information in randomized phase
I studies. The exploratory nature of phase II trials makes it quite common
to include heterogeneous patient subgroups with different prognoses in
the same trial. Incorporating such patient heterogeneity or stratification
into statistical calculation can improve efficiency and reduce sample sizes
in single-arm phase II trials with binary outcomes. However, such consid-
eration is lacking in randomized phase II trials. In Chapter 1, we propose
methods that can utilize some natural order information which may ex-
ist in stratified population to gain statistical efficiency for randomized
phase II designs. We consider both binary and time-to-event outcomes
in our development. Compared with methods that do not use ordering
information, our method is shown to improve the probabilities of correct
selection and reduce sample size in our simulation and real examples. We
also developed its related R package constrselect and we discuss its key

functions and implementation in Chapter 2.
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The second scenario addresses the problem of causal generalization,
where differences in the distribution of treatment effect modifiers across
populations, known as covariate shift, can result in varying ATEs.Chen
et al. [2023] introduced a weighting method to estimate the target ATE
using only summary-level information from a target sample while account-
ing for the possible covariate shifts. However, the asymptotic variance
of the estimate was shown to depend on individual-level data from the
target sample, hindering statistical inference. In Chapter 3, we propose a
resampling-based perturbation method for confidence interval construc-
tion for the estimated target ATE, utilizing additional summary-level in-
formation. We demonstrate the effectiveness of our approach through
simulation and real data settings. We also developed its related R package

EBalGen and we discuss its key functions and implementation in Chap-

ter 4.



1 RANDOMIZED PHASE II DESIGN WITH ORDER

CONSTRAINED STRATA

1.1 Introduction

The rapid change in the therapeutic landscape and medical technology,
especially in the field of oncology, makes the randomized phase II trial
a popular choice, as it assures better patient comparability, reduces con-
founding factors, and synchronizes data capture. Indeed, a simple search
on the clinicaltrials.gov website leads to about 4,000 registered randomized
phase II trials in the last 10 years. Among them, 938 are actively recruiting
patients as of today.

In two excellent review articles [ Rubinstein et al., 2009, Sharma et al.,
2011], many advantages and disadvantages are discussed for randomized
phase II trials. One main disadvantage is that the implementation of ran-
domized designs generally requires much more patients than traditional
single-arm trials comparing with historical controls under similar settings
[Rubinstein et al., 2009]. Our method intends to deal with this issue for
randomized phase II trials that include stratification of patients.

Due to disease heterogeneity among patients, patients often have dif-
ferent prognostic factors and thus could be stratified into groups for ran-
domization. For example, it is quite common to have different stage cancer

patients (e.g. stages I and II or stages II and III) in the same trial. One



of our motivating examples is a public phase II stratified clinical trial
targeting cisplatin-ineligible patients with metastatic urothelial cancer
(clinicaltrial.gov Identifier: NCT03451331). The goal is to investigate the
effect of adding carboplatin versus oxaliplatin to existing treatment reg-
imen: gemcitabine and nivolumab. The randomization of this study is
stratified on the lymph node (LN) only metastasis status since LN only
metastasis patients are expected to have higher response rates.

Another motivating example comes from a phase II stratified clinical
trial which is still under development. The study targets patients with
early-stage triple-negative breast cancer who have completed neoadjuvant
therapy and have residual disease. The researchers want to investigate
the effect of adding Sacituzumab Govitecan versus Capecitabine to the
current single-agent treatment of Pembrolizumab. The stratification of
this study is based on nodal status as nodal negative patients are expected
to have higher event-free survival (EFS) rates.

Indeed, patient heterogeneity has been long recognized in single-arm
phase II studies [Thall et al., 2003, London and Chang, 2005, Wathen
et al., 2008, Jung et al., 2012]. Incorporating patient stratification into trial
designs has demonstrated improvement in statistical properties including
improved efficiency and reduced sample sizes for binary outcomes [ Chang
etal., 2012, 2011, Sposto and Gaynon, 2009, Xu et al., 2020]. However, such
consideration is lacking in randomized phase II trials.

Two main randomized phase II comparative designs are selection and



screening designs. The essential difference between the two is that the
selection design does not include a control arm but the screening design
does. Therefore the two designs recommend promising investigational
agents for further phase III studies based on different logic. The screening
design compares investigational agents to the control and screens out those
non-promising agents. Traditional hypothesis testing based methods are
used to determine trial sample sizes. To ensure feasible sample sizes, quite
liberal type I and type II errors are used.

On the other hand, the selection design focuses on “picking a winner"
from a pool of testing agents. The design is also sometimes known as the
“pick a winner" design. For example, the test agents may have already
demonstrated activity in limited scenarios, or they may be combination
drugs with new agents added to known active treatments [Liu et al., 1993].
In this type of design, it is not essential that the very best treatment is
definitely selected, since we could only make this decision after doing
a formal phase III trial. Rather, this design ensures that a substantially
inferior treatment will not be selected when a superior treatment exists
[Sargent and Goldberg, 2001].

The goal of our method is to utilize some natural order constraints
that may exist in stratified population to gain statistical efficiency for ran-
domized phase II designs. Our idea is applicable for both screening and
selection designs. However, for thoroughness and simplicity, we focus

on the selection design in this chapter, and put our application on screen-



ing design in the appendix. We demonstrate that utilizing such order
information is particularly useful in early-phase clinical trials, especially
when we want to gain more statistical efficiency and reduce sample sizes.
A fundamental reason for the efficiency gain is due to the fact that the
constrained estimates for treatment effects have smaller variances and
similarly negligible biases compared with unconstrained estimates. Incor-
porating constraint information will induce positive correlations between
estimated treatment effects across ordered strata, therefore increasing the
probability of correct selection. We provide such empirical evidence in
our appendix.

Besides the popular choice of binary outcomes in phase II trials, we also
devote our effort to incorporating time-to-event outcomes as a non-trivial
extension in this paper. Randomized phase II selection designs based
on time-to-event outcomes with no stratification have been considered
by Liu et al. [1993]. Many phase II trials are now designed to assess the
promise of a molecularly targeted or an immuno-biological agent, given
either alone or in combination with another regimen. In particular, it is not
always anticipated that such agents are likely to improve tumor response
rates. Rather, they will improve time-to-event outcomes such as EFS,
progression-free survival (PFS), or overall survival (OS) through means
other than direct cell killing as evidenced by tumor shrinkage. There is
an increasing need in oncology to evaluate agents that are anticipated to

increase PFS or OS, but not objective tumor response.



For randomized phase II selection design with binary outcome, Simon
et al. [1985] first introduced the design for unstratified population and
examined its performance and statistical characteristics. In this type of
design, patients are randomized to two or more experimental agents and
the treatment with the highest observed response rate will be selected
for further trial [Simon et al., 1985]. However, there are some additional
factors that may influence our decision to select the most appropriate
treatment to proceed for a phase III trial, such as toxicity, cost etc. Sargent
and Goldberg [2001] recently proposed a flexible randomized phase II
selection trial that allows researchers to select the most appropriate treat-
ment based on other factors when the observed response difference is
relatively small.

We extend the idea of Sargent and Goldberg [2001] to our setting of
randomized selection phase II trials with stratification. In Section 1.2
we present our method for both binary and time-to-event outcomes. In
Section 1.3 we evaluate the method under simulated settings by comparing
with the method without using the order information. In Section 1.4 we
illustrate our method with two motivating examples. Finally in Section

1.5 we conclude this paper with some discussion.



1.2 Method

To better illustrate the specific design that we are proposing, we describe
our method based on stratified randomized two-arm trials. Extension to
randomized studies with multiple arms are straightforward.

Assume patients are stratified into G strata and randomized to Arms
a and b. In total, there are N patients in each arm where the proportion
of patients in each stratum is w;q with j € {a,b}. Here, g =1, ...,G and
Zngl Wwjg = 1 forj = aor b. Based on this, the number of patients in Arm

j Stratum g is defined as njg = N - wjy,.

Binary outcome

Assume that, in Arm j and Stratum g, the number of responders r;4 are
independent binomial random variables with ;4 ~ Bin(n;g4, 7tj4). Here, we
assume the strata in Arm j satisfy the partial stochastic ordering constraints

in its strata [Park et al., 2012a] defined by a constraint set E C {1,..Gf, i.e.,
V(u,v) € E, 75, = .

If there is total ordering among all strata such that 7tj; > ... > 76, then
the constraint set E = {(1,2),(2,3),...,(G — 1, G)}. But partial ordering
is also possible. As an example, suppose the strata are formed by stage
(1 vs. 2) and nodal involvement (no vs. yes). Then there may be no

ordering between the stratum defined by ‘stage 14+nodal yes’” and the



stratum ‘stage 2+nodal no’. As a result, E may take the form E = {(1 +
no,1+yes), (1 +no,2+ no), (1+yes, 2+ yes), (2 + no,2 + yes)} where
neither (1 4+ yes,2 + no) nor (2 + no, 1 + yes) are included.

Let p;j4 be the corresponding E-constrained maximum likelihood es-
timator (MLE) with Arm j Stratum g under the constraint set E. Under
the framework described by Sargent and Goldberg [2001 ], we propose to
make the selection of one of the two arms as follows. If for each stratum,
the difference of E-constrained MLEs of response rates between two arms
is greater than a pre-specified level 0, the arm with the higher response
rate will be selected in the phase III trial.

Denote

™ = (ﬂjl/--‘/n]'G)T/ ) :a/b;

by = (pjll-”/ij)T/ j:a/b;

6 = (0,...,0),g, 0=0.

Let > and > be the element-wise > and > functions respectively for a vector.
We define Peorr = Pr(pq > po+0 | wq = mp) as the probability of correctly
choosing the better treatment when E-constrained MLE differences are
greater than 6. Instead of using the same threshold 0 for all strata, stratum-
specific threshold 04 can also be used to define P.,. In actual calculation,
we usually specify 7, = my, + 6* where 8* = (6%,...,0%)], ¢ with 8* = 0

and calculate

Pcorr:Pr(pa >‘pb"*_0|7ra :7rb+0*) .



Similar to the specification of the threshold 8, we can also use stratum-
specific difference 07 for the gth component of 6*.

If the difference for each stratum is in the opposite direction, we define
this as the statistically wrong region with a prespecified level 6 and we
should avoid this situation. Mathematically, this corresponds to Pyrong =

Pr(py = pa + 0 | wq = mp). Similar to the calculation of P, we calculate
Pwrong = Pr(pb = Pa + 0 | Tq =Ty + 9*) .

For the situation other than these two, we define it as statistically am-
biguous region. Then the selection of the treatment for the phase III trial
will be allowed to include other factors in addition to the response rate.

Mathematically, this corresponds to
Pamb =1 — Peorr — Pwrong .

In order to incorporate the partial stochastic ordering constraint in MLE,
we construct the E-constrained MLE of the response rate for each arm
and stratum as follows. First, we write the likelihood and log-likelihood
functions as

NS\ I T .
Ups) = W(H ) H< )P]Zf 1—pjg)™e” }
i

g=1

T; —
X | |p ]9 1_p]g n)g T'19

logl(p;) o ZTngOg(Pjg)+(leg—Tjg)10g(1—Pig)-



The optimization problem is to maximize log l(p;) through the follow-

ing constrained convex optimization problem,
min — log l(p;)
Pj

subjectto E C {1,..G}, (w,v) € E, pju = Pjvs (1.1)

0<pjg<l, j=ab;, g=1,...,G.
Let cj4 = logit(p;g). As the logit function is monotonically increasing,
we have pju < pjv <= Cju < ¢j. With 14 = 1354/144, we transform

Eq. (1.1) tobe

G
nrl;_nZ{ log (1 + €%9) —MjqCig } Njgq
) 9:1

) (1.2)
subject to E C {1,..G}*, (u,v) € E, pju = Pjv;

0<pjg<l, j=ab;, g=1,...,G.
This is the generalized isotonic regression problem as log(1 + ei9)
is strictly convex on (—o0, 0c0). By Barlow and Brunk [1972], Eq. (1.2) is

equivalent to

1a Tig \ 2
- ig
mna Z (Pjg - n—)g> Mg
g=1
) (1.3)
subject to E C {1,..G}", (u,v) € E, pju = Pjv;

0<pjg<l, j=ab;, g=1,...,G.

Therefore Eq. (1.3) is a strictly convex and positive definite quadratic

programming problem and there are many existing algorithms solving

Eq. (1.3). We use an easy-to-implement R package quadprog in this paper.
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Finally, after obtaining the E-constrained MLEs, we can plug them into

Eq. (1.4) to estimate the probabilities that we are interested in,

Mail NaGc Myl NbvG G
P _ nag Tug
corr — § T E E E IL{pa>pb+0} | | 7Tag

Tqa1=0 TaG=0T1p1=0 TbG=0
Ny
9 Tb MNpg—T
x( )Wb;u_ﬂbg) -

rbg
MNa1l MNac Mol LT

1 nag TtT“g

wrong {pr>pa+6} ‘19
Tal= =0 TaG= OTbl 0 TvG =0

le T —
x( 9>wb;m—ﬂbw

rbg

Pamb =1 — Peorr — Pwrong-

— Tiaq)o "9

— Tiaq)9 "9

(1.4)

Following Sargent and Goldberg [2001], we use A = Peorr + PPamp

with a pre-specified p € [0, 1] as the probability for selecting the superior

treatment. For determining the desired sample size, the most conservative

way is that we assume any statistically ambiguous outcome could result in

Arm b being chosen and thus we will try to avoid any ambiguous results.

