

[Between Felch and Crystal Falls, Michigan]

#2: [specimens] 30086-100, 30701-715. No. 283

1891

Maurer, E. R.

[s.l.]: [s.n.], 1891

<https://digital.library.wisc.edu/1711.dl/DZTHMTG7ICU6J8W>

<http://rightsstatements.org/vocab/InC/1.0/>

For information on re-use see:

<http://digital.library.wisc.edu/1711.dl/Copyright>

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

283
LAKE SUPERIOR SURVEY

Maude S.

Topography.—On the left-hand page map as much of the section as has actually been seen, counting each of the spaces between the blue lines as 100 paces, and 20 of these spaces to one mile, or 2,000 paces. The scale is four inches to the mile, and the heavier blue lines, outlining one inch squares, mark forties. Denote streams, lakes, swamps, marshes, etc., by the topographical signs annexed.

The geologist will consult with the compassman, and describe as accurately as possible, the timber traversed. When pine is found, give its proportion; tell whether good or poor, and indicate kind—white, norway, jack. If hemlock is found, note the relative amount. In hard wood districts, designate as good or poor, heavy or light, and indicate predominant kinds, oak, maple, birch, etc. Cedar swamps, spruce swamps, tamarack swamps and meadow swamps will be always discriminated. Outline burnt timber.

Each day, just before leaving camp, the geologist will compare his own and the camp aneroids, and the reading of each, with time, will be recorded. At work the aneroid will be read on gentle slopes at intervals of 200 paces; on steeper slopes at intervals of 100 paces; also at all maxima and minima. When minima are streams the map and notes will indicate this, showing width and character of streams. When a stream has made a cut of importance, aneroid readings will be made where the banks break off and at water level. If instead of an abrupt break, the stream valley has steep slopes, aneroid readings will be made with sufficient frequency to show this character.

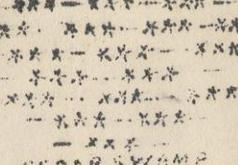
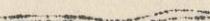
At reading points the compassman will stop, read the dial compass, and remain until the records are complete. The readings will, as fast as made, be placed upon the map at the right-hand side of the line traveled, and in the notes, the numbers being inclosed in parentheses, basing the work upon the bench-mark which served as a starting point. At bench-marks the absolute reading of the aneroid and the altitude as shown by the bench-mark will be recorded to serve as a base for subsequent readings. For instance, aneroid 29.13 inches; altitude on bench-mark, 275 feet. At each subsequent reading, by setting 275 on the altitude circle at 29.13 on the fixed dial, altitudes may be directly recorded. When the next bench-mark is found at two miles distance, the difference between the aneroid reading on the basis of the first bench-mark and the second bench-mark will be recorded. At intervals of a half hour during the day the time will be attached to the aneroid readings. Upon reaching camp, after the day's work, the geologist will record the readings of his own and the camp aneroid, and also the time. Interpolations will then be made, based upon the bench-marks and times (not distances) if the day has been one of no abnormal atmospheric disturbances, or upon both bench-marks and camp aneroid readings if there have been unusual disturbances, and the corrected numbers, less a constant of 4 feet, will be placed upon the face of the map at the left-hand side of the lines of travel, and in the notes without parentheses, but the parentheses numbers will not be erased.

At each aneroid reading the trend of a horizontal contour line will be indicated upon the face of the map, making the length of the line correspond as nearly as may be with the actual distance seen. In passing directly up or down a slope, the contour lines will be at right angles to the direction of travel. In passing up a hill diagonally the contour lines will intersect the lines of travel at various angles, which can be estimated and plotted with sufficient accuracy by an appreciation of the north and south direction.

The course of travel will be always north and south. In starting from a quarter or a sixteenth post, the work will be plotted on the assumption that the true course is followed, but upon reaching the next section line the geologist will remain in the position at which the line is struck by the compassman until the latter finds the adjacent bench-mark. The intervening distance will then be paced by the compassman, and the point of intersection of the section line marked. From this point to the starting-point, a right line will be drawn as the actual course of travel. The positions of the contour lines, aneroid readings, etc., will not be changed.

Geology. — In running the north and south lines, the compassman will, if possible, determine the course by the dial compass. At the time the geologist reads his aneroid, the compassman will determine the magnetic variation, which will be given to the geologist and recorded in the note-book. Each morning the watch of the compassman will be set to apparent time (corrections being made for the equation of time and for longitude), so that he will need to make no correction in reading magnetic variation. On cloudy days, and at times when the sun is too low for the use of the dial compass, the course run will be by needle upon the supposition that the magnetic variations indicated on the township plats are right when corrected by deducting 3° if the variation is east, or by adding the same amount if the variation is west.

Not less than once per week the accuracy of the watch of the geologist in charge of a party (who will give time each morning to the compassmen), will be tested. This may be done, first, by obtaining correct time from a railway station by means of a packer when sent out for provisions. Such time will be mean, i. e., watch time for the ninetieth meridian. Second, corrected time may be found by blazing out a north and south section line, preferably a range line, for some distance, setting a signal on the line and placing the dial compass duly leveled, in a north and south direction upon a Jacob's-staff just before mid-day, and setting the watch at 12 at the time the line strikes the noon hour. In a watch thus set all corrections are made.



It will be the constant business of the geologist to search for outcrops. All hills within a reasonable distance of the course of travel will be examined. Oftentimes upon the steeper slopes of a hill a rock surface is covered with a coating a few inches thick of moss, leaves or vegetable mold and can be stripped with the pick. Where the exposure is small and there is the least possibility that it may be a large boulder, indicate this fact in the notes and by a query on the map. All ledges off the line of travel of the compassman will be located by the geologist pacing to this line in an east and west direction, his course being determined by compass.

Denote the ledges of rock, when no structure is made out, by cross-hatching, making the cross-hatching cover as nearly as possible the areas occupied by the exposures. If the rock is a massive one, but still more or less plainly bedded, use the same sign with a dip arrow and number attached, showing the direction and amount of the dip. Denote a shaly or other very plainly bedded ledge by right parallel lines, and a ledge having a secondary structure by wavy parallel lines running in the direction of the strike, having strike line and dip arrow with numbers attached. The greatest care must be taken to avoid confusing slaty or schistose structure, with bedding, and in all cases where there is the least doubt about the true bedding direction, indicate it by a query.

To each exposure on the face of the map, attach the number of the specimens representing it. On the right hand page place the notes descriptive of the exposures. Begin in each case with the number of the specimen, placing the number on the left hand side of the red line, after which give in order on the right of the same red line, the position of the ledges as reckoned in paces from the southeast corner of the section, and the dip and strike when observable, for instance, No. 437, 1226, N., 353 W., Strike, N. 47° E., Dip, 68° S. E. Then follow with as full a description of the ledge as possible.

Collect a specimen from every ledge, and if the ledge exposes different kinds of rock, collect a specimen of all varieties. Take care to get fresh material, unless for a special purpose the weathered surface is desired. Where ledges are infrequent the normal size of specimens will be 3x4x1 inch. In case several specimens of the same ledge are necessary, and when ledges are numerous, specimens 2x2 $\frac{1}{2}$ x $\frac{3}{4}$ inch will be allowed. In all cases collect chips for slicing. No two specimens will be given the same number. In the cases in which several specimens come from the same ledge, the different numbers assigned to them will enable an easy description of their relations. Specimens will be placed at once in paper bags provided, upon which shall be marked in at least two places, with a blue or red pencil, the specimen number.

TOPOGRAPHICAL SIGNS.

<p>PINE OR HEMLOCK</p>	<p>HOLLOWWOOD</p>	<p>PINE OR HEMLOCK AND HOLLOWWOOD</p>	<p>CEDAR SWAMP</p>
<p>SPRUCE OR TAMARACK SWAMP</p>	<p>MARSH</p>	<p>RAILROAD</p> <p>ROAD</p> <p>CREEK</p> <p>RIVER</p>	<p>NO STRUCTURE</p>
<p>NEARLY MASSIVE</p>	<p>SHALY OR BEDDED</p>	<p>SECONDARY STRUCTURE.</p>	<p>783°</p>

↓ 55° S.

NEARLY MASSIVE

IN 37° S.

3.62° E.

SHALY OR BEDDED

EQUATION OF TIME FOR 1891.

Day	Min.	Day	Min.	Day	Min.
-----	------	-----	------	-----	------

JUNE.

Add to watch time.

1-6	2	7-11	1	12-16	0
-----	---	------	---	-------	---

Subtract from watch time.

17-21	1	22-26	2	27-31	3
-------	---	-------	---	-------	---

JULY.

Subtract from watch time.

1-6	4	7-13	5	14-31	6
-----	---	------	---	-------	---

AUGUST.

Subtract from watch time.

1-7	6	8-13	5	14-18	4
19-23	3	24-26	2	27-29	1
30-31	0				

283

SEPTEMBER.

Add to watch time.

1- 2	0	3- 5	1	6- 8	2
9-11	3	12-14	4	15-17	5
18-19	6	20-22	7	23-25	8
26-28	9	29-30	10		

OCTOBER.

