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abstract

Heterogeneous patient data offers both unique opportunities and chal-

lenges in biomedical research. Effectively integrating this information

while addressing the complexities it introduces is a crucial area of study.

My research focuses on two scenarios where heterogeneous patient data

are encountered, with the goal to develop methods that improve the relia-

bility and efficiency of the statistical analysis. The first scenario is about

incorporating patients’ natural ordering information in randomized phase

II studies. The exploratory nature of phase II trials makes it quite common

to include heterogeneous patient subgroups with different prognoses in

the same trial. Incorporating such patient heterogeneity or stratification

into statistical calculation can improve efficiency and reduce sample sizes

in single-arm phase II trials with binary outcomes. However, such consid-

eration is lacking in randomized phase II trials. In Chapter 1, we propose

methods that can utilize some natural order information which may ex-

ist in stratified population to gain statistical efficiency for randomized

phase II designs. We consider both binary and time-to-event outcomes

in our development. Compared with methods that do not use ordering

information, our method is shown to improve the probabilities of correct

selection and reduce sample size in our simulation and real examples. We

also developed its related R package constrselect and we discuss its key

functions and implementation in Chapter 2.
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The second scenario addresses the problem of causal generalization,

where differences in the distribution of treatment effect modifiers across

populations, known as covariate shift, can result in varying ATEs.Chen

et al. [2023] introduced a weighting method to estimate the target ATE

using only summary-level information from a target sample while account-

ing for the possible covariate shifts. However, the asymptotic variance

of the estimate was shown to depend on individual-level data from the

target sample, hindering statistical inference. In Chapter 3, we propose a

resampling-based perturbation method for confidence interval construc-

tion for the estimated target ATE, utilizing additional summary-level in-

formation. We demonstrate the effectiveness of our approach through

simulation and real data settings. We also developed its related R package

EBalGen and we discuss its key functions and implementation in Chap-

ter 4.
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1 randomized phase ii design with order

constrained strata

1.1 Introduction

The rapid change in the therapeutic landscape and medical technology,

especially in the field of oncology, makes the randomized phase II trial

a popular choice, as it assures better patient comparability, reduces con-

founding factors, and synchronizes data capture. Indeed, a simple search

on the clinicaltrials.gov website leads to about 4,000 registered randomized

phase II trials in the last 10 years. Among them, 938 are actively recruiting

patients as of today.

In two excellent review articles [Rubinstein et al., 2009, Sharma et al.,

2011], many advantages and disadvantages are discussed for randomized

phase II trials. One main disadvantage is that the implementation of ran-

domized designs generally requires much more patients than traditional

single-arm trials comparing with historical controls under similar settings

[Rubinstein et al., 2009]. Our method intends to deal with this issue for

randomized phase II trials that include stratification of patients.

Due to disease heterogeneity among patients, patients often have dif-

ferent prognostic factors and thus could be stratified into groups for ran-

domization. For example, it is quite common to have different stage cancer

patients (e.g. stages I and II or stages II and III) in the same trial. One
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of our motivating examples is a public phase II stratified clinical trial

targeting cisplatin-ineligible patients with metastatic urothelial cancer

(clinicaltrial.gov Identifier: NCT03451331). The goal is to investigate the

effect of adding carboplatin versus oxaliplatin to existing treatment reg-

imen: gemcitabine and nivolumab. The randomization of this study is

stratified on the lymph node (LN) only metastasis status since LN only

metastasis patients are expected to have higher response rates.

Another motivating example comes from a phase II stratified clinical

trial which is still under development. The study targets patients with

early-stage triple-negative breast cancer who have completed neoadjuvant

therapy and have residual disease. The researchers want to investigate

the effect of adding Sacituzumab Govitecan versus Capecitabine to the

current single-agent treatment of Pembrolizumab. The stratification of

this study is based on nodal status as nodal negative patients are expected

to have higher event-free survival (EFS) rates.

Indeed, patient heterogeneity has been long recognized in single-arm

phase II studies [Thall et al., 2003, London and Chang, 2005, Wathen

et al., 2008, Jung et al., 2012]. Incorporating patient stratification into trial

designs has demonstrated improvement in statistical properties including

improved efficiency and reduced sample sizes for binary outcomes [Chang

et al., 2012, 2011, Sposto and Gaynon, 2009, Xu et al., 2020]. However, such

consideration is lacking in randomized phase II trials.

Two main randomized phase II comparative designs are selection and
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screening designs. The essential difference between the two is that the

selection design does not include a control arm but the screening design

does. Therefore the two designs recommend promising investigational

agents for further phase III studies based on different logic. The screening

design compares investigational agents to the control and screens out those

non-promising agents. Traditional hypothesis testing based methods are

used to determine trial sample sizes. To ensure feasible sample sizes, quite

liberal type I and type II errors are used.

On the other hand, the selection design focuses on “picking a winner"

from a pool of testing agents. The design is also sometimes known as the

“pick a winner" design. For example, the test agents may have already

demonstrated activity in limited scenarios, or they may be combination

drugs with new agents added to known active treatments [Liu et al., 1993].

In this type of design, it is not essential that the very best treatment is

definitely selected, since we could only make this decision after doing

a formal phase III trial. Rather, this design ensures that a substantially

inferior treatment will not be selected when a superior treatment exists

[Sargent and Goldberg, 2001].

The goal of our method is to utilize some natural order constraints

that may exist in stratified population to gain statistical efficiency for ran-

domized phase II designs. Our idea is applicable for both screening and

selection designs. However, for thoroughness and simplicity, we focus

on the selection design in this chapter, and put our application on screen-
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ing design in the appendix. We demonstrate that utilizing such order

information is particularly useful in early-phase clinical trials, especially

when we want to gain more statistical efficiency and reduce sample sizes.

A fundamental reason for the efficiency gain is due to the fact that the

constrained estimates for treatment effects have smaller variances and

similarly negligible biases compared with unconstrained estimates. Incor-

porating constraint information will induce positive correlations between

estimated treatment effects across ordered strata, therefore increasing the

probability of correct selection. We provide such empirical evidence in

our appendix.

Besides the popular choice of binary outcomes in phase II trials, we also

devote our effort to incorporating time-to-event outcomes as a non-trivial

extension in this paper. Randomized phase II selection designs based

on time-to-event outcomes with no stratification have been considered

by Liu et al. [1993]. Many phase II trials are now designed to assess the

promise of a molecularly targeted or an immuno-biological agent, given

either alone or in combination with another regimen. In particular, it is not

always anticipated that such agents are likely to improve tumor response

rates. Rather, they will improve time-to-event outcomes such as EFS,

progression-free survival (PFS), or overall survival (OS) through means

other than direct cell killing as evidenced by tumor shrinkage. There is

an increasing need in oncology to evaluate agents that are anticipated to

increase PFS or OS, but not objective tumor response.
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For randomized phase II selection design with binary outcome, Simon

et al. [1985] first introduced the design for unstratified population and

examined its performance and statistical characteristics. In this type of

design, patients are randomized to two or more experimental agents and

the treatment with the highest observed response rate will be selected

for further trial [Simon et al., 1985]. However, there are some additional

factors that may influence our decision to select the most appropriate

treatment to proceed for a phase III trial, such as toxicity, cost etc. Sargent

and Goldberg [2001] recently proposed a flexible randomized phase II

selection trial that allows researchers to select the most appropriate treat-

ment based on other factors when the observed response difference is

relatively small.

We extend the idea of Sargent and Goldberg [2001] to our setting of

randomized selection phase II trials with stratification. In Section 1.2

we present our method for both binary and time-to-event outcomes. In

Section 1.3 we evaluate the method under simulated settings by comparing

with the method without using the order information. In Section 1.4 we

illustrate our method with two motivating examples. Finally in Section

1.5 we conclude this paper with some discussion.
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1.2 Method

To better illustrate the specific design that we are proposing, we describe

our method based on stratified randomized two-arm trials. Extension to

randomized studies with multiple arms are straightforward.

Assume patients are stratified into G strata and randomized to Arms

a and b. In total, there are N patients in each arm where the proportion

of patients in each stratum is wjg with j ∈ {a,b}. Here, g = 1, ...,G and∑G
g=1 wjg = 1 for j = a or b. Based on this, the number of patients in Arm

j Stratum g is defined as njg = N ·wjg.

Binary outcome

Assume that, in Arm j and Stratum g, the number of responders rjg are

independent binomial random variables with rjg ∼ Bin(njg,πjg). Here, we

assume the strata in Arm j satisfy the partial stochastic ordering constraints

in its strata [Park et al., 2012a] defined by a constraint set E ⊂ {1, ..G}2, i.e.,

∀(u, v) ∈ E,πju ⩾ πjv.

If there is total ordering among all strata such that πj1 ⩾ . . . ⩾ πjG, then

the constraint set E = {(1, 2), (2, 3), . . . , (G − 1,G)}. But partial ordering

is also possible. As an example, suppose the strata are formed by stage

(1 vs. 2) and nodal involvement (no vs. yes). Then there may be no

ordering between the stratum defined by ‘stage 1+nodal yes’ and the
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stratum ‘stage 2+nodal no’. As a result, E may take the form E = {(1 +

no, 1 + yes), (1 + no, 2 + no), (1 + yes, 2 + yes), (2 + no, 2 + yes)} where

neither (1 + yes, 2 + no) nor (2 + no, 1 + yes) are included.

Let pjg be the corresponding E-constrained maximum likelihood es-

timator (MLE) with Arm j Stratum g under the constraint set E. Under

the framework described by Sargent and Goldberg [2001], we propose to

make the selection of one of the two arms as follows. If for each stratum,

the difference of E-constrained MLEs of response rates between two arms

is greater than a pre-specified level θ, the arm with the higher response

rate will be selected in the phase III trial.

Denote

πj = (πj1, . . . ,πjG)
⊤, j = a,b;

pj = (pj1, . . . ,pjG)
⊤, j = a,b;

θ = (θ, . . . , θ)⊤1×G, θ ⩾ 0 .

Let⪰ and≻ be the element-wise⩾ and> functions respectively for a vector.

We define Pcorr = Pr(pa ≻ pb+θ | πa ⪰ πb) as the probability of correctly

choosing the better treatment when E-constrained MLE differences are

greater than θ. Instead of using the same threshold θ for all strata, stratum-

specific threshold θg can also be used to define Pcorr. In actual calculation,

we usually specify πa = πb + θ∗ where θ∗ = (θ∗, . . . , θ∗)⊤1×G with θ∗ ⪰ 0

and calculate

Pcorr = Pr(pa ≻ pb + θ | πa = πb + θ∗) .
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Similar to the specification of the threshold θ, we can also use stratum-

specific difference θ∗
g for the gth component of θ∗.

If the difference for each stratum is in the opposite direction, we define

this as the statistically wrong region with a prespecified level θ and we

should avoid this situation. Mathematically, this corresponds to Pwrong =

Pr(pb ≻ pa + θ | πa ⪰ πb). Similar to the calculation of Pcorr, we calculate

Pwrong = Pr(pb ≻ pa + θ | πa = πb + θ∗) .

For the situation other than these two, we define it as statistically am-

biguous region. Then the selection of the treatment for the phase III trial

will be allowed to include other factors in addition to the response rate.

Mathematically, this corresponds to

Pamb = 1 − Pcorr − Pwrong .

In order to incorporate the partial stochastic ordering constraint in MLE,

we construct the E-constrained MLE of the response rate for each arm

and stratum as follows. First, we write the likelihood and log-likelihood

functions as

l(pj) =
N!

nj1! · · ·njG!

( G∏
g=1

w
njg

jg

){ G∏
g=1

(
njg

rjg

)
p
rjg
jg (1 − pjg)

njg−rjg

}

∝
G∏

g=1

p
rjg
jg (1 − pjg)

njg−rjg ,

log l(pj) ∝
G∑

g=1

rjg log(pjg) + (njg − rjg) log(1 − pjg) .
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The optimization problem is to maximize log l(pj) through the follow-

ing constrained convex optimization problem,

min
pj

− log l(pj)

subject to E ⊂ {1, ..G}2, (u, v) ∈ E,pju ⩾ pjv;

0 ⩽ pjg ⩽ 1; j = a,b; g = 1, . . . ,G.

(1.1)

Let cjg = logit(pjg). As the logit function is monotonically increasing,

we have pju ⩽ pjv ⇐⇒ cju ⩽ cjv. With ηjg = rjg/njg, we transform

Eq. (1.1) to be

min
pj

G∑
g=1

{
log(1 + ecjg) − ηjgcjg

}
njg

subject to E ⊂ {1, ..G}2, (u, v) ∈ E,pju ⩾ pjv;

0 ⩽ pjg ⩽ 1; j = a,b; g = 1, . . . ,G.

(1.2)

This is the generalized isotonic regression problem as log(1 + ecjg)

is strictly convex on (−∞,∞). By Barlow and Brunk [1972], Eq. (1.2) is

equivalent to

min
pj

1
2

G∑
g=1

(
pjg −

rjg

njg

)2
njg

subject to E ⊂ {1, ..G}2, (u, v) ∈ E,pju ⩾ pjv;

0 ⩽ pjg ⩽ 1; j = a,b; g = 1, . . . ,G.

(1.3)

Therefore Eq. (1.3) is a strictly convex and positive definite quadratic

programming problem and there are many existing algorithms solving

Eq. (1.3). We use an easy-to-implement R package quadprog in this paper.
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Finally, after obtaining the E-constrained MLEs, we can plug them into

Eq. (1.4) to estimate the probabilities that we are interested in,

Pcorr =

na1∑
ra1=0

· · ·
naG∑

raG=0

nb1∑
rb1=0

· · ·
nbG∑

rbG=0

1{pa>pb+θ}

G∏
g=1

(
nag

rag

)
π
rag
ag (1 − πag)

nag−rag

×
(
nbg

rbg

)
π
rbg
bg (1 − πbg)

nbg−rbg ,

Pwrong =

na1∑
ra1=0

· · ·
naG∑

raG=0

nb1∑
rb1=0

· · ·
nbG∑

rbG=0

1{pb>pa+θ}

G∏
g=1

(
nag

rag

)
π
rag
ag (1 − πag)

nag−rag

×
(
nbg

rbg

)
π
rbg
bg (1 − πbg)

nbg−rbg ,

Pamb =1 − Pcorr − Pwrong.

