
Improved Tools for Large-Scale

Hypothesis Testing
by

Zihao Zheng

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Statistics)

at the

University of Wisconsin-Madison

2022

Date of Final Oral Exam: May/10/2022

The dissertation is approved by the following members of the Final Committee:

Michael A Newton, Professor, Statistics, Biostatistics and Medical Informatics

Sunduz Keles, Professor, Statistics, Biostatistics and Medical Informatics

Karl Broman, Professor, Biostatistics and Medical Informatics

Chunming Zhang, Professor, Statistics

Miriam A Shelef, Associate Professor, Medicine



i

Improved Tools for Large-Scale Hypothesis
Testing Zihao Zheng

Abstract

Large-scale hypothesis testing, as one of the key statistical tools, has been widely

studied and applied to high throughput bioinformatics experiments, such as high

density peptide array studies and brain image data sets. The high dimensional-

ity and small sample size of many experiments challenge conventional statistical

approaches, including those aiming to control the false discovery rate (FDR). Mo-

tivated by this, in this dissertation, I develop several improved statistical and com-

putational tools for large-scale hypothesis testing. The first method, MixTwice,

advances an empirical-Bayesian tool that computes local false discovery rate statis-

tics when provided with data on estimated effects and estimated standard errors.

I also extend this method from two group comparison problems to multiple group

comparison settings and develop a generalized method called MixTwice-ANOVA. The

second method GraphicalT calculates local FDRs semiparametrically using avail-

able graph-associated information.

The first method, called MixTwice, introduces an empirical-Bayes approach that

involves the estimation of two mixing distributions, one on underlying effects and

one on underlying variance parameters. Provided with the estimated effect sizes and

estimated errors, MixTwice estimates the mixing distribution and calculates the lo-

cal false discovery rates via nonparametric MLE and constrained optimization with

unimodal shape constraint of the effect distribution. Numerical experiments show

that MixTwice can accurately estimate generative parameters and have good test-

ing operating characteristics. Applied on a high density peptide array, it powerfully

identifies non-null peptides to recover meaningful peptide markers when the under-

lying signal is weak, and has strong reproducibility properties when the underlying

signal is strong.

The second contribution of this dissertation generalizes MixTwice from scenar-

ios comparing two conditions to scenarios comparing multiple groups. Similar to

MixTwice, MixTwice-ANOVA takes numerator and denominator statistics of F test

to estimate two underlying mixing distributions. Compared with other large-scale

testing tools for one-way ANOVA settings, MixTwice-ANOVA has better power prop-
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erties and FDR control through numerical experiments. Applied to the peptide array

study comparing multiple Sjogren-disease (SjD) populations, the proposed approach

discovers meaningful epitope structure and novel scientific findings on Sjogren dis-

ease.

Numerical experiments support evaluation among testing tools. Besides the

methodology contribution of MixTwice in large-scale testing, I also discuss gener-

alized evaluation and computational aspects. For the former part, I propose an

evaluation metric, in additional to FDR control, power, etc., called reproducibility,

to provide a practical guide for different testing tools. For the latter part, I borrow

the idea from pool adjacent violator algorithm (PAVA) and advance a computa-

tional algorithm called EM-PAVA to solve nonparametric MLE with isotonic partial

order constraint. This algorithm is discussed through theoretical guarantees and

computational performances.

The last contribution of this dissertation deals with large-scale testing prob-

lems with graph-associated data. Different from many studies that incorporate the

graph-associated information through detailed modeling specifications, GraphicalT

provides a semiparametric way to calculate the local false discovery rates using

available auxiliary data graph. The method shows good performance in synthetic

examples and in a brain-imaging problem from the study of Alzheimer’s disease.
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Chapter 1

Introduction

Large-scale hypothesis-testing tools deal with statistical inference problems when

multiple hypotheses are simultaneously tested. These tools are needed and used

in a wide variety of subject-matter domains. For example, in transcript analysis

investigators might want to assess changes in gene expression between different cel-

lular conditions [e.g., Van den Berge et al., 2017]. In brain imaging, investigators

seek to understand changes in brain structure between different populations [e.g.,

Nichols and Hayasaka, 2003, Alberton et al., 2020]. Genetics researchers may be in-

terested in differences in some phenotype between populations associated with some

aspect of genetic structure [e.g., Dudoit et al., 2003]. Psychologists and empirical

economists may be interested in understanding treatment effects of multiple arms or

heterogeneity effects across different sub-populations [e.g., Shaffer, 1995, Bajgrow-

icz and Scaillet, 2012]. It is common, regardless of the domain, for the problem

to be an unordered list of separate, uni-dimensional statistical testing questions.

While a useful approach to such problems is to apply classical statistical testing

procedures separately to each dimension, contemporary statistical theory tells us

that overall operating characteristics can be improved by calculating decision rules

for each test which rely on information extracted from the entire collection [Efron,

2012]. Broadly speaking, my thesis aims to contribute further to the statistical

methodology for large-scale hypothesis testing.

In large-scale testing, the discovery list is a collection of hypotheses that are

rejected based on a certain decision rule; i.e., these are the units inferred to be

most statistically interesting in the comparison under consideration, and they often

will be the subject of extensive follow-up experimentation and analysis. The false

discoveries are units that are on the discovery list but that really ought not have
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been placed there; they are incorrectly rejected (i.e., the type-I errors), and further,

perhaps indefinite, experimentation and sampling would be futile in establishing

significant differences for such units. Null statistical fluctuations cause these units

to be placed on the discovery list. An important issue in constructing the list of

discoveries is to control in some way the rate of these type-I errors. Efforts to

control the type-I error rate in large-scale testing, such as Bonferroni correction

[Bonferroni, 1936], started from methods that control the family-wise error rate

(FWER), which is the probability of at least one false discovery. Its simplicity

makes it popular for controlling FWER. However, such corrections are considered

to be highly conservative, and may easily result in empty discovery lists, especially

in cases with extremely high dimensionality and small sample size. Furthermore,

the investigator may be comfortable sifting through lists that have more than one

false discovery, as long as the rate of such is low, so aiming to control the FWER is

not well-justified in some settings.

The false discovery rate (FDR), which is the expected proportion of false discov-

eries, was introduced to address the statistical control of type-I errors in large-scale

testing [Benjamini and Hochberg, 1995]. Methods aiming to control the FWER also

control the FDR, but the latter may be controlled with a less stringent decision rule.

Methods proposed to control the FDR, such as Benjamini and Hochberg procedure

(BH, [Benjamini and Hochberg, 1995]) and Storey’s qvalue method [Storey, 2002],

have been shown to have greater power to detect true positives. Beyond the question

of the number of discoveries, it is important to recognize that the statistical meth-

ods to process large-scale data will affect the rank ordering of any list of discoveries.

Relevant to my research contribution is the question of precisely what data are used

from each testing unit in order to construct the required decision rules. The use of

different data summaries affects both the rank-ordering of units and the assessment

of false-discovery rate.

The empirical-Bayes mixture model has been applied in a variety of settings for

large-scale hypothesis testing by treating all units as coming from a common pop-

ulation. In the context of an estimated mixture model, a useful empirical-Bayesian

inference statistic to make the discovery list is local false discovery rate, sometimes

denoted lfdr [Efron et al., 2001]. The local false discovery rate is the posterior prob-

ability of the null hypothesis given the statistics computed locally on each testing

unit, where the required distributional forms are estimated globally from the full set

of units.

One of the important questions in large-scale hypothesis testing concerns what
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statistics are computed on each unit and then imported into the empirical-Bayes

calculation. Methods such as qvalue work from unit-specific p-values that have

been computed from two-sample t tests [Storey, 2002]. This method has improved

power properties compared to the Bonferroni correction and BH procedure, but

it still extracts a high penalty for dimensionality in many examples [Zheng et al.,

2021]. One reason is because qvalue method enters quite late in data analysis;

methods that reduce data less prior to empirical-Bayes mixing may be expected to

have superior operating characteristics. For example, Efron’s local FDR procedure

(locFDR, [Efron et al., 2001]) intervenes on test statistics (or z-scores) prior to the

p-value calculation, in order to avoid the reduction of sign information going from

test statistics to p-values. Further improvements intervene on components of the lo-

cal test statistics. Adaptive Shrinkage (ASH, [Stephens, 2017]) is a recent innovation

that applies empirical-Bayesian modeling on estimated effect sizes and on estimated

standard errors. ASH involves a mixture distribution for latent effect and further

restricts the mixing distribution to be unimodal. Specifically, it encodes a nonpara-

metric shape constraint that models the units with larger effects to be less common

than units with smaller effects. Refinements of ASH include a two-step formulation

[Lu and Stephens, 2019, 2016], addressing technical limitations of the standard-error

modeling.

ASH and two-step ASH provide an effective general framework for utilizing two-

dimensional effects and standard errors for large-scale testing. The methods have

reasonable operating characteristics in many cases [e.g., Korthauer et al., 2019], es-

pecially when the amount of information (e.g. sample size) per testing unit is quite

high, and thereby the estimated standard errors are close to the underlying standard

errors and the parametric observation components are well supported. However,

the ASH methods have deficiencies when the standard errors are poorly estimated.

Motivated by this, I discuss and evaluate a novel empirical-Bayes method, named

MixTwice, that intervenes after effect estimates and standard errors are computed

on each testing unit (Chapter 2). By contrast with ASH, the proposed MixTwice

method relies on separate nonparametric mixtures for variance and effect param-

eters. Combined with existing tools for nonparametric maximum likelihood esti-

mation and constrained optimization, MixTwice is shown to have good operating

characteristics through a variety of simulation studies and two data examples on

high density peptide array.

Two-group comparisons constitute the majority of work in large-scale hypothe-

sis testing. However, many applications involve comparisons among multiple groups
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[e.g., Yang et al., 2016, Mergaert et al., 2022]. Large-scale testing tools based on

p-values can be directly applied to scenarios comparing multiple groups. However,

there is little research on how to improve power in these cases by incorporating

more data per unit in empirical Bayes calculations. Motivated by this problem, I

consider in Chapter 3 a variant of MixTwice, called MixTwice-ANOVA, that advances

an empirical-Bayes calculation using the numerator and denominator of the unit-

specific F statistic as a way to provide additional information for each test. It esti-

mates the mixing distribution for both latent effect and for the variance parameter

nonparametrically, and it enforces a monotonic shape constraint on the distribution

of effects in order to regularize the semiparametric inference. MixTwice-ANOVA is

evaluated on a variety of simulation examples and applied in a peptide-array study

with multiple Sjogren-disease (SjD) populations.

Numerical experiments have guided the development of large-scale testing tools.

In a particularly thorough review, Korthauer et al. [2019] provided a comprehensive

study of various operating characteristics: FDR control, power, applicability, con-

sistency, and usability. This review used a battery of simulated data sets and bench-

mark data sets for its extensive numerical studies. Besides the methods mentioned

above (BH, qvalue, ASH), Korthauer et al. [2019] also evaluated testing tools that

use unit-specific covariate data as inputs. This includes FDR regression (FDRreg,

[Scott et al., 2015]), conditional local FDR (LFDR, [Cai and Sun, 2009]), Boca and

Leek’s FDR regression (BL, [Boca and Leek, 2018]), independent hypothesis weight-

ing (ihw, [Ignatiadis et al., 2016]), and adaptive p-value thresholding (AdaPT, [Lei

and Fithian, 2018])). Appreciating the utility of Korthauer et al. [2019]’s work, I

seek to expand the review in order to both include MixTwice and also to examine

reproducibility properties of the various methods. I present an expanded evaluation

in Chapter 4. Besides those conventional evaluation metrics, I introduce another

metric called reproducibility that measures the similarity between discovery lists

from the analysis of replicate data sets. I also include MixTwice and two-step ASH

in order to expand the comparison.

The nonparametric MLE of the mixing distribution is central in many local FDR

calculations. The original MixTwice method (Chapter 2) relies on a gradient-based

constrained optimization method. This is effective but computationally limiting

in some examples. As a recent innovation for MixTwice, I propose in Chapter 4

an alternative algorithm that combines the Expectation-Maximization algorithm

(EM) and the pool adjacent violator algorithm (PAVA). EM-PAVA efficiently solves

the constrained optimization problem for several large-scale testing methods. In
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Chapter 4, I include some background theory on how and why this algorithm works

for certain partial-ordering constraints.

As a final example of semiparametric empirical-Bayes hypothesis testing, I study

in Chapter 5 a novel method for graph-associated data. The data structure and in-

ference problem are similar to what I study in previous chapters, but the testing

units in this case are now associated with nodes of a known, undirected graph. This

data type arises in many application domains. Examples include peptide arrays and

structural brain imaging where the graph records peptide similarity, in one case,

and spatial proximity, in the other. The aim of my work is to show how graph

information can be used to improve power; I investigate an operationally simple

technique that is based upon repeated t-tests for a two-group comparison problem.

The proposed GraphicalT method does not rely on any detailed modeling specifica-

tions, in contrast to other approaches that have tried to improve large-scale testing

in this setting [e.g., Sun and Cai, 2009, Liu et al., 2012, Vo et al., 2021]. Preliminary

numerical experiments show that GraphicalT can usefully improve power without

inflating the false discovery rate in graph-associated data problems.
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Chapter 2

MixTwice: large-scale hypothesis

testing for peptide arrays by

variance mixing

The material in this chapter was reported previously in Zheng et al. [2021], and

represents a collaborative project with Drs. Mergaert, Ong, Shelef, and Newton,

which I led.

2.1 Introduction

Peptide microarray technology is used in biology, medicine, and pharmacology to

measure various forms of protein interaction. Like other microarrays, a peptide

array contains a large number of very small probes arranged on a glass or plastic

chip. Each probe occupies a spatial position on the array, and is comprised of many

molecular copies of a short amino-acid sequence (a peptide) anchored to the surface,

perhaps 12 to 16 amino acids in length, depending on the design. In antibody profil-

ing experiments, the array is exposed to serum derived from a donor’s blood sample;

antibodies in the sample that recognize an anchored peptide epitope may bind to

the probe. In order to measure these antibody/antigen binding events, a second,

fluorescently tagged antibody is applied, which binds to exposed sites on the already-

bound antibodies, providing quantitative readout at probes where there has been

sufficient binding of serum antibody recognizing the peptide epitopes. High-density

peptide microarrays have emerged as a powerful technology in immunoproteomics,

as they enable simultaneous antibody-binding measurements against millions of pep-
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tide epitopes. Such arrays have guided the discovery of markers for viral, bacterial,

and parasitic infections [Mishra et al., 2018, Tokarz et al., 2020, Bailey et al., 2020]

and have illuminated the serological response to cancer [Yan et al., 2019] and can-

cer immunotherapy [Hoefges et al., 2020]. The photolithographic design allows for

custom arrays, which have benefited studies of autoimmunity, for example, where

various forms of post-translational modification (e.g., citrullination) create targets

for autoantibodies [Bailey et al., 2017, Zheng et al., 2020].

The high dimensionality and small sample size of many peptide-array exper-

iments challenge conventional statistical approaches. Zheng et al. [2020], for ex-

ample, reported a custom peptide-array having 172,828 distinct features and array

data from 60 human subjects across several disease subsets. This dimensionality

is relatively high compared to gene-expression studies, but quite low compared to

other peptide-array studies; arrays that probe the entire human proteome carry over

6 million peptide features, for example. Methods for large-scale hypothesis testing

respond to these challenges, often aiming to control the false discovery rate (FDR)

[e.g., Efron, 2012]. FDR-controlling procedures are more forgiving than techniques

that control the probability of any type I errors (e.g., Bonferroni correction), but

they still extract a high penalty for dimensionality in the peptide-array regime in-

volving 105-106 features. When additional data are available it may be possible to

further limit penalties associated with large-scale testing.

