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Abstract 

Nonlinear dynamics based 4D dose guided radiotherapy  

for moving tumors 

by 

Ranjini P. Tolakanahalli 

Under the supervision of Professor Wolfgang A. Tomé 

Radiation, the mainstay of local nonsurgical treatment for regionally advanced non-

resectable non-small cell lung cancer, is associated with poor outcomes due to local failure.  

Intra-fractional tumor motion mainly due to respiratory motion necessitates enlarged treatment 

margins to provide full tumor coverage, thus limiting the dose that can be escalated for tumor 

control. Tumor motion and breathing irregularity are two major hurdles which stop us from 

achieving this apparently simple goal of dose escalation while sparing normal tissues. Effective 

compensation to account for this depends on: Firstly, the robustness of the monitoring system for 

tracking real-time tumor motion and secondly the efficiency of the delivery system in adapting to 

the observed tumor motion. 

  Delivery of radiation therapy using synchronization methodologies requires knowledge 

of real-time tumor position. No matter how robust the methodologies are, they all suffer from the 

problem of system latency. System latency can be understood as a delay from the instant the 

tumor moves before the treatment system can make its corrective response.  Predicting 

respiratory motion in real-time is challenging, due to the inherent chaotic nature of breathing 

patterns, i.e. sensitive dependence on initial conditions. In our previous work we analyzed the 

breathing pattern of 16 patients using time-delay based state space techniques and established 
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that respiratory system is 5-6 dimensional nonlinear, stationary and deterministic in nature albeit 

chaotic with sensitive dependence to initial conditions. In this thesis, we introduce nonlinear 

prediction algorithms based on state-space methodologies that have a larger prediction horizon 

than linear methods if an appropriate time delay and embedding dimension are chosen. In 

addition, a much larger prediction horizon can be achieved if patients can be coached to closely 

follow a regular breathing pattern. Patients revisit their breathing orbits arbitrarily closely and 

stay for a while before exponentially diverging from the orbit. These are called Unstable Periodic 

Orbits (UPOs) which can be used to intelligently coach the patients to maintain a comfortable 

breathing. This approach is called Chaos Control and its theoretical basis and preliminary results 

are elucidated in this thesis. However, many patients with high transients can be very challenging 

for both prediction and chaos control. We also introduce a novel method, Recurrence 

quantification analysis (RQA) that can be used as a quantitative decision making tool to classify 

patients breathing pattern. RQA is a promising and powerful tool to decide if a patient is a good 

candidate for Chaos control and prediction or just prediction bundled with 4D treatment. For 

highly chaotic breathing patterns, it might be best to adapt with the Maximum Projection 

Intensity (MIP) Image based Internal Target Volume (ITV) treatments.   
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Chapter 1. Introduction 

Targeting moving tumors for lung cancer tumors during radiation therapy is complicated due 

to intra-fractional and inter-fractional motion. Advances in Image Guided Radiation Therapy 

(IGRT) enable one to account for inter-fractional differences thus allowing for margin reduction. 

Intra-fractional tumor motion which is mainly due to respiratory motion necessitates enlarged 

treatment margins to provide full tumor coverage. These margins thus limit the dose that can be 

escalated for tumor control. It is also well accepted that intensity-modulated radiation therapy 

(IMRT) is known to be more susceptible to tumor motion compared with conventional treatment 

techniques due to interplay between MLC and tumor motion. Methods to mitigate errors due to 

motion  include  treating a motion envelope (van Herk, 2004), the average intensity projection of 

a the motion envelope (Ehler and Tomé, 2008) and modulating the dose rate (Ehler and Tomé, 

2009). Changes in the form of the tumor or its position have a significant impact on the actual 

delivered dose distribution due to steep dose gradients (Bortfeld et al., 2002; Ehler and Tomé, 

2008; Ehler et al., 2007).  

Gating and synchronization methodologies are two popular methods that are explored vastly 

in the community.  For synchronization methodologies, the underlying requirement is knowledge 

of real-time tumor position. Current direct tracking methodologies employ continuous 

observation of the implanted fiducials in the tumor during treatment using fluoroscopic imaging, 

but this approach often is not feasible. An underlying requirement of externally monitored 

surrogate signal to deduce tumor position is spatial and temporal correlation of tumor motion 

with surrogate signal. Regardless if direct or indirect methods are used for tumor tracking, there 

always exists a delay before the treatment system can make its corrective response. It has been 

widely accepted that latency error contributes to a greater dosimetric impact, especially at longer 
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response times (greater than 200 ms) which demands the need for good prediction algorithms. 

This delay can range from 50 ms for the beam to be gated to several hundred milliseconds for the 

beam to be physically realigned. Thus in order to target the tumor in real-time, the position of the 

tumor must be predicted by the system ahead by a time at least equal to or greater than system 

latency. Most of the prediction methods are based on autoregressive linear prediction models or 

sinusoidal-model based predictive filters. Such models have difficulty predicting irregular 

signals. It has been generally accepted that most prediction algorithms perform better when there 

is regularity and reproducibility of patient breathing pattern. Most of the linear and non-linear 

methods mentioned above fail to predict accurately when the system latency is greater than 200 

ms with imaging frequency less than 10Hz.  

None of the above methods really delve deep into the underlying mechanism governing 

respiratory breathing. Breathing is a neurophysiological process, which is controlled by the 

rhythmical centers which are not irregular or random (Rybak et al., 2007). Central 

chemoreceptors (nerves of the central nervous system), located in the medulla oblongata, 

monitor the pH levels of cerebrospinal fluid. When CO2 from the plasma enters the 

cerebrospinal fluid, the pH of the fluid drop). In response to the decrease in pH, the central 

chemoreceptors stimulate the respiratory center to increase the inspiratory rate. Peripheral 

chemoreceptors (nerves of the peripheral nervous system), located in aortic bodies in the wall of 

the aortic arch and in carotid bodies in the walls of the carotid arteries, monitor the pH of the 

arterial blood. An increase in pH or pCO2, causes these receptors to stimulate the respiratory 

center. Stretch receptors in the walls of bronchi and bronchioles are activated when the lungs 

expand to their physical limit. These receptors signal the respiratory center to discontinue 

stimulation of the inspiratory muscles, allowing expiration to begin. This response is called the 
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inflation (Hering-Breur) reflex. Autonomic breathing is not only controlled by metabolic 

demands but also constantly responds to changes in emotions,. Final respiratory output involves 

a complex interaction between the brainstem and higher centres, including the limbic system and 

cortical structures.  

To be able to control and predict patient’s breathing, it is important to view the time series 

signals from a new perspective by considering breathing as a dynamical system.  Recently 

Tewatia (Tewatia et al., 2011) published their findings based on analysis of randomly chosen 

breathing patterns of 16 patients.  All 16 patients’ breathing pattern were stationary and 

deterministic with presence of positive largest Lyapunov exponent (LLE) thus establishing that 

breathing pattern of lung cancer patients is not random or irregular rather deterministic in nature 

albeit chaotic.  This helps in designing coaching and prediction methodologies based on their 

daily breathing pattern, potentially more accurate for longer latencies, which is explored in this 

thesis. In the second chapter we employed surrogate algorithms in order to establish the presence 

of chaotic determinism in a patient’s breathing pattern. Once established, we have used several 

nonlinear state-space based methodologies for predicting breathing pattern of lung cancer 

patients which are presented in the third chapter. In the fourth chapter we took one step towards 

personalized medicine. In this part of the study we have used Recurrence Quantification Analysis 

(RQA) for analyzing individual breathing pattern. In this chapter we have shown how to assess 

the predictability and complexity of given breathing time series and choose different treatment 

methodologies based on quantification analysis. In the fifth chapter, we have worked on how 

chaos control algorithms based on nonlinear dynamical systems theory can be incorporated into 

this field to achieve control and have designed a methodology for coaching patients to be able to 

achieve favorable breathing pattern with more reproducibility for each treatment fraction. Each 
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of these sections are introduced below and explained in each chapter followed by the final 

chapter for conclusion and further studies. Most of the methods explained are implemented on 

time series obtained using RPM(Real-time Positioning Management, Varian Medical System, 

Palo Alto, CA) which tracks an infrared block placed on the chest. Mechanical coupling between 

the RPM surrogate and tumor motion cannot always be assumed and a correlation has to be 

developed and continuously monitored to be able to use the RPM surrogate directly for tumor 

tracking. However, the methods described below are applicable to any time-series data and can 

be directly translated to tumor co-ordinates once the technology is mature enough to provide real 

time tumor co-ordinates. 

1.1 Surrogate testing of breathing patterns of lung cancer patients 

Before using any tools from non-linear dynamics, it is important to establish presence of 

chaotic determinism in a patient’s breathing pattern. State-of-the-art methods from the field of 

chaos theory, surrogate data testing methods, are employed to test the hypotheses if the origin of 

the waveform under consideration is a result of processes such as white noise, linear process 

passed through a nonlinear filter. Given a real random-like time series, the first question to 

answer is whether the data carry any information over time, i.e. whether the successive samples 

are correlated. Using standard statistical testing, the least interesting null hypothesis of white 

noise has to be rejected if the analysis of the time series should be of any use at all. Further, if 

nonlinear methods are to be used, the null hypothesis to be rejected is that the data involve only 

temporal linear correlations and are otherwise random. A statistically rigorous framework for 

such tests is provided by the method of surrogate data. The surrogate data, generated to represent 

the null hypothesis, are compared to the original data under a nonlinear discriminating statistic in 

order to reject or approve the null hypothesis. The surrogate data test for nonlinearity has become 



5 
 

popular in the last years, especially with regard to the null hypothesis that the examined time 

series is generated by a Gaussian (linear) process undergoing a possibly nonlinear static 

transform. This chapter describes the surrogate data test for the three hypotheses, i.e. linear 

filtered white noise, data passed through a nonlinear filter and pseudo periodic data. Some of the 

limitations and caveats of the test will be discussed and techniques to improve the robustness and 

reliability of the test will be reviewed. 

1.2 Time series prediction of lung cancer patients’ breathing 

pattern based on nonlinear dynamics and chaos theory 

 Prediction using regularized local linear methods has been employed and the prediction 

error using the state-space based methods have been compared to adaptive linear autoregressive 

prediction methods. This study focuses on predicting breathing pattern, which is crucial to deal 

with system latency in the treatments of moving lung tumors. Predicting respiratory motion in 

real-time is challenging, due to the inherent chaotic nature of breathing patterns, i.e. sensitive 

dependence on initial conditions. In this work, nonlinear prediction methods are used to predict 

the short-term evolution of the respiratory system for 62 patients, whose breathing time series 

was acquired using respiratory position management (RPM) system.  Single step and N-point 

multi step prediction are performed for sampling rates of 5Hz and 10Hz. We compare the 

employed non-linear prediction methods with respect to prediction accuracy of Adaptive Linear 

Prediction (ALP) filters. A Local Average Method (LAM) and local linear methods (LLM) 

combined with a set of linear regularization techniques to solve ill-posed regression problems are 

implemented. For all sampling frequencies both single step and N-point multi step prediction 

results obtained using LAM and LLM with regularization methods are compared to ALP 

prediction filters for the selected patients. 
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1.3 Recurrence quantification analysis (RQA) of lung cancer 

patients’ breathing pattern 

Recurrence plots provide qualitative and quantitative information about breathing cycles 

even for short-time data series. In this section, Recurrence Quantification Analysis (RQA) is 

employed as a quantitative decision making tool to classify patients to be able to tailor 

personalized motion management treatment strategies. A fundamental property of deterministic 

dynamical systems and one typical for nonlinear dynamical systems is that states, i.e. 

trajectories, come arbitrarily close to one another after some time, which is also called recurrence 

of states. Eckmann et al. (Eckmann et al., 1987) have introduced a tool, with which one can 

visualize the recurrence of states in state space. Recurrence plots represent such a sub-space and 

enable one to investigate an m-dimensional state space trajectory through a two-dimensional 

representation of its recurrences. In this chapter, we build and quantitatively analyze the 

breathing pattern acquired for seven healthy volunteers. We compute six Recurrence quantifiers 

for all volunteer data. We also establish relationship between the RQA parameters with the 

NRMSE prediction error computed using LAM model. We also introduce Time-Resolved RQAs 

for automatic detection of Unstable Periodic Orbit (UPO), which can be used to intelligently 

coach the patients to maintain a comfortable reproducible breathing pattern. We finally derive an 

invariant quantity (second-order Renyi entropy) which is an important parameter describing the 

rate of loss of information in the chaotic attractor. This invariant parameter can give a very 

strong insight into predictability of breathing patterns. 
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1.4 Novel methodology for chaos control in breathing patterns of 

lung cancer patients 

Predicting respiratory motion in real-time is challenging, due to the inherent chaotic nature of 

breathing patterns, short-term prediction can however be achieved by non-linear state space 

based methodologies if an appropriate time delay and embedding is used. In addition, a much 

larger prediction horizon can be achieved is patients can be coached to closely follow a regular 

breathing pattern.   Any chaotic system has in its invariant set embedded countless set of UPOs 

of arbitrarily high periods. In this section, we examine a well explored area of chaos control and 

design a methodology for coaching patients. We introduce an in-house built breathing 

acquisition module which is used for acquisition of breathing pattern and locating the Unstable 

Periodic Orbit using Recurrence plot strategies. We use this as a breathing guide and assess the 

impact of using this guide on a volunteer using RQA methodology. Use of return maps based on 

intercycle breathing period (IBP) to establish fixed point, stable and unstable manifolds is also 

explored on the volunteer training data. We then provide a strategy for realtime targeting 

algorithms which can be directly applied on breathing waveforms to achieve chaos control. We 

complete the section with future directions and conclusions.   
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Chapter 2.Surrogate testing of breathing patterns of Lung 

Cancer Patients 

2.1 Introduction 

  Breathing is a neurophysiological process, controlled by the rhythmical centers which are 

not irregular or random (Rybak et al., 2007). To be able to control and predict patient’s breathing, 

it is important to understand these signals from a new perspective by considering breathing as a 

dynamical system. Establishing chaos in acquired time series signals is a problem that has been 

addressed in the physics literature at considerable depth over the last three decades. A direct 

approach is to test short time-series data sets for sensitive dependence on initial conditions, and 

existence of functions mapping precisely the past state of the system with the future. This was 

established in our background study with the presence of Largest Lyapunov Exponent (LLE) and 

determinism, respectively.  