Add to watch time.

1	10	2- 4	11	5- 8	12
9-12	13	13-16	14	17-22	15
23-31	16				

NOVEMBER.

Add to watch time.

1-13	16	14-19	15	20-23	14
24-26	13	27-29	12	30	11

index

1

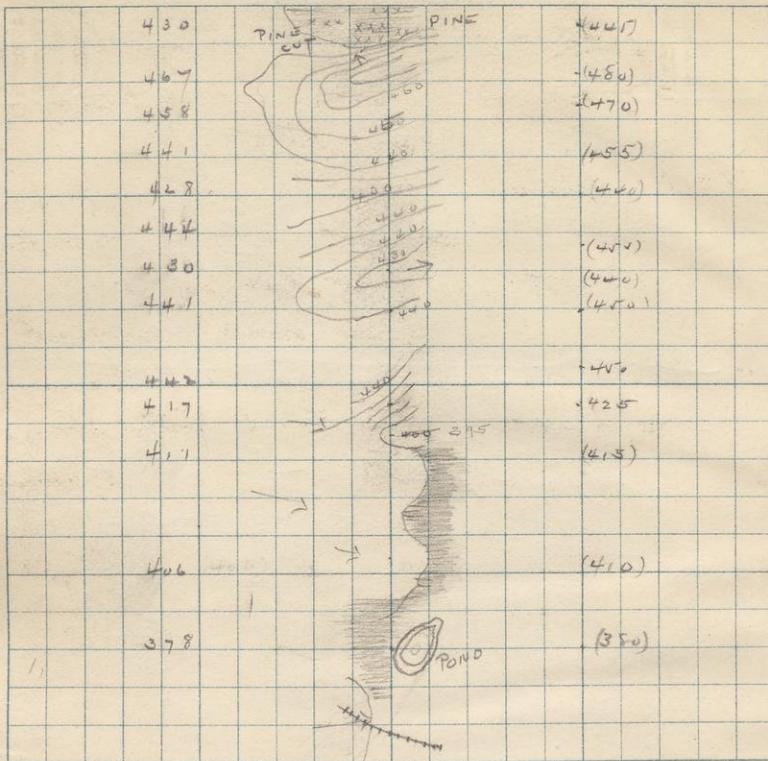
#2 1891
E. R. Warren Geologist

Specimen Nos 86-100 inclusive
701-715 "

Specimens - 86-100
701-715

42-31

43-30


43-31

2

S. 34

T. 43

R. 30

38
73

X

Nov. 10. - 8:00 a.m.

380.73 BM. $0' = 29.89$ amout.

0-150 Thick hemlock &

maple

150 - 450 cedar swamp

cedar medium size

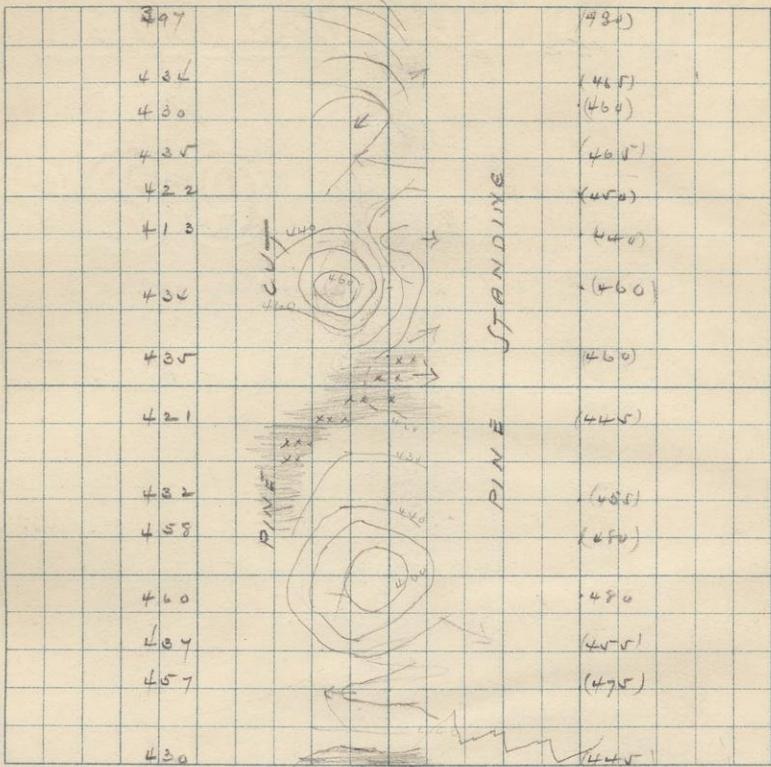
450 - 1700 fine hardwood

maple with basswood

1700 - 1800 hemlock & balsam

1800 - 1950 hemlock with pine

cut on 34 & standing
on 35


9:00 a.m. at corner

S. 27

T 43

R. 30

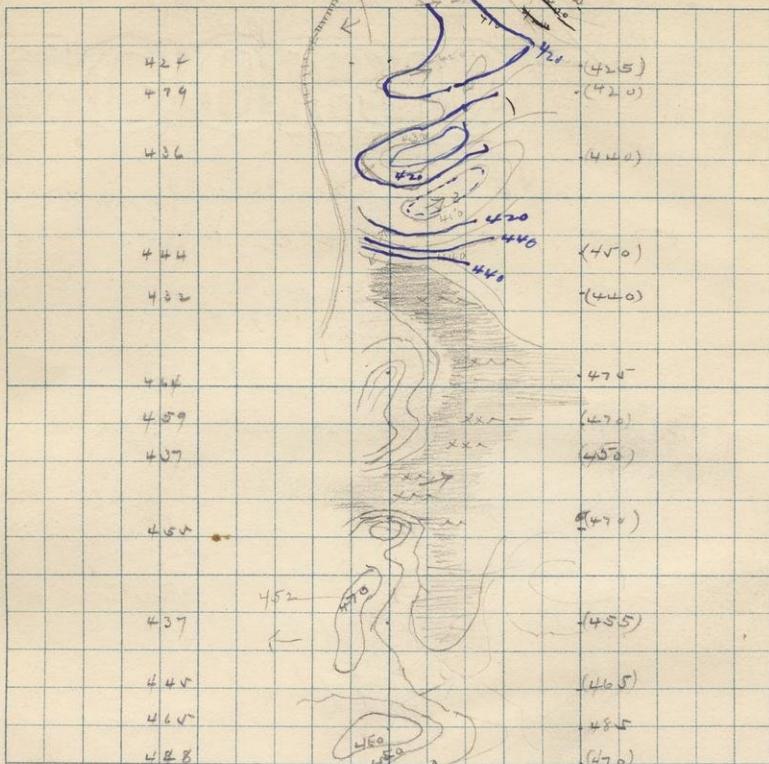
39681

0 - 950 maple birch aspenwood,
fir cut in 27 X
standing in 26

950 - 1100 dry swamp
hemlock cedar

1100 - 2000 late stage
hummocks.

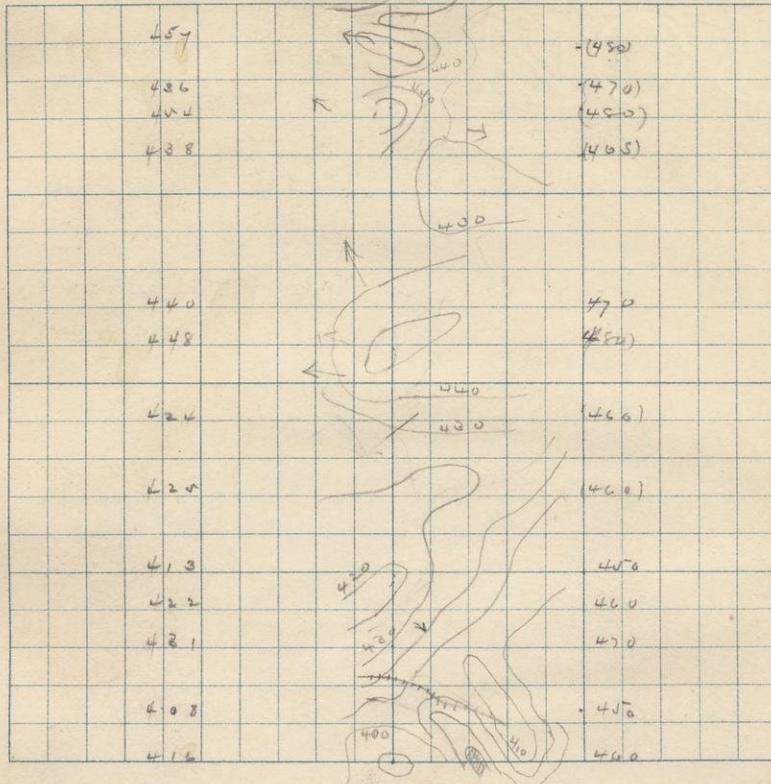
Percent in 27 standing
in 26.


