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abstract

The importance of data in modern society is enormous and underlies
most aspects of our daily lives, including technology, health, finance, and
economy. But data in its raw form does not provide actionable knowledge
and needs to be turned into something more usable. Specifically, these
processes of refining data often derive latent representations. For example,
one may use transformation procedures to extract hidden factors from
data through shallow models such as component analysis and deep mod-
els such as deep neural networks. While the direct use of factor analysis
methods continues to be useful, many modern problems in computer
vision and neuroimaging rely on higher-level latent representations, better
informed by the needs of the downstream analysis tasks, that may oth-
erwise be difficult. For instance, we may seek to understand an image
as humans do by learning the visual relationship between objects in im-
ages. To better understand the structural integrity of the brain suffering
from a neurodegenerative disease, we may analyze the relationship be-
tween the brain regions. Deriving such higher-level latent representations
requires methods that are capable of addressing diverse data- and domain-
specific challenges in the following various aspects: (1) structure of data
(e.g., graph, sequence, image), (2) relationship type (e.g., temporal visual,
inter-modality), (3) problem type (e.g., classification, generation), and (4)
domain-specific challenges (e.g., small sample size, skewed distribution).
In this thesis, we demonstrate how various statistical and machine learning
models of shallow and deep formulations can help us to better understand
various relationships for computer vision and neuroimaging problems.
For each problem, we propose a novel approach that takes advantage
of both the traditional statistical properties and recently developed deep
models, and show its effectiveness quantitatively and qualitatively for
enabling robust learning tasks and scientific discoveries.
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1 introduction

"Data is the new oil" – while some call this a ludicrous proposition, a grow-
ing number of technology evangelists see strong parallels between the
two: just like how oil powers numerous industrial systems of our society
from transportation to agriculture, data is a new valuable resource with
massive information warehouses enabling all kinds of data-driven sys-
tems that benefit our society. This analogy between data and oil was first
publicly recognized in 2006 by a British data scientist named Clive Humby
who had earlier pioneered the UK’s supermarket loyalty card scheme in
1994. His customer data science company dunnhumby analyzed years of
customer information within only a few months and formulated a scheme
that eventually became the first successful supermarket loyalty card, Tesco
Clubcard, and transformed the marketing landscape of supermarkets in
the UK at the time. Today, it is not surprising to see how almost every
company is acquiring data from customers to optimize important decision
making processes. Often, some collect data at a large scale and operate
as data trading companies, sometimes referred to as "data brokers", by
mining data from customers and selling them to those who would analyze
and make use of it for monetary gain. In many ways, data is becoming a
commodity on its own for various data-driven applications, just like how
oil is traded as a versatile resource for diverse end-products.

While the above examples demonstrate the power of how data can be
used to significantly enable efficiency gains in various applications, they
also underscore a crucial characteristic of data which also resembles that
of oil: data cannot readily be used "as it is" in its crude, original represen-
tation. Instead, to maximize its value, it needs to be turned into something
more usable, similar to how crude oil needs to be changed into gas, plastic,
chemicals, etc. for different end-products. For instance, the underlying
signal in data is almost always contaminated with noise, so we need to
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distill it into its most important part. Also, data often pertains to multiple
sources of information, so we sometimes need to separate the sources into
different components (e.g., independent component analysis) similar to
refining oil into liquids and gases. For high-dimensional data, we may
want to extract the features that are more important than the others to
summarize the data to its essence (e.g., principal component analysis).
These processes of refining data into more informative and "usable" rep-
resentations often involve a transformation procedure to extract latent
factors from data to derive its latent representation.

Now, to better understand how raw data can become more "usable", we
discuss a few examples of extracting latent representations from the data
via various transformation methods. Consider a set of examples X ∈ Rn×k

with n number of samples (rows) with k-dimensional features. For a large
k, it is often difficult to intuitively understand the underlying pattern of
the data. To facilitate this, Principal Component Analysis (PCA) (Pearson,
1901) finds an orthogonal basis W ∈ Rk×m called principal axes such that
the projected principal components (PCs) P = XWT have a high variance in
each component (column). Since m PCs with the highest variances are
m left singular vectors of X with highest singular values, X with highly
correlated variables is accurately characterized with only a few m < k

number of PCs (i.e., X ≈ PWT for P ∈ Rn×m). Thus, PCA performs a
linear orthogonal transformation on X to derive P, a latent representation
purposed for disentangling correlated variables:

X PCA−−→ P such that P has high variance features.

Due to its simple and nonparametric nature, PCA has been widely utilized
in various applications across domains (Abdi and Williams, 2010).

A related technique is Canonical Correlation Analysis (CCA) (Hotelling,
1936). Given two datasets X ∈ Rn×k and Y ∈ Rn×l of n identical samples
(rows) with k and l features respectively, CCA finds vectors a1 and b1 that
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maximize the correlation between Xa1 and Yb1. U1 = Xa1 and V1 = Yb1

are called the first pair of canonical variables, and the subsequent pairs are
found recursively. Thus, CCA performs a series of linear transformations
on X and Y to derive latent representations that capture the relationship
(i.e., correlation) between the variables/features:

X, Y CCA−−→ U, V such that U and V have highly correlated features.

CCA has been applied to a range of applications with multiple data modal-
ities (Hardoon et al., 2004).

Lastly, when data comes with labels, Linear Discriminant Analysis
(LDA) (Fisher, 1936) is suitable which finds the principal axes that max-
imize the variance of the data and the separation between the classes.
Technically close to PCA, LDA performs a linear orthogonal transforma-
tion to derive the latent representations (i.e., eigenvectors) that maximize
the between-class variance and minimizes the within-class variance:

X LDA−−→ P such that high variance P also separates classes.

LDA has been a popular method for supervised pattern recognition prob-
lems (McLachlan, 2004).

These methods impose varying properties on the latent representations,
but they are all constructed under a common premise: the representa-
tions are "latent" in a sense that the variables meaningfully encode the
underlying structure or pattern of data (e.g., a correlation among the fea-
tures). Thus, even though a latent representation itself is not necessarily
"interpretable" (e.g., PCs are not directly explainable in terms of features),
data in its latent representation is almost always more useful than its
original form for any subsequent applications or analyses. In fact, this
overall idea of latent representation learning has been pursued for years
with these classical representation learning methods. These have been the
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strong foundation of many data-driven applications and analyses since
mid 1900s: data visualization (Gabriel, 1971), clustering (Bartlett, 1963),
image understanding (Zhao et al., 1999), anomaly detection (Boráros and
Boráros, 1969), image denoising (Hoštalkova and Procházka, 1905), and
many more.

Specifically, these methods excel in cases when their assumptions on
the data are appropriate. For instance, PCA and LDA assume linearly
correlated features with minimal outliers. The correlation coefficient com-
puted in CCA assumes a linear relationship between any two variables.
In some cases, the assumptions are reasonable enough to carry out the
analyses with these methods. However, in other cases that we will describe
next, we need richer representations beyond the latent representations
described above.

Over the last decade, a family of methods in Deep Learning (DL) has
demonstrated impressive performance in deriving rich representations
from complex data. Without imposing specific assumptions on the data,
DL models are able to extract the underlying structure of the data through
carefully structured neural networks that often can capture richer sta-
tistical properties/patterns in the data. For instance, to derive a latent
representation Z while accounting for the nonlinear correlation among the
features, an autoencoder (AE) (Hinton and Salakhutdinov, 2006) with
neural networks f (encoder) and g (decoder) achieves the following:

X AE−→ Z such that X f−→ Z g−→ X ′ for X ′ ≈ X.

Here, Z is a latent representation of X, and Z encodes the underlying struc-
ture of X such that Z can be decoded (reconstructed) back to X ′ ≈ X. Typi-
cally, when f and g are simple single layer fully-connected neural networks
with a linear activation function (i.e., Z = f(X) =WX, X ′ = g(Z) = VZ),
the subspace spanned by an AE trained via a squared error loss becomes
nearly identical to the one derived from PCA with the linearity assumption.
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When the data has some nonlinear feature relationships (e.g., the lattice
structure of pixel intensity features in an image (Krizhevsky and Hinton,
2011)), an AE can be extended to learn the underlying complex structure
of the features via f and g performing nonlinear transformations with
multilayer neural networks with nonlinear activation functions.

For data modalities with a unique structure specific to the data, deep
neural networks can be appropriately formulated to extract such structures.
This was successfully demonstrated for applications in Computer Vision
where the overarching goal is to understand the images as humans do. For
those applications, the spatial information that needs to be extracted from
an image (e.g., shapes, locations, and orientation of an object) requires a
method which exploits the geometric structure of the data (e.g., nearby
pixels) and understands their relationship (e.g., how they construct certain
shapes). A class of deep neural networks called convolutional neural
network (CNN) is a special type of deep neural network which explicitly
aims to derive a latent representation encoding such spatial dependencies
in an image:

X CNN−−→ Z such that Z encodes the spetially derived features X.

A precisely derived Z can then be used for various image understanding
applications such as object detection (Ren et al., 2015), image classification
(Krizhevsky et al., 2012), and face recognition (Lawrence et al., 1997).

Analogous to the spatial features of image data, the temporal depen-
dency of sequential features is another type of crucial information found
in sequential data such as videos. For instance, let X1, . . . , XT be a sequence
of data of length T . An informative temporal latent representation Zt at
the current time point twould encode the information from the past (X<t)
which a model utilizes for the future time points > t. A common variant
of neural network which allows this formulation is called a recurrent neu-
ral network (RNN) (Cho et al., 2014) which recursively uses the current
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information Xt and the past latent information Zt−1 to derive the newly
updated Zt:

Xt, Zt−1
RNN−−→ Zt such that Zt encodes the temporal information.

Variants of RNN such as Long Short-Term Memory (Hochreiter and
Schmidhuber, 1997) and Gated Recurrent Units (Chung et al., 2014) have
been developed to better capture the complex temporal information of
lengthy sequences for modern applications including language modeling
and video understanding.

As demonstrated thus far, data is refined into numerous latent represen-
tations through shallow and deep models, powering various applications
across domains. Yet, our focus has been on deriving latent representations
with a high emphasis on the data and less emphasis on the application.
But nowadays, modern applications aim to achieve more complex tasks
by understanding the "higher-level" concepts of relationships from data
which are much more difficult to capture and less trivial to numerically
represent. For instance, consider a visual question answering problem
(VQA) where given an image and a natural language question about the
image, the task is to provide an accurate natural language answer (e.g., Q:
What is the person holding? A: Books). For a complex problem like this,
formally setting up the problem with appropriate datasets (e.g., a list of
visual questions and answers) and problem formulations (e.g., multi-class
classification of answers) is a crucial first step.

Then, we ask the following: How do we exactly represent the concept
of ‘holding’ when ‘person’ and ‘books’ are visually interacting in such a
way? In this case, an ideal latent representation would somehow be able
to inform that ‘holding’ is the most sensible interaction between ‘person’
and ‘books’ in an image. Generally speaking, we want to do the following:

X −→ Z such that Z encodes relationships of interest.
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Deriving such advanced latent representation is a delicate process which
requires us to consider various aspects:

1. Structure of data - e.g., Is it a graph, sequence, or image?

2. Relationship type - e.g., Is it a temporal, visual, or intra/inter modality
relationship?

3. Problem type - e.g., Is it a classification, generation, or statistical analysis
problem?

4. Domain-specific challenges - e.g., Small sample in medical imaging, highly
skewed distributions, multi-modal analysis.

Thus, constructing novel methods that derive informative latent represen-
tations of various types of relationships while addressing various chal-
lenges posed above is the key to accomplishing modern applications and
data analysis. The effort to contribute to this challenging task is the main
focus of this thesis. In the next section, we will go over various types of
relationships that are found across diverse problems and see what they
can enable if their latent representations are properly derived.

1.1 Capturing Relationships in Latent Space
Relationships, by nature, may often be neither evident nor directly ob-
servable through raw data as such associations are not always explicitly
measured in its raw representation. For instance, many relationships that
we know are based on deductive reasoning (e.g., wet ground suggests a
recent shower) or statistical hypothesis testing (e.g., statistically significant
association between blood pressure and cardiovascular diseases). While
traditional tasks such as object detection can explicitly be demonstrated
on an image (e.g., we can locate a glass in the image directly in Fig. 1.1),



8

constructing higher-level descriptions about the objects such as "the glass
is on the table" in Fig. 1.1 is not a straightforward task.

lamp

vaseglass

table

table

vase on

onlamp

onglass

lamp

vaseglass

table

table

vase on

onlamp

onglass

Figure 1.1: Detecting vi-
sual relationships between
objects.

We take computer vision as an example with
Fig. 1.1. Modern computer vision tasks now
aim to understand images as humans do by de-
tecting visual relationships between objects
through various types of latent representations
with both shallow (tensor factorization (Hwang
et al., 2018)) and deep (visual relationship de-
tection network (Lu et al., 2016; Zhan et al.,
2019)) models. These approaches derive both
the latent representations of the objects and their
relationships which allow them to find the most
likely relationships given objects in an image.

To understand the data as a whole, we need
to take a step back and consider the relation-
ships between the samples or instances of the data which provide useful
knowledge and information about the data from different perspectives.
For instance, the relationships between the samples can be constructed
as a graph where the nodes are the samples and the edges represent the
similarities between the pairs of samples. In such cases, the latent repre-
sentation of the samples (e.g., the final layer output of a deep network
(Cao et al., 2016; Monti et al., 2017)) can provide concise information that
ordinary distance measures can be applied to them directly to construct
graphs that better capture the relationships.

Exploiting the graph structure with its latent representation has also
shown to be extremely beneficial for analyzing brain connectivity network
(Fig. 1.2d) in neuroimaging (Fischer et al., 2015; Ma et al., 2017). Specifi-
cally, the structural integrity of a subject’s brain can be inferred from the
subject’s brain connectivity network encoding the relationship between
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(a) Amyloid PET (b) Desikan Atlas (c) Fiber Bundles (d) Brain Network
Figure 1.2: Illustrations of various brain imaging modalities. (a) Amyloid PET scan
measure the level of amyloid beta accumulation in the brain. (b) Desikan atlas is one
of the widely used gray matter regions predefined by their functions. (c) Fiber bundles
are the neuron pathways within the white matter region structurally connecting various
gray matter regions. (d) Brain network as a form of graph can be derived from the fiber
bundles to measure the strengths of their structural connections (edges) between the
regions (nodes).

brain regions. Although this neuroimaging modality is very informative
in understanding the disease progression of neurodegenerative diseases
such as Alzheimer’s disease (Kim et al., 2015; Hwang et al., 2019a), the
data often comes with several nuances. First, a brain imaging data almost
always comes with an inevitable noise which is introduced during the data
acquisition and preprocessing steps. Second, analyzing the data of cogni-
tively healthy subjects is of great interest for an early understanding of the
disease, but the disease progression at such early stages is very subtle and
difficult to detect from the data. These analyses require a model which is
sensitive and robust, and a unique latent representation on a graph called
the wavelet connectivity signature has shown to reveal subtle characteristics
of the brain network (Kim et al., 2015; Hwang et al., 2019a).

Further, understanding the relationships between neuroimaging modal-
ities (shown in Fig. 1.2) is a crucial part of neuroscientific analyses to
better understand the pathological process of neurodegenerative diseases
(Racine et al., 2014; Guye et al., 2010). However, such analyses involving
multiple modalities often need to explicitly account for the distinct char-
acteristics of those modalities. For instance, MRI and PET scans, two of



10

the most common imaging modalities, have different spatial resolutions,
so comparing and analyzing these modalities require a model which can
explicitly account for the difference in feature dimensions. Fortunately,
searching for the relationship between neuroimaging modalities with re-
spect to their latent representations directly which more accurately encode
the central pattern of the modalities may lead to novel associations that
were often too subtle in the raw representation space (Hwang et al., 2019a;
Kim et al., 2018).

The types of relationships described thus far do not explicitly assume
a consistency or similarity between the samples. For instance, we do not
explicitly (i.e., methodologically or by the model design) enforce the la-
tent representations of two samples to be similar. However, for sequential
samples, there is a natural constraint that we need to impose, which is the
temporal or sequential consistency throughout the sequence (e.g., the
representations of two consecutive time points should be consistent to a
certain degree). By constructing the latent representations which capture
the temporal relationships between time points of the sequential sam-
ples, the core temporal information can be preserved while still allowing
the observed, natural variation throughout the sequence. For example,
recurrent-type neural networks (Cho et al., 2014; Chung et al., 2014) and
transformers (Devlin et al., 2019) can sequentially modulate the hidden
information which passes through time points. Such latent representa-
tions can be especially useful in a longitudinal neuroimaging analysis where
each subject has multiple time points of brain images which may show
a potential underlying progression of the brain images (along with the
noise variations) across the time points (Fig. 1.3). In such a case, a robust
latent representation such as the harmonic bases can be directly used to
model the sequential pattern which still captures the overall consistent
patterns in certain brain regions while filtering out the inconsistent local
patterns in other brain regions (Hwang et al., 2016).
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Figure 1.3: Longitudinal progression of brain network in Alzheimer’s disease.

Lastly, we point out a unique problem where we need to learn multiple
types of relationships and multiple types of latent representations. First,
our samples are sequences which require temporal relationships through
temporal latent representations. Second, we look for the relationships
between two sequential modalities such as brain image sequences and
cognitive function sequences through a latent mapping involving latent
representations. Finally, we construct a bijective mapping of relationship
between the sample and the latent space. Interestingly, a model which
holistically captures all these types of relationships can generate sequential
samples given sequential conditions, and it has a wide range of applications
especially in neuroimaging. For instance (Fig. 1.8), given a series of cogni-
tive scores (sequential condition), we may generate random brain image
sequence samples that realistically follow the pattern of the brain image
sequences (sequential samples) of those with similar cognitive scores
(Hwang et al., 2019c). This unique formulation is an excellent example
of how latent representations can be cleverly utilized to not only model
cross-modal and temporal relationships but also explicitly use the latent repre-
sentation as a part of the relationship that we model to enable a challenging
task of conditional sequence generations.
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Computer Vision Neuroimaging

Temporal Data

Cross-sectional Data

CH5: Uncertainty in Sequential Data 

(Sampling-free Probabilistic GRU)
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CH4: Longitudinal Brain Network

(Harmonic Basis Coupling)

CH6: Sequential Data Generation

(Conditional Recurrent Flow)

CH7: Pathology Trajectory

(Conditional Recurrent Flow)

Figure 1.4: Overall scope of the dissertation

1.2 Contributions and Thesis Structure
The list spans a wide range of distinct domains with a common goal of
understanding and modeling various domain-specific relationships with
latent representation learning. These “high-level” tasks, if accomplished,
may lead to much more impactful outcomes for their domain (e.g., identi-
fying brain regions associated with early AD progression) beyond what
was possible with the original data directly. Despite their common aims, it
is challenging to simply use an existing family of models, including deep
learning architectures, in an off-the-shelf manner appropriately. Thus,
the contribution of this dissertation is as follows: to develop statistical and
machine learning models that can learn latent representations and understand
various relationships while effectively addressing data- and domain-specific chal-
lenges. In Fig. 1.4, we show the overall scope of the dissertation along the
domain axis from computer vision to neuroimaging and the data axis from
cross-sectional to temporal modalities. From the list of applications above
in computer vision and neuroimaging which seek to understand and dis-
cover the relationships of, we now provide a brief background to the



13

Figure 1.5: Main idea of Chapter 3: Visual relationship detection. The goal is to infer
visual relationships that best describe the interactions among those objects. (a): A
relationship instance in a training set. (b): An unknown relationship to predict. (c): The
interactions of the objects (i.e., motorcycle and horse are both ‘ridable’) can be used to
infer the correct relationship.

specific problems that we tackle, identify their unique challenges, and
introduce how we will tackle them later in each chapter.

CH 3. Capturing the Latent Representations of Visual
Relationships in Computer Vision

Given a set of localized objects in some training data, visual relationship
detection seeks to detect the most likely “relationship” between objects in
a given image (among all possible object pairs and their relations, Fig. 1.5).
For instance, Fig. 1.1 shows an example of a scene graph of the given image
which is a graph of visual relationship between the objects in the given
image (e.g., [[glass, on, table]]). While the specific objects may be well
represented in the training data, their relationships may still be infrequent.
The empirical distribution obtained from seeing these relationships in a
dataset does not model the underlying distribution well which is a serious
issue for most learning methods (both shallow and deep).

In other words, the challenge is that despite the combinatorially many
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possible relationship (e.g., N possible object categories and M possible
predicate leads to N2M number of [[object,predicate,object]] relationship
tuples), not all possible relationships are observed even in the largest
visual relationship data available (Krishna et al., 2016). Thus, a method
which can successfully estimate the under-represented (i.e., less observed
in the data) or unobserved relationships is essential for robustly learning
the combinatorially large space of visual relationships. In Chapter 3,
we will describe how our multi-relational learning model using a novel
tensor factorization approach on a tensor representation of the relationship
data can derive the latent representations of both the objects and predicates and
provide both empirical improvements and theoretical guarantees (Hwang
et al., 2018). We will also show how such “shallow” model can effectively
regularize a deep model (i.e., deep neural networks) to take advantage of
both sides.

CH 4. Coupling Harmonic Representations of Graphs to
Characterize Cross-sectional and Longitudinal
Relationships of Brain Connectivity

There is a great deal of interest in using large scale brain imaging studies
to understand how brain connectivity evolves for an individual and how
it varies over different levels/quantiles of cognitive function. To do so,
one typically performs so-called tractography procedures on diffusion
MR brain images (Fig. 1.2c) and derives measures of brain connectiv-
ity expressed as graphs (Fig. 1.2d). The nodes correspond to distinct
brain regions (Fig. 1.2b) and the edges encode the strength of the connec-
tion (Fig. 1.2c). The scientific interest is in characterizing the evolution
of these graphs (1) of the individuals over time (temporal progression
within subjects) and (2) of the group from healthy to diseased (cross-
sectional progression across the subject group). Fig. 1.6 illustrates such
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Figure 1.6: Main idea of Chapter 4: Characterizing cross-sectional and longitudinal
progression of brain connectivity. Here, we show the evolution of top 50 most changing
fiber tracts of the real data derived from the coupled harmonic bases. The tract colors
represent their strong (blue) and weak (red) connectivity strengths. Cross-sectional
coupling (red arrows) via `1-norm in each row. Longitudinal coupling (blue arrows) via
rotation constraints in each column.

cross-sectional and temporal progression of brain connectivity we seek to
characterize.

We are specifically interested in understanding the connectivity pattern
of early stages of Alzheimer’s disease (AD) of cognitively healthy subjects,
or preclinical subjects, who are at risk of developing AD. However, the
challenge comes from the subtle biomarker abnormality (including brain
connectivity) at the early stage which makes them extremely difficult
to characterize based on the raw measurements. In Chapter 4, we will
describe how we draw cross-sectional and temporal associations from the
subtle connectivity signals of a preclinical AD cohort in their harmonic
bases representations via bases coupling (Hwang et al., 2015, 2016).
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CH 5. Estimating Uncertainty in Latent Representations
for Longitudinal Predictions

Although characterizing the longitudinal progression of brain network
was described in the previous chapter, making sensible predictions beyond
the observed time points (i.e., future predictions) may require more so-
phisticated models that specialize in sequential predictions. Specifically,
an ideal model should be capable of effectively utilizing the temporal
information from the past to make accurate future predictions. Recently,
a family of sequential neural networks called recurrent neural networks
(RNN) and its variants have shown promising results on such sequential
prediction tasks using long and high-dimensional sequential data (Chung
et al., 2014).

But what is more important in practice is that without acknowledging
the level of uncertainty about the prediction, the model cannot be entirely
trusted in scientific applications. For instance, unexpected performance
variations with no sensible way of anticipating this possibility may also be
a limitation in terms of regulatory compliance. When a decision made by a
model could result in dangerous outcomes in real-life tasks such as an au-
tonomous vehicle not detecting a pedestrian (Aguiar and Hespanha, 2007)
or missing a disease prediction due to some artifacts in a medical image
(Leibig et al., 2017; Nair et al., 2018), knowing how ‘certain’ the model is
about its decision can offer a chance to look for alternative solutions such
as alerting the driver to take over or recommending a different disease test
to prevent undesirable outcomes made by erroneous decisions.

In fact, there has recently been a concerted effort to derive mechanisms
in vision and machine learning systems to offer uncertainty estimates of the
predictions they make (Gal and Ghahramani, 2016; Fortunato et al., 2017).
Clearly, there are benefits to a system that is not only accurate but also has
a sense for when it is not. Existing proposals center around Bayesian inter-
pretations of modern deep architectures – these are effective but can often
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Figure 1.7: Image sequence prediction with uncertainty. Given the first 10 frames of an
input sequence (left), our model SP-GRU makes the Output Prediction and the pixel-
level Model Uncertainty Map where bright regions indicate high uncertainty. SP-GRU
estimates the uncertainty deterministically without sampling model parameters.

be computationally demanding. In Chapter 5, we show how classical ideas
in the literature on exponential families on probabilistic networks provide
an excellent starting point to derive uncertainty estimates in Gated Recur-
rent Units (GRU). To overcome the challenge of uncertainty estimation
in sequential deep models, our proposal directly quantifies uncertainty
deterministically, without the need for costly sampling-based estimation.
We show that while uncertainty is quite useful by itself in computer vision
and machine learning, we also demonstrate that it can play a key role in
enabling statistical analysis with deep networks in neuroimaging studies
with normative modeling methods (Hwang et al., 2019b).

CH 6. Modeling the Relationship between Sequential
Biomarker Modalities via Sequential Invertible Neural
Networks

Understanding the progression pattern of various AD related pathology
such as amyloid beta can be achieved by analyzing the longitudinal neu-
roimaging samples within data. For instance, by comparing the amyloid
beta load over time measured by Pittsburgh Compound B (PiB) Positron
Emission Tomography (PET) scans (Fig. 1.2a) between a risk-enriched
group with a high risk of AD and a control group with a low risk of AD,
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Figure 1.8: Main idea of Chapter 6: Conditional sequence generation. 1) Given: a
sequential condition of decreasing memory function (i.e., a memory test score sequence
y1
i → y2

i → y3
i indicating High→Medium→Low Memory performance). 2) Model:

Conditional Recurrent Flow (Our model). 3) Generate: a sequence of brain image
progression x1

i → x2
i → x3

i corresponding to the given memory progression (i.e., brain
regions with high (red) and low (blue) disease pathology). The Generated Sequence
follows the trend of the Real Data Sequence (i.e., similar (≈) to the real brain image
progression) from the subjects with similarly decreasing memory scores.

we may be able to locate regions within the brain which show develop-
mental differences. While various longitudinal neuroimaging datasets are
growing, such collective effort from multiple AD research sites still require
a substantial amount time (e.g., scans every 2 years⇒ 4 years for a 3 image
sequence) and money (e.g., ∼$4K per PiB PET scan). Such small sample
size challenge in longitudinal neuroimaging (e.g., <300 subjects with 3
visits of PiB PET scans) often results in weak statistical analyses even
with one of the largest public neuroimaging datasets. Further, for other
related tasks such as longitudinal brain network prediction described in
the previous chapter, successfully training similar types of sequential deep
networks with millions of parameters are highly likely to be infeasible.

One promising solution is to generate additional realistic samples con-
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ditioned on such “risk-enriched” and “control” conditions for more robust
subsequent statistical analyses. For instance, existing generative models
would train on existing data to learn the underlying distribution of the mea-
surements (e.g., brain images) in latent spaces conditioned on covariates
(e.g., cognition), and generate independent samples that are identically
distributed in the latent space. Such models may work for cross-sectional
studies, however, they are not suitable to generate data for longitudinal
studies that focus on “progressive” behavior in a sequence of data such
as a trajectory of pathologies we are interested in. In Chapter 6, we will
present our conditional generative model for longitudinal data generation
by designing a sequential invertible neural network which captures the
mapping between two sequential modalities through temporal latent repre-
sentation and generates sequences of brain image features conditioned on
associated sequences of covariates by sampling from the mapped latent
space. Fig. 1.8 illustrates the goal of this chapter.

CH 7. Retrospectively Understanding the Relationships
between Alzheimer’s Disease Pathologies in the Past

Understanding the early pattern of amyloid, a crucial biomarker of AD,
has been a challenging task due to lack of subjects with early longitudinal
amyloid PET scans (e.g.,<60 years of age). There have been several studies
by our collaborators and others (Koscik et al., 2019a; Bilgel et al., 2016)
which suggest that the time of onset (TO) when amyloid accumulation
crosses a critical threshold at an early age is believed to be one of the
earliest signs of AD progression. However, TOs of a vast majority of the
subjects are not actually observed in the data since acquiring the scans
which are early enough to directly estimate the TOs is very few. Thus, a
crucial component of this analysis requires a model which can accurately
estimate the TO into the past give a series (or a single time point) of scans.
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Figure 1.9: Main idea of Chapter 7: Given
a series of PiB-DVR measures for a subject
in multiple ROIs, the goal is to predict the
past PiB-DVR trajectory retrospectively into
the past. Then, the time of onset (TO) which
the PiB-DVR accumulates over the threshold
and becomes PiB+ is computed.

On this end, these prior stud-
ies make two compromises: (1) an
arbitrary clustering approach to es-
timate the group-level TOs and (2)
the averaging of amyloid measures
across the brain regions. Consid-
ering how various regions of the
brain can often accumulate vary-
ing degrees of pathology in differ-
ent patterns among the subjects, a
model which estimates the accumu-
lation patterns for each region and
each subject would allow us to ask
more straightforward scientific hy-
potheses. In Chapter 7, we will de-
scribe our recent work on this scientific goal while addressing these issues
via conditional generative model presented in Chapter 6.

Finally, in Chapter 8, we will summarize the contributions of the thesis
and discuss the future directions of our research.
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2 background

In this preliminary chapter, we cover the basics of various latent represen-
tations that will be mentioned throughout the dissertation.

2.1 Eigenvalue Problem
Eigenvalue problems (Wilkinson, 1965) are ubiquitous in computer vision,
covering a broad spectrum of applications. This will be an overview of
the formulation of the eigenvalue problem and its generalized version
along with the optimization problem to solve them which will appear in
Chapter 4.

Specifically, for a square matrix A ∈ Rn×n, the eigenvalue problem is
finding the eigenvectors v1, . . . , vn for vi ∈ Rn and their corresponding
eigenvalues λ1, . . . , λn for λi ∈ R such that

Avi = λivi (2.1)

for all i = 1, . . . ,n. The matrix representation is

AV = VΛ (2.2)

where V = [v1, . . . , vn] ∈ Rn×n is a matrix with eigenvector columns
and Λ = diag([λ1, . . . , λn]) ∈ Rn×n is a diagonal matrix with eigenvalue
diagonal entries.

The types of problems that we are interested in often involve a sym-
metric A (e.g., similarity matrix), in which case, its eigenvectors are or-
thonormal such that VTV = VVT = I since V−1 = VT . Further, when A is
a symmetric positive semidefinite matrix (i.e., xTAx > 0 for any x), all its
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eigenvalues λi are nonnegative. More generally, we see that

AV = VΛ⇒ A = VΛVT (2.3)

which is also called an eigenvalue decomposition or a spectral decomposi-
tion.

A specific use that we will see in Chapter 4 is spectral graph theory
(Chung and Graham, 1997). Specifically, a graph Gwith n nodes where
node i and j are connected by an undirected weighted edge wij can be
encoded in an adjacency matrix A ∈ Rn×n where A(i, j) = wij. When G
is undirected, A is symmetric. The graph Laplacian L is then derived as
follows:

L = D−A, D(i, i) =
n∑
j=1

A(i, j) (2.4)

where D ∈ Rn×n is called the degree matrix where each of its diago-
nal entries D(i, i) is the sum of total edge weights connected to node i.
Now, L is a symmetric positive semidefinite matrix where the eigenvectors
corresponding to lower order eigenvalues contain the "low frequency"
information (i.e., the global structure of the graph) which reflects the
latent structure of the graph Laplacian.

Generalized Eigenvalue Problem

The generalized eigenvalue problem (Parlett, 1998) involves another sym-
metric matrix B ∈ Rn×n where the goal is to find eigenvectors v1, . . . , vn
for vi ∈ Rn and their corresponding eigenvalues λ1, . . . , λn for λi ∈ R such
that

Avi = λiBvi (2.5)

for all i = 1, . . . ,n. The matrix representation is

AV = BVΛ (2.6)
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where V = [v1, . . . , vn] ∈ Rn×n is a matrix of eigenvectors and and Λ =

diag([λ1, . . . , λn]) ∈ Rn×n is a diagonal matrix of eigenvalues. The pair
{A,B} is also commonly referred to as the matrix pencil, and B is often
called the mass matrix in some applications (e.g., structural mechanics
(Bathe and Wilson, 1973)). In computer vision, the Normalized cut prob-
lem can also be formulated as a generalized eigenvalue problem (Shi and
Malik, 2000). Note that whenB is the identity matrix, this problem reduces
to the standard eigenvalue problem. While B can be singular, it is often a
positive definite matrix by construction in many applications.