However, it has been shown that non-chaotic and some linear stochastic processes can 

generate time series data which mimic low dimensional chaos. Therefore, surrogate data testing 

has been advocated which provides a formal statistical test of a null-hypothesis, such that the 

data are generated from a linear stochastic process. The idea of surrogate data hypothesis testing 

is to generate a set of artificial surrogate time series that resemble the original data and still are 

consistent with the null hypothesis. A test statistic that is pivotal to deterministic chaos, like 

short-term nonlinear prediction or correlation dimension, is used to test both the surrogates and 

the original data. If the test statistic value for the data is different from the ensemble of values 

estimated for the surrogates, then one may reject the underlying null hypothesis as being the 
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likely origin of the data. If the test statistic value for the data is not distinct from that for the 

surrogates, then one may not reject the null hypothesis. Initially, surrogate methods were 

intended as a method to check the results of dimensional analysis against the possibility of 

misdiagnosing a purely random signal as deterministic chaos. 

In this paper, we have implemented three popular methods of surrogate data for 16 patients and 

correlation dimension is used as the test statistic for hypothesis testing. 

2.2 Materials and methods 

Suppose x are scalar samples acquired at times ti separated by a fixed time interval ts, 

hence          , yielding the scalar time series S 

     

  {  }      {       }                    2.1 

Using the Takens’ embedding theorem (Takens, 1981) a time delay embedding in a m-

dimensional Euclidian space can be generated using the scalar time series S that preserves the 

topological properties of the attractor. In particular, Takens’ embedding theorem guarantees that 

ifm ≥ 2d + 1, the time delay reconstruction of the attractor formed by the m-dimensional state 

space vectors:  

   (   (   )     (   )           )            2.2 

is topologically equivalent to the original attractor whose state space is d-dimensional. In 

equation 1, xi are the original scalar time series data points and “τ” is the time delay. To estimate 

an optimal time delay, we have used the first local minimum of the mutual information function 

(Fraser and Swinney, 1986), since this yields an attractor reconstruction that is as open as 

possible. 
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We have used the method of false nearest neighbors (FNN) (Kennel et al., 1992) that  allows 

one to estimate the minimal number of dimensions necessary to “disentangle” the attractor. 

(Kennel et al., 1992).  The method is based on the assumption that an attractor of a deterministic 

dynamical system folds and unfolds smoothly with no sudden irregularities in its structure. A 

global false nearest neighbor analysis incrementally increases m until the number of false nearest 

neighbors approaches zero. False nearest neighbors are defined as sets of points that are very 

close to each other in dimension m = k but are not in dimension m = k +1. However, usually the 

time series data obtained using experimental techniques are contaminated by measurement noise 

and hence the dimension m + 1 may be regarded as optimum when the percentage of false 

neighbours for points in the m + 1 dimensional state space is less than a certain threshold which 

is set as an arbitrary number depending on the type of data one is dealing with.  

The three popular algorithms proposed address the null hypotheses of: (1) independent and 

identically distributed (i.i.d) noise (Algorithm 0), (2) linearly filtered i.i.d. noise (Algorithm 1) 

and (3) a static monotonic nonlinear transformation of linearly filtered noise (Algorithm 2) 

(Theiler et al., 1992; Schreiber, 1998; Schreiber and Schmitz, 2000). More recently, Small et al. 

(Small and Tse, 2002; Small et al., 2001) outlined an improved algorithm known as pseudo-

periodic surrogate (PPS) algorithm that preserves both stationarity and differentiability while 

testing a similar hypothesis. 

1. Algorithm 0 (Amplitude Randomized): These surrogates are generated by randomizing the 

order of the data in the original time series. The surrogates generated this way have the same 

rank distribution as the original data, but temporal correlation is lost and thus the surrogates 

provide a test of the hypothesis of independent and identically distributed (i.i.d.) noise.  
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2. Algorithm 1 (Phase Randomized): These surrogates generated by randomizing the order of 

the phases in the Fourier transform F(t) of the original time series data x(t). Randomizing the 

phases of F(t) destroys any non-linear structure of the original time series while preserving 

the linear correlations or power spectrum. The result is a realization of a stochastic process 

with the same mean, standard deviation, and autocorrelation as S(t). 

3. Algorithm 2 (Amplitude Adjusted Fourier Transform): This method of surrogate data 

generation, also called Gaussian Scaled Randomization is the most popular method and 

surrogates generated using this mimic a linear stochastic process passed through a nonlinear 

filter. A set of random numbers with Gaussian distribution equal to the length of original 

time series x (t) is first generated. The random numbers are then rearranged into a series s (t) 

whose rank distribution is the same as the original time series. Similar to Algorithm 1, phase 

randomization of the Fourier transform of s(t) is performed to generate z(t). Finally, 

surrogate G(t) is obtained by reordering the original data x(t) to have the same rank 

distribution as z(t). 

4. Pseudoperiodic surrogates (PPS): Stam et.al (Stam et al., 1998) and others observed that 

Algorithm 2 (AAFT) does not perform well in presence of strong periodic components in the 

original time series data. This could be because of end-mismatch problem which has been 

addressed by several authors (Schreiber, 1998; Schreiber and Schmitz, 2000). Data exhibiting 

cyclic behavior are inconsistent with the hypothesis of “Static monotonic nonlinear 

transformation of linearly filtered noise”. Small et.al. (Small et al., 2001) have proposed a 

surrogate data generation method that preserves the periodic structure of the original data, but 

destroys the small scale structures of the time series, such as chaotic, linear and non-linear 

deterministic structure.  The algorithm for this method is as follows  
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a) Construct the vector delay embedding from the scalar time series x(t) 

 ̃  [   (   )     (   )     ]
 
     (   )     …………..[2.3] 

b) Using time series data from index 1 to N- τw where  τw =m*(τ-1) is the window length.  

c) Call this attractor A.  

d) Choose an initial condition at random and call this s1 . This is  a vector with length m 

    ̃      (   )      

e) Let i=1.Choose a neighbor        , according to the probability distribution 

    (     )     (
 ‖     ‖

 
)            2.4

 

f) Set          as a successor to   . Increment i. 

g) Repeat step e and f till i=N. 

The generated time series (  ) is the surrogate time series. (.)1 is the scalar first coordinate of 

the vector. The generated vector time series is a stochastic trajectory, or random walk on the 

original attractor A. Therefore, the surrogates generated using this algorithm follow the same 

vector field as the original data.  However, they are contaminated with dynamic noise which 

destroys the fine inter-scale dynamic behavior. The attractor A is reconstructed from the 

original time series using Taken’s embedding theorem with an optimum value of τ and m 

calculated using first minimum of the mutual information method and FNN method, 

respectively.   Selection of appropriate noise level, i.e. selection of ρ is a key parameter in 

this method.  In this implementation, we choose a neighbor     of    according to the 

probability distribution shown in Equation 2.4. If noise radius, ρ, is too small, then the 

surrogate thus generated will be identical to the original attractor A. If ρ is too large, then the 

surrogate generated will be temporally uncorrelated and thus resemble i.i.d. noise.  We 

selected ρ to be the value which maximized the number of short segments (length=2) that are 
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the same between the original time series and the surrogate. As shown by Small et.al (Small 

and Tse, 2002; Small et al., 2001), the value of ρ thus selected provides the perfect balance 

between too much and too little noise.  

Test Statistic: Several test statistics such as mutual information, LLE, higher order moments, 

non-linear prediction error and correlation dimension have been used to test a given hypothesis 

using surrogate data (Hegger et al., 1999; Sugihara and May, 1998). We have used correlation 

dimension, shown to be a pivotal statistic (Theiler and Prichard, 1996), which is implemented 

using the correlation integral method introduced by Grassberger and Procaccia(Grassberger and 

Procaccia, 1983) as our test statistic of choice. The correlation dimension is an invariant measure 

of the attractor’s fractal dimension i.e does not depend on how the attractor is reconstructed and 

it is the most popular among other similar fractal dimension measures, such as the information 

and box-counting dimension. We first start by calculating the correlation integral on the time 

series embedded in m-dimensional space. 

 ( )  
 

 (   )
∑ ∑  (  ‖     ‖)

 
   

 
                              2.5 

Where   is the Heaviside step function  ( )                ( )           . Correlation 

integral counts the number of pairs of points that are closer than the distance   to each other, and 

hence gives an estimate of the probability that the attractor trajectory visits a given region of 

state space. In fact the correlation dimension is a lower bound for the box counting dimension, 

which measures the number of “boxes” needed to cover a geometrical object. For small    ( ), 

scales as a power law and is proportional to   D. Correlation dimension is defined as  

              
    (   )

    
               2.6 

The local slope of the graph of log(C(r)) vs log( ) is computed by the smooth derivative of 

log(C( )) with respect to log( ). Provided that the scaling C(r) ~   D 
exists at least for a 
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sufficiently large range of ε, a horizontal plateau of the local slope vs log( ) should be formed for 

this range of ε. In real world applications, reliable estimation of D can be hard (meaning that the 

variance of the local slope is large) which indicates that there is no clear scaling. In this context, 

we would like to use this graph of local derivative of C( ) to differentiate the original data series 

from surrogate data series which is either linearly or non-linearly filtered noise or pseudo 

periodic data sets. For random data where the ‘attractor’ is in effect embedded within itself, the 

correlation dimension will obviously just reflect the embedding dimension used. Therefore, as 

we can never embed random data in a sufficiently high state space, the value of d(E) will rise to 

infinity with increasing E. For any other periodic or chaotic attractor, however, once the 

embedding dimension is substantially twice greater than the dimension of the attractor the value 

of d should remain constant, by the above arguments. 30 surrogate data sets were generated for 

the 16 patients under study using Algorithm 1, 2 and PPS 

2.3 Results 

Original time series and surrogate data generated using Algorithm 1 and Algorithm 2 and 

PPS is shown in Figure 2-1 (a) through (d).  Figures 2-2 (b ) through (c) shows a comparison of 

correlation dimension  (  )       for original and the surrogate data sets generated using 

Algorithm 1,2 and PPS algorithm. It can be seen that the correlation dimension for the surrogate 

data is clearly distinguishable from that of the original data. 

Out of the 16 patient’s studies, 2 patients with highly regular breathing cycles showed strong 

periodic orbits. The breathing signal of one of these patients is shown in Figure 2-3(a). The plot 

of the correlation dimension for original and surrogate data sets generated using Algorithm 1 and 

Algorithm 2 is shown in Figures 2-3(b) and 2-3(c) respectively, which clearly shows that we can 

reject the null hypothesis, meaning that the data is neither a linearly filtered i.i.d noise nor is it 
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generated from a linear noise process with a static non-linear filter. However, this does not test if 

the original data is periodic in nature. As shown in Figure 2-3 (d), the correlation dimension of 

original data cannot be distinguished from the pseudoperiodic surrogates, indicating that the 

original signal is mainly periodic in nature. Using the PPS method, one can clearly distinguish is 

the original signal is periodic or chaotic in nature. 

 

Figure 2-1: Original Time series and surrogate data generated using Algorithm 1 and Algorithm 

2 and PPS is shown in figures (a) through (d) respectively.  

 

 

(a) (b) 

(c) (d) 
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Figure 2-2: Original time series is displayed in figure (a) and comparison of correlation 

dimension generated using Algorithm 1 and Algorithm 2 and PPS is shown in figures (b) through 

(d) respectively.   

 

 

 

 

 

 

(a) (b) 

(c) 
(d) 
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Figure 2-3: Original time series is displayed in figure (a) and comparison of correlation 

dimension generated using Algorithm 1 and Algorithm 2 and PPS is shown in figures (b) through 

(d) respectively. The PPS algorithm can identify periodic time series and hence the hypothesis 

that the time series has strong periodicity is not rejected. 