at corner O.K. 10: am

B.M. = 396.50

Aneroid 430.00 very bad

33


S. 27⁰ 27⁰ N. R. T. 23⁰ 26⁰ E. R. 396.8⁰

X

Nov 10 10:15 a.m.
Btu = 430.25 Amerivd^o = 29.85["]
0 - 650 hardwood but
burnt
650 - 800 tamarack swamp
800 - 1200 maple birch basswood
1200 1340 dry swamp
1340 - 1 cedar birch hemlock
1340 - 2000 - maple birch
basswood some
hemlock - trees
as not placed very
thick

S. 34 T. 43 R. 30

四

416.50

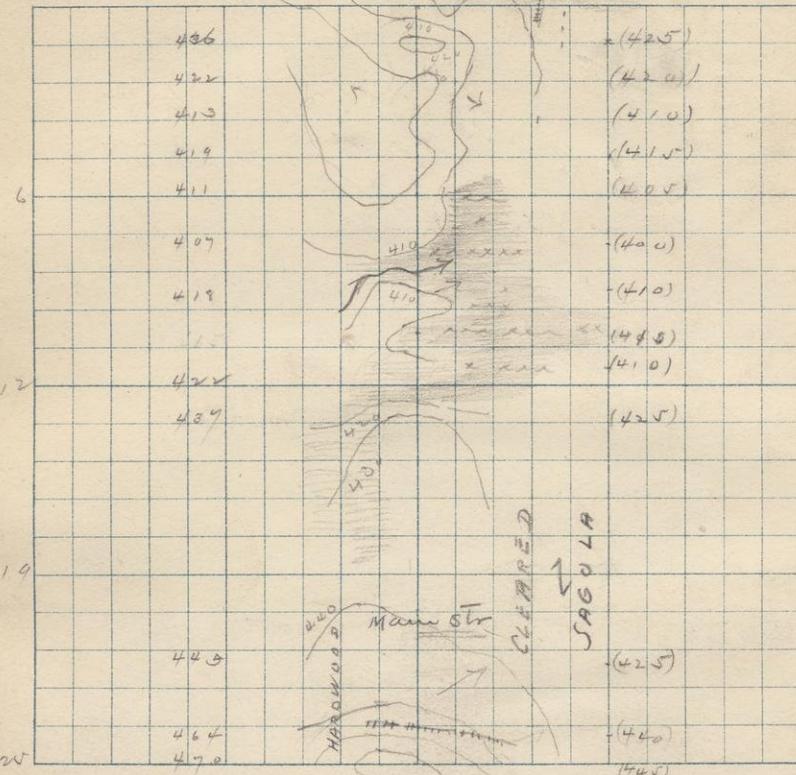
Harvest of maple, birch &
basswood.

Pine all cut.

at 1500 - 1700 is fine grove of
solid hemlock

1700 - 2000 hemlock mixed
with hardwood.

at $\frac{1}{8}$ 76 f. East.


Ran this mile with $V = \frac{1}{2}^{\circ} W.$
12' 0" 7M.

B.M. = 416.00 A.M. = 460.00
diff 44'

S. 29

T. BM = 40538
43

R. 30

Nov 11 91 11-50 am

Bu 405.38 an 0' = 29.70

Pine maple birch hemlock

Pine gets scarcer as you

go S.

Maple birch hemlock

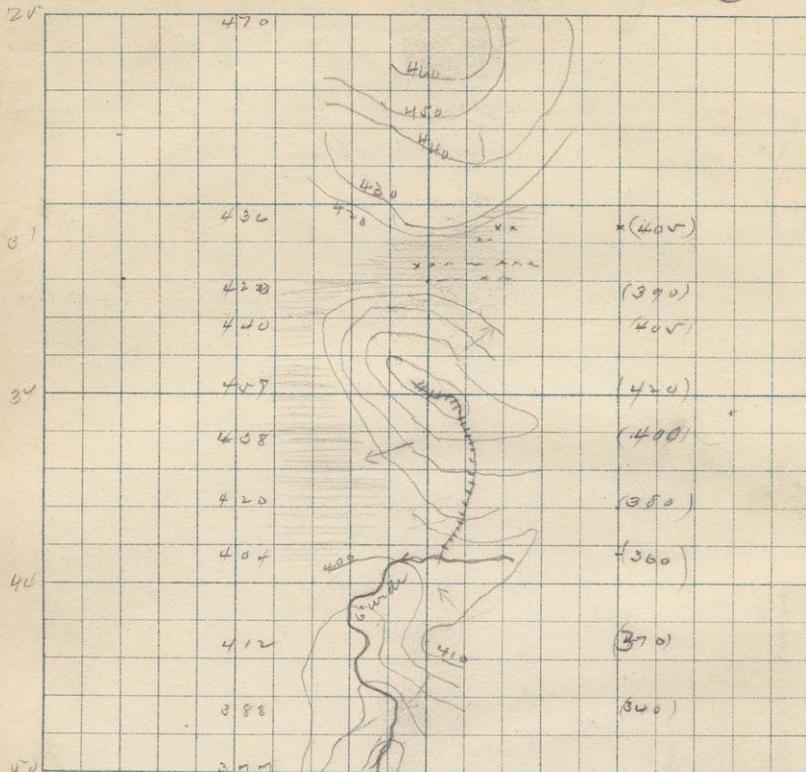
and cedar scattering

to 100

~~85 1/2~~ 58 1/2 land.

Sagola location

700 / small cr 2 1/2' wide


flows E.

12

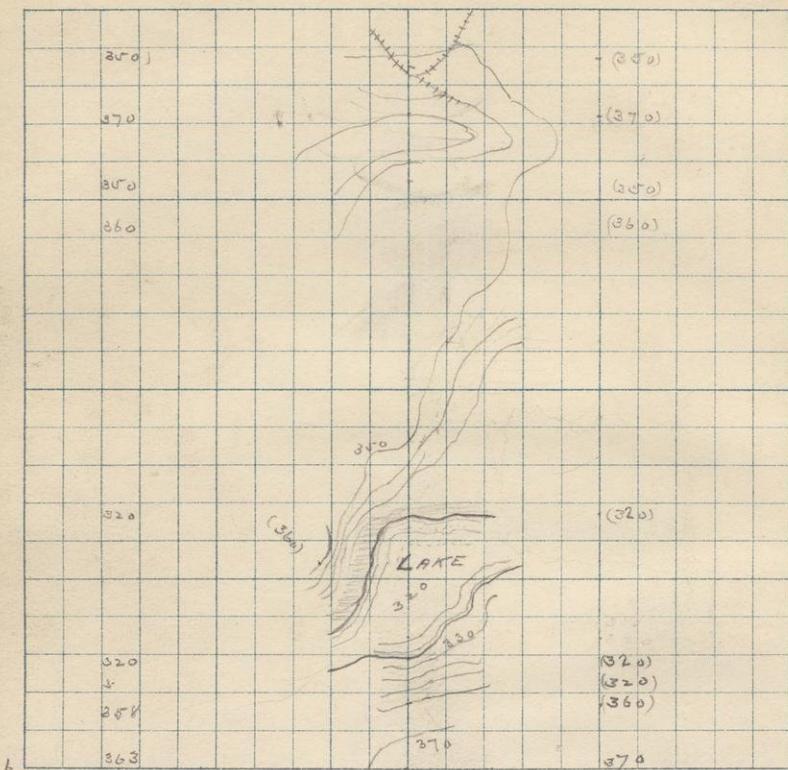
S. 32

T. 43

R. 30

$$\Delta M = 37.6$$

0-400 good Hardwood
maple & thick basswood
400-550 timber grades into
550 & begins cedar swamp
to 750
750-2000 Hardwood - maple thick
basswood and some
cedar & pine


B.M. 37764

aneroid 327.

50 off.

Line spacing 0.16.

