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Abstract

The miniaturization of camera sensors has enabled the replacement of single-camera
systems with multi-camera arrays. Small sensors can be mass-produced cheaply
and combined into a small package that has the potential to provide multiple
viewpoints of a given scene. However, whereas single-camera systems function
well as standalone units, multi-camera arrays require extra processing to translate
information into a human palatable format. This dissertation will address two
major challenges when utilizing multi-camera arrays in place of single-camera
systems: parallax mitigation and camera placement.

Existing video stitching techniques allow multiple video feeds to be combined
into a single video mosaic, but they require assumptions about scene geometry.
Using traditional image stitching algorithms, parallax may occur when objects
reside in different planes, violating the co-planar assumption of image stitching.
In this work, a multi-planar, parallax mitigation (MPPM) algorithm is proposed
to alleviate the parallax anomaly. Multiple planes are used to model the scene
and stitching is performed separately on each plane. The separate stitching of
multiple planar objects can yield a panoramic image without parallax anomaly, and
linear shapes remains unchanged before and after stitching is completed. However,
deriving a multi-planar model requires a significant amount of computation. In the
proposed MPPM algorithm, prior knowledge of the object shapes is used to develop
a fast parallax mitigate procedure. The proposed formulation directly predicts the
shape of the multi-planar stitching outcome without explicitly segmenting the object
boundaries between video streams. As a result, computation overhead is reduced
while visual quality is preserved. This approach can be applied to many other
real-time multi-view video surveillance or visualization applications. Here the
application is to facilitate laparoscopic surgical vision within a patient’s abdominal
cavity.



The second challenge is that naive placement of cameras can significantly reduce
the total Field of View (FoV) or make it impossible to stitch the videos together.
Optimal camera placement offers a potential solution by applying optimization
techniques to maximize the total FoV of the camera array. The proposed optimiza-
tion pipeline attempts to leverage the specific requirements of image stitching to
compute camera poses tailored to the desired end goal.



CHAPTER 1
Introduction

From cell phones to automobiles, cameras have become a pervasive part of modern
life. Cameras fulfill two very important roles: Cameras fulfill two important roles:
first, they offer a way to record moments, freezing them in time and preserving them
to be revisited in the future; second, they offer a way to view things that would not
otherwise be visible. Driven by these factors, digital cameras have advanced rapidly
since the development of the digital camera sensor in 1975. The miniaturization of
camera sensors has recently made the replacement of single-camera systems with
multi-camera arrays a possibility. Small sensors can be mass-produced cheaply and
when bundled into multi-camera arrays can offer a much larger field of view in a
small package while offering extra information from different viewpoints.
Cameras allow us to remotely view scenes that we wouldn’t normally be able to
interact with. When attached to tools, they allow us to interact with scenes even
when we aren’t physically present. Unmanned vehicles utilize cameras to allow
us to explore hazardous terrain. Surgical cameras enable operations that are safer
and less invasive. Web-cameras connect us to people and places that are far away.
However, these cameras are not perfect. They have limited field of view (FoV),
limited spatial and temporal resolutions, and in many cases are required to be
stationary, unable to explore their surroundings or move to prevent occlusion. The
view that cameras give us of the world is a noisy, 2D projection of a 3D space.
Many of these drawbacks can be alleviated by the introduction of more sensors.
FoV can be expanded and blind spots, occlusion, or viewing angles can all be fixed
by careful placement of sensors. With two or more cameras viewing the same scene,
we begin to recover the 3D information that was lost during the projection process.
Extracting, compiling, and conveying the information from these extra cameras



Figure 1.1: Distance from the plane of stitching can cause misalignment such as
shown in the red box. These alignments occur because it is impossible to determine
how far an object will move from images without knowledge of that object’s depth.

pose challenges.

Image stitching algorithms [1, 2, 3] attempt to combine images from multiple
cameras into a single composite image called a mosaic. This is done by computing
point correspondences between the images and using those to fit a projective trans-
formation (homography) to the image. This homography will align the images
based on those detected point correspondences and then blend the images to hide
the seams between images. This approach allows for a single unified image to be
generated by a camera array.

However, image stitching is heavily reliant on assumptions about scene geometry
and camera placement. Either the cameras must all share the same camera center,
or the scene that they are recording must lie on a single plane in 3D space. In
some cases, these assumptions are valid. Image stitching is often used in settings
where the cameras are located far from the scene they wish to record; and although
the cameras may not share the same camera center and despite the scene depth,
the restricted model used by image stitching may still be a good approximation.



However, the homography used for image stitching will not properly align the
images in many cases (See Fig. 1.1). This will occur in situations where the scene
depth and camera translation are no longer small relative to the distance from
the camera to the scene. As these mi-salignments arise from the inability of the
transformation to fit the scene, they can not be addressed by current image stitching
methods.

Current approaches to correct these misalignment artifacts can be divided into
local warping methods and seam selection methods. Local warping methods
[4,5, 6,7, 8] replace the homography with new transforms that are able to align
any set of feature points but do not accurately reflect the 3D geometry of the scene.
Seam selection approaches [9, 10, 7] note that misalignments are only visible across
the seam between the two images and focus on placing the seam in such a way as
to minimize the possibility of parallax artifacts. The most effective approaches to
stitching leverage both seam selection and local warping to generate mosaics that
are both locally consistent in their alignment and have any inconsistencies hidden
by smart seam selection [11, 10].

Previous parallax correction approaches have focused on generating plausible
images for aesthetic purposes. This dissertation focuses on image mosaics created
for remote scene interaction. Motivated by the development of a surgical camera
system [12], the proposed image stitching method attempts to leverage the 3D
properties of the scene to create a mosaic with spatio-temporal consistency that can
be relied upon even when a human operator is attempting to interact with a scene
that they can sense only through the provided visualization. The near-field nature
of the surgical setting means that camera translation will be large relative to the
distance from the camera to the scene, and the surgical tools typically lie in planes
nearly orthogonal to the scene on which they are operating. As such, it is a setting
that exemplifies many of the challenges of remote scene interaction. Furthermore,
in a surgical setting, there is no room for error as such methods that attempt to hide

inconsistencies can also lead to undesirable consequences.



1.1 Contributions

There are two fundamental research challenge to the problem identified above: (1)
The computer vision challenges of generating video mosaics from a camera array
under near field conditions, and (2) the challenge of optimizing camera placement
into an array that maximizes spatial coverage of the image. Here, new algorithms

and techniques in computer vision that address these challenges are presented.

1.1.1 Multi-Planar Stitching

Multi-view video stitching is a process combining synchronous video frames from
multiple video streams to produce a panoramic video with larger FoV than any of
the individual videos. Parallax is a visual anomaly that manifests itself as image
ghosts, discontinuities, and distortions in the stitched panoramic video due to the
non-planar scene in the FoV.

In this work, we present novel parallax mitigation algorithms for multi-view
video stitching with an application to a novel medical device called a trocar-camera
assembly (TCA) for real-time visualization to guide minimally invasive surgeries
[12]. TCA can deploy multiple miniature cameras inside a patient’s abdominal
cavity forming a camera array to construct laparoscopic surgery visualization.
Videos captured from these micro-cameras are transmitted to an outside server to
be stitched in real-time to provide a video with an enlarged field of view (FoV)
which facilitates navigation of surgical instruments within the patient’s abdomen.

State of the art multi-view video stitching algorithm pipelines consist of three
steps: (a) feature detection at individual views using a common feature detector
such as SIFT [13] or SURF [14], (b) feature matching and homography estimation
using RANSAC [15], and (c) view warping and pixel value blending. An implicit
assumption of image stitching is that all the feature points are co-planar in the real
world. As such, the homogeneous image coordinates of the same physical world fea-
ture at two different views are described by a linear transformation (homography).

To implement such a standard image stitching algorithm on the TCA, two challenges



must be addressed: First, feature extraction and matching requires a significant
amount of computation, making real-time implementation impractical. Second, the
shallow depth of the abdominal cavity invalidates the co-planar assumption of the
teature points. Consequently, parallax may introduce large misalignments in the
stitched image.

The problem of parallax correction in panoramic images has been studied pre-
viously [4, 5, 6, 9, 10]. However, these parallax mitigation solutions are often
computationally expensive, and the parallax corrections vary from frame to frame
causing temporal visual anomalies. The approach developed here minimizes par-
allax anomalies while supporting real-time, low latency video stitching. It differs
from existing solutions in several ways: (a) the image is segmented into separate
planar objects, each of which is fitted with its own homography (b) information
from past frames is used to fill in gaps that may occur due to parallax correction (c)
the spatial and temporal correlations exhibited in the multi-view video streams are
leveraged to reduce the frequency of updates for homography matrices and regions
of stitched video frames where no activities are detected. By doing so, a video
mosaic can be generated at 16 frames per second (FPS) which is free of parallax

discontinuities and does not introduce new spatial distortions.

1.1.2 Optimal Camera Placement for Camera Arrays

Camera arrays have applications in surveillance [16], robotics [17], virtual real-
ity [18, 19], surgery [20], and more. Multiple cameras placed in proper locations
and poses may offer a wider field of view (FoV) by aggregating (stitching) indi-
vidual images into a coherent, extended mosaic beyond what a single camera can
provide.

The traditional camera placement problem has been investigated in the context
of video surveillance [21, 22, 23| where cameras were placed in a three-dimensional
space to cover a two-dimensional plane [1]. Optimal camera placement under these
restrictions has been previously investigated [24, 25].

There are two types of camera placement problem formulations: MIN and FIX



(a) Trocar-based Camera Array (b) Array and Laparoscopic Trainer Box

Figure 1.2: The trocar-based camera array offers improved FoV over traditional
laparoscopes by utilizing multiple visual sensors. The expanded FoV minimizes
the need for camera adjustments during surgery.

[23]. The goal of MIN formulation is to minimize the number of cameras needed
to cover a given area. The goal of the FIX formulation is to maximize the coverage
area for a fixed number of cameras. The work presented in this paper falls into the
FIX formulation category.

The camera placement problem is formulated in the context of building a camera
array to enhance the visual quality of a laparoscopic surgery [20]. In current
laparoscopic surgery, a single-camera with lighting is inserted through a trocar
to provide a view for surgeons to carry out the surgery. Alternatively, a camera
array hanging on the trocar assembly would provide a bigger FoV while freeing the
surgeon’s hand from holding the laparoscopic camera. The cameras are mounted
on four arms extending from the housing of a circular trocar, as shown in Fig. 1.2.
In this figure, the trocar assembly is mounted on a surgical training box to emulate
the surgical setting.

To simplify the hardware design, the cameras are fixed on pre-selected positions
on each arm. At each position, the camera has a specific pose selected from a fixed
number of choices. This multi-camera system enhances visual coverage during
surgery because FoVs from multiple cameras are stitched together. The task is to
create an algorithm for optimal camera placement plan that maximizes the stitched
FoV subject to several visual quality-related constraints. These constraints make the



camera placement problem formulation distinct from those in the existing literature.



CHAPTER 2
Motivation

The laparoscopic surgical setting can confer substantial health benefits to patients,
but it also poses one of the most difficult challenges for remote scene interaction. It
is a high stakes environment where small mistakes can have large consequences.
Even so, the possible benefits of improving surgical visualization are significant.
Minimally invasive surgery can offer significantly reduced recovery time for patients
and fewer long term consequences for the surgery. However, the visualization
systems currently employed during laparoscopic procedures have a limited field of
view and must be navigated through the surgical field to provide adequate coverage.
Navigating the camera through the scene has several downsides. First, in order
to navigate the camera through the scene, a human operator must use one hand
on the camera which means that hand is not available for surgical tools. Second,
the moving camera causes a disconnect in spatial awareness. Operators must track
the orientation of the camera to know how the movement of the surgical tools will
affect the scene that they are viewing. Finally, the limited FoV limits situational
awareness of the region near the surgical area.

