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This thesis work comprises two main areas of study related to water waves on coastal processes:

Wave-driven boundary layers over permeable sea beds and hydrodynamics of wave-swash interac-

tions, which are a matter of interest in coastal science and engineering.

The effect of the permeable seabed on the development of the boundary layers driven by two

different forcing conditions, transient oscillatory and solitary waves, is estimated by extending the

classical formulations for an impermeable boundary. It is considered that within the porous re-

gion, flow velocities follow Darcy’s law, which depends on pressure gradients as an effect of the

transient waves and the hydraulic conductivity of the porous material. The physics of the inter-

face fluid-permeable sea bed is modeled by implementing Dirichlet-type and Robin-type boundary

conditions, based on the formulations stated by Le Bars and Worster (2006) and Beavers and

Joseph (1967), approximated by employing analytical and numerical models. The analytical so-

lutions based on the Dirichlet-type velocity boundary condition present a good agreement with

numerical results using the Robin-type boundary condition, suggesting that the velocity bound-

ary condition postulated by Le Bars and Worster can accurately capture the flow physics near the

interface.

The developed analytical solutions presented an excellent match against experimental data in an

oscillatory boundary layer generated by water waves propagating over a porous sea bed, presenting

a better agreement than previous theories and remarking the effect of the transition zone inside the

porous bed, where the viscous effects from the fluid are still valid until the fluid velocity matches

Darcy’s velocity.
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The analyses highlight the induced flows for different hydraulic conductivities to assess the

behavior and the structures of the velocities developed in the viscous boundary layer and to under-

stand the variability of the developed bed shear stresses, which can be relevant to coastal processes,

such as sediment transport.

Nearshore transport processes developing in coastal areas are postulated to be driven by wave-

swash interactions, which have been mainly qualitatively quantified. In this work, using a train

of consecutive solitary waves generated in a wave flume, the different categories of interactions are

experimentally mimicked with a high degree of repeatability, allowing the construction of a broad

set of wave-swash interactions observed in the field. In the experiments, the information on surface

elevations, features of flows, and bottom pressure developed by the interactions are measured

at the moment of the interaction. Observations showed that wave-swash interactions commonly

present three main stages across the swash region, whose evolution and cross-shore location are

linked to the type of interaction.

With the use of bed pressure measurements and free-surface displacement, the total verti-

cal accelerations are estimated using a theoretical approach based on the vertical component of

the Navier-Stokes equations. The analyses with the experimental information focus on the peak

upward-directed acceleration generated by the wave-swash interactions, which induce significant

magnitudes that exceed the acceleration of gravity in the swash, where the water depth is very

shallow. It was found that the fluid velocities developed by the interactions follow vertical accel-

erations.

The wave-swash interactions and the developed total vertical accelerations and flows were

quantitatively characterized in terms of the wave heights of the consecutive solitary waves and

their separation times. For this, two dimensionless characteristic ratios were constructed, the wave

height ratio, H2/H1, and the separation time, Tsep/Tswash, which show to be functional to charac-

terize the hydrodynamics of wave-swash interactions.
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Chapter 1

INTRODUCTION

1.1. Motivation and background

Waves impact different regions in the ocean as they propagate to the coast. In intermediate to

shallower depths, waves influence the sea bed, inducing pressures and generating flows adjacent

to the sea bed including mechanisms such as sediment transport, sea bed fluidization, and wave

damping, among others. The characterization of these phenomena has been studied for more than

30 years to understand the effects of waves propagating over impermeable and permeable sea

floors, for which there is no such uniformity in the proper physics to model the interface between

the fluid and the porous sea bed.

Similarly, coastal areas are continuously affected by ocean oscillations acting as forcing con-

ditions for coastal processes in the nearshore. There are a variety of water waves impacting the

coast and generating coastal phenomena such as cross-shore and long-shore sediment transport,

erosion, accretion, liquefaction, and in the long term, potentially modifying the morphological

configuration of the coast. After the wave-breaking process, waves develop swash flows that in-

teract with incoming wave events, called wave-swash interactions. These phenomena have been

broadly studied and characterized qualitatively. However, there is a lack of information in terms of

their quantification and their associated physical processes.

In this dissertation, these two coastal problems are worked on to bring new insights into the

theory and analysis of waves propagating over permeable sea beds and the quantitative characteri-

zation of wave-swash interactions.



2

1.2. Wave-driven boundary layers over permeable beds

Oscillatory flows are present in a wide variety of problems across different areas of science and

engineering. The well-known and classical solution to the boundary layer formed by oscillatory

flow above a fixed flat plate was first presented by Stokes (1880), considered for different appli-

cations across science and engineering, and whose relevance lies on the fact that more complex

situations involving boundary layer flows have arose along the years. Applications of the theory

have addressed different problems; examples of this include flow driven by oscillating boundaries

(Hossain and Daidzic, 2012), oscillatory pressure-driven flows (Issa, 2018), flow oscillations in a

rotating system (Song and Rau, 2020), boundary layer transition Blondeaux and Vittori (2021), and

quantifying sediment transport in oscillatory boundary layers (Mathieu et al., 2022; Vittori et al.,

2020; Mazzuoli et al., 2019, 2020; Fromant et al., 2019). In all these applications, while there is

general agreement on boundary layer solutions for impermeable boundaries, the nature of solutions

with permeable boundaries differ substantially due to the ambiguities in modeling the boundary

conditions at the interface between the free-fluid and the permeable region (Putnam, 1949; Hunt,

1959; Liu et al., 1996; McClain et al., 1977; Minale, 2014; Feng and Young, 2020; Samanta, 2017;

Karmakar et al., 2022; Li et al., 2022; Angot et al., 2021).

Previous developments on the physics of boundary layers over permeable beds relate to steady

flows, where the main challenge is setting the appropriate boundary conditions at the interface

connecting the free fluid and the porous media flow (Beavers and Joseph, 1967; Saffman, 1971;

Ochoa-Tapia and Whitaker, 1995a,b; James and Davis, 2001; Goharzadeh et al., 2005; Tilton and

Cortalezzi, 2008; Ghisalberti, 2009; Goyeau et al., 2003; Le Bars and Worster, 2006; Zhang and

Prosperetti, 2009; Nield, 2009; Morad and Khalili, 2009; Liu and Prosperetti, 2011; Morad and

Khalili, 2009; Gupte and Adavani, 1997; Alazmi and Vafai, 2001; Wu and Mirbod, 2018; Davis

and James, 2004; Arthur et al., 2013; Wu and Mirbod, 2018). One of the most studied bound-

ary conditions to model the physics at the interface is the classical study of Beavers and Joseph

(1967), which states that at the interface, there exist discontinuities between the velocity gradients

occurring in the fluid and inside the porous region, which are related via properties of the porous
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material such as the permeability and a slip coefficient, which depends on the "structure of the

permeable material." Le Bars and Worster (2006) provided a significant advance on the Beavers

and Joseph (1967) boundary condition. They showed how the same boundary condition could be

adapted to state a continuity between the free fluid velocity and porous media velocity (Darcy’s

velocity) where the matching condition is applied at a certain depth below the interface. This re-

gion is then interpreted as a transition zone within the porous region where the free fluid velocity

penetrates. This is consistent with physical intuition; since Darcy’s flow is an averaged quantity

inside the porous region, there should be a minimum distance below the interface before Darcy’s

law is valid. Therefore, the matching conditions between the fluid velocity and Darcy’s velocity

must occur at a distance greater than or equal to the averaging length. This insight provides two

advantages: (1) it simplifies the interfacial boundary condition for analytical and numerical treat-

ments and (2) it clarifies why previous studies have found the Beavers and Joseph slip coefficient to

also be a function of the flow instead of being solely a function of the porous material. Numerical

simulations in Le Bars and Worster (2006) show that their boundary condition reproduces closely

flow obtained from the original condition proposed by Beavers and Joseph (1967). Additionally,

only slight differences are found compared to the Darcy-Brinkman formulation (Brinkman, 1949).

From subsequent studies, it is now established that there does indeed exist a transition layer

inside the porous region into which the free fluid flow penetrates and after which the velocity

matches its porous media flow value. Several works (Le Bars and Worster, 2006; Tilton and Cor-

talezzi, 2008; Nield, 2009; Morad and Khalili, 2009) state that the characteristic length for this

transition zone is represented by the squared root of the permeability, but data from experiments

and numerical simulations suggest that the grain diameter may be a better characteristic length for

this depth (Goyeau et al., 2003; Goharzadeh et al., 2005; Zhang and Prosperetti, 2009; Liu and

Prosperetti, 2011). Both numerical simulations and experiments agree, however, that the thick-

ness of the transition layer remains almost invariant for different flow conditions (e.g., Reynolds

numbers, flow channel height).

Building on these developments of steady viscous flow over a permeable bed, a set of analyt-

ical solutions for the laminar boundary layer velocities induced by linear oscillatory flows over a
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permeable bed is presented, including explicitly a transition zone in the solutions via an empirical

parameter, which was found scaling with the grain diameter. Previous theories on this matter, such

as Liu et al. (1996) and McClain et al. (1977), have not explicitly considered the transition zone

found in steady flow. Validation includes comparisons of the developed theory with numerical so-

lutions of the boundary layer equations and experimental data from Liu et al. (1996), showing an

excellent agreement with the analytical solutions. Error analysis allowed to make sensitivity of the

solution for different values of the empirical parameter and its agreement with experimental data.

The theory proposed, which is much simpler than previous theories, performs much better against

data, although with an empirical parameter.

The slip velocity at the interface and the boundary layer velocity profiles are sensitive to the

permeability of the porous material, while the thickness of the transition zone remains almost un-

affected for seabeds with similar characteristics. The novel method can be seen as an extension to

the classical boundary layer formulations for an impermeable boundary condition (Stokes, 1880;

Batchelor, 2000; Svendsen, 2006) to model the oscillatory boundary layer flows over the perme-

able bed. In a complementary manner, the theoretical developments on permeable sea beds are

extended to consider a transient solitary wave as a forcing condition, extending the solutions for

an impermeable sea bed proposed by Liu and Orfila (2004).

1.3. Wave-swash interactions

Studies have shown evidence of irreversible erosion cases in different places due to high-energy

wave events (Martínez et al., 2018; Rangel-Buitrago et al., 2015; Masselink et al., 2016). Hydro-

dynamically, waves transform in their propagation towards coastal areas developing several sub-

regions in the nearshore (Dean and Dalrymple, 2004; Holthuijsen, 2007; Jackson and Short, 2020).

The last of these stages corresponds to the swash zone, which is continuously affected by broken

incident waves, and determined by the movement of the shoreline. According to the forcing con-

ditions, the swash can experience fast changes in the coastal processes and act as the principal

precursor for sediment transport and liquefaction in this zone (Elfrink and Baldock, 2002; Puleo
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and Butt, 2006; Puleo and Torres-Freyermuth, 2016; Florence et al., 2022; Stark et al., 2022). The

extent of the swash is delimited by the upper and lower limit of the runup and rundown process after

the wave breaking, which consequently will develop the upwash and backwash flows on the beach

slope, respectively. Figure (1.1) shows a detailed scheme of the surf and swash zones, specifying

the runup and rundown limits, and the wave-swash interactions region.

Figure 1.1: Cross-shore profile of the nearshore coastal region (Chen et al., 2023).

The swash is a dynamic region mainly affected by incident broken waves, and it ideally begins

with the shoreward movement of the shoreline from a still water level (SWL). It is represented

by decelerating and accelerating flows moving up and down the beach, delimited by a complete

runup-rundown cycle, and it is the coastal space where the wave-swash interactions develop. At

this point, incoming waves interact with the developed upwash or backwash flows of the previous

event, modifying their characteristics according to the nature of a single wave event. The wave-

swash interactions have been qualitatively characterized and described according to Hughes and

Moseley (2007) and identified as a potential agent in the sediment transport process in this zone

(Puleo et al., 2000). The study of this phenomenon has become relevant in ocean sciences and

coastal engineering due to two main aspects: (1) interactions develop vertical pressure gradients
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and accelerations and trigger sediment transport and liquefaction in the surf and swash zones, and

(2) interactions modify the existing sediment transport mechanism in these coastal regions.

Considering a single two-wave interaction event, three main physical processes are identified

for this phenomenon, characterized according to the following: (a) The upwash flow of the second

wave catches the upwash flow of the first wave event (wave-upwash interaction). (b) The upwash

flow of the second wave catches with the backwash flow of the first wave event. The flow is

again pushed shoreward by the incoming upwash flow (weak wave-backwash interaction). (c)

Physically similar to case (b). However, in this latter, the backwash flow of the first wave is strong,

inducing a forced receding of the incoming flow, generating a stationary hydraulic jump (strong

wave-backwash interaction). In specific cases, the development of a free swash occurs on the upper

beach when a swash event does not present a wave-swash interaction. This event can appear as

the time between successive wave events is long enough or when the wave event corresponds to a

single event, which significantly dominates as a forcing condition over irregular waves in coastal

areas, such as tsunamis or solitary waves, which is the matter of study in this work.

Despite the different efforts, the scientific community in coastal processes accepts that wave–swash

interaction lacks quantitative characterization, and the associated physical processes such as sed-

iment transport need to be studied (Masselink and Puleo, 2006; Puleo and Butt, 2006; Puleo and

Torres-Freyermuth, 2016; Chardón-Maldonado et al., 2016; Chen et al., 2023). On the coast, the

sediment transport is induced and modified by the forcing condition (Hughes et al., 1997; Bal-

dock and Hughes, 2006), whose interaction can play a principal role in the location, direction, and

how sediments transport in the swash zone, such as bedload and suspension, or able to trigger liq-

uefaction (Sumer, 2014). Experimentally, regular waves, bi-chromatic waves, solitary waves, and

dam-break induced bore has been functional to understand sediment transport and flow characteris-

tics in the swash zone (O’Donoghue et al., 2010; Sou and Yeh, 2011; Kikkert et al., 2012; Lo et al.,

2013; Pujara et al., 2015b; Chardón-Maldonado et al., 2016; O’Donoghue et al., 2016; Wu et al.,

2021; Barranco and Liu, 2021; Pintado-Patiño et al., 2021). Several works, such as Alsina et al.

(2009, 2012, 2016, 2018), show that collapsing bores can lift and advect the sediment transport
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to the swash zone. Some authors have analyzed possible wave-induced liquefaction in coastal re-

gions. This phenomenon is strongly related to the pressure gradients and vertical accelerations the

seabed can experience as waves propagate onshore developing local liquefaction (Sumer, 2014).

Studies to understand liquefaction have considered different setups and characteristics to analyze

the phenomena, especially field measurements and laboratory experiments. Yeh and Mason (2014)

shows that a tsunami-like solitary wave could also induce significant pressure gradients as the wave

reaches a coastal region. The analytical results from their tsunami model show the built-up of the

momentary liquefaction process (Sumer, 2014; Mason and Yeh, 2016), which is a principal factor

in the sediment transport process and observed scouring effects. In the same manner, field studies

have revealed liquefaction as a relevant developing wave-induced process in the surface layers of

sand beaches in coastal regions, which can be a principal source initiating sediment suspension

and, subsequently, bedload (Baldock et al., 2001; Stark et al., 2022; Florence et al., 2022). These

studies emphasize developing pressure gradients in coastal regions induced by wave events associ-

ated with tropical storms, which indicate a potential vertical movement of the loose sediment in this

region. Considering these findings, it is also important to assess the characteristics of developing

vertical accelerations induced by the different wave-swash interactions.

Experimental and numerical evidence shows that predicting the physical processes that trigger

or modify sediment transport, such as pressure gradients and vertical accelerations, associated with

wave-swash interactions is difficult since even when measured and simulated wave trains present

similar characteristics in surface elevations and velocities, sediment transport associated with them

can behave differently in erosion and accretion. Numerical software does not account for physical

processes to represent or numerically resolve the complete physics of wave hydrodynamics and

sediment transport processes in the swash zone or coastal regions (Masselink et al., 2009; Smit

et al., 2010; Ruffini et al., 2020; Mancini et al., 2021). Even when sediment transport mechanisms

such as bedload and suspended sediment transport are well understood and implemented, they lack

representation for pressure gradients and induced vertical accelerations. A recent study performed

by Chen et al. (2023) conducted an extensive review of sediment transport models, concluding that
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even though there is an acceptance that wave-swash interactions play a critical role in the sediment

transport in the swash, there is no such a parameter(s) to determine the interaction type.