With the prespecified ¢ € [0,1], N should be large enough to ensure that

A > ¢ when p = 0. A second approach would be to assume p percent of

ambiguous cases are indeed correct and being selected. In this case, N

would be selected such that A > ¢ when p # 0.
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Time-to-event outcome

We consider survival probabilities at a pre-fixed time x as the interested
endpoint [Rubinstein et al., 2005]. This endpoint is interpretable even in
the presence of non-proportional hazard, which is a well-known issue
for modern cancer treatments such as immunotherapy [Uno et al., 2015,
2014].

Suppose Sj4(x),j = a,band g =1, ..., Gis the true survival probability
at time x for Stratum g in Arm j. Further assume that the strata in Arm j
satisfy the partial stochastic ordering constraints at a given time x defined
by the constraint set E C {1,..G}?, i.e., V(u,Vv) € E, Sju(x) > Sjy(x). Similar
to the binary outcome setting, the choice of E is rather flexible to reflect
known order constraints among strata. We note that the constraints on
the survivor functions are on the given time x only, instead of on the
whole functions. Such pointwise constraint has known computational and
theoretical advantages as discussed by [Park et al., 2012a,b].

Let S;4(x) be the corresponding E-constrained nonparametric maxi-
mum likelihood estimator (NPMLE) for survivor probability of Arm j

Stratum g subject to constraint set E applied at a given time x only. Denote

S, = (Sp(x),...,S56(x))T, j=a,b;
S) = (gjl(x)/"'lng(x))T/ ]: Cl,b,'

0 = (6,...,0).c, 06>0.

The treatment selection strategy is similar to the above binary outcome
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case. That is, we define Poory = Pr(S. = S, +0 | Sq = Sy) as the
probability of correctly choosing the better treatment when the difference
of E-constrained NPMLE at time x is greater than 6. Then we can define
Puwrong = Pr(Sp = S.+0 ]S, = Sy) as the probability of wrongly choosing
the worse treatment, and P.mp = 1 — Peorr — Puwrong as the probability of
being in the ambiguous region. Similar to the binary outcome setting, we
usually specify S, = Sy + 6* where 6* = (0*,...,0%)] ; with, * = 0 and
calculate
Peorr = Pr(Sa = Sy + 0 | Sa = Sp +07),
Purong = Pr(Sp = Sq + 80| Sq = Sy, +6%), (1.5)

Pamb =1 — Peorr — Pwrong~

In order to incorporate the partial stochastic ordering constraints in
survival probability estimation, we follow Park et al. [2012a] to construct
the pointwise E-constrained NPMLE of survival probability for each arm
and stratum. In short, let the observed survival time for each individual 1
in Arm j and Stratum g be Yj4; and let the event indicator be A;4; for i =
1,...,mj4. Then the generalized likelihood function of survival probabilities

for each arm j is

G Tyg
1S (), -Sia()) = [ TT [{Si(Yigi—) — Sjg(Yige)}etSjq (Yyge)' Aot .
g=1i=1
(1.6)
The estimation of S;4(x) need to maximize Eq. (1.6) subject to the partial-

ordering constraint E such that V(u,v) € E, $;,.(x) > S;,(x).
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For Arm j and Stratum g, let m;4 be the number of distinct events and
Xjg1 be the distinct event times for 1 = 1,...m;4. Further define X;40 = 0
and Xjg(m;,11) = 00. Let Zj4(x) be the number at risk at time x and M;4(x)
be the number of distinct events in (0, x]. Let d;g; and zj4, be the number
of events and number at risk at time Xjg1. Let hjg(t) = log{S;4(t)/S;g(t—)}
and the corresponding discrete hazard at time t be 1 — exp{h;4(t)}. Then
the loglikelihood function of Eq. (1.6) subject to the partial-ordering con-
straints E is
G Mijg
max Zl{ ; (djgrlogll — exp{hjq(Xjq) 1+

g=

(g1 — djgu)yg (Xjgu)) + Zjg(x)hig (X)}

Mju(x) ij(x)
subject to Z Nju(Xjui) + R, (x) = Z Ny (Xjui) + 3, (x), for (u,v) € E,
i=1 i1

5
hjg (X) g 0 7
(1.7)
where hjg = {hjg(Xjg1), .- hig(Xjgm;,), hy(x)}, g = 1,..., G. Here, we
define hfg (x) = ﬂ(X#ngMjg(x))hig (x) to account for the fact that we do not
need to add this extra term Z;4(x)hjq(x) if x = Xjgm,,(x)-
Now, this becomes a linearly constrained concave maximization prob-
lem. One challenge here is that our data contain many more observed
event times than strata. Thus, we need to transform this problem into

a simple concave maximization problem subject to linear constraints by
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using the profile likelihood.

Let q;4 satisfies the relationship S;4(x) = exp(q;g4) at time x. Suppose
kiq is the unique solution of the equation le\i jf’m {log(1 — djgi/(zjq1 +
Kiglt = djg- If qjg = 0, Kjg = coand if qj3 = —00, Kjg = djgmy,x) —
ZigM;o(x)- If Mig(x) = 0, let Kjg(qjq;x) = —Zj4(x), and otherwise let
Kiq(qjg;x) = max(—Zj4(x), k;4). Based on Park et al. [2012a], we can then

transform Eq. (1.7) into the profile loglikelihood function as

G G [/Mjg(x)
max ) {(djg;x) =Z< 2_ 201 = digi) 1og{zigs + Ky 3:%) — digi)
j g—1

g=1 \ i=1
— 251 108{zi g1 + Kjg (595 %)} + Lk (q59) =25 (x11 Zj g (X)
M]Q( ) d
X [ - log{1 — jgt ]
e ; g{ Zjgl + Kig(qjg;x)}

subject to gju = qj, forall (u,v) € E;

djg < 0.
(1.8)
The corresponding derivative of Eq. (1.8) is d¢;(q;;x)/ dqu =
{(—=Kj1(qg51;%), ...,—KjG(q]-G;x)}T. In order to maximize Eq. (1.8), only G
parameters q; = (qji, ..., jg) need to be estimated for each arm to get
Siq(x) = exp(§j,)- This is a strictly concave maximization problem subject
to linear constraints. There are many existing algorithms solving this

problem. We use an easy-to-implement R function contrOptim to solve this

optimization problem.
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Finally, after getting the E-constrained NPMLE of survival probability
at time x, we could plug in Eq. (1.5) to estimate P.oyr and Pamp, and calculate

A using Monte Carlo simulations.

1.3 [Evaluation with simulated settings

In this section, we would like to compare the performance of the proposed
method with the simple randomized stratified selection design, which
does not incorporate order information. We consider the setting that each
of the Arms a and b has N patients. There are G = 2 strata in each arm.
The patient proportions in different strata are wq; = wy,1 = 0.4 (therefore

Wa2 = Wpp = 06)

Binary outcome

Assume 14 = Tpg and 75, > 751,j = a, b, g = 1,2 without loss of general-
ity. Accordingly, the E-constraint is 7, > 7tj;. The binomial response rate
MLE without considering the order information would be the observed
response rate ftj; = N, '1j4. We will compare the calculated A between
the two methods.

The probabilities of selecting the superior treatment (A) across different
N and 0 are shown in Figure 1.1. When calculating A, we consider p = 0
or p = 0.5. The former means that we do not want any ambiguity (i.e.

Pamb) in selecting the superior treatment whereas the latter means that
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we use a coin flip to recommend the superior treatment when the result
falls in the ambiguous region. Also, we consider different values of
in the design as a trade-off between minimizing the sample size N and
the clinical consideration of other factors. Overall, we see our method
gives uniformly larger A than the original method without using order

information.

p=0 i p=05

0.95

0.85
Group

With Constraints
-»- Without Constraints

<0.75

.
0.65 o
,‘.“

0.55

0
— (0.03,0.03)
-==- (0.07,0.07)

20 30 40 50 60 70 20 30 40 50 60 70
Sample size

Figure 1.1: Probability of selecting the superior treatment (A) for various
N and 6, between p = 0 and p = 0.5, fixing w, = (0.55,0.65),
6* = (0.2,0.2).

Table 1.1 lists required sample sizes per arm for common response
probabilities to get A = 0.8. The table also shows that A is not a monotone

function of response probabilities.
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Table 1.1: Sample size per arm for various response probabilities to get
A = 0.8, assuming 8 = (0.05,0.05), ;, — ;3 = 0.1 and 6* = (0.2,0.2).

With constraints Without constraints

Magg p=05 p=0 p=05 p=0

0.25 14 29 18 32
0.4 17 45 23 63
0.55 18 58 24 73
0.7 17 45 23 63
0.85 13 29 17 33

Survival outcome

Assume Sq4(x) = Sug(x), Sja(x) = Sj(x),j = a,b,g = 1,2 without
loss of generality. Accordingly, S;4(x) satisfy the E-constraints at time
x that Sj2(x) > Sj1(x),j = a, b . The survival probability NPMLE without
considering the order information would be the Kaplan-Meier estimator

A

Sjg(%) = [ Tin,cx(1— %‘i). We will then compare the calculated A between
the two methods.

Suppose patients enroll according to a Poisson process with an accrual
rate of 4 patients per month for each of the treatment arm stratum. We will
continue to follow up for an additional 6 months after the last patient is
enrolled for each stratum. Suppose the survival time follows exponential
distribution and we are constraining and comparing survival probabilities
at 6 months. The estimation of P and P, is based on 8,000 simulations.

The probability of selecting the superior treatment (A) across different

N and 0 is shown in Figure 1.2. Note that from the figure, A is not a mono-
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tonically increasing function of sample size. Thus, we should calculate the
required sample size needed for each scenario without assuming A should
increase with the increase of sample size. Under different selection criteria
p and trade-off values 8, we see our method gives uniformly larger A than

the original method without using order information.

0.85 Group

With Constraints
-»- Without Constraints

0
— (0.03,0.03)
- (0.07,0.07)

0.75

0.65

20 30 40 50 60 70 20 30 40 50 60 70
Sample size

Figure 1.2: Probability of selecting the superior treatment (A) for various
N and 6, between p = 0 and p = 0.5, fixing S, = (0.75,0.85),
0* =(0.2,0.2).

Table 1.2 gives sample sizes per arm for common survival probabilities
for different additional follow-up (FUP) months after the last patient
is enrolled for each stratum. Similar to the binary outcome setting, we
see that the required sample sizes are smaller when constraints are used,
except for the setting with S,1(6) = 0.85, FUP =4, p = 0.5. This might be
due to the high censoring probability and the fact that Py, is included

in the definition of A.
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Table 1.2: Sample size per arm for various survival probabilities at 6
months to get A = 0.8, assuming 8 = (0.05,0.05), S(6);, — S(6);1 = 0.1 and
0* = (0.2,0.2).

With Constraints Without Constraints
FUP (months) S41(6) p=05 p=0 p=0.>5 p=0

0.25 14 29 18 32

0.4 17 45 22 64

6 0.55 19 58 24 73
0.7 17 47 23 64

0.85 12 28 17 39

0.25 15 34 19 42

0.4 19 55 25 67

5 0.55 22 58 27 74
0.7 19 52 24 67

0.85 15 33 19 43

0.25 21 42 25 52

0.4 27 58 32 72

4 0.55 28 63 32 77
0.7 26 55 29 69

0.85 22 40 21 50

1.4 Evaluation with real settings

Here we would like to use two real clinical trial examples to demonstrate
the advantage of our method in binary and survival settings. First, let’s
consider our motivating clinical trial example for patients with metastatic
urothelial cancer. This trial has two treatment arms: treatment nivolumab,
gemcitabine, oxaliplatin versus treatment nivolumab, gemcitabine, car-
boplatin. The primary outcome of the study is response rate and the
stratification is based on lymph node only metastasis versus metastasis of

other sites. Previous studies reported that there are around 30% of patients
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with lymph node only metastasis have better response rates. Here, a ran-
domized stratified phase II selection trial would be the most appropriate.

We hypothesize that the lymph node only group will have a higher
response rate than the other group. We assume two strata of the inferior
treatment arm have response rates 7, = (0.4,0.5), 8* = (0.2,0.2) and 30%
of the total study patients have lymph node only metastasis. Figure 1.3
shows the calculated A under different sample sizes using our proposed
method and the method not considering order information. We see that
the sample size N per arm derived from our method is around 20 versus
30 using the method without considering order information to achieve

A = 0.8 with p = 0.5 and 8 = (0.05, 0.05).

p=0 i p=0.5 |

0.9

S
Group

< With Constraints
0.7 -~ Without Constraints

0.6

20 30 40 50 20 30 40 50
Sample size

Figure 1.3: Probability of selecting the superior treatment (A) for various
N, between p = 0 and p = 0.5 with 8 = (0.05,0.05), 7, = (0.4,0.5),
0* =(0.2,0.2).