To address these limitations, a trocar camera array (TCA) utilizes multiple
cameras to survey the entirety of the surgical scene in a single view, as in open-
cavity surgery (Fig 2.1). While not applicable in all surgical operations, this
approach could decrease the barrier to entry for surgeons learning laparoscopic
techniques in the abdominal area. The TCA is an array of cameras built into a
single surgical trocar. When the trocar is inserted into the patient, these cameras
unfold from the body of the trocar to their final positions in the body cavity. The
cameras are placed away from the surgical field to reduce the possibility of splatter
from the scene and lower the effect of possible occlusion. The multiple cameras of



(a) Trocar Camera Array (b) TCA installed in trainer box

Figure 2.1: A trocar camera array (TCA) consists of several cameras built into a
surgical trocar (a). When the trocar is installed (b), the cameras are deployed in
such a way that they spread away from the central port of the trocar and begin to
collect data from the scene. When the trocar is removed, the cameras fold up inside
the trocar so that they will fit through the incision.

the TCA mean that the surgeon no longer needs to navigate the scene manually,
freeing up that hand for other tasks or allowing the operation to be performed
with fewer personnel. However, the effectiveness of the TCA is heavily dependent
on the quality of the visualization. The resulting visualization needs to provide
the surgeons with the same level of detail about the scene that they can currently
gather with a single camera endoscope.

The ideal visualization would behave the same as an open window into the
body cavity. The result should be a single video feed provided at >30 frames per
second (fps) that accurately shows the spatial relationships between objects in
the entirety of the surgical field. This visualization should be overlayed on top of
the patient’s body as in VTEI [26, 27] so that all movements of the surgical tools
behave the same in the visualization as they do in the real world. Generating such
a visualization is a difficult challenge, but it’s important to keep in mind the ideal

while developing more realistic visualizations.
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CHAPTER 3
Related Work

3.1 Image Stitching

Modern image stitching is based on the work of Richard Szeliski [1, 28, 29, 30].
The traditional stitching model uses feature matches to compute a 2D projective
transformation (homography) which aligns those features between the views of
disparate cameras in the array. These transformations are then used to project the
images onto a single plane, cylinder or sphere.

The cylindrical and spherical models are often used in virtual reality applications
[19, 31, 32, 33, 34, 35, 36, 37, 38] to generate images with a full 360° FoV to surround
the user. Planar stitching is more often used to generate composite images from
aerial footage [39, 40] or for any scenes that can be assumed to be flat such as
whiteboards [29], microscope slides, or any scene where the depth difference in
the scene is very small relative to the distance between the cameras or from the
cameras to the scene [41]. However, the planar model is generally more useful for
any scene when viewing the mosaic on a flat monitor as it creates an image that is
much more similar to a traditional camera.

Each model relies on a set of assumptions to function correctly. The cylindrical
and spherical models rely on the assumption that the camera is subject to purely
rotational motion, and the planar model assumes that the scene being recorded lies
on a single plane in 3D space. When these assumptions do not hold, the resulting
mosaic can be subject to parallax artifacts where structures become broken across
the seams between individual images.

Dual homography stitching [4] broke from Szeliski’s global alignment stitching
by allowing multiple transformations to be fit to different planar regions of a scene.
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This method drastically improved image stitching for landscape imagery where
there are typically two dominant planes, one for the ground, and one for the objects
on the horizon. This model was further expanded with the introduction of spatially
varying warps for parallax stitching [5, 6] which replaced the traditional homog-
raphy with a new type of transformation that can align even non-planar scenes.
As-projective-as-possible (APAP) [3] stitching also attempts to solve the parallax
problem by replacing the traditional 2D projective transform with a non-projective
transformation that instead seeks to be "as projective as possible" by solving a
mixed optimization to simultaneously minimize the number of outlier features and
the distance of the transformation from the family of projective transformations.
However, these spatially varying transformations are computationally slow and
can lead to an unintuitive warping of space which is detrimental to the use of the
mosaic for real-time interaction with the physical world.

An alternative approach to parallax correction is optimal seam selection [9,
10]. Rather than changing the transformation model, the seam between different
viewpoints is instead chosen in such a way that parallax artifacts are minimalized.
These methods seek to find a path across the overlap region that contains only
pixels that are similar in both viewpoints. As such there should be no noticeable
discrepancies created by the seam. However, simply hiding parallax errors could

lead to dangerous inaccuracies in the location of a surgical instrument.

3.2 Video Stitching

Most video stitching approaches have closely followed traditional image stitching.
However, the video stitching problem introduces several new challenges and con-
straints. While a frame by frame image stitching alignment can be used to generate
a mosaic video, the resulting mosaic will likely suffer from a visible shaking caused
by temporal discontinuities in the stitching alignment. Furthermore, most image
stitching approaches rely on feature detection methods which are too slow to run

in real-time video stitching applications.
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One of the earliest attempts to solve the unique problems posed by video stitch-
ing was to use a time-invariant set of homographies to generate the image mosaic
[42]. This method allows almost all computation to be offloaded into a calibration
step rather than being performed with each incoming frame. It also removes any
temporal discontinuities (camera jitter) from the stitching process. However, this
method fails to account for changing scene geometry and can perform poorly when
the objects in the scene are mobile. Another approach to video stitching has been
to focus on using feature tracking to speed up computation and introduce tem-
poral continuity [43]. These methods offer increased robustness to scene motion
and allow the implementation of more advanced image stitching techniques such
as seam cutting [7, 9, 10] or content preserving warps [4, 5, 6, 7, 8]. However,
feature tracking is not a completely solved problem, and various feature tracking
algorithms can be fooled by regions with low texture or by occlusion. In addition,
once a feature tracking algorithm loses track of a feature, it can be difficult for the
algorithm to self-correct.

When using stitched video to interact remotely with a true 3D space, we run
into several new issues. Counter-intuitive object motion in the mosaic may reduce
the usability of the video feed. As such, these video mosaics need to be approached
with a utility first, aesthetics second mindset where any obfuscation of true spatial
relations should be weighed against the amount of useful information it may hide.
Each mosaic should be considered as an attempt to model the image received by
a wide-angle camera placed at a virtual viewpoint location using only the pixel
information from our provided cameras. To measure whether or not we have a good
model, we must identify what features of the scene are important for navigating
the scene and ensure that as many of these features as possible remain in the final
mosaic.

The most important scene feature to retain for remote scene interaction is the
spatial relationship between the tip of the tool and the nearby scene features. The
next most important feature is that apparent motion of the grasping tool must be
temporally and spatially consistent with the real world for any given input motion.
Any movement the operator wishes to perform should require the same input
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regardless of the video frame or tool location within the video frame. Finally, the
grasping tool should not be subject to warping across image seams.

3D scene reconstruction [44, 45, 46, 47] can be used to generate a full scene
model which can then be projected into any virtual viewpoint. This reconstruction
can then be projected using 3D rendering techniques [48] to generate a wide field
of view image from many virtual viewpoints. As such, it is a natural option to
consider for remote interaction with a three-dimensional scene. It also has the
additional benefits of being able to generate mosaics from any number of arbitrarily
chosen viewpoints, and the ability to provide the full three dimensions of scene
geometry to a user rather than requiring depth be inferred from context clues in
an image. It does, however, come with its own set of challenges. Real-time 3D
modeling is currently a heavily studied field and still has challenges with generating
robust noise-free models in real-time. Current 3D modeling methods also require
significant overlap between cameras [44, 45, 46, 47] which leads to a sacrifice in
mosaic field of view, a known feature pattern projected onto the scene [49] which
can interfere with the task of visualization, or specialized time of flight cameras[50]
which can be prohibitively expensive. While solving the problem of real-time
3D reconstruction is one possible solution to remote scene interaction, this paper
will focus on finding solutions under situations where full 3D reconstruction is

infeasible.

3.3 Optimal Camera Placement

One of the earliest surveillance coverage problem formulations is the Art Gallery
Problem (AGP) [51]. The goal was to minimize the number of visual sensors
(cameras) required to monitor the floor plan of an art gallery (region of interest,
ROI). However, the sensor model in the AGP expected sensors to see any object
within line-of-sight of the sensor and limited the camera and surveillance regions
to a two-dimensional space. Many existing solutions to the AGP problem do not
work well for camera sensors as they assume the sensors have a 360° FoV. As such,
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the AGP needs to be reformulated to better reflect real camera models and spatial
placement constraints [21, 22, 23].

Some AGP-derived problem formulations attempt to use a two-dimensional
floor plan and two-dimensional camera models [52, 53,23, 54, 55, 56 . These models
benefit from their simplicity as camera FoV could be treated as a simple, static two-
dimensional shape which enabled many optimization techniques. However, they
relied heavily on assumptions about camera placement and scene shape. As such,
their usefulness is limited and not applicable to the surgical setting considered in
this work.

Several works expand the two-dimensional world view of the AGP into a more
realistic three-dimensional case [21, 52, 53, 57, 58, 59, 60, 61, 62]. While many of
these models can be simplified when you care about a planar scene, these models
require extra computation to be used for occlusion checking which is unnecessary
when the scene is planar. These methods typically revolve around discretizing the
scene space into a grid and seeking to maximize the number of grid points visible
to the camera array. This scene discretization leads to a source of possible error
that is not necessary because our scene lies on a plane.

The restriction of 3D scene geometry to a two-dimensional plane has been
previously proposed to maximize coverage of a floor plan by surveillance equip-
ment [24, 25, 63] . Fu et al. [24] proposed a two-dimensional coverage model for
the placement of cameras in three-dimensional space that is very similar to ours.
They used a particle swarm optimization method to perform an optimization that
attempts to simultaneously optimize for both maximum coverage of the surveil-
lance space and minimum number of used cameras. However, look at continuity
constraints, or look at ensuring overlap as we need to for image stitching. Picia-
relli et al. [25] also looked at placing camera sensors in three-dimensional spaces
to record scenes on a two-dimensional plane. However, their camera model does
not approximate the real-world behavior of a camera as well as the model used by
Fu et al. [24].
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CHAPTER 4
Multi-Planar Parallax Mitigation

4.1 Introduction

Multi-view image or video stitching combines multiple overlapped images or video
frames to form a stitched panoramic image/video frame with a larger field-of-view
([28]). Traditionally, a single homography transformation geometrically aligns
key points of one view to those of a reference view in the overlapped region, and
warps the remainder of the image accordingly ([1]). By exploiting the temporal
correlation between successive video frames, the homography transformations
need not be estimated for each video frame. Thus, the majority of computation
in a multi-view video stitching algorithm would be applying the homography
transformation to each video frame and rendering the stitched panorama video
frame. The objective of a real-time multi-view video stitching algorithm is to render
the panorama video frames at a desirable frame rate.

The homography matrix enforces geometric consistency across an adjacent pair
of overlapping images (views). The purpose of feature detection is to identify
distinct feature points in each image. Then, the correspondence of feature points
in both views will be established using a robust, iterative RANSAC algorithm. In
each iteration, a small subset of matching feature points will be identified, and a
candidate homography matrix will be estimated from this set of matching feature
points. The estimated homography matrix will then be verified with the remaining
feature points. The homography matrix that results in the highest number of
correctly aligned feature points will be adopted as the estimated homography
matrix between these two views. When there is an insufficient number of feature

points available, unless additional visual cues such as structural light are applied,



16

Figure 4.1: A scene consisting of a foreground (dark) object with varying depth and
a plain white background. Global homographies are estimated to align background
feature points. Discontinuities across the seam line due to parallax is clearly visible.

the stitching cannot be accomplished.

In this work, a real-time stitching of multi-view videos with dynamically moving
foreground objects is considered. A foreground object is typically much closer
to the camera than objects in the background. The parallax due to foreground
objects may cause unsightly visual anomalies in the stitched video frames ([64]).
An example of a parallax anomaly is shown in Fig. 4.1. In this figure, four views
are stitched together. The image of a dark foreground object crossing two adjacent
views exhibits a broken edge anomaly when it crosses the seam line dividing two
views. Such parallax anomalies degrade the quality and diminish the utility of the
resulting panoramic image.

This dissertation proposes a novel multi-planar stitching (MPS) algorithm that can
effectively mitigate the parallax anomaly. With the MPS algorithm, the underlying
scene is modeled as the composition of a background planar surface and one or more
foreground planar surfaces. Different geometric transformations (homographies)
will be estimated and applied separately on each surface. The transformed images
will be pieced together to form the final panoramic image. In some cases, the
homography of some foreground surfaces may not be computable due to the lack
of a sufficient number of distinguishable feature points on the surface. The MPS
algorithm utilizes 3D line alignment that can effectively estimate the geographically
transformed line orientation without relying on feature points. A version of the

MPS algorithm was developed for a prototype laparoscopic surgical visualization
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system and demonstrate the feasibility of such an algorithm for real-time multi-view
stitching of a dynamic scene. When the viewpoint of the stitched multi-view image
coincides with a reference image, the proposed line algorithms can be significantly
simplified to support time-sensitive multi-view video stitching. Since the reference
view is part of the stitched image, the movement of the edge in the reference
view can be tracked and the edge can be extended over the seam line without
re-estimation of the edge positions each frame. This algorithm was implemented
on a desktop computer and observed a multi-view video stitching rate of 16 frames

per second with 4 simultaneous video streams at 640 by 480 resolution each.