Eigenvalue Optimization

Now we see how the eigenvalues and eigenvectors can be numerically
computed. The following maximization optimization problem finds the
eigenvector v that corresponds to the largest eigenvalue (conversely, mini-
mum eigenvalue if it is a minimization problem) in Eq. (2.2):

min
v∈Rn

vTAv

s.t. vTv = 1.
(2.7)

We can easily see that a solutions is indeed an eigenpair since the Lagrian-
gian for Eq. (2.7) is

L = vTAv− λ(vTv− 1)

where λ is the Lagrange multiplier, and its derivative set equal to zero is

∂L

∂v
= 2Av− 2λv = 0⇒ Av = λv

which is equivalent to Eq. (2.1).
In practice, we are often interested in finding p eigenvectors V ∈ Rn×p
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that correspond to the p largest eigenvalues which we can compute as

min
V∈Rn×p

tr(VTAV)

s.t. VTV = I
(2.8)

where tr(·) denotes the trace functional. Note that we can also find all the
eigenpairs since the Lagriangian for Eq. (2.8) is

L = tr(VTAV) − tr(ΛT (VTV − I))

whereΛ is a diagonal matrix with Lagrange multipliers, and its derivative
set equal to zero is

∂L

∂V
= 2AV − 2VΛ = 0⇒ AV = VΛ

which is equivalent to Eq. (2.2).

Stiefel Manifold

The orthogonality constraint in Eq. 2.8 implies that the set of n × p or-
thonormal matrices that we optimize over is called the Stiefel manifold,
and we discuss this concept briefly.

For vector spaces V andW, let L(V ,W) denote the vector space of linear
maps fromV toW. Thus, the space of L(RN,Rp)may be identified with the
spaceRn×p ofn×pmatrices. An injective linear mapu : Rn → V is called a
n−frame in V . Specifically, the set GFn,p = {u ∈ L(Rn,Rp) : rank(u) = n}
of n−frames in Rp is called the Stiefel manifold. As a special case, when
n = p, GFn,n :=GFn is the General Linear group or the set of n × n
matrices with nonzero determinant. In short, a Stiefel manifold is the set
of n× p orthonormal matrices (with a Riemannian structure). The set of
all n−dimensional (vector) subspaces α ⊆ Rp is called the Grassmann
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manifold of n−planes in Rp and denoted by GRn,p. With these definitions,
we see that the Grassmann manifold is just the Stiefel manifold quotiented
by the Orthogonal group (set of orthogonal matrices) in n−dimensions.

Thus, Eq. 2.8 is actually an implicit optimization over the Grassmann
manifold rather than the Stiefel manifold. This is because the objective
function is invariant to a rotation in Rp of the decision variables, that is,
replacing V with VQ so that Q ∈ Rp×p,QTQ = I, we have that,

tr((VQ)TA(VQ)) = tr(QT (VTAV)Q) = tr(VTAV)

where the second equality is due to the similarity invariance property of
the trace functional. For more details on these topics outside the scope of
this dissertation such as an exponential map, tangent space, and retraction,
(Absil et al., 2009) is a good source to start.

2.2 Tensor Decomposition
In this section, we provide some preliminaries of tensor decomposition
which appears in Chapter 3. This is a higher-order generalization of the
matrix factorization methods such as PCA that we have seen so far. For
more details about tensor decomposition methods, the readers may refer
to (Kolda and Bader, 2009).

Tensor

Tensors are essentially multidimensional or n-way arrays. Therefore a
0-way tensor is a scalar, a 1-way tensor is a vector (i.e., 1-dimensional array
X ∈ RI1), a 2-way tensor is a matrix (i.e., 2-dimensional matrix X ∈ RI1×I2),
and a 3-way tensor is a box-shaped 3-dimensional matrix (X ∈ RI1×I2×I3).
This can be generalized to the n-way (or nth order or nth mode) tensor.
For those with n > 3-ways, we call them higher-order tensors.
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Thus, a n-way tensor has n indices, one for each dimension. A 3-way
tensor, for instance, can be indexed with i ∈ I1, j ∈ I2, and k ∈ I3 to
select an entry Xijk ∈ R. For every index that is fixed, the dimension of
the corresponding subarray changes. For instance, if we fix the first two
indices of X, we get a vector Xij: ∈ RI3 with the dimension corresponding
to the last index. Similarly, fixing only one index results in a matrix (slice)
Xi:: ∈ RI2×I3 . This is equivalent to choosing rows or columns in a matrix
by fixing one of the dimensions.

Several important definitions are also generalizable from those com-
monly used with matrices. Let an outer product of two vectors u ∈ RI1

and v ∈ RI2 be a matrix X = uvT ∈ RI1×I2 . Simply, each element of X is just
a product of the elements in each of the vectors such that Xij = uivj. Thus,
generalizing this to an outer product of n vectors a(1), · · · , a(n) results in
a n-way tensor X ∈ RI1×···×In = a(1) ⊗ · · · ⊗ a(n) which is constructed as
follows:

Xi1i2···in = a(1)
i1

a(2)
i2
· · · a(n)

in
. (2.9)

In this case, X is a rank-1 tensor similar to how a matrix of an outer product
of two vectors is also a rank-1 matrix. If a tensor is a sum of R rank-1 tensors
scaled by λs such that

X =

R∑
r=1

λia(1)
r ⊗ · · · ⊗ a(n)

r (2.10)

where each a(i)
r ∈ RIi is a vector, then it is a rank-R tensor. The set of

vectors for each order Ai = [a(i)
1 , · · · , a(i)

r ] ∈ RIi×r is called a factor matrix,
so a rank-r tensor can be decomposed inton factor matrices with the rank-1
scaling factors λ1, . . . , λR.
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CP Decomposition

In practice, when a data can be constructed as a tensor, a common goal
is to decompose it into a set of components (e.g., factor matrices) that
are more explainable, similar to how principal components of PCA and
singular vectors of SVD compactly characterize the overall data. Thus,
analogous to the matrix decomposition methods, tensors are decomposed
via various tensor decomposition methods.

We first describe CANDECOMP (canonical decomposition) (Carroll
and Chang, 1970) and PARAFAC (parallel factors) (Harshman et al., 1970)
which are essentially identical but independently developed, thus together
called CANDECOMP/PARAFAC, or CP, decomposition. For now, we focus
on 3-way tensors. The CP decomposition factorizes a tensor X ∈ RI×J×K

into a sum of rank-1 tensors best approximates the original tensor:

X ≈
R∑
r=1

ar ⊗ br ⊗ cr = [[A, B, C]] (2.11)

where R is the rank and ar ∈ RI, br ∈ RJ, and cr ∈ RK are vectors for
r = 1, . . . ,R, and A = [a1, . . . , aR], B = [b1, . . . , bR], C = [c1, . . . , cR] are the
corresponding factor matrices. Again, this can be generalized to n-way
tensors:

X ≈
R∑
r=1

a(1)
r ⊗ · · · ⊗ a(n)

r = [[A(1), · · · , A(n)]]. (2.12)

Finding such decomposition with R that closely approximates the origi-
nal tensor is called a low-rank approximation. To find such factor matrices
(for a 3-way tensor X), first we matricize X into three different forms:

X̂(1) = (C� B)AT , X̂(2) = (C�A)BT , X̂(3) = (B�A)CT (2.13)
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where � is the Khatri-Rao product:

A� B = [a1 ⊗ b1 . . . aK ⊗ bK] ∈ R(IJ)×K

for A ∈ RI×K and B ∈ RJ×K. Then, we can perform an Alternating Least
Squares (ALS) algorithm to iteratively solve for each of Eq. (2.13) such
that

A← arg min
A

||X(1) − (C� B)AT ||22

B← arg min
B

||X(2) − (C�A)BT ||22

C← arg min
C

||X(3) − (B�A)CT ||22

over several iterations until convergence.

Tucker Decomposition

The Tucker decomposition (Tucker, 1966) consists of a core tensor G ∈
RP×Q×R that the factor matrices perform a specific type of product called
the m-mode product. Specifically, the m-mode product of a tensor X ∈
RI1×···×In and a matrix A ∈ RJ×Im is

Y = X×m A ∈ RI1×···Im−1×J×Im+1×···×In (2.14)

where each element is

Yi1···im−1jim+1···in =

Im∑
im=1

Xi1···inajim (2.15)

which can essentially be thought of as performing a tensor-matrix multipli-
cation along themth mode, effectively transforming the mode’s dimension
from Im to J. Thus, if A in Eq. (2.14) is a vector with J = 1, Y = X ×m A
effectively loses itsmth mode.
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Now, the Tucker decomposition constructs the factor matrices where
they can have different ranks such that A ∈ RI×P, B ∈ RJ×Q, and C ∈ RK×R

as follows:

X ≈
P∑
p=1

Q∑
q=1

R∑
r=1

gpqrar ⊗ br ⊗ cr = G×1 A×2 B×3 C. (2.16)

This can be solved using the ALS algorithm as well based on the following
matricization:

X̂(1) = (C�B)(AG(1))
T , X̂(2) = (C�A)(BG(1))

T , X̂(3) = (B�A)(CG(1))
T

(2.17)
where A(m)B is a short for A ×m B. Again, the Tucker decomposition is
also generalizable to n-way tensors.

There exist other tensor decomposition methods depending on the
structure of the tensor. A specific type of data that we will see in Chap-
ter 3 is the multi-relational data where each slice of a tensor describes a
relationship between problem-specific objects. The latent representations
derived from these methods have solved various challenging tasks includ-
ing community detection (Papalexakis et al., 2013), visual relationship
learning (Hwang et al., 2018), and word representation learning (Jenatton
et al., 2012).

2.3 Sequential Deep Neural Network
Preliminaries of sequential deep neural network in this section will be
beneficial to digest its variants which appear in Chapter 5 and Chapter 6.
For more details about the empirical evaluations of RNN and its variants,
the readers can refer to (Jozefowicz et al., 2015).
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Neural Network

In machine learning, artificial neural network (neural network) is a type
of computational model which its structure is inspired by the biological
neural networks in the brain (McCulloch and Pitts, 1943). The most ba-
sic neural network model is a perception (Rosenblatt, 1958) (Fig. 2.1a).
Specifically, given an input x ∈ Rn, the model consists of weights w ∈ Rn

such that the output o ∈ {0, 1} is computed as follows:

o =

1 if w0 +
∑n
i=1 wixi > 0

0 otherwise
(2.18)

where wi is the ith element of w. The goal is to find the weights that
correctly predict the output for a set of samples/instances in data. This is
achieved by an iterative training process: given a set of training instances
of input x ∈ Rn and output y ∈ R, we (1) randomly initialize weights, and
(2) iterate through the training instances until convergence by updating
each weight wi ← wi+δwi where δwi = η(y−o)xi and η is a learning rate.
A nonlinear activation such as a sigmoid function is commonly performed
on each output o to impose a nonlinear transformation. Essentially, a
single layer fully-connected network is a function which given an input
x ∈ Rn1 , its network parameters (weights) are a transformation matrix
W ∈ Rn2×n1 followed by an activation function f as follows:

y = f(Wx) (2.19)

where we assume the bias term w0 is a part of W without loss of generality.
Multi-layer neural networks have been studied where the outputs of

the first layer become the subsequent hidden layer which acts as the inputs
to the next set of operations and so on (Fig. 2.1b). A multi-layer neural
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Figure 2.1: Examples of Neural Networks

network with L layers can essentially be formulated as follows:

y = f(WL . . . f(W2(f(W1x))) . . . ) (2.20)

where the weights W1, . . . , WL could have varying dimensions.
To efficiently learn the weights, the backpropagation algorithm (Wer-

bos, 1974) is deployed in almost all cases for training deep neural networks.
Let us briefly described the procedure for a simple case. To update a weight
vector w for a single layer network, the backpropagation algorithm first
computes the error that w contributes in terms of a sum of squared error
loss function between the ground truth y ∈ Rn and the prediction o ∈ Rn

given a sample:

E(w) =
1
2

n∑
i=1

(yi − oi)
2. (2.21)

Then, the direction and the magnitude of w contributing to the error is
computed by finding the gradient∇E(w) in the weight space:

∇E(w) = [
∂E

∂w0
, ∂E
∂w1

, ..., ∂E
∂wn

]. (2.22)

Next, the current w is updated in the direction that minimizes the error
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incurred with respect to w scaled by some small learning rate η > 0

w← w − η∇E(w). (2.23)

In practice, we repeat this procedure until the training does not make a
meaningful progress from small gradients (e.g., |∇E(w)| < ε for some
small ε > 0).

Recurrent Neural Network (RNN)

Given a sequential sample x1, . . . , xT where each xt ∈ Rn is a vector, a
typical neural network may not be feasible for several reasons. From
the technical perspective, the overall input feature dimension could be
varying (i.e., T could vary) so the models with a fixed structure (e.g., multi-
layer neural network) are hard to utilize directly. From the application
perspective, it may be beneficial to explicitly capture the sequential pattern
that could be generalized beyond the given observation into the future
time points (i.e., for t > T). A recurrent neural network (RNN) addresses
both of these issues. Formally, a RNN recursively incorporates the output
from the previous time point as a part of the input along with xt:

ot = f(W[ot−1, xt]) for t = 1, . . . , T (2.24)

where [ot−1, xt] is a vector concatenation. This could be viewed as a T -
layered neural network where the weights across the T layers are shared
(i.e., W is shared for all t). In practice, for some sequential problem
formulations, each intermediate output ot could be an input to another
network (i.e., yt = g(ot)) at each time point to produce a sequential output.
This recurrent setup also allows us to recursively predict subsequent time
points for t > T by using the output prediction yt as an (estimated) input
to the next time point (i.e., x̂t+1 ← yt). This recursive procedure, however,
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with the shared W causes the vanishing/exploding gradient problem
where the gradients computed with respect to the same W repeatedly
quickly vanish/explode over a series computations (Chung et al., 2014).
In other words, the RNN’s ability to learn the sequential patterns from
the past becomes less optimal for long sequences since the errors from
a distant history cannot be learned effectively. While there exist several
solutions such as the truncated backpropagation algorithm and sequence
partitioning, variants of RNNs have been developed to explicitly address
these issues. We will describe two main variants next.

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) is
a variant of RNN with a special structure that explicitly performs several
mechanisms for learning long sequences while addressing the vanish-
ing/exploding gradient issues. Specifically, each cell of LSTM consists of
multiple gates with distinct functions. Each gate is essentially a neural net-
work itself with a weight matrix: W for [ht−1, xt] which is a concatenation
of a hidden state vector ht−1 from the previous time point and the current
input vector xt. An LSTM defines the gates and states as follows:

Forget Gate: ft = σ(Wf[ht−1, xt])

Input Gate: it = σ(Wi[ht−1, xt])

Output Gate: ot = σ(Wo[ht−1, xt])

Cell State: ct = ft ◦ ct−1 + it ◦ tanh(Wc[ht−1, xt])

Hidden State: ht = ot ◦ tanh(ct)

where ◦ is an element-wise product and tanh is a hyperbolic tangent
activation function. Intuitively, ft is a vector ranging from 0 to 1 which
acts as a gate to "forget" certain entries of the previous cell state vector ct−1
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(i.e., ft ◦ ct−1). Similarly, it is a vector which keeps the "desired" entries
from the current cell state vector candidate which is tanh(Wc[ht−1, xt]).
The new cell state ct then is used to adjust the output vector ot to produce
a hidden state vector ht for the next time point. These components are
interconnected in each LSTM cell, and it has been one of the most popular
RNN variants for its ability to retain long term information through long
sequences.

Gated Recurrent Units (GRU)

Another popular RNN variant is Gated Recurrent Units (GRU) (Chung
et al., 2014). The overall cell structure resembles that of LSTM, but a GRU
does not represent the cell state and hidden state separately. Specifically,
its updates take the following form:

Reset Gate: rt = σ(Wrxt + Urht−1)

Update Gate: zt = σ(Wzxt + Uzht−1)

State Candidate: ĥt = tanh(Wĥxt + Uĥ(rt ◦ ht−1))

Cell State: ht = (1 − zt) ◦ ĥt + zt ◦ ht−1

where W{r,z,ĥ} and U{r,z,ĥ} are the weights for their corresponding updates
and vectors. The main simplification comes from how ht functions as both
a cell state vector and a hidden state vector. Due to its relatively simpler
formulation without sacrificing the performance, GRU has been another
popular RNN variant for various applications (Chung et al., 2014; Zhao
et al., 2017).
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3 robust visual relationship learning

The first type of relationship we focus on in the thesis is found in natural
images. This chapter tackles a computer vision problem where the goal
is to understand images as humans do (e.g., constructing higher-level
descriptions about the objects such as "the glass is on the table" in Fig. 1.1)
which is not a straightforward task. To achieve this, we will construct the
latent representations of the visual relationships of objects in images.

3.1 Overview
The core primitives of an image, are the objects and entities that are cap-
tured in it. As a result, a strong thrust of research, formalized within
detection and segmentation problems, deals with accurate identification
of such entities, given an image. On the other hand, there is consensus
that to “understand” an image from a human’s perspective (Lu et al., 2016;
Johnson et al., 2015), higher-level cues such as the relationship between
the objects are critical. Being able to reason about which entities are likely
to co-occur (Mensink et al., 2014; Ladicky et al., 2010) and how they interact
(Yao and Fei-Fei, 2010; Deng et al., 2014) is a powerful mid-level feature
that endows a system with auxiliary information far beyond what indi-
vidual object detectors provide. Starting with early work on AND-OR
graphs (Lu et al., 2014b; Li et al., 2016) and logic networks (Tran and Davis,
2008; Song et al., 2013), algorithms which make use of relational learning
are becoming mainstream within vision, offering strong performance on
categorization and retrieval tasks (Alberti et al., 2014; Desai and Ramanan,
2012). Furthermore, many interesting applications (Chandrasekaran et al.,
2016; Wu et al., 2016a; Antol et al., 2015) have begun to appear as richer
datasets become available (Antol et al., 2015; Lu et al., 2016; Zhu et al.,
2016; Xu et al., 2017).
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Figure 3.1: Examples of visual relationships detected by our algorithm given objects and
their object bounding boxes. The left two relationships (green box) were observed in
the training set. The right three relationships (orange box) not observed in the training
set are potentially much harder to detect.

Let us consider the process of setting up a corpus of data to precisely
characterize the intuition above. Given a sufficiently large set of images
where the objects have been localized (e.g., via human supervision), we
process the images and specify the “relationship” between the objects; for
example, person and couch related by sitting on and/or person and bike related
by riding. Then, with a learning module in hand, say which extracts the
latent representations, it should be possible to learn these associations to
facilitate concurrent estimation of the object class as well as their relation-
ship. For instance, a model may suggest that given a high confidence for
the bike class, a smaller set of classes for the other object are likely, and
perhaps, a small set of relationships may explain the semantic associa-
tion between those two objects. Naturally, even when the ‘base’ set of
relationships is small, such a construction can help object/relationship
detection. The authors in (Sadeghi and Farhadi, 2011) showed that this
idea of “Visual Phrases” performs well even when provided with a small
set of 13 common relationships. However, as one may expect, for such a
learning task to work, the training data size should be sufficient to cover all
possible relationships. But as we make the universe of relationships richer,
the distribution of relationships becomes skewed due to their infrequency.
Also, a challenge is the availability of a large dataset that will enable the
learned model to be transferable to other images in the wild.

In 2016, (Krishna et al., 2016) presented a visual relationship dataset,
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Visual Genome, to help research on this topic: over 100K images with 42K
unique relationships. Visual Genome is a massive expansion of the Scene
Graph dataset (Johnson et al., 2015) (gives an image as a first-order net-
work of its objects (vertices) and their visual relationships (edges)). Visual
Genome connects the individual scene graphs to one another based on their
common objects and/or relationships encoding the inter-connectedness
of many complex object interactions. These two datasets are the starting
points for our proposed algorithm.

From Visual Phrases to Scene Graph Prediction. Given a set of detected
objects (i.e., person, dog, phone objects) in an image and possible predicates
(i.e., on, next to, hold predicates), the goal is to infer the most likely rela-
tionships (i.e., Jperson, hold, phoneK relationship) among the objects, see
Fig. 3.1. The Visual Phrases based algorithm (Sadeghi and Farhadi, 2011)
builds a model for each unique relationship instance to fully detect all pos-
sible relationships, i.e., # of predicates × # of object categories2. Independent
object-wise predictions are combined using a decoding scheme that takes
all responses and then decides on the final image-specific outcome. The
formulation is effective but as noted by (Lu et al., 2016), it becomes infeasi-
ble as the number of unique relationships (Jobject, predicate, objectK) exceed
several thousands – as is the case in the new Visual Genome dataset. To
address this limitation, in (Lu et al., 2016) the authors propose building
“joint” models that do not enumerate the set of all relationships and instead
are proportional to the number of object categories plus predicates. This
set is much smaller and effective to the extent that these fewer degrees of
freedom capture the large number of relationships. As discussed in (Lu
et al., 2016), often the language prior can compensate for such disparity be-
tween the model complexity and dataset complexity but also suffers if the
semantic word embeddings fall short (Atzmon et al., 2016). Recently, as a
natural extension to the individual relationship detection, understanding
an image at a broader scope as a scene graph (Xu et al., 2017) has been pro-
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posed where the goal is to infer the entire interconnectedness of the objects
(nodes) in the image with various visual relationships (edges). While the
detection on objects and relationships ‘help’ each other, relatively more
challenging visual relationship inference is often the bottleneck within
such combined approaches.

Key Components for Improved Visual Relationship Learning. A hypotheti-
cal model may offer improvements in visual relationship learning if it has
the following properties: (1) Leaving aside empirical issues, the model
complexity (i.e., degrees of freedom) should be able to compensate for
the complexity of the data (i.e., number of object categories) while still
guaranteeing performance gains for the core learning problem under mild
assumptions. (2) Additionally, it would be desirable if the above charac-
teristic can also generalize to unseen data (i.e., relationships not in training
data) with little information about unseen observations (i.e., unknown
category distributions). Our model offers these nice qualities to derive a
regularization for use within any visual relationship detection pipeline.

Contributions

In this chapter, we provide the following contributions: (i) We view vi-
sual relationship learning as a slightly adapted instantiation of a multi-
relational learning model. Despite its non-convex form, we show how
recent results in linear algebra yield an efficient optimization scheme, with
some guarantees towards a solution. (ii) We derive sample complexity
bounds which demonstrate that despite the ill-posed nature, under sen-
sible conditions, inference can indeed be performed. This scheme yields
powerful visual relationship priors despite the extremely sparse nature of
the data. Empirically, we consistently improve visual relationship predic-
tion over the best known results (Lu et al., 2016) on Scene Graph. (iii) Our
proposal integrates the priors with an adaptation of visual relationship
detection architecture. This end-to-end construction brings the best per-
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Figure 3.2: An end-to-end scene graph detection pipeline. In training, (left) given an
image, its initial object bounding boxes and relationships are detected. Then, (top middle)
its objects and relationships are estimated via scene graph learning module (Xu et al.,
2017). Our tensor-based relational module (top bottom) provides a visual relationship
prediction as a dense relational prior to refine the relationship estimation which also
regulates the learning process of the scene graph module. In testing, (right) the scene
graph of an image is constructed based on both modules.

formance of the much more challenging scene graph prediction tasks (Xu
et al., 2017) on the Visual Genome dataset by modulating the deep neu-
ral network structure with a provably stable relational learning module.
The key leverage comes from overcoming the sparsely observed visual
relationships (∼2% of possible relationships) with contribution (i)-(ii).

3.2 Relational Learning in Vision
In this section, we briefly review some of the related works. In the past
years, low-to-mid level computer vision tasks have seen a renaissance
leading to effective algorithms (Kulchandani and Dangarwala, 2015; Patel
et al., 2015) and various datasets (Lin et al., 2014; Antol et al., 2015; Zhu
et al., 2016). Building upon these successes, higher-level tasks, such as
scene understanding (Eslami et al., 2016; Zitnick et al., 2016) and relation-
ship inference (Lebeda et al., 2015; Lu et al., 2016; Wang et al., 2016b; Xu
et al., 2017), which often rely on the lower-level modules are being more
intensively studied. In particular, inferring the visual relationship between
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objects is the next logical goal – going from object level detection to se-
mantic relations among objects for higher-level relationships. For instance,
simple contextual features such as co-occurrence (Ladicky et al., 2010;
Mensink et al., 2014) are useful but not rich enough for detailed semantic
relationship among objects such as those required within VQA (Antol
et al., 2015). On the other hand, human-specific relationships based on
human-object interaction (Rohrbach et al., 2013; Yao and Fei-Fei, 2010),
while expressive, limit the scope of information inferable from natural
images containing many types of objects. From a different perspective,
inferring visual information from images under various assumptions (i.e.,
in the wild) has been utilized to retrieve task-specific visual information
as well (Ramanathan et al., 2015; Thomason et al., 2014).

A deeper understanding of images is being successfully demonstrated
in various semantic inference tasks. For instance, answering abstract ques-
tions related to a given image called visual question answering (VQA)
(Antol et al., 2015) has shown good results (Zhu et al., 2016; Andreas et al.,
2016) with the availability of various datasets (Antol et al., 2015; Zhu et al.,
2016). Also, image captioning (Chen and Lawrence Zitnick, 2015; Xu et al.,
2015) can infer detailed high-level knowledge from image.

In this chapter, we focus on inferring a mid/high level description com-
monly referred to as visual phrases (Sadeghi and Farhadi, 2011; Krishna
et al., 2016) that provides systematically structured visual relationships
(i.e., person rides a car as Jperson, ride, carK) that is both quantifiable and
expressive (i.e., person related to car by predicates ride and next to). Con-
versely, if precise visual phrases are provided, valuable high-level rela-
tionship information can also be passed down in a top-down manner for
useful lower-level task like object recognition (Choi et al., 2013; Sadeghi
and Farhadi, 2011).

For instance, understanding an image in terms of the objects and their
visual relationships has been recently formulated as a scene graph detection
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(Xu et al., 2017) based on the large-scale Visual Genome dataset (Krishna
et al., 2016) which requires simultaneously performing both higher-level
visual phrase inference and lower-level object recognition. As seen on the
right of Fig. 3.2, a successfully constructed scene graph provides rich con-
text about the image for an upstream system-level model (i.e., captioning
or VQA). Naturally, such type of inference demands solid performance
from both relationship and objects detections, but the bottleneck often
comes down to the difficulty of understanding visual relationship involv-
ing semantic ambiguities and sparse sample observations.

3.3 Collective Learning on Multi-relational
Data

Much of our technical development will focus on distilling the sparsely
observed relationship data towards a precise regularization that will be
integrated into an end-to-end pipeline. Note that in Chapter 6, we will
tackle this problem with a data generation technique to deal with sparsely
observed relationship samples between sequential modalities. To setup
our presentation for deriving this prior, we first briefly describe encod-
ing/representing the data and then obtain an objective function to model
the inference task for the Relational learning module in Fig. 3.2.

Tensor Construction. Suppose we are given a dataset of N images that
contains n object categories and m possible predicates which are both
indexed. For instance, an image can have an object i ∈ {1, . . . ,n} having a
predicate k ∈ {1, . . . ,m}with another object j ∈ {1, . . . ,n}. We can construct
a relationship tensor X ∈ Rn×n×m where X(i, j,k) contains the number
of occurrences of the i’th object and j’th object having k’th predicate in
the dataset. If the relationship of person (object index i) and bike (object
index j) described by ride (predicate index k) has shown up p times, then
we assign X(i, j,k) = p. We can also think of X as a stack of m matrices
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Figure 3.3: Muti-relational tensor X ∈ Rn×n×m given n object categories andm possible
predicates. The value at X(i, j,k) is the number of Ji’th object, k’th predicate, j’th
objectK instances observed in the training set. Due to the sparse nature of the relationship
instances, only ∼ 1% of the tensor constructed from our training set has non-zero entries.

Xk ∈ Rn×n for k ∈ {1, . . . ,m}: each Xk contains information about the
k’th predicate among all the objects in the data (see Fig. (3.3)). Note that
in practice, only a small fraction (i.e., ∼1%) of the possible relationships
are observed out of mn2 possible relationships; the relationship tensor is
extremely sparse.

Why Tensor Construction? In multi-relational learning such as visual
relationship learning, it is critical to appropriately represent the inter-
connectedness of the objects (Singh and Gordon, 2008; Getoor et al., 2001).
Such multi-relational information of any order can be easily encoded as
a higher order tensor where its construction does not require any priors
(parametric distributions in Bayesian Networks (Friedman et al., 1999)) or
assumptions (Markov Logic network structure (Richardson and Domin-
gos, 2006)). Our main motivation is: even though the objects are repre-
sented as points in Rn, due to the sparse matrix slices Xk’s, we may assume
that the objects are embedded in fewer dimensions r<n. In principle, this
can be accomplished by a message passing module (Xu et al., 2017) within
the pipeline shown in Fig. 3.2 but experimentally, we find that concurrently
learning both modules is challenging.
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Why not Tensor Decomposition? Recently, many authors (Anandkumar
et al., 2014; Hsu and Kakade, 2013) have shown that learning latent repre-
sentations correspond to decomposing a tensor into low-rank components.
While many standard techniques (Harshman and Lundy, 1994; Tucker,
1966) exist, they are inappropriate for multi-relational learning for a few
reasons. For instance, polyadic decomposition (Harshman and Lundy,
1994) puts rigid constraints on the relational factor (i.e., diagonal core
tensor) which is counterintuitive in relational learning (Nickel et al., 2011).
Ideally, we want the converse construction where the relational factors are
flexible with respect to the “latent” object representations. In that sense,
our model is similar to the less widely used Tucker 2−decomposition
(Tucker, 1966), but Tucker 2 allows too many degrees of freedom on the
objective factor. Second, the solution of typical solvers (Harshman and
Lundy, 1994; Tucker, 1966) is often not unique. This is not relevant in
many factor analysis tasks that do not rely on the representations (i.e.,
Eigenfaces (Turk and Pentland, 1991)), but this property is undesirable
in our formulation where we explicitly consider the relationships among
the objects in their “latent” representations. In other words, two equally
optimal solutions could interpret the same relationship differently. Thus,
we need to impose consistency in representations by identifying a unique
solution (via additional regularization).

In this section, we describe a novel relational learning algorithm which
addresses the above issues and provides the generalization power needed
for visual relationship detection. We first explain our model motivated
by a three-way collective learning model (Nickel et al., 2011) which de-
rives a set of latent object representations connected by relational factors.
Later, we extend this formulation and describe our relationship inference
model which guarantees a unique solution for consistent objects represen-
tations and their relationships. We then empirically show how our pipeline
(Fig. 3.2) integrating the regularization (or prior) obtains benefits.



44

Three-way Relational Learning

Recall our mild assumption that the objects can be represented in a lower
dimensional space with dimensions r < n. We will now explain our
model in two steps: first, given the multi-relationship tensor X, our goal
is to derive the latent representation of its objects A ∈ Rn×r of rank r;
secondly, assuming that we know the lower dimensional representation A
of the objects, now we can define the relationship-specific factor matrix
Rk ∈ Rr×r for each k ∈ {1, . . . ,m} for each relationship matrix Xk. Observe
that A is common across all the relationships where the i’th row of A is
the latent representation of the i’th object as desired. On the other hand,
each factor matrix Rk individually corresponds to the k’th relationship
and constitutes its respective matrix Xk (see Fig. (3.3)) with the common
latent representation A. We can now write our model as,

Xk ≈ ARkAT . (3.1)

Hence, our optimization problem to solve is,

min
A,Rk

m∑
k=1

||Xk −ARkA
T ||2F (3.2)

where we will learn A and Rk’s simultaneously. Such a decomposition
of a three dimensional tensor is referred to as Tucker 2−decomposition
(Kolda and Bader, 2009). The “2” refers to the fact that we are learning
two “types” of matrices in some sense.

Now we discuss a crucial property of the tensor X that is very relevant.
Observe that since a relationship and its converse (i.e., person on bike
and bike on person) need not always occur together, each Xk is not always
symmetric, thus preventing us from effectively using many readymade
tools from matrix analysis like the spectral theorem, eigendecomposition
and so on. In our multi-relational tensor X, a predicate often cannot be
sensibly applied in the other direction. Thus, we propose alternative
strategies that includes certain reformulations. Before we present our final
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algorithm to solve problem (3.2), we will show how certain reformulations
will enable us to design efficient algorithms.

A possible solution strategy to solve the above formulation (3.2) is
using a conventional approach such as the Alternating Least Squares
(ALS) method (Carroll and Chang, 1970). In this method, one variable
is optimized while fixing all the other variables. Importantly, for the ALS
algorithm to be efficient, we need all of the optimization subproblems to be easily
solvable. However, note that solving forAwhile fixing Rk’s is not easy since
it involves fourth order polynomial optimization.

3.4 Algorithm
In this section, we present our algorithm (Alg. 1) consisting of a novel
initialization scheme followed by an iterative scheme to solve our multi-
relational problem 3.2 with an additional regularization term that is weakly
derived from (Tu et al., 2015). Then, we show how the algorithm can be
integrated into the formulation in Fig. 3.2 as the Relational learning (RL)
module which provides a dense predicate prior.