2.4 Discussion 

In order to avoid our data analysis to reflect our prejudice about the underlying system, we 

use surrogate data testing to find the least interesting explanation to represent a fair account of 

the structures that are present in the data that cannot be ruled out based on the data. It has been 

shown that non-chaotic and some linear stochastic processes can generate time series data which 

mimic low dimensional chaos. So, The idea of surrogate data hypothesis testing is to generate a 

set of artificial surrogate time series that resemble the original data and still are consistent with 

the null hypothesis .In this work, we, have implemented 3 different types of algorithms for 

(a) (b) 

(c) (d) 
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generation of surrogate data. We formulated 3 null hypotheses, to test if the data is generated 

from any of the following three processes namely: independent and identically distributed noise 

surrogate, Gaussians scaled linear noise passed through a nonlinear filter, and pseudoperiodic 

surrogate. We used correlation dimension, which is a invariant quantity as the test statistic to test 

the hypothesis. From the test cases, we found that time series of interest is clearly not generated 

from linear filtered i.i.d, linear noise passed through a nonlinear filter and is not a pseudoperiodic 

data set. The PPS algorithm is rather strong and was successful in identifying one patient with 

strong periodicity while the other two methods of surrogate data testing failed. Recognizing and 

establishing deterministic chaos in time series is an important step towards application of other 

nonlinear algorithms for prediction and control.  

However, the computations for correlation dimension can be very intensive and takes an 

enormous amount of computation time and memory for calculation of D2 for 30 surrogates. This 

analysis can be tested using the second order Renyi Entropy(K2), also an invariant quantity, 

introduced in Chapter 4 which can be calculated from Recurrence Plots and is comparatively less 

resource and time intensive than the box counting algorithm.  

The work presented in this chapter reinforces the chaotic nature of breathing pattern and thus 

opens the way for nonlinear analysis and validates the use of promising techniques for prediction 

and control which are explored in the coming chapters. 
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Chapter 3. Time series prediction of lung cancer patients’ 

breathing pattern based on nonlinear dynamics 

3.1 Introduction 

Tumor motion caused by patient breathing creates challenges for accurate radiation dose 

delivery to a tumor while sparing healthy tissues. All respiratory-compensating methods 

developed or being investigated require predictive filters to compensate for system latencies. 

Combination of real-time imaging with a powerful prediction engine is a key to successful tumor 

motion management. The review article by Verma et.al presents mathematical models for all 

existing prediction algorithms that have been developed in the last decade. They summarize that 

all studies indicate that the predictions with long latency are error prone and aren’t accurate 

enough to be implemented clinically (Verma et al., 2011). With the advent of newer tumor 

tracking technologies such as the Calypso tracking system (Calypso, Seattle, Washington), 

RealEye
TM

 Motion (Navotek Medical Ltd, Yokneam, Israel), or real time MR Radiotherapy 

systems like the one being developed by Viewray (Viewray Inc., Cleveland, OH) with which it 

will be possible to acquire real-time MR images at a frame rate of 4 images/sec the presented 

non-linear prediction methods can be directly implemented on the tumour motion coordinates. 

While linear predictive (LP) models, such as an infinite impulse response (IIR) prediction filters, 

have been employed with great success for short time horizon of the order of 50-200 ms for 

deterministic non-linear systems that exhibit sensitive dependence on initial conditions, their 

prediction however accurate, as shown in this work, deteriorates for N-point predictions for 

different sampling/imaging rates especially in the presence of measurement noise. We have 

already established that the breathing of lung cancer patients can be described as a 5 to 6 
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dimensional nonlinear, stationary and deterministic system that exhibits sensitive dependence on 

initial conditions, and hence any prediction models can only be used successfully for short time 

prediction horizon. The intended purpose of this chapter is to present different non-linear 

prediction algorithms by viewing the 1D time series as flow vectors generated from a 

multidimensional dynamical system. This is done by reconstructing the 1D time series in its true 

dimension by using time-delay embedding. We use nonlinear prediction methods to predict the 

time evolution of the breathing pattern for 62 lung cancer patients for a time ahead prediction 

horizon of 400 to 3000 ms. Both single step and N-point multi-step prediction are performed for 

sampling rates of 5 Hz and 10 Hz. We compare the employed non-linear prediction methods with 

respect to the prediction accuracy of an Adaptive LP (ALP) model employing an IIR prediction 

filter. 

3.2 Materials and methods 

3.2.1 State space representation 

Scalar time series data of respiratory signals were obtained using the RPM system with a rate 

of 30 frames/sec. Suppose xi are scalar samples acquired at times ti separated by a fixed time 

interval ts, yielding the scalar time series . Using time delay 

embedding, the data can be represented in an m-dimensional state space as shown in equation 

(3.1), where τ is the embedding time delay and m is the embedding dimension. 

 ̃  (   (   )     (   )           )                  3.1 

   NTxS
Tii ,,1,2 ; 


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3.2.2 Adaptive Linear prediction model (ALP model) 

A linear predictor is a system that predicts the future output signal as a linear function of a set 

of inputs (Sharp et al., 2004; Vedam et al., 2004). We consider linear predictors that are based on 

an AR (autoregressive) model, i.e that have the form  

  ̂    ∑      ( )   
   
   

      ̂        
              3.2 

Where xt is the amplitude of the scalar signal at time t, m is the order the AR model. The 

estimated signal at  ̂   is therefore predicted as a linear combination of the known previous 

positions xt through xt−j.ts. Note that the noise component has been suppressed, which for 

prediction purposes has to be averaged over leaving the AR part only. In case of adaptive linear 

AR prediction, the optimum set of coefficients {  }  {      }are continually found by minimizing 

the mean squared error (εt+Δ) of predictions on a set of training samples based on the respiratory 

motion data collected 60 seconds prior, i.e. over a signal history length (SHL) of 60 seconds. 

Using the so determined optimum set of coefficients the breathing signal was predicted 400-3000 

ms into the future. 

3.2.3 Model free local prediction method in state space 

The simplest form of local prediction is to consider the most similar segment of a given 

scalar time series in the past, or stated differently, one uses a nearest neighbor point,  ̃  for some 

time index t1<t-τ in the past, to form  ̃    in order to arrive at a prediction for the future time 

series point N-time steps ahead,  ̃   . The idea of analogies, i.e. finding similar segments of 

scalar time series data, is directly related to the property of recurrence of orbits of dynamical 

systems, which furnishes the theoretical underpinning for the use of local predictions (Kantz and 

Schreiber, 2004; Farmer and Sidorowich, 1987). Hence, the problem of predicting the future 
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value of  ̃  N-time steps ahead is reduced to finding the nearest neighbor point to the point  ̃  in 

the past and using it to estimate  ̂   . Even if the original dynamics is chaotic, close orbits 

diverge only gradually and hence some degree of short-term prediction can be achieved using 

this method. However, if the reconstructed state space dimension is too low, then orbits starting 

from   and its neighbors may not deviate as smoothly as the original orbits. Therefore, careful 

state space reconstruction is of immense importance for local prediction, and this does not 

simply rely on the selection of embedding dimension, m, but rather on the selection of 

embedding window length,  .The embedding window length   (   )  is the length of 

data segments on the trajectory of the underlying attractor. For a constant embedding window 

length τw, state space reconstructions for varying m (adjusting τ accordingly, so that    

(   )  is constant) are qualitatively the same (Kugiumtzis, 1996). The method described here 

can be further improved by taking the average of the mappings of the k nearest neighbors in the 

past,   { ̃ ( )    ̃ ( )}.  This approach, also called the local average model (LAM) has limited 

prediction capability for sparse data, but for higher dimensional data it performs as well as other 

methods and sometimes better than the more advanced methods.   For very noisy data, model 

free methods can work very well.  

3.2.4 Functional approximation: Local Linear methods in state space 

When building a local linear model one constructs an approximation of the tangent plane at a 

given target point  ̃ as described in detail below. Local linear models (LLM) are linear 

autoregressive models that hold only for a region around the target point  ̃  formed by the nearest 

neighbor points sometime in the past (Farmer and Sidorowich, 1987). The parameters are 

estimated by ordinary least squares (OLS) minimization and this usually requires that k > m + 1, 

where k is the number of nearest neighbors used in the model and m is the embedding dimension. 
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The prediction N-time steps ahead is then computed by evaluating the model equation for the 

target point,  ̃ . Note that the solution for the model parameters may be numerically unstable if k 

is close to m. 

 In local linear prediction with noisy data, the OLS solution can have large variance and 

regularization methods, designed to be more robust against noise, can provide better results. 

Regularization can be achieved by down weighting some or all of the singular directions by 

choosing filter factors less than 1 (cf. to equation 3.7). Two different types of regularization 

methods to the local linear models are implemented here and they are specified by the value of 

the so-called truncation parameter q. Assuming a current state  ̃  , the task is to make N-time 

step ahead predictions.  

1. The OLS solution for the parameters of the local linear model is regularized using 

principal component regression (PCR) (Kugiumtzis, 2002a; Kugiumtzis et al., 1998)  

(Xie and Kalivas, 1997). PCR rotates the natural basis of local state space to match the 

basis formed by the principal components found using singular value decomposition 

(SVD) of the matrix formed by the nearest neighbor points. Then the space is projected 

onto the subspace formed by the first q principal axes, the solution for the parameters is 

then found in this subspace and it is transformed back to the original state space to yield 

the PCR regularized solution for the parameters. In this way, the estimated parameters 

have smaller variance (they are more stable) at the cost of introduced bias. Moreover, 

PCR may reduce the effect of noise. A necessary condition for the PCR solution is that k 

> q + 1, so that stable solutions can be reached even when m > k provided that the 

truncation parameter is sufficiently small. The value of q is selected by minimizing the 

error between the predicted value and the actual value for the training data set. 
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2. Partial Least Squares (PLS): Strategies to select first few components using Principal 

Component Analysis (PCA) for the PCR technique use the input matrix only and do not 

take into account the output vector y. In contrast to PCR, PLS finds components of the 

input matrix that are also relevant to the output vector y. PLS regression uses a projection 

into the subspace spanned by the Krylov vectors, which are assumed to be linearly 

independent. Qualitatively, the PLS estimator shrinks the OLS estimate by taking into 

account not only the size of the singular values, but also the size of the Fourier 

coefficients. (O.C. Lingizerde and N. Christophersen, 1997). 

We now embark on the detailed description of the methods described above and the 

algorithms associated with them.  For data generated by a deterministic dynamical system, there 

exists a functional dependence of     on  ̃        ( ̃ ). The graph of the reconstructed 

dynamics for N-time steps ahead, F
N
, is a smooth surface embedded in      . Around the local 

neighborhood of  ̃ , the surface may be locally approximated by the tangent plane, i.e. the 

linearization of F
N
 at the center of mass of the neighbourhood around  ̃ ,  

    
      

 

    ̃   ̅           ̅  

      ( ̅)

                                                              3.3 

Where   and    are centered differences for  ̃  and      and    ( ̅) is the gradient of F
N
 

evaluated at  ̅. 

Algorithm:  

a) Using the method of delays, the time series data is represented in a m-dimensional 

embedded space by delay vectors 

 ̃  [   (   )     (   )      ]
 
     (   )                     3.4 
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b) Given a training subset   consisting of delay vectors, and a target point  ̃  that is not 

included in  , we are interested in the local linear prediction of  ̃  

c) Let  ̃  ( ̃ ( )  ̃ ( )    ̃ ( ))
 
     be the k nearest neighbors of  ̃ in  , arranged 

in increasing order according to their distance from  ̃ .   ̃is a k x m matrix in which each 

row is given by a  nearest neighbour point in the m-dimensional embedding space. Let   

 ̃  (  ( )     ( )       ( )  )
 
   be the response vector of length k formed from 

the last components of the k time advanced nearest neighbour vectors. 

d) Let   ̅be the transpose of the row vector containing the averages of the m columns of  ̃ 

and  ̅ be average of the components of  ̃ 

 ̅  (

 

 
∑   

 ( ) 
   

 
 

 
∑   

 ( ) 
   

)                                                 3.5  

 ̅  
 

 
∑ ( )

 

   

   

Then centered versions of the nearest neighbor matrix,  ̃                      ̃ of the 

matrix  ̃are obtained as follows:    ̃    ̅ , and    ̃   ̅ , where 1 is a   

  vector of ones. Furthermore, the centered versions of the target point and the response 

are given by:     ̃    ̅and          ̅. 

e) For prediction, the following model is then assumed for the centered versions of the 

response vector       , where b is a vector of m unknowns and ε is a random error 

with zero mean and covariance matrix    ( )     , where I is a k x k identity matrix. It 
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has been shown that   only weakly depends on noise and hence the noise component can 

be safely ignored in the following steps. (Kugiumtzis et al., 1998) 

f) For the prediction estimation of X, the following Singular Value Decomposition (SVD) 

of X is assumed. 

                  
      (         )

                     3.6 

Where      (   )is the rank of                  are the ordered non-zero 

singular values of X. The columns of         span the r-dimensional range spaces 

 ( )    and  (  )    , respectively. R(X) is commonly referred to as the signal 

space.  

Prediction estimators: 

g) Once           are computed, for a given centered target point     
 , the 

prediction estimator for the centered response    is defined by  ̂   ̂
   , where  ̂ is an 

estimate for  . Here, we consider estimators for   that have the following form  

 ̂           ∑
  

  
(  

  )  
 
                (       )     3.7 

In fact equation (3.7) encompasses most of the well-known regularization estimators, 

differing only their choice of the filter factor matrix  . (Kugiumtzis, 2002b; Kugiumtzis 

et al., 1998) 

Ordinary Least squares regression (OLS): The OLS regression estimate,  ̂   , is found by 

minimizing the l2-norm of the quadratic equation,     ‖    ‖ 
  and  ̂   , can be estimated as 

follows: 
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 ̂     
            ∑

 

  
(  

  )  
 
              3.8 

where            denotes the generalized Moore-Penrose pseudo-inverse of  . This 

estimator is obtained from equation 3.7 by setting the filter factors                     .  