4.2 Parallax Analysis

Parallax is a phenomenon wherein the velocity of the 2D object created by pro-
jecting a moving object in 3D space onto the 2D image plane is dependent on the
distance of that object from the camera center. Its importance to the field of image
stitching arises from the artifacts that the phenomenon can introduce when a planar
homography is used to align non-planar scenes. Objects which do not lie on the
plane of stitching will be misaligned by the homography resulting in these objects
appearing in incorrect locations. The magnitude of this misalignhment will vary
based on distance from the stitching plane, and thus objects may appear stretched
or warped by the effects of parallax with regions closer to the plane being subject
to less misalignment than regions further away. These errors are most noticeable in
the regions of overlap between views in image mosaics where the misalignment
can cause objects to appear broken or duplicated.

There are two major approaches when attempting to correct for the parallax
effect on image mosaics. Seam selection approaches [9, 10, 11, 65] leverage the fact
that parallax artifacts can only occur in across the seam line in regions with texture or
other measurable features. They attempt to cleverly place the seam lines in locations
that do not contain any features so that parallax will be undetectable. Local warping
methods [4, 6, 60, 66] attempt to use a spatially varying transformation to account

for parallax in the scene. These approaches warp the scene to better fit the detected
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feature points without a full understanding of the scene geometry. Due to the fact
that seam cutting approaches modify the image blending phase of stitching and
local warping approaches modify the warping phase, some methods attempt to
combine both approaches to further increase the quality of image stitching [5, 41].

These approaches all sacrifice spatial relationships within the scene for the
sake of increased aesthetic appeal. They also are not designed to run on real-time
video, with even stripped-down versions of the algorithms taking approximately
.5 seconds per frame to complete and more robust methods usually taking on the
order of 5-40 seconds per frame. Additional challenges for using video stitching in

real-time applications are discussed in section 3.2

4.3 Stitching Simple Scenes

Image stitching attempts to model the viewpoint of a single camera within the array.
As such, no data from the viewpoint camera should be modified. Instead, the other
images are warped to match the viewpoint camera coordinate system using a dual
homography approach where one static homography aligns the scene background,
and a second feature tracked homography aligns the remote grasping tool. As the
grasping tool is feature-poor, it is a poor candidate for the standard feature-based
alignment. Instead, an important Lemma about the homography transformation
can be utilized:

Lemma 1: The homography transformation maps straight lines to straight lines.

Proof: Recall that any straight line L can be expressed in the form of p + q«
where p and q are points and « is a real number. After applying a homography
transformation H, the points Hp + Hq« can still define a straight line.

This implies the following corollary:

Corollary: A homography transformation applied to a polygon will result in a
polygon.

Proof: Let x4,...,x,, be the vertices of a polygon P and let X;:,1 be the line
segment connecting x; to xi;1. As seen previously, applying H to P will result

in a new set of line segments X ; ;. Due to the linear nature of the homography
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Figure 4.2: MPPM Pipeline

transformation, each vertex will get mapped to exactly one new point x{, therefore
the end point of the line X{;,; will be the same as the starting point of the line
X{,114+2 and thus we have a closed polygon.

Hence, without explicitly estimating the homography matrix of the object, one
may simply extend the pair of parallel straight lines defining the foreground image
of the surgical instrument in the main view to the rectified image of the side view.

With this method, the algorithm requires very low computational complexity
while retaining spatial validity wherever there is enough information to do so.
Leveraging prior knowledge of the geometry of the remote grasper can simplify
computation and make the method more robust to the noise of feature tracking.

4.3.1 Parallax Mitigation

In the preliminary design of the TCA, one camera is designated as the main (refer-
ence) view. The other cameras in the array are designated the side view cameras and
provide supplementary information to enlarge the FoV of the stitched panoramic
video frame. As shown in Fig. 4.2, the algorithm contains four major phases. The
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initial calibration phase serves to compute statichomographies, detect image seams,
and generate a background model for each frame. After completing calibration,
we enter the main streaming loop. The detection phase involves detecting when
a foreground object has entered the frame and needs to be corrected for parallax,
the alignment phase computes the appropriate transformation to align the fore-
ground object across the image seam, and the warping phase applies the computed
transformation to the foreground object to generate the final panorama.

The quality of the MPPM pipeline was compared to a static homography based
real-time video stitching pipeline shown in Fig 4.3. This pipeline was designed
based on the work of Zheng et al. [42] to provide fast and reliable video stitching

without any form of parallax correction.

4.3.2 Calibration Phase

An initial camera calibration phase is performed to estimate (a) intrinsic and extrin-
sic parameters of each camera with respect to the reference camera (main view);
(b) a static homography matrix between each side view and the main view; (c)
a panoramic stationary background image without the presence of any moving
surgical instruments. During these steps, seam lines between each side view and
the boundary of the main view will also be recorded in both the coordinates of
the stitched background image as well as those of each corresponding side view.
Assuming that the background has a relatively simple texture and background
color, this assumption can be generalized to try and fill in any blind spots the camera
array may have. This can be done by simply taking the average intensity value from
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the background model and setting any pixel in the panorama which is not set by
one of the camera frames to this average color. This calibration phase is performed
before video streaming starts, so it can take a bit more time to produce accurate
estimates.

Leveraging the application-specific assumption of a stationary background, a
moving foreground object can be detected by subtracting the pixel values of the
current frame by those of the reference background. Then a threshold is applied to
convert the results into a binary image.

To check whether the detected foreground object may cause parallax anomalies,
the intersection between the detected foreground object mask and the saved seam
lines between a side view and the main view will be examined. If the result is an
empty set - which means that the object does not cross the seam line - the stitching
operation will proceed using the static homography matrix derived during the
initiation phase. If the detected object region overlaps with the seam line along the
view boundary, the alignment phase will be executed to mitigate potential parallax

anomalies.

4.3.3 Aligning Lines in 3D space

Consider the following two questions: (a) Given the projected images of a straight
line in 3D space taken by two or more calibrated cameras, what is the algebraic
description of the 3D line? (b) What is the algebraic description of the projected
images of a straight line in 3D space from a given viewpoint?

Denote P; and P, to be two distinct points on a straight-line L € R3. Let O; be
the optical center of the i'" view (camera). Let O;P; and O;P; be rays from O;
to P; and P, respectively. These rays intersect the image plane of the i'" view at
Qi1 and Qiz. Hence, the projection of L onto the image plane of the i'" view is a
line passing through Q;; and Qi,. Furthermore, P;, P2, Qi1, Qi2, and O; shall all be
co-planar on a plane denoted by TT;. The normal vector of TT; can be found as

n; = OIP{ X OIP; = OiQi; X OiQi; (41)
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where X is the vector cross product operator. Note that n; is perpendicular to L
and the line Qi1 Q1,, the projection of L on the i*" view. That is,

— —
<ni/ P1P2> = <ni/ QilQiZ) =0 (4-2)
where < x,y >= x"y is the inner product of two vectors. TT; may be described as
y y p y
M :{xn{x+c; =0,x € R’} (4.3)

If the image of L appears in N views (1 < i < N), then any point x € L implies
x € IT;, 1 <1i < N. In other words,

T T
n n, --- I‘IN] X—|—|:C1 Cy =--- CN:| :Ole
or
X X
: = A =0 44
RS s
I’IL CN

where A is an N x 4 matrix, and the i'" row of the A matrix is [an , ci} Since a line
in R? is uniquely defined by the intersection of two planes, rank(A) = 2. Let the

singular value decomposition (SVD) of the A matrix be

4
A=) oy (4.5)

k=1
where o, u;, and v; are the ith singular value, left singular vector and right

&
singular vector of A. Now pre-multiplying {u; wu,| toboth sides of eq. (4.4), one
& p plymg q

A2 X B ca| [x| |0
Do 3 R

Eq. (4.6) gives the description of L as the intersection of two planes. Here n, and

has

=

=
o—H a-

n; are normal vectors of the two intersecting planes. Note that although vlT vy, =0,
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it does not imply that n/ny, = 0. The direction of L can be found as

n; =ng X Ny (4.7)

which is perpendicular to n, and ny,.
Let O, and n, be the optical center and the direction of the optical axis of a new

reference view. The image plane TT, then can be expressed as
n'x+c, =0 (4.8)

If L is not parallel to n,, one may find a plane IT; that is perpendicular to L and
passes through the optical center of the image plane at the reference viewpoint O...
Denote the 3D coordinate of O, by t, = O,, then Il; can be described by

n x—n/t,=n/x+c =0 (4.9)
where ¢; = —n/[t,. Denote x; to be the 3D coordinate of the intersection of I and

IT;. It is the solution of the linear system of equations

[na ny nL]Tx:—[ca Co CL]T (4.10)

If L is parallel to n,, then x; will be the projection of L on the reference image
view. Otherwise, one may find the projection of x; on the reference image plane IT,.,
denoted by x; using the pin-hole camera equation. Given x,, the projected image

of line L on TT, can be found as

X +o-(I—-nnl)-ug acR (4.11)

The line alignment algorithm is summarized in Algorithm 1.
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Algorithm 1 Line Alignment

1: procedure StircH IMages( Main View Video M,Side View Video S)
2: for viewpointi =1,2, /ldots, N do
Detect lines in image S;
Match lines with image M
Identify Line of interest L;
Compute n; from L;, Ly using eq. (4.1)
end for
Form the matrix A in eq. (4.4).
Apply SVD to compute o7 and o5.
10: Compute nq, np, and ¢, ¢y, according to eq. (4.6).
11: Compute n; and c; according to eq. (4.9).
12: Compute x, by solving x; from eq. (4.10)
13: Find the projected image of L on TT, from eq. (4.11)
14: end procedure

Special Case

If the desired viewpoint coincides with one of the given views, one has r = i for
some 1 < i < N. Then above procedure can be saved since the projected line image

is already obtained at the i'" view image.

4.3.4 Alignment Phase

When the moving foreground object crosses the boundary of the main view, part of
it will be visible from an adjacent side view. In the current surgical application, the
surfaces of this moving object lie on a different plane from that of the background.
Using the viewpoint of the main view as a reference, the image of the moving
object in the main view shall remain unchanged after stitching. However, the
portion of its image in the side view will need to be transformed using a different
homography matrix. This would traditionally require applying feature detection
inside the object’s image in the overlapped region between the main view and the
side view. Then a homography may be estimated. However, leveraging the shape
of the object in this application, this work develops a novel, fast stitching method.
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Figure 4.4: Parallax anomaly manifests as discontinuity of the object image along
the view boundary

In laparoscopic surgery, all surgical instruments have a long, cylindrical shape
to be inserted into the patient’s abdomen through the narrow trocar assembly.
Therefore, as shown in Fig. 4.4, parallax anomalies can be detected as discontinuities
of the object boundaries across the view boundary seam lines. Moreover, since the
object boundary is dominated by the pair of parallel straight lines, we may correct
the parallax anomalies without finding the corresponding homography matrix.
Instead, we can leverage Lemma 1 to use any homography which correctly matches
the object boundary lines from the side view to the main view.

In MPPM, we first detect the dominant parallel straight-line edges of the moving
foreground object in the main view as well as in the side view. Then these pairs
of features (straight lines) are matched between the main view and the side view.
The intersections of the view boundary seam line and these matched object edges
can thus be computed. After the homography transformation, the object image in
the side view will be bounded by the pair of rectified parallel edges and the view
boundary seam line. Therefore, the stitched object image in the side view can easily

be obtained by warping the side view object image into the new coordinates. By
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Figure 4.5: Four video frames consisting of a single surgical grasping instrument
against the plain white background of a surgical trainer box.

doing so, the efforts of feature extraction and homography estimation can be saved.

4.4 Results

4.4.1 A Validation Example

Four cameras were used to capture a video feed consisting of a calibration pattern
for the first several frames.