Multi-relational Tensor Factorization

To make our analysis easier, as the first step, we use auxiliary variables
to decouple A and AT in the objective function resulting in a method of
multipliers type formulation,

min
A,Rk

m∑
k=1

||Xk − BkA
T ||2F s.t. Bk = ARk. (3.3)

For the purpose of designing an algorithm, let us analyze only the objective
function in Eq. (3.3) ignoring the equality constraints resembling matrix
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factorization by lettingm = 1:

min
A,B

||X− BAT ||2F. (3.4)

It is easy to see that the above problem can be solved exactly using the
Singular Value Decomposition (SVD) of X. Whenm > 1, we need to iden-
tify matrix factorization type models where SVD (or something related)
serves as a subroutine. Recent works use SVD as a subroutine in primarily
a few different ways to solve problems that can be posed as matrix factor-
ization problems: preprocessing step (Boutsidis and Gallopoulos, 2008)
at each iteration (Jain et al., 2010) and thresholding schemes (Bansal et al.,
2014). Intuitively, in the above works, the SVD of an appropriate matrix
(chosen specifically depending on the problem context) provides a good
estimate of the global optimal solution of rank constrained optimization
problems both theoretically (Sanghavi et al., 2017) and practically in vision
applications (Lu et al., 2014a). Essentially, these works show that with a
specially constructed matrix, having an initialization already gets close to
optimal solutions, and then any descent method is guaranteed to work.
Unfortunately, these results do not extend to our case when m > 1. we
generalize this idea, derive sample complexity bounds on the number of
predicates needed to learn the latent representations and give an efficient
algorithm.

Low-rank Initialization via SVD

For a given generic X ∈ Rn×n, Eq. (3.4) can be solved by

A = VΣ1/2, B = UΣ1/2 (3.5)

where UΣVT = X is the SVD of X. Under certain conditions, recent works
such as (Sun and Luo, 2015) and (Tu et al., 2015) have shown that an
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Algorithm 1 Alternating Block Coordinate Descent on (3.12)
1: Given: X ∈ Rn×n×m, Xk := X(:, :,k), rank r > 0
2: Low-rank Initialization:
3: X←∑m

k=1 Xk
4: UΣVT ← SVD(X, r)
5: A← VΣ1/2

6: for k = 1, ..., m do
7: Bk ← UΣ1/2

8: Rk ← (ATA)−1(ATXkA)(A
TA)−1

9: end for
10: Iterative descent method:
11: while Convergence criteria not met do
12: A← gradient descent on (3.12) w.r.t. A
13: for k = 1, ..., m do
14: Bk ← gradient descent on (3.12) w.r.t. B
15: Rk ←

(
ATA

)−1 (
ATBk

)
16: end for
17: end while
18: Output: A ∈ Rn×r, Bk ∈ Rn×r, Rk ∈ Rr×r for ∀k

initial point for other common low-rank decomposition formulations can
be estimated within the “basin of attraction” to guarantee the globally
optimal solution; hence this provides the exact latent representation of
objects.

For m = 1, the SVD solution is known for its effectiveness as a nice
initialization to low-rank decomposition problems and iterate within the
basin of attraction under certain conditions (Tu et al., 2015; Sun and Luo,
2015; Lu et al., 2014a; Sanghavi et al., 2017).

Lemma 3.1. Let X ∈ Rn1×n2 be a (rectangular) low-rank matrix which has
the rank-r solution B ∈ Rn1×r and A ∈ Rn2×r such that X = BAT . Also,
suppose X0 is rank-r approximation of X (see Eq. (2.1) in (Tu et al., 2015)),
and its SVD solution is X0 = U0Σ0V

T
0 . Then, for our goal of recovering

those factors B and A, initializations B0 ← U0Σ
1/2
0 and A0 ← V0Σ

1/2
0 will

be within the basin of attraction.
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Proof. Specifically, let the rank-r approximation X0 be the iterative projec-
tion result of (2.1) in (Tu et al., 2015) after T0 > 3 log(

√
rκ) + 5 iterations

where κ and r are the condition number and the rank of the original X
respectively. Then, Theorem 3.3 in (Tu et al., 2015) states that the distance
between B0 and A0 the target B and A is bounded as

dist
([
B0

A0

]
,
[
B

A

])
6

1
4σr(B)

where σ1(B) > σ2(B) > · · · > σr(B) > 0. Also, starting from the initializa-
tion τ = 0, the subsequently updated results Bτ and Aτ for τ = 1, 2, . . .
with a constant step size µ = 2/187 will satisfy

dist
([
Bτ

Aτ

]
,
[
B

A

])
6

1
4

(
1 −

4
25
µ

κ

)τ/2

σr(B)

for the τ-th iterations, so the subsequent solutions will only get closer to
the target. Thus, the initialized B0 ← U0Σ

1/2
0 and A0 ← V0Σ

1/2
0 from the

SVD solution X0 = U0Σ0V
T
0 are within the “basin of attraction”.

This lemma (based on Theorem 3.3 in (Tu et al., 2015)) can directly be
applied to our relational tensor withm = 1 (i.e., a single “slice” X1) in the
context of relational learning which implies there is only one predicate to
consider.

But our case ism > 1, so we perform a simple heuristic of averaging
“slices” of Xk for k = 1, . . . ,m to construct X̃ = 1

m

∑m
k=1 Xk. Then, on this

new single “slice” X̃, we want to see if we can still initializeA0 as described
in Lemma 3.1 via the SVD solution of X̃ so that A0 is still in the basin of
attraction. In turns out that we can still use the SVD initialization of X̃ to
initialize A0 if we have m slices wherem (i.e., # of possible predicates) is
logarithmically dependent on n (i.e., # of object categories). Below, we
show the sample complexity ofmwhich allows us to use the SVD solution
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of X̃ which provably puts us in the basin of attraction with an accurate
SVD estimation of the latent representations. The basic idea is that, if we
successfully estimate the mean of the samples (i.e., E(X)), then a simple
SVD will give us the representation of the objects. Hence our problem
reduces to computing the sample complexity of estimating the mean of
the distribution with respect tom and n.

Lemma 3.2. Let E(X) be the true abstract object relationship matrix from
which Xk’s are sampled from, ε > 0 be the error of our estimate and
δ > 0 be the failure probability. Furthermore, assume that each Xk for
k ∈ {1, . . . ,m} is an independent Bernoulli random matrix. Then A is an
(ε, δ) solution ifm = O

( 1
ε

log
(
n
δ

))
.

Proof. Let E(X) = X̂ be the mean of the distribution. Since we assume
that the mean can be estimated by drawing independent predicates, we
can directly apply the matrix concentration inequalities that were recently
developed (Tropp, 2015) which only requires that the first and second
moment of the random matrix be bounded. This follows from the fact that
the matrices are binary in our case. We will use Õ to hide log factors. First
note that by triangle inequality,

‖X− X̂‖ 6 ‖X‖+ ‖X̂‖ (3.6)

The spectral norm of ‖X‖ is always bounded since they are binary. More-
over, with high probability we have that, ‖X‖ = Õ(

√
n) for any Bernoulli

matrix (Vu, 2008) and hence the expectation has spectral norm of the same
order. Hence we have that,

‖X− X̂‖ 6 Õ(
√
n) (3.7)
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Let X̃ = 1
m

∑
k Xk. Using corollary 6.2.1 from (Tropp, 2015), we have that,

P
[
‖X̃− X̂‖ 6 ε

]
6 Õ(n exp (−mε)) (3.8)

Now setting the right hand side to δ and solving form, we get that

m = Õ

(
1
ε

log n
δ

)
(3.9)

as desired. Thus, the number of slices we need to obtain such SVD has a
logarithmic dependence on n.

Having initialized A, we simply set Bk = XA(ATA)−1 as the initial
point. Another option is to use the least squares solutionBk = XkA(A

TA)−1

with respect to each Xk, but this has a higher chance to overfit the data.
Finally, each Rk ∈ Rr×r for k ∈ {1, . . . ,m} can be solved with its respective
Xk given the original factorization setup Eq. (3.2):

Rk = (ATA)−1(ATXkA)(A
TA)−1. (3.10)

Alternating Block Coordinate Descent

Let us first consider problem Eq. (3.4). We see that Eq. (3.4) has multiple
global optimal solutions since the value of the loss is invariant to a basis
transformation: B ′ = BP and A ′ = AP−T for any invertible matrix P ∈
Rr×r has the same objective function value as B and A. Thus, we add a
term that restricts such degenerate cases:

λp

m∑
k=1

||ATA− BTkBk||
2
F (3.11)

where λp > 0.
A high value of λp, makes the two factors Bk and A to be on the unit
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“scale”, or in other words, acts as a way to put A and B on “equal footing”,
and it serves a similar purpose for removing scale invariance of A and R
which is of interest (Tu et al., 2015).

Our final model which adds the regularization in Eq. (3.11) to a for-
mulation equivalent to Eq. (3.3) is

min
A,Rk,Bk

m∑
k=1

||Xk − BkA
T ||2F + γ

m∑
k=1

||Bk −ARk||
2
F

+ λp

m∑
k=1

||ATA− BTkBk||
2
F.

(3.12)

Equivalence means that there exists some γ > 0 such that the optimal
solutions of Eq. (3.3) and Eq. (3.12) coincide, a direct consequence of
Lagrange multiplier theory (Bertsekas, 1999). Note that the dual variable γ
controls the fit to the constraint Bk = ARk, so we will apply a continuation
technique to solve Eq. (3.12) (without (3.11) for now) for increasing γ to
enforce Bk = ARk (Nocedal and Wright, 2006). Then, we fix γ and add
Eq. (3.11) to solve Eq. (3.12). We used λp = 0.01.

Solving for a Fixed γ. We iteratively solve for A and each Bk for k ∈
{1, . . . ,m} individually with gradient descent methods as follows at each
iteration. First, to solveA, we fixBk for k ∈ {1, . . . ,m} and perform gradient
descent with respect to A as in line 12 of Alg. 1. Second, to solve each Bk,
we fix A and Bk̄ for k̄ 6= k and perform gradient descent with respect to
Bk as in line 14 of Alg. 1. To solve both of these subproblems, we used
Minfunc/Schmidt solver with backtracking line search.

Note that we can solve each Rk for k ∈ {1, . . . ,m} in a closed form Rk =(
ATA

)−1 (
ATBk

)
since the last term does not involve any Rk (line 15 of

Alg. 1). The optimization problem to solve for Bk and Rk is decomposable,
so one main advantage is that they can be solved in parallel. The above
procedure produces a monotonically decreasing sequence of iterates thus
guaranteeing convergence (Gorski et al., 2007).
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Scale Invariance

We note that this regularizer Eq. (3.11) also removes the scale invariance
when A = cA and R = 1

c2R for some c > 0. First, recall that in our basic
objective function without the regularizer Eq. (3.2), ARAT is invariant to
scaling A ′ = cA and R ′ = 1

c2R for some c > 0 because

A ′R ′(A ′)T = (cA)
1
c2R(cA

T ) = ARAT .

which is solved as in Eq. (3.3). We want to restrict the invariance from
such scaling, and this regularizer achieves this scaling invariance.

Lemma 3.3. The regularizer ||ATA− BTB||2F is variant to scaling A and R
where the constraint B = AR is imposed as in Eq. (3.3).

Proof. Suppose we scale A and R such that A ′ = cA and R ′ = 1
c2R for

some c > 0 (except for c = 1 which we do not consider as scaling), and
we similarly let B ′ = A ′R ′ be the constraint corresponding to A ′ and R ′.
The regularizer is variant to such scaling when ||(A ′)TA ′ − (B ′)TB ′||2F 6=
||ATA − BTB||2F. This holds when (A ′)TA ′ − (B ′)TB ′ 6= ATA − BTB, and
we see that

(A ′)TA ′−(B ′)TB ′ = c2ATA−
1
c4R

TATART 6= ATA−RTATAR = ATA−BTB

hence ||ATA− BTB||2F is variant to scaling.

Then, since the regularizer is variant to scaling based on Lemma 3.3,
the new objective function which now includes the regularizer to Eq. (3.12)
is also variant to scaling since

||X− B ′(A ′)T ||2F + ||(A ′)TA ′ − (B ′)TB ′||2F 6= ||X− BAT ||2F + ||ATA− BTB||2F.
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Figure 3.4: Detection task conditions. Given object bounding boxes: (a) Predicate
(easy): does not require bounding boxes. (b) Phrase (moderate): requires relation-
ship bounding box (orange) containing both objects. (c) Relationship (hard): requires
individual bounding boxes (red/blue).

even if A ′R ′(A ′)T = ARAT is scale invariant. This regularizer from (Tu
et al., 2015) originally acts as a way to put A and B on “equal footing”,
and it serves a similar purpose for removing scale invariance of A and R
which is of interest.

Scene Graph Prediction Pipeline

We now describe the training procedure of the pipeline (Fig. 3.2).
Relational Learning Module. We first setup the RL module by construct-
ing the multi-relational tensor X ∈ Rn×n×m on the Visual Genome dataset
as described before. Then, for r = 15, we solve for the latent represen-
tation of the objects A ∈ Rn×r and the factor matrices R1, . . . ,Rm ∈ Rr×r

based on Eq. (3.12) as in Alg. 1. Next, using the trained A and R1, . . . ,Rm,
we reconstruct the low-rank multi-relational matrix X̂which is the stack
of m low-rank relational matrices similar to X except that each slice is
X̂k = ARkA

T for k ∈ {1, . . . ,m}. Then, given objects i and j, the predicted
predicate distribution is kRL = softmax(X̂(i, j, :)) ∈ Rm.
Training the Pipeline. Given an image, the initial object bounding boxes
are detected via a Region Proposal Network (Ren et al., 2015) to train our
end-to-end pipeline for scene graph prediction which consists of two mod-
ules (see Fig. 3.2). (a) Scene graph (SG) module: The iterative message
passing network by (Xu et al., 2017) predicts both objects and predicates
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concurrently. (b) Relational learning (RL) module: Our tensor-based
relational learning provides predicate prior X̂(i, j, :) between object i and j
where the low-rank tensor is now constructed based on the entire Visual
Genome training set. Given object-subject bounding boxes, our pipeline
trains its relationship as follows: (1) The SG module estimates the ob-
ject labels i∗ and j∗ along with the predicate distribution k∗SG ∈ Rm. (2)
The RL module computes the predicate prior based on those estimates:
k∗RL = softmax(X̂(i∗, j∗, :)) ∈ Rm. (3) The prior k∗RL is stochastically ap-
plied to the network-based estimate k∗SG as

k∗ = k∗SG �D(k∗RL, θ)

where � is the Hadamard product and D(y, θ) ∈ Rm is a ‘y-or-1’ filter
where the i’th element is y(i) with probability θ or 1 with probability
1 − θ. This stochastic process balances the influence of the prior k∗RL while
effectively injecting ‘global’ predicate prior which regularizes under- or
over-estimated predicates during the training. (4) Using the new predicate
prediction k∗, relationship loss is now computed and backpropagated to
the SG module with respect to both objects and predicates. In order to
avoid the SG module prematurely relying too much on the preconstructed
RL module at early iterations, we first lightly train the SG module without
the RL module (θ = 0) and then include the RL module (θ = 0.2) for
further iterations.

3.5 Experiments
We evaluate our model on two datasets. First, we test our regularization
model as a standalone method on the Scene Graph dataset (Johnson et al.,
2015) and compare against the relationship detection method by Lu et
al. (Lu et al., 2016). To show that performance gains are not just from
the decomposition formulation ((3.1)), we also compare against Tucker 2



55

Figure 3.5: The total visual relationship detection (top row in green box) and the zero-
shot visual relationship detection results (middle row in orange box) on Scene Graph
dataset using our algorithm (top caption) and (Lu et al., 2016) (bottom caption). The
correct and incorrect predictions are highlighted in green and red respectively.

Visual relationship detection results (bottom row) on Scene Graph using ours (red), Lu
et al. (green) and CP (blue).

(Tucker, 1966) and PARAFAC (Harshman and Lundy, 1994). Second, for
more difficult scene graph prediction tasks on Visual Genome (Krishna
et al., 2016), we show significant improvements over the recent state-of-the-
art message passing network model by Xu et al. (Xu et al., 2017) using our
end-to-end pipeline that integrates our tensor-based relational module
with their message passing model (Xu et al., 2017). The dense prior
inferred from our provably robust relational module directly influences
both the training and testing of the pipeline in a holistic manner as shown
in Fig. 3.2. In both evaluations, we measure the true positive rate from the
top p confident predictions referred to as recall at p (R@p) since not all
ground truth labels can be annotated.
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Scene Graph Dataset

We used the same set of 5000 training (<1% unique tuples) and 1000 test
images with n = 100 object categories and m = 70 predicates as in (Lu
et al., 2016).

Visual Relationship Prediction Setup. The procedure of constructing the
low-rank multi-relational matrix X̂ is identical to the previous description
where in this case we use the Scene Graph dataset. Then, the predicted
predicate between object i and j is k∗ = argmaxkφijX̂(i, j,k) based on a
vector of ‘probability distribution’ of predicates.

Prediction Tasks. We setup three different prediction experiments of
varying difficulties (see Fig. 3.4): (a) Predicate, (b) Phrase and (c) Rela-
tionship predictions. These are performed at R@p for p ∈ {100, 50, 20} in
two settings: (1) Total and (2) Zero-shot (test set not observed in training).

Tucker 2 Results

Below, we show the experiment results on the Scene Graph dataset using
Tucker 2-decomposition (Tucker, 1966).

Total Zero-shot
R@100 R@50 R@20 R@100 R@50 R@20

Predicate 11.86 11.86 10.81 2.57 2.57 2.57
Phrase 3.74 2.97 2.07 0.68 0.43 0.17
Relationship 3.29 2.64 1.82 0.60 0.43 0.17

Table 3.1: Results on Scene Graph using Tucker 2 (Tucker, 1966).

Note that all the results are very underwhelming compared to the
results of the other methods potentially due to the large degrees of freedom
that Tucker 2 innately possesses which may lead to weak generalization
and prediction power.
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Simple Baseline Result

We also tested the following naive baseline method which can naively
predict the unobserved relationships (e.g., [[obj1, ?, obj2]]).

1. For obj1, find the predicate with the maximum number of occurrence
(if tied, pick one randomly) regardless of obj2.

2. Similarly, for obj2, find the predicate with the maximum number of
occurrence (if tied, pick one randomly) regardless of obj1.

3. Then, from the two best predicates with respect to each of obj1 and
obj2, choose the one with the higher number of occurrence (if tied,
pick one randomly). This will be the final predicate for [[obj1, ?,
obj2]].

This essentially picks the most occurring predicate that considers either
obj1 or obj2 (e.g., “given person for obj1, choose the most occurring pred-
icate that follows person without considering the corresponding obj1”).
We call this the "Back-off Baseline" for its simplicity. The results are shown
in Table 3.2.

ZS Predicate ZS Phrase ZS Relationship
Methods R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100
Ours 16.4 17.3 17.3 3.8 5.8 7.1 3.5 5.3 6.5
Lu et al. 11.9 12.3 12.3 3.6 5.1 5.7 3.3 4.8 5.4
PARAFAC 10.3 10.4 10.4 1.9 2.9 3.7 1.6 2.6 3.3
Back-off 9.3 9.4 9.4 1.2 1.5 1.6 1.0 1.3 1.5

Table 3.2: Zero-shot results for Scene Graph dataset experiment

We observed that the performance of the Back-off Baseline approach was
relatively worse in all setups, but the predicate prediction results (ZS
Predicate, left 3 columns) were not that much worse than the PARAFAC
decomposition. This implies that the raw relationship occurrence counts
from the training data may already provide a reasonable amount of infor-
mation so that the above heuristic serves as a nice baseline, at least for the
current benchmark.
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Figure 3.6: Scene graph detection task (see Table 3.3) results on Visual Genome using
ours (red) and (Xu et al., 2017) (cyan). Our pipeline without the RL module show results
similar to (Xu et al., 2017) (cyan).

Visual Genome Dataset

We used the cleaned up version of the dataset following (Xu et al., 2017)
to account for poor/ambiguous annotations which consists of 108, 077
images, 25 objects, and 22 relationships where we used 70% for training
and 30% for testing. For the experiments, we used the most appearing
n = 150 object categories and m = 50 predicates (11.5 objects and 6.2
relationships per image on average).

Prediction Setup. Once the pipeline is trained, the prediction result is
simply the forward propagation output of the pipeline except we now set
θ = 1 to fully use the relational prior k∗RL.

Scene Graph Prediction Tasks. Detecting a scene graph requires inference
on three parts: predicate, object class and bounding box which requires
accurate predictions on these parts incrementally (Xu et al., 2017) as shown
in Table 3.3. For all these tasks, we used R@p for p ∈ {100, 50, 20}.

Results on Relationship Learning Tasks

Visual Relationship Detection on Scene Graph. We show visual relationship
detection results on the Scene Graph dataset using CP (Harshman and
Lundy, 1994), Lu et al. (Lu et al., 2016) and our algorithm at the bottom
of Fig. 3.5. For all tasks, our results outperform other methods. Especially,
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Prediction Tasks Predicate Object B-box
Predict Predicate (PredCls) X

Classify SG (SgCls) X X
Generate SG (SgGen) X X X

Table 3.3: Scene Graph detection tasks. Check marks indicate required prediction
components. The tasks become incrementally more demanding from top (PredCls) to
bottom (SgGen).

our zero-shot prediction (Fig. 3.5 (d)) results substantially outperform
the state-of-the-art ((Lu et al., 2016)) by ∼ 40% in all recalls. In much more
difficult phrase (b,e) and relationship (c,f) detection (Fig. 3.5), we achieve
improvements in all tasks under almost all recalls. We observe that our
zero-shot predicate detection results (Fig. 3.5 (d)) given known object pairs
is competitive with the total phrase detection results by (Lu et al., 2016)
(Fig. 3.5 (b)) given unknown object pairs. This implies that while accurate
object detection is crucial for visual relationship detection, more difficult
zero-shot learning is a less critical factor for our algorithm.

Scene Graph Prediction on Visual Genome. We now show the scene graph
prediction results (Fig. 3.6) on Visual Genome using Xu et al. (Xu et al.,
2017) and our pipeline (Fig. 3.2). We also evaluated (Lu et al., 2016) on
the same tasks, but the model did not scale well to the task complexity
so the performances were lower than the other two methods by large
margins. (a) PredCls: Our model provides significant improvements in
the predicate detection tasks in all recalls by at most ∼30% in R@20. Since
this task only demands predicate predictions, such large improvements
demonstrate that the tensor-based RL module functions as an effective
prior for inferring visual relationships by better utilizing the large but
sparse dataset. (b) SgCls: The results on the scene graph classification
(Fig. 3.6(b)) show that our model improves object classifications as well
in all recalls where our R@50 result is on par with R@100 of (Xu et al.,
2017). The boost in predicate prediction improves overall inference on the
interconnected object and predicate inference of the SG module (Xu et al.,
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Figure 3.7: Scene graph classification results on Visual Genome using ours and (Xu et al.,
2017). For each column, the predicted objects (blue ellipses) and their relationships
(yellow ellipses) are constructed as a scene graph its top image. The bounding boxes
labels reflect our prediction results. For difficult predictions (green dashed boundary)
where our model has correctly predicted (top green) and while (Xu et al., 2017) has
misclassified (bottom red) are shown. The rightmost column is an example of a case
where our model provides more accurate predictions (pot and bowl) than those of the
ground truth (box and cup).

2017) during the training. (c) SgGen: On the last task which also predicts
the bounding box, our model showed ∼10% improvements in all recalls
over (Xu et al., 2017).

Remarks. We observe that our RL module provides boosts on not only
the predicate detection (PredCls) but also the interdependent object clas-
sification tasks (SgCls and SgGen) enabled by our composite pipeline
(Fig. 3.2), and this is our initial hypothesis: relationship learning is a
bottleneck which needs to be focused on. Second, as seen in the right-
most column of Fig. 3.7, such rare mislabeled or semantically ambiguous
samples become extremely difficult to infer, but the prior from the RL mod-
ule could provide strong ‘advice’ on such outliers based from its dense
knowledge spanning entire relationship space.

3.6 Summary
We presented a novel end-to-end pipeline for the visual relationship de-
tection problem. We first exploits a simple tensorial representation of the
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training data and derives a powerful relational prior based on a algebraic
formulation to obtain latent “factorial” representations from the sparse
tensor via a novel spectral initialization. Our results suggest that the fac-
tors can be provably learned from observations only logarithmic in the
number of relationships given the ill-posedness of the problem. With this
regularization, we show how informing an end-to-end visual relation-
ship detection pipeline with such a distilled prior constructed from the
latent representations of objects and their relationships yields state-of-the-art
in various experiments from predicate to scene graph prediction.
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4 coupling harmonic bases for cross-sectional
and longitudinal characterization of brain
connectivity evolution

The visual relationships described in the previous chapter demonstrated
a cross-sectional (i.e., non-temporal) relationship between the objects in
images. Starting from this chapter, we begin introducing another common
type of relationship, the temporal relationship, containing the sequential
information of the data. In this chapter specifically, we will derive the
latent representation of brain networks while imposing the cross-sectional
and temporal consistency directly in the latent space (see Fig. 1.6).

4.1 Overview
Large scale scientific initiatives such as the Human Connectome Project
(HCP) are beginning to provide exquisite imaging data that may even-
tually enable a full structural connectivity mapping of the human brain
(Van Essen et al., 2012). For instance, diffusion magnetic resonance imag-
ing (dMRI), an imaging modality central to the aforementioned studies,
captures in a spatially localized (voxel-wise) manner, water diffusion prop-
erties that can be used to infer the arrangement of network pathways in
the brain (Sotiropoulos et al., 2013; Uğurbil et al., 2013). After suitable
pre-processing, e.g., via so-called tractography procedures, we obtain a
unique view of the fiber bundle layout that connects distinct brain regions
(Jbabdi et al., 2015) (see Fig. 4.1). From an analysis perspective, once the
spatial organization of these fiber bundles is expressed as a graph whose
nodes represent separate brain regions and the edges denote the “strength”
of connection (e.g., number) of the connecting inter-region fibers, a variety
of analyses can be conducted (Kim et al., 2013, 2015; Sporns, 2011; Wig
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Figure 4.1: Deriving connectivity matrix from dMRI. (a) Diffusion tensor ellipsoids
obtained from the dMRI data using non-linear estimation. (b) Anatomical regions in
cortical and sub-cortical gray matter are used to define the nodes in the brain network.
(c) Fiber tracts (axonal pathways between brain regions) estimated via tractography are
used to define connectivity strength between various gray matter nodes in the brain. (d)
The brain networks can be represented as symmetric adjacency matrices.

et al., 2011). For example, we may ask whether a specific edge of the graph
exhibits statistically different connectivity measurements across clinically
disparate groups: diseased and healthy. If the results of this hypothesis
test are statistically significant, we can conclude that the corresponding
fiber bundle (pertaining to the edge) is possibly affected by the disease.

But more recently, there is increasing interest in identifying not just
imaging based or structural connectivity based biomarkers, rather to quan-
titatively characterize disease progression (Cairns et al., 2015; Raj et al.,
2012; Wang et al., 2015). For example, studies may recruit subjects for mul-
tiple visits over a period of time (which varies from months to years) and
acquire diffusion imaging data at several time points. In such longitudinal
datasets, each subject (or sample) corresponds to multiple images (or the
corresponding brain connectivities) at different time points. The scientific
goal then is to identify the entire life cycle of brain connectivity evolution
— from when a middle aged participant was healthy to a stage where the
individual’s cognitive function has become much worse.

The standard approach to answering the question above is to charac-
terize change in brain connectivity at the level of individual edges in the
graph. There are two problems with this proposal. First, treating individ-
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ual edges as primitives neglects the local context in which the edge exists
in the actual object of interest — i.e., the entire connectivity graph of the
individual. But from a technical perspective, a second issue is perhaps
more important. For n regions, we obtain O(n2) edges. After learning a
model (e.g., association of the connection weights with age) for each edge
and estimating the significance of the fit (e.g., p-values), we cannot simply
report the edges with small p-values as relevant. Since the analysis is being
conducted for a large number of edges, the likelihood of false positives
is high, so a conservative multiple comparisons correction needs to be
adopted. This correction may often be too conservative, and we may end
up discarding connections that are, in fact, scientifically meaningful; this
is an undesirable consequence of treating the edges individually. To avoid
this problem, practitioners often rely on summary measures of the con-
nectivity graph instead, such as clustering coefficients, small-worldness,
modularity and so on (Achard et al., 2006; Rubinov and Sporns, 2010).
This works well but is limited in that we cannot uncover spatially localized
effects of disease (or other covariates) on connectivity.

A more attractive solution is to think of the graphs as an object and
utilize a suitable parameterization of the graph. One possibility is to use
the Laplacians (Reijneveld et al., 2007; Stam and Reijneveld, 2007), either
at the level of individual subjects or in terms of distinct partitions of the
full cohort progressively going from healthy to diseased, i.e., the first par-
tition is comprised of completely healthy individuals whereas the k-th
partition includes diseased subjects. Then, if we look at the full set of
bases of the partition-specific Laplacian we can come up with ways to
characterize change in these bases as we move from the healthy to the
diseased partition. Of course, such a parameterization also enables lon-
gitudinal analysis. For example, if we have data for multiple time-points
for each partition, we can track how the Laplacian bases evolve over time.
To achieve these goals, i.e., for analyzing changes across partitions of dis-
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ease severity or partition-specific longitudinal analysis, one requirement
is the ability to derive a coupled set of harmonic bases for a set of ordered
Laplacians (longitudinally and cross-sectionally). This allows treating the
full data holistically while preserving the ordinal nature of time and disease-
induced cognitive decline. While a mature body of literature in numerical
analysis provides sophisticated ways of deriving orthonormal set of bases
for any self-adjoint operator, it provides little guidance on how to impose
the coupling requirement, essential in this application. For example, we
find that for most of the widely used eigenvalue decomposition methods
(Saad, 1992; Warsa et al., 2004), it is non-trivial to modify the numerical
scheme to satisfy the consistency requirement between consecutive set of
eigen-bases. Addressing this limitation is a goal of this chapter.

Contributions

With the foregoing motivation, the core of this work deals with deriv-
ing efficient numerical optimization schemes to solve an ordinally and
longitudinally coupled set of a generalized eigenvalue problems. To our
knowledge, few publicly available alternatives currently exist (Kovnatsky
et al., 2013; Lei and Li, 2009). We provide (i) a novel formulation for esti-
mating harmonic bases of brain connectivity networks that are smoothly
varying in terms of both longitudinal as well as cross-sectional ordering
(induced by a separate covariate such as cognitive performance). We pro-
vide an iterative numerical scheme for solving the problem using stochastic
block coordinate descent based manifold optimization techniques. (ii)
We show that such a framework provides an exciting scientific tool in the
following sense. Once the model has been estimated, we can vary a single
parameter and “see” how the structural brain connectivity of an individual
evolves over time or as a function of disease (see Fig. 1.3 for a qualita-
tive demonstration). This yields a valuable mechanism for performing
individual-level prediction. In fact, in the following chapters (Chapter 5
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and Chapter 6), we further develop such individual-level predictions not
only for the brain connectivity but also for the ROI-based measures in
the context of AD (see Fig. 7.3 for an example of ROI-specific pathology
trajectory prediction). We show how our algorithm is able to provide
connectivity prediction in a population of healthy controls who have some
known risk factors of AD. Even though these individuals are asymptomatic,
our approach is able to obtain a nominal degree of accuracy in assigning
the subject to distinct cognitive quantiles. This demonstrates that we can,
in fact, obtain a better than chance accuracy where the disease signal is so
weak which is the main contribution of this work.

4.2 Coupled harmonic bases for brain
networks

Parameterization of Brain Network

Let us first describe a simple procedure for parameterizing the brain con-
nectivity network in terms of its bases for individual subjects. Let A be a
n× nweighted adjacency graph, A as in Fig. 4.1(d) representing a brain
connectivity between n regions of the brain for a subject. We construct
the Laplacian L, a commonly used tool/parameterization for representing
graphs, defined as

L = D−A, D(i, i) =
n∑
j=1

A(i, j),

where D is called the degree matrix. Based on spectral graph theory, the
eigenvectors corresponding to lower order eigenvalues contain the ‘low
frequency’ information which reflects the latent structure of the Laplacian.
The bases are estimated by minimizing the following objective function

min
V∈Rn×p

tr(VTLV), s.t. VTV = I, (4.1)
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where tr(·) is the trace functional. The solution V to the above numerical
optimization problem consists of the eigenvectors associated with the p
smallest eigenvalues of L which we solve to express a given brain connec-
tivity network via its Laplacian and/or its p eigenvectors/eigenvalues.

Now suppose we are given a longitudinal dMRI dataset for N subjects
with T time points: this providesNT brain networks. We can parameterize
all the networks simultaneously by minimizing the following objective
function

min
V[i,j]∈Rn×p

N∑
i=1

T∑
j=1

tr(VT[i,j]L[i,j]V[i,j])

s.t. VT[i,j]V[i,j] = I,

(4.2)

where L[i,j] denotes the Laplacian matrix of brain network for subject i and
time point j and V[i,j] denotes the set of p eigenvectors for L[i,j].