1.4. Background on water waves

1.4.1. Oscillatory waves

In the ocean, it is possible to find different types of waves whose physics is determined by the

nature of their generation process. In deep to intermediate water depths, wind-generated waves

propagate with a regular-like shape with a specific fixed amplitude and frequency (Dean and Dal-

rymple, 2004; Holthuijsen, 2007). The surface elevation ζ for a small-amplitude progressive wave

traveling in the positive x-direction is given by

ζ(x′, y′, z′) = a′ cos(k′x′ − ω′t′) (1.1)

where a′ = H ′/2 is the wave amplitude, and H ′ is the wave height. The wave number is given by

k′ = 2π/L′, and ω′ is the dispersion relation given by

ω′2 = k′g′tanh(k′h′) (1.2)

with g′ and h′ are the acceleration of gravity and water depth, respectively. The wave length L′ and

the wave celerity (phase velocity c′) are defined as

L′ =
g′T ′2

2π
tanh(k′h′) (1.3)

and

c′ =
ω′

k′
=
L′

T ′
, (1.4)

with T ′ the wave period. The flow field is given by the horizontal and vertical velocity components

u′(x′, y′, z′) =
k′a′g′

ω′
cosh[k′(h′ + z′)]

cosh(k′h′)
cos(k′x′ − ω′t′) (1.5)
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w′(x′, y′, z′) =
k′a′g′

ω′
sinh[k′(h′ + z′)]

cosh(k′h′)
sin(k′x′ − ω′t′), (1.6)

and the pressure induced by the transient wave is given by

p′(x′, y′, z′) = ρ′g′a′
cosh[k(h+ z)]

cosh(kh)
cos(k′x′ − ω′t′). (1.7)

The small-amplitude waves lies on the assumption that

k′a′

tanh(k′h′)
� 1. (1.8)

From the above expression, it is possible to observe that in a deep water condition tanh(k′h′)→ 1

as h′ → ∞, implying that k′a′ � 1. On the other hand, as h′ → 0, tanh(k′h′) → k′h′ , meaning

that in shallow water, the relation a′/h′ � 1 stands.

For standing waves, the relations presented above remains with slight modifications in their

oscillatory terms (Dean and Dalrymple, 2004).

1.4.2. Solitary waves

Solitary waves are finite small-amplitude waves whose surface elevation, which is permanent

in its propagation process, is given by the following expression according to Boussinesq (1872)

ζ(x′, t′) = H ′sech2[k′(x′ − c′t′)]. (1.9)

For a solitary wave, the wave number, k′, and celerity, c′, are given by

k′ =
1

h′

√
3

4
ε ; c′ =

√
g′(H ′ + h′) (1.10)

with ε = H ′/h′ the wave steepness or non-linearity parameter, and g′ stands for the acceleration of

gravity. The wavelength and wave period for a solitary wave are defined as

L′ = 2π/k′ ; T ′ = 2π/k′c′. (1.11)
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The horizontal and vertical fluid velocities developed by a solitary wave in a constant depth

region are given by the following expressions

u(x′, z′, t′) = U ′sech2[k′(x′ − c′t′)], (1.12)

w(x′, z′, t′) = U ′
√

3ε

(
z′ + h′

h′

)
sech2[k′(x′ − c′t′)]tanh[k′(x′ − c′t′)], (1.13)

where U ′ = ε
√
g′h′ is the maximum fluid velocity occurring under the wave crest.

The pressure under the solitary wave crest is given by

p′(x′, t′) = ρ′g′ζ ′,

which can be rewritten as

p′(x′, t′) = ρ′g′H ′sech2[k′(x′ − c′t′)]. (1.14)

1.5. Outline of the dissertation

In Chapter 2, theoretical and numerical developments on wave-driven boundary layer flows

over permeable beds are presented. This work analyzes the possibility of two (2) different bound-

ary conditions to model the physics at the interface fluid-porous region for an oscillatory forcing

condition. The developed analytical equations, which include a transition zone within the porous

bed where the viscous flows from the fluid are still valid, extend the classical Stokes solutions for

impermeable seabed to include the effects of the porous region. Results were validated against

experimental data. The chapter also presents an extension to the theoretical developments made by

Liu and Orfila (2004) on transient solitary wave-induced boundary layer flows over an imperme-

able sea bed, for which the permeable seabed boundary conditions are also implemented. Part of

this chapter was already published in the journal Physics of Fluids (Meza-Valle and Pujara, 2022).

Chapter 3 presents an experimental work to characterize wave-swash interactions quantita-

tively. In this investigation, experiments using two (2) consecutive solitary waves of different
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wave amplitudes separated by specific times are performed in a wave flume to analyze the distri-

bution of the interactions in terms of two (2) constructed characteristic ratios, the wave (H2/H1)

and temporal (Tsep/Tswash) ratios. A theoretical approach to calculate the total vertical accelerations

induced by the wave-swash interactions is functional to use the information from measurements

of surface elevations and bottom pressures and gives relevant information on the interactions and

their developed kinematic magnitudes and their relations. This work is under review in the Journal

of Geophysical Research: Oceans.

Chapter 4 presents a recent work carried out in the directional wave basin of the Oregon State

University to analyze flows and runups induced by a train of consecutive solitary waves separated

at specific times. The train of solitary waves is propagated for two different angles of incidence

to assess the impact of the wave obliquity on the induced velocities, accelerations, and maxi-

mum runups. These quantities are characterized quantitatively through two characteristic ratios,

the wave height and dimensionless separation time, constructed from the wave properties. Esti-

mated runups are also compared to theoretical formulations from the literature, presenting a good

agreement for wave events with no obliquity.

Conclusions of the dissertation are presented in Chapter 5.
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Chapter 2

WAVE-DRIVEN BOUNDARY LAYERS OVER PERMEABLE
BEDS

2.1. Introduction

In their propagation process, waves in the ocean are prone to develop flows adjacent to the

seabed, which in many cases is a porous medium. Several authors, such as Putnam (1949); Hunt

(1959); Liu et al. (1996); McClain et al. (1977), have treated this problem to model the fluid-

permeable seafloor interface by extending the well-known and classical solution to the boundary

layer formed by oscillatory flow over an impermeable flat plate (Stokes, 1880). However, despite

the different developments and theories, there is no general solution to the boundary condition that

should be applied at the interface, and there exists some ambiguity in how to model the boundary

condition.

Based on prior developments of steady viscous flow over a permeable bed, a set of analytical

solutions for the laminar boundary layer velocities induced by linear oscillatory flows over a per-

meable bed is formulated in this work. Earlier theories on this subject, such as Liu et al. (1996) and

McClain et al. (1977), have not explicitly considered the transition zone found in a steady flow (Le

Bars and Worster, 2006). The developments presented in this work include the effect of a transition

zone inside the porous region, along which the effects of the viscous fluid are still valid before it

matches Darcy’s velocities. Solutions show that this transition scales with the grain diameter or

analogously, with the square root of the hydraulic conductivity of the porous media.

Comparisons of the proposed theory with numerical solutions of the boundary layer equa-

tions and experimental data from Liu et al. (1996) show excellent agreement with the analytical
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solutions. Error analysis performed on the empirical parameter was carried out to sensitize the

analytical solution and its agreement with experimental data. The validated analytical solutions for

the oscillatory wave case correspond to an extension of the well-known boundary layers solutions

for impermeable boundaries (Stokes, 1880; Batchelor, 2000; Svendsen, 2006), which can be re-

covered from the developments presented in this work as the permeability conditions of the seabed

tend to zero. Analytical solutions considering a transient solitary wave as a forcing condition are

also presented, which extend the impermeable sea bed solutions from Liu and Orfila (2004).

This chapter presents new analytical and numerical solutions for laminar boundary layer flows

induced by oscillatory and transient solitary waves over a permeable sea bed, where the effects of

hydraulic conductivity of the porous material are included in the solutions of the boundary layer

equations. The solution and analyses of developed bed shear stresses are also presented.

2.2. Boundary layer theory

A boundary layer corresponds to a thin region that develops near a boundary due to the viscous

effects of the fluid. Inside this region the fluid velocities vary rapidly diffusing vertically through

the boundary layer width until they reach the stream velocity of the fluid. It is known that boundary

layer equations correspond to an exact solution of the Navier-Stokes equations, and are given by

the following dimensional expressions according to Batchelor (2000)

∂u′

∂t′
= −1

ρ

∂p′

∂x′
+ ν

∂2u′

∂z′2
(2.1a)

0 = −1

ρ

∂p′

∂z′
(2.1b)

∂u′

∂x′
+
∂w′

∂z′
= 0 (2.2)

where u′ is the streamwise horizontal velocity, w′ is the vertical velocity, p′ is the fluid pressure, ρ′

is the fluid density, and ν ′ is the kinematic viscosity. Eqs. (2.1) correspond to the horizontal and

vertical momentum equations and Eq. (2.2) is the continuity equation.
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The boundary layer is generated due to vorticity effects developed at the interface fluid-boundary,

which diffuses vertically, so the fluid velocity inside the boundary layer can be decomposed as

u′ = u′i + u′r, where u′i and u′r are the irrotational and rotational velocities, respectively. In ab-

sence of pressure gradients, the fluid velocity inside the boundary layer is given by the following

expression

∂u′

∂t′
= ν

∂2u′

∂z′2
, (2.3)

which for an impermeable interface condition will follow that u′ = 0 at z′ = 0 and u′ = u′i as

z′ →∞ (Stokes, 1880; Rosenhead, 1988; Batchelor, 2000). Similarly, as the horizontal irrotational

velocity, u′i, does not depend on the vertical coordinate, Eq. (2.3) can also be rewritten as

∂u′r
∂t′

= ν
∂2u′r
∂z′2

. (2.4)

2.3. Boundary layers over permeable sea beds

Considering that a seafloor is made of a porous material, (e.g., gravels and sands), the velocity

inside this region can be modeled by Darcy’s law for permeable bed flows, meaning that the veloc-

ity inside the permeable seabed can be determined by the dynamic pressure gradients according to

Bear (1972) as follows

u′s(x
′, z′, t′) = − K ′

ρ′g′
∂p′

∂x′
, (2.5a)

w′s(x
′, z′, t′) = − K ′

ρ′g′
∂p′

∂z′
, (2.5b)

in which the subscript, s, denotes the variables inside the permeable bed, and K ′ represents the

hydraulic conductivity of the porous region.
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2.3.1. Oscillatory wave case

Starting from the classical boundary layer equations (Batchelor, 2000) and the dimensional

oscillatory waves properties presented in Section (1.4.1), the usual assumptions in oscillatory sys-

tems are that the streamwise length scale is larger than the cross-stream length scale and velocity

variations are much stronger in the cross-stream direction than in the streamwise direction. This

leads to the neglect of the non-linear advective acceleration in the streamwise momentum equa-

tion, which is much smaller than the unsteady acceleration. In dimensionless form, the momentum

equations are

∂u

∂t
=
∂(Ueit)
∂t

+
∂2u

∂η2
(2.6a)

0 =
∂p

∂η
(2.6b)

where Eq. (2.6a) and Eq. (2.6b) correspond to the streamwise and cross-stream momentum bal-

ances, respectively, and

x = k′x′ ; η = z′/
√
ν ′/ω′ ; t = ω′t′ ;

p = p′/ρ′U
′2
0 ; (u,w, U) = (u′, w′, U ′)/U ′0 (2.7)

where x′ and z′ are the dimensional streamwise and cross-stream coordinates with corresponding

dimensional velocities u′ and w′, respectively. Further, p′ is the dynamic fluid pressure, ρ′ is the

fluid density and ν ′ corresponds to the kinematic viscosity of the fluid. For sake of simplicity, some

primes are dropped in the following calculations.

The oscillatory free-stream velocity in dimensional form is Ueiωt, which has a characteristic

magnitude U0 and where U is complex and can vary in x-direction. The cross-stream coordinate

z is scaled by the boundary layer thickness
√
ν/ω, and η is therefore the stretched cross-stream

coordinate inside the boundary layer. In Eq. (2.6a), it is considered that the free-stream acceleration

balances the horizontal pressure gradient

−kU2
0

∂p

∂x
= ωU0

∂(Ueit)
∂t

.
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The dimensionless continuity equation is

∂u

∂x
+

√
ω

νk2

∂w

∂η
= 0. (2.8)

where
√
ω/νk2 is the Womersley number.

The flow inside the porous region is modeled as described by Darcy’s law (Bear, 1972), given

in dimensionless form by

us(x, η, t) = −σ U0

(ω/k)

∂p

∂x
(2.9)

with

σ =
K ′ω

g′
, (2.10)

where σ is the dimensionless hydraulic conductivity and K ′ is the hydraulic conductivity of the

permeable material. Figure (2.1) shows the variation of the parameter σ for different values of the

hydraulic conductivity, K ′, and wave periods, T ′. Values of K ′ ranging from 10−5 m/s to 10−1 m/s

are chosen to represent typical values for fine sands to gravel (Domenico and Schwartz, 1990) and

the range of T ′ covers characteristic values of wave periods (1 s to 10 s) of in intermediate and

shallow waters.

2.3.2. Solitary wave case

The physical problem is extended to include a solitary wave propagating over a permeable

seafloor considering the dimensional properties for a transient solitary wave presented in Section

(1.4.2). The origin of the reference system (x′, z′) = (0, 0) is at the still water level pointing in

the positive (x′, z′)-directions, so the seafloor is located at z′ = −h′. The variables inside the

permeable bed are those associated with the subscript s. The surface elevation of the solitary wave

ζ ′ propagates over a constant depth h′, the wave height is represented by H ′, and the length scale

is associated with the solitary wave wavelength, L′. The time scale is given by the expression

L′/
√
gh′. Next, a set of non-dimensional variables are introduced, which correspond to the spatial

coordinates and some physical properties of the solitary wave
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Figure 2.1: Variation of σ = K ′ω/g′ for different hydraulic conductivities, K ′, and wave periods, T ′.


x = x′/L′ ; z = z′/h′ ; t =

√
g′h′t′/L′

ζ = ζ ′/H ′ ; p = p′/ρg′H ′ ;

u = u′/ε
√
g′h′ ; w = µw′/ε

√
g′h′ ;

(2.11)

Here, u′i and w′i correspond to the horizontal and vertical irrotational velocities propagating in

the positive (x′, z′)-directions, respectively. The wave steepness of the solitary wave, ε = H ′/h′,

was already introduced, and µ = h′/L′ is the relative depth.

Following the formulations from Mei et al. (2005), the dimensionless solitary wave free surface

elevation, ζ , can be represented as follows:

ζ = sech2

[
β

µ
(x− ct)

]
, (2.12)

with

β =

√
3ε

4
and c =

√
1 + ε. (2.13)
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Introducing the velocity potential φ for the irrotational velocity, the horizontal and vertical

components (u, w) can be expressed as

ui(x, z, t) =
∂φ

∂x
= ζ (2.14)

wi(x, z, t) =
∂φ

∂z
=

√
3µ2

ε
(z + 1)q

{
−εζ2

}
, (2.15)

where the subindex i denotes the irrotational condition.

The viscous effects become important in a thin boundary layer adjacent to the bottom (at z =

−1), implying that the no-slip boundary condition is satisfied. Inside the boundary layer, the

velocity components are expressed as the summation of irrotational and rotational parts. Thus,

u(x, z, t) = ui(x, t) + ur(x, z, t), w(x, z, t) = wr(x, z, t), (2.16)

where u and w are the horizontal and vertical velocity components in the boundary layer and ui

is given in Eq. (2.14). Inside the boundary layer, the vertical pressure gradient is small enough

to be ignored at the leading order. On the other hand, the horizontal pressure gradient is balanced

by the acceleration associated with the irrotational velocity. Since the ratio of the boundary layer

thickness and the length scale is O(α), the next stretched coordinate is introduced

η =
z + 1

α/µ
(2.17)

where

α2 =
ν

L′
√
g′h′

. (2.18)

Here, ν corresponds to the kinematic viscosity of the fluid, and α2 can be understood as an inverse

Reynolds number.

The linearized momentum equation following Liu and Orfila (2004) expressions for the rota-

tional velocity in the boundary layer is
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∂ur
∂t

=
∂2ur
∂η2

, (2.19)

and leading order vertical component of the rotational velocity is integrated from the continuity

equation

∂ur
∂x

+
∂wr
∂η

= 0. (2.20)

The boundary conditions for the boundary layer flow can be expressed as follows. The rota-

tional velocity components vanish outside the boundary layer, i.e.,

ur, wr → 0 as η → ∞ (2.21)

and on the other hand, the no-slip boundary condition on the seafloor must be satisfied,

ur + ui = 0 on η = 0. (2.22)

The solution for the boundary value problem of ur, described in Eqs. (2.19), (2.21), and (2.22),

has been provided in Liu and Orfila (2004, 2007a) for an impermeable sea bed case.

