Nature. Vol. X, No. 245 July 9, 1874

London: Macmillan Journals, July 9, 1874

https://digital.library.wisc.edu/1711.dl/LBXITYVRTMAPI83

Based on date of publication, this material is presumed to be in the public domain.

For information on re-use, see:
http://digital.library.wisc.edu/1711.dl/Copyright

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

THURSHAY, JULY !, 1874

THE: (0.11:\%

T() those who are familiar with the triumphs which that most wonderful of monlern instruments of research-the spectroscope--has achieved, the short time during which it has been at work will be most forcibly recalled by a reference to the circumstance that the comet which is now, astronomically speaking, a magnificent object in the northern sky, is the first one of any considerable brilliancy which has shown itelf since the spectroscope has been adapted to the telescope.

The truly splendid comets which delighted us during the autumn of 1858 , and for a brief space in the summer of 1861, made their appearance, in fact, during what we may term the pre-spectroscopic age; for, however little to the credit of modern science it might have been that the spectroscope was no employed in their investigation, the fact remains that they were allowed to pass away mere telescopic objects, and that two opportunities were thus lost such as, perhaps, may not offer themselves again to the present
generation of men.
I propose, in the present paper, to state some points of inquiry regarding comets in which the spectroscope may help us, with a riew of showing how much closer is our grip of celestial phenomena when physical astronomy, in its widest sense, is superadded to the older astronomy, and to indicate the numerous gains to knowledge which may be hoped for if adequate telescopes, properly armed with spectroscopes, are employed
both here and in the southern hemisphere both here and in the southern hemisphere upon the present visitor.
Omitting all reference to the paths of comets round the sun, with which mechanical astronomy has to do, there are perhaps but few points in which the spectroscope cannot help us; somewhat unfortunately, however, there is one in which it appears powerless, and that precisely one of the greatest difficulty in cometary theory. I allude to the apparent sweep of the tail round the sun when the comet is at its perihelion point, which has suggested to Faye a theory of a repulsive force due to solar heat, and which perhaps is one of the most mysterious phenomena which we witness in the skies. Leaving this aside, however, there are many questions relating to what Sir John Herschel terms their "interior economy," in which, undoubtedly, the guesses of telescopic observers may be turned into hard, detailed fact. Let us briefly refer to some of these points.
Generally speaking, as a comet approaches the sun it gets brighter and its tail lengthens, whether the nucleus is intensely stellar, as in the present case, or not; in some cases a violent action may be observed ; aigrettes, or jets, make their appearance ; and the nucleus, or head, is surrounded, or partly surrounded, by envelopes or shells, very obvious and with marked boundaries, and these are visible in some cases at the commencement of the tail.
Now, of course, if any or all of these luminous phenomena were due to the reflection of sunlight by masses of whatever kind not luminous in themselves, then the spee trum would be the same from all, differing only in intensity, and the spectrum would be the true solar spectrum if there
VoL. x.-No. 245
were light enough, and a dim continuous spectrum if the part of the comet under examination were dim.
If, on the other hand, the masses were self-luminous and consisted of lapours not too dense, then we should get a chatacteristic; spectrum proving first the existence of vapours driven into incandescence ; and secondly, if nature of the vapent far enough, the precise quality or spectroscope. Thanks would be determined for us by the gins, Secchi, Wolf, Rayct, Vogel, and others, the brightest portions of the comets which have appeared since 186 have been examined with the undoubted result that they consist, in part at least, of not very dense incandescent vapour. I say in part, because in some cases the continuous spectrum, which may denote dense vapours, or perhaps vapours of relatively greater molecular complication, or again even glowing solid substances, has been so strong as almost entirely to mask the bright lines or bands by means of which the presence of the rarer or simpler vapours is determined.
Nor is this all. Not only have lines been seen, but their positions have been determined with some degree of accuracy, although it must be pointed out that the opinions of authorities do not coincide as to the actual materials indicated or as to the interpretation to be put upon the observations. This is not to be wondered at, considering the amazing delicacy of the research and fectly satisfactory determinations. The morterminations.
The most searching criticism of the results hitherto obtained appeared some little time ago in Poggendorff's Annalcin from the pen of Dr. Vogel (Nature, vol. ix. p. 193), and it will be well to briefly glance at some points which result from his inquiry. Donati, in the first observations of this nature made in 1864, determined the existence of three bright bands, but made no attempt to determine the substance from which the light proceeded. Huggins in IS66 made the first attempt in this direction, and came to the conclusion that, like the nebulx, the comets might be composed of nitrogen, as in the spectrum of the comet visible in that year there was a single line which nearly, if not quite, coincided with one of the brightest lines of that element. In IS68, however, the idea of nitrogen comets was abolished, as the idea of nitrogen nebulie has been since; and the three bands, which were again observed in the comets visible in that year, were found to coincide with those of olefiant gas. Hence it was suggested by Hurgins that they consisted of carbon vapour. He writes:-" The great fixity of carbon seems indeed to raise some difficult in the way of accepting the apparently obvious inference of these prismatic obscrvations. Some comets have approached the sun sufficiently near to acquire it temperature high enough to convert carbon into vapour. Indeed, for these comets a body of great fixit: seems to be necessury: If the substance of the comet be taken to be pure carbon, it would appear that the nucleus had been condensed from the gaseous state in which it caisted at some former period. If we were to conceive the cinmet to consits of a compound of carbon and hydresen other difficulties would ariec in connection with the decomposition we must then suppose to take place It is clear that M_{1}. Hu,bsins' opinion is that a comet
consists of carbon; that the vapour is carbon vapour driven into incandescence by a temperature high enough to volatilise rarbon, and not the vapour of a volatile hydrocarbon.

Such is not M. Voucl's view, and I confess it is not mine. λ fter giving details of the observations of the nine comets examined between 1864 and 1871, M. Vogel thus analyses them:
"Of thesc nine comets, there is only one (1870) for which we have no observations as to the position of the bright bands. Of the remaining eight, the spectra of five ($\mathrm{I}, \mathbf{2}$, 4,7 , and 9) have shown $n \%$ agreement with the hydrocarbon spectrum. As regards the comet JI. 1867 the supposition is offered that its spectrum was similar to the spectrum named ; as to Encke's Comet III. 1871, it remains uncertain in which class it is to be reckoned (Huggins observations being at variance with those of Young and myself). There remains only the Comet II. 1868, for which Huggins' and Secchi's observations assert a probability of coincidence of the lines in its spectrum with those in the spectra of volatile hydrocarbons.
"It thus appears a somewhat questionable view, that the comets consist of such matter; and we should, I think, content ourselves with the deduction that a portion of the light emitted by the comet is its own light, and very probably from glowing gas."

Hence, then, the whole question of the true material of which that part of the comet consists, the spectrum of which has been already observed, must be acknowledged as being still subjudice: and this is a matter of the first order of importance, on which the present comet may throw much light.

But one of the most hopeful points is this: the comets up to the present time have been either so small or so distant that the record of aigrettes or envelopes on the spectrum: has not been determincd; nay, the comets might have been deprived of those appendages, hence the statement concerning the spectrum is a very general one ; there has been no sufficient opportunity of localising the spectrum-giving region or regions.

What a glorious harvest will be reaped should the jets appear as decided as in the comet of ISGI, or in Halley's comet at its return in I_{35}; "jets, as it were, of flame, or rather of luminous smoke, like a gas fan-light," which, as described by Sir John Herschel, " varied from day to day as if waving backwards and forwards, as if they were thrown out of particular parts of the internal nucleus or kernel, which shifted round, or to and fro, by their recoil, like a squib not held fast."

Or a\%ain, suppose the ststem of concentric envelopes is developed to the same citent as in Donati's comet, in which the action at all points of the nucleus, to follow Sir John Herschel's reasoniner, was probably more general, a result due to a more uniform chemical constitution.

Hence the comet may luwe us a rich inheritance in the shape of "spectium of jets," or " spectiom of envelopes:" and from what I have alte.uls seen dimly fir such observations are leyond my instrmental powis, the fomer is the more probable, and in the numbense may have the equivalent of the sun, or the athon pele of an chectric lamp. with a continuom spothom, and in the jets phenomena identical with thane peremed ly, whenstoms, or the electic are, that is, lines of vinione I mpeths indicatin!: vaious vapours, shootini: out on citcolini: to vatious distances according to then volatilities, or vapour densities.

We seem, inclecd, to have got a true physical approxima. tion to this state of things in the comet of 1868 , for Mr. Huggins observed that while some of the lines thinned out as one sees them do in the ordinary spark by using a lens, quite independently of the general visibility of the vapour, others did not so thin out, but retained their breadth till they disappeared altogether.

The extent to which this action will go on will obviously depend upon two things, first the temperature and secondly the materials of the comet ; and this raises an important question, which perhaps is casicr of solution than the determination of the materials ejected, should that phenomenon be spectroscopically recognisable.

I have already communicated to Nature the fact that to me the continuous spectrum of the nucleus appears deficient in bluc rays. The cifect of this upon the colour of the nucleus would be to give it a yellowish tinge like that of a candle flame, and for the same reason.

Dr. Vogel, in the paper to which I have already referred, deals with this question of colour, stating that:-
" Dr. Zenker arrives at the conclusion that there must be water-vapour in the comets ; since they have, according to Schmidt, a yellowish-red colour, and the sun's rays, when they pass through a considerable thickness of aqucous vapour, are coloured thus. But apart from the consideration that sunlight has a yellowish-red colour on passing through other vapours as well as aqueous, I would remark that we must take the proper light of the comet, which appears from spectral analytic observations to be generally more intense than the reflected light, as determining its colour. According to the observations made, we should expect that the comet is, on the whole, of greenish or greenish-blue colour, since all the spectra consist, as we have seen, of two or three bands of light, of which one is in the yellow, the second and brightest in the green, and the weakest in the beginning of the blue Of the (generally very faint) continuous spectrum, only the brightest part-yellow, green, and commencement of blue -is visible. The entire image, therefore, even where the weak continuous spectrum appears, will seem of greenish colour. Colour-data have been furnished by other obscrvers besides schmidt ; and the head of the Comet I8ir, c.g. had, according to Herschei, a greenish or bluish colour ; the nucleus was slightly red. The colour of Halley's comet, at its return in 1825 , was a bluish-green (Struve). Winnecke says of the comet of I862, 'The colour of the neck appears to me yellowish; the coma has bluish light.

It will be seen that these remarks are quite in accordance with the suggestion. Dr. Zenker attributes to absorption the effect which I ascribe to defective radiation, and if it should be determined that the spectrum of the nucleus is truly deficiont in blue rays, then a great point will be gained, for its ainsinature m!est bi low.

Ansstiom, whose death the world of science is now deplorings, lived to say that he conceded that different molecular artangements of the same element might give us difierent spectra; and Roscoc and Schuster have recently placed beyond all doubt that, besides the well-known high temperature spectra of sodium and potassium, there are other spectra appertaining to the vapour of these clements at a luwer temperature.
 similar in character to the spectrum which has already been observed in the case of comets; and if such spectra be obtained for all elements (and I have already added to the list), if a comet be a body at a low temperature, it is
such spectra as these that we shall sec, and not line spectra. Further, in the case of compounds in which the molecules which give us these new spectra enter into combination, we may possibly dissociate them and observe their spectra at a much lower temperature than we can drive the higher molecular arrangement of the solid into vapour, Such considerations as these dcrive additional interest and importance from the beautiful researches of Schiaparelli, which connect comets with meteorites.
Modern science acknowledges that comets are individual members of meteor swarms-not that meteors are comets' tails, as some think ; this idea is, one may say, impossible to reconcile with facts-that one difference at any rate between a comet and a meteor is that one is self-luminous, the other is not till it arrives with in the limits of our atmosphere. If this be acknowl. dsed, then to what is this difference to be ascribed? A possible cause is certainly a difference of chemical constitutiona difference between materials incandescent at a high temperature and materials incandescent at a low one. It is not necessary to stop to inquire how this temperature has been arrived at, but it is important to show that the question of temperature is one of the very first points to be attended to by those who can bring sufficiently powerful instruments to bear upon the present comet, and that the question of its actual chemical constitution is bound up
with it.
But whatever be the temperature of the head there is another point which must not be lost sight of. Sir John Herschel writes concerning Halley's comet:" The bright smoke of the jets, however, never seem to be able to get far out towards the sun, but always to be driven back and forced into the tail, as if by the action of a violent wind rolling against them-always from the sun-so as to make it clear that this tail is neither more nor less than the accumulation of this sort of luminous vapour, darted off in the first instance towards the sun, as if it were something raised up, and as it were exploded by the sun's heat, out of the kernel, and then immediately and forcibly turned back and repelled from the sun." Here we have the question raised not only whether the envelopes consist of different materials, but whether the tail is not entirely or in part self-luminous: the present comet may show that this point is not so satisfactorily settled as it is supposed to be in favour of reflected light.
Such then are briefly some of the questions at issue. It is to be hoped that our beautiful visitor will answer some of them for us, and that when it leaves our northern skies the work may be carried on in the southern hemisphere.