For the other motivating example, it has two treatment arms for ex-
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amination with the goal of comparing the effect of Sacituzumab Govite-
can in combination with Pembrolizumab versus Capecitabine and Pem-
brolizumab in patients with triple negative breast cancer and residual
disease. The primary outcome of the study is EFS and the stratification
of this study is based on nodal status. Previous studies reported that the
node positive group had lower 2-year EFS than node negative group. The
prevalence of node positive is around 30%. Again, a randomized stratified
phase II selection trial would be the most appropriate.

Suppose the two strata of the inferior treatment arm have 2-year EFS
Sy, = (0.6,0.7), and sample size is determined based on an improvement
of 8 = (0.15,0.15) for the better treatment arm. Suppose patients enroll
according to a Poisson process with an accrual rate of 8 patients per year
for each of the treatment arm stratum. We will continue follow-up for
an additional 2 years after the last patient is enrolled for each stratum.
Suppose the survival time follows exponential distribution and we are con-
straining and comparing survival probabilities at 2 years. Based on 8,000
Monte Carlo simulations, the estimated A under different sample sizes
using our proposed method and the method not considering order infor-
mation are shown in Figure 1.4. We see that the sample size derived from
our method is around 25 versus 35 using the method without considering

order information to achieve A = 0.8 with p = 0.5 and 8 = (0.02,0.02).
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] |
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< With Constraints
-»- Without Constraints

0.6

0.5

20 25 30 35 40 4520 25 30 35 40 45
Sample size

Figure 1.4: Probability of selecting the superior treatment (A) for various
N, between p = 0 and p = 0.5 with 8 = (0.02,0.02), S, = (0.6,0.7),
6* = (0.15,0.15).

1.5 Discussion and conclusion

We have considered designing stratified randomized phase II cancer trials
using order constraints. Given the exploratory nature of phase II trials,
it is important to incorporate known constraints into the sample size cal-
culation procedure to improve statistical efficiency. Using a two-arm ran-
domized selection design as our setting, we demonstrated improvement
of selection probabilities or reduction of sample sizes for both binary and
time-to-event outcomes.

Our results are easily generalizable to randomized phase II screening
designs and we put the details in the appendix. In addition, we can simply
use the E-constrained MLEs in most of the calculations laid out in [Jung

and George, 2009]. Such a generalization can be an interesting future
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work. In addition, our approach shows promise for Phase III clinical trial
applications, particularly when individual strata contain limited numbers
of patients. For example, this adaptation would be especially valuable
in rare disease studies, where recruitment challenges naturally result in
small stratified subgroups. By incorporating the natural ordering relation-
ships between strata, our method can enhance statistical power in these
challenging late-phase trial contexts.

A fundamental assumption for our method is the E-constraint assump-
tion. Because the constraint set E is very flexible, we recommend including
only well-established ordering. In other words, when there is uncertainty
or insufficient data to support a particular order relationship, it may be
better not to include such a relationship in the set E.

Statistically, one can also try to empirically evaluate the ordering of
an assumption when there is existing data. A recent method known as
nearly isotonic regression [ Tibshirani et al., 2011, Matsuda and Miyatake,
2022] may be used to visually evaluate such an assumption. We leave the
details to the Appendix. In there, we also evaluate the performance of our
method when there is a violation of the ordering assumption.

In our calculation, we defined P, as the probability of differences in
the response rates or survival probabilities surpassing a common threshold
for all strata. Alternative definitions can be used. For example, it can be
defined as ‘winning’ in at least one stratum, instead of in all strata. We

are also extending our design to recommend a subgroup-specific winner
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where the subgroup consists of certain strata.
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2 AN R PACKAGE: CONTRSELECT

2.1 Overview

This chapter introduces an R package contrselect, which is used to incor-
porate patient heterogeneity and stratification into randomized phase
IT selection design. This package focuses on estimating the probability
of correct selection (A) when comparing two treatments, accounting for
additional factors when the observed response difference is relatively
small. The package offers flexibility in handling both survival and binary
outcomes, as well as with and without constraints. Regarding patient
heterogeneity, it can accommodate both total and partial ordering infor-
mation, making it particularly useful when we have multiple strata. We
illustrate the implementation of our package under different scenarios.
The key functions for our package are pickwin_bin_multiple() for binary
outcome and pickwin_surv_fun() for survival outcome. Our package is
available on github https://github.com/yc702/constrselect and it passes
R-CMD-check.

2.2 Package dependencies

contrselect was developed with dependence on 7 packages:

o parallel, doParallel, foreach and doRNG are essential tools for imple-

menting parallel computing, as most of our methods are based on



26

Monte Carlo simulations. These packages can significantly increase
the efficiency of our method by distributing computational tasks
across multiple CPU cores. Especially, /0RNG is used to ensure re-
producibility in parallel computing given the same seed [R Core

Team, 2023, Microsoft and Weston, 2022a,b, Gaujoux, 2023].

e quadprog provides functions for solving quadratic programming (QP)
problems, which minimizes a quadratic function subject to linear
constraints. This package is essential for the binary outcome method

given total and partial ordering of strata [ Turlach and Weihs, 2019].

e survival offers comprehensive tools for analyzing time-to-event (sur-
vival) data. Here, we primarily use its functions for getting Kaplan-

Meier estimators at a given time [ Therneau, 2023].

e dplyr is a powerful and efficient tool for tidy data manipulation

[Wickham et al., 2023].

2.3 Key functions

Binary outcome

pickwin_bin_exact() and pickwin_bin_multiple() are two crucial functions to
implement in our package for binary outcome. While pickwin_bin_exact()
only works for the two-strata case, pickwin_bin_multiple() is more flexi-

ble, allowing us to incorporate more than two strata. Another important
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difference between these two functions is that pickwin_bin_exact() em-
ploys the exact binomial method to do the statistical calculation, while
pickwin_bin_multiple() relies on Monte Carlo simulations, resulting a sig-
nificantly longer computation time. Since both functions share similar
input arguments, here I will mainly focus on pickwin_bin_multiple() for

demonstration purpose.

o 1 Total sample size for each treatment arm.

e p_inf A vector of response probabilities for the inferior treatment

arm for each stratum.

e D A vector of two treatment arms differences for each stratum, De-

fault: ¢(0.15, 0.15, 0.15).

e d A vector of ambiguous region for each stratum, Default: ¢(0.05,

0.05, 0.05) for three strata.

e prop.strat The sample size proportion for each stratum, Default: ¢(0.2,

0.3, 0.5) for three strata.

o study Could be either "Constrained" or "Origin" for the two type
of study design with or without using constraints, Default: "Con-

strained’”.
e S Number of simulations for calculating the probabilities.

o cluster Number of parallel running CPU cores, Default: 6.
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e order_list A list of strata order allowing for total and partial ordering,
grouped in a vector within a list. Eg. list(1,2,3) for total ordering

and list(1,c(2,3)) for partial ordering.

e with_seed Random seed for simulation, Default: NULL.

The output of the function returns a data frame of whether each simu-
lated scenario would result in a correct and wrong decision with a total of

S number of simulations.

Survival outcome

pickwin_surv_fun () is the main function for survival outcome. It is flex-
ible as it allows us to incorporate more than two strata. The statistical

calculations in this function is based on Monte Carlo simulation.

e 1, prop.strat, S, d, study, cluster, order_list, with_seed are the same as

the input as function pickwin_bin_multiple().

e surv_inf The survival probability at time x for patients in the inferior

treatment arm.

o surv_sup The survival probability at time x for patients in the superior

treatment arm.

e arrival_rate The Poisson arrival rate for patients, number of patients

accrued each month/year.
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e FUP Additional follow up time after the last patient is accrued.

e x Time we are interested in comparing the survival probabilities.

The output of the function similarly returns a data frame of whether
each simulated scenario would result in a correct and wrong decision with

a total of S number of simulations.

2.4 Example implementation

For a two-strata example with a binary outcome, we will look at a scenario
similar to the real-world setting described in Chapter 1. Suppose a clinical
trial has two treatment arms to study and we would like to pick a winner.
The primary outcome of the study is the response rate, and the patients’
stratification is based on lymph node only metastasis versus metastasis
of other sites. Historical literature mentions that around 30% of patients
with lymph node only metastasis have better response rates.

Suppose the lymph node only group has a higher response rate than the
other group. We assume two strata of the inferior treatment arm having
response rates (0.4, 0.5) while the better treatment arm having (0.6, 0.7)
constraining on strata 2 has a better response rate than strata 1. We use

exact binomial function, pickwin_bin_exact() to calculate P.orr and Pyimyp.

We see that the sample size N per arm derived from our method is around
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20 to achieve A = p X Pamp + Peorr = 0.8 with p = 0.5 and ambiguous
regions (0.05,0.05).

result = pickwin_bin_exact(n = 20, p_inf = ¢(0.4,0.5),
D=c (0.2,0.2) ,d=c(0.05,0.05),
prop.strat=0.7,study="Constrained",
order_list=1list (1,2))

result
#> pcorr pamb
#> 0.6128794 0.3673020

With a slight modification of this example, suppose the patients now are
stratified into three strata, based on cancer stage 1,2,3. Previous research
indicated that the larger the cancer stage, the worse the prognosis, with
the sample proportion of 4:3:3.

We assume three strata of the inferior treatment arm having response
rates (0.5,0.4,0.3) while the better treatment arm having (0.65,0.55,0.45)
for cancer stage 1,2,3. Using 5000 Monte Carlo simulations, the pick-
win_bin_multiple() function calculates P.orr and Pgmp. In order to in-
corporate the ordering constraints, we specify order_list to be ‘list(3,2,1)
which indicates the total ordering constraints of response rates strata 3
< strata 2 < strata 1. If we want to specify partial ordering constraints,
eg. strata 3 < strata 2 and strata 3 < strata 1 without specifying the or-

der between strata 1 and 2, we could set order_list=list(3,c(1,2)). We see
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that the sample size N per arm derived from our method is around 58 to
achieve A = p X Pymp + Peorr = 0.8 with p = 0.5 and ambiguous regions

(0.02,0.02,0.02).

result <— pickwin_bin_multiple(n = 58, p_inf = ¢(0.5,0.4,0.3),
D=c(0.15,0.15,0.15),
d=c(0.02,0.02,0.02),
prop.strat=c(0.4,0.3,0.3),
study="Constrained", S = 5000,

cluster=6,order_list=1list (3,2,1))

Pcorr = sum(result$Corr)

Pwrong = sum(result$Wrong)
(Pcorr+0.5%(5000—Pcorr—Pwrong)) /5000
#> 0.8052

For a two-strata example with survival outcome, we will also look at a
scenario similar to the real-world setting described in Chapter 1. Suppose
two treatment arms are evaluated, with event-free survival (EFS) as the
primary outcome and patients’ stratification based on nodal status. Previ-
ous studies showed that the node positive group had a lower 2-year EFS
with the prevalence to be around 30%.

Suppose two strata of the inferior treatment arm have 2-year EFS (0.6,
0.7), and the sample size is determined based on an improvement of

0.15 for the better treatment arm. Suppose patients enroll according to a
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Poisson process with an accrual rate of 8 patients per year for each of the
treatment arm stratum. We will continue to follow up with patients for
an additional two years after the last patient is enrolled in each stratum.
Assuming that survival time follows an exponential distribution, we will
compare and constrain survival probabilities at two years. Based on 8000
Monte Carlo simulations, we need a sample size of 30 to achieve A =
P X Pamb + Peorr = 0.8 with p = 0.5 and ambiguous region (0.02, 0.02).

We could also generalize it to include more than two strata.

result <— pickwin_surv_fun(n=25,prop.strat=c(0.3,0.7),
surv_inf=c(0.6,0.7),
surv_sup=c (0.75,0.85),
d=c (0.02,0.02), arrival_rate=S8,
FUP=2,x=2,
S=8000,study ="Constrained",
cluster=2,order_list=1list (1,2),

with_seed = 111)

## Pamb

pamb=8000—sum( result$Corr)—sum(result$Wrong)

## lambda calculation with rho = 0.5
(sum(result$Corr)+(pamb)/2) /8000
#> 0.80825



33
3  CONFIDENCE INTERVAL CONSTRUCTION FOR CAUSALLY
GENERALIZED ESTIMATES WITH TARGET SAMPLE SUMMARY

INFORMATION

3.1 Introduction

Causal inference plays a pivotal role in population health research, pro-
viding essential tools for understanding and shaping effective health in-
terventions. One of its popular research questions is how to generalize
causal findings from a study population to a target population (Degtiar
and Rose, 2023, Colnet et al., 2023, Chen et al., 2023). For example, we may
want to generalize findings about the effectiveness of a treatment from
a properly conducted randomized clinical trial (RCT) to its target popu-
lation. We usually refer to this type of problem as generalizability [ Cole
and Stuart, 2010, O’Muircheartaigh and Hedges, 2013], transportability
[Rudolph and van der Laan, 2017, Pearl and Bareinboim, 2011], or data
fusion [Bareinboim and Pearl, 2016, Graham et al., 2025, Li and Luedtke,
2023]. There are some differences between these terminologies, and more
detailed explanations can be found in Colnet et al. [2023].