However, this formulation ignores a couple of key properties of our
analysis goal (conceptually shown in Fig. 4.2). (1) Each subject has
multiple time points which means that not all networks in the population
are ‘independent’. There are strong dependencies among the networks
derived from a single person observed over time. (2) The subjects can,
if desired, be partitioned into distinct groups if a covariate of interest for
the subjects is close enough (i.e., similar cognitive scores or a measure
of pathology such as amyloid protein load may have roughly similar
connectivity strength (Drzezga et al., 2011)). This suggests that the bases
that we find must also be related, or coupled, while still respecting, to the
extent possible, their original Laplacians. If we consider the population of
networks as a system, the recovery of the full set of bases must ensure a
notion of consistency among {V[i,j]}, governed by either the cognitive score
grouping or longitudinal ordering described above.

We now present our proposed framework for adding constraints in
Eq. (4.2) that will ensure that the full set of Laplacians are treated jointly.
Without loss of generality, we can work with the example dataset scenario
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presented in Fig. 4.2.

Longitudinal Coupling
In this section, we introduce basis coupling constraints that model the
relationships (blue arrows in Fig. 4.2) between temporally consecutive
bases. Suppose we consider the bases V[•,j] and V[•,j+1] for two consecutive
time points j and j+ 1 for a specific subject. Since these are derived from
the Laplacians of the same subject, we impose a homology constraint
between the latent structures. In other words, we expect that V[•,j] and
V[•,j+1] differ only by a small degree of rotation. Specifically, we impose

V[•,j+1] = R
•
[j,j+1]V[•,j], (4.3)

where R•[j,j+1] ∈ SO(n) which is a group of n × n orthogonal matrices
with determinant = +1. This is, in fact, a Procrustes problem (Wang
and Mahadevan, 2008) of aligning the bases which provides the longi-
tudinal evolution process of the set of bases as a sequence of rotation
matrices. Note that the rotation matrix which aligns V[•,j+1] to V[•,j] is
simply R•[j+1,j] = R

•T
[j,j+1].

Now, for eigenvectors V[•,j] and V[•,j+1], we see that

VT[•,j]V[•,j] = V
T
[•,j]R

•
[j+1,j]V[•,j+1] = I, (4.4)

VT[•,j+1]V[•,j+1] = V
T
[•,j+1]R

•
[j,j+1]V[•,j] = I. (4.5)

Multiplying the above two equations we have(
VT[•,j]R

•
[j+1,j]V[•,j+1]

)(
VT[•,j+1]R

•
[j,j+1]V[•,j]

)
= I

=⇒ VT[•,j] (R
•
[j+1,j]V[•,j+1]V

T
[•,j+1]R

•T
[j+1,j])︸ ︷︷ ︸

M ′[j+1,j]

V[•,j] = I.

Thus, we have now added a constraint on V[•,j] that addresses the coupling
between j and j+ 1 as

VT[•,j]M
′
[j+1,j]V[•,j] = I. (4.6)
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Note that for j /∈ {1, T }, each V[•,j] is tied to V[•,j−1] and V[•,j+1]. Thus,
the coupling matrices for those two relationships are M ′[j−1,j] andM ′[j+1,j]

respectively. To account for both relations, we take the average coupling
matrix as (Ham et al., 2005):

M[•,j] =
M ′[j−1,j] +M

′
[j+1,j]

2 . (4.7)

For the boundary values of j = 1 and j = T , M[•,1] =M
′
[2,1] and M[•,T ] =

M ′[T ,T−1] respectively. Thus, for a subject i, we derive the following opti-
mization model for discovering longitudinally coupled bases for the brain
connectivity Laplacians,

min
V[i,j]∈Rn×p

tr(VT[i,j]L[i,j]V[i,j]), s.t. VT[i,j]M[i,j]V[i,j] = I. (4.8)

Recall that the above constraint is the so-called generalized Stiefel con-
straint (Absil et al., 2009) with the mass matrix M[i,j]. This is also known
as the generalized eigenvalue problem that finds the first p smallest eigen-
values and the respective eigenvectors of L[i,j] for the mass matrixM[i,j].
We can finally extend this implementation for all subjects as follows,

min
V[i,j]∈Rn×p

N∑
i=1

T∑
j=1

tr(VT[i,j]L[i,j]V[i,j])

s.t. VT[i,j]M[i,j]V[i,j] = I.

(4.9)

We point out that for each i and j, the above model is equivalent to Eq. (4.8).

Cross-sectional Coupling
In this section, we present the appropriate constraints that will encode
cross-sectional dependencies among the eigenvectors {V[i,j]}. Let us say
the population can be partitioned into K distinct groups (columns in
Fig. 4.2) where each group/column is cognitively equivalent based on
some battery of tests. Such partitions may also be derived by certain
measures of pathology. For each group, we first construct an average
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Figure 4.2: The graph representation of the coupled data matrices. The nodes in each
row (cross-sectional) are coupled horizontally in red while the nodes in each column
(longitudinal) are coupled vertically in blue.

Laplacian X[i,•] at a fixed time point. This average Laplacian serves as
a representative of that specific group. In principle, we can work with
individual level Laplacians L, however, since the goal is to formulate
the coupling of bases with respect to the covariates, the averaging helps
us reduce the individual level variability and provides a more succinct
picture of the network evolution along the trajectory of that covariate (e.g.,
cognitive scores).

Let us consider three such average Laplacians X[i−1,•], X[i,•] and X[i+1,•]

from three consecutive/ordered partitions. The corresponding eigenvec-
tors will be V[i−1,•], V[i,•] and V[i+1,•]. Since these bases are derived from
partitions with disjoint/distinct groups of subjects, we cannot assume a
homological relationship between them. Since the coupling constraints
will be added only between adjacent partitions it is nonetheless reason-
able to assume that the bases will not change drastically affecting the full
connectivity network. We encode this requirement as a sparsity constraint
on the difference of the bases, e.g., via `0 norm. We use the relaxed `1
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alternative,

g(V[i,•]) = λ
(
||V[i−1,•] − V[i,•]||1 + ||V[i,•] − V[i+1,•]||1

)
(4.10)

where λ > 0 is the regularization parameter which controls only the
magnitude of the cross-sectional coupling.

Intuitively, it enforces similarities in certain dimensions of the cross-
sectional bases while allowing the others to vary freely. In other words,
we preserve some structural consistencies across the groups while still
allowing the group-wise bases to be different. Note that for i = 1 and i = K,
the regularization terms will only contain the first term and the second
term of (4.10) respectively. The cross-sectionally coupled bases (V[i,•]) can
then be estimated by minimizing the following,

min
V[i,•]∈Rn×p

tr(VT[i,•]X[i,•]V[i,•]) + λg(V[i,•])

s.t. VT[i,•]M[i,•]V[i,•] = I.
(4.11)

Putting it all together, we have the following coupled generalized eigenvalue
formulation,

min
V[i,j]

K∑
i=1

T∑
j=1

tr(VT[i,j]X[i,j]V[i,j]) + λ
K−1∑
i=1

T∑
j=1

||V[i+1,j] − V[i,j]||1

s.t. VT[i,j]M[i,j]V[i,j] = I; V[i,j] ∈ Rn×p.

(4.12)

We have now imposed both the longitudinal and cross-sectional basis
coupling: for all partitions and time points.

4.3 Optimization scheme for coupled bases
In this section, we present an efficient numerical procedure for solving
Eq. (4.12). Recall that the constraints involving the mass matrix form the
generalized Stiefel manifold. For a few relevant technical details of the
harmonic basis and Stiefel manifold, we suggest the reader to refer back
to Background 2.1.



72

Algorithm 2 Stochastic block coordinate descent in GFn,p

1: Given: f : GFn,p→ R, V ∈ GFn,p(M),M ∈ Rn×n
2: while Convergence criteria not met do
3: S := Subproblem row indices
4: P0 := Initial feasible submatrix (4.19)
5: G := Subdifferential of fw.r.t. P0 (4.20)
6: W := Descent curve in the direction of −G on GFs,p(MSS) at P0

(4.22)
7: τ := Step size under strong Wolfe conditions (Nocedal and Wright,

2006)
8: P := Feasible pointW(τ) of subproblem with sufficient decrease in

f

9: V ′(P) := Update new feasible point (4.23)
10: end while

Our main strategy is to perform block coordinate descent over GFn,p

to solve for {V[i,j]} for each matrix X[i,j] given in Eq. (4.12). Specifically,
our algorithm iteratively decreases the objective value of the problem by
finding the next feasible point in a curve which lies in the generalized
Stiefel manifold GFn,p described in the constraints of (4.8), by adapting
the scheme in (Collins et al., 2014; Hwang et al., 2015; Wen and Yin, 2013).
This process is invoked as a module within our full pipeline.

Next, we show the entire framework of our algorithm which solves
for all V[i,j] of the model (4.12) by iteratively solving for each V[i,j] while
fixing the other decision variables V[i ′,j ′], ∀i ′ 6= i&j ′ 6= j. In each iteration,
we also update the mass matrixM[i,j] using the most recent bases.

Stochastic Block Coordinate Descent in GFn,p.

For simplicity, let us focus on a single arbitrary partition and its Laplacian
X, mass matrixM and the eigenvectors V and setup the following coupled
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model as in Eq. (4.11):

min
V∈Rn×p

tr(VTXV) + λg(V)

s.t. VTMV = I,
(4.13)

where the regularization term g(V) from Eq. (4.10). First, we show how
to solve Eq. (4.13) on a subset of the dimensions. This is a very common
procedure in a coordinate descent method where the dimensions can be
computed nearly independently to allow parallelization and make large-
scale implementation possible. Specifically, we construct a subproblem
for each submatrix VS· ∈ Rs×p where S is a subset of s row indices of V .
We choose this submatrix as the free variable which we ultimately solve
for while fixing the complementary submatrix VS̄· for the rows S̄ called
the fixed variable which we essentially treat as constants. Assuming w.l.o.g.
that VS· contains the first s rows of V and its complement VS̄· contains the
leftover indices, the constraint VTMV = I in Eq. (4.13) can be reorganized
as [

VS·
VS̄·

]T [
MSS MT

S̄S

MS̄S MS̄S̄

][
VS·
VS̄·

]
= I. (4.14)

Rearranging it to move all the fixed variables on one side results in

VTS·MSSVS· + V
T
S̄·MS̄SVS· + V

T
S·M

T
S̄S
VS̄· =: Ĥ, (4.15)

for a constant matrix Ĥ. With the full-rank assumption onMSS, completing
the square results the following:(

M
1
2
SSVS·+M

− 1
2

SSM
T
S̄S
VS̄·

)T(
M

1
2
SSVS·+M

− 1
2

SSM
T
S̄S
VS̄·

)
= H (4.16)

for a new constant matrix H = Ĥ+ VT
S̄·MS̄SM

−1
SSMSS̄VS̄·. Since we assume

thatM is positive definite,MSS is also positive definite and invertible.
Now, given an orthogonal subproblem decision matrix P, the next

feasible iterate can be provided as

VS· =M
− 1

2
SS PH

1
2 −M−1

SSM
T
S̄S
VS̄·, (4.17)
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which satisfies the constraints in (4.14). Note that by using a retraction,
we can smoothly map the tangent vectors to the manifold and preserve
the key properties of the exponential function necessary to perform feasi-
ble descent on the manifold. For the Stiefel manifold, a computationally
efficient retraction comes from the Cayley transform which can be ex-
tended to the generalized Stiefel manifold shown by Equation (1.2) and
Lemma 4.1 of (Wen and Yin, 2013). Consequently, we can eliminate the
extra computation of the matrix square roots and simplify (4.17) to the
following:

VS· = P −M−1
SSM

T
S̄S
VS̄·. (4.18)

If PTMSSP = H forMSS � 0 and non-singular H, the above equation sat-
isfies the subproblem constraint. Thus, given the previous V , the descent
curve starts at the point:

P0 = VS· +M
− 1

2
SSM

T
S̄S
VS̄·. (4.19)

So far, we have shown how to setup the initial point for the line search
step. Next, we describe how to compute the descent curve of the subprob-
lem on the generalized Stiefel manifold for the line search on the manifold.
The first step is to find the gradient of the objective function of Eq. (4.13)
which is f(V) = VTXV + λ g(V). Thus, for f(U) and V(P) where the next
feasible point V as a function of P as in Eq. (4.18), the gradient of f ◦ V(P)
w.r.t. P is

∂ (f ◦ V(P))
∂P

= 2(XSSVS· + XSS̄VS̄·) + λg
′(V(P)), (4.20)

where g ′(V(P)) is the subgradient of the regularization term Eq. (4.10).
Next, we project the descending subgradient −G ′ at P0 onto the tangent
space of the manifold GFi,p(MSS) by constructing a skew-symmetric ma-
trix:

Q = GPT0 − P0G
T , (4.21)

which conveniently allows the Cayley transform as in (Wen and Yin, 2013)
to smoothly map from the tangent space to the generalized Stiefel manifold
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Algorithm 3 Coupled bases framework using SBCD
1: Given:
f : GFn,p → R, V[:,:] ∈ GFn,p(M[:,:]),M[:,:] ∈ Rn×n

2: while Convergence criteria not met do
3: for i = 1, ..., K do
4: for j = 1, ..., T do
5: V[i,j] := Free variable
6: V[i,j] := SBCD(V[i,j]) (Alg. 2)
7: end for
8: for j = 1, ..., T do
9: R[i,j] := Rotation matrix (4.3)

10: end for
11: for j = 1, ..., T do
12: M[i,j] := Mass matrix (4.6), (4.7)
13: end for
14: end for
15: end while

to create the descent curveW as a function of τ:

W(τ) =
(
I+

τ

2QMSS

)−1 (
I−

τ

2QMSS

)
P0. (4.22)

We can linearly search over the descent curve to find the new point P =

W(τ) for some τ which results sufficient decrease in f. Thus, the next
feasible decision variable V ′ ∈ Rn×p as a function of P is

V ′(P) =

[
P −M−1

SSM
T
S̄S
VS̄·

VS̄·

]
(4.23)

so we can finally assign the current V with V ′. By the construction of the
coupled bases model Eq. (4.13), V ′ is updated to minimize the objective
function while it remains coupled with the other longitudinal and cross-
sectional bases connected to V . The pseudo-code of the algorithm is in
Alg. 2.
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Iterative SBCD in GFn,p for Bases Coupling.

With the stochastic block gradient descent (SBCD) method roughly similar
to (Liu et al., 2015) as a solver for a single coupled basis, we now setup
the framework to solve for all coupled bases. Specifically, given multiple
matrices X[i,j] for i = 1, . . . ,K and j = 1, . . . , T , we set up grid-like iterations
as shown in Alg. 3 where we iteratively pass through all possible pairs
of i and j. In each iteration, we set V[i,j] for the current pair of i and j to
be the free variable and set V[i ′,j ′] of the remaining i ′ 6= i and j ′ 6= j to be
the fixed variables. We solve for only the free variable V[i,j] using SBCD
iteratively for all i and j.

Since Eq. (4.13) imposes the longitudinal coupling based on the mass
matrices that are precomputed from the bases available at that iteration,
they might not reflect the most accurate longitudinal relations precom-
puted mass matrices involving rotation matrices of the bases. Therefore,
we must update the mass matrices so that they reflect the most accurate
bases (encoding the naturally derived longitudinal trajectory) by recom-
puting the rotation matrices of the newly updated bases. Thus, the mass
matrix computation step immediately follows the bases update step. We
repeat these steps iteratively until convergence criteria are met.

Scaling of Stochastic Block Coordinate Descent

Below, Table 4.1 shows the average runtimes of the Stochastic Block Coor-
dinate Descent (SBCD) without a regularizer for various n× n random
matrices which essentially solves for the solutions of the generalized eigen-
value problems. This also gives a rough estimate of the runtime of the
entire framework which involves computing multiple SBCD operations
for all the partitions.
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n 100 500 1000 3000 5000 7000 10000 12000
runtime (sec) 0.32 0.44 2.31 34.95 125.78 428.71 979.92 1372.83

Table 4.1: Average runtime of 10 SBCD operations (without a regularizer) for solving
V ∈ Rn×p given a n×nmatrix X for p = 20. The iteration terminated when the objective
value is with < 5% of the true objective value of GEVP.

Singularity Correction

Thus far, we have been assuming that H in Eq. (4.16) derived from the
newly represented constraint is nonsingular, allowing us to perform inver-
sions in the subsequent steps. However, even if the initialH is nonsingular,
we cannot guarantee to maintain its nonsingularity throughout the itera-
tions. Thus, we now relax that assumption in the previous procedures to
consider singular H in the subproblems.

First, we factor out the submatrix of our interest, MSS of size s × p,
from (16) and rewrite it as(

VS· +M
−1
SSM

T
S̄S
VS̄·
)T
MSS

(
VS· +M

−1
SSM

T
S̄S
VS̄·
)
= H. (4.24)

Then, iff VS· +M
−1
SSM

T
S̄S
VS̄· is nonsingular, H will be nonsingular for

any submatrixMSS. Thus, to apply the singularity correction, we rearrange
the columns of MSS to get a new submatrix containing the maximal set of
linearly independent columns of the subproblem adjacently. First, assume
w.l.o.g. that

VS· +M
−1
SSM

T
S̄S
VS̄· =

[
U UC

]
(4.25)

for a s× r nonsingular matrix U and a r× (p− r) matrix C. Then, for T,
the indices of the columns of U, we have

U = VST +M−1
SSM

T
S̄S
VS̄T (4.26)

which allows us to write (4.24) as follows:

[
U UC

]T
MSS

[
U UC

]
=

[
UTMSSU UTMSSUC

CTUTMSSU CTUTMSSUC

]
= H. (4.27)
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Treating C as a fixed constant, the equality (4.24) can be reduced to con-
sider only the linearly independent columns T of the submatrix U as(

VST+M
−1
SSM

T
S̄S
VS̄T

)T
MSS

(
VST+M

−1
SSM

T
S̄S
VS̄T

)
= HTT (4.28)

and (4.27) is true iff the above equation is true. Thus, givenU ∈ Rs×r such
that UTMSSU = HTT, the new feasible iterates for linearly independent
columns T and their complement columns T̄ respectively are

VST = U−M−1
SSM

T
S̄S
VS̄T , (4.29)

VST̄ = UC−M−1
SSM

T
S̄S
VS̄T̄ . (4.30)

We note that the singularity correction is able to preserve the feasibility
of the new iterate by first observing that

VST +M−1
SSM

T
S̄S
VS̄· =

[
U−M−1

SSM
T
S̄S
VS̄T UC−M−1

SSM
T
S̄S
VS̄T̄

]
(4.31)

+
[
M−1

SSM
T
S̄S
VS̄T M−1

SSM
T
S̄S
VS̄T̄

]
(4.32)

=
[
U UC

]
. (4.33)

Thus, for anyMSS, we show it is exactly the same as Eq. (4.27), reaffirming
the next iterate feasibility. Note that we still require thatMSS to be positive
definite for any S, but this can be guaranteed by showing that

xTMSSx w.l.o.g.
=

[
x
0

]T [
MSS MT

S̄S

MS̄S MS̄S̄

][
x
0

]
> 0.

4.4 Experiments

Data and Scientific Goal

Our dataset focuses on a cohort of middle aged individuals who are at risk
for Alzheimer’s disease (AD) due to a positive family history (at least one
parent with confirmed diagnosis of AD). Our data corresponds to at least
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three longitudinal scans of these subjects. The participants are cognitively
healthy but some AD related brain changes, while subtle, have already
begun (Hwang et al., 2019a). Note that in the analysis of anatomical
changes in standard magnetic resonance images (not brain connectivity
as we do here), numerous findings suggest that accurate quantification
of brain “changes”, e.g., via tensor based morphometry, is often more
sensitive than the analysis of individual images independently (Hua et al.,
2008). But in the context of AD (and for other brain disorders) most, if
not all, such studies focus on data that cover the full spectrum of the disease
(healthy to AD) – the disease effects of those data are much stronger and
arguably easier to detect than those in the setting we consider here. We
expect that estimating the longitudinal change process in connectivity
accurately via the coupled harmonic bases model will enable identifying
a disease signal even in the pool of healthy (but at-risk) individuals.

Deriving Brain Connectivity Networks

There are three key steps in deriving brain connectivity networks for a
given population study. (a) Coordinate system. For population level
analysis of brain images, one typically needs to register all the images
onto a standard coordinate system in a way that avoids any unwanted
biases. We follow recommended procedures for deriving an unbiased
coordinate system for the 3D+time regime as follows (Keihaninejad et al.,
2013). We first estimate a subject-specific average that is temporally unbi-
ased. The subject specific averages are then used to generate an unbiased
population level average template space, the process is summarized in
Fig. 4.3. (b) Edges. We use tractography for deriving edges of the in
vivo brain (structural) networks. The key ingredient needed for these
algorithms is the orientational information of white matter fibers passing
through a voxel, inferred by fitting a tissue model to the acquired MR
signal from diffusion weighted imaging. Our data was acquired at a single
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Figure 4.3: Unbiased estimation of the global coordinate system for the longitudinally
acquired imaging data. Visits are averaged first which are then used to estimate the global
average. Each of the curved black lines represents a combination of rigid, affine and non-
linear diffeomorphic transformations. These transformations and the spatial averages
are estimated iteratively. Diffusion tensors are directly registered using log-Euclidean
framework (Zhang et al., 2007).

shell diffusion weighting of b = 1000 s/mm2. Although limited in its
ability to resolve crossing fiber tissue, for this data the most reliable model
that can be fit is the so called diffusion tensor. The principal eigenvector
of the diffusion tensor in a voxel provides a proxy to the predominant
orientation of the white matter fibers in that voxel. Using this information,
we repeated probabilistic tractography twenty times (Cook et al., 2006).
The normalized standard deviation of the eigenvectors of the tensor (also
known as fractional anisotropy) in the tracts passing between two regions
serves as the edge strength between nodes in our experiments. (c) Nodes.
The third key component is the node definition. For defining nodes, we
relied on expert neuroanatomy groups who have carefully delineated the
boundaries of regions in the brain based on their knowledge (including
histological studies). We used the gray matter atlas defined on a DTI
template (Varentsova et al., 2014) which provides 160 distinct regions in
the brain.
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Covariates for Creating Sub-cohorts/partitions

We partition the full cohort using two key ordinal covariates: Rey Auditory
Verbal Learning Test (RAVLT) (Schmidt et al., 1996) and Mini Mental
State Exam (MMSE) (Tombaugh and McIntyre, 1992). These are cognitive
performance scores based on tests that assess the cognitive functioning
of the subjects and common in preclinical assessments of AD. Note that
there is a systematic effect of age and gender on these scores. To control
for these nuisance variables, we perform regression against these variables
and derive z-scores for both RAVLT and MMSE. This imposes an implicit
ordering of the subjects for the two measures, after the effect of age and
sex has been accounted for. We deriveK partitions of the z-scores to “stage”
the cognitive status (and the subjects) into distinct cognitive quantiles.
This implies that even within the full set of “healthy” individuals, subjects
that fall within the same quantile are similar. If this staging is finer, we have
fewer samples in each partition. We used K ∈ {2, 3, 4} partitions to keep the
individual-level variance manageable while still allowing us to identify
the general connectivity evolution patterns. Although we assume that all
participants are recruited into the study concurrently (which may not be
true), since they are assigned to distinct cognitive quantiles, estimating
their longitudinal trajectories is reasonable (also, since the entire cohort is
middle aged). In case of uneven distribution along the time axis, standard
imputation strategies may be needed. Here, we only utilized data where all
three time points were available to keep the presentation simple and avoid
concerns related to the potential effect/bias of the specific imputation
methods. Once the subjects are assigned to the appropriate partitions
based on their z-scores (columns in Fig. 4.2), we can derive the average
Laplacians, formulate the system as (4.12) and solve for the coupled bases.
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Experiment Design

We use 68 subjects with three longitudinal time points and partition them
for different K based on RAVLT and MMSE z-scores. Then, for each setting,
we compute four sets of bases: (a) non-coupled (4.2), (b) longitudinally
coupled (4.9), (c) cross-sectionally coupled ((4.12) with matrix M =

I) and (d) longitudinally+cross-sectionally coupled (4.12). Thus, each
partition now has a set of longitudinal bases (vertical direction in Fig. 4.2).
For a novel test subject, we can calculate the corresponding connectivity
graph and compare to each of the K partitions. The quantile of the closest
partition is the label of this new subject. First, to measure the overall
accuracy of this procedure, we use 21 ‘held out’ test subjects, which were
not used to compute the four sets of bases to avoid overfitting, where
each subject has three longitudinal scans available. So, we have total of
21× 3 = 63 distinct Laplacians. We perform two classification tasks. First,
we only predict the quantiles of the Laplacians at the first (or baseline)
time point. Next, we predict all 63 Laplacians which is expected to be
much harder since the quantiles of the subsequent time points are not
used in deriving the partitions. Nonetheless, we expect that if our coupled
bases are accurate, the information from the first time point should, in
principle, affect subsequent time points in a way that allows our model
to still predict the label correctly. We evaluated p ∈ {n/4,n/2, 3n/4} and
chose p = n/4 since the residual is extremely small beyond n/2. We used
|S| = 40, but for larger datasets, it can be set to be larger if computationally
feasible while also considering the approximation/speed trade-off. Lastly,
we used λ ∈ {1, 20, 50}.

Results

We show the prediction accuracies of our algorithm in Table 4.2. We
run the classification tasks for K ∈ {2, 3, 4} respectively. We compare the
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K
Non-coupled Longitudinal Cross-section Coupled
j=1 {1, 2, 3} 1 {1, 2, 3} 1 {1, 2, 3} 1 {1, 2, 3}

R:2 33.33 34.92 42.86 42.86 66.67 60.32 71.43 71.43
R:3 38.10 33.33 52.38 36.51 57.14 44.44 57.14 55.56
R:4 28.57 28.57 23.81 30.16 30.16 23.81 47.62 34.92
M:2 42.86 41.27 28.57 30.16 57.14 39.68 76.19 71.43
M:3 42.86 38.10 47.62 49.21 47.62 46.03 47.62 50.79
M:4 34.92 28.57 23.81 14.29 19.05 12.70 47.62 28.57

Table 4.2: Prediction accuracy (%) of RAVLT (R:K ∈ {2, 3, 4} quantiles) and MMSE
(M:K ∈ {2, 3, 4} quantiles) on j = 1 time point and j = {1, 2, 3}. Best results are in red.

similarities of the bases of each test subject (using `2 norm) to the set of
bases in each partition to locate the closest one, which is the assigned
quantile label of the test subject. In Table 4.2, we show the accuracy results
for RAVLT and MMSE using four setups (columns 2 through 5): (a) non-
coupled, (b) longitudinally coupled, (c) cross-sectionally coupled and
(d) both longitudinally and cross-sectionally coupled. For RAVLT, first,
we discuss the simplest setting for K = 2 (R:2 in Table 4.2). Here, the
performance estimates suggest that the first three setups are unable to
identify the signal whereas our proposed coupled setup offers accuracy
estimates approaching 70%. This trend of the coupled setup improving
the accuracy of the non-coupled or partially coupled setup continues for
K = 3 (R:3) and K = 4 (R:4). We observe a very similar trend for the
MMSE quantile prediction task suggesting that capturing the full set of
longitudinal data in terms of its coupled bases offers significant advantages
for predicting subject-level cognitive status.

Discussion

We briefly elaborate on the relevance of these findings. Recall that our
dataset is preclinical, i.e., all subjects are healthy. This means that the
brain connectivity changes that we seek to capture using our proposed
formulation are extremely subtle. To appreciate the small effect sizes in
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Figure 4.4: Average adjacency matrices for each of the three stages (columns) based on
RAVLT total z-scores and each of the three time points (rows). The total magnitude
of connectivity strengths (sum of the total edge weights) are shown in the respective
titles of the matrices. Even though there is a trend of decrease in the overall connectivity
strength along the cognitive staging, the effect sizes are extremely small 0.5 − 1.0%. In
the case of individual edges the effects are even smaller.

this dataset, we show in Fig. 4.4 the actual brain connectivity adjacency
matrices for K = 3 from the RAVLT based staging. The numbers at the
top of each matrix image is the total sum of edge weights in the graph. As
expected, when we move from left to right (and top to bottom), the overall
connectivity progressively becomes weaker but the changes are extremely
small and nearly impossible to pick up in a statistically significant way if
this analysis were conducted on an edge-by-edge manner. Despite the
fact that the overall changes are in the 0.5-1.0% range over the entire set of
12720 edges, our coupled harmonic bases setup is still able to offer better
than chance prediction accuracy. Achieving this capability in a preclinical
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population is the main scientific result of our experimental evaluations.
In the next chapter, we show how the subtle progression of a preclinical
cohort can be detected in a unique normative modeling setup.

Finally, we note that our model recovers disease effects at the level of
individual tracts reliably: it specifically identified the top 50 fiber tracts
with the most changes in connectivity strength across RAVLT progression.

4.5 Summary
The goal of this chapter is to characterize the evolutionary patterns of
brain connectivity networks derived from a longitudinal set of middle-
aged healthy individuals who are at risk for Alzheimer’s disease. The
changes in brain connectivity are extremely small during the preclinical
stages and existing approaches do not seem to be sensitive enough. We
presented a framework which treats the entire set of graph Laplacians of
the brain connectivity networks as a system by explicitly considering the
coupling between different cognitive as well as the longitudinal (temporal)
stages. Our experimental results provide evidence that such a coupled
bases approach can indeed provide better insights into the brain network
changes across the clinical stages. While the technical development of our
framework was motivated by the neuroimaging application, the resultant
numerical optimization schemes can be widely applicable for incorporat-
ing relevant couplings into generalized eigenvalue problems which are
pervasive in many other areas of computer vision and machine learning.
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5 sampling-free uncertainty estimation in gated
recurrent units with applications to normative
modeling in neuroimaging

Thus far, we have demonstrated how to construct a latent representation
of data at each time point (i.e., harmonic bases V) that accounts for the
sequential patterns within the observed time points. However, in order to
make sequential predictions of the future time points beyond the observed
time points, we need an explicit latent representation (e.g., hidden vari-
ables) encoding the temporal pattern that a model can actually use. For
instance, in Chapter 1, we described a variant of recurrent neural networks
(RNNs) which outputs a hidden representation that explicitly gets incor-
porated in the subsequent predictions. Also, as we begin utilizing deep
models such as RNNs and deriving complex latent representations which
are often difficult to qualitatively interpret, we may find it useful to have a
way to quantitatively tell how ‘certain’ the model is about its decision (e.g.,
confidence level). In this chapter, we aim to develop a sequential neural
network model which (1) excels at making long sequential predictions
with the temporal latent variables (2) while directly quantifying the degree
of uncertainty of the model parameters including the computed temporal
latent variables.

5.1 Overview
Recurrent Neural Networks (RNNs) have achieved state-of-the-art perfor-
mance in various sequence prediction tasks such as machine translation
(Wu et al., 2016b; Jozefowicz et al., 2016), speech recognition (Hinton et al.,
2015; Amodei et al., 2016), language models (Cho et al., 2014) as well as
medical applications (Jagannatha and Yu, 2016; Esteban et al., 2016). For
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sequences with long term dependencies, popular variants of RNN such
as Long-Short Term Memory (Gers et al., 1999) and Gated Recurrent Unit
(Chung et al., 2014) have shown remarkable effectiveness in dealing with
the vanishing gradients problem and have been successfully deployed in
a number of applications.

Point estimates, confidence and consequences. Despite the impressive pre-
dictive power of RNN models, the predictions rely on the “point estimate”
of the parameters. The confidence score can often be overestimated due to
overfitting (Fortunato et al., 2017) especially on datasets with insufficient
sample sizes. More importantly, in practice, without acknowledging the
level of uncertainty about the prediction, the model cannot be entirely
trusted in scientific applications. Unexpected performance variations with
no sensible way of anticipating this possibility may also be a limitation in
terms of regulatory compliance. When a decision made by a model could
result in dangerous outcomes in real-life tasks such as an autonomous ve-
hicle not detecting a pedestrian, missing a disease prediction due to some
artifacts in a medical image, or radiation therapy misplanning (Lambert
et al., 2011), knowing how ‘certain’ the model is about its decision can
offer a chance to look for alternative solutions such as alerting the driver to
take over or recommending a different disease test to prevent undesirable
outcomes made by erroneous decisions.