Continuing with Zheng et al. [2020], the authors sought to identify peptides for

which antibody binding levels differ between control subjects and rheumatoid arthri-

tis (RA) patients expressing a specific disease marker combination (CCP+ and RF-).

Sera from twelve subjects in each group were applied to their custom-built array.

After pre-processing, a univariate statistic (t-statistic) measured statistical changes

at each peptide. Peptides with the most extreme statistics (and smallest p-values)

would be set aside for further validation. In the CCP+RF- RA example, no pep-

tides had a FDR-adjusted p-value less than 10% by either the Benjamini-Hochberg

(BH) method [Benjamini and Hochberg, 1995] or the more sensitive q−value method

[Storey et al., 2003], although the latter method estimated that 21% percent of the

peptides in fact have differential binding between the two groups.

Improving power while maintaining robustness and reproducibility is a theme of

contemporary large-scale inference that we explore in the peptide-array setting. The

BH and q−value procedures yield no discoveries in the CCP+RF- RA example at

one conventional FDR level. If this is due to low statistical power, it may not be sur-

prising since these procedures enter quite late in data analysis, after all p-values have
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been computed. Procedures that intervene earlier have access to more information,

and thereby may have better overall operating characteristics. Efron’s local FDR

approach, locFDR, intervenes on test statistics just prior to p-value computation

and has improved power properties in some settings [Efron et al., 2001]. Indepen-

dent filtering combines a selection statistic, such as marginal sample variance, and

then applies an FDR-controlling procedure to the selected peptides [Bourgon et al.,

2010]. Neither locFDR nor independent filtering at 50% yielded any results in the

CCP+RF- RA example, as it happens. We have the same null finding by inde-

pendent hypothesis weighting (IHW), which generalizes independent filtering in not

requiring a specific selection rate [Ignatiadis et al., 2016].

Adaptive Shrinkage (ASH) is a recent innovation for large-scale testing that inter-

venes after each peptide yields both an estimated effect and an estimated standard

error [Stephens, 2017]. There are several variations of its empirical Bayesian formu-

lation; when using the t−distribution sampling-model version of ASH (say ASH-t),

we discover 76 peptides to have differential antibody binding in the CCP+RF- RA

comparison, also at 10% FDR control. This may reflect increased power, and is con-

sistent with numerical studies showing increased power of ASH in many settings.

A recent report from Professor Stephens’s group points out a technical limitation

of ASH-t that could cause FDR inflation. It proposes a two-step ASH procedure

that pre-processes the standard error estimates and then follows with the ASH-t

procedure on modified input [Lu and Stephens, 2019]. It happens that we discover

12 peptides with differential binding affinity by two-step ASH at 10% FDR. The

different behavior of FDR-controlling procedures in the CCP+RF- RA example ex-

poses ongoing practical challenges that are also revealed in comprehensive numerical

studies [Korthauer et al., 2019].

Data analysts face many issues as they filter high-dimensional measurements

into short lists for experimental follow-up. In studying this problem, we propose

and evaluate a flexible empirical Bayesian mixture method that, like ASH, inter-

venes after effect estimates and standard errors are computed on each testing unit.

The proposed MixTwice procedure involves shape-constrained mixture distribution

for latent effects and also a separate nonparametric mixture for variance parameters

(Section 2). We leverage existing tools for constrained optimization in order to esti-

mate the underlying mixing distributions, and we present a variety of comparative

numerical experiments on the operating characteristics of MixTwice. The CCP+RF-

RA peptide-array example happens to yield 44 peptides having significant differen-

tial antibody binding at 10% FDR. A closer look at the identified peptides reveals
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binding patterns consistent with other biological information about RA, and thus

provides a measure of confidence that these discoveries are not artifacts. In a second

RA example where differential signals are stronger, MixTwice shows a higher level

of reproducibility than other approaches when presented with two independent data

sets on the same populations.

2.2 Mixture model

We index peptides by i = 1, 2, · · · ,m and suppose that the two-group peptide-array

data have been obtained and pre-processed in order to yield two summary statistics

per peptide: (xi, si). The first component, xi, is an estimated effect. It measures

the difference between the two groups, such as a difference in sample means of log-

transformed data, and is viewed a statistical estimate of an underlying effect, say θi.

In this view, xi is a random variable having some sampling distribution, which we

take to be Gaussian centered at θi; this is warranted noting the behavior of suitably-

transformed fluorescence measurements coupled with central-limit effects for modest

to large sample sizes. The second component, si, is an estimated standard error. In

the Gaussian sampling model, E(xi) = θi and var(xi) = σ2
i , and s2i is a sample-based

estimate of the variance σ2
i . We seek inference about the value of θi using local data

(xi, si) as well as data {(xi′ , si′)} from all peptides, which informs the distribution

of effect and variance parameters across the array.

Our formulation is common in large-scale inference, and we could infer θi values

in a number of ways. For example, we could produce a peptide-specific p-value from

the test statistic ti = xi/si against the null hypothesis H0,i : θi = 0. We might

refer ti to a Student-t distribution, obtain a two-sided p-value, and then process the

p-values through the Benjamini-Hochberg (BH) or q−value methods to adjust for

multiplicity [Benjamini and Hochberg, 1995, Storey et al., 2003]. Alternatively, we

might use the collection {ti} and model their fluctuations as a discrete mixture of null

and non-null cases, as in the locFDR procedure [Efron et al., 2001, Strimmer, 2008].

Both locFDR and q−value methods are based upon discrete mixtures; interestingly

the reduction of ti’s to two-sided p-values entails a loss of sign information that is

enough to reduce statistical power in some settings. A more ambitious approach goes

beyond null/non-null mixing to allow a full probability distribution of effects θi in

order to account for fluctuations across all the peptides. Adaptive shrinkage (ASH)

is appealing because it acquires robustness through a nonparametric treatment of

this distribution, say g(θ), while using reasonable shape constraints to regularize the
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estimation [Stephens, 2017]. Power advantages of ASH over other methods stem in

part from its use of more data per peptide.

In the context of an estimated mixture model there are two useful empirical-

Bayesian inference statistics. The first is local false discovery rate (lfdr), li = P(θi =
0|xi, s

2
i ). The term local false discovery rate was coined by Professor Efron, and the

statistic may be computed in various settings beyond the specific mixture deployed

in Efron et al. [2001]. The list L of statistically significant peptides will be L = {i :
li ≤ c} for some threshold c. Notably, small li warrants peptide i to be placed in L;
but the value li is also the probability (conditional on data) that such placement is

erroneous [Newton et al., 2006]. Given the data, the expected rate of false discoveries

in L is dominated by c. The local false sign rate (lfsr) is analogous to lfdr, but it

avoids relying on effects being precisely zero; when the estimated effect is positive

for example, the lfsr is P(θi ≤ 0|xi, s
2
i ). Lists controlling lfsr may be constructed in

the same way as L, and may be slightly smaller for the same value of c. (In the

CCP+RF- RA example in Section 1, ASH lfsr and lfdr lists are the same at the 10%

level.)

With modest sample sizes, differences between estimated standard errors {si}
and actual standard errors {σi} can affect the performance of existing tools for lfdr

and lfds. To better account for these differences we propose an additional mixture

layer involving a sampling model p(s2i |σ2
i ), which we derive from normal-theory

considerations, and a flexible nonparametric mixing distribution h(σ2). For both

nonparametric components – g on effects θi and h on squared standard errors σ2
i

– we use finite grids and treat each distribution as a vector of probabilities. We

estimate g and h by maximum likelihood, respecting unimodal shape constraints for

g (as in ASH), but otherwise allowing any distributional forms.

Suppose that effects take values in a finite, regular grid {a−K , a−K+1, · · · , a0, a1, · · · , aK}
where a0 is the presumed mode, taken to be a0 = 0 in typical applications in which

we aim to retain the null hypothesis of no group difference. We useK = 15 in numer-

ical work reported here. Unimodality of the mixing distribution g = (gk) is expressed

as a set of ordering constraints: gk ≥ gk+1 for k = 0, 1, · · · , K and gk ≤ gk+1 for

k = −K,−K + 1, · · · ,−1. We also set a second regular grid {0 < b1, b2, · · · , bL}
for squared standard errors, and impose no constraints on the mixing distribution

h = (hl) aside from the basic nonparametric essentials: hl ≥ 0 and
∑

l hl = 1.
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The contribution to the likelihood objective from peptide i is p(xi, s
2
i |g, h):

=
∑
k

∑
l

P(θi = ak)P(σ2
i = bl) p(xi, s

2
i |θi = ak, σ

2
i = bl)

=
∑
k

∑
l

gkhl p(xi|θi = ak, σ
2
i = bl) p(s

2
i |σ2

i = bl)

=
∑
k

∑
l

gkhl
1√
bl
ϕ

(
xi − ak√

bl

)
ν

bl
χ2,ν

(
νs2i
bl

)
(2.1)

where ϕ is the standard normal probability density, χ2,ν is the density of a chi-

square random variable on ν degrees of freedom. Under a normal data model, ν is

determined by design (e.g. total samples minus two in the traditional two-sample

comparison). The chi-square model is accurate asymptotically for a wide range of

non-normal sampling distributions, however the degrees of freedom needs estimation

in these cases [O’Neill, 2014].

To estimate the mixing distributions h and g we use the log-likelihood objective

function, with terms as in (2.1). In MixTwice, we solve the constrained optimization:

min
g,h

−l(g, h) = −
m∑
i=1

log p(xi, s
2
i |g, h) (2.2)

Subject to: gk, hl ≥ 0 ∀k, l∑
k

gk =
∑
l

hl = 1

gk ≤ gk+1, k ∈ {−K,−K + 1, ...,−1}
gk ≥ gk+1, k ∈ {0, 1, ..., K}

The gradient and Hessian of l(g, h) are readily available, and so (2.2) may be

solved efficiently using augmented Lagrangian for constrained optimization, us-

ing the BFGS algorithm for inner loop optimization, which is implemented in the

R package alabama [Varadhan, 2015]. We extract lfdr and lfsr statistics from

the peptide-specific posterior distributions at the optimized vectors ĝ, ĥ: P(θi =

ak|xi, s
2
i )

=
∑
l

P(θi = ak, σ
2
i = bl|xi, s

2
i )

∝ ĝk
∑
l

ĥl
1√
bl
ϕ

(
xi − ak√

bl

)
ν

bl
χ2,ν

(
νs2i
bl

)
. (2.3)
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Proportionality is resolved by summation over the grid k, and we get:

lfdri = P(θi = a0|xi, s
2
i ),

lfsri = min

{∑
k≤0

P(θi = ak|xi, s
2
i ),
∑
k≥0

P(θi = ak|xi, s
2
i )

}
.

It may be helpful to recognize that by contrast to (2.3), ASH-normal would entail

P(θi = ak|xi, s
2
i ) ∝ ĝk

1

si
ϕ

(
xi − ak

si

)
, (2.4)

and ASH-t would replace the normal density ϕ in (2.4) with a Student t density;

in both cases the ASH-estimated mixing density ĝ would come not from (2.2) but

from an objective in which mixing over variances is not explicitly accommodated.

The initial implementation of MixTwice invokes unimodality shape constraint, but

not symmetry, and, for computational convenience, allows that a random subset of

the testing units is used in the optimization. We investigate this approximation in

Supplementary Material.

2.3 Simulation Study

We are interested in the performance of MixTwice in scenarios reflecting what might

be expected to occur in practice and have performed numerical experiments involving

different generative distributions of both effects (g) and variances (h). Noting the

special role of the null value, θ = 0, our experiments involve mixtures g(θ) = π0δ0 +

(1−π0)galt(θ), where π0 = P(θi = 0) and galt provides various ways to distribute mass

away from zero. Following Stephens [2017] and Lu and Stephens [2019], we entertain

different general shapes, including so-called big-variance, bi-modal, flattop, normal,

and spiky. MixTwice accounts for explicit differences between sample and underlying

standard errors, and mixes nonparametrically over these underlying standard errors.

Our numerical experiments consider the simplest case in which the data generating h

is a point mass, a case involving a finite mixture of two values, and also a continuous

case of inverse-Gamma-distributed parameters. Patterns in the error of estimation

and the hypothesis testing error rates are very comparable across different choices of

h, and so for simplicity here we report only experiments when this true h is a point

mass distribution. Figures 1 and 2 summarize, respectively, properties of estimation

accuracy and testing error rates. Experiments are based on Gaussian samples with
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unit variance, m = 1000 peptides, and various sample size settings for the two-group

comparison.

If a method tends to overestimate π0, then power may be reduced; in case of un-

derestimation the FDR may be inflated. Figure 1, Panel B, focuses on the estimation

of this marginal null frequency for one choice of sample size, namely n = 10 obser-

vations per group. In each setting of g (column), 500 data sets are generated, each

drawn after its own π0 value was uniformly drawn in [0.5, 1]. All methods respond

appropriately to changes in π0, though they exhibit different biases; MixTwice tracks

the identity line (no bias) case closely in all scenarios except the challenging spiky

case of galt. By contrast locFDR is conservatively biased, tending to over-estimate π0

in most cases. Our experiments include an oracle case, namely ASH−normal, which

takes the underlying standard errors as known. This numerical control helps us

gauge the magnitude of statistical errors induced by estimation error of the variance

profile.

Figure 2.1, Panel C, amplifies one case from the second row, when π0 = 0.9,

and shows how estimation error drops as the sample size per peptide grows. Most

methods display a level of convergence in this setting, with MixTwice performing

relatively well especially at low sample sizes. Going beyond the estimation of π0, we

compared methods by their 1-Wassertstein error in estimating the entire mixture

distribution g; MixTwice showed relatively small error in this setting also (data not

shown). MixTwice shares with other nonparametric mixture methods the identifi-

ability problem that only an upper bound on π0 may be reliably estimated from

limited data [Efron et al., 2001, Stephens, 2017]. This may be appreciated by con-

sidering a single unit, i, on which the estimated effect θ̂i is a normal deviation from

θi, say with known variance σ2 = 1, and ignoring the second level of mixing. If galt

concentrates enough mass near θ = 0, then the null predictive density ϕ(x), of θ̂i,

may be partially absorbed by the alternative predictive density: i.e., there may be

a c > 0 such that for all x, cϕ(x) ≤
∫
ϕ(x − θ)galt(θ) dθ, in which case an amount

c(1− π0) of putatively alternative mass could be swapped into the null component

without changing the marginal predictive density. Sampling scenarios that allow for

decreasing standard errors for at least a fraction of the units resolve this method-

ological issue. We can show, for symmetric galt for example, that the gap c vanishes

to zero as the standard error σ similarly converges (see Supplementary Material).

This is consistent with numerical behavior of MixTwice in large samples (Fig. 1C),

and is also consistent with work on mixture identification as information per unit

increases [Ritchie et al., 2020, Aragam et al., 2020].
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Figure 2.2 confirms that most methods are controlling FDR as advertised. The

empirical false discovery rate is plotted against the controlled rate; the latter is

the nominal target FDR value where we threshold the lfdr’s; the former is what is

evident from knowing the simulation states (in other terminology, it is the average,

over simulated data sets, of the false discovery proportion). Colored lines are used

to distinguish different levels of π0, when the signal is dense (with a lower null

proportion π0) or when the signal is sparse (with a higher null proportion π0).

Recall we simulated independent data sets each governed by a randomly chosen π0

from [0.5, 1]. In order to visualize the results, we stratified data sets into four groups

and averaged internally: 0.5 ≤ π0 ≤ 0.625, 0.625 ≤ π0 ≤ 0.75, 0.75 ≤ π0 ≤ 0.875,

0.875 ≤ π0 ≤ 1. The FDR inflation by ASH-t at high π0 is evident in this simulation.