A textured pattern is added to the scene to generate an initial set of background
homographies. Then the pattern is removed revealing the plain white background
of a laparoscopic trainer box. A moving surgical grasping instrument (the fore-
ground object) is inserted into the scene and its image extends across several scene
boundaries. An example of video frames from four cameras (views) are shown in
Fig. 4.5. When a traditional image stitching algorithm ([42]) is applied to stitch
these four views using camera 0 as a reference view, the image of the surgical tool
exhibits broken edges across the scene boundary as shown in Fig. 4.1. In this
implementation, the overlapped region of the main view (reference view) covers
that of a side view.

One solution to this parallax anomaly is to model the surface of the foreground
object as a separate plane from that of the background. The long, straight edges are
used to infer the orientation of the object plane. Image stitching is performed on
the background and the plane separately and combined to make the parallax-free
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(a) Scanlines (b) Original

Figure 4.6: The red lines in (a) denote the scan lines used for edge detection. Each
line will be treated as a one dimensional slice of the image which will be checked
for object location. (b) denotes the original difference image that will be sliced by
the scanlines.

stitched image. Note that in this example, very few point-wise feature points are
available for depth estimation using stereo matching.

For each camera, the foreground object is detected using background subtraction.
A background model is computed initially by averaging several frames in the
absence of the moving foreground object. When the object moves into a view, it is

detected as the difference between the current video frame and the background.

Fovj = I(IFeg(x,y) — Fog(x, y)[ — 1) (4.12)

where I(x) is the indicator function and T € R is a noise threshold.

Once the region of the foreground object is detected in each view, its boundary
will be determined. Due to the lack of the point-wise features, we focus on tracking
the movement of the foreground object near the scene boundaries where the parallax
anomaly is visible. Due to the regular boundary of the object (straight edges), its
movement along the scene boundary is tracked using a scanline as seen in Fig. 4.6
and Fig. 4.7. Along each scanline, the crossing points where the difference image
crossed the threshold T are detected. The vertical scanlines thus give us candidate
points for the top and bottom edge of the object. Likewise, the horizontal scanlines
will give us candidate points for the left and right edges. Applying a linear fitting
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Figure 4.7: Each scanline can be displayed as a slice of the image. In each graph,
the blue represents the pixel values of a slice of a difference image, and the red
line represents a thresholding function used to determine which pixels contain the
foreground object. (a) shows a slice that contains an object and (b) shows a slice
that does not.

(a) Single Homography (b) MPPM

Figure 4.8: Applying the proof of concept implementation of the MPPM algorithm
to the same scene as Fig. 4.1, we are now able to identify the dominant line edges
that define the foreground object and compute a transformation that will align that
object without changing the background.

algorithm gives us four candidate lines for the two objects. The zero crossings
are utilized to determine correspondence between the candidate lines offered by
the vertical scanlines and the candidate lines offered by the horizontal scanlines.
Combining the candidates allows for the identification of the final edge lines.

In this example, the reference view is used as the desired viewpoint for the
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stitched image. As discussed in section 4.3.3, the line image of the object boundary
in the stitched image shall be the same as that in the main view. Hence, the task is
to align the line image of the side view to that of the main view.

To align the two detected lines across adjacent views, correspondence between
these line pairs must be established. Furthermore, to ensure that the line is extended
all the way to the image edge, we compute a mapping that aligns the endpoints of
the line in the secondary view to two points in the reference view. The first point is
mapped to the edge of the original image in the reference view, then the second is
mapped to the intersection of the line and the edge of the reference view mosaic.

The results of this algorithm on a simple scene can be seen in Fig. 4.8. The
portions of the object which had broken across seam lines in the static homography
alignment (Fig. 4.1) have now been correctly aligned such that the object appears
unbroken. The alignment is performed successfully even when the object crosses
into and out of 3 viewpoints.

All computation was performed on an Intel Core i7-5500U processor without
any multithreading enabled for parallel portions of the processing. Seeking to
compare the traditional image stitching approach to the proposed algorithm, both
the quality of the image and the time to compute were compared. The static
homography method took an average of 94 ms to complete, which resulted in a
framerate of 10 FPS. The proposed algorithm took an average of 61 ms, resulting in
a framerate of 16 FPS.
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CHAPTER 5
Stitching Complex Scenes

5.1 Overview

In Chapter 4, we developed a multi-planar parallax mitigation approach by aligning
the boundaries of a moving foreground object in successive frames. The underlying
assumption is that the moving foreground object has a planar, feature-less surface
with a slender shape and long, parallel straight edges. The parallax anomaly
manifests itself as broken edges across the seam-line between adjacent views. By
segmenting the foreground object at the side view and applying a homography
derived from the corresponding line segments in the main view and the side view,
this parallax anomaly can be eliminated in the stitched video frame.

In this chapter, we consider scenarios of complex dynamic scenes with multiple
moving foreground objects. In a complex dynamic scene, there may be two or more
moving foreground objects of different shapes. These objects may have varying
depths observed from a given viewpoint and may appear across the seam-line
between the main view and a side view. As such, the ad hoc stitching approach
developed in Chapter 4 needs to be generalized to provide multi-view, multi-planar
video stitching of complex dynamic scenes.

The system setting is similar to that described in Chapter 4: two or more video
cameras mounted on a rigid frame capturing multiple synchronous video streams.
The cameras are placed to maximize the overall field of view after video stitching.
Sufficient overlap between adjacent views will be maintained to establish feature
correspondence between these views. Choosing one of the camera’s viewpoints
as the viewpoint used for stitching (the main view), our objective is to stitch
available side views to maximize the field of view of the stitched video frame while
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minimizing parallax anomalies in the overlapped region. The types of parallax
anomalies include discontinuities of visible edges across the overlapped region,
ghost images of objects inside the overlapped region, and distortion or blurring of
images due to parallax mitigating procedures. Our approach is to model the stitched
scene with multiple planar surfaces. For each view, foreground objects will be
separated from the background. If a foreground object’s image has no intersection
with any overlapped region, it will be treated as part of the background because it
cannot cause any parallax anomaly. It is further assumed that the background scene
and background objects lie on a background plane. Once the relative camera pose
of a side view camera with respect to that of the main view camera is estimated, a
projective transformation will be performed to align the background of a side-view
with respect to that of the main view.

If an object is designated as a foreground object, its image must intersect with an
overlapped region between adjacent views. For each foreground object, we assume
its visible surface is planar. We will develop a separate projective transformation
for each foreground object, implicitly modeling the visible surface of it as a plane.
In other words, we adopt a 3D model with multiple planes to approximate the
surface of the complex scene based on the overlapped regions between the main

view and each side view.

5.2 Multi-View, Multi-Planar Stitching

As previously discussed in Chapter 3, planar image stitching as originally proposed
by Szeliski et. al. ([28]) involves modeling the scene as a single plane. However, in
reality, such scenes are rarely planar. Gao et al. ([4]) identified two major planes
dominating landscape scenes, the ground and the horizon. While this meant that
these scenes could not be modeled well using the traditional method, it could
instead be split up into two separate images, one corresponding to each plane. Each
of these images could then use the traditional method of image stitching to generate

an image mosaic.
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It may then make sense to consider a more general model for image stitching
where the scene is broken up into piece-wise planar sections which can then be
used to generate components of the final mosaic. In the general case where the
desired number of planes is unknown, this approach would become equivalent to
3D modeling and rendering, with each feature match contributing to a polygonal
model of the scene. However, prior knowledge of our recorded scene can allow us
to simplify down to a set number of planes. If the scene is planar, then this becomes
Szeliski’s original method and with two dominant planes (located at the top and
bottom of an image), we have Gao’s method.

The piecewise planar scene model has been used in other areas of computer
vision. Many different papers have used the piecewise planar model as a basis
for the purpose of refining or improving 3D reconstruction algorithms [67, 68, 69,
70] . Fraundorfer et. al. used the piecewise planar assumption to allow for the
reconstruction of a 3D scene from sparse feature points [71]. Sinha et. al. used
the model to perform image-based rendering, by constructing a piecewise planar
representation of the scene in 3D space and then reprojecting that scene back to
novel viewpoints [72].

However, 3D information either relies on specialized hardware or is only avail-
able in the overlap area between views. There is no depth information that can be
captured outside of the overlap region. The image stitching paradigm automatically
encodes the assumption that all pixels which share a homography will be co-planar.
This assumption allows the extrapolation of the aligning transformation to pixels
that do not fall in the overlap region.

In considering the validity of the multi-planar model for image stitching, let us
consider a scene made of disjoint planes I'T; fori =1,2,...,n. Let I; and I4 be the
source and destination images respectively. Then our scene S = U;IT;. Therefore,
any point p € S, p must belong to at least one plane IT; and so there exists some
normal N and distance d such that Np = d. If the source and destination cameras are
related by a rotation matrix R and a translation T, then we can find a homography
H = R+ 1TNT which aligns the point from the coordinate system of Is to the
coordinate system of I4. Therefore, there must exist some homography H; such
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that x4 = AHx,.Thus we can see that for each pixel in the mosaic image, the value of
the pixel must belong to the corresponding pixel in the transformed image created
by applying H; to I.

The general multi-planar model of image stitching can be outlined in the fol-
lowing way. For a given pair of images, we let I be the source image and I4 be
the destination image. The destination image serves as the coordinate system to
which the source image will be aligned. We define the planes that exist in the
shared regions between the images as {P; : i =1,2,...,n}, Each plane P; denotes
the pixels in each image that contain objects that lie on that plane. Every pixel
should belong to a single one of these planes such that we could generate a pair
of masks M (x,y) =1i:I5(x,y) € Py and M4(x,y) =1i:14(x,y) € P;. These masks
allow us to split each image into a set of images (i, [4i) with pixels pulled only
from a single plane.

Is(x,y) if Ms(x,y) =1

Li(x,y) = (5.1)
0 if else
Ia(x, if Ma(x,y) =1

Lai(x,y) = axy) #Malxy) (5.2)
0 if else

Each pair of source and destination images can be stitched without parallax
using the traditional planar method ([1]) to generate a slice of the final mosaic.
However, when compositing these slices, the parallax effect may have created gaps
or overlap, so occlusion handling and gap-filling must be taken into account when
generating the final panorama.

The previous example in the surgical training box showcased how this method
could be used to create spatially valid mosaics. However, the simplicity of the
example scene leaves a lot of questions about how well the method could translate
to real-world scenes. The background subtraction and thresholding methods used
in our previous example are not robust to minor camera movements nor do they

allow for the segmentation of more than a single foreground object.
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Algorithm 2 Multi-Planar Stitching

1: procedure MuLTI-PLANAR StiTcHING( Main View Frame F,,,,Side View Frames
Fs)
km = DetectFeatures(F,,)
for ; € F; do
k; = DetectFeatures(1;)
M = MatchFeatures(k, k;)
S = SegmentImage(I;)
M = SegmentFeatures(M, kn, k;)
for S; € Sdo
H; = ComputeH(l\A/li)
Ti; = ApplyHomography/(S;, H;)
end for
end for
13: F; = Compositelmages(F,, T)
14: end procedure

= e
N 22

To address these challenges, a new multi-planar stitching algorithm was de-
veloped using object segmentation to apply multi-planar stitching using a local
warping method where each pixel is assigned a homography based on segmentation
results (Alg. 2).

In the case that more than one side view is available, it is assumed that each of
the side views overlaps with the main view. This allows each pair of main and side
views to be treated as independent from one another, allowing lines 4-10 of Alg. 2

to be performed simultaneously for each pair of images.

5.2.1 Feature Detection and Matching

In line 2 and 4 of Algorithm 2, each image is subjected to a feature detection method.
SURF was chosen for feature detection due to its performanc in several sample
scenes [14]. However, there are many feature detection algorithms that may be used
in place of SURF. Different feature detection methods may offer different benefits
and drawbacks and may be applicable to different scenes or use cases[73], but they

all share a similar purpose. These methods are designed to detect easily identifiable
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regions that can be used to compute a sparse point-wise correspondence between
the images.

The feature detection algorithms provide us with a list of key points and corre-
sponding feature descriptors for each image. In line 5, we utilize the brute-force
L1-norm based matcher provided by OpenCV to compare the descriptors and
compute correspondence between the detected features in the main and side view.
After performing this feature matching, we have a paired list of key points that
provide a pointwise correspondence between images. This correspondence serves

as the basis of the alignment problem posed by image stitching.