S. 3 ^{357.50} T. 42 R. 31 ³¹

Nov 15 8-20 am

B.M. = 367.53 Amwood 0' = 30.86

Plains all round corner

Trees all cut, nothing

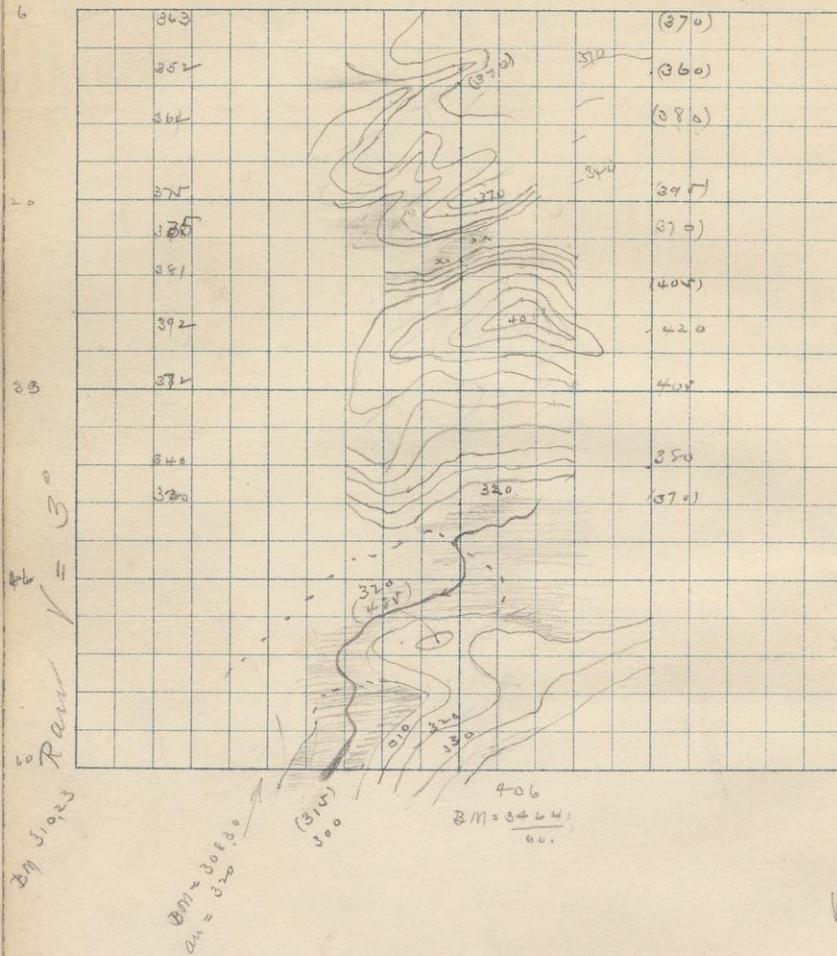
but burnt stumps standing

This open country continues
to 1000

1000 begins some hardwood
hemlock cedar spruce
and aspens to lake

Amwood at N. side of
lake = 310 at South
side much later
= 350 I set it back
to 310 and continued
to 5th branch line 0' = 30.82
at ^{line} ~~const~~ 42 paces W.
Rand V = 2 $\frac{1}{4}$ " E

1900 to 2000 old windfall


all standing timber
is dead

16

S. 10

T. 42

R. 3 /

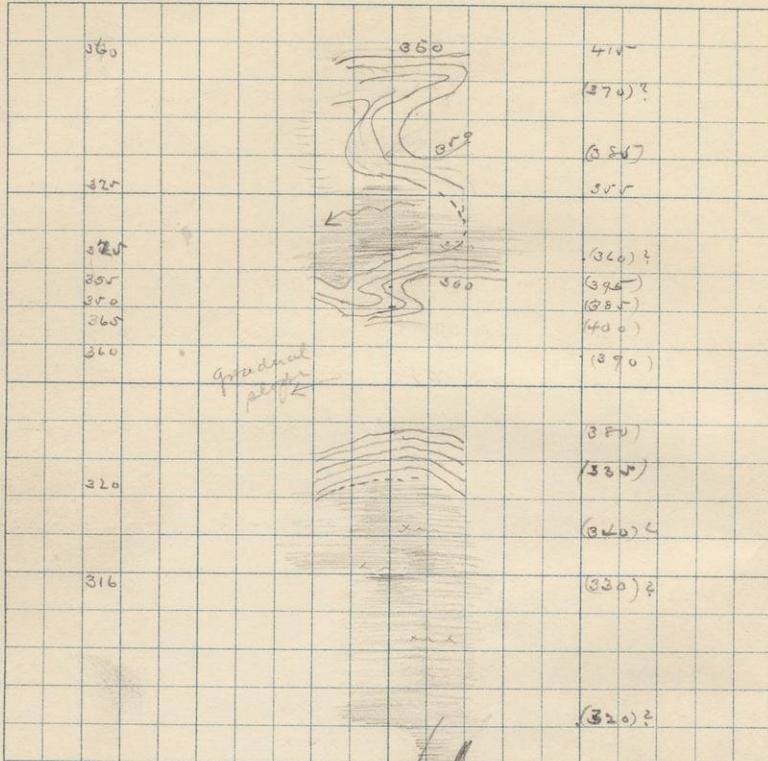
old windfall from

0 - 600 The standing timber
is burnt & dead

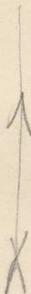
600 - 400 dead spruce & cedar
swamp

700 - 1300 old windfall
everything down.

1300 - 1600 open spruce swamp
some cedar at 1600

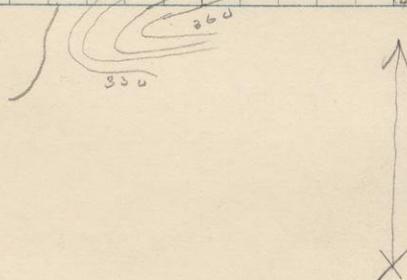
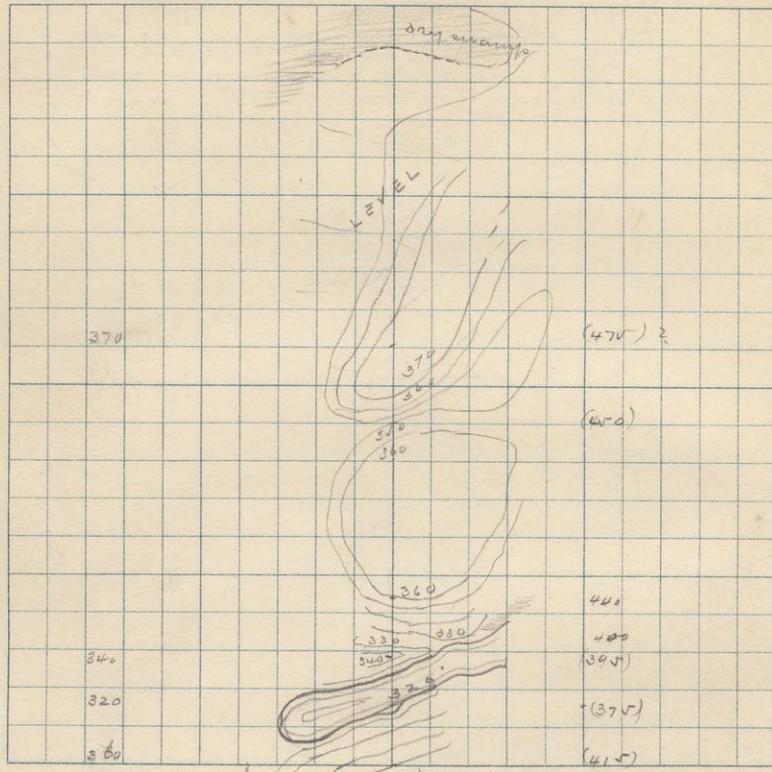

1600 - 2000 old wind fall

Bill 34641


Amnow

406

60 at 11 am.



$\delta M = 3.0 \pm 3.0$

Nov 12 11:10 am
 B.M. = 308.30 A.m. = 30.23
 0-100 tamarack with
 balsam spruce
 100-500 spruce slants, many
 550-740 " " "
 740-1350 old windfall
 everything down except
 small groups of
 Norway pine 8"-16" dia.
 1470 small creek 2' wide
 1350-1520 old cedar windfall
 in swamp
 1520-2000 old. windfall,
 little standing and
 all this is dead
 Raw v = $3^{\circ}E$ net post v
 1991

12-20 PM.

S. 3. ^{PN} T. 42 R. 31

0 - 500 wind fall - everything dead

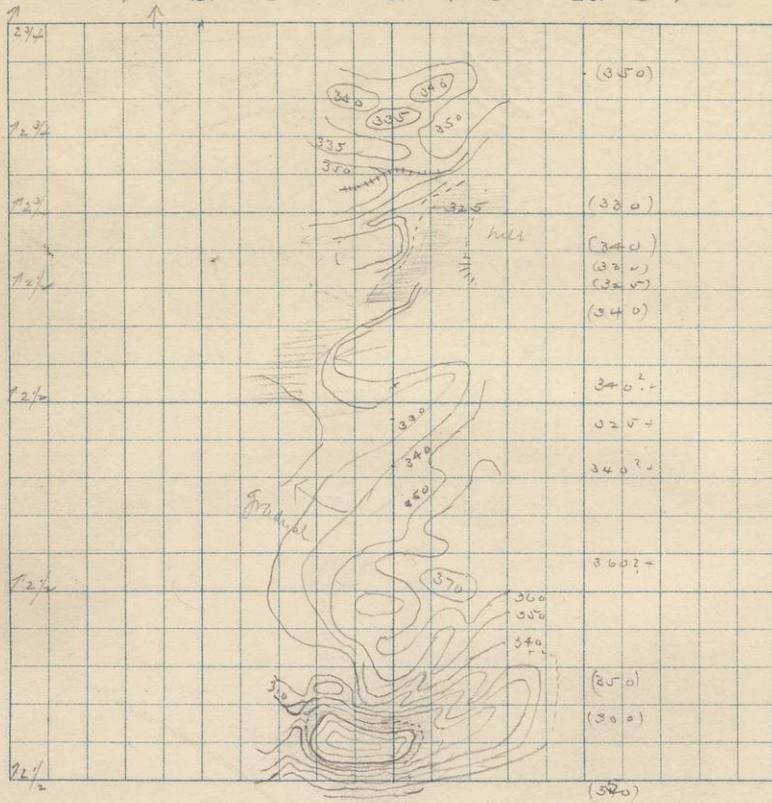
500 - 1000 no windfall
but nearly all timber standing is dead

some green larch
cedar, spruce thick

1000 - 2000 everything cut.