Uncertainty. When operating with predictions involving data and some
model, there are mainly two sources of unpredictability. First, there may
be uncertainty that arises from an imperfect dataset or observations —
aleatoric uncertainty. Second, the lack of certainty resulting from the
model itself (i.e., model parameters) is called epistemic uncertainty (Der Ki-
ureghian and Ditlevsen, 2009). Aleatoric uncertainty comes from the ob-
servations externally such as noise and other factors that cannot typically
be inferred systematically. Algorithms instead attempt to calculate the epis-
temic uncertainty resulting from the model itself. This is often also referred to
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as model uncertainty (Kendall and Gal, 2017).
Related work on uncertainty in Neural networks. The importance of es-

timating the uncertainty aspect of neural networks (NN) has been ac-
knowledged in the literature. Several early ideas investigated a suite of
schemes related to Bayesian neural networks (BNN): Monte Carlo (MC)
sampling (MacKay, 1992a), variational inference (Hinton and Van Camp,
1993) and Laplace approximation (MacKay, 1992b). More recent works
have focused on efficiently approximating posterior distributions to infer
predictive uncertainty. For instance, scalable forms of variational inference
approaches (Graves, 2011) suggest estimating the evidence lower bound
(ELBO) to efficiently approximate the marginal likelihood of the weights.
Similarly, several proposals have extended the variational Bayes approach
to perform probabilistic back propagation with assumed density filtering
(Hernández-Lobato and Adams, 2015), explicitly update the weights of
NN in terms of the distribution parameters (i.e., expectation) (Blundell
et al., 2015), or apply stochastic gradient Langevin dynamics (Welling and
Teh, 2011) at large scales. These methods, however, theoretically rely on
the correctness of the prior distribution, which has shown to be crucial for
reasonable predictive uncertainties (Rasmussen and Quinonero-Candela,
2005) and the strength or validity of the assumption (i.e., mean field in-
dependence) for computational benefits. An interesting and different
perspective on BNN uncertainty based on Monte Carlo dropout was pro-
posed by Gal et al. (Gal and Ghahramani, 2016), wherein the authors
approximate the predictive uncertainty by using dropout (Srivastava et al.,
2014) at prediction time. This approach can be interpreted as an ensemble
method where the predictions based on “multiple networks” with differ-
ent dropout structures (Lakshminarayanan et al., 2016) yield estimates
for uncertainty. However, while the estimated predictive uncertainty is less
dependent on the data by using a fixed dropout rate independent from
the data, uncertainty estimation on the network parameters (i.e. weights)
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requires a marginalization over the weight posterior distribution which
could be costly and highly dependent on the observed data (Kendall and
Gal, 2017; Xiao and Wang, 2019). In summary, while the literature is still
in a nascent stage, a number of researchers are studying ways in which
uncertainty estimates can be derived for deep architectures similar to those
from traditional statistical analysis for various applications (Ribeiro et al.,
2018; Sedlmeier et al., 2019).

Other gaps in our knowledge. While the above methods focus on pre-
dictive uncertainty, most strategies do not explicitly attempt to estimate
the uncertainty of all intermediate representations of the network such as
neurons, weights, biases and so on. Such information is understandably
less attractive in traditional applications, where our interest mainly lies in
the prediction made by the final output layer. However, RNN-type sequen-
tial NNs often utilize not only the last layer of neurons but also directly
operate on the intermediate neurons in making a sequence of predictions
(Mikolov et al., 2010). Several Bayesian RNNs have been proposed (Lak-
shminarayanan et al., 2016; Fortunato et al., 2017) but are based on the
BNN models described above. Their deployment is not always feasible
under practical time constraints for real-life tasks, especially with high
dimensional inputs. Also, stochastic RNN models with stochastic and
deterministic layers (Fraccaro et al., 2016) and stochastic state models for
reinforcement learning (Gregor et al., 2018) have been proposed, but they
do not explicitly estimate the uncertainty of intermediate representations.
Further, empirically more powerful variants of RNNs such as LSTMs or
GRUs have not been explicitly studied in the literature in the context of
uncertainty.

Contributions

In this chapter, our goal is is to enable uncertainty estimation on more
powerful sequential neural networks, namely gated recurrent units (GRU),
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while addressing the issues discussed above in BNNs. To our knowledge,
few (if any) other works offer this capability. We propose a probabilistic
GRU, where all network parameters follow exponential family distribu-
tions. We call this framework the SP-GRU, which operates directly on these
parameters, inspired in part by an interesting result for non-sequential
data (Wang et al., 2016a). Our SP-GRU directly offers the following prop-
erties: (i) The operations within each cell in the GRU proceed only with
respect to the natural parameters deterministically. Thus, the overall proce-
dure is completely sampling-free. Such a property is especially appealing
for sequential datasets which often suffer from small sample sizes since
the sampling procedures for the marginalization of posterior is high de-
pendent on the observed data. (ii) Because weights and biases and all
intermediate neurons of SP-GRU can be expressed in terms of a distribution,
their uncertainty estimates can be directly inferred from the network itself.
(iii) We focus on some well-known exponential family distributions (i.e.,
Gaussian, Gamma) which have nice characteristics that can be appropri-
ately chosen with minimal modifications to the operations depending on
the application of interest. (iv) We show how SP-GRU can be used on
neuroimaging data for detecting early disease progression in an asymp-
tomatic Alzheimer’s disease cohort, in a manner different from the last
chapter.

5.2 Recurrent Neural Networks and
Exponential Families in Networks

Recurrent Neural Networks

The Gated Recurrent Unit (GRU) and the Long-Short Term Memory
(LSTM) are popular variants of RNN where the network parameters are
shared across layers. While they both deal with the exploding/vanishing
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gradient issues with cell structures of similar forms, the GRU does not
represent the cell state and hidden state separately. Specifically, its updates
take the following form (order of operation is (1) Reset Gate and Update
Gate, (2) State Candidate and (3) Cell State):

Reset Gate: rt = σ(Wrx
t + br)

Update Gate: zt = σ(Wzx
t + bz)

State Candidate: ĥt = tanh(Uĥxt +Wĥ(r
t � ht−1) + bĥ)

Cell State: ht = (1 − zt)� ĥt + zt � ht−1

where W{r,z,ĥ} and b{r,z,ĥ} are the weights and biases respectively for their
corresponding updates, and xt and ht are the input variables and hidden
states at time point t respectively. Typical implementations of both GRUs
and LSTMs include an output layer outside of the cell to produce the
desired outputs. However, they do not naturally admit more than point
estimates of hidden states and outputs.

Exponential Families in Networks

In statistics, the properties of distributions within exponential families have
been very well studied.

Definition 5.1. Let x ∈ X be a random variable with probability density (or
mass) function (pdf/pmf) fX. Then fX is an exponential family distribution
if

fX(x|η) = h(x) exp(ηTT(x) −A(η)) (5.1)

with natural parameters η, base measure h(x), and sufficient statistics T(x).
A constant A(η) (log-partition function) ensures that the distribution
normalizes to 1.
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W lal al+1 ∼ EXPFAM(gl(W lal))

Figure 5.1: A single exponential family neuron. Wl are learned, and the output is a
sample generated from the exponential family defined by gl(Wlal).

Common distributions (e.g., Gaussian, Bernoulli, Gamma) can be
written in this unified ‘natural form’ with specific definitions of h(x), T(x)
and A(η) (e.g., Gaussian distribution with η = (α,β), T(x) = (x, x2) and
h(x) = 1/

√
2π).

Two key properties of this family of distributions have led to their
widespread use: (1) their ability to summarize arbitrary amounts of data
x ∼ fX through only their sufficient statistics T(x), and (2) their ability to
be efficiently estimated either directly through a closed form maximum
likelihood estimator or a convex function with convex constraints.

Deep Exponential Families (DEFs) (Ranganath et al., 2015) explicitly
model the output of any given layer as a random variable, sampled from
an exponential family defined by natural parameters given by the linear
product of the previous layer’s output and a learnable weight matrix (see
Fig. 5.1). While this formulation leads directly to distributions over hid-
den states and model outputs, we have not learned the distributions over
the model parameters. We note that even the posteriors that we estimate
are “conditioned” on several assumptions. First, we make the mean field
assumption on the model parameters which is convenient but does not
accurately reflect the true posterior. Second, we often assume the parame-
ters to follow some tractable distributions (e.g., Gaussian in variational
inference). Thus, the posterior that we estimate (i.e., p(W|X, Y) for weights
W and data X, Y) is actually still within the boundaries of our assump-
tions, and there is a great deal of effort to minimize the assumptions and
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to better approximate the “true” posterior (Myshkov and Julier, 2016; Wu
et al., 2019). Computational feasibility is also neglected: the variational
inference procedure used for learning these DEFs requires Monte Carlo
sampling at each hidden state many times for every input sample (the cost of
running just text experiments was $40K as stated by the authors). This
also becomes a concern in many biomedical applications (e.g., medical
imaging) where the model size grows proportionally to the dimensionality
of data which often ranges from thousands to millions.

5.3 Sampling-free Probabilistic Networks
We now describe a probabilistic network fully operating on a set of natural
parameters of exponential family distributions in a sampling-free manner.
Inspired by a result from a few years back (Wang et al., 2016a), the learn-
ing process, similar to traditional NNs, is deterministic yet still captures
the probabilistic aspect of the output and the network itself, purely as a
byproduct of typical NN procedures (i.e., back propagation).

Unlike the probabilistic networks mentioned before, our GRU performs
forward propagation in a series of deterministic linear and nonlinear trans-
formations on the distribution of weights and biases. Throughout the
entire process, all operations only involve distribution parameters while
maintaining their desired distributions after every transformation. We fo-
cus on three exponential family distributions with two natural parameters:
Gaussian, Gamma and Poisson.

Linear Transformations

We describe the linear transformation on the input vector x with a matrix
W of weights and a vector b of biases in terms of their natural param-
eters. We first apply the mean-field assumption on each of the weights
and biases based on their individual distribution parameters α and β as
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Figure 5.2: Linear Moment Matching (LMM) and Nonlinear Moment Matching (NMM)
are performed at the weights/bias sums and activations respectively.

p(W|Wα,Wβ) =
∏
i,j p(W(i, j) | Wα(i, j),Wβ(i, j)) where {Wα,Wβ} and

{bα,bβ} are the model parameters. Thus, analogous to the linear transfor-
mation o = Wa + b in ordinary neural networks on the previous layer
output (or an input) a with W and b, our network operates purely on
(α,β) to compute (oα,oβ).

After each linear transformation, it is necessary to preserve the ‘dis-
tribution property’ of the outputs (i.e., oα and oβ still define the same
distribution) throughout the forward propagation so that the intermediate
nodes and the network itself can be naturally interpreted in terms of their
distributions. Thus, we cannot simply mimic the typical linear transforma-
tion on aβ and compute oβ =Wβaβ + bβ if we want oβ to still be able to
preserve the distribution (Wang et al., 2016a).

We perform a second order moment matching on the mean and vari-
ance of the distributions. The mean m and variance s can easily be
computed with an appropriate function g(·, ·) which maps g : (α,β) →
(m, s) for each exponential family distribution of interest (i.e., g(α,β) =
(−α+1

β
, α+1
β2 ) for a Gamma distribution). Thus, we compute the (m, s) coun-

terparts of all the (α,β)-based components (i.e., (om,os) = g(oα,oβ)).
Using the linear output before the activation function, we can now

apply Linear Moment Matching (LMM) on (1) the mean am following the
standard linearity of random variable expectations and (2) the variance
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as as follows:

om =Wmam + bm

os =Wsas + bs + (Wm �Wm)as +Ws(am � am)

where � is the Hadamard product. Then, we invert back to (oα,oβ) =

g−1(om,os). For the exponential family distributions involving at most
two natural parameters, matching the first two moments is sufficient.

Nonlinear Transformations
The next key step in NNs is the element-wise nonlinear transformation
where we want to apply a nonlinear function f(·) to the linear transfor-
mation output o parametrized by η = (oα,oβ). This is equivalent to a
general random variable transformation given the probability density func-
tion (pdf) pO for O to derive the pdf pA of A transformed by a = f(o):
pA(a) = pO(f(o))|f

′(o)|. We note that this change of variable will reappear
in Chapter 6 where f(·) is a unique invertible neural network for a problem
of density estimation.

However, well-known nonlinear functions f(·) such as sigmoids and
hyperbolic tangents cannot directly be utilized on (oα,oβ) because the
resulting a = f(o) may not be from the same exponential family distribu-
tion. Thus, we perform another second order moment matching in terms
of mean om and variance os via Nonlinear Moment Matching (NMM).
Ideally, we need to marginalize over a distribution of o given (oα,oβ) to
compute am =

∫
f(o)pO(o | oα,oβ)do and the corresponding variance

as =
∫
f(o)2pO(o | oα,oβ)do−a2

m which we map back to (aα,aβ) with an
appropriate bijective mapping function g(·, ·). However, when the dimen-
sion of o grows, the computational burden of integral calculation becomes
incredibly more demanding. The closed form approximations described
below can efficiently compute the mean and variance of the activation out-
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puts am and as (Wang et al., 2016a). We show these approximations for
sigmoids σ(x) and hyperbolic tangents tanh(x) for a Gaussian distribution,
as these will become the critical components used in our probabilistic GRU.
Here, we use the fact that σ(x) ≈ Φ(ζx) whereΦ(·) is a probit function and
ζ =

√
π/8 is a constant. Then, we can approximate the sigmoid functions

for am and as as

am ≈ σm(om,os) = σ
(

om

(1 + ζ2os)
1
2

)

as ≈ σs(om,os) = σ
(
ν(om +ω)

(1 + ζ2ν2os)
1
2

)
− a2

m

where ν = 4 − 2
√

2 and ω = − log(
√

2 + 1). The hyperbolic tangent can
be derived from tanh(x) = 2σ(2x) − 1.

Note that other common exponential family distributions do not have
obvious ways to make such straightforward approximations. Thus, we
use an ‘activation-like’ mapping f(x) = a− b exp(−γd(x)) where d(x) is
an arbitrary activation of choice with appropriate constants a, b and γ of
> 0. Nonlinear transformations of Gamma and Poisson distributions can
then be formulated in closed form as well (e.g., a = b = γ = 1 is a good
choice).

Nonlinear Transformations of Some Exponential Family
Distributions

We show the closed form solutions of the nonlinear transformations (sig-
moid and tanh activation functions) for the Gamma, Poisson, and Gaussian
distributions.
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Gamma Distribution

The probability density function (pdf) of the Gamma distribution given
parameters α > 0 and β > 0 is

pX(x | α,β) = βα

Γ(α)
xα−1 exp(−βx)

for the support x ∈ (0,∞) and Γ(α) =
∫∞

0 x
α−1 exp(−x)dx. Then, let

c = a = b, c > 0, and d(x) = x to get the ‘activation-like’ mapping
f(x) = c(1− exp(−γx)). We first perform a nonlinear transformation with
respect tom as follows:

am =

∫
f(o)pO(o | oα,oβ)do

=

∫∞
o=0

c(1 − exp(−γo)) oβ
oα

Γ(oα)
ooα−1 exp(−oβ � o)do

= c

∫∞
o=0

oβ
oα

Γ(oα)
ooα−1 exp(−oβ � o)do

− c

∫∞
0

oβ
oα

Γ(oα)
ooα−1 exp(−(γo+ oβ)� o)do

= c

[
1 −

oβ
oα

Γ(oα)

∫∞
0
ooα−1 exp(−(γo+ oβ)� o)do

]
= c

[
1 −

oβ
oα

Γ(oα)
� Γ(oα)� (oβ + γ)−oα

]
= c

[
1 −

oβ
oα

(oβ + γ)oα

]
= c

[
1 −

(
oβ

oβ + γ

)oα
]
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and for the variance,

as =

∫
f(o)2pO(o | oα,oβ)do− a2

m

=

[∫∞
o=0

c2(1 − 2 exp(−γo) + exp(−2γo)) oβ
oα

Γ(oα)
ooα−1 exp(−oβ � o)do

]
− a2

m

= c2
[

1 − 2 oβ
oα

Γ(oα)
� Γ(oα)� (oβ + γ)−oα +

oβ
oα

Γ(oα)
� Γ(oα)� (oβ + 2γ)−oα

]
− a2

m

= c2
[

1 − 2 oβ
oα

(oβ + γ)oα
+

oβ
oα

(oβ + 2γ)oα

]
− a2

m

= c2

[(
oβ

oβ + 2γ

)oα

−

(
oβ

oβ + γ

)2oα

]

for c > 0 and γ > 0, where c = 1 and γ = 1 are generally good choices
that resemble tanh.

Poisson Distribution

The pdf of the Poisson distribution over the support x ∈ {0, 1, 2, . . . } with a
parameter λ > 0 is

pX(x | λ) =
λx exp(−λ)

x! . (5.2)

Then, let c = a = b, c > 0 and d(x) = x to get the ‘activation-like’ mapping
f(x) = c(1 − exp(−γx)). The nonlinear transformation on o to obtain am
is as follows:

am =

∞∑
x=0

f(x)pO(o | oα,oβ)

=

∞∑
x=0

c(1 − exp(−γx))o
x
α exp(−oα)

x!

= c

∞∑
x=0

oxα exp(−oα)
x! − c

∞∑
0

exp(−γx)o
x
α exp(−oα)

x!

= c− c(exp(−oα))
∞∑
x=0

oxα exp(−γx)
x!

= c[1 − exp(−oα) exp(exp(−γ)oα))]
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and for the variance,

as =

∞∑
x=0

f(x)pO(o | oα,oβ) − a2
m

=

[ ∞∑
x=0

c2(1 − 2 exp(−γx) + exp(−2γx))o
x
α exp(−oα)

x!

]
− a2

m

= c2
∞∑
x=0

oxα exp(−oα)
x! − 2c2 exp(−oα)

∞∑
x=0

oxα exp(−γx)
x!

+ c2 exp(−oα)
∞∑
x=0

oxα exp(−2γx)
x! − a2

m

= −c2 exp(2(exp(−γ) − 1)oα) + c2 exp((exp(−2γ) − 1)oα)

= c2[exp((exp(−2γ) − 1)oα) − exp(2(exp(−γ) − 1)oα)]

for c > 0 and γ > 0.

Gaussian Distribution

Here, we provide details of the nonlinear transformation on the Gaussian
distribution. Note that our goal is to compute

a =

∫∞
−∞ f(x)N(x |m, s)dx (5.3)

for some nonlinear function f(x), meanm and variance s. First, we consider
f(x) = σ(x). Then, Eq. 5.3 is the logistic-normal integral:

a =

∫∞
−∞ σ(x)N(x |m, s)dx =

∫∞
−∞

1
1 + e−x

1√
2πs

exp
(
−
(x−m)2

2s

)
dx

which does not have a closed form solution. Now, we use the fact that a
probit function

Φ(x) =

∫x
−∞N(z | 0, 1)dz

can be used to approximate a sigmoid function such that

σ(x) ≈ Φ(ζx)



100

for ζ2 = π/8. Further, we know that∫∞
−∞Φ(x)N(x |m, s)dx = Φ

(
m√

1 + s2

)
so the nonlinear transformation on owith respect tom is

am =

∫
σ(o)N(o | om,diag(os))do ≈ Φ

(
om√
ζ−2 + os

)
≈ σ

(
om√

1 + ζ2os

)
for ζ2 = π/8. Similarly, for the variance s, since

σ(x)2 = Φ(ζν(x+ω))

for ν = 4 − 2
√

2 andω = − log(
√

2 + 1)/2, we see that

as =

∫
σ(o)2N(o | om,diag(os))do− a2

m

= Φ

(
ν(om +ω)√
ζ−2 + ν2om

)
− a2

m ≈ σ
(
ν(om +ω)√
1 + ζ2ν2om

)
− a2

m

for ζ2 = π/8.

The hyperbolic tangent function can be derived in a similar way since
tanh(x) = 2σ(2x) − 1. Thus, for f(x) = tanh(x) over the support x ∈
(−∞,∞),

am =

∫
tanh(o)N(o | om,diag(os))do

=

∫
(2σ(2o) − 1)N(o | om,diag(os))do

= 2
∫
σ(2o)N(o | om,diag(os))do−

∫∞
−∞ σ(2o)N(o | om,diag(os))do

= 2
∫
σ(2o)N(o | om,diag(os))do− 1

≈ 2
∫
Φ(2o)N(o | om,diag(os))do− 1

= 2Φ
(

2ζom√
1 + 4ζ2os

)
− 1 ≈ 2σ

(
2om√

1 + 4ζ2os

)
− 1

= 2σ

 om√
1
4 + ζ2os

− 1
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Figure 5.3: SP-GRU cell structure. Solid lines/boxes and red dotted lines/boxes corre-
spond to operations and variables for mean m and variance s respectively. Circles are
element-wise operators.

and for the variance,

as =

∫
tanh(o)2N(o | om,diag(os))do− a2

m

=

∫
(4σ(2o)2 − 4σ(2o) + 1)N(o | om,diag(os))do− a2

m

≈
∫
(4Φ(ζν(o+ω)) − 4σ(2o) + 1)N(o | om,diag(os))do− a2

m

=

∫
4Φ(ζν(o+ω))N(o | om,diag(os))do−

∫
4σ(2o)N(o | om,diag(os))do

+ 1 − a2
m

= 4Φ
(
ν(om +ω)√
ζ−2 + ν2os

)
− 2σ

 om√
1
4 + ζ2os

− 3 − a2
m

≈ 4σ
(
ν(om +ω)√

1 + ζ2ν2os

)
− a2

m − 2am − 1

where ν = 2(4 − 2
√

2) andω = − log(
√

2 + 1)/2.

Sampling-free Probabilistic GRU

Based on the probabilistic formulations described above, we present our
Sampling-free Probabilistic GRU (SP-GRU). The internal architecture is shown
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in Fig. 5.3. Here, we focus on adapting GRU with the sampling-free prob-
abilistic formulation. We express all the variables related to the GRU in
Table 5.1 in terms of their parameters η = (α,β). For instance,Wr is now
expressed only in terms of its parametersWr,α andWr,β (i.e., two weight
matrices). We assume that all of the variables are factorized. Because
the GRU consists of a series of operations with linear and nonlinear trans-
formations, we can update each gate by the transformations defined in
Table 5.1.

Assuming that the desired exponential family distribution provides
an invertible parameter mapping function g(·, ·), we first transform all
of the natural parameter variables to means and variances. Then, given
an input sequence x = {x1

m, x1
s}, . . . , {xTm, xTs }, we perform linear/nonlin-

ear transformations with respect to means and variances for each GRU
operation (Fig. 5.3 and Table 5.1).

The cell state computation does not involve a nonlinear transforma-
tion. For an output layer on the hidden states to compute the desired
estimate ŷ, a typical layer can be defined in a similar manner to obtain
both ŷm and ŷs. In the experiments that follow, we add another such
layer to compute the mean and variance of the sequence of predictions
ŷ = {y1

m,y1
s}, {y2

m,y2
s}, . . . , {yTm,yTs }.

Extensibility remarks. We note that despite the simplicity of the cell
structure of the SP-GRU as shown in Fig. 5.3, our exponential family
adaptation is not limited to GRU. For instance, the above formulation
can be extended to other variants of RNNs such as LSTMs popularly used
in medical applications (Jagannatha and Yu, 2016; Santeramo et al., 2018),
flow-based models (Dinh et al., 2016, 2014), and invertible neural networks
(Ardizzone et al., 2018). We note that this also extends to our flow-based
model with a sequential invertible neural network which we describe in
the next chapter.
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Operation Linear Transformation Nonlinear Transformation

Reset Gate otr,m = Ur,mx
t
m +Wr,mh

t−1
m + br,m rtm = σm(otr,m,otr,s)

otr,s = Ur,sx
t
s +Wr,sh

t−1
s + br,s + [Ur,m]2xts rts = σs(o

t
r,m,otr,s)

+Ur,s[x
t
m]2 + [Wr,m]2ht−1

s +Wr,s[h
t−1
m ]2

Update Gate otz,m = Uz,mx
t
m +Wz,mh

t−1
m + bz,m ztm = σm(otz,m,otz,s)

otz,s = Uz,sx
t
s +Wz,sh

t−1
s + bz,s + [Uz,m]2xts zts = σs(o

t
z,m,otz,s)

+Uz,s[x
t
m]2 + [Wz,m]2ht−1

s +Wz,s[h
t−1
m ]2

State Candidate ot
ĥ,m = Uĥ,mx

t
m +Wĥ,mh

t−1
m + bĥ,m ĥtm = tanhm(ot

ĥ,m,ot
ĥ,s)

ot
ĥ,s = Uĥ,sx

t
s + [Uĥ,m]2xts +Uĥ,s[x

t
m]2 + bĥ,s ĥts = tanhs(otĥ,m,ot

ĥ,s)

+([Wĥ,m]2 +Wĥ,s)([r
t
m]2 � ht−1

s

+[ht−1
m ]2 � rts + rts � ht−1

s )

+Wĥ,s([r
t
m]2 � [ht−1

m ]2)

Cell State htm = (1 − ztm)� ĥtm + ztm � ht−1
m Not Needed

hts = [1 − ztm]2 � ĥts + [ztm]2 � ht−1
s

+zts � [ĥtm − ht−1
m ]2 + zts � [ĥts + h

t−1
s ]

Table 5.1: SP-GRU operations in mean and variance. � and [A]2 denotes the Hadamard
product andA�A of a matrix/vectorA respectively. Note the Cell State does not involve
nonlinear operations. See Fig. 5.3 for the illustration of cell structure.

5.4 Experiments
We first perform unsupervised learning of predicting image sequences
from the Moving MNIST dataset (Srivastava et al., 2015) for intuitive
quantitative/qualitative evaluations. Second, we apply our model to a
unique neuroimaging dataset, consisting of brain imaging acquisitions
from individuals at risk for developing Alzheimer’s disease. Models were
trained on an NVIDIA GeForce GTX 1080 Ti GPU in TensorFlow with
ADAM and an initial learning rate of 0.05, and decay parameters β1 = 0.9,
β2 = 0.999. We use the Gaussian distribution for all setups with the KL
divergence between the final output distribution N(om,diag(os)) and
the target mini-batch distribution N(ym,diag(ys)) as the error where ym
and ys are the ground truth values of the mini-batch samples and their
variances (w.r.t. the current mini-batch) respectively. This allows the
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Figure 5.4: Trajectories with training angle (20◦), and three test angles (25◦, 30◦ and
35◦).

model to learn both the means and variances.

Unsupervised Sequence Learning of Moving MNIST

Controlled Moving MNIST

For pixel-level tasks, prediction quality can be understood by the un-
certainty estimate, i.e., estimated model variance of that pixel. In these
experiments, we ask the following questions qualitatively and quantita-
tively: (1) Given a visually ‘good looking’ sequence prediction, how can
we tell that its trajectory is correct? (2) If it is, can we derive a degree of
uncertainty on its prediction?

Setup. The moving MNIST dataset consists of digits moving (randomly
or controlled) in a 64× 64 image over 20 frames. We split sequences into
two halves (first 10 and second 10 frames). Then, we encode the first 10
frames to learn a temporal latent representation (size 1024) and use this to
predict the second 10 frames.

Controlled Paths. We first train our SP-GRU and Monte Carlo dropout
GRU (MC-GRU) (Gal and Ghahramani, 2016) with the same number of
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Figure 5.5: Trajectories with (Top left) training speed (5% of image size = 64 ∗ 0.05 ≈ 3.2
pixels per frame), and (Top right, Bottom left, Bottom right) three test angles (5.5%, 6%
and 6.5%).

parameters until they have similar test errors (independent of uncertainty)
on simple one-digit MNIST sequences moving in a straight line (blue line
in Fig. 5.4). We then construct three sets of 100 ‘unfamiliar’ samples where
each set consists of sequences deviating from the training sequence path
(blue path in Fig. 5.4 with angle θ = 20◦ and speed v = 5.0% of width
per frame) with varying angles (25◦, 30◦, and 35◦ paths in Fig. 5.4) and
speeds (5.5%, 6.0%, and 6.5% of width per frame in Fig. 5.5).

Results. For ‘unfamiliar’ angles and speeds, the predictions in Fig. 5.6
look visually sensible, but they do not actually follow the ground truth
paths (e.g., the prediction of 35◦ still follows 20◦ path). We can quantify this
directly by the [sum of pixel-level variances / frames] as shown in the right
of Fig. 5.6. While we cannot evaluate the relative difference here because
the ‘ground truth uncertainty’ is not available for a true comparison, we
observe that the uncertainty increases as the angle/speed deviation increases
for both SP-GRU and MC-GRU.

Computation Speed. From a practical perspective, the uncertainty esti-
mation should not sacrifice computational speed, e.g., real-time safety of
an autonomous vehicle. With respect to this crucial aspect, SP-GRU greatly
benefits from its sampling-free procedure: each epoch (30 sequences) takes
∼3 seconds while MC-GRU with a Monte Carlo sampling rate of 50 requires
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θ Ground Truth Prediction Uncertainty
20◦

25◦

30◦

35◦

v Ground Truth Prediction Uncertainty
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Figure 5.6: Predictions and uncertainties (sub-frames {11, 15, 20} out of full predicted
frames {11, . . . , 20}) from testing varying deviations from trained trajectories (first of
four rows, blue). Top: angle (colors match the paths in Fig. 5.4). Bottom: speed (colors
match the paths in Fig. 5.5). Right: [sum of pixel-level variances / frames] using SP-GRU
and MC-GRU.

∼40 seconds (> 10 times SP-GRU) despite their comparable qualitative
and quantitative performance. The MC sampling rate for these meth-
ods cannot simply be decreased which will underestimate the uncertainty.
With SP-GRU, we compute this model uncertainty in a closed form, without
the need for any heavy lifting from large sample analysis. Interestingly,
we will see how such measure of confidence could also be estimated as a
density estimation problem of sequential samples in the next chapter.

Random Moving MNIST

To demonstrate that SP-GRU does not sacrifice the base predictive power
(i.e., mean prediction), we evaluate SP-GRU on a public benchmark setup
of 2 randomly moving digits (Srivastava et al., 2015).

Results. An example of two digit prediction result is illustrated in
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2 Moving Digits Prediction︷ ︸︸ ︷

3 Moving Digits (Out of Domain) Prediction︷ ︸︸ ︷

Figure 5.7: SP-GRU predictor results. Top 3 rows: 2 moving digits (top: ground truth,
middle: mean prediction, bottom: uncertainty estimate). Bottom 3 rows: 3 moving digits
which are out of domain (i.e., not seen in training).

Fig. 5.7 (Top 3 rows) which shows quantifiable variance outputs as demon-
strated in the controlled paths examples. We note that the mean prediction
(middle row of Top 3 rows in Fig. 5.7) performance is also accurate by
comparing our method to previous work in Table 5.2. SP-GRU with a
basic predictor network setup performs comparably or better than other
methods that do not provide model uncertainty. In these works, model
performance often benefits from respective specific network structures:
encoder-predictor composite models (Srivastava et al., 2015), generative
adversarial networks (Ghosh et al., 2016), and external weight filters
(De Brabandere et al., 2016). Further, more advanced models (Cricri et al.,
2016) have achieved better results with large, more sophisticated pipelines.
Extending SP-GRU to such setups becomes a reasonable modification,
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Model Test Loss

Srivastava et al. 2015 341.2
Xingjian et al. 2015 367.1
Brabandere et al. 2016 285.2
Ghosh et al. 2016 241.8
SP-GRU (Ours) 277.1

Table 5.2: Average cross entropy test loss per image per frame on Moving MNIST.

providing model uncertainty without sacrificing performance.
We also evaluate how well SP-GRU is able to perform on out-of-domain

samples (Fig. 5.7, Bottom 3 rows). Models deployed in real-world settings
may not realistically be able to determine if a sample is far from their train-
ing distributions. However, with our specific modeling of uncertainty, we
would expect that images or sequences distant from the training data will
exhibit high variance. We construct sequences of 3 moving digits. Here,
future reconstruction is generally quite poor. As it has been observed in
the previous work (Srivastava et al., 2015), the model attempts to hallu-
cinate only two digits. Our model is aware of this issue: the variance for a
large number of pixels is extremely high, even if the digits overlap. Again,
the idea of detecting such “out of domain” samples will reappear in the
next chapter which aims to estimate the density of the sample with respect
to the dataset distribution.

Other Methods

Deep Markov Model (DMM) (Krishnan et al., 2017) is a variant of Struc-
tured Variational Autoencoders introduced recently that naturally give
rise to a probabilistic interpretation of predictions from deep temporal
models. However, upon application of this model to Moving MNIST we
were unable to obtain any reasonable prediction, across a range of hidden
dimension sizes and trajectory complexities, even with significant training
time (days for DMM vs. hours for SP-GRU). Shown in Fig. 5.8 are the
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1 Random Digit Prediction using DMM (Krishnan et al., 2017)︷ ︸︸ ︷

Figure 5.8: Deep Markov Model results. Compared to our results on a single digit
(Fig. 5.6), the mean and variance estimations using DMM cannot be estimated well on
Moving MNIST.

results using a hidden dimension size of 1024 (equal to our setup). We
note that the experimental setups described in (Krishnan et al., 2017) are
small in dimension and complexity compared to Moving MNIST, and it
may be the case that additional technical development with DMMs may
lead to promising and comparable uncertainty results.

Normative Modeling in Preclinical Neuroimaging Data

In a preclinical cohort of individuals at risk for developing Alzheimer’s
disease (AD), effect sizes are small and statistical signal is often weak
among those who will and will not go on to develop AD. Even with a
high-dimensional brain imaging data, it is often the case that specific
imaging modalities do not lead to significant group differences. Early
detection of risk factors associated with the eventual development of
AD are of critical importance in facilitating the prevention of onset, and
identifying individuals who subtly deviate from expected decline is a
required step in that direction. We aim to identify an out-of-domain
sample via normative modeling (Marquand et al., 2016): Given that we
have a SP-GRU model trained on a preclinical cohort, can we predict with
confidence those individuals who are at risk?
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Figure 5.9: Fiber bundles of the brain connectivities known previously to be associated
with preclinical cohort developing AD.