5.2.2 Scene Segmentation

In line 5 of Algorithm 2, the scene is segmented to facilitate the use of semantic
scene information to correct for parallax. There are many different approaches to
image segmentation. Super-pixel segmentation methods such as SLIC [74] combine
pixels into larger regions based on color and texture similarity. Previous work in
image stitching has used SLIC segmentation to adjust spatially varying warps and
produce higher quality stitched images[75]. However, super-pixels are not quite
large enough to encompass a whole object and thus the segmentation provided by
SLIC is too fine-grained and does not truly leverage an understanding of semantic
scene information. In a video segmentation setting, we may use optical flow and
motion segmentation [76, 77] to identify foreground objects and to track objects
which can be identified by regions of shared motion.

The current state of the art in image segmentation are deep-learning based
approaches|78, 79]. However, these approaches are data-driven and require large
quantities of annotated images in order to perform well.

In many cases, the segmentation algorithm will break planar objects into multi-
ple segments. This subdivision will increase the number of objects that do not fall
within the overlap region and can introduce new discontinuities along the seams
between segments. As it is only possible to align segments that contain features
in both the main and side views, any segments which do not meet this criteria
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must be removed. To do this, segments can be combined until each can be stitched
independently of all other segments. A naive approach to combining segments
would be to only combine segments with the background. Without information
about how to align these segments, it makes sense to revert back to the single
homography case.

Any error in segmentation could propagate through the rest of our algorithm
to create new stitching artifacts. Each homography will preserve the straightness
of lines, but those lines will not be preserved from segment to segment. As such it
may be desirable to refine the segmentation results using multiple segmentation
approaches.

As mentioned previously, foreground objects can be identified and tracked
via shared motion parameters using motion segmentation [76]. Similarly, motion
information can be utilized to refine the segmentation results. Segments that share
motion from frame to frame can be grouped into a single object.

Likewise, a calibrated camera array allows an easy method to correct any incor-
rect segments. If the camera array is calibrated, structure from motion [47, 80, 81]
can be utilized to collect a 3D point cloud of features in the overlap region be-
tween cameras. When combined with a basic segmentation method, this allows 3D
points to be linked with image regions. The 3D point cloud can in turn be refined
into a polygon mesh [82, 83, 84, 85]. Each of these polygons can be clustered into
co-planar regions. Finally, the segmented regions which contribute to the same
co-planar region can be grouped into the same object mask, as they will share the
same homography.

The output of our segmentation method should provide a segmentation mask

S where
i if I(x,y)is part of object i
S(x,y) = (5.3)
0 ifelse
Under the assumption that each object can be approximated with a single plane,
the planar mask in eq 5.1 can be replaced with the segmentation mask S. This

modification of equation 5.1 allows the segmentation of the side view image into a
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set of object images S; where

S.(x,y) = I(x,y) ifS(x,y)=1 (5.4)

0 if else
In line 6 of Algorithm 2, the set of feature matches is partitioned based on the
results of the segmentation. N sets of feature matches M; fori=1,2,...,N are
generated where N is the number of segments in the segmentation mask. Defining
a set of points s; = {(x,y) € R?s.t.Si(x,y) > 0}, the segment feature matches can be

defined as the intersection of the feature matches and s;, that is to say M; = s; N M.

5.2.3 Stitching with Multiple Homographies

Four matched points are required to compute a homography|[64]. However, more
feature points allow for the use of RANSAC [15] to significantly increase the ro-
bustness to noise in the feature set. In order to fit a homography for our camera
system that correctly aligns all points, the set of points must all lie on a single plane.
As shown in Section 5.3.1, it is more accurate to fit a plane to each object for scenes
in the MICCALI dataset than to fit a single plane to the entire scene. So long as
M., contains at least four feature matches, we will be able to compute an aligning
homography for S;.

In steps 7 and 8 of Algorithm 2, the segmented feature matches M; and object
images S; are used to generate a set of transformed object images T. For each object
i, the four-point algorithm is used with RANSAC to compute the optimal aligning
homography H;. H; is then used to transform S; using inverse warping. The shape

of Ty; are computed by applying

Clx Cxk
Aleli| =H [eyk (5.5)
1 1
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to each corner (i.e. k =0,1,2,3) of S;. We define the bounds on T; to be

— : / _ !
Ymin = mkln Cyk/ Ymax = m]?x Cyk

Then, for Xmin <X’ < Xmax aNd Ymin <Y’ < Ymax We define the correspond-
ing coordinates (x,y) to be

X X
Ayl =H"|y (5.6)
1 1

Then we define the value of each pixel in T; to be

., S(x,y) if (x,y) €S
T(x,y') = (5.7)
0 if else

By using inverse warping rather than forward warping, we ensure that each
pixel is assigned a value and prevent holes that may occur when adjacent pixels are
warped to non-adjacent locations.

5.2.4 Compositing

In line 11 of Algorithm 2, we use compositing to address how to select which pixels
contribute to the final mosaic and how these pixels should be blended together.
Compositing can have a major effect on the appearance of the final mosaic and
a proper choice of compositing approach can hide misalignment or create new
artifacts.Because of this, and because of the different computational requirements
for compositing approaches, the choice of compositing may depend on the desired
use of the mosaic.

To easily compare the quality of image stitching results, it is desirable to select a
compositing method that will highlight misalignment without introducing new
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Figure 5.1: An example of a stitched mosaic using (a) traditional single planar
stitching and (b) Multi-Planar stitching. The multi-planar stitching has corrected
the misalignment of the grasping tools and increased accuracy of the background
alignment.

artifacts due to intensity mismatches or other noise introduced by cameras or
lighting. However, for a typical end-use case, misalignment should be hidden as
much as possible. The goal in these instances is to try to match the composite image
as closely as possible to the result that would be achieved by a single angle camera.

For the purpose of this work, we chose a simple pixel weighting approach. For
each pixel in the composite, the value of that pixel is given by

Cloy) = 3 Tlxy) (58)
k

where Iy (x,y) represents the value of that pixel in image k and N is the number of
images that have I (x,y) > 0. This compositing method is not ideal for generating
high-quality mosaics. It results in large brightness discrepancies between regions
containing multiple segments and regions containing only the main view. However,
this method makes misalignment clear as seen in Figure 5.1

An alternative approach to compositing that could be applied to better disguise
misalignment when it does occur is to instead use a seam selection approach that
places the seam-line between images based on object position. In this approach,
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where k is chosen by the formula:
k = max g(I(x,y)

and
k if IK(X/U) =0

0 ifelse

9(I(x,y)) =

By taking each pixel only from a single I}, we guarantee that the only places where
misalignment will be visible is across seamlines as any misalignment that occurs
elsewhere will be erased by the compositing.

In the single object case, the seam selection approach is simple to implement and
apply. If there is a foreground candidate for a given pixel, then we assign that value
to the pixel. Otherwise, we assign the background candidate. In the multi-object
case, there is ambiguity as to which object should be given priority when occlusion
occurs between foreground objects.

Optimal compositing is strongly dependent on the use case of the mosaic. Blend-
ing the images together can make misalignments very clear while still creating high
quality mosaics when misalignments do not occur. This allows for an excellent
comparison of images with high amounts of overlap like the MICCAI 2017 dataset.
However, highlighting misalignments often leads to suboptimal final mosaics. The
optimal blending algorithm would mask any misalignments that occur away from
the seam between main and side view as well as correcting for intensity variance
across the seam to ensure that the final mosaic looks as much like the view from a
single camera as possible. In video settings, the blending algorithm will also need
to be computationally efficient enough to keep up with the required frame rate of
the use case.
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5.3 Application to Surgical Scenes

We apply Algorithm 2 to the MICCAI 2017 Robotic Instrument Segmentation
Dataset [86]. This dataset consists of 8 videos of porcine surgical operations cap-
tured at a sampling rate of 2 Hz. These videos are labeled with ground truth
segmentation values for the surgical tools used in the procedure and these ground
truth values were used as the segmentation results. As the dataset we had was
limited, and the focus of this work was not on the development of better segmenta-
tion methods, we opted to use the ground truth values provided by our dataset to
showcase the effectiveness of our algorithm.

The porcine procedures captured in this dataset contain several surgical tools
that act as foreground objects and a feature-rich background containing non-
lambertian surfaces that make it a difficult dataset to stitch correctly.

The frames for these videos featured a high degree of overlap which offers more
feature points shared between the two views and more locations where parallax mis-
alignment may occur and be visible. However, the low sampling rate increases the
amount of motion between frames, reducing the amount of information provided
by prior frames, and thus the effectiveness of tracking algorithms.

5.3.1 Testing Validity of Multi-planar Model

In order to compare the fitting error of the multiplanar and single-planar models, we
compare the fit of multiple planes chosen based on the ground truth segmentation
results to a single plane fit to the scene’s entire 3D geometry.

First, we need to compute point-wise correspondence between the two views.
We use SURF [14] and a brute-force matcher using an L1 norm distance metric
in order to compute point-wise correspondence. Using these feature matches, we
construct a 3D point cloud using triangulation [87].

In order to fit a plane to the point cloud, we utilize an orthogonal distance
regression-based plane fitting algorithm [88]. We consider the plane represented
by the vector n and point ¢ where n is the unit normal to the plane and c is a point
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on the plane. Then we can see that the orthogonal distance between a point p; and
the plane is:
d=((pi—c)™) (5.9)

Thus we can define our plane fitting problem as

N
min ((pi —c)™n)? (5.10)

clnl=14=
i=1

where P = {p1, p2, ..., pn}is the data to which the plane is being fit. Solving for c
we can see that

1 N
c=3 D ps (5.11)
i=1

and the problem can be re-formulated as

il = arg Hm”i£11 |AN3 (5.12)

by defining the matrix A = [p; —c,p2 —¢,...,pn — cl. Thus we can see that the
solution i = U(:, 3) where U(:, 3) is the third left singular vector of A.

Using this formulation, we can fit two models to the images of the MICCAI
dataset. The dataset provides camera calibration information which can be used to
triangulate a point cloud for each pair of stereo images [64]. For our baseline, we
fit a single plane to the dataset. This measures the amount of parallax present in
the single planar model. We compare this against a multi-planar model, where we
fit N planes, one for each segment provided by our segmentation mask.

The 3D point cloud is constructed by triangulating 2D feature points to compute
their 3D coordinates. Therefore, since each 2d point will have a segmentation label,
that label can be propagated to the corresponding 3D point. Partitioning the point
cloud based on these segmenting results allows us to fit a separate plane to each
partition. Then, the distance d; from each point to the plane can be computed using
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Table 5.1: Comparison of Fitting error

Single-Planar MSD | Multi-Planar MSD
Video 1 0.00325 0.00064
Video 2 0.0014 0.0000982
Video 3 0.0159 0.00172
Video 4 0.01156 0.0002466
Video 5 0.0209 0.00225
Video 6 0.00989 0.00718
Video 7 0.00094 0.00025
Video 8 0.00149 0.00018

Eq. 5.9. Finally, the Mean Squared Distance can be computed using the equation
d :lZ:P“d. (5.13)
m N - 1 .

The resulting mean squared distance for each model can be seen in Table 5.1. As
we can see, the multi-planar model is able to significantly reduce the planar fitting
error, and thus the parallax in the scene.

5.3.2 Results

Table 5.2 shows a quantitative comparison of the standard single planar model with
our new multi-planar model. The stitching error is measured as the mean squared
distance in pixels between the transformed feature points after alignment and their
corresponding location in the destination image.

A qualitative comparison of images stitched using As-Projective-As-Possible
stitching [3], and multi-planar stitching can be seen in Figure 5.2

5.4 Discussion

These results are very promising. Both quantitatively and qualitatively, they show

significant improvement over the existing methods. In reality, the results of this ap-



Table 5.2: Mean Squared Alignment Error (Pixels) on MICCAI 2017 Dataset

Single-Planar MSE | Multi-Planar MSE
Video 1 14882.33 4519.41
Video 2 11259.84 3324.30
Video 3 6670.21 5025.19
Video 4 13512.44 2479.00
Video 5 7987.765 4315.777
Video 6 11828.349 4623.56
Video 7 17770.06 7830.45
Video 8 10793.67 3992.20
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proach are heavily dependent on the accuracy of the chosen segmentation method.
By using the ground truth segmentation in our surgical application, the effect of
segmentation noise on the algorithm is removed. However, image and video seg-
mentation algorithms may not be entirely noise-free and segmentation algorithms
may introduce noise into the system that may reduce mosaic quality.