For much of this article, for demonstration purposes, we focus on gener-
alizing the average treatment effect (ATE), although similar considerations
can be given to other causal estimands such as the Average Treatment

effect on the Treated (ATT) or Average Treatment effect on the Overlap
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population (ATO) [Colnet et al., 2023]. Our method mainly deals with
causal generalization from a source to a target population when individual
treatment effects are heterogenenous. Specifically, the individual treat-
ment effects may depend on certain covariates, known as effect modifiers.
In addition, the distributions of the effect modifiers can differ between the
two populations [Sugiyama et al., 2007].

Much of the existing literature take a data fusion or integrated data
analysis approach to this problem [Colnet et al., 2023, Bareinboim and
Pearl, 2016, Graham etal., 2025, Li and Luedtke, 2023, Dahabreh et al., 2023].
Such approaches typically require individual data from both populations.
However, there can be settings when comprehensive data at the individual
level may not be consistently accessible within a target sample, owing to
various practical considerations such as restricted data sharing, storage
constraints, and privacy apprehensions [Degtiar and Rose, 2023]. On the
contrary, obtaining summary-level information from the target sample
is comparatively more feasible. This type of information can be readily
gathered from diverse sources such as healthcare databases, census data,
and published literature.

To deal with the challenges posed by lack of individual data from
the target population, Dong et al. [2020] adapted the entropy balancing
weights approach [Hainmueller, 2012, Zhao and Percival, 2016] for gener-
alizing ATE estimation from an RCT to a given target population. Josey

et al. [2020] then extended the approach to the setting when the source
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sample is from observational studies. In particular, they proposed a two-
step procedure to adjust for covariate shift and confounding separately.
By showing that the weights produced by the two-step procedure of Josey
et al. [2020] can be consolidated into a one-step procedure, Chen et al.
[2023] developed a more intuitive strategy that may further mitigate bias
under mild conditions, which rely solely on summary-level information
from the target sample and individual-level covariates from the source
sample. Recently, Chattopadhyay et al. [2024] proposed a very similar
strategy.

The purpose of this article is to provide a practical solution to a key lim-
itation with these methods: how to construct confidence intervals (ClIs) for
the resulting causally generalizable estimates. Chen et al. [2023 ] showed
that the asymptotic variance of their estimator depends on individual-level
data in the target sample. Similarly the asymptotic variance of the estimator
from Chattopadhyay et al. [2024] also depends on the individual-level data
in the target sample. This article addresses this limitation by proposing a
method to construct CIs for the proposed estimator from Chen et al. [2023 ]
using resampling-based perturbation, without requiring individual-level
data from the target sample.

This paper is organized as follows: In Section 3.2, we present general
notations and assumptions for our method. In Section 3.3 we present two
methods to do the resampling-based perturbation for CI construction. In

Sections 3.4 and 3.5, we evaluate the proposed methods using simulation
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studies and a real data application using cross-validation. In Section 3.6,

we conclude the paper with a discussion.

3.2 Notation and framework

Suppose we have individual-level data in a representative sample of our
source population §, denoted as {(Xi; Ai;Yi) : i € 8} with ng subjects.
We denote X; € X C RP as the pre-treatment covariates which include
confounders and treatment effect modifiers. The treatment indicator is
denoted as A; € {0,1}, and Y; is the outcome we are interested in. For a
representative sample of our target population T, the sample size is n
but we do not observe the individual-level data. Instead, we only have the
information for the first moments based on a set of linearly independent
covariate functions hy : X — R;k = 1,..., K}, from the target sample as

follows.

Each hy is usually defined on one or two covariates, instead of on the
full covariate vector. For continuous covariates, if hy is defined as an
identity function, then ﬂkg represents the mean of this component. If hy
is defined as a polynomial function of degree 2, hy 7 corresponds to the
second moment, or variance, of this component. For discrete covariates, hy
could be defined as an indicator function to count the number of subjects

in a particular category.
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Here, we formulate the causal problem using the potential outcome
framework [Rubin, 1974, Rosenbaum and Rubin, 1983]. For each subject
we define a “full" random vector (X;,S;, A, Yi(0),Yi(1)), where S; is a
population indicator in source or target such that S; = 1 fori € § and
Si = 0fori € 7. The total sample size is n = ns + n, and each subject
assumed to be i.i.d. from a joint distribution of (X, S, A,Y(0),Y(1)). More-
over, § is used to denote the subjects in the source control group, and
mathematically, §¢ = {i : S; = 1;A; = 0}; 8; is defined for the source
treated group similarly. According to Rosenbaum and Rubin [1983], we
use the propensity score nt(x) = P(A = 1|X = x,S = 1) to determine the
treatment assignment mechanism. The main estimand in this paper, ATE

of the target population, is
™ =E{Y(1) — Y(0)[S =0}, (3.1)

The following 3 standard assumptions are used which enable identifi-
cation of causal effects within the source population.

Assumption 1. (Stable Unit Treatment Value Assumption or SUTVA)
There is no interference between different subjects and no hidden variation of
treatments.

Assumption 2. (No unmeasured confounders of treatment assignment) In
the source population, (Y(0),Y(1)) are conditionally independent of A given X:
(Y(0),Y(1)) LAIX,S=1.

Assumption 3. (Positivity of treatment assignment) The propensity score of
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the source population is bounded away from 0 and 1: for some ¢ > 0, ¢ < 7(X) <
1 — c almost surely.

To extend the generalizability of the causal estimates to the target pop-
ulation, a key quantity is the participation probability between source and
target defined as p(x) = P(S = 1|X = x). We further adopt two additional
assumptions from Rudolph and van der Laan [2017] and Dahabreh et al.
[2020].

Assumption 4. (Mean exchangeability across populations) The conditional
mean of the potential outcomes given the covariates are equal between the two
populations: E{Y(a)|X,S = 1} = E{Y(a)|X, S = 0} almost surely for a € {0, 1}.

Assumption 5. (Positivity of participation probability) The participation
probability is bounded away from 0: p(X) > c almost surely for some ¢ > 0.

We further denote the conditional mean and variance of the potential
outcomes in the source population as pq(x) = E{Y(a)X = x,S = 1}
and o4(x) = Var{Y(a)|[X = x,S = 1}. Under Assumption 4, we have
Ha(x) = E{Y(a)IX =x,S = 0} = E{Y(a)|X = x}. The conditional average

treatment effect (CATE) function is denoted as T(x) = w3 (x) — to(x).
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3.3 Method

Gap in the existing work

Given Assumptions 1-5, we can estimate T* in terms of the observable from

the source sample data by a difference of weighted outcomes as follows:

2y = ni > Wiy — ni > wiYi. (3.2)

The weights {w; : i € 8} take the following form [Chen et al., 2023]:

- :{ Aj 1-A; }E(Si)(l—P(Xi))
' n(Xi)  1—m(Xy) ) (1—E(Si))p(Xi)

Directly estimation of w; is usually computationally unstable. Without

the individual data it is also infeasible. Therefore Chen et al. [2023] pro-
posed a method for estimation of the weights as follows, based on entropy

balancing weighting framework

IVIVEI(} Z wi log wy
~ ie$

1 _

subject to — Z wihk(Xi) = hk,g', k= 1, ey Kh;
S ie8;

1 _

—_ Z wihy (Xi) = heo, k=1,...,Ky;

s {es, (3.3)

1 1

- Z wigk(Xi) = . Z wigk(Xi), k=1,...,Kg;

1€8 1€8)

nizwlznizwlzl

S ie8; 5 ie8
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In particular, functions {hy : X =+ R;k = 1,..., Ky} are used to address
covariate shift between source and target samples, while functions {gy :
X = R;k =1,...,Kq} are employed to further correct for imbalances
between the treatment and control groups within the source sample. From
the theorem below, we can see that ideally the hy functions should be
chosen so that the linear span formed by them can at least cover treatment
modifiers, even all outcome related variables if possible. The gy functions
should be chosen to complement hy, to determine the treatment assignment
mechanism.

The weight normalization constraint at the last line of Equation (3.3)
can be absorbed to the first two constraints by introducing hy(x) = 1.
Denote H = (hg, hy,...,hg,) and G = (gy, ..., gk,). The following theo-
rem is adopted directly from Chen et al. [2023 ]| which originally listed 3
conditions under any of which could lead to consistency of the resulting
weighting estimator for T*. Here we only list two of them as the other one

was not as intuitive.

Theorem 3.1. Suppose W is the solution of (3.3). If either of Conditions (a) or
(b) below holds, Ty, is a consistent estimator of T*:

Condition (a). pq(x) € Span{H(x)}, a =0, 1.

Condition (b). log{m(x)/(1 — m(x))} € Span{H(x), G(x)} and T(x) €
Span({H(x)}).

Chen et al. [2023] further derived the asymptotic variance for t,,.
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However, estimation of the asymptotic variance directly from their formula
requires individual covariate values in the target sample. We intend to
overcome this limitation by introducing a resampling-based perturbation
method for CI construction that do not require such information from the

target sample.

Resampling-based perturbation for confidence interval

construction

Parzen et al. [1994] introduced a straightforward resampling method for
inference based on pivotal estimating functions within a semiparametric
model framework. The authors demonstrated that for a broad class of
estimating functions meeting two mild convergence conditions, a valid
asymptotic CI could be constructed using the resampling method on the
pivotal estimating functions. Hu and Kalbfleisch [2000] further broadened
the idea by using bootstrapped general estimating functions for statisti-
cal inference. In particular, when the estimating functions are sums of
independent terms, we can resample or bootstrap these terms to obtain
an empirical distribution of the estimating functions. Solving the corre-
sponding bootstrapped estimation equations then leads to valid statistical
inference for the resulting estimators. Here, we extend this idea to our
setting.

Since Equation (3.3) has constraints, we work with its dual problem
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which is unconstrained for our purpose. In particular, we have the follow-

ing characterization of the weights from Equation (3.3).
. {exp{ii HX) +97G(X)), i€8
Wi = ~
exp{?\OTH(Xi) —¥TG(Xy)), 1€

where (?\1, Ao, ¥) € REn+1x RKr+1 % RKs ig the solution to the dual problem:

min — Z exp{?\T Xi)+v'G(X; }+ — Z exp{7\0 Xi) — v G(X:)}

Moy M 125 S iesy
— (A +A¢ JHg
(3.4)
Here Hy = (}_10,7, ...,FLKh;y) with EOJ =1.
Equation (3.4) leads to the following first order condition to solve for

(A, Ao, 9):

s X ies, HIX)) explA H(Xi) +vTG(Xi)} —Hy =0

s Y e, HX) exp{Ad H(Xi) =y TG(Xi)} = Hy =0

Ziesl G(Xi) exp{A] H(Xi) + v G(Xi)}—
D ies, G(Xi) exp{Ag H(Xi) =y T G(X{)} =0

(3.5)

Therefore, if we can use bootstrap to capture the variance of the es-
timating equations in (3.5), we can back-propagate the estimation error
to the estimated weights, enabling us to construct a CI for the estimator
1, in (3.2). The classic bootstrap [Efron, 1979] can be applied to the ele-
ments in the source population {H(X;), G(X;)} to generate bootstrapped

versions {H(X;)(®), G(X;)®)} for b = 1,..., B. However for the summary
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level information Hy, we resort to parametric bootstrap [Efron, 2012].
Because Hy are sample averages, we assume that Hy ~ N(pp, X)) asymp-
totically. Therefore when X, is available from the target sample, we can
draw l:lgrb) from the multivariate normal distribution with mean Hy and
variance-covariance matrix X'y. It is more common that only the diago-
nal elements of X'y is available, especially if the summary information is
from published literature. Then we propose to estimate the correlation
matrix corresponding to X'y, using the individual data from the source

population.

Algorithm 1 Resampling-based perturbation method for CI construction
(RPM-CI)

procedure rem-c1({(Xi; Ay; Y;) : 1 € 8}, Hy, var(Hg))
Estimate correlation of target moments Ri . = corr(H(X{)),1i € 8.
Estimate t,, using {(Xi; Ai;Yi) : i € 8} and Hy by Equations (3.2)
and (3.3).
foreachb=1,...,Bdo
Draw {(ng) ; Agb) ;Y)Y 14 € 8} from the source population.