Bill = 342.07

Amort 480.00


137 - off

very changeable weather
Storm clouds passing
all day

vn

137

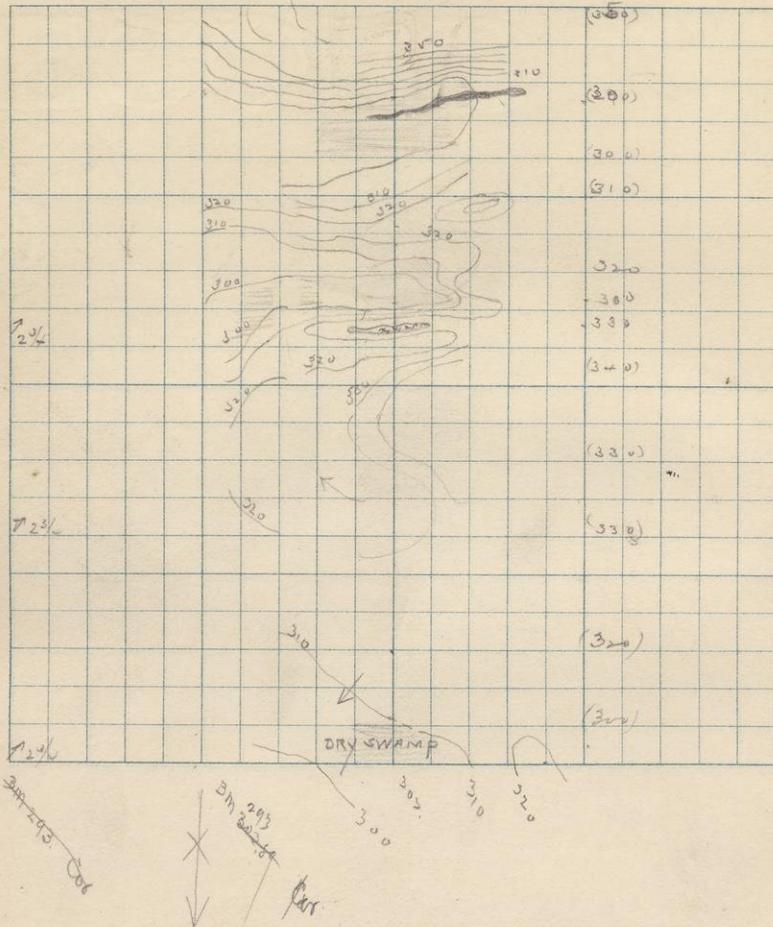
34320 S. 3 T. 42 R. 31

Nov. 16 '01 8:25 a.m.

BM = 34320 Aneroid 0' = 30.01

0 - 640

open country -
all timber cut
except some dead
stubs


640 - 2000

Wind fall and
some dead standing
timber - nothing green

9:30 a.m.

Found no slate

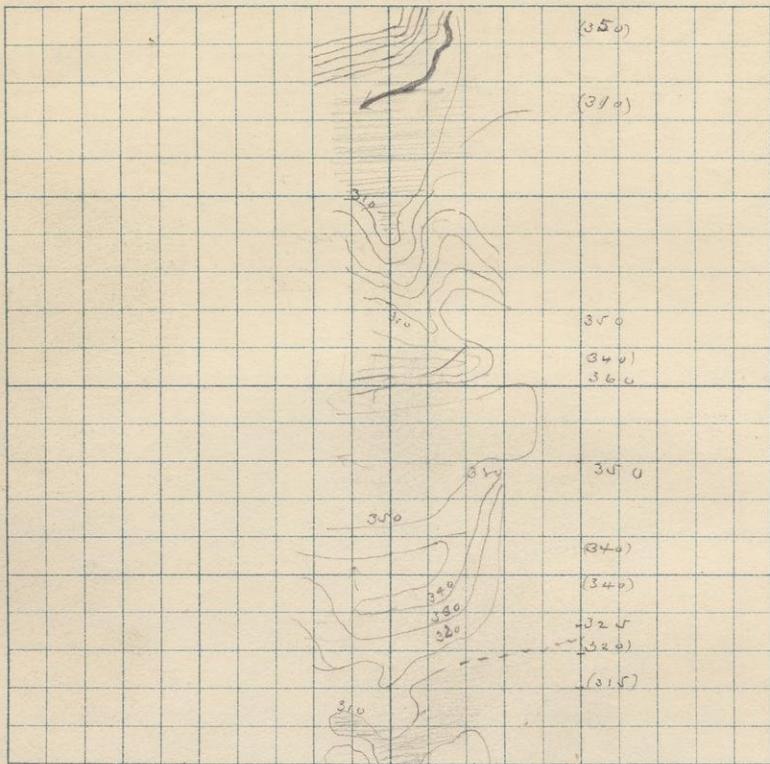
S. 10. T. 42 R. 31

all undrilled and all water
dead except last 300 ft.

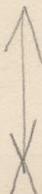
292 Creek 10' wide floor W

30086 1180 N 1500 W of SE cor 11-42-31
a limestone ledge
100 ft long 20 wide
fine grained and all alike
except for one or two
dykes from which came specimens
5 x 3

30087


30088

} 1180 N. 1500 W of SE cor 11-42-31
Dykes in #1


aneroid changed in 15 mm
while on the outcrop
from 330 to 320

At line at 2015 top W of cor.
time probably slow V should = 3°
B.M. 303.89 Am 293 $\frac{1}{2}$
10:50 am

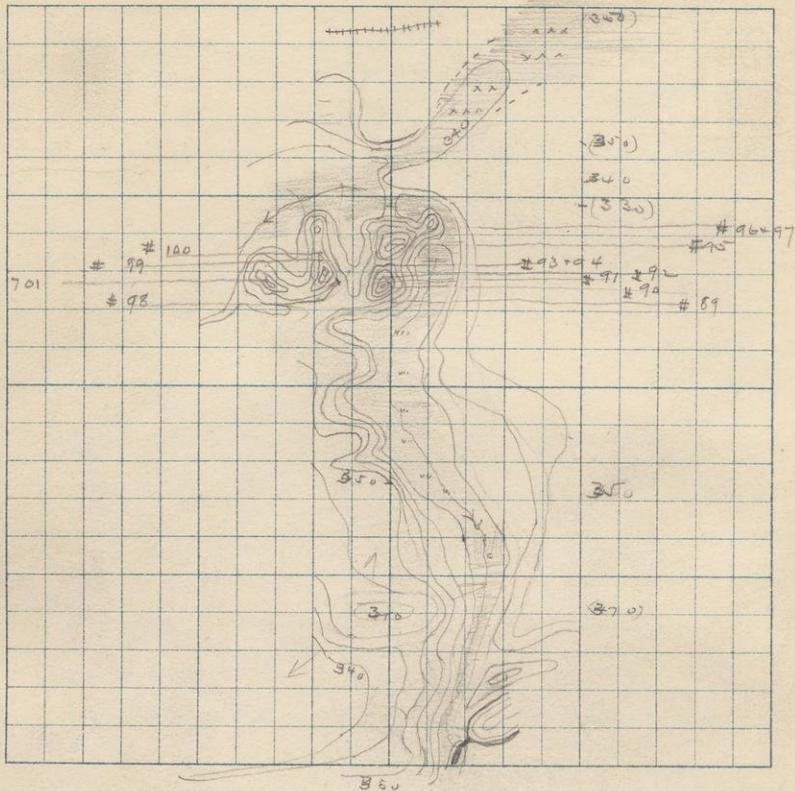
S. 10 T. 42 R. 31

BM 3,0.23

Nov 16 '91 11 am.

BM = 310.23 an. 0' = 30.01

0-900 Windfall + dead standing timber


900-1200 Norway mixed
with cedar spruce
+ balsam

1200 - 1850 - Cedar swamp
cedar brick
balsam spruce

S. 3

T. 42

R. 3 /

one whole mile of windfall
except 800 - 1200 which is marsh
on each side of it is windfall

B.M. 342.18 aneroid 350.⁰⁰
at 1-30 P.M.

At 1300 N 1000-1500 W. of
SE cor sec 3-42-11 ¹⁴
is large greenstone bluff.
On opposite page is a contour
sketch of the bluff. The numbers
are specimen numbers of
specimens taken from it
The predominant rock is
greenstone which varies in
appearance or texture from the
fine grained like 901 to the
coarsely crystalline like 9394
and 9395 from same bluff

300.90

300.93

300.94

300.95

300.96

300.99

Blank Even Pages

30-34

Skipped

300.91

300.92

From what appears to be a dyke in that it is confined to a belt of ~~rock~~ in the coarse greenstone and scoria which has a breadth of perhaps 50' and runs the entire length of the bluff N.E. about $N 80^{\circ} E$.