To include the effects of the porous media, the expression for the horizontal velocity u′s inside

the permeable bed is obtained by taking the derivative of the dimensional dynamical pressure given

by Eq. (1.14), whose derivative with respect to x′ yields

∂p′

∂x′
= −ρg′{2k′H ′sech2[k′(x′ − ct′)]tanh[k′(x′ − c′t′)]}. (2.23)

Replacing now (2.23) on (2.5a), the following dimensional expression for the permeable bed

velocity u′s inside the permeable bed is obtained

u′s(x
′, z′, t′) = 2k′K ′H ′sech2[k′(x′ − c′t′)]tanh[k′(x′ − c′t′)]. (2.24)

According to this theory, the flows inside the permeable bed are driven by the dynamic pressure

p′ associated with the transient wave propagating on the free surface. Then, the permeable bed

velocity u′s at η ≤ 0 is stated as
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u′s = σus(x, η ≤ 0, t), (2.25)

where σ = K ′H ′/L′ε
√
g′h′ = K ′µ/

√
g′h′ is the non-dimensional coefficient for the velocity

u′s inside the permeable bed. It is important to notice that the permeable bed velocity (2.25) is

different from the irrotational velocity presented in Eq. (2.14). The irrotational velocity under a

solitary wave is always positive, moving in the same direction as the wave propagation.

2.4. Interfacial boundary conditions

Working in a two-dimensional Poiseuille flow scenario, Beavers and Joseph (1967) (BJ) pos-

tulated that there is a transference of the tangent velocity from the fluid to the permeable bed at

the interface (η = 0), which can be treated as a discontinuity between the velocities in these two

domains. Physically, at the interface, there is an equilibrium between the velocity gradients above

the permeable bed and inside the permeable bed. This boundary condition is written as

∂u

∂η
=

κ√
σ

(u− us) on η = 0. (2.26)

The parameter κ, corresponds to the slip coefficient, and was introduced as an empirical pa-

rameter that depends on the structure of the porous material. With κ determined experimentally,

BJ’s boundary condition yielded good comparison with their experimental data, and the form of

their boundary condition was provided further theoretical support by Saffman (1971).

Le Bars and Worster (2006) (LW) presented an analysis that compared the two-layer system

(Stokes flow in the free fluid domain and Darcy’s flow in the porous medium) with a single layer

system (Darcy-Brinkman formulation where the porosity smoothly transitions from its porous me-

dia value deep within the porous layer to zero in the free fluid). They found that the Stokes flow

penetrates to a small depth into the porous medium, which constitutes a transition zone and whose

magnitude scales with the pore size. Thus, LW suggest that the BJ boundary condition can be sim-

plified by re-writing it as a continuity between the fluid velocity and Darcy’s velocity at a distance

δ within the porous boundary
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us = u at η = −δ (2.27)

where δ is the transition zone depth in dimensionless form. LW further show that this transition

depth takes the following form (in our notation)

δ = m

√
σ

n
(2.28)

where n is the porosity and m is an O(1) constant. The equivalence between the LW boundary

condition (Eq. (2.27)) and the BJ boundary condition (Eq. (2.26)) also showed that κ =
√
n, which

was consistent with the original postulate that κ was a property of the porous material.

As σ → 0, both the BJ and LW boundary conditions tend towards the expected no-slip condi-

tion for an impermeable boundary.

Following others who have used the Carman-Kozeny formulation to interpret the thickness

of the transition zone in terms of grain diameters. Substituting the Carman-Kozeny expression

(Carman, 1937) into Eq. (2.28) yields

δ

√
ν

ω
≈ mDs

n√
180(1− n)

(2.29)

where δ
√
ν/ω on the left side is the dimensional transition zone depth andDs is the grain diameter

of the porous boundary. This shows that the value of the transition depth, which could scale either

with the square root of the permeability or with the grain diameter, will be determined by the value

of the empirical constant m.

2.5. Analytical solutions for LW boundary condition

Oscillatory wave case

To consider the LW boundary conditions in the oscillatory flow problem, a shifted vertical

coordinate that includes the depth of the transition zone in the domain is first introduced as
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η̄ = η + δ. (2.30)

Then, it is possible to state that u = us at η̄ = 0, and the LW boundary conditions can be

written as

u→ U as η̄ → ∞ (2.31a)

u = iσUeit on η̄ = 0. (2.31b)

To find a solution to the governing equation Eq. (2.6a) subject to boundary conditions Eqs. (2.31),

it is assumed the solution has a separable form

u = R[f(η̄)ei(t+φ)] (2.32)

where R correspond to the real part and φ is a phase shift. Substituting Eq. (2.32) into the governing

equation leads to a second order ordinary differential equation with constant coefficients

f ′′(η̄)− if(η̄) = −iUe−iφ (2.33)

that can be solved with a pair of complex roots and a particular solution f(η̄)p = Ue−iφ. The

following general solution for f(η̄) is obtained as

f(η̄) = Aeη̄
(1+i)√

2 +Be−η̄
(1+i)√

2 + Ue−iφ. (2.34)

where A and B are constants to be determined from the boundary conditions in Eqs. (2.31). A = 0

if the solution is to remain finite and satisfy the boundary condition as η̄ →∞. B and φ are found

from the boundary condition at η̄ = 0 to be

B = −U
√

1 + σ2

φ = − arctan (σ).

This final solution is

u = Ueit
[
1−
√

1 + σ2e−η̄
(1+i)√

2 e−i arctan(σ)

]
. (2.35)



23

The bed shear stress can be computed via

τb =
∂u

∂η

∣∣∣∣
η=0

which is given by

τb =

√
1 + σ2

2
e−i arctan(σ)(1 + i)e−δ

(1+i)√
2 Ueit. (2.36)

The vertical velocity in the boundary layer can be computed from continuity. Rearranging

Eq. (2.8) gives

w − ws = −
√
νk2

ω

∫ η

−δ

∂u

∂x
dη

where the LW boundary condition is used to ensure continuity of the fluid and Darcy velocities at

the transition depth: w = ws at η = −δ. Here, ws = 0 since ∂p/∂η = 0, and the solution for the

vertical velocity is

w = −dU
dx

√
νk2

ω
eit
{
η̄ +

√
1 + σ2

2
e−i arctan(σ)(1− i)

[
e−η̄

(1+i)√
2 − 1

]}
. (2.37)

Following with the developments made before, the streaming velocity ub, in its dimensionless

form as follows

ub =

√
ω

νk2

∫ η

0

uw − (uw)∞dη (2.38)

where u and w are the horizontal and vertical velocities, respectively, and the overline means the

quantities are averaged in the time as

uw =
1

2π

∫ 2π

0

(uw)dt. (2.39)

The horizontal and vertical velocities u,w have been previously obtained, which are used di-

rectly in the calculations for the streaming velocity. The equation for this quantity has the following
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form

ub(η, t) =
U2
x

4

{
− (1 + σ2) + 4

√
1 + σ2 cos(arctan(σ))+

(1 + σ2) exp(−
√

2(η + δ)) + 2(1 + σ2) exp(−
√

2(η + δ)) sin

(
η + δ√

2

)
− (1 + σ2) exp

(
− η + δ√

2

)[
(
√

2(η + δ) + 4) cos

(
η + δ√

2
+ arctan(σ)

)
+

√
2(η + δ) sin

(
η + δ√

2
+ arctan(σ)

)]}
(2.40)

The set of solutions for the horizontal velocity, vertical velocity, and bed shear stress (Eq. (2.35)–

(2.40)) are extensions of the well-known the Stokes boundary layer with a permeable bed. Indeed,

as the hydraulic conductivity vanishes σ → 0, the classical solutions (Stokes, 1880; Batchelor,

2000; Rosenhead, 1988) are recovered.

Solitary wave case

Following the developments presented in the previous section, the effects of the permeable bed

are implemented following Le Bars and Worster (2006). Similarly, inside the boundary layer at

η̄ = η + δ, the total horizontal velocity in the boundary layer must match that of the permeable

bed. The boundary conditions are given by

ur + ui = σus on η̄ = 0, (2.41)

ur, wr → 0 as η̄ → ∞, (2.42)

where the velocity ui is given in Eq. (2.14) and σus has been already obtained in Eq. (2.25). The

continuity equation including the modified vertical coordinate corresponds to

∂ur
∂x

+
∂wr
∂η̄

= 0. (2.43)

By integrating Eq. (2.43), the vertical rotational velocity component can be obtained along the

permeable sea bed at η̄ = 0. The solution for the boundary layer flows are calculated by slightly

modifying the impermeable bed solution from Liu and Orfila (2004), yielding
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ur(x, η̄, t) = − η̄

2
√
π

∫ t

0

(ui − σus)√
(t− τ)3

exp

[
− η̄2

4(t− τ)

]
dτ (2.44)

and

wr(x, η̄, t) = − 1

2
√
π

∫ ∞
η̄

η̂

[∫ t

0

∂(ui − σus)/∂x√
(t− τ)3

exp

(
− η̂2

4(t− τ)

)
dτ

]
dη̂, (2.45)

where, η̂ corresponds only to a variable change for integration. Furthermore, the leading order

viscous shear stress can be readily calculated as

τb(x, t) =
∂ur
∂η

∣∣∣∣∣
η=0

=
1√
π

∫ t

0

∂(ui − σus)/∂τ√
(t− τ)

dτ. (2.46)

Inside the boundary layer, it is of interest to look at the displacements of the horizontal water

particles as it depicts the mass transport above the seabed. Following Svendsen (2006) and Liu and

Orfila (2004), the net displacement of the water parcels can calculated according to the following

integral expression

x(t) = x0 +

∫ t

t0

u(x(τ), τ)dτ. (2.47)

where u is the fluid velocity, x0 is the initial position of the particles, t0 is the initial time, and τ is

only the integration variable for the time. The net horizontal displacement for the water particles

was obtained by numerical integration of the previously computed velocities for impermeable and

permeable sea beds, which are a function of time for different η̄ elevations.

2.6. Numerical approximation for Beavers and Joseph (1967) boundary con-

dition

This section presents numerical approach considered to implement the Beavers and Joseph

(1967) boundary condition. The governing equation is solved for the horizontal velocity in the

boundary layer numerically using finite differences and the Crank-Nicolson semi-implicit scheme.

We use the BJ boundary condition at η = 0 and initialize the simulations with u(η, 0) = 0 .
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The vertical coordinate η is discretized over a range from 0 to 10 and time is discretized such that

∆t/(∆η)2 = 0.5. Simulations were run long enough so that hat the solutions reach its stability. The

oscillatory case show a period steady state value within the first two cycles allowing comparisons

against the analytical solution to be made in the time span 0 < t < 2π.

The numerical implementation of the Crank-Nicolson scheme to discretize the governing equa-

tion (Eq. (2.6a)) in time (n) and space (j) is presented below. The discretized equation is

un+1
j − unj

∆t
=

1

2

[
un+1
j−1 − 2un+1

j + un+1
j+1

∆η2

]
+

1

2

[
unj−1 − 2un+1

j + unj+1

∆η2

]
+
Cn+1
j − Cn

j

∆t
(2.48)

where C = Ueit and β = ∆t/∆η2 corresponds to CFL number. Re-arranging terms leads to the

following form

− 1

2
βun+1

j−1 + (1 + β)un+1
j − 1

2
βun+1

j+1 − Cn+1
j =

1

2
βunj−1 + (1− β)unj +

1

2
βunj+1 − Cn

j . (2.49)

To include the BJ boundary condition (Eq. (2.26)) in the Eq. (2.49), which mathematically

corresponds to a Robin-type boundary condition, a second order discretization is considered to

avoid loss of accuracy. To do this, a ghost point at the border of the numerical domain is used.

The implementation of LW boundary condition follows a trivial procedure, as it corresponds to a

Dirichlet-type boundary condition. The discretization of the BJ boundary condition at time step n

is as follows
unj−1 − unj+1

2∆η
= λ(unj+1 − unsj) (2.50)

with λ = κ/
√
σ. Re-arranging the above equation, the following expression is obtained

unj−1 = unj+1 − 2∆η[λ(unj+1 − unsj)]. (2.51)

For sake of simplicity, some of the expressions are skipped for time step n+ 1 as it is analogous to

the aforementioned discretization. Including the boundary terms in Eq. (2.49), the Crank-Nicolson
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scheme takes the following form

(1 + β)un+1
j − βun+1

j+1 =

(1− β)unj + βunj+1 − β∆ηλ(un+1
j+1 + unj+1) + β∆ηλ(un+1

sj
+ unsj)

+ (Cn+1
j − Cn

j ), (2.52)

which is a matrix equation with a tridiagonal matrix, which is easily solved (e.g., using the Thomas

algorithm).

2.6.1. Oscillatory wave case

The boundary layer velocity profiles for a permeable bed at different phases of an oscillation

cycle are presented in Figure (2.2). The analytical velocity profiles obtained with the LW bound-

ary conditions (solid magenta) show very good agreement with the numerical solutions with the

BJ boundary condition (black dashed line). To compare the numerical solution with the analyti-

cal solution close to the interface η = 0, time series of slip velocities and bed shear stresses are

presented in Figure (2.3). Again it is observed an agreement between the analytical and numerical

solutions considering LW and BJ boundary conditions, respectively, but also observe small differ-

ences. These differences can be attributed to the precise value of the constant m that effectively

sets the thickness of the transition zone until the flow is well described by Darcy’s law.

Figure (2.4) shows how flow at the interface varies with the dimensionless permeability σ. The

maximum value of the slip velocity is shown in panel (a), the maximum bed shear stress value

in panel (b), with their respective phase lags in panels (c) and (d). As permeability increases,

the slip velocity magnitude increases and the bed shear stress magnitude decreases since the flow

encounters lower resistance. The phase lags are less sensitive to the permeability compared with

the magnitudes.

The results of the analytical solution for the streaming velocity are shown in Figure (2.5).

Profiles present magnitudes that are proportional to the hydraulic conductivity σ. It is possible to

notice the significant difference in magnitude at the interface η = 0, compared to the magnitudes

of considering a no-slip boundary condition. Profiles exhibit maximum magnitudes at certain
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specific η, reaching higher streaming velocities at vertical coordinates closer to the boundary as

the permeability increases. This behavior indicates a relation to the slip velocity, which increases

as the sea bed becomes more permeable. On the other hand, average streaming velocity displays

rapid variations in magnitude as the hydraulic conductivity augments (Figure (2.6)). This behavior

of the streaming velocity is relevant to the study and analysis of sediment and mass transport.

Figure 2.2: Velocity profiles for a permeable bed condition for σ = 0.1 and U0 = 1, and m = 1. Top: Free-

stream velocity. Bottom: LW boundary condition (analytical solution: solid magenta line), BJ boundary

condition (numerical solution: black dashed line).

2.6.1.1 Comparisons with laboratory data

Analytical solutions against experimental data reported in Liu et al. (1996) are compared to

show the validity of the theory proposed in this work. In the experiments, surface gravity waves

propagate over a permeable bed generating an oscillatory boundary layer. The experimental cases

are listed in Table (2.1), which gives values for the water depth h, wave amplitude a, wave period

T , the dimensionless hydraulic conductivity σ measured using a constant-head permeator, the

porosity n, and the dimensionless wave steepness ka and dimensionless wavelength kh calculated

using the wavenumber k from the dispersion relation. From linear wave theory, the dimensionless
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Figure 2.3: Slip velocity and shear stress at the interface (η = 0) for σ = 0.1 and U0 = 1. Top: Free-stream

velocity. Middle: LW boundary condition (analytical solution: solid magenta line), BJ boundary condition

(numerical solution: black dashed line). Bottom: Bed shear stress. LW boundary condition (analytical

solution: solid magenta line), BJ boundary condition (numerical solution: black dashed line).

Table 2.1: Experimental data from Liu et al. (1996).