1

Generate perturbed means H‘(Ib ) ~
N(Hy, var(Hy)/2Rp, var(Hy)1/2).
Estimate {w.” : 1 € 8} using {(X\*; Al*; Y[®)) : 1 € $} and ALY
by Equation (3.3).
Estimate %'’ using {vab) ;1€ 8fand {(ng);Agb);Yi(b]) i€ 8}
by Equation (3.2).
end for
Construct a 95% CI based on 2.5 and 97.5 percentiles of A0, b =
1,...,B.
end procedure

We formalize the above proposed resampling-based perturbation method
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to construct the confidence interval (RPM-CI) in Algorithm 1. For a par-
ticular data set, in step 1, we estimate the correlation of target moments
IAQHT = corr(H(Xj)),i € 8 using the source data and estimate the corre-
sponding target ATE #,,. In step 2, for each b™" over B iteration, we first
sample the source population with replacement as {(ng) ;Agb) ;Yi(b)) :
i € §}. Then we use multivariate normal distribution to perturb the tar-
get sample mean Hy and generate target data perturbed means Héb) ~
N(Hy, var(Hy)/2Rp, var(Hy)!/2) assuming var(Hy) is available from the
target sample. Next, we use the simulated {(ng) ; Agb] ; Yi(b)) ;i€ 8and
H,(Tb) to estimate weights {Vvib) : i € S} and its corresponding 1) for
b =1,...,B using Equation (3.3) and (3.2). Finally, we construct the CI

for our estimator 1t,, based on 2.5 and 97.5 percentiles of e ), b=1,...,B.

Resampling-based perturbation method with approximate

balancing

In practice, the exact balancing approach may not always produce a fea-
sible solution due to finite sample. Therefore, Wang and Zubizarreta
[2019] advocated a more flexible approach for covariate balancing weight

construction for causal inference. The approach can be extended in a
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straight-forward fashion to our causal generalization setting as follows.

min E wilogw;
Wi EO

ies
1 _
subject to |— Z wihy (X;) — hk,«;’ <6,k=1,..., Ky
N ie8q
1 _
— Y wihi(X0) ~ g | < 8Lk =1, K
s ie§y
1 1
— Wigk(Xi) — o Z wigk(Xi)| <0, k=1,..., Kg;
S ie8, $ ie8
1 1
I
i€y i€e8y

(3.6)

Therefore the exact balancing constraints is relaxed in Equation (3.6)

by introducing §;,8; € R*" and §, € R"s. The weight normalization

constraint at the last line of Equation (3.6) again can be absorbed to the

first two constraints by introducing an extra element hgy = 1 and setting

the corresponding relaxation &, 8], = 0. This flexibility trades bias for

variance and offers two key advantages: it enables us to incorporate a

broader set of covariate functions, and it helps overcome computational

challenges when exact balancing is infeasible during the construction of
CIs with the resampling-based perturbation.

Naturally, a practical consideration when using approximate balancing

is how to determine the appropriate degree of approximate balance. Chat-

topadhyay et al. [2024] advocated using a constant factor (i.e., 0.1 times)
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of each covariate’s standard deviation. Instead of the standard deviation,
we advocate the following strategy based on the dual problem of Equation
(3.6).

In particular, the dual of Equation (3.6) takes the following form:

Wi =

{exp{ilT H(X) +97G(X)), i€8
exp{A H(X;) =¥ G(X;)}, 1€ 8

where A, 7\1,17 minimize

min L Z exp{Af H(X;) + v G(Xi)} + ni Z exp{Ag H(X;) — v G(X;)}
)

ALA Yy M
LAY dhs S eS8,

— A Hy — AJ Hy + M| 781 + ol 8] + [y[ "6,

(3.7)
Compared with the dual form (3.4) for the exact balancing, (3.7) con-
tains three additional L; regularization terms for the dual parameters:
A1lT81 4 Aol T8; + [y|T82. Thus, we propose to use the Adaptive LASSO
[Zou, 2006] to determine the degree of approximate balancing. In particu-
lar assume that we have estimates (A;, 5\0,}7) from (3.4) based on the exact
balancing problem. Then for resampling-based perturbations that have
no exact balancing solution or are infeasible for (3.3), we use fractions of
(A1, Ao, ¥) for (84, 81,82). The details are listed in Algorithm 2.
When there is no exact balancing solution for the original exact bal-
ancing problem %,,, we advocate using Chattopadhyay et al. [2024] idea

of allowing imbalances to be up to a constant factor (i.e., 0.1 times) each
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covariate’s standard deviation until we get a solution and then follow

Algorithm 2 for CI construction.

Algorithm 2 Resampling-based perturbation with approximate balancing
(RPM-AB)
procedure rRem-aB({(Xi; Ai; Vi) : i € 8}, Hy, var(Hg))
Estimate correlation of target moments IAZHT = corr(H(X;)),1 € 8.
Estimate {W; : i € 8}, (A;, Ao, ¥) and %, using Equation (3.2) and
(3.3).
foreachb=1,...,Bdo
Draw {(ng) ; Agb) ;Y)Y i € 8} from the source population.

1

Generate perturbed means H‘(Tb) ~
N(Hy, var(Hy)2Rp, var(Hy)1/2).
Estimate (W.") : 1 € 8} using {(X\"; A{*;Y{*)) : i € 8} and ALY
by Equation (3.3).
if {vab) : 1 € 8} could not admit a solution then
c<+0
while {ng) :1 € S} not admitting solutions do
&1 + (c+ 0.1)!%1, 81« (c+ 0.1)!;—0\, & (c+ 0.1)!%\

Estimate {w." : i € 8} using 6, 8], 5, and Equation (3.6).
end while
end if
Estimate £\, using Wi :ie 8 and {(ng);AEb);Yi(b)) :1e 8}
by Equation (3.2).
end for
Construct the 95% CI based on 2.5 and 97.5 percentiles of ), b =
1,...,B.
end procedure
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3.4 Evaluation with simulated settings

In this section, we conduct simulation studies to evaluate the performance

of the proposed methods in finite sample settings. For each simulation

set-up, we could estimate T using Equation (3.1). Then, for each m over

a total of M simulations, we estimate £\, and its corresponding 95%

CI using methods we proposed in Algorithm 1, or Algorithm 2 if exact

balancing is infeasible. The performance is measured in terms of bias of
(m)

E(Tw ') and the empirical coverage of T* within the 95% CI constructed

by the proposed methods.

Exact balancing and Algorithm 1 evaluation

We first examine exact balancing CI construction method in Algorithm
(1) with simulation settings that always have feasible solutions for (3.3)
and the corresponding resampling-based perturbations. We set the total
sample size n = ng + ny = 800 with the bootstrap iteration B = 1000 and
M = 500 simulated data sets. In our simulations, due to random sampling,
the source sample size n varies between 350 and 450 observations. We
generate 5 covariates X = (Xj, ..., Xs) from a uniform distribution U(—2, 2).
We consider the case when the covariates are independent of each other
and the case when correlation among them are 0.1 and 0.3.

In the target sample we only have summary-level information of X;, X,,

and X3. We set H(x) = (1,x1,%2,%x3) and G(x) = (x4,%5). We consider
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balancing on the first moments of all covariates.

In light of Theorem 1, we consider scenarios when the conditions for
consistency hold and also when none of them holds. We consider the
settings when either Condition (a) or Condition (b) holds or neither of
them holds.

Therefore for the propensity score model, we first assume a scenario
when the treatment assignment is related to H linearly with logit{rt(x)} =
0.7x2 + 0.5x3. In this case, all the confounders are included in H, and it
is enough that we only balance on H to account for confounding. We
also assume a scenario when the propensity score is related to H and G
nonlinearly with logit{rt(x)} = 0.35x, — 0.4max(x3,x4) — 0.7xs.

For the outcome model, we assume it has the form of Y; = m(X;) +
(A; — 0.5)T(X;) + €; with €; SN (0,1). We assume the CATE function
comes from the following settings:

(T1) t(x) = x1 — 0.6x2 — 0.4x5.

(T2) t(x) = x; — 0.6, — 0.4x3 + 0.8x4 — 0.3xs.

(T3) t(x) = x1 — 0.5exp(x2 — 0.8x3)

We assume the main effect m(x) comes from the following settings:

(M1) m(x) = 0.5%; + 0.3x, + 0.3x3.

(M2) m(x) = 0.5%; + 0.3x, 4+ 0.3x3 — 0.4x4 — 0.7xs.

(M3) m(x) = 0.5x; + 0.8x3 + 0.2exp(0.5x3 — x4 — 1) — 0.7xs.

When the propensity score lies within the linear span of H and the

CATE function follows (T1), t(x) is linearly related to H and satisfies the
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consistency Condition (b) in Theorem 1, regardless of the main effect
settings. However, this condition does not hold under (T2) or (T3) be-
cause (T2) depends on both H and G, while (T3) is nonlinearly related
to H. When the propensity score is not within the linear span of H, but
the outcome satisfies (T1) and (M1), 4 (x) remains linear in H, thereby
meeting Condition (a). Outside these scenarios, neither Condition (a) nor
Condition (b) holds, which may introduce bias in the estimator 7,,.

For covariate shift, similar to the propensity score model, we also
consider a linear setting when the participation probability is logit{p(x)} =
0.4x1 + 0.3x, — 0.2x4. That is, there is shift in the distribution of (X1, X5, X4).
We also consider a nonlinear setup when the participation probability is
logit{p(x)} = 0.3x; + 0.5%; - x4 — 0.2x4.

The performance of our method is summarized in Table 3.1 for indepen-
dent covariates and Table 3.2 for correlated covariates. For bias evaluation,
we see that the bias of average 1., for our method is ignorable under linear
and nonlinear settings when the consistency conditions are met. In terms
of the CI construction, when the consistency conditions are met, we find
that under both linear and nonlinear settings, the constructed CI by Al-
gorithm 1 can cover around 95% of the time. Even when the consistency
conditions are not fully met, our method maintains approximately 95%
coverage as long as the estimator is not severely biased. However, when
the estimator exhibits significant bias, the constructed confidence interval

(CI) results in lower coverage of t*.
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Table 3.1: Empirical evaluation for Target ATE estimation and CI coverage
using the RPM-CI method (independent covariates)

Consistency Empirical Average
Settings Condition T coverage of T* T (95% CI)

T1+M2 b -0.140 95.2% -0.131 (-0.422,-0.159)

Linear  T1+Ms3 b -0.138 94.4% -0.160 (-0.545, 0.213)
T2+M1 No -0.039 76% -0.259 (-0.579, -0.059)

T1+M1 a -0.179 94.4% -0.182 (-0.451, 0.083)

Nonlinear T3+M1 No -1.525 94.2% -1.496 (-1.843, -1.164)
T1+M3 No -0.179 93.2% -0.188 (-0.538, 0.157)

Table 3.2: Empirical evaluation for Target ATE estimation and CI coverage
using the RPM-CI method (correlated covariates)

Consistency Covariate Empirical Average

Settings Condition T correlation coverage of T* Tw (95% CI)
-0.126 0.1 94.8% -0.122 (-0.410, 0.164)
Linear Ti+M2 b -0.097 0.3 94.5% -0.096 (-0.382, 0.190)
mea — N -0.054 0.1 76.8% -0.249 (-0.566, 0.066)
© -0.079 0.3 79.8% -0.251 (-0.560, 0.055)
-0.166 0.1 94% -0.175 (-0.437, -0.083)
Nonlinear Ti+Ml a -0.140 0.3 94.6% -0.144 (-0.391, 0.100)
¢ TLeM3 N -0.169 0.1 94% -0.176 (-0.518, 0.164)
© -0.143 0.3 94.6% -0.139 (-0.467, 0.186)

Approximate balancing and Algorithm 2 evaluation

Now we consider settings that Algorithm 2 needs to be invoked due to
infeasibility of perturbed Equation (3.4), in particular in smaller sample
size settings with noisy covariates. We set the total sample size n =
ns+n¢ = 400 with bootstrap iteration B = 800, and generate covariates X =
(X1,...,Xs5) from uniform distribution U(—2,6). The rest of the settings
are the same as in the previous subsection.

The performance of our methods is summarized in Table 3.3. We also

report the percent of non-feasible solutions over M x B iterations for exact
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balancing. In terms of bias evaluation, for exact balancing, even though
some simulations may not admit solutions, the bias of 1,, is small when
the consistency conditions are met. When we use approximate balanc-
ing for target ATE estimation simulation cases with no exact balancing
solution, the bias is larger as it trades bias for variance. In terms of the CI
construction, when most of the perturbations admit an exact balancing
solution, our findings about the CI coverage are consistent with what we
observe in Table 3.1 and Table 3.2. Especially, when the consistency condi-
tions are satisfied, we find that both exact and approximate balancing CI
could cover T around 95% times. However, regardless of the consistency
conditions, if we could not admit enough feasible solutions during the CI
construction process, we would get poor CI coverage for exact balancing.
The CI constructed by the approximate balancing method is wider and

thus could help in this situation with a better coverage.