(1.4)

Following Sargent and Goldberg [2001], we use λ ≡ Pcorr + ρPamb

with a pre-specified ρ ∈ [0, 1] as the probability for selecting the superior

treatment. For determining the desired sample size, the most conservative

way is that we assume any statistically ambiguous outcome could result in

Arm b being chosen and thus we will try to avoid any ambiguous results.

With the prespecified ϕ ∈ [0, 1], N should be large enough to ensure that

λ > ϕ when ρ = 0. A second approach would be to assume ρ percent of

ambiguous cases are indeed correct and being selected. In this case, N

would be selected such that λ > ϕ when ρ ̸= 0.
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Time-to-event outcome

We consider survival probabilities at a pre-fixed time x as the interested

endpoint [Rubinstein et al., 2005]. This endpoint is interpretable even in

the presence of non-proportional hazard, which is a well-known issue

for modern cancer treatments such as immunotherapy [Uno et al., 2015,

2014].

Suppose Sjg(x), j = a,b and g = 1, . . . ,G is the true survival probability

at time x for Stratum g in Arm j. Further assume that the strata in Arm j

satisfy the partial stochastic ordering constraints at a given time x defined

by the constraint set E ⊂ {1, ..G}2, i.e., ∀(u, v) ∈ E,Sju(x) ⩾ Sjv(x). Similar

to the binary outcome setting, the choice of E is rather flexible to reflect

known order constraints among strata. We note that the constraints on

the survivor functions are on the given time x only, instead of on the

whole functions. Such pointwise constraint has known computational and

theoretical advantages as discussed by [Park et al., 2012a,b].

Let S̃jg(x) be the corresponding E-constrained nonparametric maxi-

mum likelihood estimator (NPMLE) for survivor probability of Arm j

Stratum g subject to constraint set E applied at a given time x only. Denote

Sj = (Sj1(x), . . . ,SjG(x))
⊤, j = a,b;

S̃j = (S̃j1(x), . . . , S̃jG(x))
⊤, j = a,b;

θ = (θ, . . . , θ)⊤1×G, θ ⩾ 0 .

The treatment selection strategy is similar to the above binary outcome
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case. That is, we define Pcorr = Pr(S̃a ≻ S̃b + θ | Sa ⪰ Sb) as the

probability of correctly choosing the better treatment when the difference

of E-constrained NPMLE at time x is greater than θ. Then we can define

Pwrong = Pr(S̃b ≻ S̃a+θ | Sa ⪰ Sb) as the probability of wrongly choosing

the worse treatment, and Pamb = 1 − Pcorr − Pwrong as the probability of

being in the ambiguous region. Similar to the binary outcome setting, we

usually specify Sa = Sb+θ∗ where θ∗ = (θ∗, . . . , θ∗)⊤1×G with, θ∗ ⪰ 0 and

calculate

Pcorr = Pr(S̃a ≻ S̃b + θ | Sa = Sb + θ∗),

Pwrong = Pr(S̃b ≻ S̃a + θ | Sa = Sb + θ∗),

Pamb = 1 − Pcorr − Pwrong.

(1.5)

In order to incorporate the partial stochastic ordering constraints in

survival probability estimation, we follow Park et al. [2012a] to construct

the pointwise E-constrained NPMLE of survival probability for each arm

and stratum. In short, let the observed survival time for each individual i

in Arm j and Stratum g be Yjgi and let the event indicator be ∆jgi for i =

1, ...,njg. Then the generalized likelihood function of survival probabilities

for each arm j is

l(Sj1(·), ...SjG(·)) =
G∏

g=1

njg∏
i=1

{Sjg(Yjgi−) − Sjg(Yjgi)}
∆jgiSjg(Yjgi)

1−∆jgi .

(1.6)

The estimation of S̃jg(x) need to maximize Eq. (1.6) subject to the partial-

ordering constraint E such that ∀(u, v) ∈ E,Sju(x) ⩾ Sjv(x).
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For Arm j and Stratum g, let mjg be the number of distinct events and

Xjgl be the distinct event times for l = 1, ...mjg. Further define Xjg0 = 0

and Xjg(mjg+1) = ∞. Let Zjg(x) be the number at risk at time x and Mjg(x)

be the number of distinct events in (0, x]. Let djgl and zjgl be the number

of events and number at risk at time Xjgl. Let hjg(t) = log{Sjg(t)/Sjg(t−)}

and the corresponding discrete hazard at time t be 1 − exp{hjg(t)}. Then

the loglikelihood function of Eq. (1.6) subject to the partial-ordering con-

straints E is

max
hjg

G∑
g=1

{ mjg∑
l=1

(
djgl log[1 − exp{hjg(Xjgl)}]+

(zjgl − djgl)hjg(Xjgl)
)
+ Zjg(x)h

δ
jg(x)

}
subject to

Mju(x)∑
i=1

hju(Xjui) + hδ
ju(x) ⩾

Mjv(x)∑
i=1

hjv(Xjvi) + hδ
jv(x), for (u, v) ∈ E,

hδ
jg(x) ⩽ 0 ,

(1.7)

where hjg = {hjg(Xjg1), ...,hjg(Xjgmjg
),hδ

jg(x)},g = 1, . . . ,G. Here, we

define hδ
jg(x) = 1(x ̸=XjgMjg(x))hjg(x) to account for the fact that we do not

need to add this extra term Zjg(x)hjg(x) if x = XjgMjg(x).

Now, this becomes a linearly constrained concave maximization prob-

lem. One challenge here is that our data contain many more observed

event times than strata. Thus, we need to transform this problem into

a simple concave maximization problem subject to linear constraints by
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using the profile likelihood.

Let qjg satisfies the relationship Sjg(x) = exp(qjg) at time x. Suppose

k̂jg is the unique solution of the equation
∑Mjg(x)

i=1 {log(1 − djgi/(zjgi +

kjg)} = qjg. If qjg = 0, k̂jg = ∞ and if qjg = −∞, k̂jg = djgMjg(x) −

zjgMjg(x). If Mjg(x) = 0, let Kjg(qjg; x) = −Zjg(x), and otherwise let

Kjg(qjg; x) = max(−Zjg(x), k̂jg). Based on Park et al. [2012a], we can then

transform Eq. (1.7) into the profile loglikelihood function as

max
qj

G∑
g=1

ℓjg(qjg; x) =
G∑

g=1

(
Mjg(x)∑
i=1

[(zjgi − djgi) log{zjgi + Kjg(qjg; x) − djgi}

− zjgi log{zjgi + Kjg(qjg; x)}] + 1{Kjg(qjg;x)=−Zjg(x)}Zjg(x)

×
[
qjg −

Mjg(x)∑
l=1

log
{

1 −
djgl

zjgl + Kjg(qjg; x)
}])

subject to qju ⩾ qjv, for all (u, v) ∈ E;

qjg ⩽ 0.

(1.8)

The corresponding derivative of Eq. (1.8) is dℓj(qj; x)/dq⊤
j =

{−Kj1(qj1; x), ...,−KjG(qjG; x)}⊤. In order to maximize Eq. (1.8), only G

parameters qj = (qj1, ...,qjG) need to be estimated for each arm to get

S̃jg(x) = exp(q̂jg). This is a strictly concave maximization problem subject

to linear constraints. There are many existing algorithms solving this

problem. We use an easy-to-implement R function contrOptim to solve this

optimization problem.
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Finally, after getting the E-constrained NPMLE of survival probability

at time x, we could plug in Eq. (1.5) to estimate Pcorr and Pamb and calculate

λ using Monte Carlo simulations.

1.3 Evaluation with simulated settings

In this section, we would like to compare the performance of the proposed

method with the simple randomized stratified selection design, which

does not incorporate order information. We consider the setting that each

of the Arms a and b has N patients. There are G = 2 strata in each arm.

The patient proportions in different strata are wa1 = wb1 = 0.4 (therefore

wa2 = wb2 = 0.6).

Binary outcome

Assume πag ⩾ πbg and πj2 ⩾ πj1, j = a,b,g = 1, 2 without loss of general-

ity. Accordingly, the E-constraint is πj2 ⩾ πj1. The binomial response rate

MLE without considering the order information would be the observed

response rate π̂jg = njg
−1rjg. We will compare the calculated λ between

the two methods.

The probabilities of selecting the superior treatment (λ) across different

N and θ are shown in Figure 1.1. When calculating λ, we consider ρ = 0

or ρ = 0.5. The former means that we do not want any ambiguity (i.e.

Pamb) in selecting the superior treatment whereas the latter means that
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we use a coin flip to recommend the superior treatment when the result

falls in the ambiguous region. Also, we consider different values of θ

in the design as a trade-off between minimizing the sample size N and

the clinical consideration of other factors. Overall, we see our method

gives uniformly larger λ than the original method without using order

information.

ρ=0 ρ=0.5

20 30 40 50 60 70 20 30 40 50 60 70
0.55

0.65

0.75

0.85

0.95

Sample size

λ

Group

With Constraints

Without Constraints

θ
(0.03,0.03)

(0.07,0.07)

Figure 1.1: Probability of selecting the superior treatment (λ) for various
N and θ, between ρ = 0 and ρ = 0.5, fixing πa = (0.55, 0.65),

θ∗ = (0.2, 0.2).

Table 1.1 lists required sample sizes per arm for common response

probabilities to get λ = 0.8. The table also shows that λ is not a monotone

function of response probabilities.
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Table 1.1: Sample size per arm for various response probabilities to get
λ = 0.8, assuming θ = (0.05, 0.05), πj2 − πj1 = 0.1 and θ∗ = (0.2, 0.2).

With constraints Without constraints
πa1 ρ = 0.5 ρ = 0 ρ = 0.5 ρ = 0
0.25 14 29 18 32
0.4 17 45 23 63
0.55 18 58 24 73
0.7 17 45 23 63
0.85 13 29 17 33

Survival outcome

Assume Sag(x) ⩾ Sbg(x), Sj2(x) ⩾ Sj1(x), j = a,b,g = 1, 2 without

loss of generality. Accordingly, Sjg(x) satisfy the E-constraints at time

x that Sj2(x) ⩾ Sj1(x), j = a,b . The survival probability NPMLE without

considering the order information would be the Kaplan-Meier estimator

Ŝjg(x) =
∏

i:xi⩽x(1−
djgi

njgi
). We will then compare the calculated λ between

the two methods.

Suppose patients enroll according to a Poisson process with an accrual

rate of 4 patients per month for each of the treatment arm stratum. We will

continue to follow up for an additional 6 months after the last patient is

enrolled for each stratum. Suppose the survival time follows exponential

distribution and we are constraining and comparing survival probabilities

at 6 months. The estimation of Pcorr and Pamb is based on 8,000 simulations.

The probability of selecting the superior treatment (λ) across different

N and θ is shown in Figure 1.2. Note that from the figure, λ is not a mono-
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tonically increasing function of sample size. Thus, we should calculate the

required sample size needed for each scenario without assuming λ should

increase with the increase of sample size. Under different selection criteria

ρ and trade-off values θ, we see our method gives uniformly larger λ than

the original method without using order information.

ρ=0 ρ=0.5

20 30 40 50 60 70 20 30 40 50 60 70

0.65

0.75

0.85

0.95

Sample size

λ

Group

With Constraints

Without Constraints

θ
(0.03,0.03)

(0.07,0.07)

Figure 1.2: Probability of selecting the superior treatment (λ) for various
N and θ, between ρ = 0 and ρ = 0.5, fixing Sa = (0.75, 0.85),

θ∗ = (0.2, 0.2).

Table 1.2 gives sample sizes per arm for common survival probabilities

for different additional follow-up (FUP) months after the last patient

is enrolled for each stratum. Similar to the binary outcome setting, we

see that the required sample sizes are smaller when constraints are used,

except for the setting with Sa1(6) = 0.85, FUP = 4, ρ = 0.5. This might be

due to the high censoring probability and the fact that Pamb is included

in the definition of λ.
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Table 1.2: Sample size per arm for various survival probabilities at 6
months to get λ = 0.8, assuming θ = (0.05, 0.05), S(6)j2 − S(6)j1 = 0.1 and
θ∗ = (0.2, 0.2).

With Constraints Without Constraints
FUP (months) Sa1(6) ρ = 0.5 ρ = 0 ρ = 0.5 ρ = 0

0.25 14 29 18 32
0.4 17 45 22 64

6 0.55 19 58 24 73
0.7 17 47 23 64

0.85 12 28 17 39
0.25 15 34 19 42
0.4 19 55 25 67

5 0.55 22 58 27 74
0.7 19 52 24 67

0.85 15 33 19 43
0.25 21 42 25 52
0.4 27 58 32 72

4 0.55 28 63 32 77
0.7 26 55 29 69

0.85 22 40 21 50

1.4 Evaluation with real settings

Here we would like to use two real clinical trial examples to demonstrate

the advantage of our method in binary and survival settings. First, let’s

consider our motivating clinical trial example for patients with metastatic

urothelial cancer. This trial has two treatment arms: treatment nivolumab,

gemcitabine, oxaliplatin versus treatment nivolumab, gemcitabine, car-

boplatin. The primary outcome of the study is response rate and the

stratification is based on lymph node only metastasis versus metastasis of

other sites. Previous studies reported that there are around 30% of patients



20

with lymph node only metastasis have better response rates. Here, a ran-

domized stratified phase II selection trial would be the most appropriate.

We hypothesize that the lymph node only group will have a higher

response rate than the other group. We assume two strata of the inferior

treatment arm have response rates πb = (0.4, 0.5), θ∗ = (0.2, 0.2) and 30%

of the total study patients have lymph node only metastasis. Figure 1.3

shows the calculated λ under different sample sizes using our proposed

method and the method not considering order information. We see that

the sample size N per arm derived from our method is around 20 versus

30 using the method without considering order information to achieve

λ = 0.8 with ρ = 0.5 and θ = (0.05, 0.05).