Group Exp. Ds × 10−3(m) a (cm) h (cm) T (s) σ n ka kh

2 A2 0.5 0.517 19.9 1.254 0.0012 0.3830 0.0203 0.7801

3 A3 1.5 0.512 19.9 1.254 0.0090 0.3824 0.0201 0.7801

4 A4 3.0 0.515 19.9 1.254 0.0373 0.3840 0.0202 0.7801

2 B2 0.5 0.537 24.0 1.114 0.0013 0.3830 0.0227 1.0141

3 B3 1.5 0.513 24.0 1.114 0.0102 0.3824 0.0217 1.0141

4 B4 3.0 0.522 24.0 1.116 0.0419 0.3840 0.0220 1.0117

2 C2 0.5 1.181 24.7 1.035 0.0014 0.3830 0.0545 1.1396

3 C3 1.5 1.167 24.7 1.033 0.0109 0.3824 0.0540 1.1426

4 C4 3.0 1.140 24.7 1.035 0.0452 0.3840 0.0526 1.1396

free-stream velocity that drives the boundary layer is given by

U =
ka

sinh kh
e−i(x−t).
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Figure 2.4: Top: Variation of the maximum slip velocity (a) and bed shear stress (b) as functions of σ, with

U0 = 1. Bottom: Variation of the phase associated to the maximum slip velocity (c) and bed shear stress

(d) for different values of σ. Grey line: No-slip boundary condition (analytical solution). Magenta line: LW

boundary condition (analytical solution with m = 1). Black dashed line: BJ boundary condition (numerical

solution).

This wave-induced flow can be considered to be uniform inside the boundary layer and the flow

in the permeable bed (below the transition zone) can be considered to be well modeled by Darcy’s

law. Thus, the experimental conditions are ideally suited to test our analytical solutions, which can

be found by substituting U = e−ix into Eq. (2.35)–(2.37). The horizontal velocity solution is given

by

u = U0

{
cos(x− t)−

√
1 + σ2 cos

(
x− t+

η + δ√
2

+ arctan(σ)

)
e−

η+δ√
2

}
(2.53)

where

U0 =
ka

sinh kh
.
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Figure 2.5: Left: Streaming velocities profiles for different values of σ, with U0 = 1. Black line: No-slip

boundary condition (analytical solution). Magenta lines: LW boundary condition (analytical solution with

m = 1). σ = 0.1 (Solid line), σ = 0.25 (dashed line), σ = 0.5 (dash-dotted line), σ = 1.0 (dotted line).

Right: Variation of the average streaming velocity between η = [0, 10] for variable permeability σ. Black

line: No-slip boundary condition (analytical solution). Magenta line: LW boundary condition (analytical

solution with m = 1).

As before, the above expression reduces to the expected impermeable bed solution (Svendsen,

2006) as σ → 0.

Figure (2.7) shows the comparison between the analytical solution and experimental data.

Here, the parameter m plays an important role because it determines the depth of the transition

zone below the interface and essentially controls the magnitude of the slip velocity. Rather than

tuning the value of m for each experimental case, the comparisons by taking a single value of m

for the experiments where the porous medium presents the same characteristics in permeability

and porosity (groups 2, 3, and 4) are shown. The agreement between the data and the theoretical
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Figure 2.6: Left: Streaming velocities profiles for different values of σ, with U0 = 1. Black line: No-slip

boundary condition (analytical solution). Magenta lines: LW boundary condition (analytical solution with

m = 1). σ = 0.1 (Solid line), σ = 0.25 (dashed line), σ = 0.5 (dash-dotted line), σ = 1.0 (dotted line).

Right: Variation of the average streaming velocity between η = [0, 10] for variable permeability σ. Black

line: No-slip boundary condition (analytical solution). Magenta line: LW boundary condition (analytical

solution with m = 1).

developments of this work proposed is remarkable, especially given that a more detailed matched

asymptotic solution in Liu et al. (1996) was much less successful.

In order to extend the analysis, an error estimation was performed considering the averaged

Root Mean Squared Error (RMSE) across the experimental cases of groups 2, 3, and 4 shown in

Figure (2.7). From the analysis, it is found the optimum value of m, for which the error is mini-

mum. From Figures (2.8, 2.9 and 2.10) it is possible to visualize the performance of the matching

condition of this theory compared to the experiments for different values of the parameter m. In
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Figure 2.7: Dimensionless velocity profiles at x − t = 2π (under the wave crest) for the different cases

listed in Table (2.1), showing a comparison between the LW analytical solution (solid magenta line) and

experimental data (Liu et al., 1996) (blue crosses). Groups: 2 (Top), 3 (Middle), 4 (Bottom).

general, the errors associated with the selected values of m for each group are lower compared

with the literature.

From Eqs. (2.28) and (2.29), it is observed that the thickness of the transition zone is propor-

tional to both
√
σ or Ds. From the empirical data, it is found that a value of m = 14, 7 and 4

gives good agreement across different groups of oscillatory flow conditions and permeable beds,

and thus, the transition zone thickness remains almost invariant for different oscillatory flow con-

ditions. In terms of the grain diameter it is

δ

√
ν

ω
= [0.69, 0.32, 0.19]Ds, (2.54)

and in terms of the permeability it is

δ = [22.62, 11.32, 6.45]
√
σ. (2.55)
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The above expressions show different orders of magnitude when the different scales apply,

which agrees with previous data (Goharzadeh et al., 2005; Morad and Khalili, 2009; Liu and Pros-

peretti, 2011). Since the scaling with grain diameter is closer to a value of 1 than the scaling with

the permeability, results suggest the grain diameter to be a more suitable characteristic length for

the transition zone. Different from other studies, this conclusion is obtained indirectly by using the

empirical parameter m in relation to the boundary layer in the free fluid.

Figure 2.8: Average RMSE of velocity magnitudes for different values of m (red dots) compared to Liu et

al. (1996) theoretical solution (black dash-dotted line). Errors calculated on Group 2 experimental data.

Figure 2.9: Average RMSE of velocity magnitudes for different values of m (red dots) compared to Liu et

al. (1996) theoretical solution (black dash-dotted line). Errors calculated on Group 3 experimental data.
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Figure 2.10: Average RMSE of velocity magnitudes for different values of m (red dots) compared to Liu et

al. (1996) theoretical solution (black dash-dotted line). Errors calculated on Group 4 experimental data.

A single value m = 5 is tried in the analytical solution to compare against the empirical data

(Figure (2.11). Results show that even when a single parameter can give a good agreement for some

experimental cases, it is enough to characterize the oscillatory boundary layer flows for permeable

beds with slightly different characteristics, such as porosity and hydraulic conductivity. For a value

of m = 5, the dimensional transition zone is

δ

√
ν

ω
= 0.24Ds ± 0.01Ds, (2.56)

which, expressed in terms of the permeability gives the relation

δ = 8.08
√
σ ± 0.01

√
σ. (2.57)

2.6.2. Solitary wave case

Evaluations of integrals and numerical simulations have been performed to assess the behavior

of the solitary wave-induce boundary layer equations. For convenience, a moving coordinate ξ =

x−Ct is introduced in the results, which acts as time when x = 0 (Liu and Orfila, 2004; Liu et al.,

2007a).
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Figure 2.11: Dimensionless velocity profiles at x − t = 2π (under the wave crest) for the different cases

listed in Table (2.1), showing a comparison between the LW analytical solution, with a fixed value m = 5

(solid magenta line) and experimental data (Liu et al., 1996) (blue crosses). Groups: 2 (Top), 3 (Middle), 4

(Bottom).

Figures (2.12) and (2.13) show the time series of horizontal velocities and rotational vertical

velocity associated with a non-linearity parameter ε = 0.2 and hydraulic conductivity σ = 0.0311

(K ′ = 0.5 (m/s)) at different elevations of η. In general, velocities present acceleration and decel-

eration on the permeable bed, which start vanishing as it moves outside the boundary layer. When

the solitary wave moves in the positive x direction, fluxes present positive values, changing the

sign in the deceleration process. This can also be observed in Figure (2.14a) where the time series

of velocities at η = 0 show that the magnitude of u is proportional to the hydraulic conductivity.

It is noticed that reversal flows are lower than accelerating flows. In the same way, the bed shear

stress also present a significant variation in its magnitude as σ increases (Figure (2.14b)). However,
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this magnitude decreases with the hydraulic conductivity. This physical effect happens as a reduc-

tion of the friction at the interface as the slip velocity increases. In general, this quantity presents

positive values during the acceleration process of the solitary wave, which are significantly higher

than the reversal stresses.

Figure 2.12: Horizontal velocity for a permeable bed (LW boundary condition). ε = 0.2 and σ = 0.0311

(K ′ = 0.5 (m/s)). ui (solid gray line), ur (dash-dotted orange line), ur (dotted gray line).

The analytical and numerical results are also assessed to check the performance of the methods

and boundary conditions for the solitary wave. Figure (2.15) shows the velocity profiles solved

numerically (BJ) and analytically (LW) for different phases of the transient solitary wave for ε =

0.2 and σ = 0.0311. To make the solutions comparable, a value of m = 1 was used in the

analytical LW solution, for which the results of both boundary conditions must behave similarly.

Profiles present similar results displaying small differences at the interface η = 0. This difference is
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Figure 2.13: Rotational vertical velocity wr (LW boundary condition), for different elevations of the bound-

ary layer η. ε = 0.2 and σ = 0.0311 (K ′ = 0.5 (m/s)).

attributed to numerical numerical error, which could be improved by increasing the time resolution

for the numerical solution. The differences at the interface were found to be ∼ 14%. Figure (2.16)

shows the velocity profiles considering the Le Bars and Worster (2006) boundary condition only

at different points along the solitary wave signal for different values of the hydraulic conductivity

σ. As expected, variations on the velocity structure are associated with σ, which increase near the

boundary. Reversal flows seem to decrease faster along the vertical coordinate η with increasing

values of σ.

The influence of the permeable sea beds on the net horizontal displacements of water parcels is

evaluated against the impermeable case. Figure (2.17) presents the water parcel displacements in

time at different elevations η = [0.25, 1.0, 10]. For elevations closer to the boundary, curves show

how the displacements increase with the conductivity of the permeable bed. As the rotational ve-

locity component modifies its structure at the interface and within the boundary layer, modifying
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also the total velocity, displacements are prone to increase close to the boundary, different from an

impermeable scenario. In the outer regions of the boundary layer, the contribution of the porous

material decays, and the rotational velocity vanishes, reaching similar displacements despite mag-

nitude of the hydraulic conductivity. It is observed that the curves are always positive, indicating

the low contribution of the reversal flow inside the boundary layer, especially close to the boundary.

Further, water particles present higher displacements in distances far from the boundary η = 0.

Figure (2.18) presents the distribution of the maximum horizontal displacements for different

η and σ. It is possible to notice that for elevations (η) closer to the boundary the displacements

tend to increase with the hydraulic conductivity, pointing to the influence of the permeable seabed

on the boundary layer velocities and thus on the horizontal displacements. On the other hand,

displacements tend to reach a constant magnitude far from the boundary, regardless of the values

of σ.

2.7. Concluding remarks

Analytical solutions for oscillatory boundary layers over a permeable bed have been found and

compared against numerical solutions and experimental data. The boundary conditions at the in-

terface between the fluid and permeable bed represent the biggest source of uncertainty in such

a scenario. In the presented numerical simulations, the well-known Beavers and Joseph (1967)

boundary condition was implemented. The analytical solutions, which consider the Le Bars and

Worster (2006) boundary condition, show how the boundary layer structure depends on the di-

mensionless hydraulic conductivity σ = K ′ω/g′, with the solutions recovering the well-known

impermeable bed Stokes boundary layer in the limit σ → 0. Further, these solutions agree well

with numerical solutions in terms of the velocity profiles, slip velocities, and wall shear stresses.

The solutions also agree well with experimental data of an oscillatory boundary layer driven by

surface waves propagating over a bed of solid spheres. The analytical solutions contain an O(1)

empirical parameter, whose value is constrained with the use of experimental data. It was found

that, physically, this parameter controls the thickness of the transition zone below which the flow
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dynamics are dominated by Darcy’s law. The results agree with previous literature on steady flows

that the transition zone thickness is on the order of 1 grain diameter. The boundary conditions were

also implemented to extend the Liu and Orfila (2004) formulations for boundary layers induced

by a transient solitary wave over impermeable sea beds, which have also been solved analytically

and numerically. Results show that the permeability conditions of the porous region modifies the

structure of the rotational velocity in the boundary layer, and thus, the total velocity. As expected,

velocities are shown to be proportional to the hydraulic conductivity. An interesting finding cor-

responds to the net horizontal displacements for water parcels, which have the potential to modify

the mass transport in the boundary layer. Net displacements show that close to the boundary, the

effects of a permeable sea bed contribute to higher displacements, being proportional to the con-

ductivity, while outside the boundary layer, the permeability becomes less important, reaching a

constant displacement regardless of the permeability conditions.

Future research on this matter could extend the physical insights from the results presented

in this work to various applications in coastal engineering and oceanography such as water wave

damping (Putnam, 1949; Reid and Kajiura, 1957; Liu, 1973; Liu and Dalrymple, 1984), mass

exchange, and sediment transport in both laminar and turbulent conditions (Liu, 1977; Conley and

Inman, 1994; Corvaro et al., 2014), and wave-driven canopy flows (Luhar et al., 2010; Webber and

Huppert, 2020, 2021).

An specific extension of the developments presented in this work could include performing

new experiments increasing the range of hydraulic conductivities to obtain a wide range of spe-

cific m parameter. These findings could contribute to reducing uncertainties in the selection of

this empirical parameter when specific conductivities are required. In the same way, an inverse

problem can be proposed to obtain the empirical parameter m prior to its calibration by knowing

the properties of the porous material.

Following the same line of research, the physics of the boundary conditions presented in this

work can be suitable to model the top boundary condition in the analysis of transient wave-induced

flows inside permeable bed flows.
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(a)

(b)

Figure 2.14: (a) Time series of velocities, u, and (b) bed shear stresses, τ , with ε = 0.2 (LW boundary

condition). Impermeable condition (red solid line), σ = 0.0062 (K ′ = 0.1 (m/s)) (black dashed line),

σ = 0.0311 (K ′ = 0.5 (m/s)) (black dash-dotted line), σ = 0.062 (K ′ = 1.0) (m/s)) (black dotted line).
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Figure 2.15: Velocity profiles for different locations along the solitary wave signal. LW boundary condition

(analytical results: solid magenta line). BJ boundary condition (numerical results: dash-dotted black line).

ε = 0.2 and σ =0.0311 (K ′ = 0.5 (m/s)).
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Figure 2.16: Velocity profiles for ε = 0.2 (LW boundary condition) for different values of hydraulic conduc-

tivity. Impermeable condition (red solid line), σ = 0.0062 (K ′ = 0.1 (m/s)) (gray solid line), σ = 0.0311

(K ′ = 0.5 (m/s)) (gray dash-dotted line), σ = 0.062 (K ′ = 1.0) (m/s)) (gray dotted line).
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Figure 2.17: Net horizontal water particles displacements for ε = 0.2 at different η elevations. Impermeable

sea bed (black line), and permeable sea bed with σ = 0.0311 (K ′ = 0.5 (m/s)) (magenta line). η = 0.25

(solid lines), η = 1.0 (dashed lines), and η = 10 (dotted-dashed lines).
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Figure 2.18: Maximum net horizontal water particles displacements for several values of σ. ε = 0.2 (LW

analytical solution).
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Chapter 3

HYDRODYNAMICS OF WAVE-SWASH INTERACTIONS

3.1. Introduction

Water waves continuously shape sandy coastlines through sediment transport across a wide

range of timescales, from sediment suspension events caused by individual waves to beach mor-

phology changes that occur over seasons or longer (e.g., Martínez et al. (2018); Toimil et al.

(2020)). Hydrodynamically, waves transformation near the coast is classified into several sub-

regions such as the surf zone and swash zone (Dean and Dalrymple, 2004; Holthuijsen, 2007;

Jackson and Short, 2020). In the swash zone, flow begins with the shoreward acceleration of the

shoreline with the arrival and collapse of each wave, and is characterised by the movement of water

up and down the beach, delimited by a cycle of upwash and backwash, otherwise referred to as

a swash event (Brocchini and Baldock, 2008). In particular, wave-swash interactions are events

where incoming waves collide with the upwash or backwash flows of the previous swash event.

Wave-swash interactions have been qualitatively described in the field (e.g., Hughes and Moseley

(2007); Erikson et al. (2005)) and hypothesized to be an important mechanism for sediment trans-

port (e.g., Puleo et al. (2000); Elfrink and Baldock (2002); Puleo and Butt (2006); Alsina et al.