> J. Norman Lockyer

THE CHANNEL TUNNEL

WE fear there are still many who fail to see that any good can come of scientific research unless it has some well-defined "utilitarian" objcct in view. Even in this and in other countrics that are in the van of civilisation and in which cducation is comparatively wide-spread, the majority of mankind can appreciate a benefit only when it takes a concrete and tangible form. That love of knowledge for its own sake, that noble inquisitiveness which has been so fruitful in results during the liast two hundred years, even yet belongs to comparatively few, who are still regarded by the many with a kind of im-
pationt pity as mere unpractical hobby-riders. Still the people who talk in this way are proud enough of the glory which their great men have shed upon their country, and would not willingly, we believe, part with it for money were this possible; and indeed how would this country appear among the nations were she deprived of the incstimable inheritance which her great sons have bequeathed to her in ciery department of intellectual activity? Happily, however, the race of those who decry single-eycd scientific rescarch is getting scnsibly smaller ; and we firmly believe that as education improves and as higher education spreads, carrying with it the results of this same scientific rescarch, it will disappear.
Still, a little consideration might show those who are ever ready to cry "what's the good?" that since all socalled "practical" schemes are concerned either with man's own body or with the surrounding universe, an essential part of the basis of any scheme is a thorough knowledge of the material on which it is proposed to work. Such a knowledge it has over and over again been shown is only to be attained by abstract scientific research, by investigation conducted as if the only end in view were a thorough knowledge of the subject in hand in all its scientific aspects and relations. Many instances could be given, and indeed are every day occurring, of the highest practical results unwittingly following from such investigations; and to the sceptic we could not recommend a better example of how indispensable is thorough scien= tific research as a basis for the useful arts than the results of the investigation into the geology of the Channel which Mr. Prestwich (the newly elected Oxford Professor of Geology) presented to the Institution of Civil Engineers last Deccmber, and which, with the subsequent discussion and maps, has just been published in a separate form. This study of the strata which underlie the Channel, and which seems to us an almost perfect example of close and careful reasoning on physical facts, is no:v brought forward to enlighten the projectors of a tunnel between England and France as to the nature of the material with which they will have to work; but Mr. Prestwich distinctly st ztes that the various formations are considered "irrespective of their relative merits in any other than a geological point of view."
Mr. Prestwich's plan is to discuss carefully all the strata whicin underlie the Chaninel, from the London clay down to the Palrozoic series, exhibiting distinctly their lithological characters, dimensions, range, and probable depth, and from these data deducing his conclusions as to the suitability of each formation for being pierced by a tunncl. The investigations of himself and others on which Mr. Prestwich's paper is founded were mostly undertaken from no practical point of view and before a Channel tumel was thought of. Mr. Prestwich, many will be glad to think-grateful, we hope, at the same time for this very practical result of pure scientific rescarch concludes that from a geological point of view it is quite practicable to construct a tannel underneath the Channel, although to do so with saffety it will be necesarary to yo verv decip down. Hut an excellent idea of the result of the inseritigation will be obtained from the following che tr summary with which Mr. l'restwich s paper concludes:-
"In the London clay there exists aperfecily impermeable bed of sufficient thickness, but nowhere between the two
countries, except probably at points where the distance presents apparently insuperable difficulties. The lower chalk or chalk marl affords a comparatively impermeable deposit, also of sufficient dimensions : but from its having a calcarcous base, and from the possibility of fissures, with the absence of a protecting overlie, it has great uncertainty. In the gault there is another impermeable stratum, but of dimensions too small. The lower greensand contains no beds sufficiently continuous and impermeable. The Weald clay ranges about half-way across the channel; and if a belt of it should possibly pass round at the north end of the Varne and range to Wissant, it might prove to be worth further inquirics. In the Kimmeridge clay there is again a deposit of sufficient dimensions, but with a subordinate band which may be sufficiently permeable to present difficulties, whilst, though it comes to the surface on the French coast, its depth on the English coast must be very considerable. There is, however, just a chance that the Kimmeridge clay may in mid-channel be overlapped unconformably, and at a slight angle, by the Weald clay, and in that case they might for all purposes be considered as continuous strata. The Oxford clay presents similar difficulties, in addition to its greater depth and inaccessibility. In the secondary strata the irregular lie of the strata, and the presence of faults, are contingencies important to be considered.
"On the other hand, the great mass of the Palæozoic rocks so protected by impermeable overlying strata, is of such great dimensions, and so compact, and holds its range so independently of the more irregular range of the secondary strata, that it offers the conditions most favourable for the secure construction of a submarine tunnel ; and that such strata can be worked in safety and for considerable distances under great bodies of water, has been proved at Whitehaven and Mons. But, on the other hand, the depths of these old rocks below the surface is very great, and they are much more dense and harder than the overlying formations.
"There is another important problem in connection with the Palæozoic rocks which such an undertaking might help to solve. The great question of the range of the coal measures under the south of England has lately come prominently into notice; and it was, in fact, in inquiries connected with that question that the foregoing considerations presented themselves to the author. The rich coal basin of Mons and the north of France has been traced to within thirty miles of Calais, where it thins out ; but, like the coal basins of Liege, Aix, and Westphalia, which form separate sections of the same great trough, to the eastward, so there is reason to suppose that other sections of the troush set in on the westward, forming other coal basins, which possibly range to the west of England (Somersctshire), passing under the north-castern part of Kent and the Thames. Any such work, therefore, as a submarine tunnel in these l'alaozoic rocks could not fail to throw much light on the subject ; while, in case it were to hit upon the line of strike of the coal measures, and could be carric. 1 on along that line, the work might prove otherwise remunerative, and tend to solve the great problem which interents so larjely both geologists and the gencral public.
"Such, briefly, are the conditions which hear on the construction of a submarinc tunnel betwern France and England. The author is sativitied that, considered on geological grounds alone, it is in one case perfectly practicalle, and in one or two others it is possibly so : but there are other comsiderations besides those of a : peenomical nature, and whether or not they admit of so fivour-

 it may ine de. in mbe, in a flu tion involving so many and sur hered interche, not to acrept an adverse verdict without :iving all thome other comsiderations the attention and delilitiation which the importance of the subject deserves.
"Under any circumstances, the difficultics are formidalle. Whether or not they are insuperable are questions which may safcly be left to Civil IEngincers. The many and great obsticlos overcome ly engincering science in late years lead the author to expect that, should the occasion arise, and the attempt be considered worth the cost, the ability to carry it out would not be wanting. Various preliminary trials are, however, indispensable, in order to clear up some of the geological questions before : balance of the comparative advantages presented by the different formations could be satisfactorily settled, and before the grounds for action could be accepted."

From this it will be seen that the possibility of a Channel Tunnel remains now only with the engineers to decide. Geology has told them all the natural conditions under which they will have to work, so far as these can be known without actually tunnelling; and since so cautious a reasoner as Mr. Prestwich thinks it possible to carry out the scheme from a geological point of view, we should think that if it could be proved that the undertaking would pay, our engineers would be eager to show that the resources of their art are quite equal to its suc. cessful accomplishment.

OWENS COLLEGE "ESSAYS AVD ADDRESSES"

Essays and Addresses. By Professors and Lecturers of the Owens Coliege, Manchester. (London: Macmillan and Co., I874.)

THIS book is due to the natural desire of the teaching staff of the Owens College to have some memorial of an event of the first importance in their own history, and to give expression to the hopes that animate the institution. The Owens College was founded by a single legacy a quarter of a century ago-for the creation of a college in which Lancashire lads might study at home the "branches of learning commonly taught in the English Universities." It first became known in connection with its first Principal, Scott, a writer who has left nothing which explains the high rank he held among his contemporaries and especially the influence he unquestionably exercised over every young man with whom he was brought into contact. Under him, however, the College did not flourish-the number of the day students sank at one time as low as 25 -and it was only after the appointment of the present Principal, Dr. Greenwood, that it began to take root in Manchester. It has now about 350 day students-not including the medical students, who have been added only this session-and nearly 800 evening students. Curiously enough, what happened in (ilasgow to the disappointment of many of the wellwishers of the U'niversity, happened also in Manchester. When the new buildings, with all their increased convenience for study were opened, it seemed natural to anticipate a great increase of students. Nothing of the kind took place. Students seem to come and so to college because they want to be taught, not because they are to have beautiful buildines to be taught in. The effect will centainly lec considerable, alike on teachers and on taught, of the more commodious buildings recently erected in Glas:ew and in Manchester, and it will be felt more and more as time zoes on. The fact that it is not felt at first shows, however, that the wants that are satisfied by univer
sty teaching lie so deep down that an external crent like the inauguration of new buildings scarcely influences
them.
The success which the $\mathrm{O}_{\text {wons }}$ College has thus attained in a quarter of a century is due to much hard work-to carrful and deliberate adaptation not merely to the wants of the time, but to the claims of real culture-and above all of course to the fact, which that success proves, that in Lancashirc, or that portion of it of which Manchester is the capital, there is a real demand that the higher edlucation may be brought home cuen to the doors. This book serves as a record of much of the work donc-and an expression of the ideas of the teachers whose spirit has made and still makes the Owens College. No one who glances at the titles of the fourteen essays and addresses of which it consists can fuil to be struck with the varicty of the teaching. It accomplishes the task laid upon it by its founder, by teaching nearly everything commonly taught in the English Universities. We find two I'rofessors of Classics, one of Oriental Languages and one of Modern Languages, two of Natural Philosophy, a Professor of Natural History, and a teacher of Geology, a Professor of Chemistry, a Professor of Engineering, a Professor of Jurisprudence and Law, a Professor of Physiology, and two gentlemen who seem to be three or four Professors rolled into one, the accomplished incumbents of the chairs of "English and History," and of "Logic, and Mental and Moral Philosophy, and Political Economy." Besides these, there are at least half a dozen more, the Professors of Mathematics, the Professors of three or four Medical subjects, the additional lecturers on Law, on Organic Chemistry, and so on, who put in no appearance in the volume. The College is in fact equipped with a staff of teachers which bears favourable comparison with that which is usually found in older Universities. The Medical department has been added only this session ; the Law and Jurisprudence department has recently made a considerable step in advance. Except that several of its members are evidently overburdened with subjects too large for any single man, the staff of the College is reasonably complete, and most things can be learned in it which are taught elsewhere. We turn with interest to the volume before us to discover, in the choice of their subjects and in the manner of treating them, the aims and tendencies of the profess 3 rs and lecturers. What is most noticeable, and it cannot fail to strike even the casual reader, is the caution, the moderation, we had almost said the conservatism which is characteristic of most of them. People are still tempted to associate the name of Manchester with everything that is "advanced," and welook in such a book as this for a daring championship of cducaP_{P} tional and scientific novelties. From the first words of the President's opening address to the last words of the essay which closes it, the tone of responsible thoughtfulness, of the wish to be just and true more than to be vigorous or startling, is never to be mistaken. The I Juke of Devonshire the President, and Dr. Greenwood the Principal, unite in urging that the older class studicsthose connected with literature - should not be pushed aside and comparatively disrerarded, and that the newer studies should be taken up in the ir full depth and breadth, not in a fragmentary or supericial manner or with any supposed reference to their immediate application. Thesc
cautions are supplemented, indeed, but they are nut contradicted, by Prof. Roscoc and Balfour Stewart, who urge, the one that original research is a powerful means of education, and that original research should be orranised, as it has alrcady been to some extent, especially in his own department; the other that we should set about great national studics, establishing a watch, for instance, on the sun, "a creator of disturbances on the greatest possible scale, who is ever ready to afford us information about him. sclf at the smallest possible cost." Mr. Reynolds follows them with a demand for a national commission to experiment on heat ensines, and the conditions under which they could be practically worked, cconomically, or efficiently; or both, to higher pressures than we now attempt to use, so as to get more work out of our coal and our machinery, and perhaps some day to enable a lightwcight jockey to fly at the rate of 200 miles an hour. After these speculations and demands, which are certainly significant of the modern age, follows Prof. W C. Williamson's cautious and copious discussion of the theories of natural sclection and evolution, as tested by primeval vegetation. We call it a conservative paper because the conclusion of the writer is that among the innumerable facts known and co-ordinated about the primeval vegetation, there is little sign that the laws of natural selection and evolution have operated to a large extent in transforming the vegetable species of the pre-carboniferous strata to those with which we are now familiar. But Prof. Williamson is absolutely frank in his admission of the new laws, and singularly candid in accepting any explanations which they seem to offer. He admits "that by the help of natural selection man has brought into existence many new varieties of pre-existing plants and animals, most, if not all of which, were his protecting hand withdrawn, would soon revert to their primal forms. We have no eridence that unaided nature has produced a single new typc during the Historic period. We can only conclude that the wonderful outburst of genetic activity which characterised the Tertiary age was duc to some unknown factor, which then operated with an energy to which the earth was a stranger, both previously and subsequently." It is in a bolder spirit that Prof. Bryce speaks of the new Judicature Act, a measurc which throws us back in principles and in practice many centuries, and which is, in his view, "a reform in linglish law greater in some points of view than we have had since English law itself began to exist." The note of conservative caution returns on our ears in the two last cssays on the Relation of the R.ailways to the State, by irof. Jevons, and on the leace of Europe, by Prof. Ward. The conclusion of the former is emphatic, and altogether hostile to the morement party who advocate the State purchase of our railway system. There are few questions deserving to be more scrioush studied by politicians or likely to need more scrious stady. for in the changes and chances which, mitict our sorernments. some new men may :ome day drift with us into schemes which would be in themselves imprudent, and which woutd be foolish execpt by way of petace to a marecomprehensite meanure. We could not take the railw, we ower, P'o! Jevons thinks, for less than a thousand milion statme. which is about double their commer fial value. The ..itempt misht be all but ruinous to the nattion, and the results would be .Htwsether disappointing. But amon'
the middle and upper classes, who own the railways, there is certain to be a considerable feeling in favour of a scheme which would be fruitful of so much pecuniary bencfit to themselves, 'and it is well to have it discussed beforchand as thoroughly and as thoughtfully as it is discussed here. It is in useful conscratisms such as these that Universities often do their greatest services. They are mints at which the coinage that is passing current in the commoner exchanges of the world may be thoroughly tested. Prof. Jevons offers statesmen and politicians an admirable discussion, luminous with the most practical good sense. Like his colleagues, Prof. Ward is conservative in the sympathies of his essay. We have been engaged for many years in breaking down the vencrable theory of the Balance of Power in Europe, and we have been attempting to build up in its stead a sort of Temple of Doctrinairism-sacred to a goddess of international arbitration, who is to be capable of the cure of all international ailments. Prof. Ward applies the touchstone of his comprehensive historical knowiedge to both. He is utterly hostile to the doctrine of Spinoza that, as the natural state of man is a state of war, no nation is bound to observe a treaty longer than the interest or danger that caused it continues. But the old treaty basis of the peace of Europe having broken down, "the remedy for the danger accruing with new force to the peace of Europe is to be sought, not in an abandonment of the principle of joint action, but in an enlargement and elevation of it, and in the progress of that enlightenment which, instead of enfeebling, strengthens the common action of men and of states. For it is with nations as with individuals. The cultivated, and by culture enlightened, mind is and must be on the side of progress and peace against that of darkness and conflict. The obscure men, like the unformed nationalities, are at once materials and causes of that which disturbs, unsettles, and retards personal and naticnal and international life. Where the education, and more especially the higher education, of a country is fostered, there lie the best promises of progress and of peace.
We do not attempt any detailed criticisms of the several cssays. The subjects cloosen by fourteen professors en which to address the world are likely to be reasonably well chosen, and the addresses delivered on them are prctity sure to reward the attention of the reader. They strike us as very well chosen ; they sufficiently represent the real variety of teaching and of manner of teaching in the institution ; they contain complete and occasionally brilliant discussions of subjects of very considerable general interest. They are the evpressions of the inner spirit of a seat of learnin! in which science holds a hisher place than she has usually done but in which there is the most cmphatic and continual protest aswinst the deradation or neplect cither of literature or of science. 'Hhey show body of tenchers full of

 cal :tudies, and in these cars the reputation of the writer is a suticient inl mantec of completenes. In the ir collected form the "losoly, amd didresses" wamant high hopes of the fiture of the Owem, (oltere. In a seme perhaps a somewhat too literal scmst-it is what it was once
called in a journalistic epigram, the University of the Busy. With its present staff it will certainly continue the tradition which connects the older Universitics with the highest learning of the time.
W. J.