91 shows a scoria? surface quite common on the ledge
92 is on the N side of
91 - shows distinct cleavage.
The dip of cleavage is about $75^{\circ} S$.

300.89

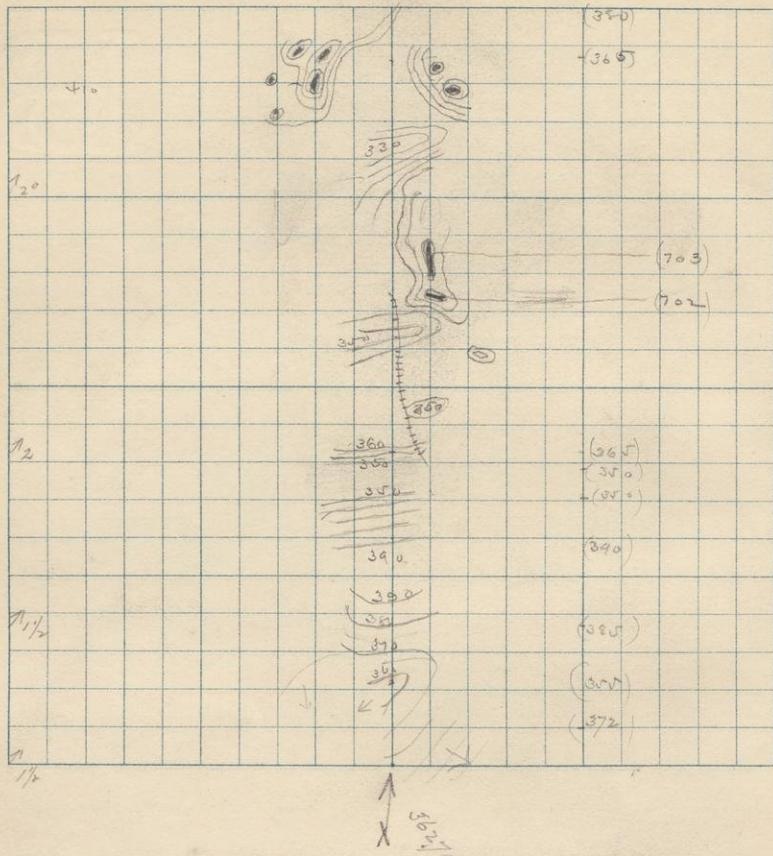
From S side of bluff where ~~scoria~~ is an old exfoliation (for this presumably). The rock is easily cleavable and is either a dyke or a squeezed part of the whole mass so that now it appears to cut the greenstone - striking

about N. The pit is only a few feet deep but right in the rock. Nothing is exposed except greenstone and the specimen rock. No iron indications that I can see.

30098

From the surface near an old pit and presumably out of it. The pit is filled and the ledge can not be seen but I think the shaft is right in the greenstone. Whether the specimen is from rock in place I can not say but should guess that it is not for the pit is in a ravine between two cliff where the surface is slightly drift covered

30099


From N. side of cliff to show the calcite? on one side of the specimen. The calcite always appears in the joints and is probably a

secondary or main deposit.

30099} From the middle knot
300100} 100 is like? q1?

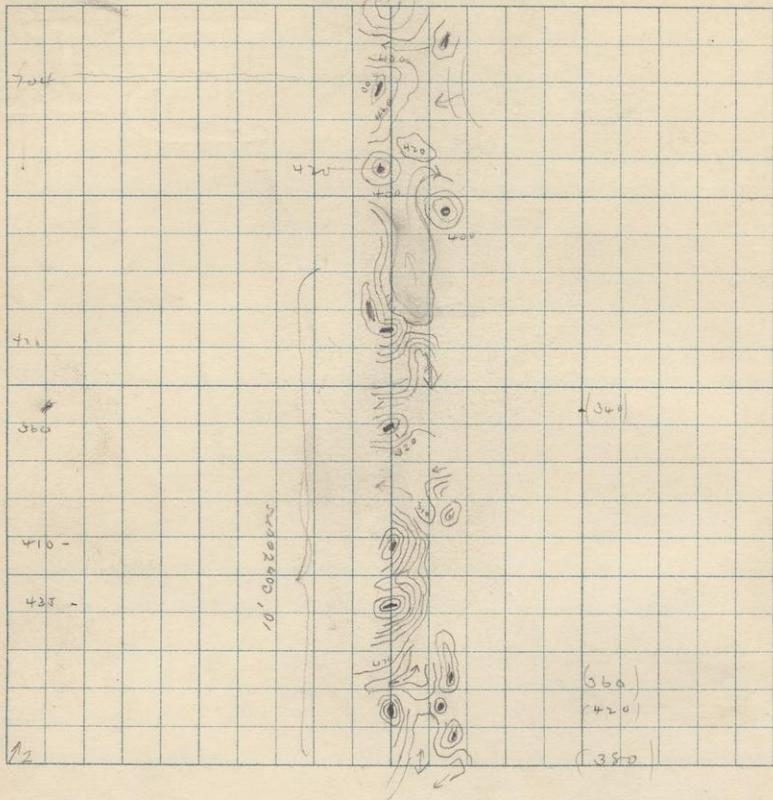
#

30701 a specimen of the rock on
the westernmost knot.

The four succeeding contour sketches show approximately the character of secs 32 x 29 - 43 - 31. The surface is almost one mass of rocks with knolls & cliffs as storm. It was impossible to get correct contouring with only four guns through the seas and

307

307


Nov 17 '91 8-10 am
 BM 362.70 aneroid 0' = 30.09

400 - 550 green hardwood
 hemlock maple birch
 balsam

550 - 2000 pine cut - only
 dead timber standing

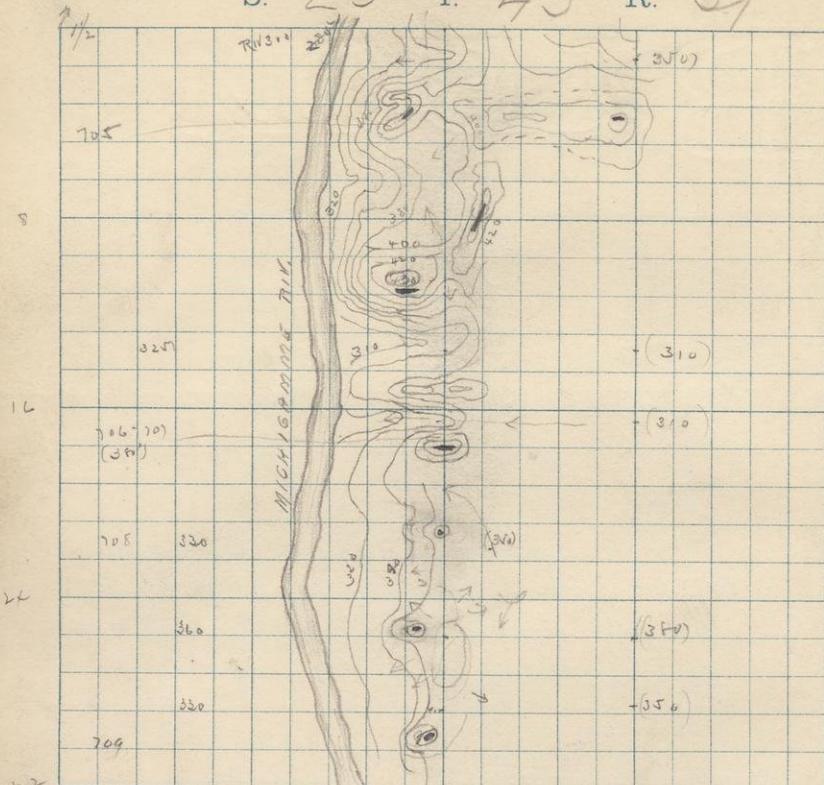
362.702 1000 ft N 900 W of SE cor 32-43-31
 Greenstone from a scrot
 which is same throughout

362.703 1350 ft N 900 W SE cor 32-43-31
 finer grained gritty greenstone
 from large boulders

S. 29^{3m}_{40'} T. 43 R. 31

So only the most prominent knots were sketched.

0-1900 timber cut
all dead what is
left standing


hemlock, cedar pine at 21 1/4

330704 1800 N 1000 W of SE cor 29-43-3
limestone coarse and cupulatum
greenstone.