(2009); Puleo and Torres-Freyermuth (2016)) for some time.

The qualitative descriptions and types of wave-swash interactions include: (a) Wave-upwash

interactions, where the upwash flow of a wave catches the upwash flow of the previous wave; (b)

Weak wave-backwash interactions, where the upwash flow of a wave catches with the backwash

flow of the previous wave, with the result that the flow is again pushed shoreward; and (c) Strong

wave-backwash interactions, which are physically similar to weak wave-backwash interactions, but
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with result that the interaction induces a stop or receding of the incoming flow, often accompanied

by a stationary hydraulic jump. In many field scenarios, the development of ‘free swash events’

(no interactions) tend to occur on the upper beach, whereas wave-swash interactions are common

in the lower beach. For an incident wave train with constant wave heights, the time between wave

crests relative to the timescale of the swash event has been used to understand these interactions

(Baldock and Holmes, 1999; Lo et al., 2013; Pujara et al., 2015b), but this has been insufficient

to understand the broad class of wave-swash interactions observed in the field for irregular waves

(Chardón-Maldonado et al., 2016). Chen et al. (2023), in their recent extensive review of sediment

transport models, concluded that even though there is an acceptance that wave-swash interactions

play a critical role in the sediment transport in the swash zone, there are no parameters to determine

the interaction type or the resulting sediment transport.

Controlled experiments are developed in a wave flume to find quantitative descriptions of wave-

swash interactions. The methodology presented here considers the generation solitary waves since

they travel with a permanent form (ignoring small viscous losses Liu et al. (2007b)) and generate

large swash events whose properties can be understood in terms of a small set of input parameters

(Pujara et al., 2015a). By generating two consecutive solitary wave events, we can set the strength

of the first swash event through the wave height of the first wave and set the wave height and arrival

time of the second wave through its height and separation from the first wave, thereby providing

full control of the wave-swash interaction.

This approach complements previous experiments using regular waves, bi-chromatic waves,

solitary waves, and dam-break bores to understand and flow and transport in the swash zone (Alsina

et al., 2009; O’Donoghue et al., 2010; Sou and Yeh, 2011; Alsina et al., 2012; Kikkert et al., 2012;

Lo et al., 2013; Pujara et al., 2015b; Alsina et al., 2016; O’Donoghue et al., 2016; Alsina et al.,

2018; Wu et al., 2021; Barranco and Liu, 2021; Pintado-Patiño et al., 2021). By mimicking the

interactions observed in the field, we analyze the main kinematic properties of wave-swash in-

teractions, focusing in particular on the vertical accelerations and their correlation with the flow



48

evolution. We find that there are large upward-directed vertical accelerations for certain interac-

tions that cluster together when mapped onto two dimensionless parameters that can also predict

different wave-swash interaction types.

3.2. Laboratory Experiments

3.2.1. Wave Flume Setup

Experiments were conducted in a wave flume at the Water Science and Engineering Laboratory

(WSEL) of the University of Wisconsin-Madison (Figure 3.1). The WSEL flume (39 m length,

0.9 m width, and 1.1 m height) is equipped with a piston-type wavemaker controlled by AwaSys

(Aalborg University, Denmark) at one end and an impermeable smooth beach with slope 1:10 at

the other end. The water depth was kept constant throughout the experiments at h = 0.3 m. Swash

events and wave-swash events were generated using solitary waves. We place the origin of the lab

coordinate system at a distance of 23.5 m from the wave paddle at the still water line (SWL) on

the beach with x pointing onshore and z pointing upwards against gravity.

Figure 3.1: Wave flume definition sketch with locations of the different sensors.

Measurements of both the free-surface displacement ζ and the flow velocity (u, v, w) were

taken at two control points, one in a constant depth at x = −8.83 m (CP1) and one in the wave-

swash interaction zone at x = −0.3 m (CP2), and additional measurements of the free-surface

displacement were taken at the toe of the beach (x = −3 m). The free-surface displacement
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was measured at CP1 and CP2 using ultrasonic acoustic wave gauges (USWG; Senix ToughSonic-

3 with 1 mm accuracy) and wire wave gauges (WWG, HR Wallingford with 0.1 mm accuracy)

whereas only an ultrasonic wave gauge was used at the beach toe. The WWG calibration is prone

to drift and thus the WWGs were calibrated at the start of every day when experiments were run

whereas the USWG calibration is much more stable and only required calibration once before

the start of the experiments. While both sensor types can be expected to give reliable data in

the offshore regions where the wave slopes are mild, the WWG has better accuracy and is able to

reliably measure the free-surface displacement with steep wave slopes due to wave breaking at CP2

that the USWG is unable to measure. However, the WWG has a non-linear calibration response

for shallow depths ((η + hCP2) ≤ 2 cm), so data below this threshold water depth was removed,

where hCP2 ∼3 cm. In the analysis below, we use the WWG data at CP1 and CP2 and the USWG

data at the beach toe.

Acoustic Doppler velocimeters (ADVs, Nortek Vectrino Plus with accuracy of 1% FS) were

used to measure all three components of the flow velocity at CP1 (down-looking probe) and CP2

(side-looking probe) with a sampling frequency of 50 Hz, and sampling volumes positioned at 15

cm and 0.75 cm above the bed, respectively. For data quality and control, we only report data

with a signal-to-noise ratio (SNR) greater than 12 and a correlation value (CORR) greater than 70.

Finally, at CP2, a custom pressure transducer (Omega PX409 series with accuracy of 0.08% FS)

was installed with the sensor face flush with the beach surface to measure the bed pressure and two

overhead cameras (JAI GO-5100-USB, 2464 x 2056 px, 8 bit resolution) fitted with 8 mm lenses

(Thor labs) were mounted above the flume to record images over a combined field of view (FOV)

of x = [−70, 10] cm at 33.3 Hz. Data collection from all instruments were synchronized with the

start of the wave paddle motion.

3.2.2. Wave Conditions

Single and consecutive solitary waves were used in the experiments to generate single swash

events and wave-swash interaction events, respectively. The wave paddle trajectory for single soli-

tary waves uses Goring’s theory (Goring, 1979), but the paddle trajectory for consecutive solitary
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waves was calculated by AwaSys using Boussinesq wavemaker theory backward in time to create

the desired free-surface elevation timeseries at a specified location. As an input to this system,

we constructed a timeseries of consecutive solitary waves to be realised at CP1 using the Boussi-

nesq solution for solitary waves (Boussinesq, 1872) with the wave peaks separated by a nominal

separation time, Tsep. Measurements of the free-surface displacement and flow velocity at CP1

compared well with the Boussinesq solution, which showed that the wave generation was robust

for producing single and consecutive solitary waves. Additionally, we assessed the experimen-

tal repeatability by repeating specific cases covering different wave-swash interaction types five

times, which showed the data were very repeatable, as has been previously observed in these type

of experiments (Pujara et al., 2015b).

The final set of wave conditions covered single solitary waves with wave heights H=[0.1, 0.2,

0.3, 0.4]h and consecutive solitary waves with H1,2=[0.1, 0.2, 0.3, 0.4]h and Tsep=[0.75, 1.0, 1.25,

1.50, 1.75, 2.0]TH1 where H1 is the wave height for the first wave, H2 is the wave height for the

second wave, and TH1 is the (effective) wave period of the first wave. There are four cases of single

solitary waves and 60 cases of consecutive solitary waves (summarized in Table (3.2) below).

3.3. Vertical acceleration theory

We inferred the (total) vertical accelerations at CP2 using data of the bed pressure and surface

elevation. To do so, we start with the vertical component of the Navier-Stokes equation

Dw

Dt
= −1

ρ

∂p

∂z
− g + ν∇2w, (3.1)

where w is the velocity in the z (vertical) direction, g is the gravitational acceleration, ρ is the

fluid density, and ν is the kinematic viscosity. The viscous term (ν∇2w) was neglected under the

assumptions that its influence is small over the bulk of the water column except in thin boundary

layers adjacent to the bed and the free surface. Next, assuming that the pressure varied linearly

with depth in the shallow swash flow at CP2, the vertical pressure gradient was approximated in
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terms of the difference between the surface pressure and bed pressure. Together, these assumptions

reduce Eq. 3.1 to

Dw

Dt
≈ −1

ρ

(psurface − pbed)

(ζ + hCP2)
− g =

pbed

ρ(ζ + hCP2)
− g, (3.2)

where psurface = 0 in gauge pressure, pbed is the bed pressure, and (ζ + hCP2) is the total

local water depth at CP2. Thus, we can infer the total vertical accelerations from simultaneous

measurements of the total water depth and the bed pressure. Note, only non-hydrostatic pressure

distributions lead to vertical accelerations since the vertical acceleration vanishes (Dw/Dt = 0) if

the pressure distribution is hydrostatic (pbed = ρg(ζ + hCP2)).

3.4. Generation of solitary waves in the wave flume

The piston-type wavemaker in the flume is controlled by Awasys® software, which follows

Goring’s theory (Goring, 1979) for the solitary wave generation in the wave flume. Due to its in-

built functions, the software is limited to generating single solitary waves only. According to this

feature, we input an arbitrary time series of surface elevations generated following the Boussinesq

wave theory, which the software converts to wave paddle trajectories for the consecutive solitary

wave generation. Figures (3.2a and 3.2b) depicts the performance of the wavemaker for the gener-

ation of single and double solitary waves, respectively. The time series shows that the wave paddle

trajectory for a single wave event (from the in-built software function) matches the one associated

with the first wave of a successive wave generation. Then, the wavemaker trajectory for a suc-

cessive solitary wave case can be seen as a signal composed of two single waves separated by a

specific period. According to this, it is possible to infer that the development of two consecutive

waves is achieved and appropriate.

3.4.0.1 Validation against Boussinesq and Grimshaw theory

To assess and validate the waves generated in the wave flume, we compare single solitary waves

against the Boussinesq and Grimshaw theoretical solutions for small amplitude solitary waves
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(a)

(b)

Figure 3.2: Wave paddle trajectories for solitary waves. (a) Single solitary wave. (b) Double solitary wave

compared to a single solitary wave.
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(Boussinesq, 1872; Grimshaw, 1970). Figure (3.3) displays the agreement between the measured

surface elevations and horizontal velocities from experimental conditions at CP1, compared to

the theoretical solution of these quantities. These direct comparisons show that the generation is

appropriate for reproducing single-wave events with high accuracy.

3.4.1. Single Solitary Wave

We run single wave events to understand the variability and difference of wave periods at

different measuring locations along the wave flume, which are listed in Table (3.1). As our analysis

and estimations focus on the swash zone, we consider using the period measured in the swash

(Tswash) as the time scale for the separation time between consecutive wave events. To estimate

Tswash, images were collected at a rate of 33.3Hz for the entire propagation of single wave events

along the wave flume. Figures (3.4, 3.5, 3.6, and 3.7) show the field of view of the camera for

the specific times where these two moments occur for the wave cases analyzed. We consider these

estimated times to be representative of a complete swash cycle.

Table 3.1: Single solitary wave periods estimated at different locations along the wave flume.

Location/Wave H = 0.1h H = 0.2h H = 0.3h H = 0.4h

CD 2.26 s 1.90 s 1.70 s 1.54 s

Toe 2.60 s 2.18 s 2.02 s 1.84 s

CP2 4.12 s 3.40 s 3.14 s 2.92 s

Swash 4.20 s 4.47 s 4.77 s 5.13 s

We use the results of single solitary wave experiments to extract information of single swash

events that can be used as a baseline to understand the wave-swash events driven by consecu-

tive solitary waves. Figure (3.8) shows data of the wave period measured at different cross-shore

locations for single solitary wave experiments. At CP1, beach toe, and CP2, the wave period is es-

timated as the time over which the free-surface displacement timeseries is above a small threshold

(2.5 mm for H/h = [0.1, 0.2, 0.3] and 4 mm for H/h = 0.4). In the constant depth region, beach
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(a)

(b)

Figure 3.3: Solitary waves comparisons. Experimental measurements (black dots), Boussinesq theory (ma-

genta solid line) and Grimshaw theory (cyan solid line). Surface elevations (left) and horizontal velocities

(right).
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(a) (b)

Figure 3.4: Single wave event H = 0.1h. (a) Time at the first shoreward movement of the still water line

(18.7 s). (b) Time at the beginning of the hydraulic jump in the swash (22.9 s). Estimated Tswash = 4.20 (s).

(a) (b)

Figure 3.5: Single wave event H = 0.2h. (a) Time at the first shoreward movement of the still water line

(20.03 s). (b) Time at the beginning of the hydraulic jump in the swash (24.5 s). Estimated Tswash = 4.47

(s).

toe, and at CP2, the period decreases with increasing wave height. This decrease can be understood

in terms of the mechanics of solitary waves, where the wave height and the wavelength are linked.

In particular, it is well known that solitary waves become narrower as the wave height increases

(Madsen et al., 2008).
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(a) (b)

Figure 3.6: Single wave event H = 0.3h. (a) Time at the first shoreward movement of the still water line

(19.03 s). (b) Time at the beginning of the hydraulic jump in the swash (23.8 s). Estimated Tswash = 4.77

(s).

(a) (b)

Figure 3.7: Single wave event H = 0.4h. (a) Time at the first shoreward movement of the still water line

(18.27 s). (b) Time at the beginning of the hydraulic jump in the swash (23.4 s). Estimated Tswash = 5.13

(s).

These results of decreasing wave period with increasing wave height are counter intuitive for

the swash event. It is expected, and observed, that waves of larger wave height generated larger

swash events that reached a higher run-up and took longer to complete the uprush-backwash swash
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Figure 3.8: Wave periods measured at different locations along the flume. See main text for explanation of

how the period at each location was found.

cycle. Thus, it is clear that the wave periods measured offshore of the SWL do not provide a good

measure of the period of the swash event. To estimate the true swash period, we used the camera

images to find the time between when the shoreline at the still water line first begins to move during

the uprush to when a hydraulic jump begins to form during the downrush. This swash period,

shown in Figure (3.8), supports basic intuition and observations: the swash period increases with

incident wave height. This result also underscores the importance of measuring the swash period

directly. In the analysis of wave-swash interactions presented below, we emphasise the importance

of this swash period, Tswash. In particular, the quantity Tsep/Tswash is the dynamically important

dimensionless separation time between consecutive swash events.

Figure (3.9) shows the upward-directed peak vertical accelerations measured at CP2 (as de-

scribed in Section (3.3) for single solitary wave experiments as a function of wave height. These

peak vertical accelerations occur before the wave crest during the passage of the wave front. As the

wave height increases, we observe larger vertical accelerations with values close to gravity for the

largest wave tested. The Boussinesq theory of solitary waves (Boussinesq, 1872) allows to predict

how the maximum vertical acceleration varies with the wave height in the constant depth region.
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Figure 3.9: Peak upward-directed vertical accelerations at CP2 as a function of incident solitary wave height.

Inset shows the same data with a power-law fit where the best-fit power law exponent is found to be 1.65.

The total vertical acceleration in a constant depth is calculated using the velocities given in Eqs.

(1.12 and 1.13). Thus, the total vertical vertical acceleration given by

Dw

Dt
(x, z, t) =

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
(3.3)

is rewriten in terms of the corresponding velocities and derivatives of the vertical velocity compo-

nents resulting in the following expression

Dw

Dt
(x, z, t) = Ukc

√
3ε

(
z + h

h

)[
2sech2[k(x− ct)]tanh4[k(x− ct)]− sech4[k(x− ct)]

]
−

U2k
√

3ε

[
2sech4[k(x− ct)]tanh2[k(x− ct)]− sech6[k(x− ct)]

]
+

U2(3ε)

(
z + h

h2

)[
sech4[k(x− ct)]tanh2[k(x− ct)]

]
, (3.4)
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where U = ε
√
gh is the maximum fluid velocity occurring under the wave crest, with ε, k, c, and

g defined in Section (1.4.2).

It is easily shown that the peak vertical acceleration follows Dw/Dt ∼ (H/h)3/2 to leading

order and that this scaling comes from the local time derivative (∂w/∂t) which dominates over the

advective acceleration (u · ∇w). The inset in Figure (3.9) shows that the peak vertical acceleration

at CP2 follows a power law with a power-law exponent that is empirically found to be 1.65. The

similarity of this value with the predicted value of 1.5 using solitary wave theory in constant depth

suggests the peak vertical accelerations for wave crests during their climb of a sloping beach can

be understood in terms of incident wave properties, even up to very shallow water depths where

the wave shape has evolved significantly during shoaling. It also suggests that shoaling of a wave

crest in otherwise quiescent water is insufficient to generate vertical accelerations that exceed the

acceleration of gravity.