Table 3.3: Empirical evaluation for Target ATE estimation and CI coverage
using RPM-CI and RPM-AB methods

Consistency Empirical Average
Settings ~ Condition T  Methods % Infeasible coverage t* T (95% CI)
. RPM-CI 26.0% 87.3% -0.660 (-1.335, 0.125)
Linear (b)T1+ M2 -0.652 RPM-AB 0% 92.6% -0.624(-1.414,1.174)
No: T24M1  0.800 RPM-CI 26.9% 60.9% -0.017(-1.029, 1.075)
’ ’ RPM-AB 0% 90.2% 0.005(-0.958, 1.890)
. RPM-CI 5.6% 95.2% 0.034(-0.702, 0.767)
Nonlinear ():T1+M1 - 0.038 RPM-AB 0% 94.6% 0.030(-0.806, 0.808)
No: T24M2 0539 RPM-CI 4.9% 70.4% 1.083(0.256, 2.036)
’ ’ RPM-AB 0% 74.2% 1.095(0.223, 2.212)
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3.5 Cross-validation based evaluation with a
real setting

Here, we use the same example as in Chen et al. [2023], derived from the
MIMIC-III database [Johnson et al., 2016], but with CI construction and
evaluation. However, due to the fact that we don’t know the true target
ATE, we employ a cross-validation based strategy as we explain below.

This observational dataset comprises 6,361 ICU patients, with 51.3%
having undergone transthoracic echocardiography (TTEC) either during
or within 24 hours before ICU admission. The primary outcome of interest
is 28-day survival. Our goal is to assess the effect of TTEC on the survival
of ICU patients with sepsis.

The dataset encompasses demographic details, such as age, gender,
and weight, along with severity at admission measured by the Simpli-
fied Acute Physiology Score (SAPS), Sequential Organ Failure Assess-
ment (SOFA) score, and Elixhauser comorbidity score. Additionally, it
includes comorbidity indicators (denoted as cmb; ), including congestive
heart failure, atrial fibrillation, respiratory failure, and malignant tumor.
Vital signs like mean arterial pressure, heart rate, and temperature, as
well as laboratory results, are also part of the dataset. To address right-
skewed distributions of lab results, a log transformation is applied, and
standardization is employed for continuous variables. Missing values

are addressed through imputation using the missForest method, which
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is a flexible non-parametric missing value imputation approach with no
assumptions needed [Stekhoven and Bithlmann, 2011].

As the real data is observed only once and we do not know the true
treatment effect, we create a cross-validation (CV) based sampling proce-
dure for evaluation of bias and coverage. In particular, we partition the
data set into subsets, train the model on some of these subsets, and then
evaluate its performance on the remaining subset.

Figure 3.1 is a diagram showing the whole workflow of our CV-based
evaluation. For each round of CV, we first partition ps proportion of the to-
tal study population into the source population, with the remainder as the
target population. The partition or sampling probability is in proportion
to a function ¥, which includes some important effect modifiers. Then,
within the source population, we generate source samples using a function
g, which includes some key confounding factors. In particular, ps, pro-
portion of the treated and ps, of the control populations become treated
and control samples. Next, we randomly split the target population with
pr proportion into target and the rest into test samples. Suppose in the
target sample, we only know the summary level information while in the
test sample we know all the individual level information. The above steps
will be repeated many times and the source treated, control, and target
samples will be used as the training data to estimate target population
treatment effect and CI. To obtain an oracle estimate of the target popu-

lation ATE, we repeat the splitting procedures and use the test sample
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to construct a CV-based treatment effect T7,, as our oracle estimator. We
will use this T, as the benchmark to evaluate the bias and CI of the target
population treatment effect. The rest of the section illustrates the details

of this CV-based procedure used in our real-setting.

Source  Sample proportion ps,

Sample proportion ps prob o« g(x)
prob o W(x) A=1 Treated | |
| Sample proportion ps,
prob o g(—x)
A=0 ot Training
data

Study < Sample
Patients proportion pr Target
|

sample

—

Remaining 1 — ps

Test
Target ~—____ | sample

Remaining 1 — py

Figure 3.1: CV-based evaluation workflow in a real setting

To comprehensively assess across diverse scenarios, we manipulate
various degrees of confounding and covariate shift while keeping the
covariate-outcome relationship unchanged in the actual data. Initially,
we select ps = 40% of the entire dataset with probability proportional to
Y(x) to form the source population. The remaining data is then randomly

divided into a target sample, with a pr = 1/3 probability, and a test sample.
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The probability of being selected as a source sample is proportional to
W{ks(—0.3 x age + 0.3 x cmb; + 0.4 x cmb, 4 0.3 x cmb; 4 0.4 x cmby — 0.5)} .

where ¥Y(x) = 0.80(x) + 0.1 with ®(x) being the standard normal
CDF. Here, ks is a parameter to reflect different levels of covariate shift,
where ks equals 1 for small covariate shift and 5 for large covariate shift.
Under this sampling design, the source population is younger and more
likely to have comorbidities than the target population. Among the source
samples, we randomly select ps, = 1/2 of the TTEC patients and ps, = 1/2
of the non-TTEC patients to form the source sample. The TTEC patients
are selected with probability proportional to g(x) while the non-TTEC

patients are selected with probability proportional to g(—x) with
g(x) = W¥{k4(0.3 x SAPS + 0.4 x SOFA — 0.5 x Elixhauser)} .

We consider two choices of k4 in g: (a) kg4 = 0, so all the patients in
this step are sampled with equal probability; (b) k4 = 1, which induces
additional confounding determined by a linear combination of the severity
scores.

In total, we have four settings. Under each one, we run M = 500
times replications of the above CV procedures and B = 1000 perturbations
using the exact balancing method to construct the estimator €., and its
confidence intervals. We assume that the target sample only includes

information about the average and variance of the demographic covariates
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and comorbidity indicators. The oracle estimate of the target population
ATE T, is estimated using the entropy balancing weighting method incor-
porating full information in the test data. To be more specific, we repeat
the above CV procedures 8000 times and get the estimated target ATE. The
average of it would be our oracle estimator of the target population ATE
7%,. The CV splitting set-up here makes a good overlap between source
and target samples. Thus, we did not encounter the infeasibility issue for
exact balancing.

For evaluation, we examine the bias and percentage of times the con-
structed CI covers the oracle estimator t,,. Table 3.4 summarizes T, em-
pirical coverage percentage and the estimator 1., under each scenario. As
we can see, the proposed method could cover the oracle estimator around
95% of the time. In evaluating bias, we find that the bias of empirical %,

is ignorable under different settings.

Table 3.4: Target ATE estimation and CI coverage in a real setting

Setting - Empirical Average
Confounding Covariate shift ¢V coverage of T}, Tev (95% CI)
Extra (ka =1) Small (ks =1) 0.051 96.4% 0.048 (-0.006, 0.102)
No (ka =0)  Small (ks =1) 0.050 96% 0.052 (0.001, 0.104)
Extra (ka =1) Big (ks =5)  0.049 95.6% 0.052 (-0.005, 0.107)

No (ka =0) Big (ks =5)  0.049 95.8% 0.054 (0.001, 0.107)
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3.6 Discussion and conclusion

We have developed a resampling-based perturbation method for CI con-
struction to make inference about generalizing ATE estimation to a target
population. It is an important step to complement the work of Chen et al.
[2023] to quantify the uncertainty associated with the estimated treatment
effect for the target population. Although we require slightly more infor-
mation from a target sample than Chen et al. [2023] did, our requirement
is minimum as we only need the variance of the summary statistics H-.
Note that for binary and discrete variables, such variance is not needed as
we can directly use Hy to estimate its variance. When the target sample’s
individual data is available but can not be shared due to privacy reasons,
then requesting this further information is relatively straightforward.

To achieve an unbiased causal generalization, exact balancing is essen-
tial, as it ensures that covariates are equally balanced between populations.
For the CI construction using the resampling-based perturbation method,
exact balancing should be prioritized because it directly aligns with the
goal of unbiased causal generalization by precisely matching covariate
distributions. However, when a feasible solution for exact balancing is
unattainable due to sample size limitations or high-dimensional covariates,
approximate balancing can be a practical alternative. Although it may
introduce a small bias, approximate balancing provides a close solution

that maintains the integrity of the analysis by minimizing discrepancies in
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covariate distributions. Therefore, we recommend approximate balancing
only as a secondary option, to be used when exact balancing solutions are

not feasible.

Data Availability Statement

The data that support the findings in this paper were derived from the
following resources available in the public domain: MIMIC-III Clinical
Database Versionl.4 (https://physionet.org

/content/mimiciii/1.4/)
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4 AN R PACKAGE: EBALGEN

4.1 Overview

This chapter introduces an R package EBalGen, which is used to implement
the exact and approximate balancing methods in Chapter 3 for causal gen-
eralization in the presence of covariate shift using target sample summary-
level information. This package is designed to estimate causally general-
ized balancing weights, the target Average Treatment Effect (ATE), and its
corresponding confidence interval (CI). It provides flexibility in achieving
both exact and approximate balance generalizing causal findings from
source to target population when we only have summary level information
of the target. We illustrate the implementation of this package across vari-
ous scenarios. The key functions of this package is ebal_wts () for estimat-
ing weights and ebal_ATE() for ATE estimation. RPM_CI() and RPM_AB()
are important functions for exact and approximate balancing CI estimation.
Our package is available on github https://github.com/yc702/EBalGen
and it passes R-CMD-check.

4.2 Package dependencies
EBalGen was developed with dependence on 9 packages:

e parallel, doParallel, foreach and doRNG are essential tools for imple-
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menting parallel computing, as most of our methods are based on
simulations [R Core Team, 2023, Microsoft and Weston, 2022a,b,
Gaujoux, 2023]. dplyr is also used for efficient data manipulation

[Wickham et al., 2023].

CVXR provides functions to solve convex optimization problems,
and is compatible with different solvers. In our problem, we use
MOSEK, which is a commercial high-performance solver for large-
scale convex optimization problems. It is numerically stable and
could efficiently solve exponential cone problem, which can be chal-

lenging for some other solvers [Fu et al., 2020, MOSEK-ApS, 2024].

resample provides essential functions for resampling-based inference,
enabling our method to perform resampling-based perturbation of

target sample moments and estimate CI. [Hesterberg, 2022].

stats offers powerful functions to estimate correlation structures and

extract quantiles from sampling distributions [R Core Team, 2023].

rockchalk provides functions to perturb the target sample moments
and generate multivariate normal distributed random variables [John-

son, 2022].
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Key functions

The first important function is ebal_wts(), which is used to compute the

exact and approximate entropy balancing weights. Another similar func-

tion ebal_wts_simple () is used to compute the weights calibrating the

whole source sample to the target moments without distinguishing source

treated and control groups. Since these two functions contain similar input

arguments, we mainly discuss ebal_wts() for demonstration purpose.

x A data matrix for the source sample. Each column represents

source sample covariate and each row represents an observation.

trt A vector of 0, 1 or FALSE/TRUE of treatment assignment for the

source sample.

H_vars A vector of numbers indexing which covariate in x need to

be balanced between source and target samples.

target_moments A vector of first moments of the target sample covari-

ates that needs to be balanced between source and target.

H_add_intercept A logical value determines whether to include 1 as

intercept in H covariates, default as TRUE.

delta A vector specifying the approximate balancing tolerance margin.
The vector has a total length of H + H 4 G, where H represents the

number of covariates balanced between the source (treatment and
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control) and the target moments, and G represents the covariates
balanced solely between the source treatment and control groups. If

we are doing exact balancing, delta are all zeros.

The output of the function returns a list containing w, which is a vec-
tor of entropy balancing weights and theta which is the dual parameters
estimated from the optimization process.

The second key function is ebal_ATE(), which is used to compute the
exact and approximate balancing ATE. If the tolerance margin argument
delta is all 0, it computes the exact balancing ATE. Otherwise, it computes
the approximate balancing ATE.

As we want this function to return a feasible solution, if exact balancing
does not yield a feasible solution, the standard deviation of x is used as
the input argument delta, which convert exact into approximate balancing.
If the specified delta does not yield a feasible solution, for approximate
balancing, the constant c is increased (starting from 1) by 1 times delta
until a solution is found. For exact balancing that later uses the standard
deviation for delta, the constant is increased (starting from 0) by 0.1 times

delta until a solution is achieved.

o x, trt, H vars, H_add_intercept, target_moments, delta are the same as

the input for function ebal_wts().

e y A vector of the source sample response values.
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The output of the function returns a list containing ate_est, which is the
target ATE for causal generalization. and constant which is the final con-
stant c used for the approximate balancing tolerance margin if no feasible
solution is achieved with the specified delta. If the specified delta results in
a feasible solution, the constant remains 0. Otherwise, the constant will
increase until a feasible solution is found.

The third major function is RPM_CI(), which is used to compute the

exact balancing CI according to Chapter 3 Algorithm 1.

o x, vy, trt, H_vars, H_add_intercept, delta are the same as the input for

functions ebal_ATE().

e target_mean A vector of means of the target sample covariates that

needs to be balanced between source and target samples.

o farget_sd A vector of standard deviations of the target sample covari-

ates that needs to be balanced between source and target samples.

e num_sim A numeric value shows the number of simulations used in

resampling-based perturbation.
e cluster Number of parallel running CPU cores, Default: 1.

e with_seed Random seed for simulation, Default: 111.