40

၁၇၀၅၄

S. 29 T. 43 R. 31

3070

370

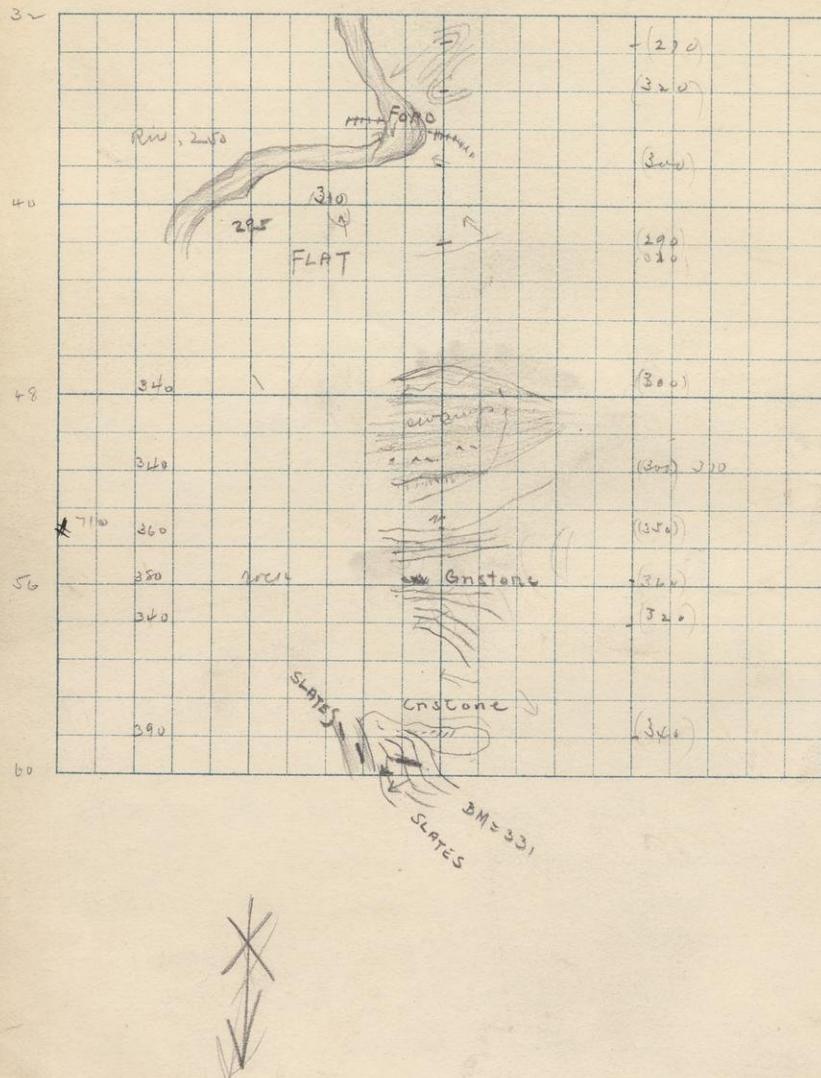
3.70

Nov 17 10-30 a.m.

B.M. = 376.94 0' 30.12

0 - 200 hemlock, pine
brick maple
balsam cedar

200 - 2000 nothing but
dead stumps standing


30705 81750 N 1600 W of SE cor 29-43-31
Coarse and crystalline
greenstone.

30706 }

30707 950 N - 1600 W of SE cor 29-43-31
An altered greenstone?
A cleavage seems to have
been developed and this
may be a dyke with E & W
strikes. Could not see
any contact of this and
any other rock. Only reason
for supposing a dyke
is a slight schistosity

42

S. 32 T. 43 R. 31

0 - 1800 - no green limulin
sandstone

1800 - 2000 some balsam
cedar brick &
Limestone.

30708 = 3314 aneroid = 270.0
1 - 200 P.M.

30708 530 N 1000 W of 86 cor 29-43, 31
greenstone crystalline
(diabase or gabbro) with
pyritus.

30709 100 N 1000 W of 86 cor 29, 43, 31
compact greenstone.

30710 9640 S - 1000 W of 86 cor 3243, 31
like 709.

5.

T.

R.

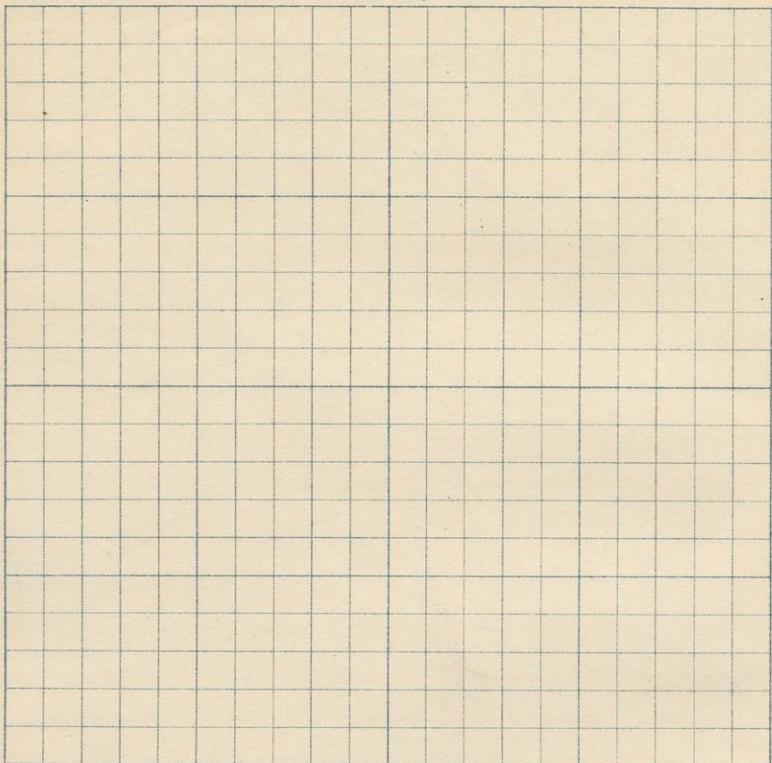
0 N. 1700 W of SE cor 32-43-31

307111 Slates from surface at

test pits on Michigan on
Riv. bank

The township plat
marked "argillaceous slate"
at W $\frac{1}{2}$ between 32-43-31
5-42-31

This place (a hill) is entirely
covered with snow and whether
the whole hill is slate I can
not tell. In the test
pits along the Riv. bank and
on the Riv. do occur thin
slates 711 & 712 which are
so fissile that dip & strike
is not constant. Dip of
cleavage is high & diff. every direction.


30714 } 0 N. 1800 W of SE cor 32-43-31

Slates from surface at test
pits.

S.

T.

R.

FINIS

Blank Pages

48-105

Skipped

106

"Bayley and King" Specimens in
(B.M.C.N.)

✓	14175	80	H8	35	RR cut.	Massive grey
✓	14176	"	"	"	"	
✓	14254	80	-39	1 - 47 - 36		
✓	14255	"		12 - 47 - 36	V 15298	93 - 42
✓	14256	"		13 - 47 - 36	V 15299	93 43
✓	14257	80	41		V 15300	93 46
✓	14258	"			V 15272	"
✓	14259	"			V 15271	93 - 46
✓	14260	"				
✓	14261	80	H2	13 - 46 - 36	V 15296	105 - 29-46-36
✓	14262	"		18 - 46 - 34	V 15297	"
✓	14282	"		18 - 46 - 34	V 15272 ?	92 - 19 18-47-36
✓	14283	"	"	11 "	V 15273 ?	"
✓	14284	80	H8		V 15274	"
✓	14264	"			V 15275	92 - 20
✓	14265	80	H2		V 15276	21-47-36
✓	14271	80	H6	3 - 47 - 34	V 15277	"
✓	14272	"		3 - 47 - 34	V 15278	92 - 21
✓	14273	"			V 15268	104 29-45-35
✓	14274	80	H7	3 - 47 - 34	V 15269	11 30-45-35
✓	14275	"			V 15270	17 - 45 - 36
✓	14276	"			V 15271	21 " "
✓	14277	"			V 15273	22-45-36
✓	14278	"		3 - 47 - 34	V 15272	26 45 "
✓	14279	"	"	" "	V 15274	" "
					V 15277	31-44-35
✓	14295	80	-49	5 - 47 - 32	V 15276	20 "
✓	14296	"		"	V 15275	9 " "
✓	14297	"			V 15278	8 " "
✓	14298	93	-39		V 15279	1 - 45 - 36
✓	14299	"			V 15280	11 - 45 - 36
✓	14300	93	-41		V 15281	10 45 36
✓	14301	"	H2		V 82	82 " "
✓	14302	"			15282 ?	"
✓	14303	"			V 15283	
✓	14304	"			V 15284 ?	16 - 47 - 35
✓	14305	"			V 15285	34 - 47 - 35
✓	14306	"			V 15286	27 - 46 - "
✓	14307	"			V 15287	32 - 46 - 35