Brain Imaging Data of a Preclinical Alzheimer’s Disease Cohort

Imaging data from 139 individuals was derived from two distinct modali-
ties: Positron emission tomography (PET) and diffusion-weighted MRI
(DWI) (Chua et al., 2008). PET imaging is used to determine mean
amyloid-plaque burden (11C Pittsburgh Compound B (PiB) radiotracer),
known to be strongly associated with AD pathology and often preced-
ing observable cognitive decline (Johnson et al., 2014b). An individual is
deemed at risk if the average amyloid burden within specific regions (eight
bilateral) is greater than 1.12 (Johnson et al., 2014b). For more details
about the amyloid pathology and PiB PET scans, see (Johnson et al., 2014b;
Hwang et al., 2019a).

DWI captures the diffusion of water through a specific voxel in a brain
image; the mean diffusion of water through a tract within the brain is
a measure of connectivity strength. For each individual, 1761 unique
brain connectivities derived from the IIT atlas (Varentsova et al., 2014) are
computed from each DWI. The brain connectivity network construction
follows Sec. 4.4 in Chapter 4.

Additionally, we have a neuropsychological test score for each individ-
ual, the Rey Auditory Visual Learning Test (RAVLT) (Rosenberg et al.,
1984) known to be correlated with both amyloid load and structural con-
nectivity. Since our data is cross-sectional, we use RAVLT as our “temporal”
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analog of cognitive decline.

Preprocessing Pipeline

To generate our sequential training data, we first place all individuals
into 8 bins based on their RAVLT scores (i.e., 8 evenly ranged intervals
between [RAVLTmax, RAVLTmin]). This gives us the sample means and
variances of each connectivity in each bin. Then, we generate samples
of 1761 connectivities across 8 bins (time points) by independently sam-
pling each connectivity in each bin from a normal distribution with the
corresponding sample mean and variance. See Fig. 5.10 for the illustration.

To generate the PiB+ (above threshold amyloid burden) and PiB- (be-
low threshold amyloid burden) groups for the test data, we repeat the
above data generation process, one with the PiB+ subjects only and the
other with the PiB- subjects only. See Fig. 5.11 for the illustration.

Evaluation

We follow existing work in identifying at-risk individuals. Refer to Fig. 5.12
for the full pipeline. First, after we train our SP-GRU predictor, we generate
N = 100 new test sequences and predict t = 5, 6, 7, 8 given t = 1, 2, 3, 4
(Fig. 5.12 (1)-(2)). Thus, for subject i, time t and connectivity k, we obtain
a mean response ȳitk and an expected level of variation σitk. Note that we
also have the true response yitk with a bin-level variance of σntk. Then, we
compute a normative probability map (NPM) per timepoint for each subject
and connectivity (Ziegler et al., 2014). We compute Z-scores across time-
points, connectivities, and subjects as zitk = (yitk − ȳitk)/

√
σ2
itk + σ

2
ntk

(Fig. 5.12 (3)). Applying the procedure described in (Marquand et al.,
2016) we compute subject-level empirical distributions of all connectivities
per timepoint. Then the robust mean of the top 5% of absolute statistics
defines the extreme value statistic (EVS) describing that subject (Fig. 5.12
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Original Subject

Ordered and Binned by RAVLT Progression

N Samples

i = 1

i = N

Figure 5.10: Sample data generation of the training set. (1) Place all individuals into 8
bins based on their RAVLT scores (i.e., 8 evenly ranged intervals between [RAVLTmax,
RAVLTmin]). (2) Compute sample means and variances of each connectivity in each bin.
(3) Generate samples of 1761 connectivities across 8 bins (time points) by independently
sampling each connectivity in each bin from a normal distribution with the corresponding
sample mean and variance.

(4)). Collecting across subjects we fit a generalized extreme value distri-
bution (GED) per time point (Fig. 5.12 (5)).
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PiB Negative PiB Positive

Original Subjects (Unordered, PiB Positive and Negative)

PiB Negative Ordered and Binned by RAVLT Progression PiB Positive Ordered and Binned by RAVLT Progression

N Samples of PiB Negative 

i = 1

i = N

N Samples of PiB Positive 

i = 1

i = N

Figure 5.11: Sample data generation of the test set. The procedure is similar to the
training set generation described in Fig. 5.10, each with PiB+ and PiB- subject groups.

Results

We aim to identify those sequences which correspond to individuals devi-
ating from the norm defined by our estimated GED. Based on the amyloid
burden, we can separate our cohort into two distinct groups, one of which
is considered to be ‘cognitively healthy’ (PiB-), the other to be ‘at risk’
(PiB+). Sampling 100 sequences each using the binning above applied
to both groups, we can then apply the EVS procedure (i.e., compute EVS
following (1)-(4) in Fig. 5.12 with the same SP-GRU). Then, we use these
EVS to identify sequences within those groups which significantly deviate
from the overall population (Fig. 5.12 (6)-(7)). With an α = 0.01 cutoff
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(1) Test Sample Inputs 
(each i and t: 1761 connectivities)

i = 1

i = N

(2) Predictions with Uncertainties
(each i and t: 1761 means and variances)

t = 1 t = 2 t = 3 t = 4

(3) Sequential Normative Probability Maps
(each i and t: 1761 NPMs)

SP-GRU (Trained Predictor)

Given t = 1,2,3,4

Predict t = 5,6,7,8

t = 5 t = 6 t = 7 t = 8

i = 1

i = N

1761

NPMs

1761

NPMs

1761

NPMs

1761

NPMs

1761

NPMs

1761

NPMs

1761

NPMs

1761

NPMs

t = 5 t = 6 t = 7 t = 8

i = 1

i = N

(4) Sequential Extreme Value Statistics
(each i and t: 1 EVS)

t = 5 t = 6 t = 7 t = 8

i = 1

i = N

1 EVS 1 EVS1 EVS1 EVS

1 EVS 1 EVS1 EVS1 EVS

(5) Extreme Value Distributions

1. Construct histogram of EVS for each t

2. Fit generalized extreme value distributions (GED)

3. Derive confidence intervals
t = 5 t = 6 t = 7 t = 8

Extreme Value Statistics

Robust summary of NPMs

(Mean of top 5%)

1761

NPMs
1 EVS

t = 5 t = 6 t = 7 t = 8

1 EVS 1 EVS1 EVS1 EVS

(6) Sequential EVS of a New Subject N’

(following the above pipeline on a new subject)
(7) Outlier Detection 

Outlier EVS in at least one t ⇒ Outlier subject

t = 5 t = 6 t = 7 t = 8

i = N’ 1 EVS 1 EVS1 EVS1 EVS

Figure 5.12: Normative modeling pipeline for preclinical AD. (1) Given a set of test inputs
(t = 1, 2, 3, 4), (2) use the pretrained SP-GRU to make mean and variance predictions
for each connectivity and t = 5, 6, 7, 8. (3) Compute NPM for each prediction, and (4)
derive EVS for each sample i and t. (5) Fit GED and construct confidence intervals based
on N EVS for each t. (6) Given a new sample, derive EVS following (1)-(4), and (7)
check the confidence intervals from (5) to determine heterogeneity.

(with the Bonferroni correction) we identify 9 outlier sequences in the
cognitively healthy group (PiB-) and 19 in the at risk group (PiB+). While
further scientific analysis is necessary, these results suggest that larger
absolute fluctuations in DWI connectivity may be a good indicator for
disease risk as measured by amyloid burden. This sets a promising direc-
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tion in preclinical AD research since brain connectivity is one of the early
indicators of AD progression (Greicius et al., 2009; Kim et al., 2015, 2019;
Hwang et al., 2019a) characterizing the overall integrity of brain.

5.5 Summary
In this work, we show how uncertainty estimates for a powerful class of
sequential models, GRUs, can be derived without compromising either
predictive power or computation speed using our SP-GRU. Complemen-
tary to the developing body of work on Bayesian perspectives on deep
learning, we show how a mix of old and new ideas can enable deriving un-
certainty estimates for a powerful class of models, GRUs, while also being
easily extensible to other sequential models which also derive temporal
latent representations. Competitive results are first shown on a standard
dataset used for sequential models, while offering uncertainty as a natural
byproduct. We then demonstrated a direct application of SP-GRU for
normative modeling of preclinical Alzheimer’s disease cohort for outlier
detection yielding results consistent with the findings in the field. In the
upcoming chapters, we will continuously see how other types of temporal
latent representation solve diverse problems involving sequential data
beyond the prediction task that we demonstrated in this chapter.
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6 conditional recurrent flow: conditional
generation of longitudinal samples with
applications to neuroimaging

A number of applications and analyses often search for the relationship
between the sequences of multiple modalities. In fact, we witnessed such
a case in Chapter 4 when we characterized the brain network progression
with respect to a covariate progression via cross-sectional and longitudinal
coupling of the harmonic bases. However, as we pointed out in Chapter 5,
explicitly deriving the latent representations that encode the relationships
via deep models (e.g., ht from GRU) may enable much more complex tasks
(e.g., long sequential predictions). In this chapter, we integrate several
types of relationships, namely, the temporal relationship via the latent
variables from sequential deep models and, importantly, the relationship
between sequential modalities which we seek to understand the associations
of. Interestingly, using a generative model with an invertible property,
we show how we can (1) quantify a degree of confidence of a sample by
estimating its density with respect to an unknown dataset distribution and
(2) generate sequential samples conditioned on real world observations or
measures.

6.1 Overview
Consider a dataset of longitudinal or temporal sequences of data samples
{xt}Ni=1 where each sample xi comes with sequential covariates {yt}Ni=1, one
for each time point t. In other words, we assume that for each sequential
sample i, x1

i, · · · , xTi = {xt}i, the sequential covariates y1
i , · · · , yTi = {yt}i

provide some pertinent auxiliary information associated with that se-
quential sample. For example, in a neuroimaging study, if the sequential
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samples correspond to several longitudinal image scans of a participant
over multiple years, the sequential covariate associated with each time
point may be an assessment of disease severity or some other clinical mea-
surement. If the sequential data corresponds to heart rate sensors when a
participant is watching a video, the sequential covariate may indicate the
presence of violence in the corresponding video segment. Our high level
goal is to design conditional generative models for such sequential data.
In particular, we want a model which provides us a type of flexibility that
is highly desirable in this setting. For instance, for a sample drawn from
the distribution after the generative model has been estimated, we should
be able to “adjust" the sequential covariates, say at a time point t, dynami-
cally to influence the expected future predictions after t for that sample. It
makes sense that for a heart rate sequence, the appropriate subsequence
should be influenced by when the “violence" stimulus was introduced as
well as the default heart rate pattern of the specific sample (participant)
(Akselrod et al., 1981). Notice that when t = 1, this construction is similar
to conditional generative models where the “covariate" or condition y may
simply denote an attribute that we may want to adjust for a sample: for
example, increase the smile or age attribute for a face image sampled from
the distribution as in (Kingma and Dhariwal, 2018).

We want our formulation to provide a modified set of xts adaptively,
if we adjust one or more sequential covariates yts for that sample. If we
know some important clinical information at some point during the study
(say, at t = 5), this information should influence the future generation
xt>5 conditioned both on this sequential covariate or event y5 as well as
the past sequence of this sample xt<5. This will require conditioning on
the corresponding sequential covariates at each time point t by accurately
capturing the posterior distribution p(xt|yt). Such conditional sequence
generation needs a generative model for a sequential data which can dy-
namically incorporate time-specific sequential covariates yt of interest to
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adaptively modify sequences.
The above setup models a number of applications in medical imaging

and computer vision that may need generation of frame sequences con-
ditioned on frame-level covariates. In neuroimaging, many longitudinal
studies focus on identifying disease trajectories (Alexander et al., 2002;
Baddeley et al., 1991; Landin-Romero et al., 2017): for example, at what
point in the future will the brain or specific regions in the brain exceed a
threshold for brain atrophy? The future trend is invariably a function of
clinical measurements that a participant provides at each visit as well as
the past trend of the subject. From a methodological standpoint, construct-
ing a sequential generative model may appear feasible by appropriately
augmenting the generation process using existing generative models. For
example, it seems that one could simply concatenate the sequential mea-
surements {xt} as a single input for existing non-sequential conditional
generative models such as conditional GANs (Mirza and Osindero, 2014;
Isola et al., 2017) and conditional variational autoencoders (Sohn et al.,
2015; Abbasnejad et al., 2017). We will see why this is not ideal shortly.

We find that for our application, an attractive alternative to discriminator-
generator based GANs, is a family of neural networks called normalizing
flow (Rippel and Adams, 2013; Rezende and Mohamed, 2015; Dinh et al.,
2016, 2014) which involves invertible networks (i.e., reconstruct the input
from its output). What is particularly relevant is that such formulations
work well for conditionally generating diverse samples with controllable
degrees of freedom (Ardizzone et al., 2018) – with an explicit mechanism
to adjust the conditioning variable (or covariate). But the reader will
notice that while these models, in principle, can be used to approximate
the posterior probability given an input of any dimension, concatenating
a series of sequential inputs quickly blows up the size for these highly
expressive models and quickly renders them impractical to run, even on
high end GPU clusters. Even if we optimistically assume computational
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feasibility, variable length sequences cannot easily be adapted to these
innately non-sequential generative models, especially for those that ex-
tend beyond the training sequence length. Also, the data generated in
this manner involves simply “concatenated" sequential data and does not
take into account the innate temporal relationships among the sequences
which is fundamental in the success of recurrent models.

Given various potential downstream applications and the issues iden-
tified above with conditional sequential generation problem, we seek a
model which (i) efficiently generates high dimensional sequence samples
of variable lengths (ii) with dynamic time-specific conditions reflecting
upstream observations (iii) with fast posterior density estimation (with
respect to the data we observe and the model which derives the density).

Contributions

We tackle the foregoing issues by introducing an invertible recurrent neu-
ral network, CRow, that includes recurrent subnetwork and temporal context
gating. These modifications are critical in the following sense. Invertibility
lets us precisely estimate the distribution of p(xt|yt) in latent space. Intro-
ducing recurrent subnetworks and temporal context gating enables obtaining
cues from previous time points x<t to generate temporally sensible subse-
quent time points x>t. Specifically, our contributions are: (i) Our model
generates conditional sequential samples {xt} given sequential covariates
{yt} for t = 1, . . . , T time points where T can be arbitrarily long. Specifically,
we allow this by posing the task as a conditional sequence inverse problem
based on a conditional invertible neural network (Ardizzone et al., 2018).
(ii) Assessing the quality of the generated samples may not be trivial
for certain modalities (e.g., non-visual features). With the specialized
capability of the normalizing flow construction, our model estimates the
posterior probabilities p(xt|yt) of the generated sequences at each time
point for potential downstream analyses involving uncertainty similar
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to what we showed in Chapter 5. (iii) We demonstrate an interesting
practical application of our model in a longitudinal neuroimaging dataset.
We show that the generated longitudinal brain pathology trajectories (an
illustration in Fig. 1.8) can lead to identifying specific regions in the brain
(as opposed to the brain connectivity measures we have shown in Chap-
ter 4 and Chapter 5) which are statistically associated with Alzheimer’s
disease.

6.2 Preliminary: Invertible Neural Networks
We first describe an invertible neural network (INN) which inverts an output
back to its input for solving inverse problems (i.e., z = f(x) ⇔ x =

f−1(z)). This becomes the building block of our method; thus, before we
present our main model, let us briefly describe a specific type of invertible
structure which was originally specialized for density estimation with
neural network models.

Normalizing Flow
Estimating the density pX(x) of sample x is a classical statistical problem
in various fields including computer vision and machine learning in, e.g.,
uncertainty estimation (Gal and Ghahramani, 2015, 2016). For tractable
computation throughout the network, Bayesian adaptations are popular
(Ranganath et al., 2015; Fortunato et al., 2017; Papamakarios and Murray,
2016; Kingma et al., 2015; Kendall and Gal, 2017), but these methods make
assumptions on the prior distributions (e.g., exponential families).

A normalizing flow (Rippel and Adams, 2013; Rezende and Mohamed,
2015) first learns a function f(·) which maps a sample x to a latent variable
z = f(x) where z is from a standard normal distribution Z. Then, with a
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change of variables formula, we estimate

pX(x) = pZ(z)/|JX|, |JX| =

∣∣∣∣∂[x = f−1(z)]
∂z

∣∣∣∣ (6.1)

where |JX| is a Jacobian determinant. Thus, f(·) must be invertible, i.e.,
x = f−1(z), and to use a neural network for f(·), a coupling layer structure
was introduced in Real-NVP (Dinh et al., 2014, 2016) for an easy inversion
and efficient |JX| computation as we describe next.

Forward map (Fig. 6.1a). Without loss of generality, in the context of
network structures, we use an input u ∈ Rd and an output v ∈ Rd (i.e.,
u → v). First, we split u into u1 ∈ Rd1 and u2 ∈ Rd2 where d = d1 + d2

(e.g., partition u→ [u1, u2]). Then, we forward map u1 and u2 to v1 and
v2 respectively:

v1 = u1, v2 = u2 ⊗ exp(s(u1)) + r(u1) (6.2)

where s and r are independent functions (i.e., subnetworks), and ⊗ and
+ are element-wise product and addition respectively. Then, v1 and v2

construct v (e.g., [v1, v2]→ v).
Inverse map (Fig. 6.1b). Simple arithmetic allows an exact inverse from

v to u (i.e., v→ u):

u1 = v1, u2 = (v2 − r(v1))� exp(s(v1)) (6.3)

where the subnetworks s and r are identical to those used in the forward
map in Eq. (6.2), and � and − are element-wise division and subtraction
respectively. Note that the subnetworks are not explicitly inverted, thus
any arbitrarily complex network can be utilized.

Also, the Jacobian matrix Jv = ∂v/∂u is triangular so its determinant
|Jv| is just the product of the diagonal entries (i.e.,

∏
i exp(s(u1))i) which

is extremely easy to compute (we will discuss this further in Sec. 6.3).
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(a) Forward map (Eq. (6.2)) (b) Inverse map (Eq. (6.3))

Figure 6.1: Coupling layer in normalizing flow. Note the change of operation orders:
u→ v in forward and v→ u in inverse.

To transform the “bypassed” split u1 (since u1 = v1), a coupling block
consisting of two complementary coupling layers stacked on top of each
other with the transforming partition “swapped” (i.e., transform u1 in the
bottom coupling layer and u2 in the top coupling layer) is constructed to
transform both u1 and u2:

v1 = u1 ⊗ exp(s2(u2)) + r2(u2)

v2 = u2 ⊗ exp(s1(v1)) + r1(v1)
(6.4)

and its inverse
u2 = (v2 − r1(v1))� exp(s1(v1))

u1 = (v1 − r2(u2))� exp(s2(u2)).
(6.5)

Such a series of transformations allow a more complex mapping which
still comes with a chain of efficient Jacobian determinant computations,
i.e., det(AB) = det(A)det(B) where A and B are the Jacobian matrices of
two coupling layers.
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Note that we have used (and will be using) u and v as generic input
and output of an INN. Thus, specifically in the context of normalizing
flow, by simply considering u and v to be x and z respectively, we can use a
coupling layer based INN as a powerful invertible function f(·) to perform
the normalizing flow described in Eq. (6.1).

6.3 Model Setup: Conditional Recurrent Flow
In this section, we describe our conditional sequence generation method
called Conditional Recurrent Flow (CRow). We first describe a conditional
invertible neural network (cINN) (Ardizzone et al., 2018) which is one com-
ponent of our model. Then, we explain how to incorporate temporal
context gating and discuss the settings where CRow can be useful.

Conditional Sample Generation
Naturally, an inverse problem can be posed as a sample generation proce-
dure by sampling a latent variable z and inverse mapping it to x = f−1(z),
thus generating a new data x. The most critical concern is that we cannot
specifically ‘choose’ to generate an x of interest since a latent variable z
does not provide any interpretable associations with x.

In other words, estimating the conditional probability p(x|y) is desirable
since it represents an underlying phenomenon of the input x ∈ Rd and
covariate y ∈ Rk (e.g., the probability of a specific brain imaging measure
x of interest given a diagnosis y). In fact, when we cast this problem into a
normalizing flow problem, our focus should be to construct an invertible
network f(·) which maps a given input x ∈ Rd to its corresponding covari-
ate/label y ∈ Rk and its latent variable z ∈ Rm such that [y, z] = f(x). The
mapping must have an inverse for x = f−1([y, z]) to be recovered. We note
that a normalizing flow problem itself does not enable a generation process
since the early work on normalizing flow originally aimed to allow more
complex approximation of posterior as opposed to simple the Gaussian
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distribution assumption commonly found in variational inference. NiCE
(Dinh et al., 2014) and Real NVP (Dinh et al., 2016) first allowed a fast
transformation of the posteriors for high-dimensional features such as
images, and with an invertible function, realistic sample generation was a
natural functionality that has been demonstrated by recent work (Dinh
et al., 2016; Kingma and Dhariwal, 2018).

Specifically, when a flow-based model jointly encodes the label and
latent information (i.e., [y, z] = v = f(x) via Eq. (6.4)) while ensuring that
p(y) and p(z) are independent, then the network becomes conditionally
invertible (i.e., x = f−1([y, z]) conditioned on given y). Such a network can
be theoretically constructed through a bidirectional-type training (Ardiz-
zone et al., 2018), and this allows a conditional sampling x = f−1([y, z])
and the posterior estimation p(x|y).

Loss functions

There are three loss functions for the bidirectional training (Ardizzone
et al., 2018). Without loss of generality, let us consider a single time point
which can simply be extended to multiple time points by computing these
losses to each of the time points.

1. LZ(p(y, z),p(y)p(z)): This is a loss in the forward mapping. Specifi-
cally, given a input x, we first forward map it to [ŷ, z] = f(x) which
corresponds to p(ŷ, z) as our network maps both y and z with a single
network. Our goal is to minimize the distance between this distribu-
tion resulting from our network (p(ŷ, z)) to the ideal joint distribution
p(y)p(z). But since we may not exactly know p(y) and p(z), a kernel-
based moment matching measure called Maximum Mean Discrepancy
(MMD) (Dziugaite et al., 2015) is used which only uses the samples
without explicitly requiring p(y) and p(z). Specifically, for each x and
its corresponding forward map [ŷ, z], we also construct its “counterpart”
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sample [ygt, z ∼ Z] which is simply the ground truth ygt and a random
sample z from a standard normal Z. In other words, we construct a set
of samples representing the joint distribution p(y)p(z) by empirically
setting ygt and a sample z from the true prior Z which we have been
assuming. Thus, the loss is fully expressed in practice as follows:

LZ(p(y, z),p(y)p(z)) =MMD([ŷ, z]Ni=1 = f(xNi=1), [(ygt)Ni=1, zNi=1 ∼ Z])
(6.6)

for N samples in each mini-batch. The kernel used in the MMD is an
inverse multiquadratic kernel

k(x, x ′) = α

α+ ||x − x ′||22
where we used α = {0.2, 0.5, 0.8, 1.0, 1.2} for multiple scales of α (Ardiz-
zone et al., 2018; Tolstikhin et al., 2017).

2. LY(y, ygt): This is another loss in the forward mapping. Similar to
typical supervised loss, it penalizes the difference between the true ygt
and the predicted y. We used the mean squared error (MSE) function.

3. LX(p(x),pX): This is a loss in the inverse mapping (hence, the bidirec-
tional training together with the above losses). Intuitively, this enforces
the reconstructed xreconst with known y and random z (hence a gen-
erated x with the estimated p(x)) to follow a likely x from the data
with the same y (hence a real sample x from the real data pX which
in practice is from the training set). Instead of maximizing the log
likelihood of p(x) directly, this is again achieved via MMD that for a
given set of xNi=1 (and their yNi=1), we construct a set of random samples
with random z and the same set of yNi=1 to perform the kernel-based
distance measure. We use the same kernel function (and α’s) as LZ.

For all these losses, the ratios of the terms were all equal throughout the
experiments.
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Figure 6.2: Figure 2 from (Ardizzone et al., 2018) showing the effect of each loss function.
Ly: Loss for y. Lz: Loss for the independence of y and z. Lx: Loss on the prior of the data,
x. Ground truth: The ground truth distribution of the samples which are color-coded
based on their labels y. INN, all losses: The full bi-directional training including all the
losses. INN, only Ly + Lz: The generation result without the prior loss Lx showing the
“bridges” between the point clusters. INN, only Lx: The generation result with only the
prior loss, so the labels (colors) are not considered during the generation.

In practice, x and [y, z] may not be of the same dimensions. To construct
a square triangular Jacobian matrix, zero-padding both x and [y, z] such
that their padded dimensions (i.e., the dimensions of the newly padded
vectors) are the same can alleviate this issue. This also increases the inter-
mediate subnetwork dimensions (which is equivalent to the newly padded
dimension) for higher expressive power (Dinh et al., 2016; Ardizzone et al.,
2018). Note that the forward mapping is essentially a prediction task that
we encounter often in computer vision and machine learning, i.e., pre-
dicting y = f(x). On the other hand, the inverse process of recovering
x = f−1(y) may allow more interesting scientific analyses to understand
the underlying relationships between x and y. For instance, in the context
of AD in this chapter, we try to capture and understand the underlying as-
sociation between the pathology measures (x) and the cognitive function
(y).

How to impose stable inversion?

Potential support mismatch between the data space (u) and the latent
space (v) (e.g., when we sample a specific v which might not have been
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mapped properly to the data, and u is generated from that v) needs to be
explicitly considered. This is a well-known problem in generative models
(Roth et al., 2017; Tolstikhin et al., 2017; Li et al., 2017a, 2015, 2017b),
and each these models often attempts to alleviate this issue in multiple
ways which often depend on the type of data (e.g., generated images can
be visually assessed) or the training procedure (e.g., CINN (Ardizzone
et al., 2018) involves the bi-directional training). Below, we list the set of
approaches that our model (and CINN models) incorporates to address
this issue:

1. During the training, we impose a prior on the input side as well. This
was shown to empirically stabilize the generation results using both
(Ardizzone et al., 2018) and our model. Fig. 6.2 shows the effect of the
prior loss Lx which results in cleaner generations.

2. Another small trick was used in the training where we add a small
noise (e.g., independent Gaussian noise with small variance) to all the
variables (i.e., x, y, and z). Empirically, this simple data augmentation
provides an additional stability to the mapping and is implicitly incor-
porated (usually found in the code) in many of the generative models
(Dinh et al., 2016; Ardizzone et al., 2018; Kingma and Dhariwal, 2018).

3. We also describe a specific distance metric we used for all the losses
involving probability distributions (e.g., LZ and LX that we mention in
Fig. 6.2). We note that while this metric may not directly address the
“outlier” generation issues, we provide details about the metric since
having an accurate distance measure for probability distributions is a
crucial aspect in generative models in general.

Here, we describe a popular family of loss function that generative
models often utilize to measure the distance between probabilities.
Typically GANs minimize the divergence (e.g., the Jensen-Shannon
divergence) between the generator and target distributions. The issue
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is that they are often supported on high-dimensional manifolds, so the
manifolds may not intersect, making these divergence poor choices for
computing meaningful gradients (Bińkowski et al., 2018).

Acknowledging this, many of the generative models from the recent
literature incorporate loss functions from a family of integral probability
metrics (IPM) (Sriperumbudur et al., 2009) which better define the
distance measures on probabilities. Specifically, IPM (Milgrom and
Segal, 2002) can be generally formulated as

IPM(P,Q) = sup
f∈Q

|EP[f(X)] − EQ[f(X)]|

where Q is a class of real-valued bounded measurable functions. In
other words, non-overlapping but similar distributions are measured
properly based on their discrepancy (e.g., the “Earth mover” distance)
in expectations over well-behaved functions .

In fact, some of the frameworks from the above related literature, in
addition to the conditional INN (Ardizzone et al., 2018) and ours,
incorporate maximum mean discrepancy (MMD) (Gretton et al., 2012)
for a stable training. Specifically, MMD is the distance between two
distributions P and Q in terms of their mean embeddings µP and µQ
defined in a RKHS H:

MMD(P,Q) = ||µP − µQ||
2
H.

In practice, we use the kernel trick to compute this over the given set of
N samples p ∈ P andM samples q ∈ Q:

MMD(P,Q) =
1
N2

N∑
i=1,i′=1

k(pi,pi′) −
2
NM

N∑
i=1

M∑
j=1

k(pi,qj) +
1
M2

M∑
j=1,j′=1

k(qj,qj′)

where k(·, ·) is a continuous kernel function, so MMD(P,Q) is zero if
and only if P = Q.
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4. With all these efforts, there is still no guarantee that the generated
samples are not “out of manifold”, which many studies on generative
models still work towards. In some cases, the generated samples can
be qualitatively assessed, which is often possible with images. In other
cases where it is less intuitive to assess the quality of the generation, the
estimated density information of the generated samples can be used
to heuristically filter out those samples that are likely to be “out of
domain”.

Conditional Recurrent Flow (CRow)

The existing normalizing flow type networks cannot explicitly incorporate
sequential data which are now increasingly becoming important in various
applications. Successful recurrent models such as gated recurrent unit
(GRU) (Chung et al., 2014; Tang et al., 2015) and Long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997; Sak et al., 2014) explicitly
focus on encoding the “memory” from the past and output proper state
information for accurate sequential predictions given the past. Similarly,
generated sample sequences must also follow sequentially sensible pat-
terns or trajectories resembling likely sequences by encoding appropriate
temporal information for the subsequent time points.

To overcome these issues, we introduce our Conditional Recurrent Flow
(CRow) model for conditional sequence generation. Given a sequence
of input/output pairs {ut, vt} for t = 1, . . . , T time points, modeling the
relationship between the variables across time needs to also account for
the temporal characteristic of the sequence. Variants of recurrent neural
networks (RNN) such as GRU and LSTM have been showing success
in sequential problems, but they only enable forward mapping. We are
specifically interested in an invertible network which is also recurrent such
that given a sequence of inputs {ut} (i.e., features {xt}) and their sequence of
outputs {vt} (i.e., covariates/labels and latent information {yt, zt}), we can
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Figure 6.3: CRow architecture. Only the forward map of a single block (two coupling
layers) is shown for brevity. The inverse map involves a similar order of operations
(analogous to Fig. 6.1a and Fig. 6.1b).

model the invertible relationship between those sequences for posterior
estimation and conditional sequence generation as illustrated in Fig. 1.8.

Without loss of generality, we can describe our model in terms of
generic {ut} and {vt}. We follow the coupling block described in Eq. (6.4)
and Eq. (6.5) to setup a normalizing flow type invertible model. Then, we
impose the recurrent nature on the model by allowing the model to learn
and pass down a hidden state ht (i.e., a temporal latent representation) to
the next time point through the recurrent subnetworks. Specifically, we
construct a recurrent subnetwork qwhich also contains a recurrent network
(e.g., GRU) internally. This allows q to take the previous hidden state
ht−1 and output the next hidden state ht as [q, ht] = q(u, ht−1) where q is
an element-wise transformation vector derived from u analogous to the
output of a subnetwork s(u) in Eq. (6.2). In previous coupling layers (i.e.,
Eq. (6.2)), two transformation vectors s = s(·) and r = r(·) were explicitly
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computed from two subnetworks for each layer. For CRow, we follow
the structure of Glow (Kingma and Dhariwal, 2018) which computes a
single vector q = q(·) and splits it as [s, r] = q. This allows us to use a
single hidden state while concurrently learning [s, r] which we denote as
s = qs(·) and r = qr(·) to indicate the individual vectors. Thus, at each t
with given [ut1, ut2] = ut and [vt1 , vt2] = vt,

vt1 = ut1 ⊗ exp(qs2(ut2, ht−1
2 )) + qr2(ut2, ht−1

2 )

vt2 = ut2 ⊗ exp(qs1(vt1 , ht−1
1 )) + qr1(vt1 , ht−1

1 )
(6.7)

and the inverse is

ut2 = (vt2 − qr1(vt1 , ht−1
1 ))� exp(qs1(vt1 , ht−1

1 ))

ut1 = (vt1 − qr2(ut2, ht−1
2 ))� exp(qs2(ut2, ht−1

2 )).
(6.8)

Note that the hidden states ht1 and ht2 generated from the recurrent network
of the subnetworks are explicitly used within the subnetwork architecture
(i.e., inputs to additional fully connected layers) and also passed to their
corresponding recurrent network in the next time point as in Fig. 6.3.
Again, similar to the hidden state learned by SP-GRU from Chapter 5, the
hidden state which CRow generates and explicitly utilizes is exactly the
kind of temporal latent representation that we sought to construct in order
to encode the temporal patterns of complex sequences.

Temporal Context Gating (TCG)

A standard (single) coupling layer transforms only a part of the input (i.e.,
u1 in Eq. (6.2)) by design which results in the determinant of a triangular
Jacobian matrix Jv:

|Jv| =

∣∣∣∣∂v
∂u

∣∣∣∣ =
∣∣∣∣∣∂v1
∂u1

∂v1
∂u2

∂v2
∂u1

∂v2
∂u2

∣∣∣∣∣ =
∣∣∣∣∣ I 0
∂v2
∂u1

diag(exp s(u1))

∣∣∣∣∣ (6.9)
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thus |Jv| = exp(
∑
i(s(u1))i). This is a result from Eq. (6.2): (1) the element-

wise operations on u2 for the diagonal submatrix of partial derivatives
∂v2/∂u2 = diag(exp s(u1)), (2) the bypassing of u1 = v1 for ∂v1/∂u1 =

I, and (3) ∂v1/∂u2 = 0. Ideally, transforming u1 would be beneficial.
However, this is explicitly avoided in the coupling layer design since this
should not involve u1 or u2 directly; otherwise, Jv will not be triangular.