3.4.2. Consecutive Solitary Waves

3.4.2.1 Validation against Boussinesq theory

To validate the generation of the consecutive solitary waves, we compare the surface elevations

and fluid velocity measurements at CP1 with the Boussinesq theoretical solution for small ampli-

tude solitary waves (Boussinesq, 1872). This comparison is to verify the accuracy of the wave

generation, as the surface elevations given to the wavemaker are generated based on Boussinesq

theory. Figure (3.10) shows the match between the measurements and the theoretical quantities.

The comparison indicates that the wave generation is robust for reproducing the successive solitary

waves. In this analysis, we do not include the data from Grimshaw’s theory for two main reasons.

Firstly, wave generation considers Boussinesq theory, and second, there is an observed discrepancy

in the arrival of the second wave to CP1. This latter is associated with the higher-order terms con-

sidered in Grimshaw’s theory, which presents peak wave periods and wavelengths slightly different

in magnitudes from Boussinesq’s theory, making the generation time of the second wave different.
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(a)

(b)

Figure 3.10: Solitary waves comparisons. Experimental measurements (black dots) and Boussinesq theory

(magenta solid line). Surface elevations (left) and horizontal velocities (right).
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3.4.2.2 Wave-swash Interaction Types and Interaction Zones

Table 3.2: Experimental cases, wave parameters, characteristic ratios at different locations, and type of

interaction observed. The interaction types, as described by Hughes and Moseley (2007), include wave-

uprush interaction (WUI), weak wave-backwash interaction (WWBI), and strong wave-backwash interac-

tion (SWBI)

Cases (H2/H1)toe (Tsep/Tswash)toe (H2/H1)CP2
(Tsep/Tswash)CP2

Type

H1 = 0.1h;H2 = 0.4h;Tsep = 0.75TH1
3.2 0.4 3.2 0.3 WUI

H1 = 0.2h;H2 = 0.3h;Tsep = 0.75TH1
1.4 0.3 3.3 0.5 WUI

H1 = 0.2h;H2 = 0.4h;Tsep = 0.75TH1
1.7 0.3 3.4 0.8 WUI

H1 = 0.2h;H2 = 0.4h;Tsep = 1.00TH1 1.8 0.4 1.8 1.0 WUI

H1 = 0.3h;H2 = 0.3h;Tsep = 0.75TH1
1.0 0.3 1.8 1.2 WUI

H1 = 0.3h;H2 = 0.4h;Tsep = 0.75TH1
1.2 0.3 2.3 1.4 WUI

H1 = 0.3h;H2 = 0.4h;Tsep = 1.00TH1
1.3 0.4 1.5 0.4 WUI

H1 = 0.4h;H2 = 0.3h;Tsep = 0.75TH1 0.8 0.3 1.6 0.6 WUI

H1 = 0.4h;H2 = 0.4h;Tsep = 0.75TH1
1.0 0.3 1.5 0.7 WUI

H1 = 0.4h;H2 = 0.4h;Tsep = 1.00TH1
1.1 0.3 1.5 0.9 WUI

H1 = 0.1h;H2 = 0.4h;Tsep = 1.00TH1
3.3 0.6 0.7 1.1 WWBI

H1 = 0.1h;H2 = 0.4h;Tsep = 1.25TH1 3.4 0.9 0.6 1.2 WWBI

H1 = 0.2h;H2 = 0.2h;Tsep = 0.75TH1
1.1 0.4 1.7 0.3 WWBI

H1 = 0.2h;H2 = 0.2h;Tsep = 1.00TH1
1.1 0.6 1.9 0.5 WWBI

H1 = 0.2h;H2 = 0.2h;Tsep = 1.25TH1
1.1 0.7 1.9 0.6 WWBI

H1 = 0.2h;H2 = 0.3h;Tsep = 1.00TH1 1.5 0.5 1.8 0.8 WWBI

H1 = 0.2h;H2 = 0.3h;Tsep = 1.25TH1 1.5 0.6 1.7 0.9 WWBI

H1 = 0.2h;H2 = 0.3h;Tsep = 1.50TH1
1.5 0.8 0.7 1.1 WWBI

H1 = 0.2h;H2 = 0.4h;Tsep = 1.25TH1
2.2 0.5 1.9 0.3 WWBI

H1 = 0.2h;H2 = 0.4h;Tsep = 1.50TH1 1.8 0.7 2.1 0.4 WWBI

H1 = 0.2h;H2 = 0.4h;Tsep = 1.75TH1 2.1 0.8 2.1 0.5 WWBI

H1 = 0.3h;H2 = 0.2h;Tsep = 0.75TH1
0.8 0.4 2.1 0.7 WWBI

H1 = 0.3h;H2 = 0.2h;Tsep = 1.00TH1
0.8 0.5 1.9 0.8 WWBI

H1 = 0.3h;H2 = 0.2h;Tsep = 1.25TH1 0.8 0.6 1.3 1.0 WWBI

Continued on next page
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Table 3.2 – continued from previous page

Cases (H2/H1)toe (Tsep/Tswash)toe (H2/H1)CP2
(Tsep/Tswash)CP2

Type

H1 = 0.3h;H2 = 0.3h;Tsep = 1.00TH1 1.1 0.4 1.2 0.4 WWBI

H1 = 0.3h;H2 = 0.3h;Tsep = 1.25TH1
1.1 0.5 1.2 0.5 WWBI

H1 = 0.3h;H2 = 0.3h;Tsep = 1.50TH1
1.1 0.6 1.3 0.7 WWBI

H1 = 0.3h;H2 = 0.4h;Tsep = 1.25TH1 1.4 0.5 1.0 0.8 WWBI

H1 = 0.3h;H2 = 0.4h;Tsep = 1.50TH1 1.3 0.6 0.9 0.9 WWBI

H1 = 0.3h;H2 = 0.4h;Tsep = 1.75TH1
1.3 0.7 0.6 1.0 WWBI

H1 = 0.3h;H2 = 0.4h;Tsep = 2.00TH1
1.3 0.8 1.4 0.3 WWBI

H1 = 0.4h;H2 = 0.2h;Tsep = 0.75TH1 0.6 0.4 1.4 0.4 WWBI

H1 = 0.4h;H2 = 0.2h;Tsep = 1.00TH1 0.6 0.5 1.5 0.5 WWBI

H1 = 0.4h;H2 = 0.2h;Tsep = 1.25TH1
1.0 0.6 1.5 0.7 WWBI

H1 = 0.4h;H2 = 0.3h;Tsep = 1.00TH1
0.9 0.4 1.3 0.8 WWBI

H1 = 0.4h;H2 = 0.3h;Tsep = 1.25TH1 0.9 0.5 1.4 0.9 WWBI

H1 = 0.4h;H2 = 0.3h;Tsep = 1.50TH1 0.9 0.6 1.4 0.3 WWBI

H1 = 0.4h;H2 = 0.3h;Tsep = 1.75TH1
0.9 0.6 1.6 0.4 WWBI

H1 = 0.4h;H2 = 0.4h;Tsep = 1.25TH1
1.1 0.4 1.6 0.5 WWBI

H1 = 0.4h;H2 = 0.4h;Tsep = 1.50TH1 1.1 0.5 1.7 0.6 WWBI

H1 = 0.4h;H2 = 0.4h;Tsep = 1.75TH1 1.1 0.6 1.5 0.7 WWBI

H1 = 0.4h;H2 = 0.4h;Tsep = 2.00TH1
1.1 0.7 1.4 0.8 WWBI

H1 = 0.1h;H2 = 0.4h;Tsep = 1.50TH1
3.4 1.1 1.0 0.4 SWBI

H1 = 0.2h;H2 = 0.2h;Tsep = 1.50TH1 1.1 0.9 1.1 0.5 SWBI

H1 = 0.2h;H2 = 0.2h;Tsep = 1.75TH1 1.1 1.0 1.0 0.6 SWBI

H1 = 0.2h;H2 = 0.2h;Tsep = 2.00TH1
1.2 1.2 0.8 0.7 SWBI

H1 = 0.2h;H2 = 0.3h;Tsep = 1.75TH1
1.5 0.9 0.9 0.8 SWBI

H1 = 0.2h;H2 = 0.3h;Tsep = 2.00TH1 1.6 1.1 0.9 0.9 SWBI

H1 = 0.2h;H2 = 0.4h;Tsep = 2.00TH1 1.9 1.0 1.2 0.3 SWBI

H1 = 0.3h;H2 = 0.2h;Tsep = 1.50TH1
0.8 0.7 1.2 0.4 SWBI

H1 = 0.3h;H2 = 0.2h;Tsep = 1.75TH1
0.8 0.8 1.2 0.5 SWBI

H1 = 0.3h;H2 = 0.2h;Tsep = 2.00TH1 0.8 0.9 1.3 0.6 SWBI

H1 = 0.3h;H2 = 0.3h;Tsep = 1.75TH1 1.1 0.7 1.1 0.7 SWBI

H1 = 0.3h;H2 = 0.3h;Tsep = 2.00TH1
1.1 0.9 0.9 0.8 SWBI

Continued on next page
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Table 3.2 – continued from previous page

Cases (H2/H1)toe (Tsep/Tswash)toe (H2/H1)CP2
(Tsep/Tswash)CP2

Type

H1 = 0.4h;H2 = 0.2h;Tsep = 1.50TH1 0.7 0.6 1.2 0.3 SWBI

H1 = 0.4h;H2 = 0.2h;Tsep = 1.75TH1
1.1 0.8 1.4 0.3 SWBI

H1 = 0.4h;H2 = 0.2h;Tsep = 2.00TH1
0.6 0.8 1.3 0.4 SWBI

H1 = 0.4h;H2 = 0.3h;Tsep = 2.00TH1 0.9 0.7 1.4 0.5 SWBI

H1 = 0.1h;H2 = 0.4h;Tsep = 1.75TH1 3.6 1.3 1.3 0.6 No Interaction

H1 = 0.1h;H2 = 0.4h;Tsep = 2.00TH1
3.6 1.5 1.1 0.7 No Interaction

By using consecutive solitary waves controlling the height of each wave and the separation

between them, it was possible to produce different wave-swash interactions types as observed,

categorized, and described by Hughes and Moseley (2007) and others in the field. These are

wave-uprush interaction (WUI), where the second wave crest has delayed breaking and collapse

as it propagates further onshore over a layer of uprush flow generated by the swash of the first

wave crest; weak wave-backwash interaction (WWBI), where the second wave crest encounters

the backwash flow of the swash of the first wave, inducing accelerated breaking and collapse;

and strong wave-backwash interaction (SWBI), where a stationary bore is generated by sudden

breaking of the second wave crest as it encounters the strong backwash flow of the swash of the

first wave.

Table (3.2) presents a complete list of the 60 cases of consecutive solitary wave experiments.

For each case, we list the observed wave-swash interaction type, the wave height ratio (H2/H1)

measured at the beach toe and at CP2 and the dimensionless separation time (Tsep/Tswash) measured

at CP2. The wave height and separation time measurements were made by first using a Gaussian

kernel low pass filter (Mordant et al., 2004; Pujara et al., 2021) to the surface elevation measure-

ments to reduce noise and simplify finding the peak of the free-surface displacement signal. Figure

(3.11) shows an example of the estimation for these quantities at the toe of the beach and at CP2.

Figure (3.12) shows three interacting cases observed in the field and reproduced experimentally.

Pictures show a snapshot of the second incoming wave at the moment of the interaction. Some
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characteristic differences exist for each interacting case. In the wave-upwash interaction case, the

second incoming wave overturning takes longer to develop as it propagates further onshore over

a layer of upwash flow generated by the first wave event. Contrarily, in the weak wave-backwash

interaction, the second wave encounters a backwash flow of the first wave, inducing a faster over-

turning of the second incoming wave. It is observed that in this type of interaction the curl of the

second wave is flatter compared to the one caused by the wave-upwash interaction. The strong

wave-backwash interaction shows a clear bore generated by a sudden overturning of the second

wave and due to a fast instability of the wave curl induced by the strong backwash flow of the first

wave event.

From camera recordings, it was possible to map the region of influence for the interactions

associated with each experimental case. Figure (3.13) maps out the typical stages of a wave-swash

interaction with examples of each interaction type. From the camera images, we observed that

wave-swash interactions consistently displayed three stages: First, the approaching wave crest’s

overturning created a jet which struck the water ahead of it (“jet slamming”). Second, this breaker

jet created a splash that altered the shallow flow ahead of the breaker (“splash-induced flow”). Fi-

nally, this interaction between the breaker and the swash of the preceding wave showed signs of

fluid instabilities that quickly transitioned into highly turbulent flow (“fully 3D turbulent flow”).

Some aspects of these observations have also been reported in the inner surf and swash zones of

plunging breaker regular waves (Sou and Yeh, 2011; Sumer et al., 2013). However, the location

of where the interaction takes place, as well as the spatial extent where these three stages occur,

varies for different wave-swash interaction types, which has not been previously reported in lab-

oratory studies. As Figure (3.13) shows, the interaction zone moves offshore for wave-backwash

interactions compared with wave-uprush interactions and there is less overlap in the spatial extent

of the three stages for strong wave-backwash interactions compared with weak wave-backwash

interactions. Using the maps of the regions of influence per interaction can give potential relevant

information to sediment transport analysis, as the sediment direction and consequently its deposi-

tion to the SWL, is influenced by the type of wave-swash interaction event, as noted by Cáceres

and Alsina (2012).



65

(a)

(b)

Figure 3.11: Estimation of Tsep from surface elevation measurements. Case: H1 = 0.3h ; H2 =

0.2h ; Tsep = 1.0TH1
. (a) Toe of the beach. (b) Measuring point CP2. Experimental measurements

(black dots) and fitted signal (magenta solid line).

3.5. Hydrodynamics of Wave-swash Interactions

While the qualitative wave-swash interaction types and stages described above are useful for

classification purposes, they do not reveal any information of the underlying hydrodynamics. Thus,

we now tackle the quantitative analysis of wave-swash interactions. Figures (3.14)-(3.16) show

the typical timeseries at CP2 for wave-upwash, weak wave-backwash, and strong wave-backwash

interactions, respectively. Gaps in the data are related to quality control procedures described in
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(a)

(b)

(c)

Figure 3.12: Types of wave-swash interactions from laboratory experiments. (a) Wave-upwash interaction.

(b) Weak wave-backwash interaction. (c) Strong wave-backwash interaction.
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Figure 3.13: Spatial extent of wave-swash interactions and their different stages: jet slamming (red), splash-

induced flow (purple), and fully 3D turbulent flow (green). Wave-upwash interaction (H1 = 0.2h ; H2 =

0.4h ; Tsep = 1.0TH1
); weak wave-backwash interaction (H1 = 0.3h ; H2 = 0.3h ; Tsep = 1.5TH1

); and

strong wave-backwash interaction (H1 = 0.3h ; H2 = 0.2h ; Tsep = 1.5TH1
).

Figure 3.14: Time series of elevations, bottom pressures converted to elevations, and estimated total vertical

accelerations. Wave-upwash interactions. Case: H1 = 0.2h ; H2 = 0.3h ; Tsep = 0.75TH1
(H2/H1 = 1.5

; Tsep = 0.084Tswash).
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Figure 3.15: Time series of elevations, bottom pressures converted to elevations, and estimated total vertical

accelerations. Weak wave-backwash interactions. Case: H1 = 0.3h ; H2 = 0.2h ; Tsep = 1.25TH1

(H2/H1 = 0.667 ; Tsep = 0.128Tswash).
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Figure 3.16: Time series of elevations, bottom pressures converted to elevations, and estimated total vertical

accelerations. Strong wave-backwash interactions. Case: H1 = 0.4h ; H2 = 0.2h ; Tsep = 1.50TH1

(H2/H1 = 0.5 ; Tsep = 0.137Tswash).
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Section (3.2.1). In the bed pressure data, there are large fluctuations after the passage of the first

wave crest. These are associated with beach vibrations induced by the jet slamming of the first

wave and are therefore experimental artifacts.