2.4 Empirical studies

2.4.1 Antibodies in rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by in-

flammation and pain, primarily in the joints. RA patients produce autoantibodies

against many different ”self” proteins. Most famously, they generate antibodies

against proteins in which arginine amino acids have been post-translationally modi-

fied to citrullines [Schellekens et al., 1998] as well as antibodies that bind to antibod-

ies, called rheumatoid factor (RF) [Waaler, 1940]. Both autoantibody types appear

to be pathogenic [Sokolove et al., 2014] and both are used diagnostically [Aletaha

et al., 2010], the former detected by the anti-cyclic citrullinated peptide (CCP) test.

Most RA patients make both autoantibody types (CCP+RF+ RA), but some have

only one type like in CCP+RF- RA. Little is known about why CCP+RF+ ver-

sus CCP+RF- RA develops. However, a better understanding of the autoantibody

repertoires in each RA subset could provide insights, a task for which peptide arrays

are perfect.

The custom high-density peptide array reported in Zheng et al. [2020] probed

172,828 distinct 12 amino acid length peptides derived from 122 human proteins

suspected to be involved in RA, including peptides in which all arginines were re-

placed by citrullines. We reconsider here two distinct comparisons from that study,

namely the comparison between CCP+RF- RA patients and controls, and a second

comparison between CCP+RF+ RA patients and controls, in which differential sig-

nals are much stronger. Both comparisons have 12 subjects in each group. To assess
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Figure 2.1: Errors in Estimation of π0. Panel A shows distributions used for

galt(θ). Panel B shows the estimation of null proportion π0 in case of equal samples

in each group of 10. Methods are distinguished by color, where we report average

parameter estimates from 500 simulated data sets.The identity line (dashed) indi-

cates no bias. ASH-normal is an oracle case in which σ2
i = 1 is provided to the

algorithm. Panel C shows error estimation as the number of observations grows, in

π0 = 0.9.
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Figure 2.2: Synthetic data and FDR control: False discovery rates are shown by

different methods (rows) under different alternative distributions galt(θ) (columns).

Empirical FDR (vertical) is the achieved error rate in the simulation; controlled

FDR (horizontal) is the rate targeted by the methodology. Results with different

π0 are coded using different colors. A method tends to inflate FDR over the target

level if its curve is greater than the identity line; it is conservative when its curve is

dominated by the identity line.
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reproducibility, we take advantage of a second peptide array data set derived from

an independent set of 8 controls and 8 CCP+RF+ RA patients.

2.4.2 CCP+RF- RA: weak signals

We applied MixTwice to fit the shape-constrained mixture model of Section 2. Fit-

ted mixing distributions are visualized in Figure 2.3 and provide a measure of the

magnitude of changes in mean antibody levels as well as the magnitude of sampling

variation. For example, the effect-size distribution estimates no probability for ef-

fects larger than 0.037. Also, the median standard error is 0.10 (squared standard

error 0.01), which is large compared to the probable effect sizes.

In Section 1 we presented summary counts of peptides identified at 10% FDR

that exhibit differential binding between CCP+RF- RA patients and non-RA con-

trols. MixTwice, ASH-t, and two-step ASH distinguish themselves in being the

only methods among many standard large-scale tools to populate non-empty lists

of discovered peptides at that FDR level. Recognizing that the magnitude of signal

intensities on the peptide array is an important aspect of downstream analysis, Fig-

ure 2.4 shows a summary of the identified peptides by various methods. Notably,

MixTwice and two-step ASH detect peptides in this case with higher average sig-

nal intensity than ASH-t; these may correspond to higher antibody abundance or

affinity and potentially easier validation. ASH-t tends to select peptides with low

standard errors, even when the estimated effects are very low.

Interestingly, the 44 peptides found by MixTwice have a strong pattern in their

peptide sequences: all are citrulline (B)-containing peptides (which would be pre-

dicted for CCP+ RA patients) and contain citrulline next to glycine (B-G or G-B),

as shown in the motif in Figure 2.5. Binding of antigens in which citrulline is next

to glycine is consistent with a growing body of literature on the reactivity of anti-

citrullinated protein antibodies in RA [e.g., Burkhardt et al., 2002, Szarka et al.,

2018, Steen et al., 2019, Zheng et al., 2020].

As a further negative control calculation, we applied MixTwice to each of 500

permuted data sets obtained by fixing the peptide data and randomly shuffling the

24 subject labels (12 control, 12 CCP+RF- RA). In 493 cases, the 10% FDR list is

empty; 6 cases find a single peptide and one case finds 2 peptides at this threshold.

Among a number of large-scale testing methods applied to the CCP+RF- RA

example, MixTwice identifies a comparatively large number of statistically significant

peptides. By contrast to other methods, these peptides contain patterns in their
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Figure 2.3: Estimated mixing distributions: For both effect distribution g

(Panel A) and squared-standard-error distribution h (Panel B), shown are the maxi-

mum likelihood estimated mixing distributions as cumulative distribution functions

(cdfs) in double natural log scale. The CCP+RF- RA example is shown on the left

and the two CCP+RF+ RA examples are on the right.
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Figure 2.4: Signal intensity of differentially abundant peptides: Boxplots

show averaged signal values on double natural log scale (both CCP+RF- RA and

control subjects) for peptides found by ASH-t (76 peptides), MixTwice (44 peptides),

and two-step ASH (11 peptides) all discovered at 10% FDR.
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Figure 2.5: Motif logo for significant peptides in CCP+RF- RA: Consensus

sequences were generated using online software MEME Suite [Bailey et al., 2009]

and the significant peptides from the different methods: ASH-t (left), MixTwice

(middle) and two-step ASH (right). Each position of the motif logo represents the

empirical distribution of amino acids at that site, with size proportional to frequency.

B found in the middle and right panels is citrulline, a post-transitionally modified

arginine. The overall height of each stack is an information measure (bits) related

to the concentration of the empirical distribution on its support.

amino acid sequences consistent with emerging evidence on this disease, and they

correspond to relatively high fluorescence intensity measurements. Together, these

observations provide some assurance that the MixTwice findings are not artifacts.

2.4.3 CCP+RF+ RA: strong signals

One of the findings from Zheng et al. [2020] concerns the extensive antibody-profile

differences between RA patients who are positive for both biomarkers (CCP+RF+)

and control subjects. Statistically, it represents an interesting non-sparse, large-

scale testing situation, and the immunological mechanisms driving this remain only

partially understood. To check the reproducibility of peptide-array findings, a new

experiment was performed using the same procedures and 172,828 peptide array

to detect IgG binding as in Zheng et al. [2020], but with serum samples from 16

different subjects: 8 CCP+RF+ RA and 8 controls. CCP+RF+ RA and control

subjects were similar in regards to age, sex, race, ethnicity, and overall health.

Preprocessing followed the same protocol and provided a data set (study 2) for us

to look at reproducibility of large-scale hypothesis testing methods.

Z-score histograms in Figure 2.6, Panel A, show that both studies reveal exten-
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sive increased antibody binding in the CCP+RF+ RA group. The scatterplot in

Panel B reveals concordance between the studies on this z-score metric. The color-

coding highlights discovered peptides at the 0.1% FDR method by MixTwice, both

uniquely in one study (green or yellow) and reproducibly in both studies (blue).

Of course MixTwice uses more information than is in the z-score summary, but the

scatterplot provides a convenient visualization. The lower panels in Figure 2.6 com-

pare reproducibility statistics of different testing methods at various FDR thresh-

olds. Denoting by Lj(α) the list of significant peptides in study j and FDR level

α, we have |L1(α) ∩ L2(α))| as the number of peptides identified in both studies

(Panel D) and |L1(α)∩L2(α))|
|L1(α)∪L2(α))| as the common fraction (Panel C). By connecting sepa-

rate, independent studies of the same group difference, these statistics measure the

reproducibility of various large-scale testing methods. MixTwice shows substantially

better reproducibility than other testing methods, such as ASH-t, two-step ASH,

and locFDR in this example.

2.5 Discussion

High-throughput biomedical experiments, such as those involving peptide arrays

and immunological studies, continue to provide challenging problems for large-scale

hypothesis testing. Readily applied techniques, such as q−value, locFDR, IHW, and

ASH are often very effective at reporting lists of testing units (peptides) showing

statistically significant effects at a targeted false discovery rate. In the case of high-

density peptide arrays, we find several examples where these tools are deficient. One

issue is the number of testing units, which is an order of magnitude larger than what

is seen in transcript studies, for example. In the CCP+RF- RA comparison, most

existing tools exhibit low power, which may stem in part from when they intervene

in the data analysis. Methods that intervene earlier have access to more information

and thereby may gain some advantage. The risk to intervening early is that more

assumptions may be required to deliver relevant testing statistics (e.g., lfdr, lfsr). We

rely on external validation, such as on sequence properties of the identified peptides,

to assess practical utility. The CCP+RF+ RA example showcases a situation where

power is high by all methods, and the differences boil down to how testing units are

prioritized. The proposed MixTwice procedure shows impressive reproducibility in

this case.

Structurally, MixTwice is similar to the ASH method for large-scale testing: it

aims to estimate a mixing distribution of effects in an empirical Bayesian formu-
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Figure 2.6: Reproducibility comparison. Panel A shows empirical z-score dis-

tributions for CCP+RF+ RA vs control at 172,828 peptides in two independent

studies. The scatterplot in Panel B highlights peptides identified uniquely at 0.1%

FDR by MixTwice in either study (yellow, green) and those reproducibly found in

both studies (blue). Metrics in Panels C and D compare performance of MixTwice

as a function of FDR threshold.
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lation. It adopts ASH’s nonparametric, shape-constrained model for effects, but

deviates from that approach by incorporating a second mixing layer over underly-

ing effect-variance parameters. A number of methodological issues deserve further

study. For example, MixTwice treats the sampling model of squared standard errors

as chi-square on a design-based degrees of freedom, which is rooted in a normal-data

model. We expect that suitable transformation of the original data will make this

treatment reasonable; for example, Zheng et al. [2020] proposed a double-log trans-

form to stabilize variance. An interesting alternative is to use a bootstrap scheme to

assess the sampling distributions directly, in order to thereby estimate the degrees

of freedom that would be justified asymptotically for non-normal cases.

There are computational issues that warrant further investigation. The objec-

tive function (2.2) may not be convex in the pair of arguments (g, h). Numerical

experiments indicate good performance of the augmented Lagrangian optimization

approach in a range of scenarios, though alternative approaches may have benefits.

For example, the conditional optimizations of g given h or h given g are both convex,

though attempts so far to leverage this have been less computationally efficient than

the augmented Lagrangian method. Related to this are questions of grid sizes K

and L, which have to balance fidelity to the data and computational efficiency.

Though our presentation has focused on the classical two-group comparison prob-

lem, it should be evident that the core methodology is not restricted to this case.

Estimated effects xi, for example, could arise from a contrast of interest after ad-

justing for blocking variables or other covariates. These will be useful to consider

as we expect them to emerge in experiments that further investigate mechanisms of

immune-system disregulation.

Finally, we point out that other forms of information may be usefully integrated

with the testing methodology. Peptides tile proteins, though we have treated them

as anonymous testing units. More sophisticated peptide prioritization could lever-

age amino-acid structure, protein content, or other features of the immunological

context.
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Chapter 3

MixTwice-ANOVA: large-scale

testing with multiple groups

3.1 Introduction

Two-group comparisons constitute the bulk of applied and methodological work

in large-scale hypothesis testing. However, research interests might be generalized

from scenarios comparing two groups to scenarios comparing multiple groups. For

example, in antibody profiling research, investigators seek to understand epitope

features across disease patients with multiple biomarkers [e.g. Zheng et al., 2020,

Mergaert et al., 2022]. In the present chapter, I will introduce a new tool aiming to

improve large-scale testing for multi-group comparisons.

One approach to improving the operating characteristics of large-scale testing

methods is to increase the amount of summary data that is computed on each

unit and fed into an empirical-Bayes mixture calculation. Storey’s q-value [Storey,

2002], for example, works with unit-specific p-values; Efron’s locFDR [Efron et al.,

2001] works with unit-specific z-scores, and thereby retains sign-information that

is lost to the p-value. Adaptive Shrinkage (ASH, [Stephens, 2017]) and MixTwice

([Zheng et al., 2021]) work with estimated effects and standard errors (roughly, the

numerator and denominator of the z-score). In each case, the summary statistics per

unit are acted upon by an empirical-Bayesian mixture computation, say to compute

a local false discovery rate, a local false sign rate, or a tail-area q-value, from which

a prioritized and error-rate controlled list of discoveries may be computed.

Those large-scale tools working with unit-specific p-values can be directly mi-

grated from scenarios comparing two conditions to scenarios comparing multiple
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conditions. However, those methods working with less reduced data (i.e., Efron’s

locFDR, ASH, MixTwice, etc.), even though are shown to have increased power

properties under two-group comparison, have been less studied under the one-way

ANOVA setting. Motivated by this, here we consider a variant of MixTwice, called

MixTwice-ANOVA, that advances an empirical-Bayes calculation using the numerator

and denominator of the unit-specific F statistic as a way to provide additional in-

formation for each test. The proposed procedure involves a nonparametric mixture

distribution for latent effects with monotone shape constraint and also a separate

nonparametric mixture for variance parameters. After a comprehensive simulation

analysis for FDR control and power evaluation, it was applied on two peptide data

examples: one compares three groups of Sjogren disease (SjD) patients where the

signal is weak and the other compares rheumatoid arthritis (RA) patients with dif-

ferent biomarkers where the signal is strong.

3.2 Methodology

3.2.1 Data and sampling model

We consider the setting in which independent sampling units each provide high (p)

dimensional observations, and we focus our notation on a single inference unit i

in {1, 2, · · · , p}. We suppose that each sample is assigned to one of m different

populations, with say nj samples from population j. After any preprocessing, the

data for testing unit i are: {Xi,j,k, j = 1, · · · ,m, k = 1, · · · , nj}. In total we

have n =
∑m

j=1 nj samples. We are interested in hypothesis tests about expected

values in the different populations. Denote the mean parameter within each group

as µi,j = E(Xi,j,k), and let σ2
i = var(Xi,j,k) be the variance, assumed here to not

depend on group j, but unknown and allowed to fluctuate among testing units. Of

specific interest to us is testing the null hypothesis for unit i:

H0,i : µi,1 = µi,2 = · · · = µi,m. (3.1)

If preprocessing has stabilized variance, then an appropriate test of H0,i is the clas-

sical one-way ANOVA F test, with components as below, where SSB is the Sum

of Squares in Between and SSE is the Sum of Squares in Error, and averages are

indicated as in standard ANOVA notation:

Fi =
SSBi/(m− 1)

SSEi/(n−m)
, SSBi =

m∑
j=1

nj(X̄i,j,. − X̄i,.,.)
2, SSEi =

m∑
j=1

nj∑
k=1

(Xi,j,k − X̄i,j,.)
2.
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Recalling normal distribution theory [e.g., Casella and Berger, 2021, page 537],

the sampling distribution of Fi is available under both H0,i and the alternative, and

relies on independence and chi-square distributional forms of SSE and SSB, as well

as on the effect-size parameter λi =
1
n

∑m
j=1 nj(µi,j − µ̄i)

2, where µ̄i =
1
n

∑m
j=1 njµi,j:

SSBi

σ2
i

|σ2
i , λi ∼ χ2

m−1,
nλi
σ2
i

(3.2)

SSEi

σ2
i

|σ2
i , λi ∼ χ2

n−m,0 (3.3)

where χ2
k,λ is a chi-squared distribution with degree of freedom k and non-centrality

parameter λ. These distributional forms are exact under normal theory for {Xi,j,k},
but they are known to be somewhat robust to non-normality, and they also are

good approximations to the permutation distributions of the test statistics [Pearson,

1931].