The Jacobian determinants of the subsequent coupling layers can be
computed consecutively using the output of the previous coupling layer
as the input to the current coupling layers. In other words, for a series of
composited formulations f = f1 ◦ f2 ◦ · · · ◦ fN where each fi is a coupling
layer operation, then det(f) is

det(f) = det(f1 ◦ f2 ◦ · · · ◦ fN) = det(f1)det(f2) · · ·det(fN) =
N∏
i=1

det(fi).

(6.10)
This allows an easy computation of the full Jacobian determinant across
the layers regardless of the number of coupling layer operations because
we do not have to perform a series of matrix multiplications across the
Jacobian matrices which is computationally more demanding than simply
summing over the products of the diagonal entries.

Using ht in CRow. In the case of CRow, it incorporates a hidden state
ht−1 from the previous time point which is neither u nor v. This is our
temporal information which adjusts the mapping function f(·) to allow more
accurate mapping depending on the previous time points of the sequence
which is crucial for sequential modeling.

Specifically, we incorporate a temporal context gating fTCG(α
t, ht−1) us-

ing the temporal information ht−1 on a given input αt at t as follows:

fTCG(α
t, ht−1) = αt ⊗ cgate(ht−1) (forward)

f−1
TCG(α

t, ht−1) = αt � cgate(ht−1) (inverse)
(6.11)
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where cgate(ht−1) can be any learnable function/network with a sigmoid
function at the end. This is analogous to the context gating (Miech et al.,
2017) in video analysis which scales the input αt (since cgate(ht−1) ∈
(0, 1)) based on some relevant context, which in our setup is the temporal
information ht−1.

Preserving the Jacobian structure. In the context of |Jv| computation in
Eq. (6.9), we perform fTCG(u1, ht−1) = u1 ⊗ cgate(ht−1) (w.l.o.g., we
omit t for u and v). Importantly, we observe that this ‘auxiliary’ variable
ht−1 could safely be used to transform u1 without altering the triangular
structure of the Jacobian matrix for the following two advantages: (1)
we still perform an element-wise operation u1 ⊗ cgate(ht−1) resulting
in a diagonal submatrix for ∂v1/∂u1, and (2) ∂v1/∂u2 is still 0 since u2

is not involved in fTCG(u1, ht−1). If the resulting Jacobian matrix were
not triangular, then the determinant computation would be much more
complex than the simple multiplication of the diagonal elements of a
triangular Jacobian matrix which would be critical in neural networks
with high intermediate feature dimensions. Thus, we now have

|Jv| =

∣∣∣∣∣∂v1
∂u1

∂v1
∂u2

∂v2
∂u1

∂v2
∂u2

∣∣∣∣∣ =
∣∣∣∣∣diag(cgate(ht−1)) 0

∂v2
∂u1

diag(exp s(u1))

∣∣∣∣∣ (6.12)

where |Jv| = [
∏
j cgate(ht−1)j] ∗ [exp(

∑
i(s(u1))i)].

As seen in Fig. 6.3, we place fTCG to transform the “bypassing” split
(non-transforming partition) of each layer of a block (i.e., the “bypassing”
partition ut2 gets transformed by fTCG2). We specifically chose a gating
mechanism for conservative adjustments so that the original information is
preserved to a large degree through simple but learnable ‘weighting’. The
full forward and inverse steps involving fTCG can easily be formulated by
following Eq. (6.7) and Eq. (6.8) while respecting the order of operations
seen in Fig. 6.3.
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How do we use CRow?

In essence, CRow aims to model an invertible mapping [{yt}, {zt}] = f({xt})
between sequential/longitudinal measures {xt} and their corresponding
observations {yt} with {zt} encoding the latent information across t =

1, . . . , T time points. Once we train f(·), we can perform the following
exemplary tasks:

(1) Conditional sequence generation: Given a series of observations
of interest {yt}, we can sample {zt} (each independently from a standard
normal distribution) to generate {xt} = f−1([{yt}, {zt}]). The advantage
comes from how {yt} can be flexibly constructed (either seen or unseen
from the data) such as an arbitrary disease progression over time (see
Fig. 1.8). Then, we randomly generate corresponding measures {xt} to
observe the corresponding longitudinal measures for both quantitative
and qualitative analyses. Since the model is recurrent, the sequence length
can be extended beyond the training data to model future trajectories.
In fact, in Chapter 7, we will see how CRow can be used to estimate
the trajectories beyond the observed time points for characterizing the
longitudinal pattern of sequential brain imaging measures.

(2) Sequential density estimation: Conversely, given {xt}, we can
predict {yt}, and more importantly, estimate the density pX({xt}) at each t.
When {xt} is generated from {yt}, the estimated density can indicate the
‘integrity’ of the generated sample (i.e., low pX implies that the sequence
is perhaps less common with respect to {yt}).

6.4 Experiments
We validate our framework in both a qualitative and quantitative manner
with two sets of experiments: (1) two image sequence datasets and (2) a
neuroimaging study. We used NVIDIA 1080 Ti GPU to train all the models.
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ADAM optimizer with α = 0.9 and β = 0.999 and the initial learning rate
of 0.0005 was used.

Conditional Moving MNIST Generation

Moving Digit MNIST

We first test our model on a controlled Moving Digit MNIST dataset (Sri-
vastava et al., 2015) of image sequences showing a hand-written digit from
0 to 9 moving in a path and bouncing off the boundary. This experiment
qualitatively shows that the images in a generated sequence with specific
conditions (i.e., image labels) are consistent across the sequence. Here, we
specifically chose two digits (e.g., 0 and 1) to construct ∼13K controlled
sequences of frame length T = 6 where each frame of a sequence is an
image of size 20 by 20 (vectorized as xt ∈ R400) and has a one-hot vector
yt ∈ R2 of digit label at t indicating one of the two possible digits. Thus,
the condition yt was in {0, 1}2 (onehot vector for 2 classes case) and the
latent variable zt was in R8 which was chosen by us. For a smaller sized
zt, the densities could not be accurately captured. On the other hand, for
a larger sized zt, the latent information could potentially “memorize” the
input to output mapping which is also undesirable. Both input and output
were zero-padded to 512 dimensions.

Training. Our model consists of three coupling blocks, each block
shown in Fig. 6.3, where each subnetwork q contains one GRU cell and
three layers of residual fully connected networks with ReLU activation. For
each TCG (fTCG in Fig. 6.3, Eq. (6.11)), the network cgate(·) is a single fully
connected network with sigmoid activation. We split x (i.e., u without zero
padding) into [x1, x2] (x1 into u1 and x2 into u2) in a “checkerboard” pattern.
In other words, given an image x, the first half x1 consists of the pixels that
are not directly adjacent to each other (i.e., black squares in a checkerboard)
and the remaining pixels (which are also not directly adjacent to each other
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Ours:

cINN:

Figure 6.4: Examples of generated sequences given the changing condition
1→1→0→0→0→0 (top of each frame, [digit label]: density). Ours shows smooth tran-
sition while cINN shows temporally drastic transition.

like the white squares in a checkerboard) are assigned to x2. This splitting
scheme preserves the overall geometric structure of the image as much
as possible in a simplistic manner as did Real-NVP (Dinh et al., 2016).
Models were trained on T = 6 time points, but further time points data
can be generated since our model is recurrent. Each training sequence has
a digit label sequence {yt} for t = 1, . . . , 6 where all yt are “identical” in
each sequence since the the same digit is shown throughout the sequence.
We used 3 coupling blocks (2 coupling layers in each block) where the
input/output dimensions (i.e., u and v dimensions) are 512 (thus, zero
padding of length 112 is needed for xt and 502 is needed for [yt, zt]).
Each subnetwork q then has the input/output dimensions of 256 where it
first starts with a GRU (256 input, 256 output, 256 hidden) followed by
3 residual layers (fully connected layers with ReLU non-linearity, all of
256 input and 256 output). For details about the GRU structure, refer to
Sec. 5.2 in Chapter 5.

Generation. Now, we want to generate sequences showing digits that
gradually transform (e.g., changing from 1 to 0). We first specified se-
quential conditions (i.e., digit label) that change midway through the
sequence (e.g., {yt} sequence indicating digit labels 1→1→0→0→0→0).
Then, we generated the corresponding sequences {xt} and visually check
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3→5:

5→9:

Figure 6.5: Examples of generated sequences using CRow.

if the changes across the frames look natural. Note that we trained only
on the image sequences with consistent digit labels (e.g., only 0 or only
1). One demonstrative result is shown in Fig. 6.4 where we compare the
generated image sequences with condition (i.e., digit label) changing from
1 to 0. Our result at the top of Fig. 6.4 shows a gradual transition while
the cINN result does not show such temporally smooth and consistent
behavior.

Density estimation. Our model quantifies its output confidence in a form
of density (i.e., likelihood) shown at the top of each generated images in
Fig. 6.4. Not only our model transforms the sequence generation based
on the sequential condition, but it also outputs a lower density at the
frame showing the most drastic transformation as such patterns were
not observed during the training, i.e., the likelihood decreases when the
condition changes and then increases as the sequence progresses. This
means that our model simultaneously shows the conditional generation
ability and estimates the output’s relative density with respect to the
observed training data. More examples are shown in Fig. 6.5.

Moving Fashion MNIST

We also tested our model on a more challenging dataset called Moving
Fashion MNIST (Xiao et al., 2017) of moving apparel image sequences.
The Moving Fashion MNIST dataset (Xiao et al., 2017) has very similar
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dataset specifications as the Moving Digit MNIST dataset (Srivastava et al.,
2015): (1) the original gray-scale image is of size 28×28, (2) there are 10
classes, and (3) the training set has 6K samples of each class (total of 60K).
Thus, the training and testing pipelines for both datasets were identical
in our experiments. In Table 6.1, we show the list of the apparel types
in the Moving Fashion MNIST dataset. The same models and training

Label Index Apparel Type
0 T-shirt/Top
1 Trouser
2 Pullover
3 Dress
4 Long sleeve/Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

Table 6.1: Moving Fashion MNIST apparel types.

setups were used to generate the transforming sequences in a similar
manner. In Fig. 6.6, we show the examples of various apparels successfully
transforming to other types while moving. Compared to Moving Digit
MNIST, capturing the smooth transformations of these apparel images
are more challenging as the apparel shapes vary more in terms of their
shapes and sizes.

Longitudinal Neuroimaging Analysis

In this neuroimaging experiment, we evaluate if our conditionally gen-
erated samples actually exhibit statistically robust and clinically sound
characteristics when trained with a longitudinal Alzheimer’s disease (AD)
brain imaging dataset. We generated a sufficient number of longitudinal
brain imaging measures (i.e., {xt}) conditioned on various covariates (i.e.,
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T-shirt [0]→ Bag [8]

Ankle boot [9]→ Sneaker [7]

T-shirt [0]→ Long sleeve [4]

Ankle boot [9]→ Bag [8]

Figure 6.6: Examples of generated Moving Fashion MNIST sequences using CRow (ap-
parel type [label index]).

labels {yt}) associated with the AD progression (e.g., cognition). Thus, the
generated brain imaging sequences should show the pathology progres-
sion consistent with the covariate progression (see Fig. 1.8 and Fig. 6.8 for
illustrations). We then performed a statistical group analysis (i.e., healthy
vs. disease progressions) to detect disease related features from the imag-
ing measures. In the end, we expected that the brain regions of interests
(ROIs) identified by the statistical group analysis are consistent with other
AD literature with statistically stronger signal (i.e., lower p-value) than
the results based only on the original training data.
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TADPOLE Dataset

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu) is one of the largest and still growing neuroimaging databases.
Originated from ADNI, we use a longitudinal neuroimaging dataset called
The Alzheimer’s Disease Prediction of Longitudinal Evolution (TAD-
POLE) (Marinescu et al., 2018) which actually consists of multiple datasets,
each serving a different purpose with respect to the challenge itself. For
our experiments, we used D1 and D2: (i) D1 is the standard training set
consisting of individuals with at least two separate visits across the three
phases of the ADNI study (ADNI1, ADNI GO and ADNI2) and (ii) D2
is the longitudinal prediction set which have the rollovers (i.e., subjects
from D1 with further visits) for the purpose of forecasting tasks. In our
setup, we simply treated the subjects in D1 and D2 without distinctions to
obtain the most number of subjects with (i) 3 time points with (ii) AV45
measures for all 3 time points and (iii) covariates of interests at each time
point. For this experiment, we specifically usedN = 276 participants with
T = 3 time points.

Input. For the longitudinal brain imaging sequence {xt}, we chose
Florbetapir (AV45) Positron Emission Tomography (PET) scan measuring
the level of amyloid-beta deposited in brain which has been a known type
of pathology associated with Alzheimer’s disease (Wong et al., 2010; Joshi
et al., 2012). The AV45 images were registered to a common brain template
(MNI152) to derive the gray matter regions of interests (82 Desikan atlas
ROIs (Desikan et al., 2006)). Thus, each of the 82 ROIs (xt ∈ R82) holds
an average Standard Uptake Value Ratio (SUVR) measure of AV45 where
high AV45 implies more amyloid pathology in that region. The Desikan
ROIs are illustrated in Fig. 6.7. The colors distinguish different ROIs (not
reflecting any measures).

Condition. For the corresponding labels {yt} for longitudinal conditions,
we chose five covariates known to be tied to the AD progression (normal

adni.loni.usc.edu
adni.loni.usc.edu
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Figure 6.7: Desikan ROIs. Different colors encode different ROIs. Top row: (from left)
top, left and front views. Bottom row: diagonal views.

to impaired range in square brackets): (1) Diagnosis: Normal/Control
(CN), Mild Cognitive Impairment (MCI), and Alzheimer’s Disease (AD)
[CN→MCI→AD]. (2) ADAS13: Alzheimer’s Disease Assessment Scale
[0→85]. (3) MMSE: Mini Mental State Exam [0→30]. (4) RAVLT-I: Rey
Auditory Verbal Learning Test - Immediate [0→75]. (5) CDR: Clinical
Dementia Rating [0→18]. These assessments will condition the disease
progression of the samples. Full documents are available on http://adni.
loni.usc.edu/methods/documents (e.g., ADNI Procedures Manual). The
condition yt was in {0, 1}3 for Diagnosis (onehot vector over three possible
diagnosis categories) and in R1 for other continuous covariates. The latent
variable zt was in R4. Both input and output were zero-padded to be of
size 150. The remaining setup is exactly the same as the Moving MNIST
setup.

Analysis

We performed a statistical group analysis on each condition {yt} inde-
pendently with the following pipeline: (1) Training: First, we trained our
model (the same subnetwork as Sec. 6.4) using the sequences of SUVR in 82
ROIs for {xt} and the covariate (‘label’) sequences for {yt}. (2) Conditional
longitudinal sample generation: Then, we generated longitudinal samples
{x̂t} conditioned on two distinct longitudinal conditions: Control (healthy

http://adni.loni.usc.edu/methods/documents
http://adni.loni.usc.edu/methods/documents


142

≈

≈

≈

Figure 6.8: Generated sequences vs. real data sequences comparison for CN (top)→MCI
(middle)→AD (bottom). Each blue/pink frame has top, side (interior of right hemi-
sphere), and front views. Left (blue frames): The average of the 100 generated sequences
conditioned on CN→MCI→AD. Right (pink frames): The average of the real samples
with CN→MCI→AD in the dataset. Red/blue indicate high/low AV45. ROIs are ex-
pected to turn more red as CN→MCI→AD. The generated samples show magnitudes
and sequential patterns similar (≈) to those of the real samples from the training data.

covariate sequence) versus Progression (worsening covariate sequence).
Specifically, for each condition (e.g., Diagnosis), we generateN1 samples
of Control (e.g., {x̂t1}

N1
i=1 conditioned on {yt}= CN→CN→CN) andN2 sam-

ples of Progression ({x̂t2}
N2
i=1 conditioned on {yt} = CN→MCI→AD). Then,

we perform a two sample t-test at t = 3 for each of 82 ROIs between {x̂3
1}
N1
i=1

and {x̂3
2}
N2
i=1 groups, and derive p-values to tell whether the pathology

levels between the groups significantly differ in those ROIs.

Result 1: Control vs. Progression (Table 6.2, Top row block)

We set the longitudinal conditions for each covariate based on its associ-
ated to healthy progression (e.g., low ADAS13 throughout) and disease
progression (e.g., high ADAS13 related to eventual AD onset). We gener-
ated N1 = 100 and N2 = 100 samples for each group respectively. Then,
we performed the above statistical group difference analysis under 4 se-
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# of Statistically Significant ROIs (# of ROIs after type-I error correction)
Covariates Diagnosis ADAS13 MMSE RAVLT-I CDR-SB
Control CN→CN→CN 10→10→10 30→30→30 70→70→70 0→0→0
Progression CN→MCI→AD 10→20→30 30→26→22 70→50→30 0→5→10
cINN 11 (4) 5 (2) 5 (0) 3 (0) 7 (0)
Ours 25 (11) 24 (12) 19 (2) 15 (2) 18 (7)
Ours + TCG 28 (12) 32 (14) 31 (2) 19 (2) 25 (9)
Control CN→CN→CN 10→10→10 30→30→30 70→70→70 0→0→0
Early-progression CN→MCI→MCI 10→13→16 30→28→26 70→60→50 0→2→4
cINN 2 (0) 2 (2) 2 (0) 0 (0) 1 (0)
Ours 6 (2) 6 (4) 11 (4) 5 (1) 2 (0)
Ours + TCG 6 (4) 8 (5) 12 (4) 5 (1) 5 (1)

Table 6.2: Number of ROIs identified by statistical group analysis using the generated
measures with respect to various covariates associated with AD with the significance
level of α = 0.01 (type-I error controlled result shown in parenthesis). Each column
represents sequences of disease progression represented by diagnosis or test scores.
CRow considers the progression sequences while cINN generates cross-sectional data
in different conditions. In all cases, using CRow with TCG yields the most number of
statistically significant ROIs.

tups: (1) Raw training data, (2) cINN (Ardizzone et al., 2018), (3) Our
model without TCG, and (4) Our model + TCG. With the raw data, the
sample sizes of the desirable longitudinal conditions were extremely small
for all setups, so no statistical significance was found after type-I error
control. With cINN, we occasionally found few significant ROIs, but the
non-sequential samples with only t = 3 could not generate realistic sam-
ples. With CRow (without TCG) we consistently found significant ROIs.
Further, CRow + TCG detected the most number of ROIs (the ROIs for
Diagnosis shown in Fig. 6.9) which include many AD-specific regions
reported in the aging literature such as hippocampus and amygdala (Jin
et al., 2004; Joshi et al., 2012).

Result 2: Control vs. Early-progression (Table 6.2, Bottom row block)

We setup a more challenging task where we generate samples which
resemble the subjects that show a slower progression of the disease (i.e.,
lower rate of covariate change over time). Such case is especially important
in AD when early detection leads to effective prevention. With N1 = 100
and N2 = 100 samples, no significant ROIs were found in all models. To



144

Figure 6.9: 12 significant ROIs found between two Diagnosis groups (CN→CN→CN vs.
CN→MCI→AD) at t = 3 using our model under ‘Diagnosis’ in Table 6.2. The colors
denote the -log p-value. AD-related ROIs such as hippocampus, putamen, caudate, and
amygdala are included.

ROI p-value
Real CRow

Diagnosis Left Amygdala 5.51E-03 1.18E-06
Left Putamen 7.38E-03 3.99E-05

ADAS13 Left Inferior Temporal 3.34E-03 7.93E-04
Left Middle Temporal 6.83E-03 2.02E-03

MMSE Left Superior Parietal 7.13E-03 1.52E-05
Left Supramarginal 6.75E-03 8.20E-08

RAVLT-I Left Paracentral 9.16E-03 8.09E-05
CDR-SB Left Hippocampus 4.01E-03 3.36E-06

Table 6.3: p-values in ROIs improve (get lower) with the sequences generated by CRow
with increased sample size over using real sequence data.

improve the sensitivity, we generated N1 = 150 and N2 = 150 samples in
all models and found several significant ROIs only with CRow related to
an early AD progression such as hippocampus (Fox et al., 1996; Johnson
et al., 2014b).

Statistical Advantages

By generating realistic samples with CRow, we achieve the following
advantages: (1) Increasing sample size makes the hypothesis test more
sensitive and robust – rejecting the null when it is indeed false – leading
to a lower type-II error. (2) Also, we do not simply detect spurious signifi-
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cant ROIs because (i) we control for type-I error via the most conservative
Bonferroni multiple testing correction, and (ii) we additionally improve
the statistical power of detecting the true effects (i.e., significant ROIs) that
at least need to be detected with the raw data only. In Table 6.3, we show
that the significant ROIs identified with the real data only are also detected
through our framework with improved p-values from the Control vs. Pro-
gression experiment. This suggests that we take advantage of CRow in a
statistically meaningful manner without neglecting the true signals from the
important AD-specific ROIs (Fox et al., 1996; Ossenkoppele et al., 2012).
To obtain similar improved results with real data, one would have to spend
substantial resources and time to recruit more participants and acquire their
images.

Generation assessments

In Fig. 6.8, we see the generated samples (Left) through CN→MCI→AD
in three views of the ROIs and compare them to the real training samples
(Right). We observe that the generated samples have similar AV45 loads
across the ROIs, and more importantly, the progression pattern across the
progression (i.e., ROIs turning more red indicating amyloid accumulations
in those ROIs) follows that of the real sequence as well. We also quan-
tified the similarities between the generated and real data sequences by
computing the effect size (Cohen’s d (Cohen, 2013)) which measures the
difference between the two distributions (Table 6.4) showing that CRow
generates the most realistic sequences.

Scientific Remarks

Throughout our analyses, the significant ROIs that we found such as amyg-
dala, putamen, temporal regions, hippocampus (e.g., shown in Fig. 6.9)
and many others were also reported to be the AD-specific regions in the
aging field (Fox et al., 1996; Jin et al., 2004; Johnson et al., 2014b; Ossenkop-
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Gen. vs. Real of Progressions Gen. vs. Real of Early-progressions
Covariates Diagnosis ADAS MMSE RAVLT CDR Diagnosis ADAS MMSE RAVLT CDR

cINN 1.26 1.60 1.15 1.89 1.55 1.07 1.50 0.95 1.84 1.45
Ours 0.42 0.56 0.35 0.71 0.65 0.36 0.56 0.30 0.61 0.63
Ours+TCG 0.28 0.39 0.17 0.59 0.38 0.23 0.52 0.09 0.54 0.50

Table 6.4: Difference between the generated sequences and the real sequences at t =
3. Lower the effect size (Cohen’s d), smaller the difference between the comparing
distributions. In all settings, CRow with TCG generates the most realistic sequences with
the smallest effect sizes.

pele et al., 2012; Villemagne et al., 2013). This implies that the generated
longitudinal sequences consistently follow the underlying distribution of
the real data which we may not have been able to make use of otherwise.

6.5 Summary
In this chapter, we studied the problem of generative models using neural
networks that account for the progressive behavior of longitudinal data
sequences. By developing a novel architecture of an invertible neural net-
work that incorporates recurrent subnetworks and temporal context gating
to pass down the temporal information across the sequence generation,
we enabled a neural network to “learn” the conditional distribution of
training data in a latent space and generate a sequence of samples with
a realistic progressive behavior according to the given conditions. We
demonstrated experimental results using three datasets (2 moving videos
and 1 neuroimaging) to validate longitudinal progression in sequentially
generated samples. Also, in neuroimaging applications which often suffer
from small sample sizes, we showed that our model can generate realistic
samples for statistically robust results.

Interestingly, the work in this chapter can be quite versatile such that it
can be generalized to the problems we tackled in the previous chapters.
For instance, if we use both the age and covariate sequences as the con-
dition (y) and capture their relationships to the brain connectivity (x),
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we can generate sequences of x which account for both the cross-sectional
progression via changing the covariate sequences and the longitudinal
progression via changing the age which are exactly the types of sequences
we tried to characterize in Chapter 4. Also, we could naturally use the
density estimation outcome of the sequential predictions that CRow makes
as an uncertainty measure which SP-GRU from Chapter 5 focused on. In
fact, in the next chapter, we will see how another functionality of CRow
could extensively be used as a robust sequential prediction model to accu-
rately predict the pathology trajectory to understand the early pathological
process of Alzheimer’s disease.
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7 predicting amyloid accumulation trajectories
in a risk-enriched alzheimer’s disease cohort

Recent studies in the field have shown that the early amyloid accumulation
pattern may be a critical indicator for improving prediction of cognitive
decline (Bilgel et al., 2016; Koscik et al., 2019a). However, in a typical
longitudinal neuroimaging data, only a few subjects have brain imaging
scans early in their lives, so a model which enables a robust sequential
estimation of the early amyloid accumulation pattern is desirable to test
various hypotheses based on the estimated measures. Interestingly, we
note that our model from the previous chapter could also serve as a way to
estimate the early amyloid accumulation trajectory in the unobserved past
(e.g., t < 1) by “reversing” the direction of the prediction. In this chapter,
we use our CRow model from the previous chapter to make sequential
predictions of the amyloid measures of an AD cohort and perform a unique
longitudinal neuroimaging analysis. The results, while preliminary, are
promising and suggest that the measures derived from such a model may
enable a better understanding of the early pathological process of AD.

7.1 Overview
We continue our effort from the previous two chapters to better understand
the amyloid-beta pathology development which is a defining feature of
Alzheimer’s disease (AD) (Sperling et al., 2011) and is a primary patholog-
ical event leading to cognitive decline and dementia (Hardy and Higgins,
1992; Jack et al., 2018). Specifically, we are interested in cognitively normal
preclinical individuals who are at a higher risk of developing AD-related
dementia with increased cortical amyloid burden measured in vivo with
Pittsburgh Compound B (PiB) (Reiman et al., 2009; Pike et al., 2007) show-
ing a greater cognitive decline over time. Thus, in addition to what we
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have demonstrated in the previous chapters (Chapter 5 and Chapter 6),
there is a great deal of effort in the field to better characterize the longitu-
dinal pattern of amyloid accumulation which will be crucial for effective
early detection and intervention of AD (Vlassenko et al., 2011; Sojkova
et al., 2011).

A longitudinal study of amyloid accumulation allows us to derive
a unique measurement called the time of onset (TO), the age at which
amyloid accumulates above a critical threshold from PiB- to PiB+. This
has been pointed out as a strong indicator of the amyloid burden effect
and as one of the earliest signs of AD progression (Koscik et al., 2019a;
Brookmeyer et al., 1998). Also, the associations between TO and a well-
known genetic risk factor of AD, apolipoprotein E (APOE) ε4 allele (Naj
et al., 2014), have been investigated (Thambisetty et al., 2013; Naj et al.,
2014; Corder et al., 1993). In particular, those with at least one APOE ε4
allele (APOE+) showed earlier TOs compared to those with no ε4 allele
(APOE-) (Khachaturian et al., 2004; Fleisher et al., 2013; Jack et al., 2015).

However, an extensive longitudinal analysis of amyloid accumulation
in terms of TO is often limited in practice. One of the main difficulties
is that the number of subjects with observed TOs is relatively few since
(1) fewer subjects become PiB+ and (2) their scans do not always capture
the point of inflection (i.e., PiB-→ PiB+) if their first scans are acquired
after the TO. As a result, several earlier literature have resorted to cross-
sectional studies (Fleisher et al., 2013; Naj et al., 2014; Corder et al., 1993;
Thambisetty et al., 2013). Recently, studies have found ways to alleviate this
by estimating the amyloid accumulation trajectory based on the observed
longitudinal trends that were shown via group-based trajectory modeling
(Koscik et al., 2019a) and individual-level linear estimation (Bilgel et al.,
2016). However, a model which estimates the (1) region-wise amyloid
trajectories (2) at the individual-level (3) with the nonlinear trend has
not been developed to explicitly consider the variability of the amyloid
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Time Points T = 1 T = 2 T = 3 T = 4 T = All
Number of subjects 63 57 106 8 234
Sex (M/F) 16 / 47 19 / 38 37 / 69 1 / 7 73 / 161
Age (mean/s.d.) 63.0 / 7.0 63.5 / 7.2 63.5 / 6.4 69.4 / 5.3 63.8 / 6.7
Interval years (mean/s.d.) - / - 3.87 / 2.20 3.42 / 1.37 2.33 / 0.58 3.42 / 1.57
APOE (+/-) 27 / 36 24 / 33 41 / 65 5 / 3 97 / 137

Table 7.1: Demographics of Wisconsin Registry for Alzheimer’s Prevention dataset for
this study.

accumulation in terms of regions and subjects.

Contributions

In this work, we investigate the region-wise amyloid accumulation time of
onset (TO) of preclinical AD at the individual-level from a longitudinal
PiB cohort. Methodologically, we use a sequential deep neural network
model (Hwang et al., 2019c) from the previous chapter to estimate the non-
linear amyloid accumulation patterns of each subject in multiple cortical
regions measured from longitudinal PiB Positron Emission Tomography
(PET) scans. This allows us to estimate the TO for each region and subject
where we analyze its region-wise patterns and their associations to APOE
genotype.

7.2 Methods

Participants

The participant data were acquired from the Wisconsin Registry for Alzheimer’s
Prevention (WRAP), a cohort of middle-aged adults who are followed
longitudinally for [C11] PiB-PET scans we previously analyzed in Chap-
ter 5. From this study, we included the subset of participants who were
cognitively unimpaired at the time of scans. On average, the scans were
separated by 3.42 years (standard deviation (s.d.) 1.57) with the minimum
and maximum interval years of 1.55 and 8.43 respectively. The ages at the
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Figure 7.1: Overlays of 16 PiB DVR ROIs.

first scan were of mean 65.88 (s.d. 6.79) years, and 41% of the subjects had
at least one ε4 allele (APOE+). LettingNT be the number of subjects with
exactly T time points, there were N1 = 63, N2 = 57, N3 = 106, and N4 = 8
subject. The entire cohort of NAll = 234 subjects consisted of 73 males and
161 females with a mean age of 63.8 (s.d. 6.7). The full demographics are
shown in Table 7.1.

PET Imaging and Processing

[C-11] PiB PET scans acquired from the participants were used to recon-
struct the PET data using a filtered back-projection algorithm (DIFT) with
random event correction, attenuation of annihilation radiation, deadtime,
scanner normalization and scatter radiation. Then, they were realigned
and coregistered in SPM8 and transformed into voxel-wise distribution
volume ratio (DVR) maps using the time activity curve of the cerebellum
GM as the reference region. Using SPM8, the DVR images were also spa-
tially normalized to the Montreal Neurological Institute (MNI) space and
smoothed with an 8 mm full width at half max Gaussian filter. Further
details on the processing are found in (Johnson et al., 2014a). For each
time point and subject, we measured the PiB distribution volume ratio
(PiB DVR) in 8 bilateral AAL regions and the age at the scan. To derive the
region-wise PiB DVR measures, 16 (eight bilateral) of the 116 Automated
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Anatomical Labeling (AAL) atlas regions (Tzourio-Mazoyer et al., 2002)
that are implicated as important in AD (Clark et al., 2016) based on the
global amyloid burden (Sprecher et al., 2015) were used and are shown in
Fig 7.1. For each bilateral AAL region pair (left and right hemispheres),
the combined PiB-DVR was measured by taking the average of the regions
weighted by their corresponding volumes. The spaghetti plots of the ROIs
are shown in Fig. 7.2 where red lines are APOE+ subjects and blue lines
are APOE- subjects. For each ROI, the PiB+ thresholds are computed
individually (shown as cyan lines in Fig. 7.2) which we describe later.

Sequential Deep Neural Network for PiB-DVR Trajectory
Estimation

We estimated the PiB DVR of the subjects before their observed scans by
retrospectively using our sequential deep neural network model, Condi-
tional Recurrent Flow (CRow), described in Chapter 6.

Conditional Recurrent Flow

Briefly, given a sequence of input/output pairs {ut, vt} for t = 1, . . . , T time
points, modeling the relationship between the variables across time needs
to also account for the temporal characteristic of the sequence. CRow
is an invertible network which is also recurrent such that given a sequence
of inputs {ut} (i.e., features {xt}) and their sequence of outputs {vt} (i.e.,
covariates/labels and latent information {yt, zt}), we can model the invert-
ible relationship between those sequences for posterior estimation and
conditional sequence generation as illustrated in Fig. 1.8. As we saw in
Chapter 6, CRow is a sequential generative model which can generate sequen-
tial samples given a sequence of conditions. In this sense, we use CRow
by setting the conditions to be the ages and the sequential samples that
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Figure 7.2: Observed PiB DVR Trajectories of 8 combined bilateral ROIs. Red: APOE+,
Blue: APOE-, Cyan: ROI-specific thresholds as shown in Table 7.2.
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we generate to be the PiB DVR measures that we want to estimate that
correspond to the given ages.