LETTERS TO THE EDITOR

[The Editor does nol hold himself resfonsible for opinions expressed by his corressondents. No notice is taken of anonymous communnications.]

Sir John Herschel's Letters

IT is known to many through the numerous applications I have made, that a collection of the letters of Sir John Herschel is in progress. For the many and valuable contributions, as well as for the kind and sympathetic exnressions which I have been favoured with, I cannot be too ready to express once more my sincere acknowledgment ; and when I recall these to mind I hesitate to take any less private step to further the end in view, or, by venturing on a public appeal, to forego the advantage of more direct communication. Several considerations howeverwhich not even your courtesy in allowing this letter to appear in the columns of Nature would justify me in dwelling uponforbid me to depend solely on the activity of a single importunate pen. The correspondence in question covers more than half a century. Many of the correspondents were of a former generation, and their present representatives are known to but few. I may instance the names of Davy, Young, Wollaston, -not to mention many continental savans-in illustration of this. Many others, less eminent, but not the less recipients of letters which the student of scientific history will prize as containing the germs of much of the force whose impetus we now feel, were hardly known by name beyond their own immediate circles. Many more, as I would fain believe, who either themselves corresponded with my father, or knew him in his letters to their relations, are even now in possession of such letters, and may not be unwilling to let them be seen. Lastly, I hear too much of autograph collectors not to feel a keen desire to make their instant acquaintance. Have they not devoted themselves to preserving individual letters, no matter how trifling, from the fate which has-alas too ofte:-overtaken ot'iers, no matter how numerous, or how valuable!

In my applications hitherto I have been constrained to repress the expectation of immediate publication. I am not at liberty to depart from that now. But that the materials which I may now be permitted to store up wull eventually help to form the foundation of such a monument as may be fitting-this requires no student of history to tell us. That it may be amply provided for now, belore it is too late, is my chief anxiety. For my time is limited, and I have drawn too many blanks not to feel that every year increases their number, let who will take my place.
I apologise for so long a story, and will only add in the most general terms that I appeal to all who possess, or know of the existence of, autograph letters of Sir John Herschel-no matter how insignificant they may seem, for collation with others can alone supply a true test-but of course with due regard to personal consideration-to communicate with me at oace. It is hardly necessary to say that all autograph letters will be returned, and that any restrictions will be attended to.

21 , Sumner Place, Frompton, S.W
J. IIerschel

Coggias Comet

Yocr readiers may be interested to liarn that the light of the comet is ly no means strongly polarised. On the 2nd and 4th ins ant I examined it wi:h a double-imase prism, but could not with cotainty detect any difference between the brightness of the two imasce. 1 alow examine. 1 it with a plate of right-and lefthanded quart: in the principal focus of the 4 -inch telescoy e and a Niol's prism packed among the lenses of the eyepice , but onah not ditet any traces of colour. With a Savant placed between the croprece and the ye no bands were dete.t. able. biut on the ohl, about miduight, when the comet was shimin: wery bighty, 1 could perceive a difference in the brightties of the $t w, i m$ se with the double image prism, indicating polats:tion in the fhane pasins through the sun's estimateu place. But 1 was sull unable to detcit any traces of polarisation cither with a Sowiut or Bi quartz, or with a plate cut from a natural chs al of reht - .nd lct-handed quartz giving a band across the field in which the two crystals overlap; a form of polariscope which has been tuund on other occasions very delicate for faint lights.

If the tail of the conet consisted of a fime dust not in a state of incundesconse rellectin: or diopsising the sun's rays, we should expect its lisht to be completely polarised. We seem, therefore drivea to assume, cither, I, that the tail consists of fine incandescent particles ; or, \therefore, of particles whose diameter is not small comp ued with the wavelensel/ or, 3, of incandescent gas : or, 4, possibly of all three of these states combined.
A. Cowper Ranyari)

Photographic Irradiation

In a letter to Nirure, vol. ix. p. is 3 , I gave a short descrip. tion of some experiments on photographic irradiation. The conclusion to which these experiments pointed was that there is a kind of photographic irradiation, caused either by the bright light producing an intense state of chemical activity, which has the power of extending itself in every direction; or what seems more probable, the parts of the collodion on which the bright light is falling become luminous and reflect light to the surrounding parts of the sensitive film, and thus extend the chemical change on each side of the true optical boundary line. As the subject is at present under discussion, I send you the results of the following experiments, which seem to support the above conclusion. In a darkened room a vertical opening i8 in. by 5 in. Was made in the shutter; over the opening was fixed a piece of paper thick enough to stop insst of the light, and only allow as much to pass as world give a decided but not deep photographic impression: Three long, narrow, parallel openings were cut in the paper, one opening was left clear to the sky, the next was covered with one thickness of tissue paper, and the third with two thicknesses of tissue paper. There was thus produced three parallel bars of different bright ness on a uniform and darker ground. Sensitive wet plates were prepared in the usual way on glas; and opaque black plates; across the front of the plates, and almost in contact with the collodion, was fixed a horizontal bar of thin blackened metal in such a position that it would cross the image of the luminous bars in the camera. The photographs, after exposure, were developed in the usual way, and it was found that the shadow cast by the horizontal opaque bar was not bounded by straight lines, but the ends of all the bright bars projected into the shadow, and the brighter the bar the farther it projected. I had no means of measuring accurately the bar and its shadow, but there seems but little doubt that the bright bars extended underneath the opaque bar, whilst the edge of the darker ground at the side of the bright bars gave the correct line of the shadow. Now this extension of the bright bars could not have been caused by the reflection from the back of the plate, as this result was always got whether glass or opaque black plates were used. Nor could it have been caused by the oblique pencils referred to by Lord Lindsay and Mr. A. C. Ranyard, because, the opaque bar being close to the collodion, these pencils could not get underneath. The natural conclusion seems to be, that this extension of the bright bars must have been caused by some molecular reflection taking place in the collodion. This form of irradiation can easily be distinguished from the irradiation produced by reflection from the back of the plate, as the latter is simply a sort of haze surrounding the bright object, extending some distance from it, and gradually fading away, whilst the former extends shary short distance and has a well-marked outline, though not so Sharp as those parts of the image where there is no irradiation. Tlate irradiation produced by reflection from the back of the plate, and some forms of irradiation duc to the imperfections of the lens, though fatal to artist'c photography, yet do not interracy of outline scientific value, as they do not affect the accuphotograph. Mough they do affect the clearnesss of the carcely affe. Molecular irradiation, on the other hand, whilot it scarcely affects artistic photography, is futal to scientific accuracy. The manner of preventing this latter form of irradiation has the light aldy pointed out, nam :ly, by reducing the intensity of produce a dighg on the sensitive surface to only that necessary to almost never possible pression. In artistic photography this is on the different parts of the subject, while for scientific porpht this may almost always be subject, while for scientific purposes due to the lens seem to be as various as the forms of lences; ige lens used in the experiments gave a curious double hayyses one "fhe bright object. When the imare is near the centre of the "field" the double image fits over the true image, producing :n effect somewhat similar to, and was at first mistaken for the cffect of reflection from the back of the plate. At first this double image was somewhat puzzling, as it always made its appearance
even when opaque plate; were used. The two imneri were however, afterwads separated by bringing the true im tre near the outside of the "fichl," when the true image ant its doubla were photographed almgside of each other.
The following simple experiment illlustrate; this molecalar form of irradiation, and shows how much the definition of the image depends on the nuture of the surface which receive; it. Take a camera obscura and throw the image on some translucent substance such as op al glass; paint a small part of the glass with sone opaque white substance; bring into the "field" against the sky; examine the subject, such as branches of tres; glass, when it will be found thage fron the lens side of the hazy and indistinct, whilst the the image over the opal glas; is shines out brilliant and sharp. part of the image on the paint

Darroch, Falkirk, N.B. June 16

Lakes with two Outfalls-A Caution

Llyn Creigenen (the laryer of the two lakes of that name), situated about five miles S.IV. by W of Dolgelly, has app.arenelly two natural outlets-one at the east, the other at the west end of the lake; both streams ultimately fall into the estuary of the Mawddach. The two outlets are on nearly the same level, the one at the east end being perhaps a trifle higher than that at the west end. The whole of the waste water at present passes through the western outlet in consequence of an artificial dam of turf having been made across the eastern channel. There are no indications on the ground which would lead anyone to suspect that either of the outlets had been artificially formed; the general contour of the surrounding country would rather favour the contrary view.
I wa:, however, informed last week by a man who had iived eighteen years in the district that he had becin told that orivinally the only outlet was that at the west en 1 of the Llyn, and that the other outlet had been made many years ago for the purpose of getting a better supply of water to some mills which then existed, but which do not now exist, on the stram to the east of the lake. If this story prove to be correct it shows how im. portant it is to make full inquiries before stating positively that any lake has two natural outfalls.
From the ordnance map one would imagine that two streams issued from Llyn Arenig (five miles W.N. W. of Bala), but the one shown as starting from the extreme north end of the lake has no existence in fact.

Chester, June 3
George R. Jebb

FERDINAND STOLICZKA, PH.D

ABRIEF telegram from India, which arrived just in time for notice in last week's Nature (rol. x. p. 172), announced the death on the igth ult., at Shayo: between the Karakorum Pass and Leh in Ladak, of Ferdinand Stoliczka, Palwontologist to the Geological Survey of India, who was returning trom Kashgar and larkund with the other members of Mr. Forsyth s mission.

Thus has passed away, at the early agre of thirty-six, a naturalist who, if his lite had been spared, would certainlyhave attained a very high position amongst the leaders of science. Few men have accomplished ata equal amount of work in the same brist space of time. A ghance at the Journal and Prozeedings of the Bengal Asiatic Society, and the publications of the Geolorical Survey of Indi, especially the "Palicontologia Indic, ," will show the wonderful varicty of subjects treated by Dr. Stulicilia. In the course of the last ten years, besides geolorical memoirs on pats of the We tern Himatay.ts and Mhbet, he has published numerous papers on Indian mummals, birds, reptiles, amphaba, mollusua, bryouna, arachand, colcoptera, and actinozon ; and these pupers are no lis:s of n ances or mere desc.iptoms of new species, bat they abound with ascounts of the life history of the daterent animals, detals of their anatomy, and remarks on chasification, and show that ther author was is sood . 111 observer in the tield as he wis patient and accurate in the cabinet. His greitest work is undoubtedly his account of the fossil fauna discoriced in the Cretaceous rocks of Southern India, in which he proposed the most complete
general classification of Gasteropoda and Pelecypoda (Lamellibranchiata), including both fossil and recent forms, which has hitherto been attempted. This classification was largely supplemented by original anatomical research, and it has been adopted in one, at least-we believe in two-of the principal museums in Germany.
Dr. Stoliczka was born in Moravia in May 1838. After completing his university course he joined, whilst quite young, the Imperial Geological Institute of Austria, where he soon distinguished himself by his palæontological work, and became especially known for researches amongst the Bryozoa, fossil and recent. The collection of specimens belonging to that class obtained by the Novara expedition was intrusted to him for description. Amongst his principal early contributions to palæontology were papers on the fossil fauna of the Hierlatz and Gosau beds.
In 1862 he joined the Geological Survey of India, and at once commenced the study of the magnificent series of Cretaceous fossils obtained by Messrs. H. F. Blanford, C. Oldham, and the other officers of the Survey engaged in the Madras Presidency. The descriptions of these fossils have only recently been completed, and extend altogether to about $\mathrm{I}, 500$ quarto pages illustrated by 178 plates. There can be no doubt of the rank of this work ; it is one of the most complete monographs ever published of any fossil fauna whatever. The numerous duties connected with the post of Palæontologist to the Survey occupied so much of Dr. Stoliczka's time that he was only able to devote a few months in three different years to field-work. To this field-work we owe valuable reports on the western Himalayas, Thibet, and Kachh, the last not yet published. In the year 1868 he accepted the honorary secretaryship of the Asiatic Society, and during the five years he held the post he raised the natural history portion of the Society's journal to a position it had never approached before, this improvement being due no less to his own contributions than to the aid he was always ready to afford to all engaged in zoological inquiry.

When, last year, a mission was despatched by the Indian Government to Yarkund and Kashgar, Dr. Stoliczka was sclected to accompany it as naturalist and geologist. It would have been impossible to have found anyone more competent for the post, but many of his friends knew the risk he ran, and he was well aware of it himself, for his health had been seriously affected by exposure in former years in the higher regions of the Himalayas, and he needed rest and a change to Europe. His life has been a sacrifice to the study to which he had devoted it. He was seriously ill at one time when crossing the high passes on his way to Yarkund, but recovered, and his letters from Kashgar gave glowing accounts of his discoverics, and now when returning loaded with the spoils and notes of nearly a year's research in one of the least-known parts of Central Asia he has fallen, just as his friends were in hopes of welcoming him back amongst them. This is not the place to speak of his many amiable qualities, but few men were more widely known in India or more universally beloved and esteemed, and the gap he has left in the little band of Indian naturalists and geologists, as well as amomst the far wider circle of his private friends, will be long unfilled.

OBSERI AT(NRIES IN WHI LNITEJ) STJTES

ONE of the most salient points in the scientific progrees of America is undoubtedly the matrellous multiplication of tiret diass observatorics during recent years. The geniur, of her people, the skill of her artists, and the wise liberality of states and individuals have combined to bring: atoout astate of things which those interested in Astomomy in any country on this side of the Atlantic may regald with the intensest envy. I'nloubtedly our own ubservatories are already distanced in everything
except factivity. In number, instrumental equipment, breadth of design, the American institutions are unsurpassed ; and although the Americans themselves say they want men with such world-wide names| as l'eirce, Winlock, Newcomb, Young, Peters, and many others that we might mention, who know no resting on old laurels, it is difficult for an Englishman to acknowledge that the idea is well founded.
A very interesting and well-illustrated article on United Stalcs Observatories appears in a recent number of Harper's Monthly. Some of the illustrations, which we are enabled to give by the courtesy of the Editor, give a good idea of the scientific wcalth to which we refer, and of the progress that has been made, for while little more than thirty years ago it could not be said that there was onc astronomical observatory in the United States, to-day it is safe to place the number of all classes, public and private, beyond fifty.