ρ=0 ρ=0.5

20 30 40 50 20 30 40 50

0.6

0.7

0.8

0.9

Sample size

λ

Group

With Constraints

Without Constraints

Figure 1.3: Probability of selecting the superior treatment (λ) for various
N, between ρ = 0 and ρ = 0.5 with θ = (0.05, 0.05), πb = (0.4, 0.5),

θ∗ = (0.2, 0.2).

For the other motivating example, it has two treatment arms for ex-
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amination with the goal of comparing the effect of Sacituzumab Govite-

can in combination with Pembrolizumab versus Capecitabine and Pem-

brolizumab in patients with triple negative breast cancer and residual

disease. The primary outcome of the study is EFS and the stratification

of this study is based on nodal status. Previous studies reported that the

node positive group had lower 2-year EFS than node negative group. The

prevalence of node positive is around 30%. Again, a randomized stratified

phase II selection trial would be the most appropriate.

Suppose the two strata of the inferior treatment arm have 2-year EFS

Sb = (0.6, 0.7), and sample size is determined based on an improvement

of θ∗ = (0.15, 0.15) for the better treatment arm. Suppose patients enroll

according to a Poisson process with an accrual rate of 8 patients per year

for each of the treatment arm stratum. We will continue follow-up for

an additional 2 years after the last patient is enrolled for each stratum.

Suppose the survival time follows exponential distribution and we are con-

straining and comparing survival probabilities at 2 years. Based on 8,000

Monte Carlo simulations, the estimated λ under different sample sizes

using our proposed method and the method not considering order infor-

mation are shown in Figure 1.4. We see that the sample size derived from

our method is around 25 versus 35 using the method without considering

order information to achieve λ = 0.8 with ρ = 0.5 and θ = (0.02, 0.02).
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ρ=0 ρ=0.5

20 25 30 35 40 45 20 25 30 35 40 45

0.5

0.6

0.7

0.8

Sample size

λ

Group
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Figure 1.4: Probability of selecting the superior treatment (λ) for various
N, between ρ = 0 and ρ = 0.5 with θ = (0.02, 0.02), Sb = (0.6, 0.7),

θ∗ = (0.15, 0.15).

1.5 Discussion and conclusion

We have considered designing stratified randomized phase II cancer trials

using order constraints. Given the exploratory nature of phase II trials,

it is important to incorporate known constraints into the sample size cal-

culation procedure to improve statistical efficiency. Using a two-arm ran-

domized selection design as our setting, we demonstrated improvement

of selection probabilities or reduction of sample sizes for both binary and

time-to-event outcomes.

Our results are easily generalizable to randomized phase II screening

designs and we put the details in the appendix. In addition, we can simply

use the E-constrained MLEs in most of the calculations laid out in [Jung

and George, 2009]. Such a generalization can be an interesting future
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work. In addition, our approach shows promise for Phase III clinical trial

applications, particularly when individual strata contain limited numbers

of patients. For example, this adaptation would be especially valuable

in rare disease studies, where recruitment challenges naturally result in

small stratified subgroups. By incorporating the natural ordering relation-

ships between strata, our method can enhance statistical power in these

challenging late-phase trial contexts.

A fundamental assumption for our method is the E-constraint assump-

tion. Because the constraint set E is very flexible, we recommend including

only well-established ordering. In other words, when there is uncertainty

or insufficient data to support a particular order relationship, it may be

better not to include such a relationship in the set E.

Statistically, one can also try to empirically evaluate the ordering of

an assumption when there is existing data. A recent method known as

nearly isotonic regression [Tibshirani et al., 2011, Matsuda and Miyatake,

2022] may be used to visually evaluate such an assumption. We leave the

details to the Appendix. In there, we also evaluate the performance of our

method when there is a violation of the ordering assumption.

In our calculation, we defined Pcorr as the probability of differences in

the response rates or survival probabilities surpassing a common threshold

for all strata. Alternative definitions can be used. For example, it can be

defined as ‘winning’ in at least one stratum, instead of in all strata. We

are also extending our design to recommend a subgroup-specific winner
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where the subgroup consists of certain strata.

Acknowledgments

Research reported in this work was partially supported by the Specialized

Program of Research Excellence (SPORE) program, through the National

Cancer Institute (NCI), grant P50CA278595. The content is solely the

responsibility of the authors and does not necessarily represent the official

views of the NIH.

Data Availability

The data that support the findings in this paper were derived from simu-

lation and from published summary information. An R package for the

method in this paper is available on GitHub: https://github.com/yc702/constrselect.

The package includes help files, unit testing, the simulation code for the

paper and a readme file with instructions about installing the package and

using the package functions.



25

2 an r package: contrselect

2.1 Overview

This chapter introduces an R package contrselect, which is used to incor-

porate patient heterogeneity and stratification into randomized phase

II selection design. This package focuses on estimating the probability

of correct selection (λ) when comparing two treatments, accounting for

additional factors when the observed response difference is relatively

small. The package offers flexibility in handling both survival and binary

outcomes, as well as with and without constraints. Regarding patient

heterogeneity, it can accommodate both total and partial ordering infor-

mation, making it particularly useful when we have multiple strata. We

illustrate the implementation of our package under different scenarios.

The key functions for our package are pickwin_bin_multiple() for binary

outcome and pickwin_surv_fun() for survival outcome. Our package is

available on github https://github.com/yc702/constrselect and it passes

R-CMD-check.

2.2 Package dependencies

contrselect was developed with dependence on 7 packages:

• parallel, doParallel, foreach and doRNG are essential tools for imple-

menting parallel computing, as most of our methods are based on
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Monte Carlo simulations. These packages can significantly increase

the efficiency of our method by distributing computational tasks

across multiple CPU cores. Especially, doRNG is used to ensure re-

producibility in parallel computing given the same seed [R Core

Team, 2023, Microsoft and Weston, 2022a,b, Gaujoux, 2023].

• quadprog provides functions for solving quadratic programming (QP)

problems, which minimizes a quadratic function subject to linear

constraints. This package is essential for the binary outcome method

given total and partial ordering of strata [Turlach and Weihs, 2019].

• survival offers comprehensive tools for analyzing time-to-event (sur-

vival) data. Here, we primarily use its functions for getting Kaplan-

Meier estimators at a given time [Therneau, 2023].

• dplyr is a powerful and efficient tool for tidy data manipulation

[Wickham et al., 2023].

2.3 Key functions

Binary outcome

pickwin_bin_exact() and pickwin_bin_multiple() are two crucial functions to

implement in our package for binary outcome. While pickwin_bin_exact()

only works for the two-strata case, pickwin_bin_multiple() is more flexi-

ble, allowing us to incorporate more than two strata. Another important
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difference between these two functions is that pickwin_bin_exact() em-

ploys the exact binomial method to do the statistical calculation, while

pickwin_bin_multiple() relies on Monte Carlo simulations, resulting a sig-

nificantly longer computation time. Since both functions share similar

input arguments, here I will mainly focus on pickwin_bin_multiple() for

demonstration purpose.

• n Total sample size for each treatment arm.

• p_inf A vector of response probabilities for the inferior treatment

arm for each stratum.

• D A vector of two treatment arms differences for each stratum, De-

fault: c(0.15, 0.15, 0.15).

• d A vector of ambiguous region for each stratum, Default: c(0.05,

0.05, 0.05) for three strata.

• prop.strat The sample size proportion for each stratum, Default: c(0.2,

0.3, 0.5) for three strata.

• study Could be either "Constrained" or "Origin" for the two type

of study design with or without using constraints, Default: ’Con-

strained’.

• S Number of simulations for calculating the probabilities.

• cluster Number of parallel running CPU cores, Default: 6.
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• order_list A list of strata order allowing for total and partial ordering,

grouped in a vector within a list. Eg. list(1,2,3) for total ordering

and list(1,c(2,3)) for partial ordering.

• with_seed Random seed for simulation, Default: NULL.

The output of the function returns a data frame of whether each simu-

lated scenario would result in a correct and wrong decision with a total of

S number of simulations.

Survival outcome

pickwin_surv_fun () is the main function for survival outcome. It is flex-

ible as it allows us to incorporate more than two strata. The statistical

calculations in this function is based on Monte Carlo simulation.

• n, prop.strat, S, d, study, cluster, order_list, with_seed are the same as

the input as function pickwin_bin_multiple().

• surv_inf The survival probability at time x for patients in the inferior

treatment arm.

• surv_sup The survival probability at time x for patients in the superior

treatment arm.

• arrival_rate The Poisson arrival rate for patients, number of patients

accrued each month/year.
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• FUP Additional follow up time after the last patient is accrued.

• x Time we are interested in comparing the survival probabilities.

The output of the function similarly returns a data frame of whether

each simulated scenario would result in a correct and wrong decision with

a total of S number of simulations.

2.4 Example implementation

For a two-strata example with a binary outcome, we will look at a scenario

similar to the real-world setting described in Chapter 1. Suppose a clinical

trial has two treatment arms to study and we would like to pick a winner.

The primary outcome of the study is the response rate, and the patients’

stratification is based on lymph node only metastasis versus metastasis

of other sites. Historical literature mentions that around 30% of patients

with lymph node only metastasis have better response rates.

Suppose the lymph node only group has a higher response rate than the

other group. We assume two strata of the inferior treatment arm having

response rates (0.4, 0.5) while the better treatment arm having (0.6, 0.7)

constraining on strata 2 has a better response rate than strata 1. We use

exact binomial function, pickwin_bin_exact() to calculate Pcorr and Pamb.

We see that the sample size N per arm derived from our method is around
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20 to achieve λ = ρ × Pamb + Pcorr = 0.8 with ρ = 0.5 and ambiguous

regions (0.05,0.05).

r e s u l t = pickwin _ bin _ exac t (n = 20 , p_ i n f = c ( 0 . 4 , 0 . 5 ) ,

D=c ( 0 . 2 , 0 . 2 ) , d=c ( 0 . 0 5 , 0 . 0 5 ) ,

prop . s t r a t =0.7 , study=" Constrained " ,

order _ l i s t= l i s t (1 ,2))

r e s u l t

#> p c o r r pamb

#> 0.6128794 0 .3673020

With a slight modification of this example, suppose the patients now are

stratified into three strata, based on cancer stage 1,2,3. Previous research

indicated that the larger the cancer stage, the worse the prognosis, with

the sample proportion of 4:3:3.

We assume three strata of the inferior treatment arm having response

rates (0.5,0.4,0.3) while the better treatment arm having (0.65,0.55,0.45)

for cancer stage 1,2,3. Using 5000 Monte Carlo simulations, the pick-

win_bin_multiple() function calculates Pcorr and Pamb. In order to in-

corporate the ordering constraints, we specify order_list to be ‘list(3,2,1)‘

which indicates the total ordering constraints of response rates strata 3

< strata 2 < strata 1. If we want to specify partial ordering constraints,

eg. strata 3 < strata 2 and strata 3 < strata 1 without specifying the or-

der between strata 1 and 2, we could set order_list=list(3,c(1,2)). We see
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that the sample size N per arm derived from our method is around 58 to

achieve λ = ρ× Pamb + Pcorr = 0.8 with ρ = 0.5 and ambiguous regions

(0.02,0.02,0.02).

r e s u l t <− pickwin _ bin _ mult ip le (n = 58 , p_ i n f = c ( 0 . 5 , 0 . 4 , 0 . 3 ) ,

D=c ( 0 . 1 5 , 0 . 1 5 , 0 . 1 5 ) ,

d=c ( 0 . 0 2 , 0 . 0 2 , 0 . 0 2 ) ,

prop . s t r a t=c ( 0 . 4 , 0 . 3 , 0 . 3 ) ,

study=" Constrained " , S = 5000 ,

c l u s t e r =6, order _ l i s t= l i s t ( 3 , 2 , 1 ) )

Pcorr = sum( r e s u l t $Corr )

Pwrong = sum( r e s u l t $Wrong)

( Pcorr +0.5∗(5000− Pcorr−Pwrong)) /5000

#> 0.8052

For a two-strata example with survival outcome, we will also look at a

scenario similar to the real-world setting described in Chapter 1. Suppose

two treatment arms are evaluated, with event-free survival (EFS) as the

primary outcome and patients’ stratification based on nodal status. Previ-

ous studies showed that the node positive group had a lower 2-year EFS

with the prevalence to be around 30%.

Suppose two strata of the inferior treatment arm have 2-year EFS (0.6,

0.7), and the sample size is determined based on an improvement of

0.15 for the better treatment arm. Suppose patients enroll according to a
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Poisson process with an accrual rate of 8 patients per year for each of the

treatment arm stratum. We will continue to follow up with patients for

an additional two years after the last patient is enrolled in each stratum.

Assuming that survival time follows an exponential distribution, we will

compare and constrain survival probabilities at two years. Based on 8000

Monte Carlo simulations, we need a sample size of 30 to achieve λ =

ρ × Pamb + Pcorr = 0.8 with ρ = 0.5 and ambiguous region (0.02, 0.02).

We could also generalize it to include more than two strata.

r e s u l t <− pickwin _ surv _ fun (n=25 ,prop . s t r a t=c ( 0 . 3 , 0 . 7 ) ,

surv _ i n f=c ( 0 . 6 , 0 . 7 ) ,

surv _sup=c ( 0 . 7 5 , 0 . 8 5 ) ,

d=c ( 0 . 0 2 , 0 . 0 2 ) , a r r i v a l _ r a t e =8,

FUP=2,x=2,

S=8000 , study =" Constrained " ,

c l u s t e r =2, order _ l i s t= l i s t ( 1 , 2 ) ,

with_ seed = 111)

## Pamb

pamb=8000−sum( r e s u l t $Corr)−sum( r e s u l t $Wrong)

## lambda c a l c u l a t i o n with rho = 0 . 5

(sum( r e s u l t $Corr)+(pamb)/ 2) /8000

#> 0.80825
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3 confidence interval construction for causally

generalized estimates with target sample summary

information

3.1 Introduction

Causal inference plays a pivotal role in population health research, pro-

viding essential tools for understanding and shaping effective health in-

terventions. One of its popular research questions is how to generalize

causal findings from a study population to a target population (Degtiar

and Rose, 2023, Colnet et al., 2023, Chen et al., 2023). For example, we may

want to generalize findings about the effectiveness of a treatment from

a properly conducted randomized clinical trial (RCT) to its target popu-

lation. We usually refer to this type of problem as generalizability [Cole

and Stuart, 2010, O’Muircheartaigh and Hedges, 2013], transportability

[Rudolph and van der Laan, 2017, Pearl and Bareinboim, 2011], or data

fusion [Bareinboim and Pearl, 2016, Graham et al., 2025, Li and Luedtke,

2023]. There are some differences between these terminologies, and more

detailed explanations can be found in Colnet et al. [2023].