PiB Trajectory Estimation

Now, we see how the model can be set up to estimate PiB trajectories.
Each sample is a sequence of vectors x1, . . . , xT of a subject scanned at ages
y1, . . . , yT where each xt ∈ R8 is an 8 combined bilateral PiB DVRs at the
time point t. Thus, once the model is trained, it is able to forward and
inverse map from the PiB DVR sequences and their corresponding ages at
scans:

x1, . . . , xT ↔ y1, . . . , yT . (7.1)

Since the model is recursive, we can use all longitudinal samples of varying
lengths. Note that all the sequences have the baseline scan at t = 1 (i.e.,
the earliest scan) and the most recent scan at t = T (i.e., y1 < · · · < yT).

Now, the goal is to estimate the PiB DVRs of a subject retrospectively
before the baseline scan (e.g., xt for t < 1):

yT ′ , . . . , y0, y1, . . . , yT → xT ′ , . . . , x0, x1, . . . , xT (7.2)

where yT ′ is the earliest (youngest) age that we use to estimate the corre-
sponding PiB DVR (xT ′). For instance, given a sample with scans x1, x2, x3

at y1 = 60, y2 = 65, y3 = 70, we estimate the PiB DVRs retrospectively until
age 45:

y−2 = 45, y−1 = 50, y0 = 55→ x−2, x−1, x0.

Specifically, we recursively estimate the retrospective PiB DVRs of all the
subjects from their baseline scans until age 45 (yT ′ = 45) with a scan
interval of 2.5 years (i.e., estimate every 2.5 years). Thus, depending
on the age of the baseline scan, subjects may have a varying number of
estimated PiB DVR time points.
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ROI Name PiB DVR Threshold
angular 1.144
cingulum_ant 1.393
cingulum_post 1.498
frontal_med_orb 1.283
precuneus 1.265
supramarginal 1.128
temporal_mid 1.142
temporal_sup 1.169

Table 7.2: ROI-specific PiB DVR thresholds. We individually derived the PiB DVR
thresholds where the PiB DVR above the threshold is considered to be PiB+ associated
with a higher risk of cognitive decline. Visualized in Fig. 7.2.

Time of Onset (TO) Computation

Now, once we estimate the PiB DVRs of all the subjects up to age 45 in
8 combined ROIs, we compute the time of onset (TO) as follows. First,
based on a previous work which identified the PiB burden value of 1.2 to
be the cut-off that maximized both sensitivity and specificity of receiver
operating characteristic analysis of the expert visual ratings of PiB+ or
PiB- (Racine et al., 2016), a subject is considered to be PiB+ when the
subject’s global PiB DVR is above 1.2. If the global PiB DVR is below 1.2,
the subject is considered PiB-. Then, from the entire cohort, we select
those who remain PiB- throughout all their scans. In this longitudinal PiB-
group, we estimated that the global threshold of 1.2 is very close to the
mean global PiB DVR plus 3 times the standard deviation of the global PiB
DVRs. Thus, we applied the same formula to each ROI such that for each
of the 8 (combined) PiB ROIs, we set the ROI-specific threshold as the mean
plus 3 times the standard deviation of the PiB DVRs of that specific ROI.
This was a reasonable approach for ROI-based analyses since the ROIs
had varying distributions of PiB DVRs. The ROI-specific threshold values
are shown in Table 7.2.

Using these ROI-specific thresholds, we computed the TOs which either
the estimated or the observed PiB DVRs crossed the thresholds (i.e., the
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ROI became PiB+). Specifically, for each ROI, we found a pair xt−1 and
xt which the PiB DVR accumulated from xt−1 to xt (corresponding age
from yt−1 to yt). Then, although the model could technically predict xt
for any given age yt, for the purpose of this preliminary analysis, we find
it reasonable to assume a linear accumulation pattern between a short gap
of predictions (i.e., 2.5 years). We note that if the accumulation pattern
appears highly nonlinear between the predictions, we could make even
finer grained predictions (e.g., 0.1 years gap). Then, we computed the
time of onset yonset crossing the threshold as follows:

yonset =
threshold − xt−1

xt − xt−1
(yt − yt−1) + yt−1 (7.3)

which essentially finds the point of inflection (yonset) when the PiB DVR
crosses the corresponding threshold. For those who were still PiB+ at age
45, we bounded their time of onset to be 45.

For those subjects that never became PiB+ (i.e., PiB- throughout the se-
quence), we used the Wisconsin Life Expectancy Table (www.dhs.wisconsin.
gov/stats/life-expectancy.htm) to speculate the time of onset to be the
expected life expectancy. Specifically, the TO would be the expected life
range which is yT (the latest scan age) plus the life expectancy correspond-
ing to the age group and gender. A survival analysis method such as the
life expectancy estimation is a reasonable option found in other studies
since it is known that a consistent percentage of the subjects do eventually
become PiB+ (Bilgel et al., 2016; Koscik et al., 2019b).

Statistical Analysis

We looked at the association between the amyloid accumulation pattern
measured in TOs and a well-known genetic risk factor apolipoprotein
E (APOE) (Naj et al., 2014). Specifically, it is known that individuals
carrying the ε4 allele are at increased risk of AD compared with those
carrying no ε4 alleles. Thus, we specify two groups based on the APOE

www.dhs.wisconsin.gov/stats/life-expectancy.htm
www.dhs.wisconsin.gov/stats/life-expectancy.htm
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ROI Mean TO (APOE+ / APOE-) p-value
angular 76.5 / 81.7 *0.0001
cingulum_ant 76.4 / 82.2 *0.0001
cingulum_post 77.4 / 82.0 *0.0004
frontal_med_orb 76.1 / 81.6 *0.0001
precuneus 76.9 / 81.6 *0.0003
supramarginal 77.4 / 82.0 *0.0004
temporal_mid 77.4 / 81.1 *0.0061
temporal_sup 77.6 / 81.8 *0.0012

Table 7.3: Mean time of onset and the group difference results in each ROI. ∗ indicates
statistical significance after the Bonferroni correction.

ε allele status: the APOE+ (ε4-allele) and APOE- (no ε4-allele) groups.
Then, for each region, we tested the difference of TOs between the APOE+
and APOE- groups using the two-sample t-test. We used the Bonferroni
corrected significance threshold (α = 0.05) for the type-1 error correction.

7.3 Results
The PiB trajectory estimation results in Fig. 7.3 show the predicted tra-
jectories (dashed lines) given the original trajectories (solid lines). Red
and blue lines are APOE+ and APOE- subjects respectively. For each ROI,
the TOs were computed based on the ROI-specific (Table 7.2), so each
subject had one TO for each ROI. The average time of onset of the APOE+
and APOE- groups for each ROI are shown in Table 7.3. The statistical
significance of the group differences between APOE+ and APOE- are
also shown in Table 7.3 with the Bonferroni correction. We found that for
all 8 ROIs, the differences of time of onset between APOE+ and APOE-
were statistically significant (p-value < 0.05) with the lower mean time of
onset of APOE+ subjects. Overall, the estimated trajectories show linear
patterns after the PiB DVR reaches a critical point. This is more apparent
in Fig. 7.4 which shows the subjects with T = 4 time points which inform
the longitudinal patterns the most with long observed sequences.
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Figure 7.3: Retrospective PiB DVR trajectory estimation. Straight lines: observed PiB
DVR trajectories. Dashed lines: Estimated PiB DVR trajectories. Right two columns: The
observed PiB trajectories are shifted with respect to their time of onset. Only showing
the PiB+ subjects.
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Figure 7.4: Retrospective PiB DVR trajectory estimation of T = 4 subjects.
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We also plot the PiB DVR trajectories from a different perspective
just like how (Koscik et al., 2019a) presented it in their work. Instead of
using the given ages as the independent variable (x-axis), we used the
TOs to "shift" the observed PiB DVRs (solid lines) as shown in Fig. 7.5.
This allows us to observe the subjects’ amyloid accumulation patterns
after they become PiB+. Thus, if there is a consistent pattern of amyloid
accumulation, it may imply that the amyloid accumulation pattern is
independent of age but dependent of their time of onset which is consistent
across the subjects. In particular, we are interested in seeing whether
such “cohort-level” amyloid accumulation trend follows that of the widely
accepted amyloid-tau-neurodegeneration (ATN) curve hypothesizing the
abnormality progressions of various biomarkers including amyloid beta
(Jack et al., 2016). In these new plots, the x-axes are the "Years since PiB+"
where 0 is the point of inflection (i.e., time of onset). Thus, the PiB- subjects
will have negative “Years since PiB+” values.

We next narrow the scope of the analysis that for each ROI, we only
observe the samples that became PiB+ (i.e., excluding the PiB- samples
that never become PiB+). This is a smaller subset for each ROI that focuses
on the PiB+ group only. Note that the ROIs can have a varying number of
samples since only some of the ROIs may become PiB+ for the same subject.
Table 7.4 shows the mean TOs for the APOE+ and APOE- groups where
we see much smaller differences. No ROIs had significant differences
when the TOs of the APOE+ and APOE- groups were compared.

In Fig. 7.6, we see the box plots of the TOs of the APOE+ and APOE-
samples from the PiB+ group. We then show the box plots of the APOE+
(Fig. 7.7) and APOE- (Fig. 7.8) groups separately.

We also looked into the order at which these ROIs become PiB+. In
Table 7.5, we show the distribution of each ROI in terms of its order when it
became PiB+. Each column indicates the order at which the corresponding
ROI became PiB+ with respect to the other ROIs. Specifically, for a subject,
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Figure 7.5: Years since PiB+ vs. PiB DVR for each ROI. The ages show in Fig. 7.3 are
shifted by the estimated TOs. Thus, the point of inflection at which the ROI becomes
PiB+ is at 0 on the x-axis. Only the observed PiB DVRs are shown.



162

suppose we have the TO of each ROI, i.e., TOk is the TO of the ROI k. Then,
we order the ROIs based on their TOs from the smallest TOk to the highest
TOk. We say that the ROI k has the ith onset if its TO is the ith smallest
one in the list, i.e., TOk is the ith smallest. So for each ROI (row), the
number for each column indicates the probability of that ROI having the
ith onset within our data. For instance, temporal_mid has the 1st onset for
25% of the time while it has the 5th onset for only 3% of the time. Thus, if
an ROI has a high % in an ith column, then it implies the ROI consistently
had the ith onset. Table 7.6 shows the results for the APOE+ and APOE-
groups separately.

7.4 Discussion
In this work, we looked for the association between the time of onset (TO)
of amyloid pathology across 8 AD-related regions and APOE genotype.
For those subjects without an observable TO when they become PiB+, we
used a sequential deep neural network model from Chapter 6 to capture
the trajectory pattern with a temporal latent representation to (1) retro-
spectively estimate their ROI-wise PiB DVRs (xt<1 ∈ R8 for 8 ROIs) before
the observed first scan x1 and (2) compute the TO for each ROI based
on the ROI-specific thresholds. As shown in Table 7.3, the TOs between
the APOE+ and APOE- groups were different where the APOE+ group
had earlier average TOs across all the ROIs (76.1 to 77.6) while the APOE-
group had their average time of onset approximately 4 to 5 years later
than those of APOE+ (81.1 to 82.2). This implied that the APOE+ group
showed a strong association with an earlier TO of amyloid accumulation
across the ROIs. We also observed some variability of TOs among the ROIs.
For instance, in frontal_med_orb, the APOE+ group has an average time
of onset of 76.1 while in temporal_sup, the average TO is 77.6, showing
over a year of difference between the TOs of these ROIs.
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Figure 7.6: Box plot of TOs of APOE+ and APOE-. For each ROI, the top and bottom
bars are the max and min TOs of that ROI respectively. The box indicates the standard
deviation from the mean which is the red line.

For cross-sectional settings, the association between APOE ε4 allele
status and amyloid accumulation has been shown in previous studies
(Fleisher et al., 2013; Naj et al., 2014; Corder et al., 1993; Thambisetty et al.,
2013). These cross-sectional studies have also observed that the APOE+
group showed early amyloid positivity compared to the APOE- group.
A recent longitudinal study (Bilgel et al., 2016) had estimated the linear
patterns of the amyloid accumulation at the individual-level which also
showed the association between the TOs of the individuals to the APOE4
status. Their analysis estimated the TO to be age 64 for the APOE+ group
and age 76 for the APOE- group showing nearly a 12 year difference. Note
that the average baseline scan age of their cohort was 77.1 (7.8 s.d.) while
the baseline scan age of our cohort was 65.9 (6.8 s.d.). Our cohort was
nearly 11 years younger than that of (Bilgel et al., 2016) in terms of the
average baseline scan ages. Thus, the proportion of the late onset subjects
with high amyloid later in life in our cohort was smaller than that of
(Bilgel et al., 2016). Thus, in our case, many of the subjects whose TOs
were not observed had their expected life years as surrogates, resulting in
relatively high average TOs for both the APOE+ and APOE- groups. Still,
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Figure 7.7: Box plot of TOs of APOE+.

Figure 7.8: Box plot of TOs of APOE-.

the estimated TOs contributed strongly enough to result in a statistically
significant difference between the TOs between the APOE+ and APOE-
groups.

Another notable study was by (Koscik et al., 2019a) which involved
the same WRAP study (with a slightly different cohort due to different
versions of the WRAP database). Their group-based trajectory modeling
showed the time of onset of ∼50.6 for the "early onset" group, ∼61.6 for the
"intermediate onset" group, and ∼71.3 for the "late onset" group. Unlike
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ROI Mean TO (APOE+ / APOE-)
angular 61.6 / 62.2
cingulum_ant 62.2 / 63.7
cingulum_post 62.3 / 63.4
frontal_med_orb 62.2 / 64.1
precuneus 62.2 / 64.2
supramarginal 62.4 / 63.2
temporal_mid 62.2 / 62.6
temporal_sup 62.0 / 62.5

Table 7.4: Mean TO of APOE+ and APOE- Groups with PiB+ Cohort Only. For each ROI,
this is conditioned on those who eventually became PiB+.

our analysis, the PiB- subjects were labeled as "Non-accumulators", and
the statistical analyses used the linear combinations of the TOs of these
onset groups to look for the individual-level TOs and their associations to
other risk factors. They also found strong associations between the APOE
ε4 carriers and the time of onset.

Similar to these two previous studies, our ROI-based analyses showed
consistent results regarding the relations of TO to the APOE ε4 allele status.
Even though the ROI-specific thresholds were computed in a data-driven
manner, the consistent average times of onset across the ROIs indicate that
the amyloid accumulation patterns may be similar among the ROIs. Since
the PiB DVR measures were not globally averaged, one of the difficulties
of the ROI-based analysis was that the individual measurements of the
ROIs were in general noisier than the global PiB DVR. Still, we were able
to stably map the PiB DVR patterns to age via the bidirectional training
mechanism of our model (see Chapter 6) and make robust predictions.

One of the advantages of our ROI-based trajectory estimation is how
we can observe the patterns with respect to the individual ROIs. In Fig. 7.7
we observe that the mean TOs across the ROIs of APOE+ subjects are
less variable and distinct compared to the TOs of APOE- subjects shown
in Fig. 7.8 which have smaller deviations as well. This may suggest that
the amyloid accumulation patterns of APOE- subjects are more consistent
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ROI
% of ROIs becoming PiB+ at ith Order

i=1 2 3 4 5 6 7 8

angular 0.14 0.12 0.16 0.16 0.16 0.14 0.09 0.02
cingulum_ant 0.11 0.13 0.09 0.11 0.17 0.13 0.11 0.17
cingulum_post 0.10 0.06 0.08 0.18 0.06 0.22 0.10 0.20
frontal_med_orb 0.13 0.17 0.04 0.09 0.17 0.13 0.17 0.11
precuneus 0.03 0.11 0.16 0.18 0.21 0.11 0.16 0.05
supramarginal 0.07 0.05 0.23 0.16 0.14 0.07 0.23 0.07
temporal_mid 0.25 0.23 0.10 0.10 0.03 0.08 0.10 0.13
temporal_sup 0.24 0.18 0.06 0.09 0.12 0.03 0.09 0.18

Table 7.5: Distribution of ROIs becoming PiB+ at ith Order for APOE+ and APOE-.
Each row shows the probability that the ROI is the ith ROI to become PiB+. For instance,
temporal_sup became PiB+ first (i = 1) in 24% of the cases. For each ROI, only the
subjects who eventually became PiB+ are included. For each row (ROI), the probabilities
sum up to 1 since it is a distribution with respect to the corresponding ROI.

across the ROIs and subjects while the APOE+ subjects have more irregular
pattern of spread across the ROIs.

In Table 7.5 showing the order of ROI onsets of the APOE+ and APOE-
groups, we see that temporal_mid and temporal_sup become the first
PiB+ ROIs for nearly 25% of the time. Other than those 2 ROIs, we do not
particularly see an ROI predominantly becoming PiB+ at the ith order. In
Table 7.6, we show the APOE+ group at the top and the APOE- group
at the bottom. For the APOE- group (Bottom), the ROIs show clearer
patterns with the ROIs becoming PiB+ more dominantly. Specifically, we
see that higher %’s are seen in the rows which imply that the ROIs become
PiB+ more consistently at the ith order. For instance, precuneus was the
fifth ROI to became PiB+ (i.e., i=5) for 42% of the time which is the most
consistent ordering of PiB+ throughout the ROIs. On the other hand,
for the APOE+ group (Top), the ROIs become PiB+ with less consistent
patterns as each ROI does not have a dominant ordering (i.e., high % in
a specific i). This may further imply that for the APOE+ subjects, their
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ROI
% of ROIs becoming PiB+ at ith Order (APOE+)
i=1 2 3 4 5 6 7 8

angular 0.16 0.13 0.09 0.19 0.16 0.13 0.13 0.03
cingulum_ant 0.14 0.14 0.11 0.14 0.20 0.11 0.00 0.14
cingulum_post 0.11 0.09 0.09 0.14 0.06 0.17 0.14 0.20
frontal_med_orb 0.13 0.19 0.06 0.10 0.13 0.19 0.13 0.06
precuneus 0.04 0.12 0.23 0.15 0.12 0.12 0.19 0.04
supramarginal 0.04 0.07 0.18 0.25 0.18 0.04 0.18 0.07
temporal_mid 0.22 0.22 0.11 0.04 0.04 0.11 0.11 0.15
temporal_sup 0.23 0.14 0.05 0.09 0.14 0.05 0.09 0.23

ROI
% of ROIs becoming PiB+ at ith Order (APOE-)
i=1 2 3 4 5 6 7 8

angular 0.09 0.09 0.36 0.09 0.18 0.18 0.00 0.00
cingulum_ant 0.00 0.08 0.00 0.00 0.08 0.17 0.42 0.25
cingulum_post 0.07 0.00 0.07 0.27 0.07 0.33 0.00 0.20
frontal_med_orb 0.13 0.13 0.00 0.06 0.25 0.00 0.25 0.19
precuneus 0.00 0.08 0.00 0.25 0.42 0.08 0.08 0.08
supramarginal 0.13 0.00 0.31 0.00 0.06 0.13 0.31 0.06
temporal_mid 0.31 0.23 0.08 0.23 0.00 0.00 0.08 0.08
temporal_sup 0.27 0.27 0.09 0.09 0.09 0.00 0.09 0.09

Table 7.6: Distribution of ROIs becoming PiB+ at ith Order for APOE+ (Top) and APOE-
(Bottom). For each ROI, only the subjects who eventually became PiB+ are included.

amyloid accumulations are occurring across the ROIs more irregularly.
There are several limitations to our analysis. First, we have relatively

fewer late onset samples which largely consist of APOE- subjects, so es-
timating the PiB trajectory patterns of late onset samples is still limited.
Compared to the cohort in the study by (Bilgel et al., 2016) which has a
large group of late onset subjects, our analysis is focused on mid-to-late
onset subjects who are largely APOE+. Thus, the addition of late onset
cohort which often consists more of APOE- subjects may provide a better
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conditional analysis (i.e., PiB+ only) in the future. Second, related to the
previous limitation, our analysis is largely influenced by the PiB- subjects
and their estimated TOs based on the life expectancy table which may be
an oversimplification. Third, it is still difficult to accurately estimate the
trajectories of individuals with only one time point. Based on our model,
their predictions are often too "steep" due to the lack of observed longitu-
dinal information to inform the initial trend. This could be alleviated if
we incorporate additional covariates other than age which may provide
auxiliary longitudinal information.

7.5 Summary
In this chapter, we analyzed the effect of TO of each ROI to APOE geno-
type at the individual-level. Since the existing cohort often does not have
scans that directly reveal TO, we used our sequential invertible neural
network from Chapter 6 derive the temporal latent representations and
retrospectively estimate the ROI-wise and subject-wise PiB DVRs, and
then we computed ROI-specific TOs for the subsequent group analyses.
We found significant differences in TOs between the APOE+ and APOE-
groups across all 8 ROIs, but we did not find significant differences when
we only considered the PiB+ subjects. There are several immediate fu-
ture works including the analyses on other datasets such as ADNI and
performing a correlation analysis with the TOs of (Koscik et al., 2019a)
which studied the same cohort. This chapter demonstrated how the CRow
formulation could also be applied to an important neuroimaging problem
involving sequential brain imaging measures and to understand the early
pathological process of Alzheimer’s disease.
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8 conclusions

In this thesis, we showed how we can develop statistical and machine learn-
ing models that can learn latent representations and understand various
relationships as shown in Fig. 1.4 while effectively addressing data- and
domain-specific challenges. From computer vision to neuroimaging, the
problems that we tackled involved various types of data modalities rang-
ing from cross-sectional to temporal imaging data and both natural and
brain images of different types. Through understanding and modeling re-
lationships of various types with latent representations, we demonstrated
how solving those problems may lead to much more impactful outcomes
beyond what was possible with the original data directly.

8.1 Contributions
In each chapter, we addressed diverse data- and domain-specific challenges
in the following various respects: (1) structure of data, (2) relationship
type, (3) problem type, and (4) domain-specific challenges. Specifically,

1. We developed a multi-relational tensor factorization approach to derive
the latent representations of objects and predicates to understand the
visual relationships between objects in images (Hwang et al., 2018).
Our robust tensor formulation robustly captured the sparsely observed
visual relationships as a shallow model on its own and also regularized
a deep model to achieve state-of-the-art performance on various visual
relationship detection tasks.

2. We characterized the longitudinal and cross-sectional progression of
brain networks of preclinical Alzheimer’s disease (AD) subjects by
deriving the coupled harmonic basis of the brain networks (Hwang
et al., 2016). Due to the subtle progressive trends of asymptomatic AD
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subjects, we imposed the within-subject progression (longitudinal) and
across-subject progression (cross-sectional) in the latent representation
space (harmonic basis) directly.

3. Combining the classical statistical properties of exponential families
and powerful recurrent neural network variants, we proposed a sequen-
tial neural network called Sampling-free Probabilistic Gated Recurrent
Unit (SP-GRU) which deterministically estimated the uncertainty of all
the weights and neurons of GRU (Hwang et al., 2019b). This allowed
fast uncertainty quantification of sequential predictions as a byprod-
uct of GRU without costly sampling procedures for high-dimensional
sequence prediction tasks and the normative modeling of preclinical
Alzheimer’s disease cohort for outlier detection.

4. We constructed a generative sequential neural network called CRow
(Hwang et al., 2019c) for conditionally generating sequential samples.
Building upon an invertible neural network, the model incorporated
recurrent subnetworks and temporal context gating to learn the con-
ditional distribution of training data in a latent space and generated
sequential samples given observable conditions. In neuroimaging ap-
plications which involve small sample sizes, we showed how the real-
istically generated sequential brain imaging measures could result in
statistical analyses consistent with those reported by other studies in
the aging literature.

5. We demonstrated how our CRow formulation from the previous chap-
ter could be used to retrospectively estimate the progression of AD
pathology. Specifically, we predicted the amyloid accumulation pat-
terns from the PiB PET scans and estimated the time of onset, the age
at which the amyloid load surpasses a certain critical threshold. Our
model allowed an individual-level and region-level prediction in a
nonlinear manner in which previous studies have not attempted.
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The code repository can be found in https://github.com/shwang54.

8.2 Future Directions
It is clear that a wide range of problems in computer vision and neuroimag-
ing which would benefit from appropriately derived latent representations.
The development of powerful methods to extract useful knowledge from
data that is generated from scientific and biomedical studies will continue
to play a critical role in data science, and some of these developments may
partially benefit from the work described in this thesis. We discuss a few
short to medium future directions of our research and conclude the thesis.

Further Development of Amyloid Chronicity Analysis

The last chapter of the thesis on the amyloid time of onset analysis is still
ongoing work, and the results presented come from preliminary experi-
ments. There are several next steps in the short term. First, we plan to test
our hypotheses on other longitudinal neuroimaging datasets including
the ADNI dataset that contains longitudinal amyloid load measurements
(see Chapter 6 for a brief description of ADNI). Since the amyloid accu-
mulations are observed with a different radiotracer (AV45) from a new
cohort, investigating how our model performs on this new set of subjects
will be an excellent first step to further validate our model’s performance.
Second, we will compare our estimated time of onset with those estimated
by (Koscik et al., 2019a) where the authors analyzed the same WRAP
cohort. This will allow us to test the validity of both methods by (Koscik
et al., 2019a). If they are highly correlated with each other and find similar
associations with the APOE status, this could imply that the same data
with different analytical tools consistently lead to similar findings, further
strengthening our hypothesis. There are several other improvements we

https://github.com/shwang54
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plan to incorporate in our analysis including an improved derivation of
ROI-specific thresholds.

Longitudinal Neurodegenerative Disease Study: “-Omics”, Images
and More

Understanding neurodegenerative diseases often involves the complex
amalgamation of multiple risk factors. Longitudinal studies integrating
various “omics” such as genomics and metabolomics, and other risk factors
are showing promising new findings. In addition, a huge collaborative
effort by Alzheimer’s Disease Neuroimaging Initiative (ADNI) is collecting
longitudinal samples of multiple AD related data types, e.g., images and
biospecimens. Such discoveries encourage the community to continuously
explore and put efforts in accumulating invaluable data, in a positive
feedback cycle. Going beyond the biomarkers we have used in this thesis
so far, our future aims are to expand the analyses to known and new risk
factors in multiple modalities. In fact, we are currently investigating a
multi-modal brain network model which may allow us to understand a
disease pathology propagation pattern by combining both the structural
DTI and PiB PET scans. Also, we plan to expand the scope of applications
to other neurodegenerative diseases and disorders such as Parkinson’s
disease and childhood brain disorders.
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jeev Khudanpur. 2010. Recurrent neural network based language model.
In Interspeech, vol. 2, 3.

Milgrom, Paul, and Ilya Segal. 2002. Envelope theorems for arbitrary
choice sets. Econometrica 70(2):583–601.



191

Mirza, Mehdi, and Simon Osindero. 2014. Conditional generative adver-
sarial nets. arXiv preprint arXiv:1411.1784.

Monti, Federico, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan
Svoboda, and Michael M Bronstein. 2017. Geometric deep learning on
graphs and manifolds using mixture model cnns. In Proceedings of the
ieee conference on computer vision and pattern recognition, 5115–5124.

Myshkov, Pavel, and Simon Julier. 2016. Posterior distribution analysis
for bayesian inference in neural networks. Advances in Neural Information
Processing Systems (NIPS).

Nair, Tanya, Doina Precup, Douglas L Arnold, and Tal Arbel. 2018. Ex-
ploring uncertainty measures in deep networks for multiple sclerosis
lesion detection and segmentation. In International conference on medical
image computing and computer-assisted intervention, 655–663. Springer.

Naj, Adam C, Gyungah Jun, Christiane Reitz, Brian W Kunkle, William
Perry, Yo Son Park, Gary W Beecham, Ruchita A Rajbhandary, Kara L
Hamilton-Nelson, Li-San Wang, et al. 2014. Effects of multiple genetic
loci on age at onset in late-onset alzheimer disease: a genome-wide
association study. JAMA neurology 71(11):1394–1404.

Nickel, Maximilian, Volker Tresp, and Hans-Peter Kriegel. 2011. A three-
way model for collective learning on multi-relational data. In Icml.

Nocedal, J., and S. J. Wright. 2006. Numerical optimization. 2nd ed. New
York: Springer.

Ossenkoppele, Rik, Marissa D Zwan, Nelleke Tolboom, Danielle ME van
Assema, Sofie F Adriaanse, Reina W Kloet, Ronald Boellaard, Albert D
Windhorst, Frederik Barkhof, Adriaan A Lammertsma, et al. 2012. Amy-
loid burden and metabolic function in early-onset alzheimer’s disease:
parietal lobe involvement. Brain 135(7):2115–2125.



192

Papalexakis, Evangelos E, Leman Akoglu, and Dino Ience. 2013. Do more
views of a graph help? community detection and clustering in multi-
graphs. In Proceedings of the 16th international conference on information
fusion, 899–905. IEEE.

Papamakarios, George, and Iain Murray. 2016. Fast ε-free inference of
simulation models with bayesian conditional density estimation. In Nips,
1028–1036.

Parlett, Beresford N. 1998. The symmetric eigenvalue problem, vol. 20. siam.

Patel, Vishal M, Raghuraman Gopalan, Ruonan Li, et al. 2015. Visual do-
main adaptation: A survey of recent advances. Signal Processing Magazine
32(3):53–69.

Pearson, Karl. 1901. Liii. on lines and planes of closest fit to systems of
points in space. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science 2(11):559–572.

Pike, K. E., G. Savage, V. L. Villemagne, S. Ng, S. A. Moss, P. Maruff,
C. A. Mathis, W. E. Klunk, C. L. Masters, and C. C. Rowe. 2007. Beta-
amyloid imaging and memory in non-demented individuals: evidence
for preclinical alzheimer’s disease. Brain 130(Pt 11):2837–44.

Racine, Annie M, Nagesh Adluru, Andrew L Alexander, Bradley T Chris-
tian, Ozioma C Okonkwo, Jennifer Oh, Caitlin A Cleary, Alex Bird-
sill, Ansel T Hillmer, and Dhanabalan Murali. 2014. Associations be-
tween white matter microstructure and amyloid burden in preclinical
alzheimer’s disease: a multimodal imaging investigation. NeuroImage:
Clinical 4:604–614.

Racine, Annie M, Lindsay R Clark, Sara E Berman, Rebecca L Koscik,
Kimberly D Mueller, Derek Norton, Christopher R Nicholas, Kaj Blennow,



193

Henrik Zetterberg, Bruno Jedynak, et al. 2016. Associations between per-
formance on an abbreviated cogstate battery, other measures of cognitive
function, and biomarkers in people at risk for Alzheimer’s disease. Journal
of Alzheimer’s Disease 54(4):1395–1408.

Raj, Ashish, Amy Kuceyeski, and Michael Weiner. 2012. A network
diffusion model of disease progression in dementia. Neuron 73(6):1204–
1215.

Ramanathan, Vignesh, Congcong Li, Jia Deng, et al. 2015. Learning
semantic relationships for better action retrieval in images. In Cvpr.

Ranganath, Rajesh, Linpeng Tang, Laurent Charlin, and David Blei. 2015.
Deep exponential families. In Artificial intelligence and statistics, 762–771.

Rasmussen, Carl Edward, and Joaquin Quinonero-Candela. 2005. Heal-
ing the relevance vector machine through augmentation. In Icml.

Reijneveld, Jaap C, Sophie C Ponten, Henk W Berendse, et al. 2007. The
application of graph theoretical analysis to complex networks in the brain.
Clinical Neurophysiology 118(11):2317–2331.

Reiman, Eric M, Kewei Chen, Xiaofen Liu, et al. 2009. Fibrillar amyloid-
β burden in cognitively normal people at 3 levels of genetic risk for
Alzheimer’s disease. Proceedings of the National Academy of Sciences
106(16):6820–6825.

Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-
CNN: Towards real-time object detection with region proposal networks.
In Nips.

Rezende, Danilo Jimenez, and Shakir Mohamed. 2015. Variational infer-
ence with normalizing flows. arXiv preprint arXiv:1505.05770.



194

Ribeiro, Fabio De Sousa, Francesco Caliva, Mark Swainson, Kjartan Gud-
mundsson, Georgios Leontidis, and Stefanos Kollias. 2018. Deep bayesian
uncertainty estimation for adaptation and self-annotation of food pack-
aging images. arXiv preprint arXiv:1812.01681.

Richardson, Matthew, and Pedro Domingos. 2006. Markov logic networks.
Machine learning 62.

Rippel, Oren, and Ryan Prescott Adams. 2013. High-dimensional
probability estimation with deep density models. arXiv preprint
arXiv:1302.5125.

Rohrbach, Marcus, Wei Qiu, Ivan Titov, et al. 2013. Translating video
content to natural language descriptions. In Iccv.

Rosenberg, Samuel J, Joseph J Ryan, and Aurelio Prifitera. 1984. Rey
auditory-verbal learning test performance of patients with and without
memory impairment. Journal of clinical psychology 40(3):785–787.

Rosenblatt, Frank. 1958. The perceptron: a probabilistic model for infor-
mation storage and organization in the brain. Psychological review 65(6):
386.

Roth, Kevin, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann.
2017. Stabilizing training of generative adversarial networks through
regularization. In Advances in neural information processing systems, 2018–
2028.

Rubinov, Mikail, and Olaf Sporns. 2010. Complex network measures of
brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069.

Saad, Youcef. 1992. Numerical methods for large eigenvalue problems, vol.
158. SIAM.



195

Sadeghi, Mohammad Amin, and Ali Farhadi. 2011. Recognition using
visual phrases. In Cvpr.
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