Cincinnati Obscrvatory.-One of the most strenuous advocates for the establishment of public observatories in the United States was John Quincy Adams, who had made astronomy a favourite pursuit. Hfe had very just conceptions of what ought to be the character and aims of a true observatory. It must steadily labour for discouery. It must be fully equipped for this, and be provided with a personnel who could give their whole energies to that series of observations, running through many years, which alone can secure valuable additions to astronomical knowledge and insure its benefits to men. For the establishment of such an institution he had made his well-known appeal to Congress in 1825 . He was ridiculed; but he remained as strenuous an advocate as ever for the establishment of observatories of the first class both at Washington and at Cambridge. In the very year before this address at Cincinnati he had urged, in his place in Congress, the perpetual appropriation of the whole interest of the then unappropriated Smithsonian fund for an observatory for the people.
"The express object of observatories," said he, "is the increase of knowledge by new discovery. It is to the successive discoveries of persevering astronomical observations through a period of fifty centuries that we are indebted for a permanent standard of time and for the measurement of space."
The year is 43 was, however, an era in the history of United States observatories, and Cincinnati was their birthplace. Her institution and those of Cambridge and Washington sprang up, and the enthusiasm of the era started others, whose equipment has been secured largely by their success.
As early as 1805 , Cincinnati may be said to have had a practical working observatory In that year the first Surveyor-General of the United States, Colonel Jared Mansfield, received, after a delay of at least three years in their construction and transportation from London, astronomical instruments ordered by Albert Gallatin, Secretary of the Treasury, and paid for by President Jefierson out of his coi"n coultins"ent fund, "since no appropriation for them had been made by law." The instruments, which were said to have been excellent of their kind, were a 3 .foot reflecting telescope, a 30 -inch portable transit instrument, and an astronomical pendulum clock. Years afterward, they were placed in the philosophical department of the Military Academy at West Point. In the house of the Surveyor-General, at Cincinnati, they were used in making numerous and interesting astronomical olservations. The orbit of the comet of iSo7 was calculated, eclipses of different kinds were observed, the longitude of the observatory determined, and other observations of importance made from 1 So7 to ISI_{3}, all of them outside of the usual dutics of the mere surveyor.

Our next date is at the end of the lapse of forty years We are brought then to the marked era in astronomical interest already referred to, and to the labours of those

Who awakened that interest, especially of Ormsby M'Knight Mitchell.
Mitchell was a native of Kentucky. He graduated with honour at West Point, in $182 y$. Resigning from the army, and practising law in Cincinnati, he was made professor in the City Collcge. H1c was an enthusiast in astronomy. He gave a series of lectures to the citizens in $1 S_{42}$ which created their Astronomical Socicty.
As the astronomer of the Socicty engaged for a tenyears' work, Prof. Mitchell sailed for Europe to purchase a telescope superior to any then in America. In the optical institute of Merz and Miihler, successors of the great Fraunhofer, at Munich, he found an object-glass of 12 -inch aperture, which, after Lamont's test in his own tube, was pronounced superior to that of the Munich telescope. It was mounted, purchased for about 9,400 dols., and arrived in Cincinnati in 1845.

The Astronomical Society of that town meanwhile had secured from their fellow-citizen, N. Longworth, the gift of four acres of ground on one of the beautiful and commanding hills on the east of the city, and a fund of 11,000 dols. in shares of 25 dols. each.
Prof. Mitchell, on his return, devoted his whole energies to the erection of an observatory. Its corner-stone was laid November IO, 1843, on the site given by Longworth,
on Mourt Adams.
The observatory presented a front of eighty feet, ornamented with a Grecian Doric portico, and a depth of thirty, showing a basement and two storeys, with a central dome, covering an equatorial room twenty-five feet square, the roof being capable of entire removal when observations were to be made. The object-glass of the telescope had, as we have said, an aperture of twelve inches; its focal length was seventeen feet.
The equatorial room received the Munich instruments in March 1845. Prof. Mitchell began his labours with the enthusiasm of hope. Other necessary instruments were received: a 5 -foot Troughton transit, lent by the Coast Survey, an astronomical clock, presented by Mr. $\mathrm{M}^{\mathrm{G}} \mathrm{Grew}$, of Cincinnati, and a chronometer lent by Messrs. Blunt, of New York. At the request of Prof. Bache, the telegraph company connected the observatory with their stations for the determination of longitude, Cincinnati being then a central point in such work. The Astronomer Royal, under whose instruction Mitchell had passed three months in 1842 , urged, in an encouraging letter, that "the first application of his meridional instruments should be for the exact determination of his geographical latitude and longitude, and that his observing energies should be given to the large equatorial." With this advice, he directed his attention largely to the remeasurement of Struve's double stars south of the equator.
Airy and Lamont had invited him to make minute observations of the satellites of Saturn, since in the latitude of Cincinnati the planet is observed at a more favourable altitude than at Pulkova, twenty degrees farther north. To these, and chiefly "to the physical association of the double, triple, and multiple suns," he gave his close attention. He made interesting discoveries in the course of this review. "Stars which Struve had marked as oblong, were divided and measured; others marked double were found to be triple." He proposed a new method for observing, and new machinery for recording north polar distances or declinations. Prof. Peirce reported favourably on this method at the meeting of the American Association in 1851 , and Prof. Bache, as Superintendent of the Coast Survey, indorsed their approval in his report for that year, presenting also a full account of work done by the new method, in observations made by the enthusiastic astronomer and his patient wife, who assisted him throu;h all. It was claimed that the results rivalled the best work done at Pulkova. Mitchell was the first "to prepare a circuit interrupter with an eight-day clock, and to use it to graduate the running fillet of paper;" and to invent
and use the revolvin:? disk chronemaph, for remeling the dates of star signals. Irinfs. Bache and Walker had declined to adopt the fins of these improvements in astronomical appliances, through an apprehension of injury to the astronomical clock." Mitchell's work proved the apprelucnsion to be groundless. His revolving disk is an and instruments ion. To the perfection of such methods and instruments, togethcr with the routine work of obserin outside lave all the cnergies not of necessity employed Unhappily these, at an carly date beca for his support. ing. For the Astronomical date, became almost absorbobservatory and their director heciety, having secured their for his support. Mitchell had failed to secure a basis in the Cincinnati College: in refed on his professorship burnt down. He then relied on ye trs the college was tures. He published the Sider publications and lecthree volumes. He delicered lecth ilisscuscer, a work of beauty in the chief cities ered lectures of rare power and enthusiasm by these lectures Union. He stirred up an ments resulting in thecures, which quickencd the moveobservatorics in the establishment of some of the first support, unhappily for the observatory, he was compelled to accept the position of chief engineer of the Mississippiand Ohio Railroad from $18+8-52$; and finally, in 1853 , that of director of the magnificent Dudley Observatory at Albany, New York. He did not, however, remove from Cincinnati till I859. In IS6I his country claimed him from astro. nomy for her own service. The observatory remained in charge of Mr. Henry Twitchell, of Cincinnati, who was Mitchell's chief assistant for twelve years
On February i, i869, Mr. Cleveland Abbe, formerly employed at the Pulkova Observatory, and more recently at the United States Naval Observatory at Washington, accepted the place of director. His first annual report submitted a plan of wide and useful astronomical and magnetic and gcodetic investigations. On these he entered vigorously: He first adopted for the United States the issuing of daily meteorological bulletins, now so widely known as adopted and used by the United States Signal Scrvice Bureau.
During the years since Prof. Mitchell's leaving the institution, its future had appeared dark enough. In taking charge of the Dudley Observatory in 1859 he announced his expectation that "the Cincinnati Observatory was soon to be placed on a permanent foundation, and that cach observatory would be occupied on a star catalogue down to the tenth magnitude." But it is not surprising that the interval of the war should retard the plans he had formed, and prevent, under all circumstances, their subsequent execution by his successors.

But in 1870 a movement wis orisinated by Abbe, which, at the time this article was written, promises by its development to secure resuits worthy of the noble founder of the observatory, and of the West. A tripartite agreement has been secured between Mr. Longworth's heirs, the Astronomical society, and the city, by which the sate of the old site was permitted, and the city pledged to maintain the obscryatory in connection with the university original investigations, and not mere celucation.al uses bcing guaranteed as its object. On Mount lookout, one, of the highest points in liamilton County adjacent to a park not likely to be built up to the injury of astronomical observations. the corncr-stone of the new observitory was laid, Ausust z^{*}, by the mayor of (incinnati. The obser.
 It will be built of brick, trimmed with fieestane fin pier of the Munich cyantial is to be of solal brick, with like capping ; its heis iht joft., and its dimuter 1-f.. Wha iron revolvin!s turret dome adds halt a storey. the mat dional instruments occupy the winss.
The whole new enterpitio owes its sucices thus tar to the munificence of Mr. John Kilsour, of (incimuati, who granted the site and a libaral grant of money. (incinna
holds that she has good ground of expectancy of success. What they need, what every observatory needs, is, first of all, an astronomer with provision for his maintenance, that he may be "free from other avocations and cares."

Fig. r.-Ormsby McKnight Mitchell.
A true astronomer, then, first of all-before even the most imposing edifice or instruments. An astronomer with a true conception of his work, with the splendid objects before him, and the advantages of our day, may largely repay the benefactions of the liberal by the lasting benefits not of mere theory, but of the practical usefulness of discovery.

Fig a. The Fignatiat ot Lamemata Obsen batury.
The U.S. Nintial ()/icaratory.-The history of this Observatury is not a little remarkable.

Cluee on the isle on which stood what was known as the "W'whington property'," near the old Cipitol, stood,
in 1833, an unpretending wooden building but 16 ft . square, erected at the expense of a lieutenant of the navy, and equipped with a 5 -foot Troughton transit instrument. This was the United States Naval Observatory in embryo.

The transit was one of the instruments made for the Coast Survey, under the supervision of Mr. Hassler, its first superintendent, during his long detention in England, by the breaking out of the war. Returning only in 1815 , and the survey itself being soon arrested by Congress, his instruments and the "fixed observatory," the establishment of which he was the very first in the United States to propose, rested quietly in statu quo ante bellum. In 1832 the Coast Survey was revived ; but as an observatory was peremptorily forbidden by the law, the transit was lent to Lieut. Wilkes for his observations.

Lieut. Wilkes's observations were, however, at first only for obtaining clock errors, needed for determining the true time for rating the naval chronometers then under his charge. This testing of all the chronometers and other naval instruments used by the United States ships (begun in 1830 by Lieut. Goldsborough) had been at once found a wise and useful economy for the navy. The Secretary, therefore, established this little receptacle for charts and instruments by placing an officer in charge ${ }^{6}$ permitting him to build his own little observatory and do

Fig. 3.-New Cincinnati Observatory-Front elevation.
his own work. The " Depôt" was the christening then given to the establishment. This was all that Wilkes or any one of his successors dared call it even as late as 1842, when establishing the present astronomical institution.

But in 1838 a new call was made upon the Depôt, which turned the whole current of its future. The exploring expedition was about to sail for the South Seas. It would be of prime importance, in determining the longitude of places to be visited by the expedition, that corresponding astronomical observations should be made at home, to be compared on its return. Secretary Paulding gave the observations in the United States to Lieut. Gilliss, Wilkes's successor at the Depôt, and to Prof. Bond, of Cambridge. For the years 1838-42 Gilliss worked most accurately and unremittingly. With the help of an achromatic telescope, added by the Navy Department, and the transit before mentioned, he observed and recorded 10,000 transits; and his observations, afterwards tested by Prof. Peirce, were ranked by him among the highest then made. They are in the libraries of the astronomers of Europe. They procured, in fact, the founding of the present Naval Observatory.

For this, however, hard work in abundance was to be done. Gilliss urged the unsuitableness of his building erected alongside of Wilkes's wooden square room, and his want of space to erect a permanent circle. He won
over the old (Navy Commissioners and the indorsement of the Secretary to their recommendation for something better. He pressed the Naval Committees frequently and closely, but enlisted scarcely one, except Mallory, of the House. Almost to a man they kept away from the Depôt, although it was " so near," and no help seemed available. But a celestial visitant now appeared, as, singularly enough, another did in 1843 for the benefit of the Cam-
bridge Observatory. It gained the day for Gilliss, and for an observatory at Washington. He had closely observed Encke's comet, and read a paper on it before the National Institute. When he made, shortly after this, his last intended visit to the Senate Committee, Preston of South Carolina asked, "Are you the one who gave us notice of the comet ? I will do all I can to help you." In a week a bill passed the Senate ; and, strangely enough,

Fig. 4.-The United States Naval Observatory, Washington.
passed the House also, without discussion, on the last day of its session. It appropriated 25,000 dols. ; but still "for Depôt of Charts and Instruments."
But the Secretary of the Navy was no longer officially bound by the name. The report of the committee, which secured the bill, was so expressly in favour of astronomical, meteorological, and magnetic objects, that Congress
was justly understood to sanction them. Gilliss was sent abroad for instruments and plans for an observatory.
The site chosen by President Tyler for the building was fraught with historic interest. The square embraces a little more than nineteen acres in measurement. It is now tastefully laid out and ornamented. Nearly central within it stands the building represented

in Fig. 4. It is on the second highest eminence within the city limits, commanding the view of the public buildings, of the neighbouring cities of Georgetown and Alexandria, and of Arlington.
of In 1844 Gilliss reported the completion and equipment of the central building. He had secured the excellent
equatorial, the meridian circle, the transit, prime vertical, and mural circle on which so much valued work has bsen done. He had begun a library, to which nearly 200 volumes of the highest standard works were presented by the Greenwich, Paris, Berlin, and Vienna institutions.

1. MONLMINT TO YEREMIAH MORROCK:S

AT the last micting of the Royal Astronomical Sociely Jrof. A:lams said that he had been requested to call the attention of the Society to a petition which was about to be presented to 1)ean Stanley. It would speak for itself, and he would therefore read it to the meeting. It ran this :-

To the Very Reverend the Dean of Westminster. Reverend Sir,

It appears to us that the approaching transit of Venus offers a fitting occasion for the erection of a memorial to Jeremiah Horrocks, curate of Hoole, in Lancashire, to whom the science of astronomy is indebted for the earliest observation of Venus upon the sun's disc. He predicted, by his own calculations, the transit of the year 1639, which he and his friend Crabtree had the exclusive privilege of witnessing. The labours of $\mathrm{Hoi}-$ rocks in connection with this memorable occurrence, as well as the originality of his views on other astronomical subjects, have, by the unanimous consent of scientific men, assigned to him a high place in the roll of illustrious astronomers who adorned Europe in the seventeenth century.