This amounts to allowing all directions of R(X) spanned by the columns of U to  contribute to the 

OLS regression estimate.  

Principal Components regression (PCR): On the other hand, the PCR regression estimate uses a 

subspace of R(X) spanned by the first few columns (q<r) of U and the filter factors are chosen 

such that                     and                     . The rationale for this 

approach is that the last r-q columns of U are assumed to be on the order of the noise level, and 

hence do not provide any additional information about the true y and b. In this study, we have 

used q=r-2 for all the breathing patterns considered.  

Partial Least Squares regression (PLS): PLS regression uses a projection into the subspace 

spanned by the Krylov vectors to estimate  ̂   . The Krylov vectors are assumed to be linearly 

independent and are given by equation (3.9) 

     (   )     (   )                  3.9 

Let us denote by K the k x q matrix formed using the q Krylov vectors as columns. The 

matrix K is then used to define the following operator: 

   (   )     

One can easily verify that    = P, and hence P defines a projection operator into the 

subspace spanned by these q linearly independent Krylov vectors. Using this projection operator 

the partial least square estimator for b can be written as follows: 
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 ̂     
                   3.10 

Qualitatively, the estimator shrinks the OLS estimate by taking into account the size of 

singular values as well as the size of Fourier coefficients. 

3.2.5 Prediction Error Estimator 

To validate the predictive power of a model, the available data set is split into two parts, one 

for fitting and one for testing. Cross-validation procedures could be used here as well. The 

normalized root mean squared error (NRMSE), computed on all points in the test set, can be used 

to measure the quality of prediction. A value of close to 1 for the NRMSE means that the 

prediction is as good as the mean value prediction whereas a value of 0 is indicative of a perfect 

prediction. The N-step time prediction error can be measured using NRMSE as follows: 

      √
(  (     ))∑ (      ̂   ) 

   
     

(   )∑ (    ̅)
  

   

         3.11 

Where  ̅ is the sample mean of the data,      for t= n+1, … ,M-N, are the response values of the 

test set, and n denotes the number of time series points in the training set. 

For both the model free and local linear prediction method, the number of nearest neighbors 

(k) and the radius of neighborhood around the target point are two of the main parameters. In the 

current work the number of neighbors has been fixed to 5 for all patient breathing pattern 

considered and the radius of neighborhood was varied from 0.02 to 0.2 units to achieve this. The 

success of the prediction with PCR and PLS relies heavily on the proper selection of the 

regularization parameter, q. For PLS and PCR, cross-validation (CV) techniques are commonly 

used, in which the effect of the shrinkage parameter q on a measure such as Root Mean Square 

Error (RMSE) is evaluated (Lukas, 1998). Other methods for estimation of q, include finding a 

threshold value that represents the noise variance of the time series signal or by placing a 
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condition that singular values account for at least some proportion of the total data variation in 

X. In this study, the value of q was chosen as r-2 for both PCR and PLS techniques by qualitative 

analysis of the predicted signals. 

3.3 Results 

The methods described above have been applied to the breathing patterns of 62 patients. The 

data set for each patient was divided into a training set and a testing set consisting. The length of 

the training set was varied from 10 to 200 sec, depending on the total length of breathing cycle 

collected for a particular patient, yielding for a sampling rate of 5 Hz, 10, Hz, and 30 Hz values 

of n varying between 50, 100, 300 to 1000, 2000, 6000  respectively. Prediction for all breathing 

patterns was done using the ALP method and the space methods discussed above, i.e. the LAM, 

LLP: OLS, PLS and PCR algorithms. The length of prediction for N-step prediction was varied 

from 400 ms to 3000 ms for 5 Hz and 10 Hz sampling rates. Among the 62 patients selected 

randomly, we found 9 patients where the NRMSE of the nonlinear methods were not 

significantly better than ALP. Retrospectively, we present the data for 62 patients binned into 

separate groups, hereafter referred to as Bin1 and Bin2. Bin 1 consists of 50 prediction cases 

where the state-space methods are significantly better than ALP, especially for longer prediction 

times whereas Bin 2 consists of 12 patients, further divided into Bin 2a and Bin2b. Bin 2a 

consists of 9 patients where prediction by either method does not yield an adequate prediction of 

the breathing pattern since all prediction models depend mainly on the history of the signal, i.e. 

prediction of a breathing pattern that does not repeat itself to some extend in the observation 

window cannot be successfully or accurately predicted. However, if the breathing pattern were to 

be observed for a very long time, accurate predictions can be made, however, this can be 

impractical for radiation therapy applications. Bin 2b consists of 3 patients for which both non-
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linear prediction and the adaptive linear prediction methods performed equally well, since their 

breathing was highly regular. 

Figure 3-1 shows the predicted signal for one of the patients in the Bin1 (Patient 1) using 

LAM, OLS, PLS, PCR prediction methods that are contrasted to the ALP prediction for 1000 ms 

ahead. It can be seen that all state-space based regularized prediction methods perform better 

than the ALP model. Furthermore, Figure 3-1 shows that the LAM performs as well as other 

model based regularized prediction methods. It can be clearly seen from Figure 3-1 that the ALP-

model fails for multi time step prediction of N-time steps (N > 1). It is important to note that 

most studies in the literature involve only single time-step prediction for different imaging 

rates/sampling rates (5-30 Hz). We find that the state-space based methods for multi time-step 

prediction for the two imaging rates (10 Hz and 5 Hz) yield a better predication than the ALP 

model. Figure 3-2 shows the full signal and predicted signal for one of the patients in Bin1 

(Patient 2) using only 18 seconds of breathing for training of both nonlinear and linear prediction 

methodologies. It can be seen that nonlinear methods perform well in spite of the short training 

period. The NRMSE for the above two patients for all methods for 1000ms prediction at both 10 

Hz and 5 Hz sampling rate is tabulated in Table 3-1. Histogram plot for all patients in Bin1 for 2 

sec prediction time at 5Hz and 10 Hz is shown in Figure 3-3(a) and Figure 3-3(b) respectively. 

The mean NRMSE as a function of prediction time for all the 50 patient signals in Bin1 is shown 

in Figure 3-3 (c) for both 10 Hz and 5 Hz sampling rates.   
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Figure 3-1: 5 time steps ahead prediction for the Patient 1 with  Respiratory Cycle shown in 

(a) predicted with (b) ALP-OneStep (0.32) (c) LAM (0.37) (d) OLS (5.66), (e) PCR (0.37), and 

(f) PLS (0.39) are compared with the ALP model (0.63). The numbers in parenthesis are the 

respective NRMSEs. Signals were predicted 1000 ms ahead employing a sampling frequency of 

5Hz 

(a

)

(b

)

(c

)

(d

)

(e

)

(f) 
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Figure 3-2: 5 time steps ahead prediction for the Patient 2 with  Respiratory Cycle shown in (a) 

predicted with (b) ALP-OneStep(0.17) (c) LAM (0.34) (d) OLS(43.96), (e) PCR(0.32), and (f) 

PLS(0.34) are compared with the ALP model(0.56). The numbers in parenthesis are the 

respective NRMSEs. Signals were predicted 1000 ms ahead employing a sampling frequency of 

5Hz. 
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Figure 3-3: Histogram distribution for all patients in Bin 1 predicted with LAM (Green) and 

ALP prediction(Blue) for 2000 ms prediction at (a) 10 Hz (b) 5 Hz  is shown. 3-.3 (c) shows 

NRMSE as a function of Prediction Time for LAM (Red) and ALP (Blue) at 10 Hz(dotted) and 5 

Hz (solid) sampling rates. 

 

Figure 3-4(a) and 3-4(b) shows the complete cycle and predicted signal for one of the patients in 

Bin2a (Patient 3) for LAM and ALP methods for 1000ms ahead prediction.  It can be seen that 

both methods are unable to yield an adequate prediction of the breathing pattern for the patient 

shown in Figure 3-4(a).   Histogram plot for 9 patients in Bin2a for 2000ms prediction time at 

5Hz and 10 Hz is shown in Figure 3-5(a) and Figure 3-5(b) respectively. The mean NRMSE as a 

function of prediction time for all the 9 patient signals in Bin2a is shown in Figure 3-5 (c) for 10 
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Hz and 5 Hz sampling rates. Figure 3-6(a) and 3-6(b) shows the complete cycle and predicted 

signal for one of the patients in Bin2b for LAM and ALP methods for 1000ms ahead.  It can be 

seen that both methods perform equally well for the patient 4 shown in Figure 3-6(a). 

 

Figure 3-4: 5 time steps ahead prediction for the Patient 3 with Respiratory Cycle shown in (a) 

predicted with (b) LAM (0.93) is compared with the ALP model (1.58). The numbers in 

parenthesis are the respective NRMSEs. Signals were predicted 1000ms ahead employing a 

sampling frequency of 5Hz. 
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Figure 3-5: Histogram distribution for all patients in Bin 2a predicted with LAM (Green) and 

ALP prediction(Blue) for 2000 ms prediction at (a) 10 Hz (b) 5Hz  is shown. 3.5(c) shows 

NRMSE as a function of Prediction Time for LAM (Red) and ALP (Blue) at 10 Hz(dotted) and 5 

Hz (solid) sampling rates. 
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Figure 3-6: 5 time steps ahead prediction for the Patient 4 with Respiratory Cycle shown in (a) 

predicted with (b) LAM (0.43) is compared with the ALP model (0.49). The numbers in 

parenthesis are the respective NRMSEs. Signals were predicted 1000 ms ahead employing a 

sampling frequency of 5Hz. 

Prediction 

Time(sec) 

0.4 0.8 1 1.5 2 3 

Adaptive Linear Prediction (ALP): 5Hz (10Hz) 

Patient 1 
0.33(0.29) 0.56(0.52) 0.63(0.56) 0.85(0.75) 0.97(0.93) 1.1(1.07) 

Patient 2 
0.26(0.25) 0.49(0.49) 0.56(0.59) 0.81(0.73) 0.94(1.03) 1(1.05) 

Patient 3 
1.56(1.56) 1.70(1.87) 1.56(1.83) 1.78(2.17) 1.72(2.10) 1.81(2.26) 

Patient 4 
0.40(0.51) 0.47(0.94) 0.49(1.05) 0.50(1.19) 0.50(1.26) 0.57(1.32) 

LAM Prediction: 5Hz (10Hz) 

Patient 1 
0.31(0.27) 0.36(0.34) 0.37(0.37) 0.44(0.43) 0.47(0.53) 0.52(0.57) 
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Patient 2 
0.22(0.22) 0.26(0.26) 0.31(0.34) 0.34(0.36) 0.40(0.42) 0.50(0.52) 

Patient 3 
0.84(0.80) 0.97(0.88) 0.93(0.91) 1.05(0.99) 1.05(1.00) 1.3(1.22) 

Patient 4 
0.27(0.30) 0.38(0.39) 0.43(0.35) 0.4(0.40) 0.5(0.46) 0.54(0.58) 

 

Table 3-1: NRMSE for different prediction times is listed for the sample patients 1-4. 

3.4 Discussion 

Robust implementation of any lung tumor motion management technique solely depends on 

goodness of breathing pattern prediction because of system latency issues. Exactness of results 

obtained based on linear or nonlinear prediction methodologies are based how closely our used 

methodology is able untangle the actual dynamics of the given system. From the cohort of 

patients studied, our results indicate that N-step ahead non-linear prediction methods yield better 

prediction results than an N-step ahead adaptive linear autoregressive prediction model (cf. 

Figures 3-3 and 3-5). Hence, we may consider that the use of non-linear prediction methods for 

prediction the breathing pattern of lung cancer patients may lead to improved, robust and 

accurate long-term prediction that can be used to account for system latencies. It is well known 

that variations in breathing pattern, during the course of treatment, are a major cause for the 

changing intrafraction tumor motion trajectory.  Thus, currently, many research groups are 

developing or have developed prediction engines in order to maneuver the moving tumor during 

radiation therapy. The error in prediction due to the sensitive dependence on initial conditions for 

all the algorithms can be estimated. This error estimation is more closely related to  prediction 

horizon in the field of nonlinear chaotic dynamics and is nothing but an estimate of how far into 

the future one can predict a signal for a given error threshold. It has been shown that a prediction 
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engine based on nonlinear dynamics has a larger prediction horizon than other methods if an 

appropriate time delay and embedding dimension are chosen, which can be seen by the results 

presented for patients in Bin1. Proper time delay and embedding dimension allows one to 

reconstruct an attractor in which the presence of false nearest neighbors that can lead to incorrect 

prediction is minimized (Arslan Basharat, 2009; Kantz and Schreiber, 2004).  

In our multi time-step prediction using local state space methods, the NRMSE is comparable 

to or better than well-established single time-step prediction using the ALP-model. Among, the 

local space methods, it can be seen that LAM performs as well as the LLMs. It has been shown 

that Local linear models with OLS work well with noise free or low noisy data (Kugiumtzis et al., 

1998). When   measurement noise is present, X tends to be better conditioned. However, the 

prediction capability of OLS deteriorates because the part of the OLS solution that relates the 

directions masked with noise does not contain any useful information that can be used to predict 

the future signal.  It can be seen from the results in this study that OLS does not perform as good 

as regularized prediction methodologies PCR and PLS, which have performed equivalently on 

our measured data.  