The output of the function returns a list containing mean_ATE, which

is the mean ATE over num_sim perturbations; Ib_ATE and ub_ATE, which
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are the lower and upper bounds of CI and n_success which is the number
of feasible solutions in num_sim perturbations if using exact balancing.
The last key function is RPM_AB(), which is used to compute the
approximate balancing CI according to Chapter 3 Algorithm 2. The input
arguments are the same as function RPM_CI(). The output of the function
also returns a list containing mean_ATE, Ib_ATE and ub_ATE. In addition,
n_success is the number of feasible solutions in num_sim perturbations if
using approximate balancing. use_exact is the number of times that exact

balancing could be achieved in the perturbations.

4.4 Example implementation

For the example implementation, we will use scenarios similar to the
simulation setting described in Chapter 3. Suppose we set the total sample
size n = ng + n¢ = 800, which is split into source ny = 401 and target
ny = 399 samples. We generate 5 covariates X = (Xy,...,X5) from a
uniform distribution U(—2,2). The source/target participation probability
p(x) follows logit{p(x)} = 0.4x; 4+ 0.3x, — 0.2x4. That is, there is shift in
the distribution of (X, X,, X4). For the propensity score 7(x) model, we
assume the treatment assignment is related to H linearly with logit{mt(x)} =
0.7x, + 0.5x3. In this case, all the confounders are included in H, and it
is enough that we only balance on H to account for confounding. For

the outcome model, we assume Y; = m(X;) + (A; — 0.5)1(X;) + €; with



66

ei "X N(0,1). For the CATE function, we assume T(x) = x; — 0.6x — 0.4x.

For the main effect m(x), it has the form of m(x) = 0.5x; + 0.3x, + 0.3x3 —
0.4x4 — 0.7%5. In this setting, the target ATE is -0.138.

Figure 4.1 here visually checks the propensity scores of source and
target samples fitted using simple logistic regression including all 5 co-
variates. The distribution of propensity scores in both samples shows a
substantial degree of overlap, indicating that the covariate distributions
between the two samples are sufficiently similar. This overlap suggests
that the generalization of treatment effects from the source population to
the target population is reliable and exact balancing could be achieved.

Here is the summary statistics of the exact balancing weights.

## Source sample

wts_gen <— ebal_wts(xs, trts ,H_vars, target_moments,
H_add_intercept = TRUE, delta)$w

summary (wts_gen)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 0.2415 1.0163 1.5952 2.0000 2.5774 14.0762

Here is the generalized target ATE using the weights above.

ebal _ATE(xs,ys, trts ,H_vars, target_moments,
H _add_intercept=IRUE, delta ) $ATE
#> value

#> 0.02294481
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Figure 4.1: Propensity scores distribution between source and target
samples (good overlap)

For CI estimation, we use resampling-based perturbation RPM_CI()

with input of target_sd and the number of bootstrap iteration of 300.

## CI construction

target_sd = colStdevs(xt)[H_vars]

ATE_CI = RPM_CI(xs, ys, trts,
H_vars=H_vars, target_mean=target_moments,
target_sd=target_sd ,num_sim =300,
H_add_intercept=IRUE,

cluster=5, set_seed=100)
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## Lower bound of 95% CI
ATE_CI$1b_ATE
#> 2.5%
#> —2.130664

## Upper bound of 95% CI
ATE_CI$ub_ATE

#> 97.5%

#> 2.310287

For the approximate balancing example, we set the total sample size
n = ng + n¢ = 400 which is split into source ny; = 281 and target n, =
119 samples. We generate 5 covariates X = (Xj, ..., X5) from a uniform
distribution U(—2, 6). The remaining settings are identical to those in the
previous example. In this setting, the target ATE is -0.641.

Figure 4.2 here visually checks the propensity scores of source and
target samples fitted using simple logistic regression including all 5 covari-
ates. The distribution of propensity scores in both samples shows a limited
degree of overlap, indicating that the covariate distributions between the
two samples are quite different. This overlap suggests that approximate
balancing should be used.

Here is the summary statistics of the approximate balancing weights
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Figure 4.2: Propensity scores distribution between source and target
samples (bad overlap)

for the source sample if we set the delta to be of 0.1 for all covariates to be
balanced.

wts_gen <— ebal_wts(xs, trts H_vars,

target_moments,H_add_intercept = TRUE,
delta=numeric(8)+0.1) $w
summary (wts_gen)
#> Min. 1st Qu. Median

Mean 3rd Qu. Max.
#> 0.04555 0.33305

0.75514 2.00001 1.85307 93.90129

Here is the generalized target ATE using the weights above.
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ebal_ATE(xs,ys, trts ,H_vars, target_moments,
H_add_intercept=IRUE,
delta=numeric(8)+0.1)$ATE

#> value

#> —1.046427

For CI estimation, we use resampling-based perturbation RPM_AB()

with additional input of target_sd and the number of bootstrap as 300.

target_sd = colStdevs(xt)[H_vars|

ATE_CI = RPM_AB(xs, ys,trts , H_vars=H vars,
target_mean=target_moments,
target_sd=target_sd,num_sim =300,
H_add_intercept=IRUE,

cluster=5, set_seed=100)

## Lower bound of 95% CI
ATE_CIS$1b _ATE
#> 2.5%
#> —2.807896

## Upper bound of 95% CI
ATE_CI$ub_ATE
#>  97.5%
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#> 4.54158

## Number of simulations that uses exact balancing over 300
ATE _Cl$use_exact
#> [1] 67
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A SUPPLEMENTARY MATERIALS FOR CHAPTER 1
“RANDOMIZED PHASE II DESIGN WITH ORDER

CONSTRAINED STRATA”“

A.1 Randomized phase II screening design with

order constrained strata

Introduction

In the main text, we focused on incorporating ordering information in the
context of randomized selection design. In this section of the Appendix,
we discuss incorporating ordering information in randomized screening
design.

Randomized phase II screening design was introduced by Rubinstein
et al. [2005], extending previous research by Simon et al. [2001] and Korn
et al. [2001]. The goal of this type of design is to design a randomized
study that could yield sample sizes and statistical properties suitable for
phase II studies. The design provides preliminary comparisons between
experimental and standard treatments by carefully adjusting and balancing
the type I () and Il errors (3), ensuring that the targeted treatment benefit
is appropriate while the sample size remains restricted. Here we want
to show that, with minor modifications, the advantage of incorporating

ordering information can still be observed in randomized selection design.
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Method

Here we use a similar setting as in the main text. Assume patients are
stratified into G strata and randomized to treatment arm T and control
arm C. In total, there are N patients in each arm where the proportion
of patients in each stratum is w;4 with j € {T, C}. Here, g =1, ..., G and
ZQG:1 Wwjg = 1. So the number of patients in Arm j Stratum g is defined as

Njg = N - wjg.

Binary outcome

Assume that, in Arm j and Stratum g, the number of responders r;4 are
independent binomial random variables with r;4 ~ Bin(n;g4, 71j4). Again,
we assume the strata in Arm j satisfy the partial stochastic ordering con-
straints in its strata defined by a constraint set E C {1, ..G)? i.e., V(u,V) €
E, T > Ty

Denote

7'l']' = (thl,...,ﬂjG)T, ):T,C,

by = (pjl:---/PjG)T/ J:TIC

Let pj4 be the corresponding E-constrained maximum likelihood esti-
mator (MLE) with Arm j Stratum g under the constraint set E. Under the
framework described by Rubinstein et al. [2005], we design a randomized
phase II screening trial that will allow us to assess whether treatment

arm T is more promising than standard control arm C. The hypotheses
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associated with this type of comparison are
Ho: 71 = m¢ Vs Hy: 71 = mc

Given a specific sample size N, we control the type I error by choosing
the critical value v = (v, ...,v) to maximize the probability in (A.1) so
that the probability of accepting treatment arm is no larger than o under

Hp.

m$x [Pr(pr —pc =~ |71 =7mc)] < « (A1)

Denote 0* as the clinically significant difference in response rate with
0* = (0%,...,0%) g, 0 > 0. The probability of correct screening, which

is the power of the test given the critical value «y is determined by (A.2):

Pr(pr —pc =~ |wnr=mnc+0")=1—-0 (A.2)

Given the constrained resources for phase II trials, we aim to limit the
two-arm trial’s sample size while still ensuring the ability to effectively
screen the effective treatment. We thus want to keep the type I error rate
o to be either 10% or 20% while allowing the power to also be either 90%
or 80% evaluated at treatment effect of 0*.

To determine the critical values v and power, a Monte Carlo simulation
based algorithm is proposed given a specific sample size. Under the null,

we repeat 10,000 times to obtain a simulated distribution of the estimated
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treatment effect for each stratum g. The critical value = is determined
by finding the maximum < obtaining (A.1). Under the alternative, we
repeat 10,000 times to compute the power by the proportion of simulated
estimated treatment effect for each stratum g being correctly rejected H,

based on the critical value ~.

Time-to-event outcome

Suppose Sj4(x),j =T,Cand g =1,..., G is the true survival probability
at time x for Stratum g in Arm j. Further assume that the strata in Arm j
satisty the partial stochastic ordering constraints at a given time x defined
by the constraint set E C {1,..G}, i.e., V(u,v) € E, Sju(x) = Siv(x).

Let S;j,(x) be the corresponding E-constrained nonparametric maxi-
mum likelihood estimator (NPMLE) for survival probability of Arm j

Stratum g subject to constraint set E applied at a given time x only. Denote

S; = (Sjux),...,Sic(x)T, j=T,C

S; = (gjl(X),--.,SjG(x))T, ji=T,C.

The hypothesis testing construction is similar as the above binary out-
come case. That is, the hypotheses associated with this type of comparison
are

H()ZST:SC VS H115T>-SC

Given a specific sample size, we control the type I error o by choosing a

critical value ~y to maximize the probability in (A.3) so that the probability
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of accepting treatment arm is no larger than « under H,.

max [Pr(St—Sc = ~v|St=8c)] < « (A.3)
Y

Denote 6* = (6%,...,0%){, 5, 0* > 0as the clinically significant differ-
ence in survival probability at time x. The power of the screening design

given the critical value v can be determined by (A.4):

Pr(St—Sc>=~|S=8c+0")=1-p (A.4)

Similar as the binary outcome case, a Monte Carlo simulation based
algorithm is proposed to determine the critical value v and power given a

specific sample size.

Evaluation with simulated setting

We seek to evaluate the performance of our proposed method in compari-
son to a simple randomized stratified screening design, which does not
account for order information. We use simulation studies conducted under
similar settings as the selection design in Chapter 1. We consider the set-
ting that each of the Arms T and C has N patients. There are G = 2 strata in
each arm. The patient proportions in different strata are wr; = wey = 0.4

(therefore wr, = wey = 0.6).
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Binary outcome

Assume 1ty > Ticg and 1y, > m50,j = T, C, g = 1,2 without loss of general-
ity. Accordingly, the E-constraint is 7, > 71j;. The binomial response rate
MLE without considering the order information would be the observed re-
sponse rate ;4 = Njy '1j4. Given different sample sizes, we will compare
the estimated power between two methods, based on 10,000 simulations.

Figure A.1 presents the power of the screening trial across different
values of N controlled at « = 0.1,0.2. Overall, we see our method gives a
slightly larger power than the method without using order information.

Table A.1 numerically shows power, across different values of N controlled

atax =0.1.
0=0.1 I 0=0.2
0.9
0.8
5 Group
CE) 0.7 With Constraints
o -=- Without Constraints

0.6

0.5

30 40 50 60 70 30 40 50 60 70
Sample size

Figure A.1: Power of the screening trials for various N controlled at
o =0.1,0.2, fixing mc = (0.25,0.35), 6 = (0.2,0.2).
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Table A.1: Power of the screening trials for various N controlled at o« = 0.1,
fixing we = (0.25,0.35), 8* = (0.2,0.2).

With constraints Without constraints

N x 1-p x 1-p3
30 0.089 0.559 0.074 0.511
40 0.082 0.650 0.094 0.627
50 0.097 0.727 0.099 0.705
60 0.099 0.789 0.080 0.731
70 0.099 0.820 0.096 0.797

Survival outcome

Assume St4(x) = Scq(x), Sj2(x) = Sj(x),j = T,C,g = 1,2 without
loss of generality. Accordingly, S;4(x) satisfy the E-constraints at time x
that Sj2(x) > Sj1(x),j = T, C . The survival probability NPMLE without
considering the ordering would be the Kaplan-Meier estimator S;4(x) =
[Tin (1= %). Given different sample sizes, we will compare the cal-
culated power between the two methods, based on 10,000 simulations.
Suppose patients enroll according to a Poisson process with an accrual
rate of 4 patients per month for each of the treatment arm stratum. We
continue to follow up for an additional 6 months after the last patient is
enrolled. Suppose the survival time follows exponential distribution and
we are constraining and comparing survival probabilities at 6 months.
The power of the screening trial across different N controlled at o« =
0.1,0.2 are shown in Figure A.2. Overall, we observe similar results as

the binary case that our method gives a slightly larger power than the

method without using order information. Table A.2 numerically shows



79

power across different values of N controlled at o = 0.1.
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Figure A.2: Power of the screening trials for various N controlled at
o = 0.1,0.2, fixing Sc = (0.35,0.45), 6* = (0.2,0.2).