For much of this article, for demonstration purposes, we focus on gener-

alizing the average treatment effect (ATE), although similar considerations

can be given to other causal estimands such as the Average Treatment

effect on the Treated (ATT) or Average Treatment effect on the Overlap
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population (ATO) [Colnet et al., 2023]. Our method mainly deals with

causal generalization from a source to a target population when individual

treatment effects are heterogenenous. Specifically, the individual treat-

ment effects may depend on certain covariates, known as effect modifiers.

In addition, the distributions of the effect modifiers can differ between the

two populations [Sugiyama et al., 2007].

Much of the existing literature take a data fusion or integrated data

analysis approach to this problem [Colnet et al., 2023, Bareinboim and

Pearl, 2016, Graham et al., 2025, Li and Luedtke, 2023, Dahabreh et al., 2023].

Such approaches typically require individual data from both populations.

However, there can be settings when comprehensive data at the individual

level may not be consistently accessible within a target sample, owing to

various practical considerations such as restricted data sharing, storage

constraints, and privacy apprehensions [Degtiar and Rose, 2023]. On the

contrary, obtaining summary-level information from the target sample

is comparatively more feasible. This type of information can be readily

gathered from diverse sources such as healthcare databases, census data,

and published literature.

To deal with the challenges posed by lack of individual data from

the target population, Dong et al. [2020] adapted the entropy balancing

weights approach [Hainmueller, 2012, Zhao and Percival, 2016] for gener-

alizing ATE estimation from an RCT to a given target population. Josey

et al. [2020] then extended the approach to the setting when the source



35

sample is from observational studies. In particular, they proposed a two-

step procedure to adjust for covariate shift and confounding separately.

By showing that the weights produced by the two-step procedure of Josey

et al. [2020] can be consolidated into a one-step procedure, Chen et al.

[2023] developed a more intuitive strategy that may further mitigate bias

under mild conditions, which rely solely on summary-level information

from the target sample and individual-level covariates from the source

sample. Recently, Chattopadhyay et al. [2024] proposed a very similar

strategy.

The purpose of this article is to provide a practical solution to a key lim-

itation with these methods: how to construct confidence intervals (CIs) for

the resulting causally generalizable estimates. Chen et al. [2023] showed

that the asymptotic variance of their estimator depends on individual-level

data in the target sample. Similarly the asymptotic variance of the estimator

from Chattopadhyay et al. [2024] also depends on the individual-level data

in the target sample. This article addresses this limitation by proposing a

method to construct CIs for the proposed estimator from Chen et al. [2023]

using resampling-based perturbation, without requiring individual-level

data from the target sample.

This paper is organized as follows: In Section 3.2, we present general

notations and assumptions for our method. In Section 3.3 we present two

methods to do the resampling-based perturbation for CI construction. In

Sections 3.4 and 3.5, we evaluate the proposed methods using simulation
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studies and a real data application using cross-validation. In Section 3.6,

we conclude the paper with a discussion.

3.2 Notation and framework

Suppose we have individual-level data in a representative sample of our

source population S, denoted as {(Xi;Ai; Yi) : i ∈ S} with ns subjects.

We denote Xi ∈ X ⊂ Rp as the pre-treatment covariates which include

confounders and treatment effect modifiers. The treatment indicator is

denoted as Ai ∈ {0, 1}, and Yi is the outcome we are interested in. For a

representative sample of our target population T, the sample size is nt

but we do not observe the individual-level data. Instead, we only have the

information for the first moments based on a set of linearly independent

covariate functions hk : X → R;k = 1, . . . ,Kh from the target sample as

follows.

h̄k,T ≡
1
nt

∑
i∈T

hk(Xi),k = 1, . . . ,Kh .

Each hk is usually defined on one or two covariates, instead of on the

full covariate vector. For continuous covariates, if hk is defined as an

identity function, then h̄k,T represents the mean of this component. If hk

is defined as a polynomial function of degree 2, h̄k,T corresponds to the

second moment, or variance, of this component. For discrete covariates, hk

could be defined as an indicator function to count the number of subjects

in a particular category.
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Here, we formulate the causal problem using the potential outcome

framework [Rubin, 1974, Rosenbaum and Rubin, 1983]. For each subject

we define a “full" random vector (Xi,Si,Ai, Yi(0), Yi(1)), where Si is a

population indicator in source or target such that Si = 1 for i ∈ S and

Si = 0 for i ∈ T. The total sample size is n = ns + nt and each subject

assumed to be i.i.d. from a joint distribution of (X,S,A, Y(0), Y(1)). More-

over, S0 is used to denote the subjects in the source control group, and

mathematically, S0 = {i : Si = 1;Ai = 0}; S1 is defined for the source

treated group similarly. According to Rosenbaum and Rubin [1983], we

use the propensity score π(x) = P(A = 1|X = x,S = 1) to determine the

treatment assignment mechanism. The main estimand in this paper, ATE

of the target population, is

τ∗ = E{Y(1) − Y(0)|S = 0}, (3.1)

The following 3 standard assumptions are used which enable identifi-

cation of causal effects within the source population.

Assumption 1. (Stable Unit Treatment Value Assumption or SUTVA)

There is no interference between different subjects and no hidden variation of

treatments.

Assumption 2. (No unmeasured confounders of treatment assignment) In

the source population, (Y(0), Y(1)) are conditionally independent of A given X:

(Y(0), Y(1)) ⊥⊥ A|X,S = 1.

Assumption 3. (Positivity of treatment assignment) The propensity score of
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the source population is bounded away from 0 and 1: for some c > 0, c ⩽ π(X) ⩽

1 − c almost surely.

To extend the generalizability of the causal estimates to the target pop-

ulation, a key quantity is the participation probability between source and

target defined as ρ(x) = P(S = 1|X = x). We further adopt two additional

assumptions from Rudolph and van der Laan [2017] and Dahabreh et al.

[2020].

Assumption 4. (Mean exchangeability across populations) The conditional

mean of the potential outcomes given the covariates are equal between the two

populations: E{Y(a)|X,S = 1} = E{Y(a)|X,S = 0} almost surely for a ∈ {0, 1}.

Assumption 5. (Positivity of participation probability) The participation

probability is bounded away from 0: ρ(X) > c almost surely for some c > 0.

We further denote the conditional mean and variance of the potential

outcomes in the source population as µa(x) = E{Y(a)|X = x,S = 1}

and σa(x) = Var{Y(a)|X = x,S = 1}. Under Assumption 4, we have

µa(x) = E{Y(a)|X = x,S = 0} = E{Y(a)|X = x}. The conditional average

treatment effect (CATE) function is denoted as τ(x) ≡ µ1(x) − µ0(x).
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3.3 Method

Gap in the existing work

Given Assumptions 1-5, we can estimate τ∗ in terms of the observable from

the source sample data by a difference of weighted outcomes as follows:

τ̂w =
1
ns

∑
i∈S1

wiYi −
1
ns

∑
i∈S0

wiYi . (3.2)

The weights {wi : i ∈ S} take the following form [Chen et al., 2023]:

wi =

{
Ai

π(Xi)
+

1 −Ai

1 − π(Xi)

}
E(Si)(1 − ρ(Xi))

(1 − E(Si))ρ(Xi)
.

Directly estimation of wi is usually computationally unstable. Without

the individual data it is also infeasible. Therefore Chen et al. [2023] pro-

posed a method for estimation of the weights as follows, based on entropy

balancing weighting framework

min
w⪰0

∑
i∈S

wi logwi

subject to 1
ns

∑
i∈S1

wihk(Xi) = h̄k,T, k = 1, . . . ,Kh;

1
ns

∑
i∈S0

wihk(Xi) = h̄k,T, k = 1, . . . ,Kh;

1
ns

∑
i∈S1

wigk(Xi) =
1
ns

∑
i∈S0

wigk(Xi), k = 1, . . . ,Kg;

1
ns

∑
i∈S1

wi =
1
ns

∑
i∈S0

wi = 1.

(3.3)
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In particular, functions {hk : X → R;k = 1, . . . ,Kh} are used to address

covariate shift between source and target samples, while functions {gk :

X → R;k = 1, . . . ,Kg} are employed to further correct for imbalances

between the treatment and control groups within the source sample. From

the theorem below, we can see that ideally the hk functions should be

chosen so that the linear span formed by them can at least cover treatment

modifiers, even all outcome related variables if possible. The gk functions

should be chosen to complementhk to determine the treatment assignment

mechanism.

The weight normalization constraint at the last line of Equation (3.3)

can be absorbed to the first two constraints by introducing h0(x) ≡ 1.

Denote H = (h0,h1, ...,hKh
) and G = (g1, ...,gKg

). The following theo-

rem is adopted directly from Chen et al. [2023] which originally listed 3

conditions under any of which could lead to consistency of the resulting

weighting estimator for τ∗. Here we only list two of them as the other one

was not as intuitive.

Theorem 3.1. Suppose ŵ is the solution of (3.3). If either of Conditions (a) or

(b) below holds, τ̂ŵ is a consistent estimator of τ∗:

Condition (a). µa(x) ∈ Span{H(x)}, a = 0, 1.

Condition (b). log{π(x)/(1 − π(x))} ∈ Span{H(x),G(x)} and τ(x) ∈

Span({H(x)}).

Chen et al. [2023] further derived the asymptotic variance for τ̂w.
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However, estimation of the asymptotic variance directly from their formula

requires individual covariate values in the target sample. We intend to

overcome this limitation by introducing a resampling-based perturbation

method for CI construction that do not require such information from the

target sample.

Resampling-based perturbation for confidence interval

construction

Parzen et al. [1994] introduced a straightforward resampling method for

inference based on pivotal estimating functions within a semiparametric

model framework. The authors demonstrated that for a broad class of

estimating functions meeting two mild convergence conditions, a valid

asymptotic CI could be constructed using the resampling method on the

pivotal estimating functions. Hu and Kalbfleisch [2000] further broadened

the idea by using bootstrapped general estimating functions for statisti-

cal inference. In particular, when the estimating functions are sums of

independent terms, we can resample or bootstrap these terms to obtain

an empirical distribution of the estimating functions. Solving the corre-

sponding bootstrapped estimation equations then leads to valid statistical

inference for the resulting estimators. Here, we extend this idea to our

setting.

Since Equation (3.3) has constraints, we work with its dual problem
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which is unconstrained for our purpose. In particular, we have the follow-

ing characterization of the weights from Equation (3.3).

ŵi =

{
exp{λ̂⊤

1 H(Xi) + γ̂⊤G(Xi)}, i ∈ S1

exp{λ̂⊤
0 H(Xi) − γ̂⊤G(Xi)}, i ∈ S0

where (λ̂1, λ̂0, γ̂) ∈ RKh+1×RKh+1×RKg is the solution to the dual problem:

min
λ1,λ0,γ

1
ns

∑
i∈S1

exp{λ⊤
1 H(Xi) + γ⊤G(Xi)}+

1
ns

∑
i∈S0

exp{λ⊤
0 H(Xi) − γ⊤G(Xi)}

− (λ⊤
1 + λ⊤

0 )H̄T

.

(3.4)

Here H̄T = (h̄0,T, ..., h̄Kh,T) with h̄0,T = 1.

Equation (3.4) leads to the following first order condition to solve for

(λ̂1, λ̂0, γ̂):

ns
−1 ∑

i∈S1
H(Xi) exp{λ⊤

1 H(Xi) + γ⊤G(Xi)}− H̄T = 0

ns
−1 ∑

i∈S0
H(Xi) exp{λ⊤

0 H(Xi) − γ⊤G(Xi)}− H̄T = 0∑
i∈S1

G(Xi) exp{λ⊤
1 H(Xi) + γ⊤G(Xi)}−∑

i∈S0
G(Xi) exp{λ⊤

0 H(Xi) − γ⊤G(Xi)} = 0

(3.5)

Therefore, if we can use bootstrap to capture the variance of the es-

timating equations in (3.5), we can back-propagate the estimation error

to the estimated weights, enabling us to construct a CI for the estimator

τ̂w in (3.2). The classic bootstrap [Efron, 1979] can be applied to the ele-

ments in the source population {H(Xi),G(Xi)} to generate bootstrapped

versions {H(Xi)
(b),G(Xi)

(b)} for b = 1, . . . ,B. However for the summary
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level information H̄T, we resort to parametric bootstrap [Efron, 2012].

Because H̄T are sample averages, we assume that H̄T ∼ N(µH̄,ΣH̄) asymp-

totically. Therefore when ΣH̄ is available from the target sample, we can

draw H̄
(b)
T from the multivariate normal distribution with mean H̄T and

variance-covariance matrix ΣH̄. It is more common that only the diago-

nal elements of ΣH̄ is available, especially if the summary information is

from published literature. Then we propose to estimate the correlation

matrix corresponding to ΣH̄ using the individual data from the source

population.

Algorithm 1 Resampling-based perturbation method for CI construction
(RPM-CI)

procedure rpm-ci({(Xi;Ai; Yi) : i ∈ S}, H̄T, var(H̄T))
Estimate correlation of target moments R̂H̄T

= corr(H(Xi)), i ∈ S.
Estimate τ̂w using {(Xi;Ai; Yi) : i ∈ S} and H̄T by Equations (3.2)

and (3.3).
for each b = 1, . . . ,B do

Draw {(X
(b)
i ;A(b)

i ; Y(b)
i ) : i ∈ S} from the source population.