3.2.2 Mixture model

From data, we first compute for each testing unit i the pair of test statistics

(SSBi, SSEi). Beyond the chi-square sampling model, we treat the pair-specific pa-

rameters (λi, σ
2
i ) as themselves arising from a distribution. Specifically, we assume

that parameters of interest λi and the secondary parameters σ2
i fluctuate indepen-

dently across the system according to unknown mixing distributions g(λ) and h(σ2).

We allow mixing mass on the point null λi = 0, and so g is considered to put some

probability mass there; computationally we treat g as a finite mixing distribution

supported on some grid of effect sizes.

Empirical-Bayesian inference relies on the local false discovery rate (lfdr):

li = P(λi = 0|SSBi, SSEi) (3.4)

∝ g(0)

∫
h(σ2)

1

σ2
χ2
m−1,0

(
SSBi

σ2

)
1

σ2
χ2
n−m,0

(
SSEi

σ2

)
dσ2 (3.5)

where proportionality is resolved by integrating (really summing) out over the mixing

distribution g. The discovery list of significant units is Lc = {i : li ≤ c} for some

threshold c and the controlled FDR is the arithmetic mean of li’s for i ∈ Lc.

3.2.3 Estimation and Computation

To evaluate lfdr’s requires us to estimate mixing distributions g and h. As with

MixTwice, we approximate these distributions with finite probability vectors each
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on a grid of possible parameter values. Suppose that effects take values in a finite,

regular grid {0 = a0, a1, · · · , aK} where a0 = 0 is for point mass indicating no

group difference. We also set a second regular grid {0 < b1, b2, . . . , bL} for σ2. The

mixing distribution g and h are then (gk) and (hl), to be estimated, with basic

nonparametric essentials: gk ≥ 0, hl ≥ 0,
∑

k gk =
∑

l hl = 1.

We force the non-decreasing shape constraint on g by g0 ≥ · · · ≥ gK as it is rea-

sonable to expect that larger effect units would usually be less plausible, and so the

distribution of effect will be non-decreasing. This shape constraint might be bene-

ficial through a variety of perspectives. First, if the system really has such feature

that the frequency of effects of a given size diminishes with size, then a statistical

procedure that enforces this shape constraint is expected to have better statistical

properties than one which does not (Marshall’s lemma on Marshall [1970] and discus-

sion on Groeneboom and Jongbloed [2018]). Second, the shape constraint provides a

regularization on the nonparametric estimation without entailing any parametric as-

sumptions to the model, and is understood to reduce estimation variability. Finally,

there is one special motivation for the shape constraint in the FDR-controlling cases.

Specifically, such non-decreasing constraint would shrink the estimates towards the

null and therefore will not put an inference unit on the discovery list unless there is

sufficiently strong evidence for that placement. Had we not enforced monotonicity,

statistical fluctuations could more easily push uninteresting units on this list.

Mixing distribution g = (gk) and h = (hl) are estimated through non-parametric

maximum likelihood. The contribution to the likelihood objective of unit i is

p(SSBi, SSEi|g, h):

=
∑
k

∑
l

P(λi = ak)P(σ2
i = bl) p(SSBi, SSEi|λi = ak, σ

2
i = bl)

=
∑
k

∑
l

gkhl p(SSBi|λi = ak, σ
2
i = bl) p(SSEi|σ2

i = bl)

=
∑
k

∑
l

gkhl
1

bl
χ2
m−1,

nak
bl

(
SSBi

bl

)
1

bl
χ2
n−m,0

(
SSEi

bl

)
. (3.6)

Nonparametric maximum likelihood provides an effective and computationally

efficient strategy to estimate the underlying mixing distributions g and h. In
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MixTwice-ANOVA, I solve the constrained optimization:

min
g,h

−l(g, h) = −
m∑
i=1

log p(SSBi, SSEi|g, h) (3.7)

Subject to: gk, hl ≥ 0 ∀k, l∑
k

gk =
∑
l

hl = 1

g0 ≥ g2 ≥ · · · ≥ gK .

Similar as in MixTwice, this constrained optimization problem could be solved

using Augmented Lagrangian algorithm. In the next chapter (Chapter 4), I will

introduce another algorithm, combining Pool Adjacent Violator Algorithm (PAVA)

with Expectation Maximization (EM) algorithm, that could solve this optimization

problem more efficiently.

The local false discovery rate statistic, lfdri = P(λi = 0|SSBi, SSEi) could be

extracted from the posterior distributions at the optimized vectors ĝ, ĥ:

P(λi = ak|SSBi, SSEi) =
∑
l

P(λi = ak, σ
2
i = bl|SSBi, SSEi)

∝ ĝk
∑
l

ĥl
1

bl
χ2
m−1,

nak
bl

(
SSBi

bl

)
1

bl
χ2
n−m,0

(
SSEi

bl

)
.(3.8)

This formulation approximates the integral in Equation 3.5.

3.3 Simulation study

3.3.1 FDR control and power

In this section, I examine the FDR control and power of MixTwice ANOVA and

other large-scale testing tools. Performance of MixTwice-ANOVA is compared with

three approaches only requiring the p-values as statistic (Bonferroni [Bonferroni,

1936], BH [Benjamini and Hochberg, 1995] and qvalue [Storey, 2002]) and four

other approaches that take p-values and covariates as input statistics: (LFDR [Cai

and Sun, 2009], AdaPT [Lei and Fithian, 2018], BL [Boca and Leek, 2018], ihw

[Ignatiadis et al., 2016]).

To understand the performance associated with levels of signal and noise, I vary

the levels of effect size to either large signal (i.e., the expectation of non-null signal

E(λ|λ > 0) = 4) or small signal (E(λ|λ > 0) = 1). Similarly, scenarios of large
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variance (σ = 3) and small variance (σ = 1) are included in the experiments.

Under each setting, simulation results are averaged over 30 independent trials with

a randomly drawn π0 ∼ U(0, 1) on a data with p = 3000 number of testing units,

m = 5 groups and nj = 4 replicates within each group. A logistic function, w(u) =
1

1+exp(−10u+5)
, u ∼ U(0, 1) is used as probability weights to sample non-null units. For

methods requiring covariates as input, I separate scenarios where a strong covariates

(w(u)) are available or scenarios that only use non-informative covariates.
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Figure 3.1: Synthetic data and FDR control for variety of large-scale test-

ing approaches: Empirical FDRs (y-axes) versus controlled FDRs (x-axes) are

shown for different approaches, including MixTwice-ANOVA (black), methods with-

out covariates (Bonferroni, BH, q-value), methods with strong covariates (LFDR-

s, AdaPT-s, BL-s and ihw-s) and methods with weak non-informative covariates

(LFDR-w, AdaPT-w, BL-w and ihw-w). Reference line y = x is in dotted.

The performance of FDR control is shown in Figure 3.1, which concludes that

all methods, including MixTwice-ANOVA but excluding LFDR [Cai and Sun, 2009],

control the false discovery rate. Some approaches, such as the Bonferroni correction,

despite controlling the FDR, leave a larger gap between the nominated FDR and

empirical FDR (lower than the identity line y = x). Considering that type one

error and type two error are in conflict with each other, this gap might reduce the

opportunity to achieve a satisfied power.

Though the majority of methods control the FDR no matter the level of signal

size or variance, they perform differently for detecting true positives. The pro-
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portion of true positives under a constant FDR level of 0.05 are plotted over the

simulated null proportion π0 under different levels of signal (row) and different levels

of variance (column), as shown in panel A of Figure 3.2. Besides MixTwice-ANOVA,

results of all other testing approaches are additionally averaged into three different

groups: methods without covariates, methods with strong covariates and methods

with weak/mis-specified covariates (panel B). Though strong covariates would cer-

tainly help in boosting power in many scenarios, MixTwice-ANOVA performs equally

well compared with those with a strong covariates and even better under the small

signal, large variance case.

3.4 High density peptide array data application

3.4.1 SSA+SjD vs SSA-SjD vs control: weak signal case

Sjogren’s disease (SjD) is a systemic autoimmune disease with characteristic fea-

tures of dry eye and dry mouth. In addition to characteristic dryness, SjD can

affect many organ systems causing arthritis, interstitial lung disease, and increased

risk of lymphoma, among other manifestations. Ultimately, SjD leads to a marked

reduction in quality of life and healthcare costs more than twice those of healthy

people [Callaghan et al., 2007, Lendrem et al., 2014]. Despite the impact of SjD,

diagnosis is delayed more than two years [Huang et al., 2021].

B cells appear to play a major role in the pathogenesis of SjD based on the

following features: i) germinal center-like reactions are present in SjD salivary glands

that correlate with disease severity [He et al., 2017], ii) increased risk of B cell

lymphoma [Masaki and Sugai, 2004], and iii) anti-SSA antibodies, which appear

to be both diagnostic [Shiboski et al., 2017] and pathogenic given the presence of

immune complexes of anti-SSA antibodies and necrotic cells that drive an interferon

response[B̊ave et al., 2005]. Despite the importance of the anti-SSA antibody, up to

30% of SjD patients are anti-SSA antibody negative (SSA-) and require an invasive

biopsy of the lip for diagnosis [Patel and Shahane, 2014]. SSA- SjD patients have

a unique clinical phenotype including greater dryness, joint and nerve involvement

[Brito Zerón et al., 2018, Park et al., 2019, Yazisiz et al., 2021, Relangi et al., 2021].

Novel biomarkers are a major unmet need in SjD and have the potential to provide

novel pathogenic insights.

In order to identify novel SjD autoantibodies in SSA- and SSA+ SjD patients,

my collaborators, Drs. Shelef and McCoy, designed a high density peptide array
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Figure 3.2: Proportion of true positives versus simulated null proportions

on synthetic data for a variety of large-scale testing approaches: Panel A

shows empirical proportion of true positives (y-axes) under a constant FDR control

0.05 vs simulated null proportions (π0, x-axes) for different approaches, including

MixTwice-ANOVA (black) under different levels of signal (row) and different lev-

els of variance (column). Panel B specifically averages and plots the same metric

for MixTwice-ANOVA (black), methods without covariates (green), methods with

strong covariates (red) and methods with mis-specified covariates (yellow). Refer-

ence line y = 1− x is marked in dotted black.

experiment in which IgG binding to 172,828 peptides from 122 distinct human

proteins that were selected based on possible importance for rheumatologic dis-

ease was quantified for 8 subjects with SSA+ SjD, 8 subjects with SSA- SjD and

8 control subjects whose clinical characteristics are described in Mergaert et al.
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[2022]. I applied MixTwice-ANOVA and other large-scale testing tools (including

BH, Storey’s qvalue, ihw, LFDR, BL, AdaPT) on this data comparing these three

groups. MixTwice-ANOVA is the only approach that could find significant peptides

under the level of 0.05 over the comparison contrast even though qvalue reported

the non-null proportion π̂0 is only 77 %. MixTwice-ANOVA identified 21 peptides

bound belonging to 18 biologically relevant proteins, as reported in Table 3.1 with

their local FDRs and basic statistics. Their F statistics were all ranked as 1% over

peptides on the array (Figure 3.4). All the identified peptides followed a similar pat-

tern; SSA- subjects had lower binding than controls and SSA+ subjects had higher

binding than controls. We also find the low binding structure for SSA- subjects

compared to control subjects in the peptide population; i.e., the median z-score

comparing SSA- SjD and control for all peptides on the array is negative.

Table 3.1: Significant peptides by MixTwice-ANOVA comparing SSA+SjD vs SSA-

SjD vs control subjects

Protein Peptide sequence Position locFDR Fstat SSB SSE

1 P11940 PSQIAQLRPSPR 425 0.010 12.60 0.04 0.04

2 P08603 SFTMIGHRSITC 722 0.000 12.01 0.04 0.03

3 P04114 IKSPAFTDLHLR 3978 0.016 11.72 0.04 0.04

4 P02787 SAHGFLKVPPRM 317 0.003 11.41 0.02 0.02

5 P36980 RAMCQNGJLVYP 254 0.021 11.26 0.04 0.04

6 Q14739 HKNTQEKFSLSQ 146 0.001 10.54 0.03 0.03

7 P00450 EDRVKWYLFGMG 278 0.000 9.76 0.03 0.03

8 P10909 BBPHFFFPKSBI 214 0.009 9.64 0.02 0.02

9 Q03591 TAKQKLYLRTGE 283 0.004 9.46 0.03 0.03

10 P07305 NADSQIKLSIKR 63 0.006 9.14 0.03 0.03

11 P01008 NPMCIYRSPEKK 50 0.005 9.05 0.02 0.02

12 P35579 LKERYYSGLIYT 101 0.004 8.84 0.03 0.03

13 P04114 VSTAFVYTJNPN 3704 0.013 8.49 0.03 0.03

14 P00751 NLFQVLPWLKEK 744 0.022 8.46 0.02 0.02

15 Q9BXR6 FSCRKNLIRVGS 173 0.010 7.83 0.02 0.03

16 Q92496 HGGLYYKSLRRL 31 0.006 7.75 0.02 0.03

17 P08603 RCIRVJTCSJSS 441 0.038 7.71 0.02 0.03

18 Q16778 RSRKESYSIYVY 32 0.010 7.56 0.02 0.03

19 P04114 AYLMLMBSPSQA 561 0.009 7.48 0.02 0.03

20 P02751 LTNFLVRYSPVK 1295 0.010 7.26 0.02 0.03

21 P01861 FLYSRLTVDKSR 285 0.011 7.24 0.02 0.03

We analyzed those selected peptides using a variety of techniques, including

protein cluster analysis and peptide ELISA validation. From the protein cluster

analysis, we identified complement regulation as a top theme. DAVID gene on-

tology (GO, [Huang et al., 2009a,b]) analysis yielded the protein cluster with the

highest enrichment score is extracellular comprising complement. Of the identified
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18 bound proteins, 6 (33%) were related to complement: P08603 (complement factor

h), Q03591 (complement factor H-related 1), P36980 (complement factor H-related

2), Q92496 (complement factor H-related 4), P00751 (complement factor B), and

P10909 (clusterin). Low complement is a feature of SjD associated with increased

risk of mortality [Singh et al., 2016]. Complement factor B is upregulated in conjunc-

tival cells of SjD patients and negatively correlates with tear breakup time [de Paiva

et al., 2021]. Furthermore, complement factor B in cerebrospinal fluid discriminates

between SjD subjects with and without fatigue [Larssen et al., 2019]. Complement

factor H is pivotal to modulating complement activation and has been implicated in

the pathogenesis of SjD. Complement factor H is reduced in SjD mouse model saliva

[Li et al., 2021]. Furthermore, complement factor H along with clusterin were lower

in SjD patients with neuromyelitis optica spectrum disease (NMOSD) than with-

out NMOSD[Qiao et al., 2019]. Clusterin, controlling terminal complement-related

damage, is also upregulated in SjD saliva compared to control[Sembler-Møller et al.,

2020]. As a further negative control calculation, we performed the same protein

cluster analysis using all proteins on the array (122 distinct human proteins) and

GO does not yield the complement cluster as the top theme. Other interesting pro-

teins that demonstrated reduced binding among SSA- SjD subjects and increased

binding among SSA+ SjD subjects are included in Table 3.1.