If segmentation results are inaccurate, then the assumption that the resulting
regions are planar may begin to break down. As this algorithm relies on the assump-
tion that each scene is broken into co-planar object regions, then poor segmentation
accuracy may result in parallax occurring within the segmented object and re-
duce the ability for the algorithm to correct parallax. If the chosen segmentation
algorithm partitions the images into regions that are too small, then the objects
may no longer contain sufficient feature matches to robustly compute accurate
homographies, which may result in inaccurate alignment and the introduction of
new artifacts. In order for the four-point algorithm with RANSAC to accurately
compute an aligning homography, four accurate pointwise correspondences are
required and the number of accurate correspondences must outnumber inaccurate
correspondences. The line alighment algorithm from Section 4.3.3 can be used
to fix or augment feature-poor regions but does require the assumption of prior
knowledge about object shape.
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Figure 5.2: A comparison of the (a) left and (b) right frames from the MICCAI
2017 Dataset along with the stitching results from (c) Single planar stitching, (d)
As-Projective-As-Possible Stitching, and (e) Multi-planar stitching

5.5 Conclusion

In this chapter, the multi-planar stitching algorithm has been extended from simple
scenes to more complex scenes. By segmenting the images into planar objects, the
problem of image stitching can be formulated as the union of several disjoint planar
stitching problems where each object is assigned a projective transformation and
aligned independently of the rest of the scene.
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The algorithm was tested on the MICCAI 2017 Robotic Surgical Segmentation
dataset. First, it was shown that fitting multiple planes to each object in the dataset
could significantly reduce the total amount of parallax over the single planar model
used by traditional stitching methods. Comparing the mean distance between
aligned points for both single-planar and multi-planar stitching showed that the
multi-planar model can be used to reduce parallax artifacts in the overlap region
between images.

This work focused on the development of the stitching algorithm and as such,
segmentation was treated as a given. As segmentation is still very much an actively
studied area, future work in this area could examine the effect that certain segmen-
tation algorithms may have on the quality of the resulting mosaic. Methods for
using depth or motion to refine segmentation results and improve their quality, but
these methods have not yet been tested.

The low sampling rate of the MICCAI dataset limited the ability to leverage any
temporal correlation. Thus the multi-planar stitching algorithm outlined in this
chapter functions as an image stitching algorithm but not a video stitching algorithm.
Future work could adapt this algorithm to better fit the live video stitching case
by reducing computation, tracking temporal information, and ensuring temporal

continuity from frame to frame.
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CHAPTER 6
Optimal Camera Placement for Maxi-
mal Field of View Stitching

6.1 Problem Formulation

An optimization problem is formulated to maximize the FoV of the camera array
while ensuring that the chosen array will still create a useable stitched mosaic. To
do this, image stitching constraints are combined with optimal camera placement
models.

Similar to the traditional camera placement models [21, 22, 23], the camera
positions are discretized based on the micro-camera array structure. The choice of
camera position constraints will depend on where the camera network is meant
to be deployed. For this chapter, the focus is on three different possible sets of
constraints intended for use in the surgical camera array which can be described as
naive, symmetric, and asymmetric camera placement. A coverage model similar
to the one used by Fu et al. [24] is then evaluated. While the Fu model often uses
additional constraints [22, 24] such as resolution and focus which limit the camera
FoV even further, these bounds are unnecessary in close field applications such as
the desired surgical application.

The scene is modeled as a plane in space as in Fu et al. [24]. This follows
naturally from the stitching requirement that the recorded scene be approximately
planar [1]. The planar scene constraint also precludes any need for occlusion
handling as occlusion will not occur in a purely planar scene. Thus, occlusion
handling methods [22] are not included in the model. In this setting, a plane

which represents our approximation of the image stitching plane is selected. If the
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coordinates of the image stitching plane are known exactly, then one can simply
utilize the camera projection model to generate the image mosaic. The resulting
mosaic is not robust to noise and will exhibit misalignment if the planar scene
is not exactly planar. Thus, even with prior knowledge of the scene, it is still
necessary to perform traditional image stitching in order to minimize the likelihood
of misalignment.

Image stitching requires sufficient overlap between adjacent cameras to find the
feature matches used to compute image correspondence. For multi-camera image
stitching, each camera must be able to trace a path back to the main-view camera,
with each step along the path transitioning between two cameras which share
sufficient overlap. To ensure this continuity constraint is obeyed, a graph based
method is used to determine if a global image correspondence can be achieved.

Rather than discretize the scene space as in many previous works, it’s possible
instead to evaluate the area of the continuous coverage region on the stitching plane
in order to more accurately evaluate the total coverage. Since each camera’s coverage
region is the intersection of a rectangular pyramid with the plane of stitching, it
is easy to see that each camera will contribute a single quadrilateral to the overall
coverage region. The area of the resulting coverage region can be quantified as
simply the area of a union of quadrilaterals which makes it simple to compute.

After determining how to calculate the area of the scene which is visible from
a given camera configuration, the following optimization is proposed. Given a
stitching plane, a number of known cameras N which can be placed in a discrete set
of poses and locations, and a minimum threshold for overlap between the camera

views to allow for image stitching, the cameras should be placed in such a way that:

max A(UiQ4) (6.1)
it
Qi = [Bi1, Biz, Biz, Biul” (6.2)

Bij - }\ij RIV] di_ + J_(i (63)
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Figure 6.1: The camera viewing cone is defined by its four corner vectors (B;j) and
the camera center (t;).
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v RiV; dilv, T, $]T
g(uQi) =1 (6.5)

where A(Q) is the function for the area of the polygon Q. Q; denotes the quadri-

(6.4)

lateral defined by the intersection of camera i’s viewing cone with the plane of
stitching. Indexi ={1,2,..., N} refers to which camera we are using, and index
j ={1,2,3,4)} refers to the corners of the viewing cone for that camera.

The viewing cone (as shown in Figure 6.1) is defined by the camera center
and four vectors denoting the four corners of the viewable region. These vectors
are described in Equation (6.3), where R; and t; denote the camera i’s rotation
and translation matrices, d; contains the information about the maximum viewing
angles for camera i, and Vj is a matrix that selects the vector corresponding to the
jth corner of the viewing cone for that camera.

The stitching plane coefficients [v, 7,1, 1] define the stitching plane with vx +
Ty + Pz + 1 = 0 being the plane of stitching and A;; determining the length of By;
when projected onto the stitching plane using ray-plane intersection as in Equation
(6.4).
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Since we are dealing with a discrete set of possible camera poses and locations,
A(Q) can be computed prior to run-time and stored so that it can simply be accessed
from a look up table when checked for each possible camera set up. A(Q) will scale
linearly with the number of allowable camera poses, but not scale up with the total
number of array set ups. g(Q) counts the number of simple polygons required
to describe the polygon Q. This serves to simplify computation of the area of the
final FoV and it ensures that the final FoV does not have any holes. This is relevant
to most applications since a hole usually represents an area close to the region of
interest for which we do not have data. In surveillance, a hole could be exploited to
hide information from the cameras, and, in surgical settings, a hole could cause
the surgeon to miss out on information about tissues or organs near their surgical
tools. In some settings, where the region of interest is oddly shaped, holes may be
allowable, however, in many;, it is not. To enforce these two additional constraints,
we follow the algorithm outlined in Figure 6.2.

R; and t; are the rotation and translation matrices for each camera. The opti-
mization is over all possible sets of rotation and translation available to our cameras.
The construction of the array itself limits the possible camera poses, and acts as
additional constraints on our problem. Without constraining camera pose, the
problem is ill-defined. However, the camera pose constraints are heavily dependent
on the design of the array itself.

Unfortunately, this method requires checking each possible array set up to
determine which solution is optimal if we consider a camera array where each
camera can move and rotate freely. This creates six degrees of freedom for the
camera (three degrees of rotation, and three degrees of translation). When we
discretize the camera positions, if we allow n discrete values along each degree of
freedom, this would cause there to be n® possible placements per camera. Thus, a
k camera array would have approximately n®* possible arrangements. In reality,
we can condense the number of arrangements slightly. No two cameras can be
placed in the same position though they are allowed to share the same rotational
pose. This means that we can have at most (T]‘:) possible positions rather than n’k.
Thus, the total magnitude of the solution space is actually (13)713“
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Figure 6.2: The general flow of our optimization algorithm. For each possible array,
we model the coverage region, check to see that the result is a simple polygon
which satisfies the overlap constraints, then find the area and compare that to the
previously maximum area array.

As the number of allowable camera positions grows, solving our optimization
quickly becomes computationally infeasible. To speed up computation time, we uti-
lize a greedy heuristic to vastly simplify the computation time. While this heuristic
is not guaranteed to find an optimal solution, It still provides good results, as seen
in the paper by Zhao et al., and can simplify the exhaustive search algorithm down
to polynomial time [23].

6.1.1 Scene Space Model

Most existing works in optimal camera placement utilize a discrete scene space
model. In this model, rather than calculate the exact coverage region, a discreet grid
of scene points is overlaid over the scene. The optimization function will then seek
to maximize the number of these scene points which are covered by the camera
array. This model helps to simplify computational constraints of the camera model

and objective functions at the cost of some amount of accuracy in the size of the
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coverage region.

One of the largest benefits of using a discrete scene space model is that it allows
the use of binary integer programming techniques that would not otherwise be
possible. However, these techniques also require that the system constraints be
expressed as a linear function. Since the computation of the individual camera
coverage is a nonlinear function, the binary variable b;; which denotes whether
a discrete scene point j can be seen from a camera placed at position i must be
computed and stored in full before the optimization can be performed. As such, as
the camera coverage model becomes easier to evaluate, the the binary optimization
model becomes less preferable.

Without occlusion handling required in our setting, computing our individual
camera coverage model is simple, although it is nonlinear and our constraints mean
that evaluating the coverage region is a simple matter of performing a union of
quadrilaterals using polygon clipping techniques [89] and then calculating the area
of the resulting simple polygon. Using a continuous scene space allows us greater
accuracy for the simple exhaustive search methods we wish to use to evaluate our

camera array’s coverage quality.

6.1.2 Ensuring Continuity

To allow for stitching, we need to ensure that there is enough overlap between the
cameras for feature matching to occur. The general approach to stitching together
video from camera arrays is to find pairwise homographies which will transform the
images such that features are matched between the resulting images. The amount
of overlap required will vary based on the feature density of the scene viewed.
However, assuming we know the amount of overlap required between our images
for our expected scenes, we can set the following limitations on our set up to ensure
that stitching may occur. We define the amount of overlap between two cameras
to be the area of the intersection of their fields of view. To form a panorama from
the cameras, we need to ensure that we can reasonably determine where each

image needs to be in respect to all of the others. To do this, we propose a graph
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(a) Disconnected Graph (b) Connected Graph

Figure 6.3: To determine whether stitching is possible, we need to check that there
is sufficient overlap between the views. To do this, we create a graph where each
node represents a camera and the existence of an edge specifies that there is enough
overlap between the two cameras that stitching could occur. If the resulting graph
is connected, then we will be able to create a mosaic from the camera array.

based method similar to the network connectivity method used by wireless sensor

networks [23]. To generate our graph, we use the following steps:
1. Let each camera be a node in the graph.

2. Let the weight of an edge of the graph be the area of the intersection of the
two connected nodes of the graph.

3. Apply a simple threshold to remove any edges of the graph which do not

satisfy the requirements for stitching.

If the resulting graph is connected as in Figure 6.3b, this tells us that, from any
given camera, we can create a path such that we reach every other camera and all
of the paths transversed have an overlap greater than our desired threshold. This is
equivalent to saying that we can connect any image from a camera in our array to
any other camera image by chaining together feature matches. This allows pairwise
stitching together all of the cameras. However, if the graph is disconnected as in
Figure 6.3a, then our camera array covers two disconnected scenes and we have no

way of understanding how those two scenes should interact.
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The threshold chosen represents how much overlap is needed to find sufficient
feature matches between cameras to perform stitching. In general, there is a mini-
mal number of feature matches required to compute the proper transformations
required for image stitching. Therefore, it would make sense that our threshold
could be chosen based on the expected density of features in the scene so that we
could try to ensure that minimum number of feature matches is fulfilled. How-
ever, the method outlined already gives us the relationship between the camera
views from simply the camera pose and the stitching plane. Thus, if we know the
stitching plane exactly, this threshold can be 0 and we can simply ensure that our
resulting scene is continuous without needing any overlapping feature points. As
our uncertainty about our estimated stitching plane grows, so to does the need for a
high threshold to ensure that we can perform stitching through traditional means.