With the advent of newer tumour tracking technologies such as the Calypso tracking system 

(Calypso, Seattle, Washington), RealEye
TM

 Motion (Navotek Medical Ltd, Yokneam, Israel), or 

real time MR Radiotherapy systems like the one being developed by Viewray (Viewray Inc., 

Cleveland, OH) with which it will be possible to acquire real-time MR images at a frame rate of 

4 images/sec the presented nonlinear prediction methods can be directly implemented on the 

tumour motion coordinates. It can be seen that performance of an ALP model is frequency 

dependent and deteriorates at 10 Hz, and this is mainly due to the presence of noise which 

contributes to the determination of model parameters.  However, performance of the LAM and 
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LLP models are not frequency dependent since they do not significantly worsen for either 

sampling rate (see Figures 3-3 and 3-5). Thus, based on the cohort of patient breathing patterns 

analyzed for this study, the local state-space prediction models will be more desirable for 

prediction of real-time tumor coordinates; specifically LAM models, since they are 

computationally inexpensive and thus are more desirable.  

The work presented in this paper can be extended in several ways for tracking tumor motion 

in real time. One can, for example, model breathing pattern based on neurophysiologic 

mechanisms. Another possibility is to use chaotic dynamics to control and guide patients 

breathing for regularity and reproducibility.  
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Chapter 4. Recurrence Quantification Analysis of lung 

cancer patients’ breathing pattern 

4.1 Introduction 

 Clinically “real-time” tracking of tumor motion where the treatment can be actively and 

variably adapted in concordance with intrafractional changes is made available in the Cyberknife 

(Accuray, Sunnyvale, CA) (Shirato et al., 2000; Seppenwoolde et al., 2007; Nuyttens et al., 

2006).  Another commercially available system is the three- or four-dimensional Calypso 

electromagnetic tracking system (Varian Medical Systems, Palo Alto, CA) (Sawant et al., 2009). 

Many authors have recognized the importance of identifying patients suitable for advanced 4D 

treatment methodologies. Mechalakos et al. examined treatment plans for 12 patients receiving 

radiation therapy for NSCLC. They found that the dose to 95 %( D95) of the gross tumor volume 

(GTV), changed on an average by only 1.4% when normal breathing effects were incorporated. 

However, with “heavy breathers,” the D95 changed by almost 10%. Therefore, they conclude 

that patients with a large respiratory motion could have significant effects, and thus these 

patients should be identified (Mechalakos et al., 2004).  The simplest measure would be to 

distinguish patients based on the extent of tumor motion. Gomez et al. (Gomez and Chang, 2011) 

in their review paper state that at their institution, in patients whose tumor motion is less than 1 

cm, a “free-breathing” technique is typically used, with the creation of an ITV or iGTV and 

radiation treatment delivery in all phases of the breathing cycle. If the target volume moves more 

than 1 cm and the patient can breathe reproducibly, then radiation is either timed with certain 

phases of the breathing cycle while the patient breathes freely, or the patient is instructed to hold 
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their breath while radiation is delivered at deep inspiration (DISB). They also utilize visual 

and/or audio feedback guidance for patients who can comply with these devices. 

The phrases that call for our attention are “regularity or reproducibility of breathing” and 

“compliance of patients for coaching”.  Based on these key parameters, one could use patient 

specific approaches to design 4D treatments. A basic flowchart elucidating this concept is shown 

in figure 1. Measures to quantify the regularity and reproducibility of breathing should be 

investigated and we will attempt to do so using recurrence plot methodologies based on 

nonlinear dynamics.  We have investigated the usefulness of Recurrence Plots (RP) in previous 

work (Tewatia et al., 2011). RPs are a 2D projection of a higher dimensional state space that 

represents how close states are to one another in a m-dimensional state space. Here we will 

extend our previous work using Recurrence Quantification Analysis (RQA), which uses 

quantifiers to measure predictability and complexity of breathing patterns. In the current work, 

we use the RPM system as a surrogate motion indicator although the results and methods 

developed here are also applicable to other technologies such as the Calypso electromagnetic 

tracking system (Varian Medical Systems, Palo Alto, CA) , the RealEyeTM Motion tracking 

system (Navotek Medical Ltd, Yokneam, Israel), or real time MR Radiotherapy systems like the 

one being developed by Viewray (Viewray Inc., Cleveland, OH) and Philips (Philips, Eindhoven, 

Netherlands). We discuss the methods employed in some detail in section 4.2. In section 4.3 we 

report on the results we have obtained using volunteer RPM data.  In section 4.4 we discuss the 

implications of our findings and point to possible future directions this work could engender. 
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Figure 4-1: Flowchart showing a decision tree for 4D treatment strategy using Recurrence 

plot based on nonlinear dynamics. 

4.2 Methods and Material 

4.2.1 State space representation 

A fundamental property of deterministic dynamical systems and one typical for nonlinear 

dynamical systems is that states, i.e. trajectories, come arbitrarily close to one another after some 

time, which is called recurrence of states. Eckmann et al. (Eckmann et al., 1987) have introduced 

a tool, with which one can visualize the recurrence of states xi in state space. A reconstructed 

state space does not always have a dimension that is low enough so that a graphical 

representation of the attractor trajectory is possible. To visualize higher dimensional state spaces 
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(m > 3) one can project them into special two or three-dimensional subspaces. Recurrence plots 

represent such a subspace and enable one to investigate an m-dimensional state space trajectory 

through a two-dimensional representation of its recurrences.  

Recurrence of a state at time i at a different time j is marked within a two-dimensional square 

matrix in which both rows and columns represent time. The pixel (i, j) represents the Euclidean 

distance between the two corresponding trajectory points. This representation is called a 

recurrence plot (RP). In an unthresholded RP (UTRP), the pixel having coordinates (i, j) is grey-

shaded according to the numerical value of the Euclidean distance between the points  and  in a 

thresholded RP (TRP), the pixel having coordinates (i, j) is black if the distance falls within a 

specified threshold corridor and white otherwise.  

The thresholded RP can be mathematically expressed as follows  

      (  ‖     ‖)       
                       4.2 

Where N is the number of points considered, ε is the threshold distance,   denotes the 

Euclidean norm and   is the Heaviside function. The purpose of RPs is the visual inspection of 

higher dimensional state space trajectories. Recurrence Plots exhibit characteristic large scale 

and small-scale patterns, the former were denoted by Eckmann et al. (Eckmann et al., 1987) as 

typology and the latter as texture. Recurrence plots exhibit characteristic large-scale and small-

scale patterns that are caused by the dynamical behavior of the non-linear system being studied 

e.g., diagonals (similar local evolution of different parts of the trajectory) or horizontal and 

vertical black lines (state does not change for some time).  

The localization and quantification of Unstable Periodic Orbits (UPOs) for chaotic attractors 

is very important, since the attractor a chaotic non-linear system is the closure of all its UPOs. A 

trajectory of a non-linear dynamical system can be regarded as jumping from one UPO to the 
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next. RPs can be used to localize UPOs in a chaotic time series (Bradley and Mantilla, 2002). 

When the trajectory of the system comes close to an UPO, it stays in its vicinity for a certain 

time interval, whose length depends on how unstable the UPO is. This is reflected in the RP, as 

the pattern corresponding to periodic movement and consists of uninterrupted equally spaced 

diagonal lines.  

Zbilut and Webber (Zbilut et al., 1998) have developed recurrence quantification analysis 

(RQA) to quantify an RP. They have defined measures using the recurrence point density and the 

diagonal structures in the recurrence plot, the recurrence rate, determinism, the average and 

maximal length of diagonal structures, and entropy. A computation of these measures in small 

windows moving along the main diagonal of the RP yields the time dependent behavior of these 

variables and, thus, makes the identification of transitions in the time series possible. The RQA 

measures are based for the most part on the distribution of the length of the diagonal structures in 

the RP. In this work respiratory time series signals were obtained from seven volunteers for a 

length of 15 minutes using the RPM system, and were analyzed quantitatively using RQA. 

4.2.2 Measure of complexity 

The simplest measure, called the Recurrence Rate (RR) is a measure of the density of 

recurrence points, i.e. is the ratio of the number of recurrent states measured with respect to all 

possible states. 

  ( )  
 

  
∑     ( )
 
                     4.3 

The threshold ε was chosen for all breathing patterns such that the RR was equal to 1%. 

In this work, we consider the measures based on diagonals lines only, although the vertical 

line distribution has been extensively used in certain applications (Marwan et al., 2007). Since ε 

is finite, more line diagonals can occur directly below and above the Line of Identity (LOI) for 
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high resolution data. Therefore, diagonal lines in a small corridor around the LOI correspond to 

the tangential motion of the state space trajectory, but not to different orbits. Hence, this corridor 

is excluded for the estimation of all measures.  In this study, we chose to exclude the corridor of 

a width to the Theiler window constraints, w= (m-1) τ. 

Determinism: Stochastic processes have very few short diagonals while deterministic processes 

have many long diagonals. Thus the percentage of recurrent points forming line segments 

parallel to the main diagonal is an indirect measure of determinism or predictability of the 

system. The threshold lmin was set to 4.  

    
∑    ( ) 
      

∑    ( ) 
   

                  4.4 

Where   ( ) is the probability to find a diagonal line of at least length l. 

 

Average Diagonal Length: Diagonal lines in the RP represent co-moving segments of different 

parts of the trajectory. The longer the trajectories move within a ε-tube, the longer the diagonal 

lines in the RP will be. Thus, the length of these lines is an indirect measure of the divergence of 

the segments. The average diagonal line length is the average time that two segments of the 

trajectories that are close to each other and can be interpreted as the mean prediction time. The 

average diagonal length is given by 

     
∑    ( ) 
      

∑   ( ) 
      

                 4.5 

 

Divergence (DIV): Lmax , the length of the longest diagonal or its inverse , the divergence (DIV)  

is related to the largest positive Lyapunov exponent.  

        {         }     
 

    
                4.6 
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Higher the divergence, more chaotic the orbit. For predicting the state of a given set of points, 

one could use points in the ε neighbourhood that are temporally in the past. In the presence of 

more than one point in the neighbourhood, their average is used for prediction. From the 

recurrence plots, one can see that a large nonlinear prediction error is introduced for states at the 

end of a diagonal line. Hence, long diagonal lines lead to better forecasting with average lengths 

of line denoting the prediction horizon. 

Entropy: The measure entropy refers to the Shannon entropy of the frequency distribution of the 

diagonal lengths. It reflects the complexity of the deterministic structure in the system. 

      ∑  ( )    ( )       ( )  
  ( )

∑   ( ) 
      

 
      

              4.7 

4.2.3 Time Resolved RQA 

It would certainly be feasible to perform recurrence quantifications within the entire window 

(Wlarge = 20,000 represented by the single, large, outer Recurrence Matrix (RM) square. On the 

other hand the data can be windowed into forty smaller and overlapping RM squares (Wsmall = 

2000 points). In the latter case the window offset of 500 points means the sliding window jogs 

over 500 points between windows. Two effects are at play here. First, larger windows focus on 

global dynamics (longer time frame) whereas smaller windows focus on local dynamics (shorter 

time frame). Second, larger window offsets yield lower time resolution RQA variables, whereas 

smaller window offsets yield higher time-resolution variables. The above mentioned RQA 

variables are computed (extracted) from each RM (or RP). By implementing a sliding window 

design, each of those variables is computed multiple times, creating six  new derived dynamical 

systems expressed in terms of %RR, %DET, LAvg, LMax, DIV and ENTR. Alignment of those 

variables (outputs) with the original time series (input) (adjusting for the embedding dimension, 

M) might reveal details not obvious in the 1-dimensional input data. 
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4.2.4 Nonlinear prediction and relation to RQA parameters 

Nonlinear prediction based on the model free state-space prediction method was 

implemented on the collected volunteer breathing data. The model free state-space prediction 

method is the simplest form of local prediction and amounts to finding similar segments of scalar 

time series data (Kantz and Schreiber, 2004; Kugiumtzis, 2002). Hence, we predict the future 

value of  ̃  N-time steps ahead by finding and taking the average of the forward propagation of k 

nearest neighbors of  ̃   in the past to estimate  ̃   . If the reconstructed state space dimension is 

too low, then orbits starting from xt and its neighbors may not deviate as smoothly as the original 

orbits. Hence, the state space was reconstructed very carefully. This methodology known as local 

average model (LAM) has been implemented for the volunteer data. Initially, 300 seconds of 

data was used for non-linear prediction of the subsequent 300 seconds and the size of the input 

data set was increased moving forward in time. To validate the predictive power of a model, the 

available data set is split into two parts, one for fitting and one for testing. The normalized root 

mean squared error (NRMSE), computed on all points in the test set, can be used to measure the 

quality of prediction. A value of close to 1 for the NRMSE means that the prediction is as good 

as the mean value prediction whereas a value of 0 is indicative of a perfect prediction. The N-

step time prediction error was computed using NRMSE as shown in equation 4.8: 

      √
(  (     ))∑ (      ̂   ) 

   
     

(   )∑ (    ̅)
  

   

                   4.8 

Where  ̅ is the sample mean of the data,      for t= n+1, … ,M-N, are the response values of the 

test set, and n denotes the number of time series points in the training set. The NRMSE for all 

volunteers was plotted against the calculated RQA parameters. 
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4.2.5 Invariant Measures 

As described, the above mentioned RQA parameters vary with time. However, it is important to 

calculate invariant measures that are typical to the dynamical system under consideration. In this 

section, we first define the generalized Rényi entropy (Thiel et al., 2004) .Consider an attractor A 

in a bounded d-dimensional space and suppose that the system is measured at time interval τ.  An 

attractor A provides a global picture of the long-term behaviour of a dynamical system but a 

more refined representation is given by the probability measure on A, which describes how 

frequently a given trajectory falls within some particular region of the phase space. Specifically, 

a state space can be divided into a set of N (ε) disjoint boxes Φi in order to determine with which 

frequency a trajectory visits these boxes. Each trajectory visits a sequence ( il,  i2 . . . . .  im) of 

boxes where ij is a number in [1 . . . . . N (ε)].We denote by  p(il, i2 . . . . . im)  the joint probability 

of finding this trajectory at time τ in box    , at time 2τ in box    ., and so on. Using this joint 

probability distribution the “q-entropy” can be defined as follows: 

             
   

 

  

 

   
  ∑   (      )                   4.9 

Second-order Renyi entropy (correlation entropy) is then defined as 

             
   

 

  
  ∑   (      )                   4.10 

This measure quantifies how fast the number of possible future evolutions increases with time. If 

the system is perfectly deterministic, there is only one possible trajectory it evolves in. Hence, 

there exists only one series of future steps with probability 1 and therefore, K2=0. In contrast, 

one can easily show that for purely stochastic systems, the number of possible future trajectories 

increases to infinity so fast, that K2→∞ (Thiel et al., 2004). Chaotic systems are characterized 

by a finite value of K2, as they belong to an intermediate category. They are less predictable than 

purely periodic systems, but more predictable than purely stochastic systems. Also in the chaotic 
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case the number of possible trajectories diverges but not as fast as in the stochastic case. The 

inverse of K2 has units of time and can be interpreted as the mean prediction horizon/time of the 

system. 