Generate perturbed means H̄
(b)
T ∼

N(H̄T, var(H̄T)
1/2R̂H̄T

var(H̄T)
1/2).

Estimate {ŵ
(b)
i : i ∈ S} using {(X

(b)
i ;A(b)

i ; Y(b)
i ) : i ∈ S} and H̄

(b)
T

by Equation (3.3).
Estimate τ̂

(b)
w using {ŵ

(b)
i : i ∈ S} and {(X

(b)
i ;A(b)

i ; Y(b)
i ) : i ∈ S}

by Equation (3.2).
end for
Construct a 95% CI based on 2.5 and 97.5 percentiles of τ̂(b)w ,b =

1, . . . ,B.
end procedure

We formalize the above proposed resampling-based perturbation method
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to construct the confidence interval (RPM-CI) in Algorithm 1. For a par-

ticular data set, in step 1, we estimate the correlation of target moments

R̂H̄T
= corr(H(Xi)), i ∈ S using the source data and estimate the corre-

sponding target ATE τ̂w. In step 2, for each bth over B iteration, we first

sample the source population with replacement as {(X
(b)
i ;A(b)

i ; Y(b)
i ) :

i ∈ S}. Then we use multivariate normal distribution to perturb the tar-

get sample mean H̄T and generate target data perturbed means H̄
(b)
T ∼

N(H̄T, var(H̄T)
1/2R̂H̄T

var(H̄T)
1/2) assuming var(H̄T) is available from the

target sample. Next, we use the simulated {(X
(b)
i ;A(b)

i ; Y(b)
i ) : i ∈ S} and

H̄
(b)
T to estimate weights {ŵ

(b)
i : i ∈ S} and its corresponding τ̂

(b)
w for

b = 1, . . . ,B using Equation (3.3) and (3.2). Finally, we construct the CI

for our estimator τ̂w based on 2.5 and 97.5 percentiles of τ̂(b)w ,b = 1, . . . ,B.

Resampling-based perturbation method with approximate

balancing

In practice, the exact balancing approach may not always produce a fea-

sible solution due to finite sample. Therefore, Wang and Zubizarreta

[2019] advocated a more flexible approach for covariate balancing weight

construction for causal inference. The approach can be extended in a
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straight-forward fashion to our causal generalization setting as follows.

min
wi⪰0

∑
i∈S

wilogwi

subject to
∣∣∣ 1
ns

∑
i∈S1

wihk(Xi) − h̄k,T

∣∣∣ ⩽ δ1,k = 1, ...,Kh;

∣∣∣ 1
ns

∑
i∈S0

wihk(Xi) − h̄k,T

∣∣∣ ⩽ δ ′
1,k = 1, ...,Kh;

∣∣∣ 1
ns

∑
i∈S1

wigk(Xi) −
1
ns

∑
i∈S0

wigk(Xi)
∣∣∣ ⩽ δ2,k = 1, ...,Kg;

1
ns

∑
i∈S1

wi =
1
ns

∑
i∈S0

wi = 1.

(3.6)

Therefore the exact balancing constraints is relaxed in Equation (3.6)

by introducing δ1, δ ′
1 ∈ RKh and δ2 ∈ RKg . The weight normalization

constraint at the last line of Equation (3.6) again can be absorbed to the

first two constraints by introducing an extra element h̄0,T = 1 and setting

the corresponding relaxation δ1,0, δ ′
1,0 ≡ 0. This flexibility trades bias for

variance and offers two key advantages: it enables us to incorporate a

broader set of covariate functions, and it helps overcome computational

challenges when exact balancing is infeasible during the construction of

CIs with the resampling-based perturbation.

Naturally, a practical consideration when using approximate balancing

is how to determine the appropriate degree of approximate balance. Chat-

topadhyay et al. [2024] advocated using a constant factor (i.e., 0.1 times)



46

of each covariate’s standard deviation. Instead of the standard deviation,

we advocate the following strategy based on the dual problem of Equation

(3.6).

In particular, the dual of Equation (3.6) takes the following form:

w̃i =

{
exp{λ̃⊤

1 H(Xi) + γ̃⊤G(Xi)}, i ∈ S1

exp{λ̃⊤
0 H(Xi) − γ̃⊤G(Xi)}, i ∈ S0

where λ̃0, λ̃1, γ̃ minimize

min
λ1,λ0,γ

1
ns

∑
i∈S1

exp{λ⊤
1 H(Xi) + γ⊤G(Xi)}+

1
ns

∑
i∈S0

exp{λ⊤
0 H(Xi) − γ⊤G(Xi)}

− λ⊤
1 H̄T − λ⊤

0 H̄T + |λ1|
⊤δ1 + |λ0|

⊤δ ′
1 + |γ|⊤δ2.

(3.7)

Compared with the dual form (3.4) for the exact balancing, (3.7) con-

tains three additional L1 regularization terms for the dual parameters:

|λ1|
⊤δ1 + |λ0|

⊤δ ′
1 + |γ|⊤δ2. Thus, we propose to use the Adaptive LASSO

[Zou, 2006] to determine the degree of approximate balancing. In particu-

lar assume that we have estimates (λ̂1, λ̂0, γ̂) from (3.4) based on the exact

balancing problem. Then for resampling-based perturbations that have

no exact balancing solution or are infeasible for (3.3), we use fractions of

(λ̂1, λ̂0, γ̂) for (δ1, δ ′
1, δ2). The details are listed in Algorithm 2.

When there is no exact balancing solution for the original exact bal-

ancing problem τ̂w, we advocate using Chattopadhyay et al. [2024] idea

of allowing imbalances to be up to a constant factor (i.e., 0.1 times) each
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covariate’s standard deviation until we get a solution and then follow

Algorithm 2 for CI construction.

Algorithm 2 Resampling-based perturbation with approximate balancing
(RPM-AB)

procedure rpm-ab({(Xi;Ai; Yi) : i ∈ S}, H̄T, var(H̄T))
Estimate correlation of target moments R̂H̄T

= corr(H(Xi)), i ∈ S.
Estimate {ŵi : i ∈ S}, (λ̂1, λ̂0, γ̂) and τ̂w using Equation (3.2) and

(3.3).
for each b = 1, . . . ,B do

Draw {(X
(b)
i ;A(b)

i ; Y(b)
i ) : i ∈ S} from the source population.

Generate perturbed means H̄
(b)
T ∼

N(H̄T, var(H̄T)
1/2R̂H̄T

var(H̄T)
1/2).

Estimate {ŵ
(b)
i : i ∈ S} using {(X

(b)
i ;A(b)

i ; Y(b)
i ) : i ∈ S} and H̄

(b)
T

by Equation (3.3).
if {ŵ(b)

i : i ∈ S} could not admit a solution then
c← 0
while {ŵ

(b)
i : i ∈ S} not admitting solutions do

δ1 ← (c+ 0.1)| 1
λ̂1
|, δ ′

1 ← (c+ 0.1)| 1
λ̂0
|, δ2 ← (c+ 0.1)| 1

γ̂
|

Estimate {ŵ
(b)
i : i ∈ S} using δ1, δ ′

1, δ2 and Equation (3.6).
end while

end if
Estimate τ̂

(b)
w using {ŵ

(b)
i : i ∈ S} and {(X

(b)
i ;A(b)

i ; Y(b)
i ) : i ∈ S}

by Equation (3.2).
end for
Construct the 95% CI based on 2.5 and 97.5 percentiles of τ̂(b)w ,b =

1, . . . ,B.
end procedure
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3.4 Evaluation with simulated settings

In this section, we conduct simulation studies to evaluate the performance

of the proposed methods in finite sample settings. For each simulation

set-up, we could estimate τ∗ using Equation (3.1). Then, for each m over

a total of M simulations, we estimate τ̂
(m)
w and its corresponding 95%

CI using methods we proposed in Algorithm 1, or Algorithm 2 if exact

balancing is infeasible. The performance is measured in terms of bias of

E(τ̂
(m)
w ) and the empirical coverage of τ∗ within the 95% CI constructed

by the proposed methods.

Exact balancing and Algorithm 1 evaluation

We first examine exact balancing CI construction method in Algorithm

(1) with simulation settings that always have feasible solutions for (3.3)

and the corresponding resampling-based perturbations. We set the total

sample size n = ns + nt = 800 with the bootstrap iteration B = 1000 and

M = 500 simulated data sets. In our simulations, due to random sampling,

the source sample size ns varies between 350 and 450 observations. We

generate 5 covariatesX = (X1, . . . ,X5) from a uniform distributionU(−2, 2).

We consider the case when the covariates are independent of each other

and the case when correlation among them are 0.1 and 0.3.

In the target sample we only have summary-level information of X1,X2,

and X3. We set H(x) = (1, x1, x2, x3) and G(x) = (x4, x5). We consider
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balancing on the first moments of all covariates.

In light of Theorem 1, we consider scenarios when the conditions for

consistency hold and also when none of them holds. We consider the

settings when either Condition (a) or Condition (b) holds or neither of

them holds.

Therefore for the propensity score model, we first assume a scenario

when the treatment assignment is related to H linearly with logit{π(x)} =

0.7x2 + 0.5x3. In this case, all the confounders are included in H, and it

is enough that we only balance on H to account for confounding. We

also assume a scenario when the propensity score is related to H and G

nonlinearly with logit{π(x)} = 0.35x2 − 0.4max(x3, x4) − 0.7x5.

For the outcome model, we assume it has the form of Yi = m(Xi) +

(Ai − 0.5)τ(Xi) + ϵi with ϵi

i.i.d
∼ N(0, 1). We assume the CATE function

comes from the following settings:

(T1) τ(x) = x1 − 0.6x2 − 0.4x3.

(T2) τ(x) = x1 − 0.6x2 − 0.4x3 + 0.8x4 − 0.3x5.

(T3) τ(x) = x1 − 0.5 exp(x2 − 0.8x3)

We assume the main effect m(x) comes from the following settings:

(M1) m(x) = 0.5x1 + 0.3x2 + 0.3x3.

(M2) m(x) = 0.5x1 + 0.3x2 + 0.3x3 − 0.4x4 − 0.7x5.

(M3) m(x) = 0.5x1 + 0.8x2
2 + 0.2 exp(0.5x3 − x4 − 1) − 0.7x5.

When the propensity score lies within the linear span of H and the

CATE function follows (T1), τ(x) is linearly related to H and satisfies the
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consistency Condition (b) in Theorem 1, regardless of the main effect

settings. However, this condition does not hold under (T2) or (T3) be-

cause (T2) depends on both H and G, while (T3) is nonlinearly related

to H. When the propensity score is not within the linear span of H, but

the outcome satisfies (T1) and (M1), µa(x) remains linear in H, thereby

meeting Condition (a). Outside these scenarios, neither Condition (a) nor

Condition (b) holds, which may introduce bias in the estimator τ̂w.

For covariate shift, similar to the propensity score model, we also

consider a linear setting when the participation probability is logit{ρ(x)} =

0.4x1 + 0.3x2 − 0.2x4. That is, there is shift in the distribution of (X1,X2,X4).

We also consider a nonlinear setup when the participation probability is

logit{ρ(x)} = 0.3x1 + 0.5x2 · x4 − 0.2x4.

The performance of our method is summarized in Table 3.1 for indepen-

dent covariates and Table 3.2 for correlated covariates. For bias evaluation,

we see that the bias of average τ̂w for our method is ignorable under linear

and nonlinear settings when the consistency conditions are met. In terms

of the CI construction, when the consistency conditions are met, we find

that under both linear and nonlinear settings, the constructed CI by Al-

gorithm 1 can cover around 95% of the time. Even when the consistency

conditions are not fully met, our method maintains approximately 95%

coverage as long as the estimator is not severely biased. However, when

the estimator exhibits significant bias, the constructed confidence interval

(CI) results in lower coverage of τ∗.
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Table 3.1: Empirical evaluation for Target ATE estimation and CI coverage
using the RPM-CI method (independent covariates)

Consistency Empirical Average
Settings Condition τ∗ coverage of τ∗ τ̂w (95% CI)

T1+M2 b -0.140 95.2% -0.131 (-0.422, -0.159)
Linear T1+M3 b -0.138 94.4% -0.160 (-0.545, 0.213)

T2+M1 No -0.039 76% -0.259 (-0.579, -0.059)
T1+M1 a -0.179 94.4% -0.182 (-0.451, 0.083)

Nonlinear T3+M1 No -1.525 94.2% -1.496 (-1.843, -1.164)
T1+M3 No -0.179 93.2% -0.188 (-0.538, 0.157)

Table 3.2: Empirical evaluation for Target ATE estimation and CI coverage
using the RPM-CI method (correlated covariates)

Consistency Covariate Empirical Average
Settings Condition τ∗ correlation coverage of τ∗ τ̂w (95% CI)

Linear
T1+M2 b -0.126 0.1 94.8% -0.122 (-0.410, 0.164)

-0.097 0.3 94.5% -0.096 (-0.382, 0.190)

T2+M1 No -0.054 0.1 76.8% -0.249 (-0.566, 0.066)
-0.079 0.3 79.8% -0.251 (-0.560, 0.055)

Nonlinear
T1+M1 a -0.166 0.1 94% -0.175 (-0.437, -0.083)

-0.140 0.3 94.6% -0.144 (-0.391, 0.100)

T1+M3 No -0.169 0.1 94% -0.176 (-0.518, 0.164)
-0.143 0.3 94.6% -0.139 (-0.467, 0.186)

Approximate balancing and Algorithm 2 evaluation

Now we consider settings that Algorithm 2 needs to be invoked due to

infeasibility of perturbed Equation (3.4), in particular in smaller sample

size settings with noisy covariates. We set the total sample size n =

ns+nt = 400 with bootstrap iterationB = 800, and generate covariatesX =

(X1, . . . ,X5) from uniform distribution U(−2, 6). The rest of the settings

are the same as in the previous subsection.