The adjacency matrix C of the camera FoV Q; can be defined as the N. x N,
matrix with

1 AQiNQy) >
0 AQiNQj) <

Using this adjacency, we can check whether C is connected by checking if the

Cij =

matric C’ = ) }'_, C* has any nonzero elements. Therefore, the block of constraints

added to our optimization by the connectivity constraints are:

Cy = 1 AQiNQy) > (6.6)

0 AQiNQ;) <

Ci=) C (6.7)
k=0

c c

> Ic;l<o (6.8)

i=1 j=1
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Figure 6.4: The placement of cameras in the array following the greedy algorithm
for various regions of interest (ROI). Blue shapes are the total coverage of cameras
in the array, and red indicates the region of interest used. The plot in the lower
right of each figure shows the resulting field of view without the region of interest.

6.1.3 Blind Spots

One of the potential dangers of optimizing camera placement for maximal FoV
is that the viewable region that results may be irregularly shaped, as shown in
Figure 6.4c. While these figures may offer the largest total FoV, they may not be
practical for many applications due to the portions of the scene that are omitted
from the region. If these regions contain important information about the scene,
then the effective gain in FoV over other camera configurations may be significantly
lessened.

While it can be difficult to quantify the effect that coverage irregularity has on
effective FoV, there are some approaches that can be used to reduce the amount of
coverage irregularity that occurs. While the evaluation and comparison of these
approaches is left out as it is beyond the scope of this report, their potential is still
worth noting.

First, a region of interest (Rol) can be used to try and focus the FoV on the
portions of the scene that need to be covered. Rather than simply maximizing the
total size of the coverage region, we instead define a space that we wish to cover
and maximize our coverage of that region. This method is sensitive to the choice of

Rol. As can be seen in Figure 6.4, different choices of a region of interest can result
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in very different coverage regions and having a region that is too large or poorly
shaped to be covered by the array given camera placement constraints can be just
as bad as having no region of interest.

Another approach is to change the cost function for the optimization to better
reflect our desire to create as large a region without blind spots as possible. A region
without blind spots can be thought of as a region P such that, for any two points,
X,y € P. The direct path is xy C P. We can see that a region without blind spots is
equivalent to a convex region. Thus, rather than maximizing the area of the FoV,
we can instead seek to maximize the largest convex region fully contained within
the FoV. Finding the largest convex region inside of a non-convex polygon was
originally proposed and dubbed the “potato peeling problem” by Goodman [90]
and the “convex skull problem” by Woo [91] and was later solved in polynomial
time by Chang and Yap [92]. Other works have found solutions or approximate
solutions to sub-problems such as the largest inscribed rectangle [93, 94], longest
line segment, or largest ellipse [95] contained within a non-convex polygon.

The largest rectangle problem is of particular interest to camera arrays as crop-
ping the resulting mosaic into a rectangle would cause the camera array to behave
more similarly to a traditional single camera set up. However, for the purposes of
this chapter, we decided that cropping the mosaic down to the largest inscribed
rectangle would disregard too much of the information received by the array.

The method proposed by Chang and Yap solves the potato peeling problem in
O(n®) time. We instead chose to use a method that approximates the solution in
O(n?) time since we need to solve the potato peeling problem for every proposed
solution in our discretized solution space. We utilize the Butterfly Lemma provided
and the resulting linear time solution when the non-convex polygon has only one
reflex corner. By applying this solution to each reflex corner of our non-convex
polygon, we generate a series of cuts, each of which is chosen such that it removes as
little area from the polygon as possible. By applying each of the cuts to the polygon,
we can then generate an approximate solution to the potato peeling problem. This
approximation can fail to find the correct solutions when the optimal solution
involves chains of butterflies with length more than 1, but generates good solutions
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in many cases.

For our optimization, we simply create a function p(Q) which peels the polygon
Q into the largest convex polygon Q' C Q. Rather than maximizing A(Q), we now
seek to maximize A(Q’) = A(p(Q)).

6.1.4 Greedy Heuristic

When we allow more freedom for camera placement, the complexity of the problem
quickly makes exhaustive search infeasible. Thus, to improve performance of
camera arrays with high amounts of freedom in pose and position, we propose a
greedy suboptimal algorithm similar to the one proposed by Horster et al. [52].

In addition, since it is typically best to maximize the angle of the camera relative
to the stitching plane, we may miss sections of the scene close to the center in favor
of distant portions of the scene where the cameras can cover a lot of area. To ensure
that we cover everything important about the scene, we introduce the concept of a
region of interest.

We consider the case where we have a region of interest that we wish to cover
with the camera array. Our goal now becomes to cover the region of interest while
still maximizing the total area that we can see. We are still limited by the stitching
constraints, namely that our scene is planar, and that we require a minimum amount
of overlap between the cameras so that a sufficient number of feature matches can be
gathered. This is similar to the polygon covering problem which is NP-hard [96, 97].

The methods described earlier in the chapter allow us to determine the total
tield of view of an array of cameras given their position. Therefore, we attempt to
build a camera array which will primarily maximize the coverage of the region of
interest and secondarily maximize the total field of view.

The greedy algorithm we propose is as follows:
1. Compute the footprint of all possible poses for the camera.

2. If cameras have been placed already, identify the region of overlap with all
previously placed cameras and discard all poses which do not overlap with
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the previously placed cameras.
3. Identify the region of overlap between each pose and the region of interest.
4. Choose the pose for which this region has maximum area.

5. If two or more poses are tied, choose the pose whose footprint has the maxi-

mum area.
6. Remove the chosen footprint from the region of interest.
7. Repeat steps 1-6 for each other camera in your array.

When applied to a sample set of restrictions for a grid based camera array, the
resulting field of view for the array after the placement for each camera can be seen
in Figure 6.5.

Let us consider a discretization model for a camera array of k cameras that allows
each camera to be placed in n different locations, in one of N,, different poses. We
can see that using this algorithm, we need to check all N, poses for each camera,
but for the ith camera we need to check only n —1i + 1 locations to find our choice
of solution. Thus, our resulting solution requires simply 5 Np(m —1) < Npnk
evaluations of the field of view of an array. Thus, our suboptimal solution is only
O(n), whereas the exhaustive optimal solution is O(a*n). While this method is
not guaranteed to find the optimal solution, it will allow for the computation of a

suboptimal solution in a linear time rather than exponential.

6.1.5 Unified FIX Optimization

Including all of our additional connectivity and convexity constraints, we can

re-write our optimization as

max A (p(Ui Q1)) (6.9)

Ri ti

g(uQi) =1 (6.10)
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Figure 6.5: The placement of cameras for the greedy algorithm. The blue region
denotes what area the camera can see, and the red region denotes the region of
interest we wish to cover.

Qi = [Bi1, Biz, Biz, Biul” (6.11)

Bij = )\ij Riv]' d; + J_Ci (612)
{i Y T

v, T, ]" +1 (6.13)

TRV di[y, T, 0T

Using this framework, we can either use an extensive search method or our
proposed greedy heuristic to evaluate the quality of allowable camera poses and
choose an optimal camera array for a given camera space. The resulting camera
array should be optimal (or near optimal in the case of the greedy heuristic) over

all camera arrays found in the camera space.

6.2 Camera Spaces

As we can see in Figure 6.6, the trocar camera array on which we performed the
optimization heavily limited in translation and rotation. We have cameras placed
along four telescoping arms. The cameras can be angled towards or away from the

center of the array.
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(a) Trocar-based Camera Array (b) Array and Laparoscopic Trainer Box

Figure 6.6: The trocar-based camera array offers improved FoV over traditional
laparoscopes by utilizing multiple visual sensors. The expanded FoV minimizes
the need for camera adjustments during surgery.

These constrictions mean that each camera has three degrees of freedom. Let
v € {—75,0,7,m} denote the rotation due to the choice of arm, t € [tmin, tmax]
denote the position along that arm, and 0 € [0.,in, Omax] be the rotation towards
the center of the array. Then, the triple Cam; = [y;, ti, 0:] defines a camera position
for camera i.

From these parameters, the camera translation and rotation matrices should be
defined as follows.

Rotation matrices can be created from their individual components in each of

the axes of the computational space.

1 0 0
Ry(ax) = |0 cos(a) —sin(«)
|0 sin(o) cos(o) |

[ cos(B) 0 sin(p)]
Ry(B) = 0 1 0
—sin(B) 0 cos(B)
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cos(y) —sin(y) 0
R.(y) = |sin(y) cos(y) O
0 0 1
Then, the final rotation matrix can be computed by re-combining the individual

matrices.
R:Rx(oc)*Ry(B)*Rz('Y) (614)

In our case, «x = 0 cos(y), p = 0 cos(y).
The translation matrix that should be applied to each camera should be:

tisin(yi)
ti = |ticos(vi)
0

6.2.1 Asymmetric Camera Space

In our asymmetric camera space, we allow the cameras to be placed in any position
and pose allowable by the construction of the camera array. For the trocar array in
Figure 6.6, this means that the Cam, has the full three degrees of freedom v, t, 0.
Cameras are only limited by the fact that no two cameras may share the same [y, t]
pair, as no two cameras may be in the same space, and the individual limits on v, t,
and 0 that are imposed by the camera space discretization. Using the asymmetric
camera space allows us the most freedom for our camera placement, but with O(3™)
degrees of freedom, it also has the largest solution space, which means it limits the

allowable discretizations of the camera space.

6.2.2 Symmetric Camera Space

In this case, assume that the array is restricted to placing four of the cameras at the
same arm length and angle, with a fifth camera placed at the center of the array
to serve as the main reference viewpoint for stitching. In this case, we control the
angle of all the cameras 0, and the arm length 1. This adds the additional restriction



62

that
D=0, =0,=03=20, (6.15)

t=ti=t,=t3 =1t4 (6.16)
Each of these cameras is placed on its own arm, so

Tt

= =0 ys=o,yi=m
Y1 = 2/V2— ;Y3 = 2/Y4—

Our fifth camera, we place at the center of the array with ts = 0, 65 = 0,
and ys = 0.

This allows us to simplify the computation to optimization over just two pa-
rameters [t, 0] and can be visualized easily since it has so few degrees of freedoms.
The resulting cost function when applied to our surgical set up can be seen in Figure
6.7.

From these figures, we can see that camera angle appears to be the major driving
factor for total area and that maximal coverage appears where angle is maximized
and overlap is minimized. This seems reasonable as the FOV of an individual
camera increases as the camera is rotated relative to the stitching plane, and the
total field of view is simply the union of the individual cameras.

6.2.3 Naive Camera Space

In the naive camera space, we simplify even further down to the single parameter t.
The naive camera space represents the approach that one might initially think of
for optimizing the trocar camera array. All cameras are placed facing in the same
direction as the main reference camera and then moved to create the maximum
allowable spread of the cameras. However, we can see that limiting ourselves to
a single degree of freedom sacrifices a significant amount of possible coverage.
Figure 6.8 shows the improvement in field of view for our laparoscopic test box in

using the symmetric approach rather than the naive approach.
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Figure 6.7: Applying the model to a set of five cameras placed symmetrically on
the trocar camera array shows the following: (a) the area of the union of the fields
of view; (b) the area of overlap between Cameras 1 and 2; and (c) the cost function
that results from thresholding the overlap between each pair of cameras.
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(a) Naive Approach (b) Symmetric Approach

Figure 6.8: Applying symmetric optimization to create camera arrays for use in a
laparoscopic trainer box can give significant improvements in total visibility for
tasks in the box: (a) a frame from the original naive camera system; and (b) a
similar frame from our symmetrically optimized camera system. The symmetric
optimization of camera arrays improves visibility and task performance in the
trainer box. No blending techniques were applied so that the individual camera
views can be easily picked out from the mosaic.