We therefore venture to request your permission to place in Westminster Abbey a tablet or some other memorial of Jeremiah Horrocks.

We have the honour to be,
Reverend Sir,
Your obedient Servants,
(Signed) by the Astronomer-Royal, the President of the Royal Astronomical Society, and a number of the most distinguished Fellows of the Scciety.

Prof. Adams remarked that he need not say anything further to recommend the signature of the memorial to the Fellows of the Society. It was perfectly impossible to cstimate too highly the credit due to IIorrocks, especially when his age and opportunities were taken into account. Not merely had he been succesiful in observing the transit of 1639 , but he had first corrected the tables of Yenus, from his own observations, and had thereby rendered his prediction of the transit possible. Had he merely followed the tables which had been published by Kepler, he could not have predicted the transit, and it would probably have slipped by unobserved. And this was by no means the only astronomical service rendered by Horrocks. His discovery of the law of libration of the moon's aposec constituted an important advance in the lamoledge of the lunar motions. In fact, Sir Isaac ficwton, when riculy half a century afterwards he attempted to explain those motions on mechanical principles, could not find any more convenient representation of the motion of the moon's apse than that which had been given by Horrocks. He had, therefore, great pleasure in bringing this petition to the notice of the Fellows of the Soricty

\% MASMO OF VENUS

A^{1}I the mectinir , f the French Aodemy of June 29, M. Dumas :whe in the Report of the Commission chaned with makin: the necessary preparations for observing the appow hing transit of V ©nu:

 Sall capedition is mador the chatere of a chid, the com-

 and the sisth to M. Hemult. The obsersers attosecthe number twenty luc, wiompaniced by twenty-five assistants. M. Bouquet de lat large has alrealy left; M.

Fleuricl is on the point of setting out for Pekin. M. Janssen loses no time in leaving for Yokohama, from which he will not return directly to E:urope, having undertaken to ${ }^{\prime \prime}$, to Siam to observe the eclipse which will be visible there.

As Camploell and St. Jaul Islands are perfectly barren, the expeditions lestined for them have been specially cared for, locing furnished with fucl and provisions for six months.

A sum of 300,000 francs was allotted by the State for the whole of the expeditions; but this sum having been found insufficient, the Minister of Marine has abundantly and generously provided for the wants which have been pointed out by the Commission. Indeed, the French Government has acted in the most handsome manner towards the various expeditions, which have been furnished with everything that is in any way necessary.

As to instruments, besides those which have been specially constructed for the enterprise, the depôt of Marine has placed at the disposal of the expeditions a large number of instruments, among which are thirty-one tested chronometers. Four of the expeditions have each reccived an equatoreal of 8 in . No expedition from any other country, the Report states, will be possessed of instruments so powerful. Equatoreals of 6 in . have been furnished to the six expeditions, and telescopes of the same power as those adopted by the various expeditions of other countries.

Various photographic apparatus and methods of observation have beer proposed. The Commission has decided in favour of the system of M. Fizeau, who has himself superintended the construction of instruments and initiated the operators in all the practical details which they ought to follow.

ON HAPORISING METALS BI ELECTRICITY

THE following simple results obtained by frictional electricity may be of interest, perhaps too of use in the investigation of certain minerals and the action of intense heat upon them.

The description of a characteristic experiment is all that will be necessary to cxplain the process and to show how similar results may be obtained from other substances. A very fine thread of sheet platinum, of about an inch in length, is placed between two microscopic slides of glass, and two pieces of thin sheet copper with rounded ends are placed in contact with the extremities of the platinum, the copper being any convenient length and breadth, so as to extend beyond the glass slides, but not to be as broad ; a charge of electricity from about eight square feet of Leyden jar is passed through the metals; the effect of the heat from the charge is to vaporise the platinum, which is instantly condensed in a transparent layer upon the cold glass. The laver can be investigated by a microscope, and employed in various ways to determine the character of the metal and its effect upon reflected or transmitted light.

Copper, tinfoil, tinfoil amalgamated with mercury, gold and silucr, can be used in a similar manner, but they produce layers very dissimilar in appearance. To act upon fincly-ground substances, such as vermilion, sulphate of antimony, sulphur, \&ic., a line of the powder must be matic and the charge be passed through in the same wav as throush the platinum.
lint of the vipour escapes from between the slides, but this can casily be condensed upon each of two pieces of llus placed in such a way as to intercept the vapour as it passics from hetween the two slides; it is then condensed in a lons but narrow line. The manner in which the ghas is allicted by the heat, and the concussion produced by the exprusion of the vapour, are worthy of notice.
considerable difficulty will be found in vaporisiag copper, doubtless from its being such an excellent con-
ductor．Some of the powdered substances appear to require a small spark to be passed through them before they allow a larger charge to pass，as if the particles needed polarisation．

G．H．Hopkins

THE HERPETOLOGI OF NEU GUINEA＊

D^{K}R．ADOLF BERNHARI）MEYER，who，as most of the readers of Natcre：will be aware，has

 lately returned from a very successful expedition to New Guinca，has published in the＂Monatsberichte＂of the Berlin Academy a short account of his herpetological dis－ coveries，which present several points of interest．Pre－ vious investigators of the natural history of this wonderful land have paid more attention to its birds than to its reptiles and amphibians－－a circumstance perhaps scarcely to be wondered at in the land of paradise－birds and so many other anomalous forms．Dr．Meyer，however，while he has by no means neglected the class of birds，as shown by his recent communications upon that branch of zoology to the Academy of Vienna，has likewise paid much atten－ tion to the representatives of the inferior orders of rep－ tiles and batrachians which he met with in New Guinea and the adjacent islands．Although this branch of the Papian fauna is well known to be comparatively poor， Dr．Meyer＇s labours have been by no means without result． Of sixty－three different forms belonging to these orders of which he collected specimens，thirty－four have turned out to be new to science；and of the remaining twenty－ nine，the greater part were previously not known to occur in this locality．Of tortoises，besides the marine Chelone imbricata， only one was obtained in New Guinea，which，however， was of a new species belonging to an Australian form． Of lizards，upwards of thirty species were collected， amongst which Australian types are again predominant． Amongst the sixteen serpents met with in New Guinea， Jobi，and Mysore，were several of special interest．The Australian carpet snake，Morclic，is represented by an allied form，proposed to be called Chondropython，besides which two other new genera are described，one belonging to the boas，and the other to the colubrine snakes．
Of batrachians，Dr．Meyer collected specimens of nine species in New Guinea and its islands，five of which he considers to be hitherto undescribed．
It will be thus evident that Dr．Meyer has made a by no．means inconsiderable addition to our knowledge of this branch of the Papuan fauna．At the same time it cannot be supposed that we are，as yet，by any means perfectly acquainted with the herpetology of New Guinea when so little is known of the vast interior of this strange
country．

COGGIA＇S COMIET

K $^{\mathrm{N}}$ observation taken here on July 4，shows so close an agreement with the position calcu－ lated from my parabolic elements in Nosition calcu－ x．p．I49），that it appears unlikely the comet can have so short a period as 137 years，and consecquently that，notwithstanding similarity of orbits，it prolably is not identical with the body olbserved by the French
Jesuits in China in July 1737．Bctween April Jesuits in China in July 1737．BCtween April 17，the date of discovery，and N Ny 4 it had traversed an arc of
just 90° of true anomaly，and if any decided cllipticity just 90°
existed，of true anomaly，and if any decided cllipticity existed，so wide an arc must have shown it，the stellar
appearance of the nucleus having admitted of very cxacit

[^0]
observation throughout．On July 4，twenty－one dilys after the last position I cmployed in determining the orbit，the computed right ascension differs only $20^{\prime \prime}$ ，and the derli－ nation $144^{\prime \prime}$ from the obscrvation．In all prolabibility， therefore，the comet has not visited these parts of space
within many centurics． within many centurics．
Measures of the
Measures of the diametcr of the nucleus on July 4 gave
nearly 14 seconds of arc，the distance of the comet neme，by my clements，being 0.6016 ，which indicates a
time real diameter of about 3,750 miles；it has，perhaps， slightly contracted within the last fortnight．
This morning Mr．IV Plummer，at this obscrvatory， found the comet equal in brightness to a P＇ersci，a second magnitude star in Argelander＇s Atlas．
I may here mention that for calculation of actual di－ mensions or distances I take the sun＇s parallax，after Ai－
Leverrier $=8^{\prime \prime} .86$ ，which Leverrier $=8^{\prime \prime} \cdot 86$ ，which，combined with Capt．A．R． Clarke＇s value of the carth＇s equatorial semi－diameter，gives for the mean distance of the earth from the sun， $92,268,000$ miles，a figure that I believe to be as probable as any now to be attained．The moon＇s mean distance from the earth，adopting Prof．J．C．Adams＇s parallax，is thus found to be 238,800 miles，or $60 \cdot 273$ equatorial radii of our globe．

Mr．Bishop＇s Observatory，
Twickenham，July 7

DE CINDOLLE＇S PROPOSED＂PHISTO． LOGICAL GROUPS＂OF PLANTS

IN the Archizes des Scienies Physiques et Naturelles． No．I97，II．de Candolle proposes a new classification of the regetable kingdom，based on the physiological re－
lations of plants to heat and moisture，which he lelie lations of plants to heat and moisture，which he belieres affords a means of tracing the connections of recent and fossil floras in a way which neither botanical nor geographical．grouping do．He makes six divisions altogether．
I．The first of his＂physiological groups＂consists of those which need much heat and much moisture，and to them he gives the name Hydromegatherm，or，for short， Megatherm．These at present live in the tropics， and sometimes as far as $30^{\prime \prime} \mathrm{N}$ ．and S．，in warm and damp， valleys，where the temperature is never bslow $20^{\prime \prime} \mathrm{C}$ ．and the rains never fail．The predecessors of the existing Megatherms were widely spread，but at the commence－ ment of the Tertiary perind they became confined pretty－ much to the equatorial zone．Their botanical charasters vary considerably，and they are represented in almost all cases by different species in 1 sia，Africa，and Ainctica． The most characteristic families are Menispermacua． Bytneriace：e，Ternstremiacex，Guttifere，Sapindacio： Dipterocarpec，Sapotaccie Apocinaceic，Aristolochacie： Begoniace：c，Piperacer，がc．
2 ．His second sroup requires heat with dryness－Vero－ philes he proposes to call them．Their present distrilu－ tion is in dry and warm restions of from $2 \omega^{\prime \prime}$ or 25° to 0^{\prime} or 33^{-10} on each side of the equator（cheir particulit districts are carefully noted）．The group includes a l．ats：
 I＇almac，Myitacere Isclepiadacear，I uphortiace s：but tio

 trees，few annuals，and the aspect ，f cegetution is but meagre．The palantulysy of the rewinns whele \ero－ philes now evist is to．Ihtele known for us to be able to trace the former miarrations of phats forming．this
group．

3．The third group includes those phants whi h a cequir：
moderate heat，is the a moderate heat， 15 t． 3 （．）and moderate monture， and are named Mcomerms．They ．ne now fomed nows：il the Mediterranean，in the slighty clevillon resinns of
India，of Chinin）

the Azores，and Madeira，and in the plains and low valleys of Chili，Monte Video，Tasmania，and New Zealaid．Their characteristic families are the Laurinc：e， Juglander Ebenace：Myricaca，Marnoliace：r，Aceracce， 1 Lippocantancar，C：Mmpanulaceer，Cistiace：e，Philadelphiniac， Hypericaceax，mixed however with a large number of Leguminosa，Compositec，Cupuliferce，Labiatie，\＆c．
4．The fourth group is of plants of temperate climates having annual means of 14° to $0^{\circ} \mathrm{C}$ ．，and these are named Microtherms．In Europe they occupy plains from the Cevennes and Alps to the North Cape，in Asia from the Caucasus or Himalaya，to 65° ，in America from $3^{8^{\circ}}$ or 40° ，to（ $60^{\prime \prime}$ or 65° ．They are also met with in Kerguclen， Campbell，and the Malonine Islands，and the mountains of New Zcaland．No characteristic families are enume－ rated，as it is the absence of forms that are usually Meso－ therms and above all of Megatherms or Xerophiles，which distinguishes this group．

5．The fifth group is of plants living in arctic or antarctic regions，or high on mountains in temperate regions．They need but little heat，and hence are called Hekistotherms． One of their important characteristics is that they can endure the absence of light during the time they are covered with snow．Though no family belongs entirely to this group，Mosses，Lichens，Grasses，Crucifers， Saxifrages，Roses，and Composites bear a large propor－ tion to the whole．Some species of Betula，Salix， Empetrum，Vaccinium，and certain Conifers also are Hekistotherm．
6．The sixth group includes exceptional plants ；those requiring a mean annual temperature of more than $30^{\circ} \mathrm{C}$ ．， for which the name Megistotherm is proposed．
After the description of his proposed groups，M．de Candolle at once faces an objection he sees is sure to be raised，and that is the difficulty of classing a species under any one particular group．His reply is that it is always possible to do so if due attention is paid to the conditions under which it lives，both by studying the climatal conditions of its native country，and by cxperi－ mental culture．Fossii \ddagger lants，he admits，can only be classed by analogy ；but he very justly adds that in deter－ mining their botanic affinities in like manner there is gene－ rally nothing but analosy to rely on，flowers and fruits being wantin！．In answer to the possible objection that there are transitions from one group to another，and that the limits are arbitrary，he is content to reply that though a classification based on botanical characters may be more precise，the limits of sengraphical groups and of geolo－ gical periods are cqually wanting in exactness．