Table A.2: Power of the screening trials for various N controlled at o« = 0.1,
fixing Sc = (0.35,0.45), 6* = (0.2,0.2).

With constraints Without constraints
N x 1-3 x 1-3
30 0.080 0.531 0.081 0.498
40 0.090 0.634 0.090 0.615
50 0.099 0.707 0.083 0.559
60 0.099 0.761 0.088 0.731

70 0.070 0.761 0.096 0.647
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A.2 Bias and variability of constrained
estimators

Here we investigate the bias and variability of the estimators without con-
straints and with constraints for both binomial and time-to-event outcomes
under 8,000 Monte Carlo simulations. In the simulations, we assume G = 2
strata in each treatment arm with patient proportions wq; = wy; = 0.4
and sample size for each treatment arm N. For binomial responses, the
number of responders r;4 are independent binomial random variables
with 1j4 ~ Bin(njg, m4),j = a,b,g = 1,2. The treatment difference for
each stratum is 8* = (0.2,0.2). E-constraint is 7, > m5;,j = a,b. The
binomial response rate MLE without considering order is nj,'rj4. The
results are in Table A.3.

Similar to a recent publication [Dai et al., 2020], we find that estima-
tors under constraints are biased for the response rate of each stratum,
compared with the unbiased binomial MLEs. On the other hand, for the
treatment effect which is the difference of the estimators between two
arms, the biases become almost negligible. We therefore take comfort in
this fact for our proposed method as the treatment effect is of ultimate
interest. In addition, we find that the constrained estimators have slightly
smaller variance than the estimators without constraints. We also find
positive correlations between estimated treatment effects across ordered

strata, especially under the small sample size setting.
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Table A.3: Estimation mean, variance and correlation for binary outcomes
with and without constraints

Parameters True values Estimates - Mean Estimates - Variance Estimate - Correlation
W constr w/o constr W constr w /o constr w constr  w/o constr
N =50
(TCa1, Ta2) (0.6,0.7) (0.588,0.707)  (0.599,0.700)  (0.010, 0.006) (0.012, 0.007) 0.217 -0.014
(Ttp1, TTh2) (0.4,0.5) (0.387,0.508) (0.399,0.500)  (0.009, 0.007) (0.012 0.008) 0.225 -0.003
(07,03) (0.2,0.2) (0.201,0.198 ) (0.199,0.199) (0.019,0.0.013)  (0.024, 0.015) 0.220 0.006
N=40
(701, ma2)  (0.55,0.65) (0.534,0.659) (0.548,0.649) (0.012,0.008) (0.015, 0.010) 0.247 0.023
(mmp1, m2)  (0.35,0.45) (0.334,0.460) (0.349,0.450)  (0.011, 0.009) (0.014, 0.010) 0.239 0.014
(65,03) (0.2,0.2) (0.200,0.199)  (0.199,0.199)  (0.022,0.017)  (0.029, 0.0.019) 0.242 0.009
N =30
(TCa1, Ta2) (0.6,0.7) (0.580,0.712)  (0.598,0.700)  (0.015, 0.010) (0.020, 0.012) 0.270 0.016
(TTp1, TTh2) (0.4,0.5) (0.379,0.514)  (0.399,0.500)  (0.014, 0.012) (0.020, 0.014) 0.286 -0.014
(05,03%) (0.2,0.2) (0.201,0.198)  (0.199,0.200)  (0.029, 0.021) (0.039, 0.025) 0.275 0.012
N=20
(1q1,Ma2)  (0.55,0.65)  (0.520,0.668)  (0.547,0.650)  (0.023, 0.015) (0.031, 0.019) 0.290 0.003
(mp1, v2)  (0.35,0.45)  (0.321,0.469)  (0.349,0.450)  (0.020,0.017) (0.028, 0.021) 0.303 -0.001
(67,03) (0.2,0.2) (0.199,0.199)  (0.198,0.199)  (0.042, 0.032) (0.059, 0.039) 0.307 0.010

For time-to-event responses, similar findings could be derived from the
simulation results in Table A.4. The simulation setting is as follows. Sup-
pose Sj4(x) wherej = a,band g =1, ..., G is the true survival probability
at time x for Stratum g in Arm j. The treatment difference 8* = (0.2,0.2).
Sj4(x) satisfies the E-constraints at month 6 that S;,(6) > S;1(6). The sur-
vival probability NPMLE without considering order is the Kaplan-Meier
estimator. Here we assume patients enroll according to a Poisson process
with an accrual rate of 4 patients per month for each of the treatment arm
stratum. The follow-up is for an additional 6 months after the last patient
is enrolled for each stratum. The survival time follows an exponential

distribution and we are constraining and comparing survival probabilities
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Table A.4: Estimation mean, variance and correlation for time-to-event
outcomes with and without constraints

Parameters True values Estimates - Mean Estimates - Variance Estimates - Correlation
w constr w /o constr w constr w/oconstr  wconstr w/o constr
N=50
(Sa1(6),S42(6)) (0.75,0.85) (0.741,0.854) (0.748,0.850)  (0.008 0.004)  (0.010 0.004) 0.166 -0.008
(Sp1(6),Swv2(6)) (0.55,0.65) (0.538,0.656) (0.550, 0.648)  (0.0100.007)  (0.012 0.008) 0.205 -0.001
(67,63) (0.2,0.2) (0.203,0.198) (0.198,0.202) (0.018,0.011)  (0.021, 0.012) 0.217 -0.003
N=40
(Sa1(6),S42(6)) (0.55,0.65) (0.534,0.658) (0.549,0.648) (0.0120.008)  (0.015, 0.010) 0.231 -0.007
(Sv1(6), Sva2(6)) (0.35,0.45) (0.336,0.460) (0.351,0.450) (0.0110.009)  (0.014, 0.010) 0.225 -0.006
(65,03%) (0.2,0.2) (0.198,0.198)  (0.198,0.198) (0.023,0.0170) (0.030, 0.020) 0.248 0.025
N=30
(Sa1(6),Sq2(6)) (0.75,0.85) (0.736,0.858) (0.749,0.849) (0.013,0.006) (0.016, 0.007) 0.138 0.019
Sp1(6), Sv2(6))  (0.55,0.65) (0.531,0.663) (0.552,0.649) (0.016,0.010) (0.021,0.013) 0.266 0.003
(07,03%) (0.2,0.2) (0.205,0.195) (0.198,0.200) (0.028,0.017)  (0.036, 0.020) 0.249 -0.003
N=20
(Sa1(6),S42(6)) (0.55,0.65) (0.522,0.668) (0.550,0.649) (0.023,0.015) (0.031,0.019) 0.302 0.023
(Sp1(6),Sw2(6)) (0.35,0.45) (0.321,0.469) (0.349,0.450) (0.020,0.017) (0.028,0.021) 0.316 -0.019
(07,03%) (0.2,0.2) (0.200,0.199)  (0.201,0.198) (0.042,0.033) (0.057,0.041) 0.315 0.016

A.3 Checking the monotonicity assumption

Tibshirani et al. [2011] investigated the problem of nearly isotonic regres-

sion where the order constraint might be violated at some change-points.

Specifically, for N normal observations x; ~ N(n;, 02) fori =1,..., N, the
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problem could be formulated as the regularized optimization as following;:
T N-1
iy = argmin > Z(Xi — i)+ A Z(M — Hiv1)+

H i=1 i=1

where A > 0 is the regularization parameter and (-); = max(-,0).
Matsuda and Miyatake [2022] extended the nearly isotonic regression

for general one-parameter exponential families for binomial responses. For

stratum i with responses r; ~ Bin(n;, 7t;) for i = 1,..., N, the regularized

optimization could be formulated as

N N-1
¢\ = argmin — Z logp(rilci) +A Z (ci —civ1)t
¢ i=1 i=1
N . N (A5)
= i i(—ci— +blci)) + A i—Ci ,
argzmn;w (—c e +b(ey)) + ;(C Cit1)y

where ¢; = log 11‘—';(1, bi(ci) = wib(ci) = —nilog(l — m) = nylog(1 +
exp(ci)), wi = ni. The paper shows that this optimization problem is
efficiently solved by modified Pool Adjacent Violators Algorithm (mPAVA)
[Matsuda and Miyatake, 2022].

The selection of regularization parameter A is based on Akaike infor-
mation criterion (AIC) defined as

AIC(A) =—2) logp(xilca)i + 2Ky . (A.6)

i=1

where K, is the number of joined pieces used as an unbiased estimate of
the degrees of freedom of nearly isotonic regression.

However, there is no existing work considering nearly isotonic regres-
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sion modeling for time-to-event outcomes. Therefore we performed a
simulation to examine the lack of fit for the monotonicity assumption in bi-
nomial responses using the algorithm from Matsuda and Miyatake [2022].
The simulation is set up as following. First, suppose G = 5 strata with
monotonically increasing true response rates gy = (0.2,0.3,0.4,0.5,0.6)
and sample size ngy = (20, 20, 30, 30,40) with response 4 ~ Bin(ng, 74 ) for
g =1,...,5. We calculate AIC(A) under each value of A € {0,0.1,0.2, ..., 5}
and each with 3,000 Monte Carlo simulations. Then, we changed the re-
sponse rates to be non-monotonic 7y = (0.2,0.3,0.4,0.32,0.24) with the
same sample sizes and calculate AIC(A) again. Figure A.3 plots E.{AIC(A)}
with 95% confidence interval for each value of A. As expected, when the
monotonicity assumption holds, AIC level decreases to gradual stabiliza-
tion whereas under monotonicity assumption violation, AIC first decreases
and then increases. This can serve as a visual tool to assess the monotonic-

ity assumption.
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Figure A.3: E.{AIC(A)} with 95% confidence interval for monotonic and
non-monotonic binomial responses

A.4 Violation of the monotonicity assumption

Here are the details for the simulation setting that examines the violation
of monotonicity constraints. The general strata, treatment, and accrual
settings are the same as Section A.2 above. For both binomial and time-
to-event responses, with the constraint ordering being 7, > mj; and
S;i2(6) = S;1(6),j = a,b, we set the strata response rate difference 7 =
T, — 41 = Sj2(6) — S;1(6) to be either 0.1 or —0.1 for j = a,b. For T = 0.1,
the monotonicity assumption holds, whereas for T = —0.1, it is violated.
We compare the estimated P, and P,m, between designs with and
without order constraints under either concordant or discordant treatment
effect 8*. In particular, for concordant 8*, we use (0.2,0.2) or (0.1,0.2). For

discordant 6*, we use (—0.1,0.2),(—0.2,0.2), (0.2,—0.1), and (0.2,—0.2).
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Under the concordant 8*, Arm a should be recommended and therefore
we would like to see a larger P, and smaller P,n,. On the other hand, for
discordant 6*, we would like to see a smaller P, and larger Pamb.

From Tables A.5 and A.6, it can be seen that, with concordant treatment
effects, P.orr could increase when order constraints are applied to the
ordering violation case, which means that the probability of correct or
definitive recommendation for the superior treatment could be gained by
ignoring the order constraints among various strata.

On the other hand, with discordant treatment effects, the violation
resulted in a larger P, and a smaller P,y,,, which is worse than without
constraints. We have added this findings to our discussion section in the
main text.

Table A.5: Evaluation of binary response strata order violation constraints
between with and without constraints with 7, = 0.35, 8 = (0.05,0.05)
and N = 30.

With constraints Without constraints

T 0* Pcorr Pamb Pcorr Pamb
(0.2,0.2) 0.726 0.263 0.674 0.317
op (0102) 0570 0408 0528  0.453
(-0.1,02) 0202 0745 0.190 0.759
(-0.2,0.2) 0.070 0.861 0.067 0.865
(0.2,-0.1) 0.281 0.556 0.170 0.754
(02,-0.2) 0147 0575 0.057  0.845
(02,02) 0832  0.151 0.683  0.309
oy (0102) 0694 0276 0.535 0.448
(-0.1,02) 0275  0.658 0192  0.763
(-0.2,0.2) 0.095 0.821 0.068 0.872
(0.2,-0.1) 0.363 0.408 0.130 0.790

(0.2,-0.2) 0.173 0.421 0.015 0.879
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Table A.6: Evaluation of time-to-event response strata order violation
constraints between with and without constraints with Sy(6) = 0.55,
6 = (0.05,0.05) and N = 30.

With constraints Without constraints

T 0 Pcorr Pamb Pcorr Pamb
(02,02) 0757 0236 0.707 0.288
0p (0L02) 0588  0.39% 0.543 0.442
(-0.1,02) 0224  0.739 0.210 0.756
(-0.2,0.2) 0.107 0.847 0.097 0.858
(0.2,-0.1) 0.278 0.554 0.170 0.759
(02,-02) 0.167  0.551 0.066 0.843
(02,02) 0832 0.147 0.687 0.303
o1 (0102) 06%2 0273 0.529 0.450
~ (-0.1,0.2) 0.298 0.626 0.204 0.744
(-02,02) 0139 0.771 0.094 0.840
(02,-0.1) 0410  0.356 0.170 0.760

(0.2,-0.2) 0.302 0.333 0.056 0.852
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