Moreover, 2 peptides with the highest F statistic (PSQIAQLRPSPR and SFT-

MIGHRSITC, top 2 on Table 3.1) were validated by enzyme-linked immunosorbent

assay (ELISA), a commonly used validation tool for high density peptide array. The

former is part of P11940 (poly A binding protein cytoplasmic 1), an RNA-binding

protein not yet described in SjD specifically but is implicated by its RNA binding

as a general SjD pathogenic process. The latter is P08603, complement factor H, a

component of the alternative complement cascade system. P-values for those two

peptides comparing three groups on the ELISA signal intensities are all smaller than

0.1. Boxplots for those two peptides on array signal intensity and ELISA intensity

are summarized in Figure 3.3.

As noted above, the peptide array has 172,828 peptides from 122 distinct human

proteins that were selected based on possible importance for rheumatologic disease.

As a follow-up analysis, we utilized a larger array with the same subject samples

but over 5.3 million peptides from the whole human proteome. MixTwice-ANOVA

identified 881 peptides under FDR level 0.05 and the two peptides noted above

(PSQIAQLRPSPR and SFTMIGHRSITC) are also on the discovery list.
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Figure 3.3: One-way ANOVA analysis for Sjogren disease: Panel A shows the

histogram of p-values comparing SSA+ Sjogren (8) vs SSA- Sjogren (8) vs control

(8). Panel B shows the histogram of estimated unit-specific null proportion (π̂0,i)

estimated using Boca and Leek and the red dashed line highlighted the π̂0 using

q-value. Boxplots of array signal intensity and ELISA intensity for two peptides

selected by MixTwice-ANOVA are summarized in Panel C and Panel D.

3.4.2 CCP+RF+ RA vs CCP-RF- RA vs control: strong

signal case

A reproducibility evaluation for MixTwice using a peptide array strong signal case,

comparing signal intensity between RA patients who test positive for the anti-

cyclic citrullinated peptide (CCP) antibody and rheumatoid factor (RF) biomarkers

(CCP+RF+ RA) and control subjects in two independent studies was discussed

in Zheng et al. [2021]. A similar reproducibility analysis could be performed for

multiple-group comparison. In a first high density peptide array experiment[Zheng

et al., 2020], signal intensity was measured for IgG binding to 172,828 peptides

for 12 CCP+RF+ RA, 12 CCP-RF- RA, and 12 control subjects. A three-group

comparison (CCP+RF+ RA vs CCP-RF- RA vs control) was also performed in
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Figure 3.4: Scatter plot of SSB vs SSE comparing three groups in SjD

example: Scatter plot shows Sum of Squares in Between (SSB, x-axes) and Sum

of Squares in Error (SSE, y-axes) of all 172,828 peptides on the array, with those

21 peptides identified by MixTwice-ANOVA coded in black. Ranking of F statistics

for peptides is coded using different colors.

a new experiment with the same peptide population but serum samples from dif-

ferent human subjects (8 in each group) described in detail in [Mergaert et al.,

2022]. Figure 3.5 compares two reproducibility metrics between MixTwice-ANOVA

and other tools. MixTwice-ANOVA shows better reproducibility compared to other

testing methods in this example, which is consistent with the conclusion reported

in Zheng et al. [2021] for a two-sample comparison. More data visualization and

the results of a mixing distribution estimation are summarized in Supplementary

material B.3. This reproducibility, as an additional metric to FDR control, power,

applicability, etc., to compare large-scale testing tools [Korthauer et al., 2019], is

discussed in the following chapter.
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Figure 3.5: Reproducibility comparison of CCP+RF+ RA vs CCP-RF-

RA vs control: two metrics compare MixTwice-ANOVA (black) and other testing

methods as a function of FDR threshold.
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Chapter 4

Numerical experiments and

computational aspects of

MixTwice

4.1 Introduction

Initial calculations reported in Zheng et al. [2021] and its follow-up generalization

MixTwice-ANOVA show good performance in several case studies and in a range

of simulations. For example, MixTwice estimates mixing distributions accurately

and controls the FDR under a variety of alternative distribution settings. Also, it

increases the power on the high density peptide array data where the signal is weak

and increases the reproducibility where the signal is strong.

More extensive numerical experiments would help to establish the overall oper-

ating characteristics of MixTWice and to convey when and how the second mixing

layer improves performance. I am guided by the recent review [Korthauer et al.,

2019] in which a variety of large-scale testing tools was deployed on a large battery

of numerical experiments, both using synthetic data and benchmark data sets. This

review compared methods using different operating characteristics: FDR control,

power, applicability, consistency and usability. In the first part of this chapter, I

expand this review in order to include MixTwice and two-step ASH and also to ex-

amine reproducibility properties of the various methods. Besides those 5 metrics

discussed in Korthauer et al. [2019], I introduce a reproducibility metric to measure

the similarity between discovery lists from the analysis of replicate data sets.

Another innovation related to large-scale testing concerns computational algo-
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rithms for constrained optimization. Nonparametric maximum likelihood estima-

tion of the mixing distribution is essential in local false discovery rate calculations.

The optimization problem in MixTwice and MixTwice-ANOVA can be solved through

gradient-based optimization (i.e., Augmented Lagrangian method, AugLag). This is

effective but sometimes computationally expensive, especially with large numbers

of testing units. Motivated by this, in the second half of this chapter, I propose

an alternative algorithm – EM-PAVA, – that combines the pool adjacent violator

algorithm (PAVA) and the Expectation-Maximization (EM) algorithm in order to

improve computational efficiency.

4.2 Generalized evaluation and reproducibility of

large-scale testing tools

No single testing tool has proven to be uniformly superior to others on important op-

erating metrics. Empirical-Bayes tools like ASH and MixTwice have improved power

properties by using more unit-level data. However, they may be less applicable,

since some analyses (such as single-cell RNA-seq data, ChIP-seq data, etc.) may

not provide both effect sizes and standard errors. Korthauer et al. [2019] provides

a practical guide to popular testing tools. The practical guide includes large-scale

testing tools without the input of informative covariates such as BH [Benjamini and

Hochberg, 1995], qvalue [Storey, 2002], ASH [Stephens, 2017] and methods with in-

dependent and informative covariates such as IHW [Ignatiadis et al., 2016], Boca and

Leek method [Boca and Leek, 2018], Adaptive p-value thresholding method AdaPT

[Lei and Fithian, 2018], Cai’s conditional FDR method LFDR [Cai and Sun, 2009]

and FDR regression [Scott et al., 2015]. Those methods assume basically the in-

dependent and informative covariates are correlated with the probability of testing

units being null. For example, the Boca and Leek method uses the covariate to pre-

dict the unit-specific null proportion π0,i rather than the global null proportion π0.

Using a battery of synthetic and benchmark data sets, that guide compares methods

from various angles. Besides the most popular evaluation metric FDR control and

power, it also evaluates applicability, consistency and usability which evaluates Can

this method be applicable to most of the data sets?, Will the method provide similar

result in different types of bioinformatics data sets? and Is there a convenient way

to implement this method, such as R package?, respectively.

Figure 4.1 summarizes an extension of the Korthauer study. Utilizing the same
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collection of synthetic and benchmark data sets, I include MixTwice and two-step

ASH to the comparison list. I also evaluate all methods in terms of reproducibility.

Figure 4.1: Summary of recommendations comparing large-scale hypoth-

esis testing tools: A generalization figure of figure 6 from Korthauer et al. [2019]

with (highlight in red) additional column evaluating the reproducibility of methods

and two additional rows summarizing the performance of MixTwice [Zheng et al.,

2021] and two-step ASH [Lu and Stephens, 2019]. Evaluation symbols are consistent

with the definition in Korthauer et al. [2019].

I propose a reproducibility metric to measure the similarity between discovery

lists from the analysis of replicate data sets. The evaluation of reproducibility,

demonstrated in Figure 4.1, is based on the ranking of all those methods (top 30

% for a full score and top 80 % for a partial credit) in a yeast in silico experiment

[Gierliński et al., 2015], as shown in Figure 4.2.

In the yeast in silico experiment [Gierliński et al., 2015], all samples that passed

quality control are included. All genes with a mean count of at least 1 across all

samples are included, for a total of 6553 genes. The full data compares genes on two

conditions (WT vs Snf2-knockoff) with 48 replicates on each condition. This is a case

where the signal is strong; under the 0.1 FDR, BH finds approximately 65% positives.
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Though there are not two independent studies, as reported in Zheng et al. [2021],

I evaluate the reproducibility on yeast in silico experiment by constructing pairs of

pseudo-independent studies where each study of the pair compares randomly-selected

15 vs 15 samples. This procedure is repeated 50 times, and reproducibility evaluation

metrics are calculated and then averaged using each pair of pseudo-independent

studies.
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Figure 4.2: Two reproducibility metrics among all testing approaches on 50

times of paired pseudo-independent studies of yeast in silico experiment:

Panel A shows the number of discoveries in both independent studies and panel

B shows the common fraction in both independent studies. Metrics are evaluated

under defined level of FDR control from 0 to 0.2 and averaged among the 50 times

of simulations.
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Something interesting to note is the ranking of reproducibility is almost consis-

tent with the ranking of power, which is reversed from the ranking of applicability.

On the one hand, methods with the most data reduction are those that only require

the p-values (besides covariates) to make testing multiplicity adjustment. Those

methods, like BH and qvalue, are applicable to almost all data sets as long as the

collections of p-values are available. On the other hand, the power as well as repro-

ducibility evaluation prefers more information (i.e., less reduction) from the data.

This is further discussed through a toy example in Supplementary material C.1.

As noted above, there is no uniform superior for any testing tools in all evaluation

metrics thus the evaluation table Figure 4.1 might provide additional recommenda-

tions in choosing the most appropriate testing tools in different bioinformatics data

analysis. For example, those methods with high applicability might be the only

choices for data sets where the p-values are the only available statistics. When the

independent and informative covariates are possible, methods incorporating them

might have improved power properties. When the less-reduced data such as effect

sizes and standard errors are available, methods such as two-step ASH and MixTwice

would give higher power and better reproducibility.
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4.3 Computation of MixTwice: nonparametric MLE

with shape constraint

4.3.1 Optimization problem

Recall the optimization problem we need to solve in MixTwice and in MixTwice-ANOVA.

In MixTwice, we solve the constrained optimization:

min
g,h

−l(g, h) = −
m∑
i=1

log p(xi, s
2
i |g, h) (4.1)

Subject to: gk, hl ≥ 0 ∀k, l∑
k

gk =
∑
l

hl = 1

gk ≤ gk+1, k ∈ {−K,−K + 1, ...,−1}
gk ≥ gk+1, k ∈ {0, 1, ..., K}.

In MixTwice-ANOVA, we solve the constrained optimization:

min
g,h

−l(g, h) = −
m∑
i=1

log p(SSBi, SSEi|g, h) (4.2)

Subject to: gk, hl ≥ 0 ∀k, l∑
k

gk =
∑
l

hl = 1

g0 ≤ g1 ≤ · · · ≤ gK .

This optimization problem could be solved directly using the Augmented Lagrangian

approach (with option method = "AugLag" in the MixTwice package). However,

when the number of testing units and the number of support points are large, Aug-

mented Lagrangian approach could be less efficient, especially with numerous con-

straints for the unimodality or monotonicity restriction. The next section describes

an alternative algorithm, called EM-PAVA, that could solve the optimization problem

more efficiently.

4.3.2 EM-PAVA algorithm

Without the shape constraint, the problem could be solved efficiently using Expectation-

Maximization (EM) approach. Within each iteration, the expectation step calculates

the posterior probability at a given grid (g̃k = E (P(θ = ak|x, s2)) in MixTwice or
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similarly, g̃k = E (P(λ = ak|SSB, SSE)) in MixTwice-ANOVA) and the maximization

step solves the optimization problem by minimizing the negative log loss:

min
g

−l(g) = −
∑
k

g̃k log gk

Subject to: gk ≥ 0 ∀k∑
k

gk = 1.

It is easier to verify with the given property that
∑

k g̃k = 1, the optimizer of the

problem just takes g∗k = g̃k at each iteration step. The shape constraint does not

change the E-step while it adds another constraint when we try to minimize the

negative log loss in M-step. For example, in the MixTwice-ANOVA problem, the

M-step is:

min
g

−l(g) = −
∑
k

g̃k log gk (4.3)

Subject to: gk ≥ 0 ∀k∑
k

gk = 1

g0 ≤ g1 ≤ · · · ≤ gK . (4.4)

We refer the contribution of pool adjacent violator algorithm (PAVA) to solve

this problem [Ayer et al., 1955, Robertson et al., 1988]. It is useful to review some

important definitions, problems, algorithms and theorems related to the shape con-

straint, as present in the book Robertson et al. [1988] and Turner [2020b].

Definition 1 (Simple order) A binary relation ≺ on X is a simple order on X :

1. it is reflexive: x ≺ x for x ∈ X ;

2. it is transitive: x, y, z ∈ X , x ≺ y and y ≺ z imply x ≺ z;

3. it is anti-symmetric: x, y ∈ X , x ≺ y and y ≺ x imply x = y;

4. every two elements of X are comparable: x, y ∈ X implies that either x ≺ y

or y ≺ x.

Furthermore, a binary relation ≺ on X is a partial order if it is reflexive, transi-

tive and anti-symmetric, but there may be non-comparable elements. A quasi-order

is reflexive and transitive. It need not to be anti-symmetric, and it may admit non-

comparable elements. Every simple order is a partial order and every partial order

is a quasi-order.
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Definition 2 (Isotonic) A real valued function, g, on X is isotonic with respect

to the quasi-ordering ≺ on X if x, y ∈ X and x ≺ y imply g(x) ≤ g(y)

In our context of solving optimization 4.3, we want to estimate the isotonic

function g where X is just the support X = {1, 2, · · · , K} and our estimator is

gk = g(k). The monotone non-decreasing constraint restricted a function with

respect to a simple order however the unimodal constraint with a given mode is

only a quasi-order.

Definition 3 (Isotonic regression) Let g be a given function on X and w a given

positive function on X . An isotonic function g∗ on X is an isotonic regression of g

with weights w if and only if∑
x∈X

[g(x)− g∗(x)]2w(x) ≤
∑
x∈X

[g(x)− f(x)]2w(x)

for all functions f on X which are isotonic.

This defines the problem of isotonic regression. We can also view this problem,

closely related to our question, as solving the optimization problem to find g∗k = g∗(k)

given input of g̃ = g(k) but on a squared error loss rather than a log loss. We will

discuss in the next a few paragraphs about their connection.

Theorem 1 (Optimality condition of constraint optimization) Suppose C is

any convex set of functions on X and g and w are given functions on X with

w(x) > 0 for all x ∈ X . If g∗ ∈ C and g∗ solves

min
∑
x∈X

[g(x)− g∗(x)]2w(x)

subject to f ∈ C , then for every f ∈ C ,

∑
x∈X

[g(x)− g∗(x)][g∗(x)− f(x)]w(x) ≥ 0

and

∑
x∈X

[g(x)− f(x)]2w(x) ≥
∑
x∈X

[g(x)− g∗(x)]2w(x) +
∑
x∈X

[f(x)− g∗(x)]2w(x)

Conversely, if u ∈ C and
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∑
x∈X

[g(x)− u(x)][u(x)− f(x)]w(x) ≥ 0

for all f ∈ C then u solves the problem. There is at most one such function.

With that in mind, we will then separately discuss computational algorithms

and connections among:

1. Simply-ordered isotonic regression;

2. Quasi-ordered isotonic regression and isotonic regression with unimodal con-

straint with fixed mode;

3. Connections between isotonic regression and the optimization problem with

negative log loss objective.