The performance of our methods is summarized in Table 3.3. We also

report the percent of non-feasible solutions over M×B iterations for exact
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balancing. In terms of bias evaluation, for exact balancing, even though

some simulations may not admit solutions, the bias of τ̂w is small when

the consistency conditions are met. When we use approximate balanc-

ing for target ATE estimation simulation cases with no exact balancing

solution, the bias is larger as it trades bias for variance. In terms of the CI

construction, when most of the perturbations admit an exact balancing

solution, our findings about the CI coverage are consistent with what we

observe in Table 3.1 and Table 3.2. Especially, when the consistency condi-

tions are satisfied, we find that both exact and approximate balancing CI

could cover τ∗ around 95% times. However, regardless of the consistency

conditions, if we could not admit enough feasible solutions during the CI

construction process, we would get poor CI coverage for exact balancing.

The CI constructed by the approximate balancing method is wider and

thus could help in this situation with a better coverage.

Table 3.3: Empirical evaluation for Target ATE estimation and CI coverage
using RPM-CI and RPM-AB methods

Consistency Empirical Average
Settings Condition τ∗ Methods % Infeasible coverage τ∗ τ̂w (95% CI)

Linear
(b):T1+M2 -0.652 RPM-CI 26.0% 87.3% -0.660 (-1.335, 0.125)

RPM-AB 0% 92.6% -0.624(-1.414, 1.174)

No: T2+M1 0.800 RPM-CI 26.9% 60.9% -0.017(-1.029, 1.075)
RPM-AB 0% 90.2% 0.005(-0.958, 1.890)

Nonlinear
(a):T1+M1 0.038 RPM-CI 5.6% 95.2% 0.034(-0.702, 0.767)

RPM-AB 0% 94.6% 0.030(-0.806, 0.808)

No: T2+M2 0.539 RPM-CI 4.9% 70.4% 1.083(0.256, 2.036)
RPM-AB 0% 74.2% 1.095(0.223, 2.212)
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3.5 Cross-validation based evaluation with a

real setting

Here, we use the same example as in Chen et al. [2023], derived from the

MIMIC-III database [Johnson et al., 2016], but with CI construction and

evaluation. However, due to the fact that we don’t know the true target

ATE, we employ a cross-validation based strategy as we explain below.

This observational dataset comprises 6,361 ICU patients, with 51.3%

having undergone transthoracic echocardiography (TTEC) either during

or within 24 hours before ICU admission. The primary outcome of interest

is 28-day survival. Our goal is to assess the effect of TTEC on the survival

of ICU patients with sepsis.

The dataset encompasses demographic details, such as age, gender,

and weight, along with severity at admission measured by the Simpli-

fied Acute Physiology Score (SAPS), Sequential Organ Failure Assess-

ment (SOFA) score, and Elixhauser comorbidity score. Additionally, it

includes comorbidity indicators (denoted as cmbi), including congestive

heart failure, atrial fibrillation, respiratory failure, and malignant tumor.

Vital signs like mean arterial pressure, heart rate, and temperature, as

well as laboratory results, are also part of the dataset. To address right-

skewed distributions of lab results, a log transformation is applied, and

standardization is employed for continuous variables. Missing values

are addressed through imputation using the missForest method, which
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is a flexible non-parametric missing value imputation approach with no

assumptions needed [Stekhoven and Bühlmann, 2011].

As the real data is observed only once and we do not know the true

treatment effect, we create a cross-validation (CV) based sampling proce-

dure for evaluation of bias and coverage. In particular, we partition the

data set into subsets, train the model on some of these subsets, and then

evaluate its performance on the remaining subset.

Figure 3.1 is a diagram showing the whole workflow of our CV-based

evaluation. For each round of CV, we first partition pS proportion of the to-

tal study population into the source population, with the remainder as the

target population. The partition or sampling probability is in proportion

to a function Ψ, which includes some important effect modifiers. Then,

within the source population, we generate source samples using a function

g, which includes some key confounding factors. In particular, pS1 pro-

portion of the treated and pS0 of the control populations become treated

and control samples. Next, we randomly split the target population with

pT proportion into target and the rest into test samples. Suppose in the

target sample, we only know the summary level information while in the

test sample we know all the individual level information. The above steps

will be repeated many times and the source treated, control, and target

samples will be used as the training data to estimate target population

treatment effect and CI. To obtain an oracle estimate of the target popu-

lation ATE, we repeat the splitting procedures and use the test sample
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to construct a CV-based treatment effect τ∗cv as our oracle estimator. We

will use this τ∗cv as the benchmark to evaluate the bias and CI of the target

population treatment effect. The rest of the section illustrates the details

of this CV-based procedure used in our real-setting.

Figure 3.1: CV-based evaluation workflow in a real setting

To comprehensively assess across diverse scenarios, we manipulate

various degrees of confounding and covariate shift while keeping the

covariate-outcome relationship unchanged in the actual data. Initially,

we select pS = 40% of the entire dataset with probability proportional to

Ψ(x) to form the source population. The remaining data is then randomly

divided into a target sample, with a pT = 1/3 probability, and a test sample.
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The probability of being selected as a source sample is proportional to

Ψ{κS(−0.3× age + 0.3× cmb1 + 0.4× cmb2 + 0.3× cmb3 + 0.4× cmb4 − 0.5)} .

where Ψ(x) = 0.8Φ(x) + 0.1 with Φ(x) being the standard normal

CDF. Here, κS is a parameter to reflect different levels of covariate shift,

where κS equals 1 for small covariate shift and 5 for large covariate shift.

Under this sampling design, the source population is younger and more

likely to have comorbidities than the target population. Among the source

samples, we randomly select pS1 = 1/2 of the TTEC patients and pS0 = 1/2

of the non-TTEC patients to form the source sample. The TTEC patients

are selected with probability proportional to g(x) while the non-TTEC

patients are selected with probability proportional to g(−x) with

g(x) = Ψ{κA(0.3× SAPS + 0.4× SOFA − 0.5× Elixhauser)} .

We consider two choices of κA in g: (a) κA = 0, so all the patients in

this step are sampled with equal probability; (b) κA = 1, which induces

additional confounding determined by a linear combination of the severity

scores.

In total, we have four settings. Under each one, we run M = 500

times replications of the above CV procedures and B = 1000 perturbations

using the exact balancing method to construct the estimator τ̂cv and its

confidence intervals. We assume that the target sample only includes

information about the average and variance of the demographic covariates
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and comorbidity indicators. The oracle estimate of the target population

ATE τ∗cv is estimated using the entropy balancing weighting method incor-

porating full information in the test data. To be more specific, we repeat

the above CV procedures 8000 times and get the estimated target ATE. The

average of it would be our oracle estimator of the target population ATE

τ∗cv. The CV splitting set-up here makes a good overlap between source

and target samples. Thus, we did not encounter the infeasibility issue for

exact balancing.

For evaluation, we examine the bias and percentage of times the con-

structed CI covers the oracle estimator τ∗cv. Table 3.4 summarizes τ∗cv em-

pirical coverage percentage and the estimator τ̂cv under each scenario. As

we can see, the proposed method could cover the oracle estimator around

95% of the time. In evaluating bias, we find that the bias of empirical τ̂cv

is ignorable under different settings.

Table 3.4: Target ATE estimation and CI coverage in a real setting

Setting
τ∗cv

Empirical Average
Confounding Covariate shift coverage of τ∗cv τ̂cv (95% CI)
Extra (κA = 1) Small (κs = 1) 0.051 96.4% 0.048 (-0.006, 0.102)
No (κA = 0) Small (κs = 1) 0.050 96% 0.052 (0.001, 0.104)

Extra (κA = 1) Big (κs = 5) 0.049 95.6% 0.052 (-0.005, 0.107)
No (κA = 0) Big (κs = 5) 0.049 95.8% 0.054 (0.001, 0.107)
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3.6 Discussion and conclusion

We have developed a resampling-based perturbation method for CI con-

struction to make inference about generalizing ATE estimation to a target

population. It is an important step to complement the work of Chen et al.

[2023] to quantify the uncertainty associated with the estimated treatment

effect for the target population. Although we require slightly more infor-

mation from a target sample than Chen et al. [2023] did, our requirement

is minimum as we only need the variance of the summary statistics H̄T.

Note that for binary and discrete variables, such variance is not needed as

we can directly use H̄T to estimate its variance. When the target sample’s

individual data is available but can not be shared due to privacy reasons,

then requesting this further information is relatively straightforward.

To achieve an unbiased causal generalization, exact balancing is essen-

tial, as it ensures that covariates are equally balanced between populations.

For the CI construction using the resampling-based perturbation method,

exact balancing should be prioritized because it directly aligns with the

goal of unbiased causal generalization by precisely matching covariate

distributions. However, when a feasible solution for exact balancing is

unattainable due to sample size limitations or high-dimensional covariates,

approximate balancing can be a practical alternative. Although it may

introduce a small bias, approximate balancing provides a close solution

that maintains the integrity of the analysis by minimizing discrepancies in
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covariate distributions. Therefore, we recommend approximate balancing

only as a secondary option, to be used when exact balancing solutions are

not feasible.

Data Availability Statement

The data that support the findings in this paper were derived from the

following resources available in the public domain: MIMIC-III Clinical

Database Version1.4 (https://physionet.org

/content/mimiciii/1.4/)
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4 an r package: ebalgen

4.1 Overview

This chapter introduces an R package EBalGen, which is used to implement

the exact and approximate balancing methods in Chapter 3 for causal gen-

eralization in the presence of covariate shift using target sample summary-

level information. This package is designed to estimate causally general-

ized balancing weights, the target Average Treatment Effect (ATE), and its

corresponding confidence interval (CI). It provides flexibility in achieving

both exact and approximate balance generalizing causal findings from

source to target population when we only have summary level information

of the target. We illustrate the implementation of this package across vari-

ous scenarios. The key functions of this package is ebal_wts() for estimat-

ing weights and ebal_ATE() for ATE estimation. RPM_CI() and RPM_AB()

are important functions for exact and approximate balancing CI estimation.

Our package is available on github https://github.com/yc702/EBalGen

and it passes R-CMD-check.

4.2 Package dependencies

EBalGen was developed with dependence on 9 packages:

• parallel, doParallel, foreach and doRNG are essential tools for imple-
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menting parallel computing, as most of our methods are based on

simulations [R Core Team, 2023, Microsoft and Weston, 2022a,b,

Gaujoux, 2023]. dplyr is also used for efficient data manipulation

[Wickham et al., 2023].

• CVXR provides functions to solve convex optimization problems,

and is compatible with different solvers. In our problem, we use

MOSEK, which is a commercial high-performance solver for large-

scale convex optimization problems. It is numerically stable and

could efficiently solve exponential cone problem, which can be chal-

lenging for some other solvers [Fu et al., 2020, MOSEK-ApS, 2024].

• resample provides essential functions for resampling-based inference,

enabling our method to perform resampling-based perturbation of

target sample moments and estimate CI. [Hesterberg, 2022].

• stats offers powerful functions to estimate correlation structures and

extract quantiles from sampling distributions [R Core Team, 2023].

• rockchalk provides functions to perturb the target sample moments

and generate multivariate normal distributed random variables [John-

son, 2022].
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4.3 Key functions

The first important function is ebal_wts(), which is used to compute the

exact and approximate entropy balancing weights. Another similar func-

tion ebal_wts_simple () is used to compute the weights calibrating the

whole source sample to the target moments without distinguishing source

treated and control groups. Since these two functions contain similar input

arguments, we mainly discuss ebal_wts() for demonstration purpose.

• x A data matrix for the source sample. Each column represents

source sample covariate and each row represents an observation.

• trt A vector of 0, 1 or FALSE/TRUE of treatment assignment for the

source sample.

• H_vars A vector of numbers indexing which covariate in x need to

be balanced between source and target samples.

• target_moments A vector of first moments of the target sample covari-

ates that needs to be balanced between source and target.

• H_add_intercept A logical value determines whether to include 1 as

intercept in H covariates, default as TRUE.

• delta A vector specifying the approximate balancing tolerance margin.

The vector has a total length of H+H+G, where H represents the

number of covariates balanced between the source (treatment and
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control) and the target moments, and G represents the covariates

balanced solely between the source treatment and control groups. If

we are doing exact balancing, delta are all zeros.

The output of the function returns a list containing w, which is a vec-

tor of entropy balancing weights and theta which is the dual parameters

estimated from the optimization process.

The second key function is ebal_ATE(), which is used to compute the

exact and approximate balancing ATE. If the tolerance margin argument

delta is all 0, it computes the exact balancing ATE. Otherwise, it computes

the approximate balancing ATE.

As we want this function to return a feasible solution, if exact balancing

does not yield a feasible solution, the standard deviation of x is used as

the input argument delta, which convert exact into approximate balancing.

If the specified delta does not yield a feasible solution, for approximate

balancing, the constant c is increased (starting from 1) by 1 times delta

until a solution is found. For exact balancing that later uses the standard

deviation for delta, the constant is increased (starting from 0) by 0.1 times

delta until a solution is achieved.

• x, trt, H_vars, H_add_intercept, target_moments, delta are the same as

the input for function ebal_wts().

• y A vector of the source sample response values.
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The output of the function returns a list containing ate_est, which is the

target ATE for causal generalization. and constant which is the final con-

stant c used for the approximate balancing tolerance margin if no feasible

solution is achieved with the specified delta. If the specified delta results in

a feasible solution, the constant remains 0. Otherwise, the constant will

increase until a feasible solution is found.

The third major function is RPM_CI(), which is used to compute the

exact balancing CI according to Chapter 3 Algorithm 1.

• x, y, trt, H_vars, H_add_intercept, delta are the same as the input for

functions ebal_ATE().

• target_mean A vector of means of the target sample covariates that

needs to be balanced between source and target samples.

• target_sd A vector of standard deviations of the target sample covari-

ates that needs to be balanced between source and target samples.

• num_sim A numeric value shows the number of simulations used in

resampling-based perturbation.

• cluster Number of parallel running CPU cores, Default: 1.

• with_seed Random seed for simulation, Default: 111.

The output of the function returns a list containing mean_ATE, which

is the mean ATE over num_sim perturbations; lb_ATE and ub_ATE, which
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are the lower and upper bounds of CI and n_success which is the number

of feasible solutions in num_sim perturbations if using exact balancing.