K2 is a lower bound of the Kolmogorov-Sinai (KS) entropy and is often used as its estimate, 

since it can be extracted from experimental time series data using the Grassberger and Proccacia 

(GP) algorithm (Grassberger and Procaccia, 1983a) for calculating the correlation integral )(dC . 

K2 is related to the correlation integral as follows. 

  ( )    
   
   

     (     ) 

Using this relation one can estimate K2(m,ɛ) as follows: 

  (   )  
 

 
  
  ( )

    ( )
 

Where, correlation integral as per GP algorithm, Ref 

 ( )     
   

 

  
 { (  ‖     ‖)} 

Though Euclidean norm was used in this case, the choice is arbitrary. 

Estimation of K2 from Recurrence Plots: It is clear from Equation 4.2 and 4.3 that  

 ( )     
   

   

Thiel et.al have shown RPs can be employed to calculate K2 and that RPs can also be used to 

follow the evolution of K2 as a function of ε. The cumulative distribution of diagonal lines   
   

 

in a RP reconstructed using time delay embedding parameters, m and τ is given by 

  
   ( )  

 

  
∑ ∏  (  ‖         ‖)

   
   

 
                4.11 

Which can be shown to be related to K2 as follows(Thiel et al., 2004) 
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   ( )       (     )               4.12 

Where D2 is the correlation dimension of the system (Grassberger and Procaccia, 1983b). 

Therefore, if we represent ln(Pε (l)) versus l, we obtain a straight line with slope    ̂ ( ) , 

where  ̂ ( ) is an estimator for K2 .One advantage of using this algorithm is that the result is 

independent of the embedding parameters used (Thiel et al., 2004). 

4.3 Results 

All methods discussed above were applied to RPM data obtained for seven healthy 

volunteers. These seven volunteers are henceforth referred to as V1 through V7, were randomly 

chosen and their breathing was recorded using RPM system for 15 minutes. The first 5 minutes 

were used as a run-in period to let the dynamical system come to an equilibrium state, and hence 

this part of the data was not used. The time series data was then embedded in time-delay 

embedded state space. Recurrence plots were computed with ɛ such that the Recurrence Rate was 

equal to 1%. The above detailed parameters, DET, Lmax, Lavg DIV, ENTR, and K2 were computed 

for each breathing time series. The plots were examined qualitatively for presence of UPOs. 

Time Resolved RP were also examined for automatic detection of pronounced UPOs. A strong 

variation was found among the seven healthy volunteers, which is presented below. 

4.3.1 Recurrence Qualitative and Quantitative Analysis 

The breathing pattern of V1, V2, and V3 is shown in figures 4-1(a), 4-2(a) and 4-3(a) 

respectively. The respective reconstructed state-space in 3 dimensions is shown in Figures 4-1(b), 

4-2(b) and 4-3(b) respectively. The RP thresholded with ε such that RR is equal to 1% is shown 

in Figures 4-1(c), 4-2(c) and 4-3(c) respectively. The RP of V2 is dense with many short 

diagonals and little or no long diagonals. However, the RP of V1 shows longer diagonals 
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compared to that of V2, sparse initially which eventually grow longer with time. The RP of V3 

shows presence of strong long diagonals which are consistent throughout the breathing cycle. 

Qualitatively, one can also observe dense diagonal lines in V1 and V3 along the main diagonal, 

which make them very strong candidates of coaching using these dense orbits, i.e. utilizing the 

UPOs for coaching. However, the RP of V2 has UPOs that are not very strong that exhibit small 

mean diagonal values, which suggests that V2 might not be a good candidate for coaching. 

However, chaos control is based on the fact that any chaotic attractor contains an infinite number 

of these unstable periodic orbits. Chaotic dynamics then consists of a motion where the system 

state moves in the neighborhood of one of these orbits for a while, then falls close to a different 

unstable periodic orbit where it remains for a limited time, and so forth. This results in a 

complicated and unpredictable wandering of the trajectory over longer periods of time. Hence, if 

one waits for a sufficiently long time period, one will be able to identify UPOs for a given 

nonlinear dynamical system. This may however be impractical in Radiation Therapy applications. 

Table 4-1 shows the RQA parameters calculated for the breathing patterns collected for the 7 

volunteers over the entire duration of 600 sec. Looking at the data in table 4-1 one observes that 

the mean diagonal lengths are ordered as follows V3>V1>V2. Likewise, determinism and max 

diagonal lengths follow this ordering V3>V1>V2. 

4.3.2 Time Resolved RQA for automatic UPO detection 

For all RPs, time resolved RPs were also calculated. The RR in each overlapping segment 

was calculated and plotted over time. This is shown in Figure 4-4(a), 4-5(a) and 4-6(a) for V1, 

V2, and V3. The maximum two or three peak RR values and their respective time of occurrence 

were used to go back into the RP to check for the presence of UPOs.  This method successfully 

detected the strongest UPOs that can be detected in the RP using visual inspection. The RP over 
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these time windows are zoomed for better visualization and are shown in Figure 4-4(c)-(d), 4-

5(c)-(e),4-6(c)-(e) respectively for V1,V2,V3. RQA analysis on the UPOs shows long diagonals 

with larger Lavg values. This shows that if one could coach patients to comfortably reenter their 

UPOs, larger prediction horizon could be achieved. 

 

Figure 4-2: 1-D time series and the embedded time space in 3D(τ =1.06 sec) for Volunteer 1 is 

shown in (a) and (b) respectively. Recurrence plot of the time series shown in (a) is displayed in 

(c) with Recurrence Rate equal to 1.0. 

(a) (b) 

(c) 
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Figure 4-3: 1-D time series and the embedded time space in 3D(τ =4.5 sec) for Volunteer 2 is 

shown in (a) and (b) respectively. Recurrence plot of the time series shown in (a) is displayed in 

(c) with Recurrence Rate equal to 1.0 

4.3.3 Prediction Plots 

For use of RPs as a tool for prediction assessment, the time series was first undersampled by 

a factor of 6, thus yielding a time series with a sampling frequency of 5 Hz. With the advent of 

(a) (b) 

(c) 
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newer technologies the above mentioned methods can be directly implemented on 1D tumor 

trajectories.  This sparcified data was then divided into two parts, the first 300 seconds were used 

as a training set. The results of which were then used for prediction of the next 300 seconds, the 

length of training set was updated going forward with time. RQA parameters were computed for 

the second half of the breathing series data (300-600 seconds) of the RPs calculated from the 

embedded under sampled 1D time series. NRMSE for all volunteers was plotted as a function of 

the following RQA parameters:  Determinism, Lavg, and Entropy. A linear model shows a good 

fit for the plotted data points, NRMSE points against Determinism with a coefficient of 

determination (R
2
) of 0.95 

A power model fitted to the data points, NRMSE vs Lavg shows a good agreement with R
2
 of 

0.98 which leads one to infer that Lavg is a good indicator for predictability. NRMSE plotted 

against Entropy shows a linear fit with a R
2
 value of 0.82. 

4.3.4 Calculation of correlation entropy K2 

The algorithm to calculate K2 from RPs is illustrated in figure 4-9. These quantities vary with 

time and hence, the use of invariant quantities such as K2 with average diagonals can be used for 

assessment of prediction horizon. Figure 4-9(a) shows the RP for V3 calculated with ε such that 

RR=1%. Figure 4-9(b) shows the cumulative probability of diagonal lines of at least length l or 

greater plotted against l for different ε values.  The slope of the lines for l>30 gives an estimate 

of correlation entropy. The local slope of the plot in (b) is shown in (c). For a specific range of l 

values, all the curves run parallel to each other and the local slope converges to a value, which 

divided by time interval τ is K2. This is plotted in (d) against RR (calculated using the different 

values of ε). For V3, it can be seen that the K2 is the value of the plateau region in 4-9(d), and is 

approximately equal to 0.052. 
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Figure 4-4: 1-D time series and the embedded time space in 3D (τ =2.1 sec) for Volunteer 3 is 

shown in (a) and (b) respectively. Recurrence plot of the time series shown in (a) is displayed in 

(c) with Recurrence Rate equal to 1.0. 

(a) (b

(c) 
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Figure 4-5: Normalized Recurrence Rate plotted as a function of epochs using Time Resolved 

RQA is shown in (a) for Volunteer 1. Based on the location of prominent peaks of RR , 

automatic detection of UPO in global RP is shown in(b). (c) and (d) are zoomed in views of the 

two prominent UPOs shown as greyed regions in (b). 

(a

(b

(c

(d
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Figure 4-6: Normalized Recurrence Rate plotted as a function of epochs using Time Resolved 

RQA is shown in (a) for Volunteer 2. Based on the location of prominent peaks of RR , 

automatic detection of UPO in global RP is shown in(b). (c) and (d) are zoomed in views of the 

two prominent UPOs shown as greyed regions in (b). 

(a) 

(b) 

(c) 

(d) 
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Figure 4-7: Normalized Recurrence Rate plotted as a function of epochs using Time Resolved 

RQA is shown in (a) for Volunteer 3. Based on the location of prominent peaks of RR , 

automatic detection of UPO in global RP is shown in(b). (c) and (d) are zoomed in views of the 

two prominent UPOs shown as greyed regions in (b). 

(a

) 

(b) 

(c) 

(d) 

(e

)
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Figure 4-8: Plot of NRMSE plotted against determinism calculated using RP is shown in (a). A 

linear fitting line shows a correlation coefficient of 0.95. Plot of NRMSE vs average length of 

y= -23.6x+23.6 

R
2
=0.9509 

y= 16.5x
-1.911

 

R
2
=0.9808 

y= -0.44x+1.59 

R
2
=0.8273 

(a) 

(b) 

(c) 
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diagonals shows a power relation with a correlation coefficient of 0.98.  (c) shows a linear fitted 

relationship between NRMSE and Entropy 

 

Figure 4-9: Calculation of K2 for volunteers 7 is shown in the above figure. (a) shows the global 

RP for Volunteer 3. The plot of cumulative number of diagonal lengths as a function of l for 

different ε is shown in (b).  Local slope of each of the curves shown in (b) against l is shown in 

(c). Correlation entropy K2 as a function of RR is shown in (d). 

 

 

 

(a) 

(b) 

(c) (d) 
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Volunteer DET LAVG DIV LMAX ENTR K2 

1 0.9887 19.5 0.0021 479 3.7135 0.12 

2 0.9852 12.26 0.0056 177 3.1892 0.15 

3 0.9942 24.75 0.0011 945 3.99 0.052 

4 0.9873 16.16 0.0017 595 3.4892 0.065 

5 0.9782 13.55 0.0015 650 3.2815 0.1 

6 0.993 20.1 0.0025 408 3.7706 0.105 

Table 4-1: RQA Data for all volunteers calculated from over the entire length of data 

collected(~600 sec) 

4.4 Discussion and Conclusion 

We have introduced quantitative analysis tools that can be used as a guidance to select 

appropriate 4D treatment strategy for lung cancer patients. We have shown that the RQA 

parameters found using Recurrence plots can be used as a good assessment for predictability and 

complexity of the patient’s breathing pattern. K2 values calculated are invariant quantities and 

give an approximation of how chaotic the signal under consideration is. Higher the value, more 

complex is the breathing. We have also shown the Time Resolved RQAs can be used for 

automatic detection of UPOs that can be used for coaching patients. Volunteers 3 and 7 RP 

showed presence of long diagonals with no trending, which shows that these patients are suitable 

candidates for prediction alone without coaching/breathing control. However, volunteers whose 

Lavg peaks vary significantly along time-resolved RQAs (V1, V4), would be good candidates 

for prediction provided control mechanisms are used for the patients. For volunteers with low 

average diagonal lengths, and absence of strong UPOs (V2, V5), it would be best to obtain an 

ITV for tumor motion assessment.  