Simply-ordered isotonic regression

Pool adjacent violator algorithm (PAVA) solves the simply-ordered isotonic regres-

sion efficiently.

Definition 4 (CSD and GCM) Plot the points Pj = (Wj, Gj); j = 0, 1, · · · , K
with Wj =

∑
i w(xi) and Gj =

∑
i g(xi)w(xi) and P0 = (0, 0). The plot of these

points is called cumulative sum diagram (CSD) for the given function g with weights

w. Let G∗ be the greatest convex minorant (GCM) of the CSD on the interval

[0,WK ]. The value, G∗(t), is the supremum of the values, at t, for all convex func-

tions which lie entirely below the CSD. Let g∗(xi) be the left derivative of G∗ at Wi

for i = 1, 2, · · · , K.

Theorem 2 (g∗ solves the simply-ordered isotonic regression) If X is sim-

ply ordered, the left derivative or left-hand slope, g∗, of the GCM furnishes the

isotonic regression of g.

The proof of this theorem is by verifying∑
x∈X

[g(x)− g∗(x)]2w(x) ≥
∑
x∈X

[g(x)− g∗(x)]2w(x) +
∑
x∈X

[f(x)− g∗(x)]2w(x)

for f simply-ordered isotonic.

On the one hand, this theorem states the theoretical guarantees of solving the

simply-ordered isotonic regression. On the other hand, the pool adjacent algorithm
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(PAVA), firstly published by Ayer et al. [1955], provides an efficient way of finding

the GCM. We can also prove that the solution of PAVA is optimal by verifying the

KKT condition.

Quasi-ordered isotonic regression and unimodality

The algorithm for the quasi-ordered isotonic regression is much complicated com-

pared to algorithm solving simply-ordered isotonic regression. However, there are

still some general results.

Theorem 3 If H is a convex cone of functions on X and g and w are given

functions on X with w > 0 then a function g∗ on X solves the isotonic regression

with respect any quasi-order if and only if g∗ ∈ H and

∑
x∈X

[g(x)− g∗(x)]g∗(x)w(x) = 0

and

∑
x∈X

[g(x)− g∗(x)]f(x)w(x) ≤ 0,∀f ∈ H

The proof of this theorem is simply followed by Theorem 1. Followed by this algo-

rithm, it is immediately to get if H is any convex cone of functions on X and if

H contains all the constant functions on X and if g∗ solves the isotonic regression

problem, then
∑

x∈X g(x)w(x) =
∑

x∈X g∗(x)w(x).

Definition 5 (Level set) Suppose g and w are functions defined on X , set

Av(A) :=

∑
x∈Aw(x)g(x)∑

x∈Aw(x)

for those A which are nonempty subsets of X and let [g∗ = c] denote {x ∈ X :

g∗(x) = c}.

Theorem 4 If c is any real number and if the set [g∗ = c] is nonempty then c =

Av([g∗ = c]).

This theorem can be proven by contradiction and by observing∑
x∈X

[g(x)− g∗(x)]2w(x) =
∑
[g∗ ̸=c]

[g(x)− g∗(x)]2w(x) +
∑
[g∗=c]

[g(x)− c]2w(x)
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Also, this is one of the most critical theorems as it reduces the problem of

isotonic regression (solving for g∗) to the problem of finding the sets on which g∗

is constant (i.e., level sets). For the simple order the sides of GCM determine the

level sets using PAVA. For the quasi-order, it might be a little more complicated.

The efficient algorithm is not guaranteed to be known in general for any quasi-order

isotonic regression, but it is well-developed for unimodal constraint with a fixed

mode.

The following result is summarized and reproduced from Turner [2020b]. For

X = {−K, · · · , 0, · · · , K}, the unimodal constraint with a fixed mode at 0 is a

quasi-order (even a partial order but not simple order) where we define the binary

relation x ≺ y as x ≤ y ≤ 0 or x ≥ y ≥ 0. If x ≤ 0 and y ≥ 0 or vice versa then x, y

are not comparable hence the relation is not simply-ordered.

Define X1 and X2 to be X1 := {k ∈ X |k ̸= 0} and X2 := {0}. Let g1 be

the restriction of g to X1 and let g∗1 be the isotonic regression of g1. A direct but

important corollary result of Theorem 4 is the following:

Corollary 1 The isotonic regression with fixed-mode unimodal isotonic regression

g∗ takes the form:

g∗(x) = ci on Li, i = 1, 2, · · · , r

.

where the collection of Li form a disjoint and exhaustive collection of subsets of X ,

and c1 < c2 · · · < cr. Moreover, ci = Av(Li) :=
∑

x∈Li
w(x)g(x)∑

x∈Li
w(x)

is the level sets defined

previously.

Let the level sets and level values for g∗1 be Li and c1 < c2 < · · · < cr and

let Lr+1 = 0 and cr+1 = g(0) (in our problem, g̃0). Define the function f on

{1, · · · , r + 1} by f(t) = ct for t = 1, 2, · · · , r + 1 and a weight function u(t) =∑
x∈Lt

w(x). The computational algorithm and the main theorem is as follows.

Theorem 5 Let f ∗ be the isotonic regression of f with respect to the simple order

1, 2, · · · , r + 1 and weight function u. Then the isotonic regression g∗ is:

g∗(x) = f ∗(t), for s ∈ Lt

The proof of this theorem is heavily based on the result of Theorem 1.
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Isotonic regression with log loss objective

PAVA solves the isotonic regression in the context of a simple order, which is related

to what we need to solve in MixTwice-ANOVA. The algorithm in Turner [2020b] solves

the isotonic regression with unimodal constraint for a known mode, one special case

of quasi-order, which is related to what we need to solve in MixTwice. There is a final

gap between the isotonic regression and our optimization problem: our optimization

minimizes the negative log loss while the isotonic regression minimizes the weighted

squared error loss. However, there is a direct mitigation proposed in Robertson et al.

[1988] between the log loss and the weighted square error loss, using the following

theorems. And this mitigation is valid for all quasi-orders.

Recall the problem is to maximize
∑

x∈X g̃(x) log g(x) subject to g(x) being quasi-

order on X and
∑

x g̃(x) =
∑

x g(x) = 1. X is 1, 2, · · · , K for the MixTwice-ANOVA

case and {−K, · · · , 0, · · · , K} for the MixTwice case. g̃(x) = gk on support k is the

observed expected probability after the E-step of each iteration and g∗(x) = g∗k is

the optimizer after the M-step of each iteration.

Theorem 6 For an arbitrary real valued function, Ψ, defined on reals,

∑
x∈X

[g(x)− g∗(x)]Ψ[g∗(x)]w(x) = 0

.

This is a direct application of Theorem 4.

Theorem 7 Suppose Φ is a convex function which is finite on an interval I con-

taining the range of function g on X and define ∆Φ(u, v) = Φ(u)−Φ(v)−(u−v)ϕ(v)

where ϕ is the left derivative of Φ. If f is isotonic on X then

∑
x∈X

∆Φ[g(x), f(x)]w(x) ≥
∑
x∈X

∆Φ[g(x), g
∗(x)]w(x) +

∑
x∈X

∆Φ[g
∗(x), f(x)]w(x)

Consequently, g∗ minimizes

∑
x∈X

Φ∆[g(x), f(x)]w(x)

in the class of all isotonic f.
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These two theorems, Theorem 6 and Theorem 7, together provide a direct conclusion

mitigating the isotonic regression with our optimization problem. Specifically, take

Φ(u) = u log u in Theorem 7 and hence ∆Φ(g,g̃) = g̃ log g̃−g̃ log g−(g̃−g). Therefore,

the g∗, the isotonic regression of g, maximizes∑
x∈X

(g̃(x) log g(x) + g̃(x)− g(x))

However, the latter part,
∑

x∈X (g̃(x) − g(x)) = 0 by taking a naive Ψ from Theo-

rem 6. The desired result follows immediately.

4.3.3 Empirical performance of AugLag and EM-PAVA

The implementation of both options to solve the constrained optimization problem

is available in package MixTwice [Zheng and Newton, 2022] where we refer package

alabama [Varadhan, 2015] to solve the problem directly using method = "AugLag"

and refer package Iso to solve the problem using method = "EM-PAVA" [Turner,

2020a]. The Iso package provides two helpful functions, PAVA and ufit, for isotonic

regression with monotonic constraint or unimodal constraint, which would be used

in MixTwice-ANOVA and MixTwice, respectively.

Here I illustrate one simulation example to compare those two computational

options. From the following Figure 4.3, EM-PAVA approach would converge to the

direct AugLag optimization approach, in both the pointmass estimator and the ob-

jective function quantity (negative log likelihood). For implementation, I define the

error of convergence by the L2 norm between iterations, et := ||gt − gt+1||22 and

stop the iteration when et is smaller than 10−6. EM-PAVA is much faster (around

30 times) compared to AugLag, as reported in the figure. Furthermore, the number

of iterations required to achieve convergence decreases with the number of testing

units. Though the increasing number of units may introduce higher computational

complexity 1 in other steps (e.g., matrix multiplication), the lower number of iter-

ations to achieve convergence, as an additional bonus, makes it more applicable to

be implemented for more testing units.

1time complexity is CPU time evaluated with Inter® Core™ i5-7400HQ CPU processor
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Figure 4.3: EM-PAVA algorithm and its comparison with the direct opti-

mization approach: Upper panel shows a toy example with 3000 number of testing

units where the convergence of objective function (with red dotted line as reference)

and the convergence of error (with red dotted line as reference 10−6) are shown in

panel A and panel B. Panel C and D show the number of iterations required for

convergence with different numbers of testing units. The comparison of time com-

plexity (CPU time in seconds evaluated with Inter® Core™ i5-7400HQ CPU pro-

cessor) between EM-PAVA (red) and the direct optimization approach (Augmented

Lagrangian, blue) is shown in panel E, with units from 100 to 105 (Augmented La-

grangian approach is only evaluated up to 104 due to extreme complexity).
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Chapter 5

GraphicalT: latent clustering for

local FDR computation

5.1 Introduction

The empirical-Bayes methods developed in earlier chapters treat all the inference

units as being exchangeable; their latent parameter values are treated as draws

from a distribution estimated from the entire collection. In many applied settings

there is auxiliary information relating the units. I am particularly interested in

examples where this auxiliary information takes the form of an undirected (and

unweighted) graph. Nodes of the graph constitute the basic inference units that we

aim to test for some condition effects. Edges convey some additional information

that the nodes share. For example, for peptide-arrays the amino-acid sequence

content of the peptides induces a graph with neighboring peptides having sufficiently

similar sequence. For brain imaging data, nodes are voxels and edges convey spatial

neighborhood information.

Some large-scale testing methods take advantage of such graph-associated auxil-

iary data to improve power. For example, Sun and Cai [2009] built a latent hidden

Markov model (HMM) for the sequential dependence structure. The method was

applied to an influenza-like illness surveillance study for detecting the timing of epi-

demic periods. Liu et al. [2012] generalized the hidden Markov model (HMM) into

a Markov random field (MRF) which does not assume the specific underlying line

graph structure. The proposed method was shown to have good operating charac-

teristics through simulation studies and the application of Genome-wide Association

Studies (GWAS). An empirical-Bayes method focused on local false discovery rates
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and brain-image data was presented in [Vo et al., 2021]. That modeling approach

used the idea that neighbors in the graph may share expected values, and thereby

power can be improved by constraining the dimension of the unknown parame-

ter space. There was empirical support for the model in a brain imaging study

of Alzheimer’s disease, though the parametric assumptions and the computational

complexity may limit the utility of this approach.

In this chapter, I propose a flexible semiparametric method to utilize graph-

associated information. It is compelling in part because it relies in a straightforward

way on repeated calculation of t-statistics; it is also based on an important statistical

fact that local false discovery rate, as an expected value, can be usefully represented

as an average of conditional expected values, where we average over some relevant

piece of missing data. More specifically, take the two-group comparison for con-

creteness, and at one unit i, let H0,i be the null hypothesis that the difference in

mean parameters between two conditions equals 0. Local FDR (li) computations

considered so far evaluate P(H0,i|xi,yi) where xi,yi records data on the two samples

from unit i. The full data set (x = {xi}, y = {yi}) is used to estimate the involved

distributions (e.g., g and h in MixTwice), but each inference statistic is computed

from the local data xi,yi alone using the globally-estimated distributions. A more

ambitious calculation is P(H0,i|x,y) where x,y records all the data in the system.

This would seem to require an explicit model specification relating all components,

which might be very difficult to assess or validate. If the intrinsic dimension of the

space of expected values is sufficiently low, a curious method presents itself. It is

based on the idea of clustering of units according to equalities in their latent ex-

pected values. Theoretically, it is based on a simple fact about local false discovery

rate:

li = P(H0,i|x,y) = E (P(H0,i|G,x,y)|x,y) . (5.1)

Here G could represent any aspect of the modeled system, but a convenient one has

G to be an undirected graph, with an edge between components i and j if both

µi = µj and νi = νj. Were the graph G known, then data from units sharing means

in both conditions could be combined to assess changes between conditions.

In this chapter I present a technique to compute local FDRs semiparametrically

using the available graph information. The results are limited, but I am able to

demonstrate a computationally efficient method that has good operating character-

istics in several simulation settings.
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5.2 Statistical methodology

5.2.1 Inference problem, data, and input of the algorithm

Suppose for each testing unit i = 1, 2, · · · ,m, the null hypothesis compares the

mean parameter between two groups H0,i : µi = νi where µi is the mean parameter

of samples xi = {xi,1, · · · , xi,n1} and νi is the mean parameter of samples yi =

{yi,1, · · · , yi,n2}. Sample sizes for the two groups are n1, and n2, respectively. The

matrices x (of dimension m by n1) and y (of dimension m by n2) form the input

data D. Auxiliary information Gaux is also available. The inference problem is to

calculate for each unit i the local false discovery rate li = P(H0,i|x,y).
Let G denote the latent undirected graph connecting nodes with same expected

values. Specifically, node i and j are connected in the graph G if their mean pa-

rameters are same, i.e., if µi = µj and νi = νj. My model is that G is a subgraph

of the auxiliary information graph Gaux, with the same nodes but potentially (and

probably) fewer edges. This assumption is a way to encode the idea that dimension

constraints may act locally relative to the auxiliary information. The following sec-

tion discusses the algorithm of GraphicalT provided with the data matrix D and

auxiliary graph Gaux.

5.2.2 Algorithm of GraphicalT

Based on the input (D, Gaux), GraphicalT consists of three parts, sketched in a toy

example in Figure 5.1:

1. node binding,

2. graph simulation and clique statistics,

3. locFDR averaging.



54

Figure 5.1: Algorithm of GraphicalT through a toy example. This example

starts from the input of the algorithm, D and Gaux, a small graph with 7 nodes and 6

edges. The first step, node binding, calculates the pairwise locFDR’s l̃e on each edge

e in Gaux. The second step, graph simulation, simulates three different realizations

of G, where each clique is coded using different color and second-stage locFDR’s

are calculated among cliques. The final locFDR’s are calculated by average over

different random graphs (node size is proportional to 1 minus the locFDR).

Step 1: node binding

I assume that G is a subgraph of Gaux with the same nodes but possibly fewer edges.

Each potential edge is inferred by pairwise testing using data from the nodes incident

to that edge. Specifically, suppose Gaux = (V,E) where V contains inference units

that are connected in E. For any edge e ∈ E where e connects two nodes j1 ∈ V

and j2 ∈ V , the binding step examines the following null hypothesis:

H̃x
0,e : µj1 = µj2

H̃y
0,e : νj1 = νj2 .