The fact that his physiological groups in no way coincide with established botanical or geographical groups is worth notice．All families that are at all numerous in species are represented in more than one of these physiological groups，and sometimes in them all．To give only one instance，the Primulaceic live in almost all cold and temperate regions，and yct the Nyrsi－ neaceac，which are their woody representatives，are found in the tropics．liven in genera which have not many varis ic＇s of form，the same is the case．The Cassias，fur example，are mostly Megatherms or Meso－ therms，yct cissint marylandicu flourishes at Geneva， where the winter minimum is sometimes $25^{\circ} \mathrm{C}$ ．some willows flourish far north，yet Sillix liumbulttanial is met with in the district of the dmazon，and Salir sufigf ：口ows in Exypt．
Is there any connction between the physiological properties of plants and the form of their orens of ve：，tation？M．de（ andolle thinks not．For crimple： there is min musnisable dilficues between the forms and tisules of herne which we have to peserve in hot homes and there when will ：！，we in the open air．Therean
 is no difed a dation of case and dited betwen the form and those physiolegiin il gualities of plants which have
reference to climatal conditions．There is rather a depen． dence on some cominon raulse which has influenced both sets of phenom na，which M．de C＇indolle refers to heredity． Λ species has a particular form because its ancestors had a form more or less the saune．It has certain plysiological qualities with reference to climate because the exterior conditions which have been imposed on it through innu－ merable ages live prevented other qualitics from being developed and have secured the heredity of those which have enabled it to live．This，he considers，is the key to the explanation why a flora of any particular climate does not present in the totality of its species any distinctive peculiaritics．Arctico－Alpine plants are of different familics，and it is impossible to point to any development of an organ which cannot also be met with in tropical plants．The ascendants of Arctico－Alpine plants have lived together，and only certain of them have lived to－ gethcr through changes of tempcrature．Physiological qualities may be changed in length of time when exterior conditions hatve not changed in such a way as to cause a species to perish．M．de Candolle lays great stress on the fact we learn from the experience of horticulturists，that it is much more rare to obtain any change in the power of a plant to endure modifications of climate than it is to ob－ tain change of form．A period of greater length than the historic period of Europe seems to be needed for a modi－ fication of physiological conditions；witness the fact that for some 3,000 years the date has been grown in Greece and Italy without any success in getting the fruit to ripen． The fact that physiological conditions are so much more permanent than form is to M．de Candolle a strong argu－ ment in favour of his physiological groups．The impos－ sibility of making geographical groups perfectly true，to－ gether with the fact that the climates of each region have changed from one period to another，is also claimed as additional argument in favour．

For the purpose of showing that these groups make the facts of geographical botany，both of geological and pre－ sent times，more precise and more easy of discussion as regards general laws，their distribution in Europe since the commencement of the Tertiary period is taken as an illustration．The works of Gœppert，Heer，Unger，Garo－ vaglio，Ch．T Gaudin，Saporta，©c．，have supplied M．de Candolle with his data，and on comparing the fossil floras with recent forms he has had no difficulty in classifying them according to his groups．He，of course，goes on the hypothesis that like forms have sprung from like an－ tecedents possessing like hereditary physiological pro－ perties．As an illustration that any uncertainty there may be is within limits，he points out that though a fossil Ficus might be taken for a Megatherm or Mesotherm，it could never be mistaken for a Microtherm or Hekisto－ therm，since we do not now know any Ficus capable of resisting such cold．A fossil Betula may have been MII－ crotherm or Hekistotherm，but not Megatherm．

Acting on these hypotheses he has reduced his results to taluular form．prefacing the remark that his great diffi－ culty has been to class the different fossil toras according to geotorical periods that could be relied on ；stratifica－ tion and not palicontology being the only safe basis of relative age srouping．
Difierent climates prevailed in different parts of Europe during the Tertiary period as well as now and he urges it must lic recollected that when two fossil floras（faunas equ．lly so＇which are much alike are met with in widely sepmated latitudes，they cannot have been contempo－ rancous．In the same latitude，too，difference of eleva－ tion will have had a similar effect to difference of latitude． Fluras of quiec uiliticent facties may therefore have been contempronancous．

In trimscibing the following table and explanations we have given only the name of the author who has described the floras． 11 ．de Candolle gives exact references to the works whete the descriptions may be found．

 present innoilddry of Existins and lossil Floras

EXPLANATION OF THE TABLE
A. - Misatherms.
A. Existing Megatherms.
A. Beds of Monod, Paudeze (Heer). Mesotherms are mixed with Megatherms.
A^{2}. "Gypses d'Aix." Megatherms with Mesotherms C ${ }^{10}$
A^{3}. Chiavone and Salcedo (Massalongo). Mesotherms are mixed with Megatherms but the furmer are in large pro-
portion. portion.
A4. "Sables supérieurs du Soissonnais" (Watelet), containing a large proportion of Megatherms. The stratigraphical position of these beds, it should be noted, i., inferred from palæontological evidence rather than from superposition.
A^{5}. Bolca (Massalongo), although mixel with Mesotherms, Me. gatherms preponderate.
A^{6}. Sheppy (Bowerbank, Ad. Brongniart, I yell).
13.-Kixistin!. Aerophilis.

The countries where fossil floras of this character are to be
expected have not heen worked geologically, and no bed cuntaining Nerophiles i:; known.
C. Minelhims.
C^{C}. lixisting and recent M sutherms:
C. Many floras in the south-cast of France worked out by
('2. Meximicux (saporta).
C^{3}. S. Torge, Madeira (Ileer).
C^{+}and C^{5}. South-east of Fr . occur in his lists, but the (Saporta). Some Megatherms each flora.
C^{6} I Jicdmont (Sismonda).
C^{7}. (Eningen (Hecr).
C: Monod, l'audeze (see A ${ }^{\prime}$).
C^{\prime}. Dantzig (Heer). The lower bed contains Sequoid, Smilax, Myrica, Ficus, Laurace:e, Juglandace: Sc.
C1". "Gypses d'Aix" (sec Λ^{*}).
C^{11} Chiavone and Salcedo (see Λ^{3})
$\mathrm{C}^{1,2}$ Bolca (sec Λ^{5}).
C^{13}. Spitzhergen (Heer), mixed with Microtherms D^{4}
C^{I}. I Iceland (Heer), mixc 1 with Microtherms D
I). Ahertherms.
D. Existing ani race Mi Microtherms.

D1. Cannstadt alluvial deposits.
D^{2} Laminated lignites of Durnten (Heer).
D^{3}. Cromer forest bed (Lyell, I Ieer).
D^{+}: Spitzbergen (Heer), mixed with C^{13}
D^{5}. Iceland (Heer), mixed with C^{14}.
E.-Incisistothermes.
E. Existing Hekistotherms.
E^{1}. Southern Sweden, Denmark (Nathorst).
E^{2}. Meckl n^{\prime},urs and Cromer below the forest bed (Nathorst).
E3. Glacial clay of Schwerzenbach-between Zurich and Con stance-(Nathorst).
E^{\ddagger}. Superficial diluvium of Spitzbergen (Heer).

Signs.

+ When two groups are united by the plus sign it means that at least one-fourth of the flora is made u_{p} of the second group indicated.
? The note of interrogation is used to imply that the geological age of the bed is doubtful.
Setting out with the belief that at a most remote period there was all over the globe a high and nearly uniform temperature, followed by a gradual cooling and the development of diversitits in climates M. de Candol'e procceds to show that the earliest plants must have been Megistotherm. With the exception of the carboniferous, we are too imperfectiy acquainted with the floras of Primary and Secondary periods to trace their distribution. At the commencement of the Tertiary period Megatherms occupied all the then land surfaces up to 55° The other groups became gradually separated, and migrated as increase of cold drove them from their former areas. The means by which this wascificted is a matter of hypothesis, but it is not hypothesis to swe that the various groups never sprung from a single iroup. It cannot be proved that there formerly uxisted a single form of veretation, while M. de Ciandolle urges that the surface of the slobe certainly had formerly one uniform climate. The distribution of physiological groups indicates two sorts of floms, one migratory, the other fixed. Intertropical floras have hat but few vicissitudes, aretic and antaretic hate experiented many.
We submit this riaim of M. de c.intolle's proposal and illustration whout at peesent offering any remaths.

$$
101 \%
$$

 of the biatsit A sociation at liclat hins been issate The First Ceneral Meetne; will le held on Wchlucolay, Aus: 1), at
 the chair, and liot. Tynd.ll, l․K.S., I'rosident-clect, will assume
the presidency, and deliver an address. On Thursday evening, Aug. 20, at $8 \mathrm{r} . \mathrm{m}$., there will be a Soirée ; on Friday evening, Aug. 2I, at 8 r.m., a Discourse by lrof. Huxley, F.R.S. ; on Monday evening, Aug. 24, at S. 30 P.M., a Discourse by Sir John Lubbock, Bart., M.P., F.R.S. ; on Tuesday cvening, Aug. 25, at 8 r.m., a Soirée; on Wednesday, Aug. 26, the concluding General Meeting will be held at 2.30 P.M. The following are the officials of the various sections :-A, Mathematical and Physical Science.-President : Rev. Prof. J. H. Jellett, M.R.I.A. VicePresidents : Prof. Everett, F.R.S.E. ; Prof. Purser, M.R.I.A. Secretaries : Prof. W. K. Clifford, F.R.S. ; J. W. L. Glaisher, F.R.A.S. ; Prof. Herschel, F.R.A.S. ; Randal Nixon; G. F. Rodwell, F.R.A.S. B, Chemical Science.-President: Prof. A. Crum Brown, F.R.S.E. Vice-Presidents : Prof. Maxwell Simpson, F.R.S. ; Dr. Debus, F.R.S. Secretaries : Dr. J. F. Hodges, F.C.S. ; W Chandler Roberts, F.C.S. ; Prof. Thorpe, F.R.S.E. C, Geology.—President : Prof. Hull, F.R.S. VicePresidents: Prof. Harkness, F.R.S.; Prof. Geikie, F.R.S. Secretaries : Louis C. Miall ; R. G. Symes. D, Biology.-President : Prof. Redfern, M.D. Vice-Presidents : Dr. Hooker, C.B., Pres. R.S. ; Sir W. R. Wilde ; J. Gwyn Jeffreys, F.R.S. Department of Anatomy and Physiology.-Prof. Redfern (president) will preside. Secretaries : Dr. J. J. Charles ; Dr. P. H. Pye-Smith. Department of Zoology and Botany.-Dr. Hooker, C.B., Pres. R.S. (vice-president), will preside. Secretaries : Prof. W.T. Thiselton-Dyer, Prof. R. O. Cunningham, F.L.S. Department of Anthropology.-Sir W. R. Wilde (vice-president) will preside. Secretary : F. W. Rudler, F.G.S. E, Geegraphy, -President: Major Wilson, F.R.S., Director of the Topographical Department of the Army. Vice-presidents: Sir Bartle Frere, G.C.S.I., K.C.B., F.R.G.S. ; Admiral Ommanney, C.B., F.R.S. ; Major-General Strachey, F.R.S. ; Secretaries: E. G. Ravenstein, F.R.G.S.; E. C. Rye ; J. H. Thomas, F.R.G.S. F, Economic Science and Statistics.-President :——. Vice-presidents : W. Donnelly, C.B. ; Prof. T. E. Cliffe Leslie. Secretaries: F. P. Fellowes, F.S.A.; E. Macrory. G, Mechanical Science.-President: Prof. Jamcs Thomson, F.R.S.E. Vice-presidents: Sir John Hawkshaw, F.R.S. ; Sir Charles Lanyon. Secretaries: James Barton; E. H. Carbutt ; J. N. Shoolbred, F.G.S.

THE announcements for holding the twenty-third meeting of the American Association for the Advancement of Science at Hartford, Connecticut, on Aug. 12, have been issued by the secretary, in which we are informed that the head-quarters will be at the State House. Dr. John L. Leconte, of Philadelphia, is president of the coming meeting; Prof. C. S. Lyman, vicepresident ; F. W l'utnam, of Salem, permanent secretary ; Dr. A. C. Hamlin, general secretary ; and William S. Yaux, treasurer. The IIon. II. (. Robinson is chairman of the local committee.

A marbie replica of Woolncr's remarkably fine bust of the late Prof. Sedgwick has just been placed in the hall of the Geological Museum in Jemen Street, the gift of a lady who wishes to be anomyous. The school of Britith deology is now well repiesented in thi, muexum liy the bust of the followin: geologists:-Hutton, Playfair, Sir James Hall, William Smith, Greenough, Duckland, be la Beche, Forlos, Murchiwn, and sedgwick.

It will be heard with wem that Itr. I. Hughes bemell has been obliged, on acoment of his healh, to intinate his asignation of the chair of thysinh.ey in the l'niversity of lifmburgh. It is understood that 1r. Mikembrick, Hr. Bedl lettipew, and Prof. Rutherford will ofle themelves the the vacant chair.
 Alaliain) conlinms, liy a acmanhable cabe wembin!: in his owil practice, the pervious ulaservations of Wiahel and (Brann, of
the occasional occurrence of small cysts in the mucous membrane of the vagina of pregnant females containing some kind of air. These cysts he proposes to call air-cysts. When they are opened the air escapes with a report or crack. These observations, if verified by subserguent inquirers, will form a remarkable addition to the pathology of gaseous secretion or production.

The Observatory at Kiel, of which I)r. C. A. F. Peters is director, is to be removed to Altona, in order to be in closer connection with the University.

Tire death is announced of Mr. Henry Grinnell, of New York, whom the Jinglish public will remember in connection with the Grinnell Arctic Expedition.

At the distribution last week of prizes at King's College, Mr. W E. Forster, M.P', gave an address in which, among other subjects, he contrasted the expense of educating a boy from the age of nine to twenty-two at the older schools and universities with the cost of education during the same period at King's College; in the former case it is between $1,600 \%$. and $\mathrm{I}, 800 \mathrm{l}$., in the latter only 400 l . Mr. Forster also referred to the superior advantages, in some respects, of German over English schools; he might at the same time have pointed out that a German boy can obtain the best education which his country can give at a cost of something like $5 l$. a year, which for the thirteen years between nine and twenty-two amounts to the ridiculously small sum of 65%.

At St. John's College, Cambridge, in April 1875, there will be offered for competition an Exhibition of 501 . per annum for proficiency in Natural Science, the Exhibition to be tenable for three years in case the Exhibitioner have passed within two years the Previous Examination as required for candidates for honours: otherwise the Exhibition to cease at the end of two years. The candidates for the Exhibition will have a special examination (commencing on Saturday, April 3, at I P.M.) in (I) Chemistry, including practical work in the laboratory ; (2) Physics, viz. Electricity, Heat, Light ; (3) Physiology. They will also have the opportunity of being examined in one or more of the following subjects-(4) Geology ; (5) Anatomy ; (6) Botany, provided that they give notice of the subjects in which they wish to be examined four weeks prior to the examination. No candidate will be examined in more than three of these six subjects, wherof one at least must be chosen from the former group. It is the wish o! the master and seniors that excellence in some single department should be specially regarded by the candidates. They may also, if they think fit, offer themselves for examination in any of the Classical or Mathematical subjects. Candidates must send their names to one of the tutors fourteen days before the commencement of the examination. The lixhibition is not limited in respect to the age of candidates, and is not vacated by election to Foundation Scholarships.