The top panels in these figures show the total water depth and bed pressure in units of depth

together, which when compared with the vertical accelerations in the middle panel, show how the

vertical accelerations result from a non-hydrostatic pressure distribution. Focusing on the vertical

accelerations, it is evident that the passage of a shoaling wave crest into quiescent water generates

accelerations of magnitude up to that of gravity, whereas the wave crest interacting with the swash

event of the previous wave results in larger acceleration with values far exceeding gravity. The

velocity data in the bottom panel shows that the peak vertical acceleration in the wave-swash

interaction is near concurrent with the peak positive horizontal and vertical velocities. Though

we do not show it explicitly, the velocity data also show that, in contrast to single solitary wave

data, the local time derivative of the vertical velocity (∂w/∂t) is insufficient to explain the inferred

vertical accelerations, suggesting that the advective part of the vertical acceleration (u · ∇w) is

important. Finally, we note that the qualitative wave-swash interaction types do not necessarily

predict the hydrodynamics, but the advantage of our experimental setup is that the wave height

ratio H2/H1 and the dimensionless separation time Tsep/Tswash provide a quantitative parameter

space in which we can map out the hydrodynamics. We assess the experimental reproduction by

repeating specific cases of each wave-swash interaction five times, allowing us to verify the degree

of accuracy in the experimental results.

3.5.1. Experimental reproduction

Figures (3.17) to (3.19) show the repeatability for different types of interaction. Plots presents

the time series of surface elevations, bottom pressures converted to elevations, and the estimated

vertical accelerations. It is possible to observe that the variability between the repetitions is small,

indicating the reliability of the experiments and associated results.
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Figure 3.17: Repeatability of wave-upwash interactions. H2/H1 = 1.33 ; Tsep = 0.102Tswash.

Figure 3.18: Repeatability of weak wave-backwash interactions. H2/H1 = 2.0 ; Tsep = 0.1962Tswash.
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Figure 3.19: Repeatability of strong wave-backwash interactions. H2/H1 = 0.5 ; Tsep = 0.160Tswash.
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3.5.2. Swash-interactions mapping

Figure (3.20) shows the distribution of the wave-swash interactions as a function of H2/H1

and Tsep/Tswash as measured at CP1 (panel a) and CP2 (panel b). Observed qualitative interaction

types cluster together: Wave-uprush interactions are towards the top (and slightly left), weak wave-

backwash interactions are in the middle, and strong wave-backwash interactions are towards the

bottom (and slightly towards the right). The differences between the panels, which depend on the

location where the wave heights and separation time are measured, are also instructive. Based on

the ’far-field’ measurements at CP1, the separation time between consecutive wave crests is appar-

ently more significant for predicting the interaction type than the wave height ratio. In contrast, for

values of H2/H1 < 1, the ’local’ measurements at CP2 show that the type of interaction is almost

exclusively strong wave-backwash. Since the main interest lies in understanding the flow and ac-

celerations in the wave-swash interaction zone, the following analyses and figures will focus on

measurements from CP2. However, ’far field’ plots at CP1 are also included to exemplify the vari-

ability of the interactions and the associated accelerations and velocities when the characteristic

ratios are constructed from measurements collected at this location.

Figure (3.21) presents the main results of this study: the peak upward-directed vertical accel-

eration magnitude as a function of H2/H1 and Tsep/Tswash at CP2. We observe that while the peak

accelerations are larger for wave-backwash interactions (whether weak or strong) compared with

wave-uprush interactions, it is not necessarily the case that strong wave-backwash interactions

produce larger accelerations than weak wave-backwash interactions. The data show that there is

a region of the parameter space, approximately 0.5 < H2/H1 < 2 and 0.6 < Tsep/Tswash < 1.2,

where the peak accelerations are the largest. Physically, this corresponds to situations where the

strength of the backwash flows generated by the swash of the first wave collide with an incoming

wave front with approximately equal and opposite velocities. The peak vertical acceleration in the

interaction is not particularly large if the velocity in either the backwash of the first wave or the

wave front of the second wave dominates over the other.

In Figure (3.22), we investigate the time of the peak vertical acceleration, Tpeak, to understand

how it relates to the swash period Tswash and the magnitude of the acceleration peak. The timing of
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(a) (b)

Figure 3.20: Wave-swash interactions mapping according to ratios H2/H1 and Tsep/Tswash. (a) Measure-

ments at CP1. (b) Measurements at CP2. Wave-upwash interaction (diamonds), weak wave-backwash

interaction (triangles), strong wave-backwash interaction (circles), no interaction (blank squares).
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(a) (b)

Figure 3.21: Distribution of maximum total vertical accelerations for different wave-swash interactions.

(a) Measurements at CP1. (b) Measurements at CP2. Wave-upwash interaction (diamonds), weak wave-

backwash interaction (triangles), strong wave-backwash interaction (circles).
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(a) (b)

(c)

Figure 3.22: Wave-swash interactions mapping Distribution of peak time for different wave interactions. (a)

Measurements at CP1. Measurements at CP2. (c) Maximum accelerations vs. Tpeak/Tswash. Wave-upwash

interaction (diamonds), weak wave-backwash interaction (triangles), strong wave-backwash interaction (cir-

cles).
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(a) (b)

Figure 3.23: Distribution of wave-swash interactions for maximum total vertical accelerations and fluid

velocities. (a) Horizontal velocity component. (b) Vertical velocity component. Wave-upwash interaction

(diamonds), weak wave-backwash interaction (triangles), strong wave-backwash interaction (circles).
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(a)

(b) (c)

Figure 3.24: Time lag distribution between maximum total horizontal accelerations and maximum veloc-

ities for different interactions. Positive values indicate that the peak positive velocity precedes the peak

positive acceleration, whereas negative values indicate that the peak acceleration precedes the peak veloc-

ity. (a) Scheme of the peak accelerations followed by horizontal velocities. (b) Measurements at CP1. (c)

Measurements at CP2. Wave-upwash interaction (diamonds), weak wave-backwash interaction (triangles),

strong wave-backwash interaction (circles).
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(a)

(b) (c)

Figure 3.25: Time lag distribution between maximum total vertical accelerations and maximum velocities

for different interactions. Positive values indicate that the peak positive velocity precedes the peak positive

acceleration, whereas negative values indicate that the peak acceleration precedes the peak velocity. (a)

Scheme of the peak accelerations followed by vertical velocities. (b) Measurements at CP1. (c) Measure-

ments at CP2. Wave-upwash interaction (diamonds), weak wave-backwash interaction (triangles), strong

wave-backwash interaction (circles).
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the peak is not necessarily solely dependent on Tsep (panels a and b), but the largest peak accelera-

tions occur during the later stages of the swash flow associated with the first wave (Tpeak/Tswash ≈ 1)

(panel c).

The final analysis relates to the correlations between the peak vertical accelerations and the

flow velocities. Since our interest in vertical accelerations stems from the possibility of inducing

large material suspension events, it is important to consider the direction and magnitude of the

flow velocity at the same time since that will influence the speed and direction in which suspended

material is advected. Figure (3.23) shows the velocity extracted at the time of peak vertical ac-

celerations. The correlation between the peak vertical acceleration and the horizontal velocity is

very weak, but interestingly, the vertical velocity at the time of peak vertical acceleration shows

a (weak) positive correlation, suggesting that if large vertical accelerations destabilize a sediment

bed or flush pore water with dissolved materials out of the bed, the flow field would act to transport

that material upwards into the water column.

While the fluid velocity at the time of the vertical acceleration peak is important, the timeseries

data in Figures (3.14-3.16) also show that the peak positive horizontal and vertical velocities occur

either shortly before or shortly after the peak acceleration. To quantify this, the time lag between

the peak upward vertical acceleration and the peak positive fluid velocity is calculated for both

components in Figures (3.24-3.25). Positive values indicate that the peak positive velocity precedes

the peak positive acceleration whereas negative values indicate that the peak acceleration precedes

the peak velocity. The results show that in most cases, the peak vertical acceleration precedes the

peak positive (onshore directed) horizontal velocity, suggesting that even if there is not a strong

correlation between the horizontal velocity and the vertical acceleration at the moment when the

peak acceleration occurs, any material suspended into the water column by the vertical dynamics

is prone to be transported onshore shortly after by the horizontal flow.
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3.6. Concluding Remarks

In a set of controlled laboratory experiments, solitary waves have been used to generate iso-

lated single swash events (single solitary wave) and wave-swash interactions (consecutive solitary

waves). By specifying the wave heights for consecutive solitary waves and the separation be-

tween them, it was possible to reproduce the wave-swash interactions found in the field, such

as wave-upwash, weak wave-backwash, and strong wave-backwash interactions. The dimension-

less parameters that control the wave-swash interactions in our experiments are the ratio of wave

heights for consecutive solitary waves (H2/H1) and the time separation between them made di-

mensionless by the swash period of the first wave (Tsep/Tswash). When mapped onto this parameter

space (H2/H1 vs. Tsep/Tswash), the different qualitative wave-swash interaction types formed dis-

tinct clusters, suggesting that these dimensionless parameters are sufficient to capture the observed

variations in the field.

The main focus of the study was on the vertical accelerations, which were estimated from the

differences between the depth measured with a surface wave gauge and the depth inferred from

pressure measurements at the bed. While large vertical accelerations were associated with strong

wave-backwash interactions, it was found that weak wave-backwash interactions were associated

with equally large vertical accelerations. The largest vertical accelerations were associated with

wave-swash interactions that spanned 0.5 < H2/H1 < 2 and 0.6 < Tsep/Tswash < 1.2, where the

vertical accelerations commonly exceeded the acceleration of gravity.

Finally, the time lag between the maximum vertical acceleration and the maximum onshore

horizontal and upward vertical velocity was analyzed. The peak values of the vertical accelerations

lead the peak onshore velocities and tend to be almost concurrent with the peak upward velocities.

This suggests that wave-swash interactions may be an effective mechanism by which material such

as sediment or solutes within sediment pores is suspended into the water column by the vertical

dynamics before being advected onshore by the horizontal dynamics.

Overall, the findings presented in this work show that non-hydrostatic effects, which are typ-

ically ignored in modeling coastal flows in the very shallow waters of the inner-surf and swash
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zones, are important in wave-swash interactions. Further, the analyses and results lead to hy-

pothesize that these vertical accelerations are sufficiently large such that they could lead to local

liquefaction of sediment and hence produce large sediment transport events that may have an out-

sized influence on the net erosion or accretion of the beach foreshore region. Laboratory (Alsina

et al., 2018) and field (Florence et al., 2022) studies have shown sediment suspension and trans-

port consistent with this mechanism. Our framework of analyzing isolated wave-swash interaction

events, understanding their region of influence, and quantifying the vertical accelerations provide

a framework with which to investigate the possibility of sediment liquefaction and large sediment

suspension events in the laboratory.

Future work on this matter could investigate how the dynamics observed in these experiments

vary across the inner surf and swash zones, as our data is from a single control point. Includ-

ing sediment in the experiments is a central goal for future studies to directly observe sediment

suspension events triggered by wave-swash interactions, which can be significant.

Experimentally, modifying the forcing conditions to model interactions with different waves

could extend the understanding of wave-swash interactions. Analysis and characterization of wave-

swash interactions associated with irregular waves generated by some specific wave spectra could

reveal and demonstrate that the relations between successive wave amplitudes and separation times

are also extensible and functional for these kinds of waves.

Information on runups developed after wave-swash interactions is not quantified in this work.

However, observing how the runups distribute in terms of the proposed characteristic ratios can

hint at new experimental formulations for runups associated with successive solitary waves on

planar slopes.

Computational Fluid Dynamics modelling could help to extend the investigations presented

here to include different beach conditions, such as slopes and roughnesses, forcing conditions to try

multiple wave amplitudes and several types of waves (regular, irregular, more than two consecutive

solitary waves, etc.) with associated separation times. The data presented in this dissertation are

considered high-quality experimental information, which can be helpful for the calibration and
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validation of the numerical experiments. Future works can make use of this initial experimental

set of data to be implemented numerically and later modified to include different conditions.
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Chapter 4

RUNUP INDUCED BY A TRAIN OF SUCCESSIVE SOLITARY
WAVES IN A DIRECTIONAL WAVE BASIN

4.1. Introduction

It has been observed that wave-swash interactions are continuously present on the coast and can

initiate different physical processes, whose understanding and analyses are a matter of study. As

incoming waves can arrive at nearshore areas with different angles, the behavior and characteristics

of the wave-swash interactions can be modified only by the wave obliquity, modifying the flows

and coastal processes (i.e. Cross and long-shore sediment transport).

Following the considerations presented previously, experiments comprising wave-swash inter-

actions generated with different angles of incidence are run in the directional wave basin of Oregon

State University. The experimental cases consider wave trains of two (2) successive solitary waves

with different amplitudes and variations in the separation times of the consecutive events. These

experimental cases, which correspond to weak wave-backwash interactions (WWBI), were com-

bined with two (2) different angles of incidence for the transient waves, 0◦ and 15◦. Similarly to

the works performed by Lo et al. (2013) and Wu et al. (2021, 2022), the analysis of the developed

runup conditions after the interaction in the swash for different angles of incidence is presented.

Flows and runups generated by the wave-swash interactions reaching the coast with different an-

gles of incidence are analyzed and quantified in terms of two dimensionless ratios constructed from

the surface elevations of the consecutive waves and their separation time.
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4.2. Experimental setup

The experiments were performed in the directional wave basin of the Oregon State University,

whose dimensions are 48.8 m in length, 26.5 m in width, and 2.1 m in height. The basin was

equipped with a snake-type wave maker system, which is made of 29 boards with up to 2.1 m long

stroke each. At the other end, the basin has a beach of slope 1:10 made of concrete, over which an

arrangement of synchronized instruments was set to collect the information of the wave conditions,

such as surface elevations and flow velocities (Figure (4.1)). Wire wave gauges (WG) OSU In-

House built, and Ultrasonic Wave Gauges (USWG; Senix ToughSonic-3 with 1 mm accuracy)

were located at different depths of the basin. For these instruments, a calibration was performed

daily to ensure good quality in the data acquisition.

In the swash, wave gauges were co-located with side-looking Acoustic Doppler Velocimeters

(ADVs; Nortek Vectrino Plus with an accuracy of 1% FS) with a sampling frequency of 100 Hz.

Figure (4.2) shows the location of the instruments in the basin. For these instruments, the signal-to-

noise ratio (SNR = 13) and correlation value (CORR=18) were considered high enough to account

with reliable data for the analyses across cases.

Two (2) cameras were also configured to record videos of each experimental realization. At

the wave generation the water depth h = 0.8 (m) (constant depth). The origin of the left-handed

coordinate system used in the experimental setup is set at the still water line (SWL) on the beach,

here x points to the north (N, or onshore according to the top view of the wave basin), y points

East (E), and z pointing upwards. The control point at the swash for the collection of surface

elevations (ζ), and velocities (u, v, w), is located at ADV1 (x = −1.092 (m) to the SWL), before

the first wave breaks. A second control point for surface wave elevation (ζ) is located at WG2

(x = −11.998 (m) to the SWL). This location is to assess the performance of the wave generation.

The experimental cases considered in this work are presented in Table (4.1), which presents the

parameters in dimensional and dimensionless form. For all four (4) cases, the first wave remains

the same, and the interactions in the swash correspond to weak wave-backwash interactions.
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Figure 4.1: Image of the instrument arrangement in the directional wave basin.

Figure 4.2: Experimental setup in the directional wave basin.
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Table 4.1: Experimental cases.

Case H1 (m) H2 (m) Tsep (s) H1/h H2/h Tsep/
√
h/g θ (deg) s Type

1 0.16 0.24 3.54 0.2 0.3 12.4 0 1/10 WWBI

2 0.16 0.24 3.54 0.2 0.3 12.4 15 1/10 WWBI

3 0.16 0.32 3.14 0.2 0.4 11.0 0 1/10 WWBI

4 0.16 0.32 3.14 0.2 0.4 11.0 15 1/10 WWBI

4.3. Validation and data reproduction

To assess the performance of the wave generation for the waves in the directional wave basin,

the surface elevation of consecutive solitary waves at a constant depth (WG2) was compared against

the theoretical results of solitary wave considering Boussinesq theory for small amplitude solitary

waves (Boussinesq, 1872). Figure (4.3) shows the comparison of the surface elevations at WG2,

which presents an excellent agreement between the signals. This validation of the wave generation

ensures reliability to the wave-swash interactions development in the swash.

Each experimental case was repeated ten (10) times to verify the reproducibility of the surface

elevations and fluid velocites. Figure (4.4-4.5) shows the time series of measurements for these

quantities in the swash (ADV1). No significant discrepancies are observed in the repetitions of

the time series, confirming reliability and robustness in the experimental reproduction. Ensembled

surface elevations and velocities were constructed by averaging the time series across repetitions

to obtain a single representative time series for each experimental case. Figure (4.6) shows an

example of the ensembled time series of elevations and velocities over all the trials performed for

experimental case 1.