Denote data vectors collected from edge e connecting nodes j1, j2 be xj1 ,xj2 and

yj1 ,yj2 and local false discovery rate for e be l̃e:

l̃e = P(H̃x
0,e ∩ H̃y

0,e|xj1 ,xj2 ,yj1 ,yj2)

= P(H̃x
0,e|xj1 ,xj2) P(H̃

y
0,e|yj1 ,yj2)

= l̃xe l̃ye . (5.2)
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where the probability of intersection is simplified by the product of probabilities

assuming independence between H̃x
0,e H̃y

0,e. Conveniently, each test here may be

performed via a classical paired t-test. We may use different options to calculate

the local false discovery rates l̃e after the collection of statistics for the paired t-test

(implemented as pair.method). Tools that are sensitive may be preferred in order

not to overestimate the binding probabilities. The collection of {l̃e} returned by the

node-binding step would be used in the next step to simulate random graphs.

Step 2: graph simulation and clique statistics

I use the posterior probabilities {l̃e} from the node-binding step to represent the

averaging operation in (5.1). Simply, I treat uncertainty in G as equivalent to a

random graph having an edge at e from theGaux with probability l̃e. A random graph

G is simulated repeatedly where each edge e is simulated through an independent

Bernoulli trial with probability l̃e. Then this random graph G guides a combination

of inference units prior to comparison between groups.

On any realized G, consider node i and let C(i) denote a maximal clique that

contains i. That is, all nodes j ∈ C(i) are connected in G, and the set cannot be

expanded while retaining complete connections. All nodes in C(i) are deemed to

have the same mean parameter values in both conditions, taken separately. In other

words, µj is constant for all j ∈ C(i) and similarly νj is constant, though we do not

know the status of the difference µj −νj, except that it is constant. Recognizing the

shared parameter states, I sum the measurements within each sample and across

the clique to obtain clique-level data, which may be organized over the samples by a

matrix operation: x′ and y′ of dimension K by n1 and K by n2, where x′ = (C)Tx

and y′ = (C)Ty. There may be dependence between units, but that has no negative

impact on the procedure, as the variance of the sum will be accounted for in the

test-statistic construction. Here K counts the maximal cliques and C is an m×K

incidence matrix with Ci,C(i) = 1 and 0 elsewhere. The clique-level sums are now

amenable to an unpaired, between-group t-test, since H0,j is constant for all j ∈
C(i), and therefore equal to H0,i. Next, GraphicalT computes the clique-specific

t-statistic, and from the system-wide collection of statistics derives a clique-level

local FDR:

lC(i) = P (H0,i|G,x,y) (5.3)

I compute maximal cliques of each G by applying igraph::max_cliques [Csardi

and Nepusz, 2006]. A node may be in more than one maximal clique. Presently I
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average the t−statistics computed on each one; alternatively, a random one would

meet the requirements of 5.1.

Step 3: locFDR averaging

The final local false discovery rates lGraphicalT,i of unit i is the average of all lCt(i) over

simulated random graphs, G1,G2, · · · ,GNsim where Nsim is the number of random-

graph realizations:

lGraphicalT,i = P(H0,i|x,y)
= E (P(H0,i|G,x,y)|x,y)

≈ 1

Nsim

Nsim∑
t=1

lCt(i) (5.4)

where the expectation is taken with respect to random graph simulation.

The algorithm of GraphicalT is summarized as the following:

Algorithm 1 GraphicalT
Input: Units by samples data matrices x,y and input graph Gaux

Output: Local false discovery rates: lGraphicalT,i = P(H0,i|x,y)
1: Step 1, node binding.

1. For every edge e = {j1, j2} of the input graph Gaux, identify data vectors xj1 ,xj2 ,yj1 ,yj2

2. Do one paired t-test between xj1 ,xj2 and a second one between yj1 ,yj2 . Calculate the local false

discovery rate:

l̃e = P(H̃x
0,e|xj1 ,xj2 ) P(H̃y

0,e|yj1 ,yj2 )

2: Step 2, graph simulation and clique statistics. Repeat for simulation trials:

1. Simulate random graph G based on the collection of edge probabilities {l̃e}

2. Find a maximal clique for each node and form a clique-index matrix C.

3. Reduce to clique-level data: x′ = (C)Tx and y′ = (C)Ty

4. For each clique, do an unpaired t-test on clique-level data.

5. Calculate the clique-level local false discovery rate:

lC(i) = P (H0,i|G,x,y)

3: Step 3, locFDR averaging. Average local false discovery rates over simulated random graphs,

G1,G2, · · · ,GNsim,

lGraphicalT,i = E [P(H0,i|G,x,y)|x,y] ≈
1

Nsim

Nsim∑
t=1

lCt(i)
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5.3 Simulation study

FDR control and power are important operating characteristics in evaluating large-

scale hypothesis testing. Meanwhile, compared to the classic Student’s-t approach

(e.g., BH, Storey’s qvalue, etc.), GraphicalT requires the auxiliary data graph

Gaux as the input of the algorithm. As the underlying graph G is only a subgraph

of this input data graph Gaux, there might be edges in Gaux not in G; Gaux might

connect units that do not have the same underlying expected means.

In this numerical study, I evaluate the FDR control and power of GraphicalT.

I also seek to understand the performance under scenarios where the input graph

Gaux is similar to the underlying G and scenarios where there are much more edges.

Specifically, I simulate 400 nodes where half of them have difference between groups

(µi ̸= νi), i.e., π0 = 0.5. This is demonstrated using different colors in Figure 5.2.

Also, among those 400 nodes, half of them are contained in one of 20 cliques, each

with 10 nodes. For example, if node k1, k2, · · · , k10 are connected through a clique

k, k ∈ (1, 2, · · · , 20), then µk1 = µk2 = · · · = µk10 and νk1 = νk2 = · · · = νk10 . The

rest half of the nodes are isolated. The degrees of those connected nodes are 9 while

0 for those isolated ones.

There are in total 900 edges in G. Through this numerical experiment, I expand

this G to get different simulated input graphs by randomly connecting some units

that are not connected in the underlying G. As an illustration, Figure 5.3 shows

the adjacency matrix of input graph Gaux (left column) and the output graph con-

structing by {l̃e} after the binding step (right column). As shown in Figure 5.3,

the adjacency matrix after the binding step is almost the same as the original one

if Gaux is similar to G (panel A). When Gaux connects much more nodes than G,
the graph after the node-binding step is less clear, but could still differentiate the

pattern between cliques and isolated nodes.

Figure 5.4 summarizes empirical FDR and empirical true positive rate under

FDR control 0.1 using 50 time randomly sampled data sets, each with a different

simulated Gaux. The x-axis records the number of edges in Gaux but not in G. This
experiment concludes that the proposed GraphicalT has increased power property

without inflating FDR control, and is robust even though there is large difference

between the input data graph and the underlying one.



58

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x−position

y−
po

si
tio

n

type negative positive

Figure 5.2: Underlying graph G in simulation setting: this graph shows the

connection structure of 400 testing units. Half of the units (200) were connected

within 20 fully-connected cliques while the rest of the units are isolated. Units with

a non-zero latent signal effect (under alternative hypothesis H1) are colored in red,

while those without a signal effect (under H0) are colored in blue.
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Figure 5.3: Adjacency matrix of auxiliary graph Gaux and the output graph

after node binding: The left panel shows the adjacency matrix of auxiliary graph

Gaux and the right panel shows the adjacency matrix of the graph constructed by

{l̃e} in the node-binding step. Panel A shows a scenario where Gaux only has 10

more edges than G, while panel B shows a scenario where this number is 10,000.

Weight of adjacency matrix is coded using different colors.
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Figure 5.4: FDR and true positive rate comparing GraphicalT and Stu-

dent’s t: Each dot in the figure is a randomly simulated data set with different

Gaux. The x-axes records the number of edges in Gaux but not in G and y-axis sum-

marizes empirical false discovery rate (FDR, panel A) and true positive rate (panel

B) under the nominated significance level 0.1. Orange dashed lines in both panels

indicate the performance using Student’s t approach (specifically, q-value) and the

red dashed line in panel A refers to the nominated FDR level (0.1).
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5.4 Brain image example with 3D lattice graph

One example of graph-associated data is the structural magnetic resonance imag-

ing data measured in studies of brain structure, as part of the Alzheimer’s Disease

Neuroimaging Initiative (ADNI-2) [Weiner and Veitch, 2015, Vo et al., 2021]. Three

dimensional brain image data were collected from 123 cognitively normal control

subjects (CN) and a second group of 148 subjects suffering from late-stage mild

cognitive impairment (MCI), a precursor of Alzheimer’s disease (AD). Gray matter

tissue probability maps derived from the co-registered T1-weighted magnetic reso-

nance imaging (MRI) data were pre-processed so that specific spatial coordinates

(voxels) could be compared between the two samples of brain images. I used the

data prepared and reported in [Vo et al., 2021]. The auxiliary data graph is simply

a three-dimensional lattice where neighboring voxels are related by spatial coordi-

nates. Preprocessing via low marginal deviation filtering [Bourgon et al., 2010] gives

the final graph with 464,441 voxels.

Among all 464,441 voxels, BH [Benjamini and Hochberg, 1995] yields 5130 vox-

els under 5% FDR control. The qvalue method [Storey, 2002] estimates the null

proportion π̂0 = 0.82 and yields 5817 voxels. The ASH procedure [Stephens, 2017],

with the same estimated null proportion, provides a slightly larger list (6057). The

5% FDR-controlled list by GraphicalT contains 7934 significant voxels under the

same FDR control level and with the same estimated null proportion. As shown in

the Venn Diagram of Figure 5.5, among those 7934 voxels found by GraphicalT,

5813 of them are also on the discovery list of qvalue and ASH while there are 1940

voxels not found by other tools. Examples of those voxels on the discovery list are

discussed in Supplementary section D.2 The lower panel of Figure 5.5 compares the

locFDR’s reported using GraphicalT with locFDRs using Student’s t.
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Figure 5.5: Venn diagram and two-dimensional histogram comparing dif-

ferent testing tools: The upper panel shows the Venn Diagram of discovery

list comparing different methods under FDR 0.05 level, and the lower panel shows

two-dimensional histogram of local FDRs using Student’s t procedure (x-axis) and

GraphicalT procedure (y-axis).
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Chapter 6

Conclusion

The large-scale hypothesis testing problem has been widely studied and strongly

motivated in a wide variety of subject-matter domains. In responding to practical

challenges that I encountered in the high density peptide array data and other

bioinformatics experiments, I made several contributions in my dissertation.

Many conventional large-scale testing tools control the false discovery rate (FDR),

however performance improvements are possible. One of the key challenges is to bet-

ter handle the variance that fluctuates over the testing units, especially with limited

sample sizes. Motivated by this, I proposed an empirical-Bayes computational tool,

MixTwice, that intervenes on estimated effect and estimated standard error to calcu-

late the local false discovery rates for each testing unit. The proposed method not

only involves a shape-constrained mixture distribution for latent effects, but also

a separate nonparametric mixture for variance parameters. MixTwice was shown

to have better operating characteristics through a variety of numerical experiments

compared to conventional testing approaches and also achieved better power and

reproducibility in several applications.

Large-scale testing problems with multiple-group comparison are less studied

compared to scenarios with only two conditions, even though they also have a wide

range of applications. Conventional computational tools that make multiplicity

adjustment based on F test p-values can be applied in such settings, but sometimes

they also have limited power. MixTwice-ANOVA is proposed in this dissertation in

response to this challenge, by applying empirical Bayes mixing to sum-of-square

components of the F statistic. This statistical methodology is shown to have good

operating characteristics in simulations and in an example comparing three groups

of Sjogren disease (SjD) patients.
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In the development of statistical methodology, computational aspects are es-

sential to solve the high throughput experimental problem efficiently. Such top-

ics involve nonparametric MLE and high-dimensional optimization problems with

shape constraints. Motivated from theoretical guarantees and applications of iso-

tonic regression, I proposed the EM-PAVA algorithm within MixTwice for optimization

subject to a unimodal or monotonic shape constraint. Compared to conventional

algorithms for the shape-constrained optimization problem, EM-PAVA substantially

improves computational efficiency.

Graph-associated data is common in applications. Such graph-associated in-

formation, as additional data incorporating in large-scale testing, can improve the

local false discovery statistics. However, most of the computational tools incorporat-

ing such information proceed through parametric assumptions and elaborate model

specifications. To construct a simpler approach for the analysis of graph-associated

data, I presented GraphicalT to compute local false discovery rates semiparametri-

cally using the available graph information. The method showed good performance

in synthetic examples and in a brain-imaging problem from the study of Alzheimer’s

disease.

My contributions to large-scale data inference are outlined in the preceding para-

graphs. Those contributions aim to standardize modern statistical inference and

computational tools, such as empirical-Bayes inference, nonparametric and semi-

parametric estimation, constrained optimization, that could be used in data analysis

across a wide range of applications. There are also several unanswered questions that

merit more investigation. First, in the large-scale hypothesis testing problems, dif-

ferent researchers focused on different perspectives to improve power property. For

example, MixTwice concentrates on better incorporating the information associated

with the variance parameter. Many computational tools suggest the unit-specific

covariates could also gain additional power. It is not surprised that the combination

of these two insights could improve the operating characteristics of large-scale hy-

pothesis testing. However, estimating the mixing distribution, especially the mixing

distribution of effect and variance, might be complicated and challenging with the

additional unit-specific covariates. Second, besides hypothesis testing, ranking is

also one of the most important but challenging tasks of large-scale data inference.

Also, the combination of testing and ranking is widely applied in many data prob-

lems. Recent progress shows the empirical-Bayes mixture model can have improved

operating characteristics for the large-scale ranking problem (e.g., [Henderson and

Newton, 2016]). That procedure might also be improved with a separate mixing
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distribution estimation on variance and a proper regularization on effect. Last, nu-

merical experiments and many data examples suggest the improved properties of

GraphicalT. However, it might be good to learn more about the mechanism that

underpins it, or even the theory that underpins it. This study, which will most

likely use a simple case as an example, may be useful in better understanding and

interpreting the methodology. Besides those three specific examples, there are cer-

tainly many other interesting questions to advance data analysis in large-scale data

inference and I encourage researchers to dig further.



66

Appendix A

Appendix to Chapter 2

The material in this chapter was reported previously in Supplementary material of

Zheng et al. [2021]

A.1 Gradient and Hessian of optimization objec-

tive

We derive the gradient and Hessian of the log-likelihood equation, l(g, h). Recall

the definition of l(g, h):

l(g, h) =
m∑
i=1

log p(xi, s
2
i |g, h)

p(xi, s
2
i |g, h) =

∑
k

∑
l

gkhl
1√
bl
ϕ

(
xi − ak√

bl

)
ν

bl
χ2,ν

(
νs2i
bl

)
.

To simplify notation we use ci,k,l to denote the prior, mixture density of sample i on

the grid ak, bl, and we let di denote the observation density:

ci,k,l :=
1√
bl
ϕ

(
xi − ak√

bl

)
ν

bl
χ2,ν

(
νs2i
bl

)
di := p(xi, s

2
i |g, h) =

∑
k

∑
l

gkhl ci,k,l.

Consider the parameter vector (g, h) of length (2K +1)+L, where the first 2K +1

components are for the effect mixing probabilities, g = (gk), and the remaining

L components are for variance mixing probabilities h = (hl). The quantities ci,k,l

depend on the data, the support points but not the probabilities g and h.
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Constraints are critical to the optimization; of course all elements of g and h

must be positive and sum to unity. We also impose a unimodality constraint on

g. But in deploying the augmented Lagrangian method, these constraints act on

the differentiable function l(g, h), which we consider initially as varying freely over

2K + L + 1 Euclidean space. The gradient of l(g, h) is a column vector of length

(2K + 1) + L with the following format:

∇l(g, h) =

((
∂l(g, h)

∂g

)′

,

(
∂l(g, h)

∂h

)′)′

where each component has the explicit form:

∂l(g, h)

∂gk
=

m∑
i=1

1

di

∑
l

hl ci,k,l

∂l(g, h)

∂hl

=
m∑
i=1

1

di

∑
k

gk ci,k,l.