There will be an examination at Queen's College, Cambridge, on Thursday, Oct. $\mathrm{S}, 1574$, for an Exhibition for proficiency in Natural science, open to all persons under twenty years of age who shall not huve commenced residence in the University. The tahibition will be of the value of fo!? per annum. Candidates will be required to pass an examination in elementary classics and mathematics. No Exhibition will be given unless the camminers report that a candidate merits such a distinction. lach comdibate must forward to the lresident of the College before the day of camination a certificate of birth or baptism, and a certiticate of good conduct from a graduate of Cambridge, "xtord, or l)ublin. The successful candidates will be required to enter their names on the boards of the College and to commence residence at once Further particulars will be furnished

We the Riv. 1r. Campion, or the Rev. :i. Piric, Tutors of the colloge.

TuF first number of a new journal, which promises to be an important organ on an important subjoct, appeared on saturday
 propues for its object, to collect and digest information relating to the health of the people, now much seattered, and therefore in a condition much less available for reference and study than it might be. It is also to contain original papers in which sanitary foints are discussed in their scientific, social, and legislative aspects: together with reviews of the liritish and foreign literature of the subject. The staff of contributors includes names of many who hold the highest scientific position, and who are well known as authorities on hygienic matters. Miss Octavia Hill and several other ladies are also included ; a paper by Miss Beale, Principal of the Cheltenham College for Ladies, appearing in the first number, while others are promised shortly by Miss Stanley, Miss Hill, and Mrs. E. Maurice. We are convinced that this new journal will fill a gap which has existed for some time ; and, from the introductory number before us, we think that no one will have reason to complain of the manner in which it has been organised and started.
Prof. O. C. Marsh, of Yale College, has directed attention, at a recent meeting of the Connecticut Academy of Arts and Sciences, to the peculiarly diminished capacity of the braincase in some of the Tertiary mammalia of North America. This is most marked in the Eocene genus Dinoceras, an animal which must have been nearly as bulky as a full-sized elephant, and yet its brain could not have been more than one-eighth the average bulk of that in the Indian rhinoceros. In the Miocene Brontotherium the brain-case was considerably large proportionately; and in the Pliocene Mastodon bigger still. These facts have an important bearing on the evolution of mammals, and open an interesting field for further investigation.
An important addition to ornithological literature has just ap. peared in the form of Mr. Sharpe"s "Catalogue of the Birds in the British Museum," of which the first volume, comprising the Accipitres, or Raptorial birds, is before us.
We believe that at a recent meeting of the Council of the Zoological Society it was determined that a new building, on a large and much improved scale, should be commenced next spring and completed during the summer, to contain the lions, tigers, and other large feline animals.
The Senate of the University of London, at a meeting on July I, adopted the following amendment by 17 votes to ro on a proposal to obtain a new charter enabling the University to confer degrees on women :-"That the Senate is desirous to extend the scope of the educational advantages now offered to women, but it is not prepared to apply for a new charter to admit women to its degrees."
The well-known German ethnologist, Dr. A. Bastian, is about to publish a work with maps and illustrations, giving the results of the German expedition to the coast of Loango.
M. Leverrier has asked for an authorisation to attend or to send a representative to the Maritime Congress, the programme of which we gave in a recent number.
The comet is beginning to attract the notice of the gencral public. Telescopes are let on hire in several parts of l'aris to get a view of it.

The balloon of the Observatory of Paris is undergeing repains under the superintendence of M. W. de Fonvielle. It will be used by him in making ascents in order to verify the law of Barometric pressure calculated by Laplace. Trigonometrical
measures will be taken of the balloon by the astronomer of the Paris Observatory. The balloon is a silk one worth $1,600 l$., which was built during the war and was used for making captive ascents by the armard d la 1 airi. It is to be called the Acptume. sicurvirfic ascents are becoming numerous in Paris. Last Frilay a balloon was sent up from La Villette gasworks to try an apparatus invented by M. Jules Godard to ascertain whether the balloon is descending or ascending. The motor of the apparatus is a large horizontal disc, which is pushed by air pressure and puts in motion an electrical signal. The contrivance is rather heavy and bulky, and the rate of motion gives no idea of the numerical value of the movement.

We take the following from the Acadenty:-" Some of the American papers state that Irof. Huxley is likely to be the successor of Prof. Agassiz, at I Iarvard. We hope there is no truth in this. Are the English Universities so rich in really eminent professors, and so poor in money, that they can or must allow Prof. Huxley to go to America in order to find leisure for work ? It would require nothing but the will for either Oxford or Cam. bridge to offer Huxley two or three thousand a year, without anybody suffering for it. There are hundreds of non-resident Fellows, doing no good to the University, doing harm to themselves in resting on their oars, when they ought to be pulling with all their might. Why not give five or ten such Fellowships to men like Huxley, and make the Universities again what they were in the middle ages, the very centres of intellectual force and light in the country? The Universities are so rich that they could beggar the whole world. Will they allow themselves to be beggared by Harvard?"

The first number of the Linsuist and Educational Reviezu, a monthly journal devoted to language, antiquities, science, and education, has appeared; its object is the popular treatment of the various branches of ethnology, folk-lore, and kindred subjects. This first number contains an interesting article on practical education, in which the wider use of the natural sciences in schools is advocated and the disproportionate amount of time spent on the study of the classics deprecated. It also con. tains several other interesting articles in ethnology, scc. We gladly note that the editor intends to give a portion of space monthly to the proceedings and papers of local scientific societies.
At the General Monthly Meeting of the Royal Institution, on Monday, the Secretary reported that Lady Fellows, the widow of Sir Charles Fellows, who was long a member and frequently a manager of the Royal Institution, had bequeathed to the Institution her drawings of Sir Charles's celebrated collection of watches, bequeathed to the British MIuseum.
Arrangemevts have been concluded between the proprietors of the Daily Tilc; raph and Mr. Bennett, proprietor of the Vicu Lork Hical:d, under which an expedition will at once be despatched to Africa, with the objects of investigating and reporting upon the hames of the slase-tralers, of pursuin: the discoveries of br. Livingstone, and of completing if posible the remaining problems of Centrul. Ifrican geography. This expedition has been undertaken liy and will be under the sole command of Mr. Henry M. Stanley.

AT the fortieth Innual Mecting of the statistical society, held on June $3^{\prime \prime}$, the report showad an increase of serenty-sie leclions in the year ending focember is, iss.s. Diy connequence, the financial state of the sinciety is sati lactory, the surplus of asocts over liabilities being $2,50 n!$ Dr. (iay waste-alected president.

It was reported last wech that the cable stamer fiataiab (sec) Nature, vol. . P. (i.4) had wruck on an icherg off Halita and became a total wach. Happly this rumour has treen proved to be without toundation.

On Saturday last, July q, a meeting of the Council of the Royal School of Mines was held at the Jermyn Street Museum, at which the reports of the examinations of the students connected with that institution were received and considered, and the prizes awarded. The following gentlemen received the diploma of Associate of the Royal School of Mines:--Mining, Metallurgical, and (icological Divisions, S. A. Hill and W. Saise; Mining and Metallurgical Divisions, R. Cowper, A. R. Guerard, (C Lloyd Morgan ; Metallurgical Division, W. Pearce ; Geological Division, A. R. Willis and W. Frecheville. The two Royal Scholarships of $15 l$. each for first year's students were awarded to IIenry Louis and E. Fisher Pittman ; H.R.H. the Duke of Comwall's Scholarship was awarded to A. R. Willis, and the Royal Scholarship of $25 l$. to W. S. Lowe ; the Edward Forbes Mcdal and prize of books were awarded to A. R. Willis ; the De la Beche medial and prize of books to C. Lloyd Morgan ; the Murchison Medal and prize of books to A. R. Willis.

The Quarterly Weather Report of the Meteorological Office has been issued, containing the observations of the seven observatories from April to June 1873.

Tire additions to the Zoological Society's Gardens during the last week include a Himalayan Bear (Ursus tibetamus), presented by Mr. George Lockie ; two Red Kangaroos (Macropus rolustus) from Australia, presented by the Acclimatisation Society of Melbourne; two Audouins Gulls (Larus audouini) from Sardinia, presented by Lord Lilford; a Kappler's Armadillo (Tatusia kappleri) from Surinam, deposited; two Musquashes (Fiber sibiticus) from North America, received in exchange; a Harpy Eagle (Thrasuitus harpyia) from Paraguay ; seven Ariel Toucans (Rampkaslos aric.) from Brazil, purchased ; a Collared Fruit Bat (Cymonycteris collaris), born in the Gardens.

SCIENTIFIC SERIALS

Tine current number of the fournal of Anatomy aud Physio. $\log y$ contains several papers of interest. Dr. Binz commencewith an article ' m . some cffects of alcohol on warm-blooded animals, in which he supports the non-heating action of alcohol, considering the subjective impression as partly the consequence of the irritation of the nerves of the stomach, and of the enlargement of the cutancous vessels. The coolint, effect of alcohol on febrile conditions is demonstrated and shown to depend on its direct diminution of the activity of the cellular elements of the body, on the increase of the cutaneous circulation which arises frem strensthening of the heart's action, and in the diminution of muscular activity which follows its exhibition. -Dr. J. Blake continues his obervations On the action of inorganic substances when introduced directly into the blood, endeavouring tor show that in the same isomorphous group of elenent, the intensity of physiological action increases as the atomic weisht of the element. but the relative atomicity of groups which are mot clocely related shows no corresponiling gradation. The saltedescribeth on the preeent occavion are those of the alkaline earths.- I'rof. Cleland dincunces double-bodied monsters (littem), and the development of the tongue in them,
 the palate at the same time leene cleft.-I)r. C. Keyher tescribed peint, connected with the cartileses and syovial membranes of joints, shemins that the "ynovial proces," or protion of the symeval membane which lies oner the borate of the catilase
 but an being formed in situ :a ince kevelopment of the joint pro-
 free hyd ochlonic acid in the satic juice, the comstant presence of which he eive © ©
 albumen tater phe in the walls of the stomach: that the

 foumal of the ye.n prviou:. Ile five, a drawing of the animal,
which was six feet long. It was male, and the sexual organs are describel. The testes possess no vasa-deferentia, their products must therefore be shed into the peritoneal cavity, whence they reach the exterior water through the abdominal pores. The ureters were found to combine liefore they entered the cloaca by the single duct.--I'rof. Savory has a paper On the use of the ligamentum teres of the hip-joint, in which he endeavours to prove the idea, which, as he remarks, had been previously suggested by the late Prof, Partridge and by Prof. Turner, that the body is slung on the two ligaments as a carriage is on C. springs. Prof. Ilumphry criticises Mr. Savory's results, restating his former remarks that the ligamentum teres is not tense in the crect posture.-Prof. Turner, in description of variulions in the arrangement of the nerves of the human body, mentions a branch from the fourth cranial nerve to the orbicu-
laris palpebrarum. In another instance the same nerve sent laris palpebrarum. In another instance the same nerve sent a branch to the infra-trochlear of the nasal. Peculiarities in the various plexuses are also noted.-A loquacious paper follows by I)r. Kadcliffe on the syntheses of motion, vital and physical, in which it is attempted to be shown, that in muscle the state of rest is that of contraction, the state of action relaxation. -Mr. Ogilvie and Mr. Cathcart give the dissection of a malformed lamb.-Prof. Crum-Brown gives an ingenious explanation of the sense of rotation and its connection with the semicircular canals, connecting it with the inertia of their contents affecting the peripheral ends of the auditory nerves.-Dr. Brunton proves the value of external warmth in preventing death from an over-dose of chloral.-Mr. F. Champneys gives a detailed description of the septum of the auricles of the frog and the rabbit.-Mr. J. C. Ewart describes the epithelium in front of the retina and the external surface of the lens.-Dr. J. Ogle describes and figures a man born without legs.-Prof. Turner gives a drawing of the surface of the brain in its relation to the skull, which is followed by part of his paper on the placentation of the sloths, which we have noticed on a former occasion. -Notes on some muscular irregularities, follow, by Prof. Curnow ; and the papers of the number end with three short notes by Mr. G. J. M. Smith, Mr. J. A. Russell, and Mr . Bellamy, on the dissection of an excised elbow, on unusually large renal calculus, three inches long, and a fusion of some of the carpal bones, repectively.

Bulletin Mcnsucl de la Société a'Acclimatation de Paris.In his anniversary speech, reported in the Bulletin for April, M. Drouyn de Lhuys, the president, gives an interesting account of the victories of acclimatisation in the case of the coffee plant, the product of which, now universally esteemed, would never have been general but for its transplantation from its native home, Abyssinia, into other parts of Africa, into Europe, Asia, America, and those East and West Indian Islands which are now its best producers.-M. H. Bouley follows with an exhaustive paper on the subjection of animals by man to his own purposes. He analyses the various effects of food, of climate, of locality, of se'e:tion, and other influences on the natures of animals, and shows how our principal useful animals, such as the horse and the dog, have gradually, by dint of the constant exertion of various powers, been brought to their present state of subjection. The annual report of the Society gives a retrospective glance at the year's work. Imong birds the principal acquisitions have been varieties of pheasants, black swans, and Chilian geese. Among fishes, the telescope fish, the rainbow fish of China, and the sivurami, are the most remarkable. Among plants, numerous Mustralian trees, acacias, and others: various kinds of bamboos; the Euca l:Atus, fairly acclimatised in Algeria; and China grass, which promises to form a useful textile fabric, have been introduced.
 fir lisn ?, have been continuing and concluding the series of papers in which its readers have been put in possession of a very minute summary of Col. Dalton's official report on the ethnology of licnyal, tmnslated by Herr Oscar Flex, missionary in Ranshi. There valuable reports proclaim the remarkable disimilarity which prevails in the domestic habits and national customs of tribes presenting strong linguistic and psychical atfinity with one another. Thus amongst the Manipuris, who mily powilly. however, be of Aryan descent, although they have 1.01 g treen followets of the religion of Brahma, and claimed him for their proto-scnitor, the women enjoy perfect freedom, both in res:ard to their control of the household and their participation in games in which men take part ; and although the husband maj, divorce his wife on good grounds, if he ventures to do so with
out valid reason the woman may leave him and appropriate to herself all his possessions, with the exception of a cup and his loin-cloth. These people also celebnate feasts at which meat is partaken of, contrary to the proscriptions of their present form of religion. Among the neighbouring Kukis no such practices prevail, the men drinking and smoking apart in their festive gatherings, and celebrating solemn festivals by visiting the graves of their forefathers to consult oracles and scek for omens. In the country of the Kasias, where Licut. licilingfield was murdered two years after its annexation to our Indian empire, monoliths and other stone memorials are common, and for the most part present great simiarity to the menhirs and cromlechs of Cornwall and Brittany. The Giaros. whose country lies west of Kasia and extends in the south and east as far as the Brahmaputra, are but little known beyond their own frontiers, while the mountainous districts of their setlements continue to be almost wholly unexplored. These tribes claim to be a primitive people, while, like the Brits, they pretend to have affinity with the English races.-Dr. J. G. Wetzstein gives an interesting account of the ancient Hebrew threshing board, still in use in Syria where every village has its communal threshing ground to which the neighbouring landowners-both great proprietors and the small peasants-bring their grain, mostly on camels, to be prepared on these curious tables or boards. Dr. Wetzstein has laid before the Anthropological Society of Berlin a sample of the stones in use for this simple mechanical contrivance, which appears to be almost unchanged in its structure and mode of use from liblical times to the present day, and may be seen amongst the Berbers, the Cypriots, and in other parts of Asia Minor, besides Syria.