With the advent of newer tumor tracking technologies such as the Calypso tracking system 

(Calypso, Seattle, Washington), RealEyeTM Motion (Navotek Medical Ltd, Yokneam, Israel), or 

real time MR Radiotherapy systems like the one being developed by Viewray (Viewray Inc., 
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Cleveland, OH) with which it will be possible to acquire real-time MR images at a frame rate of 

4 images/sec coupled with fast treatment delivery methods such as VMAT, tumor tracking can 

become a reality. Using the methods introduce in this work will allow one to identify patients 

who will benefit from these 4D treatment strategies by employing coaching to allow them to 

reenter strong UPOs and hence leading to longer prediction horizons, and those that are better 

served employing ITV based treatments.  

Future work will include assessment of patient breathing patterns including non-stationary 

signals. Non-stationarity can introduce large prediction errors. Qualitatively, fading in RPs 

indicates trending or non-stationarity which can be quantified and related to prediction errors. 

Quantitative Recurrence Analysis can be a very powerful mathematical tool that can be used for 

segregating patients into different 4D treatment strategies, based on their variability of breathing. 
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Chapter 5. Novel methodology for chaos control in 

breathing patterns of lung cancer patients 

5.1 Introduction 

Lung tumors can show significant respiration-induced motion (Liu et al., 2007; van Sörnsen 

de Koste et al., 2003), which in turn confounds radiotherapy planning and delivery (Keall et al., 

2006). Individualized assessment of tumor mobility is recommended for treatment planning in 

lung cancer (Senan et al., 2004). American Association of Physicists in Medicine (AAPM) Task 

Group 76 recommended that motion management should be considered for any tumors showing 

more than 5 mm of motion (Keall et al., 2006), Variation caused by irregular breathing adversely 

affects the ability of the respiration monitor system to accurately calculate phases, whereas 

changes in respiration amplitude result in inconsistent amounts of anatomic motion in different 

slices of an image set (Mutaf et al., 2007).  For 4DCT imaging and gated radiation therapy, 

breathing control has been addressed by many in the past using video coaching and/or audio 

coaching. Several authors have concluded that audio coaching could increase the amplitude of 

breathing, thus affecting the tumor position displacement (Neicu et al., 2006; Persson et al., 2008; 

Haasbeek et al., 2008). With the technological advances, effective compensation of tumor 

motion can be achieved by tracking and targeting the tumor in realtime. Delivery using 

synchronization methodologies requires knowledge of real-time tumor position to overcome or 

account for system latency. Predicting respiratory motion in real-time is challenging, due to the 

inherent chaotic nature of breathing patterns, i.e. sensitive dependence on initial conditions 

(Tewatia et al., 2011). However, short time prediction of the chaotic signals can still be achieved 
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by using state-space prediction methodologies (Tolakanahalli, 2012). The prediction horizon 

regardless of the prediction methodologies can be increased if the breathing pattern of the patient 

can be regularized for a limited amount of time. Limited success has been achieved by many in 

the past using audio coaching. However, coaching methods tailored for patient specific breathing 

has not been explored in radiation therapy before.  Here, we intend to use control mechanisms 

well explored in chaos theory to simulate and build a theoretical model for breathing control 

We discuss the methods employed and the in-house system built for acquiring, locating the 

UPO and biofeedback methods in some detail in section 5-2. We also introduce theoretical 

underpinning of chaos control mechanism in Section 5-2. In section 5-3 we report on the results 

we have obtained using a sample volunteer data.  In section 5-4 we discuss the implications of 

our findings and discuss in detail future directions this work could engender. 

5.2 Methods and materials 

5.2.1 Overview of Chaos Control 

This method of control is based on the following concepts: Stability, feedback and flexibility. 

The idea behind the concept of flexibility is that it is not necessary to stress the system and drive 

it brutally to the desired operation point. In contrast, it is more efficient to slightly perturb the 

system and let the system fluctuate and settle into the desired state for a short amount of time. 

Sensitive dependence on initial conditions make it very hard to make long time predictions, but 

this property can be exploited for changing the trajectory’s future by slightly perturbing the 

system. Besides, a carefully chosen set of small perturbations applied continuously can rapidly 

drive the system to a desired final state- and this methodology is called targeting. Smale (Smale, 

1966), by using symbolic dynamics, showed that this invariant set has a dense orbit, exhibits the 
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sensitivity to initial condition property, and embedded in it there is a countable infinity set of 

unstable periodic orbits(UPO) of arbitrary high periods. Let us consider a system in which a non-

attracting chaotic saddle coexists in the phase space with others nonchaotic attractors. As there 

are other attractors in the phase space, all initial conditions, except for a set of measure zero 

made up of the chaotic saddle and its stable manifold, generate trajectories that asymptote to one 

of the attractors. Trajectories starting from random initial conditions may wander near the 

chaotic saddle for a finite time before settling down into one of the attractors. During the time 

interval in which a trajectory suffers the influence of the chaotic saddle, it behaves as a chaotic 

trajectory. Furthermore, the closer the initial condition of a trajectory to the stable manifold, 

longer the trajectory stays near the chaotic saddle, exhibiting a chaotic-like behavior (Scholl and 

Schuster, 2008). 

 If the system such as the respiratory dynamical system has a UPO which is suitable as an 

operating condition, stabilization of this orbit may be an option that should be explored. The 

closer a chaotic trajectory approaches a periodic orbit; the longer the trajectory tends to remain in 

its neighborhood. Chaos control can help re-establish at least a regular periodic output at higher 

rate, with judiciously applied minimal perturbations. For a systematic approach of the control 

problem, the first step is to find the location of the unstable periodic orbits from the experimental 

time series based on patients breathing pattern. A change of the operating condition can be 

accomplished simply by waiting until the uncontrolled system comes sufficiently close to the 

desired orbit. When the system moves towards this stable orbit, a tiny perturbation will suffice to 

push it on to the orbit (Baker, 1995). Estimating the parameter and the correct perturbation is the 

key to chaos control. Appropriate perturbation of the trajectory directly using the information 

about the tangent space structure in the neighborhood of the target orbit, allows one to push the 
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trajectory onto the stable manifold of the attractor. Control then consists of changing the 

parameter slightly to move the trajectory towards the opposite side of the stable orbit. The 

trajectory feels the repulsion due to the instability towards the opposite directions and will 

therefore be pushed towards the original position of the stable manifold. 

5.2.2 OGY Method in Chaos Control 

We review a scenario of a chaotic dynamical system whose attractor is a three-dimensional 

state space (Ott et al., 1990). A Poincaré section can be introduced transversal to the chaotic flow 

so that the system dynamics on this Poincaré section can be described by a two-dimensional 

invertible map as 

      (    )           5.1 

Where xn ℝ2,   is a smooth function of its variables, and   ℝ  is an externally accessible 

control parameter. Following the idea of using small perturbations to control the system, 

parameter allowed variations must be small,  

    ̅                5.2 

where  ̅ is the nominal parameter value, and  δ ≪ 1 defines the allowable range of parameter 

variation. We wish to program the parameter p so that a chaotic trajectory is stabilized when it 

enters in a neighborhood of the target periodic orbit. 

Let xF ( ̅) be one of the fixed points of the map at the nominal parameter value  ̅ that we wish to 

stabilize. The location of the fixed point in the phase space depends on the control parameter p. 

Upon application of small perturbation ∆p, we have p = ̅+ ∆p. Since ∆p is small, we expect 

xF(p) to be close to xF (p). We write 

 



71 
 

  ( )    ( ̅)                5.3 

where the vector g is given by 

  
   

  
|
   ̅

 
  ( )   ( ̅)

  
          5.4 

The system dynamics of any smooth nonlinear system is approximately linear in a small ε 

neighborhood of a fixed point. Thus, near we can use the linear approximation for the map: 

[       ( )]   [  ( )] [     ( )]         5.5  

where  [  ( )]   is the 2 x 2 Jacobian matrix of the map  (   )  evaluated at the fixed point 

xF(p), which is defined as follows: 

 [  ( )]  
  

  
|
  ( )

  [  ( ̅)]   
  

  
|
   ̅

         5.6 

Note that ∆p ~ ε and  [     ( )]    , where ε is the size of the small neighborhood in which 

the linear approximation is valid. Substituting (5.4) and (5.6) into Equation (5.5), and keeping 

only terms which are first order in ε, we obtain 

       ( )          [  ( ̅)] [     ( ̅)     ]       5.7 

In Equation (5.7), the Jacobian matrix M is evaluated at the fixed point   ( ̅)  of the unperturbed 

system, which is the one to be stabilized. Since   ( ̅)  is embedded in the chaotic attractor, it is 

unstable and it has one stable and one unstable direction (Garfinkel et al., 1992). Let es and eu be 

the stable and unstable unit eigenvectors at   ( ̅) , respectively, and let fs and fu be two unit 

vectors that satisfy                 and                 which are the relations by which 

the vectors fs  and fu can be determined from the eigenvectors es  and eu. The vectors fs and fu are 

contravariant basis vectors associated with the eigenspace es  and eu.  
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The Jacobian matrix [  ( ̅)] , can then be written as: 

 [  ( ̅)]                         5.8 

where λs and λu are the stable and unstable eigenvalues in the eigendirections es and eu  

respectively. When the trajectory point xn falls into small  ε - neighborhood of the desired fixed 

point   ( ̅)  so that Eq. 5.5  applies, a small parameter perturbation ∆pn is applied at time n to 

make the fixed point shift slightly so that at the next iteration (n+1),  xn+1  falls on the stable 

direction of   ( ̅) . Thus, we choose the parameter control ∆pn such that 

  [       ( ̅)]             5.9 

If xn! 1 falls on the stable direction of   ( ̅) , we can then set the control perturbation to zero, 

and the trajectory for subsequent time will approach the fixed point at the geometrical rate λs. 

Thus for sufficiently small      ( ̅)  , we can substitute Equation 5.7 into Equation 5.9 to 

obtain       : 

   
      [     ( ̅)]

(    )   
  [     ( ̅)]        5.10 

We assume in the above that the generic condition         is satisfied so that   [     ( ̅)]  

 which is small. The considerations above apply only to a local small neighborhood of   ( ̅). 

Globally, we can specify the parameter perturbation       if       is too large, since the range 

of the parameter perturbation is limited by Equation 5.2. Thus, practically, we can take     to be 

given by 

     {
             

               
          5.11 
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where in the definition of cn in Eq. (5.10), it is not necessary to restrict the quantity      ( ̅)  

to be small. This method can be extended to higher dimensional systems. 

The inherent exponential sensitivity of chaotic time evolution to perturbations can be 

intelligently exploited to direct the dynamics of the system to some desired state using a 

carefully chosen sequence of small perturbations to some system parameter. This approach, 

which is of fundamental interest for the control system, is called targeting (Shinbrot et al., 1990). 

The targeting idea came about as a way to get around an excessive transient time associated with 

the use of the OGY method of chaos control to higher dimensional systems. The classical 

method is used first, just to drive the trajectory to the neighborhood of the UPO. From this point 

on, the OGY strategy is then applied so that the system is kept stabilized by using small 

perturbations. 

5.2.3 Data acquisition and Processing 

Respiration Monitor Belt by Vernier (Oregon, USA) was wrapped around the chest snugly , 

with the Velcro straps pressed together at the back. The belt was positioned such that the 

airbladder is resting over the base of the ribcage as shown in Figure (5-2).  The pressure of the 

airbladder is comfortably set according to the volunteers requirement while making sure that the 

variation in pressure with inhalation and exhalation is about 2-3 kPa. The pressure is measured 

using a Gas Pressure Sensor (Vernier ,Oregon, USA), which has a membrane that flexes as the 

pressure changes. The pressure sensor is connected to a SensorDAQ interface providing 

connectivity between the pressure sensor and a Windows computer running a Labview software 

via a USB interface. Labview Code can be logically split into 2 parts. The first section of the 

code is acquisition of breathing cycle for analysis and reconstruction of state-space, detection of 

UPOs and a finding a suitable target UPO for coaching. This flow with screenshots of the 



74 
 

Labview program is shown in Figure 5-3. The time series corresponding to the target UPO is 

then chosen and automatic peak detection is performed. The time series signal between the first 

and the last peak is appended to form a continuous coaching signal which is then fed to the 

second section of the LabView code. 

This section monitors the current breathing pattern of the patient and provides a guide based 

on the target UPO. The resulting waveform was then analyzed using Recurrence Quantification 

Analysis to analyze the effect of guiding. 

5.2.4 Proposed Real Time Targeting Algorithm 

In order to systematically implement the control strategy, it is first necessary to identify 

patients who have strong multiple UPOs that can be used for targeting and control. This part was 

introduced and explained in Chapter 3.  