The last key function is RPM_AB(), which is used to compute the

approximate balancing CI according to Chapter 3 Algorithm 2. The input

arguments are the same as function RPM_CI(). The output of the function

also returns a list containing mean_ATE, lb_ATE and ub_ATE. In addition,

n_success is the number of feasible solutions in num_sim perturbations if

using approximate balancing. use_exact is the number of times that exact

balancing could be achieved in the perturbations.

4.4 Example implementation

For the example implementation, we will use scenarios similar to the

simulation setting described in Chapter 3. Suppose we set the total sample

size n = ns + nt = 800, which is split into source ns = 401 and target

nt = 399 samples. We generate 5 covariates X = (X1, . . . ,X5) from a

uniform distribution U(−2, 2). The source/target participation probability

ρ(x) follows logit{ρ(x)} = 0.4x1 + 0.3x2 − 0.2x4. That is, there is shift in

the distribution of (X1,X2,X4). For the propensity score π(x) model, we

assume the treatment assignment is related to H linearly with logit{π(x)} =

0.7x2 + 0.5x3. In this case, all the confounders are included in H, and it

is enough that we only balance on H to account for confounding. For

the outcome model, we assume Yi = m(Xi) + (Ai − 0.5)τ(Xi) + ϵi with
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ϵi

i.i.d
∼ N(0, 1). For the CATE function, we assume τ(x) = x1 − 0.6x2 − 0.4x3.

For the main effect m(x), it has the form of m(x) = 0.5x1 + 0.3x2 + 0.3x3 −

0.4x4 − 0.7x5. In this setting, the target ATE is -0.138.

Figure 4.1 here visually checks the propensity scores of source and

target samples fitted using simple logistic regression including all 5 co-

variates. The distribution of propensity scores in both samples shows a

substantial degree of overlap, indicating that the covariate distributions

between the two samples are sufficiently similar. This overlap suggests

that the generalization of treatment effects from the source population to

the target population is reliable and exact balancing could be achieved.

Here is the summary statistics of the exact balancing weights.

## Source sample

wts_gen <− ebal _wts ( xs , t r t s ,H_ vars , t a r g e t _moments ,

H_add_ i n t e r c e p t = TRUE, d e l t a )$w

summary( wts_gen)

#> Min . 1 s t Qu . Median Mean 3 rd Qu . Max .

#> 0 .2415 1 .0163 1 .5952 2 .0000 2 .5774 14 .0762

Here is the generalized target ATE using the weights above.

ebal _ATE( xs , ys , t r t s ,H_ vars , t a r g e t _moments ,

H_add_ i n t e r c e p t=TRUE, d e l t a )$ATE

#> v a l u e

#> 0.02294481
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Figure 4.1: Propensity scores distribution between source and target
samples (good overlap)

For CI estimation, we use resampling-based perturbation RPM_CI()

with input of target_sd and the number of bootstrap iteration of 300.

## CI c o n s t r u c t i o n

t a r g e t _sd = colStdevs ( xt )[H_ vars ]

ATE_CI = RPM_CI( xs , ys , t r t s ,

H_ vars=H_ vars , t a r g e t _mean=t a r g e t _moments ,

t a r g e t _sd=t a r g e t _sd ,num_sim=300 ,

H_add_ i n t e r c e p t=TRUE,

c l u s t e r =5, s e t _ seed =100)
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## Lower bound o f 95% CI

ATE_CI$ lb _ATE

#> 2.5%

#> −2.130664

## Upper bound o f 95% CI

ATE_CI$ub_ATE

#> 97.5%

#> 2.310287

For the approximate balancing example, we set the total sample size

n = ns + nt = 400 which is split into source ns = 281 and target nt =

119 samples. We generate 5 covariates X = (X1, . . . ,X5) from a uniform

distribution U(−2, 6). The remaining settings are identical to those in the

previous example. In this setting, the target ATE is -0.641.

Figure 4.2 here visually checks the propensity scores of source and

target samples fitted using simple logistic regression including all 5 covari-

ates. The distribution of propensity scores in both samples shows a limited

degree of overlap, indicating that the covariate distributions between the

two samples are quite different. This overlap suggests that approximate

balancing should be used.

Here is the summary statistics of the approximate balancing weights
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Figure 4.2: Propensity scores distribution between source and target
samples (bad overlap)

for the source sample if we set the delta to be of 0.1 for all covariates to be

balanced.

wts_gen <− ebal _wts ( xs , t r t s ,H_ vars ,

t a r g e t _moments ,H_add_ i n t e r c e p t = TRUE,

d e l t a=numeric (8)+0.1) $w

summary( wts_gen)

#> Min . 1 s t Qu . Median Mean 3 rd Qu . Max .

#> 0.04555 0 .33305 0 .75514 2 .00001 1 .85307 93 .90129

Here is the generalized target ATE using the weights above.
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ebal _ATE( xs , ys , t r t s ,H_ vars , t a r g e t _moments ,

H_add_ i n t e r c e p t=TRUE,

d e l t a=numeric (8)+0.1) $ATE

#> v a l u e

#> −1.046427

For CI estimation, we use resampling-based perturbation RPM_AB()

with additional input of target_sd and the number of bootstrap as 300.

t a r g e t _sd = colStdevs ( xt )[H_ vars ]

ATE_CI = RPM_AB( xs , ys , t r t s , H_ vars=H_ vars ,

t a r g e t _mean=t a r g e t _moments ,

t a r g e t _sd=t a r g e t _sd ,num_sim=300 ,

H_add_ i n t e r c e p t=TRUE,

c l u s t e r =5, s e t _ seed =100)

## Lower bound o f 95% CI

ATE_CI$ lb _ATE

#> 2.5%

#> −2.807896

## Upper bound o f 95% CI

ATE_CI$ub_ATE

#> 97.5%
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#> 4.54158

## Number o f s i m u l a t i o n s t h a t u s e s e x a c t b a l a n c i n g o v e r 300

ATE_CI$use_ exac t

#> [1] 67
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a supplementary materials for chapter 1

“randomized phase ii design with order

constrained strata“

A.1 Randomized phase II screening design with

order constrained strata

Introduction

In the main text, we focused on incorporating ordering information in the

context of randomized selection design. In this section of the Appendix,

we discuss incorporating ordering information in randomized screening

design.

Randomized phase II screening design was introduced by Rubinstein

et al. [2005], extending previous research by Simon et al. [2001] and Korn

et al. [2001]. The goal of this type of design is to design a randomized

study that could yield sample sizes and statistical properties suitable for

phase II studies. The design provides preliminary comparisons between

experimental and standard treatments by carefully adjusting and balancing

the type I (α) and II errors (β), ensuring that the targeted treatment benefit

is appropriate while the sample size remains restricted. Here we want

to show that, with minor modifications, the advantage of incorporating

ordering information can still be observed in randomized selection design.
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Method

Here we use a similar setting as in the main text. Assume patients are

stratified into G strata and randomized to treatment arm T and control

arm C. In total, there are N patients in each arm where the proportion

of patients in each stratum is wjg with j ∈ {T ,C}. Here, g = 1, ...,G and∑G
g=1 wjg = 1. So the number of patients in Arm j Stratum g is defined as

njg = N ·wjg.

Binary outcome

Assume that, in Arm j and Stratum g, the number of responders rjg are

independent binomial random variables with rjg ∼ Bin(njg,πjg). Again,

we assume the strata in Arm j satisfy the partial stochastic ordering con-

straints in its strata defined by a constraint set E ⊂ {1, ..G}2, i.e., ∀(u, v) ∈

E,πju ⩾ πjv.

Denote

πj = (πj1, . . . ,πjG)
⊤, j = T ,C;

pj = (pj1, . . . ,pjG)
⊤, j = T ,C .

Let pjg be the corresponding E-constrained maximum likelihood esti-

mator (MLE) with Arm j Stratum g under the constraint set E. Under the

framework described by Rubinstein et al. [2005], we design a randomized

phase II screening trial that will allow us to assess whether treatment

arm T is more promising than standard control arm C. The hypotheses
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associated with this type of comparison are

H0 : πT = πC vs H1 : πT ≻ πC

Given a specific sample size N, we control the type I error by choosing

the critical value γ = (γ, . . . ,γ) to maximize the probability in (A.1) so

that the probability of accepting treatment arm is no larger than α under

H0.

max
γ

[Pr(pT − pC ≻ γ | πT = πC)] < α (A.1)

Denote θ∗ as the clinically significant difference in response rate with

θ∗ = (θ∗, . . . , θ∗)⊤1×G, θ∗ > 0. The probability of correct screening, which

is the power of the test given the critical value γ is determined by (A.2):

Pr(pT − pC ≻ γ | πT = πC + θ∗) = 1 − β (A.2)

Given the constrained resources for phase II trials, we aim to limit the

two-arm trial’s sample size while still ensuring the ability to effectively

screen the effective treatment. We thus want to keep the type I error rate

α to be either 10% or 20% while allowing the power to also be either 90%

or 80% evaluated at treatment effect of θ∗.

To determine the critical values γ and power, a Monte Carlo simulation

based algorithm is proposed given a specific sample size. Under the null,

we repeat 10,000 times to obtain a simulated distribution of the estimated
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treatment effect for each stratum g. The critical value γ is determined

by finding the maximum γ obtaining (A.1). Under the alternative, we

repeat 10,000 times to compute the power by the proportion of simulated

estimated treatment effect for each stratum g being correctly rejected H0

based on the critical value γ.

Time-to-event outcome

Suppose Sjg(x), j = T ,C and g = 1, . . . ,G is the true survival probability

at time x for Stratum g in Arm j. Further assume that the strata in Arm j

satisfy the partial stochastic ordering constraints at a given time x defined

by the constraint set E ⊂ {1, ..G}2, i.e., ∀(u, v) ∈ E,Sju(x) ⩾ Sjv(x).

Let S̃jg(x) be the corresponding E-constrained nonparametric maxi-

mum likelihood estimator (NPMLE) for survival probability of Arm j

Stratum g subject to constraint set E applied at a given time x only. Denote

Sj = (Sj1(x), . . . ,SjG(x))
⊤, j = T ,C;

S̃j = (S̃j1(x), . . . , S̃jG(x))
⊤, j = T ,C .

The hypothesis testing construction is similar as the above binary out-

come case. That is, the hypotheses associated with this type of comparison

are

H0 : ST = SC vs H1 : ST ≻ SC

Given a specific sample size, we control the type I error α by choosing a

critical value γ to maximize the probability in (A.3) so that the probability
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of accepting treatment arm is no larger than α under H0.

max
γ

[Pr(S̃T − S̃C ≻ γ | ST = SC)] < α (A.3)

Denote θ∗ = (θ∗, . . . , θ∗)⊤1×G, θ∗ > 0 as the clinically significant differ-

ence in survival probability at time x. The power of the screening design

given the critical value γ can be determined by (A.4):

Pr(S̃T − S̃C ≻ γ | ST = SC + θ∗) = 1 − β (A.4)

Similar as the binary outcome case, a Monte Carlo simulation based

algorithm is proposed to determine the critical value γ and power given a

specific sample size.

Evaluation with simulated setting

We seek to evaluate the performance of our proposed method in compari-

son to a simple randomized stratified screening design, which does not

account for order information. We use simulation studies conducted under

similar settings as the selection design in Chapter 1. We consider the set-

ting that each of the Arms T and C has N patients. There are G = 2 strata in

each arm. The patient proportions in different strata are wT1 = wC1 = 0.4

(therefore wT2 = wC2 = 0.6).
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Binary outcome

Assume πTg ⩾ πCg and πj2 ⩾ πj1, j = T ,C,g = 1, 2 without loss of general-

ity. Accordingly, the E-constraint is πj2 ⩾ πj1. The binomial response rate

MLE without considering the order information would be the observed re-

sponse rate π̂jg = njg
−1rjg. Given different sample sizes, we will compare

the estimated power between two methods, based on 10,000 simulations.

Figure A.1 presents the power of the screening trial across different

values of N controlled at α = 0.1, 0.2. Overall, we see our method gives a

slightly larger power than the method without using order information.

Table A.1 numerically shows power, across different values of N controlled

at α = 0.1.

α=0.1 α=0.2

30 40 50 60 70 30 40 50 60 70

0.5

0.6

0.7

0.8

0.9

Sample size

P
o
w

e
r Group

With Constraints

Without Constraints

Figure A.1: Power of the screening trials for various N controlled at
α = 0.1, 0.2, fixing πC = (0.25, 0.35), θ∗ = (0.2, 0.2).
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Table A.1: Power of the screening trials for various N controlled at α = 0.1,
fixing πC = (0.25, 0.35), θ∗ = (0.2, 0.2).

With constraints Without constraints
N α 1 − β α 1 − β

30 0.089 0.559 0.074 0.511
40 0.082 0.650 0.094 0.627
50 0.097 0.727 0.099 0.705
60 0.099 0.789 0.080 0.731
70 0.099 0.820 0.096 0.797

Survival outcome

Assume STg(x) ⩾ SCg(x), Sj2(x) ⩾ Sj1(x), j = T ,C,g = 1, 2 without

loss of generality. Accordingly, Sjg(x) satisfy the E-constraints at time x

that Sj2(x) ⩾ Sj1(x), j = T ,C . The survival probability NPMLE without

considering the ordering would be the Kaplan-Meier estimator Ŝjg(x) =∏
i:xi⩽x(1 −

djgi

njgi
). Given different sample sizes, we will compare the cal-

culated power between the two methods, based on 10,000 simulations.

Suppose patients enroll according to a Poisson process with an accrual

rate of 4 patients per month for each of the treatment arm stratum. We

continue to follow up for an additional 6 months after the last patient is

enrolled. Suppose the survival time follows exponential distribution and

we are constraining and comparing survival probabilities at 6 months.

The power of the screening trial across different N controlled at α =

0.1, 0.2 are shown in Figure A.2. Overall, we observe similar results as

the binary case that our method gives a slightly larger power than the

method without using order information. Table A.2 numerically shows
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power across different values of N controlled at α = 0.1.