The Hessian of l(g, h) is a (2K + 1) + L by (2K + 1) + L matrix:

∇2l(g, h) =

(
A B

B′ C

)
where matrix A (2K + 1 by 2K + 1) contains second derivative with respect to

g, matrix C (L by L) contains second derivative with respect to h and matrix B

(2K + 1 by L) contains second derivative with respect to g and h.

For entries of matrix A:

∂2l(g, h)

∂g2k
= −

m∑
i=1

1

d2i

(∑
l

hl ci,k,l

)2

∂2l(g, h)

∂gk1∂gk2
= −

m∑
i=1

1

d2i

(∑
l

hl ci,k1,l

)(∑
l

hl ci,k2,l

)
.

For entries of matrix C:

∂2l(g, h)

∂h2
l

= −
m∑
i=1

1

d2i

(∑
k

gk ci,k,l

)2

∂2l(g, h)

∂hl1∂hl2

= −
m∑
i=1

1

d2i

(∑
k

gk ci,k,l1

)(∑
k

gk ck,l2

)
.

For entries of matrix B:

∂2l(g, h)

∂gk∂hl

=
m∑
i=1

1

d2i

(
ci,k,l di −

∑
l

hl ci,k,l
∑
k

gk ci,k,l

)
.
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A.2 Random subsampling

The optimization to compute ĝ and ĥ becomes computationally challenging as the

number of testing units increases. MixTwice provides an option for users to use a

randomly-selected subset of testing units to obtain the fitted distributions. Here we

illustrate the compute-time improvements associated with relatively little degrada-

tion in the quality of the estimates.

We use the CCP+RF+ RA example to illustrate the random subsampling prop-

erties in terms of estimation error and computational benefit. Relative to the es-

timate obtained from half the units, we evaluate the discrepancy in distribution

estimation and the user’s CPU time (with Inter(R) Core(TM) i5-7400HQ CPU pro-

cessor) when the prop, the proportion of testing units used to fit the distribution,

changes. We use 1-Wasserstein distance between two cumulative distribution func-

tions as the metric to evaluate the discrepancy from the case when prop = 0.5 as

benchmark.

Figure A.1 summaries the result. Panel A highlights the estimation of ĝ, ĥ when

prop = 0.5, 0.1, 0.01 where the estimations are quite similar. Panel B shows how the

discrepancy decreases when the proportion of testing units used to fit the distribution

increases. Note that even when prop = 0.01, the discrepancy is quite small (error

in ĝ less than 0.02 and error in ĥ only 10−4). Panel C shows the computational

benefits.

A.3 On identifiability

On units i with a fixed, known standard error σ, the mixing model for effects θi

is puts point mass at 0, with probability π0, and distributes the remaining mass

according to some distribution galt, which in the following is treated as a density

function with respect to Lebesgue measure. Ignoring mixing over σ (according to

h), the predictive density of estimator θ̂i, at argument x, is

π0
1

σ
ϕ
(x
σ

)
+ (1− π0)

∫
1

σ
ϕ

(
x− θ

σ

)
galt(θ) dθ

where ϕ is the standard normal density reflecting Gaussian errors of the estimators.

The alternative effect density galt need not be zero in neighborhoods of the null, in

which case it may happen that there exists a gap c = cσ > 0 for which, for all x,

cσ
1

σ
ϕ
(x
σ

)
≤
∫

1

σ
ϕ

(
x− θ

σ

)
galt(θ) dθ. (A.1)
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Figure A.1: How does random subsampling influence estimation accuracy

and computational efficiency? Panel A shows the estimation in ĝ, ĥ when various

proportions of the units are used for estimation. Panel B shows the 1-Wasserstein

discrepancy (between estimate at that proportion and estimate from half the units)

as a function of subsampling proportion. Panel C shows the corresponding CPU

time.
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If there is a gap, the alternative predictive density contains within it a shrunken

version of the null. The problem with such a gap is well known; an amount cσ(1−π0)

of mass from the alternative predictive component may be pushed into the null

component, with no effect on the marginal predictive density. A small gap emerges

in cases such as spiky (Figure 1, main) where galt concentrates substantial mass near

the null value. This constitutes an identifiability issue, however, we find that the

gap is small or nonexistent in many cases, and anyway can be shown to converge to

zero when σ converges to zero. To see this feature, rearrange (A.1) to see that for

all x we require

cσ ≤
∫

exp

{
1

2σ2
(2θx− θ2)

}
galt(θ) dθ

The bound on the right depends on x; differentiating in x, under the integral gives∫
θ

σ2
exp

{
1

2σ2
(2θx− θ2)

}
galt(θ) dθ.

Notice that if galt is symmetric, then at x = 0 this derivative is zero, and so

cσ ≤
∫

exp

{
−θ2

2σ2

}
galt(θ) dθ.

Taking appropriate limits in σ towards 0 shows that cσ must vanish, which will

happen with increasing amounts of information per unit. The question of mixing

over σ using the second mixing distribution h is not directly addressed by the above

computations. However, we would predict from them that as the estimated mixing

distribution ĥ concentrates more of its mass on small standard errors, then inferences

about effects θi will be ever more reliable.

A.4 Compare MixTwice, ASH and two-step ASH
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Figure A.2: Different selection pattern among ASH, two-step ASH and

MixTwice: Scatter plot comparing estimated effect size (x, x-axes) and estimated

standard error (s, y-axes) for top 100 peptides with smallest locFDR in ASH (green),

two-step ASH (green) and red (MixTwice) in the CCP+RF- vs control example.
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Appendix B

Appendix to Chapter 3

B.1 Grid in MixTwice-ANOVA optimization

The grid of the optimization problem, including the grid spread (i.e., lower and upper

range) and grid spacing (i.e., linear space or quadratic space, etc.) is essential to

finite grid approximation for each distribution g and h. Note that E
(
SSE
σ2

)
= n−m,

so we could simply take the range of the grid of h to be the range of SSE
n−m

. However, it

might take further effort to think of the grid of g, the distribution of λ. Knowing the

fact that SSB|σ2 follows non-central chi-square distribution with degree of freedom

m− 1 and non-central parameter nλ
σ2 , E(SSBσ2 ) = m− 1 + nλ

σ2 . By taking σ2 = E(SSE)
n−m

,

it follows that:

λ =
E(SSB)

n
− (m− 1)

n

E(SSE)
n−m

. (B.1)

On the other hand, we can also think in another way
SSB
m−1
SSE
n−m

|(σ2, λ) ∼ Fm−1,n−m,nλ
σ2
,

the non-central F distribution with degree of freedom m−1 on numerator, n−m on

denominator and non-central parameter λ
σ2 . It is equivalently to say that E

(
SSB
SSE

)
=

m−1+nλ
σ2

n−m−2
. Then it follows that:

λ = E
(
SSB

SSE

)
(n−m− 2)

n

E(SSE)
n−m

− (m− 1)

n

E(SSE)
n−m

≈ E(SSB)
n−m− 2

n−m

1

n
− (m− 1)

n

E(SSE)
n−m

. (B.2)

where we make a first order Taylor approximation E
(
SSB
SSE

)
≈ E(SSB)

E(SSE) . Though we

have two different formulation of λ, as in Equation (B.1) and Equation (B.2), they
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are mathematically and numerically very close. We can take the range of grids of g

on either one of them.

The original implementation of MixTwice takes a linear grid (equally spaced

from the lower range to the upper range) for either g and h. However, the effect

size distribution g, a function of λ = 1
n

∑m
j=1(µj − µ̄)2 takes quadratic spacing itself.

Moreover, due to the quadratic functional of effect size, the grid spread (upper range)

of g, determined previously, could be very large. Furthermore, even with a relative

dense grid, there might not be enough supports close to zero to accurately estimate

those point masses, which are indeed more important to influence the follow-up π0

and local false discovery rate estimation. Therefore, we allow the grid of mixing

distribution of λ, g also to be quadratic spacing.

B.2 Connection between MixTwice andMixTwice-

ANOVA

Generalized from MixTwice, MixTwice-ANOVA deals with problem with multiple

group comparison. They can be both applied on analyzing the data when the num-

ber of groups is 2. Indeed, in the unit-specific setting, when the number of groups

is 2, the F statistic in one-way ANOVA is simply the square of t statistic in two

sample t test. It is curious to understand the relationship in performance between

MixTwice and MixTwice-ANOVA under such degenerated scenarios.

In this section we discuss this problem through a toy example with 3000 testing

units on a two-group comparison problem with 20 replicates at each group. This toy

data is applied on both MixTwice and MixTwice-ANOVA. As shown in Figure B.1, we

compare the π0 estimation using MixTwice, MixTwice-ANOVA with linearly-spaced

grid and MixTwice-ANOVA with quadratically-spaced grid. The example is also ex-

amined under a variety of alternative distributions. To compare both results, we

make the number of support points of MixTwice-ANOVA 20 except at exactly 0 (in

total 21) and number of support points of MixTwice on each side also 20 except

at exactly 0 (in total 41). It is clear that MixTwice and MixTwice-ANOVA with

quadratically-spaced grid yield equal π̂0 estimation while the MixTwice-ANOVA with

linearly-spaced grid got much larger π̂0. Both methods would overestimate π0 under

the spiky alternative distribution (panel B) and this is consistent with the result

reported in Zheng et al. [2021].
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Figure B.1: π0 estimation for MixTwice and MixTwice-ANOVA: the estima-

tion of null proportion estimation (π̂0) is examined for MixTwice (red), MixTwice-

ANOVA with linear grid (green) and MixTwice-ANOVA with quadratic grid (blue)

under variety of settings of alternative distributions (panel A). Panel B shows scat-

ter plots of π̂0 (y-axes) and π0 (x-axes) with the dotted line as reference.

B.3 Data example: CCP+RF+ RA vs CCP-RF-

RA vs control
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Figure B.2: Summary and visualization figure for RA comparison in two

independent peptide array studies: Panel A shows the distribution of p-value

in both studies. Panel B shows the scatter plot (and correlation) for three major

statistics (from left to right, p-value, SSB and SSE) between two studies. The dashed

line in red is reference y = x.
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Figure B.3: Estimated mixing distribution: left panel shows the estimated

cumulative distribution function (cdf) of effect size (g) and right panel shows the

estimated cumulative distribution function of squared standard error (h). Red and

blue are for different studies.
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Appendix C

Appendix to Chapter 4

C.1 Reproducibility toy example

Intuition behinds why methods using not only p-value but also estimated effect

size and estimated error often yield higher reproducibility is also of great interest.

Reproducibility measures the correlation information on the same testing unit but

on independent replicates (for example, different subject samples in peptide array

data). This correlation information, in a nutshell, could be reduced by the ratio

calculation (from numerator statistic and denominator statistic to test statistic)

and could also be further reduced by the sign calculation (from test statistic to p-

value). The following simulation example provides a more concrete interpretation

on why more data information per testing unit could increase the reproducibility

performance. The simulation result is based on 100 repeated trials, each with a

randomly simulated null proportion π0 ∼ U(0, 1). Within each trial, we simulate

data with p = 5000 units and 20 samples. Those 20 samples are then evenly and

randomly split to form two data sets xj, j = 1, 2. For each data, four statistics are

calculated in pair xi,j, si,j, ti,j, pi,j where i = 1, 2, · · · , p and j = 1, 2. Correlation of

each pair are calculated and plotted over π0 in panel A in Figure C.1. Scatter plot

for four statistics in a single trial, with π0 = 0.5 is demonstrated as an example in

panel B.

It is clear that the correlation of xi (red) is slightly higher compared to ti (orange),

the ratio between xi and si (blue) and is much higher than the sign-free statistic,

pi (green). The correlation of si is robust over π0. However, the correlations are

decreasing for xi, ti, pi with larger π0 since it is less likely to differentiate among

units with more nulls (signal is 0).
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Figure C.1: Why approaches using xi and si are more reproducible com-

pared to those using only pi? Panel A shows the relationship between null

proportion and correlation for four different test statistics, and panel B picks a

single trial with π0 = 0.5 to demonstrate the scatter plot of each statistic in two

independent data sets.
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Appendix D

Appendix to Chapter 5

D.1 Number of simulations of random graph

One important parameter when running GraphicalT is the number of simulations of

random graph, specifically Nsim in the package. The following Table D.1 summarizes

the simulation result with different number of random graph simulations (from 40

to 200, each replicated 30 times). The simulated data contains 400 nodes, half of

them are isolated while the rest half construct 20 cliques, each with size 10. For all

400 nodes, 200 of them have differential binding between groups (π0 = 0.5). Two

operating characteristics: true positive rate and time complexity 1 are of interest and

the following table reports both mean parameter and standard deviation of those

two operating characteristics.

Table D.1: True positive rate and Time complexity with increased number of simu-

lations of random graph

Number of simulations TPR (mean) TPR (sd) CPU time (mean) CPU time (sd)

40 0.802 0.0082 0.133 0.073

80 0.801 0.0065 0.252 0.071

120 0.803 0.0060 0.372 0.082

160 0.800 0.0046 0.416 0.075

200 0.802 0.0028 0.468 0.074

It is clear that the number of simulations of the random graph does not change

the expected value of true positive rate, but it makes the result more robust (lower

standard deviation) as the number of simulations increases. Also, it is not surprised

that the number of simulations increases the CPU time. Though there is not a

1time complexity is CPU time evaluated with Inter® Core™ i5-7400HQ CPU processor
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Figure D.1: Examples of voxels on a few slices with locFDRs reported

using GraphicalT and student’s t: Demonstration of the brain image on slices

with spatial z-coordinates 59-61 (left panel) and 84-86 (right panel). Voxels with

local false discoveries smaller than 0.05 from either GraphicalT (left columns) or

student’s t (right columns) were colored in red.

golden rule when determining the number of random graph simulations as it is a

trade-off between the robustness of true positive rate and computational complexity,

the user could make their own choice based on number of nodes and the expected

complexity of the graph.

D.2 Supplement to brain image data example

I also ran two examinations in order to check the FDR control, one on subject-sample

randomization and the other on node-label randomization. The same GraphicalT

algorithm was applied on the data with same testing nodes but the group label (MCI

vs CN) was randomly permuted with the same number of subjects. It returned

an empty list under the same FDR control and the locFDR’s reported using the

subject-randomized data set were uncorrelated with the locFDR’s reported using
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the original data set, as shown in Figure D.2. Another FDR control was done on

the input graph Gaux. We randomly permuted the labels of testing nodes so that

the input 3-D lattice, in theory, did not provide as much information about shared

parameters as the original data set. By doing such node-permutation, the locFDR’s

in the binding step l̃e are much smaller (with mean 0.26) and the locFDR’s were

similar as methods without the input data graph (i.e., Student’s t approach), as

shown in Figure D.2.
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Figure D.2: FDR control for brain image data: Upper panel shows two di-

mensional histogram comparing locFDR’s using GraphicalT on the original data set

(y-axes) and on the data set with subject randomization (x-axes). The lower panel

shows two dimensional histogram comparing locFDR’s using Student’s t without

the graph-associated information (x-axes) and locFDR’s using GraphicalT but with

randomly permutated testing nodes (y-axes).
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negative primary sjögren’s syndrome: data from a nationwide cohort for sjögren’s
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