SOCIETIES AND ACADEMIES
 London

Royal Society, June i8.-On the Employment of a Planimeter to obtain Miean Values from the traces of continuous Selfrecording Meteorological Instruments, by Robert H. Scott, F.R.S.

The usual method of dealing with barograms and thermo. grams is to measure them at certain intervals by appropriate scales, and to treat the numerical values so obtained by arithmetical processes so as to arrive at mean results.
At the suggestion of Mr. Francis Galton, the Meteorological Committee gave instructions that measurements should be made of the curves by means of Amsler's Planimeter, in order to test the accuracy of unpublished means.
It is perfectly obvious that the measurement of the area of the curve, if it can be executed with sufficient accuracy, must give a far more satisfactory mode of ascertaining the value of the mean ordinate of the curve, than the calculation of the average of any number of measured individual ordinates, while the economy of time insured by the use of the planimeter forms a most important recommendation for its use.
The mode of employing the instrument is as follows :-The entire perimeter of the curve, down to the base line, is measured, and the value noted. Then using the same base line, a rectangle of known height, in units of the scale of the curve, is next measured in the same way, and the value noted again.
The ratio of these two values is the mean value of the ordinate of the curve, or the mean pressure or temperature for the interval embraced by the curve.
The table subjoined to the paper shows for a period of eight months the means of temperature for Kew Observatory oltained by the planimeter, as well as those yiclded by the old method, bothe for daily and for five-day means. It will be secn that the difference in 242 determinations of daily means only amounted to $0^{\circ} \cdot 5$ on six occasions, and to $0^{\circ} 6$ in one instance, while out of 49 cases of five-day means the greatest difference was only $0^{\circ} 4$, and this was only once attained.
At the end of the table a column hearled "Wr. Rep. Ilates" gives the values obtained by measurement of the plates publisherl in the "Quarterly Weather Report" for the period embraced by the measurements to which 1 have just alluded. It will be seen from it that the five-day means so obtained hardly differ from those which are yiclded by the direct measurement of the photographic curve by means of the planimeter.
The plates in guestion are obtained by the use of Mr. Francis Galton's l'antagraph, which transfers the seconds at a reduced the-scale to zinc plates, which plates are subsequently further
reduced and transferred to copper ly Wagner's l'antagraph, as explained in the report of the Committee for 1870
Such a test as this affords a satisfactory proof of the accuracy in the Meteorological Office The result of these prelin.
moter means are practically iry experiments is that the planitreatment of the values of the hourly ordinates.

On the diuretic action of
M. D., and IIenry l'ower, M.B.

The object of this commuric.
effects which follow the exhibition is to show that the diuretic actionary relaxation which follows the digitalis depend on the rearteries consequent on the inluen the spasm of the smaller remal the direct increase in the arterial blod of the digitalis, instead of on of the drug.
An account of certain (oymisms occurring in the Blood, by
V. Osler, M.D. In many.
In many diseased conditions, and sometimes in health, careful investigation of the blood proves that, in addition to the usual elements, there exist pale granular masses, which on closer inspection present a corpuscular appearance, varying in size from a quarter that of a white blood-corpuscle to enormous masses, with an oval or rounded form, sometimes elongate or irregular. The author watches these bodies at a temperature of $37^{\circ} \mathrm{C}$. and finds that they undergo remarkable changes. At first uniform and still, Brownian movements soon commence ; fine projections from the mass develop; its edges become less dense, more loosely arranged ; semi-free minor corpuscles form, which quickly break away, moving independently in the fluid. Other filaments undergo the same change, fresh detachments becoming so numerous as to fill the field of the object glass. Granules present themselves in abundance. The original mass has now become perceptibly smaller and more granular. The variety of the forms increases as the development goes on; and whereas at first sperma-tozoa-like or spindle-shaped forms were almost exclusively to be seen, more irregular forms appear later, posses ing two, three, or more tail-like processes. It is to be noted that in blood without the aldition of saline solution or serum, no change takes place in the corpuscles under consideration, even after prolonged warning. It must still be confessed that we krow nothing of the origin or dentiny of these corpuscles; they evidently cannot arise from the disintegration of white corpuscles, for they form individual elements circulating through the blood.

On Coniferine and its Conversion into the Aromatic Principle of Yanilla, by Ferd. Tiemann and Wilh. Haarmann. Comnurnicated by A. W. Ifulfmann, F. R.S.
Given the number of figures (not exceeding 100) in the reciprocal of a prime number, to determine the prime itself, by William Shanks. Commanicated by the Rev. G. Salmon, F.R.S.
Description of the living and extinct races of gigantic Land Tortoises. Part I. and II. Introduction, and the Tortoises of the Galapagos Islands, by Albert Guinther, F.K.S.

The author having the opportunity of examining remains of tortoises from the Mascarene Islands concludes that the several extinct gigantic species are different from the more recent ones, and that there is the greatest resemblance between the tortoises of the Mascarene and Galapagos Islands. An historical account is given, which shows that the presence of these tortoises at two so distant stations cannot be accounted for by the agency of man, at least not in historic times, and therefore that these animals must be regarded as indigenous. The second part contains a description of the Galapagom tortuises.

finsmikgif.

Scottish Meteorolorical Society, July
This wis the Half-yearly (ieneral Decting of the sintety: the Ma: quis of Twe thale, pusident of the society, in the chair. The report was read ly Mr. Whe Ilome, chairman of the Council, from which it appeared that the swcicts statione number at present 10.4, of whieh az are in scouland, and 1 la

 in Scothand at 12.4., 1 , , in conncotion with the latce ational
 the frishey limal, what hat entered "ill much coll mato the
 having intimated that if the sicts would tmon the nece ay
tions of sea temperature should he carried on during the fishing sianom, the Maripuis of Tweeddale has liberally provided the instuments repliticet. Ir. Dithur Mitchell stated that the Orome (1 mmitte houl 1 enolved publicly to invite investipators to submit form any scheme which in their opinion would increate our howhedese of orone, and which they were desirous to prosecute if :merted. It is hoped that some line of impuiry likely wlead to satisfactory yesults will soon be suggested, and whenever this is done the Committee will be pepared to sive ansintance out of the fund of 100 l . placed at their doposal hy the munificence of the noble I'tesident. Dr. Arthur Nitchell and Mr. Dinchan read a paper on the influence of seasons on human mortality, which we hope to give next week. Mr. lallingall, Islay, exhibited and described a new pressure aneometer, invented by him. The instrument consists of a measured surface, which, exposed to the wind, registers its force by means of an index, acted upon by a wooden plunger in a bath of mercury. Mr Thomas Stevenson, C.E., described a portable barometer made of malleable iron, which he suggested for portable purposes. The instrument also contained an ingenious arrangement suggested to him by Mr. li. Sang. Iron will also be very suitable for water or oil barometers in which a very large scale is desirable for showing sudden changes in the atmospheric pressure, the accurate observations of which are likely to grow in importance from year to year.

Berlin

German Chemical Society, June 8.-C. Rammelsberg, president, in the chair. - G. Langbein described the manufacture of iodide of potassium from iodide of copper, containing 60-66 per cent. of rodine, which is now largely imported from Peru. It is transformed into HI by treating it with SH_{2} and then saturated with carbonate of potassium. - J. Thomsen maintains his view against that expressed by Berthelot, who believes the existence of definite hydrates of acids and alkalis to be proved by the heat of combination.--II. Nencky, by heating acetate of guanidine, has obtained a new monoatomic base, guanamine, of the formula $\mathrm{C}_{4} \mathrm{~N}_{3} \mathrm{I}_{7}$. - The sare author has obtained a direct combination of oxalate of ethyl with sulpho-urea.-K. Heuman communicates observations on cinnabar. Light transforms it into the black modification, particularly when obtained by precipitation. Metallic copper at 100° separates mercury from it in the metallic state. -C. Liebermann, by treating benzoyl-benzoic acid $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{3}$ with sulphuric acid, has transformed it into anthracen-sulphuric acid.-A. W. Hofmann has investigated residues of the aniline manufactory of M. Weiler in Cologne, consisting of pure phe nylene-diamine.-K. Wippermann pu!lishes new investigations on the condensed hydrocyanic acid $\mathrm{C}_{3} \mathrm{~N}_{3} \mathrm{H}_{3}$ lately obtained by Langci. It is always formed when hydrocyanic acid is kept with a small quantity of alkali, and then distilled. It is extracted from the restluc by ether. Hydrate of baryta transforms it into slycocol. Its formula appears to be $\mathrm{N} \equiv \mathrm{C}-\mathrm{C}$ (NH_{2}) II-1 N, the nitrile of amido-malonic acid.-HI. Schiff assi;hs the formula of a dilaureate of slycerine to the fat of laurel, which has hitherto been considered as a derivative of allylic glycol.- L. Henry proves the formula of lactide to be doubly as hase as has been admitted until now $=\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}\right)_{\mathrm{n}}$. The same chemist deccribed derivatives of propargyl $\mathrm{C}_{3} \mathrm{I}_{3}$ with $\mathrm{Br}_{\mathrm{g}} \operatorname{lir}_{3}$ and Br_{r}, of chloride of allyl with HBrO and of chloral with monochlorhydrin of glycol.-C. Kaiser showed a set of very exact weights cut in rock crystal and obtained frem the manufictory of Ifermann titern in Uberstein, near Kreuznach.

l'aris

Academy of Sciences, June 29.-M. Bertrand in the chair. Cien. Moin communicated to the Academy a telegraphic de pith from the Jimperor of Bravil, sent from Rio de laneiro on June 2.3, and received in laiv on the efth.- The following commmications were real: (1n a new property of metallic rhodium, ly MIM. H. Sumte (laire leville and II. Debray. Wheat imbum and rhotimm ane precipitated from their solutions ly iormic acid or a!cohol, the lincly divided metallic powders peresmonkable popeties. The thodimm thus obtained de"mpora alcohn (in [", wne of alkali) hydosen being libe-

-On the specti: of vapours at high temperatures, by Mr. J. N. Lockyer. This prper contains the results of experiments already communicated to the Royal Sociely and published in Nature Report on the state of the preparations for the expeditions sent by the Academy to observe the tran it of Venus on I)er 9, by M. Dumas. - Keport on the administrative measures to le taken for the presesvation of territories threatenced by P/ゅ/l/wi\%, by the rumminioners. It is suggestel to the Academy that a special law should be made compelling proprictors to declare the first appearance of the scourge, that experts should then be appointed to examine into the state of the infested vines, and that these should be destroyed when thought necessary by ministerial decision, the proprietor receiving aderpuate compensation. It is further suggested to destroy the vines surrounding the districts actually invaded, to disinfect the soil by chemical methods, and to burn the cuttings, leaves, and roots of the diseased plants as well as the plants themselves in the same district where the uprooting has taken place, and finally to prohibit with the utmost rigour the exportation from infested territories of anything that might serve as a vehicle for the insect. - M. Heis communicated a letter sent by him to M. Faye concerning the studies recommended to the observers of the forthcoming transit of Venus. The author sug. gests the observation of meteors and the zodiacal light with re. spect to colour, intensity, form, \&c.; also of the milky way and of polar auroras.-On the temperature of the sun, by M. J. Violle. The author gave a description of the apparatus employed by him in this inquiry. A determination made at Grenoble on June 20 at 3.30 gave the temperature $1,354^{\circ}$, but to get at the true temperature of the sun this number must be corrected for atmospheric absorption and other causes. To eliminate these errors the author has made several ascents of the Alps, but the results are not yet made known.-Some remarks were made on the foregoins paper by M. H. Sainte-Claire Deville, and M Berthelot communicated a paper ì propos of these remarks entitled "On high temperatures."-On the application of carbon disulphide mixed with tar and with alkalies for the destruction of Phylloxera, by M. C. Monestier.-M. Lecoq de Boisbaudran communicated a note on the use of carbon disulphide for the same purpose.-On a point in the theory of functions, by M. Halphen.-Geometrical integration of the equation $L\left(x d y-y^{\prime} d x\right)-M d y+\lambda d x=O$, in which L, M, and N^{\prime} designate linear functions of x and y, by M. Fouret.New method for determining the index of refraction of liquids, by MM. Terguem and Trannin. The authors gave a description of their apparatus and some of the results obtained by it.-On electro-static phenomena in voltaic batteries, by M. A. Angot. -On the evaporation of liquids at temperatures above their boiling points, by M.de Gernez.-On new a pparatus called accelerometers, for the study of the phenomena of the combustion of gunpowders, by MM. Deprez and H. Sebert.--Note on an intestinal calculus of the sturgeon, by MM. Delachanal and Mermet.Results of the employment of Fhenol in burials, by M. PratOn the publication of the obsenvations of meteors made by II. Coulvier-Gravier, a letter from M. Schiaparelli.-On the structure of the caudal appendage of certain ascidian larva, by M. J. Giard.-On the presence of lead in the brain, by M. Darembery. This was found after cases of lead-poisoning.-M. Chatin was elected during the meeting to supply the vacancy in the botanical section caused by the death of M. C. Gry.
$=$

CONTENTS

Page
Thi (omit. liy J Noman Lockier, F.R.S.
Thf Chanatr l'ixal

Guk buor shelf
hattens rothe lidt.-
Sir John Howhel's Letter.-Capt. I. Herschel, R.E., F.R.S. Cosㄴa's Comet-A. C. Ranrarb, F.R.A.S.
I'hotogrophic Irradiation. - John Aitken

(A Musumar to Jhumah Hokrocks.

Conals's Comer. l., I. K. Hand, F.R.S.
 Noter
Sisntiric Shbiats
Societins asd Academies

[^0]: ＊＂Uebersicht der von mir auf Neu Guinea，und den Inseln Jobi，Mysuce， hard Meyer．（Berlin ：Monatsh．Akad．，1874．）