The following algorithm is proposed for realtime targeting of the  

i. Acquire patients breathing for about 5 minutes and locate UPOs. This is done by first 

finding the right delay based on mutual information method and finding correct 

embedding dimension. Based on the Recurrence rate and average diagonal length 

using Time-Resolved RQAs , two to three UPOs are located. 

ii. Series of intercycle breathing period (IBP) is embedded into two-dimensional space 

by plotting current IBP xn against its previous IBP ,xn-1.  

iii. The state-space is searched for localization of the target UPO as described in the 

previous section, viz. Time-Resolved Recurrence Plot. 

iv. Locate Xt, the center of target breathing period, based on UPOs. This should 

correspond to a fixed point on the return map, i.e a single point on the diagonal of the 

return map. Such a point will have associated with it stable and unstable direction, 
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along which the trajectory approaches and diverges from the fixed point. Stable 

Manifold Placement (SMP) as described by Slutzky and Mogul (Slutzky and Mogul, 

2000) is used for locating stable and unstable manifolds , since this technique requires 

little or no assumptions about system parameters. In order to do this, track the 

location and movement of IBPs with respect to the fixed point Xt. The previous state 

leading to the fixed point, probably lies close to the stable direction which leads the 

system to the fixed point. The next state leading the system away from the fixed point 

represents the unstable direction. 

v. Once, this is achieved, the next step is to start collecting data and plotting the points 

real-time on the return map. Let  zn=(xn-1,xn) be the current state vector and z*= 

(x*,x*) be the fixed point located using Step ii. The next step is to video coach the 

patient to follow a breathing pattern with breathing periods such that in increments, 

the patients IBP comes closer to the stable manifold. It is then important to 

continuously vary the IBP of the UPO chosen such that the system is just slightly 

perturbed to stay within a small neighborhood of the UPO.  In summary, based on 

realtime IBP, provide feedback to put the patient on stable manifold and watch the 

system converge to Xt.  The control signal to change the period of the orbits will be 

provided, whose amplitude/period will be proportional to the difference between the 

current state point and the fixed point. 

In this chapter, data sample from one volunteer was acquired for 300 seconds. This was 

analyzed for UPOs, and using automatic peak detection algorithm, a coaching signal was 

generated as a guide for the patient to follow.  The volunteer was instructed to follow the guiding 

signal and the resulting waveform was analyzed for reproducibility. Retrospectively, the return 
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map based on the initial 300 seconds of data was used to construct a return map, and a fixed 

point based on the UPO was computed. The stable and unstable directions manifold for this fixed 

point was also located on the return map. 

5.3 Results 

All methods discussed above were applied to breathing waveforms recorded using 

Respiration Belt from Vernier Software and Technologies (Oregon, USA).  Flowchart showing 

the first section of LabView code is displayed in Figure 5-1. A snapshot of the LabView code is 

shown in (a) corresponding to the front panel shown in (b) used to acquire data. The sample rate 

(samples/ sec) and the length of data acquisition can be varied. Continuous baseline removal 

which accounts for drift in the data is also implemented here. The mutual information method 

and the recurrence plot constructed using Matlab code embedded into the Labview program is 

shown in (c) and (d) respectively. Finally once the user selects the appropriate UPO, the 

automatic peak detection program lists the number of peaks and its respective location as shown 

in (e). The respiratory signal from first peak to last peak (or trough to trough) is appended back 

to back to form a continuous guiding waveform. The front panel used for coaching and its 

corresponding Labview code(second section) is shown in (a) and (b) respectively. The volunteer 

can choose between a waveform or a moving bar as per convenience. Again, continuous baseline 

removal is performed to account for any drift. 

5.3.1 Recurrence Quantification Analysis 

A waveform was acquired from a sample volunteer used for training and after visual 

guidance. Recurrence quantification analysis was performed on both waveforms. The Recurrence 

Rate for both data was set to 1. Both breathing patterns had a delay time based on first minima of 
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mutual information method equal to 16, with the embedding dimension equal to 4. The RQA 

parameters Lavg, percent Determinism, Divergence, Lmax, and Entropy is tabulated in Table 5-1. It 

can be seen that there is slight improvement in Determinism and Lavg, and significant 

improvement in Lmax. 

Figure 5-1: Flowchart showing the first section of Labview code is shown here. A snapshot of 

the LabView code is shown in (a) corresponding to the front panel shown in (b) used to acquire 

data. The sample rate (samples/ sec) and the length of data acquisition can be varied. The mutual 

information method and the recurrence plot constructed using Matlab code embedded into the 

Labview program is shown in (c) and (d) respectively. Finally once the user selects the 

appropriate UPO, the automatic peak detection program lists the number of peaks and its 

respective location as shown in (e). 
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Figure 5-2: The front panel used for coaching and its corresponding Labview code (second 

section) is shown in (a) and (b) respectively. The volunteer can choose between a waveform or a 

tank filling guide as per convenience. 
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Figure 5-3: Recurrence plot of the training breathing signal is shown in (a) and the Recurrence 

plot for time series acquired after video guidance based on the volunteers UPO is displayed in 

(b). Visually, one can see longer diagonals in the coached breathing waveform. 

The Recurrence plot of the breathing pattern used for training vs the breathing pattern obtained 

after guidance is shown in Figure 5-3(a) and 5-3(b) respectively. 

 
Recurrence 

Rate 
% DET Lavg Lmax DIV ENTR 

Training 

Data 
1.0 0.7480 3.2915 39 0.0256 1.5455 

Guided 

Breathing 

Data 

1.0 0.8097 3.8676 59 0.0169 1.8065 

Table 5-1: RQA Parameters for training breathing data and guided breathing data for the 

volunteer whose Recurrence Plots shown in Figure 5-3. 

5.3.2 Control Algorithm 

The breathing cycle of the initial 300 seconds was analyzed with the automatic peak 

detection algorithm. The return map of the IBP is shown in Figure 5-4 (points 20 through 27, 50 
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through 54). The UPO selected corresponds to the point z*, also point 21 shown in the figure. 

Based on the return map, from point 20 to 21, the system moves toward the unstable fixed point. 

This means that the point 20 must be close to the stable manifold (shown in red in Figure 5-4).  

Points 22 and 23 still lie in the vicinity of the fixed point before moving to point 24 (the far left 

point), followed by point 25( to the far right corner). Points 24 through 27 diverge from point 21 

revealing an unstable manifold (shown in green in Figure 5-4). 
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Figure 5-4: (a) Return Map of the training breathing waveform is shown in (a).  The fixed point 

for Point 23 and points 22,23 in the vicinity of the fixed point is also shown. The red Line shows 

the stable manifold , and the green line represents the unstable manifold . The Return Map 

zoomed in around the fixed point is shown in (b). Refer to Section 3.2 for detailed explanation of 

the return map. 

The volunteer returns to this stable manifold at point 50, and again coming under the 

influence of the stable manifold, gets to point 51 in the vicinity of z*(Point 21), and stays there 

for one more cycle(Point 52), before diverging again under the influence of the unstable 

manifold. 

5.4 Discussion and Conclusion 

We have summarized here, the theory behind Chaos Control and have established a method 

to pick an Unstable Periodic Orbit, in other words a fixed point in the return map which is used 

as a control set point. Coaching the patient with the UPO of his/her own breathing improves the 

reproducibility of breathing, based on the RQA parameters. We have also demonstrated how to 

construct a return map and pick a stable and unstable direction from a patients breathing pattern. 

However, studies on more patients multiple times will have to be done to establish if coaching 

one with the volunteers own UPO produces a desirable result.  Locating stable and unstable 

manifold was quite straightforward on the return map for this volunteers breathing pattern. 

However, this might be challenging and needs ongoing effort towards realtime system for 

automatic detection of these manifolds.  It is also of interest to note that strong stable and 

unstable manifolds could not be detected for the first UPO. It is also important to compare 
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different methods of coaching , such as simple audio instructions of “Breathe in, Breathe out” to 

see if some patients could benefit with a simple system of coaching.  

The future work entails building a realtime system that can build and check the position of 

the breathing pattern based on IBP on a realtime basis for application of suitable perturbation. It 

would be of interest to check different modes of perturbation/feedback which could be visual, 

audio or sensory or a combination of the three. 
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Chapter 6. Conclusions and future work 

Based on almost two decades of  research and published peer reviewed work,  it is well 

known that intensity modulated radiotherapy (IMRT) is a choice of treatment whenever a 

superior target dose conformity is required while limiting dose to  critical organs within tolerance 

and sparing normal tissue as much as possible.  However, the dose distribution from any type of 

an IMRT plan is susceptible to variation in the presence of intrafractional motion during the 

treatment delivery process.  The work presented in this thesis is a foundation for building a 

realtime patient specific 4D treatment suite based on non-linear dynamics. This in combination 

with realtime 4D imaging and 4D tracking methodologies takes us a step further in making 4D 

treatments robust, accurate and available to those who can comply with the requirements of 4D 

treatments such as reproducibility and predictability of breathing. We have addressed many 

different challenges faced due to variation in respiratory dynamics and we demonstrate how it 

can be used for developing personalized input to a 4D IGRT treatment suite. Recognizing and 

establishing deterministic chaos in time series is an important step towards application of other 

nonlinear algorithms for prediction and control. The initial work presented here extends our prior 

work and uses surrogate methods to establish deterministic chaos. We show that the data series 

under consideration is not generated by i.i.d or linear Gaussian noise passed through a non-linear 

filter. Indeed for most patients, hypothesis that they are highly periodic and not chaotic is also 

rejected. This work opened the way for nonlinear analysis and validates the use of promising 

techniques for prediction and control which were explored in the subsequent chapters. 

Robust implementation of any lung tumor motion management technique solely depends on 

goodness of breathing pattern prediction because of system latency issues. Exactness of results 
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obtained based on linear or nonlinear prediction methodologies are based how closely our used 

methodology is able untangle the actual dynamics of the given system. From the cohort of 

patients studied, we established that N-step ahead non-linear prediction methods yield better 

prediction results than an N-step ahead adaptive linear autoregressive prediction. Hence, we may 

consider that the use of non-linear prediction methods for prediction the breathing pattern of lung 

cancer patients may lead to improved, robust and accurate long-term prediction that can be used 

to account for system latencies. It has also been shown that a prediction engine based on 

nonlinear dynamics has a larger prediction horizon than other methods if an appropriate time 

delay and embedding dimension are chosen. With the advent of newer tumor tracking 

technologies such as the Calypso tracking system (Calypso, Seattle, Washington), RealEyeTM 

Motion (Navotek Medical Ltd, Yokneam, Israel), or real time MR Radiotherapy systems like the 

one being developed by Viewray (Viewray Inc., Cleveland, OH) with which it will be possible to 

acquire real-time MR images at a frame rate of 4 images/sec the presented nonlinear prediction 

methods can be directly implemented on the tumor motion coordinates. LAM which is 

computationally very inexpensive and whose performance is not sensitive to imaging frequency 

is more desirable for prediction of real-time tumor coordinates. 

As established, only short term prediction is possible for chaotic signals due to its inherent 

sensitivity to initial conditions. However, a much larger prediction horizon can be achieved if 

patients can be guided to follow a regular and reproducible breathing pattern. 

Before this can be achieved, it is important to be able to identify patients who will be 

amenable to coaching and prediction and thus benefit from the 4D treatment strategies, and 

classify those who will have better tumor control with ITV based treatments. It is also important 

to identify the patients who will benefit by coaching for longer prediction horizons. We thus 
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extended the work and used a quantitative analysis tool that can be used as a guide for selection 

of appropriate 4D treatment strategy for lung cancer patients. In Recurrence Quantification 

Analysis , described in Chapter 4, we show that RQA can be used as a good assessment for 

predictability and complexity of the patient’s breathing pattern. K2 values calculated are 

invariant quantities and give an approximation of how chaotic the signal under consideration is. 

We have also shown the use of Time Resolved RQAs for automatic detection of UPOs that can 

be used for coaching patients. The future work in RQAs includes assessment of patient breathing 

patterns including non-stationary signals that can introduce huge prediction errors. Quantitative 

Recurrence Analysis can be a very powerful mathematical tool that can be used for segregating 

patients into different 4D treatment strategies, based on their variability of breathing. 

This brings us to the last part of the thesis where we have summarized the theory behind 

Chaos Control and have established a method to pick an Unstable Periodic Orbit, in other words 

a fixed point in the return map which can be used as a control set point. We have demonstrated 

that coaching the patient with the UPO of an individual’s own breathing may improve the 

reproducibility of breathing, based on the RQA parameters. We have also demonstrated how to 

construct a return map and pick a stable and unstable direction from a patients breathing pattern. 

Automatic localization of stable and unstable manifold might be challenging and needs ongoing 

effort towards building a realtime system. The future work entails building a realtime system that 

can build and check the position of the breathing pattern on a realtime basis for application of 

suitable perturbation. It would be of interest to check different modes of perturbation/feedback 

which could be visual, audio or sensory or a combination of the three. 

With the advent of newer tumor tracking technologies such as the Calypso tracking system 

(Calypso, Seattle, Washington), RealEyeTM Motion (Navotek Medical Ltd, Yokneam, Israel), or 
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real time MR Radiotherapy systems like the one being developed by Viewray (Viewray Inc., 

Cleveland, OH) with which it will be possible to acquire real-time MR images at a frame rate of 

4 images/sec coupled with fast treatment like VMAT technologies, tumor tracking can be a 

reality. The tools described in this thesis can be used in conjunction with 4D treatment 

methodologies, such as CyberKnife, BSD for a complete motion management suite. 

 

 

 

 