6.3 Results

The model optimization was run under the constraints required by our image
stitching system. The plane of stitching was chosen to be the plane z = 16.5 to
simulate a camera array placed at the ceiling of a laparoscopic trainer box with
the camera array pointed directly at the surgical area. Due to the computational
restrictions in computing the result in the exhaustive case, we must limit our space
of possible camera poses to a relatively small number. We chose to create an array
of five cameras using our trocar based array frame. Each camera was allowed to be
placed on one of the four arms of the frame at one of two possible positions on the
arm. The camera was then allowed to be rotated into one of three possible poses.

Since we cannot have two cameras in the exact same position on the camera arms,
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Table 6.1: Results of Maximal Area Optimization Methods on Surgical Array

Approach  FOV Area (cm?) Evaluation Time (s)

Naive 578 0.122
Symmetric 955 0.177
Greedy 11,220 0.519
Exhaustive 11,220 38,274
Upper Bound 18,214 0.073
100 Naive 100 Symmetric
50 50
0 il 0 [ ]
-50 -50
%00 0 00 oo 0 100
106 Greedy 100 Exhaustive
50 50
0 0
50 50

-100 -100
-100 0 100 -100 0 100

Figure 6.9: The resulting views of the four approaches applied to the restrictions of
the trocar camera array.

this gives us (g) 3° = 13,608 possible configurations to check in the exhaustive case.
The resulting fields of view from this test set up can be seen in Figure 6.9 and the
total areas corresponding to each method are shown in Table 6.1.

The upper bound provided is a loose upper bound determined based on the
maximum field of view of a single camera. Let us define A; as the field of view area
of a camera at position/pose indexi=1,2,3...,n, k as the number of cameras to
be placed in the array, and T as the minimum amount of overlap such that we meet

our overlap restrictions from Section 3D. Then, the upper bound U is defined as

U =maxkA; —7
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Table 6.2: Results of Maximal Area Optimization on Grid Array

Approach  FOV Area (cm?) Evaluation Time (s)

Naive 215 1.423
Symmetric 795 0.700
Greedy 1153 15.862
Upper Bound 1514 0.203

While this upper bound does not give us an achievable bound that our algo-
rithm could approach, it serves to give us an idea of the result we would get if we
could somehow find a way to set up the cameras such that each was individually
maximized and they still had the minimum amount of overlap. It is important to
note that even the exhaustive case does not manage to approach the upper bound
due to the fact that the cameras must be placed in our array and the restrictions
due to the discretization of the problem.

Using this upper bound, we can get a feel for how well our greedy algorithm
can perform in cases where the total computational complexity for the exhaustive
method would be much too high to compute. For example, we consider placing
the cameras on a two-dimensional grid such as in the Stanford camera array [98],
allowing for rotation around both the x and y axes. For this camera case, our naive
approach allows for a camera to be placed at any spot in the array as long as no
rotation is applied to it, and our symmetric approach places the cameras on the
grid in the same pattern that they would have been on the trocar array with the
cameras still arrayed in the cross pattern of the trocar arms and still required to
rotate towards or away from the center.

The results of this optimization can be seen in Table 6.2, and the corresponding
fields of view can be seen in Figure 6.10.

Next, the constrained system for the surgical camera array is evaluated for the
maximal convex region rather than the maximal area region. The resulting regions
can be seen in Figure 6.11 and the resultant area comparison can be seen in Table
6.3.
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Figure 6.10: The resulting field of view of the three approaches used for the grid
based camera array.
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Figure 6.11: The resulting field of view when optimizing for maximal convex region
rather than maximum total area. Blue represents the camera FoV and red represents
the found convex region.
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Table 6.3: Results of Maximal Convex Region Optimization on Surgical Array

Approach Max Area (cm?) Max Conv. Reg. (cm?)

Naive 577 577
Symmetric 795 795
Greedy 11,220 5069
Exhaustive 11,220 5104

6.4 Discussion

While the maximal area approach unsurprisingly achieved a larger area than the
maximal convex region approach, and the resulting coverage region is nicely sym-
metrical, as we can see in Figure 6.4, removing the region of interest can cause the
construction of the array to become very irregular and it would not be very useful
for most mosaicing applications. However, even a poorly matched region of interest
does a good job making an array which has a much larger field of view than the
naive approach. However, the array coverage may be deceptively large as the result
consists of three major regions that are only connected to one another by a very
small region.

The maximal convex region approach is able to generate a region which is much
more similar to what could be seen by a single large sensor as we desire for image
stitching. The cost to the size of the array appears to be very large in this particular
case, however, with most of the coverage region being dominated by a single camera
and the other sensors not contributing nearly as much to the region. This likely
follows from our restrictions on camera placement which cause a single camera
with a high level of rotation to achieve a much higher total field of view than a large
group of cameras placed so that they fulfill the convexity requirements since there
are significantly fewer placements which can create large convex regions.

In addition, it is important to pay attention to restricting camera angle. Since we
define our field of view as the intersection of the FoV cone with the stitching plane,
if we allow for unrestricted rotation, we can easily allow for infinite FoV with a
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single camera by placing our camera with a high enough angle relative to the field
of view. However, these higher angled poses also lead to mosaics that do not feel
like they accurately model the real world, as we can see in the slight tunnel vision
effect that occurs in Figure 6.8, so restricting angle is necessary for good looking
mosaics. We could discourage these high rotation cases by simply disallowing
them from our array construction, by re-adding the resolution constraints from
Mavrinac et al. [22], and/or by our choice of region of interest. Even with the
resolution constraints, we require our cameras to be placed further away from the
actual scene when using high rotation cameras without a region of interest, so a

mixture of the proposed methods in this chapter may be preferable.

6.5 Future Work

The optimization provided here shows that there is significant room for optimiza-
tion in the choice of camera placement but that poor choice of the optimization

parameters can lead to an unusable camera array.

6.5.1 Analyzing Overlap

The overlap constraint used in this work is a naive approach to bounding overlap.
We chose to require that the total area of the overlap region must be equal to or
greater than the overlap area in our first functional prototype. The general idea
behind this choice was that so long as the total area of overlap remained the same,
the total number of detected features should remain the same, and this should
result in the same quality of image stitching.

This assumption may not always be valid. Feature detection and matching
algorithms are noisy and subject to errors. This is the reason that RANSAC is so
often used in order to fit homographies even with a significant number of outlying
feature points. While a higher number of accurate feature matches will increase the
likelihood that RANSAC will fit a good homography, four perfectly chosen feature
matches would be sufficient. However, pixel correspondences are limited to integer
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values and are thus subject to quantization error, which may be amplified when
the transformation is applied to regions outside of the overlap region.

It is clear that the overlap assumption is dependent on the feature detection and
matching algorithm, but it is not clear exactly how the algorithm will affect the
properties of desired overlap. In addition, the scene itself may affect the quality and
quantity of features. Future work should replace the existing overlap constraint
with a constraint that more accurately reflects the feature matching dependencies
of image stitching. If features could be added to the scene in order to loosen the
feature matching constraint or to lessen the dependency on the contents of the
scene for feature density.

6.5.2 Depth Robust Field of View Maximization

While image stitching relies on assumptions about the planar nature of the scene,
these assumptions can be loosened by parallax mitigation techniques such as the
one detailed in Part 1 of this report. Remember that the final FoV is found by
computing the intersection of the view cones with the planar scene. Thus, when
the planar assumption no longer holds, the optimality of the camera placement
begins to suffer. The field of view computed for one depth d will not be the same
as the field of view for the perturbed depth d + €. In some cases, this can lead to
objects which should be visible in the scene falling into blind spots that lie off the
plane of stitching. Future work will need to investigate how best to account for
noisy depth information or scenes that may not be exactly planar.

I believe that the best approach to solve this problem would be to identify a new
objective function that accounts for the allowable scene depth. Either by evaluating
the FoV as a 3D region in space, or by shrinking the planar FoV into the largest
region which will still lie within the FoV for the whole set of allowable distances
d+e.
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6.5.3 Ensuring Coverage of space for 3D rendering

Depth information is very important in surgical procedures. One of the most
commonly cited complaints about the TCA in an early round of testing was that the
top down view provided by the TCA made it much harder to determine depth than
in a traditional laparoscope. As such, gathering a full 3D model of the scene may
be preferable to the composite image. 3D modeling extends the problem of optimal
camera placement into three dimensions and introduces new considerations which
must be taken into account. In order for accurate 3D models to be generate from a
scene, feature correspondence must be computed as in image stitching. However,
unlike in image stitching, feature correspondences can not be extrapolated out to
regions that are only captured by a single camera. Furthermore, as scenes are no
longer planar, the FoV model needs to be updated to handle occlusion. Objects
may not lie in the field of view if another object blocks vision from the camera or if
the surface of the object is facing at too sharp of an angle to be seen clearly.
Expanding our work in optimal camera placement from the 2D to 3D visualiza-

tion case offers several potential challenges:

e Computing total field of view as the volume of the region in space 3D space.

e Reduce the total field of view to only that region which can be seen in at least

2 cameras.

e Detect opportunities for occlusion and account for them in objective function

6.6 Conclusions

In this chapter, a new optimization scheme for the purposes of image and video
stitching is proposed. The constraints of stitching are leveraged to propose a set
of constraints on camera placement and view. Using those constraints, a FIX opti-
mization problem for placing a set number of cameras to create maximal FoV is

proposed.
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Since the FoV of an individual camera on the scene exhibits nonlinear properties,
we cannot use linear programming methods to perform the optimization. Instead,
the solution space is discretized into a finite discrete set of positions and poses.
To ensure accuracy of the stitched image if the estimate for the stitching plane
is incorrect, we additionally constrain our solution space such that there must
be sufficiently large overlap area between images captured by a pair of cameras.
The amount of overlap required will depend on the feature density of the scene,
thus this is left as a tuneable parameter depending on the scene.

This problem is formulated as a constrained discrete optimization problem and
show the solution space grows exponentially as the number of camera grows. A sub-
optimal, greedy heuristic for solving this problem in polynomial time is presented
to allow the extension of this problem to less heavily constrained arrays. The greedy
algorithm is not intended to be an optimal solution to the optimization problem
proposed in the chapter. Instead, it is intended to be a method for evaluating the
optimization model for complex camera arrays and improve camera array placement
over the naive approach that can be computed quickly even when run on a large
space of possible camera placements. This would be a first attempt to maximize the
field of view of the stitched image subject to the overlapping constraint required
for proper stitching.

To do so, a continuity constraint was introduced to ensure that cameras had
sufficient overlap and a continuous path of camera overlap so that stitching could
be performed. In addition, there is a requirement that the coverage region be free
of holes, since many optimal solutions that do have holes in them do not make for
good mosaics.

To further tailor the optimization to the needs of the stitching setting, a new
measure is proposed for maximal FoV that better reflects the stitching desire to
create a large region that mimics the behavior of a single visual sensor. Rather
than focusing on the total area of the coverage region, the focus is on a subset of
the coverage region. First, a region of interest based approach was considered,
but it was found that the behavior of this approach is very heavily dependent on

the chosen region of interest, with size variations in the region leading to some
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potentially unusable camera arrays. Next, a variant of the potato peeling algorithm,
seeking to find the largest convex region that fits inside the FoV. This seems to
behave more as desired, but does not take into account that some regions may be
more desirable to monitor than others. However, these two approaches give the

user more ways to control how they wish to place cameras to monitor a scene.
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CHAPTER 7

Conclusion

The above research describes progress on generating composite images for remote
scene interaction, and it proposes a path forward to guide future research. It makes

several contributions to computer vision and 3D geometry:

e Computer Vision

- A video stitching pipeline, which corrects for parallax by segmenting
foreground objects and using a multi-planar model to fit aligning trans-
formations to the scene even when the camera array is moving or the

scene background is slowly changing.

- A method for leveraging shape prior information to compute aligning

homographies for feature poor regions.

e 3D Geometry

— A model for computing the field of view of a camera array being used
for image stitching. This model serves as the basis for evaluating the

quality of the poses and positions given to the cameras in the array.

— A model for how features can be projected onto a scene to control the

required overlap between cameras for optimal image stitching.

— An optimization framework, for computing the optimal camera place-
ment for image stitching. This model should optimize the total area of
the FoV while still being robust to parallax in the scene to encourage

parallax correction in non-planar scenes.
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- An optimization framework, for computing the optimal placement for
3D modeling. This model will attempt to optimize the volume of the
FoV while accounting for the need for multi-camera coverage at every
point in the FoV. The model should take into account the possibility of
occlusion and the need for multiple viewing angles to avoid holes in the
3D model.
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