Massive greywacke

	#	BR	
V	15288	104	28-46-34
V	89		
V	90		
V	91		
NS	92	not sectioned	
V	14484		

} from road
4 miles S. Murphy's.
47-34

Those crossed out were
also found by L.S.S. geologists
season 1891

All ~~useless~~ specimens
not sectioned except
15292

108

cont'd

15288

15289

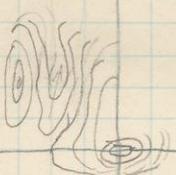
15290

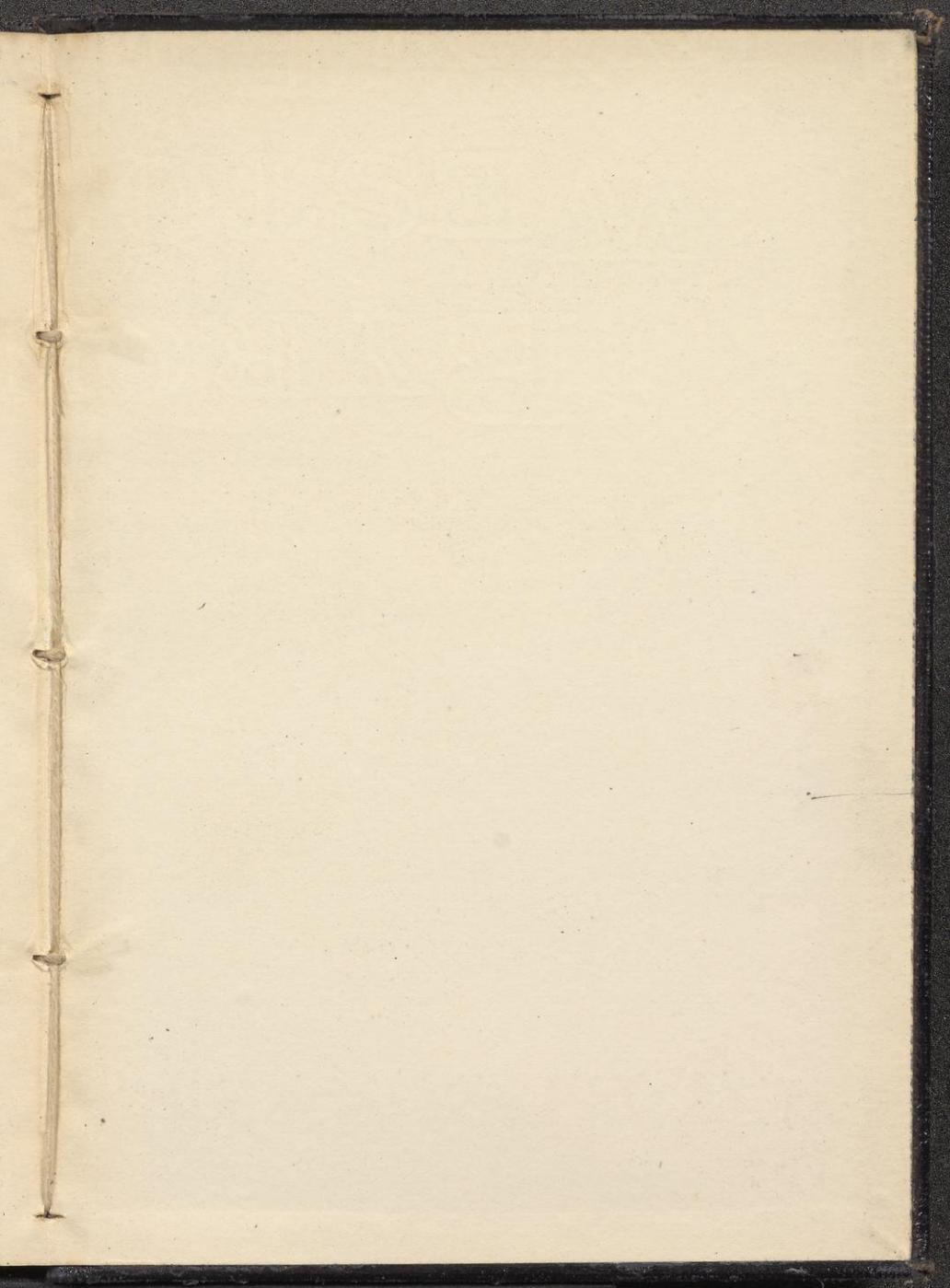
(15291)

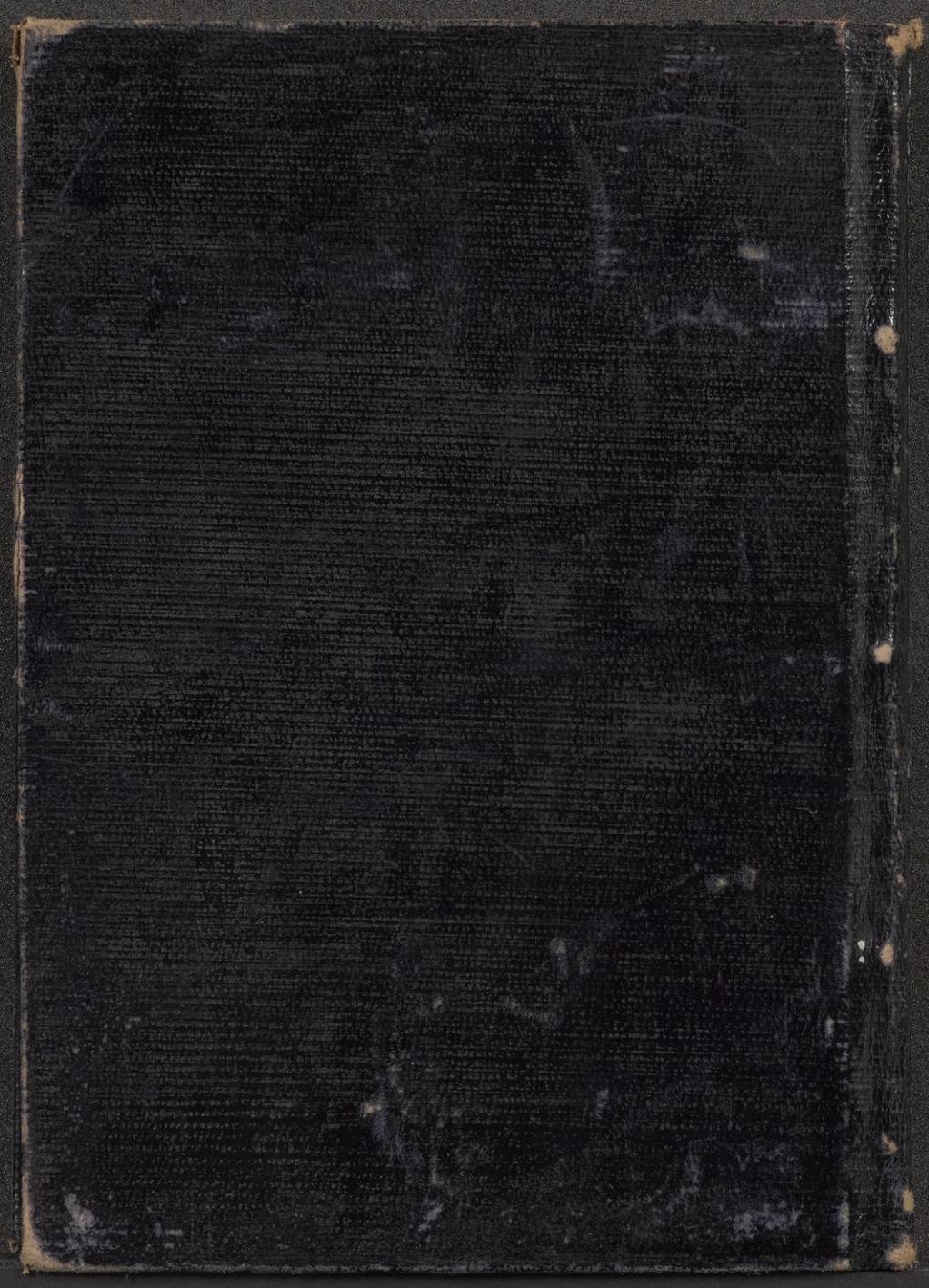
15292

15293

14175	9045	14498	9353
14176	9046	14499	9354
14204	9122	14500	9355
14255	9123	14173	9043
14256	9124	14174	9044
14257	9125	15296	
14258	9126	15297	
14259	9127	14322	9189
14260	9128	14323	9190
14261	9129	14324	9191
14262	9130	14325	9192
14282	9150	14326	9193
14283	9151	14327	9194
14263	9131	14328	9195
14264	9132	15268	9988
14265	9133	15269	9989
14271	9139	15271	9990
14272	9140	15271	9991
14273	9141	15273	9993
14274	9142	15272	9992
14275	9143	15274	9994
14276	9144	15277	9997
14277	9145	15276	9996
14278	9146	15275	9995
14279	9147	15278	9998
14295	9163	15279	9999
14296	9164	15280	10000
14482	9329	15281	10001
14483	9340	15282	10002
14491	9346	15284	10004
14492	9347	15285	10005
14493	9348	15286	10006
14494	9349	15287	10007
14495	9350	15288	10008
14496	9351	15289	10009
14497	9352	15290	10010
		15291	10011
		15292	10012
		14484	9341


Blank Pages


110-119


Skipped

120

11