4.4. Wave-swash interactions-induced flows

Flows induced by the wave-swash interactions are analyzed and quantified in terms of the char-

acteristic wave and temporal ratios, H2/H1, and Tsep/
√
h/g, constructed from the experimental
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Figure 4.3: Wave generation performance. Boussinesq theoretical surface elevation (black solid line), mea-

sured surface elevation (magenta solid line).

Figure 4.4: Experimental repetitions of surface elevations measured at ADV1 for Case 1.

parameters. For the analyses, the time series of the ensembles are considered in the analyses as

they are representative of the flows for the different experimental cases. To improve the quality of

the time series, a despiking method stated by Goring and Nikora (2002) was applied, eliminating

unrealistic spikes from the time series. Figure (4.7) shows the surface elevations for the different

experimental cases after the despiking process. From the signals, there is a noticeable reduction
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Figure 4.5: Experimental repetitions of fluid velocities measured at ADV1 for Case 1.

in the wave amplitude as the wave angle increases, remarking an energy loss due to the wave

obliquity. However, this is more evident when Tsep

√
h/g is longer.

Cross-shore, long-shore, and vertical velocities are shown in Figures (4.8-4.11). For interac-

tions with the same wave and temporal ratios, it is possible to observe how the velocity magnitudes

decrease at the arrival of the second wave as the wave angle increases, especially for the cross-shore

velocity, u/
√
gh. Conversely, long-shore velocities present increasing positive magnitudes at the

moment of the interaction associated with wave obliquity. This latter hints at a potential increment

in the sediment transport alongshore related to the angle of incidence. Even when the behavior is

not clear, vertical accelerations display some positive trend at the moment of the interaction, which

is more noticeable for cases with no obliquity.

Maximum fluid velocities and local accelerations at the moment of the wave-swash interactions

are shown in terms of the characteristic ratios in Figures (4.12-4.13). Accelerations were calcu-

lated from the positive velocity slope at the arrival of the second wave. For specific interacting



90

(a)

(b)

Figure 4.6: Ensembles of surface elevations (a) and fluid velocities (b) at ADV1. Case: H2/H1 = 1.5 ;

Tsep/
√
h/g = 12.4 ; θ = 0◦.

cases, maximum cross-shore velocities and accelerations decrease with an increasing angle of in-

cidence, but larger magnitudes are associated with shorter separation times and larger wave height

ratios. It is important mentioning that the observed decrease in the magnitudes is an effect of the

wave refraction. On the other hand, long-shore and vertical velocities and accelerations present a

remarked augment with wave obliquity. In general, the velocities exhibit that higher magnitudes

are associated with shorter separation times and larger wave height ratios, showing the influence

of amplitude of the second wave.
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(a) (b)

Figure 4.7: Surface elevations measured at ADV1. (a) H2/H1 = 1.5 ; Tsep
√
h/g = 12.4, (b) H2/H1 = 2.0

; Tsep
√
h/g = 11.0.

Figure 4.8: Velocities at ADV1. H2/H1 = 1.5 ; Tsep/
√
h/g = 12.4 ; θ = 0◦.
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Figure 4.9: Velocities at ADV1. H2/H1 = 1.5 ; Tsep/
√
h/g = 12.4 ; θ = 15◦.

Figure 4.10: Velocities at ADV1. H2/H1 = 2.0 ; Tsep/
√
h/g = 11.0 ; θ = 0◦.

4.5. Runup estimation

For the experiments, runup is calculated using image analysis from video recordings. Images

of size 1280 x 720 pixels are extracted from video recordings to generate image stacks covering



93

Figure 4.11: Velocities at ADV1. H2/H1 = 2.0 ; Tsep/
√
h/g = 11.0 ; θ = 15◦.

(a) (b)

Figure 4.12: Maximum cross-shore velocities (a) and local accelerations (b) for H2/H1 vs. Tsep/
√
h/g.
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(a) (b)

Figure 4.13: Maximum long-shore velocities (a) and local accelerations (b) for H2/H1 vs. Tsep/
√
h/g.

the whole runup-rundown process, which is identified later by inspection. In the figures, each

pixel is equivalent to 1 (cm) by 1 (cm), allowing a fine resolution to estimate the runups accurately.

Figure (4.15) shows the maximum runup over the beach after the arrival of the first and second

solitary waves for experimental case 3. It is possible to notice that the raw pictures (from the

videos) are collected from a side-looking position to the swash, difficulting the correct estimation

of the distance traveled by the water over the beach from the still water line (SWL). To overcome

this, a rectification process is applied to each image to obtain an orthogonal top view of the swash

(Brown, 1992). With this, it is possible to obtain a top view of the pictures.

Figures (4.16) and (4.17) present an example of the rectification process for the first and second

runup for experimental case 3. Table (4.2) presents the results of the runups for all the experimental

cases.



95

(a) (b)

Figure 4.14: Maximum vertical velocities (a) and local accelerations (b) for H2/H1 vs. Tsep/
√
h/g.

Table 4.2: Experimental runups.

Case H1/h H2/h Tsep/
√
h/g θ◦ R1/h R2/h

1 0.2 0.3 12.4 0 0.649 0.644

2 0.2 0.3 12.4 15 0.580 0.580

3 0.2 0.4 11.0 0 0.635 0.636

4 0.2 0.4 11.0 15 0.556 0.555

4.5.1. Runup comparison against theoretical formulations

There is an interest in understanding the breaking conditions for the first wave of the train of

solitary waves. Following the criteria stated by Lo et al. (2013), the surf similarity parameter for

solitary waves corresponds to
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(a)

(b)

Figure 4.15: First (a) and second (b) wave runups recorded for the experimental H2/H1 = 2.0 ;

Tsep/
√
h/g = 11.0 ; θ = 15◦ (Case 3).
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Figure 4.16: Experimental case H2/H1 = 2.0 ; Tsep/
√
h/g = 11.0 ; θ = 15◦ (Case 3). First wave runup.

Unprocessed image (left), rectified image (right).

Figure 4.17: Experimental case H2/H1 = 2.0 ; Tsep/
√
h/g = 11.0 ; θ = 15◦ (Case 3). Second wave

runup. Unprocessed image (left), rectified image (right).

ξs = s

(
H1

h

)− 9
10

(4.1)

where s stands for the beach slope, and H1 and h are the constant depth wave height and depth.

It is straightforward calculate that for all the experimental cases tried here the first incoming wave

are breaking, and ξs = 0.426.

To understand the validity of the measurements, the experimental runups are compared against

the formulation for breaking solitary waves on rough slopes proposed by Wu et al. (2018)

R1

γH1

=
4.50(ξs)

1.52

0.04 + (ξs)1.19
, (4.2)
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valid for a surf similarity parameter ξs < 1.2, according to Synolakis (1987). Assuming a rough-

ness height of 0.5 mm for the beach made of concrete, a the reduction factor γ = 0.94 is considered.

The theoretical and experimental runup estimations for the first incoming wave are presented in

Table (4.3).

Table 4.3: Experimental and theoretical runups.

Case θ◦ R1/H1 R1/γH1 (Eq. (4.2)) Diff. (R1) (%)

1 0 3.245 3.058 5.76

2 15 2.90 3.058 -5.45

3 0 3.175 3.058 3.69

4 15 2.78 3.058 -10.0

Results show that even in the cases where the same waves propagate with no obliquity (Cases

1 and 3), there is a reduction in the runup of about ∼2.1% when they are expected to be similar.

According to Lo et al. (2013), it is assumed the separation time elapsed between the solitary waves

can influence the runup of the first wave. However, the magnitude of the second incoming wave

can modify a previously defined separation time, so its consideration can also contribute to the

observed differences. Based on this, the runup associated with the second wave after the interaction

is calculated from the following equation proposed by (Lo et al., 2013) for successive waves, which

includes the separation time. The formulation considered is as follows

R2 = [f(ξs) + 1]R1, (4.3)

where

f(ξs) =
175ξ−0.22

s − 199ξ−0.16
s

1 + 169ξ5.5
s

(4.4)

and

ξs = s

(
H1

h

)− 9
10
(

Tsep√
h/g

)
. (4.5)

According to this formulations, the runup associated with the second wave are estimated and

presented in Table (4.4).
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Table 4.4: Experimental and theoretical runup for the second wave.

Case θ◦ R2/H2 R2/H2 (Eq. (4.3)) Diff. (R2) (%)

1 0 2.147 1.916 12.05

2 15 1.933 1.916 -0.88

3 0 1.590 1.437 10.64

4 15 1.388 1.437 -3.53

Figure 4.18 presents the runup variability in terms of the angle of incidence θ. The differences

are mainly attributed to the fact that waves dissipate energy due to diffraction in the propagation

process, reducing the wave height before the breaking, and restricting the flow to advance longer

distances over the beach slope to reach higher runup elevations. A summary of the estimated

runups and their relation is presented in Table (4.5). According to these findings, a modification

of the proposed runup equation to include the effects of the obliquity will be necessary for a more

accurate runup estimation.

Table 4.5: Summary of the measured runups and their relation.

Case θ◦ R1/H1 R2/H2 R2/R1

1 0 3.245 2.147 0.9924

2 15 2.90 1.933 0.9998

3 0 3.175 1.590 1.0015

4 15 2.78 1.388 0.9985

4.5.2. Runups after the wave-swash interaction

Runups for the first and second incoming waves are analyzed in terms of the characteristic

ratios H2/H1, and Tsep/
√
h/g to observe the potential relation to the wave-swash interactions and

angles of incidence. Runups for the two incoming solitary waves are analyzed independently,

displaying similar magnitudes. From Figure (4.19), it is possible to observe that higher runup
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(a)

(b)

Figure 4.18: Runup as function of the wave obliquity. Solitary wave 1 (a) and solitary wave 2 (b).
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elevations are mainly associated with wave trains with no wave obliquity, regardless of the wave

height or separation time ratios. For these cases, however, Tsep hints to be more significant on the

maximum runup magnitude. Figure (4.20) shows the relation between the estimated runups.

(a) (b)

Figure 4.19: Runup for solitary wave 1 (a) and solitary wave 2 (b) in terms of the characteristic ratios.

4.6. Concluding remarks

A set of experiments was conducted at the directional wave basin of Oregon State University

to analyze the influence of the wave obliquity on fluid flows and runups. The experiments consider

controlled cases of two consecutive solitary waves of different amplitudes separated by a specific

separation time. Each experimental case is combined with two angles of incidence, θ = 0◦ and 15◦.

Fluid flows and surface elevations measured at the swash present consistency for each experimental

realization, allowing the generation of a single ensembled signal representative of elevations and

velocities to analyze.
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Figure 4.20: Normalized runups associated with the first (left) and second (right) wave.

Results show that higher fluid velocities and local accelerations are associated with higher wave

height ratios and shorter separation times, hinting at a contribution of the magnitude of successive

incoming waves. The angle of incidence of the wave train plays an important role in the magnitude

of the directional flows. While cross-shore quantities reduce their magnitude with wave obliquity,

long-shore, and vertical components increase. These latter quantities can contribute to building

sediment transport along the coast in combination with sediment suspension.

Runups over the beach were estimated using image analysis, rectifying image frames from

recorded videos of each experimental realization, and calculating the maximum distance traveled

by the upwash flow over the beach for each incoming wave. The method is effective and accurate

in obtaining the runups. Comparisons against theoretical experiments associated with the first and

incoming wave show minor differences when no obliquity is considered. However, when the wave
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angle increases, there is a reduction in the runup elevation due to wave diffraction. Similar behavior

is observed in the runup generated by the second wave. However, the analyzed cases present that

theoretical data are always lower than the measurements.

In general, results depict that higher angles of incidence induce both, lower maximum runups

and lower cross-shore fluid velocities at the moment the wave-swash interaction occurs, variation

attributed to the loss of energy the waves experience by the effect of the refraction as they propagate

to the shallower region of the directional basin.

Future work could include increasing the number of experimental cases and combining dif-

ferent wave elevations, separation times, and angles of incidence to assess the flow and runup

variations associated with the physical parameters of the waves and wave obliquity. Considering

variations in wave angles in the characteristic ratios could give new understandings to characterize

the wave-swash interactions quantitatively observed in the field.

Another extension of this investigation could consider including and measuring sediment trans-

port induced by wave-swash interactions and associated directional flows. These experiments can

reveal further insights into how the sediments distribute in different directions by joint action of

cross-shore, long-shore, and vertical flows and accelerations.

In terms of the runups, theoretical formulations do not include the effect of wave obliquity

in the runup calculation. From the experimental cases and measurements, it could be possible to

extend state-of-art formulations to consider the angle of attack of the waves. This improvement

could give more precise estimations of the runups for directional waves.

Numerical models, such as Computational Fluid Dynamics (CFD), can also be considered to

replicate and model the experimental cases in a directional wave basin to extend the number of

cases, forcing conditions, beach characteristics, and runup estimations.
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Chapter 5

CONCLUSIONS

Boundary layers driven by oscillatory and solitary waves propagating over permeable sea beds

have been estimated for sea floors with different hydraulic conductivities. The interfacial condi-

tions were analyzed by implementing two boundary conditions commonly used in permanent flows

according to the formulations proposed by Beavers and Joseph (1967) and Le Bars and Worster

(2006), solved numerically and analytically, respectively.

Analytical solutions for oscillatory boundary layers flows were found with the implementation

of the Le Bars and Worster boundary condition, extending the classical formulations for oscillatory

flows over impermeable sea floors from Stokes (1880); Batchelor (2000); Svendsen (2006). Ana-

lytical results, which depend on an empirical parameter present an agreement with the numerical

approach, validating the theory for the interfacial similarity between both boundary conditions.

Direct comparisons show that the analytical solutions are in good agreement with the empirical

data, demonstrating the robustness of the solutions and revealing the importance of the transition

zone within the porous layer, controlled by an empirical coefficient.

Error analysis of the solutions against the empirical data shows that the empirical coefficient

needs to be modified to improve the fitting conditions. This coefficient is sensitive to the perme-

ability of the porous media and controls the length of the transition zone. It is found that this

coefficient is significant for accurate modeling of boundary layer flows, as it modifies the depth of

the transition zone and thus, the structure of the boundary layer flows and bed shear stresses. One

of the main findings of this work is that the transition zone scales with either the grain diameter or

the hydraulic conductivity of the porous media.
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Laboratory-generated wave-swash interactions in a wave flume were characterized quantita-

tively by parametrizing them in terms of wave height and temporal ratio H2/H1 and Tsep/Tswash,

constructed from the successive solitary wave features. These quantifiers are functional not only

to group them according to the type of interaction, which facilitates the generation of clusters for

each interaction observed in the field, but also to associate other quantities to the type of interaction,

such as accelerations and times at which the interactions occur.

Developing total vertical accelerations was obtained by applying a theoretical approach based

on the vertical component of the Navier-Stokes equations, which considered the use of measured

quantities, such as surface elevations and bottom pressures. Accelerations exhibit that strong and

weak-wave backwash interactions are prone to develop higher magnitudes, reaching magnitudes

higher than the acceleration of gravity. Analysis of the generated flows reveals a lag between the

maximum vertical acceleration and the maximum horizontal and vertical components, for which

peak velocities follow peak accelerations, hinting to a potential accelerated movement of the sedi-

ment particles, predisposed to be transported onshore or suspended by the velocity components.

The experimental work conducted provides an understanding of different aspects of the swash

and the wave-swash interactions in this coastal zone, such as their region of influence, the quanti-

tative characterization, which had not been provided previously by the scientific community, and

the insights on the kinematic conditions developed by the interactions.

In the same line of research, it was observed that wave obliquity can affect the maximum

velocities, local accelerations, and runup elevations over a beach when a train of solitary waves

is considered. Cross-shore, long-shore, and vertical velocities show that higher magnitudes are

linked to a higher wave height ratio in combination with a shorter separation time between the

wave events. Runup developed by the first and second waves presents similarities when compared

to theoretical estimations, exhibiting a considerable reduction with wave obliquity. Runups ana-

lyzed quantitatively show that higher wave amplitudes are associated with larger separation times

and lower wave height ratios exhibiting dependence on the characteristics of the wave-swash inter-

actions. Results present that wave obliquity is a significant factor that needs to be considered for

the analysis of coastal processes.
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