α=0.1 α=0.2
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Figure A.2: Power of the screening trials for various N controlled at
α = 0.1, 0.2, fixing SC = (0.35, 0.45), θ∗ = (0.2, 0.2).

Table A.2: Power of the screening trials for various N controlled at α = 0.1,
fixing SC = (0.35, 0.45), θ∗ = (0.2, 0.2).

With constraints Without constraints
N α 1 − β α 1 − β

30 0.080 0.531 0.081 0.498
40 0.090 0.634 0.090 0.615
50 0.099 0.707 0.083 0.559
60 0.099 0.761 0.088 0.731
70 0.070 0.761 0.096 0.647
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A.2 Bias and variability of constrained

estimators

Here we investigate the bias and variability of the estimators without con-

straints and with constraints for both binomial and time-to-event outcomes

under 8,000 Monte Carlo simulations. In the simulations, we assumeG = 2

strata in each treatment arm with patient proportions wa1 = wb1 = 0.4

and sample size for each treatment arm N. For binomial responses, the

number of responders rjg are independent binomial random variables

with rjg ∼ Bin(njg,πjg), j = a,b,g = 1, 2. The treatment difference for

each stratum is θ∗ = (0.2, 0.2). E-constraint is πj2 ⩾ πj1, j = a,b. The

binomial response rate MLE without considering order is njg
−1rjg. The

results are in Table A.3.

Similar to a recent publication [Dai et al., 2020], we find that estima-

tors under constraints are biased for the response rate of each stratum,

compared with the unbiased binomial MLEs. On the other hand, for the

treatment effect which is the difference of the estimators between two

arms, the biases become almost negligible. We therefore take comfort in

this fact for our proposed method as the treatment effect is of ultimate

interest. In addition, we find that the constrained estimators have slightly

smaller variance than the estimators without constraints. We also find

positive correlations between estimated treatment effects across ordered

strata, especially under the small sample size setting.
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Table A.3: Estimation mean, variance and correlation for binary outcomes
with and without constraints

Parameters True values Estimates - Mean Estimates - Variance Estimate - Correlation

w constr w/o constr w constr w/o constr w constr w/o constr
N = 50

(πa1,πa2) (0.6, 0.7) (0.588, 0.707) (0.599, 0.700) (0.010, 0.006) (0.012, 0.007) 0.217 -0.014
(πb1,πb2) (0.4, 0.5) (0.387, 0.508) (0.399, 0.500) (0.009, 0.007) (0.012 0.008) 0.225 -0.003
(θ∗

1 , θ∗
2) (0.2, 0.2) (0.201, 0.198 ) (0.199,0.199) (0.019, 0.0.013) (0.024, 0.015) 0.220 0.006

N=40

(πa1,πa2) (0.55, 0.65) (0.534, 0.659) (0.548, 0.649) (0.012, 0.008) (0.015, 0.010) 0.247 0.023
(πb1,πb2) (0.35, 0.45) (0.334, 0.460) (0.349,0.450) (0.011, 0.009) (0.014, 0.010) 0.239 0.014
(θ∗

1 , θ∗
2) (0.2, 0.2) (0.200, 0.199) (0.199,0.199) (0.022, 0.017) (0.029, 0.0.019) 0.242 0.009

N = 30

(πa1,πa2) (0.6, 0.7) (0.580,0.712) (0.598,0.700) (0.015, 0.010) (0.020, 0.012) 0.270 0.016
(πb1,πb2) (0.4, 0.5) (0.379,0.514) (0.399,0.500) (0.014, 0.012) (0.020, 0.014) 0.286 -0.014
(θ∗

1 , θ∗
2) (0.2, 0.2) (0.201,0.198) (0.199,0.200) (0.029, 0.021) (0.039, 0.025) 0.275 0.012

N=20

(πa1,πa2) (0.55, 0.65) (0.520,0.668) (0.547,0.650) (0.023, 0.015) (0.031, 0.019) 0.290 0.003
(πb1,πb2) (0.35, 0.45) (0.321,0.469) (0.349,0.450) (0.020, 0.017) (0.028, 0.021) 0.303 -0.001
(θ∗

1 , θ∗
2) (0.2, 0.2) (0.199,0.199) (0.198,0.199) (0.042, 0.032) (0.059, 0.039) 0.307 0.010

For time-to-event responses, similar findings could be derived from the

simulation results in Table A.4. The simulation setting is as follows. Sup-

pose Sjg(x) where j = a,b and g = 1, . . . ,G is the true survival probability

at time x for Stratum g in Arm j. The treatment difference θ∗ = (0.2, 0.2).

Sjg(x) satisfies the E-constraints at month 6 that Sj2(6) ⩾ Sj1(6). The sur-

vival probability NPMLE without considering order is the Kaplan-Meier

estimator. Here we assume patients enroll according to a Poisson process

with an accrual rate of 4 patients per month for each of the treatment arm

stratum. The follow-up is for an additional 6 months after the last patient

is enrolled for each stratum. The survival time follows an exponential

distribution and we are constraining and comparing survival probabilities
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at 6 months.

Table A.4: Estimation mean, variance and correlation for time-to-event
outcomes with and without constraints

Parameters True values Estimates - Mean Estimates - Variance Estimates - Correlation

w constr w/o constr w constr w/o constr w constr w/o constr
N=50

(Sa1(6),Sa2(6)) (0.75, 0.85) (0.741, 0.854) (0.748, 0.850) (0.008 0.004) (0.010 0.004) 0.166 -0.008
(Sb1(6),Sb2(6)) (0.55, 0.65) (0.538, 0.656) (0.550, 0.648) (0.010 0.007) (0.012 0.008) 0.205 -0.001

(θ∗
1 , θ∗

2) (0.2, 0.2) (0.203, 0.198) (0.198, 0.202) (0.018, 0.011) (0.021, 0.012) 0.217 -0.003
N=40

(Sa1(6),Sa2(6)) (0.55, 0.65) (0.534, 0.658) (0.549, 0.648) (0.012 0.008) (0.015, 0.010) 0.231 -0.007
(Sb1(6),Sb2(6)) (0.35, 0.45) (0.336, 0.460) (0.351, 0.450) (0.011 0.009) (0.014, 0.010) 0.225 -0.006

(θ∗
1 , θ∗

2) (0.2, 0.2) (0.198,0.198) (0.198,0.198) (0.023, 0.0170) (0.030, 0.020) 0.248 0.025
N=30

(Sa1(6),Sa2(6)) (0.75, 0.85) (0.736, 0.858) (0.749, 0.849) (0.013, 0.006) (0.016, 0.007) 0.138 0.019
(Sb1(6),Sb2(6)) (0.55, 0.65) (0.531, 0.663) (0.552, 0.649) (0.016, 0.010) (0.021, 0.013) 0.266 0.003

(θ∗
1 , θ∗

2) (0.2, 0.2) (0.205, 0.195) (0.198, 0.200) (0.028, 0.017) (0.036, 0.020) 0.249 -0.003
N=20

(Sa1(6),Sa2(6)) (0.55, 0.65) (0.522,0.668) (0.550, 0.649) (0.023, 0.015) (0.031, 0.019) 0.302 0.023
(Sb1(6),Sb2(6)) (0.35, 0.45) (0.321,0.469) (0.349, 0.450) (0.020, 0.017) (0.028, 0.021) 0.316 -0.019

(θ∗
1 , θ∗

2) (0.2, 0.2) (0.200,0.199) (0.201, 0.198) (0.042, 0.033) (0.057, 0.041) 0.315 0.016

A.3 Checking the monotonicity assumption

Tibshirani et al. [2011] investigated the problem of nearly isotonic regres-

sion where the order constraint might be violated at some change-points.

Specifically, for N normal observations xi ∼ N(µi, σ2) for i = 1, ...,N, the
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problem could be formulated as the regularized optimization as following:

µ̂λ = argmin
µ

1
2

N∑
i=1

(xi − µi)
2 + λ

N−1∑
i=1

(µi − µi+1)+ ,

where λ > 0 is the regularization parameter and (·)+ = max(·, 0).

Matsuda and Miyatake [2022] extended the nearly isotonic regression

for general one-parameter exponential families for binomial responses. For

stratum i with responses ri ∼ Bin(ni,πi) for i = 1, ...,N, the regularized

optimization could be formulated as

ĉλ = argmin
c

−

N∑
i=1

log p(ri|ci) + λ

N−1∑
i=1

(ci − ci+1)+

= argmin
c

N∑
i=1

wi(−ci
ri

wi

+ b(ci)) + λ

N−1∑
i=1

(ci − ci+1)+ ,
(A.5)

where ci = log πi

1−πi
, bi(ci) = wib(ci) = −ni log(1 − πi) = ni log(1 +

exp(ci)), wi = ni. The paper shows that this optimization problem is

efficiently solved by modified Pool Adjacent Violators Algorithm (mPAVA)

[Matsuda and Miyatake, 2022].

The selection of regularization parameter λ is based on Akaike infor-

mation criterion (AIC) defined as

AIC(λ) = −2
n∑

i=1

log p(xi|cλ)i + 2Kλ . (A.6)

where Kλ is the number of joined pieces used as an unbiased estimate of

the degrees of freedom of nearly isotonic regression.

However, there is no existing work considering nearly isotonic regres-
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sion modeling for time-to-event outcomes. Therefore we performed a

simulation to examine the lack of fit for the monotonicity assumption in bi-

nomial responses using the algorithm from Matsuda and Miyatake [2022].

The simulation is set up as following. First, suppose G = 5 strata with

monotonically increasing true response rates πg = (0.2, 0.3, 0.4, 0.5, 0.6)

and sample size ng = (20, 20, 30, 30, 40) with response rg ∼ Bin(ng,πg) for

g = 1, ..., 5. We calculate AIC(λ) under each value of λ ∈ {0, 0.1, 0.2, ..., 5}

and each with 3,000 Monte Carlo simulations. Then, we changed the re-

sponse rates to be non-monotonic πg = (0.2, 0.3, 0.4, 0.32, 0.24) with the

same sample sizes and calculate AIC(λ) again. Figure A.3 plots Ec{AIC(λ)}

with 95% confidence interval for each value of λ. As expected, when the

monotonicity assumption holds, AIC level decreases to gradual stabiliza-

tion whereas under monotonicity assumption violation, AIC first decreases

and then increases. This can serve as a visual tool to assess the monotonic-

ity assumption.
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Figure A.3: Ec{AIC(λ)} with 95% confidence interval for monotonic and
non-monotonic binomial responses

A.4 Violation of the monotonicity assumption

Here are the details for the simulation setting that examines the violation

of monotonicity constraints. The general strata, treatment, and accrual

settings are the same as Section A.2 above. For both binomial and time-

to-event responses, with the constraint ordering being πj2 ⩾ πj1 and

Sj2(6) ⩾ Sj1(6), j = a,b, we set the strata response rate difference τ =

πj2 − πj1 = Sj2(6) − Sj1(6) to be either 0.1 or −0.1 for j = a,b. For τ = 0.1,

the monotonicity assumption holds, whereas for τ = −0.1, it is violated.

We compare the estimated Pcorr and Pamb between designs with and

without order constraints under either concordant or discordant treatment

effect θ∗. In particular, for concordant θ∗, we use (0.2, 0.2) or (0.1, 0.2). For

discordant θ∗, we use (−0.1, 0.2), (−0.2, 0.2), (0.2,−0.1), and (0.2,−0.2).
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Under the concordant θ∗, Arm a should be recommended and therefore

we would like to see a larger Pcorr and smaller Pamb. On the other hand, for

discordant θ∗, we would like to see a smaller Pcorr and larger Pamb.

From Tables A.5 and A.6, it can be seen that, with concordant treatment

effects, Pcorr could increase when order constraints are applied to the

ordering violation case, which means that the probability of correct or

definitive recommendation for the superior treatment could be gained by

ignoring the order constraints among various strata.

On the other hand, with discordant treatment effects, the violation

resulted in a larger Pcorr and a smaller Pamb, which is worse than without

constraints. We have added this findings to our discussion section in the

main text.

Table A.5: Evaluation of binary response strata order violation constraints
between with and without constraints with πb1 = 0.35, θ = (0.05, 0.05)
and N = 30.

With constraints Without constraints
τ θ∗ Pcorr Pamb Pcorr Pamb

0.1

(0.2,0.2) 0.726 0.263 0.674 0.317
(0.1,0.2) 0.570 0.408 0.528 0.453
(-0.1,0.2) 0.202 0.745 0.190 0.759
(-0.2,0.2) 0.070 0.861 0.067 0.865
(0.2,-0.1) 0.281 0.556 0.170 0.754
(0.2,-0.2) 0.147 0.575 0.057 0.845

-0.1

(0.2,0.2) 0.832 0.151 0.683 0.309
(0.1,0.2) 0.694 0.276 0.535 0.448
(-0.1,0.2) 0.275 0.658 0.192 0.763
(-0.2,0.2) 0.095 0.821 0.068 0.872
(0.2,-0.1) 0.363 0.408 0.130 0.790
(0.2,-0.2) 0.173 0.421 0.015 0.879
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Table A.6: Evaluation of time-to-event response strata order violation
constraints between with and without constraints with Sb1(6) = 0.55,
θ = (0.05, 0.05) and N = 30.

With constraints Without constraints
τ θ∗ Pcorr Pamb Pcorr Pamb

0.1

(0.2,0.2) 0.757 0.236 0.707 0.288
(0.1,0.2) 0.588 0.396 0.543 0.442
(-0.1,0.2) 0.224 0.739 0.210 0.756
(-0.2,0.2) 0.107 0.847 0.097 0.858
(0.2,-0.1) 0.278 0.554 0.170 0.759
(0.2,-0.2) 0.167 0.551 0.066 0.843

-0.1

(0.2,0.2) 0.832 0.147 0.687 0.303
(0.1,0.2) 0.692 0.273 0.529 0.450
(-0.1,0.2) 0.298 0.626 0.204 0.744
(-0.2,0.2) 0.139 0.771 0.094 0.840
(0.2,-0.1) 0.410 0.356 0.170 0.760
(0.2,-0.2) 0.302 0.333 0.056 0.852
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